PS/Int. AR/60-33

SOME THOUGFTS ON THE STACKING EFIMCIEICY OF THE STORAGE RING.

1. General Remarks.

One of the main purposes of the electron storage ring is to make experiments in which one stacks beam with an R.F. programme that gives a reesonably high computed stacking efficiency, and measures the stacking efficiency achieved in practice. ${ }^{:}$)

Apart from complete computations of the whole stacking process with definite specified R.F. programmes, it is desirable to have some rough quantitative information about the influence of the various parameters of the programme on the stacking efficiency. This information is needed to deternine in a general way what types of amplitude programme and frequency programe the R.F. system is likely to be called upon to produce, and what types of programme are worth computing in full. It is a bad thing to make the R.F. system unnecessarily flexible, as this almost certainjy increases the difficalty of obtaining close tolerances and low noise.

For these'rough quantitative estimates it is probably valid to treat the whole stacking process as consisting of a numijer of separate processes, each of which has a certain degenerative effect (dependinf on the parmeters used for the process) on the longitudinal phase-plane density. We overall stacking efficienoy is then the product of these separate phase-space efficiencies: -

$$
\begin{equation*}
\eta=\eta_{1} \cdot \eta_{2} \cdot \pi, \ldots, \eta_{i} \ldots \ldots \tag{1}
\end{equation*}
$$

Many of these processes are such thet they must be carried out slowly enough to be nearly adiabatic if one wishes to obtain an η_{i} near to unity. Since the time available to make a stack is linitea by the gas-scattoring, it will be necessary to make compromises between speed and ef ". .ioncy. If, after making such compromises, the time tracen to stack is too lons, ow. is lomac to use a higher hamonic number.

[^0]Some of the processes involved in stacking are sufficiently simple that one can calculate approximate expressions for the corresponding η_{i}, others are so complicated that analytic considerations give only some rough guidance on what parameter values are most worth putting into digital computation. But even in the latter case it will be a great advantege if the factorisation ${ }^{(1)}$ is valid and one c an determine the individual η_{i} separately, for the information obtained in such a way gives a more घiseful picture of what goes on in a stacking machine, and a ketter basis for making speed-efficiency compromises, than would be obtained from computations of the overall η of various complete programes. It is also likely to be more economical of computing time, as it cuts down the necessity for investigating vory many combinations of parameter values.

2. Trapoing.

In PS/Int. AR/60-8, Swenson considers inttial capture into stationary buckets of longth 2π R.F.-radians and width equal to the energy spread of the injected bean. This method has three very attractive features: -
(a) The phase-space density in the bucket is the same as that in the injected beam \equiv): -.

$$
\begin{equation*}
\eta_{I}=1 \tag{2}
\end{equation*}
$$

(b) The tine taken for the "trapping process" is zero: -

$$
\begin{equation*}
t_{1}=0 \tag{3}
\end{equation*}
$$

(c) It requires no computition.

On the other hand the fraction of particles trapped is only $2 / \pi^{\text {F) }}$: -

$$
\begin{equation*}
f_{1}=0.637 \tag{4}
\end{equation*}
$$

It may be argued that a nore sophisticated trapping process, such as the use of stationary slowly growing buckets, would bo capable of yiclding a higher f_{1} with

Thesc remarks are only exnct if the injoctod onergy spectrum is rectangular between its limits: if it has a maxmum in the middle then f_{1} is higher and the mean phaso-space density in the bucket is a favournbly weighted average of that in the injocted bean.
η_{1} still nearly unity and t_{1} small compared with the total time of stacking one pulse; but it seems to me that we ought first to study stacking with the simplest possible trapping process. As a separato problem it may be interesting to study high-f trapping processes, both theoretically and using the storage ring, and later to combine high-f trapping with stacking.

The possibility of making the injected energy spread larger, say by a factor two, than that of the trapping buckets has also been discussted. This makes f_{1} even lower, but retains the merits (a), (b), (c) above and relaxes some tolerances. It also enables a larger current to $b e$ injected in the face of the longitudinal space-charge instability phenomenon.

For the moment, therefore, we shall regard the method of capture into stationary buckets as adopted.

3. Change-over to Accelerating Buckots.

To convert the full trapping-buckets to ones that accelerate and become no smaller one must increase the R.F. amplitude V and raise $|\dot{f}|$ from zero. These can be done: - .
(a) In that order, separately
(b) In that order but with substantial overlap
(c) Simultaneousiy.

In any case we shall want to do tinings reasonably adiabatically, which moans that the fractional chenge of shape of a particle trajectory in the $\triangle \varnothing, \Delta E$ plane per cycle of synchrotron oscillations should not be large.

In $\mathrm{PS} /$ Int. $\mathrm{AR} / 60-8$, Swenson considers case (a) and compares several different choices of $\gamma_{T r}$ and of ϕ_{S}, all with the accelerating bucket arrnnged to be twice the area of the initial tropping bucket. If we hold to this factor two the phasespace efficiency η_{2} of this stage is automationlly 0.5 , provided we do not again change the bucket area bofore entering the stack, and assuming that a negligible fraction of the particles is spilt out and lost in this stage: then the interesting questions are whother the speeds proposed in $A R / 60-8$ are unnccessarily slow, sufficiently slow, or insufficiently slow to ensure small spill-out; and whether methods (b) or (c) would be bettor than (a).

One may note that in the table on page 8 of $\mathrm{PS} /$ Int. $A R / 60-8$, this change-over process takes anything from $210 / 0$ to $970 / 0$ of the total time: unless we go to values of \emptyset_{s} less than 30° it is always big enough to be worth reducing.

