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Abstract
The application of artificial intelligence (AI) in gastrointestinal endoscopy has 
gained significant traction over the last decade. One of the more recent applic-
ations of AI in this field includes the detection of dysplasia and cancer in Barrett’s 
esophagus (BE). AI using deep learning methods has shown promise as an 
adjunct to the endoscopist in detecting dysplasia and cancer. Apart from visual 
detection and diagnosis, AI may also aid in reducing the considerable interob-
server variability in identifying and distinguishing dysplasia on whole slide 
images from digitized BE histology slides. This review aims to provide a compre-
hensive summary of the key studies thus far as well as providing an insight into 
the future role of AI in Barrett’s esophagus.
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Core Tip: Barrett’s esophagus is a significant precursor to esophageal adenocarcinoma. 
Detection of dysplasia or neoplastic changes in Barrett’s esophagus can often be 
difficult as endoscopic changes can be subtle. Artificial intelligence has the potential to 
aid endoscopist in detecting such lesions endoscopically and also reduce the inter-
observer variability in detecting dysplasia in Barrett’s esophagus histologically.
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INTRODUCTION
“Artificial Intelligence” (AI) is a generic term used to denote the ability of a computer program to learn and solve 
problems autonomously[1]. AI uses input data to learn with the intention of refining the ability to process new data 
samples that are not part of the original set of training data. This process of “machine learning” (ML) uses mathematical 
algorithms to capture structure and patterns in large data sets, often in a way that allows the learned function to be 
applied to new data. Machine learning can be supervised or unsupervised depending on whether the algorithms were 
trained with known patterns or unknown patterns respectively[2]. Deep learning is a subtype of machine learning in 
which a convolutional neural network (CNN) receives input (e.g., endoscopic images), learns specific patterns (e.g., 
mucosal surface/vascular pattern) and processes this information through the multi-layered network to produce an 
output (e.g., presence or absence of neoplasia). This form of deep learning algorithm is the main driver for the rapidly 
advancing role of computer-aided diagnosis (CAD) in detection and characterization of lesions during endoscopy[3].

The greatest impact of AI in gastrointestinal (GI) endoscopy has been made in the area of colonic polyp and adenoma 
detection[4]. Several clinical studies and meta-analyses have shown the potential and at times, the superiority of AI in 
colonic adenoma detection rate compared to the endoscopist[5-8]. The crux of AI research in GI endoscopy has focused 
primarily on three domains which include detection, classification and delineation of lesions or disease entities[9]. There 
is an increasing amount of research in all three domains with regards to the application of AI in BE.

BARRETT’S ESOPHAGUS
Barrett’s esophagus (BE) is defined as a change in the squamous lining of the distal esophagus to metaplastic columnar 
epithelium with goblet cells[10]. This is typically associated with chronic gastroesophageal reflux disease (GERD) with as 
much as 12% of patients with GERD symptoms harboring BE[11]. While there are variances in how BE is defined between 
different guidelines[12-14], there is definitive data that it is a precursor that increases the risk of esophageal adenocar-
cinoma (EAC)[15]. Hence early detection of dysplasia within BE is crucial to institute definitive treatment where possible 
and prevent further progression into neoplasia. However, this remains a challenge as endoscopic changes indicating 
dysplasia or early neoplasia can be subtle and be easily missed[16]. Even when there is no visible dysplasia and biopsies 
are done as per the Seattle protocol, sampling error can lead to areas of concern being missed[17]. The endoscopic 
diagnosis of BE dysplasia is generally a two-step process of primary detection in overview, followed by detailed 
inspection of these visible abnormalities for characterization[18]. This process relies on the individual experience of the 
endoscopist, which might further introduce variations and bias, leading to misjudgment and potentially delay in 
diagnosis and treatment.

Initially there was great interest in image enhancement technologies to overcome these challenges but to date only 
virtual and dye based chromoendoscopy have met the parameters outlined in American Society for Gastrointestinal 
Endoscopy’s (ASGE) Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI). Specific to BE imaging
[19], PIVI recommends that imaging technology with targeted biopsies should have a per-patient sensitivity of 90% or 
greater and a specificity of 80% or higher to allow reduction in the number of biopsies.

AI has since emerged as a promising adjunct on this front. AI uses various ML algorithms including CNN to identify 
and process real time endoscopic data to overcome the inherent limitations of an endoscopist.

AIM OF REVIEW
This review will provide a comprehensive summary of the present evidence, recent research advances and future 
perspectives regarding the utility of AI in BE endoscopy. AI may overcome the human limitations related to poor intra- 
and inter-observer agreement, a burden that affects many aspects of medical imaging and endoscopy. If a CAD system 
was to be trained to distinguish between neoplastic and non-neoplastic BE macroscopically on endoscopy and microscop-
ically on histology with almost-perfection, it seems logical these limitations can be overcomed and better tailored medical 
management can be rendered.

METHODS AND LITERATURE SEARCH
A comprehensive electronic literature search was performed in the PubMed, MEDLINE and EMBASE databases from 
inception to the 1st September 2022 using the following key search terms “artificial intelligence” OR “AI” OR “convolu-
tional neural network” OR “deep learning” OR “computer-aided detection” OR “computer-aided diagnosis” AND 
“Barrett’s esophagus.” The search was limited to human studies.

Titles and abstracts were screened to exclude studies that did not address the purpose of this review article. The titles 
of all the identified studies were screened by two reviewers (TNCH and RR) to exclude studies not related to the study 
topic. The full texts of the screened studies were then assessed for inclusion. Review articles and letters to the editor were 
excluded. Studies that used other endoscopic techniques such as volumetric laser endomicroscopy were also excluded. 
Any disagreements were resolved through discussion with senior author LJW until consensus was achieved.
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Eligible studies including 12 meta-analyses which reported the use of AI in Barrett’s endoscopy and histopathology 
were included in the review. The analysis flow chart of the included studies is shown in Figure 1.

EXISTING DATA ON THE UTILITY OF AI IN BARRETT’S ESOPHAGUS
Identification and classification of Barrett’s esophagus
Pan et al[20] developed a DL algorithm using 443 endoscopic images from 187 patients to automatically identify and 
segment the gastroesophageal junction and squamous-columnar junction of BE. The performance of this automated 
segmentation algorithm demonstrated satisfactory agreement with expert annotations as measured by intersection over 
union. This study demonstrates the potential of DL in automating the identification and the classification of BE according 
to the Prague C&M classification[21] while reducing the inter-observer variability.

DETECTION OF DYSPLASIA AND ADENOCARCINOMA
Following successful identification and classification of BE, the subsequent detection of dysplasia or EAC can be clinically 
challenging, particularly for non-experts[22]. Further differentiation between non-dysplasia, low-grade dysplasia, high-
grade dysplasia and EAC can be subjective and difficult when a focal lesion has been detected. Ebigbo et al[23] managed 
to demonstrate that a CAD system using deep learning of still images [248 high-definition white light images and 74 
narrow band images (NBI)] from two databases, was able to diagnose EAC with sensitivity of 97% and 92% as well as 
specificity of 88% and 100% for white light images (WLI) in both databases respectively. Additionally, the CAD system 
was able to achieve sensitivity of 94% and specificity of 80% for NBI images. This study demonstrated that a CNN 
algorithm was able to accurately identify EAC in still endoscopic images, all validated by expert pathologists, at a 
sufficiently high sensitivity and specificity to meet the PIVI standards mentioned previously.

