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Abstract

Reversible lithium metal anodes that can achieve high rate capabilities are necessary

for next generation energy storage systems. Solid electrolyte can act as a barrier for

unwanted physical and chemical decomposition that lead to unstable electrodeposition

(e.g. dendrite and filament growth). The formation and growth of filaments is tied to

unique chemo-mechanical properties that exists at buried solid|solid interfaces. Herein,
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in situ tomography of Li|LLZO|Li cells is carried out to track morphological transfor-

mations in Li metal electrodes and buried solid|solid interfaces during stripping and

plating processes. Optimized experimental parameters provide high resolution, high

contrast reconstructions that enable lithium metal visualization. Machine learning and

image processing tools are combined to quantify changes in lithium metal during strip-

ping and plating. The analysis enables quantifying local current densities and pore size

distribution in lithium metal during cycling experiments. Hotspots in lithium metal

are correlated with microstructural anisotropy in the solid electrolyte. Modeling stud-

ies show large heterogeneity in transport and mechanical properties of electrolyte at

the electrode|electrolyte interfaces. Regions with lower effective properties (transport

and mechanical) are nuclei for failure. Failure is attributed to microstructural hetero-

geneities in the solid electrolyte that lead to high local stress and flux distributions.

Lithium metal anodes can enable energy dense solid state batteries.1 However, lithium

metal can form filaments that grow into a solid electrolyte (SE) and cause failure via fracture

or electrical shorting. These failure mechanisms limit the power density and Coulombic ef-

ficiencies of all-solid-state batteries.2 Monroe and Newman suggested a high shear modulus

solid electrolyte (more than two times the lithium shear strength) could eliminate electrode-

position instability mitigating dendrite formation.3 However, this theoretical guideline has

not been observed in experimental studies for a wide range of solid electrolytes.4–9 Further-

more, both soft (sulfide) and hard (oxide) solid electrolytes can experience shorting at low

current densities. This limits high rate and reversible cycling of lithium metal in solid state

batteries. Pores can form in lithium metal at the solid electrolyte interface at high stripping

rates (e.g. current density). Pores/voids can form because of mass transport imbalances

at this interface5,10 (Fig. 1A). Typically, these pores form at defects and/or microstructure

heterogeneities and may be a nucleation site for filament formation and growth.5 Further-

more, voids/pores can lead to electrode delamination and local regions with high current

densities and stress concentration.11 High local over-potentials in these regions can lead to

nucleation and preferential growth of lithium through these sites.12,13 While a phenomeno-
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logical understanding of the filament onset and growth mechanism exists, there are only

limited experimental investigations that provide direct in situ observations of the origin of

electrodeposition instabilities at solid electrolyte interfaces.6,14

Lithium filament formation and growth in polycrystalline inorganic solid electrolytes is

complex. Microstructural heterogeneities (e.g. grain,defects11,15,16), lithium metal mechan-

ics,17 and operating current densities4,18,19 can all impact the morphology, growth pathway,

and severity of the shorting event. Li+ molar volume mismatch between lithium metal, solid

electrolyte interfaces, and confined regions (grain boundaries, defects, stressed interfaces)

make localized deposition favorable compared to planar deposition.13 Furthermore, fensity

functional theory (DFT) studies suggest that lithium plating prefers regions with lower elas-

tic modulus (e.g. grain boundaries).20 Finally, interface and surface roughness has also been

identified as a crucial factor dictating filament nucleation and growth.21 Recently, a few

experimental studies have suggested that lithium filament growth is affected by stack pres-

sure.10,14,17 The latter result suggests that non-uniform contact upon electrochemical cycling

may be a significant driver for filament growth. However, the intricate interdependencies

between microstructure (grain boundaries, defects), operating conditions (e.g. pressure),

and interface kinetics and transport (Li+ molar volume mismatch) is complex and not well

understood with respect to lithium filament growth in solid electrolytes.

