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Abstract

In recent years, there has been a rapid growth in the use of machine learning in

materials science. Conventionally, a trained predictive model describes a scalar output

variable, such as thermodynamic, electronic, or mechanical properties, as a function of

input descriptors that vectorize the compositional or structural features of any given

material, such as molecules, chemical compositions, or crystalline systems. In machine

learning of materials data, on the other hand, the output variable is often given as a

function. For example, when predicting the optical absorption spectrum of a molecule,

the output variable is a spectral function defined in the wavelength domain. Alter-

natively, in predicting the microstructure of a polymer nanocomposite, the output

variable is given as an image from an electron microscope, which can be represented
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as a two- or three-dimensional function in the image coordinate system. In this study,

we considered two unified frameworks to handle such multidimensional or functional

output regressions, which are applicable to a wide range of predictive analyses in ma-

terials science. The first approach employs generative adversarial networks, which are

known to exhibit outstanding performance in various computer vision tasks such as

image generation, style transfer, and video generation. We also present another type

of statistical modelling inspired by a statistical methodology referred to as functional

data analysis. This is an extension of kernel regression to deal with functional outputs,

and its simple mathematical structure makes it an effective modelling even for given

data in limited supply. We demonstrate the proposed method through several case

studies in materials science.

Introduction

Recently, there has been a growing trend in various domains of materials science to use

machine-learning techniques to accelerate the process of designing and creating new materi-

als. Conventionally, machine learning models are used to rapidly perform high-throughput

virtual screening across millions or billions of candidate materials that span an enormous

search space1–5. In general, a model describes physicochemical, electronic, thermodynamic,

or mechanical properties as a function of the input materials, which are given in various

forms, such as small- or macro-molecules, crystalline systems, chemical or raw material com-

positions, and their mixtures. To put the task into a machine learning framework, such a

non-numeric variable needs to be transformed into a fixed-length numeric vector called a de-

scriptor, which represents the compositional or structural features of the given material5–16.

Under the supervision of the given data, a model is trained to learn the mapping from the

vectorized features to their respective properties. In this workflow, the feature representation

of the input materials plays a key role in boosting the predictive power.

There is a great deal of prior work on transforming material features into numeric vectors
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and constructing regression models or classifiers that represent the mapping from vectorized

input materials to their output properties. A class of descriptors, referred to as molecular

fingerprints, has long been studied in chemical informatics, which converts a chemical struc-

ture or molecular graph into an integer-valued vector according to the presence or absence or

the number of occurrences of a particular chemical fragment, in which hundreds or thousands

of fragments are considered10–14. Another type of molecular descriptor employs a quantita-

tive representation of the topological or physicochemical features of a molecular system17–20.

Chemical composition can be considered as a set variable consisting of a variable number

of element species and their contents. There are a large volume of previous studies on the

representation of such compositional features5–9. A crystal structure is typically vectorized

by encoding the local structural environments of each atom and the neighboring relations

of constituent atoms in a unit cell7–9,21. In recent years, there has also been an increasing

trend in the treatment of a material structure as a graph and in modeling its properties

using graph neural networks22–24. A natural representation of the chemical structure was

created on a labeled graph. A periodic configuration of atoms in a crystalline system can

also be translated into a graph called a crystal graph, which represents the coordination of

constituent atoms in infinitely arranged unit cells22. In addition, when predicting the prop-

erties of a composite system from its microstructure, it is natural to treat the microstructure

as an image. In the study of composite materials, scanning electron microscopy (SEM) and

transmission electron microscopy (TEM) are widely used to observe the surface or inter-

facial structure of the fabricated materials. By treating the microstructure as an image,

supervised learning can be addressed by regressing real-valued output properties onto the

space of the microstructure images, as in computer vision and image recognition25,26. Other

representation methods have also been investigated for various material systems, such as

topological feature representation of disordered material systems using persistent homol-

ogy27, identification of multi-component materials based on the spectral function of powder

X-ray diffraction28, and prediction of reaction outcomes in organic synthesis based on string
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representations of product and reactant molecules29,30.

As mentioned above, most previous studies have considered the ordinary problem setting

of supervised learning, where an input variable is given as a relatively high-dimensional vector

encoding material features, and the output is a scalar or low-dimensional real-valued vector,

for example, a few sets of physicochemical properties or a class label indicating structural

species or the level of physical features. On the other hand, there are many potential problem

settings in materials science, where the output variable is inherently ultra-high-dimensional

or multidimensional (e.g., a functional-type output), but the methodology of supervised

learning in such scenarios has not been well studied. For example, in the task of predicting

the ultraviolet-visible (UV-Vis) absorption spectra of molecules, the input variable can be

given by a vectorized molecular structure, and the output variable is given as a function

defined on the domain of wavelengths that represents the optical absorbance31. In the study

of composite materials, it is important to qualitatively and quantitatively understand the

influence of processing conditions such as temperature, pressure, and composition on the

resulting microstructures. SEM and TEM are commonly used to examine microstructures.

If we formulate the problem within a framework of supervised learning, the input is a real-

valued vector encoding the processing condition and composition, and the output is given

by an intensity matrix representing the grayscale microscopic image. This is a regression

problem for multidimensional output variables. Alternatively, the problem can be reduced

to an image generation task in computer vision. To solve such problems, various types

of deep generative models, such as the conditional GAN (cGAN)32 and encoder-decoder

networks33, can be applied. In fact, there have been several previous studies in which

the cGAN was applied to the prediction of microstructures, as described above34–36, and

an encoder-decoder model for the prediction of the UV-Vis absorption spectra of organic

molecules31. In addition, in statistical science, regression methods for functional output

variables have long been studied in the context of functional data analysis37, which may also

be applicable to solving the aforementioned problems.
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In this study, we consider two unified frameworks for multidimensional functional out-

put regression that can cover various potential applications in materials science. The first

approach employs cGAN, inspired by the study of microstructure images in Banko et al. 34 .

