Weill Cornell Medicine

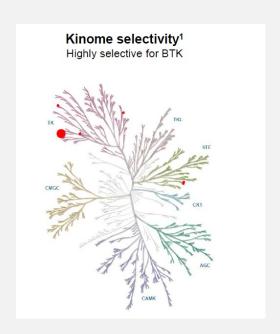
John N. Allan Assistant Professor of Medicine

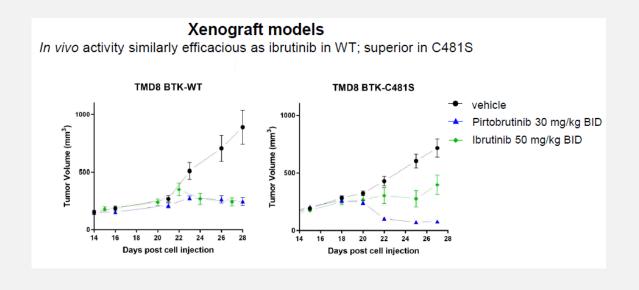
Abstracts to Be Reviewed

- #391: Pirtobrutinib, A Next Generation, Highly Selective, Non-Covalent BTK Inhibitor in Previously Treated CLL/SLL: Updated Results from the Phase 1/2 BRUIN Study
- #392: Preliminary Efficacy and Safety of MK-1026, a Non-Covalent Inhibitor of Wild-Type and C481S Mutated Bruton Tyrosine Kinase, in B-Cell Malignancies: A Phase 2 Dose Expansion Study
- #3730: A Phase 1 Study to Evaluate the Safety, Pharmacokinetics (PK) and Pharmacodynamics (PD) of Lisaftoclax (APG-2575), a Novel BCL-2 Inhibitor (BCL-2i), in Patients (pts) with Certain Relapsed or Refractory (R/R) Hematologic Malignancies (HMs)
- #2627: Subcutaneous Epcoritamab in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Preliminary Results from the Epcore CLL-1 Trial

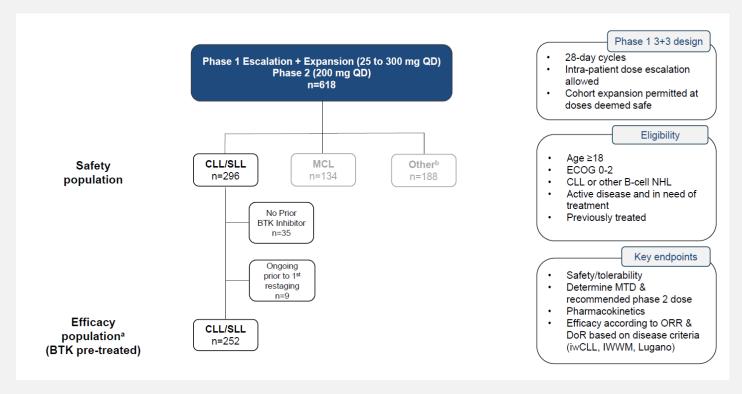
Introduction

- Bruton tyrosine kinase inhibitors (BTKi, like ibrutinib, acalabrutinib, zanubrutinib) and BCL-2 Inhibitor venetoclax are all FDA-approved agents and are currently used in the routine management of CLL
- All have become standard approaches in both frontline and relapsed refractory settings in CLL among other B-cell histologies, thus no longer novel
- This presentation will focus on recent updates from ASH 2021, highlighting molecules and biologics with novel mechanisms of action, all of which are remain under clinical investigation.

