U.S. ARMY FOREIGN SCIENCE AND TECHNOLOGY CENTER

AD 691916

TECHNICAL TRANSLATION

This document has been approved for public release and sale; its distribution is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

TECHNICAL TPANSLATION

FSTC-Hí-23-733-68

MATHEMATICAL FUNDAMENTALS OF AERIAL PHOTO-INTERPRETATION OF FORESTS

by
M. K. Bocharov and G. G. Samoylovich

SOURCE: LESNAYA PROMYSHLENNOST
pp. 1-222
1964
USSR

Translated for FSTC by ACSI

This translation is an unedited rendi:ion oi the original foreign text. Statements or theories advocated or implied are those of the source and do not reflect the position or opinion of the US Army Foreign Science and Technology Center. This translation is published with a minimum of copy editing and graphics preparation in order to expedite the dissemination of information. Requests for additional copies of this document should be addressed to the Defense Documentation Center, Cameron Station, Alexandria, Virginia, ATTN: OSR-2.

TABLE OF CONTENTS

Pare

Foreword
1
Chapter 1: Present State of Aerial Pnoto-
Interpretation in Forest Inventory and
Study of Crown Canopy Structure

1. Present State of Aerial Photo-Interpretation and Use of Correlations of Crown Canopy Structure in Forest Inventory3
2. Present State of Studies on the Struc
ture of Tree Stand Canopies in Rela-

tion to serial Photo-Interpretation 7
Chapter 2: Mathematical Modeling of TimberStands
3. Mathematical Relationship Between Spacing and Number of Points in Point Sybtems43
4. Transformation of Point Sets to Point Systems 50
5. Mathematical Modeling of the Placement, Density, and Size of Tree Crown in the Development Dynamics of Tree Stands and An Experimental Method of Determining Forest Density and Tree Spacinge60

TABLE OF CONTENTS (cont'd)

Page
6. Mathematical Model of Canopy Closure and Approximational Relationship Be- tween Closure, Density, Crown Diame- ter, and Inter-Crow Opening 63
7. Mathematical Modeling of Tree Stands to Determine Visibility Range 68
8. Pisincipal Formulas in the Sampling Method of Investigation 73
Chapter 3: Statistical Correlation of the
Distribution of Tree Spacings in Tree Stands 81
9. Distribution of Distances Between Points in Point Sets 81
10. Checking the Ilypothesis That Independent Sampling Distribution Functions Belong to the Same Type 87
11. Investigation of Asymmetry of Experimental Distribution of Functions 94
12. Investigation of Excess of Experimental Distribution Functions 97
13. Determination of the Theoretical Func- tion of the Distance Distribution 98
14. Verification of Agreement Between Empir- ical and Theoretical Distribution Fumc- tions Using the chi ${ }^{2}$ Criterion 102
15. Verifying Agreement Between Empirjcal and Theoretical Distribution Functions by Using A. N. Kolmogorov's Criterion 106
16. Conclusions on the Statistical Correla- tion of Tree Spacing Distribution in Tree Stands 110

'TABLE OF CONTENTS (cont'd)

Page
Chapter 4: Statistical Correlations of Dis- tribution of Trees in Stands by Thickness, Height, and Crown Diameters 116
17. Correlation of Distribution of Trees by Thickness 116
18. Correlation of the Statistical Func- tions of Tree Distribution by Thick- ness and Tree Spacing 118
19. Correlation of Tree Distribution by Height 122
20. Correlation of Tree Distribution by Crown Diameters 125
Chapter 5: Correlational Functions of Tree
Stand Appraisal Indicators 129
21. Remarks on Correlations and Precision of Statistical Variables 129
22. Determination of Correlation Equation Relating Thickness and Height of Trees 132
23. Determination of the Correlation as a Measure of Relatedness 140
24. Multiple Correlation Between Height, Thickness, and Crown Diameter of Trees 144
25. Classification of Stands by Their Den- sity 148
Chapter 6: Methods of Determining Forest Den- sity and Mean Tree Spacing 158
26. Some Problems in the Theory and Method- ology of Measurement Methods of Deter- mining Appraisal and Topographic Infor- mation From Aerial Photographs and Field Work 158

TABLE OF CONTENTS (cont'd)

Page
27. Methods of Determining Mean Tree Spacing and Forest Density in Field Fork 173
28. Procedures of Determining Forest Density and Mean Tree Spacing From Aerial Pho- tographs 182
29. Experimental Data on Determinotion of Mean Tree Spacing From Aerial Photo- graphs 190
Chapter 7: Methods of Determining Mean Heights, Crom Diameters, and Canopy Closure of Stands 196
30. Methods of Determining Mean Crown Diameters 196
31. Methods of Determining Mean Height of Tree Stands From Aerial Photographs 200
32. Methods of Determining Canopy Closure From Aerial Photographs 205
Chapter 8: Methods of Determining Mean Thickness of Trees in a Stand From Aerial Photographs 214
33. Determination of Mean Tree Thickness From Crown Diameters and Correlation Table 215
34. Determination of Mean Tree Thickness From Mean Tree Stand Height and From the Cor- relation Table 217
35. Determination of Mean Tree Thickness Simultaneously From Height, Crown Diameter, and Correlation Table 219
Chapter 9: Applications of Measurement Inter- pretation of Aerial Photographs in Forest Man- agement and Aerial Appraisal of Foreste 223
36. Use of Measurement Interpretation of Aerial Photographs in Forest Management 223

TABLE OF CONTENTS (cont'd)

Page
37. Combined Method of Forest Inventory via Aerial Appraisal With Measurement In- terpretation of Aerial Photographs 230
Chapter 10: Prospects for Automating Interpre- tation of Aerial Photographs of Forests and Electronic Computers in Fnrest Management 234
38. Hypothesis on Types of Tree Arrangement and Cybernetic Principle of Stand Study 234
39. Principles for Automating Aerial Photo- Interpretation of Forests 243
40. Prospects for Electronic Computers in Forest Management 250
Bibliography 259

FOREWORD

The contents of this book can be divided into three parts for convenience. In the first part (Chapter l), we characterize the present status of measurement photo-interpretation in forest inventory and the extent to which correlations in the crown cover of forest stands have been studied. In the second part (Chapters 2, 3, 4, 5, 6, 7, and 8), we present results of theoretical and experimental studies on use of mathematical modeling and point systems and sets in investigating tree stands, discovering approximational relationships and methods of determining indicators in appraising the value of stands as applied to problems in forestry and topographic photo-interpretation. The problem of studying statistical correlations of the distributional and correlational relationships among stand indicators is taken up more fully. Elements of the theory and measurement methods of determining topographic and appraisal information from aerial photographs are set forth. The third part (Chapters 9 and 10) outlines ways of using measurement photo-interpretation in forest management and aerial evaluation of forests and lonks at the prospects for automating the collection of information from aerial photographs and the use of electronic computers in forest management.

The book is the first to deal with this subject and treat it in this approach and so it obviously is not free of shortcomings. Some problems call for further exploration and can become subjects for independent monographs.

A large number of stidies have been published on interpretation of aerial photogrephs of forests and on aerial methods in the U.S.S.R., the United States, Canada, and other countries. Sizable successes have been gained in theory and practice, al though the theoretical fundamentals and objective methode of measurement interpretation of aerial photographs of forests are in noed of further development. The practical bearing of reaching this goal was stressed by the International Photogrammetric Society, which in 1956 recommended that all countries engage in scientific research aimed at developing in the near future the theory and methods of determining information about forests by using aerial photographs. The task was
even more fully posed by the All-Union Conference on the Theory and Practice of Aerial Photogrephic Interpretation, which in 1961 took note of the underdeveloped state of thenry and recognized as a paramount problem the formilation of general theoretical fundamentals and objective methods of interpreting aerial photographs.

The expression "interpretation of aerial photographs" in our viem does not finlly measure up to what the work amounts to. Under today's conditions it is better to talk about the theory and methods of gathering information from aerial photographs. This is the sense in which the term is used in this book. Therefore, the book's title does not fully describe its content.

This book is intended for engineering-technical and scientific personnel in forest management, aerial photography, land management, genbotany, geography, cartography, and other specialists who rely on aer tal methods.

The chapters written by M. K. ?Bcharov have been read by G. G. Samoylovich.

The authors express their gratitude to Docent B. A. Kozlovakiy, and also to the following professors -- V. I. Sukhnv, A. V. Mazlov, N. D. Il'inskiy, Z. P. Morozov, A. N. Lnbanov, and V. F. Deyneko, and to the following Candidater of Sciences -- M. I. Malykh, S. D. Dubov, S. F. Bogatov, ∇. M. Zaythev, V. A. Zakharnt, G. F. Panin, P. A. Yaknvlev, N. A. Komilov, and 2. I. Tolmacheva for valuable counsel and comments.

Chaptere 2, 3, 4, 5, 6, 7, 8, and 10 were written by M. K. Bocharov and Chapters 1'and 9'-- by G. G. Samoylovich.

CTAPTER 1

PRESENT STATE OF AERIAL F!INTO-TNTERPRETANION IN
 TIRE

1. Present State of Aerial Photn-Interpretation and lige of Correlations of Crom Cannpy Structure in Foreat Inventory

Under today's conditions materials of aerial photography are the basis for forest inventories. Their use has led to a considerable improvement both in field as well as laboratory work. Consonantly, the terhnolngical process of inventorying forests hased on luse of aerial phntocraphs has also changed.

At present, contour interpretation of aerial photographs and the visual estimation methor of field evaluation of forests using aerial photographo has underenne the greategt development in forest management. Labnratory evaluational interpretation as well as measurement methods of determining evaluation indexes of forest stands from aerial photocraphs have not yet seen marked development in practical use. Also going mused are correlational ties linking indexes of stands and correlations of stand compositinn.

Still, investigations conducted in this area over the past 40 years both in our country and abroad have demonstrated wholly beneficial results. We will cite a number of them.

Based on the studies of Ristov (1924), Krutah publisher the results of experiments on interrelationships between crown diameters and diameters at breast height (b.h.) in determining stand reserves from aerial photographs. Subsequentily, these experiments were continued in Germany by Tsiger and

Neyman. We know of studies in this area in the United States [81], Canaia, Finland, Sweden, and other countries. In nur country, the first experiments on interrelationships between appraisal indexes of forest stands were heaun hy A. Ye. Novnsel'skiy in 1923 and by G. G. Samnylnvich since 1926. Their results vere published in 1040 [46].
N. I. Baranov was responsible for a considerable number of test plots for exploring interrelationships hetween tree crowns and appraisal characteristics of tree stands (published in 1948 in the collection of the Central Scientific Research Institute of Forestry, Voprosy Lesnoy Taksatsif [Problems of Forest Appraisal] and in the article [4]).

The study of V. I. Levin and V. 1. Yalinin validated the existence of interrelationships hetween crown diameters and cross-sectional areas at breast height, species numbers of croms, and trunk volumes (Trudy Arkhangel' Lesotekhnicheskogo Instituta [Proceedings of the Arkhangel' Forest Technology Institute], No 15,1954$)$.
M. K. Bocharov derived relationships between appraisal indexes of stands in the light of commjtments in forest cartography in a long series of sturies [7-16] making use of aerial nhotocraphs.
V. S. Mojseyev, relyinc on materials of investications in 1949-1951 at the Vokhomskiy Tree Farm Knstromskaya Oblast in collection No l, Uchet Lesosyr'yerkh Resursor i Ustroystro Lesov [Evaluat ing Forest Raw Material Resources and Forest Management], published in 1957, derives correlational equations relating mean tree stand diameters to the maximum and mean diameters of crown projections.
A. N. Polyakov in the journal Lesoinzhenernoye Delo [Forestry thgineering], No 1, 1958, published some new data on correlations in the structure of simple pure and even-aced stands and brought to light characteristerics in the distribution of trees by their crown diameters.

Kelying on material obtained in different rayons of the Soviet Union, A. M. Berezin and I. A. Trunov [6] established that the correlations between mean crown diameters and d.b.h. correspond only to tree stands grown under specific physical-geographic conditions and cannot be extrapolated to other geographical regions.

In the collection 58 of the Trudy Instituta Lesa i Drevesiny Sibirakogn Otdeleniya Akademil Nauk SSSR [Proceedings of the Institute of porests and wood of the Siber ian Division of the USSR Academy of Sciences] (1962), an article by N. G. Kharin was published on the study of relationships between several appraisal indexes of tree stands for interpretation of large-scale aerial photographs.

Based on the forest management instruction of 1964 to the lower organizational levels of forest management, laboratory and office appraisal interpretation of asrial photographs is recommended for sections located in mid-sighting expanses. However, it is also based on visual estimations of photo-images of tree stands visible in the stereoscope. Experience of practitioners and training play a decisive role in this procedure. Here the use by some only of visual estimation observations cannot guarantee uniformity in work and high quality, since visual impressions are subiective. The need has arisen to advance to new, objective methods of work based on the proper use of appraisal correlations of tree stand structure, on measurements of appraisal indexes of crown canopy based on aerial photographs, and on mathematical validation of forest interpretation of aerial photographs.

Below we will state which prerequisites for this are already in effect at the present time.

What then has held up the wide advancement of office interpretation and of measurement methods of securinc appraisal characteristics of forest stands?

Firet of all, the use of aerial photocraphs of relatively small scales for this purnose ($1: 25,000$ and smaller). The volume of information obtained hy using such aerial photographs is limited. Many details of stands are lost on such aerial photographs becanse of the small image, and not more than $20-30$ percent of the trees compared to their actual number show un. The discernability of the cannpy in depth is sharply reduced, which hampers use of measurement instruments. As many years of experience have shom, scales of $1: 10,000$ and larger and not smaller than 1:15,000 are the most optimal for appraisal interpretation. Smaller scales of aerial photographs are the most suitable for cartographic purposes, in fact, and contour interpretation of aerial photoeraphs. Therefore, at present the problem of the ends served by aerial photography using simultaneously two aerial cameras with a focal-length ratio of approximately l:2 has been properly posed.
: ixtensive use of nffice interpretation as part of a unified technolncical process of forest inventory has benome passible with the use of lareer scales in aerial photncrapty. Office interpretation of acrial phntoncranha will he hased not only on recnenition of the ohierts in the nhotneraphed lncality, hut alan on determination of qualitative and quantitative characteristics of the stands with the hroar use of interrelationshins between appraisal indexes of the stands and the correspnnding measurement instruments.

The process of office interpretation of aerial photngraphs is not purely one of lahnratory work. It enmmences in the perior of preparatory work for forest management with study of the tree stands in sample plots selected out of sections that differ in appraisal characteristics. During this perind the necessary interrelationshins hetween anpraisal indexes of stands must be unenvered for their subsequent employment in the varinus operatinnal steps.

In the office perind preceding field work contour interpretation of acrial photocraplis mist he carried nut, and depending on the area of neratims and the level of forest manalrement, the determination and measurement of sevoral anpraisal indexes of the stands that will be verified and sunnlemented throuch field work, given the essential minimum of stens for this purnose based on the rational placement of the appraiser's survey lines.

Only if there is the far-rangine incorporation and unarading of the method of office interpretation of aerial plontocraphs can several procedures in forest inventory be alltomated in forest management, above all at its lner levels.
thlarsinc the scales nf aerial photneraphy and increasing the volume of office interpretation of aerial phntneraphs under certain sets of conditinns are rompensated by reduced volume of time-consuming and costly field work.

How thoroushly several enrrelations in stand structure have been studied for nurposes of aerial photn-internretatinn, measurement methods of determining apmraisal indexes, and mathematical fundamentals of measurement interpretation will be propounded in the following chapters.

The extensive advancement and inse of measurement mothons of interpretation and the transition from the aerial photocraph to compiling appraisal indexes of stands based on the study of how appraisal indexes are interrelated requires, on
the one hand, a concent of the imacing properties of aerial photographs, knowing what can he measured on aerial photocraphs of different dimensions, and on the other -- study of intercelationships between measured indexps of tree stand canopies and those appraisal indexes that are required in drawing up apprajal descrintins of tree stands.

To determine the essentials and content of this kind of interncetation requires first of all that we dwell $n \mathrm{n}$ a number of features of tree stand structure and the nature of their photographic imaging on flat aerial nhotoeraphs. fnowing what and how objects show in on aerial photocraphs, we can more confidently not only draw up measurement methods, but also determine, hy starting from correlations of the stand structure, appraisal indexes of tree stands called for in prartical work.
2. Present state of studies on the Structure of Tree Stand Cannpies in Relation to Aerial Phnto-Interpretatinn

The concept of stand canony. Thus far study of the structure of stand cannpies has not heen civen allonnmous prominence, therefore concents of it have been treated in different ways in handbonks and textbonks.

Expanded research in sylviculture and procress in forest interpretation of aerial photocraphs have pushed to the fore the need to study the structure of the cannpy of simple and mixed stands, and accordingly the interrelationshin hetween cannpy indexes and other apnraisal indexes of tree stands.

It appears necessary to study forest onver by stand levels. Correlations inherent to tree stands (elements of a forest) comprising arnwths [cannpy levels] must be appropriately expressed and find reflection in the makeln of the stand cannpy.

The arboreal canopy of any tree stand is made up of the totality of the tree crowns. The latter differ in form and sige both within the limits of a sincle tree speries as well as amone several species. In natural stands, depending on tree sparing and unevenness in their arrancement in the tract, the stand cannpy will correspondingly be made un of differences in tree heichts.

The composition of the tree crown directly constituting the stand canopy is intimately related to the biolncical properties of each tree species considered separately, the species makeup of the stands, characteristics of tree ernwth and development, and on the conditions of the habitat.

Sylvicultural-binlogical pronerties of tree species, correlations in the makeup of tree stands of forest elements, and a long series of other factors have an effect on the composition of the cannpy of each stand or trees.

In any more or less closed stand there are trees whose crows are located in isolation in the cannpy (free) or only tonch at their branches; crowns whose lateral portions to some extent extend under the croms of nejghboring trees and, finally, crown located wholly under the crows of nther trees are also constituents. Within the limits of a growth level the crows of all these trees will then constitute the canopy of the stand growth level.

Consequently, we take the term canopy of a pure or mixed stand to denote that totality of crows of trees differing in shape and size that within the limits of a crowth story stand apart from others, are in contact with others, or are located in part, to some extent, or altogether under the crowns of neighboring trees.

Tree stands that are complex in configuration can include, in addition to the principal canopy, another one lying beneath it made up generally of other tree species whose crowns correapondingly mingle with each other within the limits of this growth gtory. For example, a thick spruce story underneath a birch story, or underneath nak, a growth story made up of its associates: linden, maple, or others.

In infrequent tree stands with olosures of 0.3-0.4, the canopy can be made up of crowns of trees that are not predominantly in contact with each other but stand considerable distances apart. However, when trees are arranged in group fashion, some of the croms can have their branches entering into the croms of neighboring trees, and less commonly can be located under these neighboring trees. In tree groups this will characterize the closedness of the croms, which is not one and the same thing as the closedness of a canopy.

Usually, with increase in stand density the extent of canopy closure alsn rises, as does the number of trees with crowns that are partly or completely covered by crown of neighboring trees under which the fnrmer trees are situated.

The horizontal projection of a canopy will be made up of trees with croms in the following situations: a) located in isnlation in the cannpy, that ie, free-standing, h) touching the croms of other trees, and c) partially nverlapped by neighboring crows.

The following main features characterize the horizontal projection of a stand canopy and its appearance from the top view: the forms and dimensions of the projections of tree crowns, the disnnsition of the cunn arrangement in the canopy, the horizontal extent of cannpy clnsure, and in mixed stands also the species makeup nf the stand cannpy. In addition, the following accompanying features are directly associated with these characteristics already listed: the forms and dimensions of intervals between crown, distances between crowns, and several other characteristics (Figure l).

The following main features characterize the vertical projection of a stand canopy to one side, its profile: the heights of trees, the forms and dimensions of their crnme, the heightg up to the greatest width of crowns, the extent (length) of croms, the arrangement of trees, the extent of vertical closure of the canopy, the extent or depth of the canopy, and also a number of other features (Figure 2).

The appearance of one canopy projection can intergrade into another. By knowing the structure of the stand cannpy as viewed from the side, it is easier to imagine to nneselp what the appearance would he viewed from the top, in the horizontal projection.

We note that thus far features of the form and dimensions of tree croms that make up the stand canopy, the arrangement they occupy in the cannpy, the extent of crown nverlap, the variation in the size and nature of intervals between crows, and the variation in incremental erowth of crowns with increase in age in different forest types have not yet been adequately studied.

In the study of the pattern of stand growth, attention has also not been paid to variation in indexes characterizing crom dimensions, with the exception of data published, for example, by Gerkhardt in tables on stand erowth patterns. Knowledge and provision for the above-listed indexes of stand canopies will prove of unquestioned value, for example, in sylviculture, in particular in siudying forest upkeep fellinge, for improvement and refinement in studies on interpreting aerial photographs and describing forests from aircraft. We

Diameters of tree crowns in a permanent sample area in quadrant 73 of the Derzhavinskiy forest tract of the Buzulunskiy Pine Forest. Area: 0.5 hectare

Figure 1. Jinrizontal projection of a stand of pine
hegan the study of this problem as far bark as 1926 in managing the foreats of the Mari ASSR, continned it in the Buzulunskiy pine forest (nnw Orenhureskava oblast) of Hashkirakaya AsisR, Leningradskaya ihlast, and then -- in nther areas of the Sovjet Uninn. Thesc investigatinns were connlucted hy N. X. Mazhutin [39, 40], A. M. Berezin [6], and I. A. Trunnv [56].
V. S. Mniseyev puhlished results of work under nonditions prevailine at the Vokhomskiy Tree Farm, lostromskava ghlast in his author's ahstract ni his candidate's dissertation, !eshifrirnvanive po Aeranimlam Smeshan:ykh Iesenv pri Leanistroystve v Seciney Chasti Tayeahnoy Inny [internretatation of Acrial Photocranhs of Mixed Forests in forest Vanarement in the Central fart of the Taica Zone] in 1952; A. Ya. Thukov published worl done in the same area in "Study of a stand of leciduous and Cedar lelantings Under llountain (;nnditions for the lurpose of Interpretation of Aerjal fhotocranhe and Aerial Appraisal of Forests" in Trudy lesotekhnicheskoy Akademii [Proceedings of the Forestry Technnlngy Academy], No 82, Part JI, 1957.

GRAPHICS NOT REPRODUCIBLE

Ficure 2. Schematic view of a profile of a mixen stand and its representation in an aerial nhotograph.
A. N. Polyakov studied interrelationships between full occupancy, crown closure, and density of stands, at 25 sample areas of pine plantings of site class 1 located in Vladimirskaya Oblast, which was nublisher in Vauchnyye Doklady Vysshey Shkoly [Scientific Reports of the Hicher Schools] (Lesoinzhenernoye Delo [Forestry Engineering], No 1, 1959).
N. G. I.harin divided trees only into two categories in laying the groundwork for a methed of forest interpretation of large-scale aerial photographs and comenting trees on sample plots based on the percentace of crown participation in the canopy, using our original assumptions: trees emercing into the upper canopy and trees covered by the crown of other trees. (Trudy Instituta Lesa i Drevesiny [Proceedings of the Institute of Forest and Wood] Vol 58, No 1, 1962).

At the present time there is a need for a new type of table giving the growth pattern to which the following canopy indicators have been added: composition of upper canopy (projected), crom closure, cromi diameters D_{C} and crown length 1 c .

Initially, individual considerations on a method of studying canopy cover were published incidentally in a presentation of various problems of forest interpretation of aerial photographs. When, however, the need for a more purposeful study of canopy cover cropped up, the first considerations found generalization in section VIII of Spravochnik Taksatnra [Appraiser's Handbook] [54], and then in nur booklet [50].

Types of canopies. Tree stands can be quite divercent structurally in different forest-growing zones. The composition of timber stands can include a variety of forest-forming tree species. Exhibiting biological properties intrinsic to trees and occupying specific interrelationships under given site conditions, they produce under natural settincs particular structures of forest cover. Man, entering into the stand and intervening with economic activities, can alter it in the direction he needs, especially by forest maintenance fellinge or gradual-sampling fellings. We cannot touch on all of these problems. We will focus our attention only on several general schemes of the structure of forest cover growing under conditions of the northern Taiga zone. We can conventionally single out three most widely distributed and typical schemes of forest cover structure.

In the single-story stand (typical forest element), the tree cover, especially in its upper section that shows up on aerial photographs, will be made up of crowns of trees more or less similar to each other in shape and size of crow, with small differences in tree heights and crom lencths. The crowns of trees predominant in this part of the forest canony overlap at approximately the same height. (hDc ${ }_{c}$, producing the so-called horizontal closure (rimure 3, a).

The depth of a canopy of such stands, that is, the distance from the t in of the tallest tree to the beginning of the active crom of the lowest tree that is part of the canopy will be the ereatest. On larce-scale aerial photocraphs the ground surface shows up well in such stands, especially for averace occupancies of 0.7 and 1 ower.

Another type of cannpy will have two-story stands. In these the tins of the croms of the second-story trees will either overlan with the lower portions of the crowns of the first-story trees or partially enter into the upper part of the cannny of its first-story stand. This tyme of stand shows a clearly pronounced vertical clnsure (Figure 3, b).

Finally, there can be multistory stands consjating of several tree species in which some trees are located under others, have different heirhts, shapes, and lengths of crown, and as a consequence produce vertically stepped canony clasure (Ficure 4). The depth of the cannpy in such stands rill he the greatest and their discernability in the sterenscone will also be slight.

The first description of this scheme of stand canony structure is to be found in a stury by Prafessor Dencler.

For a graphic estimation of the way the stand canopy lonks from the side and $i+s$ structure in the cross-section of vertical plase, we can sketch the stand profiles on different scales alnge the vertical and alone the horizontal (Figure 5). In these we can depict at the desired scale typical crom shanes and sizes of different species (with an indication in percentaces of the representation of particular crom shapes), the nature of the tree arrangement in the section relative to each other, the presence of a second story and its distribution in the stand, the extent of uniformity in the admixture of different species, and other most characteristic features of the stand. When colored pencils are used for different trees and stories, a vivid representation of the appearance and structure of the canopy of stands results. The first

م.
 NOT F...uUCIBLE

> Fimure 3. Schematic view of the profile of a canopy of stands: a -- with horizontal closure of tree crowns; $h--w i t h$ vertical nlnaure of tree crowns.

expert imenta in this direction were conducted in lath in work dome in the Mari 1 ill, and in 1037-1038 appraisers sketched in profiles in repeated forest management work in the 'lashFir Assai, which proved useful bothy in the period of training aunraisers study ins interpretation clues as well as in office appraisal interpretation of aerial nhntngraple.

If we project a bundle of parallel sun rays to this profile of the stand at an angle equal th the height of the sun at the moment of aerial phntogrant!y, then we can grasp some, though apr, ximate, idea of how it will show in in apral photographs (figure 2.).

GRADTHTSS
 NOT RERLULUCIBLE

Figure 4. :ichematic view of a profile of a starid canony with stepned closure of tree crowns.

Features of forest cover in aerial photngraphs. On flat aerial phintigranhs of monerate and large scale viewen sterenscopically the nhserver can, depending on their scale, differentiate not only features of the horizontal, hit also of the vertical projection of etand enver, that ia, can discern the visible model of the atand.

The follnwing can be distingulaher in a cannny of each of these stand types: totality of tree cromes that commonly have different shapes, sizes, tones, or colnrg; the arrangement of trees and crown spacincs; the intervals hetween them; and the extent of crown closure. Depending on the types of aerial photographic film used, the species conmosition of the stands can be differentiated (interpretation commonition). The latter, based on black and white tones, can best be discerned from apring and allumn panchromatic and summer infrachromatic aerial photographs, and when color film is used -from spectrozonal aerial color photographs.

In addition, differences in tree hejghts and cannpy depth can be distinfujshed in forest cover in the stereoscopic viewer and as a consequence the discernability of the ground surface.

Jependine on the jllumination conditions at the moment of aerial photography, the height of the stand, and the sun's

Figure 5. Profile of the canopy corer of an aspen-chernichnik stand with horizontal and vertical scales (in meters).
azimuth, imaging of illuminated parts of tree crows shows up on aerial photographs. Mut trees whose crnms are wholly in shadow produced by the croms of neighboring trees cannot produce images, especially when the aerial photography is done on a bright, sunny day.

All visible indexes of forest cover can be measured from aerial photographs using different methods and instruments, namely: crown sizes, distances between crowns, intervals between crows, crown closure, number of trees, species composition, tree heights, and canopy depth.

The main roles in using moderate-scale aerial photographs are as follows: finding interrelationships among natural forest cover indexes and those that show up on aerial photographs, study ing interrelationships hetween stand cannpy indexes susceptible to measurement and those not discernible in aerial photographs but needed in compiling appraisal descriptions of forest tracts.

Nathematical interrelationships studied in this direction are set forth in the following chapters. They have already laid a reliable foundation for measurement interpretation and determination of several appraisal indexes of forest stands.

Structure of the horizontal projection of forust cover. This problem is most crucial in the theory and practice of
forest interpretation of aerial photographs. Therefore, first of all we must deal with the question of the structure of the horizontal projection of forest cover directly perceptible in the stereoscope.

