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SOME THOUGHTS ON THE STACKING EFFICIENCY OF THE STORAGE RING.

1. General Remarks.

One of the main purposes of the elzctron storage ring is to make experiments in

which one stacks beam with an R.F. pregramme that gives a ressonably high computed

=
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stacking efficiency, and measures the stacking efficiency achieved in practice.

Apart from complete computations of the whole stacking process with definite
specified R.F. prograrmes, it is desirable to have some rough quantitative inform-
ation about the influence of the various parameters of the programme on the stacking
efficiency. This information is needed to determine in a general way what types of
amplitude programme and frequency progrzmme the R.F, system is likely to be called
upon to produce, and what types of programme are worth computing in full. It is a

bad‘thing tc make the R.F. system unnececssarily flexible, as this almost certainiy

increases the difficulty of obtaining close tolerances and low noise.

For these’'rough quantitative estimates it is probably valid tq treat the whole
stackiﬁg process as consisting of o numler of separate processes, egch of which has
a certain degenerative effect (dependins on the parmmeters used for the process) on
the longitudinal phase-plane density. “he overall stacking efficiensy is then the

product of these separate phase-space efficiencies: -

n = nl - T]2 - :,._.,} o ovasuf T}i ceesce (1)

.

Meny of these processes are such *h~t thsy must be corried out slowly enough
to be nearly adiabatic if one wishes to obiain an ng near to unity. Since the
time availeble to make a stack is limited by the gas-scattering, it will be necessary

o make compremises between speed and ef”'cioncy. If, after rmaking such compromises,
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We dcfine stacking efficicney as che ratio of the phase-space density in the
stack to that in the injectcd teon,
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Some of the processes involved in stacking are sufficiently simple that one can
celculate approximate exnressions for the corresponding N others are s complic-—
ated that anaiytic considerations give only some rough guidance on what paramcter
values are most worth putting into digital computation. But even in the latter case

(1)

the individual n; separately, for the information obtnined in such a way gives a

it will be a great advontoge if the factorisation is v21id and one ¢ an detéfmine

more fiseful picture of what goes on in a stecking machine, and a tetter basis for
naking speed-efficiency compromises, than would be obtained from computations of

the overall n of various complete progrmmes. It is also likely to be more econ-
omical of computing time, as it cuts down the necessity for investigating very many -

- combinations of parameter values.

2. Trapoing,

In ‘PS/Int. AR/60—8, Swenson considers inttial capture into stationary buckets
of length 27 R.F.-radians and width equal to the energy spread of the injected
bean, This rethod has three very attractive features: - |

(a) -The phase-space density in the bucket is the same as that in the injected

beanm H)‘: -

o= 1 (2)
(b) The timé”%aken for the "tropping process” is zero: - ’ T}
b, = 0 (3)

(¢) It requires no computntion..

),

On the other hand the fraction of particles trapped is only 2/n ®-

£, = 0.637 . (4)

It may be argued that a nore sovhisticated trapping process, such as the use of

stationary slowly growing buckets, would be capable of yielding a higher fl with

\ .
= . . .
/' Thesc remnrks are only excct if the injeocted cnergy spectrum is rectangular

between its limits: if it hos o moxinum in the niddle then fl is higher and
the mean phasc-space density in the bucket is o favourably weighted average of
thot in the injected beaon.
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™ still nearly unity and tl small compated with the total time of stacking one
pulse; but it seems to me that we ought first to study stacking with the simplest
possible tropping process. As 2 scparatc problem it may be interesting to study

high~f trapping processes, both theorcticnlly and using the storage ring, and later
. to combine high-f trapping with stacking.

The possibility of mnking the injected energy sprecad larger, say by a factor

two, than that of the trapping buckets has also been discussted. This makes fl

even lower, but reteins the merits (a), (5), (c) above and relaxes some tolerances,
It also enables a larger current to be injected in the face of the longitudinal

space-charge instability phenomenon.

For the moment, therefore, we shall regard the method of capture into station-

éry buckets as adopted.

%, Change~over to Acccleroting Buckcts.

To convert the full trapping-buckets to ones fhat accelerate and become no

smaller one rust increase the R.F. amplitude V and raise fl from zero. These

can be done: -

(a) In thet order, separately
(b) In that order but with substontial overlap
(c) Simultaneousiy.

In any case we shall want to do things reasonably adiabatically, which neens
that the fractional chonge of shape of a particle trajectory in the (!ﬁ, AE plane

per cycle of synchrotron oscillations should not be large,

In PS/Int. AR/60—8, Swenson considers case (a) and compares several different
choices of YTr and of ¢s , 211 with the nccelerating bucket arranged to be twice
the arca of the initial tropping bucket. If we hold to this factor two the phase~
space efficiency n, of this stoge is automaticnlly 0,5 , provided we do not
again change the bucket arca before entering the stack, and assuming that a negligible
fraction of the particles is spilt out and lost in this stage: then the interesting
questions are whother the speeds proposed in AR/60-8 arc unnccessarily slow, suf-
ficiently slow, or insufficicntly slow to ensurc small spill-out; and whether

nethods (b) or (c) would be bettcr than (a).
PS/2073
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One may note that in the table on page 8 of PS/Int AR/60-8, this change-over
process takes anything from 21 o/o to 97 o/o ~f the total time: unless we go to

values of ﬁ less than 30 it is alwa JQ big enough to be worth redu01ng.