Other questions of interest are whether we have time enough to make this change-over so adiabatic that a factor of less than 2 between the accelerating bucket and the trapping bucket areas would be sufficient, or alternatively whether the accelerating bucket can profitably be reduced before entering the stack. Either of these could give η_{2} greater than 0.5 with some sacrifice either in time or increased spill-out.

Rather rough estimates can be made on the questions by working in the linear approximation. If we use θ to represent the azimuthal position of the particle measured forward round the machine, in units of R.F. radirss, from the phase-stationary particle; and E to represent the particle energy referred to that of the phasestationary particle, the linearised phase-oscillation equations become: -

$$
\begin{align*}
& \dot{\theta}=-\exists \mathrm{E} \\
& \dot{\mathrm{E}}=\mathrm{b} \theta \tag{5}
\end{align*}
$$

In general a and b are both time-dependent coefficients, but in our storage ring a is nearly constant. The coefficient b is proportional to V cos ϕ_{s}.

The instantaneous phase-oscillation frequency is $\sqrt{a b}$, and we first change the time scale to one in which this is constant and equal to one: ie., we measure time in radians of the phase oscillations. Then

$$
\begin{align*}
& \dot{\theta}=-\sqrt{\frac{a}{b}} E \tag{6}\\
& E^{\prime}=\sqrt{\frac{\pi}{a}} D
\end{align*}
$$

where the primes indicate differentiation with respect to the new time.
If we change variables to

$$
\begin{align*}
& x=\sqrt[4]{\frac{b}{a}} 0 \\
& y=\sqrt[4]{\frac{a}{b}} E \tag{7}
\end{align*}
$$

we obtain

$$
\begin{align*}
& x^{\prime}=-y+\varepsilon x \tag{8}\\
& y^{\prime}=x-\varepsilon y \tag{9}
\end{align*}
$$

where ε is $1 / 4\left(\log \frac{b}{a}\right)^{\prime}$.
In the case of constant b / a, where ε is zero, the trajectories are circles in the x, y plane and $\pi\left(x^{2}+y^{2}\right)$ is invariant on a trajectory and equal to the area within it.

With a finite but constant ε, a little algebra shows that

$$
\begin{equation*}
\pi\left(x^{2}-2 \varepsilon x y+y^{2}\right)\left(1-\varepsilon^{2}\right)^{-1 / 2} \tag{10}
\end{equation*}
$$

is the trajectory invariant equal to the enclosed area, and that the trajectories are ellipses with principal axes at $45^{\circ}, 135^{\circ}$, and axis ratio of

$$
\begin{equation*}
\left(\frac{1+|\varepsilon|}{1-|\varepsilon|}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

It follows that if we start with $\varepsilon=0$ and a stationary distribution consisting of an occupied circle in the x, y plane, and make an abrupt change to a constint ε, the occupied region now begins to sweep out (in the course of the phase oscillations) an area which is increased by a factor: -

$$
\begin{equation*}
\left(\frac{1+|\varepsilon|}{1-|\varepsilon|}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

In practice a process of increasing b at constant ε will have an end, as well as the beginning that we have just considered. When this is taken into account one sees that it does not matter whether one has ε non-zero for a small number of synchrotron oscillations or a large numbor, but it does matter whether the number of quarter synchrotron oscillations is near to an even integer or an odd one.

We can treat the beginning and the end of the process as independent or incoherent, so that their η^{\prime} s are multiplicntive, if we are prepared to make one of the following assumptions: -
(a) The number of phase oscillations between the beginning and the end is large, and they are sufficiently non-linear to result in a range of phase-oscillation frequencies being present. Then the region of phase space that is swept out early in the process must, before the end, be regnered as occupied as a result of a filamentation process.
(b) The number of phase oscillations is large enough that one cannot expect to fix it or know it with an accuracy better than $\pm 1 / 4$, so we treat it as indeterminate and add the effects of the beginning and the end in the worst possible phase relationship \equiv).

On either of these bases the η for the whole process is

$$
\begin{equation*}
\frac{1-|\varepsilon|}{1+|\varepsilon|} \tag{13}
\end{equation*}
$$

In $\mathrm{PS} /$ Int. $\mathrm{AR} / 60-8$ the voltage-r ising process was considered with constant ϕ_{s} and

$$
\begin{equation*}
(\log V)^{\dot{\prime}}=2(m-1) / \tau_{p}^{\prime} \tag{14}
\end{equation*}
$$

where V is the R.F. voltage, τ_{p} is the period of the synchrotron oscillations, and ($m-1$) was made 0.5.

Postponing for the moment the question whether in fact we shall want to raise voltage at constant ϕ_{s}, let us see what this gives. We find: -

$$
\begin{equation*}
\left(\log \frac{b}{a}-\right)^{\prime}=+\frac{1}{2 \pi} \tag{15}
\end{equation*}
$$

so

$$
\begin{equation*}
|\varepsilon|=\frac{1}{8 \pi}=0.0398 \tag{16}
\end{equation*}
$$

프)
If the assumption (a) is not the case, and we have altogether to deal with a large nuriber of steps in ε, this "worst possible" computation may be unreason$a b y$ pessimistic. It is them of interost, instead of adding up the $\log \eta_{\text {; }}$ values of oll the steps, to caiculate a sort of expoctation-value using the process of adding by squaces.
and

$$
\begin{equation*}
\eta_{\nabla}=\frac{1-|\varepsilon|}{1+\varepsilon}=0.92 \tag{1才}
\end{equation*}
$$

This is sufficiently close to unity that it would be reasonable, if desired, to make this process somewhat faster and less efficient, but not faster by an order of magnitude. Alternatively it would be reasonable to increase the bucket area by less than a factor of 2.

