FINAL REPORT

Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

ESTCP Project ER-201025

November 2013

Lila Beckley Thomas McHugh **GSI Environmental Inc.**

Tomasz Kuder R. Paul Philp **University of Oklahoma**

Distribution Statement A

This document has been cleared for public release

TABLE OF CONTENTS

1.0	INTR	ODUCTION		
	1.1	BACKGROUND	1	
	1.2	OBJECTIVE OF THE DEMONSTRATION	3	
	1.3	REGULATORY DRIVERS	3	
2.0	TECH	INOLOGY		
	2.1	TECHNOLOGY DESCRIPTION	5	
		2.1.1 Isotope Analysis	5	
		2.1.2 Isotope Ratio Analysis	5	
		2.1.3 Application to Vapor Intrusion	6	
	2.2	TECHNOLOGY DEVELOPMENT	8	
	2.3	ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY		
3.0	PERF	ORMANCE OBJECTIVES	10	
	3.1	PERFORMANCE OBJECTIVE 1: COLLECTION OF D	DATA	
		REPRESENTATIVE OF SITE CONDITIONS		
		3.1.1 Data Requirements	12	
		3.1.2 Success Criteria		
	3.2	PERFORMANCE OBJECTIVE 2: VALIDATION OF DRAFT PROTO	COL	
		FOR USE OF CSIA TO EVALUATE VAPOR INTRUSION		
		3.2.1 Data Requirements		
		3.2.2 Success Criteria		
	3.3	PERFORMANCE OBJECTIVE 3: VALIDATION OF DRAFT PROTO	COL	
		FOR IDENTIFICATION OF BOTH INDOOR AND SUBSURFACE SOUR		
		3.3.1 Data Requirements		
		3.3.2 Success Criteria		
	3.4	PERFORMANCE OBJECTIVE 4: IMPLEMENTABILITY AND O		
		EFFECTIVENESS	13	
		3.4.1 Data Requirements		
		3.4.2 Success Criteria		
4.0	SITE	DESCRIPTION		
	4.1	SITE LOCATION AND HISTORY		
	4.2	SITE GEOLOGY, HYDROGEOLOGY, AND CONTAMIN		
		DISTRIBUTION		
5.0	TEST	DESIGN		
	5.1	CONCEPTUAL EXPERIMENTAL DESIGN		
		5.1.1 Conventional Program - Collection of Indoor Air and Sub-Slab Soi		
		Samples		
		5.1.2 Collection of Samples for Stable Isotope Analysis		
		5.1.3 Protocol for Use of On-Site Analysis for Vapor Intrusion		
	5.2	BASELINE CHARACTERIZATION.		
	5.3	LABORATORY STUDY RESULTS		
	5.4	DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS		
		5.4.1 Sampling Points for Conventional Samples		
		5.4.2 Sampling Points for CSIA Samples		
			25	

i

		5.4.3	Sampling Points for On-Site Analysis Protocol	. 25
	5.5	FIELD) TESTING	. 25
		5.5.1	Field Testing for Conventional Vapor Intrusion Program	. 25
		5.5.2	Field Testing for CSIA Samples	
		5.5.3	Field Testing for On-Site Analysis Protocol	. 25
	5.6	SAMP	LING AND ANALYSIS METHODS	
		5.6.1	Conventional Vapor Intrusion Program	
		5.6.2	CSIA Samples	
		5.6.3	On-Site Analysis Protocol Confirmation Samples	. 27
		5.6.4	Sample Summary and Quality Assurance Procedures	
	5.7	SAMF	PLING RESULTS	
		5.7.1	Vapor Intrusion Classification using Conventional Lines of Evide	ence
			Approach	. 32
		5.7.2	VI Classification using the CSIA Protocol	. 33
		5.7.3	VI Classification using the On-Site Analysis Protocol	. 35
	5.8	SUPPI	LEMENTAL DATA	. 37
6.0	PERF	ORMA	NCE ASSESSMENT	. 39
	6.1	OBJE	CTIVE 1: COLLECTION OF DATA REPRESENTATIVE OF S	ITE
		CONE	DITIONS	. 39
		6.1.1	Data Quality Review	. 39
		6.1.2	Validation of Extended Holding Time	. 42
		6.1.3	Evaluation of Performance Objective 1	. 43
	6.2	OBJE	CTIVE 2: VALIDATION OF DRAFT CSIA PROTOCOL	ТО
		DISTI	NGUISH BETWEEN INDOOR SOURCES OF VOCS AND VAF	OR
		INTRU	JSION	. 44
		6.2.1	Site-by-Site Analysis of Results: Building VI Classifications	. 44
		6.2.2	Evaluation of Subsurface Sample Locations	. 48
		6.2.3	Evaluation of Performance Objective 2	
	6.3		CTIVE 3: VALIDATION OF DRAFT PROTOCOL F	
		IDEN	ΓIFICATION OF BOTH INDOOR AND SUBSURFACE SOURCES	. 50
		6.3.1	Identification of both Indoor and Subsurface Sources	. 50
		6.3.2	Evaluation of Performance Objective 3	. 52
	6.4	OBJE	CTIVE 4: IMPLEMENTABILITY AND COST EFFECTIVENESS	OF
		THE F	PROTOCOL	
		6.4.1	Demonstration Findings	
		6.4.2	Evaluation of Performance Objective 4	. 52
		6.4.3	Modifications to the CSIA Protocol	. 52
7.0	COST	ASSES	SSMENT	. 54
	7.1	COST	MODEL	
		7.1.1	Cost Element: Project Planning and Preparation	. 55
		7.1.2	Cost Element: CSIA Field Program	
		7.1.3	Cost Element: Data Evaluation and Reporting	. 56
	7.2		DRIVERS	
	7.3	COST	ANALYSIS	. 56
		7.3.1	Cost Scenarios for the Three Investigation Approaches	
		7.3.2	Cost Comparison	. 60

8.0	IMPLEMENTATION ISSUES	61
9.0	REFERENCES	62

TABLES

FIGURES

Figure 1: Conceptual Diagram of Basis for Use of CSIA to Distinguish between Inde	oor and
Subsurface VOCs Sources	7
Figure 2: Building-Specific Field Testing Schedule	20
Figure 3: Advantages and Disadvantages of Sample Locations for Characterization	of the
Subsurface VOC Isotope Signature	24
Figure 4: Interpretation of CSIA Results	34
Figure 5: Example CSIA Chromatogram	41
Figure 6: Building with Planted Indoor TCE Source	46
Figure 7: Comparison of Paired Groundwater and Sub-Slab TCE Isotope Ratios	48
Figure 8: Lewis-McChord Building 9669 CSIA Results	49

Figure 9: Isotope Variability in Groundwater	. 50
Figure 10: Isotope Ratios for Indoor Air with Mixed VOC Sources	. 51

APPENDICES

Appendix A:	Points of Contact
-------------	-------------------

- Appendix B: Lines of Evidence Evaluations
- Appendix C: Results from Individual Demonstration Sites
- Appendix D: Data Quality Review and Laboratory Reports
- Appendix E: Recommended Protocol

ACRONYMS

1,1,1-TCA	1,1,1-Trichloroethane
1,2-DCA	1,2-dichloroethane
bgs	Below ground surface
BTEX	Benzene, toluene, ethybenzene, xylenes
cis-1,2-DCE	cis-1,2-dichloroethylene
COC	Chemical of concern
CSIA	Compound-specific stable isotope analysis
cVOC	Chlorinated volatile organic compound
δ	Delta, an Isotope Ratio Measure
DoD	Department of Defense
DQO	Data quality objective
ESTCP	Environmental Security Technology Certification Program
FUDS	Formerly Used Defense Site
ft	Foot, feet
GC	Gas chromatography
GW	Groundwater
HCs	Hydrocarbons
HVAC	Heating, ventilation, and air conditioning
IDW	Investigation derived waste
IRMS	Isotope ratio mass spectrometer
MS	Mass spectrometry
N/A	Non-applicable
PAH	Polyaromatic hydrocarbon
PCE	Tetrachloroethylene
per mil (‰)	Parts per thousand
ppbV	Parts per billion by volume
QA	Quality assurance
QAPP	Quality assurance project plan
QC	Quality control
sq ft	Square feet
TAGA	Trace Atmospheric Gas Analyzer
TCE	Trichloroethylene
THQ	Target Hazard Quotient
USEPA	United States Environmental Protection Agency
UST	Underground storage tank
V-PDB	Vienna - Pee Dee Belemnite
V-SMOW	Vienna – Standard Mean Ocean Water
VC	Vinyl chloride
VI	Vapor intrusion
VOA	Volatile organic analysis
VOC	Volatile organic compound

ACKNOWLEDGMENTS

This project would not have been possible without the support and contribution of numerous individuals and organizations. The authors thank Samuel Brock and Mahalingam Ravichandran of AFCEC for support and oversight; Bill Myers, Jim Gillie, Tom Lynott, Mike Haley, Amanda Michels, Cheryl Neades, Andy Anders, Miguel Plaza, Brian Mosley, Sandra Piettro, Jim Kelly plus numerous other site personnel for providing access to the demonstration sites and facilitating implementation of the project at these sites; the ESTCP technical review staff for helpful technical comments and suggestions; and Andrea Leeson and the ESTCP program staff at Hydrogeologic for invaluable project support.

EXECUTIVE SUMMARY

OBJECTIVES OF THE DEMONSTRATION

Indoor sources of VOCs are ubiquitous, resulting in detectable concentrations in indoor air, often at levels exceeding regulatory screening criteria. At corrective actions sites with potential vapor intrusion concerns, the presence of indoor VOC sources significantly complicates the exposure pathway evaluation. Because of these indoor sources, the detection of a site-related VOC in a potentially affected building does not necessarily indicate a vapor intrusion impact. However, because conventional investigation methods often do not clearly identify the source of VOCs, additional rounds of sampling are commonly required.

The overall goal of this demonstration was to validate use of compound-specific stable isotope analysis (CSIA) to distinguish between vapor intrusion and indoor sources of VOCs. As part of this project, a step-by-step protocol has been developed which can be used to provide an independent line of evidence to determine whether or not buildings are impacted by vapor intrusion.

TECHNOLOGY DESCRIPTION

Many elements, such as carbon, occur as different isotope species, differing in their number of neutrons present in the nucleus. For example, ¹²C, with 6 neutrons, is the most abundant form of carbon. ¹³C, with 7 neutrons, makes up a small fraction (~1%) of the carbon in the environment. Isotopic ratios ($^{13}C/^{12}C$) of a specific compound (e.g., TCE) can vary as a result of differences in their source material or compound synthesis or due to transformation in the environment (USEPA, 2008). Differences in the isotopic ratio measured in organic contaminants present in environmental samples can be used to i) distinguish between different sources of the contaminants and ii) understand biodegradation and other transformation processes occurring in the environment.

While CSIA has been applied to groundwater investigations, its applicability to vapor intrusion assessments has only recently been explored (e.g., McHugh et al., 2011). As part of this ESTCP project, we have evaluated the applicability of CSIA for vapor intrusion and have developed a step-by-step protocol for investigations using CSIA. This protocol includes a decision matrix to guide users who may be unfamiliar with isotope analyses.

DEMONSTRATION RESULTS

The field investigation program included application of the CSIA protocol at four Department of Defense (DoD) sites. To evaluate the validity of this investigation approach, we also conducted conventional vapor intrusion and on-site GC/MS analysis protocol (ESTCP Project ER-201119) investigations at the same buildings. In two of four buildings, the CSIA approach yielded results consistent with the other investigation methods. In another building, a spray can was planted in a closet; the CSIA approach correctly identified an indoor source as being the source of VOCs in indoor air. In the fourth building, the CSIA approach was better than the other approaches in that it provided clear and strong evidence of an indoor source while the other methods yielded ambiguous results.

Overall, the demonstration results validated the CSIA protocol as a useful tool for distinguishing between vapor intrusion and indoor sources of VOCs.

IMPLEMENTATION ISSUES

The CSIA protocol for vapor intrusion is not a standalone investigation approach. The CSIA protocol is most useful in buildings which have previously been sampled, in which investigation results show VOC concentrations near or above regulatory screening levels. In these buildings, differentiating between indoor and subsurface sources becomes critical for site- and risk-management.

Advantages of the CSIA protocol include:

- <u>Less intrusive</u> than an intensive (manual) source identification and removal effort commonly used in conventional investigations; and
- <u>Less training</u> needed to implement the protocol, as compared to other source identification methods (i.e., on-site GC/MS analysis [ER-201119]).

Limitations on the use of the CSIA protocol include:

- <u>Sample collection methods</u>. Sample collection using adsorbent tubes and pumps is slightly more complicated than sample collection using Summa canisters. This limitation can be mitigated by identifying a sampling team with prior experience using USEPA Method TO-17.
- <u>Potential for inconclusive results</u>. Interpretation of CSIA results is largely a matter of pattern-matching. If the isotope composition of subsurface VOCs is within the range commonly observed for VOCs in consumer products, there is more uncertainty in data interpretation. Because of this limitation, the investigation protocol recommends characterization of the subsurface source either prior to collection of indoor air samples or in conjunction with sampling at the first one or two buildings included in a site investigation. The investigation method should be applied as part of a larger indoor air sampling program only when the subsurface source has been found to be distinct from most potential indoor sources.
- <u>Issues with hydrocarbon sites</u>. At chlorinated hydrocarbon sites, two isotope ratios can be developed (δ^{13} C and δ^{37} Cl from TCE), providing more data for interpretation. At petroleum hydrocarbon sites, it may not be practical to analyze for both relevant isotope ratios (δ^{13} C and δ^{2} H from benzene). CSIA for hydrogen requires a large sample mass which, in turn, may require an overly long sample collection period. Other potential issues include saturation of the sorbent tubes and interference from other hydrocarbon compounds which may complicate the laboratory analysis. Coordination with the analytical laboratory is important to mitigate these risks.
- <u>High concentrations of VOCs in indoor air</u>. In some buildings, indoor sources may cause indoor air concentrations to exceed screening levels by a large margin (e.g., >10x screening levels). In these buildings, additional CSIA sampling may be helpful after indoor source removal, to account for uncertainty in isotope mixing and potential low-level vapor intrusion.

1.0 INTRODUCTION

The purpose of this project is to validate the application of compound-specific stable isotope analysis (CSIA) as a tool to distinguish between vapor intrusion (VI) and indoor sources of volatile organic compounds (VOCs). The specific goals of the project are as follows:

- <u>Task 1</u>: Validate the use of active adsorbent samplers for the collection of vapor-phase samples for carbon, chlorine, and hydrogen CSIA of VOCs (i.e., tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene) that commonly drive vapor intrusion investigations.
- <u>Task 2</u>: Develop a protocol for application of CSIA for vapor intrusion investigations: i) Characterize the stable isotope signatures for common indoor sources of VOCs; ii) Characterize the stable isotope signatures of subsurface sources of VOCs and the variability in these signatures in close proximity to potentially affected buildings; and iii) Develop a protocol for application of CSIA to distinguish between vapor intrusion and indoor sources of VOCs.
- <u>Task 3</u>: Demonstrate CSIA for vapor intrusion investigations: Demonstrate the performance of the CSIA protocol through application at four different U.S. Department of Defense (DoD) sites potentially affected by vapor intrusion.

Task 1 was accomplished through a laboratory study which i) identified and validated the use of an adsorbent (Carboxen 1016) for sample collection, ii) optimized an analysis method, and iii) developed a streamlined laboratory study process in the event that additional target analytes are identified (Kuder et al., 2012).

Task 2 was accomplished through characterization of indoor and subsurface source isotopic signatures and development of an investigation protocol for using CSIA to distinguish between indoor VOC sources and vapor intrusion (GSI, 2012c).

This report summarizes the results of Task 3. Findings from the Task 3 field demonstrations were used to refine the investigation protocol. The revised protocol is provided in Appendix E of this report.

1.1 BACKGROUND

Indoor sources of VOCs are ubiquitous, resulting in detectable concentrations in indoor air, often at concentrations above regulatory screening levels. In residences, background concentrations of PCE, TCE, benzene, and several other VOCs commonly exceed regulatory screening levels (USEPA, 2011; Dawson and McAlary, 2009). The background concentration of VOCs in indoor air can increase or decrease over time based on changes in the use of these VOCs in consumer products. At corrective action sites with potential vapor intrusion concerns, the presence of indoor VOC sources significantly complicates the exposure pathway investigation. Because of these indoor sources, the detection of a site-related VOC in a potentially affected building at a concentration above the regulatory screening level does not necessarily indicate a vapor intrusion

impact. Additional investigation is typically required to determine the sources of the detected VOCs.

Currently, the most common approaches for identification of indoor sources of VOCs during vapor intrusion investigations are i) visual building surveys, and ii) room-by-room measurement of VOC concentrations. Both of these approaches have limitations, as described below:

Visual survey: Most vapor intrusion guidance documents recommend visual identification and removal of indoor sources of VOCs prior to collecting indoor air samples for VOC analysis (e.g., USEPA, 2002). However, this approach has limited effectiveness because many indoor sources of VOCs are not identified by visual inspection and some identified sources (e.g., carpet, furniture, etc.) cannot easily be removed. For VOCs with indoor air screening concentrations close to 1 μ g/m³ (e.g., benzene, TCE, and PCE), a one-gram source (i.e., approximately 1 mL) emitted into indoor air over a one-year period can result in a sustained exceedance of the indoor air screening concentration over that time. Although less prevalent than in the past, a wide variety of consumer products still contain high concentrations of PCE and/or TCE including spot remover, hobby glues, metal polish, gun cleaner, and lubricant spray. Product labeling laws are complex and subject to varying interpretations resulting in inconsistencies regarding identification of product ingredients. Although the primary ingredients are often identified on the labels, "inert ingredients" and incidental contaminants are often not identified. For example, some brands of self-defense pepper spray use TCE as the carrier solvent, resulting in a product that is >90% TCE. However, TCE is not required to be identified on the product label because it is not an "active ingredient" for the purpose of self-defense.

As a further complication, changes in manufacturing over time also result in temporal changes in product composition. Manufacturers of consumer products (e.g., cleaning agents, repair kits) may switch from one chemical agent to another (e.g., from TCE to methylene chloride) so that currently available information on ingredients does not reflect the composition of the product manufactured a few years ago. Similarly, a recent change in manufacturing processes has resulted in newly manufactured hard plastic objects (e.g., Christmas ornaments) serving as a source of 1,2-dichloroethane (1,2-DCA) to indoor air (Doucette et al., 2009). All of these factors complicate the use of visual surveys to identify indoor sources of VOCs.

<u>Room-by-room sampling</u>: The distribution of VOCs within a building can provide a strong indication of the location of the indoor source (i.e., the VOC concentration is highest in the room containing the indoor source) or the entry point for subsurface vapors. As a result, a room-by-room sampling program can be effective for distinguishing between vapor intrusion and indoor sources of VOCs. However, such an approach can be both expensive and time consuming. When using an off-site laboratory, the investigation of a single building is likely to take at least 3-4 weeks (assuming two rounds of sampling and 1 to 2 weeks for off-site analysis) and result in over \$2.4-4.8K in analytical costs (e.g., 12 samples at \$200 to \$400 per sample, not including sample collection and data interpretation costs). In addition, such a program would require access to the building on at least two different occasions, which can be difficult for off-site buildings or buildings not operated by the responsible party. Use of on-site analysis can decrease the time required to conduct room-by-room sampling by providing real-time results that facilitate the collection of source confirmation samples. However, the required equipment is very expensive (e.g., \$120K to purchase a HAPSITE portable gas chromatograph/mass spectrometer

(GC/MS) or approximately \$5 to 10K per day for use of the USEPA Trace Atmospheric Gas Analyzer (TAGA) or similar mobile laboratory capable of TO-15 analyses). In addition, this equipment has limited availability, potentially causing delays in field investigation programs. As a result, room-by-room sampling to identify the source of VOCs detected in indoor air is impractical for many vapor intrusion investigations.

If CSIA is demonstrated to provide reliable discrimination between subsurface and indoor sources of VOCs detected in indoor air samples, then the use of CSIA would dramatically simplify the building investigation program required to distinguish between vapor intrusion and indoor sources of VOCs.

1.2 OBJECTIVE OF THE DEMONSTRATION

The overall goal of this project was to develop a reliable protocol for incorporating CSIA into vapor intrusion investigations. The objectives of the demonstration (Task 3) were to apply the draft protocol at four sites, evaluate its performance, and refine it as indicated by the demonstration results.

The performance evaluation serves to validate the various aspects of the draft protocol (Section 5 of GSI, 2012c) including sample collection methods, analysis methods, and the data interpretation process. This evaluation also serves to refine our understanding of the variability in isotope ratios for both indoor sources and subsurface sources of target VOCs.

1.3 REGULATORY DRIVERS

At a limited number of sites in the U.S., migration of VOCs from contaminated groundwater via vapor phase diffusion has impacted indoor air quality in overlying structures, posing a potentially significant, yet previously unrecognized human health concern for such properties. To address this concern, the USEPA has issued the "Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils," (USEPA, 2002), providing conservative screening criteria for various VOCs in groundwater and soil gas. These conservative screening values eliminate few sites and, as a result, a majority of sites with VOCs in groundwater require field investigation of the vapor intrusion pathway. We expect that updated USEPA vapor intrusion guidance due in 2013/2014 will include increased requirements for testing of indoor air during vapor intrusion investigations. When implementing these new requirements, accurate methods to distinguish vapor intrusion from indoor sources of VOCs will be important to facilitate efficient investigation approaches and reduced investigation costs.

Indoor air testing may be conducted using either traditional investigation methods (i.e., collection of sub-slab and indoor air samples using Summa canisters), advanced investigation methods such as CSIA or on-site GC/MS analysis (e.g., ESTCP Project ER-201119), or a combination of methods. The likelihood that the traditional investigation method will provide definitive results depends on a number of factors including most importantly:

1. <u>The conservatism of the data evaluation</u>: Traditional investigation results are typically evaluated using a multiple lines of evidence approach that includes both quantitative measures and qualitative measures. If concentrations of chemicals of concern (COCs) in indoor air exceed the applicable screening levels, then the likelihood of indoor sources is

evaluated based on the distribution of COCs in subslab and indoor air samples. This qualitative evaluation relies on the professional judgment of the stakeholders. In some cases, indoor air concentrations greater than 1% to 10% of the subslab concentration are taken as strong evidence of indoor sources. In other cases, indoor air concentrations less than the maximum subslab concentration are considered sufficient evidence of potential vapor intrusion to merit additional investigation. When a more conservative data evaluation approach is used, it is more likely that a traditional investigation method will not yield a definitive result.

2. <u>The prevalence of indoor and ambient sources for the COCs</u>: Indoor and ambient sources of benzene and many other hydrocarbons are ubiquitous, resulting in indoor air concentrations that exceed a 10⁻⁶ risk level in almost all buildings. Sources of chlorinated VOCs vary by compound. Approximately 50% of buildings have PCE concentrations that exceed a 10⁻⁶ risk level due to indoor sources, and 5-10% of buildings have TCE concentrations that exceed a 10⁻⁶ risk level due to indoor sources (Dawson and McAlary, 2009). In contrast, most buildings have no detectable indoor sources of 1,1-DCE or vinyl chloride. The concentration of 1,2-DCA in indoor air has increased significantly in recent years (Kurtz et al., 2010), a change attributable to plastic decorations (Doucette et al., 2009). If a site investigation includes COCs with common indoor sources such that background indoor air concentrations commonly exceed applicable screening levels, then it is more likely that a traditional investigation method will not yield a definitive result.

2.0 TECHNOLOGY

The technology being demonstrated for this project is the application of CSIA to distinguish between vapor intrusion and indoor sources of VOCs.

2.1 TECHNOLOGY DESCRIPTION

2.1.1 Isotope Analysis

Many elements, such as carbon, occur as different isotope species, differing in their number of neutrons present in the nucleus. For example, ¹²C, with 6 neutrons, is the most abundant form of carbon, but ¹³C, with 7 neutrons, makes up a small fraction of the carbon in the environment (~1%). Isotopic ratios (e.g., the ratio of $^{13}C/^{12}C$) of a specific compound (e.g., TCE) can vary as a result of differences in their source material or compound synthesis or due to transformation in the environment (USEPA, 2008). Differences in the isotopic ratio measured in organic contaminants present in environmental samples can be used to i) distinguish between different sources of the contaminants and ii) understand biodegradation and other transformation processes occurring in the environment.

CSIA measures the carbon, chlorine, and/or hydrogen isotope ratios for individual chemicals. Such differences in environmental samples are used to identify different pollutant sources or to understand pollutant transformation processes (USEPA, 2008). CSIA involves the separation of chemical compounds using GC, followed by conversion of the separated target compound to an easily measurable surrogate compound (e.g., CO_2 for ${}^{13}C/{}^{12}C$ measurements) in an inline reactor. Finally, the abundance of stable isotopes of the surrogate compound is measured by isotope ratio mass spectrometry. For ${}^{37}Cl/{}^{35}Cl$, owing to the relatively high abundance of ${}^{37}Cl$, CSIA methods have been devised that use conventional GC/MS analysis (similar to that of USEPA Method 8260) thereby eliminating the need for conversion of the target chemical to a surrogate compound (Sakaguchi et al., 2007).

While the ability to analyze isotope ratios in single-compound samples dates back to the first half of the last century, CSIA is still a relatively new approach. Commercially available CSIA instrumentation was introduced two decades ago, initially only for carbon and nitrogen isotopes (Sessions, 2006) but more recently also for hydrogen and chlorine isotopes (Sessions, 2006; Sakaguchi et al., 2007). Applications of CSIA in environmental contaminant studies appeared shortly after the instrumentation became available (e.g., Sherwood-Lollar et al., 1999), and were almost exclusively centered on aqueous and sediment samples. In the past decade, CSIA evolved from purely academic research to a technique with widespread application in environmental cleanup projects. The increased practical interest in CSIA is illustrated by the recent USEPA publication of a CSIA guidance document (USEPA, 2008).

2.1.2 Isotope Ratio Analysis

Stable isotope analysis of carbon, chlorine, or hydrogen involves measurement of the relative abundance of the two stable isotopes of the element (e.g., ¹²C and ¹³C). However, the results are not reported as a direct ratio of the isotopes. In order to ensure inter-laboratory comparability and accuracy, these ratios are expressed relative to an international standard (typically V-PDB for carbon and V-SMOW for hydrogen). Measured values are compared to the standard and reported

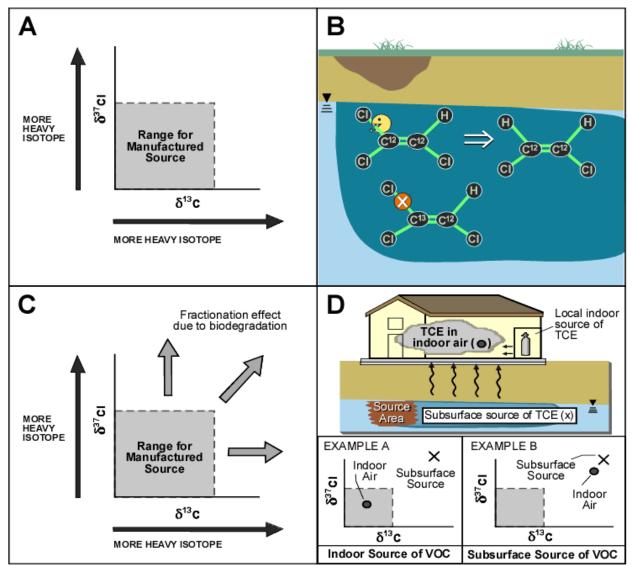
as δ^{13} C, δ^{37} Cl, and δ^{2} H respectively. These terms are defined as illustrated in Equation 1 below for carbon.

$$\delta^{13}C(\%_0) = \left[\frac{\binom{(^{13}C/^{12}C)_{sample} - \binom{(^{13}C/^{12}C)_{standard}}}{\binom{(^{13}C/^{12}C)_{standard}}}\right] x \ 1000 \tag{1}$$

For manufactured products (i.e., potential indoor sources), the correction for the international standard typically results in negative values for the reported isotope ratios. Fractionation effects that result in enrichment of the lighter isotope (e.g., ¹²C) in the sample result in δ^{13} C isotope ratio values that are more negative (i.e., larger negative values). Fractionation effects that result in enrichment in the heavier isotope (e.g., ¹³C) result in isotope ratio values that are less negative (or even positive).

2.1.3 Application to Vapor Intrusion

Various processes can change the isotope ratios of a compound (so-called isotope fractionation). Molecular bonds containing the lighter isotopes are broken at slightly faster rates than those containing the heavier isotopes. As a result, the isotopic ratio for a compound can change over time as the compound is biodegraded in the subsurface. The parent compound (e.g., TCE) becomes relatively enriched in heavy isotopes (i.e., less negative $\delta^{13}C$ and $\delta^{37}Cl$ values), while transformation products (e.g., cis-1,2-DCE) end up with less of the heavy isotopes (i.e., more negative $\delta^{13}C$ and $\delta^{37}Cl$ values). While physical processes such as evaporation and sorption can also cause fractionation at contaminated sites, these processes are often too subtle to have a measurable effect on isotope ratios, except for hydrogen.


The proposed investigation approach involves i) determination of stable isotope ratios of the target VOCs present in the air (${}^{13}C/{}^{12}C$, ${}^{37}Cl/{}^{35}Cl$ for PCE and TCE; ${}^{13}C/{}^{12}C$ and ${}^{2}H/{}^{1}H$ in the case of benzene) and ii) use of those ratios to differentiate between VOCs sourced from the subsurface (true vapor intrusion) and those sourced from miscellaneous household products. The conceptual basis for application of CSIA to vapor intrusion is illustrated in Figure 1. The basic hypothesis is that:

- 1. Isotope ratios for VOCs originating from different manufactured sources have isotope ratios within a defined range (Figure 1, Panel A). This range is small compared to the range of isotope ratios created by isotope fractionation effects that occur in the subsurface.
- VOCs originating from subsurface sources commonly undergo biodegradation in groundwater and later in the unsaturated soil prior to entering indoor air. Individual molecules that contain the lighter isotopes are often preferentially biodegraded, resulting in enrichment of the heavier isotope species in the undegraded residue (Figure 1, Panel B). This enrichment process is known as isotope fractionation.
- 3. The consequence of isotope fractionation is that isotope composition of VOCs originating from the subsurface is often clearly different than that of pristine (undegraded) manufactured products acting as indoor sources of the same VOCs (Figure 1, Panel C).

4. This difference allows the successful differentiation between VOCs from indoor sources and those from true vapor intrusion sources (Figure 1, Panel D).

The proposed methodology for determination of isotope ratios in VOCs present in air or in soil gas involves i) recovery/preconcentration of the target volatiles from soil gas or from indoor air by sample processing by standard methods such as those described in USEPA Methods TO-15 or TO-17 (USEPA 1999a; USEPA 1999b) and ii) analysis of the collected samples for their isotope ratios, using CSIA adopted from the protocols used for analysis of the same VOCs present in groundwater samples (USEPA, 2008).

Figure 1: Conceptual Diagram of Basis for Use of CSIA to Distinguish between Indoor and Subsurface VOCs Sources

Interpretation of the origin of VOCs in indoor air based on CSIA results will be relatively straightforward in comparison to traditional vapor intrusion investigation methods. The isotope ratios from VOCs in indoor air will be directly compared to those from the subsurface source and those measured in a variety of available consumer products. Isotope ratios dissimilar from the subsurface source but similar to the values characteristic of, for example, TCE present in household products is a strong indication that the latter is responsible for the indoor air contamination (see Figure 1, Panel D, Example A). On the other hand, the isotope ratios of TCE in indoor air can be similar to the subsurface sources and different from indoor sources, confirming the impact of vapor intrusion (Figure 1, Panel D, Example B).

2.2 TECHNOLOGY DEVELOPMENT

In their December 2008 guide, the USEPA states that "Currently, CSIA is in transition from a research tool to an applied method that is well integrated into comprehensive plans for management of contaminated sites." For groundwater contaminants, CSIA has been applied at more than 50 sites over the last 10 years to distinguish between different sources of the same contaminant and to document the occurrence of biodegradation or other transformation processes. Although CSIA is well validated for groundwater, additional work is required to validate the use of CSIA to distinguish between vapor intrusion and indoor sources of VOCs. This technology demonstration project will extend the application of CSIA techniques to vaporphase samples to provide an effective tool to distinguish between vapor intrusion and indoor sources of VOCs. For this application, the isotopic signatures of individual VOCs in an indoor air sample will be compared to the isotopic signatures from local indoor and local subsurface sources of the same VOCs. A match between the isotopic signature of the indoor air sample and either the indoor or the subsurface source is expected to provide a clear identification of the primary source of the VOC in the indoor air sample. Key components for application of CSIA to vapor intrusion have been validated through work completed in Tasks 1 and 2 of this ESTCP project:

Active Sorbent Sample Collection and Analysis Method: CSIA requires a 100 to 1000 ng of an individual VOC in order to obtain a clear isotope signature. For indoor air samples, up to 100 L of air may be required for CSIA analysis. Sampling this volume of air requires use of a sorbent to capture and concentrate the VOCs of interest. Use of a sorbent allows the transfer of contaminants from a large volume of air to a small volume of sorbent, eliminating the problems associated with large volumes and low concentrations. For Task 1 of this project, a laboratory study was completed that validated the use of active sorbent sampling using Carboxen 1016 for the collection of indoor air samples for the analysis of isotope ratios of PCE, TCE, or benzene. In addition, a streamlined procedure was developed for validation of other sorbents or target analytes (Kuder et al., 2012).

Characterization of Indoor and Subsurface Sources: The typical range of carbon and chlorine isotope ratios for PCE and TCE sources and the typical range of carbon and hydrogen isotope ratios for benzene sources have been determined by compilation of literature studies supplemented by additional laboratory measurements. The results of this analysis are presented in GSI, 2012c.

Investigation Protocol: The protocol (Section 5 of GSI, 2012c) was based on the results of Project ER-201025 Task 1 and Task 2. This protocol was tested through implementation at four demonstration sites discussed below.

2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY

As illustrated in Figure 1 above, CSIA can be used to identify the source of a chemical (i.e., indoor source vs. vapor intrusion) present in indoor air based on the measured isotope ratio. This analysis is independent of other common lines of evidence used to identify VOC sources such as attenuation factors and concentration ratios. In most cases, CSIA will be able to provide evidence of the source of a VOC based on the analysis of as few as one subsurface sample (e.g., groundwater) and one indoor air sample. As a result, CSIA is a cost-effective vapor intrusion investigation method that can be used as the primary line of evidence for source identification or in conjunction with other lines of evidence.

With respect to sample collection, the main limitation of the CSIA approach is the sample collection method required for indoor air samples. In order to obtain sufficient sample mass for analysis, the sample must be collected using an adsorbent tube and pump, such as that specified by USEPA Method TO-17. Although this equipment is readily available, the use is slightly more complicated than Summa canisters and some field personnel may not be familiar with its operation. This limitation can be mitigated by identifying a sampling team with prior experience in sample collection using USEPA Method TO-17.

A second limitation is the potential for inconclusive results. If the isotope composition of subsurface VOCs is within the range commonly observed for VOCs in consumer products, then CSIA is likely to yield inconclusive results (i.e., the isotope ratio measured for the target VOC in indoor air may match both the subsurface source and potential indoor sources). This limitation may apply at up to 50% of candidate sites (GSI, 2012c). Because of this limitation, the investigation protocol recommends characterization of the subsurface source either prior to collection of indoor air samples or in conjunction with sampling at the first one or two buildings included in a site investigation. The investigation method should be applied as part of a larger indoor air sampling program only when the subsurface source has been found to be distinct from most potential indoor sources.

3.0 PERFORMANCE OBJECTIVES

The hypothesis for this demonstration project is that the site-specific application of CSIA to a limited number of indoor air and subsurface (water and/or soil gas) samples will allow the user to distinguish between indoor and subsurface sources of VOCs in indoor air, providing a valuable tool for source identification (i.e., indoor vs. subsurface). However, other investigation tools will still be required to address other aspects of the vapor intrusion pathway such as determining whether VOC concentrations in indoor air are above a regulatory screening level and evaluating temporal variability.

The overall objective of the demonstration was to validate the draft protocol for the application of CSIA to distinguish between vapor intrusion and indoor sources of VOCs. The demonstration was done in the field at "full-scale", that is, in typical buildings subject to vapor intrusion investigations. This objective was met by:

- 1) Applying the draft protocol to one to two buildings with vapor intrusion concerns at each of four demonstration sites,
- 2) Utilizing the results obtained from the protocol to determine the vapor intrusion conditions in the buildings,
- 3) Conducting additional sampling in each building consisting of i) samples typically collected for a conventional vapor intrusion investigation and ii) application of the draft protocol for use of on-site GC/MS analysis for the investigation of vapor intrusion (from ER-201119), and
- 4) Comparing the interpretation of the additional sampling to the interpretation from the CSIA results in order to determine the reliability and comparability of the different investigation approaches.

Specific performance objectives are summarized in Table 1.

Performance Object	ctive	Data Requirements	Success Criteria			
Quantitative Performance Objectives						
 Collection of data representation of site conditions. 	vials Sum Indo	surface samples (groundwater samples collected in VOA s or soil gas samples collected on sorbent tubes or in ama canisters) and analytical results. For air samples collected on sorbent tubes, and associated sytical results.	Precision, Accuracy, Completeness, Representativeness, and Comparability as defined in the quality assurance project plan. Result: Data met overall QA goals.			
Qualitative Performance	ce Objectives					
 Validation of the draft for the use of CSIA to distinguish between ind sources of VOCs and v intrusion. 	protocol Dete appl door appr	ermination of VOC sources using results from i) ication of the protocol, ii) conventional sampling roach, and iii) on-site GC/MS analysis (per ER-201119).	 Success will be achieved if: 1) The three investigation methods all yield definitive and consistent determinations regarding the primary source of VOCs in indoor air, or 2) If one or more of the methods yields ambiguous results regarding the primary source, attainment of a definitive determination using the CSIA method that is consistent with a definitive determination from one of the two alternate methods (if available). Result: Performance objective met. CSIA results were consistent with overall weight of evidence at demonstration sites. CSIA protocol correctly identified a building with a 			
 Validation of draft protidentification of both in subsurface sources. 	ndoor and VOC	lication of the draft protocol for at least one site with Cs originating from a subsurface source and at least one with VOCs originating from an indoor source.	planted source. CSIA protocol provided strong evidence ofindoor source for a building for which the other methodsyielded more ambiguous results.Attainment of the validation success criteria at both types ofsites (i.e., subsurface source sites and indoor source sites).			
			Result: Performance objective met. Vapor intrusion was indicated in 1 of 4 demonstration buildings. Indoor sources were the primary sources of VOCs in 3 of 4 demonstration buildings. Calculations were completed to evaluate the impact of mixed indoor/subsurface sources.			
 Implementability of the protocol for the use of evaluate vapor intrusio 	CSIA to the r	d experience implementing the protocol and interpreting esults.	Determination that the protocol is implementable and cost effective. Result: The protocol is usable and cost effective. Recommendations for protocol improvement based on demonstration findings have been incorporated into a revised protocol (Appendix E of this report).			

Table 1: Performance Objectives	Table 1:	Performance Objectives
---------------------------------	----------	-------------------------------

3.1 PERFORMANCE OBJECTIVE 1: COLLECTION OF DATA REPRESENTATIVE OF SITE CONDITIONS

The collection of site data representative of actual site conditions was achieved by adhering to the sampling and analysis procedures specified in Section 5 of this report and the Demonstration Plan (GSI, 2012d).

3.1.1 Data Requirements

As discussed in Section 5.1, the demonstration program for each site consisted of i) collection of samples associated with a conventional vapor intrusion investigation, ii) collection of samples for CSIA, and iii) application of the on-site analysis investigation protocol for the ER-201119 demonstration program. The data requirements and QA procedures for the conventional sampling program and the on-site analysis program are detailed in the Demonstration Plan and Final Report for ER-201119 (GSI, 2012b; GSI, 2013).

For the CSIA samples, proper sample collection procedures were utilized and QA/QC samples collected to ensure that the data were representative of actual site conditions. As detailed in the Quality Assurance Project Plan (QAPP; see GSI, 2012d, Appendix D), field QA/QC samples included field duplicates and trip blanks.

3.1.2 Success Criteria

QA/QC samples were evaluated to determine the data quality. Details of the data quality review are presented in Section 6.1 of this report.

3.2 PERFORMANCE OBJECTIVE 2: VALIDATION OF DRAFT PROTOCOL FOR USE OF CSIA TO EVALUATE VAPOR INTRUSION

The goal of the field demonstration was to produce a validated procedure for the use of CSIA to evaluate vapor intrusion. The draft protocol tested during the demonstration included a step-wise sampling program and data interpretation matrix (GSI, 2012c).

3.2.1 Data Requirements

Validation of the draft protocol required comparison of the results from application of the protocol with results obtained using other investigation approaches. The two approaches for comparison were i) conventional building-specific vapor intrusion sampling (i.e., collection of sub-slab and indoor air samples) and ii) on-site GC/MS analysis per ER-201119. Each of the data sets was analyzed independently to determine the primary source of VOCs detected in the target building.

3.2.2 Success Criteria

The performance objective was considered met if i) the three investigation methods yielded consistent, definitive determinations regarding the presence or absence of vapor intrusion, or ii) if one or more of the methods yielded ambiguous results, but a definitive determination could be made using the CSIA method. Details of this evaluation are provided in Section 6.2 of this report.

3.3 PERFORMANCE OBJECTIVE 3: VALIDATION OF DRAFT PROTOCOL FOR IDENTIFICATION OF BOTH INDOOR AND SUBSURFACE SOURCES

A comprehensive validation of the draft protocol requires validation for the identification of both indoor sources of VOCs and subsurface sources of VOCs.

3.3.1 Data Requirements

Comprehensive validation requires application of the protocol for at least one building where the VOCs detected in the building originate from a subsurface source and at least one building where the VOCs originate from a subsurface source.

3.3.2 Success Criteria

The CSIA protocol will be considered fully validated if the validation criteria (Section 3.2) are met for sites covering both subsurface and indoor sources of VOCs. An evaluation of this performance objective is provided in Section 6.3 of this report.

3.4 PERFORMANCE OBJECTIVE 4: IMPLEMENTABILITY AND COST EFFECTIVENESS

The protocol should be implementable by environmental professionals with typical training and experience. The protocol should also be a cost effective adjunct to a larger vapor intrusion investigation.

3.4.1 Data Requirements

Field experience obtained during the demonstration program was evaluated. Qualitative success criteria included complexity of the protocol implementation and any other logistical issues and costs associated with implementation.

3.4.2 Success Criteria

The objective was considered to be met if the protocol was determined to be implementable and cost effective. An evaluation of this performance objective is provided in Section 6.4 of this report.

4.0 SITE DESCRIPTION

The field demonstration was completed at four sites: i) Joint Base Lewis-McChord near Tacoma, Washington, ii) Selfridge Air National Guard Base, near Detroit, Michigan, iii) Tyndall Air Force Base, near Panama City, Florida, and iv) the former Raritan Arsenal in Edison, New Jersey. Prior to each demonstration, on-site screening was conducted in order to select the buildings for implementation of the full demonstration program. The CSIA demonstration was combined with the demonstration of another innovative vapor intrusion investigation method (on-site GC/MS analysis to distinguish between VI and indoor sources of VOCs; ESTCP ER-201119). Both projects involve protocols to distinguish between indoor sources of VOCs and vapor intrusion. Site selection prioritized the following:

- <u>Building Characteristics</u>: Availability of one to three buildings at each site. Specific buildings for investigation were to be residential or industrial, large or small, and occupied or suitable for occupancy.
- <u>Subsurface Sample Points</u>: Presence of at least three existing subsurface sample points (either monitoring wells or soil gas sample points) with detectable concentrations of VOCs located within 1000 ft of a target building (either upgradient of the building or within 100 ft downgradient). These sample points were used to characterize the isotope fingerprint of the subsurface VOC source.
- <u>*Vapor Intrusion Concern*</u>: Presence of building(s) with either i) known vapor intrusion issues or ii) high vapor intrusion concern based on the presence of VOCs in close proximity to the building.
- <u>Building Access</u>: Availability of access to all parts of the building(s) during normal working hours for up to three days.

4.1 SITE LOCATION AND HISTORY

Each of the demonstration sites has a dissolved chlorinated solvent or petroleum hydrocarbon plume, or both, in shallow groundwater that has migrated away from the source (release) area. Prior to the demonstration, each site had been investigated in sufficient detail to provide an understanding of site geology and contaminant distribution in the subsurface and to allow selection of candidate buildings for the demonstration. Final selection of buildings for the demonstration was based on the existing data supplemented, in some cases, by field screening.

The demonstration sites included:

• Joint Base Lewis-McChord (Lewis-McChord): This site is a military facility located south of Tacoma, Washington, that is an amalgam of US Army Fort Lewis and McChord Air Force Base. A chlorinated solvent plume is present in the uppermost aquifer beneath buildings in the Logistics Center. Because of the potentially large number of candidate buildings at the site, GSI prioritized the buildings by selecting those with footprints located within 200 feet of a shallow zone monitoring well having TCE concentrations greater than 10 μ g/L in the most recent monitoring event. This prioritization yielded

eight buildings (Buildings 9522, 9671, 9666, 9679, 9674, 9669, 9564, and 9673). At the beginning of the field demonstration, indoor air in these buildings was screened using the HAPSITE ER. The key analyte used for screening was TCE, the primary COC in groundwater.

The highest TCE concentration (TCE 0.3 ppbV $[1.6 \,\mu g/m^3]$) was found in Building 9669, which was selected as the first demonstration building. The other buildings had lower TCE concentrations, ranging from below detection limits to 0.03 ppbV (0.2 $\mu g/m^3$).

• <u>Selfridge Air National Guard Base (Selfridge)</u>: This site is an active military installation located north of Detroit, Michigan. Building 1533, located on the southwest corner of the base, was selected for the demonstration. This building is currently used as a maintenance facility for the U.S. Border Patrol.

Releases from two underground storage tanks (USTs) located northeast of Building 1533 were discovered in 1992. One of the tanks reportedly contained leaded gasoline and the other, diesel fuel. The tanks were removed in 1992, and remediation and groundwater monitoring have been conducted since that time. The shallow petroleum hydrocarbon plume is present beneath much of the Building 1533 footprint. The key target compound in groundwater is benzene.

- *Tyndall Air Force Base (Tyndall)*: This site is an active military installation located near Panama City, Florida. Chlorinated solvent plumes are present in shallow groundwater beneath several on-site buildings. To prioritize buildings for investigation, GSI reviewed building locations relative to recent groundwater monitoring results, focusing on TCE, one of the key COCs in groundwater. Based on this evaluation, we prioritized six buildings: Building 156, 246, 219, 522, 258, and 560. GSI screened the indoor air in the six buildings, analyzing the samples with a HAPSITE SMART instrument. TCE concentrations were typically less than 0.1 ppbV (0.54 μ g/m³). Because the concentrations were relatively low, Building 219 was selected as a building to test a "planted" source, to determine if the CSIA protocol could correctly identify the indoor VOC source. Access was also available for Building 156. Low TCE concentrations in indoor air made this building inappropriate for the CSIA demonstration. However, groundwater and sub-slab soil gas samples were collected for isotope analysis at Building 156, to evaluate sample locations which best characterize the isotope signature in the subsurface (see Section 6.2.2).
- <u>Former Raritan Arsenal Site (Raritan)</u>: This Formerly Used Defense Site (FUDS) is located in Middlesex County, New Jersey. The site was operated by the US Army and was used for handling ammunition and ordnance from 1917- 1963. Since site closure in 1963, various environmental investigation, remediation, and monitoring projects have been conducted. Over the last 10 years, more than 45 buildings have been evaluated for the vapor intrusion pathway, and six are subject to ongoing monitoring. Several buildings have had mitigation systems installed (Weston, 2012). The Campus Plaza 4 (CP4) building was selected for the CSIA demonstration because it is located near shallow impacted groundwater plumes, ii) it does not have an active mitigation system,

and iii) historical indoor air and sub-slab VOC sample results are available for comparison from 2004 - present. CP4 has been partitioned into separate suites to accommodate the current tenants. It is occupied by three tenants and the property owner's firm. To screen the indoor air VOC concentrations in building, at least one indoor air sample was collected in each of the four tenant spaces. Based on the TCE results, the office/warehouse space on the west end of Campus Plaza 4 was selected for the demonstration. TCE indoor air concentrations in the west end was approximately 1 ppbV (5.4 μ g/m³), but ranged from below detection limits to 0.2 ppbV (1 μ g/m³) in the other tenant spaces.

In addition to CP4, Building 209 was accessible for the demonstration. TCE was not detected in indoor air screening samples, making the building unsuitable for the CSIA protocol. However, groundwater and soil gas samples were collected to evaluate sample locations which best characterize the isotope signature in the subsurface (see Section 6.2.2).

In summary, four industrial buildings (Lewis-McChord Building 9669, Selfridge Building 1533, Tyndall Building 219, Raritan Building CP4) were included in the field demonstration. The demonstration included conventional VI sampling in each building as well as application of the on-site GC/MS analysis (ESTCP Project ER-201119) and CSIA protocols as summarized in Table 2. Although the CSIA protocol was not applicable at two additional buildings (Tyndall Building 156, Raritan Building 209) because of low VOC concentrations in indoor air, groundwater and sub-slab soil gas samples were collected to evaluate sample locations which best characterize the isotope signature in the subsurface.

Building /	Size	Construction	Key VOC for	On-Site	CSIA
Use	(sq ft)		VI	GC/MS	Demonstration
			Evaluation	Analysis	Completed
				Demonstration	(ER-201025)
				Completed	
				(ER-201119)	
	J	oint Base Lewis-	McChord, Wasł	nington	
9669/	20,000	Slab on grade	TCE	Yes	Yes
Warehouse ¹					
Selfridge Air National Guard Base, Michigan					
1533/	2,000	Slab on grade	Benzene	Yes	Yes
Vehicle					
Maintenance					
Tyndall Air Force Base, Florida					
$219 / Office^2$	7,000	Slab on grade	TCE	Yes	Yes (Planted
					Indoor Source)
Former Raritan Arsenal, New Jersey					
Campus Plaza 4 ³	30,000	Slab on grade	TCE	Yes	Yes
Office and					
Warehouse					
Notes:			-		

Table 2: Demonstration Buildings

Notes:

1) Building 9669 is approximately 40,000 sq ft and is divided into 2 halves. The demonstration was conducted the southeastern half of the building.

2) Building 219 is approximately 23,000 sq ft. The demonstration was conducted in the central portion of the building where access was granted.

3) Campus Plaza 4 building area is approximately 73,500 sq ft. The demonstration was conducted in the western portion of the building.

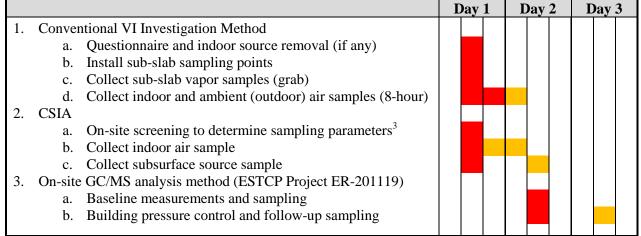
4.2 SITE GEOLOGY, HYDROGEOLOGY, AND CONTAMINANT DISTRIBUTION

The demonstration sites and buildings have varying degrees of concern with respect to vapor intrusion based on previously conducted environmental assessments. The geology, hydrogeology, and contaminant distribution at each site are summarized in Table 3.

Table 5: Demonstration Site Geology/Hydrogeology and Key Containmants					
Site	Geology/Hydrogeology	Contaminant Distribution			
Joint Base Lewis-	Shallow stratigraphy consists	Chlorinated VOCs (cVOCs) are			
McChord Logistics	of alternating glacial and non-	present in shallow groundwater as a			
Center	glacial sediments	result of historic releases from former			
	(Envirosphere, 1988).	disposal areas located upgradient of			
		the buildings			
	Depth to water approximately				
	20-30 feet bgs.	cVOCs included in site groundwater			
		monitoring program: TCE, cis-1,2-			
	Hydraulic gradient to the	DCE, PCE, 1,1,1-TCA, VC			
	northwest.				
		Near the demonstration buildings,			
		TCE concentrations in groundwater in			
		the shallow aquifer range from 60 –			
		110 μ g/L, based on monitoring			
		conducted in Spring 2012.			
Selfridge Air National	Shallow stratigraphy consists	Impacted soils were excavated from			
Guard Base	of glacial lake sediments (e.g.,	the former UST basin and nearby			
	clays and silts) overlying a	areas in 1992 and 2003. Remaining			
	sedimentary bedrock. In the	soil and groundwater impacts are			
	vicinity of Building 1533,	present along the western edge of the			
	shallow soils are	former UST basin/excavation area,			
	predominantly sand and gravel	under the eastern portion of Building			
	fill. Underlying the fill is a	1533, and south of Building 1533.			
	clay layer approximately 30-				
	40 feet thick (AMEC, 2010).	Key COCs from the site investigation			
		are BTEX and PAH compounds.			
	Depth to water approximately	Benzene was considered the primary			
	2-6 feet bgs.	COC for the vapor intrusion			
		evaluation.			
	Hydraulic gradient to the				
	south-southwest.				

 Table 3: Demonstration Site Geology/Hydrogeology and Key Contaminants

Site	Geology/Hydrogeology	Contaminant Distribution
Tyndall Air Force	Shallow stratigraphy consists	cVOCs are present shallow (water
Base	 primarily of unconsolidated sands approximately 50 feet thick. This interval is underlain by a calcareous sandy clay to clayey sand (Jackson Bluff Formation). Depth to the water table aquifer ranges from 2 – 7 feet bgs. In the vicinity of the study building, the hydraulic gradient is generally towards the north/northeast. 	 table) and deeper zones at the site. The areal extent of cVOCs in the shallow zone is smaller than in the deeper zones. Recent groundwater monitoring results near the demonstration buildings indicate that TCE and cis-1,2-DCE are the primary constituents. Near Building 219, TCE concentrations are less than 10 µg/L; cis-1,2-DCE concentrations have been measured at more than 2,000 µg/L (3E Consultants, 2011).
Former Raritan Arsenal Site	The shallow stratigraphy consists of interbedded sands and clays. Gravels may also be present. There are two separate plumes with separate source areas in the vicinity of the demonstration building. The hydraulic gradient is generally towards the southeast. (Weston, 2013) The Campus Plaza 4 building is located above the Area of Concern 2 plume. The depth to water in the vicinity of Campus Plaza 4 is approximately 10 feet bgs.	2012 groundwater monitoring results near the demonstration buildings indicate that TCE is the primary COC. At Campus Plaza 4, TCE concentrations are approximately 8 µg/L.


5.0 TEST DESIGN

The field demonstration of this protocol was conducted at four DoD sites.

5.1 CONCEPTUAL EXPERIMENTAL DESIGN

In general terms, at each target building, the demonstration program consisted of i) collection of indoor air and sub-slab soil gas samples in accordance with conventional vapor intrusion investigation methods (Section 5.1.1), ii) collection of samples for stable isotope analysis (Section 5.1.2), and iii) implementation of the draft protocol for evaluation of vapor intrusion using on-site analysis (ESTCP Project ER-201119; Section 5.1.3) [see Figure 2]. The results from each of the three sampling programs were evaluated as described in Section 5.7 in order to assess the comparability of the three investigation methods.

Elemena 2.	Duilding Co	offic Field	Testine	Cabadada
rigure 2:	Building-Sp	echiic riela	resung	Schedule

Notes: 1) Pre-sampling equipment checks and calibration are not shown. These activities occurred prior to any building investigations (prior to "Day 1"); 2) Orange = contingent; 3) For CSIA, VOC concentrations must be estimated to determine sample locations and sampling time.

5.1.1 Conventional Program - Collection of Indoor Air and Sub-Slab Soil Gas Samples

Currently, building-specific vapor intrusion investigations are most commonly conducted by collecting a limited number of indoor air and sub-slab soil gas samples for off-site analysis. The results are interpreted using a multiple-lines-of-evidence approach.

For the demonstration, the conventional program was completed first. A visual building survey, interview with building representative, and record review were conducted to identify indoor VOC sources for removal prior to sampling, consistent with conventional approaches. No indoor sources were identified and removed from any of the demonstration buildings using this approach. The conventional sampling program implemented in each building is summarized in Table 4.

Component	Matrix	Typical Number of Samples ¹	Analyte	Location
Conventional Vapor Intrusion Sampling Program (each test	Indoor air	2	VOCs	Indoors, with number of locations depending on building size
building)	Sub-slab vapor	3	VOCs	Sub-slab, 3 locations
	Ambient air	1	VOCs	Outdoors, upwind of building

Table 4: Summary of Conventional Vapor Intrusion Sampling Program

Note: 1) Table does not include QA samples.

5.1.2 Collection of Samples for Stable Isotope Analysis

ESTCP Project ER-201025 involved the use of CSIA for the evaluation of vapor intrusion. Because the on-site analysis protocol (Section 5.1.3) could include identification and removal of indoor VOC sources as well as manipulation of building pressure conditions, the CSIA and conventional programs were completed first to avoid inadvertently influencing the results of these programs.

The CSIA sampling program is summarized in Table 5.

Component	Matrix	Number of Samples ¹	Analyte	Location
CSIA for Vapor	Indoor air	1 - 3	Isotope ratios for target VOC	Inside target building
Intrusion Sampling Program (each test	Sub slab vapor	1 - 2	Isotope ratios for target VOC	Below target building foundation
building)	Subsurface source	1 - 3	Isotope ratios for target VOC	Nearby monitoring well(s)

Table 5: Summary of CSIA for Vapor Intrusion Sampling Program

Note: 1) Table indicates approximate number of samples collected. Detailed information concerning the logic for determining the sample locations and the specific number of samples to be collected is provided in the Demonstration Plan for ER-201025 (GSI, 2012d).

Section 5 of the Task 2 report (GSI, 2012c) presents the protocol for application of CSIA to vapor intrusion that was validated through this demonstration. The protocol provides a detailed description of the sample collection process. In general, the process included i) identification of subsurface and indoor air sampling locations, ii) estimation of the target VOC concentration at each sample point, iii) identification of the appropriate sample collection method based on the estimated concentration, and iv) sample collection.

5.1.3 Protocol for Use of On-Site Analysis for Vapor Intrusion

Following collection of the conventional samples and CSIA samples, the on-site analysis protocol (GSI, 2012a) was implemented in each building. The protocol uses a step-wise sampling and analysis program to identify vapor entry points and indoor sources of VOCs. The specific number of samples collected varied from building to building because the scope of each step in the investigation process is defined by the prior results.

5.2 **BASELINE CHARACTERIZATION**

As discussed in Section 4, site and building selection was based on pre-existing data. No additional baseline characterization was conducted prior to the demonstration at each building.

5.3 LABORATORY STUDY RESULTS

A laboratory study was conducted to evaluate the analytical method and isotope signatures associated with indoor VOC sources (Kuder et al., 2012). That study was followed by a literature review as well as analysis of additional samples of common indoor VOC sources (GSI, 2012c). During the demonstration, GSI collected two additional samples of natural gas, a potential indoor source of benzene, for isotopic analysis. Those results are summarized in Section 5.8 below.

5.4 DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS

At each building selected for the demonstration, the field program consisted of i) collection of samples associated with a conventional VI investigation, ii) collection of samples for demonstration of CSIA for VI evaluation, and iii) implementation of the on-site analysis protocol. Sections 5.4.1-5.4.3 describe sampling point installation procedures for each of the investigation methods.

5.4.1 Sampling Points for Conventional Samples

<u>Sub-slab Sample Points</u>: For the first three demonstration sites (Lewis-McChord, Selfridge, and Tyndall), three sub-slab sample points were installed in each test building to characterize the distribution of VOCs below the building foundation. Specific sample locations were distributed across the building and were adjusted to minimize the disturbance of building activities. Sample points for the collection of sub-slab soil gas samples were installed by drilling a ³/₄ to 1 inch hole through the building slab and into the underlying soil or fill material to a depth of 3 to 4 inches below the base of the foundation. A length of 1/8 inch outside diameter (OD) nylon tubing was placed in the hole and covered with approximately 3-4 inches of 20/40 sand. The remainder of the hole was sealed with a combination of hydrated bentonite clay and modeling clay. The end of the tubing was plugged with modeling clay when samples were not being collected. After sample collection was completed, the sample points were removed and the holes were sealed with cement or concrete patch.

At the last demonstration site (Raritan), permanent sub-slab sampling points had previously been installed for on-going VI monitoring. Rather than install new sub-slab sampling points, GSI used the existing points in the test buildings at this site.

<u>Indoor Sample Points</u>: For each test building, one to three indoor air sample points were collected to characterize the distribution of VOCs inside the building. Specific sample points were selected based on an evaluation of building operating characteristics, building size, and layout. Sample locations were also chosen to minimize disruption of building activities.

<u>Outdoor Sample Point</u>: For each demonstration site, at least one ambient (outdoor) air sample point was selected to characterize the concentration of VOCs outside the building. Specific sample points were located to balance the following factors: i) upwind, ii) avoid disruption to building occupants, and iii) location next to the HVAC system air intake if access to this point was available.

5.4.2 Sampling Points for CSIA Samples

<u>Indoor Air Sampling Points</u>: Sampling points were selected based on criteria in the protocol (Section 5.3 of GSI 2012c). In short, a sample was collected from the area of the building most likely to be impacted by vapor intrusion (e.g., location with elevated target VOC concentration based on on-site analysis (screening) result). Additional samples were collected based on building size, construction, or results of field screening.

<u>Subsurface Sampling Points (Sub-slab)</u>: At least one sub-slab sample point used during the conventional program (Section 5.4.1) was also sampled for stable isotope analysis. The sub-slab sample point was selected based on field screening (i.e., the sub-slab location with the highest target VOC concentration was sampled for stable isotope analysis). Sub-slab sampling (Location F in Figure 3) is not recommended in the protocol for primary subsurface source characterization, but was done during the demonstration to help evaluate variability of the isotope ratios.

<u>Subsurface Sampling Points (Groundwater)</u>: Existing groundwater monitoring points were used to collect samples for stable isotope analysis to characterize the subsurface source. Sample locations were selected using the criteria in the protocol (Section 5.2 of GSI, 2012c; see also Figure 3). No soil gas monitoring points (Location Type E) were available to be sampled during the field demonstration.

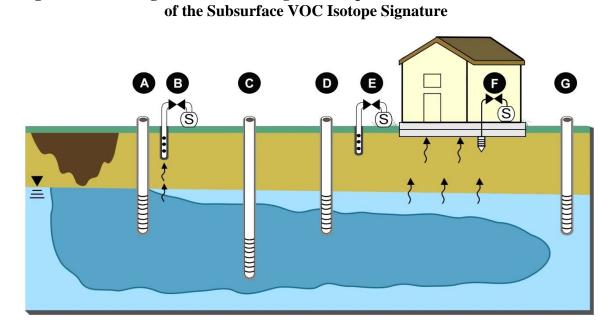


Figure 3: Advantages and Disadvantages of Sample Locations for Characterization

Location	Advantages	Disadvantages			
A) Upgradient	• Water sample easier to collect than soil	• Does not account for any additional enrichment that			
Groundwater Well	gas sample.	occurs closer to building.			
(Screened at water	• Easiest sample point if this is the closest				
table)	existing well to target building.	indoor sources than actual VOCs entering building.			
		As a result, sample may underestimate potential for			
		CSIA to yield definitive results.			
B) Soil Gas Sampling	Not recommended	• High uncertainty. Isotope ratios may not be			
Point Not Close to		representative of actual VOCs entering building due			
Target Building		to spatial variability in vadose zone biodegradation			
(i.e., >100 m from		processes.			
building ¹)					
C) Deep Groundwater	Not recommended	• High uncertainty. Isotope ratios may not be			
Well		representative of VOCs at top of water table.			
D) Groundwater Well	• Water sample easier to collect than soil	•			
Close to Target	gas sample.	occurs within vadose zone.			
Building (Screened	• This water sample will be most				
at water table)	representative of VOCs potentially				
	entering building.				
E) Soil Gas Sample	• Not recommended based on findings	• More difficult to collect than water sample.			
from Close to	from the demonstration	• Further testing recommended. Based on the			
Building		demonstration, sub-slab vapors were not			
		representative of source vapors entering a building.			
		Because sub-slab vapors not representative, further			
		testing is needed to determine whether soil gas			
		samples would be representative.			
F) Sub-slab Soil Gas	• Not recommended for primary	• May contain VOCs originating from within			
Sample	characterization of subsurface source.	building.			
		• Sample collection can be a lengthy process,			
C) Dermone diant	Not more and de d	depending on concentration			
G) Downgradient	Not recommended	• May be more enriched in heavy isotopes than VOCs			
Groundwater Well		entering building.			
		Could yield false negative results.			

Note: 1) This table summarizes sample location selection criteria. Updated recommendations based on findings from the demonstration are also provided in Appendix E.

5.4.3 Sampling Points for On-Site Analysis Protocol

Implementation of the on-site analysis protocol did not require the collection of any samples from the subsurface and, therefore, did not require the installation of any sample points. Indoor air sample locations were selected in accordance with the protocol for ER-201119, which involves iterative sampling within a building to follow VOC concentration gradients to the source.

5.5 FIELD TESTING

5.5.1 Field Testing for Conventional Vapor Intrusion Program

Conventional vapor intrusion investigation programs do not typically utilize field testing. An attempt to identify and remove indoor sources of VOCs is commonly conducted using a questionnaire and interview with the building owner or operator.

For each of the test buildings, the investigation team met with building representative(s) to complete an occupied building questionnaire and to conduct a visual inspection for potential indoor sources. For the Raritan buildings, previously-completed questionnaires were available for review.

No indoor VOC sources were removed from the test buildings based on these procedures.

5.5.2 Field Testing for CSIA Samples

Collection of vapor-phase samples for CSIA required an estimation of the concentration of the target VOC at the sample location. This estimate is needed to determine the proper sample volume. For the demonstration, estimates of target VOC concentrations were based on on-site analysis typically conducted the same day as the CSIA sampling. Other information such as data from previous studies was used, if available.

On-site analysis was used to estimate target VOC concentrations in different areas of the building. Potential indoor air sample locations were selected based on the building characteristics (e.g., separate tenant suites). Additional indoor air sample locations were selected based on building size or VOC concentration from the on-site analysis.

Three sub-slab sample points were installed during the conventional program. After installation of each point, the sub-slab soil gas was screened using on-site analysis. One to two sub-slab points with the highest concentrations were selected for CSIA sampling.

Field testing prior to groundwater sample collection was not needed.

5.5.3 Field Testing for On-Site Analysis Protocol

Field testing for the on-site analysis program is described in the Demonstration Plan for ER-201119 (GSI, 2012b).

5.6 SAMPLING AND ANALYSIS METHODS

As described above, three different vapor intrusion investigation methods were employed during the demonstration. Each method included specific sampling procedures and analysis of samples at an off-site laboratory. Laboratory analytical methods are summarized in Table 6.

Matrix	Analyte	Method	Container	Preservative	Holding Time		
	Conventional Vapor Intrusion Program						
Vapor	VOCs	USEPA TO-15 ¹	6-L Summa Canister	None	30 days		
	CSIA Program						
Vapor	VOCs and corresponding isotopes	Klisch et al., 2012^2	Sorbent tube	Ice	4 weeks ²		
Ground -water	VOCs and corresponding isotopes	Klisch et al., 2012^2	VOA vials	Ice	2 weeks		
On-Site GC/MS Program							
Vapor	Radon	McHugh et al., 2008^3	1-L Tedlar bag	None	14 days ⁴		
	VOCs	USEPA TO-15 ¹	6-L Summa Canister	None	30 days		

 Table 6: Laboratory Analytical Methods for Demonstration

Notes:

1) Samples analyzed by ALS/Columbia Analytical Services in Simi Valley, CA.

2) Samples analyzed by the University of Oklahoma, Norman, OK. Holding time for vapor samples was originally 2 weeks but has been extended based on additional studies. See Section 6.1.2.

3) Samples analyzed by the University of Southern California, Los Angeles, CA.

4) No holding time specified, but lab tests demonstrate accurate results after 14 days storage in Tedlar bag (McHugh et al., 2008).

5.6.1 Conventional Vapor Intrusion Program

The conventional sampling program consisted of indoor and ambient air and sub-slab soil gas sample collection for VOC analysis.

<u>Collection and Analysis of Indoor and Ambient Air Samples</u>: At each test building, indoor and outdoor air samples were collected in individually certified, 6-L Summa canisters. Flow controllers were used to collect 8-hour composite samples for analysis of VOCs by USEPA Method TO-15 or TO-15 SIM.</u>

<u>Collection and Analysis of Sub-Slab Gas Samples</u>: Prior to sample collection, the sample points were purged and a helium tracer test was conducted to verify that the point was not leaking. The test was conducted by threading the sample point tubing through a shroud. The shroud was then filled with at least 10% helium, as measured with an MGD-2002 portable helium meter. After the shroud filled with the desired amount of helium, the helium meter was attached to the probe tubing. The point passed the leak test if the concentration in the tubing was less than 10% of the concentration in the shroud. In addition to the helium tracer test, a shut-in test was conducted to

verify that the sampling train did not leak. Any leaks at the probe point or in the sampling train were repaired by rehydrating the bentonite or tightening connections in the sampling train, respectively. After confirming that the points were leak free, the sample was collected. Samples were collected in individually certified, 6-L Summa canisters. The samples were collected as grab samples (i.e., without flow controllers) for analysis of VOCs by USEPA Method TO-15 or TO-15 SIM.

5.6.2 CSIA Samples

<u>Collection and Analysis of Vapor Samples</u>: Indoor air and soil gas samples can be collected using Summa canisters or sorbent tubes, depending on the sample mass required for analysis. The mass is a function of sample volume and concentration. Recommendations for sample containers and parameters were provided in the demonstration protocol (GSI, 2012c). For the demonstration, all samples were collected using sorbent tubes.

<u>Collection and Analysis of Water Samples</u>: Water samples for CSIA can be collected using the same sampling procedures used to collect samples to measure concentration. The number of VOA vials, preservative, and other information is provided in the protocol.

5.6.3 On-Site Analysis Protocol Confirmation Samples

<u>Collection and Analysis of Indoor Air Samples</u>: The majority of samples collected for this protocol are analyzed on-site. However, at the end of each phase of the protocol (i.e., baseline building characterization, characterization of depressurized building conditions, etc.), a sample is collected for off-site laboratory analysis. These samples are used to i) assess the accuracy of the on-site analysis results and ii) to provide fully validated documentation of VOC concentrations in indoor air. Each confirmation sample was collected as a grab sample in an individually certified, 6-L Summa canister, with VOC analysis by USEPA Method TO-15 or TO-15 SIM. Separate ambient (outdoor) air samples were not collected for this portion of the demonstration because an ambient air sample was already collected for the conventional program (Section 5.6.1).

<u>Collection and Analysis of Indoor and Outdoor Air Samples for Radon</u>: The on-site analysis protocol includes an option to manipulate building pressure to further evaluate the source of VOCs in indoor air. At each test building where the optional building pressure control procedure was implemented, at least two indoor air samples and one ambient air sample were collected in Tedlar bags for off-site radon analysis. The indoor air samples for radon analysis were paired with the samples collected in Summa canisters for VOC analysis.

5.6.4 Sample Summary and Quality Assurance Procedures

In addition to samples collected for the demonstration (summarized in Table 7 below), samples were collected for quality assurance purposes. QA samples collected for off-site laboratory analysis consisted of field duplicates and trip blanks. Field duplicates were collected at a rate of at least 1:20 Summa canisters, 1:20 Tedlar bags, and 1:10 sorbent tubes. One sorbent tube trip blank was also analyzed for each demonstration site.

In addition to QA samples, other measures were taken to assure data quality. These measures included:

- Adhering to the Demonstration Plans for ER-201119 and ER-201025 and associated QAPPs (GSI, 2012b; GSI, 2012d)
- Collecting and analyzing field QA samples (see Section 6.1 and Appendix D)
- Use of Decontamination Procedures, where applicable. All sampling equipment was either i) single-use, disposable material or ii) flushed/purged before samples were collected. Sampling equipment used to collect samples from locations with potentially high VOC concentrations (e.g., sub-slab sample points) was not used subsequently for the collection of low concentration samples (e.g., indoor air). Summa canisters used for collection of sub-slab, indoor, and ambient vapor samples were supplied by ALS/Columbia Analytical Services (Simi Valley, CA), and were individually certified clean to prevent any contamination from previous samples. Samples for radon analysis were collected using single-use Tedlar sample bags. Cleaned and prepared sorbent tubes and VOA vials were provided by University of Oklahoma and TestAmerica Laboratories (Houston, TX), respectively.
- Sample Documentation. Field documentation was facilitated by pre-printed tables, labels, and log forms that simplified and allowed for more precise notation of sample collection and conditions while in the field. All samples for laboratory analysis were submitted under chain-of-custody control. All laboratory reports included a narrative that discussed any quality control excursions. Photographs were also taken to document project activities.

5.7 SAMPLING RESULTS

Tables 7 and 8 summarize the demonstration program and key analytes considered for each demonstration building. Vapor intrusion classifications for the four demonstration buildings are summarized in Appendix B, along with the lines of evidence applicable to each investigation method. Comprehensive sampling results for ER-201025 (CSIA demonstration) and ER-201119 (on-site analysis demonstration) are included in Appendix C. Appendix D contains tables summarizing the data quality review. Laboratory reports are also provided in Appendix D.

	Co	Conv. VI Program		CSIA			On-Site Analysis		
Site / Building	Sub-slab Sample Locations	Indoor Air Sample Locations	Outdoor Air Sample Locations	Source (GW) Sample Locations	Sub-slab Sample Locations	Indoor Air Sample Locations	On-Site GC/MS Indoor Air Samples	On-Site Surveys	Pressure Conditions Tested
Joint Base Lewis-	Joint Base Lewis-McChord, Washington								
Building 9669	3	2	1	3	1	1	35	3	BL, NP, PP
Selfridge Air Nati	onal Guard	Base, Michi	gan						
Building 1533	3	1	1	1	2	1	28	6	BL, NP, PP
Tyndall Air Force	Fyndall Air Force Base, Florida								
Building 219	3	2	1	1	1	1	9	0	BL
Former Raritan A	Former Raritan Arsenal Site, New Jersey								
Campus Plaza 4	2	2	1	2	1	2	56	0	BL, NP

 Table 7: Summary of Demonstration Program

Note: BL = baseline (normal) operating conditions; NP = induced negative pressure; PP = induced positive pressure

	Conv. VI and On-Site Analysis Program		C	CSIA	
Site / Building	TO-15 (Key Analyte ¹)On-Site Analysis		Compound	Isotope	Isotope
		(Key Analyte ¹)			2
Joint Base Lewis-M	IcChord, Washington				
Building 9669	cVOCs (TCE)	cVOCs (TCE)	TCE	C	Cl
Selfridge Air Natio	nal Guard Base, Michigan				
Building 1533	Petroleum HCs (Benzene)	PHC (Benzene)	Benzene	C	-
Tyndall Air Force l	Tyndall Air Force Base, Florida				
Building 219	cVOCs (TCE)	cVOCs (TCE)	TCE	C	Cl
Former Raritan Arsenal Site, New Jersey					
Campus Plaza 4	cVOCs (TCE)	cVOCs (TCE)	TCE	C	Cl

Table 8: Key Analytical Parameters

Notes: Key Analyte = key analyte for vapor intrusion evaluation

Each test building, the vapor intrusion classification was interpreted based on the framework set out in the Demonstration Plan. For the **conventional and on-site analysis protocols**, a lines-of-evidence approach was used. Key questions were developed for each investigation method. The answers to the questions dictated the building's vapor intrusion classification (Table 9).

Results of Lines of Evidence Evaluation	Vapor Intrusion Classification		
All lines of evidence indicate absence of vapor	No evidence of current vapor intrusion.		
intrusion.			
Mixed results, but weight of evidence indicates	Supporting evidence of no current vapor		
absence of vapor intrusion.	intrusion.		
Mixed lines of evidence.	Inconclusive.		
Weight of evidence suggests vapor intrusion	Supporting evidence of current vapor intrusion.		
with some uncertainty.			
Lines of evidence predominately indicate	Clear evidence of current vapor intrusion.		
vapor intrusion. Strongest lines indicate vapor			
intrusion.			

 Table 9: VI Classification using Lines of Evidence Approach

Note: This table applies to the conventional and on-site analysis approaches.

For each building evaluated with the conventional and on-site analysis protocols, two types of evaluations were done. The first included a lines of evidence evaluation of vapor intrusion (i.e., Is there evidence of vertical migration of VOCs into the building?). The second evaluation addressed regulatory implications (i.e., Is there evidence of vapor intrusion at levels approaching or greater than a "screening level"?). A response action is required only if the concentration of the target VOC in indoor air exceeds the applicable regulatory standard.

For the assessment of regulatory implications, we applied USEPA screening values to all the demonstration sites. These values may not be the legal standards for regulatory responses at the individual sites, however, they were used for this demonstration in order to provide consistency between the sites. For the demonstration buildings, the key COC for the vapor intrusion evaluation was either TCE or benzene. Therefore, the values in Table 10 were used for comparisons with site data.

Analyte	Risk-Based Screening Level		
		$(\mu g/m^3)$	
TCE	3.0	USEPA Regional Screening Level Tables, May 2013;	
ICE	5.0	commercial/industrial setting; 10 ⁻⁶ target risk; THQ=1.0	
D 1.6		USEPA Regional Screening Level Tables, May 2013;	
Benzene	1.6	commercial/industrial setting; 10^{-6} target risk; THQ = 1.0	

 Table 10:
 Numeric Standards Used for VI Classifications

Note: Screening levels used in conventional and on-site analysis protocol building evaluations.

The **CSIA protocol** is not a standalone investigation method. The protocol would be used if target VOCs are detected in indoor air at levels approaching or greater than screening (regulatory) levels. The conventional and on-site analysis protocols <u>can</u> be used as standalone

methods, and both of these approaches yield indoor air concentration data. Because the CSIA approach requires advance knowledge of indoor air concentrations, it would not be used in the absence of other evidence that VOC concentrations are high enough to be of concern.

5.7.1 Vapor Intrusion Classification using Conventional Lines of Evidence Approach

Conventional sampling was done in three demonstration buildings. The results from the conventional sampling program were evaluated using a lines-of-evidence approach which included the following questions:

1. <u>Comparison of key COC concentrations in indoor air to ambient (outdoor) air</u>: Do indoor concentrations of the key COC exceed outdoor concentrations? To be conservative, a "Yes" response was considered consistent with vapor intrusion.

In all three buildings, indoor air concentrations of the key COC exceeded ambient (outdoor) air concentrations. This line of evidence, however, is not definitive with respect to vapor intrusion because of potential contributions from indoor sources.

2. <u>Sub-slab to indoor air attenuation factors</u>: Are concentrations of the key COC below the building significantly (e.g., >10x) higher than in indoor air?

At each building, the sub-slab concentrations varied widely. In two of three buildings, at least one sub-slab result was more than 10x higher than the indoor air result.

3. <u>Sub-slab to indoor air ratios</u>: Are other VOCs found beneath the slab, and are sub-slab to indoor air concentration ratios similar?

At two of three demonstration buildings, other VOCs (beyond the key target COC) were found at relatively high concentrations beneath the slab, and were also detected in indoor air. This general pattern was taken to suggest VI.

4. <u>Composition of COCs (e.g., concentration ratios) present in indoor air compared to composition of COCs present in groundwater</u>: Are ratios in indoor air consistent with a subsurface source?

This line of evidence is applicable when multiple COCs are associated with the groundwater. Multiple COCs were detected in groundwater near all the demonstration buildings. However, this line of evidence was generally inconclusive.

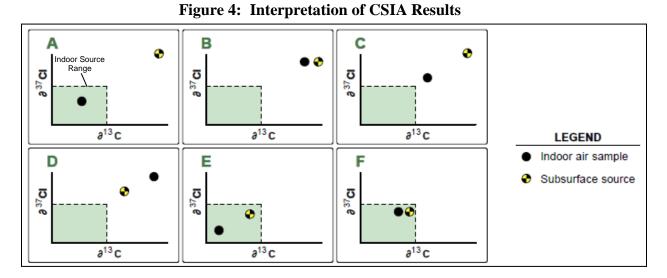
Other lines of evidence are used in various guidance documents. For example, the vertical distribution of COCs within a building (e.g., main floor concentrations vs. basements/crawl space) is often evaluated. However, the demonstration buildings were all one story, slab-on-grade, industrial buildings. Therefore, this line of evidence is not considered further in the data evaluation.

Based on the lines of evidence evaluation (Questions 1 - 4), each building was classified with respect to vapor intrusion as shown in Table 9 above.

Building-specific results and interpretation of the conventional lines of evidence approach are presented in Table 11. It is important to note that the regulatory implication is based on the generic screening level (Table 10) used to standardize data interpretations *for this report*. Actual needs or requirements may be different, and will depend on each site's particular circumstances.

onal ation ix B, 3.1.1
x B,
3.1.1
x B,
3.2.1
хB,
3 .3.1

Table 11:	Conventional	Program Resu	lts
-----------	--------------	---------------------	-----


Note: Findings and implications above are based on the conventional program only. See Section 6.2 for an evaluation of the full dataset (e.g., results from conventional, CSIA, and on-site analysis approaches).

5.7.2 VI Classification using the CSIA Protocol

One building at each of three demonstration sites (Lewis-McChord 9669, Selfridge 1533, and Raritan CP4) was a suitable candidate for application of the CSIA protocol, based on concentrations of target VOCs in indoor air. A fourth building (Tyndall 219) was tested by planting a known source in the building to evaluate whether the CSIA protocol could accurately identified the source.

To evaluate the presence or absence of vapor intrusion, the compound-specific isotope ratios measured in indoor air samples were compared to i) subsurface (groundwater) samples and ii) the range of isotopic signatures for indoor sources. A decision matrix which includes the level of confidence in the interpretation is provided in Figure 4. The draft CSIA protocol proposed to use isotope measurements from either groundwater or soil gas samples to characterize the subsurface source. However, evaluation of the demonstration dataset as a whole suggests that the isotope measurements from sub-slab soil gas samples do not accurately characterize the subsurface source (see Section 6.2.2). Therefore, the vapor intrusion classifications have been made using only the isotope results from groundwater samples for characterization of the subsurface source. The finalized CSIA protocol (Appendix E) has been revised to reflect the greater reliability of groundwater isotope results compared to soil gas.

CSIA results fall into six categories, as illustrated in Figure 4.

Data interpretation is based on pattern matching, as follows:

- (A) Strong evidence that an indoor source is the primary source of VOCs in indoor air.
- (B) Strong evidence that the subsurface source is the primary source of VOCs in indoor air.
- (C) Evidence of mixed subsurface and indoor air sources.
- (D) Evidence that the subsurface source is the primary source of VOCs in indoor air, additional enrichment in the heavy isotopes is likely occurring between the subsurface measurement point and the target building.
- (E) Supporting evidence that an indoor source is the primary source of VOCs in indoor air.
- (F) Supporting evidence that the subsurface source is the primary source of VOCs in indoor air. However, results are also potentially consistent with an indoor source, so the results should be interpreted within the context of other lines of evidence.

Individual demonstration building results are summarized in Table 12.

Building	Finding Based on CSIA Protocol	Additional Information
Lewis-McChord	Supporting evidence of current vapor intrusion	Appendix B,
Building 9669		Figure B.1.2
Selfridge Building 1533	Supporting evidence of NO current vapor	Appendix B,
	intrusion	Figure B.2.2
Tyndall Building 219	Strong evidence of an indoor source	Section 6.2.1,
(Planted Indoor Source)		Figure 6
Raritan Building CP4	Strong evidence of an indoor source, not vapor	Appendix B,
	intrusion	Figure B.3.2

Table 12: CSIA Protocol Results

Note: Findings and implications above are based on the CSIA protocol only. See Section 6.2 for an evaluation of the full dataset (e.g., results from conventional, CSIA, and on-site analysis approaches).

5.7.3 VI Classification using the On-Site Analysis Protocol

In general terms, the on-site analysis protocol involves characterizing the VOC concentrations in a building under normal operating conditions (i.e., "baseline" conditions). Multiple indoor air samples are analyzed in order to find and follow concentration gradients to the source. Building pressure is measured and may be manipulated to get a better understanding of the source of VOCs in indoor air.

Key lines of evidence for the baseline building characterization include:

- 1. <u>Comparison of target VOC concentrations in indoor air to ambient (outdoor) air</u>: Do indoor concentrations of the key COC exceed outdoor concentrations? A "Yes" response is conservatively considered to be consistent with vapor intrusion. This line of evidence is not definitive with respect to vapor intrusion, however, because of potential contributions from indoor sources.
- 2. <u>No indoor sources</u>: Were known indoor sources of target VOCs removed prior to the end of the baseline period such that no (known) indoor sources remain in the building? If "Yes", then the source of target VOCs may be consistent with vapor intrusion. If "No", known indoor sources remain, and these indoor sources may be the primary source(s) of VOCs in indoor air. This question does not apply if the on-site results for the target VOC are below detection limits.
- 3. <u>Baseline building pressure</u>: Is baseline building pressure negative (i.e., building depressurized relative to outdoors [ambient])? A "No" provides evidence of an indoor source because a positive building pressure does not support the flow of soil gas into the building. A "Yes" response is conservatively considered to be consistent with vapor intrusion. However, this line of evidence alone is not definitive with respect to vapor intrusion because a negative building pressure does not eliminate the possibility of an indoor source.
- 4. <u>Vapor entry point</u>: Were vapor entry points found? If "Yes", then vapor intrusion could contribute to target VOCs in indoor air.

The range of building classifications based on these lines of evidence is summarized in Table 9 above.

Building pressure may also be manipulated to get a better understanding of the source of VOCs in indoor air. Lines of evidence for the optional pressure control evaluation focus on change in target VOC concentrations relative to baseline, and relative to the building pressure condition.

- 1. <u>Building pressurization</u>: Are target VOC concentrations suppressed by building pressurization? A "Yes" response is consistent with VI.
- 2. <u>Building depressurization</u>: Are target VOC concentrations enhanced by depressurization? A "Yes" response is consistent with VI.

The range of building classifications based on these lines of evidence is summarized in Table 9 above. Refer to the final report for ER-201119 for additional details regarding the on-site analysis protocol and data interpretation methods.

The VI classifications for the demonstration buildings are summarized in Table 13. Note that the regulatory implication is based on the generic screening level (Table 10) used to standardize data interpretations *for this report*. Actual needs or requirements may be different, and will depend on each site's particular circumstances.

Table 15: On-Site Analysis Protocol Results			
Building	Results Based on On-Site Analysis Protocol	Additional Information	
Lewis-McChord	OVERALL FINDING: Evidence of current vapor	Appendix B,	
Building 9669	intrusion	Figure B.1.3	
	<u>IMPLICATION</u> : Indoor air concentration (2 $\mu g/m^3$) is BELOW USEPA screening level (3 $\mu g/m^3$). Pressure control evaluation increases confidence in result, and decreases concern with temporal variability.		
Selfridge Building 1533	OVERALL FINDING: No evidence of current/potential vapor intrusion	Appendix B, Figure B.2.3	
	<u>IMPLICATION</u> : Primary sources of benzene are indoors. Indoor air benzene concentration greater than USEPA screening level due to indoor sources. No additional evaluation warranted under current building use.		
Tyndall Building 219 (Planted indoor source)	Not applicable. VI not likely based on on-site analysis protocol. No VI concern due to low TCE concentration. CSIA protocol was tested using a	Section 6.2.1, Figure 6	
	planted indoor source.		
Raritan Building CP4	OVERALL FINDING: Office Area: Supporting evidence of VI. Warehouse: Suggestive of VI.	Appendix B, Figure B.3.3	
	<u>IMPLICATION</u> : Indoor air concentration (0.43 $\mu g/m^3$ in warehouse) is BELOW USEPA screening level (3 $\mu g/m^3$). Controlled depressurization did		
	not enhance vapor intrusion reducing concern regarding temporal variability.		

 Table 13: On-Site Analysis Protocol Results

Note: Findings and implications above are based on the on-site analysis protocol only. See Section 6.2 for an evaluation of the full dataset (e.g., results from conventional, CSIA, and on-site analysis approaches).

5.8 SUPPLEMENTAL DATA

During Task 2 of this project, we characterized the stable isotope signatures for common indoor sources of VOCs by compiling data available in the literature and analyzing samples of indoor sources (GSI, 2012c). Likely ranges of isotope ratios for indoor sources of PCE, TCE and benzene were developed. Isotope ratios for benzene were developed for gasoline, cigarette smoke, and natural gas, common indoor sources with sufficient benzene for isotope testing.

During the CSIA demonstration (Task 3 of ER-201025), we collected two additional natural gas samples for isotope analysis. The results were consistent with previous findings. As shown in Table 14, the natural gas signature is distinct from that of gasoline and cigarette smoke.

Source	Carbon Isotope Ratio	Hydrogen Isotope Ratio
	(‰)	(‰)
Natural Gas (GSI, 2012c)	-23.3	-92
Austin, TX Natural Gas (this study)	-22.2	-84
Houston, TX Natural Gas (this study)	-22.0	-77.5 [-75 to -80]
Other Benzene Sourc	es (mean [range] of measur	ed values)
Gasoline (GSI, 2012c)	-27.7 [-28.9 to -26.6]	-55 [-37 to -82]
Cigarette Smoke (GSI, 2012c)	-32.0	Not determined

Table 14: Isotope Ratios for Benzene in Natural Gas

Finding: Because of the distinct ranges, CSIA may be useful in distinguishing between types of indoor benzene sources.

6.0 PERFORMANCE ASSESSMENT

This section summarizes the data analysis completed to assess the performance objectives described in Section 3 and determine if the success criteria were met.

6.1 OBJECTIVE 1: COLLECTION OF DATA REPRESENTATIVE OF SITE CONDITIONS

6.1.1 Data Quality Review

This performance objective focuses on collection of representative data for isotope analysis. To evaluate whether success criteria were met, we reviewed sampling and custody procedures as well as analytical procedures and results. A data quality review of samples collected for the conventional and on-site analysis protocols is provided in the final report for ER-201119.

6.1.1.1 Sampling Procedures

Groundwater and vapor samples for isotope analysis were collected in accordance with the demonstration plan and associated QAPP (GSI, 2012d). All planned samples were collected. During the field programs covered by this report, the following deviations from planned procedures occurred:

- At Raritan Building CP4, the pump for sample CP4-IA-4 failed during sample collection. A second sample (CP-4-IA-4B) was collected the following day. The first sample was retained for analysis, and evaluated as a duplicate.
- At the Raritan buildings, permanent sub-slab vapor probes had been installed during previous investigations, and have been monitored on a routine basis for the last several years. Rather than installing new, temporary points, GSI collected sub-slab samples from the existing points.
- Groundwater sample collection procedures at the following sites were modified based on site-specific needs. At the Lewis-McChord site, groundwater samples were collected by personnel from Versar, the site contractor. At the Selfridge site, GSI collected the groundwater samples using low-flow/no-purge methods because of limited options to manage investigation-derived waste (IDW). At the Raritan site, GSI collected groundwater samples with bailers because of pump malfunctions.
- Groundwater samples were collected for the CSIA protocol to characterize the isotope signature of the subsurface source. At the Selfridge site, the monitoring well had not been sampled for several years. Therefore, the groundwater sample was split, with one portion submitted for VOC analysis and the other submitted for the isotope analysis.

6.1.1.2 Custody and Sample Handling Procedures

Groundwater samples were collected in VOA vials provided by TestAmerica laboratory in Houston, Texas. Vapor samples were collected in sorbent tubes provided by the University of Oklahoma Geology Department contract laboratory. All samples were shipped on ice under chain of custody control to the University of Oklahoma for analysis. Samples were received by the lab in good condition, with one exception. Several VOA vials collected from the Raritan site groundwater were broken upon receipt by the lab. However, there was sufficient sample volume remaining to complete the requested analyses.

6.1.1.3 Holding Time

68% (42 of 62) of the CSIA analyses were analyzed outside of the two week holding time validated during the laboratory study for this ESTCP project. Therefore, we conducted additional study of the effect of holding time on sample results (see Table D.1.1). This additional analysis served to validate an extended holding time of up to 4 weeks for refrigerated samples (i.e., 4 °C) and up to nine months for samples frozen prior to analysis (see Section 6.1.2). All of the CSIA samples were analyzed within the extended holding times validated as part of this demonstration.

6.1.1.4 Laboratory Precision and Accuracy Assessment

Precision is the degree to which two or more measurements are in agreement as a result of repeated application of a process under specific conditions. Accuracy is the degree of agreement between an observed value (or an average of several values) and an accepted reference value. For CSIA, precision and accuracy is supported by laboratory procedures as follows:

Isotope ratios determined by CSIA are presented in delta (δ) notation (Equation 2). The sample isotope ratios (e.g., $R_{sample} = {}^{13}C/{}^{12}C$) are normalized to an international standard scale (e.g., V-PDB for carbon isotope ratios). Thus, δ units represent the difference between the sample's ratio and the ratio of the international standard, reported in parts per thousand (‰).

$$\delta^{13}C = (R_{sample}/R_{standard} - 1) \times 1000$$

(2)

QA/QC in CSIA is required to control the analytical precision and accuracy of isotope ratio determination. The precision reflects the stability and linearity of the mass spectrometer detector (adversely affected by electronic noise and by fluctuations of water and oxygen present in trace amounts in the mass spectrometer source) and by fluctuations of baseline noise that affect the quality of quantitation of individual isotope peak areas for calculation of isotope ratios. A builtin routine of using internal standard gas for calibration of mass spectrometer output eliminates the problem of uncertain accuracy of the mass spectrometer detector. The overall accuracy can be adversely affected by: i) less than ideal thermal conversion of the analyte to the IRMSamenable surrogate, ii) by the quality of GC peak separation (peak tailing resulting in a portion of analyte mass lost to integration and coelutions resulting in integration of the target peaks together with additional signal added by coeluent), and iii) by isotope species disproportionation by incomplete recovery from sample matrix. The latter applies specifically to environmental samples run by methods involving techniques such as P&T and thermal desorption. Matrix spikes prepared with standards (e.g., TCE, PCE and benzene) of known isotope composition are analyzed under identical conditions as the environmental samples of interest, to determine the analytical bias. GC separation quality poses a separate challenge that cannot be addressed adequately by matrix spikes, because the GC interferents in real samples are usually more abundant and diverse than in a matrix spike. The quality of GC separation has to be assessed by a trained operator, who can identify compromised peaks by examination of peak geometry and the

geometry of isotope ratio output (Figure 5). Minor coelutions are acceptable (and unavoidable). The net analytical uncertainty should account for all these potential problems, including problems caused by minor coelutions and peak integration deficiencies. Stated uncertainty for different isotopes is typically higher than the performance for clean matrix spikes, because it allows for additional factors present in actual samples. Stated uncertainty should be given for specific analytes analyzed by a particular method. The performance for the same isotope for different analytes and for the same analyte and isotope for different analytical methods is not necessarily identical.

Implementation of the QA/QC evaluations described above ensures that the accuracy and precision of the results remain within an acceptable range. The procedures do not support separate quantification of accuracy vs. precision. The accuracy/precision values for the analytes of interest (i.e., benzene, TCE, and PCE) and the methods of interest are: C: ± 0.5 ‰; Cl ± 1 ‰; H: ± 5 ‰.

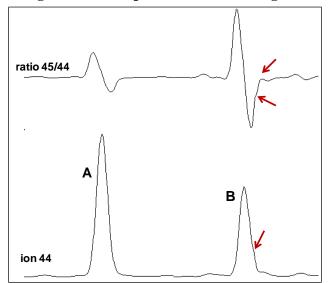


Figure 5: Example CSIA Chromatogram

Figure 5. The lower trace is a chromatogram drawn for mass 44 $({}^{12}C^{16}O_2)$. The upper trace is drawn for the ratio of masses 45/44 $({}^{13}C^{16}O_2/{}^{12}C^{16}O_2)$. The characteristic sinusoid appearance of the ratio trace results from slightly faster travel of ${}^{13}C$ species through the GC column. Compound A is well-resolved, permitting accurate definition of isotope ratio. Compound B overlaps (coelutes) with another unidentified compound, mostly hidden underneath peak B. The coelution can be identified by careful examination of the geometry of the GC peak and the corresponding 45/44 ratio trace (arrows point to asymmetries resulting from such coelution).

6.1.1.5 Field Quality Assurance

Field precision was determined based on the difference in measured isotope ratios between paired normal and duplicate samples. Field accuracy was verified based on an evaluation of trip blanks.

• <u>Field Duplicates</u>: A total of five normal-field duplicate sample pairs were collected over the course of the demonstration. The field precision was evaluated by calculating the difference between the measured isotope ratios between the paired samples. The precision objective was $\pm 1\%$ for δ^{13} C, $\pm 2\%$ for δ^{37} Cl, and $\pm 10\%$ for δ^{2} H.

As indicated on Table D.1.2, the difference between results was less than $\pm 1\%$ for all samples. Note that $\delta^2 H$ was not evaluated in the demonstration dataset.

<u>Trip Blanks</u>: One set of sorbent tubes per demonstration site was transported with the samples and analyzed as a trip blank. Analysis focused on the site-specific VOCs (i.e., TCE for Lewis-McChord, Tyndall, and Raritan, and benzene and TCE for Selfridge). As indicated on Table D.1.3, no TCE was found in the trip blanks for Lewis-McChord and Tyndall, and small amounts were found at Selfridge (0 – 0.2 ng) and Raritan (0.1 – 1.3 ng). Similarly, small amounts of benzene were found at Selfridge (0.4 – 1.4 ng). The target mass for sample collection was 100 ng. The small mass found in the trip blanks would have constituted about 1% of the total, and would, therefore, have had minimal effect on the samples.

