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1 Introduction

String theory is a prom ising candidate for a theory unifying all the fundam ental in—
teractions, Including quantum gravity. G auge and di eom orphism symm etries appear
naturally and the theory has very an ooth ultraviolet behavior. H owever, the theory is
still conceptually incom plete, In the sense that, a background independent string eld
theory, where the full string symm etry is m anifest, is not at hand. In particular, we
have no way, so far, to understand non-perturbative e ects (except In som e toy bosonic
models In 2D, [1]). The only way we know , up to now , to deal w ith the theory, is in
the rst quantized perturbative fram ew ork, w here one starts w ith a classical solution to
the theory, which is given by any CFT with the appropriate central charge. O ne then
calculates in string perturbation theory the S-m atrix of uctuations around that classical
solution. In particular, it is known that, unless the spacetin e physics is at least N= su-—
persym m etric, then the initial perturbative vacuum is In general unstable and therefore
perturbation theory around it is illde ned. T hus, in perturbation theory, only classical
solutions w ith at least N= gpacetin e supersym m etry are guaranteed to be stable.

T here are som e extra problam s in order to connect superstring theory predictions at
low energy to the observed world. The st is that there is always a scalar excitation
in the theory, the dilaton, which ism assless to all orders in perturbation theory. T here
are good reasons to believe that such a m assless scalar does not exists in ourworld. T he
second is that, at low energy, there is no supersymm etry in the observed spectrum of
particles. In fact, the breaking of space+tin e supersym m etry in string theory was exten—
sively discussed in the past, where essentially two kinds of m echanisn s were considered :
the \perturbative" breaking via the Scherk-Schwarz m echanian [2]and non-perturbative
supersym m etry breaking by gaugino condensation at the level of the string e ective eld
theory [3]. However, unless we have a good string eld theory which is background in—
dependent, there is little chance that we w ill have a fundam ental understanding of the
resolution of the two previous problam s.

However, there are still som e in portant conceptual questions one can ask in string
theory. So far, In eld theory there is not even a consistent perturbative fram ework,
In order to address questions conceming quantum gravity. On the other hand, string
theory provides also a theory of quantum gravity without ultraviolet problem s. Even in
the present Ilim ited form ulations of string theory, there is still room to address questions
which have perplexed physicists in the past decades conceming in particular issues like
setup of scattering theory in curved spacetim es, black holes, H aw king radiation etc.

Several e orts focused towards this direction in the recent past. O ne expects that
the physics of gravitation at short distances, as described by string theory, would be
radically di erent from that at Jarge distances and scales. T he probes here are entities
(strings) w ith non—=zero size, and there are quantitative indications that the concept of
classical m etric is not good enough to describe even qualitatively the physics at regions
of spacetin e which are strongly curved [4, 5]. Such indications com e from the existence
of duality sym m etries in m any non-trivial classical solutions of string theory (where the



m etric, dilaton and other background elds are non-rivial functions of coordinates).
T hese symm etries In ply that the background elds by them sslves do not uniguely de-
scribe the ground state, but stringy probes, excited in di erent states, \see" di erent
background eUds.

In this work, we will address a speci ¢ aspect of these problam s, nam ely, we will
try to analyse as exhaustively as possible, 4-d string solutions which have the follow ing
properties: Them etric and other background elds are non—trivial, and the solutions are
perturbatively stable, equivalently, they have spacetin e supersymm etry. In the context
of the type II superstring, this translates to the statem ent that the worldsheset CFT
has (2,2) superconform al invariance (in which case the spacetin e theory in 4-D hasN=2
supersymm etry) [6,7]. V ia the heterotic stringm ap [8, 7], such type I solutions generate
a class of heterotic string m odelswith N = 1 space tin e supersym m etry.

During recent years, several e orts were focused on N = 2 superconfom al back-
grounds in the context of (heterotic) string com pacti cations leading to strings w ith at
fourdin ensional space tine [9, 8, 7]. In these works the discussion m ainly focussed on
com pact spaces w ithout torsion and w ith constant dilaton eld, ie. tord, orbifolds, the
K 3 m anifold and num erous C alabi¥Y au spaces.

In this paper we will provide a relatively system atic discussion on supersym m etric
string backgrounds with N = 2 or N = 4 superconfomm al symm etry, bassd on com —
pact as well as non-com pact spaces plus non—rivial antisym m etric tensor- eld and non—
constant dilaton. Thuswe w ill extend In a m ore systam atic way the exact N=4 soluition
constructed recently, [10, 11]. In the case of vanishing antisym m etric tensor elds the
m etric isknown to describe a com pact/non-com pact K ahler space [12]. In order to intro—
duce non-constant antisym m etric tensor elds, we have to use a 2-d superspace action,
which includes chiral as well as tw isted chiral super elds [13]. In contrast to the com —
pact Calabi¥Y au spaces, alm ost all backgrounds w ith non—rivialdilaton eld w ill possess
K illing symm etries. Our main focus will be such backgrounds w ith isom etrdes which
tum out to be generic in 4-D (rem em ber that in 2-D all string backgrounds have killing
symm etries). Tn addition, m ost of such backgrounds exhibit singularities on som e hy—
persurface in spacetin e. T hese spaces, which can be regarded as generalizations of the
tw o-din ensionalblack-hole considered in [14 ], provide gravitational nstantons, black-hole
type backgrounds, worm -holes and cosn ological solutions in four and higher din ensions
[15,10,16,5,11,17].

A key to the proper understanding of string propagation on curved spaces is provided
by duality symm etries. A s m entioned above, duality symm etries relate backgrounds
which are geom etrically or even topologically di erent [18]but nevertheless correspond
to the sam e superconform al eld theory (there is a non-local transform ation in the -
m odel variables that m aps the -model to its dual [4]). For exam ple, a sihgular space
can be dual to non-singular space, as st shown for the Euclidean two-din ensional
black-hol [19,17,20]. A Ithough it is not known in general, what are alldual equivalent
backgrounds starting from a given background, the construction of the dual spaces is



straightforw ard if the original space possesses som e isom etrdes [21, 22, 23] (although this
is not necessary, [4, 20]). For the cases w ith extended world-sheet supersym m etries it
was shown [24, 13] that the duality symm etry orighating from a U (1) isom etry can
be understood as replacing chiral (tw isted chiral) super elds by tw isted chiral (chiral)
super elds by a Legendre transfomm ation. This duality transform ation preserves the
N = 2 superconform al nvariance of the theory. Som e interesting exam ples of dual
backgrounds were already constructed thisway [25].

The structure of this paper is as ollows. In the next chapter we will set up the
N = 2 (N = 4) supersymm etric -m odel using chiral and tw isted chiral super elds.
W e end this section with the construction the dual spaces assum ing that the original
goace has som e U (1) isom etries. Section three deals w ith the K ahlerdan solutions of the
string eld equations. For non-trivialdilaton el the spaces are in generalnon R icci- at
and possess K illing sym m etries (isom etries). W e also construct the corresponding dual
spaces which are In general nonK ahlerian. In section four we consider solutions which
from thebeginning possess torsion and are therefore non-K ahlerian. Perform ing a duality
transform ation we obtain additionalnew classes ofK ahlerian spaces wherem any of tham
are R icci- at. Section  ve discusses som e aspects of S duality [26] pertinent to som e of
our solutions. Finally section six contains our conclusions and further rem arks. In the
appendix we discuss som e constraints for the superpotential which are of direct interest
to N=2 LG models [27], w ith non-trivialm etrics.

D uring the paper, we willm ainly focus on four-din ensional spaces which appear to
have m ost physical relevance.