High-resolution imaging of lithium metal at buried solid|solid interfaces is challenging

because low atomic number elements weakly interact with experimental probes (neutrons,

electrons, X-rays). Additionally, for in situ and operando imaging, proximity to highly ab-

sorbing/scattering materials (steel current collector, Li7La3Zr2O12 -LLZO electrolyte) sig-

nificantly impedes extracting morphological information from lithium metal. Maintaining

a stable, air-free environment during operation is also a key experimental challenge. Fil-

ament formation is typically characterized by ex situ optical/electron microscopy due to

these experimental challenges.19,22,23 Recent operando optical imaging of Li|LLZO|Li sys-

tems demonstrated how the morphology of the filament different depending on the operating
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regime (e.g. current density) which suggests that there are a variety of failure mechanisms.9

Transmission electron microscopy imaging has revealed nanometer level tetragonal LLZO

interphase formation at the Li|cubic-LLZO interface.24 Interphase formation can also induce

mechanical stresses due to volume expansion leading to chemo-mechanical failure.1 While

microscopy and optical imaging offer valuable material insight, it is difficult to extrapolate

the information gleaned at the nm-level to macroscopic interfaces in actual batteries reliably.

Synchrotron X-ray tomography is a potential method to resolve three-dimensional morpho-

logical transformations with adequate spatial and temporal resolutions relevant to solid state

batteries.25–29

Currently, it is very challenging to discern lithium electrode kinetics at solid electrolyte

interfaces. This work uses imaging techniques to track morphological transformations at

lithium metal/solid electrolyte interfaces. A garnet (LLZO) solid electrolyte is chosen as the

model electrolyte to image because it is one of the most stable solid electrolytes, and has

minimal interphase formation. The formation of an interphase, makes it challenging to di-

rectly probe lithium metal electrode kinetics. Herein, lithium metal imaging is achieved via

leveraging principles of phase- and absorption- contrast. In situ studies of the Li|LLZO|Li

system enable direct observation of morphological transformations in lithium metal during

plating/stripping. In order to process the low-contrast images (lithium metal and pores)

advanced image processing and machine learning methods were developed for effective seg-

mentation to extract quantitative metrics of the electrodes (current density, porosity and

their spatial distribution) during cycling. Spatial variation in microstructrural properties of

the solid electrolyte are correlated to the hotspot generation within the lithium metal (Fig.

1a). Mesoscale simulations of the solid electrolyte reveal heterogeneous transport and me-

chanical properties. Failure onset at Li|SE interfaces occurs at regions with lower transport

and mechanical properties.

X-ray imaging relies on absorption and phase contrast to distinguish materials in the

field of view of the beam. Absorption contrast captures differences in the attenuation of the
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Figure 1: (a) Schematic diagram of the interfacial transport challenges in lithium metal
solid-state batteries.jM,diffusion and jM,creep represents vacancy diffusion in lithium metal
and transport occurring due to plastic deformations during creep. jM+,field is the ion flux
to the interface from within the solid electrolyte. Flux imbalance at the interface can lead
to generation of voids/non-planar deposition events. Computation fluid dynamics simula-
tions are carried out over an ideal domain with an interfacial region exhibiting a high local
current density (jloc/javg=10). Lithium ion flux distribution profiles around the hotspot into
the electrode are visualized. (b-d) Sample reconstruction slices of lithium metal electrode
imaged for pristine, plating and stripping steps. Semi-circular morphologies matching the
flux profiles are observed in the plating as well as stripping electrode and are highlighted for
better visualization.

X-rays along the trajectory from the source to the detector. The attenuation depends on

the spatial density of the material, depth of the sample and the incident X-ray wavelength.