6.1.1.6 Completeness Assessment

With the exceptions noted in Sections 6.1.1.1 (Sampling Procedures) and 6.1.1.2 (Custody and Sample Handling Procedures), all necessary analytical samples were collected and analyzed.

6.1.2 Validation of Extended Holding Time

Additional analysis of twelve samples was completed to assess the impact of holding time on sample results. Each sample consisted of four sorbent tubes which were refrigerated (4°C) or frozen (-10°C) during storage prior to analysis. For the Lewis-McChord, Selfridge, and Tyndall demonstrations, the tubes were analyzed at different times ranging from 21 days to 9 months after sample collection (Table 15). The results of re-analysis were within the expected accuracy/precision range for all but two samples. In Lewis-McChord 1-SS-2-CSI, no peaks were observed in the sorbent tubes used for the supplemental analyses. In Selfridge SS-2 Low, the difference between the initial and subsequent results was 1.3 ‰, slightly greater than the typical analytical precision of ± 1 ‰. However, this low concentration sample had only 10-20 ng of benzene (i.e., less than the minimum recommended sample mass of 30 ng), resulting in lower expected laboratory precision.

C I			
Sample	Analysis 1 month	Analysis 3	Analysis 6-9
	after sample	months after	months after
	collection	sample collection	sample collection
δ ¹³ C Τ	CE Result [analytica	l error ±1 ‰]	
Lewis-McChord 1-IA-1-CSI	-25.9	-	-26.2
Lewis-McChord 1-SS-2-CSI	-18.5	no peak	no peak
Lewis-McChord 3-SS-2-CSI	-18.8	-19.5	-18.8
Selfridge Indoor-1	-32.6	-	-31.8
Selfridge SS-2 High	-25.5	-	-24.6
δ^{37} Cl 7	FCE Result [analytica	al error ±2 ‰]	
Tyndall 156-SS-3	6.3	6.3	-
Tyndall 219-IA-3 Pump 1	-3.5	-3.3	-
Tyndall 219-IA-3 Pump 2	-3.15	-3.30	-
δ ¹³ C Be	nzene Result [analytic	cal error ±1 ‰]	
Selfridge Indoor-1	-29.0	-	-28.9
Selfridge SS-1	-29.8	-	-29.8
Selfridge SS-2 1 Hour	-29.4	-	-29.4
Selfridge SS-2 Low	-28.9	-	-30.2

Table 15: CSIA Holding Time Evaluation

Based on the additional analyses completed to assess the impact of different holding times on sample results, holding times longer than the originally-validated 2 week period are acceptable.

Finding: Holding times of up to 4 weeks for samples stored at $4^{\circ}C$ (i.e., refrigerated samples) are acceptable and do not adversely impact results. Samples analyzed after 6 months in a freezer (-10°C) are also not adversely impacted.

6.1.3 Evaluation of Performance Objective 1

Overall, the project data quality objectives were met (Table 16). Data quality exceptions occurred during the CSIA demonstration program as described above (e.g., holding time issues), but had little to no impact on the results.

Table 10. Summary of CSIA Data Quanty Evaluation			
Data Quality Objective	Data Quality Evaluation		
Sample collection and handling procedures	Acceptable		
Holding time	Acceptable [*]		
Laboratory Precision/Accuracy Assessment	Acceptable		
Field Duplicate	Acceptable		
Field Blank Analysis	Acceptable [*]		
Completeness Assessment	Acceptable [*]		
Overall Data Usability	Acceptable		

 Table 16:
 Summary of CSIA Data Quality Evaluation

Note: Acceptable = This DQO was evaluated and found to have met the requirements outlined in the QAPP. Acceptable* = This DQO was found to have deficiencies or exceptions as discussed in the text. However, the data were determined to be usable.

Finding: The data quality for the demonstration program dataset is acceptable and suitable for evaluation of demonstration performance.

6.2 OBJECTIVE 2: VALIDATION OF DRAFT CSIA PROTOCOL TO DISTINGUISH BETWEEN INDOOR SOURCES OF VOCS AND VAPOR INTRUSION

The vapor intrusion classification of each demonstration building was evaluated separately, in accordance with criteria established for each approach (see Sections 5.7.1 - 5.7.3). This section compares the results of the full dataset.

6.2.1 Site-by-Site Analysis of Results: Building VI Classifications

<u>Comparison of Vapor Intrusion Classifications from the Different Investigation Methods</u>: A conventional and two innovative vapor intrusion investigation methods were applied at four demonstration sites. The vapor intrusion classifications were compared to determine method performance. When the classification was the same, the methods were determined to have performed equally. When one method resulted in a more definitive classification than another (e.g., supporting evidence vs. results not definitive), that method was determined to have performed better. The results for each of the four buildings are discussed below and summarized in Table 17.

Building	Conventional Approach	CSIA Protocol	On-Site Analysis Protocol	Overall Result	
Lewis- McChord 9669	Supporting evidence of current VI (below reg. level)	Supporting evidence of current VI	Evidence of current VI (below reg. level)	Results generally consistent between three methods. Results from on-site protocol were most definitive.	
Selfridge 1533	Inconclusive	Supporting Evidence of No Current VI	No evidence of current/potential VI	Results generally consistent between CSIA and on-site methods. Results from on-site and CSIA protocols were more definitive than the conventional approach.	
Tyndall 219 (Planted Indoor Source)	n/a	Strong Evidence of Indoor Source (not VI)	Evidence of Indoor Source	CSIA correctly identified the planted indoor source and the source of TCE in indoor air.	
Raritan CP4	Supporting evidence of current VI (below reg. level)	Strong evidence of indoor source	Supporting evidence of current VI (below reg. level)	CSIA protocol performed best. On- site protocol and conventional approach both provided incorrect results.	

 Table 17: VI Classification based on Investigation Method

Demonstration Buildings:

• <u>Lewis-McChord 9669</u>: The conventional results were generally indicative of current vapor intrusion. However, TCE was the only subsurface COC consistently detected in indoor air limiting the ability to evaluate the constituent ratio line of evidence. Building 9669 is a supply distribution warehouse that contains a large variety (over 100) of VOC-containing products. As a result, using the conventional results alone, it would be

difficult to conclude with a high degree of confidence that no indoor sources of TCE were present. The on-site analysis protocol (both the baseline sampling and the pressure control) yielded results inconsistent with an indoor source of TCE. These results provided a higher degree of confidence that the TCE detected in indoor air originated in the subsurface. The CSIA protocol also provided supporting evidence of a subsurface source.

- <u>Selfridge 1533</u>: The conventional results were generally indicative of no vapor intrusion because the maximum benzene concentration in the sub-slab was less than 10x the concentration in indoor air and there were obvious non-removable sources in the building (i.e., automobiles being repaired). However, the benzene concentration in indoor air (14 $\mu g/m^3$) was almost 10x greater than the risk-based screening value and the maximum benzene concentration in the sub-slab (58 $\mu g/m^3$) was greater than the concentration in indoor air. As a result, a regulator may have required additional evaluation of whether vapor intrusion was contributing to the benzene detected in indoor air. The results from the on-site protocol provided greater confidence that indoor sources were the predominate sources of benzene in indoor air because i) the on-site analysis documented the temporally variable impact of the indoor sources on benzene concentration in indoor air and ii) the building pressure control results were consistent with an indoor source of benzene. The CSIA protocol provided supporting evidence of NO current vapor intrusion, consistent with the on-site protocol.
- <u>Tyndall 219</u>: The standard CSIA protocol was not applicable in this building because of the low TCE concentrations. Therefore, this building was used to test whether the isotope analysis could correctly identify a known, planted indoor source. An unopened cardboard box containing an unopened 16 oz. aerosol can of Sprayway C-60 Solvent Cleaner and Degreaser was placed in a closet. A sorbent tube sample and duplicate were immediately set up and left to collect overnight. The next morning, several indoor air samples were collected for on-site GC/MS analysis using the HAPSITE SMART. The HAPSITE SMART showed a slight concentration gradient towards the closet where the source was hidden (Figure 6, left panel). The isotope result for indoor air was distinct from the groundwater result, and was in the range of isotopic signatures associated with indoor sources (Figure 6, right panel). Therefore, the CSIA protocol correctly identified the source of TCE in indoor air as an indoor source.

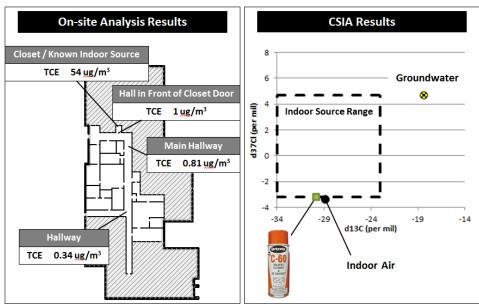


Figure 6: Building with Planted Indoor TCE Source

According to the product MSDS, the ingredients included TCE (>90%) and carbon dioxide (3-5%). The isotopic signatures of this product from the original laboratory testing and indoor air testing during the demonstration were similar although the sampling was done more than a year apart (Table 18).

 Table 18: Isotope Ratios for TCE in Planted Source

Material Tested	δ ¹³ C (‰)	δ^{37} Cl (‰)
Sprayway C-60 (McHugh, et al., 2011)	-29.8	-3.2
Air inside closet with planted Sprayway C- 60 can (this study)	-28.8 to -29	-3.5 to -3.2

Raritan CP4: The conventional results provided supporting evidence of vapor intrusion because the maximum TCE concentration in the sub-slab was more than 10x the TCE concentration in indoor air. The on-site analysis protocol results also provided supporting evidence of vapor intrusion because TCE was detected in indoor air, no indoor sources of TCE were found, two floor cracks were identified as vapor entry points, and the TCE concentrations measured in the wall gap of one room was higher than the highest TCE concentration measured in indoor air. Elevated COC concentrations in wall gaps are consistent with vapor intrusion because wall gaps can be connected to vapor entry points and have lower air exchange rates than building interior spaces. The on-site analysis protocol results were not considered definitive for two reasons. First, the two floor crack entry points appeared to be minor; no strong entry points were identified. Second, the wall gap appeared to represent a limited reservoir of TCE. TCE concentrations within the wall gap decreased after collection of a 6-L summa sample. In addition, several other wall gaps tested did not show elevated concentrations of TCE.

Based on the CSIA results, both the conventional and the on-site analysis protocol results appear to have provided an incorrect indication of vapor intrusion as the source of the TCE in indoor air.

Further support of the CSIA results comes from passive sorbent samplers provided by Geosyntec Consultants. At the end of the demonstration, GSI deployed six passive samplers at the CP4-IA-4 location. Geosyntec retrieved the samplers three weeks later. The samplers were split, with three submitted to the University of Oklahoma and three submitted to the University of Waterloo for analysis. The results from the active and passive sampling were consistent (Table 19). These preliminary results suggest that, with additional validation, passive sorbent samples may serve as an alternative sample collection device for CSIA for indoor air.

Sampling Method:	Active Sampling (this study)	Passive Sampling		
Laboratory:	Univ. of Oklahoma	Univ. of Oklahoma	Univ. of Waterloo	
δ ¹³ C (‰)	-30.7	-31.1	-29.2	
δ^{37} Cl (‰)	-0.2	Note 2	0.7	

 Table 19: Results from Active vs. Passive Sampling

Notes: 1) Average result shown; 2) Insufficient TCE mass for analysis of δ^{37} Cl.

The CSIA results for Raritan CP4 provided strong evidence of an indoor source because the TCE in groundwater was enriched in both ¹³C and ³⁷Cl, consistent with the kinetic isotope effect of biodegradation, while the TCE in indoor air had lower levels of ¹³C and ³⁷Cl, consistent untransformed TCE. Although no indoor source of TCE was identified during the site visit, the building manager reported that the building's cleaning service had used a TCE-based spot remover in the past. Although she had requested that they not use chlorinated solvents in the building, she indicated that it was possible that they were still using them during some cleaning events.

Although the combined results from the conventional and on-site analysis investigations of Raritan CP4 did not support definitive source identification, the most likely explanation is the recent use of a TCE-containing spot remover. Based on the on-site analysis results, the highest TCE concentrations were found within a cluster of conference rooms that were the only carpeted spaces within the building. TCE concentrations within this cluster of rooms decreased from approximately $6 \mu g/m^3$ on the first day of the demonstration to approximately $2 \mu g/m^3$ on the fourth day. Although there is some uncertainty because a specific indoor source was not identified, the elevated concentration of TCE in the wall gap would be consistent with recent use of TCE in the building because elevated TCE concentrations would persist longer in the wall gap than in the more ventilated room space.

6.2.2 Evaluation of Subsurface Sample Locations

Groundwater vs. Sub-Slab Soil Gas

The draft CSIA protocol included several options for collecting samples to characterize the subsurface source (e.g., groundwater, soil gas, sub-slab soil gas). During the demonstration, we collected paired groundwater and sub-slab soil gas samples for TCE δ^{13} C and δ^{37} Cl analysis at five buildings (Lewis-McChord 9669, Tyndall 156, Tyndall 219, Raritan CP4, and Raritan 209). As shown in Figure 7, the sub-slab results are distinct from the groundwater results, and are outside of the indoor source range. The sub-slab samples showed a shift towards the "heavier" ratios relative to groundwater for all pairs except Tyndall Building 156. For Tyndall 219, Raritan CP4, and Raritan 209, the shift was primarily in the carbon ratios.

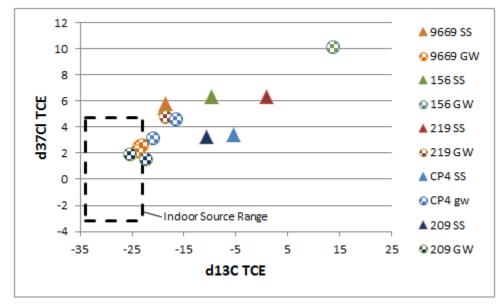
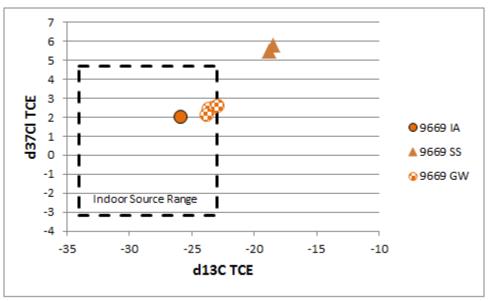
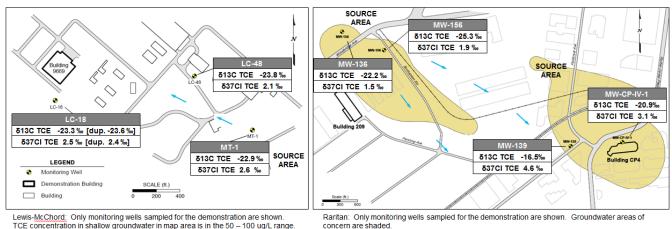


Figure 7: Comparison of Paired Groundwater and Sub-Slab TCE Isotope Ratios

The groundwater, sub-slab, and indoor air isotope results for Lewis-McChord Building 9669 are shown in Figure 8. The indoor air results are similar to groundwater, suggesting a subsurface source of TCE in indoor air. This is consistent with the interpretation from the conventional and on-site analysis investigation methods. Because of the shift between the groundwater and sub-slab samples, comparing the sub-slab and indoor results would have resulted in an interpretation of evidence of an indoor source. The isotopic shift between the groundwater and sub-slab results may be due to degradation in the subsurface or other, unknown factors. For use in this CSIA protocol, groundwater provides the best characterization of the subsurface source. Validation of soil gas sampling using this protocol would require additional research.




Figure 8: Lewis-McChord Building 9669 CSIA Results

Finding: Comparisons of groundwater and indoor air results provided the clearest, most conservative interpretations that were also most consistent with the weight of evidence regarding vapor intrusion.

Location of Groundwater Monitoring Wells

As discussed above, results from groundwater samples appeared to be most useful for characterizing the subsurface source. Three demonstration buildings, Lewis-McChord 9669, Raritan CP4 and Raritan 209, provided the opportunity to evaluate the variability within the groundwater source (Figure 9). At these buildings, more than one shallow zone monitoring well was available for sampling during the demonstration. At Lewis-McChord (Figure 9, left panel), results from different locations in the plume were within $\pm 1\%$ for δ^{13} C and δ^{37} Cl, which is on the order of analytical variability. At Raritan (Figure 9, right panel), the differences between plume locations were up to about 4‰. The CSIA protocol was only applicable at Building CP4 in which TCE was found indoor air. The isotope variability observed between monitoring wells made no material difference because, at this building, the indoor air isotope signature was well within the indoor source range and distinct from the groundwater range. Thus, at both of the sites where isotope ratios were measured in samples from multiple wells, the overall interpretation of the results would have been the same using the results from any one of the individual wells.

Finding: Sampling locations near, and upgradient of, the buildings of interest best characterize the subsurface source. The demonstration results suggest that a sample from one monitoring well located close to the building of interest will often be sufficient to characterize the isotope ratio of the subsurface source. However, sampling two or more wells may increase the confidence in the results.

Figure 9: Isotope Variability in Groundwater

6.2.3 Evaluation of Performance Objective 2

The field demonstration has resulted in validation of the CSIA protocol (provided that groundwater samples are used to characterize the subsurface source). For three of four (Lewis-McChord 9669, Selfridge 1533, Tyndall 219) buildings where the CSIA protocol was applied, the source identification provided by the isotope results (i.e., vapor intrusion vs. indoor source) was consistent with the overall determination of the source based on the evaluation of all available information. For one building (Raritan CP4), the VI classification from the CSIA protocol was different from the preliminary classification based on the other two investigation methods (Table 17). However, based on the evaluation of all available information from all three investigation methods combined, the CSIA protocol performed the best. Additionally:

- The CSIA protocol correctly identified the planted source in Tyndall Building 219.
- The CSIA protocol provided a strong evidence of indoor sources in Raritan Building CP4, where the other two investigation methods yielded more tentative and opposite results ("supporting evidence of VI").

These results demonstrate that CSIA is a useful supplement to conventional vapor intrusion investigations for sites where the source (vapor intrusion vs. indoor source) of the primary COC in indoor air is not clear.

Findings from the demonstration were used to refine the draft protocol. Specific recommendations are provided in Section 6.4.3. The revised protocol is provided in Appendix E.

6.3 OBJECTIVE 3: VALIDATION OF DRAFT PROTOCOL FOR IDENTIFICATION OF BOTH INDOOR AND SUBSURFACE SOURCES

6.3.1 Identification of both Indoor and Subsurface Sources

The draft protocol was applied at three buildings with indoor sources (Selfridge 1533, Tyndall 219 [planted indoor source], and Raritan CP4) and one building with subsurface sources of

VOCs (Lewis-McChord 9669). During the course of the demonstration, we were not able to identify a building where indoor air was being impacted by a target VOC originating from both vapor intrusion and an indoor source. Therefore, the resulting demonstration dataset did not allow direct evaluation of the utility of CSIA in buildings with both indoor and subsurface sources. However, based on the well-established theoretical understanding of the impact of mixed sources on isotope ratios, it is clear that the protocol could yield misleading results in some buildings with mixed sources.

To evaluate the impact of mixed sources on the isotope ratios of indoor air samples, we calculated expected isotope ratios in indoor air impacted by both the potential subsurface source at Tyndall Building 219 (as characterized by the groundwater sample from MW-20s) and the planted indoor source at Tyndall Building 219. That is, assuming that the total indoor air TCE concentration is 1 μ g/m³ (0.2 ppb), we calculated indoor air isotope ratios assuming concentrations of i) 95% of the chemical from groundwater and 5% from the indoor source (Case 1); ii) 75% of the chemical from groundwater and 25% from the indoor source (Case 2); iii) 50% from groundwater and 50% from the indoor source (Case 3), and iv) 25% from groundwater and 75% from the indoor source (Case 4). Results are shown in Figure 10 below.

For Case 1, the CSIA protocol would correctly indicate that the subsurface source is the only significant source of TCE in indoor air (i.e., Scenario B in Figure 4). For Case 2, the CSIA protocol would correctly identify mixed subsurface and indoor sources (i.e., Scenario C in Figure 4). For Cases 3 and 4, the CSIA protocol would identify the indoor source as the "primary source" of TCE in indoor air (i.e., Scenario A in Figure 4), however, the protocol would not provide any indication of the contribution from the subsurface source because the results would be consistent with 100% contribution from an indoor source. Thus, it is clear that in some cases, the CSIA protocol cannot distinguish between mixed sources and 100% indoor sources. This limitation is addressed in the revised protocol.

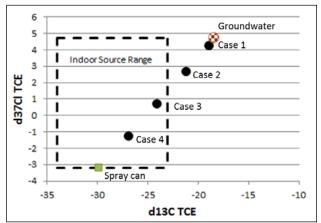


Figure 10: Isotope Ratios for Indoor Air with Mixed VOC Sources

Notes: 1) Starting concentration of $1 \mu g/m^3$ based on measurement in Building 219 hallway; 2) Indoor source isotope ratios (green square) from the planted source at Building 219; 3) Groundwater ratios from MW-20s, adjacent to Building 219.

6.3.2 Evaluation of Performance Objective 3

Based on the demonstration results and a theoretical mixing evaluation, the protocol is likely to be reliable for identifying the primary source of a VOC in indoor air at buildings with contributions from both vapor intrusion and indoor sources. For buildings where the indoor source is the primary source, the potential for vapor intrusion to be a secondary contributing source could be evaluated by finding and removing the indoor source and retesting the building.

6.4 OBJECTIVE 4: IMPLEMENTABILITY AND COST EFFECTIVENESS OF THE PROTOCOL

6.4.1 Demonstration Findings

This objective was evaluated by reviewing the experience gained during the demonstration. The protocol is applicable to buildings which have VOCs in indoor air, as determined by some other investigation method (e.g., historic site data). The protocol is a step-by-step procedure that can be implemented by a typical environmental professional with a few years of general experience and prior experience in sample collection using USEPA Method TO-17. Equipment for sampling is commonly available for rent or purchase (e.g., groundwater sampling equipment, air sampling pumps).

Based on experience gained during the demonstration:

- Communication with the analytical laboratory is important. For example, for sites with low target VOC concentrations, the laboratory can help confirm sampling parameters (e.g., sample collection period). Additionally, for petroleum sites, it may be difficult to obtain clean peaks from the analytical method because of potential high concentrations and interfering compounds.
- At petroleum sites, it may only be practical to analyze for carbon isotope ratios. For hydrogen, collecting enough sample mass may require extended sampling times. Problems with saturating the sorbents may also be encountered.

6.4.2 Evaluation of Performance Objective 4

Based on the results of the investigation, the CSIA protocol is implementable as a separate line of evidence to distinguish between indoor and subsurface sources of VOCs in indoor air. The protocol is cost effective; a detailed cost analysis is presented in Section 7.

The protocol is not a standalone investigation technique. Pre-existing data must indicate that target VOCs are present in indoor air prior to making the decision to use the CSIA protocol for the purpose of source identification.

6.4.3 Modifications to the CSIA Protocol

Based on the experience gained during the demonstration, we recommend the following modifications to the protocol. These recommendations have been incorporated into the protocol instructions provided in Appendix E.

- Extended holding time: As discussed in Section 6.1.2, additional analyses were completed to evaluate the effect of extended holding time on sample results. Based on these analyses, refrigerated tubes can be stored for at least 4 weeks prior to analysis. It is recommended that tubes be frozen for holding time longer than 4 weeks. No isotope fractionation was observed in tubes kept in a freezer for more than 6 months prior to analysis.
- Use of groundwater samples to characterize the subsurface source: Based on experience gained during the demonstration, groundwater samples are not only easier to collect, they are more useful for data interpretation, as compared to soil gas samples.
- Mixed Sources: In cases where the protocol identifies an indoor source as the primary source, additional evaluation may be required in some cases to confirm that vapor intrusion is not a secondary source.

7.0 COST ASSESSMENT

The cost of implementing the field demonstration programs was tracked and used to estimate the expected cost of implementing the CSIA protocol. The following sections summarize the cost for the field demonstrations included in this ESTCP project. It is important to note that the field demonstrations included additional tasks and associated costs in order to validate the protocol, including implementation of a conventional and on-site analysis investigation concurrent with the CSIA investigation. These costs would not be incurred during standard application of the procedure. Therefore, Section 7.1 describes the cost model associated with the demonstration, while Section 7.2 and 7.3 focus on cost considerations for routine application of the procedure.

7.1 COST MODEL

The demonstration included three different site characterization methods, each implemented at four DoD sites. Key cost elements included i) project planning and preparation, ii) field implementation, and iii) data evaluation and reporting (Table 20).

Cost Element	Data to be Tracked	Examples
1. Project planning	Labor hours	Senior Project Scientist/Engineer,
and preparation		Project Scientist / Engineer
	Supplies (On-Site Analysis	Calibration gas, Tedlar bags
	Protocol only)	
2. Field program	Labor hours	Senior Project Scientist/Engineer,
		Project Scientist / Engineer
	Conventional Program	
	Equipment Rental, Supplies	Hammer drill rental for sub-slab
		point installation, helium and
		helium meter rental
	Sample Analysis	Off-site laboratory analysis of
		air/vapor samples (TO-15)
	CSIA Protocol	
	Equipment	Pumps, consumables
	Rental/Purchase, Supplies	
	Sample Analysis	Off-site laboratory analysis of
		water and vapor samples
	On-Site Analysis Protocol	
	Equipment Rental, Supplies	HAPSITE rental, operating costs,
		consumables, fan rental for
		building pressure manipulation
	Sample Analysis	Off-site laboratory analysis of
		confirmation samples (TO-15,
		radon)
3. Data evaluation and	Labor hours	Senior Project Scientist/Engineer,
reporting		Project Scientist / Engineer

 Table 20:
 Cost Model for the Field Demonstration

Note: Cost model does not include travel or shipping costs.

7.1.1 Cost Element: Project Planning and Preparation

Project planning included identifying target VOCs for CSIA analysis, estimating VOC concentrations needed to order the correct sample media (Summa canisters vs. sorbent tubes), and obtaining site access.

Labor requirements made up the primary cost in this element (see Table 21). For the demonstration, the time required for project planning varied widely, and depended primarily upon site-specific circumstances such as i) the number of meetings and presentations needed to obtain permission to access sites and buildings, and ii) volume of historic data reviewed to determine the specific buildings for investigation. Field preparation (e.g., calibrating and testing the HAPSITE portable GC/MS, calibrating air sampling pumps) could typically be completed the day before on-site work began.

 Table 21: Typical Consultant Labor Requirements for Project Planning

Cost Element	Sub Category	Representative Amount			
	Project Planning (pre-field event)				
	Labor hours: Senior Project Scientist/Engineer	10-15 hours per site			
Project Planning and	Labor hours: Project Scientist/Engineer	25-35 hours per site			
Preparation	Preparation (on location, prior to building investigation)				
	Labor hours: Senior Project Scientist/Engineer	2-4 hours per site			
	Labor hours: Project Scientist/Engineer	4-8 hours per site			

Note: Labor hours do not include time required for general tasks (shipping, travel, etc.).

7.1.2 Cost Element: CSIA Field Program

Costs for the CSIA field program included labor and costs for equipment, supplies, and laboratory analysis. Representative unit costs are summarized in Table 22.

Cost Element	Sub Category	Representative Unit Cost	Representative Unit		
	Labor hours: Senior Project Scientist/Engineer	2-4	Hours per building		
	Labor hours: Project Scientist/Engineer	2-4	Hours per building		
CSIA Field Program	Equipment Purchase or Rental (e.g., air sampling pumps, sorbent tube holders; pumps/supplies for groundwater sampling)	\$125 ¹	Dollars per day		
	Sample Analysis	\$350-400	Dollars per single isotope per sample		

 Table 22: Representative Unit Costs for CSIA Demonstration

Note: 1) GSI owns air sampling equipment used for the demonstration. However, sampling equipment is available for rental (e.g., TO-17 kits). 2) General costs such as travel and shipping are not included.

Although a number of commercial laboratories provide isotope analysis for water or air samples, to our knowledge, the University of Oklahoma service laboratory is the only laboratory that can measure compound-specific isotope ratios of VOCs on adsorbent tube samples. Analytical costs are summarized in Table 23.

Analyte	Carbon	Carbon Chlorine		
Adsorbent Tube Sampl	es			
PCE/TCE	\$400/sample	\$400/sample	\$350/sample (TCE)	
Benzene	\$350/sample	N/A	\$350/sample	
Water Samples				
PCE/TCE	\$350/sample	\$400/sample	\$350/sample (TCE)	
Benzene	\$350/sample	N/A	\$350/sample	

 Table 23: Analytical Costs for CSIA

Note: Laboratory requires estimated mass or concentration of target analyte in sample. An additional fee may apply if this information is not provided.

As indicated in Table 23, per-sample costs are based on the sample matrix and the isotopes desired. For example, if TCE is the key COC in a groundwater sample, analyses may be done for carbon and/or chlorine isotope ratios. If both are needed, then the analytical cost would be \$750 for that sample. If only chlorine is needed, then the analytical cost would be \$400.

7.1.3 Cost Element: Data Evaluation and Reporting

Following completion of the field program, the results were reviewed and organized into a report to document the findings and conclusions. Key elements included CSIA data review and validation, documentation of the results, and review and documentation of the overall findings from the three investigations methods included in the demonstration.

The primary cost for this element is for labor. Typical time required for data review and reporting is summarized in Table 24, and varied based on the number of samples collected.

Cost Element	Sub Category	Representative Amount
Data Evaluation and	Labor hours: Senior Project Scientist/Engineer	2-4 hours per building
Reporting	Labor hours: Project Scientist/Engineer	8-12 hours per building

Table 24: Typical Labor Requirements for Data Evaluation and Reporting

7.2 COST DRIVERS

The CSIA protocol does not require collection of a large number of samples or a time-intensive field effort. Therefore, the cost for implementation of the CSIA protocol is not expected to vary significantly based on specific site characteristics. Instead, key costs drivers relate to mobilization and the number of buildings to be evaluated at the site.

7.3 COST ANALYSIS

Routine implementation of the CSIA protocol will cost less than implementation during the field demonstration because of the additional tasks needed to validate the protocol.

The CSIA protocol is not used as a standalone investigation method. The protocol is appropriate when previously collected data indicate that the concentration of target VOCs in indoor air are near or above risk-based (i.e., regulatory) screening levels and the source (i.e., vapor intrusion vs. indoor source) has not been determined. Application of the CSIA protocol is not likely to directly substitute for conventional sampling; rather, it will primarily be considered at sites where conventional sampling has failed to yield definitive source identification.

7.3.1 Cost Scenarios for the Three Investigation Approaches

Source identification methods include i) conventional methods (intensive manual search and source removal), ii) the on-site GC/MS analysis protocol (ER-201119), and iii) the CSIA protocol.

Conventional Source Identification

Conventional methods include completing a building questionnaire, visual product inventory, and removal. The level of effort for indoor source removal can be significant depending on the amount of materials stored. Additionally, removals may not be feasible in some buildings because they would disrupt critical operations (e.g., Selfridge Building 1533 vehicle maintenance) or because of large volumes of potential sources (e.g., 20,000 sq. ft. Lewis-McChord Building 9669 [warehouse], containing 3-story shelving units).

Estimated costs and assumptions for a conventional source removal program are summarized in Table 25. Because the focus is source removal, this scenario does not include sub-slab or ambient air sampling common in conventional programs. It does include collection of indoor air samples before and after the removal to determine the effectiveness of the removal effort. It also includes an "emission chamber" sample (i.e., isolation of products in a closed container and collection of an air sample of emissions from the products) to evaluate whether the products are significant VOC sources. The time required for a source removal can be significant. A total time of eight hours is assumed because of practical limitations commonly imposed by access agreements.

Cost Element	Category				Unit Cost	Unit	Cost	TOTALS
1. Project		Senior Project						
planning	Labor	Scientist/Engineer	1	hours	\$150	\$/hr	\$150	\$450
		Project Scientist /						
and preparation	Labor	Engineer	3	hours	\$100	\$/hr	\$300	
		Senior Project						
2. Conventional	Labor	Scientist/Engineer	8	hours	\$150	\$/hr	\$1,200	\$2,720
		Project Scientist /						
field program	Labor	Engineer	8	hours	\$100	\$/hr	\$800	
		Sub-slab point						
	Equipment	installation, leak tracer						
	Rental,	gas (e.g., helium),						
	Supplies	helium meter	0	buildings	\$500	\$/bldg.	\$0	
		VOCs (1 indoor air				\$/spl		
	Off-site	before removal, 1 after				(incl.		
	Sample	removal, 1 emission				Summa		
	Analysis	chamber)	3	samples	\$240	rental)	\$720	
3. Data								
evaluation and		Senior Project			\$150	• •	** **	.
reporting	Labor	Scientist/Engineer	2	hours	\$150	\$/hr	\$300	\$1,100
		Project Scientist /			¢100	ф.я.	#000	
	Labor	Engineer	8	hours	\$100	\$/hr	\$800	
						Proje	ect Total:	\$4,270

Table 25: Estimated Cost of Conventional Source Removal for One Building

Note: Estimates do not include shipping, travel, or QA samples (field duplicates). Costs assume implementation in conjunction with a larger sampling program.

On-Site GC/MS Analysis Protocol for Source Identification

This innovative protocol (ER-201119) is designed to distinguish between vapor intrusion and indoor sources of VOCs. The on-site analysis allows collection of a large volume of data in a short period of time. Assuming the same building as in the conventional scenario, the on-site analysis protocol is expected to take less time because the source identification and removal is more efficient (i.e., method allows more selective removals). However, the protocol requires more equipment than a conventional program. Estimated costs (Table 26) assume a limited investigation that is focused on locating current indoor VOC sources. The costs assume that this focused investigation is part of a larger on-site analysis program, so time for equipment QA is not included.

Cost Element	Category				Unit Cost	Unit	Cost	TOTALS
1. Project planning								
and preparation	Labor	Senior Project Scientist/Engineer	1	hours	\$150	\$/hr	\$150	\$450
	Labor	Project Scientist / Engineer	3	hours	\$100	\$/hr	\$300	
2. On-site analysis field program	Labor	Senior Project Scientist/Engineer	4	hours	\$150	\$/hr	\$600	\$2,295
	Labor	Project Scientist / Engineer	4	hours	\$100	\$/hr	\$400	
	Equipment Rental	HAPSITE, Floor fan, differential pressure recorder	1	days	\$575	\$/day	\$575	
	Off-site Sample Analysis	VOCs (3 samples x 1 building)	3	samples	\$240	\$/spl (incl. Summa rental)	\$720	
3. Data evaluation and reporting	Labor	Senior Project Scientist/Engineer	2	hours	\$150	\$/hr	\$300	\$1,100
	Labor	Project Scientist / Engineer	8	hours	\$100	\$/hr	\$800	
Notor Entire-to	a do not insta-	shipping travel or OA same	alas /f	iald dualia-t) Costs -		ject Total:	\$3,845

Table 26:	Estimated	Cost of Focus	ed On-Site	GC/MS A	alvsis Prote	ocol for One B	uilding

Note: Estimates do not include shipping, travel, or QA samples (field duplicates). Costs assume implementation in conjunction with a larger sampling program.

CSIA Protocol for Source Identification

The CSIA protocol is most efficiently implemented as a part of a larger vapor intrusion investigation program. The level of effort in the field is minimal compared to the other methods. A source removal, per se, is not needed to determine the primary sources of VOCs in indoor air. Sample analysis is more expensive, but fewer samples are needed (Table 27).

Cost Element	Category				Unit Cost	Unit	Cost	TOTALS
1. Project planning and		Senior Project						
preparation	Labor	Scientist/Engineer	1	hours	\$150	\$/hr	\$150	\$350
	Labor	Project Scientist / Engineer	2	hours	\$100	\$/hr	\$200	
2. On-site analysis field program	Labor	Senior Project Scientist/Engineer	2	hours	\$150	\$/hr	\$300	\$2,200
	Labor	Project Scientist / Engineer	2	hours	\$100	\$/hr	\$200	
	Equipment Rental	Pumps, misc supplies	1	days	\$100	\$/day	\$100	
	Off-site Sample Analysis	VOCs (2 samples)	2	samples	\$800	\$/spl	\$1,600	
3. Data evaluation and		Senior Project						
reporting	Labor	Scientist/Engineer	2	hours	\$150	\$/hr	\$300	\$700
	Labor	Project Scientist / Engineer	4	hours	\$100	\$/hr	\$400	
	Project Total:							\$3,250

Table 27: Estimated Cost of CSIA Protocol for One Building

Note: Estimates do not include shipping, travel, or QA samples (field duplicates). Costs assume implementation in conjunction with a larger sampling program.

7.3.2 Cost Comparison

In the scenarios described in Section 7.3.1 above, implementation of the CSIA protocol is the least expensive on a per-building basis (Table 28).

Investigation Method	Cost for One Building
Conventional Source ID and Removal	\$4,270
On-Site GC/MS Analysis Protocol	\$3,845
CSIA Protocol	\$3,250

Table 28: Cost Comparison

8.0 IMPLEMENTATION ISSUES

This project has resulted in development of a new tool to distinguish vapor intrusion from indoor sources of VOCs, one of the major problems with current investigation techniques. Advantages of the CSIA protocol include:

- <u>Less intrusive</u> than an intensive (manual) source removal; and
- <u>Less training</u> needed to implement the CSIA protocol, as compared to the on-site GC/MS protocol.

Limitations to the use of the CSIA protocol include:

- <u>Experience with TO-17 sample collection methods</u>. Sample collection using adsorbent tubes and pumps is slightly more complicated than sample collection using Summa canisters. This limitation can be mitigated by identifying a sampling team with prior experience in sampling using USEPA Method TO-17.
- <u>Potential for inconclusive results</u>. If the isotope composition of subsurface VOCs is within the range commonly observed for VOCs in consumer products, there is more uncertainty in data interpretation. Because of this limitation, the investigation protocol recommends characterization of the subsurface source either prior to collection of indoor air samples or in conjunction with sampling at the first one or two buildings included in a site investigation. The investigation method should be applied as part of a larger indoor air sampling program only when the subsurface source has been found to be distinct from most potential indoor sources.
- <u>Issues with hydrocarbon sites</u>. At petroleum hydrocarbon sites, it may not be practical to analyze for hydrogen isotopes because the large sample mass required may result in an overly long sample collection period. Other potential issues include saturation of the sorbent tubes and matrix interference complicating the laboratory analysis.

9.0 REFERENCES

3E Consultants, 2011. Supplemental Site Assessment Report, Tyndall Air Force Base, Florida.

AMEC, 2010. Final Site Investigation/Corrective Action Plan Building 1533, 127th Wing Michigan Air National Guard, Selfridge Air National Guard Base, Mt. Clemens, MI.

Dawson, H. E., and T. McAlary, 2009. A compilation of statistics for VOCs from post-1990 indoor air concentration studies in North American residences unaffected by subsurface vapor intrusion. *Ground Water Monitoring and Remediation* 29(1): 60-69.

Doucette, W. J., A. J. Hall, and K. A. Gorder, 2009. Emissions of 1,2-dichloroethane from holiday decorations as a source of indoor air contamination. *Ground Water Monitoring & Remediation* 30 (1): 67-73.

Envirosphere, 1988. Fort Lewis Logistics Center Remedial Investigation/Feasibility Study.

GSI Environmental, 2012a, Protocol for Site Investigations, ER-201119, Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs (McHugh, Beckley, Gorder, Dettenmaier, Rivera-Duarte, Version 2, May 2012).

GSI Environmental, 2012b, Demonstration Plan, ER-201119, Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs (McHugh, Beckley, Gorder, Dettenmaier, Rivera-Duarte, Version 2, May 2012).

GSI Environmental, 2012c, ER-201025 Task 2 Report: Characterization of Sources and Investigation Protocol, Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs (McHugh, Kuder, Philp, Version 2, May 2012).

GSI Environmental, 2012d, ER-201025 Demonstration Plan, Use of Compound-Specific Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs (McHugh, Kuder, Philp, Version 2, June 2012).

GSI Environmental, 2013, ER-201119 Final Report (McHugh, Beckley, Gorder, Dettenmaier, Rivera-Duarte, Version 1, June 2013).

Klisch, M., T. Kuder, R.P. Philp, T.E. McHugh, 2012. Validation of Adsorbents for Sample Preconcentration in Compound-Specific Isotope Analysis of Common Vapor Intrusion Pollutants, Journal of Chromatography, 2012 Dec 28;1270:20-27.

Kuder, T., Klisch, M., Philp, R.P., and McHugh, T., 2012, Laboratory Study Report, Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs, ESTCP Project ER-201025, Version 2, 24 January 2012.

Kurtz, J.P., E.M. Wolfe, A.K. Woodland, and S. J. Foster, 2010. Evidence for increasing indoor sources of 1,2-dichloroethane since 2004 at two Colorado residential vapor intrusion sites. *Ground Water Monitoring & Remediation* 30(3):107-112.

McHugh T.E., D.E. Hammond, T. Nickels, and B. Hartman, 2008, Use of Radon Measurements for Evaluation of VOC Vapor Intrusion. Environmental Forensics, Vol. 9 No. 1, March 2008.

McHugh T. E., T. Kuder, S. Fiorenza, K. Gorder, E. Dettenmaier, and P. Philp, 2011. Application of CSIA to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs. Environmental Science and Technology, July 15, 2011, 45 (14): 5952-5958.

Sakaguchi-Soder, K., J. Jager, H. Grund, F. Matthaus, and C. Schuth, 2007. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. *Rapid Commun. Mass Spectrom.*, 21, 3077-3084.

Sessions, A. L., 2006. Isotope-ratio detection for gas chromatography. J. Sep. Sci. 2006, 29, 1946-1961.

Sherwood Lollar, B., G. F. Slater, J. Ahad, B. Sleep, J. Spivack, M. Brennan, and P. MacKenzie, 1999. Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: Implications for intrinsic bioremediation. *Organic Geochem.* 1999, 30, 813-820.

USEPA, 1999a. Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). EPA/625/R-96/010b. January, 1999.

USEPA, 1999b. Compendium Method TO-17, Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Active Sampling Onto Sorbent Tubes. EPA/625/R-96/010b. January, 1999.

USEPA, 2002. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). 2002. Available at http://www.epa.gov/epaoswer/hazwaste/ca/eis/vapor.htm.

USEPA, 2008. A Guide for Assessing Biodegradation and Source Identification of Organic Groundwater Contaminants using Compound Specific Isotope Analysis (CSIA), Office of Research and Development, EPA 600/R-08.148. December, 2008.

USEPA, 2011, Background Indoor Air Concentrations of Volatile Organic Compounds in North American Residences (1990-2009), U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response, EPA 530-R-10-001, June 2011.

USEPA, 2013, Regional Screening Table (May 2013), Available at http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm. Accessed 6/22/2013.

Weston Solutions, 2012, Indoor Air Quality Report #8, Former Raritan Arsenal, Edison, New Jersey. Preliminary Draft.

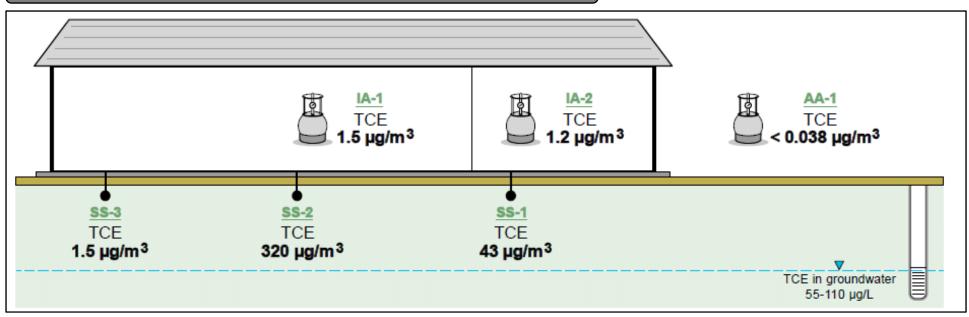
Weston Solutions, 2013, Groundwater AOC 2 and 8A/B Progress Report for the Former Raritan Arsenal, Edison, New Jersey. Preliminary Draft.

Appendix A: Points of Contact

Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs

POINT OF CONTACT Name	ORGANIZATION Name Address	Phone Fax E-mail	Role in Project
Tom McHugh	GSI Environmental Inc. 2211 Norfolk Street Ste 1000 Houston, TX 77098	temchugh@gsi-net.com	Principal Investigator (PI)
Lila Beckley	GSI Environmental Inc. 9600 Great Hills Trail Ste 350E Austin, TX 78759	Ph: 512-346-4474 Fax: 512-346-4476 Imbeckley@gsi-net.com	Project Team Member
Tomasz Kuder	School of Geology and Geophysics, Univ. of Oklahoma 100 E. Boyd St. Rm # A-119 Norman, OK 73019	tkuder@ou.edu	Project Team Member
R. Paul Philp	School of Geology and Geophysics, Univ. of Oklahoma 100 E. Boyd St. Rm # A-119 Norman, OK 73019	pphilp@ou.edu	Project Team Member
Dr. Sam Brock	AFCEC 3300 Sidney Brooks Brooks City-Base TX, 78235	Ph: 210-536-4329 Fax: 210-536-4330 Samuel.Brock@brooks.af.mil	Contracting Officer's Rep.
William Myers	Environmental Restoration Bldg 2012 Liggett AVE RM 313 Box 339500, MS-17 JBLM, WA 98433-9500	Ph: 253-477-3742 william.w.myers@us.army.mil	Site Project Manager (Demonstration Site #1)
Cheryl Neades	Environmental Division, IMMI- PWE U.S. Army Garrison Detroit Arsenal, Michigan	Ph: 586-282-8345 cheryl.l.neades.civ@mail.mil	Site Project Manager (Demonstration Site #2)
Miguel Plaza	Environmental Restoration Flight 325 CES/PMO 119 Alabama Avenue Tyndall AFB, FL 32403	Ph: 850-283-2398 miguel.plaza@tyndall.af.mil	Site Project Manager (Demonstration Site #3)
Sandra Piettro	Environmental Branch U.S. Army Corps of Engineers NY District, Jacob K. Javits Federal Building, 26 Federal Plaza, Room 1811 New York, NY 10278-0098	Ph: 917-790-8487 Sandra.L.Piettro@usace.army. mil	Site Project Manager (Demonstration Site #4)

Appendix A: Points of Contact


Appendix B: Lines of Evidence Evaluations

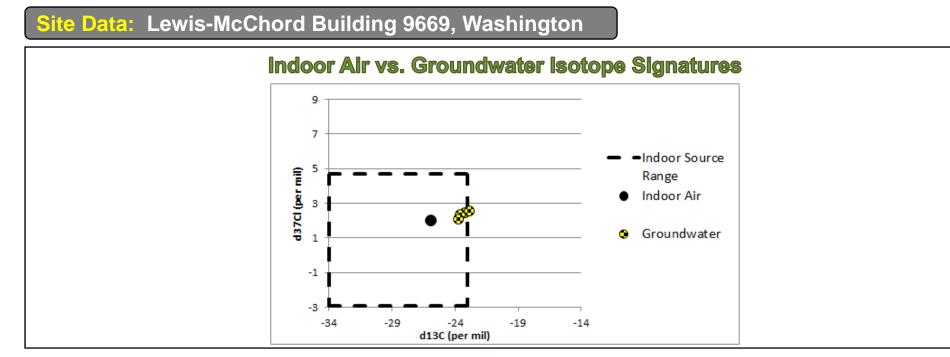
Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs

FIGURE B.1.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

Site Data: Lewis-McChord Building 9669, Washington

Data Interpretation


Line of Evidence	Line of Evidence Consistent with VI? Comment			
 Indoor air concentration > outdoor air? 	Yes	Also consistent with potential indoor source		
 Sub-slab >10x indoor air concentration? 	Yes At 2 of 3 sub-slab points			
 Sub-slab to indoor air concentration ratios consistent with VI? 	Yes	TCE, PCE, 111TCA are highest conc VOCs in sub-slab; also detected in indoor air, with similar conc ratios.		
Concentration ratios consistent with groundwater (GW) source? Inconclusive Inconclusive Inconclusive In GW, c12DCE is approx 2% of TCE conc; c12DCE not detected in sub- or indoor air, but may not have been detectable because of low conc in G source; PCE, 111TCA not detected in GW.				
FINDING: Supporting evidence of current vapor intrusion				

IMPLICATION: Indoor air conc (1.5 ug/m3) is BELOW USEPA screening level (3 ug/m3); however, monitoring may be appropriate to characterize temporal variability.

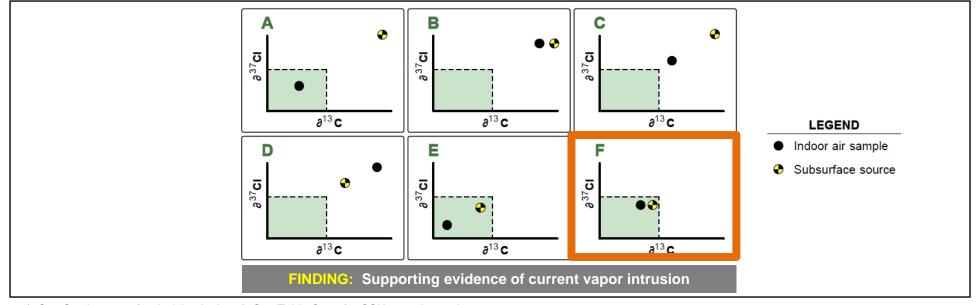

Notes: 1) Building schematic is not to scale. 2) See Section 5.7.1 for decision logic. 3) See Table C.1.1 for all conventional program results.

FIGURE B.1.2: RESULTS FROM CSIA PROTOCOL

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

Data Interpretation

Notes: 1) See Section 5.7.2 for decision logic. 2) See Table C.1.2 for CSIA sample results.

FIGURE B.1.3: RESULTS FROM ON-SITE ANALYSIS PROTOCOL

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

-8

3.5

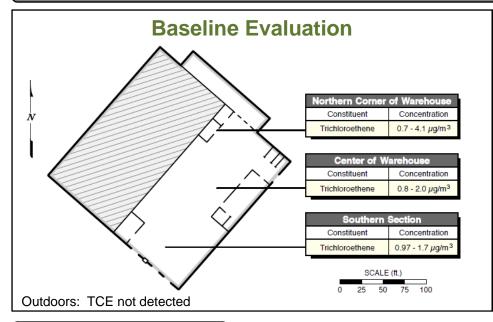
0.5

7:00

7:00

8:00

8:00


HAPSITE Result

Lab Result

9:00

9:00

Lewis-McChord Building 9669, Washington Site Data:

Data Interpretation				
Line of Evidence (Baseline)	Consistent with VI?	Line of Evidence (Pressure Control)	Consistent with VI?	
• Indoor air concentration > outdoor air? Yes		Target VOC conc suppressed by building	Yes	
No indoor sources?	Yes	pressurization?	165	
Baseline building pressure negative? Yes		Target VOC conc enhanced by	Yes	
Vapor entry point found? No		depressurization?		
Baseline Finding: Supporting evidenc	e of current VI	Pressure Control Finding: Evidence	of potential VI	

OVERALL FINDING: Evidence of current/potential vapor intrusion

IMPLICATION: Indoor air conc (2 ug/m3) is BELOW USEPA screening level (3 ug/m3). Pressure control evaluation increases confidence in result, and decreases concern with temporal variability.

Notes: 1) See Section 5.7.3 for decision logic. 2) See Table C.1.3 and C.1.4 for on-site analysis protocol results.

10:00

+ 🚬 🚚

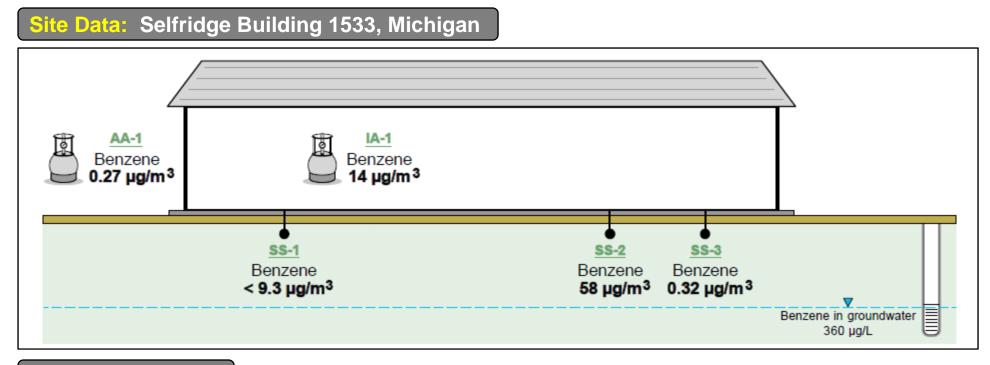
Time

10:00

11:00

11:00

12:00


12:00

Screening Level

Pressure Control Evaluation

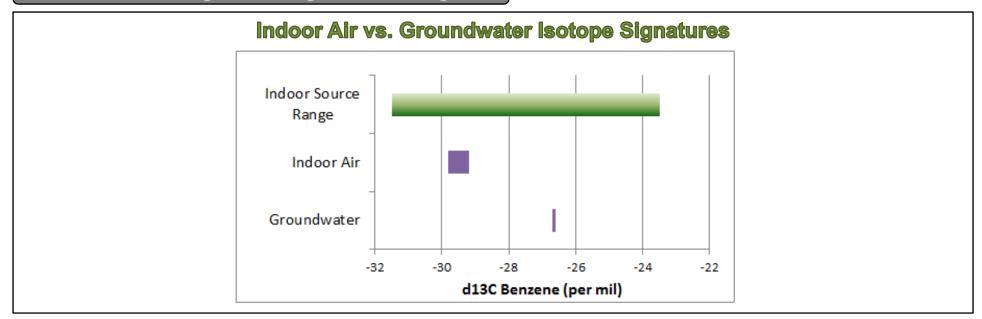
FIGURE B.2.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

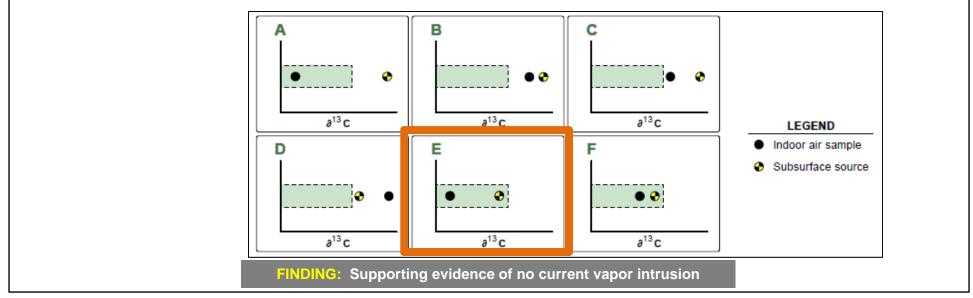
Data Interpretation

Line of Evidence	Consistent with VI?	Comment
 Indoor air concentration > outdoor air? 	Y AS	Also consistent with identified indoor source (e.g., automobiles being services inside building)
 Sub-slab >10x indoor air concentration? 	No	
 Sub-slab to indoor air concentration ratios consistent with VI? 	Inconclusive	Elevated detection limits in indoor air prevent meaningful comparisons
 Concentration ratios consistent with groundwater (GW) source? 	Inconclusive	In GW, benzene is approx 25% of the ethylbenzene concentration. In sub- slab, ratios vary between sample points. In indoor air, ethylbenzene not detected (<57 ug/m3).

FINDING: Inconclusive, can't distinguish between VI and indoor sources.

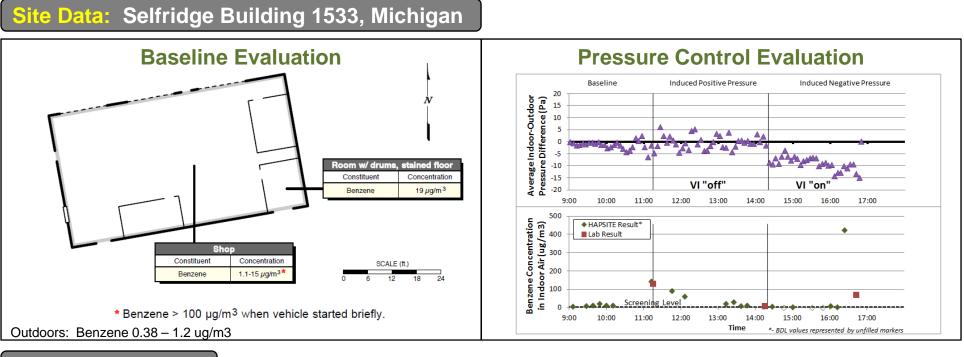

IMPLICATION: Indoor benzene concentration greater than USEPA screening level (1.6 ug/m3). Further study needed to determine source.

Notes: 1) Building schematic is not to scale. 2) See Section 5.7.1 for decision logic. 3) See Table C.2.1 for all conventional program results.


FIGURE B.2.2: RESULTS FROM CSIA PROTOCOL

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

Site Data: Selfridge Building 1533, Michigan


Data Interpretation

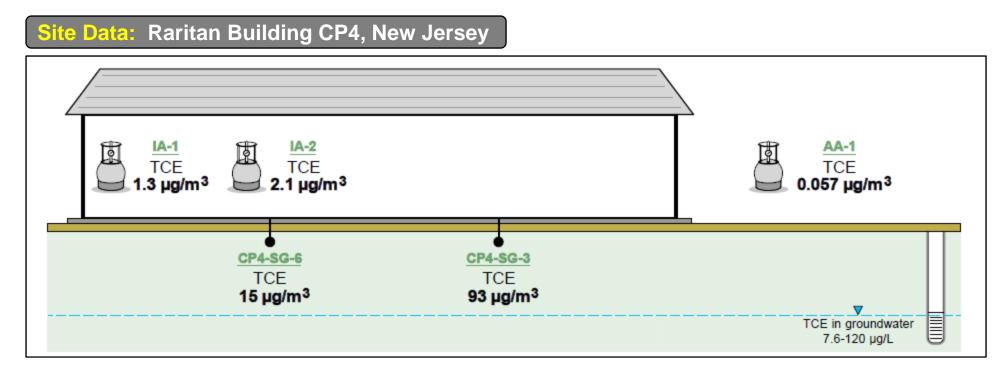
Notes: 1) See Section 5.7.2 for decision logic. 2) See Table C.2.2 for CSIA sample results.

FIGURE B.2.3: RESULTS FROM ON-SITE ANALYSIS PROTOCOL

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

Data Interpretation

Line of Evidence (Baseline)	Consistent with VI?		Line of Evidence (Pressure Control)	Consistent with VI?	
 Indoor air concentration > outdoor air? 	Yes No (Sources found and could not be removed from building)		Yes • Target VOC conc suppressed by building		
No indoor sources?			pressurization?	Νο	
 Baseline building pressure negative? 	Yes		Target VOC conc enhanced by	No	
 Vapor entry point found? 	Νο		depressurization?	No	
Baseline Finding: Supporting evidence of no current VI			Pressure Control Finding: No evidenc	e of potential VI	


OVERALL FINDING: No evidence of current/potential vapor intrusion

IMPLICATION: Primary sources of benzene are indoors. Indoor air benzene concentration greater than USEPA screening level due to indoor sources. No additional evaluation warranted under current building use.

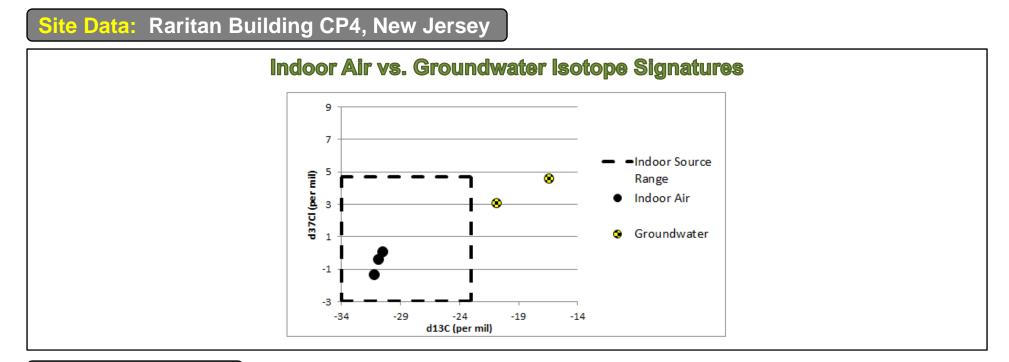
Notes: 1) See Section 5.7.3 for decision logic. 2) See Table C.2.3 and C.2.4 for on-site analysis protocol results.

FIGURE B.3.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

Data Interpretation

Line of Evidence Consistent with VI?		Comment
 Indoor air concentration > outdoor air? 	Yes	Also consistent with potential indoor source.
• Sub-slab >10x indoor air concentration?	Yes	
 Sub-slab to indoor air concentration ratios consistent with VI? 	Yes	TCE, PCE found at highest concentrations in sub-slab; also detected in indoor air. Ratios similar.
 Concentration ratios consistent with groundwater (GW) source? 		In GW, c12DCE is 20-75% of the TCE conc. In sub-slab, c12DCE is <1% of the TCE conc. c12DCE not detected in indoor air.


FINDING: Supporting evidence of current vapor intrusion

IMPLICATION: Indoor air TCE concentration is within 50% of USEPA screening level (3 ug/m3). Monitoring may be needed to characterize temporal variability.

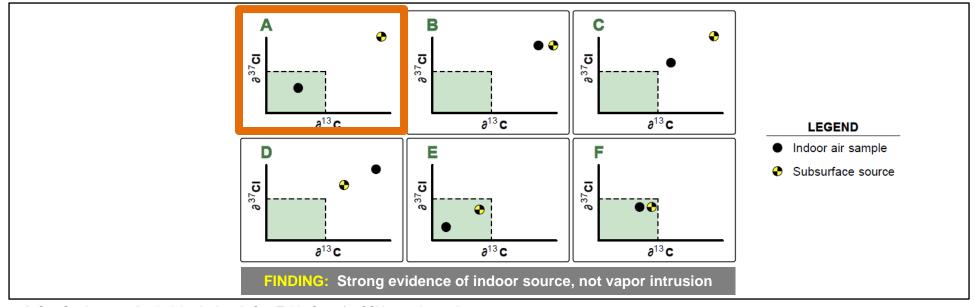
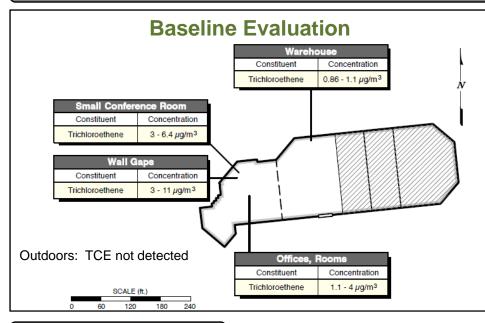

Notes: 1) Building schematic is not to scale. 2) See Section 5.7.1 for decision logic. 3) See Table C.4.1 for all conventional program results.

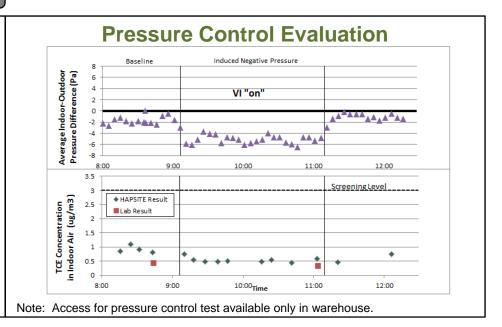
FIGURE B.3.2: RESULTS FROM CSIA PROTOCOL

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

Data Interpretation



Notes: 1) See Section 5.7.2 for decision logic. 2) See Table C.4.2 for CSIA sample results.


FIGURE B.3.3: RESULTS FROM ON-SITE ANALYSIS PROTOCOL

ESTCP Project ER-201025, Use of CSIA to Distinguish between VI and Indoor Sources of VOCs

Site Data: Raritan Building CP4, New Jersey

Data Interpretation

Line of Evidence (Baseline)	Consistent with VI?	Line of Evidence (Pressure Control)	Consistent with VI?	
 Indoor air concentration > outdoor air? 	Yes	 Target VOC conc suppressed by building 	Not tested	
No indoor sources?	Yes	pressurization?	Not tested	
 Baseline building pressure negative? 	Yes			
 Vapor entry point found? 	Inconclusive (conf room wall gap conc. 2-3x higher than indoor air; one warehouse expansion joint 5x higher than indoor air)	 Target VOC conc enhanced by depressurization? 	Νο	
Baseline Finding: Supp	orting evidence of current VI	Pressure Control Finding: Pressure variation (warehouse)	does not enhance VI	

OVERALL FINDING: <u>Office Area</u>: Supporting evidence of VI. <u>Warehouse</u>: Suggestive of VI.

IMPLICATION: Indoor air conc (0.43 ug/m3 in warehouse) is BELOW USEPA screening level (3 ug/m3). Controlled depressurization did not enhance vapor intrusion reducing concern regarding temporal variability.

Notes: 1) See Section 5.7.3 for decision logic. 2) See Table C.4.3 and C.4.4 for on-site analysis protocol results.

Appendix C: Results from Individual Demonstration Sites

Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs

- Appendix C.1: Joint Base Lewis-McChord, Washington
- Appendix C.2: Selfridge Air National Guard Base, Michigan
- Appendix C.3: Tyndall Air Force Base, Florida
- Appendix C.4: Former Raritan Arsenal Site, New Jersey

Appendix C.1: Joint Base Lewis-McChord, Washington

TABLES

- Table C.1.1
 Results from Conventional Vapor Intrusion Program
- Table C.1.2Results from Isotope Program
- Table C.1.3
 Results from On-Site Analysis Program Confirmation Samples
- Table C.1.4 Results from On-Site GC/MS Analysis

FIGURES

- Figure C.1.1 Site Map
- Figure C.1.2 Building 9669 Floorplan
- Figure C.1.3 Building 9674 Floorplan

TABLE C.1.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 Joint Base Lewis-McChord, Washington

Location ID:		GROUNDWATER		
Field Sample ID:	LC-18 (Note 4)	LC-48 (Note 4)	MT-1 (Note 4)	
Sample Location ID:	LC-18	LC-48	MT-1	
Description:	South of Building 9669	West of Building 9674	Upgradient well, closer to source (landfill area)	
Matrix:	GW	GW	GW	
Sample Type:	N	Ν	N	
Sample Collection Date:	6/21/2012	6/21/2012	5/30/2012	
Analytical Method (units):	8260	8260	8260	
	(ug/L)	(ug/L)	(ug/L)	
Key Analyte for VI Evaluation				
Trichloroethene (TCE)	55	110 H	96	
Other Reported Compounds				
Dichloroethane, 1,2-	-	-	-	
Dichloroethene, 1,1- (1,1-DCE)	-	-	-	
Dichloroethene, cis-1,2-	0.73	2.1	1.4	
Dichloroethene, trans-1,2-	-	-	-	
Tetrachloroethene (PCE)	<0.5	<0.5	<0.5	
Trichloroethane, 1,1,1- (TCA)	<0.5	<0.5	<0.5	
Vinyl chloride (VC)	<0.5	<0.5	<0.5	

Notes:

1. Vapor samples analyzed by ALS/Columbia Analytical Services, Simi Valley, CA.

2. Sub-slab soil gas collected as grab samples (without flow controller). Indoor and outdoor air samples collected with 8-hour flow controller.

3. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; Dash ("-") indicates compound not analyzed.

4. Results from May/June 2012 groundwater monitoring event, provided by base personnel. VOC analysis of groundwater samples was not conducted as part of the ESTCP VI Study.

GSI Job No. G-3585/3669 Issued: 24 June 2013 Page 2 of 3

TABLE C.1.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 Joint Base Lewis-McChord, Washington

Location ID:		BUILDING 9669							
Field Sample ID:	1-SS-1-CON	1-SS-2-CON	1-SS-3-CON	1-IA-1-CON	1-IA-2-CON	1-AA-1-CON			
Sample Location ID:	1-SS-1	1-SS-2	1-SS-3	1-IA-1	1-IA-2	1-AA-1			
Description:	Sub-slab, front, near	Sub-slab, middle,	Sub-slab, back of	Indoor air, center of	Indoor air, shelf in	Outdoors			
	battery recycling area	near 1-IA-1	building	warehouse	product storage area				
Matrix:	SS	SS	SS	IA	IA	AA			
Sample Type:	N	Ν	N	Ν	N	Ν			
Sample Collection Date:	7/24/2012 10:46	7/24/2012 11:06	7/24/2012 11:27	7/24/2012 15:57	7/24/2012 15:58	7/24/2012 16:00			
Analytical Method (units):	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM			
	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)			
Key Analyte for VI Evaluation									
Trichloroethene (TCE)	43	320	1.5	1.5	1.2	<0.038			
Other Reported Compounds									
Dichloroethane, 1,2-	0.65	<0.55	3.2	0.053	0.05	<0.038			
Dichloroethene, 1,1- (1,1-DCE)	<0.13	<0.55	<0.91	<0.037	<0.036	<0.038			
Dichloroethene, cis-1,2-	<0.13	<0.55	<0.91	<0.037	<0.036	<0.038			
Dichloroethene, trans-1,2-	<0.13	0.57	<0.91	2.3	1.6	<0.038			
Tetrachloroethene (PCE)	17	22	21	0.18	0.15	0.052			
Trichloroethane, 1,1,1- (TCA)	3.4	6.2	9	0.042	0.039	<0.038			
Vinyl chloride (VC)	<0.13	<0.55	<0.91	<0.037	<0.036	<0.038			

Notes:

1. Vapor samples analyzed by ALS/Columbia Analytical Services, Simi Valley, CA.

2. Sub-slab soil gas collected as grab samples (without flow controller). Indoor and outdoor air samples collected with 8-hour flow controller.

3. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; Dash ("-") indicates compound not analyzed.

GSI Job No. G-3585/3669 Issued: 24 June 2013 Page 3 of 3

TABLE C.1.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 Joint Base Lewis-McChord, Washington

Location ID:		BUILDING 9674						
Field Sample ID:	2-SS-1-CON	2-SS-2-CON	2-SS-3-CON-Resample	2-IA-1-CON	2-AA-1-CON			
Sample Location ID:	2-SS-1	2-SS-2	2-SS-3	2-IA-1	2-AA-1			
	Sub-slab, north side of	Sub-slab, near center	Sub-slab, south side of	Indoor air, center of	Outdoors			
	building		building	warehouse				
Description:								
Matrix:	SS	SS	SS	IA	AA			
Sample Type:	Ν	N	N	N	N			
Sample Collection Date:	7/24/2012 14:49	7/24/2012 15:05	7/26/2012 8:08	7/24/2012 15:21	7/24/2012 15:25			
	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM			
Analytical Method (units):	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)			
Key Analyte for VI Evaluation								
Trichloroethene (TCE)	0.034	1.8	1.7	0.072	<0.033			
Other Reported Compounds								
Dichloroethane, 1,2-	0.24	0.3	0.096	<0.038	0.038			
Dichloroethene, 1,1- (1,1-DCE)	0.035	<0.063	<0.033	<0.038	< 0.033			
Dichloroethene, cis-1,2-	<0.033	<0.063	<0.033	<0.038	<0.033			
Dichloroethene, trans-1,2-	<0.033	<0.063	<0.033	<0.038	<0.033			
Tetrachloroethene (PCE)	18	48	35 D	0.24	0.053			
Trichloroethane, 1,1,1- (TCA)	1.7	0.73	1.5	<0.038	<0.033			
Vinyl chloride (VC)	<0.033	<0.063	<0.033	<0.038	<0.033			

Notes:

1. Vapor samples analyzed by ALS/Columbia Analytical Services, Simi Valley, CA.

2. Sub-slab soil gas collected as grab samples (without flow controller). Indoor and outdoor air samples collected with 8-hour flow controller.

3. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; Dash ("-") indicates compound not analyzed; "D" indicates result is from a dilution.

TABLE C.1.2: RESULTS FROM ISOTOPE PROGRAM ESTCP Project ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington

Location ID:		GRO	UNDWATER		BUILDING 9669		
Field Sample ID:	LC-18	DUP-1	LC-48	MT-1	1-SS-2-CSI	3-SS-2-CSI	1-IA-1-CSI
Sample Location ID:	LC-18	LC-18	LC-48	MT-1	1-SS-2	1-SS-2	1-IA-1
Description:	near Building	near Building	near Building	upgradient of	middle, near 1-IA-1	middle, near 1-IA-1	center of
	9669	9669	9674	9669/9674			warehouse
Matrix:	GW	GW	GW	GW	SS	SS	IA
Sample Type:	N	FD	N	N	N	FD	Ν
	7/24/2012	7/24/2012	7/24/2012	7/24/2012	7/25/2012	7/25/2012	7/24/2012
Sample Collection Date/Time:	10:50:00 AM	10:50:00 AM	11:35:00 AM	10:15:00 AM	9:34:00 AM	9:57:00 AM	9:41:00 AM
Analytical Method	TCE C/CI	TCE C/CI	TCE C/CI				
(units):	(per mil)	(per mil)	(per mil)				
Analyte							
d13C TCE	-23.3 H	-23.6 H	-23.8 H	-22.9 H	-18.5 H	-18.8 H	-25.9 HJ
d37CI TCE	2.5 H	2.4 H	2.1 H	2.6 H	5.8 H	5.5 H	2.0 H

Notes:

1. Isotope analysis was completed by the University of Oklahoma.

2. Groundwater samples collected by Versar.

 Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; Dash ("-") indicates compound not analyzed; H = samples analyzed outside of validated holding time period of 2 weeks; J = estimated result.

4. Indoor air TCE concentrations were too low in Building 9674 to allow collection of sufficient mass for isotope analysis.

TABLE C.1.3: RESULTS FROM ON-SITE ANALYSIS PROGRAM CONFIRMATION SAMPLES ESTCP Project ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington

Location ID:	BUILDING 9669						
Field Sample ID:	1-IA-3-BL	1-IA-3-PP	1-IA-3-NP	1-AA-1			
Sample Location ID:	1-IA-3	1-IA-3	1-IA-3	1-AA-1			
Description:	near battery/ recycling	near battery/ recycling	near battery/ recycling	outdoors			
	area	area	area				
Matrix:	IA	IA	IA	AA			
Pressure Condition	BL	PP	NP	BL			
Sample Type:	Ν	Ν	Ν	Ν			
Sample Collection Date/Time:	7/25/2012 8:53	7/25/2012 9:57	7/25/2012 11:06	7/25/2012 9:25			
Analytical Method (units):	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM			
	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)			
Key Analyte for VI Evaluation							
Trichloroethene (TCE)	2	1.2	2	-			
Other Reported VOCs							
Dichloroethane, 1,2-	0.051	0.05	0.047	-			
Dichloroethene, 1,1- (1,1-DCE)	<0.031	<0.031	<0.031	-			
Dichloroethene, cis-1,2-	<0.031	<0.031	<0.031	-			
Dichloroethene, trans-1,2-	2.2	1.5	1	-			
Tetrachloroethene (PCE)	0.22	0.17	0.16	-			
Trichloroethane, 1,1,1- (TCA)	0.041	0.038	0.035	-			
Vinyl chloride (VC)	<0.031	<0.031	<0.031	-			
Radon (pCi/L)							
Radon	0.36	0.3	0.2	0.01			
Notes:							

1. VOC analysis of vapor samples by ALS/Columbia Analytical Services, Simi Valley, California. Radon analysis by University of Southern California.

2. Samples collected as grab (i.e., without flow controller). Samples for VOC analysis were collected in 6-L Summa canisters. Samples for Radon analysis were collected in 1-L Tedlar bags.

3. Pressure Condition: BL = baseline (uncontrolled); NP = negative pressure (building depressurized); PP = positive pressure (building pressurized)

4. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; Dash ("-") indicates compound not analyzed.

TABLE C.1.3: RESULTS FROM ON-SITE ANALYSIS PROGRAM CONFIRMATION SAMPLES ESTCP Project ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington

Location ID:		BUILDI	NG 9674	
Field Sample ID:	2-IA-1-BL	DUP-1	2-IA-1-NP	2-AA-1
Sample Location ID:	2-IA-1	2-IA-1	2-IA-1	2-AA-1
Description:	center of warehouse	center of warehouse	center of warehouse	outdoors
Matrix:	IA	IA	IA	AA
Pressure Condition	BL	BL	NP	BL
Sample Type:	N	FD	N	N
Sample Collection Date/Time:	7/26/2012 8:36	7/26/2012 8:36	7/26/2012 10:15	7/26/2012 8:45
Analytical Method (units):	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM
	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Key Analyte for VI Evaluation				
Trichloroethene (TCE)	0.032	<0.031	<0.03	-
Other Reported VOCs				
Dichloroethane, 1,2-	0.036	0.035	0.035	-
Dichloroethene, 1,1- (1,1-DCE)	<0.03	<0.031	<0.03	-
Dichloroethene, cis-1,2-	<0.03	<0.031	<0.03	-
Dichloroethene, trans-1,2-	<0.03	<0.031	<0.03	-
Tetrachloroethene (PCE)	<0.03	<0.031	<0.03	-
Trichloroethane, 1,1,1- (TCA)	<0.03	<0.031	<0.03	-
/inyl chloride (VC)	<0.03	<0.031	<0.03	-
Radon (pCi/L)				
Radon	0.09	0.1	0.12	0.09

Notes:

1. VOC analysis of vapor samples by ALS/Columbia Analytical Services, Simi Valley, California. Radon analysis by University of Southern California.

2. Samples collected as grab (i.e., without flow controller). Samples for VOC analysis were collected in 6-L Summa canisters. Samples for Radon analysis were collected in 1-L Tedlar bags.

3. Pressure Condition: BL = baseline (uncontrolled); NP = negative pressure (building depressurized); PP = positive pressure (building pressurized)

4. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; Dash ("-") indicates compound not analyzed.

TABLE C.1.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington

Sample Date/Time	Description	Matrix	DCE12T ug/m3	TCE ug/m3
	SCREENING SAMPLES			
7/23/2012 10:56	Workroom air, door open	AI	U	U
7/23/2012 11:06	09522 IA (Tedlar)	AI	U	U
7/23/2012 11:13	09671 IA (Tedlar)	AI	U	0.12 J
7/23/2012 11:21	09666 IA (Tedlar)	AI	U	U
7/23/2012 11:28	Workroom air, door open	AI	U	U
7/23/2012 11:35	09679 IA (Tedlar)	AI	U	U
7/23/2012 11:43	09674 IA (Tedlar)	AI	U	U
7/23/2012 11:50	09669 IA (Tedlar)	AI	1.4 J	1.7 J
7/23/2012 12:44	09522 IA (re-run Tedlar)	AI	U	U
7/23/2012 12:52	Workroom air, door open	AI	U	U
7/23/2012 14:27	09564 IA (Tedlar)	AI	U	0.097 J
7/23/2012 14:35	09673 IA (Tedlar)	AI	U	U
7/23/2012 16:15	9669-SS-1 (Tedlar)	SS	U	45
7/23/2012 16:23	9669-SS-2 (Tedlar)	SS	U	210 JE
7/23/2012 16:30	Workroom air, door open	AI	U	0.4 J
7/23/2012 16:38	9669-SS-3	SS	U	4
7/23/2012 16:49	9669-SS-2 (repeat Tedlar)	SS	U	210 JE
7/24/2012 10:15	9674 SS-1 (Tedlar)	SS	U	0.22 J
7/24/2012 10:28	9674 SS-2 (Tedlar)	SS	U	1.8 J
7/24/2012 10:35	9674 SS-3 (Tedlar)	SS	U	U
7/24/2012 10:43	rerun 9674 SS-3 Tedlar	SS	U	1.6 J
7/24/2012 10:07	BUILDING 9669 1-IA-1 location; next to 8-hr Summa	AI	2.4	2 J
	1-IA-1 repeat	AI	2.2	U
7/24/2012 11:33	Outdoors on loading dock	AA	U	U
7/24/2012 13:45	Near battery center	AI	0.48 J	2 J
7/24/2012 13:53	Center back	AI	1.7 J	0.97 J
7/24/2012 14:00	Center (1-IA-1)	AI	21	0.91 J
7/24/2012 14:09	Center of offices (room with cubicles)	AI	1.5 J	0.81 J
7/24/2012 14:16	Office front corner (design demonstration room)	AI	0.91 J	0.91 J
	Repeat front corner near battery center/recycling area	AI	0.48 J	4.1
		, ,	0.10 0	

TABLE C.1.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington

Sample Date/Time	Description	Matrix	DCE12T	TCE
	BUILDING 9669		ug/m3	ug/m3
7/24/2012 14:32	Inside cage	AI	0.63 J	0.75 J
7/24/2012 14:39	Between counter and front door/main entrance	AI	0.79 J	0.91 J
7/24/2012 14:47	Near 1-IA-2	AI	0.59 J	0.7 J
7/24/2012 14:54	Repeat front corner near battery center	AI	U	2.8
7/25/2012 7:57	BL 1-IA-1 center of building	AI	2.1	1.9 J
7/25/2012 8:04	BL Center back	AI	1.9 J	1.7 J
7/25/2012 8:11	BL Front corner	AI	1.7 J	2.2 J
7/25/2012 8:18	BL Front, near counter	AI	2 J	1.6 J
7/25/2012 8:50	BL Repeat front corner (1-IA-3)	AI	1.6 J	1.5 J
7/25/2012 9:07	PP Repeat front corner (1-IA-3)	AI	1.5 J	1.4 J
7/25/2012 9:23	Outdoors at 1-AA-1.	AA	U	U
7/25/2012 9:31	PP Repeat front corner (1-IA-3)	AI	1.3 J	1.2 J
7/25/2012 9:42	PP Repeat front corner (1-IA-3)	AI	1.1 J	1 J
7/25/2012 9:54	PP Repeat front corner (1-IA-3)	AI	1.1 J	1.1 J
7/25/2012 10:08	NP Repeat front corner (1-IA-3)	AI	0.95 J	0.81 J
7/25/2012 10:22	NP Repeat front corner (1-IA-3)	AI	1.2 J	1.3 J
7/25/2012 10:41	NP Repeat front corner (1-IA-3)	AI	0.95 J	1.6 J
7/25/2012 10:55	NP Repeat front corner (1-IA-3)	AI	0.91 J	1.8 J
7/25/2012 11:05	NP Repeat front corner (1-IA-3)	AI	0.71 J	2.1 J
7/25/2012 11:13	NP Repeat front corner (1-IA-3)	AI	0.91 J	1.7 J
7/25/2012 11:27	Flux crack near SS-2. Sampled after 5 minutes.	AF	1.2 J	1 J
7/25/2012 11:35	Flux same crack near SS-2. Sampled after 15 minutes total. Fan off.	AF	1.3 J	U
7/25/2012 13:25	Flux second crack, in floor of cage. Sampled after approx 1 hr 20 min	AF	0.79 J	2.8
7/25/2012 13:36	BL Indoor air in cage	AI	1.2 J	1.8 J
7/25/2012 13:43	BL 1-IA-3	AI	1.2 J	2.9
7/25/2012 13:50	BL Center back	AI	1.3 J	1.2 J
7/25/2012 14:01	BL Center, near 1-IA-1	AI	2.3	1.1 J
7/25/2012 14:09	BL Near shelf with trans12DCE source	AI	87	0.97 J
7/25/2012 14:21	BL Center of other half of building (haz mat storage)	AI	U	0.23 J
7/25/2012 14:33	Floor flux through carpet 1. Bowl set approx 1 hr 10 min prior to sampling.	AF	1 J	5.4

TABLE C.1.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington

Sample Date/Time	·	Matrix	DCE12T ug/m3	TCE ug/m3
	BUILDING 9669			
7/25/2012 14:41	Floor flux through carpet 2	AF	0.59 J	1.3 J
7/25/2012 14:53	Floor flux through carpet 3, closer to wall	AF	0.56 J	4.5
7/25/2012 15:01	Floor flux through carpet 4, closer to cage	AF	U	3.8
7/25/2012 15:08	Repeat floor flux through carpet 1. Bowl set <5 min prior to sampling	AF	0.63 J	2.6 J
7/25/2012 15:15	Floor flux through carpet 5, further from wall	AF	0.67 J	3.1
7/25/2012 15:22	Floor flux through carpet 6	AF	0.59 J	3.6
7/25/2012 15:29	Indoor air approx 2 ft above carpet 6	AI	U	5.9
7/25/2012 15:39	Indoor air approx 2 ft above floor, near closed bay door	AI	0.63 J	4
	BUILDING 9674			
7/26/2012 7:47	Outdoors near 2-AA-1	AA	U	U
7/26/2012 7:58	BL 2-IA-1 center of building	AI	U	U
7/26/2012 8:05	BL in front of hazmat containers	AI	U	U
7/26/2012 8:25	BL in front of back / bondcote shelves (repeat location)	AI	U	U
7/26/2012 8:56	NP 2-IA-1	AI	U	U
7/26/2012 9:15	NP 2-IA-1	AI	U	U
7/26/2012 9:45	NP 2-IA-1	AI	U	U
7/26/2012 10:13	NP 2-IA-1	AI	U	U

Notes:

1. Samples analyzed using an Inficon HAPSITE ER portable GC/MS instrument. Calibration curve 7/22/2012.

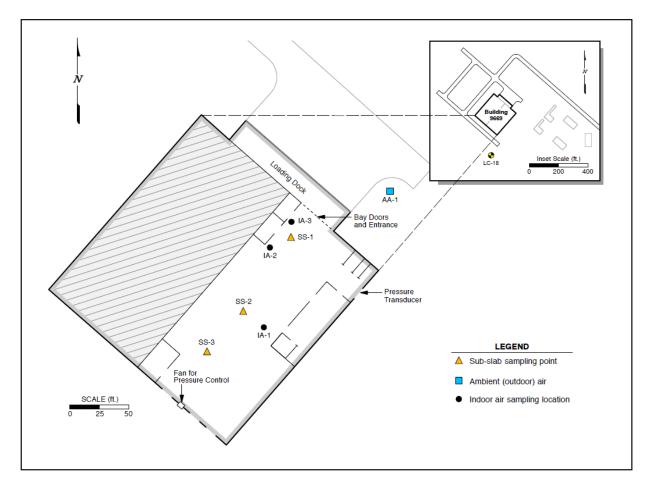
2. Samples are grouped by building, and sorted chronologically.

3. J = estimated (result less than lower calibration limit); JE = estimated (result higher than upper calibration limit); U = not detected.

4. Matrix: AI = Indoor air; AF = Flux chamber; AA = Ambient (outdoor) air; SS = Sub-slab

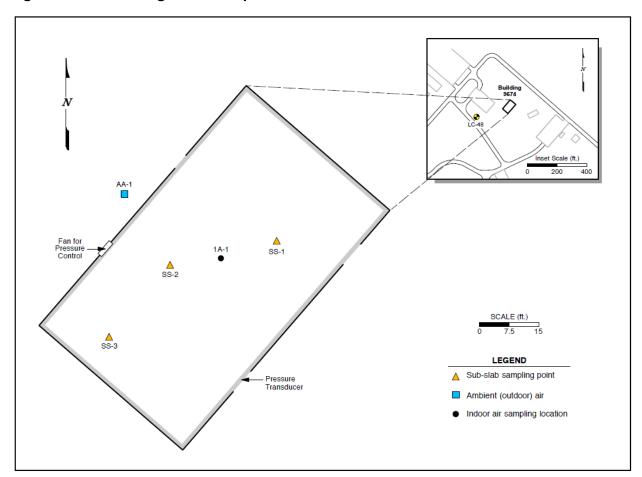
APPENDIX C FIGURES ESTCP Projects ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington

Ň Building 9669 C-48 Building 9674 LC-18 LEGEND Monitoring Well Ð Demonstration Building SCALE (ft.) Building 200 400 Г 0


Figure C.1.1: Site Map

Note: Only monitoring wells sampled for the demonstration are shown. Groundwater gradient is to the northwest. TCE concentration in shallow groundwater in map area is in the 50 - 100 ug/L range.

APPENDIX C FIGURES ESTCP Projects ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington


Figure C.1.2: Building 9669 Floorplan

Note: Figure illustrates sample locations for off-site laboratory analysis. HAPSITE sample locations are not shown.

APPENDIX C FIGURES ESTCP Projects ER-201119 and ER-201025 Joint Base Lewis-McChord, Washington

Figure C.1.3: Building 9674 Floorplan

Note: Figure illustrates sample locations for off-site laboratory analysis. HAPSITE sample locations are not shown.

Appendix C.2: Selfridge Air National Guard Base, Michigan

TABLES

- Table C.2.1
 Results from Conventional Vapor Intrusion Program
- Table C.2.2Results from Isotope Program
- Table C.2.3
 Results from On-Site Analysis Program Confirmation Samples
- Table C.2.4 Results from On-Site GC/MS Analysis

FIGURES

- Figure C.2.1 Site Map
- Figure C.2.2 Building 1533 Floorplan

TABLE C.2.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Location ID:	BUILDING 1533					
Field Sample ID:	MW-16	SS-1C	SS-2C	SS-3C	INDOOR-C1	OUTDOOR-C1
Sample Location ID:	MW-16	SS-1	SS-2	SS-3	IA-1	AA-1
Description:	East of building,	Sub-slab, west	Sub-slab, inside	Sub-slab,	Indoor Air,	Outdoors, west
	between building	bay of building	storeroom on	northeast corner	southwest side	of building
	and fmr UST		east side of	outside office	of building	· ·
	cavity		building	door	5	
Matrix:	GW	SS	SS	SS	IA	AA
Sample Type:	Ν	N	N	Ν	N	N
Sample Collection Date/Time:	9/18/2012 15:20	9/18/2012 13:23	9/18/2012 13:43	9/18/2012 14:00	9/18/2012 16:30	9/18/2012 16:30
Analytical Method (units):	8260C (ug/L)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)
Key Analyte for VI Evaluation				· · · · ·		
Benzene	360	<9.3	58	0.32	14	0.27
Other Reported Compounds						
Acetone	<200	510	3300	250	54000	14
Acetonitrile	-	<46	<32	<0.69	<57	<0.73
Acrolein	-	<190	<130	<2.8	<230	<2.9
Acrylonitrile	<200	<46	<32	<0.69	<57	<0.73
Benzyl Chloride	-	<46	<32	<0.69	<57	<0.73
Bromobenzene	<100	-	-	-	-	-
Bromochloromethane	<100	-	-	-	-	-
Bromodichloromethane	<20	<9.3	<6.4	<0.14	<11	<0.15
Bromoform	<80	<46	<32	<0.69	<57	<0.73
Bromomethane	<40	<9.3	<6.4	<0.14	<11	<0.15
Butadiene, 1,3-	-	<19	<13	<0.28	<23	<0.29
Butanone, 2- (MEK)	<200	<460	<320	<6.9	<570	<7.3
Butyl Acetate, n-	-	<46	<32	<0.69	<57	<0.73
Butylbenzene, n-	32	-	-	-	-	-
Butylbenzene, sec-	<20	-	-	-	-	-
Butylbenzene, tert-	<100	-	-	-	-	-
Carbon disulfide	<200	<460	<320	<6.9	<570	<7.3
Carbon tetrachloride	<20	<9.3	<6.4	<0.14	<11	0.48
Chloro-1-propene, 3- (Allyl Chloride)	-	<9.3	<6.4	<0.14	<11	<0.15
Chlorobenzene	<20	<9.3	<6.4	<0.14	<11	<0.15
Chloroethane	<40	<9.3	<6.4	<0.14	<11	<0.15
Chloroform	<30	<9.3	<6.4	0.2	<11	<0.15
Chloromethane	<100	<19	<13	<0.28	<23	0.37
Chlorotoluene, o-	<100	-	-	-	-	-
Chlorotoluene, p-	<100	-	-	-	-	-
Cyclohexane	-	<93	480	<1.4	<110	<1.5
Dibromo-3-chloropropane, 1,2- (DBCP)	<100	<46	<32	<0.69	<57	<0.73

TABLE C.2.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Location ID:	BUILDING 1533					
Field Sample ID:	MW-16	SS-1C	SS-2C	SS-3C	INDOOR-C1	OUTDOOR-C1
Sample Location ID:	MW-16	SS-1	SS-2	SS-3	IA-1	AA-1
Description:	East of building,	Sub-slab, west	Sub-slab, inside	Sub-slab,	Indoor Air,	Outdoors, west
	between building	bay of building	storeroom on	northeast corner	southwest side	of building
	and fmr UST		east side of	outside office	of building	
	cavity		building	door	C C	
Matrix:	GW	SS	SS	SS	IA	AA
Sample Type:	N	N	N	N	N	Ν
Sample Collection Date/Time:	9/18/2012 15:20	9/18/2012 13:23	9/18/2012 13:43	9/18/2012 14:00	9/18/2012 16:30	9/18/2012 16:30
Analytical Method (units):	8260C (ug/L)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)
Dibromochloromethane	<20	<9.3	<6.4	<0.14	<11	<0.15
Dibromoethane, 1,2-	<80	<9.3	<6.4	<0.14	<11	<0.15
Dibromomethane	<200	-	-	-	-	-
Dichloro-1,1,2,2-tetrafluoroethane, 1,2- (CF	-	<46	<32	<0.69	<57	<0.73
Dichloro-2-butene, trans-1,4-	<100	-	-	-	-	-
Dichlorobenzene, 1,2-	<100	<9.3	<6.4	<0.14	<11	<0.15
Dichlorobenzene, 1,3-	<100	<9.3	<6.4	<0.14	<11	<0.15
Dichlorobenzene, 1,4-	<100	<9.3	<6.4	0.14	<11	<0.15
Dichlorobutane, 1,4-	<200	-	-	-	-	-
Dichlorodifluoromethane (CFC 12)	<200	<46	<32	2.2	<57	2.2
Dichloroethane, 1,1- (1,1-DCA)	<30	<9.3	<6.4	<0.14	<11	<0.15
Dichloroethane, 1,2-	<20	<9.3	<6.4	<0.14	<11	<0.15
Dichloroethene, 1,1- (1,1-DCE)	<20	<9.3	<6.4	<0.14	<11	<0.15
Dichloroethene, cis-1,2-	<20	<9.3	<6.4	<0.14	<11	<0.15
Dichloroethene, trans-1,2-	<30	<9.3	<6.4	<0.14	<11	<0.15
Dichloropropane, 1,2-	<70	<9.3	<6.4	<0.14	<11	<0.15
Dichloropropane, 1,3-	<100	-	-	-	-	-
Dichloropropane, 2,2-	<100	-	-	-	-	-
Dichloropropene, 1,1-	<100	-	-	-	-	-
Dichloropropene, cis-1,3-	<20	<46	<32	<0.69	<57	<0.73
Dichloropropene, trans-1,3-	<20	<46	<32	<0.69	<57	<0.73
Dioxane, 1,4-	-	<46	<32	<0.69	<57	<0.73
Ethanol	-	<460	<320	<6.9	<570	<7.3
Ethyl Acetate	-	<93	<64	<1.4	<110	3.1
Ethyl ether	<100	-	-	-	-	-
Ethyl methacrylate	<200	-	-	-	-	-
Ethylbenzene	1400	<46	430	0.92	<57	<0.73
Ethyltoluene, 4-	-	<46	260	1.2	<57	<0.73
Heptane, n-	-	<46	960	11	5700	0.91
Hexachlorobutadiene	<20	<46	<32	<0.69	<57	<0.73

TABLE C.2.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Location ID:	BUILDING 1533					
Field Sample ID:	MW-16	SS-1C	SS-2C	SS-3C	INDOOR-C1	OUTDOOR-C1
Sample Location ID:	MW-16	SS-1	SS-2	SS-3	IA-1	AA-1
Description:	East of building,	Sub-slab, west	Sub-slab, inside	Sub-slab,	Indoor Air,	Outdoors, west
	between building	bay of building	storeroom on	northeast corner	southwest side	of building
	and fmr UST		east side of	outside office	of building	· ·
	cavity		building	door	-	
Matrix:	GW	SS	SS	SS	IA	AA
Sample Type:	N	N	N	N	Ν	N
Sample Collection Date/Time:	9/18/2012 15:20	9/18/2012 13:23	9/18/2012 13:43	9/18/2012 14:00	9/18/2012 16:30	9/18/2012 16:30
Analytical Method (units):	8260C (ug/L)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)
Hexane, n-	-	<46	1200	1.2	240	<0.73
Hexanone, 2-	<200	<46	<32	<0.69	<57	<0.73
Isopropylbenzene (Cumene)	68	<46	34	<0.69	<57	<0.73
Isopropyltoluene, p-	<20	-	-	-	-	-
Limonene, d-	-	<46	<32	<0.69	<57	<0.73
Methyl Methacrylate	-	<93	<64	<1.4	<110	<1.5
Methyl tert-Butyl Ether	<40	<9.3	<6.4	0.45	<11	<0.15
Methyl-2-pentanone, 4-	<200	<46	<32	<0.69	<57	<0.73
Methylene Chloride	<120	<46	<32	<0.69	<57	<0.73
Naphthalene	680	<46	<32	11	<57	<0.73
Nonane, n-	-	<46	51	<0.69	<57	<0.73
Octane, n-	-	<46	210	0.91	<57	<0.73
Pinene, alpha-	-	<46	<32	2.8	<57	<0.73
Propanol, 2- (Isopropyl Alcohol)	-	<460	<320	<6.9	<570	14
Propene	-	<46	<32	2.2	<57	4.8
Propylbenzene, n-	210	<46	130	<0.69	<57	<0.73
Styrene	<40	<46	<32	<0.69	<57	<0.73
Tetrachloroethane, 1,1,1,2-	<20	-	-	-	-	-
Tetrachloroethane, 1,1,2,2-	<20	<9.3	<6.4	<0.14	<11	<0.15
Tetrachloroethene	<20	8000	5000	610 D	<11	0.52
Tetrahydrofuran (THF)	<200	<46	<32	<0.69	<57	<0.73
Toluene	41	<46	52	1.5	<57	1.2
Trichlorobenzene, 1,2,3-	<100	-	-	-	-	-
Trichlorobenzene, 1,2,4-	<100	<46	<32	<0.69	<57	<0.73
Trichloroethane, 1,1,1-	<20	<9.3	<6.4	<0.14	<11	<0.15
Trichloroethane, 1,1,2-	<30	<9.3	<6.4	<0.14	<11	<0.15
Trichloroethene	<20	9.4	26	0.63	48	0.3
Trichlorofluoromethane (CFC 11)	<100	<9.3	<6.4	0.88	<11	1.2
Trichloropropane, 1,2,3-	<200	-	-	-	-	-
Trichlorotrifluoroethane, 1,1,2-	-	<9.3	<6.4	0.45	<11	0.48

TABLE C.2.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Location ID:		BUILDING 1533					
Field Sample ID:	MW-16	SS-1C	SS-2C	SS-3C	INDOOR-C1	OUTDOOR-C1	
Sample Location ID:	MW-16	SS-1	SS-2	SS-3	IA-1	AA-1	
Description:	East of building,	Sub-slab, west	Sub-slab, inside	Sub-slab,	Indoor Air,	Outdoors, west	
	between building	bay of building	storeroom on	northeast corner	southwest side	of building	
	and fmr UST		east side of	outside office	of building		
	cavity		building	door	_		
Matrix:	GW	SS	SS	SS	IA	AA	
Sample Type:	N	N	N	N	N	N	
Sample Collection Date/Time:	9/18/2012 15:20	9/18/2012 13:23	9/18/2012 13:43	9/18/2012 14:00	9/18/2012 16:30	9/18/2012 16:30	
Analytical Method (units):	8260C (ug/L)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	
Trimethylbenzene, 1,2,4-	1800	<46	860	25	<57	<0.73	
Trimethylbenzene, 1,3,5-	570	<46	220	7.4	<57	<0.73	
Vinyl acetate	<200	<460	<320	<6.9	<570	<7.3	
Vinyl chloride	<40	<9.3	<6.4	<0.14	<11	<0.15	
Xylene, o-	<40	<46	<32	2.2	<57	<0.73	
Xylenes, m,p-	4800	<46	770	3	<57	<0.73	
Notes:							

1. Groundwater sample analyzed by Alpha Analytical, Mansfield, MA. Vapor samples analyzed by ALS/Columbia Analytical Services, Simi Valley, California.