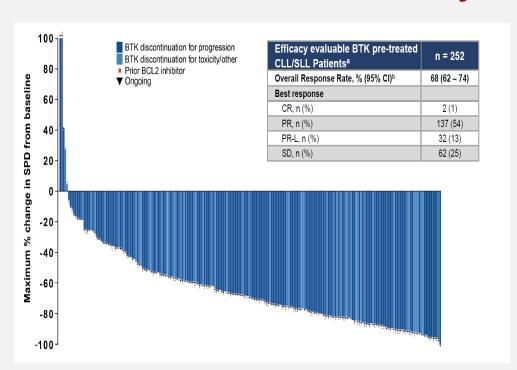

Abstract 391: Mato et al, ASH 2021


Pirtobrutinib, A Highly Selective, Non-covalent (Reversible) BTK Inhibitor In Previously Treated CLL/SLL: Updated Results From The Phase 1/2 BRUIN Study

Anthony R. Mato¹, John M. Pagel², Catherine C. Coombs³, Nirav N. Shah⁴, Nicole Lamanna⁵, Talha Munir⁶, Ewa Lech-Maranda⁵, Toby A. Eyre³, Jennifer A. Woyach⁵, William G. Wierda¹⁰, Chan Y. Cheah¹¹, Jonathan B. Cohen¹², Lindsey E. Roeker¹, Manish R. Patel¹³, Bita Fakhri¹⁴, Minal A. Barve¹⁵, Constantine S. Tam¹⁶, David J. Lewis¹⁷, James N. Gerson¹³, Alvaro J. Alencar¹⁵, Chaitra S. Ujjani²⁰, Ian W. Flinn²¹, Suchitra Sundaram²², Shuo Ma²³, Deepa Jagadeesh²⁴, Joanna M. Rhodes²⁵, Justin Taylor¹⁵, Omar Abdel-Wahab¹, Paolo Ghia²⁶, Stephen J. Schuster¹³, Denise Wang²¬, Binoj Nair²¬, Edward Zhu²¬, Donald E. Tsai²¬, Matthew S. Davids²³, Jennifer R. Brown²³, Wojciech Jurczak²⁵

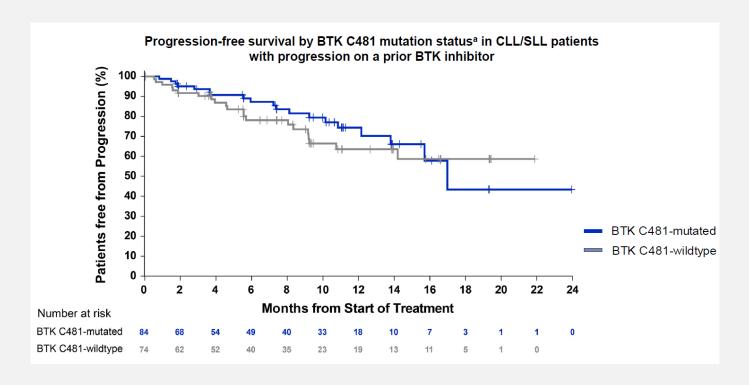

Pirtobrutinib Is a Potent and Selective Reversible BTKi

Bruin: Phase 1 / 2 Study Design


Baseline Characteristics

Characteristics	N = 261
Median age, years (range)	69 (36-88)
Female, n (%) Male, n (%)	84 (32) 177 (68)
ECOG PS ^a , n (%) 0 1 2	138 (53) 104 (40) 19 (7)
Median number of prior lines of systemic therapy (range)	3 (1-11)
Prior therapy, n (%) BTK inhibitor Anti-CD20 antibody Chemotherapy BCL2 inhibitor PI3K inhibitor CAR-T Stem cell transplant Allogeneic stem cell transplant Autologous stem cell transplant	261 (100) ← 230 (88) 207 (79) 108 (41) 51 (20) 15 (6) 6 (2) 5 (2) 1 (<1)
Reason discontinued prior BTKi, n (%) Progressive disease Toxicity/Other	196 (75)

Baseline Molecular Characteristics ^a						
Mutation status, n (%)						
BTK C481-mutant	89 (43)					
BTK C481-wildtype	118 (57)					
PLCG2-mutant	33 (16)					
High Risk Molecular Features, n (%)						
17p deletion	51 (28)					
TP53 mutation	64 (37)					
17p deletion or TP53 mutation	77 (36)					
Both 17p deletion and TP53 mutation	38 (27)					
IGHV unmutated	168 (84)					
11q deletion	45 (25)					