All trees forming the horizontal projection of the natural foreat cover can he schematically placed in three categories by how fully they participate in the projection.
T. Trees standing apart in the canopy with croms separate from the croms of other troes or only in contact with them at their branches. This category of trees is called: trees with "free" croms.

Figure 6. Typical categories of trees participating in the horizontal projection of a canopy.
II. Trees whose crown branches partially penetrate the crown of neighboring trees. Their peaks are exposed and their crows are not more than 50 percent covered by the crows of neighboring trees. This category of trees is called: trees with "partially covered" crowns.
III. Trees whose croms stand coumletely under the croms of neightoring trees and are completely covered by them. These are chiefly trees of the lower ar less of ten of the moderate thickness classes (Figure 6). They are called: trees with "covered" croms.

If trees can be counted by species from the extent their crowns participate in the canopy and from their thickness class, as a result we can establish what the number of trees is and what thickness classes are projected in the forest cover [50].
knowing what the number of trees of varims gpecies that enter into the upper cannpy cover and are projected into it, we can more validly proceed to determining the makellp of the lupper atand cannpy (interpretation composition). This latter term was introduced by us becanse there can be a difference between it and the canopy caloulated from around crilising data and this difference will he all the greater the larger the number of trees under the crowns of trees in the stand canony.

The makeup of stands is lisually determined from the proportion of the stock of each particilar species in the overall stand. A similar method is applicable also in determining the interpretation composition of the stand. The latter index is more validly determined from the number of trees producine a projection of the stand canopy onto aerial photneraphs. The role of this feature takes on greatest immortance when liging moderate- and larae-scale aerial photnarapha.

Stand canopy indexes. In looking at the stand canopy in the nverall view, we can assume that any stand in aerial photographs is made up of images of the nrojections of tree croms and intervals between them. In the overall, however, they will produce an image of the projection of the stand canopy. In order to make clear to nneself what will show un of the stand cannpy in a visible form on the aerial photocraph, we must study characteristins of the stands themselves, their structure, and ahnve all the shape and size of tree croms.

The scale of the aerial photncraph, the resnlving nower of the photocraphic system, the extent of imaze displacement, the height of the sun, the time of day of the aerial photonraphy, and appraisal characteristics of the stands affect the imaging of crown shapes and their dimensinns.

The model of a stand made up of trees of different heights, of different crom shapes and sizes, with intercrown intervals of different forms and values, and with different degrees of ground surface exposure is especially graphically visible in the sterenscone used with large-scale aerial photneraphe.

In any stand, even thnse made up of the same tree species, both crom shapes and dimensions vary.

Gut depending on the species, age, degree of nccupancy, crown canopy closure, density of tree stands, and admixtures
of other species particular types or forms of crows prernminate in the stand canopy, and nther rown shapes are less pronounced.

Free-gtanding trees as a rile have different crown ghanea and simes than da trees of the same age in stands.

The ahapea of tree renma are characterized by the following indicators in the light of goals in internesting nerial photneraphs: crown diameter ($)_{c}$, crown length (la), hoight to greatest crown width (hof); and wan, height lin tn start of aroun (Figure 7).

For the same troe teight, renwn loretr, and ernm diamotor, hut for different heights un to erentect remen width, eroun ahapes vay. the greater the height lif to the createst renw wirlth, the more rombled and holione will be the crom (lll) Such renme (lll will be larcer in size on aerial flontneraphs than renwne with acite, conical (') or narabnloid (il) shape (Figure ${ }^{\prime}$).

In the central part of a flat aerial photnerant, when there is perpendicular renun projertion, in spite nf the presence of the same tree height, the same lor and la of the crome, they irill differ in shapes of unper renm sertions. ?'n be specific, the crowns of the firat type will show un in areater defth in the sterenscone, and they will have the most rlearly pronounced rane of their rast ahartav. The ranns of the second type nwine to the smonther tranaitinn from the illuminated aide to the side in shadow will slinw un more ennvex than the crome of nther types. Pinally, ornons of type 111 with the most bushy tip will appoar planar, without clearly pronimnced shadnus cast. such erowns in stand ranory and in gerial photographa of different scales will be the most distinctly imaced and lnok shallnwer in the storensenne.

The nature of the photocraphic image of renumg in aerial photneraphs will depend on the external appearance of the croms, their labit, or their arrhitectonirs.
starting with these premisos, it is first of all neoessary both in pure and esperially in mixed stands to arrive at a clear idea of the crown slapes of tree aneries predominating in the given stand and conatituting the upper stand canny.

In aerial photographs trees most fully illuminaten at the moment of photoncraphy, with the hroadeat peak, and the greatest height prednminate in producing imaces, as well as

GRAPHICS NOT REPRODUCIBLE

Figure 7. Indexes of crown ahape and size.

trees of moderate height that are not shaded by the shadows cast from the crowns of neighborinc trees uhnae dimensions are greater than the resolving power of the photogranhic aystem. Therefore, we must first pay attention to crown shapes and sizes of such trecs in each pure stand.

In some mature and mure atands the shapes and sizes of tree crows in the clnsed sectinn of the stand canopy differ but slightly fromi each nther.

In mixed pine-birch stands crown shapes maturing and gometimes at mature ages are ronse to each other if they are located in the same stand canopy. Often the upper sections of the crowns ere paraboloid. Sometimes the height to the greatest crown width in birch is lower than in pine. Crown lencth commonly is greater for birch than for pine. Therefore

GRAPHICS NOT REPRODUCIBLE

Fi_ure 8. Variation in crown shape.

they "sit deeper" in the cannpy. ihen there is group arrangement of trees hirch crowns stand closer to each other than do the croms of pine, therefore the discernability in the gterenscope of canopies at these locations deteriorates. Sometimes birch heichts are lower than pine heights and their reown pro. jections are finer. These characteristics of stands at times are so representative that one can determine without error the composition of such stands on the basis of these features.

Cirnups of mature-aced aspen located in admixtures to pine and apruce alwayg differ from theae species in characteristir cromm sinnea. They are rounder and flatter in the unper eromm sertion. In groups and curtains the crowns are bunched tichtiy tocether. In aerial photocraphs they appear irreaular!. roumded, of the lightest arey tone, and almost withont openings between crowns.

Pure epruce forosts under northern conditions are made up ohiefly of different venerations, therefore both crown shapes as well as tree hejghts vary widely hero. jifatances between trees are also not the same, as the reallit of which the intercrown intervals can be different in aize on aerjul photomeraphs. An impression is ajven of a disorderly, non-lniform arrangement of these trees in the canopy with different degrees of discernability "in depth".

Tn mixed atands when they are studied for interpretation we must first of all take into account crown shapes and sizes within the limits of each individual speries. llere it is noligatory to conduct a comparative evallation amone snecies.
jetting up a stable classification of crown shanes for differenf tree speries under different site conditinns is one of the most urcent tasks in foreat interpretation of aerial photneraphs.

Ye note that those trees whose roms are imaced in the canony nrojection rill bo of the rreatest immortance in interpretation of aerial photorraphs. Trees lageine in growth and in develnmmont, standing under the croums of other trees, in most cases will not be imaced in aerial photoneraphe.

Tree cromin sizes are determined by the crown lencth and hy its width ($)_{c}$). ©e talie ornom length (l_{c}) to refer to the extenginn of crown from the nutermost live twics to its anex. Individual hranches separate from the tontal arcreration of hranches not participating in crown formation and not determining its shape are not tale into consideration.

Crown width refers to its main diameter (n_{c}). It is determined as the arithmetic mean botween two or four measurements of the crom cross-sectinnal area: $r-K, r a-103$, n-3, 0 , $3-$ C

In each stand there can be variatinns in tree crom sizes within the limita even of the same snecies (Figure $)^{\prime}$).
rowever, in nature in a mixed stand there can be such cases in which the D_{c} of the croms (ereatest width) are the same for different species, hut in crom shape are different, which denends on the heirht to the createst crown width. For cxample, suruce are conical and nine are roluded.
spruce cromis appear in aerial nhotographs to be 3 to If times smaller in terms of projection siges than dn aspen owinc to the fact that at the moment of aerial nhotocranhy in the cace of the suruce only the upner and not the wide sections of the cromms are illuminater, while in aspen the npposite is the case, the upper beinc the widest and flattest crown peaks. In terms of difference in crom sizes and, consequently, in the apnearance of their projections on aerial photocraphs we can more confidently proceed to determining the makell of timber stands. In general, the lnwer the height
up to the greatest crown width, the smaller will be the value of jts diameter in the aerial photorraph. This is especially important when the sun is not high in the sky during morning aerial photogranhy. A different ratio in crown sizes can be the case when the aerial nhntoeranhy is done at midday when the sun is the highest in the sky.

On the number of trees producing the horizontal projection of timber cannpy. Processinc counts by the nature of crom participation ir horizontal projection of stand canopies vividly showed that the distribution of tree croms by the extent of thickness is expressed by a normal distribution curve, inst as in the case for the total number of trees (Figures 9 and l0). However, trees standing in the canopy and the croms of the trees are distribited alone a descending curve. of these, the createst number of trees is recorded along the lower degrees of thickness. As the results of counts have show, not only can the lowest and thinnest trees be located under the croms of other trees, but also some of the trees of moderate and even high degrees of thickness. Data in this direction are to be fond in the earlier indicated studies of G. G. Samnylovich, K. T. Paranov, V. S. Moiseyev, A. Ya. Zhiknva, T. N. Nachucina, A. T. Berezina, and I. A. 'Trunov.

In stands not differing in appraisal characteristics, the number of trees of different derrees of thickness that are part of the horizontal projection of the cannpy does not remain the same. Let us give several examples from experionce we gathered in working in the northern taiga zone of the Buronean part of the USSR. In an 80-year-old pure hirch stand, occupancy 0.8 , site class II, the canopy projection was made up of the following: all trees ranging in thickness from 20 cm and higher, 96 percent of the 16 -cm-thick trees, 64 percent of the $12-c m-t h i c k$ trees (in terms of the total number of trees of each thickness class), and the rest of the trees stood under the croms of neighboring trees.

In a pure aspen lon-year-nld stand, nccupancy 0.5, and site class II, the cannpy projection was represented by all trees ranging in thickness from 20 to 40 cm (seven thickness classes), 80 percent of the 16 -cm-thick trees, 50 percent of the $12-\mathrm{cm}$-thick trees, and 28 percent of the $8-\mathrm{cm}-$ thick trees, in terms of the total number of trees of each thickness class.

As a rule, aspen in the canopy projection were more numerous than birch in birch-aspen stands independently of

GRAPHICS
 NOT REPRODUCIBLE

Figure 9. Distribution of number and stock of trees by thickness class in a stand of maturing larch (according to A. Ya. Zhukov): a -- in terms of stock; $b-$ in terms of number of trees.

LEGEND: 1 -- number of stock trees; 2 -- thickness class.

Figure 10. Distribution of the number of trees by thickness class, as standing under crows of trees in a canopy of all-aged pure stands (according to A. Ya. Zhukov).

LEGEND: 1 -- number of trees in stand canopy; 2 -- maturing; 3 -- mature; 4 -- over-mature.
the proportion of aspen admixture for different degrees of occupancy and site classes. Aspen was present in the mature age class from 88 to 100 percent, but birch only from 64 to 90 percent.

In stands of pure 20-year-old pine saplings, occupancy 0.9 and site class II, 70-75 percent of the total number of trees showed up in the canopy projection. This number included un to 65 percent of the 8 -cm-thick trees, some of the 12-cm-thick trees, and almost all of the 16 -cm-thick trees and thicker. If there were admixtures in these stands of spruce and birch and a reduction in occupancy dom to 0.7 , the number of pine in the ranopy projection rose to 80 percent. Admixture of spruce in the canopy projection of the stand showed up only with the $16-\mathrm{cm}$ thickness class, and birch admixture only with $12-\mathrm{cm}$ thickness.

From 60 to 80 percent of trees participate in the projection of the canopy of pine stands 40-60 years old, with occupancies 0.7-0.9, and site ciasses 1-III. It was noted that in the case of the admixture to the pine of one spruce unit the number of pine in the canopy projection rose to 84 percent, which doubtless affects the appearance of the stand canopy in aerial photocraphs.

In pure pine stands 100-110 years in age and with occupancy of 0.6 and site classes IJ-III, and forest types -chernichnik and dolgomoshnik, the canopy projection is made up of 85 to 95 percent of the trees. In these same stands, when occupancy is raised to 0.9 , only $55-60$ percent of the trees are represented.

In pine stands with admixture of spruce and birch up to five units, aged 80-100 years, site classes JI-III, and for occupancies of $0.6-0.9$, only $70-73$ percent of the total number of trees remained in the canopy projectinn, some of the $16-\mathrm{cm}$-thick trees, and all of the $20-\mathrm{cm}$ and thicker trees ($6-7$ thickness classes). Spruce and birch show up in the canopy projection for thicknesses of $20-24 \mathrm{~cm}$.

In closed spruce stands of $100-120$ years in age, site class II, the canopy projection is made up of trees ranging in thickness from 20 to 24 cm , and less often is this true of stands with 28 -cm-thick trees (that is, 6-8 thickness classes).

In spruce groves 160-240 years in age, site classes III-IV, occupancy 0.7-1.0, and with pine and birch admixture
up to 3-4 units, almost all trees $24-32 \mathrm{~cm}$ thick are part of the canopy projection, not more than 40 percent of the $12-\mathrm{cm}-$ thick trees, up to 65 percent of the $16-c m-t h i c k$ trees, up to 70 percent of the $20-\mathrm{cm}$ trees, up to 84 percent of the $24-\mathrm{cm}$ trees, and up to 95 percent of the 28 -cm-thick trees, in terms of the total number of trees in each thickness ciass. The entire pine admixture appears in the cannpy projection, but of the birch admixture -- trees 12 cm thick are represented up to 75 percent, and those 16 cm thick up to 90 percent of the total number of trees in each thickness class.

It is clear from the examples cited that denending on the apmraisal characteristics of stands the nrojection of the stand canopy is made up of trees of different thickness classes. With increase in ace and reduced occupancy, a creater number of trees of different thickness classes then show up in the projection of the stand cannpy. At mature age, in pure and mixed stands tree snecies are most fully represented in the stand projection in terms of the total number of trees in the following order: aspen, pine, birch, and least of all spruce. This conclasion bears specific practical value in forest interpretation of aerial photngraphs.

On the number of trees standing under the croms of other trees in the stand canony. Let us cite examples based on counts made of trees from the participation of their crowns in the projection of the stand cannpy. These will help us to answer the question as to what trees stand under the crows of nearby trees and what trees dn not participate in forming the horizontal projection of the canopy.

In mature birch stands of site class 1 f , aged 80 yearf, with occupancy 0.8, up to 12 percent of trees of all thickness classes are lncated under cromb. Fut, inder an analogous stand 100 years. in ace, under ntherwise equal conditinns only 2 percent of trees are lncated under crowns.

In a mixed stand of 50 percent pine and 5 percent birch, aged 60 years, with 0.7 nccupancy, and site class 11 29 percent of the birch were found under crowns, and 10 percent of the pines. If the total number of birch were 296 trees, and the number of aspen 242, then it furned out that, in contrast, more asper (220 trees) than birch (210 trees) appeared in the canopy projection. This can already have an effect on precision of interpretation of forest composition from aerial photneraphs.

In a birch-apruce atand (5 hirch-5 apruce, 70 veara of age, nccupancy 0.7 , and aite clage lll), almost three times more spruce were fnind under tree crnma than hirch, while the hirch was ne-half as numernus as an analnenus pure atand.

When comparine birch-spruce stands identical in enmposition and occupancy (7 hirch-3 spruce, with nocupancies of 1.0$)$, hut at different ages from erowth classes V to X, it was established that the number of spruce inder the crowns, respectively, was decreased from 61 tn 47 percent, and that nf birch from 36 to 3 percent. The greater the ace, the fewer hirch were found under the crowns of stands mixed with spruce. In all other analnoms stands there proved to he considerably more spruce under croms than hirch.

In mature mixed birch-aspen stands of site class lly, when the occupancy was reduced from 0.7 tn 0.5 , that is, hy 0.2 under ntherwise identical apmraisal indexes of the stands, the number of birch under crnwns was reducen from 29 tn 23 nercent, while the number of aspen remained the same (ten percent).

It is clear from the foregning that in mixed stands snruce, birch, and least of all aspen, in that nrder, are found under croms. In younc and moderate-aged larch stanns, it is chiefly trees of the lower thickness classes that are located under rroms -- up to 12 cm thick, and less often un to 16 cm . But in mature stands trees of higher thickness classes are to he found under crowns -- if) to 24 cm thickness, and less often higher thicliness classes.

Pine stands. In mure pine saplines 10 nine, $2 n$ years of age, site class 1 , from 24 th 30 percent of the nine were found under crowns for different stand occupancies. In the case of the admixture to the stand of one unit spruce, it was almost completely lncated under pine crowns (from availahle material, up to 82 percent of the total number).

In pine stands $40-6,0$ vears of age with ocoupancy rates from 0.6 to 0.9 and site classes T-III, the pine under crowne proved to amount to 17 to 30 percent of the trees. In the event of spruce or birch admixture of not more than ne unit, on the average 68 percent of the apruce proved to be located under arows, and 59 percent of the birch.

It is characteristic that when the occupancy rate is brought dow to 0.2 under the same appraisal chararteristins
in other respects for stands, the number of trees under crown of the same stands is reduced on the averace by 1516 percent, but when the ace of the stands is increased by 20 years the total number of trees under the crowns is reduced on the average by $10-12$ percent.

In pure pine stands $100-110$ years of age, occupancy 0.6 , and site class IJl, for the dolamoshnik type forest, from 4 to $1 L^{2}$ percent of the trees are found under crowns, chiefly those $8-16 \mathrm{~cm}$ in thickness, and only here and there those 20 and 24 cm thick.

In a mixed pine stand 5 pine, 3 spruce, 2 birch, occupancy 0.65, and site class ITI, for pine aced 80 years, spruce aged 70 years, and birch aged 70 years, and for a dolgomoshnik forest type, 5 percent of the pine stond under crowns (in thickness classes $12-16 \mathrm{~cm}$), 52 percent of spruce (thickness classes from 8 th $2 n \mathrm{~cm}$), and 21 percent hirch (thiclness classes frnm 8 th 20 cm). Under this same nocupancy, but for llo years of age, in the stand 8 pine, 2 spruce 42 percent of the spruce were under pine crowns (thickness classes from 8 to 20 cm , and infrequently 24 and 28 cm).

In pine plantings of 170-190 years of age, at nccupancy rates of $0.7-0.8$, and for site class 1 ll , for a slight admixture of birch or spruce from 1 th 5 percent of the pine stond under crowns, from 5 to 22 percent of the birch, and 50 percent of the spruce. of the second spruce generation up to 60 percent of the trees were lncated under crowns.

In stands of site clase IV with the same admixture of spruce and birch, for the same occupancy rates from 1 to 15 percent of the pine stood under crowns, from 20 to 42 percent of the spruce (of its second generation up to 71 percent), and from 3 to 15 percent of the hirch. it is clear from these examples that as the site class is reducen, the number of spruce situated beneath croms is reduced.

Spruce stands. In spruce stands mixed with birch and pine, of composition 6 spruce, 2 pine, 2 birch, aged 80-90 years (for all species), for occupancy rates of $0.6-0.9$, site class III, and colgomoshnik type forest, from 14 to 21 percent of spruce were located under croms, from 3 to 5 percent of pine, and up to 10 percent of the birch. The latter proved to be found under crowns more than pine, which once again confirms its high shade tolerance.

In plantings of the same compnsition and age, 5 sprice, 4 pine, 1 birch (spruce ared $10 n$ years, pine and birch alsn lon years in age), site class $J l$ l, but for different nccupancy rates, apruce located under crownf proved to be in the follnwing numbers:

For occupancy $0.49--12$ percent (thickneas from 16
to 24 cm),
for occupancy $0.56-28$ percent (thjokness from 8
to 24 cm), and
for nccupancy $0.65--33$ percent (thir:kness from F
to $1(1 \mathrm{~cm})$,
What is, as the occupancy rises, the number of spruce trees linder crowns also rises. ?ith increase in occupancy the nresence of a larife mumber of thin spruce was nnterl. pine, except for trees here and there (thicknesses of 8, 20, and 24 cm), all showed up in the projection of the stand cannpy.

The number of birch standing beneath crowns differed depending on occunancy:

For nccupascy 0.49 -- 7 percent. (thinkness from 18
to 20 cm$)$,
for occupancy of $0.56--9$ percent (thickness from $12 \mathrm{ta} 25 \mathrm{~cm})$, and
for occupancy of $0.65-16$ percent (thickness from 8 to 16 cm$)$.

Thus, as stand occupancy increases, the number of spruce and birch situated under crowns rises (chiefly owing to the most slender trees). Iet 118 talce as an examnle a stand made up of the three species with almost identical participation of spruce, pine, and hirch, 4 spruce, 3 pine, 3 birch (spruce and pine aced $10 n$ years, hirch aged on years), and occupancy 0.9, therefore we find that the following proved to be the percentages of trees situated under crowns -- 39 percent of spruce (thickness from 8 to 24 cm), 9 percent of pine (thichness from 12 to 20 cm), and 21 percent $n f$ birch (from 8 to 16 cm in thickness).

In stands of this same forest type, bit with a smaller proportion of pine and birch admixture -- 8 spruce, 1 pine, 1 birch (spruce and pine aged 100 years, birch aged 90 years), and with occupancy the follnwing proved to be the crown-covered values: 22 percent of spruce (from 8 to 28 cm in thickness), 6 percent of birch (from 16 tn 28 cm in thickness), and there were no pine at all oovered by crowns.

Analysis nf mature inixed atands showed that as the stand ncoumancy is increasel more trees nf lower thinkneas clasees (8-12 cri) wore found under the crowns of other trees. For examnle, in the stand 4 spruce, 3 nine, and 3 hirch (spruce and pine aqeal 100 years, hirct aged on years), with occupancy 0.0 , site class $1 /!$, and dolmomnshnik type forest the trees were located under crowns, in relation to thinkness classes, in the following oriler:

I'hickness	class		y	12	16	20	24
Sumber of	trees	under	cro				
sprile			20	79	31	17	2
nine			--	4	2	2	--
birch			16	21	2	--	--

In mixert sprilce stands ared from an to lon years, fnr different nermpuncy rates on the averace there were 23 nercent of smrice, $3-5$ percent of pine, and 9 percent of birch under cromms.
in nver-matire mixed spribe stands of site class ir the admixture of wine and birch did not exceed 3 units. yere, pine indenendently of the uropnetion of its admixture was not at all to he formil under crowns. 3ut the arlmixture of hirch aced from $10 n$ to $12 n$ years in stands with nocmpancy rates from 0.9 to l.o were nartly lorated under renons (from 5 th 1 ? percent). sinruce prednminating in the stand comnosition was l_{n} cated under ernums to the extent of from l/ and in some cases to 40 percent. In aconcdance with the forecoing, wen interpreting the composition of stands from aerial photoncraphs the conefficients for spruce and for birch can be understated in the stand nakelip.

Thus, hased on a count of trees from their crown narticination in the stand cannmy, it can he stated that of the prednminant tree species crowing in the Taica zone the most. represented in the horizontal projection of the cannpy out of all the total number of trees is aspen followed by pine, birch, and least of all spruce.

In internreting aerial phntocraphs the very same proportinnality is retained in the makpup of snecies in the stand cannny projection.

On the compneition of stand canopy in horizontal projection. ilith a decrease in the total number of trees making un the projection of a stand cannpy, there is also a chanre in the number of trees in individual tree species constituting
the stand. From this, ennsequently, the compositinn can alsn vary for that portion of the stand which accounts for the horizontal projection of the canopy. In fact, these variations are of exceptional importance in interpreting aerial photngraphs, therefore we will cite a number of examples based on data of sampling areas.

In mature and over-mature pine stands in the northern Taiga zone, for example, of the site class lll we can encounter stands of the two-story type or stands with several forest cenerations. Suruce most commonly prednminatea in the second etory. It spronts under the crown of pine, birch or aspen or occomies "uindows" in the horizontal projections of the stand canopy. Individual spruce showing up in the firat story occupy the free space hetween crowns in the cannpy.
"hen deciphering aerial photocraphs, especially thnae of the larce-scale categnry, without Innwinc hinlocical characteristics of stands we can allow substantial errors in determininc stand makell). Calculating the compnsition of the horizontal projection of a stand canopy (hy the number of trees it contains) has revealed the follnwing:
$[$ Table on following page $]$
$\overline{L S}=$ spruce $; P=$ pine; $B=$ birch $\overline{/}$

Sample plot number	Composition and age of stand by stories	Occupancy	Site class	Composition of stand canopy in horizontal projection
1	I. $10 \mathrm{P}(200 \mathrm{yrs})+\mathrm{S}$ II. $9 \mathrm{~S}(160 \mathrm{yrs}) 1 \mathrm{~B}(100 \mathrm{yr}$	$\left\{\begin{array}{l} 0.65 \\ 0.3 \end{array}\right.$	III	9P1S+B
2	$\begin{aligned} & \text { I. } 9 \mathrm{P}(165 \mathrm{yrs}) 1 \mathrm{~B}(95 \mathrm{yrs}) \\ & \text { + S } \\ & \text { II. } 10 \mathrm{~S}(150 \mathrm{yrs}) \end{aligned}$	0.85 0.3	111	7P2 18
3	$\begin{aligned} & 10 \mathrm{P}(155 \mathrm{yrs})+\mathrm{B}(75 \mathrm{yrs}) \\ & +\mathrm{S}(80 \mathrm{yrs}) \end{aligned}$	0.8	IV	8P1S1B
4	$\begin{aligned} & 5 \mathrm{P}(85 \mathrm{yrs}) 3 \mathrm{~S}(75 \mathrm{yrs}) \\ & 2 \mathrm{~B}(65 \mathrm{yrs}) \end{aligned}$	0.7	IV	6P2S2B
5	$\begin{aligned} & 8 \mathrm{P}(190 \mathrm{yrs}) 1 \mathrm{~S}(115 \mathrm{yrs} \\ & 1 \mathrm{~B}(70 \mathrm{yrs}) \end{aligned}$	0.6	V	$9 \mathrm{P} 1 \mathrm{~B}+\mathrm{S}$
6	$\begin{aligned} & 8 \mathrm{~S}(155 \mathrm{yrs}) 1 \mathrm{~B}(125 \mathrm{yrs} \\ & 1 \mathrm{P}(150 \mathrm{yrs}) \end{aligned}$	0.73	IV	$8 \mathrm{~S} 2 \mathrm{~B}+\mathrm{P}$
7	$\begin{aligned} & 6 \mathrm{~S}(210 \mathrm{yrs}) 2 \mathrm{P}(230 \mathrm{yrs} \\ & 2 \mathrm{~B}(100 \mathrm{yrs}) \end{aligned}$	0.8	IV	7S1P2B
8	I. $7 \mathrm{P}(130 \mathrm{yrs}) 2 \mathrm{~S}(230 \mathrm{yrs}$ $1 \mathrm{~B}(70 \mathrm{yrs})$ II. $10 \mathrm{~S}(150 \mathrm{yrs})$	$\text { s) } \begin{aligned} & 0.9 \\ & 0.5 \end{aligned}$	III	5S4P1B
9	I. $7 \mathrm{~S}(130 \mathrm{yrs}) 2 \mathrm{~S}(230 \mathrm{yrs}$ $1 \mathrm{~B}(70 \mathrm{yrs})$ II. $10 \mathrm{~S}(140 \mathrm{yrs})$	${ }^{8}$	III	6P3S1B
10	I. $9 \mathrm{P}(140 \mathrm{yrs}) 1 \mathrm{~B}(90 \mathrm{yrs})$ II. $10 \mathrm{~S}(130 \mathrm{yrs})$) $\begin{aligned} & 0.5 \\ & 0.4\end{aligned}$	IV	5P4S1B

Second-story trees (II) differing only in height (by 15 percent) and ontering into the intervals between canopy crowns, vary the ratios in the proportion of species representation in the makelf of the stand (sample plots l, $2, \mathrm{R}$, 9 , and lnl, which is correspondingly reflected in the aerial photneraphs.

The most stable species in the horimontal projection of the cannpy prover to h.: hirch. The pronortion of its admixture remained unchanged or was added to hy one unit. In addition, in single-story stands the admixture of spruce diminished since some of it was situated under tree croms (sample plots 4 and 5). In some birch nr aspen stands mixed with spruce, insteari of 4 spruce units in the horizontal canopy projection, no more than l-2 units were left. The rest of the spruce trees were located imder the crowns of deciduous trees or pine.

Differences in the heights of tree otands also are vitally important here.