Due to the limitations of using still endoscopic images, further steps were taken to validate the AI system in real-time 
by assessing captured endoscopic images taken by an expert BE endoscopist to differentiate between EAC and normal BE 
with a sensitivity and specificity of 83.7% and 100% respectively with an overall accuracy of 89.9%[24].

Concurrently, de Groof et al[25] conducted a pilot study to develop a CAD system using white light endoscopic images 
from 60 patients to delineate between BE neoplasm and non-dysplastic BE. One endoscopic image from each patient was 
included in the CAD system with per-image analysis demonstrating sensitivity of 95%, specificity of 85% and diagnostic 
accuracy of 91.7%. The CAD system was not only able to delineate a BE neoplastic lesion but also able to indicate the most 
abnormal area within that delineation to obtain a targeted biopsy. Additionally, it took an average of 1.051 s for the 
algorithm to analyze an endoscopic image and subsequently produce its lesion delineation, signaling the potential to be 
used in a real-time, automated setting.

The same group of investigators went on further to develop a deep-learning CAD system for primary detection of 
neoplasia in patients with BE using a CNN model. The system was initially pretrained with a large dataset of 494364 
Labeled endoscopic images from multiple locations of the GI tract using a supervised learning approach. The system was 
then subsequently trained with BE-specific endoscopic images containing a total of 1544 images of BE neoplasia and non-
dysplastic BE before being validated using two separate external datasets. The CAD system managed to classify images 
as containing neoplasms or non-dysplastic BE with 89% accuracy, 90% sensitivity and 88% specificity. Performance was 
also benchmarked against 53 general endoscopists with a wide range of experience. When compared to the endoscopists, 
the CAD system managed to achieve higher diagnostic accuracy of 88% vs 73%, sensitivity of 93% vs 72% and specificity 
of 83% vs 74%[26]. Apart from the large databases used to develop and validate the CNN based algorithm, the computa-
tional speed per image analysis was 0.24 s which was a significant improvement from their previous CAD system, paving 
the way for the incorporation of the CAD system during live endoscopic procedures to help delineate BE neoplastic 
lesions.

For further validation, the CAD system was tested during live endoscopic procedures in 10 patients with non-
dysplastic BE and 10 patients with confirmed BE neoplasia. White light endoscopic images were obtained at every 2 cm 
level of the Barrett’s segment and analyzed by the CAD system. The per-level analysis was 90% accurate with a 91% 
sensitivity and 89% specificity[27], highlighting the comparable diagnostic performance of the CAD system in both real-
time and “offline” settings.

Another study also utilized image databases to develop an AI algorithm using 132 high-definition white light 
endoscopic images from 46 lesions of histologically confirmed Barrett’s neoplasia and 119 images on non-dysplastic 
Barrett’s from 20 patients. The images were used for training, validation and testing of a CNN algorithm to detect 
Barrett’s neoplasia with a sensitivity of 93%, specificity of 78% and accuracy of 83%[28].

The utility of AI in CAD of BE neoplasia was further highlighted in another pilot study, in which Hashimoto et al[29] 
developed a CNN algorithm using 916 images of histology-proven early BE neoplasia containing high-grade dysplasia or 
T1 stage adenocarcinoma and 919 control images of BE without high-grade dysplasia. The trained CNN algorithm 
managed to correctly detect early neoplasia in a total of 458 test images with sensitivity of 96.4%, specificity of 94.2% and 
accuracy of 95.4%.

With the widespread use of image enhanced endoscopy like NBI in routine endoscopic practice for further lesion 
characterization, it is only natural that a deep learning algorithm would be developed to interpret NBI images and to aid 
in the diagnosis of BE neoplasia. A study was conducted using a trained CAD system to interpret 183 NBI zoom images 
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Figure 1  Identification of studies via databases – analyses flow chart of included studies.

and 157 NBI zoom videos with similar diagnostic accuracy of 84%-85%[30].
As most AI studies were largely image database studies and relatively small in number, a meta-analysis of the studies 

on the performance of AI in detection and characterization of upper GI neoplasia was performed by Arribas et al[34], 
which included nine studies[22-26,28,31-33] on BE neoplasia detection (total of 12909 images from 1506 patients used for 
training and a total of 2340 images from 445 patients used for testing). The pooled sensitivity and specificity of BE 
neoplasia detection was 89% and 88% respectively.

A more recent meta-analysis of twelve studies[22,24-28,30,35-38] was conducted to evaluate the diagnostic 
performance of AI in detecting BE neoplasia comprising 1361 patients and utilizing 532328 images for training. Pooled 
sensitivity was 90.3% while pooled specificity was 84.4%. Further subgroup analysis demonstrated that pooled sensitivity 
and specificity were also similar in six studies that used WLI as the main mode of modality[39]. An interesting 
observation from the meta-analysis was that there was significant heterogeneity amongst the included studies with I2 of > 
50% but the area under the summary of receiver operating characteristics curve was 0.94 (95%CI: 0.92-0.96). Upon further 
assessment of these studies, multiple factors such as the definitions of dysplastic Barrett’s, the different types of AI 
algorithm and imaging modality used are very likely to contribute to the heterogeneity of the study outcome. This 
highlights the importance for further standardization of future study protocols with regards to the definition of BE 
neoplastic lesions and imaging modality used.

PREDICTION OF SUBMUCOSAL INVASION IN BARRETT’S ESOPHAGUS
Apart from detection and classification of neoplasia in BE, the application of AI has shown promise in predicting 
submucosal invasion in Barrett’s cancer. The identification of submucosal invasion (T1b) in Barrett’s cancer is important 
as it has implications for the choice of treatment. Lesions with suspected submucosal invasion should be treated with 
endoscopic submucosal dissection (ESD) instead of the conventional endoscopic mucosal resection (EMR). ESD is a viable 
alternative to surgery and considered curative if the resected specimen fulfills the necessary criteria including 
submucosal invasion depth < 500 µm, good to moderate differentiation and no lympho-vascular invasion[13,40]. A 
retrospective, multicenter study was conducted to evaluate the diagnostic performance of a CNN based algorithm using a 
total of 230 white-light endoscopic still images to discriminate between mucosal (T1a) and submucosal (T1b) Barrett’s 
cancer. The trained AI algorithm was able to predict submucosal invasion and differentiate between T1a and T1b 
carcinoma with a sensitivity of 77%, specificity of 64% and an accuracy of 71%. The AI algorithm demonstrated 
comparable performance to five international Barrett’s expert endoscopists who evaluated the same set of images[41]. 
This study brings to light the potential for AI to support the clinical decision-making process with regards to the 
endoscopic vs surgical resection of precancerous lesions by predicting the submucosal invasion in Barrett’s cancer.

ARTIFICIAL INTELLIGENCE IN BARRETT’S HISTOPATHOLOGY
Interobserver agreement between pathologists can be variable with regards to interpretation of BE histology, a recognized 
issue particularly for low grade dysplasia (LGD) and indefinite dysplasia (IND)[42]. A study showed that concordance 
between pathologists progressively decreased from non-dysplastic BE (79%), high grade dysplasia (71%), LGD (42%) to 
IND (23%)[43]. Given that a diagnosis of dysplasia has significant implications on surveillance schedule and BE therapy, 
American College of Gastroenterology recommends confirmation by a second GI pathologist for dysplasia of any grade 
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detected on biopsy[12].
Attempts have been made to use AI to complement the pathologist and improve interpretation of BE histology. It has 

been made possible with the rapid advancement in the field of digital pathology and the subsequent incorporation of 
image analysis using AI. Since the introduction of commercial digital slide scanners, it was possible to digitize glass 
histology slides into whole-slide images (WSI), to facilitate slide-sharing and clinical discussion, archiving of digitized 
slides and extraction of histopathological features using deep learning methods for image analysis[44].