Pirtobrutinib Efficacy

	Pirtobrutinib Efficacy Regardless of Other Prior Therapy ^a						
	Q	ORI 25	R, % (95°	% CI) 75	Median Lines of Prior Therapy, 100 ^{median} (range)	Treated, n	Efficacy- evaluable ^b , n
All BTK	pre-treated patients -			Н	3 (1-11)	261	252
Patients with ≥1	2 months follow-up-			\vdash	3 (1-11)	119	119
Patients with 17p of	lel and/or TP53 mut -			\vdash	3 (1-10)	77	76
Patients with BTK C481 and	d PLCG2 mutations -		<u> </u>	•—	3 (1-9)	26	26
Prior therapy	BTK + BCL2-		ŀ	•	5 (1-11)	108	102
	BTK + PI3K-		<u> </u>	-	5 (2-11)	51	45
BTK + Che	emotherapy + CD20 -			H	4 (2-11)	200	192
BTK + Chemother	apy + CD20 + BCL2 -		Н		5 (3-11)	92	86
BTK + Chemotherapy + C	D20 + BCL2 + PI3K -		<u> </u>	-	6 (3-11)	33	27
Reason for prior BTKi	Progression-				4 (1-11)	196	190
discontinuation	Toxicity/other-		F	-	3 (1-11)	65	62

Outcome and BTK C481 Mutation Status

Pirtobrutinib Safety Profile

		Treatment-e	mergent AEs, (≥	15%), %		Treatment-re	elated A
Adverse Event	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade	Grades 3/4	Any
Fatigue	13%	8%	1%	-	23%	1%	9
Diarrhea	15%	4%	<1%	<1%	19%	<1%	8
Neutropenia ^a	1%	2%	8%	6%	18%	8%	10
Contusion	15%	2%	-	-	17%	-	12
Es of special interest ^b							
Bruising ^c	20%	2%	-	-	22%	-	15
Rash ^d	9%	2%	<1%	-	11%	<1%	5
Arthralgia	8%	3%	<1%	-	11%	-	3
Hemorrhage ^e	5%	2%	1% ⁹	-	8%	<1%	2
Hypertension	1%	4%	2%	-	7%	<1%	2
Atrial fibrillation/flutter ^f	-	1%	<1%	<1%	2% ^h	-	<

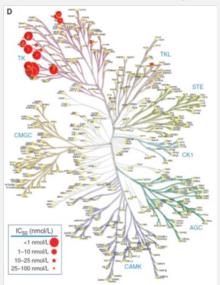
No DLTs reported and MTD not reached 96% of patients received ≥1 pirtobrutinib dose at or above RP2D of 200 mg daily 1% (n=6) of patients permanently discontinued due to treatment-related AEs

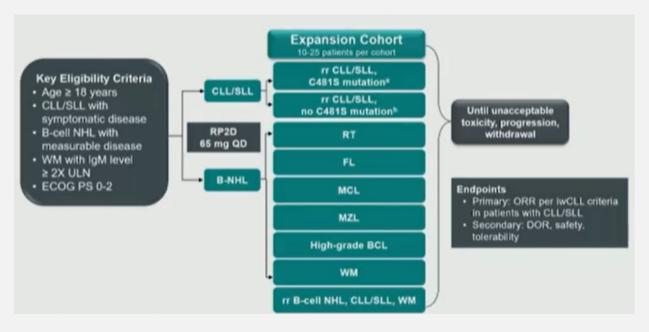
Pirtobrutinib Future Development: CLL

- BRUIN CLL-313: A Phase 3 Open-Label, Randomized Study of Pirtobrutinib Versus Bendamustine Plus Rituximab in Untreated Patients with Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma
- BRUIN CLL-321: A Phase 3 Open-Label, Randomized Study of Pirtobrutinib Versus Investigator's Choice of Idelalisib Plus Rituximab or Bendamustine Plus Rituximab in BTK Inhibitor Pretreated Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma
- BRUIN CLL-322: A Phase 3 Open-Label, Randomized Study of Fixed Duration Pirtobrutinib Plus Venetoclax and Rituximab Versus Venetoclax and Rituximab in Previously Treated Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

