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EDITOR'S POREWARD 

This work does not purport to give a survey of the multiplicity 

of directions of contemporary shell theory. It is devoted to only 

one section of this theory - to the stressed state of a shell of 

revolution, which historically earlier than other applications formed 

and has the largest domain in the problems of heavy and chemical 

machine building, ship building and construction. 

In a comparatively small space V. S. Chemina managed to give 

an account of this subject with sufficient completeness. The content' 

of this book do not conform to the traditional problem of axisymmetri, 

loading of a shell of revolution; much space is allotted to the 

problem of flexure, in the development of which a great contribution 

was made by the works of V. S. Chemina herself. The difficulties 

which were anticipated here, have more of a technical than theoretical 

racter, since the procedures of asymptotic Integration of basic 

equations already developed for the case of axlsymmetric loading 
are applicable. e 

he restriction to the case of a shell of revolution made it 

lisM \k° fmPUfy the presentatl0" Chapter I, devoted to estab- 
hing the initial geometric and static dependences. In Chapter II 

UC °n ° the problem to systems of conventional differential 

qua xons Oi Ue eighth order was carried out. Cases of axlsymmetric 

: /rral def0™atl°" subjected to a detailed discussion, 

when the use of the first integrais make it possible to reduce t e 

order of the systems to the fourth order and with the aid of a cental 
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procedure to arrive at the problem of asymptotic integration of one 

(complex) differential equation of the second order - to a Meissner 

equation and to an equation of the "Meissner type". Much space in 

Chapter II was allotted to the problem of temperature stresses in a 

shell of revolution; its presentation to a considerable extent is 

also based on the work of V. S. Chemina. 

Chapters III-VI contain solutions of problems pertaining to 

shells of revolution of discrete geometric shapes - circular cylindri¬ 

cal, conical, spherical, torus-shaped. It is natural that much space 

is allotted to the circular cylindrical shell as the most common type 

of shell designs in mechanical engineering. This problem was 

and continues to be the theme of numerous works, but the author of 

the foreward is not aware of so simple, and moreover successful 

examination of the important problem of the flexure of a cylindrical 
shell. 

In the final chapters formulations of the problems of conical, 

spherical, and torus-shaped shells are completely presented; expres¬ 

sions of the particular solutions for methods of loading encountered 

in practice are given and asymptotic presentations of the solutions 

of homogeneous Meissner equations are throughly developed. 

In the final chapter a method of calculating dislocational 

stresses in a shell of revolution, rapidly leading to a solution, 

is demonstrated. The problem of flexure of a circular plate with a 

small initia] curvature, which occupies a considerable part of the 

chapter on the spherical shell, is enriched with new results, which • 

will find a place in the practice of strength ratings. 

The examples illustrating the general methods have a special 

value; each of them has an independent significance, as a scheme 

invariably arising in a strength rating. Many of the examples pre 

sented were drawn by V. S. Chemina from her personal experience. 

It is possible to anticipate with confidence that the work of 

V. S. Chemina will find its place as a reference manual of design 
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engineers in the design offices of factories and scientific-research 
institutes. 

A. I. Lur'ye 

> .. t % 

; -:½¾ 

ft-. j".. 

A i 
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INTRODUCTION 

A shell of revolution Is a common element of mechanical engineer¬ 

ing design, precision Instruments, and construction engineering. In 

order to design an operationally effective structure, it is necessary 

to know how to calculate the stressed state of the elements, under a 

given load, which are included in it. 

The present book, as is clear from its title, is devoted to the 

rating of shells of revolution for a static load. All the problems 

are solved in linear formulation of the basis of the technical theory 

of shells assuming ideal elasticity of the material and smallness of 

the deformations (strains). 

The derivation of the basic equations of the theory directly 

for a shell of revolution with an arbitrary shape of the meridan is 

given in Chapter I. it is analogous to the conventional derivation 

of the basic equations for an arbitrary shell, which can be found in 

many books and monographs, devoted to this theme [3], [5], [21]; how¬ 

ever it makes it possible to avoid the excesses of cumbersome notation 

and it does not require from the reader great knowledge in the field 

of differential geometry, since the geometry of a surface of revolu¬ 

tion and accordingly the geometry of a shell of revolution are com¬ 

paratively simple. 

All the equations are »ritten In a geographical coordinate system 

(0, ¢) and only the shells of revolution enclosed In a circumferential 

FTD-MT-2¿l-2¿19-70 xli 



direction are examined, (the shells) limited by two boundaries, co¬ 

inciding with the coordinate lines 0 = const. The complete system 

of equations, describing the equilibrium of a shell of revolution, is 

a system of differential equations in partial derivatives (§ 6). 

Chapter II gives an account of the method of separating variables 

(5 8) and a system of conventional differential equations is extracted 

to the solution of which the problem of determining the stressed state 

is reduced, having in the circumferential direction the rule of 

variation of the type cos k<p, sin fe<J>. In the general case, (fe — is 

any whole number) this system has an eighth order. Eight boundary 

conditions are attached to it - four on each of the parallel circles 

limiting the shell. When fe = 0.1 the order of the system can be 

reduced by one half (due to the obtaining of the two first static 

integrals and the integrals of the equations of compatibility 

of the deformations) and the solution of the problem is considerably 

simplified. The basic contents of this book are devoted to an exami¬ 

nation of these two cases: 1) the load on a shell is axisymmetric 

(fe = 0), 2) the shell is deformed under the effect of a flexural load 

(fe = 1). A profound analogy is traced between both cases. 

In §§ 10-13 of Chapter II the axisymmetric deformation of a shell 

of revolution with an arbritrary shape of the meridan is examined, in 

§§ 14-18 - the deformation under a flexural load. 

The solution of the axisymmetric problem reduces to a system of 

Meissner resolvent equations. For the case of the problem fe = 1 

analogous equations are obtained, which are subsequently called equa¬ 

tions of the Meissner type. The presentation results in conventional 

variables of the theory of shells (forces, moments, deformations), 

without reverting to complex combinations of these magnitudes. The 

complex combination of the desired unknown quantities is introduced 

only in the final stage of the solution, i.e., after obtaining the 

two Meissner resolvent equations (or of the Meissner type), possessing 

a specific symmetry. 



í 

mv-Æ' .. m 

Sections 10-13 and 1^-18 of Cnapter II are the main point of the 

book. In reading any of the subseouent chapters, devoted to conical 

(Chapter IV), spherical (Chapter V), or torus-shaped (Chapter VI), 

shells, it is necessary to turn to the basic equations obtained in 

these sections. Chapter III is an exception. It can be read indepen¬ 

dently, since in view of the comparative simplicity of the geometry 

of the cylindrical shell and the already formed tradition, the deri¬ 

vation of the basic resolvent equations for fe = 0.1 is given in it 

directly for a cylindrical shell without turning to the corresponding 

sections of Chapter II. 

Chapter VII is devoted to internal stresses. In it are examined 

internal stressed states of the type cos k<p, sin fe<J> (fe = 0.1). The 

dislocation parameters, which characterize these states, are constants^ 

of integration in the first integrals of the system of differential 

equation connecting the components of "elastic" deformation. 

By it contents and method of presentation the present book 

is very close to the well-known monograph of A. I. Lur'ye "Statics 

oi thin-walled elastic shells". Since the time when it was issued 

approximately twenty years have passed. The mentioned monograph, 

in which with comprehensive clarity the theory of axisymmetric defor¬ 

mation of thin-walled shells of revolution is examined, had great 

effect on the author of these lines and aroused interest in this 

theme. This interest has not subsequently diminished in connection 

with the abundance of problems, which have confronted the author in 

his chosen profession. 

The present book was conceived as a certain analog of A. I. 

Lur'ye's monograph, in which, from a unique point of view, the defer 

mat ion of shells of revolution under axisymmetric and flexural loads 

is examined, since both the indicated cases are identically and 

frequently encountered in practice, and the methods of solving the 

problems arising here possess a great deal in common. 

-, 

Over a period of many years the corresponding member of the 

Academy of Sciences of the USSR, Professor A. I. Lur'ye manifested 
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constant attention to the works of the author, and now has agreed to 

assume the task of editing this book and has rendered the author the 

honor of introducing this work to the reader. I now consider it 

my earnest duty to express to the dear reader - Anatoly Isakovich 

Lur'ye - my profound gratitude. 

The author wishes to express his sincere appreciation to 

A. K. Kibyanskaya for her assistance in preparing the manuscript for 

printing. 

* 
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CHAPTER i 

FUNDAMENTAL EQUATIONS OP THE THEORY OP 
¿»HELLS OP REVOLUTION 

§ 1- —of a ÏMÎms. of Rev.l,.»^ 

fundamentally dlfferent^thod0":‘WthTfLst" aS5lgned by two 

by assignment of coordinates of the point Í ^ “ 1S detern’lned 
system, connected with the cm n & certain coordinate 

Position of the same point is dT^ ^ SPaCe; by the second ~ the 

where lines a = const! a » cLt ^ (a’ 6)’ 

lines, located on the surface itself. °f curvllinear coordinat. 

methods can be carried out in a countie ■ b natural that both these 

us examine the surface of revoluti /6 QUantlty 0f varlants. Let 

curve f around axis .n "1 ^ by rotati- of some curve f, around axis nn «i , . ” UA öome 
00,, along Which axis 0Z is directed (Pig. d 

5 dpf:Ar»nví i_ & J The position of T“ “ 15 dlrec 

sume point 0 of space to the glven^olnt '* draWn ^ 

system of rectangular coordinates Wz ti seíelL0;":::: 

Xi+ YJ+ Zk. 
(1.1) 

where i, j. k — +- 

equation of the surfacTor^vo^UoTi"10"8 ^ ^ The 
can be written in the form " COOrdinate astern x, y, Z 

5S-;,v.,.f --,-f MS- 
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(1.2) 
X = \ ¿cs<|\ K = V sin«f, 2*=/(v). 

. i 

The geometrical visualization ôf parameters - and ♦ Is clear; 

V - radius of the circumference, which is obtained as a result of 
Intersection of the surface by a plane, perpendicular to the axis 
of rotation, * - the angle, read along the arc of this circumference, 

starting from the radius, parallel to axis' OX. Parameters . ana « 
can serve as curvilinear coordinates on the surface; in this case 
Unes V = const and * = const will be parallels arid meridians respec- 

tivaly, which form an orthogonal network of curves on tne surface of 

revolution. The position of a point on the surface of revolution is 
convenient to determine also In cylindrical coordinate system v ¢, 
2 with the origin of coordinates at point 0. In this case the radius 

vector.of point Mean be represented in the form 

r = vtf + Z*. (1.3) 

where 

e = /cos«i-t /sinq». 
(1.4) 

Unit vector e is directed alongthe radius of a parallel circle to the 

considered point. 

Fig. 1. The surface, formed by 
rotation of curve around 
axis OZ. ■ 
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Let us introduce unit vectors of tangents to the meridian and 

to parallel circle at the given point 

_ — *■ _ dr 
»» — Ti r • *2 = (1.5) 

where d-^s - element of length of the arc of meridian, d0a - element 

of length of the arc of parallel circle. Vectors T ^ and are 

mutually perpendicular, inasmuch as the meridians and parallels form 

an orthogonal network of curves on the suiface of revolution. To 

r the movement of the end of radius vector r from the given point M to 

the point of surface infinitely close to it M' corresponds to quantity 

(1.6) 

d-,3 

Prom (1.6) it is simple to conclude that relation determines the 

direction of ouch movement. When d-^s = 0, ^28 ^ 0 we obtain movement 

along parallels d2r = 12d2s, when d^ / 0, d2s = 0 movement of the 

end of radius vector occurs along meridian d^ = The unit 

vector of the tangent at point M to some curve r on the surface is 

equal to 

# — *L —T d'S ' r d*S (1.7) 

where de — element of length of the arc of line F. Vectors t at the 

given point are arranged in a tangent plane to the surface at this 

point. The position of the tangent plane is entirely determined by 

the assignment of two ncnparallel tangent vectors, for example and 

. At point M let us construct a normal to the surface, having 

determined the unit vector of normal n as the vector product of vectors 

and x2 

FTD-MT-24-249-70 3 



« = T, X »2- 

, 

(1.8) 

Lot us agree to always use a right-handed coordinate system. Three 

vectors T , t2 « ?orm a trihedron of orthogonal axes . In view of 

the symmetry of rotation all the normals to the surface at points 

located on one parallel intersect at one point on the axis of rotation 

and form a cone with angle of opening 20. Being limited to the 

examination of only such surfaces, on which the setting of angle 9 

uniquely determines the parallel circumference, Just as the setting 

of angle $ determines the meridian, let us take system (0, ♦) as the 

basic system of curvilinear coordinates on our surface. In accordance » 

with the terminology accepted in the theory of surfaces [25] we call 

the curve, which is obtained as a result of intersection of the ^ 

surface by a plane, passing through the normal at point M, the 

normal section of the surface. Through any point of the surface it 

is possible to draw an infinite set of normal sections, to each of 

which corresponds its vector of tangent t.. 

Fig. 2. The meridional section 
of the surface of revolution: 
a) normal to the surface and 
normal to curve coincide, 

b) normals have opposite-direc- 



Let uc examine from the beginning a normal section with tangent 

T-p i.e., meridian . It is a plane curve, the normal to which at 

point M (its Unit vector m is directed opposite the principal normal 

toward convexity 1^) either coincides with the normal to the surface 

(Fig. 2a), or is opposite it in direction (Fig. 2b). In the first 

case during motion along the meridian in positive direction <¿9 > 

> 0, in the second - ¿0 < 0. If through we designate the radius 

of curvature of the meridian, then the element of length of the arc 
of meridian will be equal to 

= where /?, =p, when nt—n. 
/?, = —p, when «* = - n (1.9) 

In the case, shown on Fig. 2a 

t, = e tos 0 - * sin 0. 

m = esinO-|- *cos0. ' I (1.10) 

By differentiating Cl.10) with respect to d-^s, we obtain known Frenet 

formulas for plane curve: 

m 
Pi * 

(1.11) 

By comparing (1.9) and (1.11), it is simple to write the formulas 

for derivatives of vectors r^ and a along the length of the arc of 
meridian 

ÍÍL 
<¡\S d\S Äi' ’ (1.12) 



__ 

or 

(1.13) 

In formulas (1.13) there are Introduced partial derivatives, since 

on the surface vectors r^, n are functions of coordinates 0, 

<}). Let us set a goal to obtain the remaining formulas of differentia¬ 

tion of vectors n with respect to coordinates. For this let 

us examine the parallel circumference of radius v(0) (Fig. 3), which 

is an inclined section of the surface from tangent at the given 

point. The plane of the parallel circumference forms an angle, 

equal to (j - 0), with the plane of the normal section, which has a 

common tangent with it. The element of length of the arc of parallel 

is equal to 

(1..-U) 

On the basis of Frenet formulas 

dtj _» de_ 
d3s V ’ djt (1.15) 

and (1.14) we obtain 

(1.16) 

Since 

i = T| cos 0 -f- »sinO. (1.17) 



tnen the second relationship (1.16) can be rewritten so; 

i)T, 
~àv cosO fin. 

lAf slnO tj. (1.18) 

By scalar multiplication of both sides of equality (1.18) by n and 

taking into consideration that l^.a) = 0 (which is simple to 

check by differentiation of equality '(«•».) = l), we obtain that 

0, i.e., vector does not have a component along axis n. 

dTl 
Since also d°es not have a component along axis r,., then — = 

ût2. Analogously, by scalar multiplication of (1.18) by t,. ^we 

ensure that = o and consequently, || - it.,. By turning again 

to equality (1.13), we find that It can be performed Identically 
only with a = cos 0, = sin 0 and therefore 

d<t T20, -^ = T,sin0. (1.19) 

By differentiating scalar products (V«) = 0 and <vt,) = q with 

respect to 0 and taking into account formula (1.13), we ensure that 

and (¾-^)=0. 

whence follows obvious formula ^=0. As a result the following 

derivation formulas are obtained: 

dr, 
'Sf = T:>cos O. 

<^1 _ 

ill 
Off 

— n. dr, 
Û6 = 0. 

dn 
W = Ti* 

= — T, cos0~«sinO, dn I ^ = TiSin0. J 
(1.20) 

<* 
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Taking into account relationships (1.9), (1.1*0» formulas (1.20) 

can be rewritten still in the following form: 

¿T, « lh, _ ()/1 T, 

tm““- 77=°1 à.T=Trr 
(ït, COS0 fc'». _ COS0 _ *lnO 

SJ 
cm 9 ùi • _ 

= *2— • Tt - ~ Ti 

dn sin 0 
dT “ T-‘ v” 

(1.20*) 

Fig. 3. The circumference, which is 
the inclined section of the surface 
from tangent tj at given point M. 

Fig. 4. Curve r2 — normal section 

of the surface from tangent t*. 

Let us now turn to the examination of normal section with 

tangent r. (curve ?2 in Fig. 4). Curve r2 and the parallel circle 

at point M have common tangent fj. consequently, 

8 



(1.21) 

where through de there Is designated the differential of arc 1' 

By using the first Frenet formula for the parallel and for cur 

we obtain 

m Aï- 

(1.22) 

where /?2 - the radius of curvature of normal section r?. By scalar 

multiplication of both relationships (1.22) by n. we will have 

(1.23) 

From (1.21) and (1.23) follows 

sin 8 
V (1.2U) 

Relationship (1.24) indicates that the center of curvature of normal 

section r2, which at the given point has common tangent with a 

parallel, is projected to the center of the parallel circumference 

and, consequently, is located on the axis of rotation. This assumption 

is a consequence of the Meusnier theorem, known in the theory of 

surfaces, according to which the curvature of the curve on the 

surface and the curvature of the normal section, which has a common 

tangent with the given curve, are connected according to the following 

law: the curvature of a curve is equal to the curvature of a normal 

section, multiplied by the cosine of the angle between the osculating 

plane of the curve and the plane of the normal section. 

9 



Fig. 5. Unit vectors »i. t,. #. 

located on the tangent plane to the 
surface at point M. 

Let us note that from (1.23) and the first formula (1.20) taking f 

into account (1.9), (1.5) the following formulas are obtained for 

curvatures 1/R^ and 1/^ 

» 

(1.25) 

Let us now determine the curvature of the surface, considering the 

normal section with unit vector of tangent t. forming angle X with 

direction (Fig. 5). With change of X from 0 to tt the whole set 

of normal sections at the given point turns out to be exhausted. By 

designating the element of length of the arc of curve through do, 

let us write 

» 

(1.26) 

Let us compute quantity 

dr_= d» rf,» . at d* 
òa /?,dÔ da ' vdy do (1.27) 



By using derivation formulas (1.20) and formulas (1.26), we obtain 

Hi ! co*»>. sin*i \ , .MlnicosO . dX\ (1.28) 
To =(-ST-R¡-!a+l(~ ^ «r 

where ( sin X + t2 cos X - the unit vector, perpendicular to 

vector t and located in tangent plane. 

Let us compute the curvature of the surface in direction t by 

formula 

By using in this case the expression for £ according to (1.28) and 

taking into consideration that (<•*) = 0, we obtain 

1 cos*X , *ln*X (1.30) 
—1—'RT' 

From (1.30) and (1.26) follows important formula 

l 1 
-Rt-% 

(1.31) 

By investigating curvature ]/St as a function of parameter X, we find 

that it takes extermal values when X - 0, X - e/2, moreover in the 

first case it is equal to 1/S1, in the second l/»2- In the language 

of geometry of surfaces this means that the examined normal sections 

f and r are principal, Bj are the principal radii of curvature, 

and meridians and parallels form a network of lines of curvature on 

the surface of revolution. Let us recall that the lines, the tangents 

to which at each point coincide with principal directions, are called 

the lines of curvature. 

11 



It is not possible to form the surface of revolution with 

randomly assigned radii of curvature ^ and /?2. In this case it 

is simple to ensure, comprising the condition of independence of 

a2r 
the second derivative from the order of differentiation 

(1.32) 

which, after the utilization of derivation formulas (1.20) and formula 

(1.29), gives the following relationship between /?^ and i?2: 

d (/?, sln0) 
rfO = /?, COS 0. (1.33) 

Formula (1.33) can he obtained by another way, namely: the unit 

vector of tangent can be presented in the form 

T'-7?r-55- + 7?7-5S- (1.34) 

but, from another side, 

Tj = £ cos 0 — k sin 0. (1.35) 

From comparison of (1.34) and (1.35) we conclude 

■^- = /?,cos0. = -fl|S|ne. (1.36) 

The first of these formulas repeats relationship (1.33). 



Let us give another formula, which wi 
11 subsequently be useful: 

(1.37) 

To all the aforesaid we should add that- 

is not related to the lines o-f cu e senerally> when the surface 

= -st, 3 = const are nt o^ho n^“ = 

curvature a more co.piea formula than (Í 31 ^ 
case vJ-O-U is obtained, in this 

dr — tadoa + ttdOp 
(1.38) 

where, as earlier, f = ÍL_ , dr 

° 3\’ 6 “ 557 “ Unlt vect0^ °f tangents to 
coordinate lines, moreover 

nue 

et 

l'a-t,)+0. (t„ -*)=*(/ . n)t==0 
# (1.39) 

The direction of normal section f is rha 
vector * characterized by unit tangent 

i=*, da, 
da a Jo -jj- 

.3) 

and curvature 1/Æ ia equal t< 
a£ 

ï—£■•)■ 

-(5-K?/' (1.^0) 

(2.4) 
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By analogy with formulas (1.25) by introducing designations 

i| 
1 m 

> 
■ 

V 

1 

i 
(l.U) 

let us write (1.40) in the form 

1 1 ¡ Joa ÿ i 2 rfo,, rfop i I [ dap Y 
TT, da ) do (1.42) 

Formula (1.42) differs from formula (1.31) by the presence of a term, 

containing the product of do do . i- curvatures of the surface 
0t p n Hq a p 

in directions f . ^- quantity, which it is accepted to call 
a P Äct3 

torsion in the theory of -.hells. As a result of (1.39) formulas 

(1.4l) can be rewritten in another form: 

(1.43) 

By returning to previous coordinate lines 0, ¢, let us assume daa = 

= i?1d0, dOg = vd<f>, = r1, By using derivation formulas 

(1 20) and formula (1.43), we ensure that in this case 
12 

torsion is equal to zero, if the surface is related to the lines of 

curvature. 

14 
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§ 2. reformation of 9 Surface, of Revolution 

With deformation of a surface point », obtaining displacement 

U. changes into some point «*, the radius vector of which is equa* 

to 

r* = r i 1/. 
= 4 t/Tj 4 ten. 

(2.1) 
(2.2) 

where u, V, w - components of the vector of déplacement V along axes 

, , t., » m a particular case of axisymmetric deformation the 

component of vector U along axis »2 is equal to zero (r * 0) 

all points of the surface, located initially on one meridian, continue 

to remain in the same meridional plane after deformation. In this 

case the displacement of points on all meridians is the same, i.e., 

does not depend on coordinate ♦. Subsequently we will cons.de, 

general case of deformation of a surface of revolution (» W >. 

us examine infinitesimal displacement witn respect to a deformed 

surface 

</r* = dr + dU. 

“U = 

(2.3) 

Recalling that = ^¿0, d2s = vd* and using derivation formulas 

(1.20), we obtain 

(2.4) 



- 

-:. .. 

where there are introduced designations 

1 du 
#Td<r+7?r- V 

! du vcosO 

v _ I 

1 dtt 

V dip 

1 dv . 
V df ^ 
1 dw 

V 
ucosO trsinfl 

V 
üsln9 

V 
« i «WP m A id* 

and * thus, dr9 = + d /* , where 

rfir‘ “ 17 rf‘*- Ä Ti (1 ei> + T*Vi ^ »•i* 

^ = -37=1 T.Y.-4 Ml + ea)+ *#,. 

(2.5) 

(2.6) 

Let us explain the geometrical visualization of introduced quantities 

el’ ’ Y1J y2’ ^1’ ^2’ displacement in meridional direction 

(d^s ¿ 0, d^s = 0) we find the element of length of the arc of 

meridian after deformation 

<// = ; rf,r* I = /(1+e^+Yi+^rf,». ( 2.7 ) 

Analogously with displacement along parallel (d-j^s = 0, d^s / 0) 

djs* = Id/1 = /yH (1 4-e/4 «; rfi (2.8) 

Being limited co the examination of small deformations, i.e., disre- 4 

garding the squares of quantities y1, e , y2, in comparison 

with one, we obtain that 

.-04.1 

j • j. , vj —d,* d/= (1+£,)//,!. e, = 1 v 

= (,1 t r:)<i\s, r¿ 
(¡¡S' — il .J 

d;* ’ 
(2.9) 

16 



whence It le clean that tj, e2 are relative elongations In meridional 

and circumferential directions. The vector, of tangents to coordinate 

lines on a deformed surface have the form 

. _ dr* _ 1 . . 
1 - 0,sm - T+TT ,T| ( + fi>+ t2Yi 4 rtd,] ^ T, -+ t2v, -+ 
T*—dr' 1 

* d,s* ~ 1 4-r, ItiY2.4 ^ -r fj)-} «ô2| =& T|y24 t2-}- nf>7. 
(2.10) 

l:cr;fhand r? are n0t 0rth0g0nal t0 ea^ other. Which is simple 
to check, by calculating their scalar product 

(TI ' t2) — V2 + Yj = Y- (2.11) 

Of initially right l V ^ t0 the ^^lon 
Shear In f e“8 VeCt0rS h and *2 *"d is called 
shear. In fact. If Y Is small, then cos (tj, Y t 00s (£ _ Y,. 

Analogical cos (.., W cos(t., V = ^, 1 ,e., and 

y2 are the angles between vectors ,., tl and ,., t? respectlve'ly 

(Pig. 6). Thus, the aggregate of three quantities e,, e Y character 

^LlaZ“0"3 and ChanSeS °f — coordinate lines during' 

Pig. 6. Tangents to coordinate 
lines and normal to the surface 
Defore and after deformation. 
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Let us explain the geometrical visualization of quantities ^ and 

t>2 (formula (2.5)). Let us determine the vector of the normal to 

deformed surface n* as vector product 

tnen, using formulas (2.10), we ootain 

„* «= /1 — ó,!, - V, 

and 

cos(n'. t,) =— O, cos• 

COS (1* Xj) = — Ô, ^ cos 4" (>2) • 

i and &2 represent the angles of rotation of the normal to 

the surface around axes t2 and ^ respectively (see Fig. 6). Let 

us introduce vector 

11 =x OoTj — 0,1/ + 0*. (2.1 

where 

0 = 7 (Y, — Y2)* (2.15) 

then relationship (2.13) can be rewritten in this form: 

n* — « = Q X *• 

18 



Moving ahead, let us call Q the rotation vector. If we take into 

account the meaning of quantities #2 and take quantity 6 for 

the characteristic of rotation of the element of the middle surface 

around the normal, then such a name is natural. In § 3 there will be 

shown that with acceptance of Kirchhoff-Love geometric hypotheses 

vector Q is equal to the value on the middle surface of the rotation 

vector, common in the theory of deformations of continuous medium. 

Let us now turn to the study of the curvature of a deformed 

surface. For this, by using formulas (2.10), (1.25) and (2.13), and 

also formulas of differentiation of unit vectors t^, n (1.20), 
let us compute quantities 

dx\ 
IT 

1 rí!.* 4.1 * -l/ > , i i r*: l^rT'+'sris'T*+( - T?:+) " ] • 
dA __ i 17 c 

ïTïrll-- 
co$0 , 1 à\'t 

t-st )t.+(- 
cos e #, sin 0 

t2 + 

+(7^-^)4 

(2.16) 

1 
ãT 

1 

-(â-'l-Ÿ 
1 *♦, 

~R;~srt 

(l—tj) slnO 1 d0j 0,cos0 
V 

By introducing designations 

v _ 1 00. 
‘ *1' 

01 CO» 0 1 00, 
7-3* • 
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let as copy (2.17) again 

(2.19) 

From (2.19) it is clear that quantities and characterize changes 

of principal curvatures during deformation, moreover the first terms 

in the right sides of (2.19) are connected with the change of curva¬ 

tures due to extensions or compressions of coordinate lines e2- 

Since after deformation of the surface directions t|, are no 

longer principle, then it is necessary to even calculate torsion 

1/Ä* , which in this case will be nonzero. On the basis of formula 

(1.43), (2.10), (2.13) and derivation formulas (1.20) we obtain 

(2.20) 

(2.21) 

In (2.21) there are introduced designations 

!<)#,_ 1 â9, , ÛjCosQ 
r¡^~7^~sr' -V ( 2.2 2 ) 

By recalling tne expressions for #2> Y1 and y2 through displacement 

(formulas (2.5)), directly by checking we ensure that the right sides 

of (2.21) are identical, i.e., there takes place identity 

20 



(2.23) 

Let us also note incidentally tne following identities, which will be 

subsequently useful: 

* 5¾¾ i _ 1 àt, y cos 8 
Ä| ÒÒ V ¿ip V (2.2¾) 

-^- + 0,5100 = -6, COS0 + -i-^il. (2.25) 

* 

By designating torsion 1/Ä»2 by the letter r. for it we have two 

equivalent expressions 

(2.26) 

Tnus, the change of surface curvature with deformation is characterized 

by three quantities <2 and t. 

In conclusion let us compute the derivatives from the rotation 

vector Q., On the basis of (2.14), by using derivation formulas 

(1.20) and taking into account (2.~2), we will have 

(2.27) 

where through and ç2 there are designated quantities 

r _ I ói , i ¿a 0, sin 0 
V (2.28) 



By using identities (2.23), (2.24), (2.25), and also taking into 

consideration that 6 = - Y2), Y = Y,. + Y2» let us convert the 

right sides of (2.2?) so that only quantities e2, y, <2, r 

and their derivatives would enter them. For example, 

1 m tt,_ l I <*, •. i f/u vj i t/| i C/) j I* j 

«7 “ 2«; W — Ä7 d5" ~ 7?7 “ 
1 ây , y cos 8 1 dt, 

2Ä, TSF "f* V y * 

etc . 

Finally we obtain 

(2.29) 

where C-^, C2 are converted to the form 

1 A*. .. a t 

(2.30) 
I cos 0 , 1 t) (Vf,) ■ _ r 1 v _| « V 

2v iAf V r vTF, ~3S • 

§ 3« Deformation of a Shell of Revolution 

The position of a point on a surface of revolution is governed 

by two curvilinear coordinates 9, ¢. To determine the position of 

a point not on the involved surface, it is necessary to give three 

numbers or three curvilinear spatial coordinates. If point N of 

the space is not far from the surface, then the position of If 
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elatlve to the latter la 3imply determined by a section of 
normal to the surface drawn to the point Th! T 
which the position of the given oolnr , SUJ-face relative to 

reference surface. Coordinate: I T T 0311 the 

normal from the reference surface’to’theV^n^ilTT" 
curvilinear coordinates of a point in s 1 are no" 

positive if POint y ls on the plui e ::::-o/:“6 5 is conswered 
opfioslte case ç Is a negativ» >, d f the normal> in the » nGgtí.çi.v6 number i 
forms an equidistant surface all nol n » 8 °f POintS C ' 00ns,: 
from the reference A hod k 1 8 °f WhlCh ai'e e<lultilstant 
, +* an„ ! ! y Und by two distant surfaces t=±7 and by two cones 0=0,.0 = 6,. Is closed in ,h , 

01osed in the circumference 
(0<?<2a) of a shell of revol nt-i or, ^ 

can also Imagine a shell of valable th'lT“' thlCkneSS ^ ^ 
in this instance the surfaces bl^ln Tl ^ 
from the reference surface, and we have the“eUMo^hr“1?- 
where ^ is a known function of 0. in bofh PS C= 

^ = ftre;; the reference surface goes in th ^ = C°nSt and 
bounding surfaces and is called the MddÎeacl 

z; ** ..... 

... .. ...u 

characterizing the thin-wall asn V * ^ tlan 0ne‘ A Parameter 

nesa to the total merldlL Lc L^th^o^t0^6 ^ 

clrcle of the extreme section of the shell. °f 3 Parallel 

We designate through « the radius-vector of point « of the shell 

# = /■+&». (3.1) 

where r is the radius-vector nr 

reference surface (* and :°L:i::h:nrr:::rng point w °n th8 

surface 7TZT “ lnfinlteSlmally diaPla=ement on equidistant 

dJl^dr + ldn. 
(3.2) 
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With the aid of formulas (1.6), (1.20) we calculate 

+ = *i(,+r2(i(3.3) 

Designating through rf,o. dp elements of arcs of coordinate lines on 

an equidistant surface after comparison of (3.3) with (1.6), we find 

^=(1 T-L-W 
(3.4) 

Let us note, furthermore, that unit vectors of the tangentials to 

meridians and parallels on equidistant surface T T and the vector 

of normal N are equal to 

Introduced system of curvilinear coordinates 0, ¢, ç is orthogonal, 

and that is why an area element of the equidistant surface and a 

volume element of the shell are defined easily as 

= (3.6) 

^=^0^:=(1-1--^)(1 + ^-)/?,v (/«(/?</:. (37) 

Let us turn now to shell deformation. It is assumed that the shell 

is so thin-walled that during deformation: 1) all points which be¬ 

fore deformation were on one normal tv the middle surface will be on 

the normal to a deformed middle surface; 2) there is no extension or 

compression of the normals. These hypotheses are the basis of the 

theory of thin-walled plates and shells by Kirchhoff and Love. 

Here we give only the kinematic ocmponent of the Kirchhoff-Love 

hypothesis. Usually added is the static assumption about the smallness 

24 
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of normal stress Oj on the areas c = const. The last assumptlon 

means that during calculation of deformations e., e? In terms of 

values of stress of u2> <,3 the quantity o can be neglected 

(see formulas (5.7). The Introduction of Mnematic hypotheses 

a lows describing the deformation cf a three-dimensional continuum 

such as a shell, with the aid of quantities characterizing the ' 

deformation of a middle surface, l.e., reducing a three-dimensional 

problem to a two-dimensional. Let us note that for the glven 

kinematic picture of shell deformation all equations which are 

o tamed In this section are accurate within the framework of the 

linear theory of small deformations. Therefore It Is possible to 

speak of inaccuracies of the Klrchhoff-Love hypotheses only for 

the following reasons: 1) neglect of the quantity o, i„ deriving 

elast-clty relationships and 2) the distributed and boundary load 

on the shell can have such a character that the accepted picture of 

deformations is not satisfactory. 

The amount of error In the Klrchhoff-Love hypotheses has been 
studied in [6], [16], [24], [!] and others. 

With several stipulations it can be considered that In most case, 

acceptance of these hypotheses leads an error of the order of ft/if 

in comparison with unity. In any case, this gives to us the right 

to make all practical calculations dropping terms of the order 

h/R in comparison with unity. Inasmuch as the error of the basic 

hypotheses Is not less, but sometimes can be even considerably 
greater [6]. J 

of 7!’ t0 the Klrchhoff-Love hypotheses the radlus-vectc 
of Point y , which point s of the shell becomes during deformation, 
has the form ’ 

(3.8) 

ere ' " radlus-v«tor of a point on the deformed middle surface 

y .1) equal to r+l/. Designating by lA> the displacement vecto 

ofjoint » of the shell at deformation, from (3.1) and (3.8) „e 

25 
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From (3.9) and (2.13) it follows that components of displacement 

vector = i>í;'t2+w(:)b along axes V Ta* " are 

«<;) = « — #£, v*;’= i» — OjC. v^ = w. (3.10) 

On the basis of (3.8), using equations (2.6) and (2.20), we compute 

+--¾ ^)+" ('+ ir) *'] 
Ç d#i , cos 9 \ 
V dy + 

+ t,(i +^+^-^-4^’)+.(i+^)»,]^. 

(3.11) 

Remembering the expressions for ><i. Ti and ^2 (formulas (2.18), 

(2.22)) and introducing instead of dis, d.2s elements of arcs dla, d2a 

using formulas (3-^) > we will rewrite (3.11) again 

<*,*• = + + + 1 (3.12) 
(i2R* = It,ü)2 -}- Tj (1 -(- e2) -(- rt&jl djQ* J 

where 

£i + ïj-J-Çxj 
’ 2 ~'-t- v#ï ’ 

0, -= h+¿T' (0 -= Vl±?I* 
w* 1 +nRi ’ 0)2 r+w 

(3.13) 

Elements of arcs d{a\ d2o' on an equidistant surface after deformation 

are equal to 

rf.o* = /(1 + i,)2 r 4- öj dxa ^ (1 -f rf,o. 

d2a’ = /u24- (1 4- t2f 4- #|rf2o ^ (1 -+ f2) dp. 
(3.14) 

Expressions 

elongations 

equidistant 

(3.14) indicate that quantities e^, are the relative 

of elements of arcs of meridians and parallels of the 

surface ç = const at deformation. We form vectors of 



the tangentiale to coordinate Unes and normals to an eouidistant 

surface after deformation 

7- , I 
^ = 2^*-= + 

7-— W 
= «0,. f (3.15) 

= = ôlT. _ a2T2 I 

Using (3.15), it is simple to see that the changes 

angles between vectors ^ and N at deformation 
in initially right 

(shears), are 

*12 ~~ (ri' *v) — + w, = Ö. 

*23*=(^ 
(3.16) 

the last two equalities of (3.16) are of course corollaries of the 

accepted kinematic hypotheses. Elongation of » i„ the direction of 

the normal is also equal to zero because of the inextensibility of ti 

normals. Let us show also that acceptance of the Klrchhoff-Love 

hypotheses leads to the equality 

I (rot = 

where rof£/° designates doubled vector of 

continuous medium at deformation, and Q 

Ctjced in § 2. 

rotation of an element of 

vector of rotation, intro™ 

T r 
i" ¿ 

Projections of the vector roti/,:' onto orthogonal directions 

N is computed using known equations of vectorial calculus 

[11], in which for a selected coordinate grid 0, ¢, ç it is necessary 

to set Lame' coefficients equal to (l-K7?,)v. lr faking 1nto 

account equation (3.10), we obtain 
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(,otu':’),=r—Vr-f-w—■^K' +i;)(”-s>)]}' 
l,+Wv ., 

(rot If'X = [(R\ 4-1) (“ — ^1^)1 — dtf f • 

__S_ 

^+ö(l+ir) 
(rot = —r—TT {W [(1 + ^-)v (v " 

Different 
iating and remembering the designations of (2.5), we have 

I (rot i/(;')3 = 4-(Y, 

in the right sides of these equalities are Q projections of (2.1*0. 

Thus of the six components of deformation of a three-dimensional 

elastic medium <v ^ 'u- in our case only three differ from 

. ,,. ,2. ,12 = u>. Using (3.16), (3.13) we write the expression for 
zero 

the shear 

<3-17) 

and transforming it with the aid of (2.11) and (2.26) to the form 

... r /0-1- P.\ 1 

(3.18) 
10 == 

! 'C
r
 

*■* i^* 

i I+;2t| 

(i+;K.>U-K/K*> 

then elongations e, and shear » prove to be expressed throng 

six quantities .,. «, V. t characterizing the deformed m ddle 

surface. Hence follows the conc.uslon that with the accepted 

hypotheses the deformation of a shell is determined «rough the 

deformation of the middle surface. The quantities r . 

will be called the components of deformation of the middle sur 
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The deformation components er f2- Y. V *:• T cannot be arbitrarily 

assigned functions of coordinates 0, ¢. In order that the deformed 

surface which corresponds to these functions can exist, they should 

satisfy certain differential relationships - so-called conditions 

of continuity of deformation - the necessity of which and the number 

become apparent if we remember expressions for components of defor¬ 

mation through displacements of the middle surface u, v, w (formulas 

(2.5), (2.19), (2.26)): 

1 du . w 
«Tæ R, ' 

u cos 0 -4- «' sin 9 _ 1 <h^ 
e2 V 

1 dv . 1 du__v cor 9 
Y v 

1 <4_ / J_ dtr_u_\ 
xi “ —æ \/?, 5)9 /?,;* 

cos 9/1 dtr_u_\_1 (1 
x2— — v Ò0 Af, / v (>T \ v tKf 

1 d ( \ dv t>s!nO\ . 1 M du 
2x-d<p v 

t> sin 9 
v 

veos 9 
v 

1 jd_ / J_ jtr_u \ i 
V ()¾ \ /?! (/0 /?, / 

, COS» / 1 (’a- _ t- s!n 9 \ ,_]_ dv_ 
' V \ V CKf v / R1R2 iß 

(3.19) 

Really, the six quantities e,. y. xj. ï are expressed through three 

functions u, v, w and, consequently, they themselves should be 

connected by three relationships, which are conditions of the integra- 

bility of system (3.19) relative to disp]acements. In this way the 

search for conditions of the continuity of deformations proves to 

be closely connected to the problem of determining components of the 

ver1-or of displacement U(u, v, w) in terms of assigned components 

of deformation. This problem was examined generally by A. I. Lure 

[14]. The conditions of continuity themselves for shells of ar¬ 

bitrary shape were obtained by A. L. Gol'denveyzer from purely 

geometric considerations [8]. 

The problem of determining vector of displacements U in terms of 

assigned deformation components can be considered solved if it is 



possible to express derivatives ^ through assigned functions 

e,. e,, y, xt. *2. c. Then 

"=i( 
dU dU 
dtid'S+ -g-^) + ^0- (3.20) 

where uo is a vectorial constant of integration. Prom formulas 

(2.4) it follows that for this it is necessary to find expressions 

for ó,. d2. y,. v2 through assigned functions or, which is the same, to 

find components of the vector of rotation qJû2 - ô 0_J. (y _y^j 

through t,. t,. Y. T. The latter Is done easily since In accordance 

With (2.29) derivatives £, «L nave been already expressed through 

assigned deformation components. Thus, 

Q = rf's+|r^)+öo- (3.21) 

This reasoning shows that displacements of a shell in terms of 

assigned components of deformation are determined accurate to within 

the displacements of a solid: U0. Q0 - vectors of the displacement 

and rotation of a solid. 

The condition of independence of line integral ¡ [^dis ^jjdis) 

from the course of integration has the form 

();n _ rt}n 
Oil ihf ' ( 3 • 22 ) 

Taking into account that according to (2.29) and (1.9), (1.14),(1.24) 

( 3 
~= - x2vt, f ^rv - ^ sill tíj t2 V- {.2vn, 

and using derivation formulas (1.20), we find that to vector con 

dition (3.22) are equivalent the following three equations: 
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¿e - X,fl|Cüi0 _ o 1 dy 
o. dx, Ô "V 7c/v £vv = 0. 

' O, * (t»)-/í,t cose+v^o+iy^ÿ^ sine=o 

-(Sifi)=0 
(3.2^) 

Tne condition of independence fr nm tv, 

(3.20) IO,n the c-our^ of integration Integral 

d7t>' _ _d*U 
ó9(hf cv ¡3e 

«o rewrite in another for,. Introducing auxiliar, vectora 

(3.25) 

1/ ÓU rx 
V"'= TT ~ ö X Ti^i. 

V'2' = - ü X TjV. (3.26) 

instead of (3.25) we wlu have 

. àü 
~£- + ~X j D ~ 0K(2. , àQ o, t- cp X T,/?, - -or-h-^XTi 

since on the basis of (i 20) 

(3.27) 

Of = 

Turning to equations (1 n i 

is simple to explain that (ectórs ( (J’13)’ (2-15>- ^ 

tU1 Plane “<* -IV deformation c^taTH ^ 

V(l) = ^iTj + ~ /?jYTj, 

t» I 
»(-•,—-vyr, 4 vcjT2. (3.28) 

Taking into account (3.23^ anri ( ? oq\ 

three conditions: (3.28), instead of (3.27) -,e obtain 
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(3.29) /?,£, COS 0 -(- I ^ ^ (VCj) + /?,v^ =* 0. 

— tf,VT + "jY^— /?jSln0-f- -I^lJ -j. ^jVX =a 0. 

The last condition (3.29) is an identity. Excluding from (3.2*0 

and (3.29) the quantities ç2, we arrive at three differential 

relationships relative to the quantities fp ^ x,. r: 

g- (W-j) — /ï,x, cos 0 — /? 01 <0 I d (ve,) 
(/0 CN ‘ wj //, 

^ —/?,cosOtt-YcosO-i-^-sinO-f 

, \R, cos 0 sin tf /?, sin0 dr 

T c, COS 0=0. 

d\ 

sv.,4 x^sinO-l- 

_ n^v i 
on 00 r 

V 

1 i)(vr5) 

— 0. 

n , I o(vr5)l 
r, cosO — 

_A V df J 
ò r 1 ch' i y/?i cos 0 R, <)e, 

(3.30) 

These equations are the desired conditions of deformation continuity. 

§ 4. The Stressed State in a Shell 

Let us examine the stressed state of an element of a shell 

bounded by sections 0. 0-}-</0. by planes <p. <F-M<P and by surfaces 

C=±A/2. From the side of the rejected part of a shell on a selected 

element act forces which reduce to the following system of stresses. 

On area element djjdl of a normal section of a shell perpendicular 

to r^, act normal stresses and tangential stresses and 

on area element c/,od* of a meridian section of the shell act normal 

stresses and tangential stresses r21 and t2^. In this way the 

vector of forces on area d2adl is 

^(1 + 77:)vrf<fi=(oiTi4 ti2t2+ti3/»)(1 (4.1) 

and on area </,oí/; acts vector of forces 

*- (1 + /^r)R1 </0 ^ ^ (0-,T-’ + t.m + ( 1 -f i-) /?, jo dl ( 4.2 ) 
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'*• 

Total forces and moments on tu 

Of the Shell ar.* the boundarles of fK 
1 are r«pectively °f the involved element 

+ */■3 
KjJif </0 == (bit, * \ 

^~512T2+<?,/I)v</ç, 

^0. (^-3) 

Mtrt 

+ *J 1 

— (~ M2t, +//^)^40. 
I 

U’+V«-'- T-CHy-,. 
+ A/Í -*2 ' *»/ 12 

■'(’.t)«-., r-i^iy-s, 

fa, 

1 

-A/2 
+ A/2 

1 
4 A/2 

i 
4 A/3 

(4.4) 

(4.5) 

a^unlTr1“!” lntroduce<i Quantities r c 

n8 °f an arC °f Parallel to 
°f the middle surface 
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f statically equivalent to the stresses In the 
of the force and »0- ular co the direction of the 

normal section of the s P r ç o. M*. Hn ls the same " 

meridian. The meaning of quan " :;rldlan of the middle 

referred to a unit length of an «= 0 alent t0 stress m 

surface of the force and moment s^lcaj ^ correspondingly 

the normal section oalled the meridian and neighboring 

quantities T-^, an 2’ 2 . 0 an¿ q are the 
j tv,e bending moments. The quan 1 2 

tensions and the be S tangential forces and torsional 
shearing forces ; 5,,. S2J. Hl2. « 

moments. Their directions are shown PlS- 

Fig. 7- Positive di¬ 
rections of forces and 
moments acting on an 
element from -,-, 
jected part Ox the shell ^ 

^ +-hA shell element, by 

Replacing the system ^ m0ments actually allows 

a statically equivalent sys e about the equilibrium of 

reducing the ^^^"“^rthe^wo-dimensional problem about the 

a volume element of the she surface_ Suoh an approach 

equilibrium of an elemen ' dl completely agrees with 

to the study of the ^ess^ at - o * sh deformaUon> as a result 

the earlier “ed formation of a shell is described 
Of which it turns out that t SUIface. However, 

by six components of deforma ^o . there are ten static 

in the given case Instea^of^slx quan ^ ^ ^ note that al- 

:::r--y o; -ell deformation assumed that shifts ^23 

3*, 



are equal to zero, the corresponding stresses dlf,i,er f1*0111 

zero and should be taken Into account In making up conditions of 

equilibrium, hence the appearance of the two characteristics and 

Q2. This contradition is because of the accepted method of developing 

a theory of shells, which in this point is completely analogous to 

the theory of beams and the theory of plates: The study of deformation 

uses the hypothesis of the nondeformable normals, i.e., it is held 

that shifts e1^, e23 are negligibly small in comparison with other 

components of deformation, but the shearing forces are determined 

after solving the problem from conditions of equilibrium and, 

generally speaking, do not prove to be small. Besides the quantities 

Q2 there are eight more characteristics (4.5), which should 

correspond to six deformation components. However, from (4.5) it is 

easy to see that four quantities 5,,. S2I, //,, are not independent, 

since 

O t H11 _ Ç I ^»1 

òi2+-/jr- —¿21 
(4.6) 

A. I. Lur'ye [15] noted that holding four integral characteristics 

S So //,2. //•>, Instead of one tangential stress T12 = T21 ls not 

completely necessary, inasmuch as in the creation of subsequent 

relationships of the theory only combinations of these quantities 

appear, namely: 

S = J'M'-TPtK 
-A 2 

. +A/2 

-A* 

Thus, to six components of deformation f,. f2. Y* v-v x2- T correspond 

six static quantities Tr T2. S. Mt. M2. H This fact considerably 

facilitates formulation of elasticity relationships, which determine 

the connection between static and geometric quantities. 

\ 
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Before passing to the composition of equilibrium conditions 

of the chosen shell element, let us refer the external forces to the 

middle surface, i.e., replace the external load acting on the shell 

by statically equivalent load on the middle surface. Let us desig¬ 

nate through F the vector of volume forces referred to a volume unit, 

and through p+ and p- the vectors of surface forces referred to a 

unit of area and acting on the limiting surfaces t=±A/2. 

P* =/^1 + /^2+^ 
p-=*PfT, + P2-T2+p;ii. 

(4.9) 

Then the main vector of all external forces applied to the considered 

element and the moment of their relative center on the middle surface 

of the element are equal to 

t.P.dOrff (l +-¿r)(l +575:)^1^^ + 

+ I + ++(1++^0 
(4.10) 

+ J \^XF)(\ +-^)(1 +-^)/^0^ 

where E L - corrected vectors of forces and moments of the external 

load, referred to a unit of area of the middle surface. After 

canceling by the common factor and vectorial multiplication in 

(4.10), we have 

After 

E— £+1 + /^2*;+ Fntl 
L — L¡x¡ + ¿2t2 + L„n. 

(4.11) 
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“wK1 ~Ä;) + 
•mn 

+ J ^ + 47)(^+¼)^ 
-h.V 

^=^(1 + ^7)(1 + -^7)+^(1 -^)(1 -2^)+ 
inn 

1^(14 Í7K1 +~k)dl' 
-h? 

E'=p¡(1 + ^)(1 + 2^)+^(1 -^7)(1 -4r)4 
■>*/2 

+ J M14 ^)(1+^7)^1 -h? 

Li ^ [ -p2+ (1 + 2¾) (14 é;)4 ^2*(1 - ¿) (1 - 2^7)] 1 - 

- J + ^ 
-/i,i 

-+^)-^-(1 -^)(1-à?;)] 7- 
*hU 

- + tlO +1)«- 

£, = 0. 

0.12) 

Let us compose vector conditions of equilibrium of an element of 

the middle surface under the action of corrected external forces 

(4.11) and systems of Internal forces and moments (4.3), (4.4) 

(see Fig. 7) 

- K¡\ dif 4 K^-dn 4 -Jj- <K;v) dO d<r — d« 4- 

4- K,RX dO + ~ (K2) /?, d<r dO 4- f/?,v </0/^ = 0. ( 4.13 ) 

— AfjV d«f 4 /M|Vd(f 4- (M,v) dO d<p — M2/?, dO 4- 

4 M:R] dO 4- ^ (Ai.) Rx d<r d0 - |/î, dOt, X (- /(,'• dç)] + 

4 Ir, X ^2^ rfO] + [rj X (- KjRt </0)| 4 LR^ dç dO = 0 ( 4.14 ) 

Here and are the radii vectors con lecting point 0, relative to 

the equation of moments (4.14) was composed, with centers of 

application of forces on the sides of the element $ = const, 

<t> + d4> = const, while 

r, — r2 — V dqTj. (4.15) 
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„„ account (4.15) and of driva alnllar tarns. « raduca 

(4.14) to the form 

I- (M2) 4- (T, X *|) VÄ, + (Tj X #fj)+ Ml “ 0 

(4.16), (4.17) after substltu^im 

4) and differentiating with form 

ns of equilibrium of the element 

of (4.18) because of ^.o; is 

iat equilibrium equations (4.18) c 

Hl5. W« only in combinations (4.7) 

first equation and transform it i 

The sixth equatiui 

is easy to show t! 

and moments S,j. Sn. 

as an example the 

manner: 

where we 

fourth equation of 

nly through S and H 
however. 

4* 
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Transforming similarly the remaining equations of system (4.1Ò), 

we arrive at the following three equilibrium equations relative 

to the six quantities r,. Tt. S. A!,. M7. H: 

£ (vT*,)— n/?, cosö-t ^ ^ -r 7í¡j 0 -t- • Í-S -f -Tjj) 4- 

à ['■ (s+^']+s' +(s+-" )R' C0‘9+ 
4-/y2/í,siii0-i-f2v/í,=*o. 

W + ^ Sin 9 + £-V/ '> “ °- 

(4.22) 

where 

N, « -3Ç- (VvM,) " C0Í 9 + + ^ 

Ni^Qi+-j^ ¿-(Hji — Wjj)*» (4.23) 

forces and in system (4.22) are analogous to shearing forces 

Q-p Q2 in system (4.18). 

The description of the stressed state with the aid of integral 

(4.5) is not contradicted by the following assumption about the dis¬ 

tribution of stresses in terms of coordinate ç: 

/ t \ T. , «-M, ; 
(1 +T*r)0‘“;'ir+-/ir'Ã7r 

/, , s \« - r* I 6M» C 

+ 7?r) ,s * Ä3T *7?* 

(l +-»:)Ta“' 

(4.24) 

(4.25) 

Really, stresses, which will be presented in the form of (4.24), 

(4.25), identically satisfy (4.5). if we reject in the formulas 

quantities of the order of h/R in comparison with unity then for the 

stresses we will have simpler expressions, for example: 

S ,6H c 
T«I=Tii = T + **r Ä/I’ 

while with the accepted accuracy S^S^^S. H. However, 

subsequently we will require in equilibrium equations the quantities. 
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S, H, introduced using equations (^.7), (4.8), since this gives 

greater order to the basic equations. 

The nature of stress distribution t13, through the thickness 

of the shell can be explained when one considers the equilibrium of 

a shell element bound by sections O^const, 0 + d0*= const. by planes 

Ç. = const. == const and by surfac0' £=»const, const. i.e., elements 

of a layer of thickness dç. To this element are applied external 

force ^(1 + ( 1dûrfç</; and internal forces 

-^(1 + 

-1 *.*(l + + -I- 

*" ^(1 + 7^)(1 +■ 

*j(' + 7^)(1 +7^)v/?irf0</,P + 

+ ^^3(1 +^-)(* +-^-)v#,]dOd<f<tt 

(4.26) 

(4.27) 

(4.28) 

where 

*J = °3» +-T13T, + TaT,. (4.29) 

o^- normal stress acting on area </S = d,od2o of an element of surface 

ç = const. 

The vectorial condition of equilibrium of an element of a layer 

of the shell has the form 

¿ (1 ^ 7Í7)v]+^- [** (1 + *lr) + 
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<T,\ T* Z ( •30) eltPre33l0nS for *■• *»• *- according to (^ , 
th ’ ; differentiating with formulae (1.20), we obtain ' ' 
three equilibrium equatlona of the medium making up the shell In 
projections onto directions *|. *j. »: 

oo h (r+-k)v]+£ h (>+^-) /?,]+ 

1 ^W1 +^)(1+ ^)v/i«]+ 

+ T.3 (1 +-^)v - O, ( I cos e+ 

[^(1+-^-)(1 -li-^-)v/?I]+ 

^0 + -^)^^0+^2,(1+ ^)^,510 0 .U 

+ ^(1+ ^)(1 +^)v/?,«C. 

^ [^(1 + i)v)+ih3(i + -^)^,)+ 

+^(03(1 + -^)(1+^.^,)- 

-0.(1+ + 

•(, +^)0+71-)^1-0. 

+ 

+ (^.31) 

+/=-. 

The stress components In (4.31) are functions of coordinates 

nlJ’/ú Wh? the dependen0es of stresa V V T on the coordl. 
nate ç have been predetermined by relationships (4.24) (4 25) 

It 1, obvious then that from three equation.- of (4.31)'containing 

va ves 0 T1;j, Tjj, Oj during coordinate ç, by Integrating 

over this coordinate from ç to 4/2 we can find t , t 0 a- 

sfu“fl°snMf+';2 In thl3 Ca3e °ne °U8ht t0 haTC ^ view 'that » 
- the following boundary conditions must be exe- 

cuted: 

Çsr+ . ‘u ' Pi- Pi ’ i 0 + I’m • (^.32) 

:-- 7 Tu=“ - P\ • T23 = — ?2 • PÛ 
(^.33) 
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First we transform the first and second equation of (4.31), noticing 

that 

^ [(1 3t[(! +t^‘)v]=sssj,,&. 

+^^+ 

= +-^) V/??]. 

4-Tjj(l -r-jl-)(l + -4-) v/i, sin 0 = 

4o»(i+i)o+ir^]. 

(4.34) 

then 

«'(' + ^¿hO+^^+^O+iríil^^ + içr)^]- 
-0,(1 + -¿r),«îc°se +[t„(i 4-^)*(l + 7^) V/??] + 

+ ^.(1 + = 0. (4.35) 

"i1 +-^)w W1+-*7)*]+v(‘ + ^)^h(! + 757)^)+ 

+'‘,(1+i:)(l+ir)vR'‘o’0+|‘[,»(,+-if7)(1+-s7)’'''*.]+ 

+/’>{,+-k)(' 0. (4.36) 

Integrating (4.35) and (4.36) over coordinate ç from ç to h/2 and 

taking into account (4.24), (4.25) and (4.32) we obtain 

-’»(* + •*:)’(' + i)'«i +'t(> 4 wr)’(' + 7Ä7)vr!+ 

+J f'('+'*7),(i + '¿')tR'í:+ 
; 

+ ("J — i") [^1 W ^ + ^àit co* ®] “H 

+ à (1 - ^) h i <vM>)+w W'hú-au-rí' CÜS 0]=°- (4.37) 
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-’■í'+^rK1 +¿)’’■'«i+#.•(> + ^-)(1 + ^-)1 v’/?, + 
A/9 

+ (ï 4) [v W +v^(7‘í^i) + sn^iv co* 0] 4- 

1 á' (1 [v-á ^t>>+v ^ (^*Äi)+HnvRl coi 0]^. (4.38) 

Here during integration terms of the order of h/R have been rejected 
*/» 

as smaller than one, for example /(•+TÍr)*-*(j-t) Being limited 

further to the same accuracy and using equilibrium equations (4.18), 

and also expressions for components of the applied external load 

E^t E2 and Llt L2, on the basis of (4.37), (4.38) we will have 

^-4^0 

*M * +M 

-(t-Í) / '’.«-¿('“TÍ) / '’í«. (4.39) 
-M -*/l 

t»“|-îl(,-Tf)-T<’.*['“wlr~,uSr] + 

+T«'[,+l$f-,(í^r] + 
Ä»9 ♦á/f 4. A/l 

-tj /’.«-(j-í) (4.40) 

Volume forces on the shell - in most cases either forces of weight 

-»(/,», +/,¾+/^). (4.41) 

where l - unit vector indicating the direction of gravity, y - 

specific gravity of the material from which the shell is made; or 

forces of inertia appearing during rotation of the shell around its 

axis 
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In the first case Fv Fr F generally depend on coordinate ç, in the 
fl A IO A A n W J A ^   A_ M ™ * A _ 

second case thl. rel.tionihlp .Lo can be neglected. Assuming that 

volume forces depend on coordinate ¢, we ob.erve that terms contain- 
-- --- VWUÍ0 WV1 

ing volume force, in (4.39) and (4.40) cancel out, and finally 
we obtain 

Aí, «2\ , 
» ( T«[‘-í'Ji^--í-¡i5¡r]+ %-7 

(4.43) * 

(4.44) 

it ve,31?!’1* !° Verlfy that the obt*lned expressions satisfy conditions 
11.32), (4.33). Integrating similarly the third equation of (4 31) 

it would be possible to obtain the expression for stress o,(C), also 

satisfying condition. (4.32). We will not give the appropriate 

calculations, since the assumption of the smallness of this stress 
in comparison with the others 

(*M5) 

is basic in the theory of thin shells and essentially is used subse- 
quently. 

In conclusion let us note that rejecting terms of the order of 

4/A in comparison with unity and considering volume forces to be 

independent of ¢, we can simplify the load terms in equilibrium 

equations (4.22), namely 1 
,'A,*4r,-4A^-fr 

Í 
■; 



Furthermore, confined to the same accuracy we can r , , 
external loading 1,, L ., y’ i:an reJect moments of 

stltutlon of (4.23) Into (4 22) theTe ' after the sub' 
W1U have the order of H/l if 111 «"«Ponding. to them 

After determining forcee andlomfifâclf^ loadlng terms ^-22) 
»tre.se. v ^ are calculated using slmnlfî ,a" element of the 
(il,25). ® simplified formulas 

., ‘t- ■■ ..-J* 

however, they can also be lalluUted*1"1 <:alculated ln Practice; 

(A-A'O, where without hurting the accurfylflll™“133 

::: ^ oirr:::;;“ 
- h2 . Oa-± -J3-. (4.46) 

8 
Compose the variation of the ootenMai 

» »neu, keeping In mind in this 1,, fl T °f defo™atl°n 
kinematic hypotheses Then ^ basis of the accepte 

ÒU 

¿UOdl (5a) 

Remembering expressions for e *> +u 

deformation of the middle sur^'o" fT,"f0"6"13 °f 
(3.18) we have * th b iS 0f e<ïuations (3.13), 

«Or 
- îàr)+{2ôT[« +1¾^]}. 

(5.2) 

(5.3) 



Substituting (5.2), (5-3) into (5.1) and Integrating over coordinate 
ç taking into account formulas (4.5), (4.7), (4.8), we Obtain 

where 

7^08,+Aíjéxj + AijÔJtj + Sôy^tfftT. 

Requiring that 01^ be the total differential 

we obtain equations analogous to the Oreen equations in the theory 
of elasticity: 

Thus far there have been no assumptions about the character of 

the physical connection between stresses and deformations in-^i shell. 

This connection within the framework of the theory of shells should 

be expressed in the form of relationship between power characteristics 
(7*!. r2. S. ,li,, ¿i,, //), on one hand and deformation components (^. ** v* *i« **• *)• 

on the other. Meanwhile the introduction of such relationship is 

necessary, since without them the problem of calculating the shell 

is statically indefinable: the three of equilibrium equations (4.22) 
use six unknown power factors. Assuming that the shell is made from 

elastic isotropic material, and ignoring stress in comparison 
with other stresses, we write Hoake's law in the form 
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(5.7) 

umwffytmm;. .,., - ... 

'1 - T*0« -14^ M ^ T(0' - »*«»>• 
• ■ 

. 1 

whence follow the relationships between stresses and deformations 

gi-'(T-i?) (#i+1*»,), o»—TT^T(f*4-f“.)- 
(5.8) 

Using the obtained expressions, we calculate 

+M 

W~1 ^ 4 o,ée,4 T|,Ä®) (l 4 TÇJ")^ ^ 1*M 

5(1=P) J* [#? 4- ^4- 2»!«/, 4 “1 (1+^) (14-¾) ^ (5.9) 

¿ [*Í4r*42MV,4 

X(l+ ^)(1^ ^r)^ 
(5.10) 

With the aid of formulas (3.13), (3.17) we present subintegral 

expression (5.10) in the form of a series in powers of ç, rejecting 

in this case all terms containing powers of ç higher than square. 

[♦?4*^42lwi*, 447-)(1 4=»^o44,C 4(5.11) 

where 

A.« ('. 4 e,)*- Î (1 - |i) (¾¾ - x). 

^,-^4^4¾^ 42(1 -)1)4 4 

4 2 (»,*, — tft2) (-^-— —(1 — n) yx (7- 4 7-) 4 

/4 4V > » \. <i-i*)^/1 . i 1 \ 

(5.12) 



1 is not written out, since in integrating ovér 

the corresponding term in the right side of 

' 

After integration we have (5.10) disappears 

[(¾ + «*P—9 (1 — I») (*!*»—‘T)] * 

+ - MKXjH, - t5)|, 

TÎ [2(«i»*. - V»>(¿ ~ T?:)- 

V. V. Novozhilov [21] made a comparative evaluation of the terms in 

(5.13), introducing auxiliary quantities 

see that 



the order of unity and assume that deformations *|. Y. '[■ rr v' are 

quantities of one order. In the same case, when (*,. tv y)<C(*¡- fÍ-y'). 

the inequality V^cV*. exists; if, however, it is the reverse 

(e;. ej. ^<^(*1- *!• ^ then VitC.Vl. In all following assumptions relative 

to quantities ¢,. V Y and *i- *»• Y/ and and ViCiYx + vj and in 

(5.13) we can reject the terms V^t 

Thus, we say that the potential energy of deformation of a shell 

per unit area of the middle surface is expressed through the com¬ 

ponents of deformation of the middle surface in the following manner: 

^ ^ 7( j~r¡¡») [(^1+^-2(1 — m) (*!*!— -^-)] 4* 

Calculating partial derivatives of function ^(¢,. e,. v- xr T)- on the 

basis of formulas (5.16) and the Green equations (5.6) we obtain 

the elasticity relationships: 

r, = ß(e, +1»*,). Mx = D(x, + Jixj). 

S = B-L^ y /í = 0(!-m)t. 
(5.17) 

where the designations 

« Ck ~ Eh* 
D“W=P) 

(5.13) 

have been introduced, where B is called the cylindrical rigidity of 

elongation, and D is the cylindrical rigidity of bend for a shell. 

In conclusion one ought to say that recently in literature again 

attention has returned to the question of evaluating the terms in 

formula (5.13). Preferring a more accurate notation of the 

expression for the potential energy of a shell and formulating, 

consequently, elasticity relationships authors are guided by the 
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Equilibrium Boundary Conditions 

uouaxiy tne problem or shell calculation involves 

placements and the stressed state In a shell for a pr 

ternal load (surface and volume forces) and preassign, 

fixing the edges of the shell. The total system of e< 

describe shell equilibrium is three differential equi: 

equations in six static quantities (f,. r,. 5. Aiv mv H). , 

relationships, which connect the static quantities ant 

components (et> r* y. x* t). and slx differi,nce relation« 

aid of which the deformation components are expressed 

placements u, v, w. The number of equations is fifte« 

cides with the number of unknowns. Of all possible sc 

this system it is necessary to find such which satisfi 

conditions on the shell edges. Hence we see the neces 

lating the conditions of fixing of the edges of the sh 

which corresDond to int-.rvsH.,,4-..4.4.._ 
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of 4». The expression for ét' was already obtained in the previous sect! 

(formulas (5.3), (5.5)), so that designating through o\'K tß» and 

of».''S the stresses on the extreme sections and respectively, 

we can write equation (6.1) In detail. 

J J|f,*i + r,òrí-fSôy-f./Wlôx1-Mf|èx3 + 2/íÔT) R^dOdff — 

- {Jk^*(4)+/v ^7)x 

x (1 + '¿Sr) ^ -1J [pf ^(- 4)4- Pj 1) 4- 
4- p; 4)] (l -^-)(1 - ^RtrdiCdO - 

J J J 4" 4- ^ 4- -^) (l 4 -^-) X 

Ü+M 

j [of>é«<5>4- tgôt^*4- tg6®»ï)J X 

\hn 

X(l [0^6004- T<y 4- TfllrvO] X 

x(l 4--^)^^1==0. (6.2) 

where Zq, E+ u.id Z_ designate Integration over the middle surface 

-nd surfaces C*=±a/2 respectively, the positive direction of the 

pass of contours f1 and r2 coincides with^the direction of positive 

gain In coordinates ♦, so that j| •* J {...Jvd^p. Taking into 

consideration that by (3.10) 

Aii(î)sb6(( — 6®^* *=6®“"CéOj, 
(6.3) 

and introducing the designations 

«•M 

rl"= J ^(1 + 4)^- «!"= J ^(-1+4)^ 
+hfl 

-w 
4M 

-M 
4M 

ns- f n','(i+4H m?= J .»(1 + 4):«. 
—ip -k!7 
4M 

O'/'“ J ^(14--3^)^. /-1. 2. 

(6.4) 
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we transform the contour integrals In (6.2) to the form V#* • 
Î ' ■ 

'01 

tA[n «(-1)' J £ ^6w<*»] X 

x(l 4-^)^^-(-^./1^6.4^4 
* ~/U'/'ôéj-rt'/jWilvrff. 

V.-4 

-WÃ» 

(6.5) 

On edge = const variation ftO, is not independent; really, from 

(2.5) it is easy to see that the form of functions «(f). v(v)> «(f) at 
this edge entirely determines 0f(f). consequently, 

ôd,_l!i£L_-jV (6.6) 

(6.5) one ought to rewrite thus: 

1)1 J [t^0ba4 4 + 

4(^4 7^)^]^^^ /-IS* (6*7) 

The terms in (6.2) which are the work of surface and volume external 

forces on variations of displacements, with the aid of equations 

(6.3) and designations (4.12) are transformed to 

(6.8) 

But on the basis of (2.5) variations ôO,. 00, are expressed through 
three independent variations é». 6t>. to 

Mi -1J {Pt M»4 ^Mi»4 Pi too»] (1 4. ^-) (1 4 ¿-) X 

X V rffrfO f IJ [PÏ to:» 4 Pi WÜ4 Pi too] (1 - iÄr)x 

x(l /1^,to»4to®4X 

X(,+TB(,+TW*,vrff<W*“£ 

4 f, to — ¿j 60,4 ¿, 60,) /?,v d<f </8. 



(6.9) 

therefore the last two terms in the right side of (6.8) must be 

rewritten In the following manner: 

J J J J¿7-¿(Mvd0¿<r4- 
4 j J UbuvdQd't. 

u J J 60,/?,v </«1 rfO =- j J ¿i #, ¿O *P - 
— J J t, sin 0 bvR¡ dO d<f. 

(6.10) 

Integrating by parts and noticing that 

H, 7* J J "3S Ow) dO d(f ■— f J ^ (¿jVÔw)</0</ç = 
= J LjVÔtprff — J Ljxbwdy, 

(1,«, 6w) </0</«(= J It,/?, ftw)^ </0 = 0 

(in view of the periodicity of the external loading and variations 

of displacements in coordinate ¢), we will have 

— J J ¿,ò0,/?,v</<í </0= J ¿jòtwdç— j* ¿jò«rv</ç4 
X» r r, 

J J [-^7 1 7?*' ft"] 
J J £,60^?,vi/0rff=» 

— — J J[l-^ji6tM </«</<(. 

(6.11) 

Taking into account of the calculations, we find that the right side 

of (6.8) is equal to 
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We 

- ( J {(*> + -£> + (*,- + 

transform also the expression for 

(6.12) 

+ ^, + /11,^+2//61)^ «oing from variations of deformation components 

to tu. tu. te, U3lng formulas (2.5), (2.16), (2.26). Make the nece3sary 
calculations: 

//r.ôe.rflo« / /^[-¿.^(6«)+ 
s* •, « 

•> *" 
= // -^(T^òaydOdff— J J ¿(r,v)6«<ffrfe + 

*, 11 

+ J* J f, 6w dOd<f= J r, — J r, òvTiff+ 

4 / /1¾ 7¿r Ä<r»v)4«] 
z> 

* . î* 
/ J Aí, 6x, œ— J J A1¡ -Jj- (6d,) /?,V </0 dy mm 

- — j Mtft9xdf^ j j ¿(-M.vJX* 

X (iJr ^)rf0rf,f “ - J [ji,ò*i- + 

+ J [¿I, 60, - ^ (/M,v)6ip] v^- 

“//{^¿[■¿T á(l,‘v)]Aa' + W6*} 

After analogous calculations we have 

/ / ò”ÓYrf-u= J Sbvvdq — J Sbwtftf — 
" / J l¿ á 6v^ 1 ^ (SRjbu f lîjîl 6v] rfl8 



J J r!!érs^ ^ J J [t?Î7 ^ (M|)^ 4- Air -f- ôtp] 
** Z» ''»J 

J - J Mn cos 0 ôt-v df -f f Af3 cos 0 terv dç -f- 

*• r- r' 

+ JJ {-¿T W iAÎ> ct’s 0) ^ * 7¿7 [t <^.)] - 

\ àÿ (AWi) à*’ ~h ~7fy~ to I 

j^o-h 

sln8 à 
vUT 

»(AO 
V ^ 

L*-*r' 

cos 8 

X. 

J J «fialôo.-iiçii.+^.íiía 
v»r 

+^ir--F]^ 
àvjvdf — 

-2 J(i« to+«ÍÜ ôtrjvtff — 

-IJ 
X» ' 

Now we can write equation (6.2) in the following form: 

J^J I[~ US',riv)4- f|/?ico*0 - — 2-^- + ^0058- 

~ *r ^ Mf’v> - - *.'•*.] *« + [- R^-SRt cos e - 
I « 
IS 

_<1 (5v) 
tm 

sin 8 à 
Ó8 ^ **n 0) “ * // co* 0 — // —*- cos 0 sin 0 — 

^ TV ^ + i,#, .1. 9 - £Av] V +. 

4[_ w(v+4í1«2'-,,,>cot,,^cj»)— 

-s(7a'"*>+«-^+AfL +tlÄ1)+ 

+ 7-,.+ ^,.1,0- £,«,.] ^10+^(-7-, + ^)6.+ 

+f- (s+^-)++ g)}*+f- l™+^Çïl_ 

- c.+(«"+7^)]»* +(«,-00,},^- 
-i/{(-r, + ^o.+[-(í+»)+(sS+í0]t.+ 

+ («i1' + 7 -(+-)] to + («, _ /,1^60, jvi, „0. 
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’ V. .. . ; ’ 
mm -■■i 

'0 I 
i 

S'&h.V:- • * •.«•‘"I 

- 

The three O’- variations are independent throughout the donain 

Z . On shell boundaries F,. T, there are four independent variations 

J?to. ta1. M>1- Equation (6.13) oan be identically satisfied only when 

corresponding factors for independent variations in surface and con¬ 

tour integrals turn into zero. In this case the subintegral expression 

of the surface integral supplies the already known equilibrium equations 

(4.12), and the contour Integrals supply boundary conditions. Re¬ 

write the contour Integrals taking into account formulas (4.23). 

Then we will have 

: 

f {(- n+n") »•+[- (s+^-)+i*1«+x-)] ^+ 

r' +[_(„,+i £)+(«,+iif)) ftr+ 
/-1. 2. (6.14) 

If shell edges f,, f2 can freely move (quantities to. to. hv. 60, are 

independent and can assume arbitrary values), then for vanis ng 

contour Integrals (6.14) execution of the following conditions on 

r. is necessary: 
t 

r,—tY\ (s + T£-)«s»? + -¿T' 
(6.15) 

In the same case, when on one or both edges displacements J 

v**Jn. w-Jn’ (6,l6) 

are assigned, corresponding variations turn into zero and contour 

integrals (6.14) cancel out. We can imagine also combined boundary con 

dit ions when on one edge partially displacements, partially force 

are assigned, for example: 

* —*<n. w—*n, 

s+^.=sKf+^. 
(6.17) 



etc. One ought to note that although the stressed state of the 

edge Is characterized by five static quantities S'/,1. ■M1/'. H\‘!- 

torsional moment W# is in (6,.15) only in combination with shearing 

force and tangential force and correspondingly the number of boundary 

conventions is not five, but four. A lack of an independent boundary 

condition for ff12 means that on the section of the boundary 

system of forces 

(6.18) 

is replaced by a statically equivalent system consisting of 

J V iff = J AlJ'hjV <fq> (6.19) 

two concentrated forces on the ends of the interval (Tn. fy). directed 

along the normal to the shell and equal in magnitude to MV [-*19]* 

(Fig 8). The static equivalency of both systems is checked easily 

directly. First let us note that 

and taking into account formulas (1.20) and (1.24), we obtain derive 

(6.20) 
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44» à 

Pig. 8. System of forces and 
moments on the edge of a shell 

then 

J itfN ¿<P -t- — [Wl2*]tl *= J*#rtftV rf(p, 

J Mi'^v </<F + (r X M?*],. — [r X M?»]». 
r. 

tff + Jr X + J (Mi'’+ Miti) 
Ye 

-r [r X M*«],, — (r X M?»]», 

rX^,,,vrf«H- 

vrff 4* 

Calculating the second Integral of the right side of (6.22) with 

using the integration by parts and taking into consideration that 
1 dr 
Vd*“*1» and TiX» — »». we obtain 

J [r X 4 AC] V dn 4 [r x /#15«]^— [r X « 

“ / lrXArt"-t 
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Therefore on the basis of (6.21), (6.23) we can write 

J rf<r = J tf/'v dff, 

r# r/ 
(6.24) 

5 7. Static-Geometric Analo^y. 
Stress Functions 

System of equilibrium equations (4.22), (4.23) connects six 

static quantities (Tv and components of load £t. fj. £j. 

In the absence of a distributed external load the corresponding uni¬ 

form system of equations has 

Tj. S, AI,, Afj, H)a (xT,) — A,?tcos6-{- 

i o ^ i_ o àH i 1 d(vAf|) tâ a ä + -Alj::;0 = O. 

Mr,, fj. 5, Al,, Al2. /■/)==/?i -jj~ co* o ■+■ 

■ 2//cos 0 4-2 sin 0 + 2// /?, diif, Ä 
7?r-3r“0* 

La(Tv M ^2* cosG4~j -j- 
, d \dH , 2HRX COS0 , P.dAM * ^ . „„ 
+ -ï-l-Vip]-vri-*>s,i'or>=0- 

(7.1) 

Comparing (7.1) with equations (3.30), it is easy to see that the 

left sides of the equations of continuity and uniform equations of 

statics contain the same differential operators M ¿2. ¿j and the 

quantities 

(7,. xj. (2//. Y). 
(TV X,), (Al,, tj). 

(S. - T). (Al,. - e,) 
(7.2) 

are in these equations identically. This fact bears name static- 

geometric analogy. In a new form of notation the equations of con¬ 

tinuity (3.30) look thus: 

-¾. j)- 0. /=»1. 2. 3. (7.3) 



By the very meaning of the equations of continuity it is clear that 

the components of deformation, while expressed through displacements 

u, V ana w using relutJ.rnships (3.13), satisfy these equations 

identically. But then from static-geometric analogy it follows that 

static quantities (Tl, Tf. S, Mt, M2, H) also can be expressed through three 

stress functions A, Bt C using formulas analogous to (3.13): 

r.“*»«''•»O— 
.ÎS*)_ 

CM 6 / ! dC A \ 
\TTxiÃf-ii;) 

5=-x(A ß. 0 = 

1/1 dA 
-■sriT^r- 

iM2 ■= (A, 3, O — — . 

B. 0«=-l~—l(y1co*e-f Csinö). 

Bco*Q\ 
— 

W = -j Y (^1. B, O: l dB , \ dA ScotO 

(7.¾) 

and in this case uniform equations of statics , (7.1) will be identically 

satisfied. Functions of stress were introduced into shell theory 

by A. I.Lur'ye[13J and A. I. Gol'denveyser [6]i while initially 

there were four stress functions, using which th^ expressions were 

written out fur the eight quantities f,. 7\. 5^. S^. Ai,. Hn. which 

satisfied uniform equilibrium in the form of (^.16). However, during 

the transition to generalized forces T+S,.... H and the corresponding 

replacements of shear forces Q0 by the quantities N2 the 

fourth function disappeared. In (7.¾) there are only three functions 
■2H A, Bj c. It is easy to see that the combinations of forces 

1 ÕH * 
and <vi + 7-g^-. which are necessary for boundary conditions (6.15) 

are expressed also through the three functions At Bt Ò. Really, 

using the first relationship of (¾.^) rnd expressions (7^), after 

the simplifications which are involved in executing differentiation 

with respect to coordinate 9 in expressions ^.(1^),^.(1^11), -¿(vAf,) 

and the others, with the aid of formulas U.33), (1.2¾). (1.37), 

we ootain 
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co» ft dC , »In 9 âA 
V* V* àif ’ 

1 â*A co» 9 ¿S 
V* Af* V* ^ ' 

(7.5) 

After the aforesaid two ways of solving the uniform problem are out¬ 

lined naturally. The first way involves the substitution into equilib¬ 

rium equations (7.1) of expressions for generalized forces .h 

through components of deformation, i.e., using elasticity relationship: 

(5.17) and the subsequent expression of deformation components through 

displacements. As a result we obtain a system of three equations of 

equilibrium containing the Poisson coefficient 

L](a. *. w. n)**0, /=1. ?. 3. (7.6) 

The second way consists of using expressions for generalized 

forces through stress functions. In this case, as already was said 

above, the equations of equilibrium will be satisfied, and it is 

necessary to care only about execution of relationships of continuity 

of deformations (7.3). Actually, reversing relationships of elasticit 

(3.17), i.e., expressing the components of deformation through 

generalized forces 

•i “ Kt “ (^i ~ 

*j =*-gj (7* — p7Y>. ^ = (7.7) 

we see that the components of deformation also can be expressed 

through functions of stress using formulas (7-4) and there remains 

only to subbordinate them to equations of compatibility (7.3), which 

leads to three differential equations in functions A, Bt V.: 

lUa. b. c. —|i)=o. /=1. :. 3, (7.8) 

of completely the same form as (7.6), with the only difference that 

instead of u they contain precisely the same - y. The change of 
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sign of y becomes obvious if we 

If on the shell edges we have 

i.e., on both edges of 0^. displacements m, v, w and angle of rotation 

0| are known functions of coordinate ¢, then it is necessary to find 

a solution of equations (7.6) which would satisfy these conditions. 

Let us assume that such a solution is obtained. Then it is simple 

to understand that the solution the problem in displacements under 

conditions (7.9), after replacing y by (-y), is also the solution 

of equations (7.8) at values of stress functions assigned on the edges 

of the shell 

A1*, fl"*. C* 7-1.¾ (7.10) 

while (7.9) and (7.10) are the same functions ¢. But assigning con¬ 

ditions (7.10) is equivalent to the imposition of conditions on the 

static quantities 

7V>. Mi*. (5*™)"’ and (at, + ±"Lf* (7.11) 

on the edges of the shell; really, from (7.¾), (7.5) it is immediately 

evident that if A, B, C and ■§—A on the edges assigned functions of 

$, then the renumerated combinations of static quantities also are 

known functions of ¢. In this way, in the absence of distributed 

loads the problems of calculating a shell with assigned displacements 

on the edges (conditions (7.9)) and assigned forces (7.10) on the 

edges are mathematically equivalent. 



EQUILIBRIUM OP AN ELASTIC SHELL OF REVOLUTION 
SUBJECTED TO AXISYMMETRIC AND BENDING LOADS 

8 8. Method of Separation of Variables 

Let us examine a shell of Resolution closed in circular 

direction. The stressed state, deformatiors and displacements in 

such a shell should be periodic functions of angular coordinate ¢. 

We will look for a solution cf system (6.1) <n the form of trigonomet¬ 

ric series 

TI = (r » (ft) CO* + IT sin **). 

f j — (^*2(*5 cothf-\- TV* *ln *f), 

m 

S *= 2 {${*) *1" Af-f- S(k) co* *f), 

Nl —Q(Nmca% *v4 M*’*!"*t). 