2 The N = 2 (N = 4) Background and U (1) D uality

Transform ations

21 TheN = 2 supersym m etric 2-d action

n twisted chiralsuper edsVy (p= 1;:::;n) In two dim ensions is determm ned by a single
real function K (U;;U;;V,;V,):
z

1
g = B d’xD,D D.D K (Us;Ui;Vp;Vp): (211)

The eldsU; and V, obey a chiral or tw isted chiral constraint
D U;= 0; D,Vp=D Vy= 0: (212)

T he action (2.1.1) is Invariant, up to total derivatives, under quasiK ahler gauge trans-
form ations
K ! K+ £U;V)+ gU;Vp)+ £(U4;Ve)+ gUy;Vp): (21 3)



To see the background interpretation of the theory it is convenient to w rite down the
purely bosonic part of the superspace action (2.1.1):
z

S = 1 d2 @a a
- 0 x[K Uil Ui@an K Vp Vg ¢ Vp@qu
2 (214)
+ ab K uivp @aui@bvp + K VpUji @avp@bui)];
where
S K @K
ujug T @Ui@Uj l4 VpVg @Vp@\/'q I4
(21.5)
Q%K Q%K
K —

VpUui T

QV,QU;
Here u; is the lowest com ponent of the super eld U; and so on. Thus, one recognizes

that the rst two term s in above equation describe the m etric background of the m odel
where the m etrdc in com plex coordinates has the follow ing block-diagonal structure:

T eusev, |

° 0 Kuw, O o 7
B
BK,u O 0 0
G =§ "W %; (216)
E 0 0 0 K o, &
0 0 Kyy O

To obtain a space w ith Euclidean signature, one has to require that K ,,; is positive
de nite where K ,_,, has to be negative de nite. Note that the metric (2.1.6) is not
K ahler, whereas the action (2.1.1) is nevertheless N = 2 supersymm etric. If there are
only chiral resp. twisted chiral elds (ie. m = 0O orn = 0) one deals with a Kahler
m etric.

The ptem n (2.1.4) provides the antisym m etric tensor eld background:
1

(@)

0 0 0 K uiv
B
B 0 0 K u 0
B =E P % (21.7)
@ 0 K vu; 0 0 X
K uiv, 0 0 0
It follow s that the eld strength H p
H =@B +@B +@B ; (21.8)
can also be expressed entirely in term s of the function K :
@K ~ @°K
W QU LeU SRV, | BT @uLeU5ev, |
T T (219)
@K B @K
VpVgui — @Vp@Vq@Ul 14 VpVgui — @Vp@vq@Ul .

So far we have jast discussed the geom etrical structure of the N = 2 badkgrounds.
Tn order that these backgrounds provide consistent string solutions, they have to satisfy



the string equation of m otion, ie. the vanishing of the —function equations. In string

theory, there is another background eld, thedilaton (u ;;u4;v,;v,), which accom panies

In generalG and B . Thisam ountsto add to the -m odelaction 3. (2.14) a term of

the fom R @ (ui;v), whereR @ is the scalar curvature of the two-din ensionalworld-

sheet. Then the requirem ent of one-loop conform al invariance of the two-dim ensional
-m odel leads to the follow Ing equations of m otion for the background elds, [28]

G 1 0
0= R -H H +2r r +0( )
4 (2110)

0= B =r H 20 H  +0(9:

M oreover, the central charge de cit ¢ provided by the considered background is deter-
m ined by the -—function of the dilaton eHd as

3D 3 1
c ¢ —== "4 )* 4r? R+ —HZ+0(%: (21.11)

2 2 12
W e m ust em phasize here that in the presence of N= 4 superconform al sym m etry the
solution to the Iowest order in ' isexact to allorders in a speci ¢ schem e,and crem ains

zero to all orders.

2.2 U (1) duality transform ations

Let us assum e that a particular background, which satis es egs. (2.1.10) and (2.1.11)
at Jowest order n  ?, really corresponds to an exact conform al eld theory. Then there
exist In m any casesdi erent, so called dual, backgrounds w hich however are truly equiv—
alent asa conform al el theory. In particular, if the original background is independent
from d (real ) coordinates 5 (@ = 1;:::;d), ie. if the original background possesses
an Abelian U (1)? isom etry , there exist dualbut equivalent backgrounds which are ob—
tained from each other by discrete O (d;d;Z2 ) transform ations [23]. (M oreover the eld
equations (2.1.10) and (2.1 .11) are invariant under continuous O (d;d;R ) transform ations
[22]. U sing the continuous transform ations one can generate classes ofbackgroundsw hich
correspond to m arginally deform ed conform al eld theordes [4, 301.)

Let us consider the m ost sin ple case of a single U (1) isom etry assum ing that the
potentialK has one K illing sym m etry and is of the form

K =K (Z + Z;Y3i;Y4;Vp;Vp) (22.1)

where 72 and Y; are chiral elds, whereas V, are twisted chiral elds. (O f course the
discussion holds in the sasmeway ifZ isa twisted chiral eld.)

In [24, 13] a duality transfom ation was described in which twisted super elds are
Interchanged w ith untw isted ones. C oncretely, assum e the existence of one U (1) K illing
symmetry, R = Z2 + Z ,and consider the dual’ potential

K R;Y:YVpiVe; + )=K (2 + Z;Y5Y35VeVp) RO+ ); (222)

D uality Sym m etries for non-A belian isom etries w ere investigated in ref. [29].



where 72 isa chiral ed and a twisted chiral eld. Varying the action w ith respect to
gives back the original theory. O n the other hand one can equally well consider the
constraint com ing from the variation w ith respect to 72 , [24]
5 o ! CK ( )= 10 (22.3)
— = ! — + = 0;
Z Qr ’
and the dual theory is obtained as a Legendre transform of K . Now the independent
variable are ,y; and v, . It follow s that the dualm etric has the follow Ing fom :

° 0 K 0 0 Ko,
E K 0 0 K, 0
E 3
E 0 0 0 Ky 0 0
¢ =§ Y1 : (22.4)
E 0 0 K,y O 0 0
B =
g 0 K., 0 0 0 K vy &
K .. 0 0 0 Koo, 0
Sim ilarly, the dualantisym m etric tensor el is obtained as
° 0 0 o K, 0 0o *
B
; 0 0 K, 0 0 0
E 0 K, 0 0 0 Ky
B =& . e (225)
E K, O 0 0 Ky O
g 0 0 0 Ky O 0 X
0 0 K o 0 0 0

In [31] it was shown that this N=2 duality transfom ation via Legendre transfom
is the sam e as the usual abelian duality transform ation [21]. This connection is in por-
tant because one can com pute also the \quantum corrections" to this classical duality
transform ation, which am ount to a non—rivial dilaton. W e w ill discuss explicitly this
connection, since the discussion in [31]was not su ciently general.

Introducing real coordinates as z = § + 1 the bosonic action (2.1 .4) becom es

_ 1 g 2 Kfr a a a
S = 2— dx T@ r@ar+ Krr@ @a + KYin@ Yi@an

er . . er . .
+ Koy, ( 5 0% )Ayi+ Ky, (7 +1@8% )Ay:  Kopv, @ vl vy
(226)
@ar . @ar
— t 1@a )@Dvp + K rvp ( 2

#

+ K Yivp @aYi@pr + K VpVYi @avp @in 7

= CRRICAS

It is evident that the background does not depend on the coordinate . Thus one can
perform a duality transfomm ation with respect to this U (1) K illing symm etry, and the



dualmetricand B are given as, [21]

1 iK K
G = oK i G W T ZKer i G = rr;
rr rr
G = Koy, . o _ KoK i, o _ Koy K ry; |
ryi 2 ’ YVi¥i — oK o ! Yivy — ViV oK o !
K K KK
c P a ; c K P d ; (2 2. )
Vp Vg 2K o Vp Vg Vp Vg 2K o
. K ryi . B, _ K er
Yi ZK o ’ Ivp 2 ’
K ryiK v, K ryiK v,
BYin = 2K s 7 BYin = K YiVp -
rr

2K rr

(The background elds Gy, etc. ©llow from com plex conjigation.)
The dualdilaton eld has the form

2¥=2 g2k ,:

(22.8)
W e can now show that the duality above and the (supersymm etry preserving) Leg—

endre transform am ount to the sam e thing. W ith the help of the constraint e3. (22.3)
we obtain the follow ing explicit expressions for the dual background:

K . K v
K = ——; Ky=—"; K, = =
rr Krr K]f]f
K inK 13%] K ryiK rv,
Ky = Ky, 2 Kyw = Ky ————3 (229)
Ky K.,
KrpKr
Ky, = K, e TV,