3y way of an example we present data for 4 sammle plots:

$$
[S=\text { spruce; } P=\text { pine; } B=\text { birch; is - uspen } \overline{ }
$$

Sample Plot Number	Composition	Age of Dominant Species	Site class	Occupancy	Species	Mean tree stand heights
1	4 P	70	I	0.87	P	23
	3 As				is	22
	2 S				S	19
	1 B				B	21
2	4 P	120	I	0.94	P	31
	4 S				S	27
	2 B				B	30
3	5 S	120	II	1.1	S	25.4
	4 B				B	28.3
	1 As				As	29.2
4	5 B	100	II	0.5	B	25.5
	4 S				S	20.7
	1 P				P	26.6

In the stands, as to averace height sprice was helnw birch, aspen, and pine by $2-5$ meters. Not all the spruce trees entered into the horizontal projections of the stand ranony, since some of them were shadowed nr situated under the crowns of decidunus trees, which understated the proportion of their representation in the stand composition.

In ceneral, the proportion of the spruce admixture to other species, for example, to pine, nak with linden, always as a rule understated the minimum by l-2 units, and in dense stands of saplings or moderate-aged deciduous stands -- by up to 3 units. The same was noted algn in respect to associates of nak -- linden, manle, and elm.

In arder not to allnw errors, when interpreting, in the stand commosition, we must stury in advance chararteriatics of tree stands in nature, estahlish the interrelatinnship hetween the stand composition and the componition of ita horizontal canony projection. Only timely and careful training can help the nractitioner to avoid errnra in determining stand composition.

On heights, lencths and widths of the croms of trees making up the horizontal projection of the gtand canopy. The ammitude of variations between heights of trees conmpiaing the horizontal projection of the stand canopy is somewhat less than for the total number of trees forming tree stands of forest elements. The amallest fluctuations in the heights of trees commrising horizontal projections of a cannpy are observed in clnsed aspen, and secnndarily in hirch stands. The same has been observed also in pine stands. The greatest fluctuations in tree heights in the horizontal propection of the cannpy occur in spruce stands, particularly if they consist of several forest generations.

T i illuatrate the foregning, let us give several examples. In a pure 80-year-old birch atand, site class 1I, and occupancy 0.8 , the difference between average tree heighta in the lower and higher thickness classes varied un to 10.5 meters, variations in crown lencth -- 110 tn 0.3 meters, and in crown widths -- up to 2.9 meters.

If, hnvever, we calculate the averace height of trees comprigine the horizontal projection of the stand canopy, in precisely the same way as we usually calculate the averace heichta of tree stands, forest elementa, then the difference between the mean, greatest, and smallest tree heights will be 4 meters (for 68 nercent), and the corresponding value for
crown lencths -- 4.9 meters (47 percent), and crown widths -- 1.7 meters (41 percent).

In a 100-year-old birch stand, sixe class 11 , nccupancy 0.8 , the difference in averace tree heighte as between lnwer and higher thickness classes equals 11.7 meters, for $l_{c}-$ 7.0 meters, and for $D_{C}--5.3$ meters; but amnne the very same trees making un the horizontal projection of the cannny, the difference proved less: for height, 3.5 meters (70 nerrent), for $l_{c}--3.7$ meters (47 percent), and for 1o -- 3.2 meters (40) percent). These indexes (in relative valnes) nrove th be similar to data given abnve for 80 -year-nld birch stands.

In these stands the average loights of trees nomprising the horizontal nrojection of stand cannmy nroved to he higher than the general averace stand heights, and this is already of specific importance in respect to the measurement interpretation of tree standa.

In order to discover whether the nocmpancy of stands affects amplitudes of fluctuations in tree heichts, in l_{c}, and in D_{C} within the limite of forest elements in the harizontal projection of stand canopies, let us compare hirch-spruce stands uniform in apmraisal characteristics, hut differing in nceupancy rates (0.5 and 0.7).

As the occupancy rate is increased from 0.5 to 0.7 , the extent of difference in heights as between trees in the horizontal projection of the canny for spruce decreases, hut rises for birch. Difference in the crown length is retanned almost at its former level, but the difference in crow width for spruce in an occupancy of 0.4 is increased, while that for birch is decreased. Thus, for an occupancy of 0.5 , there will be more crows of spruce trees differ inc in size in the horizontal projection of the canny, and for an occupancy of 0.7 , more of hirch.

In a birch-aspen stand composition 5 birch, 5 aspen, are 40 years, occupancy 0.7 , and site class 111 , the amplitide of variations wee characterized by the following table.

LEGEND: 1 -- fluctuations in meters as between;
2-- for the entire stand; 3-- birch; 4 -- aspen; 5-- for trees in the horizontal projection of the stand canopy; 6-- $1_{c} ; 7-\mathrm{D}_{\mathrm{C}}$.

In this stand fluctuations between appraisal indexes were slight as between aspen and birch.

In this stand of site class lit the difference between these indexes as a whole was less than in the site class I stand.

The average height for the stand (forest element) of aspen was 20.6 meters, but for the trees making up the composition of the canopy, 21.1 meters, and the difference amounted to +0.5 meter. The average height of a birch stand of trees of a forest element was 19.9 meters, but for trees entering into the projection of the canopy, 24.4 meters, and the difference also was +0.5 meter.

The height up to the greatest crow width was larger for the aspen than for the birch, by 1.5 meters, but the
crown lencth was l.l meters less in the case of the aspen compared to the birch. The spread of crowns from the average height was 43 percent for the hirch, and 33 percent for aspen.

In a horizontal projection of a cannpy of site class J!f, variations in the averace heights of birch and aspen tree stands were areater than in the case of a site class 1 stand, smaller for crom width for birch and aspen, and greater for aspen when crown lencth was compared.

Let us look further at an aspen-pine stand of commosition 5 aspen, 5 pine, ace 6 y yeare, nccupancy $\cap .6$, and site clase I.

LGERD: l-- variatinns in meters as hetween; 2 -- for the entire stand; 3-- aspen; 4-- pine; 5 -- for trees in the horizontal projection of the stand canopy; 6-- $\mathrm{l}_{\mathrm{c}} ; 7$-- D_{C}.

In the horizontal projection of the stand cannny variations in height were 57 percent less in the case of nine compared to aspen, 13 percent less for D_{c} as hetween these two species, and twice as arent for l_{c} as hetween these same two species.

The extent of croms was 55 percent for aspen, and 36 percent for pine, with respect to the average height of tree stands (forest element). The average crom length in the case of pine was on the average 3 meters less than for aspen. But the average ${ }^{1} c$ values for aspen and pine were approximately the same, at 3.2 meters.

If we compare pure aspen stands with homogeneous mixed aspen-pine stands, then we will see that the pine admixture
in the horizontal uroiection of the canopy of such stands reduces the variation in h and l_{c} for aspen.
? average-aged pine stands comaron witl the averace heights of trees comprisinc their cannny prociection, haser on the data of several samule rints, is listed helow.

(2)
(3)
(5)
(6).
(7)
 (18)

L: : : : 1 -- sample plot number; 2 -- composition of stand and are; 3-- occupancy; 4 -- site class; 5 -- averace height in meters; 6 -- of stand; 7 -- of trees in projection of stand canopy; 8 -- difference in meters; ? -- 10 pine (20); $10-10$ pine (50); $11-2$ pine (50) 2 spruce (50); $12--7$ nine (2n) 1 hirch (60); $13-9$ pine (35) 1 hirch (40); $14-10$ pine (50) + spruce, birch; $15-8$ nine (20) 1 spruce, 1 birch; 16 -- 10 pine (35) + birch; $17--9$ nine (6011 spruce (60); 18 -- 10 pine (100).

In stands of y ounc trees 20 years of ace of different occupancy rates and site classes (I-ITI), differences in average heights nrove to be about the same (+1.5 meters), and the createst difference in heights was found for ages $50-60$ years independently of occupancy rates, while in the period of the most pronounced differentiation of trees in site classes 1 and 11 , it was higher $(+2.2$ and +3.0$)$ than in site class III (+1.8 meters).

In 100-year-nld pine groves, occupancy 0.7 , site class III, this same difference was consjderably less (+0.7 meter) owing to a reduction in height increment. Consequently, the difference in average tree stand heights in the horizontal canopy projection of the stands rose up to the $60-y e a r$ age mark, after which it dropped off considerably. The fluctuation in heichts here was also less.

From the data considered it is clear that in horizontal pinjections of the canopy of stands differing in appraisal indexes, the rance of fluctuations in h, l_{c}, and D_{c} is predominantly less compared with the mean indexes for stands as a whole, and less of ten remains the same as this latter class. The greatest crown length was observed for spruce, folloved by birch and pine, and least of all for aspen. The lower boundary of the stand was most highly located in aspen tree stands, while in spruce tree stands it descended sometimes very shallowly, terminating close to the ground surface, while birch and pine occupied a position intermediate to these. The height up to the greatest crown width, of importance in interpreting appraisal features of stands, was highest of all for the aspen, followed by pine, birch, and spruce.

Spruce admixture breaks up the canopy of closed birch and aspen stands, increasing its visibility "in depth". In pure densely closed aspen groves the visibility below "in depth" is the lowest. As the age rises in pure deciduous and mixed stands, the range of variations in stand projection by height, D_{c}, and crown lengths is reduced. The range of variations is also reduced for tree stands made up of deciduous species in terms of h, l_{c}, and D_{c} as stand occupancy is reduced, but for spruce, in contrast, an increase is the rule.

The above-noted characteristics of atands mist be taken into account, in particular, when measuring heights of tree stands for individual species.

Closure of canopy and stand occupancy. To determine occupancy of stands when interpreting flat aerial photographs, one must resort to using the index of canopy closure, previously establishing the interrelationships between these two quantities. Accumulating material allows us at present to report the following.

In pure birch stands $80-100$ years of are, site class II, with nccupancy from 0.8 and higher, canopy closure is commonly 0.1 less than occupancy. In general, in fact, as the stand age increases, canopy closure of such stands is reduced.

In pure aspen stands canopy closure is most commonly 0.1 higher and less often equal to stand occupancy. Aspen stands compared to stands of other species differ by higher occupancy and greater canopy closure. Intervals between croms in such stands are covered by branches owing to the high light requirements of aspen, which considerably reduces the possibility of inspecting the etands "in depth."

In mixed birch-aspen stands of different acje, site classes, and occupancy rates, canopy clnsure is most commonly equal to occupancy, but in the case of eroup admixture is 0.10.2 higher than nccupancy.

On sample plots in birch-spruce stands canopy closure proved to be lower than stand occupancy. Thus, spruce admixture to birch stands reduced the canopy closure and increased the discernability of such stands "in depth."

In an aspen-pine stand 5 aspen, 5 pine, aged 60 years, occupancy 0.6, and site class 1 , cannpy closure was 0.l higher than occupancy. In a pure aspen stand, with otherwise the same appraisal characteristics, stand closure mas aiso 0.1 higher than occupancy. In nature and extent of closure aspen and pine stands are simjlar to each other, whence follows the finding that pine admixture to aspen does not introduce substantial changes into the canopy closure of such stands.

Pine and aspen admixture to birch and birch-spruce stands increases their canony closure. In hirch and birchspruce stands ner se, canopy closure is lower than occupancy rate.

In spruce stands aced $100-120$ years with an admixture of up to 5 units of birch and 4 units of pine, and site class III, the followine relationship was noted hetween canopy closure and occupancy. For occupancies of 0.3-0.4, canopy closure coincided with occupancy; in the same stands, but with oecupancy of 0.5 , canopy closure was 0.1 less than occupancy.

Of two spruce stands with occupancies of 0.9 , in the one in which the proportion of birch and pine admixture was brought to 6 units, the canopy closure was 0.1 higher than occupancy, while in the other stand in which the proportion of pine and birch admjxture was one-half as great, canopy closure proved to be 2 units less. This example is quite convincing.

In gencral, in spruce stands canopy closure in aerial photneraphs shows up to be less than stand occupancy, while in pine stands as a rule the opposite is the case.

In mature and over-mature cedar stands crown closure is from 0.2 to 0.5 less than or,cupancy. This is wholly understandable since in the strids trees of higher thickness classes prednminate, and there are sizable openings between crowns in the canopy. The greatest difference between these indexes has been observed in mixed stands of cedar, pine, birch, and spruce. In addition, the larger the difference between occupancy and crown clnsure (0.2-0.3), the more the number of trees, especially spruce, that are found under the stand canopy.

In pure averace-ager and maturing pine stands of site classes I-III, crown closure is close to occupancy, and with increase in age becomes less than occupancy. This difference usually does not exceed 0.1 , und less of ten 0.2 .

Spruce admixture to pine, hirch, and aspen, even in mature ace, reduces cannpy closure of such stands from l.20.2 to as much as 0.3. Research on this sulbject has been reported by V. S. Moiseyev, I. X. Machugin, A. Ya. Zhukov, A. N. Polyaliov, A. M. 3erezin, I. A. Trunov, and N. G. I harin.

In conclusion we must note that the examples \underline{i} iven above graphically demonstrate the role and importance of studyine stand canony for forest interpretation of aerial photocraphs. Accumulation of data in this direction allows us to establish more definite interrelationships both hetween appraisal indexes of stand canopies as well as between the nature of their imacing in aerial photocraphs.

The presence of such interrelationships will be the basis for setting up correlations in canory structure and mathematical validation of measurement methoris of deternining appraisal indexes of stands.

The data cited graphically evidence the role that the study of stands -- a complex natural environment -- plays for their interpretation from aerial photograshs.

CHAPTER 2

3y mathematical moleline we refer to a method of investieating timber stands. Jt must mot he confused with sterensennic minols oltained from ancial plintorraphs in sterenphotograminetric instruments. Nathomatical modeline expands the theory of timber stand sthw, simplifies derivation of amroximational relationshine among nmraionl indexes, and allows is to find new methols of measurement and determinntinn of timber stand jndexes from aerial nhotoeraphs and on site.

In present-clay methols of investimation mathematical modelime of a variaty of phennmena is widely used not merely in the nhysical and mathematical scionces 'ut also in hiolney. sssentially, moleline nlysical and ’inlowical processes consists of reproducine actual nbjects on artificially selected or constructed analogues. The of the problems of mololing is lind to be reproduction of external similarity between the real-life object ant jts schematio analnone. Depending on the monomena we are investiating, the mollels can be cenmetric analomes (figives), miysical constructs, mathematical equations, and their representation on electronic computers. "He advantares of models incluide the fact that they allow us to maic quantitative measurements of ronmlex phenomena and nrocesses. ie lynit that real-life obiects are not always suscentible to dircel measurement or refuire oxtremely laborinus and costly worl ner a perind of many years for this purnose. But with mondels there is the noportunity of varyine all characteristios of the p!ennmenon under different sets of conditions and combinations snecified from nur inspection. In a number of cases the mathematical model allows us to digress from qualitative features of the object or process we are studying.

Use of principles of cybernetics and the theory of similarity has led to much easier compilation and investication of animate nature. Advances in mathematical and physical modeling of physinlogical and binlogical nrocesser have raised linpes for the successful application of mathematical inodeline in studying mytocenoses.

Cienmetrical analnanes of timber stands allow is in find new mathematical relationshins hetween anpraisal indexes and to oxplore variation of these indexes in the nverall view -- on analony with variation of inclexes in actual tree stands over their entire arouth. The mathematical functinns derived from reometrical aunames will, of course, yielr only a genoral representatinn of the actual timber stands. Yovever, general mathomatical equations can then be made snecific and refined hy sampline, real-life measurements in timher stands differing in conditions of habitat, commositinn of sneries, are, and forest tyner. Sathenatical models also allow us to find nev method: of measurement and determination of appraisal indexes. Onc methorl of mathematical riodeling can be cited as the method of point systems and sets develnped by the allthor for inodeling timber stancia and other discrete (discontinunus) phenomena that can be reduced to noint sets. The models notained by this method are being used in deriving mathematical functions and findine new methods of determining indexes of tree stands.
3. Sathematical Relationship Between Spacinc and Sumber of loints in Point systems

If we want to determine the density of a forest X and the mean spacing between trees l, we have t^{\prime} 'now the relationshin between these quantities. The relationshin between \because and l is a particular case of the relationslin hetween the number of discrete points (ohiects) and snacincs hetween them in point systems and sets. Therefore, let is look at the solution of this problem in the general case.

Injtially, the problem of finding a relationshin between distance 1 and number of points " for a !iven area p arose in the colurse of investicating nther material [7]. Based on the investirations made, it proved possible to find at first an approximational relationshin, and then a precise formula for the relationshin between $:$ and 1 which later could be applied to the study of forests and other nhenomena capable of being reduced to point systems and sets.

We can form a reqular system of points on a plane by placing the points in the conters of regular contiguous geometric figures.

If we draw on a plane two mutually perpendicular systems of straight lines equally spaced from each other, then we cet a network of squares. By placing the points in the centers of these squares, we ret a remular square system c_{i} points. It is not difficult to construct rhombic, circular, rectancular, triancular and other point systems.

In an elementary way, the number of points X on a given aren P can be determined approximately hy dividing P by the area of a small figure in the center of which the points lic. We talle as the distance between points the lencth 1 , a square of which expresses the size of the area enclosed by the small figure.

If we take as the small area a square having the side 1 , then the number of points in the area P will he

$$
\begin{equation*}
N_{1}=\frac{P}{l_{1}^{2}}, \quad \text { a } l_{1}=\sqrt{\frac{P}{N_{1}}} \tag{1}
\end{equation*}
$$

Then $P=1$ hectare, $x_{1}=10,000 / 1_{1}^{2}$, and $l_{1}=100 / \sqrt{N_{1}}$.
Formula (1) has heen used in forest appraisal to determine tree spacing 1 or forest density x [3, 54].

If we place the points in the centers of small areas that are mutually contigunus circles of diameters l_{2}, the number of points

$$
\begin{equation*}
W_{2}=1,2738 \frac{P}{t_{2}^{2}}, \quad \text { a } t_{2}=1,128 \sqrt{\frac{P}{N_{2}}} \tag{2}
\end{equation*}
$$

Then $P=1$ hectare, $x_{2}=12,738 / 1_{2}^{2}$, and $l_{2}=112.8 / \sqrt{\mathrm{N}_{2}}$.
placement of points in the centers of rhombuses with a small diagonal equal to the side of the rhombus 1_{3} gives us

$$
N_{3}=1,155 \frac{P}{1_{3}^{2}}, \quad l_{3}=1,075 \sqrt{\frac{P}{N_{3}}}
$$

When $P=1$ hectare, $N_{3}=11,550 / 11_{3}^{2}$, and $1_{3}=107.5 / \sqrt{r_{3}}$.
It is clear formulas (1), (2), and (3) that the values of N and l for the same area are not the same when the points
lic in the centers of different geometrical small figures. Consequently, different values of 1 for the same P and N will correspond to values of N calculated from the ratio of P and the size of the areas of small figures. This is to be expected since the small fimures enclose different areas. The relationship between $:$ and l in these cases is not established directly, bit rather indirectly.

It is of the createst practical and theoretical interest to establish a direct relationship between N and l , bypassing all intermediate constructions and procedures. it is also important to obtain such a system of points in which all spacings between neighboring points would be the same, and not different, as occurs in point systems and formulas (1), (2), and (3). Finally, it is desirable to find such a system of points for which we will obtain the larcest number of points N for a given, large enough area P for a specified smallest spacing l between noints. These properties are exhibited by a system of points located at the apexes of adjoining equilateral triancles or jdentical rhombuses with small diagonal equal to the rhombus side. This kind of system is also forned by points located at the centers of contiguous circles with a radius equal to half the distance l between (Figure 11).

We then find the formula of the function $N=F_{(1)}$ for this most remarkable system of noints. Let us take a square of area P with side D. iithin the square let us draw straight lines parallel to its vertical side at a distance equal to the large diagonal of the rhombus described above, that is, at the distance $1 \sqrt{3}$. Then we will draw straight lines parallel to the horizontal side of the square at a distance equal to half the side of the rhombus, that is, $0.5 \cdot 1$. By taking the upper left ancle of the square as the location of the apex of the first equilateral triangle and using the points of intersection of the lines, we will construct a system of contiguous triangles or rhombuses for the entire square. As a result, we obtain a system of points locnted at the apexes of the equilateral triangles at the identical spacinc l betreen all neighboring points. Let us now find a relationship betreen \because and l under the condition that all points will lie within the square or on its sides and will not go beyond its bounds. Then the number of points on the horizontal straight line will be

$$
n_{1}=\frac{D}{1 \sqrt{3}}+1
$$

and the number of points on the vertical straight line, including

GRAPHICS
 NOT REPRODUCIBLE

Figure 11. Regular system of points.
points shifted to the rigit by half the larce diaconal of the rhombins,

$$
n_{3}=\frac{D}{05}+1
$$

The product $n_{\text {hor }}$ - $n_{\text {ver }}$ will give the reneral maximum number of points in the square

$$
\begin{equation*}
N_{1}=\left(\frac{D}{051}+1\right)\left(\frac{D}{1 \sqrt{3}}+1\right) \tag{4}
\end{equation*}
$$

Formula (4) is valid given the condition of equality hetween the number of points on all horizontal straicht lines.

As a result of the periodic shifting of rhombus apexes from the left vertical side by half the distance of the larce dianonal, the lencth of the horizontal straicht lines will alternately (every other) take on the values of n or D) -0.5 . $\cdot 1 \cdot \sqrt{3}$. Therefore, the number of points on the horizontal
lines will be $n_{h o r}^{\prime}=\frac{D}{1 \sqrt{3}}+1$
or $n_{\text {her }}^{\prime \prime}=\frac{D-051 \sqrt{3}}{1 \sqrt{3}}+1$.

The number of horizontal lines with the number of points $n^{n \prime} h o r$ is equal to $0.5 n_{\text {ver }}$ Consequently, when n 'hor $=n$ "hor the total number of the points in a aquare is ralculated from formula (4), but when n"hor $<n^{\prime}$ hor for one moint, the total number of moints will be

$$
\begin{equation*}
N_{2}=\left(\frac{D}{051}+1\right)\left(\frac{D}{1 \sqrt{3}}+1\right)-05 \frac{D}{051}+1 \tag{5}
\end{equation*}
$$

Since the number of points can only he an intecer, then in calculations from formulas (4) and (5), we must select only integers, and fractions (nbtained as the result of division) are completely disregarded. Formulas (4) and (5) are kent for any valles of f and P at the locality, man, or other plane, and only units of measurement will chance, since in deriving the formulas neither the quantities ll, l, and 1 nor their dimensions were involved.
then ! $=1$ hectare, 1 will be expressed in meters, and when $P=1$ derimeter ${ }^{2}$, 1 will he expressed in millimeters, and 80 on .

For practical use there is no need to perform on each occasion complex calculations of K and 1 from formulas (4) and (5).

Table 1 gives X and 1 calculated from formulas (4) and (5), where N denotes the larcest number of points that is possible to place in the civen area for a aiven l. In this table the values of 1 are civen at intervals of 0.5, hut K can be calculated from formulas (4) and (5) for any frartion of l vallies.

In those cascs when it is required to know the relatinnshin hetween area I and the qliantities \therefore and 1 , we can use the approximational formilas (6) , (7), and ((8) ontained hy establishing correlatinnal ties hetween these three quantities. The original formulas (b) and (5) underlie the hasis of the multinle correlation of N, l, and P .

Table 1

Then $\mathrm{N}<1000$

$$
\begin{equation*}
N=1.22 \frac{P}{15}: \quad P=0.82 N^{2}: \quad t=\sqrt{\frac{P}{\int 2 N}} \tag{6}
\end{equation*}
$$

When $\mathrm{N}=1000-5000$

$$
\begin{equation*}
N=1.2 \frac{P}{\pi}, \quad P=0.83 N l^{2} \quad l=\sqrt{\frac{P}{083 N}} \tag{7}
\end{equation*}
$$

Men $\mathrm{N}>5000$

$$
\begin{equation*}
N=1,166 \frac{P}{l^{2}} ; \quad P=0,867 N N^{2} . \quad L=\sqrt{\frac{P}{0, N}} . \tag{8}
\end{equation*}
$$

Formulas (6), (7), and (8) can be used in calculating 1 and n for any figures of the area P.

Formulas (4) and (5) give the maximum number of points for areas. If the squares are superimposed on a system of
points formed by the apexes of adjoining equilateral triangles (or a system of points in the centers of rhombuses with a small diagonal equal to the side of the rhombus), in an arbitrary order (orientation), then the relatinnshin between N, l, and P is determined by formula (9) derived by the author in the stury [13]

$$
\begin{equation*}
N=1,155 \frac{p}{8} \tag{9}
\end{equation*}
$$

Since the areas of forest plots in most cases are irregular in outline, it becomes necessary to determine x from 1 and P by the relationship of these quantities in formulas (4), (5), (6), (7), (8), and (9). In these cases it is useful to transform the irregular contour of the forest plot into an equidimensional square and then to calculate the total number of points using the above-indicated formulas. Jowever, we must take into account the fact that in the equidimensinnal square it is probable that there will be a flller placement of points compared to the irrecular configuration of the forest nlot.

As was remarked on earlier, the not wholly satisfactory formula (l) is used in forest appraisal to calculate forest density N , tree snacing l, and the size of sampling plots for the purpose of studying the pattern of stand crowth, determining occupancy, and subsequent appraisal nf timber stand reserves [3, 54].

Formula (1) gives understated values of X for the same 1 values (cf Table 2); thus, when $1=5$, formula (1) cives N $=400$, but when formulas (5) and (4) are used, $\mathrm{X}=492$. Consoquently, when pising formula (1), we will always get a lower forest density \therefore, which leads corresmondingly to understating occupancy, and subsequently understatine timber stand reserve for the same tree spacings, determined in forests or from aerial photocraphs.

In determining the size of sampling plots ensuring that they include only 200 trees, formula (1) results in their overstatement. Thus, when $1=8$ meters, it is required to superimpose in the forest l.3-hectare-sized sampling plots, while from formulas (4) and (5) it is sufficient to lay out plots of 1.0 hectare size for areas of the same 200 trees, that is, onethird less, which leads to a considerable reduction in field appraisal work, and savings in time and money. Table 2 gives the values of N and l and the sizes of sampling plots P when
thoy include $20 n$ trees, where $\therefore 1$ denntes tree density ner hertare from formula (1), "u -- from formulas (l) and (5), I', the value of the sampline plot in hectares from formila (1), and $\mathrm{PL}-$ the same quantity from formulas (4) and (5).

From the foregoinc it is clear that in foreft apnraisal it is best to use formulas (14) and (5) or rable 1.

Table 2

-GRAPHICS NOT REPRODUCIBLE

4. Transformation of point Sets to point Siystems

In practice we lave to deal not only with reanlar system of points, mit also with arbitrary arrancement of points (discrete objects) in which distances between neighboring. points (nbjects) are not equal to eack: nther, which in ceneral is the case encounterer? in nature.

The problem of finding a mathematical relationship between \therefore and l in the case of arhitrary variation in distances hetween points locater chantically apart from any visible nrder has proven to be very difficult. But estahlishinc such a relationship is altncether necessary, since trees in foresta are located unevenly, and distances between trees differ, which means that ne noviously cannot apnly to them a relationshin between X and l that nhtains for rerular noint systems. The task we face must be solved in such a way, if not directly, then hy some indirect mathematical proceriure.

In attemptinc in find apprnactes to the mathematical solution of this problem, the idea of looking at a forest, that is, trees, as a narticular example of a mint set arose. Artually, if we take as the point location the centers of trunks, then the totality of these discrete nbiects from the mathematical point of view can be recarded as a moint set in an area P .
iie will define point set, to refer to any number nf arhitrarily arranced points on an area P at different spacines betwean neighboring noints.
l.et there be a resular sygtem of points with a relationshin hetween X and 1 established for them by formula, and a point set in which the dependence between ? and lis unknown to 118 and which we desire to find by an indirect approach. This case, in cencral, is very commonly encometered in science. For example, the irrecular physical body barth cannot be directly expressed in mathematical formulas. Accordingly, recular qeometric analomes are used -- a sphere or an ellinsnid of revolution -- and for these ficures all mathematical calculations in ceodesy and cartocraphy are carried out.
essentially, from the premise point of view, when we have a point set and we cannot directly find a mathematical expression of the relationship of X and l in the set, then there remains the same method as applied in cendesy, that is, to attempt to find some recular genmetrical analngue of the noint set.

We can take hy way of such an analncue a recular system of points lncated at the anexes of adioining equilateral triangles.

A mathematical expression of the relationshin between ; and l has been found for this system of points. The nrohlem here consists of relatine the set and the system, and then using formulas (4) and (5) for a mathematical descrintion of the set. That then can serve as the relatine link between the set and the system of mints?

The idea of converting the point set into a reanlar system of points was pronosed by us to find the factor relatine. the set and system of points.

Let there be a set of points located at any suitable distances from each other on an area p (for example, a square), but necessarily over the entire square P, and not in any one
part of it. TVe will carry out here deliberatoly a shifting of the points in the area in such a way that they occuny positions corresponding to the locations of the points in a regular system, that is, at the apexes of the adjoining equilateral triangles. Thus, the set of points is converted or transformed into a regular system. As a result of this deliberate or active displacement of pointis in the area P, an ordinary regular system of points is formed which, as shown earlier, is governed by equations (4) and (5) as to the relationship between N and 1. Consequently, if there are N points on the area P, the distance between them in the formed system of points will be 1 obtained from equations (4) and (5) or from Table 1 based on N.