Nt = (Nj ,*, *ln -f M*’ co* kn). 

= (Mi ,*, cos 4- AfJ*’ sin kn), 

"■-.S'* (ft) co* -+- iM‘*’*in k%), 

H ■“^(//(ft)*ln 4 /f*1 r.os kq). 



. 
: 

ib 

f * " ,5 (*« i«co* +*i* *,n *?> 
«o 

e* =,¾ (e2,*)COÍ *f + «i*1*»« *f> 

O» 

T = 2o(Vi*) sin -j~ eos *f ), 

00 

x' xíw*ín*f). 
OP 

^ =,¾ K(*,co* *f + »4W «in *f). 

T == ^(T(*) *,n *f +14*» eos Af). 

m 
=^^(^1(4) eos *f-|- Oi^sInAf), 

m 

eos *f). 
i» 

" — So(«(») coiAf-f «<»> Sin Af), 

m 
V — jSí^i*) *ln Af -j- w“* eos Af ), 

O» 

* = ^(»(WcosAç-f «K*»sin Af). 

(8.2) 

(8.3) 

Coefficients of serles (8.1)-(8.3) are the subject attribute 

functions of coordinate 0. It is natural to assume that a solution 

In such form can be found if the load on the shell and boundary 

conditions contain functions also representable by Fourier series. 

And namely, components of the distributed load can be represented 

by an expansion of the form 

f,(0. T) “ S(f,cos Af + *1*» sin Af), 

OÙ 

faC*. V)^(?l(t)sinAf-f ff>cosAfj. 

er 

*.(«. 0-,2(¾ {t) cus Af + f4*>sla Af). 

(8.4) 

i 

« 

< 

where f,,*,. ?2(t). V,,,,. ?<*>. are known functions of coordinate 0, and on 

th° edges 0 = Oj (/=1. 2) are preassigned displacements uin. t/0. v,n. el0 or 

force of T\n. , (a/,-f7-^r)<0.Ai\n. or their combinations, also 

representable in the form 



2 ("f»)cos *<T + ' sln ), 

u» 

= 2 (®(*) sin *<r -j- tK*> ' cos *q), 

OB 

tpin cs 2 (*(â, cos *q>+se^*> ' sin *q). 

•V — 2 (*í <*)cos ^+♦í*’ 'sin * f). 

=* 2(^{(*)Cü**SP + *f)« 

(*+^r- 

* S [(SW+-¾1)4 *,n *f-f-(sW+ -Ç-)1 cos *t] . 
â«# 

s=s 2 (Aíí (*) cos -j- MV*11 sin ). 

{»Mzr- *” 

£[(«.,« + ^)' co. H + (m*1 -^.1- »,]. 
*-# 

(8.6) 

where *'4). ire*»' and the remaining series of coefficients are assigned 

numbers. 

Then the total system of differential equations, which describe 

the equilibrium of a shell of revolution closed in the circular 

direction falls into an infinite number of systems of equations in 

usual derivatives of the eighth degree each. On the bases of (8.5), 

(8.6) boundary conditions are decomposed. In this way the stressed 

state corresponding to the fe-th harmonic of the form cos H (or sin 
fe$) in the decomposition of load is looked for independently of the 

others by solving a system of usual differential equations of the 

eighth degree under assigned boundary conditions (four on each edge 

of the shell). 

To the zero harmonic (fe ■ 0) corresponds axisymmetric of 

deformation shell. The total system of equations which describe the 

axisymmetric deformation consists of equilibrium equations 
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SW^bIçJLy«”. 

expressions connecting deformations and displacements. 

-ff (vT, (0I) - r, ,wä, «o* e + »A/, ,0 4- ¢, — o. 

■4r (vN, io,) — f, (Wv — f* ,0)^, «inô-Hç, ,0,*/?, *= 0, 
tm 

N, wxRx = ff (vAf, ,0,) - AI, ,o)#i co. 6. 

w Ks“’+tt)]+(sm+t»t) *• co,'+ 

A^v/Î, = V Iff- + 2/i<0*«, co* 0. 

elasticity relationships 

r, (0, == B (e, ,0, -+* P*j io»)* AIhoj =» O (H, ,0,4 P** ¡o))* | 

7,,0, = 5(^,0)+^1(0))- (o) = D (^ i» + M’S i«)* Í 

e»««=æ‘ir(“3ÏL+w‘*)* 

1 / 1 (Hr,* «(.) \ 
*1 (0) • 

*J.0)S 

*401. 

\-i5-- 

i 
Tfr“25" 

1 d l f**'»Int\ 
57wl“r~J' TTTS 

„(•I COO # 
*“vÂÎ 

(8.9) 

(S.xO) 

(8.11) 

(8.12) 

» /*».•) 
M to) — TT l ju -( *»0) )’ 

Of. 
t-W olo 0 

(8.13) 

(8.14) 

The six deformation components r,,M. e,,0>. *mw’W ^ ^ are inter 

connected by three relationships of continuity, which turn into 

identities upon the substitution of expressions (8.11), (8.12): 

ff (V*2,«) - Rl*l <0) CO* ® (*9 (0)V) + el 10) COS Ó = 0. 

yy-2 (o) 4 *i ir»Rt 0 +" isr [t^ W(vej ‘0,) “ *'<0> co# °] “ 0’ 

(8.15) 



^ (vi«”) - /?, cm Or»» -f- Y10’ co* 0 -f- S|q g _j_ 

H—^-«inôcofOv^ŒO. (8.16) 

The obtained system of equations should be Integrated taking into 

account boundary conditions, which correspond to the „un 1 

decompositions (8.5), (8.6). for example at e . „ 2 r™ 
conditions should hold: ’ 64 6 oUowlne 

©W* *= p(Ot 

'I« 

1 

I 
(8.17) 

or 

71(0, = 71 

A/j (3) mm M{ 

5^4 

1(0,- 

W<»> 
~^r 

(8.18) 

solving rr;;.r r COmblnatl0nS °f (S.IS). ways of 

right sides of (6 17) (s'le)0"^’ iT ^ Pr°blem of how the 

formulation of 0^ ^ntV^d“6 
the following sections (i, 9-14). ’ be C°nSldered ln 

in the r, t e Independent systems of equations are obtained 
in the first of which are quantities noted by a lower Index H 

and in the second by an upper. Por the lower Index 1er 
of the form r lndex* for loads 

ViwCMAv, fcwsin*ç, falt)co$*ip. 
(8.19) 

we have: 

equlllbrlm of equations 

«« ivr, ,*») — 7j co« 0 ¢+) */?, fs,t) 4 -^ÍLj 4. 

äf/ tf __ “i vA/i<*, + V1(*,v/?,-0. 

« rl5« + Trjj.ñ*#/.!.*+(^.,+-^-)4,:0.8+ 

t *ino +*4*^=0, 

(8.20) 

1 MÆâtd. 
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-+- (mN HR .N, 'h lã íi») 11» 

— rii*)Â,*l«Ô 4 

Mj ,*,/?, CO* ® 

,/?, cos e ^ kR^lj tÄ, 

(8.20) 
(cont.) 

A/ VÄ fv.M »>) I l»l (*)• 

(•) 2// vP 
*<»> 29 

äiw 

|*y' 

relationship of elasticity 

Ti.»)- Ä(«, U)4 ^<â)). iM, 1W -flíx, ,«)-f »Mi.*»). 

^ (»» *= Ä (e, l#) + M», ,*>). AI, ,*,-/) (Xj lW 4 M«,,»). 

Sit) - B Tw. hw . D(| _ 

equations connecting deformations with displacements 

*i (») 
, 1 /*«<*) 
■»rr pi*) )• 

*»«*>■“(—)~~ï f"V(*■*)co*® 4 »u,«ta®V 

Y«*>”Tf7^®-(4)~7- 
*.*,co»S 

Ki i»)1 

y 
•«*)\ I * / i #w(W 

T;iã\ir,~ 

I» „ c<*9 /rfg<»i \ , 4i 
^l*> ^rl“25” - *i»)j+vT ».».(Ijp-*»,*,»In®. 

•n.*, *i», (—)Ü71^1 y « /(4-) f(+>“WT 
t,'»» fo,0_ 4 * *»,*> - 

«-)^T-29-(4) T3?¡- 

A „ 1 /rf,r«»* 

^*U) 
- *»!»» 

(■+>~r" 

■«»»)• 
•.««ne 

equations of continuity 

(8.21) 

(8.22) 

(8.23) 

mm 



Æ,k,iwc°* Ö(+) Ä|*Ti*>(—)*Y<» 

1 <f(v«t4at) 
— 7?7 55 f-«!.*» co* 0=0. 

(+)- 'y-^0.01,,)4- Í^Lco*0 + 

+ —Cn»)“®» 

u)^i*,0®+'ar [(+)7^—** <*)cosö+ 

, 1 *(»«n*»ïl — ,. 1 *Ti*» — R,co»9 ¡jRi. _n 
+ T?T ”"50 " J(+)* T TT <+>**'•> Í * „ «ï w*50 

(8.2ÍÍ) 

Boundary conditions which are purely power or purely geometric have 

the form 

Tnm—Ti <*»’ 
, w«*i U . W«*»V 

N,± <•» ± Ai,.**-* 

(8.25) 

*<*)“*/«• v0)^*1»'.' *'(»»“■*#«* “h 2)* (8.26) 

The corresponding system for a load of the form 

4*>*lnftf. (8.27) 

is obtained from equations (8.20)-(8.26) by raising the index (fe) 

to the top and replacing (fe) by (-fe)» which makes the signs of the 

individual terms change to the signs in parentheses. In each of 

these cases the number of equations of the obtained system can be 

decreased in two ways. The first way involves excluding from the 

equations of equilibrium the quantities AT,,,,. N,m (or N\k\ M**) and 

expressing forces and moments with elasticity of relationships and 

equations (8.22) through displacements, writing equations of 

equilibrium in displacements, i.e., obtaining three equations in 

three unknown functions w,*, (or v**'. w(*’)- The second way is 

solving the problem in forces and moments. The basic unknowns are 

six static quantités TIW. Tim. S,,,. MIW. Miity H{t) (or A". Ak\ .»«1*'. M*'. //*’). 
determination of which requires six equations. The first group of 

three equations is obtained from equilibrium of (8.20) after 



excluding Nl{t). Nut)(N\ \ the second of three equatlon8 can 

be obtained by writing equations of continuity (8.24) in forces and 

moments, which is easily done with elasticity of relationships. 

In both cases a system of usual differential equations of the 

eighth degree is obtained in rather complex form. However, at fe - 0.1 

there is no reason to solve the problem in these ways, since it turns 

out that in these cases the degree of system of equilibrium of 

equations (8.7), (8.20) and continuity of equations (8.15) and 

(8.24) can be lowered, whereupon obtaining resolvent equations is 

facilitated by introducing special unknown functions [49], [50], [12], 

[42], [44], [21]. Decreasing the order of the system of differential 

equations by m units is possible if m first integrals of the system 

can be found. The first integrals of the system of equilibrium 

equations have a simple mechanical sense: they are the conditions 

of equilibrium of the finite part of the shell contained between 

extreme section 0i (i - 0 or 1) and flow section 0. At fe - 0 the 

load on the shell and the condition of fastening are axisymmetric. 

For the finite part of the shell contained between extreme section 0. 

and flow section 0, two conditions of statics should be executed: 

1) the sum of the projections of all interval force onto axis of 

revolution OZ should be equal to zero, 2) the sum of the moments of 

all forces causing twisting around axis OZ also should be equal to 

zero. External forces refer to all loads applied to the shell and 

its edge 0i; the internal refer to forces 8U, Q and moments # , 

#12 acting in section 0 ■ const. 1 

Loads of the form 

fi <»«>»?. Vj(i)«inf, (I) cotf, 

vy»co«f. rf'>slnf 

(8.28) 

(8.29) 

subsequently will be called bending, since they tend to bend the 

shell like a beam. Load (8.28) give rise to a bend in plane ¢-0 

and a distribution of forces and moments symmetric in this plane. 

Load (8.29) give rise to a bend of the shell in the plane perpendic¬ 

ular to 0 = o, and stress distribution of antisymmetric in this 
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‘’“.7» :,rr ;;rrr r- >•«. •>. 
sum of moments of all fnrces relativeSh0UlCi ^ Zer°’ 2) the 
Analogously l„ the oase 0, a t0 " should be 2ero. 

♦ * 0, we obtain two egulllbri,, ^ Plane perPendl™lar to 

equation of forces In projections' expressecl by the 

°f —» « projections ::“ :;,::;Mia oy an<: by the 

“ «“:rcr.rr: ■1 -...... 
relationships which connect unknow . there are tK0 flnlte 

*1> *12 and assigned lnT, Statlc quantities r , s „ 
«i 1¿ o«»J-Knea load components 1 12* » 

°f equilibrium eguatlons (8.: :: ?* ths flrst ^tegraÍs 

static-geometric analogy we c» the 

first integral of the system of equliLri “ S°0n 38 ^61-6 18 a 

r; alS° be a c°rrespondlng Integral oTtT eqUatl°nS> the" there 
In this way, l„ the problem about «,i.:Lt :°ntlnUlty °f equations. 

. ’ 0) an<i the problem of bend (fc - i) if T ° °f She31 llefor”'atlon 
the degree of the basic system of . I Possible to decrease 

fe ¿ 2 as the internal forces, as also^8 !° UnltS: at 

section of the shell form , '.lf 1" 6 l0ad ln 

Of forces statically equivalent t'o LT IT"' ^ 
auuh an external load (É > 2) w. in ao<:ordance with this 

contrast to this the load’represented "Seif'balanceii-" In 

corresponding to A . 0.1 we can » y te™S °f serle3 t8-1*), 
• we call nonself-balanced.» 

equilibrium ZlTllT °f the ayata” ^ 

of the .hell contained between tw^8“:; ^ eqUlUbrlU" of a"y Part 

executed because of steadiness of a lo^dt ^ ^^-to-aticaUy 

S 9. 
^^l^llf&âtlons^ 

eben under load (a-iq)1-:::;:;:::;::1"8 the deformati°n °f a 
fifteen equations: three 

71 



,,ÄMI 

differential equilibrium of equations (tí.20), six finite relationships 

(8.21) and six differential equations (8.22), and contain a 

corresponding numbr of unknowns: six static quantities, six 

components of deformation and three dlsplacemencs. Above we dealt 

with methods of reducing It to a system containing only displacements 

or only forces and moments. However, we can convert system (8.20) to 

(8.22) in another way, selecting as the basic unknowns four static 

and four geometric quantités. In this case the system can be 

represented in the form of eight differential equations of the first 

degree - brought to "canonical form" [36], [37]. 

Prom considerations of convenience of the integration of the 

system by numerical methods for the basic unknowns are usually 

combinations of the forces which figure in the boundary conditions, 

namely : 

fi<*) W(*) = A/j,„ ± —Af|<„. (9.1) 

and displacements 

«(*)• «(*)• •<*)• (9.2) 

The system is written in canonical form in Table 1. 

§ 10. Twisting the Shell 

It is easy to see that system of equations (8.7)-(8.16), 

describing the equilibrium of an axisymmetrically loaded shell of 

revolution, breaks into two individual systems, while the first 

contain quantities with a lower zero index, and the second contains 

quantities with an upper index. They correspond to two different 

forms of shell deformation: bending with elongation (first system) 

ar¿d twisting fsecond system). The problem of the twisting of \ 

thin-walled shell of revolution is solved elementary. Reall , the 

first equation of (8.8) after excluding from it -i^0^ (subsequently 

within the limits of this section the sign (0) is everywhere omitted) 

and using formula (1.24) can be written thus: 

-Jj- [v -)- 7^-)] + (5 4- j Ri cos 0 + ^ cos 6 + 

■qa\Rl=‘0. (10.1) 
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or, taking into account (l.^S) 

W [** (5 + 7^)]+-ar(v*in0")-f ç,v*Af, « 0. (10.2) 

In this way, it is easily located the first Integral of equations 

(8.8), which is the condition of equilibrium of moments of all 

forces twisting a section of the shell (6n, 6), 
• >/ 

(10.3) 

In the right side will stand the constant of integration, while 

v0 is the radius of the parallel circle in section 0 - 0g (S+T¡f-) - 

value of the combination from s and ff, written in parentheses, at 

9*0 
A 

If we attempt to express the combination S-fwith (8.10) and 

(8.12) through v displacement and its derivative, then it is simple 

to see that those terms of this expression which proceed from the 

applied twisting moment H will have the order h2/R^ in comparison 

with the basic components which proceed from S if the amount of the 

latter is taken as unity. Since in the creation of the general 

theory of thin shells an error in h/R¿ in comparison with 

unity was allowed, then terms of order h^/R^ in the presence of 

terms of the array of unity all the ¡more should^ be rejected. This 

is equivalent to the fact that in order tc set 1 

ii and 5g. 

The second approximation equality follows from the first and 

formulas determining the magnitude of S (4.7). For the basic system 

of equilibrium of equations (8.8) this means the possibility of 

replacing it by one equation 

-35-(^0)+¾¾ cote+ftv#,—0. (10.4) 

Thus, with sufficient correctness, the nonditloa of equilibrium 

of a finite part of th shell can be rewritten in the form 

(10.5) 



«ter attribute or amount of tangential force 5 , s dism 
is governed from on,io*--i_ 12 s displacement v governed from equation 

. ST&-—= -¾^. 

solving which we will have 

i» 

(10.6) 

(10.7) 

where C - new constant of integration m 
then <7 - 0. integration. Moreover, if at 6 = 0 y = 0> 

5 11 * Axipymmetric Deformation 

:r t irr.“ “ nr.r r;:;r:;r,r:;;rr * 
r;sL:;.r:" t““' ---- 

the first and second quations of (8 n MUltlPlyine 

respectively and combining, and the second time" bT Lnl ^ ' 

and again combining, after regrouping terms we obtain “ 9 

4 
Ha Iv(— sin 0 -f .V| cos 0)J -f- ^/?,v = o. 

4-iv <rico* 8 + Af, sin 8)| - r,/?, 4 =, o. 

v^|‘Vi = ~Í¡Q (v.M,) — Afj/?, cos 0. 

(11.1) 

where 

coso —sine. 1 
?. = y.sin0-f Çjcose. J (11.2) 

Integrating the first equation (11.1), we have 

2.1V (T, sin e - yvk cos 0)=2.-1/ **lV rf0+/¾. 

¿ (11.3) 
The left side of ill 3 ï i «s 
forces in the resultant of system of Internal 
i orces in the current shell section ft 

revolution, p° - constant of 1 1- * cted alonS the axis of 
edge section I Us nTth e^al to axial force in 

It is simple to obtain thé*« tT'8e0"etrlC ‘ fr°” <U-3) obtain the Urst integral of continuity equations 
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(8.15). For this in (11.3) one ought to set q ■ 

another character the constant of integration and 

by **. 

v/v, by —(7¾)-*1^,co*e]. 

As a result of the indicated action we obtain 

vx2 sin 0 + ^ \~2ti' ^ve*) ““ *1^1co* ®l ^ 

Substituting into (11.5) expressions for deformation through 

displacements (8.11), we verify that the constant 

ci“=0. (11.6) 

One more equation of continuity, corresponding (in the sense of the 

statics-geometric analogy) to the second equation of statics (11.1), 

has the form 

-^{vcosO>^ —e,/?, cose] (11.7) 

Rewriting (11.5) allowing for (11.6) and expressions (8.11), (8.13), 

we derive the equation 

•jj- (ve,) — e,/?, cos 0 — 0,#, sin 0 *» 0. ( 11.8 ) 

Substituting int.' (11.7) expressions for curvatures x, and x, 

through angle of rotation #, 

yli ~R7~W' ’‘s“-(11.9) 

it is simple to verify that it is fulfilled identically in force of 

(11.8). In this way (11.6) is the only condition which connects the 

quantities r,. e,. 0, during axisymmetric deformation. 

Returning to the equations of statics - to the second equation 

of (11.1) and to equation (11.3) — it is easy to see that they will 

be identically satisfied if we express forces T^t through 

stress function V in the following manner: 

vT", V cos O + ^i (Ô). T'a = • 

\Nl = K sin 0 -i- <bj(0). 
(11.10) 

0, designate by 

substitute 

(11.¾) 

(11.5) 



where 

(11.11) 

Using (11.9), (11.10) and elasticity relationships (8.9) we can 

write the expressions for e1, e2 through stress function V, and 

bending moments M2 express through function 0,: 

(11.12) 

(11.13) 

In this way (see equations (11.9)-(11.13)), all deformations of 

force and bending moments in the shell proved to be expressed 

through two basic unknown functions V and 0,. Such a way of solving 

the problem was first shown by Meissner. He obtained two resolvent 

equations connecting the basic functions. Let us note that the 

force of function introducted by Meissner in the case of the 

heterogeneous problem (i.e., in the presence of distributed external 

loads and tensile force) differs from the function introduced in 

[12]. Here and subsequently we will use the ¿leissner-Lur*e function, 

since in this instance the resolvent equation is obtained with a 

simpler right side than in [49]. 

§ 12 Meissner Equations 

Let us write out the Meissner equations for a shell of varying 

thickness, supposing that the thickness of tne shell is an even 

function oi coordinate 9, differentiable the necessary number of 

times. For this let us substitute expressions for , and 



■•:*'*?* *¡ 
pMri'. 
Mié 

méi- 

e-p e2 through Meissner-Lur’e functions into the third equation 

of statics (11.1) as well as into equation (11.8); as a result we 

will obtain two equations in V and 

V I/’I' , rfK rf /1 V VI , r á (f0»e\ /?,cos*01,, 
■*;-*¥ ^irh^iïTçrjJ—~-\v~ 

— Ek(fitaHt *ln 0 = |ia J -f- ¢,, 

+^i— 

where the following designations have been introduced: 

„ MO) 
^W-l*7)’ ““IT* 

(12.1) 

(12.2) 

- thickness of wall in a certain characteristic section of the 

shell, for example in secion 8-0.. 

By changing variables 

v-iV*. 0,--¾. (12.3) 

where fc is a certain characteristic linear of shell dimension, 

equations (12.1) are brought to the form 

tf*l\ , /3a' , /?, cos 6 
“rf5i"+\"r+ y— 

+ ^,(^-+4-(2 + ^ 

I áR, \ iV% , 
■»nr)^r+ 
cost a' 2 i*x | nig,Wat 

* to,2«] P| iln0 1 Ä,f rf , ^cost^l 
v° iv ~ã~ gTi^iy yj-J+—s - 0«J » 
R, co* 0 

‘¡S' 
1 rf*A<rr, , IB r3a' R, to,« 

- 

I1r4-Í- V* J+^ to a ^»3 vi* qí ' 

« TJT"*#' ’ » 
R, co*( 

|i/?i sin « 

(12.4) 

where 

12 (i — ti1)«* 

*î 
(12.5) 

From equations (12.4) it is evident that the thickness of the shell 

should be at least a twice differentiable functions 0. For shell 

of constant thickness A(0) = A, — *, a = 1, a'«*a'«*0. 4^==4^ and equations 

(12.4) are simplified. The assume the form 
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_i: 

rfVg IR, co»« 1 rfÄ,w0 tine Ä?co»?e\ 
•3F+V“^-’»r^-sr + M-r-iT-j- 

«, Ä*«ine Ä, f ,/(6, /?, cote i - = TT l»1-50-+ —T-J • 
rf*»0l/P,cosO |»/Î, tin 6 /??cos*e\ (12.6) 
■»+l~—7fr^-3? -V-j-^ 

, , ^ /i*ln« ... /?* 

In this way, the calculation of an axisyminetrically loaded shell of 

revolution is reduced to the solution of a system of two differential 

equations in two variables V and ©j. through which are expressed all 

forces, moments and components of deformation in the shell. 

Methods of solving the obtained systems of equations (12.4) or 

(12.6) will be considered below. Here we will be limited to the 

remark that for thin shells parameter 4y^ (or 4yq) is great in 

comparison with unity, and this fact essentially facilitates the 

creation of an approximation solution. Let us note that equations 

(12.6) , as was to be expected, as a result of statics-geometric 

analogy have a symmetric form: operations which are accomplished in 

the left side of these equations on F0 and 'VQ differ only by the sign 

on the Poisson coefficient u. This allows replacing two equations 

in Kq and Ÿq by one equation of the second degree in the imaginary 

function 

0 = ^-2/7%. 

A i (Rtc<*6 1 dR^da nR, tin 0 - / _/?;sl„e /??cos*e\ 
¿v + -~w) 50-- ° + 0 i2'Y3 -½-V-J! 

(12.7) 

(12.8) 

where 

i - imaginary unit. 

0 = 

Equations (12.4) for a shell of alternating thickness by the 

replacement 

o = V#-W. (12.9) 
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also can be reduced to one equfcticn 

3b rot t /ifcw*« 

We Introduce «pressione for forces and bending comente through the 
introduced function o: 

Imocoi 0-(-0),(0). 

-^ylmosme+^O). 
aH 

Imo-fO), coi 0-(-0), sin 0, 

csoonuxng equations for a shell of constant thickness 

derived If in (12.11) we set o - 1. By itself, replacing a s 

of equations m two functions *„ and V0 by one equation (12.8 
(12.10) bears a formal character and does not facilitate the 

solution of the system, since along with unknown a In these 

equations o and Im o are present. However, If one takes Int. 

account that for a thin shell parameter 2Yij Is large and cons: 

shells With a smoothly changing thickness such that 
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In this case It was assumed that a nowhere turns into zero. Let us 

note that in the coefficient of c in (12.12) the term is 

preserved, having at v » 0 a magnitude of order l/2y* from the firs 

term. Por large v it can be dropped. However, keeping this term 

for small v is necessary, since at v - 0 it increases as 1/v2. An 

analogous situation can arise even in the right side of (12.12), 

therefore until clarification of the concrete form of load functions 

^(9)one ouSht to keep both terms. 

The basic resolvent equation of axisymmetric deformation for a 

shell of constant thickness is derived from (12.12) at; a » 1 a* = 0 
and has the form 

(12.13) 

5 iS. Boundary Conditions. Determination of 

Before passing to the formulation of boundary conditions for 

the introduced functions, let us note that the quantity y , determined 

by equation (i».20), in this case is equal to shearing force Q , 

since with a solution to the problem of bending it is assumed^hat 

there is no twisting and also *21 - a12 - 0. For the same reason 

512 “ 521 " °* y " °» and from f°ur boundary conditions of form 

(6.15), (6.16) for every edge there remains only three conditions: 

h — rí. .V, » Q{. .w, = All for r, (13.1) 

or 

0,.=0,1 for r,. (13.2) 

where rf - parallel circle 6 -0( (( . o.l). One ought to note 
. t ï 

however, that the quantities fj, cannot be designated at both 

edges of the shell arbitrarily. They should be such that the 

equilibrium of the shell in the whole would be fulfilled. In order 
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to formulate boundary conditions, taking Into consideration the 

equation of equilibrium of the shell as a whole body, we turn to 

consideration of contour integral (6.1^1). Setting in this case 

r a 0 and expressing 6u and through variations of axial and radial 

displacements 6A and ÓA 

Designating axial and radial force through f and B respectively 

6« — COS0 fiA,—«ia ® 1 

6«3ssin06A,-HcosO6A,. ) (13.3) 

we will write contour integral (6.14) in the form 

J ll(— fl co*e-Ni Sin 0)+(7| cos 0|+M sin 8|)J 6A*4- 
■■¡rm 

+ [(f, sin e- /V, cos 6)+(- 71 slne, + cos6<)] 6A,4- 

(13.4) 

l#,j»r,cos6+W, 

and integrating over ♦, instead of (13.4) we obtain 
„ • \ , ÛÎÏ 

(_ h, + H$b\ + (Ali - A|Qò6i -0 (/-0.1). 

at i a 0.1 

i i 
Radial forces H* a id bending moments form on each of the 

edges of the shell a self-balancing system of forces, i.e., a 

system with principal vector and principal moment equal to zero. 

Systems of external forces and forces T* in the shell acting on 

the edge (i ■ 0.1) should have the same principal vector, directed 

along the axis of the shell. Therefore T* • T* on each of the 

edges and instead of (13.6) we have the condition 

(- //,+ //,061. + (7.-7^+(^1 - MÖ66, -0 (13.7) 

Since variations 66, are independent and arbitrary, then conditions 

(IB.7) can be fulfilled only in the case when 

//,=//;. .41,=.)1( (/=0.1). (13.8) 

! 

/ 
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If on the edges are assigned radial displacement A* and rotation of 

the normal when deformation 0|. then W{ = 0 and (13*7) also is 

fulfilled. Boundary conditions in this instance have.the form 

(13-9) 

Conditions (13.8) are purely static, and (13-9) purely geometric. 

Combinations are possible also, for example: 

HjmtHi, = 

(13.10) 

Mi-M{. A.-Ai. 

Let us give several illustrations of possible boundary conditions: 

1) H,—0. Mt — 0— free edge, 
2) A,*=0. 0, = 0- sealed edge. 
3) //,=0. 0, = 0-sliding seal, 
4) AfjnO. A,=0— edge has no radial displacement, but can be 

turned, etc. 

The above variants of the boundary conditions should be written 

through Meissner functions V and The expression for meridian 

bending moment M1 through 0, has been already obtained and is given 

by equation (11.13). 

radial displacement A 

It remained to express radial force and 

through these functions. On the basis of 

(13.5) and (11.10) we have 

qt\Rld9. (13.11) 

Furthermore, from the second relationship of (8.11) follows 

A,=« cot 0 4-** sin 0=**. (13.12) 

Taking into account (11.12), from (13.12) we obtain the expression 

for radial displacement through function V : 

^CM 0 ” (0)] ’ 
(13.13) 

Thus, to solve a system of differential equations of the fourth 

degree (12.4) or (12.6) there are four boundary conditions (two on 

each edge), expressed in functions V and 0,. After solving this 



system under preassigned boundary conditions by the above-mentioned 

formulas all forces and bending moments in any section of shell can 

be found. 

Let us stop now on the determination of displacements. Instead 

of direct determination of tangential and normal displacements (u and 

w) it is more simple to find their combinations - radial displacement 

A and axial A , where 
e a 

A4 — « sin 6-f w cos 0. (13.14) 

Radial displacement Ag already has been determined by formula (13.13). 

To estimate A we differentiate (13.14) with respect to 6 we obtain 
z 

-¾ = — + *) *in e+("S'“ cos ®* 

Remembering (8.11), (8.13), will have 

From (13.15) A is found with the aid of one quadrature 

Af = J (— Äjt, sin 0 + Ä,0| cos 0) </0 A, (0q) =* 

(13.15) 

(13.16) 

In this way, axial displacement in any section of shell is found to 

within the displacement of a solid A^(9q), which in section can 

be designated arbitrarily. It is na ural to set Aa(6Q) = 0. Thus, 

as a result of integration of the basic system, consisting of 

equations (8.7), (8.9), (8.11), six arbitrary constants appear. 

Two of them, P° and A (6n), have the sense of axial force acting 

in the extreme section of the shell, and displacement of the shell 

as a solid; four enter the solution of the system of Meissner 

equations and should be determined according to preassigned boundary 

conditions of form (13.8)-(13.10). 



g ii|. Deformation of a Shell Under the Action 
of a Bending Load 

Let us examine the deformation of a shell under the action of a 

bending load of' form 

= “"f- ?. = ?-n)cosf- (1^.1) 

We call this bending load "symmetric," since it causes in the shell 

a stressed state symmetric relative to plane ¢) = 0. Correspondingly 

a load of the form 

q^^slntf. Çjesçÿ'coif. f,*=s«2,,|n? (1*4.2) 

we call "antisymmetric," since the stressed state caused by it is 

antisymmetric (odd) relative to plane <J) = 0. Let us note that in 

literature to designate load (14.1) and (14.2) the term "wind load 

is used also. 

Let us write the system of basic equations for a symmetric 

bending load. Assuming in (8.17)» (8.18), (8.19) k * i» we obtain 

equations of equilibrium connecting the amplitudes of forces and 

moments : 

-ft 1 <»>) — T2 <1)^1 C0* Ö-f A, (S»|5 + + 

+ vA7| (|) + (i> ^iv ^ 

w [v (su> + ät)] 4 co*0 (s«'»+tt) + 
-j-ATjdj/îjSinO + Çjdjv/?, = 0. 

(14.3) 

-Jg- (^1(1))+ ÄjAfjU) — fl(l)V sin® + 

= -Jg- (vAl1(I))- Aij(,)Ä, COS 0 

dH 
V~5F' + 2//‘»Ä> ¢08 0-^2(15- 

and three equations of compatibility, which should be satisfied by 

the amplitudes of the component of deformation: 



X 

^-(VXjd))— /?1*1 (!) co*Ö — 4- Y(|) — 

TíT À h «KD ¿o*ö «*0. 

— ^>xki)-üë /?] co* 0Ttl> + V(i) cos 8+sin 8 -f -^X.(D-&-#,coiOt(1) 
(1^.5) 

'’’‘in) + kki)^i sin®+ 2(j [ co*® + Tjj— 

V(i) Ä, co* e /9, 
—5-Vl’)—V-T*»«» ‘=0- 

To equations (14.3), (14.4), (14.5) it is necessary to associate 

elasticity relationships (8.21) and boundary conditions (8.25) or 

(8.26), setting in them fe = 1 and selecting in formulas the 

primary sign of fe. 

After obtaining the solution of the written system for a 

Symmetrie bending load the solution for an antisymmetric load can 

be obtained from it by introducing and auxiliary variable instead of 

angular coordinate ¢. Really, for load (14.1) let us assume that 

a solution has been constructed. It is necessary to find the solution 

of system (8.20), (8.21), (8.24), at fe * 1 with an upper index 

describing a shell deformation under antisymmetric load (14.2) 

with either power (formulas (8.6)) 

or geometric boundary conditions 

u1 = «f’i'ilnç, ®|=*t»<,,,co*f, 

io‘ =z «(1,< sin <p. <►{ =* M'* * *•" 9» 
(14.7) 

where 

preassigned numbers. 

Substituting the variable 

(14.8) 
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Instead of load (14.2) we obtain a symmetric edge load (relative 

to plane $ “0) with components 

fî<i) “ " ?j(i) *= fli1'- ^,i, = - fi,1’. ( 14.9 ), 

Boundary conditions (14.6), (14.7) take the form 

t\ - rí(i,cosf. + 
.(14.10) 

All = <,CO,V. ^ + = 

= cos f*. o'-tftsin f*. I 

w' — w^cosœ. cos«P*. / (14.11) 

where 

—mi"'. (k„-^í)—(m"‘-^111). 
4““ ^1. 

Constructing for a load (14.9) under boundary conditions (14.10) 

or (14.11) the solution 

and returning to 

In this way 

T, * + fim cosq- • 
«■»«^rosf*. 

the old variable 

fi = —r*{i)Sinf. 

»Inf. 

5«BS|,i)Sinf.I 

o-aw^slnf*, ... I 

<Pt we obtain 

¿«¿^cos?. .... 1 

v^r’jcosf. ... j 

(14.12) 

(14.13) 

(14.14) 

This allows subsequently being limited to analysis of only a 

symmetric bending load (14.1). 
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Let us return to system of equations (1^.3)-(1^.5). If from 

system (14.3), (14.4) we exclude the quantities #1(1) and 0 . . and 

write equations (14.5) with the aid of (8.21) through forces and 

moments, then we obtain a system of differential equations of the 

eighth degree, consisting of six equations and containing six 

unknowns T2(i)> 5(i)* M2(l)> Ä(l)* As alretdy was 

mentioned above, the degree of this system can be lowered to four 

units. To do this there is no need to write out the system in 

explicit form, since the decrease in degree is generated because 

of the search for first integrals of systems of equilibrium equations 

and equations of continuity separately. 

5 15• First Integrals of Equations of Equilibrium 
and Equations of Continuity 

Let us turn to equations of equilibrium. Multiplying the first 

and third equations of (14.3) by (-cos 0) and (-sin 6) respectively 

and combining with the second, we obtain 

'S» [— v^» (D cos ® v^i<n sl# 0+ V^S(1, -f- + 

+ (— ¢, (I) CO*e-r CD - CD sin 0) #,v « 0. ( 15.1 ) 

whence it follows that the relationship 

- v7'i CD cos 0 - vAf, (l) «in 0+V (s(|) +-^)+ 

fl (1) cos Ö+ŸJ (I) — 9« (d *•# fi) *,v ,0 

is the first integral of system (14.3), (14.4) (C^ 

integration). 

= ci (15.2) 

- constant of 

Equations of statics (14.3), (14.4) have one first integral. 

We exclude ^2(1) and ^2(1) ^°111 the third equation of (14.3) and 

equations (14.4). As a result we will have 

V cos 0 (vA/, ,„) + R^N, (l) _ Jç (v.M, (1)) _ slni e//(|> + 

+10* 5S ri(i)V7co»8— sinOcosO+0,^,»*/?,cos0==O ( 15.3 ) 
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Excluding from (15.3) and the first equation of (14.3) force ^(i)» 

we obtain 

— V*cot0 7*1(1) — V sin0-^ (vf,d,)-}- Ri\Nnu — vWi(d *in0-}- 

+ Vcot0(vJV,„(v.M,(,,)- /?, tin50//,,, + cos0 - 

v/?, sin 0 |S(„ + + V*/?, (¢, cos 0 — ÿ, o, sin 0) s 0. ( 15.4 ) 

In (15.4) regrouping terms with the aid of identities 

— V2 cos Of, („ — V sin 0 —y (v7*, ,„) =■ 

= — -jy (V* sin 07*, (,,) -f- 7*, ,|)V/?| sin 0 cos 8. 

v cos 0 (vA/, („) — vW, (,, sin 0 4- /?,vA/, « 

= -jy (v4 cos 0A/, (,p + Ä,vN, sin2 0. 

we have a 

ae (- ^s,n 07,i (i) + v*co* (,, - ViM, „, + v//„, cos0)+ 

4 R, sin efvr, cos 0 4 vA/, sin 0 - v (5,,,4 + 

+ ^1 (¢, („ cos 0 - y, sin 0) = 0. 

(15.5) 

(15.6) 

Prom (15.6), taking into account (15.2), we obtain the desired 

relationship: 

—v* sin Of, („ + vW, („ cos 0 — vAf, „, 4 v//,,, cos 0 4 

^ Ä.slnoj^J (— 9,(,,cos04¢,(„ — sin0)R,v</0J</04 

f 6 
+ ^ (7- (i) co* 8 - f, sin 0) Rtv- dO « C, 4 C, ^ Rt sin 0 dO. 

+ 
s 

(15.7) 

In order to establish the meaning of relationships (15.2) and (15.7) 

and determine the constants of integration £?2, let us compose 

the condition of equilibrium of a finite element of the shell 

contained between section 60 and flow section 6 (Fig. 9). Let 

section 0Q be applied to an external load, statically equivalent 

to force P and to moment M . In section 0 * const on an element of X y 
arc vJç acts forces and moment Mpdy. equal to 

#f,v </q> — (r,T, 4 ^12T2 + Q,*) v <fq> = 
= <ri („ co*»T,4^12 („SinqiT24 Q, (n cosç/i) v</q>. (15.8) 

89 



pig. 9. System of external 
bending loads applied to edge 

V 

(Mtt, H,,!,! (vM, djCOIÇTj — *lDTT,)VlAf. ¢15.9) 

Onto an area element of the middle surface of the shell ff,vdM6 Is 
applied force L 

qRtVdQd«pxmm 

- (?iTi + Í2tj+7«*) Ry dQdq>= 
~ (ft (d cos ft, -j- ^j(1) sinqiTj-f 
+ 7«(l) COSW^YdÕâf. (15.10) 

Using Table 2 of the cosines of angles between axes « and I. J. » 

vectors m,. q are easily written in projections on to the X, Yt l 

(15.11) 

where 

f,(l)co,0cüs*ç _S|J(1)Slnîf+ (?i<i)„ne,0$,ft 

K1 1 r C0Sft + + 10 #,n0)Sinocosf. 
'* ' r«<i)s,"0-|-Q1(I)co$0)cosf, 

u — (— „) — //,},„ cos sin f cosy. 

358 «■) CHSÎV - «mo cos 0 sin7 f. 
'"u — «lío) sin Osinf, 

7x = 7,;ocos0cos*f _ÇîiI)l,nÎT + f-a)i|nftço#Ifi 

y (7i «o cos 0-J- 7,,,)-1- 7at„sin0)sin9cosf, 
7#**(—7i,i)si,,0-f 7«,,) eos Ó) eos 7. 

Table 2. 



The radius vectors of a certain 
equal to certain point m in 

r ~ OM = Vcos<fiV sjnfy+ Zk 

“hUe on the basis of (1.35, 

—/*i!lnes8. 
i. 

section 0 * const i 

(15.12) 

(15.13) 

s thTsTeíí r\refruions °f e9uiiibri“ ^ ch0Se„ Part 

(15.1H) 

(15.15 
writing (15.14), (15 , . 

the ald of relationships (15^-(15^ the ^ ^ z «es „ith 

obtain two stations, one of whl h n h ^ *. we 

the other the equation of rao„e„ts 1 -! ! e9Uatl°n °f for=«. ano 
eues respectively; “ ^“sections onto the ox and 0. 

v<ri id cm e-s1J(|)+Qt (|) 8ln e)+ 

+^<Wo.e-ft(„+f<ii)Iln9)vSii((=_£ a516) 

”IAI‘ ~ H”! “* 9 4 vr' "> Sl" ' - *9| („ CM », + 

J (ft id cos 0 — a 
% ^*ii)+ sin O)Zv^,rf0_ 

^ '^1 ?i ">ilnö^ f. (I) cos 0) v-£/¡ tfÿ __ 

/»IUI 1|,~»1(||4 II 

« 13 simple to verify that th r ' (15•17, 

equalities of the form 0 - o becaÚ“1- renlalnlng e<l“atlons are trivial 

por eiampie* pr°j— (15.11) ) onto ;;;r0:;:ervlduaiiy vanishas 



ri(1)cos04 5ia (1)-+- ‘•]) *ln0)vsinf C0*çrff-f 

■+ j (?iu,cos0+ ?j(i)4 f« in »ln 6) sin ç co*ç rfçj #,v</0=0. m&ï\: 

wÊÊma&mâiï m 
WD:- 

In the second term of the left side of (15.17) integrating in parts 

and taking into account (15-13), we rewrite (15-17) in the form 

V (M, „, - Hl2 (1) cos 8 + vf, sin 0 - vQ,,,, cos 0) 4- 

4 I Ä,sln0[ J (?, „J cos 0 — q. ,, 4 q, (1) sln0)vfl, doj ¿0 — ^ «jSlnej^íf,, 

— ^[(f «u, co* 0-^(1,5100)^,1/04---4--^-^ /?, sin 0(/0r=O. (15-18) 

Witn the aid of formulas (4.7), (4.8), (4.20) and relationships (8.1), ♦ 

we express the connection between amplitudes of forces ^2(1) 

§1(1), moment ^12(i) and amplitudes of the corrected quantities 

5(i), Ni(i) and H(i)> then we obtaln 

^(1)^^0)4—» 

vQ, —\Nl 4- y (//„ _ Hu 

"»> “ I (Hn (i) 4" Mtuu) 

(15.19) 

consequently, 

— 5. //.i 
i: <s) 4* Q} (o sin 0 — S,„ 4 (j) «In 0-. 

wi*u)4 ''Oui)’ ’i ui 4 H«> 
(15-20) 

Using (15.20), we write conditions (15-16), (15-18) in fina1 form: 

— v (^i (i)cos ® 4 (i)*ln 8 — Su) —jfj^) 4- 

(15-21) 

— v-M, „, — v^,(„ sin 04 ^,,,, COS04 v//,„cos04 

4 J /?, sinO [/ ( fid)cos04 f2„, — ga (1)sin0) /?,vrfôj (/04 

• Af * 
4 J (f, a)cos 0 - fui)si» 8)v1/?, (/0 = -14 /?, sin 3 (/0. (15-22) 

92 



Comparing (15.21). (15.22) and (15.2), (15.7). we observe that the 

latter are nothing else but the equilibrium conditions of a finite 

section of the shell, and constants of integration ¢7., c- are equal 
to 12 

c^ff. c My 
1 * • c»*=-¡r- (15.23) 

On the basis of the statics-geometric analogy it is now simple to 

write out two Integrals of equations of continuity. For this in 

equation. (15.2). (15.7) we set , . < , = 0> mak; 

the substitution K 

^Kn-♦»‘am. 
“♦ — ’ci)* 

"♦ -y-. 

N‘ '■» ■* -wr r.-k <'*>«)+., .0.8+«, 

and introduce new designations for the constants of integration- 
then we obtain 

a . vsln® rfe,(ll 
(>4u)«o*® + W--— (e,(|) - e, 0psin 0 co$ 6 — - C,. 

V cos 0 
‘~TT, S5“ ^'i)co* ®-J-**(,»s,n3 ®+ cos*fl — x2(l,v sin 0=» 

(15.2^ 

V «4 /?, sin0rfej (15.25 

Substituting into (15.24). (15.25) expressions for deformations 
through displacements 

i 1 - 
*»<»■* 7 («id + *u) cos 0 4- w(l) sin 61 

V(i»! 
I rfr. Oi 1 

TfT “W T (“u» vii> co* ®). 

d/ô" Tfr/' 

^ ~ ^ (-¾1 - «a»)+4- 

T,»>*s V "3r — -v~ (®(D -I- ®(I) si" 0)4 J 

\i> +®<i)»l®0). 

(15.26) 
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taklnj into account the fact that equations of continuity should in 

this case be identically satisfied, we satisfy ourselves that 

‘ C« =*> 0. (15.27) 

Ax a result of the search for four integrals of the basic system 

of differential equations its degree has cropped twice. Now instead 

of the original system of equations (U.3), (14.4), (14.5) it is 

possible to take a system from the obtained four first integrals 

and two equations from the original system, for example: the second 

equation of statics and second equation of continuity. In the 

2(1) 
second equation of statics it is useful to exclude the quantity 

with the aid of the second equation of (14.4). Equation of (15.21)/ 

(15.22) we replace by two equivalent equations, the first of which 

is obtained after excluding from (15.21), (15.22) the quantity y 

and the second by excluding T1(1). Analogously we rewrite also 

the integrals of the continuity equations. As a result we obtain the 

system: 

v^*i <« + a) *iu9 — v5(I) cot 0 — 2//,,, sin 0 cos 0 = 
«I 

“ Y/i (^r* My) + */o(ÿi o). Vim* ?■(!))+ cosO J 11,v/?, rf0. (15.28) 

hæ lvA,ni>>- cos0-+ #,//,,,)--5,,^100- 

sin’ft) — 

i f 
J fï<i)V#,</0. 'Çj«). 9„H))-i /^,(PM. My) sin 9 

V 

vxj4 VT(I) cos 0 — e,,,, sin 0 - y,,, sin 0 cos0 « 0. 

tJiyco,9.. Jn>a*e 

(15.29) 

(15.30) . 

(15.3D 

v“lr + 2S<»*i c°*Ö-f 2 sin 0+ 2//,,, cos 0- #,7-,,,, + 

+ 2//,,, 4- *»- 0cos0 - A sin0.MJ(J>4 gjti)VR¡ = o, 

“ *1*1 (1) - V -jjr — 2#, cos 0t„, 4 y,,, cos 9 4 -¾1 sin 0-4 
. ■ no 

^ Veo V sin Ocos 0 4 A sin 0e, « = 0. 

(15.32) 

(15.33) 

lipf S 
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"A ~ cote - ^ ^J /îjsinerfej. 

v/»(ft II»* «lui»«.(,)) = — cot oj" (¢,(|) COS0 + <7, .u Sin 0)v/?, dB-f 

n 
i sin Q C * _ 
+ ~J (I) cos 0 — „) sin 0) vJ/?, d0 _ 

-^/^»‘noQ (ql cos 0 - ç, (1) + ?a (J) sin 0) /?,v J0 j dB. 

(15.34) 

Fi Pr sin 0 + ^ ^ 4. ~j^ /?, sin 0 rffl j. 

^•(«I »)• fcu>. «. („) = - (¢, (|) COS B + qH (I) Sin 0) vÄ, dB — 

J (?.<„ cosO-ÿ, insin0) v1/?, ¿04- 

* 7 s 

«.sinil^cç, d) cos B ~ qt „j 4 qm U) sin 0) R, t,vdB dB. 
J I 

(15.35) 

§ 16. Derivation of Meissner Type Equations 

Conditions of compatibility (15-30), (15.3D and (15-33) with 

the aid of elasticity relationships can be written in forces and 

moments. The instead of (15.28)-(15.33) a system of six equations 

(two finite and four differential of the first degree) in six 

unknown forces and moments. However, despite the decrease in degree, 

this system nevertheless will be very complex. To obtain a simpler 

system of equations we use a method analogous to the Meissner method 

in transforming equations of the axisymmetric problem. 

We introduce the function of variables 

v— 1 M*Vi> ï . 1 
7?T l“S5 *<i>J+v (®<i>co* ® — *(0 s,n ®) 

Then, in accordance with (15.26), we will have 

~^cos0 + *!<•>s,n0)* 

(16.1) 

Ml»1 

«Id»1 

y , Vo»*"» 
v « 

Tcou« t ¿.'„sine 
M “l ~ 

(16.2) 
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It is s..niple to verify that after the elimination of Y from (16.2) 

we obtain two equations which agree with (15.30) and (15.33). In 

this way one of the integrals and the second equation of compatibility 

with the aid of representation (16.2) are satisfied identically. 

Let us analogously represent also forces ^1(1)^ 5(i) 

through the stress function of plus load terms select. so as to 

satisfy heterogeneous equations (15.28), (15.32): 

T _ 1 V'fosO If..,, sin 0 cos0 ,* 
'J»> - ÄT rf«- + ---7- J /?,vd0. 

T _ Vcos9 sin 0 
id) v - ^/0(^1(1,.92(1)-41,1))+/,(^.^,). 

S -L 7H"i!n6 ; t 
d) V V V I 42(1, 

i 

(16.3) 

Relatior ships (x6.2), (I6.3), (8.21) form a system of twelve equations 

in twelve unknowns - six strain components and six static quantities. 

Solving it, we find 

fÄei<n(l 4 
h1 slnJ8 \ I* dV i k cos 0 , ) 
T2 + ——-r 

+ Io(9ki). 92(,). 44(1))+/-.(^. ^/) + 
e 

. t „ n..xo sin 0 Eh* [ 1 dV , VcosÔi 

V cos ft Pmo fi i Ä slnJ0\ I dV , ,. 
^(,,(1+10-^) = ^-^-+(1-)1) 

ur sin 0 cos 0 Eh* 
^/0(4,(,). 42(,). 44(,)) — 12 

-h 

cos 0 , _ 
~~ J 42(„VrfP. -)1/,(^. .Vf,) 

(16.il) 
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VáKf; 
jr: ... % ^iffiß$&ßäijRß&■ i ■; >•■' ^ • .' ^ . •■ 
.-ic-.í■■ííSSí.-ii^r^^-r -.'‘y&tsifc"'r-QÜfö;”r" 5 i'fi/'V. ;c- 
•A ---—--¿_ 

■':: - 

(^1 tD’ fill)’ ?»<d)T j'i(Px. Aíyj+~*e 

» , 
J ?í(i>^iv<^®j • 

-t 0-W 
y cos O 

V ^/(1(01,1,- ?i(!,' ?« <!;) ~ A (^jr- ^íy)’H — 

® -, 

+T-^) = 

_v , 2(1 f ¡Osmo ir _ \ 
V ■<-\Ei- [ÿ-ÿ J 0,0^^- 

T í i i h* sln’O \ 
r,(,H,+T2—?“) = 

+4(»iui' »KU- í.(,0+/i(p,- -«J. 
r,m(.+^^í) = 

O [-J;^-+-íl±tíf^)]- 

COS0 
,Vrf0. 

j 0Í(D^1 

5íI)(, +^i!^)=£+2ib^^e._i J , (iAvde 

i 

**i (o /, , ** 9ln*0> 
o l ^ 12 

= -1--0+10^cose , (1-|I=) V^cosOslne . 
V 1 £ã-V1-\ 

, sin 6 (1-M») 
^ V ZÃ l/o(0KI)- 02(|). iWp), 

4* 

^O./, , ** sin,e\ 1« rfv (i+M)Vcose 
( ^ i¿ V» y--«; -dé 

■ sin 6(1 — n») r 1 dy t+cosei 
£*v Lä, dtí ^ ÿ \~ 

» 
(I - l£Î) J* 
-£ÃW-SÍn0cOS°J ÍJdí^Vrftí. 

«(,) / A» j|nJ0\ 

“B“l, + X—j = 

_Ü-^M)_y , 2(l->»;)^sln0 0/I , ,i„e T 
V • £/,v ~?(I J 02,l)^|VrfO. 

(16.5) 

(16.6) 

(16.7) 
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Taking into consideración that v = i?2 sin 6, we assume that 

nowhere turns into zero, in the obtained expressions we re.lect the 

A} «in1 0 A1 
factor -j— — in comparison with unity. Then, substituting V Äj 

them into equations (15.29), (15.31), we will have two equations for 

determining the two introduced functions Ÿ and V: 

n 0’ ***_ i n T J_ (a1) , a1 cos 9 
0 y?? 'do2' ^ 0 </e [âî de ä,v 

I r, \irr(l+l*)fOí0d(aJ) (i-t-M)aJsln0 2(H-n)a,cos*6 .. -n 
I ^ d5 ^ Iß-2(1-1*)^- 

, „ j *me , A* fsln0co<0 d(a*) . 

+ V\-— + -d¥~ + 
. o1(cos10 — «in10) 

H-^- 
o1 sin 0 cos* 01 ) 
-5*-JJ = ^ 

1 d»V dV f 1 d /1\ co«8 1 d^-| 

de'1 de ^/Î* deloJ“h VOÄ, ^ dej 

i i/'ri1—^'0*0 d (l\ 
^ [ Äjv deU;' 

(1 — n) sin 6_ 
/?iva 

sin 0 cos 0 día1) 

+ 

2(> —>») cos10 2(1 
vJa v*a 

a,(cosî0 — sin2 9) 

v*ÏÏ, 

í*]+ 

w 

~slnöcos2ej j. = d), 

where 

^1=5 ^0+ + la2*«"eC/04-/i)J + 

+ a* sin 6 cos 0 (/0 + /,) +12 sin 0 (cos* 0 — sin* 0) + 
+ sin 0 (2-cos*0)]-£/,}. 

/2— J ¢2(1)^1^8. 
01 

to i* rf //«+/. \ , 1 d //,co«e\ , 
^ =-s; dê l—i-)+7?r w I vT")+ 

+^(/0+A>- 

D„ and a are determined by equations (12.2). 

(16.8) 

(15.9) 

(16.10) 

(16.11) 

It is easy to see that terms contained in (16.10) in brackets; 

remain finite even at v = 0 (if ^ 0) and have the order qb, 
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where q is the order of the load, b is a certain linear dimension 

of the shell. The primary terms fi have the order i£-. 

Rejecting in the right side of (16.10) quantities of order 

in comparison with unity, we obtain 12*’ 

Making the substitution 

we have 

^ /3a' , ?, C0.8 1 
—;- 1 

_i_ y [3a* (1 -hn) coi 6 
‘1 « V v 

2(l+^)Ä»co#*0 _ 
-5*---2(1-,»)-^]. 

_(« +m)>?i sln8 _ _ .. 

+ 2(1 ~n) j _j_ 

J-K .ív4!_1 1 rZa'/^* 
+ i *yo[ B-^—*+-Tvy(,~,i,[~7-8,neco80+ 

+-^ (coi* e ~ sin* 0) + ^ sla e eos* e] } = 4vJ. 

(16.12) 

(16.13) 

+ + _IÄ4-1/ 2a' dR, , 
** ^ v ’S; rfö }+v'r¿—-53T de' + 

_l/i i ..\ a/Äico*® .. .Ä,sln0 /î? oil 
+(1+,i)T~7--2(l-M)cosî09-2(H-n)g] + 

fÂÎiln0 1 r aa^j ^ 
+ «vé +4^(I”^[-^-sinOcosO—^-(cos^-sin^)- 

oâJj 
sin 0 cos2 0 

(16.1^) 

.-'or a shell of constant thickness equations (16.13), (16.14) are 
written thus: 

ä'Vi I rfV, / R, cos o 1 dR 

+ *,[-<,+,, 2(1+rt ^i_2(l ^]+ 

+^{-^+i^[V(co„e_iln!6)+ 

/}¾ II p2 
4- -^r sinO cos2 0j J = 4yJ <I>3. (16.15) 

99 



nw 
dV, ^R, rf>*0 1 dRx' 
db \ V 7?;4r)+ 

(cos* 8 —sin* 8)— 

where h — h. 4^ = 4^. 

Ä?* 
sin 0 cos2 8 114-. (16.16) 

Using the complex unknown 

0=^+2^,. (16.17) 

where i is an Imaginary unit, equations (16.15.), (16.16) can be 

reduced to one equation 

d f’o ( do (Rt cos 9 1 , Ä, sin 6 4Ä? . 2/??sln2e\ 

(tí* ^ </0 \ V ~ÏÏ[ d9 a \ V "t-v3-) — 
- /«,5100 2«isin20\ «Jsme 

-+ - 

I-^-(cos28 — sln20)-f —j-sln0cos20 I =* 

=^4(^+4^)- (16.18) 

Similarly (I6.I3) and (16.14) can be written in the form of one 

equation 

d7o do 13a' /?, cos 0 

(Í0* ' Sil a "f"’ V r,-di)+[-——i— 
«,510 0 ( 2Rj sln20 4«f 

“v* 

- («i stn 0 2«?sln!0\ 3c' 

-—)+a!T V 
., , % «i CCI0 
0+^)-^:- + 

2Vo 

+ a 
Rtb 

a\b 

(cos2 0 — sin2 0) 4- a 
¿¡b 1 
~j~ Si :• 0 JS2 0J = 

'U »- U* + 2>î « J' 
(16.19) 

Trom (16.12), (16.17) it "ollows that 
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V = %rlmo. V = 

and expressions for forces 

function o has the fo™ 8 

CObO 

f . („ - S In, o'-ai - s? "»! rj. s, 
^ * «vi V 1«, K ñ5+- 

+0 +(i)R«oiaî]+/t(fi(i) ?i() ^ 

r’"’ ,m M (a’”)+«!i">«~] - 
_ sin e r u „ ¿a 
< V [/?, ReH5"f(I + WReoi2~J- 

JM,,,,=^{ÍR*$+(1+i‘>íf-,R.« + 

, 0-M») a¿» 
T -^-cos0sin01mo-f 

+(1 - s,n 0 I/o d,, ÿî („. gK ,„) + /, (P,. (M,)| J, 

+ 0-^-^0 f^.,n)^(a?0)+MaiIni0coso] 

~(1-M^^rsinecosO/^, 

■M- 

(16.20) 

v*a 

constantithl1k'20) “ = 1’ We oan obtalu equations for a shell of 

::::!::\:iokin;;:-Zers:pprs as befcre that - 
(16.19), rejecting In he“ e o^' ^ S“n 

- - order £ In coroparlso„ ““ iT^0"0 ° 

(! + »2« 
t R? *in 6 

ovÿ 

4/?f 

(16.21) 
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For a shell of constant thickness the corresponding equations has the 

form 

'Ä'™e 

(¢,+ ^/)- (16.22) 

rf5«j da I i \ / . sin 

Comparing the left sides of the obtained equations and equations 

which describe axisymmetric deformation (12.12), (12.13)> we note 

that they differ only in one term in the coefficient of the unknown 

function, which for large v is not essential. 

In this way, just as at axisymmetric loading, calculation of a 

shell for a bending load is reduced to the solution of one 

differential equation of the second degree in unknown imaginary 

function o, where at v / 0 the left side of these equations 

practically coincide [21], [^2], [44]. 

§ 17. Boundary Conditions 

Let us formulate boundary conditions for function o. In the 

general case of loading all possible boundary conditions on the 

edges (t = 0.1) are obtained as a result of the requirement that 

contour integral (6.14) vanish in which through Äi2-* ^l-* ?12J "12J *1' 
we designated external forces and moments on the edge. Since in 

this case 

(T*,. Ni. ¿1,. Ti, Q[. íMD- 

= (7-,,,,. Af,,,,. T"*,,,. <?{„). /Wj(j))cosq>, 

(S, H. S,j. /7{;) = (St„. /7,„. 5(2,,,. HU ,iJ sirup, 

(li. w, 0,) = («„>. wd)* (»)cos 9* 
v = sin 9. 

(17.1) 

the condition of integral (6.14) vanishing after integration over 4> 

can be written in the form 

(— T”, ,1, + 7-, „)) òu„, 4- [— (^,,, + -t- (5,2 o, -j ßf—) ] *0(„ + 

+ [- - (^1 ,i) + ± /7,,,) + ((?{„, -f ^ /7Í2 „,)] ^,,, + 
4-(^,,,,— ,„)ftd,,,, = 0. (17.2) 
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Using (8.22) and (16.1), it is simple to obtain the equality 

(1) = «<!) cos e + sin e = r, (l)v -1»(1), 1 

A#(i)= +«(,) cosÔ = Vv-(-^1(1)vt / (17.3) 

where through Ae(1), Aa(1) we designate the amplitudes of radial and 

axial displacements. Expressing u(1), ü(1) through e,V. d,and 

(1) we have 

#<I) — i„v cos e — r(I) cos 0 — Tv sin 0 — v-0, (I) sin 0. 

w(i) = ¾ <i)v sin Ö — v„) sin 0 -f 'Fv cos 0 -f (I) cos 0. ) (17.4) 

Going from relationships (17.4) to relationships in variations and 

substituting expressions for 6u(1), 6w{1) into (17.2), we obtain 

{(- r, (I)+T[ (1)) cos 0,+[- (n, (I)+j- h{1))+(q‘ 

X sin 0/ J V, 6e2 (I) -1(-7, (1) 4. r{,,,) cos 0, + [— (w,,,, 4- J- /y(1)J 4. 

+ (<?i ,i) + «i, („jJ sin 0, _ 4- 4. 

+í5»«1» + ^r1)] } 4- { - (- Tt (1, + 7(,,,) Vi sin 0,4- 

-j- [— (|, 4- ~//(1)j + ^QÍ(1)4--1- //{2(i,jj V/ cos 0( 4- 

+ (AI. (,) - ¿1} ,,,)100, ,,,4-1-(-7, „, 4- ri ,„) Sin 0( 4- 

+ [~ (tf ! (D + -^-//(1,) + (<?i 4- //Í2 ,„)] COS 0( } V( = 0. ( 17 • 5 ) 

System of internal forces T, ,, . £, v jv m u 
1(1)> ¿(i)> wi(i)> acting 

in the edge of section +, and external forces and moments 

512(1)» Çl(l)» ^1(1)» ffi2(l) should be balanced. Consequently, in 

order that the problem is correctly posed, external forces and 

moments should satisfy relationships of form (15.I6), (15.18), 

written for 6 » (7 = 0.1). Writing the same relationships, but 

reduced to form (15.21), (15.22) for internal forces and moments 

acting in sections 0 = e¿, and deducting the corresponding equations 

containing identical load terms, one from the other, we find that at 

0 = 0£ we have the equality: 
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(17.6) 

(7l(i) —<i)) cos 0< ^[(¢1(1) + -^-7/11,^1- 

—^i d) + — 7/(i)jJ sin 0, -^5(2 (i) —^j+^5,1, -f- ^-'1=0. 

(^♦í (i) — >W i, i)) -f- (Tl ,i) — 71] (d) V( stn 0, — 

— [(Qi (i) + ~ Hu djj — ((V, (D -f- J- 7/(i) jj V( cos 0( « 0. 

After this (17.5) assumes the form 

[(5Í2 (,,+ -^j-(5,,,-f ^^,062,1) + 

+ 0^1(1) — AíiiuJô^scsO (/=*0,1). 
(17.7) 

Condition (17.7) gives the following possible combinations of boundary 

conditions at the 0. edge: 

Ç. J_ _ C< i 7/(2,1) „( 
^+-^=¿12,1,+ -^-. .Mi(„ = yM,„v (17.8) 

C2(t) —£2,1). ^ 

ç i ^7/,1) _çt t //12 (i) iff/ 
^11)+-^-=^^0)-1-YssT*. 

*2(1) = *2(1). Afi(i,=: Al}(„, 

(17.9) 

(1710) 

(17.11) 

where the i Indicates quantities on the edge 9 — 0.. For example, 

conditions (17.9) in this case can have the form 

*2 (1) = 0. v = 0. (17.12) 

On the basis of (I6.I) it is easy to see that at cos 0./0 
z 

conditions (17.12) are equivalent to conditions 

C2(l)—0, X2,,) = 0. (17.13) 

In this way (17.13) equivalent conditions (17.12) imply a rigid 

sealing of the edge in the sense that during deformation there is no 

relative elongation in peripheral direction and change in curvature 
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K in extreme section 0.. It is obvious that the edge section can in 
2 ^ 

this case be moved or turned as a solid body. 

The first power condition (17.8), taking into account (17-6), 

can be replaced by the equivalent condition 

Ti („ cos 8, + (^, + Jj- «(u) sin 8, = 

= T\ (i) cos 0/ -)- ^Qi (i) -)•• — H12 (i)j sin 8|. ( 1 /. 1 ^ ) 

Conditions which have the form 

5,,,+ ^2.=0. «„„=0. (17*15) 

man that the edge is free from tangential forces and meridian 

bending moments. Conditions of the form 

7,u) cos 8| + (tf,+ «(,>)sin8, = 0. ^1(1) = 0 (17 .A6) 

correspond to an edge free from bending moments and radial forces. 

When loads on the edge generally are absent, conditions (17.15) and 

(17.16) are equivalent. Using equations (16.4), (16.17), (16.20), 

we compose the expressions for the quantities in boundary conditions 

(17.8)-(17.11) through basic unknown function 0. Ignoring in this 

case quantities of order in comparison with unity, we obtain 

‘»(D 

A*.«.) 

2//.,, 1 0«* . 
)-dlL ——imo- 

"2^ Rf *Y0 

a*¿* f 1 

■/*• 

( “¿T "tr 4“ 0 +11) Re 0 -|- 

+ (1 —1‘*)—l/o(7i(i)-?2(i>. ^(1))+/1(^1 Af,)]!. 

]- 
= f-i-lm ^!îi + (1 _o 

¡7 l/o(?l (1)' ?2 (1)' ?» (1))+ /1 (^,. A1j,)lJ w /j. 

EhaV = Re 0. 

(17.17) 

§ 18. Determination of Displacements 

net us study now the determination of displacements through 

the introduced functions of V and 



On the basis of the fourth relationship of (15.26) we determine 

angle of notation ^ °"e ^adratnre 

t 

<0 =23 — J ^lxJ (I) +D1* 
(18.1) 

where k,n - known function of V and Y (see (16.5)), ^ " constant 

of integration. After defining 0UI) of the amplitude of axial 

displacement As(1) easily is found using the second equation of 

(17.3) 

Ai(I) = v^-J/?,»», +Div- 
(18.2) 

Excluding from the second and third relationships of (15-26) dis¬ 

placement vn), we find the expression for 
av(l> 

dQ through Yu). «íu). (!)• 

which are already known functions of V' and 

1 dv 

whence by one integration we determine 

AXJ1)SSne (3 8.3) 

nn 'f«i(Yu,+«*<»)cos 0 “ &i<1'7~~)d0 + °2 
(18.4) 

on the basis of (17-3) we find the amplitude of radial displacement 

\ (0 = ve2 (I) - J (yu> +¾ (»>c0* 6 " ^T“) dQ ~ Dr 

Thus, as a result of integration of a basic system of the eighth 

degree (8.20), (8.25) at fe = 1 the solution contains eight arbitrary 

constants. Two of them (Px and M ) have the sense of total shearing 

force and bending moment in section 60, two (£^, D2) appear during 

determination of displacements with respect to the found functions o 

V and Ÿ. The remaining four enter the solution of equation (1 .21) 

and should be determined according to boundary conditions of form 

(17.8)-(17.11). 
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In § 3 it was alreaay mentioned that displacements are determined 

according to assigned components o^ deformation accurate to constants. 

Let us explain the meaning of constants and We examine a shell 

which, without deforming, moved in space with a preassigned displace¬ 

ment vector Uq and turns relative to point 0 (origin oí coordinates, 

coinciding with the center of section 0O) with preassigned vector 

of rotation «•: 

u0^=«oJ-t “oyj + u^k. a> = <û,l-fwy./-+<»,*• (18.6) 

The displacement of any point of the middle surface of the shell and 

vector of rotation Q in this instance are equal to 

B °o • X f. ( 18.7 ) 

Q = c», ( 18.8 ) 

where r=vcos(p/+vsintf</-fZ*— radiusvector of point. 

Let us designate the projection of displacement (18.7) onto 

moving axes ». calculating the products « —(« t,). v = (« • tj). = (b • ») 

with the aid of (18.7) and the table of cosines between axes t,. t,. a 

and OX, OY, OZ, given in § 15. We obtain 

B==H<uC0S®C0S<P -4- **oy cos 6 sin <p - j/q, sin 0-)-- 
-)- (oy cos sin ç) V sin 0 -) (öy cos — a* sin q*) Z cos 0. 

® = — «(j, sin ç a0y cos ç -)- — <o,Z sin q> — w^Z cos ç. 

* = sin 0 cos q)-)-fl0y sin 0 sin q>-)-«o, cos 0-)- 

-)- (o), cos q> — a,, sin q>) (— V cos 0 -f- Z sin 0). 

(18.9) 

Projections of displacements « onto axes e, k, t, are equal to 

A, — Um cos <p 4- B0y sin ç -)- ayZ cos <p — a^Z sin <p. 

A, = Bq, — ayv cos q> -)- axv sin <p. 

t» = — Bar sin Ç 4 B0y cos ç 4 wjv — sin «p — axZ cos <p. 

The projection of vector © onto axis r2 is equal to 

(a • tj) = — ax sin ç -)- ay cos <p 

(18.10) 

(18.11) 

consequently, because of (18.8), (2.14) 
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—ü)xsin<p-fwycos<j>. (18.12) 

We exclude from consideration displacements which are axisymmetric 

and odd relative to plane <f> = 0, i.e., we set «o, = «o, = 0. 0, = 0, = 0. 

Then we will have 

= (“w •+ cos ‘P* Ax = —o>yvcos«p. 1 
t> = (— «(j, — oyZ) $ln <f. ö, = —oy cos <p. J 

(18.13) 

Corresponding amplitudes of displacements are equal to 

Ar(H = «ar-f-V- 1 (18.14) 

Calculating on the basis of (18.14) components of deformation (8.22) 

and (8.23) (k = 1) and function f (see (16.1)), it is simple to 

verify that, as one would expect, in this case 

^0) *2 (1) ~ Y(l) = *1 (1) = *2 (I) = T(,) = 0. ^ = 0. (18.15) 

Let us rewrite equations (I8.I), (18.2), (18.4) 

(I8.I5) and (15.13). We obtain 

io = IV 
A* to = °iv> 
Vil)** Dig + Dr 

A«(i)at—^1^ — D* 

Comparing (18.14) and (I8.I6), we have 

(18.5) allowing for 

(18.16) 

0,= -O,. (18.17) 

i.e., constants of integration and D^, appearing during determin¬ 

ation of amplitudes of displacements with respect to assigned 

amplitudes of the component of deformation (formulas (18.1)-(18.5)), 

are the rotation of the shell as a whole around axis OK and the 

shift of a solid as a whole In the direction of axis OX taken with 

the opposite sign. 

i 

*7 
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In conclusion we wi?! examine the strain of a shell whose 

edge 0n is joined with a rigid washer. On the washer act force P 

and moment M (Fig. 10). The washer can only shift and turn as a 
y 

solid body, where 

= “ax1' = ‘V- (18.18) 

Setting in (18.14) Z = 0, v = we fino that on the edge of the 

shell 0 = 0Q the amplitudes of the displacements are equal to 

id (0O) — ui ax' 

7(i) <0o) = ^OlT ' 

* a) (0o) — 

I (O (0o) 

= - <V’o- 1 
= -0),. J 

(18.19) 

Conditions (18.19) are boundary conditions in displacements of type 

(8.26). The fourth condition of (18.19) means that the angle of 

inclination of normal n to the plane of the extreme section remains 

constant with deformation. (In the designations of Fig. 10 ß = ß’.) 

Taking into account formula (17.3), we can replace (18.19) by 

equivalent conditions 

(1) (0(>) UQjr’ 0( 0)(0())-wy. 

^0)(00) = 0- v (00)==0- 

(18.20) 

(18.21) 

Conditions (18.21) serve to determine the constants of integration 

in the solution of equation (16.21). To them should be combined two 

conditions on the second edge of the shell, which can have any form 

from (17.8)-(17.11), depending on the concrete assigned conditions 

on this edge. 

Fig. 10. a) Deformation of edge of shell joined 
with a rigid washer, b) System of loads which 

bends shell into plane ^ = 
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Let the second edge of the shell 0 = be sealed into a rigid 

wall, i.e., it remains motionless and not deformable. For simplicity 

it can be considered that there are no distributed loads on the 

shell. The shell is an overhang loaded by an assigned force and 

moment F , M . It is necessary to designate shift and rotation 

U Ü) of edge 0 . On edge 0 = 0, we have conditions in displacements: 
Ox’ y 0‘ t 

A,(.»(Öl)“0- A.0)(0.)-O- \ (18.22) 
V,.) (0.) = 0- O.i.) (0.) = 0- ) 

On the basis of formulas (17-3) they can be replaced by the equivalent , 

conditions : 

A, (0 (0.) = 0- 0. <» (0.) - °- 

e, ,,)(0,) = 0- ^(0,) = 0- 

Conditions (18.21), (18.24) serve for determining of constants 

of integration in the general solution of equations of Meissner (type 

equations (16.13), (16.14) or equation (16.21)). Since these 

constants have been defined and the solution of equation (16.21) 

satisfying assigned boundary conditions has been constructed, we 

can consider as known all components of deformation *,(,)• **<,>• Y,»•*,,„• *2<,)• 

x(1) and the function of Y in any section of the shell. Let us 

remember that they linearly depend on loads Pj. My. assigned on the 

edge, since the right side of (16.21) is a linear function of these 

quantities. Conditions (18.20) serve for determination of constants 

of integration £>2, figuring in equations (I8.I), (18*5). 

Setting 0 = 0Q, we find 

D, =3 — or 'D2 =» — «o,. (I8.25) 

i.e., constants Z?1, Z>2 are the desired unknowns. We require now 

the execution of conditions (18.23). Setting in (I8.I), (18.5) 6 = Q1 

and taking into account (18.2), (18.25), we obtain 

(18.23) 

(18.24) 



J Ä,X, u) ¢/6 4-0), = 0. 

v¿5 „) (ö,) - J [y,d + ¾ (1) cos Ö - 'Ir sin 0 4- 
e. 

4- sin G j /?, xt (1) dû 4- o), sin 0 /?, dG -f- = 0. 
e. J 

(18.26) 

From (18.26) we find 

wy — — J Rfà (1) 
8l 
e, 

"ox = ®y J ^1sin 0 dG — vej (1) (G,) 4- 
e e, 9 

+ J V(i)4_e2 (j) cos 6—'F sin G-j-sin G J ^x, ()) dG /?, 
e, L e, J 

d0. 

(18.27) 

The case of a rigidly sealed edge loaded by force P and with moment 
y * * 

M is considered analogously. Really , introducing new axes OX , OY 

(Fig. 10b), we find 

p\--=-py. m;= 

"Ox V wy = ®x 

and all previous arguments are repeated in curvilinear coordinates 

0, (j> , whereupon we can return to previous coordinates 0. <p = ^4^-5-)- 
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§ 19. Character of the Stressed State of a Shell 
During Ax 1 symmetric and ken'dlng Leads 

In §§12 and 16 of this chapter It was shown that the problem 

about the equilibrium of a shell which undergoes to action of non 

self-balancing loads reduces to the solution of the equation 

(19.1) 

during axisymmetric loading and the equation 

¿ (o)-l-2«Y5 
ffjsme iR\ 

b\a 0 — I s[< 
¢3(0) R* 

(19.2) 

during a bending load, where 

¿(0): d*o , do /?, cos 0 
V 

_L dRt\ 
R, d6 )' 

(19.3) 

‘î’i. ‘Î'î and are known functions of the load and can be cal¬ 

culated according to formulas (11.11), (I6.IO), (I6.II) a = — 

relative thickness of shell, b - certain characteristic dimension 

of shell (for example, b can be the radius of curvature in extreme 

section ÆÎ or /$• 

2yS=1/12(1-h*>-£. (19.4) 

- large parameter. 

The left sides of equations (19.1) and (19.2) differ from 

another in only one term In the coefficient of unknown function a, 

which has no essential value if v=jfeO and parameter 2y* is great in 

comparison with unity. 
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The general solution of equation (19.1) or (19.2) Is made up 

from the general solution of the corresponding uniform equation and 

a certain particular solution of an equation with a non-zero right 

~ide. Let us show that in certain cases the particular solution of 

these equations can be the approximate solution of the initial system 

of equations of the theory of snells, the so-called solution to the 

zero-moment" theory. In calculation from the zero-moment theory 

it is assumed that amounts Mjb. M2¡b, H/b, Nv N2 are small in comparison 

with forces T^, and S and in accordance with this in equations of 

statics (^.22) they are dropped. "Zero-moment" forces T?t S 

depend on three simplified equations (4.22). By the found forces 

with the aid of three elasticity relationships (15.17) deformations 

£,. e,. Y. are determined, then integration the first three relation¬ 

ships of (3.19) to the displacements which correspond to the zero- 

moment state. The zero-moment theory of shells and questions connected 

with the satisfaction of boundary conditions within the framework of 

this theory have been comprehensively examined in monograph [5]. 

We will stop first on constructing a particular solution to 

equation ( ^9.1). We look for it in the form of a series in degrees 

1. (or, which is the same, in degrees A®. [12] 
2v* b 

(w.s) 

Substituting (19.5) into (19.1) and equating terms with identical 
quantities 1/2yJ, we obtain 

0,« = 2Y’{c 

¢,(9) 
b sin 6 

«g*e 

«» ’ 

1>,(fl) va 
va K] sin» 

1 r rf / ¢, 

MM?) 1 _ 
[ sin da5 J (19.6) 

etc. 
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Since in deriving resolvent equations (19.1), (19.2) terms of 

degree ha'b in comparison with unity were dropped, then in developing 

a solution it is natural to be limited to the same correctness. In 

this way, the particular solution of (19.1) can be taken in the form 

(19.7) 

Tne particular solution of equation (19.2), constructed analogously 

has the form of 

(19.8) 

It is necessary, however, to emphasize that in dropping small 

terms in the course of deriving equations(19.1), (19.2), and also in 

developing a particular solution, one ought to see that the dropped 

terms nowhere turn into infinity, as happens at y = 0 or sin 6=0. 

Because of this the constructed particular solutions are adequate 

only in the vicinity of the change of 0, rather far from points 

0 = 0, or y = 0. By formulas §§ 12 and 16 we will find the forces 

and moments which correspond to particular solutions (19.7), (19.8). 

For and axisymmetrically loaded shell on the basis of (19.7) 

and (12.11) we have 

(19.9) 

Ny = /Mj — /Mj = 0. 

The stressed state corresponding to particular solution (19.7) is 

zero-moment — shear forces and bending moments in the shell are 

equal to zero. By a direct check one can ascertain that forces 

(19.9) satisfy equations of equilibrium of the zeio-moment theory, 



»hich are derived from formulas (11.1) at = ThereiuI.e 

subsequently particular solution (19.7) will be called the zero- ‘ 

moment solution, a- i forces (19.9) are the forces found from zero- 
moment theory. 

force"ster a bendlne l0ad by <19’8> and (16'M) We tbe following 

^ ~ OT (^o+^i) + C/o 4- /,). 

■p _ V COS 0 

T5T53T (^0+- Jf—rg (/.+/,) 
(19.10) 

where ^'’e/e/../, are functions of the external load, designated bv 
formulas (15.30), (15.35), (16.10), designated by 

If we calculate according to formulas (16.20) and (19 8) (IK m 
moments and forces« « ' (1+0),(14.4) 

md* ™2<\)* then we obtain, ß:eneral"l\; 
speaking, quantities differing from zero, but small: having the 

order of ^ of forces multiplied by dimension 2, for moments, and 

the order of of forces for shear forces. Therefore at the sub¬ 

stitution of the obtained expressions into equilibrium equations 
the quantities should be droppe<J lp com_ 

parison „ith the corresponding terms containing 7-,,,,. f,,,,. 5,,,. Substi. 

ng forces (19.10) into equations (15.28), (15.29) and the third 

veri y°that h = „e 
verify that they are satisfied. This implies that the basic equilib- 

; r,:rr °f Zer0"n0,nent the0ry’ Whl°h are drived from system 
( .3) in the absence of moments and shear forces, are satisfied also. 

to no ft n°u t0 the SOlUtlon ro the unlforr" equation which corresponds 
o (19.1). We need to transform this equation to the form 

jzr + /(x)x = o. 



which makes possible the application of several asymptotic methods 

of integration [4?], [45], [12]. Let us replace the independent 

variable 

(19.11) 

Having in view that 

<¡*0 

</0* 

da _ da dx   da I?, 

¿0 ~ dx dO dx ŸT 

dó d^x d^a sln0 

/?• 

dx dO* dx* » 

da d 

va dx dó 

we derive the equation 

d*o 

d¿ 
da td'x . /3a' , Ä.cosO dR,\ dx I fcva , 

dd ) rfoj sln0 ^ 

-f 2¿Y?o — 
ftacos*e 
vsInO 

0. 

It is known that in an equation of the second degree by a special 

replacement of variables it is always possible for the coefficient 

of the first derivative to turn into zero, for example, setting 

0== TO, 

where t - new unknown function. Taking into account that 

da dx , du d'à _ d*x . „ iT.^r- 
1-=-« + T-57. -dZ-'d*u + 2dxdx+xdx* 

dx du <Pu 

;,‘ay 
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and gathering terms, we require that the sum of equations 

77- be Zero- we obtain the aquation for determining 

_ </U (/0 2 —-|_H 
dO dx -(- 

R, cos 0 1 dR, \ dx") bva 

Ä, do ) daj-^Tiñe^ ‘ 

or writing out ^ dx 
dO1 ’ 1Õ in detail, and gathering terms. 

o 11,1 i 11 cos A 
u ' \2 sin0 

1 cos 0 
J—— +4^)^0 = 0. 

whence follows 

Inu = In t-r1—} 
\aKvasin0 / a)Avã sin0 

Thus, setting 

al^vâsïïTS 

we arrive at an equation for unknown t 

S+T[2^-(0)]=o. 

where it is noted that 

t(0) = 
M'a 

4/?jsin0 [ sin2 0 4 sln20 

i cos 0* <//?, ^a' (l cos 0 
R, sln0 sin0 “’"T 

_ 5a' 1 dR¡ , 
" R, dO ‘ 

cos2© 1/?, cos20 1 fl2cos2e 

2 V sin 0 

11 R, cos 0 j 

15 (a')* 

Ri sin 0 

containing 

(19.12) 

(19.13) 

(19.1^) 



transforming likewise homogeneous equation (19.2) for a bending 
- 

load, we obtain 

(19.15) 

where is determined again according to (19.1*0. 