Assuming there is one material in the X-ray beam, this attenuation is described by the

Beer-Lambert law:

I(x, y, λ) = I0(x, y)exp
[
− (µλ0 − µλh)T0(x, y)

]
(1)

where I is the attenuated intensity, I0 is the incident intensity, µλ0 is the attenuation coef-

ficient of air, µλh is the attenuation coefficient of sample for X-rays of wavelength λ, and T0

is the projected thickness through point (x,y) in the direction of z, which is the propagation

direction of the X-ray beam. In addition to attenuation, X-rays will undergo a phase shift

after traversing a material. The phase shift is determined by the real part of the complex
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refractive index of the material which depends on the incident X-ray wavelength and local

electron density. The phase shift imparted by the sample to the X-ray is given by,30

Φ(x, y, λ) = −k
∫
O

dzδ(x, y, z, λ) (2)

where Φ is the phase shift, δ is the real part of the complex refractive index (in terms of

n=1-δ+iβ), k is a proportionality constant and the integration is carried out over the extent

of object O along the optical axis. While it is not possible to directly measure the phase of

the transmitted X-rays, the interference pattern is captured and reconstructed. The phase

contrast is enhanced specifically at the interfaces between materials. Distinguishing low den-

sity phases (pores, lithium metal) is challenging for larger sample sizes as well as without

adequate phase contrast. The careful combination of absorption and phase contrast and ex-

perimental design enables lithium metal imaging at buried solid|solid interfaces. Monochro-

matic, high energy X-rays (E = 76.2 keV) are employed for imaging the Li|LLZO|Li system.

High monochromaticity (∆E/E ≈ 10−3) allows to distinguish low contrast differences. The

transverse sample thickness was reduced to about 1.5 mm to match the field-of-view. Sample-

detector distance was selected to ensure optimum phase contrast. GRIDREC reconstruction

algorithm was used to ensure high quality reconstructions.31 Critical current density of ap-

proximately 26 µA cm−2 was identified from the in situ experiments (Fig. S1). Limitation

in assembling a 1.5 mm diameter cell and absence of stack pressure results in a relatively

lower critical current density compared to those typically reported for LLZO.6 The low initial

polarization (≈ 20-40 mV) and cell impedance values (≈ 2000 Ω cm−2) are comparable to

previous ex situ measurements4 which suggest that the transformations identified here are

probing the material limitations. The sample size was dictated by the field-of-view available

and to restrict signal interference for obtaining high-contrast images. Larger samples (bigger

than 3 mm) can achieve high critical current densities and are easier to assemble. However,

these samples cannot achieve critical contrast information due to scattering/absorption from
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outside the field-of-view. For this study, we sacrifice critical current density (large samples)

because our intention is to resolve transformations in the lithium metal at dense LLZO in-

terfaces, which requires small field of view (and samples). Reconstruction across different

electrochemical steps show marked differences in lithium metal electrode (Fig. 1b-d, S2-3).

Optimized experimental and reconstruction protocols enable visualizing of morphology vari-

ation in lithium metal as well as presence of pores within the electrode. Semicircular domains

(highlighted in planar sections, Fig. 1c,d) are visualized in lithium metal on plating as well

as stripping. This morphology closely resembles lithium ion flux profiles around a hotspot at

the electrode|electrolyte interface. Such deposition morphologies were postulated in earlier

work.10 This is the first mesoscale experimental observation of such morphologies in lithium

metal electrodes at solid electrolyte interfaces. Stripping from the same electrode leads to

formation of a similar semicircular feature with the presence of voids (darker regions) near

the interface (Fig. 1d). Regions in the center of a stripping hotspot would have higher mass

flux leaving the domain leading to generation of voids due to flux imbalance (Fig. 1a).