Thus, the first link in the relationship between the point set and the point system is given by the translation of the former into the latter. As a result of this transformation we obtain some l, but how this 1 is associated with distances in the point set is not known to us. And is there in general some relatimship between 1 and the set of different l_{1} among the set points? Then we know N, then it is easy to obtain 1 from Table 2. In practice it is of importance to be able to determine 1 when N is unknow.

It follows from the foregoing that the main problem here boils dow to looking for the relationship between 1 with the toiality of distances l_{1} in the point set. If we were able to find this relationship, then the entire problem of mathematically describing a set via a system of points would be solved.

Let us assume that a set of points N_{1} is arranged on the area P, where N_{1} and P remain constants. The points are placed in arbitrary fashion, but over the entire area P, and not in any one part of it, that is, just as trees are located in a forest plot.

Let us connect all neighboring points by straight lines in such a way that they form the totality of adjoining triangles. The straight lines are dram between the nearest neighboring points, that is, the shortest straight lines are selected, not one of which must intersect with any other straight line outside the apex of the triangle within the bounds of the area. P. In this way we get a set of points arranged at the apexes of non-equilateral triangles, bit the regular system is formed by equilateral triangles.

We will now study the two aggregates of these triangles expressing the point set and the system of points.

Let 118 make measurements of all sjdes of the acaregate of non-equilateral triangles and determine the mean length of the side or the mean distance hetween the pnints in the set, that is,

$$
z_{0}=\frac{\Sigma}{\beta}
$$

where:
$\Sigma \ell=$ total lencth of all sides of the triangle in the area P,
$\beta=$ number of sides of the agcregate of non-equilateral triangles.

As an example, we will examine a set of points of $N=$ 30 in an area $P=1$ decimeter ${ }^{2}$.

Figure 12 shows the arbitrary placement of 30 points. After they were connected by straight lines according to the above-indicated rule, an aggrepate of nnn-equilateral triangles was formed. All 72 sides of the trjangles were precisely measured, and then the followinc were calculated: the mean distance $l^{\prime} n_{n}=2.14 \mathrm{~cm}$, the variance $\mathrm{v}_{1}=28.5 \%$, and dispersinn $\sigma 2$.

Figure 13 depicts a still more uneven placement of points, and we see here even their group arrangement which produces a quite decided difference in the length of the triangle sides. The values of $l^{\prime \prime} n, v_{2}$, and σ^{2} were calculated from the measured sides.

In spite of the great unevenness in point placement and the high rariance ($\mathrm{v}_{2}=42.8 \%$), the mean distance between points $1^{\prime \prime} n=2.16$. Figure il shows a recular system of points with $N_{1}=30$ and $l_{1}=2.15 \mathrm{~cm}$ nbtained from $N_{1}=3 n$ from Table 1 . In the regular eystem of points the variance $v=0$.

Comparison of the mean differences for the set of points in Figures 11, 12, and 13 shows that they are all equal to each other, namely, $l_{0}^{\prime}=2.14 \approx 1_{n}=2.16 \approx 1_{1}=$ 2.15.

Therefore, when $N=30$ and $P=$ const the mean distance between points in different sets is equal to the distance l_{1} obtained from $\mathbb{N}_{1}=30$ from Table 1.

GRAPHICS
 NOT REPRODUCIBLE

Figure 12. Point set.
And thus, if we have a set of points N in an area P, then after transforming the point set into a regular system of points we obtain the same distance hetween the points l_{1} equal to the distance taken from Table l with respect in N and at the same time equal th the mean distance hetween all points in the set. Consequently, any mint set can be transformed via $l_{n}=1$ to a recular system of points in which the deliberate or effective variation in noint disposition dnes not unset the relationshin between N and 1 , that is, it remains constant in spite of the fact that the point placement in the area P is changer.

The procedure of ennverting (or rectucing) any point set to a recular system of points allows is to deal with the former fust as with the latter.

Nins we can, by retermining the mean distance between noints in a noint set, find the number nf noints in this set from fable 1 and, vice versa, from the linnm number of mints

GRAPHICS NOT REPRODUCIBLE

Figure 13. Trregular pinint set.
in the set determine the mean distance hetween points, tal: ing this also from Table 1.

The quality $l_{2}=l_{1}$ is obtained from the noint sets in a volume $\mathbb{V}=30$ and for variances from 0 th 43 percent. To verify the conclusion about the equality $l_{n}=l_{1}$ we tonl: a noint set of volume $:=62 /$ points in a sincle hectare (or N_{1} $=262$ in 0.42 hectare). This set is the tntality of trees in a large forest plot. The distances between all trees in this forest tract were measured on the snot. In all, these distances numbered 706 measurements.

Based on the data of the 706 distance measurements the following quantities were calculated: the mean iistance $l_{0}=$ 4.43, variance $v=44$, and dispersinn. e get $l_{1}=4$. meters from "ahle 1 for $: ~=$ K24. Consequently, in this case $l_{n}=1_{1}$, which confirms the conclusinn of the applicability of the relationship $:$ and 1 in systems of points to point sets.
lieasurements of 806 distances hetween trees in the second forest plot (\cap., hectare in area) gave the mean distance $l_{n}=5.17$ meters for a variance $v=41 \%$. The number of trees
in the forest plot $\mathrm{K}=488$ (or $\mathrm{N}_{2}=203 \mathrm{for} 0.6$ hectare). ie obtain $l_{1}=5.025$ meters from Table 1 for $\mathrm{N}=488$. Ilere also $l_{0} \approx l_{1}$, but the deviation of only $1 / 4 \mathrm{~cm}$ can be more properly related to errars in measuring distances between trees in the forest than to the incorrertness of the conclusinn abolit. the equality $l_{n}=l_{1}$. And thus, the experimental measurements confirm the equality $l_{n}=l_{1}$. Small and practically neglisible deviations of l_{n} from l_{i} can exist, bit they can he neglected. Some presuppositions about the thenretical prof of the equality $l_{n}=l_{1}$ are presented helow.

Let $P=$ const and $\gamma_{1}=$ const. 'ie obtain l_{1} from Table 1 for N_{1}. After measuring all sides of the non-equilateral triangles in the point set, wo intermine the mean distance l_{n}.

Xow wh will raason from the principle of proof from the contrary well known in mathematics. Let us assume that $l_{0} \neq$ 1_{1}. Then the inequalities $1_{0}>1_{1}$ or $l_{0}<1_{1}$ must be valid, but in this case the equality $N_{1} \neq N_{0}$ or the inequalities in $<N_{1}$ and $\mathrm{I}_{\mathrm{n}}>\mathrm{Ni}_{1}$ must he valid in this case as well. But this cannot be the case, since we carlier premisell that in the area P the number of points $\mathrm{V}=\mathrm{const}$, that is, $\mathrm{N}_{1}=\mathrm{S}_{\mathrm{n}}$, and this is possible only for the equality $\mathrm{l}_{\mathrm{n}}=\mathrm{l}_{1}$. This pronf wolld he correct if for the same value of \mathbb{N} the distance 1 under formulas (4) and (5) wnuld be unique. Since the number of points N is a disorete variable and can only be an integer, then for the same \bar{K} there mist be several values of 1 , though in rignroing, precisely fnom liritts of variance of 1 and of variations Δl from the mean value of 1 for each riven \because Thus, for example, when $K=30$, the value of 1 can be equal to both 21 and 22 (rable l), but in no way can be equal to 20 or 23 , since for these 1 values the number of points P will be, respectively, 33 and 27 , and not 30 .

Consequently, when $N=30$ the value of l_{1} can take on values from 21 to 22. If we take the mean value $l^{\prime}{ }_{0}=2.1 .5$, in the general case when $N=$ const the value of $l_{1}=1_{0} p^{2} \Delta I$ with decrease in 1 and increase in F the value $\triangle \rho \frac{ \pm}{w i l l}$ decrease and in practical terms it can be reglecter. But theoretically we must assume that for each such value $\pm \Delta 1 l_{0}$ will differ from l_{1}. Therefore, a small difference between l_{0} and l_{1} observed in the experiment is wholly accountable and to be expected. In conclusion we note the general significance of the mathematical relationship of N and 1 in point sets, since it can be used for any discrete ohject and phenomenon that forms a point set.

Formulas (4) and (5) are applicable to any plant communities, or brush, low hrush, subshrub, grassy and other vegetation consisting of discretely located plant individuals which can from the mathematical point of view be considered as point sets (just as trees in a forest).

The point method of investigation has heen found possible to apply also to continunas phenomena. Thus, for example, this is done in respect to study of terrain [13, 14]. 'ifthont this method in geomorphology, various investicators of the same area would get non-comparable results on the disarticmlation of terrain.

This method is also applicable in deriving formulas of the visibility range in forests and the protective depths of a forest formulas of the traversibility of a forest, canopy closure, classification of forests by density, and for methods of determining forest density and mean tree spacing.

In this example, in several sther cases, the very same mathematical formula nroved applicable to solving the most diverse problems. To illustrate, formulating and mathematically expressing only one regular relationship of twn to three variables of a point set led to the solution of a long series of different practical problems.
iie investicated point sets, but with equal validity we can also investigate any other sets, for examle, sets of triangles, their sides and angles, etc.

In solving the last-named practical problems it was of interest to relate sides and apexes of the set of triangles.

Let us assume that we have any convenjent set of neighboring (freely chnsen) triangles (of volume Δ) with the number of sides (triangles) β and the number of apexes (triangles) N. The following relationship exists between the variables Δ, β, and N in any set of any number of triangles (including equilateral):

$$
N=\beta-\Delta+1
$$

We can be easily convinced of the validity of this equality if we construct any set of adjoining triangles.

The relationship between the number of apexes (points, objects) and the number of sides (distances) is necessary in
practice in determining the number of troes betweoll which we have to measure distances when we know the number of distances of a sampling arcrecation necessary in determining the mean distance l_{n} with desired precision and confidence interval.

Using the equations given above, we nhtain an approximational formula to determine the overall length of the lines (triangle sides) in the area 5 .

Since

$$
t_{0}=\frac{\Sigma}{m} \quad \text { a } \quad m=\beta=N+\Delta-l
$$

then

$$
\Sigma L=m l_{0}=l_{0}(N+\Delta-1)
$$

From formula (7)

$$
N=12 \frac{\rho}{l_{0}^{2}}
$$

Then

$$
\begin{equation*}
\Sigma l=122 \frac{P}{1_{0}}+L_{0}(\Delta-1) \tag{10}
\end{equation*}
$$

As we can see from formula (1n), to determine the overall length of lines in the area P it is necessary to count the number of triangles Δ formed hy these lines, and to determine hy a sampling method the mean distance between points (apexes, ohjects) of the set. The equality (10) can be applied alsn in determinine the overall lencth of roads on mans.

It is important to know the nverall length of such systems of lines in an area Y as horizontals or any other isolines on mans in solving many scientific and practical problems.
iie can determine the nverall lencth of ianlines from the formila

$$
\begin{equation*}
D=n(2+k k) \tag{11}
\end{equation*}
$$

where:
$\mathrm{n}=$ overall length of isolines in cm in an area of size $2 \times 2 \mathrm{~cm} ;$
$\mathrm{n}=$ greatest number of isolines intersected by a straight line 2 cm in lencth drawn perpendionlar to the isolines;
$k=$ number of hends of isolines (demressions) in a square $2 \times 2 \mathrm{~cm}$ in sime;
$h=$ averare length of the camber of isolines alone the depressinns.

The overall lencth of isolines in an arca 1 decimeter ${ }^{2}$ in size will be

$$
\begin{equation*}
D_{s}=2 \delta n(2+k h) \tag{12}
\end{equation*}
$$

A sampling method is used to determine D_{s}, and as sampling nlots -.. squares 2 x 2 cm in size (fnr a lnw frequency of isolines the size of the aquare is increased ton $4 \times 4 \mathrm{~cm}$ and even to $10 \times 10 \mathrm{~cm})$.

Transformation of point sets intn recular systems of points allows us to establish a relatinnslip hetreen them via the mean distance between points in the set and to notain a mathematical characteristic of the totality of distances in any point set solely from one inclex -- from the mean distance. In practical terms it is important to know the mathematical characteristic of these distances in more detail, for example, how many and which distances can be oncombtered in a given set if we know the mean distance or any other variable exnressing the general characteristic of the totality of distances.

The new problem essentially means disonvering a function of the distribution of distances among points in a set. The solution of this problem is hroken down into two stages. The first stare consists of the possibility of finding a genoral correlation of the distribution of distances intrinsic to any point set.

The second stage consiats in discovering a snecific and wholly satisfactory series (function) for the distribution of distances characteristic solely of the riven natural point set, for example, the correlation of the distribution of distances among trees in a natural forest. lartionlar series and functions of distance distribution, their stability and recnlarity are determined by the specific nature of each point set, by the effect, for example, of a large number of factors on the arrangement, growth, and devel opment of trjes in the fiven geographical area. This specific detajl will alsn envern the form of the function of the distribition of distances amone trees or among other plants.

This rough outline is the relationship among general laws of distribution in a point set and particular functions of distribution of distances characteristic only of a given natural phenomenon which can be viewed as a particular case of a point set.
5. Mathematical Modeling of the Placement, Density, and Size of Tree Crows in the Development Dynamics of Tree Stands and an Experimental Method of Determining Forest Density and Tree Spacings

We know that as tree stands increase in ace, forest density is reduced, and crown sizes increased. Based on the study of the dynamics of how these variahles change, we have constructed a geomeirical model reflecting their status at the most critical periods of tree-stand development.

This model gives the first approximation to actuality, but it is wholly suitable in investicating variation in the structure of crown imaginc on aerial photographs of various scales and for searching for approaches to a sampling method of determining forest density and mean tree spacings.

Figure 14 presents geometrical models in which the placement of crowns in the following scales is shown 1:2,000, $1: 6,000,1: 10,000$, and $1: 15,000$. Four models of crown imating a, b, c, and d are shown in each of the figures, corresponding to the four gradations of density F and crown diameters D_{c} that are close to the actual fact. Figure 14 presents an examinntion of variance of direct measurement of 1 and calculation of N within the limits of sampling plots.

Determination of l_{0} can be done in two ways:
direct measurement of distances between crown images and
direct count of the number of crown images with subsequent conversion to l_{0} from table 1.

We can measure 1 among a group of neighboring trees or among crowns arranged in the form of a strip.

Figure 14 shows along the boundaries b, c, and $d a$ group of five to six crown. The number of groups -- from 1 to 3 , and the total number of measured distances are, respectively, 7,14 , and 21.

The deviation of the mean l_{0} obtained by measurement
in two groups from the true 1 dnes not exceed 0.2 meter (converted at the locality).

We take a narrow rectangle $5 \times 0.5 \mathrm{~cm}$ on the scale 1 : 2,000 as the strip sample. We measure 1 successively along the boundaries of the strip between crown centers. Experimental data show that the deviations of l_{0} from 1 for a are close to 0.9 meter, and for b to 0.4 meter.

Determination of l_{0} by the crown counting method can be done in two steps:
by counting crowns in the square or rectancle with subsequent conversion to N per hectare and obtaining of l_{n} from T'able l;
by counting the croms in the narrow strip (rectangle) with suhsequent division of the number of crowns by the strip length.

Figure 14 a shows a square $2 \times 2 \mathrm{~cm}$ in size $(0.16$ hectare), Figure $14 \mathrm{~b}, \mathrm{c}-\mathrm{l} \times 1 \mathrm{~cm}(0.04$ hectare), and Figure $14 \mathrm{a}-0.5 \times 0.5 \mathrm{~cm}$ (0.1 hectare). The number of such samples is two to three. The conversion from the number of crowns to N per hectare is achieved from the expression

$$
N=\frac{n}{p}
$$

where:
$\mathrm{n}=$ number of crowns in square (or rectangle);
$\mathrm{P}=$ area of square (rectangle) expressed in hectares.
Under this method the deviation of l_{0} from 1 proved to be equal to 0.2 meter. Instead of squares ive can taje samples in the form of narrow rectangles. Figure i4a shows three narrow strips $5 \times 0.5 \mathrm{~cm}$ in size. Crown entering into the rectangle for half and more of their area are counted in each strip. The mean l_{0} was obtained by dividing the atrip length by the number of crowns it contains. The value of l_{0} was determined vith an error of about 0.5 meter. In Figure 140 samples of the following sizes were tested: $2 \times 0.5 \mathrm{~cm}(0.04$ hectare) and $3 \times 0.3 \mathrm{~cm}(0.036$ hectare $)$. The mean 1_{0} was determined with an error of about 0.2 meter.

As the scale of aerial photographs is reduced, narron rectangles are converted into ordinary straight lines. Thus, a rectangle 100 meters in length and 5 meters wide at the
(5)
b
(2)

- GGRAPHICS NOT REPRODUCIBLE

c
(3)
(7)
d
(8)
(4)
(1)

Ligend: 1 -- 1:2000 scale; $2-$ - 1:6000 scale; 3 -- 1:10,000 scale;
4 -- 1:15,000 scele; 5-- $D_{c} ; 6-D_{c} ; 7-D_{c} ; 8$-- D_{c}
locality will be imared in a $1: 10$, nnn-scale aerial photomeraph hy a straisht 1 cm lnne and 0.5 mm thicr, and on a $1: 2 n, 00 n-$ scnle acrial nhotngraph it will le converted into a thin straight line 0.5 cm long and 0.25 mm thick. Transformation of narrow sample plots into linear plots a? lows us to uge straieht lines to determine l_{0} in aorial ohntorraphs.

In Ficure l/h anre r wo have talen three straicht lines 1 cm in 1 ensth and 0.2 mm thicl: ?hen we counted the croms intersected by the straimht line and tancent to it. 'The mean l_{0} was nytained ly dividinc the lensth of the lines by the number of croinns. "we deviation of l_{0} from ly prover to be about 0.2-0.6 meter (at the lncality'.

In Figure 14 d we nsed three stritight lines 2 cm lone, 0.1 min thici, and 1 cm lone and 0.1 mm thick. ?n the first case, l_{n} was determined vitl' an error $\cap f 0.1$ meter, and in the second -- 0.2 moter. Consequently, samples in the form of straicht lines will give cond precision of l_{n} determination for a large enough sensity of crown images on aerin? photorraphs. In this experiment we tested six methods and made $O G$ variants pronossing more than fon measurements. The experimentally-ioriph mothon!s nf determining l_{n} and vere testerl and verifice in the aerial photorraphs and in the rielr.
6. :ifathematica] :Onlel of Canopy Closure and Approximational Relatinuslin intueen "insure, Density, 'irnum niameter, anrl 'nter-'Jronn 'quonine

In stuly incr apurosimatinnal quantitatire rolationshins
 and inter-crown nuenine Δr, we call ennstruet a simplifierl mathematical nondel of the trec stand without talinin into accombtle story status am? curvature of tree disposition. ?luantitative relationsl!ips obtaimer? ?y means of a model will five only a reneral pieture, a metline or investigating for subsequent refinomnot of intorrclationshins in sperifio tree stands.
ranny rlosuro ran vary from $\because=1$ to $C=0.1$ and less.
The effect of cannpy rinsure repends on forest density \therefore, mean distance betwon trees $]$, crown diametor !c, anrl the nature no tree nlacoment in the forest plot. in practice, covering pronerties of the forest are sometimes characterized by the value of the nuenine, interval, or distance between
crows

$$
A=\frac{l-D_{1}}{D_{K}},
$$

expressed in crown diameters.
Ve know that a specific interrelationship dnes exist between forest characteristios. In our case it is important to find even an approximational relationship between $C, 1, N$, D_{c}, and Δd.

Canopy closure increases as the forest hecomes denser and with reduction in the mean tree spacing. Inder averace conditions this function is more or less justified if we do not take cognizance of other factors that affect the value C. Canony closure increases with rise in density only up to a certain limit, after the attainment of which a further increase in N does not lead to an increase in C, for example, after formation of $\mathrm{C}=1$. The nature of tree placement also has a substantial bearing. In the event of a stronely pronounced sloping or grouped tree placement, with increase in N closure rises more slowly than for the case of unifnrm tree placement.

The value C depends to a greater extent on crown sizes. For the same density N, bist for different D_{c} closure can vary within appreciable limits.

The question alsn arises as to what crown value we must take in determining C. In any forest plot we will encounter trees that have croms of different sizes. Indenendently of species composition crown diameters of individnal trees will not be the same.

Thus, the inequality of D_{C} of individual trees in the forest plot is a natural inevitability. Measurement of each tree is too laborions. Therefore, to determine C we have to pick an average D_{c}. This is all the more instified in that a reqular distribition of trees with respect to D_{c} close to the normal distribution is observed in forests (section 20).

Let us take a forest plot with a large number of trees located uniformly over the entire area, and measure the $\mathrm{D}_{\mathrm{c}} \mathrm{of}$ each tree. Let us calculate the average η_{c} and obtain deviations $\Delta d_{c}=D_{c}-D_{c}{ }_{c}$. In absolute value ΔD_{f} will be small, with either plus nr miniss sign. it is ohvinus that the areatest number of trees will have n_{c} clnse to ln_{c}.

In the simplified model of a tree stand under consideration (the crowns i e not overlapping), to determine D it is important to know not the value of the individual deviations
ΔD_{c}, hut the effect of the total of these deviations on the precision of calculating canopy closure when using the average $D^{0}{ }_{c}$. Let us assume that by the measurements we nbtain the actual nverall area nccupied by the crown of all individual trees. If we divide this area by the number of croms, then we get the averace crown area. Obvinusly, indenendently of the value of crown deviations of individual trees from the mean crown area, the product of the latter by the number of crowns will give the same overall area. Since the crom area is taken as equal to the area nf a circlewith diameter Dn_{c}, then all the foregoing will retain its effect also for the mean diameter $\mathrm{D}^{\mathrm{n}} \mathrm{c}$.

Consequently, to determine C we have to establish as precisely as possible the size of the mean value no_{c} which would be equal to fin actial mean crown diameter obtained by measuring crowns of all trees in the forest plot. For given N and D_{c} the average crown area will be

$$
\Delta \rho=\frac{\pi}{4} D_{k}^{2}
$$

Legenin: 1-- $)^{2} c$
and canopy closure

$$
\begin{equation*}
C=785 \cdot 10^{-7} \mathrm{ND} \tag{13}
\end{equation*}
$$

$$
\text { LEGEND: } 1-D_{0}^{2}
$$

where:
($)=$ canopy clnsure in fractinns of unity;
$N=$ forest density (number of trees ner hectare);
$\mathrm{D}_{\mathrm{c}}=$ mean crown diameter in meters.
Example. For the simplified model (crowns do not overlap) for $N=407$ and $D_{c}=4$ meters, canopy closure from formula (13) will be

$$
c=755 \cdot 10^{-7} \cdot 407 \cdot 4^{2}=10^{-1} \cdot 785 \cdot 6012=10^{-1} \cdot 5111800 \approx 0,5 .
$$

For specific forest plots in which determination has been made of the mean 1 and \therefore, cannny clnsure calculated from formula (13) will he quite close to the actual value of C. lowever, it is important for us to establish an approximate relationship between C, K, and D_{c} in the ceneral case. This is possible only if the approximate relationship between forest density N and crown diameter value D_{c} will be known. Thus, a young forest aged $10-15$ years will have $5,000-10,000$ trees
per hectare, and an old forest aged $130-15^{n}$ years will have only $100-200$ trunks per hectare. Rut with increase in age of forest the height and thicliness of trees increases, as dnes also crown diameter D_{r}.

Consequently, with jocreasing forest aging an increase in D_{C} and a reduction in forest density \because is nhserved. The approximational nature of the variation in the quantities \therefore, $)_{c}$, l_{t}, and h in the schematic form is shown in rable 3 for mixerlstands.

Table 3

(1)

eraphics NOT ${ }^{\circ}$ RePRRODUCIBLE

 (6) per hectare; 3-- 1n-15-year-nld younc forest; 4 -- 30-yenr-nlu nole-like forest [7herdnyalk]; $5-$ moderate-aged forest, 50 vears; 6 - maturing forest $50-70$ years of acc; 7 -- mature forest, $90-110$ years of ace; $8-\infty$ old (overmature forest 100 yeara of ace and older; n-- $\mathrm{H}_{\mathrm{t}} ; 10-\mathrm{D}_{\mathrm{C}}$ 。

When we take into account the annroximatinnal relationship of X and D_{n}, and the fact that the area of the cannny proiection (that is, the canopy closure () is usually less than the overall area of the projections of crows of all individual trees (owing to the unevenness of tree placement in the area and overlapping of crowns), clnsure was calculated from formula (13). In calculating C we took the following values of J_{C} : for $\mathrm{i}=986$ and higher $\mathrm{D}_{\mathrm{C}}=3$ meters; for N ranging from 765 to $585, \mathrm{D}_{\mathrm{C}}=3.15 ;$ for X ranging from 402 to $247, \mathrm{D}_{\mathrm{C}}=4$ meters; for N ranging from 105 to $105, \mathrm{D}_{\mathrm{c}}=$ 4.5 ; and for S rancing from 85 th $1_{4}, \|_{0}=5$ meters.

A curve of clncure was constructer from calculated
 smonthed for the purmose of finding a smonther variation of D_{c} as a fumetion of changing λ. As a result, we arrived at Table 4.

GRAFHICS NOT_REPRODUCIBLE

Figure 15. Interrelatinnatip hetween ranony closure, tree spacings, and inter-crom oneninge. La(GXI): ! ! = !

In freest annraisal, in aldition to cannpy clnaure it is required to determine further stand ncoupaney. stand nocupancy is expressed just as is clnsure, in fractions of $11-$ nity and is determined from the formula

$$
\text { I. } \because(G+2 i): \quad 1-g_{g} \text { iven; } 2-⿷_{n} \text { nomal }
$$

where:

$$
\begin{aligned}
& \Sigma_{g_{\text {given }}}= \text { total cross-sectional areas of trees in one } \\
& \text { hectare of the given (subserint) stand; } \\
& \Sigma g_{\text {normal }}= \text { total cross-sectinnal areas of normal (sub- } \\
& \text { scrint) stand, that is, when } p=l .
\end{aligned}
$$

Occupancy p and closure C are intimately related. jirect measurement of $\Sigma \mathfrak{c}_{\mathrm{g} j} \mathrm{~g}_{\mathrm{en}}$ in forests is very involved. therefore, appraisers of ten determine p from C.

Table 4

L:GENI): 1 -- 1 in meters; 2-- $N=$ number of trees per hectaro; $3-C=$ canopy closure; $4-\infty \quad \Delta$ = inter-crown spacing; $5-\mathrm{D}_{\mathrm{C}}$.
7. Mathematical Modeling of Tree Stands to Determine Visibility Range

In visual estimation appraisal, the selected stands are examined usually from a clearing or with sighting rods.

The precisjon of the apprajsal rests on the detail in the scan of the stands over the entire area between the sichting rods, and the detail of the scan is determined hy the visibility range in the particular stancls. olviously, the distance between sighting rods to ensure a thorough scan of the anpraised plot mist equal twice the visibility rance. The precisinn $n f$ visual estimation appraisal will he reduced as the difference in distance betwecn sighting rons is increased and with the increase in doubled visibility range, since part of the forest lying outside the field of view will he estimated on analngy with the observed areas adjoining the sighting rods over the extent of the visibility rance. Thus, preliminary Ifnowledre even of the approximate visibility range in forests allows us to more uroperly take note of the distance between sighting rods, reduce their number, and thus speed un and lorer the costs of field worl: in forest management.

A knowledge of the detail in what is visible in differont forests is necessary in compiling tonocraphis descriptions for the purpose of providing information to persons moving to a settled locality on font or on vehicles.

Tonorraphers letermine visibility rance in forests by the following method: a person is dispatcher in the desired clirection, he is fent in sirht until he is harely visible with the naked eye, and then the distance up to him is measured along a strajght line.
: Nore or less roliable information abolt the visibility range in each forest tract can be obtained either hy direct field observations in the majority of directinns, bit not hy any single direction. Linwever, in collecting information for topogranhic descriptions no one can rletermine rance nf vigibility for most directions, since this wolld require ton much time.

Rance of visibility depends on many factors, and so jt is very difficult to calculate in arlvance the actual rance of visibility in a given exmanse of forest. 'ut for ceneral juclement about the conditions of around observation in the forest it is important to know even thourh approximately, the averafe range of visibility.

To determine the approximate visibility rance, we can tale a count of not all variable factors that have a hearing on the visibility range, but only the principal, more or less constant factors for any forest at the given nerind of time, that is, the density of the forest N and the mean tree thiokness d_{t}.

GRAPHICS
 NOT REPRODUCLisLE

Gimire lfe anmotric model ar the profilo
of a sland of troos liserl in inciving the
formila nf tho visibility rames in foreste.
lot it he romitirod th determine tho visibility rathen
 rone troo thinimose rt.

Sont is assume that all trees arn mone ne loss erolly

 limn \therefore "。

1 い

$$
\begin{equation*}
b=\frac{\operatorname{dn} \Sigma N}{100} \tag{1}
\end{equation*}
$$

 porost at a dictarme !.

Sman!antly, flon pombition of total nom-visibility in

Mhe qumlity I. charactorizes rance of visibility into the forost only in llon rase that the lon!th 0 is muation (18) equit: ${ }^{\circ}$) weording to formula (15).