Other questions of interest are whether we ha-e time enough to make this
chénge—o?er so adiabatic that a factor of less than 2 bétween the accelerating bucket
and the trapping bucket areas would be sﬁfficient, ér alternatively whether the
accelerating bucket can profitably be reduced before entering the stack. Eifher of

these could give My greater than 0.5 with some sacrifice either in time or in-
‘creased spill-out.

Rather rough estimates can be made on the questions by working in the linear
approximation. If we use € to represent the aziouthal position of the'particle
meagured forward round the machine, in units of R.F. radirus, from the phase-station-

ary particle; and E to represent the particle energy referred to that of the phase—

stationary particle, the linearised phase-oscillation equations become: -

0 = -aE
(5)

B b 6

i

In gencral 2 and b are both time-dependent coefficients, but in our storage

ring a is nearly constant. The coefficient b 1is proportional tc V cos ﬁs.

—_— '
The instantaneous phase-oscillation frequency is Va b , and we first change
the time scale to one in which this is constant and equal to one: i.e., we measure

time in radians of the phase oscillations. Then

<]
[
1
-
)
J
=

B \/T‘1 |
o

where the primes indicate differentiation with respect to the new time.

D

If we change variables to

A -
Ay
X = V'{i‘ 0 o
. 4= (1)
PS/2073 y = —%— E



we obtain

x! -y +ex

(8)

y'' = x-uy

where € is Y4 (log 'S")l. ' (9)

In the case of constant b/a y where € 1is zero, the trajectories are circles
. 2 2y . . . . ‘
in the x,y plane and 7(x" + y~) is invariant on a trajectory and equal to the

area within it,

With a finite but constant e , a little algebra shows that
2 2 2\=V2
n(x"-2¢x y+3) (L-¢ ) 4 (10)

is the trajectory invariant equal to the enclosed area, and that the trajectories

are ellipses with principal axes at 450, 1350, and axis ratio of

(.l_i_J_El_)yél ’ (11)

1l- f s‘

It follows that if we start with e =0 and a stationary distribution con-
sisting of an occupied circle in the x,y plane, and make an abrupt change to a
const-nt e , the occupied region now begins to sweep out (in the course of the phase

oscillations) an area which is increased by a factor: =

2 |
(l+‘€l> (12)

1- la{ '

~In practice a process of increasing b at constant € will have an end, as
well as the beginning that we have just considered. When this is taken into account
one sees that it does not matter whether one has € non?zéro fbr a small number of

synchrotron oscillations or a large numbcr,'but it does matter whether the number

We can treat the beginning and the end of the process as independent or
incoherent, so that their n's are multiplicntive, if we are prepared to make one

of the following assumptions: -
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(a) The number of phase oscillations between the beginning and the end is large,
and they are sufficiently non-linear to result in a ronge of phase-oscillation
frequencies being present. Then the region of phase space that is swept out
early in the process must, before the end, be régarded as occupied as a result

of a filamentation process. -

(b) The number of phase oscillations is large enough thnt one cannot expect to fix
it or kmow it with an accuracy better than + Y4, so we treat it as indeterminate
and add the effects of the beginning and the end in the warst possible phase

relationship .

On either of these bases the ﬁ for the wﬁole process 1is

21 - ‘ E‘ - (13)
1+ ‘ a‘

In.PS/Int. AR/60—8 the voltage-r~ising process was considered with constant

ﬁs and
(1og V) = 2 (m—l)/ﬂf‘ - ' (14)

‘where V is the R.F. voltage, ?fp isvthe period of the syhchrotron oscillations,

and (m - 1) was made 0.5.

Postponing for the moment the question whether in fact we shall want to raise

voltage at constant ﬁq , let us see what this gives. We find: -

. ' 1 .- .
(log'—g—) =+ (15)
so . o )
le| = é}; - 0.0398 | (16)

If the =ssumption (a) is not the case, and we have altogether to deal with a
large number of steps in e this "werst possible" computation may be unreason—
ably pessinistic. It is then of intercst, instead of adding up the log n,
values of 21l the steps, to cnlculate a sort of expectation-value using the
process of adding by squares. . '

PS/2073
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U e N (17)

This is sufficiently close to unity that it would be reasonable, if desired,
to make this process somewhat faster and less efficient, bﬁt not faster by an order

of magnitude. Alternatively it would be reasonable to. increase the bucket area by

less than a factor of 2.

It is.of considerable interest that the phase-space blow-up in this process does
not occur during the & = constant, V rising, time; but instantaneously at the steps
in € . In principle (and in the linear approximation that we are using) the whole
blow-up could be eliminated by making each e-change either in two steps separated by
one quarter cycle of synchrotron os0111wtlons, or spread sultably over one half
cycle, and a very substantial reduction in the blow-up can be expected if the e-change
is spread in aﬁy reasonably smooth way over one or two or so cycies; We canieall
thls a seccnd-order smoethlrg, for it ba 51cnlly anounts to devotlng scca ¢f the avail-
able tire to keeping the second (logarithmic) derivative ~f the coefficient b reason-
ably low, instead of devoting all the time to keeping the first derivative as low as

possible. Some further discussion of it is in Appendix A.