Abstract 392: Woyach et al, ASH 2021

Preliminary Efficacy and Safety of MK-1026, a Non-Covalent Inhibitor of Wild-type and C481S Mutated Bruton Tyrosine Kinase, in B-cell Malignancies: Malignancies: A Phase 2 Dose Expansion Study
Jennifer Woyach, I lan W. Flinn, Farrukh Awan, Herbert Eradat, Danielle Brander, 5

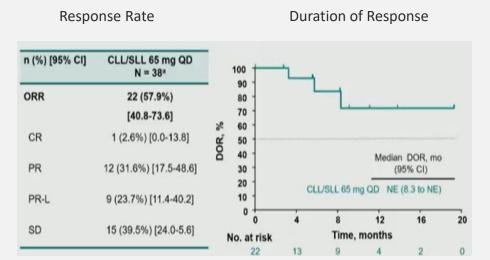

Jennifer Woyach,¹ Ian W. Flinn,² Farrukh Awan,³ Herbert Eradat,⁴ Danielle Brander,⁵ Michael Tees,⁶ Sameer A. Parikh,⁷ Tycel Phillips,⁸ Wayne Wang,⁹ Nishitha M. Reddy,¹⁰ Mohammed Z.H Farooqui,¹⁰ John C. Byrd,¹¹ Deborah M. Stephens¹²


¹Division of Hematology. The Ohio State University, Columbus, OH, USA; ²Sarah Cannon Center Research Institute, Nashville, TN, USA; ³Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁴Department of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ⁵Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA; ⁵Colorado Blood Cancer Institute, Denver, CO; ²Division of Hematology, Mayo Clinic, Rochester, MN, USA; ⁵Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; ⁵Veristat, LLC, Southborough, MA, USA; ⁵Merck & Co., Inc., Kenilworth, NJ, USA; ¹Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA; ¹²Division of Hematology and Hematologic Malignancies, University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA

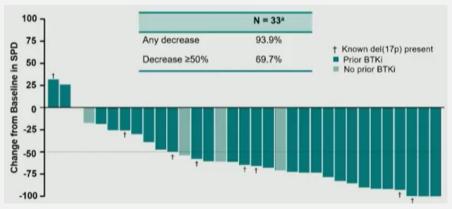
Nemtabrutinib (MK-1026/ARG-531): Selectivity and Study Design

MK-1026² Kinome Selectivity

Reiff SD, et al. Cancer Discovery. 2018.

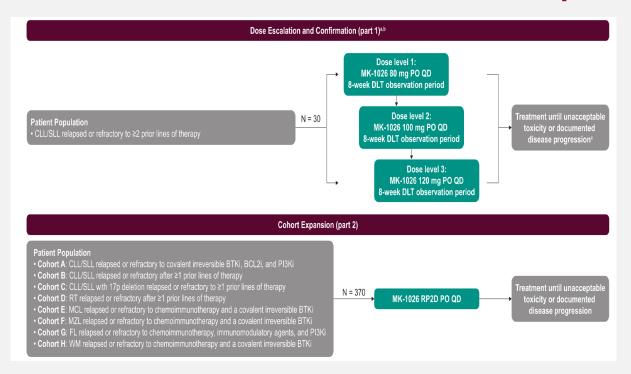


Baseline Characteristics


Characteristic, n (%)	CLL/SLL 65 mg QD N = 51			
Prior lines, median (range)	4 (1-18)			
Prior BTK inhibitor therapy	43 (84.3)			
ECOG PS 0	14 (27.5)			
1	32 (62.7)			
2	5 (9.8)			
IGHV Unmutated	30 (58.8)			
Mutated	2 (3.9)			
Unknown	19 (37.3)			
Del (17p) Present	12 (23.5)			
Absent	33 (64.7)			
Missing	6 (11.8)			
BTK C481S Present	32 (62.7)			
Absent	12 (23.5)			
Unknown/Missing	7 (13.7)			