However, because cGAN has training instability in the adversarial learning process and weak-

ness to limited amounts of data, we developed another framework, a statistical modeling that

relies on the methodology of functional data analysis for functional output variables. The

present model can be viewed as an extension of kernel regression to handle functional output

variables, and has a simpler mathematical form than the cGAN model architecture. As

shown later, the method exhibits outstanding predictive performance even in cases where

only a small amount of data is available. We demonstrate these two methods using three case

studies. In the first two case studies, the optical absorption spectra of organic molecules in

two different regions of UV-Vis (170-780 nm) and near-infrared wavelength (NIR: 780–2500

nm) were predicted. The output variable was a spectral function in the wavelength domain.

The number of training instances is of the order of thousands for the former case, whereas

for the latter, the data are in limited supply as the number of training molecules is approx-

imately 60. With these applications, we demonstrated the potential predictive ability of

these two methods on a limited amount of training data. In particular, we compare ordinary

regression, which predicts a scalar output variable with a pre-quantified spectral feature38,

with the present methods predicting the whole function directly, and describe the superiority

of the latter and its statistical mechanisms in relation to multitask learning39. The objective

of the third example is to predict an electron microscopic image of the microstructure for

any given composition and processing conditions in the fabrication of thin-film composite

materials. Python codes used in the case studies were distributed40.
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Figure 1: Three potential applications formulated as the problem of functional output re-
gression: (a) prediction of optical absorption spectra based on the chemical structure of an
organic molecule, (b) prediction of microstructure images of composite materials based on
processing conditions and compositional features, and (c) prediction of frequency-dependent
dielectric properties.
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Preliminary

The present study deals with a supervised learning problem in which the input variable

X ∈ Rp is a p-dimensional descriptor vector and the output variable Y (X, t) ∈ R is given by

a real-valued function of X and an additional argument t ∈ Rq. Argument t corresponds to

a coordinate in image space or to a wavelength at which the spectral function is defined. In

the following sections, we describe potential applications in materials science.

Spectral prediction

Molecules undergo temporal transitions from their ground states to higher-energy excited

electronic states in response to the absorption of light, such as UV-Vis or NIR. The absorp-

tion wavelength is proportional to the inverse of energy. The absorbance spectrum, which

represents the intensity of optical absorption as a function of wavelength, is determined

by the excitation energy levels and the transition probabilities of the electronic states in

a molecular system. Accurately predicting molecule-specific absorbance spectra is highly

beneficial for various applications, such as the design of organic light-emitting diodes1,41,

organic photovoltaic cells42, and UV filters43. Usually, absorption peak wavelengths are pre-

dicted from the excited states of electrons obtained ab initio, for example, by performing

time-dependent density functional theory (TD-DFT) calculations44. However, owing to the

high computational cost, first-principle calculations are not useful for exhaustive molecular

screening. Furthermore, while the location and intensity of a peak wavelength can be esti-

mated ab initio, other functional features of the full spectrum, such as the full width at half

maximum and absorbance integration in a wavelength interval, cannot be determined.

Here, we address the problem of spectral prediction using a fully data-driven approach

that does not rely on ab initio calculations (Figure 1(a)). The input variable of model f

consists of a descriptor vector X and a wavelength t ∈ R1
+, where descriptor X encodes

the structural and compositional features of the input molecule. The output variable is the
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spectral function Y (X, t) of the optical absorbance with respect to varying molecules and

wavelengths. In summary, with observational noise ϵ, the model can be expressed as

Y (X, t) = f(X, t) + ϵ. (1)

For each of the n observed molecules {Xi|i = 1, . . . , n}, the absorption spectrum Y (X, t)

was measured over m discretized wavelengths {tj|j = 1, . . . ,m}. In this study, it is assumed

that the observation points of the wavelength are common to all molecules: tj is independent

of the index i of the molecule. When the observed wavelengths vary across the molecules,

one can obtain a series of complete data with the same observation points by smoothly

interpolating the missing data points. The task then comes down to the regression problem

for the high-dimensional vector-valued output, which is modelled by

y(X) = f(X) + ϵ, (2)

where y(X)⊤ = (Y (X, t1), . . . , Y (X, tm)), f(X)⊤ = (f(X, t1), . . . , f(X, tm)) and ϵ⊤ =

(ϵ1, . . . , ϵm). As mentioned above, it is assumed that there are no missing data or that

the missing data in the direction t have been interpolated beforehand based on a sufficient

amount of observed data. However, the functional output kernel regression, which will be

shown later, can naturally perform training with no special treatment for missing data, even

if the observation points of t are quite sparse.

Machine learning for predicting the optical absorption spectra of molecular systems has

not been extensively studied. To clarify the contribution of our work, we consider the recently

published work of Urbina et al. 31 that relied on Seq2Seq33 and its variant encoder–decoder

architectures with a built-in attention mechanism. Seq2Seq, which is widely used in natural

language processing, was utilized to learn mapping from tokenized SMILES strings45 or

pre-defined molecular descriptors of input chemical structures to the absorption spectra.

On the other hand, the present study introduces a much simpler statistical model, the
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functional output kernel regression, aimed at stabilizing the learning process by reducing

over-parameterization and achieving a high prediction accuracy even in cases where sufficient

amounts of data are unavailable for model training. Another distinctive feature of the present

method is its high degree of interpretability, which directly describes the occurrence of a peak

in a specific wavelength range in relation to the presence or absence of molecular fragments

encoded in the descriptor X.