Krr

Perform ing a coordinate transform ation of the form 2

= K,+ i onecan nally show
that the dual background eg. (2.2.7) agrees w ith the expressions in egs. (224,22.5).

m = n =

Consider brie y the special case of a fourdim ensional background w ith one chiral
ed 7Z and one twisted chiral ed V
isom etry w ith respect to 72 , ie. K

1) and assum e that there is a U (1)
K (Z + Z;V;V). Then the dual potential

K(+ ;V;V)=K@Z+2;V;V) @Z+Z) + ) (22.10)
contains only twisted elds and is therefore a true K ahler potential leading to a K ahler
m etric which follows from ey. (22.4). The Ricci tensor is then determ ined to be (in
com plex notation,i= ;v)

Rij =

@l@j bgdetGl] =

=

€:@,og( —): (2211)
K rr
T hus the dual, fourdin ensionalK ahler space isR icci at ifK . / Ky




In summ ary, the 7, duality transform ation can be expressed by a Legendre trans-
form ation in the superspace action which replaces a chiral super el by a tw isted chiral
super ed. W e will use this obsarvation in the follow ing chapters to generate N = 2
supersym m etric backgrounds w ith torsion from torsion-free K ahler spaces. M oreover
we will also dem onstrate that backgrounds w ith torsion have as dual counterpart very
Interesting K ahler spaces w ith isom etries which are R icci- at but non-com pact.

3 K ahler Spaces w ithout Torsion and their D ual

3.1 K ahlerian backgrounds

It is already well known that if the torsion vanishes and there is no dilaton eld the
condition that a -model has N= 2 supersymm etry is that the target space is K ahler,
[12]. Ifa non trivialdilaton is present but no superpotential then there are no additional
restrictions. It is interesting though that if a superpotential is present then there are
non-trivial constraints to be satis ed. Such constraints have the interpretation that there
there exist appropriate screening charges (always required when a non-trivial dilaton is
present) w hich preserve the N= 2 superconform al nvariance. W ew ill retum to this in the
Appendix since it is of direct relevance to generalizations of LG m odels w ith non-trivial
dilaton.

For the tim e being we start w ith a K ahler m anifold speci ed (locally) by its K ahler
potential K (uj;u;) and a dilaton eld . The metric is given In tem s of the K ahler
potential by the standard form ula

Gij:Gi': O ; Gij:Kuin (3.1.1)

It is obvious that the m etric is invariant under the so called K ahler transform ations of
the potential
K (uj;us) ! K (ugyui)+ (i) + (uy) (312)

Then the R iccitensor takes its wellknown form
Ruiuj = @ui@ujU 7 Ruiuj = Ruiuj =0 (3.1.3)
with U = logdetK ,,,, = 7 logdetG .
T he only condition for conform al invardance is © = 0 which here in plies

1
= EU + f(U.i)-l' f(U.i),' (3.1.4)

and
ryly, =1 6, =0 (31.5)

J



where f is an arbitrary holom orphic function. Th addition the central charge to one-loop
isc= 3n+ cwheren isthe com plex din ension and
3
c= Eez te ¢ = 3K "W (4@, @y,
is the one-loop correction. W e have also included the contribution of the world-sheet
ferm ions.

20,8, ): (316)

If one dem ands for enlarged N = 4 world-sheet supersym m etry, this im plies that the
K ahlerian space has to be hyperK ahler. If the theory is also positive, then c= 0 from
CFT argum ents. In such a case the R iam ann tensor is selfdual and therefore the space
isRiccik at. Riccli atmessand ¢ = 0 inplies constant dilaton. H owever, we note that
the hyperK ahler condition is not the only way to obtain c¢= 0; in fact we w ill provide
N = 4 exam ples which are non-R icci- at and have non-constant dilaton eld. These
exam ples w ill be presented later.

Let us see how far we can go In solving the conditions for conformm al invariance
(314,31.5). The holom orphic double derivative equations on the dilaton can be w ritten
(after raising one index) as

o (K ™Gy, )=0 ; K"Ky, = % (31.7)
along w ith its com plex conjigate. T he general solution of (3.1.7) is
(Wju)=K o @)+ () (31.8)

(u)=K 5 Hu)+ (u) (319)

where * (1) transom s as a vector under analytic (antianalytic) transfomm ations in
order that transform as a scalar. The two equations (31.8,31.9) for imply a com —
patibility condition forK .

Herewehave todistinguish two sub-cases. First, if i = Y= Othen = =constant
and we are reduced to the usualCY case where theK ahlerm anifold hastobeR icci at.
W e will retum w ith m any solutions to this case later on. If however ", " are non-zero
then wew illshow that thedilaton isalwaysnon-rivialand that there is a generic K illing
symm etry in the K ahler m etric aswell as the dilaton. To do this we cbserve that by an
analytic (antianalytic) transform ation of the coordinates we can always rotate " ( )
into a single direction and m ake its value there equal to one. Thishas also the e ect that
it rede nes the (otherw ise) arbitrary holom orhic function £ in (3.1.4). Thus, without
Joss of generality we can w rite the equivalent conditions

=K.+ (@Ziw=K.+ (ziwn) (3.1.10)

along with (3.14),where z,z are the coordinates along the preferred directions and y*,y*
denote the rest of the coordinates.

It is already obvious from (3.1.10) that

@ =@, ' = (z+ z;¥ ;i) (31.11)



O ne can show that the com patibility of the equations (3.1.4) and (3.1.11) along w ith our
freedom to perform K ahler transform ations in plies that

K =K (z+ z;yi5vi) 5 = @,K = @K (3.1.12)

and 1
= 5U + (z+ z) (31.13)

where isarealnumber. W e can take (3.1.13) as the equation specifying the dilaton in
term s of the m etric and then (3.1.13) becom es a non-linear di erential equation for the
K ahler potential

detlK yu; 1= expl 2 (z+ z)+ K, + K] (31.14)

generalizing the CY condition. Tt should be kept iIn m ind that this equation holds only
In the special coordinate system de ned above. In the sam e coordinate system , speci ed
above, we can also com pute the central charge de cit:

c= 12 : (31.15)

Letusconsider a specialclass of solutionswhich can be regarded as the generalization
of the Euclidean two-din ensional black-hole backgrounds found in [14]. Speci cally,
assum e that them odelhasa U (n) isom etry, ie.

A
K=K ([x); = (x) x= i (31.16)
=1
T he general form of the m etric is then
@K
Kuu, = K5+ K"uuy; K= —: (3117)
@x

and !
KO

1
Uily - . - A, .
K Ko 9 Koy xg ot

(3.1.18)

Forn > 1, the linear term in the dilaton, ey. (3.1.13), is not allowed by the U (n)
isom etry and the dilaton eld becom es

1 1
= U= 5Jog[(K o Tk %4 xK P)J: (31.19)

Let usde ne the follow Ing fiinction :
Y (%)= xK “(x): (3.1.20)

Now we have to insert the ansatz egs. (3.1.17,3.1.19) into the eld equation (31.5), to

obtain © w
o 2K 7+ xK 0

=0 3121
KO0+ xK @ ( )

10



which can be integrated tw ice to obtain

n 0
= —xK"'+C

2k

where k;C are real constants. Together (3.1.19) and (3.122) in ply

ny
vy* lexw v0=x

1.2C
note

T he general solution of this equation takes the follow ing form :

o XD (1 ny

ex

m=0

m ! k

Here A ,B , k are arbitrary real constants.

From (3.124)we Inm ediately obtain

Y%= kB (n

1y 1)t

e

m

ny
k

=A+ Bx":

k

T hen the dilaton, eg. (3.1.19), can be also expressed entirely of Y as

T he R icci tensor becom es

R usuy

1
_U=
2

@ui @ujU =

T he scalar curvature can be com puted to be

w ith

F inally, the one-loop corrected central charge of the supersym m etric theory is

R =2(n

M aking a coordinate change

u; =

and Introducing the real coordinate Y de ned in (3.1.20), the m etric becom es.

ds?

x e? z*

dy )?