To investigate the character of solutions of equation (19.13), 

(19.15) at V =#0. sin0^O we neglect in coefficient of x variable terms 

as possessing the order of unity in comparison with the large term 

2/Yq- Then we arrive at equation 

(19.16) 

the general solution of which has the form of 

(19.17) 

where - constants of integration - generally speaking, imagi¬ 

nary numbers. Variable x on the basis of (19.11) can be expressed 

through original variable 0 

(19.18) 

Replacing constant by a certain other constant 

returning to basic variable 0, we will write the approximate solution 

of equations (19.1), (19.2) (right side equal to zero) To™ 

0 = (19.19) 
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where a is determined according to (c9.l8). and 

Vb /V? (19.20) 

It is easy to see that * increases from 0 to 0 
the solution decrees . ° ’ COnSe^^tly, 
edge e On th* , deCrea"es in Proportion to the distance from 
edge 0, On the contrary, *1 increases .from 6, to 6 and corre¬ 

spondingly, the solution e-v.o-o* decreases in 

«stance from edge e = e, . Variables ! aL FrOPOrtl0n t0 the 

At a sufficiently large íalue of'And . 
to * the vai e +- parameter y^, proportional 

V V the val- «>e first solution °in the nelghbor, 

At,0/ eTe Lt1 Wlbn be negllEibly s”a11 a= spared to the second 

-ution At^eXhAAAtr/r^ur rseoond 
large parameter y0 and shell length, i.e./when 

des^ih T™' UnitS, eaCh °f the indePeodent solutions in (19 19) 
describes the state of the shell in the neighborhood of its edge 

4 
a J' va sin 0 

Cjí-Vsd-Ox 9<^e 

— -C2g-Y.(l-0x,, eess0i 
«Kva sin e 

(19.21) 

(19.22) 

lA/rrr Wl/ the Separate rePrdeentatlon of the solutions for 

if »Ait T Ta given 3he11 ls slraple tu evaiuata- Th-. W ' thSn at edSe 0 = 90 ttla «’’at solution assumes the value 

C, l~^~~-) * 
VoKw sin 0 /# » 

the second solution at this edge gives 

C’ rjrzrr— ■ = T-rC'\ - ■ 0.04. 
V« rva sin o)9mBt (a KÂTê], . 
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In this way, if the quantities a. vsinö daring extension of the shell 

chE. ige not too strongly, the error is of the order of il?. If the 

shell is sufficiently long, then in the middle part of the shell, 

far from both edges, both solutions (19.21) and (19.22) will be 

negligible in comparison with the zero-moment solution. In this way, 

the stressed state of a thin rather long shell consists of a funda¬ 

mental slowly changing zero-moment stressed state, onto which in the 

boundary zones are imposed states which correspond to solutions 

(19.21), (19.22). This phenomenon of the existence of local pertur¬ 

bation of the stressed state in the area of the edges of a thin shell 

received the name "edge effect." One ought to note that edge effect, 

i.e., local elevation in the stress in a shell, can be observed not 

only in the neighborhood of the edges, but also in places of a pro¬ 

nounced change in load, thickness or angle of inclination, or cur¬ 

vature of the meridian of the shell. 

Thus, fer instance, if along a certain parallel 0 = 6# is applied 

a distributed normal or tangential load, or a distributed bending 

moment, then, dividing the shell into two sections (00.6*) and (O’. 0,) 

and replacing the action of section (0*. 0,) on section (e0. O’) by a 

certain system of boundary forces applied In section 6», we arrive 

at consideration of section of shell (0o. O'), for which by the above 

method a zero-moment solution and a solution of the edge effect type 

should be conscructed. The same should be done even for section 

(0*. 0,). where in section 0# should be applied a system of boundary 

forces and moments giving In sum with forces and moments applied in 

section 0* to the first section of shell an assigned external load 

in 0*. These boundary forces should be determined from conditions 

of continuity of several geometric and static curves of the deformed 

state during transition through section 0*. In this way. In cases 

of a pronounced change in load or pronounced change in geometries 

quantities (curvature, thickness) it is necessary to divide the 

shell into individual parts with smoothly changing load, thickness 

and curvature and then solve the problem of connecting these parts 

with each other. Subsequently we consider such oroblems for con¬ 

crete forms of shells of rotation. Here these considerations were 

given in order to explain that edge effect can appear not only at 
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the edge as such, but also In places of a pronounced change in load 

or geometric curves of the shell. 

§ 20. Temperature Stresses. Formulation 
of the Problem 

In a shell a stressed state can arise not only from the influence 

of external forces, but also as a result of nonuniform distribution of 

temperature. Let us assume that there are no external loads, and 

edge of the shell can freely move. Because of nonuniform heating 

individual elements of the shell tend to broaden also unevenly, and 

since they are interconnected, in the shell appears a stressed state. 

Forces and moments statically equivalent to this internal stressed 

< state satisfy uniform equilibrium equations. Forces and moments at 

the edges of the shell are equal to zero. In this case the zero 

stressed state (7, = ^ = 5=^1, = ^^ = // = 0.1 is statically possible, i.e., 

satisfies equilibrium equations and power boundary conditions. But 

it can be realized only for definite conditions imposed on temperature 

distribution. To determine a non-zero internal stressed state it 

is necessary to add physical and geometric relationships to the 

equations of equilibrium. 

Total relative elongations of elements of an elastic body are 

made up of temperature elongations and elongations connected with 

internal stress by Hooke's law [39]. Components of deformation are 

expressed through displacements by the usual method. Taking these 

positions, we need to write out the total system of equations 

describing the deformation of a shell during nonuniform temperature 

distribution. 

We assume that with respect to the thickness of the wall tem¬ 

perature changes linearly, i.e. 

*(0. ?) == (0.?)+ jA/(0, q>), (20.1) 

where C- - distance from middle surface, read along the normal, tm 

— average temperature of wall. A/ — drop in temperature with respect 
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to depth. If we designate temperature of the external (t = + A/2) 

and internal (C = -A/2) surfaces of the shell through and r. then 

A/^f+-r. (20.2) 

The components of deformation of an element of the shell lying on 

layer t = const, are equal to 

*i = («i — >«4) + ß*. 

» = (20 3) 

here ß - coefficient of linear temperature expansion. It is a physical 

constant of the material from which the shell is made. Solving 

equation (20.3) in «r <h- V». we obtain 

°i = -H I‘'î - (•-f J») 

^ = (20.^) 

Ignoring In equations (3.13), (3.18) the quantities £ and £ In 

comparison with unity, we find that elongations and shear In Surface 

points ( = cons! are expressed through components of deformation of 

the middle surface In the following manner: 

*1= ei ~r C54!* ^ = + 1 

ci = Y + ;2t. ) (20.5) 

Substituting expressions (20.5) Into formulas (20.lt) and using 

simplified expressions to calculate forces and bending moments (In 

formulas (4.5), Just as In (3.13), we can neglect quantities of 

the order of i'S, and Cm, In comparison with unity), we obtain 
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I«,-Hlie, —(I H-n)pr|. 
^ Ie*-h M*, — (1 +-11)^]. 

[x, +-J1XJ — (1 +n)p^.j> 

^«Oh + Mx.-O -+-jx)p^.], 

H = D(\ —h)t, 

where we have introduced the designations 

(20.6) 

(20.7) 

Components of deformation of the middle surface are connected with 

displacements u, v, w by the formulas (3.19). Equations of equilib¬ 

rium, elasticity relationships (20.6), (20.7) and expressions (3.19) 
form the total system of equations for determining forces, moments 

and displacements in a shell for an assigned temperature distribution 

It is necessary to combine it with the boundary conditions, which in 

the considered case, when external forces are absent, are uniform 

static conditions. 

In conclusion let us note that relationships (20.6), (20.7) can 
be rewritten in the form 

where 

e,=-EÎ + eJ. + 

^=fî+e2- *2 
Y = Y' +- Y'. T = T' +- T', 

Eh (^i 

-^(r2—nr,). 

2(1+-M) O 
ËK~0' 

“î“-EST 

T,_ 12(1+;.)^ 
Ëh n' 

(20.8) 

(20.9) 



• _./ OJm I e, =ej=sß/ . xp / :Xj: . o 

PIT1 
(20.10) 

The quantities in (20.9) are given an e to show that they are 

connected with forces and moments by elasticity relationships of the 

usual form. 

The total components of deformation (20.8) should satisfy equations 

of continuity (3-30). Since A/ are assigned functions of coordi¬ 

nates 0. q\ and «Í.T' are expressed through forces and moments by 

(20.9), then the equations of continuity after substituting into 

them expressions (20.8) will turn into three heterogeneous differen¬ 

tial equations in six unknown forces and moments. Together with 

the equations of equilibrium they form a system of six differential 

equations of the eighth degree in T,. S. 41,. H with uniform 

static boundary conditions. This system of equations in heterogeneous 

because of the equations of continuity. If the distribution of tem¬ 

perature is such that deformation components fi- EJ.T' identically 

satisfy the continuity equations, then in this instance the equations 

of continuity in forces and moments will have free terms Identical 

equal to zero. To attribute forces and moments (7*,. T,.S. 41,. A12.//) 

we derive a uniform system of six equations with uniform boundary 

conditions. The solution of this system is identically zero, and a 

stressed state does not appear in the shell. This case exists for 

a linear distribution of temperature in the space taken by the shell. 

§ 21. Linear Distribution of Temperature. 
Petermination of Dlsolacements 

Let us examine a linear distribution of temperature 

A 

t = K i-A^Z + A^X+AV'Y. (»I (21.1) 

where X. Y. Z are the Cartesian coordinates of an arbitrary point of 

the shell. They can be expressed through curvilinear coordinates 

0. <p. ; in the following manner (see Pig. 1 and formulas § 1): 

• . -1 
124 



X = (y -(-tsln0)cos<p. K««(v 4-tsio0)sinq>. 

(21.2) 
7,= - [ /?, sm 0 ¿0 Htcos 0- 

i' 

where v. /?, are known functions of coordinate 0. 

Taking Into account (21.2), we will rewrite (21.1) In the form 

(21.3) 
-H /1(,, (V 4-1 sin 0) cos <p -H (v -f Ç Sin 0) sin <r 

Comparing (21.3) and (20.1), we find that In the considered case 

e 
r = K - A(0) J /?, sin 0 «/0 -H i4(1) v cos<p -f ¿(»v sin q>. 

(21.4) a. 

= /1(0) cos 0 -H 4(„ sin 0 cos <p 4- sin 0sinç. 

It Is simple to verify that In accordance with the general law of 

the theory of elasticity stresses in a free shell during linear 

temperature distribution (21.1) or, which is the same (21.3), are 

equal to zero. 

By (21.4) and (20.10) we have 

ej =e' = e¡0) + ej,, cos <r -f a0’ 'sin ?• 

xj =r xj n= x'^ -H xJjj COS <p 4- »C<,, ' Sin Ç. 

y' = t' = 0. 

(21.5) 

where we introduced the designations 

*0 = 0K — M(0( J /?, sin 0 d0. (21.6) 



-<i> — 

e<»< = X'»' = JM“* sin 0. 

Let us examine deformation during axisymmetric temperature distri¬ 

bution (first term in formulas (21.5)). To realize the statically 

possible zero stressed state it is necessary that the components of 
strain 

• ■' ' ■ V, 

ei(o) ~ e.',o) = EiV ^=0. 

1(UJ 

ho»* 
T<0> (21.9) 

Identically satisfy equations of continuity (8.15), (8.16). It is 

clear that equation (8.16), connecting only y*0’. t“». is satisfied in 

§ 11 it was shown that equations of continuity (8.15) allow one first 

integral (formulas (11.5),(11.6)). Therefore (8.15) can be replaced 
by the equations: 

1 
1 

yxj (0) sin 0 -f- (ve, (0)) c, (0)Rl cos 0J = 0. 

1 d 
¿0 (VX, (¢))-(0) cos 0 — ^ (^2(0)) + CJ (P) cos 0 = 0 

(21.10) 

Substitution of expressions (21.9), (21.6) into (21.10) turns (21.10) 

into identities. We will examine now temperature distribution 

proportional to cosv- Corresponding amplitudes of deformations are 
equal to 

e.So, = Y( 

» (D -’d) ' 

d)' 

(I)’ *(l)‘ 

0. 

0. (21.11) 

They should satisfy equations of compatibility (8.24), which, as 

shown in § 15, can be replaced by equations (15.30), (15.31), (15.33) 

Substituting into these equations components of strain (21.11), we 
have 
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V*Íl>-C(!)SÍn0~°- 

1 *<'»_,' Iose_n 
Ä, </6 E(1» V —U, (21.12) 

The three relationships of (21.12) connect two quantities: 

’‘óv e<V When *{„• e{i) have the form of (21.7), relationships (21.12) 

are not contradictory, since each of them is satisfied identically. 

The case of a temperature distribution which is odd relative to 

plane q> = 0. is checked similarly. Thus, during linear temperature 

distribution in the space taken up by a shell the components of 

temperature deformation ¢{. cj. x{. x' satisfy equations of continuity 

and, consequently, the statically possible zero stressed state js 

realized. 

Let us determine the displacements of points of the middle 

surface of a free shell during linear temperature distribution. 

First in (21.4) we set = and find displacements h(0). u(0) 

in terms of preassigned deformation components (21.9), (21.6): 

ei (o) — f-2 (o) — P40Z 4- pK. 
»h (o) = *2 to) = Mo cos 0. y'0' = ■c*0' = 0. Î (21.13) 

From (8.12) it is clear that v*u* = 0, i.e., there is no twisting using 

the first relationship of (11.9) we have 

whence, taking into account (1.33) and integrating, we obtain 

(0) = — P4(0,v 4- D. 

Substituting the obtained expression for 0,,0, and deformation (21.13) 

into equation (11.8), we see that constant of integration D = 0. Thus, 

0, to) — P4(0)V. (21.14) 
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Now the déterminâtior of axial and radial displacements can be con¬ 

ducted according to the system given in § I3. By equations (13.12), 

(13.15) we derive 

\e = ßv (/C -f A(0)Z). 

^ = — P(K + A(U)Z) R^inQ — ßi4(0)v cos 0/?,. 
(21.15) 

Integrating the second relationship of (21.15), we find 

f V*—V* 
A,-DI-ßJ (K+^ZJtf.sInede-ß/l«,,—(21.16) 

e. 

Note that A, can be represented also in the form of [12] 

e 

\ = D2-fij rf0 + vß(/f-p/»(o)Z)clg0. (21.17) 

Really, differentiating (21.17) and comparing the result with the 

right side of the second equation of (21.15), it is simple to verify 

the identity of (21.16) and (21.17). 

For temperature distribution according to the law 

/ = (V-)-;s'.n0) cosif 

the amplitudes of deformations in a free shell aie equal to 

Y(i) = 0. ï (21.18) 
Xl{l)!=:X2(l)==P/^(l)Sln01 ^(l)0^* ) 

The determination of displacements we begin again from angle of 

rotation d,(l). According to (8.23), (8.22) (A = l) we have 

-¾1 = - *i*> d) = - MuA s«n 0. ( 21.19 ) 
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Integrating (21.19) and taking into account (15.13), we obtain 

(d - MoiZ+ir (21.20) 

Here Z coordinate of points of the middle surface in section 0 = const. 

After this Aa<l) can be foun^ by the formula 

Aid) = ^i+ J (— e, (1) sin 0-f- Û, (I) cos 0) /?, dQ = 

=^1+/ l(ß^(,)Z + g=) cos 0 - ß/lu)v sin 0] d0. (21.21) 

and peripheral and radial displacements with (18.4), (18.5) 

a 

"(I, =8Vf f (>»(i)pv cos 0 - —l'^lnej /?, </9. 

A«(l) V(l)- 

(21.22) 

The obtained expressions contain three constants : ?. *■, one of 

then,, for example if,, should be determined from the condition of 

compatibility of expressions (8.22) at *=1. To determine?, we use 

an equation which Is a corollary of the fifth and sixth equations of 

sin 0 1 
*2 („ cos e + T(1) = ^+ _ (1) sin7 e. 

(21.23) 

Substituting into it the found expressions for o(U and and also 

and x(I) in accordance with (21.18) and requiring that (21 23) 

be satisfied identically, after a series of transformations we 
obtain 

Taking into consideration that 

f j , • 
v/?, cosOrfO = — /?,Zsin0rf0: 
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We derive the final expressions for displacements: 

§ 

d) — • 

A«<o: =ifv-}- i4(1)pZv, 

®(D = + if 2-r 

*<(i) — <^2 ~~ -r j- 
( v*-H ZJ\ 

T-j- 

22. Particular Solution of Meissner Equations 
Considering«; an Axlsymmetric Terrperature Field 

In the general case of temperature distribution according to the 

law 

or 

tm (0. q>) = [/<") (0) cos A(p 4- tm (*) (0) sin Ä<p]. 

CD 

At (0. <p) = 2o [A/(*, (0) cos A<p + At<k> (0)sln fcp]. 

when $)\0). i'"“’(0). ^/(4)(0), (0) are several arbitrary functions of coordi¬ 

nate 0. internal forces and moments in the shell are non-zero. Using 

representations of the desired quantities in the form of trigono¬ 

metric series (8.1) — (8.3), to determine the fe-th harmonic of the 

static and geometric quantities we will obtain a system of equations 

consisting of equations of equilibrium (8.20), equations (8.22) and 

physical relationships of the form 

Tu*) —ß [ei<»)4-HC2<*) —(1 -HOP#)]. 

Tit»» = ß [c?<*) 4- urn (*>—O 4- >0 P#J. 

ß<*) = ß^-y-Y<*). 

(22.2) 

<*) — £ [*1 (4) 4- nx2 — (1 4- n) f) f^îlj, 

A!, „J = D [x, r*j 4- fix, U) _ (1 4. p f 

//(4) = 00-^)^4,. 

(22.3) 

• V 
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For * 0, 1. in the same way as ln II 12, 16, „e can obtain Meissner 

equations, in the right side of which will now stand specific tem¬ 

peratures functions, which can be considered as a certain fictitious 

temperature" load. 

Let us examine the stressed state of a shell during preassigned 

axlsymmetric temperature distribution <*-01 |I2|. Tangential forces 

In the shell do not appear, since it experiences in this case only 

axlsymmetric curvature and elongation. 

Since the shell is free of external loads, equations of equilib¬ 

rium (11.1) m this instance will be uniform. The first two of them 

are satisfied if we set 

= vA/|(0) = V’slnO. f, 

Prom (22.4) and (22.2) it's simple to find 

through function 

(22.4) 

expressions for c,(0), e3 
(0, 

e* «»“-¿t 
V cos 8 (i dV 

]+P/,'3,. 
. _ if 1 dV V cos 91 , m 

82 (0> - "EÃ [ IT u ~~r~\ + P/S- 
(22.5) 

Bending moments are expressed now through angle of rotation * m 

with „he aid of relationships which come from (11.9) and (22.3): 

M ,(0): 

^2(0) = 

£!>• r 1 f 
w^ri7?r- 

W-e') [~7~ 4i ¡1) + Tj- -¾1 +(1+11)(1 ^2.]. 

(22.6) 

Substituting (22.4), (22.5), (22.6) into the third equation of 

equilibrium (11.1) and equation (11.8), we derive the desired equation! 

°r an 1(()) functions for preassigned temperature distribution 

/(0,(0). A/(O)(0): 



V +fco 
Ä, M2 \ 

i9_ rf0 ) ¿0 ^ \ V / 

..... dtñ 
— EAôi ,<,)/?! sin 0 = - f Aßv -^- (22.7) 

^-sr+(“se-^-5r)-¿r+ 

/ «,£05*0 -\ . «>Vslne 

+ (0) [ 
— H sin oj - 

pv d(St{0i) 

!—O+^X ¿0 (22.8) 

By direct check one can he certain that for linear temperature 

distribution 

far^K-M(0, [ «, s«n 0 ¿0. ^(0) = *10)A co* 6> 

0. 

equations (22.7), (22-8) have the solution 

y=o. ♦no)“-?*«)»» 

(n>o (22 6) in this instance we obtain 
using equations (22.4), 111 

T, ,o) = Ti (0) = <o) “ M* '» = N« “ 0- 

(22.9) 

Replacing variables 

(22.10) 

where 

y0^Ehòuo). 

4-4 o (oo 7) (22 8) to one equation for o,- 
we go from two equations (22.7) > v 

Dropping unessential terms, we obtain 

Ehf> ■ 
J (1 + )0 

^ d0 de J 
(22.11) 
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We find the approximate particular solution (22.11) by dividing 

the right side of the equation by the coefficient of o0. Setting 

v*°- and dropping quantities of the order of in comparison with 

unity, we obtain 

1/_ FAJfl 1*^ ^ (^(0)) 

1 
»**) rfe J (22.12) 

(22.13) 

Forces, moments and displacements corresponding to this solution in 

the shell will have the form 

(22.14) 

cos 0 1 </(Af(0)) 

12(1 — n) sir 0 7?¡ d¥~~ 

Eh’t f *2 d \ I , 
i2 d - ».i i w ¿o J+ 

Eh't 1 '(¿*(0)) 
12(1-,,) 7?T 

1 ^(0)) \ 
Ä,y sine 'ST do j’ 

[^0) i ^ i d ( i 
— M) l h “^l+M R, W\~Rï~d$~) 

+ 
cose i at” I -- • -(0) ”2 cose 1 dtfa] 

^slnOÄ.-rfT ^,(1+,,) 

^ r^o,. h i M <0)\ 
—io l * i +n "ET ¿e \~F¡ rfe ) 

cos 0 1 ] 

e Ä, rfe J* 

(22.15 

(22.16) 

(22.17) 

cos 0 1 rff," 

(1 + ,i) 7?T slnT*S7 W) slnt (22.18) 

. A _« ï ■ PO 
^(0)-Py^ (22.19) 



V m- V 

Í m f Ä* d ( 1 dejlt)\ t 
A, ,0, = vß —5«-j + 

co*e/t ä2\ I rfA/(#)T\ 

+ Ime I1 - âT/âT-rfö-]/* 

e R 

(0) = D2 "4“ cos iO) — ß J" *(<>) (^ ~ "ï?ï") 

hiv 1 ¿A/(c, _*ß_ ffi+n Mcosö^^ 
— Í2(l-j»)^ ¿0 + 12(1-H) J V 

§ 23. Equations of Meissner Type with a Tempera¬ 
tura Distribution Varying as cos? [^3], t3l] 

Let us examine the temperature distribution 

av 
Ehti u) “ — 7^ “¿flf + y (1 — n) 

E/jEj 0)=3 Ä, JU 

/-(0, <P) = ^,(0) COS f. 1 

8®. J A/(0, ®) = A/(I) (0) cos ® 

Our task is to derive Meissner equations analogous to (16.15), 

(I6.I6), with the temperature terms in the right side. In deriving 

these equations one ought to have in mind that relationships (16.2), 

identically satisfying the two equations of continuity (15.30) and 

(15.33), stay in force; the same is true of (I6.3), if we set the 

load terms equal to zero. Adding to them physical relationships 

(22.2), (22.3) (*=1). we express all involved quantities through 

v and V: 

Eh* s!n8/ 1 
12 V IÄ, 

Tcose 
</0 * y 

_ Eh* slnO 
4- £*ßf(i) + “¡y ß —y 

EAYu, =2(14-^)-7 + 

' 12 
sin C 

T2+~v~ 
Eh* V sin 0 

Eh* w, sin 0 cos 8 . 
* -3-) 

4-fÄß/U)+T5“ß (“ 
(D sin 8 

/(Î) )• 

(23.2) 
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Kl (1) 
1 np 
Rt dd 

Vcose 

^(1) 

Ml) 

+^,^+ 

^ + ^(0-,)^0,0^-) + 

Sln0,m\ 
"T~M«)j. 

+^(7) 
sin 9 sin* 0 A* ^A/(l) 

.^ i 1/ 2(1-f-}i) sln0 
“ + ^ £Ãv>- 

12 ^' JT 
sin 0 

-/(7, ■)• 

' 1U)S 

V 

y cose Dsln0 

r*<«> = -^-55-+ 

’(i) 

Eh* 
+ 721 

I </Vr . V'cos© ösinO 
V v~ 

Eh* 
12 (1 —n) 

V sine 

[■ir ir+i1+,)--^)+ 

.., £A’ Psin© / A/,,, sin© _\ 
+ 12-0^0-(-^1 —<?)). 

+ 

= ^-+0-2(1-)0 

A 7-M'l; 

ßslnP f A/(l) sin 0 \ 

V [~T ^-/(«)]• 

(23.3) 

■**1(1) 1 ‘/V , . V cos 0 
“5~--^-^+() + ,)—— 

(1—I»*) KslnOcosB 

Ih V*-1" 

I1 , 
D --^1^0+0+,) 

(1—I**) sln0 

+ (• +M)ß^ 

Veos© . 

I /,7, si" 0 

r—2T 

"(,) 
~(T = -0-10-1- + 2(1-^/s,ne 

^1(,) = - 
T, d) 

V 

COS0 
»<■) 

sin 0 sin 0 

£Av* 

"«,) 

+)■ 

(x^+^)+<.+^(^-^). 

(23.4) 

Equations for the determination of V and ¥ are derived by 

substituting the expressions for forces, moments and deformations 

into uniform equation (15.29) and equation of compatibility (15.31). 

Writing these equations in variables 

=£AŸ, Vl = -£. 
(23.5) 
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we will have two equations which differ from (16.15) and (16. 

only in the right sides. The right side of (16.15) is replaced by 

the right side of (I6.I6) by 1¾ 

(23.7) 

Going to complex functions ^ = ^1 + 2/7%. Instead of two equations in 

V', and Y, we obtain one 

*r ,Ä?sine 

-v"]0,=* 

“-0 
^sme _ u0) 

V ï )]- 
— 2/V* —wv“;- 

(23.8) 

where ¿ is a differential operator 

a* , //?,co*e 1 *Ä,\ * 
¿ = -T?r"5r)iy 

On making this change, just as in § l6, we dropped quantities of 

the order of -^r in comparison with unity. The reverse change from 

(23.8) to two equations gives a result which differs from the original, 

namely : 

. ... 4Ä? Ä? sin 0 

. ,., #?slne L(Vx)-r^Vl^l ÒV 

.ft- < 

-(,+,)£W^[i(^-^)]. (23.9) 

(23.10) 
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It is easy to see that for linear temperature distribution 

A»v. A/,,,«sine the right sides of equations (23.9), (23.10) 

turn into zero and the equations are satisfied at = Calculât, 

ing forces and moments using equations (23-3), (23.4), we obtain 
o) = d) = 5u) = u) = Mt d) = A/u) = 0. 

In general the particular solution of equations (23.9), (23.10) 
can be approximately represented in the form 

(23.11) 

To it correspond the following forces, bending moment 
ments: 

(23.12) 

s and displace- 

rK!) Äi<' 

Eh*fi ÍO-t-HMf V3 rf //,7,sir.0 1 A/..A1 

(I —M3) I VÄ, de [ft, sine V V* + '2(1) —12(1 

"f ^ ' /'m\l 
V V vft, de [ ft,sine de v“;]- 

1,,, sin 0 

dO 

*(1) 
£a3P I 

í^- 1 
f/,", Sin 0 1 A/,,,' 

12(1 — i») 1 L ft| sin e d0 ' ( V h , 

, "-x ■ < f^l 
(1 + M) d0 \ y ))’ 

(23.13) 

I ■ 

^ I m 

I ‘i 
. i 
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/'■'í i 

i 

■ ,fs 

L i 

I 

O-H) M co.*0 
«.sme -/el—+ 

+ î rfë [^TüiTÍ ^-(-T1)]} ^0. 

A, (I)-= g’v - (^2.) 4 

v v M l ~/?i sin tí lo \~jJ / rf®* 

J /,7, /?! cos 0 rfO 4 J /?, sin 6 ^/ ^LÍni ¿0j dQ _ 

- J ^ sin 0 /1 ^(5»)]rf0rfe I f 

A/ ,ii — Cj(l)v —1>{1, c=sß/J7,v - ç(n. 

Por linear temperature distribution, the displacements computable 

using formulas (23.16) agree with (21.24). 
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CHAPTER HI 

CYLINDRICAL SHELL 

§ cii‘ The Total System of Equations of a Randomly 
Loaded Cylindrical Shell 

Figures 11, 12 show an element of the middle surface of a 

cylindrical shell and applied forces and moments, replacing the 

action of the neglected part of the shell. Let us compose directly 

equations of equilibrium of the element in the general load case, 

i.e., without any assumptions about the change in forces and moment 

with respect to coordinate ¢. in this case we will suppose that on 

the chosen element in directions x x n act external loads 
(Fig. 13) 

</i* d(f ds = (P,+ + Pf + /=•,*) R dif ds. 

dy 4s = (p2+ + p- -I- Fjh) R dy dt. 

qmR d<( ds = (p; -f p; -1- FJ) R </<p ds. 
(24.1) 

where p{. p+. p*, p-, p-, p- 

p+. p-. on the surfaces 

of volume force. 

- components of vectors of surface loads 

»±A/2; Flt F2, Fn - components of the vector 

The projections of the primary moment of external loads onto the 

directions x^, n are equal to 

Rd(fds, 

(24.2) 
RdqidsLj = [(p+ pf) J F¿d: R d(p ds. 
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Fig. 11. Element of cylindrical 
shell and internal forces and 
moments acting on it. 

Fig. 12. Direction of peripheral tensile forces 
acting on element of a shell with angle d$. 

Fig. 13. External loads applied to an element 
from a cylindrical shell. 

Equating to zero the projections of the principal vector of tiie 

forces on the element onto directions t^, and n H)> we 

obtain 

dsj R dy TXR (/qi — S3l ds -j- |S2, </<f j dt-f- 

+ Qjds-y- -{-(Qj ds -j- -f- (/?Rd<f ds — 0, (24.3) 
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(<?« +~ärds)Ä rf<r - ^+(q2-Q2ds- 

— T3ds -J-—(r, -f- -^r + ?,/? rf? * = o. (24.3) 
cont ?d. 

Of course, this projection assumes 

Cosf-Ç-J^l, sin (-y) ^-^- 

Canceling terms in (24.3) and ignoring quantities which possess a 

high degree of smallness in comparison with the main terms (in the 

second equation the term is rejected, and in the third 

~àjrds^r~)' aft61, removing the common factor /fdqds we obtain three 

equations of equilibrium: 

dr, , 1 AS,, , 
-S-+7?-3f+* 0. 

dS, i dr, 
# d<f ^ ds 

dQ, , 1 dQ, 
ds ^ dy 

Q, 
R 

T, 

•?2-=0. 

?. = 0. 

(24.4) 

In the same way composing three equations of moments, we have 

M2 ds — + ds — (^« 4- ds^ Rd<f + 

+ HttRd<f+QidsR ?4-(Q,4--^-^)/2-^4- 

-\- Lfidyds — O, 

(^i 4- -¾1 rfs) /? rf<P - /M, /? </«j> - Hn ds + 

4- (^ji 4- ds — Q,Rd<f^-— 

— (^1 '^L ^s) ^ ■y' 4* LiR d<f ds = 0. 

-S* dsR -(¾ 4- ^*p)Ä44-S»Rd<P4J- + 

4- (¾ + ^ds)Rd<p“—Hnds%— 

-(Hn+d^-dv)ds^0. 

(24.5) 

Canceling terms in (24.5) and dropping terms of a higher order of 

smallness in comparison with the main terms, we derive an additional 

three equations of statics: 
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(24.6) 

S2i — 5i2+ Hn = 0- 

Equations (24.4), (24.6) can be obtained from equations (4.18) if in 

them vif set: /?, —oo. 6 = rfc. Equations of equilibrium 

of a cylinder shell, as also (4.18), are simple to transform so u.’iat 

they contain instead of tre four quantities 5,,. 5,,. //,s. Hn. only tha two 
amounts S. H, 

(24.7) S ~ h2i — Sn, H — y (^IJ-|-/Í2l)• 

In this case the third equation of (24.6) is identically satisfied;, 

and the remaining five equations of statics assume the form 

(24.8) 

(24.9) 

where designate quantities connected with shear forces 

by the formulas: 

(24.10) 

Eliminating from (24.8), (24.9) the quantities we can obtain 

three equations of equilibrium in the quantities Tl,Tv S.Jt,MiKH, Into 

which the load terms will have the form 

142 



Sincé h., L9 have the order of load multiplied by shell thickness, 

it js eu.sy to see that the quantities 7^-^- in these equations 

can be neglected if the ratio of the thickness of the shell to its 

other linear dimensions (length or radius) is small, and moments L^, 

Li¿ have a definite derivative. Therefore subsequently in (2^.9) we 

neglect L , L^. 

' él ft : /7 : ^ 
In view of the simplicity of the geometric shape of the involved 

shell, expressions for components of deformation of the middle surface 

through displacements w, u, w are considerably simplified. These 

expressions can be obtained with formulas (3*19) if in them we set 

/îjde s=di. 0 = y. /?,= 00./?j —v = /?. Having done this, we will have 

du 
*1“ di *1=* — ds* * 

w . l dv 

dv , 1 du Y=dT+Ädf T=s- 
I à ( dw 

R2 d<f \ (Mf 
i dîg» 
R dif £j 

vY 
1 do 
R ~dT‘ 

(24.11) 

Here e^, e^, Y - relative e].ongations and shear of the middle surface 

caused by shifts of the middle surface u, u, w; , <0 - changes in 

curvatures of rectilinear generatrix and parallel circle during 

strain; t - twisting. Angles of rotation of normal n around axes 

t2> during strain are equal to 

0,= 

-d 

! 
1 

dw 

Ô9 
ST' 

IrW 
V 

R 
(24.12) 

Since because of the Kirchhoff-Lovë hypothesis tne normal during 

deformation keeps its perpendicularity to the middle surface, then 

— d, is at the same time the angle of rotation of the generatrix 

around axis x2, and angle 02 is the angle of rotation of the 

tangential to the parallel circle around ^.xis T-^. Changes in curva¬ 

tures <^, <2 and twisting x can be expressed through angles of rota¬ 

tion — and ôj. Really, taking into account. (24.. 12), from (24.11) 

we obtain 



. 

N ' --( .Ví 

The six components of deformation e,. r2. y. x,. x2. are connected with 

the six static quantities Tv T,. S. Aí,. Mr H by relationships expressing 

Hooke's law for a thin shell: 

el — £f(^ ' ~ t'^)* "£Ã* (^1—^l)’ 

¢5 = -^-(^2-^1). X2 = -~-(aÍj —HiM,). 

.r _ 2(1+^) 0 . 12(1 +1») u 
Eh T=:-£Ã*- 

Relationships (24.8), (24.9), (24.11), (24.14) form the total 

system of equations which describes the equilibrium of a randomly 

loaded cylindrical shell, to which it is necessary to add only the 

boundary conditions. 

§ 25. Axlsymmetric Deformation of a 
Cylindrical Shell 

Let us examine the simplest load case of a shell: the axisym- 

metric load. Let us assume that the conditions of the fastening of 

the edges also possess symmetry relative to the axis of revolution 

of the shell. In this instance the forces, moments, components of 

déformât'on and displacements in the shell are not a function of 
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coordinate <i> and in the trigonometric series of § 8, representing 

static and geometric quantities, only the first terms marked with a 

"(0)," are not zero. 

To avoid double indexes we will agree that within this chapter 

and wherever it will not give rise to misunderstanding forces, 

moments, deformations and displacements during axisymmetric deforma¬ 

tion will be designated without the lower and upper zero indexes. In 

this way, instead of the designations of § 8 Tx,0,.(0).5<0).(0).M2,0). 

we will use the designations 7*,, Tv S. Mv M2, II. instead of e1(0). t¡(0).y(0).x, (0), 

^-2(0)- t'0)—e,. tj. ’'-j-■*. we will use h(0). «(0) — u. t>. o. keeping, however, the 

zero index in designation of a distributed load on the shell <o). <?.> (nr 

In the case of axisymmetric deformation of a shell system of equations 

of equilibrium (24.8), (24.9) is split into two groups of equations: 

ds (■S 4- + 4-(o» = 0, 
dH 
ds ’ 

-¿l—K?! («1 = 0. 

dNy Tt . 
~7i-(0) = °* 

Nlz=±p-. 
1 ds 

(25.1) 

(25.2) 

The first of them describes the twisting of the shell, and the 

duplicate - the elongation in the axial direction and axisymmetric 

I curvature. Rewriting expressions (24.11) for the case of displace¬ 

ments not depending on <j>, we obtain an additional two groups of 

relationships : 

In this 

Hooke * s 

Y ds ' 
T = 

• dU 
e» ~~ hi ’ *1 —~ 

h—%' >«2 = 0. 

1 dv 
~ÏÏ ds ' 

d*w 
ds2 

(25.3) 

(25.4) 

way, taking into account relationships (24.14), expressing 

law, it is simple to see that the problem of twisting is 



completely isolated ana is solved elementarily; actually, from (25-1) 

after the elimination of N^ and integration over e we obtain 

(25.5) 

where A is the constant of integration. Expressing with (24.14), 

(25-3) S and H through we obtain 

Substituting (25.6) into (25.5) and dropping terms of the order of 

h2/R¿ in comparison with unity, obtain one differential equation of 

the first degree for the determination of v 

>1 EH dv 
(25.7) <¡2 {0)ds + ^ = 0. 2(1+n) ds 

from which it follows that 

t M 

Constants of integration A and B are defined according to the 

boundary conditions, where, as is easy to see from (25.5), on one of 

the boundaries force can be given, for example: 

when s — 0 S=5°. 

then, dropping 2H/R in comparison with S as a small term, from (25.5) 

when s = 0 vie obtain S°-± A=:0 and 

(25.9) 

Displacement v is defined from relationship (25*8) accurate to 

a constant B, characterizing the rotation of the shell as a whole 

around axis 0Z. 
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The «rltTT 0f el0ngatl0n and beniS has ^ complex solution 
first equation of equilibrium (25.2) is i„tegrated directly: 

(25.10) 

while the constant of Intégration p hoc e , 

the axial force acting in section a°= o ^1136 ~ 

and third equations (25.2, the quantity'y we arr ve'at 
^ n2 we arrive at one equation 

£ÜÎi_Zl4_, ds1 /? i (0) = 0, (25.n: 

connecting cwo quantities: M and T Th0 i 4-4 

(211.14), (25 i,) (2R Jn, I 2' Th latter "ith the aid of 

external loa^s ’ a^pressed through displacement o and 

M. =-g** ä’* 
12(1—as* • 

7* = -t H 2¾ - |i j<ti (0) ds. 

(25.12 

(25.13; 

Rewriting (25.11) allowing for (25 12) fPR 

d— ~ - -a -:h5;S;e(:^;;:::;:;—nt „ 

Eh* !Í*Íb [ £/¾ PC 
1¿(1 —n*) ds* "R ft* (0) — M 2^-4- H J 

(0) ds. (25.1H 

quation (25.14) coincides with the equation of the elastic line 

beam on a continuous elastic Winkler base [12] [59] Th. , 

cidence is not chance. Really, an element of a shell cut out 1 in 
meridian direction (Pies M 101 e 11 6 * ln the 

dimensions uL^es ; i gTrL0:;:3;:!;'1 the middie piane 
to the amount of peripheral force /, „h h // PrOPOrtl°nal 
to normal displacement u. ‘ 1S eroP°rtl°nal 

r ~ t—*“ - »• 

Emotion ,, eónñé.teO ’r.TJ.l', 
1J J2 and the externa] 

1^7 
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load thus, since this follows from equations (11.10), (11.11), 

(11.12) if in them we set v*=R. R^Q — ds. 6 = -y. we obtain 

9 

V r 
=37J- — J V,io)dt’ 

(25.15) 

Furthermore, bending moment M1 can be expressed thrjugh angle of 

rotation 0,. if one takes into account (24,13), (24.14) and the last 

relationship of (25.4), 

Eh* rfO, 
T2U-H») d$ • (25.16) 

Substituting the expressions for in accordance with 

(25.15), (25.16) into the second equation in this case is identically 

satisfied, and the third gives 

eh* V C 
ds* ~"7F~ J (25.17) 

One more equation of the connection between V and #, can be 

obtained by using the equation 

V=o. (25.18) 

which is an identity relative to displacement w, since in accordance 

with (25.4), (24.12) 

t^ ~R’ *inrm 

Using Hooke's law (24.14) the first integral of equations of equi¬ 

librium (25.IO) and (25.15), from (25.18) we obtain 

9 

R d*V R\k d ( Pt f ^ \ A Ä 
-Sir—etTil2^-J (25.19) 
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Relationships (25.17) and (25.19).form a system of equations for the 

determination of 7 and 0,. Replacing variables 7 and 0, by variables 

(25.20) 

and introducing dimensionless coordinate 

(25.21) 

while 

when i = L, = 
(25.22) 

the obtained equations reduce to the form 

/ 

i 
Sp'+.vH'.-V f 

where 
Ä* 

(25.23) 

(25.24) 

By the introduction of the imaginary variable 

00-^,,-2.7% (25.25) 

system of equations (25.23) is replaced by one equation of the second 

degree in o0 

I 
$:• + 2/\7o0 - J /??. (0) rf; + 2/Y7*M, (0,. 

* A 

(25.26) 

Dropping in the right side of (25-26) the second term, having in the 

comparison with the first the same order of smallness as (^) (or, 

which is the same ±) in comparison with unity, finally we obtain 

i 

-S? + 2/^0 = 4^ Í R<1' «0) di * n 

(25.27) 
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The particular solution of this equation can be approximately written 

in the form 

t 
<j0= — /2v* J ( 25 • 28 ) 

0 

Separating the real and imaginary parts, we have 

(25.29) 

To particular solution (25.29) corresponds the zero-moment state of 

a cylindrical shell. Really, by formulas (25.20), (25.16), (25.15), 

(25.10) we obtain 

K R df, 

4? *6 
— 0. 

(25.30) 

The obtained particular solution is sufficiently accurate if load qt(0) 

changes smoothly, i.e., if is little. Really, let us substi¬ 

tute 

0O=0 — 

then instead of (25.27) we will have the equation for the determina¬ 

tion of a 

= (25.31) 

At the particular solution of this heterogeneous equation is 

also approximately equal to zero and ò0 has the form (25.28). 
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°an benfloÍut^7(^5^8,3 °han^ ^ load the particuiar , 
Rou,o \ o. 2o ), corres pond imr <-„ .. ^ lcuiar solution 
However, as wUl be shown sufcseqPuent1iny8 ---moment state. 

and approach can Jead t„ „ m certain cases such 
errors of We order of l/2T 

Wlth Unlt dUr1^ determination of stress at th COmParÍSOn 
the edges of the shell. 

When nrt+. 

approximately e,ual to t!,e Partl=ulah solution of (25.3a) ls 

thus 
o^/? -í?íi? 

*1 

To this value nf « 
ue 01 °o correspond 

di Rq.^di. 
C25.32) 

== /? W C; / 
^.(0) ¿1- 

(25.33) 

ÏT we keep also the sennnn 4- second tenm "in p,_ , 

solution should be taken in the form ^ °f (25‘26). then the 

(25.34) 

Considering the déformât inn r 
bending load of fora (8.28) °f a sheH ander the action of a 

amplitudes of forces and »olentÏ loi ^ deslS"ation of 
example, *e win r r oase Latin characters, for 

the limits of this chapter and^subsM'"*! In thlS ‘ within 

"HI be caused instead of the designati" ^ n° mlsun,äe-"ttanding 

-,,. introduced in § 8, we Klu usHha^^^^ X,„. 

«P f}. #,. 

:he 

5) 

tor 

e 

hat 

le 
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/n,. m2, A|, /i,. n2. The subscripts (1) in the designations for amplitudes 

of deformations, displacements and components of external loading 

are kept. The dependences of static and geometric curves on coordi¬ 

nate <j) in the involved case have the form 

(7*j. Mv M2* tj. in,, ntj* rtj)cosip, 

(e,. e2, X,. xj. 0,, h. w) = 

= (eior e2(i)’ xi(ir ’So»* ^1 (i»* «o,* c°sf. 

for Vj^fouiy V.oOcosf. 

(5. H. Nj. y. T. Oj. V. qj=* 

= (*,. A,. nv Y(U. t,,,, 02(n, v(U, 72,,,) sin <P- (26.1) 

After singling out cos ¢, sin <J> from (24.8), (24.9) we will 

obtain the following equations of equilibrium for the amplitudes of 

forces and moments 

f,. S* *,• nr 'S* mr "S* *i: 

(26.2) 

(26.3) 

In this case, just as in § 25, moments of distributed loads and L2 

are dropped. 

System of equations (26.2), (26.3) allows a decrease in degree 

by two. Actually, subtracting the second equation of (26.2) from the 

third and integrating, we obtain 

# 

+**•)=■- (^(D-^o))*- (26.4) 

where P1 is the constant of integration, equal in magnitude to the 

primary vector of the edge loads acting in section e = 0 (Pig. 15). 
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Z 

Y 
Fig. 15. System of external 
loads appliea to the edges of a 
cylindrical shell. 

Substituting the expression for n^, in accordance with (26.3), 

into equation (26.4) and combining the obtained relationship with the 

first equation of (26.2), one can easily find one more integral of 

system of equations of equilibrium 

(26.5) 

where MJ is the new constant of integration, equal to the total 

moment 01 edge loads in section a = 0. In order for the involved 

stressed state to exist the edge loads should have a principal vector 

acting along axis OX, and a main moment directed along axis OY. We 

consider positive the direction of moment at which looking from 

the side of positive axis OY the moment acts counter-clockwise. That 

the introduced constants of integration P.^ and M1 really have the 

above mechanical sense one can be certain of by directly composing 

the conditions of equilibrium of the internal and external forces 

and moments at edge s = 0. 

For cylindrical shell the directions t,. t2. n make with the 

directions of axes 0Xt OY, OZ angles whose cosines are givsn in the 
table : 



rt.-.J, 

1 J » 

»1 0 0 -1 

*» — Slfif cos 9 0 

* cos 9 sin 9 0 

In section s = const on a certain elementary arc Rdy act internal 

force 

and moment 

/f/? = (7, T, 4-S^Tj-f <?,/»)/? rfç = 

= (/, cos (ft, +5,2,,) sin<fT2-f Q, cos (fit) R <Up 

MR dq = (/M,t2 - //,jT,) /? rfç = (m, cos <| t2 - Hi2,,, sin r,) /? dy. 

Their projections onto axes OX, OY> OZ are equal to 

KXR dq = (_ SI2 sin? q f Q, cos» R dq, 

KyR dq = (5,2,j) sin cosq; + Q, cos q sinç) R dq. 

K,R dq = — /, cosqR dq, 

MsRdq = (— m, cos ç sin <f — Hl2 sin q. cos$)/?<ty, 

MyRdq = (m, cos2 <f) R dq. 

MtR dq — //,2 (1) sin ç R dq. 

The principal vector and principal moment of external load and Af^ 

should be equal in magnitude and opposite in sign to the principal 

vector and moment of internal forces in section 8=0. It is easy 

to see that the principal vector and principal moment of the system 

of internal forces in any section have components equal to zero along 

axes 0Yt OZ and OX, OZ respectively. For example, at s = 0 we have 

In In 

J /(,/?«> = /? J (5,2,,) + 0, ,„) sin <p cos qxf<p = 0, 
o o 

2ft 

J (^i+ KyR cos q — >Cx/?sin<{')/?</<p = 
o 

In 

= J l^iiu)sinq) + (S,2,,, + 0,,I))/?sin(pcos?9 + 
( I 

+ 5,2,,, /?sin19 —Q,,,)/? cos^sinip]/? 1/9 = 0 
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±n this way there exist the equalities 

Pi = ~ f 
• ' 0 

2ji 

' o 

After integration we obtain 

Taking into consid°rati on fkq+- 
la.ration that according to (24.7), (24.10) 

— p'~, - 

5»(1) — S, + 

Al = 2 (^2, <!*+^12(,,). 

we rewrite the obtained relationships in the for. 

(26-5) » ■ o- «—a6aln at the same 

equations In six unknown forces and nom ^ S °f thl 

nl and »s have been determined aceo Under fche ««dltlon that 

two first Integrals of this h h 8 t0 tomnl¡ís since 

astern consisting of (2 ^ ^611 f0Und' ^ ^ -placed by a 

Eliminating from these thr« u« onTfo"6 e9Uatl°n °f (26'2 
(26.3), we obtain °eS ^ wlth the aid of 
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(26.6) 

ds_ 
ds 

dm i 

ds 

dh, /» i _ 

« 

*l*=- J (1)) rfs- 
«I 

Rtl -+•/«! = /? (/0 -+- /j). 

where the designation 

« « • 

Æ(/o +/)) = -ÍíT^—~ J —Î2<i))rfsû,—^ J fio»** (26.7) 
OU U 

has been introduced. Using the statico-geometric analogy, from 

equations (26.6) we will obtain equations of continuity. We set in 

(26.6) all load terms equal to zero and go from the quantities tv t,. sr 

2/r,. m,. mj to the quantities x,u). - iU). Yuj- - eau)* — £ni) respectively. 

Having done this, we will have 

Í!íli 
ds 

‘ rfY(„ 
R ds 

i (i) 

-RT 
= 0. 

~R 

rfe2(t> i - _ n —U. 

—*2(1) = ^- 

(26.8) 

The obtained equations are really conditions of continuity of the 

middle surface of the shell during deformation. Actually from (26.1) 

and (24.11) it follows that amplitudes of deformations and displace¬ 

ments are interconnected by these relationships: 

</«„> _ ¿»»o) 
ei<»——SJ-* xki)— dSt • 

~ 7r(®(,>~t~ *<*>)• + 

*»(,) «(!) _ _ 1 (dwU) , rfv(i)\ (26.9 
Y(i) — -55 R ’ T“i —TTV ds"^ ds )' 

(i) “ “¿T- • o> =* ~ T? (wo)+•«>)• 

Substituting the expressions for amplitudes of deformations (26.9) 

into equations (26.8), we see that the latter in this case are 

satisfied identically. 

Let us introduce a certain function of displacements ¥ and 

connect to it deformations according to the following law: 
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(26.10) 

« — ^ i *• <0 
*1(1)H—3-. 

T_y,,, 
T(0- ~n . 

h (i) 
*2(1) =-£-'• 

At such a presentation of deformations the first and third equations 

of (26.8) are satisfied Identically. Furthermore, from the second 

relationship of (26.10) and expressions (26.9) it follows that the 

introduced function of displacements T Is equal to 

(26.11) 

The first and third equations of (26.6) are satisfied if we express 

forces and moments through stress function VJ by formulas similar to 

equations (26.10), allowing for specially selected load terms: 

„ äV, m, 
-IT 

= —77 +/0+/1. 

M 

s, = K, — — J i2(lj ds. 

(26.12) 

Equations (26.10), (26.12) after adding to them the six relationships 

(24.14) form a system of twelve equations for determining twelve 

unknowns (six components of deformation and six static quantities) 

through the introduced functions ¥ and V1. The result of solving 

this system is the following: 

Ehtx (,)- 

^Ac2„) = R rfV, 

dVx Eh* (TV 
ds 

ds 

12/? ds 

H (/0 + /1). 

4-/0 + /1. 

£h ~ds~'~^Eh^0~\~/i). 

—7&r(/o+/,). 

Tu) = - 
20+M) 
Weh • 

(26.13) 
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*i = /o + /r 

dt 

D dV 
ir dt • 
D dV 

^irir 

*i — + p) ^<Jux)ds. 

üi-,, rfy . n-i*’) “v, 
D ^ dt ^ Th dt' 

m,   dV 
~D dt 

■ O-M1) ,, ,f. 

A. _ 
~D-~ 

(1-M> 
/?_ M'-+ 

2(l-»>) „ 
£ä« r » 

where D = 
Eh* 
—p*) * 

2(1-M») 
~^W~ 

(26.14) 

Substituting the expressions for £j)iv tu) and m,. i, in the second 

equation of continuity of (26.8) and the second equation of statics 

(26.6), we obtain two equations for det -mination of unknown functions 

V and V,: 

d*V 2(1 —n) ,If* y, 
IF-—W 

-^ (iSr + J <n dsj — (/o+/i). 

d*Vt 2(1+^)., , Eh v 
ds* & '^Tp 

S 

_ P rf , 2(14-p) f 
"F * W w J toind*- 

(26.15) 

As in the axisymmetric case, we go to dimensionless coordinate i=-g 

and introduce new function 

•P, = EAV. 

Then equations (26.15) are brought to the form 

^-20-,0^-4^,- 

(26.16) 

1 ~ 4v< J n)^ —Í1 — i1’) (/0+/1). 

^-2(1+,,)^ + *,, 

t 

' +1‘)^ J^1(0^+^^(/0 + /1)- 

(26.17) 
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Multiplying the second equation by 2/yj and adding to the first, we 

obtain one equation in o,: 

- 2o, -f 2no, + 2/y’o, = 

*= — f + f (i) ] — (1 C/®4- /t) + 
\ u / * 

|^— 2(1 -t H)/? j ?2(1) dl+Jl -¿r-i/o-f /l)j* -t 2/v1 (26.18) 

where 

0, = ^,-(-2^%. J 

Õ, = — 2ly1Vl. I (26.19) 

Ignoring in the right side of this equation and in coefficient of 

terms with an order of smallness ("^r) an^ above in comparison with 

unity, we obtain 

■^r + 2/Y2o, = — + J /??, (,) d|V 
'0 / 

In order to clarify how deleting in the left side (26.18) the 

containing -20,-1-21*0, affects the correctness of the solution, 

write out a uniform systems of equations corresponding to (26 

(26.20) 

-^-2(1-10^,-4^, = 0. 
d'V, 

and 

^-2(1 + ^,+ ^ = 0 

4^1.-4^1/, = 0. 

(26.20) 

term 

we 

.18) and 

(26.21) 

(26.22) 

The first system is equivalent to the equation of the fourth degree 

^--4^ + 4^, = 0. (26.23) 

and the second to the equation 

159 



(26.24) 

Hoots of the corresponding characteristic equations 

k* — 4k7 -+* 4Y4 = 0 (26.25) 

and (26.26) 

have a magnitude of order y and differ from one another only in terms 

of the order 1/y [57]. 

The detailed analysis of the stressed state of a closed cylin¬ 

drical shell at different loads of form (8.4) conducted in monograph « 

[5] indicates that in the case of a nonsymmetric load (fe * 1) for the 

approximate creation of an edge effect we can use equation (26.26). 

In finding the particular solution of heterogeneous equation (26.18) , 

the deletion of the quantity (-20,+ 2^,) in comparison with 2iy\ is 

possible only when the right side of (26.18) is a slowly changing 

function of coordinate £. 

To the simplifications made during the transition from (26.18) 

and (26.20) corresponds the following variant of relationships (26.13)> 

(26.14): 

(26.27) 

£7ie, (,) — 

(26.28) 

Equation (26.20) differs from equation of axisymmetric deformation 

(25.26) only in the right side. In exactly the same way as was done . 

in the case of axisymmetric deformation, the particular solution of 

equation (26.20) can be approximately found by dividing the right 

side by the coefficient of o, 

(26.29) 

or 
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(26.30) *,==0' ^ = ^ + 

As follows from equations (?fi 7>i\ +-^ 
4 aucuns to It corresponds the 

stressed state of a shell zero-moment 

*1-/0+/1 . ’ V • # i 

= — _ Af, f r t 

(O» M 
i 

f' “•Ä + J^^.(i) 

rn, = mj = Í, = 0. «J =Q, 

(26.31) 

Stressed state (26 31) ^ 
(7-0 ,,. * * exclude from consideration ?. and set 
¢1 o) — 0. coincides with the stressed state in a h . 

section, loaded on the edge a = 0 by force P and^ ^°33 

distributed transverse load of intensity ' ^ "2 ^ by 

^“(i.O) — ?Î(,))JIÂ. (26.32) 

The bending moment in a certain out of beam a = const is equal t, 

« 

M,-J 9(s¡)(s_s¡)ds¡ ==_PiS_Mt_ j ' 
Ç dsds. 

0 0 
(26.33) 

It is balanced by moment of interior stress c=i. equal to 
it 

a 

2 j* (t) (26.3^) 

Equating expressions (26.33) and (26.34), we arrive at the , 
equation of (26 a -, * arrive at the first 

• Analogously, composing the expression fnr. v, 
force and equatinc: it tn fho -xpresslon for shear 
w. , . resultant of tangential forces t«=A 

obtain the third equation of (26.31). k ' 
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§ 27• Stressed State of a Long Axisymmetrlcally 
Loaded Cylindrical Shell 

In §§ 25, 26 it was shown that the calculation of a cylindrical 

shell for axisymmetric and bending loads under known conditions is 

reduced to the solution of the same equation in complex function 

or o-^, but with different right sides. Let us examine the uniform 

equation 

^7 + 2^-0. (27.1) 

Particular solutions of equation (27.1) have the form 

#-yIcosy|, «"v*slnY&. Î 
«vi cos Yfc. sin Yl- Í ( 27.2 ) 

Solutions written in the first line decrease with an increase of £, 

i.e., going from edge £ = 0 to edge Ç = Xt on the contrary, the 

solutions in the second line decrease with a decrease of Ç, i.e. going 

from edge Ç = Z to edge £ = 0. In this way each pair of solutions 

(27.2) describes the stressed state of a shell in the neighborhood 

oi its edge. This leature of the solutions of uniform equation (27.2) 

is called the edge effect. We introduce along with variable Ç, 

changing from 0 to Z going from edge s = 0 to edge s — L. another 

variable 

(27.3) 

which changes from 0 to Z from edge s = L to edge a = 0. Then the 

general solution of equation (27.1) can be written in the form 

O = (M,-/fl,)|0(yS) + it(Yl)l+{A2-/flj,[6(Yi,)4 /t(Yl,)l. (27.4) 

where by 0, ç we designate functions [59], [12] 

0 (*) = *-•* cos Jr, C(x)=.«-«Sinx. (27.5) 

Subsequently more combinations of these functions will be required 

(p(x)=e(x)-K(x). 
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(27.6) 

and their derivatives 

0' (*) = _ (f (X). t'(*) = *(*). 

O" (je) = 2C (X) = -<p' (X). C" (X) = -26 (X) = V (X). 

The values of functions 0, C. <P and if are given in Table 1 of the 

appendix. Solutions 0(yö.C(yI) decrease with distance from edge s = 0, 

and solutions 6(^,). CivW decrease with distance from edge s = L. As the 

tables show, 0(x). C(x) already at x = .n have the order 0.04. This means 

that already at V'==-i the influence of edge a - 0 on the stressed 

state in the given section of shell can be neglected. Using (25.22), 

(25.24) we can calculate the absolute length of the generatrix e which 

corresponds to the value fc=—î 

t = Ü* = .-7=== 1/5 
V V3(l — H*) I Ä 

In this way if the total length of a cylindrical shell l exceeds 

2AŸRh. then the determination of arbitrary constants and 

B solution (27.4) can be done separately by the conditions on each 

of the edges. In writing the conditions on edge a = 0 it is possible 

to set Aj — B2 = 0, and during the determination of constants AB2 

from conditions on edge s — L consider /4, = 0, = 0. 

Let us turn to consideration of different conditions and to the 

determination of the constants of integration in solution (27.4) for 

an axisymmetrically loaded shell. In this instance the total solution 

r of equation (25.27) is composed as the sum of solution (27.4) and the 

particular solution of the heterogeneous equation determined from 

formula (25.28). Separating the real and imaginary parts, we obtain 

« 
V0=Ehöl = /4,0(yD4 £¿<yI)4 ¿20(Yi,) + B¿(Yli). 

t 

y0=- -¿-[¿¿(Yl) - B,0(Yl)4 (Yl,)-020(Yi.)l + J 

Further using equations (25.10), (25.15)» (25.16) we have 

» 

’•.“âí-í 
II 

(27.7) 

(27.8) 
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Ai, = ¡<Yl) - (Yi) - ¿A (Yli) + ßJ+ Wli)l. I 

Aij^nM,. ' 

r, = ^- [—A,iJ> (Yl) — ß,<P (Yl) + (Vli) -+• B#<Vl,)l + ^.'o). 

A/i = ^ (Yl) + Bfi (Yl) - A£ (Yl,) + B.ß(yI,)1 • 

Radial and axial displacements are calculated using the formulas 

w =* (Ti ^^i)» 

ê 

H *= «° 4" J(7*1 — liT’jJrfí. 

where «” Is the constant of integration which is the assigned axiai 

shift of edge a = 0. The four constants of integration *i- B,, d,. B, 

are easily calculated by values of shear forces and bending moments 

assigned on every edge: Ni. Mi. Ni’ Alí- Note that on the basis 

equations (24.10) the quantity *, during axisymmetrlc stress in 

accuracy is equal to shear force The positive directions of 

shearing force and bending moment are shown in Fig. 16. The ben ng 

moment is considered positive if it causes elongation of filaments on 

the external surface and compression on the Internal. 

On edge .=1 positively directed shearing force acts from the 

inside to the outside of the cylinder, and on edge a = 0, conversely, 

it acts inside the cylinder. 

Pig. 16. Shearing forces and 
bending moments, evenly dis¬ 
tributed on the edges of an 
axisymmetrically loaded cylin¬ 
drical shell. 

After simple calculations, ignoring the mutual influence of the 

edges, we have 

(27.12) 

(27.13) » 
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(27.14) 

(27.15) 
(27.16) 

(27.17) 

Th (Tl) + 'M?0(Vs) + iVf«f(vli) — ^ Aif0(vii)]. (27.18) 

= - ïr [^0 (YD + i Mît (Yl) - Affe (vS,) + 

(27.19) 

Calculating by these formulas the forces, moments and displacements 

in the neighborhood of one of the edges, it is necessary to drop the 

quantities which belong to the other edge. For example, in the 

neighborhood of Ç = 0 Calculation of peripheral force r2 must be done 

by the formula 

r, = -2v [iV?9 (vl) 4- -¾ (vl)] + Rq," . 

but in the neighborhood of ^ = /(^, = 0) by the formula 

2Y[-A/f 0 (vl.) + (vl,)] + Rqm 

Proceeding in this way it is easy to obtain expressions for the 

angle of rotation and normal displacement of the edge of a shell 

loaded only by shearing forces and bending moments at this edge. 

(27.20) 

(27.21) 

As one would expect, following the principle of reciprocity of 

displacements, the shift from the action of a unit bending moment 

proved to be equal to the angle of rotation under the action of 

rotation under the action of unit shearing force. The inversion of 

equations (27.20), (27.21) gives 
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(27.22) 

,.o Eh o , EHR „o 
^1= + -ö^-öi • 

Ni = - 
Eh o 
—ZT* 

V« 
Eh 

«I 

Eh 
2v3 
£A 

Alf = -s-i- W 
EhR 
"2V 
£A 

ef. 

tn ¿ c« A¿ 
AÍ.=W® - V ô>- 

(27.23) 

From the previous reasoning and from equations (27.8), (27.1^)-(27.16) 

it follows that if the edges of the shell are free, i.e., at the 

edges the following conditions hold: 

N? = Al? = 0. Ni = Alf =0. (27.24) 

and the distributed loads are smooth functions of coordinate a, then 

the shell is in the zero-moment stressed ¡state (25.30). If edge 

conditions differ from (27.24), then on the zero-moment state is 

imposed an edge effect. We can give different variants of the edge 

conditions. For example, to the supported edge correspond the 

condí tions 

Al? ” 0, «° = 0. (27.25) 

and to the fixed edge — the conditions 

¢^ = 0. wo==0- (27.26) 

Conditions (27.26) can be expressed aleo through Aft AlJ. as directly 

follows from (27.20). For example, the first condition (27.26) can 

be written in the form 

/V?+^Al?-a (27.27) 

In the following sections (§§ 28-33) we will examine the simplest 

examples of calculating a shell for different edge conditions and 

loads. 

§ 28. A Cylinder with Rigid Bottoms Under 
Interrial Pressure 

1. Let us examine a cylinder with rigid bottoms which is under 



internal presaure , [12]. The bottoms permit axial elongation of the 

cylinder. In this instance 

¢1 (0) — 0. = p. P0=- pxfft (28.1) 

and on t,e edges the conditions of zero angle of rotation and radial 

displacement should be held. Consequently, shearing forces and 

bending moments on edge s = 0 should satisfy condition (27.27) and 

on edge s — L the analogous relationship 

(28.2) 

Radial displacement in this case ii 

^ - Trl1 - t)—sr Wh - -vf» «,)). ( 2 8.3 ) 

and from the condition of 0 turning Into zero at £-0.^0 is obtained 

' (28.8) 

Using formulas (27.18)-(27.16) and (28.4), („.27), (28.2), we 

wizl make up the expressions for forces and moments: 

7-,=r«ji - ■S^S.[,(V£| + T, = fi, 

M' ” ' 17 (ïi) -1 (v£,)|. M, = jilf. (28.5) 

the calcu-ation of forces using these formulas In the neighborhood 

O edge s - 0 we consider only terms depending on 4. and In tne area 

of edge —t only quantities depending on 6,. At a sufficiently 

large distance from the edges exists the zero-moment stressed state 
The stresses of this state 

0, =. L - _ T, 
Ã ^=-IT (28.6) 

we assume as nominal of. of. estimating stresses in the edge cones in 

comparison with them. In the given problem 
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,N.-pL —IJL 
h — îh ' A " 

(28,7) 

Maximum stresses from the bending moment, computable using formula 

(4,46), exist on the edges of the shell, for example, at Ç = 0 

Ol 
6Af® 

*=±-^= + 3(2-^ P*1 
tyh‘ 

or, taking into account (25.24), 

qf=+ (2-j!¿g^-3.1cf (28.8) 
+ Vl-VL* ' 

at ji*=0.1. 

In these formulas the upper sign is put on to the external, and 

the lower on the internal surfaces of the shell. In this way, on the 

external surface in section s = 0 we have compressive stresses oi = of-f 

4-o?= —2.10? = —l.OSo?. and on the internal surface tensile stress 

Oi = 4,lo? = 2,05o?. 

The maximum tangential stress in section 8=0 exists at Ç = 0 and 

can be determined according to formula (4.43) 

_3 AT, __3. (2-lQ 
T> “* 2 "A — 2 yA 2 

ÍH* = 0.1). 

Hence it follows that tangential stresses have the order in 
4 

comparison with the nominal if the latter hold quantities of the 

order of unity. In this way tangential stresses are small in com¬ 

parison with the stresses of the zero-moment state, and even more in 

comparison with the stresses of edge effect. An increase in stresses 

connected with the beginning of edge effect, bears a clearly expressed 

local character. Thus, in the examined example the amount of flexural 

stress from moment in section Ç will be 

of =+1.55 o?*(YÜ. 
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i.e., already at ,1-0.0 I of I-e 0.52 < Por a thin ahell (£=0.01) such a 

drop of flexural stress Is achieved at a length of the order of 

several shell thicknesses (i =¾0,0465/?-¾5*). 

If, besides Internal pressure, the cylinder experiences axial 

ensule forces from forces p applied to the bottoms, then 

and 

p 

=’2ñ7? ' po — P*#1+P (28.9) 

N°\ = —/Vf = (1 —  Ü P 
Y V ’ 2/ TTyi-Â’ 

When r=o the Increase In stresses on the edge of the shell Is com- 
paratively small: 

when ^ = 0.1, 

—V p 

^ = 0.580(1^ (28.10) 

2. Assume now rigid diaphragms on the ends of a cylinder which 

is under the action of internal pressure such that they do not admit 

“-:L-d*spu!ement.of the ends- const-‘ ^ ^ estañe 
should be determined from the condition 

L 

hich gives 

(28.11) 

^ (v£, t ^+A-f j ç (vi,) v tfs]. (28.12) 

AS it is easy to see from the previous example, terms containing ^ A 

m the right parts of (28.12) „m be entities of order 1/v i! 

comparison with the basic quantities, taken as unity. Propping them, 
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P0 = n2np/?J. Tx*=\ïpR. (28.13) 

Radial displacement is equal to 

«-=U - -fk K» (YÜ - ^^(YW] . (28.14) 

Since w should turn into zero on the ends of the cylinder, 

^ = = (28.15) 

Hence it is apparent that bending stresses in this Instance will be 

altogether only times greater than bending stresses in a 

cylinder with shifting ends. 

§ 29. Cylindrical Shell Loaded in the Middle 
Section by a Normal Load 

Let us examine a cylinder of considerable length, loaded on the 

middle section by forces of constant intensity q (kg/cm) and directed 

as shown in Fig. l?a [12]. For that part of the cylinder on the 

right of loaded section 4=0 we have from conditions of symmetry 

<tf = 0. A/? = -§- (29.1) 

when 4 = 0. 

On the basis of (27.27) we determine 

iW? = - 
4v 

using formulas (27.14)-(27.19) we fine 

A/, = ^ v8 (y4\ ^ ^ (\4). 

= — y ?VT (VS). ^ = - T(Yl). 

(29.2) 

(29.3) 

Maximum raaial displacement exists in a loaded cut and is 
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<jfty 
2Eh • 

(29.4) 

Fig. 17. Cylindrical shell: a) 
loaded on the middle section by 
compressive normal forces, b) 
shell with ring fit onto it. 

b) 

Using the solution to this problem, one can determine pressure g, 

induced by the influence of an elastic ring fit onto the cylinder in 

the hot state (Fig. 17b). The radius of the cold ring is less than 

the external radius of the cylinder by an amount 6. Under the action 

of a normal tensile load q elastic displacement of the ring with 

transverse section F. made from a material with Young’s modulus £,. 

is equal to 

(29.5) 

and the displacement of the cylinder under a compressive load of the 

same amount is equal to the right part of (29.4) with the opposite 
V . 

* sign. The sum of these displacements is equal to 

whence 

(29.6) 
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If a cylinder with closed heads is under the action of Internal 

pressure and has in a certain section far from the ends a circular 

rib of rifidity, then force of interaction of the cylinder with the 

rib also can be determined according to previous formula we se 

a 2—h P* (29-7) 
0 = r~ tã- ■ 

since namely such would be the radial displacement 1" »»e glven^ 

section of cylinder in the absence of a stiffening r . 

in this instance 
pR 2 —)t 

?=* Y ' 
(29-8) 

At an increase in the rigidity of the rib to infinity ¢,-0) 

and the values of shearing fr-ce and bending moment in this section 

coincide with those which were obtained earlier for a fixed section 

(§ 28). 

§ 30. Shell Equipped with a Rlnp; of 

In practice frequently we find shells strengthened on the ends ^ 

by reinforcing rings. Let us examine examine the coupling of a shell 

with ring (Pig. 18) on which act compressive forces .V and twistl g 

— s i,! referred to a unit length of the middle line of the ring. 

The ring. Just as the shell, is considered to be ^ ^ 

possible to set that the radius of the shell is equal ^radius 

of the middle line of the ring. The forces of interaction of th 
-i i-» M0 Under the action of an applied 

shell with the ring we designate Ni. W- unaer tne 

system of forces the ring will receive radial displacement 

0,- 
— N*) RT (30.1) 
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Fig. 18. Coupling of cylin¬ 
drical shell with ring. 

and its cross section turns through an angle 

*> =-FT2—- (30.2) 

where I - moment of inertia of the cross section of the ring relative 

to the axis passing through the center of gravity of the section 

perpendicular to the axis of rotation of the ring. Equating the 

displacement and turning of the ring to the displacement and turning 

of the shell under edge loads /V?. M?. internal pressure p and axial 

force P0=s¡kiR*, we obtain the conditions for determination of Ni, M°: 

(frf — AT*) Ä* 
E,F 

(M'-AtyR1 

P# 2-|i 
£r~2~ 

From them we have 

(30.3) 

2(1+ß,) 1+ß* 

iM? = 1 

pR (2 — m) 1 
V “2—J- 

R Pi »;* 

' l+l>' 

pR: (2-n) i i 
2 T+K J • 

where ß, is the designation introduced in § 29, and 

(30.4) 
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ft Eh* 
^ £,/4y* ‘ 

If on the ring external forces have not been applied (AI> = N*-0) and 

its rigidity to unscrewing is infinite, then using formulas (30.H) in 

this instance we obtain 

i-j. ! 

Ai? 

y T'TTîpr* 
p R' 2 —n  1 
"îÿ* T~ T + 2P, - 

(30.5) 

Comparing the obtained result with the one which for an absolutely 

rigid closing (§ 28), we see that the compliance of the ring on 

elongation reduces the shearing force and bending moment in the ratio 

i At A1» = N* = 0 and p,-0. p2*0 (ring is pliable in the sense of 

angle of rotation, but is rigid with respect to radial displacement) 

we obtain 

irn t)R 2 — |t 1+Pj 
—r-T+wr 
pR* 2-1* 1 

1 + 2ß, ' Al? = 'W' 2 

(30.6) 

Setting in these formulas 1/^==0 (ring absolutely pliable in the 

sense of angle of rotation), we obtain the values of shearing force 

and moment on the support edge 

§ 31. Shell Loaded in the Middle Section by 
t~hgt-.ri huted Bending Moments 

Let us determine the angle of rotation in a section loaded by 

distributed moments of Intensity m. The total solution to the probier» 

about stress of a cylinder under such a load is simple to obtain 

using the solution to the problem examined in 5 29- 

In two close sections Ç = 0 and Ç = A assume the shell is acted 

on by forces of intensity , and -, (Fig. 19). Then the angle of 

rotation in a certain section Ç > A can be calculated in the form o 

the sum 
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= 2v^ C(v;)-;(Vt-yA) 
Eh 2R vA 

m 

Fig. 19. Cylindrical shell 
loaded on the middle section 
by bending moments of 
constant intensity. 

i i 

i : 

Going to the limit so that at =/? • A->o we obtain 

Expressions for forces, bending moment and radial displacement can be 

obtained similarly: 

uv«. *«=—gkíYS). 
(31.2) 

=-J- 0 (yd. w=i?3r £ (vi). 

§ 32. Deformations of a Welded Heterogeneous 
Cylindrical Shell 

Assume a welded cylindrical shell, composed from heterogeneous 

parts [60]. The first part has coefficient of linear expansion c^, 

and the second part has ot?j, where a, >02. At a certain temperature T 

there are no stresses in the shell. When the shell cools to tempera¬ 

ture t the stresses will develop in the neighborhood of the joined 

heterogenetic parts. Far from the joint radial displacement of the 

first part is 

tff, = -a, (32.1) 
the second part 

^2=-0,(7^- t) (32.2) 
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Let us designate the radial displacement and angle of rotation in the 

butt section through w0, 0?. Then, mentally separating the shell, it 

can be considered that the first part is bent because of the radial 

displacement of the edge 

®o “’i — wo+ai (T — OR (32.3) 

and the angle of rotation of edge 0? (Pig. 20), and the second part 

is bent due to the shift and angle, equal to 

i»o —«»J == w0-fa2 (7-/).9, 0?. (32.¾) 

Fig. 20. Temperature deforma¬ 
tion of welded heterogeneous 
cylindrical shell. 

By formulas (27.20), (27.21) we obtain for the first part 

«•0 + «i(7-O/? = —JJ 

= ("?+£"?)• 

(a'i + tJ-jW?). 

(32.5) 

for the second part 

+a2(7-/)* = _-g* JV? +Af?), 

^ = ¾ ("?->?)• 
(32.6) 

Solving the obtained system in 0?. w0. JV?. Ml at Ex = E2t=E we have 
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(32.7) 

= -Aí? = 0. 

w0=-^±pJ(T-t)R, 

ô? = — (a, — a2) (T — /). 

Computing Tj. /M, with the aid of formulas (2.15), (2.16), we find that 

the peripheral force suffers a discontinuity at the joint, and the 

bending moment is everywhere continuous: 

Tj — (a, - oj) (T — t) e(vi). 

Ti-g" (a, — a2) (7" — /)0 (y£, ). 

= -(a, - a,) (r -/) UYl). 

(32.8) 

(32.9) 

The bending moment becomes greatest in absolute value in the section 

Flexural stresses in this section are equal to 

^ = t!" T ^ - “2) (r - '>0-322- 

at n? = o,i 

of = 0.294£(ai - a2)(r—¿). (32.10) 

Peripheral stresses are the greatest at the joint. They are 

r ' (0) i 
°2 = —Ã—= T f (“i — “a) (r — *>•' 

7-11(0) j (32.11 
a2 = —^—=—jE(al — a1)(r — f). 

5 33. Cylindrical Shell Under the Action of 
Hydrostatic Pressure 

In all earlier examined examples load ^(0) did not change along 

the cylinder and the particular solution of the basic résolvant 

equation (25.27) did not differ from the zero-moment solution. 
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Let us examine the case of a load changing along the axis [12]. 

A vertical container is filled to the top with water. The lower edge 

of the container is rigidly fixed, the upper is free. In this way, 

at the edges the following conditions should hold: 

1 (33.1) 
MÍ =* A/f «= 0. J 

The load has the form 

(33.2) 

The particular solution of the basic equation is determined now using 

formulas (25.33) 

í0=.-pRi. V>„ = j pR> (I - Ü <<S - pR’ ('1 - y ) ■ (33'3) 

To this solution correspond the following forces, moments and dis 

placements : 

0. fj*= 

^,-0. 

P** 
•£Ã* 

.pRHi-V ■I. 
- PÄ* (/-1) « = —gj 

(33.4) 

(33 * 5) 

Let us determine shearing force and bending moment in the fixed 

section. On edge 5=0 the angle of rotation and displacement 

corresponding to the above particular solution are equal to 

- p/W. 
W=-Eir- 

Substituting in formulas (27.22) 

to0 by IP0 — 
pR*L 

(33.6) 

assuming ^ = 01=^0. we obtain 



The calculation of these quantities on the basis of the zero-moment 

solution 

leads to the values 

Ai? = p/?*¿ jyO 
1 y * (33.8) 

which differ from those obtained above in terms of order 

comparison with unity. 

I R 
V L 

in 

In this way, utilization of the zero-moment solution leads in 

> thls case to error of the order ^ in comparison with unity during 

the determination of local stresses near the edge. 

§ 34. Long Cylindrical Shell Under the Action 
of a Bending Load 

Considering the deformation of a shell under the action of a 

bending load (Pig. 21), we will make use of simplified résolvant 

equation (26.20). The solution of the corresponding uniform equation 

is again taken in form (27.4). Taking into account (26.19), we obtain 

y, = EhW = /1,0 (Yi) + (y*) + A2Ü (Y&,) -)- B¿ (vs,). ) 

2V% “ (Yt) - Bfi (YÜ + (Vii) - fl2Ö (YÊ,)- | ( 3 4.1 ) 

To get the general solution to (34.1) it is necessary to add the 

particular solution of heterogeneous equation (26.20). As such one 

could use zero-moment solution (26.30) 

a 

¢,-0. fy.djrfl- (34.2) 

In the example of an axisymmetrically loaded shell it was shown that 

calculation of the particular solution on the basis of zero—moment 

theory in certain cases can introduce into the determination of local 

stress error of the order j/qj- in comparison with unity. Solution 
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Fig. 21. System of loads bending 
a cylindrical shell. 

(34.1), describing the edge effect, also does not claim greater 

accuracy, since in the left side of equation (26.18) terms of order 

A in comparison with unity are rejected, which can lead to an error 

in the solution of the order of in comparison with unity. There¬ 

fore, using (34.1), (34.2) during calculations it is inexpedient to 

keep terms of the order of /t in comparison with unity. Note that 

developing tne solution of the initial equation (26.18) keeping terms 

of order in comparison with unity is possible [57]. However, 

this would lead to a strong complication of the estimated equations, 

which hardly is justified, since the conditions of fixing the edges 

of the shell are practically known also with low accuracy. 

On the basis of (3^.1), (3^.2) using formulas (26.27), (26.28) 

we compute forces, moments and deformations: 

h = ^ (Vi) + fl,<r (vt) - 0¾) - (Yl,) ¡ + tr 

*. = ¿ (Vi) - 0,0 (Vi) -+ A.i (vi,) - ß2e (vi,) )+Ï,. 

= -^rl— Afl ni) + (Yi) + A#(Yi,) - (Yi,)|. 

A, = - \Afi (Yi) + (Yl) + AJÍ (Yl,) + Ai (Yl,)). 
* 

«, = «,4--^-—;[-^ +J ^ (?• O) fnip^l]^’ 

(Yl) - 0,9 (Yl) + A¿ (vi,) - ß20 (Yl,)l. 

—-5r + ?i. 

Ehtj = (Yl) +- Bftf (Yl) — (Yl,) Bjf (Yl,) 1 -+ Ehtj,,,. 

(34.3) 

(3^.4) 
(3^.5) 

(3^.6) 

(34.7) 

(34.8) 

(34.9) 

(34.10) 
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where (A,4-/i) is a known function of external loads (¿6.7), the 

quantities tl,73.sl are determined according to formulas (26.31), and 

®*(,) <i>—^(/o+/,)¡ (34.11) 

is peripheral deformation, which corresponds to the zero-moment state. 

Axial displacement is determined by.the first formula of 

(26.9): 

Here u0 constant of integration, characterizing angular displacement 

('if) edSe * —0 as a whole, 

- or.. 
Vi' ■Wdi (34.13) 

is the displacement corresponding to the zero-moment stressed state. 

Furthermore, in conformity with (26.27) in (34.12) we accept /,=7,. 

On the basis of (17.3), (18.5), assuming in them RldQ = dt, v = /?. 0 = 4-. 
we have 2 

and 

where w«, - displacement of edge * = 0 in the direction of axis OX. 

Using this formula we compute the displacement of the zero-moment 
state 

(34.14) 

Rewrite formula (26.11) in the following form: 

(34.15) 
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Separating the left ana right parts, corresponding to the zero-moment 

solution, we obtain 

Assuming in this equality ¢==0, we find 

i 
= J [/?¥-! “(i)]v(i)« (3^.16) 

where «>,„ is determined according to formula (34.14). Note that if 

we simply used formula (34.15) for determination of zero-moment 

displacement ¿(I), assuming in this case ¢=0. then we would obtain 

the result 

I 

•(!)=■“/•(!)A* (34.17) 
0 

which differs from (34.14). Such a difference is explained by the 

fact that the zero-moment solution ¢ = 0. ^, = 17, does not satisfy 

accurately the second equation of (26.15)» which is the condition of 

compatibility of deformations. 

Peripheral displacement t>(„ is easily found without integration. 

On the basis of (26.9) we have 

'’(i) <0 — •(«)• (34.18) 

I 

At the end of § 26 it was shown that the zero-moment stressed 

state 7,. s, coincides with the stressed state in a beam. Relative to 

displacements we can say the following. If in formula (34.13) we set 4 

H = 0 and then determine displacement on the basis of (34.17)» then 

we obtain the expression 

®u) == -jly ^1 + J J J J VW1?* dsdtdsj, ( 34.19) 
also coinciding with the deflection of a beam of tubular cross 

section (/=.7^3 - moment of inertia of cross section of beam, q(s) is 
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mÊÊÊÊfÊÊÊ 

transverse load, determined according to (26.32^). 