2. Sub-slab soil gas collected as grab samples (without flow controller). Indoor and outdoor air sample collected with 8-hour flow controller.

3. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; Dash ("-") indicates compound not analyzed.

TABLE C.2.2: RESULTS FROM ISOTOPE PROGRAM ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Location ID:				BUILDING 1533			
Field Sample ID:	MW-16	SS-1	SS-2 1 HOUR	SS-2 HIGH	SS-2 LOW	INDOOR-1	INDOOR-1 OVERNIGHT
Sample Location ID:	MW-16	SS-1	SS-2	SS-2	SS-2	IA-1	IA-1
Description:	East of building	at IA-2; near IA-1	Inside storeroom	Inside storeroom	Inside storeroom	Southwest side of	Southwest side of
						building	building
Matrix:	GW	SS	SS	SS	SS	IA	IA
Sample Type:	N	N	N	N	N	N	N
Sample Collection Date/Time:	9/18/2012 15:20	9/19/2012 16:40	9/19/2012 10:49	9/18/2012 16:44	9/18/2012 16:56	9/18/2012 16:22	9/20/2012 8:17
Units:	per mil	per mil	per mil	per mil	per mil	per mil	per mil
Analyte							
d13C BEN	-26.6 H	-29.9 H	-29.4 H	-31.1 H	-28.9 JH	-29.1 H	-30.0 H
d13C TCE	-	-18.8 H	-26.0 H	-25.5 H	-	-32.5 H	-30.7 JH
d13C PCE	-	-26.7 H	-25.3 H	-25.5 H	-25.7 H	-27.8 JH	-27.8 JH

Notes:

1. Isotope analysis was completed by the University of Oklahoma.

2. Bold font = detected result; Dash ("-") indicates compound not analyzed;

H = samples analyzed outside of validated holding time period of 2 weeks; J = estimated result.

TABLE C.2.3: RESULTS FROM ON-SITE ANALYSIS PROGRAM CONFIRMATION SAMPLES ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Location ID:	D: BUILDING 1533						
Field Sample ID:	INDOOR-1-BL	INDOOR-1-PP (RE)	INDOOR-1-NP	AMBIENT-1-BL			
Sample Location ID:	IA-2	IA-2	IA-2	AA-1			
Description:	Indoor air from	Center of western bay	Center of western bay;	Outdoors, west of			
Description.	center of western	ocilier of western buy	sample collected after	building			
			truck in bay started	building			
	bay; sample collected 5 min after		-				
			briefly				
	SUV in bay was						
Matrix:	started brieflv IA	IA	IA	AA			
PressureCondition	BL	PP	NP	BL			
Sample Type:	N	N	N	N			
Sample Collection Date/Time:	9/19/2012 11:15	9/19/2012 14:16	9/19/2012 16:43	9/19/2012 11:10			
Analytical Method (units):	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)			
Key Analyte for VI Evaluation	10-13 (ug/113)		10-13 (ug/iii3)	10-13 (ug/113)			
Benzene	130	5.3 RE	69	-			
Other Reported VOCs	150	5.5 KE	05				
Acetone	1100	18000 RE E	9400 D	-			
Acetonitrile	2.4	<2.5 RE	<6.5	-			
Acrolein	2.4 <5	<2.5 RE <9.9 RE	<0.5	-			
Acrylonitrile	<1.2	<9.9 RL <2.5 RE	<6.5	-			
Benzyl Chloride	<1.2	<2.5 RE	<0.5	-			
Bromodichloromethane	<0.25	<2.5 RE <0.5 RE	<0.5	-			
Bromoform	<0.25	<0.5 RE <2.5 RE	<0.5	-			
Bromonorm	<1.2	<2.5 RE <0.5 RE	<0.5 <1.3	-			
Butadiene, 1,3-	<0.25 33	<0.9 RE	<1.5 14	-			
Butanone, 2- (MEK)		<0.99 RE <25 RE	<65	-			
Butyl Acetate, n-	2.1	<2.5 RE	<6.5	-			
Carbon disulfide	<12	<2.5 RE <25 RE	<0.5	-			
Carbon tetrachloride	0.55	<0.5 RE	<0.5	-			
Chloro-1-propene, 3- (Allyl Chloride)	<0.25	<0.5 RE	<1.3	-			
Chlorobenzene	<0.25	<0.5 RE	<1.3	-			
		<0.5 RE <0.5 RE					
Chloroethane Chloroform	<0.25 0.27	<0.5 RE <0.5 RE	<1.3 <1.3	-			
Chloromethane	0.27	<0.5 RE <0.99 RE	<1.3	-			
Cyclohexane	12	27 RE	<2.0 33	-			
Dibromo-3-chloropropane, 1,2- (DBCP)	<1.2	27 RE <2.5 RE					
Dibromochloromethane	<0.25	<2.5 RE <0.5 RE	<0.5	-			
Dibromochloromethane	<0.25	<0.5 RE <0.5 RE	<1.3	-			
Dichloro-1,1,2,2-tetrafluoroethane, 1,2- (0	<0.25	<0.5 RE <2.5 RE					
Dichlorobenzene, 1,2-	<0.25	<2.5 RE <0.5 RE	<6.5 <1.3	-			
Dichlorobenzene, 1,3-	<0.25	<0.5 RE <0.5 RE	<1.3	-			
Dichlorobenzene, 1,3-	<0.25	<0.5 RE <0.5 RE	<1.3	-			
	<0.25 2.3	<0.5 RE <2.5 RE					
Dichlorodifluoromethane (CFC 12)	<0.25	<2.5 RE <0.5 RE	<6.5 <1.3	-			
Dichloroethane, 1,1- (1,1-DCA)				-			
Dichloroethane, 1,2- Dichloroethene, 1,1- (1,1-DCE)	<0.25	<0.5 RE <0.5 RE	<1.3	-			
	<0.25		<1.3	-			
Dichloroethene, cis-1,2- Dichloroethene, trans-1,2-	<0.25	<0.5 RE	<1.3	-			
	< 0.25	<0.5 RE	<1.3				
Dichloropropane, 1,2- Dichloropropene, cis-1,3-	< 0.25	<0.5 RE <2.5 RE	<1.3	-			
	<1.2		<6.5				
Dichloropropene, trans-1,3-	<1.2	<2.5 RE	<6.5	-			
Dioxane, 1,4-	<1.2 77	<2.5 RE	<6.5 80	-			
Ethanol		25 RE					
Ethyl Acetate	<2.5	<5 RE	27	-			
Ethylbenzene	84	6 RE	50	-			
Ethyltoluene, 4-	36	3.3 RE	29	-			
Heptane, n-	130	1800 RE E	1100	-			

TABLE C.2.3: RESULTS FROM ON-SITE ANALYSIS PROGRAM CONFIRMATION SAMPLES ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Location ID:							
Field Sample ID:	INDOOR-1-BL	INDOOR-1-PP (RE)	INDOOR-1-NP	AMBIENT-1-BL			
Sample Location ID:	IA-2	IA-2	IA-2	AA-1			
Description:	Indoor air from	Center of western bay	Center of western bay;	Outdoors, west of			
•	center of western	-	sample collected after	building			
	bay; sample		truck in bay started				
	collected 5 min after		briefly				
	SUV in bay was		briefly				
	started briefly						
Matrix:	IA	IA	IA	AA			
PressureCondition	BL	PP	NP	BL			
Sample Type:	N	N	N	N			
Sample Collection Date/Time:	9/19/2012 11:15	9/19/2012 14:16	9/19/2012 16:43	9/19/2012 11:10			
Analytical Method (units):	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)	TO-15 (ug/m3)			
Hexachlorobutadiene	<1.2	<2.5 RE	<6.5				
Hexane, n-	68	10 RE	120	-			
Hexanone, 2-	<1.2	<2.5 RE	<6.5	-			
Isopropylbenzene (Cumene)	4.3	<2.5 RL <2.5 RE	<0.5	-			
Limonene, d-	23	19 RE	100				
Methyl Methacrylate	<2.5	<5 RE	<13	-			
Methyl tert-Butyl Ether	<0.25	<0.5 RE	<1.3	-			
Methyl-2-pentanone, 4-	20	6 RE	9.5	-			
Methylene Chloride	20	9.7 RE	9.5 <6.5	-			
	19	2.7 RE	<0.5 47	-			
Naphthalene Nonane, n-	46	3.7 RE	47 14	-			
	25	3.7 RE <2.5 RE	14	-			
Octane, n- Pinene, alpha-	<1.2	<2.5 RE <2.5 RE	<6.5	-			
	<1.2 21			-			
Propanol, 2- (Isopropyl Alcohol)		<25 RE 3.4 RE	<65	-			
Propene	86		39				
Propylbenzene, n-	16	<2.5 RE	12	-			
Styrene	31	<2.5 RE	21	-			
Tetrachloroethane, 1,1,2,2-	<0.25	<0.5 RE	<1.3	-			
Tetrachloroethene	1.8	0.57 RE	1.8	-			
Tetrahydrofuran (THF)	<1.2	<2.5 RE	<6.5	-			
Toluene	410 D	18 RE	170	-			
Trichlorobenzene, 1,2,4-	<1.2	<2.5 RE	<6.5	-			
Trichloroethane, 1,1,1-	<0.25	<0.5 RE	<1.3	-			
Trichloroethane, 1,1,2-	<0.25	<0.5 RE	<1.3	-			
Trichloroethene	140	54 RE	15	-			
Trichlorofluoromethane (CFC 11)	1.2	1.2 RE	1.8	-			
Trichlorotrifluoroethane, 1,1,2-	0.49	<0.5 RE	<1.3	-			
Trimethylbenzene, 1,2,4-	120	13 RE	110	-			
Trimethylbenzene, 1,3,5-	38	3.8 RE	34	-			
Vinyl acetate	<12	<25 RE	<65	-			
Vinyl chloride	<0.25	<0.5 RE	<1.3	-			
Xylene, o-	100	8.2 RE	70	-			
Xylenes, m,p-	290	21 RE	180	-			
Radon (pCi/L)							
Radon	0.42	0.19	0.28	0.08			

Notes:

1. VOC analysis of vapor samples by ALS/Columbia Analytical Services, Simi Valley, California. Radon analysis by University of Southern Calife

2. Samples collected as grab (i.e., without flow controller). Samples for VOC analysis were collected in 6-L Summa canisters. Samples for Radi in 1-L Tedlar bags.

3. Pressure Condition: BL = baseline (normal operating conditions); NP = negative pressure (building depressurized); PP = positive pressure (

4. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; Dash ("-") indicates compound not analyzed.

5. INDOOR-1-PP Summa canister sample was re-analyzed to report lower concentrations. This was done by re-running the sample with a large

TABLE C.2.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Sample Date/Time	Description	Matrix	Benzene ug/m3
	BUILDING 1533		agino
9/18/2012 8:39	Center of garage	AI	1.1 J
9/18/2012 8:52	Outside, near Summa	AA	0.23 J
9/18/2012 9:07	Center of west wall	AI	4.5
9/18/2012 9:17	Repeat	AI	8.9
9/18/2012 9:32	Repeat	AI	15
9/18/2012 9:56	Repeat	AI	12
9/18/2012 10:10	Outdoors near AA-1	AA	0.25 J
9/18/2012 11:52	Corner near office	AI	U
9/18/2012 13:47	Screening SS-1	SS	6.4
9/18/2012 13:59	Screening SS-2	SS	38
9/18/2012 14:10	Screening SS-3	SS	2.7
9/18/2012 14:49	Repeat SS-3 bag	SS	2.1
9/19/2012 8:55	AA-1 west of building	AA	1.2 J
9/19/2012 9:05	IA-1 southwest corner	AI	6.1
9/19/2012 9:16	Tedlar SS-2	SS	15
9/19/2012 9:27	Repeat IA-1	AI	7
9/19/2012 9:38	At refrigerator opposite corner	AI	9.6
9/19/2012 9:49	Room with SS-2	AI	19
9/19/2012 9:59	Bathroom door cracked	AI	9.6
9/19/2012 10:10	Shop near used oil/workbench	AI	9.9
9/19/2012 11:12	Center of shop after vehicle started briefly	AI	141 JE
9/19/2012 11:35	Tedlar SS-1	SS	4.8
9/19/2012 11:45	IA-2/Shop (near lift)	AI	89
9/19/2012 11:56	Tedlar SS-3	SS	3.5
9/19/2012 12:06	IA-2/Shop (near lift)	AI	58
9/19/2012 13:12	Repeat IA-2	AI	19
9/19/2012 13:25	Inside store room with SS-2	AI	30
9/19/2012 13:36	In front of fan	AI	8
9/19/2012 13:47	Near fridge. Repeat 014	AI	9.6
9/19/2012 14:00	Outside AA-1	AA	0.38 J

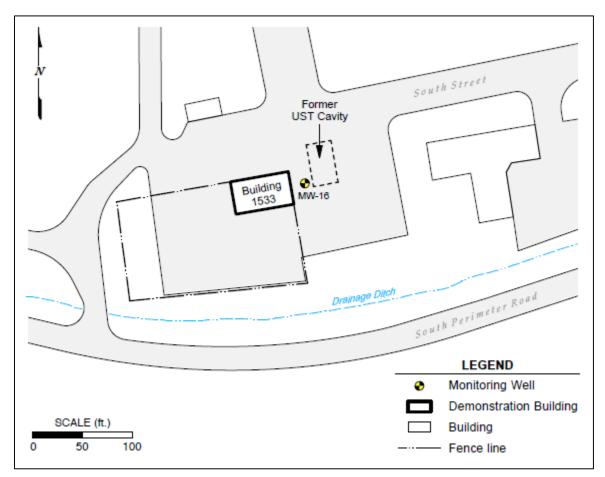
TABLE C.2.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Sample Date/Time	Description	Matrix	Benzene
	BUILDING 1533		ug/m3
	BUILDING 1933		
9/19/2012 14:13	IA-2	AI	5.1
9/19/2012 14:27	IA2	AI	4.8
9/19/2012 14:46	IA2	AI	U
9/19/2012 15:00	IA2	AI	2
9/19/2012 15:31	IA2	AI	U
9/19/2012 15:48	Across room at fridge	AI	U
9/19/2012 16:01	Above SS-2 room indoor air	AI	8.6
9/19/2012 16:12	IA2	AI	2.6
9/19/2012 16:24	IA2	AI	422 JE

Notes:

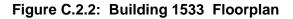
1. Samples analyzed using an Inficon HAPSITE ER portable GC/MS instrument. Calibration curve 9/19/2012.

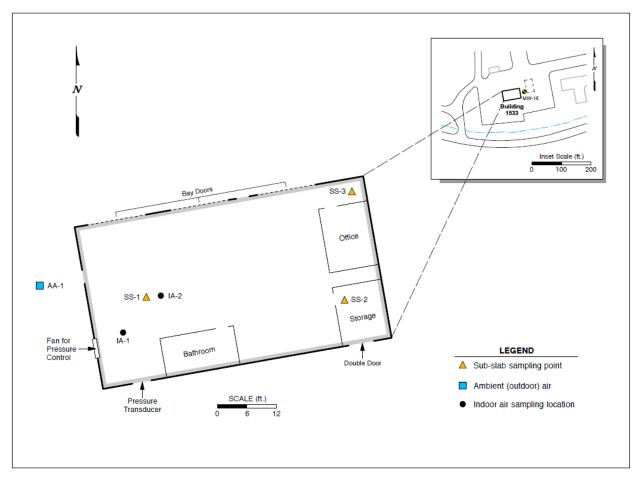
2. Samples are sorted chronologically.


3. J = estimated (result less than lower calibration limit); JE = estimated (result higher than upper calibration limit); U = not detected.

4. Matrix: AI = Indoor air; AA = Ambient (outdoor) air; SS = Sub-slab

APPENDIX C FIGURES ESTCP Projects ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan


Figure C.2.1: Site Map



Note: Only monitoring wells sampled for the demonstration are shown.

APPENDIX C FIGURES ESTCP Projects ER-201119 and ER-201025 Selfridge Air National Guard Base, Michigan

Note: Figure illustrates sample locations for off-site laboratory analysis. HAPSITE sample locations are not shown.

Appendix C.3: Tyndall Air Force Base, Florida

TABLES

- Table C.3.1
 Results from Conventional Vapor Intrusion Program
- Table C.3.2Results from Isotope Program
- Table C.3.3
 Results from On-Site Analysis Program Confirmation Samples
- Table C.3.4 Results from On-Site GC/MS Analysis

FIGURES

- Figure C.3.1 Site Map
- Figure C.3.2 Building 156 Floorplan
- Figure C.3.3 Building 219 Floorplan

TABLE C.3.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Tyndall Air Force Base, Florida

Loc	cation ID: GROU	JNDWATER
Field Sa	ample ID: MW-5 ¹	MW-20s ¹
Sample Loo	cation ID: SA-150-MW-5	264/280-MW-20s
Des	scription: North of Building 156	South of Building 219
	Matrix: GW	GW
Sam	ple Type: N	N
Sample Collection D	ate/Time: 2008	2010
Analytical Metho	od (units): 8260	8260
	(ug/L)	(ug/L)
Key Analyte for VI Evaluation		
Trichloroethene	299	6.4
Other Reported Compounds		
Dichloroethene, 1,1- (1,1-DCE)	-	-
Dichloroethene, cis-1,2-	21.4	2200
Dichloroethene, trans-1,2-	-	-
Tetrachloroethene	-	-
Vinyl chloride	-	-

Notes:

1. Groundwater samples were collected as part of normal site investigation/monitoring (i.e., not part of ESTCP VI Study).

2. Bold font = detected result

TABLE C.3.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Tyndall Air Force Base, Florida

		BUILDING	156 (HANGER)			
156-SS-1	156-SS-2	156-SS-3	156-IA-1	156-IA-2	156-IA-3	
1-SS-1	1-SS-2	1-SS-3	1-IA-1	1-IA-2	1-IA-3	
Paired with IA-1	Paired with IA-2	Paired with IA-3	Shop at N side of	Wood shop in	Paint booth room at	
			building	north-central part	NW corner of	
				of building	building	
SS	SS	SS	IA	IA	IA	
N	N	N	Ν	N	N	
2/21/2013	2/21/2013	2/21/2013	2/20/2013	2/20/2013	2/20/2013	
TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	
(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	
0.37	1.2	24	< 0.036	<0.046	<0.041	
<0.032	<0.032	<0.034	<0.036	<0.046	<0.041	
<0.032	<0.032	0.085	<0.036	<0.046	<0.041	
< 0.032	<0.032	0.051	<0.036	<0.046	<0.041	
0.26	0.16	0.45	0.054	0.063	0.6	
<0.032	<0.032	<0.034	<0.036	<0.046	<0.041	
	1-SS-1 Paired with IA-1 SS N 2/21/2013 TO-15 SIM (ug/m3) 0.37 <0.032 <0.032 <0.032 <0.032 0.26	1-SS-1 1-SS-2 Paired with IA-1 Paired with IA-2 SS SS N N 2/21/2013 2/21/2013 TO-15 SIM TO-15 SIM (ug/m3) (ug/m3) - - - - <0.032	156-SS-1 156-SS-2 156-SS-3 1-SS-1 1-SS-2 1-SS-3 Paired with IA-1 Paired with IA-2 Paired with IA-3 SS SS SS N N N 2/21/2013 2/21/2013 2/21/2013 TO-15 SIM TO-15 SIM TO-15 SIM (ug/m3) (ug/m3) (ug/m3) 0.37 1.2 24 <0.032	1-SS-1 1-SS-2 1-SS-3 1-IA-1 Paired with IA-1 Paired with IA-2 Paired with IA-3 Shop at N side of building SS SS SS IA N N N N 2/21/2013 2/21/2013 2/21/2013 2/20/2013 TO-15 SIM TO-15 SIM TO-15 SIM TO-15 SIM (ug/m3) (ug/m3) (ug/m3) (ug/m3) 0.37 1.2 24 <0.036	156-SS-1 156-SS-2 156-SS-3 156-IA-1 156-IA-2 1-SS-1 1-SS-2 1-SS-3 1-IA-1 1-IA-2 Paired with IA-1 Paired with IA-2 Paired with IA-3 Shop at N side of building Wood shop in north-central part of building SS SS SS IA IA IA N N N N N N 2/21/2013 2/21/2013 2/21/2013 2/20/2013 2/20/2013 TO-15 SIM TO-15 SIM TO-15 SIM TO-15 SIM IO-15 SIM (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) 0.37 1.2 24 <0.036	

Notes:

1. Vapor samples analyzed by ALS/Columbia Analytical Services, Simi Valley, California using USEPA Method TO-15 SIM.

2. Sub-slab soil gas collected as grab samples (without flow controller). Indoor and outdoor air sample collected with 8-hour flow controller.

3. All samples collected in 6-L Summa canisters.

4. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit.

5. Ambient air sample 219-AA-1 used for Building 156 and 219.

TABLE C.3.1: RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Tyndall Air Force Base, Florida

Location ID:			BUILDING 2	19 (OFFICE)		
Field Sample ID:	219-SS-1	219-SS-2	219-SS-3	219-IA-1	219-IA-3	219-AA-1
Sample Location ID:	2-SS-1	2-SS-2	2-SS-3	2-IA-1	2-IA-3	2-AA-1
Sample Location Description:	Paired with IA-1	Center of building	Paired with IA-3	Southern half of	Northern half of	Outside southwest
				building in central	building in janitor	entrance
				hallway	closet	
Matrix:	SS	SS	SS	IA	IA	AA
Sample Type:	Ν	N	N	Ν	N	N
Sample Collection Date/Time:	2/21/2013	2/21/2013	2/21/2013	2/20/2013	2/20/2013	2/20/2013
Γ	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM
Analytical Method (units):	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Key Analyte for VI Evaluation						
Trichloroethene	0.083	0.31	1.3	0.086	0.087	<0.039
Other Reported Compounds						
Dichloroethene, 1,1- (1,1-DCE)	< 0.032	<0.13	<0.063	<0.039	<0.041	<0.039
Dichloroethene, cis-1,2-	<0.032	<0.13	<0.063	<0.039	<0.041	<0.039
Dichloroethene, trans-1,2-	0.14	0.41	<0.063	<0.039	<0.041	<0.039
Tetrachloroethene	4.5	7.5	0.97	0.048	<0.041	<0.039
Vinyl chloride	<0.032	<0.13	<0.063	<0.039	<0.041	<0.039

Notes:

1. Vapor samples analyzed by ALS/Columbia Analytical Services, Simi Valley, California using USEPA Method TO-15 SIM.

2. Sub-slab soil gas collected as grab samples (without flow controller). Indoor and outdoor air sample collected with 8-hour flow controller.

3. All samples collected in 6-L Summa canisters.

4. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit.

5. Ambient air sample 219-AA-1 used for Building 156 and 219.

TABLE C.3.2: RESULTS FROM ISOTOPE PROGRAM ESTCP Project ER-201119 and ER-201025 Tyndall Air Force Base, Florida

Location ID:	BUILDING 15	6 (HANGER)		BUILDING 21	9 (OFFICE)	
Field Sample ID:	MW-5	156-SS-3	MW-20s	219-SS-3	219-IA-3 P1	219-IA-3-P2
Sample Location ID:	MW-5	1-SS-3	MW-20s	2-SS-3	2-IA-3	2-IA-3
Description:	North of Building 156	Paired with IA-3	South of building	Paired with IA-3	Northern half of	Northern half of
				(sample collected	building in janitor	building in janitor
				approx 9 hours after	closet (planted	closet (planted
				planted source was	source)	source)
				removed)		
Matrix:	GW	SS	GW	SS	IA	IA
Sample Type:	N	Ν	N	N	N	FD
Sample Collection Date/Time:	2/22/2013 12:10	2/21/2013 13:49	2/22/2013 12:30	2/22/2013 8:26	2/21/2013 8:00	2/21/2013 8:00
Analytical Method (units):	TCE C/CI	TCE C/CI	TCE C/CI	TCE C/CI	TCE C/CI	TCE C/CI
	(per mil)	(per mil)	(per mil)	(per mil)	(per mil)	(per mil)
Analyte						
d13C TCE	13.8 H	-9.6 H	-18.4 H	-1.9 H	-29 H	-28.8 H
d37CI TCE	10.1	6.3 H	4.7	6.3 H	-3.5 H	-3.2 H

Notes:

1. Isotope analysis was completed by the University of Oklahoma.

2. Bold font = detected result

H = samples analyzed outside of validated holding time period of 2 weeks

3. Indoor air TCE concentrations were too low in Building 156 and 219 to allow collection of sufficient mass for isotope analysis. An indoor VOC source was planted in Building 219 for evaluation in ESTCP Project ER-201025.

TABLE C.3.3: RESULTS FROM ON-SITE ANALYSIS PROGRAM CONFIRMATION SAMPLES ESTCP Project ER-201119 and ER-201025 Tyndall Air Force Base, Florida

Location ID:		BUILDING 1	56 (HANGER)	
Sample Location ID:	156-IA-4	156-IA-4	156-IA-5	156-AA-1
Description:	Small room	Small room	Small room	Outdoors, north
	adjacent to wood	adjacent to wood	adjacent to wood	of Building 156
	shop	shop	shop	-
Matrix:	IA	IA	IA	AA
Field Sample ID:	156-IA-4-BL	156-IA-4-NP	156-IA-5-NP	156-AA-1
Pressure Condition:	BL	NP	NP	BL
Sample Type:	N	N	FD	N
Sample Collection Date/Time:	2/22/13 8:04	2/21/13 16:05	2/21/13 16:05	2/21/13 16:05
Analytical Method (units):	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM
	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Key Analyte for VI Evaluation				
Trichloroethene	<0.032	<0.031	<0.033	-
Other Reported Compounds				
Dichloroethene, 1,1- (1,1-DCE)	<0.032	<0.031	<0.033	-
Dichloroethene, cis-1,2-	< 0.032	<0.031	<0.033	-
Dichloroethene, trans-1,2-	<0.032	<0.031	<0.033	-
Tetrachloroethene	0.077	0.061	0.062	-
Vinyl chloride	<0.032	<0.031	<0.033	-
Radon (pCi/L)				
Radon	0.07	U	-	0.03

Notes:

1. VOC analysis by ALS/Columbia Analytical Services, Simi Valley, California using USEPA Method TO-15 SIM.

2. Samples for VOC analysis were collected in 6-L Summa canisters without flow controllers.

3. Radon analysis by the University of Southern California.

4. Samples for radon analysis were collected in 1-L Tedlar bags.

5. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit.

6. BL = Baseline (uncontrolled) conditions; NP = Negative Pressure induced in building.

TABLE C.3.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Tyndall Air Force Base, Florida

Sample Date/Time	Description	Matrix	TCE ug/m3
	SCREENING SAMPLES		ug/mo
2/19/2013 11:03	Building 246 Tedlar bag screening sample (indoor air)	AI	0.21 J
2/19/2013 11:11	Building 258 Tedlar bag screening sample (indoor air)	AI	0.32 J
2/19/2013 11:20	Building 522 Tedlar bag screening sample (indoor air)	AI	0.19 J
2/19/2013 11:30	Building 560 Tedlar bag screening sample (indoor air)	AI	U
	BUILDING 156 (HANGER)		
2/19/2013 10:37	Building 156 north end, Tedlar bag screening sample (indoor air)	AI	0.19 J
2/19/2013 10:46	Building 156 south end, Tedlar bag screening sample (indoor air)	AI	U
2/20/2013 13:47	Building 156 NW work shop	AI	0.2 J
2/20/2013 13:57	Building 156 floor grate, N of NW workshop	AI	0.11 J
2/20/2013 14:06	Building 156 wood shop	AI	0.15 J
2/20/2013 14:15	Building 156 painting room	AI	0.11 J
2/21/2013 9:11	Building 156 small room adjacent to wood shop	AI	U
2/21/2013 10:32	Building 156 156-SS-3	SS	23
2/21/2013 10:40	Building 156 156-SS-2	SS	8.1
2/21/2013 10:48	Building 156 156-SS-1	SS	1.6 J
2/21/2013 14:27	Building 156 small room adjacent to wood shop	AI	U
2/21/2013 14:35	Building 156 small room adjacent to wood shop	AI	0.14 J
2/21/2013 15:09	Building 156 painting room	AI	0.081 J
2/21/2013 15:17	Building 156 small room adjacent to wood shop	AI	U
2/21/2013 15:37	Building 156 small room adjacent to wood shop	AI	0.086 J
2/21/2013 15:47	Building 156 painting room	AI	0.086 J
2/21/2013 15:56	Building 156 small room adjacent to wood shop	AI	U
2/19/2013 10:54	BULDING 219 Building 219 Tedlar bag screening sample (indoor air)	AI	0.18 J
2/20/2013 9:21	Building 219 hallway, south end	AI	0.26 J
2/20/2013 9:31	Building 219 hallway, center	AI	0.14 J
2/20/2013 9:40	Building 219 hallway, north end	AI	0.12 J
2/20/2013 10:02	Building 219 south end of hallway, under the door to secure area	AI	0.38 J
2/21/2013 7:55	Building 219 Outside front door of building	AA	0.18 J
2/21/2013 8:07	Building 219 Intersection of front door hallway and main hallway	AI	0.34 J
2/21/2013 8:15	Building 219 Hallway, in front of janitor's closet	AI	1 J

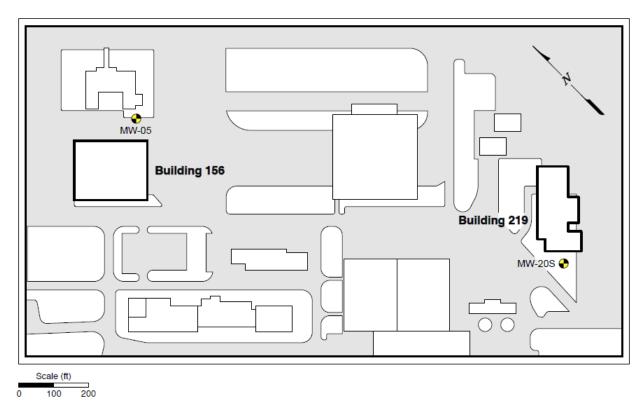
TABLE C.3.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Tyndall Air Force Base, Florida

Sample Date/Time	Description	Matrix	TCE
			ug/m3
2/21/2013 8:23	Building 219 with tube, beneath door of janitor's closet	AI	54
2/21/2013 8:33	Building 219 main hallway, around corner of janitor's closer	AI	0.81 J
2/21/2013 14:45	Building 219 South end of building, 219-SS-1	SS	0.27 J
2/21/2013 14:53	Building 219 Building Center, 219-SS-2	SS	0.54 J
2/21/2013 15:01	Building 219 Janitor's closent at north end, 219-SS-3	SS	4.9

Notes:

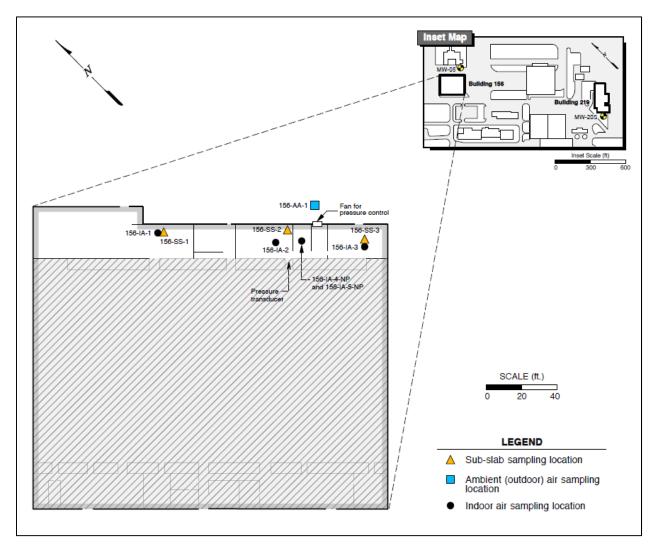
1. Samples analyzed using a HAPSITE SMART portable GC/MS instrument. Calibration curve 2/19/2013.

2. Samples are grouped by building, and sorted chronologically.


3. J = estimated (result less than lower calibration limit); U = not detected.

4. Matrix: AI = Indoor air; AA = Ambient (outdoor) air; SS = Sub-slab

APPENDIX C FIGURES ESTCP Projects ER-201119 and ER-201025 Tyndall Air Force Base, Florida


Figure C.3.1: Site Map

Note: Only monitoring wells sampled for the demonstration are shown.

APPENDIX C FIGURES ESTCP Projects ER-201119 and ER-201025 Tyndall Air Force Base, Florida

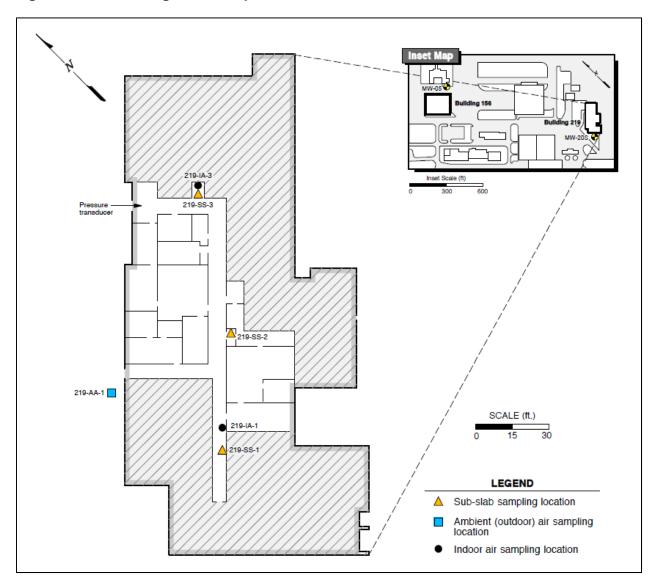


Figure C.3.2: Building 156 Floorplan

Note: Figure illustrates sample locations for off-site laboratory analysis. HAPSITE sample locations are not shown.

APPENDIX C FIGURES ESTCP Projects ER-201119 and ER-201025 Tyndall Air Force Base, Florida

Figure C.3.3: Building 219 Floorplan

Note: Figure illustrates sample locations for off-site laboratory analysis. HAPSITE sample locations are not shown.

Appendix C.4: Former Raritan Arsenal Site, New Jersey

TABLES

Table C.4.1	Results from Conventional Vapor Intrusion Program
Table C.4.2	Results from Isotope Program
Table C.4.3	Results from On-Site Analysis Program Confirmation Samples
Table C.4.4	Results from On-Site GC/MS Analysis

FIGURES

- Figure C.4.1 Site Map
- Figure C.4.2 Building CP4 Floorplan
- Figure C.4.3 Building 209 Floorplan

TABLE C.4.1 RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Former Raritan Arsenal Site, New Jersey

Location ID:	GROUNDWATER					
Field Sample ID:	MW-CP-IV-1 ³	MW-139 ³	MW-136 ³	MW-156 ³		
Sample Location ID:	MW-CP-IV-1	MW-139	MW-139 MW-136			
Description:	Well located north of	Well located west of	Well located north of	Well located northeast		
	CP4 building	CP4 building	Building 209	of Building 209		
Materies	C)W/	C)N/	C)W/	C/W/		
Matrix:		GW	GW	GW		
Sample Type:		N	N	N		
Sample Collection Date:	5/23/2012	5/23/2012	5/22/2012	5/22/2012		
Analytical Method	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM		
(units):	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)		
Key Analyte for VI Evaluation						
Trichloroethene	7.6	120	39	240		
Other Reported Compounds						
Dichloroethene, 1,1- (1,1-DCE)	<0.09	1	<0.09	0.28 J		
Dichloroethene, cis-1,2-	1.5	91	<0.18	3.6		
Dichloroethene, trans-1,2-	<0.13	0.79 J	<0.13	0.41 J		
Tetrachloroethene	0.71 J	5.7	<0.1	<0.1		
Vinyl chloride	<0.14	24	<0.14	<0.14		

Notes:

1. Bold font = detected result; "<" = not detected above detection limit

2. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

3. Results from May 2012 groundwater monitoring event were provided by site personnel. VOC analysis of groundwater samples was not conducted as part of the ESTCP VI study.

TABLE C.4.1 RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Former Raritan Arsenal Site, New Jersey

Location ID:	BUILDING 209					
Field Sample ID:		209-SG-06	209-IA-09	209-IA-10	209-AA-1	
Sample Location ID:	2-SS-1	2-SS-2	2-IA-1	2-IA-2	2-AA-1	
Description:	Permanent point in	Permanent point in	Paired with	Opposite end of	North of entrance	
	Room L306	Bay D	permanent subslab	Bay C		
	Organic Prep/TCLP	-	point 209-SG-09	-		
	Extraction Lab					
Matrix:	SS	SS	IA	IA	AA	
Sample Type:	N	N	N	N	N	
Sample Collection Date/Time:	3/27/2013 10:00	3/27/2013 10:50	3/27/2013 16:09	3/27/2013 16:08	3/27/2013 16:10	
Analytical Method	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	
(units):	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	
Key Analyte for VI Evaluation						
Trichloroethene	8.1	0.55	<0.05	0.064	0.017 J	
Other Reported Compounds						
Dichloroethene, 1,1- (1,1-DCE)	0.05 J	0.028 J	0.063 J	<0.0053	<0.0051	
Dichloroethene, cis-1,2-	<0.07	<0.014	<0.084	<0.017	<0.016	
Dichloroethene, trans-1,2-	<0.079	<0.016	<0.094	<0.019	<0.018	
Tetrachloroethene	6.4	13	0.073 J	0.058	0.042	
Vinyl chloride	<0.018	<0.0036	<0.021	<0.0043	<0.0041	
Notos:	•					

Notes:

1. "<" = not detected above method detection limit

2. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

3. D = The reported result is from a dilution.

TABLE C.4.1 RESULTS FROM CONVENTIONAL VAPOR INTRUSION PROGRAM ESTCP Project ER-201119 and ER-201025 Former Raritan Arsenal Site, New Jersey

Location ID:			BUILDING CP4			
Field Sample ID:	CP4-SG-6	CP4-SG-3	CP4-IA-1	CP4-IA-2	CP4-AA-1	
Sample Location ID:	1-SS-1	1-SS-3	1-IA-1	1-IA-2	1-AA-1	
Description:	Permanent point in	Permanent point	At end of the hall in	In financial	Outside back	
	Warehouse 1 on	in 280 Raritan	the engineering	services area, on	door	
	west side closest to		section, on top of	cubicle cabinet		
	offices		cabinet			
Matrix:	SS	SS	IA	IA	AA	
Sample Type:	N	N	N	N	N	
Sample Collection Date/Time:	3/26/2013 15:00	3/26/2013 9:00	3/26/2013 16:44	3/26/2013 16:45	3/26/2013 16:42	
Analytical Method	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	
(units):	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	
Key Analyte for VI Evaluation						
Trichloroethene	15	93 D	1.3	2.1	0.057	
Other Reported Compounds						
Dichloroethene, 1,1- (1,1-DCE)	<0.0042	<0.0042	<0.0055	<0.0044	<0.005	
Dichloroethene, cis-1,2-	0.014 J	1.1	<0.017	<0.014	<0.016	
Dichloroethene, trans-1,2-	0.023 J	0.3	<0.019	0.018 J	<0.018	
Tetrachloroethene	7.3	12	0.3	0.27	0.096	
Vinyl chloride	<0.0034	<0.0034	<0.0044	<0.0036	<0.004	
Notes:	•					

Notes:

1. "<" = not detected above method detection limit

2. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

3. D = The reported result is from a dilution.

TABLE C.4.2: RESULTS FROM ISOTOPE PROGRAM ESTCP Project ER-201119 and ER-201025 Former Raritan Arsenal Site, New Jersey

Location ID:		CAMPUS PLAZA 4									
Description:	MW-139	MW-CP-IV-1	Permanent point;	In 1st conference	In kitchen between	In kitchen between					
			Warehouse 1 on west	room wall behind	conference rooms	conference rooms					
			side closest to	ethernet outlet							
			offices.								
Matrix:	GW	GW	SS	IA	IA	IA					
Field Sample ID:	MW-139	MW-CP-IV-1	CP4-SG-6	CP4-IA-3	CP4-IA-4B	CP4-IA-4					
Sample Type:	N	N	N	N	N	FD					
Sample Collection Date/Time:	3/28/2013	3/28/2013	3/28/2013 12:12	3/27/2013 9:05	3/28/2013 9:45	3/27/2012 9:05					
Analytical Method (units):	TCE C/CI	TCE C/CI	TCE C/CI	TCE C/CI	TCE C/CI	TCE C/CI					
	(per mil)	(per mil)	(per mil)	(per mil)	(per mil)	(per mil)					
Analyte											
d13C TCE	-16.5	-20.9	-5.4	-31.2	-30.5	-30.9					
d37CI TCE	4.6	3.1	3.4	-1.3	0.1	-0.4					

Location ID:		BUILDING 209	
Description:	MW-136	MW-156	Permanent point; in
			Room L306 Organic
			Prep/TCLP Extraction
			Lab
Matrix:	GW	GW	SS
Field Sample ID:	MW-136	MW-156	209-SG-09
Sample Type:	N	N	Ν
Sample Collection Date/Time:	3/28/2013	3/28/2013	3/27/2013 15:30
Analytical Method (units):	TCE C/CI	TCE C/CI	TCE C/CI
	(per mil)	(per mil)	(per mil)
Analyte			
d13C TCE	-22.2	-25.3	-10.6
d37CI TCE	1.5	1.9	3.3

Notes:

1. Isotope analysis was completed by the University of Oklahoma.

2. Bold font = detected result

TABLE C.4.3: RESULTS FROM ON-SITE ANALYSIS PROGRAM CONFIRMATION SAMPLES ESTCP Project ER-201119 and ER-201025 Former Raritan Arsenal Site, New Jersey

Location ID:			BUILDING CP4		
Field Sample ID:	CP4-IA-3	CP4-IA-5-BL	CP4-IA-5-NP	CP4-IA-5-NP	CP1-AA-2
Sample Location ID:	1-IA-3	1-IA-5	1-IA-5	1-IA-5	1-AA-2
Description:		Warehouse 1	Warehouse 1	Warehouse 1	Behind warehouse
	wall behind ethernet				
	outlet				
Matrix:		IA	IA	IA	AA
Pressure Condition:	BL	BL	NP	NP	BL
Sample Type:	N	N	N	FD	N
Sample Collection Date/Time:	3/26/2013 16:30	3/28/2013 8:45	3/28/2013 11:05	3/28/2013 11:05	3/28/2013 8:50
Analytical Method (units):	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15 SIM
	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Key Analyte for VI Evaluation					
Trichloroethene	2.4	0.43	0.32	0.33	-
Other Reported Compounds					
Dichloroethene, 1,1- (1,1-DCE)	<0.0039	<0.0037	<0.019	<0.019	-
Dichloroethene, cis-1,2-	<0.012	<0.012	<0.061	<0.059	-
Dichloroethene, trans-1,2-	<0.014	0.041	<0.069	0.25	-
Tetrachloroethene	0.16	0.066	0.097 J	0.17	-
Vinyl chloride	<0.0032	< 0.003	<0.016	<0.015	-
Radon (pCi/L)					
Radon	-	0.23	0.11	0.15	0.03
Notos:					

Notes:

1. VOC analysis of vapor samples by ALS/Columbia Analytical Services, Simi Valley, California. Radon analysis by University of Southern California.

2. Samples collected as grab (i.e., without flow controller). Samples for VOC analysis were collected in 6-L Summa canisters. Samples for Radon analysis were collected in 1-L Tedlar bags.

3. Pressure Condition: BL = baseline (uncontrolled); NP = negative pressure (building depressurized).

4. Bold font = detected result; Less-than symbol ("<") = analyte not found at indicated limit; J-flag ("J") indicates the result is an estimated concentration that is less than the method reporting limit but greater than or equal to the method detection limit. Dash ("-") indicates compound not analyzed.

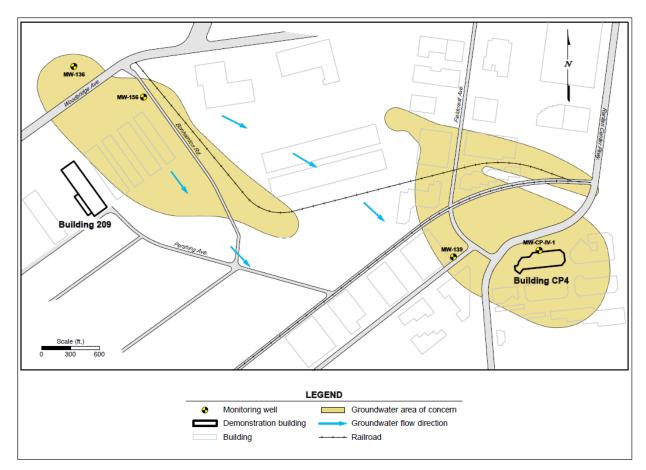
TABLE C.4.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Former Raritan Arsenal Site, New Jersey

Sample Date/Time	Description	Matrix	PCE ug/m3	TCE ug/m3
	SCREENING SAMPLES		ughine	
3/25/2013 8:59	274 Raritan (bag)	AI	0.26 J	U
3/25/2013 9:08	280 Raritan (bag)	AI	0.24 J	0.81 J
3/25/2013 9:32	278/284 Raritan (bag). Odors in building (equipment cleaned recently?)	AI	0.26 J	U
3/25/2013 9:51	Re-run 280 Raritan bag	AI	0.34 J	1.1 J
3/25/2013 9:59	Re-run 280 Raritan bag (duplicate)	AI	0.29 J	1.1 J
3/25/2013 10:27	Bldg 209 Bay A (bag	AI	0.25 J	U
3/25/2013 10:35	Bldg 209 Bay B (bag)	AI	0.24 J	U
3/25/2013 10:43	Bldg 209 Bay C (bag)	AI	0.48 J	U
3/25/2013 11:35	Bldg 209 Bay D (bag) - retry	AI	0.37 J	U
3/25/2013 11:43	Bldg 209 Bay E (bag)	AI	0.37 J	U
3/25/2013 11:51	Bldg 209 Bay F (bag)	AI	0.25 J	U
	BUILDING CP4		_	
3/25/2013 8:21	300 Raritan CPIV conference room	AI	0.34 J	6.4
3/25/2013 8:52	Repeat 300 Raritan CPIV conference room. Sampled with probe	AI	0.2 J	4.7
3/25/2013 9:16	300 Raritan Warehouse (bag), sample collected near spray cans	AI	0.24 J	0.52 J
3/25/2013 9:24	300 Raritan Warehouse 2 (bag)	AI	0.25 J	0.86 J
3/25/2013 10:11	repeat 300 Raritan CPIV conference room. Sampled with probe	AI	0.24 J	6.4
3/25/2013 11:01	CPIV conference room air, repeat	AI	0.26 J	5.9
3/25/2013 11:27	Repeat conference room (after restart, autotune, conc cleanout)	AI	0.23 J	6.4
3/26/2013 8:30	conference room air, sampled with probe	AI	0.22 J	3.3
3/26/2013 9:12	280 Raritan (bag)	AI	0.18 J	0.97 J
3/26/2013 9:20	280 Raritan Subslab (CP4-SG-3)	SS	8.1	91
3/26/2013 9:49	conference room	AI	0.24 J	3
3/26/2013 9:58	300-1 (bag)	AI	0.39 J 0.29 J	3
3/26/2013 10:06 3/26/2013 10:14	300-2 (bag) 300-3 (bag)	AI	0.29 J 0.35 J	2.3 J 2 J
3/26/2013 10:14	conference room (after reboot)	AI	0.35 J 0.24 J	2 J 3.4
3/26/2013 10:56	retry 300-4 (bag)	AI	0.24 J 0.26 J	2.4 J
3/26/2013 10:36	300-5 (bag)	AI	0.26 J 0.38 J	2.4 J 2.8
3/26/2013 11:14	300-6 (bag)	AI	0.38 J 0.24 J	2.0 1.1 J
3/26/2013 11:25	300-7 (bag)	Al	0.24 J 0.31 J	3.9
3/26/2013 11:33	300-8 (bag)	Al	0.28 J	3.7
3/26/2013 11:42	conference room air, sampled with probe	AI	0.23 J	3.2
3/26/2013 11:59	Outdoor air at AA-1 (bag)	AA	U.200	U
3/26/2013 12:13	conference room kitchen (bag)	AI	0.28 J	3.3
3/26/2013 12:26	janitorial closet (bag)	Al	0.32 J	3.3
3/26/2013 12:34	mail room 1 (bag)	AI	0.3 J	4
3/26/2013 12:42	mail room 2 (bag)	AI	0.29 J	3
3/26/2013 13:07	Conference room, sampled with probe	AI	0.25 J	3.1
3/26/2013 14:03	Conference room, before reboot	AI	0.27 J	3.7
3/26/2013 14:21	Repeat conference room after reboot	AI	0.26 J	3.5
3/26/2013 14:29	Men's room off central hallway (bag)	AI	0.29 J	2.7
	Women's room off central hallway (bag). Strong perfume/air freshener			
3/26/2013 14:38	odors.	AI	0.29 J	2.6 J
3/26/2013 14:58	Hallway outside conference room	AI	0.27 J	3.3
3/26/2013 15:10	300-7 location sampled with probe (M/W restroom near conference rooms)	AI	0.26 J	3.3
	300-9 pass-through hall between conference room 1 and mailroom.			
3/26/2013 15:18	Sampled with probe.	AI	0.26 J	3.1
3/26/2013 15:26	Upstairs composite (bag)	AI	0.28 J	2.8
3/26/2013 15:39	Vent in ceiling of conference room (bag)	AI	0.35 J	3.5
3/26/2013 15:47	Warehouse 1 (bag)	AI	0.29 J	1.7 J
3/26/2013 15:56	In wall, behind ethernet/outlet cover. Sampled with probe.	AI	0.25 J	11
3/26/2013 16:09	Plumbing wall gap under bathroom sink by 300-7	AI	0.27 J	3
3/26/2013 16:17	Wall outlet near 300-1	AI	0.28 J	3.1
3/26/2013 16:25	Wall outlet outside Conference Room 1	AI	0.26 J	3
2/26/2042 40:22	resample ethernet/wall outlet (same as run 38 location). Collected after		0.07	A
3/26/2013 16:33	Summa/grab sample CP4-IA-3.	AI	0.27 J	4

TABLE C.4.4: RESULTS FROM ON-SITE GC/MS ANALYSIS ESTCP Project ER-201119 and ER-201025 Former Raritan Arsenal Site, New Jersey

Variation up/m3 up/m3 up/m3 3/26/2013 17:57 CP4-SG-2 screening (bag) SS 2.3 24 3/26/2013 17:57 CP4-SG-6 (bag) SS 7.5 20 3/28/2013 8:16 BL, warehouse near Omniguard AI U 0.86 J 3/28/2013 8:25 Center of Warehouse 1 paired with CP4-IA-S-BL summa and radon AI U 0.91 J 3/28/2013 9:11 NP: Repeat Run 4 location, fan on 10 minutes AI U 0.75 J 3/28/2013 9:18 NP: Inside hallway leading to offices; fan on 15 minutes AI U 0.49 J 3/28/2013 9:18 NP: Inside hallway leading to offices; fan on 15 minutes AI U 0.49 J 3/28/2013 9:28 delivery NP: Warehouse 1 center (same location as Run 7) AI U 0.49 J 3/28/2013 9:47 NP: inside door/hall (same as Run 9 location) AI U 0.45 J 3/28/2013 10:24 NP: resample warehouse 2 run 5 location AI U 0.45 J 3/28/2013 10:24 NP: sale expansion joint sampled in run 16 AI U 0.45 J <	Sample Date/Time	Description	Matrix	PCE	TCE
3/28/2013 17:57 CP4-SG-6 (bag) SS 7.5 20 3/28/2013 8:16 BL; warehouse near Orniguard AI U 0.86 J 3/28/2013 8:25 Center of Warehouse 1 north end, near building materials storage AI U 0.91 J 3/28/2013 8:32 Warehouse 1 north end, near building materials storage AI U 0.91 J 3/28/2013 9:11 NP; Repeat Run 4 location, fan on 10 minutes AI U 0.65 J 3/28/2013 9:18 NP; Inside hallway leading to offices; fan on 15 minutes AI U 0.65 J 3/28/2013 9:39 NP; Warehouse 1 center (same location as Run 7) AI U 0.48 J 3/28/2013 9:47 NP; inside door/hall (same as Run 9 location) AI U 0.44 J 3/28/2013 10:24 NP; warehouse 1 center (same location. Fan on 70 min. AI U 0.45 J 3/28/2013 10:34 NP; sub-slab, sampled with 3/8' tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:34 NP; sab expansion joint sampled through tubing SS 0.81 J 7 3/28/2013 10:52 NP; lab terp					ug/m3
3/28/2013 8:16 BL; warehouse near Ornniguard AI U 0.86 J 3/28/2013 8:25 Center of Warehouse 2 AI U 1.1 J 3/28/2013 8:32 Warehouse 1 north end, near building materials storage AI U 0.91 J 3/28/2013 8:32 Warehouse 1 north end, near building materials storage AI U 0.81 J 3/28/2013 9:11 NP; Repeat Run 4 location, fan on 10 minutes AI U 0.75 J 3/28/2013 9:28 delivery AI U 0.49 J 3/28/2013 9:39 NP; Karehouse 1 center (same location as Run 7) AI U 0.49 J 3/28/2013 9:47 NP; inside dor/hall (same as Run 9 location) AI U 0.49 J 3/28/2013 10:24 NP; resample Warehouse 2 run 5 location AI U 0.45 J 3/28/2013 10:34 NP; islab expansion joint sampled through tubing SS 0.81 J 7 3/28/2013 10:42 NP; islab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 11:03 DUP-1 Conference room kitchen (bag). Sample collected into Tedlar bag approx <td></td> <td></td> <td></td> <td></td> <td></td>					
3/28/2013 8:25 Center of Warehouse 1 All U 1.1 J 3/28/2013 8:32 Warehouse 1 north end, near building materials storage All U 0.91 J 3/28/2013 8:44 End of BL, Warehouse 1, paired with CP4-IA-5-BL summa and radon All U 0.81 J 3/28/2013 9:18 NP: Repeat Run 4 location, fan on 10 minutes All U 0.75 J 3/28/2013 9:18 NP: Inside hallway leading to offices; fan on 15 minutes All U 0.45 J 3/28/2013 9:18 NP: Narehouse 1 center (same location as Run 7) All U 0.48 J 3/28/2013 9:39 NP: Warehouse 1 center (same location as Run 7) All U 0.49 J 3/28/2013 10:16 NP: Warehouse 1 at Run 4 location. Fan or 0 min. All U 0.48 J 3/28/2013 10:24 NP: resample Warehouse 2 run 5 location All U 0.45 J 3/28/2013 10:32 NP: indoor air above crack sampled in run 16 All U 0.45 J 3/28/2013 10:52 NP: iast NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and All U 0.48 J 2.2 J 3/	3/26/2013 17:57		SS	7.5	20
3/28/2013 8:32 Warehouse 1 north end, near building materials storage AI U 0.91 J 3/28/2013 8:44 End of BL, Warehouse 1, paired with CP4-IA-5-BL summa and radon AI U 0.81 J 3/28/2013 9:11 NP; Repeat Run 4 location, iran 010 minutes AI U 0.75 J 3/28/2013 9:18 NP; Run 4 location; sample collected after bay door opened and closed for AI U 0.45 J 3/28/2013 9:28 MP; Warehouse 1 center (same location as Run 7) AI U 0.49 J 3/28/2013 9:39 NP; Warehouse 1 center (same location) AI U 0.49 J 3/28/2013 10:41 NP; resample Varehouse 2 run 5 location AI U 0.41 J 3/28/2013 10:24 NP; slab sampled with 3/8' tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:32 NP; slab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 11:30 DUP-1 Conference room kitchen (bag). Sample collected into Tedlar bag approx AI U 0.45 J 3/28/2013 11:31 BL: resample roack (run 16 location) AI U 0.46					
3/28/2013 8:44 End of BL; Warehouse 1, paired with CP4-IA-5-BL summa and radon AI U 0.81 J 3/28/2013 9:11 NP; Repeat Run 4 location, fan on 10 minutes AI U 0.75 J 3/28/2013 9:18 NP; Inside hallway leading to offices; fan on 15 minutes AI U 0.64 J 3/28/2013 9:28 delivery AI U 0.48 J 3/28/2013 9:39 NP; Warehouse 1 center (same location as Run 7) AI U 0.48 J 3/28/2013 9:47 NP; inside door/hall (same as Run 9 location) AI U 0.48 J 3/28/2013 10:6 NP; Warehouse 1 at Run 4 location. Fan on 70 min. AI U 0.45 J 3/28/2013 10:24 NP; inside hallway leading to infication. Fan on 70 min. AI U 0.45 J 3/28/2013 10:34 NP; sub-slab, sampled with 3/8" tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:42 NP; islab expansion joint sampled through tubing SS 0.21 J 1.4 J 3/28/2013 11:03 NP; last NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and AI U 0.59 J 3/28/2013 11:31 10:00 AI 0.82 J 2.2 J				-	-
3/28/2013 9:11 NP: Repeat Run 4 location, fan on 10 minutes AI U 0.75 J 3/28/2013 9:18 NP: Inside hallway leading to offices; fan on 15 minutes AI U 0.54 J NP: Run 4 location; sample collected after bay door opened and closed for delivery AI U 0.49 J 3/28/2013 9:39 NP: Warehouse 1 center (same location as Run 7) AI U 0.48 J 3/28/2013 9:39 NP: Resample warehouse 1 at Run 4 location. Fan on 70 min. AI U 0.49 J 3/28/2013 10:16 NP: resample Warehouse 2 run 5 location AI U 0.54 J 3/28/2013 10:24 NP: resample warehouse 2 run 5 location AI U 0.45 J 3/28/2013 10:32 NP: slab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 10:42 NP: slab expansion joint sample collected into Tedlar bag approx NP: last NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and U 0.46 J 3/28/2013 11:13 DUP-1 S 0.21 J 1.4 J 0.54 J 3/28/2013 11:21 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:21 B 2.2 J 9.1 3/28/2013 11:21				-	
3/28/2013 9:18 NP: Inside hallway leading to offices; fan on 15 minutes AI U 0.54 J NP: Run 4 location; sample collected after bay door opened and closed for 3/28/2013 9:39 AI U 0.44 J 3/28/2013 9:39 NP: Warehouse 1 center (same location as Run 7) AI U 0.44 J 3/28/2013 9:39 NP: Warehouse 1 center (same location) AI U 0.49 J 3/28/2013 10:16 NP: resample Warehouse 2 run 5 location AI U 0.49 J 3/28/2013 10:24 NP: sub-slab, sampled with 3/8* tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:24 NP: last beyansion joint sampled through tubing SS 0.22 J 1.4 J 0.45 J 3/28/2013 10:22 NP: last NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and NI U 0.45 J 3/28/2013 11:30 DUP-1 AI U 0.45 J 0.88 J 2.2 J 3/28/2013 11:31 BL: resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 11:50 BL; resample indoor air above crack AI U 0.46 J 3/28/2013 11:21 BL. Repeat run 4 location AI <td></td> <td></td> <td></td> <td>-</td> <td></td>				-	
NP: Run 4 location; sample collected after bay door opened and closed for delivery Al U 0.49 J 3/28/2013 9:39 NP; Warehouse 1 center (same location as Run 7) Al U 0.48 J 3/28/2013 9:39 NP; Warehouse 1 center (same location) Al U 0.48 J 3/28/2013 10:16 NP; Inside door/hall (same as Run 9 location) Al U 0.49 J 3/28/2013 10:24 NP; resample Warehouse 2 run 5 location Al U 0.45 J 3/28/2013 10:24 NP; sub-slab, sampled with 3/8" tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:52 NP; slab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 11:03 DUP-1 Conference room kitchen (bag). Sample collected into Tedlar bag approx Al U 0.59 J 3/28/2013 11:59 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 11:59 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 11:59 BL; resample nidoor air above crack Al U 0.75 J 3			AI	-	
3/28/2013 9:28 delivery AI U 0.49 J 3/28/2013 9:39 NP; Warehouse 1 center (same location as Run 7) AI U 0.48 J 3/28/2013 10:16 NP; inside door/hall (same as Run 9 location) AI U 0.48 J 3/28/2013 10:16 NP; warehouse 1 at Run 4 location. Fan on 70 min. AI U 0.49 J 3/28/2013 10:24 NP; resample Warehouse 2 run 5 location AI U 0.45 J 3/28/2013 10:42 NP; indoor air above crack sampled in run 16 AI U 0.45 J 3/28/2013 10:52 NP; slab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 11:03 DUP-1 AI U 0.59 J Conference room kitchen (bag). Sample collected into Tedlar bag approx AI 0.48 J 2.2 J 3/28/2013 11:59 BL; resample rack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample rack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample rack (run 16 location) SS 1.2 J 9.1	3/28/2013 9:18	NP; Inside hallway leading to offices; fan on 15 minutes	AI	U	0.54 J
3/28/2013 9:39 NP: Warehouse 1 center (same location) AI U 0.48 J 3/28/2013 9:47 NP: inside door/hall (same as Run 9 location) AI U 0.5 J 3/28/2013 10:16 NP: Warehouse 1 at Run 4 location. Fan on 70 min. AI U 0.49 J 3/28/2013 10:24 NP: warehouse 1 at Run 4 location. AI U 0.49 J 3/28/2013 10:34 NP: sub-slab, sampled with 3/8" tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:42 NP: slab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 10:52 NP: slab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 11:03 DUP-1 AI U 0.45 J 3/28/2013 11:13 DUP-1 Conference room kitchen (bag). Sample collected into Tedlar bag approx AI 0.88 J 2.2 J 3/28/2013 11:21 BL: resample indoor air above crack AI U 0.46 J 3/28/2013 12:07 BL: resample indoor air above crack AI U 0.45 J 3/27/2013 8:31 Hall outside EPA/E					
3/28/2013 9:47 NP: inside door/hall (same as Run 9 location) AI U 0.5J 3/28/2013 10:16 NP: Warehouse 1 at Run 4 location. Fan on 70 min. AI U 0.49 J 3/28/2013 10:24 NP: resample Warehouse 2 run 5 location AI U 0.54 J 3/28/2013 10:34 NP: sub-slab, sampled with 3/8" tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:42 NP: indoor air above crack sampled in run 16 AI U 0.45 J 3/28/2013 10:52 NP: slab expansion joint sampled through tubing SS 0.22 J 1.4 J NP: istal NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and AI U 0.59 J 3/28/2013 11:31 DUP-1 Conference room kitchen (bag). Sample collected into Tedlar bag approx AI 0.88 J 2.2 J 3/28/2013 11:21 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:21 BL Resample indoor air above crack AI U 0.45 J 3/28/2013 11:21 BL resample indoor air above crack AI U U 0.45 J 3/28/2013 12:07 <td></td> <td></td> <td></td> <td>-</td> <td></td>				-	
3/28/2013 10:16 NP; Warehouse 1 at Run 4 location. Fan on 70 min. AI U 0.49 J 3/28/2013 10:24 NP; resample Warehouse 2 run 5 location AI U 0.54 J 3/28/2013 10:24 NP; sub-slab, sampled with 3/8" tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:32 NP; indoor air above crack sampled in run 16 AI U 0.45 J 3/28/2013 10:52 NP; islab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 10:52 NP; iast NP sample, paired with summa/itediar and dups CP4-IA-5-NP and SS 0.22 J 1.4 J 3/28/2013 11:13 DUP-1 Conference room kitchen (bag). Sample collected into Tediar bag approx AI U 0.46 J 3/28/2013 11:51 BL. Repeat run 4 location AI U 0.75 J 9.1 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:16 Outdoors behind warehouse EUILDING 209 AA U 0.45 J 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U				U	
3/28/2013 10:24 NP; resample Warehouse 2 run 5 location AI U 0.54 J 3/28/2013 10:34 NP; sub-slab, sampled with 3/8' tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:42 NP; indoor air above crack sampled in run 16 AI U 0.45 J 3/28/2013 10:52 NP; isab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 11:03 DUP-1 AI U 0.45 J 3/28/2013 11:03 DUP-1 AI U 0.59 J Conference room kitchen (bag). Sample collected into Tedlar bag approx AI 0.88 J 2.2 J 3/28/2013 11:13 10:00 AI U 0.46 J U 0.46 J 3/28/2013 11:27 BL: resample indoor air above crack AI U 0.475 J 9.1 3/28/2013 11:27 BL: resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.45 J 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U				•	
3/28/2013 10:34 NP: sub-slab, sampled with 3/8" tubing inserted in gap at expansion joint SS 0.81 J 7 3/28/2013 10:42 NP: indoor air above crack sampled in run 16 AI U 0.45 J 3/28/2013 10:52 NP: slab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 11:53 NP: slab expansion joint sampled through tubing SS 0.22 J 1.4 J 3/28/2013 11:03 DUP-1 AI U 0.59 J Conference room kitchen (bag). Sample collected into Tedlar bag approx AI 0.88 J 2.2 J 3/28/2013 11:13 10:00 AI U 0.46 J 3/28/2013 11:21 BL: resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.45 J 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10)	3/28/2013 10:16		AI	U	0.49 J
3/28/2013 10:42 NP; indoor air above crack sampled in run 16 AI U 0.45 J 3/28/2013 10:52 NP; last NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and DUP-1 SS 0.22 J 1.4 J 3/28/2013 11:03 DUP-1 AI U 0.59 J Conference room kitchen (bag). Sample collected into Tedlar bag approx AI 0.88 J 2.2 J 3/28/2013 11:13 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:29 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:17 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:10 Outdoors behind warehouse BUILDINC 209 BUILDINC 209 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:40 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 9:90 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U <td>3/28/2013 10:24</td> <td>NP; resample Warehouse 2 run 5 location</td> <td>AI</td> <td>U</td> <td>0.54 J</td>	3/28/2013 10:24	NP; resample Warehouse 2 run 5 location	AI	U	0.54 J
3/28/2013 10:42 NP; indoor air above crack sampled in run 16 AI U 0.45 J 3/28/2013 10:52 NP; last NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and DUP-1 SS 0.22 J 1.4 J 3/28/2013 11:03 DUP-1 AI U 0.59 J Conference room kitchen (bag). Sample collected into Tedlar bag approx AI 0.88 J 2.2 J 3/28/2013 11:13 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:29 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:17 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:10 Outdoors behind warehouse BUILDINC 209 BUILDINC 209 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:40 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 9:90 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U <td></td> <td></td> <td></td> <td></td> <td></td>					
3/28/2013 10:52 NP; slab expansion joint sampled through tubing SS 0.22 J 1.4 J NP; last NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and DUP-1 AI U 0.59 J 3/28/2013 11:03 DUP-1 AI U 0.59 J 3/28/2013 11:13 10:00 AI U 0.59 J 3/28/2013 11:13 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:59 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:16 Outdoors behind warehouse BUILDING 209 AI U U 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U 3/27/2013 9:38 door. AI U		NP; sub-slab, sampled with 3/8" tubing inserted in gap at expansion joint		0.81 J	
NP: last NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and DUP-1 AI U 0.59 J 3/28/2013 11:03 DUP-1 AI U 0.59 J Conference room kitchen (bag). Sample collected into Tedlar bag approx 3/28/2013 11:21 AI 0.88 J 2.2 J 3/28/2013 11:21 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:20 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:16 Outdoors behind warehouse AA U 0.45 J 3/28/2013 12:16 Outdoors behind warehouse BUILDING 209 U 0.45 J 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 9:99 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U 3/27/2013 9:38 door. A	3/28/2013 10:42			•	0.45 J
3/28/2013 11:03 DUP-1 AI U 0.59 J 3/28/2013 11:03 10:00 AI 0.88 J 2.2 J 3/28/2013 11:13 10:00 AI 0.88 J 2.2 J 3/28/2013 11:21 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:59 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:16 Outdoors behind warehouse AA U 0.45 J 5/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:59 Store room on south end AI U U U 3/27/2013 9:19 By 209-IA-09 AI U U U 3/27/2013 9:19 By C construction area. Sampled with probe using tubing inserted under AI U U 3/27/2013 9:38 door. AI U U U 3/27/2013 9:38 door. AI U U<	3/28/2013 10:52	NP; slab expansion joint sampled through tubing	SS	0.22 J	1.4 J
Database Conference room kitchen (bag). Sample collected into Tedlar bag approx Al 0.88 J 2.2 J 3/28/2013 11:13 10:00 AI 0.46 J 0.46 J 0.46 J 3/28/2013 11:21 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:20 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.45 J 3/28/2013 12:16 Outdoors behind warehouse AA U 0.45 J 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 9:59 Store room on south end AI U U U 3/27/2013 9:19 By 209-IA-09 AI U U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U 3/27/2013 9:37 <		NP; last NP sample, paired with summa/tedlar and dups CP4-IA-5-NP and			
3/28/2013 11:13 10:00 AI 0.88 J 2.2 J 3/28/2013 11:21 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:59 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:16 Outdoors behind warehouse AA U 0.45 J BUILDING 209 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:59 Store room on south end AI U U U 3/27/2013 9:90 Outside, between Building 209 and 207 AA U U U 3/27/2013 9:19 By 209-IA-09 AI U U U 3/27/2013 9:38	3/28/2013 11:03		AI	U	0.59 J
3/28/2013 11:21 BL. Repeat run 4 location AI U 0.46 J 3/28/2013 11:59 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:16 Outdoors behind warehouse AA U 0.45 J BUILDING 209 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:39 Store room on south end AI U U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U U 3/27/2013 9:19 By 209-IA-09 AI U U U 3/27/2013 9:26 In lab washroom AI U U U 3/27/2013 9:38 door. AI U U U 3/27/2013 9:37 Resample run 011 location (by 209-IA-09) AI U		Conference room kitchen (bag). Sample collected into Tedlar bag approx			
3/28/2013 11:59 BL; resample crack (run 16 location) SS 1.2 J 9.1 3/28/2013 12:07 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:16 Outdoors behind warehouse AA U 0.45 J BUILDING 209 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 8:59 Store room on south end AI U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U	3/28/2013 11:13		AI	0.88 J	2.2 J
3/28/2013 12:07 BL; resample indoor air above crack AI U 0.75 J 3/28/2013 12:16 Outdoors behind warehouse AA U 0.45 J BUILDING 209 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 8:59 Store room on south end AI U U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U U 3/27/2013 9:19 By 209-IA-09 AI U U U 3/27/2013 9:26 In lab washroom AI U U U 3/27/2013 9:38 door. AI U U U 3/27/2013 9:37 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:56 point) AI U U U 3/27/2013 9:56 point) AI U U<	3/28/2013 11:21	BL. Repeat run 4 location	AI	U	0.46 J
3/28/2013 12:16 Outdoors behind warehouse AA U 0.45 J BUILDING 209 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 8:59 Store room on south end AI U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U Bay C construction area. Sampled with probe using tubing inserted under AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:56 point)			SS	1.2 J	
BUILDING 209 3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 8:59 Store room on south end AI U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U Bay C construction area. Sampled with probe using tubing inserted under AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 9:56 point) AI 0.24 J U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI <t< td=""><td>3/28/2013 12:07</td><td>BL; resample indoor air above crack</td><td>AI</td><td>U</td><td>0.75 J</td></t<>	3/28/2013 12:07	BL; resample indoor air above crack	AI	U	0.75 J
3/27/2013 8:31 Hall outside EPA/ESAT Balance and Drying Oven Lab AI U U 3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 8:59 Store room on south end AI U U 3/27/2013 8:59 Store room on south end AI U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U Bay C construction area. Sampled with probe using tubing inserted under AI U U 3/27/2013 9:37 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:56 point) AI U U	3/28/2013 12:16	Outdoors behind warehouse	AA	U	0.45 J
3/27/2013 8:46 In hall by copy machine (across from Summa canister 209-IA-10) AI U U 3/27/2013 8:59 Store room on south end AI U U 3/27/2013 8:59 Outside, between Building 209 and 207 AA U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U Bay C construction area. Sampled with probe using tubing inserted under AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5		BUILDING 209			
3/27/2013 8:59 Store room on south end AI U U 3/27/2013 9:09 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U Bay C construction area. Sampled with probe using tubing inserted under AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53	3/27/2013 8:31		AI	U	U
3/27/2013 9:09 Outside, between Building 209 and 207 AA U U 3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U Bay C construction area. Sampled with probe using tubing inserted under AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J	3/27/2013 8:46	In hall by copy machine (across from Summa canister 209-IA-10)	AI	U	U
3/27/2013 9:19 By 209-IA-09 AI U U 3/27/2013 9:26 In lab washroom AI U U 3/27/2013 9:26 In lab washroom AI U U Bay C construction area. Sampled with probe using tubing inserted under door. AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J	3/27/2013 8:59		AI	U	U
3/27/2013 9:26 In lab washroom AI U U Bay C construction area. Sampled with probe using tubing inserted under AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:37 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U Near entrance of organic prep/TCLP extraction lab (room with IA/SG-09 AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J	3/27/2013 9:09	Outside, between Building 209 and 207	AA		
Bay C construction area. Sampled with probe using tubing inserted under door. AI U U 3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U Near entrance of organic prep/TCLP extraction lab (room with IA/SG-09 point) AI U U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J	3/27/2013 9:19	By 209-IA-09	AI	U	U
3/27/2013 9:38 door. AI U U 3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U Near entrance of organic prep/TCLP extraction lab (room with IA/SG-09 AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 0:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J	3/27/2013 9:26		AI	U	U
3/27/2013 9:47 Resample run 011 location (by 209-IA-09) AI U U Near entrance of organic prep/TCLP extraction lab (room with IA/SG-09 AI U U 3/27/2013 9:56 point) AI U U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J		Bay C construction area. Sampled with probe using tubing inserted under			
Near entrance of organic prep/TCLP extraction lab (room with IA/SG-09 point) AI U U 3/27/2013 9:56 point) AI 0.24 J U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J	3/27/2013 9:38		AI	U	U
Near entrance of organic prep/TCLP extraction lab (room with IA/SG-09 point) AI U U 3/27/2013 9:56 point) AI 0.24 J U 3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J	3/27/2013 9:47	Resample run 011 location (by 209-IA-09)	AI	U	U
3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J		Near entrance of organic prep/TCLP extraction lab (room with IA/SG-09			
3/27/2013 10:05 Warehouse IA above subslab probe 209-SG-06 AI 0.24 J U 3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J	3/27/2013 9:56	point)	AI	U	U
3/27/2013 10:16 209-SG-09 (bag) SS 4.6 7.5 3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J		Warehouse IA above subslab probe 209-SG-06		0.24 J	U
3/27/2013 10:44 Retry run 018 location. AI U U 3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J				4.6	7.5
3/27/2013 10:53 209-SG-06 (middle point) SS 15 1.3 J				-	
			SS	15	1.3 J

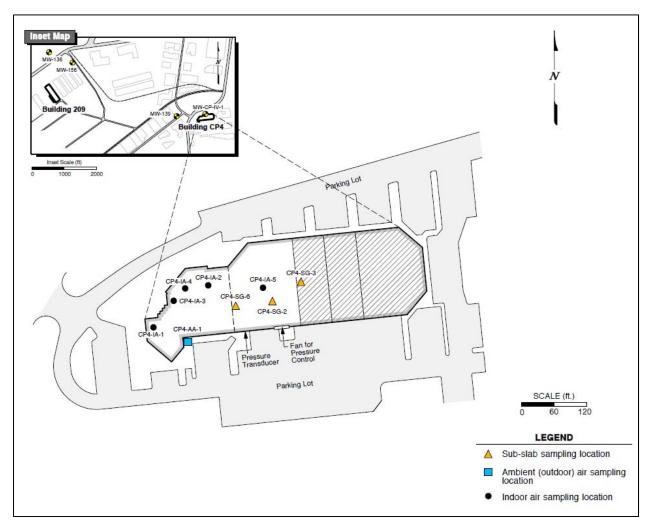
Notes:


1. Samples analyzed using an Inficon HAPSITE ER portable GC/MS instrument. Calibration curve 3/24/2013.

Samples are grouped by building, and sorted chronologically.
 J = estimated (result less than lower calibration limit); JE = estimated (result higher than upper calibration limit); U = not detected.
 Matrix: AI = Indoor air; AA = Ambient (outdoor) air; SS = Sub-slab

APPENDIX C FIGURES ESTCP Projects ER-201119 and 201025 Former Raritan Arsenal Site, New Jersey

Figure C.4.1: Site Map



Note: Only monitoring wells sampled for the demonstration are shown.

APPENDIX C FIGURES ESTCP Projects ER-201119 and 201025 Former Raritan Arsenal Site, New Jersey

Figure C.4.2: Building CP4 Floorplan

Note: Figure illustrates sample locations for off-site laboratory analysis. HAPSITE sample locations are not shown.

APPENDIX C FIGURES ESTCP Projects ER-201119 and 201025 Former Raritan Arsenal Site, New Jersey

Image: Scale (fi) Building 20 Image: Scale (fi) Image: Scal

Figure C.4.3: Building 209 Floorplan

Note: Figure illustrates sample locations for off-site laboratory analysis. HAPSITE sample locations are not shown.

Appendix D: Data Quality Review and Laboratory Reports

Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs

Appendix D.1Data Quality ReviewAppendix D.2Laboratory Reports

ESTCP ER-201025 Final Report

Appendix D.1: Data Quality Review

TABLES

- Table D.1.1Holding Time Evaluation
- Table D.1.2Field Duplicate Evaluation
- Table D.1.3Sorbent Tube Trip Blanks

GSI Job No. 3585 Issued: 24 June 2013 Page 1 of 1

TABLE D.1.1: HOLDING TIME EVALUATION ESTCP Project ER-201025

Demonstration Site	Sample ID	Sample Collection Date	Run Number	Date Analyzed	original tube #	Individual Tube Result (per mil)	Initial Results (per mil)	Average of all runs (per mil)	Difference (%)
				d13C TCE					
Lewis-McChord (OU #613)	1-IA-1-CSI	7/24/2012	8959	8/27/2012	C16_K08436	-25.9	-25.9	-26.1	1%
			9071	10/22/2012	C16_J07242	peak coelutes			
			9480	4/17/2013	C16_J03141	-26.0			
			9483	4/17/2013	C16_J03141	-26.4			
Lewis-McChord (OU #613)	1-SS-2-CSI	7/25/2012	8957	8/27/2012	C16_K08430	-18.2	-18.5	n/a	n/a
			8960	8/27/2012	C16_J06979	-18.8			
			9069	10/22/2012	C16_J07342	no peak			
			9482	4/17/2013	C16_J07342	no peak			
Lewis-McChord (OU #613)	3-SS-2-CSI	7/25/2012	8958	8/27/2012	C16_J03697	-18.8	-18.8	-19.0	1%
			9068	10/22/2012	C16_J03553	-19.5			
			9481	4/17/2013	C16_J03553	-18.8			
Selfridge (OU #631)	Indoor-1	9/18/2012	9072	10/22/2012	C16_K08440	-32.5	-32.6	-32.2	1%
			9077	10/23/2012	C16_K08448	-32.6			
			9485	4/17/2013	C16_K08457	-31.8			
			9488	4/18/2013	C16_J03146	-31.8			
Selfridge (OU #631)	SS-2 HIGH	9/18/2012	9065	10/21/2012	C16_J03770	-25.2	-25.5	-25.2	1%
			9066	10/21/2012	C16_J03770	-25.8			
			9484	4/17/2013	C16_J07356	-24.6			
				d37CI TCE					
Tyndall (OU #677)	156-SS-3	2/21/2013	3298	3/20/2013	M17818 (via C16_M17	6.1	6.3	6.3	0%
			3302	3/20/2013	M17818 (via C16_M17	6.4			
			3583	5/22/2013	C16_M17853	6.3			
			3592	5/23/2013	C16_M17853	6.2			
Tyndall (OU #677)	219-IA-3 Pump 1	2/21/2013	3289	3/20/2013	_M17787 (via C16_M16	-3.5	-3.5	-3.4	2%
			3305	3/20/2013	M17787 (via C16_M17	-3.5			
			3585	5/22/2013	M17787 (via C16_M17	-3.3			
Tyndall (OU #677)	219-IA-3 Pump 2	2/21/2013	3291	3/20/2013	M17688 (via C16_M17	-2.9	-3.15	-3.19	1.2%
,			3292	3/20/2013	M17688 (via C16_J03	-2.9			
			3306	3/20/2013	M17688 (via C16_M17	-3.7			
			3586	5/22/2013	M17688 (via C16 M17	-3.3			
				d13C Benze	ne		u		
Selfridge (OU #631)	Indoor-1	9/18/2012	9042	10/16/2012	C16 K08448	-29.1	-29.0	-28.9	0.3%
			9038	10/15/2012	C16 K08440	-29.0			
			9498	4/24/2013	C16 K08421	-28.9			
			9500	4/24/2013	C16 K08421	-28.8			
Selfridge (OU #631)	SS-1	9/19/2012	9023	10/10/2012	C16 J03973	-29.9	-29.8	-29.8	0.1%
			9030	10/11/2012	C16 J03738	-29.8			
			9491	4/19/2013	C16 K08431	-29.7			
			9493	4/19/2013	C16 K08431	-29.8			
Selfridge (OU #631)	SS-2 1 hr	9/19/2012	9024	10/10/2012	C16_K08430	-29.4	-29.4	-29.4	0.0%
			9496	4/23/2013	C16 J03150	-29.4			
			9499	4/24/2013	C16_J03150	-29.3			
		1							
Selfridge (OU #631)	SS-2 Low	9/18/2012	9020	10/9/2012	C16_J04853	-28.9	-28.9	-30.2	4.7%

NOTE:

Only 10-20 ng of benzene on "SS-2 low". Possible problems caused by low level carryover or adsorbent pyrolysis byproduct
 Difference calculated as the absolute value of ([initial result minus average] / initial result).

TABLE D.1.2: FIELD DUPLICATE EVALUATION ESTCP Project ER-201025

LocID	Sample Location Description	Matrix	Analyte	Normal Sample ID	Result (per mil)	Duplicate ID	Dup Result (per mil)	Precision (per mil)
Air/Vapor								
Lewis-McChord	middle, near 1-IA-1	SS	d13C TCE	1-SS-2-CSI	-18.5 H	3-SS-2-CSI	-18.8 H	0.3
9669			d37CI TCE	1-SS-2-CSI	5.8 H	3-SS-2-CSI	5.5 H	0.3
Selfridge 1533	Inside storeroom	SS	d13C Benzene	SS-2 Low	-28.9 JH	SS-2 1 Hour	-29.4 H	0.5
			d13C PCE	SS-2 Low	-25.7 H	SS-2 1 Hour	-25.3 H	-0.4
Tyndall 219	Northern half of building in	IA	d13C TCE	219-IA-3 P1	-29 H	219-IA-3 P2	-28.8 H	-0.2
	janitor closet		d37CI TCE	219-IA-3 P1	-3.5 H	219-IA-3 P2	-3.2 H	-0.3
Raritan CP4	CP4-IA-4 In kitchen between	IA	d13C TCE	CP4-IA-4B	-30.5	CP4-IA-4	-30.9	0.4
	conference rooms		d37CI TCE	CP4-IA-4B	0.1	CP4-IA-4	-0.4	0.5
Groundwater								
Lewis-McChord	near Building 9669	GW	d13C TCE	LC-18	-23.3 H	DUP-1	-23.6 H	0.3
9669			d37CI TCE	LC-18	2.5 H	DUP-1	2.4 H	0.1

Notes:

1. Indoor Air (IA)/sub-slab (SS) vapor samples collected onto sorbent tubes. Groundwater (GW) samples collected in VOA vials.

TABLE D.1.3: SORBENT TUBE TRIP BLANKS ESTCP Project ER-201025

	Submitted to Lab	Date Analyzed	Key Analyte	Result	Notes
Location					
Lewis-McChord	7/25/2012	1/10-11/2013	TCE	0 ng	two sorbent tubes analyzed
Selfridge	2/20/2012	1/10-11/2013	TCE	0 - 0.2 ng	three tubes analyzed
			Benzene	0.4 - 1.2 ng	three tubes analyzed
Tyndall	2/22/2013	3/22/2013	TCE	0 ng	two sorbent tubes analyzed
Raritan	3/28/2013	4/15/2013	TCE	0.1 - 1.3 ng	three tubes analyzed

Note:

1. Trip blanks collected per QAPP for ER-201025

Appendix D.2: Laboratory Analytical Reports

ESTCP ER-201025 Final Report

Laboratory Analytical Reports

Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs ER-201025

Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs ER-201119

Joint Base Lewis-McChord, Washington

ESTCP ER-201025 and 201119 Final Reports

LABORATORY REPORT

August 10, 2012

Tom McHugh GSI Environmental Inc. 2211 Norfolk, Suite 1000 Houston, TX 77098

RE: ESTCP / JBLM Long Center / G-3585 / 3669

Dear Tom:

Enclosed are the results of the samples submitted to our laboratory on July 27, 2012. For your reference, these analyses have been assigned our service request number P1203080.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA200007; The American Industrial Hygiene Association, Laboratory #101661; United States Department of Defense Environmental Laboratory Accreditation Program (DoD-ELAP), Certificate No. L11-203; Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-12-3; Minnesota Department of Health, NELAP Certificate No. 362188; Washington State Department of Ecology, ELAP Lab ID: C946, State of Utah Department of Health, NELAP Certificate No. CA01527Z012-Z; Los Angeles Department of Building and Safety, Approval No: TA00001. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Juderta

Sue Anderson Project Manager

Client:GSI Environmental Inc.Service Request No:P1203080Project:ESTCP / JBLM Long Center / G-3585 / 3669

CASE NARRATIVE

The samples were received intact under chain of custody on July 27, 2012 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed in SIM mode for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of Columbia Analytical Services, Inc. dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to AALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

DETAIL SUMMARY REPORT

Client:GSI Environmental Inc.Project ID:ESTCP / JBLM Long Center / G-3585 / 3669

Service Request: P1203080

Date Received:7/2Time Received:09

7/27/2012 09:45

Time Received:	09:45							7	
								SIM	
								VOC	
								S -	
			Date	Time	Container	Pi1	Pf1		
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)	TO	
1-AA-1-CON	P1203080-001	Air	7/24/2012	16:00	AC00717	-2.63	3.55	Х	
1-IA-1-CON	P1203080-002	Air	7/24/2012	15:57	AC01368	-2.17	3.63	Х	
1-IA-2-CON	P1203080-003	Air	7/24/2012	15:58	AC00081	-1.86	3.54	Х	
1-SS-1-CON	P1203080-004	Air	7/24/2012	10:46	AC01782	-3.38	3.58	Х	
1-SS-2-CON	P1203080-005	Air	7/24/2012	11:06	AC00480	-0.97	3.56	Х	
1-SS-3-CON	P1203080-006	Air	7/24/2012	11:27	AC01637	-5.17	2.56	Х	
2-AA-1-CON	P1203080-007	Air	7/24/2012	15:25	AC01154	-0.75	3.52	Х	
2-IA-1-CON	P1203080-008	Air	7/24/2012	15:21	AC01900	-2.57	3.69	Х	
2-SS-1-CON	P1203080-009	Air	7/24/2012	14:49	AS00103	-0.93	3.56	Х	
2-SS-2-CON	P1203080-010	Air	7/24/2012	15:05	AC01190	-0.21	3.55	Х	
1-IA-3-BL	P1203080-011	Air	7/25/2012	08:53	AC00714	0.33	3.72	Х	
1-IA-3-PP	P1203080-012	Air	7/25/2012	09:57	AC00229	0.31	3.55	Х	
2-SS-3-CON-Resample	P1203080-013	Air	7/26/2012	08:08	AC01034	-0.90	3.50	Х	
2-IA-1-BL	P1203080-014	Air	7/26/2012	08:36	AC00748	0.33	3.56	Х	
2-IA-1-NP	P1203080-015	Air	7/26/2012	10:15	AC01165	0.41	3.56	Х	
DUP-1	P1203080-016	Air	7/26/2012	00:00	AC00822	0.38	3.75	Х	
1-IA-3-NP	P1203080-017	Air	7/25/2012	11:06	AC01327	0.37	3.65	Х	

.

.

	nature) Date: Time: Received by (Signature)	470000KG		¥ (ACO1034 Mar -70 -2	1-14-3-PP DION 7/15/10 03557 4050223 MM2 -30 0	Oto32 7/25/12 0351 ACLOSTIN NORM	2-55-3-03N 7/21/12/518 ACO1271 ANDRE - 30 - 20	2-53-2-00N 0.00 7/24/12/505 ACOURD MARE -30 0	2-35-1-CON 9-0.98 7/24/12/144849 ASOOLOS MORE -30 -1.5	ACOLOGO FCAONIGE -30 -	7/24/12 38	1-55-3-CON 0-513 7/24/12/11/927 ACD1637 Mone -30 -11	3-2-00N (S)	1-55-1-CON D-344 7/24/12 1040 AC 01782 MORE -29.5 -7.5	1-EA-2-CON 0-194/12/12 0835-8 ACOOO81 FCA 00561 -30 -4	1-IA-1-CON Q-23 7/24/12 083257 AC 01368 FCA00556 -29.5 -5 1	1-AA-1-CON D-272 7/24/12 0824 ACONTIT FCN00473 -30 -5.5 6-2 -	Justicity Date Time Canister ID Flow Controller ID Canister Canister ID Number Collected Collected AC, SC, etc.) FC #) "Hg "Hg/psig Volume	Email Address for Result Reporting try where & CGA (Andrew / Merchange Science) Sampler (Print & Sign) try where & CGA (Andrew / Merchange Science) of LANB/ TEN//TT		P.O. # / Billing Information	ALE LA	ETCP / JIBUN Lagara	Project Name	Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Stand	Analytical Services* Air - Chain of Custody Record & Analytical Service Request 2655 Park Center Drive, Suite A Simi Valley, California 93065
			Type:	EDD req	le de la construcción de la constru La construcción de la construcción de		à	-20	8	1 5,	м М	12	Management Management	67	17 35		5	55	Sample Volume					S. M. L.		rges) please circle Day (25%)_10 Day-Stand	rice Request
		J/C	Mark Contraction	Jired Res No														State State	76 	-15 	5 24 1]3	CVN. VE. KE	 6	Analysis Method	Mr. Mr. Maria	tard CAS Project No.	ມ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ
COC AIR REV 3-11	Cooter / Blank Temperature		(MALS, QAPP)	Project Requirements	grades laboration to be	anae Unau	are will a way	2) 2 1 548 (24 1 1) 14 50°		طمم و طعادمان					Subside grat	of 41				-	Preservative or specific instructions	Comments				12308D	of

Columbia Analytical	
Services	

2655 Park Center Drive, Suite A Simi Valley, Californía 93065 Phone (805, 526-7161

Air - Chain of Custody Record & Analytical Service Request

Page De of

COC AIR REV 3-11												
Cooler / Blank	Time:	Date:			_	Heceived by: (Signature)	ime:	Uate:			Heiinquisned by: (Signature)	Heiinquisne
	Time:	mark		DORN	AND NOW	Received by: (Signature	1150	26/12			Relinquished by: (Signature)	Relinquishe
Project Requirements (MRLs, QAPP)		EDD required Yes / No Type:	EDD requi			maries)	Tier III (Results + QC & Calibration Summaries) Tier IV (Data Validation Package) 10% Surcharge	Tier III (Results Tier IV (Data Va		I	Keport Tier Levels - please select Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)	Keport 14 Tier I - Rest Tier II (Rest
								S.	MAN C	7 Juto	18 50mp (2) 4	
											<	
				****						1.0 %-	a contraction of the second	
										-13.84		
		*	*	0	é C	1		tana Bana Bana Bana		MOH (I)		
		and the second se		0	S. P. No	je je	AC-00822		1/2/2	CE (HO)	and the second sec	DUP
9%. + gež		an a	wi zwawi Gilay	C.S	- J	the los	Ac. 04465	17/5		G 10.37		· Jan
Mar arco the		Sector Mark	\$ (* 29 - 29	12/ 04	AC60747	0 836	-7/24/22	(H)+10:30		E. m.
	(277)A	12 5 < 1210	Sample Volume	Canister End Pressure ^a Hg/psig	Canister Start Pressure "Hg	Flow Controller ID (Bar code #- FC #)	Canister ID (Bar code # - AC, SC, etc.)	Time Collected	Date Collected	Laboratory ID Number	~	Client Sample ID
)5 : Vecs : N			8097-**	Wighton / (TTT	Sampler (Print & Sign)		Induckley Cysin not	ant a Comme	Email Address for Result Reporting $C_{A} = C_{A} = C$	Email Addre
e.g. Actual Preservative or	- (), fre-Sa	5, m + D 1)X &								Fax	5 520 6 3 20	Phone
Comments		Her 5 (ation	P.O. # / Billing Information			beaching	Achigh / L.	Project Manage
		t ME					Project Number				Low The marked	* *
	Analysis Method	Analysi		<u><u> </u></u>		TUP/JB				momaton)		a Company
	st:	CAS Contact:										
CAS Project No.	CAS Project	ard	Day-Stand	harges) please 5 Day (25%)_1(ess Days (Surc) 4 Day (35%)	und Time in Busin (75%) 3 Day (50%	Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard				Phone (805) 526-7161 Fax (805) 526-7270	Phone (805) 526-71 Fax (805) 526-7270

Columbia Analytical Services*

Now	v part of the ALS	Jroup	Sampl	le Acceptance	Check Forn	n				
Client:	: GSI Environm	nental Inc.	·- •	•r	0	Work order:	P1203080		_	
Project:	: ESTCP / JBL	M Long Center / G-35	85 / 3669		' 					
	(s) received on:			-	Date opened:		by:	MZAN		
		samples received by CAS.		-	-	-			cation of	
compliance	or nonconformity.	Thermal preservation and p	H will only be ev	aluated either at th	e request of the a	client and/or as requi	ired by the method/		No	<u>N/A</u>
1	Were sample	containers properly n	narked with cl	lient sample IE)?			<u>Yes</u>	<u>No</u>	
2	_	supplied by CAS?	luine.	I I I I I I I I I I I I I I I I I I I	•			\mathbf{X}		
3		ontainers arrive in goo	od condition?					X		
4		f-custody papers used						X		
5	Did sample co	ontainer labels and/or	r tags agree wi	ith custody par	pers?			X		
6	Was sample v	volume received adequ	late for analys	sis?				X		
7	Are samples v	within specified holdin	g times?					X		
8	Was proper te	emperature (thermal p	preservation) c	of cooler at rec	eipt adhered	to?				X
										_
9	Was a trip bla		-						X	
10	Were custody	seals on outside of co							\mathbf{X}	
		Location of seal(s)?					Sealing Lid?			X
	-	e and date included?								\mathbf{X}
	Were seals int									
	Were custody	seals on outside of san	-						\mathbf{X}	
		Location of seal(s)?					Sealing Lid?			X
	-	e and date included?								X
	Were seals int									\mathbf{X}
11		rs have appropriate pr		•		Client specified	l information?			X
		ent indication that the s	-							\mathbf{X}
		vials checked for prese								X
	Does the clien	nt/method/SOP require	•	·	ample pH and	d <u>if necessary</u> al	ter it?			X
12	Tubes:	Are the tubes cap	ped and intact	.?						X
		Do they contain m								X
13	Badges:	Are the badges pr	roperly capped	d and intact?						X
		Are dual bed badg	ges separated a	and individuall	ly capped and	1 intact?				X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	e Recei	pt / Pres	ervatior	1
		Description	pH *	pH	pH	(Presence/Absence		Commen		
P120308	0-001.01	6.0 L Ambient Can								
P120308		6.0 L Ambient Can								
P120308	0-003.01	6.0 L Ambient Can	1 1	1 '	1 '					ļ

P1203080-004.01

P1203080-005.01

P1203080-006.01

P1203080-007.01

P1203080-008.01

6.0 L Ambient Can

Explain any discrepancies: (include lab sample ID numbers):

P1203080	GSI Environmental Inc.	ESTCP	JBLM Lsq Center	G-3585	3669.xls - Page 1 of 2

		~			<u> </u>		
Now	part	ot	the	(A	LS)	Grou	P

Sample Acceptance Check Form

Client: GSI Environmental Inc.