In this study, we focus on the advantages of directly predicting the entire spectral func-

tion, rather than predicting a predefined univariate functional feature, such as the maximum

wavelength λmax. In the experiments shown later, it was confirmed that the prediction ac-

curacy of λmax calculated from the predicted spectral function often significantly exceeds

that of the conventional univariate output regression directly trained with the pre-quantified

λmax. It should be noted that high-dimensional output variables (Y (X, t1), . . . , Y (X, tm))

are closely related. Learning a single model for multivariate outputs simultaneously can be

considered a type of multitask learning. In multitask learning, multiple related tasks are

learned simultaneously, allowing the model to recognize common mechanisms among target

tasks and consequently improve the prediction accuracy of each task. A similar learning

mechanism is expected to work in regressions with high-dimensional output variables.

Microstructure image prediction

Microstructures with varying morphologies, volume fractions, and grain-size distributions can

be designed by controlling the composition of the material species and processing conditions.

Here, we consider the problem of predicting the microstructures for any given compositional

and processing parameters. To treat the microstructure as a model output, we used images

obtained by optical or electron microscopy. In the development of composite materials,

SEM or TEM has widely been used to analyse the surface and morphologies. Practically,

for example, we aim to improve the mechanical properties of a material by controlling the

composition and temperature to obtain a finer and more homogeneous grain structure. By
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defining a microstructure as an image, we can address the machine-learning task by utilizing

various well-established techniques in image recognition and computer vision. Specifically,

the input variable X is given by a real-valued vector representing the compositional and

processing parameters, and the output Y (X, t) is defined as a microscopic image that takes

matrix or tensor form for a grayscale or color image, respectively. Variable t represents a

two-or three-dimensional image coordinate, and its support is discretized into pixel or voxel

positions. The model can therefore be written in the form of a multidimensional vector

regression, in the same way as the model for the spectral function described above (Figure

1(b)). Alternatively, in the context of computer vision research, this task can be regarded

as machine learning for conditional image generation.

Other potential applications

There are many other applications in materials science where the prediction of functional

outputs is applicable. Many physical properties are determined by the temperature, pressure,

and frequency in an external electric field. The dielectric properties of a material, that is,

the dielectric constant or dielectric loss tangent, are given as a function of the frequency

and temperature46 (Figure 1(c)). In this case, t comprises two variables. In addition,

various polymeric properties, such as the specific volume, linear expansion coefficient, elastic

modulus, specific heat, and thermal conductivity, are also dependent on temperature. From

the observed transition points in the temperature dependence curve, the glass transition

temperature, crystal melting point, and crystallization temperature were calculated. For the

imaging analysis of materials, a wide variety of microscopes such as SEM, TEM and optical

microscopes are commonly used, depending on the size of the object to be observed. In

particular, various technologies of three-dimensional measurements have been established to

analyze the internal structures of materials. For example, three-dimensional TEM allows us

to observe the morphology of objects ranging in size from tens to hundreds of nanometers in

three dimensions47. X-ray computed tomography (CT) is a non-destructive technique that
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is often used in medical applications. With this method, we can observe microstructures

ranging from a few micrometers to millimeters in size without polishing or etching the sample

surface48. In addition, X-ray CT is a non-destructive inspection method that can be used

to measure the fracture process of a material and the change in the material structure in

response to heating in four dimensions (three-dimensional space plus time). Furthermore,

synchrotron X-ray CT using high-brilliance synchrotron radiation can noninvasively measure

the inner structure of materials with a high resolution of several hundred nanometers to

several micrometers, even in metals where X-ray penetration is difficult49. In principle, the

proposed regression method can be applied to a wide range of high-dimensional functional

data.

Methods

In this paper, we present two different regression methodologies for multidimensional func-

tional outputs: deep generative modeling using adversarial learning and deep kernel regres-

sion for functional outputs. The former, originally developed for image-generation tasks34,

was introduced to solve the two research subjects. The latter is a newly developed method

for overcoming the limited learning performance of deep generative models.

Conditional GAN

We constructed a neural network with the framework for functional output regression. cGAN

consists of a generative model called a generator (G) and a binary classifier called a discrimi-

nator (D). The model structure is summarized in Figure 2 (see Supplementary Note for more

details). With the generator Y = G(X,Z), the output vector of the m absorption values in

Equation 2 or the matrix of a grayscale microstructure image is modelled as Y . The input

variables consist of X in the regression model (referred to as the conditional variable in the

cGAN) and random noise Z. Noise Z ∼ N(0, 1) is assumed to follow a normal distribution
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Fake data

Real data

Figure 2: Architecture of the cGAN. The generator (G) consists of a fully connected em-
bedding layer applied to the input X and repeating blocks, with each unit consisting of a
convolutional layer and a leaky ReLU activation function. The number of neurons in the
output layer is equal to the number of pixels in the image or observation points in the spec-
tral function. The discriminator (D) is designed as a fully connected embedding layer or a
conventional convolutional neural network. Detailed architectures are shown in the Supple-
mentary Note.

with a mean of zero and unit variance. The input (X,Z) is transformed into an embedding

vector by passing through a fully connected embedding layer with a batch normalization

layer and a leaky ReLU activation function50,51, and is further transformed into a vectorized

spectrum or a microstructure image Y = y(X), as in Eq 2, by passing repeating blocks of

different stacked hidden layers depending on the task. The discriminator D(X, Y ) is a binary

classifier, in which the conditional variables X and Y are given as inputs. The discriminator

judges whether object Y is a fake spectrum or an image generated from G or a real one in

the given dataset. The discriminator D is modeled as a conventional fully connected neural

network or a convolutional neural network52. The model structure, such as the number of

layers and neurons in each layer, is determined based on the generalization performance in

a separate validation dataset, while maintaining the basic form described here. The detailed

settings for each problem are described in the Supplementary Note.