It is of considerable interest that the phase-space blow-up in this process does not occur during the $\varepsilon=$ constant, V rising, time; but instantaneously at the steps in ε. In principle (and in the linear approximation that we are using) the whole blow-up could be eliminated by making each ε-change either in two steps separated by one quarter cycle of synchrotron oscillations, or spread suitably over one half cycle; and a very substantial reduction in the blow-up can be expected if the ε-change is spread in any reasonably smooth way over one or two or so cycles. We can call this a second-order smoothing, for it basically amounts to devoting sces of the available time to keeping the second (logarithmic) derivative of the coefficient b reason= ably low, instead of devoting all the time to keeping the first derivative as low as possible. Some further discussion of it is in Appendix A.

To complete the change-over to accelerating buckets we must raise $|f|$ from zero, so changing the stable phase from zero to some value suitable for acceleration. The first thing to be considered is the choice (a), (b) or (c) of page 3. One may note that raising the voltage is an ε-positive process, while a change-over to an accelerating ϕ_{s} at constant voltage is an ε-negative one, so placing these two Ir cesses end to end inv"lves three steps in ε, the middle one being largest. Once the voltage has been raised at constant frequency to the point where the bucket shape (in linear approx.) is the same as that of the required accelerating bucket, it is a retrograde step to go on increasing V without starting to increase $|\dot{f}|$.

In principle one possibility is to increase V first to the point mentioned. then jump V, \varnothing_{s}, f to the values adopted for acceleration. If they are jumped together this is an $\varepsilon=0$ process and can be done as fast as is practically convenient. The objections to this method are that simultaneity is important (within a fraction of a quarter-cycle synchrotron oscjilations) and that the R.F. phase ought
to be jumped too, implying a delta-function in f. If we rule out this discontinuous method the following seems to be a reasonable way of devising a programme from trapping bucket to accelerating bucket: -
(a) Choose some reasonably low value of ε, say 0.1 or 0.05 .
(b) Decide on the ratio of arcas between the accelerating bucket and the trapping bucket. In PS/Int. AR/60-8 a ratic of 2 was "sod, but the results of page 6 and 7 suggest that a ratio of 1.5 would catch nearly as many particles, at higher mean density. Probably both these values would be worth computing.
(c) Raise voltage at constant f and \oint_{s} and chosen ε until the bucket area has increased by the chosen factor.
(d) Now raise $|\dot{f}|$, and raise V faster than before in order to maintain the same ε. Relate f and V in such a way that the bucket area is approximately constant. V, \dot{f} and ϕ_{S} will reach the values chosen for acceleration simultaneously, and then one stops changing them.
(e) Apply some second-order smoothing to the programme constructed by the above procedure.

The main purpose of (c) is to get most of the particles out of the grossly non-Iinear region as soon as possible. But see also the remarks at the end of Appendix A.

Before we can go through the above putting in numbers, there is one more parameter of the acceler tion process to be decided, for the accelerating bucket area fixed in (b) can be.realised either by n high voltege and rate of acceleration near peak R.F., or a low vcltrge and rate, woll nway from peak. This choice will be disoussed in later sections.

4. Noise during Acceloration.

The besic theory of R.F.-progromme noise is in UERN 60-38. For a given amount of noise the r.m.s. increase in phase-oscillation amplitude is proportional to the square root of the time taken to accolerate. On the other hand the relative importance, in diluting the effective phasc-space density, of a given noise-induced phaseamplitude, is evidently inversely as the phase-spread of the unperturbed burctes.

At constant bucket area the R.F. voltage is proportional to α^{-2}, the rate of acceleration to $\alpha^{-2 \Gamma}$, and the length of a bucket con conveniently be taken as proportional to the reciprocal of its width, and therefore to

$$
\alpha\left(\cos \phi_{s}+\left(\phi_{s}-\pi / 2\right) \sin \phi_{s}\right)^{-1 / 2}
$$

Thus the relative importance of a given amount of noise.can be taken as proportional to

$$
\begin{equation*}
\alpha \Gamma^{-1 / 2} \alpha^{-1}\left(\cos \phi_{s}+\left(\phi_{s}-\pi / 2\right) \sin \phi_{s}\right)^{1 / 2} \tag{18}
\end{equation*}
$$

Some values of this are tabulated below. One sees that, if noise is a serious problem, there is every incentive to accelerate near the peak field, where acceleration rates are high and buckets are, relatively, long•nd narrow.

Table I.

$\dot{\Gamma}=\sin \phi_{s}$	ϕ_{s}	(18)
0	0	∞
$\dot{0} 1$	$5^{\circ} 44^{\prime}$	2.9
0.3	$17^{\circ} 28^{\prime}$	1.4
0.5	30°	0.83
0.7071	45°	0.46
0.8660	60°	0.23
0.9	$64^{\circ} 10^{\prime}$	0.18

5. Stacking.

The process of adding another pulse to an existing stack can be expected to disturb it, and to increase its enercy spread by more than the amount corresponding to the buckets brought up. For this process, or for separately-considered parts of this process, one will therefore in general fiend a phase-space efficiency $n(n)$ which is a function of n, the numbor of pulses stacked.

We shall assume that the non-uniformity in azimuthal density distribution, which will exist in the stack at the moment when the n^{\prime} th pulse is deposited, will effectively have disappeared by the time the next is being deposited. On this PS/2073
assumption, its energy spectrum is the only thing that the stack remembers from one pulse to the next, and we are allowed, while calculating the energy spectrum after the $(n+1)$ st pulse from that after the $n ' t h$, to treat the latter as azimuth-independant.