Substituting in equation (le) the right-hand member of equation (15) insteal of a and substitutinf $\Sigma \therefore=n i$, we arrive at formula (l?) expresising the range of visibility in the forest in meters

$$
\begin{equation*}
15-\frac{1080}{10 m} \tag{19}
\end{equation*}
$$

llus, from lanow \therefore and l_{t} we can calculate the range of visibility, that is, the distance Lvis at which total non-visibjlity of tho oljject results. In orcler not to have to calculate Lvis earh time rron rormula (19), Table 5 has been conmiled, from which it is easy to deterinine L_{v} is in meters for the most *idespreal values of N and l_{t} in cm .

If in a forest the mean listance between trees $1=6$ meters, and $d_{t}=22 \mathrm{~cm}$, then lrom Table 5 the visibility range in such a forest lyis $=134$ meters. Using the relationship of I. with l le can nititin livis from 1 and dt which are determined from aerial photos usimg methods describer in the following chapters. Conserfuently, the approximate visibility rance in the forest can be determinel also unler office ennditions from large-scale aerial photocraphs, and in any direction of interest to us and with any desired frequency.

For a level lncality in the absence of brush, undertrowtl, and speries of trees with crowns more than 2 meters above the carth, the table will give, though an approximate, but still a quite satisfactory idea about the visibility range in the forest. In winter Ivis determined from formula (10) will be still closer to the actual Lvis at the lonality. The effect of terrain on livis is taken into acconnt by ordinary methods using toporraphic mans. For ilistances less than those

Table 5

> LGEND: $1--1$ in meters; $2--N=$ number of trees per hectare; $3--d_{t}=$ mean tree diameter in cm.
indicated in the table, the visibility range will depend on all other conditions and factors whose consideration is possible only by direct observation in the field.

In thick brush the very limited range of visibility js obvious even without calculations. In spruce forests with tree crowns beginning almost at the ground, the visibility range is sharply redliced hy approximately as many times as the crown diameters D_{C} are thicker than the trunks d_{t}. The minimum visibility range would probably he noted for the case when the observation line will he at the level of the widest part of the tree croms, which is most characteristic of spruce stands. To nbtain the minimum visibility rance, the table values of Lvis will have to be reduced by $k=D_{c} / d_{t} t i m e s ~ o r ~$ calculated from the following formula:

$$
\begin{equation*}
L_{i m}=\frac{10}{100} \tag{20}
\end{equation*}
$$

For d_{t} values from 15 to 34 cm , the coefficient $k=17$, for $d_{t}<15 \mathrm{~cm} k \approx 20$, and when $d_{t} \geqslant 34 \mathrm{~cm} \mathrm{k} \approx 14$.

Lvis valnes calculated from formula (19) were verified with field determinations of visibility range in fairly dense forests. For example, in a mixed forest of pine, birch, and spruce with $l=4$ meters and $d_{m}=25 \mathrm{~cm}$, the visibility range on the spot was $50-60$ meters, but according to the formula $L_{\nabla i s}=53$ meters. In a birch-pine forest with $1=2.5-3$ meters
and $d_{t}=11 \mathrm{~cm}$, the field $L_{v i s}$ was 50 meters. The calculated Lvis alan proved to be 50 meters.
8. Principal Formulas in the Sampling Method of Investigation

Let us assume that we have a very large number of any k ind of objects whatever and we decided to know the characteristic of the entire aggregate of these objects with respect to some feature they exhibit. This problem posed can be solver by two methods: by continuous examination of all the objects or only part of them.

The theory of the sampling method takes into account that organization of sampling under which non-continuous or individual observatinns, measurements, or counts would give characteristics close to the velues of these characteristics in the entire aggregate of the nbjects under atudy.

As the basis of the sampling method we have the law of large numbers, which is quite well expressed by a theorem of the great Russian mathematician P. L. Chebyshev:

$$
\begin{equation*}
\rho\left(|\bar{x}-\bar{a}|<\varepsilon_{i} \rightarrow 1 \mathbb{Q}_{1 \varphi n}^{-} \quad n \rightarrow \infty .\right. \tag{21}
\end{equation*}
$$

Legend: 1-- for
that is, for a large enough number n of variables with probability p as close as we like to unity, wa can obtain deviations \mathcal{E} of the mathematical expectation $\overline{\bar{a}}$ from the arithmetic mean \bar{x}, as small as we like in absolute value, of several independent random variables.

By way of an illustration of the importance of the sampling method in actual practice, let us consider only one example. Let us assume that on a l:100,000-scale map it is required to show the mean distance between trees just as was done in respect to mean height and thickness of trees.

For an average forest density of 500 trees per hectare, to determine the mean distance hetween trees in the locality occupy ing only 1 decimeter ${ }^{2}$ of the map, it nould be necessary to measure more than ter million distances 1.

If it takes a minute to measure a single distance, then for the complete measurement of all distances among these trees about 70 years would be required.

The advantages and the practical importance of the sampling method are plain to see.

The sampling method can be used as follows:
for plotting distribution series or series of percentage ratio of objects with respert $t \mathrm{o}$ any characteristic they exhibit;
to determine mean values of a characteristic in an aggregate of objects;
to establish relationships between two and more characteristics of the objects.

He will introduce the following symbnls for the subsequent exposition of the main concepts and formulas in the sampling method:
$S=$ reneral population, that is, the total number of all objects that are the investicated;
$s=$ sample ponulution, that is, the numher of that portion of the objects to be subjected to nbservation, measuremont, or counts;
$p=$ probability, frequency, or proportion of objerta exhibiting the given feature in the rencral or sample populatinn;
$t=$ normal deviation in the rance of probabilities;
$\sigma 2=$ dispersinn of the feature in the general or sample population;
$v=$ variance of the general or sample population;
$\Delta=$ desired precision of sample determination of the pronnortion ar average value of the reature studied in the population of objects;
$x_{n}=$ arithmetic mean value of the feature in the ceneral or sample population.

In repeater sampling the sampler nhjects will return again once to the cemerul ponulation, but in non-repeated ampling they will not he returned. Non-repeated sampling is always more precise than repeated sampling, however the mean error of the former dicrers from the lattor by the coefficient

$$
\begin{equation*}
c=\sqrt{\frac{S-5}{S-1}} \tag{22}
\end{equation*}
$$

which is less than unity, but for a large reneral population is very clnse to unity.

In determining the characteristice of a forest, nomrepeated sampling will have the hichest value.

Objects can be sampled nut of a general populetion by two methods: reginnalized and merhanical.

In the regionalized ("typical") methon of sampling the examination is conducted by recinns, parts, ar arnips extibiting higher unifnrmity in the feature uncler stindy than necurs in the non-subalivided impulation.

Thus, in determining forest density the entire area of the forest tract is divided up on aerial photographs into indivichal areas or sections differing from each other in density of trees, and a soparate sampling is taken in each reginn.

Under the mechanical method units of the sampline population are located uniformly nver the entire ceneral ponulation. For example, the area of the elatire region is divider into equal smaller subareas and the samnling population includes a small portion of these sllbareas chnsen at rarinm in chessboard fashinn or in some nther manner. This method onsures uniformity in selection of the necessary number of ohjects from the entire area of the forest tract.

The regionalized method of sampling is more precise than the mechanical, since its mean errar is leas than the orror of the mechanical methon.

In calculating the number of noservations s, estimate of precision Δ, and its confidence interval in sampline determination of the proportion and the mean value of the features of the population of objerts under study, it surfices to be able to use a small number of principal formulas.

The precision Δ or the mean error of (retermination of the proportion (percent ratin) of objects in non-repeated sampling is caiculated from the formula

$$
\begin{equation*}
\Delta=\sqrt{\frac{k p(1-p)}{s}\left(1-\frac{s}{s}\right.} \tag{23}
\end{equation*}
$$

The number of observations made in the sample nopulation s that is necessary in determining the proportion with a desired precision Δ and with desired prohability uncler the non-reneated sampling approach is determined by the formula

$$
\begin{equation*}
s=\frac{R 2 s p(1-p)}{s s^{2}+t^{2} p(1-p)} . \tag{24}
\end{equation*}
$$

The precision, or the error, of the sampling determination of the mean value of the characteristic is calculated under the non-repeated sampling approach from formula (25), but under the repeated sampling approach from formila (26):

$$
\begin{gather*}
\Delta=\sqrt{\frac{t^{2} 2^{2}}{s}\left(1-\frac{8}{5}!\right.}, \tag{25}\\
\Delta=\sqrt{\frac{p^{22}}{s}} \tag{26}
\end{gather*}
$$

The number of observations made in the sampling population s necessary in determining the mean value of the feature with desired probability and precision Δ is calculated from formulas (27) and (28) under the non-repeated sampling approach and from formulas (29) and (30) under the repeated sampling approach:

$$
\begin{align*}
& s=\frac{t a^{2} s}{(s-1) \Delta^{2}+8^{2}} \tag{27}\\
& s=\frac{t^{2} v^{2} s}{(S-1) \Delta^{2}+t^{2} v^{2}} \tag{28}\\
& s=\frac{t^{2} s^{2}}{\Delta^{2}} \tag{29}\\
& s=\frac{t^{2} v^{2}}{\Delta^{2}} \tag{30}
\end{align*}
$$

In formulas (28) and (30) Δ is expressed in percentages.

In the case of large values of S, the number of observations for non-repeated sampling can be determined from formulas (29) and (30), and the precision of the mean value from formula (26).

The variance is calculated from the expression

$$
\begin{equation*}
v=\frac{0 \cdot 100}{x_{0}} . \tag{31}
\end{equation*}
$$

It is clear from formulas (23) - (30) that the precifion of the sampling method depends on the dispersion $\sigma \boldsymbol{\sigma}$, varianco v, and the variables S and p of the general pomiation. But these characteristics of the feneral population are unknown to us. As a consequence we have to replace these characteristics by quantities clngely similar to them that we can find either by a small eampling or by an indirect approach, or else we are forced to lise known data established for similar populations.

Let 118 now lonk by way of an example at several typical problems associated with the use of the sampling method.

Calculation of the number of ohservations and the prerisin of the sampling determination of the mean thickness (diameter) of trees d_{t} is carried out from formulas (25) (30). For this it is necessary that we knnw the variance of tree thickness. It is known that the variance of d_{t} in the case of pine $v_{\text {pine }}=20-25$ percent, but for birch virch $=$ 28.8 percent. The value of the variance decreases with increase in forest age. In complex and mixed stands the variance is greater than in homogenenus and single-story forests. On an average we can take $v=25$ percent. Then the number of trees required finr determining the mean $\boldsymbol{i n}^{n}{ }_{t}$ with a precision $\Delta=10$ percent and confidence interval $p=0.5(t=2)$ will be

$$
\approx \frac{4 \cdot 2 \pi}{10^{2}} \approx 25
$$

The precision of determination of the mean do under specified sampling conditions is calculated from formulas (25) or (26). If we measure d_{t} for $s=10$ trees, then when $t=2$ and digpersion $\sigma^{2}=25$, the precision of determination of the mean $\mathrm{d}^{n}{ }_{t}$ will be of the nrier of $\Delta=3 \mathrm{~cm}$.

Since there is a relationship between N and l for determination of forest thickness X and the mean tree spacing l_{n}, it is necessary to know only nne of these quantities. Hnwever, l_{0} corresponde to 1 nnly in the case of the continunus measurement of distances between trees, which is practically imposeible to carry out owing to the very laborinus burden of this nperation.

Table 6 shows the total number of trees at a locality corresponding to an area on the map of 1 decimeter2, for a forest density \mathbf{N} per hectare.

Table 6

Leqend: l -- map scale

In practical terms, we will be forced to determine l_{n} by measuring only a small number of distances hetween trees, that is, use the sampling methnc. In this case the problem will hnil down to finding that sampling 1 which would be closer to l_{n} arrived at from thorough measurements.
it is ohvinns that the precision of the sampling determination of l_{n} will depend on the range of fluctuations of individual $1_{1}, 1_{2}, \ldots l_{n}$ in the forest plot. Let 11 determine how many distances we must measure in order to nhtain a l_{n} with desired precision Δ.

Calculation of the number s of measured distances and the precisinn Δ of the samnling determination of l_{0} is made from formulas (25) and (30). Let it now he required that we determine the mean distance between trees l_{n} with a precisinn $\Delta=20$ percent and confidence interval $\mathrm{n}=0.95$.

To determine the sampline pomulation s from formula (30), it is necessary to know the variance v_{1} and the normalized deviation of t. :ie will select the value of t for n from the table of probabilities given in [13, 25]. Let the variance of the distances v_{1} he 35 percent.
then $\mathrm{I}^{1}=0.95, \mathrm{t}=2$. Then the number of measured $\mathrm{dis-}$ tances

$$
s=\frac{4 \cdot 35^{2}}{20^{2}}=12
$$

but the number of trees hetween it is necessary to mensure 1 will be 7 . For $f=0.99, t=3$, and the number $s=27$. if we take $\Delta=15$, then when $t=2$ the value $s=2 n$, 'ut the number of trees $=10$.

In practice we can determine the valle of v_{1} in an approximate way by the small sampling methor nr from standard 1 values in the aerial photographs.

Let us now assume that we have made a sampling determination and desire to know the precision Δ with which we obtained l_{o} that under the giver sampling conditions is calculated from formula (25).
iie can find the forest density ! in an approximate way by the small sampling method, that is, hy counting the number of trees in small subplots or hy measuring l in them. From Table 1 we obtain S for 1. Let us assume that $S=400$, the number of measured distances $s=15$, and the probability with which we will guarantee the quantity Δ is 0.95 percent fsic, should be 0.95] for $t=2$. In forests of moderate density the dispersion $\sigma^{2}=4$. Since we estimate the precision of the already made determination of lo, we will have a sampling
O 2 which we can use in calculating Δ. Under these sampling conditions, that is, for $S=400, s=15, t=2$, and $\sigma^{2}=4$, the precision of determination of the mean distance 1_{0} will be

$$
\Delta=\sqrt{\frac{4.4}{15}\left(1-\frac{15}{400}\right)} \approx 1 M
$$

Under those conditinns when it is difficult to determine S, an estimate of the precision of the sampling l_{n} can be made from formula (26).

The sampling determination of the mean distance from aerial photngraphs can be made mechanically as well as by the regionalized sampling methods.

The mechanical methnd of sampling consists in envering the forest tract evenly on the aerial photograph with small subareas, for example, in chessboard fashinn. Direct measurement of 1 is made for a small number of these subareas. The mean of these areas is taken as the average distance hetween trees in the entire tract. This methnd can give satisfactory results if the trees are evenly enough distributed over the entire area of the tract. The method will find application in those cases when it is required to estimate the forest tract as a whole in terms of the number of trees it contains and in terms of the overall stock.

For large differences in forest density in individual parts of the tract it is advisable to use the regionalized sampling method instead of the mechanical method.

The regionalized samnling method consists of preliminary visual-estimation reginnalization of the forest tract and individual plots differing from each other in forest density.

For this purpose first sections with the highest and smallest density of photographic images of tree orowns are marked off on the aerial photnfraph, and then intermediate areas readily discernible to the eye by the density of crown images therein are singled nut. We know that young trees have very high density of tree stands and delicate crowns. irith increase in age forests gradually thin out, bit crown sizes increase. These differences in crown sizes produce easily noticeable differences in the structure of their photographic imaging on aerial photngraphs which must in fact be taken into account when marking off plots in the forest tract.

A separate sampling is taken within the bounds of the selected plots, for which the plot is more or less evenly onveren with small subareas. Direct measurement of l or counts \mathcal{K} are made within the limits of two or three of the most typical subareas of the plot.

CIIAPTER 3

STATISTICAL CORRELATION OF THE DISTRIBUTION OF thee spacings in tree stands
9. Distributinn of Distances Between Points in Point Sets

In Figures 12 and 13 twn point sets are shown in their general form. To judge the distribution of distances between points in Figures 12 and 13 the following were determined: mean distance l_{n}, mean square deviation σ, and the variance of distances $\mathrm{r}_{\mathrm{l}} \mathrm{for}$ each set. Table 7 lists the results of a count made of the number of deviations expressed in terms of the mean square deviation for the point set in Figure 12. The percentase of deviatinns f percent and the accumulated frequencies wac were calculated from the number of deviations m; the accumulated frequencies were compared with the probahilities p in the integral law of normal distribution.

Table 8 gives analogous data on the distribution of distances in the point set shown in Figure 13.

It is clear from Tables 7 and 8 that more than 70 nercent of the distances hetween the pnints lie within the limits $l_{0} \pm O$ or $l_{n}(1+n .01 v)$, and not nne distance exceeded the limits $l_{n} \pm 3 \sigma$ and, accordingly, finally the values of the deviations Δl (from the mean 1_{n}) expressed in units of σ. Based on these (experimental) data, it can be assumed that the distributinn of deviations Δ l corresponds to the normal distribution, and that from l_{n} and $\sigma(n r v)$ we can determine the percentage of thnse distances (that is, their distribution) in noint sets. Of course, the distribution nf 1 in units of $l_{n} \pm k \sigma$ cives only a ceneral idea of the probable distribution type and, as experimental measurements have shnw, the accumulated frequencies $W_{a c}$ prove to be even greater than the thenretical probahilities p of the normal law of distribution. Althnugh investigation of the distribution of 1 in point sets more properly relates to interests of theory in mathematics, therefore we will limit ourselves tn explaining the general nature of the distribution of l in point sets.

Small camplings -- this is a wholly essential stace of major statistical investigations. These afford at comparatively emall nutlays of time and effort discovering anproaches for further exploration and estahlishing in preliminary form the probable distribution type and the extent of its stability. Sometimes small samplines provide the basis in general of not having to undertake subsequent large statistical efforts, since given hypotheses are clearly refuted with their data. of the series of small samplings we will make only nee, that relates to a forest tract in Nosenw Oblast. Baser on data of field measurements of distances between trees (with species composition n hirch l pine and mean valles $h=$ 22 meters and $d_{t}=25 \mathrm{~cm}$) the following were calculated: I_{n} $=4 . D^{\prime} 4$ meters; $\sigma= \pm 1.98$; and $v=40$ percent.
'able n gives cumulated frequencies $\boldsymbol{F}_{\text {ac }}$ of the empirical distribution of distances and the probability p of the normal distribution. As we can see from l'able 9, wac and p are clnse to each other in value, and we can presumpnse that in larce sampling as well (made in the ceneral population of distances) we will not encounter distances greater than $\mathrm{l}_{\mathrm{n}} \pm$ 30 , with a probability almost equal to mity.

Distribution of distances can be expressed ejther in terms of σ or v. Then 1 is expressed in terms of the variance v, the following simple relatinnshins are used:

$$
l_{1}=l_{0} \pm \sigma_{i}
$$

$$
\text { since } v=\frac{0.100}{1_{0}} \text {, therefore } 0=\frac{w_{c}}{100} .
$$

Then

$$
l_{1}=l_{0} \pm \frac{u_{0}}{100}=l_{0}(1 \pm 0 \quad 0 \quad v)=l_{0} \pm 0
$$

:.'e obtain in a similar way

$$
\begin{aligned}
& l_{2}=l_{0}(1 \pm 0,02 v)=l_{0} \pm 20, \\
& l_{9}=l_{0} I \pm 003 v=l_{0} \pm 30 .
\end{aligned}
$$

Table 8

(1) (2)

LEGEND: 1-- $f_{a c} ; 2 \cdot-w_{d c}$
 GRAPHICS NOT REPRODUCIBLE rame 。

(1) (2)

LEGEND. $\cdots f_{\text {ac }} ; 2 \cdots w_{\text {is }}$

For all subsequent investigations unjt intervals of the serics nf distance distribution expresser in fractions of the mean distance (at intervals of 0.2) were arnopter. 'The practical and thenretical convenience of these intervals is that gradations of the distribution series remnin unchanced, independently of chance in mean distances, since for any mean distance the interval $0.2 \cdot 1_{0}$ is retained. Taling intervals smaller than 0.2 does not make any sense, since it is not, necessary to take into account variations in ilistances '):tween trocs that are less than 0.5 or 1 meter, for the tree thidiness often amoints to 0.5 meter and in this case the minimim distance between twn trees will be 1.0 meter.

Table 10 gives an empirical series of distance distributions in this iorest tract. It gives a more detailed characteristic of the type of distance distribution compared with the characteristic of the distribution of 1 in terms of gradations of σ or v in Table 9. It is clear from Table 10 how distances are grouped to the right and to the left of l_{0}, and at what percentage different 1 values are encountered. The gradual decrease of f percent from the distribution center 1.0 or l_{0}, which is clearly suggestive of a curvo close to the normal distribution, is plainly evident. Based on empirical series of distance distribution in small samplings the possible distribution type and the extent of stability of frequencies of the distribution series can be seen. However, experimental data of small samplings do not afford adequate ground for a decisive conclusion on the specific type, and more so on the theoretical distribution function reproducing the distribution of distances in the general population. For this we have to have large enough and independent samplings in different forests. Such large samplings were obtained later, and their mathematical treatment is conducted in subsequent sections of the text.

Table 10

Legend: A -- gradation of series with 0.2 interval; $B-\infty$ series intervals when $1_{0}=$ 4.94; $C=$ frequency m in intervals of the series; $D-\infty$ percent $-\infty$ frequoncy in percentages

Foresters and appraisers at the end of the last century and in the first decades of this century, especially in the Soviet perion, investigated and discovered correlations in the distribution of trees by thickness and hejght, in form coefficients, in overall total of cross-sectional areas in thickness classes, and in wond reserves. The following statement of Professor N. V. Tret 'yakov is valid: "Jf tree stands of a forest element have so regular a distribution of trees hy thickness, then this means that the appraisal here will follow an authentic theory" [54]. All these correlations in the distribution of trees by given features relate to a statistical type of correlation, but this does not in any way diminish their importance in science and practical work, since they express those stable relationships intrinsic to the nature of the very phenomena.

A great deal of attention has been given to studying variations in density in relation to age of stands. The gradual decrease in density with age observed in forests was taken as the basis of compiling tables showing the growth pattern of normal stands in which the largest number of trees per hectare is found in young forests, and the smallest -- in the oldest (over-mature) forests. Actually, no precise data on forest density at any forest age have been established, but in tables of the growth pattern of stands the probable, though calculated, rensity is given by dividing the total cross-sectional areas of the normal stand for an nccupancy equal to unity by the cross-sectional area of a single tree, also taken as normal.

Since the density of a forest is associated with tree spacing, then naturally as the forest age is increased tree spacing also rises. However, foresters and apprajsers have been mainly engaged in studying variability of forest density, and not tree spacings.

In 1918 G. R. Sytingen investigated the question of what effect forest density has on growth of pine stands [61]. lle noted that as pine increases in age from 3 to 18 years the variance of density is reduced from 44 to 23.5 percent. One of the first studies on variability of tree spacing in spruce forests was conducted by A. I. Leskov [38].
A. I. Leskov observed that there is an increase in mean tree spacing with ircrease in forest age. As a consequence of natural thinning in the forest specific values of l_{0} and v are established under which an equilibrium of the tree stand is attained, associated with ensuring minimum
feeding aren for norinal tree frowth. Reducing this arca leads to the death of some of the trees in the stand. The wellknown Russian forest specialist lrofessor G. F. Moroznv nbserved that for the lifhest variances v the most intensive thinning of forests is noted. These researchers concluried that tree spacinc in stands is an important characteristic of the intorplay between trees and the binlogically callsed forest revelopment.

In 195\% \because. l^{\prime}. Anuchin noted that the question of mean tree spacings mas still little studied [3].
'ie have been luable to find any other stud)es by other allthors aimed at disonvering statistical correlation of the distribution of tree spacings in a natural forest ejther in the soviet or in the foreicn literature.

In !reobotany Doctor of Gengraphical Sciences S. V. Viktorov formulated a theory of a geobotanjcal method of investigation in ceolngy and hydrogenlogy [l?]. lle tonl: as the basis of this methon plant spacings in non-woody plant comminities. Je conclurled that the mean distance between plants is a quantity summing un complex interrelationships of plant revelopment in a fiven locality and that it is a highly imnortant characteristic of plant communities. The promise and practical fertility of S. V. Yiktorov's ideas was confirmed hy the fact that types of plant distance distribution proved to be extremely good indicators of site conclitions, presence of specific soils, depth of groundwater, its mineralization, salinity, and freshness, as well as the composition of rocks and georraphical structure. Ye. A. Vostolnova in 1952 cmployed the ratio of distances between chee crass individuals for indicating groundwater depth and its mineralization. In these studies, graphs of the ratio of distances were constructed in feneral without mathematical determination of the series and functions of distance distribution.

The allthor has had occasion to study distances between trees since $104 / 4$ in the interests of representing topngraplic information about forests on state topographic maps.
since 1945 , a representation of mean tree distances has been f iven on toporraphic maps. 'lo develop calculation methods of determining traversibility and other proyerties of forests, we must know the percentace of given distances that we can encounter in moving through forests. In attempting to solve these practical problems it became necessary to
provide theoretical validation for methods of determining mean tree spacings, which inevitably entailed arranging for studies on the possibility of establishing a lav of distance distribution. Experimental measurements were made of distances in small forest areas for this purpose in 1946-1952. Sample measurements of distances allowed us to discover a certain degree of stability in the frequencies of distribution series and to sketch a hypothesis on the possible type of distance distribution. However, small samplings still did not yicld adequate grounds for a final conclusion on the law of distance distribution, though they did point the way to highly interesting conclusions that were subsequently wholly confirmed.

With cooperation of co-workers at the All-Tnion Amalgamation Lesproyekt B. A. hozlovskiy, P. A. Sergeyev, and A. F. Kruchinin, field measurements were made of distances between trees in large forest plots with sampling volume up to 700-1,000 distances. Precise maps were dram on a l:10n scale for thesc plints with the placement of each tree, projection of each crom, and so on.

The experimental materials allowed us to check thenrotical premises on the function of tree spacing distribution for forests.

Theoretically, rigorous mathematical proof of the distance distribution function is required at the very least in the following stages of research:
verification of the hypnthesis that two independent sampling populations belong to the same general population;
investigation of the excess and asymmetry of experimental distribution curves;
verification of the agreement of empirical and thenretical distribution functions with the aid of the appropriate criteria.
10. Checking the liypothesis that Independent Sampling Distribution Functions Relong to the Same Type
ye will consider all distances in large forest trocts as the general population of tree spacines. it is clearly infeasible to measure all distances in all forests of the temperate zone of the European part of the USSR. Therefore
the law of the distribution of distances in a general population mast be found by a sampling method. If we take at the very least even two large samplings independent of each other for two forest tracts, then the absence or presence of similarity in the distribution series in these samplings will testify either that these distribution series belng to the same distribution type characteristic of the distribution of distances in the general population, or that the series are not identical and, consequently, that the general population does not conta in any stable and single type of distance distribution. To put it more simply, essentially the investigation boiled down to the situation that if distribition series in individual sampling tree stands are the same, then we can assume that this same distance distribution wili hold for other tree stands. This is tantamount to the situation in which for other similar forests there are no grounds to anticipate any other distribution that differs sharply from the distribution obtained in the independent large samplings.

Large samplings 700-800 distances in volume in the two different forest tracts were obtained by measuring distances between all trees at the localjty.

Table 11 and Figure 17 present composite data of an empirical series of distance distributions for the plot Nin l, and Table 12 and Figure 18 -- for the plot No 2.

The mean distance $l_{n}=4.4$ meters, the mean square deviation $\sigma=1.9$, and variance $v=43.2$ percent were calculated from the variance series of plot No (Table 11), and from the variance series of plot No $2\left(\right.$ Table 12) $-1_{0}=5.1$, $\sigma=2.1$, and $v=41.3$ percent.

Now we have all the data we need for analytical verification of the hypothesis that two independent large samplings belong to the same general population.

Let us assume that we have two empirical distribution functions $F_{1}(1)$ and $F_{2}(1)$ for sampling volumes of n_{1} and n_{2}. For continuous functions and for sampling volumes $n_{1}>50$ and $n_{2}>50$, criteria are developed that allow us to establish the identity or deviation of two independent functions $F_{1}(1)$ and $F_{2}(1)$. As a measure of the deviation of the two finctions, we take the mathematical difference $D_{n_{1}} n_{2}$, that is,

$$
\begin{equation*}
D_{a_{1} a_{2}}=\max \mid F_{2}(t)-\bar{F}_{1}(i) \tag{22}
\end{equation*}
$$

Distribution of 1 in intervals of kl_{0}

Figure 17. Empirical diatribution of distances in plot No 1

(1)

(b)

GRAPHICS NOT REPRODUCIBLE

(D)

Legend: A -- intervals; 3 -- interval
limits; C-- frequency m; n-- frequency
fraction [chastnst ${ }^{\text {' }] ~ w ~}$
If the hypothesis on the identity of the twn experimental distribitions is valid, that is, $F_{1}(1)=F_{2}(1)$ or any 1 , then the quantity $O_{A A_{0}}^{\prime}=\sqrt{\frac{\mu_{4}+a_{2}}{M_{4} \alpha_{2}}}$
is gnverned in an approximate way hy Kolmogorov's law of distribution $P(\lambda)$ independontly of the type of function $F(x)$, that is,
$\mathrm{f} \cap \mathrm{r}$ any $\lambda>0$.
If the hypothesis is valid, then

$$
D_{n_{1} n_{2}}<\lambda_{2} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}}
$$

for a given level of significance $\alpha^{n_{1}}=0.05$.
If however

$$
\begin{equation*}
D_{a_{1} M_{2}}>\lambda_{e} \sqrt{\substack{M_{1}+N_{2} \\ N_{1} N_{2}}} \tag{36}
\end{equation*}
$$

(D)

Legend: A -- intervals; B -- interval
limits; C -- frequency m; D -- frequency fraction [chastost'] w
then the hypothesis that the functions F_{1} (1) and $F_{2}(1)$ helong to the same distribution type must be refuted.