14

; oz =

n
—Y + const:
2k

YO ij+ Y(Duiuj:

xY% = 2(n

2

fan (Y )):

Ae o (1P 't 1))

n
c=3n+ 6—:
k

i

Yy

o
~

— b,
N 1_.i,i
1 ylyl

1+

£, (Y )b

+
4f, (Y)
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w ith
N ol %o
i= @ log(l+ YY) i 9= @@log(l+ vy (31.33)
i=1 =1
g5 Is the nvariant FubiniStudy m etric of the coset %
variable hasperiod 4 asevident from itsde nition.

CP". The angular

T he explicit form of the scalar curvature, eg. (3.1 28), allow s us to discuss the asym p-
totic behavior and the sihgularity structure of our class of solutions. F irst we recognize
that the 2n-dim ensional K ahler space has zero scalar curvature forY ! 1 . M oreover,
there is another (conical) singularity atY = 0 forn > 1 ifA 6 1. On the other hand, if
A = 1,themanifold is reqular.

Let us study st the sin plest, already wellknown case, nam ely the two-dim ensional
backgrounds. F irst assum e that thedilaton eld isofthe form = %U . Then we obtain
from e. (3.124) that

Y= 2k =klg@+ Bx): (31.34)

T he corresponding K ahler potential is obtained by integrating Y=x, and it is given by
the dilogarithm like

d
K (x)=k —bg@+ )t (3.1.35)

T he backgrounds are sinqular forx = A=B (A 6 0). In fact, lnequivalent background
m etrics are jast characterized by the sign of A and B and we distinguish the follow ing
fourcases K yy = Y9):

k

i) A=0andB=1 K,y=—: (3136)
uu

A fter a change of coordinates, u = €, the m etric becom es  at, ds® = k dzdz, together
w ith a linear dilaton of the form (z+ z).

(3.1.37)

B < 0; A >0 K= ——:
(1) ’ uu 1 uu)

T he background (ii) corresponds to the exact conform al eld theory based on the gauged
W ZW modelwith coset SL (2;R )=U (1)yector- T his is the so called Euclidean black hole
w ith the form ofa trum pet. H ere the central charge de cit ispositive: c= 6=k. Forcase
(iii), the corresponding conform al eld theory belongs to the gauged W ZW m odel w ith
coset SU (2)=U (1), where the background space is now com pact w ith positivity dom ain
0 x < 1. Now the central charge de cit is negative: ¢ =  6=k. Perform ing an
analytic continuation from the Euclidean to M inkow ski space-tim e, one deals w ith the
tw o-din ensional black-hole for (ii), but w ith a coan ological scenario for (iii).

F inally
(3.1.38)



N ow , the non-com pact background space w ith cigar shape corresponds to the exact con-—
form al eld theory that is described by a coset SL (2;R )=U (1)axia1- T he central charge
de cit is positive: ¢ = 6=k. A fter analytic continuation the background has again a
black-hole Interpretation.

A s already m entioned, In two dim ensions the dilaton eld m ay have a linear contri-
bution and is in generalgiven as (cfeg. (3.1.13)):

1
= EU + qlgx: (3.1.39)

On the otherhand eg. (3.1.10) requiresthat / Y (K , =Y withx= uu= &"?),and
with eg. (3.1.39) we obtain the follow ing di erential equation
Y = bg¥Y + 2qlogx: (3.1.40)

Forg 6 % the solution to (3.1.40) hasthe om Y = og(x! “+ ¢) lg(l 2q). This
Jjust corresponds to the already found solutions (i) — (iv). On the other hand, for g = %
a new solution is found:

Y = loglogx: (3.141)
T he corresponding background m etric then looks lke
k
(V) K, = ; : (3.142)
(z+ z)

Aswewill show later, this solution is just the dualof the at background w ith constant
dilaton eld, [4]. Note thatcases (i) { (v) exhaust all possible solutions in two din ensions
(except the trivial one, nam ely  at gpace w ith constant dilaton).

Now let us switch to the fourdin ensional backgrounds. O bviously, four-dim ensional
backgrounds with N = 2 supersymm etry are obtained by building all possible tensor
products [11] of the two-din ensional cases listed just before. T his gives 21 possibilities
w here, how ever, several cases are equivalent since they are the dual of each other. In
addition it is interesting to note that if one couples the cosn ological space (ii), based on
the coset SUU(EZ)) w ith level k;, to any other two-din ensional solution w ith level k,, then
the resulting central charge defect vanishes, ie. c¢= 0 provided ifk = k,. (In the
corresponding coset conform al eld theories, the level must be related lke k, ki = 4
orsu (2)=U (1), SU(2;R )=U(1),.) In fact these types of product spaces lead to an
enhanced N = 4 world-sheet supersymm etry. T he corresponding N = 4 superconform al
algebras were explicitly constructed in ref. [111.

Let us now consider four-dim ensional backgrounds which are not direct products of
tw o-din ensional spaces. Speci cally we consider solutions of the form eg. (3.1.24) with
n = 2.0 nehasto em phasize that so far it isnot known to uswhich exact superconform al

eld theory m ght correspond to this type of backgrounds. Eq. (3.1 .24) reads
2y 2

ex 1 EY = A+ Bx’: (3.1.43)
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T he solution of this equation can be expressed in term of the (inverse) incom plete -
function W (x):

+ 1: (3.1.44)

9 k A + Bx?
Y(x)=§w _

e

In order to discuss the properties of the obtained fourdim ensionalK ahler spaces for

generic choices of the param eters A and B , it is convenient to sw itch to real coordinates,
one of them being Y . Them etric then reads:

dy »  f(Y Y
g S B s d Frl @ Prsi? AP
4F, (Y ) 4 4
(31.45)
o K w2
f(Y)=xY°= — Ae ¥ + Y 1
2y k
T he scalar curvature is
K*1 2y Ae ¥
R=14 1+ — (31.46)
4 Y

Tn these coordinatesthe SU (2) U (1) killing sym m etry of them etric isalso m anifest.
The SU (2) symm etry acts on the coordinates ; and translatesalso ,

= 2 =23 =0 (31.47)
n } n } LIPS i
= —oot e ; = i—e* ; = —— (3.148)
2 2 2 sin
TheU (1) acts as transkhtionson only. Themetric (3.1.45) in the ( ; ; ) subspaces is

a deform ation of the bration of S° over S? (whose line elem ent ism anifest in (3.1 45))
with ber lneelementd + cos d

Since this string solution has two abelian killing symm etries we can use O (2,2R)
transform ations to generate a fam ily of solutions. H owever, a prioriO (2,2 R ) transform a—
tionsm ay break the N= 2 superconform al invariance. Identifying in generalsuch an N= 2
subgroup isa di cult problem and we w illnot attem pt it here. W e w ill iIndicate how ever
a subgroup that always preserves N= 2. This is generated by the abelian duality trans-
form ations described in section 2.2 and constant antisym m etric tensor shifts (in general
gauge transform ations of B that leave H invariant,ie.B ! B + Q@ @ )-
Abelian duality transform ations preserve N=2 nvariance. Constant B shifts (or in
general gauge transfom ations of B ) also preserve N= 2 supersymm etry since the extra
term s in the action are totalderivatives (although they change the spectrum in general).

B  gauge transform ations are generated (in the case where H & 0) by the quasi-
K ahler transform ations (2.1.3). These can be intertw ined w ith the U (1) duality trans—
form ations to generate non—rivial orbits of solutions since B gauge transform ations and
U (1) duality do not com m ute.

Not all such B-shifts can be done in an N=2 invariant language, (for exam ple a
constant B—shift In the K ahler case). Tt is an interesting problem to describe all duality

14



transform ations which contain B gauge transform ations in a m anifestly N= 2 invariant
fashion.

T hus, the generic duality group (subgroup of O (dA)) which preserves N= 2 is gener—
ated by thed 7 , duality transform ationsD ; and constant B —shifts (in K illing coordinates).
TheD; actastheO (dd) m atrices

D, = ' ' (31.49)

where g; isad d diagonalm atrix with all elem ents zero along the diagonal except the
h one which is equal to one. T he transform ations D ; satisfy

D=1 D;D;=DD; (31.50)

B —<hifts constitute an additive d(d 1)=2-din ensional abelian group which acts as
B
Dy = (3.1.51)

whereB isad d antisymm etric m atrix.