The validity of this assumption depends on the parameters used, and has to be checked for each case considered. As a concrete example, suppose we stack 50 pulses per second at an R.F. frequency of 25 MHz . Any group of particles with a revolutionfrequency spread of 2 parts per million will become spread azimuthally over one R.F. cycle between one pulse and the next. Comparing this with, for example, a revolution-frequency spread of 300 parts per million - about that of one adiabatically deposited typical pulse - it is clear that the azimuthal structure does practically disappear ${ }^{\#}$).
(1) Non-adiabatic turnoff.

We shall attempt to get some idea whether it is of interest to make a slow turn-off of R.F. voltage when the buckets have reached stacking energy. Let us suppose that buckets have been raised to and into the stack, and have been converted into stationary buckets of the same area, all without disturbing the stack: then we are in a position to make a direct comparison between turning off the R.F. slowly enough to be adiabatic, and turning it off instantaneously. We shall assume that the buckets are completely and uniformly full before tum-off.

Stationary buckets of length 2π and total energy width ΔE have area in ϕ, E space of $4 \Delta E \cdot$. Their average width is $\frac{2}{\pi} \Delta E$ and a region of this width would be occupied if they were turned off adiabatically.

With instantaneous turnoff the occupied width would be ΔE, so the η for stacking a single pulse is then $\frac{2}{\pi}=0.637$.

For simplicity let us assume that subsequent pulses are always deposited in the middle of the stack. After n pulses let the stack have total energy-wiath

[^1]$2 D(n)$. When the next pulse has boen brought to rest in the middle of such a stack the trajectories in \varnothing, E space are given by the invarionts.
\[

$$
\begin{equation*}
1-\cos \phi+2\left(\frac{2}{\Delta \mathrm{E}}\right)^{2} \delta E^{2}=\text { const. }=2 / \mathrm{k}^{2} \tag{19}
\end{equation*}
$$

\]

Calling this constant $2 / k^{2}$ simplifies some of the later expressions. In this equation ΔE is still the total enerzy spread of the buckets and δE is the particle energy reforred to the mean. Hence

$$
\begin{equation*}
\frac{\delta E}{\Delta E}= \pm \frac{1}{2 k} \sqrt{1-\frac{k^{2}}{2}(I-\cos \phi)} \tag{20}
\end{equation*}
$$

Assuming the $(n+1)$ st pulse is brought up to the midale adiabatically with respect to the stack, the stack will then be bounded by two trajectories with a k-value such that the aroa between then is the old area $2 \pi .2 D(n)$ plus the added area $4 \Delta E$, so we obtrin a k determined by

$$
\begin{equation*}
4 \pi \frac{D(n)}{\Delta E}+4=2 \int_{0}^{2 \pi} \frac{I}{2 k} \quad i-\frac{k^{2}}{2}(I-\cos \phi) d \phi \tag{21}
\end{equation*}
$$

Using the complete elliptic integral E, which is defined by

$$
E(k)=\int_{0}^{\pi / 2} \sqrt{I-k^{2} \sin ^{2} z} d z
$$

we get

$$
\begin{equation*}
\pi \frac{D(n)}{\Delta E}+1=\frac{1}{k} E(k) \tag{22}
\end{equation*}
$$

Published tables of E aginst k can be used to construct a table of k against $\frac{1}{k} E(k)$, so that we ere in a position to read off. k as soon as the left hand side is known.

Substitutod into (19) or (20), this k gives us the shape of the stack bounderies when the $(\mathrm{n}+1)$ st set of buckets is in the middle of it, having been brought there adiabatically. The energy itrema of this stack are then obtained by substituting $\cos \phi=1$ into (20): -

$$
\begin{equation*}
\left(\frac{\delta \mathrm{E}}{\Delta \mathrm{E}}\right)_{\text {extr. }}= \pm \frac{1}{2 \mathrm{k}} \tag{23}
\end{equation*}
$$

The R.F. is now turned off instinteneously, and, for parposes of considering what happens when the subsequent pulses are stacked, we shell have to regard the whole area of phase-space between these energies as being occupied. Then

$$
\begin{equation*}
\frac{D(n+1)}{\Delta E}=\frac{I}{2 k} \tag{24}
\end{equation*}
$$

Successive use of (22) and the tables (to get the noxt k) and (24) to get the next D enable one to tabulate the st?ck width agininst the number of pulses brought up.

It is clenr from the nature of this calculntion thet the result would be very little differert if the buckets (of given area) were in fact non-uniformly filled: the stack would then have a tendency to be stris.ted, but its width would be little different ${ }^{3}$.

The convenient quantities to know are in fact: -

$$
\begin{equation*}
\frac{\pi D(n)}{\Delta E} \tag{25}
\end{equation*}
$$

which is the rotio of the stack width after n pulses, to what it would be per pulse for adiabatic turn-cff; and n divided by this expression, which is the $n(n)$ associated with the instantaneous turn-off of n pulses: -

$$
\begin{equation*}
\eta_{\text {inst.t.o. }}(n)=\frac{n}{\pi} \frac{\Delta E}{D(n)} \tag{26}
\end{equation*}
$$

Results of such colculations are shown in Toble II. It is seen that $\eta(n)$ rises from 0.637 , fairly rapidly at first, loter converging rather slowly on unity.