Table 13 lists calculations of $D_{n_{1} n_{2}}$ for two empirical distributions $F_{1}(1)$ and $F_{2}(1)$.

As we can see from Table 13, the maximum value of $\mathrm{D}_{\mathrm{n} 1 \mathrm{n}_{2}}$ $=0.032$.

The law of distribution of $P(\lambda)$ and the values of were calculated and are given in courses on the theory of probability and mathematical statistics [25, 43].

The bnok [13] has a table of the values of $P(\lambda)$ and λ. We take the value of λ for a fully adequate level of significance $\alpha=0.05$, which corresponds to the confidence interval $p=0.95$. When $P(\lambda)=0.05$, we find $\lambda=1.358$ [13] from the table.

The volumes of our samplings were $n_{1}=706$ and $n_{2}=$ 806. We calculate the following quantity from n_{1}, n_{2}, and λ_{k} :

$$
\begin{equation*}
\lambda_{a} \sqrt{\frac{n_{1}+n_{3}}{n_{4} n_{2}}}=0,070 . \tag{37}
\end{equation*}
$$

GRAPHICS
 NOT REPRODUCIBLE

Since

$$
D_{n_{1} n_{\lambda}}=0.032<0.070=\lambda_{2} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}} .
$$

then the hypothesis that the distribution functions $F_{1}(1)$ and $F_{2}(1)$ belong to the same distribution type has been confirmed. The probability of the hypothesis is very high, equal to the confidence interval $p=1-\alpha=0.95$, and the values of $D_{n_{1}} n_{2}$ obtained from the experimental distribition serjes lie within the limits of the permissible values 0.07 .

Thus, we can with a confidence of 0.95 assert that the distribution of distances in any other analogous forests will be identical $F_{1}(1)=F_{2}(1)=F(1)$ and sufficiently stable, which evidences that there is a correlation between the investigated series of distance distributions. Naturally, this correlation is plainly statistical in nature owing to the effect of numerous factors that have a bearing on tree placement at the locality and the disiribution of tree spacings. The verification made that the two independent experimental distribution series have a common origin is quite essential
at the very nutset of our investigation. If we had from oxperiment been innvinced that the functions $F_{1}(1)$ and $F_{2}(1)$ were not identical, then no suhsequent investigations wnlld be of use, for we would not have a confirmation of the concept that the solight-for correlation does exist in nature, that is, in the forest. Then the direction of nur investirationa would have been changed, we wnuld have shifted to a new hypothesis, set up new ajms, and follnwed other approaches. But confirmation of the first hypothesis gives us quite adequate grands for further investigation to find a specific form of the function of the distribution of tree spacings.
11. Investigation of Asymmetry of Experimental Distribution Functions

The monotypicity of the distribution series established above, $\mathrm{F}_{1}(1)$ and $\mathrm{F}_{2}(1)$, thus far does not afford a clear idea of the specific form of distribution function, since it in ceneral can be any of a set of functions. Therefore, now our problem boils dom to finding out of the set of probable distribution functions the unique, most precisely reproduced actual distribution of distances l in forests. Je can estimate here in an approximate way about what the distribution type is from the nature and value of frequency fractions [chastosti] in empirical distribution series, and more graphically from histocrams constructed on the basis of calculated distribution densities. The histograms are sugestive of bell-shaped curves, which affords grounds to presuppose that there is a clnse relationship between experimental distributions and somi form of the normal distribution.
llowever, to be confident of ihis, we must conduct an analytical verification of the symmetry or asymmetry of the distribution curves. For this purnose, Table 14 lists calculations of the asymmetry coerficient of the variation series Fl (1), and l'able 15 does this for the series F_{2} (1). The asymmetry coefficients were calculated from the following formila:

$$
\begin{equation*}
A=\frac{\sum\left(m A^{3}\right)}{\sum \sum m} \tag{38}
\end{equation*}
$$

where $\Delta=l_{j}-l_{0}$.
The approximate value of the asymmetry coefficient car be calculated from the following expression:

$$
A=\frac{l_{0}-M_{0}}{c}
$$

where $N_{0}=$ mode.
"ie know that when $A=0$, the series is always symmetrical.

GRAPHICS ${ }^{7}$
NOT REPRODUCIBLE ${ }^{\text {rable }}{ }^{14}$

From data in Table 14 , the asymmetry coefficient for the series F_{1} (1) is

$$
A_{1}=+051 .
$$

that is, the curve of the distribution $\mathrm{F}_{1}(1)$ has a very amall right-handed (positive) asymmetry, which evidences that the mean l_{0} lies to the right of the mocle s_{n}. This is also confirmed by the fact that the theoretical mean obtained from formulas (4) and (5) is $1 t_{0}=4.4$, that is, somewhat less than the experimental mean $1_{0}=4.43$. Since $A_{1} \approx 0$, then this distribution serjes can he assumed symmetrical.

From Table 15, the asymmetry coefficient of the series $\mathrm{F}_{2}(1)$ is
that is, the series F_{2}. (1) also has a small right-sided (posjtive) asymmetry, which once more evidences that there is
monotypicity of the investigated experimental distribution series.

Table 15

Since $A_{1} \approx 0$ and $A_{2} \approx 0$, we can confidently assert that there is no sharply pronounced asymmetry in the experimental series $F_{1}(1)$ and $F_{2}(1)$. This supports grounds to conclude that these series are not related to the distribution type that differs sharply from the normal distribution in which $\mathbf{A}=0$.
12. Investigation of Excess of Experimental Distribution Functions

To discover the type of the distribution curve it is important to know not only the absence of symmetry, but also the marked positive or negative excess, since the curve can be sharply skewed upward or by the canopy (low-lying). Verification of the presence or absence of a sharply positive or negative excess in two distribution series is necessary also to judge the similarity or difference in frequency fractions of two experimental functions $F_{1}(1)$ and $F_{2}(1)$. When there is a decided difference in the frequency fractions of equivalent intervals in the distribution $F_{1}(1)$ and F_{2} (1), their inclusion in a single distribution type F (1) is in doubt.

The excess is calculated from the following formula:

where $\Delta=l_{j}-l_{0}$.
At the centrai moments

$$
\begin{equation*}
K=\frac{\mu_{4}}{\mu_{2}^{2}}-3 . \tag{40}
\end{equation*}
$$

We know that in the normal distribution the excess K $=0$ 。

Table 16 presents calculations of the excess K_{1} of the experimental distribution curve F_{1} (1), and Table 17 -- the excess K_{2} for the curve F_{2} (1). It is clear irom these tables and the calculations made below that $K_{1}=+0.06$, and $K_{2}=$ -0.07.

The excesses K_{1} and K_{2} are very small and, which is most remarkable, have different signs. The slight value of the excesses and their different signs evidence that both experimental distributions F_{1} (1) and F_{2} (1) are very similar to each other, and their small deviations upwards and downwards from some mean distribution curve are random in nature. Since in the normal distribution the excess $K=0$, and in the investigated experimental distributions the excess is close to zero, then we can assume that along with the earlier noted symmetry the empirical distributions F_{1} (1) and F_{2} (1) refer to one of the forms of the normal distribution type.

However, for a final conclusion it is necessary to make an analytical verification of this assumption by using
more powerful agreement criteria. We can use the chi2 criterion (l' Pearson) and the criterinn of Academician A. N. Kolmogorov as such criteria. But this requires that we first find the theoretical function of the distribution of distances F_{1} (is).
13. Determination of the Theoretical Function of the Distance Distribution

Discovering and appraising the distribution law from sampling data represents one of the main scientific problems in mathematical statistics [25]. In those cases when it is foumd that the theoretical distribution law appertains to a specific family or type of distributions, then the problem of finding the distribution law of the quantity under investigation boils down to finding unknom parameters of the riven type of distribution function. It is precisely with the aim of determining these parameters that in most cases the statistical study itself is conducted. Jf precise parametric values are known, the distribution law for the given quantity is determined fully. In our case, out of the set of possible forms of normal distribution functions it is necessary to find a unique function. This is possible only when we know the numerical expressinns of the parameters of the sought-for function.

The theoretical distribution function $F_{1}(w)$ is usually calculated from experimental data using the function of the normalized normal distribution curve

$$
\begin{equation*}
Z_{t}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{12}{2}} \tag{411}
\end{equation*}
$$

where

$$
t=\frac{t_{1}-l_{0}}{6} .
$$

The values of Z_{t} are taken from special tables given in courses on mathematical statistics [43].

The book [13] contains a table of the values of Z_{t} for t from n to 3.59. Ordinates of the thenretical distribution curve are calculated from the formila:

$$
F_{1}(\omega)=\frac{\Delta l}{c} Z_{t}
$$

where $\Delta l=$ interval of l_{j} values.
Table 18 lists calculations of the theoretical distribution function $F_{1}(w)$ from the data of the experimental distribution $F_{1}(1)$, and rable 19 -- calculations of the function $F_{1}\left(W_{2}\right)$ for the series F_{2} (1).

GRAPHICS
 NOT REPRODUCIBLE ${ }^{\text {rable }}$
 17

GRAPHICS NOT REPRODUCIBLE

Figure 19. Theoretical and empirical distribution curves for tree spacings in plot No 1. Legend: A -- distribution t; 3 -- theoretical curve $F_{1}\left(w_{1}\right) ; C$ empirical curve $F_{1}(1)$.
Figure 19 shows the theoretical distribution curve $F_{1}\left(w_{1}\right)$ and the empirical distribution curve $F_{1}(1)$.

Figure 20 shows the thenretical distribution curve $F_{1}\left(w_{2}\right)$ and the empirical curve $F_{2}(1)$.

Comparison of the frequency fractions of the empirical and theoretical distributions (in Tables 18 and 19), and also their curves in Figures 19 and 20 confirm that they are very close in agreement, and this evidences that there is identity between the distribution functions.

GRAPHICS NOT REf wiUUCIBLE

Figure 20. Theoretical and empirical curves of the distribution of distances between trees in plot yo 2

It is alan important to note the fact that theoretical functions $F_{1}\left(w_{1}\right)$ and $F_{1}\left(W_{2}\right)$ for tro indenendent empirical distribution series $F_{1}(1)$ and $F_{2}(1)$ are very simjlar to cach other in values of frequency fractions in equivalent intervals, which confirms the stability of the distance distribution. llowever, simple comparison of curves and frequency fractions of four distribution series is not enough to corroborate the normality of the distance distribution. This requires an analytical verification of arreement hetween theoretical and enpirical distribution functions using the appropriate criteria.
14. Verification of Anrecment Jetween Empirical and Theoretical Distribution Functions Using the chi2 Criterion
"'he chi2 criterion is based on comparison of the frequencies of experimental and theoretical distribution series. Verification of the hypothesis of the distribution law using the ;. Pearson criterion has several limitations, where interpretation of the verification results is not free of arbitrariness. The criterion is used for series that have large enoug? sampling volume and a sufficient value of frequencies
in the extrenc intervals of the distribution series, where the number of intervals in the series must not be less than five. The criterion cal lead to erroncous conclusions if in the intervals at the ends of the series the frequencies prove to be very srall. For caamile, :hen tiveing into account in the F_{1} (1) series the tho last intervals, we get chis $=34.72$. For this chi? value we can ii'hout adequate grounds conclude that there is disparity beticen experimental and theoretical distributions. In this case the lacl: of acrecment more properly refers to the extrenc intervals containing low frequencies, and agrecenent can urove to be very gooc in all 2 is the rest of the main part of the series. Gwing to these characteristics in the use of the criterion, it is recommended that the extreme intervals be combined into the single following interval.
lo appraise observed and theoretical distributions, the eriterion is expressed as follows:

$$
\begin{equation*}
x^{2}=\sum \frac{|m-f(w)|^{2}}{f(c)} \tag{42}
\end{equation*}
$$

where:
$\mathrm{m}=$ frequency of empirical series;
$F(m)=$ frequency of theoretical distribution series.
In calculating $F(m)$ talles of the normalized Laplace function $\phi(t)$ are usually used. In our case we can use the previously calculated data of the theoretical distribution functions $F_{1}\left(w_{1}\right)$ and $F_{1}(: \% 2)$ and obtain thooretical frequencies from the emression $F(m)=\%$.

The rule of agrement verification consists in comparing the calculated chi2 with the value of $\operatorname{chi}^{2}{ }^{q}$ determined from 'able 8 in the book: [2民] for the suitably chosen significance level α and the number of degrocs of freedom l:. The number of degrees of freedom $\mathrm{K}=\mathrm{i}-\mathrm{c}-\mathrm{l}$, where $\mathrm{i}=$ number of intervals in the series, and $c=$ number of parameters to be estimated in calculating $F(w)$. If chi ${ }^{2} \leqslant \mathrm{chi}^{2}{ }_{q}$, then the deviation between the sampling and the presumed theoretical distribution is held not to be substantial and the hypothes is under verification is taleen as valid. ."hen chi2 $>\operatorname{chi}^{2} q_{q}$, the uroposed hypothesis is refuted.

Ce must note that the criterion chi ${ }^{2}$ requires in each speciric case careful selection of the significance level and the nermissible values of chiq corresponding to it. Essentially, the significance level $(\alpha=2$ percent, $\alpha=1$ percent, $\alpha=0.1$ percent, and $\alpha=0.3$ percent) is that the
events corresponding to it are in practical terms regarded as impossible owing to their low probability ($p=0.02, p=0.01$, $\mathrm{p}=0.001$, and $\mathrm{p}=0.003$).

If we take the significance level $\alpha / 100$, then we assume that the probability of the criterion chi2 falling within the region of permissible values of $\mathrm{chi}^{2} \mathrm{q}$ is $1-\alpha / 100$. Therefore, the lower the significance level, the smaller is the probability of refuting the valid hypothesis. Ilowever, a low significance level affords gromels for the assertion that the calculated values of the criterion chi2 do not contradict the hypothesis being tested, but only barely. But as the significance level is reduced the sensitivity of the criterion drops off.

In our case the problem is somewhat simplified since we wish to verify only the non-contradictoryness of experimental $F_{1}(1)$ and $F_{2}(1)$ with the theoretical functions $F_{1}\left(w_{1}\right)$ and $F_{1}\left(w_{2}\right)$ calculated carlier and qualitatively already verified as to several other criteria of distribution normality. llere we are interested in the significance level guaranteeing against rejection of the valid distrimition hypothesis. If we take $\alpha=$? percent or $\alpha=0.3$ percent, then we can assume that the probability that chi2 exceeds the permissible value $\mathrm{chi}^{2} \mathrm{q}$ will be extremely small, that is, 0.02 or 0.003 . This low probability affords grounds for regarding this event as practically impossible. The probability, in fact, that chi2 falls within the region of permissible chi ${ }^{2} q_{\text {q }}$ values is very great, equal to 0.98 or 0.997 , that is, close to unity, which is tantamount to almost total certainty. Only in 2 percent or in 0.3 percent of all cases can we anticipate discrepancies between the observed facts and the adopted distribution hypothesis. It is clear from Table 20 that $\mathrm{chi}^{2}=14.45$, and $k=1-3=6$. For a significance level $\alpha=2$ percent and $\mathrm{k}=6$, the permissible $\operatorname{chi}^{2} \mathrm{a}_{2}=15.0$. Since chi2 $2_{2}=14.45$ $<15.0=\operatorname{chi}^{2} q_{2}$, then we can assume that the experimental distribution of $\mathrm{F}_{2}(1)$ does not contradict. the theoretical F1 (w2).

For $F_{1}(1)$ and $F_{1}\left(W_{1}\right)$, Table 21 gives $\operatorname{chi}^{2}{ }_{1}=19.586$ and $k=6$. The non-contradictoryness of the function $F_{1}\left(w_{1}\right)$ to the experimental distribution $F_{1}(1)$ corresponds to the significance level $\alpha=0.3$ percent, since when $\mathrm{k}=6$ and $P\left(X^{2}>\chi_{4}^{2}\right)=0.003$, the value of $\mathrm{chi}^{2} 2_{q_{1}}=20.0$.

Table 20 gives calculations of the criterion chi_{2} for the functions $F_{2}(1)$ and $F_{1}\left(w_{2}\right)$, and Table $21-$ for the

GRAFHiCS
 NOT REPRODUCIBLE ${ }^{\text {Table }} 20$

criterion chi2 ${ }^{2}$ for the distribution functions $F_{1}(1)$ and F_{1} (w_{1}).

Though the criterion chi2 is of ten used, it still exhibits several drawbacks and points of arbitrariness in interpreting the results of verifying agreement between distributions. Therefore, it is always worth while to to check agreement between distributions by using other criteria. The criterion of Acadenician A. N. Kolmogorov is recognized as a more powerful criterion.

In the interests of thenretical rigor, we will verify agreement between distribution functions by using this criterion.

GRAPHICS NOT REPRODUCIBLE

15. Verifying Agreement Between Smirical and Theoretical Distribution Functions by Using the A. Y. lolmocorov Criterion

The asreement criterion of Academician A. N. linlmomerny can be used in appraising sampling distribution functions also in those cases when the lav of distribution or the form of the function describing the distri?ution of the quantity in the general nopulation is not known to us.

Only one continuity condition is imnosed on the function. Use of the criterion also presupposes that the ompirical function is formulated from quantities that are non-grouped in the intervals.

Ilowever, with some degree of approximation the confidence appraisal of the function $F(1)$ will operative also in the case when the intervals of the distribution serjes will be small enough. In our case all these conditions are met. The intervals of 1 are taken very small, only 0.21_{0}, such that when $l_{0}=5$ this yields 0.5 meter. There is practically no necessity to talce smaller-sized intervals, since tree
spacings of 0.5 meter are encounteral very infrequently and are not of importance from the prartical and theoretical points of view.

The criterion of A. \because. !nlmonenv is founded on a comnarison of the acermulated frequency fractions of the empirical distribution series with the data of the interral function of the theoretical distribution by determining the maximim deviation between them and its estimate with respect to the distribution function $\mathrm{P}(\lambda)$.

Let us denote the function of cumulative frequency fractions of the empirical distribution wacenm, and the integral function of the proposed theoretical distribution whe theor.

Then, for large samplings the probability $P(\lambda)$ is such that the maximum deviation of the frequency fractions $w^{2 c}$ emp - when theor exceeds a specified number λ / \sqrt{n} can be determined in an approximate way from the function

$$
\begin{equation*}
P(\lambda)=1-\sum_{A=-\infty}^{\infty}(-1)^{k} e^{-2 k^{2} \lambda^{2}} \tag{43}
\end{equation*}
$$

The probabilities $P(\lambda)$ for different λ values have
 and they can be found in courses on mathematical statistics. They are also in the book [13].

The maximum difference in the cumulative frequency fractions is denoted by .

$$
\begin{equation*}
D=\psi_{0}^{\prime \prime}- \tag{44}
\end{equation*}
$$

Legend: l-- $w^{\text {ac }}{ }_{e m p}$; 2-- $w^{a c}{ }_{\text {theor }}$
The value of λ in these calculations is determined from the expression

$$
\begin{equation*}
\lambda=D \sqrt{n} \tag{45}
\end{equation*}
$$

where $\mathrm{n}=$ scope of sampling.
je will write out the prohability $P(\lambda)$ from a calculated λ from a special table. If $P(\lambda)$ proves to be very small, that is, smaller than noll or 0.05, then the proposed theoretical distribution is not in agreement with the empirical distribution. "inen $J(\lambda)$ is r reater than $0.01(0.05)$ the agreement between the distributions under study is deemed to bo corroborated.

Table 22 lists calculations of empirical and theoretical cumulative frequency fractions for determination of the maximum value of D in the distribution series $F_{2}(1)$ and F_{1} (ir_{2}) 。

GRAPHICS
NOT REPRODUCIBLE Table 22
(1)
;
(2)
(3)
Θ
(5) : -

1	4.013
\%	0, (k)
1)	(0,915
0.147	-1.0r:
O	+4.015
$\because \cdots$	-0.01:
	-0.011
94	-0 010
\cdots	0.011
11.9	-n.u-1
$11 \cdots$	-0.4011
1 6,	-6.19

Legend: 1--wemp; 2-- wac emp; 3-- wtheor; $4--w^{a c}$ theor; $5^{--} w^{a c}$ emp $-w^{a c}$ thenr
iVe can plainly see from Table 22 that the maximim $\mathrm{D}=$ $w^{a c} e_{e m p}-w^{a c}{ }_{\text {theor }}=0.025$. The scope of sampling $n=806$. Then ${ }^{\prime}$

For $\lambda=0.71$ from the table of $P(\lambda)$ values we find $\mathrm{P}_{2}(\lambda)=0.69$. Since $\mathrm{I}_{2}(\lambda)=0.69>0.005$, then we can assert that the distribution of distances between trees agrees well with the theoretical normal distribution calculated for the appropriate values of the parameters $l_{0}, \sigma, \Delta 1$.

An appraisal of agreement can be made using A. N. Kolmogorov's criterion also by stipulating the criterion of significance q or probability $p=1-q$. Let us assume that we take as a measure of confidence $p=0.95$, which corresponds to the significance level $q=0.05$, or 5 percent. When $q=$ 0.5 the value $\lambda_{q}=1.358$ (cf tables for $P(\lambda)$ and λ in the book [13]). Then the range of acceptable values will be:

$$
\text { i) } \quad \frac{9}{i}=\frac{139}{\sqrt{4 i}}=0 \cdot 48
$$

The value $D_{q}=0.048$ is the region of permissible deviations
for a 5-percent confidence probability. If the calculated D $=w^{a c}$ emp $-w^{a c}$ theor proves to be less than the stipulated D_{q}
 zone of permissible deviations D_{q}, then agreement between empirical and theoretical distributions is held quite good and trustworthy.
in our case $D=0.025<0.048=D_{q}$, therefore agreement between the distribution functions $\mathrm{F}_{2}(1)$ and $\mathrm{F}_{1}\left(\mathrm{w}_{2}\right)$ is confirmed.

The A. ス. I.olmogorov criterion can also be employed when using cumulative frequencies m of empirical and theoretical distributions.

In Table 23 the original data for the use of this criterion are calculated not from frequency fractions, but from the frequencies of the distribution series $F_{1}(1)$ and $F_{1}\left(V_{1}\right)$.

Table 23

NOT REPRODUCIBLE

Legend: 1-- menp; 2-- macemp; 3-- wtheor;
 m^{ac} theor
It is clear from Table 23 that $D_{\max }=m^{a c_{e m p}}-m^{a c}$ tree $=19$. In this case D is expressed in percentages, but to calcalculate λ it is necessary to express D in frequency fractions, that is, to divide D by the sampling scope n.

Then $\lambda=D \sqrt{n} / n=D / \sqrt{n}$.
The sampling size $\mathrm{n}_{1}=706$. The calculated

$$
\lambda_{1}=\frac{10}{\sqrt{60}}=0.713 .
$$

We find $P_{1}(\lambda)=0.681$ irom the table of $P(\lambda)$ values for $\lambda_{1}=0.713$. Since $P_{1}(\lambda)>0.05$, then we must take the agreement between the second pair of empirical and theoretical distributions as good.

In this way the A. N. Kolmogorov criterion also confirms the agreement between empirical and theoretical distributions.

16. Conclusions on the Statistical Correlation of Tree Spacing Distribution in Tree Stands

This examination of empirical of empirical and theoretical distributions and the derivation of the function of theoretical distribution of spacings confirms the icentity of the distribution series and their stability, which affords adequate grounds to speak about the existence of a natural correlation of tree spacing distribution in forests. We have been convinced that the cmpirical functions of two distribution series are identical to each other, that is, $F_{1}(I)=F_{2}(I)$. It has also proven to be the case that theoretical distribution functions agree well with empirical functions and with each other, that is, $F_{1}\left(w_{1}\right)=F_{1}\left(w_{2}\right)=$ $=F_{1}(1)=F_{2}(1)$. Small variations in frequency fractions of empirical distribution series about the theoretical distribution function are wholly expected for any statistical correlation, all the more so for sampling distribution series.

In the general population, the distribution of spacings will ultimately coincide with the theoretical distribution function $F(w)$ given the very essentials of investigating mass random phenomena.

Tible 24 lists values of frequency fractions expressed in percentages for each interval of all four distribution series, that is, two empirical $F_{1}(1)$ and $F_{2}(1)$ and the two theoretical series $F_{1}\left(W_{1}\right)$ and $F_{1}\left(W_{2}\right)$ corresponding to these, and also the empirical $F_{\text {samp }}(1)$ obtained on the basis of small sampling (Table 10).

It is clear from Table 24 that even $F_{\text {samp }}(1)$ obtained from small sampling has good agreement with the rest of the distribution series for the main intervals.

Figure 21 shows the integral curve of the normalized normal distribution theoretical distribution $F_{1}\left(w_{1}\right)$ and the empirical distribution curves $F_{1}(1)$ and $F_{2}(I)$ constructed from cumulative frequency fractions. In this ifgure, the good agreement between all distribution curves is particularly graphic and distinctly evident.

Since the theoretical distribution functions $F_{1}\left(W_{1}\right)$ and $F_{1}\left(W_{2}\right)$ give identical distribution series, then we can select as the single function of distance distribution either of these two functions. Therefore, the function of the law of tree spacing distribution in a natural forest can in general form be written as follows:

$$
\begin{equation*}
F(t)=\frac{\alpha}{\sqrt{2 \pi}} e^{-\frac{1-\mu^{2}}{2 \pi^{2}}} \tag{6}
\end{equation*}
$$

After substituting numerical values for all parameters ($I_{0}=4.4$; $\sigma=1.9 ; \Delta I=0.9$), the final form of the distribution distribution function will be:

$$
\begin{equation*}
F(t)=\frac{0073}{\sqrt{2}} e^{-\frac{(1-4)^{2}}{252}} \tag{47}
\end{equation*}
$$

The statistical function (47) actually acquires a single-valued appearance, since it has only a single variable 1 , that is, tree spacing. We can, of course, in actual practice form a unique distribution series by adding two theoretical distribution series, but their frequency fractions in each interval are so close that obtaining mean frequency fraction values would lead to their variation by only 0.1 or 0.2 percent. Therefore, we can altogether limit ourselves to the distribution series $F_{1}\left(w_{1}\right)$.

Since the function of the law of distance [tree spacing] distribution that we have found is one of the forms of the normal law of distribution, it is obvious that it retains all qualities of the distribution of l relative to σ and v.

Table 24

Accordingly, the distribution of 1 for known σ and v rotains the ratios shown in Tuble 25.

However, the distribution series in intervals of the mean tree spacing is morn convenient, since to discover the percentage of given distances in a forest, it suffices to determine only the mean distance, then to use the ratios in Trble 25 it is further necossary to determine or v, but this is too laborious, while in this case also we get from Table 25 vastly less detailed information on the percentage ratio of distances than from the distribution series of $F_{1}\left(w_{1}\right)$.

In conclusion, $\because e$ note that the distribution scries $F_{7}(w)$ will be valid for mature stands growing under ordinary, normal conditions and with variance $v=40$ percent. There are as yet no grounds to assert definitively that this series will be retained with precision in young stands as well as in forests with habitat conditions sharply differing from ordinary (soil-climntic and geographic), since we do not have available to us large enough amounts of experimental data. Therefore, it is required to conduct additional experimental studies for these forests; these investigations will afford a refinement of the parameters of the statistical function of tree spacing distribution.

Since intervals of the distribution spacing series are taken independently of specific values of the mean spacing, then by setting any mean l_{0} we can calculate the distribution for any spacings 1 , which in fact has been done in Table 26 for mean spacings from 2 to 15 moters.

From Table 26 it is no trouble to determine the percentage of any spacings in the forest if we know l_{0}. Lat $l_{0}=5$ meters, then the distances $1=8$ meters in the given forest will be only 7.3 percent of the total number of all spacings.

It is clear from the distribution series that 49.2 percent of all spacings are less than I_{0}, and 50.8 percent - greater than I_{p}, that is, all spacings in the forest will be divided into two equal parts.

Distances equal to $1.2 I_{0}$ and smaller prove to amount to about 75 percent, which is of weighty practical importance for estimating traversibility of the forest, since we can with a probability close to unity assert that in 75 cases out of 100 we will encounter precisely such distances in moving through the given forest.

GRAPHICS
 NOT REPRODUCIBLE

Figure 21. Integral curves of tree spacing distribution. F_{1} and $F_{2}=$ empirical, $F=$ thenretical.
Legend: l -- wacc

Thus, for example, in a forest tract with mean $l_{0}=$ 6 meters, in 75 out of 100 cases we will encounter tree spacings equal to 7.2 meters and less, which gives a good idea about the traversibility of the particular forest.