To complete the change-over to accelerating buc&ets we must raise z ! from
zero, so changing the stable phase from zero to some value suitable for acceleration.
‘The first thing to be considered is the choice (a), (b) or (c) of page 3. One may
note that raising the voltage is an e-positive process, while a change-over to an
accelerating ﬁs at constant voltage is an e-negative one, so placing these two
rrfcesseevend te end invclves three steps in e , the middle one being largest.

Once the voltage has been raised at constant frequency to the point where the bucket
skape (in linear approx. ) is the same as that of the requlred accelerating bucket,

it is a retrograde step to go on increasing V without startlng to increase kf!

In pr1nc1plc one p0351bi11ty 1s to increase V flrst to the p01nt mentloned.
then jump V , ﬁs , f to the values adopted for acceleratlon. If they are Jumped
“together this is an € =0 process and can be done as fast as is practically
~ convenient. The objections to this nethod are that simuitaneity is important (within

a'fraclion of a éuarter—cycle synchrotron oscillations) and that the R.F. phase ought
PS/2073



to be jumped too, implying a delta-function in f . If we rule out this discontinuous
method the following secms to be a reasonable way of devising a programme from

trapping bucket to accelerating bucket: -

‘

(a)* Choose some reasonably low value of € , say 0.1 or 0,05.

4 (b) Decide on the ratio of arcas betwecen the accelerafing bucket and the trapping
bucket. In PS/Int. AR/60-8 a ratic of 2 was used, but the resulfs of page 6 and 7
suggest that a ratio of 1.5 would catch nearly as many particles, at'higher

-mean density. Probably both these values would be worth computing.

(¢) Raise voltage at constant f and ﬁé and chosen & until the bucket areo

‘has increased by the chosen factor.

(d) Now raise lfi » and raise V faster than bofore in order to maintain the
same € . Relate f and V in such a way that the bucket area is approximately
constant. V , f and ﬁs will reach the values chosen for acceleration

simultaneously, and then cne stops changing them.

i

(e) Apply some second-order smoothing to the programme constructed by the above -
procedure,

The main purpose of {c) is to get most of the particles out of the grossly
non-linear region as soon as possible. But see also the remarks at the end of
Appendix A.

Before we can gO'through the above putting in numbers, there is one more para—
meter of the acceler-tion process to be decided, for the accelerating bucket area
fixed in (b) can be resclised either by = high volteoe and rate of acceleration
near reak R.F., or a low vcltoge and rate, wcll away from peek. This choice will he

disoussed in later sectionms.

4. Noise during Accelcration.

. The bosic theory of R.F.-prograomme ncise is in .CERN 60-38. For a given amount
of noise the r.m.s. increase in phase-oscillation anplitude is'propo;tional to the
square root of the .time taken to accelerate. On the other hand the relative inport-
-ance, in diluting the effective phasc-space density, of a given noise-iqduced phase-
-amplitude, is evidently invesrscly as the vhase-spread of the unperturbed bumckes.

PS/2073
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At constant buckct area the R.F. voltage is proportional to a—2; the rate of

- =2
acceleration to « 2I)

- proportional to the reciprocal of its width, and therefore to

and the length of a bucket can conveniently be taken as

o (cos ﬁ; + <¢s - n/2) sin ﬁs)-yz

Thus the relative importance of a given amount of noise.can be taken as proport-

ional to
P2 (e d + (B - w2) sind) ()

Some values of this are tabulated below. One secs that, if noise is a serious
problem, there is every incentive to accelerate near the peak field, where acceler-

ation rates are high and buckets are, relatively, long-and narrow.

Table I.
[? = sin g g (18)
N . -~
0.1 5% a4 2.9
0.3 . 17° 28! 1.4
0.5 . 30° | 10,83
0.7071 48 0.46
0.8660 00 0,23
0.9 A | 0.18

5. Stacking.

The process of adding another pulse to an existing stack can be expected to
disturb it, and to increase its enersy spread by more thon the amodnt corresponding
to the buckets brought up. For this process, or for separa%ely—considered parts of
this process, one will therefore in general fiend a phase-space efficiency n(n)

which is a function of n , the numbcr of pulses stacked,

We shdll assume that the non~uniformity in azimuthal density distribution,
which will &kist in the stock at the moment when the n'th pulse is deposited,

/ will effectively have disappeared by the time the next is being deposited. On this
PS/2073
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asgugptiqn{ i?s energy_spectrum is the only thing that the stack remembers from one
pulse to the next, and we are allowed, while calculating the energy spectrum after
the (n + 1)st pulse from that after the n'th, to treat the latter as azimuth-indep-
endant.

The validity of this assumption depends on the paramcters used, and has to be
checked for each case considered. As a concrete exanple, suppose we stack 50 pulses
per second at an R.F. frequency of 25 MHz. Any group of particles with a revolution-
frequency spread of 2 parts per nillion will become spread azimuthally over one
R.F. cycle between one pulse and the next. Comparlng this with, for example, a
revolution~frequency spread of 300 parts per million - about that of one adiabatically
deposited typical pulse - it is clear that the azirmuthal structure does practically :)

=)

dlsappear .

(l) Non—adiabntéc turn-off,

We shall attempt to zet some idea whether it is of interest to mcke a slow
turn-off of R.F. voltage when the buckets have reached stackin ng energy. Let us
suppose that buckets have been raised to and into the stock, and have been converted
into stationary buckets of the same area, all without disturbing the stack: then we
are in\a position to moke a direct comparison between turning off . the R.F., slowly
ff instantaneously. e shall assume that

the buckets arc completely and uniformly full before turn—off.