With this composite modelling, G and D are trained alternatively according to the fol-

12



lowing minmax strategy:

min
G

max
D

E(X,Y )∼pdata(X,Y )[logD(X, Y )] + EZ∼N(0,1),X∼pdata(X)[log(1−D(X,G(X,Z)))]. (3)

The first term becomes larger as D(X, Y ) increases, that is, when the discriminator D

correctly identifies the input real object as real. The second term becomes large when 1 −

D(X,G(X,Z)) becomes large, that is, when D successfully recognizes the fake Y = G(X,Z)

to be fake. The discriminator D is learned such that the classification error is minimized,

and G is trained to reduce the second term such that D is misrecognized. By alternately

training G and D, we derive G, which can produce high-quality fake spectral functions

or microstructure images for any given descriptor X. For spectral data, we generated r

Gaussian samples {Zi|i = 1, . . . , r} (r = 100) and used the ensemble fX = 1
r

∑r
i=1G(X,Zi)

of the learned generator to improve the smoothness of the predicted spectrum.

The cGAN can be regarded as a supervised learning technique for multidimensional

output variables. Because cGANs have been intensively studied, particularly for image-

generation tasks, when treating images as the output variable, we can take advantage of

the wealth of tips and various extended works that have been accumulated in machine-

learning research. However, similar to other conventional generative adversarial networks,

cGANs suffer from instability during the learning process. In particular, vulnerability to

small datasets has been pointed out in many previous studies. When training data are in

limited supply, the discriminator can easily overfit the data to make a perfect true/false

classification, which leads to gradient vanishing and halting of the learning process before

a sufficiently accurate generator, that is, a regression model, is created. The solution to

stabilize the adversarial training process is to balance the learning progress of G and D, but

this is not an easy task. The primary reason for this is the over-parameterization of the

generator caused by the high dimensionality of the vectorized object Y . In the case studies

shown below, the dimension of Y is more than 2,000 for spectral function prediction and up
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to 10,000 for microstructural microscope images with a resolution of 100× 100. To describe

the mapping from X to such a high-dimensional Y , it is necessary to introduce one or more

transposed convolution matrices of large sizes. In applications shown later, the total numbers

of model parameters in the trained generators reached the order of 10 million and 5.8 million

for the spectral function prediction and microstructure image prediction, respectively.

t
<latexit sha1_base64="7yG5kYMeKYqB2N+Lh9Tw3hrR9pI="></latexit>

�(X)
<latexit sha1_base64="q1pWni6GMs+2SRcTrgzRxRj/u1A="></latexit>

{�i(X)|i = 1, . . . , d}
<latexit sha1_base64="jyU9HqCcvO+GUW6WCjLhd5Vrnio="></latexit>

{k(t, si)|i = 1, . . . , d}
<latexit sha1_base64="4LW5JkGvcr6ukUAsSLv+u+iJfKQ="></latexit>

k(t, si)�i(X)
<latexit sha1_base64="kiZIpGoVxtJ4DZ1DSMHQhp0Jvtk="></latexit>

Y (X, t)
<latexit sha1_base64="1UosWq8agPCFHJKMsEA00poXu/c=">AAACaXichVHLSgMxFD0dX7W+qm6KboqloiAlrYLiquDGZbX2IVXKzBjr6LyYSQta/AFX7kRdKYiIn+HGH3DRT5AuK7hx4e10QLSoNyQ5Obnn5iRRbF1zBWONgNTT29c/EBwMDQ2PjI6FxyfyrlV1VJ5TLd1yiorscl0zeU5oQudF2+Gyoei8oByttfcLNe64mmVuiWOb7xpyxdT2NVUWROW354oLYr4cjrEE8yLaDZI+iMGPjBW+xw72YEFFFQY4TAjCOmS41EpIgsEmbhd14hxCmrfPcYoQaauUxSlDJvaIxgqtSj5r0rpd0/XUKp2iU3dIGUWcvbAH1mLP7JG9so9fa9W9Gm0vxzQrHS23y2Nnkez7vyqDZoGDL9WfngX2seJ51ci77THtW6gdfe3kopVd3YzXZ9kta5L/G9ZgT3QDs/am3m3wzWuE6AOSP5+7G+RTieRiIrWxFEun/K8IYhozmKP3XkYa68ggR+ce4hyXuAo0pXEpIk11UqWAr5nEt5BinwYri0g=</latexit>

X
<latexit sha1_base64="KqNfqpLJfNpBuTsNRpCFJPcjLco="></latexit>

O
<latexit sha1_base64="p7eLpsodkPWSGuTLSJjt6efoBHw="></latexit>

Neural
network

µ(t)
<latexit sha1_base64="idYrFBG2bx4XcJ5qWr1D58i//EU="></latexit>

Figure 3: Model architecture of the functional output kernel regression. The coefficient
functions {βi(X)|i = 1, . . . , d} for a set of d pre-defined kernels {k(t, si)|i = 1, . . . , d} depend
only on input X. The mapping from X to βi(X) is modeled by a fully connected embedding
layer, followed by repeating units of a convolutional layer and a leaky ReLU activation
function. The number d of kernel functions is appropriately controlled to be smaller than
the number of observations for t, that is, d ≤ m.

Kernel regression with functional outputs

In addition to cGAN, we present another model with a simple, naturally interpretable model

structure. The design concept is inspired by regression models for functional outputs, which

have been studied in the context of functional data analysis. The functional output Y (X, t)

is modeled as follows:

Y (X, t) =
d∑

i=1

k(t, si)βi(X) + µ(t) + ϵ, (4)
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The first term is the weighted sum of the d kernel basis function {k(t, si)|i = 1, . . . , d}. The

kernel centers si are equally spaced in the domain of wavelengths or image coordinates. In

this study, we used the Gaussian radial basis function (RBF) kernel as:

k(t, si) = l exp

(
−||t− si||2

2σ2

)
. (5)

The variance σ2 > 0 and length scale l > 0 are hyperparameters adjusted based on the

evaluation of the generalization performance. Alternatively, one may predetermine the hy-

perparameters based on the empirically known resolution of a measurement system or the

inherent variation of Y (X, t) in varying t for the physical system of interest. The regression

coefficient βi(X) depends only on the input variable X, which is modelled by a neural net-

work, as described below. µ(t) is a baseline function estimated by imposing smoothness as

a regularizer. ϵ denotes the noise term.