In the case of our solution, we can obtain a 1fparam eter fam ily of deform ations. Here
we will take the O (2,2) m atrix to have the form

0 4 oo %001 010 0o %0 0 1 of
B B B B
E o 0o 0f Bo o 0o 1880 1 0680 0 0 1
E éZB éB <§B é (31.52)
g 0 1 05 B1 0 0 0XG0 O 0581 0 0 0%
00 1 0100 00 1 010 0

0 1
w here 10 = DD ,. Thiswillm iss som e discrete transform ationsw hich w illbe dealt

w ith in the next subsection. T he m etric is given by

dy )? £ )d +cos d F+ Y sin® d VP
sqg? = &) +Y@d Y+ 2( ) j — @) (31.53)
f,(Y) 1+ 2Yf,(Y )sh
where isa rmmalnumber and £,(Y ) wasde ned in (3.145). At = 0 we obtain our
original solution, (31.45). Now B  isnon-zero:
Y £, (Y ) sin?
B = — (31.54)
1+ 2Y£,(Y)sh
Finally the dilaton is given by
1 2 2 .2
= Ebg[ek 1+ “Y£f£,(Y)sih® )] (31.55)

T he fam ily of m anifolds described by (3.1.53) is asym ptotically atasY ! 1 (except
when = 0)and regularwhen f,(Y ) and Y £, (Y ) are positive.
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W ew ill analyse the structure of the Euclidean m anifold asa function of A and B.W e
need som e asym ptotics of the function £, (Y ):

bl )=2; £(1)= SinA] 1 (3.1.56)

£,(07)= £,(0 )= SignA 1] 1 (3.1.57)
Sihce x? must be positive, we are dealing w ith the ©llow ing cases:

1)A > 1;B < 0. There are twom anibds, the rstwithyY 0;x°> (1 A)=B with
signature (4,0) and a curvature shgularity at Y = 0 and the second w ithY 0;(1
A =B x° A=B with signature (0,4) and curvature singularitiesat¥ = 0; 1 .

2)A = 1,;B < 0. There isa regular Euclidean (4,0) m anifold forY > 0;x°> 0and a
singular (atY = 1 )Eclidean (04)manibd orY < 0;0 x° 1=B .

3) 0 < A < 1. In thiscase £, (Y ) has a positive and a negative zero which we will
denoteby ¥ :f,(Y )= 0.ForB < 0 thereisagain a reqular ( nite curvature) Euclidean
manifold forY > Y, with signature (40) and anotherwith Y < Y with signature (04)
and a curvature singularity atY = 1 .ForY < Y <Y, and B > 0 there is another
singular m anifold w ith signature (2,2).

4) A 0. In this case f, has a single positive zero, Y, . ForB < Oand Y > Y, we
have a reqular m anifold w ith signature (4,0). ForB > Oand Y < Y, there isa singular
m anifold with signature (2,2).

3.2 Dual spaces

H aving found explicit K ahlerian backgrounds which solve the string equations ofm otion
we can now construct their dual spaces replacing one chiral eld u by a twisted chiral

eld . Then the dual space w ill In general contain non-trivial torsion anc}P them etric is
no longerK ahlerian. For sin plicity we assum e again thatK = K (x),x= L, juf.We
w ill perform the duality transform ation w ith respect to the ol\DferaJlU (1) isom etry. Thus
we de ne a change of coordinates lke follows x = uju; (1 + qu:ll vivi) = upug (1 + x9),
and the dualpotential has the form

b

K=K ) ( + )lg : (321)
1+ x0
From thiseg. (22.3) becom es
Y= + ; (322)
and the dualm etric is then determ ined by
1@x ij Yi¥Yi
K = —; . = + 323
x @ vivs = ) 1+ x0 (1+ x92 ( )

W e recognize the ‘ransverse’m etricK'y,,, isexactly the K ahlerian m etric of the com plex
sohere SU (n)=(SU (n 1) U (1)) with radius’ + . The antisymm etric tensor sin ply

becom es
Yi
K , = : 324
Yi 1+ XO ( )
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T he sim plest exam ple of this type is provided by the dualof at Euclidean space and

constant dilbton . Here K (x) = x and therefore K = + Thus the dualof at

Space is shgularat + = 0. Perform ing a change of coordinates lke = L= iZ the

4
m etric has the fom

2 _ L2 i 3Yi .
ds? = dtf + tde + TR s = dydy;: (32.5)
The dualdilaton eld has the fom :
1
= — + = gt+ constant: J
- 5 ( ) o (326)

T hus, In two din ensions we have just found our previous solution (i), eq. (3.1.42). Tt is
Interesting to note that the E instein m etrdic in 4-d corresponding to (32.5,326) is at.
A swew ill see Jater,this solution is in a class of N= 4 solutions which are axionic-dilatonic
instantons.

Now consider the non-trivial K ahler spaces w ith m etrdics determm ined by e3. (3.1.24).
Using &g. (323),thedualmetric becomes (Y = + )

K = : (32.7)

Forn = 1, the dualm etric looks like

»_ Kk .
ds” = ( A)dzolz, (z=e 7 ): (3.2.8)
zZ

Com paring w ith egs. (3.1.37,3.1.38), it is evident that the duality transform ation m aps
the Euclidean black-holes, k > 0, with cigar and trum pet form s, respectively, onto each
other,[19, 17, 20], w hereas the coan ological solution, k < 0, is selfdual.

For the fourdim ensional case w ith n = 2, the dualm etric is given as

, dd Y
ds” = +
f2(v) 1+ yy)

>dydy; (329)

w hereas the dualdilaton and antisym m etric tensor el look like

1 2Y 2y
= — loglex £,(Y)]; B, = : (3.2.10)
2 1+ yy

T he dual scalar curvature becom es

a4y 2 (£,£2  £2)4+ 2f2 4+ QY F
7 (£2£; ;) 2 2 (3211)
Y 2f,

Thus, for the dual space, R = 0 forY ! 1 , and there are curvature singularities at
Y = 1 ;0 and, for generic values of A at the zeros of £, (Y ).

T his solution also can be boosted w ith the N= 2 preserving O (2,2 R ) transform ations
m entioned in the previous section.
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Tt is ilustrative to consider also the dualofa fourdin ensional space which is a direct
product of two two-din ensional subspaces. Speci cally take the tensor product of two—
din ensional at space w ith the coan ological solution (iii). T he starting K ahler potential
has the form

K %= K (x)+ %(uz-i- u, )’ (3212)
HereY (x) = xK %= Dg(l x). We performed a change of coordinates ke u, =
Iogu; + Iogy, and the dual potential is obtained as

KPP K (x) + %(ng ogyy)y ( + )lgx: (3213)

Then, after the standard algebra the dualm etric isfound as (z= e ):

2 _ dzdz + dydy

das (3214)
ZZ + VY

It isnot di cult to show that this is exactly the m etric of the so called sem i womm hole

space [10,5,11]. (T he inverse duality was rst discovered in [25].) Tt corresponds to the
exact conform al el theory,bassed on theW ZW modelSU (2) U (1). So aftera suitable
progction in the H ibert space, the conform al eld theory,based on SU (2)=U (1) U (1)?
becom es equivalent to SU (2) U (1) conform al ed theory [11]. It is not di cult to

show that the torsion which arises after the duality transform ation is jast given by the
structure constants o£SU (2).

4 N on-K ahlerian Spaces w ith T orsion

4.1 Four-dim ensionalnon-K ahlerian spaces

To start w ith non-vanishing antisym m etric tensor elds we restrict ourselres to the sin —
plest case, nam ely to fourdim ensional target—spaces, ie. m = n = 1. Then, de ning
U = IogK 4, and V = logK ,, the R iccitensor becom es

1
Ruu = @u @uv E@UV @uv + @uv @uU ’
1
Ruu = @u@uU + E@uv @uv;
411)

(@@, (U +V) @QV@QU);

(@u@v (U +V ) @uV @VU )!