Stationary buckets of length 2n and total energy width AE- have avea in
¢ , E space of 4 [LE‘; Their average width is _Z_ AE ond 2 region of this width ,)

would be occupied if they were turned off adiaba blC”llJ.

With instantaneous turn-off the occupied width would be AE , so the n for

stacking a single pulse is then -%—== 0.637.

For simplicity let us assuﬁe that subsequent pulses are always deposited in

the niddle of the stack. After n pulses let the stack have total énergy—width

E> The stdck'does, of course, exhibit =n azimuthal variction of both den nsity nd
rmeaxn cnergy, whenever the R.F. is on. But this structure runs round with the
R.F. wave, not with the stock revolution frequency, and it does not invalidate
this stlhu ;e of what happens to the azirmwuthal structure belonging to the

previous pulse, even if successive R.F, pulses are phase-coherent,

PS/2073
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2 D(n). When the next pulse has bcen brought to rest in the middle of such a stack
the trajectories in ﬁ, E space are given by the invarionts.

5 .
1 - cos # + 2( 2 6E2 = const, = 2/k? (19)

ey

Calling this constant 2/k2 simplifies some of the later expressions. In this
equation AE is still the total energy spread of the buckets and &E is the particle

energy referred to the mean. Hence

2 1
_EEE_=i2—:LE\/1—~12§-(lucos¢) | (20)

Assuming the (n + 1)st pulse is brought up to the middle adiabatically with
respect to the stack, the stack will then be bounded by two trajectories with a
k-value such that the arca between then is the old area 2n . 2 D(n) -pius the added

area 4AE , so we obt~in a k deternined by

ol

2k

2n 5
4n%§l+4=28 N (1 = cos @) ag (21)

Using the complete elliptic integral E , which is defined by

/
/2
[. 2 .2
BE(k) = 1-%" sin® z 4z
' 0
we get
D(n) 1
o 22
nog Tl o B(x) o (22)
Published tables of E ag-inst k can be used to construct a tzble 'of ¥ against
%’ E(k) y 50 that we ere in a position to read off k aos soon as the left hand

side is known.

‘Substituted into (19) or (20), this k gives us the shape of the stack
boundariss when the (n + l)st set of buckets is in the middle of it, having been
brought there adiabatically. The energy axtrerie of this stock are then obtained by
substituting cos g =1 into (20): -

8B 1
3 = £3% (23)

: extr 2k
PS/2073 :
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The R.F. is now turned off instanteneously, and, for pmrposes of considering
what happens when the subsequent pulsecs are stacked, we shall have to regnrd the

whole area of phase-space between these energies as being occupied, Then

- (Zg 1? = 21k | o (24)

Successive use of (22) and the tables (to get thé next k ) and (24) fo'get
the next D enable one to tabulate the stnack width agﬁinst the number of pulses

“brought up.

It is clenr from the nature of this calculation that'the result would be very
little differert if the buckets (of given arca) were in fact non-uniformly filled: :)
the stack would then have a tendency to be striated, but its width would be little
difserent™ ,

The convenient quoantities to know are in fact: -

AE

which is the rotio of the stnck width ofter n pulses, to what it would be per pulse
for adinbatic turn-cff; and n divided by this expression, which is the n(n)

associnted with the instantaneous turn-off of n pulses: -

n) = e AE (26) )

ninst.t.o.< i D (n)

Results of such colculations are shown in Toble II. It is scen that n(n) rises

from 0,637 , fairly repidly =t first, later converging rother slowly on unity.,

It should be remarked that, for rensonably large n , these figures are in a™
sense rather pessinistic estimntes, 2s theyrelate to the absolute extremes of the
stack width, and 2 particlc nmust be on the worst possible phase on every successiwve

pulse in order to ronch such ~n encrgy devimtion. It is o rather thin tail whose

%, . .
! Of course, if cnc knew that the buckets hod o subst-ntially higher density
near their centres, it would become of intcrest to moke them smaller ot some

stage before they rench the stock.
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end we have calculated.

In the 4th column is shown

L (0(a) = D(n - 1)) - 1 | (26)

This is the part of the increasc in (25) on the nth pulse that is atributable
to the non—adiabatié turn-off. It is of intcrest because it retains some validity
when the circumstances arc not entirel& as we have assumed: for example, if the
stack width reaches a value equivalent to 16.75 adiabatically deposited pulses
(which it 'may do aé a result of 15 deposited in the way considered, or as & result
of some smaller number-deposited in -a more disturbing manner), then the next pulse
adds to the width, one unit by virtue of its aree, together with 0,03 units if,
and only if, the R.F, is turned off instantanecously, together with any other non-

adiabatic effect not yet considered.

It is known that, if the R.F. programme is the same on every pulse, each sct
of accelerated bunchés passes through most of the stack, displacing it dowmweards,
and is deposited ncar the top of the stock (MURA 477); Thus the calculations that
we have just done relate to a non-repetitive R.F. programme in which turn-off is
earlier on successive pulses. The equivﬁleht calculatioﬁs hove been done for the
repetitive case and results shown in Table-III. Here D+ is the width between
stacking energy and the top of the stack, ‘D_ between stocking energy and the
bottom, D' +D =D is the total width,

We see that the fepetitive R.F. programme is a little worse, from this point
of view, thon depositing in the middle of the stuck. In neither case is there a
strong argument in favour of an adiabetic RiF. turn-off, provided one is proposing

to stack of the order of 15 or more pulses.