The overall model represents a system in which each kernel function pre-arranged in

the domain of variable t is activated or deactivated depending on the input variable X, for

example, the presence or absence of a specific fragment in a fingerprinted chemical structure

X. One advantage of this modelling is that the number of parameters can be reduced by

controlling the number of kernels d placed in the domain t. In a cGAN generator, the

number of neurons in the output layer inevitably increases because it is constrained by the

dimensionality of Y .

The regression coefficients {βi(X)|i = 1, . . . , d} are modelled differently using neural

networks for the two tasks (Figure 3, Supplementary Note). The modelling is arbitrary in

general. Here, we used neural networks with a structure similar to that of the generator in

cGAN. To predict the optical absorption spectra, the input X is a 1,024 binary vector that

encodes the chemical structure of a molecule using the extended connectivity fingerprint

(ECFP fingerprint10 with a radius of 3). The mapping from X to the d output coefficients

is modelled by multiple blocks of stacked hidden layers, including a fully connected layer,

15



batch normalization layer, and leaky ReLU activation function. For microstructure image

prediction, as detailed later, the input X includes six processing parameters and 100 random

noises. The mapping fromX to the d output coefficients consists of multiple blocks of stacked

layers, including a transposed conventional layer, batch normalization layer, and leaky ReLU

activation function. Hyperparameters such as the number of convolutional layers and neurons

are tuned based on a separate validation dataset. See Supplementary Note for the procedure

for hyperparameter tuning.

In model training, the following empirical risk is minimized with respect to the parameters

in the model of {βi(X)|i = 1, . . . , d} and the baseline function µ(t):

L(β, µ) =
∑

(X,t)∈Dobs

D(Y (X, t), Ŷ (X, t)) + λ
m∑

i=1

∑

j∈Ai

(µ(ti)− µ(tj))
2, (6)

The first term involves the discrepancy D between an observed Y (X, t) and its prediction

counterpart Ŷ (X, t) =
∑d

i=1 k(t, si)βi(X) + µ(t). In the experiments shown later, for both

spectral prediction and microstructure prediction, D is defined by an ordinary squared loss,

which is summed over all observations of X and t. The second term is the regularization

term for the baseline function. Regularization induces a smooth transition between µ(ti)

and µ(tj) for an observation point ti and its neighborhood tj ∈ Ai. In this formulation, the

observed series of Y (X, t) for t is allowed to have missing values.

Results and Discussion

We highlight the potential prediction capability and learning mechanism of the proposed

methods by presenting three application examples. The objective of the first two examples

is to predict the function of the UV-Vis or NIR absorption spectrum of an organic molecule,

taking its chemical structure as an input. In the first case, the number of samples was several

thousand or less, whereas in the second case, the number of samples was only 68. The third

example is to predict electron microscopy images of microstructures from the composition
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Table 1: Comparison of the prediction accuracy for optical absorption spectral functions.
Datasets I and II cover the UV-Vis spectra, and the USGS spectral library covers data in the
NIR domain. The performance metrics shown for the LSTM and attention-based encoder-
decoder models were those reported in Urbina et al. 31 .

RMSE R2 MAE RMSE derivative

Dataset I

LSTM 0.169± 0.132 0.626± 1.166 0.119± 0.106 0.013± 0.010

Attention 0.154± 0.144 0.680± 1.230 0.091± 0.120 0.018± 0.020

Kernel 0.111± 0.009 0.798± 0.043 0.075± 0.006 0.012± 0.001

cGAN 0.112± 0.015 0.791± 0.056 0.072± 0.011 0.054± 0.002

Dataset II

LSTM 0.064± 0.062 0.710± 0.472 0.047± 0.075 0.008± 0.006

Attention 0.055± 0.071 0.699± 0.259 0.044± 0.052 0.006± 0.007

Kernel 0.093± 0.004 0.655± 0.007 0.066± 0.001 0.009± 0.000

cGAN 0.086± 0.002 0.715± 0.017 0.058± 0.002 0.017± 0.001

USGS
Kernel 0.076± 0.024 0.602± 0.200 0.053± 0.009 0.022± 0.003

cGAN 0.077± 0.004 0.495± 0.114 0.060± 0.009 0.533± 0.043

and processing conditions of the fabricated thin metal films.

Prediction of UV-Vis absorption spectrum

Urbina et al. 31 produced two experimental datasets of UV-Vis spectra that encompass dif-

ferent chemical spaces. In the paper, these datasets are referred to as Dataset I and Dataset

II. Dataset I consisted of the absorption spectra of 949 different commercial compounds

measured using a high-performance liquid chromatography system. Dataset II contains

the spectra of 2,222 different commercially available pharmaceutical molecules, which were

measured with a spectrophotometer in a multi-well plate format. The absorption spectra

were measured at 181 and 171 wavelengths equally spaced in the UV-Viz (220-400 nm) for

Datasets I and II, respectively. Compared to Dataset I, Dataset II has a larger amount of

data and a larger diversity of chemical structures. For model training and evaluation of pre-

diction performance, approximately 70% of the compound set was randomly selected as the

training set and the remaining approximately 15% as the test set. Partitioning of the dataset

was performed according to the compound species to avoid multiple spectral profiles of the
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Figure 4: Prediction results of (a) the functional output kernel regression (pink) and (b)
cGAN (orange) with observed UV-Vis spectra (blue) in Dataset I.
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Figure 5: Prediction results of (a) the functional output kernel regression (pink) and (b)
cGAN (orange) with observed UV-Vis spectra (blue) in Dataset II.
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same compound leaking into the test set. In Urbina et al. 31 , the results of applying two

encoder-decoder architectures with LSTM cells and an attention mechanism were reported,

respectively, which were compared with the performance metrics of the present methods.