Comparing (34.4) and (34.7). It Is easy to see that is small 

in comparison with and therefore the condition of equilibrium 

(26.4) can be approximately written in the form 

n, — >i = ~ ^ (9, (,) — 92(1))^1- ( 34.20) 
0 

By the same reason we can set 

(34.21) 

and consider «i to be the amplitude of shearing force. Remember that 

the combination written in the left side of (34.21) appears in the 

formulation of the power edge conditions (17.8). 

Let us assume that at the edges of the shell are assigned ampli¬ 

tudes of tangential forces and bending moments 

j®. m®. t[. *f. 

Ignoring the mutual influence of the edges, it is simple to express, 

using the edge conditions, the constants Sj. ^ through the 

given quantities n®. m®. nf. <. whereupon for forces, moments and 

deformations we obtain the expressions 

«I = (Vi) — (Yl) + "ft (vli) + -¾- (Yli)* 

m, = n®t (Yl) + (Yl) - ~ »^(Vl,) + «ff (Yl,). 

/, = - 2Y^ (Yl) - ^ *?♦ (Yl) 4 SYflfe (Yl,) - 

—Tf mí^ (Yl,) 4- Ä9, (1). 

<,*=/04-/,- 

*, = «, + -¿fc 4 (9« (,) — 9? (,)) rfl* 

|R]B> )UR|. 

V —■g-«>r(YD--^-«îe(Yü- 

Th (Y^i) Tffii 

(34.22) 

(34.23) 

(34.24) 

(34.25) 

(34.26) 

(34.27) 

(34.28) 
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(3^.29) 

It is easy to note that formulas (34.22)-(34.29) coincide with 

formulas (27.14)-(27.19) if we replace in them V by -*,./&,(.> by w 

and change the load terms. In this way, between both events - 

axisymmetric deformation and deformation with a bending load - is 

observed a close analogy. Let us observe this in examples. 

§ 35. Cylindrical Shell Loaded on the Circumference 
bv a Bending Load 

Let us examine a cylinder loaded in a certain section s = L0 

rather far from both edges by normal forces of intensity ?, = ?cos<r 

(Fig. 21). The main vector of this load P, is equal to m,R. Just as 

in the axisymmetric case, by considerations of symmetry we assume 

that the amplitude of shearing force «, on going through the loaded 

section suffers an interruption of continuity in the amount of q. 

The signs - and + designate the amounts at 5 = 1,-0 and 5-1,+0 respec¬ 

tively . 

From conditions of equilibrium it is clear that 

(35.2) 

consequently, 

(35.3) 

On the basis of (34.28), (34.29) we can write 

EA'P" = - 2yV + wf. 

EhV* = - 2yV — Tp «,+. 
(35.4) 



(35.5) 

fASe-n = 2v*»r - 2Y^r + ^ (¾ + ^) • 

£■///?€+(,j =. - 2yRn+ — 2fm* + ji -+- 

Note that continuity of quantities V. t,,,, during transition through 

the loaded section should be provided for, inasmuch as it necessary 

for the continuity of displacements (formulas (26.9), (26.11)). 

Assuming and taking into account (35*1), it is simple to see 

that the bending moment also is continuous. The requirement that 

^-=^+ is satisfied if we set 

^- = ^+ = 0. «,- = *+=-*.-«-. (35.6) 

Further, using formulas (3^.22)-(3^.29) we compute forces and bending 

moments for that part of the cylinder on the right of the loaded 

section: 

«i = - -j- Ö (Yl). /2 = -y- ^ (Yl). 

*i—+?[* — 76(Y!)]. «i = -^-t(Yl). 

EhV=x çy^iYl). 

(0 =-2^ 9 (Yl) + »1 (-¾ +-¾^). 

In these formulas relative length is lead from the loaded section 

l — —The obtained formulas are analogous to formulas (29.3). 

Let us examine a shell loaded in section s=L0 moments of intensity 

m0cos<r, distributed along the circumference. Total moment MQ is equal 

to mgn/i. The amplitude of the bending moment during transition through 

the loaded section suffers a discontinuity: 

mf ■=-?■• ":*“--?• (35.9) 

The combination (n, — s,) is continuous, and (/?/, + «,) undergoes discon¬ 

tinuity during transition through the loaded section. This follows 

(35.7) 

(35.8) 



from the conditions of statics (26.4), (26.5), written for sections 

¿0 —0 and ¿0-i-0; 

n- _ Sf =,,+ _ t* P, 
HM' 

Rt\ + mf 
PiLt 

TR ñF ’ 

n.+ ■''il P\^-* _ 
Äh -rmi 

(35.10) 

Hence it is easy to see that 

= - 
M, 
w 

«i» 
W~57r 

(35.11) 

Writirs che relationships 

EhRtî(l) = 2yRnr — 2Y*mr — 

E/tRefu) = — 2yRiti — 2y,«i+ — |i/i+ Ä. 
(35.12) 

we are convinced that the condition Is held onxy when the 

equalities 

2y Ra~ — 2Yîmf == — 2y/?»1+ — 2Y*m,+ = 0 (35.13) 

exist. From these equalities it follows that 

V*. 
*» Bi 2Ä * 

(35.14) 

and consequently, 

- 
? : V 'v 

a‘ 

.. _ /’i . "*y 
•i + 

(35.15) 

By direct check it is simple to be convinced that in this case ¥ 

really, 

EA'F" = — 2Y*«,- + mf = 

= — 2y1«^ ^ mi+ = 

For forces and moments on the right of the loaded section we obtain 

the formulas: 
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ni — T (Yl>. <2= - ^Uvl). 

*1 ^ ^ + -^TT(v|). «1 = -- -y- 0(Yi)- 
V«# 

^ ^ ~ life _ +-¾ 6 ÍYl). 
-J 
7T 

(35.16) 

the same formulas could he obtained directly by using (35.7), (35.8) 

and carrying out the limit transition just as was done in § 31. 
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§ 36. Stressec and Dlsplacemerrcs In a Shell 
with RlKld Bottoms 

-.:- '.V. •; • -- 

È; . - iiimdMÍ&fvri 

Let us determine stresses In a long shell loaded as shown in 

Fig. 15 at Pq = o, considering that the extreme sections of a shell 

are connected wiun rigid diaphragms and can only be turned and 

dislocated as a whole. On edges £ = 0 and ^ = 0 (s = £) the 

following conditions should be executed: 

^(1, = ^ = 0. = ^ = 

On the basis of (3^.28), (3^.29) we obtain 

"!--S’"?' “ T [^- m — 1' (/«+/.),.,]• 

Ilf » — 
1 V y [^« (» ^(/0+ /lX.il* 

(36.1) 

(36.2) 

where 

M, 
(/o+/i)*-o=*— 

I/0+f 1),.1 = 
At, PtL 

— ^ J J (?» (I) - <h (1)) ¿Idl-j Ç, dt. 

Conditions of equilibrium of the shell as a whole is 

L 

“ Tiff ~ J<» ~ ?» (i))+ = 0, 

L I L 
ai> Pit. ft. . . . M r in? inr—J J to« id—<n) * d» —j /ty, dt=o. 

(36.3) 

(36.4) 

whence it follows that 

In this way. 

</o+/i)i.‘¿='— 

m1- 

Mil m{ — — 
R r 
2)3 

(36.5) 



Par from ends of the cylinder exists the zero-moment state: 

0 0 0 (36.6) 

» 9 

= 7¾ + J (i) * — J fj<i) *• 
0 

The stresses calculated according to forces of the zero-moment state 

we take as the nominal, where 

(36.7) 

One ought to have in mind that amplitudes of stresses or the maximum 

stresses which exist in points ¢) = 0 have been here written out. 

Stresses in points <f> = tt are equal in magnitude and opposite in sign. 

In order to find stresses at arbitrary ¢, it is sufficient to 

multiply the amplitude values by cos <J>. It is easy to see that the 
N 

amplitude of stress is equal in magnitude to the maximum stress 

in a beam of tubular cross section (the moment of mass inertia of 

the section of the beam relative to axis 0Y is equal to I = nfí-^h 

and stresses a *= Af/?//=. The amplitudes of bending stress 
max “K"/ 

from an edge load and from distributed pressure we compute using the 

formula 

(36.8) 

for example. 
* 

(36.9) 

where the upper sign is taken during the calculation of stresses in 

filaments of the external surface of the shell; the lower sign 

refers to fibers of the internal surface. In this way, flexural 

stresses from internal pressure on the edge of the shell amount to 
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“(I) “o» 

(36.10) 

I , ,/-5-.,,3)- fi«“ral sVresses from the edge liad " OT (when n* — 0.i. )/ ï_)iï ^í.83;* 

, to „•/ZETof.O.sroo-r. Comparing these results vith the 

wi are equal t0 ln the stress of a rigMly fixed edge of 
estimate of local incre . • see that 
an axisymmetrically loaded shell (S 28), it 

quantitatively they agree. 

Let us turn to the determination of displacements. On the 

oasis of formulas (31-12) and (31.21) we fin 

-■jJrj [iv*!« (vl,) --7Tmt* (ví>)l i*+“V 

Let us integrate taking into consideration that 

J,(x)ix--7'H')- i+(x)2x..t(x). 

J ;<*)<*--f»(x). J fix)lx-<>(*)• 

then we obtain 

[* (vo-<(«,)) - -¾ «ítw>-t(YS,)l}+*J, 

0 „g This means that there is no 
Subsequently we will set u(1) * Setting in (36.11) 5 « 1 
rotation of section s = 0 ar°^ *X 8 ln comparison with 
r , 0 and igi.orins the quantities UV) 

unity, we find the displacement on the seco 

(36.11) 

* 

Calculating the integrals 

(36.1?) 

+1 (Yy + (YÜ- UH- 4M 

—^-IçíyO—<P(Yli)l}* 



$ • r\'- 

0; 

Û \ 2vnî 10 (Yl) - 1 H- ^ mj Ht» (vi) -11 + 

-t- i8 (YO - O (Y*,)] - X mí (YO -1 (Yt,)]} 

and substituting the result into equation (3^.16), dropping small 

terms, we obtain 

w(» = *<.> + 4 {11 - 0 (Yi)l 4-^(1-* (Yt)l + 
+ Z’.’nf 0 (Yl,) — -Tf «ít (Yl,) — Mnjl — H«ft (YO I — 

— ^ «fC (YO l — 2YflfO (YO + «ft (YO )+^,,. ( 3 6.13 ) 

Let us determine constant from the condition w/;p(0) = 0, then 

we obtain tp(1)(p)=» —wjy. On the second end (j = /, ^ = 0) the shift is 

wí) = «f» - ^»+ 2Yrti I » - 0 (V01 + 

+ -^- «? 11 — t (YO) + 2Y«f — «f — |1/IJ/ — M"ft (YO • I — 

— H /f «fC(Y0 • t — 2y«Í0 (yO + ^ «ft (YO } • (36.14) 

Dropping in (36.14) terms containing 6(yO. t(Y0. t(Y0. in comparison with 
unity, derive 

«il, = + [2Y K+«0+^ K - «O-ii«?/]. ( 3 6.15 ) 

Let us calculate displacements supposing that there is 

no distributed load. Taking into account (36.3), using formulas 

(3^.13), (36.6) we find 

£Au U) =«Jv.+/,mí=--Sí--Ç£. (36.16) 

On the basis of (3^.14) and relationships of elasticity we have 

L ~ _ R ,7 .J, 2/?(1+m) j 
W<i)~£rt (^-£ft J Sl 

o 
—J“<1> *1 (36.17) 

Having in mind that in this case 

P, t2x=0. /, = /„+/,. *1==-^ 

we obtain 

w«»> ~ ~EimR [A,‘ T + T + VM1 — (2 + M) . 
(36.18) 
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From formula (36.2) follows 

*?+^-=-^7(/0+/1^-0+ ^ (/o+/A-i* 

m? —(rt?+ni)* 

«ï - < = - V i/o+/1),-0 -7(/0+/i)«-r 

Substituting these expressions into equations for the calculation of 

“fiy «fi,* we find 
, M,l P, /* ,.*Ä/2Af, 

BU> nREk ãÈh 7 + Eh\ \ nk3 

mL - l' I JV* 2(»+M)P.f 
W(i) — nP£A T + nfiA • 6 n£A 

M, 
" Y ."»/?£* ’ 

(36.20) 

Taking into account that the relationships 

Pj = P, A! = A!|-|-P|£. 

exist, and introducing the quantities f/= fAn/?3. EF = 2.-\REh. 0 = j(ij. 

we write out the formulas for calculation of the angle of rotation 

and shift of section s = L of the shell in the form 

“Í =-^ -ÿt) 2~v \L )]• 
1 rML't. 2u’P\ PL* f. 3,,»p\l 2P£ 
zirri1--^)—3-I1-yt)]^ = X iD 

(36.21) 

The obtained equations differ from formulas for the calculation 

of a team of tubular cross section, conducted allowing for shift, 

only in terms of order 1/y in comparison with unity. 

§ 37. Axlsymmetrlc Deformation of a Short 
Cylindrical Shell 

Let us examine a short shell whose length L has order 2.5 V^h 

or less. In this instance the solutions of uniform equation (27.1), 

taken in the form of (27.2), cannot be significantly diminished 
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from one edge to another. The separate determination of the constants 

of integration conducted earlier becomes impossible. The general 

solution of equation (27.1) is now more convenient to write not in 

the form of (27.4), but through Krylov functions, which are introduced 

usually during the solution to the problem of curvature of a beam 

on an elastic base [12], [58], Below is a table of Krylov functions 

and their derivatives. As it is easy to see, these functions are 

linear combinations of solutions (27.2) and that is why they satisfy 

equation (27.1). The choice of solutions in such a form facilitates 

the determination of arbitrary constants from edge conditions, since 

the initial values of the Krylov functions and their derivatives 

to the third order inclusively form a diagonal unit matrix. 

Table 3. Table 4. 

k 0,(JT) q;<*) ßl (■») Gïix) Ú¿"(jr) 

l ch X cos X -4Q, - -»n, — 4Qj -4ß, 

2 — (ch X sin jr -|- sh jr cos x) -4Û, -4Q, — 4Q, 

3 sh * sin x q2 0, — 4Û, 40,. 

4 (ch x sin jr — sh jc cos jr) 0, Q>. Û. -4Q, 

k £f,(0) Q'k(0) £>;«» o;<o) 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 • 0 

4 0 0 0 1 

Let us write out the solution of uniform equation (27.1) in the 

following form: 

O = (c, ~ /Cj) (fij (Yy _ 2/0, (ydj _|_ 

+ (¾—fc«) [fij (Vl) - 2/Q, (Yl)J. (37.1) 

For an axisymmetrically loaded shell to (37-1) one ought to add the 

particular solution of heterogeneous equation (25.26), having the 

form of (25.28). For a shell under a bending load particular solution 

which one ought to add to (37-1), has the form of (26.29). We will 

examine first an axisymmetrically loaded cylindrical shell [12]. 

separating real and imaginary parts of the solution we obtain 

- m, = c.n, (y£) - 2C3Q3 (yd 4- (vl) - 2c a (vl). 

— 2y% = - CjQ, (Yl) - 2c A (vl) - cA (Yl) - 
l 

-2cA(YI)-2y!J Rq'(0)d\. 
0 
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Substituting (37.2), (37-3) into formulas (25.20), (25.15), (25.16) 

and taking into account (25-21) and differentiating with tne aid of 

the table of Krylov derivatives, we have 

[4c.Q4(vD-c2Q, (Yl) + 2cA(Yi) + 2C4Q3(yDI. 

. ; ?<• ; >Í -¾¾ ; ‘ 

T2 = l/r# = é|2flQj (Ys)+2f A(Yl)-4f3Q4 (Yl) + (yDH-/??, (o>. 

^1 = 2^-J (o)Ärfl- 

=^o- /^.(0) ^=51 
0 

= ¿ |Í3Q| (Yi) + 2c,Q3(Yi) + (Yl) + 2cjQ4 (Y*t)l. 

" = W |2CjQ3 (Yl) + 2f2Q3 (Yl) - 4csQ4 (yD + c4Q, (yl)] + 

^ «o — + »» j Rft (0) ¿ij • 

(37.^) 

(37.5) 

(37.6) 

(37-7) 

(37.8) 

If on edge s = 0 the shell is loaded by bending moments and 

shearing forces /1/°, and the second edge e = L is free, then arbitrary 

constants c^, c2, ashould be defined frora the conditions: 

s = 0. A(, = A(?. 

s = /., A/, = 0. M, = 0. 

(37-9) 

(37.10) 

According to (37-9), (37-^) and (37-7), using the above table of 

initial values of Krylov functions, immediately we find 

es *= 2y5^. = — AÍ®, (37.11) 

Conditions (37-10) allowing for (37.11) give a system of equations 

for determination of ¢-^, 

2<r ,0, (y0 + e4Ü, (yl) = - 2yî/V®Q, (yl) + ^ AiJQ4 (y0. 

4fA (Y0 + 2c4Q, (Y/) = - 4YW°Q2 (y/) - íf AfJQ, (Y/). 
(37.12) 

Solving (37-12), we obtain 

C, = ijf Mfa (yl) + 2YIA^Oi (y0. 

4V* i,..,X ^ 

(37.13) 



where the following designations have been introduced 

= i (sh 2x — sin 2x), »P2 (x) = ~ (ch 2x — cos 2x), 

a»j(x) = i (sh 2x 4 sin 2x). A = ch 2x -j- cos 2x — 2. 
(37.14) 

Let us give also several relationships between functions U>2. *I>a 

and Krylov functions, useful for subsequent calculations: 

<D2 = (QaQ, + 40¾ = i- (Q] - 0|Q3), 

a>3 = -J- (4O3Q4 + Q1Q3). A = 16 (O3 — Q..Q4). 

0),0, + 203-2)1)3^ = -^. 

¢),0, + 20,-0),0, = -10,. 

0),0, -0,+ 2<D,Q, =10,. ¢),0,-203 + 40),0, = 103. 

- 2<D303 + 20, + ¢,0, = 0. 20),03 + 0, — 20),0, = 0. 

0, — 4Q3 + 8Q2Q4 = 1. 

(37.15) 

Constants have a simple mechanical sense: the first is 

proportional to the angle of rotation of section s = o(ô?). the second 

to radial displacement of the edge of the shell at ¢..(0) = ^1(0) = ^0 = 0. 

Really, from (37*2), (37.8), setting £ = 0, we find 

¢, = £A0J, ci~~ 2yvfi. (37.16) 

Comparing (37.16) and (37*13)» we govern radial displacement and 

angle of rotation d? at edge s = 0 depending on forces and moments 

N®, applied to 

^ = W ¿toa (VO + Nfa (Y/). I, n * n (37.17) 
^=-¾. 4IÎ0), (Y/> - A/Î0), (Y/>. 

At \l~*oo the values of functions 0*,(yO. ^(yO. ^(yO approach toward 

unity and formulas (37.17) completely coincide with formulas (27.20), 

obtained earlier for a long shell. Thus, the quantities ¢),()0- 'I+vh. 

0‘3(y0 characterize the influence of a free edge s = L on the 
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displacements of a loaded edge a - 0. By analogy with (37.17) ^ 

(27 21) it is simple to write the expressions for »,.<■- under the 

action of forces applied to the edge, while edge e - 0 now is 

free (N? = /W? = o): 

= % Ufa (\’0 - -^5¡- (VO. 

t « 2v« (Y/) _ ^ Al{(P3 (VO- 
(37.18) 

, o2, Ö3, (formulas 
Substituting the found values of constants 

(37 11), (37.13) into (37.1), (37.8) and taking into account that the 

cali of edge a - 1 being loaded by forces ¢, is considered 

analogously and requires only a change in the signs of the 

corresponding terms, obtained 

£/,0, *= M? lOd (yl) fli (Yl) — q2 (yD + (YO q< (YD1 + 

+ 2yX ld>2 (VO Qi (Yl) - 2¾ (Yl) + 4<D, (YO (Yl)l — 

(YO Q, (Yl,) - «i (Yl,) + 20), (VO Û, (Yl,)] + 

+ 2y!NÍ [^(YOfi.ÍYl,)- 2Q3(yI,)+ 4d)1(Y0«,(Yl,)]. 

Al, = M® I4«t>3 (YO ß< (Yl) + Qi (Yl) — 2$î (yl) ß3 (Yl)l + 

-f —N? [20)2 (YO (Yl) + Ö2 (Yl) - 2‘Pi (\l) Ö3 (Yl)! + 

+ .Mf [40>3(Y/)Q4(Yl,)+Q,(Yl,)-20>2(Y/)Q3(Yl,)] - 

A/, = - M? I- 2O3 (YO ß3 (Yl) + 2Q,(Yl) + (YO ß2 (Yl)l + 

+ V? [20), (YO Ö3 (Yl) + ßi (Yl) - 20), (\l) 02 (Yl)l + 

+ 20)3 (Y/) ß3 (Yl,) + 2Q, (Y ■,) + % (YO Ö, (Yl,)] + 

+ N[ [2O)2(Y0ß3(Yl,)+ ß,(Yl,)-2O)|(Y-0ß,(Yl,)]. 

= - /M? [0)2 (yO ßi (Yl) + 2fij (Yl) - 20)3 (\l) Q2 (Yl)l — 

[0), (yO Ö, (Yl) + 2Q, (Yl) - 0); <y0 Ö2 (Yl)) - 

- IJ.Mf [0).,(Y/)ß,(Y‘i,)+2ß3(Yl,)- 2O)3(y0Qj(yI,)] + 

+ TF (O’,(yOQ,(Yl,) +• 2ß4(Y*,)- ^(YOÛ^Yl,)]. 
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[20)j(V/)Q4(Yl,)4- ßj(Yl,) — 20>, (yl)ß3 (Yl,)]. ( 37 • 20 ) 

(37.21) 

(37.22) 



In the formulas relative coordinate ^ Is read from edge s-l'i, <-i> 

It is necessary to Keep in mind that if besides edge loads, the snelo 

experiences distributed loads ¢.,0. »no and tension r0, then in the 

right side of (37-22) should be terms which correspond to these 

loads, the same as in formula (37.8). Force f2 is easily calculated 

if we multiply the right side of (37.22) by ^ and to the result of 

the multiplication add Ä,„(0). Using supplementary relationships 

(37.15). it is simple to be convinced of the validity of the obtained 

formulas. For example, setting in (37.21) Î = 0, 51 - I, wc ,inj 

that ir the right side of (37.21) all terms except the second turn 

into ¿ero and the value of shearing force on edge s = 0 is really 

equal to U°. With the aid of the same supplementary formulas fron 

(37 19), (37.22) we obtain expressions for «Î. v" and «Í. «/ under the 

combined action of edge loads «?, »J, tension i>0 and 

distributed load qn^0y ^i(o): 

0° = - iUÎOa (VO + S <Y0 - TO ^ - 

, 16v* x,tP»(VO 
' A(yO’ 

¢^ = -¾ Ä (VO 

16v« k,l Qi(yO 
~ïïrNl a(yo • 

(37.23) 

/. 16V» „oO>(YO , QjM — 

16v» ,.o Q,(V/) , 16y*m?Qi(V0_ 
+ ^ 1 A (v0 

— (VO + S (Y0- 

Here the following designations have been introduced: 

^ (tw1--ã)* 

(37.24) 

= ■" "JJ ^7*<o) — 2.i/i J • 

(37.25) 

Considering (37-23), (37.24) as a system of equations for defining 

,0 .,0 ..L ..L 
r M" iVV, W 1, iVtJ according to assigned values of the quantities 

ÔÏ. w'\ 0i. v>u and solving it, we have 



^ = (VO-^^1 + 

-f[.>.(VO + »f^f]. 

«Í 

^-^1-^^+^^1- 

-wKw+^H- 

Using the above equations, we will consider such a loading of a shell 

when NÎ-Wf-»,«-<•• ».m=«o“1- Then on the baslS °f (37,23)’ 

(37.24) in this instance we obtain 

itP* = wLt — —rr- AÍÍX, (YO - (YO. ’ £ÏT 
4y* = - = (YO + ¾^ (YO 

(37.28) 

where 

, , chx + cosjt M . ^ th* —Hnx 
Xi(jt) — rnx + slnT’ X2() s*i Jf + sin7 

, . ch jt — cos je 
sh jt + sln Jt ' 

(37.29) 

The values of functions X,(*). X2(*). XsW is given in Table 2 of the 

appendix. 1 

Comparing formula (37.28) with formula (27-20) for a long 

shell, it is easy to see that the influence of the second edge is 

expressed here by the presence of the factors X,(V). X2(yO. XafiO in 

the corresponding terms. 

Prom the table of values for U<"'• &<*>• k<x) ll; follows that 

already at vl - 3 they practically differ little from unity and the 

shell in this instance can be calculated as long. For very short 

shells (for example, YI * 0.Ü, which at »,/S - 0.04, u = 0.1 corresponds 
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to length L * 0.48Ä) the values of x2 = 0.0263, = 0.200 are small 

in comparison with unity and the shell Is close t¿ a ring. Angles 

of rotation of the extreme sections of such a shell are small, and 

the radial displacements o. the edges are determined basically by 

amount of shearing force N* (Xl = 2.502). Setting yl small, it is 

easy to show that displacements u°, wL coincide in this instance with 

the displacement of a ring of radius /?, area of transverse section 

F = hL, loaded by radial forces of intensity 2A^. Really, since 

when X Is small from (37.28) we obtain 

^=wiSS:;_^ J /^(2^ 
Eh yl EhL 

^ Examples of the Calculation of a Short Shell 

Let us examine several particular problems. We will solve 

the problem about axlsymmetric deformation of a cylinder with rigid 

bottoms, already examined for a long shell [12], The cylinder is 

loaded by internal pressure , Pl the bottoms of the cylinder 

can freely move in the axial direction. By considerations of 

symmetry here . ^ , and it is possible to use formula 
(37.28), where 

Po=pxR2. to0’ = = _ P#!. /, _ jM 
M1 2 j* (38.1) 

Prom the conditions of fixed edges ,,<W=0. *¡=»f=o. using (37.28) 

and (38.1), we obtain equations for determination of forces and 

moments on the edges: 

- -g Mil. (Vb - ^ <Y0=-gp (l-I). 
Tjli '"’fc (Y0 + -¾ NÎX1 (Y<) = o. 

Solving them, we oboain 

(38-.2) 
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Bending moment only ir* tactor x2^^) differs from the bending 

moment in .he fixed section of p. long shell which is also under the 

same load (§ ¿8). Turning to the table of values of function x2^z)» 

we note that at (yl) < 3 < i» an(i at ) = 3 X2(y¿) 

insignificantly exceeds unity (at V' +=« /.2(V/)->l)- This means that in 

short shells a local increase in stress near the edges, proportional 

to bending moment /W1 , in only a small area of change in yl can 

insignificantly exceed (in all by 6?) the corresponding increase in 

the stress taking place in a long shell. For very short shells 

{yl << 3) the edge effect is insignificant. 

Let us propose now that the load on a shell is the same as in 

the previous problem, but the edges is hinged. In this way on the 

edges now it is necessary to set the conditions ^11 = ^ = 0.^ = ^ = 0. 

From (37.28) again we find 

As in the first example the edge effect for a short cylinder proves 

to be very weak. At the results will not differ from those 

which for this case can be obtained for a long shell C/.i(-)^=/.2(5)^1): 

at shearing force and the angle of rotation of the edges are 

small, since they change as l/Xi(Y0- 

§ 39. Calculation of a Short Shell for 
Bending Load 

For a short cylindrical shell which is under the action of a 

bending load the solution of uniform equation (26.20) is again 

taken in the form of (37-1). Adding to this solution particular 

solution (26.29), corresponding to the zero-moment state, we obtain 

the general solution of equation (26.20): 

o, = -f 2/y‘V, = (c, - lc3) IQ, (vs) - 2/Q, (Ys)| + 



' 

Now it is simple to calculate forces, moments and deformations in 

the shell using equations (26.27), (26.28). These expressions will 

contain four arbitrary constants which, just as in 

the case of an axisymmetric load, can be determined according to 

assigned values of the amplitudes of bending moments (mj, mL) and 

shearing forces («J, nj) at edges of the shell. Dropping calculations 

connected to this, since they are similar to the calculations in § 37 

for the case of axisymmetric deformation, we obtain formulas 

analogous to (37-19)-(37.22): 

»F, - -m? I«>3 (y/) 0, (y-) - Q, (Y;) + 2'I*2 (Y0 (yS)J 

" 24^n‘ 1^2 (VO fi, (Yi) - 2Q3 (Yj) + id;, (YJ)] + L ' 1 «VIS/ÍT 

(YO Ö, (Yi,) - 02 (’, Î,) + 20»J (V/) Q, (y*;,)) - 
~ 2 / . __ 
2Y*«f |0)2 (YO £?, (Yi,) - 2Q3 (Yi,) -f 4<D, vV0 Q4 (Yi,)). 

m. 
: m' l4<1>3(YO Ö4(Yi) + c, (Yi) - 20>2 (YO Û3(Yi)) + 

+ T"‘ l?Ü)2(YOÛ4(Yt)+ fi2(Yi)- 20», (Y/)Qj (Yi)) + 

4-mf [40*3 (YO «4 (YÎ,) + », (YÍ,) - 20>2 (yl) (¾ (yj,)] 

— j ni [2d>j (yO £2, (Yi,) + Q2 (yi,) — 20), (Y0 Q3 (YÍ,)|. 

«2 = Ji«,, 

«, = - m? [- 20>3 (yO £23 (Yi) -f 2£24 (yj) + d>2 (Y/) Q2 (Y‘;)) JL 

+ /-”|20)2 (yO Qj (Yi) + Ö, (Yi) - 20», (yO Q, (Y‘)l + 

+ «f I- 20*3 (YO Q3 (Yi,) -f- 2Q, (yj,) + 0>2 (Y0 £22 (Yl,)) -f 

+ nf [20)2 (yO £23 (Yi,)4 Q, (V*,) - 20>, (yh Q2(-^,)). 

Eht2 — n (/0 -f- /,) _ 

- w? [0>2 (YO £2, (Yi) 4 2Q3 (y|) - 20»s (yO £2, (Y|)I - 

- 2Y«? [0), o’/) £2, (yï) 4 2Q4 (y|) - 0)2 (yl) fi, (yj)J _ 

“mí (YO f‘. (YÍ,) 4 2£2j (yl,) - 20)j (yO £2I (Y|,)! 4 

4- f.Y«í [O*, (y/) £2, (Y|,) 4 2£2, (Y|,) - 0*2 (yl) Q2 (Y|,)l. 

t2 — £Zie2<,)4h(/o-4/,). 

0 = --^4^0+/,). 

s, = », 4 4 /? f (?, („ — qj ,„) rf|. 
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O—>») dut 
*1 =-ï? * »• 

(39.9) 

where 
(39.10) 

3y analogy with formulas (37-23), (37.24), (37-26), (37.27.) 
,, Ac hv _ _ y1- and vfr. w¿' by Rfnu. Äfj(i). we can 

replacing in them 0,. Of by-*. ^ anu w . 

write out the expressions which connect the values of quantities ^ 

and e2(1) at the edges of the shell with the given quantities V 

„1, or vice versa; for example, we will write out equations 

analogous to (37-26): 

m 
_m.[4wp,(v0 + vlMjW], 

»; =-y-[-•'o.'1’.'v') + <>• + 
4-f- 

++^^1- 

[-^,,^+^.^1+ 

+1^¾¾^ 

(39.11) 

£/i 
Y 

(39.12) 

where 

eí a)=*2,1, - ir, ,)] • (39.13) 

C« jT= ef , 0. f0 = 4a = 0 62(|, 
(40.1) 

§ 40. Shells with Rigid Edges 

Using the extracted formulas It is simple to determine shearing 

forces and bending moments In fixed edge sections of a shell. It 

both edge sections are fixed then 

consequently, 
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(40.2) 

e2*U) Th [Äi« '»< ” M T f 

/OO vn ( í.q. ,tM , ■ ^King Into account the 
According to formulas (39- , unlt (36.M, we obtain 
equations of equilibrium of the an-1. ^ 

' , M \ 8Q1 (vOl 
+ ^/?<7«.i«+ >l nfi¡) \ (vO J’ 

ft‘-\L\ 9"( , M \ 4Q:(Y01 

(40.3) 

[(«,. ,„+u + ^ <'")' ' (40.4) 

, ^ O,(Y0 5dïü-->0 and the above equations 

At „-.co «'»‘V'l-l- long "shell obtained in i 36. 
agree with those equations for 

,,,,. ». «»— w , * D M p M The amplitude of axiai u-l^h 
edge loads Pv Aij. 

-Tnrjl'Tr*'1*’(Y0 °l (Yl)+2Qa <vl) “ (Y° ^(Yl)1 ~ 

- 2yn°: l«I>, (VO Ö, (YD + 2Q4 (Yl) - ^ <V0 (YÍ)1} ^ - 

__ j j _ mf 10)2 (Y/) n, (Yl,) + 2«3 (Yl,) - 2*3 (YO qî (yI.)I + 

+ 2Yrtfl*, (Y0 Q, (Yl.) + 20, (Yl,) - *2 <'■0 Q- (^«)1} + ““ 
(40.5) 

Setting u* = 0 and integrating, we obtain 

B(i)== J,n4.jg- m?l-2«i>,(Y/)03(Yl) -)-2Q4(Yl) -|-*2 (YO fi2 (yDI 
u<D~r £h 1 * J ’ 
. j_ 1 + 2<I>2(\/)Qj(Yl) + Q, (Yl) - 2a’i (YO Qs (YD! - 

_ "í¡- m[ l— (y0 í)3 (Yl,) + 2Q« (Yl,) + *2 (YO Q2 (Yl,)l - 

12<1>2 (YO ”3 (Yl,) •+*ß, (Yl,) - *''i (Y0 "2 (Yl,))- 
Eh 

(40.6) 
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where it has been taken JnLo consideration that 

- 2'1'j (YO Os (yO 4 2Q4 (yO + 0>2 (YO Qj <y/) = 0. 

21»2 (YO fi3 <Y/) + Q, (YO - 2<D, (yO Qj (YO = 0. 

After determination of we find the amplitude of normal displacement 

Displacements at edge a = L are equal to 

by formula (34.16) 

£7w(l) = J [EhR^-^- Eh (a0) — 2,,,)] 0% -f f Aa»®,= 
o 

a 
= - J (£A«V-j- )*/?«?)di + £A(5,,,4- «»,). 

In this case in the subintegral expression we drop those terms in 

(^(1) - which have the order in comparison with the 

corresponding terms in V. Setting «^^(0) = 0 and integrating, 

we obtain 

EAt*,,, = 4y*«? [O, (YO Qj (Yl) — Qj (YÖ— 

-.j©,(Y/)Q,(Yl)4-7<I>,(Y0] + 

■4 2Y«n? |02 (yO Q, (Yl) - 2Q4 (Yl)-®, (YO Q, (Yl)4- (VOI + 

4 4y*«Í [% (YO Oj(Ylt) - Qj (Yl,)(VO Q, (Yl,) - - 

- 2y«/»Í [<I>j (YO Qj (Yl,) - 2Q« (Yl,) - <J>, (VOQ, (Yl,) - 4" 

(40.8) 

“o.+'SrC 0» 
b® — nh 

= -¾ (m? - '"f) ^ (YO + ^(«?4- «f)Ca (YO - 

£A (I)’ 

(40.9) 

where anh designate the functions 

L¡ (x) = <I>, ix) 4 8Q| = ,h 4 «!" * »J V ; j V J -t ¿ ih * — sin jr * 

r , 8ß.(Jf) char —cos/- ^(X) = <P, (X) + = -¿-J-t|n<t. (40.10) 

The formula for calculation of in external form coincides with 

first formula of (36.19). 

: 

The second formula also will turn into the 

corresponding formula for a long shell at \l-+oo. 
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'■■y * 

If the edges of the shell are connected with nondeformable 

diaphragms, then m1, are determined according to formulas 

(40.3), (40.4). Displacements u^y in this instance have the 

form 

“o) ~ “o>+ TW [2/?<7* « >+ ^ (^7P+Æ) Xs (V/)]. 

»■ <» ‘ W 

(d~ , , nR I M, M\ 
r?-(.»+w] -Kwr\+-êãI-stf - ^)- 

(40.11) 

In this case we have taken into account the identity 

2C, (*){,(*)-C*(x)-1. 

where 
—c«»x + co,x 

A(X) lb X — Sin i- 

If there are no distributed loads on the shell, then 

^*(0(»“0. M =3Ai,-f-/y/? and the formula for displacements assume 

the form 

ul i 
“(1) 

«f.)' 

——_L »***/2jW, , p,l\ 
ïvm ^m+Th^[-^r+isr) ^(v/). 

: [^. f+^- 2 o+M) p,/?/] _ 

~ 1&7 K*» (vo - p,p/ . 

(40.12) 

These formulas differ from formula (36.20) only in corresponding 

tersm of order 1/y and in the extreme case yl + °° they coincide 

with them. 

§ 41. The Deformed State During Axlsymmetrlc 
Temperature Distribution 

At axisymmetric temperature distribution in a shell /*. A' 

are assigned functions of one coordinate e 

tm =31") (<), A/ = A/(0) (i). 

The particular solution of Meissner equations which in the right 

side have the corresponding temperature terms for a shell of 

revolution of general form was obtained in § 22. To corresponding 

forces and shifts expressed by formulas (22.14)-(22.21), which for 

a cylindrical shell should be rewritten in the form of [12] 
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T =0. 

T, 

N, 

Eh’fiR <P ,Ki % 
T2(1-'m) 1* 

12(1—j.) dt (atW' 

Mx 

AU 

Eh^ (U0) t R 
12(l-i«) V A ^ TflT ds* J’ 

Ert (U,* , 
‘ ^ TÎTT^ïïr + TTï ’ 

-A-Pfti/" ft/? fWgíl A, _ /?ß ^o) 12(1—(t) ds* ]’ 

. ^ ^PÂ d(A/w) mftm^ 
\=C- 15(1 ZTjl)' —di-ßj A»)*. 

o.“ß*-dir 

(41.1) 

(41.2) 

(41.3) 

In a rather long shell forces and moments far from the edges of the 

shell can be determined according to the equations written out above 

In the area of the edges appear additional stresses of the edge 

effect. For calculation of temperature stresses allowing for edge 

effect we can use formulas obtained in §§ 27, 37 of this chapter, 

having in mind that now instead of the particular solution, 

which corresponds to zero-moment state under stress, we take the 

solution presented by formulas (41.1)-(41.3)• In the determination 

of forces and moments according to displacements assigned on the 

edge in formulas (27.22), (27-23), (37-26), (37-27) it is necessary 

to replace 
Eh^P (\t[ 

—10 \~ 

(41.4) 

-+vp[/¾-• 

(41.5) 



Let us consider several examples. 

1. In a tree shell during linear distribution of temperature 
along the axis 

'<" (i) — /°-f £ (/A __ /0) A/(o) ^ 0 

stress do not appear, and the displacement are equal to 

Af = -|p¿(/o+/i) 

(^1.6) 

Here 4{ designates the displacement of edge s - L with respect to 

e ge s - o In the direction of axis 0Z. a;>o at a shortening of the 
shell length. 

If the edges of the shell are rigidly fixed, then In the 

neighborhood of edges appear shearing forces and bending moments, 

which for a long shell can be calculated using formulas (27.22), 

27.23). In this, case It is necessary to replace u°, a1 by -W. —Rlu1 
respectively, and 0?. bv — 

* 1 , Dy TV “H- Doing this, we obtain 

«f— 

Ni 

(41.8) 

M’ ^ f m'3re’ the edges of the cylinder abut against rigid walls, 

P 6 aXlal elon«atlOh. then this Is equivalent to the action 

on .he shell of an axial compressive force. The amount of this force 

is determined from the equation 

2 (/°J^—nTjds^O, 
(41.9) 

where = /»o_ axial force. 



As was shown in Example 2 § 28, neglecting in comparison 

2’1 during the^calculation of axial displacement gives an err< 

e order of f/ * in comparison with unity. Limited to this 

accuracy, we obtain 

¿0 = — xRfiE/i (/°-4- tL). 

The action of axial force PQ give rise to additional moments and 

shearing forces in the fixed edge sections : 

(41.10) 

2. Let us examine a local rise in stress in a shell, one 

component of which has constant temperature tb, while the temperature 

of another component of the shell changes linearly from tb In section 
o-A 4- ~ -l-U J __^ , - -- s = b to t in section s = 0 [27], 

/* at 4>é. 
A/,0, (*) = 0. 

(4l.ll) 

If we mentally cut the shell along section s = every component of 

the shell will be free from stress. The end of the left part of 

the shell {s = b) will have displacement and angle of rotation equal 
to 

=*?.(/»_ /0)( w - _ 
(41.12) 

the adjacent end of the right part has displacements 

(41.13) 

In order to remove the discontinuity in the angle of rotation, it 

is necessary to apply to both shell components bending moment Aff. 

which causes a rotation of the edge of the left part of the shell 

through an angle ¢,-*f and the edge of the second part through an 

angle ¢,-¢7. where ¢,- actual angle of rotation in section s = b. 

Using formulas (27.22), (27.23) and setting n\ = 0, we obtain 
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(ill.14) 

Eliminating from these equalities and calculating m¡. we have 

(41.15) 

3. As the next example let us examine a shell with free ends. 

A drop in temperature with depth of wall is a ]inear function of 

coordinate s [27] 

^(o) — (A*«»)0 + -J- l(A/(0))¿ — (A/(0))°J • s. 
(41.16) 

To avoid misunderstandings we note that temperature distribution 

(4l.l6) is not a linear function of Cartesian coordinates. Temperature 

distribution, linearly depending on coordinate Z. is represented by 

formula (41.6) and examined in Example 1. 

By formula (41.3) we find that far from the ends the shell is 

not bent: ^ = 0,=0., Calculating on the basis of (41.1), (41.2) the 

values of forces and moments, in the edge sections we have 

(41.17) 

But the leads of the shell should be free from stresses. In order 

to execute this condition it is necessary to apply to them moments 

and forces equal in magnitude and opposite In sign to those which were 

just now obtained. In this case the shell will undergo local bending 

near the edges. Angle of rotation and radial displacement of the 

edges are easily computed by (27.20), (27.21). For example 

setting in (27.20) 

we obtain 
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The peripheral bending moment on end s 

distribution is equal to 
0 for an assigned temperature 

Mi = — —— A/l 4- u - ,Eh,t a .0 £A*p A « 
12(1 — n) (til1 i¿^(0) =-jy A/Jo). (^41.19) 

Furthermore, local curvature of the edges is accompanied by initiation 

of peripheral forces. In section a = 0 peripheral force has 

^ 2ß 'u-mJKJ [A/(0(,, + 'yI (^<0) — A/®0,)]. (^41.20) 

In the particular case when A/f0) = A/(00) .total circumferential stress 

near the external surface in section a = 0 is equal to 

6A!J=s_ip^r 1 

* ** 2 11 + ïï^ïï7fJ- (441.21) 

it exceeds the maximum flexural stresses taking place far from the 

edges of the shell by tlrnes> 

§ 42‘ Leggerature Distribution Proportion«! t-.n f 

For temperature distribution according to the law 

ns. <p. Ö — [/(î)(i)+ — A/(1J (»)] co* 9 

the amplitudes of forces, moments, deformations and displacements in 

a cylindrical shell, computable on the basis of particular solutions 

of Meissner equations (23.11), (23.12), have the form 

_ ^ AT) f*sP fu,» 
12(1 —j»*) ds* 12(1 \h~ n 

’ 1 ~F4/r0)_^)] I 

•2(1-1*) d$ \~w Ã~y~ 671+1 1 dtk 

A, 
Eh^ dt” 

--1-. _ü 
-t-H) Tflff 

'(I) 
^2(1 +(i) ~3? 

£A*P f 

12(1-^1) 1' (•+!») 
‘m 
7T 

(442.1) 
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(42.2) “im-nr-w^û-. 'i'-.-pííá. 
i/S 

«,.„■= C, + (R "' ’ 

f 

1 

J f”>ds. 

a(i)-CjÆ + P J /(7)^, 
# # 

«<!> *= C» - Cl*+-¾ J J 4* ds ds, 

• t 

w(>) “ ** («^—va) -= + C,i - C, - ^ J J fm ds ds. 

(42.3) 

In a long thin shell far from the edges forces and bending 

moments (42.1) exist. In calculating the stressed state of a short 

shell, or local Increase In the stress near'the ends of a long 

shell. It Is necessary to determine temperature stresses allowing 

for edge conditions. This is done Just as in the case of axisymmetri 

deformation using the formulas of §§ 34, 39, obtained for a shell 
which experiences edge bending loads. 

As an example let us examine a shell in which the amplitudes of 

average temperature and temperatures drop with wall thickness change 

linearly in the axial direction 

A/,1, = A/,0,, -|- (A/f„ — A/J,,) -j-. 

It is possible to show that the temperature distribution is physically 

possible, i.e., it satisfies with the accepted accuracy, namely, 

neglecting terms h¡R in comparison with unity, the condition of" 

stationary temperature distribution (Laplace equation) 

=»0. 

Setting t - t(1)(r., s) cos ¢, where i(1) is a linear function of a 

we find that tshould satisfy the equation 

d,/o) , i àt(i) 
dr* ‘ 7 ~dT 0. 
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ltd general solution has the form 

Taking into account that in our case r =/?-f-j, we have approximately 

where A's), B(s) are two arbitrary linea~ functions of coordinate s. 

In this way A/(i) can be arbitrary linear functions of s. 

Calculations made for the given temperature distribution using 

formulas (42.1), (42.2) on edge 8=0 give 

(42.5) 

(42.6) 

The obtained system of forces is self-balancing, i.e., the following 

are satisfied 

(42.7) 

Adding to edge s = 0 also a self-balancing system consisting of 

forces and moments of the opposite sign, we determine the forces 

of the edge effect which appears in the free edge. Calculating the 

forces of the bending moment and peripheral force caused by this 

system with the aid of (34.23), (34.24), we'obtain 

In calculating quantities of order .1/y in comparison with unity 

were dropped. Adding the forces of edge effect with the main forces, 

we will have 
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m! «J-^0. 

(^2.9) 

Analogous expressions could have been written r ^ 
edge of the shell. ' written also for the second 

At /JJ)«0 and A/(i, constant over the n 

equation for oaiculatlon of maxlmum peripheral atreas T th" 

section completely agrees with that obtained earner f t ^ 
radial drop a,,»; lt has tlle torm for axlaymmetrlo 

I*“m f. >r=p 
2 L + (I-míKI ]• (42.10) 

Such stress exists only at d> = n ^ ,, 
other sections tne amplitude v i' oaloulate Peripheral stress In 
by cos ¢. Va l!0’ wrltten al>ove, must be multiplied 

for a^shell"ofVarying thi ^81° reS°1Vant e«uatl°na »ere obtained 

bending loads. Setting IrAh^Ä eXPerlen°e8 a;Ilay™etric and 

we obtain the oorrespo^rC V“"' 
equation (12.12) wni beoome equatlon ndr'°al sheil- "“ely, 

where 

rftg» i_ 3 Sa tf<j0 . „1 ta 

(43.1) 

**Yj= 12(1 
’X 

i ^ r * 
^ ‘ ~ ~~ J JS' ^2=-/ ^.(0) dS. 
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(43.3) 

Equation (16.21) in this case assumes the form 
:- ■ . " V ' / •' 

4V}(^ ^). 

where C»3. just as 0,.0¼. are known functions of load 

9 

V 

. ■ p.j AÍ, 
/o"HA "»7? 

» « ¿ 

—ff J J’■m'''- 

Equations (43.1) and (43.3) differ in the rlgh part and in the 

unessential ter. in the coeffiolent of the untren function. Dropping 

this term, we find that to construct solutions of the edge effec. 

type in both cases it is necessary to consider the equation 

(43.4) 

(43.5) 

or 
going to dimensionless variable S=-ff. the equation 

A . i* *+®i,_0. 
rfî» "i" a dfe «/I « 

(43.6) 

Making the change of variables Indicated in general ln S 19, namely, 

setting 

(43.7) dx —-^=-. o=-T— 
^ aVT 

equation (43-6) will go to the form 

0 + t12/YÎ-*(«>]=O. (43.8) 

where 

Paris 1 /rfa\* , 5£al 15I(jta\’ + 4.g. 
i(S)= "J" a d,i ^ löaWs/ 4 rf4 
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If the thickness oí th° rheül a «r» u "iej.1 is a so slowly changing function of 
coordinate that the inequalities 

(^3.9) 

hold, then the tern, ♦(,) can be neglected In comparison with 2.¾ and 

instead of (43-8) thus we obtain the equation 

-0 + 2/Y’t = O. (43.10) 

As already it was indicated earlier, particular solutions of this 
equation can be taken in the form 

i*v.*cosYo*. f^sinvo*. (43.11) 

respectively particular solutions (.)3.5) are functions 

3 e± ^cos YqX, —j— e* V»» sin y^x. 

•Ví aVã 
(43.12) 

where 

- [ JL 
Kõ ' («3.13) 

In the particular case when thickness is a linear function of 

coordinate s or, which is the same, a linear function of coordinate {, 

«(l) = l-M&. (43.14) 

equation (41.5) is integrated accurately. Really, Introducing new 
variable 16 

y=i+*l. 

instead of (43.5) we obtain the equation 

i 3 </g 2/^ a 
ay1 ^ y dy y ~ 0. 

(43.15) 

(43.16) 
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which with the aid of transformation of dependent and Independan 

variables 

tas Y2/y ^¡¡~ • °y (43.17) 

becomes Bessel equation 

(43-18) 

As the particular linearly Independent solutions of this equation we 

•ake the Bessel and Hankel functions of the first kind, second or er. 

in this way, the general solution of (43-18) Is written in the form 

.,=0,/,(0+^(0- (43-19) 

where C2 - arbitrary constants, generally speaking, imaginary 

numbers. 

For large values of the argument, which takes place when 

W'20) 

these functions can be represented by an asymptotic decomposition, 

the first terms of v'hich have the form 

X [“• (¾1 ^ - Î) - (-¾1 ^ _ t)] • (43.2X) 

«?'(t -X 

x[*i» (^VT+t)-u°’(t ^+t)1- 

Taking into account these representations, and also that in this case 

y s= a, 0 « 

and 

s//rU * ^ 

(43.22) 

(43.23) 
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it is easy to see that the real and imaginary parts of the expressions 

(43.24) 

for a large value of the modulus of the argument are linear combin¬ 

ations of functions (43.12). In this way the correctness of approxi¬ 

mate solution (43.12) agrees with that which we have on replacing 

the accurate values of functions ,f2(0. H$\t) by the first terms of their 

asymptotic representations. With a more complex law of change of a 

depending on Ç accurate integration of equation (43.6) is difficult. 

However, on the basis of the comparison we will assume that also in 

this instance tne correctness of solution (43.12) is practically 

satisfactory if only conditions (43.9) hold. 

Let us make use of the obtained approximate solution for a 

description of edge effect in a long axisymmetrically loaded 

cylindrical shell. Repeating the reasoning conducted in § 27, we 

derive criteria for the determination of shell length. Namely, we 

will consider the shell to be long if 

(43.25) 

or 
L 

In carrying out this condition it is convenient to represent the 

solution of uniform equation (43.6) in the form 

o0=- IBX) —J— [6 (Y**)+/; (Yo*)] + 
•in 

-f (A2 — IBJ —I—10 (Yo*,)+/; (Yo*|)l. 
ajn 

(43.26) 

where 

(43.27) 

At a —1. x —fc. solution (43.26) agrees with the earlier solution 

for a long shell of constant thickness. 
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Separating the real and imaginary parts of oQ, we have 

V0=Reo0 = —!— ^(Vo*0+ • 
oV7 

— 2^0^0 = Imo0 = 

= Î M1C(YoJf)-fl10(Yo^)+ ^(YoJf|)-fljö(Yo*|)J- (^3.28) 

i orces, moments and displacements are determined through function 0 

using equations which can be obtained from (12.11) by the corresponding 

writing for a cylindrical shell: 

AT, = <D, (s). ri — — ■— (o’ Im Oj). 

ÄiVi= ~ TTT ,m Oo+^jW. 
A* 

(^3.29) 

A*=~ J ïb-i7*» “ *• 

(**3.30) 

The particular solution of equation (*43.1) is obtained by 

dividing the right part of the equation by the coefficient of a. 

Then after eliminating quantities of the order of 1/2Y* in comparison 

with unity we will have 

- l*'[a 
»-‘^rJ *.(o> (^3.31) 

To it corresponds the zero-moment stressed state 

r,~injr J <o> ^=^.(0)- 
0 

Af¡ =0, Afj = Mj — 0. 

«i 

(43.32) 

Displacements of the zero-moment state are calculated using formula 

(43.30) for values of forces (43.32). 



In direct calculation of forces and moments by formula (^3.29) 

it is necessary to differentiate expressions (43.28). In this case 

one should bea” in mind that in accordance with the correctness of 

the solution itself (43.28) variable coefficient —during 

differentiation can be considered as constant. For example. 

where, as earlier, the prime indicates differentiation with respect 

to the argument indicated in brackets. 

Taking into account the above and ignoring mutual influence of 

the edges during determination of constants of integration /^,3, 

A2* ß2* ^ s;I-mPle to write the expressions for forces and dis¬ 

placements in a shell of varying thickness, analogous to (27.14) to 

(27.19): 

^ = - 2YoP' • M + Tf- Mk (Vox) - 

— (aL) '• ATfaiVo*,) + (o*)*’• (Yjpc,)] + (43.33) 

Ni == o,/4 [wfo (Vox) — ^Ai?C(yffx)+ 

+ (oO"*“Ni* M Mfovo*,)]. 

.M, = av* [.Mi<p (V) + ~ N% (YVc) + 

+(ot)'v‘ ^f«p (Yo*i) - ^ («‘■r'*' Nil (Yo*,)]. (43.35) 

[^?Ç (Yq*) + /M?0 (YoJt)+ 

+ (ot)",/' NÍ<f (Yo*i) - X (a1)"7* ^ífe (Y0jc,)] . (43*36) 



- (a*)' v< A^f 0 .V.) + -¾. (ai)-* AJÍ* (Yox,)] + 

I ^«(0) ( p] f \ 
^~Eh¿~ ÏÂ^-Eïff-j ?i,o,*J- (^3.37) 

and a! a o 33)-(.3.37), setting that dlstritutea ioad 
axial force are absent, we easily obtain equations for figuring 

...» on tne edges of tbe shell. Namely> at x_0. lgnorl 

influence of edge x,=o. we have 

ÖJ . 

(^3.38) 

Correspondingly for edge x,«0(^ = 1) we obtain 

N'-ir rt). 
(^3.39) 

where a¿ = A¿/A°. 

under "the'actio0" °f 3 lon« she11 °i varying thickness 
n o a bending load can be examined in exactly the 

17 7; ^ ‘Ws case ^ calculation of forces, moments and 
ormations the following equations are derived: 

+ (a1) 4 [— fynfBfox,) + «ft(Yux,)]}. 

«|-aV.{*>(Ycx)+^ÄjC(v)+ 

** “a’ ‘ {^ *?:(y0x)+ 
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(43.40) 
(cont.) 

In (43.40) we accept 

2P¿ 2P¿=/I2(l 
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CHAPTER IV 

THE CONICAL SHELL 

§ 44. A^lBymmetrlG Deformation of Conl^i 
Shell or constant Thickness- 

the Z" th!(Pl-eVl0US 0haPter’ dedlcated to cylindrical shell, 

fri H MelS3ner for axisymnetrlc and bending loads rrrr °f ciarity was consudted di-=‘^ oyundLai .h-n withOdt references to Chapter II, „here this derivation was 
e ven for an arbitrary shell of revolution. Leaving this nethod, we' 

will consider a conical shell as a particular case of a shell of 

revolution and will use the equations of Chapter II, setting in them 

#1 = 00. /?, </0 s- dt. 

e=T-* 

*2- V CO* f * 

For the case of axlsymmetric deformation of a conical shell of 

constant thicKness (Pig. 22), rewriting equation (12.6), we obtain 

W' , sin p dVt 
dp -r— JT 1/ vir COsß 

VJ — ' 0 * n—S-i = 

d'y, , slnp rf<rB 
ds* ' 

““Sv“ 

*v l*4 dt 
sin ß 

ds 
UnLtyr , w co»P » 

V* 0 + tv Vo 

(44.1) 

where 

9 

i 
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Taking into consideration that * = , equations (44.1), 

be written in the form 
(44.2) can 

SV, .lav, i Jill __Li/ cosp 
d^~ M dy Uvo— Ÿo = 

1 r.. ¢, I 
¿v sin .6 [f1 jv 

j 1 ^_Lur _i j.u cosp ,, 4v< 
¿v* +v rfv v. 

0,=*- J vçtdy -j-cosp -f-clgp Jyqtdy, 

V# V. 
V -. 
I1! ^ 

®, = -c|gP J Vf, Í/v - sin P ¿i— J Vf, rfv. 
%»- • 

(44.3) 

(44.4) 

As parameter » we ean select the radius of the edge section , 
so that l' 

b = yv 
(44.5) 

Forces and bending moments are expressed through functions V. y in 
the following manner: 0 0 



vT-j-lv, sir,; -f d», (V). vW, = '/„v, cos p + O), (v). 

r3Bxv,sinp 
<tv • 

(44.6) 

(44.7) 

§ • gf i'tlcular Solution of MelsRnPr> 
Equations for Dlfferpnt.~Vnr,n,o - 

Distributed T.narf 

Let us construct the particular solution of system (4H.3) for 

caseToT/T 0f dlStrlbUted l0ad- Almost practically important 
ca.es of loading can be examined If we set [12] 

?, = A>+V- <tM = B0+BlV. 
(45.1) 

Really, gravity has components ?,_0, ,,=p* specific weight of 

material of shell), the force of inertia of revolution - , =f^»v .= 

(W angular velocity of revolution of shell around axis OZ), inifo™ 
n.er or pressure - .,-a,cos,. , et0. Substltutlng ^ 

( ^^ • 4 ), we obtain 

where 

— ao 4- ajV? -(- y a3vJ. 

= *0 + y t>2\7 4- y b3\\ 

fl0— 2,-t cosP+^o'y + ^1-^ —B0cfgß Tp —ß, ctg jl-y-, 

a2 = _/lo4-ßoctgß. û3 =-/1,4-fl, dg ß. 

ßo==_1isinß + >lodgß-^ + ^,dgß^4-fl0^-ffli|i 

^2 = —^0C*gß-S0- *3 = -w4,dgß-fl,. 

Equations (44.3) assume the form 

(45.2) 

(45.3) ^ 
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,Lll. + ±±v>_ ±v _ 1 COSP y, 

- V. Sin P" [~ + (i‘ + jj a2 + (f‘ + -i) û3v]. 

-- rf,'l> __L <|f i cos P ,, 
V* 0 ' VV. sin» H — 

rf’T, 
</v» V Jv VV, sin*P K0: 

4V1 
vj sln? p 

-^_[i+iv+i4)V,] 

(.^) 

The particular solution of equations (45.«) „e look for in the fo™ 

— --1 + f,v -j- c2\-. 

9° ^oTF (*u + J 6-iv‘ + J 'V) +- Vrf,. (^5.5) 

(45 M i :- C'' Cl- are deter”,ine‘S dlI'e<:«y »y nieans of substitution 
(45.5) into equations («5.4) and equating the coefficients o' ZlT, 
degrees of variable ,. i„ this case we obtain idéntica. 

c~i — à0ig-p~a0tgpi 

fi — — y P21gJ p — ^ j 0j ig p 

* = " +¿)a,tgp. (^5.6) 

4y4 I8¿3 ‘g P +- (3n -f-1) Cj) tg?p sin p. 

It is easy to see that the last term in the second equation ^ 

can be dropped since it is snail in comparison with the firs as 

a quantity of order - is small in comparison with unity,! Íhl 

determination of forces and bending moments on the basis of solution 

order of -i^c Stresses dd^responding to ¢, have the 

- rieLir“ rtensiie 8t— 
9 — • 1 

0-V— , cos p (*o + T ^-+ J V1) = -,7¾ 
F (45.7) 

Therefore during the calculation of stresses practical!, m t h . 

“rc:::; mr^ 
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.J cos (} ¿nv T- y sin ß j “v j • 
n J »• — 

/ù, =3 pij=o, ¢ =0. 

However, neglecting the quantity ¢, In making up boundary conditions 

can lead to errors of the order of or 1/v ln comparison with 

unity. To avoid this it is necessary to hold tf0*o. Let us write out 

the forces and bending moments which correspond to particular solution 

(^5.5) for the examined forms of distributed load: 

1) uniform internal pressure 

?, = /»cosß, ff, = />$inß. 

»-L_[.g I f _ rv 
1 vcosß 2 J’ — 

Uf __^ 
0 COSJ ß 

sinß T/ />’ 13 1 

ll-2^ + -^7+TH’ 
A* 

- 12 (1 — n*) '^[--^(-4+4)+ 

m2= 
12 (i -M*) g pl V» \--ST-+ 2~/ + 

+-5-0 +l*)p]. 

(^5.9) 

For a cone closed in vertex v0=0. If, moreover, in the vertex there 

is no concentrated force (/¾ = 0). then the derived formulas assume the 
form 

f — pv 
' 1 — 

m 3 sir ß 'í'n = D\— Cl 

___ f — P* 
2T3ï]r* 

°' l^co ß* - 4^-5-(1+M)pv*lg*ß 4 Y4 
(^5.10) 

Angle of rotation, radial and axial displacements in this instance 
are equal to 

0. 

Ã. 

3 /»v sinß 
2 £/t cos' ß ’ — \ 

py’ r (1 —2m) 
i sin ß ( 2 

5. = fl - 
2 J Eh cos ß ’ 

2Eh> + J •g5 ß] + AÎ, 
(45.11) 
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where Aj— displacement o±' shell as a whole along axis OZ; 

2) rotating shell 

^ = 0. f,= ^ = (3 + ^)«gP^ 

^, = - 

Ãíj — 

(3 +10 (2 + n) sln’P pu2/iv*v 
4y‘ cosß g * 

(3 + (i) (1 -f 2>i) sin1 p r®1*''*'' 

COSjJ 

A.= F«1 
~£s ^(1 +-dW)(vS“v^+A*: 

(45.12) 

3) gravity 

f __ P* (v*-vfl_ 
1 V sin fi 2 cos p 

f, = —pAvtgp, 

*i*=t(»1+7-t‘8,p)v 

P* (¿-'o) 
sin 2p V 

P 1 
£ 2 cos’p V 

(45.13 

For a shell closed in vertex (v0 = 0). there exist 

= + ^—7 p) v* 

- - i P'i / 1 3 , \ . 
ÂÍ, = Alj = — —g- (1 + n) + 7 — 7 ’gJ PJ sin P* (45.14) 

§ 46. Solution of Uniform Meissner Equations 

Turn to the solution of the system of uniform equations which 

correspond to (44.3). In § 19 it was shown that the solution of 

uniform equations which describe axisymmetric deformation and deforma 

tion under bending load have the character of an edge effect. At the 

same time the transformation of these equations given in § 19, and 
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their replacement by approximations resembling the equations gives a 

method of creating of an approximate solution of boundary effect type. 

Considering the axisymmetric deformation of a conical shell, there 

is no need to go to such a method since the solution of a uniform 

system of equations corresponding to (44.3) can be expressed accurately 

in Bessel functions. By introducing complex function 

(46.1) 0 = ^-2/^ 

this system is brought to one equation: 

d2a . 1 da_a_ . 2/y* cosß 
d\* ' \ dv Va ' sin’P w, 

(46.2) 

By replacing variables [12] 

1 I'cosp rfv 
(46.3) 

equation (46.2) is brought to the form 

15 sin? ~ 
I6vr ~ cos (46.4) 

Let us note that the first relationship (46.3) is easily integrated 

2 

and, thus 

(46.5) 

Taking into account (46.5), we rewrite (46.4) in the following 

manner : 
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(46.6) 

It is known that the obtained equation is integrated accurately. Its 

solution has the form 

T = V* k,/a(* V^) + cjñ'ix /¾)]. (46 * ? ) 

where /,. Bessel function and Hankel function of the first kind 

of second order. 

Taking into account equations which connect these functions with 

zero-order functions 

iM'D—[^= VT)+/„(i /7)]- 

Hi"(, /7)- - W /7) + Í4"(« V7)]' 

while the prime designates the derivative of the argument shown in 

brackets, and introducing the designations 

/ofoY7)—Vf*+'♦*»>• 
/7)-1,(¢)4-/♦,(?). 

/7 /j(<? /7) — tí (?) + (t: (?)• 

/7 (¢/7) = t'Aq) + it\ (q). 

(46.9) 

we obtain 

Re/,(jt/2¡)= - [*, U /2)+ l^lj. 

!„/,(*/5)--[«.U/2)--Ç tlU/2)]. 
i (. . iu ; 

Re «!(" (jf /2/) = - [t3 (•* / 2) + ♦í U /¾] • 

Im M” (x /2/) = - [t4 (x /2) - tí (x /¾]. 

Since the introduced functions ti(<7). ti(?) and V’ai?). t<(?) are the real and 

imaginary parts of solutions of the zero-order Bessel equation, 
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between then exist the relationships 

^ (¢) —-jrti (?). tí (¢) = ¢4 (q) — i tá (?). 

tí (?) =. _ t, (?) - i tí (?). tí (?)=»- t* (?) - -J- tí (?)• 
(46.11) 

Functions t<(?) (/=1. 2.3.4) are representable in the form of the following 

expansion in powers of ?: 

t,(?)“l (2-4-0-4)1 

where 

ÍI g* 
r+'jjTjTjjr— •••* 

(?) =* 71, (?)-“■ [«, (?) + (?) In ^]. 

(?) “ 7 (?) + [^a (?) + ¢1 (?) In • 

*.(?)“(!)’-f$r(í)'+ •••• 

“w (7)4 

5(n) 

(46.12 

1 + 7+ + Í 

From (46.12) and (46.10) follows 

5(4) /?\* , 
liTFlT) + 

In Yi: 0.57722. 

Rc^~ 6»-4»-S + *••• 

lm/,(x 1/2/)=»-^ 2» TIT. 6 + •••• 

(46.13) 

Expansion (46.12) is conveniently used for calculation of t(?) 

functions and their derivatives t/(?) at small values of the argument. 

At large values of ? we have the handy asymptotic presentations « 

t,(*y> 

fa (*/2) 

Vfcür V~2 [(1 + T5jr)cos (x~î) + 

+¿iln (x- i)] ° vém!'w- 
— r* 

Y 2.-ijr V~i 

[_TBIC0S(Jf“i) + Y 2.1X Kl 

+ (1 + TSi)sin (x - t)] = ÿ^f A W- 

(46.14) 



/1 w. 
V2nx Kl 

+(1-ij),"1(*-t)]“p117¿^7,w. 

♦*<^'7^ [('-^)-(^^)- 

TSj- «»(^+í)]= -^2==./,(4:), 

[(1 ~t¿t) cos(*+j)-f 

(x + -s)] = 

U /¾ 

/4 (X). 
}f~xV2 

^ t)- 

-(i+¿)si,.(4+|)] = _^;|Wé 

*+ sin (*+ j)] 
Vnxl^l 

?i (*)' 

♦.(^/2)+-Ç-tí(xVD^ 

'=7éñl(' —ík)“’^-?)-^51"^—í)]= 

= Vlxr 1^' a‘ (X)‘ 

t,(xVl)—^tí(x/2)^ 

^ y^Tf K1 ~ sin (x ~ î)+ifecos (x-t)]= 

ta (jf K ^ (x |/^) =¾ 

•-* 

‘02(X), / 1 
7X^ 

(46.14) 
(Cont ’el) 

(46.15) 



- -7== [(>+TS) Sln (*+t)] ' 
Vi*/3 

— # b,(x). 

(46.15) 
(Cont’d) 

finally, taking into account (46.3), (46.7), the solution of uniform 

equation (46.2) can be written in the following manner: 

0 = 04,-/23,)/, (x + (A2 - /a,) M" (jc V7«)- (46.16) 

0 = 04,-/a,) /,(je /2/) + (44,-/8^ M"(jc /2/) + a. (46.17) 

where /4,-/8,. /4,-/8,— several new imaginary constants Introduced 

Instead of r,. c,. Using formulas (46.10), (46.15), (46.3), (46.7), it 

is easy to see that solutions of the uniform system of equations of 

a conical shell (just as solutions of the uniform equation for a 

cylindrical shell examined in Chapter III) are solutions of the edge 

effect type. At large values of *. when asymptotic representations 

(46.14)-(46.15) are valid, /,(*/2/) decreases with a decrease of *. 

while «'¿"(x/2/) decreases with an increase of x. Since in accordance 

with (46.5) *,>*4<t,>V. this means that /,(*/2/)_describes the stressed 

state in the neighborhood of edge v = v,(*, = 2yand decreases in 

proportion to the distance from it; and solution /^»(x/ãt) describes 

the stresses state of edge deceases In 

proportion to the advancement from this edge. 

The general solution of system of equations (44.3) is made up of , 

solution (46.16) and particular solution (45-5) and has the form 

where 

5=^,-2^0 
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_ 
-■ .. - 

s 47 Conical Shell with Concentrated 
-Force In the Vertex 

Let us examine the ease when the inner edge degenerates into a 

point (,,=0). The middle surface of such a “^concentrated 

angle. Let us propose from the hegi g all foroes 

force in the angle of the cone (/>, = 0). It is natura 

and bending moments in the angle of the cone should have 

values. Returning to formulas for the particular so u on 

ln 8 45, „e conclude that 5 in this Instance is limited everywhere 

including the angle of the cone. In this way it remains to require 

only houndedness of the solution of the uniform equation. Since 

has a singularity in the angle, this requirement can oe 
M ' * ' _ . The general solution of equations 
completed only by setting A,-18, = 0. The gene 

(44.3) in this instance should have the form 

0 = (Al-lBl)/t{xy2Í)+ã. (47.1) 

w. . . . o orp determined according to the edge The values of constants Av B, are determine 

conditions at edge * = *,. If ^ large enough that the ^ ^ 

,,(^5) in the neighborhood of the edge can be determined accordlng^o 

asymptotic formulas (46.15), then edge effect fades from 

the shell to the angle and the stressed state in the neigh or oo 

the angle is practically undlstingulshable from zero-moment. If, 

however, x, is small, then M*^) must be 

representations of (46.12) (or the ^ * state ln such a 

effect here no longer takes place, and the st 

conical shell in this sense resembles the stressed state 

plate. 

Let us propose now that * + <,. In the absence of distributed 

loads the particular solution is written in the following manner: 



Using general solution (^6.17), we pick up constants A2, Bt so that o 

remains finite in the angle. This can be attained by the choice of 

constants, since M”(-^ has in the angle a singularity of the same 

form as a. namely: 

2 2 sln»p V, 
jut1 Ji cos ß iv4 » * 

Requiring that in (46.17) the sum of terms containing -i, be zero, we 

find 

1 
sin ß cos ß 

Bj~0 

n'VàQ-H’) i 
A sin ß cos ß ' 

(47.3) 

and 

.=M. - /fl.) /,(x /5!)- « /5) - 

^ 1 -,r. ^ “»K I 
2.1 coslß V ' ÍT cosß V| ’ (47.4) 

At the influence of the edge can be neglected and the stressed 

state in the neighborhood of the angle can be determined by setting 

in (47.4) .4, = 0, = 0. Then we will have 

)^+il t; (, r*)]- 
v- = - [f.(* )-2)] 

slnß I 
2T cos:ß T’ 

P? sin ß 
' "5n V, cos ß * 

(^7.5) 

On the basis of (44.6), (44.7), (46.3), (46.11) we obtain 

v7\ 

v.V, = 

r2= 1 + 

+Jr«;(, /2)-i3:t,(,)^)]. 
(47.6) 
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> 

,. ,-vl 1 sln P 1 v> 
+ -^-^(^^2)11-(1-H)2ír73i?p-4v4 V» 

(47.6) 
(Cont’d) 

Taking into account representations (46.12), it is simple to Pe 

"nvincea tnat r„ r, have in the angle of the shell Tinite va ues ^ 

and the behavior of N, and M, in the Immediate vicinity of p 

is de o., ibed by the formulas 

W,=- 
P» 

'SavÎlïïî4' 

0 + M),_i_ 
-sï??-ir-ln^+ 

P°, 0+M> 
sir.* P 4ji Inv +- 

(47.7) 

where the points designate terms bounded at v-O. At ¢-+ the cone, 

turns into a flat plate-énd expressions (47.7) coincide "lth “al0g° 

expressions for an infinite flat plate loaded by a concentrated for-e. 

§ 48. Truncated Conical Shell 

Let us examine now a shell whose middle surface is a frustum of 

a cone (Fig. 23). On the basis of general solution (46.17) and 

formulas (44.6), (44.7) we will derive the expressions for forces, 

bending moments and displacements A,: 

v,=- /'.(♦i +TT 

+'‘’» A ( 4 8.1 ) 

w =» x, - (♦.+^ *;)+ 

+ -4,(^--^^)-8.(¾ +^^)1+-1.- 

N,=1^[+ (♦, - t;) - 8, (¾+TT +;) +- 

++, (<. - Ç +;) - ®> (+. +- -+- +.)1 ■ 
Ht = Tls\nt+Nl cosp. 

(48.2) 
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- ¿ ^ +,)+ Ai (+;+!♦;—*?■ +«) - 

^=^ [+; -T " -^(+.+T +;)]+ 

+8,(+5-^0-^(+,--^+1))+ 

++(+1--^-0-^(+,+-^+:)1+ 

-'• ,AJ -)(+,-^+:)))+- 

i/'t / i/T 

1- fi2 ['i i — -^¡r (1 — M) ^-4 — — H 3; J / T +- 

4- “i¿OT=k [ ^ [+:-0++) -?(+,- ^ +( 

- 8, [+: - 0+M) -Ç- (+,++;)]+ 

++(+:-0+^)-^(+,--^+:))- 

/ i/T \1 

-I- 

> i r-/ jf y»4 x .jyj 

sivh3 + ^+)]} + 5,. 

(48.2) 
(Cont'd) 

(48.3) -w- x 

In these equations ¢,. ¢) designate functions from the argument XV2. 

Fig. 23. Frustum of a cone. 

The calculation of the shell becomes comparatively simple if 

the form and dimensions are such that in formulas (48.2) functions 

<1+. +|'[ can be calculated using asymptotic representations (46.14), 

(46.15). We will shew that even for a flat cone, close in shape to 

a plate (6 is near ¿j. this is admissible if the ratio % is large 

enough. Transform (46.5) to the form 

:V5 

2 V 12(1 - ft») 
sinß Vi- 
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The application of formuxas (46.1^), (46.15) is admissible beginning 

from the value of the argument equal to six. Setting ^0/2 = 6.1-^=0.9. 

we find the necessary condition which should be satisfied by at 

different 3 in order that the application of approximation formulas 

(46.14), (46.15) is justified: 

/?>,œ7Sfr- («•'o 

Here follows a table of values jAj-. corresponding to the sign of the 

equality in (48.4) [12]. 

Table 5. 

?. 15* 30° 45° 60° 75° 80’ 85° 

/?• • • • 0.44 0.80 ¡.38 2.03 3.14 3,91 5,57 

If condition (48.4) holds for the internal edge of a shell, then it 

will hold for the outer, since v,>v0. Furthermore, if the shell is 

such that then constants Alt Bl and Av ß2. in solution (46.17) 

can be determined by ignoring the mutual influence of the edges. 

Assuming that all these conditions have been made, we determine 

the stressed state of»edge * = *,. if thrust forces H\ and moments M\. 

are applied. Distributed loads and axial forces are absent. 

Using formiuas (48.2) and (46.14 ), (46.15), we make up the 

expressions for thrust cosß -h 7y$inp and bending moment Ai, at edge 

*1 setting in this case æ> = 5, = 0. We will have 

2 cos p e*‘ 

7, +B‘a‘ 

(48.5) 
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Prom these equations we determine constants B,: 

A 
_ *. V2*x<Vï «RPr_‘ J i> "ES w: ( - 

Ã(Jt|) ! 2 I J 

- (*.)}« 

_ j £ji!ES Wi [/, (>:,) _ a, (X,)]+ (48.6) 

where 

Knowing these constants, using formulas (48.2), (48.3), one can 

determine forces, moments and displacements for any value of x^in^ 

neighborhood of the involved edge. We will find the va. 

A, at edge v,. 

*! - < ■= h;î ' W - >M'e-('■> (48.7) 

where 

1 — 

g\(x\)— ~ 3; 2(1—u) 
l — Tît^ô-^'+iï-5^ 

bJf| Jf| 
19 1 — »xt 

g?(xt) “3 2(i_)t) 
1 — 

>-*• *i 
Bx» 

Taking into cons 
ideration that in accordance with (46.5) 

KcosP 
'«-^-ïïïïr 

rewrite equations (48.7) again. We obtain 
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(148.8) «! WO-7.¾ 

4, _ ^ «¡i, (^,)- 

Pormulas (48.8) are similar to formulas (27.21) for a cylindrical 

shell. At ¢=0 (48.8) and (27.21) they coincide. In the presence o 

distributed loads or axial tensile force one ougth to take Into 

account also the particular solution and write the obtained equations 

in the form 

*i -SI= 

Ai — Si == (//i - H\) S.2 (X.) -(* ¡ - *1Í) (*.)• 
(48.9) 

where W, = f1slnp. 

It is simple to make analogous calculations for edge x = x0. 

Namely, dropping in formulas (48.2) terms containing .4,. 8,. and making 

up expressions for thrust HÎ and bending moment «?. we obtain the 

equations for determination of constants A2. B3: 

a AW + Vi M “ ^ T isf ^ i *« I 

a, [A ^ «, w] + «. [/. w+w] “ 

_ JC0 /2 tg P nx0 /2 A1?. 

(48.10) 

Hence we find 

2 a(jt,) l 2y2 cos? L *• J 

—A*?-~2foV^,ßPai(xo)r vl 9 

■ ¡„I<«<)] + 
\ 2 )r2 cos pi x* ■* 

-i All-£-*0^2 'gP^(->co)}- 
A(Jfo) 

(48.11) 

where 
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Formulas for calculation of the angle of rotatioi and radial 

displacement of edge jt0 have the form 

(48.12) 

where 

§ 49. Combining a Cone and Cylinder 

As an example of the application of formulas obtained in the 

previous section we will determine the radial force and bonding 

moment acting at the junction of a long cylindrical shell with a 

conical bottom (Fig. 24). The shell is loaded by internal pressure 

of intensity p. Since then 

2y> = 2Y; = 2v2 = /12(1-n5) -£ • 

Fig. 24. Junction of a 
cone and cylinder. 

For a cylindrical shell at the place "f coupling we have 
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(49.1) 

An . 2V* rfi i ^V* 14° 
TKÏÏ 

=- ¥0"-^"?- 

I 

The connection between <h\ AÍ and H\. at rather large values of *,12 

is determined by formulas (48.9), which for a given concrete load 

(uniform internal pressure) assume the form 

o! 3 pv, 

(49.2) 

At the junction of the shells displacements and forces should be 

continuous 

01=0?, a1=a;. w1=Q°. Al} = Ai?. (49.3) 

Using these conditions and (49.1), (49-2), we derive two equations 

for determination of Q°. Aft 

_ ^ [i+s.(*,)] «• - ¥ U - w] «î= 

_ Æ AiliüL igî p g. (je.). 
Eh 4y2 ^ 

(49.4) 

Dropping in the right side of the first equation the second and third 

terms and in the right side of the second equation the last term, as 

terms small in comparison with the remaining (as or ^ in comparison 

with unity), and setting, for simplicity of calculations, 
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(i = 0,25, fi (X,) = 1. 

we find 

Alî = 
pR* 

~ 4v gP \+V^}' 

QO = _l^ 
1 — COS P 

8 2v 11 4-)^05^^(^1)1005 p 

^tgP/cos^gatx,) 
2 1-f l^rp^j^,) 

(49.5) I ] 

Substituting the obtained expressions in the second formula of (49.1), 

we calculate radial displacement and peripheral force in the abutting 

section of cylindrical shell 

.a PR2 .. 
û' 2Eh ' 1 + l^cõip ’ 

£Ä tgPjfwT? 
^ 2 v 14- 

(49.6) 

in In the calculations for simplicity we dropped terms of order \ 

comparison with unity. Calculating on the basis of (49-5) and (49.6) 

flexural and peripheral stresses and referring them to the nominal 

(where o? = . o* =*) t we obtain 

O? 
-Is 

a fH Vcosß 
^-= + 2.3 y 

o2 /~~R )/cõs? 
5—»“l/T^-rppsr 
2 

(49.7) 

Stresses at the junction depend on the angle of conicity of the bottom, 

at p = 0 the cone degenerates into a cylinder and o0 = o» = 0. At P*0 

and large £ stresses can become large and considerably exceed, for 

example, flexural stresses in a rigidly fixed section of cylindrical 

shell ( § 28). 

With the aid of formulas (49.2) it is simple to find the values 

of M\ and Hi in the edge section of a complete conical shell loaded 

by pressureV with the following attachments of the edge: 



a) fixed edge 01-^==0. 

b) supported edge Al} = Ai — 0. 

Dropping small terms and setting as before »=0.25. (M*,)-'. 

1 —We h3Ve f0r O flXed eiÍSe 

„1 __ £1l ttrfi — — ^-( 1 4- —\, 1 
H*~~ o tgP 8 y (cos P),/l \ ^ Xi) ! 

^ = - ¿iVÍ1 +t)* 
I 

(49.8) 

for a supported edge 

h\ = *sP— 

Al} = 0. 

16 TicosPPi»^») (49.9) 

Bending stresses at the edge of a fixed conical shell, computable 

according to bending moment (49.8)j are equal to 

(49.10) 

§ 50. Truncated Cone Compressed b^ 
Axial Forces 

As a second illustration let us examine a truncated cone contained 

between two even plane surfaces, compressed by forces P [12]. The 

surfaces do not prevent radial displacement and turning in the edge 

sections , i.e., 

when x = x0 

W° = ¿l? = 0. (50.1) 

when Jt = x, 

h\—m\ = o. 
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Determine displacements A". AJ and turning angles 0?. $\. the particular 

solution of the basic equations :44.3) for a given load we obtain 

using formulas (45.8), setting in them = — P. qe — qt — 0: 

f_ü_ 
* 2nv cos ß 

H- sêr'e") 

0. = /(1, = ^ = 0. Ã, 
} 

p a I 
£/i 2ncosß ) 

(50.2) 

In formulas (48.8), (48.12) we replace 

H\ ty + ^ 

£ by 

uO V.. u> , P 
H' by + 

Eh 2.1 cos ß ’ 

^tgß 

(50.3) 

whereupon, taking into account boundary conditions (50.1), we obtain 

^ 2y’ Pigß „ 1 
—Th~^Tg^Xl)' J 

»1 H P , Y PlRßl^cosß I 
A' = £Ä2S7^ß+fJT-5 I 

tl=-EhH^rg3^- 

(50.4) 

(50.5) 

A° _ >* 
— Ti 
_ P Y 
£A 2.1 cos ß £/i 

^ PtRß^W^ J 

ß. 