PS/2073
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Table IT,

Stack widths and Phase-density Efficiencies due to Instantaneous R.F, Turn-cff

of Stationary Buckets at Stack Centre .

n -%EL n(n) exp.r.A (26)»
1 157 0.637 0.57
2 2.8 0.713 0.23
3 5.97 0156 0.16
b 5.09 0.786 Q.;é
5 6.19 0.808 0.10
6. 7.28 0.825 0.08
7 | £.35 0.838 0.07
8 _ 9.42 0.850 | 0,07
9 10,47 0.859 0.06
10 11,53 - 0.867 0,05
11 12.58 0.874 . 0.05
12 | 15.63 0.881 . 0.05
13 | 14.67 | 0.886 0.04
14 15.71 ©0.891 0.04
15 16.75 0.8% 0.04
16 17.78 0,900 0.03
30 32.12 0.934 0.02

Ps/2073
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Table ITI.

Stack Widths and Phase-density Efficiencies due to Instantaneous R.F.

Turn-off of Stationary Buckets with Repetitive R.F. Programme

PS/2073

n e iil)  mDO h) g (26)
1 0.78 0.78 1.57 0.637 0.57 .
2 1.87 0.97- 2.84 0.704 0.27
3 2,92 1.12 4,05 0.741 0.21
4 3.96 1.26 5,22 0.766 0.17
5 4.9 1.38 6.37 0.784 0,15
6 6.02 1.49 7.51 04799 0.14
( . 7.04' 159 8.63 0,811 0.12
8 . 8,06 1.68 9.75 0,821 o1
9 19.08 1.78 10.86 0,829 0.1
10 ; 10.09 1.86 11.96 0.836 0.10
11 11,11 1.94 113.05 0,843 0.10
12 1212 2,02 14.14 0.848  0.09
13 13.13 2.10 15.23 0.854 0.09
u 14f15 2.17 16,32 0.858 0.08
15 15.16 2.24 17,40 0.862 0.08
16 16,17 2,31 18.48 0.866 0.08
30 30.26 3.16 33,42 0.898 0.05
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The calculations summarized in Tzbles II and IIT are for the case in which the
abolished buck.ts arc stationary: it would be useful to have equivalent results for
noving buckets, especially those of tno shopes that c@uld rcascontbly be used for
acceleration. Ther: is a dlfflcultj here, which is not just o matter of more elabor—
ate calculations, but cones from the fact that one cannot arrive at‘stacking enersgy
with buckets moving at a finite rate withou®t disturbing the st;ck non-adiabatically,
and mokes it difficult to separate into two independent bloﬁ—up factors the effects

of the instantaneous R.F. turn-off and of the irmediately preceding rapid bucket

arrival,

For a given bucket area, noving buckets imply more R.F. voltage than stationary
-2 . .
ones (tho buckets used for accelerztion in pS/Int AR/60—8 have " & = 9 to 284 times :)
as nuch voltage as is r requl red for ihe same arca of stotionary bucket: for other
possible programmes suggcsted by Swenson, the factor is 2 to 3), so sone estimate,

even if rather crude, of the effect of turn-off of this R.F., would be desirable.

In the calculation of Tables IT and III the non-adiabatic part of the stack-
width incresse between one 1n and the next is dué to the energy~oscillations,
caused by the R.F., of particles at the top and bottom of the stack. The energy
oscillations‘of particles separated by gﬁ‘ from the bucket energy ( EET being an
average over the oscilla%ions) have}an amplitude that depends on 6E and is apprex-

imately proporticnal to the R.¥. voltage end independent of whether the buckets are

moving or stationary, rrovided FE 1s large compared to the bucket width.

On this apw»roximation one can mske the necessary modifications to the procedure ,)
used in celculating Table IIT %o abtain corresponding results for the case where the
R.F. voltage is, for exemple, four tires the value appropriate to stationary btuckets

of the given area ~'. Since *he approximation is not good for small n we have not

tabulated the result, but, quote only.

. oo n (16) &7 0.73
n (30) &4 0.81

for this case.

=
~

%) So a is 0.5 and | ~ 0.33,
PS/2073
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Bearing in mind that these are calculations of the extreme limits of the stack,
it still seems that the question of adiabatic or non-adisbatic turn-bff may not be
of much consequence if the R.F. voltasc for acceleration is only a few times that
corresponding to the st~tionary bucket case. If we 2dd to this the fact that a semi~

.adiabatic turn-off should not be too difficult to arrsnre, it seems that the effect
of the nmoving bucket passing into and through the stack, rather than that of the

turn-off, is likely to determine how high a rnte of acceleration can be used.

v~ We have considered tle repetitive R.F. prograrme in which one stacks at the
theoretical stack top, and the non-repetitive one in which one stocks in the middle.
There is enother non-reretitive programme that is of interest: that in which one
stacks at the theoretical st~ck bottom. In respect of the effect of R.F. turn-off,
this is just the same as stacking at the theorcticcl top, so Table III (with the
columns 2 and 3 interchanged) is applicable, and so is our estinate of n(16) and
n(BO) for f’= 0,33, If the effects (considered in the next section) of passing into
and through the stack vithn the bucket should turn out to be rather bad, onc could
largely climinate them by stacking at the bottonm; the instantaneous turn-off would
be the main disturbing influcnce on the stack; and these estimates would become

of more consequencz;

(2) Effcct of moving buckets on the stnck. ‘

If we consider the coze of a repetitive R.F. progr-rme, it seems certain that
after a noderate nunber =) of pulses have been stacked, the upper limit of the stack
will be a little above stocling energy ond the lower linit will be fairly well below
stacking energy, bo*h o “hese linits being effectively stroight lines E = const.
in the absence of R.F.