Nl N
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(T he ram aining com ponents of the R iccitensor follow from symm etry argum ents and
com plex conjigation.) Analogously, thetensor¥ = H H G G  has the fom

Fuou = 2@,V @,V

Foo = 20,V @,V  4e” V@, UQ,U;
(412)
Foo = 2@,VQ,U;
Foo = 20,V@,U:
Then them etric —functions is com puted to be
= @V 2)+RURNV 2);
= Qe U 2)+e” Yeue U 2);
1 (413)
= SGe UV 4) @y @U G .V + GVEU;
. 1
oy = E@H@V(U +V 4) @, @,U @ @, V+QVG@EU:
For ® weget
Euz @ @,V @QVEe, ;
P=0,0,(U V) 2@, @, U @ @,V); (4.14)
5= 0,0,(U V) 2@, €U @ @,V):
Finally the central charge de cit becom es
3 0
c=—fe (8@, @, 2Q.,Q.U 4Q,VQ,V)
2 (415)

eV (8@, @, 20,Q,V  4Q,UR,U )g:

Let usnow try to solve the -function equations (4.1.3) and (4.1 .4). First, the van-
ishingof ¢, ¢, S and P inpliesthat

uu’/ vv/’/ uv uv

Q.V = 2@, + Ciu;v)e ;

(41.6)
QU = 2@, + C,(u;v)e :
Analogous equationshold for the derivativesw ith respect touand v.Using S = 2 =0
it follow s that @,C, = @,C; = 0. Thusegs. (4.1.6) can be rew ritten as
@V = 2@, + C ) ;
4.1.7)

QU = 2@, + C,r(w)e :

Tn general, In order to proceed we discuss separately the follow ing exclusive cases: (i)
Ci=C,=0;()C,=0,C,6 0; (i) C1;C,6 0.Case (i) mples

U 2 = constant; V 2 = constant: (4.1.8)

19



ThusU V = constant. Indeed, case (i) leadsto c= 0 and correspondstoa N = 4
supersym m etric background. W e w ill extensively discuss this case at the end of this
chapter.

For the case (ii) it is very useful to perform the follow ing change of coordinates:

dv
W — : (419)
Ca(v)
Then the condition 2 = 0 mpliess = (u;u;w + w). In addition, egs. (4.1.7) tellus

thatV = V (u;u;w + w)and U = U (u;u;w + w ). Thus this case necessarily leads to at
lastone U (1) K illing sym m etry. In sum m ary, for case (ii) the background is determ ined
by the follow ing di erential equations:

@u(\/ 2)=@u(\/ 2)20;

(4.1.10)

The st two equations follow from the vanishing of 5 and £ . These equations can be
solved by
V 2 =ciwW+w)+ (4111)

w here this equation de nes the dilaton. The potential K has to satisfy
wa:Kuue KW+C1(W+W)+C2: (4.1.12)

w here the centralchargede cit ¢ isproportionalto the constant g appearing in (4.1.12).

Sw itching now to case (iii), we change, in addition to (4.1.9), the coordinate u as
follow s z
du

L : (4.1.13)
Ci(u)

Furthem ore it is very useful to reexpress the m etric com ponents in the new coordinates:

U = Iog(@,@,K )= U + Iog(C.1Cq)= 1og(C1C1K yu);
41.14)
V = 1og(@, QK )=V + Iog(C,C,)= Iog(C,CK ):

By the sam e argum ents as before we now conclude that the theory necessarily possesses
at lrast two commuting U (1) isom etries, ie. = @+ zw+w), U=U(z+ z;w + W)
andV = V (z+ z;w + w ). It ollow s that the potentialK is, up to K ahler transform ations,
also a function ofonly z+ zandw + w ,K = K (z+ z;w + w ). The di erential equations
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for the background functions now take the follow ing form

LW 2)=e";

(41.15)

The Jast two equations, which correspond to ¢, = 0 and ¢ = 0, can be combined and
one nds after som e algebra

@QV 2 ) @,U 2 )= constant: (41.16)

Let us elin inate the dilbton edd from the above equations in order to obtain the
constraints that the string eld equations In pose on the geom etry, ie. on K . Speci cally
di erentiate the st two equations in (4.1.15) w ith respect to w , z respectively. T hen
we obtain

e, @V &)=1e,@,u &) (4117)

This condition is solved by V. U = K, K, + f(z+ z)+ gw + w). Substituting
this expression into (4.1.16) we obtain that £ and g are linear. Thus the background
geom etry has to obey the follow ing constraint:

waeKw+c2(w+w)= KZZeKZ+c1(z+z): (4.1.18)
(¢ ;o are arbitrary constants.) Now we can also com pute the dilaton eld:
2 = gk ,, K, «c(z+ z)+ constant: (4119)

F inally, the central charge de cit, 3. (4.1.5),becom es

c= 3% o): (4120)

So far we have considered the conditions on the backgrounds which are in posed by
N = 2 supersymm etry. For a background to lead to enhanced N = 4 supersymm etry
one expects that non—renom alization theorem s [32]are valid. These In ply that c= 0.
W hen the dilaton is zero the condition for N= 4 supersym m etry was derived in [13]and
it states that the quasiK ahler potential has to satisfy the at Laplace equation. This is
precisely case (1), eg. (4.1.8), after a trivial rescaling of the coordinates:

Kuw= Ku: (41.21)
Thus K has to satisfy the fourdin ensional Laplace equation

(@@, + @@, )K = O: (4.1.22)
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T his is the generalization of the hyperK ahler condition for spaces w ith antisym m etric
tensor eld Y

Thedihton eld is sinply given as
2 = logK ,, + constant: (4.1.23)

T his has the In portant consequence that the fourdim ensional m etric in the E instein
frame is at:
G Einstein __ 2 G

= e = : (4.1.24)

T herefore, In the Enstein fram e, the nontrivial backgrounds with N=4 symm etry are
entirely given by non-trivialdilaton and axion eld con gurations. In fact, the solutions
of the dilaton equation (4.1 23) have a very close relation to the axionic instantons of
[16]. Speci cally from eg. (4.1.23) we get for exam ple that H yuy = K yuw = 26° @, .
Thus, equation (4.1 .23) In plies the follow ing relation :

d = =-e®H : (4.1.25)

This relation is nothing else than the selfduality condition on the dilaton-axion eld.
Tts solutions are called axionic instantons. However note that an instanton con gura—
tion which provides a solution of eg. (4.1 .25) does not necessarily solves the Laplace
equation (4.1 22). T herefore not any axionic instanton solution is expected to be N = 4
supersym m etric.

The form ofthe solutions ofthe Laplace equation depends on the num ber of isom etries

of the theory. For the case with two transkhtionalU (1) K illing symm etrdes, ie. K =
K (u+ u;v+ v) them ost general solution of (4.1 22) looks lke

K=1T@u+u+ iv+v)) iTu+u i(v+ v)): (4.1.26)

For the case w ith one traslhtional isom etry the general solution becom es
z
K u+u;v;v)=1 d T( ;v+ (u+u) °v)+ cc: (4127)

where In both (4.126), (4127) T isan otherw ise arbitrary function.

4.2 Dual, K ahlerian space which are R icci at

Let us now construct the dual spaces for the solutions of the Laplace equation w ith one
or two isom etries, (4.1 26,4.127). W ew illperform a duality transform ation on the chiral
U - eld replacing it by a twisted chiral eld . The Legendre transform ed potential K

will only contain twisted elds and will be therefore a true K ahler function leading to a
non-com pact K ahler space w ithout torsion.

YHowever eg. (4.1 .21) is presum ably not necessary (but su cient) or N = 4 supersymm etry In the
presence of non—trivialdilaton eld.
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D oing the Legendre transform we obtain the follow Ing line elam ent

1
ds’ = X (dz Kygdv)(dz Kgdv) Kdvdy 421)
uu

where K (U + u;v;v) is the original quasiK ahler potential that satis es the Laplace
equation K ,, + K = 0 and z;z are the dual coordinates de ned via the Legendre
transform z+ z = K. The coordinates v;v;z;z are now the K ahler coordinates. The
Laplace equation in plies that the determ inant of the Kahler m etric (4.2.1) is constant
o weobtain a Ricci at Kahlerm anifold. The dualdilaton is consequently constant.

