
Journal Name

Quantitative criterion for AIEgens†
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We defined two novel descriptors to demonstrate the flexi-
bility of both chemical and electronic structures of organic
fluorescence compounds upon excitation. Classification
algorithms were introduced to predict the aggregation-
induced emission behavior from the chemical structures
based on the new descriptors. A dataset was built to train
the classifier, which is optimized to 87.3% accuracy finally.

Aggregation-induced emission (AIE) phenomenon was re-
ported and termed in 2001 and made a new epoch of light-
emitting materials field.1–3 AIE luminogens, with strong emission
in aggregates and solid state but weak emission in dilute solution,
brings new possibilities for development of fluorescence imaging
agents, photovoltaic devices, chemosensors and actuators. Many
hypothesizes of the relationship between AIE property and chem-
ical structures were claimed when few years after the first AIE
paper published but most of them are abstract and tremendously
relying on experimental verification.4,5

Restriction of intramolecular motion (RIM) mechanism is the
milestone of research about AIE behaviour.6,7 RIM claimed that
the intramolecular motion (rotation and vibration) from flexible
elements in chemical structure in AIE luminogens after excita-
tion would lead them to a conical intersection or a weak emission
point,8 which behave no or weak emission in dilute form but will
be restricted by aggregates formation or in the solid-state, dis-
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playing strong luminescence in such forms. So far, RIM mecha-
nism is the essential criterion for researchers to determine if com-
pounds are AIE or aggregation-caused quenching (ACQ).9 How-
ever, the RIM criterion is highly abstract and dependent on the
experiences of researchers. Many confusing cases were reported,
implying high demand for a quantitative and transferable crite-
rion.

Machine learning brings fresh air to chemical research with a
powerful statistical solution to classification or regression prob-
lems.10,11 It is highly modifiable and extendable, could be easily
transferred and implemented, and could process high throughput
data flow automatically. Our contributors proposed a classifica-
tion model for AIE systems based on triphenylamine fused donor-
acceptor structures with high accuracy of 84%.12 However, this
model is not universally applicable, which means the general cri-
terion for different types of AIEgens is still in high demand. In
this contribution, we are using popular machine learning algo-
rithms to classify the information from quantum mechanics (QM)
calculation of chemical structures with AIE or ACQ labels. For dig-
itizing raw data from chemical structures, we derived two novel
factors to describe the flexibility in conformation and electronic
structure of any given systems. The final model could classify dig-
itized information from chemical structures to AIE or ACQ with
not only generally suitable potential but also high accuracy of
87.3% and high sensitivity of 94.1%.

Realizing the AIE phenomenon is the first step to quantify it.
The chemical structure should include all information of a small
molecular compound and determine the AIE/ACQ behaviour.
From the preliminary results,13,14 we know that aggregation-
induced emission systems are almost non-emissive or weakly
emissive in dilute solutions due to the energy dissipation dur-
ing molecular motion after excitation. We may conclude that
photo-flexibility is the first feature that AIE systems have. Photo-
flexibility means the geometry of organic compounds are poten-
tial to move drastically after excitation. In addition, this flexi-
bility would always lead the system to a state with weaker or
no emission, indicating that oscillator strength of corresponding
transition would also change a lot. For a simple AIEgen with equi-
librium structure at A, it will go to an excited state and then re-
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Fig. 1 Photo-physical process of AIE system in dilute form (A) and ag-
gregates (B).

laxed to a weak or non-emission conformation B through molec-
ular motion after excitation as shown in figure 1A. However, in
aggregates or solid-state, the molecular motion would be inhib-
ited, and the relaxation process ended in a conformation C with
stronger emission and less coordination change, as shown in fig-
ure 1B. Because we cannot get exact conformation of B from sim-
ple DFT method without packing information, extremely speak-
ing, we can assume that confirmation of B is very close to A in-
stead of C. So if a compound is AIE, it is evident that the change
of oscillator strength and conformation from A to C need to be as
large as possible. The structures information at conformation A
and B could be calculated through quantum mechanical methods.
By using ORCA 4.2.1 quantum mechanical calculation suite,15 we
optimized the structure at the ground and S1 states under BLYP
functional with def2-SVP basis set and RI-approximation switch
on. The oscillator strengths values were obtained with TD-DFT
calculation under PBE0 hybrid functional with def2-SVP basis set
and RIJCOSX-approximation switch on.16,17

The oscillator strength change (∆ f ) could be calculated by sim-
ple DFT and TD-DFT method:

∆ f = | f eq
GS− f eq

S1 | (1)

In which f eq
GS denote the oscillator strength at equilibrium confor-

mation at ground state (A) and f eq
S1 denote the oscillator strength

at equilibrium conformation at S1 state (B). To quantify confor-
mation change, we defined the mean absolute deviation of atom
coordination (after aligning) as m and have:

m =
1
n ∑

√
∆x2 +∆y2 +∆z2 (2)