í42 

b2 

- -%f - ^ ^ «■>] ■ 

(50.6) 

Subsequently for calculation of displacements the quantities ,4,. 8,. /1,. B2 , 

will be needed also. By formulas (48.6), (48.11), using in them also 

substitution (50.3) and taking into account (50.1), we obtain 
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Let us determine the values of forces Tt, T2 and moments Ai2 at 

the edges of the shell. Solving these equations 

r?wnp + yv?cosp = 0. 

T'i cos p — N'l sin p == — 
2nv, ’ 

(50.7) 

we find 

77=-. cosp. (50.8) 

Analogously 

7" = 
2nv, COS p. 

Forces T], Tl are simple to find knowing the quantities T\. rj and A?. Aj. 

For example, using the formula 

7-3 = ,,77+4* ü. 
vo 

we obtain 

Tj-» g,W, 
n y VqV| (50.9) 

In exactly the same manner we find that 

(50.10) 

We determine All Al\ according to (44.7), taking into consideration 

that because of edge conditions (50.1) between the derivative of the 

angle of rotation and the value of d, on the edges exists the 

relationship 

7,-=-11 AT- (50.11) 
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In this way the 
values of *«. ■'<! can be 

calculated by the formula 

Mi=*— 12 
- sin p (v = v0. Vj). 

fen i?'! the values of ac 
Substituting into (50.12) the 

(50.5). we have 

«2= 6 v0V| 2.n cos p 

6 v{ 2n cos P 

(50.12) 

cordance with (50.4), 

(50.13) 

Remembering that We 

from tension 

determine circumferential stresses 

ro ptgp^cosP {/SO - ^4(X0> 1 ( 50.14 ) 

_ 

T> PtgP^t0SP 1/ \A3(1 -1Aj)?2(x0 J 
1=-4 = --^ r h “î-* fc 

from the bending moment 

1 

0«= ± + 
1 .1 - P sln2P „ t*\ 

. 6A1» _ xi/ãTT—tstb 

(50.15) 

h* 

p slnJ P 

^2ñv^ "cosT 

of tension have an order larger 

ft iS eaSy t0fSe/lTendiengStsrterSeSsses and they are in this case 
by an order of y h 

estimated. 

ovial displacement of the edges of 

Let us calculate the rela v sag of the truncated cone 

the truncated cone or, in other 'ive forces P. In accordance 

under the action of preasslgne axial displacement 

,,, lfi, if we set in them 8-2 
with (13.16), It «a to 

section IS 
in a certain insoanx. 
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(50.16) \ = J (— «i cosf$-f O, slnp)rfs -|- C. 

Constant of integration C^O. assuming that edge section s = l0 (x = xb) 

remains s tationary. Then sag of the truncated cone <J in absolute 

value will be equal to the displacement of edge $ = = Or, taking 

into consideration that —.. 
sin p 

6 = \(*i) = { (— «iCtgß + ôprfv. (50.17) 

Since on the basis of (M.4), (^4.6) 

= cos p. <I)2 = sin p. 

y IlIÎÜlL — N Infi_p sln,P 
0 V 1 ^ 2nv cos p ‘ 

(50.18) 

which can be written 

ei ~ TÁ- — v^-ù 

^ ¿- [ - £i,‘ ¿ (iSf + C0S P) + N',g p] ■ (50.19) 

Angle of rotation 

= ©I + 

where 0’ corresponds to solution of uniform equation in the form of 

(46.16), and 

s _ P sin p I 
1 2nfA cos'P v"' 

Let us note that during the calculation of stress we used the zero- 

moment solution 0,=0. We can verify that use of the accurate solution 

would give in this instance only insignificatn corrections of the 

order of \ in comparison with the basic terms. However, while 
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figuring the axial displacement, as win be exnlMn.a h , 
change of the particular solution t-„ -IHl’ below, such a 

in terms of order Jr in col ^ W°Uld —« 
y , in comparison with the basic, i.e., alreadv in 

those terms. Which thus far during calculations we have kept, 

we obtain * a000'mt ^ -Pf-^ons for ^ and 

»I 
6= j rilv'C05P </v» , p : . V i 
. J l f-h rfv + 2.1 E/I v'sin fl eos* If + ~ -gj-J dy : 

— MV| cos P 

(50.20) 

Note that from (1+4.6) and (44.4) at <,-n if e -,, 
+ vriS,„,_v In thls Kayj unde l’;:: : 010“3 tet v'Vos 

there exist the equalitlel ^ C°nditlü"3 «0.1 

(50. 

ti ?::rie5 and ^in ^ w.n) ^ <«.6) 
0, -¿T Re [(A, - IB,) h (x /2/) + {At - iß2) ///*(x /¾)]. ' 

Jpf-1™ [(M, - iB,)J2 (or /¾) + (Ai-iB2) HÇ'( x /¾)). 
_ V| cosp 

V 
(50.2 

tHerrn """T5011 ^ ^636 « 1* easy to see t 
th. term i„ subintegral expression (50.20) Is negligible in 
comparison with ¢. Therefore 

. P i 
~%iîEF tin fl cot* ß InjL+j1 

V, 

Sinca 

V, tin* (» 
TFT^ir***- 
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j t,(x\rü)xdx. j HÏ(xV2)xdx. 

Using formulas (46.8), (46.9) and noticing that 

we find 

j fordidz/i(2)« — zIq(z), 

j tf'zds** - 1/4"' (z). 

&| :¾-¾. g . 

J Ç ♦,(, ^-)] _ 

J «?'(*/S)x,x_(4I[t;u /7) - ,^]_ 

- ^ir1 < [*: i* /n _ .Ç- tj ,rf)j j'; 

or, ignoring the mutual influence of the edges. 

J Mx^7)x4x = ^[t;(xi ti(li 

, I'?) 

i (,./7)]+ 

+'^[«(x./î)-^*,(x.n)]. 

In this way, on the basis of (50.22), (50.24) we obtain 

,,, A 
%- ^ ' -.- - l ■_v ■■ -i rv ^ 
. . . . . . » • , V '. 

I-a 

S"'V) /• rí ■ 

(50.2^) 

/ -,i ZIT. ZZT " ' “ “ “ »-* »• -- - « 

■ .- 

K|’‘‘ ”* 



' 

/*>iSf {».*£- [♦;('. 
— a, X'l^- [*¡ ("i V'2 ) - -77- 't, (XI /î)] — 

r 1/75- _ 1 _ 

+a, t31 [*;(*. /2) - Ç ♦,(«. V21] )■ (50.25) 

Substituting into this expression the above found values of the 

constants A,. B¡, Aj. B2 (formulas (50-(5)) sod making the necessary 

calculations, we find 

», 

1& ^f(Xo+ •*')' 

Finally by (50.23), (50.26) we have 

6 slnßcosiTf10^ + 

-f 2stn3p /cõsT \/3(l — H2jT X 

X (/¥+/^)1- 

t 
/////A//,/.-... j.. '////■v/zJ/wM}/. 

. m 
i • • ■ ■ ' 

-V.- -: jçVi-X ■ '•* 1 *' 

^ i 

- 

.,Í.T r 

^ fi&i 

It is easy to see that the second term has an order greater by ]/ * 

than the first. 

The obtained formula can be used to determine the total bend of 

a construction consisting of a set of cones placed on one another 

(Fig. 25), called a Bellville spring. 



I 

;:tä 

§ 51. Conical Compensator Gear 

Let us examine a third illustration: the conical compensator 

(Pig. 26). It is two conic shells joined along the outer edges. It 

is necessary to determine the stresses and sag of the compensator 

under the action of compressive forces P and internal pressure. 

Mentally separating one shell from the other, we replace the 

action of the lower truncated cone on the upper by radial forces h\ 

and bending moments /W| applied on the contou?- v = v,. In this case, 

from considerations of symmetry at this edge we must set 

Hlt = 0, ¢1 = 0. (51.1) 

For simplicity we assume that on the internal contour (v = v0) are 

carried out the same conditions 

111 =*0, G? =* 0. 

Fig. 26. Conic compensator, 

(51.2) 

Let us note that in actuality the conic plates of a compensator are 

coupled with a tube, which, moreover, can have a wall thickness 

not equal to the thickness of the plate; conditions (51.2) should be 

exchanged for coupling conditions with a cylindrical shell. Digres¬ 

sing from this fact, let us examine a conical shell loaded by forces 

P, = — P and by internal pressure of intensity p under edge conditions 

(51.1), (51.2). 
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The particular solution corresponding to this load has the form 

f_P , 
1 2.1V cos ß 2v cos ß ' 

r,= r> 

~ 1 sin 

1 ¿A cosJ 
nß f . 3 , r 'o 

+ +T~ 

h2 f />(1 —H> 3 U—M) v*l 

^ - - w^) 'g n~ “5Sv*~ +2^+ l‘)P- -2->^J• 

= + 2FaW [(2-^vJ + ^1] ■ 

(51.3) 

(51-^) 

In formulas (48.8), (48.12), (48.6), (48.11) we replace 

H't by 

Ai by Ai-ii- 

ril by H0e-H°t. 

a; by a"-ã; 

(51.5) 

and set H'f=He — 0. In this case, taking into account (51.4) from (48.8) 

(48.12) we obtain 

. v^cosßj-, V,/cosß 
Ali --öS- “í = — 2V ~W 

„o V, J/cÖTß t/ vo £>o _ V, Ÿ cos ß ,/v0 P 
- V Tw'=-2Ÿ-V vT 2«v7,g^ 

(51.6) 

In calculation (51.6) the small terms are dropped, obliged for their 

origin to the quantities d,, ÂÏ,. 

Stress caused by moments (51.6) aie equal to 

0 ^ 631? _ 3 y'cos ß ! /T* P ^ a 
°i — - /,2 ==+/,: 4 y V, "Sir g 

1^3(1-M») 

I . 63lJ _ 3 tgßl^cosß ,/ä 
0| — - h* ^ * h' * V V, 12.1 2 J" 

>3(1 -nh 

(51.7) 
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must be 
et us show that in the involved proMera tnese stre,» » 

considered as the working stresses. To cheok let 

stresses from perlpherai force on the edge T th 
equation of (48.12) we have °' Prom the second 

t /it 

or, dropping quantities of order i;v in 
comparison with unity. 

A0= Videos? r— 

£* V H' 

Taking into consideration that 

(51.8) 

7¾_ P . 
'~~25^co*P. 

on the basis of the relationship 

A' = ÍT^~M7t). 

With the same correctness we obtain 

and 

(51.9) 

oo=IÍ = _ÍSS!l 2 A HS» A P 
V, 2n (51.: 

Comparing (51.7) and (51.10) we find , 

more than the peripheral compressive stresses ^ 

Since in this case^6 CalCUlatÍOn of the sag of one conic plate. 
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(51.11) 
= - cos0. 

P p v? —vj 

then using (^4.6) in the same way as in the previous illustration we 

can write 

PI V2 — Vo 
r, = tg P -^ + p cos P-JÇ-. 

T»“ v,sinp-^! . 

— e^igp —— /V, + 5^ snr-p 
*» » ï 7 

p cos^P V — V() , 

sin p 2v ' 

« 

t !*v»cosP-rf7 

(51.12) 

and 

Vi 

{,= I [- e, clgP + ^l + fri)l 
Vr 

f • P « vi P 3sln»P — cos»P „7\_i_ 
-¾ J P, rfv + ^¿h sln ^ cosJ jj- «” Vi + 4£A S|„ p cos’ p V ' « 

' 2£AsmpcosJp V, 1 £* 
(51.13) 

Taking into consideration that 

V2 — vj 

vH, = Vj^o — p dg p —J—. 

because of edge conditions (51.1)> (51.2) we have 

v*_v2 
v,yo(V,)= PCtgP-l-JI-• v|ï'0(Vo)=*0. 

In this way 

6= J Pi dv + ¿É/, sinVcos’f (4+/,V»),n vl + 

V* riv2-v^i .. . 3sin2P — cos*P^ 

+ T^iniTTcos^ + 2cos»r-“) 
(51.14) 
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The constants of integration also are easily determined: 

Ai “x> '"'"i,g p ^cos ^x 

X [/^.) -—r1 M 

ß, = ‘-' V »ß P VC0* P 

X J/, (X,) — 2(ljr — fl| (X|) + (X,)] H'f 

.r—fK \_ (51.15) 

^=^lg M/cos ß x 

X [Àt^oH- -1;— >1<XJ - °2 <*<>)]}/ T7 

X [- /3(^0) + «2 <^o) -t ^(^0)] )/ 7° ”*■ 

Substituting (51.15) into (50.25), after a series of transformations 

founded upon utilization of (46.14), (46.15), we obtain 

I sin* P 
Eh cos p f^cos fi 

+ /-0(^0) 
(51.16) 

where 

2(2—m 

A(x.) 

^(Xo)^ 

9 ■ 2(2 — 

Bjc, + X, 
A(Jr.) 

It is easy to see that 

ri(jr.)|/lL + ro(x°,V^ T^Y T +/ X- 
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Thus, displacement of half the compensator is determined by the 

formula 

ÎETisWî (4 + Í&I (^ + 

9/:A COS P > COS P ' Jf, / I * 2£A 

(51.17) 

Petting in (51.17) P-0, we find sag only under the action of compressive 

force : 

^ 2n£ft sin p cos* fl ^ 

x['n-^ + sin1M^^ip /1»! -^(V T + V^t)] (51.18) 

Comparing (50.27) and (50.18), we note that because of the lack of 

angles of rotation of the edges (ôî = ôi =u) the sag of the truncated 

cone was diminished by almost twice. 

§ 52. Truncated Conical Shell Under the 
Action of a Bending Load 

In 5 52 and subsequent sections of this chapter we will be 

limited to consideration of the strain of a truncated conical shell 

under a bending load. Apropos of the calculation of a conical shell 

containing an angle we must note the following: the question about 

the applicability of equations (16,13). (16.1^) in this instance 

requires special analysis. The fact is that in 

the left part of formulas (16.4)-(16.6) the term l2 v, l2 v, 

dropped, which at .-0 is infinitely large. In order to evaluate 

the error made in this case, it is necessary to derive again the 

Meissner-type equations keeping tnese terms. It is only when the 

obtained equations will differ from (16.13), (16.14) only because 

of terms of a higher order of smallness, will it be possible to say 

that equations (16.13), (16.14) are adequate for the calculation o a 

shell with an angle. 
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Let us examine the truncated conical shell shown in Fig. 27. 

Fig. 27. Truncated conical 
shell under the action of a 
bending load. 

We exchange the designationa Tl{]). TiU), Sw. Mun. m2(]). W(), .vM1). NUl). 

accepted in Chapter II, for /,. /2. s(J). m,, m2. a(1), n{. n2 respectively. 

Setting into (15.21), (15.22) 

0—2 ¢. R^db — ds. R, = -~, <1$=:-^, (v-v0)=rssinp. (52.1) 

We write two conditions of equilibrium for the section of shell 

contained between the edge section v = v0 and the instantaneous section 

v = const: 

v/.sinp + vn.cosß —vs(]) —Ä(1)cosp + /(v) = 0, (52.2) 

vm, 4 V2/, cosp — v2n, sinp — A(l)vsiriP +/=^) = 0. (52.3) 

where 

/ (V) = A 4 J (ç, (1) si,, P - ,,, + ,u c°sP) 1¾ tfv. ( 52 . ¿I ) 

= -h-^-tv-VctgP - Jsinp—¢,,,,cosP)+ 
V 

4 «sP)7¾ (52.5) 

V p V 

J cosp J*(¢,, 
V» *-V< 

,, sinp <72 (,) 
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Making the same transformations in expressions (15.3*0 > (15.35) and 

comparing the result with (52.4), (52.5), it is simple to conclude 

that functions /(\).F(\) are connected with the functions of external 

loads fo-fi-Fo-introduced in § 15, in the following manner: 

/cosß fslnh 
F0+ Fi~-y-'-~ 

. . , /slnp F cos fi 
/0 + /1- \ V* 

(52.6) 

The left part of equation (52.2) is the sum of projections of all 

forces on section of shell <v0. v). onto axis OX. the left part of 

equation (52.3) is the sum of rhe moments of all forces relative to 

the axis passing into the plane of section v = const parallel to OY 

(Fig. 27). In accordance with this load functions /(v). F(y) can be 

presented in the form of the following sums: 

/(v)= i-(P,+ /»,). (52.7) 

f (v) == -i (Ai, — .P,Z + Al,). 

where 

Z = (v0—v)dgpi 

PvMi— force and moment on section 

(52.8) 

Rolling the loads to be known functions of variable v. P#(v). A1,(v) 

are easily found from equations 

/y v) = n J (¢, + g, (t) ctg P) v dv. 

V, 

V 

.'A, (v) = — n J (q„ (,)—?, (,) ctg P) v» dv 4- 
V« 

\ V 

•fcigp J J (?,,,, sin p - ftcos P)vdvifr 

V. V, 

(52.9) 
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External loads applied to the shell as a whole should satisfy finite 

equilibrium relationships 

+ />,£ + Af, (V,) - AÍ = 0 (£ = (V, - v0) ctg p), ,1 (52.10) 

Where L— height of truncated cone, P. M— resultant and total moment 

of loads applied to edge v=v,. 

From (52.7), (52.9), (52.10) it follows that 

If the the intensities of loads f,,». ?2<,)* ?«<i> are constants, then Pr Mg 

has the form 

(52.12) 
= — n (?„ (l) — <ii „) c‘g P)-6 

+.'XCtgp^1(1) — + ?»(,) ctg p) ) (v+2Vo)' 

For a shell of constant thickness an illustration of such a load can 

be a weight load (axis OX is directed along the vertical to the 

ground) 

9i(ii==?sinP' fío»“- 

Everything above refers to the equilibrium of a finite element of 

the shell. 

The differential equations describing the equilibrium of a 

conical shell of varying thickness are derived from (16.13), (16.14), 

setting in them 
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VT 
Rl dB — ds, ¿ = v,. 4yJ = 12 (1 — n2) -4-, 

e = i-p, /?,: 00. 

(52.13) 

Wo have 

</ 
dsJ 
!!qr, rf1!', I 3 da . sin P \ . 
isJ ' as \ a ds ' V j-1" 

r 3 ¿a (1 fn)slnP 2(l-fn)sln;ß 2(1-^1 . 
+ 1»L'ï'rf7' V V» v* j'r 

_i_V 4v4| 1 cos ß . (1 —^) f 2 co;. P sin ßv, da 
i* l’*ü » —- ' 

Jl a w, [J <Yo I ^ 

-|- a cos ß sii 

ds 
+ 

rf’V, 
ds» 

, dV, /3 da . slnß \ , 
"r" ds \a ds ' V J“ 

'■^3h 
4VJ 

^1/(2^0 1 da ..¾ s,n P 2(l-|t) sin» P _ 
"1" Hö" ds» _h a ds U'*"W V V» 

- a cos p sin2 p ¿-O»«. 

(52.14) 

where 

a = Mv) 

h0— thickness of wall of shell in section v — <I>a, <I)4 are determined 

by formulas (16.10), (13.11), where, inasmuch as the angle of the 

truncated cone is excluded from consideration, we can set 

‘Pj = /^0 + ^1* (52.15) 

§ 53. Approximate Solution of Meissner 
Type Equations 

Introducing a complex combination of functions ’K,. V', 

0, = ^, + 2/^, (53.1) 
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taking into account that ds=Jy_ 

equation of the second order “'m!! SySte'n (52al,> to °ne 
terms (the order of -i- i. , ' 3 er rejecting second-order 

vj ,. comparison with unity) is wrUten t,u_ 

d'o 
Jv v* + rfv (v + ï + Yu?—£2i?__0 , 

« OV/ u uvv, Sin*/1 

- 
u « 'vj sin^ß (53.2) 

The expressions for forces sna k 

r5/rion we obtain °n - -;;d:;g(—s r;oush the — 
(52.1) and uropping quantities of order ’ E lnt° acceunt 

er^ In comparison with unity: 

where 

sin ß 

tl~2^TlmC>Sin^fo-h/l. 

2^[ Í- —Imo.sinßJ 

— v« o* , 1 J 

^==--Trc ^°1 _l_/l V s,nP 
' 4v2 + 

+ (1 -(12)32?! 

) 

U 

fin 

m 

m, 

Adi 

_ “V f (--3- ! i 
4v¿ iMRe7T+(1+^^««o,- 

■ (/0+/1)]. 

_ °M r 
44 I 

-(I - (I»)- 
ovJ 

(»-»<),. 2(l_M2)co,p 
• Reo, 

<rv2 

sin p cos ß f j 

aJ. 

(53.3) 

i 
A = J = J,:ni,A 

Let US note that the l0ad terms ln tu 
can also be eliminated, since the be 1 eiIpre«ions for moments 

"ln have an °rder i lower than tenslQlnS StreSSes ^om these terms 

In the expressions for forces mhe 63365 ^ ‘he same term- 

(53.2) we look for i„ the fo™ SOlUtl0n °f quation 
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(53.4) 0, = 01 + 5,. 

where oj— solution of the uniform equation, 5,— particular solution 

of the equation with a nonzero right side. 

As the particular solution let us take the zero-moment solution 

0, = -<2Y¿ 
V (^0+^,) 
a'cospv, * (53.5) 

Separating the real and imaginary parts (53.5), we obtain 

o _ 
’ 1 a’cosßv, (53.6) 

The forces of the zero-moment state have the form 

/, = -(^0+^,)^ + (/0+/,) 
V 

*o, = — (^0+^,) 

T_ 
COSI 

r 
v*cos| * 

V 

J_ f y?(n 
V J sir 

vrfv FW 
slop (53.7) 

After separating the zero-moment part of the solution formulas (53.3) 

can be rewritten in the following fern: 

(53.8) 
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Turr now to the oolution of the uniform equation 

rf’o. , /1 —-os^jx Oi~0- W- + -37lv+T^) + ^a«vvlS.n’jl ' 
(53.9) 

With the aid of replacement of variables, which easiiy is Just 

as ms 19, we cancel in this equation the term with the first 

derivative. Instead of (53.9) we have the equation 

S+,!2,+i[7MV^'+t’1-“lv+a dx- \ 

(53.10) 

where 

0, e= T • 11. « (O- V> — —4 
a av co*F 

v _ 
ifx = Yol(«• v)rfv l(a' V)“ sinß V^i ^VJ 

(53.11) 

(53-12) 

The coefficient of the unknown function . in equation (53.») ^ 

nave a sin.uiarity of the form where -e exponen . 

on the form of function a(v). For example, for the ^ - 

has constant thldcness), equation (53.10) assumes the form 

</*T 
TZ + t(í(+¿r)-0. 

(53.13) 

just as equation (46.6), describing axlsymmetric strain of a conical 

1 f onstant thicKness, equation (53-13) can be reduced to a 

Bessel equation, and its solution is represented in the form 

, = Ici/oU /¾) + 
(53.1^) 

For a shell with linearly changing thickness (a cv> equation (53-10) 

turns into an equation with constant coefficients 

d¿ \ Yo 4 C0*P / 
( 53 • J-5) 



After the elimination of s^all terms it coincides with the résolvant 

equation for a cylindrical shell. Taking into consideration that 

we are considering only truncated thin-walled cone <x *0. yS^> l). in 

general equation (53-10) as the first approximation we also can 

eliminate terms of order in comparison with unity, i.e., to replace 

it by the equation 

dx* 
+ 1-2/ = 0. (53.16) 

This does not mean that the conical shell is replaced in this case by 

a cylindrical of any equivalent radius, since the argument * is a 

function of v determined in accordance with (53-12): 

X 

*1 

(53.17) 

For a long shell, when the general solution of equation 

(53.16) is conveniently taken in the form 

t = (,4, -/ß,) [8 (* - *0) + Æ(* - *o)l + 
+ (A2 - /ßj) 18 (X, - X) -f /t (X, - X)]. 

and correspondingly 

= u (a. V) ((^1-/ B\) [8 (•* — *0) ^ *<>)] 
+ (A; - /ß2)l0(x,-x)+£(x, -x)1). (53.18) 

whe-e 0. C- functions introduced in § 27 (formulas (27.5), (27-6), 

Table 1 of the Appendix). 

Earlier It was shown that elimination of terms of the order 

in comparison with unity In the coefficient of the unknown function 

'or an equation of type (53.10) leads to an error In the solution in 

terms of the degree ¿ in comparison with the basic terms. Therefore 



upon replacing equation (53-10) by equation (53.16) in the solution 

of the latter we deprive ourselves of the possibility of keeping terms 

of such an order. This means that in making up the derivative of o*. 

and also during the integration of oj function u(a. v) should be 

considered as a constant coefficient. 

In this way we obtain 

Re 17*= Yo*(v>“<v)l— — *0) + M<* - *0) + 

lm 

4 Aj(p(x, - X) — Btf (X, - x)j. 

-57- = Vol (V) « (v) IM (X - Xo) + 0,<P (X — Xo) — 

— ^(x, — X) — ß2<r(xt — x)]. 

By (53.8), (53*18) and (53*19)» ignoring quantities of order in 

comparison with unity, we obtain the following expressions for forces 

and bending moments: 

/, -/,r= A- a? sln-£ U (a. v)|/lIÇ (x-x0)-Bie(x-x0) + 
2Vo v 

4 (X| — x) — BjO (x, x)), 

/,-/,= sin pa (a. v) l<v) (x - x,,) + 

4- (x — Xq) — Atf (x, - X) — ß,q>(x, - x0)l. 

r.. — = “ (“• v> — -^o) — ßi° (x—*o) + tD («I 2vS v 

+ (x, — x) — B20 (x, x)|. 

aV 
m, = —slnpa(a. v)i(v)[- i4,<p(x — x^-l- 

4- Brf (x - x,,) 4- A/p (x, - x) — (x, — x)). 

/Hq 2=1 

(53*20) 

§ 54. Determination of Constants of Integration 

Arbitrary constants Ax% Bx, a2, B2, figuring in (52.18), should be 

defined from the edge conditions. Let us assume that on the edges 
('2h \ 
V + ir1) 

equal to i0. s> respectively, and moments m,. equal to m" and m\. Let us 

note that on the basis of formulas (53*8) we can set 
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(5*1.1) 2*(J) 

With the same accuracy the .uantity n, can ^ easy 
amplitude of the shearing force. Then urnin to (52^ . i 

to see that the assignment of the quantity •«, on the edge ' 
equivalent to the assignment of the amplitude of radial force 

h, = /, slnp + n, cos p = À, + lm 0Î- 
(54.2) 

- -,, perore subsequently we hold that on the edges of th 
where -here havlng in mind that 
shell are assigned quantities «,■ 

, and ignoring the mutual influence of the edges , 
- V g d we derlve two individual systems of 

determination of /,, ß, ana * * 

equations : 

- V. « (1. vt) a fc 1 _ ft» _-=5-DV 
n* ' 2vo v 

^ = — ^ . (ar vi) ®r 

(54.3) 

(54.4) 

:n this case we take into consideration that on the edge —o«-*- 

ind on the edge x, a = VAo = al• 

Solving them, we have 

2v*v 

<"Î-4y3 
— öi vî sin ßu (1. v0) I (1. *o) 

Bt = — (Ai “* *r) a*B («,, V,) ' 

Ai- B2+ a|v{ sin fu (a,, v,) i (o.. *{) 

(54.5) 

(54.6) 



up 

Substituting the obtained values of constants into formulas (53.20), 

we obtain the final expressions for forces and moments. In order to 

give the equations symmetric form, we introduce new designations: 

202-=/12(1-^) 20(=/12(1 (5^.7) 

where A0. A, — values of wall thickness cn edges x0 and xx. Making the 

necessary calculations, we have 

m« = “"‘i (t)/4 [(a’-*Í) VcosP C(^-^o)4- «^(^-^o)] + 

(54.8) 

Using (54.5), (54.6), (53.19), (53.20), we will write out also the 

expressions for quantities e2(1) and ^ = Let us note that with 

accepted correctness of calculations it can be considered that 

»Ia* 
*1(1) ** fo"“*»)- 

In this way we have 

^o(e2(l) *2(1)) 

= - a',/,{(-?),/‘ [(A2 - Al) 2po 0 (X - X0)+ 

+<v1t(JC-Jco)]+ar,/‘(4rx 

X [- (Ai - Ai)2Pi 0(X, -.»0+ - *)}} • (54.9) 



= - c_,/* { (~]U [(*2 “ ÃJ) Wl* (x - *o)+ 

+»ï^re(‘-^]+^fx 
x [(»: - *;) 2KÍP (*, - *) - »i 9 ('*-')] ) ■ 

(5^.9) 
(Cont’d) 

On the edges exist the relationships : 

2ß2 

25,,,)=-(*:- *3 ^ VWÏ - V 
4ßJ 

=-. - « - «s suã+»! ■ 
£*, («!„, -'«i„o=(*; - *:) », -îf 

4ßl 
Eh^ « - (AJ - Ai) + «î ’ cos 

(5^.10) 

(54.11) 

If the edges of the shell are connected with rigid diaphragms, these 

equalities should hold: 

Relationships (51.10), (54.11) allow easily finding forces and moments 

appearing in this case in the edge sections of the shell 

^Vap) o ¿VW« 
is-- 

i^ip) A' = Ã1--r • 
* * Pi V cos ß 

m 
ßk^djV, 

2ßi 

(54.12) 

(54.1?) 

§ 55. Determination of Displacements 

Prom the found strains (54.9) it is easy to determine displace¬ 

ments in any section of the shell using two quadratures. Rewrite 

formulas (18.2), (18.5) allowing for (52.1). We obtain 

NoTSt)-'-0,''. 

r/ a.,,,cosß \ rfv 
A„i, = ve2(1)- J (V(,) + e2(1)sinP - )-^ + D7- 

V« 
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between x1(1),''P and e2<1) exists a connection determined by the 

first formula of (16.2), which in this case looks like: 

wur 1 
xid) = sinß dT+ sinp + e1(I)cosß) (55.2) 

then the first formula of (55.1) can be rewritten in the form 

V 

A*0) = - v { C1'sln p + ei ,1, cos ß)^—p + D,v. ( 5 5.3 ) 
V# 

The displacements which correspond to the zero-moment stressed state 
are equal to 

V 

= J (y(I) + e?(|) ilnß - ~1>C0$P- ) rfv. 

The edge effect gives the following displacements: 

(55.4) 

A* (i) — 5,(1, — Div *%s — V J -ï- rfv, 
% 

In this case in the right part of (55.5) all terms oí the order 

in comparison with the remaining have been dropped. 

In this way, the formulas for determination of total displac 
ments assume the form 

ce- 

y 

Ít/(y,., +v'“ß+ 

f (1)rfv \ J —7—Mv+ß, Ctgß(v — 
¢. / 

A#(1) — VC2 

cos}ß 

+ inrr 

(55.6) 
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§ 56. ¿.i with Wall Thickness Linearly 
Changing Along the Meridian 

As an example let us examine a shell with relative wall thickness 

changing by linear law 

(56.1) 
(56.2) 

a_l _ Vo(Q,-l) 
V|—V, 

The edges of the shell are connected with rigid diaphragms. There is 

no distributed load. On the diaphragm of upper edge v=v0 act force 

and moment />,. /if,, and on the diaphragm of the lower edge act force and 

moment P. A!. where because of the equilibrium of the shell as a whole 

their amounts satisfy the conditions: 

Pl=P. 4-P, (V, — vu) ctg p = Ah (56.3) 

Our task Is to determine the displacement and turn of edge v = v, 

relative to edge \ — \s¡ under the action of applied force and bending 

moment, i.e., to find the quantities «5,. a12. c^. ^ in the relationships: 

Ai,i> = Pan + 'Mair 
(56.4) 

We compute the values of displacements on edge v = v, using formulas 

(55.6). Substituting into them the strains of the zero-moment state 

and the quantities «F. e.,,,,. having the form of (54.9) and written 

allowing for (54.12), (54.13)» after integration we obtain 
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A'<» = »i£ok ^ w W - 

~ ISÂTsln> />,/' (V‘)+ .t/Csln^ (Af» ~ PivoCW)/i(Vi) + 

+ ¿Éht +c,&P(vi - vo> + O,. 

A'(,) = xÊhl'un $ - P's'o c<g P) fi (vi) + ctg ß/2 (v,)l -f 
I nv,smp r^f,_^I+P, (V,—V0)cigß1 

nEh0 cos2ß [ V* vjfa, J 1 

(56.6) 

(56.7) 

where the following designations have been introduced: 

Vt 

í.M-J/.(v)*-=.¿(-J—^-)+ 

+7(7-¿)+ír,n (-^)- 

(56.8) 

During the integration of quantities connected with the edge effect 

it was assumed that the shell is long, and in accordance with this 

in the final result terms containing $(*,—x0). «(.*, — jr0). were dropped as 

small in comparison with unity. Considering that edge v = v0 is not 

displaced and is not turned, we set £^¢=0,=0 and on the basis of 

(56.6), (56.7), (56.3) find 

aii! 

a„ 

Uj, 

+ s°n> Jj (Mvi) ~ v/«<vi'l} • 

teh;[ Hif ^]+/<(v,)] * 

: -¾ ( ^ (v> >- v,/s (Vl )] “ <Vl “Vo)} ’ 

nfÄj [ slnß ccs^ß \vj vio,yj 

(56.9) 
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where /.(v,)./jív,),/jív,)./4(v,)./5iv,> are found using formulas (56.8), in which 

it is necessary to set v = v,. 

For a conical shell of constant thickness we have 

a,.^= 1ŒK 
^(1 -f M) 

«12 

«21 

i r cosps, 

nEh [ 2v,Vq 

-—[ nEh [ 

co»^; 

(vl-v0? 

* (2 + H)lgM, 

Vj V, 2JJ 

v,v. ro ]' 

V* J ’ 
n i— 1 f(vl+v»)- ■ |l Sin p / 1 1 VI 

n£A ( 2v^ 1 cos^p (vj v2)J, 

(56.10) 

where s,«= — length of the generatrix of the middle cone. Letting 

* remain constant and setting sinß=»0, cospel, as the maximum change at 

V,->v0 from (56.10) we obtain 

n£han = — *(! + »») *i 

3vS 

n£Aa,, : «Í 

nfAoj, = — 
S| 

nfAojj = . 
*0 

(56.11) 

•letting = v0 = /?. in this instance from (56.11), (56.4) we drive 

the formulas for a cylindrical shell: 

, ,, . (56.12) 
“y = HEhJF (-PT + ML)• 

which are distinguished from formulas (36.21), obtained earlier, only 

by the lack of terms of order -i in comparison with the main terms. 



CHAPTER V 

the spherical shell 

§ 57* Axisymmetrlc Deformst:inn 
a SpherlcaI~~ShëTT- 

Let us examine a shell of constam- 
is spherical The n-Mn ^ , thickness ^hose middle surface 

^lexical. The principal radii of curvature of fn 

constant and mutually equal: ^ °f U,l£ SUrface are 

?, = /?2 = /?. 
(57.1) 

or the^mlddlê surfarwhLVbeÍonVtl ZTliT 2 °f P°lnti 
- system of e00rdlnates shoBn ^ ^ 

v*/?sine, Z = —^(i_cos0). (57.2) 

On the shell acts an axlsymmetrlc load. In Chaote- tt ,,- 

that the calculation of a shell of revolution for a Í ^ Sh0Kn 

load is reduced to solving system of equation (12 6)“ 

condition of equilibrium of the finite side or l, ' 
between two parallel sections fin, 6 00ntained 

Por a spherical shell it ’ 0 (c0ndltion (11-3)) is also there, opuericai shell it assumes the form 

r'6—C0! 0=Wars + wr f ,i » o 
», 

The condition of equilibrium of the shell as a whole is 
by the equality 

(57.3) 

expressed 



/>+J f,2.-n*</e-/>0=o. (57• *0 
o 

where P - concentrated force apjrlied in the top of the shell. 

z 

p Fig. 28. Spherical shell. 

r 

Taking into account (57^), equation (57.3) can be written in 

another form, namely: 

(57.5) 

Equation (57.5) is the condition of equilibrium of that part of the 

shell containing the top and bounded by section 9 = const. In (57*5) 

making 9 approach zero, it is easy to see that in the presence of a 

concentrated force in the top of the shell shearing force at 9 = 0 

turns into infinity as - Selecting as constant parameter b 

the radius of the sphere and taking into account (57-1) and (57-2), 

the basic system of résolvant equations (12.6) we write in the form 

~d¥ 
Htg 0 ^ - Vo +cig5 9)+4 Ao = - ^ ot. 

where 
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r 
. tt the components of distributed externa 

earner desiste th^^^_ ^ moments are 

load ln tne radial an ano angle of rotation 
expressed through power function 0 

(57.8) 

according to the formulas 

1/ , 72 = -¾^ N\==V^‘R^' 
7i = VVtg0-t-TW j 4,0 

(57.9) 

«, = -T^+,‘<,'C’í9)' I 
^2==-^■^lC‘ge+^l¾^)• D '‘20-^) 1 

r.T 6) With the aid Of the replacement 
We transform equation (57- 

(57.10) 

then we obtain 

dO* 

(57.11) 

(57-12) 

where H(9)=1¿y[^+d-,c%« + ^+*.+ J^-t,íe^l 

ion allowing for (57-7) Is transformed to the form 
This expression a . (57.13) 

where „ ^ad components in the directions ,. «. 

12) are favorably distinguished 

The right sides of (57.6) by the fact that they 

from the right sides of basi d ^ ls achleved because of 

• contain ^““““"t^allo'wed'separating the sero-moment part 

replacement 

Of the solution: (57.iX) 

n forces and displacements of the zero- 
To solution (57.IX) correspond 

moment state: 
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(57.16) 

• • 

^sinOí/O </0. 

where C— axial displacement of the shell as a solid. 

To construct the total stressed state to forces of the zero- 

moment solution (57.15) it is necessary to add the forces and moments 

calculated on the basis of the general solution of system (57.12). 

§ 58. Particular Solution of Meissner 
Equations for Different Loads 

System of equations (57.12) is heterogeneous. Let us construct 

the particular solution of this system for loads of different form. 

Most frequently we find such loads, as a weight load, a load 

by hydrostatic pressure, linearly changing along axis 0Z, and a 

load by centrifugal forces. To them correspond components of 

distributed surface load along directions *. 1». #: 

(58.1) = p — aZ, q, = pœ5/rv, 

where p - mass density of material of shell, u> - angular velocity of 

revolution. 
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The total load has components along axes ,,. „ 

¢, - pw’A/? sin0 cos 0-f-p£A sin0. j 

^/»-aZ+pc^Atfsm’e-p^^ / (58.2) 

For loads (58.2) function *(e> has the form 

Hm '*«’+(ä+M)pm|Slne-(3+|1)|w,w,s(„6t0f8 

particular solution of equations (57.12) for this 
needed in the form [12] ' f0r thls case are 

(58.3) 

— A, sin 0-j- Aj sin 6 cos 6. 

s*n 0 + Jin e cos e. } (58.4) 
Substituting (58.4) into (57 12) 
similar terms, we obtain * comParing the coefficients of 

=» a/?1 -f (2 -f p) pgM/i, b -. jj-.P A I 
1 1’ I 

= (3 -J- p) çxnyhR7 sin e cos e. ^ | (58.5) 

Note that during the calculation oí a a term e 2 2 
in comparison with unit- ^ te ms of order h2/R2 

it \ with unity were dropped. Prom (58 4) iqfi ^ , 
(57.11) It follows that In comparison with the ’ 

.(57.14) particular solution w , zero-moment solution 

aleo he rejected as a quan«^ o" 2T/JT" ^ ^ 

oT::¿atiP:;tlcuiar—^ 

», - £*!.«.+ 0+(.)^),,.,+ £*(3+M)p^w,sln ,CM „ 
(58.6) 

lues ;*■ ,h* —« —■...... ». 
quantity ,/,. .. ...11 

stresses from solution (58 6) alS ^ ^ edges* flexural 

during the calculation of ed^e H—> 

(58.6) can lead already to errors of order PartlCUlar solution 

particular solution of IquItioTTaranT8 Cal0Ulatl°n " 
Note that Just as for a cvllndrl J or a cylindrical shall. 

common load - uniform Internal prLsurl1- as^th ^ 
pressure - as the particular solution 
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ü" basic equations (57.G) without damaging correctness can be taken 

zero-moment solution. Really, the right part of (58.6) does not 

contain pressure p. However, in the case of loads of general form 

in making up boundary conditions solution (58.6) should be taken into 

account. 

§ 59. Linearly Independent Solutions of Uniform 
Meissner Equations for a Spherical Shell 

Turn now to the solution of uniform system of equation (57.12). 

By the introduction of the complex combination 

0.=V.-2/yV. (59.D 

the system is reduced to one equation in a, 

-¾ + e fr ” m«.+o. (2/y* - ctr" e>=o. 

Dropping in this equation no, in comparison with 2^0,. finally we 

obtain 

-^0-^+0.(2/^-^) = °. (59.2) 

By substitution 

a —da ®.=-sr (59.3) 

equation (59-3) turns into 

(59.4) 

Equation (59.4) will be satisfied by any solution of the Legendre 

equation 

(59.5) 

with complex parameter 

(n f 1)« = 2y*/+1. 

The last equality we rewrite thus: 

(B+-f) =2/Y* + j. 

5 
or, dropping ^ in comparison with 2/Ya. 
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(*-f y)* = 2/Y*. 

The general solution of equation (59.5) can be re 
can be represented In the form 

a « AP* (cos 0) -}- BHm (co j 0), 

where P,(cos0)- solution of Legendre eauaMnr 

the sphere, i.e., at 0 = 0 [1^2] h < ’ regular ln t^e pole of 

the solution P.icosO) and a Len^P à " C0S } s a ^near combination from «vwsu; ana a Lengendre function or 

having singularity In the top ni klnd 

//.(CO, Ö) = P' (COÏ d) — ~Q' (co, Qy 

Substituting (59.7) Into (59.3), we obtain 

<CM •, +s h <C« « - f - «: <«* i»]= 

— AP\ (cos 0) -J- BN1,, (cos 0), J 

-ere co.,. Oi(co.0)_ flr3t assoclated 

(59.8) 

(59.9) 

Pi (cos 0) = 

Q¿.(cos 0) = 

^i (cos 0) 

— sin 0PÍ (cos 0), 

-sln0<?i(cos0). 

— sin0A/i(cos0). 
(59.10) 

the prime Indicates differentiation with respect to tw 
parentheses. Solution (59 9) ,, , he ar«“ent In 

calculations, since there ari II ZZZTl Z 

a complex parameter. Therefore usually to fa^UitL'^'l^r ^ 

USe an aPProximate representation of solution 59 9 Cal;UlaU°nS “e 

the fact that for thin-walled shells parameter y a^ ^ 

the modulus of the parameter is jJL ln " Y’ “ COnSe9uent^> 

The behavior of Legendre functions at haTb " 

be expressed by the relationships: StUdled an<S °an 

[,"P¡ („,!)]_ 

Urn [,-1¾ (to, (59.11) 

taLVilWa=count tMt"1 ^ fUnCtl°nS °f the 

A (a) + IN i (a) =, /yj1» ^ 
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where is a Hanke 1 function of the first kind of the first 

order, it is easy to see also that 

A- (cos Qi (co# 7)] }-^ <a>- ( 5 9.12 ) 

Using the indicated property of Legendre functions and setting 

we replace approximately 

Piicose) by -(y/2Ï)/,(y0/w). 1 , , 

//1(00*6) by — (vV^M’Hve/S). I oy.id/ 

Such a replacement will be accurate enough for large y» but small 0, 

such that Y0 Is a magnitude of the order of unity. One can be 

certain of this on the basis of the following transformation of 

basic equation (59.2). Let us make the substitution 

/sTiri 

we obtain in * the equation 

£+(2<*’+T-Tc,*’6),=0' (59.5-4) 

We will consider that 6 changes within limits from 0 to 60, while 0q 
3 

can only insignificantly exceed -y. At large 0 the term y—-j-ctj^ö 

has the order of unity and does not play an essential role in 

comparison with Hyp. at small 0 we have the approximate equality 

___.ctg?0ss — -j-gr¬ 

in this way, instead of equation (59.1^) we can consider the equation 

the solution of which is expressed through known functions of Bessel 

and Hankel in the following manner: 

t = a/0 /^6 /2/)+ B /6 M0 (y6 /¾). 

Thus, in this instance o, has the form 

(59.15) 

or near 6 = 0 

0.= /4/,(70/2/)+^(^6/25). (59.16) 
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The functions In this solution differ from (59.13) by only a constant 

factor. Note that representation (59.15) Is an approximately 

accurate solution of equation (59-2) not only at small 6. The 

correctness of this representation can ue evaluated by comparing the 

asymptotic expansion for Legendre functions for large n and for the 

Bessel functions at a large value of the argument V'O[79], [8l]. 

In this case we will hold that Ysin0 is sufficiently large in comparison 

with unity and in the asymptotic expansion we can be limited to holding 

only two higher terms (of the order of unity and j). For example, 

P'-V ÍT?T¿¡f {[(1 - Tr) cos ('e - ?) -si” (*> - f )]- 
-1 [“» (vO - t)+(1 - -er-)sl" ('» - t)] } ( 5 9.17 ) 

Furthermore, we have 

- ï ^/.(vo /5) = V [/„(vO /5)1 = 

= Y V2 11|’;(Y0 Y2) -+ /+' (Y0 1^2)]. ( 5 9.18 ) 

Using the asymptotic representations for functions and ip* given in 

Chapter IV, we obtain ^ 

/iS (it1 - è) - t) -('e - +)] - 
-/[ COI (Y0--1) + (1 _ ^) sin (yo--1)])^ (59.19) 

Comparing the rxght side of (59.17) and (59.19), we find that in 

the main terms they agree. In terms of the order of i in comparison 

with unity, the coincidence is good only at small 0. 

In this way solution (59.15) can be used even for large 6, 

however, during calculations on the basis of this solution in this 

Instance it is of no consequence to keep terms of order — in 

comparison with unity. Specifically, the factor during 

differentiation must be kept constant. If it is wished to obtain 

a result with the retention of small terms, it is necessary to use 

asymptotic representations for the Legendre functions. Let us 

designate the particular solutions from which (59.9) has been 

constructed through 

p], (cos 0) = 0.1, wi (COS O) = 0.J 
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*: 

and use the asymptotic representations for o.¡. and their derivatives 

The asymptotic representation for o.i already has been given by 

equation (59.17). The representation for o.¿ has the form 

0,2 = #~'e {[cos (Y° + "8 )-(1 + 3~^T')s,n (y0 + j)]+ 

+ /[(> + ~^) cos(Y0+ sin (vO + t)]}* (59-20) 

dn . do.-, 
To compose we use (59.3) > (59.5) and (59-7); then we obtain 

do., aJ0| 
~dV ~~W 

do,., d’o, 

~dí~ ~ 

— Ctg 0/>i (cos 0) — 2t\7Pa (cos 0). 

- cig 0 (pi (cos 0 ) (cos 0)J — 

- 2<y- [Pa ( cos 0) — ~Q, (cos 0)] 

whence, taking into account the expansion 
Pt feos 6) =¾ 

+'[#™(ve-f)-(M-^)Si.(ve-J)]}. 

H, (cos 0) = P. (cos Q)-~Q, (cos 9) = 

= /^«-'•{[«" (vo + ?)(> -W-IW ‘4*+Î)] - 

-iff) cos(y0+t)*: -iffsin(Y0 + t)]}* 

we have 
do, 

dB 
e 2y / 2jt ^ $|n 0 X 

-(v« -t)+(' -4^)^(^-1)1 + 

+4-4^)4^--5-)-41-49^)]}. 

da. 

dB sin b ^ 

X.-4I(1+4^)cos(,9 + i)-I^is1.(v04l)] + 

+ '[4r-(v9+4) + (' + ^)»'»(v9 + l)]}. 

(59.21) 

(59.22) 

The obtained equations are conveniently represented in the form 

0.1 = X, (6) 4 % (0) ^ V j-yl s|n Q lo^O) + ta2 (0)1. 

do I 
-^ = XÍ (0)4^(0)^ 

=¾ - 2y l/-—- e* [à, (0) 4 ffl-j (0)1. 
» 2.1 Ki sln8 11 2W 

(59.23) 
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where 

=• h (°> + 'x« (0) = 1-¾¾ la, (0) -f la, (0)]. 

‘Ir “ *3 <°)+ '/>)= —2y l^^i-'ela,(0) + /fl'4(0)). 

g, o, -t- /¾ =« —=■ [¢, (0) + ib2 (8)1. 
V 2.1Y F 2 sln 0 

0,-03+/«, = -j/-jJ^L [A, (0) + /a, (0)j. 

(59.2^) 

(59.25) 

0,(0) 

flj(O) 

a, (0) 

ôj (0) 

03(0) 

«4(0) 

r-i (0) 

à, (0) 

¿,(0) 

¿,(0) 

*3(0) 

*4 (0) 

= (1 -¾1) cos(Y0—£-)-sln(Y0—£). 

=('-^)-(^-1)-¾5 "»(vo-i). 

‘cos (y0 + t) “ (1 + ^71)sin (y0 + t) • 
r ( j + j cos (Y0 + -J-) 4- sin ^Y0 + -y-j. 

= -¾1 co» (v0 -^1-) + (^ -¾1)sin (y0 + t)* 

= (1+lT)-(Y0-T) + ^1^(Y0-f). 

+ffcos (Y0-7)-(^ 'w)sin (Y0 _ t) • 

-llf)s!n (y0 + 7) - 757 t0s (VÔ + t) ’ -(1 — 757 )sln (y0 + t)-¡57 

-“[(i-^)-(v0 + 7)+1Í7*‘»(y0 + Í)]. 

Summing up the above, we note that the general solution of uniform 

equation (59.2) allowing for the .Introduced designations, can be 

written thus: 

o, = M, - IB,) ft, + /X2) + (A3 - IBj) (X, + /X,). 

where at sufficiently large v., but small $ 

X, + /X2--Y/2//,()-0 /2/)- 

X3+/X4 = -Y/2/WiU(Y0 /27). 

or after separating the real and imaginary pans 

X, = y/2*í(y9/2). X, = y/2*;(y0/2). 

X, = Y /2 1;(y0\% x4= Y 1"2 T/yO /¾. 

(59.26) 

(59.27) 

(59.23) 
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where *,(*). t2W. *3^). are the real and imaginary parts of 

functions /0UVT)- Their representations in the form of a 

series are given in Chapter IV, § 46. ■ v 

For large values of VÖ. 

/., = Y ]/ ÍÎ (YO /2)- 

(59>29) 

/3 “ V 1^2 ^3(y® /2). 

where in asymptotic expansion for functions tj. tj> now one ou8ht 

to keep only the main terms, of the order of unity. If it is 

desired to retain in calculations terms of order 1/v in comparison 

with unity at sufficiently large y sin 6 the solution must be taken 

in the form of (59-23)» (59-24). 

§ 60. Deformation of a Spherical Dome 

Let us propose now that the zero-moment solution and general 

solution of system of equations (57-12) in some form have been 

constructed. Let us derive the formulas for calculation of forces 

and displacements in a spherical shell, not loaded in the top by a 

concentrated force, i.e., the case of a dome with summit at P = 0. 

In the neighborhood of the summit /j-Mx, behaves as i.e., 

turns into infinity at 6 = 0 as 1/0. In the absence of concentrated 

force in the summit the solution should be finite at 6 = 0. Therefore 

we must set /l2 = fl2 = 0 and 

= + (60.1) 

In this case on the basis of formulas (57-8), (57-9), (57-10), (57-11) 

we obtain the following expressions for forces and moments: 

284 



(60.2) 

Tx = 7i —¿-«fiOM.X,-Bitx). Nx = 

//, = r, cos 0 + TV, sin 0 = f, cos 0 -5^ (/i,x2 - fl.X,). 

= - -sjr (^»y.i - ^,7.0- 

Ai>=~ 1? I'4» (yí+11 c,e °Xi) + ß, (x(+J» ctg ox2)] -f . 

^ = ~ IF Ml (c,s 0¾ + MZÍ) + ß, (Ctg Ox, -f MX')] +1»\ 

where through f,t f, we designate forces of the zero-moment state, 

determined according to (57-15) at P = 0; -if,. /f,_ bending moments from 

particular solution (58.it), (58.5), computable using the formulas 

According to the above we ignored during calculation of forces the 

particular solution V, (the second equation of (58.it)). After 

determination of forces we easily find the displacements 

= + -J-ßiXj). (60.5) 

A« = sr - l^sr Ml (XÍ - c,g fl/j) - B1 (XÍ - M ctg c>:,)]. ( 6 0.6 ) 

A* = A* “ lïîk j [AI fa c,2 0 - wQ - ß, (X, Ctg 0 - MX,^)] sinOdO — 

R ? 
~Ih\ MiXi + ßjXjicosedO+C. (60.7) 

where \ designates radial displacement in the zero-moment stressed 

state, computable in accordance with (57-16) at />=0.5, is the sum of 

displacement in the zero—moment state and displacement corresponding 

to particular solution (58.4) 

* 
J V„sin0rfO * r\ 

Eh J » 
cos 0 20. (60.8) 

(60.3) 

(60.4) 
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C - constant having the meaning of rigid displacement. 

In the right side of (60.7) we can neglect the second term in 

comparison with the third. In this way, finally axial displacement 

assumes the form 

Apropos of the 

the following. 

A, =■■ 5, — j MiXi + ®iXj) co* 0 </6 + C. 

calculation of the integrals in (60.9), 

Since 
V _ y - d<a} 

(60.S) 

we can say 

then 
J Xicos0í/0 = cí), COS0+ J co,sin0(/0. 

J x2 cos 0 —11¼ cos 0 + J cOjSinOdO. 

But o, satisfies equation (59*5) and, consequently, 

(b -f-1) BOj sin 0 = — -jg- |sin0 

J«Mco.eje=.1co.9-7^5^. 

In the last expression the second term in comparison with the first 

is a quantity of order -J-* since during differentiation -¾ can 

increase as yl- If we disregard this term, then we obtain 

consequently, 

J 0,1 COS 0 </0 Sis Oj cos 0 

J Xi cos 0 ¿0 =¾ a, cos 0, J Xj cos 0 </0 =¾ a2 cos 0. (60.10) 

In this way during calculations in the first approximation, i.e., 

rejecting terms of orderin comparison with unity, the slowly 

changing coefficients of 0,.0, during integration, just as during 

differentiation, can be considered as constants. 

As an example of the application of the obtained equations we 

will examine the dome shown in Fig. 29. Let us propose from the 

beginning that there are no distributed loads, and the dome is 

loaded only along the edge by distance forces H? and bending 

moments ,M°. Then forces of the zero-moment state and the particular 
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Pig. 29. Spherical dome. 

solution of system (57-12) turn into zero. In this way, in formulas 

(60.2), (6O.5), (60.6), (60.9) alJ quantities marked by a tilde 
vanish. To determine the constants v4lt ß, according to radial force 

«2 and bending moment Af® assigned on edge 0„ we derive the system of 

equations : 

Afr (0o) - (0^ = - 2y3 sin 0/- ]/,2:t l^sln e° 

(60.11) 

Solving it, we find 

where A(0o)=l —and the values of functions alt a2, ãv are «- B y V • 
taken at t) = e0. Substituting (60.12) into formulas for the calculation 

of and A,, we find after a series of transformations the angle of 

rotation and radial displacement at the edge of the dome 

£Ad? = 2Y3sin 0^, (0o)/yo„ +£ ^ 

£AAJ = 2\R sin* 0^, (00) fP - 2Y* sin 0^, (0U) AiJ. 
(60.13) 

where 

e-.(0(,)=10,). ^(00) = 1-^^1^ 

At 0o = -j these formulas coincide with formula (27.21) for a long 

cylindrical shell of radius R. If on the shell act distributed 

loads, then during the calculation of constants Av Bx in formulas 

(60.12) and (6O.I3) it is necessary to replace tf? by //J —f?cos0o and ¿1? 
by A1?-AÏ?. 



Substituting obtained expressions into (60.2), we will have the 

equations for determination of radial force and bending moments in 

any section of the shell: 

Hl = Tl cosO 

_ (, sin y ( 0o - 0) + co, y (0,,-6)] (tf-f ? co, *) + 

4 -¿Õ [2 sin Y(0O — 0) — (cts 0o + clg 0) sin y (0o — 0) 4- 

4- (c|g 0O — :,S °)cos Y (0O — °)] OM? — ^>) } • (60.14) 

/1, = .fl, -f 1 
-TÄ-e» /~ÏTÎS~ Asín tí, 

y iíííFx 

[—sin Y (0o-0) — y (y—¿) (ctg 0 4 ctg 0O) sin Y (0o-0)+ 

4 Ÿ - (c,g eo — clg 0)cos Y (0O — 0)] W — Ti cos 0o) 4- 

4^-^4-^)^(00-0)+ 

4-(l -slnY(0O- 0)]ÇW?-Æ?)}. (60.15) 

Using the obtained formulas, we determine reaction force «Î and 

reaction moment MÏ in a preassigned section of shell, loaded by 

internal pressure p- In this instance 

= Æ?=0 

and in formula (60.13) it is necessary to replace 

by «S-^p-coseo. 

AÎ by Aj —— |i)sin0o. 

Then, setting A;^d? = 0., we obtain for determination of desired amounts 

Hi M°i the following system of equations : 

R sin 0^, (0o) HI - 2Y^1 (00) = (0O)sin 0Ocos 0O. 

2R sin Qçgj (0O) W2 - 2ygl (0O) A!J - 

= — -^- ( 1 - n) 4- pR7gi (0o) s*n 0O cos 0O: 

solving it, we have 
.y> pR pRd-\i)[. . <t42i*)ctge0i 
H'= T cos0o--^—e;-[i 4--% J. 

^ = -»*)[» 4- 

It is interesting to compare reaction forces in the closing of a 

hemisphere (00 = -5) and a long cyliner of radius R. In the hemisphere 
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In the cylinder 

§ 61. Coupling of a Hemisphere with a Long 
Cylindrical Shell 

Formula (60.13) is handy for making up the conditions of coupling 

a spherical shell with shells of other forms. As an illustration 

we will examine the coupling of a hemisphere of radius R with a 

cylindrical shell of the same radius. The load is internal pressure. 

Our task will be to determine radial force and bending moment where 

the sphere turns into a cylinder. Figure 30 depicts the forces and 

moments applied to one of the involved parts of the reservoir (sphere, 

cylinder) and the replacing action of the rejected part. Also shown 

are the positive directions of radial displacement and the angle of 

rotation for both shells. The formulas (60.13) after replacing in them 

(61.1) 

For the cylindrical part the formulas between 0?. t»0 and A!? are 

composed on the basis of (27-20), replacing in them vP and ^rf1—y)- 

In this case note that as a result of the equality of thickness and 

radii of the cylinder and sphere parameter 2y2 in both cases has the 

same value. Thus, for the cylinder we have 

£A0? = 2yX + ^< 

£W= _ 2Y/?;V? - 2\7M°i -f- pR7 (l - y)- 
(61.2) 

Let us write the conditions of continuity of forces and displacements 

at the joint: 

(61.3) 
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Fig. 30. Forces, moments and 
displacements at the junction 
of a hemisphere with a cylin¬ 
drical shell. 

t (61 1) (61.2). conditions (61.3) can be considere 
Taking into account (61. ), f determlnlng the four 
as a system of four algebraic equations 

Ml solving which, we obtain 
quantities trt. Ni. 

M? = mu == I ( 61.4 ) 

w!=h:=^. I 

. „„a anule of rotation at the connection are 
Radial displacement and angl 

equal to 

raf* nnint A of the reservoir 

we determin the axial Setting In (60.9), (60.8) 
relative to the connecting sectl oondltlon that 

0 = e„ = f we find constant of Integration C from 

the connecting section has cero displacement, *.(7)-0. 

c—^(t)“0- 

Displacement in the angle of the sphere is equal to 

M0) = 4,(0) + M,®,®) + ^, (°>'• 

, ,0, o and, furthermore, -q contains small factor . 
Since 10,(0)=1. 0,,(0)=0 ana, i 

wo finally find 

nR, (61.6) 
Ä, (0) =¾ \ (0) = -fgj- (1 — n)- 
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® • Spherical Dome with Concentratpri 
Force In the Top 

I.et us turn to analysis of the case when a shell is loaded In 

the top by concentrated force P. In the general solution of basic 

résolvant equation (59.2) it is now necessary to keep also the 

irregular part of the solution, i.e., to write it in the forr, of 

(59.26). Functions ):,(0). *(0). Zl(0,. x,(0, i„ the neighborhood of 6 = 0 

lead as the first terms of the expansion 

Xi(0)-X3(O) = ^Í0lnO+ .... 
•% 

Xj (0, *=—y’o + .... x«(e) = ^+.... (6.° l) 

where the dots indicate term of a much higher order of smallness 

According to (57.11), (59.1) and (59.26) 

l'o- 1-B.X, (0)4 (0)-ßiXj{0)+ A¡Xi(0))-. 

’^0= X, (0) 4 £,Xj (0) 4 Aj/j (0) 4 B2Xi (0). (62.2) 

In order to explain the behavior of function Ä. in the vicinity o 

9 = 0, we represent it in the form 

A sin 0 = — ^ J Í* s,n 0 ¿0 — clg 0 J sin0 ^ • 
whence it is clear that at 0steO 

<M0) 
A sin 9 

P 
2-iW (62.3) 

e select constants A,. at. on the strength of the requirement 

of finiteness for angle of rotation *, In the top and the condition 

that shearing force at e = 0 turn Into infinity as_£- 

From formulas (62.2), (62.3) and (57.8), (57.9) it isTlear that 

these conditions are equivalent to the requirements of the boundednes 

of functions F. and V. at 9=0. « is easy to see that these 

requirements are carried out if we take 

ßi = 0- 
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(62.4) 

Expressions (62.2) now assume the form 

^0=- [—fliX:(0)+ ^iXj (0) + 3U(e>] — ft jin e * 

Eh&l == A#. (0) + 0,/.2 (9) + ^ Xj(6)- 

Constants Av Bl as earlier, should be defined according to boundary 

conditions on the edge 0 = 9q. At sufficiently large YÖ because of 

the asymptotic representations for <m and solution oj during 

the determination of Av Bv can be neglected. In this way, for AvBl 

in this instance they remain in force of formula (60.12). The stressed 

state in the neighborhood of the edge also is determined on the basis 

of (60.2). In other words, the term in the right part of (62.4), 

containing functions 7.,(0). X;(0). describe a simple edge effect, which 

determines the local stressed state at the edge 0 = eo. Terms containing 

functions 7..,(0). 7.,(0). describe the singular edge effect induced by the 

presence of concentrated force md characterizing the local stressed 

state in the vicinity of the pole. In this case forces and moments 

are calculated by the formulas 

T\ = — ctg 0X4(6)+ A/, = — ~ 7.4(6). 

^ = -¿--¿fX4(0)+^icose. ^2=-:^(0)+^. 
p > (.62.5) 

AI, = — -g^r [Xj (0) + H ctg 0x3 (0)] + A*,. 

Alj = — -gp- [nxá (0) + ctg 0X3 (0)] + K 

In the absence of distributed loads the quantities marked with a tilde 

are equal to 
p 

2.-i/?sin2Ô ’ Ai, a1,=o. 

The obtained formulas allow explaining the behavior of forces and 

moments at 0 = 0. Taking into account the representation of functions 

7.,.7.2. Xj* X,in the vicinity of zero and formula (62.5), it is easy to 

see that forces r, and 7-, remain finite at 0 = 0 has the form 

A1, = —-£¿-(1+101110+.... AI, = --£(l+|O1n0+ ... 
(62.6) 

Ir< contrast to static quantities displacements in the point of 
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application of force romain Pounded. The boundedness of radial 

attar:;::edireotiy rou°“s ^ ^ ~ - —es, aM r, 

A _ ft Sin 9 /T. 
• Eh —M^i). 

Por clarification of the behavior of axial -n=. i 
it in the form -splacement we represent 

A* = J Mcos0)d0-fc=j?. ££ fy /nwfl , 
* T th -2R J X3(O)ff0-f .... (62 

:rio::a:;:: lndICate termS a Mgher — - — at „ = 0. 

Taking into account (62.1) and Integrating m (62.7), we obtaln 

(62.8) A‘ = JSroi,"0+ ... 
Remembering that flexural rigidity D is £A> 

designation ^0 = ,. formula (62 na k introducing the 
iormula (62.8) can be represented in the form 

Af = 8njsí,ní + (62.9) 

Note that the change in quantities y m u \ < . . 

neighborhood of the application of t-ho P" th “ --—-:: rzrrrñnr 
5 ®3. Stressed State of a Spherical .Strip 

(Pig VrTT "I WiU eXamlne a SPherlCal Shali «« a hole 

: Lceli:; :;;ge;°vh:hsheue=8'ande=8»are -stems 

distributed loads and ax'ial te 1°1-6^ ^611 Can aCt 4- axial tension equivalent to forces P p in 

: im:6 ed8e conditions at both ad-a - - iocs ; 

9 n : r n °f the VaSlC reSOlVant et!Uatl- ln Torrn of 
IV, ' H °aSe ‘ a SUfriclent- thin-walled and dong shell me. -»,)»!, the solution ía,-ib¡) x ,Zl + %) wln descrlbe the 

ate in the neighborhood of edge e0, and the solution ,4,-,S (1 

I,: ::: lnr :hhe -^^a^od Of edge e,. Ignoring the mutual 

the edges, we find that 4,, Bl are determined according 
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Pig. 31. Evenly distributed 
forces and moments applied to 
the edges of a spherical strip. 

according to the formulas of (60.12). Correspondingly 

(60.13), (Ó0.14), (60.15) are valid. To determine a^j 

the equations 

(0,) - B2a3 (0,) = - 2Yj sin 0,r*. ]///J. 

2 p3 (0.) - “I11 «3 (0,)] + B2 [a, (0,) - (0,)] « 

K r y J' 2 

Solving them, we have 

formulas 

52 we obtain 

(63.1) 

Here 

(63.2) 

A(0,)-1-(-lclg°' l'clgei 
8y y 

and fl3. û3. o,. ã4 express the values of these functions at 0 = 0,. In the 

presence of distributed loads and axial forces in (63.2) it is 

necessary to replace H'e by wj—fJcosO,. M\ by jM, — ÆJ. Forces, moments and 

angle of rotation 0, in edge 0, after determination of constants 

A2* B2 should be calculated according to the formulas which easily 

are obtained from (60.2) by the replacement ö,->ö2. Xi-»-Xj. Xj-»X4- 

For example. 

= 2^r c*s 0 (^2X4 — ^2X3). 

etc . 



(63.3) 

On edge e, we have 

¢1 «= 5{ -f ¿j- |/l2y.3(0,) + B2xa (0,)]. 

A' “ “ -tyW [At 1¾ (°i) - I1 C,S 0,x4 (OJj _ 

Substituting here and b2 In accordance with (63.2) we obtain for 

edge o, formulas analogous to the formulas of (6C.13) 

0} — ö) == [(wi — f, cos 0,) sin 0,/, (0,) -j. 

+ -^-(^, - All)/,(0,)]. 

Al -SJ = [- sin 0,(/y; _ f> cos 0,)/,(0,)- 

-^(^1-^1)/,(0,)]. 

where 

(63.^) 

/,(0,)=,-1^.^0,. /,(0,)=,+1^ 

Using formulas (60.13), (63.4), we will examine the stressed state 

of a spherical dome loaded in a certain parallel circle 0 = 0, by 

distributed normal and tangential forces and oending moments of 

force p. t and m (Fig. 32). 

32. a) Normal force and bending 
moment acting on a spherical dome evenly 
distributed along the parallel; b) external 
and internal forces and moments applied to 
a shell element bounded by sections 0f and 
e,+. 

We propose that the shell is thin-walled lY(eo-0,)»l) and sections 

(O.e,).(0,.0o) are rather ’'long”; then the mutual influence of edges 

0O and 0, can be neglected. We are interested in only the stressed 

state near the line of load 0 = 0,. Crossing through this section 

infernal forces in the shell f,.//, and moment M, should jump; 



1 

N i — Nî = 

Aíi — == 

Tí -77- 

— P- 

— ni, 

— t. 
(63.5) 

If we designate through H. and V/f the radial and axial internai 

forces, where = cos0 —7*,sin0. then we can write 

H? — HJ — — psInO, — /cos0, = — pt, I 

Vt — Vi — — p cos 0, -f- / sjn 0, = — pt. J (63.6) 

From the condition of equilibrium of the shell as a whole it follows 
that 

po~Pt- 2*/? sin 0,. 

The zero-moment solution also suffers a discontinuity going through 

the line of the load: 

0. e<0,. 
r 0 

¿n/? sin1 Ô ’ ö>öi. (63.7) 

0. 

2n£A sin Ô 

O<0,. 

o>0,. (63.8) 

Angle of rotation and total radial displacement should be continuous 

going through the loaded section 

0.- = 07. a; = a,\ (63.9) 

For section of we write relationships (60.13), and for section 

using formulas (63.4). We obtain 

f A0- = 2v*sin 0,^, (0,) //; - (0,)/Mf. 

£AA'* = 2y* sin* 0.^(0.)^7 - 2y* sin 0,^-, (0,) 

Eh*; = 2y2 sin 0,/, (0,) (w; - p¡ dg 0,) f Ai+/,(0,). 

CAA; = --(1+h) p,/?-2y/? sin* 0,/2 (0,) X 

X W - A, cfg 0,) - 2Y?Af,V, (0,). 

(63.10) 

(63.11) 
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Taking Into account (6j.S), (63.6), (63.10) (631]) n ships (63.9) wp nhi-aik, a. ’ ^03.11), from relation 
^ 3 y; we obtain two equations for determination of fn 

unknown quantities HJ, MÎ: 1 the two 

2Y*sine{iri(0l)//;__4v.^i(0i)Afr = 

■=+afsln 8,/,(8,)(//,- — - pjCie o) + V. (i)|- _ m) 

- « (63.12) 
— (■ + k) P,R ~ 2\R sin* 0,/,(0,)(//^ c,COi) _ 

We find the solution of svsfpm (£,? ^ 

¿in comparison with uni tv ) ’ ,Uantltles °-)e 
we Obtain 3011 lng^“A(»i)=f,(0,) = s,(0,) =,. 

on the basis of (63.5), (63.6) we „111 have 

(63.13) 

ctge , 
^ 2 b 1 sin3 0, t- 

/M,+=.£*_«. 
4y 2 * 

Y« 
2// sin 8, 

(63.14) 

Note that so simple a problem of coupling two dlff» . 

a shell is solved only when the line of the ) . sections of 

pole and from edge » md tw u °ad 9i ls from the 
Vie —el's.» !„ *• the She11 Uself la thin-walled W,», 

intgrauótSÕn eaaV0rrate dete™lnatl® °f «e constants of 

reprfsentlo s O .: ,th;5r::; ™ "" «^0«. 

separate ^etermlnatlon of the^constant^is^impossibleW^th* 

~roïhL~ rrn of six a— -----em 1 ntegration - four coupling conditions on line e, 

two edge conditions 

H' ~~ — Pt. Mf —Mi 

K = 0¡. = 
■■—m. 

(Oj) = ^,(0o) = iM?. 
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§ 64. Axisymmetric Deformation of a Spherical 
Shell of"Small Curvature 

In §§ 64, 65 we will consider an axisymmetrically loaded 

spherical shell of small curvature. A thin-walled shell of small 

curvature or a slightly curved plate subsequently will refer to a 

shell whose parameter ^ = Is great in comparison with 

unity and angle 00. characterizing the edge section, is so small that 

the quantity ?o=y0oV'2 can only insignificantly exceed unity. In 

§ 59 it was shown that at large Y and small 0 the general solution of 

the uniform résolvant equation for a spherical shell can be expressed 

In Bessel functions (formulas (59*26)-(59.28)). Using the fact that 

parameter q has the order of unity in power expansion for functions 

'Tj. »fy and their derivatives (formulas § 46', we can be limited 

to only several first terms, for example, take 

*,(?)=i*-lr + •••• *i(?)=- 15-(1 -TÏ52 + 

¢2(9)=--7-(1 ~•••)• 

¢((9) = -7(1 —•••)• 

¢,(9)=7-£—&+ 

¢3(9)=-57-321+15^-+ ••• 

...+4(1-w),n^+•••• 

¢4(9)=1^-^)^^-^(1 —!£)+ •••• 

¢: (9)=I • 7 (1 —Ç-)+ár (5 -41 n +— 

Furthermore, because of the smallness of 0 it is possible to set 

cose^l. sln0*¿e. The radius of the parallel circle of the 

edge section of the shell is designated through a. In accordance 

with the above assumption about the smallness of 0O we have o«s»/?0o- 

In Table 6 are given values of 0q calculated at ^ = 0.1 for different 

values of 9„ and £ on the basis of the relationship [12] 

(64.1) 

(64.2) 

0O= -0.306 

Let us examine a slightly curved plate loaded by a concentrated force 

in the center and by edge forces and moments A!?. During the 
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Table 6. 

0.75 
1.00 
1.50 
2.0 

» 20 IS 10 

0.0069 
0,0122 
0.0276 
0.0190 

0.0086 
0.0153 
0,0313 
0.0612 

0,0115 
0.0205 
0,0105 
0.0880 

0.0172 
0,0306 
0.0690 
0.1224 

. X 8 in solution (62.1). it 1= now not 
determination of constants .. .. <. lnoe at 0 = 8. they have 

possible to drop terms of the solution. Therefore 

values comparable with the rem ,or « M we combine equations 

" rriirrrrrs^ass Of e. for .etermm- 
(60.2), (62.5)- iaKiriK . 
ation of 8.. 8., we obtain the equations. 

- i l-** W - 8* Wl="Î - ^ + ^ ^ ?-<9^ 

' = m!+T?- [tí W+K *■ wl ' 

(64.3) 

where r_ P . 
1 2nP0j 

4 rase h 2. 3. 4) are determined 
Having in mind that in this case ï, < 

V, * i/-l 2 3 4) using formulas (59-28) and 
through ’W (* '• 2> 3’ & r 

XÍ (6) + %h W = 2yS [*'(q) ~ i" (i)l * 

x( (6) + i X3 (0) = 2V3 [^4 (¢) “ ^ (?)1 ’ 

we solve system (64.3) in Av Bv We 

+4(4.-^4^)- (61.1) 

^,+4(4.-^4^)- 
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where 

(64.5) 

. * ,/«i 2 3. 4) and their derivatives are 
In formulas (64.4) funct ons , * . «_YÿTe p0r subsequent 

calculated for values of the ^ °e foUowi„g combinations 
calculations it is convenient to introduc 

of functions ^ 

IfTtT’ ( 9 tf+ti 
.♦* + ♦* V (a\ e= — (♦(’ + 

♦i +« 

(64.6) 

Jslng expansion (64.1), we can wri 

(64.7) 

■n onder to determine radial displacement and angle of rotation of 

;he edge a",. »ï. we will use equations 

», = -jjy l-v, (8) + 8,1, («)!+-& *• <6)- 
^(0)-^,(8)1-8,^(6)-^1,^1 + 

+^-[i¡(e)-ix.(6)]l 

ï,=-o+rt-sçBr 

, and B„ Making the necessary 
and the found values of constants ,4, and , 

calculation, we obtain 

(64.8) 
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In the equations it is understood that all ♦, V . , , , 

derivatives are calculated at * = *«, Usjlni, , ‘( ‘ * and their 
we note that ng represeiltations of (6^.2), 

,, 32 —h... 

'»'iW-(l-U)=l+M+ri+ _ 

etc. Then we obtain 

A? 
1 W+ÏÔ 

1 — lo 
1ÏÏ _M’ja 

, _l I ¢0 50+0 
l+rHr?r 

I 

H 1 Ú 
+ TTF9S- 

Îïsrr+ÏTV + 4g-,nio+ ...J. 

A»-0 —y)//> ^T—r-S- 

i a* i _i_ * ft 
, + T+F8g- 

40 (1+,,, 

VÎ 
w 

ffo 

Here 

‘ ’ T+ir 9Î 

Eh* 

Pa\ 5 + 4 
^4nO 1 +4 * 

(6+9) 

^1-4^ 

Note that in formulas (6^1.9) jn for.™ 
contain »J. have been dropped since du S COntainln8 Pk the •“embers 
f-om (64.2, it ls not possibi; to ;ee "U1;lnS 0aloula«on starting 
such an order. ^ ^squentially all terms of 

In the limit at eft->o „ a /¿i, 
for a flat plate: ^ ’ 9) Coinclde ^th the formulas 

_L_ AO (1-10/^ 
^d+l») 4nD 1+4’ A' =--. 

underSthe‘action of'appUed^°f 3 SllShtly °UrVed plate 

nrst that also in the prlLee'o'f eoT T ^ ^ “ Sh» 
-nt can be determined ^ ap^l^d^ 
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Af «s ^ (/?í>, cos 0 .. + ^1 

4 jw+saw+Tfc— *;w]<«+c- (64.10) 

For this let us write out the term eliminated in subintegral expression! 

— /?e, sin 0 =¾ — Refi = --^ ~ "g- X*) — 

— -¿7 B, (mXÎ - -g X,) + - VÏ7 - TR (^XÎ - ¿ Xí)] = 

= ~'W [ I?" Ai (^x2 ~-gXj)—-¿r fli (wí — T X!)] + 

+ {d + (¢)- +1^3(?)}• (64.11) 

Comparing (64.11) with the subintegral expression in (64.10), we are 

convinced that /?e,0 is a quantity of order in comparison with /?0,. 

if we take the latter as unity. With the accepted correctness of 

calculations this confirms approximation equation (64.10). Reading 

axial displacement from the edge of the plate 0 = 00. we set C = 0 and, 

integrating, we obtain 

A, = (¢, (7) -1, (?o)l + Bl [t2 (?) - tí M + 

+ -ffir Ita (?) — 'ta (7o)) }• ( 6 4.12 ) 

Displacement in the center of the plate, i.e., at 0==0. is equal to 

A, (0) = 1 11 — 11 (?°)1 — fliti(?o)l + Sã [t — ’•'a (?o’J • ( 6 4.13 ) 

4 

Here is is taken into account that 

^ (0) = 0. ti(0) == 0. ts(0) — -j • 

Substituting into (64.13) expressions for the constants of integration 

in accordance with (64.4), we have 

(0) = -^T + 2ÂÍ, y,—(1—J») 

2Y}r..„. P[^ i—_V i yip 11 lt.\ 
4 r4 ?( ^3) M) ^ 2£A \2 'sj* 

(64.14) 
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Here also the-values of all functions and their derivatives 

should be calculated at for small </0- using expansion (64.2) and 

making the necessary calculations, we obtain 

A, (0) = - 
320(1+M) 

5 + J» Aiy 1 - »S 

20(1+1«) Ÿo 
^7+7^ 1+i+iiW 

1 *»’ 3+n r 11(1+1«) 4lngl 
576(3+¡í)^ln?»J- (64.]¾) 

Axial displacement in the center of a circular flat plate is found 

by setting in (64.15) ?o = 0* 

My Pa2 3+n 
(0) = 2D(1 +n) ■> 16nô l+l*' 

In conclusion let us note that at very small ?o and 00 in 

equations for angle of rotation and axial displacement it is possible, 

keeping terms containing H%. to eliminate everywhere higher orders 

of q in comparison with unity. Formulas (64.9)> (64.15) then will 

take the form 

Afy ( Pa2 3 + 1* H?a\ 5 + n 

(°) = 2Ò(1 +1.) + T6ÏÏÔ T+l* “ 320 l+i*' 

(64.16) 

In order to understand the meaning of the simplification, turn to the 

basic résolvant equation (59-2). Let us assume that angle 0 (even its 

maximum value 60) is so small that despite the considerable magnitude 

of parameter 2y*. the following holds: 

2y* <C c*g* »• (64.17) 

In this instance, if we eliminate the term 2/y2 in the coefficient of 

0>, we find that equation (59-2) breaks into two independent equations, 

each of which will contain only one unknown function V,. This 

will correspond to replacing the shell by completely flat plate and 

to consideration separately of the plane problem and the assignment 
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Of bend. However, not always does replacing the shell by a flat plate 

espite satisfying condition (61..17), glve acceptable results It 

: toFtake int° a~ of g 
shell. For example. In a rotating shell the centrifugal 

Thl "orceTuVtri1"!? ^ h°M S"a11 curvature. 

-sse0;0":: :: rh!:-™: rrrof the piane 

he :: 1:wuratjre c85]-in tM5 case (m-s) =^med m 
t^o h ? nanner' SUbStltutl"e It the expression for « 

li;"::: :rrry parts °f thi3 functi™ -— 

in oomp^Lr^r^3^6:::10:oniy the quantity ^ mK * naving kept, however, the terra 
en we obtain the following two equations in and V,: 

d*V dV 
~w-+cts*-dr—v. c<gJ o=o. 

d*r dv 
-7$r+ctg 0-^—v. ct** 0-f-4y«V, = o. 

:r:t::nvariabie v, and setting ^0^^6^^.0=1.,.,,6=6.^^=^, 

d*V. 1 dV. 
^=0. dr* ~T7~d7 . 

d^v. , 1 <n'_ V Bk 
~d^ + 7-7r~-pr+~-Vt = o. (6^1.18) 

he first equation of (66.18) describes the plane stressed state the 

econd corresponds to the problem of bend allowing f0r the plane 

termSSV r\Sl-"e fUnCMOn ^ PlayS ^ the role of t»« load 
„ J!: Jf “e t0 the baslo oyotom of equations which describe 

the T r 0 f0rD,ati°n °f a shell Of revolution (11.1) (u 3) 

hen n accordance with the Indicated approach In the se^o d ¡q Itlon 

and 1 '.. e l ? 1311°11 “at aab «,=«. ^0 = ,,. cosol ,mol. 
obtai t lnS e9Uatl0"s of equilibrium take ,1,,0 = 6. Then we 

lelllpUMlT1!’ t0 Kh"h “ - - - either 
They will have the form “ aPPrOX:traate oppressions for deformations 

dr (rT0 = 0, ¿^8,).-6,==0. 

T, = Eh 

da „ 
17' t2~ — < 

(6H.19) 
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(64.20) 

Tr {rMù — Mi = rNv 7,6-^, = 0. 
Ai,-Dix, + Mx,). ^î==D(x2-|-mh,). 

x, = -^L. x,^-^. di==^. 

nirnrr: <6,,'19) represents °f the Plane problem 

--;.u::micbr^ zrx0: Ttin8“ 
of the term r.e. Introducing stress fu„otlon v by ^la^"™06 

r>-T- t.-£. 

systems (6^9). (6t.2o, are reduced to two resoivant eouations.- 

fV I 1 dV V 
dr* r dr 77=0. 

dr ^ r dr 7> ~7U' 
(64.21) 

Sol^tequations (6..21) under the edge conditions on the edge of 

7, = /yJ. Af, = M°t 

taking into account the requirement of boundedness of forces and 

::: :; r:hoidatlrtln the center’we arrive for - a ohed plate to the already obtained formulas (6..16). 