T he general solution to the 4-d Laplace equation w ith one isom etry can be w ritten
asin (4.1.27). Let us ntroduce the notation

Z

<T> d T( ;v+ @+ u) v): (422)

and the function
Z@u+ u;vyv)=K,= 1< (T, T,)> (4223)

and we should ramemberthatz+ z= Z (U+ u;v;v). Then the lineelement (4.2.1) can
be w ritten in the form

1
ds? = E(olz A,dv)dz A,dv)+ Gdvdv (424)
w here,
Qz Qz Qz
G=— ;A,= — ;A,= — (425)
Qu Qv Qv

The Interpretation of the metric (4.24) is as follows: The G dvdv part describes the
m etric of a 2-d R iem ann surface (generically non-com pact). T he m etric depends also on
z+ z.For xed z+ z,A,;A, describe a  at Iine bundle on the R iem ann surface. The
metric (424) isthatofa atcom plex lnebundle on theR iam ann surface. T he functions
G ,A,;A, are ham onic.

Themetric (424) describes a large class of 4-d non-com pact CalabiY au m anifolds,
which are also hyperX ahler. The associated -m odels have N= 4 superconform al sym —
metry and c= 6 (e= 2). Them anifolds have generically asym ptotically at regions as
well as curvature singularities.

Let usbrie y display a sin ple exam ple choosing
T= 1 ()" (426)
T hen the potential becom es
K =& (v;v); wv;v)= d () T+e VI (42.7)
In tum, the dual space is detem ined by the follow ing K ahler potential:
K= (z+2z)g( + ) ( + )lbg (v;v): (42.8)
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A

The intergralin (4.2.7) can be explicitly perform ed ifwe choose ( )= e L.

S

q_
K 2 A wv)v)+ hc: (42.9)

(v;v) = constant
A

Here K is the Bessel function w ith com plex argum ent.

Let us study now the (m ore symm etric) special case of (42.4) with two isom etries,
ie. K (U+ u;v+ v). fweparamertrize,u= 1+ i ,v= 5+ i then K is of the fom
K (r;rn)= 1T (n+ irp) iT (n ir). Introducing a new com plex coordinate z = r + iry,
we can write them etric (4.2.4) in the follow iIng suggestive form

, ImT
ds® = > dzdz +

d Td )d +Td 4210
ImT( + Jd + ) ( )

where T (z) is an arbitrary m erom orphic function. It is crucial to note that the m etrdic
(4.2.10) is not written In K ahler coordinates. Such coordinates are v;v and w ;w w ih

wt+w=1iT% + ir,) iT%r in)andw w=2i .

Now the Interpretation of them etric (4 2.10) is straightforward: Tfwe take ; tobe
angular variables, then they param etrize a 2-d torus, w ith m odulus T (z) which depends
holom orphically on the rest of the coordinates and conform al factor proportional to
1=Im T . The zeros and poles of the R iem ann tensor are determ ined by the zeros and
poles (or essential singularities) of the function T (z).

This solution (with a di erent interpretation) was found in [33], where som e global
issues were also addressed”. W e should note that as in [33] a full nvariance under the
torusm odulargroup,T ! T+ land T ! 1=T can be In plem ented by a holom orphic
coordinate transform ation in z, which willm odify Im T to a m odular invariant in the

rst part of (42.10). It was also argued that such a m etric m ght receive higher order
corrections. However we have jist shown that this m etrdic is the dual of the fam ily of
womm hole solutionswhich are absolutely stable asCFT sdue to their N = 4 superconform al
symm etry and it does possess a hyperK ahler structure although not easily visible in this
coordinate system .

T he 4-d non-com pact CY m anifolds presented in this section constitute a Jarge class of
exact solutions to superstring theory w ith extended supersymm etry. A detailed analysis
of their structure as well as their M inkow ski continuations is beyond the scope of this
work and is reserved for future study.

5 S Duality and the A xion

In 4d we can trade the antisymm etric tensor B for a scalar el b, the axion. The
—function equation forB  in ply that we can write

6 deJi_}Emst

“Som e generalizations of this idea to m ore dim ensions w ere recently presented in [341].
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w here
GEMt=e ? G (52)

and G isthe -modelm etric. Then the Bianchi dentity, dH = 0 becom es the equation
ofm otion of the axion eld
r e r b=0 (53)

Ifwe de ne®
s = b+e? (54)

then the 1-loop e ective action which gives the -function equations as ejuations of

m otion is 7 !
p @ s.@s 2 C 1

Serf = det¢ R+ 26 —m— ¢+ ———

(s, + s )2 3 (s, + 5 )

(5.5)

written in the Einstein frame (52). If ¢ = 0, then S¢¢ is nvariant under SL (2R )
transform ations:

as, +b as + Db
s ! —m8 ;s ! —— ; ad lke=1 (56)
cs, +d cs d

At higher orders the SL (2;R ) symm etry is broken down to SL (2;Z ) known as the S-
duality symm etry.

An in portant question is: does S-duality preserves spacetin e supersymm etries? To
answer the question in thea m ative, we need to observe that spacetin e farm jons trans—
form hom ogeneously, as form s, under S-duality. In particular, S-duality transform ations
of the D irac operators (whose zero m ode spectrum determ ine the num ber of unbroken
supersym m etries) corresoond to gauge transform ations. Thus, they do not a ect the
zero m ode gpectrum and consequently the num ber of unbroken supersym m etries. If the

worldsheet theory has N =4 superconform al sym m etry then the 1-Jloop equations have no
higher order corrections. T hen S-duality generates exact N= 4 backgrounds.

W e w ill study separately the action of S-duality on solutions to the -function equa-
tions corresponding to cases (i,ii,iii) in section 4.1.

(1) The N=4 solutions found in section 4.1 translhte as follow s In our new variables,
s;,=C ;s =22 C (5.7)

where
ae? =0 (58)

C isa constantand them etric is at. Underan SL (2,2 ) transform ation we w ill stay in the
sam e class of solitionswith C%= (aC + b)=(cC + d)and & "= (cC + d)?e*  2c(cC + d).

S-duality is a symm etry of the string e ective action in 4-d and its status is obscure
although som e progress has been m ade towards elucidating its im plications for string

*Since we are In Euclidean gpace s are light-cone lke variables. T hey becom e com plex conjigates

in M inkow skispace.
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theory (see for exam ple [26] and references therein). In particular a worldsheet under-
standing of the sym m etry is lacking. Tt is our opinion that class (i) of string solutions is
a very useful ground to study the in plications of S-duality, due to their high sym m etry
(N=4) and the fact that they are exact solutions to string theory.

(il) In this case the quasiK ahler potential satis es (4.1.12). T he solutions found in
this class are the N= 2 preserving O (2,2 R ) transfom s of the K ahler solutions in section
3. In order to have c¢= 0 wemust set the constant g In (4.1.12) to zero (If at higher
orders, c¢#6 0 then S-duality will not produce new solutions). T he E instein m etric here

isnot at
O o &+ 0 o

GEjnStzgeKV 0 O O (59)
e O 0 0 1x
0 0O 1 0
and 5
Sy = V+V ;s = —+vV+ vV (5.10)

vv

Acting on (5.10) with SL(2,2) transform ations generates new solutions.

In case (iil) the eldds s cannot be written explicitly as functions of the K ahler
potential, so we can not proceed fuirther.

For K ahlerian backgrounds (H=0) the only S-duality transform ation which stays in
this class, changes the sigh of the dilaton (inverts the string coupling).

A nother set of new solutions can be obtained from the tensor product theory Y ((f e

U (1)
228wt 11]by applying S-duality, but we will not delve further into this.

6 Conclusions

W e have exam ined som e four-dim ensional superconform al theories with N=2 and N=4
superconform al sym m etry (classical solutions to superstring theory). W e show that there
exists a plethora of such theories with non-trivial m etric, dilaton and antisym m etric
tensor eld.

O ur solutions are classi ed In two classes:
(1) Those that are based on a K ahlerm anifold (when H = 0).
(i1) T he nonK ahlrian solutions w ith non—zero torsion.