Table 26, as was show in section 38 , is in need of refinement for small and large tree spacings.

The correlation of tree spacing distribution affords the possibility of solving many practical problems.

The scientific importance of discovering the statistical correlation of tree spacing distribution in natural forests needs no comment, for fiscovering any law of nature

GRAPHICS NOT REPRODUCIBLE

introduces a definite contribution to understanding correlations of our material world. Today a new correlation has been established in forestry (forest appraisal) and topography along with earlier discovered correlations of the distribution of trees by thickness, height, and other features. This once again confirms the principles of materialist dialectics on the universal interrelatedness of phenomena and the accessibility of the world to our cognition.

In topography, cartography, and forest appraisal the law of distance distribution affords a stable scientific and theoretical basis for practical methods of determining mean distances in forests and from aerial photographs.

In forest appraisal the correlation of distance distribution, along with solving purely scientific problems with respect to study of the forest as a plant comminity, can be employed also in arriving at methods of determining timber stand reserves. However, it appears worth while to conduct experimental studies on refining the parameters in the function of tree spacing distribution in several other zones and other forest age classes.

From the scientific and practical points of view the distribution of tree spacings and spacings between any other plants is intimately bound up with how the plants are arranged in the particular locality in their natural development under the effect of the many factors of the site.

Accordingly, several assumptions on the types of tree (plant) location and the probable types of distance distribution corresponding to them are of interest.

Theoretical treatment of this separate research area bears practical importance in elaborating principles for using the distribution curves and their main parameters as indicators of site conditions (for example, soils, groundwater mineralization, etc.). These problems are taken up in Chapter 10.

STATJSTJCAL CORHELATIONS OF DTSTRIBIJTION OF
TREBS IN STANDS BY TJJCHNESS, IUEGITT, AND CRO'N DTANETERS
17. Correlation of Distrilation of Trees by Thickness

Correlation of tree distribution hy thickness has been studied by Russian and foreign foresters since the end of the last century.

The German professor iveisse studied the problem of mean tree diameter in forests. He found that the tree that is average in thickness will divide all trees in the forest into two approximately equal parts -- thinner (57.5 percent) and thicker (42.5 percent) than the mean tree. This correlation was then confirmed for almost all tree species.

At the end of the last century the Hungarian professor Fekete investigated the correlation of tree distribution by thickness in spruce stands and drew up a table of the percentage ratio of trees by thickness, starting with the thinnest tree in the forest.

The Austrian forester Schiffel expressed tree diameters in fractions of mean thickness and called these variables reduction numbers. He compiled a table of tree distribution by thickness with an interval of ten percent (from the thinnest to the thickest tree in the forest).

The most extensive theoretical generalization about the correlation of tree digtribution by thickness were made by Professor N. V. Tret'yakov [55, 54] and by A. V. Tyurin [57, 58]. A. V. Tyurin examined distribution series relying
on data of test stations in Switzerland, Sweden, Germany, Austria, Finland, and Russia for young and old forests. As a result of the experimental distribution series of trees by natural thickness classes that he drew up, Professor A. V. Tyurin concluded that the pattern of distribution of trees by thickness depends neither on the species nor on the site class, but on the stand occupancy and only in part does it depend on forest age, while depending strongly on maintenance fellings [58].

In his study [57], A. V. Tyurin observed that the law of distribution of trees by thickness applies to all forests he investigated within the USSR and within countries of western Europe. He also held that this law in general applies to young, mature, and over-mature forests [57].

In the study [58], A. V. Tyurin presents experimental distribution series for thin-stem, moderate-stem, and thickstem stands.
A. V. Tyurin constructed a distribution curve from experimental distribution series. The graph of the curve is suggestive of the normal distribution curve. As a result, he concluded that distribution of trees by thickness is expressed by the normal Gauss-Laplace curve. We must, however, note that Professor A. V. Tyurin did not determine the theoretical curve of the function and in his works does not der ive equations of this function. Therefore, any conclusion of the similarity of the experimental tree epacing distribution series with the normal distribution is essentially correct, but theoretically has not been proven. As far as we know, the literature on sylviculture and forest appraisal in general does not contain the derjvation of the equation of the function of the distribution of trees by thickness. The correlated series of distribution of trees by thickness, validated by Professor A. V. Tyurin, is given in Table 27.

Table 27

$$
\begin{array}{ccccccccccccccc}
k\left(d_{(1)}^{\infty}\right) & 0,5 & 0,6 & 0,7 & 0,8 & 0,9 & 1,0 & 1,1 & 1,2 & 1,3 & 1,4 & 1,5 & 1,6 & 1,7 \\
f \% & 0,7 & 3,5 & 9,5 & 16,1 & 18,4 & 18,1 & 13,1 & 8,4 & 6,3 & 3,3 & 1,5 & 0,5 & 0,1
\end{array}
$$

It is found that in a iniform stand the highest percentage of trees are of a thickness close to the mean value. Trees thinner than the mean diameter are encountered in the amount of 57.25 percent, and those thicker -- 42.75 percent. The diameter of the thickest tree is $1.75 \mathrm{~d}^{0}$ tree, and the thinnest -- $0.5 \mathrm{~d}^{0}$ tree.

Further, Professor A. V. Tyurin calculated the sums of cross-sectional areas of trees and obtained the following percentage ratio of cross-sectional areas: trees thicker than the mean tree amounted to 40.35 percent, and those thinner -- 59.65 percent of the total of the cross-sectional area. This ratio is important in determining yield by approximate methods, since the basic yield is made up of trees close to dotree and larger than dotree, that is, trees of the main canopy, the projection of the upper part of which is jmaged on aerial photographs.

For topographic cartography, we must take cognizance of the distribution of trees by thickness in developing methons of determining mean tree thickness in forests and from aerial photographs, and also in determining correction coefficients in mean tree spacings measured on aerial photographs. Table 28 has been compiled on the basis of the correlation of distribution of trees by thickness. This table allows us to find the percentage of trees of a specified thickness diree from the known mean thickness dotree in the given forest tract for d^{0} tree values from 10 to 40 cm at intervals of 2 cm and with a certain amount of smoothing of dtree to whole centimeters.

Let us assume that the mean tree thickness found in the field or from aerial photographs, $d^{0}{ }_{m}=20 \mathrm{~cm}$, and we wish to know the percentage of trees of thickness $\mathrm{d}_{\text {tree }}=18$ cm. It is clear from Table 28 that there will be about 18.4 percent of such trees in the stand.
18. Correlation of the Statistical Functions of Tree Distribution by Thickness and Tree Spacing

Careful inspection of the tree spacing distribution series reveals a closeness between the values of f percent in spacing intervals of 0.2 and in tree thickness intervals of 0.1 in the distribution series of Professor A. V. Tyurin. More detailed study of these two different distribution series revealed that the tree thickness distribution series expressed in fractions of the mean diameter shows a closeness

Legend: l -- percentage of trees of a given thickness out of the total number of stems in the forest per hectare; 2-- d^{n} tree
in value of f percent with the tree spacing distribution sefries expressed in fractions of the mean sparing. Table 29 lists distribution series in lItre and in l. By comparing the values of f_{d} tree percent and f_{l} percent, the similarity of the series shows up easily.

Table 29

0

(2)

Legend: l -- $k\left(d^{n}\right.$ tree $) ; 2--f_{\text {dree }}$
The question naturally arises: is this coincidence of numerical values f percent in the tree distribution series by $d_{\text {tree }}$ and by 1 a coincidence or a sign that there are natural correlations in the development of a forest as a plant commanita? Since each distribution series taken separately is
orderly, confirmed by experimental data, then it appears probable to assume that the similarity in numerical values of $\mathrm{f} \%$ is also not random, but a consequence of the manifestation of relationships between the main features of the tree comminity (by a logically caused process development and the stable existence of this community in nature).

The fact we discovered that there is agreement between values of f percent in intervals of 0.1 for d_{m} and in intervals of 0.2 for 1 has compelled specialists in forestry and botanists to reflect on the causes of this phenomenon.

The interrelationship of distribution series in dtree and in 1 is of interest from the mathematical point of view. The issue is that if numerical values of $f \%$ are close to each other, then it is obvious that there must be a closeness between theoretical functions of these distribution series as well. Therefore, an attempt was made, even though approximate, to find the theoretical function of tree distribution by thickness and to compare it with the tree spacing distribution function.

The literature familiar to the allthor has not been found to contain data on the statistical distribution function F(dtree). There is only a numerically expressed experimental distribution series of dtree. Field data of the forest plot No l were used for the approximational determination of the function $F\left(d_{\text {tree }}\right)$. In this plot d^{n} tree $=29.6 \approx 30 \mathrm{~cm}, \mathrm{~h}_{0}$ $=22.2$ meters, and snecies composition 6 pine 4 spruce. There were no experimental data about σ, therefore we have to determine σ from the mean variance of thickness for pines vpine $=20$ percent found by Docent V. I. Levin [3] and for birch-from N. P. Anuchin [3] Vhirch $=28.8$ percent. The textbook on forest appraisal by Professor V.I. Zakharov contains data on this question.

Taking $\mathrm{v}_{\mathrm{c}}=20$ percent, let us allow an error, for the species composition in the plot is mixed -- pine and spruce. But owing to the absence of precise data on v and σ, we use approximational data, since it was important to us to discover only a general pattern of the extent of similarity between theoretical functions $F(1)$ and $F\left(d_{t r e e}\right)$. Mean values of the intervals in dtree were taken from Table 28 for d° tree $=30$. The values of the intervals $k\left(d^{\circ}\right.$ tree $)$ and the frequency fraction w_{i} were adopted from the distribution series of Professor A. V. Tyurin.

Given this set of conditions, we get
and $\Delta_{d} / \sigma=3 / 6=0.5$, since the intervals $\Delta_{d}{ }^{i}$ are given every 3 cm (cf Table 28).

Now we have all the data we need to calculate an approximate theoretical distribution function

Legend: $1-d_{\text {tree }} ; 2--d^{2}$ tree
Table 30 lists calculations of the function $F\left(d_{\text {tree }}\right)$.

Legend: 1-- d^{n} tree; $2-d^{j}$ tree; 3 -- $d_{\text {tree }}$
After substituting parameters in formula (48) we obtain the theoretical function of the distribution of trees by thickness

Legend: $m=$ [subscript] tree
Tables 30 and 26 were used to draw up Table 31 in which the f percent values are listed for theoretical functions $F(1)$ and $F\left(d_{\text {tree }}\right)$.

Tahle 31

It is clear from Table 31 that thenretical functions $F(1)$ and $F\left(d_{\text {tree }}\right)$ are extremely close in value, in spite of the fact that $F\left(d_{\text {tree }}\right)$ is determined from apmroximational distribution parameters. It is ohvions that if there are precise parameters of the function of distribution of trees by thickness available, there will be an identical theoretical function of tree spacing distribution, that is, F(dtree) $F(1)$. Consequently, the assumption that there is a consistent similarity between the functions $F\left(d_{\text {tree }}\right)$ and $F(1)$ will have some basis. iVe must hold that further investigations of this important and interesting question will allow ins to speak: more confidently about similarity and interrelationships of the distribution functions $F(1)$ and $F\left(d_{\text {tree }}\right)$ and the factors underlying this similarity.

The theoretical function of the distribution of the trees by thicl-ness (49) that we defined in "able 3^{3} can serve as the first approximation to the mathomatical expression of the experimental distribution series.
19. Correlation of Tree Distribution by lieiaht

The correlation of tree distribution hy height established by forestere for homogenents stands is expressed by ar asymmetrical distribution curve. Prnfessors schiffel, N. V. Tret'yakov, A. V. Tyur in, and N. V. iavidov, Docent V. 1. Levin, and others have been encaged in clarifying and explnring this correlation.

Table 32 gives a series of tree ristribution by height establisher by Professor M. V. Davirlov.

Table 32
$k\left(h_{0}\right) \quad 0,7250,9190,8700,91009450.970 \mid 0001020105011001140$ $f \begin{array}{llllllllllll}f & \% & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 10 & 80 & 90 \\ 100\end{array}$

The intervals of the series $\mathrm{k}\left(\mathrm{h}_{\mathrm{n}}\right)$ are expressed in fractions of mean height. In forest appraisal these intervals are called reduction numbers for height and are arrived at by divining eiven heights by the averace stand height. Setting any mean height values, we can obtain the values of all heights encountered in the aiven forest section by multiplying $\mathrm{t}:(\mathrm{h})$ by the given h_{n}.

In onntrast to the series of tree distribution by height, M. V. Davidnv gives the number of trees of a given height out of the total number of trees in the forest plot not for each interval $k\left(h_{n}\right)$ considered senarately, but in the form of cumilative frequencies expressed then in nercentares f percent.

Starting with the lowest trees to the highest, for each gradation of the series the percentage of trees is summed up and this overall percentage f percent is then listed in Table 32. Thus, for example, trees that are h_{n} in height and shorter will represent 60 percent of all trees in the plot, but trees that have $h=0.87 \mathrm{hn}$ and smaller will account for only 20 percent. All trees from the lnwest the the highest total 100 percent. Starting from the distribution series, the highest tree in the stand has $h_{\max } \approx 1.15 \mathrm{~h}_{\mathrm{g}}$, that is, 15 percent abnve the mean tree hejaht; and the shortest tree has $h_{\min } \approx 0.7 \mathrm{~h}_{\mathrm{n}}$, that is, 30 percent less than the mean tree height.

The correlation of tree distribution by height has quite a bearing on the proper apprach to determining average heights in forests and especially from aerial phntocraphs in which it is trimarily the upper section of the forest canopy that shnws in. For these same purposes it is important to know the variance of tree heights. Based on data of Professor V. F. Zakharov [3] and Professor A. K. Kondrat'yev, the variance of the heights of pine forests $v_{\text {pine }}=6-8$ percent, and the variance of the heights of hirch stands, from data of Professor N. P. Anuchin [3], is Vhirch $=8-10$ percent. A relatively small variance of height allnws us to determine the mean forest height from aerial photngraphs with adequate precision. However, we mist always bear in mind that the carlier listed v values rolate to homocenesus stands. nbvinusly, in non-homngenenns and mixed stands variarce of height will be somewhat higher than 10 percent (v will increase in strongly pronnunced double-story stands).
ro solve practical problems it is imortant to Inow the distribution of heights for these different mean height
values. For this parpose Table 33 has been drawn up, from which one can determine the percentage of trees of a given height for a known mean height h_{0} of the forest plot.

Table 33

Legend: 1-- nverall percentage of trees of a given height of the thtal number of stems in the forest plot

Scientifically, in our view it is necessary to conduct studies on determining the theoretical function of tree distribution by height and its correlation with theoretical functions of tree distribution by thickness and tree spacing.

If in approximate tarms we take the normal distribution as the theoretical function of tree distribution by height, then we can obtain approximate relationships between $h_{\text {max }}, h_{0}, \sigma_{h}$, and T_{h} that are of practical importance for the sampling method of determining appraisel indexes in the for st and from aerial photographs. Given these assumptions

$$
\begin{equation*}
h_{0} \approx h_{\max }-3 c_{h} \text { am } h_{0} \approx h_{\max }-3 \beta \beta_{h} \tag{C0}
\end{equation*}
$$

Legend: 1 -- or

From the empirical distribution series

$$
\begin{equation*}
h_{\max } \approx 1,15 h_{0} \text { usn } h_{\max } \approx 1.2 h_{0} . \tag{51}
\end{equation*}
$$

Legends 1 - or
Then

$$
\begin{equation*}
e_{h} \approx 0,05 k_{0} \approx 0,01 v_{h} h_{0} \mu() \alpha_{h} \approx 0.057 h_{0} . \tag{52}
\end{equation*}
$$

Legend: 1 -- or
If we determine h_{0} in the forest or from aerial photographs, then we can obtain approximate values of σ_{h} and Fh_{h} of the stand from the expressions (52).
20. Correlation of Tree Distribution by Crown Diameters

Naterials of research on sizes and forms of croms of different tree species are presented in works by Professors G. G. Samoylovich [47, 48, 50, 51, and 54], N. I. Baranov [4], and other authors.

Study of the correlation of tree distribution by crown diameters is of practical interest in determining crown closure from aerial photographs with the aim of estimating nccupancy and yield of stands as well as the concealing properties of forests.

Lnowledge of the series of distribution of trees by crom size is necessary also to determine tree thickness with the aid of tables of the correlational tie between height, thickness, and crown diameter. It is also wholly possible to elucidate multiple correlation between values D_{c}, h, and dree, which will allow us to determine tree thickness by D_{c} and h measured on aerial photographs.

The stidy [14] presents the suggestion that tree distribution by crown size is close to the normal distribution. However, it has not subsequently been able to derive the function of crow distribution owing to the lack of materials on measurement of D_{c} in localities.

Obtaining experimental data that can be considered as large samplings with a volume of up to 300 measured croms made it possible to determine a model series of tree distribution by crown size and the approximation of theoretical function of tree distribution by crom diameter.

Field measurements of the crowns of 262 trees on the forest plot No 1 (compositions first story 6 pine 4 spruce,
second story 10 spruce, occupancy 0.81 , age 60 years, and site class 1) were used by us to determine the crown distribution function.

Table 34 lists counts made of crowns at intervals expressed in fractions of the mean crown diameter, calculations of main crown diameter, mean square deviation, and variance of crowns. Table 35 lists calculations of the thenretical function of tree distribution by crom size, that is

$$
\begin{equation*}
F\left(D_{n}\right)=\frac{\Delta}{\Delta \sqrt{2 \pi}} e^{-\frac{\left(D_{n}-D_{n}\right)^{2}}{\Delta}} \tag{53}
\end{equation*}
$$

Legend: $K=$ [subscript] crom
The theoretical function of tree distribution by crown diameter is as follows:

$$
\begin{equation*}
F\left(D_{k}\right)=\frac{0007}{\sqrt{2 \pi}} e^{-\frac{\left(D_{k}-30\right)^{2}}{22}} \tag{34}
\end{equation*}
$$

Table 34
0

GBAPHICS

NOT REPRODUCIBLE

Legend: 1-- intervals, $D_{c} ; 2$-- frequency, m; 3-- frequency in percent
The calsulated values are as follows: $n_{c}=3.5, \sigma_{c}$ $= \pm 1.05$, and $\mathrm{v}_{\mathrm{c}}=30$ percent.

Figure 22 presents the curve of tree distribution hy (rown size.

From Table 36 it is clear that almost 70 percent of the croms are of a diameter close to the mean crown diameter, that is, they are included in the limits from $0.8 \mathrm{D}_{\mathrm{c}}$ to 1.2 D^{0} c.

The variance of crowns was found equal to $\nabla_{c}=30$ percent, that is, somewhat greater than was assumed. However, this coefficient ∇_{c} was obtained when taking into account all crowns (trees in the first and second storys) for a mixed forest consisting of pine and spruce. In homogeneous stands the crom variance will evidently be less than 30 percent. In practical terms, the percentage of trees that have mean crom size is close to 30 percent. More than 90 percent of the crowns are concentrated within the limits from 0.6 to $1.4 \mathrm{D}_{\mathrm{c}}{ }^{\mathrm{c}}$. The curve of distribution of crowns compared to the curve of distribution of distances proved to be more elongated upward and with a more abrupt descent toward the x axis (Figure 22).

The approximate series of tree distribution by crown size gives \& theoretical foundation for developing practical methods of determining mean DO_{c} from aerial photographs and allowing for characteristics of distribution of D_{c} in determining mean tree spacings and crown closure by the method of counting crowns along straight 1 ines.

Figure 22. Theoretical curve of crown distribution.
Legend: A -- D_{c}; B -- $D^{0}{ }_{c}$
Later studies on correlations of experimental crown distribution series were published by G. G. Samoylovici, A. Ta. Zhukov, and A. N. Polyakov (cf Chapter 1).

CHAPTAR 5

correlational functions of tree stand appraisal indICATORS
21. Remarks on Correlations and Precision of Statistical Variables

When we study the relationship between three or more variables, we are dealing with multiple correlation. The variables between which correlations can ohtain in this case are taken as the mean quantities that serve to generalize representatives of tree sets.

In each stand there are trees of different height and thickhess. In practice it is important to characterize the entire population of trees by height and thickness. To do this, the mean h_{0} and d^{0} tree are determined. Then, knowing the laws of distribution of h and d_{m}, we obtain a full idea of the heights and thicknesses of all trees in the plot.

The problem of whether there is a stable relationship between the mean h_{o} and d^{0} tree in different plot sections has arisen. If such a relationship holds in nature, then obviously we can find its quantitative expression in the form of mathematical equations, and from the equations calculate tables of numerical values of height and thickness. The presence of a quantitatively expressed relationship between two variables has valuable practical advantages, allowing us instead of measuring two variables to measure just one, and to take the second one from the table of correlation betreen the two.

Successful use of aerial photographs for forest appraisal, resumption of topographic maps, and the use of
aerial methods in science and practice as a whole hinge on efforts to find correlations.

We know that a well-defined function has been observed between tree height and thickness. The first problem of research is to find a numerical expression of this function, and the second - to appraise the closeness of the relationship and the precision that this relationship can yield when determining $d_{\text {tree }}$ from measured h or D_{C}.

The third problem is determined by the practical value of drawing up the smallest number of correlation tables. The most convenient and simplest case is compiling a single table suitable in its precision for the largest number of forest types and for the greatest area in which forest tracts are located. If a single table does not ensure the desired precision, then we are compelled to prepare several tables for the biggest gengraphical zones, and then the subzones, ob?asts, and forest-plant regions. By gradual approximation, we can find the smallest number of tables suitable for the largest territory of forest expanses.

This line of research at present is possible because in forest appraisal enormous experimental material has piled up over many decades and numerous tables of the growth pattern of normal stands have been compiled in which data on height and thicikess of trees are given for pure homogeneous tands.

Tables of growth pattern afford probable heights and thicknesses for each species with a hreaisdown sometimes into seven site classes. They have been dram up only for a number of oblasts of the USSR. Finally, foresters and appraisers are not wholly unanimous in apprajsing tables of stand growth rattern (local and universal), and all the more so in the methods by which they were compiled, for the concept of normal stands that underlies them has been placed in serious doubt scientifically and practically.

In forest appraisal appraisers determine height and thickness not fr \because growth pattern tables, but from field measurements in the forest. In field topographic work the same thing is done. But now we can from aerial photographs measure just the height, and read off the thickness from correlation tables which we had to prepare earlier. This requires that we find a correlation equation of the type $h=F\left(d_{m}\right)$ from experimental data of measurement of mean tree heights and thicknesses in different forest plots.

However, before we find the correlational equation a number of remarks about the precision of the tables needed in practice and abcut the actual concept of precision of statistical variables are in order.

The concept precision of determination of mean statistical variables $h_{0} d^{0}$ tree differs from the ordinary concept of measuring height or thjckness of a given tree.

The mean h_{0} and d^{0} tree are statistical characteristics of a set of trees. They are only parameters of a consistent distribution series of trees by height and thickness. Therefore, precision of h_{n} and ${ }^{0} 0^{0}$ tree determination is more correctily the precision of determination of the distribution series parameters.
ive can measure any given tree with a high degree of precision dom to millimeters, but if the selected tree differs sharply from the mean in height and thickness, then the highest precision in measuring this tree does not amount to anything, since it is not a parameter of the distribution series. Sonsequently, the main concern is to faithfully determine precisely the mean height and thickness that most fully reproduce the distribution series of the given set of trees with different heights and thicknesses. If the mean d^{0} tree will be improperly selected, imprecisely, then the distribution series will deviate sharply from the actual. Thus, precision in determining the mean dotree, paramountly and ahove all, must be estimated by the deviations of the two distribution series obtained for different mean d^{0} tree values. For example, let the true (precise) mean $d_{\text {tree }}=20 \mathrm{~cm}$, and the mean ${ }^{0}{ }^{0}$ tree determined in the forest plot $=22 \mathrm{~cm}$. We will try out here two distribution series of trees by thickness for ditree $=20 \mathrm{~cm}$ and d^{0} tree $=22 \mathrm{~cm}($ Table 37).

Table 37

It is clear from Table 37 that a $2-\mathrm{cm}$ error in determination of the mean thickness gives a different ratio of
trees by thickness. When d^{0} tree $=22 \mathrm{~cm}$, the number of trees with greater thickness is increased. From the standpoint of determining the yield, th is leads to its overstatement, and from the viewpoint of estimating traversibility, an impression is given of greater obstacles to vehicle passage than is the actual case.

Thus, the problem of precision in determining dotree is bound up with permissible precision in solution of practical problems, for example, precision in determination of timber yield, etc.

In estimating permissible deviations we must also bear in mind the divisibility of dividing up plots by value of d° tree. In the course of ocular appraisal, it is customary to differentiate plots in which the difference between mean d^{0} tree is greater than 4 cm .

Finally, in estimating the precision of correlations, we must start from the physical sense of the statistical variables and use stochastic methods of estimating precision. If, for example, the correlation table gives practically acceptable deviations for most forest plots with a probability close to unity, then this is sufficient for us to use the deviations in actual practice, for we cannot expect more from statistical variables since it is useless to require that nature itself not provide the relationships and correlations under study as being statistical in character.

Taking into account the foregoing, studies were made aiming at finding the correlation equation $h=F\left(\begin{array}{c}\text { tree }\end{array}\right)$.
22. Determination of Correlation Equation Relating Thickness and lleight of Trees

Actual measurements of mean heights and thicknesses cif trees in 297 forest plots mainly in Moscow and Tul'skaya ob.lasts served as the basis for determining the correlation equation $h=F\left(d_{\text {tree }}\right)$.

We will designate the original mean heights H° and the mean thicknesses d^{0}.

Let us group H° and do in distribution series with intervals $\Delta H=2$ meters and $\Delta d=2 \mathrm{~cm}$. We denote by H and d mean interval values. To calculate the equation $H=F\left(d_{\text {tree }}\right)$, we present the distribution series in the form of a correlation network given in Table 38.
Table 38

All the original data 1° and d° are located in the cells of the network which are determined by the intervals II and d. As the result of summing in the units in each cell, we obtain the frequency of the distribution series in 11 and d. Thus, for example, in the intervals $H=4$ and $d=4$, the frequency $m=5$. Since we are searching for the function H $=$ F(dree), then first we obtain the conventional mean height values

$$
\begin{equation*}
\bar{H}_{d}=\frac{2 / / m}{m d} \tag{55}
\end{equation*}
$$

for each interval d.
The overall frequency m_{d} for each interval d and also the calculated Γ_{d} and d are listed in Table 39.

The conventional mean $\bar{\Pi}_{d}$ values calculated from formula (55) are listed in Table 40.

Table 30

In the general case, the problem reduces to determining the equation

$$
\begin{equation*}
H=a_{0}+a_{1} d+a_{2} d^{2} \tag{60}
\end{equation*}
$$

The parameters a_{0}, a_{1}, and a_{2} of equation (56) are usually sought for under the condition of minimum total of squares of the deviations of theoretical curve from empirical curve formed by the values H_{d} and drom Table 39.

Solving the equations for large values of Π_{d} and d is extremely involved. To simplify the calculations, we replace the variables H and d by their deviations from the mean arithmetic values, that is, $H=H_{0}$ and $d-d_{0}$, which in turn we divide by the intervals $\Delta H=2$ and $\Delta d=2$ of the distribution series, which ultimately gives us small values

GRAPHICS NOT REPRODUCIBLE

$$
\begin{align*}
& H^{\prime}=\frac{H-H_{0}}{\Delta H} ; \\
& d^{\prime}=\frac{d-d_{0}}{\Delta d} \tag{57}
\end{align*}
$$

The values of H^{\prime} and d^{\prime} are given in Table 38. As a result of these simplifications, we obtain new values for the intervals, that is, H^{\prime} and d^{\prime} instead of H and d.

The entry of the new values H^{\prime} gives rise to the need to calculate new conventional mean $\mathrm{H}^{\prime} \mathrm{d}$ values for each new d^{\prime} value from the following expression:

ii. T (${ }^{5}$

Calculations of $\mathrm{H}^{\prime} \mathrm{d}$ for each d^{\prime} interval, using formula (58), are listed in Table 41.

URAPHICS
 NOT REPRODUCIBLE Table 41

Table 42 gives calculated values of $F^{\prime} d^{\prime} d^{\prime}$, and irequency $m_{\text {d }}$ from which we will now solve an equation of the (59) type, but with small values of $\Pi^{\prime} d$ and d^{\prime} instead of large d and \bar{H}_{d}.