Nemtabrutinib: Efficacy

Change in Baseline SPD



Nemtabrutinib: Safety

Events, n (%)		All Patients N = 118
All TEAEs		114 (96.6)
Grade ≥3 TEAEsª		80 (68.0)
MK-1026-related TEAE		78 (66.1)
Grade ≥3 related TEAEs ^b		31 (26.3)
Related TEAEs leading to discor	ntinuation	9 (7.6)
TEAEs ≥20%	All	Grade ≥3
Fatigue	33.1%	3.4%
Constipation	31.4%	0.8%
Dysgeusia	28.0%	0
Cough	24.6%	0
Nausea	24.6%	0.8%
Pyrexia	24.6%	0
Dizziness	22.9%	0
Hypertension	22.9%	9.3%
Peripheral edema	22.0%	0
Diarrhea	21.2%	0.8%
Arthralgía	20.3%	0

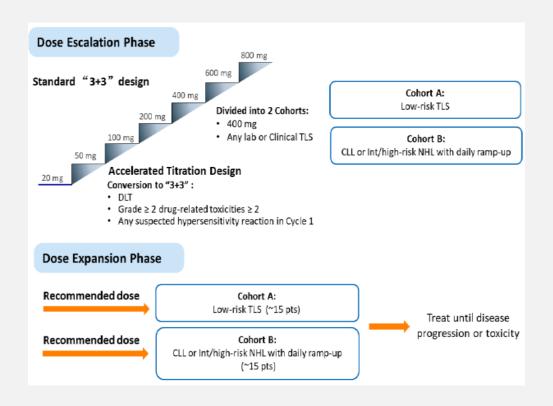
Nemtabrutinib: Future Development

Chaudhry A, et al. ASH 2021. Abstract 3737.

Abstract 3730: Sun et al, ASH 2021

A phase 1 study to evaluate the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of lisaftoclax (APG-2575), a novel BCL-2 inhibitor (BCL-2i), in patients (pts) with certain relapsed or refractory (R/R) hematologic malignancies (HMs)

Mingyuan Sun,¹ Junyuan Qi,¹ Yongping Song,² Aizong Shen,³ Huilan Liu,³ Jianying Huang,⁴ Fuling Zhou,⁴ Jie Jin,⁵ Zi Chen,⁶ Hongli Zhang,⁶ Ming Lu,⁷ Mohammad Ahmad,⁷ Lichuang Men,⁶ Wan Cen,⁶ Dajun Yang,^{6,8} Yifan Zhai,^{6,7} and Jianxiang Wang¹

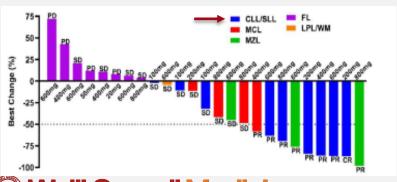

¹State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Tianjin, China; ²Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China; ³First Affiliated Hospital of USTC Anhui Provincial Hospital, Hefei, China; ⁴Zhongnan Hospital, Wuhan University, Wuhan, China; ⁵First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China; ⁵Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China; ¬Ascentage Pharma Group Inc., Rockville, MD; ®State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