T hese two subclasses are related by 7, duality transform ations (when isom etries are
present). Z, duality interchanges the roles of untw isted and tw isted chiral super elds
and act in a m anifest N= 2 preserving fashion. T here is a generic subgroup of O (d;d;Z )
duality and a corresponding subgroup of its conform al deform ation partner, O (d;d;R ),
which are shown to preserve the extended superconform al invariance (N=2A4). They are
used to obtain a m ore general class of solutions where a super eld form ulation is not
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m anifest. Tt is an interesting problem to form ulate the N= 2 preserving O (dd) action in
a m anifestly N= 2 supersym m etric form .

Another way of enlarging the class of solutions is via Sduality, which isa symm etry
when c¢= 0,as it happens in the presence of N=4 symm etry.

In the K ahlerian case we show that the presence of a non-trivialdilaton eld in plies
the presence of an isom etry in the background data (K ahler m etric and dilaton). The
current associated to this isom etry is the bosonic part of the N=2 U (1) current (its
presence is due to the non+rivialdilaton). A non—rivial dilaton im plies also a di erent
LG hypersurface constraint which generalizes the vanishing of the superpotential in the
constant dilaton case. Tt is interesting that we obtain these m odi cations from the
requirem ent of consistently coupling the -m odelto N= 2 supergravity. In particular the
constraints above com e directly from the scalar constraint associated to the auxiliary eld
of the N= 2 supergravity m ultiplet. Am ong the K ahlerian solutionswe nd a large class
of (non-com pact) R icci- at (CY ) m anifolds w ith one isom etry. This class of solutions
generalizes the com pact 4-d Ricci at manifolds (K 3). A special case of the solutions
above (w ith two isom etrdes) is that of ref. [33]found in a slightly di erent context. T hese
CY m anifolds are duals of non—zero torsion solutions w ith N=4 sym m etry.

TheN=2A4 solutions w ith non—zero torsion are classi ed in term s of zero one and two
isom etrdes in the special (quasiK ahler) coordinate system . W e have derived also their
K ahlerian duals.

The HyperK ahler solutionswe nd have non-trivialm etric In the E instein frame. On
the contrary, the N=4 solutions w ith non—zero torsion have alwaysa atE instein m etric
and som e of them (those w ith two isom etrdes) give all the possible supersym m etric axion—
dilaton instantons.

It is also obsarved that, contrary to expectations, isom etries are generic in 4-d super—
sym m etric string backgrounds.

Upon analytic continuation of the Fuclidean solutions we have found we can obtain
m any coan ological solutions to superstring theory whose spacetin e properties deserve
further study.
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A ppendix A .

Scalar Constraint in N = 2 d= 2 Supergravity
and its equivalence to G eneralized N =2 L-G Equations.

In this appendix we w ill show that the (2,0) and (0,2) -function equations (3.13,31.5)
ofan N = 2 superconform al system , follow s from a classical scalar constraint due to the
auxiliary eld oftheN = 2 supergravity m ultiplet, In the presence ofa non trivialdilaton
background R ®) and non zero chiral deform ation RW ( 1). Also wewillshow how the
non trivial dilaton background im plies the existence of an isom etry in the m etric, and
how theN = 2 LG eguation (w( ;) = 0) are generalized In the presence of non trivial
dilatont .

First we would lke to extend the R ?) dilaton background to a generalized N = 2
one, where the other com ponents of the gravitational superm ultiplet explicitly appear.
W e willdo this extension In the superconform al gauge where the gravitationalm ultiplet
can be represented by a chiral super ed * [36]

N = + 4 4+ + 5 H (A'l)

and its com plex conjugate.

Themetricg ,theU(l)gauge ed A ,thetwogravitini |, and the supergravity
auxiliary eld can be expressed In term sof , and H as follow s,

g = e’ @ 2)
A = 1@ ( ) @& 3)
L= . A 4)
5 = (A D)
W e assum e n chiral super eds
“i= it . T+ P ) (A o)

which we want to couple w ith the supergravity m ultiplet *.

The m ost general coupling am ong the chiral eds " and ~ is given In tem s of a
general K ahler function G ( ;; ;; ; ) and a general superpotential W ( ;; ) as usual
(see section 2.1). In our case both the functional form ofG and W are restricted and this
isbecause the © el has to de ne correctly the background m etric and the background
gauge el of the supergravity multiplet as in the above equations; eg. e' * ) is the

I the case of (p,0) worldsheet supersym m etry w ithout dilaton the constraints for the superpotential
were recetly analysed in [35].

28



conform al factor of the metric (A 2). Once we take that in to account, G and W are
given as
G(i; 17 7 )=K(i; i)+ (57 1)+ (17 1) A7)
and
W (37 )=w(}y)e (A& 8)

The tem s linear in and in G will give rise to the generalization of the dilaton
background (see below ), while the K ahler potential K de nes the kinetic term s of the

; super elds. Notice also that the dependence of W in the above equation is xed
uniguely due to the N = 2 U (1) charge conservation.

W e are now In a position to exam Ine the algebraic equations which follow s after the
elin Ination of the auxiliary elds H and F;. Setting the farm ions to zero the relevant
part of the N = 2 lagragian reads

L=K yFF;+H Fy+H Fi+ WF;+ W F,+WH+WH @ 9)

3+ 3

T he equation of m otion of the auxiliary eld H im plies the constrain

sFy+ W =20 and H = 0: (A 10)

T he second equation is sin ilar to the the G auss law .

The F; equations are

KiFs+H s+ Wi=0 A 11)

Combining the above equations we obtain the follow ing in portant relation among W ,

WiKjiand

JKyl'Wi=w and  cc @ 12)
Letusde ne by ; the holom orphic vector
= jKij]l (A 13)
then, the above relation im plies the follow ing symm etry forw
W (3 i + )=20 (A 14)

Indeed for ! Owehave W;= W . For = ij jthe above symm etry In pose the
charge consarvation of the superpotential. O bserve that this sym m etry m akes sense for
any non trivial W only if ; is an holom orphic function in tem s of the elds ;, which
In plies that

;5= Ky il 1) (A 15)

and after anti-analytic integration over 5 we have

=Kii()+ (4) @ 16)
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and sim ilarly

:ij(j)"' (j) A Jad7)

T he above equations drastically constrain theK ahlerm etricK ;5 and the dilaton function
aswe will see below .

Thedilaton function isgiven in term sof and  and can be determ ined from the
d d;and d d ; kinetic temm s,
Jhd( + )+ A0hd( )=2(d d + dd) (A 18)

where J° and J* are the dilatation current and the bosonic part of the N = 2 U (1)
R —current respectively.
d | (® 19)

3 (A 20)
The existence of a dilaton function  requests the integrability of the dilatation

current,
JP =g A 21)

since only then 7 7 7
JPd( + )= a( + )= R @ @ 22)

T he integrability constrain J° = d im plies the ollow ing form for

=L( i P+ ECO)+E( ) (A 23)

w ith
L(i; )= Kii=Ky (A 24)
Equations (A 23 A 24) imply that r;@; = 0 and its com plex conjigate, which,

taking into account that for a Kahlerm anifold R;5 = 0, are the (20) ;= 0 and (0,2)

—function equations, (3.1.3). Thus, we see that the consistent coupling ofan N=2 -
m odel to N= 2 supergravity in plies at the classical level the (2,0) and (0,2) -function
equations, which as shown in section 3.1 In ply In tum the existence of a killing sym m etry
in the K ahler potential. T he Interpretation of this isas follow s. Ifthe dilaton is constant,
the N=2 U (1) current is purely ferm jonic and conserved at the classical level. W hen the
dilaton is non—rivial, then the N=2 U (1) current acquires a bosonic contribution (J*).
In order for it to continue to be conserved, a killing sym m etry of the K ahler m anifold is
necessary.

A swe have explained above (A 14) in plies the classical scalar constraint
W W4 = 0 (A .25)

which generalizes the LG hypersurface equation in the presence of non trivial dilaton.
This can be easily solved since upon a holom orphic coordinate transform ation we can
rotate the vector ; to a speci c direction (callit ;) and m ake its value one. T hen

W(o; i)=w(;jle?’ (A 26)
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