It should be remarked that, for rensonably large n, these figures are in a^{-} sense rather pessiristic estimntes, as they relate to the absolute extremes of the stack width, and a prorticle must be on the worst possiblo phase on every successiwe pulse in order to ronch such on onergy deviation. It is a rather thin tail whose
II) Of course, if one knew thet the buckets hace a substentially higher density nenr their cont:es, it would become of intirest to moke them snaller at some stage before they rench the stack.
and we have calculated.
In the 4 th column is shown

$$
\begin{equation*}
\frac{\pi}{\Delta E}(D(n)-D(n-I))-I \tag{26}
\end{equation*}
$$

This is the part of the increasc in (25) on the nth pulse that is atributable to the non-adiabatic turn-off. It is of interest because it retains some validity when the circumstances are not entirely as we have assumed: for example, if the stack width reaches a value equivalent to 16.75 adiabatically deposited pulses (which it may do as a result of 15 deposited in the way considered, or as a result of some smaller number deposited in a more disturbing menner), then the next pulse adds to the width, one unit by virtue of its arec, together with 0.03 units if, and only if, the R.F. is turned off instantaneously, together with any other nonadiabatic effect not yet considered.

It is known that, if the R.F. programe is the same on every pulse, each set of accelerated bunches passes through most of the stack, displacing it dowwards, and is deposited near the top of the stack (MURA 477). Thus the calculations that we have just done relate to a non-repetitive R.F. programme in which turn-off is earlier on successive pulses. The equivalent calculations have been done for the repetitive case and results shown in Table.III. Here D^{+}is the width between stacking erergy and the top of the stack, D^{-}between staoking energy and the bottom, $D^{+}+D^{-}=D$ is the total width.

We see that the repetitive R.F. programe is a little worse, from this point of view, then depositing in the middle of the stack. In neither case is there a strong argunent in favour of an adiabatic R:F. turn-off, provided one is proposing to stack of the order of 15 or more pulses.

Table II.

Stack widths and Phase-density Efficiencies due to Instantaneous R.F. Turn-off
of Stationary Buckets at Stack Centre.

n	$\frac{\pi D(n)}{\Delta E}$	$\eta(\mathrm{n})$	expr. (26)
1	1.57	0.637	0.57
2	2.81	0.713	0.23
3	3.97	0.756	0.16
4.	5.09	0.786	0.12
5	6.19	0.808	0.10
6	7.28	0.825	0.08
7	8.35	0.838	0.07
8	9.42	0.850	0.07
9	10.47	0.859	0.06
10	11.53	0.867	0.05
11	12.58	0.874	0.05
12	13.63	0.881	0.05
13	14.67	0.886	0.04
14	15.71	0.891	0.04
15	16.75	0.896	0.04
16	17.78	0.900	0.03
30	32.12	0.934	0.02

Table III.

Stack Widths and Phase-density Efficiencies due to Instantaneous R.F.
Turn-off of Stationary Buckets with Repetitive R.F. Programme

The calculations summarized in Tables II and III are for the case in which the abolished buckets arc stationary: it would be useful to have equivalent results for moving buckets, especially those of the shapes that could reason?bly be used for acceleration. Ther is a difficulty here, which is not just a matter of more elaborate calculations, but comes from the fact that one cannot arrive at stacking energy with buckets moving at a finite rate without disturbing the stack non-adiabatically, and makes it difficult to separate into two independent blow-up factors the effects of the instantaneous R.F. turn-off and of the immediately preceding rapid bucket arrival.

For a given bucket area, noving buckets imply more R.F. voltage than stationary ones (the buckets used for acceleretion in PS/Int. AR/60-8 have $\pi^{-2}=9$ to 284 times as nuch voltace as is required for the same area of stationary bucket: for other possible progrommes sugacsted by Swenson, the factor is 2 to 3), so some estinate, even if rather crude, of the effect of turn-off of this R.F. would be desirable.

In the calculation of Tables II and III the non-adiabatic part of the stackwidth increase between one n and the next is due to the energy oscillations, caused by the R.F., of particles at the top and bottom of the stack. The energy oscillations of particles sepanated by $\overline{\mathrm{O}} \mathrm{D}$ from the bucket energy ($\overline{\delta E}$ being an average over the oscillations) have an amplitude that depends on $\overline{\delta E}$ and is appreximately proporticnal to the $R . \bar{T}$. voltace and independent of whether the buckets are moving or stationary, provided $\overline{\delta F}$ is large compared to the bucket width.

On this approximation one can make the necessary modifications to the procedure used in calculating Table III to botain cormesponding results for the case where the R.F. voltage ís, for example, four times the value appropriate to stationary buckets of the given area . Since the approximation is not good for smali n we have not tabulated the result, but, quote only.
$\eta(16) \approx 0.73$
$\eta(30) \approx 0.81$
for this case.

포 So α is 0.5 and $\Gamma 0.33$.

Bearing in mind that these are calculations of the extreme limits of the stack, it still seems that the question of adiabatic or non-adiabatic turn-bff may not be of much consequence if the R.F. voltare for acceleration is only a few times that corresponding to the stationary bucket case. If we add to this the fact that a semiadiabatic turn-off should not be too difficult to arrane, it seems that the effect of the roving bucket passing into and through the stack, rather than that of the turn-off, is likely to determine how high a rate of acceleration can be used.

- We have considerca tle repetitive R.F. programe in which one stacks at the theoreticel stack top, and the non-repetitive one in which one stacks in the middle. There is another non-renetitive procrame that is of interest: that in which one stacks at the theoretical strek bottom. In respect of the effoct of R.F. turn-off, this is just the same as stacking at the theoretical top, so Table III (with the colums 2 and 3 interchanged) is applicable, and so is our estirate of $\eta(16)$ and $\eta(30)$ for $\Gamma=0.33$. If the effects (considered in the next section) of passing into and through the stack vith the bucket should turn out to be rather bad, one could largely clininate them by stacking at the bottom; the instantaneous turn-off would be the main disturbing influence on the stack, and these estimates would become of more consequence:
(2) Effect of moving buckets on the stack.