In situ tomography data set can generally be large in size particularly if the sample is

large and many electrochemical steps are probed. A typical tomography scan of a symmetric

cell results in a data-set greater than 30 GB. Tracking pixel level changes in morphology of

lithium metal across these datasets is prohibitive. An analytical approach was developed to

enable faster analysis via finding regions of interest (Fig. 2a). Regions of interest are con-

sidered location where either pores form in lithium metal, delamination may occur, and/or

nucleation sites for filament formation. To identify these regions of interest we quantified a

spatial current density profile across the lithium metal. This can be estimated by tracking

the thickness of the electrode over different electrochemical steps given as,

ji,j =
(t2,i,j − t1,i,j) ∗ F

∆t ∗ VLi
(3)

where ji,j is the spatial current density at location specified by coordinates i and j, t2,i,j
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Figure 2: (a) Schematic diagram describing the current density quantification method. Dif-
ference in lithium electrode thickness are evaluated at each location across the electrode area.
The local current density is proportional to the difference of the thickness of lithium elec-
trode in successive image sets. (b) Current density maps for plating and stripping steps of a
single electrode. (c) Expanded region identified as possessing potential hotspots region and
the corresponding sectional images from the raw tomography data. Regions with uniform
current density shows evidence of planar deposition, while the locations with lower current
density directly correlate to the presence of pores/voids within the electrode. Additionally,
differences in the sub-surface electrolyte microstructre in these sections are clearly visible.
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and t1,i,j are thickness of lithium metal electrode at steps 1 and 2, F is Faraday’s constant,

∆t is the time duration of electrochemical cycle and VLi is the molar volume of lithium.

The thickness of lithium metal electrode was estimated by measuring intensity line-profiles

at each location through the depth of the sample. Distinct absorption contrast between

steel (current collector) and LLZO electrolyte enables identification of the electrode thick-

ness. This measurement can be easily automated enabling faster tracking of the data-sets by

providing qualitative information for easier identification of hotspots. Specifically, with the

current data-set mapping current density over a 1 mm2 area for both electrodes in a sym-

metric cell takes ≈20 min. Spatial current density maps for plating and stripping cycle show

significant variation (Fig. 2b). Most of the lithium metal shows a uniform current density

and is denoted by green/blue (Fig. 2b,c). There are isolated spots that demonstrate either

a greater than average current density (yellow) or lower than average current density (blue).

A potential hotspot region (yellow) is identified from the current density plots for further

analysis of the raw projections (Fig. 2c). Comparing pristine and plating morphologies of the

identified section shows the presence of interfacial pores as well as globular depositions. In

addition to different plating morphologies, a clear difference in the electrolyte microstructure

is observed for the hotspot region identified. Analysis of additional hotspot regions across

multiple cycles show consistent results (Fig. S4-5). Spatial current density mapping aids in

identifying local hot spots. Combining spatial current density mapping with imaging allows

for directly tracking meso- and microstuctural properties that may impact the formation of

hotspots while reducing the analysis time and computational power required for assessment

of in situ tomography data.

Quantification of microstructural properties (pores/voids) in the lithium electrode is pos-

sible due to the high contrast imaging, but requires a rigorous segmentation procedure. Con-

ventional thresholding methods cannot segment the phases (pores vs. lithium) reliably and

manual segmentation of the entire data-set is prohibitive. Convolutional neural networks is a

machine learning method widely used for semantic segmentation in a wide range of disciplines
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Figure 3: (a) Sample lithium electrode fed to the developed convolutional neural network and
the resultant segmented data set obtained (b) Porosity variation of a single electrode at sub-
sequent electrochemical cycling stages. This porosity is estimated near the solid electrolyte
interface.(c) Porosity distribution as a function of electrode depth at various electrochem-
ical cycling stages. The quantification metrics are evaluated from the segmented lithium
electrodes obtained from the convolutional neural network. Identical pre-processing, seg-
mentation and post-processing steps are employed for all the individual data-sets to enable
comparison.

that enable pixel-level classification of large data-sets.32–36 We implemented a resnet34 based

deep convolution neural network for enabling lithium metal segmentation.37 The neural net-

work processed individual cross-sectional images of lithium metal to yield a high confidence

segmented image (Fig. 3a). Individual slice segmentation times were approximately 0.3 s,

with greater than 80% confidence in segmentation (Fig. S6). The segmentation times are an

order of magnitude smaller than those typically needed for manual labelling of these images.