We determine forces and moments in the center and af fh 

weakiy arched plat loaded by edge loads tf. Ml There are no 6 6 ^ ^ 

aocepT d" I“)"! ^ ^ diStrlbUted ^ds. With the 
relitionships^ Sl"Pllfi°“ ^ — of the shell exist of 

Tfa-Atf^o. Tj -j- A^i'Oo ■* //¡i 

hence, ignoring the quantity m comparison with unity, we obtain 

H^Tl NÏ^H'Oj. 
(65.1) 
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^rom the relationshio 

we find that 

^ =7^-,7?) 

~i ri , Eh^ 

(65.2) 

In exactly the same manne-, replacing in relationships (57.10) cosO 

by 1 and sine by 9 we obtain the expression for M'i through known 
quantities M? and d? 

gie?. 
(65.3) 

Substituting into (65.2), (65.3) the quantities < < determined by 

formulas (6H.9), and setting P = o. we will have 

1+T 
1 1-1* 

12(1+,,) 
1 

1+^ 96 

— Tp-'llîûOjO — (!) 
1 - lo 

128 

1+M 96 

(65.4) 

Al? = Mn, (1 —1‘) 
(1+1«) % 

1 + I 
1-(-^ 96 

//>0 
—í-d 10 

Jo_ 
' 128 

1 + 
1 ¢3 

l+j, 96 
(65.5) 

Using formulas (60.2), (62.5) and (62.1), we find that forces 

and bending moments in the center of the plate are equal to 

T, (0) = 7-j(0) = A 1 

^(0) = ^(0) = ^(1+^, j \ (65.6) 

Remembering the expressions for/1,. according to (6H.10, „e can 
write 
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r> (0>=23¾) h «+V1 f; w] - 

- -fi -^1 (q,i) 
h loi (¢0) ’ 

M, 
(0) - 4A ¿T y 3(1¾ ! *1 ¢0) - ~ *:(?„)] 

— i±^ a.,° ^^0) 
Vo ^ (9a) " 

2-Air 

Substituting Into (65.7) expansion (64.1), we 
obtain 

(65.7) 

, _ Vn (3-f-H) 7/?< 

7-,(0) = /y;—üUI±g , /^) rXeg 
, . i ?0 K i+M "2ft-j—nr. 
1+thT96 i-f- ' 4« 

l+n 96 

(65. ) 

(0) = ">,)<3 + M) 
,_25 + 7m VÍ 
__i + M T® + M, 

>■+ 

\-H± 
96 

96 i + 
1 __ Vo 

1+H 96 

(65.9) 

We determine with the aid of th^ . 
fon-e ,r , he ob,'alned «quations the bend and 

Plate on a ^ °f 3 ^ 
a smooth base. On the plate acts distributed load 

—— pA, 

where p - specific weight of material. 

(65.10) 

By formulas (57.15) we calculate forces of ^ 
and radial displaeement zero-moment state 

_ p///? (ros 0 — ]) 
sin116 

p/»/? 

Yn pA/? A. -= _ <1"R .. , 
2£ (I ~ I')- j 

( 6 5.11 ) 

Since on the edge of thp oiat-ra t0 ^ 
p n Plate T^i—/7, = 0. then from (57.3) (57 ¡1) -tt 
follows that Shearing force on the edge is 3), (57.4) it 

?_phR0t TV = 

During the calculations Aj and Aß by formulas (64.9) and (65 5) -t Is 

not necessary to replace A? by A°-Ã" H' hv/7° ^ 5’5 ^ 1 
in them h'» u- n a by/7,-7-,. and after this set 
in tnem //, = ,«, = 0. As a result we obtain 
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(65.12) 

Ao= fyH)0 (1-,,») 74.u , 
.6£A‘ 1 n ---y-, 

1 + T-— 
„ p. 1+M 96 

A?=- P_aSd»i>-Ms) 7-l-u . 
a -Í6Ã—ttît-~r. 

f4 +TT¡T96 

Aí5= - (J _ J _ ^1¾ 
8 rj- --T-. 

] -4--— *0 

Axial displacement in the center of th* -, 
formuJa (6^.15) ^ Plate is determined by the 

4,(0) = . pAa« 54-u i 

-Kr 
Î+T-—-St (65.13) 

The minus sign ln th« ^ 

positive direction of A hasTle^ ^ eXPlalned by the fact that a 

load - 1„trlnsl0 weight*—^is irrred aione mis ^ ^ 

fiat —■ « have 0:;r::;::cí;the -• - a 

A, —0. 7^=0. A,(Q^_ggl 5 + n 
640 r+jr* 

’rr'jrr.^rr r- "•* *• ---- ,+_L«! circumferential bending moment by a 
factor of - i-f-1> 96 

1-4- an axlal displaceinebt by a factor of (,., ' ¢) 

rnh* 1 ihere is also a deernac-o u 

Really, replacing in (65.8) (65^9) "T^V" 0enter ^ the plat 
and setting «,’=,„?=0 we fln(j ' T>«>> by 7,(0)-^(0).,^ by 

7*2 (0) = —- í£ü» (4 + >0(1-u> 
16A , -j- . 

1+—L ^ 
+T+3T^6 

25 -f- 7p 0^ 
A1, (0) = /11,(0) = - i^üi+p) ilTfïT ñk 

16 ~ 

J+T^-—~ Km 96 

while in a flat piat( 

r2 = 0. ,lf2(0)Œ _ pAa»(34.lQ 
16 

(65.14) 
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The deformation of an arh-tt- 

action of a bending l0ad of form °f revolatlon under the 

COS <p, 

ft ~ lid) sin T. 
?/i = 9,(1) cos (J) (66.1) 

-as considered ln 5S li|-18 of f.h . 

tr°m the designations r,,,, T s IU' Subsequently let us pass 

quantities in Chapter II to th« 1 ,,u’ .use^ Tor the 
a’ t0 the designations * „ 

Conditions of eouliih«-, 

«hell contained between edgeTe^t 6 °f the sPhe^cal 

are obtained from (i5.21)j a¡ 2 “ and Instantaneous section 8. 

and have the form * f ln them we set /?, = /?. v=/?s/ne 

/^sln0coS0 + n/?sin20_ 

«i/?!sinjeCoS04_ hiRsinQcosQ ^mfis~Ql2in 9+/ (0) = °' j 

where we have introduced the d ^ 
ucea the designations 

(66.2) 

/(0) = 

^(0) = 

ft 
n 

iii 
.-1 

P<(0) 

po(Z~Z0) t M(/ (e) 

31 R— 
(66.3) 

^(0) = 

^,(0)= 

e. 
e 

id cos 0 — 
^u) + 9,(I)sinO)/?2sln0tf0. 

/ /Ji (0)^5(0 0^0-- 
0. 

~ -7 / (?„ ,1) cos 0 - 7, (I) sin 0; /?1sin:0 ^ 

~^(i —CCSÛ), z _ Dit 1 -/?(I_cos0o)> 

(66.H) 
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M«). «,(0) resultant and composite moment of distributed external 

Joad (66.1), applied on shell section (¾. 9). calculated relative to *he 
axes parallel to ox and OY In section „ . T native to the 

-lu sectLon 0 = consl. In order that t-ho 

^.-^0 + ^(0) = 0. 
-^.+ ^0 + ^0+^, 

’v (0) = 0. I 

(0) = 0. / (66.5) 

;,°n0entrated a0ti0ns the Pole (Pig. 33). Taking Into 

funct'onl (66 U 13 ‘o calculate the values of 
iunctj.ons (66.3) at 8 = 0:- 

/(0) = -^-. r(0) = ^is- (66.6) 

equations T'lT ^ <16-15)- (16-16> (Meissner 
quations type, for a spherical shell of constant thickness have the 

+ ^0-1^(^5--3) = 4,11).(9). 

^■ + c1£9Ä. + p1(,_(1__4t) + Vi 

_Uf (I — H?) / 2 \ 
1 <v‘ l sinj e — 3) — R®* (0)- 

12(1-4’)*» 
r-h>- 

(66.7) 

Lead funcMons ^(0) + ^(9)./o(0)+/i(0)i use^ ln §§ 15j l6 (formulas (15<3i| 

simpi; z;;zt;;: wlth the newiy tntroduced functiMs -- 

^(0)+^.(0) = -^11211-/(6)^^0 /.fm 
R' s.n! 0 ^ 

/n(0)+ ^(0^--^(6)+/(8)^0050 COS 0 
#Jsin0 ■* sin i®)- 

(66.8) 

where 

/î(0) — R? J f2l¡)'!n6dd. 
(66.9) 

ihe right side of equations (66.7) are equal to 
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(66.10) 

= T/T^rë co:» 0 - //? sinï 0) - . 

/?0)4(0)= - -¡¡ç (^+ //?cos0) — 

Fig. 33. Concentrated effects 
in the pole, main vector and 
main moment of loads applied 
to the edge of a spherical 
dome . 

Forces and bending moments are determined through functions Vl and Y, 

by formulas (16.6), (16.7), in which it is necessary to set 

Rl==R. v = flsin0. V = IV?. VfA = 'P,. (66.11) 

Introducing complex unknown 

0, = ^, + 2^,. (66.12) 

we replace equations (66.7) by one equation in o,. which after rejecting 

in the left side quantités of the order in comparison with unity, 

assumes the form 

/-, (0,) + o, (2/Y1 - -¿j) = /ft)+2/y3/W>4 (0). ( 6 6.13 ) 

where 

/■i(oi)=4ën + cl20'^- (66.14) 

Note that the right side of equation (66.13) is not regular in 

point 0 = 0 even in the absence of concentrated effects. In order to 

get rid of the irregularity of this kind, we make the replacement 

= (66.15) 
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then relative to 

we will have the equation 

(66.16) 

(66.17) 

h , 4 \ ,, ■ f ¢05 8-//3^8 i 
/., (03) + o2p/Yv - 7i7¡rg-) = 4' /i*5ln>I h 

(1—ti)cose , jR cos 0) _ cos 0 (1 + H)] • 
R2 sinJ 0 ' 1 ^ 

To the simplifications made ion 

Xm^pLl: Tfono«ing variant of expressions for forces 

and moments through introduced functions 
1 «V 1 

/l = V2ctg0-7¿ff(f+//ícos0) VÏF 
vur 

V, ctg 0 + â?î a» sin 0 - -¾^ “5T 
(66.18 ) 

¿0 

«i 

■ 4y* Tmg 

17(ípL + 2c,e0^""'&)‘ 

(66.19) 

§ 67. Particular Solution of Equations ?X 
- Meissner Type 

Let US rewrite the right term of elation (66.17), changing in 

it only the order of the terms. We will have 

,v, _ 2,,1(1 _,,) 7¾¾ - WO - P) + 

+ Ä^ + 0 + '»■ 4 

4 /¿7 -n is ereat in comparison with the 
At large 0 the first term n • essential 

a 1 nine as 2V in comparison with unity, and is the only 
remaining, as A ^ necessary to estimate (67.1) 
term. When 0 is close to zero, it is necessa V ^ ^ ^ remalns 

more thoroughly. The last term in the _ However, 
i 4-v,q eirst three turn into infinity as J 

bounded, and the quantity of order W 
the third term is in comparison with the 
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, o- fi - 0 and therefore always can be dropped. In 

: :::- =.. 3lmPn«e, an. 

in the form 
/ 4 \ . . FcosQ — fR sin’ 0 

(o2) + °2 ^2/\' — S|n! e ) * ' R- sin10 
(67.2) 

At small 6 we can use the equation 

Ll (Oj) + sin’f) - (f)7 
. fcos6-/«sln’e _,^Z£2L®. (Oi-o; 

= 4Y4-RFüHTe-2 v ( l ) Ttsi*1 

Within the limits of this section we wiii he ii.itea to lan.e^ and 

Will construct the particular solution —ti° ^ 

simplify the form of the right side of (67.2) 

substitution of variables: 

\p2=_\jr3_.lu (feos 8 — /R sin16). — ^s’ 

-^(f cosO —/Äsin^). o,= o3 

(67•^ ) 

where 0,= ^,+ 2^1- Then we 0l>taln 

1,(0,)+0,(2^-^)=2^^+ 

where 

G (0) = l/7 (0)cos8 — /(OîÂsln’O], 

(67.5) 

(67.6) 

“ " :rr rJzxzzz? us examine the part)icuxui e + a+ipallv 

r :?0 ;:::t i1::—::. 1, 

rcrnrtererc: ;.... in the pole, in this instance function 

0(0) has the form 

0(0) = -/i + ß“'5 0- 

, \'P. o_ 
A =-—ff • B — a \ RJ ^ R I 

(67.7) 

(67.8) 

We are looking for the particular solution of 

the right side of (67.7) is far from the pole m 
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^=fl.+ *sfr+*'cos0+-%Knr 

t, . . „ . . co*0 
rj=c'^ i^h' + rf‘cos0 + 

(67.9) 

Substituting the above expressions into equation (67.5) and comparing 

coefficients of like terms, we derive a system of algebraic equations 

for determination of the unknown coefficients: 

0, = ,4. — 2cj—4c,-M2 = 0. 

ft, — 2dx — B, —4(/,-1-^2 = 0, 

— 4^c, = 0. — 2q>¿ — 4a, — 4y<C2 = 0. 

— 2ft, — 4y4(/, = 0, — 4ft, — 4y4</j = 0. 

(67.10) 

Solving it, we have 

a, = A. a„ = 
24 

t>x 
B 

1+^T 
rfl— - 4yi 

l + T (67.11) 

c2 — 
44 

('+-?) 

, ft~—; — 2Ö 

C,=0. d2 = ~ 

'+-7 

7(¾) 

Dropping — in comparison with unity, we obtain 
V 2B cos 0 

’ y4 sin2 0 ' 
B cos 0 
Y sin2 0 * 

y__1 
v*~ y' stu20 2y4 

cosO 

or 

o3 ^ (4-f ß cos 0) ( 1 -f 2^rii]srõ) • (6' .12) 

It is easy to see that we can come to the same result if during 

differentiation we consider 4-f-ßcosO as constant. We can assert 

that for any slowly changing function 0(0) the particular solution 

can be taken in the form 

°3 --0(fl)(l 4- 2(y- sin: 0 ) ’ 

V* „ m i/ * fcosO—/Afsln2© 

(67.13) 

The quantities a2 corresponding to this solution is 

, fcosO — //isIn-O 
O, — — *iY ßi sln: e (67.14) 
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Solution (67.14) is marked by a tilde % to indicate that it gives the 

zero-moment stressed state. Really, substituting (67.14) into 

equations (66.18), (66.19), we obtain 

7 _ rm ~ _ F 
^ sin1 e ’ - 

^ = «1 

cos e —//? «ln» 9 
Ã1 sln»e * 

/Wj " hl •— /1J (67.15) 

In this way we arrived at the conclusion that far from places of 

pronounced change in loads, i.e., smoothly changing right side, as 

the particular solution of the basic résolvant equation (67.2) we 

can take zero-moment solution (67.14). Note that when there are no 

concentrated effects in the pole (P.=/W. = 0). and there are only a 

distributed load and load on edge 0^, zero-moment solution (67.14) 

and forces (67.15) because of (66.6) remain bounded even at 0 = 0. 

In this instance zero-moment solution (67.14) can be used as the 

particular solution of the basic equations also for small 0. 

® * Solution of Uniform Résolvant Equation 

Let us pass now to the solution of uniform equation 

4^+^0^ + ^(2^--^) = 0. (68.1) 

By the substitution 

°2 == "iTnW <T*' = * Í* + 1). 

ideóse. 

it can be brought to the Legendre equation 

— 1) y" + 2!y' — n(n-f-l)y = 0. 

Use of Legendre functions with a complex parameter can be avoided if, 

in the same way as in § 59 in examining axisymmetric deformation, we 

approximately express the solution of the involved equation through 

Bessel functions. Setting 

°3 — T/l^sin 0. 

instead of (68.1), we obtain 

15 cos'„ 
4 lln* 0 j ~ 0 

(68.2) 

(68.3) 
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Then with the substitution 

ros’0 

we bring (68.3) to the Bessel equation 

rf’T. ..IÜJL-Ut.ÍI-AWo. 

(68.4) 

(68.5) 

the general solution of which can be taken In the form 

T,=so r. vo)+<*-'*> <68-6> 

Tn this way, the general solution (68.1) Is approximately representable 

thus : 
„ _ ./ZtlM.-lfloMVä ,0)+(4,-18,) H?’ (1¾ )0)] ■ 
02_" V sine lv 

(68.7) 

. , ... of the representation of solutions of the Legendre 
ihe corree n leading to it) through Bessel functions 
equation (or equa Ion (68.1)^ ^ ^ smaU e soiutlon (68.7)j 

WaSId^b^used for calculation, holding In this case terms of order -,- 
could be used for ca retention of these terms 
in comparison with unity. At la g Y 

becomes inadmissable. 

Let us examine a spherical shell without an opening In the ; 

summit of the shell there are no concentrated effects^ =4, « 

The shell is thin-walled and the value of ang ch^ract 

ir.:r. rr; “.r.:1“.“’.“"'.!:* d— », 

pole, we set 4, = 8,--0. In this way. 

,,=(4,-,8,)^(0)+^(8)1. (68-8) 

where we have introduced the designations _ 

ti(0)=/^Rt/,(,^,0). (68.9) 

We use the asymptotic representations for ^notions / (^,)8) and Its 

derivative given in Chapter IV (formulas <06.10 . 06.15), (06.9)), 

keeping in them only principal terms; then we obta n 
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(68.10) 

¢,(0)=- 
y 2nY*mej/2 

-cos 
Kt)- 

¢2 (0) =-77==^=== sin 
y 2.1VSin eil 

^=- ttos ('° - ï) -sln (l0 - y)J • 

55 (0) “ tÄt H (v0 - ï) +si" ('° - ï)) - 

Having the solution of the uniform equation and the particular solution 

corresponding to the right side, obtained in the previous section, 

we compute the forces and moments by the formulas: 

/, = ^ + -1^1^(0)-^ (0)1. 

/2=/2+-^-1^(8)-^(0)]. 

*, = ï, +- -¿r -¡¡ie (8) - (8)1- ( 6 8.11 ) 

^, = -^-1+,^(8)+-^(8)]. m2 = \unv 

A, = - Ri\~A (9) -+ (0)). 

Circumferential deformation Cj,,) and function have the form 

e2 (1) — *2 (1) "+ £/T l^T [^,^2 (8) (8)] ’ 

^2 = ^,(0)+-^(9)- 

(68.12) 

where 
h (i) — ~£k (¾ — ^,). 

In accordance wtih the accepted accuracy of calculations during the 

derivation of formulas (68.11) we dropped secondary terms, for 

example we took 

R (TV, R dVt 
— '"a“ l^lg- etc • 

Radial force A, we determine with the aid of the first equation of 

statics (66.2) 

A, =/, cos 0 + (h, 4-sin 0 = --^¡V + (5> + ^) * 

where, taking into account formulas (68.11), (66.19), we can set 

and 

8,-+-^-^/,,. i,H if"1,0 

a, = Ã, + -¿r ~\A& (0) - fl.t, (0)1. 

(68.13) 
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where 

h, ==7, cos 0. 
(68.14) 

§ 69* Determination of Constants of Integration 

With the aid of formulas (68.11), (68.12), (68.14) we determine 

the stressed state In the neighborhood of edge dQ. On the edge act 

radial forces and bending moments with preassigned amplitude A« and ml 

The shell is loaded by a distributed load smoothly changing along the 

meridian. Inasmuch as we are looking for the stressed state near 

the edge, where it is held that I. thr i we have no interest in 

whether or not there are concentrated effects in the angle. The 

case when ïOo has the order of unity and it Is necessary to take into 

account the mutual influence of the edge and pole in which there are 

concentrated effects, was examined in § 72. Requiring that at shell 

edge 00 the equality 

would hold, according to (68.14) and to the fourth equation of 

(68.11), we obtain for determination of constants At. Z/, the system of 

equations : 

(Go) - i?,<du) = 2\’2Sin 90 W - ÀJ). 

^(00) + 0,^(00) = -¾^. 

Solving it, we find 

A = { 2y*sin Oo (A,0 _ ÀJ) [co, (y0# _ * ) + 

_+sin (Y°o- co*(yOo-i)}. 

ß, = /2.TYsln0o V2 12Y,sin 0o(h°t _ ÂJ) [cos (Y0O_ £)_ 

- sin (Y0o - y)] + m'¡ sin (Y0O - -J)}. 

Substituting these values of the constants into equations 

we find the forces and moments in any cut of shell 

h‘= **+ TirTv {(¿-À?)sinOot(V(»0-0)) + 

__ +ÏSqv(0o-0)][. 

/n'= r "Sr {~y(/!'~ sin0>¿iv(¾-0» + 

+ ^,917(00-0)11. 

(69.2) 

(69.3) 

(68.11), 

(-69.4) 
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*, = ?, + cge ]/ {{li°t - hl)sin M» IV (Oo - 0)1 + 

+^™;;iY(e0-e)]}. 

=?2+2Y W -^'Jn 0-°IV(0j-0)1 - 
[)-(0,-0)]}. 

and also deformation e,<,) and the quantity 'F,: 

u. = î. u, + 1 /!t 1« - ÏS-I» »-0 IV(fc - 0)1- 

-im>|ï(0.-0)]}. 

= 2y- }f ~0- { - (/'2 - *2) sin OjT IV (00 - 0)1 + 

+ ^m?OKY)(Oo-0)]}- 

(69*4 
cont.) 

(69.5) 

Here have been introduced functions 0(x). £(*). $(x). already found earlier 

during the calculation of cylindrical shells (formulas (27*5), (27.6)), 

which should be calculated at x=*Y(0o —0)- Comparing equations (69.4) 

with the principal terms of equations (60.14), (6O.15), it is simple 
to be convinced that in the principal terms the analogy between 

stressed states during axisymmetric and bending loads is kept. 

Formulas (69.5) at 0 = 0O give 

e2,.)- = T¡r [(^ - Ä«)sln ö» - -¾ mï] • 

^-^[-W-Sasineo+ÿ«;]. I <69-6) 

Formulas (69.6) coincide with (60.13) if in the latter we discard 
quantities of ordery. and in (69.6) replace 

(¿2-£2) by w2- by 

m? by AfJ, vf2 by -£A0? 

§ 70. The Stressed State of a Heavy Hemisphere 
with Horizontal Axis 

We will use formulas (69.6) to determine the bending moment and 
radial force in a fixed section of hemisphere ^0o = -£j. subjected to a 

distributed weight load qx — q- The total reaction force and moment in 

fixed section and jM0 are determined from conditions of equilibrium 

of the shell as a whole. At qs = q 
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at G0 = y 

Vl „ V-:. q cos 0. 7, (1) = — Ç. ?.(« = ? sine. 

Pq (0) = ‘IxqR1 (cos 0 — cos Bq). 

M' (0) = 2*qR} ^ (sin! 0 — sin10^ + cos 0 (cos 0 — cos B^j. 

P0 — 2aqR* ( 1 — cos Oq). 

M0 =-^^-^,(0) = 

= — 2nqR* ^(1 — cos Oq) cos 0o— -j sin’ 0oj. 

P0=?u7«î. M0=nqR*. 

Forces of the zero-moment state are equal to 

!!=-&• ¡5“^+**- 

In the fixed cut should be held the equality 

^=^ = 0. 

or 

2y /.-, y o\_+i*) M* 
Eh r* ~k i)~ Eh JÍF 

qR 
~eT 

■Aî+^*î-°. 

(70.1) 

(70.2) 

(70.3) 

whence we have 

AÎ=-^[o+H)^V+^]. ^ = + (70-4) 

A local rise in stress near the edge of the shell induced by the 

introduction of bending moment m®. is simple to estimate by comparing 

the amplitude of bending stress 

,i <n 
. G'"? ,/3( Mo 

— - “hT = í K T^¡T l(1+^-53^+-^-] (70.5) 

with the amplitude of stress of the zero-moment state 

o, 
Mr. 

1 (1) = -/-- TfFh' °2<»—T —* ' 

Ma 1* (70.6) 
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§ 71. A Cphe leal Dome Under the Action 
of Concentrateo Force and Bending 

Moment in the Pole 

Let us designate the stressed state In the neighborhood of the 

pole of a shell In which a^e applied concentrated tangential force 

P, and bending moment M. [91], [92] (Fig. 33). For simplicity we 

assume that distributed loads are absent /^(0) = ^(0)==0. On edge 0O 

acts a system of edge loads statically equivalent to force and 

to moment M0. which are connected with P,. M, by relationships (66.5). 

Inasmuch as now we must construct a solution adequate in the neighbor¬ 

hood of the pole, we use the basic résolvant equation in the form 

(67.3). Let us pass from equation (67.3) to an equation with a 

regular right part using the replacement 

— jjT 4 cos b — fR sin- 0). 

(71.1) 

As a result wo obtain 

/.,(0,)+0,(2^-5^) = 

= 2/f* (F cos 0 - JR sin’ 0) + + 
^ ^ (71.2) 

+ -^-1,(5005 0-/^51^0). 

The last term of the right side of (71.2) can be discarded in 

comparison with the first as a small quantity. The second term cannot 

be neglected. It has a significant value in the neighborhood of 

0==0- Really, since the term containing /(0), in the first item at 

0=0 turns into zero, the main role in this instance is played by 

the second item. We will consider the equation with the right side 

equal to 2y?/0,(0). where 

(O) = -£(5cos0-//?ita*O + -j£ ^(i -^/flcos’O. (71.3) 
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(71.4) (F cos û — JR sin- 0)o„ . — (/cos10),,..,-= n 

The general solution of the equation we write out, keeping in the 

solution of the uniform equation the term having singularity in the 

vertex namely: 

o, = (/), — + ^*2) -f* Mi /52)(Cj + C4) "I- 

^-(1 + ily SÏF?) [r C°S ° ~ ÍR SÍn: 9 + W 0 -rtf*™' 4 
(71.5) 

The following disignations have been introduced here: 

;3(0)«}/ Re ^ ^ *'*(v)] * 

;4(0)=]/ V^)=-]/ 

? = Y0/2. 

Constants and P, we determine from the condition of finiteness of 

the solution at 0 = 0. Since 

rti,) (X) = /;(X) + ¡2/2(*)In J — ( 1 + tf) + •••]. 

where the points indicate terms of the order x- and above, then to 

execute the imposed condition it is necessary that 

M2-/ß2>^=0'(r) 

and, consequently, 

(71.7) 

As a result of the choice o3 behaves in the vertex as Jk 2/^lnJ£7v« j 

In this way, o3(0) = 0. 
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! Returning to variabxes V v it- u 
v3, it can be said, that 

* * 2 ' 1/?* (71.8) 

Taking Into account this, on the basis of (66 18) <f ^ 

that f0r0eS and bendlr'g “S - - ^ve 3ing;iai.i¿;9s o" t“entif0rm 

(3-fM) p. 

_ >-)» p, 

' "" *• t . (1_ll) 

nPS-^ •••• (71.9) 

m, = - ÍL-H') ». 
1 4.1AU ■+* ••• 

1 4.1¾¾ ^ • • • • 

«,= -Ü±ü!ií. i I a*ku -r - ... ; 

J 
(71.10) 

In expressions (71.9) terms of the form •« k 

-t, since for their consecutive calLLttn it7 

In the right side of (66.17) the term neCeSSar'1, t0 k^P 

non-slmplified variant of the e ^ ^ 3 
“T and v.. por example XpresBlo"s ^ forces through functions 

. 1 r ¿nr 

' wh/fT + d +M)~ V2] -f VfjCtg0 _ 

S. = —-Î- -L 7(1 -^) yf 
sin U * 2 

_cose 
PJ sin Ö 

etc. 

Then in expressions for /, t s wm _ 
'2' s> w111 appear the terms 

inTo7hp:nn;sst7quaBtyio?:r(6sr:rtutlon of the p~s 

- -se terms in the 0^0:77:77^::7:110^ 
is satisfied accurately 
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However, during the calculation of stress the consideration of these 

items gives a correction in the amount of in comparison with 

unity, for example 

[-iTO+io-J]. it J. 
—T ± T> 2*WhÒ. 

therefore keeping them during the calculation by the theory of thin 

shells is not necessary. 

We will explain the character of the change in displacements 

in the neighborhood of the point of application of concentrated 

forces, s'rom (16.1) and (66.11), (66.15) it follows that 

or 

(71.11) 

On the basis of (71.11) we easily compute the amplitude of the 

displacement normal to the middle surface, 

R 
W<|> ^~Th 

^,/0+«sine. (7) .i:) 

Here KR designates the constant of integration. 

Taking into account (71.1), we have 

£ Fcòit-fRttfai d9 4 KR s|n n (71.13) 
H2 wn 9 J 

sin I» 
WU) — £Ã 

Since »i'3(0) at small 0 changes in proportion to (PinO. then it is 

easy to see that for a clarification of the behavior of «•„, in the 

neighborhood of 0«o it is necessary to focus the ba'iic attention 

on the second term in the subintegral expression of (71.13). 
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Integrating it by parts, we obtain 

Jf (O)ctg0¿0 = /^(0)|„ 0 _ ln (sinQ)dQ 

and finally 

= (O)sinO|n0_sln0 I dQ — 
^ J sin« 

— sin 0 j [-^r In (sin 0) -f //? sin üj dO -f KR sin 0. (71.1^) 

Slnce is Proportional to sin0. then from (71.14) we find that at 

small 0 wu) has the form 

tc- M 
<»> = TÎF/Î0ln0+--+^0. (71.15) 

where 

o = Eh* 
12(1 —n*)' 

The term containing constant of integration /f. is kept, since becaus< 

of the replacement of this constant (71.15) can be brought to the 
form 

m M 
<l> 4n¿) 1*1 (^0)+...-J-/fj/?0. 

(71.16) 

The amplitude of displacement in the meridian direction is found 

using the relationship 

1 du0) __ *(I, 
7? de —em> ~TT (71.17) 

Integrating it, taking into account Hooke’s law and formula (71.9), 

(71.14), we find 

4,(0 r= nEh ~ In (RO) ... -f /C/? cos 0 + R2R, (71.18) 
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where K<¡ new constant of integration. 

The amplitude of radial displacement is calculated easily using 

the first formula of (17.3) 

\n)==“<i)cos0 + ti'«nsin0== 

= — n)(l -f n)ln(/?0)-r ... -4-K7?-}-Ky?co*0. 
(71.19) 

The amplitude of circumferential displacement has the form 

(71.20) 
V«,=*2U, « sin 0 - A,u) = -¿inr (3 - 11X1 -Hi) m m + ... 

For clarification of the sense of the constants of integration K 

and K2 we compute even axial displacement 

A*<n = ü<i)cos0 _ sin 0 = 4¾ ^0 ,n (Ä0)+ 

(3 - ji) (1 + H) «O ln (RQ) + ... —K2R sin 0. 

From (71.19), (71.20) it is clear that K2 is the rigid rotation of 

the shell around axis OY. and constant KR is rigid displacement 

in the direction of axis OX (see § 18). 

Introducing the designation we note that in expansions 

(71.9), (71.10), (71.18), (71.20) the main terms coincide with anal 

ogous expressions for forces, moments and displacements in the 

plane problem and the problem of bending for a flat plate during th 

action in one case a concentrated force in the plane of the plate, 

and in the other of the concentrated moment causing its bend. For 

both a sphere and plate is obtained 
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We examined the behavior of the solution (71 s') 'n fh 
0 = 0. Tt . -Lutxon ((1.5) xn the neighborhood 

It is not necessary to speak of the behaves at a great dis 

tance fro» the top. At iarge vO functions decrease „l n 

an increase In 0 as .-. and the particular solution dl , on 

the zero-moment solution by only a small member. Really the J 
tlcular solution Is equal to "eally, the par- 

°i=-pr(f to. 6-/« sit,! 0)-(1 

cos e-//?sini0 , 
V L FTÍÍPll-(I -íl)¿/cos50j. (71.21) 

Oolng to function o,. on the basis of (71.1) obtain 

o,= 

-(1 -H)4S-. V. = -l£?.s*-/Ksin'e 
Äsin~ü * ^lüiîë—• 

~ (1 ~ 1°- 2/Y? ^O-^sInie ^sln-0 > /?• sinJ 0 

When sin0^>0 (71 21) h^ 
U1.21) d-ffers from o, by only the small term. 

eonditlons^^the^dg^'t) ==e SOlUtl°n (71-5) determined from 

describes the edge effect connected „1th edge f Thl 

represents a singular edge effect In the neighborhood of o-o 

The strÏ the PreSen0e °f -- -‘-n in the ^ . 

effectsT , 3 Very thln and T0" iS rather lar^> the edge 
, „ loeallze themselves each in their neighborhood, m this 

-ns anee constants A,. B, can be determined by setting .(6)-.,6)-0 

anuythe stressed state In the neighborhood of edge 0 = C “c“a ‘ “ ' 

computed, with the formula of (69.11). 
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§ 72. Consideration of the Mutual Influence 
of the-EdKe of the Dome and a Concentrated 
-Effect Applied in the Foie 

Por a shell which is insufficiently thin (y small) or flat 

(0 is small) the determination of constants A,. *», from the edge 

conditions at 8 = 0, must use the general solution In the form 

O3 = + 2/v^3 = Ml - lB¿ (£. + £*) + 

-f 2y2(1 — 

+ ■£('+ WITn’T) [f “» e - /« sln*9 + • 

(72.1) 

With the aid of (71.1) going to functions «F,. VV we have 

\y2 = A& + - 2y2 (1 - JO -4^ 5» + 

+ -^^).54-(1 •*) KkinJ0 
/co** 0 

(72.2) 

2Y2V, = - Ö,;, - 2y2(1 - J») ^-5, - 

- i {F (0) C0S ° “ 7 (0) R SÍn? 01 

(72.3) 

Apropos of the last member In the right side of (72.2) we can say 

the following. It is essential only in the neighborhood of 0 = 0 

at />.*0. At large 9 and no tangential force this member in compari 

with the zero-moment solution is small, as ¿ in comparison with 

unity. This lets us, without hurting the correctness, replace in 

this case 

w ' -«or. n*’ r ifh in the neighborhood of 0=^0 one In examining the hanavior o. ^ 

should bear in mind that at Ai. —o. . 



has the mechanical sense of moment of force ¿V calculated 

relative to the center of instanraneous section 0 —const. Therefore 

at 6 = 0 this quantity is identical to zero. To avoid misunderstand¬ 

ings it is convenient to combine the last two members in the right 

side of (72.3). Taking into account our remarks, we have 

y2=A&(6) + 0,^(0; + -¾ M.C, (0) - 

(72.4) 
2yV, = ¿¿2 (0) - ß.C, (0) - 2yj (1 -10 ^ ^ 0) - 

— -jïïtô [^r si"5 0;3 (0) 4- (/7 cos 0 — ;sin2 0)J. 

In this case it is useful to remember that in the neighborhood of 

0 = 0 exist the representations 

On the basis of (72.4) and quantities (66.l8), (66.19) let us compute 

forces and bending moments in the shell. In this case in quantities 

(66.18) we discard the terms and JL. since when 0 i <5 ./A 4v' //A ’ 0 4v‘ «0 4y4 «/O ' -1-0 

small, they are of the order of in comparison with the basic 

terms, taken as unit. In either case, taking into account the 

correctness of the solution, they cannot be held. 

We have 

(0) - ß,;, (0) - 2y; (1 - ||> -¾ Ç4 (0> — 

cos 0 —//?sin?Gyj| — (72.5) 

F -\- f R cos 0 
H: sin b 
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h — A\ -V 1*=»- 4 

(î-M) 
4Ä 

0) + ::(0)ci£0] — B, ^5 [;i ,0) -f- C, (0) cig fl] - 

(0) -h clg «. (0)] — ;li< [ç' (0) + c<g o;, (0)j + 

m* = 17 { -4i [Ci (0) + (1 + H)ctg o:, (0)] 4- 

4- Ai [C2(0) + (!4-ji)rg0;2(0)]4- 

+ [Ci (0) + (1 4-n) cig 0U0)] — 

( 1 ~ M)-^r[C3(0) 4-(1 +M)ctg 0^(0)] 4- 

/? Í r ^ 
mj=iF i-41»*« (0> +0+1*) c<g o;, (O)] + 

+ fli [»‘Ci (0)4 (ï+M) cig o;2(0)] + 

+ ^-^. [mCÎ (0) + (1 + }1) cig 0^ (0)] _ 

— 2y? (1 —A (0) + (i 4- ji) cig o;3 (0)] + 

+<I-w4[^-(1 + W-£WÎ]}. 

íy* km U (0) + Ôiîj (0> + ^Ç, (0) — 

-ÎV’O 

Let us stop in more detail on the calculation of shearing 

On the basis of (66.19), taking into account differential 

(63.17), we can write 

^ + to, 0-/., iln’0, + i («CÜ -¾. +^1). 

Substituting into this formula the expressions for Vt, Vj 

accordance with (72.4), and dropping unessential members i 

example, A.[rt<»ir'/m _i. 2M°>1 , , 
«v4 l ,g0,1 w + J in comparison with ^4,^(0) etc 

obtain 

(72.5) 

(72.6) 

force nr 

equation 

in 

f 'r 

• j) » we 
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(72.7) 

«. * ¿3 v8) - ß.C, (0)] - (i _^^(0) _ 

Functions C,(0) and ÇÍ(0) are expressed through (g). ^(¢) (y = Y0Vr2) 

(/=1. 2. 3. 4) in the following manner: 

(72.8) 

§ 73» Weakly Distorted Circular Plate Under the Action 
of a Bending Load 

In §§ 64 and 65 we considered the deformation of a thin spherical 

shell of small curvature during the action of an axlsymmetric load. 

With the same assumptions in geometric dimensions we will find the 

stressed state and deformation of shells under bending load. Let 

us assume that the shell is loaded by distributed load 

9,(l,cosq>. i2(i>sin<P' and by edge effects, equivalent to force *Y 

and to moment A concentrated influence in the center is absent 

(^.= ^1. = 0)- On edge O = 0o are assigned the amplitudes of radial 

force and bending moment 

(73.1) 
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The basic functions V2. 4'„. through which are expressed all forces 

and moments (formulas (66.18), (66.19), have the form 

2 = ,;,(0) - 0,:, (0) -f 2vîV?a. 
(73.2; 

where V'j is the zero-moment solution computable by (67.1^), (66.16), 

functions C¡. :, are determined by the expressions (72.8), in which 

now we can set /0>in0^1. and constants -V Æ, are determined according 

to boundary conditions on the edge 0==0,,. Setting cos0=sb1. sinO^O. We 

have 

m, = —I- W — ^i£i2 (?)!• 
(73.3) 

ft, = A, + 2^5-1 - ¿1*21 (?) + fli*22(7>l. 

(73.4) 

where 7, is calculated using the first formula of (67.15). Note 

that load functions /^0). /(0). determined by the relationships (66.3), 

(66.4), in the involved case use differences of close amounts. 

Therefore during the calculation of load terms more accurate repre- 
02 01 

sentations of cos0=l—^-4-....5::10 = 0-^754-... 

Edge conventions (73.1) give for determination of Bt the 

system of equations 

¿,*,1 (?0> + bi8u (7o) =* - «?. 

(73.5) 



where 

'YOg/2. À'sïs- 
* nX'0¿ 

MtR 
3iaJ (73.6) 

Solving it, we have 

" 'ïttJ [~ 7¾ W - « - *9 2> V„ (¾)] • 

S| mÍõ [(*’ ~ *!) (».) - -¡^ «;«„ («,)]. 

^ (<7o) “ ^11 (?0) ^22 (io) + ^12 (9o) ^21 Í7o)- 

(73.7) 

When ç. insignificantly exceeds unity, using expansion (64.1) it is 

simple to calculate that 

rr (0)-y’-Ste + M) ■ VT-4(9-fn) 
*uW^ 2* • 4l • 3 +2^^6^78175+ •••• 

el2 (9)- 

^2i(?) = 

y (3 -H M) i 4* • 3 (7 -{- (i) 
2?.2 

4* 
’ 2^77 

2*.4».6*7T~' 
_«•■s 

^22 (i)- ^‘■4_ 
2* ■ 4* • 6».8».5 * 

^) = !Íí3 + mW, + _Ü_£±!í\ 
W 5» r ^ 4».6* S-t-i»;’ 

(73.8) 

In terms of the found values of constants /1,.5, we compute the values 

of function and circumferential deformation t,,,, 0n the 

edge 0 = eo using formula (73.2) and the formula 

fACj,,, — E/iZ, -f 1 [Ci (0) + ^ C: (0)] — 

-5,^(0) + -^=^^,(0)]}. 
(73.9) 

where 

Ç (0)-^ (l-M) :,(0)= 

= - V ^ - iii!i ,, + lil+ï! (?)] ^ 

¢:,0)+^^(8)= 
(73.10) 



Cî'l)— -¿(/,—Jl^). 

ç ffo we have 

VJ/O _ mja 
013+1Ï)- 

'-¡-TW W-ÜTl.’e. 1 + 4 
i+4ttü *; 5+7- 

e? 
^ (i> 

576 3 -j-|i 

mia' 
¿¿>(3+ ,.)/? 

> + *o 
960 

376 Í+]T 

, , ffí 5+l» 
1 + 37bTTiT 

+(^«-«'+4^4 
£A T» c í—*• 

II fo 5 + H 
+ 3t6 T+]T 

Relationships (7í n} r»an i , p wj.ii ) can be solved in m®. aJ—ã«; 

-- 

(73.10 

cont’d) 

(73.11) 

Fkf.» ro \ i _l íoW+l») 
i^jüj lia) 1±W(3+iõ L 

,ír'" ~rfTií?-+ 
^ 288 ~gi-Hr 

»o(9 + 2m) 

1T(3^ 

9ò 26 — J» — n* 

. , lí 15-M1’ 
,+M-rqrr 

• ~rinn^?-+ 
+ 288 -9trj¡r 

, j Íc(9 + 2h) 

288 T— u«- 

(73.12 

-----•>—......... 
example, for a rigidly flxe! “ ^ Reformation of the edge. Por 

rigidly fixed edge, when ¢,,,=1-.= 0. We have 
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figo, 
3—H 

£Atj 
"6(3 —(i) 

H 

1 + 

?2(4 + m) 
’ 288(3 + !.)" 

ffo 15-|i2 
288 9 — n* 

. , ¢:,0 + ^) 
+ 7¿0(3-fiQ 

, , <lo I5“t*2 
'+WTrïïr 

(73.13) 

Let us return to a shell with forces A’, and moments assigned 

on the edge. We compute the bending moment and radial force in the 

pole of the sphere, i.e., at 0 = 0(0 = 0). on the basis of (73.4), 

(73.8), (67.15) it is easy to see that 

m, (0) = 0. A, (0) = A, (0) = 0. 

since in the absence of concentrated forces in the pole the equalities 

/(0)-0. /7(0) = 0 exist. For calculation of ^(0) we use the expression 

*2£i)]* 

where 

We derive 

= ~ V /2(- 

= — Y Y2(— y.-p .-g- + 

q • 3 
FT 

0'-37 
2». 4». 6*. 4 )• 
_<?T-4-9 \ 
i1 • 4* • 61 • 8* • 5 / ' 

(73.14) 

(73.15) 

1,(0)=7,(0) q.^R. 

Using (73*14) and (73*7), we compute the value of the amplitude of 

circumferential force at 0 = Oo 
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(73.16) 

'j 
ml 2(l-n-) a% 

/^(3+7) 

1 + «0 

960 

., ÍÍ 5 + »t 
,+3rë J+ïï 

, , 4 (37+St» 
, Tí’S (3 -t- II) 

+3K_»3. L±J. 

,+3^ 3TÎÎ 

From formulas (66.19) it follows that 

«s+ ^ ci2 oa ^ |1«Ï+-^^- 

consequently, 

m2 = m? f‘+. 
l-l.» 
3 -+•>* 

1 + io 576 

Í + 
«î 5 + 1» 
576 3 + (» 

6(3 + n) 

» + 
♦1 
960 

1 + Í3 m 
5 + 1* 
3+1* 

(73.17) 

Determine the amplitude of normal displacement Setting in 

(16.1) R1 = R2 = R and taking into account that v=/*sinO, we obtain 

*<i> 
sind 

sin0 d ( W(i* \ 
“TTTõl sind/’ 

(73.18) 

where K — constant of Integration. 

Because of the smallnesses of 6 we have 

V0 »T 

J "T■¿rRe J jlAi— 
(¡0 

(73.19) 
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Taking int0 
consideration that 

« _ /■ (q 4-- = 
qV'i 2 ! 

, it\ 19) to the form 
we bring (73. 

J_i- \iSqY 
iq 

\ iUn) 
— q q 

;* « i,lu 
(73.20^ 

l8, (73.20) It follows that 
Prom (73.i°> > v' 

» . f / -i 

rr 

«.. »« r‘“iu ” 
Selecting the constant * 

obtain 

* .1, 
(73.21) 

are calculated in 

;he values of constants ^8" "functions ^ tS 

iccondance with (73.7),^ durlng calculations 

taKen from tables. I 
roughest approximation, 1--. 

.,,,. ri-ji íím-íír—^^- 
it tfo) __-1Í-4--= irrpTe • i* q 
~1T ’ 

_ the first term, then for the 
/71 Q) keep only ^ne 1 valid for 

and in expansions (73- approximate formula, 

calculation of «* ° lnsignlfl0antly exceeding un V 

small 1 (or « any 

IdõVv) 
_îî?î_(i - 4V 
20(3 + ^ V «0/ 3 + ,, t\ 

(7+1’-)(1 - ^)v «*»' — - “ 7^1 n N 

r 7? .22) 



or, taking into considération that /?0 = r. Ä0O=«. 

2(3-i-m)0 (1 «’) 

-W-*3^Âî('-■&)('- 3+1» £\ 
7+h a*)' (73.23) 

§ 74. The Bending of a Vertical Weakly Distorted 
Plate by Its Own Weight 

As an example let us examine a weighable vertically positioned 

spherical shell (axis OX is directed along the vertical to the 

ground). The components of the distributed load are equal to 

ç,(1) = pc°sO. ¢,(,,=3-/>. f„(U = />sln9. (74.1) 

where p = ph.p - specific weight of the material of the shell. The 

load functions have the form 

y (e) == + (cos e0 — CO* 0). 

f (0) = + (cos 0O — cos 0) + pR' (COS 0,—cos 0)*. 

From the conditions /(0) = 0. F(0) = 0 we determine force P0 and moment 

.\10. which balance the weight load: 

P0 = 2a pR-(\ — cos 0o) =¾ pivP. 

M0—XpR3(\ — COS 0o)3 ate 

Let us assume that on the edge we have the values 

(74.2 



These conditions mean that a reaction force on the edge - is 

created only because of the radial forces A^cos<p. 

2n 
j A’cosç • cos «fa </ç = — P9 
u 

and reaction moment M<¡ is created only because of tending moments 

«?cos?- From equality (66.2) and conditions (7^.2) it follows that 

in this case on the edge the combination of tangential force and 

twisting the edge is equal to zero-moment. 

and the amplitude of the axial force 

(^ + 4)^0-^00 = 0- 

Thus, it is necessary to calculate the shell under a load (74.1) and 

edge conditions (74.2). In the pole of the shell forces and moments 

are equal to zero 

(0) = (2 (0) = m, (0) = 0. 

Circumferential force and circumferential bending moment in section 

e = 0o is computed according to (73-16), (73-17). In this case one 

ought to have in mind that in the involved case 

pa. hV 
M'R 
aa’ 

Pa 
4 K- ■hi¬ 

nt 0-3, _ pa* TÏÏ <$■ aa* 
5 

pa = pa. 

Taking into consideration that 

12(l-nha,e. -4 
Rh* 

339 



ami assuming 

we have 

i + 
«2(37 + 51») 

1728(34 M) 

VÍ 5 + 1* 

fj 22+* 
'' + mssir- 

/0=.-pa [l 
«2 5-1.1 

384 3+hJ* 
(74.3) 

m'i 
, 1-H*\ , P<? , «2(2-1») 1 

““ur 8« T+îrl1 + i440(a+R)J- (74.4) 

As a second example let us examine the same shell loaded by 

load (74.1), but fixed at the edge. Reaction forces A,' and moments«“ 

are determined from formulas (73-13). Taking into consideration that 

*§<i>==,'¿rJT'(5+,A)* 

we obtain 

n 
Ipa (t 5 + 1» «J 

]» "2304 )• 

m: o__ 
, . «2(9 + 21») 

pa* 5 + n 720f-1 '-ui 

W3irir . . »0 15-.r* 
+ ^588 9 —i»1 

(74.5) 

(74.6) 

The obtained results mean that apart from radial force and bending 

moment in the fixed section there also appear-tangential and axial 

forces equal to 

„ , 2A? , ,n />a(!-|»)T. , 5 + 1» 
*i + T = ^ ^ = 3 -h 11 + (3 — t»)(l —V) TW. 

9o 
(74.7) 
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I . h\\ ptP m0¡ 

+ T jcos eo - ^ $in eo = -W -1- T = 

/><»*(13 —7n) ( (5 1<) (21 6n — n*) 1 

“ 24/?(3-n) 1'(13 —7(1)(9 — ns) 1440J’ (7'4.8) 

§ 75• Weakly Distorted Circular Plate with Concentrated 
Tangential Force and Bending Moment In the Center 

In §§ 73 and 7^ we considered a shell not loaded by concentrated 

loads In the center. Now let M0*o. l.e.. In the center are 

applied concentrated a tangential force and concentrated bending 

moment. We will solve the problem approximately by dividing it 

in half: 1) the solution to the plane problem, 2) the solution 

to the bending problem allowing for the presence of the plane 

stressed state [9*0. The correctness of such a solution was already 

discussed during analysis of axisymmetric deformation (§ 6*1). 

The equations of equilibrium of the plane problem have the form 

of 

(rti) — “T‘ + <0 f = 0' 

+ si ~ ^ + Ÿ2 id r = 

Forces V t7, are connected with deformations by Hooke's law 

e2‘|> = T^^î —e'—— ^ £a** (75.2) 

Deformations are expressed through displacements in the following 

manner: 

¿»(d _ «(i) + w(i) 
ei(i) —-5T’> *2(1)— F 

rft>(l) «(„ + «>,,) 
-1)--57-r • 

(75.3) 

System of equilibriun: equations (75*1) admits a decrease in order 

by one unit. Really, from (75.1) it follows that 



r ((i ~ si)+/ (0 =* 0. 
(75.4) 

where 

f 

/(r)satlT+ ¡('"»-Itirfrdr. 
m (75.5) 

r t0 the flrst 

<«-) », ln the exP;e:sl50TL ;1 ;:er; equation or 

th- they will coincide with (7 , T75 ^ 7 
(75.D now we can consider, for example, thL’Jste”' °f 

dr (r/l) — t3+sl+qi (i)r =, q. 

r (^i *,) ~i~/(r) = 0. 
(75.6) 

~ :: “ ---- -- 

rtl=y-/w. 

rst = V. (75.7) 

The elation of continuity of deformations Is derived easily from 

dr ("î (1)) — V(1) + e, (I) -I- e, (1), 
(75.8) 

moreover with the aid of (75 2) u- u 
U5.2) it can be written in forces 

¿r ("j ^,)-2(1+^),, _(, _„)(/i +/f)w0 
(75.9) 

Substituting expressions for forces (7* 7\ v 

the equation for determination ^ 
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d*V . dV 

'—0 - M) / (0 - ^ - r [-^ (¾ (,/1) - (1 -fi) ff, (1)r]. 
(75.10) 

Equation (75.10) must be solved under the edge condition 

(75.11) 

where <? is a given value. 

If «¡ = 0. then this implies that total force is realized only 

fromU(7i°Mtangentlal f0rCeS ^ the am0Unt °f Whl0h ls sl,nple t0 flnd from (75.4), setting r««, 

forces0nditlOR (75'1:L) eaSlly Can be exPressed through function of 

V{a)*=V0=:afix+I±. 
(75.12) 

ty ZZT\TT0n We haVe the requirement boundedness of 
write the solution of equation (75.10) for a particular 

form of distributed load Particular 

01(1) = 0. 02(1) = -0. 

The right side of (75.10) in this instance 1 
s equal to 

The general solution of (75.10) has the form 

Setting C, = o and satisfying edge conaition (75.12), obtain 

K-ÍÍ1+V . JLzjI p. Í, » ^ + 4 ITl1 - 

(75.13) 

(75.14) 
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Hence, taking into account the condition of equilibrium (75.13), we 

obtain expressions for forces: 

t —¡or (3+i*) p (1_M 
h ri a »U UJ' 

/2==/î‘T' + ï(3 + ^‘^rr + il — ^ 

'.=<Î7 + Â+<' 

(75.15) 

In the particular case when concentrated force is absent P.**0, 

P0= pna*. under the edge condition 

(which corresponds to condition (74.2) for a shell) using formulas 

(75.15) obtain 

to=*-po. *î*=0. \ (75.16) 

/® = — pa. /, (0)-=^(0) = *, (0) = 0. j 

Comparing (75.16) with (74.3), it is easy to see that the absolute 

value of the amplitude of circumferential stretching forces on the 

edge of the shell amounts to (.-4¾) °f ^ ^ ^ a 

flat plate. When the edge of the plate Is fixed, the following con 

dition should hold 

/® — (I/J 0. 

I *- 

Forces on the edge are equal to 

•i 
(1-1») (75.17) 

It is easy to see that the right parts of (75.17) coincide with the 

principal problems in (74.5), (74.7). In the last equations members 

containing < are the correction to the plane stressed state which 

corresponds to consideration of curvature. 



Let us pass now to the solution of bending problems allowing 

for the presence of the plane st-essed state. Equations of 

equilibrium have the form 

where 0> 'IT 

(r»») + «a - (/i+ ^ 0 + <,>f “ 0' 
= m2+Ai. rn^^r -¡f -t* 2Aj «j. 

(75.18) 

From bending of the plane plate they differ only in the 

presence of the term - + where '..'2 are already known functions 

of the radius, found earlier with the solution to the plane problem 

(75.1) and taking into account relationship (75.4), it is simple to 

exclude from (75.18) the quantities /,. «2- In this case it turns 

out to be possible to integrate the obtained differential relation¬ 

ship which connects the quantities A,./, and external loads. As 

a result we obtain 

r*«, — m, — rA, = + F (r>. (75.19) 

where 

F(r)> !^rIrf(r)dr ~ Í [*•,,>r* dr' 
(75.20) 

Equation (75.19) coincides with the second equation of (66.2) if 

in the latter we set /?sin6 = r. cos0 = 1. Introducing function of dis¬ 

placements 

¿•o, , ®<n 
dr f-T 

(75.21) 

we express the components of deformation *, (0. t(I) through V: 



<rv 
<» — "Sr + T’ K9«i)“'”t( 

w 
(n = 7* (75.22) 

Bending moments m,. m2 and twisting moment A, are equal to 

= D [£+(1+107.]; 

*í“0[|*£+(14m)Í-]. A, = -D(1-h)I.. (75.23) 

Excluding from (75.19) and the second equation of (75.18) the quantity 

and in the obtained equation we substitute for «j. Aj their 

expressions through function y in accordance with (75.23). We 

obtain an equation in the unknown function 

'•£+'£-*■+[++'(4 (75.24) 

Equation (75.24) should be solved under the boundary condition 

(75.25) 

As a second boundary condition we have the condition of boundedness 

of function 4/ at /- = 0. Let us write out the right part of (75.24) 

for a load 

and the corresponding plane stressed state (75.15) 

¿-[4 + f<,)] =75^+ V+V5. 
0+M) 0 

A —‘l I P. . P 

(75.26) 
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In this case we take into account the condition of equilibrium as a 
whole 

^ apa* 
ur (75.27) 

Going to dimensionless coordinate & = £ and taking into account 

(75.26), we represent the general solution of equation (75.24) in the 

following manner: 

1' = C4,+C.r,-^ + ^i>lni+ 

Setting C4B=o and determining C, from condition (75.25), we obtain 

XU- m?a tJ ^ t, O+M).,!. 
w-FWTF)1 —4Õ-11 ~ (Thó^JH- 

(75.28) 

On the basis of (75.28), (75.26) and (75.23) obtain expressions for 

the bending moments: 

, f/?a , (3 + m> P. , P „ 
+lir + _E3rii- + -wJ~T5—^ (75.29) 

m, == «? 6 + 
1 â-t-M 4n« L i + 6j — 

(1 +M) (3 + 1») P.a 

+ 17(75- 

0^(0+3-,1,-1-¾^ 

1 C..V (5+f)(l +3m).T 
(75.30) 

The amplitude of displacement u»(l, normal to the middle surface 

is found easily using known function y. 
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(75.31) 

in this case rigid rotation of the plate as a whole is selected in 

such a way that w„) it would turn into zero at r = e. Substituting 

(75.28) into (75.31) and integrating, we obtain 

At />. = m# = o. assuming in (75.28) and (75.29) t=*l. we obtain 

expressions for the circumferential bending moment and function y 

on the edge of the plate 

(75.33 

The right side of formulas (75-33) coincide with the principal 

terms of the right parts of (73.11), (73.17). Formula (75-32) at 

p. = ¿I. = o completely coincides with (73.23). Figure 34 depicts 

a normal bend ^ = taking place along the vertical diameter of 

a welghable spherical shell, calculated by formula (75.32). On the 

lower half of the diameter ® =*wu). 0n the upper half-^= — t»,,,. 

The shell had dimensions and load: sin0o ==^ =0.344. 0o=O.351, qt = q = ph. 

or 

QBaxqa* - general weight of shell. 
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diameter^306 the w«-lPlate 

is on a shen 

o^r^/irr;^ ^ 
mations of components proportlonllT^T ^ ^°°° and defcr- 

usually by the asymmetry of the eL ' U ^ 

influence of the asymmetric mp 11 ^ ^ ^ 

‘he shell can he very consiaeratle A a lir1"® OTder °f 
ponderable shell located in the vertical Dl ^ °an glVe 3 

shell is balanced by radial forces and h a, Welght °f the 
the lowei semicircumference of the * ^ ^ aPPUed on 

asymmetry of weight distribution in^h OUh’ ^ & °f 3UCh an 
the axisymmetric component (A =,0) and ^ f°rces* aPart from 

r- the- - components of the 0^3::::/::°^0^1 " 
this case the amplitude of the bend • ^ / , C°S*,(*-2- 4’ 6‘ In 

all the remaining components. * ** Can ln magnltude exceed 

».u«. 

law of coskf (sin*,) ,*>2) |82J |95J At su ar eS aocordlng to the 

deformations. Internal forces and . ^ * dlsplacements. 

circumferential direction by the sameTaw:'" ^ 

3^9 



(f!t W, Cp Cjt ^ t Kj, Tt, /"jt fWj* ^|)=a 

~(uià)‘ vi»)- tM*>- fii») Xn*)- x¿i*c ^i- ^2- mt' mr ni)cosky, 
(V. y. *. 5. rt. /Vj)»=(t»u,. YU). tlâ). i. AU). /ij) sin ky. 

(76.1) 

We will v’^ite out the basic system of equations, setting 

/?i = /<2 = R, V = /?sin0 and using for the amplitudes of forces and moments 

lower case letters, as shown in (76.1). In the absence of distributed 

loads (<¡i (*) — ?2<*) ~?•(*) = 0) the system of equations of equilibrium 

has the form 

(sin 0q) — /j cos 0 A |s + ~jp~) nisin 0 = 0* 

^ ^sin 0^s + ~^)] -^2 + (^ + cos 0 -)- n, sin 0 = 0. 

4(, («, sin 0) -)- An, — (/, 4- /,) sin 0 = 0. 

(76.2) 

«,# sin 0 = sin 0-f-(«, —/»,)cos 0 + AA(j>t 

rt,/?sin0: 
dh (*) sin 0 -)- 2A,4) cos 0 — A/«,. 

(76.3) 

The relationships of elasticity and equations of the connection 

between components of deformation and displacements correspondingly 

are written thus : 

IE1 I») + 11¾ (*)!• 

(*)!• 

Y(*j* 

m, 

*(*)■ 

!Olxi 
! D1¾ i») 4- (*)!• 

■D(l — 

1 tduw 
*><*>“-TT\ </e 

^ I») Ä "/f [w(*> + + «<*) COS 0)j , 

1 \dvw 1 1 

Yi*) [“2S— ¡nr3(*“<»>+’’i*)cos 0)J* 

'1(4) 
j f f/ff(4) 1 
"ÄH dV “Wj’ 

1 f COS0 </»•„, ( A*«’,*, f cos0 4At>(„ ] 
^(4)-4- slnj0 H J. 

I r * rftr,,, 

T<*) TV l sin 0 d\> 

4cos0 
lïï^5~w<»> 

+-d<r- 

4- 

{4)+0(4) cosO 
sin 0 ]• 

(76.4) 

(76.5) 
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Equations (76.2) - (76.5) form a system of the eighth order in the 

usual derivatives, which it is necessary to solve under edge con¬ 

ditions of the form of (8.25) or (8.26). Subsequently we will con¬ 

sider a spherical shell without an aperature (dome), on the edge of 

which is system of forces 

r? = f?ros*q>. = s°sintop. 

.,0 , 1 dH9 o . ,.o o . 
W + TTÜÏÏë; "3ir = n cos M^m‘‘cos *?• 

(76.6) 

System of equations (76.2) — (76.5) can be reduced to three equations 

relative to the amplitudes of displacements t\*j. w(t): 

¿<l (ttt*)) + Ln + L13 -|- 

l^n (*<»))+Nn -j- N13 = 0. ^ (76.7) 

/=1. 2. 3. 

where UK N1* - differential operators of the following orders: 

U> N‘J 
i- J-+ i. y-*. 
i 0 i 

2 11 2 13 

12 0 112 

1 0 0 3 2 4 

System (76.7) is a system of equations with variable coefficients, 

where several of them have in the top of the shell a singularity of 

the form ¿j^rg(«=l. 2. 3. 4). Development of a solution to this system 

is facilitated by that fact that as a rule the stressed state in the 

shell is made up of a slowly changing part and a rapidly changing 

component, which corresponds to the edge effect. To evaluate the 

slowly changing component we will start from equations of the zero- 

moment theory. A solution of the edge effect type can be found 

approximately, assuming that it has the form 

«•„, = V'.» 
(76.8) 
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For now we exclude the part of the sphere containing the top. Then, 

substituting (76.8) into (76.7) and dropping quantities of order 

in comparison with unity, we obtain a system characterizing the first 
asymptotic approximation : 

¿0 (u) -j- ¿J* (w) = 0. J 
^(^)4-^(^) + /.^(01)==0. i (n£ r\\ 

31 33 1 33 I (76.9) 
4o («) + /.3 (w) + "^rA/o (tp) = 0, j 

where W is a term with a higher-order derivative in the operator Lu. 

Fo^ 3lrriP^icity subsequently we omit in the designation of displace¬ 

ments the common coefficient (fe), having in mind that e-erywhere 

we are spealing about the amplitudes of displacements and deformations. 

Simplifications allowed auring the transition from (76.7) to 

(76.9) will not contradict the following variant of the system in 
displacements : 

41 («) 4-/^(00=0. 

¿»(«)+ ^(0) +/.°(t») = 0. frj, 
. ( /0.10 ) 

¿3' («)+¿? («)+-¿j- /V" («) = o. 

On the other hand, the last system differs from (in 76.9) in that it 

keeps all terms containing the factors Consideration of these 

terms is necessary in order that the solution remains valid even 

in the area of the top. Prom the first and third equations of (76.10) 
we easily obtain a résolvant equation in vr. 

[N* + 4/- tfL? wr'l }®=0. (76.11) 

By a direct check one can ascertain that to system (76.10) corresponds 

to the following simplification of the basic system of equations 
(76.2) - (76.5) 
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(76.12) -*j (sin 0s) — £/2 + s cos 0 = 0. 

(sin0rt,)-f An2 —/2sln0 = O, 

t¡ = Ehtj. m, = D (X, + nx,). 

S= glL-JÜ-y. ffij^DíXj-f-HX!). A(i) = 0(1 —Ji)t, 

\ ( du , \ w 

1 I dv *« -j- V cos 8 \ 
Y==irlw-inre—]• 

1 d1» „ _ 1 / cos 0 rftr , *}a> \ 
x‘— W d& ' sin 8 </r + slnjej' 

1 / * rftr *cos8 _\ 
T — 'SrU‘nö de sin» 3 

(76.13) 

(76.1^) 

Prom the system of equations it Is evident that the résolvant 

equation in w should be analogous to the bending equation for a 

plate and differs from it only in the consideration of the "elastic 

base," which appears because of the curvature of the shell and the 

presence in it the circumferential forces /,• Therefore subsequently 

we will call this the bending solution and accompany, where required, 

by the upper coefficient (“) (for example, u,a> etc.) Note that 

as a result of the consideration of t7 this solution far from the 

top possess the features of edge effect. 

In explicit form equation (76.11), while keeping in the 

coefficients only the principal singularities, has the form of 

d'w , 0 cos 0 d3w 
■¡hF”*' ¿ sme de3 

2*» + l d2w . 2** + l dm . 
sin2 0 dS» ' sin9 8 " "29” 

+ w(4v4-' -^ÏÏFT1)”0- (76.15) 

Designating by L the operator 

f d* i cos 6 d *’ 
de» ' sin b d0 sln»0 

(76.16) 

and introducing new function 

(76.17) 
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instead of (76.35) we obtain 

¿(0 + 2Y*W“0. ï 

¿(w)-2Y*t = 0. J (76.18) 

This system is easily brought to one equation of the second order in 

complex function 

o = w+i& (76.19) 

rf’o 
~d¥ 

*os8 da 
sin 0 dti + 0(2/7* «¡ñnu 

o. (76.20) 

Let us note that in the work [82] an accurate solution is 

constructed for the total system of differential equations of a 

spherical shell and possesses the features of edge effect. In 

this case a résolvant equation of the following form is obtained: 

Ai/ 4-(1 -)-//)(/ = 0. 

where A designates the operator ^)] and 

/3 = (!-f 12-p-j (l - n2) — 1. Setting in this equation U = U,k)cosk<f and 

ignoring quantities of order in comparison with unity, we obtain 

the equation 

1 dl «dU'"\ “'ii 
«mu </UVS,nü </U /■“«In*«1''*» 

= 0. 

coinciding with (76.20). Approximately solving (76.20) by the 

method already used in §§ 59, 68, we obtain 

o — C, /,(/2/ y0) -f )/^//?’(]/2/ Y0). (76.21) 



where /*. /yj» _ Bessel and Hankel fnn^-n 

number k. Setting C^o. we ob °nS 0f the flrst Kind, 
angle: n a s°iution finite In the 

moment theory. ' ^111^ of 

(76.22) 

zero- 

:«i = 0. 

we have 

IS ($,n ^l) ~ ^ "OS e -f. 0. 

•55($lnes)-.Aya^.tcosg œ0> 

4-/1^0. 

(77.1) 

Prom the third equation follows __ 

be brought to the form ' and the two others can 

-j§- (slns 8Q -f ks sin 6 = 0. 

~SS (s*n*®J) 4-*rsln6 = o. (77.2) 

Let us make a replacement of variables : 

sin3 0/ = T, sin3 0s =, 5, 
(77.3) 

sin0: 
cha ' (11.k) 
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where from (77.^) it follows that 

da 
dO sin U 

1 , 

Then instead ef (77.2) we obtain a system of equations with constant 

coefficients 

£L_as=o. 
da 

da 

solving which, we will have 

r= .4,ctg* -5--Î- ¿¡¡ctg-*-!' • 5=wí,ctg* 2 ^Ctg 2 

a —Eh K 
Fteturning to the previous variable and setting -4,== . Tp • 

obtain a solution of system (77.1), finite at 6 = 0: 

—-5 = -7, = ^-^âPî'8* 2 ' 

7, = -^(1 + 1.)^ **-5- 5,-e"'“5" 

(77.5) 

Using the found zero-moment forces and relationships (76.1), (.76.5), 

we write out the system of equations for determination of displace- 

ments: 

^ + w==Th{t'-^‘ 
u cos 8 + tg sin e __ R (f rf), 

,me^ slnO ^ 

dv »«_ 
dO sin Ü sin 0 

Eh 

V cos ® __ 2 (1 -(- (i) s. 

(77.6) 

The particular solution of this system, corresponding to the right 

parts, we designate ï. ï. and the solution of the uniform system 



ztzzz .T,z:r.,:rr r - --- >•» 

sin ? = i/, 
slnö = v 

and a change of (77.4) to the form 

dV 
-fa- + *i/ = 2,~*. ch* a (1 +\i)K. 

This system of equations is equivalent tn 
equivalent to one equation 

d‘U 
— -J_ e-(*+5)aj (1 + H) 

solving which, we have 

t/ = ^e“*» + 
+Wpt—"](i+M)Ar. 

+4^)---4--^^,, +|1)^ 

Here, just as earlier, we dropped the solution of the uniform 
equation which is irreeular in th= „ , uniform 
variable, we obtain 6 e' ReturnlnS to the previous 

0+M,Ar s,n 9 [70417^-4 + 44^)^-4-] • 
»=0 +u)^,„a[^,e..^ + TM^_ie„^_ 

TüPF^t]’ w = 

(77.7) 
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U(M) — V(M) = V sin 6 tg* , 

^ =3 ~ cos 0) tg* -|- 
(77.8) 

Displacements (77.8) cause a purely moment stressed state in the 

shell, since they satisfy the equations 

ei = e, = Y = 0 

and to them correspond the zero values of forces. Calculating the 

changes in curvatures corresponding to (77.8), we have 

on the basis of the relationships the elasticity obtain 

(77.9) 

Substituting these expressions into (76.3), we are convinced that 

In this way, with displacements (77.8) in the shell there exists 

a purely moment stressed state. In accordance with this displace¬ 

ments (77.8) are noted by (AI). Note that, having taken for the 

basic displacements (77.8), we made the actual calculation of 

deformations and then forces and moments. In this case it turns 

out that the equations of statics (76.2) - (76.3) are satisfied. 

This means that the quantities with (.11) give an accurate particular 

solution of total system of equations (76.2) - (76.5). At *=0.1 

a purely moment state in the shell does not appear, since in this 
instance we have 
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Displacements (77.8) now are the displacements of a solid. Really, 

at A = 0 

ii<ao = ==Nsin0. ®<*> = — AT cos 0. 

Calculating axial displacement, we have 

Ai*0 = w(*° cos 0 — b(*° sin 0 ^ — N. 

Circumferential displacement 

determines the rotation around axis OZ through an angle At 

= = —cos 0). ®i^ = — Wsin0. 

The amplitudes of axial and radial displacements are equal to 

Ai*{i) = — A/sin 0, 

Ai*?) = «líf» cos 0 -f- sin 0 = — A^(l —* cos 0). 

The displacements themselves along axes OZ and OX are equal to 

Ai*l)=»---^vcos<p, 

A^*0 = Ai*° cos "9 — v,M' sin<f = — (1 — cos 0) R. 

It is easy to see that such displacements appear during the rotation 

of the shell as a whole through an angle around axis OK, passing 

through the center of the sphere. 

Returning to the case of ft>2. we note that finally displace¬ 

ments of the shell should be calculated as the sum of three displace¬ 

ments 
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U = «*■> 4- « 4- ulMi, 

c-f 

w = tO(*> -f-tà-J- W(M) 

As already was Indicated, displacements t»(*> are the accurate 

particular solution of a system of equations in displacements (76.7). 

To them correspond the deformation and forces 

fi==ei==Y = 0. 

x, = -xî=-t = AJ »(*»-!) 
sin3 0 

m, /»2 —I — O (1-M) 
/?3 sin3 0 

/,=./2==5 = 0. n, = /12 = 0. 

(77.10) 

Using a static-geometric analogy, we note that there should exist 

also an accurate solution of the basic system, possessing the form 

xj-x, —T —0. a, — n, =s 0. 

(77.11) 

Comparing (77-11) and zero-moment solution (77-5), we observe that 

the expressions for forces and deformations in them coincide. 

Consequently, they can differ from one another only in state•(77.10). 

In this way, zero-moment solution for a spherical shell is the second 

accurate particular solution of the basic system of equations. 

Displacements b(,). are calculated on the basis of solution 

(76.22) by the approximate relationships (76..14), (76.13), and 

forces and moments satisfy the simplified equations of statics 

(76.12). In the left part of the edge conditions (76.6) are the 

sum magnitudes from three stressed states — bending, zero-moment and 

purely moment — while the solution contains a sufficient number of 

arbitrary constants (one complex constant C and two real —K, N) to 

satisfy all four edge conditions. Calculation of the flexural 

component of the solution does not give rise to doubts when 9 is 

sufficiently large. We can verify the contribution of this component 

in the general solution when 6 is small. If we calculate on the 

basis of (76.22), (76.12)-(76.14) forces and moments of the "flexural 

state," using because of the smallness of 0 the following approxi¬ 

mate equality: 
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WÑYoKe»-*^. 

and keep in the zero-moment and purely moment solutions, having 

decomposed them preliminarily in a series in powers of 6, also 

only the first terms, then it is simple to obtain the corresponding 

expressions for forces and moments, valid in the neighborhood of 

0^0. On substituting these expressions into the first equation of 

equilibrium (76.2) we see that it is satisfied in the main terms 

because of the zero-moment solution. The same can be said even 

about the second equation. In the third equation of statics the 

principal terms will be members which correspond to the f exu'al 

solution, while the equation also is satisfied. This fact will 

agree with the fact that in the neighborhood of the angle a certain 

part of the sphere behaves as a flat plate in which there is a 

breakdown of the stressed state into the purely flexural and plane 

state. To determine the boundary of this part of the sphere one 

could use equation (76.20), from which it follows that upon execution 
of inequality 

-ïïhr»2»1 

we can neglect curvature and consider the sphere as a flat plate. 

§ 73* Deformation of a Spherical Shell at 

Let us examine in more detail the case of ft=2 [92]. On the 

basis of (76.22), (76.19) we have 

»=(-/(,+«,)/,(, vT). ,=v8VT. 

^ “Reo=^ [+, <*>+!+; (9)]+ 

+ß. [^)-7+»'(*>])• 
c = Irn 0 = {/4, [fj (q) - i- (¢)] — 

For calculation of forces and bending moments on the 

(76.12)-(76.1^) we derive the formulas: 

(78.1) 

basis of (78.I), 
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(78.2) 

: 

"l" f) (C<E « 

flf«)—*_® íoyt d+ I ft ..\ du¿a) 1 

o i(l-M) /</»<•> \ 
= -ctg Oto<“)J, 

/^ = 0. = 

sln’d )]• 

Tangential force s<al is found from the second equation of (76.12) and 

the last relationship of (78.2) 

^^ siiJi f-ÿ?- J + 

while the constant C should be defined from the condition of 

boundedness of $<«' at 6 = 0. For small 0 we can write 

*“’=^[nrje®<',‘,0+c]= 

=^R*{(- A.+.BOj^rj /,(, yTIfevTM*//!+£}. 

Making the subsequent calculations, in the course of which we 

use the following relationship between Bessel functions: 

I x/2(x)dx = -j [2/; (X) + x/, (x)J dx = -21, (X)-f x/; (X). 

we obtain 

,(.. = i« {_ ± [t; (,) _ A (,)]+ 

+ (78.3, 

For large 0 and correspondingly large values of q the calculations can 

of ««"» can be done in exactly the same manner, assuming that 

f sin f 0w(,></0, 

since sinO.'O is a smoothly changing quantity and with the accepted 

correctness of calculations can be held constant. Dropping quantities 

of order 1/v in comparison with unity, we can write 

/jLy>r_A 
(wê + TrM ’ (78.4) 
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Formulas (78.2) for shea-ing force and bending moments also can be 

written in two forms: in one - for small 6, where in secondary terms 

it is possible to assume coi0¾ 1. sinO^O. in the other - for large 

values of q. In the second case for the calculation of ^(¢). i2(q) and 

their derivatives one could use asymptotic representations, keeping 

in them only the first term, and during calculations sequentially 

drop all members of the order l/Y with respect to the basic members. 

Making the combinations 4 + /., /»,-f . m¡, summarizing in this case 

flexural, zero-moment and purely moment solutions and subordinating 

them to boundary conditions (76.6), we derive a system of algebraic 

equations for determination of constants of integration ax, bv N and K. 

In Tables 7 and 8 this system is written out, while Table 7 corre¬ 

sponds to the case of small 0 and q. Table 8 - to the case of large 

values of q. 

The algebraic system of Table C is easily solved in the unknowns. 

From the first equation is found the constant which belongs to the 

zero-moment solution 

K (78.5) 

From the second and fourth are excluded the constants of the edge 

effect Av Bv and from the obtained relationship is found the constant 

of the purely moment state 

.V = «In' 9. 4y«/? 

w-ud-i.) 

After this are found the constants of the edge effect 

(78.6) 

(78.7) 

where 

(78.8) 
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V?o)077¿ 
■ cos (yÖo-t)* 

*:W“2-7Ä^W^-t)- sin 
-J-sin 

(v%-t)]' 

[yQo —t)] 

(78.9) 

Table 7. 
A,_ 

0 

_ a,_ 

0 

_N 

0 

-üT 

K 

tg’-Sf 

sin» 00 
0o I 

t'lR 
=mr 

-£1^—i*’),-.. 

ti»*-f 
12U-l‘) h ¿ ««‘T 

s“W 
“"ET 

— ‘ 4v‘ sin* 0,, sln'Ool 

it [ («I+4^)+ tg*4 

slnJ0o 
0 

m'i 

q \ ' <i 1 

[(*;-{«»+•£*')- 
tgi 

12(1-n) e 2 
— sin 0, Sin'll 

0 
lih Y 

this way, when the flexural solution has a clearly expressed 

aracter of the edge effect, the purely moment state Is determln 

tside the dependence on edge effect directly according to the 

ount of the edge forces»!. /. -!• Constant * is equal to zero on y 

.en the external edge loads will satisfy the relationship 
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(78.10) 

The edge effect in this instance will be determined directly by the 

quantitiesni- Using the obtained values of constants Bt. K. N. 

we write the equations for determination of the angle of rotation 

and the normal displacement of the edge 6? and «/0) (amplitudes of the 

angle of rotation and displacement are expressed). We have 

(78.11) 

(-¡¡yA <?o)+(?o» 

Let us introduce for O?"0, w01“* new designations df. w0*. considering 

them as the difference: 

(78.12) t»0*■= «0—(v°-fw0,Ä)). 

where 

¿(0)=(1-f^) a: tgj . 

(^) = — N(2 cos Oq) lg2 4r-* — A/ (2 -j- cos Oq) tg2 -y-. 

On the basis of (78.7)-(78.9, (78.11) we obtain 

In many practically important cases the proper working order of the 

shell is determined not by stress but by the amount of normal 

displacement. During the determination of w one ought to keep in 

mind that in general, when the edge load does not satisfy relationship 

(78.10), the greatest member in the total bend is the purely moment 

member. Actually, 



or, dropping quantities of lower orders, 

w° ~ ' ith m° ~~ 
(24-cose0)sin50O [«o sin®o_l #o\i 
6(1—m) (s!n' o»—~tir[ni—r-r+/>)l- (78.14) 

For a very flat shell this does not occur. At small angels 60 the 

constant of the purely moment state cannot be determined outside the 

dependence on edge effect and with a decrease in (Jq the portion of 

flexural component zv,u) in the overall bend increases. Numerical 

calculations made for a shell with geometric dimensions 

e0 = 0.351; 2yî = 40.1; 0.25; 70 = 2.22 

under the edge conditions 

^ = ^ cos e0. = W s*n®o* 

^- = 0.01285^. 

where '<f is a certain scale coefficient of the edge load, showed that 

the bending of the shell is determined basically by the flexural 

component. Determination of the amplitude of the bend, made after 

solving the system of equations of Table 8, by the formula 

gave the following amplitude on the edge: 

«,^ = 2.215/??. 
(2) 

The solution of the truncated system of Table 7, corresponding to the 

consideration of the flexural component of the solution, under the 

edge conditions 

^- = ^0.01285 

leads to the quantity 

w^=1.96RSr. 

Calculation of a simply flat plate with a given value of shearing 

force and bending moment on the edge gave the result 

cf2) = 3.28/?ír. 
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One ought to remember that formulas (78.14), (78.15) serve for 

determination of the amplitude of the bend. In order to determine 

the bend In any point **<>. It Is necessary to multiply the value of 

the amplitude by co.29. since In the examined Illustration 

W = W, J, cos 2<p. 

§ 79• A Spherical Shell Under Action of 
Concentrated Normal Force In an 

Arbitrary Po-int ,,,= 0 

In §§ 71, 62 were obtained solutions for cases when In the pole 

of a shell there are concentrated forces - bending moment, normal 

and tangential force. These solutions could be used to define the 

stressed state of a spherical shell loaded by concentrated forces 

applied in a certain point 0 = 0,. «p = 0 [93] (Pig. 35). Let us connect 

with this point, as with the pole, a system of geographical coordinates 

(¢. P,). The special edge effect induced by the presence in this 

point of concentrated forces is easily found from formulas §5 71 and 

2 (71.5), (62.5), in which it is necessary only to replace the 

designations (0. q>) by (¢. ß,). Let us examine the event when on the shell 

acts normal concentrated force F, applied in point 0 = 0,. ¢ = 0. 

Using formulas (62.5) and taking into consideration that 

X3 W + 'X< (t) = (cos if) = - sin if//' (cos $), 

*3 + % It) = - cos (cos $) + sin* $//; (Cos $), 

n\n -f- 1) = 2/y* $- l, 

we have 

^ P'> ~ cos tlm H', (cos $) -f- -JL —? 
** 2nR sin1 $ * 

Tf’p,> = ^ [cos $ Im hi', (cos $) - sin* $ lm //' (cos $)] — 

P 1 
2:i/? sin1 $ * 

Sl$,Ai = 0. A^’w=0. 

P,) ~Tr sin*,m (cos $). 

P,) *= -g^- i( 1 +11)cos v Re H'. (cos $) - sin* $ Re //* (cos $)], 

M?‘ P',E= ^ cos $ Re H'. (cos $)-^ sin’ $ Re H'. (cos $)1. 

(79.1) 
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Fig« 35« Spherical shell 
loaded by a concentrated 
force applied in an arbitrary 
point. 

If the point of application of the forces is considerably far 

from the edge of the snell and the shell is thin, then the special 

edge effect connected with the presence of concentrated force and 

decreasing in proportion to the distance from point AI,, practically 

has no effect on the stressed state of the edge of the shell 0 = Oo. 

The components of the zero-moment stressed state 

(79.?) 

at 0 = 0O balance force P and moment AI. to which are equivalent the 

loads applied on the edge 0O. If the distribution of the edge loads 

is such that the zero-moment stressed state (79.2) does not satisfy 

the edge conventions in every point (0o* V). then this means that, apart 

from the forces of the zero-moment state, on the edge acts a certain 

self-balancing system of edge forces and moments, which causes the 

usual edge effect, decreasing in proportion to the distance from the 

edge 0Q- In a sufficiently thin shell the imposition of these two 

different edge effects does not occur, and the stressed state in the 

neighborhood of AI, is defined only by formulas (79.1). 

In a shell which is insufficiently thin or when force P is 

applied near the edge, the stressed state in the neighborhood of point 

is made up of state (79.1) and the usual edge effect connected 

with edge 0O. In order to be able to construct this ordinary 

edge effect, i.e., satisfy the edge conditions on edge 0o. it is 

necessary to pass from system of coordinates Pi system of coordinates 

O.q. bound with pole 0,. In this case state (79-1), axisymmetric in 

system Pi- no longer will be axisymmetric in system 0. <f. 