Λ

Project: ESTCP / JBLM Long Center / G-3585 / 3669

Work order:

P1203080

.

Sample(s) received on:	7/27/12]	Date opened:	7/27/12	by: <u>MZAMORA</u>
Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P1203080-009.01	6.0 L Silonite Can					
P1203080-010.01	6.0 L Ambient Can					
P1203080-011.01	6.0 L Ambient Can					
P1203080-012.01	6.0 L Ambient Can					
P1203080-013.01	6.0 L Ambient Can					
P1203080-014.01	6.0 L Ambient Can					
P1203080-015.01	6.0 L Ambient Can					
P1203080-016.01	6.0 L Ambient Can					
P1203080-017.01	6.0 L Ambient Can					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

Page 1 of 1

Client:	GSI Environmental Inc.		
Client Sample ID:	1-AA-1-CON	CAS Project ID:	P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID:	P1203080-001
Test Code:	EPA TO-15 SIM	Date Collected:	7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received:	//2//12
Analyst:	Wida Ang	Date Analyzed:	8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	AC00717		
	Initial Pressure (psig): -2.63 Fin	nal Pressure (psig): 3.55	

Canister Dilution Factor: 1.51

CAS #	Compound	Result	MRL	Result	MRL	Data Ouslifier
		μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.038	ND	0.015	
75-35-4	1,1-Dichloroethene	ND	0.038	ND	0.0095	
156-60-5	trans-1,2-Dichloroethene	ND	0.038	ND	0.0095	
156-59-2	cis-1,2-Dichloroethene	ND	0.038	ND	0.0095	
107-06-2	1,2-Dichloroethane	ND	0.038	ND	0.0093	
71-55-6	1,1,1-Trichloroethane	ND	0.038	ND	0.0069	
79-01-6	Trichloroethene	ND	0.038	ND	0.0070	
127-18-4	Tetrachloroethene	0.052	0.038	0.0077	0.0056	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	1-IA-1-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-002
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC01368	
	Initial Pressure (psig): -2.17 Final P	ressure (psig): 3.63

Canister Dilution Factor: 1.46

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.037	ND	0.014	
75-35-4	1,1-Dichloroethene	ND	0.037	ND	0.0092	
156-60-5	trans-1,2-Dichloroethene	2.3	0.037	0.59	0.0092	
156-59-2	cis-1,2-Dichloroethene	ND	0.037	ND	0.0092	
107-06-2	1,2-Dichloroethane	0.053	0.037	0.013	0.0090	
71-55-6	1,1,1-Trichloroethane	0.042	0.037	0.0077	0.0067	
79-01-6	Trichloroethene	1.5	0.037	0.28	0.0068	
127-18-4	Tetrachloroethene	0.18	0.037	0.026	0.0054	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	1-IA-2-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-003
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC00081	
	Initial Pressure (psig): -1.86 Final	Pressure (psig): 3.54

Canister Dilution Factor: 1.42

CAS #	Compound	Result	MRL	Result	MRL	Data Onelifier
		μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.036	ND	0.014	
75-35-4	1,1-Dichloroethene	ND	0.036	ND	0.0090	
156-60-5	trans-1,2-Dichloroethene	1.6	0.036	0.39	0.0090	
156-59-2	cis-1,2-Dichloroethene	ND	0.036	ND	0.0090	
107-06-2	1,2-Dichloroethane	0.050	0.036	0.012	0.0088	
71-55-6	1,1,1-Trichloroethane	0.039	0.036	0.0072	0.0065	
79-01-6	Trichloroethene	1.2	0.036	0.23	0.0066	
127-18-4	Tetrachloroethene	0.15	0.036	0.021	0.0052	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	1-SS-1-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-004
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.30 Liter(s)
Test Notes:		
Container ID:	AC01782	
	Initial Pressure (psig): -3.38 Final P	ressure (psig): 3.58

Canister Dilution Factor: 1.61

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.053	
75-35-4	1,1-Dichloroethene	ND	0.13	ND	0.034	
156-60-5	trans-1,2-Dichloroethene	ND	0.13	ND	0.034	
156-59-2	cis-1,2-Dichloroethene	ND	0.13	ND	0.034	
107-06-2	1,2-Dichloroethane	0.65	0.13	0.16	0.033	
71-55-6	1,1,1-Trichloroethane	3.4	0.13	0.61	0.025	
79-01-6	Trichloroethene	43	0.13	8.1	0.025	
127-18-4	Tetrachloroethene	17	0.13	2.5	0.020	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	1-SS-2-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-005
Test Code:	EDA TO 15 SIM	Date Collected: 7/24/12
Test Code:	EPA TO-15 SIM	Date Confected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.060 Liter(s)
Test Notes:		
Container ID:	AC00480	
	Initial Pressure (psig): -0.97 Fina	al Pressure (psig): 3.56

Canister Dilution Factor: 1.33

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.55	ND	0.22	
75-35-4	1,1-Dichloroethene	ND	0.55	ND	0.14	
156-60-5	trans-1,2-Dichloroethene	0.57	0.55	0.14	0.14	
156-59-2	cis-1,2-Dichloroethene	ND	0.55	ND	0.14	
107-06-2	1,2-Dichloroethane	ND	0.55	ND	0.14	
71-55-6	1,1,1-Trichloroethane	6.2	0.55	1.1	0.10	
79-01-6	Trichloroethene	320	0.55	60	0.10	
127-18-4	Tetrachloroethene	22	0.55	3.3	0.082	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	1-SS-3-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-006
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Test Code.		Date Collected. 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.050 Liter(s)
Test Notes:		
Container ID:	AC01637	
	Initial Pressure (psig): -5.17 Fin	hal Pressure (psig): 2.56

Canister Dilution Factor: 1.81

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.91	ND	0.35	
75-35-4	1,1-Dichloroethene	ND	0.91	ND	0.23	
156-60-5	trans-1,2-Dichloroethene	ND	0.91	ND	0.23	
156-59-2	cis-1,2-Dichloroethene	ND	0.91	ND	0.23	
107-06-2	1,2-Dichloroethane	3.2	0.91	0.78	0.22	
71-55-6	1,1,1-Trichloroethane	9.0	0.91	1.7	0.17	
79-01-6	Trichloroethene	1.5	0.91	0.28	0.17	
127-18-4	Tetrachloroethene	21	0.91	3.1	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	2-AA-1-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-007
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC01154	
	Initial Pressure (psig): -0.75 Fina	al Pressure (psig): 3.52

Canister Dilution Factor: 1.31

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.033	ND	0.013	
75-35-4	1,1-Dichloroethene	ND	0.033	ND	0.0083	
156-60-5	trans-1,2-Dichloroethene	ND	0.033	ND	0.0083	
156-59-2	cis-1,2-Dichloroethene	ND	0.033	ND	0.0083	
107-06-2	1,2-Dichloroethane	0.038	0.033	0.0093	0.0081	
71-55-6	1,1,1-Trichloroethane	ND	0.033	ND	0.0060	
79-01-6	Trichloroethene	ND	0.033	ND	0.0061	
127-18-4	Tetrachloroethene	0.053	0.033	0.0079	0.0048	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	2-IA-1-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-008
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC01900	
	Initial Pressure (psig): -2.57 Fin	al Pressure (psig): 3.69

Canister Dilution Factor: 1.52

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.038	ND	0.015	
75-35-4	1,1-Dichloroethene	ND	0.038	ND	0.0096	
156-60-5	trans-1,2-Dichloroethene	ND	0.038	ND	0.0096	
156-59-2	cis-1,2-Dichloroethene	ND	0.038	ND	0.0096	
107-06-2	1,2-Dichloroethane	ND	0.038	ND	0.0094	
71-55-6	1,1,1-Trichloroethane	ND	0.038	ND	0.0070	
79-01-6	Trichloroethene	0.072	0.038	0.013	0.0071	
127-18-4	Tetrachloroethene	0.24	0.038	0.035	0.0056	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	2-SS-1-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-009
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/2/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AS00103	
	Initial Pressure (psig): -0.93 Final P	ressure (psig): 3.56

Canister Dilution Factor: 1.33

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.033	ND	0.013	
75-35-4	1,1-Dichloroethene	0.035	0.033	0.0087	0.0084	
156-60-5	trans-1,2-Dichloroethene	ND	0.033	ND	0.0084	
156-59-2	cis-1,2-Dichloroethene	ND	0.033	ND	0.0084	
107-06-2	1,2-Dichloroethane	0.24	0.033	0.059	0.0082	
71-55-6	1,1,1-Trichloroethane	1.7	0.033	0.31	0.0061	
79-01-6	Trichloroethene	0.034	0.033	0.0063	0.0062	
127-18-4	Tetrachloroethene	18	0.033	2.6	0.0049	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	2-SS-2-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-010
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/2/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.50 Liter(s)
Test Notes:		
Container ID:	AC01190	
	Initial Pressure (psig): -0.21 Final	Pressure (psig): 3.55

Canister Dilution Factor: 1.26

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.063	ND	0.025	
75-35-4	1,1-Dichloroethene	ND	0.063	ND	0.016	
156-60-5	trans-1,2-Dichloroethene	ND	0.063	ND	0.016	
156-59-2	cis-1,2-Dichloroethene	ND	0.063	ND	0.016	
107-06-2	1,2-Dichloroethane	0.30	0.063	0.075	0.016	
71-55-6	1,1,1-Trichloroethane	0.73	0.063	0.13	0.012	
79-01-6	Trichloroethene	1.8	0.063	0.33	0.012	
127-18-4	Tetrachloroethene	48	0.063	7.1	0.0093	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	1-IA-3-BL	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-011
Test Code:	EPA TO-15 SIM	Date Collected: 7/25/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	#N/A	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC00714	
	Initial Pressure (psig): 0.33 Final Pr	essure (psig): 3.72

Canister Dilution Factor: 1.23

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.031	ND	0.012	<u> </u>
75-35-4	1,1-Dichloroethene	ND	0.031	ND	0.0078	
156-60-5	trans-1,2-Dichloroethene	2.2	0.031	0.56	0.0078	
156-59-2	cis-1,2-Dichloroethene	ND	0.031	ND	0.0078	
107-06-2	1,2-Dichloroethane	0.051	0.031	0.013	0.0076	
71-55-6	1,1,1-Trichloroethane	0.041	0.031	0.0075	0.0056	
79-01-6	Trichloroethene	2.0	0.031	0.37	0.0057	
127-18-4	Tetrachloroethene	0.22	0.031	0.032	0.0045	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	1-IA-3-PP	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-012
Test Code:	EPA TO-15 SIM	Date Collected: 7/25/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC00229	
	Initial Pressure (psig): 0.31 Fir	hal Pressure (psig): 3.55

Canister Dilution Factor: 1.22

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.031	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.031	ND	0.0077	
156-60-5	trans-1,2-Dichloroethene	1.5	0.031	0.39	0.0077	
156-59-2	cis-1,2-Dichloroethene	ND	0.031	ND	0.0077	
107-06-2	1,2-Dichloroethane	0.050	0.031	0.012	0.0075	
71-55-6	1,1,1-Trichloroethane	0.038	0.031	0.0069	0.0056	
79-01-6	Trichloroethene	1.2	0.031	0.22	0.0057	
127-18-4	Tetrachloroethene	0.17	0.031	0.025	0.0045	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	2-SS-3-CON-Resample	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-013
Test Code:	EPA TO-15 SIM	Date Collected: 7/26/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1 - 8/2/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		0.10 Liter(s)
Container ID:	AC01034	
	Initial Pressure (psig): -0.90 Fin	al Pressure (psig): 3.50

Canister Dilution Factor: 1.32

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.033	ND	0.013	
75-35-4	1,1-Dichloroethene	ND	0.033	ND	0.0083	
156-60-5	trans-1,2-Dichloroethene	ND	0.033	ND	0.0083	
156-59-2	cis-1,2-Dichloroethene	ND	0.033	ND	0.0083	
107-06-2	1,2-Dichloroethane	0.096	0.033	0.024	0.0082	
71-55-6	1,1,1-Trichloroethane	1.5	0.033	0.27	0.0061	
79-01-6	Trichloroethene	1.7	0.033	0.32	0.0061	
127-18-4	Tetrachloroethene	35	0.33	5.1	0.049	D

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	2-IA-1-BL	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-014
Test Code:	EPA TO-15 SIM	Date Collected: 7/26/12
Instrument ID:		Date Received: 7/27/12
	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC00748	
	Initial Pressure (psig): 0.33 Final	Pressure (psig): 3.56

Canister Dilution Factor: 1.21

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.030	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.030	ND	0.0076	
156-60-5	trans-1,2-Dichloroethene	ND	0.030	ND	0.0076	
156-59-2	cis-1,2-Dichloroethene	ND	0.030	ND	0.0076	
107-06-2	1,2-Dichloroethane	0.036	0.030	0.0089	0.0075	
71-55-6	1,1,1-Trichloroethane	ND	0.030	ND	0.0055	
79-01-6	Trichloroethene	0.032	0.030	0.0060	0.0056	
127-18-4	Tetrachloroethene	ND	0.030	ND	0.0045	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	2-IA-1-NP	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-015
Test Code:	EPA TO-15 SIM	Date Collected: 7/26/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
	0	
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC01165	
	Initial Pressure (psig): 0.41 Final	Pressure (psig): 3.56

Canister Dilution Factor: 1.21

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.030	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.030	ND	0.0076	
156-60-5	trans-1,2-Dichloroethene	ND	0.030	ND	0.0076	
156-59-2	cis-1,2-Dichloroethene	ND	0.030	ND	0.0076	
107-06-2	1,2-Dichloroethane	0.035	0.030	0.0088	0.0075	
71-55-6	1,1,1-Trichloroethane	ND	0.030	ND	0.0055	
79-01-6	Trichloroethene	ND	0.030	ND	0.0056	
127-18-4	Tetrachloroethene	ND	0.030	ND	0.0045	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	DUP-1	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-016
Test Code:	EPA TO-15 SIM	Date Collected: 7/26/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC00822	
	Initial Pressure (psig): 0.38 Final	al Pressure (psig): 3.75

Canister Dilution Factor: 1.22

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75 01 4			1.2			Quaimer
75-01-4	Vinyl Chloride	ND	0.031	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.031	ND	0.0077	
156-60-5	trans-1,2-Dichloroethene	ND	0.031	ND	0.0077	
156-59-2	cis-1,2-Dichloroethene	ND	0.031	ND	0.0077	
107-06-2	1,2-Dichloroethane	0.035	0.031	0.0086	0.0075	
71-55-6	1,1,1-Trichloroethane	ND	0.031	ND	0.0056	
79-01-6	Trichloroethene	ND	0.031	ND	0.0057	
127-18-4	Tetrachloroethene	ND	0.031	ND	0.0045	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	1-IA-3-NP	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-017
Test Celle		D. (. C. II. (. 1. 7/25/12
Test Code:	EPA TO-15 SIM	Date Collected: 7/25/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC01327	
	Initial Pressure (psig): 0.37 Fin	al Pressure (psig): 3.65

Canister Dilution Factor: 1.22

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.031	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.031	ND	0.0077	
156-60-5	trans-1,2-Dichloroethene	1.0	0.031	0.25	0.0077	
156-59-2	cis-1,2-Dichloroethene	ND	0.031	ND	0.0077	
107-06-2	1,2-Dichloroethane	0.047	0.031	0.012	0.0075	
71-55-6	1,1,1-Trichloroethane	0.035	0.031	0.0065	0.0056	
79-01-6	Trichloroethene	2.0	0.031	0.38	0.0057	
127-18-4	Tetrachloroethene	0.16	0.031	0.023	0.0045	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.			
Client Sample ID: Method Blank		CAS Project ID: P1203080		
Client Project ID:	ient Project ID: ESTCP / JBLM Long Center / G-3585 / 3669 CAS Sample 1		ID: P120801-MB	
Test Code:	EPA TO-15 SIM	Date Collected: NA		
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: NA		
Analyst:	Wida Ang	Date Analyzed: 8/1/12		
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00	Liter(s)	
Test Notes:				

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.025	ND	0.0098	<u> </u>
75-35-4	1,1-Dichloroethene	ND	0.025	ND	0.0063	
156-60-5	trans-1,2-Dichloroethene	ND	0.025	ND	0.0063	
156-59-2	cis-1,2-Dichloroethene	ND	0.025	ND	0.0063	
107-06-2	1,2-Dichloroethane	ND	0.025	ND	0.0062	
71-55-6	1,1,1-Trichloroethane	ND	0.025	ND	0.0046	
79-01-6	Trichloroethene	ND	0.025	ND	0.0047	
127-18-4	Tetrachloroethene	ND	0.025	ND	0.0037	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.			
Client Sample ID:	Method Blank	CAS Project ID: P1203080		
Client Project ID:	roject ID: ESTCP / JBLM Long Center / G-3585 / 3669 CAS Sample ID: P12		120802-MB	
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:	EPA TO-15 SIM Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7 Wida Ang 6.0 L Summa Canister	Date Collected: NA Date Received: NA Date Analyzed: 8/2/12 Volume(s) Analyzed: 1.00 Lite	r(s)	

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.025	ND	0.0098	2
75-35-4	1,1-Dichloroethene	ND	0.025	ND	0.0063	
156-60-5	trans-1,2-Dichloroethene	ND	0.025	ND	0.0063	
156-59-2	cis-1,2-Dichloroethene	ND	0.025	ND	0.0063	
107-06-2	1,2-Dichloroethane	ND	0.025	ND	0.0062	
71-55-6	1,1,1-Trichloroethane	ND	0.025	ND	0.0046	
79-01-6	Trichloroethene	ND	0.025	ND	0.0047	
127-18-4	Tetrachloroethene	ND	0.025	ND	0.0037	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP / JBLM Long Center / G-3585 / 3669

CAS Project ID: P1203080

Test Code:EPA TO-15 SIMInstrument ID:Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7Analyst:Wida AngSampling Media:6.0 L Summa Canister(s)Test Notes:Test Notes:

Date(s) Collected: 7/24 - 7/26/12 Date(s) Received: 7/27/12 Date(s) Analyzed: 8/1 - 8/2/12

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	CAS Sample ID	%	%	%	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P120801-MB	101	103	97	70-130	
Method Blank	P120802-MB	101	101	97	70-130	
Lab Control Sample	P120801-LCS	99	99	102	70-130	
Lab Control Sample	P120802-LCS	100	99	102	70-130	
1-AA-1-CON	P1203080-001	100	102	100	70-130	
1-IA-1-CON	P1203080-002	100	101	94	70-130	
1-IA-2-CON	P1203080-003	100	103	95	70-130	
1-SS-1-CON	P1203080-004	102	106	91	70-130	
1-SS-2-CON	P1203080-005	102	105	101	70-130	
1-SS-3-CON	P1203080-006	100	105	97	70-130	
2-AA-1-CON	P1203080-007	101	104	100	70-130	
2-IA-1-CON	P1203080-008	99	100	96	70-130	
2-IA-1-CON	P1203080-008DUP	100	99	99	70-130	
2-SS-1-CON	P1203080-009	99	104	90	70-130	
2-SS-2-CON	P1203080-010	101	103	97	70-130	
2-SS-2-CON	P1203080-010DUP	101	102	96	70-130	
1-IA-3-BL	P1203080-011	102	100	91	70-130	
1-IA-3-PP	P1203080-012	99	101	94	70-130	
2-SS-3-CON-Resample	P1203080-013	101	103	95	70-130	
2-IA-1-BL	P1203080-014	101	102	98	70-130	
2-IA-1-NP	P1203080-015	100	101	100	70-130	
DUP-1	P1203080-016	99	101	100	70-130	
1-IA-3-NP	P1203080-017	99	102	92	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	GSI Environmental Inc.			
Client Sample ID:	Lab Control Sample	CAS Project ID: P1203080		
Client Project ID: ESTCP / JBLM Long Center / G-3585 / 3669		CAS Sample ID: P120801-LCS		
Test Code:	de: EPA TO-15 SIM Date Collected			
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: NA		
Analyst:	Wida Ang	Date Analyzed: 8/01/12		
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)		
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
75-01-4	Vinyl Chloride	4.00	3.18	80	56-127	
75-35-4	1,1-Dichloroethene	4.36	3.52	81	59-131	
156-60-5	trans-1,2-Dichloroethene	4.04	3.30	82	60-128	
156-59-2	cis-1,2-Dichloroethene	4.28	3.57	83	62-130	
107-06-2	1,2-Dichloroethane	4.16	3.41	82	51-140	
71-55-6	1,1,1-Trichloroethane	4.08	3.39	83	57-132	
79-01-6	Trichloroethene	3.96	3.33	84	51-127	
127-18-4	Tetrachloroethene	3.80	3.06	81	58-134	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	Lab Control Sample	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P120802-LCS
Test Code:	EPA TO-15 SIM	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 8/02/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
75-01-4	Vinyl Chloride	4.00	3.26	82	56-127	
75-35-4	1,1-Dichloroethene	4.36	3.56	82	59-131	
156-60-5	trans-1,2-Dichloroethene	4.04	3.35	83	60-128	
156-59-2	cis-1,2-Dichloroethene	4.28	3.59	84	62-130	
107-06-2	1,2-Dichloroethane	4.16	3.44	83	51-140	
71-55-6	1,1,1-Trichloroethane	4.08	3.36	82	57-132	
79-01-6	Trichloroethene	3.96	3.28	83	51-127	
127-18-4	Tetrachloroethene	3.80	3.05	80	58-134	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:	GSI Environmental Inc.				
Client Sample ID:	2-IA-1-CON	CAS Project ID: P1203080			
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-008DUP			
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12			
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12			
Analyst:	Wida Ang	Date Analyzed: 8/1/12			
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)			
Test Notes:					
Container ID:	AC01900				
	Initial Pressure (psig): -2.57	Final Pressure (psig): 3.69			

		Canister Dilution Factor: 1.52							
CAS#	Compound	Sample	Result	Dupli Sample		Average	% RPD	RPD	Data
	Compound	μg/m ³	ppbV	μg/m ³	ppbV	μg/m ³	70 KI D	Limit	Qualifier
75-01-4	Vinyl Chloride	ND	ND	ND	ND	-	-	25	
75-35-4	1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
156-60-5	trans-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
156-59-2	cis-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
107-06-2	1,2-Dichloroethane	ND	ND	0.0391	0.00965	-	-	25	
71-55-6	1,1,1-Trichloroethane	ND	ND	ND	ND	-	-	25	
79-01-6	Trichloroethene	0.0715	0.0133	0.0714	0.0133	0.07145	0.1	25	
127-18-4	Tetrachloroethene	0.240	0.0355	0.264	0.0390	0.252	10	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	2-SS-2-CON	CAS Project ID: P1203080
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669	CAS Sample ID: P1203080-010DUP
T C 1		
Test Code:	EPA TO-15 SIM	Date Collected: 7/24/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Date Received: 7/27/12
Analyst:	Wida Ang	Date Analyzed: 8/2/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.50 Liter(s)
Test Notes:		
Container ID:	AC01190	
	Initial Pressure (psig): -0.21	Final Pressure (psig): 3.55

		Canister Dilution Factor: 1.26							
				Dupli					
CAS #	Compound	Sample	Result	Sample	Result	Average	% RPD	RPD	Data
		μg/m³	ppbV	µg/m³	ppbV	$\mu g/m^3$		Limit	Qualifier
75-01-4	Vinyl Chloride	ND	ND	ND	ND	-	-	25	
75-35-4	1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
156-60-5	trans-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
156-59-2	cis-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
107-06-2	1,2-Dichloroethane	0.305	0.0753	0.300	0.0743	0.3025	2	25	
71-55-6	1,1,1-Trichloroethane	0.729	0.134	0.693	0.127	0.711	5	25	
79-01-6	Trichloroethene	1.79	0.333	1.76	0.327	1.775	2	25	
127-18-4	Tetrachloroethene	48.1	7.10	46.0	6.79	47.05	4	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

.

Page 1 of 1

Client:	GSI Environmental Inc.
Client Project ID:	ESTCP / JBLM Long Center / G-3585 / 3669

.

.

CAS Project ID: P1203080

.

Method Blank Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Lab File ID: 08011203.D
Analyst:	Wida Ang	Date Analyzed: 8/01/12
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed: 08:17
Test Notes:		

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P120801-LCS	08011204.D	08:45
1-SS-1-CON	P1203080-004	08011208.D	11:47
1-SS-2-CON	P1203080-005	08011209.D	12:16
1-SS-3-CON	P1203080-006	08011210.D	12:43
1-AA-1-CON	P1203080-001	08011211.D	13:35
1-IA-1-CON	P1203080-002	08011212.D	14:07
1-IA-2-CON	P1203080-003	08011213.D	14:38
2-AA-1-CON	P1203080-007	08011214.D	15:29
2-IA-1-CON	P1203080-008	08011215.D	16:01
2-IA-1-CON (Lab Duplicate)	P1203080-008DUP	08011216.D	16:33
1-IA-3-BL	P1203080-011	08011218.D	17:32
1-IA-3-PP	P1203080-012	08011219.D	18:04
2-SS-3-CON-Resample	P1203080-013	08011220.D	18:36
2-IA-1-BL	P1203080-014	08011221.D	19:08
2-IA-1-NP	P1203080-015	08011222.D	19:40
DUP-1	P1203080-016	08011223.D	20:11
1-IA-3-NP	P1203080-017	08011224.D	20:44

.

2-SS-2-CON (Lab Duplicate)

08021212.D

.

RESULTS OF ANALYSIS

.

Page 1 of 1

Client: Client Project ID:	GSI Environmental Inc. ESTCP / JBLM Long Center / G-3585 /	3669 CAS Proje	ect ID: P1203080	
	Method Bla	nk Summary		
Test Code:EPA TO-15 SIMInstrument ID:Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7Analyst:Wida AngSampling Media: $6.0 L$ Summa Canister(s)Test Notes:		Date Ana	Lab File ID: 08021204.D Date Analyzed: 8/02/12 Time Analyzed: 07:58	
Client Sample ID	CAS Samp	le ID Lab File ID	Time Analyzed	
Lab Control Sample	P120802-I	CS 08021205.D	08:26	
2-SS-3-CON-Resamp	ble (Dilution) P1203080-	013 08021207.D	11:46	
2-SS-1-CON	P1203080-	009 08021208.D	12:18	
2-SS-2-CON	P1203080-	010 08021209.D	12:45	

P1203080-010DUP

15:43

Page 1 of 1

Client: GSI Environmental Inc. Client Project ID: ESTCP / JBLM Long Center / G-3585 / 3669

CAS Project ID: P1203080

File ID: 08011202.D

8/1/12

Internal Standard Area and RT Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Lab File ID: 080112
Analyst:	Wida Ang	Date Analyzed: 8/2
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed: 07:28
Test Notes:		

		IS1 (BCM)	IS1 (BCM) IS2 (DFB) IS3 (CBZ)				
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	29278	9.33	127514	10.66	28816	13.41
	Upper Limit	40989	9.66	178520	10.99	40342	13.74
	Lower Limit	17567	9.00	76508	10.33	17290	13.08
	Client Sample ID						
01	Method Blank	30845	9.34	123583	10.66	29703	13.42
02	Lab Control Sample	29936	9.33	130325	10.66	28507	13.41
03	1-SS-1-CON	31782	9.33	143134	10.66	36766	13.41
04	1-SS-2-CON	29743	9.32	129710	10.66	31527	13.41
05	1-SS-3-CON	28554	9.33	126421	10.66	31108	13.41
06	1-AA-1-CON	32709	9.33	147941	10.66	33323	13.41
07	1-IA-1-CON	32046	9.33	142804	10.66	34896	13.41
08	1-IA-2-CON	32257	9.33	144534	10.66	34788	13.41
09	2-AA-1-CON	33601	9.33	151329	10.66	34469	13.41
10	2-IA-1-CON	31687	9.33	144397	10.66	34845	13.41
11	2-IA-1-CON (Lab Duplicate)	31234	9.33	144338	10.66	34069	13.41
12	1-IA-3-BL	31724	9.33	143826	10.66	36880	13.41
13	1-IA-3-PP	33066	9.33	149053	10.66	37242	13.41
14	2-SS-3-CON-Resample	32821	9.33	147700	10.66	36898	13.41
15	2-IA-1-BL	32378	9.33	146693	10.66	36271	13.41
16	2-IA-1-NP	31576	9.33	142003	10.66	32886	13.41
17	DUP-1	32252	9.33	143939	10.66	34688	13.41
18	1-IA-3-NP	32639	9.33	147075	10.66	36089	13.41
19			-				

20

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP / JBLM Long Center / G-3585 / 3669

CAS Project ID: P1203080

Internal Standard Area and RT Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS7	Lab File ID: 08021203.D
Analyst:	Wida Ang	Date Analyzed: 8/2/12
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed: 07:27
Test Notes:		

		IS1 (BCM)	A) IS2 (DFB)		IS3 (CBZ)		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	31051	9.33	138795	10.66	31508	13.41
	Upper Limit	43471	9.66	194313	10.99	44111	13.74
	Lower Limit	18631	9.00	83277	10.33	18905	13.08
	Client Sample ID						
01	Method Blank	30396	9.34	127198	10.66	29705	13.42
02	Lab Control Sample	31152	9.32	138167	10.66	31140	13.41
03	2-SS-3-CON-Resample (Dilution)	29546	9.33	125838	10.66	29193	13.41
04	2-SS-1-CON	30276	9.33	130727	10.66	34933	13.41
05	2-SS-2-CON	30419	9.32	137865	10.66	33676	13.41
06	2-SS-2-CON (Lab Duplicate)	33994	9.33	154635	10.66	37520	13.41
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

20

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

MS07	
Report	4
Factor	
Response	-

TO-15/GC-MS Integrator) (CASS (RTE J:\Ms07\METHODS\X7071612.M EPA TO-15 per SOP VOA-TO15 17 11:58:51 2012 Calibration Tue Jul Initial ••• •• •• •• Response via Last Update Method Title

11.49 12.69 12.42 15.07 13.36 11.30 10.50 17.33 1.49 12.30 14.17 15.90 14.69 16.43 15,00 11.32 13.16 11.36 12.48 12.15 10.35 14.42 ப 11.68 13.10 %RSD 13.8 =07161208.D 567 517 1.423 3.010 .939 .444 2.258 .217 0.472 0.330 0.255 .352 1.406 1.289 684 55 0.923 1.257 2.708 1.279 .307 60 1.134 0.396 ∞ 1.8 Avg Ó 4 2 . - N ∞ \sim Ø 0 500 .240 .491 .247 .252 .643 .323 .453 .058 .445 .756 .497 .494 .825 .216 .985 .370 0.270 0.582 0.522 .904 .361 .051 .451 0.309 03 .12 20K =07161207.D =07161212.D 0 \sim \sim - $\overline{}$ $^{\circ}$ 4 \sim \sim \sim L 0 0 .589 .119 .826 .269 0.593 .349 .957 .394 .273 .312 .761 .361 544 1.510 .231 886 .562 .611 .322 .342 .782 0.389 0.464 0.323 0.281 σ 999 . . $^{\circ}$ \sim \sim - \sim Н \sim 0 \sim 4 \sim \sim -1.328 1.843 707 .750 .405 0.332 1.123 0.225 2.217 1.148 1.102 1.070 2.373 0.967 1.254 2.669 1.297 2.272 2.001 σ 0.415 0.284 0.488 6 1.964 500 10 .46 0.41(`. 0 100 20K \sim \sim m 1.329 0.405 0.285 1.231 .088 .069 .456 .480 09 .381 .630 1.830 2 804 2.232 1.206 1.115 0.992 1.288 2.276 1.981 1.969 0.340 0.216 0.397 0.468 93, 1000 4. .0 ы. ГО =07161206.D =07161211.D \sim \sim \sim m 1.849 0.322 0.234 319 917 .481 1.211 2.677 1.232 .964 .673 .397 .559 .209 513 2.199 .427 STD 1.352 6.010 1.248 1.114 1.368 .633 - ISTD 0.385 0.461 0.507 500 . М 0 • H-1 \sim Ч \sim m \sim \sim 0 .535 1.897 .021 .745 .642 .136 .223 3.515 .094 .962 .582 1.628 L 1.366 1.608 1.609 1.883 0 6 0.578 587 492 0.402 0.281 2.560 93, 0.48(.02 1.46 00 . 9999 Н $^{\circ}$ -- $^{\circ}$ 4 $^{\circ}$ \sim 0 4 0 75 .050 50 1.088 2.651 3.188 1.289 0.433 0.306 0.245 0.448 0.390 0.874 2.261 .447 1.861 2.021 .038 1.298 1.551 1.021 1.257 2.997 1.489 1.967 0.368 -75 =07161205.D =07161210.D $^{\circ}$ гH \sim .870 1.273 1.383 2.177 0.494 0.343 .297 .196 .366 .500 3.453 1.082 2.535 1.740 2.700 3.455 S .693 2.901 0.414 0.292 4 .18 .42, S \sim 0 0 \sim Н -50 3.170 1.528 0.477 080 523 .546 1.376 1.755 3.476 1.905 2.749 ഹ 615 537 4.007 4.194 92 6 \sim . 9 6 σ . 0 0 . ---°. 0 0 . . 25 2500 H \sim \sim 0 \leftarrow T Dichlorodifluorom Trichlorofluorome 1,1-Dichloroethen Trichlorotrifluor trans-1,2-Dichlor 1,1-Dichloroethan 1,2-Dichloroethan 1,2-Dichloroethan cis-1,3-Dichlorop Bromochloromethan Methylene Chlorid Methyl tert-Butyl cis-1,2-Dichloroe 1,1,1-Trichloroet Carbon Tetrachlor 1,4-Difluorobenze 1,2-Dichloropropa Bromodichlorometh trans-1,3-Dichlor Trichloroethene alibration Files Vinyl Chloride =07161214.D =07161209.D Chloromethane Chloroethane Bromomethane 1,4-Dioxane Chloroform Compound Acetone Benzene 1000 $^{\circ}$ \bigcirc -Η ΕH H ΗЕ H H H H H36 of 41 22) 23) 14) 24) 25) 16) 20) 13) 15) 17) 18) 19) 26) 27) 28 H N M 21

exceeded format levels 2012 calibration 01 10:29:55 Number of Wed Aug ### X7071612.M of Range Out 11 (#)

Page

MS07 Report Factor Response

11.95 4.54 12.50 3.15 15.54 13.99 14.44 14.78 12.60 8.71 13.78 14.37 14.30 12.41 %RSD =07161208.D 2.885 2.876 1.382 4.993 2.695 1.825 .748 0.364 0.345 5.920 4.624 2.780 0.302 1.091 Avg \sim 11 500 0.354 0.319 .438 5.540 .690 .083 6.511 .374 .760 .861 .882 .753 0.280 5.290 ΟK =07161207.D =07161212.D \sim m \sim Ч \sim \sim \sim .170 .137 .838 1.048 1.417 .333 .799 .949 .203 .220 .101 0.369 0.292 5.880 9999 0 \sim \sim 6 \sim \sim \sim Ч \sim 1.059 1.205 2.457 5.094 2.665 0.253 0.312 0.288 3.307 4.757 1.863 5.738 2.655 2.560 500 (CASS TO-15/GC-MS) 100 20K \sim (RTE Integrator) 0.310 2.615 0.257 1.0661.193 3.263 .441 0.298 5.291 4.487 4.836 1.948 2.573 1.504 2.511 000 \sim =07161206.D =07161211.D -1.310 5.077 2.697 2.837 2.721 1.066 0.343 0.333 3.628 5.533 4.493 1.923 2.777 0.291 STD 500 H .970 .057 .826 .997 .900 1.639 1.110 0.423 .301 0.370 0.428 6.092 4.498 00 J:\Ms07\METHODS\X7071612.M EPA TO-15 per SOP VOA-TO15 9999 \sim 4 4 \sim \sim -1 Ч \sim Tue Jul 17 11:58:51 2012 .409 .319 75 0.328 .350 .017 0.287 1.135 1.319 .898 3.599 .518 .438 .387 1.818 75 =07161205.D =07161210.D \sim Initial Calibration 0 4 4 \sim \sim \sim \sim 1.143 3.863 2.661 1.762 2.480 1.599 .371 3.758 0.324 0.368 5.420 4.241 2.580 2.481 1.529 ப 0 \sim 4.884 6.628 4.752 5.022 2.897 σ 9 3.859 0.364 1.107 1.682 3.633 .609 0.465 0.41(\circ 25 2500 -L 1,2-Dibromoethane Tetrachloroethene 1,1,2,2-Tetrachlo Bromofluorobenzen 1,3-Dichlorobenze 1,4-Dichlorobenze 1,2-Dichlorobenze 1,1,2-Trichloroet Toluene-d8 (SS2) Chlorobenzene-d5 Calibration Files = 07161214.D =07161209.D Chlorobenzene Ethylbenzene ••• .. •• m,p-Xylene Response via Last Update o-Xylene Compound Toluene Method Title 1000 10 H N H H H 29) 30) 31) 32) 33) 34) 35) 36) 40) 41) 42) 43)

calibration levels exceeded format 2012 01 10:29:56 ### Number of Wed Aug X7071612.M of Range Out 11 (#)

25.47 10.42

L .66 ம

0

.041

.113

0.940

995

13

.006

101

. ---

64

ς.

Ч

Hexachlorobutadie

1,2,4-Trichlorobe

Naphthalene

44) 45)

46)

 ∞ -

.841 1.612

ഹ

5.107 0.907

• 4 0

.521

4

.58,

4

.584

4

543 929

•

.544

1.500

ம

10.78

1.629 σ

.822 .620

.978 .165

-

Evaluate Continuing Calibration Report									
Data Path : J:\Ms07\DATA\2012_08\01\ Data File : 08011202.D Acq On : 1 Aug 2012 7:28 Operator : WA Sample : 500pg TO-15 SIM CCV STD (125mL) Misc : S25-07131201/S25-07131206 ALS Vial : 16 Sample Multiplier: 1									
Quant Time: Aug 01 10:29:36 2012 Quant Method : J:\Ms07\METHODS\X7071612.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue Jul 17 11:58:51 2012 Response via : Initial Calibration									
Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%									
Compound	AvgRF	CCRF	%Dev Ar	ea% Dev(min)					
<pre>1 I Bromochloromethane (IS1) 2 T Dichlorodifluoromethane (CF 3 T Chloromethane 4 T Vinyl Chloride 5 T Bromomethane 6 T Chloroethane 7 T Acetone 8 T Trichlorofluoromethane 9 T 1,1-Dichloroethene 10 T Methylene Chloride 11 T Trichlorotrifluoroethane 12 T trans-1,2-Dichloroethene 13 T 1,1-Dichloroethane 14 T Methyl tert-Butyl Ether 15 T cis-1,2-Dichloroethene 16 T Chloroform 17 S 1,2-Dichloroethane 19 T 1,1,1-Trichloroethane 20 T Benzene 21 T Carbon Tetrachloride</pre>	1.000 3.352 0.923 2.567 1.406 1.289 1.257 2.708 1.279 1.517 1.134 1.423 3.010 3.939 1.444 2.684	1.000 2.886 0.807 2.186 1.223 1.115 1.178 2.355 1.119 1.322 0.977 1.234 2.563 3.489 1.264 2.315 1.835 1.835 1.951	0.0 13.9 12.6 14.8 13.0 13.5 6.3 13.0 12.5 12.9 13.8 13.3 14.9 11.4 12.5 13.7 1.1 13.6 12.9 15.8						
<pre>22 I 1,4-Difluorobenzene (IS2) 23 T 1,2-Dichloropropane 24 T Bromodichloromethane 25 T Trichloroethene 26 T 1,4-Dioxane 27 T cis-1,3-Dichloropropene 28 T trans-1,3-Dichloropropene 29 T 1,1,2-Trichloroethane 30 S Toluene-d8 (SS2) 31 T Toluene 32 T 1,2-Dibromoethane 33 T Tetrachloroethene 34 I Chlorobenzene-d5 (IS3) 35 T Chlorobenzene</pre>	1.000 0.396 0.472 0.330 0.255 0.532 0.460 0.302 1.091 1.382 0.364 0.345 1.000 3.748	0.331 0.389 0.281 0.226 0.455 0.383 0.246 1.089 1.178 0.297 0.293	16.4 17.6 14.8 11.4 14.5 16.7 18.5 0.2 14.8 18.4 15.1 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
36 T Ethylbenzene 37 T m,p-Xylene	5.920 4.624		10.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

X7071612.M Wed Aug 01 10:29:52 2012

1071 8/1/12

38 of 41

Evaluate Continuing Calibration Report Data Path : J:\Ms07\DATA\2012 08\01\ Data File : 08011202.D Acq On : 1 Aug 2012 7:28 Operator : WA Sample : 500pg TO-15 SIM CCV STD (125mL) : S25-07131201/S25-07131206 Misc ALS Vial : 16 Sample Multiplier: 1 Quant Time: Aug 01 10:29:36 2012 Ouant Method : J:\Ms07\METHODS\X7071612.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue Jul 17 11:58:51 2012 Response via : Initial Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200% AvgRF CCRF %Dev Area% Dev(min) Compound 38 To-Xylene4.9934.5698.51100.0039 T1,1,2,2-Tetrachloroethane2.6952.28915.11040.0040 SBromofluorobenzene (SS3)1.8251.904-4.31210.0041 T1,3-Dichlorobenzene2.8852.50213.31080.0042 T1,4-Dichlorobenzene2.8762.46214.41080.0043 T1,2-Dichlorobenzene2.7802.40513.51080.0044 T1,2,4-Trichlorobenzene1.6291.45510.71150.0045 TNaphthalene5.6695.6121.01390.0046 THexachlorobutadiene1.0550.89715.01100.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

39 of 41

Data Path : J:\Ms07\DATA\2012_08\02\ Data File : 08021203.D Acq On : 2 Aug 2012 7:27 Operator : WA Sample : 500pg TO-15 SIM CCV STD (125mL) Misc : S25-07131201/S25-07131206 ALS Vial : 16 Sample Multiplier: 1

Quant Time: Aug 02 11:07:37 2012 Quant Method : J:\Ms07\METHODS\X7071612.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue Jul 17 11:58:51 2012 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
1 I 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11 T 12 T 13 T 14 T 15 T 16 T 17 S 18 T 19 T	Bromochloromethane (IS1) Dichlorodifluoromethane (CF Chloromethane Vinyl Chloride Bromomethane Chloroethane Acetone Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Trichlorotrifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane-d4 (SS1) 1,2-Dichloroethane 1,1.Trichloroethane	2.567 1.406 1.289 1.257 2.708 1.279 1.517 1.134 1.423 3.010	1.000 2.915 0.803 2.191 1.219 1.113 1.196 2.360 1.135 1.319 0.978 1.235 2.583 3.618 1.265 2.310 1.847 1.937 1.928	0.0 13.0 13.0 14.6 13.3 13.7 4.9 12.9 11.3 13.1 13.8 13.2 14.2 8.1 12.4 13.9 0.4 14.2 13.0	125 110 111 113 112 124 111 116 109 110 113 109 124 114 113 125 110 110	0.00 0.00
20 T 21 T	Benzene Carbon Tetrachloride	6.307 1.681	5.280	16.3 14.2	110 111	0.00
22 I 23 T 24 T 25 T 26 T 27 T 28 T 30 S 31 T 32 T 33 T	1,4-Difluorobenzene (IS2) 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene-d8 (SS2) Toluene 1,2-Dibromoethane Tetrachloroethene	1.000 0.396 0.472 0.330 0.255 0.532 0.460 0.302 1.091 1.382 0.364 0.345	1.000 0.321 0.375 0.274 0.223 0.446 0.382 0.241 1.099 1.171 0.293 0.288	0.0 18.9 20.6 17.0 12.5 16.2 17.0 20.2 -0.7 15.3 19.5 16.5	133 111 108 113 127 117 119 110 137 119 114 115	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
34 I 35 T 36 T 37 T	Chlorobenzene-d5 (IS3) Chlorobenzene Ethylbenzene m,p-Xylene	1.000 3.748 5.920 4.624	1.000 3.185 5.286 4.179	0.0 15.0 10.7 9.6	133 117 127 124	0.00 0.00 0.00 0.00

40 of 41

Page: 1

Data Path : J:\Ms07\DATA\2012 08\02\ Data File : 08021203.D Acq On : 2 Aug 2012 7:27 Operator : WA Sample : 500pg TO-15 SIM CCV STD (125mL) Misc : S25-07131201/S25-07131206 ALS Vial : 16 Sample Multiplier: 1

Quant Time: Aug 02 11:07:37 2012 Quant Method : J:\Ms07\METHODS\X7071612.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Tue Jul 17 11:58:51 2012 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

39 T1,1,2,2-Tetrachloroethane2.6952.21317.91090.040 SBromofluorobenzene (SS3)1.8251.881-3.11300.041 T1,3-Dichlorobenzene2.8852.43215.71140.042 T1,4-Dichlorobenzene2.8762.41915.91160.043 T1,2-Dichlorobenzene2.7802.34515.61150.0		Compound	AvgRF	CCRF	%Dev Area% Dev(min)
45 T Naphthalene 5.669 5.671 -0.0 153 0.0	39 T 40 S 41 T 42 T 43 T 44 T 45 T	1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene	2.695 1.825 2.885 2.876 2.780 1.629 5.669	2.213 1.881 2.432 2.419 2.345 1.433 5.671	17.9 109 0.00 -3.1 130 0.00 15.7 114 0.00 15.9 116 0.00 15.6 115 0.00 12.0 124 0.00 -0.0 153 0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

41 of 41

Rac	on Analysis (EPA Method GS: 0	Frab Sample/S	Scintillati	on Cell coun	ting)													
For	GSI Environmental				Client P	roject Num	ber: G-3669	, 3585										
	Samples Collected by: T. McHugh/L.	Beckley			Sample	Dates: 07/	25/2012,7	/26/12										
					Sample	containers	Tedlar bag	s w/ nylon fi	ttings									
	Site: Tacoma, WA				Assume	d Site Pres			atm									
	Analysts: Doug Hammond						an elevatior											
	Phone: 310-490-7896				Time Zo			decay time										
	email: dhammond@usc.edu					0	hours			(PDT)								
									Run	(PDT)								
	Summary	Collectio		Analys					Lab Dup									
		Date	time (PDT)	Date	time (PDT)	Vol run	Conc. pCi/L	±1 sig pCi/L	mean pCi/L	±1ssd pCi/L	Notes							
Poc	ived 07/26/12, from ESTCP (Projec	+ C-2669)																
	1-IA-3-BL	7/25/12	8:51	7/26/12	17:05	60	0.36	0.11										
	1-IA-3-NP	7/25/12	11:06	7/26/12	17:02	120	0.20	0.06										
	1-IA-3-PP	7/25/12	9:55	7/26/12	16:59	120	0.20	0.00										
	1-AA-1	7/25/12	9:25	7/26/12	16:56	120	0.01	0.05										
	ived 7/27/12, from JBLM (Project 3		0.20	1720/12	10.00	120	0.01	0.00									-	
	2-IA-1-NP	7/26/12	10:15	7/27/12	18:22	120	0.12	0.02			more pre	ecise				1		
	lab dupe	7/26/12	10:15	7/30/12	10:37	120	0.23	0.11			less prec					1	1	
	Dup-1	7/26/12	10:15	7/27/12	18:30	60	0.10	0.04								1	1	
	2-IA-1-BL	7/26/12	8:36	7/27/12	18:18	120	0.09	0.03										
	2-AA-1	7/26/12	8:45	7/27/12	18:26	120	0.09	0.03										
	Uncertainty given in pCi/liter is base	d on counting s	tatistics f	or low activity	samples.	. For high a	activity sam	ples uncerta	inty is ±5	%.				1				
	The Lower Limit of Detection for Rn																	
	Results are reported based on stand								1									
	These results are for application of r	naturally-occurri	ing radon a	as a tracer of	soil vapor	intrusion,	but are not	intended for	evaluation	on of rado	n hazards	s.						
	Note Details:																	
	Results corrected to in situ pressure	as noted above	e															
Ra	v Data. Calculation factors	and Analy	tical De	tails														
		· · · · ·																
		Collectio	n	Analys	sis												count	
	Sample ID	Collectio Date		Analys Date		Count in	He	Air/He	Vol run	Press	obs	sia	Decav T	Decav	Concentra	tion	count	
	Sample ID		n Time (PDT)		sis Time (PDT)	Count in cell/ch	He	Air/He eff	Vol run (cc)	Press	obs dpm	sig	Decay T (hours)		Concentration		stats	Notes
	Sample ID		Time		Time	Count in cell/ch			Vol run (cc)	Press factor	obs dpm	sig dpm	Decay T (hours)		Concentrat dpm/liter		stats pCi/liter	Notes
Rec		Date	Time		Time												stats	Notes
Rec	ived 07/26/12, from ESTCP (Projec	Date t G-3669)	Time (PDT)	Date	Time (PDT)	cell/ch	eff	eff	(cc)	factor	dpm	dpm	(hours)	factor	dpm/liter	pCi/liter	stats pCi/liter ±1 sig	Notes
1	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL	Date t G-3669) 7/25/12	Time (PDT) 8:51	Date 7/26/12	Time (PDT) 17:05	cell/ch	eff 0.902	eff 0.98	(cc) 60	factor	dpm 0.033	dpm 0.010	(hours) 32.2	factor 1.276	dpm/liter 0.79	pCi/liter	stats pCi/liter ±1 sig 0.11	Notes
1	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP	Date t G-3669) 7/25/12 7/25/12	Time (PDT) 8:51 11:06	Date 7/26/12 7/26/12	Time (PDT) 17:05 17:02	cell/ch 76/22 84/11	eff 0.902 0.785	eff 0.98 0.95	(cc) 60 120	factor 1.00 1.00	dpm 0.033 0.032	dpm 0.010 0.010	(hours) 32.2 29.9	factor 1.276 1.254	0.79 0.45	0.36 0.20	stats pCi/liter ±1 sig 0.11 0.06	Notes
1 2 3	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL	Date t G-3669) 7/25/12	Time (PDT) 8:51 11:06 9:55	Date 7/26/12 7/26/12 7/26/12	Time (PDT) 17:05 17:02 16:59	cell/ch	eff 0.902 0.785 0.806	eff 0.98	(cc) 60 120 120	factor 1.00 1.00 1.00	dpm 0.033 0.032 0.049	dpm 0.010 0.011 0.011	(hours) 32.2	factor 1.276 1.254 1.265	dpm/liter 0.79 0.45 0.67	pCi/liter 0.36 0.20 0.30	stats pCi/liter ±1 sig 0.11	Notes
1 2 3 4	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/25/12	Time (PDT) 8:51 11:06	Date 7/26/12 7/26/12	Time (PDT) 17:05 17:02	cell/ch 76/22 84/11 83/33	eff 0.902 0.785 0.806	eff 0.98 0.95 0.95	(cc) 60 120 120	factor 1.00 1.00 1.00	dpm 0.033 0.032 0.049	dpm 0.010 0.010	(hours) 32.2 29.9 31.1	factor 1.276 1.254	dpm/liter 0.79 0.45 0.67	0.36 0.20	stats pCi/liter ±1 sig 0.11 0.06 0.07	Notes
1 2 3 4 Rec	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-IA-3-PP 1-AA-1	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/25/12	Time (PDT) 8:51 11:06 9:55	Date 7/26/12 7/26/12 7/26/12	Time (PDT) 17:05 17:02 16:59	cell/ch 76/22 84/11 83/33	eff 0.902 0.785 0.806	eff 0.98 0.95 0.95 0.95	(cc) 60 120 120 120	factor 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002	dpm 0.010 0.011 0.011	(hours) 32.2 29.9 31.1	factor 1.276 1.254 1.265	dpm/liter 0.79 0.45 0.67	pCi/liter 0.36 0.20 0.30	stats pCi/liter ±1 sig 0.11 0.06 0.07	Notes
1 3 4 Rec	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 Vied 7/27/12, from JBLM (Project 3 2-IA-1-NP Ia bd upe	Date 7/25/12 7/25/12 7/25/12 7/25/12 7/25/12 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 9:25 10:15	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/30/12	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32	eff 0.902 0.785 0.806 0.743 0.818 0.743	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021	dpm 0.010 0.010 0.011 0.007 0.004 0.010	(hours) 32.2 29.9 31.1 31.5 32.1 96.4	factor 1.276 1.254 1.265 1.269 1.275 2.071	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11	Notes
1 2 3 4 Rec 5	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-IA-1 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP lab dupe Dup-1	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/25/12 7/25/12 3585) 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 9:25 10:15 10:15	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/30/12 7/27/12	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 60	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009	dpm 0.010 0.011 0.007 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3	factor 1.276 1.254 1.265 1.269 1.275 2.071 1.276	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP Iab dupe Dup-1 2-IA-1-BL	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/25/12 7/26/12 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.98 0.98	(cc) 60 120 120 120 120 120 60 120	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.013	dpm 0.010 0.011 0.007 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7	factor 1.276 1.254 1.265 1.269 1.275 2.071 1.276 1.276 1.290	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-IA-1 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP lab dupe Dup-1	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/25/12 7/25/12 3585) 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 9:25 10:15 10:15	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/30/12 7/27/12	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 60 120	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.013	dpm 0.010 0.011 0.007 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3	factor 1.276 1.254 1.265 1.269 1.275 2.071 1.276	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP Iab dupe Dup-1 2-IA-1-BL	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/25/12 7/26/12 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.98 0.98	(cc) 60 120 120 120 120 120 60 120	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.013	dpm 0.010 0.011 0.007 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7	factor 1.276 1.254 1.265 1.269 1.275 2.071 1.276 1.276 1.290	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP Iab dupe Dup-1 2-IA-1-BL	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.98 0.95	(cc) 60 120 120 120 120 60 120 120	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.013 0.014	dpm 0.010 0.011 0.007 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7	factor 1.276 1.254 1.265 1.265 1.275 2.071 1.276 1.270 1.290 1.290	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20 0.20	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP lab dupe Dup-1 2-IA-1-BL 2-IAA-1 2-IAA-1	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:30 18:36 18:26	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.98 0.95	(cc) 60 120 120 120 120 120 120 120 12	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.013 0.014	dpm 0.010 0.011 0.007 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 33.7	factor 1.276 1.254 1.265 1.265 1.275 2.071 1.276 1.270 1.290 1.290	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20 0.20	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 Vied 7/27/12, from JBLM (Project 3 2-IA-1-NP Iab dupe Dup-1 2-IA-1-BL 2-IA-1 2-IA-1 Decay correctiions based on Rn decc	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120 120 12	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.013 0.014	dpm 0.010 0.011 0.007 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 33.7	factor 1.276 1.254 1.265 1.265 1.275 2.071 1.276 1.270 1.290 1.290	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20 0.20	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP lab dupe Dup-1 2-IA-1-BL 2-AA-1 Decay corrections based on Rn dect Conversion from dpm based on Blanks are negligible.	Date t G-3669) 7/25/12 7/25/12 7/25/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120 120 12	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.013 0.014	dpm 0.010 0.011 0.007 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 33.7	factor 1.276 1.254 1.265 1.265 1.275 2.071 1.276 1.270 1.290 1.290	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20 0.20	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP Iab dupe Dup-1 2-IA-1-BL 2-IA-1-BL 2-AA-1 Decay corrections based on Rn deca Conversion from dpm based on Banks are negligible. Definitions:	Date T/25/12 T/25/12 T/25/12 T/25/12 T/26/12 T/26/12 T/26/12 T/26/12 T/26/12 T/26/12	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 8:36 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120 4)(1000) (120 (120) (1	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.013 0.014)(decay f	dpm 0.010 0.011 0.007 0.004 0.004 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 Press factor)	factor 1.276 1.254 1.265 1.269 1.275 2.071 1.276 1.290 1.290 1.290	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20 0.20 0.20	pCi/liter 0.36 0.20 0.30 0.01 0.23 0.10 0.09 Air/He)}	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Project 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP lab dupe Dup-1 2-IA-1-BL 2-AA-1 Decay corrections based on Rn deci Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch:	Date T/25/12 7/25/12 7/25/12 7/25/12 7/26/1	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 8:36 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504	Time (PDT) 17:05 17:02 16:59 16:59 16:56 18:22 10:37 18:30 18:18 18:26 18:28 18:26	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 60 120 120 120 120 120 120 120 12	factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.019 0.013 0.014 0.014 0.014	dpm 0.010 0.010 0.011 0.007 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 27ess factor) press factor) sig) in dpm	factor 1.276 1.254 1.265 1.269 1.275 2.071 1.276 1.290 1.290 1.290 1.290 based on	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20 0.20 0.20 ed)(He eff)(pCi/liter 0.36 0.20 0.30 0.01 0.23 0.10 0.09 Air/He)}	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP lab dupe Dup-1 2-IA-1-BL 2-AA-1 Decay corrections based on Rn dec: Conversion from dpm based on Blanks are negligible. Defnitions: Cell/Ch: He eff:	Date Date Trian Constant of Counting cell and country Counting cell and country Counting cell and country Counting cell and country	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 8:36 8:45 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:18 18:26 8 per day pCi/dpn	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 60 120 120 4)(1000)) sig dpm Decay T	factor 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.021 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0.005 0.005 0.005 0.005 0.005 0.	dpm 0.010 0.010 0.011 0.007 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.000400000000	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 Press factor) sig) in dpm m sampling	factor 1.276 1.254 1.265 1.269 1.275 2.071 1.276 1.290 1.290 1.290 1.290 based on to analysis	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.20 0.20 0.20 0.20 0.20 0.20 counting st	pCi/liter 0.36 0.20 0.31 0.12 0.23 0.10 0.09 Air/He)}	stats pCi/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	Notes
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Project 1-IA-3-BL 1-IA-3-PP 1-IA-3-PP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP lab dupe Dup-1 2-IA-1-BL 2-AA-1 Decay corrections based on Rn deci Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Air/He:	Date Date 1 (-3669) 7/25/12 7/25/12 7/25/12 7/26/12	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36 8:45 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:18 18:26 8 per day pCi/dpn	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 82/32 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120 120 12	factor 1.00	dpm 0.033 0.032 0.049 0.021 0.019 0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.005 0.015 0.015 0.015 0.015 0.015 0.0210 0.0210000000000	dpm 0.010 0.011 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.004 nty (± 1 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 33.7 ress factor) sig) in dpm m sampling r for decay	factor 1.276 1.254 1.269 1.275 2.071 1.275 2.071 1.270 1.290 1.290 1.290 1.290 1.290 based on to analysis from colle	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20 0.20 d)(He eff)(counting si s	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09 Air/He)} Latistics Jysis	stats pc//itee ±1 sig 0.11 0.06 0.07 0.05 0.01 0.04 0.03 0.03	
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP Iab dupe Dup-1 2-IA-1-BL 2-IA-1-BL 2-IA-1-BL 2-IA-1 Decay corrections based on Rn decc Conversion from dpm based on Blanks are negligible. Defnitions: Cell/Ch: He eff: Air/He: Sample vol:	Date Date Trian Contemporation Date Trian Contemporation Date Trian Contemporation Date Date Trian Contemporation Date Date Date Date Trian Date Date Date Date Date Date Date Date	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 8:36 8:45 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504 et used cy using helium ming gas der	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26 18:28 18:26 18:28 18:26 18:29 18:19 18:10 18:18 18:26 18:29 18:19 18:20 18:19 18:20 18:19 18:20 18:21 18:22 18:22 18:21 18:22 18:22 18:21 18:22 1	cell/ch 76/22 84/11 83/33 82/32 81/31 82/32 76/22 83/33	eff 0.902 0.785 0.806 0.743 0.818 0.743 0.902 0.743 0.806	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 60 120 120 120 (1000) (100) (1000)	factor 1.00	dpm 0.033 0.032 0.049 0.001 0.001 0.001 0.001 0.014 0.0014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.015 0	dpm 0.010 0.010 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.000 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.001 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0007 0.0007 0.0004 0.0000 0.0010 0.0004 0.0000 0.0000 0.0000 0.0000 0.00000000	(hours) 32.2 29.9.9 31.1 31.5 32.1 96.4. 32.3 33.7 7ress factor) sig) in dpm m sampling r for decay i trion in disin	factor 1.276 1.254 1.265 1.265 1.275 2.071 1.276 1.290 1	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.51 0.22 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.25 0.20 0.25 0.25 0.57 0	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09 Air/He)} Latistics Jysis	stats pc//itee ±1 sig 0.11 0.06 0.07 0.05 0.01 0.04 0.03 0.03	
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Project 1-IA-3-BL 1-IA-3-PD 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP 2-IA-1-BL 2-IA-1-BL 2-IA-1-BL 2-IA-1 Decay corrections based on Rn deci Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Ar/He: Sample vol: Press factor:	Date Date T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(26/12) T(Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36 8:45 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504 el used el used sure based or	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26 18:26 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:37 19:37 1	cell/ch 76/22 84/11 83/33 82/32 82/3 82/3	eff 0.902 0.743 0.743 0.743 0.743 0.743 0.806 Radon Cor	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120 120 12	factor 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.009 0.015 0.019 0.021 0.049 0.021 0.049 0.041 0.04	dpm 0.010 0.010 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 Press factor) Press fac	factor 1.276 1.254 1.269 1.275 2.071 1.270 1.290 1	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.52 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.45 0.67 0.45 0.67 0.22 0.20 0.45 0.67 0.22 0.20 0.20 0.45 0.67 0.22 0.20 0	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09 0.09 0.09 0.09 Air/He)}	stats pci/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Projec 1-IA-3-BL 1-IA-3-NP 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP Iab dupe Dup-1 2-IA-1-BL 2-IA-1-BL 2-IA-1-BL 2-IA-1 Decay corrections based on Rn decc Conversion from dpm based on Blanks are negligible. Defnitions: Cell/Ch: He eff: Air/He: Sample vol:	Date Date Trian Contemporation Date Trian Contemporation Date Trian Contemporation Date Date Trian Contemporation Date Date Date Date Trian Date Date Date Date Date Date Date Date	Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36 8:45 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504 el used el used sure based or	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26 18:26 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:37 19:37 1	cell/ch 76/22 84/11 83/33 82/32 82/3 82/3	eff 0.902 0.743 0.743 0.743 0.743 0.743 0.806 Radon Cor	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 60 120 120 120 (1000) (100) (1000)	factor 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.009 0.015 0.019 0.021 0.049 0.021 0.049 0.041 0.04	dpm 0.010 0.010 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	(hours) 32.2 29.9.9 31.1 31.5 32.1 96.4. 32.3 33.7 7ress factor) sig) in dpm m sampling r for decay iy trion in disin	factor 1.276 1.254 1.269 1.275 2.071 1.270 1.290 1	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.52 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.45 0.67 0.45 0.67 0.22 0.20 0.45 0.67 0.22 0.20 0.20 0.45 0.67 0.22 0.20 0	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09 0.09 0.09 0.09 Air/He)}	stats pci/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	
1 2 3 4 Reco 5 6 7	ived 07/26/12, from ESTCP (Project 1-IA-3-BL 1-IA-3-PD 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP 2-IA-1-BL 2-IA-1-BL 2-IA-1-BL 2-IA-1 Decay corrections based on Rn deci Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Ar/He: Sample vol: Press factor:	Date Date T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(26/12) T(Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36 8:45 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504 el used el used sure based or	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26 18:26 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:37 19:37 1	cell/ch 76/22 84/11 83/33 82/32 82/3 82/3	eff 0.902 0.743 0.743 0.743 0.743 0.743 0.806 Radon Cor	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120 120 12	factor 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.009 0.015 0.019 0.021 0.049 0.021 0.049 0.041 0.04	dpm 0.010 0.010 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 Press factor) Press fac	factor 1.276 1.254 1.269 1.275 2.071 1.270 1.290 1	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.52 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.45 0.67 0.45 0.67 0.22 0.20 0.45 0.67 0.22 0.20 0.20 0.45 0.67 0.22 0.20 0	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09	stats pci/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	
1 2 3 4 Reco 5 6 7	ived 07/26/12, from ESTCP (Project 1-IA-3-BL 1-IA-3-PD 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP 2-IA-1-BL 2-IA-1-BL 2-IA-1-BL 2-IA-1 Decay corrections based on Rn deci Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Ar/He: Sample vol: Press factor:	Date Date T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(26/12) T(Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36 8:45 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504 el used el used sure based or	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26 18:26 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:37 19:37 1	cell/ch 76/22 84/11 83/33 82/32 82/3 82/3	eff 0.902 0.743 0.743 0.743 0.743 0.743 0.806 Radon Cor	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120 120 12	factor 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.009 0.015 0.019 0.021 0.049 0.021 0.049 0.041 0.04	dpm 0.010 0.010 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 Press factor) Press fac	factor 1.276 1.254 1.269 1.275 2.071 1.270 1.290 1	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.52 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.45 0.67 0.45 0.67 0.22 0.20 0.45 0.67 0.22 0.20 0.20 0.45 0.67 0.22 0.20 0	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09	stats pci/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	
1 2 3 4 Rec 5 6 7	ived 07/26/12, from ESTCP (Project 1-IA-3-BL 1-IA-3-PD 1-IA-3-PP 1-AA-1 ived 7/27/12, from JBLM (Project 3 2-IA-1-NP 2-IA-1-BL 2-IA-1-BL 2-IA-1-BL 2-IA-1 Decay corrections based on Rn deci Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Ar/He: Sample vol: Press factor:	Date Date T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(25/12) T(26/12) T(Time (PDT) 8:51 11:06 9:55 9:25 10:15 10:15 10:15 8:36 8:45 8:45	Date 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/26/12 7/27/12 7/27/12 7/27/12 7/27/12 7/27/12 0.1813 0.4504 el used el used sure based or	Time (PDT) 17:05 17:02 16:59 16:56 18:22 10:37 18:30 18:18 18:26 18:26 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:26 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:30 18:18 18:26 18:27 18:37 19:37 1	cell/ch 76/22 84/11 83/33 82/32 82/3 82/3	eff 0.902 0.743 0.743 0.743 0.743 0.743 0.806 Radon Cor	eff 0.98 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	(cc) 60 120 120 120 120 120 120 120 12	factor 1.00	dpm 0.033 0.032 0.049 0.002 0.019 0.021 0.009 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.009 0.015 0.019 0.021 0.049 0.021 0.049 0.041 0.04	dpm 0.010 0.010 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	(hours) 32.2 29.9 31.1 31.5 32.1 96.4 32.3 33.7 Press factor) Press fac	factor 1.276 1.254 1.269 1.275 2.071 1.270 1.290 1	dpm/liter 0.79 0.45 0.67 0.03 0.26 0.52 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.45 0.67 0.45 0.67 0.22 0.20 0.45 0.67 0.22 0.20 0.20 0.45 0.67 0.22 0.20 0	pCi/liter 0.36 0.20 0.30 0.01 0.12 0.23 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09	stats pci/liter ±1 sig 0.11 0.06 0.07 0.05 0.02 0.11 0.04 0.03 0.03	

Si	ep-14-1	2 1	12:5	55pm	I	Fro	n-USC	Earth		ices ZHS	117					213	7408	801			T-1	650	P.	002/01	03	F-54	2	
		-opt					Commonte	e.g. Actual Preservative or	specific instruction			collected 1106								~_/				Project Requiremen	(MRLS, QAPP)			Cooler / Blank / Temperature 10.00
Page		CAS Project No.		P	Analytes																			an; 11	hrv Ir	Time:	Tome:	Time:
	•	erd		1 MMM	Analysis Method/Analytes							•													EDD Units:	Date; 1/26/1 L	Date:	Date:
quest		ise circle 10 Day-Standard	CAS Contect	Jarry	Analysi			Packer			7	7	~	~										on / sey i				
ivice Re		harges) plea: 5 Day (25%)								Samp le Volume	Twees	JW 225.	JWARS	STOML										EDD required	Type:	Q		
Analytical Se)	lusiness Days (Surc (50%) 4 Day (35%)								#Flow Controlfer (Bar sotte -	1-L Tedlar			A								•				Jr. K		
Air - Chain of Custody Recد، ط & Analytical Service Request		Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-6		0 († 0	- I.	6-3669) Information	6-3467	k Sign) Pr / T-T-T	、			K											en Pieros		Received by: (Signature)	Received by: (Signature)	Received by: (Signature)
of Custo		Requested T 1 Day (100%)		Project Name		Project Number	P.O. # / Billing Information		Sampler (Print & Sign)	Sample Type (Ain/Tube/ Solid)	A-i	Arc	Air	Air										Ter III (Date Validation Peckage) 10% Surcharge	1	Time: 1700	Time:	Time:
ir - Chain									et co-	Time Collected	1589	10%6 6	0.755	0925										alidation Packag	ecified)	1/22/L	Date:	Date:
A									Intertingasi refer	Date Date Collected	<u>-1/25/1</u> 2	7/52/12	7/25/12	7/25/12										Ther III (Date Va	Tier V (client specified)			
ŗ				ormation)	000	8	else.	Fax *	\sim																			
Columt Analytic Services-	2655 Park Center Drive, Suite A Simi Valley, California 93065	Phone (805) 526-7161 Fax (805) 528-7270		Company Name & Address (Reporting Information)	I NEVAIL 34	7769	Project Manager T. McHush / L. Beckelan	12	Email Address for Result Reporting Len Lh withe asi-net. c.m.		1-IA-3- BL	[-IA-3 - NP	1-TA-3- PP	1-44-1	/				>	<				Report Ther Levels - please select Tier I - (Results/Default If not specified)	Trer II (Results + QC)	Reliquished by: (Signature)	Reliquished by: {Signature}	Reliquished by. (Signature)
SEP-0	13-20:	12 23	3:0)3	F			3740	8801				ID):GS	SI E		IRO	NME	INTE	 1	 P	age	:00)2 F	2=9			

\$ep-14-	-12 1	2:56pm	Fr	om-US	C Eart	h Scie	nces ZH	\$ 117	r			.	21374	08801	1		T-650	P.00	03/00		2	
	No.			Compate	e.g. Actual Preservative or	apecific instructions														Project Requirements (MRLs, OAPP)		Cooler / Blank Temperature C
Page	CAS Project No.	Analysis Method						7	7	7	7									۶ ۲	Time: 72 N	A., I
	ard CAS Contend	Analvs			NQ	ру		×		_ •	7									<u>ر</u> نور	Date: 7/2, 7/	Dåte:
uest	circle Day-Stand					1/225			Sou	89	800									EDD required	, <u> </u>	
rvice Reg	harges) please 5 Day (25%) 10					(and be		4	-1	7	7											
alytical Se	tess Days (Surc 6) 4 Day (35%)	Investigation				Na.	Canlster Start Pressure "Hg														Tem T	(aun
teco & An	und Time in Bus)r (75%) 3 Day (50%	H	3585	ation		R	Flow Controller (D) (Bar code #- FC#)													imaries)Surcharge	Received by: (Signatura)	Réceived by: (Signature)
Air - Chain of Custody Reco & Analytical Service Request	Requested Turnaround Time in Business Days (Surcharges) please circle 1 Dey (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard 1 Day	Project Name JBLM	Project Number 35	P.O. # / Billing Information	5956	Sempler (Print & Sign)	Carrister !D (Ber cords # - AC, SC, etc.)													Tier III (Results + QC & Calibration Sommaries) _ Tier IV (Data Validation Package) 10% Surcharge	Time: 200	
r Chain							Time Collected	1015		0836	0845									ier III (Results ier IV (Data Ve		÷
Air							Date Collected	21/22/12		7/24/2	7/27/12											Δ
¥		Itormation)	4 /000 48 /000		Fex	5	Laboratory JD Number															
Analythur Services* 2655 Park Center Drive, Suite A Sini Valley, California 93065	Phone (805) 526-7161 Fax (805) 526-7270	l 👷	2211 Nortonk 1 Suite	Merrager Mr. Hurch	346 - 4464	Email Address for Result Reporting TEM E 951-nd. Com	Cilent Sample ID	2-IA-1-NP	Dup-2	19-エーリエー2	2-AA-1									Report Tier Levels - please select The I - Results (Default % not specified) The II (Results + QC Summaries)	Relinquished by: (Signature)	Relinquished by: (Signature)

Summary: Averages

•	δ13C TCE (VPDB)	δ37CI TCE (SMOC)
LC-18	-23.3	2.5
LC-48	-23.8	2.1
MT-1	-22.9	2.6
DUP-1	-23.6	2.4
1-IA-1-CSI	-25.9	2.0
1-SS-2-CSI	-18.5	5.8
3-SS-2-CSI	-18.8	5.5

Replicates and standards

Water samples

Run #	Sample ID	volume (ul)	δ13C TCE (VPDB)
6415	LC-18	4500	-23.3
6416	LC-48	2300	-23.9
6420	LC-48	2363	-23.7
6417	MT-1	2600	-22.7
6419	MT-1	5629	-23.2
6418	DUP-1	5000	-23.6
Run #	Standard ID	δ13C TCE (VPDB)	
6414	Aqueous TCE	-30.65	
6422	Aqueous TCE	-30.95	
	stdev	0.2	
Run #	Sample ID	volume (ul)	δ37CI TCE (SMOC)
2910	LC-18	1270	2.5
2909	LC-48	547	2.0
2911	LC-48	500	2.1
2908	MT-1	1530	2.7
2912	MT-1	1525	2.6
2907	DUP-1	1250	2.4
Run #	Sample ID	δ37CI TCE (SMOC)	
2897	Aqueous TCE	3.5	
2898	Aqueous TCE	3.6	
2900	Aqueous TCE	3.3	
2905	Aqueous TCE	3.5	
2913	Aqueous TCE	2.6	
	stdev	0.4	

Vapor samples

Run #	Sample ID	Tube #	δ13C TCE (VPDB)	
8959	1-IA-1-CSI	C16_K08436	-25.9	see Note 1
8957	1-SS-2-CSI	C16_K08430	-18.2	
8960	1-SS-2-CSI	C16_J06979	-18.8	
8958	3-SS-2-CSI	C16_J03697	-18.8	
Run #	Standard ID	Tube #	δ13C TCE (VPDB)	
8956	Vapor TCE	C16_K08457	-31.0	
8961	Vapor TCE	C16_K08440	-30.6	
8955	Vapor TCE	C16_J03150	-30.9	
		stdev	0.2	
Run #	Sample ID	Tube #	δ37CI TCE (SMOC)	
2926	1-IA-1-CSI	C16_K08451	2.0	
2923	1-SS-2-CSI	C16_K08411	5.8	
2924	3-SS-2-CSI	C16_J03143	5.5	
2928	3-SS-2-CSI	C16_J06645	5.6	
Run #	Standard ID	Tube #	δ37CI TCE (SMOC)	
2922	STD	C16_J06695	3.1	
2925	STD	C16_J04853	3.3	
2927	STD	C16_J03770	3.8	
2929	STD	C16_J03146	3.2	
2930	STD	C16_J07356	3.1	
		stdev	0.3	

limited coelution, the reported value is biased by 1-2 permil (i.e., the reported number is more negative than a true number)

Note 1:

OU#613 TCE, C CSIA

Dup = split of the sample recollected on Cx1016

all tube numbers refer to the original samples collected in the field

analytical uncertainty defined by the standards: Aug-12 \pm 0.4 (2 stdevs at n=4); Oct-12 \pm 0.6 (2 stdevs at n=7); April-13 \pm 0.4 (2 stdevs at n=10)

run #	date analyzed	sample ID	original airtube #	del TCE VPDB	remarks
8959	8/27/2012	1-IA-1-CSI	C16_K08436	-25.9	limited coelution, the reported number may be biased by 1-2 permil
9071	10/22/2012	1-IA-1-CSI	C16_J07242	peak coelutes	
9480	4/17/2013	1-IA-1-CSI	C16_J03141	-26.0	
9483	4/17/2013	Dup 1-IA-1-CSI	C16_J03141	-26.4	split of run #9480
8957	8/27/2012	1-SS-2-CSI	C16_K08430	-18.2	
8960	8/27/2012	1-SS-2-CSI	C16_J06979	-18.8	
9069	10/22/2012	1-SS-2-CSI	C16_J07342	no peak	
9482	4/17/2013	Dup 1-SS-2-CSI	C16_J07342	no peak	split of run #9069
8958	8/27/2012	3-SS-2-CSI	C16_J03697	-18.8	
9068	10/22/2012	3-SS-2-CSI	C16_J03553	-19.5	
9481	4/17/2013	Dup 3-SS-2-CSI	C16_J03553	-18.8	split of run #9068

Selfridge Air National Guard Base, Michigan

LABORATORY REPORT

October 11, 2012

Tom McHugh GSI Environmental Inc. 2211 Norfolk, Suite 1000 Houston, TX 77098

RE: ESTCP CSIA / 0SA Demonstration / 3585/3669

Dear Tom:

Your CAS report number P1203938 has been amended for the samples submitted to our laboratory on September 25, 2012. Sample Indoor-1-PP (P1203938-007) was re-run and a larger volume injected and the data has been added to the original report. The additional data pages have been indicated by the "Added Page" footer located at the bottom right of the page.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA200007; The American Industrial Hygiene Association, Laboratory #101661; United States Department of Defense Environmental Laboratory Accreditation Program (DoD-ELAP), Certificate No. L11-203; Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-12-3; Minnesota Department of Health, NELAP Certificate No. 362188; Washington State Department of Ecology, ELAP Lab ID: C946, State of Utah Department of Health, NELAP Certificate No. CA01527Z012-Z; Los Angeles Department of Building and Safety, Approval No: TA00001. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Inderta

Sue Anderson Project Manager

Client:GSI Environmental Inc.Service Request No:P1203938Project:ESTCP CSIA / 0SA Demonstration / 3585/3669

CASE NARRATIVE

The samples were received intact under chain of custody on September 25, 2012 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of Columbia Analytical Services, Inc. dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to AALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

DETAIL SUMMARY REPORT

Client: GSI Environmental Inc. Service Request: P1203938 Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Date Received: 9/25/2012 Time Received: 09:35 TO-15 - VOC Cans Date Time Container Pi1 Pf1 Client Sample ID Collected Lab Code Matrix Collected ID (psig) (psig) Indoor-C1 P1203938-001 Air 9/18/2012 16:30 AS00243 -3.20 3.58 Х Х Outdoor-C1 P1203938-002 9/18/2012 AC01931 Air 16:30 -2.16 3.60 SS-1C P1203938-003 Air 9/18/2012 13:20 AC00942 -0.73 3.53 Х SS-2C Х P1203938-004 Air 9/18/2012 13:40 AC00977 -0.30 3.54 SS-3C P1203938-005 9/18/2012 13:55 AC01198 3.50 Х Air -1.53 Indoor-1-BL P1203938-006 Air 9/19/2012 11:12 AS00228 0.02 3.61 Х Indoor-1-PP Х 9/19/2012 14:13 -0.05 3.51 P1203938-007 Air AC00376 Indoor-1-NP P1203938-008 Air 9/19/2012 16:40 AC01877 -0.02 4.36 Х -0.03 Х Dup 1 P1203938-009 9/19/2012 00:00 AC00745 3.59 Air

Columbia Analytical Services		Air - Chair	Air - Chain of Custody Record & Analytical Service Request	Record & Ar	alytical Se	rvice Requ	lest	T	Page	of
2655 Park Center Drive, Suite A Simi Vallev California 93065										
Phone (805) 526-7161			Requested Turnar	Requested Turnaround Time in Business		Days (Surcharges) please circle Dav (35%) 5 Dav (25%) 10 Day-Standard	circle Dav-Stand		CAS Project No	0393X
550					1 1			CAS Contact:		
роп			E S L S D	CSIA/	OSA Remo	Renorstration		Analysis Method	Method	
2211 Norfak Sun	860121		Project Number	13669				-		
	x But lug		P.O. # / Billing Information	mation				et-n		Comments
5726300	Fax							- 50		e.g. Actual Preservative or
20		Daciant ri		MR				/ 9		
Lemonuan a Jor ner	1 aboratory	Time	Can	Flow Controller ID	Canister	Canister	Sample	70		
Client Sample ID	0	0	AC, SC, etc.)	(Dai couc # FC #)	"Hg	"Hg/psig	Volume	,		
Indoor-CI	D-3.14 9/18/2012	12 0835-	AS 00243	FCA-00515	-29	-6.2	5.6	9		Hold cans
Datdier-C1	1102/1/1/ 11.6-0	30	ACDI931	FCA 00392	-29	-4.5	66			after To 15 for
25-10	3-0.71 9/18/201		AC00942	-Januara Angela	-28.8	-0.4	29			pessible addit
55-20	9.0.4 9/18/2012	2 1340	AC00977		-29.1	Ø.	66			Analysis.
25-3C	5-1.50 9/18/2012	12 1355	Acol198	and the second s	-29.2	125	66			9
Indow-1-BL	Q40.02 9/19/2012	12 1112	AS00228	1	-29.2	Ø	66			
201-1-WOPU/	3-0.06 9/19/2512	12 1413	A2.00376	,	-29.2	Ø	66			
Indoor I-NP	8-0 06 9/19/202	2 1640	AC01877		129	Ø	66		4	Vi
Dup /	0-0.11		Acco 745)	62.1	Ø	66	Ř		V
	~1453									Non-inductional distance of the second and the POPPINIAN ALCOLOGICAL SECOND
							-			
1 returned (an									
/										
Report Tier Levels - please select Tier I - Results (Default if not specified)		Tier III (Result	Tier III (Results + QC & Calibration Summaries)	ummaries)			EDD required			Project Requirements
Tier II (Results + QC Summaries)		Tier IV (Data \	Tier IV (Data Validation Package) 10% Surcharge	2	2	2 2 2	Type:		TIGOUSE	(MHLS, QAPP)
Helinquished by: (Signature)		Date://9/12	IIME: 803	Received by (Signature)	Å	JULIU &		men	+	Coolar / Blank
neminiquisined by: (biginature)	na kanala kanala mata kanala kanal	5				n Anna a' ann an Anna an Anna an Anna an Anna a' Anna a				

4 of 77

Columbia Analytical Services^{**}

Now	/ part of the Ass	Group	Samul	e Acceptance	-Check Form	n				
Client:	GSI Environn	nental Inc.	Bampy	e Acceptance	CHECK I'UTH	Work order:	P1203938			
		/ 0SA Demonstration	/ 3585/3669							
	(s) received on:]	Date opened:	9/25/12	by:	MZAN	1ORA	
Note: This f	form is used for <u>all</u>	samples received by CAS. T	The use of this for	m for custody sea	ls is strictly mea	nt to indicate presence	e/absence and not a	as an indic	ation of	
compliance	or nonconformity.	. Thermal preservation and pl	H will only be ev	aluated either at th	ie request of the	client and/or as requir	ed by the method/			
	_							Yes	<u>No</u>	<u>N/A</u>
1	-	containers properly m	narked with cli	ient sample ID)?			X		
2		supplied by CAS?						X		
3	Did sample c	containers arrive in goo	od condition?					X		
4	Were chain-o	of-custody papers used	and filled out	?				X		
5	Did sample c	container labels and/or	tags agree wi	ith custody par	pers?				X	
6	Was sample v	volume received adequ	ate for analys	is?				X		
7	Are samples v	within specified holding	g times?					X		
8	Was proper to	emperature (thermal p	preservation) o	of cooler at rec	eipt adhered	to?				X
9	Was a trip bl	ank received?							X	
10	Were custody	y seals on outside of co	oler/Box?						X	
		Location of seal(s)?					Sealing Lid?			X
	Were signatur	re and date included?					-			X
	Were seals int	tact?								X
	Were custody	v seals on outside of sar	mple containe	r?					X	
		Location of seal(s)?					Sealing Lid?			X
	Were signatur	re and date included?					-			X
	Were seals int	tact?								X
11	Do containe	ers have appropriate pr	eservation, ac	cording to me	ethod/SOP or	Client specified	information?			X
		ent indication that the s		•		-				X
	Were VOA v	vials checked for prese	nce/absence o	f air bubbles?						X
		nt/method/SOP require				d if necessary alt	er it?			X
12	Tubes:	Are the tubes capp	•		F 1	- <u></u> ,				X
		Do they contain m	-							\mathbf{X}
13	Badges:	Are the badges pr		d and intact?						
15	Dauges.	Are dual bed badg			ly canned and	d intact?		П		
									ب 	
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	_	pt / Prese		
		Description	pH *	pH	рН	(Presence/Absence)		Commer	nts	
P1203938		6.0 L Silonite Can		 						
P1203938		6.0 L Ambient Can		I'		 	 			
P1203938 P1203938		6.0 L Ambient Can		·'	'	 	<u> </u>			
P1203938 P1203938		6.0 L Ambient Can 6.0 L Ambient Can		·	 	<u> </u>	<u> </u>			
P1203938		6.0 L Silonite Can				<u> </u>	<u> </u>			

Explain any discrepancies: (include lab sample ID numbers):

6.0 L Ambient Can

6.0 L Ambient Can

Sample -002 has an ID of (Outdoor-C1) on the COC, and (Ambient-C1) on the canister tag.

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

P1203938-007.01

P1203938-008.01

-		-	-	-	-		-	-	-			-	-	-			-	-	-	-				-	-	-	-	-		-	-	-	-		-	-	-	-	-			-	-	-
P1	20	39:	38	G	SI	E	nvi	iro	nn	ner	ıta	l Iı	nc.	_E	SI	C	PO	25	1 <i>A</i>	۱_	0.	5A	D	en	no	ns	tra	tic	n.	_ 3	358	35_	36	69	.xl	ls -	- P	ag	e 1	5	f 2	b f	7	7

Now	part of	the (ALS	Group

Sample Acceptance Check Form

Client: <u>GSI Environmental Inc.</u>

Work order:

P1203938

.

Project: ESTCP CSIA / 0SA Demonstration / 3585/3669 Sample(s) received on: 9/25/12 Date opened: 9/25/12 by: MZAMORA						
Sample(s) received on:	9/25/12			Jate openeo:	9/25/12	by: <u>MZAMORA</u>
Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
	6.0 L Ambient Can					
P1203938-010.01	6.0 L Ambient Can					
					ļ	
			ļ			
			ļļ			
				 		·
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
						1
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

.

- - - - - - - - - - - -

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Indoor-C1	CAS Proj
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sam
Test Code:	EPA TO-15	Date Co
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS1	6 Date Re
Analyst:	Lusine Hakobyan	Date An
Sampling Media:	6.0 L Summa Canister	Volume(s) An
Test Notes:		
Container ID:	AS00243	
	Initial Pressure (psig): -3.20	Final Pressure (psig): 3.58

_ _

CAS Project ID: P1203938 CAS Sample ID: P1203938-001

Date Collected: 9/18/12 Date Received: 9/25/12 Date Analyzed: 9/28/12 Volume(s) Analyzed: 0.014 Liter(s)

Canister Dilution Factor: 1.59

CAS #	Compound	Result	MRL	Result	MRL	Data
	_	μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	57	ND	33	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	57	ND	11	
74-87-3	Chloromethane	ND	23	ND	11	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	57	ND	8.1	
75-01-4	Vinyl Chloride	ND	11	ND	4.4	
106-99-0	1,3-Butadiene	ND	23	ND	10	
74-83-9	Bromomethane	ND	11	ND	2.9	
75-00-3	Chloroethane	ND	11	ND	4.3	
64-17-5	Ethanol	ND	570	ND	300	
75-05-8	Acetonitrile	ND	57	ND	34	
107-02-8	Acrolein	ND	230	ND	99	
67-64-1	Acetone	54,000	570	23,000	240	
75-69-4	Trichlorofluoromethane	ND	11	ND	2.0	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	570	ND	230	
107-13-1	Acrylonitrile	ND	57	ND	26	
75-35-4	1,1-Dichloroethene	ND	11	ND	2.9	
75-09-2	Methylene Chloride	ND	57	ND	16	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	11	ND	3.6	
76-13-1	Trichlorotrifluoroethane	ND	11	ND	1.5	
75-15-0	Carbon Disulfide	ND	570	ND	180	
156-60-5	trans-1,2-Dichloroethene	ND	11	ND	2.9	
75-34-3	1,1-Dichloroethane	ND	11	ND	2.8	
1634-04-4	Methyl tert-Butyl Ether	ND	11	ND	3.2	
108-05-4	Vinyl Acetate	ND	570	ND	160	
78-93-3	2-Butanone (MEK)	ND	570	ND	190	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 3

Client:	GSI Environmental Inc.		
Client Sample ID:	Indoor-C1		CAS Pr
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	(CAS Sa
Test Code:	EPA TO-15		Date C
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS1	6	Date R
Analyst:	Lusine Hakobyan		Date A
Sampling Media:	6.0 L Summa Canister	Volu	me(s) A
Test Notes:			
Container ID:	AS00243		
	Initial Pressure (psig): -3.20	Final Pressure (psig):	3.58

CAS Project ID: P1203938 CAS Sample ID: P1203938-001

Date Collected: 9/18/12 Date Received: 9/25/12 Date Analyzed: 9/28/12 Volume(s) Analyzed: 0.014 Liter(s)

Canister Dilution Factor: 1.59

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	<u>11</u>	ND	2.9	Quuinter
141-78-6	Ethyl Acetate	ND	110	ND	32	
110-54-3	n-Hexane	240	57	67	16	
67-66-3	Chloroform	ND	11	ND	2.3	
109-99-9	Tetrahydrofuran (THF)	ND	57	ND	19	
107-06-2	1,2-Dichloroethane	ND	11	ND	2.8	
71-55-6	1,1,1-Trichloroethane	ND	11	ND	2.1	
71-43-2	Benzene	14	11	4.4	3.6	
56-23-5	Carbon Tetrachloride	ND	11	ND	1.8	
110-82-7	Cyclohexane	ND	110	ND	33	
78-87-5	1,2-Dichloropropane	ND	11	ND	2.5	
75-27-4	Bromodichloromethane	ND	11	ND	1.7	
79-01-6	Trichloroethene	48	11	9.0	2.1	
123-91-1	1,4-Dioxane	ND	57	ND	16	
80-62-6	Methyl Methacrylate	ND	110	ND	28	
142-82-5	n-Heptane	5,700	57	1,400	14	
10061-01-5	cis-1,3-Dichloropropene	ND	57	ND	13	
108-10-1	4-Methyl-2-pentanone	ND	57	ND	14	
10061-02-6	trans-1,3-Dichloropropene	ND	57	ND	13	
79-00-5	1,1,2-Trichloroethane	ND	11	ND	2.1	
108-88-3	Toluene	ND	57	ND	15	
591-78-6	2-Hexanone	ND	57	ND	14	
124-48-1	Dibromochloromethane	ND	11	ND	1.3	
106-93-4	1,2-Dibromoethane	ND	11	ND	1.5	
123-86-4	n-Butyl Acetate	ND	57	ND	12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: Indoor-C1 CAS Sample ID: P1203938-001 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/18/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/25/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 6.0 L Summa Canister Sampling Media: Volume(s) Analyzed: 0.014 Liter(s) Test Notes: Container ID: AS00243 Initial Pressure (psig): -3.20 3.58

Final Pressure (psig):

Canister Dilution Factor: 1.59

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
111-65-9	n-Octane	ND	57	ND	12	
127-18-4	Tetrachloroethene	ND	11	ND	1.7	
108-90-7	Chlorobenzene	ND	11	ND	2.5	
100-41-4	Ethylbenzene	ND	57	ND	13	
179601-23-1	m,p-Xylenes	ND	57	ND	13	
75-25-2	Bromoform	ND	57	ND	5.5	
100-42-5	Styrene	ND	57	ND	13	
95-47-6	o-Xylene	ND	57	ND	13	
111-84-2	n-Nonane	ND	57	ND	11	
79-34-5	1,1,2,2-Tetrachloroethane	ND	11	ND	1.7	
98-82-8	Cumene	ND	57	ND	12	
80-56-8	alpha-Pinene	ND	57	ND	10	
103-65-1	n-Propylbenzene	ND	57	ND	12	
622-96-8	4-Ethyltoluene	ND	57	ND	12	
108-67-8	1,3,5-Trimethylbenzene	ND	57	ND	12	
95-63-6	1,2,4-Trimethylbenzene	ND	57	ND	12	
100-44-7	Benzyl Chloride	ND	57	ND	11	
541-73-1	1,3-Dichlorobenzene	ND	11	ND	1.9	
106-46-7	1,4-Dichlorobenzene	ND	11	ND	1.9	
95-50-1	1,2-Dichlorobenzene	ND	11	ND	1.9	
5989-27-5	d-Limonene	ND	57	ND	10	
96-12-8	1,2-Dibromo-3-chloropropane	ND	57	ND	5.9	
120-82-1	1,2,4-Trichlorobenzene	ND	57	ND	7.7	
91-20-3	Naphthalene	ND	57	ND	11	
87-68-3	Hexachlorobutadiene	ND	57	ND	5.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Outdoor-C1	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-002
Test Code:	EPA TO-15	Date Collected: 9/18/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC01931	
	Initial Pressure (psig): -2.16 Fina	al Pressure (psig): 3.60
		Canister Dilution Factor: 1.46

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	μg/m ³	ppbV	ppbV	Qualifier
115-07-1	Propene	4.8	0.73	2.8	0.42	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.2	0.73	0.44	0.15	
74-87-3	Chloromethane	0.37	0.29	0.18	0.14	
76-14-2	1,2-Dichloro-1,1,2,2-	ND	0.73	ND	0.10	
70-14-2	tetrafluoroethane (CFC 114)	ND	0.75	ND	0.10	
75-01-4	Vinyl Chloride	ND	0.15	ND	0.057	
106-99-0	1,3-Butadiene	ND	0.29	ND	0.13	
74-83-9	Bromomethane	ND	0.15	ND	0.038	
75-00-3	Chloroethane	ND	0.15	ND	0.055	
64-17-5	Ethanol	ND	7.3	ND	3.9	
75-05-8	Acetonitrile	ND	0.73	ND	0.43	
107-02-8	Acrolein	ND	2.9	ND	1.3	
67-64-1	Acetone	14	7.3	6.1	3.1	
75-69-4	Trichlorofluoromethane	1.2	0.15	0.21	0.026	
67-63-0	2-Propanol (Isopropyl Alcohol)	14	7.3	5.6	3.0	
107-13-1	Acrylonitrile	ND	0.73	ND	0.34	
75-35-4	1,1-Dichloroethene	ND	0.15	ND	0.037	
75-09-2	Methylene Chloride	ND	0.73	ND	0.21	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.15	ND	0.047	
76-13-1	Trichlorotrifluoroethane	0.48	0.15	0.063	0.019	
75-15-0	Carbon Disulfide	ND	7.3	ND	2.3	
156-60-5	trans-1,2-Dichloroethene	ND	0.15	ND	0.037	
75-34-3	1,1-Dichloroethane	ND	0.15	ND	0.036	
1634-04-4	Methyl tert-Butyl Ether	ND	0.15	ND	0.041	
108-05-4	Vinyl Acetate	ND	7.3	ND	2.1	
78-93-3	2-Butanone (MEK)	ND	7.3	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

. . . .