When the next pulse is brought up, we wish to know how these two lines are
defcrmed, in particulor what is the energy of the lowest particle on the lowervline

and 'of the highest v»article on the upper one.

lThe precise effcct of pnssing through this lower line with buckets that come

from -0 and go to t0 hos alrendy been computed (by MURA, CERN  Symp. 1959,

+
Do 58). It is reasoncble o acsume that cur slow incrensc of R.F. volts at injection
frequency will not lcol very diffcrent (from the point of vicw of the stack) fron

their novement of buekets up from —00 , and that their continuing on to + 00 will

=
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look (from the point of view of the bottonm of the stack) nore adiabatic than the

case where the bucket is destroyed quickly when it gets about to the top of the

stack. The results of Vogt-Nilsen (CERN 58-9, Figures

2 to 7) show that the energy

spread of particles that hove been passed by a bucket divides rather clearly into

two ports; (a) associated with voriations of relative

phase of particle and bucket,

renaining when the bucket recedes to + @@ ; and (b), cnergy oscillations that damp

to zero as the buckct recedes,

The relevant MURA results are given in Table 1 on page 61 of the reference, If

we take Imax/<(I‘>?v we obtain a figure which corresponds to the case where, for

differcnt f“, the voltage has been arranged to give the some bucket area, and which

- gives the moximum dovmward displacement of the stock bottom in units of one adia—

batically deposited pulse.

Table V.
N\

r' v ]‘:max/< . /av
0.5 2,37
0.3 1.59
0.1 . 1.17

0.0 1.00

n(co)

0.42

0.64

0.88
1

The case ['= 0 is for buckets whosc form is thet of stationary buckets, and

which consequently move infinitesimal1y slowly and only disturb the stack in an

* adiasbatic way.

It seems plausible thnt when the stack is sufficiently wide, soy many times

the total energy width of a buckets, these figures will be a rcasonably accurate

measure of how much its bottom moves down on cach pulse, and that the contribution

to width increzse from the top of the stack will becorie relatively unimportont;

we therefore have in the third column put <I>1 V/Imx ond called it n(e0) , The

phase-density efficiency of this process in the linit of 2 large number of pulses.

It also seems likely that as n increases this n(OO) will be appreached

fron below: for the effccts of the cnergy oscillations, and sprecd at the top of the

stack, are relatively rore important for small n .

PS/2073
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We could also consider a repetitive R.F. programme in which the last bit of
the programme is devoted to slowing-down to rest and turnlng—off the buckest, ncre
or less adiabatically, these being done within the energy rance occupied by the
upper part of the final stack. In this case n(l) would be unityy, but the phenomena
at the bottom of the stack as it approsches final size would be very little differ-
ent, and the third columm of Table V can be tsken as a rcosonable estimate of en

n(OO) that will now be approached from 2bove.

Taking Table V qt its face value, one could conclude as follows. lf we
aim at an overall stacking off101oncy of around 50 o/o, these values of n(OO)
"indicate that we are not llkcly to be 1nterosted in I for accelerﬂtlon greater
than about 0.4 ; but if one wants to verify that one can come close to the
theoretical stoecking efficiency when this is nearly unity, a [™ around O. 1 1s of

nore interest.

A seml—adlﬂbstlc slow-dowm of “ccgler“tlon and reduction of R.F. voltage
tekes about the same tine as the converse processes (Just qfter trapplng) that we
have already considered: and the volues of Table V scen to force one into the
renge of r’ values where thls tllo 1s relﬂtlvply small. One should therefore not
be toc worried by the fact thﬂt the Table V results nay be (especially for small

n) on the safe side only for the semi-adiabotic deposition case.

For large §> values of n , there is one respect in which Table V con be
regarded 2s unduly pessimistic: it is bosed on‘the MURA figures for the largest
downward displacement of nny particle, so as n increases we appronch more and
more the situation of having cnlculoted the extreme linmit of a very thin tail,
consisting of pnrticles thnt have been most unfortunnte in their phase cn every

pulse.

It is worth having a look at the oppositc approach, ignoring extreme cases

and estinating, for ex~mple, the root-ncon-square energy sprcad of a sta ck.

In MURA 477, Reilly gives the average displacerient and r.o.se scatter due to
the passage and turn-off of buckets, for various values of initinl energy (referred

to the bucket turn—off-point). Eis results orc all expressed in units of "expected

%)
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mean displacement.for a beam passcd by a2 bucket": this is the same quantity that we
have been using under the nome of "width of one adinbaticrlly deposited pulse". He
treats the case | = 0.55: unfortunatcly sinmilar data for other [ does not seen

to be availzble.