In which n denotes the atom number, and ∆x, ∆y, ∆z denote the
deviations of coordinators before and after a molecular motion
from A to B of an atom. For any given chemical structure, the
value of ∆ f and m could be calculated by QM optimization and
TD-DFT calculation. A Python script for automatic calculation
of the factors is attached. An original dataset with 29 typical
ACQ cores and 34 typical AIEgens were inputted into the process

Fig. 2 (A) Scatter of m and ∆ f value of AIE and ACQ compounds in
dataset; (B) Classified region of weighted KNN model with k = 10 and
1/d2 as weighted function.

and get all the value of factors, which are plotted in figure 2A
as scatter point. Since the dataset is relatively small because the
exceptions of structures with same AIE cores, high-folds cross-
validations are required for better performance and reliable re-
sults. It could be indicated obviously that ACQ cores have gener-
ally smaller ∆ f and m than AIEgens, implying that the two new
descriptors m and ∆ f have the general potential for predicting
AIE/ACQ behaviour of a random compound with chemical struc-
ture.

The machine learning process was performed on MATLAB
R2019a software with its own classification learner suite and 20-
fold cross-validation. Decision tree is a basic method for classi-
fication.18 After optimization, maximum deviance reduction was
interpreted as split criterion and he maximum number of splits
is 11. The validated accuracy is 84.1%; Supports-vector machine
(SVM) was used for classification for decades.19 SVM provided
powerful performance and highly modifiable expression. By ad-
justing the kernel function and parameter, SVM provided flexibil-
ity in different types of data. After optimization, gaussian func-
tion was chosen as kernel on raw data without standardization.
The validated accuracy is 85.7%; Naive Bayes classifier is another
classifier which could provide not only class but also possibility
of a data point belongs to a specific category.20 Triangle func-
tion was optimized as kernel function. The validated accuracy is
84.1%, too; We also build a diagonal quadratic model for refer-
ence.21 The validated accuracy is also 84.1%. The decision sur-
faces of above four models with original scatter dots were shown
in figure S1.

K nearest neighbours (KNN) method is one of the strongest
and easy-handling algorithms among available machine-learning-
based methods, which is non-parametric and distance-based.22,23

In the KNN model, an object should be assigned to the class most
common among its k nearest neighbours. For better performance,
we introduced weighted function in KNN model.24 The purpose
of the weighted function is to to give more weight to the points
which are nearby and less weight to the points which are farther
away. We use 1/d2 as weighted function in which d denotes the
distance between data points and object waiting for assigning. A
Python script for predicting the AIE/ACQ behaviour of new dat-
apoint based on KNN algorithm without cross-validation was at-
tached.
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Table 1 Performance data of all used models (AIE as positive).

Models True positive True negative False positive False negative Sensitivity Specificity Precision Accuracy
KNN 32 23 6 2 0.941 0.793 0.842 0.873
SVM 30 24 5 4 0.882 0.828 0.857 0.857
Quadratic 28 25 4 6 0.824 0.862 0.875 0.841
Naive bayes 29 24 5 5 0.853 0.828 0.853 0.841
Decision trees 32 21 8 2 0.941 0.724 0.800 0.841

Fig. 3 (A) Scatter diagram of model predictions; (B) ROC curve of AIE
as positive class and AUC value. Orange dot corresponding to the best
threshold of m and ∆ f .

Figure 2B displayed the decision region for ACQ and AIE lu-
minogens based on the raw method and data. It’s evident that
over-fitting was appeared and made the decision region tattered
and incompatible to the physical picture. To avoid over-fitting,
cross-validation was introduced. When K equals from 1 to 8, the
accuracy increased stepwise. When K equals 8 or beyond, the ac-
curacy gets to its maximum of 87.3%. Finally we choose ten as k
value for better robustness. The final model was plotted in figure
3A. The ROC curve of the weighted KNN model were shown in
figure 3B. AUC value was calculated as 0.93, which was larger
than reported models, implying that m and ∆ f are more reliable
descriptors to classify AIEgens and ACQ fluorescence materials.
Assuming that TP denotes true positives, TN denotes true nega-
tives, FP denotes false positives, FN denotes false negatives. The
performance of a model could be evaluated by such factors:

Sensitivity =
T P

T P+FN
(3)

Speci f icity =
T N

T N +FP
(4)

Precision =
T P

T P+FP
(5)

All performances of the different classifier were displayed in fig-
ure S2 and Table 1 in which we could be indicated that in general,
weighted KNN performed the best.

In this contribution, we discovered a new quantitative criterion
from classic restriction of intramolecular motion theory: m and ∆ f
to describe the photo-flexibility and optical instability in excited
state dynamics of a specific compound, respectively. For classifi-
cation of unknown materials based on known examples of AIE
and non-AIE materials, supervised learning algorithms includ-
ing supports-vector machine, k nearest neighbors, decision trees,

quadratic discrimination, and naive Bayes were implemented. All
these models finally outputted high accuracy beyond 80% and k
nearest neighbors algorithm performed best at 87.3 % of accu-
racy. This model was proved to have strong potential for further
development of applicable in silicon high throughput prediction
of AIE materials among huge structures base.
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