These confidence statistics are competitive with the segmentation confidence obtained by

state-of-the-art networks on standard data-sets. The neural network was trained on 800

images from one electrode in a single electrochemical cycle and validated on a further 200

additional images from the same electrode. Training and validation data was generated by

computationally edge-segmented and manually corrected images. The quantification metrics

discussed are obtained from the segmented images obtained by applying the trained network

to all the subsequent data-sets. It should be noted that the segmentation introduces some
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error in quantification (80% confidence). Absolute quantification is not advised; however,

relative trends between successive electrochemical steps can be ascertained. Pre-processing,

segmentation, and post-processing steps are identical for all the evaluated data-sets enabling

comparative evaluation.

Pristine lithium metal has a porosity of around 10%. Mass transport imbalance at the

Li |SE interface is widely postulated to generate voids at the interface in solid-state bat-

teries.5,10 So far, limited cross-sectional imaging evidence is provided for this mechanism.5

In situ tomography with high contrast for lithium metal enables quantitative assessment of

this phenomena. Higher mass flux at the interface due to local high current density, poor

lithium diffusion and creep can lead to pore formation. Inadequate metal diffusion and creep

flow leads to generation of these voids. Porosity measured near the interface clearly reflects

this phenomenological model proposed, with plating showing a reduction in porosity and

stripping leading to an increase in porosity in the lithium metal (Fig. 3b). This behavior is

also reflected over the entire electrode section as well with porosity increases from the plating

step to the stripping step (Fig. S7). Pristine lithium metal demonstrates a single modal

porosity probability distribution while the plated and stripped samples have a non-uniform

(tri-modal) distribution. The tri-modal distribution indicate larger spatial variation (vari-

ance) within the electrode section introduced due to electrochemical cycling. Additionally,

the pore distribution along the electrode depth can be visualized using the segmented data

(Fig. 3c). Individual data points in this graph are obtained by averaging the porosity over

10 µm thickness. The porosity at the Li|SE is greater than in the bulk metal regions. The

high porosity at the interface suggests the formation of voids and interfacial delamination.

Electrochemical cycling induced changes in the porosity depth profile are identified closer to

the solid electrolyte interface. Porosity values at the current collector are consistent across

the electrochemical steps suggesting that this region does not undergo active morphological

changes during cycling. These results match well with the anticipated flux profiles in the

vicinity of interfacial hotspots (Fig. 1a) where in flux gradients are concentrated near the

11



solid electrolyte interface with less impact of the hotspot near the current collector end.

Such behavior is only expected in systems with thick lithium foil electrode (higher excess

lithium). Moving to systems with limited or no excess lithium, morphological changes are

expected to propagate through the entire bulk of lithium metal.
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Figure 4: (a) Sub-surface porosity map measured through the depth of the sample for the
pristine and the failed electrolyte pellet. (b) Spatial tortuosity factor distribution for pris-
tine and failed sample. Tortuosity factors are estimated by carrying out simulations over
25x25x100 µm interfacial regions across the entire cross-section of the pellet. Steady state
simulations under a constant concentration gradient are performed. (c) Spatial microstruc-
tural variation within the sample evaluated across multiple electrochemical cycling steps.
Normalized porosity is plotted which is defined as the ratio of the local porosity to the aver-
age electrolyte porosity. Spatial resolution of 36 µm was used to assess the microstructural
variation through the depth of the electrolyte. (d) Schematic diagram indicating physical
location of the interfacial regions considered for simulations and analysis. (e) Bulk pellet
porosity and interfacial porosity evaluated across each cycling step. Interfacial regions of 100
µm are considered for this analysis to correlate with the results obtained from the tortuosity
factor calculations..