Presented by: Mingyuan Sun, MD

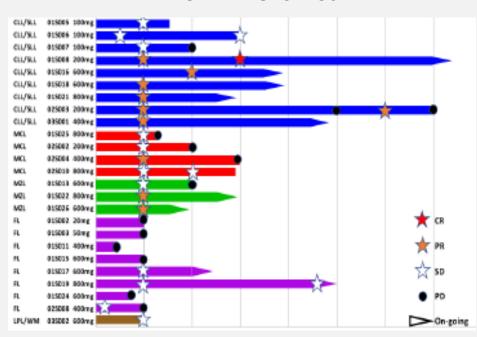
63rd ASH Annual Meeting and Exposition, December 11–14, 2021

Lisaftoclax: FIH Chinese Multicenter Study Design

Ailawadhi et al, ASCO 2021 presented FIH global study 35 patients enrolled 12 with CLL Daily ramp-up MTD not met and no TLS up to 1200 mg ORR in 14 CLL pts 85% all PRs


Lisaftoclax: Efficacy


1


Response Rate

	CLL/SLL	MCL.	MZL	FL	LPL/WM	Total
Patient with the assessment of Efficacy	9	4	3	8	1	25
Overall Response, n(%)	6 (66.7)	1 (25.0)	2 (66.7)	•	0	9 (36.0)
CR	1 (11.1)	0	0	0	0	1 (4.0)
PR	5 (55.6)	1 (25.0)	2 (66.7)	0	0	8 (32.0)
SD	3 (33.3)	3 (75.0)	1 (33.3)	4 (50.0)	1 (100.0)	12 (48.0)
PD	0	0	0	4 (50.0)	0	4 (16.0)

Waterfall Plot of LN Response

Lisaftoclax: Safety

TEAE	per Dose	e Level
------	----------	---------

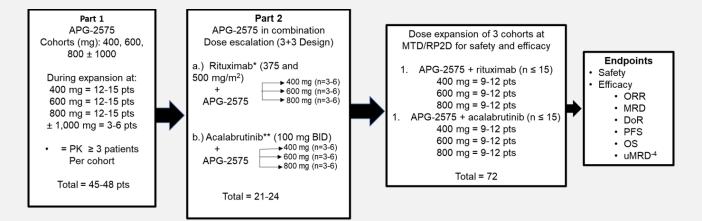
	20 mg	50 mg	100 mg	200 mg	400 mg	600 mg	800 mg	Total
Population	2	1	3	3	6	9	7	31
Any TRAE, n (%)	2 (100%)	1 (100%)	3 (100%)	3 (100%)	4 (66.7%)	7 (77.8%)	8 (100%)	28 (87.5%)
System Organ Class/Preferred term,	n (%)							
Platelet count decreased	1 (50.0%)	0	2 (66.7%)	1 (33.3%)	2 (33.3%)	2 (22.2%)	3 (37.5%)	11 (34.4%)
Anemia	1 (50.0%)	1 (100%)	2 (66.7%)	0	0	2 (22.2%)	3 (37.5%)	9 (28.1%)
Neutrophil count decreased	0	0	2 (66.7%)	2 (66.7%)	1 (16.7%)	1 (11.1%)	1 (12.5%)	7 (21.9%)
White blood cell count decreased	0	0	1 (33.3%)	1 (33.3%)	1 (16.7%)	0	4 (50.0%)	7 (21.9%)
Hyperuricemia	0	0	1 (33.3%)	0	0	2 (22.2%)	2 (25.0%)	5 (15.6%)
Diarrhea	0	0	0	1 (33.3%)	1 (16.7%)	2 (22.2%)	1 (12.5%)	5 (15.6%)
Hyperphosphatemia	0	0	0	0	0	2 (22.2%)	2 (25.0%)	4 (12.5%)

1 (33.3%)

1 (33.3%)

TEAE ≥ Grade 3 All Dose Levels						
	≥Grade 3, n (%)	SAE, n (%)				
Population	31	31				
Any TRAE, n (%)	7 (21.9)	1 (3.2)				
System Organ Class/Preferred term	n, n (%)					
Platelet count decreased	4 (12.5)	1 (3.2)				
Neutrophil count decreased	3 (9.4)	0				
White blood cell count decreased	1 (3.1)	0				
Anemia	2 (6.3)	1 (3.2)				