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. Outdoor-C1 ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Project ID: P1203938 CAS Sample ID: P1203938-002
Test Code:	EPA TO-15	Date Collected: 9/18/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		· · · · · · · · · · · · · · · · · · ·
Container ID:	AC01931	
	Initial Pressure (psig): -2.16 Final Pre	essure (psig): 3.60

Canister Dilution Factor: 1.46

1.00 Liter(s)

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.15	ND	0.037	
141-78-6	Ethyl Acetate	3.1	1.5	0.86	0.41	
110-54-3	n-Hexane	ND	0.73	ND	0.21	
67-66-3	Chloroform	ND	0.15	ND	0.030	
109-99-9	Tetrahydrofuran (THF)	ND	0.73	ND	0.25	
107-06-2	1,2-Dichloroethane	ND	0.15	ND	0.036	
71-55-6	1,1,1-Trichloroethane	ND	0.15	ND	0.027	
71-43-2	Benzene	0.27	0.15	0.086	0.046	
56-23-5	Carbon Tetrachloride	0.48	0.15	0.077	0.023	
110-82-7	Cyclohexane	ND	1.5	ND	0.42	
78-87-5	1,2-Dichloropropane	ND	0.15	ND	0.032	
75-27-4	Bromodichloromethane	ND	0.15	ND	0.022	
79-01-6	Trichloroethene	0.30	0.15	0.055	0.027	
123-91-1	1,4-Dioxane	ND	0.73	ND	0.20	
80-62-6	Methyl Methacrylate	ND	1.5	ND	0.36	
142-82-5	n-Heptane	0.91	0.73	0.22	0.18	
10061-01-5	cis-1,3-Dichloropropene	ND	0.73	ND	0.16	
108-10-1	4-Methyl-2-pentanone	ND	0.73	ND	0.18	
10061-02-6	trans-1,3-Dichloropropene	ND	0.73	ND	0.16	
79-00-5	1,1,2-Trichloroethane	ND	0.15	ND	0.027	
108-88-3	Toluene	1.2	0.73	0.32	0.19	
591-78-6	2-Hexanone	ND	0.73	ND	0.18	
124-48-1	Dibromochloromethane	ND	0.15	ND	0.017	
106-93-4	1,2-Dibromoethane	ND	0.15	ND	0.019	
123-86-4	n-Butyl Acetate	ND	0.73	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: Outdoor-C1 CAS Sample ID: P1203938-002 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/18/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/25/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s) Sampling Media: Test Notes: Container ID: AC01931 Initial Pressure (psig): -2.16 Final Pressure (psig): 3.60

Canister Dilution Factor: 1.46

CAS#	Commoned	Result	MRL	Result	MRL	Data
CAS # 111-65-9	Compound n-Octane	μg/m ³ ND	μg/m ³ 0.73	ppbV ND	ppbV 0.16	Qualifier
127-18-4	Tetrachloroethene	0.52	0.75	0.077	0.022	
127-18-4	Chlorobenzene	0.32 ND	0.15	0.077 ND	0.022	
100-41-4	Ethylbenzene	ND	0.73	ND	0.17	
179601-23-1	m,p-Xylenes	ND	0.73	ND	0.17	
75-25-2	Bromoform	ND	0.73	ND	0.071	
100-42-5	Styrene	ND	0.73	ND	0.17	
95-47-6	o-Xylene	ND	0.73	ND	0.17	
111-84-2	n-Nonane	ND	0.73	ND	0.14	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.15	ND	0.021	
98-82-8	Cumene	ND	0.73	ND	0.15	
80-56-8	alpha-Pinene	ND	0.73	ND	0.13	
103-65-1	n-Propylbenzene	ND	0.73	ND	0.15	
622-96-8	4-Ethyltoluene	ND	0.73	ND	0.15	
108-67-8	1,3,5-Trimethylbenzene	ND	0.73	ND	0.15	
95-63-6	1,2,4-Trimethylbenzene	ND	0.73	ND	0.15	
100-44-7	Benzyl Chloride	ND	0.73	ND	0.14	
541-73-1	1,3-Dichlorobenzene	ND	0.15	ND	0.024	
106-46-7	1,4-Dichlorobenzene	ND	0.15	ND	0.024	
95-50-1	1,2-Dichlorobenzene	ND	0.15	ND	0.024	
5989-27-5	d-Limonene	ND	0.73	ND	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.73	ND	0.076	
120-82-1	1,2,4-Trichlorobenzene	ND	0.73	ND	0.098	
91-20-3	Naphthalene	ND	0.73	ND	0.14	
87-68-3	Hexachlorobutadiene	ND	0.73	ND	0.068	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

_ _

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	SS-1C	CAS Project ID: P1
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1
Test Code:	EPA TO-15	Date Collected: 9/
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/2
Analyst:	Lusine Hakobyan	Date Analyzed: 9/2
Sampling Media: Test Notes:	6.0 L Summa Canister V	olume(s) Analyzed:
Container ID:	AC00942	
	Initial Pressure (psig): -0.73 Final Pressure (psig): 3.53
		Conjutor D

P1203938 P1203938-003

9/18/12 9/25/12 9/28/12 0.014 Liter(s)

Canister Dilution Factor: 1.30

CAS #	Compound	Result	MRL	Result	MRL	Data
	-	μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	46	ND	27	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	46	ND	9.4	
74-87-3	Chloromethane	ND	19	ND	9.0	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	46	ND	6.6	
75-01-4	Vinyl Chloride	ND	9.3	ND	3.6	
106-99-0	1,3-Butadiene	ND	19	ND	8.4	
74-83-9	Bromomethane	ND	9.3	ND	2.4	
75-00-3	Chloroethane	ND	9.3	ND	3.5	
64-17-5	Ethanol	ND	460	ND	250	
75-05-8	Acetonitrile	ND	46	ND	28	
107-02-8	Acrolein	ND	190	ND	81	
67-64-1	Acetone	510	460	220	200	
75-69-4	Trichlorofluoromethane	ND	9.3	ND	1.7	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	460	ND	190	
107-13-1	Acrylonitrile	ND	46	ND	21	
75-35-4	1,1-Dichloroethene	ND	9.3	ND	2.3	
75-09-2	Methylene Chloride	ND	46	ND	13	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	9.3	ND	3.0	
76-13-1	Trichlorotrifluoroethane	ND	9.3	ND	1.2	
75-15-0	Carbon Disulfide	ND	460	ND	150	
156-60-5	trans-1,2-Dichloroethene	ND	9.3	ND	2.3	
75-34-3	1,1-Dichloroethane	ND	9.3	ND	2.3	
1634-04-4	Methyl tert-Butyl Ether	ND	9.3	ND	2.6	
108-05-4	Vinyl Acetate	ND	460	ND	130	
78-93-3	2-Butanone (MEK)	ND	460	ND	160	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	SS-1C	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-003
Test Code:	EPA TO-15	Date Collected: 9/18/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 0.014 Liter(
Container ID:	AC00942	

Initial Pressure (psig): -0.73 Final Pressure (psig): 3.53

0.014 Liter(s)

Canister Dilution Factor: 1.30

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	9.3	ND	2.3	
141-78-6	Ethyl Acetate	ND	93	ND	26	
110-54-3	n-Hexane	ND	46	ND	13	
67-66-3	Chloroform	ND	9.3	ND	1.9	
109-99-9	Tetrahydrofuran (THF)	ND	46	ND	16	
107-06-2	1,2-Dichloroethane	ND	9.3	ND	2.3	
71-55-6	1,1,1-Trichloroethane	ND	9.3	ND	1.7	
71-43-2	Benzene	ND	9.3	ND	2.9	
56-23-5	Carbon Tetrachloride	ND	9.3	ND	1.5	
110-82-7	Cyclohexane	ND	93	ND	27	
78-87-5	1,2-Dichloropropane	ND	9.3	ND	2.0	
75-27-4	Bromodichloromethane	ND	9.3	ND	1.4	
79-01-6	Trichloroethene	9.4	9.3	1.7	1.7	
123-91-1	1,4-Dioxane	ND	46	ND	13	
80-62-6	Methyl Methacrylate	ND	93	ND	23	
142-82-5	n-Heptane	ND	46	ND	11	
10061-01-5	cis-1,3-Dichloropropene	ND	46	ND	10	
108-10-1	4-Methyl-2-pentanone	ND	46	ND	11	
10061-02-6	trans-1,3-Dichloropropene	ND	46	ND	10	
79-00-5	1,1,2-Trichloroethane	ND	9.3	ND	1.7	
108-88-3	Toluene	ND	46	ND	12	
591-78-6	2-Hexanone	ND	46	ND	11	
124-48-1	Dibromochloromethane	ND	9.3	ND	1.1	
106-93-4	1,2-Dibromoethane	ND	9.3	ND	1.2	
123-86-4	n-Butyl Acetate	ND	46	ND	9.8	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: SS-1C CAS Sample ID: P1203938-003 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/18/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/25/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 6.0 L Summa Canister Volume(s) Analyzed: Sampling Media: 0.014 Liter(s) Test Notes: Container ID: AC00942 Initial Pressure (psig): -0.73 Final Pressure (psig): 3.53

Canister Dilution Factor: 1.30

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	46	ND	9.9	
127-18-4	Tetrachloroethene	8,000	9.3	1,200	1.4	
108-90-7	Chlorobenzene	ND	9.3	ND	2.0	
100-41-4	Ethylbenzene	ND	46	ND	11	
179601-23-1	m,p-Xylenes	ND	46	ND	11	
75-25-2	Bromoform	ND	46	ND	4.5	
100-42-5	Styrene	ND	46	ND	11	
95-47-6	o-Xylene	ND	46	ND	11	
111-84-2	n-Nonane	ND	46	ND	8.9	
79-34-5	1,1,2,2-Tetrachloroethane	ND	9.3	ND	1.4	
98-82-8	Cumene	ND	46	ND	9.4	
80-56-8	alpha-Pinene	ND	46	ND	8.3	
103-65-1	n-Propylbenzene	ND	46	ND	9.4	
622-96-8	4-Ethyltoluene	ND	46	ND	9.4	
108-67-8	1,3,5-Trimethylbenzene	ND	46	ND	9.4	
95-63-6	1,2,4-Trimethylbenzene	ND	46	ND	9.4	
100-44-7	Benzyl Chloride	ND	46	ND	9.0	
541-73-1	1,3-Dichlorobenzene	ND	9.3	ND	1.5	
106-46-7	1,4-Dichlorobenzene	ND	9.3	ND	1.5	
95-50-1	1,2-Dichlorobenzene	ND	9.3	ND	1.5	
5989-27-5	d-Limonene	ND	46	ND	8.3	
96-12-8	1,2-Dibromo-3-chloropropane	ND	46	ND	4.8	
120-82-1	1,2,4-Trichlorobenzene	ND	46	ND	6.3	
91-20-3	Naphthalene	ND	46	ND	8.9	
87-68-3	Hexachlorobutadiene	ND	46	ND	4.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 3

		I uge I .	010			
Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. SS-2C ESTCP CSIA / 0SA Demonstration / 3	3585/3669		CAS Project ID: CAS Sample ID:)4
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes: Container ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Ciner Lusine Hakobyan 6.0 L Summa Canister AC00977	t/6890N/MS		Date Collected: Date Received: Date Analyzed: olume(s) Analyzed:	9/25/12 9/28/12	er(s)
	Initial Pressure (psig):	-0.30	Final Pressure (psig)		r Dilution Fac	stor: 1.27
CAS #	Compound	Result	MRL	Result	MRL	Da

.

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg∕m³	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	32	ND	18	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	32	ND	6.4	
74-87-3	Chloromethane	ND	13	ND	6.2	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	32	ND	4.5	
75-01-4	Vinyl Chloride	ND	6.4	ND	2.5	
106-99-0	1,3-Butadiene	ND	13	ND	5.7	
74-83-9	Bromomethane	ND	6.4	ND	1.6	
75-00-3	Chloroethane	ND	6.4	ND	2.4	
64-17-5	Ethanol	ND	320	ND	170	
75-05-8	Acetonitrile	ND	32	ND	19	
107-02-8	Acrolein	ND	130	ND	55	
67-64-1	Acetone	3,300	320	1,400	130	
75-69-4	Trichlorofluoromethane	ND	6.4	ND	1.1	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	320	ND	130	
107-13-1	Acrylonitrile	ND	32	ND	15	
75-35-4	1,1-Dichloroethene	ND	6.4	ND	1.6	
75-09-2	Methylene Chloride	ND	32	ND	9.1	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	6.4	ND	2.0	
76-13-1	Trichlorotrifluoroethane	ND	6.4	ND	0.83	
75-15-0	Carbon Disulfide	ND	320	ND	100	
156-60-5	trans-1,2-Dichloroethene	ND	6.4	ND	1.6	
75-34-3	1,1-Dichloroethane	ND	6.4	ND	1.6	
1634-04-4	Methyl tert-Butyl Ether	ND	6.4	ND	1.8	
108-05-4	Vinyl Acetate	ND	320	ND	90	
78-93-3	2-Butanone (MEK)	ND	320	ND	110	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Page 2 of 3

Client: Client Sample ID:	GSI Environmental Inc. SS-2C	CAS
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CASS
Test Code:	EPA TO-15	Date
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date
Analyst:	Lusine Hakobyan	Date
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s)
Container ID:	AC00977	

CAS Project ID: P1203938 CAS Sample ID: P1203938-004

Date Collected: 9/18/12 Date Received: 9/25/12 Date Analyzed: 9/28/12 Volume(s) Analyzed: 0.020 Liter(s)

Initial Pressure (psig): -0.30

Final Pressure (psig): 3.54

Canister Dilution Factor: 1.27

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	6.4	ND	1.6	
141-78-6	Ethyl Acetate	ND	64	ND	18	
110-54-3	n-Hexane	1,200	32	350	9.0	
67-66-3	Chloroform	ND	6.4	ND	1.3	
109-99-9	Tetrahydrofuran (THF)	ND	32	ND	11	
107-06-2	1,2-Dichloroethane	ND	6.4	ND	1.6	
71-55-6	1,1,1-Trichloroethane	ND	6.4	ND	1.2	
71-43-2	Benzene	58	6.4	18	2.0	
56-23-5	Carbon Tetrachloride	ND	6.4	ND	1.0	
110-82-7	Cyclohexane	480	64	140	18	
78-87-5	1,2-Dichloropropane	ND	6.4	ND	1.4	
75-27-4	Bromodichloromethane	ND	6.4	ND	0.95	
79-01-6	Trichloroethene	26	6.4	4.8	1.2	
123-91-1	1,4-Dioxane	ND	32	ND	8.8	
80-62-6	Methyl Methacrylate	ND	64	ND	16	
142-82-5	n-Heptane	960	32	230	7.8	
10061-01-5	cis-1,3-Dichloropropene	ND	32	ND	7.0	
108-10-1	4-Methyl-2-pentanone	ND	32	ND	7.8	
10061-02-6	trans-1,3-Dichloropropene	ND	32	ND	7.0	
79-00-5	1,1,2-Trichloroethane	ND	6.4	ND	1.2	
108-88-3	Toluene	52	32	14	8.4	
591-78-6	2-Hexanone	ND	32	ND	7.8	
124-48-1	Dibromochloromethane	ND	6.4	ND	0.75	
106-93-4	1,2-Dibromoethane	ND	6.4	ND	0.83	
123-86-4	n-Butyl Acetate	ND	32	ND	6.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: SS-2C CAS Sample ID: P1203938-004 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/18/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/25/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 6.0 L Summa Canister Volume(s) Analyzed: 0.020 Liter(s) Sampling Media: Test Notes: Container ID: AC00977

Initial Pressure (psig): -0.30

Final Pressure (psig): 3.54

Canister Dilution Factor: 1.27

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
111-65-9	n-Octane	210	32	45	6.8	
127-18-4	Tetrachloroethene	5,000	6.4	740	0.94	
108-90-7	Chlorobenzene	ND	6.4	ND	1.4	
100-41-4	Ethylbenzene	430	32	98	7.3	
179601-23-1	m,p-Xylenes	770	32	180	7.3	
75-25-2	Bromoform	ND	32	ND	3.1	
100-42-5	Styrene	ND	32	ND	7.5	
95-47-6	o-Xylene	ND	32	ND	7.3	
111-84-2	n-Nonane	51	32	9.8	6.1	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.4	ND	0.93	
98-82-8	Cumene	34	32	7.0	6.5	
80-56-8	alpha-Pinene	ND	32	ND	5.7	
103-65-1	n-Propylbenzene	130	32	27	6.5	
622-96-8	4-Ethyltoluene	260	32	52	6.5	
108-67-8	1,3,5-Trimethylbenzene	220	32	45	6.5	
95-63-6	1,2,4-Trimethylbenzene	860	32	170	6.5	
100-44-7	Benzyl Chloride	ND	32	ND	6.1	
541-73-1	1,3-Dichlorobenzene	ND	6.4	ND	1.1	
106-46-7	1,4-Dichlorobenzene	ND	6.4	ND	1.1	
95-50-1	1,2-Dichlorobenzene	ND	6.4	ND	1.1	
5989-27-5	d-Limonene	ND	32	ND	5.7	
96-12-8	1,2-Dibromo-3-chloropropane	ND	32	ND	3.3	
120-82-1	1,2,4-Trichlorobenzene	ND	32	ND	4.3	
91-20-3	Naphthalene	ND	32	ND	6.1	
87-68-3	Hexachlorobutadiene	ND	32	ND	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.		
Client Sample ID:	SS-3C	CAS Project ID: P12	203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P12	203938-005
Test Code:	EPA TO-15	Date Collected: 9/1	8/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/2	.5/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/2	8/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(
Test Notes:			0.10 Liter(
Container ID:	AC01198		

Initial Pressure (psig): -1.53 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.38

1.00 Liter(s) 0.10 Liter(s)

CAS #	Compound	Result	MRL	Result	MRL	Data Qualifiar
115-07-1	Propene	μg/m ³ 2.2	μg/m ³ 0.69	ppbV 1.3	ppbV 0.40	Qualifier
75-71-8	Dichlorodifluoromethane (CFC 12)	2.2	0.69	0.45	0.14	
74-87-3	Chloromethane	ND	0.28	ND	0.13	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.69	ND	0.099	
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
106-99-0	1,3-Butadiene	ND	0.28	ND	0.12	
74-83-9	Bromomethane	ND	0.14	ND	0.036	
75-00-3	Chloroethane	ND	0.14	ND	0.052	
64-17-5	Ethanol	ND	6.9	ND	3.7	
75-05-8	Acetonitrile	ND	0.69	ND	0.41	
107-02-8	Acrolein	ND	2.8	ND	1.2	
67-64-1	Acetone	250	6.9	110	2.9	
75-69-4	Trichlorofluoromethane	0.88	0.14	0.16	0.025	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	6.9	ND	2.8	
107-13-1	Acrylonitrile	ND	0.69	ND	0.32	
75-35-4	1,1-Dichloroethene	ND	0.14	ND	0.035	
75-09-2	Methylene Chloride	ND	0.69	ND	0.20	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.14	ND	0.044	
76-13-1	Trichlorotrifluoroethane	0.45	0.14	0.058	0.018	
75-15-0	Carbon Disulfide	ND	6.9	ND	2.2	
156-60-5	trans-1,2-Dichloroethene	ND	0.14	ND	0.035	
75-34-3	1,1-Dichloroethane	ND	0.14	ND	0.034	
1634-04-4	Methyl tert-Butyl Ether	0.45	0.14	0.13	0.038	
108-05-4	Vinyl Acetate	ND	6.9	ND	2.0	
78-93-3	2-Butanone (MEK)	ND	6.9	ND	2.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 3

Client:	GSI Environmental Inc.		
Client Sample ID:	SS-3C	CAS Project ID: P12	203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P12	203938-005
Test Code:	EPA TO-15	Date Collected: 9/1	8/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/2	25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/2	28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s
Test Notes:			0.10 Liter(s
Container ID:	AC01198		

Initial Pressure (psig): -1.53 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.38

1.00 Liter(s) 0.10 Liter(s)

CAS #	Compound	Result	MRL	Result	MRL	Data
156-59-2	sig 1.2 Disklausethers	μg/m ³	μg/m ³ 0.14	ppbV ND	ppbV 0.035	Qualifier
	cis-1,2-Dichloroethene	ND				
141-78-6	Ethyl Acetate	ND	1.4	ND	0.38	
110-54-3	n-Hexane	1.2	0.69	0.35	0.20	
67-66-3	Chloroform	0.20	0.14	0.041	0.028	
109-99-9	Tetrahydrofuran (THF)	ND	0.69	ND	0.23	
107-06-2	1,2-Dichloroethane	ND	0.14	ND	0.034	
71-55-6	1,1,1-Trichloroethane	ND	0.14	ND	0.025	
71-43-2	Benzene	0.32	0.14	0.10	0.043	
56-23-5	Carbon Tetrachloride	ND	0.14	ND	0.022	
110-82-7	Cyclohexane	ND	1.4	ND	0.40	
78-87-5	1,2-Dichloropropane	ND	0.14	ND	0.030	
75-27-4	Bromodichloromethane	ND	0.14	ND	0.021	
79-01-6	Trichloroethene	0.63	0.14	0.12	0.026	
123-91-1	1,4-Dioxane	ND	0.69	ND	0.19	
80-62-6	Methyl Methacrylate	ND	1.4	ND	0.34	
142-82-5	n-Heptane	11	0.69	2.6	0.17	
10061-01-5	cis-1,3-Dichloropropene	ND	0.69	ND	0.15	
108-10-1	4-Methyl-2-pentanone	ND	0.69	ND	0.17	
10061-02-6	trans-1,3-Dichloropropene	ND	0.69	ND	0.15	
79-00-5	1,1,2-Trichloroethane	ND	0.14	ND	0.025	
108-88-3	Toluene	1.5	0.69	0.40	0.18	
591-78-6	2-Hexanone	ND	0.69	ND	0.17	
124-48-1	Dibromochloromethane	ND	0.14	ND	0.016	
106-93-4	1,2-Dibromoethane	ND	0.14	ND	0.018	
123-86-4	n-Butyl Acetate	ND	0.69	ND	0.15	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: SS-3C CAS Sample ID: P1203938-005 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/18/12 Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: 9/25/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 6.0 L Summa Canister Sampling Media: Volume(s) Analyzed: 1.00 Liter(s) Test Notes: 0.10 Liter(s) Container ID: AC01198 Initial Pressure (psig): -1.53 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.38

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	0.91	0.69	0.20	0.15	
127-18-4	Tetrachloroethene	610	1.4	89	0.20	D
108-90-7	Chlorobenzene	ND	0.14	ND	0.030	
100-41-4	Ethylbenzene	0.92	0.69	0.21	0.16	
179601-23-1	m,p-Xylenes	3.0	0.69	0.70	0.16	
75-25-2	Bromoform	ND	0.69	ND	0.067	
100-42-5	Styrene	ND	0.69	ND	0.16	
95-47-6	o-Xylene	2.2	0.69	0.51	0.16	
111-84-2	n-Nonane	ND	0.69	ND	0.13	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.14	ND	0.020	
98-82-8	Cumene	ND	0.69	ND	0.14	
80-56-8	alpha-Pinene	2.8	0.69	0.50	0.12	
103-65-1	n-Propylbenzene	ND	0.69	ND	0.14	
622-96-8	4-Ethyltoluene	1.2	0.69	0.24	0.14	
108-67-8	1,3,5-Trimethylbenzene	7.4	0.69	1.5	0.14	
95-63-6	1,2,4-Trimethylbenzene	25	0.69	5.0	0.14	
100-44-7	Benzyl Chloride	ND	0.69	ND	0.13	
541-73-1	1,3-Dichlorobenzene	ND	0.14	ND	0.023	
106-46-7	1,4-Dichlorobenzene	0.14	0.14	0.023	0.023	
95-50-1	1,2-Dichlorobenzene	ND	0.14	ND	0.023	
5989-27-5	d-Limonene	ND	0.69	ND	0.12	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.69	ND	0.071	
120-82-1	1,2,4-Trichlorobenzene	ND	0.69	ND	0.093	
91-20-3	Naphthalene	11	0.69	2.1	0.13	
87-68-3	Hexachlorobutadiene	ND	0.69	ND	0.065	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.		
Client Sample ID:	Indoor-1-BL	CAS Project ID: P	1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P	1203938-006
Test Code:	EPA TO-15	Date Collected: 9/	/19/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/	/25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/	/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	0.50 Liter(s)
Test Notes:			0.050 Liter(s)
Container ID:	AS00228		
	Initial Pressure (psig): 0.02 Final Pres	ssure (psig): 3.61	

Canister Dilution Factor: 1.24

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
115-07-1	Propene	86	1.2	50	0.72	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	1.2	0.47	0.25	
74-87-3	Chloromethane	0.86	0.50	0.42	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	1.2	ND	0.18	
75-01-4	Vinyl Chloride	ND	0.25	ND	0.097	
106-99-0	1,3-Butadiene	33	0.50	15	0.22	
74-83-9	Bromomethane	ND	0.25	ND	0.064	
75-00-3	Chloroethane	ND	0.25	ND	0.094	
64-17-5	Ethanol	77	12	41	6.6	
75-05-8	Acetonitrile	2.4	1.2	1.4	0.74	
107-02-8	Acrolein	ND	5.0	ND	2.2	
67-64-1	Acetone	1,100	12	480	5.2	
75-69-4	Trichlorofluoromethane	1.2	0.25	0.22	0.044	
67-63-0	2-Propanol (Isopropyl Alcohol)	21	12	8.5	5.0	
107-13-1	Acrylonitrile	ND	1.2	ND	0.57	
75-35-4	1,1-Dichloroethene	ND	0.25	ND	0.063	
75-09-2	Methylene Chloride	23	1.2	6.7	0.36	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.25	ND	0.079	
76-13-1	Trichlorotrifluoroethane	0.49	0.25	0.064	0.032	
75-15-0	Carbon Disulfide	ND	12	ND	4.0	
156-60-5	trans-1,2-Dichloroethene	ND	0.25	ND	0.063	
75-34-3	1,1-Dichloroethane	ND	0.25	ND	0.061	
1634-04-4	Methyl tert-Butyl Ether	ND	0.25	ND	0.069	
108-05-4	Vinyl Acetate	ND	12	ND	3.5	
78-93-3	2-Butanone (MEK)	ND	12	ND	4.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Indoor-1-BL	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-006
Test Code:	EPA TO-15	Date Collected: 9/19/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.50 Liter(s)
Test Notes:		0.050 Liter(s)
Container ID:	AS00228	
	Initial Pressure (psig): 0.02 Fina	al Pressure (psig): 3.61

Canister Dilution Factor: 1.24

CAS #	Compound	Result	MRL	Result	MRL	Data
	-	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.25	ND	0.063	
141-78-6	Ethyl Acetate	ND	2.5	ND	0.69	
110-54-3	n-Hexane	68	1.2	19	0.35	
67-66-3	Chloroform	0.27	0.25	0.055	0.051	
109-99-9	Tetrahydrofuran (THF)	ND	1.2	ND	0.42	
107-06-2	1,2-Dichloroethane	ND	0.25	ND	0.061	
71-55-6	1,1,1-Trichloroethane	ND	0.25	ND	0.045	
71-43-2	Benzene	130	0.25	41	0.078	
56-23-5	Carbon Tetrachloride	0.55	0.25	0.088	0.039	
110-82-7	Cyclohexane	12	2.5	3.6	0.72	
78-87-5	1,2-Dichloropropane	ND	0.25	ND	0.054	
75-27-4	Bromodichloromethane	ND	0.25	ND	0.037	
79-01-6	Trichloroethene	140	0.25	26	0.046	
123-91-1	1,4-Dioxane	ND	1.2	ND	0.34	
80-62-6	Methyl Methacrylate	ND	2.5	ND	0.61	
142-82-5	n-Heptane	130	1.2	32	0.30	
10061-01-5	cis-1,3-Dichloropropene	ND	1.2	ND	0.27	
108-10-1	4-Methyl-2-pentanone	20	1.2	4.9	0.30	
10061-02-6	trans-1,3-Dichloropropene	ND	1.2	ND	0.27	
79-00-5	1,1,2-Trichloroethane	ND	0.25	ND	0.045	
108-88-3	Toluene	410	12	110	3.3	D
591-78-6	2-Hexanone	ND	1.2	ND	0.30	
124-48-1	Dibromochloromethane	ND	0.25	ND	0.029	
106-93-4	1,2-Dibromoethane	ND	0.25	ND	0.032	
123-86-4	n-Butyl Acetate	2.1	1.2	0.45	0.26	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: Indoor-1-BL CAS Sample ID: P1203938-006 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/19/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/25/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 6.0 L Summa Canister Volume(s) Analyzed: Sampling Media: 0.50 Liter(s) Test Notes: 0.050 Liter(s) Container ID: AS00228 Initial Pressure (psig): 0.02 Final Pressure (psig): 3.61

Canister Dilution Factor: 1.24

CAS #	Company	Result	MRL	Result	MRL	Data Ouglifica
111-65-9	Compound n-Octane	μg/m ³ 25	μg/m ³ 1.2	ppbV 5.4	ppbV 0.27	Qualifier
127-18-4	Tetrachloroethene	1.8	0.25	0.26	0.037	
108-90-7	Chlorobenzene	ND	0.25	ND	0.054	
100-41-4	Ethylbenzene	84	1.2	19	0.29	
179601-23-1	m,p-Xylenes	290	1.2	66	0.29	
75-25-2	Bromoform	ND	1.2	ND	0.29	
100-42-5	Styrene	31	1.2	7.2	0.12	
95-47-6		100	1.2	24	0.29	
93-47-0 111-84-2	o-Xylene n-Nonane	46	1.2	8.7	0.29	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.25	ND	0.036	
98-82-8	Cumene	4.3	1.2	0.88	0.25	
80-56-8	alpha-Pinene	ND	1.2	ND	0.22	
103-65-1	n-Propylbenzene	16	1.2	3.2	0.25	
622-96-8	4-Ethyltoluene	36	1.2	7.4	0.25	
108-67-8	1,3,5-Trimethylbenzene	38	1.2	7.8	0.25	
95-63-6	1,2,4-Trimethylbenzene	120	1.2	25	0.25	
100-44-7	Benzyl Chloride	ND	1.2	ND	0.24	
541-73-1	1,3-Dichlorobenzene	ND	0.25	ND	0.041	
106-46-7	1,4-Dichlorobenzene	ND	0.25	ND	0.041	
95-50-1	1,2-Dichlorobenzene	ND	0.25	ND	0.041	
5989-27-5	d-Limonene	23	1.2	4.1	0.22	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.2	ND	0.13	
120-82-1	1,2,4-Trichlorobenzene	ND	1.2	ND	0.17	
91-20-3	Naphthalene	19	1.2	3.6	0.24	
87-68-3	Hexachlorobutadiene	ND	1.2	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Indoor-1-PP	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-007
Test Code:	EPA TO-15	Date Collected: 9/19/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/26/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12 & 10/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.040 Liter(s)
Test Notes:		0.020 Liter(s)
Container ID:	AC00376	
	Initial Pressure (psig): -0.05 Final	Pressure (psig): 3.51

Canister Dilution Factor: 1.24

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	16	ND	9.0	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	16	ND	3.1	
74-87-3	Chloromethane	ND	6.2	ND	3.0	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	16	ND	2.2	
75-01-4	Vinyl Chloride	ND	3.1	ND	1.2	
106-99-0	1,3-Butadiene	ND	6.2	ND	2.8	
74-83-9	Bromomethane	ND	3.1	ND	0.80	
75-00-3	Chloroethane	ND	3.1	ND	1.2	
64-17-5	Ethanol	ND	160	ND	82	
75-05-8	Acetonitrile	ND	16	ND	9.2	
107-02-8	Acrolein	ND	62	ND	27	
67-64-1	Acetone	23,000	310	9,500	130	D
75-69-4	Trichlorofluoromethane	ND	3.1	ND	0.55	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	160	ND	63	
107-13-1	Acrylonitrile	ND	16	ND	7.1	
75-35-4	1,1-Dichloroethene	ND	3.1	ND	0.78	
75-09-2	Methylene Chloride	16	16	4.6	4.5	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	3.1	ND	0.99	
76-13-1	Trichlorotrifluoroethane	ND	3.1	ND	0.40	
75-15-0	Carbon Disulfide	ND	160	ND	50	
156-60-5	trans-1,2-Dichloroethene	ND	3.1	ND	0.78	
75-34-3	1,1-Dichloroethane	ND	3.1	ND	0.77	
1634-04-4	Methyl tert-Butyl Ether	ND	3.1	ND	0.86	
108-05-4	Vinyl Acetate	ND	160	ND	44	
78-93-3	2-Butanone (MEK)	ND	160	ND	53	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

Page 2 of 3

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. Indoor-1-PP ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Project ID: P1203938 CAS Sample ID: P1203938-007
Test Code: Instrument ID: Analyst:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Lusine Hakobyan	Date Collected: 9/19/12 Date Received: 9/26/12 Date Analyzed: 9/28/12 & 10/1/12
Sampling Media: Test Notes: Container ID:	6.0 L Summa Canister AC00376	Volume(s) Analyzed: 0.040 Liter(s) 0.020 Liter(s)
	Initial Pressure (psig): -0.05 Fina	al Pressure (psig): 3.51

Canister Dilution Factor: 1.24

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	3.1	ND	0.78	
141-78-6	Ethyl Acetate	ND	31	ND	8.6	
110-54-3	n-Hexane	ND	16	ND	4.4	
67-66-3	Chloroform	ND	3.1	ND	0.64	
109-99-9	Tetrahydrofuran (THF)	ND	16	ND	5.3	
107-06-2	1,2-Dichloroethane	ND	3.1	ND	0.77	
71-55-6	1,1,1-Trichloroethane	ND	3.1	ND	0.57	
71-43-2	Benzene	7.1	3.1	2.2	0.97	
56-23-5	Carbon Tetrachloride	ND	3.1	ND	0.49	
110-82-7	Cyclohexane	36	31	10	9.0	
78-87-5	1,2-Dichloropropane	ND	3.1	ND	0.67	
75-27-4	Bromodichloromethane	ND	3.1	ND	0.46	
79-01-6	Trichloroethene	70	3.1	13	0.58	
123-91-1	1,4-Dioxane	ND	16	ND	4.3	
80-62-6	Methyl Methacrylate	ND	31	ND	7.6	
142-82-5	n-Heptane	2,300	16	570	3.8	
10061-01-5	cis-1,3-Dichloropropene	ND	16	ND	3.4	
108-10-1	4-Methyl-2-pentanone	ND	16	ND	3.8	
10061-02-6	trans-1,3-Dichloropropene	ND	16	ND	3.4	
79-00-5	1,1,2-Trichloroethane	ND	3.1	ND	0.57	
108-88-3	Toluene	27	16	7.3	4.1	
591-78-6	2-Hexanone	ND	16	ND	3.8	
124-48-1	Dibromochloromethane	ND	3.1	ND	0.36	
106-93-4	1,2-Dibromoethane	ND	3.1	ND	0.40	
123-86-4	n-Butyl Acetate	ND	16	ND	3.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: Indoor-1-PP CAS Sample ID: P1203938-007 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/19/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/26/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 & 10/1/12 6.0 L Summa Canister Sampling Media: Volume(s) Analyzed: 0.040 Liter(s) Test Notes: 0.020 Liter(s) Container ID: AC00376 Initial Pressure (psig): -0.05 Final Pressure (psig): 3.51

Canister Dilution Factor: 1.24

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	16	ND	3.3	
127-18-4	Tetrachloroethene	ND	3.1	ND	0.46	
108-90-7	Chlorobenzene	ND	3.1	ND	0.67	
100-41-4	Ethylbenzene	ND	16	ND	3.6	
179601-23-1	m,p-Xylenes	31	16	7.1	3.6	
75-25-2	Bromoform	ND	16	ND	1.5	
100-42-5	Styrene	ND	16	ND	3.6	
95-47-6	o-Xylene	ND	16	ND	3.6	
111-84-2	n-Nonane	ND	16	ND	3.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	3.1	ND	0.45	
98-82-8	Cumene	ND	16	ND	3.2	
80-56-8	alpha-Pinene	ND	16	ND	2.8	
103-65-1	n-Propylbenzene	ND	16	ND	3.2	
622-96-8	4-Ethyltoluene	ND	16	ND	3.2	
108-67-8	1,3,5-Trimethylbenzene	ND	16	ND	3.2	
95-63-6	1,2,4-Trimethylbenzene	18	16	3.7	3.2	
100-44-7	Benzyl Chloride	ND	16	ND	3.0	
541-73-1	1,3-Dichlorobenzene	ND	3.1	ND	0.52	
106-46-7	1,4-Dichlorobenzene	ND	3.1	ND	0.52	
95-50-1	1,2-Dichlorobenzene	ND	3.1	ND	0.52	
5989-27-5	d-Limonene	26	16	4.7	2.8	
96-12-8	1,2-Dibromo-3-chloropropane	ND	16	ND	1.6	
120-82-1	1,2,4-Trichlorobenzene	ND	16	ND	2.1	
91-20-3	Naphthalene	ND	16	ND	3.0	
87-68-3	Hexachlorobutadiene	ND	16	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Indoor-1-NP	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-008
Test Code:	EPA TO-15	Date Collected: 9/19/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.10 Liter(s)
Test Notes:		0.020 Liter(s)
Container ID:	AC01877	
	Initial Pressure (psig): -0.02 Final	Pressure (psig): 4.36
	ч <i>С</i> /	ά θ ²

.

Canister Dilution Factor: 1.30

CAS #	Compound	Result	MRL	Result	MRL	Data
115-07-1	Propene	μg/m ³ 39	μg/m ³ 6.5	<u>ppbV</u> 23	ppbV 3.8	Qualifier
	*					
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	6.5	ND	1.3	
74-87-3	Chloromethane	ND	2.6	ND	1.3	
76-14-2	1,2-Dichloro-1,1,2,2-	ND	6.5	ND	0.93	
70112	tetrafluoroethane (CFC 114)		0.5	TLD .	0.95	
75-01-4	Vinyl Chloride	ND	1.3	ND	0.51	
106-99-0	1,3-Butadiene	14	2.6	6.5	1.2	
74-83-9	Bromomethane	ND	1.3	ND	0.33	
75-00-3	Chloroethane	ND	1.3	ND	0.49	
64-17-5	Ethanol	80	65	42	35	
75-05-8	Acetonitrile	ND	6.5	ND	3.9	
107-02-8	Acrolein	ND	26	ND	11	
67-64-1	Acetone	9,400	330	4,000	140	D
75-69-4	Trichlorofluoromethane	1.8	1.3	0.32	0.23	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	65	ND	26	
107-13-1	Acrylonitrile	ND	6.5	ND	3.0	
75-35-4	1,1-Dichloroethene	ND	1.3	ND	0.33	
75-09-2	Methylene Chloride	ND	6.5	ND	1.9	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	1.3	ND	0.42	
76-13-1	Trichlorotrifluoroethane	ND	1.3	ND	0.17	
75-15-0	Carbon Disulfide	ND	65	ND	21	
156-60-5	trans-1,2-Dichloroethene	ND	1.3	ND	0.33	
75-34-3	1,1-Dichloroethane	ND	1.3	ND	0.32	
1634-04-4	Methyl tert-Butyl Ether	ND	1.3	ND	0.36	
108-05-4	Vinyl Acetate	ND	65	ND	18	
78-93-3	2-Butanone (MEK)	ND	65	ND	22	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID:		CAS Project ID: P1203938
Chent Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-008
Test Code:	EPA TO-15	Date Collected: 9/19/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.10 Liter(s)
Test Notes:		0.020 Liter(s)
Container ID:	AC01877	
	Initial Pressure (psig): -0.02 Fina	al Pressure (psig): 4.36

Canister Dilution Factor: 1.30

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	1.3	ND	0.33	
141-78-6	Ethyl Acetate	27	13	7.4	3.6	
110-54-3	n-Hexane	120	6.5	34	1.8	
67-66-3	Chloroform	ND	1.3	ND	0.27	
109-99-9	Tetrahydrofuran (THF)	ND	6.5	ND	2.2	
107-06-2	1,2-Dichloroethane	ND	1.3	ND	0.32	
71-55-6	1,1,1-Trichloroethane	ND	1.3	ND	0.24	
71-43-2	Benzene	69	1.3	22	0.41	
56-23-5	Carbon Tetrachloride	ND	1.3	ND	0.21	
110-82-7	Cyclohexane	33	13	9.7	3.8	
78-87-5	1,2-Dichloropropane	ND	1.3	ND	0.28	
75-27-4	Bromodichloromethane	ND	1.3	ND	0.19	
79-01-6	Trichloroethene	15	1.3	2.8	0.24	
123-91-1	1,4-Dioxane	ND	6.5	ND	1.8	
80-62-6	Methyl Methacrylate	ND	13	ND	3.2	
142-82-5	n-Heptane	1,100	6.5	260	1.6	
10061-01-5	cis-1,3-Dichloropropene	ND	6.5	ND	1.4	
108-10-1	4-Methyl-2-pentanone	9.5	6.5	2.3	1.6	
10061-02-6	trans-1,3-Dichloropropene	ND	6.5	ND	1.4	
79-00-5	1,1,2-Trichloroethane	ND	1.3	ND	0.24	
108-88-3	Toluene	170	6.5	44	1.7	
591-78-6	2-Hexanone	ND	6.5	ND	1.6	
124-48-1	Dibromochloromethane	ND	1.3	ND	0.15	
106-93-4	1,2-Dibromoethane	ND	1.3	ND	0.17	
123-86-4	n-Butyl Acetate	ND	6.5	ND	1.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: Indoor-1-NP CAS Sample ID: P1203938-008 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/19/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/25/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 6.0 L Summa Canister Volume(s) Analyzed: Sampling Media: 0.10 Liter(s) Test Notes: 0.020 Liter(s) Container ID: AC01877

Initial Pressure (psig): -0.02

Final Pressure (psig): 4.36

Canister Dilution Factor: 1.30

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
111-65-9	n-Octane	<u></u>	6.5	3.2	1.4	Quantier
127-18-4	Tetrachloroethene	1.8	1.3	0.27	0.19	
108-90-7	Chlorobenzene	ND	1.3	ND	0.28	
100-41-4	Ethylbenzene	50	6.5	11	1.5	
179601-23-1	m,p-Xylenes	180	6.5	41	1.5	
75-25-2	Bromoform	ND	6.5	ND	0.63	
100-42-5	Styrene	21	6.5	4.9	1.5	
95-47-6	o-Xylene	70	6.5	16	1.5	
111-84-2	n-Nonane	14	6.5	2.7	1.2	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.3	ND	0.19	
98-82-8	Cumene	ND	6.5	ND	1.3	
80-56-8	alpha-Pinene	ND	6.5	ND	1.2	
103-65-1	n-Propylbenzene	12	6.5	2.4	1.3	
622-96-8	4-Ethyltoluene	29	6.5	5.8	1.3	
108-67-8	1,3,5-Trimethylbenzene	34	6.5	7.0	1.3	
95-63-6	1,2,4-Trimethylbenzene	110	6.5	23	1.3	
100-44-7	Benzyl Chloride	ND	6.5	ND	1.3	
541-73-1	1,3-Dichlorobenzene	ND	1.3	ND	0.22	
106-46-7	1,4-Dichlorobenzene	ND	1.3	ND	0.22	
95-50-1	1,2-Dichlorobenzene	ND	1.3	ND	0.22	
5989-27-5	d-Limonene	100	6.5	18	1.2	
96-12-8	1,2-Dibromo-3-chloropropane	ND	6.5	ND	0.67	
120-82-1	1,2,4-Trichlorobenzene	ND	6.5	ND	0.88	
91-20-3	Naphthalene	47	6.5	9.1	1.2	
87-68-3	Hexachlorobutadiene	ND	6.5	ND	0.61	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 3

Client: 0	GSI Environmental Inc.	
Client Sample ID: D	Dup 1	CAS I
Client Project ID: E	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS S
Test Code: E	EPA TO-15	Date
Instrument ID: T	Fekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date
Analyst: L	Lusine Hakobyan	Date
Sampling Media: 6 Test Notes:	5.0 L Summa Canister	Volume(s)
Container ID: A	AC00745	

_ _

CAS Project ID: P1203938 CAS Sample ID: P1203938-009

Date Collected: 9/19/12 Date Received: 9/26/12 Date Analyzed: 9/28/12 & 10/1/12 Volume(s) Analyzed: 0.040 Liter(s) 0.020 Liter(s)

Initial Pressure (psig): -0.03

Final Pressure (psig): 3.59

Canister Dilution Factor: 1.25

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	16	ND	9.1	<u> </u>
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	16	ND	3.2	
74-87-3	Chloromethane	ND	6.3	ND	3.0	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	16	ND	2.2	
75-01-4	Vinyl Chloride	ND	3.1	ND	1.2	
106-99-0	1,3-Butadiene	ND	6.3	ND	2.8	
74-83-9	Bromomethane	ND	3.1	ND	0.81	
75-00-3	Chloroethane	ND	3.1	ND	1.2	
64-17-5	Ethanol	ND	160	ND	83	
75-05-8	Acetonitrile	ND	16	ND	9.3	
107-02-8	Acrolein	ND	63	ND	27	
67-64-1	Acetone	23,000	310	9,800	130	D
75-69-4	Trichlorofluoromethane	ND	3.1	ND	0.56	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	160	ND	64	
107-13-1	Acrylonitrile	ND	16	ND	7.2	
75-35-4	1,1-Dichloroethene	ND	3.1	ND	0.79	
75-09-2	Methylene Chloride	16	16	4.7	4.5	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	3.1	ND	1.0	
76-13-1	Trichlorotrifluoroethane	ND	3.1	ND	0.41	
75-15-0	Carbon Disulfide	ND	160	ND	50	
156-60-5	trans-1,2-Dichloroethene	ND	3.1	ND	0.79	
75-34-3	1,1-Dichloroethane	ND	3.1	ND	0.77	
1634-04-4	Methyl tert-Butyl Ether	ND	3.1	ND	0.87	
108-05-4	Vinyl Acetate	ND	160	ND	44	
78-93-3	2-Butanone (MEK)	ND	160	ND	53	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	GSI Environmental Inc.	CASI
Client Sample ID: Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS S
Test Code:	EPA TO-15	Date
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date
Analyst:	Lusine Hakobyan	Date
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s)
Container ID:	AC00745	

Project ID: P1203938 Sample ID: P1203938-009

e Collected: 9/19/12 te Received: 9/26/12 e Analyzed: 9/28/12 & 10/1/12 s) Analyzed: 0.040 Liter(s) 0.020 Liter(s)

Initial Pressure (psig): -0.03 Final Pressure (psig): 3.59

Canister Dilution Factor: 1.25

CAS #	Compound	Result	MRL	Result	MRL	Data
	-	μg/m ³	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	3.1	ND	0.79	
141-78-6	Ethyl Acetate	ND	31	ND	8.7	
110-54-3	n-Hexane	ND	16	ND	4.4	
67-66-3	Chloroform	ND	3.1	ND	0.64	
109-99-9	Tetrahydrofuran (THF)	ND	16	ND	5.3	
107-06-2	1,2-Dichloroethane	ND	3.1	ND	0.77	
71-55-6	1,1,1-Trichloroethane	ND	3.1	ND	0.57	
71-43-2	Benzene	6.9	3.1	2.2	0.98	
56-23-5	Carbon Tetrachloride	ND	3.1	ND	0.50	
110-82-7	Cyclohexane	36	31	10	9.1	
78-87-5	1,2-Dichloropropane	ND	3.1	ND	0.68	
75-27-4	Bromodichloromethane	ND	3.1	ND	0.47	
79-01-6	Trichloroethene	73	3.1	14	0.58	
123-91-1	1,4-Dioxane	ND	16	ND	4.3	
80-62-6	Methyl Methacrylate	ND	31	ND	7.6	
142-82-5	n-Heptane	2,600	16	640	3.8	
10061-01-5	cis-1,3-Dichloropropene	ND	16	ND	3.4	
108-10-1	4-Methyl-2-pentanone	ND	16	ND	3.8	
10061-02-6	trans-1,3-Dichloropropene	ND	16	ND	3.4	
79-00-5	1,1,2-Trichloroethane	ND	3.1	ND	0.57	
108-88-3	Toluene	26	16	6.8	4.1	
591-78-6	2-Hexanone	ND	16	ND	3.8	
124-48-1	Dibromochloromethane	ND	3.1	ND	0.37	
106-93-4	1,2-Dibromoethane	ND	3.1	ND	0.41	
123-86-4	n-Butyl Acetate	ND	16	ND	3.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: Dup 1 CAS Sample ID: P1203938-009 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/19/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/26/12 Analyst: Lusine Hakobyan Date Analyzed: 9/28/12 & 10/1/12 6.0 L Summa Canister Sampling Media: Volume(s) Analyzed: 0.040 Liter(s) Test Notes: 0.020 Liter(s) Container ID: AC00745 -0.03 3.59

Initial Pressure (psig):

Final Pressure (psig):

Canister Dilution Factor: 1.25

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	μg/m ³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	16	ND	3.3	
127-18-4	Tetrachloroethene	ND	3.1	ND	0.46	
108-90-7	Chlorobenzene	ND	3.1	ND	0.68	
100-41-4	Ethylbenzene	ND	16	ND	3.6	
179601-23-1	m,p-Xylenes	29	16	6.8	3.6	
75-25-2	Bromoform	ND	16	ND	1.5	
100-42-5	Styrene	ND	16	ND	3.7	
95-47-6	o-Xylene	ND	16	ND	3.6	
111-84-2	n-Nonane	ND	16	ND	3.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	3.1	ND	0.46	
98-82-8	Cumene	ND	16	ND	3.2	
80-56-8	alpha-Pinene	ND	16	ND	2.8	
103-65-1	n-Propylbenzene	ND	16	ND	3.2	
622-96-8	4-Ethyltoluene	ND	16	ND	3.2	
108-67-8	1,3,5-Trimethylbenzene	ND	16	ND	3.2	
95-63-6	1,2,4-Trimethylbenzene	18	16	3.6	3.2	
100-44-7	Benzyl Chloride	ND	16	ND	3.0	
541-73-1	1,3-Dichlorobenzene	ND	3.1	ND	0.52	
106-46-7	1,4-Dichlorobenzene	ND	3.1	ND	0.52	
95-50-1	1,2-Dichlorobenzene	ND	3.1	ND	0.52	
5989-27-5	d-Limonene	33	16	5.8	2.8	
96-12-8	1,2-Dibromo-3-chloropropane	ND	16	ND	1.6	
120-82-1	1,2,4-Trichlorobenzene	ND	16	ND	2.1	
91-20-3	Naphthalene	ND	16	ND	3.0	
87-68-3	Hexachlorobutadiene	ND	16	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P120928-MB
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.20	ND	0.097	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
106-99-0	1,3-Butadiene	ND	0.20	ND	0.090	
74-83-9	Bromomethane	ND	0.10	ND	0.026	
75-00-3	Chloroethane	ND	0.10	ND	0.038	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.10	ND	0.018	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.10	ND	0.025	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.10	ND	0.032	
76-13-1	Trichlorotrifluoroethane	ND	0.10	ND	0.013	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.10	ND	0.025	
75-34-3	1,1-Dichloroethane	ND	0.10	ND	0.025	
1634-04-4	Methyl tert-Butyl Ether	ND	0.10	ND	0.028	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P120928-MB
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.10	ND	0.025	Quantier
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.10	ND	0.020	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.10	ND	0.025	
71-55-6	1,1,1-Trichloroethane	ND	0.10	ND	0.018	
71-43-2	Benzene	ND	0.10	ND	0.031	
56-23-5	Carbon Tetrachloride	ND	0.10	ND	0.016	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.10	ND	0.022	
75-27-4	Bromodichloromethane	ND	0.10	ND	0.015	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.10	ND	0.018	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.10	ND	0.012	
106-93-4	1,2-Dibromoethane	ND	0.10	ND	0.013	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 **Client Sample ID: Method Blank** Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: NA Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Date Received: NA Analyst: Lusine Hakobyan Date Analyzed: 9/28/12

Sampling Media: Test Notes:

6.0 L Summa Canister

CAS Sample ID: P120928-MB

Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.10	ND	0.015	
108-90-7	Chlorobenzene	ND	0.10	ND	0.022	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	0.50	ND	0.12	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.10	ND	0.015	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.10	ND	0.017	
106-46-7	1,4-Dichlorobenzene	ND	0.10	ND	0.017	
95-50-1	1,2-Dichlorobenzene	ND	0.10	ND	0.017	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P121001-MB
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.20	ND	0.097	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
106-99-0	1,3-Butadiene	ND	0.20	ND	0.090	
74-83-9	Bromomethane	ND	0.10	ND	0.026	
75-00-3	Chloroethane	ND	0.10	ND	0.038	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.10	ND	0.018	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.10	ND	0.025	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.10	ND	0.032	
76-13-1	Trichlorotrifluoroethane	ND	0.10	ND	0.013	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.10	ND	0.025	
75-34-3	1,1-Dichloroethane	ND	0.10	ND	0.025	
1634-04-4	Methyl tert-Butyl Ether	ND	0.10	ND	0.028	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P121001-MB
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/1/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.10	ND	0.025	C
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.10	ND	0.020	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.10	ND	0.025	
71-55-6	1,1,1-Trichloroethane	ND	0.10	ND	0.018	
71-43-2	Benzene	ND	0.10	ND	0.031	
56-23-5	Carbon Tetrachloride	ND	0.10	ND	0.016	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.10	ND	0.022	
75-27-4	Bromodichloromethane	ND	0.10	ND	0.015	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.10	ND	0.018	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.10	ND	0.012	
106-93-4	1,2-Dibromoethane	ND	0.10	ND	0.013	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Sampling Media:

Test Notes:

6.0 L Summa Canister

RESULTS OF ANALYSIS

Page 3 of 3

Client:GSI Environmental Inc.CAS Project ID: P1203938Client Sample ID:Method BlankCAS Sample ID: P121001-MBClient Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669Date Collected: NATest Code:EPA TO-15Date Collected: NAInstrument ID:Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16Date Received: NAAnalyst:Lusine HakobyanDate Analyzed: 10/1/12

Date Received: NA Date Analyzed: 10/1/12 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	µg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.10	ND	0.015	
108-90-7	Chlorobenzene	ND	0.10	ND	0.022	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	0.50	ND	0.12	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.10	ND	0.015	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.10	ND	0.017	
106-46-7	1,4-Dichlorobenzene	ND	0.10	ND	0.017	
95-50-1	1,2-Dichlorobenzene	ND	0.10	ND	0.017	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669

CAS Project ID: P1203938

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date(s) Collected: 9/18 - 9/19/12
Analyst:	Lusine Hakobyan	Date(s) Received: 9/25 - 9/26/12
Sampling Media:	6.0 L Summa Canister(s)	Date(s) Analyzed: 9/28 - 10/1/12
Test Notes:		

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	CAS Sample ID	Percent	Percent	Percent	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P120928-MB	103	96	102	70-130	
Method Blank	P121001-MB	105	101	104	70-130	
Lab Control Sample	P120928-LCS	109	105	101	70-130	
Lab Control Sample	P121001-LCS	102	90	95	70-130	
Indoor-C1	P1203938-001	102	97	111	70-130	
Outdoor-C1	P1203938-002	107	95	106	70-130	
SS-1C	P1203938-003	97	95	104	70-130	
SS-2C	P1203938-004	98	96	103	70-130	
SS-2C	P1203938-004DUP	106	95	105	70-130	
SS-3C	P1203938-005	105	96	103	70-130	
Indoor-1-BL	P1203938-006	104	98	100	70-130	
Indoor-1-PP	P1203938-007	104	100	102	70-130	
Indoor-1-NP	P1203938-008	111	97	104	70-130	
Dup 1	P1203938-009	99	99	104	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

.

.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

-	GSI Environmental Inc. Lab Control Sample ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Project ID: P1203938 CAS Sample ID: P120928-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
115-07-1	Propene	204	211	103	59-137	
75-71-8	Dichlorodifluoromethane (CFC 12)	202	197	98	63-115	
74-87-3	Chloromethane	196	191	97	59-124	
76-14-2	1,2-Dichloro-1,1,2,2-			102	65-113	
/0-14-2	tetrafluoroethane (CFC 114)	206	211	102	03-115	
75-01-4	Vinyl Chloride	200	199	100	59-121	
106-99-0	1,3-Butadiene	210	224	107	60-138	
74-83-9	Bromomethane	200	199	100	69-129	
75-00-3	Chloroethane	202	193	96	60-120	
64-17-5	Ethanol	958	874	91	58-121	
75-05-8	Acetonitrile	202	215	106	64-129	
107-02-8	Acrolein	204	192	94	54-127	
67-64-1	Acetone	1,040	1020	98	59-114	
75-69-4	Trichlorofluoromethane	210	192	91	66-108	
67-63-0	2-Propanol (Isopropyl Alcohol)	396	354	89	50-113	
107-13-1	Acrylonitrile	206	254	123	72-135	
75-35-4	1,1-Dichloroethene	218	206	94	70-117	
75-09-2	Methylene Chloride	212	208	98	61-108	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	214	196	92	70-131	
76-13-1	Trichlorotrifluoroethane	212	199	94	70-113	
75-15-0	Carbon Disulfide	208	183	88	65-112	
156-60-5	trans-1,2-Dichloroethene	202	217	107	71-119	
75-34-3	1,1-Dichloroethane	206	198	96	71-116	
1634-04-4	Methyl tert-Butyl Ether	204	203	100	67-116	
108-05-4	Vinyl Acetate	988	1160	117	59-142	
78-93-3	2-Butanone (MEK)	212	229	108	68-125	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Lab Control Sample	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P120928-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

CAS #	Compound	Spike Amount µg/m³	Result µg/m³	% Recovery	CAS Acceptance Limits	Data Qualifier	
156-59-2	cis-1,2-Dichloroethene	214	209	98	69-119		
141-78-6	Ethyl Acetate	412	422	102	63-130		
110-54-3	n-Hexane	206	182	88	57-120		
67-66-3	Chloroform	222	204	92	69-111		
109-99-9	Tetrahydrofuran (THF)	208	217	104	57-123		
107-06-2	1,2-Dichloroethane	208	212	102	70-118		
71-55-6	1,1,1-Trichloroethane	204	191	94	73-119		
71-43-2	Benzene	208	186	89	66-121		
56-23-5	Carbon Tetrachloride	212	217	102	74-129		
110-82-7	Cyclohexane	402	356	89	70-113		
78-87-5	1,2-Dichloropropane	204	179	88	69-118		
75-27-4	Bromodichloromethane	204	197	97	75-124		
79-01-6	Trichloroethene	198	194	98	73-115		
123-91-1	1,4-Dioxane	206	188	91	71-123		
80-62-6	Methyl Methacrylate	414	390	94	72-127		
142-82-5	n-Heptane	202	174	86	68-120		
10061-01-5	cis-1,3-Dichloropropene	196	193	98	71-130		
108-10-1	4-Methyl-2-pentanone	210	191	91	69-130		
10061-02-6	trans-1,3-Dichloropropene	218	228	105	76-133		
79-00-5	1,1,2-Trichloroethane	202	182	90	73-120		
108-88-3	Toluene	208	181	87	67-111		
591-78-6	2-Hexanone	228	206	90	70-123		
124-48-1	Dibromochloromethane	216	212	98	75-129		
106-93-4	1,2-Dibromoethane	208	194	93	73-122		
123-86-4	n-Butyl Acetate	228	229	100	68-132		

Page 3 of 3

Client:	GSI Environmental Inc.				
Client Sample ID:	Lab Control Sample	CAS Project ID: P1203938			
Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669		CAS Sample ID: P120928-LCS			
Test Code:	EPA TO-15	Date Collected: NA			
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA			
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12			
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)			
Test Notes:					

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
111-65-9	n-Octane	206	193	94	68-116	
127-18-4	Tetrachloroethene	190	185	97	67-119	
108-90-7	Chlorobenzene	208	188	90	69-113	
100-41-4	Ethylbenzene	206	178	86	71-117	
179601-23-1	m,p-Xylenes	412	381	92	70-116	
75-25-2	Bromoform	216	207	96	69-127	
100-42-5	Styrene	208	195	94	71-125	
95-47-6	o-Xylene	200	176	88	70-116	
111-84-2	n-Nonane	202	172	85	68-116	
79-34-5	1,1,2,2-Tetrachloroethane	198	174	88	70-119	
98-82-8	Cumene	196	185	94	70-116	
80-56-8	alpha-Pinene	192	182	95	71-119	
103-65-1	n-Propylbenzene	198	189	95	71-119	
622-96-8	4-Ethyltoluene	204	197	97	71-119	
108-67-8	1,3,5-Trimethylbenzene	208	192	92	71-121	
95-63-6	1,2,4-Trimethylbenzene	200	185	93	73-127	
100-44-7	Benzyl Chloride	206	215	104	65-137	
541-73-1	1,3-Dichlorobenzene	206	208	101	68-123	
106-46-7	1,4-Dichlorobenzene	212	201	95	65-120	
95-50-1	1,2-Dichlorobenzene	204	186	91	67-121	
5989-27-5	d-Limonene	206	183	89	67-130	
96-12-8	1,2-Dibromo-3-chloropropane	202	206	102	72-133	
120-82-1	1,2,4-Trichlorobenzene	200	183	92	62-133	
91-20-3	Naphthalene	178	152	85	56-138	
87-68-3	Hexachlorobutadiene	208	182	88	60-128	

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Lab Control Sample	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P121001-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/01/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		µg/m³	μg/m³		Limits	Qualifier
115-07-1	Propene	204	189	93	59-137	
75-71-8	Dichlorodifluoromethane (CFC 12)	202	180	89	63-115	
74-87-3	Chloromethane	196	178	91	59-124	
76-14-2	1,2-Dichloro-1,1,2,2-			95	65-113	
70-14-2	tetrafluoroethane (CFC 114)	206	196	95	03-115	
75-01-4	Vinyl Chloride	200	186	93	59-121	
106-99-0	1,3-Butadiene	210	211	100	60-138	
74-83-9	Bromomethane	200	180	90	69-129	
75-00-3	Chloroethane	202	181	90	60-120	
64-17-5	Ethanol	958	839	88	58-121	
75-05-8	Acetonitrile	202	199	99	64-129	
107-02-8	Acrolein	204	175	86	54-127	
67-64-1	Acetone	1,040	924	89	59-114	
75-69-4	Trichlorofluoromethane	210	184	88	66-108	
67-63-0	2-Propanol (Isopropyl Alcohol)	396	340	86	50-113	
107-13-1	Acrylonitrile	206	235	114	72-135	
75-35-4	1,1-Dichloroethene	218	199	91	70-117	
75-09-2	Methylene Chloride	212	191	90	61-108	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	214	185	86	70-131	
76-13-1	Trichlorotrifluoroethane	212	203	96	70-113	
75-15-0	Carbon Disulfide	208	178	86	65-112	
156-60-5	trans-1,2-Dichloroethene	202	206	102	71-119	
75-34-3	1,1-Dichloroethane	206	183	89	71-116	
1634-04-4	Methyl tert-Butyl Ether	204	187	92	67-116	
108-05-4	Vinyl Acetate	988	1080	109	59-142	
78-93-3	2-Butanone (MEK)	212	231	109	68-125	

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sampl	le ID: Lab Control Sample	CAS Project ID: P1203938
Client Projec	et ID: ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P121001-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/01/12
Sampling Med	dia: 6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
156-59-2	cis-1,2-Dichloroethene	214	196	92	69-119	
141-78-6	Ethyl Acetate	412	427	104	63-130	
110-54-3	n-Hexane	206	183	89	57-120	
67-66-3	Chloroform	222	202	91	69-111	
109-99-9	Tetrahydrofuran (THF)	208	189	91	57-123	
107-06-2	1,2-Dichloroethane	208	199	96	70-118	
71-55-6	1,1,1-Trichloroethane	204	192	94	73-119	
71-43-2	Benzene	208	177	85	66-121	
56-23-5	Carbon Tetrachloride	212	208	98	74-129	
110-82-7	Cyclohexane	402	342	85	70-113	
78-87-5	1,2-Dichloropropane	204	186	91	69-118	
75-27-4	Bromodichloromethane	204	199	98	75-124	
79-01-6	Trichloroethene	198	195	98	73-115	
123-91-1	1,4-Dioxane	206	189	92	71-123	
80-62-6	Methyl Methacrylate	414	401	97	72-127	
142-82-5	n-Heptane	202	177	88	68-120	
10061-01-5	cis-1,3-Dichloropropene	196	200	102	71-130	
108-10-1	4-Methyl-2-pentanone	210	196	93	69-130	
10061-02-6	trans-1,3-Dichloropropene	218	228	105	76-133	
79-00-5	1,1,2-Trichloroethane	202	186	92	73-120	
108-88-3	Toluene	208	165	79	67-111	
591-78-6	2-Hexanone	228	196	86	70-123	
124-48-1	Dibromochloromethane	216	193	89	75-129	
106-93-4	1,2-Dibromoethane	208	175	84	73-122	
123-86-4	n-Butyl Acetate	228	198	87	68-132	

Page 3 of 3

Client:	GSI Environmental Inc.			
Client Sample ID:	Lab Control Sample	CAS Project ID: P1203938		
Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669		CAS Sample ID: P121001-LCS		
Test Code:	EPA TO-15	Date Collected: NA		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA		
Analyst:	Lusine Hakobyan	Date Analyzed: 10/01/12		
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)		
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
111-65-9	n-Octane	206	161	78	68-116	
127-18-4	Tetrachloroethene	190	157	83	67-119	
108-90-7	Chlorobenzene	208	183	88	69-113	
100-41-4	Ethylbenzene	206	179	87	71-117	
179601-23-1	m,p-Xylenes	412	351	85	70-116	
75-25-2	Bromoform	216	205	95	69-127	
100-42-5	Styrene	208	180	87	71-125	
95-47-6	o-Xylene	200	169	85	70-116	
111-84-2	n-Nonane	202	159	79	68-116	
79-34-5	1,1,2,2-Tetrachloroethane	198	168	85	70-119	
98-82-8	Cumene	196	153	78	70-116	
80-56-8	alpha-Pinene	192	150	78	71-119	
103-65-1	n-Propylbenzene	198	158	80	71-119	
622-96-8	4-Ethyltoluene	204	166	81	71-119	
108-67-8	1,3,5-Trimethylbenzene	208	176	85	71-121	
95-63-6	1,2,4-Trimethylbenzene	200	163	82	73-127	
100-44-7	Benzyl Chloride	206	196	95	65-137	
541-73-1	1,3-Dichlorobenzene	206	184	89	68-123	
106-46-7	1,4-Dichlorobenzene	212	176	83	65-120	
95-50-1	1,2-Dichlorobenzene	204	168	82	67-121	
5989-27-5	d-Limonene	206	162	79	67-130	
96-12-8	1,2-Dibromo-3-chloropropane	202	178	88	72-133	
120-82-1	1,2,4-Trichlorobenzene	200	184	92	62-133	
91-20-3	Naphthalene	178	148	83	56-138	
87-68-3	Hexachlorobutadiene	208	177	85	60-128	

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 3

	Client:	GSI Environmental Inc.	
	Client Sample ID:	SS-2C	CAS Project ID: P1203938
Test Code:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-004DUP	
	Test Code:	EPA TO-15	Date Collected: 9/18/12
	Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/25/12
	Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
	Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.020 Liter(s)
	Test Notes:		
	Container ID:	AC00977	

-0.30

Initial Pressure (psig):

Final Pressure (psig): 3.54

					Canis	ster Dilutio	n Factor:	1.27
			Dupli	cate				
Compound	Sample	Result	Sample	Result	Average	% RPD	RPD	Data
	µg∕m³	ppbV	µg/m³	ppbV	$\mu g/m^3$		Limit	Qualifier
Propene	ND	ND	ND	ND	-	-	25	
Dichlorodifluoromethane (CFC 12)	ND	ND	ND	ND	-	-	25	
Chloromethane	ND	ND	ND	ND	-	-	25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	ND	ND	ND	ND	-	-	25	
Vinyl Chloride	ND	ND	ND	ND	-	-	25	
1,3-Butadiene	ND	ND	ND	ND	-	-	25	
Bromomethane	ND	ND	ND	ND	-	-	25	
Chloroethane	ND	ND	ND	ND	-	-	25	
Ethanol	ND	ND	ND	ND	-	-	25	
Acetonitrile	ND	ND	ND	ND	-	-	25	
Acrolein	ND	ND	ND	ND	-	-	25	
Acetone	3,330	1,400	3,570	1,510	3450	7	25	
Trichlorofluoromethane	ND	ND	ND	ND	-	-	25	
2-Propanol (Isopropyl Alcohol)	ND	ND	ND	ND	-	-	25	
Acrylonitrile	ND	ND	ND	ND	-	-	25	
1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
Methylene Chloride	ND	ND	ND	ND	-	-	25	
3-Chloro-1-propene (Allyl Chloride)	ND	ND	ND	ND	-	-	25	
Trichlorotrifluoroethane	ND	ND	ND	ND	-	-	25	
Carbon Disulfide	ND	ND	ND	ND	-	-	25	
trans-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
1,1-Dichloroethane	ND	ND	ND	ND	-	-	25	
Methyl tert-Butyl Ether	ND	ND	ND	ND	-	-	25	
Vinyl Acetate	ND	ND	ND	ND	-	-	25	
2-Butanone (MEK)	ND	ND	ND	ND	-	-	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

P1203938_TO15_1210031637_SS.xls - Dup (4)

LABORATORY DUPLICATE SUMMARY RESULTS

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	SS-2C	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-004DUP
Test Code:	EPA TO-15	Date Collected: 9/18/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/25/12
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.020 Liter(s)
Test Notes:		
Container ID:	AC00977	

Initial Pressure (psig): -0.30 Final Pressure (psig): 3.54

					Canis	ster Dilution	n Factor:	1.27
			Dupli	cate				
Compound	Sample	Result	Sample	Result	Average	% RPD	RPD	Data
	$\mu g/m^3$	ppbV	µg/m³	ppbV	µg/m³		Limit	Qualifier
cis-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
Ethyl Acetate	ND	ND	ND	ND	-	-	25	
n-Hexane	1,220	346	1,270	361	1245	4	25	
Chloroform	ND	ND	ND	ND	-	-	25	
Tetrahydrofuran (THF)	ND	ND	ND	ND	-	-	25	
1,2-Dichloroethane	ND	ND	ND	ND	-	-	25	
1,1,1-Trichloroethane	ND	ND	ND	ND	-	-	25	
Benzene	57.8	18.1	55.1	17.3	56.45	5	25	
Carbon Tetrachloride	ND	ND	ND	ND	-	-	25	
Cyclohexane	479	139	479	139	479	0	25	
1,2-Dichloropropane	ND	ND	ND	ND	-	-	25	
Bromodichloromethane	ND	ND	ND	ND	-	-	25	
Trichloroethene	26.0	4.85	27.0	5.02	26.5	4	25	
1,4-Dioxane	ND	ND	ND	ND	-	-	25	
Methyl Methacrylate	ND	ND	ND	ND	-	-	25	
n-Heptane	958	234	988	241	973	3	25	
cis-1,3-Dichloropropene	ND	ND	ND	ND	-	-	25	
4-Methyl-2-pentanone	ND	ND	ND	ND	-	-	25	
trans-1,3-Dichloropropene	ND	ND	ND	ND	-	-	25	
1,1,2-Trichloroethane	ND	ND	ND	ND	-	-	25	
Toluene	52.5	13.9	53.9	14.3	53.2	3	25	
2-Hexanone	ND	ND	ND	ND	-	-	25	
Dibromochloromethane	ND	ND	ND	ND	-	-	25	
1,2-Dibromoethane	ND	ND	ND	ND	-	-	25	
n-Butyl Acetate	ND	ND	ND	ND	-	-	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 3 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	SS-2C	CAS Project II
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample II
Test Code:	EPA TO-15	Date Collected
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received
Analyst:	Lusine Hakobyan	Date Analyze
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyze
Test Notes:		
Container ID:	AC00977	

Initial Pressure (psig): -0.30

Final Pressure (psig): 3.54

					Cani	ster Dilutio	n Factor:	1.27
			Dupli	cate				
Compound	Sample	Result	Sample	Result	Average	% RPD	RPD	Data
	$\mu g/m^3$	ppbV	μg/m³	ppbV	µg/m³		Limit	Qualifier
n-Octane	210	44.9	207	44.3	208.5	1	25	
Tetrachloroethene	5,030	742	4,840	714	4935	4	25	
Chlorobenzene	ND	ND	ND	ND) -	-	25	
Ethylbenzene	427	98.3	457	105	i 442	7	25	
m,p-Xylenes	765	176	810	187	787.5	6	25	
Bromoform	ND	ND	ND	ND) -	-	25	
Styrene	ND	ND	ND	ND) -	-	25	
o-Xylene	ND	ND	ND	ND) -	-	25	
n-Nonane	51.5	9.82	51.9	9.91	51.7	0.8	25	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND) -	-	25	
Cumene	34.4	7.00	35.8	7.29	35.1	4	25	
alpha-Pinene	ND	ND	ND	ND) _	-	25	
n-Propylbenzene	133	27.0	142	28.9	137.5	7	25	
4-Ethyltoluene	257	52.2	273	55.5	265	6	25	
1,3,5-Trimethylbenzene	219	44.6	236	48.1	227.5	7	25	
1,2,4-Trimethylbenzene	857	174	911	185	5 884	6	25	
Benzyl Chloride	ND	ND	ND	ND) -	-	25	
1,3-Dichlorobenzene	ND	ND	ND	ND) -	-	25	
1,4-Dichlorobenzene	ND	ND	ND	ND) -	-	25	
1,2-Dichlorobenzene	ND	ND	ND	ND) -	-	25	
d-Limonene	ND	ND	ND	ND) -	-	25	
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND) _	-	25	
1,2,4-Trichlorobenzene	ND	ND	ND	ND) _	-	25	
Naphthalene	ND	ND	ND	ND) _	-	25	
Hexachlorobutadiene	ND	ND	ND	ND) _	-	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

CAS Project ID: P1203938 CAS Sample ID: P1203938-004DUP

Date Collected: 9/18/12 Date Received: 9/25/12 Date Analyzed: 9/28/12 Volume(s) Analyzed: 0.020 Liter(s)

RESULTS OF ANALYSIS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669

CAS Project ID: P1203938

Method Blank Summary

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Lab File ID: 09281203.D
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed: 10:33
Test Notes:		

. . . .

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P120928-LCS	09281204.D	11:08
Indoor-C1	P1203938-001	09281207.D	12:57
SS-2C	P1203938-004	09281209.D	14:06
Outdoor-C1	P1203938-002	09281210.D	14:55
SS-2C (Lab Duplicate)	P1203938-004DUP	09281212.D	16:02
SS-1C	P1203938-003	09281214.D	17:15
SS-3C	P1203938-005	09281215.D	17:48
SS-3C (Dilution)	P1203938-005	09281216.D	18:22
Indoor-1-BL	P1203938-006	09281217.D	18:55
Indoor-1-BL (Dilution)	P1203938-006	09281218.D	19:29
Indoor-1-PP	P1203938-007	09281219.D	20:03
Indoor-1-NP	P1203938-008	09281220.D	20:36
Indoor-1-NP (Dilution)	P1203938-008	09281221.D	21:10
Dup 1	P1203938-009	09281222.D	21:44

.

RESULTS OF ANALYSIS

.

.

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669

.

CAS Project ID: P1203938

.

Method Blank Summary

Test Code:	EPA TO-15		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Lab File ID:	10011203.D
Analyst:	Lusine Hakobyan	Date Analyzed:	10/01/12
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed:	10:06
Test Notes:			
Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed

P121001-LCS	10011204.D	10:48
P1203938-009	10011207.D	12:33
P1203938-007	10011209.D	14:02
	P1203938-009	P1203938-009 10011207.D

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669

CAS Project ID: P1203938

Internal Standard Area and RT Summary

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Lab File ID: 09281201.D
Analyst:	Lusine Hakobyan	Date Analyzed: 9/28/12
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed: 09:18
Test Notes:		

	IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
24 Hour Standard	175739	11.30	771015	13.51	328997	17.46
Upper Limit	246035	11.63	1079421	13.84	460596	17.79
Lower Limit	105443	10.97	462609	13.18	197398	17.13

	Client Semple ID						
01	Client Sample ID Method Blank	174843	11.29	744034	12 51	316825	17 46
					13.51		17.46
02	Lab Control Sample	171874	11.31	735716	13.52	328833	17.46
03	Indoor-C1	171333	11.31	683371	13.52	316587	17.46
04	SS-2C	144647	11.30	564538	13.51	256648	17.46
05	Outdoor-C1	183162	11.29	756778	13.51	358192	17.46
06	SS-2C (Lab Duplicate)	139679	11.30	579632	13.51	261988	17.46
07	SS-1C	172578	11.29	630876	13.51	309539	17.46
08	SS-3C	166674	11.30	682369	13.51	320330	17.46
09	SS-3C (Dilution)	132758	11.29	528587	13.51	242416	17.46
10	Indoor-1-BL	166859	11.31	672825	13.52	309382	17.46
11	Indoor-1-BL (Dilution)	133721	11.30	588837	13.51	260292	17.46
12	Indoor-1-PP	144053	11.31	591128	13.52	263148	17.46
13	Indoor-1-NP	124064	11.31	538874	13.52	235840	17.46
14	Indoor-1-NP (Dilution)	139020	11.30	575890	13.51	257342	17.46
15	Dup 1	141720	11.31	529231	13.52	269456	17.46
16							
17							

- 17
- 18 19
- 20

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits.

RESULTS OF ANALYSIS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669

CAS Project ID: P1203938

Internal Standard Area and RT Summary

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Lab File ID: 10011201.D
Analyst:	Lusine Hakobyan	Date Analyzed: 10/1/12
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed: 08:50
Test Notes:		

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	173895	11.30	701985	13.51	317585	17.46
	Upper Limit	243453	11.63	982779	13.84	444619	17.79
	Lower Limit	104337	10.97	421191	13.18	190551	17.13
	Client Sample ID						
01	Method Blank	160822	11.29	716751	13.51	292160	17.46
02	Lab Control Sample	171059	11.31	678667	13.52	340534	17.46
03	Dup 1 (Dilution)	145877	11.30	593908	13.52	268172	17.46
04	Indoor-1-PP (Dilution)	141213	11.30	580649	13.52	261033	17.46
05							
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits.

Response Factor Report GCMS-16

Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Last Update : Mon Jul 16 09:59:54 2012 Response Via : Initial Calibration Method Path : J:\MS16\METHODS\
Method File : R16071312.M

Calibration Files

=07131212.D 25 5.0 = 07131211.D1.0 = 07131210.D0.5 =07131209.D 0.1 =07131207.D 0.2 =07131208.D 50 =07131213.D 100 =07131214.D

		Compound	0.1		0.5	1.0	5.0	25	50	100	Avg	%RSD
E .	 	1	1 1 1	- 	- 		- 	I		I	i	1
1)	IR	Bromochloromethane	•	 	 	- ISTL		1 1 1	1 1 1	1		
2)	H	Propene	69	.340	.66	.508	.51	8.	.49	.34	П	1.0
3)	ΕH	Dichlorodifluo	06	.698	. 53	.079	00.0	.48	.97	.83	.34	7.8
4)	E	Chloromethane	.23	.947	.80	.418	.42	. 73	.40	.20	.64	0.8
5)	Н	1,2-Dichloro-1	.64	.480	.42	.148	.16	с С	.08	.02	.28	6.7
(9	E	C	.99	.722	.69	.389	4. 2	.60	.36	.31	5.0	5.1
1	H	1,3-Butadiene	.41	.109	.17	.947	.98	.23	.99	.94	.10	5.1
	EI	Bromomethane	.41	.204	.21	.934	б	.12	.92	.87	.07	7.7
ი 54	E	Chloroethane	.04	.807	8 С	.700	. 69	.81	.66	.63	.77	7.2
Ч	E1	Ethanol	.32	.022	.92	.722	.64	.84	.69	.65	ш) Ю	7.1
	E⊣	Acetonitrile	2.423	.952	.88	.550	.45	.84	.52	.46	.76	<u>е</u> . 6
12)	E-1	Acrolein	.72	.684	.61	.474	.52	.62	.50	.48	.57	6.6
13)	E1	Acetone		0.971	.86	.675	.63	. 74	0.602	0.566	.72	4.
14)	Εı	Trichlorofluor	2.806	.335	.37	.866	.90	.23	.81	.70	.13	7.5
15)	E				.27	.384	. 33	. 52	.25	.22	. 50	6.2
16)	E⊣	Acrylonitrile	0.814	.941	.15	.009	.07	.34	.10	.05	.06	4.7
17)	E⊶		23	1.158	.11	.911	.92	.09	.90	.86	.02	3.7
18)	[1	2-Methyl-2-Pro		.047	.01	.321	.35	.40			.42	7.4
19)	H	Methylene Chlo			.30	.038	.95	.11	.90	.86	.03	0.0
20)	E→ſ	3-Chloro-1-pro	96	.763	. 63	.329	.39	.69	.37	.31	. 55	ы. С
21)	₽	Trichlorotrifl	.45	.270	.21	.988	.97	.14	.93	.87	.10	7.9
22)	E→	Carbon Disulfide	.40	.597	.36	.491	.56	.20	.45	.26	.04	ч. 1 С. 1
23)	E⊶	trans-1,2-Dich	.73	.501	.60	.343	. 3 9	.68	.38	.31	.49	0.8
24)	E 1	1,1-Dichloroet	.71	.180	.12	.718	.74	.07	.68	.59	.97	8 0
25)	E→	Methyl tert-Bu	.32	.512	.60	.819	.87	.49	.83	.36	. 22	9.1
26)	E	Vinyl Acetate	.18	.193	.20	.186	.20	.25	.20	.17	.20	2.5
27)	ΕH	2-Butanone (MEK)	.66	.627	.68	.572	.59	.69	.49	.38	.58	7.9
28)	E	is-1,2-Dich	.85	.550	.59	.264	.30	.59	.29	.21	.45	ы. 3
29)	Ē	iisopropyl	.15	.921	91	.752	. 73	8000	.71	.66	.84	9.8
30)	E→	hyl	0.354	0.333	0.383	0.338	0.342	0.421	0.339	0.323	0.354	9.15
31)	E	n-Hexane	.50	.061	00.	.616	.60	8000	.50	. w 9	82	σ

Response Factor Report GCMS-16

19.59 0.49 17.40 15.60	119 119 119 119 119 119 119 119 119 119	0.54 16.77 15.12 15.12 19.38 19.34 10.20 16.20 1.26 1.26
<pre>THODS\ M X T SOP VOA-TO15 (CASS TO-15/GC-MS) 2.590 2.190 2.049 1.627 1.661 1.979 1.601 1.501 1.900 1.293 1.293 1.298 1.309 1.306 1.298 1.297 1.291 1.298 0.832 0.621 0.598 0.681 0.556 0.524 0.635 1.782 1.419 1.379 1.125 1.138 1.376 1.124 1.050 1.299 1.823 1.593 1.571 1.286 1.275 1.554 1.258 1.176 1.442</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
<pre>Method Path : J:\MS16\METH Method File : R16071312.M Title : EPA TO-15 per 32) T Chloroform 33) S 1,2-Dichloroet 34) T Tetrahydrofura 35) T 1,2-Dichloroet 35) T 1,2-Dichloroet</pre>	<pre>37) IR 1,4-Difluorobenzel 38) T 1,1,1-Trichlor 39) T 1,1,1-Trichlor 40) T 1-Butanol 41) T Benzene 42) T Carbon Tetrach 43) T Cyclohexane 44) T 1,2-Dichloropr 45) T 1,2-Dichloropr 46) T 1,2-Dichloropr 47) T 1,2-Dichloropr 47) T 7:chloroethene 47) T 7:chloroethene 47) T 7:chloroethene 47) T 7:chloroethene 52) T 0.2,4-Trimethy 52) T 0.2,2,4-Trimethy 52) T 1,1,2-Dichlo 53) T 4-Methyl-2-pen 55) T 1,1,2-Trichlor</pre>	<pre>56) IR Chlorobenzene-d5 57) S Toluene-d8 (SS2) 58) T Toluene 59) T 2-Hexanone 60) T Dibromochlorom 61) T 1,2-Dibromoethane 62) T n-Butyl Acetate 63) T n-Octane 63) T n-Octane 64) T Tetrachloroethene 65) T Chlorobenzene 66) T Sthylbenzene 67) T m- & p-Xylenes 68) T Styrene 70) T o-Xylene</pre>

R16071312.M Fri Sep 28 11:34:37 2012

Response Factor Report GCMS-16

		0.2	6.3	0.8	Э.З	7.3	Ι.0	5.4	9.3	3.6	4.3	2.5	4.6	7.5	2.3	8.7	2.2	8.7	8.0	8.4	7.0	5.3	3.4	17.71	8.1	4.5	4.2	9.5	0.9	0.5	7.1	
	A-TO15 (CASS TO-15/GC-M	.467 1.422 1.122 1.158 1.374 1.103 1.028 1.31	.264 1.247 0.975 1.024 1.248 1.005 0.943 1.14	.192 1.193 1.209 1.192 1.176 1.198 1.187 1.19	.210 3.523 2.746 2.799 3.341 2.692 2.478 3.29	.722 1.661 1.325 1.370 1.643 1.331 1.247 1.54	.357 4.010 3.255 3.301 3.992 3.205 2.941 3.80	.263 3.263 2.631 2.696 3.211 2.718 2.387 2.99	.230 3.064 2.471 2.442 3.080 2.344 2.295 2.84	.685 2.721 2.064 2.135 2.586 2.087 1.932 2.49	.424 1.377 1.100 1.187 1.475 1.194 1.115 1.31	.683 3.401 2.634 2.696 3.250 2.616 2.425 3.15	.059 2.678 2.129 2.197 2.670 2.149 1.979 2.59	.516 1.430 1.132 1.184 1.429 1.151 1.079 1.33	.943 1.903 1.579 1.822 2.433 1.998 1.880 1.93	.761 1.641 1.310 1.360 1.674 1.347 1.258 1.55	.807 1.698 1.317 1.377 1.705 1.374 1.279 1.61	.780 3.550 2.891 2.946 3.562 2.857 2.621 3.33	.725 3.526 2.810 2.946 3.576 2.857 2.596 3.30	.813 2.714 2.140 2.241 2.735 2.207 2.040 2.53	.690 1.619 1.270 1.327 1.631 1.319 1.225 1.50	.939 0.960 0.794 0.824 1.018 0.827 0.771 0.91	.582 0.567 0.446 0.512 0.663 0.538 0.505 0.55	459 1.390 1.101 1.227 1.484 1.194 1.103 1.345	.351 1.210 0.958 1.130 1.395 1.128 1.051 1.23	.526 3.881 2.914 3.404 4.290 3.507 3.229 3.96	.273 1.216 0.987 1.272 1.519 1.238 1.152 1.27	.949 0.852 0.703 0.742 0.894 0.722 0.673 0.83	.032 0.948 0.742 0.792 0.985 0.795 0.750 0.91	.905 2.747 2.182 2.246 2.688 2.143 1.961 2.55	.755 2.672 2.133 2.291 2.767 2.233 2.058 2.53	
THODS \	SOP V	.829	.471	.181	.597	.024	.361	.796	.849	.737	.616	.529	.895	.747	.911	.106	.346	.502	.363	.424	.947	.185	.657	1.801 1	.658	.981	.537	.161	.306	.5555	.342	
Path : J:\MS16\ File · R1607131	EPA TO-15 p	n-Nonane	1,1,2,2-Tetrac	Bromofluoroben	Cumene	alpha-Pinene	1.	1	-Ethy		r-H	ł	-	n-Decane	Benzyl Chloride	\sim	1,4-Dichlorobe	υ	4-Isopropyltol	2	1,2-Dichlorobe	Ч	1,2-Dibromo-3	n-Undecane	1,2,4-Trichlor	Naphthalene	n-Dodecane	Hexachlorobuta	Cyclohexanone	tert-Butylbenzene	n-Butylbenzene	Out of Range
д <u>г</u> т ц	it l			3)	4)	2	6)	(_	8)	6	(0	1)	2)	3)	4)	2	() 0	(_	8)	6	(c	T)	5)	3)	1)	<u>(</u>)	() ()	()	3)	(6	1 (0) = (#
				2	7	7	6	7	7	7	œ	œ	œ	ω	ò	8	ō	ŝ	ω	ω	ດັ ວf 7	σ	6	<i>.</i> ,	ġ,	9	96	ف	9	<u>9</u>	10(+)

(#) = Out of Range

Data Path : J:\MS16\DATA\2012 09\28\ Data File : 09281201.D : 28 Sep 2012 Acq On 9:18 Operator : LH Sample : 25ng TO-15 CCV STD Misc : S25-09261201/S25-08301203 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Sep 28 11:34:10 2012 Quant Method : J:\MS16\METHODS\R16071312.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Jul 16 09:59:54 2012 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 IR 2 T T T T T T T T T T T T T T T T T T T	Compound Bromochloromethane (IS1) Propene Dichlorodifluoromethane (CF Chloromethane 1,2-Dichloro-1,1,2,2-tetraf Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane 2-Propanol (Isopropanol) Acrylonitrile 1,1-Dichloroethene 2-Methyl-2-Propanol (tert-B Methylene Chloride 3-Chloro-1-propene (Allyl C Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 2-Butanone (MEK) cis-1,2-Dichloroethene Diisopropyl Ether Ethyl Acetate n-Hexane Chloroform 1,2-Dichloroethane-d4(SS1) Tetrahydrofuran (THF) Ethyl tert-Butyl Ether	AvgRF 1.000 1.554 2.347 1.646 1.289 1.576 1.101 1.079 0.776 0.853 1.763 0.579 0.722 2.130 1.500 1.063 1.025 2.429 1.030 1.559 1.107 4.044 1.979 3.229 0.200 0.589 1.459 0.841 0.354 1.822 1.900 1.298 0.635 1.299	$\begin{array}{c} \text{CCRF} \\ \hline 1.000 \\ 1.456 \\ 2.208 \\ 1.492 \\ 1.199 \\ 1.485 \\ 1.103 \\ 1.033 \\ 0.726 \\ 0.780 \\ 1.665 \\ 0.538 \\ 0.665 \\ 2.054 \\ 1.615 \\ 1.187 \\ 0.971 \\ 2.625 \\ 1.047 \\ 1.516 \\ 1.080 \\ 3.921 \\ 1.490 \\ 1.820 \\ 3.075 \\ 0.230 \\ 0.620 \\ 1.426 \\ 0.771 \\ 0.361 \\ 1.623 \\ 1.815 \\ 1.407 \\ 0.600 \\ 1.216 \end{array}$	<pre>%Dev Area% Dev(min) 0.0 118 -0.02 6.3 92 0.00 5.9 105 0.00 9.4 101 -0.01 7.0 106 -0.01 5.8 103 -0.01 -0.2 106 -0.01 4.3 109 -0.02 6.4 105 -0.01 8.6 109 -0.07 5.6 107 -0.05 7.1 102 -0.02 7.9 105 -0.05 3.6 108 -0.01 -7.7 125 -0.05 -11.7 104 -0.03 5.3 104 -0.02 -8.1 220# -0.04 -1.7 110 -0.02 2.8 106 -0.02 2.4 111 -0.02 3.0 110 -0.02 0.3 104 -0.02 4.8 104 -0.02 4.8 104 -0.02 4.8 104 -0.02 -15.0 106 -0.03 -5.3 106 -0.02 2.3 106 -0.02 8.3 103 -0.02 -2.0 101 -0.03 10.9 102 -0.01 4.5 108 -0.02 5.5 104 -0.02 5.5 104 -0.02</pre>
36 T	1,2-Dichloroethane	1.442	1.433	0.6 109 -0.02
37 IR 38 T	1,4-Difluorobenzene (IS2) 1,1,1-Trichloroethane	1.000 0.433	1.000 0.385	0.0 129 -0.02 11.1 107 -0.01

57 of 77

R16071312.M Fri Sep 28 11:34:29 2012

Page: 1

Data Path : J:\MS16\DATA\2012_09\28\ Data File : 09281201.D Acq On : 28 Sep 2012 9:18 Operator : LH Sample : 25ng TO-15 CCV STD Misc : S25-09261201/S25-08301203 Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Sep 28 11:34:10 2012 Quant Method : J:\MS16\METHODS\R16071312.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Jul 16 09:59:54 2012 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev Area	% Dev(min)
39 1 40 1	r T	Isopropyl Acetate 1-Butanol	0.159	0.148	6.9 10 1.2 10	
41 7		Benzene	1.081	0.900	16.7 10	
	r	Carbon Tetrachloride	0.353	0.357	-1.1 11	
	Ť	Cyclohexane	0.407	0.360	11.5 10	
	- T	tert-Amyl Methyl Ether	0.778	0.727	6.6 11	
	T	1,2-Dichloropropane	0.271	0.241	11.1 10	
	г	Bromodichloromethane	0.362	0.350	3.3 11	
	Т	Trichloroethene	0.318	0.301	5.3 11	
48 7	Г	1,4-Dioxane	0.212	0.195	8.0 10	8 -0.02
49 7	Т	2,2,4-Trimethylpentane (Iso	1.136	0.990	12.9 10	6 -0.01
50 5	Т	Methyl Methacrylate	0.114	0.108	5.3 10	9 -0.02
51 7	Т	n-Heptane	0.262	0.231	11.8 10	7 -0.01
	Т	cis-1,3-Dichloropropene	0.414	0.414	0.0 11	
53 .	Т	4-Methyl-2-pentanone	0.240	0.221	7.9 10	6 -0.01
54 5		trans-1,3-Dichloropropene	0.365	0.385	-5.5 11	
55 1	Т	1,1,2-Trichloroethane	0.274	0.248	9.5 10	8 -0.01
	IR	Chlorobenzene-d5 (IS3)	1.000	1.000	0.0 12	3 0.00
	S	Toluene-d8 (SS2)	2.309	2.289	0.9 12	
	Т	Toluene	2.621	2.259	13.8 10	
	Т	2-Hexanone	1.255	1.133	9.7 10	
	Т	Dibromochloromethane	0.720	0.706	1.9 10	
	Т	1,2-Dibromoethane	0.713	0.663	7.0 10	
•	Т	n-Butyl Acetate	1.477	1.357		9 -0.01
	Т	n-Octane	0.538	0.460	14.5 10	
-	Т	Tetrachloroethene	0.921	0.815	11.5 10	
	Т	Chlorobenzene	1.749	1.531	12.5 10	
	Т	Ethylbenzene	2.964	2.577	13.1 10	
•	T	m- & p-Xylenes	2.340	2.066	11.7 10	
	Т	Bromoform	0.706	0.729	-3.3 10	
69 '		Styrene	1.761	1.539		7 -0.01
	Т	o-Xylene	2.460	2.160	12.2 10	
	Т	n-Nonane	1.313	1.113	15.2 10	
72		1,1,2,2-Tetrachloroethane	1.147	1.047	8.7 10	
73		Bromofluorobenzene (SS3)	1.191	1.286	-8.0 13	
74 ' 75 '	T T	Cumene alpha-Pinene	3.298 1.541	2.871	12.9 10	
75 76 '		n-Propylbenzene	1.541 3.803	1.275		5 0.00
10	Т	п-тторутрентение	5.005	3.308	13.0 10	2 0.00

R16071312.M Fri Sep 28 11:34:29 2012

M 9/28/12 Page: 2

Data Path : J:\MS16\DATA\2012 09\28\ Data File : 09281201.D Acq On : 28 Sep 2012 9:18 Operator : LH Sample : 25ng TO-15 CCV STD Misc : S25-09261201/S25-08301203 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Sep 28 11:34:10 2012 Quant Method : J:\MS16\METHODS\R16071312.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Jul 16 09:59:54 2012 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
77 T 78 T 79 T 80 T 81 T 82 T 83 T 84 T 85 T 86 T 86 T 87 T 88 T 89 T 90 T	Compound 3-Ethyltoluene 4-Ethyltoluene 1,3,5-Trimethylbenzene alpha-Methylstyrene 2-Ethyltoluene 1,2,4-Trimethylbenzene n-Decane Benzyl Chloride 1,3-Dichlorobenzene 1,4-Dichlorobenzene sec-Butylbenzene 4-Isopropyltoluene (p-Cymen 1,2,3-Trimethylbenzene 1,2-Dichlorobenzene	AvgRF 2.995 2.847 2.493 1.311 3.154 2.595 1.334 1.934 1.557 1.613 3.339 3.300 2.539 1.503	CCRF 2.687 2.545 2.157 0.993 2.704 2.272 1.168 1.992 1.395 1.483 2.989 3.004 2.314 1.382	<pre>%Dev Area% Dev(min) 10.3 103 0.00 10.6 102 0.00 13.5 103 -0.01 24.3 83 -0.01 14.3 102 -0.01 12.4 105 0.00 12.4 101 -0.01 -3.0 101 -0.01 10.4 102 -0.01 8.1 107 -0.01 10.5 103 0.00 9.0 103 0.00 8.9 104 0.00 8.1 104 -0.01</pre>
90 I 91 T	d-Limonene	0.915	0.691	24.5 83 0.00
92 T 93 T	1,2-Dibromo-3-Chloropropane n-Undecane	0.559 1.345	0.564 1.286	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
94 T	1,2,4-Trichlorobenzene	1.235	1.177	4.7 104 0.00
95 T 96 T	Naphthalene n-Dodecane	3.967 1.274	3.603 1.233	9.2 103 0.00 3.2 100 0.00
97 T	Hexachlorobutadiene	0.837	0.754	9.9 104 0.00
98 T	Cyclohexanone	0.919	0.801	12.8 100 -0.01
99 T 100 T 	tert-Butylbenzene n-Butylbenzene	2.554 2.531	2.277 2.300	10.8 104 0.00 9.1 102 0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

R16071312.M Fri Sep 28 11:34:29 2012

M 9/28/12 Page: 3

		Evaluate Continuin	g Calibı	cation R	eport	
Da Ac Or	ita Fi 2q On 20erato	ath : J:\MS16\DATA\2012_10\01\ ile : 10011201.D : 1 Oct 2012 8:50 or : LH : 25ng TO-15 CCV STD : S25-09261201/S25-0921120 al : 2 Sample Multiplier: 1				
Qu Qu QI	iant I iant ' Jast I	Fime: Oct 01 10:15:40 2012 Method : J:\MS16\METHODS\R1607 Fitle : EPA TO-15 per SOP VOA Update : Mon Jul 16 09:59:54 2 se via : Initial Calibration	-TO15 (0	CASS TO-	15/GC-MS)	
		RF : 0.000 Min. Rel. Ar RF Dev : 30% Max. Rel. Ar			R.T. Dev	0.33min
		Compound	AvgRF			rea% Dev(min)
1 2 3 4 5 6 7 8	ITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Bromochloromethane (IS1) Propene Dichlorodifluoromethane (CF Chloromethane 1,2-Dichloro-1,1,2,2-tetraf Vinyl Chloride	1.554 2.347 1.646 1.289 1.576 1.101 1.079 0.776 0.853 1.763 0.579 0.722 2.130 1.500 1.063 1.025	1.000 1.304 2.128 1.469 1.170 1.433 1.062 0.984 0.683 0.689 1.447 0.502 0.615 1.979 1.642 1.079 0.936 2.422 0.931 1.337 0.983 3.597 1.433 1.739 3.017 0.224 0.602 1.350 0.755 0.352 1.564 1.705 1.347 0.576	16.1 9.3 10.8 9.2 9.1 3.5 8.8 12.0 19.2 17.9 13.3 14.8 7.1 -9.5 -1.5 8.7 0.3 9.6 14.2 11.2 11.1 4.1 12.1 6.6 -12.0 -2.2 7.5 10.2 0.6 14.2 10.3 -3.8 9.3	$\begin{array}{cccccccc} 117 & -0.02 \\ 81 & 0.00 \\ 100 & 0.00 \\ 99 & -0.01 \\ 102 & -0.01 \\ 99 & -0.02 \\ 101 & -0.02 \\ 102 & -0.02 \\ 98 & -0.02 \\ 98 & -0.02 \\ 96 & -0.08 \\ 92 & -0.05 \\ 94 & -0.03 \\ 96 & -0.05 \end{array}$
37 38	IR T	1,4-Difluorobenzene (IS2) 1,1,1-Trichloroethane	1.000 0.433	1.000 0.399	0.0 7.9	118 -0.02 101 -0.01
2160	17131	2.M Mon Oct 01 10:16:14 2012			ŧ.	Page, 1

M 10/1/12 Page: 1

Data Path : J:\MS16\DATA\2012_10\01 Data File : 10011201.D Acq On : 1 Oct 2012 8:50 Operator : LH Sample : 25ng TO-15 CCV STD Misc : S25-09261201/S25-092112 ALS Vial : 2 Sample Multiplier: Quant Time: Oct 01 10:15:40 2012 Quant Method : J:\MS16\METHODS\R160 Quant Title : EPA TO-15 per SOP VC QLast Update : Mon Jul 16 09:59:54 Response via : Initial Calibration	05 1 71312.M PA-TO15 (C	ASS TO-1	.5/GC-MS)		
Min. RRF : 0.000 Min. Rel. A Max. RRF Dev : 30% Max. Rel. A			R.T. Dev	0.33	min
Compound	AvgRF				Dev(min)
40 T 1-Butanol 41 T Benzene 42 T Carbon Tetrachloride	0.159 0.244 1.081 0.353 0.407 0.778 0.271 0.362 0.318 0.212 1.136 0.114 0.262 0.414 0.240	0.143 0.236 0.884 0.352 0.360 0.722 0.236 0.347 0.293 0.193 0.975 0.107 0.237 0.428 0.227	3.3 18.2 0.3 11.5 7.2 12.9 4.1 7.9 9.0 14.2 6.1 9.5 -3.4	96 98 98 104 99 100 96 101 97 98 95 98 100 103 99	-0.02 -0.05 -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.01 -0.02
<pre>56 IR Chlorobenzene-d5 (IS3) 57 S Toluene-d8 (SS2) 58 T Toluene 59 T 2-Hexanone 60 T Dibromochloromethane 61 T 1,2-Dibromoethane 62 T n-Butyl Acetate 63 T n-Octane 64 T Tetrachloroethene 65 T Chlorobenzene 66 T Ethylbenzene 67 T m- & p-Xylenes 68 T Bromoform 69 T Styrene 70 T o-Xylene 71 T n-Nonane 72 T 1,1,2,2-Tetrachloroethane 73 S Bromofluorobenzene (SS3) 74 T Cumene 75 T alpha-Pinene 76 T n-Propylbenzene</pre>	1.000 2.309 2.621 1.255 0.720 0.713 1.477 0.538 0.921 1.749 2.964 2.340 0.706 1.761 2.460 1.313 1.147 1.191 3.298 1.541 3.803	1.000 2.277 2.207 1.107 0.698 0.652 1.368 0.450 0.808 1.546 2.576 2.032 0.716 1.584 2.121 1.092 1.028 1.262 2.767 1.338 3.326	0.0 1.4 15.8 11.8 3.1 8.6 7.4 16.4 12.3 11.6 13.1 13.2 -1.4 10.1 13.8 16.8 10.4 -6.0 16.1 13.2 12.5	119 118 97 95 100 97 94 99 99 99 99 101 97 98 94 98 127 98 97 99	$\begin{array}{c} 0.00 \\ -0.01 \\ -0.02 \\ -0.01 \\ -0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$

61 of 77

R16071312.M Mon Oct 01 10:16:14 2012

Page: 2

Data Path : J:\MS16\DATA\2012_10\01\ Data File : 10011201.D Acq On : 1 Oct 2012 8:50 Operator : LH Sample : 25ng TO-15 CCV STD Misc : S25-09261201/S25-09211205 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 01 10:15:40 2012 Quant Method : J:\MS16\METHODS\R16071312.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Jul 16 09:59:54 2012 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Ar	`ea%	Dev(min)
77 T	3-Ethyltoluene	2.995	2.709	9.5	100	0.00
78 T	4-Ethyltoluene	2.847	2.478	13.0	95	0.00
79 T	1,3,5-Trimethylbenzene	2.493	2.130	14.6	98	-0.01
80 T	alpha-Methylstyrene	1.311	1.192	9.1	96	-0.01
81 T	2-Ethyltoluene	3.154	2.694	14.6	98	0.00
82 T	1,2,4-Trimethylbenzene	2.595	2.257	13.0	100	-0.01
83 T	n-Decane	1.334	1.153	13.6	96	-0.01
84 T	Benzyl Chloride	1.934	1.991	-2.9	97	-0.01
85 T	1,3-Dichlorobenzene	1.557	1.403	9.9	99	-0.01
86 T	1,4-Dichlorobenzene	1.613	1.417	12.2	99	-0.01
87 T	sec-Butylbenzene	3.339	2.995	10.3	100	0.00
88 T	4-Isopropyltoluene (p-Cymen	3.300	3.006	8.9	100	0.00
89 T	1,2,3-Trimethylbenzene	2.539	2.303	9.3	100	0.00
90 T	1,2-Dichlorobenzene	1.503	1.359	9.6	99	-0.01
91 T	d-Limonene	0.915	0.828	9.5	97	-0.01
92 T	1,2-Dibromo-3-Chloropropane	0.559	0.549	1.8	98	0.00
93 T	n-Undecane	1.345	1.182	12.1	95	0.00
94 T	1,2,4-Trichlorobenzene	1.235	1.150	6.9	98	0.00
95 T	Naphthalene	3.967	3.554	10.4	98	0.00
96 T	n-Dodecane	1.274	1.215	4.6	95	0.00
97 T	Hexachlorobutadiene	0.837	0.758	9.4	101	0.00
98 T	Cyclohexanone	0.919	0.807	12.2	97	-0.01
99 T	tert-Butylbenzene	2.554	2.266	11.3	100	0.00
100 T	n-Butylbenzene	2.531	2.304	9.0	99	0.00

62 of 77

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

R16071312.M Mon Oct 01 10:16:14 2012

UN 10/1/12

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	CAS Desired ID: D1202028
Client Sample ID:		CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-007
Test Code:	EPA TO-15	Date Collected: 9/19/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/26/12
Analyst:	Lusine Hakobyan	Date Analyzed: 10/9/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.25 Liter(
Test Notes:		
Container ID:	AC00376	
	Initial Pressure (psig): -0.05 Final Press	sure (psig): 3.51

Canister Dilution Factor: 1.24

0.25 Liter(s)

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	μg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	3.4	2.5	2.0	1.4	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	2.5	ND	0.50	
74-87-3	Chloromethane	ND	0.99	ND	0.48	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	2.5	ND	0.35	
75-01-4	Vinyl Chloride	ND	0.50	ND	0.19	
106-99-0	1,3-Butadiene	ND	0.99	ND	0.45	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	25	25	13	13	
75-05-8	Acetonitrile	ND	2.5	ND	1.5	
107-02-8	Acrolein	ND	9.9	ND	4.3	
67-64-1	Acetone	18,000	25	7,600	10	Ε
75-69-4	Trichlorofluoromethane	1.2	0.50	0.22	0.088	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	25	ND	10	
107-13-1	Acrylonitrile	ND	2.5	ND	1.1	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	9.7	2.5	2.8	0.71	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	25	ND	8.0	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	25	ND	7.0	
78-93-3	2-Butanone (MEK)	ND	25	ND	8.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. E = Estimated; concentration exceeded calibration range.