If we consider the case of a repetitivo R.F. programe, it seems certain that after a roderate nurber \because) of pulses have been stacked, the upper limit of the stack will be a little above stacking enerey and the lower linit will be fairly well below stacking energy, both on these limits being effectively straight lines $E=$ const. in the absence of R.F.

When the next pulse is brought up, we wish to know how these two lines are defcred, in particulon what is the energy of the lowest particle on the lower line and of the highest particle on the upper one.

The precise effect of passing through this lower line with buckets that come from $-\infty$ and go to +0 has alrondy been computed (by MURA, CERN Symp. 1959, p. 58). It is measonnble to nssume that our slow incrensc of R.F. volts at injection frequency will not look very different (from the point of viow of the stack) from their novement of buckets up from $-\infty$; and that thoir continuing on to $+\infty$ will
look (from the point of view of the bottom of the strok) wore adiabatic than the case where the bucket is destroyed quickly when it gets about to the top of the stack. The results of Vogt-Nilsen (CERN 58-9, Figures 2 to 7) show that the energy spread of particles that have been passed by a bucket divides rather clearly into two parts; (a) associated with variations of relative phase of particle and bucket, remaining when the bucket recedes to $+\infty$; and (b), cnergy oscillations that damp to zero as the bucket recedes.

The relevant MURA results are given in Table 1 on page 61 of the reference. If we take $I_{\max } /\langle I\rangle_{a v}$ we obtain a figure which corresponds to the case where, for different Γ, the voltage has been arrenged to give the same bucket area, and which gives the maximum dowward displacement of the stack botton in units of one adiabatically deposited pulse.

Table V.

Γ	$I_{\max } /\langle I\rangle_{\mathrm{av}}$	$\eta(\infty)$
0.5	2.37	0.42
0.3	1.59	0.64
0.1.	1.17	0.88
0.0	1.00	1

The case $\Gamma=0$ is for buckets whose form is that of stationary buckets, and which consequently move infinitesimally slowly and only disturb the stack in an - adiabatic way.

It seens plausible that when the stack is sufficiently wide, sey many times the total energy width of a buckets, these figures will be a rasonably accurate measure of how much its bottom moves down on each pulse, and thet the contribution to width increase from the top of the stack will become relatively unimportant; we therefore have in the third column put $\langle I\rangle_{a v} / I_{\max }$ and colled it $\eta(\infty)$, The phase-density efficiency of this process in the linit of a large number of pulses.

It also seems likely that ns n increnses this $\eta(\infty)$ will be approached, from below: for the effects of the cnergy oscillations, and spread at the top of the stack, are relativoly more importnnt for small n.
PS/2073

We could also consider a repetitive R.F. programme in which the last bit of the programme is devoted to slowing-down to rest and turning-off the bucket, mare or less adiabatically, these being done within the energy rance occupied by the upper part of the final stack. In this case $\eta(1)$ would be unity, but the phenomena at the bottom of the stack as it approaches final size would be very little differint, and the third column of Table V can be taken as a reasonable estimate of an $\eta(\infty)$ that will now be approached from above.

Taking Table V at its face value, one could conclude as follows: if we aim at an overall stacking efficiency of around 50%, these values of $\eta(\infty)$ indicate that we are not likely to be interested in Γ for acceleration greater than about $0: 4$; but if one wants to verify that one can cone close to the theoretical stacking efficiency when this is nearly unity, a Γ around 0.1 is of more interest.

A semi-adiabatic slow-down of acceleration and reduction of R.F. voltrige takes about the sane tine as the converse processes (just after trapping) that we have already considered: and the values of Table V seen to force one into the range of Γ values where this time is relatively small. One should therefore not be too worried by the fact that the Table V results may be (especially for small n) on the safe side only for the semi-adinbatic deposition case.

For large ${ }^{\text {玉 }}$) values of n, there is one respect in which Table V con be regarded as unduly pessimistic: it is based on the MURA figures for the largest downward displacement of any particle, so as n increases we approach more and more the situation of having calculated the extreme limit of a very thin tail, consisting of particles that hove been most unfortunate in their phase on every pulse.

It is worth having a look at the opposite approach, ignoring extreme cases and estimating, for example, the root-noen-square energy spread of a sta ck.

In MURA 477, Reilly gives the average displacerient and r.m.s. scatter due to the passage and turnoff of buckets, for various values of initinl energy (referred to the bucket turn-off point). His results sro all exprossed in units of "expected
35) An in this connection "large" may only mon >10 or so. PS/2073
mean displacement.for a boom passed. by a bucket": this is the same quantity that we have been using under the name of "width of one adiabatically deposited pulse". He treats the case $\Gamma=0.55$: unfortunately similar data for other Γ does not seem to be available.

His results can approximately be summarised (with a bit of averaging and interpolation) into the following statements: -
(a) The r.m.s. scatter of any particles passed ry a bucket, including those initially at the turn-off energy, is about 1.2 units.
(b) The mean downward displacement of particles initially at energy zero is 1.41 . Of particles initially at -1.41 it is 1.21 , for particles at -2.62 and below it is 1.00

If we permit ourselves to calculate the additional displacement and scatter of each pulse due to a later one in the approximation that all its particles are at their mean position, we have the following situation. After n pulses, the i^{\prime} th pulse has been passed by $n-i$ pulses; it will be found at a mean position of

$$
-1.41-1.21-1-1 \ldots \ldots . \text { to }(n-i) \text { terms }(29)
$$

and will have \therefore riven square spread about this mean of

$$
\begin{equation*}
\overline{\delta E_{1}^{2}}+(1.2)^{2}(n-i) \tag{30}
\end{equation*}
$$

where $\overline{\delta E_{1}^{2}}$ is the mean square energy spread of a single pulse after its R.F. has been fumed off.