Hypertriglyceridemia


1 (12.5%)

4 (12.5%)

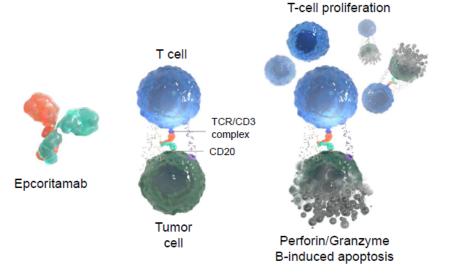
1 (11.1%)

Lisaftoclax: Future Development

Study Design

Ramp-Up Schema

Target Dose	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
400 mg	20 mg	→ 50	→ 100	→ 200	400a		
600 mg	20 mg	→ 50	→ 100	→ 200	→ 400	600 ^b	
800 mg	20 mg	→ 50	→ 100	→ 200	→ 400	→ 600	800°
· ·	20 mg	→ 50	→ 100		→ 400		800°


Dose Cohort (a) 400 mg, Cycle 1 Day 1; (b) 600 mg, Cycle 1 Day 1; (c) 800 mg, Cycle 1 Day 1

Abstract 2627: Kater et al, ASH 2021

Epcoritamab

 Epicoritamab is a fully humanized bispecific antibody that induces potent activation and cytotoxic activity of CD4⁺ and CD8⁺T cells, which targets and eliminates CD20-expressing cells

EPCORE CLL-1: Study Design

Open-label, multicenter, phase 1b/2 trial of single-agent epcoritamab in adults with R/R CLL

Key inclusion criteria

- Diagnosis of CLL with evidence of CD20⁺
- Previously treated with ≥2 prior lines of systemic therapy, including treatment with (or intolerance to) a BTK inhibitor
- Measurable disease with ≥5×10⁹/L B lymphocytes or measurable lymphadenopathy, and/or organomegaly
- FCOG PS 0-2
- Acceptable laboratory parameters

Epcoritamaba in 4-wk (28-d) cycles

QW C1-3, Q2W C4-9, Q4W C10+ until progression or unacceptable toxicity

Phase 1b: Dose escalation

2 full-dose levels
 24 mg → 48 mg

Phase 2: Expansion

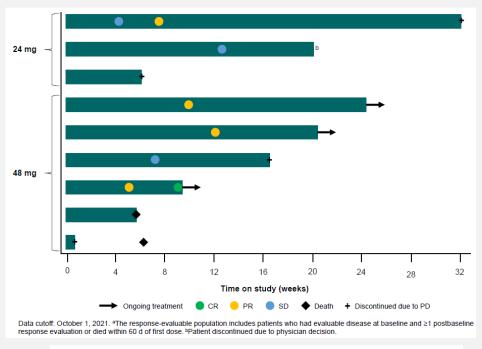
- 2 arms at RP2D (48 mg)
 - Cohort 1: R/R CLL

Primary objectives: DLT/Safety and tolerability

Key secondary objective: Antitumor activity^b Primary objective: Antitumor activity^b

Data cutoff: October 1, 2021

Epcoritamab: Baseline Characteristics


Characteristic		Total N=11	
Median age (range), y		63 (50–77)	
Male, n (%)		10 (91)	
Median time from initial diagnosis (ran	157 (57–234)		
ECOC DS = (9/)	0	6 (55)	
ECOG PS, n (%)	1	5 (45)	
	Rai intermediate risk	2 (18)	
CLL stage, ^a (%)	Rai high risk	3 (27)	
	Binet A	1 (9)	
	Binet B	1 (9)	
	Binet C	4 (36)	
Median lines of prior therapy (range)	6 (2–9)		
	BTK inhibitor	11 (100)	
Drien treatment or (0/)	Ibrutinib	9 (82)	
Prior treatment, n (%)	Venetoclax	7 (64)	
	CAR-T therapy	2 (18)	
	TP53	7 (64) ^b	
	IGHV	2 (18) ^c	
Mutation status, n (%)	SF3B1	2 (18) ^d	
	NOTCH1	2 (18) ^e	
	BIRC3	1 (9) ^f	
	del(11q)	5 (45) ^g	
Observation of (0/)	del(13q)	8 (73)	
Chromosomal alteration, n (%)	del(17p)	7 (64) ^h	
	Trisomy 12	3 (27) ⁱ	