As it is easy to see from Fig. 36, formulas for the conversion 

of forces and bending moments during the transition from one system 
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Pig. 36. Illustrations explaining 
the formulas for conversion of 
forces and moments during the 
transition from one system of 
curvilinear coordinates to the 
other. 

.„■w sr«*' * 

of coordinates to the other analogous to formulas for the conversion 

of stresses in the plane problem of the theory of elasticity 

7f ■ = 7?1 w cos* a + 7f’p,) sin* a — 25¾1 w sin a cos 0. 

7f• = 7f*pl) sin* a -f 7f’cos* a -f 25¾1 ^11 sin a cos a. 

Sj®1 ,) = (rîf*Pl> — p‘)) sin a cos a + Su W (cos 0 sin u) 

Hf-V r= Ni*1 p,) sin a+M*’M cos a. 
s) __ P‘' cos o _ N$‘w sin a. 

iUlf ■ = ¿l',*’p,) cos* a + itl?’ P'* sin* a — 2H(t> sin a cos a. 

¿I'®-,) = iM',*’ P1' sin*a + ^1*/’ P“’ cos* 0 4- 2^*' P'1 sin a cos a. 

/y<®; = (.Mf1 P*’ — P*’) sin a cos a + W*' P'^cos* o-sin’a). 

In this case it is taken into account that in a spherical shell exist 

the equalities 

and the quantities Nv N2 are correctly the shearing forces. 

We will present also the formulas of spherical trigonometry, 

which will be needed subsequently: 

cos = cos 8 cos 0, -j- sin 0 sin 0, cos 

sinasiniji = sin 0, sinç. sinß sin>l> = sin8sinip. (79.5) 
cos a sin ^ = cos 0, sin 0 — cos 0 sin 0, cos <p, 

• os ß sin if = cos 0 sin 0, — sin 0 cos 0, cos 9. 
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Bringing the stressed state (79-1) to coordinates <«.?). with the aid 

of formulas (79-3)-(79-5) we obtain 

+ [cosi 1m Wiícos Í) - sin*OjSin*<p I in Tí» (cos 

7f^=f?'T,+ 

+ [cos^ !m/fi (cos t)+(sin? 0, sln,<P-sin^),,n W-^05^1 

5»f)05§t)+ 

_L L (cos 0, Sin 0 — sin 0, cos 0 cos <r) sin 0, sin <p Im (cos¢), 
4a 

(79-6) 

(cos 0, si n 0 — cos 0 sin 0, cos ç) Im Wi (cos ¢). 
4a 

^ = {(i -f Ji) cos Í Re W« (cos ¢) + 

—^sin^sin*«!' —sln’rf] Re«»(cos¢)). 

M? " = -£r Í(1 + »O cos tRe H- (cos^ — 

_ [(1 _ j!) sin* 0, sin*<f + i‘ Re H» (cos 'f)!* 

/Z0’T, = —-^-(1 — ii)sinO,sin«rX 

X (cos 0j sin 0 — cos 0 sin 0j cos »( i Re «* (cos ¢), 

(79-7) 

where 

f<e.o_f?«* 
71 = - 'i IñT? Vsin5 

2sln50| sin5 T \ 
^ sin4 i / 

sinOi slny 
= (cos 0, sin 0 - sin 0, cos 0 cos ç) sln, $— , 

(79-8) 

are the forces of the zero-moment state, and the remaining terms in 

formulas (79-6), (79-7) show the singular "edge effect" from 

concentrated force P. We will agree subsequently to consider 

such a shell for which Is held the condition that 

e, + 0o<*- (79-9) 

In this instance the inequality 
$ <ji 

always is held, and the zero-moment solution (79-8) is regular 

everywhere, with the exception of point ¢ = 0. 
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The stressed state corresponding to the edge effect connected 

with the edge 0 = 0O. which it is necessary to impose on state (79.6), 

(79*7) in such a way thet the edge conditions on the edge are 

satisfied, usually is looked for in the form of trigonometric series 

in coordinate ¢. In this case forces and moments (79.6), (79.7) must 

be represented also in the form of series. 

Because of symmetry relative to plane ¢=0 they are representable 

by series of form 

on 

Ti(r2’ Mv ^2)= (f2(*). N|<*). Af2(4)) cosAip. (79.10) 

on 

where 

T\ (0) = ^ J T\ dtV- T'i (*v = j J f, cos Af rf<p. 
0 ‘ 0 

2a 

su U> = ^-,1 5,2 sin A<p </9 
0 

etc. 
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§ 80. ' Equilibrium of a Finite Part of a 
Dome During the Action of a Normal 

Concentrated Force Applied In 
an Arbitrary Point 

Let us draw the section 0 —const and, having discarded part of 

the shell (0. 6o). we replace its action on the remaining part by a 

system of internal forces and moments, shown in Fig. 37- 

Fig'. 37. Internal and external forces 
acting on parts of a spherical shell (¾ ®)- 

On the strength of the fact that the involved bounded parts of 

the shell is in equilibrium, internal forces and moments in section 

Q_const should satisfy the conditions. 

iP cos 6,. 0>01. 
jV, Sin 0-N, COS 0i Q<ei, 

1« 

J |S„ sinq> — (7*, cos 0 + N, sin 0) cos <pl v dq> - 

f P sin 0,. 0 > 0(. 
t 0. 0 < 0j. 

in 
f i(r,sln0—N, cosO)vcosç+v1I,cos«p—Wcos0sin(f]v</<p= 

0 f pp cos Osin 0,. 0>0i. 

0. 0<0,. 

(80.1) 

The first two equations of (80.1) are the condition of equilibria 

of the chosen part of the shell written in projections onto axes OZ. O; 

the third is the equation of moments relative to axis OK. 
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Taking into account expansion (79.10), from (8o.l 
) we obtai n 

(o)sin 0 — NU0) cos 0 
Pcos0, 

■ °>0|. 

0- 0<0,. 

Ti (I) cos 0 -f w, (I) sin 0 - (I) = 
Pslnô, 
xR sin 0 ’ 0 > 01- 

°- 0 < 0,. 
(N,(l) cos 0 — 7*1,,, sin 0) V - Mt (1) -j. H(l) cos 0 = 

_ P cos 6 sin 8, 
ñ sin 8 ' 

0. 
0>0,. 

0<O,. 

(80.2) 

It Is easy to show that conditions (80.2) should satisfy the zero 

I™ "t Part of the solution ta.en individually. i.e.. aí any »the 
• following should be valid: 

(0) s*n 0 — 

/,d,sin 0 • v = 

Pcos 8, 
2n/?sind ’ 8 > “i» 

«<»cos0-S,t(I)Ä 

0- 0 < 0,. 
Pslndi 
nÄsinG 

0. 
_ Pcos G sin 8, 

nsin8 ' 

0. 

0 > 0,. 

0< 0,. 

0 > 0,. 

O<0,. 

(80.3) 

This means that the remaining part of the solatia », u , 
(79 6) (70 71 w. V. olution, which is equations 
a self bala'^1 corresponds to a special edge effect, is- 

Slice t"ir ?Vtre35ed State’ Phy8lcally thl= 13 completely clear 
from the -oi-t nr e^effe0t fa(ies ln Proportion to the distance 
rom tne point of application of force and cannot take part in 

providing equilibrium of finite shpii oio 
far from 0 TM* e . ^ 8 is considerably 

,• his fact may also be formally verified. Por example 
comparing the expression (T ici Q », example, 
and taw no- i 4- ( 0> r*<o>)sin9-^ito)co*0. using (79.5) and (79.6) 
and taking into consideration that ' 

-Hn (cos S) _ dH,, (cos t) d (cos t) , 
df d (cos V) dÿ— = — sin 0 sin 0, sin <fHn (cos ¢). 
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we obtain 

(Tuq) ^*1 (0))5^0 A/, (O)COS0 — 
it 

= l¿r W J isin 01 cos TI,n icos V) “ 
0 

— siif 0,5*110sin2ç lm//ü (cos= 

= _f *2:,<i{cos*±d<t = 0. 
Tin 4/7 sin 9 J dv* w 

o 

We verify also the execution of the first equality of (80.3! 

calculation 

2jv 
2slnJ0, sin1 q> 

sin’^ sin4i|i 
)</, 

we use the equation introduced in [8l]. 

f COS my . _ -1 (-a + Va>-b*\m 
J a-|-icos y J'o2 —i* \ b J 

where Ytf — b* has such a value that 

-a-fra’-*1 
<!• 

Setting in (80.4) one time m = 0. 

c = 1-(-cos 0 cos 0,. ¿i = sin 6 sin 0,, 

aird some other time m = 0. û = 1 —cosOcosO,. £ = —sinOsInO,, we have 

f d<f _ n 
J 1 -(-cosy cos8-fcos0, * 

r dw COS 0,-0050 * 0>e‘* 
J i — cos y 

COS 0 — COS 0i ’ 

For 

(80.4) 

0<o,. 



urther, we easily compute the integral 

:t is somewhat longer but Just as simple to calculate the Integral 

f « f * = 
J inî^ = J thstf+J l -co^ 

9>el. 
cos-' 0| —co&: * 

2nco»9 O<01. 
— cos5 8| cos- 8 

m 

Í iliLlrfif« sin*« ^ 

.-i cose, 0>0,. 
sin- 0 (cos-' tí, — cos2 0) 

.i cos e 
sin2 tí, (cos2 e —COS2 8,) T5“\ • 0<0i- 

and finally 

(0) •— 

0 > 0j. 
2aÄ sin2 8 • ^ 1 

0. 0 < «i- 

Similarly we can verify also the remaining equality (80.3) 

5 81. neoresentatlon of the Solution In the 
of a Tr-i p-onometrlc Series in the 
-=- ,a t.i ons on Form 
Pnnrdinate «T. Conditions ori 

the Edge 

Before going to the question about satisfaction of the edge 

editions on edge e0. let us transform formulas (79.6) erciu ng 

j;(Co,« with the aid of equation (59.10. Copying it in the 

,1»-íh;(c«s*)-2coS*h;(cos'I')+(2H,+ 1>H*ícm*,'=0, 

we find that 

Re H'n (cos t) = R« H* icos ^ + 

i_L_ [2y2 \m Ha (cosí) — Re H.icosty] "*> 
^ sin- ^ 

1C21Í Re H'n(cosí)-f -¾ ¡m H, 

Im W* (cos i ) =¾ 

sin2 i 

2 cos * Imw; (cos Í) - -¾ Re (CÜS 
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Formulas (79.-6), (79*7) then assume the form 

r>=f.+w [(1 - -t&t1) CM,t l,r H'- ^+ + 2r, 

Ji-n+wH1 ~ 

+ 2v>(.-Ü^p-)to».(co‘«)l- 

.s,2 = 5I2 + (cos 0, sin 6 - Sin 0, cos 0 cos <r) X 

x -ln^a-^--- [2 cos * In. Ht (cos $) - 2\- P.e /7, (cost)]. 

(81.1) 

*,= ~ (cus e, sin 0 — cos 0 sin 0, cos q) 1m rt' (cos ¢). 

-£{« + 

+[| -(, -rt 5ln,¿r^]ir In,((.(-<))■ 

i ( d -j“** »: <c»s ♦» - 

w-^ jOsinMinjP (COS0 Sin0 —cos0sin8,cosq))X 
“ 8yj sin’V 

X [2 cos t Re H'n (cos xt) + 2f- 1m Ha (cos ♦)]. 

(81.2) 

where f,. 7,. S,2 are determined as before with the aid of (79-8). Settln, 

in (81.1), (8x.2) 0 = 0O. v;e obtain the forces and moments 7”i(0o. <?)• 

..., which we designate through TJ. S;,. M\, H* » etc. Taking into consider 

tion that the edge conditions on the tangential and shearing forces 

can be satisfied only In combination with the twisting moment, we 

obtain on the basis of (81.1), (81.2) system of forces 

7-,(00^) = ^)- 512(0O. (¢) + ^77(00. = (8i 3) 

,A1j(0o. q)r= ,Ai;(q). h\(0O. «í)-f W(0°’ ¢) = ^^)- 

Let us assume that on the edge of the shell we have system of forces 

T ((f). 5(f). M(f). 77(f), (81.4) 

which are different from (81.3). Systems (81.3), (81.4) are statically 

equivalent, i.e , have Identical principal vector and principal moment 
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P = — P sia 0,/ — P cos 0!*. M = PÆ cos 0o sin OJ. 

If we add to (81.3) the ¿elf-balancing, system of force 

T" = T — T\ S" = 6 — <S*. 

,11^= ¿AI — /U*. N-^N -tP, ,} 
(81.5) 

then the total stressed state which satisfies the assigned conditions 

(81.4) will be made up of state (81.1), (81.2) and the edge effect 

induced by the self—balancirig load (81.5)- To construct this edg 

effect (81.5) must be represented in the form of trigonometric series 

in coordinate <p. Then we can satisfy the edge conditions separately 

for every harmonic by means of imposition on the state ¡7'i■»)• Psi*)- 

All,,). Al,,*)) cos *<ï>. (S,,,*). NUk). //,,)) sin A-«}) (formulas (8l.i), (81.2), (79-10)) 

the stressed state caused by the edge load {^. N¡;y Al")cos*¥>. S^sinfop. 

Issue about creation of the last stressed state at £>2 was examined 

in §§ 76, 77- Furthermore, inasmuch as the load (81.5) is self- 

balanced the equality 

(81.6) 

should be held with the continuation of tne text, and correspondingly 

the number of independent edge conditions at ft —0. 1 drops from four 

to two. Essential in this instance are the conditions containing 

radial force and meridian bending moment (§§ 60, 69)- 

§ 82. A Spherical Shell Loaded Along the 
Parallel by a Distributed Normal 

Load of Constant Intensity 

Representation of state (81.1), (81.2) in the form of trigonomet¬ 

ric series is necessary only co satisfy the edge conditions. If 

the shell is thin-walled (2\2»1). the force is rather far from the 

edge and the imposition of special and simple edge effects does not 

take place, then the stressed state in the vicinity of the force can 
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be directly calculated on the basis of (81.1), (81.2) or, which is 

even simpler, according to (.79.1). 

However, expansion in a series can prove to be useful also for 

other purposes. Taking into account formal expansion of the delta 

function in a trigonometric series 

P ô (<p — 0) = />0-|- 2 /»* cos top. 
*-i 

P _P 
~ 2.1 R sin Ô, * “ nPsinft," 

I 

(82.1) 

and using the expansion of stressed state (81.1), (81.2) in a series 

(79-10), it is simple to obtain a solution to the problem about a 

spherical shell loaded along the parallel 0==0, by a normal linear 

load of intensity pAcostor. Thus, for instance, the zero harmonic in 

the expansion of forces and moments (81.1), (81.2) in a series in <r 

will describe the stressed state in a shell loaded along the parallel 9 

by vn axisymmetrically distributed normal linear load of intensity 

2.i/?inrör- (82.2) 

This load is balanced by a system of edge loads with principal vector 

P cos 0, k. 

Let uo assume that the external loads assigned on edge 0O. also 

have axisymmetric distribution and the edge conditions have the form 

of 

». «o, = Tx (0) cos 0O+(0) sin 0O = p, . 

M j(0, = 0. 
(82.3) 

On the basis of the first equality of (80.3) it is easy to see 

that the zero-moment axisymmetric state satisfies conditions (82.3). 

We will explain now the character of the fading effect of the 

axisymmetric component of the remaining part of the solution, 
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which is a term in formulas (8l.l), (81.2). Let us write out, for 

example, the expression for the meridian bending moment 

(1 — tiln*n>' 
sin’ X ReA/;(cost) + 2vî[î - ’Jim//„(costJ))}</<p. (82.4) 

Let us examine the integral J (cos\J>)</ç, the Imaginary part of which 
o 

is a term in the right part of (82.4). 

By law of composition for Legendre functions we have [142] 

H, (cos ip) = A0 -{- 2 2 hm cos m<p. 

where 

ITfr hmi "7 (¿os 9) P? (cos 0,)-. 8>e,. 

nrr-f S^^50-)^^050)» 0<e«- 

Here ri(Ar) = r(x-f 1) = jc!. while this series converges evenly in <r. During 

integration the convergence of the series is not impaired and during 

practical calculation of the involved definite integral we can be 

limited to a finite number of terms m<¡n|. If we now use asymptotic 

presentations for associated Legendre functions at large n with respect 

to absolute value and at then, setting n=*s\(\-\-i).we obtain 

In this way, in both cases the involved integral decreases as e-vie-o.i 

during the increase of |e, —0|. The same change must characterize 

the remaining terms in (82.4), since, in essence, they all amount to 

the "edge effect" induced by the presence of a line of distortion 0 = 0,. 
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Proposing that the dimensions of the shell are such that i, 

we note that edge conditions (82.3) are satisfied in this instance 

automatically (because of the zero-moment part of the solution). The 

edge effect connected with edge 0O. is absent, and in the neighborhood 

of the line of loading the forces and moments can be calculated as 

the null terms of expansion (79.10) with the aid of formulas (81.1), 

(81.2) . The latter is valid not only under special edge conditions 

(82.3) , but in all cases when the mutual influence of the edge and 

the line of distortion 0, can be neglected. 

Practical calculations ox forces and bending moments using 

formulas (81.1), (81.2), (79.10) are difficult because of the lack 

of tables of Legendre functions for a complex value n. This can be 

circumvented if we use the approximate equality 

H. (cos ¢) Hi"(, Y‘ .) = (îî^f)1'' »3(«)+'».<»>!• 

Híleoste - Hf (,1^) = 

n=vŸ2î. ?=Ytyr• 

(82.5) 

the correctness of which already was discussed above (§ 59). Taking 

into account representation (82.5), let us write the final expressions 

for forces and bending moments: 

_IW sln»+ }* 

X 
[2 I vlTcosif i i \ 
[.t sin2 Y sir-Y ' l sin tf / 

M 
T cni.i 2 sln'O, s'n’\ . . 
' 2(0)(0)- J J U1-*¿4- >• 

n 

X [-4 ¿T,- tff ♦ito W)] + 
+(,- 5in?8| sin* <p 

sin2 ÿ 

(82.6) 
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/ ILt i*) í i Sslníe, sln=(p\ cosib ./ _ 
l yrt r 

«1(Í)W.^J(_2_)*X 

X 
l YKZ 

— fi ■■ (1 — M)sln; 6, sln’oi 1 , __ 
l síñ^ j d<f, 

^2,0,(0)--0¾^ f (_!L_yAy 
2 J ¡slntJ * 

^12(0) =^(0) = 0. 
Jl 

a; /n\ _ Ai sin 8, f /V, (0) («) ----J ^cos 0I sin e _ cos e sjn 01 cos ^ x 

if 

vÍA_J_ vK? i Ÿ \'l> ., ,-,1 
^ l « sin^' « - Uínp [ 1'2jj rfç + /o(0). 

n 
f /A\_ Pu sin 0, r 
/0 (ü)--— J (COS 0, sin 0 _ eos 0 sin 0, cos ç) - . 

sin’Ç 

(82.6) 
(Cent 'd) 

It is easy to see that forces 7-,,,,. r,,,, and bending moments n , „ 

are everywhere continuous; a discontinuity during the transition 

through parallel e, happens only to shearing force, moreover Jump 

happens because of the discontinuity in /,(0) and in absolute value 
is equal to p* 

Really, calculating /o(0) with the aid of (80.4), we obtain 

2.1 

J sln4^“J TÄ^ + J T^co%-^ = 

/(,(0) = 

2n cos 9(1— cos^ 9,, 
(cos:e,—cos10)sinösir0, * 0 > 0i- 

2n cos 0, (1 — cos» 0) 
(cos2 0 — cos3 0,) sine sin 37’ 6 < 0j- 

sin 0, „ 
Pü sin0 ’ 0>0i- 

o. 0 < 0,. 

(82.7) 
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§ 83. Example cf Calculation by Formulas (82.6) 

The definite integrals in (82.6) can be calculated by any formula 

for approximate calculation. In this case it is essential that the 

subintegral expressions in formulas for forces are always finite, 

even at ^ = 0. and in the formulas for moments contain only logarithmic 

singularities of the form -In¢. it is simple to be satisfied 

in this if one considers that in the neighborhood of ? = *|;yV"2r=0 

¢3(9)-^4(^) and their derivatives have representations (64.2), and 

Because of the presence of a logarithmic singularity in the subintegral 

expressions for moments, during the calculation of it is 

necessary to break the interval of integration in half: 

and take into account that 

0 

since when 0 = 0, and q> is small there exists the equality 

tt1 ¾ sin 0, •• <p. 

The choice of <p, should conform to the correctness of calculations. 

As an example let us calculate the bending moment in section 0, for 

a shell with parameters y V? 20. h = 0.25. 0o=60s. loaded along the parallel 

circle 0, = 211(^0, = 0.342) by normal forces of intensity p0. 

At «r, = 0,015. Y'f. )^2 = 0.100 

(1 +(0 v,^ ) ~ 0.015(0.577 — 2.995) = 0.0145. 
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mmmmm 

The calculation of the quantity 

n 

( I-*—)'1' f (1 -jO /. 2sln»eisln*ç\ cos^ ,, ^ Jl«»W (tftC— 

-[' (ï* 1^=0,,03 

need Into Table 9, where when ç and ¢/ are small the subintegral 
expression Is approximately equal to and 

PinlllTl0" f f0ll0WS the f0™Ula for trapezoids. 
"®< ^ s ' 0,1103 pç/i.0,0188. By formulas (63.13), setting 

63 n) h7°;.hWe 7e M,r=^ ^ 0m- The of formulas 
(63.13) has the order ln comparison with unity, which In this 

:ÎthlnmtTll75*'f The dlVereen0e betWeen b0th rests 
,, m s o this Inaccuracy. Let us remember that formulas 
(3.13) are valid only when ¢(8.) = ,6,/2 is great and asymptot'c 

deriva«5 ^ 0al0UlatlOn °f *■«,> and their 
erivatlves, while expressions (82.6) are adequate for calculations 

»1th any arbitrarily small 6, Furthermore, they have still the 

3tVany7(notYheyiallOW CalCUlatl°n °f ^‘-"al force or moment 
Ln«t (not too close to the edge) Independently of the remaining 

Lint 7:.' s 1S,e3PeClally f°-es and moments in 
. n0e n thls instance ¢-8, and integration In (82.6) 
is accurate, we have 

Wo>= ^,(0).,,5). (831) 

M, m(0)=/11, (0) = - Ai « (I + ,,) si„ 0i t, (v0l /2). ( 8 3.2 ) 

^,,.,=/.(8) = °. (83^3) 

Remembering expansion (68.2), at small 0, (83.1), (83 2) can b, 
rewritten thus: can b< 

i 
^ (0) (0) - T2 (0) (0) = ^ sin 0,[i + In (Yl ^21) + .. 1 

1,mo)(0) —)M2(0)(0)= J 

- -T1 /? ( J + M) Sin 0, [i In (Yl^l) - ...]. 
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Table 9. 

» CO»* 
cniibr.coiip + 

+ cu»> 0,(1-coif) ♦ «. (re Ki) 

^ ^ ' flojiMirrcrpMbiiot 
BMpAMCHHC 

ip,—i0,0i5 099989 0.99999 -0,005 0.100 -0,0929 —1.541 1,062 f. J «(<p)rf<p-0.0145 

0 

0,055 

0,095 

0,135 

0,175 

0,99849 

0,99549 

0,99090 

0,98473 

0.99982 

0,99947 

0.99895 

0.99823 

0,019 

0.0320 

0,0458 

0.0595 

0,380 

0,652 

0,910 

1,190 

-0,1932 

-0,2248 

-0,2273 

-0,2136 

-0,707 

-0,397 

-0,223 

-0,107 

0,558 

0,374 

0,2-13 

0,162 

0,171 J fl((p)rf(p- 

* , 
= ^■0,040(1,082 + 

4-2(0,558 4-0,374-4- 
4-0,243)4-0,1621 - 

= 0,0720 

0.349 

0))23 

0,098 

0,9397 

0.8GG 

0,706 

0,9929 

0.9843 

0.9726 

0,119 

0,177 

0.235 

2,38 

3.54 

4,70 

-0,105 

-0,031 

-0,002 

0 

0 

0,042 

0,033 

0,011 

0 

0 

0,044 

0,015 

0,003 

0 

0 

n 

j a (f ) d<f — 

o*176 

“TTri0,162*4* 
4-2(0,044 4-0.015)4- 

+ 0,003] = 0.0238 

KEY: (1) Subintegral expression. 

Subtending the circumference of the load in point 0 = 0. i.e., making 

9 ^ in (83.I), (83.2) approach zero, so that sin 0, would give P. 

as the passage to the limit we obtain the same result which can be 

reached on the basis of formulas (62.5): 

PvJ 
T1 (0) = ^2(0) = ^-. 

r p / ve, V? Y1 
(0) = M2(0) = [- 4* O + Ü) I" (—2— 

In order to explain the speed of the tendency to infinity of the 

quantity jVuo)(0), it is necessary to use now the expression for /(0) 

at 0 > 0, Then we obtain 

Po sin 8, 
sin 6 L =-( 

0.->O 

p 
2nR sin Ö 
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§ 84. A Shexl Loaded Along the Parallel bv a 
Normal Load Varying According to the 

Law of cosk(f 

Let us write out the formulas which correspond to the k- th 

harmonic in the expansion of forces and moments (81.1), (81.2) in a 

trigonometric series in coordinate They will describe the stressed 

state in a shell loaded by a normal load distributed along the parallel 

öi of intensity: 

sin16 

_i^)x 

X [-1 ( vO)]+ 

+(1 ) líjeos»»*,. 
n 

Si2 (*) (0) = Pu sin10, J (cos 0, sin 0 — sin 0, cos 0 cos <p) X 
o 

y r 2 1_Y ]rT cos tf Í t \'l, ir, 
^ L51 sin:f sinv> (sin^) — 

sin2 ^ dip. 

^.^(0) = 2 J lliiTt/ X 
í O — I1) /, 2 sin2 

xl77r(' ; sin2 >{• 

_fi (• — !Osin20, sln2<rT . /• 
L -J (V4’ V 2)} cos kip dip. 

0 
\/ f (i M) /, 2 sin2 9, sin2 «r \ cos \fc ../ ,-, 
Xl Vl'î ('-+ 

sin2 if j (y^ V 2) j ¢08 kip dip. 

(84.1) 

(84.2) 

(84.3) 
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where 

H{t) (0) = — PkRMn ¿ ‘(t — J (cosOjSinO—slnO,cos8co8«p)X 

n 

Nx lk) (0) r= J (cos 0, sin 0 — cos 0 sin 0, cos q>> X 
o 

X Îi!rf {t&ïT'tft* '/5)] «***<+ 

(84.3) 
(Cont’d) 

c. Q r COS*? 
fk (0) = _ J (cos 0! sin 0 — cos 0 sin 0, cos ç) </<p. (84.4) 

Noticing that 

Í cos m<f d<f 
sin2 

(_l)m rt (1 — cos e)"* (1—cosS;)» , 
~ 2 (cos 0+cos 0,) sin™ 0 sin’" 0, 

n (1 +cos0),B(l — C05'e»)"' 
2 (cos 0) — cos 0) si nm 0 slnm 0, 

rt (1 4-cos 0,r(l —cosO)"1 
'2(cos0 —cos0,T sinm0sin,n01 

0>«|. 

0 < öj. 

we have 

/* (0) — 

+r+cÆ—]'}■ 

f- 
f(l+CO5 0|>O-cos 0)1*1 0<0 
[ sin0sln0| J I 

/* (0) — 2 sin 0 
(84.5) 

§ 85. A Shell Loaded Along Parallel by Bending 
Moments of Intensity w»» and >»i cosy 

Let us examine now a shell loaded in point A, by concentrated 

moment A1 (Fig. 38). Formulas (72.8), if we set /i, = ß, = 0. P. = 0 and 

replace 0 by t and <p by ß^-ß. let us determine the bending and 
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Pig- 38. Spherical shell 
loaded by a concentrated 
bending moment. 

twisting moments In a certain point /1 in 
system of coordinates (t. p,) 

^ li? 1¾ M + (1 -t g) Ctg tj'C4 (4i)J cos ß. 

^ P ~~ÃH [,lN + (1 4 10 cig (t)l cos ß. 

M (1 -(1) y ,.. 

4/ï ‘sln<» 

(85.1) 

Using transformation formulas (7Q t) in ov^t- o 
we will have W..0), In system of coordinates 6. ç 

[(14-(*) cig 4 cos pç, (¢) 4- 

+ (cos2 a + fi Si n2 a) cos ßi' (^) — 2 ( 1 g) 
?in a cos a sir. ß 

sin 4 

+ (sin2a + ncos2a)cosß^(*) + 2(1 -n)- slnP ^(^)] 

M2 — [(1 “t g) ctg t COS ßi4 (¢) -f- 
(85.2) 

.foot, connect.. wlthttÍcenttnrtt'ch1'Y,le ^ 

‘:,ri ■’ y bcriDecl by formulas of form (8S uo,.- 
representation J' HaVlng ln mInd 

>U¿(e 0) — m0-j-2 m. cos lip, 

M 
2.t/? sin O, ' 

*-i 

mb = . M 
aRsinfi. ' 1 

( 8 5.3 ) 

rUen TJal¡VTZTmetI'U dlStrlbUti™ °f moments In -LUdue.a by a bending moment of intensitv m a ? ^ . 
the parallel e„ mten.-lty n,„ distributed along 
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Writing out the zero term in the expansion of moments (85*2) in 

a trigonometric series in <p and expressing M through mc using the 

second formula of we obtain 

M, m - -=^ j {<1+10 S&[«>*,<«+t]+ 

11 _ ( 1 — n) Sin2 aj cos pc; (♦) — 

- ^ <*)+t] ? ^+f■ '« <»>• (85.4) 

= J {<1+10¾ [»*«.<♦>+■?]+ 
+ + — n) sin2 aj cos pt; (t)+ 

+ 2 (1 - n) [i, W)++'■t (•) (°)- 

ri <o) (8) — 

w0 sin 6, 
B 

fJ (0) — 

m0 sin 0| 
--ST" 

J [i‘ - rtsinacosaS^j^T 
o 

f [<’* + »*> S|-+2 0 ” ^ *,n °cos a S']d*- 

(85.5) 

Calculating the integrals 

N » 
J .5251.^ — J IJ{|r^ (cos 0 s<n 0i — sin 0 cos eicos V)d* 

0. 
n 

sin é| ’ 

•• 

/ 
. s,n P 
slnacosa7iïïV T 

= J (sin2 0 sinÖ, cos 0, sin2q» — 

n sln8| 

— sin2 0, sin 0 cos 6 sin2 <p cos <p) dy = TIW 
0, 

0>e,. 

e<«l. 

o>o,. 

©<©». 

we obtain 

'i (o;(0) = 

ra(( (6) = 

(!->») 
m0 sin’ 0, 
2 sin* Ö ' 

-(H-ii)-X. 

-(1-,1) m0 sln’0| 
2 lîü*T’ 

0>©i. 

e<0,. 

e>e,. 

e<e,. 

(85.6) 
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The subintegral expressifs In (65./,) are n ,, 
where cosp. sino, cosa are knnwn . 6 finlte at any 0 and <p. 

on the basis of (79.5) OolngTh °f C°0rdlnate T- determined 

undergo dlsccntl^lty ^ ^-“mference, toads 

Wi (0)! = f/-, (0)11= mg. 1 

«0)1 = kj (0)] ss ¡¡My I (85.7) 

Let us compute using m k 

Since at 0 = 0. t = o'"0"6’’18 ^ the P°le 0“°- 
ls d°ne directly and we obtain ’ Integration In (85.il) 

^1 (a)(0) = M}(n)(0) = T sln®i y. i .r i 
(o)W 

Since at 0J we can 

(85.8) 

approximately set 

then In this Instance (85.8) can be written m th e 
written in the following manner: 

^.(0) (O) = Alí(o)(0) = flj&4jne,.(1 r_l 0|YÎ1 
2 i^r+T-J- (85.9) 

moments when the shell Is loIdeTallng ^^1^1^ 
intensity ^cosç: g parallel e, oy moments of 

^1(1)(0)= '2 ' J{0+M)-g|-[cos^«,) + !] + 

+ [* -(1 — Hjsin'aJcospC^Ÿ) — 

- 2 (1 - M) sl„ 0 cos o^fí, (W + 4]} «» 9rf9+ (»), 

,(^^^(,+wSA[colW)(t)+|]+ 

+ It*+ (1 — n) sinJ aj cos ßj' (¢) 4. 

+ 2(1—fi)sinncosaiíiíirt i*! 1 111 
sm * T* W + ITJ J cos V ¿«P -1- ri(u (0), 

(85.10) 



where /-,,,,(0)./-^,,(0) differ from /-,,0,(0). r,(0,(6) only by the presence in 

the subintegral expression of the factor cosç. Calculations give 

¡ ,,n* 
n (1 -(-cos 

~tln 0 sin1 A, —^ t vp- im V sin* u, 

(J + cos 0,)(1—cos 8) 
-slndsIn’O,- * ö<ö»' 

n 
Í sin a cos a sin P_ 
-r—-— COS « aç s 

sin f T T 

n sln0, n 

o. e < 6,. 

^11,)(0) = 

f2,„(0) = 

e<e„ 

6>0'- 
e < e,. 

W|Sln?lfn 1 -n) 
2sind T w sln}0, 1 

m, sin 3, .. , ..x (1—cose)cos0, 
-TiiñflT + W üüîë; • 

(8b.11) 

Going through section 6, the moments undergo jumps of continuity 

equal to 

l^*i (D (®i)] — ri (i)(®i ) r\ 0)(®i ) — mv 

í^i O, (0i)] == rj d, (®i+) —'j (8, ) = H«*, 

In section 0 = 0 

^1 (I) (®) ^ (I) (®) = 

however, subtending the circumference of the load 0, to pole 0=*O and 

carrying out in the second line of (85.11) passage to the limit in 

such u way that (n/?sin0,«,)^o«-iM. we find that in the case when a con¬ 

centrated moment ¿fis applied in the pole, the following equalities 

,1) (0) 
0,-*.O 

^211)(0) = ( 

hold : 



CHAPTER VI 

A TORUS-SHAPED SHELL 

§ 86. S£lvl^ the Equation of the Problem About thP 
Equilibrium of^jL-Clrcuiar Torus-Shappri 

Shell During Axisymmetrlc and 
Benling Loads 

Torus-shaped shell (Pig. 39) dlffers fl.0D, the prevlous cyUnc|rl_ 

eal, eonlo and spherical shells by the fact that Its geometry Is 

characterized by two essential parameters: ratio of the radius of 

the generatrix of the circumference to the thickness of the shell ‘ 

and by the ratio of the radii f. In accordance with this the basic 

resolyant solving equation for a torus-shaped shell during axisymmetrlc 

and bending loads will also contain two parameters: 

(86.1) 

(86.2) 

The first of them characterizes the relative shell thickness, and the 

second essentially characterizes the middle surface: at ?. = 0 the 

suriace Is spherical, at ?.->«, it becomes a circular cylindrical 
surface. ^ lcai 

The princ'pal radii of curvature and the radius of the parallel 

circle of the middle surface of a torus-shaped shell are equal to 

a    /> l + fln0 
R'~a' R'=a—ä^r- 

v = a (¾. -j~ sin 0). (86.3) 
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Pig. 39. Torus-shaped 
shell. 

The basic résolvant equation of axisymmetric stress (12.13) for 

a torus-shaped shell takes the form 

d'-o 
JW 

cos 8 do 
X^psírTÕ" d& 

sin 8 
-J-sInO 

(X -j- sin 0) 
l 1 
^«(X-^-slnö) (86.4) 

^1(0). ^2(0)- functions of external load, determined by equations (11.11) 

The latter, taking into account (86.3), can be rewritten in the 

following manner: 

d», (0) = — cos 0fl* J ?,(?. + sin 0) </0 -|- 

+ sin0 

<I>2(0)= — sin0fl* J (X-f-sin 0) dQ — 
% 

— COS0 slnOjdol. 

■sr+i J ?,(X-f sln0)</0j. 

(86.5) 

Forces and bending moments in the shell are determined through 

function n by formulas (12.11), where in them it is necessary to set 
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b = a. ii— 1 (a shell of constant thickness is considered) and to take 

into account formulas (86.3)* 

The character of the solution of the basic résolvant equation 

depends on the relationship between parameters (86.1), (86.2) ard on 

the amount of parameter ).. When the shell is thin-walled and the 

ratio 

the solution of the uniform résolvant equation can be constructed by 

the asymptotic method, where it will be useful both in the vicinity 

of 0 = o(?i), and also far from it (§ 89). A'. ).^>\ the solution and the 

working formulas are considerably simplified, since terms of order r 

in comparison with unity can be neglected. For sufficiently smooth 

loads the solution of the résolvant equation with the right side non¬ 

zero, at also can be constructed by the asymptotic method. 

This solution has a comparatively simple form and on its basis can be 

obtained convenient working formulas for determination of displacements 

and stresses in different constructions containing torus-shaped shell: 

in the end walls (§§ 91, 92), in tubular and lens compensators (§§ 90, 

93). When the right side of the résolvant equation is a periodic 

function of coordinate 0. the particular solution corresponding to 

this right side can be constructed in the form of a trigonometric 

series. The coefficients of this series are determined from an 

unbounded system of algebraic equations. For a simple right side 

(for example, of the form of cos0) the solution of this system is 

expressed through unbounded chain fractions, which are calculated 

more easily the greater the relative shell thickness. On the basis of 

this solution simple working formulas also are obtained for a tubular 

compensator compressible by an axial force (§ 8?) and bending moment 

(§ 88). In § 94 a thin torus-shaped shell intersecting the 

axis of revolution (Jt<l) is considered. 

Returning to equation (86.4), we introduced instead of o new 

function 

0(,= -0. (86.6) 
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where õ=*V04-2#yV#. Having replaced in (86.4), I by —/ and o by o. 

taking into account (86.6), we obtain 

(Pa, 
~W~ 

= 4^ 

cos 6 da, -.,. »me cos* _ 
"T+sinGHfr '2' í o X + sinÔ °» (ï. + sin 

¢, « 1 / d&i i cose \ 
«(X + stnÓ)'_2ÿ< a (X + sinÖ) \P ~W X + slne ^‘J* 

(86.7) 

Let us examine a load of the following particular form: 

9. = P (fc = ,..ne.*»pco,e).| (86.8) 
¢, = 0. /»ÍnfcO. Í 

in order to simplify the left and right sides of (86.7), we will 

again replace the basic variable: 

(X + sin I) + 2<Yj a gin« 2^0 (X -f sin 0) sin Ö ‘ 
(86.9) 

(86.10) 

here v0— radius of the parallel circle of edge section 0,. 

To determine o, we obtain the equation 

(X+sin 0) - cos 0 - 2^, sin 0 + o, sin 0 =» 

= - 4y«Co cos 0 - 2/\!« [-Ç-+ C(1+n)] cos 0 

or, dropping in comparison with unity 

(X-}-sin 0)COS0-^-2/^0,8100 =-4^« cos 0. (86.11) 

We hold (86.11) to be the basic résolvant equation of the axisymmetrl 

problem. Forces, moments and displacements are expressed through o, 

in the following manner: 
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Tf- 

A',= 

//,= 

T*- 

\ Ima, COS0 

2yí (Ã-fsinÔ)1“1 

1 Im o, sin 0 
‘¿y* (X + sinO)2 

1 Imo, 
‘ îy2 (X, + sln0)J “ 

Ca 
*(A. + sln0)2 

pa V. -f - tin 0 
2 X + sln0 

• Ca COS0 

x+smo ‘m ao 

(X-fsinO)* ’ 
r„_cos e i 
Cfl X (X -(-sin 0)« + 

, pa (2X + sin 0) cos 0 
2 3T-fsln0 

COS0 Im o, 1 , 
(X -f sin 0)* J 

da, 

M 

, pa X sin 0 4-1 
' 2-Cûr(f-i-sln0)» 1 

— a f 1 Pr rfq» (1—|s)co»0 n- -1 
• ” iy4 U-f sin© Ke dQ ~~ (X + smejî-Re 0iJ* 

m — _£_fO—pe„ _u il_p.ííl1 
2 4y4 L (X + sin 0)* Ke °1 + X 4- sln « Re <i0 J * 
EH*' “ ~ T+t\n 6 ' ^ = 

A, = J (— ae, sin 0 + ad, cos 0) </0 -f K. 
A. 

(86.12) 

(86.13) 

(86.14) 

Particular solution (86.11) for large values of parameter 2v2 in 

comparison with unity, if we exclude from analysis the area of variable 

0. where sinO^O, can be obtained by the usual method of dividing the 

right side by the coefficient of o,: 

õj = — i2y*Cactg 0. (86.15) 

To it corresponds the zero-moment stressed state 

T, 

r, 
X(X-j*sin0)sin0 *•” 

— Ca \ pa 
X sin* 0 

pa 2X + sin 0 
2 X+sin0 * 

«=0. 
(86.16) 

It is easy to see that at 0 = 0. n forces increase without limit and the 

zero—moment solution is unsuitable. For a closed shell under only 

the action of uniform pressure, C — 0 and forces remain bounded 

everywhere : 

pa 2X -f- sin 0 
IT X-j-sln0 ’ 

f — Pa /,--5-. (86.17) 

When shell rotates with angular velocity 0 around axis oz, 

the components of the distributed load are equal to 
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mass density. P — 

¢, = p/l«*. ¢, 

In accordance with (86.5) we have 

(pj (0) = — cos 0pA(i)!üs J (¾. + sin 0)2 dO. 
h 
t 

d>2 (0) = — sin Ophtfa3 J (X. + sin 6)2 dô- 
•k 

(86.18) 

Making the replacement 

oo=x+°inre + ^‘nuTf • 

instead of equation (86.7) we will obtain an equation which is 

distinguished from (86.11) by the right side, which now will have the 

form 

f (0) = 2/yJ (3 + p) pAtfrV (X-+sin 8)* cos 0 — t 

_2/yînpA(oîaî (X + sin 0) sin 0 j (X + sin 0)2 dQ. 

The second term in this expression can be discarded inasmuch as the. 

particular solution corresponding to this term, being obtained by 

dividing it by the coefficient of o,. at all 0 is a small quantity in 

comparison with the quantity The problem is reduced to 

the solution of equation (86.11) with the right side P(0) = 

_ 21V’ <3+1.) pW.’ <>. -mn Of CO* 0. Forces and moments are determined accordin 

to formulas (86.12), (86.13). In this case it is necessary to set in 

them C=p = 0 and to add to the calculated values of force of the 

zero-moment state 

/, = 0. $, = 0. f, = pAö*v*. 
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Going to consideration of the deformation of a torus under a 

bending load, we write equation (16.22), transforming it allowing 

for (86.1), (86.3). We obtain 

d:a , cos® rfo , _ fni,.1» $,n® 4 1 
X + Hn® W*1" L V r+jíñT ' (/. -)-sin0)' J 

= 4Y‘[a»3(0>-f^-«l>4(0)]. (86.19) 

where, in cordance with (16.10), (16.11), ¢3(0). <1>4(0) are known 

functions of the load. In the absence of distributed load they have 

the form 

°3 <°> = - Sin 0 + IT - ^(cos 0 -cos M • 

^ /m ^ I» df, , COS® , 

^(0) - T "ST + « (X+slier f *’ 

(86.20) 

where 

/1 (0) = 
P, cos® 
jxa X-fsin® 

sin 8 r Mt _ 
(X-^-sin®)1 I .¾2 tux 

(cos 0—cos (86.21) 

Dropping in the right side of (86.19) small terms and introducing 

new unknown function 

(86.22) 

instead of (86.19) we obtain 

d20, 
<f®2 

cos® da, , 
A -f- sin 6 d® 

+ o2[-2/Y2 T+slnTF 
4 cos2 Ö 

(>. -f sin 0)2 
] = 4^3 (0). (86.23) 

us make one replacement of the variable to simplify the coefficient 

of oa. Assuming 



(86.24) 
_O» _ 
(). -f sin 0)*' * 

we have 

(X + sin 0) -jgf — 3 cos 0 

— 2ly-a3 sin 0 = (0)(X-t- sin 0)». (86.25) 

Equation (86.25) we select as the basic résolvant equation of the 

problem. The expressions for forces and moments through function Oj 

are obtained on the basis of formulas (16.20), assuming in them b = o, 

u—\ and taking into account transformations (86.22), (86.24): 

*1=* 

sii> =3 

1 cos B Im o, 1 s!n8 
¿Y3 -|-sln 8)1 Ay* X sin 0 

4 /„(«>+A <«. 
1 I- 1 , day cosOImo,! 

lTr+sIñ?F,m dB (À -(-sin 0)1 J 

i Im Oy __i_ » 

(X-j-sinfl)* n(X“hsin6) *' 

m = 17 7MHw[Re (ÍFÍ«r“s6R‘”s]- 
a 1 r _ dOi . (1 — ih « n 1 

m2 — 

Ä(i) = 

a i r„ p. fot i (i • 
4V4 (X + sln 0)» K ¿9 ‘ (X + 

(86.26) 

(86.27) 

Here 

/0(Ö) = —JT^TànG Í (ŸHDCOS0-1-?,, (1)sin0)(X + sln0)</0+ 

+ (X~!f¿iñV í (í* C0S 9~Vl (i) Si" 9) ^ + Sln d% — 
% 

e p • 

- (xtÍt-rV Jsin ° i J (i* <•>cos 8 - 
a. La. 

+ í« ui sln 0) (X + sln 0) </0 

/2(0) = 01 J ?2(i)(X4-sln0)d0. 

rf0. 

(86.28) 
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-n the absence of distributed loads /,=/,.0 and the amplitude of 

13 °0nneCted Wlth by the relatlonsWP resulting 

1 
* ~ na X + $m e + ^1)- (86.29 

By division of the right side of (86.25) by the coefficient of 

we obtain the zero-moment solution 

(¾ ma I2y* (A-4- Sin 0J*« 

In the absence of distributed loads it has the form 

oa = t2f dg 0 (A. -f stn 6) — (X -j. siP ©)*— 

(86.30) 

P, 
ITT ctS 0 + sin 0) (cos 0 _ cos 0O)]. 

(86.31) 

To it correspond forces of the zero- moment state 

/, :=— JUi_?__ I Pj_ cos6 —cose, 
Tia' sit! 0 (>. -j- sin 8)* aa slnU(/.-J-sIn^’’ 

J _ ¿>i — P,a (cos 9 — cos 6,) 
2 na* slnJ 0 (/. + sin 6) * 

Sim ______--Píateos 6 —cos 0,) 
xa (?. + sin 8) na2 (¾ _|_ sin - ctg 0. 

£ — Mi— Pia (cos 8 — cos 8.¾ 
* aa* (X -j- sin 0)J ctf®* 

(86.32) 

(86.33) 

§ 87. Periodic Particul^Solutl.on of Equation 
.(ob. 11). Axial Extension of a ^ 

Tubular Compensator 

(86 in)' “"I5 3h0Wn ln the PreVl0US Se0tl™. zero-moment solution 
6.15 cannot serve as the particular solution of résolvant equation 

( .11), since it turns into infinity in points 6 = 0.,,. It is possible 

owever, to build the particular solution of this equation which 

possesses the feature of periodicity and is fm-.e everywhere. We 

look for it in the form of a series [114] 
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°I = flo+«1 cos 0 4- û2 cos 20 -f- «3 cos 30 + ... 

... -M,sin0 +é2sin20-M,sin30+ (87.1) 

Substituting (87.1) Into equation (86.11) and combining terms contain 

ing trigonometric functions of angles of identical multiplicity, we 

obtain relationships for determination of the coefficients 

- + 2 l~ 2/Y’-(n + W« + 2)1 *.+1 - 

—j I- 2/y* — (n -1)(/1-2)1 ¢,., -= p,. 

- n'U. + 1(- 2iy> -(/1-1)(/,- 2)J - 

- 41“ 2/V7 - (« + 0 (« + 2>1 u,+1 = 0. 

(87.2) 

where 

P« = — ty'Ca, Aral. 

P« = 0. A>1, *«0. 

ihe first four equations of this unbounded system have the form 

(87.3) 

T“ simple to see that the derived system of equations breaks into 

Uo, where the first contains coefficients of an odd number and 

an even, and the second is the reverse: «-with even numbers and 

with odd. The second system has, moreover, null right sides. 

This means that we can set 

a2* = ^»M=0. * = 0,1.2, 
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The solution of the firsc system can be obtained in the form of 
continued fractions 

2-3 

ai Y* ^ i 
2JX , \ '^)l [■- 
* 1 V). , 1 

vt 1 
[-4 f) 

t .(/,-1)(/,-2) 

1 

(n + l)(n + 2)l 
W J 

1 ' ! 
(n -f 1)U , 1 

i 

[l /^ + ^^ + 3)] 

a. 

i —1) 
1 '—5T»— 
(n -f- 1) n ' 

. 

("+2>=X . 
1 /<?+2Ha + l)] , ,(.143)(/.4 4)1 

2vJ J 
Y* (/•+3)» 

—— -+ ... 

1. 3. 5. .. 

(87.4) 

In this way, the particular solution of equation (86.11) has the form 

°i= flic.os6 + fl*cos30 + 4-sin20+ ^sin*104- ... (87.5) 

Arrangement of continued fractions (87.4) is such that they 

converge even better than greater the ratio For a very thin shell 

(2y*^>1). but such that ^^»1. the particular solution of equation 

(86.11) can be approximately presented in the form 

«1 COS 0. (87.6) 

Really, at 2y,->cx5 and simultaneously 4-*°o from (87.4) we obtain 

«I-*- 
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et us note that (87.6) is the particular solution of the equation 

== —4Y4C«cos0. 
(87.7) 

which is obtained from (86.11), if we leave in its left side only 

the term containing X. Solution (87.7), just as (87.5), satisfies 

boundary conditions of the following form: 

1(±y)=°. (87.8) 

These conditions correspond to the fact that on the edges e= 

ooth angle of rotation d,. and shearing force turn into zero. 

+ " 
± T 

designate relative axial displacement of shell edges 0== 

conditions (87.8) using the approximate formula 

Let us 

±-5- under edge 

Jl 
“T J Û0,cos0(/0¾—• J -£££-Reo,cos0</0. 

*T ♦T 
(87.9) 

On the basis of (87.6) and (86.10) we obtain 

A i2(i-Mvr* ^ . «i 
** Ih*-l7^i5r + ^flTj (87.10) 

At p — 0 this expression by only the factor (1 —n*) differs from the 

amount of displacement of a curved beam of unit width cut out from 

the shell [141]. Toward the end of the beam is applied vertical 

force Pl/inaL 

The periodic particular solution (87.4), (87.5) can be used to 

determine the displacement of the edge sections and the stressed 

state of a tubular compensator [139]. The compensator is cut out in 

section 0 = -.2- of a torus-shaped shell, the edges of which (o = —JL 

0=-y) are joined to the tube. We can appioximately set that the 

tube possesses infinite rigidity relative to the angle of rotation 
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and zero rigidity in the radial direction. This n,eans that in ■' 
sections e-$. the angle of rotation and shearing force are 
equal to zero. Because of the symnetry of construction the same 

conditions exist in section 8=f. In this way. the compensator can 
be approximately calculated as a torus-shaped shell under edge 

conditions (87.8) Let us examine the elongation of a compensator 
by axial forces P? (Pig. i|0). 

Pig. ^0. Tubular compensa¬ 
tor stretched by axial 
forces . 

♦ 

Determining axial displacement in general, when parameters 1. « 
can be any amount, using equations (87.9) and (87.5) we obtain 

C87.ll) 

At p == 0 using formula (86.10), we have 

(87.12) 

Substituting into (87.11) the quantity .,. m accordanc 

(87.12) we find axial displacement of the edge of the 
relative to plane of symmetry q— ^ 

e with (87.4) 

compensator 

(87.13) 



Substituting solution (87.S) into the first formula of (86.13), we 
determine the bending moment 

X R*I o,sin0 — 3fljsin304- ... +2^03 20 + 4^05 404- ... 
(1—h)co!>9 „ 

30 ^ -+^^^20 + ^4^^+ -.)1^ (•87.1^) 

At ).^>\ expression (8?• 1*0 can be simplified and brought to the form 

A4, (0) = 

3aâs,n30— ••• + 2¾co*20+4¾cos40+■...). (87.15) 

i.t 0—on the basis of (87.15) we find that the bending moment in 

this section is equal to 

Af (87.16) 

If the relationships of dimensions ar such that during the calculation 

of the first continued fractions in (87.15) we can be limited to two 

steps, making subsequent calculations also with the corresponding 

correctness, i.e., assuming 

4y»C« _ X 1-/ 
23 

V* 
IF 

TT1 

F"+-3¾- 

«i 
2»X , (1-^)(1-^) 

1-/ 
21 

— / 
*7 W~' 

ai—b»c 0. 

(87.17) 

then it is easy to see that in this instance (at X^>1 



for calculation of the 
approximate formula ^ m°ment ln section 0=^. we derive the 

(tJ * ~ vT (1 + ^—J Re 

Meridian streaaaa from thls moment at <>_o ^ 

I JfLf,, V- A I 
W jiA*y* \ 2>-3X.tJy^^e- 

-+ V* * 

I 

7-/2^ ' 'w- 
? iJESES •+i—(87.16: 

V* 

Using (87.13) and (87 ifiï ,, 

in section 0=»‘ ln a tubuie G°mpUte axlal displacement and stress 

and having ^dimensions: "" COmPenSat0r Wretched by forces P? 

d = 22.8 cm. 

^ = 8,14. 
a = 2.8 cm. * = 0,2 cm, 

2Ys = «.3. ^- = 0.353. 

f—2.1.10* kg/cm2 (1 = 0,3. 

Calculating the amount of first 

within the third Signifloant aleit . ^ 
4\-Ca 
~V~ “ 0.924 — /0.0465. 

At />2 = 935 kg 

I A, I 
/^-46.3 1 

2-2,1-10*.()3-Õ33- ~T68ÕÕ = 0.A95.10~4 cm. 

The axial displacement of the whoi 
tne whole compensator is equal to 

P°. 
Ai,~ irob-^J.is- io-4 cm. 
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Stresses in filiaments of the external surface in section e = i at 

p] = 935 kg are equal to 

in\ 6• 935• 0.707 /,, 1 \ 1 __ 
\ 4 j 0^.3.14 -4^11 ' 12 • 0,35^/ 0.924 

— 1220 kg/cm 
2 

§ 88. Periodic Particular Solution of Equation (86.25) 

The particular solution of basic résolvant equation (86.25) at a 

bending load of the form P,=0. Aij^O also can be looked for in the 

form of (87.5). The right term of equation (86.25) in this instance 

has the form 

i4lcose+ßasin2e. (88.1) 

where 

4y<X. ï- 
(88.1) 
[sic] 

To determine the coefficients of series (87*5) now we obtain the 

system: 

- 1*0,1 -jb3 (2/y*+2 • 5) = Av 

- 2V - -j a, (2/y* - 1 • 2) + -y 0,(2^+3 • 6) = Br 

-3^1+^2/^-2-1)-^(2/^+4-7) = 0. (88.2) 

- 4V - y aj (2/Y* - 3 0) + Oj (2/y* + 5 • 8) = 0. 

- 5*0,1 + ^-5,(2/y* + 4 • 1)-y (2/Y1+6 - 9) = 0. 

Prom (88.2) we find recurrent formulas for the coefficients 
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(88.3) 

For example, at /. = 2 we have 

-ir'= 
'+0'-ST 

TTT 
"2? 
H. yl I ••• 

¡ (‘ ' ^)(1 +/_5Í) 
w I m----L-L 

(88.il) 

^nstea^o^it^the seoon<1 quation of (88.2), „e obtain 
0 f U °ne eqUatlon containing two unknown coefficients- » 

(88.2) we^find thT ^ second ecu^ion’of vuu.t; we lina the numerical valuer nf « * ¿ x. dxueo oi a,, b3, and then, usine: (fifi ^ 
compute the subsequent coefficients. At sufficiently lange 1 „ä ein 
approximately set B * we can 

^2*^0. 

Then, to determine a,. 
we obtain the continued fraction: 

(88.5) 

iJ07 



atisfies the conditions 
The solut3.cn s 

ox*, because of substitutions (86 

(16.12), the conditions 

.22), (86.24) and relationships (16.17) 

v(± t)-#- 

Let us determine angular displacement of section e=-j- of^the 

Shell relative to the middle section 6 =+ T under the act 

external bending moment Mx 

--a 

'(-t) 

By 
formula (18.2) we have 

A« (H 
V 

« 

.V- a) dO + fV 
n T 

Assuming 4.,,,(^)-0 and taking into 

(88.7), we find that Dt = 0 and 

account the first condition of 

_2L 
4.„,(-j)= J 

.1 T 

Since 

i f r o, 1 i co>8g» \ 

taking into account the edge conditions for «, finally we ottair 
then , 



(d. J £A(X + sin0)' 

Re Oí eos O 
Eh).* 2ÂXTRea- 

« « ínt-n this formula we find 
Substituting the value of Re., into 

<.,=-sSc?ReT 
4+-—m?+^ 

(88.9) 

To determine meridian bending stress In b* llmlted to the 

„hen during caleuUtlon of so u a formula analogous to 

first three terms of the sene , 

(87.18)» 

.,^)=±4r^r(> 
XRe — PíSEEEM 

-+ V* ^ 

(88.10) 

1PÏ 
+ ..• 

Formulas (38.9), (88.10)^ ^^“^or uhich is subjected to 
rigidity and stresses in a tuhuiar 

bending by external moments Ai. 

§ 89 . Solutlon^oX-B^gj^--*1--^0ng ('86 ‘ 11~^' 
(86.25) for the Case_ -¾-^5,' 

torus-shaped shell during axlsymme r coefficient of the 
one another only in the cons a t actor The 

first derivative and ty ^ the char,acter 0f edge 

of the corresponding uniform equ ^ that area of change 
effects, about which we spoke in S 9,^^ _ At 6_0. „ 

in 8. in which the values o s" ter », in these equations vanish. 

the terms in Equations (19-13), ( — » 
In accordance with ^nis 



in these points assumes ac unbounded large value and cannot be dropped 

in comparison with the first term, containing the parameter 2v3. It 

is necessary to build such solutions of uniform equations (86.11), 

(86.25) which, remaining limited in the vicinity of points 0 = 0. n. 

with sufficient distance from them would assume the character of edge 

effects . 

There are a great many works [113], [132], [167], •••, which 

consider equations of the fo^'m 

-Ir k »> +[t * ^ -t- ' (0>]0='(6)- 
(89-1) 

r(e)_ actual functions which do not possess singularities on the 

section of change in 0 [a, b], where p(0) does not turn into zero in any 

point of the section, ?(0) has a simple zero in point 0 = 0. Parameter e 

can have both real and imaginary values and 

Equations (86-11), (86.25), which are of interest to us, easily can 

be brought to the form of (89.1). The large parameter in the involved 

case has the value 

i_2M /U3 U3_ V (89.3) 
T-JT- 

Method [132], which will be stated below is suitable for calculation 

of shells whose geometric dimensions satisfy th-. equirement 

^ = /12(1(.89.4) 

The concrete notation of equations (86.11) and (86,25) in the form 

of (89.1) gives for the axisymmetric case 

410 



«‘«“õ+tsW. 

i<1, 

(89.5) 

(89.6) 

for the case of a bending load 

p (0)-. 
1 

(1 -(-a sin 0) 

#-(0) = 0. /(0) = 

7- ¢(0) = 

(1 -)-a sin U)* 

sln0 
(l -f-a sin 0)= ’ 

(89.7) 

Here Ft and Ft— the right parts of (86.11) and (86.25). 

Let us examine the interval By replacement of the 

dependent and independent variables 

0=1)10, 10! a7: 1 
Vpis 

u — u0 (0) 4- £«, (0) -f e3u2 (0) -)- 

¢0 
55* 

equation (89.1) is brought to the form 

(89.8) 

(89.9) 

where 

pu' w o' 

(89.10) 

Assuming >1(0) = .; and equating terms with identical powers of e, we find 

the relationships for determination of «<>.«,, etc. 

“o“ 
_?(8) 
P(0)uf 

V \rv -I- (pv'/l. 
(89.11) 



From the first relationship of (89.11) follows 

3 

(89,12) 

F.quation (89.9) now can be rewritten in the form 

e-^r-+-«ti= *(«). (89.13) 

By one more replacement of the independent variable 

(89.1*0 

we convert (89.13) into the equation 

= = /?(«). (89.15) 

The uniform equation corresponding to (89.15) is the known Airy 

equation 

if+ /T1 = 0, 

which with the aid of elementary substitutions is converted into a 

Bessel equation of the order -y. The general solution can be repre¬ 

sented in the form 

11=0,^(/)+^(/). (89.16) 

Functions *,(/;. h2(t) are expressed through Hankel functions in the 

following manner: 
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pîere are tables of functions A,. a2 for imaginary values of the 

rgument t — x-riy with the interval of change x. y through 0, 1 [173]. 

In the appendix is given a copy of these tables for t = iy (Table 4). 

Functions h^t). Aj(/> are representable by infinite power series of 

Ihe following form: 

A, (/) = £ (O -h / —j—1£ (O — 2/ (/)1, 

. . «i (3m — 1 ) (3<n — 4)... 5 » f* 

t-1' (3m-(-1)! 

— 2)(3m — 5) ... 4-1 

(3m)! 
(89.17 

0,853667. 

It is not difficult to see that functions A,(/). MO possess the 

following features: 

MO = ^(0. M0=M0- (89.19) 
= Aj(/) «=* Aj (/). 

For values of / large in absolute value, there exist the asymptotic 

representations 



(89.20) 

A, </) ~ ß/ T T1 + £ <- exp «7 _. 

-■y-<«*/<-£. 

AaW-p/'^l + J (/>"c- _??J exP (~T U* + Jlj • 

ÂJÊ 9m 

. _ (9-4)(81-4). . f9{2* —I)*-41 
¢--2«*.o*-«r —1 • 

A;(0~(MTexp(4«7 + ^). X < •rf # < X * 

Ai(/)^^exp(-4^-^). —x<ir*/<3* 

From (89.20) it follows that the constructed solution of the uniform 

equation, if parameter -i is large in absol.ute va7.ua, possesses the 

features of edge effect. Really, taking into account (89.3), (89.5), 

(89.7), (89.12), (89.14) and keeping in expansion (89.8) only the term 

containing e in the zero degree, we obtain 

Mpfi (7 a*'’—!*■)]=■ 

=,,P j ± [—a-M , -tt] |- 

Note that the solution keeps the features of edge effect for any 

complex e. The exception is only the case when t is equal to a real 

number. 

The particular solution of heterogeneous equation (89.I5) is 

looked for by the method of variation of arbitrary constants. In 

this case one must take into account that *,(/) is that solution of 

the uniform equation which increases along the positive direction of 

a beam i = pu (p = c *), and Aj(/)— is the solution which decreases along 

the same direction so that a,(—oop) = 0, AtH-oop)=*0. Then the particular 

solution can be represented in the form 

n = x I J £, <■*) Aj (T) dx + A, (/) J gt (T) Aj <T) ¿TI. (89.22) 

; 

(89.21) 
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Remembering that = p^(«). we rewrite (89.22) in the following 

manner : 

W Aj (pu) f g ft) A, (pi) <ft + A, (pa) J ift) A, (pi) ftj . (89.23) 

Substituting into (89.23) the expression for ^ft) in the form of the 

series 

jkJ nl 
c-0 

(89.24) 

and going again to integration over variable t=pi. we obtain 

i¡>^pe0(0£(ii) + «i(Ot(«f+ ••• + .••. (89.25) 

where 

*o(0 = -¿ [aj(0 J A.Mdt+AjioJ A,(T)rftj. 
fß(0 = j (0 J(T—0*iW¿t4-A|(0 J (t—0"Aj(t)</t|. 

(89.26) 

With the aid of integration by parts we can establish that between 

these functions exist the recurrent relationships 

(b 3)^-4>(0 "t" f*«. j(0 -R (() ®* (89.27) 

where ¢,(0= 1 —te0(t). and function e0(t) satisfies the equation 

.:+/..-1. (89.28) 

This directly follows from (89.25) If we set in this expression g(u)= I 

! 
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Function e0(t) is connected with the known Loirjnel function of the 

second kind and order 0, 1/3 by such a relationship: 

(t)V’( 2 (89.29) 

Let us remember that the Lommel function of order »i. v is a function 

wich satisfies the equation [79] 

x'y +*/(89.30) 

so that function So../, (Just as the function of the first kind 

is the solution of equation (89.30) at v = ^., n = o. 

When V is fractional the function of the first kind Vv has the 

expression 

v — 2sinnv I (■*) J ^ /-»(, / r/v(l)rflj. 

Fu. thermore, it is represented by a power series 

m-0 

(-1)" (t) 
2« + J 

i r| (£í1+7)rl :^+4) 
r( -+«• +«+7) 

if (Ji + v) or (n-v) are not equal to an odd negative number. 

Function of the second kind is connected with the function 

of the first kind by the relationship 

X [cos ( nJ /_v (X) _ COS (n) /, (X)] 
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(v is fractional). 

Using the written out expressions and (89.29), we obtain 

ejO) 
¿rr (1) =1 ^28789^ ‘Ó (0) == -3-vr = _o, 938893. 

It is simple to write out a direct representation of function ,.(() 

in the form of a series in powers of / 

+,:(0,/(1 - ’/3+ ...)+ 

(89.31) 

On the condition that 

for e0(/) there exists the integral representation 

(89.32) 

For large |/| from (89.32) we obtain the asymptotic expansion 

oo 

^0(0-^7 + 2 
*-1 

(-I)»(3»-l)t 

(*—l)!3*-'/»*+i ' (89.33) 

Using expression (89.32) and the formula for the Fourier cosine 

transformation, applicable to the function /(x) 

= 4 Jcoiajrrfa j r»COiatdt’ (89.34) 
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it is easy to calculate what J Re#*(iy)*y Is equal to. First note that 
0 

* ■ 

• * 
Re MW“ J *'"reo»yjtrfjf- 

Making * approach zero in the left and right parts of <89.3«), we 

have 

00 00 

4M t~ 3 cosa/rf/: 

hence it follows that 

CO 

/ ReMW^y = T’ 
(89.35) 

Thus, the particular solution of equation (89.13) 

(89 25)) is obtaired. which is a series in negative powers 

parameter ,=.-, For practical purposes frequently it is sufficient 

to be limited to one term of the series 

i 

In accordance with this in creating the fundamental 30“s °f the 

uniform equation in representation (89.8) also one ought to 

small terms, assuming 

a «=HO(0). 

Being limited to the indicated zero approximation, «e write t^ 

general solutions of the basic résolvant equations (Be.U) and (86 

which describe axisymmetric deformation and deformation under 

load: 

418 



Here 

°> “ Aiwih> « + W+VCûji, Vo(o. 

^ = [/»i,«', a; (/) + A, (0^]+ 

H- 2>fCaMj. /ji| ctg 0tfoí¿ (/) 

/ = /M,«o. «’■^(li^Vfd + dsin^. 

o<e<£. 

°3 = (0 + A^jAj (0 — 

-^,2^,(0)(). +sin 0)3 ^e0(t). 

^¡■=Al a; (/) + A, (/) ^i] + 

+ *2 [/I*,«, A' (/) + A, (/)-^1] _ 

- ^2y^3 (0)().+s.n 0)* 

(89.36) 

(89.37) 

where 

For small a there exist the approximate 
equalities 

■Sr* 

>1. 

i. 

‘Wj’*» 1. 

>0. 
(89.38) 

In ao! I00“”1 that the Partlculai- s°lu«°n was conatructed „J 
an accuracy at which entities of the order were dropped In 

comparison with unity. In the uniform solution we also can discard 

analogous terms. Therefore In formulas (89.36), (89.37) we can dro 
the underlined terms. v we can dro 
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For large t e0(t) 
I. anr>. the particular solutions 

o, = 2yîC<ïh, “o'oW. 

o3 = - n^Y^a (8) a + s¡n 0)* -¿¡fy ‘o(0 
(89.39) 

coincide with the zero-moment solutions 

¿( Ä _ /2Y*Co . 33= /2^,(8)(^+si" 

On the other hand, at 8 = 0 the 

zero-moment solutions, remain 

right parts of (89.39)» unlike the 

bounded, since 

lim -rrn = 1. 
e-»a sin 8 

Formulas (89.36), 

section 0<8<y. 

(89.37) represent the desired solution in the 

In order to build a solution valid at -t<e<0' 

„e represent equation (86.11) in the form 

(fj = — 4y*Ca COS0) 

(89.40) 

and replace the argument 

0 = -0,. 

then equation C89.W) «m P«ss lnt0 e1uatlon 

d 
dd, 

r,a 
a sin Si)11 ' 

(89.41) 

This equation also belongs to the type 
of equations (89.1), where 

1 2/v* 
7=1-- 

(89.42) 
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(89.43) 
; —aslnè, ’ (i—osinè,)* 

/(öl)= 
^1« 

(1 —asinOj)* * 

Large parameter (89.42) is obtained from (89.3) by the replacement of 

I by —and formulas (89.43) differ from formulas (89-5) only by the 

sign on ot in the denominators. In accordance with this the desired 

solution is obtained from (89.36) (the same applies even to (89-37)) 

by replacing 

t by /,=,- -^0(01). 
l 

<*1 by <*, = .(-¿V)TO - o sin 0,)*'*. 

i . 

t®3 by ^3 = (-5^^(1 — aslne,)''*. 

(89.44) 

Making the indicated replacing, we obtain expressions for a,, a, and 

their derivatives, valid at —•y<0<O: 

0, = Biwlhl (/,)+ fljTO1Aj(/I)-l-2YîCflfi1 o0*0(/,). 

«3 = Bl^A (/,) + fl2«3A2 (!l) — 

- (0) (X+sin 0)» e0(i,). 

dVm 
= (^)-257 + ^1^3^2^0^17 — 

- 4^3 i0> (?-+sin ^ 7¾ e5 (M ^7 • 

(89.45) 

(89.46) 

Since at 0 = 0 , or, which the same, at 0, = 0. the values of w, , ip,, t 

and /,.-¾5 and ^ in both cases coincide, then it is easy to see 

that at 

£| — Ax% Âj Ai (89.47) 

i 
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solution (89.45) is an analytic extension of solution (89.36). In 

exactly the same manner (89.46) is an analytic extension of (89.37) 

from the domain 0<e<^. into the domain —•5-<0<O. 

Let us imagine a torus-shaped shell bounded by the edges e* 0k. 

where 

— y<0o<O. -y>e*>0. 

Remembering the features of functions *,(/), a2(/), expressed by formulas 

(89.19), and asymptotic representations of these functions, existing 

for large values of the argument, we come to the conclusion that 

function 

A. ¢,) = ^(/(1,1¾). .0o<0<O. 

A, (/) = A, (/^«o). 0*>0>O. 

in ab- •'lute value decreases in proportion to the distance from edge 0O 

to edge 04.' and the function 

«2 (6) = 
Aj (/,) = A, (/(i,«o). 

Aà (/) = hi (/(1,11o). 

0O<0<O. 
0*>0>O. 

in absolute value increases when 0 from 0O to 0*. In this way, that 

part of solutions (89.36), (89.37) and (89.45), (89.46), (89.47), 

which contains constant ¿4,. describes the stressed state of edge 0O, 

and the term containing A3, describes the. stressed state of edge 0*. 1 

In the uppendix are given tables for calculation of the integrals 
e_ 
f -1/"—Üîi£—dx at different values of a = T-. and also tables of function 

J I 1 ± osinx A 

e0{t) and *£(/)• 
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§ 9O. Elongation and Bend of a 
Tubular Compensator 

In an axisymmetrically loaded shell, bounded by sections e0= — 
84 = + -5- under the edge conditions 

(90.1) hI=0. of == //Î=0 

edge effects are absent. Constants ¿4,.-4, in solutions (89.36), (89.^5 

are equal to zero. The stressed state is described by the particular 

solution 

2^,-Sr?-WO. o<e. 

e<0. (90.2) 

e1=- 0. 

ctg 0«o-^ e'Q (0. 0 < 8. 

(90.3) 

since v0 = fl(}.—1). 

Let us examine a tubular compensator stretched by force P%. 

in the presence of internal pressure p- Prom considerations of 

symmetry in section 0 = +y conditions (90.1) should be held. We 

consider that they exist also in section 0«—y. 

The bending moment in instantaneous section 0 we compute using 

the approximation formula 

(90.4) 

Substituting into (90.4) the expression for at 0>O. we ootaln 



The imaginary part of function e¿(/) has a maximum for the value t — f** 

= 1.225/: 

maxime'(/) = 0.753. 

1 99S 
To the value of f* corresponds to angular coordinate e* = -:—. Since 

i*i 
parameter n, is great in comparison with unity, this means that 0* 

is small and we can take 

Taking into account everything we said, we obtain 

Af' ^ - -¿r [“- + pa2 (2>. - 1)] 0.753. 

Maximum bending stresses are equal to 

^l0'753- (90 - 5) 

At p = 0 formula (90.5) can be represented in the form 

o,= + (±>2.99(1 -i»V*(x]T**3rL-. (90.6) 

p? 
where "¿-i~ tensile stress in a cylindrical tube of radius a with 

wall thickness h. In formulas (90.5)» (90.6) the upper sign refers 

to stresses in the filaments of the external surface, and the lower 

sign refers to stresses in filaments of the internal surface. The 

signs in parentheses should be taken during the calculation of stresse 

in section 0= —o*. 

Calculating circumferential forces using the corresponding 

formulas (86.12), on the basis of solution (90.2), (90.3) we obtain 

du« 
T. * - XfTtnë CaMïc;g °“a IT Ree'o(0 + -Tf — 

OH? 

). sin 9 + 1 
A. (X 4- sin 0)* 

~ — ctg 0«d Re <(/) |^r+p(2X-l) 
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they have a maximum value at 0 = 0. 

in this section are equal to 

Circumferential tensile stresses 

C90.7) 

where Ref'(0) = — 0.S39. At /» = 0 we have 
* 

(90.8) 

Let us determine the axial displacement of the compensator under the 

action of stretching forces in the presence of interior pressure p. 

The displacement of section 0 = const relative to fixed section 0 = y 

is equal to 

^,(0)¾ J Û0, -o$0</0. 
Hit 

Relative displacement of edges 0==-^., 0=^L is calculated by the 

formula 

A 2a 

+Hfl 

J Re q, cos 8 
X +• tin 0 

dQ> 

4^* r f* , , ifcos’e „ 
~E¡T IñS» + P (2)’ ~ J "tinF Re '0 (A»!«,)) *0. 

since Rei0(/M,«0) = Ree0(—/n,«,,). u0*av0. For large values of parameter the 

integral in the right side of this equation is approximately calculated 

with the aid of (89.35) 

Jl4 CD 

J Sr «0 Re fo J Re e0 (ly) dy 
n 
T- 
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Relative axial displacement of the edges of the compensator is 

A, = y 12(1 -|iJ) + P™ (2X-*>]• (90.9) 

Under bending load A!*0. P = 0 the particular solution of equation 

(86.25), possessing the form 

—11,2^3(0) (i+stn 9)3 "inf®e^' ®>0, 

— + s,n-»iñV 'o^l)* ®<®* 

— /11^^3(6)(^ + s1"0)3 7¾ 'ÓW* 8 >0- 

-/gfiV^ji0)^ H sln0>1liiV ^ 0^0, 

. . . a .a. cos 8 
satisfies the conditions o3^±yj=*0. since in this instance <P3(0)*= n ^ 

Using this solution to determine angular displacement of half the 

tubular compensator under the action of bending moment M, we obtain 

—jl/2 

»,= f tos>e^R...(0míe. 

nit 0 

Calculating the integral Just as was done above, finally we have 

<0^12(1 (90.10) 

The angular displacement of the edge sections relative to one another 

is 

2o)y== aEh>fr 
At (90.11) 

Maximum bending stresses occur in planes » = <>.* at e== 1.225',», and are 

calculated using the formula 

°| him 
4. IT»« 

± »» • 
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where 

In this way, finally 

<»,»„= ±0.955(1 
JL 

h) K d'h ’ (90.12) 

The formulas for calculation of the compensator given in this section 

are simpler, and handier than the corresponding formulas obtained in 

§§ 87, 88. However, one ought to have in mind that the applicability 

of these formulas Is limited by an essential requirement: 

§ 91. Stressed State of a Quarter-Torus 

Using the asymptotic solution introduced in § 89, we will 
examine the stressed state of a quarter of a torus-shaped shell 

(Pig. *11), loaded by uniform internal pressure Pî, by axial force p 

and by edge forces and moments distributed along the parallel circle 

(e0) and (0*) with constant intensity Hi Afi. Hkt, M? [31]. We will hold 

that the parameter |ii is so big that during determination of the 

arbitrary constants in solution (89.36), the mutual influence of 

the edges can be neglected. Then during determination of the stressed 

state in the vicinity of edge 0o«o we can set /t2=;0. i.e., write the 

solution in the form 

0, = Axv>xhx if) 4- 2Y*Cfl|i, -‘" g- h/0 (0. 

='Vh«’! 4ïr Aí 2y!/»iîc« cig e'(f). 
(91.1) 

Separating the real and imaginary parts, we have 

Re <j, = tOj [Re Ax Re A, (/) — Im Ax Im A, (0) + 

4- îy’Cflii, «o Re e0(0. 

Imo, = 10, [Re Ax Im A,(/)4- Im ^4, Re A,(01 + 

+ 2Y’c«l‘i «o,ra '0 (0. (91.2) 
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Re^ = - n,«, ^ [Re Ax in. A((0+1« R**i W] ~ 

— ctg 8«, 1m «¿(0. 

1m -¾. = ti,», [Re \ R« *[ (/) - Im Ax Im *[ (/)] + 

+ 2Y*|i|C« e^g ®*o "^T R* #o W- 

(91.2) 
(Cont* d) 

Using formulas (86.12), (86.13) from the edge condition at 0-0: 

= M, == Al», we derive the equations for determination of the real 

and imaginary parts of Af 

—WRei4‘ I® MO)- 

[R* Ax Im h[ (0)+ Im Ax Re *i(0)] — M?- 

(91.3) 

In this case we accept |f 1, a^O. 

Pig. 41. A quarter section of a torus¬ 
shaped shell loaded by forces and 
moments evenly distributed on the edge. 

Solving (91.3), we find 

Re A, 

Im Ax 
«A A«? , 
flji, Re A| (0) 

Im A, (0)ReA, (0) 

(91.4) 



The bending moment in any section 0 (in the vicinity of edge 0 0) 

is equal to 

.. „u , 
x + t,ne Re*¡(0) n 

/•■0 ^ 
r# “"F ~ ^)27^ +»ln 6) 

C« \ Re*j (0) In» h[ (f) - Re *¡ (/) Im *{(0) 

Re*; (0) 1m/1,(0) 

(91.5) 

Calculating on the basis of (.86.14), (91.1), (91.4) the angle of 

rotation and radial displacement at edge 6 = 0. we obtain 

,,_í¡LJíí^^+í^ií4®«; 
' Eha\i) Re h[ (0) Eh Re*i(0) 

Eh Xia Eh Re h[ (0) ’ 

aj=^f(.1-iiJi)= 

_ *lVl lSf*i Wl’l- [lm(0)]] fu, _ )_ 
“ ' 1m hl (0) Re Aj (0) Eh 

Eh Re h\ (0) InaEh 

(91.6) 

During calculations it has been taken into consideration that in the 

involved case 

vn — ai, C = 
XE\ 
Zia1 

(91.7) 

furthermore, quantities of order in comparison with unity were 

dropped. 

Let us designate relative axial displacement of the edges 0O. 0*. 

assuming that the edge 0, = -3- is free from forces 

m*=w;=o. (91.8) 
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In this instance the edge effect of edge 0*’ is absent, constant At 

is accurately equal to zero and axial displacement is determined on 

the basis of (91.1) by the formula 

m.9> 
V 

Constant of integration D is found from the condition A,(-J) = 0. then 

M 

A'(0)==-¿rJ rffl- (91.10) 

Substituting into the right part of (91.10) the expression for Reo,, 

according to (91.2) and (91.4), and setting 

I _ ■ 1 A 
r-Minè T* 8 = 0> 

we find 

A, (0) =-pa) f—Í!-¡-7»lm (0) ] 
^•*1 I lm A, (0) lm A, (0) Re A,' (0) J + 

£A|i¡ Re A,' (0) 
MÏ+rfCa i * 1 

2 £AA 
(91.11) 

where the designations 

a/3 

Ml / Re A, (0 cos 0//0 = /,, 

a/» 

hj lm A, (/)^5 01/0 = /, 
(91.12) 

have been introduced, and, furthermore, it has been taken into account 

that 
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«/* 

h/Re 
nfl r 

ro(/)^F*orfe^ j Re *o = 4- 
o ^ 

Integrals (91.12) can be calculated with respect to any of the 

quadrature formulas, approximately setting co.9^1 and replacing the 

upper limit of Integration by since when 9 Is small [os„ i3 really 

= ose to unity, and for large e the absolute value of t is great (on 

the strength of the fact that parameter p, Is big) and the functions 

emselves Re*,«). ta*l(„ Insignificantly differ from zero. In this way 

^ to 

M, J Rc A, (/) cos 0(/0¾ J Rth,(iy)dy 

and, consequently. 

/j J ReAji/y)^. 

similarly 

/j ^ J !m A, (ly) dy. 

Calculation using the formula for trapezoids with the aid of Table 4 
of the appendix gives 

A == - 0.504; /2= _ 0.873. 

Formulas (91.6), (91.li) are simple to rewrite with 
coefficients : 

numérica?. 

=í£¡7 '•«»»? + ^0.578 M 4., ,28i, 

TT-0'811 (^-^)--^-0.578^ + ^^0.939. 

(91.13) 
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(91.11*) 

§ 92. Coupling a Quarter-Torus with Two Long 
Cylindrical Shells. The End Walls 

Let us examine the coupling of a quarter-torus with two cylindri¬ 

cal shells (Fig. 42) [142]. We formulate first the conditions of 

coupling the torus with a cylinder of less radius. The positive 

directions of the forces, moments and displacements in the torus and 

the cylinder are shown in Fig. 43. At the coupling place the 

conditions 

Alw •=■ AJ1t, Nlm 
(92.1) 

should be held. Between the quantities v> and Nv Ml on the edge of 

the cylindrical shell exist the relationships (formulas (27.21)) 

Fig. 42. Fig. 43. 

Fig. 42. Coupling a quarter-torus with two 

cylindrical shells. 