.

RESULTS OF ANALYSIS

Page 2 of 3

Client: Client Sample ID:	GSI Environmental Inc. Indoor-1-PP	CAS Project ID: P1203938
-	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P1203938-007
Test Code:	EPA TO-15	Date Collected: 9/19/12
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: 9/26/12
Analyst:	Lusine Hakobyan	Date Analyzed: 10/9/12
Sampling Media: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 0.25 Liter(
Container ID:	AC00376	
	Initial Pressure (psig): -0.05 Final Pre	essure (psig): 3.51

Canister Dilution Factor: 1.24

0.25 Liter(s)

CAS #	Compound	Result	MRL	Result	MRL	Data
156-59-2	cis-1,2-Dichloroethene	μg/m³ ND	μg/m ³ 0.50	ppbV ND	ppbV 0.13	Qualifier
	· · · · · · · · · · · · · · · · · · ·					
141-78-6	Ethyl Acetate	ND	5.0	ND	1.4	
110-54-3	n-Hexane	10	2.5	2.9	0.70	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	2.5	ND	0.84	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.091	
71-43-2	Benzene	5.3	0.50	1.7	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.079	
110-82-7	Cyclohexane	27	5.0	7.8	1.4	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.074	
79-01-6	Trichloroethene	54	0.50	10	0.092	
123-91-1	1,4-Dioxane	ND	2.5	ND	0.69	
80-62-6	Methyl Methacrylate	ND	5.0	ND	1.2	
142-82-5	n-Heptane	1,800	2.5	440	0.61	Е
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	ND	0.55	
108-10-1	4-Methyl-2-pentanone	6.0	2.5	1.5	0.61	
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	ND	0.55	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.091	
108-88-3	Toluene	18	2.5	4.8	0.66	
591-78-6	2-Hexanone	ND	2.5	ND	0.61	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.058	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	2.5	ND	0.52	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

E = Estimated; concentration exceeded calibration range.

RESULTS OF ANALYSIS

Page 3 of 3

Client: GSI Environmental Inc. CAS Project ID: P1203938 Client Sample ID: Indoor-1-PP CAS Sample ID: P1203938-007 Client Project ID: ESTCP CSIA / 0SA Demonstration / 3585/3669 Test Code: EPA TO-15 Date Collected: 9/19/12 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Instrument ID: Date Received: 9/26/12 Analyst: Lusine Hakobyan Date Analyzed: 10/9/12 6.0 L Summa Canister Volume(s) Analyzed: Sampling Media: Test Notes: Container ID: AC00376

Initial Pressure (psig): -0.05 Final Pressure (psig): 3.51

Canister Dilution Factor: 1.24

0.25 Liter(s)

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	2.5	ND	0.53	
127-18-4	Tetrachloroethene	0.57	0.50	0.084	0.073	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	6.0	2.5	1.4	0.57	
179601-23-1	m,p-Xylenes	21	2.5	4.9	0.57	
75-25-2	Bromoform	ND	2.5	ND	0.24	
100-42-5	Styrene	ND	2.5	ND	0.58	
95-47-6	o-Xylene	8.2	2.5	1.9	0.57	
111-84-2	n-Nonane	3.7	2.5	0.71	0.47	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.072	
98-82-8	Cumene	ND	2.5	ND	0.50	
80-56-8	alpha-Pinene	ND	2.5	ND	0.45	
103-65-1	n-Propylbenzene	ND	2.5	ND	0.50	
622-96-8	4-Ethyltoluene	3.3	2.5	0.67	0.50	
108-67-8	1,3,5-Trimethylbenzene	3.8	2.5	0.77	0.50	
95-63-6	1,2,4-Trimethylbenzene	13	2.5	2.7	0.50	
100-44-7	Benzyl Chloride	ND	2.5	ND	0.48	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	19	2.5	3.5	0.45	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	ND	0.26	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	ND	0.33	
91-20-3	Naphthalene	2.7	2.5	0.51	0.47	
87-68-3	Hexachlorobutadiene	ND	2.5	ND	0.23	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P121009-MB
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/9/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.20	ND	0.097	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
106-99-0	1,3-Butadiene	ND	0.20	ND	0.090	
74-83-9	Bromomethane	ND	0.10	ND	0.026	
75-00-3	Chloroethane	ND	0.10	ND	0.038	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.10	ND	0.018	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.10	ND	0.025	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.10	ND	0.032	
76-13-1	Trichlorotrifluoroethane	ND	0.10	ND	0.013	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.10	ND	0.025	
75-34-3	1,1-Dichloroethane	ND	0.10	ND	0.025	
1634-04-4	Methyl tert-Butyl Ether	ND	0.10	ND	0.028	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

. . . .

RESULTS OF ANALYSIS

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P121009-MB
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/9/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.10	ND	0.025	Quantier
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.10	ND	0.020	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.10	ND	0.025	
71-55-6	1,1,1-Trichloroethane	ND	0.10	ND	0.018	
71-43-2	Benzene	ND	0.10	ND	0.031	
56-23-5	Carbon Tetrachloride	ND	0.10	ND	0.016	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.10	ND	0.022	
75-27-4	Bromodichloromethane	ND	0.10	ND	0.015	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.10	ND	0.018	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.10	ND	0.012	
106-93-4	1,2-Dibromoethane	ND	0.10	ND	0.013	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Sampling Media:

Test Notes:

6.0 L Summa Canister

Volume(s) Analyzed:

RESULTS OF ANALYSIS

Page 3 of 3

Client:GSI Environmental Inc.CAS Project ID: P1203938Client Sample ID:Method BlankCAS Sample ID: P121009-MBClient Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669Date Collected: NATest Code:EPA TO-15Date Collected: NAInstrument ID:Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16Date Received: NAAnalyst:Lusine HakobyanDate Analyzed: 10/9/12

Canister Dilution Factor: 1.00

1.00 Liter(s)

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.10	ND	0.015	
108-90-7	Chlorobenzene	ND	0.10	ND	0.022	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	0.50	ND	0.12	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.10	ND	0.015	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.10	ND	0.017	
106-46-7	1,4-Dichlorobenzene	ND	0.10	ND	0.017	
95-50-1	1,2-Dichlorobenzene	ND	0.10	ND	0.017	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669

CAS Project ID: P1203938

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date(s) Collected: 9/18 - 9/19/12
Analyst:	Lusine Hakobyan	Date(s) Received: 9/25 - 9/26/12
Sampling Media:	6.0 L Summa Canister(s)	Date(s) Analyzed: 9/28 - 10/9/12
Test Notes:		

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	CAS Sample ID	Percent	Percent	Percent	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P120928-MB	103	96	102	70-130	
Method Blank	P121001-MB	105	101	104	70-130	
Method Blank	P121009-MB	111	101	107	70-130	
Lab Control Sample	P120928-LCS	109	105	101	70-130	
Lab Control Sample	P121001-LCS	102	90	95	70-130	
Lab Control Sample	P121009-LCS	102	91	102	70-130	
Indoor-C1	P1203938-001	102	97	111	70-130	
Outdoor-C1	P1203938-002	107	95	106	70-130	
SS-1C	P1203938-003	97	95	104	70-130	
SS-2C	P1203938-004	98	96	103	70-130	
SS-2C	P1203938-004DUP	106	95	105	70-130	
SS-3C	P1203938-005	105	96	103	70-130	
Indoor-1-BL	P1203938-006	104	98	100	70-130	
Indoor-1-PP	P1203938-007	110	93	99	70-130	
Indoor-1-NP	P1203938-008	111	97	104	70-130	
Dup 1	P1203938-009	99	99	104	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

-	GSI Environmental Inc. Lab Control Sample ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Project ID: P1203938 CAS Sample ID: P121009-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/09/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
115-07-1	Propene	204	173	85	59-137	
75-71-8	Dichlorodifluoromethane (CFC 12)	202	172	85	63-115	
74-87-3	Chloromethane	196	153	78	59-124	
76-14-2	1,2-Dichloro-1,1,2,2-			84	65-113	
70-14-2	tetrafluoroethane (CFC 114)	206	173	04	05-115	
75-01-4	Vinyl Chloride	200	161	81	59-121	
106-99-0	1,3-Butadiene	210	182	87	60-138	
74-83-9	Bromomethane	200	166	83	69-129	
75-00-3	Chloroethane	202	158	78	60-120	
64-17-5	Ethanol	958	725	76	58-121	
75-05-8	Acetonitrile	202	167	83	64-129	
107-02-8	Acrolein	204	158	77	54-127	
67-64-1	Acetone	1,040	805	77	59-114	
75-69-4	Trichlorofluoromethane	210	173	82	66-108	
67-63-0	2-Propanol (Isopropyl Alcohol)	396	307	78	50-113	
107-13-1	Acrylonitrile	206	206	100	72-135	
75-35-4	1,1-Dichloroethene	218	181	83	70-117	
75-09-2	Methylene Chloride	212	180	85	61-108	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	214	170	79	70-131	
76-13-1	Trichlorotrifluoroethane	212	178	84	70-113	
75-15-0	Carbon Disulfide	208	160	77	65-112	
156-60-5	trans-1,2-Dichloroethene	202	184	91	71-119	
75-34-3	1,1-Dichloroethane	206	170	83	71-116	
1634-04-4	Methyl tert-Butyl Ether	204	180	88	67-116	
108-05-4	Vinyl Acetate	988	1010	102	59-142	
78-93-3	2-Butanone (MEK)	212	202	95	68-125	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

.

LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Lab Control Sample	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P121009-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/09/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

CAS #	Compound	Spike Amount µg/m³	Result µg/m³	% Recovery	CAS Acceptance Limits	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	214	191	89	69-119	
141-78-6	Ethyl Acetate	412	384	93	63-130	
110-54-3	n-Hexane	206	167	81	57-120	
67-66-3	Chloroform	222	189	85	69-111	
109-99-9	Tetrahydrofuran (THF)	208	179	86	57-123	
107-06-2	1,2-Dichloroethane	208	191	92	70-118	
71-55-6	1,1,1-Trichloroethane	204	195	96	73-119	
71-43-2	Benzene	208	170	82	66-121	
56-23-5	Carbon Tetrachloride	212	213	100	74-129	
110-82-7	Cyclohexane	402	341	85	70-113	
78-87-5	1,2-Dichloropropane	204	173	85	69-118	
75-27-4	Bromodichloromethane	204	201	99	75-124	
79-01-6	Trichloroethene	198	197	99	73-115	
123-91-1	1,4-Dioxane	206	191	93	71-123	
80-62-6	Methyl Methacrylate	414	380	92	72-127	
142-82-5	n-Heptane	202	175	87	68-120	
10061-01-5	cis-1,3-Dichloropropene	196	190	97	71-130	
108-10-1	4-Methyl-2-pentanone	210	188	90	69-130	
10061-02-6	trans-1,3-Dichloropropene	218	228	105	76-133	
79-00-5	1,1,2-Trichloroethane	202	184	91	73-120	
108-88-3	Toluene	208	160	77	67-111	
591-78-6	2-Hexanone	228	186	82	70-123	
124-48-1	Dibromochloromethane	216	193	89	75-129	
106-93-4	1,2-Dibromoethane	208	173	83	73-122	
123-86-4	n-Butyl Acetate	228	191	84	68-132	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client:	GSI Environmental Inc.	
Client Sample ID:	Lab Control Sample	CAS Project ID: P1203938
Client Project ID:	ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Sample ID: P121009-LCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 10/09/12
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
111-65-9	n-Octane	206	156	76	68-116	
127-18-4	Tetrachloroethene	190	154	81	67-119	
108-90-7	Chlorobenzene	208	177	85	69-113	
100-41-4	Ethylbenzene	206	171	83	71-117	
179601-23-1	m,p-Xylenes	412	337	82	70-116	
75-25-2	Bromoform	216	198	92	69-127	
100-42-5	Styrene	208	173	83	71-125	
95-47-6	o-Xylene	200	160	80	70-116	
111-84-2	n-Nonane	202	152	75	68-116	
79-34-5	1,1,2,2-Tetrachloroethane	198	155	78	70-119	
98-82-8	Cumene	196	159	81	70-116	
80-56-8	alpha-Pinene	192	158	82	71-119	
103-65-1	n-Propylbenzene	198	163	82	71-119	
622-96-8	4-Ethyltoluene	204	170	83	71-119	
108-67-8	1,3,5-Trimethylbenzene	208	170	82	71-121	
95-63-6	1,2,4-Trimethylbenzene	200	169	85	73-127	
100-44-7	Benzyl Chloride	206	190	92	65-137	
541-73-1	1,3-Dichlorobenzene	206	176	85	68-123	
106-46-7	1,4-Dichlorobenzene	212	172	81	65-120	
95-50-1	1,2-Dichlorobenzene	204	174	85	67-121	
5989-27-5	d-Limonene	206	182	88	67-130	
96-12-8	1,2-Dibromo-3-chloropropane	202	177	88	72-133	
120-82-1	1,2,4-Trichlorobenzene	200	172	86	62-133	
91-20-3	Naphthalene	178	146	82	56-138	
87-68-3	Hexachlorobutadiene	208	174	84	60-128	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

.

RESULTS OF ANALYSIS

.

. . .

Page 1 of 1

Client: Client Project ID:	GSI Environmental Inc. ESTCP CSIA / 0SA Demonstration / 3585/3669	CAS Project ID	: P1203938
	Method Blank Summary		
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16 Lusine Hakobyan 6.0 L Summa Canister(s)	Lab File ID Date Analyzed Time Analyzed	
Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample Indoor-1-PP	P121009-LCS P1203938-007	10091207.D 10091227.D	12:18 23:35

RESULTS OF ANALYSIS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP CSIA / 0SA Demonstration / 3585/3669

CAS Project ID: P1203938

Internal Standard Area and RT Summary

Test Code:	EPA TO-15	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16	Lab File ID: 10091201.D
Analyst:	Lusine Hakobyan	Date Analyzed: 10/9/12
Sampling Media:	6.0 L Summa Canister(s)	Time Analyzed: 08:35
Test Notes:		

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	157971	11.31	619977	13.51	294172	17.46
	Upper Limit	221159	11.64	867968	13.84	411841	17.79
	Lower Limit	94783	10.98	371986	13.18	176503	17.13
	Client Sample ID						
01	Method Blank	146180	11.29	608230	13.51	277467	17.46
02	Lab Control Sample	162919	11.31	618051	13.52	298465	17.46
03	Indoor-1-PP	132869	11.33	538170	13.53	264233	17.46
04							
05							
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I. I = Internal standard not within the specified limits.

	Evaluate Continu:	ing Calib	ration Rer	ort	
Data Acq O Opera Sampl Misc ALS V	Evaluate Continuing Calibration Report Data Path : J:\MS16\DATA\2012_10\09\ Data File : 10091201.D Acq On : 9 Oct 2012 8:35 Operator : LH Sample : 25ng TO-15 CCV STD Misc : S25-09261201/S25-09211205 ALS Vial : 2 Sample Multiplier: 1				
Quant Quant QLast Respo	Time: Oct 09 11:42:38 2012 Method : J:\MS16\METHODS\R160 Title : EPA TO-15 per SOP VO Update : Mon Jul 16 09:59:54 nse via : Initial Calibration	DA-TO15 (2012			
Min. Max. 1	RRF : 0.000 Min. Rel. A RRF Dev : 30% Max. Rel. A	area : 5 Area : 20	0% Max. R 0%	.T. Dev	0.33min
	Compound	AvgRF	CCRF	%Dev Ar	ea% Dev(min)
3 4 T T T T T T T T T T T T T T T T T T	Chloromethane 1,2-Dichloro-1,1,2,2-tetraf Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane 2-Propanol (Isopropanol) Acrylonitrile 1,1-Dichloroethene 2-Methyl-2-Propanol (tert-B Methylene Chloride 3-Chloro-1-propene (Allyl C Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 2-Butanone (MEK) cis-1,2-Dichloroethene Diisopropyl Ether Ethyl Acetate n-Hexane Chloroform 1,2-Dichloroethane-d4(SS1) Tetrahydrofuran (THF) Ethyl tert-Butyl Ether 1,2-Dichloroethane	1.554 2.347 1.646 1.289 1.576 1.101 1.079 0.776 0.853 1.763 0.579 0.722 2.130 1.500 1.063 1.025 2.429 1.030 1.559 1.107 4.044 1.494 1.979 3.229 0.200 0.589 1.459 0.841 0.354 1.822 1.900 1.298 0.635 1.299 1.442	1.258 2.042 1.313 1.098 1.299 0.965 0.905 0.637 0.663 1.394 0.466 0.587 1.973 1.384 1.023 0.858 2.226 0.871 1.258 0.926 3.310 1.352 1.649 2.896 0.212 0.574 1.289 0.712 0.327 1.463 1.668 1.393 0.636 1.146 1.385	19.0 13.0 20.2 14.8 17.6 12.4 16.1 17.9 22.3 20.9 19.5 18.7 7.4 7.7 3.8 16.3 8.4 15.4 19.3 16.4 19.3 16.4 19.3 16.4 19.3 16.4 19.5 16.7 10.3 -6.0 2.5 11.7 15.3 7.6 19.7 12.2	$\begin{array}{cccc} 71 & 0.00 \\ 87 & 0.00 \\ 80 & -0.01 \\ 87 & -0.01 \\ 81 & -0.01 \\ 83 & -0.01 \\ 85 & -0.02 \\ 83 & -0.01 \\ 84 & -0.07 \\ 80 & -0.05 \\ 80 & -0.03 \end{array}$
37 IR 38 T	1,4-Difluorobenzene (IS2) 1,1,1-Trichloroethane	1.000 0.433	1.000 0.398	0.0 8.1	104 -0.02 89 -0.01
R1607131	2.M Tue Oct 09 11:43:00 2012	75 of 77	Ul	10/9/12	Added Page : 1

	Evaluate Continui	ng Calib	ration Re	eport	
Data Path : J:\MS16\DATA\2012_10\09\ Data File : 10091201.D Acq On : 9 Oct 2012 8:35 Operator : LH Sample : 25ng TO-15 CCV STD Misc : S25-09261201/S25-09211205 ALS Vial : 2 Sample Multiplier: 1					
Quant Quant QLast	Time: Oct 09 11:42:38 2012 Method : J:\MS16\METHODS\R160 Title : EPA TO-15 per SOP VO Update : Mon Jul 16 09:59:54 nse via : Initial Calibration	A-TO15 (CASS TO-1	L5/GC-MS)	
Min. Max.	RRF : 0.000 Min. Rel. A RRF Dev : 30% Max. Rel. A	rea : 5 rea : 20	0% Max. 0%	R.T. Dev 0.	33min
	Compound	AvgRF	CCRF	%Dev Area	% Dev(min)
39 T 40 T 41 T 42 T 43 T 43 T 44 T 45 T 46 T 46 T 47 T 48 T 49 T 50 T 51 T 52 T 53 T 53 T 55 T	Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane 2,2,4-Trimethylpentane (Iso Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene 1,1,2-Trichloroethane	0.159 0.244 1.081 0.353 0.407 0.778 0.271 0.362 0.318 0.212 1.136 0.114 0.262 0.414 0.240 0.365 0.274	0.136 0.228 0.835 0.351 0.341 0.720 0.235 0.355 0.301 0.192 0.957 0.102 0.216 0.407 0.216 0.372 0.236	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
56 IR 57 S 58 T 60 T 62 T 64 T 65 T 667 T 72 S 74 S 76 76	Chlorobenzene-d5 (IS3) Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane n-Butyl Acetate n-Octane Tetrachloroethene Chlorobenzene Ethylbenzene m- & p-Xylenes Bromoform Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene	1.000 2.309 2.621 1.255 0.720 0.713 1.477 0.538 0.921 1.749 2.964 2.340 0.706 1.761 2.460 1.313 1.147 1.191 3.298 1.541 3.803	1.000 2.145 2.046 1.046 0.662 0.431 0.785 1.466 2.373 1.907 0.673 1.535 2.083 1.048 0.978 1.235 2.715 1.214 3.013	8.1 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

R16071312.M Tue Oct 09 11:43:00 2012

Data Path : J:\MS16\DATA\2012_10\09\ Data File : 10091201.D Acq On : 9 Oct 2012 8:35 Operator : LH Sample : 25ng TO-15 CCV STD Misc : S25-09261201/S25-09211205 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 09 11:42:38 2012 Quant Method : J:\MS16\METHODS\R16071312.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Jul 16 09:59:54 2012 Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Ar	`ea%	Dev(min)
77 T	3-Ethyltoluene	2.995	2.464	17.7	84	0.00
78 T	4-Ethyltoluene	2.847	2.284	19.8	82	0.00
79 T	1,3,5-Trimethylbenzene	2.493	1.979	20.6	84	-0.01
80 T	alpha-Methylstyrene	1.311	1.063	18.9	79	-0.01
81 T	2-Ethyltoluene	3.154	2.473	21.6	84	0.00
82 T	1,2,4-Trimethylbenzene	2.595	2.077	20.0	86	0.00
83 T	n-Decane	1.334	1.035	22.4	80	-0.01
84 T	Benzyl Chloride	1.934	1.828	5.5	83	-0.01
85 T	1,3-Dichlorobenzene	1.557	1.277	18.0	84	-0.01
86 T	1,4-Dichlorobenzene	1.613	1.299	19.5	84	-0.01
87 T	sec-Butylbenzene	3.339	2.729	18.3	84	0.00
88 T	4-Isopropyltoluene (p-Cymen	3.300	2.764	16.2	85	0.00
89 T	1,2,3-Trimethylbenzene	2.539	2.114	16.7	85	0.00
90 T	1,2-Dichlorobenzene	1.503	1.251	16.8	84	-0.01
91 T	d-Limonene	0.915	0.736	19.6	80	-0.01
92 T	1,2-Dibromo-3-Chloropropane	0.559	0.507	9.3	84	0.00
93 T	n-Undecane	1.345	1.080	19.7	80	0.00
94 T	1,2,4-Trichlorobenzene	1.235	1.120	9.3	88	0.00
95 T	Naphthalene	3.967	3.418	13.8	88	0.00
96 T	n-Dodecane	1.274	1.145	10.1	83	0.00
97 T	Hexachlorobutadiene	0.837	0.714	14.7	88	0.00
98 T	Cyclohexanone	0.919	0.747	18.7	83	-0.01
99 T	tert-Butylbenzene	2.554	2.077	18.7	85	0.00
100 T	n-Butylbenzene	2.531	2.129	15.9	85	0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

R16071312.M Tue Oct 09 11:43:00 2012

77 of 77

ANALYTICAL REPORT

Lab Number:	L1216912
Client:	GSI Environmental Inc.
	2211 Norfolk Street
	Suite 1000
	Houston, TX 77098
ATTN:	Lila Beckley
Phone:	(713) 522-6300
Project Name:	G-3669
Project Number:	G-3669
Report Date:	09/27/12

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), PA (68-02089), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), DOD (L2217.01), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:	G-3669
Project Number:	G-3669

L1216912-01

MW-16

Sample Location

SELFRIDGE BLD 1533

Collection Date/Time

09/18/12 15:30

Project Name: G-3669 Project Number: G-3669

 Lab Number:
 L1216912

 Report Date:
 09/27/12

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 30 days from the date the project is completed. After 30 days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:G-3669Project Number:G-3669

 Lab Number:
 L1216912

 Report Date:
 09/27/12

Case Narrative (continued)

Sample Receipt

Headspace was noted in the sample containers submitted for Volatile Organics. The analysis was performed at the client's request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cynthia Millia Cynthia McQueen

Authorized Signature:

Title: Technical Director/Representative

Date: 09/27/12

ORGANICS

VOLATILES

			Serial_No:	09271214:23
Project Name:	G-3669		Lab Number:	L1216912
Project Number:	G-3669		Report Date:	09/27/12
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1216912-01 D MW-16 SELFRIDGE BLD 1533 Water 1,8260C 09/26/12 20:15 PD	3	Date Collected: Date Received: Field Prep:	09/18/12 15:30 09/20/12 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	120		40
1,1-Dichloroethane	ND		ug/l	30		40
Chloroform	ND		ug/l	30		40
Carbon tetrachloride	ND		ug/l	20		40
1,2-Dichloropropane	ND		ug/l	70		40
Dibromochloromethane	ND		ug/l	20		40
1,1,2-Trichloroethane	ND		ug/l	30		40
Tetrachloroethene	ND		ug/l	20		40
Chlorobenzene	ND		ug/l	20		40
Trichlorofluoromethane	ND		ug/l	100		40
1,2-Dichloroethane	ND		ug/l	20		40
1,1,1-Trichloroethane	ND		ug/l	20		40
Bromodichloromethane	ND		ug/l	20		40
trans-1,3-Dichloropropene	ND		ug/l	20		40
cis-1,3-Dichloropropene	ND		ug/l	20		40
1,1-Dichloropropene	ND		ug/l	100		40
Bromoform	ND		ug/l	80		40
1,1,2,2-Tetrachloroethane	ND		ug/l	20		40
Benzene	360		ug/l	20		40
Toluene	41		ug/l	30		40
Ethylbenzene	1400		ug/l	20		40
Chloromethane	ND		ug/l	100		40
Bromomethane	ND		ug/l	40		40
Vinyl chloride	ND		ug/l	40		40
Chloroethane	ND		ug/l	40		40
1,1-Dichloroethene	ND		ug/l	20		40
trans-1,2-Dichloroethene	ND		ug/l	30		40
Trichloroethene	ND		ug/l	20		40
1,2-Dichlorobenzene	ND		ug/l	100		40
1,3-Dichlorobenzene	ND		ug/l	100		40
1,4-Dichlorobenzene	ND		ug/l	100		40

					Serial_N	o:09271	214:23
Project Name:	G-3669			La	ab Number:	L1:	216912
Project Number:	G-3669			Re	eport Date:	09	/27/12
-		SAMPLE F	RESULTS				
Lab ID:	L1216912-01	D		Date	e Collected:	09/1	8/12 15:30
Client ID:	MW-16			Date	e Received:	09/2	20/12
Sample Location:	SELFRIDGE BL	D 1533		Field	d Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborou	gh Lab					
Methyl tert butyl ether		ND		ug/l	40		40
p/m-Xylene		4800		ug/l	40		40
o-Xylene		ND		ug/l	40		40
cis-1,2-Dichloroethene		ND		ug/l	20		40
Dibromomethane		ND		ug/l	200		40
1,4-Dichlorobutane		ND		ug/l	200		40
1,2,3-Trichloropropane		ND		ug/l	200		40
Styrene		ND		ug/l	40		40
Dichlorodifluoromethan	e	ND		ug/l	200		40
Acetone		ND		ug/l	200		40
Carbon disulfide		ND		ug/l	200		40
2-Butanone		ND		ug/l	200		40
Vinyl acetate		ND		ug/l	200		40
4-Methyl-2-pentanone		ND		ug/l	200		40
2-Hexanone		ND		ug/l	200		40
Ethyl methacrylate		ND		ug/l	200		40
Acrylonitrile		ND		ug/l	200		40
Bromochloromethane		ND		ug/l	100		40
Tetrahydrofuran		ND		ug/l	200		40
2,2-Dichloropropane		ND		ug/l	100		40
1,2-Dibromoethane		ND		ug/l	80		40
1,3-Dichloropropane		ND		ug/l	100		40
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	20		40
Bromobenzene		ND		ug/l	100		40
n-Butylbenzene		32		ug/l	20		40
sec-Butylbenzene		ND		ug/l	20		40
tert-Butylbenzene		ND		ug/l	100		40
o-Chlorotoluene		ND		ug/l	100		40
p-Chlorotoluene		ND		ug/l	100		40
1,2-Dibromo-3-chloropr	opane	ND		ug/l	100		40
Hexachlorobutadiene		ND		ug/l	20		40
Isopropylbenzene		68		ug/l	20		40
p-Isopropyltoluene		ND		ug/l	20		40
Naphthalene		680		ug/l	100		40
n-Propylbenzene		210		ug/l	20		40
1,2,3-Trichlorobenzene		ND		ug/l	100		40
1,2,4-Trichlorobenzene		ND		ug/l	100		40
1,3,5-Trimethylbenzene		570		ug/l	100		40
1,2,4-Trimethylbenzene	9	1800		ug/l	100		40

				Serial_No:09271214:23			
Project Name:	G-3669			Lab	Number:	L1	216912
Project Number:	G-3669			Rej	oort Date:	09	/27/12
		SAMPLE R	ESULTS				
Lab ID:	L1216912-01	D		Date	Collected:	09/ [,]	18/12 15:30
Client ID:	MW-16			Date	Received:	09/2	20/12
Sample Location:	SELFRIDGE BLD	1533		Field	Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboroug	h Lab					
trans-1,4-Dichloro-2-but	ene	ND		ug/l	100		40
Ethyl ether		ND		ug/l	100		40
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria	•		

Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	97		70-130	

Project Name: G-3669 Project Number: G-3669

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/26/12 11:36Analyst:PD

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by GC/MS	- Westborough	Lab for sample(s):	01	Batch:	WG563554-3	
Methylene chloride	ND		ug/l		3.0	
1,1-Dichloroethane	ND		ug/l		0.75	
Chloroform	ND		ug/l		0.75	
Carbon tetrachloride	ND		ug/l		0.50	
1,2-Dichloropropane	ND		ug/l		1.8	
Dibromochloromethane	ND		ug/l		0.50	
1,1,2-Trichloroethane	ND		ug/l		0.75	
Tetrachloroethene	ND		ug/l		0.50	
Chlorobenzene	ND		ug/l		0.50	
Trichlorofluoromethane	ND		ug/l		2.5	
1,2-Dichloroethane	ND		ug/l		0.50	
1,1,1-Trichloroethane	ND		ug/l		0.50	
Bromodichloromethane	ND		ug/l		0.50	
trans-1,3-Dichloropropene	ND		ug/l		0.50	
cis-1,3-Dichloropropene	ND		ug/l		0.50	
1,1-Dichloropropene	ND		ug/l		2.5	
Bromoform	ND		ug/l		2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l		0.50	
Benzene	ND		ug/l		0.50	
Toluene	ND		ug/l		0.75	
Ethylbenzene	ND		ug/l		0.50	
Chloromethane	ND		ug/l		2.5	
Bromomethane	ND		ug/l		1.0	
Vinyl chloride	ND		ug/l		1.0	
Chloroethane	ND		ug/l		1.0	
1,1-Dichloroethene	ND		ug/l		0.50	
trans-1,2-Dichloroethene	ND		ug/l		0.75	
Trichloroethene	ND		ug/l		0.50	
1,2-Dichlorobenzene	ND		ug/l		2.5	
1,3-Dichlorobenzene	ND		ug/l		2.5	
1,4-Dichlorobenzene	ND		ug/l		2.5	

Project Name: G-3669 Project Number: G-3669

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/26/12 11:36Analyst:PD

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by GC/MS	- Westborough I	Lab for sample(s):	01	Batch:	WG563554-3	
Methyl tert butyl ether	ND		ug/l		1.0	
p/m-Xylene	ND		ug/l		1.0	
o-Xylene	ND		ug/l		1.0	
cis-1,2-Dichloroethene	ND		ug/l		0.50	
Dibromomethane	ND		ug/l		5.0	
1,4-Dichlorobutane	ND		ug/l		5.0	
1,2,3-Trichloropropane	ND		ug/l		5.0	
Styrene	ND		ug/l		1.0	
Dichlorodifluoromethane	ND		ug/l		5.0	
Acetone	ND		ug/l		5.0	
Carbon disulfide	ND		ug/l		5.0	
2-Butanone	ND		ug/l		5.0	
Vinyl acetate	ND		ug/l		5.0	
4-Methyl-2-pentanone	ND		ug/l		5.0	
2-Hexanone	ND		ug/l		5.0	
Ethyl methacrylate	ND		ug/l		5.0	
Acrylonitrile	ND		ug/l		5.0	
Bromochloromethane	ND		ug/l		2.5	
Tetrahydrofuran	ND		ug/l		5.0	
2,2-Dichloropropane	ND		ug/l		2.5	
1,2-Dibromoethane	ND		ug/l		2.0	
1,3-Dichloropropane	ND		ug/l		2.5	
1,1,1,2-Tetrachloroethane	ND		ug/l		0.50	
Bromobenzene	ND		ug/l		2.5	
n-Butylbenzene	ND		ug/l		0.50	
sec-Butylbenzene	ND		ug/l		0.50	
tert-Butylbenzene	ND		ug/l		2.5	
o-Chlorotoluene	ND		ug/l		2.5	
p-Chlorotoluene	ND		ug/l		2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l		2.5	
Hexachlorobutadiene	ND		ug/l		0.50	

Project Name: G-3669 Project Number: G-3669

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/26/12 11:36Analyst:PD

Parameter	Result	Qualifier	Units		RL	MDL
/olatile Organics by GC/MS ·	- Westborough Lab	o for sample(s):	01	Batch:	WG563554-3	
Isopropylbenzene	ND		ug/l		0.50	
p-Isopropyltoluene	ND		ug/l		0.50	
Naphthalene	ND		ug/l		2.5	
n-Propylbenzene	ND		ug/l		0.50	
1,2,3-Trichlorobenzene	ND		ug/l		2.5	
1,2,4-Trichlorobenzene	ND		ug/l		2.5	
1,3,5-Trimethylbenzene	ND		ug/l		2.5	
1,2,4-Trimethylbenzene	ND		ug/l		2.5	
trans-1,4-Dichloro-2-butene	ND		ug/l		2.5	
Ethyl ether	ND		ug/l		2.5	

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	99		70-130				
Toluene-d8	101		70-130				
4-Bromofluorobenzene	105		70-130				
Dibromofluoromethane	97		70-130				

Batch Quality Control

Project Name:G-3669Project Number:G-3669

Lab Number: L1216912 Report Date: 09/27/12

LCS LCSD %Recovery %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 WG563554-2 Batch: WG563554-1 Methylene chloride 105 70-130 20 100 5 1,1-Dichloroethane 108 102 70-130 6 20 Chloroform 106 100 70-130 20 6 Carbon tetrachloride 63-132 92 88 4 20 1,2-Dichloropropane 107 103 70-130 20 4 Dibromochloromethane 63-130 104 100 20 4 1,1,2-Trichloroethane 108 104 70-130 4 20 Tetrachloroethene 110 102 70-130 20 8 Chlorobenzene 75-130 25 106 102 4 Trichlorofluoromethane 109 102 62-150 20 7 104 100 70-130 20 1.2-Dichloroethane 4 1,1,1-Trichloroethane 103 99 67-130 4 20 Bromodichloromethane 103 100 67-130 20 3 trans-1,3-Dichloropropene 70-130 20 100 98 2 cis-1,3-Dichloropropene 70-130 20 102 99 3 1,1-Dichloropropene 70-130 20 107 100 7 Bromoform 99 95 54-136 4 20 1,1,2,2-Tetrachloroethane 107 101 67-130 6 20 70-130 25 Benzene 108 103 5 Toluene 70-130 25 109 104 5 Ethylbenzene 108 102 70-130 20 6

Batch Quality Control

Project Name: G-3669 Project Number: G-3669 Lab Number: L1216912 Report Date: 09/27/12

LCS LCSD %Recovery %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG563554-1 WG563554-2 Chloromethane 115 64-130 10 20 104 Bromomethane 104 104 39-139 0 20 Vinyl chloride 114 102 55-140 20 11 55-138 Chloroethane 111 104 7 20 1,1-Dichloroethene 109 100 61-145 9 25 70-130 20 trans-1.2-Dichloroethene 105 98 7 Trichloroethene 107 100 70-130 7 25 1.2-Dichlorobenzene 106 102 70-130 20 4 70-130 20 1.3-Dichlorobenzene 107 100 7 1,4-Dichlorobenzene 106 99 70-130 20 7 Methyl tert butyl ether 90 91 63-130 20 1 p/m-Xylene 108 102 70-130 6 20 o-Xylene 110 102 70-130 20 8 cis-1.2-Dichloroethene 70-130 20 109 103 6 Dibromomethane 70-130 20 102 98 4 1.4-Dichlorobutane 70-130 20 106 100 6 1,2,3-Trichloropropane 106 100 64-130 6 20 Styrene 108 101 70-130 7 20 Dichlorodifluoromethane 36-147 20 106 99 7 58-148 20 Acetone 111 93 18 Carbon disulfide 105 94 51-130 11 20

Batch Quality Control

Project Name: G-3669 Project Number: G-3669 Lab Number: L1216912 Report Date: 09/27/12

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD Limits** Qual Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG563554-1 WG563554-2 2-Butanone 107 107 63-138 0 20 Vinyl acetate 90 97 70-130 7 20 4-Methyl-2-pentanone 96 100 59-130 20 4 109 106 57-130 2-Hexanone 3 20 Ethyl methacrylate 98 102 70-130 4 20 Acrylonitrile 70-130 20 102 99 3 Bromochloromethane 106 103 70-130 3 20 Tetrahydrofuran 96 94 58-130 2 20 2,2-Dichloropropane 92 63-133 20 95 3 1,2-Dibromoethane 104 102 70-130 20 2 106 103 70-130 20 1,3-Dichloropropane 3 1,1,1,2-Tetrachloroethane 109 103 64-130 6 20 70-130 Bromobenzene 109 101 20 8 n-Butylbenzene 53-136 20 94 104 10 sec-Butylbenzene 70-130 20 111 103 7 tert-Butylbenzene 111 70-130 20 103 7 o-Chlorotoluene 111 103 70-130 7 20 70-130 p-Chlorotoluene 106 97 9 20 1,2-Dibromo-3-chloropropane 94 41-144 20 93 1 Hexachlorobutadiene 63-130 20 111 105 6 Isopropylbenzene 115 103 70-130 11 20

Batch Quality Control

Project Name:G-3669Project Number:G-3669

 Lab Number:
 L1216912

 Report Date:
 09/27/12

LCSD LCS %Recovery %Recovery %Recovery Limits Parameter Qual Qual RPD Qual **RPD** Limits Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG563554-1 WG563554-2 p-Isopropyltoluene 104 103 70-130 20 1 Naphthalene 70-130 34 Q 82 116 20 n-Propylbenzene 110 102 69-130 8 20 1,2,3-Trichlorobenzene 91 110 70-130 19 20 1,2,4-Trichlorobenzene 94 109 70-130 15 20 1,3,5-Trimethylbenzene 104 105 64-130 20 1 1,2,4-Trimethylbenzene 70-130 20 101 105 4 trans-1,4-Dichloro-2-butene 99 96 70-130 3 20 Ethyl ether 104 102 59-134 2 20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		99		70-130	
Toluene-d8	101		100		70-130	
4-Bromofluorobenzene	103		98		70-130	
Dibromofluoromethane	100		100		70-130	

				Serial_No:09271214:23
Project Name:	G-3669			Lab Number: L1216912
Project Number:	G-3669			Report Date: 09/27/12
		Sample Receipt a	nd Container Informat	ion
Were project spec	cific reporting limits spe	ecified?	YES	
Reagent H2O Pr	eserved Vials Frozen	on: NA		
Cooler Informati	on Custody Seal			
Cooler				
A	Absent			
Container Inform	nation		Temp	
Container ID C	Container Type	Cooler pH		Analysis(*)

N/A

N/A

2.6

2.6

Υ

Υ

Absent

Absent

8260(14)

8260(14)

А

А

L1216912-01A

L1216912-01B

Vial HCl preserved

Vial HCl preserved

Serial_No:09271214:23

Project Name: G-3669

Project Number: G-3669

Acronyms

Lab Number: L1216912

Report Date: 09/27/12

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

GLOSSARY

- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Serial_No:09271214:23

Project Name:	G-3669	Lab Number:	L1216912
Project Number:	G-3669	Report Date:	09/27/12

Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: G-3669 Project Number: G-3669

 Lab Number:
 L1216912

 Report Date:
 09/27/12

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised August 3, 2012 – Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable). <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Titanium, Vanadium, Zinc, Total Organic Carbon, Corrosivity, TCLP 1311, SPLP 1312. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, SM2540G.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: 6020, 7470, 7471, 9045. <u>Organic Parameters</u>: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 180.1, 245.7, 1631E, 3020A, 6020A, 7470A, 9040, 9050A, SM2320B, 2540D, 2540G, 4500H-B, <u>Organic Parameters</u>: EPA 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 5030B, 8015D, 3570, 8081B, 8082A, 8260B, 8270C, 8270D.)

Solid & Chemical Materials (Inorganic Parameters: EPA 1311, 3050B, 3051A, 3060A, 6020A, 7196A, 7470A, 7471B, 7474, 9040B, 9045C, 9060. <u>Organic Parameters</u>: EPA 3540C, 3570, 3580A, 3630C, 3640A, 3660, 3665A, 5035, 8015D, 8081B, 8082A, 8260B, 8270C, 8270D.)

Biological Tissue (Inorganic Parameters: EPA 6020A. <u>Organic Parameters</u>: EPA 3570, 3510C, 3610B, 3630C, 3640A, 8270C, 8270D.)

Air & Emissions (EPA TO-15.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 180.1, 1631E, 6020A, 7470A, 9040B, 9050A, SM2540D, 2540G, 4500H+B, 2320B, 3020A, . <u>Organic Parameters</u>: EPA 3510C, 3630C, 3640A, 3660B, 8081B, 8082A, 8270C, 8270D, 8015D.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 1311, 3050B, 3051A, 6020A, 7471B, 9040B, 9045C. <u>Organic Parameters</u>: SW-846 3540C, 3580A, 3630C, 3640A, 3660B, 3665A, 8270C, 8015D, 8082A, 8081B.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SW-846 1312, 3020A, SM2320B, SM2540D, 2540G, 4500H-B, EPA 180.1, 1631E, SW-846 7470A, 9040C, 6020A, 9050A. <u>Organic Parameters</u>: SW-846 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 8015D, 8081B, 8082A, 8270C, 8270D)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 1311, 1312, 3050B, 3051A, 6020A, 7471B, 7474, 9040B, 9040C, 9045C, 9045D, 9060. <u>Organic Parameters</u>: SW-846 3540C, 3570, 3580A, 3630C, 3640A, 3660B, 3665A, 8081B, 8082A, 8270C, 8270D, 8015D.)

Atmospheric Organic Parameters (EPA 3C, TO-15, TO-10A, TO-13A-SIM.)

Biological Tissue (Inorganic Parameters: SW-846 6020A. <u>Organic Parameters</u>: SW-846 8270C, 8270D, 3510C, 3570, 3610C, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SM2320B, SM2540D, 6020A, 1631E, 7470A, 9050A, EPA 180.1, 3020A. <u>Organic Parameters</u>: EPA 8270C, 8270D, 8081B, 8082A, 3510C.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 6020A, 7471B, 7474, 9040C, 9045D. Organic Parameters: EPA 8270C, 8270D, 8081B, 8082A, 1311, 3050B, 3580A, 3570, 3051A.)

Air & Emissions (EPA TO-15, TO-10A.)

Pennsylvania Certificate/Lab ID: 68-02089 NELAP Accredited

Non-Potable Water (<u>Inorganic Parameters</u>: 1312, 1631E, 180.1, 3020A, 6020A, 7470A, 9040B, 9050A, 2320B, 2540D, 2540G, SM4500H+-B. <u>Organic Parameters</u>: 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 8015D, 8081B, 8082A, 8270C, 8270D.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1311, 3051A, 6020A, 7471B, 7474 9040B, 9045C, 9060. <u>Organic Parameters</u>: EPA3050B, 3540C, 3570, 3580A, 3630C, 3640A, 3660B, 3665A, 8270C, 8270D, 8081B, 8015D, 8082A.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via NJ-DEP.

Refer to NJ-DEP Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 1311, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID:460194. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>:EPA 3020A, 6020A, 245.7, 9040B. <u>Organic Parameters</u>: EPA 3510C, 3640A, 3660B, 3665A, 8270C, 8270D, 8082A, 8081B, 8015D.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: EPA 6020A,7470A,7471B,9040B,9045C,3050B,3051, 9060. <u>Organic Parameters</u>: EPA 3540C, 3580A, 3630C, 3640A, 3660B, 3665A, 3570, 8270C, 8270D, 8081B, 8082A, 8015D.)

Washington State Department of Ecology <u>Certificate/Lab ID</u>: C954. *Non-Potable Water* (Inorganic <u>Parameters</u>: SM2540D, 180.1, 1631E.)

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 7474, 9045C, 9050A, 9060. Organic Parameters: EPA 8081, 8082, 8015, 8270.)

U.S. Army Corps of Engineers

Department of Defense, L-A-B Certificate/Lab ID: L2217.01.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 6020A, SM4500H-B. <u>Organic Parameters</u>: 3020A, 3510C, 8270C, 8270C, 8270C-ALK-PAH, 8270D-ALK-PAH, 8082A, 8081B, 8015D-SHC, 8015D.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1311, 3050B, 6020A, 7471A, 9045C, 9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580A, 3570, 3540C, 8270C, 8270D, 8270C-ALK-PAH, 8270D-ALK-PAH 8082A, 8081B, 8015D-SHC, 8015D.

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **8270C**: Biphenyl. **TO-15**: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 2-Methylnaphthalene, 1-Methylnaphthalene.

Certificate/Approval Program Summary

Last revised August 16, 2012 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (<u>Inorganic Parameters</u>: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters</u>: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mod 8270). <u>Microbiology Parameters</u>: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223, Enumeration and P/A), E. Coli. – Colilert (SM9223, Enumeration and P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform-EC Medium (SM 9221E).

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. <u>Microbiology Parameters</u>: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), E. Coli – Colilert (SM9223 Enumeration), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E), Enterococcus - Enterolert.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. <u>Organic Parameters</u>: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics (SW 8260), Acid Extractables (Phenols) (SW 8270), Benzidines (SW 8270), Phthalates (SW 8270), Nitrosamines (SW 8270), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270).)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic</u> <u>Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010B, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. <u>Organic Parameters</u>: 608, 624, 625, 8081A, 8082, 8330, 8151A, 8260B, 8270C, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (<u>Inorganic Parameters</u>: 9010B, 9012A, 9014A, 9030B, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. <u>Organic Parameters</u>: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, SM4500H-B. <u>Organic Parameters</u>: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. <u>Microbiology Parameters</u>: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page 24 of 29 Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

<u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. <u>Microbiology Parameters</u>: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. *NELAP Accredited. Drinking Water* (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, SW-846 6010B, 6010C, 6020, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9030B, 9040B, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D, 3060A. <u>Organic Parameters</u>: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082, 8082A, 8081A, 8081B, 8151A, 8330, 8270C-SIM, 8270D-SIM.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 6010C, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050, 9065,1311, 1312, 3005A, 3050B, 3060A. <u>Organic Parameters</u>: SW-846 3540C, 3546, 3050B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330, 8151A, 8015B, 8015C, 8082, 8082A, 8081A, 8081B.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. *NELAP Accredited. Drinking Water* (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.1, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500CI-E, EPA 300.0, SM2120B, 2340B, SM4500F-BC, EPA 200.7, 200.8, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, 2540G, EPA 120.1, SM2510B, SM2520B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 7470A, 5540C, SM4500H-B, 4500SO3-B, SM3500Cr-D, 4500CN-CE, EPA 245.1, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 6020, 6020A, 7196A, 3060A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 1,4-Dioxane by NJ Modified 8270, 8015B, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 6020, 6020A, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9040C, 9045C, 9045D, 9050A, 9065, 9251. <u>Organic Parameters</u>: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500NO3-F, 2540C, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6010C, 6020, 6020A, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015, 9010B, 9030B. <u>Organic Parameters</u>: EPA 624, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 625, 608, 8081A, 8081B, 8151A, 8330, 8082, 8082A, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010, 1030, EPA 6010B, 6010C, 7196A, 7471A, 7471B, 9012A, 9014, 9065, 9050A, EPA 1311, 1312, 3005A, 3050B, 9010B, 9040C, 9045D. Organic Parameters: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8015B, 8015C, 8081A, 8081B, 8151A, 8330, 8082 8082A, 3540C, 3546, 3580, Page 3580A, 5030B, 5035A-H, 5035A-L.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. (<u>Inorganic</u> <u>Parameters</u>: SM2310B, 2320B, 4500CI-E, 4500Cn-E, 9014, Lachat 10-204-00-1-X, 1010A, 1030, 4500NO3-F, 353.2, 4500P-E, 4500SO4-E, 300.0, 4500S-D, 5310B, 5310C, 6010C, 6020A, 200.7, 200.8, 3500Cr-B, 7196A, 245.1, 7471A, 7471B, 1311,1312. <u>Organic Parameters</u>: 608, 8081B, 8082A, 624, 8260B, 625, 8270D, 8151A, 8015C, 504.1, MA-EPH, MA-VPH.)

Drinking Water Program <u>Certificate/Lab ID</u>: 25700. (<u>Inorganic Parameters</u>: Chloride EPA 300.0. <u>Organic Parameters</u>: 524.2)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (Inorganic Parameters: 200.7, 200.8, 245.2, 300.0, 332.0, 2120B, 2320B, 2510B, 2540C, 4500-CN-CE, 4500F-C, 4500H+-B, 4500NO3-F, 5310C. <u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1312, 3005A,3015, 3060A, 200.7, 200.8, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE, 245.1, 300.0, 3501., 350.2, 353.2, 420.1, 6010B, 6010C, 6020, 6020A, 7196A, 7470A, 9010B, 9030B, 9040B, Lachat 10-107-06-2-D, NJ-EPH, 2120B, 2310B, 2320B, 2340B, 2510C, 2540B, 2540C, 3500Cr-D, 436C, 4500CN-CE, 4500CI-E, 4500F-B, 4500F-C, 4500H+-B, 4500NO2-B, 4500NO3-F, 4500S-D, 4500SO3-B, 5310BCD, 5540C. <u>Organic Parameters</u>: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081A, 8081B, 8082, 8082A, 8151A, 8260B, 8270C, 8270D, 8330, 8015B,)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3005A, 3050B, 3060A, 6010B, 6010C, 6020A, 7196A, 7471A, 7471B, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-BH, 9030B, 9038, 9251. <u>Organic Parameters</u>: 3540C, 3546, 3580A, 3630C, 5035, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330, NJ-EPH.)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NJ-DEP*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services <u>Certificate/Lab ID</u>: 460195. *NELAP Accredited. Drinking Water* (Inorganic Parameters: EPA 200.7, 200.8, 300.0, 2510B, 2120B, 2540C, 4500CN-CE, 245.2, 2320B, 4500F-C, 4500F-C, 4500NO3-F, 5310C. <u>Organic Parameters</u>: EPA 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 200.7, 2..08, 245.1, 300.0, 3005A, 3015, 1312, 6010B, 6010C, 3060A, 353.2, 420.1, 6020, 6020A, SM4500S-D, SM4500-CN-CE, Lachat 10-204-00-1-X, 7196A, 7470A, 9010B, 9040B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500Cl-E, 4500F-B, 4500F-C, 4500PE, 510AC, 5210B, 5310B 5310C, 5540C. <u>Organic Parameters</u>: EPA 3510C, 3630C, 5030B, 8260B, 608, 624, 625, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330,)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1010A, 1030, 3060A, 3050B, 1311, 1312, 6010B, 6010C, 6020, , 7196A, 7471A, 7471B, 6020A, 9030B, 9010B, 9012A, 9014 9040B, 9045C, 9050A, 9065. <u>Organic Parameters</u>: EPA 5035, 3540C, 3546, 3550, 3580, 3630C, 8260B, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330.)

Department of Defense, L-A-B <u>Certificate/Lab ID</u>: L2217. *Drinking Water* (Inorganic Parameters: SM 4500H-B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6010C, 6020, 6020A, 245.1, 245.2, 7470A, 9040B, 9010B, 180.1. 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 4500CL-D, 5220D, 5310C, 2130B, 2320B, 2540C, 3005A, 3015, 9010B, 9056. <u>Organic Parameters</u>: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A, 8082, 8082A, 8081A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 200.7, 6010B, 6010C, 7471A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 9012A, 9040B, 9045C, 3500-CR-D, 4500CN-CE, 2540G, <u>Organic Parameters</u>: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A/B-prep, 8082, 8082A, 8081A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease.

Serial No:09271214:23

Х

CHAIN OF CUSTODY RECORD

Proj No.		Project	Name													
G-3669		Se	Ifri	dage	bid	1533										
Samplers (S	i erature)	allananan okungi di te	<u></u>						3							
	T	Y							926							
Ste. No.	Date	Time	Comp	Graiu		Station Locatin	6 n	No, of Contain								Remarks
MW-16	9113	15:30			MW-1	6		5	<u> </u>							
	T	T	I													and a start of the
	1	1	1		an an tao an Alfred an Ballet an airseann an an											
	1	1	1							-						
		1	1					1					outere o			
	1	1	1					<u>†</u>		1	 					
		<u> </u>	1							†	†					
		+	1	 				<u> </u>		1						
	+	+	<u>†</u>					1		1						
	1	-	1	1						1	1					an a
	+		+							†	 					
		+					<u></u>	†		†					·····	▆▆▛▆▆▆▆▛▖▆▙▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆
	+	+	┼──	+				1		+	†	†	 	+		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	+		+					<u> </u>		+	-		 	 		
			+	 				+	-+	+	╄	† – –				
	+	+	+					 ;			┼──	┼──	 	┢──	<u> </u>	
<u> </u>			+	+				+			†	†	 			
			+	╂		. <u></u>		+			<u> </u>	1	†	<u> </u>		
	-	+	+	1				1		1	1	1	1	1	1	
Relinquist	hed by: :	1 (Signative)	, J	10	i latë Time	Received by	Signature)		telinapist	ved ing	el Signal	stored :		p	ale Time	Received by: (Signature) FED EX
0-	- h-1	N		9/1			hate b	50	IN UI	\t	(52	ste/	Fedd	19	-19.10,2	FEDEX
Relinquis	hed the:	(Sianarumi)	<u></u>		late Time	Received tor:	15-enaruret	- F	telinquist	ed by:	1Siena	surrf		O	ate Tune	Received by: (Signature)
	Ex			1 I.	0/12/000		mal	- 1								
Relinquid		(Signeture	;		hate Time		Laboratory hy:				Re	marks		l		
	1										ĭ					

	J(2			
No. of Containers	8		Pernatio	
	×			
				_
				-
				-
				-
				-
-			Time Received by: (Senatural	
	W Acast	Had	FED EX	
	and they are is some	14/6		
mar Ma		`		12110110
ADDE TO ADDE T	Rem			
Station Location		b. 50 Number of the second sec	Remained by: ISynamical Action of the second	2 Source of the second

 $\mathbf{e}^{\mathbf{r}}$

 $\cdot \cdot$

				CHAIN OF (CHAIN OF CUSTODY RECORD	CORD			
Proj 140. 71 / CJ		Project Mane	0	relation				Resurts to:	łu:
17	~]	E I	- 1° 6				Tan R	Tom Michigh Cemekughegin roten
				muleriny 1535				LACK DE	King Markeder CS(March
Sta. No. Date	te The	Ho D	Qe#	Station Location	Containers	<i>[</i> 6		r 茶 十	Arminia 44 16
Amb-1-86 alta	11 C		7					Anches 1-81	HI-BL SOUML IN IL ENE
ini-1-66 419	19 110		7			\$		Indiar -1-BL	
hud-1-PP 9/14		-	7			7		Indow -	1-99
14-4NP 9/19	9 1 1 50	5	~			-}-		Indoor -t-NP	I-NP
DUP 1 9/19			$\overline{\}$					Dup 1	¥
	-								
		-							
	_	1							
		_							
	-								
Relinquitteed by: Bernium	N: Bygrunn	. .	6	Date Time Received by IScontines 9/20/2	eyiz	Relinquished by: 1Signatured	Signa turci	Date Time	Received by: (Squature)
Reinquiched by: (Signature)	in (Signature	F			Reinqui	Reinquished by Boulurd	înera lurel	Date Trms	Received by: Sievanura
Rekinquished by: Cientum	ny: Chimanu	7		Ozee 1 inne Received for Calcoratory lity: (Signature)			Ressurts		
						Π			

ŧ

reruns of OU#613 (the older sample set), analyzed in the week of October 22nd

RUN #	Date of Analysis	SAMPLE ID	AIRTUBE #	TCE
9068	10/22/2012	3-SS-2-CSI	C16_J03553	-19.5
9069	10/22/2012	1-SS-2-CSI	C16_J07342	no peak
9071	10/22/2012	1-IA-1-CSI	C16_J07242	peak coelutes

OU#631 (the newer sample set)

Dup = split of the sample recollected on Cx1016

Benzene

RUN #	Date of Analysis	SAMPLE ID	AIRTUBE #	Benzene
9020	10/9/2012	SS-2 Low	C16_J04853	-28.9
9024	10/10/2012	SS-2 1hr	C16_K08430	-29.4
9025	10/10/2012	SS-2 High	C16_J06645	-31.1
9029	10/11/2012	Dup of SS-2 High	C16_J03770	-31.0
9082	10/24/2012	Dup of SS-2 High	C16_J03770	-31.4
9030	10/11/2012	SS-1	C16_J03738	-29.8
9023	10/10/2012	SS-1	C16_J03973	-29.9
9038	10/15/2012	Dup of Indoor 1	C16_K08440	-29.4
9042	10/16/2012	Indoor 1	C16_K08448	-29.0
9043	10/16/2012	Indoor 1 overnight	C16_J03120	-29.9
9081	10/24/2012	Dup of Indoor 1 overnight	C16_K08412	-29.7
1876	10/24/2012	ground water sample		-26.5
1878	10/24/2012	ground water sample		-26.6
TCE				
RUN #	Date of Analysis	SAMPLE ID	AIRTUBE #	TCE
9076	10/23/2012	SS-2 1 hr	C16_J03150	-26.0
9065	10/21/2012	Dup of SS-2 High	C16_J03770	-25.0
9066	10/21/2012	Dup of SS-2 High	C16_J03770	-25.6
9074	10/22/2012	Dup of SS-1	C16_J03738	-18.8
9072	10/22/2012	Dup of Indoor 1	C16_K08440	-32.3
9077	10/23/2012	Dup of Indoor 1	C16_K08448	-32.4
9079	10/24/2012	Indoor 1 overnight	C16_K08412	-30.7

this number is likely 1-2 permil to peak was too tall, resulting with c may be rerun if there is spare mat o heavy; ombusion problem; terial after PCE analysis.

Received by GSI, 3 May 2013 Results of additional analyses of SANG samples:

OU#631 benzene

Dup = split of the sample recollected on Cx1016 all tube numbers refer to the original samples collected in the field analytical uncertainty defined by the standards ± 0.2 (2 stdevs at n=13 in Oct-12, n=6 in April-13) NOTE: Only 10-20 ng of benzene on "SS-2 low". Possible problems caused by low level carryover or adsorbent pyrolysis byproduct

run #	date analyzed	sample ID	original airtube #	del benzene VPDB	remarks
1876		ground water sample	na	-26.5	
1878		ground water sample	na	-26.6	
9042	10/16/2012	Indoor 1	C16_K08448	-29.1	intact original tube
9038	10/15/2012	Dup Indoor 1	C16_K08440	-29.0	
9498	4/24/2013	Dup Indoor 1	C16_K08421	-28.9	split of an intact original tube, collected in April 2013
9500	4/24/2013	Dup Indoor 1	C16_K08421	-28.8	split of run #9498
9043	10/16/2012	Indoor 1 overnight	C16_J03120	-30.0	intact original tube
9081	10/24/2012	Dup Indoor 1 overnight	C16_K08412	-29.8	
9023	10/10/2012	SS-1	C16_J03973	-29.9	intact original tube
9030	10/11/2012	SS-1	C16_J03738	-29.8	intact original tube
9491	4/19/2013	SS-1	C16_K08431	-29.7	intact original tube
9493	4/19/2013	Dup SS-1	C16_K08431	-29.8	split of run #9491
9024	10/10/2012	SS-2 1hr	C16_K08430	-29.4	intact original tube
9496	4/23/2013	SS-2 1 hr	C16_J03150	-29.4	split of the original tube, collected in October 2012
9499	4/24/2013	Dup SS-2 1 hr	C16_J03150	-29.3	split of run #9496
9020	10/9/2012	SS-2 Low	C16_J04853	-28.9	intact original tube
9492	4/19/2013	SS-2 Low	C16_J07661	-30.2	intact original tube
9025	10/10/2012	SS-2 High	C16_J06645	-31.1	intact original tube
9029	10/11/2012	Dup SS-2 High	 C16_J03770	-31.0	
9082	10/24/2012	Dup SS-2 High	 C16_J03770	-31.5	

Received by GSI, 3 May 2013 Results of additional analyses of SANG samples:

OU#631 TCE

Dup = split of the sample recollected on Cx1016 all tube numbers refer to the original samples collected in the field analytical uncertainty defined by the standards: Oct-12 ± 0.6 (2 stdevs at n=7); April-13 ± 0.4 (2 stdevs at n=10) NOTE: samples from Oct-2012 suffered from noisy background. Possible accuracy offsets by a few tenths of permil

run #	date analyzed	sample ID	original airtube #	del TCE VPDB	remarks	
9072	10/22/2012	Dup Indoor 1	C16_K08440	-32.5		
9077	10/23/2012	Dup Indoor 1	C16_K08448	-32.6		
9485	4/17/2013	Indoor 1	C16_K08457	-31.8	intact original tube	
9488	4/18/2013	Dup Indoor 1	C16_J03146	-31.8	split of run #9485	
9079	10/23/2012	Indoor 1 overnight	C16_K08412	-31.0	intact original tube	this number is likely 1-2 permil too heavy; peak was too tall, resultini
9074	10/22/2012	Dup SS-1	C16_J03738	-18.7		
9076	10/23/2012	SS-2 1 hr	C16_J03150	-26.2	intact original tube	
9065	10/21/2012	Dup SS-2 High	C16_J03770	-25.2		
9066	10/21/2012	Dup SS-2 High	C16_J03770	-25.8		
9484	4/17/2013	SS-2 High	C16_J07356	-24.6	intact original tube	

Received by GSI, 3 May 2013 Results of additional analyses of SANG samples:

OU#631 PCE

Dup = split of the sample recollected on Cx1016

all tube numbers refer to the original samples collected in the field

analytical uncertainty defined by the standards: ± 0.3 (2 stdevs at n=8)

NOTE: the indoor samples likely affected by too low signal and proportionally high background noise.

run #	date analyzed	sample ID	original airtube #	del PCE VPDB	remarks	peak amplitude below the calibration range
9421	4/1/2013	Indoor 1	C16_K08448	-27.8	split of an intact original tube, collected in Oct 2012	
9414	3/29/2013	Indoor 1 overnight	C16_J03120	-27.8	split of an intact original tube, collected in Oct 2012	peak amplitude below the calibration range
9434	4/4/2013	Indoor 1 overnight	C16_J07366	-26.3	intact original tube	peak amplitude at the lower end of calibratio
9436	4/5/2013	Indoor 1 overnight	C16_J07064	-26.2	intact original tube	peak amplitude below the calibration range
9427 9429 9437	4/3/2013 4/3/2013	SS-1 Dup SS-1 SS-1	C16_J03738 C16_J03703 C16_M17689	-26.5 -26.8 -26.1	split of an intact original tube, collected in Oct 2012 split of run #9427 split of run #9429	
9425	4/1/2013	SS-2 1 hr	C16_J03116	-25.3	split of an intact original tube, collected in April 2013	
9433	4/4/2013	Dup SS-2 1 hr (#9425)	C16_J03116	-25.3	split of run #9425	
9428 9438	4/3/2013 4/5/2013	SS-2 Low (#9415) SS-2 Low (NEW)	C16_J04342 C16_J03146	-25.7 -25.5	split of an intact original tube, collected in April 2013 intact original tube	
9419	4/1/2013	SS-2 High	C16_J03770	-25.5	split of an intact original tube, collected in Oct 2012	

Tyndall Air Force Base, Florida

LABORATORY REPORT

March 13, 2013

Tom McHugh GSI Environmental Inc. 2211 Norfolk, Suite 1000 Houston, TX 77098

RE: ESTCP VI Study - Tyndall AFB / 3585/3669

Dear Tom:

Enclosed are the results of the samples submitted to our laboratory on February 28, 2013. For your reference, these analyses have been assigned our service request number P1300816.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

e Anderson at 2:55 pm, Mar 13, 2013

Sue Anderson Project Manager

Client:GSI Environmental Inc.Project:ESTCP VI Study - Tyndall AFB / 3585/3669

Service Request No: P1300816

CASE NARRATIVE

The samples were received intact under chain of custody on February 28, 2013 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed in SIM mode for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The response for the 3rd internal standard in samples 219-SS-2 (P1300816-013) and 219-SS-3 (P1300816-014) was outside control criteria because of suspected matrix interference. The samples were diluted in an attempt to eliminate the effects of the matrix interference. The results are reported from the dilution; therefore, the associated method reporting limits have been elevated accordingly.

The Summa canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of Columbia Analytical Services, Inc. dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

Columbia Analytical Services, Inc. dba ALS Environmental - Simi Valley

Certifications, Accreditations, and Registrations

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L11-203
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2012039
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	494864
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	CA200007
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 12-3
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01527201 2-2
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946
Analyses were per	formed according to our laboratory's NELAP and DoD-ELAP approved qua	ality assurance

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.caslab.com</u>, <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

Time Received:

Service Request: P1300816

DETAIL SUMMARY REPORT

Client:GSI Environmental Inc.Project ID:ESTCP VI Study - Tyndall AFB / 3585/3669Date Received:2/28/2013

09:05

TO-15 - VOC SIM Date Time Container Pi1 Pf1 Client Sample ID Lab Code Collected Collected ID Matrix (psig) (psig) 156-IA-1 P1300816-001 Air 2/20/2013 16:18 AS00290 -1.97 3.63 Х 156-IA-2 2/20/2013 Х P1300816-002 Air 16:19 AS00217 -4.69 3.50 156-IA-3 P1300816-003 2/20/2013 Х Air 16:19 AC01816 -3.63 3.50 219-AA-1 Х P1300816-004 Air 2/20/2013 16:41 AS00341 -3.12 3.50 219-IA-1 P1300816-005 Air 2/20/2013 16:00 AS00230 -3.02 3.59 Х 219-IA-3 P1300816-006 Air 2/20/2013 16:38 AC01904 -3.58 3.60 Х 2/21/2013 Х 156-IA-4-NP 15:57 AS00216 0.18 3.60 P1300816-007 Air 156-IA-5-NP P1300816-008 Air 2/21/2013 15:57 AS00166 -0.67 3.64 Х 2/21/2013 -0.40 3.78 Х 156-SS-1 P1300816-009 Air 11:53 AS00198 156-SS-2 P1300816-010 Air 2/21/2013 11:42 AS00141 -0.02 3.82 Х 156-SS-3 P1300816-011 Air 2/21/2013 11:26 AS00336 -1.37 3.56 Х 219-SS-1 P1300816-012 2/21/2013 16:16 AS00168 -0.25 3.62 Х Air 219-SS-2 P1300816-013 Air 2/21/2013 16:28 AS00182 0.02 3.67 Х 219-SS-3 2/21/2013 0.12 3.81 Х P1300816-014 Air 16:45 AS00310 156-IA-4-BL P1300816-015 Air 2/22/2013 08:04 AS00199 -0.03 3.75 Х

4 of 39

Analytical Services 2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7261 Fax (805) 526-7161 Fax (805) 526-7261 Fax (805) 526-7261 Reporting Information) Company Name & Address (Reporting Information) 2019 - 55 - 2 2019 - 50 - 50 - 1 2019 - 55 - 2 2019 - 55 - 2 2019 - 55 - 2 2019 - 55 - 2 2019 - 50 - 1 2019 - 55 - 2 2019 - 50 - 50 - 1 2019 - 55 - 2 2019 - 50 - 50 - 1 2019 - 50 - 50 - 50 - 50 - 50 - 50 - 50		Air Ly Date Collected 2/20/2015 2/21/2015 2/21/2015 2/21/2015 2/21/2015 2/21/2015	AIT - Chain of Req 10a and 10a		ord $\frac{3}{2}$ ord $\frac{3}{2}$ ord $\frac{3}{2}$ ord $\frac{3}{2}$ ord $\frac{3}{2}$ ord $\frac{3}{2}$ ord $\frac{100}{100}$	k Analytical Service Reg Business Days (Surcharges) please Business Days (Surcharges) please Business Days (Surcharges) please γ (50%) 4 Day (35%) 5 Day (25%) 10 Study - Tundal (AFB q q q r q r q r q r q r q r r r r r r r r r r	rvice Requires please harges) please	For dealer with the contract	Page John Kerner Cas Project No CAS Project No Page John Kerner Preservative or specific instructions
Tier Levels - p ssults (Default if I ssults + QC Sum	-		Tier IV (Data Validation	Calibrati	umaries)		»	uired (es) No	Project Requirements (MRLs, QAPP)
Relinquished by: (Signature)			Date?21/5	Time: /d 5 G Time:	Received by: (Signature) Received by: (Signature)	() (() () () () () () () () () () () ()		Date 22201h Time: Date: Time:	Cooler / Blank

of L Page

Air - Chain of Custody Record & Analytical Service Request

2 of 2 Page___

Simi Valley, California 93065 Phone (805) 526-7161			Requested Turnar	Requested Turnaround Time in Business Days (Surchardes) nlease circle	ress Davs (Surc	charges) nlease	circle		CAS Project	
Fax (805) 526-7270			1 Day (100%) 2 Da	1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard	6) 4 Day (35%)	5 Day (25%) 10	Day-Stand		1800816	00091€
Comnany Name & Address (Benorting Information)			Droitort Nome					CAS Contact:		
Ompany rame a run as proposing montanon			riojeci Natile 25下	ESTEP VI SHULL TUNAN AFR		all AF		Due And	2/3m	
2211 Norfel K Stelovo			Project Number				5	Analysis method	Method	
110/ KI-vaterrati			3503	15669						
Project Manager			P.O. # / Billing Information	mation				W		
Phone Phone F&								کر ک		comments e.g. Actuat Preservative or
Email Address for Result Reporting			Sampler (Print & Sign)	VN/1 MR/NPS	25			5/~		specific instructions
1 1 1 1						+		ر ک	·	
ple ID Laboratory	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code #- FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume	L		
	2/02/13 1	arot	AS00199	L.	-29.5	Q	61	7		· · · · · · · · · · · · · · · · · · ·
96/11-										
2L'H1-										
LL'hI-			ray							
-14.650										
QUNI-										
5 returned cars										
Report Tier Levels - please select Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)		r III (Results - r IV (Data Val	Tier IV (Data Validation Package) 10% Surtharge	umarles)			EDD required Type:	d Yes No		Project Requirements (MRLs, QAPP)
Relinquished by ASignature)	Da	Date/Le/LZ	Time: /∧ ξ ⊘	Received by: (Signature)	(e) (0 0 0 % o			Date: 17 @16	Time	
Relinquished by: (Signature)	Date:		Time:	Received by: (Signature)	1		\parallel°	5		Cooler / Blank
										Temperature °C
							·			COC AIR REV 3-11

Columbia Analytical Services*

Now	part of the Scroup Sample Acceptance Check	Form				
Client	GSI Environmental Inc.	Work order:	P1300816			
-	ESTCP VI Study - Tyndall AFB / 3585/3669					
-		pened: 2/28/13	by:	RMAR		
	form is used for <u>all</u> samples received by ALS. The use of this form for custody seals is stri				dication	of
compliance	e or nonconformity. Thermal preservation and pH will only be evaluated either at the reque	est of the client and/or as re	quired by the metho	od/SOP. <u>Yes</u>	<u>No</u>	<u>N/A</u>
1	Were sample containers properly marked with client sample ID?			X		
2	Container(s) supplied by ALS?			X		
3	Did sample containers arrive in good condition?			X		
4	Were chain-of-custody papers used and filled out?			X		
5	Did sample container labels and/or tags agree with custody papers?			X		
6	Was sample volume received adequate for analysis?			X		
7	Are samples within specified holding times?			X		
8	Was proper temperature (thermal preservation) of cooler at receipt adh	nered to?				X
9	Was a trip blank received?				X	
10	Were custody seals on outside of cooler/Box?				X	
10	Location of seal(s)?		Sealing Lid?			\mathbf{X}
	Were signature and date included?					\mathbf{X}
	Were seals intact?					\mathbf{X}
	Were custody seals on outside of sample container?				\mathbf{X}	
	Location of seal(s)?		Sealing Lid?			X
	Were signature and date included?		8			X
	Were seals intact?					X
11	Do containers have appropriate preservation , according to method/S	OP or Client specified	information?			X
	Is there a client indication that the submitted samples are pH preserved	-				X
	Were VOA vials checked for presence/absence of air bubbles?					X
	Does the client/method/SOP require that the analyst check the sample pl	H and if necessary alte	er it?			X
12	Tubes: Are the tubes capped and intact?					X
	Do they contain moisture?					X
13	Badges: Are the badges properly capped and intact?					X
	Are dual bed badges separated and individually cappe	ed and intact?				X

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P1300816-001.01	6.0 L Silonite Can					
P1300816-002.01	6.0 L Silonite Can					
P1300816-003.01	6.0 L Ambient Can					
P1300816-004.01	6.0 L Silonite Can					
P1300816-005.01	6.0 L Silonite Can					
P1300816-006.01	6.0 L Ambient Can					
P1300816-007.01	6.0 L Silonite Can					
P1300816-008.01	6.0 L Silonite Can					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

ī

Now par	t of the	ALS	Group
---------	----------	-----	-------

Sample Acceptance Check Form

Client: GSI Environmental Inc.

Λ

Work order:

P1300816

.

Project: ESTCP VI St	udy - Tyndall AFB / 3	585/3669		-	•	
Sample(s) received on				Date opened:	2/28/13	by: RMARTENIES
Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
	Description	pH *	pН	pH	(Presence/Absence)	Comments
P1300816-009.01	6.0 L Silonite Can					
P1300816-010.01	6.0 L Silonite Can					
P1300816-011.01	6.0 L Silonite Can					
P1300816-012.01	6.0 L Silonite Can					
P1300816-013.01	6.0 L Silonite Can					
P1300816-014.01	6.0 L Silonite Can					
P1300816-015.01	6.0 L Silonite Can					
P1300816-016.01	6.0 L Ambient Can					
P1300816-017.01	6.0 L Ambient Can					
P1300816-018.01	6.0 L Silonite Can					
P1300816-019.01	6.0 L Silonite Can					
P1300816-020.01	6.0 L Silonite Can					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 156-IA-1 ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID: P1300816 CAS Sample ID: P1300816-001
Test Code:	EPA TO-15 SIM	Date Collected: 2/20/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Analyst:	Wida Ang	Date Analyzed: 3/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AS00290	
	Initial Pressure (psig): -1.97 Final Pressur	re (psig): 3.63
		Canister Dilution Factor: 1.44

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.036	ND	0.014	
75-35-4	1,1-Dichloroethene	ND	0.036	ND	0.0091	
156-60-5	trans-1,2-Dichloroethene	ND	0.036	ND	0.0091	
156-59-2	cis-1,2-Dichloroethene	ND	0.036	ND	0.0091	
79-01-6	Trichloroethene	ND	0.036	ND	0.0067	
127-18-4	Tetrachloroethene	0.054	0.036	0.0080	0.0053	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 156-IA-2 ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID: P1300816 CAS Sample ID: P1300816-002
Test Code:	EPA TO-15 SIM	Date Collected: 2/20/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Analyst:	Wida Ang	Date Analyzed: 3/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AS00217	
	Initial Pressure (psig): -4.69 Final	Pressure (psig): 3.50
		Canister Dilution Factor: 1.82

CAS #	Compound	Result	MRL	Result	MRL	Data Ouclifier
		μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.046	ND	0.018	
75-35-4	1,1-Dichloroethene	ND	0.046	ND	0.011	
156-60-5	trans-1,2-Dichloroethene	ND	0.046	ND	0.011	
156-59-2	cis-1,2-Dichloroethene	ND	0.046	ND	0.011	
79-01-6	Trichloroethene	ND	0.046	ND	0.0085	
127-18-4	Tetrachloroethene	0.063	0.046	0.0092	0.0067	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 156-IA-3 ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID: P1300816 CAS Sample ID: P1300816-003
Test Code:	EPA TO-15 SIM	Date Collected: 2/20/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Analyst:	Wida Ang	Date Analyzed: 3/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC01816	
	Initial Pressure (psig): -3.63 Final Pressure	e (psig): 3.50
		Canister Dilution Factor: 1.64

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.041	ND	0.016	
75-35-4	1,1-Dichloroethene	ND	0.041	ND	0.010	
156-60-5	trans-1,2-Dichloroethene	ND	0.041	ND	0.010	
156-59-2	cis-1,2-Dichloroethene	ND	0.041	ND	0.010	
79-01-6	Trichloroethene	ND	0.041	ND	0.0076	
127-18-4	Tetrachloroethene	0.60	0.041	0.088	0.0060	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

- - - -

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.		
Client Sample ID:	219-AA-1	CAS Project ID: P1	300816
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P1	300816-004
Test Code:	EPA TO-15 SIM	Date Collected: 2/2	20/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/2	28/13
Analyst:	Wida Ang	Date Analyzed: 3/	6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	AS00341		
	Initial Pressure (psig): -3.12 Final Pressure (p	sig): 3.50	

Canister Dilution Factor: 1.57

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.039	ND	0.015	
75-35-4	1,1-Dichloroethene	ND	0.039	ND	0.0099	
156-60-5	trans-1,2-Dichloroethene	ND	0.039	ND	0.0099	
156-59-2	cis-1,2-Dichloroethene	ND	0.039	ND	0.0099	
79-01-6	Trichloroethene	ND	0.039	ND	0.0073	
127-18-4	Tetrachloroethene	ND	0.039	ND	0.0058	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	219-IA-1	CAS Project ID: P1300816
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P1300816-005
Test Code:	EPA TO-15 SIM	Date Collected: 2/20/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Analyst:	Wida Ang	Date Analyzed: 3/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AS00230	
	Initial Pressure (psig): -3.02 Final Pressure (ps	ig): 3.59
		Canister Dilution Factor: 1.57

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.039	ND	0.015	
75-35-4	1,1-Dichloroethene	ND	0.039	ND	0.0099	
156-60-5	trans-1,2-Dichloroethene	ND	0.039	ND	0.0099	
156-59-2	cis-1,2-Dichloroethene	ND	0.039	ND	0.0099	
79-01-6	Trichloroethene	0.086	0.039	0.016	0.0073	
127-18-4	Tetrachloroethene	0.048	0.039	0.0071	0.0058	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 219-IA-3 ESTCP VI Study - Tyndall AFB / 358	85/3669		CAS Project ID: F CAS Sample ID: F		5
Test Code:	EPA TO-15 SIM			Date Collected: 2	/20/13	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19			Date Received: 2	/28/13	
Analyst:	Wida Ang			Date Analyzed: 3	/6/13	
Sample Type:	6.0 L Summa Canister		V	volume(s) Analyzed:	1.00 Lite	er(s)
Test Notes:						
Container ID:	AC01904					
	Initial Pressure (psig):	-3.58	Final Pressure (psig)	: 3.60		
				Canister	Dilution Fact	or: 1.65
CAS #	Compound	Result	MRL	Result ppbV	MRL pphV	Data Qualifier

CAS#	Compound	Kesuit	MRL	Result	MKL	Data
		μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.041	ND	0.016	
75-35-4	1,1-Dichloroethene	ND	0.041	ND	0.010	
156-60-5	trans-1,2-Dichloroethene	ND	0.041	ND	0.010	
156-59-2	cis-1,2-Dichloroethene	ND	0.041	ND	0.010	
79-01-6	Trichloroethene	0.087	0.041	0.016	0.0077	
127-18-4	Tetrachloroethene	ND	0.041	ND	0.0061	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 156-IA-4-NP ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID: P1300816 CAS Sample ID: P1300816-007
Test Code: Instrument ID: Analyst:	EPA TO-15 SIM Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19 Wide Apg	Date Collected: 2/21/13 Date Received: 2/28/13
Sample Type: Test Notes: Container ID:	Wida Ang 6.0 L Summa Canister AS00216	Date Analyzed: 3/6/13 Volume(s) Analyzed: 1.00 Liter(s)
	Initial Pressure (psig): 0.18 Final Pressure (psig)	ig): 3.60 Canister Dilution Factor: 1.23

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.031	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.031	ND	0.0078	
156-60-5	trans-1,2-Dichloroethene	ND	0.031	ND	0.0078	
156-59-2	cis-1,2-Dichloroethene	ND	0.031	ND	0.0078	
79-01-6	Trichloroethene	ND	0.031	ND	0.0057	
127-18-4	Tetrachloroethene	0.061	0.031	0.0090	0.0045	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	156-IA-5-NP	CAS Project ID: P1300816
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P1300816-008
Test Code:	EPA TO-15 SIM	Date Collected: 2/21/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Analyst:	Wida Ang	Date Analyzed: 3/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AS00166	
	Initial Pressure (psig): -0.67 Final Pres	ssure (psig): 3.64
		Canister Dilution Factor: 1.31

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.033	ND	0.013	
75-35-4	1,1-Dichloroethene	ND	0.033	ND	0.0083	
156-60-5	trans-1,2-Dichloroethene	ND	0.033	ND	0.0083	
156-59-2	cis-1,2-Dichloroethene	ND	0.033	ND	0.0083	
79-01-6	Trichloroethene	ND	0.033	ND	0.0061	
127-18-4	Tetrachloroethene	0.062	0.033	0.0092	0.0048	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 156-SS-1 ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID: P1300816 CAS Sample ID: P1300816-009
Test Code:	EPA TO-15 SIM	Date Collected: 2/21/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Analyst:	Wida Ang	Date Analyzed: 3/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:	AS00198	sure (psig): 3.78
Container ID:	Initial Pressure (psig): -0.40 Final Pres	Canister Dilution Factor: 1.29

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.032	ND	0.013	
75-35-4	1,1-Dichloroethene	ND	0.032	ND	0.0081	
156-60-5	trans-1,2-Dichloroethene	ND	0.032	ND	0.0081	
156-59-2	cis-1,2-Dichloroethene	ND	0.032	ND	0.0081	
79-01-6	Trichloroethene	0.37	0.032	0.068	0.0060	
127-18-4	Tetrachloroethene	0.26	0.032	0.039	0.0048	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client: Client Sample ID:	GSI Environmental Inc. 156-SS-2	CAS Project ID: P1300816
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P1300816-010
Test Code: Instrument ID: Analyst:	EPA TO-15 SIM Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19 Wida Ang	Date Collected: 2/21/13 Date Received: 2/28/13 Date Analyzed: 3/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes: Container ID:	AS00141 Initial Pressure (psig): -0.02 Final Pressure (psi	g): 3.82
		Canister Dilution Factor: 1.26

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.032	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.032	ND	0.0079	
156-60-5	trans-1,2-Dichloroethene	ND	0.032	ND	0.0079	
156-59-2	cis-1,2-Dichloroethene	ND	0.032	ND	0.0079	
79-01-6	Trichloroethene	1.2	0.032	0.23	0.0059	
127-18-4	Tetrachloroethene	0.16	0.032	0.023	0.0046	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

	CAS Project ID: P1300816 CAS Sample ID: P1300816-011
EPA TO-15 SIM	Date Collected: 2/21/13
Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Wida Ang	Date Analyzed: 3/6/13
6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
AS00336	
Initial Pressure (psig): -1.37 Final Pressure	(psig): 3.56
	Canister Dilution Factor: 1.37
	156-SS-3 ESTCP VI Study - Tyndall AFB / 3585/3669 EPA TO-15 SIM Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19 Wida Ang 6.0 L Summa Canister AS00336

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.034	ND	0.013	
75-35-4	1,1-Dichloroethene	ND	0.034	ND	0.0086	
156-60-5	trans-1,2-Dichloroethene	0.051	0.034	0.013	0.0086	
156-59-2	cis-1,2-Dichloroethene	0.085	0.034	0.021	0.0086	
79-01-6	Trichloroethene	24	0.034	4.4	0.0064	
127-18-4	Tetrachloroethene	0.45	0.034	0.066	0.0051	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 219-SS-1 ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID: P1300816 CAS Sample ID: P1300816-012		
Test Code:	EPA TO-15 SIM	Date Collected: 2/21/13		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13		
Analyst:	Wida Ang	Date Analyzed: 3/6/13		
Sample Type: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)		
Container ID:	AS00168			
	Initial Pressure (psig): -0.25 Final Press	sure (psig): 3.62		
		Canister Dilution Factor: 1.27		

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.032	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.032	ND	0.0080	
156-60-5	trans-1,2-Dichloroethene	0.14	0.032	0.036	0.0080	
156-59-2	cis-1,2-Dichloroethene	ND	0.032	ND	0.0080	
79-01-6	Trichloroethene	0.083	0.032	0.015	0.0059	
127-18-4	Tetrachloroethene	4.5	0.032	0.67	0.0047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 219-SS-2 ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID: P1300816 CAS Sample ID: P1300816-013		
Test Code:	EPA TO-15 SIM	Date Collected: 2/21/13		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13		
Analyst:	Wida Ang	Date Analyzed: 3/7/13		
Sample Type: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 0.25 Liter(s)		
Container ID:	AS00182			
	Initial Pressure (psig): 0.02 Final Pre	essure (psig): 3.67		
		Canister Dilution Factor: 1.25		

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.049	
75-35-4	1,1-Dichloroethene	ND	0.13	ND	0.032	
156-60-5	trans-1,2-Dichloroethene	0.41	0.13	0.10	0.032	
156-59-2	cis-1,2-Dichloroethene	ND	0.13	ND	0.032	
79-01-6	Trichloroethene	0.31	0.13	0.057	0.023	
127-18-4	Tetrachloroethene	7.5	0.13	1.1	0.018	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 219-SS-3 ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID: P1300816 CAS Sample ID: P1300816-014
Test Code:	EPA TO-15 SIM	Date Collected: 2/21/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Analyst:	Wida Ang	Date Analyzed: 3/7/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.50 Liter(s)
Test Notes:		
Container ID:	AS00310	
	Initial Pressure (psig): 0.12 Final Pr	ressure (psig): 3.81
		Canister Dilution Factor: 1.25

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.063	ND	0.024	
75-35-4	1,1-Dichloroethene	ND	0.063	ND	0.016	
156-60-5	trans-1,2-Dichloroethene	ND	0.063	ND	0.016	
156-59-2	cis-1,2-Dichloroethene	ND	0.063	ND	0.016	
79-01-6	Trichloroethene	1.3	0.063	0.24	0.012	
127-18-4	Tetrachloroethene	0.97	0.063	0.14	0.0092	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	156-IA-4-BL	CAS Project ID: P1300816
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P1300816-015
Test Code:	EPA TO-15 SIM	Date Collected: 2/22/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 2/28/13
Analyst:	Wida Ang	Date Analyzed: 3/6/13
Sample Type: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Container ID:	AS00199	
	Initial Pressure (psig): -0.03 Final Pressure (psi	ig): 3.75
		Canister Dilution Factor: 1.26

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.032	ND	0.012	
75-35-4	1,1-Dichloroethene	ND	0.032	ND	0.0079	
156-60-5	trans-1,2-Dichloroethene	ND	0.032	ND	0.0079	
156-59-2	cis-1,2-Dichloroethene	ND	0.032	ND	0.0079	
79-01-6	Trichloroethene	ND	0.032	ND	0.0059	
127-18-4	Tetrachloroethene	0.077	0.032	0.011	0.0046	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

- - - -

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1300816
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P130305-MB
Test Code:	EPA TO-15 SIM	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 3/5/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.025	ND	0.0098	
75-35-4	1,1-Dichloroethene	ND	0.025	ND	0.0063	
156-60-5	trans-1,2-Dichloroethene	ND	0.025	ND	0.0063	
156-59-2	cis-1,2-Dichloroethene	ND	0.025	ND	0.0063	
79-01-6	Trichloroethene	ND	0.025	ND	0.0047	
127-18-4	Tetrachloroethene	ND	0.025	ND	0.0037	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.		
Client Sample ID:	Method Blank	CAS Project ID: P1300816	
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P130306-MB	
Test Code:	EPA TO-15 SIM	Date Collected: NA	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: NA	
Analyst:	Wida Ang	Date Analyzed: 3/6/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:			

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.025	ND	0.0098	
75-35-4	1,1-Dichloroethene	ND	0.025	ND	0.0063	
156-60-5	trans-1,2-Dichloroethene	ND	0.025	ND	0.0063	
156-59-2	cis-1,2-Dichloroethene	ND	0.025	ND	0.0063	
79-01-6	Trichloroethene	ND	0.025	ND	0.0047	
127-18-4	Tetrachloroethene	ND	0.025	ND	0.0037	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP VI Study - Tyndall AFB / 3585/3669

CAS Project ID: P1300816

Test Code:EPA TO-15 SIMInstrument ID:Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19Analyst:Wida AngSample Type:6.0 L Summa Canister(s)Test Notes:Test Notes:

Date(s) Collected: 2/20 - 2/22/13 Date(s) Received: 2/28/13 Date(s) Analyzed: 3/5 - 3/7/13

Client Sample ID	CAS Sample ID	1,2-Dichloroethane-d4 % Recovered	Toluene-d8 % Recovered	Bromofluorobenzene % Recovered	Acceptance Limits	Data Qualifier
Method Blank	P130305-MB	97	100	106	70-130	
Method Blank	P130306-MB	100	101	98	70-130	
Lab Control Sample	P130305-LCS	99	99	107	70-130	
Lab Control Sample	P130306-LCS	99	100	99	70-130	
156-IA-1	P1300816-001	98	101	99	70-130	
156-IA-2	P1300816-002	97	100	94	70-130	
156-IA-3	P1300816-003	97	101	97	70-130	
219-AA-1	P1300816-004	97	101	99	70-130	
219-AA-1	P1300816-004DUP	99	101	99	70-130	
219-IA-1	P1300816-005	95	100	104	70-130	
219-IA-3	P1300816-006	96	101	100	70-130	
156-IA-4-NP	P1300816-007	96	102	99	70-130	
156-IA-5-NP	P1300816-008	99	105	95	70-130	
156-SS-1	P1300816-009	96	105	96	70-130	
156-SS-2	P1300816-010	90	99	92	70-130	
156-SS-3	P1300816-011	97	102	97	70-130	
219-SS-1	P1300816-012	100	103	96	70-130	
219-SS-2	P1300816-013	101	106	82	70-130	
219-SS-3	P1300816-014	98	101	73	70-130	
156-IA-4-BL	P1300816-015	98	103	96	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	Lab Control Sample	CAS Project ID: P1300816
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P130305-LCS
Test Code:	EPA TO-15 SIM	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 3/05/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
75-01-4	Vinyl Chloride	4.00	3.19	80	56-117	
75-35-4	1,1-Dichloroethene	4.36	3.52	81	62-113	
156-60-5	trans-1,2-Dichloroethene	4.04	3.11	77	61-111	
156-59-2	cis-1,2-Dichloroethene	4.28	3.30	77	63-112	
79-01-6	Trichloroethene	3.96	3.04	77	58-113	
127-18-4	Tetrachloroethene	3.80	3.12	82	60-111	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	Lab Control Sample	CAS Project ID: P1300816
Client Project ID:	ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Sample ID: P130306-LCS
Test Code:	EPA TO-15 SIM	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 3/06/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount µg/m³	Result µg/m³	% Recovery	Acceptance Limits	Data Qualifier
75-01-4	Vinyl Chloride	4.00	3.18	80	56-117	
75-35-4	1,1-Dichloroethene	4.36	3.58	82	62-113	
156-60-5	trans-1,2-Dichloroethene	4.04	3.15	78	61-111	
156-59-2	cis-1,2-Dichloroethene	4.28	3.33	78	63-112	
79-01-6	Trichloroethene	3.96	3.04	77	58-113	
127-18-4	Tetrachloroethene	3.80	3.00	79	60-111	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 219-AA-1 ESTCP VI Study - Tyndall AFB /	3585/3669		AS Project ID: P AS Sample ID: P	21300816 21300816-004DUP
Test Code: Instrument ID:	EPA TO-15 SIM Tekmar AUTOCAN/Agilent 5975C	inert/7890A/MS19	_	ate Collected: 2 ate Received: 2	
Analyst:	Wida Ang		D	ate Analyzed: 3	/6/13
Sample Type: Test Notes: Container ID:	6.0 L Summa Canister AS00341		Volume	e(s) Analyzed:	1.00 Liter(s)
Container ID.	Initial Pressure (psig):	-3.12	Final Pressure (psig):	3.50	
				Canister I	Dilution Factor: 1.57
			Duplicate		
CAS #	Compound	Sample Result	Sample Result	Average %	6 RPD RPD Data Limit Oualifier