A study utilized an attention-based CNN algorithm to analyze BE and esophageal adenocarcinoma using high-
resolution WSI and achieved a mean classification accuracy of 83%[45]. Similarly, another study trained and validated a 
deep learning model using WSI from 542 patients that managed to demonstrate sensitivity and specificity > 90% at the 
various grades of dysplasia (non-dysplastic BE, LGD and HGD)[46]. In time, we expect more studies and advances in this 
field that can improve interpretation of BE histology with reproducible reliability.

FUTURE PERSPECTIVES OF ARTIFICIAL INTELLIGENCE IN BARRETT’S ESOPHAGUS
GI endoscopy has seen remarkable progress throughout the last few decades with incremental step-wise progress 
through incorporation of breakthrough technology and medical device innovation. AI has the potential to push the 
innovation boundary of GI endoscopy by leveraging on existing and new information as well as vast databases to 
formulate algorithms, and to support the clinician in identifying and characterizing suspicious lesions. In practice, live 
upper endoscopic images can be sent locally or remotely to the AI system and be analyzed in real time. Based on the 
available data and capability, the system will be able to detect suspicious lesions for neoplasia and alert the endoscopists 
to those lesions either with a screen alert or location box. The endoscopist can then decide on the management of the 
highlighted lesion based on the characterization provided by the system.

AI can lead to earlier detection of neoplasia in BE, improvement in prognosis and reduction of mortality due to EAC. 
AI in BE is still in its infancy and there is no long-term data to determine the impact of AI on reduction of EAC incidence 
and EAC-related mortality[47]. But it is not difficult to envision that early and correct staging of neoplasia will spare the 
patient from the grueling experience of esophageal surgery and will enable the possibility of minimally invasive 
endoscopic treatments. Additionally, as described above, the invasion of depth of detected lesions could be characterized 
with a higher level of confidence, in particular among less experienced endoscopists, in the differentiation between 
mucosal and submucosal invasion. This has therapeutic consequences in the endoscopic resection approach; EMR vs ESD. 
The studies described were summarized in Table 1.

Table 1 Summary of the original research studies included in the review

Ref. Study objective Diagnostic 
modality Study type Real 

time
Dysplasia 
inclusion Test images, n Diagnostic 

performance

Pan et al[20], 2021 BE segment identi-
fication

WLI, NBI Retrospective No NA 443 IOU: GEJ 0.56, SCJ 0.82, 
GEJ+SCJ 0.66

Ebigbo et al[23], 
2019

BE neoplasia 
detection

WLI, NBI Retrospective No EAC MICCAI: 100; 
Ausburg: 148

Sen 92%, Spec 100%; WLI: 
Sen 97%, Spec 88%; NBI: 
Sen 94%, Spec 80% 

Ebigbo et al[24], 
2020

BE neoplasia 
detection 

WLI Prospective Yes EAC 191 Sen 83.7%, Spec 100% 

de Groof et al[25], 
2019

BE neoplasia 
detection 

WLI Retrospective No HGD, EAC 60 Sen 95%, Spec 85%

de Groof et al[26], 
2020

BE neoplasia 
detection 

WLI Retrospective No HGD, EAC 297; 80; 80 Sen 87.6%, Spec 88.6%; 
Sen 90%, Spec 87.5%; Sen 
92.5%, Spec 82.5%

de Groof et al[27], 
2020

BE neoplasia 
detection 

WLI Prospective Yes HGD, EAC 144 Sen 91%, Spec 89% 

Abdelrahim et al
[28], 2020

BE neoplasia 
detection 

WLI Retrospective No NA 251 Sen 93%, Spec 78%

Hashimoto et al
[29], 2020

BE neoplasia 
detection

WLI, NBI Retrospective No HGD, EAC 458 Sen 96.4%, Spec 94.2%

Struyvenberg et al
[30], 2021

BE neoplasia 
detection

NBI Retrospective No HGD, EAC 183 zoom 
images; 157 
zoom videos

Sen 88%, Spec 78%; Sen 
85%, Spec 83%

Ebigbo et al[41], 
2021

BE cancer invasion WLI Retrospective No EAC (T1a, T2a) 230 Sen 77%, Spec 64%

Tomita et al[45], BE neoplasia LGD, HGD, NA Retrospective No 123 WSI Mean accuracy 83%
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2019 histology detection EAC

BE: Barrett’s esophagus; WLI: White-light images; NBI: Narrow-band images; LGD: Low grade dysplasia; HGD: High grade dysplasia; EAC: Esophageal 
adenocarcinoma; IOU: Intersection over union; GEJ: Gastro-esophageal junction; SCJ: Squamo-columnar junction; Sen: Sensitivity; Spec: Specificity; 
MICCAI: Medical Image Computing and Computer-Assisted Intervention; WSI: Whole-slide images; NA: Not available.

AI has also the potential to reduce inter-observer variability in interpretation of not only endoscopic images but also of 
high-resolution, digitized histology slides to ascertain presence of dysplasia or EAC, thereby alleviating the burden of 
having a second pathologist for confirmation. As AI systems develop and assimilate into clinical practice, it becomes 
imperative that they are tested and validated in real-world settings, in diverse patient populations, with physicians of 
varying expertise, with different endoscope types and in different practice settings. There has been a proposal by ASGE 
AI task force to develop a large open-source image library as a resource to validate AI systems and to moderate data 
variability[48].

It is also conceivable that a trained AI system will also be able to generate an endoscopy report at the end of a session, 
including automated Prague C&M measurements, measurements of hiatal hernia and so on to be reviewed by the 
endoscopist for verification. Extending beyond that, AI has the potential, via a subtype of deep learning called natural 
language processing[49,50], to automatically extract and analyze keywords from free-text endoscopic and pathology 
reports, potentially aiding the physician to diagnose, plan and to recommend the appropriate endoscopic surveillance 
intervals for patients with BE.

CONCLUSION
AI has made significant progress in diagnostic endoscopy and in the identification of BE pathology using a digital 
workflow. AI driven systems are likely to become an important tool to detect and to characterize Barrett’s esophagus 
related dysplasia and early adenocarcinoma as they can present as very subtle lesions on endoscopy. Further 
development and validation are required before AI can be adopted mainstream in the clinical management of BE.
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Abstract
BACKGROUND 
Liver injury is a relevant condition in coronavirus disease 2019 (COVID-19) 
inpatients. Pathophysiology varies from direct infection by virus, systemic inflam-
mation or drug-induced adverse reaction (DILI). DILI detection and monitoring is 
clinically relevant, as it may contribute to poor prognosis, prolonged hospital-
ization and increase indirect healthcare costs. Artificial Intelligence (AI) applied in 
data mining of electronic medical records combining abnormal liver tests, 
keyword searching tools, and risk factors analysis is a relevant opportunity for 
early DILI detection by automated algorithms.

AIM 
To describe DILI cases in COVID-19 inpatients detected from data mining in 
electronic medical records (EMR) using AI and the updated Roussel Uclaf 
Causality Assessment Method (RUCAM).