Microstructural changes occur in the lithium metal and the solid electrolyte during elec-

trochemical cycling. Sub-surface porosity maps reflect the porosity averaged through the Z

direction (sample depth) at each pixel along the lateral (XY) section. The solid electrolyte

shows a systematic increase in the sub-surface porosity due to filament propagation (Fig.

4a, S8).4 Using direct numerical simulations, tortuosity factors can be extracted in the bulk

and interfacial region of the solid electrolyte. Tortuosity factors are determined along the Z

direction which coincides with the electric field direction in the cell. Normalized tortuosity
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shown here is the relative change in local tortuosity factor compared to a completely solid

domain (tortuosity factor = 1). This metric reflects the degree of obstruction the ions expe-

rience when transversing through the solid electrolytes. Piecewise simulations can capture

microstructural heterogeneity over a large simulation domain which is not easily accessi-

ble via other modeling techniques (viz. computational fluid dynamics). Pristine and the

failed samples show a distinct distribution of tortuosity factors within the interfacial region,

with the failed sample showcasing a higher concentration of high tortuosity. High tortuosity

regions lead to an effectively lower effective lithium ion flux through the domain as given

by,38

eff = −Dbulk
ε

τ 2

∆c

∆x
(4)

where, Dbulk is effective diffusion coeffient in the bulk, ε is the porosity, τ is the tortuosity,

∆c
∆x

is the effective concentration gradient. Regions of lower tortuosity surrounded by high

tortuosity domains correspond to hotspots as lithium ion flux through the low tortuosity do-

mains will be higher to ensure mass balance through the cell section. Variations in tortuosity

factors across pristine and failed samples indicate a strong heterogeneity in the underlying

microstructure. This effect is also apparent at individual plating and stripping steps (Fig.

4d-e, S9). The location and size of the x-ray transparent region (porosity) across the pel-

let as well as in the interfacial regions show a cyclic behavior with electrochemical steps.

Average porosity clearly reflects a difference in the microstructure between successive elec-

trochemical steps in the interfacial regions which is effectively captured in the simulations.

It is known that single ion conductors theoretically do not show concentration gradients

due to the unity transference numbers. However, the presence of pores has been identified

to influence transport and failure mechanisms strongly.4,39 The sub-surface porosity maps

clearly highlight the spatial microstructural variation, specifically at the interfacial regions.

Tortuosity factor maps provide evidence for transport heterogeneity due to the underlying

microstructure variations. Hotspot generation leading to void and filament formation within

the lithium metal electrode is linked with the microstructural heterogeneity identified in the
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solid electrolyte.

The average porosity of the pristine pellet was ≈5% indicating well-sintered, dense pel-

lets. Normalized porosity shows a cyclic behavior with electrochemical cycles which decreases

on plating and increases on stripping. The nominally X-ray transparent region (generically

porosity) includes pores, voids as well as lithium deposition as these materials are difficult

to distinguish within the bulk electrolyte. Modulation within this region can be interpreted

as presence of electrochemically active lithium metal within the bulk electrolyte. The nor-

malized pore density depth profile also shows spatial variation within the electrolyte domain

with interfaces being more porous compared to the bulk. Higher amounts of X-ray trans-

parent region at the interfaces can arise from crack/void generation from the mechanical

stresses at the interface as well as from filament generation. Note that the spatial resolution

used for laterally integrated porosity depth mapping is 36 µm which is higher than that

was used for the simulation domains earlier. Averaging over a greater depth leads to lower

porosity values for the interface (Fig. 4e, S8e) compared to that visualized here (Fig. 4c,

S8c). Strong dependence of domain size on quantitative metrics further affirms the claim of

microstructural heterogeneity within these dense pellets. Increasing the current density from