After n pulses ${ }^{\text {II }}$), the whole stack has \therefore mean position of

$$
\begin{equation*}
\overline{\delta E(n)}=-\left(\frac{n}{2}+0.12-\frac{0.83}{n}\right) \tag{31}
\end{equation*}
$$

and a mean square deviation from "zero" of

$$
\begin{equation*}
\overline{\delta E^{2}(n)}=\overline{\delta E_{I}^{2}}+1 / 3 n^{2}+0.84 n-0.789+13.71 / n \tag{32}
\end{equation*}
$$

अ) $n>2$

The mean square deviation from the mean is therefore

$$
\begin{align*}
\overline{\delta E^{2}(n)}-(\overrightarrow{\delta E(n)})^{2}= & \overline{\delta E_{1}^{2}}+\frac{1}{12} n^{2}+0.72 n+0.027 \\
& +13.91 / n-0.69 / n^{2} \tag{33}
\end{align*}
$$

The half-width of the full bucket is, in the units thet we are using, l. 41, and we shell take $\frac{\delta \mathrm{E}_{1}^{2}}{}$ as 0.5 (one quarter the square of the half-width is the exyct value for a uniformly filled elfipse. It is clear from (33) that the value used for $\overline{\delta E_{1}^{2}}$ is not of much consequence if n is say 10 or more.)

In Table VI we give some values of this expression, together with its square root, and in the 4 th column we have

$$
\begin{equation*}
\frac{n}{\sqrt{12}} /\left(\overline{\delta E^{2}}(n)-(\overline{\delta E(n)})^{2}\right)^{1 / 2} \tag{34}
\end{equation*}
$$

which is some sort of r.n.s. measure of stacking efficiency, as $n / \sqrt{12}$ is the r.m.S. width of a rectangular spectrum of total width n, i.e. of a stack consisting of n perfectly inontically deposited pulses.

Table VI

n	n.s.	r.m.s.	$\eta(n)$ r.m.s.	$g(n)$
5	8.96	2.99	0.48	0.48
10	17.44	4.18	0.69	0.69
15	31.00	5.57	0.78	0.75
20	48.95	7.00	0.83	0.80
30	97.59	9.88	0.88	0.84
50	245.1	15.65	0.92	0.88
∞			1.00	1.00

The r.m.s. width alone gives rather little infomation about the shape of a distribution, so it is difficult to decide how low one would be prepared to have $\eta(n)$ r.m.s., but it can be shown that one may derive from it another quantity $g(n)$ with a rather more dircct significance, if onc is preparod to assume that the distribution has only one maximua and that this is no higher than the density one would PS/2073
get with adiabatic stacking. The meaning of $g(n)$ is as follows: there must be at least a frnction $g(n)$ of the particles within an energy width equal to the theoretical adiabstic wieth. Or, altematively expressed, at least a fraction g(n) of the particles have an average phase-space-density, compared with the adiabatic case, of $g(n)$. This quantity is in the finth column of Table VI. If we compare these values with Table V, and believe both, one must conclude that calculations of the extreme stack width are almost useloss as a way of obtaining an estinate of stacking efficiency, presumably because of the long-thin-tail phenomenon. Possibly Table V retains a little usefulness in giving a genernl idea of how η depencs on Γ^{\prime} : one can argue that if Γ^{\prime} were 0.28 instead of 0.55 , the η values of Table VI would probably be about twice as close to one.

The woak point in the colculation of Table VI is the assumption that all particles in the stacle receive their downwerd displacements each time another pulse is raised. In fact the scattering will produce an upward tail on the stack, and particles in tiis will not be reached by subsequent pulses. This could be remedied by adiabstic tum-off of the R.F. in the upper part of the stack. Since part of the scatter in Reilly's figures is due to the instanteneous turn-off, it is possible to claim that one would do better than the η and g values of Table VI if one turned off adiabotically, but one would probably do worse than these values if one turned off instontaneously. It is not precticable to estimate how much the difference would be on thr data atrailable.

One can conclude that for n of the order of 20 it is possible to do reasonabl. y well, say $g \approx 0.8$, even at a high Γ like 0.55 , but it may be necessary to tum off adiabatically. The range of . Γ values most likely to be of interest to us is, say, 0.2 to 0.3.

Calculation of the stack spread arter n pulses by this type of methed; that is to say, by first caiculating the displacement and scatter for one R.F. pulse as a function of the initial particle energy within the stack, and then using this data statistically to find the overall situation after n pulses, is quite amenable to elaboration so that one obtains the final spectrum rather than just its mean and r.m.s. spread. Its justification rests on the randomisation of the phases between one pulse and the nert, wich we have already discussed.

It is worth pointing out that this type of method is very econcmical in computation time, especially for the case where the R.F. is to be turned off instantaneously. One takes a number of particles spread over all initial phases, to represent
a line spectrum, muns the I.T. up to a certain frequency, and punches out the energy spectrum in some suitable form. To obtain the spectrum for the next interesting value of $\triangle E$ (difference between initiol particle enery and turn-off energy) one merely continues with the R.F. programe on the same particles for a while. So the quantity of particle dummics that needs to bo computed anounts only to one sweepthrough R.F. cycle acting on enough particles to represent all phases. The spectra obtained in this way can then be fed into statisticel combining programmes for several n values, including, if desired, cases where one deposits in the middle or at the bottom of the stack, or with jitter in the turn-off froquency, etc.