METHODS 
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The study was conducted in March 2021 in a hospital in southern Brazil. The NoHarm© system uses AI to support 
decision making in clinical pharmacy. Hospital admissions were 100523 during this period, of which 478 met the 
inclusion criteria. From these, 290 inpatients were excluded due to alternative causes of liver injury and/or due to 
not having COVID-19. We manually reviewed the EMR of 188 patients for DILI investigation. Absence of clinical 
information excluded most eligible patients. The DILI assessment causality was possible via the updated RUCAM 
in 17 patients.

RESULTS 
Mean patient age was 53 years (SD ± 18.37; range 22-83), most were male (70%), and admitted to the non-intensive 
care unit sector (65%). Liver injury pattern was mainly mixed, mean time to normalization of liver markers was 10 
d, and mean length of hospitalization was 20.5 d (SD ± 16; range 7-70). Almost all patients recovered from DILI and 
one patient died of multiple organ failure. There were 31 suspected drugs with the following RUCAM score: 
Possible (n = 24), probable (n = 5), and unlikely (n = 2). DILI agents in our study were ivermectin, bicalutamide, 
linezolid, azithromycin, ceftriaxone, amoxicillin-clavulanate, tocilizumab, piperacillin-tazobactam, and 
albendazole. Lack of essential clinical information excluded most patients. Although rare, DILI is a relevant clinical 
condition in COVID-19 patients and may contribute to poor prognostics.

CONCLUSION 
The incidence of DILI in COVID-19 inpatients is rare and the absence of relevant clinical information on EMR may 
underestimate DILI rates. Prospects involve creation and validation of alerts for risk factors in all DILI patients 
based on RUCAM assessment causality, alterations of liver biomarkers and AI and machine learning.

Key Words: Chemical and drug induced liver injury; RUCAM; Artificial intelligence; COVID-19; Liver injury
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Core Tip: This is a real-life study that correlated hospital clinical pharmacy data with artificial intelligence (AI) and pharma-
covigilance in coronavirus disease 2019 (COVID-19) inpatients. Inpatient screening for liver injury was made with AI and 
drug-induced liver injury was evaluated with the Roussel Uclaf Causality Assessment Method (RUCAM) algorithm. A total 
of 17 COVID-19 inpatients were evaluated, there were 31 suspected drugs, RUCAM score: possible (n = 24), probable (n = 
5), and unlikely (n = 2). This study contributed to the patient safety and pharmacovigilance database. These results are 
included in a project of clinical pharmacy using AI tools.

Citation: Ortiz GX, Ulbrich AHDPS, Lenhart G, dos Santos HDP, Schwambach KH, Becker MW, Blatt CR. Drug-induced liver injury 
and COVID-19: Use of artificial intelligence and the updated Roussel Uclaf Causality Assessment Method in clinical practice. Artif 
Intell Gastroenterol 2023; 4(2): 36-47
URL: https://www.wjgnet.com/2644-3236/full/v4/i2/36.htm
DOI: https://dx.doi.org/10.35712/aig.v4.i2.36

INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic put global health systems at risk of collapse worldwide, with more 
than 510270667 globally confirmed cases and 6233526 deaths in the past two years[1]. COVID-19 patients may be 
asymptomatic or develop severe acute respiratory syndrome (SARS) with mild to severe manifestations. As a multiple 
organ disease, extrapulmonary clinical features range from gastrointestinal to hematological effects. Critically ill patients 
or those with comorbidities commonly present venous and arterial thromboembolic events, liver injury, secondary 
bacterial infections including sepsis or cytokine storm, contributing to a poor prognosis and higher mortality rates[2-4]. 
Current treatment options can be supportive clinical management to drug use such as oxygen, dexamethasone for 
systemic inflammation, heparin/enoxaparin in prophylaxis of venous thromboembolism, and antiviral or monoclonal 
antibody such as remdesivir, baricitinib, tofacitinib, and tocilizumab[1,5].

Liver injury is a relevant condition in COVID-19 inpatients. In 2020, liver enzyme abnormalities were estimated to 
occur in 14% to 53% of patients[6,7]. The liver injury pattern is mild to moderate hepatocellular injury, considering 
aspartate aminotransferase (AST)/alanine aminotransferase (ALT) <5× the upper limit of normal (ULN) and cholestatic 
for Delta/Omicron variants[8,9]. High levels of AST and ALT, gamma-glutamyl transferase, and total bilirubin have been 
associated with severe COVID-19, intensive care unit (ICU) admission, and prolonged hospital stay[10-12]. 
Pathophysiology possibilities of liver injury in COVID-19 vary from direct infection by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), hypoxic changes, systemic inflammation, exacerbation of underlying disease and adverse 
drug reactions. Drug-induced liver injury (DILI) may be present in COVID-19 patients due to wide exposure to multiple 
treatments with antipyretic, antibiotics, corticosteroids, immunomodulators, and antiviral drugs[13,14].

https://www.wjgnet.com/2644-3236/full/v4/i2/36.htm
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DILI is a rare adverse drug reaction (ADR) that can cause acute liver failure and even the need for liver transplantation 
in the worst cases[15]. The disease is classified as hepatocellular, cholestatic, or mixed[16]. The diagnosis is made by 
exclusion of other liver pathologies such as cirrhosis, viral hepatitis, auto-immune hepatitis or other chronic liver 
diseases. In clinical practice, relevant DILI occurs when patients present ALT>5×ULN with jaundice, hepatomegaly, 
hyperbilirubinemia, or right-upper-quadrant pain. In most DILI cases, withdrawal of suspected drug(s) and supportive 
therapy are the standard treatment practices[13,15,17]. DILI detection and monitoring is clinically relevant, as it may 
contribute to poor prognosis, prolonged hospitalization and increase indirect healthcare costs[12,14,15].

The updated Roussel Uclaf Causality Assessment Method (RUCAM) is a causality assessment tool strongly 
recommended by specialists worldwide to evaluate and correlate liver damage to drug/herb use due to its hepatic 
specificity[18]. The updated RUCAM was complemented by additional criteria to establish DILI with a high degree of 
certainty, such as clarification of ambiguous questions related to alcohol use, exclusion of non-drug causes as a checklist 
of differential diagnosis[16].

DILI causality is scored in RUCAM by seven domains: time to symptoms onset, ALT course, patient’s risk factors such 
as alcoholism and age, concomitant drug use, non-drug causes of liver injury, previous knowledge on the hepatotoxicity 
of the drug, and response to rechallenge. The individual points range from −3 to +3 and the total possible score ranges 
from −9 to +14. The interpretation of the final score is as follows: 0 or less indicates that the drug is “excluded” as a cause; 
1 to 2 that it is “unlikely”; 3 to 5, “possible”; 6 to 8, “probable”; and greater than 8, “highly probable”. Although RUCAM 
provides an objective scoring system, its use still shows limitations regarding expert interpretation and comorbidities 
such as COVID-19 itself[13,19]. Lack of good quality evidence-based DILI is a reality in Brazil and its early detection by 
healthcare professionals is an important challenge[20]. DILI sub notification may be attributed to lack of knowledge on 
how to properly assess DILI and apply RUCAM.

Recent literature has shown the use of technologies to actively search and assess ADR. Artificial intelligence (AI) 
algorithm-based applications simulate human decision making based on large datasets and health information patterns
[21,22]. In the field of in vitro studies, AI that uses prediction models based on the chemical structure of compounds and 
the exploration of 2D and 3D in vitro imaging data have demonstrated interesting results in predicting DILI for novel 
drugs[23]. In clinical practice, a systematic review demonstrated that AI has been used in COVID-19 for diagnosis, clinical 
decision making, drug discovery, vaccine development and surveillance and chest images classification[21].