For kernel regression, the observed wavelength range 220 or 230-400 nm was divided

into 128 equally spaced segments, and the kernel centers s1, . . . , sd (d = 128) were placed

there. The set of hyperparameters consists of the variance σ2, length scale l in the RBF

kernel, and the number of hidden layers in the neural network. For each σ2 and l, three

and four grid points were set as candidates. The number of hidden layer blocks was set

between 1 and 4. Once the number of blocks was determined, the number of neurons in each

layer was determined, as shown in Supplementary Note. Correspondingly, the total number

of candidates for the hyperparameter search is 48. The generalization performance of the

trained model for each candidate was measured using the root mean square error (RMSE)

on the validation dataset, and the best combination was identified.

The hyperparameter of cGAN is given by the network structure of the generator and

discriminator. As in kernel regression, both network structures consist of multiple blocks

of stacked hidden layers, including a fully connected layer, a batch normalization layer,

and a leaky ReLU activation function. The difference from kernel regression is that the

output variables are directly formed by the m absorbances of the different wavelengths in

the spectral function. The number of blocks to be searched was between 1 and 4, and the

number of neurons in each layer was determined, as shown in the Supplementary Note. The

generalization performance of the models was measured using the RMSE of the validation

dataset to identify the best hyperparameter combination.

Through the process of validation, in Dataset I, the numbers of stacked hidden layers

for the neural networks in the kernel regression, generator, and discriminator of the cGAN

were selected to be 4, 4, and 2, respectively. In Dataset II, the number of stacked hidden

layers for the neural networks in the kernel regression, generator, and discriminator of the

cGAN were selected as 3, 4, and 3, respectively. The value of σ2 was selected as 0.0005 for
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both datasets, and l was selected as 0.5, or 5 for Dataset I or Dataset II, respectively. To

evaluate the performance of these models, we calculated the RMSE, coefficient of determi-

nation (R2), and mean absolute error (MAE) between the m predicted spectral values and

their observations for each test molecule, and compared the median of each performance

metric for the 150 and 342 test molecules. We also considered the differences in the spectral

series and evaluated the gradient-level prediction performance using the same procedure.

Table 1 summarizes the means and standard deviations of the performance measures for

the three independent numerical experiments; the prediction accuracy of the LSTM-based

and attention-based encoder-decoder models reported in Urbina et al. 31 is also given. In

Dataset I, kernel regression outperformed the other three, but the difference with cGAN was

not as pronounced. The reason for the lower prediction accuracy of the difference spectrum

of cGAN is that it uses an ensemble average of the randomly sampled Z in the calcula-

tion of the predicted spectra, which results in a loss of smoothness in the gradient of the

spectrum. However, this problem can be solved by smoothing the predicted spectrum in

the post-processing step. As the code for the encoder-decoder models is not distributed, we

could not go further into the comparison of the models, but it should be concluded that in

this case study, they have almost the same performance.

Here, the predicted spectral functions and their observed values are presented exhaus-

tively to obtain a view of the predictive capability of the kernel regression and cGAN. Figures

4 and 5 show the prediction outcomes for 27 randomly selected test molecules in datasets

I and II, respectively. To obtain a more comprehensive view of the prediction accuracy,

Supplementary Note also provides the results of 60 randomly selected test molecules in each

dataset. According to a careful visual inspection, it can be seen that the models retain a

surprisingly high prediction accuracy. For a significant number of molecules, the positions

of multiple peaks in the absorption spectrum and the shape of the function were almost per-

fectly predicted. In some cases, even features that are not visually obvious, such as plateaus

or tiny peaks, can be captured appropriately. This observation suggests that the presence
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or absence of chemical substructures is a major factor in the optical absorption spectra of

molecules. There is no significant difference between kernel regression and cGAN in terms

of capturing the broad trend of the spectral function. However, as mentioned above, cGAN

requires some effort to detect the peak position because of the noise fluctuations of Z in

the prediction equation. Even when smoothing is applied, unexpected false peaks can oc-

cur. Therefore, we conclude that kernel regression has an advantage in terms of spectral

prediction.

Spectral prediction with limited data in the USGS spectral library

The U.S. Geological Survey (USGS) Spectral Library Version 7 contains reflectance optical

spectra of over 1,000 different molecules, each of which was measured in two different sets of

environments: laboratory, field, and airborne spectrometers. If the data were duplicated, we

selected a set of spectral data measured at room temperature as the test case. All spectral

values were recorded at 2,151 common discrete points approximately equally spaced in the

wavelength range 0.35-2.5 µm from the ultraviolet to the far infrared. Compared to the

number of UV-Vis data mentioned above, the sample size of 68 was quite small. The data

were recorded as reflectance R. The reflectance and absorption are inversely proportional

to each other. Therefore, it is difficult to express the function of a reflection spectrum as

the sum of the RBF kernels, as in Eq. 4. Therefore, model training was performed after

converting R to absorbance A according to equation A = log10
100
R
. The model structure and

procedure for selecting hyperparameters for the cGAN and kernel regression were exactly the

same as those for the analysis of the UV-Vis spectra described above. The numbers of stacked

hidden layers for the neural networks in the kernel regression, generator, and discriminator

of the cGAN were selected to be 3, 3, and 2, respectively. The values of σ2 and l are

set to 0.0005 and 1, respectively. 80%, 10%, and 10% of instances randomly selected from

the entire dataset were used for model training, hyperparameter validation, and performance

evaluation, respectively. In addition, data splitting was independently performed three times
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to calculate the mean and variability of the performance measures.