6 to 25 µA cm−2 on second plating/stripping cycles leads to greater penetration of the higher

porosity regions into the bulk. This can reflect potential filament/crack propagation within

the bulk. The spatial distribution is practically symmetric across the electrolyte depth sug-

gesting identical mechanisms at both the plating and stripping electrodes. While the lithium

metal electrode undergoes distinct morphological changes (void formation on stripping, non-

planar deposition on plating), nominally identical response of LLZO electrolyte interfaces

suggest they are influenced by the same underlying mechanics. Ion insertion and removal

from the LLZO matrix at the interfaces causes stress generation within the solid electrolyte

material. These phenomena lead to microstructural variations as evidenced by the tomog-

raphy results. Further work on evaluating spatially resolved, grain-level chemo-mechanical

response is required to understand the identical mechanical behavior at plating and stripping
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interfaces.
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Figure 5: (a) A typical physical domain used for meso-scale simulations. Polycrystalline
materials with grain, grain boundary, and pore segregation are evaluated. Domain sizes of
100x100x100 µm3 are used for the simulation. (b) Microstructure factor (ratio of local prop-
erty/bulk property) estimated along the X-direction (along Li|SE|Li) of the domain from the
tomography and synthetic data set. Tomography dataset uses the binarized reconstruction
images as input for the simulations, while synthetic dataset uses isotropic domains generated
from the quantified physical parameters (c) Visualization of polarization gradient through
the domain under constant potential difference.

To further ascertain the influence of the spatial heterogeneity, mesoscale modelling was

carried out for representative simulation domains from interfacial region of LLZO electrolyte.

Two data-set formulations were used: a) tomography data which employed the imaged do-

main directly and b) synthetic data which employed isotropic domains generated from phys-

ical parameters (porosity, pore size and grain size) identified from the experimental results.

Mesoscale modeling enables explicit definitions of grains, pores as well as grain boundaries

to ascertain effective bulk properties of materials (Fig 5a). Microstructure Factor (Mx, My

and Mz) is defined as the ratio of the local conductivity/Youngs’ modulus estimated along

the X-, Y- and Z- direction in the simulated domain to the theoretical value for LLZO.

Mean, maximum and minimum microstructure factors have been calculated during elec-

trochemical cycling for both the synthetic and experimental datasets. A strong impact of

sample microstructure anisotropy is seen in the tomography data-set with X- direction show-

ing markedly higher variation across different electrochemical steps in microstructure factor

compared to Y- and Z- directions (Fig. 5b, S10). In contrast, the synthetic data (isotropic
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domains) show only a small variation linked to the changes in the effective microstruc-

ture. Additionally, the tomography domains show a higher spread (minimum, maximum)

compared to the isotropic domains signifying a large heterogenity in local transport and me-

chanical properties. Identical behavior is seen for the for multiple Li|LLZO systems studied,

with comparatively lower anisotropy related fluctuations (variations along X-, Y- and Z- di-

rection). These results clearly show that macroscopic properties of conductivity and Youngs

modulus are affected by microstructural heterogeneity. Higher plating density is anticipated

in regions around the domains showing lower transport properties to ensure mass balance

across the interface. High plating density around these regions leads to stress accumulation

which can subsequently lead to cracking/filament propagation through the electrolyte at the

regions with the lower effective properties.

Careful experimental design enables high resolution X-ray imaging of lithium metal.

High contrast reconstructions and advanced machine learning methods enable segmentation

of lithium and pores in in situ conditions. This data provides physical insight into mi-

crostructure transformation in lithium metal and the solid electrolyte upon cycling. Hotspots

in lithium metal electrodes are correlated with the presence of anisotropic microstructures

within the solid electrolyte. Mesoscale and pore network modeling results conclusively show

local variations in effective properties of the electrolyte at the electrode interface. Local

domains showing lower effective properties are construed to be regions where failure modes

are initiated due to stress and flux distributions around these regions. Lithium metal elec-

trode kinetics at solid electrolyte interfaces are distinct from liquid electrolytes. The imaging

resolution and contrast described here lays the ground work for future studies on lithium

electrode kinetics.
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