Fig. 43. Positive directions of forces and 
moments in a torus and in a cylinder. 
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Subsequently we assume that the thicknesses of the walls of the shells 

are identical: An = AT Substituting the expressions for angle of 

rotation and radial displacement in the torus and in the cylinder, 

expressed by formulas (92.2), (91.6) through and , into the first 

two conditions of (92.1) and taking into consideration that by the 

remaining two conditions (92.1) Aí,B=iM,T = yM?. we obtain two 

equations for determination of the moment and radial force at the 

place of the connection: 

»f !m h\ (0) 1 KM- r Mj* ImA.CO)] 

p ft* 
-Ml Rte0(0)-^ 

H° Í t 1 [Re *í(0)]2+[»"« »i (0)1* 1 
I 1m a/(0) Re h\ (0) ) 

mJ'* f, Im h[ (0) 1 0 n , 

R*(0) J ^= 2arf FIRe'o(0)' 

)uring the composition of equations (92.3) It was taken into account 

that 

4YÍ — 4YÍ** 

quantities of the order of — in comparison with unity also are 

dropped. If we discard also quantities of order i ftr in comparison with 

unity, then system (92.3) is still more simplified1 and the solution 

assumes the form 

M. 
I Re e0 (0) Re h[ (0) P] 

1HT* Im h, (0) 

_ ,, P'l f Reeu(0) [Re*; (0)-Im AÍ (0)] Re ^(0)1 

‘‘•‘înrfj VI Im A| (0) »O 1' 

(9^.4) 

Substituting (92.4) into formula (91.14), it is easy to see that the 

first term in the right part of (91.14) will be proportional to the 
pO 

quantity 2Y’2HkMl*. and the second term to a quantity greater by a fac- 

itor of M^ . In this way, with the accepted correctness of calculations 



during the determination of Aj (and also during the determination of 

Ai!, ôî) instead of (92.4) we can set 

0 1 Rt e0 (0) Re (0) 
1 = |i| 1m A, (0) ¿ni * 

«, = 0. 

I > 

(92.5) 

With the aid of the first formula of (91.6) it is simple to be 

convinced that such a bending moment has under the edge conditions 

0?=0. (92.6) 

Considering the coupling of a torus with a cylinder of greater radius 

(0 = -y' r=:a^*+,))< it is possible to arrive at the conclusion that also 

in this instance the conditions of the coupling of the torus with the 

cylinder can be approximately replaced by edge conditions of the form 

0* = 0. //,* = 0. (92.7) 

Note that under the conditions (92.7) the edge effect of edge 0*=«-£ 

is absent. The stressed state in the vicinity of this edge is 

described by the particular solution which for large p, practically 

coincides with the zero-moment solution. In this way, the end wall 

shown in Fig. 44a can be approximately calculated as a quarter-torus 

under edge conditions (92.6), (92.7). 

Let us determine the maximum bending moment (it is equal to 

41,(0) = Al?) and the axial displacement of the end wall (Fig. 44a). The 

axial force acting in section 0 = 0. is equal to 

P] = px = (tf - - J). (92.8) 

where v.— radius of the thickening, while 



Fig. 44. End walls, containing: a) 
a quarter-torus, b) a half-torus and 
c) three quarters of a torus. 

Substituting (92.5) into (91.11) and ignoring small quantities, 

allowing for (91.7) we obtain 

.0  Pj~ I- 2 /;Re<0(0) 
x 4 l * n Im A| (0) J ’ (92.9) 

or 

(‘•4) 
4)- 

Mi 0.406 

Mi 

(92.10) 

(92.11) 

Maximum bending stresses are computed by the formula 

6AI? 
Jlmai I 

fc* jiJ) h 

3|«î pa 
(i*-^0.813. (92.12) 

Carrying out the same approximation approach for calculation of 

the end wall, containing a half-torus (Fig. 44b), we obtain the 

formulas 
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p¡ pn(y]~ v^. 

c-Aí^v’-v!) 

"W V^ãfi -- (i*) (xj - 

(92.13) 

(92.14) 

(92.15) 

Maximum bending stresses occur at g= + o (ft I,225\ and 
J and are equal to 

I - _ ^'i pa „ V* \ 

T l!,l-„r, Tr íj0''“ (92.16) 

r:«”“ •““* **• 

During calculation of the litt ^arter-torua (length $<U<,). 
ration of the latter we must assume that on section 

V. it* — at) Is applied an axial stretching force />, ,., , 
way, on this part of the torus v^. In this 

1-4(4+(,-4),(-4,(,-¾ 

the axial displacement of this nart 4 
(92.10). The total disnia l determined again using formul 

total displacement of the wall is equal to 

W /30 -^(x* -ÿj 
(92.17) 

Bending stresses in sección fl=+fl 

according to formula (92 161 aV ^ deterrnined 
(92.16), and stresses in section a 4-1- 

place of coupling with th^ nui-i a \ ,=‘n (&t the 
that practlcllll til 0yll"der> formula (92.12). Note 

carried e PllnS °f the t0rus «“h the cylinder Is 
carried out smoothly and the stress peak 1n th,. , „ 

AS the working stresses therefore we use tie It ^ ltS6] 
0=16,. We use the stresses in sections 
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Let us compare the rigidity and the stressed state of end walls 

of different form at an identical shell thickness h and constant 

radij. Vq and v* (Pig. Í15). wall 1 is formed by a torus-shaped shell 
with the parameters 

«<!) =3 —. = 

j v> -f- V. 

^ Œ V*—V« * ^<l) “-«(I)*«). 

The axial displacement of the wall 

in it are equal to 

Pig. 45. End walls of 
different forms, which 
couple two cylinders of pre¬ 
assigned radius. 

and the maximum bending stresses 

A?* = _(_v*-Vq) r <v* + v#)’ ,1 
Eh* 2 [ 4- 

.20-^ .¾ W,_vD°'753' 

Wall 2 contains a torus which possesses the dimensions 

aW = V* - Vo. d{J) SB Vp. 

*<»■* V*-V, • ^ = . 

(92.18) 

V* — V, * 



according to (92.10), (92.12), 

& 

°î?„s 

, ^ (i -¾.). 

'»“(Vis«-,*))1'' 4^ W»-^8'3- 
(92.19) 

Wall 3, containing a torus with aperture angle equal to -y-. has the 

dimensions 

fl(J) ■“ Vâ — V0- diS) =* V4. m, . 

the axial displacement and maximum stresses in it are equal to 

- Hr /30=7)(V. - v0)« - ^)(4 _ 
(92.20) 

Let us make up the ratio of axial displacements 

A^sA^îA?»- 

, , j-Qn-fv.)» - »:] > [«-o 0 - ¥)]=[m - - 

This ratio shows that of the examined three walls the most advantage© 

with respect to rigidity (i.e., giving the least axial displacement) 

is wall 2. Really, we minimize the values of first and third terms 

of the ratio, replacing in them v4 by V then we get the ratio 

from which it is clear that the displacement of wall 2 is less than 

any of the minimized displacements of walls 1 and 3. 

438 



Comparing the ratio of maximum stresses, we have 

Since 

C(2) = 

X<»> _ V* 
^<S) V, ’ 

fl(3) = 2fl(l). 

*(») _ v* 
^õT v*+v* * 

this ratio can be rewritten thus: 

00):0^:0^ = 

= [2''- - 'à 0.9Î6] : [(ff (4 - vD] : (<& - *D 

In every concrete case it is simple to calculate the ratio of maximum 

stresses in the walls of the involved types. For example, at 

V* = 96 CM. V0 = 47.5 cm. v. = 26.5 cm 

the ratio proves to be the following: 

4000 : 2480: 8500 = 1.61 :1 : 3.43. 

Wall 2 is in this instance the most advantageous with respect to 

stress . 

§ 93. Extension of the Lens Compensator 

Let us examine the lens compensator, the half-lens of which 

consists of two sections of a torus-shaped shell [1^0] (Fig. ^6). 
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¿ 

Fig. 46. The composition of edge 
conditions and coupling conditions of 
two sections of a torus-shaped shell 
forming the half-lens of a compensator. 

Length I of the shell is characterized by a change in angular 

coordinate 0 within limits from 0 to in section II 6 changes from 

Ti to T . The directions of the normal and tangential vectors <«. r) 

and positive directions of forces and moments are shown in the same 

Place (Pig. 46). Formulas (86.12)-(86.14) and résolvant equation 

(86.11) are adequate for a description of the stressed state of the 

shell in section II. it is necessary only to take into account that 

of the loads - pressure and axial force - have in this section 

directions which are opposite those which were accepted earlier in 

§ 86. In this way, instead of (86.11)-(86.14) we have 

, ¿’o!' do" 
+ s,n °> -553-cos 0 -rfT - 2ifai sin 0 = 4v4Ca cos 6. 

7*11 __1 Fiwg,1 cos 8 r X.slne+1 pa 2l + s\n0 
2y’ (/. + »10 0)» rd+smé)*-—rT-j-siné • 

• Fm . Il _ 

rll 1 f ï 
2 ~ W lr+i r+siné ,m*är 

da\' cos 6 Im oj1 
(). + sln 

«i'l 
■»FJ- 

P& 1 /-»Ä X sin 0 -f-1 
"r+Car(rf»ina)^ 

M;i_ • ffj1 *,n ® , cos 0 
1 — V (Ä. + sin 0)* + Ca (X -f sin ö)i * 

Ht — A/}1 sin 0 -j- 711 cos 0. = sin 0 -J- T*}1 cos 0. 

w» a T * _ ^î* (1—|i)cos0 
slnT^"^ TT+sInO)* Reo!']‘ 

Ai'«»* J fl«!1 cosOrfO + K,. 

(93.1) 

(93.2) 

(93.3) 

(93.4) 
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In the involved case v0 = a(X_i). therefore here 

C = T [5* + ^ (2^-1)]. 

We transform equation (93.1) using the substitution 

0==»+®,; 

we obtain 

(X sin 0,)-^- + cos 6,--+ 2/v-oJ' sin 0, = - Ca cos 0j, 

or, which is the same. 

_L d0" 1. ¢/, o„ii osinO, 
^5T11 - a sin e, rfe, j + 2/V o!1 (l _a£|nA.,* 

4y4 Ca cos 0,0 
(1 — asinO,)* 

This equation coincides with equation (89.41), and the 
has the form 

0." = (0,) A, (M+v-, (0,) a2 (/,)+ 

dg[l +^^,0^0,^(0,)^(/,), 

[^.^(0.)^^^,)+^,^(0,)^(/,)+ 

ï Co cl« 0,^(0,)^(0,)^(/,)) 

while 

/, = -/M,oo(0,). 0, = 0 — n. 

The solution 

A, 1-4.,^(0,)) = ^^(0,)1. 

(93.5) 

(93.6) 

solution 

(93.7) 

(93.8) 

441 



having as a factor the constant Bv describes the stressed state in 

the neighborhood of ^edge 6, = 1(6 = ^). since it decreases in absolute ' 

value from edge 0, = j to edge 0.=5. The solution *,(/,)». ^[/^,^(0,)1 

describes the stressed state in the vicinity of edge 0, = 0(0 = ^). 

On section 1 formulas (89.36) are effective. Complex constants 

of integration Bv Bt and Av a}. in (93.7) and (89.36), are determined 

from the edge conditions and coupling conditions. Prom considerations 

of symmetry in section 0 = ¾ we set equal to zero the angle of rotatio 

and radial force 

♦HîMHî)“0- (93.9) 

For simplicity of the solution the same conditions are put on edge 

(93.10) 

Let us note that these conditions are accurate if we imagine that we 

consider one of the interior lenses of compensator consisting of 

several lenses. However, for the extreme lens, combinable with a 

cylindrical tube, the inaccuracy connected with the acceptance of 

such conditions is small. 

Coupling conditions, as it is easy to see from the illustration 

(Fig. ^16), should have the following form: 

H* (0) - - W" (*). M\ (0) = - Ail1 (»). I 

Ai (0) = A" (jx). ¢{(0) = ^(71). J (93.11) 

Let us note that since //1(0) = 71(0). and //^) = -7^00, the first conditioi 

of (93.11) is equivalent to the condition 7’}(0) = r”(n). Taking this 

into account, we replace the first two conditions of (93.11) by 

the following: 
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ri (0)-71'(io. 1 

ri (0)-ri1 (n). I 
(93.12) 

Using formulas (93.2)-(93.4) and (86.12)-(86.14) we write out the 

quantities necessary for composition of the edge conditions and 

coupling conditions: 

- W-M)'Re °i (t) • 

(-j) = — Tpjrpjr ,m °i (¾ • 

H"(ir)—w=nF,mo"(x)‘, 

r» (0) — —Im o{ (0)-f-+ ;>«, 

ri (°) « - (,m +Ç - ^+_i_ Ini 0j (0). 

M'(0) “ vr[R' (ir),.,""* k ^ Re 01 (°>J • 

X£A0i(0)*=-Reoi(0). 

rj1 (n) = Im oj1 (a) — — pa, 

T"(n)ilm Ç+$ - w,m 0i'(a)- 

XfAOiVn) — — Re a" (a). 

d-n) 
Reo»(a)J, 

(93.13) 

(93.14) 

(93.15) 

(93.16) 

With the aid of formulas (93.13)-(93.16) edge conditions (93.9), 

(93.10), coupling condition (93.12) and the remaining two conditions 

of (93.11) are brought to the form 

°i(t)“0, ‘»"(t)“0’ (93.17) 

5^ = 05(0)-/(^2-2^+2^ 2YW). (93.18) 

(^5")e-,= “ fö'l-o4'1 *pa ^ (93.19) 
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In deriving (93.19) Poisson coefficient y was accepted as zero. Prom 

the form of formulas (93.1C) it follows that this is equivalent to 

neglecting terms of the order of ¿ in comparison with unity, i.e., 

it will agree withtthe accepted accuracy of calculations. Formulas 

(93.17)-(93.19) serve for determination of unknown constants Ay Bx, b2 

We determine the constants ignoring the mutual influence of edges. 

Edge conditions (93.17) are satisfied if we set 

(93.20) 

laking into account (93*20), we have 

0¡ (0) = Alhx (0) + 2YîCayIe0 (0), 

“ 'VMi (°) + (0). 

0» (n) = B/ix(0) 4- 2vîCay1eo(0). 

(w)#.!,“ ~ 2y2 Cfli'(0). 

(93.21) 

Substituting expressions (93.21) into conditions (93.18), (93.I9), we! 

obtain a system of equations for determination of th constants Ax. B¿ j 

B7hM-Axhx (0)-/2Y*(^f-4-X*2po). 

m + y^Ca^õ) = ( 9 3.22 ) 

= - Axh[ (0) - 2YJM,Ca«'(0) + 2YJX. 
Pi 

Remembering the properties of functions *i (O. Ai(*0. tf0(0 » we have 

*2(0) = *,«)). Ã[(Õ) = a;(0). 

íJ(Õ) = íó(0). 

and i/he soxution of system (93.22) has the form 



(93.23) ^_ Ä,(0) 

Dropping i„ the right side of (93.23) the underlined small terms, we 
obtain finally 

A, 

! - 2yViC« 

! — 2y3iI|&> 

'o(O) 

*Tw 

ÏÏw’ 

(93.2^1) 

Substituting (93.24) into expressions for o}(0). oj'(0). we have 

o}(0). 
~ 2Y'V,Cû A>(/) + ^ wo(0) e0(t). 

o}' (0) - - 2V*n|Ca ~ Äjt/,) r 2^,^0(0,) 
A,(0) 

- (0,). 0, =0 —n. 

(93.25 

Now, when the solution is constructed, it is simple to calculate al] 

forces, moments and displacements in any section of the shell In 

this ^case for the purpose of obtaining the simplest equations we wil 

set and assume that 

«o (0) ^ J Vslnjc dx^ , 

®o(0,)^(4j KslHTrfxj ’. 

«ó (0)«^®'(0,)^1. 

(93.26) 

The axial displacement of segment 0 = 0 v* Lth respect to segment 0=- 

in the plane of symmetry of the compensator, we find from the formi 

445 



n is 

A i I Rcojcos8d0. 

The axial shift of segment 0 = ^ relative to segment 0 = 

'■inti 

A" = — J Re oj1 cos 0 </0. 

Combining them, we obtain the shift of the half-lens under the action 

of axial force P] and pressure p 

IT * i 
= Re°lcoSOrf0+J Reoj1 cosO, </0,1 == 

= w 2v2 [ J « (°) Re 'o (0 Ih rfo - 

-J Re[^A*(/)]cos0'‘-rf0]- (93.27) 

The first term in the right side of (93.27) was approximately calcu¬ 

lated earlier and is -j- In this way, 

A=m-2Yi^l-ò>« (93.28) 

where 

*/2 j. , 

0 = 1 j Re[-^Al(o]COse^dO. (93.29) 

The dependence of (1—6) on parameter n, is shown in Pig. ^7. For 

large n, the quantity 6 is simply calculated in the following manner: 

, 2 r\ [So(0) i o 
^ J Re l A* J ^ = - ^ o .036/, -f 0.600/j) = 0.665. 

(1 —0)-0,335. 



Fig. ¿47. Dependence (l-¿) from param 
eter m- 

The relative deviation of the edges of the whole compensator, 

consisting of two half-tenses, is equal to 

2A = [pj. + p:^ (2).- 1)] (1 - Ò). (93.30) 

Ca.lculating the derivatives . -^g-. and from them bending moments 

/Mi' and bending stresses, we obtain 

’ o{ = ± 
6A1Ï 

2ft r12(1 

„ 6< 
O' = I-== 

1 ^ ft* 

'-—— -+- p (2X — 1 ) I Ac (0). 
2(1 —1*0 L rt*»’ J 

€n?a f P? 1 
(93.31) 

(93.32) 

where 

* (0) = e0(9) dg 0 Im c'(/) + 1.04 Im Aj (0 - 0.600 Re A[ (/). 

/ = /jii«o(0). 

A (0i) — “o (0i) ciZ 0ilm < (0 + 1 -04 Im A,' (0 ~ 0.600 Re Aj (/). 
/ = /H,flo(0,). 

In writing formulas (93-31), (93.32) it has been taken into 

account that on part II of the half lens the bending moment is 

considered positive, if it causes elongation of the interior filament 
6A(H 

Therefore stresses were calculated here using the formula 0,--= + -^, 

in order that in both formulas the upper sign referred to stresses 

in the external filaments of the half-lens and the lower to stresses 

in interior filaments. 



Setting uu(0)ctg0 =¾ 1, we determine the maximum of the *(6) expression 

It exists approximately for the same value of 11,^(6.)=1.225 at which 

function lmf'(0 takes the greatest value, while A(0J = 0,430. The maximum 

bending stress from axial force (p — 0) is 

(93.33) 

Let us note that formulas (93.31), (93-32) are adequate for 

calculating stress only when C*o. Let us examine the case when C = 0. 

From formula (93-30) it follows that in this case the plates of the 

compensator do not separate in the axial direction (^ = 0) and the 

distance force acting on the extreme sections of the compensator, 

because of the presence of internal pressure is equal to 

(93.3*0 P°i = -P(2l- 1). 

Thus . in order to make the axial displacement of the half-lens equal 

to zero, on the compensator, it is necessary to apply two compressive 

forces in the amount p(2?.— l). In this case stresses from pressure in 

the half-lenses of the compensator will differ from zero. To 

determine them we keep in formulas (93.23) the underlined terms, sine 

the basic terms in this instance cancel out. As a result we will 

have 

(93.35) 

The formula for calculation of flexural stresses in this instance 

assumes the form 

(93.36) 
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while 

'=--'M,tfo(°) for* Part I, / = /(.^0,) for part II. 

The maximum stresses from pressure in the compensator at A^o 

are in segment e==o and are equal to 

"'■““TsferT0-365- (93.37) 

We will make the calculation of a compensator which possesses 

the dimensions: 

a = 4,8 cm. A, = 8,35. 

h = 0.6 cm. p, = 1,47. 

The force necessary for elongation of the compensator by 2\ = 0.l cm 

in the absence of internal pressure is determined with the aid of 

formula (93-30) and Pig. 47. 

The results of experimental analysis of this compensator are 

presented in [122]. 

During the action of force p” = 365C kg, computable using formula 

(93-30), the amount of axial shift is 0.04 cm, and experiment gives 

a value of 0.039 cm. 

Figure 3 gives the graphs of meridian flexural stress in 

' external filaments of a compensator during elongation by 2A,= o.l cm 
ÍP — 0) (curve 1) and with internal pressure /> = 20 kg/cm2 (axial shift 

A, = 0) (curve 2). The dotted line plots experimental curves, and the 

continuous line the calculated curves. 

The comparison of the calculated and experimental data indicates 

that the approximate formulas based on asymptotic solution of résolvant 

equations are adequate for rough practical calculations even when 

parameter n, insignificantly exceeds one. 



Fig. 48. Meridia. flexural 
stress in external filaments 
of a compensator during elonga¬ 
tion by 0.1 cm (curve 1) and 
with internal pressure />*20 

kg/cm^ (curve 2). 

At the end of i 90 of this chatter on the basis of the asymptotlij 

solution a tubular compensator was examined. Let us compare tubular 

and lens compensators which possess an identical radius of the torus 

a and identical radius of the tube (Pig. 49a, b). 

Fig. 49. Lens (a) and tubular 
(b) Compensators, having 
identical radius of the torus 
and radius of the tube. 

Comparing formulas (93-30) and f90.9), we see that at an assignee 

force p* (p — 0) the shift of the lens comp nsator will be (1-0)=0.335 

of the shift of a tubular compensator. Assuming that both compensator 

must pick up the same temperature elongation or shortening of the 

tube A, we find that in this case 0.335. From comparison of 

formulas (90.5) and (93.33) at /» = 0 it follows that for equal A the 

ilexural stresses in the lens compensator exceed stresses in a tubular 

compensator, namely: 
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®L 0,430 /’J 

~ ÕJ53 ~ ’7’ 

§ 9^. Torus-Shaped Shell with Parametprs 
2v* 

>.<1 (Fl^. 50) 

In the previous sections we considered torus-shaped shells with 

geometric dimensions satisfying the conditions ?.>1. where both 

these conditions essentially were used: the first in creation of an 

asymptotic approach to the solution of the basic equation, the second 

in deriving the working formulas in different concrete cases. In 

applications, however, we find shells with other relationships of the 

parameters . 

Fig. 50. Torus-shaped 
shell with parameter of 
the torus *- - < t. 

We will stop at [i4l]. For an example we will 

consider axisymmetric deformation. In the area of change of 0, not 

containing the vicinity of point 0, = -arcsin?., the solution is constructed 

the same way as was described in § 89, and is presented by formulas 

(89.36) for 0>0 and formulas (89.^5) for e<0. The value of the 

integrals 

//4® dx and 

8 _ 
f -,/ sln-r J V T^IÏÏTÏ dx (94.1) 

at >.<1 are given in Tables 8, 9 of the appendix. Near 0, = -arcsin?. 

the torus is a shell of the conic class. Leaving equation (86.7) 

instead of substitution (86.9) we make the following: 

°°=T+%¡nr (94.2) 
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Then for determination of o, „e obtain the equation 

where 

(X~S,n°l)J^L +CO$0> ^ + 2^,510 0,-^(8,). (94.3) 

^ co,0i . ^ cose, . 
1 « l 

+ 5I" - y ^S^-j + 
+ (1-sin 0,)1-j ,.1¾ +(l_ .,,0,)- 

■I 3 , COS e, \ 

nî-vJ 

(94.4) 

the orderfofavVinhc °f 0btalned equation we drop terms of 
X «nH comparison with unity. We introduce new variable« 

T> COnneCted to 9l and o, by the relationships 

*-/ Vr~- «*■ o,=tí*=ííí£;. 
B| ^ — ilnf (sin e,)1'- 

in this case we find that , should satisfy the equation 

d-t{2/v2+ 7+-1 An»j£Ä-LCOS*r is 1 

+ A Az:iln 0| ] I — t(9.) 
16 J/ (sme,)’ 

(94.5) 

nr* 

i 1 
« sln>e. (94.6) 

Improper integral (94.5) converges, since with the 
; _ i ,) n , . , 6 * aince, with the exception of 
' ' U-T- when T'ls =10^ to 0,.. the condition 

V îlny 
4|. +Ç , —f ^ 

sin y   ! 
. — sinç I/ ~ V 2 
_ * * 

<i/HS_'_ ,/ã^r i 
1 ^¡e^ST <*<o,.). 

13 executed. "here is a bound quantity. 

(90.7) 
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öi.. we can write Since when 01 is close to 

* sin 0, _ sin 0,. - sin 0, ^ (0,. _ 0,) cos ^ 

^2(0,.-0,/^^, 

then, in this case 

. , n 1 cos* 0,. 
(9^.8) 

form118 lnt0 aCC0Unt (9i|,8)» we wln rewrite equation (94.6) in the 

</*T 

dJC* + T[2/Y,-Ä + = 

2ÍV2 p°t co>e, /i co*Je, \"v* 

a 2a (Sln0,)’* 1,4 sin 0,. ) ' 

•). 

»« = (94.9) 

In the 1 , gnate termS “ntalnlnS higher positive powers ,,=,. 

and the006, T"* ^ term °0ntalnlnS large parameter V is kept 

in r alem0a ntrnrlarlty ^ SeParated> “^“ising the amo nt o ' 
increase of the function when 6,-.0,.. Let us note that the term - JL 

when o,«»,. strongly differs from the corresponding term -J* «4' 

n equation (96.6), however, inasmuch as in this case it is ' smln'Tn""'’' 

comparison with W. this difference has no value. The equation 

0+,(av’-£)=o" (94.10) 

we call the »standard" with respect to uniform equation (96 6) 
un erstandlng by thls that the soiuMon of equatJon (;,<o9 • ; 

cally approaches the solution of equation (94.6) with an IncreLe 0 
parameter 2v- Eauatlnn roü -in\ i<-rease oi 
calculation of q !°n (94'10) consldered in s 66 during the 
calculation of a conic shell. Its solution has the form 

y = *' • [CiMv* \ 2l) r C,htl (yx | J7)J. 
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In accordance with this wt will write out the approximate solution of 

equation (9^.9) in the following manner: 

(9*1.11) 

where 

To = (i - Sin e,)*'* IC,/2 (YJf 1^5) + CM"(vx /2/)] • T, = A^k 

when X is small 

cos 0 

2na (sin 0,) 

Particular solution is sufficiently accurate when x is close to 

zero; for larger x accurate knowledge of this solution is not 

necessary, since, as compared to the second term in the right side 

of (9^.2), it will be a small quantity (of the order of ¿-in compari¬ 

son with unity). Really, writing out the general solution of the 

initial equation (86.7) on the basis of (94.11), (94.5), (94.2), we 
obtain 

pj CO* 0, 1 <D, 

0° ~ ina sin* 0, K — sin 0, a sln0 ^ 

+ lCl/î hx V*1) + (YJf /¾)]- ( 9 4.12 ) 

The first term in the right side corresponds to the particular 

solution and has essential value only when (1 — sin-*• 0. The second 

term, corresponding to the usual zero-moment solution, in this case 

remains bound. Por a shell closed in the top (0O =¾0i*..v0 = 0) in the 

absence of axial force it is necessary to set P] = 0, C2 = o. If ’ 

then C2 is calculated from the condition that a0 is finite at x = 0. 

Such a condition is realized because (Yx/2/) contains singularity | 



Satisfying the requirement that 0,,(0)13 bounded, we have 

» 
a (sin co* 0U (9^.13) 

As an example let us examine a closed shell when there is no 

concentrated force in the top. From conditions of symmetry in segment 

"j we place the conditions 

0, = 0. /y,=o. 

Ignoring the mutual influence of the edges 0 = —p and 0 = — , on th 

basis of these conditions in solution (89.36) we set >42 = o and for 

the area of change of 6, not containing the top, we write out the 

solution of equation (86.11) in the form 

°i = A\v\^\ (0.+ 2y2Cû|i, u¿0(t), 

(1 +01511)0)^, / = /ji,tf(0). O<0<J. 

a, = (/,) + 2v2Cfln, V(/o (/i). 

= - 0 sin tf'' =* - 'hwoiß.). 

0, = -0. 0,C0<O. 

(9+14) 

According to (86.9) the following solution of the initial equation 
(86.7) corresponds to it: 

0° (X + sin 6) (^1¾) + 2y2Cûh| Uçfi0 (/)J 4. 

■ W®, 
' a sin 0 0<9<^. 

°0 = (X —sin 0,) (— + 2y2Cû(i, ~|i t»0<r0 (- + 

+ -¾¾ + ~(X+ ¿InO) slnS~ • 0. « 0 < 0 
COS0 

(94.15) 

where P” = 0. v0 = 0 and 
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I 

C = 7[4+'(1’-£)]' “T* (9^.16) 

in a certain segment 6,—e = P. rather far from P°lnt the 

2v^i. setting M0-|. the expression for o0(-W can be written in 

form 

A, . , . s g/Y^.C-P) 
o0(-“ P) = X —f'.nfi7 W‘A' ««»np ’ 

I 

Using solution (94.12), adequate in the neighborhood of 0,. = . rami, not 

containing point 0, = 0. we write 

1 

Both solutions coincide in the given point together with all its 

derivatives if we set ^, = 0, = 0. In this way the conic part of 

shell containing top , = -.^ is located practically in the zero- 

moment state. The essential bending stresses and <*e large « 

stresses, considerably exceeding zero-moment, appear in the neighbor 

hood of point 8 = 0. 

Figures 51, 52 show the distribution of forces and moments in a 

-, lfic ,_0Q In this case curves 1, 2 
shell with parameters = 165. X-0.9. C 

and 3 in Fig. 51 represent T^a. TJpa. NJpa, and curves 1, 

the distribution of Ty'MJpa'. tpMJpa*. 

I 

Fig. 51. Distribution of 
forces ft//»«. Ttlpa, Nilpa 
(curves 1, 2, 3 respec¬ 
tively) along the 
meridian of the torus 
with parameter x-o.a 
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Fig. 52. Distribution of 
bending moments WMjpa*. 
WM, pa' (curves i, 2) 
along the meridian of the 
torus with parameter A.-.0.9. 

■ i 

It is interesting to note that in this case in a closed torus¬ 

shaped shell (X<l) under the action of internal pressure essential 

flexural stresses unlike the closed torus at A.>i, were obtained, 

which under the action of such a load is found practically in the 

zero-moment state. It is natural to expect that with a decrease of X 

to zero the flexural stresses will decrease, since at X = 0 the torus 

will become a sphere. 

i 
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CHAPTER VII 

internal stresses in shells op revolution 

s 95- Formulation nf the 

appeaLheinPraTlLsatbl0:tb:::ermdinatl0n °f -- ^e wMoh 

-cea is the PnohleTo^'theM10: ^ 
total system of equations of í-h ° ^ °f elasticity* The 

equations which eollct LlsL: “7 ^ 
expressed through dlsplacemeni- components of deformations 

boundary 00.1^^^^ 

is considered). The eauattnn, e boundary conditions 

(and perhaps also others) contal eqUlIlbrlum or boundary conditions 

on the assigned externa i d 

satisfy uniform differential elatT °f 

which are Identities relative to the"3 eqUatl°nS or 0o»Patlbillt 

On solving the problem under stresses^Tt ^ ^ 
consisting of eouatione e » * be system of equations 

also „ritten in stresses” J he^rog^neoTeíthe'r^ 00mPatlblllty- 

equations of equilibrium, or because of the ^^ilr 

or eq“ î:„r:rbhLho„îni::si:: o“;probiem’the totai b-b» 

and uniform static boundary conditlons,nbut0rheterogí°nS °f 
equations relative to the eo„„ , but heterogeneous differential 

the components of s re b The“ T def0™atl0"- connected with 

differential relation hlos b t ^ th-e 
now should be called eauati th6 COmponents of deformation 

called equations of »Incompatibility, of deformations, j 

^58 



V. 

«on If “h Pr m 13 °alled the dlsl0Mtl°" problem. An lllustra- 
lon of such a problem la the problem of the determination of 

internal stresses In a body free from external forces during nonlinear 

emperaure distribution In the space occupied by the body.8 7 

H 20-23 the problem of determination of temperature stresses In a 

ree shell of revolution was considered. The components of Internal 

! of II“!.“3/"6 COnne°ted ln thlS lnStanCe Òy Unlf0™ 
j equilibrium, and they should satisfy uniform boundary conditions 

e components of deformation consist of two members: the first 

members are connected with forces and moments by the usual Hooke's 

law (we call them conditionally the "elastic" 
tiont,') ^ . elastic components of deforma- 

are 7 teL t “S U5 0311 the members) 
ta,nParatUre elon8atlons which would take place In the 

dividual shell elements, are not connected with each other. The 

total components of deformation should, of course, satisfy the 

equations of compatibility, which now turn Into nonuniform differential 

equations relative to the "elastic" components. The right part of 

byetSLeqUT°nI deflne the inoompatiblIlty of the deformations Induced 
y the assigned temperature distribution. 

formed dlal00atl0n «^nts of deformation In general can be 

menls „Uh IT 7^3 eXPreSSlng ^formations through dlsplace- 

formally thl lt t " fUnCtl0n’ “hlCh posses-s 

th a L t r Ure a Ve°t0r °f dlsp1“—However, unlike 
the actual displacement, the potential function Is a multiple- 
valued vectorial function. 

For the shells of revolution in which It appears an Internal 

sxlsymmetrlc stressed state or a state which varies according to the 

aw of cos * (sin ¢), let us formulate such a dislocation problem. 

two :71,6 ?Xl3t Unif0r,n eqUations of statics. They admit the first 
n egra s. In which the constants of Integration are equal to 

zero since external forces are absent. There exist also uniform 

equations of compatibility. However, the constants of Integration 

n the first two integrals of the equations of compatibility, unlike 

the usual problem, now are not equal to zero. Internal fo7s and 

459 



rr ar? COnr!eCted WUh the ,,ela5tl0” o°”P-ents of deformation, 

«■irst H Tt left Part °f the eqUatlons of contlnuity (or their 
- Integrals) by the usual relationships of elasticity. The edges 

I :/-1 V »1 are -ae from external forces. The Numerated 

IstLts oTi/e^IuonTthi T^— ^ ^ ^ 
e integrals of the equations of i 

on inulty As „in be indicated .elo„ (SS 96-98), such heterogeneltj 

dica es the incompatibility of deformations calculated through a ’ 

potential function of the following form [31]: 

</4 = (i/o+QXr]£, 
(95.1) 

I" Hr3" VeCt0rS, WhlCh P0ssess in the system, of orthogonal axes xiz the components 
tt0x’ udy Uoi. 

’s- 

multiple-valued: on going around any closed contour 

. • . .•» it grows by the amount contained in the right part of (95.1) 

parentheses. The stressed state corresponding to potential 

function (95.1) appears In an Initially unstressed shell if m it 

we make a cut along th .aridlan 0 - 0 (or on some other curve, 

r, ersecting both edges 6 » const), shift the edges of the section andl 

turn one relative to the other by the amount ^.0 and then again ^ 

combine. This procedure is realizable only for such shells whose 

meridian does not Intersect the axis of revolution, for example, for 

shells in the form of a strip (spherical, conic and others), 

cylindrical and toroidal shells, »hile a torldal shell can be both 

c .osed and with respect to coordinate 0 [118], [170]. 

Let us write out, using Table § 15, the components of vectorial 
function £/* in movable axes t,. r2. * 

“* “ K“«* cos ^ + "o, sin Ç.) cos 0 — sin e + 

+ (a, cos <p — 0, sin ç) (Z cos 0+ v sin 0)J 

“ I “ox sin ç + u0y cos <p vu»,_ ^ 

— (©ysin<p + ôxcosç)ZJ-^., (95.2) 
= I(«oxcosç + u,y sinqi)sin0 4 cos©«* — 

— (wy cos 9 — w, sinç) (v cos 0 — Z sin 0)] . 



Calculating on the bas^s of . ^ 
deformation, „e wln dlfferenUate t" (3-19)fhe component of 
cases. ate the “isymmetrlc and nonaxlsymmetri, 

1. 

a) 

b) 

a) 

b) 

Axiaynunetric case: 

^ 2ñ7®0ísln0. T* co*» 0, 

e} = ej = xj = xj=0. 

e2,=S+2H'Ö*• + w, sln0, j 

ef = Y* *= = tJ = 0. J 

Nonaxisymmetric case: 

*a — < / 
2 2^7 t<¡* ~ cos <f, 

^ “ 2â7 •"»ycos 0 — «X (■? cos 0 4- y sin 0)1 sin ç. 

** ~ 2S^71 — «o, sn O — ft), (2v cos 0 — Z $in 0)) Cos<p, 
1 

2nv! ‘“o, sin (Kos 0 - w, sinU (V sin 0 -t- Z cos 0)J sin V. 

^ = ^ = 

gt_ I 
Jiiv ' u0j ^Wyjsing), 

^ = 1^7 •“or CCS 0 4- Ö, (Z cose -f V sin 0)J cos ç. 

*3 = ^ 1“^ sJo 0 — ©, ( y cos 8 - Z sin 0)] sin <p. 

^ =[«(u sin 0 cos 0 + sin 0 (y sin 0 + z cos 0)J cos ç. 

(95.3) 

(95.^) 

(95.5) 

(95.6) 

Cl = xf = 0. 

§96, 

equation of (3.30) m tl -^«Wllty (3.30). The second 
form of (3-30)’ ln the considered case can be written in the 

^H-' + Ty + wfvsIne^o. (96.1) 
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¢96.2) 

Substituting (95.3) into equation (96.2), we are convinced that 

Cons ant which Is the measure of the Incompatibility of dlslocatlt 
deformations, is equal to uisiocatiq 

4 = - 
(96.3) 

The incompatibility of dislocation deformations is the reason for the 

-g nn ng of elastic: deformations, connected with forces and 

moments by the elasticity relatlonshlpc. The total components of 

ormatlon should satisfy all, the equations of compatibility. 

Including equation (96.2) at ^ . 0. Hence we obtain 

+^)+-^-9-5-=¾. 

here the "e" matks »elastic» components of deformation. 

(96.4) 

The second equation of equilibrium (4.22) allows the first 

n egral, where the constant of Integration In It Is equal to zero 

since external Intensities are absent. 

vS-{-2//sin 0>sO. (96.5) 

Adding to (96.4), (96.5) the relationships 

// = 0(1-,0^, 5 = Y*. 
(96.6) 

quantities^6°f eqUatl0M f0r ^termination of unknown 
i and substituting (96.6) Into (96.5), we find 

y*a~ j-^slnOt*. 

laking into account this relationship, from (96.l|) We have 



Internal force and twisting moment are equal to 

S £ h* 
n(l l5v* sin Akq,. 

V. 

(96.8) 

u Eh A* 
n «24(1 +n) "vT ■Of- (96.9) 

The greatest tangential stress appear from the twisting moment 

1½)I-¡r-r- (96.10) 

§ 97• The Second Case of an Axlsymmetric Stressed 
State. Meissner Equations 

We will consider axlsymmetric case 1 b) (§ 95). Substituting 

deformations (95.4) into equations of continuity (11.5) and (11.7), 

we find that (11.7) is satisfied Identically, and constant in the 
right part of (11.5), characterizing the incompatibility of dislocation 
deformations, is equal to 

(97.1) 

Deformations noted by "e" should satisfy the equations 

vxî sin 0 + ~jï~ [■jg- (ve0 — *i^i cos aJ = —jjj-. 

^ IV cos 0j(í— (ve0 - tiRi cot a] ¡ — xj«, = 0. 

í 
Equations (97-2) express fact that total deformations (e' + eí). (eí-Mí) 
etc., satisfy equations (11.5), (11.7) at C1 = 0. 

Adding to (97.2) uniform equations of statics, which are obtained 
from (11.1), (11.3) at ç,«=0. PÎ=»0. 

lv (f, cos A + /V, sin 0)1 — 7*,*, «= 0. 

^sinO —cos 0 = 0, 
(97.3) 

(97.2) 
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(97.4) v/?iA'i=-¡s <v'M») - aí,#, cos e 

and relationships of elasticity 

^“-KTÍAÍj-üAf,). 
(97.5) 

we obtain the total system of equations for determination of all 

unknowns. Exactly as for the case of the usual axisymmetric problem, 

we introduce function of stresses V and the function of displacements 

With the aid of representations 

vf.-rVcose. r,-, 

•y/Vj « Vslni. 
(97.6) 

XÍ: 

XÎ: 

s_ 1 ** ,_•, 
~äS~ ‘ Jn^sln* 0 

* ibtvsiat * i 
e* cos e = T sla6 

(97.7) 

(97.8) 

equation of statics (97-3) and equation (97.2) are identically 

satisfied. 

Expressing ej. ej and Mt. Af, through functions V and V with the aid 

of Hooke's law and formulas (97.6), (97.7), we obtain 

.» _ 1 f V cot 9 
tl 'Eh ( V 

H dV\ 
TiTTr;* 

eî= * / 
ÏÂ-l7?T d9 ** V )• 

(97.9) 

M, = — d(-J— 4- iL£21?_ 'i'1) _i_ n •« I 1 u \ 
« 17?T rfe ^ + 

\ * 7?T^®/+ íã(tin1 e vsiae )’ 
Ai,= (97.10) 

Substituting (97.9) into (97.8) and (97.10) into (97.4), taking into 

account in this case (97-6), we obtain two equations for the 
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rrr10"of unknom functi°ns ^ -30Clated 

(97.11) 

(97.12) 

^0 = 7-. 

jffo ,/Äico^ ) rf/Urf» 
V ^ _20'j~5S“ + 

_i_ur / »‘Ä,ilne Ä?cos*e\ . ä? 
+ M V-^r-J + ^^-*in0Ko« 

4. / r i f \ « \-j 

i_jocoseß—n) / i , i \ j 

Jy (R „ \ + 
£l± 1 ^|CQ»fl 1 áRx\ dVK 

-^r"5rj"3r+ 

-f i/f^i*1"6 ^?to»>e\ fifsme 
°\ V-ïr~J-Y0=o. 

It Is easy to see that the left parts of io? -i:n 
exoectPri , P °r (97-12), as was to be 

The right parts of°(97 iJ)Ware ^ eqUatl°ns (12-6)‘ 
possess singularities if in e T fUnCtlonS> "hlch not 
turn into zero WUh the f ‘onsllered interval does not 

ro. with these conditions, setting 

0«Vo_2/v%. 

it Is simple to find the approximate particular solution r 
(97.12). It has the form solution of system 

o = 

V tin3 0 

-^,,= Reí ==0. 

(97.13) 

the“" (97-13) 00rresp0nds purely -ment stressed state of 

Æ =-[- f i ,,1 
^ Xt 4y^ sin» eiT?7 

Âi- = -[- / n j i 
* ^-»•«v’sin’e (97.1^) 

since the forces f,. f„ computable by this solution, have an order 

of magnitude of -ï* and stress fr01n the for¡;es 

comparison with stresses from jñ m aa h/h i * Sma11 in 
Af,. Afj as h/b is small in comparison 
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with unity, 

to setfj^fj 
In this way, with sufficient correctness it is possible 
0. or 

o. 
(97.15) 

Let us note that the same solution can be 

(97.2) eí = cí = o. The simplified equations 

representations (97.7) at ¥=*<). 

constructed by setting in 

(97.2) are satisfied using 

ne constructed solution does not satisfy conditions on the 

edges e = const, which should be free from streses. The first 

formula of (97.14) in this case gives us 

Aï! (97.16) 

In order to satisfy the edge conditions, for the obtained solution 

it is necessary to supplement solutions of the edge effect or type 

which satisfy the following requirements: 

Al? — Æ?. 1 

MÎ«-Àïi. /*1 = 0. I (97.17) 

§ 98* The Stressed State Proportional 
to cos (sin é) 

Let us consider the event 2 a) (S 95). The amplitude of the 

total components of deformation («!„,+<;,„). should satlsfv 

equations of continuity (15.24), (15.25), (15.33) atcs=C,=o. 

Taking into account formulas (95.5), we cttain the following 

differential equations which connect the "elastic" components: 

V W ,1, 9 + _ JÇi iÿ. _ 

—(*5(1) —*i ,1,) sin 0 ¢010 = 4-.¾. t 

vcwe rfe* 
“S; '<»»cos 0 + e? in * 8 + eî(1) cos*0 - 

X2 (I) V Sin 6 = — -i-(«0y — ¿ttjf). (98.1) 
JIV 

- ^(1, - V 2/?, COS Or', + cos 0 4. 
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Excluding the domain 0 = o as thí» i 

^ purely :™;r “ °r ~ 

we obtain 

¿ . __ 1 , 
‘11 ’ avA, *in» 0 ^Oy ^ 

;» i / 
2 (I> Jív» sin 6 'Uj» — ^®x). 

(98.2) 

(98.3) 

To 30lutl0„ (98.3) corresponds the purely _ stressed state 

fit, 
av sin» 

^ ( ^ I* \ 
Ky - ^). 

m _ ï / |i i % 
2 " av sïî?T J («0, — Z<ax), 

r r - v J 
*1 =/2 = Ä, = 0. 

(98. 

Near the edges of the shell to state (98 if i 
the stressed state of edite effect t 9 ’ ’ 11 ls »«ossary to add 
conditions * tyPe Whl°h saMsfy ^e edge 

«i = —/»,. A® ==0. 

«! = —mj, aJ: >0. (98.5) 

§ "* Ií?ternal Stresses in CyHnHr»^ni 
^onlc and Spherical Shells L 

Let us write out the equations for calculation of , , , 

formulas ^7^^00^7°^646 ^ P°r 3 ^^"^ica/s^ll 

stressed state, assume the^orm ^ PUrely m0ment axlsy,n,netri': 

M, 

M3 

t__»EhR - 

(99.1) 

getting = 

determine the forces and moments of the edge effect ^ 
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(99.2) 

[SP(Yl)+f (Vii)!. 

Summarizing (99.1) and (99.2), we have 

Ai* I* — Ÿ(Yl) —ç(YÍ,)J. 
M __EhPv, 

* "in-V 11 (Vl) — |i^p (Y5,)J, 

T*==~ïÊ!ï}i- w (vy+fiYU- 
From consideration of (QQ it- -to „i 

^ *b* - ~— 

(99.3) 

(99.4) 

we have°rthehe dlS'O0atiOn ^1°11 ls characterized by parameters * „ 
have the purely moment stressed statP nr-^r.« 4-^ -, " 

The amplitudes of ^he mom. , Proportional to cos <J> (sin ¢) 
.he moments, according to (98.il), are equ¡u to 1 

Z _ (i£A , _ 
• iriyrK+s»,). 

(99.5) 

"::ir ir^e^«!:^:;^86 above> th—- — - 
of the shell m sel'“ . 7 t"0"6"1 ^ fr°” the 

segments In absolute value they are equal to 

10,1=-—  A I"tyI 

At V=0.-,4 0. determining the moments of the edge effect by 

formulas (34.23), setting .f =.. ./ = _Ä. we obtaln near f_£ 

following expression for the amplitude of the moment 

m — e/,fi 
m2“+7r.TiT®, U-iiJ/<p(Y(/-i)jj. 

;rr- ■»-»• ■» 
i0il=sw^-l^l- 
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As we see from the considered illustration, edge effect has a 

secondary value. Therefore for conic and spherical shells we will be 

limited to the determination of stresses by the purely moment state. 

Formulas (97.14), (98.4), allowing for the designations of § 44 for 

a conic shell assume the form 

I 6.0, 

1 W 

1 f 

1- £ *, 1 
1 4.t(l — h’) vcosß 1 

i.. 
1^1 2.1 (1 — [»*) vJ co» ß ^ 

(99.6) 

For a spherical shell we have 

Mt> 

», 
«fe 
*«> 

. 0(1—1») _ 

- :5£,¿ñig l«0y-R<cos0-co*0.)“xl. 

Ä (cos 0 — COS 0,) 0,) — 

jM, 

» 

•tÄ I 

(99.7) 

Io,j = Io,I =1^1 = • 

1I “ 10JI = I -JT I = 2n (1 + n) ^ sin* e I “o» _ ^ (cos ® — cos 0,) ®x I* 



APPENDIX 

Table 1. Values of functions cos 
CW-f-'rtnjr, <y(jr)-e(jr) + t(jt). t(jr)-0(x)-CW 

M ♦ ♦ • ( 

0 
<w 
W 
0,3 
0.4 
0.5 
04 
0.7 
0.8 
04 
1.0 
U 
U 
U 
1.4 
14 
14 
1.7 
14 
1.9 
2.0 
2.1 
24 
24 
2.4 
24 
24 
2.7 
2.8 
2.9 
3.0 
3.1 
34 

34 
3.4 
3.5 
3.6 
V 
3.8 
3.9 
4.0 
4.1 
44 
44 
4.4 
44 
44 
4.7 
4.8 
44 
5.0 
5.1 
54 
54 
5.4 
54 
5.6 
5.7 
5.8 
5.9 
6.0 

1,0000 
0,9907 
0.9651 
0,9267 
0,8784 
0.8231 
0,7628 
0,6997 
0,6354 
0.5712 
0.5083 
0.4467 
0,3899 
0,3355 
0.2849 
04384 
0,1959 
0,1576 
0,1234 
0,0932 
0,0067 
0,0439 
0,0244 
0.0080 

-0.0056 
-0.0166 
-0.0254 
-0,0320 
-0.0369 
-0.0403 
-0,0423 
-0.0131 
-0,0431 

-0.0422 
-0,0106 
-0,0389 
-0.0366 
-0,0341 
-0,0314 
-0.0286 
-0.0258 
—0.0201 
-0.0204 
-0,0179 
-0.0155 
—0,0132 
-0.0111 
-0,0092 
-0,0075 
-0,0059 
-0.0046 
-0.0033 
-0,0023 
-0.0014 
-0.0006 

0,0000 
0.0005 
0.0010 
0.0013 
0,0015 
0,0013 

1,0000 
0,8100 
0,6398 
0,4888 
0,3564 
0,2415 
0.1431 
0.0599 

-0,0093 
-0,0657 
-0,1108 
-0,1457 
-0,1716 
-0.1807 
-0.2011 
-0.2068 
-0,2077 
-04047 
-01985 
-0.1 >99 
—0,1794 
—0,1673 
-0,1548 
-0,1416 
-0,1282 
-0.1149 
-0.1019 
-0.0895 
-0.0777 
-0.0666 
-0,0563 
-0.0469 
-0.0383 

-0.0306 
-0,0237 
-0,0177 
-0.0124 
-0,0079 
-0,0040 
-0.0008 

0,0019 
0,0057 
0.0057 
0.0070 
0,0079 
0.0085 
0.0089 
0,0090 
0,0089 
0,0087 
0,0084 
0,0080 
0,0075 
0,0069 
0,0064 
0,0058 
0,0052 
0,0046 
0.0041 
0,0036 
0,0031 

1,0000 
0,9003 
0,8024 
0,7077 
0.6174 
0.5323 
0,4530 
0,3798 
04131 
04527 
0,1988 
0,1510 
0,1091 
0,0729 
0,0419 
0.0158 

-0.0059 
-0,0235 
-0,0376 
-0,0484 
-0,0563 
-0.0318 
-0.0652 
-0,0668 
-0,0669 
-0,0658 
-0.0636 
-0,0608 
-0,0573 
-0,0534 
-0,0493 
-0.0450 
-0,0407 

-0.0364 
-0,0323 
-0.0283 
-0,0245 
-0.0210 
-0,0177 
-0,0147 
-0,0120 
-0.0074 
-0,0074 
-0,0054 
-0,0038 
-0,0023 
-0.0011 

0,0001 
0,0007 
0,0014 
0,0019 
0,0023 
0,0026 
0,0023 
0,0029 
0,0029 
0.0029 
0,0028 
0,0027 
0,0026 
0,0024 

0 
0,0903 
0.1627 
04189 
0,2610 
0,2908 
0,3099 
04199 
04223 
04185 
0,3096 
0,2967 
0,2807 
0,2626 
04430 
04226 
04018 
0,1812 
0,1610 
6,1415 
0,1230 » 
0,0748 
0,0613 
0,0492 
0,0383 
0,0287 
0,0204 
0.0132 
0,0071 
0,0019 

-0,0024 

-0,0058 
-0.0065 
-0,0106 
-0,0121 
-0,0131 
-0,0137 
-0.0140 
-0,0139 
-0.0131 
-0,0131 
-0,0125 
-0,0117 
-0,0108 
-0,0100 
-0,0091 
-0,0082 
—0,0073 
-0,0065 
-0,0057 
—0,0049 
-0,0042 
-0,0035 
-0,0029 
-0,0029 
-0,0018 
-0,0014 
-0,0010 
-0,0007 
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Table 2. Values of functions Xi. Xj. x>- tiW 

Xi W 
»hx—sin.» 
th X -j- »ln X ’ 

,, ch X — cos X 
*»(*>--,hx-Hlnx- 

ch X -}-cos X 
»h X + sin X 

jr X. x> Xi X. Xi Xi 

os 
0.4 
0.6 
0.8 
1.0 
IS 
1.4 
1£ 

5,003 
2.502 
1.674 
1.267 
1.033 
0.690 
0,803 
0.755 

0.0068 
0.0268 
0.0601 
0.1065 
0,1670 
0.2370 
0.3170 
0,4080 

o.ioo 
0.200 
0.300 
0,400 
0.500 
0.596 
0,689 
0,775 

1.8 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0.735 
0,7.58 
0,802 
0.893 
0.966 
1,005 
1,017 
1,017 

0,5050 
C.i.000 
0.8220 
0.9770 
1,0530 
1.0580 
1.0400 
1,0300 

0.855 
0.925 
1.045 
1,090 
1.085 
1.050 
1,027 
1,008 

Table 3* Values of functions ÿi. ÿj. *j. t* and 
their derivatives (formulas (46.9)). 

jr t.W ♦l(X> <*♦. (») 
dx dx 

0,00 
0,20 
0,40 
0,60 
0.80 
1.00 
1.20 
1.40 
1,60 
1,80 
2.00 
2,20 
2.40 
2,60 
2,80 
3,00 
3.20 
3.40 
3.60 
3.80 
4,00 
4.20 
4.40 
4.60 
4.80 
5,00 
5.20 
5.40 
5.60 
5.80 
6.00 

+1,0000 
-1-1,0000 
+0.9996 
+0.9980 
+0,9936 
-1-0,9844 
+0.9676 
+0,9401 
+0,8979 
+0,8367 
+0.7517 
+0.6377 
+0.4890 
+0.3001 
+0.0651 
-0,2214 
-0.5644 
-0.9680 
-1.4353 
-1.9674 
-2.5634 
—3.2195 
-3,9283 
-4.6784 
-5,4531 
-6.2301 
-6,9803 
-7,6674 
-8.2466 
-8,7937 
-8.8523 

0.0000 
-0,0100 
—0.0400 
—0.0950 
—0,1599 
-0.2500 
-0.3587 
-0.4867 
-0.6327 
-0.7853 
-0.9723 
-1.1610 
-1,3575 
-1,5569 
-1.7529 
-2,0228 
-2.1016 
-2.2334 
-2.3199 
-2.3454 
—2,2927 
-2,1422 
—1.8726 
—1,4610 
—0,8837 
-0,1160 
+0,8658 
+2.0845 
+3.5597 
+5,3068 
+7.3347 

—0,0000 
-0,0005 
-0,0040 
-0,0135 
-0,0320 
-0.0624 
-0,1078 
-0,1709 
-0,2545 
-0,3612 
-0,4931 
-0,6520 
-0.8392 
-1,0552 
-1.2993 
—1,7141 
-1,8636 
-2.1755 
-2,4983 
-2,8221 
—3.1346 
-3,4199 
-3.6587 
-3,8280 
-3,9006 
-3.8454 
-3,6270 
-3,2063 
-2,5409 
-1,5856 
—0,2931 

0,0000 
-0,1000 
-0.2000 
-0,3000 
—0,3991 
-0.4974 
-0,5935 
-0.6860 
—0,7727 
-0,8509 
-0,9170 
-0,9661 
-0,9944 
-0,9943 
-0,9589 
-0,8223 
-0,7499 
-0,5577 
-0.2936 
+0.0526 
+0,4912 
+1,0318 
+1,6833 
+2,4520 
+3,3422 
+4,3542 
+6,4835 
+6.7198 
+8.0453 
+9,4332 

+10,3462 

jr • ♦i<X) t.(x> 
*r,ui 

0,00 
0,20 
0,40 
0.60 
0.80 
1.00 
150 
1.40 
1.60 
1.80 
2.00 
2.-20 
2.40 

+0,5000 
+0.4826 
+0.4480 
+0.4058 
+0.3606 
+0.3151 
+0,2713 
+0.2302 
-f 0,1926 
+0,1558 
+0,1289 
+0.1026 
+O.0SO4 

-1.1034 
-0,6765 
-0.4412 
-0.2883 
-0.1825 
-0,1076 
—0.0542 
-0.0166 
+0.0094 
+0,0265 
+0,0371 
+0.0429 

0,0000 
-0,1419 
-0,1970 
-0,2216 
-0.2286 
-0,2243 
-0,2129 
-0,1971 
-0.1788 
-0.1594 
-0,1399 
-0.1210 
—0,1032 

+3,1340 
+1.4974 
+0,9273 
+0,6286 
+0.4422 
+0.3149 
+0,2235 
+0.1560 
+0,1056 
+0.0679 
+0,0397 
+0,0189 

471 



Table 3« (cont'd.) 

X t.U) 4<(') (*>
 

ax 

2,60 
2.60 
3,00 
3.20 
3.40 
3.60 
3.80 
4,00 
4.20 
4.40 
4.60 
4.80 
5,00 
5.20 
5.40 
5.60 
5.80 
6.00 

+0,0314 
+0,0455 
+0,0326 
+0,0220 
T 0.0137 
+0.CO72 
+0,0022 
-0,0014 
-0,0039 
-0 0056 
-0,0066 
-0,0071 
-0.0071 
-0 0069 
-0,0065 
—0,0059 
-0,0053 
—0.0046 

+0,0446 
+00447 
+0.0427 
+0,0394 
+0,0356 
+0,0314 
+0.0260 
+00230 
+0,0192 
+0.0156 
+0.0125 
+0.0097 
+0,0073 
+0,0053 
+0,0037 
+0,0023 
+0,0012 
+0,0004 

-0.0868 
-0,0719 
-0,0586 
-0,0459 
-0.0369 
-0,0284 
-0,0212 
-0.0152 
-0,0104 
-0.0065 
-0,0035 
-0,0012 
+0.0005 
+0,0017 
+0,0025 
40,0030 
+0,0033 
+0,0033 

+0.0039 
+0,0065 
—0,0137 
—0,0137 
—0.02C4 
—0,0213 
—0,0210 
-0,0200 
-0,0185 
-0,0268 
-0,0148 
-0.0129 
-0,0109 
-0,0091 
-0,0075 
-0.0060 
—0,0047 
-0,0036 

Table b. Values of Airy functions *,</>•).M/y) 

and their derivatives ^’^7 at !wmlr 

1 Rt A, lm A. Rc*[ im *( 

0 
0.1 
02 
0.3 
0.4 
0.5 
0.6 
07 
‘JA 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.1 
+1 
2,2 
2.3 
2.4 
2* 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 

-0.000000 
-0,039000 
-0.077000 
-0.11311» 
-0.146600 
-0,177000 
—0.203600 
-0,-226200 
-0.244600 
-0.238700 
-0,268400 
-0,273800 
-0,275300 
-0,272900 
-0.267200 
—0.258300 
-0.240800 
-0,233100 
-0.217600 
-0.200600 
—0,183200 
-0.163100 
-0.146800 
-0,128000 
-0,111500 
-0,094930 
-0.079330 
-0,065020 
-0.051950 
-0,040250 
-0,029950 
-0,021030 
—0,013470 
-0,007192 
-0,002114 

0.001867 
0,004665 
0,006999 
0,008389 
0.009155 
0.009412 
0,009265 
0,008813 
0.008143 1 

-1,974000 
—1.007000 
—0.936800 
-0.871100 
—0,803900 
-0,737200 
—0,671400 
—0,606800 
—0.543800 
-0.482800 
—0,424100 
-0.368100 
—0,315000 
—0.26Ò300 
-0,219200 
—0,176700 
—0.138100 
-0,103500 
-0,072650 
—0.046100 
—0,023160 
—0,003660 
+0.011940 
+0,024530 
-4 0.034160 

0.041110 
0,045690 
0,048210 
0,046970 
0,046280 
O.C46410 
0,043659 
0.040230 
0,036380 
0,f32280 
0,028120 
0.024010 
0,020080 
0.016410 
0,013053 
0,010053 
0,007429 
0,005182 
0,003305 

0,678300 
0,678200 
0.677300 
0.674900 
0,670300 
0.6G3030 
0,652400 
0.636400 
0,620700 
0.599300 
0,574200 
0.545700 
0.514100 
0,4798(.0 
0,443300 
0,405200 
0,366000 
0,326400 
0,287000 
0,248300 
0,210800 
0,175100 
0,141600 
0,110600 
0,082410 
0.057160 
0,034970 
0,015870 

-0,000170 
-0.013260 
-0.023580 
-0.031310 
-0,036700 
- 0.01'.»20 
-0.041540 
-0,041550 
-0.040330 
-0,038140 
-0,035230 
-0,031830 
-0,028,50 
-0,024360 
-0,020600 
-0,016990 

0.3916C0 
0,386500 
0.371900 
0.349400 
0.320100 
0.285500 
0,246800 
0.205300 
0.162300 
0.118700 
0.075700 
0.034200 

- 0.005000 
-0,041200 
-0,073900 
- 0,102500 
- 0.126800 
- 0,146600 
-0,162000 
-0.172S00 
- 0.179600 
- 0.182300 
- 0.181300 
- 0,177200 
- 0,170200 
-0.160900 
—0.149800 
-0.137300 
-0,123900 
—0,110000 
-0,096050 
-0.08-2290 
-0,059070 
-0.056620 
—0,045120 
-0,034700 
-0.925460 
-0,017420 
-0,010590 
-0,004929 
—0,000379 

0,003146 
0,005718 
0.007537 

bi2 



Table 4. (cont'd. ) 

y R< A, Jm A, Rt A.' 
1 Im a| 

4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 
6.0 

0,007329 
0,006436 
0,005517 
0.004613 
0,003755 
0,002567 
0,002261 
0.001649 
0.001129 
0,000702 
0,000360 
0.000098 

-0,000096 
-0,000229 
—0.000313 
-0,000358 
-0.000371 

0,001776 
0,000571 

-0,000346 
-0,001009 
-0,001454 
-0,001720 
-0,001840 
-0.001847 
-0,001769 
-0.001632 
-0,001453 
-0.001203 
-0,001064 
—0,000870 
—0,000688 
—0,000524 
—0,000381 

-0,013620 
-0.010550 
—0.007836 
-0,005482 
-0,003498 
-0,001872 
-0,000582 

0,000401 
0.001112 
0,001588 
0,001868 
0.001989 
0.001987 
0,001892 
0.001734 
0.001536 
0,001318 

0,008629 
0,009139 
0.009179 
0.Ü0S854 
0,008261 
0,007484 
0.006597 
0,005663 
0.004729 
0,003834 
0,003006 
0.002264 
0,001618 
0,001072 
0,000625 
0.000272 
0,000004 

y R* A, Im A, Re Aj Im A^ 

0 
0.1 
0.2 
0.3 
0.4 
0,5 
0.6 
0.7 
0.8 
0.9 
1.0 

U 
U 
U 
1.4 
U 
1,6 
1.7 
1.8 
1.9 
2.0 
2.1 
22 
22 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 

0.0000 
0.0390 
0.0768 
0,1122 
0.1437 
0,1699 
0,1889 
0.1991 
0,1983 
0.1845 
0,1553 
0,1084 
0.0410 

—0,0495 
—0,1663 
-0.3123 
-0.4908 
-0.7051 
-0.9585 
-1.2540 
-1.5950 
-1,9840 
-2.4220 
-2.9110 
-3.4510 
-4,0380 
-4.6680 
-5,3340 
-6,0220 
-6,7170 
-7,3950 
-8.0260 
-8.5690 
-8,9760 
-9,1830 
-9.1170 
-8,6850 
-7,7830 
-6.2860 
-4,0510 
—0,9330 

3,2480 
8,6640 

15,4900 
23,9100 
34,0500 
46,0300 
59,8700 
75.5100 
92,7400 

111,1600 
130,1000 

1.0740 
1.1420 
1.2100 
1.2780 
1.3470 
1.4150 
1,4850 
1.5560 
1,6290 
1.7020 
1.7780 

1.8550 
1,9330 
2.0120 
2,0900 
2,1660 
2,2370 
2.2990 
2.3500 
2.3840 
2,3930 
2.3710 
2,3070 
2,1890 . 

2.0040 
1.7360 
1.3670 
0.8764 
0.2416 

—0,5619 
—1.5600 
—2,7810 
—4,2500 
—5,9920 
—8,0310 

—10,3800 
—13,0500 
—16.0300 
—19.29C0 
-22,7900 
-26,4500 
-30,1400 
—336900 
—36.8700 
-39,3800 
—40,8300 
—40,7400 
—38,5200 
—33.4700 
—24,8000 
-11,5700 

7.2200 

0,6783 
0,6784 
0.6793 
0.6817 
0,6862 
0,69.33 
0,7033 
0.7159 
0,7309 
0,7473 
0,7635 

0,7775 
0.7862 
0.7859 
0.7715 
0,7371 
0.6752 
0,5768 
0.4317 
0.2274 

-0.0499 
-0,4162 
-0,8893 
-1.4890 
-2.2360 
-3.1530 
-4.2620 
-5 5870 
-7,1490 
-8,9650 
-11,0500 
-13.4000 
- 16.0200 
-18,8700 
-21.9200 
-25,0900 
-28,2600 
-31.2800 
-33,9400 
-35.9500 
-36 9700 
-36,5300 
-34.1000 
—29.0200 
-•20.5000 
-7,6600 

10.1900 
30,0500 
67,1500 

107.9000 
158.3000 
219.3000 

-0.3916 
—0.3860 
—0.3683 
—0,3372 
-0.2912 
-0.2290 
—0,1492 
-0,0503 

0.0692 
0.2108 
0.3762 

0.5370 1 
0.7849 
1,0320 
1,3090 
1.6170 
1.9580 
2.3330 
2,7400 
3.1780 
3,6440 
4.1330 
4,6370 
5.1440 
5,6380 
6 0980 
6,4950 
6,7950 
6.9520 
6.9100 
6.6010 
5,9440 
4,8420 
3,1840 
0,8420 

-2.3270 
-6,4780 

—11,7800 
-18,4000 
—26.4900 
—36.2200 
—47,6800 
-60.9400 
-75.9600 
-92.5700 
-110.5000 
-129.1000 
-147,6000 
-161,8000 
—179,1000 
— 188,3000 
-189,7000 
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Table A. (cont'd.) 

y Rt A, la A, R.AÍ ï 
•T

. 

Ò2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 
6.0 

148.7COO 
165.6000 
178.9000 
186.3000 
184.9000 
171.1000 
140.5000 
38.2000 
8,3000 

32.6500 
65.8100 

107.7000 
159,3000 
221.0000 
293,1000 
374.8000 
464.6000 
556.4000 

291.1000 
373.8000 
466.1000 
5660000 
669,5000 
770.7000 
861.2000 
929,2000 
959.4000 

-179,7000 
—154.2000 
—108.1000 
-35.8000 

69,4000 
214,2000 
405,9000 
651.1000 
955.7000 

Table 5. Values of functions t¿iy) and *£</y). 

y *« (<jr) j !■».«») !■ 'ó M 

0.00 
0.05 
OHO 
0.15 
0.20 
0,25 
0^0 
0.35 
0140 
0.45 
0^0 
0.55 
0^0 
0,65 
0,70 
0.75 
0,80 
0.85 
0,90 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
135 
1.49 
1.45 
1.50 
1.55 
1.60 
1.65 
1.70 
1.75 
1,80 
1.85 
1.90 
1.95 
2,00 
2.05 
2.10 
2.15 
2.20 
2,25 
230 
2.35 
2.40 
2.45 

1.288 
1387 
1,283 
1377 
1.268 
1357 
1344 
1328 
1310 
1.190 
1.168 
1.144 
1.118 
1.090 
1.061 
1.030 
0.996 
0.965 
0.931 
0.896 
0.860 
0.823 
0.786 
0.749 
0.711 
0.673 
0.636 
0.599 
0,562 
0525 
0.489 
0.454 
0.419 
0385 
0352 
0320 
0.290 
0.261 
01232 
0.204 
0.178 
0.153 
0.130 
0.108 
0.068 
0.069 
0.051 
O.U35 
0.020 
0.006 

-0,000 
-0.047 
-0.094 
-0.140 
-0,186 
-0331 
-0376 
-0.320 
-0362 
-0.403 
-0,443 
-0,482 
-0519 
-0554 
-0588 
-0519 
-0.649 
-0577 
-4).702 
-0.726 
-0.747 
-0,767 
-4).784 
-0.799 
-0.812 
-0.822 
-0.830 
-0.836 
-0.841 
-0.844 
-0,846 
—0,845 
-0.842 
—O.R37 
-0.831 
-0.823 
-0.814 
-4).804 
-4).793 
-0.780 
-0.766 
-0.751 
-0.736 
-4).720 
-0,703 
-0.686 
-0.669 
-0.651 
-4).633 
-0.615 

-0.930 
-0.937 
-0,932 
-0.924 
-0,913 
-0.899 
-0582 
-0.862 
-0.839 
-0313 
-4).785 
—0J55 
-0.723 
-0588 
-0.652 
-0.614 
-0574 
-0534 
-0.493 
-0.450 
-0,407 
-0364 
-0521 
-0378 
-0335 
-0.193 
-0.151 
-0.110 
-0.070 
-0,031 

0,007 
0.043 
0,078 
0.111 
0.142 
0.171 
0.198 
0.222 
0.244 
0364 
0382 
0.296 
0313 
0326 
0337 
0546 
0353 
0358 
0361 
0362 

0,000 
0,050 
OllOO 
0,149 
0,197 
0345 
0392 
0337 
0380 
0.422 
0,462 
0500 
0535 
0568 
0599 
0,627 
0552 
0,675 
0595 
0.712 
0,726 
0,737 
0,745 
0.750 
0.753 
0.753 
0,750 
0.745 
0,737 
0.727 
0.715 
0,700 
0,683 
0.664 
0.644 
0.623 
0,601 
0578 
0.554 
0529. 

0503 
0.476 
0,449 
0.421 
0394 
0366 
0339 
0312 
0386 
0360 



Table (cont'd.) 

R* 

—0,008 
-0.017 
-0.027 
-0.036 
-0.044 
—0,050 
-0.056 
-0.061 
-0.065 
-0.068 
-0.070 
-0.071 
-0.072 
-0.073 
-0.073 
-0.072 
-0.071 
-0.069 
-0.067 
-01-65 
—O.C63 
-0,060 
-0.058 
-0.056 
-0.053 
-0,050 
-0.047 
-0.044 
-0.041 
-0.038 
-0.035 
-0.032 
—0,029 
-0.027 
-0.024 
—O.Ü22 
-0.020 
-0.018 
-0.016 
-0.014 
-0.012 
-0,011 
-0.009 
-0.008 
-0.007 
-0,006 
-0,0(6 
-0.004 
-0.003 
-0,003 
—0.002 

(m r, (/y) 

—0,597 
—0,579 
—0,561 
-0.543 
-0,525 
-0,508 
-0.491 
-0.475 
-0.459 
-0.443 
-0.428 
-0.413 
-0.399 
-0.386 
—0,373 
-0,360 
-0.318 
-0^37 
-0.327 
—0,317 
-0307 
-0.298 
-0390 
-0,282 
-0.275 
-0.268 
-0361 
-0355 
-0350 
-0346 
-0.242 
-0,238 
-0334 
-0,230 
-0.226 
-0,223 
-0,220 
-0318 
—03I5" 

—0,213 
-0.210 
-0.208 
-0.206 
-0.2« 

-0.203 
-0.201 
-0.200 
-0.198 
-0.197 
—0.1S5 
-0.191 

0.362 
0361 
0358 
0354 
0349 
0342 
0335 
0.327 
0,318 
0,308 
0398 
0387 
0376 
0364 
0353 
0341 
0330 
0,218 
0.206 
0.195 
0.184 
0.173 
0.163 
ai52 
0.142 
0.132 
0.123 
0.114 
0.106 
0.098 
0.090 
0.083 
0.077 
0.071 
0.066 
0.061 
0.057 
0.053 
0.049 
0.016 
0.043 
0.040 
0.038 
0.036 
0.034 
0.033 
0.031 
0.030 
0.029 
0.029 
0,028 

0.235 
0,211 
(U 88 
0.165 
<M44 
0,123 
4104 
0,086 
0,CG9 
0,053 
4038 
4024 
0,011 
0.000 

-0,010 
-0.019 
-0.027 
-0,034 
-0.040 
-0015 
-0.050 
-0.053 
-0056 
-0.058 
-4059 
-0.059 
-0.059 
-0.059 
-0.058 
-4057 
-0.056 
-0.054 
-0.052 
-0.050 
-0.048 
-0.046 
-0.043 
-0.040 
—0,038 
—0.035 
-0.032 
-0.030 
-0.027 
-0.025 
-0.022 
-0.020 
-0.018 
-0.016 
-0.014 
-0012 
-0,010 
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Table 6. Values of /,<»>- 

"• 1 
i/lmO J I/J.—0.I 1 Il-(U l/X-0¿ 1 5

 
• 2

 

1A-M 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

• 

0 
0,9172 
0.U4S6 
0.0892 
0.1369 
0,1908 
0,2591 
0.3141 
0,3822 
0.4538 
0.5287 
0.6065 
0.6866 
0,7688 
0.8527 
0.9378 
1.0240 
1,1109 
1,1981 

0 
0,0171 
0.0483 
0,0885 
0.1355 
0.1881 
0,2463 
0.3087 
0.3748 
0,4441 
0,5164 
0,5913 
0,6682 
0,7470 
0.8273 
0.9086 
0,9909 
1.0737 
1.1570 

0 
0.0170 
0.0481 
0.0878 
0,1342 
0.1861 
022428 
0.3036 
0,3679 
0,4352 
0,5059 
0,5773 
06515 
0,7274 
0,8042 
0,8823 
0.9611 
1.0404 
1,1202 

0 
0.0170 
0,0478 
0.0872 
0,1329 
0,1839 
0,2394 
0.2989 
0,3614 
0,4268 
0.4945 
0,5644 
0.6360 
0.7092 
0.7834 
0.8584 
0.9341 
1.0103 
1.0670 

0 
0.0170 
0,0476 
0,0866 
0,1318 
0.1818 
0,2362 
0.2943 
0,3553 
0.4190 
0,4847 
0,5524 
021218 
0.6924 . 
0,7640 
0.8364 
0.9095 
0,9630 
1,0568 

0 
0.0170 
0.0473 
0,0859 
0,1305 
0.1796 
0,2332 
0,2900 
0.3497 
0.4116 
0,4756 
0,5415 
0,6086 
0J6771 
0.7464 
03168 
0,8873 
0.9584 
1.0294 

Table 7. Values of M®i> 
YiXni f /5 

“jTr^x '•in/ 

^ I I/X-.0.1 \ U-M j I 
l/»-W 

-7¾ 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

0 
0.0172 
0.04S8 
0.0898 
0.1383 
0,1932 
0,2540 
0.3199 
0,3901 
0.4640 
0.5420 
0.6231 
0.7068 
0.7930 
0,8809 
0.9705 
1,0613 
1.15-27 
1.2448 

0 
0,0173 
0,0490 
0.0907 
0.1398 
0,1959 
0.2581 
0.3259 
0.3985 
0.4756 
0.5567 
0.6414 
0,7293 
0.8200 
0.9128 
1.0075 
1.1034 
1.2004 
1.2982 

0 
0,0173 
0.0493 
0.0915 
O.Mt5 
0.-987 
0,2625 
0.3325 
0.4077 
0,4880 
0.57-28 
0.6619 
0,7545 
0.8505 
0,9492 
1,0499 
1,1526 
1.2558 
1.3603 

0 
0,0174 
0.0496 
0,0921 
0,1430 
0,2016 
0.2672 
0.3395 
0.4177 
0.5016 
0,5908 
0.6849 
0,7833 
0.8856 
0,9912 
1.0993 
1,2096 
1,3210 

.1.4338 

0 
0,0174 
0.0499 
0,0929 
0,1446 
0,2046 
0.2722 
0,3471 
0.4286 
0,5167 
0.6111 
0,7111 
0,8163 
0,9264 
1,0407 
1,1580 
1.2782 
1,3997 
1,5224 



1 
Table 9* Values of /,(8,)- I - dt 

—sin/ 

-ï 

Il-O.» 

9*-1.1» 

X —o,s I 
e'-o.wa 

X —0,7 I 
9*-0.776 

X-0,6 

8| — 0,644 

X-O.S 
9,-0.524 

0 
4 
8 

12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 

0 
0,012 
0,037 
0,071 
0,114 
0,165 
0,224 
0,292 
0^70 
0,460 
0,564 
0,683 
0,822 
0,993 
1,202 
1,493 
2,317 

0 
0,013 
0.040 
0,077 
0,123 
0.178 
0,245 
0,322 
0,413 
0,520 
0,647 
0,810 
1,020 
1,395 

0 
0,014 
0,043 
0.083 
0,135 
0,197 
0,272 
0.362 
0,474 
0,616 
0,810 
1,233 

0 
0,015 
0,047 
0,092 
0,150 
0,222 
0,315 
0,429 
0,590 
0,890 

0 
0,017 
0.053 
0.104 
0,172 
0,262 
0,385 
0,582 

«î 
2,48 1,720 1,410 1,110 0,86 
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list op designations 

1 
^7’ 

0X 0, 02 ~ lolUZtS a Carteslan -«anguaar 3ystem of 

" * ' Unlt veotors> ««oted aiong axes ox.or.oz 

X Ÿ z -n Hi Veet°r °f a certaln point » on a middle surface 
* - coordinates a point in a paT,f0D< sun ace 

system of coordinates Cartesian rectangular 

P' “ curvilinear surface coordinates 

e'f" rS?at1iaonee°eraPhl0al C00rdlnat^ on a surface of 

v - radius of a parallel circle 

'' " paraile^clrcle tangent t0 a -rldlan and 

* - unit vector of the normal to a surface 

revolution1*1"01”31 ourvatur®o of a surface of 

* “ Unlt Ve0tor of a no™al to a parallel circle 
unit vector of a tangent to a certain curve on a 

: : ii:::s0;veth of an arc °f neridia- a-d— 
, tinúrfãce g °f a" arC or 3 «“«in curve on 

’ I* ourvature of a certain curve on the surface 

v-â=a rvîÂ-dai^efra — - 
unit vectors of tangents to coordinate lines aft 

' surface0durlngddeformatlon °f 3 ”0l"‘ 3 — 
•v projections of a vector nf -i 0_n 

axes t, ,, ector of displacement u onto 

^T' 
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A,. A, 

/- 

n* . 

x,* ■ 

rf,i* . 

-4.-4 » 

-*i. «, 

'V \j 

*'• e*’ V. X,. Kj, t . 

0 . 

— #|. ô - 

A - 

R - 

C - 

rfl • 

dU- 

m-). 

u(*). o(5>, WC) _ 

RT - 

K r;. at* « 

*b *}. *> — 

®i. a, — 

'l*. Tj, , 

*1. *, • 

K: M,. M} - 

S'* <?.. M„ //l5>_ 

- radial and axial comoonent ,, 

■ radius vector of , < f displacement 
deformation “ POlnt of a “«die surface after 

vector of normal to deformed surface 

deformat iontan?ent 8 to -Jinete lines after 

deformation lengths of arc3 of coordinate lines after 

*- curvature and twisting of SUrfn 

“ angles of rotation of no ^ & ter deformatlon 
during deformation t0 surface around axes 

- angles between vectors r,. T; and r • 

- components of deformation of mJ, * reSpectlve^ 

• vector of rotation of an pi 1G SUrface of shcll 
medium during deformation lement °f a continuous 

‘ Projections of vector. 0 

thickness of shell a**s T|. * 

_ ^adlUS veotor of a point of a shell 

' n°rmalCe fr0” surface, read on the side of a 

oñ0L0reBqu0ifditaatnStntsSuí?ac|0rdlnate lines “d normals 

: vtlTel::; area °f “ surface 

Zf lv lylng 0n ‘he 

-i:: :::0^ ^ ont° 
vectors of tangents^nd' ^ * ^11 deformatlon 
surface after dePo^foS0™31 °n an eialdlstant 

_ "r?aceeduil0ifde?S™at“0nhear °n an eWidistant 

normal stress on areas perpendicular to vectors ,, 

- tangential stress in these areas 

,1,.,'°rS °f atress areas perpendlcuiar to vectors 

edges^f°a chos^n^mlnrofTs^eíi3'’13116'* to the 
internal forces Qri(j 

surface!10 °f the ParauJf ci^^M tV^ddlê8“1 

t79 



T* s~" Q* H:\ ~ internal forces and moments referred to a unit 
length of an arc of the meridian of the middle 
surface 

s. H— applied tangential force and twisting moment 

Nu A’, — applied shearing forces, vector of volume forces 
referred to a unit of volume 

H, — raaial force 

F - vector of volume forces referred to a unit of 
volume 

p+. P - vectors of surface forces referred to a unit of 
area (external and internal respectively) 

E. L — applied vectors of forces and moments of external 
forces, referred to a unit of area of the middle 
surface 

FV Fr F,. P¡ , p¡ . />;. PÎ. pj, p~, £, » qv E2 E.s: qm 

ti. projections of vectors F, p+. p-, e, L onto axes t». t* <•, 

B — tensile rigidity 

D- cylindrical or flexural rigidity 

E— Young's modulus 

»*. - Poisson's coefficient 

a, B, C — stress functions 

^ (*-J. 2. 3....)- coefficients of the expansion of meridian force 
T1 in a trigonometric series in coordinate <}> 

r*(0>- Fjiny , fpM, H^y *, jQj, t] iiy .. . Tjjj, 

*1 (0)' *!(»)• <"1*'. Of. «2 (*>■ «i*’. ■(*). .«“(»r ^ fi «a» 

9u*y i\).?» (<')• ?» (*)• íí* — analogous meaning 

px. Py. p„ mx, MrMt - projections of principal vector and principal 
moment of external loads applied to one edge of 
a shell 

- Meissner functions in the axisymmetric problem 

h\ V - Meissner-type functions in the problem of 
deformation of a shell under a bending load 

0 — with different inde:- - is used for a complex 
combination from Meiss er functions and Meissner- 
type functions 

. 12(1—n»)** 
F parameter characterizing relative thickness of 

of shell, b - certain characteristic geometric 
dimension 

Mi - basic parameter of asymptotic integrating of the 
equation of deformation of a toroidal shell 

« - radius of the forming circumference of a torus 



of the 

temPeratUre - - function of confinâtes 
average wall temperature 

!eaPeratUre dr0P Wlth sheU thickness 

'Ã * ^ ^ - oZZTnt^otTJeTlTo^Tl10" 
mm j. m. In a trigonometric '■jerie^i0^ ^unct:ion /* and 

«r*. «i'1.... in coordinate 

«1». «T. ,Z °f "ela3tlC'’ ^°™tlon 
Note. The lise doe °f dlslocal;ion deformation. 

dfhißn?tlon ofn®Pe°ialU^nctionsarR designatlons or the 
others ). Both the basi so inS a (Bf?,Sel* Leg^re and 
explained in the text of the book?Xiliary desl8nations are 
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