His results can approxiﬁately be surmorised (with 2 bit of averaging and inter—

pblation) into the following stotements: -

(a) The r.n.s. scotter of any particles passed ty 2 bucket, including those initially

at the turn-off encrgy, is about 1.2 units,

(b) The mean downward displacenent of particles initially'at energy zero is 1,.41.
of particles initially at -1.41 it is 1.21, for particles at -2.62 and below
it is 1,00

If we permit ourselves to calculate the additional displacement and scatter
of ench pulse due to o later one in the approximotion thot all its particles o
at their mean position, we have the following situation. After n pulses, the i'th

pulse has been passed by n - i pulses; it will be found 2t a mean position of
'w 1,41 =121 =1 =1 epuenes to (n-1i) terms (29)

and will have = ricen squarc spread about this meon of

% o+ (2P (a-1) | (50)

o~z . .
where 6E1 is the mean square energy spre~d of a single pulse after its R.F. has
beén turned off. |

After n pulses E), the whole stack has ~ nmean position of

5 B(n) =-4ﬁ%+0¢2-$fﬁﬁ ' (31)

and a mean square devintion from "zero" of

BE—————C  emt———

Ve 2 ' ny :
§E] +7/3n" +0.84n-0.789 + 13.71/n , (32)

o
=
5
.
I
o

RN
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The mean square devietion from the mean is thercfore

mQM-(ﬁh)2= &§+-%n2+mnn+omm

+15.91/n - 0.69/n° (33)

The half-width of the full bucket is, in the units thot we are using, 1.41,

and we sh=ll take 6Ei as 0.5 (one quarter the square of the half-width is the
exyct value for o unifomly filled ellipse. It is clear from (33) that the value used

—

2
for 8E; is not of much consequence if n is say 10 or more.)

In Table VI we give some values of this expression, together with its square

root, and in the 4th column we have

—_— Y2
(sE°(n) - (68(n))? ) (34)

=}

3
m’

—-——‘ -
which is some sort of r.m.s, measure of stacking efficiency, as n/%/12 is the
r.n.s. width of a rectangular spectrum of total width n , i.e. of a stack consisting

of n perfectly: ‘ioshatically deposited pulses.

Table VI
n M.S. r.m.s, n(n) r.m.s. g(n)
5 8.9 2.99 0.48 0.48

10 17.44 4.18 0,69 0.69

15 31,00 5.57 0.78 0,75

20 48.95 7.00 0.83 0.80

30 97.59 9.88 0.88 0.84

50 245.1 15.65 0.92 0.88

00 | 1.00 1.00

The r.nm.s. width. 2lone gives rather little infornation about the shape of a
distribution, so it is difficult to decide how low one would be prepared to have
n(n) r.m.s., but it can be shown that one mny derive from it another quantity . g(n)
with a rather more dircct significance, if onc is preparcd to assume that the dis-

tribution has only one nexinum and that this is no higher than the density one would
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get with adiabatic stacking. The mecaning of g(n) is as follows: there must be

at least a froction g(n) of the particles within an energy width equal to the
theoretical adiabztic width. Or, alternatively expressed, at least a fraction g(n)
of the particles have an average ph°Sﬂ-SDuce—den31ty, compared with the adiabatic
case, of g(n). This gquantity is in the flwth colum of Table VI, If we compare
these values with Teble V, and believe both, one must conclude that calculations of
the extreme stack w1dth are almost usoless as a way of obtaining an estimate of
stacking efficiency, precumably bectuse of the long-thin-tail phenomenon. Possibly
Table V retoins a 11ttlo usefulness in giving a genernl idea of how 7 depen”s on.

™ : one can argue thut if I were 0,28 instead of 0.55, the n values of Table VI

would probably be about twice as close to one.

The wecak point in the calculation of Table VI is the assumption that all
particles in the stacl: receive their downward displacements each time another pulse
is raised. In fact the scattering will procduce an upword tail on the stack, and
particles in this will net be reached by subsequent pulses. This could be remedied
~ by adinbatic turn—off of the R.F. in the upper part of the stack. Since part of the
scatter in Reilly's figures is due to the instantonecus turn-off, it is possible
to claim that one would do better than the n and g values of Table VI if one
turned off adiabntically, but one would probably do worse than these values if one

turned off instﬁﬁtaneously. It is not practicoble to estimate how much the differ-

ence would be on thr data available.

One can conclude that for n of the order of 20 it is possible to do reasonabl .y

well, say g 3f0°8 » even at & high fﬂ like 0.55, but it may be necessary to turn
off adisbatically. The range of‘.{j values most likely to be of interest to us is,

say, 0,2 %o 0.3.

Calculation of the stack spread after n pulses by this type'of methed; that
is to say, by first caiculating the displacement and scatter for one R,F. pulse as
a function of the initial particle energy within the stack, and then using this data
statistically to find the oversll situation after n pulses, is quite amenable to
elaboration so that one obtains the final spectrum rather than Just its mean and
r.m.s. spread. Its justification rests on the randomisation of the phases between

one pulse and the next, which w2 have already’ algcuused.

It is worth pointing out that this type of method is very econcmical in com-

putation time, especially for the case vhere the R.F, is to be turned off instant-

aneously. One takes a number of particles spread over all initial phases, to represent

D

)
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a line spectrum, runs the .. up to a certain freguency, cnd punches out the energy
spectrun in some suitoble form. To obtain the spectrum for the next interesting
value of AE (difference between initial particle enersv and turn-off energy) one
merely continues with the R.F. progromme on the same particles for a while. So the
quantity of particle dymemics that nceds to be computed cmounts only to one sweep-
_through R.F. cycle ccting on Qnough particles to represent all phases. The spectra
obtained in this way cnn then be féd into  statistical combining programnes for
several n vﬁlues, including, if desired, cases where one deposits in the middle

or at the bottom of the stack, or with jitter.in the turn-off frequency, etc.