Data cutoff: October 1, 2021. *CLL stage assessed at screening. Method of staging varied by geographic region. *TP53 data were missing for 1 patient. *IGHV data were missing for 8 patients. *SHOTCH1 data were missing for 8 patients. *HOTCH1 data were missing for 8 patients. *HOTCH1 data were missing for 8 patients of 1 patient. Tisoprofice of 2 patients. *IGHT0 data were missing for 8 patients. *IGHT0 d

Epcoritamab: Efficacy

Swimmer's Plot

Responses were observed in 4 patients, including 1 CR and 3 PRs Responders had high-risk disease; 3 of 4 responders had *TP53* aberrations

Epcoritamab: Safety

	Total N=11			
TEAE ≥15%, n (%)	Grade 1–2	Grade 3	Grade 4	Any grade
CRS	8 (73)	0	0	8 (73)
Fatigue	4 (36)	0	0	4 (36)
Injection-site reaction	4 (36)	0	0	4 (36)
Nausea	2 (18)	1 (9)	0	3 (27)
Abdominal pain	1 (9)	1 (9)	0	2 (18)
ALT increased	1 (9)	1 (9)	0	2 (18)
Constipation	2 (18)	0	0	2 (18)
Cough	2 (18)	0	0	2 (18)
Diarrhea	2 (18)	0	0	2 (18)
Dyspnea	2 (18)	0	0	2 (18)
Erythema	2 (18)	0	0	2 (18)
Hypotension	2 (18)	0	0	2 (18)
Hyponatremia	2 (18)	0	0	2 (18)
Hypophosphatemia	2 (18)	0	0	2 (18)
Peripheral edema	2 (18)	0	0	2 (18)
Pyrexia	2 (18)	0	0	2 (18)
Hematologic TEAEs				
Thrombocytopenia	0	1 (9)	4 (36)	5 (45)
Anemia	0	3 (27)	0	3 (27)
Neutropenia	0	1 (9)	2 (18)	3 (27)

Data cutoff: October 1, 2021.

- · No DLTs occurred at 24 or 48 mg
- The most common TEAEs were CRS (73%), thrombocytopenia (45%), fatigue (36%), and injection-site reaction (36%)

	Total N=11			
CRS, ^a n (%)	8 (73)			
Grade 1	2 (18)			
Grade 2	6 (55)			
CRS leading to dose delay	3 (27)			
Median time to onset, d (range)	9 (2–23)			
Data cutoff: October 1, 2021. aCRS graded by Lee et al [®] criteria.				
CRS events occurred early in treatment and resolved				

No patient discontinued epcoritamab due to CRS

No cases of ICANS or tumor lysis syndrome were observed

Conclusions

- Reversible BTKi appear well tolerated and demonstrate significant activity in R/R CLL in both wt and mutated BTK settings
- BCL2 inhibitor lisaftoclax demonstrates encouraging activity with a manageable safety profile and ease of use with daily ramp-up without TLS
- Bispecific epcoritamab demonstrates encouraging activity in a heavily pretreated high-risk R/R CLL population with an acceptable safety profile
- There is ongoing future development, with combination therapy currently being explored
- There are additional targets to address resistance currently in clinical development (including, but not limited to PKC-ß, PROTAC BTK degraders, MCL1/CDK9 inhibitors, anti-BAFF mAb)