6. Conclusions.

Even values of Γ as high as about 0.5 may be copable of giving reasonably high stncing efficiencies for a fiarly large nurnoer of pulses, but my require slow turmoff of the R.F. at stacling energy. Taking adventage of the merits of second-order smooting it should be possible to incronse V and $|\dot{f}|$ after trapping sufficiently adiaboticnlly and still in a time that is not a large fraction of the total. The same is true of the slow tum-off at stecking energy if this is noeded.

For relatively small numbers of pulses, high stecking efficiency will require lower values of Γ, but it is difficult to say how much lower. In this regime the increase of V and $|\hat{i}|$ costs so little time that one need not look for the fastest way of doing it sufficiently adiab-ticnlly; the use of second-order smoothing is then mainly to eliminote noise and other unwanted irrocularities in the programe.
\therefore If Γ is taken low erough, good stroking efficiency con be obtained without slow turn-off of the R.I., but in the low Γ region this slow turn-off costs relatively so little time that it is probebly worth heving.

The noise problem, if $i \in$ is serious att $A l$, is more serious if Γ is low.
Taken together with the colculations of Swenson, it seems that it will be possible to anke a stac': rensonably efficiently in somewhat under one second, even with harmonic numbers as Iow as two or three.

APDENDIX A

Second-order Smoothing.

We are interested in the equations (8) when ε is not being changed in discontinuous steps, but continuously with time; for example linearly in the "time" of the equations. If one changes to the variables $x+y$ and $x-y$ one obtains equations the sarne in form as (5), adn can then repeat the analysis from (5) to (13) - (and so on to any order). It is possibly more informative to suppose that, having devised a programe for chan ing V or $|\hat{f}|$ or both, and estimated the η that it will contribute, we then smooth it a little nathematically (and perhaps also in physical practice) by passing it through an integrating tire constant, represented by the operator: -

$$
\begin{equation*}
\frac{1}{I+j \omega \tau} \tag{40}
\end{equation*}
$$

τ being the timeconstent in question.
In the linear approximation and for small perturbations, changes of trajectoryshape blow-up the phase-oscillations entirely by virtue of their Fourier components of frequency around twice the phase oscillation frequency.

The reduction of these components by our snoothing operator or circuit can be obtained directly from (40). For example, consider a smoothing timeconstant equal to one half a cycle (π radians) of phase oscillations; (40) becomes, at twice the phase oscillation frequency

$$
\frac{1}{1+2 \pi j}
$$

whose modulus is $1 / 6.4$
It may therefore be quite profitable to design a programe with relatively high values of ε, and then smooth it in this way.

A smoothing tincconstant τ used in this way does not, of course, cost an extra time of the order of τ each tinc it does its job of smoothing a step in ε. Because of the resulting overlapping of procosses, it rather costs an extra time of
the order of τ on tho whole R.F. prograrne.
A further advantas is to be gined if the progr mene-generating equipment is made to generate first the unsmoothed program and then smooth it with a physical integrating-timeconstant circuit, for such a circuit also gives an attenuation of any noise or other unvanted irrogularities in the programe ${ }^{*}$). The dominant effect of noise is by way of changes in the value of ϕ_{S}, and here the Fourier components around the phase oscillation frequency are the relevant ones, so our example attenuates them only by: -

$$
\left|\frac{1}{1+\pi j}\right|=1 / 3.3
$$

but this is still a useful factor.
A problen arises from the fact that the phase-oscillation frequency increases, and a timeconstant the't is big enough to be useful at the beginning will be unnecessarily big later. Mathematically one can consider programes in wich each step in ε is smoothed with the timeconstint appropriate to it, but we hardly want to include a programed tineconstant in the prograrming equipment. But up to now we have not made use of the fact that we propose to trap with a bucket width equal or less than that of the injected energy spread; this will result in the initial buckets being surrounded by an area occupied at ner.rly the full density, and the first step in ε, when the buckets begin to enlarge, con well be noglected and need not be apprecinbly smoothed.

As the voltage is increased at constant frequency one on in frot expect many of these prrticles surrounding the trapped area to be sucked into the increasing
5)

Only noise, etc., originating before the smoothing circuit can be smoothed in this way. Any noise originating in the devices that t-ke the signal called "progrome" and modulato the R.F. with it cannot, of course, be so denlt with. In principle this noise too could be smoothed by hoving a sufficient Q in the cavity or sonewhere in the nodulated part of the R.F. system. But Q-values of the order of $\omega_{\mathrm{rf}} / \omega_{p}$ would be needed!
stable area, and values of \dot{f}_{1} appreciably higher than:
$0.637 / \frac{\text { injectod spreed }}{\text { initial bucket width }}$
together with values of η_{2} appreciably higher than: -

Initial bucket area
Accelernted bucket area
can be hoped for in practice. In section II and III we disregrad these extra particles. Although they may make a useful incrense in overoll efficiency, they probably have rather little effect on the types of voltage-raising programe that it is desirable to use.
H.G. Hereward.

Distribution: (open)
Accelerntor Research Group
Farameter Comittee rembers
P.S. Iibrary
J.B. Adams (2 copies)
/kt

[^0]: 포)
 We dofine stacking efficioncy as the ratio of the phase-space density in the stack to that in the injocted bean,

[^1]: ¥)
 The stack does, of course, exhibit on azimuthal variation of both density and men n energy, whenever the R.F. is on. But this structure runs round with the R.F. wave, not with the stack revolution frequency, and it does not invalidate this estimate of what happens to the azimuthal structure belonging to the previous pulse, even if successive R.F. pulses are phase-coherent.