6. Conclusions.

Even values of .[7 as high 2s about 0.5 may be copable of giving reasonably high
stoeing efficiencies for a fiarly large number of pulses, but may require slow turn—
off of the R.F. ot stacking encrzy, Taking advantnse of the nmerits of second—order
smooting it should bes possible to increonse V  and lf‘ after trapping sufficiently
adiabatically and still in a time that is not a large froction of the total. The

same is true of the slow turn-off 2t strcking energy if this is nceded.

For relatively. snall numbers of pulses, high stocking efficiency will require
lower -values of r‘, but it is difficult to say how much lower. In this regime the
increase of V and ‘zf‘ costs so little time that onc nced not look for the
fastest‘way of doing it sufficiently adiabnticelly; the use of second-order smoothing

is then mainly to eliminste noise ond other wnwented irrcgularities in the programme,

.+ If r is taken low euough, good stocking efficiency con be obtained without
slow turn-off of the R.T'., but in the low " region this slow turn—-off costs relat-

ively 'so little timz that it is probably worth having.,
The noise problem, il 1% is serious att nll, is more serious’ if M is low.

Teken together with the cnlculations of Swenson, it secenms that it will be
possible to mnke a stac’t reasonably efficiently in sorewhat under one second, even
with harmonic nwibers 2s low 2s two or three.

PS/207%
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APPENDIX A

Second~order Smoothing.

We are interésted in the eduations (8) wﬁen € 1is not béing changed.in dis-
continuous steps, but continuogsly with time; for example linearly in the "time"
of the equations. If one chaﬁgéé to the variables x+y and x -y one obtains
equations fhe sane in form as (5), adn can then repeat the analysis from (5) to
(13) - (and so on fo any order). It is possibly more informative to suppose that,
having devised a programme for chan.ing V or té‘ or both, and estimated the
n that it will contribute, we then smooth it a little mathematiéally (énd,pefhaps
also in physical practice) by passing it through an integrating tiie constant,

represented by the operator: -

1

Trwt (40)

qf being the timeconstent in question.

In the linear approximation and for small perturbations, changes of trajectory—
shape blow-up the. phase-oscillaticns entirely by virtue of their Fourier components
of frequency around twice the phase oscillation frequené&.

The reduction of these cbmpohents by our snoothing operatbr or circuit can'be
obtained directiy.from (40). For e¢xanple, consider a smoothing timeconstant equal
to one half a cycle (n radians) of rhase oscillations; (40) becomes, at twice the

phase oscillation frequency

2t
1+ 2nj

whose modulus is 1/6.4

[6]

It may therefore be quite profitable to design a prograrme with relatively

high velues of € , and then smooth it in this way.

A smoothing tineconstant T used in this way does not, of course, cost an
extra tirme of the order of T” cach tinc it does its job of smoothing a step in € .

Because of the rcsulting overlapping of procecsses, it rother costs an extra time of

PS/2073
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~
the order of L on the whole R.F. prosrerme,

A further advantagc is to be gnined if the progr-rme-generating equipment is
made to generate first the unsmoothed progromms aﬁd th;n snooth it with a physical
integrating-timeconstont circuit, for such o circuit also gives an attenuation of
any noise or other unwanfed irrcgularities in the prograime §>, The dominant effect
of noise is by way of changes in the value of ¢s" and here the Fourier components
around the phase oscillation ffeqﬁency.are'the relevant ones, so our example

attenuates them only by: -

1
L+m ]

= 1/3'3

but this is still 2 useful factor.

A problem arises from thé fract thet the phasg-oscillation frequency increases,
and a timeconstant thot is big enough to be useful at the beginning will be un~
necessarily big later. Mathematically one con consider programmes in which each step
in € 1s smoothed with the timeconstont appropriate to it, but we hardly want to
include a progrormed tireconstant in the prograrming equipment. But up to now we
have not made usé of the fact that we propose to trop with & bucket width equaler
less than that of tie injected energy spread; this will result in the initial buckets
being surrounded by an area occupied at nenrly the full density, and the first step

in & , when the buckets begin to enlarge, can well be ncglected and need not be

appreciably smoothed.

As the voltage is increased at constant frequency one con in fagt expect many

of these particles surrounding the trapped arca to be sucked into the increasing

=)

Only noise, etc., originating before the smoothing circuit can be smoothed in
this way. Any noisc originating in the devices that t-ke the signal called.
"progromme" and nodvlate the R.F. with it cannot, of course, be so denlt with.
In principle this noise too could be snoothed by hoving a sufficient Q in

the cavity or somcwhere in the nodulated pnrt of the R.F. system. But Q-values
of the order of wrf/mﬁ would be needed!
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stable area, and values of fl appreciably higher than:

injected sprend
initial bucket width

0.637 /
together with values of n, appreciably higher than: -

Initial bucket area _
Accelerated bucket arca

can be hoped for in practice. In section II and IIT we disreg-ried these extra
particles, Although they moy moke a useful increase in overall efficiency, they
probably have rather little effect on the typew of voltage-~raising programme that

it is desirable to use.

H,G. Hercward,
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