Literature has shown interesting AI tools to detect and analyze COVID-19 patients such as rapid classification of 
medical images (X-ray) through convolutional neural networks using datasets with positive and negative images of 
COVID-19 inpatients[24]. Specifically for DILI, AI applied in data mining of EMR combining abnormal liver tests, 
keyword searching tools, and risk factors analysis is a relevant opportunity for automated algorithms to detect possible 
DILI cases early[25].

Despite global large-scale vaccination slowing the advance of the COVID-19 pandemic, the disease remains a serious 
concern, demanding clinical investigation and elucidation. Polypharmacy and off label drugs use in COVID-19 are an 
alert for DILI screening since they can contribute to poor clinical outcomes. This observational study aims to describe 
DILI cases in COVID-19 inpatients retrospectively detected using AI from data mining in EMR. We intend to discuss the 
hepatotoxicity profile of drugs used in COVID-19 detected cases assessed by RUCAM, as well as the current prospects 
and challenges of applying AI and the updated RUCAM in inpatient evaluation that may contribute to patient safety and 
pharmacovigilance practices.

MATERIALS AND METHODS
We conducted a descriptive retrospective study investigating alterations in liver markers in patients diagnosed with 
COVID-19 who were admitted to a reference COVID-19 hospital complex in southern Brazil during March 2021. The 
hospital complex comprises 7 hospitals with different specialties such as cardiology, pulmonology, neurology, pediatrics, 
and general care, with emergencies, ICU, and a surgical center. In March, 100523 patients were admitted.

We included all patients aged 18 years or more who had COVID-19 diagnosed by real-time polymerase chain reaction 
assays, with at least one complete set of ALT, AST, and alkaline phosphatase (ALP) results during their inpatient stay and 
with at least one normal and one abnormal ALT value. We excluded patients with liver injuries defined by other 
etiologies such as viral hepatitis, alcoholic hepatitis, hepatocellular carcinoma, autoimmune hepatitis, cytomegalovirus, 
leptospirosis, Epstein Barr, hemolytic diseases, among other hepatobiliary disorders.

The hospital is associated with the NoHarm©[26], a system that uses AI to support decision making in clinical 
pharmacy. It currently develops two algorithms to optimize pharmacist validation for prioritizing non-standard 
prescriptions and identifying critical patients. The system is linked to hospital data and indicates potential prescription 
errors, increasing quality of care and hospital efficiency. We used this AI platform to automatically screen EMR of 
inpatients with ALT>3×ULN who were suspected of having DILI. We accessed each patient in this platform to check 
inclusion/exclusion criteria. Afterwards, a chart with ALT course during hospitalization was presented to guide invest-
igators in which days relevant clinical information should be collected. The ALT>3×ULN was chosen to be a cut off to 
pre-analyze patients for DILI.

We applied the updated RUCAM to all suspected cases of DILI[27]. Then, two independent reviewers (GL and GXO) 
separately assessed the likelihood of altered liver tests being related to drug use during hospital stay. In the case of 
disagreement, a third pharmacist reviewed the suspected DILI case. If there was still no consensus, the case was 
discussed with a fourth hepatology specialist. The domains evaluated were liver injury pattern, timing of events, 
rechallenge, risk factors, comedications, alternative causes, hepatotoxicity previously established in the scientific 
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literature, and response to unintentional rechallenge.
The RUCAM classifies DILI as highly probable (≥ 9), probable (6-8), possible (3-5), unlikely (1-2), or excluded (≤ 0)[16]. 

Cases scored as highly probable, probable, and possible were considered as DILI. Since this is a retrospective study, not 
all patients would have the same profile of laboratory tests to rule out other causes of abnormal liver chemistries. The 
RUCAM is used for DILI diagnosis in individual cases, case series, registries, or epidemiological studies involving any 
types of drugs, herbal medicines, or dietary supplements. Thus, assessments were only based on information available in 
EMR. Missed information in EMR may compromise RUCAM scores, decreasing punctuation as well as the likelihood of 
DILI. Drugs with a well-established pattern of absence of liver toxicity in which they were used at usual doses and 
treatment times were not included in the RUCAM analysis, unless they were the only drug used and the timeframe of 
events were highly compatible with DILI. Liver injury pattern is defined by the R (the ratio of ALT and ALP expressed as 
multiples of the ULN) and corresponds to: (1) Hepatocellular if R≥5, (2) mixed if 2<R<5, and (3) cholestatic if R≤2.

Data were constituted by the patient’s profile, symptoms, drugs, laboratory tests, image and biopsy exams, if available, 
hospitalization time, and outcomes. Due to the small sample, statistical analysis of independent variables (risk factors) of 
DILI was not performed. However, it did not compromise the purpose of the study which is to describe possible DILI 
cases and suspected COVID-19 medications. The analysis evaluated DILI causality.

The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations checklist was 
applied to this study to facilitate critical appraisal and interpretation of cross-sectional study results[28]. This study was 
approved by the Ethics Committee (number 4763390 CAAE 46652521.9.0000.5530).

RESULTS
In total, 100523 patients were admitted into the hospital in March 2021, with 478 inpatients showing at least one ALT 
result >3×ULN detected by AI. Of these, we excluded 290 inpatients with alternative causes of liver enzyme elevation, 
and who were not positive for COVID-19. We reviewed 188 EMR. From these, absence of essential clinical information 
excluded most patients. Figure 1 summarizes patients’ inclusion and exclusion criteria. The main missing information 
was serum transaminases follow-up in 91 patients as the patient was released for outpatient follow-up at the slightest 
improvement. A total of 34 patients had COVID-19 but the ALT peaks were due to other causes such as sepsis, cardiopul-
monary arrest, or hypovolemic shock; 16 patients did not use any suspected drug; and 10 patients used medications 
before hospital admission with no posology information. Lack of virology tests excluded 20 patients who could possibly 
have had DILI. Drugs used in those patients were chlorpromazine, azithromycin, ceftriaxone, bicalutamide, and 
ivermectin (off-label use). All of them are well established common DILI agents. We assessed DILI causality with the 
updated RUCAM in 17 patients and Table 1 shows the complete RUCAM score.

The mean age of patients was 53 years (SD ± 18.37; range 22-83). Most were male (70%), and admitted to the non-ICU 
sector (65%). The liver injury pattern was mainly mixed with mean normalization of liver injury within 10 d and mean 
length of hospitalization was 20.5 days (SD ± 16; range 7-70). Almost all patients recovered from DILI and one patient 
died of multiple organ failure. There were 31 suspected drugs with 2 medications suspected per inpatient. The RUCAM 
score distribution was as follows: 24 possible cases, 5 probable, and 2 unlikely. The DILI agents in our study were 
ivermectin, bicalutamide, linezolid, azithromycin, ceftriaxone, amoxicillin-clavulanate, tocilizumab, piperacillin-
tazobactam, and albendazole. Antimicrobials were 77% of the suspected agents, followed by antiparasitic 16%, and 
antineoplastic and immunomodulating agents 7%.