The prediction accuracies of cGAN and kernel regression for the test instances, which

were trained on the optimized hyperparameters, are summarized in Table 1. Unlike the

results of the UV-Vis spectra, the kernel regression overwhelmingly outperformed the ac-

curacy of cGAN, for example, the R2 values for the cGAN and kernel regression were

0.495 ± 0.114 and 0.602 ± 0.200, respectively. It is likely that for a given small dataset,

the over-parameterization of the generator in the cGAN causes degradation in the predictive

performance. However, the kernel regression reached a sufficiently high prediction accuracy

despite being trained on only 54 samples. Figure 6 shows the predicted and true spectra

for several cases (see Supplementary Note for a more comprehensive visualization of the

prediction results). As in the UV-Vis cases, the peak positions and functional features of

the observed spectra can generally be predicted. We also observed that, in many cases,

the plateau and minor peaks could be properly captured. Kernel regression has a strong

tolerance for a limited sample size, which will be further investigated later.
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Figure 6: Prediction results of (a) the kernel regression (pink) and (b) cGAN (orange) for
the optical absorbance spectra of nine test molecules with experimental profiles (blue) in the
USGS spectral library.
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Microstructure image prediction

A thin-film material consisting of a chromium (Cr)-based metal plate coated with aluminum

(Al) was analyzed34. Cr and Al metal plates were placed face to face, and argon (Ar) gas

was sprayed onto the Al plate at high speed by magnetron sputtering so that the ejected Al

atoms were adsorbed onto the Cr plate. The input X ∈ R6 to the model is a six-dimensional

real vector representing the composition Cr1−xAlxOyN and the processing conditions.

1. Cr and Al content x

2. O content y

3. Temperature at which Al is adsorbed

4. Pressure at which Al is adsorbed

5. Average energy of the Ar ions when they are incident on the Al metal plate

6. Ionization degree of the Ar gas

Each element of the input vectorX was normalized to have a mean of zero and a unit variance

in the training data. The output variable Y is the SEM image of the microstructure with a

resolution of 100× 100.

In functional output kernel regression, the centers of 32× 32 RBF kernels (d = 32× 32)

were placed at equally spaced positions in the two-dimensional image coordinate space.

The modelling and training conditions were almost the same as those used to predict the

spectral functions. The hyperparameter set to be explored was the network structure and

the variance and length scales of the RBF kernel. The input variables were transferred

to the embedding latent space via a fully connected layer. A repeating unit consisting of

a transpose convolution layer and a leaky ReLU activation function was applied several

times to this embedding vector, which was finally transformed into an output variable via a

fully connected layer. The numbers of stacked hidden layers for the neural networks in the
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Figure 7: Results of the microstructure prediction using the functional output kernel regres-
sion and cGAN with respect to seven different SEM images.

kernel regression, generator, and discriminator of the cGAN were selected as 4, 1, and 2,

respectively. The values of σ2 and l of 0.0001 were selected as σ2, and five were selected as

l. The cGAN modelling is also similar to the spectral function prediction in that the input

variable is transformed into the output variable via a series of fully connected layers to define

the feature embedding, a repeated application of the transpose convolution layer and leaky

ReLU, and a fully connected layer to generate a 100× 100 image Y .

The data contained 123 SEM images with their compositional and processing conditions,

of which 90%, 5%, and 5% were randomly assigned to the training, validation, and test

sets, respectively. Data partitioning was independently repeated thrice. The generalization

performance of the model was investigated by varying the number of layers from one to four,

with each repeating unit consisting of the transposed convolutional layer and leaky ReLU
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(a) (b) 

Figure 8: Cosine similarity and RMSE values of the predicted SEM images with respect to
test data for the functional output kernel regression and cGAN.

activation function, while the embedding layer and output layer were fixed to one layer each.

The number of neurons in each layer was designed as described in the Supplementary Note.

Figure 7 shows the experimental and predicted SEM images for the functional output

kernel regression and cGAN for the seven randomly selected test conditions. To obtain a

comprehensive view of the prediction performance, the Supplementary Note provides the pre-

diction results for 14 randomly selected test conditions and training results for 60 randomly

selected conditions. Comparing with the experimental SEM images, it can be seen that the

predicted images of the functional output kernel regression could capture the difference in

morphological features of microstructures, such as grain sizes, even though the number of

training data was as small as 109. As previously known, the cGAN was unable to predict

observed features of microstructures, possibly due to the limited amount of training data.

We calculated the cosine similarity and RMSE as measures of image similarity. Figure 8

summarizes the comparison of cosine similarity and RMSE for the functional output kernel

regression and cGAN. Obviously, the functional output kernel regression outperforms the

cGAN in both cosine similarity and RMSE.

As with the spectral prediction, a high learning potential of the function output kernel

regression on small data was confirmed. However, the experimental results also indicated
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the weakness of the trained model as an image generator. Although the predicted images

successfully captured the morphological features of the microstructures, they were less clear

than those of the experimental images. The reduction in sharpness is owing to the blurring

effect of using kernel functions. For functional output regression, the parameter savings

using a basis set of kernel functions leads to high tolerance for small data, but at the same

time, it inevitably leads to a reduction in the quality of the generated images. However,

unlike image generation in computer vision, the generation of high-quality images is not as

important for prediction tasks in materials science.

Tolerance to data size in function output kernel regression

We investigated the underlying mechanisms behind the success of the learning, despite the

exceedingly small amount of data, that is, 54 training samples for spectral prediction and 100

or more for microstructure prediction. Functional output variable regression has a learning

mechanism that is common to multi-task learning. The tasks of predicting multiple function

values are not independent, but are related to each other. Joint learning of multiple related

tasks is expected to be advantageous for the model to acquire common representations across

tasks, if it exists. In addition, data accumulation by the simultaneous use of data from

multiple tasks is generally advantageous in suppressing overlearning of task-specific noises.

These mechanisms may be responsible for the success in building the model by scratching

with a limited amount of data. To confirm this hypothesis, we conducted three numerical

experiments using the optical absorption spectra in Dataset I.