		μg/m²	ppov	µg/m ^s	ppov	μg/ms		LIIIIIt	Quanner
75-01-4	Vinyl Chloride	ND	ND	ND	ND	-	-	25	
75-35-4	1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
156-60-5	trans-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
156-59-2	cis-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
79-01-6	Trichloroethene	ND	ND	ND	ND	-	-	25	
127-18-4	Tetrachloroethene	ND	ND	ND	ND	-	-	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP VI Study - Tyndall AFB / 3585/3669

CAS Project ID: P1300816

Method Blank Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Lab File ID: 03051334.D
Analyst:	Wida Ang	Date Analyzed: 3/05/13
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 23:20
Test Notes:		

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P130305-LCS	03051335.D	23:52
156-IA-1	P1300816-001	03051340.D	07:10
156-IA-2	P1300816-002	03051341.D	07:43
156-IA-3	P1300816-003	03051342.D	08:15
219-AA-1	P1300816-004	03051343.D	08:47
219-AA-1 (Lab Duplicate)	P1300816-004DUP	03051344.D	09:19
219-IA-1	P1300816-005	03051345.D	09:51
219-IA-3	P1300816-006	03051346.D	10:24
156-IA-4-NP	P1300816-007	03051347.D	10:57
156-IA-5-NP	P1300816-008	03051348.D	11:29
156-SS-1	P1300816-009	03051349.D	12:01
156-SS-2	P1300816-010	03051350.D	12:34
156-SS-3	P1300816-011	03051351.D	13:07
219-SS-1	P1300816-012	03051352.D	13:39
156-IA-4-BL	P1300816-015	03051355.D	16:14

219-SS-2

03061318.D

09:40

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Project ID:	GSI Environmental Inc. ESTCP VI Study - Tyndall AFB / 3585/3669	CAS Project ID	9: P1300816
	Method Blank Summary	7	
Test Code: Instrument ID: Analyst: Sample Type: Test Notes:	EPA TO-15 SIM Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19 Wida Ang 6.0 L Summa Canister(s)	Lab File ID Date Analyzed Time Analyzed	
Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample 219-SS-3	P130306-LCS P1300816-014	03061305.D 03061316.D	19:50 08:09

P1300816-013

RESULTS OF ANALYSIS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP VI Study - Tyndall AFB / 3585/3669

CAS Project ID: P1300816

Internal Standard Area and RT Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Lab File ID: 03051332.D
Analyst:	Wida Ang	Date Analyzed: 3/5/13
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 22:14
Test Notes:		

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	59632	11.66	246745	13.40	27518	17.09
	Upper Limit	83485	11.99	345443	13.73	38525	17.42
	Lower Limit	35779	11.33	148047	13.07	16511	16.76
	Client Sample ID						
01	Method Blank	59530	11.66	243742	13.41	27667	17.09
02	Lab Control Sample	60103	11.66	250192	13.40	27840	17.09
03	156-IA-1	66682	11.65	279416	13.40	32769	17.09
04	156-IA-2	64825	11.66	276641	13.40	31874	17.09
05	156-IA-3	63874	11.66	272688	13.40	32519	17.09
06	219-AA-1	63890	11.65	273069	13.40	32084	17.09
07	219-AA-1 (Lab Duplicate)	61616	11.65	278003	13.40	33030	17.09
08	219-IA-1	61631	11.66	256625	13.40	29557	17.09
09	219-IA-3	62201	11.65	260120	13.40	30924	17.09
10	156-IA-4-NP	63527	11.66	268633	13.40	32561	17.09
11	156-IA-5-NP	63520	11.66	276155	13.41	34052	17.09
12	156-SS-1	60341	11.66	256493	13.41	34419	17.09
13	156-SS-2	66494	11.66	272563	13.41	33185	17.09
14	156-SS-3	65624	11.67	277989	13.41	33982	17.09
15	219-SS-1	65859	11.66	287746	13.41	35714	17.09
16	156-IA-4-BL	65583	11.66	281342	13.40	35185	17.09
17							

18

19 20

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

RESULTS OF ANALYSIS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP VI Study - Tyndall AFB / 3585/3669

CAS Project ID: P1300816

Internal Standard Area and RT Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Lab File ID: 03061302.D
Analyst:	Wida Ang	Date Analyzed: 3/6/13
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 18:13
Test Notes:		

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	64786	11.66	276779	13.40	32082	17.09
	Upper Limit	90700	11.99	387491	13.73	44915	17.42
	Lower Limit	38872	11.33	166067	13.07	19249	16.76
	Client Sample ID						
01	Method Blank	64670	11.66	271639	13.41	31480	17.09
02	Lab Control Sample	65455	11.66	274873	13.40	31913	17.09
03	219-SS-3	66099	11.66	278647	13.41	43029	17.09
04	219-SS-2	65278	11.66	267574	13.41	39092	17.09
05							
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

20

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

Response Factor Report MS19

Method Path : J:\MS19\METHODS\
Method File : X19022213.M
Title : EPA T0-15 per SOP VOA-T015 (CASS T0-15/GC-MS)
Last Update : Mon Feb 25 07:18:53 2013 Response Via : Initial Calibration

Calibration Files

1000 = 02221319.D500 =02221318.D 100 = 02221317.D50 =02221316.D 20K =02221322.D 10 =02221314.D 20 =02221315.D 2500=02221320.D 9999=02221321.D

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{c} \text{c} \text{c} \text{c} \text{c} \text{c} \text{c} \text$	Compound	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 20	50	100	500	1000	2500	9999	2 0 K	Avg 	%RSD
0.0000.4330.4170.4130.4250.4350.44117.91.7861.7131.5311.4611.5791.5291.4191.3551.58711.411.2030.8980.8540.8760.8660.7860.7860.88815.00.7080.6790.5200.4700.4390.3760.479211.61.2541.1671.0571.1201.1261.0751.1971.521861.2541.1671.0571.1201.1261.0751.1071.152861.2511.4651.1791.1821.2901.2871.2131.1921.1971.3111.6711.4651.1821.2901.2871.2131.1971.31110.331.6491.4481.5781.2571.2211.83319.251.6491.4301.1821.2551.2691.56817.751.6491.4301.1821.2651.1581.2571.2561.6381.6491.4301.1821.2651.7261.39319.251.6491.4301.1831.2651.7261.73919.2681.5171.3321.1921.1561.1581.2551.6481.7291.5171.3321.1921.3721.1441.0921.26817.731.9021.7761.7391.1221.1561.7297.331.5171.3321.1921.3721.216	loromethane.	• • •	L L L L L L L L L L L L L L L L L L L		L T S L L S L L S L L S L L S L L S L L S L L S L L S L L S L L S L L S L L S						00	L.
$ \begin{array}{c} 1.786 \ 1.713 \ 1.531 \ 1.461 \ 1.579 \ 1.529 \ 1.419 \ 1.355 \ 1.587 \ 11.4 \\ 1.203 \ 0.617 \ 0.550 \ 0.495 \ 0.495 \ 0.786 \ 0.786 \ 0.786 \ 0.563 \ 0.591 \ 0.610 \ 12.4 \\ 0.670 \ 0.523 \ 0.495 \ 0.495 \ 0.495 \ 0.594 \ 1.589 \ 1.565 \ 1.691 \ 7.5 \\ 1.254 \ 1.167 \ 1.057 \ 1.120 \ 1.126 \ 1.079 \ 1.111 \ 1.089 \ 1.152 \ 8.6 \\ 1.251 \ 1.4687 \ 1.179 \ 1.182 \ 1.129 \ 1.1213 \ 1.197 \ 1.311 \ 10.3 \\ 1.671 \ 1.405 \ 1.182 \ 1.291 \ 1.213 \ 1.197 \ 1.201 \ 10.3 \\ 1.671 \ 1.405 \ 1.182 \ 1.291 \ 1.287 \ 1.213 \ 1.197 \ 1.311 \ 10.3 \\ 1.671 \ 1.405 \ 1.182 \ 1.279 \ 1.287 \ 1.213 \ 1.197 \ 1.311 \ 10.3 \\ 1.671 \ 1.405 \ 1.182 \ 1.291 \ 1.287 \ 1.213 \ 1.197 \ 1.311 \ 10.3 \\ 1.649 \ 1.443 \ 1.551 \ 1.287 \ 1.213 \ 1.197 \ 1.311 \ 10.3 \\ 1.649 \ 1.482 \ 1.550 \ 1.653 \ 1.574 \ 1.287 \ 1.287 \ 1.580 \ 1.635 \ 8.6 \\ 1.95 \ 1.653 \ 1.729 \ 1.957 \ 1.201 \ 1.977 \ 1.311 \ 10.3 \\ 1.649 \ 1.482 \ 1.565 \ 1.729 \ 1.726 \ 1.729 \ 1.951 \ 1.255 \ 1.393 \ 1.952 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.729 \ 1.720 \ 1.653 \ 1.729 \ 1.729 \ 1.729 \ 1.720 \ 1.653 \ 1.729 \ 1.729 \ 1.720 \ 1.653 \ 1.729 \ 1.729 \ 1.720 \ 1.653 \ 1.729 \ 1.720 \ 1.653 \ 1.729 \ 1.720 \ 1.653 \ 1.729 \ 1.720 \ 1.72$	hloromethane		109.0	0.48	.41	• 4 • 4	.44	 	.42	.40	 14 14	0. C
0.708 0.617 0.598 0.605 0.496 0.788 0.768 0.561 0.619 12.4 0.679 0.550 0.665 0.499 0.538 0.556 0.563 0.610 12.4 1.254 1.167 1.057 1.120 1.126 1.079 1.111 1.089 1.152 8.6 1.687 1.179 1.182 1.291 1.287 1.589 1.565 1.691 8.6 1.671 1.405 1.182 1.290 1.287 1.213 1.197 1.311 10.3 1.671 1.405 1.182 1.574 1.257 1.234 1.251 1.386 19.5 1.671 1.423 1.182 1.578 1.577 1.202 1.234 1.251 1.386 19.5 1.649 1.643 1.556 1.578 1.265 1.218 1.257 1.256 1.393 19.2 1.649 1.430 1.183 1.281 1.265 1.218 1.257 1.256 1.393 19.2 1.649 1.430 1.183 1.281 1.265 1.218 1.257 1.256 1.393 19.2 1.649 1.430 1.183 1.281 1.265 1.218 1.257 1.256 1.393 19.2 1.649 1.430 1.183 1.281 1.265 1.218 1.257 1.256 1.393 19.2 1.649 1.430 1.192 1.192 1.156 1.118 1.144 1.099 1.268 1.777 1.902 1.776 1.550 1.678 1.658 1.648 1.706 1.707 1.821 11.0 1.902 1.776 1.550 1.051 3.951 3.855 3.733 3.957 9.27 1.902 0.999 0.997 0.990 0.956 0.935 0.973 0.932 0.977 2.9 1.902 1.777 1.321 1.922 1.389 1.379 1.438 1.422 1.360 7.3 1.902 0.235 0.239 0.217 0.214 0.210 0.215 0.216 0.228 10.5 0.244 0.315 0.239 0.303 0.305 0.339 0.3319 0.377 0.525 0.238 0.0182 0.207 0.218 0.379 0.389 0.367 10.5 0.244 0.315 0.288 0.217 0.214 0.210 0.215 0.216 0.228 10.5 0.244 0.312 0.286 0.314 0.351 0.367 0.329 0.367 12.0 0.245 0.288 0.208 0.201 0.216 0.319 0.367 12.0 0.245 0.288 0.201 0.216 0.214 0.219 0.379 0.389 0.367 12.0 0.245 0.288 0.201 0.291 0.912 0.219 0.319 1.56 0.245 0.228 0.198 0.211 0.914 0.349 0.367 0.233 9.56 0.244 0.931 0.951 0.924 0.913 0.976 0.938 0.319 0.56 0.245 0.228 0.201 0.214 0.216 0.219 0.219 0.219 0.216 0.228 0.310 0.201 0.228 0.319 0.56 0.245 0.228 0.198 0.212 0.201 0.216 0.319 0.367 0.201 0.201 0.219 0.367 0.201 0.201 0.201 0.219 0.367 0.201	Vinyl Chloride 1.90	1.9	9 1.78	1.71	. 5 . 5 . 1	.46	.57	.52	.41	.35	. 50 0	1.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	thane 0.75	0.75	.70	0.61	о 10 10 10 10	. 60	 000	. 53	.52	. 50.	.61	2.4.
$ \begin{array}{c} 1.853 \ 1.738 \ 1.588 \ 1.681 \ 1.675 \ 1.594 \ 1.589 \ 1.565 \ 1.691 \ 7.5 \\ 1.254 \ 1.167 \ 1.057 \ 1.179 \ 1.182 \ 1.139 \ 1.111 \ 1.089 \ 1.152 \ 8.6 \\ 1.671 \ 1.423 \ 1.182 \ 1.290 \ 1.287 \ 1.251 \ 1.281 \ 1.251 \ 1.386 \ 19.5 \\ 1.828 \ 1.264 \ 1.182 \ 1.274 \ 1.257 \ 1.201 \ 1.887 \ 1.258 \ 1.97 \ 1.311 \ 10.3 \\ 1.649 \ 1.433 \ 1.182 \ 1.274 \ 1.257 \ 1.261 \ 1.386 \ 19.5 \\ 1.635 \ 8.73 \ 2.941 \ 2.386 \ 8.7 \\ 3.009 \ 2.886 \ 2.503 \ 2.735 \ 2.705 \ 2.794 \ 2.847 \ 2.941 \ 2.836 \ 6.3 \\ 1.653 \ 1.76 \ 1.265 \ 1.274 \ 1.257 \ 1.256 \ 1.393 \ 19.5 \\ 1.649 \ 1.430 \ 1.182 \ 1.265 \ 1.274 \ 1.265 \ 1.278 \ 1.257 \ 1.256 \ 1.393 \ 19.2 \\ 1.669 \ 1.430 \ 1.182 \ 1.265 \ 1.776 \ 1.707 \ 1.821 \ 112. \\ 1.902 \ 1.776 \ 1.265 \ 1.776 \ 1.766 \ 1.707 \ 1.821 \ 112. \\ 1.902 \ 1.777 \ 1.821 \ 1.102 \ 1.777 \ 1.821 \ 112. \\ 1.902 \ 1.776 \ 1.776 \ 1.766 \ 1.707 \ 1.821 \ 1.109 \ 1.268 \ 1.779 \ 1.269 \ 1.779 \ 1.269 \ 1.779 \ 1.268 \ 1.779 \ 1.268 \ 1.779 \ 1.268 \ 1.779 \ 1.269 \ 1.779 \ 1.269 \ 1.779 \ 1.269 \ 1.779 \ 1.260 \ 1.281 \ 1.441 \ 1.099 \ 1.268 \ 1.779 \ 1.779 \ 1.779 \ 1.260 \ 1.281 \ 1.192 \ 1.118 \ 1.144 \ 1.099 \ 1.268 \ 1.779 \ 1.779 \ 1.779 \ 1.260 \ 1.260 \ 1.260 \ 1.260 \ 1.260 \ 1.260 \ 1.260 \ 1.779 \ 1.779 \ 1.779 \ 1.260 \ 1.779 \ 1.779 \ 1.779 \ 1.260 \ 1.779 \ 1.770 \ 1$				0.67	.52	.49	.47	.43	.37	.37	.47	1.6
$\begin{array}{c} 1.254 & 1.167 & 1.057 & 1.126 & 1.079 & 1.111 & 1.083 & 1.152 \\ 1.671 & 1.467 & 1.182 & 1.257 & 1.257 & 1.234 & 1.251 & 1.311 & 10.3 \\ 1.671 & 1.423 & 1.182 & 1.274 & 1.257 & 1.202 & 1.234 & 1.251 & 1.386 & 19.5 \\ 1.881 & 1.649 & 1.536 & 1.578 & 1.551 & 1.499 & 1.580 & 1.635 & 8.7 \\ 3.009 & 2.886 & 2.503 & 2.735 & 2.705 & 2.794 & 2.847 & 2.941 & 2.836 & 6.3 \\ 1.649 & 1.430 & 1.183 & 1.281 & 1.265 & 1.218 & 1.257 & 1.256 & 1.393 & 19.2 \\ 1.649 & 1.430 & 1.183 & 1.281 & 1.265 & 1.218 & 1.257 & 1.256 & 1.393 & 19.2 \\ 1.649 & 1.430 & 1.183 & 1.281 & 1.265 & 1.218 & 1.257 & 1.256 & 1.393 & 19.2 \\ 1.649 & 1.430 & 1.183 & 1.281 & 1.265 & 1.218 & 1.257 & 1.256 & 1.393 & 19.2 \\ 1.006 & 0.999 & 0.997 & 0.990 & 0.956 & 0.935 & 0.973 & 0.932 & 0.977 & 2.9 \\ 1.902 & 1.776 & 1.550 & 1.678 & 1.668 & 1.648 & 1.766 & 1.706 & 1.707 & 1.821 & 11.0 \\ 1.902 & 1.776 & 1.550 & 1.678 & 1.668 & 1.648 & 1.706 & 1.658 & 1.729 & 7.3 \\ 1.902 & 1.776 & 1.550 & 1.678 & 1.668 & 1.648 & 1.706 & 1.658 & 1.729 & 7.3 \\ 1.902 & 1.776 & 1.550 & 1.678 & 1.668 & 1.648 & 1.706 & 1.658 & 1.729 & 7.3 \\ 1.902 & 1.776 & 1.550 & 1.678 & 1.668 & 1.648 & 1.706 & 1.658 & 1.729 & 7.3 \\ 0.344 & 0.315 & 0.239 & 0.3305 & 0.3305 & 0.326 & 0.329 & 0.319 & 7.7 \\ 0.255 & 0.442 & 0.373 & 0.3305 & 0.3305 & 0.326 & 0.329 & 0.319 & 7.7 \\ 0.255 & 0.442 & 0.373 & 0.3305 & 0.3305 & 0.326 & 0.329 & 0.319 & 7.7 \\ 0.255 & 0.442 & 0.373 & 0.305 & 0.201 & 0.215 & 0.216 & 0.228 & 10.5 \\ 0.389 & 0.354 & 0.286 & 0.341 & 0.351 & 0.360 & 0.379 & 0.363 & 0.416 & 21.1 \\ 0.258 & 0.286 & 0.241 & 0.231 & 0.231 & 0.231 & 0.223 & 9.56 \\ 0.245 & 0.248 & 0.212 & 0.214 & 0.207 & 0.215 & 0.233 & 9.56 & 0.233 & 9.56 & 0.233 & 9.56 & 0.234 & 0.311 & 0.561 & 0.231 & 0.523 & 0.241 & 0.931 & 0.941 & 0.311 & 15.6 & 0.244 & 0.931 & 0.931 & 0.931 & 0.936 & 0.334 & 0.301 & 0.223 & 0.233 & 0.244 & 0.931 & 0.931 & 0.931 & 0.924 & 0.931 & 0.931 & 0.931 & 0.931 & 0.931 & 0.931 & 0.931 & 0.931 & 0.931 & 0.223 & 0.233 & 0.231 & 0.221 & 0.2214 & 0.2216 & 0.231 & 0.233 & 0.233 & 0.231 & 0.931 & 0.931 & 0$	ichlorofluo	<u>о</u> ,	0 U 0 U	1.73	100 100	00 r 9 r	.67	.50	т 100 г	.56	.69	7.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,1-Dichloroet 1.36 ethvlene Chlo	.36	-CZ - T	1.168 1.68	.17 7	1 1 2	1.12	.07	11.	.07	.20	0 .
$ \begin{array}{c} 1.671 & 1.423 & 1.182 & 1.274 & 1.257 & 1.202 & 1.587 & 1.580 & 1.635 & 8.7 \\ 1.828 & 1.648 & 1.536 & 1.578 & 1.551 & 1.489 & 1.587 & 1.580 & 1.635 & 8.7 \\ 3.009 & 2.886 & 2.503 & 2.735 & 2.705 & 2.794 & 2.847 & 2.941 & 2.836 & 6.3 \\ 1.649 & 1.430 & 1.183 & 1.281 & 1.265 & 1.218 & 1.257 & 1.256 & 1.393 & 19.2 \\ 2.076 & 1.882 & 1.659 & 1.776 & 1.709 & 1.653 & 1.707 & 1.821 & 11.0 \\ 1.006 & 0.999 & 0.997 & 0.990 & 0.956 & 0.935 & 0.973 & 0.932 & 0.977 & 2.9 \\ 1.517 & 1.332 & 1.109 & 1.192 & 1.156 & 1.118 & 1.144 & 1.099 & 1.268 & 17.7 \\ 1.902 & 1.776 & 1.550 & 1.678 & 1.688 & 1.648 & 1.706 & 1.658 & 1.729 & 7.3 \\ 4.718 & 3.881 & 4.021 & 3.951 & 3.825 & 3.733 & 3.569 & 3.957 & 9.2 \\ 1.381 & 1.337 & 1.192 & 1.372 & 1.389 & 1.379 & 1.438 & 1.422 & 1.360 & 5.2 \\ 0.344 & 0.315 & 0.235 & 0.201 & 0.214 & 0.210 & 0.215 & 0.216 & 0.228 & 10.5 \\ 0.344 & 0.315 & 0.238 & 0.305 & 0.305 & 0.336 & 0.3319 & 7.7 \\ 0.255 & 0.442 & 0.373 & 0.305 & 0.305 & 0.326 & 0.329 & 0.319 & 7.7 \\ 0.255 & 0.442 & 0.374 & 0.361 & 0.211 & 0.215 & 0.216 & 0.222 & 14.1 \\ 0.255 & 0.442 & 0.286 & 0.341 & 0.351 & 0.326 & 0.3329 & 0.367 & 12.0 \\ 0.289 & 0.235 & 0.292 & 0.208 & 0.201 & 0.215 & 0.217 & 0.222 & 14.1 \\ 0.255 & 0.442 & 0.374 & 0.351 & 0.367 & 0.339 & 0.367 & 0.326 & 0.336 & 0.367 & 0.202 \\ 0.245 & 0.228 & 0.188 & 0.212 & 0.214 & 0.201 & 0.219 & 0.217 & 0.223 & 0.416 & 0.201 \\ 0.245 & 0.228 & 0.198 & 0.212 & 0.214 & 0.207 & 0.219 & 0.367 & 0.336 & 0.367 & 0.202 & 0.245 & 0.246 & 0.331 & 0.246 & 0.331 & 0.536 & 0.336 & 0.367 & 0.202 & 0.202 & 0.202 & 0.202 & 0.202 & 0.202 & 0.202 & 0.202 & 0.202 & 0.202 & 0.202 & 0.203 & 0.201 & 0.202 & 0.203 & 0.367 & 0.203 & 0.0367 & 0.203 & 0.0367 & 0.203 & 0.0367 & 0.203 & 0.0367 & 0.203 & 0.0367 & 0.202 & 0.202 & 0.202 & 0.214 & 0.201 & 0.201 & 0.201 & 0.201 & 0.201 & 0.203 & 0.0367 & 0.203 & 0.091 & 0.931 & 0.936 & 0.338 & 0.033 & 0.0367 & 0.202 & 0.202 & 0.202 & 0.202 & 0.204 & 0.915 & 0.943 & 0.946 & 0.933 & 0.936 & 0.201 & 0.203 & 0.936 & 0.203 & 0.936 & 0.203 & 0.203 & 0.203 & 0.203 & 0.203 $	ichlorotrifl 1.52	.52	1.50	1.40	.18	.29	.28	.21	.19	.19	.31	0.3
$\begin{array}{c} 1.828 \ 1.648 \ 1.536 \ 1.578 \ 1.551 \ 1.489 \ 1.587 \ 1.587 \ 1.635 \ 8.7 \\ 3.009 \ 2.886 \ 2.503 \ 2.735 \ 2.705 \ 2.794 \ 2.847 \ 2.941 \ 2.836 \ 6.3 \\ 1.902 \ 1.430 \ 1.183 \ 1.281 \ 1.265 \ 1.218 \ 1.257 \ 1.256 \ 1.393 \ 19.2 \\ 2.076 \ 1.882 \ 1.659 \ 1.776 \ 1.776 \ 1.779 \ 1.821 \ 11.0 \\ 1.006 \ 0.999 \ 0.997 \ 0.997 \ 0.997 \ 0.973 \ 0.972 \ 0.977 \ 2.9 \\ 1.517 \ 1.332 \ 1.109 \ 1.192 \ 1.156 \ 1.118 \ 1.144 \ 1.099 \ 1.268 \ 1777 \ 2.9 \\ 1.77 \ 1.821 \ 1170 \\ 1.517 \ 1.332 \ 1.199 \ 1.192 \ 1.156 \ 1.118 \ 1.144 \ 1.099 \ 1.268 \ 1777 \ 2.9 \\ 1.77 \ 1.332 \ 1.192 \ 1.192 \ 1.156 \ 1.156 \ 1.118 \ 1.144 \ 1.099 \ 1.268 \ 1777 \ 2.9 \\ 1.381 \ 1.337 \ 1.192 \ 1.372 \ 1.389 \ 1.563 \ 1.766 \ 1.268 \ 1.729 \ 7.3 \\ 1.381 \ 1.337 \ 1.192 \ 1.372 \ 1.389 \ 1.561 \ 3.733 \ 3.569 \ 3.957 \ 9.2 \\ 1.381 \ 1.337 \ 1.192 \ 1.372 \ 1.389 \ 1.379 \ 1.448 \ 1.726 \ 1.268 \ 1.729 \ 7.3 \\ 0.260 \ 0.235 \ 0.209 \ 0.217 \ 0.214 \ 0.214 \ 0.216 \ 0.228 \ 1.729 \ 7.3 \\ 0.244 \ 0.315 \ 0.209 \ 0.217 \ 0.214 \ 0.217 \ 0.216 \ 0.228 \ 10.5 \\ 0.260 \ 0.235 \ 0.379 \ 0.344 \ 0.379 \ 0.349 \ 0.367 \ 0.319 \ 7.7 \\ 0.252 \ 0.182 \ 0.200 \ 0.214 \ 0.217 \ 0.216 \ 0.228 \ 10.5 \\ 0.225 \ 0.214 \ 0.217 \ 0.214 \ 0.217 \ 0.216 \ 0.228 \ 10.5 \\ 0.226 \ 0.237 \ 0.228 \ 0.319 \ 0.367 \ 10.5 \\ 0.228 \ 0.326 \ 0.329 \ 0.367 \ 0.228 \ 0.319 \ 0.216 \ 0.228 \ 10.5 \\ 0.245 \ 0.228 \ 0.214 \ 0.200 \ 0.214 \ 0.201 \ 0.228 \ 0.319 \ 0.267 \ 0.218 \ 0.223 \ 0.267 \ 0.223 \ 0.267 \ 0.223 \ 0.267 \ 0.223 \ 0.267 \ 0.223 \ 0.267 \ 0.223 \ 0.556 \ 0.223 \ 0.256 \ 0.223 \ 0.245 \ 0.223 \ 0.238 \ 0.231 \ 0.223 \ 0.238 \ 0.231 \ 0.223 \ 0.238 \ 0.231 \ 0.223 \ 0.238 \ 0.231 \ 0.223 \ 0.231 \ 0.223 \ 0.231 \ 0.223 \ 0.231 \ 0.223 \ 0.231 \ 0.223 \ 0.231 \ 0.223 \ 0.231 \ 0.223 \ 0.231 \ 0.223 \ 0.231 \ 0.223 \ 0.231 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.233 \ 0.234 \ 0.233 \ 0.234 \ 0.233 \ 0.234 \ 0.233 \ 0.233 \ 0.233 \ 0.234 \ 0.233 \ 0.233 \ 0.234 \ 0.233 \ 0.$	ans-1,2-Dich 1.98	.98	1.67	1.42	.18	.27	.25	.20	.23	.25	.38	9.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l-Dichloroet 1.91	16.	.82	1.64	.53	.57	.55	.48	.58	.58	.63	8.7
$\begin{array}{c} 0.076 & 1.882 & 1.450 & 1.706 & 1.707 & 1.821 & 11.0 \\ 0.076 & 1.882 & 1.659 & 1.776 & 1.709 & 1.653 & 1.706 & 1.707 & 1.821 & 11.0 \\ 0.006 & 0.999 & 0.997 & 0.990 & 0.956 & 0.935 & 0.973 & 0.932 & 0.977 & 2.9 \\ 0.02 & 1.776 & 1.550 & 1.678 & 1.688 & 1.648 & 1.706 & 1.658 & 1.729 & 7.3 \\ 4.718 & 3.881 & 4.021 & 3.951 & 3.825 & 3.733 & 3.569 & 3.957 & 9.2 \\ 3.81 & 1.337 & 1.192 & 1.372 & 1.389 & 1.379 & 1.438 & 1.422 & 1.360 & 5.2 \\ 3.84 & 0.357 & 0.209 & 0.217 & 0.214 & 0.210 & 0.215 & 0.216 & 0.228 & 10.5 \\ 3.44 & 0.315 & 0.209 & 0.217 & 0.214 & 0.210 & 0.215 & 0.319 & 7.7 \\ 525 & 0.442 & 0.373 & 0.305 & 0.305 & 0.349 & 0.359 & 0.319 & 7.7 \\ 525 & 0.442 & 0.373 & 0.374 & 0.363 & 0.349 & 0.359 & 0.319 & 7.7 \\ 525 & 0.286 & 0.202 & 0.208 & 0.201 & 0.217 & 0.222 & 14.1 \\ 255 & 0.286 & 0.202 & 0.208 & 0.201 & 0.219 & 0.237 & 12.0 \\ 389 & 0.354 & 0.286 & 0.212 & 0.214 & 0.216 & 0.323 & 0.3416 & 21.1 \\ 255 & 0.286 & 0.202 & 0.208 & 0.201 & 0.219 & 0.237 & 12.0 \\ 389 & 0.286 & 0.202 & 0.201 & 0.219 & 0.319 & 0.367 & 1356 \\ 245 & 0.228 & 0.198 & 0.212 & 0.214 & 0.207 & 0.215 & 0.219 & 0.223 & 14.1 \\ 389 & 0.931 & 0.951 & 0.924 & 0.915 & 0.924 & 0.943 & 0.976 & 0.938 & 1.9 \\ \end{array}$	chyl tert-Bu 3.10	.10	00.	2.88	20	.73	.70	66.	. 84	.94 1	. 83	6.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	loroform 2.21) () ()	₹0.		е 1 1 1 0 1 0 1 0	. 77	0 Z .	100	07.	, 7 U	, 00 1 00 1 02	, U , U , U
$\begin{array}{c} 517 \ 1.332 \ 1.109 \ 1.156 \ 1.116 \ 1.144 \ 1.099 \ 1.268 \ 1.729 \ 7.3 \\ 4.776 \ 1.550 \ 1.678 \ 1.688 \ 1.648 \ 1.706 \ 1.658 \ 1.729 \ 7.3 \\ 4.718 \ 3.881 \ 4.021 \ 3.951 \ 3.825 \ 3.733 \ 3.569 \ 3.957 \ 9.2 \\ 3.957 \ 9.2 \\ .381 \ 1.337 \ 1.192 \ 1.372 \ 1.389 \ 1.379 \ 1.438 \ 1.422 \ 1.360 \ 5.2 \\ .366 \ 0.235 \ 0.209 \ 0.217 \ 0.214 \ 0.210 \ 0.215 \ 0.329 \ 0.319 \ 7.7 \\ .260 \ 0.235 \ 0.209 \ 0.217 \ 0.214 \ 0.210 \ 0.215 \ 0.329 \ 0.319 \ 7.7 \\ .344 \ 0.315 \ 0.283 \ 0.305 \ 0.303 \ 0.305 \ 0.326 \ 0.329 \ 0.319 \ 7.7 \\ .525 \ 0.442 \ 0.373 \ 0.374 \ 0.363 \ 0.349 \ 0.359 \ 0.319 \ 7.7 \\ .525 \ 0.442 \ 0.373 \ 0.374 \ 0.363 \ 0.349 \ 0.359 \ 0.363 \ 0.416 \ 21.1 \\ .253 \ 0.236 \ 0.379 \ 0.379 \ 0.379 \ 0.363 \ 0.319 \ 7.7 \\ .253 \ 0.286 \ 0.202 \ 0.202 \ 0.208 \ 0.201 \ 0.217 \ 0.222 \ 14.1 \\ .254 \ 0.319 \ 0.217 \ 0.222 \ 14.1 \\ .297 \ 0.286 \ 0.364 \ 0.319 \ 0.367 \ 0.363 \ 0.367 \ 12.0 \\ .245 \ 0.228 \ 0.198 \ 0.212 \ 0.214 \ 0.201 \ 0.215 \ 0.219 \ 0.217 \ 0.222 \ 14.1 \\ .56 \ .245 \ 0.228 \ 0.198 \ 0.212 \ 0.294 \ 0.941 \ 0.215 \ 0.219 \ 0.213 \ 9.5 \\ .940 \ 0.931 \ 0.951 \ 0.921 \ 0.921 \ 0.921 \ 0.938 \ 0.364 \ 0.301 \ 15.6 \\ .940 \ 0.931 \ 0.951 \ 0.921 \ 0.921 \ 0.923 \ 0.364 \ 0.301 \ 15.6 \\ .940 \ 0.931 \ 0.951 \ 0.921 \ 0.921 \ 0.923 \ 0.364 \ 0.301 \ 15.6 \\ .940 \ 0.931 \ 0.921 \ 0.921 \ 0.921 \ 0.921 \ 0.923 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.301 \ 15.6 \\ .940 \ 0.931 \ 0.931 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.938 \ 0.367 \ 0.938 \ 0.364 \ 0.938 \ 0.367 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.938 \ 0.364 \ 0.938 \ 0.938 \ 0.966 \ 0.938 \ 0.938 \ 0.966 \ 0.938 \ 0.938 \ 0.966 \ 0.938 \ 0.938 \ 0.966 \ 0.938 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.966 \ 0.938 \ 0.9$	2-Dichloroet 1.00	.00	.00	0.99	.99	.99	.95	.93	.97	.93	.97	2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,2-Dichloroet 1.74	.74	.51	1.33	.10	.19	.15	TT.	.14	.09	.26	7.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,1,1-Trichlor1.95	.95	.90	1.77	. 55	.67	.68	.64	.70	. 65	.72	7.3
$\begin{array}{c} .381 1.337 1.192 1.372 1.389 1.379 1.438 1.422 1.360 5.2 \\$	enzene			4.71	80 80 80	.02	00	. 82	.73	20	О	9.2
ISTDISTDISTDISTD	arbon Tetrach 1.33		α 	Ι.33	.19	. 37	Ω		.43	.42	. 36	5.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Eluorobenzen	•	 		- IST	(1	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,2-Dichloropr 0.27	0.27	.26	0.23	.20	.21	21	.21	.21	.21	.22	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	romodichlorom 0.36	0.36	.34	0.31	.28	.30	.30	.30	.32	.32	.31	7.7
.253 0.230 0.182 0.202 0.208 0.201 0.219 0.217 0.222 14.1 .389 0.354 0.286 0.341 0.351 0.360 0.379 0.389 0.367 12.0 .297 0.286 0.202 0.274 0.298 0.314 0.349 0.364 0.301 15.6 .245 0.228 0.198 0.212 0.214 0.207 0.215 0.219 0.223 9.5 .940 0.931 0.951 0.924 0.915 0.924 0.943 0.976 0.938 1.9	richloroethene 0.59	.59	.52	0.44	.37	.37	.36	.34	.35	.36	.41	
.389 0.354 0.286 0.341 0.351 0.360 0.379 0.389 0.367 12.0 .297 0.286 0.202 0.274 0.298 0.314 0.349 0.364 0.301 15.6 .245 0.228 0.198 0.212 0.214 0.207 0.215 0.219 0.223 9.5 .940 0.931 0.951 0.924 0.915 0.924 0.943 0.976 0.938 1.9	,4-Dioxane 0.28	.28	.25	0.23	.18	.20	.20	.20	.21	.21	.22	4.1
.297 0.286 0.202 0.274 0.298 0.314 0.349 0.364 0.301 15.6 .245 0.228 0.198 0.212 0.214 0.207 0.215 0.219 0.223 9.5 .940 0.931 0.951 0.924 0.915 0.924 0.943 0.976 0.938 1.9	is-1,3-Dichlo0.44	.44	• 38 • 3	0.35	. 28	.34	. 35	.36	.37	8 8	.36	2.0
0.245 0.228 0.198 0.212 0.214 0.207 0.215 0.219 0.223 9.5 0.940 0.931 0.951 0.924 0.915 0.924 0.943 0.976 0.938 1.9	rans-1,3-Dich 0.32	.32	0.29	0.28	.20	.27	. 29	Ч М	.34	.36	. 30	5.6
U. 44 U. 43 L. U. 43 L. U. 47 L. U. 47 U. 47 U. 44 J. U. 47 U. 43 U. 43 U. 44 J. U. 47 D. T. 4	,1,2-Trichlor0.26	. 26	0.24	0.22	с I С I С I	. 27	C7 C	. 20	.21	12.	. 22	о, С.
	oluene-d8 (SSZ) 0.94	. Y 4	U.Y4	. 93	U	ע ג	ч Ч	Y	. 44	. y	U	U

X19022213.M Wed Mar 06 06:08:30 2013

Page: 1

Response Factor Report MS19

11.40 13.24 1 13.58 7.93 8.68 10.61 7.97 8.15 15.92 .20 .35 .41 .57 .24 .61 13. 12. 13 10 16 \sim Ц Ц ĒIJ Ш 1.159 0.327 0.460 8.485 3.638 7.007 5.054 4.712 7.206 6.701 7.509 .189 1.084 0.931 1.442 \sim 0.328 4.401 0.971 .498 .850 .965 1.075 0.442 7.560 0.806 3.665 6.039 6.091 5.814 1.521 4 9 \sim 1.069 0.317 0.430 6.961 1.053 4.569 3.847 545 .106 8.240 0.863 6.486 6.243 1.629 4 .094 .0 ப \sim 0.299 0.418 .077 .307 .449 3.915 .762 .340 8.578 .223 .023 1.058 0.899 .652 7.089 -4 9 9 6 4 H \sim .857
 1.505
 1.281
 1.091
 1.109
 1.081

 0.372
 0.332
 0.258
 0.297
 0.302

 0.521
 0.472
 0.431
 0.443
 0.431
 .095 .942 .099 .752 .359 .091 .944 .988 .826 .148 [-. 3 8 . TO-15/GC-MS) [, ---| ∞ 0 4 4 9 \sim 9 \sim 4 4.865 7.474 1.077 8.708 0.902 060. 3.761 .705 7.059 6.852 7.161 1.308 4 \sim - ISTD 3.182 4.564 7.010 0.957 4.387 7.418 .960 0.828 6.525 6.290 1.156 6.566 VOA-TO15 (CASS \sim 3.460 8.309 1.085 8.460 0.987 4.813 5.369 .198 7.734 7.984 7.172 1.420 8.980 1.069 1.180 8.265 6.540 4.764 8.921 9.757 ..779 9.369 3.493 575 с. С .439 9.563 1.084 .733 .261 σ SOP : J:\MS19\METHODS' .64 . : 00 \sim 4 \sim EPA TO-15 per : X19022213.M 1,2-Dibromoethane Tetrachloroethene Bromofluoroben... 1,2-Dichlorobe... - d5 1,1,2,2-Tetrac.. 1,3-Dichlorobe.. • 1,4-Dichlorobe.. Hexachlorobuta 1,2,4-Trichlor Chlorobenzene Chlorobenzene Ethylbenzene Naphthalene m,p-Xylene Range o-Xylene Toluene Path File 0 UF Out Method Method Title E-1 E-1 E-1 || 31) 32) 33) (#) 335) 355) 355) 355) 355) 40) 40) 41) 42) 43) 45) 46) 44)

35 of 39

X19022213.M Wed Mar 06 06:08:30 2013

Page: 2

 Data File: I:\MS19\DATA\2013_03\05\03051332.D
 Operator: WA

 Acq On : 5 Mar 2013 22:14
 Operator: WA

 Sample : 500pg TO-15SIM CCV STD
 Inst : MS19

 Misc : S25-02221305/S25-02071307 (3/8)
 ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 06 06:07:52 2013 Quant Method : J:\MS19\METHODS\X19022213.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 25 07:18:53 2013 Response via : Initial Calibration DataAcq Meth:TO15SIM2.M

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Are	ea%	Dev(min)
1 I 2 T 4 T 5 T 7 T 7 T 7 T 7 T 10 T 11 T 13 T 14 T 15 T 16 S 17 19 T 20 T 21	Bromochloromethane (IS1) Dichlorodifluoromethane (CF Chloromethane Vinyl Chloride Bromomethane Chloroethane Acetone Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Trichlorotrifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane-d4 (SS1) 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride	1.000 2.293 0.441 1.587 0.888 0.610 0.479 1.691 1.152 1.201 1.311 1.386 1.635 2.836 1.393 1.821 0.977 1.268 1.729 3.957 1.360	1.000 1.892 0.367 1.273 0.738 0.500 0.429 1.378 0.946 0.976 1.073 1.060 1.370 2.369 1.086 1.487 0.970 0.995 1.439 3.334 1.155	0.0 17.5 16.8 19.8 16.9 18.0 10.4 18.5 17.9 18.7 18.2 23.5 16.2 16.5 22.0 18.3 0.7 21.5 16.8 15.7 15.1	98 83 87 85 82 85 83 81 85 83 81 85 83 81 85 83 82 82 81 82 82 82 81 82 83 81 85 83 81 85 83 81 85 83 81 85 83 81 85 83 81 85 83 81 85 82 85 83 85 85 83 85 85 83 85 85 83 85 85 83 85 85 83 85 85 85 85 85 85 85 85 85 85 85 85 85	$\begin{array}{c} -0.01\\ 0.03\\ 0.04\\ 0.03\\ 0.02\\ 0.02\\ 0.00\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.01\\ 0.00\\ 0.01\\ 0.00\\ -0.01\\ 0.00\\ -0.01\\ 0.00\\ 0.$
22 I 23 T 24 T 25 T 26 T 27 T 28 T 29 T 30 S 31 T 32 T 32 T 33 T 34 I 35 T	1,4-Difluorobenzene (IS2) 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene-d8 (SS2) Toluene 1,2-Dibromoethane Tetrachloroethene Chlorobenzene-d5 (IS3) Chlorobenzene		1.000 0.185 0.262 0.309 0.171 0.301 0.251 0.180 0.933 0.953 0.255 0.380 1.000 6.323	0.0 18.9 17.9 25.7 23.0 18.0 16.6 19.3 0.5 17.8 22.0 17.4 0.0 15.8	95 81 82 79 81 84 87 81 96 82 82 82 82	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
36 T 37 T 38 T	Ethylbenzene m,p-Xylene o-Xylene	10.836 8.485 9.314	0.323 9.177 7.437 8.015	15.8 15.3 12.4 13.9	0⊥ 81 82 85	0.00 0.00 0.00

X19022213.M Wed Mar 06 06:08:15 2013

36 of 39 Rol 3/6/13

Evaluate Continuing Calibration Report					
Data File: I:\MS19\DATA\2013_03\05 Acq On : 5 Mar 2013 22:14 Sample : 500pg TO-15SIM CCV STD Misc : S25-02221305/S25-020713 ALS Vial : 15 Sample Multiplier:		Operator Inst			
Quant Time: Mar 06 06:07:52 2013 Quant Method : J:\MS19\METHODS\X19022213.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 25 07:18:53 2013 Response via : Initial Calibration DataAcq Meth:TO15SIM2.M Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%					
Compound		CRF %Dev A	.rea% Dev(min)		
 42 T 1,4-Dichlorobenzene 43 T 1,2-Dichlorobenzene 44 T 1,2,4-Trichlorobenzene 	4.712 5 7.007 5 7.206 5 6.701 5 5.054 4 14.424 11	.114-8.5.98814.5.99916.7.75814.1.14418.0.36121.2	100 0.00 81 0.00 80 0.00 80 0.00 84 0.00 83 0.00		

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

Evaluate Continuir	ng Calibr	ration Re	eport			
Data File: I:\MS19\DATA\2013_03\06\03061302.D Acq On : 6 Mar 2013 18:13 Operator: WA Sample : 500pg TO-15SIM CCV STD Inst : MS19 Misc : S25-02221305/S25-02251303 (3/26) ALS Vial : 15 Sample Multiplier: 1						
Quant Time: Mar 07 06:20:06 2013 Quant Method : J:\MS19\METHODS\X19022213.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Mon Feb 25 07:18:53 2013 Response via : Initial Calibration DataAcq Meth:TO15SIM2.M						
Min. RRF : 0.000 Min. Rel. An Max. RRF Dev : 30% Max. Rel. An			R.T. Dev	0.33	min	
Compound			%Dev A			
6 T Chloroethane 7 T Acetone 8 T Trichlorofluoromethane	1.000 2.293 0.441 1.587 0.888 0.610 0.479 1.691 1.152 1.201 1.311 1.386 1.635 2.836 1.393 1.821 0.977 1.268	1.000 2.131 0.436 1.488 0.835 0.588 0.480 1.548 1.114 1.159 1.188 1.245 1.633 2.845 1.263 1.722 1.017 1.162 1.649	$\begin{array}{c} 0.0\\ 7.1\\ 1.1\\ 6.2\\ 6.0\\ 3.6\\ -0.2\\ 8.5\\ 3.3\\ 3.5\\ 9.4\\ 10.2\\ 0.1\\ -0.3\\ 9.3\\ 5.4\\ -4.1\\ 8.4\\ 4.6\\ 1.7\end{array}$	106 101 112 108 101 103 98 106 104 98 104 110 111 105 103	$\begin{array}{c} -0.01\\ 0.03\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.00\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.01\\ 0.00\\ -0.01\\ 0.00\\ -0.01\\ 0.00\\ -0.01\\ 0.00\\ 0$	
<pre>22 I 1,4-Difluorobenzene (IS2) 23 T 1,2-Dichloropropane 24 T Bromodichloromethane 25 T Trichloroethene 26 T 1,4-Dioxane 27 T cis-1,3-Dichloropropene 28 T trans-1,3-Dichloropropene 29 T 1,1,2-Trichloroethane 30 S Toluene-d8 (SS2) 31 T Toluene 32 T 1,2-Dibromoethane 33 T Tetrachloroethene</pre>	0.228	0.217 0.299 0.351 0.199 0.351 0.287 0.204 0.943 1.084 0.280	6.3 15.6 10.4 4.4 4.7 8.5 -0.5 6.5	107 105 100 106 110 112 103 109 104 101 99	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
<pre>34 I Chlorobenzene-d5 (IS3) 35 T Chlorobenzene 36 T Ethylbenzene 37 T m,p-Xylene 38 T o-Xylene</pre>	7.509 10.836 8.485	1.000 6.773 10.071 8.135 8.691	9.8 7.1	111 101 104 104 107	0.00	

X19022213.M Thu Mar 07 06:20:40 2013

38 of 39 RA 3/7/13

Page: 1

Evaluate Continu	ing Calib	ration Re	port		
Data File: I:\MS19\DATA\2013_03\06 Acq On : 6 Mar 2013 18:13 Sample : 500pg TO-15SIM CCV STD Misc : S25-02221305/S25-02251 ALS Vial : 15 Sample Multiplier	303 (3/26		Operator Inst	: WA : MS1	19
Quant Time: Mar 07 06:20:06 2013 Quant Method : J:\MS19\METHODS\X19 Quant Title : EPA TO-15 per SOP Vo QLast Update : Mon Feb 25 07:18:53 Response via : Initial Calibration DataAcq Meth:TO15SIM2.M	0A-T015 (2013			0 3 3	emin
Max. RRF Dev : 30% Max. Rel. A			K.I. Dev	0.52	
Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
<pre>39 T 1,1,2,2-Tetrachloroethane 40 S Bromofluorobenzene (SS3) 41 T 1,3-Dichlorobenzene 42 T 1,4-Dichlorobenzene 43 T 1,2-Dichlorobenzene 44 T 1,2,4-Trichlorobenzene 45 T Naphthalene</pre>	6.701	4.695 6.258 6.305 6.009 4.401		107 99 98 98 104	0.00 0.00 0.00 0.00 0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

A Columbia Analytical Services ^{2655 Park Center Drive, Suite A} Air - Chain of Custody Record & Analytical Service Request

ď Page_

Simi Valley, Cajifornia 93065 Phone (805) 526-7161				Requested Turnaround Time in Business Days (Surcharges) please circle	ound Time in Busin	iess Days (Surc	harges) please	circle		CAS Project No.	No.
Fax (805) 526-7270				1 Day (100%) 2 Day	(100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-Standard	() 4 Day (35%)	5 Day (25%) 10	stand			
									CAS Contact:		
Company Name & Address (Reporting Information)	Information)			Project Name	CO VI Study - TUNALI AFB	- Tyndal	I AFB		Analvsis Method	Method	
Fought Nortalk	24-(000) 7098			Project Number	3669				`		
Annager Hugh / Lu	Beekler	0		P.O. # / Billing Information	mation				~~~		Comments
Phone 715-367-4775	Fax								N	$\overline{)}$	e.g. Actual Preservative or
Email Address for Result Reporting	gsinatic	, com		Sampler (Print & Sign) $\top E \mathcal{M}$					ורקרי	19,2	specific instructions
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code #- FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume	Ŋ	S	
156-44-1		2/21/13	16:05		~	, married and the second	· · · ·	JW 025	7	~	11 Tedlar
156-IA-4		2/21/13	16:05		y y and a second		· · · · · ·	CONM	7		IL Tedler (N
156- IN-4-BL		1126/2	4:04		ł		4	1-201	2	2	1 L Tedlar
Report Tier Levels - please select Tier I - Results (Default if not specified)			Tier III (Results	Tier III (Results + QC & Calibration Summaries)	mmaries)			EDD required	Yes	No	Project Requirements
Tier II (Results + QC Summaries)			Tier IV (Data V	Tier IV (Data Validation Package) 10% Surcharge	Surcharge			Type:	Y		(MRLs, QAPP)
Relinquished by: (Signature)	neh		Date: 21/22/13	Time: 11:000	Received by: (Signature)	ure) E, War	9		Date: 2/25/13	Time:	
Relinquished by: (Signature)			Date:	Time:	Received by: (Signature)	ure)			Date:	Time:	Cooler / Blank Temperature °C
					na na mana na m	MANAGE FRANKERSKARTER AFTER	n bi ka ka ka manana na manana na kanana kanana ka			(*************************************	COC AID DEVLO 44

OU #677 and 677a ER-201025, Tndall AFB

analyses completed:

C CSIA -- tubes 3/14/2013 C CSIA -- water 3/15/2013 Cl CSIA -- tubes 3/20/2013 Cl CSIA -- water 3/06/2013

Sample ID	average TCE δ13C	average TCE δ37Cl
156-SS-3	-9.6	6.3
219-SS-3	-1.9	6.3
219-IA-3 P1	-29.0	-3.5
219-IA-3 P2	-28.8	-3.2
MW-8	13.8	10.1
MW-20S	-18.4	4.7

Note: For Sample ID MW-8, the actual well sampled was MW-5.

Run #	Sample ID	Tube #	Split X	ΤCE δ13C	notes
9350	156-SS-3	C16_M17855	splitless	-9.8	
9352	156-SS-3	C16_M16576	1:1	-9.4	
9354	219-SS-3	C16_M17784	1:3		peak too small
9355	219-SS-3	C16_M17784 (via M17789)	splitless	-1.6	
9363	219-SS-3	C16_M17751	splitless	-2.2	
9357	219-IA-3 P1	C16_M17686	1:25		peak too large
9359	219-IA-3 P1	C16_M17787 (via M17860)	1:80	-28.7	
9362	219-IA-3 P1	C16_M17787 (via M17718)	1:80	-29.3	
9358	210 14 2 52	C1C M17022	1.25		
9358 9361	219-IA-3 P2	C16_M17822	1:25 1:80	-28.8	peak too large
9361	219-IA-3 P2	C16_M17688 (via M17856)	1:80	-28.8	
Run #	Sample ID	Water volume (mL)	Split X	TCE δ13C	
9365	MW-8	25	splitless	13.8	
9366	MW-20S	8	splitless	-18.3	
9367	MW-20S	4	splitless	-18.4	
Chan danda					
Standards Run #	Sample ID	Tube #	Split X	ΤCE δ13C	
9348	TCE stand. 100 ng		splitless	-30.5	
	-	C16_J03738		-30.5	
9349 9351	TCE stand. 100 ng TCE stand. 100 ng	C16_M17859	splitless splitless	-30.0	
9351	TCE stand. 100 ng	C16_M17825	splitless	-30.3	
9353 9356	TCE stand. 100 ng	C16_J03664	splitless	-30.2	
9356 9360	TCE stand. 100 ng	C16_J03729	splitless	-30.0	
9300	TCE Stand. 100 ng	C16_M16543	spintess	-29.0	
9364	TCE stand. 100 ng	aqueous by PT	splitless	-30.2	
9370	TCE stand. 100 ng	aqueous by PT	splitless	-30.0	
	-				
			average	-30.1	
			stdev	0.3	
			off-line δ 13C of the stand.	-30.8	
			correction (x)	-0.7	

Sample ID	average TCE δ13C
156-SS-3	-9.6
219-SS-3	-1.9
219-IA-3 P1	-29.0
219-IA-3 P2	-28.8
MW-8	13.8
MW-20S	-18.4

Run #	Sample ID	Tube #	Split X	TCE δ37CI	Sample ID	average TCE δ37CI
3298	156-SS-3	C16-M17818 (via C16_M17758)	1:1	6.1	156-SS-3	6.3
3302	156-SS-3	C16-M17818 (via C16_M17859)	splitless	6.4	219-SS-3	6.3
					219-IA-3 P1	-3.5
3293	219-SS-3	C16_M17717	splitless	6.3	219-IA-3 P2	-3.2
					MW-8	10.1
3289	219-1A-3 Pump 1	C16_M17787 (via C16_M16587)	1:13	-3.5	MW-20S	4.7
3305	219-1A-3 Pump 1	C16_M17787 (via C16_M17857)	1:15	-3.5		
3291	219-1A-3 Pump 2	C16_M17688 (via C16_M17786)	1:14	-2.9		
3292	219-1A-3 Pump 2	C16_M17688 (via C16_J03132)	1:14	-2.9		
3306	219-1A-3 Pump 2	C16_M17688 (via C16_M17723)	1:15	-3.7		

Run #	Sample ID	Water volume (mL)	Split X	TCE 637CI
3274	MW8	26	splitless	10.0
3281	MW8	25	splitless	10.2
3283	MW8	25	splitless	10.1
3275	MW20S	3	splitless	4.5
3282	MW20S	3	splitless	4.8

Standards	3			
Run #	Sample ID	Tube #	Split X	TCE δ37CI
3286	TCE stand 70 ng	C16_J05145	splitless	3.1
3287	TCE stand 70 ng	C16_M17690	splitless	3.4
3288	TCE stand 70 ng	C16_M16587	splitless	3.4
3290	TCE stand 70 ng	C16_K08451	splitless	3.2
3294	TCE stand 70 ng	C16_M17783	splitless	3.2
3295	TCE stand 70 ng	C16_K08458	splitless	3.4
3296	TCE stand 70 ng	C16_K08449	splitless	3.0
3301	TCE stand 70 ng	C16_M17750	splitless	3.5
3303	TCE stand 70 ng	C16_J03150	splitless	3.4
3304	TCE stand 70 ng	C16_M17683	splitless	3.2
3268	TCE stand 70 ng	aqueous by PT	splitless	3.1
3269	TCE stand 70 ng	aqueous by PT	splitless	3.3
3270	TCE stand 70 ng	aqueous by PT	splitless	3.5
3272	TCE stand 70 ng	aqueous by PT	splitless	3.3
3277	TCE stand 70 ng	aqueous by PT	splitless	3.5
3278	TCE stand 70 ng	aqueous by PT	splitless	3.1
3279	TCE stand 70 ng	aqueous by PT	splitless	3.1
3280	TCE stand 70 ng	aqueous by PT	splitless	3.4
3284	TCE stand 70 ng	aqueous by PT	splitless	3.4
3285	TCE stand 70 ng	aqueous by PT	splitless	3.3
			average	3.3
			stdev	0.2

off-line δ 37Cl of the stand.	3.3
correction (x)	0.0

OU #677 and 677a ER-201025, Tndall AFB

analyses completed:

C CSIA -- tubes 3/14/2013 C CSIA -- water 3/15/2013 Cl CSIA -- tubes 3/20/2013 Cl CSIA -- water 3/06/2013 reanalyzed Cl CSIA -- 5/23/2013

Sample ID	average TCE δ13C	average TCE δ37Cl
156-SS-3	-9.6	6.3
219-SS-3	-1.9	6.3
219-IA-3 P1	-29.0	-3.5
219-IA-3 P2	-28.8	-3.2
MW-8	13.8	10.1
MW-20S	-18.4	4.7

9350 156-SS-3 C16_M17855 splitless -9.8 9352 156-SS-3 C16_M17784 1:1 -9.4 9354 219-SS-3 C16_M17784 1:3 peak too small 9355 219-SS-3 C16_M17784 1:3 splitless -1.6 9363 219-SS-3 C16_M17780 splitless -2.2 peak too large 9357 219-IA-3 P1 C16_M17787 (via M17860) 1:80 -28.7 9362 219-IA-3 P1 C16_M17787 via M17850) 1:80 -28.7 9361 219-IA-3 P1 C16_M17822 1:25 peak too large 9361 219-IA-3 P2 C16_M17886 (via M17856) 1:80 -28.8 9363 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 9365 MW-8 25 splitless 13.8 9366 MW-20S 8 splitless -18.4 9366 MW-20S 4 splitless -30.5 9340 TCE stand.100 ng C16_M17825 splitless -30.0 9343 TCE stand.	Run #	Sample ID	Tube #	Split X	ΤCE δ13C	notes
9352 156-SS-3 C16_M16576 1:1 -9.4 9354 219-SS-3 C16_M17784 (via M17789) splitless -1.6 9353 219-SS-3 C16_M17784 (via M17789) splitless -1.6 9357 219-IA-3 P1 C16_M17787 (via M17789) splitless -2.2 9357 219-IA-3 P1 C16_M17787 (via M17800) 1:80 -28.7 9352 219-IA-3 P1 C16_M17787 (via M17718) 1:80 -29.3 9358 219-IA-3 P1 C16_M17787 (via M17786) 1:80 -28.8 9358 219-IA-3 P2 C16_M17822 1:80 -28.8 9361 219-IA-3 P2 C16_M17886 (via M17856) 1:80 -28.8 9365 MW-8 25 split X TCE 613C 9366 MW-20S 8 splitless -18.3 9366 MW-20S 8 splitless -30.5 9349 TCE stand.100 ng C16_M17859 splitless -30.0 9351 TCE stand.100 ng C16_M17855 splitless -30.0 9353 TCE stand.100 ng C16_M17825		•		•		notes
Sample ID Yube # Split X TCE 613C 9354 219-SS-3 C16_M17784 (via M17789) splitless -1.6 9363 219-SS-3 C16_M17751 splitless -2.2 9357 219-SS-3 C16_M17780 (via M17789) splitless -2.2 9357 219-IA-3 P1 C16_M17787 (via M17860) 1:80 -28.7 9362 219-IA-3 P1 C16_M17787 (via M17789) 1:80 -28.7 9358 219-IA-3 P1 C16_M17782 (via M17780) 1:80 -28.8 9358 219-IA-3 P2 C16_M17822 1:25 peak too large 9358 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 9358 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 9366 MW-8 25 split X TCE 613C 9367 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -30.5 9348 TCE stand. 100 ng C16_M17825 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitle			-	•		
9355 219-SS-3 C16_M1774 (via M17789) C16_M17751 splitless -1.6 -2.2 9363 219-SS-3 C16_M17751 splitless -2.2 9357 219-IA-3 P1 C16_M17787 (via M17860) 1:80 -28.7 9362 219-IA-3 P1 C16_M17787 (via M17780) 1:80 -28.7 9362 219-IA-3 P1 C16_M17787 (via M17718) 1:80 -29.3 9358 219-IA-3 P2 C16_M17787 (via M17718) 1:80 -28.8 9361 219-IA-3 P2 C16_M17822 1:25 peak too large 9365 MW-8 25 1:80 -28.8 9366 MW-205 8 splitless -18.3 9367 MW-205 4 splitless -18.4 Standards Fun # Sample ID Tube # Split X TCE 613C 9348 TCE stand. 100 ng C16_03738 splitless -30.5 -30.5 9349 TCE stand. 100 ng C16_103729 splitless -30.0 -30.3 -30.3 9353 TCE stand. 100 ng C16_103729	5552	150 55 5	C10_1110570	1.1	5.4	
9363 219-SS-3 C16_M17751 splitless -2.2 9357 219-IA-3 P1 C16_M17686 1:25 peak too large 9359 219-IA-3 P1 C16_M17787 (via M17800) 1:80 -28.7 9362 219-IA-3 P1 C16_M17787 (via M17718) 1:80 -29.3 9358 219-IA-3 P2 C16_M17822 1:25 peak too large 9361 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 9365 MW-8 25 splitless 13.8 9366 MW-20S 8 splitless -18.4 9367 MW-20S 4 splitless -30.5 9367 MW-20S 4 splitless -30.5 9348 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_M17825 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless<	9354	219-SS-3	C16_M17784	1:3		peak too small
Participandi and partindifferent and participandi and participandi and partic	9355	219-SS-3	C16_M17784 (via M17789)	splitless	-1.6	
9359 219-IA-3 P1 C16_M17787 (via M17860) 1:80 -28.7 9362 219-IA-3 P1 C16_M17787 (via M17718) 1:80 -29.3 9358 219-IA-3 P2 C16_M17822 1:25 peak too large 9361 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 9365 MW-3P2 C16_M17688 (via M17856) 1:80 -28.8 9366 MW-20S 8 splitLess 13.8 9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -30.5 9348 TCE stand. 100 ng C16_J03738 splitless -30.5 9349 TCE stand. 100 ng C16_M17859 splitless -30.3 9351 TCE stand. 100 ng C16_M17859 splitless -30.3 9353 TCE stand. 100 ng C16_J03729 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9356 TCE stand. 100 ng C16_M16543 splitless -30.0 9356 TCE stand. 100 ng C16_M	9363	219-SS-3	C16_M17751	splitless	-2.2	
9359 219-IA-3 P1 C16_M17787 (via M17860) 1:80 -28.7 9362 219-IA-3 P1 C16_M17787 (via M17718) 1:80 -29.3 9358 219-IA-3 P2 C16_M17822 1:25 peak too large 9361 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 9365 MW-3P2 C16_M17688 (via M17856) 1:80 -28.8 9366 MW-20S 8 splitLess 13.8 9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -30.5 9348 TCE stand. 100 ng C16_J03738 splitless -30.5 9349 TCE stand. 100 ng C16_M17859 splitless -30.3 9351 TCE stand. 100 ng C16_M17859 splitless -30.3 9353 TCE stand. 100 ng C16_J03729 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9356 TCE stand. 100 ng C16_M16543 splitless -30.0 9356 TCE stand. 100 ng C16_M	9357	219-IA-3 P1	C16 M17686	1:25		peak too large
9358 219-IA-3 P2 C16_M17822 1:25 peak too large 9361 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 Run # Sample ID Water volume (mL) Split X TCE 613C 9365 MW-8 25 splitless 13.8 9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -18.4 Standards Sample ID Tube # Split X TCE 613C 9348 TCE stand. 100 ng C16_J03738 splitless -30.5 9349 TCE stand. 100 ng C16_M17859 splitless -30.0 9353 TCE stand. 100 ng C16_J03728 splitless -30.3 9353 TCE stand. 100 ng C16_J03728 splitless -30.2 9353 TCE stand. 100 ng C16_J03729 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE	9359	219-IA-3 P1	C16_M17787 (via M17860)	1:80	-28.7	-
9361 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 Run # Sample ID Water volume (mL) Split X TCE 613C 9365 MW-8 25 splitless 13.8 9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -18.4 Standards Sample ID Tube # Split X TCE 613C 9348 TCE stand. 100 ng C16_03738 splitless -30.5 9349 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9350 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE stand. 100 ng C16_M16543 splitless -30.0	9362	219-IA-3 P1	C16_M17787 (via M17718)	1:80	-29.3	
9361 219-IA-3 P2 C16_M17688 (via M17856) 1:80 -28.8 Run # Sample ID Water volume (mL) Split X TCE 613C 9365 MW-8 25 splitless 13.8 9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -18.4 Standards Sample ID Tube # Split X TCE 613C 9348 TCE stand. 100 ng C16_03738 splitless -30.5 9349 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9350 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE stand. 100 ng C16_M16543 splitless -30.0	9358	219-IA-3 P2	C16 M17822	1:25		peak too large
9365 MW-8 25 splitless 13.8 9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -18.4 Standards TCE stand. 100 ng C16_103738 splitless -30.5 9348 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9356 TCE stand. 100 ng C16_M16543 splitless -29.6			-		-28.8	
9365 MW-8 25 splitless 13.8 9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -18.4 Standards TCE stand. 100 ng C16_103738 splitless -30.5 9348 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9356 TCE stand. 100 ng C16_M16543 splitless -29.6						
9365 MW-8 25 splitless 13.8 9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -18.4 Standards TCE stand. 100 ng C16_103738 splitless -30.5 9348 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9356 TCE stand. 100 ng C16_M16543 splitless -29.6						
9366 MW-20S 8 splitless -18.3 9367 MW-20S 4 splitless -18.4 Standards Tube # Split X TCE δ13C 9348 TCE stand. 100 ng C16_J03738 splitless -30.5 9349 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9350 TCE stand. 100 ng C16_M16543 splitless -30.0	Run #	•	Water volume (mL)	Split X	TCE δ13C	
9367 MW-20S 4 splitless -18.4 Standards Tube # Split X TCE 613C 9348 TCE stand. 100 ng C16_J03738 splitless -30.5 9349 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03729 splitless -30.2 9350 TCE stand. 100 ng C16_M16543 splitless -30.0	9365	MW-8	25	splitless	13.8	
Standards Fun # Sample ID Tube # Split X TCE δ13C 9348 TCE stand. 100 ng C16_J03738 splitless -30.5 9349 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE stand. 100 ng C16_M16543 splitless -29.6	9366	MW-20S	8	splitless	-18.3	
Run #Sample IDTube #Split XTCE δ13C9348TCE stand. 100 ngC16_J03738splitless-30.59349TCE stand. 100 ngC16_M17859splitless-30.09351TCE stand. 100 ngC16_M17825splitless-30.39353TCE stand. 100 ngC16_J03664splitless-30.29356TCE stand. 100 ngC16_J03729splitless-30.09360TCE stand. 100 ngC16_M16543splitless-29.6	9367	MW-20S	4	splitless	-18.4	
Run #Sample IDTube #Split XTCE δ13C9348TCE stand. 100 ngC16_J03738splitless-30.59349TCE stand. 100 ngC16_M17859splitless-30.09351TCE stand. 100 ngC16_M17825splitless-30.39353TCE stand. 100 ngC16_J03664splitless-30.29356TCE stand. 100 ngC16_J03729splitless-30.09360TCE stand. 100 ngC16_M16543splitless-29.6						
9348TCE stand. 100 ngC16_J03738splitless-30.59349TCE stand. 100 ngC16_M17859splitless-30.09351TCE stand. 100 ngC16_M17825splitless-30.39353TCE stand. 100 ngC16_J03664splitless-30.29356TCE stand. 100 ngC16_J03729splitless-30.09360TCE stand. 100 ngC16_M16543splitless-29.6	Standards					
9349 TCE stand. 100 ng C16_M17859 splitless -30.0 9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE stand. 100 ng C16_M16543 splitless -29.6	Run #	Sample ID	Tube #	Split X	ΤCE δ13C	
9351 TCE stand. 100 ng C16_M17825 splitless -30.3 9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE stand. 100 ng C16_M16543 splitless -29.6		TCE stand. 100 ng	C16_J03738	splitless	-30.5	
9353 TCE stand. 100 ng C16_J03664 splitless -30.2 9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE stand. 100 ng C16_M16543 splitless -29.6	9349	TCE stand. 100 ng	C16_M17859	splitless	-30.0	
9356 TCE stand. 100 ng C16_J03729 splitless -30.0 9360 TCE stand. 100 ng C16_M16543 splitless -29.6	9351	TCE stand. 100 ng	C16_M17825	splitless	-30.3	
9360 TCE stand. 100 ng C16_M16543 splitless -29.6	9353	TCE stand. 100 ng	C16_J03664	splitless	-30.2	
	9356	TCE stand. 100 ng	C16_J03729	splitless	-30.0	
9364 TCE stand 100 ng aqueous by DT splitless -30.2	9360	TCE stand. 100 ng	C16_M16543	splitless	-29.6	
-50-4 reclation too ng adacona by ri spinicas -50.2	9364	TCE stand. 100 ng	aqueous by PT	splitless	-30.2	
9370 TCE stand. 100 ng aqueous by PT splitless -30.0	9370	TCE stand. 100 ng	aqueous by PT	splitless	-30.0	
average -30.1				average	-30.1	
stdev 0.3				stdev	0.3	
off-line δ13C of the stand30.8				off-line δ 13C of the stand.	-30.8	
correction (x) -0.7					50.0	

 Sample ID
 average TCE δ13C

 156-SS-3
 -9.6

-1.9

-29.0

-28.8

219-SS-3

219-IA-3 P1

219-IA-3 P2

MW-8 13.8 MW-20S -18.4

Run #	Sample ID	Tube #	Split X	ΤCE δ37Cl	remarks	Sample ID	average TCE δ37Cl	averages with May 2013
3298	156-SS-3	C16-M17818 (via C16_M17758)	1:1	6.1	Temarks	156-SS-3	6.3	6.3
3258	156-SS-3	C16-M17818 (via C16_M17758) C16-M17818 (via C16_M17859)	splitless	6.4		219-SS-3	6.3	6.3
3583	156-SS-3	C16_M17853	1:2	6.3	analyzed May-22-2013	219-IA-3 P1	-3.5	-3.4
3592	156-SS-3 (split of #3583)	C16_M17853	1:1	6.2	analyzed May-22-2013 analyzed May-23-2013	219-IA-3 P2	-3.2	-3.2
3592	150-55-5 (split 01 #5585)	C10_W17855	1:1	0.2	analyzeu May-23-2015	219-IA-5 P2 MW-8	-5.2	-5.2
3293	219-SS-3	C16_M17717	splitless	6.3		MW-20S	4.7	4.7
3255	215-55-5	CI0_W17717	spiness	0.5		10100-203	4.7	4.7
3289	219-1A-3 Pump 1	C16_M17787 (via C16_M16587)	1:13	-3.5				
3305	219-1A-3 Pump 1	C16_M17787 (via C16_M17857)	1:15	-3.5				
3585	219-1A-3 Pump 1 (split of #3305)	C16_M17787 (via C16_M17855)	1:9	-3.3	analyzed May-22-2013			
3291	219-1A-3 Pump 2	C16_M17688 (via C16_M17786)	1:14	-2.9				
3292	219-1A-3 Pump 2	C16_M17688 (via C16_J03132)	1:14	-2.9				
3306	219-1A-3 Pump 2	C16_M17688 (via C16_M17723)	1:15	-3.7				
3586	219-1A-3 Pump 2 (split of #3306)	C16_M17688 (via C16_M17856)	1:9	-3.3	analyzed May-22-2013			
D	Coursels 1D		6-14 V	705 5370				
Run # 3274	Sample ID MW8	Water volume (mL)	Split X	TCE δ37Cl 10.0				
		26 25	splitless					
3281	MW8		splitless	10.2				
3283	MW8	25	splitless	10.1				
3275	MW20S	3	splitless	4.5				
3282	MW20S	3	splitless	4.8				
Standards Run #	Comple ID	Tube #	Cality V	TCE δ37Cl				
	Sample ID		Split X					
3286 3287	TCE stand 70 ng TCE stand 70 ng	C16_J05145 C16_M17690	splitless splitless	3.1 3.4				
3287	TCE stand 70 ng	C16_M17690 C16_M16587	splitless	3.4				
				3.4				
3290 3294	TCE stand 70 ng TCE stand 70 ng	C16_K08451 C16_M17783	splitless splitless	3.2				
3294	TCE stand 70 ng	C16_K08458	splitless	3.4				
3295	TCE stand 70 ng	C16_K08449	splitless	3.0				
3290				3.5				
3303	TCE stand 70 ng TCE stand 70 ng	C16_M17750 C16_J03150	splitless splitless	3.4				
3304	TCE stand 70 ng	C16_J03150 C16_M17683	splitless	3.4				
5504	TCE Statu 70 fig	C16_W17683	spiritess	5.2				
3268	TCE stand 70 ng	aqueous by PT	splitless	3.1				
3269	TCE stand 70 ng	aqueous by PT	splitless	3.3				
3270	TCE stand 70 ng	aqueous by PT	splitless	3.5				
3272	TCE stand 70 ng	aqueous by PT	splitless	3.3				
3277	TCE stand 70 ng	aqueous by PT	splitless	3.5				
3278	TCE stand 70 ng	aqueous by PT	splitless	3.1				
3279	TCE stand 70 ng	aqueous by PT	splitless	3.1				
3280	TCE stand 70 ng	aqueous by PT	splitless	3.4				
3284	TCE stand 70 ng	aqueous by PT	splitless	3.4				
3285	TCE stand 70 ng	aqueous by PT	splitless	3.3				
			average	3.3				
			stdev	0.2				
			off line \$370 of the start	2.2				
			off-line δ37Cl of the stand. correction (x)	3.3 0.0				
				0.0				

Former Raritan Arsenal Site, New Jersey

LABORATORY REPORT

April 24, 2013

Lila Beckley GSI Environmental Inc. 2211 Norfolk, Suite 1000 Houston, TX 77098

RE: ESTCP VI Study - Raritan / 3585/3669

Dear Lila:

Your report number P1301371 has been amended for the samples submitted to our laboratory on April 2, 2013. The results have been reported down to the Method Detection Limit (MDL) per client request. The revised pages have been indicated by the "Revised Page" footer located at the bottom right of the page.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Sue Anderson Project Manager

Client: GSI Environmental Inc. Project: ESTCP VI Study - Raritan / 3585/3669 Service Request No: P1301371

CASE NARRATIVE

The samples were received intact under chain of custody on April 2, 2013 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed in SIM mode for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

Samples 209-SG-09 (P1301371-008) and 209-IA-09 (P1301371-009) required dilution due to the presence of elevated levels of Methylene Chloride, a non-target analyte. The reporting limits have been adjusted to reflect the dilutions.

The responses for the #3 internal standard in sample CP4-IA-5-NP (P1301371-013) and DUP-1 (P1301371-014) were outside control criteria because of suspected matrix interference. The samples were diluted in an attempt to eliminate the effects of the matrix interference. The results have been reported from the dilutions; therefore, the associated method reporting limits have been elevated accordingly.

The Summa canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of Columbia Analytical Services, Inc. dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

Columbia Analytical Services, Inc. dba ALS Environmental - Simi Valley

Certifications, Accreditations, and Registrations

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L11-203
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2012039
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	494864
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	CA200007
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 12-3
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01527201 2-2
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946
Analyses were per	formed according to our laboratory's NELAP and DoD-ELAP approved qua	ality assurance

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.caslab.com</u>, <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

VOC SIM

DETAIL SUMMARY REPORT

Client: GSI Environmental Inc. Service Request: P1301371 Project ID: ESTCP VI Study - Raritan / 3585/3669 Date Received: 4/2/2013 Time Received: 09:20

Client Sample ID	Lab Code	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	Pf1 (psig)	T0-15 - 1
CP4-AA-1	P1301371-001	Air	3/26/2013	16:42	AS00366	-3.23	3.73	Х
CP4-IA-1	P1301371-002	Air	3/26/2013	16:44	AC01464	-4.22	3.72	Х
CP4-IA-2	P1301371-003	Air	3/26/2013	16:45	AC01662	-1.75	3.69	Х
CP4-IA-3	P1301371-004	Air	3/26/2013	16:30	AS00452	-0.10	3.81	Х
CP4-SG-6	P1301371-005	Air	3/26/2013	15:00	AS00364	-1.37	3.58	Х
CP4-SG-3	P1301371-006	Air	3/26/2013	09:00	AC01810	-1.27	3.62	Х
209-SG-06	P1301371-007	Air	3/27/2013	10:50	AC01785	-2.01	3.61	Х
209-SG-09	P1301371-008	Air	3/27/2013	10:00	AS00370	-1.85	3.63	Х
209-IA-09	P1301371-009	Air	3/27/2013	16:09	AS00288	-3.92	3.69	Х
209-IA-10	P1301371-010	Air	3/27/2013	16:08	AC01788	-3.91	3.77	Х
209-AA-1	P1301371-011	Air	3/27/2013	16:10	AC00791	-3.42	3.76	Х
CP4-IA-5-BL	P1301371-012	Air	3/28/2013	08:45	AC01855	0.55	3.60	Х
CP4-IA-5-NP	P1301371-013	Air	3/28/2013	11:05	AC00389	0.11	3.76	Х
DUP-1	P1301371-014	Air	3/28/2013	00:00	AC01263	0.44	3.58	Х

.

Columbia Analytical Services*	2655 Park Center Drive, Suite A	Simi Valley, California 93065
Ø	2655 Pa	Simi Val

Air - Chain of Custody Record & Analytical Service Request

Page _____ of ____

Simi Valley, California 93065 Phone (805) 526-7161			Romosted Turner	Time in Duci	100 Dave (0		•		
Fax (805) 526-7270			1 Day (100%) 2 Da	1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 40 Day-Standard	less bays (surc 6) 4 Day (35%)	narges) piease 5 Day (25%) オ0	stand	Les Project No.	50.071
Company Name & Address (Reporting Information)	a Information)		Project Name					CAS Contact:	
CSI Enuronmental	L Ch			VT Studu	- Rocitan	C		JUS HYLANSON	
2211 Nortale June	٦.		Project Number)		-			
	0		0000	3664					
1,10 Beckley			P.O. # / Billing Information	rmation				(ć
Phone Phone Phone	Fax							- Her MI	comments e.g. Actual Preservative or
Email Address for Result Reporting	ggi-net, cum		Sampler (Print & Sign) T⊡ M ∕	L-MB				nd- s_s.	specific instructions
Client Sample ID	Laboratory D ID Number Coll	Date Time Collected Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code #- FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Votume		
CP4-AA-1	Dzay3/A	3/26/13 0930-2	12 45 00366	FCA 00151	-29.2	56-	2	<u> </u>	
CP4-TA-1	O.H. W 3/26/13		4 RCDIGG4	04040	-29.3	01-	****	#00mm	
2 CP4-TA-2	3-1.75 3/26/13	13 09 2045	5 Acul662	41200	- 29.3	N			
E- HI- HOU	D-019 5/26/	0/13 1630	A S	1	-29,3				
CP4-59-6	621.353/26/13	13 1500			-29,3	-4.5			
CP4-59-3	E)-1.333/24/13	/13 0900	> Acol810	Ì	-29.3	1			
209-56-06	D-2.08 3/27/13	1/13 1050	> ACONTES		-29,3				
209-59-09	82-146 3/27/13	1/13 1000	0 AS00370	~	- 29.3	5			
209-14-09	Q-295 3/27/13	1/13 1609	7 AS00288	1-204 00686	-29.2	-9.5			
209-14-10	10-345 3A	3/23/13 1608	8 ACO1788	FCA 00 553	-29.2	-9.6			
209-44-1	D-342 3/27	7/13 1610	Aco0 791	FCA 00 109	-29.3	- 8.5			
CP4-IA-5-BL	Dro. 60 3/28/13	113 OB45	- A Co 1 855		-29.2	Ø			
CP4-TA-S-NP	B. 40.09 3/28/13	13 1105	AC00337	ļ	-29.2	D			
Dup-1	(A) 10,12 3/28/	3			-29.1	à	\Rightarrow	- 	
Report Tier Levels - please select Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)	1-1-2-1-1-	Tier III (Res Tier IV (Dal	Tier III (Results + QC & Calibration Summaries) Tier IV (Data Validation Package) 10% Surcharge	mmaries) /// Surcharge	Notes 14	Notes 14 5015 Antread EDD required Cless	EDD require	d (Jes / No	Project Requirements (MRLs, QAPP)
Relinquished by: (Signature)	Lleop	Date/13	5 Time: /700	Received by: (%granta	RA RA	- V - 0		Date / Inme:	1
Relinquished by: (Signature)	<i>A</i>	Date:	Time:	Received by: (Signature)	Þ		ă	1	Cooler / Blank
									COCAR REV 2.11

Columbia Analytical Services*

Δ

Now	v part of the ALS Group	P	Sample Acceptance Ch	eck Form				
Client	: GSI Environmenta	al Inc.	• •	Work order:	P1301371			
Project	ESTCP VI Study	- Raritan / 3585/3669						
-	(s) received on: $4/2$			e opened: <u>4/2/13</u>	by:	MZAN		
			e of this form for custody seals i				dication	of
compliance	e or nonconformity. The	ermal preservation and pH will	only be evaluated either at the re-	equest of the client and/or as re	equired by the metho	od/SOP. <u>Yes</u>	<u>No</u>	<u>N/A</u>
1	Were sample con	tainers properly marked	with client sample ID?			X		
2	Container(s) supp		I I I I I I I I I I I I I I I I I I I			X		
3	Did sample conta	iners arrive in good con	dition?			X		
4	Were chain-of-cu	stody papers used and fi	illed out?			X		
5	Did sample conta	iner labels and/or tags a	gree with custody papers?	,		X		
6	Was sample volu	me received adequate for	r analysis?			X		
7	Are samples withi	n specified holding time	s?			X		
8	Was proper tempe	erature (thermal preserv	ration) of cooler at receipt	adhered to?				X
9	Was a trip blank	received?					X	
10	Were custody sea	ls on outside of cooler/E	Box?				X	
	Lo	ocation of seal(s)?			Sealing Lid?			X
	Were signature an	d date included?						X
	Were seals intact?	2						X
	Were custody seal	ls on outside of sample c	ontainer?				X	
	Lo	ocation of seal(s)?			Sealing Lid?			X
	Were signature an	nd date included?						X
	Were seals intact?	2						X
11	Do containers h	ave appropriate preserv	ation, according to metho	d/SOP or Client specified	l information?			X
	Is there a client in	ndication that the submit	ted samples are pH preser	ved?				X
	Were VOA vials	checked for presence/ab	sence of air bubbles?					X
	Does the client/me	ethod/SOP require that the	ne analyst check the sampl	e pH and <u>if necessary</u> alt	er it?			X
12	Tubes:	Are the tubes capped and	d intact?					X
		Do they contain moistur	e?					X
13	Badges:	Are the badges properly	capped and intact?					X
		Are dual bed badges sep	parated and individually ca	pped and intact?				X
								1

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	-
P1301371-001.01	6.0 L Silonite Can					
P1301371-002.01	6.0 L Ambient Can					
P1301371-003.01	6.0 L Ambient Can					
P1301371-004.01	6.0 L Silonite Can					
P1301371-005.01	6.0 L Silonite Can					
P1301371-006.01	6.0 L Ambient Can					
P1301371-007.01	6.0 L Ambient Can					
P1301371-008.01	6.0 L Silonite Can					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

Client: GSI Environmental Inc.