DISCUSSION
The DILI prevalence was 1.6 to every 10000 inpatients in this study differing from the 9.8% in China[29]. The first review 
of Brazilian DILI case reports was published in 2019 showing DILI as a rare ADR; however, this is controversial since 
DILI underreporting is a major concern leading to alarmingly low rates of its suspicion and identification[30]. The DILI 
prevalence in hospitalized patients tends to be higher than in our study. A prospective study from France reported a DILI 
prevalence of 6.6 per 1000 per week among hospitalized patients. DILI incidence in Switzerland on hospitalization 
admission was 0.7% and in Turkey prevalence among inpatients was 3.1%[31]. In Iceland, the crude annual incidence rate 
of DILI was 19.1 cases per 100000 patients[32]. The discrepancy may be related to the calculation of prevalence since we 
only entered patients whose causality could be assessed with RUCAM unlike other studies that consider DILI if the 
patient had all other liver diseases excluded.

Most (77%) of our patients with ALT above 5 times the UNL were mainly men and had mild to moderate DILI. 
Regarding clinical features, COVID-19 Chinese DILI patients’ median age was 61 years, they were mainly men, the mean 
(SD) hospital stay was 21.49 (11.89) d, and the mean (SD) days for the first acute liver injury was 9.57 (9.38) after 
admission[29]. These findings corroborate with our study, demonstrating a set of specific clinical features for patients 
with DILI and COVID-19.

Almost all patients’ normalized liver markers showed a time frame from drug suspension to recovery ranging from 2 
to 25 d. Our findings were consistent with the scientific literature of DILI for COVID-19 and non-COVID-19, suggesting a 
moderate severity of liver injury, rarely progressing to severe and spontaneously recovering. Even so, clinically 
monitoring DILI is recommended since it can contribute to a reserved prognosis and prolong length of hospital stay 
(LOS)[15,33]. Prolonged LOS is associated with negative patient experience and inpatient complications such as infections 
and falls[34]. None of the patients received drug treatment specifically for DILI besides clinical monitoring and suspected 
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Table 1 Characteristics of the coronavirus disease 2019 inpatients with drug-induced liver injury detected by artificial intelligence in 
March, 2021

Patient 
ID Age/sex

ALT 
peak 
(U/L)

Hospital 
sector

Type of liver 
injury

Suspected 
drug

Posology/time 
treatment

RUCAM 
score Causality

DILI 
diagnosis 
in EMR

Outcomes 
(timeframe)

Hospital 
length 
of stay 
(d)

1 83/M 388 ICU Unclassified Ivermectin 48 mg daily/6 d 3 Possible No Recovered 
(10 d)

18

Bicalutamide 150 mg daily/8 
d

2 Unlikely

Linezolid 600 mg 12/12 
h/5 d

4 Possible

Azithromycin 500 mg daily/5 
d

4 Possible

Ceftriaxone 2 g 12/12 h/3 d 4 Possible

2 61/M 269 ICU Mix Amoxicillin + 
Clavulanate

625 mg 8/8 h/3 
d

7 Probable No Recovered (7 
d)

40

Azithromycin 500 mg daily/7 
d

7 Probable

Ceftriaxone 1 g 12/12 h/5 d 7 Probable

3 62/M 307 ICU Mix Tocilizumab 800 mg/1 d 1 Unlikely No Recovered 
(12 d)

31

4 67/M 222 Non-ICU Cholestatic Azithromycin 500 mg daily/3 
d

3 Possible No Recovered 
(25 d)

28

Ceftriaxone 1 g 12/12 h/4 d 3 Possible

5 69/F 588 ICU Cholestatic Azithromycin 500 mg daily/5 
d

4 Possible No Death 25

Ceftriaxone 2 g daily/7 d 4 Possible

6 78/M 163 Non-ICU Unclassified Ceftriaxone 2 g daily/7 d 3 Possible No Recovered 
(23 d)

70

7 55/M 682 Non-ICU Hepatocellular Azithromycin 500 mg daily/5 
d

3 Possible No Recovered (6 
d)

8

Ivermectin 18 mg daily/4 d 4 Possible

8 50/F 157 Non-ICU Unclassified Ivermectin 18 mg daily/5 d 3 Possible No Recovered 7

9 49/F 127 ICU Cholestatic Azithromycin 500 mg daily/6 
d

3 Possible No Recovered (2 
d)

17

Ceftriaxone 2 g daily/9 d 3 Possible

10 57/M 274 Non-ICU Mix Azithromycin 500 mg daily/5 
d

6 Probable No Recovered (4 
d)

10

11 22/M 312 Non-ICU Hepatocellular Azithromycin 500 mg daily/4 
d

4 Possible No Recovered 5

Ceftriaxone 1 g 12/12 h/3 d 4 Possible

12 33/M 551 Non-ICU Hepatocellular Ceftriaxone 1 g 12/12 h/53 
d

3 Possible No Recovered 8

13 61/F 168 Non-ICU Mix Piperacillin + 
tazobactam

4.5 g 8/8 h/9 d 6 Probable No Recovered 21

14 32/M 489 Non-ICU Cholestatic Ceftriaxone 2 g daily/5 d 5 Possible No Recovered 
(10 d)

10

15 73/M 160 Non-ICU Mix Ceftriaxone 1 g daily/8 d 6 Possible No Recovered 15

16 29/F 369 Non-ICU Mix Amoxicillin + 
clavulanate

625 mg 8/8 h/3 
d

4 Possible Yes Recovered 15

17 33/M 213 ICU Mix Azithromycin 500 mg daily/5 
d

5 Possible No Recovered 
(10 d)

22
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Piperacillin + 
tazobactam

4.5 g 8/8 h/10 d 4 Possible

Ivermectin 18 mg daily/1 d 5 Possible

Albendazole 400 mg daily/2 
d

5 Possible

Outcomes (timeframe): Timeframe between drug suspension and recovery of liver injury. Patients 8, 11, 12, 13, and 15 were discharged for ambulatory care 
without alanine aminotransferase follow-up. Patient 16: Drug-induced liver injury diagnosis was presented in electronic medical record by physicians; 
however, the suspected drug was ivermectin used by self-medication prior to hospital stay. DILI: Drug-induced liver injury; EMR: Electronic medical 
records; RUCAM: Roussel Uclaf causality assessment method; ICU: Intensive care unit.

Figure 1 Patient selection flowchart for drug-induced liver injury assessment. ALT: Alanine aminotransferase; COVID-19: Coronavirus disease 2019; 
DILI: Drug-induced liver injury; EMR: Electronic medical records; RUCAM: Roussel Uclaf causality assessment method; ULN: Upper limit of normal.

drug suspension.
Serum transaminase elevation presented no determined cause for 171 of our patients and DILI could neither be 

confirmed nor excluded. This finding suggests that DILI diagnosis remains a challenge due to its multifactorial character-
istics and many confounders. Proper diagnosis will depend on the healthcare professional’s familiarity with DILI[30]. The 
fifth RUCAM domain decreases DILI causality if there is no information for any of the following viruses: hepatitis C virus 
(HCV), hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis E virus (HEV). In our cases, if virology results were 
available and negative, drugs scored as “Unlikely” would change to “Possible”, suggesting underestimation of DILI 
prevalence. Medication reconciliation was incomplete for 10 patients, making it infeasible to apply RUCAM. Drugs used 
before hospital admissions were ivermectin, azithromycin, cefuroxime, hydroxychloroquine, dexamethasone, and 
prednisone, but posology and duration of treatment were not available in EMR.

Another study evaluating the association between drug treatments and incidence of liver injury and DILI in inpatients 
with COVID-19 presented the same limitation, since 10% of the suspected cases were excluded due to incomplete EMR
[29]. The more incomplete the relevant clinical information, such as the presence of serologies to exclude other possible 
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causes of liver injury, the less likely it is to assign adequate scores to drugs that may be associated with DILI. Considering 
this scenario and our findings, quality data on DILI cases assessed by RUCAM in COVID-19 patients are scarce[33].