(a) The maximum absorption wavelength λmax and its intensity value were calculated

from the spectral function predicted by the functional output kernel regression, and

the accuracy of predicting λmax and the intensity was verified against their observed

values.

(b) Using λmax and its intensities as a dataset that were extracted from the observed spectra
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in advance, we built random forest regressors that directly predict the extracted scalar

values of λmax and the intensity from the fingerprinted chemical structure (the same

to the one used in the cGAN and kernel regression).

(c) We trained m models independently and separately that predict the spectral values

of each of the m equally spaced grid points. The estimated λmax and intensity values

were calculated from the predicted spectral function.

In the peak detection from a spectral profile, λmax was selected as the wavelength of the

maximum intensity among the maxima that appeared 232 nm from the left end. In these

three experiments, the ratios of the training, validation, and test sets were set to 649:151:150

and 100:425:425, respectively. The data partitioning was repeated ten times independently,

and training and testing were performed with random forests (see Supplementary Note for

details on model training and hyperparameter adjustment). For the evaluation of the ac-

curacy of the test set, cases in which the predicted peak position was within 10 nm of the

observed peak position were defined as correct, and cases in which the predicted peak inten-

sity was within 0.1 of the observed intensity were defined as correct. As shown in Table 2, for

both models obtained from the smaller and larger datasets, the prediction accuracy of the

kernel regression with the entire function trained simultaneously (model (a)) overwhelmingly

exceeded the performance of models (b) and (c). In particular, compared to model (c), which

learned and predicted spectral values independently, model (a) showed little degradation in

prediction performance when the amount of training data was reduced to 100.

This observation has implications for the methodological construction of machine learning-

based material-property prediction. For example, in the prediction of a temperature-dependent

property, it is often the case that the temperature range is limited to room temperature,

and the model is made. However, such an approach makes the problem more difficult and

reduces prediction accuracy. When functional data are available, direct prediction of the

functional output variable can significantly improve prediction accuracy.
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Table 2: Tolerance to small data in predicting maximum absorption wavelength λmax and
peak intensity. Three cases were tested: (a) joint learning and prediction of the entire
function calculated from the prediction spectrum of the function output kernel regression,
(b) direct prediction of the two scalar quantities using random forest (RF), and (c) random
forest regression independently trained for each wavelength. The ratios of the training,
validation, and test sets were set to 649:151:150 and 100:425:425, respectively.

Method Data Split Position λmax (%) Intensity of λmax (%)

(a) Kernel 649:151:150 46.3 43.9

(b) RF for λmax 38.7 36.2

(c) RF for each wavelength 43.3 33.2

(a) Kernel 100:425:425 36.1 32.6

(b) RF for λmax 31.8 23.9

(c) RF for each wavelength 30.5 25.0

Conclusions

In the past few years, a variety of machine learning techniques have been introduced in

materials science. In this context, machine learning techniques for predicting the physico-

chemical values of scalar quantities from input materials have matured. On the other hand,

in this study, we focused on the regression problem where the output variable is given in

the form of a function. We describe the potential problem setting in materials science and

present two methodologies based on deep generative models and statistical functional data

analysis. Because machine learning research based on this perspective is still in its infancy

and not mature, there must be other promising methods besides the one proposed here. As

a starting point, we have demonstrated the potential of functional output regression in two

cases: the prediction of the light absorption spectral function of a molecular system and the

prediction of the microstructure from experimental condition parameters.

Of particular interest is the mechanism of the high tolerance of the functional output

regression to the limited availability of training data. In this study, the amount of data was

much smaller than in general situations: 54 samples in the prediction of absorption spectra

and 109 samples for microstructure image prediction. Despite the extremely small sample
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sizes, models with sufficiently high prediction accuracies were successfully obtained. In gen-

eral, machine learning prediction of physical or chemical properties is often performed by

transforming the functional data into a few features and then predicting the scalar output

variables, instead of directly predicting the functional data. However, the experimental re-

sults suggest that the direct prediction of functional output variables may involve a learning

mechanism that favors the acquisition of higher generalization performance than the pre-

diction of scalar variables. Intuitively, the higher dimensionality of the output variable is

likely to lead to overlearning and a decrease in the generalization performance of the trained

model. However, because the tasks of simultaneously predicting multiple function values are

not independent but strongly related to each other, the simultaneous use of data from mul-

tiple tasks can suppress task-specific noise due to data expansion. In addition, in multi-task

modeling, the complexity of the model does not increase significantly, as usually only one-

or two-dimensional input variables t are added. In the trade-off between increasing model

complexity and data expansion, the advantages of the latter tend to outweigh those of the

former.

There are many other potential applications in material research, where the prediction of

functional outputs is required. Most material properties are given as functions of temperature

or frequency. The dielectric properties are defined as functions of the temperature and

frequency. Polymeric properties such as the specific volume, coefficient of linear expansion,

bulk modulus, specific heat, thermal conductivity, and χ parameters were also determined

in a temperature-dependent manner. From these temperature-dependent curves, important

properties such as the glass transition temperature, crystal melting point, and crystallization

temperature can be calculated. The dependence of properties on processing conditional

parameters is another typical application of functional output regression. Furthermore, in the

2D and 3D imaging of material structures, the output variable is given as a multidimensional

function in the image coordinate space. Due to the lack of data availability, we have only

presented a few limited applications, but there are many problem settings for functional
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output regression that remain unexplored in materials research. In principle, the proposed

methods are designed to handle arbitrary high-dimensional functional data. We hope that

the distributed Python code can be utilized to discover more problem settings.

Supporting Information

• Supplementary Note: modelling details for cGAN and the functional output kernel

regression, procedure of hyperparameter search, supplementary figures showing results

of predicting the optical absorption spectra in the UV-Vis region and those in the

USGS spectral library, and the microstructure image prediction (PDF)

• Python code: https://github.com/yoshida-lab/XenonPy/blob/master/samples/

kernel_neural_network.ipynb
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