Now p	art of	the (ALS	Group
-------	--------	-------	-----	-------

Sample Acceptance Check Form

Work order: P1301371

Project: ESTCP VI St		569				
Sample(s) received on:	4/2/13]	Date opened:	4/2/13	by: MZAMORA
Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P1301371-009.01	6.0 L Silonite Can					
P1301371-010.01	6.0 L Ambient Can					
P1301371-011.01	6.0 L Ambient Can					
P1301371-012.01	6.0 L Ambient Can					
P1301371-013.01	6.0 L Ambient Can					
P1301371-014.01	6.0 L Ambient Can					

Explain any discrepancies: (include lab sample ID numbers):

75-35-4

156-60-5

156-59-2

79-01-6

127-18-4

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.							
Client Sample ID:	CP4-AA-1				CAS Project ID:	P130137	1	
Client Project ID:	ESTCP VI Study - Raritan / 3585/3	669			CAS Sample ID:	P130137	1-001	
Test Code:	EPA TO-15 SIM				Date Collected:	3/26/13		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cir	nert/7890A/MS19			Date Received:	4/2/13		
Analyst:	Wida Ang				Date Analyzed:	4/6/13		
Sample Type:	6.0 L Summa Canister			Vol	ume(s) Analyzed:	1.00) Liter(s)
Test Notes:								
Container ID:	AS00366							
	Initial Pressure (psig):	-3.23 Fina	al Pressure	e (psig):	3.73			
					Canister	Dilution	Factor:	1.61
CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	µg∕m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.040	0.0040	ND	0.016	0.0016	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

1,1-Dichloroethene

Trichloroethene

Tetrachloroethene

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

0.057

0.096

ND

ND

ND

0.040

0.040

0.040

0.040

0.040

0.0050

0.018

0.016

0.0093

0.0045

ND

ND

ND

0.011

0.014

0.010

0.010

0.010

0.0075

0.0059

0.0013

0.0045

0.0040

0.0017

0.00067

- - - -

RESULTS OF ANALYSIS

Page 1 of 1

Client Commis ID. CD4 IA 1											
Client Sample ID: CP4-IA-1		CP4-IA-1				CAS Project ID: P1301371					
Client Project ID: ESTCP VI St	udy - Raritan / 3585/3	669				CAS Sample ID:	P130137	1-002			
Test Code: EPA TO-15 S	IM					Date Collected:	3/26/13				
Instrument ID: Tekmar AUTO	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19			Date Received: 4/2/13							
Analyst: Wida Ang						Date Analyzed:	4/6/13				
Sample Type: 6.0 L Summa	Canister				Vol	lume(s) Analyzed:	1.00	Liter(s))		
Test Notes:											
Container ID: AC01464											
]	Initial Pressure (psig):	-4.22	Final Pro	essure	(psig):	3.72					
						Canister	Dilution	Factor:	1.76		
CAS # Compound		Result	Ν	/IRL	MDL	Result	MRL	MDL	Data		
		μg/m ³	μ	g/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier		

		μg/m³	µg/m³	µg/m³	ppbV	ppbV	ppbV Qualifier
75-01-4	Vinyl Chloride	ND	0.044	0.0044	ND	0.017	0.0017
75-35-4	1,1-Dichloroethene	ND	0.044	0.0055	ND	0.011	0.0014
156-60-5	trans-1,2-Dichloroethene	ND	0.044	0.019	ND	0.011	0.0049
156-59-2	cis-1,2-Dichloroethene	ND	0.044	0.017	ND	0.011	0.0044
79-01-6	Trichloroethene	1.3	0.044	0.010	0.25	0.0082	0.0019
127-18-4	Tetrachloroethene	0.30	0.044	0.0049	0.045	0.0065	0.00073

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Page 1 of 1

Client:	GSI Environmental Inc.							
Client Sample ID:	CP4-IA-2				CAS Project ID: I	2130137	1	
Client Project ID:	ESTCP VI Study - Raritan / 3585/366	i9			CAS Sample ID: I	2130137	1-003	
Test Code: Instrument ID:	EPA TO-15 SIM Tekmar AUTOCAN/Agilent 5975Ciner	+/7800 \ /\ /	\$10		Date Collected: 3 Date Received: 4			
	C	U/1090A/IVI	517					
Analyst:	Wida Ang				Date Analyzed: 4			
Sample Type:	6.0 L Summa Canister			Vol	ume(s) Analyzed:	1.00	Liter(s)	
Test Notes:								
Container ID:	AC01662							
	Initial Pressure (psig):	-1.75	Final Pressure	e (psig):	3.69			
					Canister	Dilution	Factor: 1	.42
CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg/m³	µg/m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.036	0.0036	ND	0.014	0.0014	
75-35-4	1,1-Dichloroethene	ND	0.036	0.0044	ND	0.0090	0.0011	
156-60-5	trans-1,2-Dichloroethene	0.018	0.036	0.016	0.0045	0.0090	0.0039	J
156-59-2	cis-1,2-Dichloroethene	ND	0.036	0.014	ND	0.0090	0.0035	
79-01-6	Trichloroethene	2.1	0.036	0.0082	0.39	0.0066	0.0015	
127-18-4	Tetrachloroethene	0.27	0.036	0.0040	0.040	0.0052	0.00059	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

- - - - -

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. CP4-IA-3 ESTCP VI Study - Raritan / 3585/3669	CAS Project ID: P1301371 CAS Sample ID: P1301371-004
Test Code:	EPA TO-15 SIM	Date Collected: 3/26/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	
Analyst:	Wida Ang	Date Analyzed: 4/6/13
Sample Type: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Container ID:	AS00452	
	Initial Pressure (psig): -0.10 Fin	al Pressure (psig): 3.81
		Canister Dilution Factor: 1.27
a . a		

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL Data
		μg/m ³	µg∕m³	$\mu g/m^3$	ppbV	ppbV	ppbV Qualifier
75-01-4	Vinyl Chloride	ND	0.032	0.0032	ND	0.012	0.0012
75-35-4	1,1-Dichloroethene	ND	0.032	0.0039	ND	0.0080	0.00099
156-60-5	trans-1,2-Dichloroethene	ND	0.032	0.014	ND	0.0080	0.0035
156-59-2	cis-1,2-Dichloroethene	ND	0.032	0.012	ND	0.0080	0.0031
79-01-6	Trichloroethene	2.4	0.032	0.0074	0.44	0.0059	0.0014
127-18-4	Tetrachloroethene	0.16	0.032	0.0036	0.024	0.0047	0.00052

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Page 1 of 1

Client:	GSI Environmental Inc.							
Client Sample ID	CP4-SG-6				CAS Project ID:	P130137	1	
Client Project ID	ESTCP VI Study - Raritan / 3585/36	69			CAS Sample ID:	P130137	1-005	
Test Code:	EPA TO-15 SIM				Date Collected:	3/26/13		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cine	ert/7890A/M	IS19		Date Received:	4/2/13		
Analyst:	Wida Ang				Date Analyzed:	4/6/13		
Sample Type:	6.0 L Summa Canister			Volu	ume(s) Analyzed:	1.00) Liter(s)	
Test Notes:					· · ·			
Container ID:	AS00364							
	Initial Pressure (psig):	-1.37	Final Pressure (psig):	3.58			
					Caniste	r Dilution	Factor:	1.37
CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data

CA5 #	Compound	Result	MKL	MDL	Kesult	MKL	MDL	Data
		μg/m³	µg/m³	µg/m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.034	0.0034	ND	0.013	0.0013	
75-35-4	1,1-Dichloroethene	ND	0.034	0.0042	ND	0.0086	0.0011	
156-60-5	trans-1,2-Dichloroethene	0.023	0.034	0.015	0.0058	0.0086	0.0038	J
156-59-2	cis-1,2-Dichloroethene	0.014	0.034	0.013	0.0034	0.0086	0.0034	J
79-01-6	Trichloroethene	15	0.034	0.0079	2.9	0.0064	0.0015	
127-18-4	Tetrachloroethene	7.3	0.034	0.0038	1.1	0.0051	0.00057	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	CP4-SG-3	CAS Project ID: P1301371
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669	CAS Sample ID: P1301371-006
Test Code:	EPA TO-15 SIM	Date Collected: 3/26/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 4/2/13
Analyst:	Wida Ang	Date Analyzed: 4/6/13 & 4/8/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		0.10 Liter(s)
Container ID:	AC01810	
	Initial Pressure (psig): -1.27 Final Pre	ssure (psig): 3.62
		Canister Dilution Factor: 1.36

CAS #	Compound	Result µg/m³	MRL µg/m³	MDL µg/m³	Result ppbV	MRL ppbV	MDL Data ppbV Qualifie	r
75-01-4	Vinyl Chloride	ND	0.034	0.0034	ND	0.013	0.0013	
75-35-4	1,1-Dichloroethene	ND	0.034	0.0042	ND	0.0086	0.0011	
156-60-5	trans-1,2-Dichloroethene	0.30	0.034	0.015	0.076	0.0086	0.0038	
156-59-2	cis-1,2-Dichloroethene	1.1	0.034	0.013	0.28	0.0086	0.0034	
79-01-6	Trichloroethene	93	0.34	0.079	17	0.063	0.015 D	
127-18-4	Tetrachloroethene	12	0.034	0.0038	1.7	0.0050	0.00056	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

Page 1 of 1

Client: Client Sample ID:			CAS Project ID: P1	301371			
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669		CAS Sample ID: P1	301371-007			
Test Code:	EPA TO-15 SIM		Date Collected: 3/2	27/13			
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/	MS19	Date Received: 4/2/13				
Analyst:	Wida Ang		Date Analyzed: 4/6	5/13			
Sample Type:	6.0 L Summa Canister	Vo	lume(s) Analyzed:	1.00 Liter(s)			
Test Notes:			-				
Container ID:	AC01785						
	Initial Pressure (psig): -2.01	Final Pressure (psig):	3.61				
			Canister D	ilution Factor: 1.44			
CAS #	Compound Result			MRL MDL Data			

CA5 #	Compound	Kesuit	MKL	MDL	Result	MKL	MDL	Data
		μg/m³	µg/m³	μg/m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.036	0.0036	ND	0.014	0.0014	
75-35-4	1,1-Dichloroethene	0.028	0.036	0.0045	0.0072	0.0091	0.0011	J
156-60-5	trans-1,2-Dichloroethene	ND	0.036	0.016	ND	0.0091	0.0040	
156-59-2	cis-1,2-Dichloroethene	ND	0.036	0.014	ND	0.0091	0.0036	
79-01-6	Trichloroethene	0.55	0.036	0.0084	0.10	0.0067	0.0016	
127-18-4	Tetrachloroethene	13	0.036	0.0040	1.9	0.0053	0.00059	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 209-SG-09 ESTCP VI Study - Raritan / 3585/3669	CAS Project ID: P1301371 CAS Sample ID: P1301371-008
Test Code:	EPA TO-15 SIM	Date Collected: 3/27/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS	S19 Date Received: 4/2/13
Analyst:	Wida Ang	Date Analyzed: 4/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.20 Liter(s)
Test Notes:		
Container ID:	AS00370	
	Initial Pressure (psig): -1.85	Final Pressure (psig): 3.63
		Canister Dilution Factor: 1.43
C \ S #	Compound Degult	MPI MDI B egult MPI MDI D ete

75-01-4 Vinyl Chloride ND 0.18 0.018 ND 0.070 0.0070 75-35-4 1,1-Dichloroethene 0.050 0.18 0.022 0.013 0.045 0.0056 156-60-5 trans-1,2-Dichloroethene ND 0.18 0.079 ND 0.045 0.020 156-59-2 cis-1,2-Dichloroethene ND 0.18 0.070 ND 0.045 0.018 79-01-6 Trichloroethene 8.1 0.18 0.041 1.5 0.033 0.0077	CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL Data	
75-35-41,1-Dichloroethene0.0500.180.0220.0130.0450.0056156-60-5trans-1,2-DichloroetheneND0.180.079ND0.0450.020156-59-2cis-1,2-DichloroetheneND0.180.070ND0.0450.01879-01-6Trichloroethene8.10.180.0411.50.0330.0077			μg/m³	µg/m³	μg/m³	ppbV	ppbV	ppbV Qualifie	<u>r</u>
156-60-5trans-1,2-DichloroetheneND0.180.079ND0.0450.020156-59-2cis-1,2-DichloroetheneND0.180.070ND0.0450.01879-01-6Trichloroethene8.10.180.0411.50.0330.0077	75-01-4	Vinyl Chloride	ND	0.18	0.018	ND	0.070	0.0070	
156-59-2 cis-1,2-Dichloroethene ND 0.18 0.070 ND 0.045 0.018 79-01-6 Trichloroethene 8.1 0.18 0.041 1.5 0.033 0.0077	75-35-4	1,1-Dichloroethene	0.050	0.18	0.022	0.013	0.045	0.0056 J	
79-01-6 Trichloroethene 8.1 0.18 0.041 1.5 0.033 0.0077	156-60-5	trans-1,2-Dichloroethene	ND	0.18	0.079	ND	0.045	0.020	
	156-59-2	cis-1,2-Dichloroethene	ND	0.18	0.070	ND	0.045	0.018	
127.18.4 Tetrachlaroothana 64 0.18 0.020 0.05 0.026 0.0020	79-01-6	Trichloroethene	8.1	0.18	0.041	1.5	0.033	0.0077	
12/-18-4 Tetrachioroethene 0.4 0.18 0.020 0.95 0.020 0.0050	127-18-4	Tetrachloroethene	6.4	0.18	0.020	0.95	0.026	0.0030	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

Page 1 of 1

Client: Client Sample ID:				CAS Project ID: P1			
Chent Project ID:	ESTCP VI Study - Raritan / 3585/3669			CAS Sample ID: P1	301371-009		
Test Code:	EPA TO-15 SIM		Date Collected: 3/27/13				
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/78	90A/MS19		Date Received: 4/2	2/13		
Analyst:	Wida Ang			Date Analyzed: 4/6/13			
Sample Type:	6.0 L Summa Canister		Volu	me(s) Analyzed:	0.20 Liter(s)		
Test Notes:							
Container ID:	AS00288						
	Initial Pressure (psig): -3.9	2 Final Press	sure (psig):	3.69			
				Canister D	ilution Factor: 1.71		
CAS #		Result MRI	L MDL		MRL MDL Data		

CAS#	Compound	Kesuit	WIKL	MDL	Result	WIKL	MDL	Data
		μg/m³	μg/m³	µg/m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.21	0.021	ND	0.084	0.0084	
75-35-4	1,1-Dichloroethene	0.063	0.21	0.027	0.016	0.054	0.0067	J
156-60-5	trans-1,2-Dichloroethene	ND	0.21	0.094	ND	0.054	0.024	
156-59-2	cis-1,2-Dichloroethene	ND	0.21	0.084	ND	0.054	0.021	
79-01-6	Trichloroethene	ND	0.21	0.050	ND	0.040	0.0092	
127-18-4	Tetrachloroethene	0.073	0.21	0.024	0.011	0.032	0.0035	J

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 209-IA-10 ESTCP VI Study - Raritan / 3585/3669	CAS Project ID: P1301371 CAS Sample ID: P1301371-010
Test Code:	EPA TO-15 SIM	Date Collected: 3/27/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: 4/2/13
Analyst:	Wida Ang	Date Analyzed: 4/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		
Container ID:	AC01788	
	Initial Pressure (psig): -3.91 Fina	al Pressure (psig): 3.77
		Canister Dilution Factor: 1.71
CAS #	Compound Result	MRI MDI. R esult MRI MDI. D ata

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL Data
		μg/m³	µg∕m³	$\mu g/m^3$	ppbV	ppbV	ppbV Qualifier
75-01-4	Vinyl Chloride	ND	0.043	0.0043	ND	0.017	0.0017
75-35-4	1,1-Dichloroethene	ND	0.043	0.0053	ND	0.011	0.0013
156-60-5	trans-1,2-Dichloroethene	ND	0.043	0.019	ND	0.011	0.0047
156-59-2	cis-1,2-Dichloroethene	ND	0.043	0.017	ND	0.011	0.0042
79-01-6	Trichloroethene	0.064	0.043	0.0099	0.012	0.0080	0.0018
127-18-4	Tetrachloroethene	0.058	0.043	0.0048	0.0086	0.0063	0.00071

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Page 1 of 1

Client: Client Sample ID: Client Project ID:	GSI Environmental Inc. 209-AA-1 ESTCP VI Study - Raritan / 3585/3669)			CAS Project ID: P CAS Sample ID: P			
Test Code:	EPA TO-15 SIM				Date Collected: 3/	/27/13		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19				Date Received: 4	/2/13		
Analyst:	Wida Ang				Date Analyzed: 4	/6/13		
Sample Type:	6.0 L Summa Canister			Vol	ume(s) Analyzed:	1.00	Liter(s)	
Test Notes:								
Container ID:	AC00791							
	Initial Pressure (psig): -3	3.42	Final Pressure	e (psig):	3.76			
					Canister I	Dilution	Factor: 1	1.64
CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL I	Data
		μg/m³	µg/m³	μg/m³	ppbV	ppbV	ppbV Qu	alifier
75-01-4	Vinyl Chloride	ND	0.041	0.0041	ND	0.016	0.0016	
75-35-4	1,1-Dichloroethene	ND	0.041	0.0051	ND	0.010	0.0013	
156-60-5	trans-1,2-Dichloroethene	ND	0.041	0.018	ND	0.010	0.0046	
156-59-2	cis-1,2-Dichloroethene	ND	0.041	0.016	ND	0.010	0.0041	
79-01-6	Trichloroethene	0.017	0.041	0.0095	0.0032	0.0076	0.0018	J
127-18-4	Tetrachloroethene	0.042	0.041	0.0046	0.0062	0.0060	0.00068	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

75-35-4

156-60-5

156-59-2

79-01-6

127-18-4

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.							
Client Sample ID:	CP4-IA-5-BL			CAS Project ID: P1301371				
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669			CAS Sample ID: P1301371-012				
Test Code:	EPA TO-15 SIM			Date Collected: 3/28/13				
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cin			Date Received:	4/2/13			
Analyst:	Wida AngDate Analyzed: 4/8/13							
Sample Type:	6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)							
Test Notes:								
Container ID:	AC01855							
	Initial Pressure (psig):	0.55 Fina	al Pressure	(psig):	3.60			
					Canister	Dilution	Factor:	1.20
CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	µg/m³	µg∕m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.030	0.0030	ND	0.012	0.0012	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

1,1-Dichloroethene

Trichloroethene

Tetrachloroethene

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

ND

ND

0.041

0.43

0.066

0.030

0.030

0.030

0.030

0.030

0.0037

0.013

0.012

0.0070

0.0034

ND

ND

0.010

0.080

0.0098

0.0076 0.00094

0.0076 0.0033

0.0076 0.0030

0.0056 0.0013

0.00050

0.0044

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	CP4-IA-5-NP	CAS Project ID: P1301371
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669	CAS Sample ID: P1301371-013
Test Code:	EPA TO-15 SIM	Date Collected: 3/28/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS	19 Date Received: 4/2/13
Analyst:	Wida Ang	Date Analyzed: 4/8/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.20 Liter(s)
Test Notes:		
Container ID:	AC00389	
	Initial Pressure (psig): 0.11 F	Final Pressure (psig): 3.76
		Canister Dilution Factor: 1.25
CAS #	Compound Result	MRI MDI R esult MRI MDI D ata

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL Data
		μg/m³	µg/m³	µg/m³	ppbV	ppbV	ppbV Qualifier
75-01-4	Vinyl Chloride	ND	0.16	0.016	ND	0.061	0.0061
75-35-4	1,1-Dichloroethene	ND	0.16	0.019	ND	0.039	0.0049
156-60-5	trans-1,2-Dichloroethene	ND	0.16	0.069	ND	0.039	0.017
156-59-2	cis-1,2-Dichloroethene	ND	0.16	0.061	ND	0.039	0.015
79-01-6	Trichloroethene	0.32	0.16	0.036	0.060	0.029	0.0067
127-18-4	Tetrachloroethene	0.097	0.16	0.018	0.014	0.023	0.0026 J

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

- - - -

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.							
Client Sample ID:	DUP-1				CAS Project ID: P1301371			
Client Project ID:	ESTCP VI Study - Raritan / 3585/3	669			CAS Sample ID:	P130137	1-014	
Test Code:	EPA TO-15 SIM				Date Collected:	3/28/13		
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cir		Date Received: 4/2/13					
Analyst:	Wida Ang	Date Analyzed: 4/8/13						
Sample Type:	6.0 L Summa Canister			Vol	ume(s) Analyzed:	0.20) Liter(s)
Test Notes:					· · · •			
Container ID:	AC01263							
	Initial Pressure (psig):	0.44 F	Final Pressure	e (psig):	3.58			
					Canister	Dilution	Factor:	1.21
CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	µg/m³	µg/m³	ppbV	ppbV	ppbV	Qualifier
75 01 4	Vinal Chlanida	ND	0.15	0.015	ND	0.050	0.0050	

		μg/m³	µg/m³	µg/m³	ppbV	ppb∨	ppbV Q	ualifier
-4 Vinyl Chlori	de	ND	0.15	0.015	ND	0.059	0.0059	
-4 1,1-Dichloro	ethene	ND	0.15	0.019	ND	0.038	0.0047	
trans-1,2-Dic	hloroethene	0.25	0.15	0.067	0.064	0.038	0.017	
9-2 cis-1,2-Dich	oroethene	ND	0.15	0.059	ND	0.038	0.015	
-6 Trichloroeth	ene	0.33	0.15	0.035	0.062	0.028	0.0065	
8-4 Tetrachloroe	thene	0.17	0.15	0.017	0.025	0.022	0.0025	
0-5trans-1,2-Dic9-2cis-1,2-Dich-6Trichloroeth	hloroethene oroethene ene	0.25 ND 0.33	0.15 0.15 0.15	0.067 0.059 0.035	0.064 ND 0.062	0.038 0.038 0.028	0.017 0.015 0.0065	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1301371
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669	CAS Sample ID: P130406-MB
Test Code:	EPA TO-15 SIM	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 4/6/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result μg/m³	MRL µg/m³	MDL µg/m³	Result ppbV	MRL ppbV	MDL Data ppbV Qualifie r
75-01-4	Vinyl Chloride	ND	0.025	0.0025	ND	0.0098	0.00098
75-35-4	1,1-Dichloroethene	ND	0.025	0.0031	ND	0.0063	0.00078
156-60-5	trans-1,2-Dichloroethene	ND	0.025	0.011	ND	0.0063	0.0028
156-59-2	cis-1,2-Dichloroethene	ND	0.025	0.0098	ND	0.0063	0.0025
79-01-6	Trichloroethene	ND	0.025	0.0058	ND	0.0047	0.0011
127-18-4	Tetrachloroethene	ND	0.025	0.0028	ND	0.0037	0.00041

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	GSI Environmental Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1301371
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669	CAS Sample ID: P130408-MB
Test Code:	EPA TO-15 SIM	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 4/8/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	MDL µg/m³	Result ppbV	MRL ppbV	MDL Data ppbV Qualifier
75-01-4	Vinyl Chloride	ND	0.025	0.0025	ND	0.0098	0.00098
75-35-4	1,1-Dichloroethene	ND	0.025	0.0031	ND	0.0063	0.00078
156-60-5	trans-1,2-Dichloroethene	ND	0.025	0.011	ND	0.0063	0.0028
156-59-2	cis-1,2-Dichloroethene	ND	0.025	0.0098	ND	0.0063	0.0025
79-01-6	Trichloroethene	ND	0.025	0.0058	ND	0.0047	0.0011
127-18-4	Tetrachloroethene	ND	0.025	0.0028	ND	0.0037	0.00041

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP VI Study - Raritan / 3585/3669

CAS Project ID: P1301371

Test Code:EPA TO-15 SIMInstrument ID:Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19Analyst:Wida AngSample Type:6.0 L Summa Canister(s)Test Notes:Test Notes:

Date(s) Collected: 3/26 - 3/28/13 Date(s) Received: 4/2/13 Date(s) Analyzed: 4/6 - 4/8/13

Client Sample ID	CAS Sample ID	1,2-Dichloroethane-d4 % Recovered	Toluene-d8 % Recovered	Bromofluorobenzene % Recovered	Acceptance Limits	Data Qualifier
Method Blank	P130406-MB	91	104	92	70-130	
Method Blank	P130408-MB	88	103	95	70-130	
Lab Control Sample	P130406-LCS	94	103	93	70-130	
Lab Control Sample	P130408-LCS	91	103	95	70-130	
CP4-AA-1	P1301371-001	91	105	89	70-130	
CP4-IA-1	P1301371-002	91	104	86	70-130	
CP4-IA-1	P1301371-002DUP	90	104	87	70-130	
CP4-IA-2	P1301371-003	90	105	82	70-130	
CP4-IA-3	P1301371-004	90	104	82	70-130	
CP4-SG-6	P1301371-005	90	105	88	70-130	
CP4-SG-3	P1301371-006	89	106	80	70-130	
209-SG-06	P1301371-007	91	102	88	70-130	
209-SG-09	P1301371-008	91	106	90	70-130	
209-IA-09	P1301371-009	91	104	92	70-130	
209-IA-10	P1301371-010	90	103	90	70-130	
209-AA-1	P1301371-011	90	103	92	70-130	
CP4-IA-5-BL	P1301371-012	88	102	77	70-130	
CP4-IA-5-NP	P1301371-013	90	104	77	70-130	
DUP-1	P1301371-014	89	105	75	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

-	GSI Environmental Inc. Lab Control Sample ESTCP VI Study - Raritan / 3585/3669	CAS Project ID: P1301371 CAS Sample ID: P130406-LCS
Test Code:	EPA TO-15 SIM	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 4/06/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		μg/m³	μg/m³		Limits	Qualifier
75-01-4	Vinyl Chloride	4.00	4.15	104	56-117	
75-35-4	1,1-Dichloroethene	4.36	3.88	89	62-113	
156-60-5	trans-1,2-Dichloroethene	4.04	3.54	88	61-111	
156-59-2	cis-1,2-Dichloroethene	4.28	3.73	87	63-112	
79-01-6	Trichloroethene	3.96	3.09	78	58-113	
127-18-4	Tetrachloroethene	3.80	2.84	75	60-111	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	GSI Environmental Inc.		
Client Sample ID:	Lab Control Sample	CAS Project ID: P	1301371
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669	CAS Sample ID: P	130408-LCS
Test Code:	EPA TO-15 SIM	Date Collected: N	A
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Date Received: N	A
Analyst:	Wida Ang	Date Analyzed: 4/	/08/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	0.125 Liter(s)
Test Notes:			

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		μg/m³	μg/m³		Limits	Qualifier
75-01-4	Vinyl Chloride	4.00	3.95	99	56-117	
75-35-4	1,1-Dichloroethene	4.36	3.88	89	62-113	
156-60-5	trans-1,2-Dichloroethene	4.04	3.55	88	61-111	
156-59-2	cis-1,2-Dichloroethene	4.28	3.81	89	63-112	
79-01-6	Trichloroethene	3.96	3.19	81	58-113	
127-18-4	Tetrachloroethene	3.80	2.93	77	60-111	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client:	GSI Environmental Inc.				
Client Sample ID:	CP4-IA-1		CA	S Project ID: F	P1301371
Client Project ID:	ESTCP VI Study - Raritan / 3585	/3669	CA	S Sample ID: F	P1301371-002DUP
Test Code:	EPA TO-15 SIM		Da	ate Collected: 3	3/26/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5975C	inert/7890A/MS19	D	ate Received: 4	/2/13
Analyst:	Wida Ang		Da	ate Analyzed: 4	4/6/13
Sample Type:	6.0 L Summa Canister		Volume	(s) Analyzed:	1.00 Liter(s)
Test Notes:					
Container ID:	AC01464				
	Initial Pressure (psig):	-4.22	Final Pressure (psig):	3.72	
				Canister 1	Dilution Factor: 1.76
			Duplicate		
CAS #	Compound	Sample Result	Sample Result	Average 9	% RPD RPD Data
		ug/m ³ ppbV	ug/m ³ ppbV	ug/m ³	Limit Oualifier

75-01-4 Vinyl Chloride ND ND ND ND ND - - 25 75-35-4 1,1-Dichloroethene ND ND ND ND ND - 25 156-60-5 trans-1,2-Dichloroethene ND ND ND ND - - 25 156-59-2 cis-1,2-Dichloroethene ND ND ND ND - - 25 79-01-6 Trichloroethene 1.35 0.251 1.36 0.253 1.355 0.7 25			µg/m³	ppbv	µg/m³	ppbv	µg/m³		Limit	Qualifier
156-60-5trans-1,2-DichloroetheneNDNDNDND25156-59-2cis-1,2-DichloroetheneNDNDNDND25	75-01-4	Vinyl Chloride	ND	ND	ND	ND	-	-	25	
156-59-2 cis-1,2-Dichloroethene ND ND ND ND 25	75-35-4	1,1-Dichloroethene	ND	ND	ND	ND	-	-	25	
	156-60-5	trans-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
79-01-6 Trichloroethene 1.35 0.251 1.36 0.253 1.355 0.7 25	156-59-2	cis-1,2-Dichloroethene	ND	ND	ND	ND	-	-	25	
	79-01-6	Trichloroethene	1.35	0.251	1.36	0.253	1.355	0.7	25	
127-18-4 Tetrachloroethene 0.302 0.0446 0.302 0.0446 0.302 0 25	127-18-4	Tetrachloroethene	0.302	0.0446	0.302	0.0446	0.302	0	25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP VI Study - Raritan / 3585/3669

CAS Project ID: P1301371

Method Blank Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Lab File ID: 04061303.D
Analyst:	Wida Ang	Date Analyzed: 4/06/13
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 02:34
Test Notes:		

- - -

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P130406-LCS	04061304.D	03:07
CP4-AA-1	P1301371-001	04061315.D	13:48
CP4-IA-1	P1301371-002	04061316.D	14:21
CP4-IA-1 (Lab Duplicate)	P1301371-002DUP	04061317.D	14:54
CP4-IA-2	P1301371-003	04061318.D	15:26
CP4-IA-3	P1301371-004	04061319.D	15:59
CP4-SG-6	P1301371-005	04061320.D	16:32
CP4-SG-3	P1301371-006	04061321.D	17:05
209-SG-06	P1301371-007	04061322.D	17:37
209-SG-09	P1301371-008	04061323.D	18:10
209-IA-09	P1301371-009	04061324.D	18:43
209-IA-10	P1301371-010	04061325.D	19:15
209-AA-1	P1301371-011	04061326.D	19:48

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:GSI Environmental Inc.Client Project ID:ESTCP VI Study - Raritan / 3585/3669

- - - -

.

CAS Project ID: P1301371

Method Blank Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Lab File ID: 04081303.D
Analyst:	Wida Ang	Date Analyzed: 4/08/13
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 08:39
Test Notes:		

Client Sample ID	CAS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P130408-LCS	04081304.D	09:12
CP4-SG-3 (Dilution)	P1301371-006	04081306.D	10:31
CP4-IA-5-BL	P1301371-012	04081312.D	14:12
CP4-IA-5-NP	P1301371-013	04081317.D	17:09
DUP-1	P1301371-014	04081318.D	17:41

Page 1 of 1

Client:	GSI Environmental Inc.					
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669					

CAS Project ID: P1301371

Internal Standard Area and RT Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Lab File ID: 04061302.D
Analyst:	Wida Ang	Date Analyzed: 4/6/13
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 02:01
Test Notes:		

		IS1 (BCM)		IS2 (DFB)	IS3 (CBZ)								
		AREA #	RT #	AREA #	RT #	AREA #	RT #						
	24 Hour Standard	50217	11.66	220840	13.41	30322	17.09						
	Upper Limit	70304	11.99	309176	13.74	42451	17.42						
	Lower Limit	30130	11.33	132504	13.08	18193	16.76						
	Client Sample ID												
01	Method Blank	49826	11.66	214849	13.41	30678	17.09						
02	Lab Control Sample	49938	11.66	219672	13.41	30468	17.09						
03	CP4-AA-1	50552	11.66	226086	13.41	31534	17.09						
04	CP4-IA-1	50432	11.66	223569	13.40	33583	17.09						
05	CP4-IA-1 (Lab Duplicate)	50409	11.66	222053	13.40	32807	17.09						
06	CP4-IA-2	50028	11.66	221254	13.41	34539	17.09						
07	CP4-IA-3	50867	11.66	225392	13.41	34757	17.09						
08	CP4-SG-6	50559	11.66	223155	13.41	32601	17.09						
09	CP4-SG-3	50604	11.66	223687	13.41	35978	17.09						
10	209-SG-06	50840	11.66	230789	13.41	33313	17.09						
11	209-SG-09	50984	11.66	222513	13.41	31646	17.09						
12	209-IA-09	50518	11.66	220404	13.41	30064	17.09						
13	209-IA-10	49238	11.66	220213	13.41	30839	17.09						
14	209-AA-1	49248	11.66	218196	13.40	29491	17.09						
15													
16													
17													
10													

18

19 20

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

Page 1 of 1

Client:	GSI Environmental Inc.						
Client Project ID:	ESTCP VI Study - Raritan / 3585/3669						

CAS Project ID: P1301371

Internal Standard Area and RT Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Cinert/7890A/MS19	Lab File ID: 04081302.D
Analyst:	Wida Ang	Date Analyzed: 4/8/13
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 08:06
Test Notes:		

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	50663	11.66	220706	13.41	29173	17.09
	Upper Limit	70928	11.99	308988	13.74	40842	17.42
	Lower Limit	30398	11.33	132424	13.08	17504	16.76
	Client Sample ID						
01	Method Blank	49936	11.66	217389	13.41	28648	17.09
02	Lab Control Sample	51082	11.66	222836	13.41	29396	17.09
03	CP4-SG-3 (Dilution)	51745	11.66	219682	13.41	31358	17.09
04	CP4-IA-5-BL	53900	11.66	235852	13.41	37656	17.09
05	CP4-IA-5-NP	51790	11.66	226392	13.41	37454	17.09
06	DUP-1	49347	11.65	215068	13.40	36550	17.09
07							
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

20

AREA UPPER LIMIT = 140% of internal standard area AREA LOWER LIMIT = 60% of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

Response Factor Report MS19

Method Path : I:\MS19\METHODS\ Method File : X19032813.M Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Last Update : Thu Mar 28 14:08:39 2013 Response Via : Initial Calibration

Calibration Files

1307.D																																					
000=0328	%RSD	l	. 7	4.2	00 i 4. (ې د ب	2. • 4	5. 32 00	ы 0 1 1 1 1 1 1	η-α • α)))))		0.0	6.1		0	3.2		. 4	1	ω.		ά	, - 9 9	14.16	6.9	6.8	ς,	0.0	1.8		ъ. Э	<u>о</u>	- - -		5.48	0
306.D 1	Avg		. 56	.44	.47	Ω, 20,7	- 1 9 •	0.45/ 1.060	, c , c	- C	т-с т-с	2.0	80	. 87	. 29	.00	.24	. 50	.94	.10	.54		D C		0.376	- 21	.37	.31	.22	.97	.12	0 M	.42		5	7.840	.15
=03281	20K		2.22	0.44	1. 39	0.81	96.0	1 0000		101		1.22	1.70	3.07	1.23	1.83	1.18	1.35	1.84	3.82	1.58		0 0	0.95	0.333	0.21	0.41	0.37	0.21	0.96	1.03	0.30	0.39		4.95	7.774	6.14
500	6666		2.27	0.42	1.35	0.81	0.58	0 -	+ C 0) 	1.22	1.74	2.95	1.25	1.88	1.19	1.38	1.85	3.89	1.57		000		0.341	.21	.41	.37	.21	.95	.07	• 30	.00	i	.31	8.444	.75
1305.D	2500	1 1	. 3G	. 35	9 0 M 1	с) г Г - 1	. 5 4 0	1.437		0 C	 		.61	.86	.20	.81	.20	. 38	.79	.87	. 50		5	1 m	0.329	. 20	.37	. 33	.20	.95	.03	.29	38		.14	8.021	. 53
=0328	1000	• •	48	.41	.41	LL.	. 5 6	1 464).Ш 0 С	о г О г) [- -	- 0	.67	.76	.23	.90	.24	.42	. 83	.97	• 5.1		000	1 (0)	0.342	.19	.36	.31	.21	.95	.06	. 29	.39		.26	7.808	.45
D 100	500	Í	2:58	0.43	1.44	0.82	0.58		 		T 2 . L	1.25.1	1.77	2.73	1.27	1.99	1.25	1.48	1.90	4.14	1.54		0 23	0.35	0.362	0.20	0.36	0.30	0.22	0.96	1.11	0.29	0.42	Q	5.44	7.705	6.34
81304. 81310.	100		2.598	0.43	1.47	0.80	.0.59	с С	 	7 . 000 L	- τ - τ - α		1.70	2.67	1.25	1.93	1.24	1.49	1.90	4.32	1.49	. Ŭ			0.36	0.20	0.34	0.29	0.22	0.98	1.14	0.29	0.42	N H I	.33	7.300	.64
=032 K =032	50		9	.47	1.507	26	19	۲ C	2 C		ນ (ຈັດ	50	22	69	28	04	. 28	54	57	.70	52		00	1 W	0.388	.19	. 34	.27	23	.98	.19	29	44	1	. 51	7.277	49
. D 20	20		2.	0.57	1.62	1.16	1/.O	н г С		/ T • T	5	1.408	1.97	2.89	1.37	2.21	1.28	1.64	2.12		1.582	Anna and ann ann part ann	0 26	0.00	0.444	0.21	0.35	0.28	0.25	1.00	• 38	. 32	• 48		.07	7.729	• 80
281303	10				1.727	ר ר	0 / / 0	с С	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	со. т	57	1.551	23	.18	. 55	.43	.29	1.83	2.30		1.628	ŗ	· · · ·	0.39	0.48	.24	.36	0.27	0.27	.98		0.341	0.50	•	.57	8.499	.21
0 20 =03 9999=03		1 0	luo	_	ч К	hane	-	с. 		Ч (0 1 (ム CILF クサッ・チ	2-Di	loroet	ert-B	Dic	Я	loroe	loroet	ichlor		etrach	n n n n n n n n n n n n n n n n n n n	JORODE	hlorom.	ethene	ne.	Di	3-Dich	ichlor.	d8 (SS			oroethene	inzene-d5	С 0	nzene	ле
)3281302.D	Compound	Bromochl	h h h	lord	nyl	omon L	лон Ток	cetone		T, T-DICD. Motbylop,	סרלהייא	rans-1	.1-Dì	ethvl	is-1,	lorof	,2-Dic	,2-Dic	, 1,	enze	arb			romodi	richlo	,4-Dio	is-1,3	rans-1	,1,2-T	oluene	oluen	,2-Dib	etrach	orop	hlorob	lbe	, p-Xyl
10 =0 2500=0			2) T		~ .	~ ~		~ ~	~ ~	n c		~ ~	i m	4)	5)	(9	(8)	(6	(0	1)		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(7	2)	(9	(_	8)	6)	(0	1)	2)	3)	4)	2)	36) T	(7

X19032813.M Sat Apr 06 10:08:50 2013

r-f Page:

≥7.4

Response Factor Report MS19

4.35 2.28 2.94 13.55 13.451 13.451 13.451 13.451 13.62 62 • 1 [i] 6.773 3.015 4.9991 5.211 5.211 1.105 2.272 6.489 3.029 4.522 4.614 4.378 3.444 1.086 2.115 7.1118 3.255 4.936 4.956 3.718 2.269 6.913 4.051 4.051 4.876 4.876 1.094 2.132 3.081 4.026 4.797 4.888 4.788 4.797 3.453 3.453 2.168 6.917 TO-15/GC-MS) 6.936 9.134 5.080 4.936 2.054 2.054 2.259 (CASS TO-1 342 6.460 856 2.979 859 4.773 859 4.773 053 4.914 783 4.640 519 3.338 964 0.929 265 2.154 5 (CAS
6. 342
2. 856
3. 782
4. 859
4. 783
3. 519
2. 265 VOA-TO1 6.650 2.807 3.840 5.213 5.667 5.108 3.975 1.102 2.441 SOP V 7.131 2.830 3.827 6.005 6.869 6.869 5.771 4.941 1.424 .649 : I:\MS19\METHODS' : X19032813.M N EPA TO-15 per o-Xylene
1,1,2,2-Tetrac...
Bromofluoroben...
1,3-Dichlorobe...
1,4-Dichlorobe...
1,2-Dichlorobe...
1,2,4-Trichlor... • • Hexachlorobuta Naphthalene File Path •• Method Method Title HHNHHHHHH 1

(#) = Out of Range

 \sim

Page:

Data File	: I:\MS19\DATA\2013 04\06\04061302.D		
Acq On	: 6 Apr 2013 2:01 am	Operator:	WA/KR
Sample	: 500pg TO-15SIM CCV STD	Inst :	MS19
Misc	: S25-03191301/S25-03221308 (4/20)		
ALS Vial	: 15 Sample Multiplier: 1		

Quant Time: Apr 06 06:21:52 2013 Quant Method : I:\MS19\METHODS\X19032813.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Thu Mar 28 14:08:39 2013 Response via : Initial Calibration DataAcq Meth:TO15SIM2.M

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area	% Dev(min)
1 I 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11 T 12 T 13 T 14 T 15 T 16 T 17 S 18 T 19 T 20 T 21 T	Bromochloromethane (IS1) Dichlorodifluoromethane (CF Chloromethane Vinyl Chloride Bromomethane Chloroethane Acetone Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Trichlorotrifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane-d4 (SS1) 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride	1.000 2.566 0.445 1.479 0.859 0.618 0.457 1.962 1.124 1.245 1.275 1.286 1.800 2.871 1.297 2.008	1.000 2.158 0.486 1.590 0.891 0.725 0.646 1.707 1.075 1.165 1.064 1.205 1.765 2.849 1.226 1.764 1.169 1.239 1.617 4.095 1.300	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 7 & 0 & 0 & 4 \\ 5 & 0 & 0 & 3 \\ 3 & 0 & 0 & 2 \\ 9 & 0 & 0 & 2 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ \end{array}$
22 I 23 T 24 T 25 T 26 T 27 T 28 T 29 T 30 S 31 T 32 T 33 T	1,4-Difluorobenzene (IS2) 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene-d8 (SS2) Toluene 1,2-Dibromoethane Tetrachloroethene	1.000 0.241 0.361 0.211 0.371 0.315 0.229 0.971 1.129 0.307 0.427	1.000 0.232 0.295 0.310 0.205 0.345 0.283 0.203 0.997 1.046 0.265 0.341	10.2 9 11.4 9 -2.7 10 7.4 9	$\begin{array}{cccc} 0 & 0.00 \\ 5 & 0.00 \\ 7 & 0.00 \\ 2 & 0.01 \\ 6 & 0.00 \\ 3 & 0.00 \\ 2 & 0.00 \\ 5 & 0.00 \\ 5 & 0.00 \\ 0 & 0.00 \end{array}$
34 I 35 T 36 T 37 T 38 T 39 T 40 S 41 T 42 T 43 T 44 T 45 T 46 T	Chlorobenzene-d5 (IS3) Chlorobenzene Ethylbenzene m,p-Xylene o-Xylene 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene	1.000 5.512 7.840 6.155 6.773 3.015 3.891 4.995 5.211 4.856 3.710 11.050 2.272	$\begin{array}{c} 1.000\\ 5.217\\ 8.211\\ 6.544\\ 7.042\\ 3.106\\ 3.709\\ 4.587\\ 4.587\\ 4.587\\ 4.414\\ 3.080\\ 10.314\\ 1.936\end{array}$	5.4 8 -4.7 9 -6.3 9 -4.0 9 -3.0 9 4.7 8 8.2 8 12.0 8 9.1 8 17.0 8 6.7 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

X19032813.M Sat Apr 06 10:08:45 2013

Data File: I:\MS19\DATA\2013 04\08\0408130	2 D
Acq On : 8 Apr 2013 8:06 am	Operator: WA
Sample : 500pg TO-15SIM CCV STD	Inst : MS19
Misc : S25-03191301/S25-03221308 (4/2	0)
ALS Vial : 15 Sample Multiplier: 1	
Quant Time: Apr 08 08:39:40 2013	

Evaluate Continuing Calibration Report

Quant Method : I:\MS19\METHODS\X19032813.M Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Thu Mar 28 14:08:39 2013 Response via : Initial Calibration DataAcq Meth:TO15SIM2.M

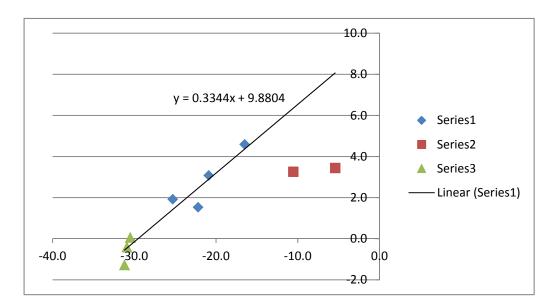
Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

·	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11 T 12 T 13 T 14 T 15 T 16 T 17 S 18 T 19 T 20 T 21 T	Bromochloromethane (IS1) Dichlorodifluoromethane (CF Chloromethane Vinyl Chloride Bromomethane Chloroethane Acetone Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Trichlorotrifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane-d4 (SS1) 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride		1.000 2.104 0.473 1.552 0.887 0.708 0.639 1.684 1.067 1.151 1.086 1.202 1.697 2.903 1.227 1.751 1.127 1.208 1.613 4.108 1.284	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22 I 23 T 24 T 25 T 26 T 27 T 28 T 29 T 30 S 31 T 32 T 33 T	<pre>1,4-Difluorobenzene (IS2) 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene-d8 (SS2) Toluene 1,2-Dibromoethane Tetrachloroethene</pre>	1.000 0.241 0.361 0.211 0.371 0.371 0.315 0.229 0.971 1.129 0.307 0.427	1.000 0.232 0.297 0.314 0.205 0.352 0.288 0.204 0.992 1.058 0.269 0.352	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
34 I 35 T 36 T 37 T 38 T 39 T 40 S 41 T 42 T 43 T 44 T 45 T 46 T	Chlorobenzene-d5 (IS3) Chlorobenzene Ethylbenzene m,p-Xylene o-Xylene 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene	3.891 4.995 5.211 4.856 3.710 11.050 2.272	1.000 5.508 8.638 6.871 7.384 3.231 3.706 4.741 4.777 4.606 3.239 10.656 2.050	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

X19032813.M Mon Apr 08 12:46:01 2013


4/8/13 DA 35 of 35

Pa

	GS: Grab S	ampie	Scinuliauoi		ounting												
or GSI				Client	Project	Number	: 3585/3	669									
Samples Collected by: Lila Bed					Dates: 3		1 3303/3	005							-		
Site: ESTCP VI Study, Raritan						rs: Tedlar											
SILE. ESTCP VI SLUUY, Raillan					ed Site Pi												
		+						atm									
Analysts: Doug Hammond							tion of 12										
Phone: 310-490-7896				Time Z			d to deca										
email: dhammond@usc.edu					3	hours		Collect									
								Run	(PDT)								
Summary	Colle	ction	Analv	sis				Lab Du	plicates								
	Date	time	Date	time	Vol run	Conc.	±1 sig		±1ssd	Notes							
		(EDT)		(PDT)		pCi/L	pCi/L		pCi/L								
				(FDT)		pu/L			IDCI/ L								
ceived 3/29/13		0.50		10.15				0.00									
CP4-AA-BL	3/28/13	8:50	3/29/13		120	0.03	0.02	0.08	0.07								
lab dupe	3/28/13	8:50	3/29/13		60	0.13	0.04										
2 CP4-IA-5-BL	3/28/13	8:45	3/29/13		120	0.23	0.02										
3 CP4-IA-5-NP	3/28/13		3/29/13	13:24	65	0.11	0.03										
1 DUP-1	3/28/13	11:05	3/29/13	13:30	120	0.15	0.02										
							1										
These results are for application of Results corrected to in situ pressure	e as noted abov	e		oil vapor	intrusion,	out are not	intended for	evaluati	on of rado	n hazards							
Results corrected to in situ pressure	e as noted abov	e		oil vapor	intrusion,	out are not	intended for	evaluatio	on of rado	n hazards							
Results corrected to in situ pressure	e as noted abov s, and Analy	e tical De	tails		intrusion,	out are not	intended for	evaluatio	on of rado	n hazards	•					count	
Results corrected to in situ pressur W Data, Calculation factors	e as noted abov	e tical De	tails Analys	s		but are not						Decav T	Decay	Concentrat	ion	count	
Results corrected to in situ pressure	e as noted abov 5, and Analy Collectic	e tical De	tails		Count in cell/ch		Air/He eff	evaluation	on of rado	n hazards	sig dpm	Decay T (hours)		Concentral dpm/liter		stats	Not
Results corrected to in situ pressur w Data, Calculation factors Sample ID	e as noted abov 5, and Analy Collectic	e tical De	tails Analys	s	Count in	He	Air/He	Vol run	Press	obs	sig					stats	Not
Results corrected to in situ pressur w Data, Calculation factors Sample ID seived 3/29/13	e as noted abow s, and Analy Collectic Date	e tical De Dn Time (EDT)	tails Analys Date	s Time (PDT)	Count in cell/ch	He eff	Air/He eff	Vol run (cc)	Press factor	obs dpm	sig dpm	(hours)	factor	dpm/liter	pCi/liter	stats pCi/liter ±1 sig	Not
Results corrected to in situ pressure w Data, Calculation factors Sample ID Served 3/29/13 [CP4-AA-BL	e as noted abov. s, and Analy Collectic Date 3/28/13	e tical De Dn Time (EDT) 8:50	tails Analys Date 3/29/13	s Time (PDT) 13:10	Count in cell/ch 82/32	He eff 0.743	Air/He eff 0.95	Vol run (cc) 120	Press factor 1.00	obs dpm 0.01	sig dpm 0.00	(hours) 31.3	factor	dpm/liter 0.07	pCi/liter	stats pCi/liter ±1 sig 0.02	Not
Results corrected to in situ pressur W Data, Calculation factors Sample ID served 3/29/13 ICP4-AA-BL lab dupe	e as noted above s, and Analy Collectic Date 3/28/13 3/28/13	e tical De Time (EDT) 8:50 8:50	tails Analys Date 3/29/13 3/29/13	s Time (PDT) 13:10 13:15	Count in cell/ch 82/32 76/22	He eff 0.743 0.912	Air/He eff 0.95 0.98	Vol run (cc) 120 60	Press factor 1.00 1.00	obs dpm 0.01 0.01	sig dpm 0.00 0.00	(hours) 31.3 31.4	factor 1.267 1.268	dpm/liter 0.07 0.28	0.03 0.13	stats pCi/liter ±1 sig 0.02 0.04	Not
Results corrected to in situ pressur W Data, Calculation factors Sample ID Served 3/29/13 I (CP4-AA-BL Iab dupe 2 (CP4-IA-5BL	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13	e tical De 0n (EDT) 8:50 8:50 8:50 8:45	Analys Date 3/29/13 3/29/13 3/29/13	s Time (PDT) 13:10 13:15 13:19	Count in cell/ch 82/32 76/22 81/31	He eff 0.743 0.912 0.818	Air/He eff 0.95 0.98 0.95	Vol run (cc) 120 60 120	Press factor 1.00 1.00 1.00	obs dpm 0.01 0.01 0.04	sig dpm 0.00 0.00 0.00	(hours) 31.3 31.4 31.6	factor 1.267 1.268 1.269	dpm/liter 0.07 0.28 0.50	0.03 0.13 0.23	stats pCi/liter ±1 sig 0.02 0.04 0.02	Not
Results corrected to in situ pressur W Data, Calculation factors Sample ID relved 3/29/13 1 (2P4-AA-BL lab dupe 2 (2P4-IA-5-BL 3 (2P4-IA-5-NP	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13	e tical De Time (EDT) 8:50 8:50 8:50 8:45 11:05	tails Date 3/29/13 3/29/13 3/29/13	s Time (PDT) 13:10 13:15 13:19 13:24	Count in cell/ch 82/32 76/22 81/31 84/11	He eff 0.743 0.912 0.818 0.785	Air/He eff 0.95 0.98 0.95 0.98	Vol run (cc) 120 60 120 65	Press factor 1.00 1.00 1.00 1.00	0.01 0.01 0.04 0.01	sig dpm 0.00 0.00 0.00 0.00	(hours) 31.3 31.4 31.6 29.3	factor 1.267 1.268 1.269 1.248	dpm/liter 0.07 0.28 0.50 0.25	0.03 0.13 0.23 0.11	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03	Not
Results corrected to in situ pressur W Data, Calculation factors Sample ID relved 3/29/13 1 (2P4-AA-BL lab dupe 2 (2P4-IA-5-BL 3 (2P4-IA-5-NP	e as noted abovo s, and Analy Collectic Date 3/28/13 3/28/13	e tical De 0n (EDT) 8:50 8:50 8:50 8:45	Analys Date 3/29/13 3/29/13 3/29/13	s Time (PDT) 13:10 13:15 13:19	Count in cell/ch 82/32 76/22 81/31	He eff 0.743 0.912 0.818	Air/He eff 0.95 0.98 0.95 0.98	Vol run (cc) 120 60 120	Press factor 1.00 1.00 1.00 1.00	obs dpm 0.01 0.01 0.04	sig dpm 0.00 0.00 0.00	(hours) 31.3 31.4 31.6 29.3	factor 1.267 1.268 1.269	dpm/liter 0.07 0.28 0.50	0.03 0.13 0.23	stats pCi/liter ±1 sig 0.02 0.04 0.02	Not
Results corrected to in situ pressur aw Data, Calculation factors Sample ID Serived 3/29/13 1 (CP4-AA-BL 1ab dupe 2 (CP4-IA-5-BL 3 (CP4-IA-5-BL 3 (CP4-IA-5-NP 4 DUP-1	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13	e tical De Time (EDT) 8:50 8:50 8:50 8:45 11:05	tails Analys Date 3/29/13 3/29/13 3/29/13 3/29/13	s Time (PDT) 13:10 13:15 13:19 13:24 13:30	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 0.98	Vol run (cc) 120 60 120 65 52	Press factor 1.00 1.00 1.00 1.00	0.01 0.01 0.04 0.03	sig dpm 0.00 0.00 0.00 0.00 0.00	(hours) 31.3 31.4 31.6 29.3 29.4	factor 1.267 1.268 1.269 1.248 1.249	dpm/liter 0.07 0.28 0.50 0.25 0.34	0.03 0.13 0.23 0.11 0.15	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02	Not
Results corrected to in situ pressur w Data, Calculation factors Sample ID Leived 3/29/13 1 (ab dupe 2 (CP4-AA-BL 1 (ab dupe 2 (CP4-IA-S-BL 3 (CP4-IA-S-BL 3 (CP4-IA-S-BL 3 (CP4-IA-S-NP 4 DUP-1 Decay correctiions based on Rn dec	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13	e tical De Time (EDT) 8:50 8:50 8:50 8:45 11:05	Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 per day	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120	Press factor 1.00 1.00 1.00 1.00	0.01 0.01 0.04 0.03	sig dpm 0.00 0.00 0.00 0.00 0.00	(hours) 31.3 31.4 31.6 29.3 29.4	factor 1.267 1.268 1.269 1.248 1.249	dpm/liter 0.07 0.28 0.50 0.25 0.34	0.03 0.13 0.23 0.11 0.15	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02	Not
Results corrected to in situ pressur aw Data, Calculation factors Sample ID Serived 3/29/13 1 (CP4-AA-BL 1ab dupe 2 (CP4-IA-5-BL 3 (CP4-IA-5-BL 3 (CP4-IA-5-NP 4 DUP-1	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13	e tical De Time (EDT) 8:50 8:50 8:50 8:45 11:05	Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813	s Time (PDT) 13:10 13:15 13:19 13:24 13:30	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 0.98	Vol run (cc) 120 60 120 65 120	Press factor 1.00 1.00 1.00 1.00	0.01 0.01 0.04 0.03	sig dpm 0.00 0.00 0.00 0.00 0.00	(hours) 31.3 31.4 31.6 29.3 29.4	factor 1.267 1.268 1.269 1.248 1.249	dpm/liter 0.07 0.28 0.50 0.25 0.34	0.03 0.13 0.23 0.11 0.15	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02	Not
Results corrected to in situ pressur W Data, Calculation factors Sample ID Eleved 3/29/13 I CP4-AA-BL Iab dupe 2 (CP4-IA-5-RL 3 (CP4-IA-5-RL 3 (CP4-IA-5-RL 4 DUP-1 Decay corrections based on Rn dec Conversion from dpm based on	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13	e tical De Time (EDT) 8:50 8:50 8:50 8:45 11:05	Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 per day	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120	Press factor 1.00 1.00 1.00 1.00	0.01 0.01 0.04 0.03	sig dpm 0.00 0.00 0.00 0.00 0.00	(hours) 31.3 31.4 31.6 29.3 29.4	factor 1.267 1.268 1.269 1.248 1.249	dpm/liter 0.07 0.28 0.50 0.25 0.34	0.03 0.13 0.23 0.11 0.15	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02	Not
Results corrected to in situ pressur W Data, Calculation factors Sample ID Served 3/29/13 I CP4-AA-BL Iab dupe 2 CP4-IA-5-BL 2 CP4-IA-5-BL 3 CP4-IA-5-NP 4 DUP-1 Decay corrections based on Rn dec Conversion from dpm based on Blanks are negligible. Definitions:	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13	e tical De (EDT) 8:50 8:50 8:45 11:05	Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813 0.4504	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 per day	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120 +)(1000)	Press factor 1.00 1.00 1.00 1.00	005 dpm 0.01 0.04 0.01 0.03 0(decay fa	sig dpm 0.00 0.00 0.00 0.00 0.00 0.00	(hours) 31.3 31.4 31.6 29.3 29.4 Press fact	factor 1.267 1.268 1.269 1.248 1.249 or)}/{(cc	dpm/liter 0.07 0.28 0.50 0.25 0.34 used)(He e	pCi/liter 0.03 0.13 0.23 0.11 0.15	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02 0.03	Not
Results corrected to in situ pressure W Data, Calculation factors Sample ID reived 3/29/13 (CP4-As-BL lab dupe 2 (CP4-IA-S-BL 3 (CP4-IA-S-RP 4 DUP-1 Decay corrections based on Rn dec Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch:	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 2/28/13 3/28/13/	e e tical De Time (EDT) 8:50 8:50 8:45 11:05 11:05 11:05 11:05	Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813 0.4504	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 Per day pCi/dpm	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120)) (1000)) sig dpm	Press factor 1.00 1.00 1.00 1.00 (obs dpm	obs dpm 0.01 0.04 0.03 0.03 0(decay fa 0)(decay fa	sig dpm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(hours) 31.3 31.4 31.6 29.3 29.4 Press fact sig) in dp	factor 1.267 1.268 1.269 1.248 1.249 or)]/{(cc om based	dpm/liter 0.07 0.28 0.50 0.25 0.34 used)(He e	pCi/liter 0.03 0.13 0.23 0.11 0.15	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02 0.03	Not
Results corrected to in situ pressur aw Data, Calculation factors Sample ID Elevied 3/29/13 I (CP4-AA-BL Iab dupe 2 (CP4-IA-5-RL 3 (CP4-IA-5-RL 3 (CP4-IA-5-RL 3 (CP4-IA-5-RL Decay corrections based on Rn dec Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff:	e as noted abov s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 ay constant of Counting cell a Cell and count	e tical De Time (EDT) 8:50 8:45 11:05 11:05	Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813 0.4504 el used ey using heliun	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 per day pCi/dpm	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120 (1000)) sig dpm Decay T	Press factor 1.00 1.00 1.00 (obs dpm	obs dpm 0.01 0.04 0.01 0.03 0(decay fa 0(decay fa 0)(decay fa	sig dpm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(hours) 31.3 31.4 31.6 29.3 29.4 Press fact sig) in dr m samplin	factor 1.267 1.268 1.269 1.248 1.249 or)}/{(cc	dpm/liter 0.07 0.28 0.50 0.25 0.34 used)(He e	pCi/liter 0.03 0.13 0.13 0.11 0.15 ff)(Air/He	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02 0.03	Not
Results corrected to in situ pressur W Data, Calculation factors Sample ID ceived 3/29/13 1 (2P4-AA-BL lab dupe 2 (2P4-IA-5-BL 3 (2P4-IA-5-NP 4 DUP-1 Decay corrections based on Rn dec Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Air/He:	e as noted abov. s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 2/28/13 Call and count Counting cell and count Correction for	e e tical De Time (EDT) 8:50 8:45 11:05 11:05 11:05 er efficient matrix cou	Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813 0.4504 el used ey using heliun	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 per day pCi/dpm	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120 4)(1000)) sig dpm Decay T: Decay T: Decay T:	Press factor 1.00 1.00 1.00 1.00 (obs dpm (obs dpm	obs dpm 0.01 0.04 0.03 (decay fa (decay fa uncertain time elap Correctio	sig dpm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(hours) 31.3 31.4 31.6 29.3 29.4 Press fact sig) in dr m samplir m samplir	factor 1.267 1.268 1.269 1.248 1.249 or)]/{(cc om based ng to anal ay from cc	dpm/liter 0.07 0.28 0.50 0.25 0.34 used)(He e used)(He e on countin ysis Jilection to	pCi/liter 0.03 0.13 0.23 0.11 0.15 ff)(Air/He	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02 0.03 0.02 2)}	
Results corrected to in situ pressur aw Data, Calculation factors Sample ID Eleved 3/29/13 1 CP4-AA-BL Iab dupe 2 CP4-IA-5-BL 3 CP4-IA-5-BL 3 CP4-IA-5-BL 3 CP4-IA-5-BL 3 CP4-IA-5-BL 0 DE-ay corrections based on Rn dec Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Air/He: Sample vol:	e as noted abov s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 2/	e tical De Time (EDT) 8:50 8:50 8:45 11:05 11:05 11:05 11:05 11:05	Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813 0.4504 el used cy using heliun unting gas den	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 per day pCi/dpm matrix sity	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120 120 120 120 120 120 120 120 120 120	Press factor 1.00 1.00 1.00 1.00 (obs dpm (obs dpm)	obs dpm 0.01 0.04 0.01 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03	sig dpm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(hours) 31.3 31.4 31.6 29.3 29.4 Press fact sig) in dr m samplir m samplir r for deca ation in di dio	factor 1.267 1.268 1.269 1.248 1.249 or)]/{(cc or)]/{(cc or) based Ig to anal ay from cc sintigratic	dpm/liter 0.07 0.28 0.50 0.25 0.34 used)(He e used)(He e used)(He on countiny sis	pCi/liter 0.03 0.13 0.23 0.11 0.15 ff)(Air/He	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02 0.03 0.02 2)}	
Results corrected to in situ pressur aw Data, Calculation factors Sample ID ceived 3/29/13 1 (P4-AA-BL lab dupe 2 (P4-IA-5-BL 3 (P4-IA-5-RL 3 (P4-IA-5-RL 4 DUP-1 Decay corrections based on Rn dec Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Air/He: Sample vol: Press factor:	e as noted abov. s, and Analy Collectic Date 3/28/13	e tical De in (EDT) 8:50 8:45 11:05 11:05 11:05	tails Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813 0.4504 used used used sy using helium	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 per day pci/dpm ci/dpm ci/dpm collectio	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806 Radon Con	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120 120 (1000)) sig dpm Decay fa dpm/lite piC/liter	Press factor 1.00 1.00 1.00 1.00 (obs dpm ctor: r:	obs dpm 0.01 0.01 0.03 0(decay fa uncertain time elap Correction Radon coo	sig dpm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(hours) 31.3 31.4 31.6 29.3 29.4 Press fact sig) in dç m samplir r for deca attion in diation diation diation diation diation diation diation diation diat	factor 1.267 1.268 1.269 1.248 1.249 or)}/{(cc orn based ng to anal ay from cc sintigratic coCuries p	dpm/liter 0.07 0.28 0.50 0.25 0.34 used)(He e used)(He used)(He e used)(He e used)(He used)(He	pCi/liter 0.03 0.13 0.23 0.11 0.15 ff)(Air/He analysis tte per lit	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02 0.03 0.02	
Results corrected to in situ pressur aw Data, Calculation factors Sample ID Serived 3/29/13 1 CP4-AA-BL lab dupe 2 CP4-IA-S-SH 3 CP4-IA-S-SH 4 DUP-1 Decay corrections based on Rn dec Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Cell/ch: He eff: Sample vol:	e as noted abov s, and Analy Collectic Date 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 3/28/13 2/	e tical De in (EDT) 8:50 8:45 11:05 11:05 11:05	tails Analys Date 3/29/13 3/29/13 3/29/13 3/29/13 3/29/13 0.1813 0.4504 used used used sy using helium	s Time (PDT) 13:10 13:15 13:19 13:24 13:30 per day pci/dpm ci/dpm ci/dpm collectio	Count in cell/ch 82/32 76/22 81/31 84/11 83/11	He eff 0.743 0.912 0.818 0.785 0.806 Radon Con	Air/He eff 0.95 0.98 0.95 0.98 0.95 c = {(0.450	Vol run (cc) 120 60 120 65 120 120 120 120 120 120 120 120 120 120	Press factor 1.00 1.00 1.00 1.00 (obs dpm ctor: r:	obs dpm 0.01 0.01 0.03 0(decay fa uncertain time elap Correction Radon coo	sig dpm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(hours) 31.3 31.4 31.6 29.3 29.4 Press fact sig) in dç m samplir r for deca attion in diation diation diation diation diation diation diation diation diat	factor 1.267 1.268 1.269 1.248 1.249 or)}/{(cc orn based ng to anal ay from cc sintigratic coCuries p	dpm/liter 0.07 0.28 0.50 0.25 0.34 used)(He e used)(He e used)(He on countiny sis	pCi/liter 0.03 0.13 0.23 0.11 0.15 ff)(Air/He analysis tte per lit	stats pCi/liter ±1 sig 0.02 0.04 0.02 0.03 0.02 0.03 0.02	

Columbia Analytical Services 2655 Park Center Dive, Suite A Simi Valley, California 93065	S" S	A	Air - Chain of Cu	n of Custod)	istody Record & Analytical Service Request	nalytical Se	ervice Req	uest		Page	of
Phone (805) 826-7161 Fax (805) 526-7270	2			Requested Turna 1 Day (100%) 2 D	Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10 Day-6	iness Days (Surd 3%) 4 Day (35%)	charges) please circle 5 Day (25%) 10 Day-Standard	circle Day-Stand	ard	CAS Project No	No.
Company Name & Address (Reporting Information)	Information)			Project Name					CAS Contact:		
GSI Environmental	£			I	ESTCP VI	study	- Reviter	J.MJ	Analvsis	Analvsis Method	
1221	78			Project Number	1366	4					
LICA Backley				P.O. # / Billing Information					Alexandrone group		
Phone 7133674775	Fax								Vi,		comments e.g. Actual
Email Address for Result Reporting	gsi-net.com			Sampler (Print & Sign)	2				Þz	4	Preservative or specific instructions
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # -	Flow Controller ID (Bar code #-	Start	Canister End Pressure	Sample	Z Z	E.	5
CP4-AA-BL		3/28/13	0850	1.00° an.	LC #)	бң.	"Hg/psig	Volume	~	1	
CP4-IA5BL		3/28/13	Still						s	. \	Jag W Liv J L
CP4-TA-5NP		51/2018	1105			/	/				led lor
JUP-1	~63	3/28/13			/					x]	LOW VOXUN
								•	>		
											re na la la parte de construcción de la construcción de la construcción de la construcción de la construcción d
											Na mana na mana mana mana mana mana mana
Report Tier Levels - please select											
Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)		ы на на 	ier III (Results ier IV (Data Va	Tier III (Results + QC & Calibration Summaries) Tier IV (Data Validation Package) 10% Surcharge	mmaries) Surcharge			EDD required Type:	d Yes / No		Project Requirements (MRLs, QAPP)
Relinquished by: (Signature)	2		8/13	Time: 13 30	Received by: (Signature)	ure) Z		9	Date: Date: 3/29/13	Time: 13 50	`
our data ay. (organized by		<u>0</u>	Date:	Time:	Received by: (Signature)	ure)			Date: TI		Cooler / Blank
				A STATE OF A DESCRIPTION OF A DESCRIPTIO							emperature °C

SAMPLE ID	С	Cl		
209-SG-09	-10.6		3.3	
CP4-IA-3	-31.2			-1.3
CP4-IA-4	-30.9			-0.4
CP4-IA-4B	-30.5			0.1
CP4-SG-6	-5.4		3.4	
MW-136	-22.2	1.5		
MW-139	-16.5	4.6		
MW-156	-25.3	1.9		
MW-CP-IV-1	-20.9	3.1		

Notes

correction [X] accounts for the method bias, based on the external standard runs, see QAQC data

"corrected $\delta = \delta + X$ " should be used to compare data from the present sampling event with those from past or future sampling event date analyzed

RUN #	SAMPLE ID	AIRTUBE #	TCE del VPDB
9452	209-SG-09	C16_M17715	-10.7
9476	209-SG-09	C16_J03132	-10.4
9446	CP4-IA-3	C16_M16576	-31.1
9456	CP4-IA-3	C16_M17718	-31.3
9447	CP4-IA-4	C16_M17824	-30.9
9448	CP4-IA-4B	C16_M17859	-30.5
9449	CP4-SG-6	C16_M17758	-5.7
9461	CP4-SG-6	C16_M17824	-5.8
9474	CP4-SG-6	C16_M17758	-5.3
9475	CP4-SG-6	C16_J05145	-4.9
9444	TCE standard	C16_K08421	-30.0
9445	TCE standard	C16_J03696	-30.0
9450	TCE standard	C16_M16542	-30.1
9451	TCE standard	C16_M17687	-30.1
9454	TCE standard	C16_M17787	-30.3
9473	TCE standard	C16_M17715	-30.0
9477	TCE standard	C16_J07064	-29.7
9478	TCE standard	C16_M17821	-30.2
RUN #	SAMPLE ID	volume (ul)	TCE del VPDB
9467	MW-136	12000	-22.2
9407	10100-130	12000	-22.2
9465	MW-139	3000	-16.8
9470	MW-139	3000	-16.2
9469	MW-156	450	-25.3
9471	MW-156	450	-25.3
9468	MW-CP-IV-1	25000	-20.9
9462	TCE standard	3	-29.9
9463	TCE standard	3	-30.1
9466	TCE standard	3	-30.3
9472	TCE standard	3	-30.1

AVERAGES		
SAMPLE ID	TCE del VPDB	stdev
209-SG-09	-10.6	0.2
CP4-IA-3	-31.2	0.1
CP4-IA-4	-30.9	
CP4-IA-4B	-30.5	
CP4-SG-6	-5.4	0.4
MW-136	-22.2	
MW-139	-16.5	0.4
MW-156	-25.3	0.0
MW-CP-IV-1	-20.9	

Notes

correction [X] accounts for the method bias, based on the external standard runs, see QAQC data

"corrected δ = δ +X" should be used to compare data from the present sampling event with those from past or future sampling events date analyzed

				AVERAGES		
RUN #	SAMPLE ID	AIRTUBE	TCE del SMOC	SAMPLE ID	TCE del SMOC	stdev
3389	209-SG-09	C16_M17789	3.3	209-SG-09	3.3	
				CP4-IA-3	-1.3	0.5
3385	CP4-IA-3	C16_M17784	-1.6	CP4-IA-4	-0.4	
3394	CP4-IA-3	C16_M17825	-0.9	CP4-IA-4B	0.1	0.4
				CP4-SG-6	3.4	
3387	CP4-IA-4	C16_J03738	-0.4			
				MW-136	1.5	0.2
3386	CP4-IA-4B	C16_M17817	-0.2	MW-139	4.6	0.1
3395	CP4-IA-4B	C16_M17687	0.3	MW-156	1.9	0.1
				MW-CP-IV-1	3.1	
3382	CP4-SG-6	C16_M17820	3.4			

RUN #	SAMPLE ID	AIRTUBE	TCE del SMOC
3379	TCE standard	C16_K08421	2.7
3380	TCE standard	C16_M17787	3.2
3381	TCE standard	C16_J03146	3.2
3384	TCE standard	C16_M17857	3.2
3388	TCE standard	C16_M17722	3.4
3390	TCE standard	C16_J06979	3.3
3391	TCE standard	C16_M17758	3.6
3392	TCE standard	C16_J03116	3.6
3393	TCE standard	C16_K08440	3.5
		average	3.3
		stdev	0.2
		off line \$270 of the stand	2.2

off-line δ 37Cl of the stand.	3.3
correction (x)	0.0

RUN #	SAMPLE ID	volume (ul)	TCE del SMOC
3361	MW-136	5000	1.7
3366	MW-136	4250	1.4
3360	MW-139	1850	4.6
3365	MW-139	1900	4.6
3353	MW-156	180	1.8
3359	MW-156	240	2.0
3362	MW-CP-IV-1	20500	3.1

RUN #	SAMPLE ID	TCE del SMOC
3350	TCE standard	3.6
3354	TCE standard	3.2
3355	TCE standard	3.0
3363	TCE standard	3.0
3364	TCE standard	3.9
3367	TCE standard	3.2
	average	3.3
	stdev	0.3
	off-line δ 37Cl of the stand.	3.3
	correction (x)	0.0

Supplemental CSIA Results

RUN #	SAMPLE ID	TUBE #	date analyzed	bzn (ng)	tce (ng)	pce (ng)
3244	BLANK CLEANED TUBE			0.4	0.0	0.0
3245	BLANK CLEANED TUBE			0.3	0.0	0.0
3246	BLANK CLEANED TUBE			0.3	0.0	0.0
3247	BLANK CLEANED TUBE			0.4	0.0	0.0
3252	613 TRIP BLANK	C16_K08449	Jan-10-2013	0.2	0.0	0.0
3257	613 TRIP BLANK	C16_K08458	Jan-11-2013	0.2	0.0	0.0
3251	631 TRIP BLANK	C16_J03703	Jan-10-2013	0.4	0.1	0.0
3255	631 TRIP BLANK	C16_K08451	Jan-11-2013	1.2	0.2	0.2
3256	631 TRIP BLANK	C16_J03115	Jan-11-2013	0.4	0.0	0.0
3309	677 TRIP BLANK	C16_M16542	Mar-22-2013	0.3	0.0	0.0
3311	677 TRIP BLANK	C16_M17854	Mar-22-2013	0.2	0.0	0.0
3398	687 TRIP BLANK	C16_K08451	Apr-15-2013	0.1	0.1	0.0
3401	687 TRIP BLANK	C16_M17860	Apr-15-2013	0.4	1.3	0.1
3402	687 TRIP BLANK	C16_M16587	Apr-15-2013	0.2	0.2	0.0

OU #712

ER-201025, city gas samples

analyses completed:

C CSIA -- 5/23/2013

Run #	Sample ID	volume (ml)	Split X	benzene δ13C	Sample ID	benzene δ13C	stdev
9577	Houston Natural Gas	2	1:9	-22.3	Houston Natural Gas	-22.2	0.1
9578	Houston Natural Gas	2	1:4	-22.2	Austin Natural Gas	-22.0	0.3
9580	Houston Natural Gas	2	1:3	-22.2			
9583	Austin Natural Gas	2	splitless	-22.2			
9584	Austin Natural Gas	2	splitless	-21.8			

Run #	Sample ID	Split X	benzene δ13C
9575	BZ standard	splitless	-28.1
9576	BZ standard	splitless	-28.0
9581	BZ standard	splitless	-28.1
9582	BZ standard	splitless	-27.9
		average	-28.025
		stdev	0.1
		off-line δ 13C of the stand.	-28.1
		correction (x)	-0.1

OU project #712a Cleint: GSI, Project ER-201025 Two samples in Summa canisters Analyzed August 21-22, 2013

Run # 7868	Sample ID Austin Nat. Gas; 25 ML	δ2Η -84
7870	Houston Nat. Gas; 20 ML	-80
7871	Houston Nat. Gas; 6 ML	-75
7865	standard	-79
7866	standard	-78
7867	standard	-68
7869	standard	-70
7873	standard	-78
	average	-75
	stdev	5
	off-line δ of the standard	-75

Appendix E: Recommended Protocol

Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs

CSIA PROTOCOL FOR VAPOR INTRUSION INVESTIGATIONS

Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

ESTCP Project ER-201025

Version 1 June 2013

Lila Beckley and Thomas McHugh, GSI Environmental Inc.

Tomasz Kuder and R. Paul Philp, School Geology and Geophysics, University of Oklahoma

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	1
2.0		ICABILITY	
	2.1	Technology Background	1
	2.2	Application to Vapor Intrusion	
	2.3	Building-Specific Applicability	
		2.3.1 Isotope Fingerprint of Subsurface Source	
		2.3.2 Building-Specific Considerations	
		2.3.3 Vapor Intrusion COCs	
	2.4	Use of CSIA with Other Investigation Approaches	
3.0		STIGATION PROTOCOL FOR APPLICATION OF CSIA TO	
		USION	
	3.1	PRE-SAMPLING ACTIVITIES	
	3.2	SUBSURFACE SAMPLING LOCATIONS	
	3.3	INDOOR AIR SAMPLING LOCATIONS	
	3.4	COLLECTION OF WATER SAMPLES	
	3.5	COLLECTION OF VAPOR SAMPLES	
		3.5.1 Required Minimum Sample Volumes	
		3.5.2 Estimation of Sample Point Concentrations	
		3.5.3 Recommended Samplers for Vapor Samples	
		3.5.4 Collection of Samples Using Summa Canisters	
	• •	3.5.5 Collection of Samples Using Sorbent Tubes	
	3.6	SAMPLE SHIPMENT AND ANALYSIS	
	3.7	ANALYTICAL LABORATORIES AND COST	
4.0		A INTERPRETATION	
5.0	REFE	RENCES	14

TABLES

Table 1: Sampling Conditions for Fractionation-Free Performance with Carboxen 1016	2
Table 2: Minimum Mass Required for a Single Isotope Analysis	9
Table 3: Example Uncertainty Associated with Concentration Estimation Methods	10
Table 4: Recommended Samplers for Vapor Samples for CSIA	10
Table 5: Recommended Number of Sorbent Tubes for Each Isotope Analysis per Sing	le COC
and Single Isotope Ratio	11
Table 6: Analytical Costs for CSIA	12
Table 7: Likely Range of Isotope Ratios for Indoor Sources of PCE, TCE, and Benzene	13

FIGURES

Figure 1: Conceptual Basis for Application of CSIA to Vapor Intrusion	
Figure 2: Site-Specific Applicability of CSIA for Vapor Intrusion Based on Isotope I	Ratios of
Subsurface Source	5
Figure 3: Advantages and Disadvantages of Sample Locations for Characterization	n of the
Subsurface VOC Isotope Signature	8
Figure 4: Interpretation of CSIA Results for Single Isotope	13
Figure 5: Interpretation of CSIA Results for Two Isotopes	13
CSIA Protocol for Vapor Intrusion	Version 1

LIST OF ACRONYMS

%0	Per mil (parts per thousand)		
1,1-DCE	1,1-Dichloroethene		
1,1,1-TCA	1,1,1-Trichloroethane		
1,2-DCA	1,2-Dichloroethane (Ethylene Dichloride)		
(EDC)			
AFB	Air Force Base		
bgs	Below ground surface		
cis-1,2-DCE	cis-1,2-Dichloroethene		
COC	Constituent of concern		
CSIA	Compound-Specific Stable Isotope		
	Analysis		
DoD	U.S. Department of Defense		
δ	Delta, an Isotope Ratio Measure		
ft	Feet, foot		
GC/MS	Gas Chromatograph/Mass Spectrometer		
K	thousand		
MTBE	Methyl tert butyl ether		
N/A	Not applicable		
PCE	PCE Tetrachloroethene		
SMOC	Standard Mean Ocean Chloride		
TAGA	Trace Atmospheric Gas Analyzer		
TCE	Trichloroethene		
USEPA	U.S. Environmental Protection Agency		
V-PDB	Vienna - Pee Dee Belemnite		
V-SMOW	Vienna – Standard Mean Ocean Water		
VI	Vapor Intrusion		
VOA	Volatile Organic Analysis		
VOCs	Volatile Organic Compounds		

1.0 INTRODUCTION

Compound-specific stable isotope analysis (CSIA) can be used as a building-specific vapor intrusion investigation tool to augment data from other investigation methods. The primary utility is to provide an independent line of evidence to distinguish between vapor intrusion and indoor sources of VOCs.

This CSIA protocol is not a standalone investigation approach. It involves collection of subsurface source (i.e., groundwater) and indoor air samples. Concentrations of target VOCs from these media must be known or estimated to develop CSIA sampling parameters (e.g., sample collection time).

This document i) describes the applicability of CSIA for vapor intrusion investigations (Section 2.0), ii) provides a step-by-step procedure for sample collection (Section 3.0), and iii) includes guidelines for data interpretation (Section 4.0). Additional background information on this investigation approach is available in the ESTCP Project ER-201025 Final Report (GSI, 2013a).

2.0 APPLICABILITY

2.1 Technology Background

Many elements, such as carbon, occur as different isotope species, differing in their number of neutrons present in the nucleus. For example, ¹²C, with 6 neutrons, is the most abundant form of carbon. ¹³C, with 7 neutrons, makes up a small fraction (~1%) of the carbon in the environment. Isotopic ratios ($^{13}C/^{12}C$) of a specific compound (e.g., TCE) can vary as a result of differences in their source material or compound synthesis or due to transformation in the environment (USEPA, 2008). Differences in the isotopic ratio measured in organic contaminants present in environmental samples can be used to i) distinguish between different sources of the contaminants and ii) understand biodegradation and other transformation processes occurring in the environment.

CSIA measures the carbon, chlorine, and/or hydrogen isotope ratios for individual chemicals. The results, however, are not reported as direct ratios of the isotopes. In order to ensure interlaboratory comparability and accuracy, the ratios are expressed relative to an international standard (typically V-PDB for carbon, SMOC for chlorine, and V-SMOW for hydrogen). Measured values are compared to the standard and reported as $\delta^{13}C$, $\delta^{37}Cl$, and $\delta^{2}H$. Results are typically reported in parts per thousand ("per mil" [‰]).

As discussed in Section 3.4, groundwater samples are collected in standard VOA vials. Vapor samples are collected on sorbent tubes (Section 3.5) or in Summa canisters. In an evaluation of commercially-available sorbents, Carboxen 1016 was found to perform best under different sampling conditions (GSI, 2012). The validated sampling conditions are summarized in Table 1.

Parameter	Validated Range
Target VOCs/isotopes	benzene (C, H), TCE (C, Cl), PCE (C, Cl)
Sample Volume	$\leq 100 L^1$
Sample Collection Rate	≤100 mL/min
Relative Humidity (at 23°C)	10 % - 90 %
Target VOC mass: benzene	$30 \text{ to } 900 \text{ ng}^2$
Target VOC mass: TCE, PCE	100 to 2250 ng
Non-target VOC mass	0 to 800 ug
Sample Holding Time (at 4°C) ³	Up to 4 weeks ³
Sample Holding Time $(at - 10^{\circ}C)^{3}$	Up to 24 weeks ³

 Table 1: Sampling Conditions for Fractionation-Free Performance with Carboxen 1016

¹ Laboratory study showed an absence of fractionation for sample volumes up to 200L. However, a 100L sample volume limit is recommended as a conservative measure to ensure an absence of fractionation; ² A higher minimum sample mass of 1000 ng is required to measure the hydrogen isotope ratio for benzene. Performance for up to 5000 ng was validated; ³ Storage of samples at room temperature is not recommended. Refrigerated tubes can be stored for at least 4 weeks prior to analysis (Klisch et al., 2012). It is recommended that tubes be frozen for holding time longer than 4 weeks, and analyzed within 6 months of collection (see GSI, 2013).

The methodology for determination of isotope ratios in VOCs present in air/vapor involves i) recovery and preconcentration of the target volatiles from air/vapor by sample processing by standard methods such as those described in USEPA Methods TO-15 or TO-17 (USEPA 1999a; USEPA 1999b); and ii) analysis of the collected samples for their isotope ratios, using CSIA adapted from the protocols used for analysis of the same VOCs present in groundwater samples (USEPA, 2008).

2.2 Application to Vapor Intrusion

Various processes can change the isotope ratios of a compound (so-called isotope fractionation). Molecular bonds containing the lighter isotopes are broken at slightly faster rates than those containing the heavier isotopes. As a result, the isotopic ratio for a compound can change over time as the compound is biodegraded in the subsurface. The parent compound (e.g., TCE) becomes relatively enriched in heavy isotopes (i.e., less negative $\delta^{13}C$ and $\delta^{37}Cl$ values), while transformation products (e.g., cis-1,2-DCE) end up with less of the heavy isotopes (i.e., more negative $\delta^{13}C$ and $\delta^{37}Cl$ values). While physical processes such as evaporation and sorption can also cause fractionation at contaminated sites, these processes are often too subtle to have a measurable effect on isotope ratios, except for hydrogen.

The CSIA approach involves i) determination of stable isotope ratios of the target VOCs present in the air $({}^{13}C/{}^{12}C, {}^{37}Cl/{}^{35}Cl$ for PCE and TCE; ${}^{13}C/{}^{12}C$ and ${}^{2}H/{}^{1}H$ in the case of benzene) and ii) use of those ratios to differentiate between VOCs sourced from the subsurface (true vapor intrusion) and those sourced from miscellaneous household products. The conceptual basis for application of CSIA to vapor intrusion follows:

- 1. Isotope ratios for VOCs originating from different manufactured sources have isotope ratios within a defined range (Figure 1, Panel A). This range is small compared to the range of isotope ratios created by isotope fractionation effects that occur in the subsurface.
- 2. VOCs originating from subsurface sources commonly undergo biodegradation in groundwater and later in the unsaturated soil prior to entering indoor air. Individual

molecules that contain the lighter isotopes are often preferentially biodegraded, resulting in enrichment of the heavier isotope species in the undegraded residue (Figure 1, Panel B). This enrichment process is known as isotope fractionation.

- 3. The consequence of isotope fractionation is that isotope composition of VOCs originating from the subsurface is often clearly different than that of pristine (undegraded) manufactured products acting as indoor sources of the same VOCs (Figure 1, Panel C).
- 4. This difference allows the successful differentiation between VOCs from indoor sources and those from true vapor intrusion sources (Figure 1, Panel D).

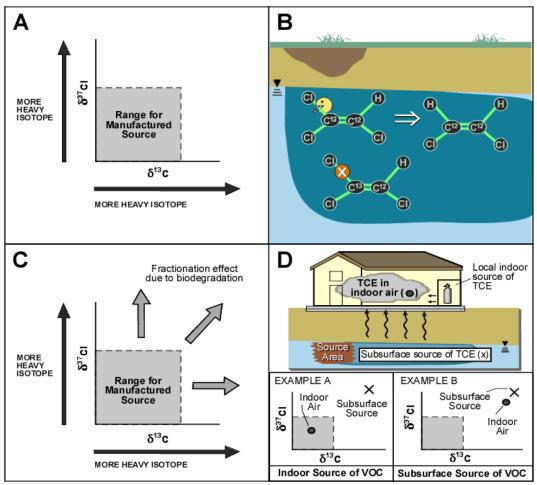


Figure 1: Conceptual Basis for Application of CSIA to Vapor Intrusion

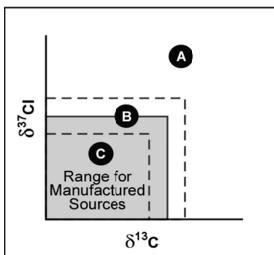
Interpretation of the origin of VOCs in indoor air based on CSIA results is relatively straightforward in comparison to traditional vapor intrusion investigation methods. The isotope ratios from VOCs in indoor air are directly compared to those from the subsurface source (groundwater) and those measured in a variety of available consumer products. Isotope ratios dissimilar from the subsurface source but similar to the values characteristic of, for example, TCE present in household products is a strong indication that the latter are responsible for the indoor air contamination (see Figure 1, Panel D, Example A). On the other hand, the isotope

ratios of TCE in indoor air can be similar to the subsurface sources and different from indoor sources, confirming the impact of vapor intrusion (Figure 1, Panel D, Example B).

2.3 Building-Specific Applicability

Building-specific investigations of vapor intrusion are typically required when VOCs have been detected above applicable screening concentrations within 30 to 100 feet of the buildings and the results of subsurface testing (i.e., groundwater or soil gas) indicate a potential vapor intrusion concern (USEPA, 2002; ITRC, 2007).

When a building-specific investigation is required, the CSIA investigation procedure is broadly applicable to a wide variety of building types and COCs. The investigation procedure will be most commonly applied in conjunction with other investigation methods. Specific considerations for the selection of this investigation procedure are discussed below.


2.3.1 Isotope Fingerprint of Subsurface Source

The CSIA procedure relies on differences in the isotope signature between the subsurface VOC source and potential indoor VOC sources in order to determine the origin of VOCs detected in indoor air. As a result, the method is most likely to provide clear results if the isotope fingerprint for the subsurface source is outside the range for potential indoor sources (see Figure 2 "A"). The method may also yield useful supporting evidence if the isotope ratios for the subsurface source are close to the heavy end of the indoor source range (see Figure 2 "B"). In this situation, an indoor air sample with isotope ratios that closely match the subsurface source would provide supporting evidence of vapor intrusion, but this result, alone, would not be definitive because of the potential contribution from indoor sources.

Biodegradation of VOCs in the subsurface commonly results in an isotope fractionation effect. Therefore, sites with evidence of biodegradation (e.g., detection of daughter products) are more likely to have subsurface sources with isotope signatures that are distinct from potential indoor sources. 50% biodegradation of TCE should commonly be sufficient for the subsurface source to be distinct from the range of indoor sources. However, for benzene, up to 90% biodegradation could be required and for PCE, more than 90% biodegradation could be required at some sites (GSI, 2012).

The isotope signature of the subsurface source should be measured <u>before large scale application</u> <u>of the CSIA procedure</u> at a site. Based on the results of initial isotope fingerprinting, the applicability of CSIA at the site for the evaluation of vapor intrusion should be determined as illustrated in Figure 2. The isotope signature of the subsurface source can be measured prior to the collection of any indoor air samples or in conjunction with the initial sampling of one or two buildings.

Figure 2: Site-Specific Applicability of CSIA for Vapor Intrusion Based on Isotope Ratios of Subsurface Source

Note: A) Isotope ratios for subsurface source are outside range for potential indoor sources, CSIA likely to provide strong evidence; B) Isotope ratios for subsurface source are near heavy end of range for potential indoor sources, CSIA may provide supporting evidence; C) Isotope ratios for subsurface source are within the range for potential indoor sources, CSIA unlikely to distinguish between indoor and subsurface sources.

2.3.2 Building-Specific Considerations

The application of CSIA to vapor intrusion requires the collection of at least one indoor air sample and at least one subsurface (i.e., groundwater) sample. As discussed in Section 3, the subsurface sample should be collected near the target building. Site-specific factors should also be considered when selecting sample locations. For example, collection of the indoor air sample can take up to 24 hours, depending on the concentration of the target VOC in indoor air. The CSIA procedure is applicable to any type of building provided that access can be obtained for placement and retrieval of the sample pumps.

2.3.3 Vapor Intrusion COCs

Accurate measurement of carbon or chlorine isotope ratios requires approximately 100 ng of the target chlorinated VOC. For a target petroleum VOC (i.e., benzene), the accurate measurement of carbon isotope ratios requires approximately 50 ng; accurate measurement of the hydrogen isotope ratio requires approximately 1000 ng. The required sample volume is equal to the required mass divided by the concentration in the source medium. For sample volumes of greater than 3L, use of an adsorbent tube and sample pump (per USEPA method TO-17) is the most practical sample collection method. The adsorbent tube sampling method has been validated for PCE, TCE, and benzene (Kuder et al., 2012). For other target VOCs, additional laboratory validation would be required to ensure that the sample collection method does not introduce a confounding fractionation effect. Recommended laboratory validation analyses are provided in Kuder et al., 2012.

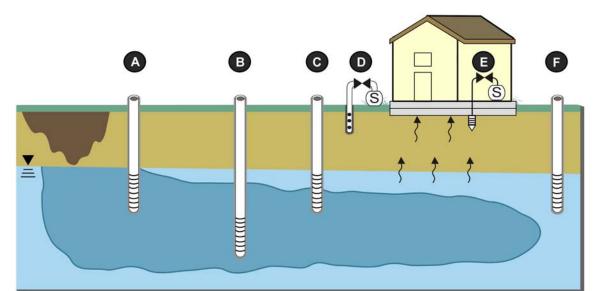
2.4 Use of CSIA with Other Investigation Approaches

The CSIA procedure will most commonly be used in conjunction with other investigation methods such as conventional Summa canister sampling or on-site GC/MS analysis (GSI, 2013b). The CSIA procedure may be used i) as a supplemental tool during an **initial investigation** at buildings without prior vapor intrusion testing (provided that, at a minimum, screening-quality data are available to estimate target VOC concentrations) or ii) at buildings where preliminary testing of indoor air has identified VOC concentrations near or above regulatory screening values, and there is some **uncertainty concerning the source of the VOCs**.

3.0 INVESTIGATION PROTOCOL FOR APPLICATION OF CSIA TO VAPOR INTRUSION

3.1 PRE-SAMPLING ACTIVITIES

CSIA will most commonly be conducted as part of a larger vapor intrusion sampling program. As a result, the pre-sampling activities discussed here focus only on the additional planning steps required for the collection of samples for CSIA. Basic activities such as obtaining building access are not covered.


Pre-sampling, preparatory activities include:

- 1. **Identify Specific Structures for Sampling**: Select specific structures to be included in the CSIA program. If prior sampling results are available, this would include buildings with VOCs in indoor air near or above screening levels for which the source is uncertain. If no prior sampling results are available, then this may include all buildings with VI concerns or only the highest priority buildings.
- 2. **Determine Target VOCs**: Identify the VOCs for CSIA. The target VOCs should be the one to two vapor intrusion COCs of greatest concern based on consideration of subsurface concentrations, indoor air screening concentrations, and potential for indoor sources. The sorbent sample collection method has been validated for PCE, TCE, and benzene. Additional validation would be required for application of this sample collection method to other VOCs.
- 3. Estimate Target VOC Concentrations: The collection of indoor air samples for CSIA requires an estimate of the concentration of the target VOC at the sample point in order to determine the proper sample volume. VOC concentrations may be estimated based on results from previous sampling events. Uncertainty is accounted for by collecting additional sample mass (see Section 3.5.2 and 3.5.5). Groundwater concentrations must be estimated as well. Use of historic data is typically sufficient for this purpose.
- 4. **Necessary Equipment**: The collection of low concentration vapor samples for CSIA requires use of sorbent tubes and pumps as described in USEPA Method TO-17 (USEPA, 1999b). Higher concentration samples can be collected using a Summa canister (see Section 5.5). If water samples will be collected to characterize the subsurface source, then appropriate equipment will be required.

3.2 SUBSURFACE SAMPLING LOCATIONS

Groundwater samples are recommended for characterization of isotope ratios in the subsurface source. Results obtained during demonstration of the protocol indicate that isotope ratios in soil gas are more variable and, in some cases, less representative of vapors potentially entering the building. When possible, the groundwater sample should be collected in close proximity to the building of concern. If monitoring wells are not available close to the building, upgradient (not downgradient) wells should be selected for sampling (see Figure 3).

Although soil gas samples are less useful than groundwater samples for comparison to indoor air, measurement of isotope ratios in soil gas may provide insights into biodegradation processes occurring in the vadose zone (McHugh et al., 2011a).

Figure 3: Advantages and Disadvantages of Sample Locations for Characterization of the Subsurface VOC Isotope Signature

Location	Advantages	Disadvantages
A) Upgradient Groundwater Well (Screened at water table)	 Water sample easier to collect than soil gas sample. Easiest sample point if this is the closest existing well to target building. 	• Does not account for any additional enrichment that occurs closer to building both within the saturated zone and within the vadose zone.
B) Deep Groundwater Well	Not recommended	• High uncertainty. Isotope ratios may not be representative of VOCs at top of water table.
C) Groundwater Well Close to Target Building (Screened at water table)	 Water sample easier to collect than soil gas sample. This water sample will be most representative of VOCs potentially entering building. 	• Does not account for any additional enrichment that occurs within vadose zone.
D) Soil Gas Sample from Close to Building	• Not recommended for primary characterization of subsurface source.	• More difficult to collect than water sample.
E) Sub-slab Soil Gas Sample	Not recommended for primary characterization of subsurface source.	 May contain VOCs originating from within building. Sample collection can be a lengthy process, depending on concentration.
F) Downgradient Groundwater Well	Not recommended	May be more enriched in heavy isotopes than VOCs entering building.Could yield false positive results.

Note: 1) Recommendation based on current understanding of spatial variability in vadose zone.

3.3 INDOOR AIR SAMPLING LOCATIONS

For most buildings, indoor air can be characterized through the collection and analysis of a single indoor air sample from the area of the building most likely to be impacted by vapor intrusion (e.g., the lowest level of multi-level building). For larger buildings where the air may not be well mixed (e.g., buildings with multiple air handling systems), one sample from each area may be warranted. If indoor sources are considered to be more likely within specific portions of the building (e.g., the garage), then an additional sample may be collected from this area.

3.4 COLLECTION OF WATER SAMPLES

Water samples for CSIA can be collected using the same sampling procedures used to collect samples to measure VOC concentrations (e.g., in accordance with USEPA, 1996 or ASTM, 2002 for low flow sample collection). Two 40 mL volatile organic analysis (VOA) vials should be collected for analysis of each specific isotope ratio. For example, the analysis of carbon and chlorine isotope of PCE and TCE would require a total of eight 40 mL VOA vials (2 vials x 2 sets of ratios (carbon and chlorine) x 2 compounds (PCE and TCE)). Samples for the analysis of carbon or hydrogen isotopes should be preserved using hydrochloric acid. Samples for the analysis of chlorine isotopes should be preserved using sulfuric acid. Samples should be refrigerated for shipping and stored at 4°C prior to analysis.

3.5 COLLECTION OF VAPOR SAMPLES

Vapor samples for CSIA can be collected using Summa canisters or sorbent tubes. The appropriate sample method is determined based on the sample volume required.

3.5.1 Required Minimum Sample Volumes

The sample volume is determined by the minimum mass required for analysis and the sample concentration. The minimum mass required for analysis is provided in Table 2 (Kuder et al., 2012).

Target VOC	Isotope	Minimum Mass Required for Analysis
PCE or TCE	Carbon	100 ng
PCE or TCE	Chlorine	100 ng
Benzene	Carbon	50 ng
Benzene	Hydrogen	1000 ng (1)

 Table 2: Minimum Mass Required for a Single Isotope Analysis

1) In most cases, it will be impractical to collect enough sample volume to measure the hydrogen isotope ratio in indoor air.

The minimum sample volume is calculated using Equation 1:

Equation 1:

Sample Volume (L) = Minimum Mass (ng) / Sample Concentration $(ug/m^3) \times 1 (L - ug)/(m^3 - ng)$

Where: Sample Volume = Minimum sample volume for CSIA (L) Minimum Mass = Minimum sample mass for CSIA (ng, see Table 2) Sample Concentration = Estimated or measured concentration of target VOC in sample (ug/m³) 1 (L - ug)/(m³ - ng) = Units conversion factor. 1 ug/m³ = 1 ng/L

3.5.2 Estimation of Sample Point Concentrations

Because CSIA requires a minimum sample mass, the sample point concentration must be estimated to determine the required sample volume. The sample point concentration may be estimated based on on-site analysis conducted on the same day as the CSIA sampling, analysis conducted prior the CSIA sampling, or based on information other than a direct measurement of

the target VOC concentration at the sample point. The uncertainty associated with the estimate will depend on the estimation method (see Table 3).

Table 3: Example Uncertainty Associated	d with Concentration Estimation Methods

Estimation Method	Example Uncertainty	
On-site Concentration Measurement on the Day of	< 2x	
CSIA Sample Collection		
Concentration Measurement on a Prior Day	2-4 x	
Other Estimation Method	> 5 - 10 x	

When calculating the minimum sample volume using Equation 1, the uncertainty in the estimated sample point concentration should be considered in order to ensure that adequate sample mass is collected.

3.5.3 Recommended Samplers for Vapor Samples

The recommended sampler is based on the minimum sample volume as shown in Table 4.

^	1 1
Minimum Sample Volume	Recommended Sampler
≤250 mL	1L Summa
≤1.5 L	6L Summa
> 1.5 L	Sorbent Tube

 Table 4: Recommended Samplers for Vapor Samples for CSIA

A Summa canister larger than the minimum sample volume (i.e., a 6L Summa for a 1.5L minimum sample volume) is recommended because many laboratories cannot extract the full sample volume from the Summa canister. In addition, it is common practice to provide enough sample for at least two analyses. It is possible to use Summa canisters for somewhat higher minimum sample volumes by collecting two or more Summa canisters for each sample. Summa canisters are recommended for smaller sample volumes because they are easier to use than sorbent tubes. However, sorbent tubes may also be used for lower volume samples. For example, if sorbent tubes are being used at a site to collect samples requiring larger volumes, then the investigator may choose to also collect the lower volume samples using sorbent tubes (i.e., rather than using Summa canisters for some samples and sorbent tubes for others).

3.5.4 Collection of Samples Using Summa Canisters

When using a Summa canister to collect a vapor sample for CSIA, the sample can be collected as grab samples (i.e., without use of a flow controller). Otherwise, the sample collection should be conducted in accordance with typical guidance on the collection of Summa canister samples for measurement of VOC concentration (e.g., NDEP, 2001 or similar procedures available from analytical laboratory). Summa canister samples should be stored at room temperature prior to analysis.

3.5.5 Collection of Samples Using Sorbent Tubes

When using a sorbent tube to collect a vapor sample for CSIA, the sample should be collected in accordance with the procedures for the use of active sorbent samplers for measurement of VOC

concentrations (e.g., USEPA, 1999b). A minimum of two sorbent tubes should be collected for each isotope analysis. However, as shown in Table 5, additional sorbent tubes are recommended for samples with higher uncertainty in the estimated sample concentration.

 Table 5: Recommended Number of Sorbent Tubes for Each Isotope Analysis per Single

 COC and Single Isotope Ratio

Uncertainty in Estimated	
Concentration	Recommended Number of Sorbent Tubes
<2x	Two tubes each with a target mass of 2 times the minimum required mass. ²
2 – 4 x	Two tubes each with a target mass of 2 times the minimum required mass AND two tubes each with a target mass of 4 times the minimum required mass. ³
> 4 x	Three tubes each with a target mass of 3 times the minimum required mass AND two tubes each with a target mass of 10 times the minimum required mass. ⁴

Note: 1) Table provides the recommended number of tubes for each isotope analysis for each target VOC (e.g., carbon isotopes in TCE). An equal number of additional tubes is required for each additional isotope or target VOC. 2) Example: If target VOC is TCE and target isotope is carbon, then collect two tubes, each having 200 ng of sample (i.e., 100 ng x 2). 3) Example: If target VOC is TCE and target isotope is carbon, then collect four tubes total: two tubes, each having 200 ng of sample, plus two tubes, each having 400 ng of sample. 4) Example: If target VOC is TCE and target isotope is carbon, then collect 5 tubes total: three tubes, each having 300 ng of sample, plus two tubes, each having 1000 ng of sample.

The recommendations provided in Table 5 are intended to provide the greatest likelihood that reliable CSIA results will be obtained from each sample. If the actual VOC mass collected on the sample tube is close to (i.e., within 50%) the target mass and no analytical difficulties are encountered, than an accurate result can be obtained from a single tube. The collection of additional tubes is recommended to account for variations in the actual sample mass and analytical difficulties that occasionally result in sample loss. The typical analytical costs (Section 3.7, Table 6) are per sample (i.e., the cost covers the analysis of one or more tubes, as needed to obtain an accurate result). However, the laboratory requires an estimated mass of target analyte on each sample tube. When the sample mass cannot be estimated within 4x, an additional fee may apply to cover the cost of additional testing required to determine the sample mass.

The maximum sample volume of the sorbent tubes is 100L (in order to ensure that sample collection does not introduce an isotope fractionation effect). As a result, for samples with low estimated concentrations of the target VOC (or with high mass requirements [e.g., hydrogen isotope from benzene]), it may not be possible to collect sample tubes with target masses greater than the minimum required sample mass. A sampling plan for sample points with low estimated concentrations of the target VOC should be developed in coordination with the laboratory (see Section 3.7).

Sorbent tube samples should be refrigerated during shipping and stored at 4°C (or frozen) prior to analysis.

3.6 SAMPLE SHIPMENT AND ANALYSIS

Water and vapor samples should be stored and shipped in accordance with manufacturer and laboratory guidelines. Samples collected in sorbent tubes should be stored at 4°C and shipped to the laboratory ([University of Oklahoma]; see contact information in Section 3.7). Water samples

and gas samples collected in Summa canisters can be analyzed at the University of Oklahoma or at another qualified isotope laboratory.

3.7 ANALYTICAL LABORATORIES AND COST

Although a number of commercial laboratories provide isotope analysis for water sample or air samples, at present, the University of Oklahoma service laboratory is the only laboratory that can measure compound-specific isotope ratios of VOCs on adsorbent tube samples. Analytical costs are summarized in Table 6.

Analyte	Carbon	Chlorine	Hydrogen	
Adsorbent Tube Samples				
PCE/TCE	\$400/sample	\$400/sample	\$350/sample (TCE)	
Benzene	\$350/sample	N/A	\$350/sample	
Water Samples				
PCE/TCE	\$350/sample	\$400/sample	\$350/sample (TCE)	
Benzene	\$350/sample	N/A	\$350/sample	

Table 6: Analytical Costs for CSIA

Note: Laboratory requires estimated mass or concentration of target analyte in sample. An additional fee may apply if this information is not provided.

Information on the University of Oklahoma service laboratory can be obtained from:

University of Oklahoma, Geology Department 100 E. Boyd St; Room A710 Norman OK 73019 Attn: Dr. Paul Philp

Email: <u>pphilp@ou.edu</u> Dr. Paul Philp <u>tkuder@ou.edu</u> Dr. Tomasz Kuder

Phone: 405-325-4469 (Dr. Paul Philp) 405-325-4453 (CSIA laboratory) 405-325-3253 (OU Geology Department, Front Desk)

4.0 DATA INTERPRETATION

The measured isotope ratios for the subsurface samples and for indoor air can be used to determine the likely source of the target VOC in indoor air, based on i) the similarity of the subsurface and indoor air results, and ii) comparison to isotopic signatures of indoor sources (e.g., manufactured products). The range of likely isotope ratios for indoor sources (Table 7) was determined through literature reviews and laboratory analysis of common consumer products (McHugh et al., 2011b, GSI, 2012).

	Likely Range	
VOC	Carbon Isotope Ratio (‰)	Chlorine Isotope Ratio (‰)
PCE	-37.4 to -24.0	-4.4 to 1.0
TCE	-34.0 to -23.0	-3.2 to 4.7
VOC	Carbon Isotope Ratio (‰)	Hydrogen Isotope Ratio (‰)
Benzene	-31.5 to -23.5	-82 to -37

 Table 7: Likely Range of Isotope Ratios for Indoor Sources of PCE, TCE, and Benzene

Potential results and interpretations based on a single isotope are illustrated in Figure 4.

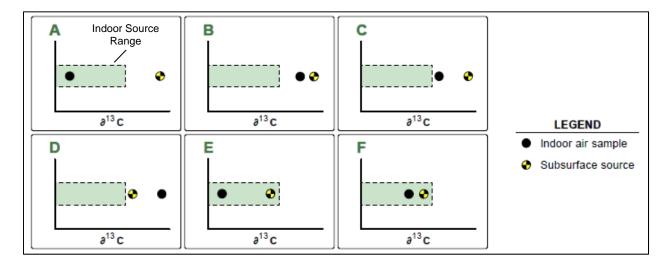
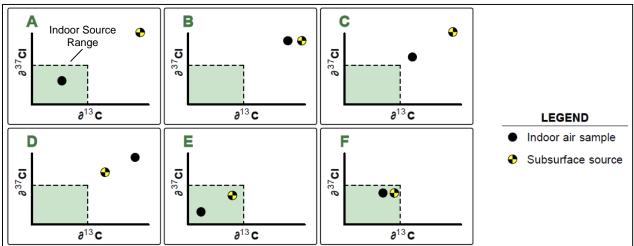



Figure 4: Interpretation of CSIA Results for Single Isotope

If two isotope ratios are analyzed, the data interpretation is as follows (Figure 5):

Figure 5: Interpretation of CSIA Results for Two Isotopes

For both Figures 4 and 5, data interpretation is based on pattern-matching as follows:

A) Strong evidence that an indoor source is the primary source of VOCs in indoor air;

B) Strong evidence that the subsurface source is the primary source of VOCs in indoor air;

C) Evidence of mixed subsurface and indoor air sources;

D) Evidence that the subsurface source is the primary source of VOCs in indoor air, additional enrichment in the heavy isotopes is likely occurring between the subsurface measurement point and the target building;

E) Supporting evidence that an indoor source is the primary source of VOCs in indoor air; and

F) Supporting evidence that the subsurface source is the primary source of VOCs in indoor air. However, results are also potentially consistent with an indoor source, so the results should be interpreted within the context of other lines of evidence.

In addition, the strength of the overall conclusion should be weighted based on i) the number of samples used to characterize the indoor air and subsurface source (i.e., groundwater) and ii) the consistency of the results with other lines of evidence. Although one subsurface sample may be sufficient to characterize the isotope ratios for subsurface sources of VOCs, additional samples can strengthen the interpretation of the results by characterizing the variability in the subsurface source and thereby reducing the uncertainty concerning the apparent similarities or differences between the subsurface source and indoor air samples. Similarly, multiple indoor air samples can serve to characterize variability and reduce uncertainty.

In cases where the CSIA results identify an indoor source as the primary source of the VOC in indoor air, it is still possible that vapor intrusion may be a secondary source. In this situation, the indoor source may be found, removed, and the building retested to confirm that vapor intrusion is not a secondary source. Retesting, however, may not be needed if, for example i) the indoor air concentration is below or only slightly above the regulatory standard, ii) the indoor source cannot be removed without disrupting building operations, or iii) all parties involved are satisfied with the existing results.

5.0 REFERENCES

- ASTM, 2002. ASTM D6771-02 Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations.
- GSI Environmental, 2012, ESTCP Project ER-201025 Task 2 Report: Characterization of Sources and Investigation Protocol, Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs (McHugh, Kuder, Philp, Version 2, May 2012).

- GSI Environmental, 2013a, Final Report, ESTCP Project ER-201025, Use of Compound-Specific Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs (McHugh, Beckley, Kuder, Philp, Version 1, June 2013).
- GSI Environmental, 2013b, Final Report, ESTCP Project ER-201119, Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs (McHugh, Beckley, Gorder, Dettenmaier, Rivera-Duarte, Version 1, June 2013).
- ITRC, 2007. Vapor Intrusion Pathway: A Practical Guideline, Interstate Technology & Regulatory Council Vapor Intrusion Team. January, 2007.
- Kuder, T., M. Klisch, R. P. Philp, T. McHugh, 2012. Laboratory Study Report: Use of Compound-Specific Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOCs, Version 2, Issued 24 January 2012, ESTCP Project ER-201025.
- McHugh, T. E., R. Lee, S. Fiorenza, T. Kuder, P. Philp, H. Lee, 2011a, Validation of New Tools to Manage Vapor Intrusion Liability, AFCEE BAA Contract 09-C-8016 Project Report, Version 2, 4 March 2011.
- McHugh T. E., T. Kuder, S. Fiorenza, K. Gorder, E. Dettenmaier, and P. Philp, 2011b. Application of CSIA to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs. *Environmental Science and Technology*, July 15, 2011, 45 (14): 5952-5958.
- NDEP, 2001. Summa Canister Sampling, State of Nevada Division of Environmental Protection Standard Operating Procedure, October 16, 2001.
- USEPA, 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA Ground Water Issue EPA/540/S-95/504: Puls, R.W. & Barcelona, M.J.
- USEPA, 1999a. Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). EPA/625/R-96/010b. January, 1999.
- USEPA, 1999b. Compendium Method TO-17, Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Active Sampling Onto Sorbent Tubes. EPA/625/R-96/010b. January, 1999.
- USEPA, 2002. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), EPA530-D-02-004. November, 2002.
- USEPA, 2008. A Guide for Assessing Biodegradation and Source Identification of Organic Groundwater Contaminants using Compound Specific Isotope Analysis (CSIA), Office of Research and Development, EPA 600/R-08.148. December, 2008.