Literature demonstrates that suspected DILI agents in COVID-19 are mostly antiviral, antibacterial, antifungal drugs, 
hydroxychloroquine/chloroquine, corticosteroids, and immunotherapy[29]. In a systematic review of 996 DILI cases 
published in 2020/2021 based on RUCAM as a causality assessment method, antiviral drugs given empirically were 
mainly responsible for DILI. Liver injury pattern was mainly hepatocellular, differently from our prevalence of mixed 
pattern. This may be associated with different types of drugs used, as they have diverse DILI pathology mechanisms. 
Most patients had a positive outcome most likely due to quick cessation of drug treatment, even though DILI was fatal in 
19 cases. The ALT and AST peak values were 1.541 U/L and 1.076 U/L, respectively[33]. In contrast, our study showed a 
maximum ALT of 682 U/L and AST of 556 U/L.

In active search for DILI cases in COVID-19 patients, using lower cutoff points such as ALT one to three times the ULN 
instead of five times the ULN is preferable, so that no case is missed, since many medicines are used off label and DILI 
data could demonstrate different hepatotoxicity profiles. Comparison of different liver test thresholds for DILI in hospital 
patients demonstrate that higher cut-offs, such as ALT levels greater than 5 × the ULN on two consecutive occasions and/
or ALP levels greater than 2 × the ULN on two consecutive occasions, as proposed by the DILI Network, are more 
effective in detecting relevant cases; however, it misses positive cases that were found when the National Medical 
Products Administration of China, using ALT levels greater than 1 × the ULN on two consecutive occasions or ALT levels 
greater than 2 × the ULN. In other words, much more labor is required to detect DILI at lower thresholds, despite higher 
negative predictive values[35]. Automated algorithms to detect DILI using AI may overcome the time-consuming 
limitation of lower cut-offs, such as when it uses ALT > 3× ULN, as it performs better in sensitivity, a desirable charac-
teristic to detect rare events and avoid missing cases[36]. ALT values 5×> ULN are considered clinically significant, as 
they will be the best signal allied to symptoms for physicians to consider stop suspected drug treatment[13].

The DILI agents in our study were ivermectin, bicalutamide, linezolid, azithromycin, ceftriaxone, amoxicillin-
clavulanate, tocilizumab, piperacillin-tazobactam, and albendazole. The updated Brazilian report of clinical guidelines for 
inpatient treatment of COVID-19[37] indicates: (1) Anticoagulants: Unfractionated heparin, enoxaparin, or fondaparinux; 
(2) corticosteroids: Dexamethasone, methylprednisolone, or hydrocortisone; and (3) antimicrobials according to institu-
tional protocols only in the suspected presence of associated bacterial infection. The report demonstrates the lack of 
evidence for clinical benefit in the hospitalized patient regarding the use of: Azithromycin, chloroquine, colchicine, 
hydroxychloroquine, ivermectin, and lopinavir/ritonavir. Attention is needed to the irrational use of azithromycin and 
ivermectin since those drugs have no evidence of clinical benefits in patients with COVID-19 and, as our findings suggest, 
may even worsen liver injury[38-40].

Antibiotics were the most common agents both in this study and the international literature[17,41]. Ceftriaxone was the 
main DILI suspected causative agent (10 cases) followed by azithromycin (9 cases). Ceftriaxone is very likely causative of 
cholestatic injury with minimal symptoms due to crystallization of ceftriaxone in bile present in the gallbladder[42]. 
Azithromycin is a well-known but rare cause of clinically apparent self-limited cholestatic hepatitis with rapid resolution 
of symptoms whether the drug is stopped or not[43]. Amoxicillin-clavulanate is the main one of the top-ranking drugs 
implicated in RUCAM-based DILI cases retrieved from large international medical centers[41]. It causes mostly self-
limited cholestatic or mixed idiosyncratic DILI. The onset of injury is a few days to 8 wk after therapy initiation[44,45]. It 
appeared in only one case probably related to prescription pattern rather than prevalence ratio. Piperacillin-tazobactam 
rarely causes self-limited cholestatic idiosyncratic DILI[46].

Ivermectin and albendazole are antiparasitic agents used off-label for COVID-19 treatment. Ivermectin presented in 
vitro antiviral effects and a few studies suggested clinical benefits against COVID-19 in the early stages of the pandemic
[47]. However, medical centers and governmental organizations such as the Food and Drug Administration and the 
World Health Organization (WHO) rapidly identified the poor quality data of the publications and ivermectin use was 
not recommended[48]. The DILI caused by ivermectin and albendazole is extremely rare, with one case report[49]. 
Ivermectin ADR with COVID-19 reported in the WHO’s pharmacovigilance database evidenced a considerable increase 
(> 50%) in ivermectin related reports since May 2020. Among 53 serious cases, eight cases presented gastrointestinal ADR 
including one death[50]. Ivermectin is not a potential hepatotoxicity agent; however, in our study, dosages were consid-
erably higher than recommendations leading to causality assessment of “possible” DILI agent.

The COVID-19 patients with DILI presented polypharmacy with acetaminophen, azithromycin, ceftriaxone, dexketo-
profen, doxycycline, enoxaparin, hydroxychloroquine, interferon, levofloxacin, lopinavir, metamizole, omeprazole, 
pantoprazole, piperacillin-tazobactam, remdesivir, ritonavir, and tocilizumab[51]. Domain four of the updated RUCAM
[16] regarding concomitant use of drugs lowers scores of a specific drug assessed if the patient is also using another 
hepatotoxic drug. In the COVID-19 polypharmacy scenario, this is a controversial concern since suspected cases 
previously scored as “possible” or “probable” would change to high causality association if hepatotoxicity synergism was 
considered.

It is controversial that the combination of hepatotoxic drugs may increase the risk of DILI. Evidence exists that 
rifampicin increases the risk of hepatotoxicity when combined with isoniazid for tuberculosis treatment due to a 
synergistic effect. Anti-tuberculosis treatment combined with non-nucleoside reverse transcriptase inhibitors and 
protease inhibitors is more likely to cause DILI than both treatments alone[52]. Concomitant administration of drugs 
metabolized by the liver (via CYP450) modulates active metabolites via induction, inhibition, or substrate competition and 
may increase DILI risk[53]. On the other hand, RUCAM decreases an individual medication’s score when concomitant 
hepatotoxic drugs are co-administered, since sufficient evidence regarding synergistic hepatotoxicity of drugs beyond 
antiretroviral and anti-tuberculostatic is still lacking[16]. We found only one article summarizing possible ADR 
worsening by drug-drug interactions in COVID-19, which specifically mentioned remdesivir vs rifampicin and ribavirin 
and human immunodeficiency virus antiviral treatment contraindication due to hepatotoxicity[54]. As a result, especially 
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for COVID-19, cases of DILI could be missed or sub classified after a RUCAM score considering the fourth domain.
Intrinsic DILI is drug dose-dependent, thus the risk of developing liver injury may increase accordingly when the 

potential safety range of the drug dose is exceeded. In addition, lipophilicity molecules may enter hepatocytes and 
hepatic metabolism, which hypothetically could increase DILI risk[31]. Alcohol consumption is included in the RUCAM 
causality assessment scale as a risk factor due to liver metabolization, especially regarding acetaminophen, isoniazid, 
methotrexate, and halothane[55]. In our study, none of the patients were heavy alcohol consumers excluding this risk 
factor and probable confounder. The role of pre-existing liver disease on DILI is yet to be completely understood.

There is no consensus if chronic hepatic diseases, such as non-alcoholic fatty liver disease, hepatocellular carcinoma, or 
viral hepatitis, could worsen DILI severity outcomes[31]. Currently, RUCAM decreases DILI causality if the patient has 
HAV (type A viral hepatitis), HBV (type B viral hepatitis), HCV (type C viral hepatitis), HEV (type E viral hepatitis), 
ultrasound alterations of the hepatobiliary tract, acute hypotension (especially cardiac arrest), sepsis, malignant 
metastatic disease, autoimmune hepatitis, chronic hepatitis, primary biliary cholangitis, sclerosing cholangitis, genetic 
liver diseases, Cytomegalovirus infection, Epstein-Barr Virus infection, Herpes Simplex Virus infection, and Varicella 
Zoster Virus infection[16].

Idiosyncratic DILI occurs independently of drug dose, route, duration of treatment, or administration. The RUCAM 
score increases if patients are 65 years or older, and older age is considered a risk factor. The underlying mechanisms 
include declination in liver capacity, underlying diseases and alterations in pharmacokinetics features[56]. Data from the 
WHO Safety Report Database revealed that elderly patients were much more likely to develop cholestatic DILI[32]. Even 
though gender is not independently associated with DILI, cases are preponderantly in females, especially severe and 
immune-mediated DILI. Nowadays, literature demonstrates that polymorphisms of genes involved in drug metabolism 
and transport and human leukocyte antigen are risk factors for DILI.

COVID-19 itself has been associated with transaminase elevation either caused by viral direct damage, hypoxemia, or 
multisystem inflammatory syndrome. Thus, we suggest reviewing the updated RUCAM’s domain number five and 
adding COVID-19 as an alternative cause of increased ALT/AST. The systematic review of 966 DILI cases in COVID-19 
patients also evidenced barriers to properly determine the quantitative contribution of DILI and COVID-19 in abnormal 
liver tests, suggesting COVID-19 as a DILI confounder[31]. Although we have identified these possible weaknesses in 
applying the RUCAM to assess DILI in COVID-19 patients, the algorithm remains the best choice to assist health care 
professionals in the diagnosis and causality assessment of liver injury when alternative causes are excluded[57]. We 
strongly recommend the prospective use of RUCAM in healthcare services to overcome poor DILI clinical assistance.

The main challenges in the DILI field refer to early detection and diagnosis by healthcare professionals. Using AI and 
machine learning may be the key to overcoming this scenario. Literature has focused on AI on quantitative structure 
activity relationship analysis to predict hepatotoxicity substances in drug development with interesting contributions[58,
59]. However, relevant clinical application of AI would consist of machine learning algorithms automatically and 
prospectively tracing DILI in EMR and patients’ hospitals datasets by crosslinking DILI threshold criteria, risk factors, 
liver injury International Classification of Diseases (ICD-10) codes, liver tests, and data mining[60,61]. In the next step, an 
alert would be triggered in electronic systems to physicians and clinical pharmacists informing of potential DILI cases for 
clinical follow-up[62].

Research that used EMR algorithms for DILI screening found low positive predictive values (PPV)[13]. A recent meta-
analysis showed that PPV was only 14.6% for machine learning and AI in EMR. Divergences in liver tests reference values 
and DILI threshold criteria among different studies decrease comparisons and evaluations of sensitivity and specificity
[25]. In this study, we used AI to automatically detect COVID-19 patients with abnormal liver markers and compiled data 
with dashboards to identify key days patients should be investigated. However, the updated RUCAM application was 
still manually performed. Prospects in our work involves creating and validating signals for pharmacists generated from 
automated scores for all DILI patients based on RUCAM assessment causality, AI, and machine learning.

This study has the limitations of a retrospective study design. Incomplete case datasets in EMR that could impact 
different RUCAM scores may underestimate the prevalence of DILI as well as the hepatotoxicity profile of the suspected 
drug. No statistical analysis was performed due to the small and non-homogenous sample. Therefore, these findings may 
only suggest associations, propose insight into DILI, and guide further investigations since the results lack external 
validation. The assessment of DILI and vaccines was not performed as it was out of the study scope.

CONCLUSION
Our study shows that DILI has a rare incidence in COVID-19 inpatients and the absence of relevant clinical information 
on EMR may underestimate DILI rates. Abnormal liver tests such as ALT and AST are important triggers to detect DILI, 
but since they lack specificity a complete evaluation of the patient is necessary for a proper diagnosis. The DILI features 
in COVID-19 inpatients are provided by age, gender, patients, suspected drugs, type of injury, laboratory data, and 
clinical outcomes and these findings are consistent with DILI literature of non-COVID-19 cases.

The DILI diagnosis is still a challenge due to its multifactorial character and many confounding factors, including 
COVID-19, and its early detection by health professionals is an important challenge. The updated RUCAM is the 
standard tool to assess hepatotoxicity and future research must focus on its prospective applicability to improve DILI 
quality data. The use of AI in clinical pharmacy decision support in conjunction with RUCAM can contribute to patient 
safety and pharmacovigilance practices, improving clinical outcomes.
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ARTICLE HIGHLIGHTS
Research background
Liver injury is a relevant condition in coronavirus disease 2019 (COVID-19) inpatients. Drug-induced liver injury (DILI) 
may be present in COVID-19 patients due to wide exposure to multiple treatments. Artificial intelligence (AI) applic-
ations are interesting tools for early detection of DILI cases in hospitals using electronic medical records.

Research motivation
DILI detection and monitoring is clinically relevant, as DILI may contribute to poor prognosis, prolonged hospitalization 
and increase indirect healthcare costs.

Research objectives
To demonstrate the use of AI and the updated Roussel Uclaf Causality Assessment Method (RUCAM) to detect DILI 
cases from data mining in electronic medical records (EMR) of COVID-19 inpatients.

Research methods
The study was conducted in March 2021 in a hospital in southern Brazil. Hospital admissions were 100523 during this 
period. The NoHarm© system uses AI to support decision making in clinical pharmacy. 478 cases met the inclusion 
criteria and from these, 290 inpatients were excluded due to alternative causes of liver injury and/or due to not having 
COVID-19. We manually reviewed the EMR of 188 patients for DILI investigation. Absence of clinical information 
excluded most eligible patients. The updated RUCAM was applied to all suspected cases of DILI.

Research results
In total, 17 COVID-19 inpatients were evaluated and there were 31 suspected drugs with the following RUCAM score: 
possible (n = 24), probable (n = 5), and unlikely (n = 2). DILI agents were ivermectin, bicalutamide, linezolid, 
azithromycin, ceftriaxone, amoxicillin-clavulanate, tocilizumab, piperacillin-tazobactam, and albendazole. Lack of 
essential clinical information excluded most patients.

Research conclusions
These results are included in a project of clinical pharmacy using AI tools. Future research must focus on the prospective 
applicability of the updated RUCAM to improve DILI quality data. The use of AI in clinical pharmacy decision support in 
conjunction with RUCAM can contribute to patient safety and pharmacovigilance practices, improving clinical outcomes.

Research perspectives
These results are included in a project of clinical pharmacy using AI tools. Future research must focus on the prospective 
applicability of the updated RUCAM to improve DILI quality data. The use of AI in clinical pharmacy decision support in 
conjunction with RUCAM can contribute to patient safety and pharmacovigilance practices, improving clinical outcomes.
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