Table 42

\bar{H}_{d}^{\prime}	\cdots	- 5	i. ${ }^{5}$	--3,8	- 2.6	1.1	-0.8	1.15	1.7	$+10,9$
d^{\prime}	--9	-		-(i)	-.i	-4	-3	,	1	0
m_{d}	\checkmark	-		33	2	2.4	$\cdots \times$	\cdots	11	' 1
\bar{H}^{\prime}	+1,5		$\because \cdot$; 3.6	+3,9	$+4.5$	1.3	0	14.3	
a	1	\dot{z}	,	4	\%	6	,	-	'	
m_{d}	3	18	:	12	9	1		0	1	

GRAPHICS
 NOT REPRODUCIBLE

According tu familiar rules, to obtain parameters a, b, and c of the correlation equation
bd
it is necessary that

$$
\begin{equation*}
\because \quad \text {... } \quad, \quad l+b d^{\prime} \ldots \ldots \quad=\quad=111 . \tag{ti}
\end{equation*}
$$

and the partial derivative

$$
\begin{equation*}
\because \quad \frac{A}{d!}=U ; \quad \frac{!!}{r}=0 \tag{fis}
\end{equation*}
$$

After differentiation and transformation, we obtain a system of equations (62), from which we then will determine the coefficients a, b, and c.

$$
\begin{align*}
& a \sum m_{d}+l \sum m_{d} d^{\prime}-c \sum m_{d} \quad \sum m_{d} \bar{H}_{d}^{\prime} ; \\
& a \sum m_{d i}-i \sum m_{i j} d+c \sum m_{d} a^{\prime \prime} \quad \sum m_{d} d^{\prime} \bar{H}_{d}^{\prime} \\
& a \sum m_{d} i^{\prime}+b \sum m_{d} d^{\prime \prime}+c \sum m_{d} d^{\prime}-\sum m_{d} d^{\prime} H_{d}^{\prime} . \tag{62}
\end{align*}
$$

iie know the variables $m_{r l}$, d^{\prime}, and $\Pi^{\prime} d$ from Table 42. 'i'herefore, to solve the system of equations (62) it is required only to calculate di2, d^{3}, and $d^{\prime 4}$, and we nbtain the remaining values via multiplication hy m_{c}, d^{\prime}, and $\Pi^{\prime}{ }^{\prime}$ a and subsequent summing up of the products. Table 42 gives the corresponding calculations on the basis of which the system of equations (63) with unknown coefficients a, b, and c was obtained:

$$
\begin{gather*}
297 a-454 b+554 c=-95 ; \\
-134 a+5594 b-17632 c=3545 ; \\
509 a-17632 b+225038 c=-10547 . \tag{63}
\end{gather*}
$$

Solving equations (63) in the usual way, we find the coefficients a, b, and c.

Dividing all the equations by the coefficients of a, we get

$$
\begin{gather*}
a-1,53 b+18,88 c-0,32 ; \\
-a+12,32 b-38, \beta A c=7,82 ; \\
a-3,15 b+40,26 a-1,89 . \tag{64}
\end{gather*}
$$

Let us subtract the first equation from the second and third and arrive at two equations with two unknowns

$$
\begin{align*}
& -10,79 b+20,016-7,5 ; \\
& -1,626+21,4915-1.57 \tag{65}
\end{align*}
$$

GRAPHICS NOT REPRODUCIBLE

Dividing equations (65) by the coefficients of b, we get

$$
-11,37 c=+0,27
$$

from whence

$$
\begin{equation*}
c=-\frac{0.27}{11.57}=-0,023 \tag{66}
\end{equation*}
$$

Substituting the numerical value of c in equation (65), we find

$$
-1,62 b+21,42(-0,023)=-1,57
$$

from whence

$$
\begin{equation*}
b=\frac{108}{102}=0,67 . \tag{67}
\end{equation*}
$$

Substituting numerical values of c and b in equation (64), we get

$$
a-1,03(0,67)+18,83(-0,023)=-0,32
$$

from :hence

$$
a=1.45-0,32=1,13 .
$$

Substituting the numerical values of the coefficients a, b, and c into equation (59), we will determine the soughtfor correlation equation relating height and thickness of trees, that is, $\quad H^{\prime}=1,13+0,67 d^{\prime \prime}-0,023 d^{\prime 2}$.
:Te now convert from I^{\prime} and d^{\prime} to $I I$ and d from equations (57), that is,

$$
\begin{equation*}
H=\frac{H-H_{0}}{\Delta W}=\frac{H-18}{2} ; d^{\prime}=\frac{j-\alpha_{0}}{2}=\frac{d-2 n}{2} . \tag{69}
\end{equation*}
$$

Then equation (69) takes on the following form:

$$
\begin{equation*}
\frac{H i-i}{2}=1,13+0,62\left(\frac{d-2}{2}\right)-0,003\left(\frac{d-2}{2}\right)^{2} . \tag{70}
\end{equation*}
$$

ive can use equation (70) to calculate the table of the relationship between H and diree. For example, when dtree $=22$, we obtain $I I=20.26$, and when dtree $=10$, $I I=$ rolating II and d it is best to find a correlation equation a final form. After the appropriate transformations, we find the following equation:
$H=1.17 \mathrm{C}$-0.0ise.
Table 44 of tho correlation between h and $d_{\text {tree }}$ has been calculated from equation (71).

The curve of the correlation between h and $d_{\text {tree }}$, based on data in Table 44, is show in Figure 23. The theoretical and empirical curves almost fully agree. Since out of 296 forest plots we only have three plots with H greater than 28 and dtree greater than 36, then naturally the values of H and dtree calculated from equation (71) exceeding these values will essentially be extrapolated.

GRAPHICS

PEPRODUCBLETE Tan ow

Legend: $m=$ [subscript] tree

Equation (71) and rable 44 reveal an almost complete cessation of increase in height in an old forest, while the thicliness still continues to rise. This phenomenon has in fact been observed in actial forests, which is accountable biologically, since further increase in height produces unstable tree condition, while an increase in thickness prnmotes stability. However, we can anticipate for forests in the northern and Siberian zones where the habitat conditions differ sharply from the contral-iuronean zones that the extrapolated II and dtree will according to equation (71) be close to the actual ratios of tree height and thickness, for under those conditions on attainment of a specific Mat an advanced age height remains almost constant, but thickness continues to rise, which is in fact expressed by the equatinn (71) $\mathrm{H}>29$ meters and $\mathrm{d}>40 \mathrm{~cm}$.

The correlation equation (71) and Table 44 have been determined for a single zone of small-leaf and coniferous forests of the Moscow and T'ul'skaya nblasts. Correlational equations can be derived by the methor here described for any nther zones and tree stand compositions.
23. Determination of the Correlation as a Measure of Relatedness

To appraise the closeness of the relationship of the rectilinear function, we calculate the correlation coefficient, and to estimate the relatedness of the curvilinear function we determine the following correlation ratio

$$
\begin{equation*}
\eta_{1} \cdots \frac{\sigma_{0}^{\sigma} \bar{H}_{J}}{} \tag{72}
\end{equation*}
$$

If $\eta=0$, then there is no correlation between II and $d_{\text {tree }}$.
If $\eta=1$, then a functional relationship does exist between H and dtree.

GRTHCS
 NOT REPRODUCIBLE

Figure 23. Theoretical (b) and empirical (a) curves of the correlation between tree height and thickness

If η is close to unity, then this evidences that there is a satisfactory and close curvilinear relatinnship between tree height and thickness. To apprajse the correlation equation (71) we have derived, we have to determine what the value of the correlation ratio is. For this purpose, we will calculate the mean square deviation of conventional mean height Π_{d} and the complete mean square deviation of heights H, that is,

$$
\begin{align*}
& \left.{ }^{0}{H_{0}}=\sqrt{V m_{\mu}} \bar{H} \bar{H} \overline{H_{0}}\right)^{2} . \tag{73}
\end{align*}
$$

where

Then

$$
\begin{equation*}
H_{0}=\frac{\sum m_{n} H}{N}=H_{0} \frac{\sum H^{\prime} m_{n}}{\sum m_{n}} \Delta / H \tag{75}
\end{equation*}
$$

$$
{ }^{\circ}{H_{0}}_{0}-\Delta H \sqrt{\frac{\sum H^{\prime} m_{n}}{\sum^{m_{i}}}-\left(\frac{\sum H^{\prime} m_{n}}{\sum m_{n}}\right)^{2}}
$$

$\mathrm{c}^{\mathrm{D}} \times \mathrm{mTS}$
 NOT ReirnùduCible

Formilas (75) and (76) are very convenient in simplifying calculations, since they are expressed by small values of the intervals $H^{\circ}=\left(H-H_{n}\right) / \Delta H$. We already have the values of H^{\prime} and mac in Table 38 .

Table 45 ists calculations of $\sigma_{H_{0}}$ from formula (76).

Legend: $A-m_{a c} ; B-H^{\prime} m_{a c c} ; C-H^{1} \mathbf{m}_{a c}$
We find from formula (75) and Table 45

$$
H_{0}=18+\frac{95}{2!77} \cdot 2=17,36
$$

since $H_{0}=18$, and $\Delta H=2$.
Te find the following from formula (76) and Table 4.5:

$$
{ }^{0} \bar{H}_{0}-2 \sqrt{\frac{2049}{297}-\left(-\frac{19}{29}\right)^{2}}=5,94
$$

We calcuiate the varianle EFi from the followinc formula:

$$
\begin{equation*}
{ }^{A_{d}}=\sqrt{\frac{1}{N} \sum m_{d} H_{d}^{2}-\bar{H}_{0}^{2}} . \tag{78}
\end{equation*}
$$

We know the value of $\bar{H}_{0}, 17.36$, and the valuen of H_{d} have been calculated earlier and are given in Tahle 39. Table 46 lists calculations of the remaining indexes in formula (78).

GRAPFICS NOT REPRODUCIBLE Table 46

\cdots	${ }^{1}$	π_{6}	$\pi{ }_{3}^{2}$	$m_{d} H_{d}$
1	\%	4.0	16.1	80.11
$\underline{2}$	11	6.3	39.7	476.4
3	11	\bigcirc	828	910,8
1	3	10.1	$106:$	3501.3
5	:!	130	1 in 0	35490
¢	14	14,3	204.5	$490 \mathrm{H}, 0$
7	20	16.4	209.1	5380.0
\wedge	is	18.1	327.:	12 448,5
4	19	19,5	380.1	7223.4
11	11	10.9	396.0	5544.1
$1!$	20	20.9	436.x	11356.4
11	is	21.7	4711	8476, -
11	\because	23.1	5.3%	1120.6
11	1	25.2	6i35	7640,0
17		25.4	6tis,	5990,1
$1 i$	$!$	27.1		2916.0
17	\%	26.8	Tis,	502 i .1
1		n	, "1	0,0
! 1		3:	H: ${ }^{\text {a }}$	2827.\%
	2			9949

$\bar{H}_{0}=17.36, \bar{\Pi}_{\sigma}^{2}=301.4, N=297$, and $\sum m_{d} H_{d}^{2}=99,442$ (from Table 46), therefore
and

$$
\frac{5}{N}=\frac{99442}{297}=3, \cdot 1
$$

$$
\begin{equation*}
5 \pi_{4}=\sqrt{334-301,4}=\bar{u}, 7 . \tag{79}
\end{equation*}
$$

From formulas (72), (77), and (79) we find the correlation ratio

```
Legend: 1 -- H = [subscript] accumulated [cumu-
lative]
```

The value of η is close to unity, therefore the relationship between tree height and thickness we have found in the form of equation (71) is marked by a close and high degree of correlation.
24. Multiple Correlation Between Height, Thickness, and Crown Diameter of Trees

Tree height and thickness for normal stands made up of a single species and with different site classes, are given in tables of stand growth pattern in [54]. Since forest management and forest research are conducted by relying on aerial photographs, the need to discover interrelationships between crown diameter, height, and thickness of trees has long since arisen, since from aerial photographs we can measure the first two variables, and determine tree thickness from the correlation table.

Earlier we determined the correlation equation of the function relating two variables -- h and dree. In practical terms, it is important to establish a relationship between three variables -- h, $d_{\text {tree }}$, and n_{c}, that is , tn study multiple correlation.

Professor G. G. Samoylovich determined the correlation equation relating $d_{\text {tree }}$ and D_{c} for pine groves in the mossy pine grove forest type on gradual hummocks for occupancy rates of 1.0 , site class I, and ages $80,90,100$, and 110 years [45]. Data on the ratin of D_{c} and dtree are available in studies [4, 6,54].

Professor Spurr [US] has indicated that Nash has investigated a relationship of D_{c} with dtree, but equations of this relationship are not to be found in the book [81].

We studied experimental materials, and as a result of processing these it turned out that as h is increased by 3 meters the thickness dtree increases by approximately 4 cm , while the crown diameter D_{C} increases by 0.5 meter. A Table of the values h, dtree, and D_{C}, published in the study [8], has been compiled from these data. This approximational table of the interrelationship between the three variables has been verified by field data of h and $d_{\text {tree }}$ in 111 forest tracts on the island of Sakhal in.

We took as the starting point $d_{\text {tree }}$ values, since it can be anticipated that tree thickness has been determined by the topographers with high precision.

Verification of this table with experimental data revealed that 86.5 percent of the deviations Δh did not exceed 3 meters, and only 14.5 percent of the deviations varied from 3 to 5 meters. It can be assumed that this table is

GRAPHICS
 NOT REPRODUCIBLE

more appropriate for forests in which a slowdown in growth increment with ordinary increase in thickness has been observed, that is, for tree stands in which the increase in thickness outstrips the increase in height for mature and old stands owing to special climatic and geographic conditions of the habitat. Verification of the first table by field data of h and dtree in the forests of Noscow Oblast gave satisfactory convergence of h and dtree up to $h_{0}=18$ meters, but when $h_{0}>18$ meters appreciable deviations in thickness showed up.

Later, considerably more material of field height, thickness and crown diameter measurements were tapped.

Then deriving the correlation equation (71), out of 297 forest plots there were few plots with large h and dtree values (with $\mathrm{h}>32$ and diree >38). Therefore, additional materials were resorted to, on the basis of which neceasary refinoments were introduced. Based on all these materials, an approximational relationship of D_{c} with h and dtree was established [10, 11, 13, 14].

Vith small refinements, the multiple correlation between height, thickness, and crom diameter of trees determined by the author is listed in Table 47.

Table 47

'	${ }^{4}{ }^{1 / 4}$	${ }_{\text {b }}{ }^{\text {a }}$	$\stackrel{n}{4}$	${ }_{\text {da }}{ }_{\text {d }}$	${ }^{\text {d }}$.	${ }_{\text {din }}^{\text {cin }}$	${ }^{\prime \prime}$
	4.0	0.8	16	16,0	3.0	28	3	5,4
	+0	1.0	17	18,0	3.2	9	35	5.6
'	5.5	$\bigcirc 2$	18	19.0	3.4	0	37	5,7
7	6.5	1,4	19	20,0	3,6	31	30	5,8
,	7.5	1.6	20	21.5	3,8	32	41	6,0
$!$	8.5	1.7	21	22.5	4.0	33	43	6,2
10	9.5	1.9	22	2	4.2	31	15	6,4
11	10,5	2,1	23	8. 5	4.5	35		6.6
12	11,5	8.2	8		4.7	36	48	6,8
1.	12,5	2.4	27		8.8	37	40	7,0
14	14,0	2.6	23		8.0	3	50	7,5
15	15,0	2.8	27	82	8.2			

Legend: $m=[$ subscript] tree; $k=$ [subscript]
crow

Table 47 was verified by field data measurements of h and dtree in 176 forest plots of Moscow and Tul'skaya oblasts.

Table 48 lists deviations Δ dtree of field values from table values in determination of dree from h.

It is clear from Table 48 that the correlation function in almost 80 cases out of 100 gives wholly satisfactory precision in the determination of mean tree thickness from measured height. Deviations of more than 4 cm amount to 10 percent and, as was shown, they refer to the largest h and dtree. This is evidently associated with the fact that Table 47 g ives somewhat of an understatement of dree values in stands with sizable h values and requires some refinement, in this part, that is, an increase in dtree when diree $28 \mathrm{by} 1-2 \mathrm{~cm}$ in each interval. However, by virtue of the statistical nature of the phenomena and the effect of a set of factors, we obvionsly must always anticipate a small number of deviations greater than 4 cm .

In determining dtree from field D_{C} values and Table 47, 72 percent of deviations ranging from n to 4 cm were obtained, which evidences lesser intimacy of the relationship between tree thickness and crown diameter compared to the intimacy of the relationship between tree thickness and tree height. Therefore, in determining dree from D_{C} we get lesser precision.

Then the height h was determined from field dree values and from Table 47, we obtained 86 percent of deviations ranging from 0 to 2 meters, 10 percent ranging from 2 to 3 meters, and one deviation of 4 meters.

The correlation Table 47 was nbtained from data of pine, spruce, and small-leaf stands of Moscow and Tul'skaya oblasts, but it does not take into account the effect of the species composition of stands.

Therefore, we compiled Table 50 in which approximate values of h and dree are given for ten main tree species. Actually, the stands of ten consist of two to thres species. In general there were no tables of stand growth pattern for mixed forests. Only now have drafts of growth pattern tables for mixed stands based on the concept of N. V. Tret'yakov begun to appear.

GR^DITTCS
 NOT KiLraujuCIBLE

For mixed forests, we have to take the value of dtree for single h value from Table 50 for each species, and then to obtain the mean thickness of trees in the mixed forest for the given species ratio. Table 50 also gives approximate values of h and dtree. For topographic purposes, such tables are best compiled for boundary zones (regions), bit for forest appraisal -- in each area of forest management work with stand growth under local conditions taken account of.

As investigations of foresters have show, including the German Professor 'leise, the Mungarian Professor Fekete, the Austrian forester Schiffel, and others, correlations of tree distribution by thickness and height in the forests of : i estern Gurope are very similar to those indicated correlations for forests in the duropean part of the USSR. This has been confirmed by studies of Professor A. V. Tyurin [57].
iforks of Professor N. V. Tret'yakov [54, 55] are vital in the study of correlations of the structure of tree stands of forest elements.

By way of experimentation, Table 47 was verified with field data from appraisers, given by V. F. liozlovakiy in the study [33] for pine groves aged 100 years located in the most variod areas (Arkhangel'skaya Oblast, Fomi ASSR, Khakasskaya Autonomous Oblast, and the Altay).

Table 49 gives deviations Δ dtree of field dtree values from table values in the determination of dree from h and from Table 47.

Table 49 shows the satisfactory precisjon of correlation Table 47. Still, we must underscore that we mast not be limited to one table for all areas. Multiple correlation study must be conducted for several subzones (areas) of USSR forests, for the mountainous, southern, broadleaved, and other forests of the country.

Table 48

. d_{m}, ra	m	1%
0-2	139	78,0
2-1	21	12.0
4-h $A^{\text {4 }}$	11	6.2
Bonee 6 (5	3.8

Legend: A - - greater than 6
Table 4.9

cmem	m	1%
$0-2$	22	76,0
$2-4$	6	20,7
$4-8$	1	3,3

GRAPHICS
 NOT REPRODUCIBLE

Table 50

Legend: A -- birch; B -- beech; C -- oak;
D -- spruce; E -- linden; F-- aspen; G -- fir;
II -- pine; I -- European alder; J -- ash

25. Classification of Stands by Their Density

Development of the most applicable classification of stands by their density is in practical terms essential in complling state topographic maps, and forest and geobotanical maps of the country. This problem is no less important for forest management and selection of appropriate methods in appraisal and measurement interpretation of aerial photographs.

It is of interest to discover those critical indexes of mean tree spacing which in quantitative form underscore qualitative changes in stands at any given age biologically caused by development of phytocenoses at the time and space of habitat. Such critical indexes of forest density in most cases predetermine its timber value as well.

As far as me Jnow, geobotanical, forestry, topographic, and geographic literatures do not contain an agreed-upon and valid onough classification of forests by density, which has
an adverse effect in the practice of cartography of forested localities. Thus, for example, the absence of quantitatively specific indexes to classify forest plots in a particular density class has led to unreconciled recommendations in handbooks on states topographic operations and those in textbooks. Recommendations have been offered whose execution-could lead to considerable distortion of information about the country's forests on state topographic maps. The diversity and contradictoriness of concepts about forest densjty has led to unreconciled data on the forest station of certain territories; and the quantitative indeterminacy of concepts on sparse forests has hampered their delineation from aerial photographs and in localities.

Let us look at several classifications of stands by density to be found in handbooks, textbooks, and manuals. On topographic maps forests are subdivided into three groaps: dense forests, sparse forests, and free-standing trees. In actual practice, instructions on topographic work give the definition of only the sparse forest type: a sparse forest consists of trees growing so infrequently that they do not constitute a continuous forest, but still they cannot be indicated as free-standing trees, but later it is added that sparse forests do not present obstac?es to movement and in the absence of thickets visibility is possible for considerable distances. Quantitative indeterminacy of these recommendations is self-evident.

In another set of instructions the sparse forest symbol is recommended to be used as denoting sections covered by trees not less than 4 meters in height and standing apart from each other by such distance that motor vehicles can pass between them.
ive know that motor vehicles come in different sizes, therefore tree spacings required for free travel of vehicles into a forest will differ. Thus, a passenger car with a load can enter a forest when the mean tree spacing is $1=$ 3-4 meters, but a truck requires $1=6-7$ meters. For these 1 values the forest density N will be, respectively, 1340 , 765,340 , and 247 trees per hectare. Thus, we again run into indeterminacy as to what tree density must be adopter as defining a sparse forest.

The study [22] recommends that we classify as sparse forests plots in which the mean tree spacing is 4 meters and greater.

The economic value of any particular forest tract under otherwise equal conditions is determined by the thickness, height, and density of trees. ile know that young forests differ in very high density, but contain thin and short trees in practical terms unsuitable for processing into valuable building lumber. in contrast, mature forests usually have low density and high and thick stems that afford the highest qualitative construction materials for the national economy. Thus, a site class T pine forest aced 20 years can have a density of 3,970 stems per hectare, but the lumber yield will be only 90 cubic meters. The same pine forest at age 140 will have a density of only 353 trees per hectare, but the construction material yield will be 400 cubic meters. Thus, an old pine forest is approximately 10 times less dense than a young forest, but in yield of construction materials the former is 4 times more productive than the latter, without even referring to the incomparably higher quality of the wood.

We mist also note that with increane in forest age canopy closure is reduced, where the most widespread stands have a closure of $0.4-0.8$, but in old deciduous and pine forests of the Siberian Taiga closure amounts to only 0.3-0.4 or a usual forest density of 150-200 trees per hectare. When $1=4$ meters and $N=765$, closure is equal to approximately 0.7-0.8.

If we define a sparse forest to be one in which l= 4 meters or $\mathrm{N}=765$, then obviously a mature pine grove with $N=353$ must unreservedly be designated on state maps with the sparse forest symbol. Since when $1=4$ meters closure $C=$ 0.7-0.8, and the most widespread stands have $C=0.4-0.8$, most valuable forests have to be designated as sparse forests. As a result of this definition of a sparse forest we mould he forced to designate me.ture forest tracts that are the most important and valuable for the national economy on state topographic maps with the sparse forest symbol, and depict mainly only young forests by green-colored areas. Consequently, the above-presented definition of a sparse forest cannot be recommended for actual use. Some specialists suggest that we consider a sparse forest to be one in which tree spacing is equal to tree height. This is the advice given by the author of the study [22], but only for larch forests of Siberia and the Far East.

Let us assume that two forest tracts have, respectively, height $h=5$ meters ($1=5$ meters) and $h=35$ meters ($1=35$ meters). In full accord with the definition, both plots must be designated on the map as sparse forests, but forest density
in the first is $N=492$, and in the second only 12 steme per hectare. Just as invalid is the recommendation to symbolize on maps of Siberia as sparse forests sections which have a density ranging from 12 to 4.92 trees per hectare, but on mape of the European part of the USSR -- the same symbol is to be used to designate sections with $N=765$. With this approach consistency and unambiguity of symbols is violated $-=$ elemerstary rules in any cartographic representation.

It has also been proposed to regard as sparse forests those in which crom spacing is equal to five or more crown diameters. If we take $D_{C}=1$ and 6 meters, then for $5 D_{c}$ tree spacing will range from 6 to 36 meters, but we obviously cannot accept as useful in delineating sparse forests N values ranging from 340 to 12 per hectare.

Professor V. V. Alekhin in the studies [1, 2] characterizes sparse forests by the presence of 100-150 trees or less per hectare. Under this definition, several authers have begin to define sparse forests as plots in which one tree is encountered in each 100-150 square meters, where such a forest, as they propose, can be sighter through at ground level for 500-600 meters.

However, Professor V. V. Alekhin has a different description of sparse forests, namely 300-500 trees per hectare, which sharply disagrees with the first definition. As far as visibility or, more properly, visibility range of 500-600 meters is concerned, it depends not only on density, but also on tree thicknoss. It is clear from table 5 that a visibility range of 500-600 meters can obtain when the density x ranges from 340 to 56 trees per hectare, depending on mean $d_{\text {tree. }}$

In addition to sparse forests, use is also marie of the term "rediny". Professor V. V. Alekhin writes that close to the northern limit of tree cover near interfluves one encounters only free-standing trees of ten in the form of a polustlanik [transliterated] hundreds of meters apart. Formations containing such free-standing trees among the tindra have also been called "rediny". However, in forest appraisal forest tract that have an occupancy of the order of 0.1-0.2 are classeified as rediny, which of course departs from the concept of rediny given above.

All this evidences that there is now a real practical need to develop an applicable classification of forests by their density.

Obviously, this classification mast take into account the geobotanical characteristics of a forest as a plant comminity, its timber value, and other qualities.

A forest, just as any plant community, possesses a definite structure. In the general case the structure of a plant comminity (including forests) can be characterized by the following features: species of plants, living forms of plants, overall density of stems (or stalks), tree spacing, frequency of species and living forms, canopy closure, story status, height and thickness of stems (or etalks), external appearance, specjes makeup, age, yield, and the like.

Differences in structural features give rise to differences between plant communities. Not all features of a community are the same in importance. Under a certain ratio some features become determining, of prime importance, or dominant, while others are secondary, apnarently subordinate. The meaningfulness of given features depends not only on their natural ranking in the structure, but also on the problems and points of vier from which the community is studied and regarder in the interests of the national economy and science.

First of all it is useful to establish even an approximate limit between what is a forest and what is not, that is, to determine what must be classified as a forested incality and what mast be regarded as free-standing trees or areas not covered by forest.

In forestry and geobotany, a forest is defined as a plant community or a population of woody plants which influence cach other and the environment and are correspondingly changed in external appearance and structure during the course of their development. It must be assumed that the more or less pronounced effect of trees on each other and on the environment is possible only when there is a specific tree density, canopy closure, and tree spacing. If, for example, tree spacing amounts to 100 meters and more, then obviously no-one will call this tract a forest, these are more correctly free-standing trees that have practically no effect on each other.

As the distance between trees is reduced and with a rise in density the effect of trees on each other and on the environment gradually rises. Thus, accumulation of a certain number of trees per unit area produces a new quality of the locality -- it becomes a forest [4.1].

Under what density, closure, or occupancy do indivjdlual trees form a forest? Professor V. G. Nesterov has observed that stancls of 0.1-n.2 occupancy actually are not yet forests, since in them the effect of the tree population on the environment and tree interaction are extremely weakly pronounced. In forest appraisal, areas uncovered with forest include plots that have been brought under continuous felling, young forests of occupancy 0.3 and less, moderate-aged and more mature forests with occupancy of 0.2 and less (rediny). It would assume that by following these instructions we can regari as non-forest or free-standing trees plots that have an occupancy of 0.3-0.2-0.1 and smaller, and as forests only those in which the occupancy is greater than 0.3-n.2. But would this solution be correct from the general-gengraphic, geobotanical, and cartoEraphic points of view?

Let us talie, for example, a tract of forest of nccupancy 0.3 with $h_{1}=23$ meters, dtree $=30 \mathrm{~cm}$, and yjeld $Z=$ 130 cubic meters. Given this occupancy, the approximate density $N=200$. It is obvious that this plot cannot be shown on maps as either forest or forested area. Let us now lool: at what an nccupancy of 0.3 brings us. From the appraisal description we have talien two plots with occupancies 0.2 and $ก .6$, but with different values of h and dtree. The lumber yield when $p=0.2$ is $Z=90$ cubic meters, but when $p=0.6$ only 80 cubic meters. In accordance with the above-given data, the first plot must be indicated on a map as a non-forest, and the second as a forest. But the first plot is more valuable in yield (building materials) and would be unreasonable to designate it on the man as a non-forest. then $p=0.2$, the density $\mathrm{N}=120$. This is not a dense forest, but nonetheless a forest. Consequently, for an occupancy of 0.2 there are no weighty geobotanical and cartographic grounds for denoting such sections as non-forest.
ihen there is an occupancy of 0.1 , we must consider the species and age in order to establish the approximate forest density below which the section of the locality can he deemed as non-forest. Of the main forest species, oak stands aged 160 years at occupancy $p=1.0$ have the lowest density, equal to approximately 140 individuals per hectare. Obviousiy, for occupancy $p=0.1$ we get the most sparsely standing trees, since in this case there will be only 14 stems per hectare. Then $N=14$, mean tree spacing $1=30$ meters. Obviously, a locality with $N=14$ and $1=30$ meters is on the borderline of forest and non-forest, that is, singly standing trees, since the effect of trees on each other and on the environment will practically be absent even for their greatest height $h=30$
meters. We also mast stress that Glavlesookhrana [Main Administration of Forestry and Porest Conservation] recommends in timber felling to leave not less than 15-20 trees per hectare as seed carriers. Thus, the scattering of seeds from a tree is equal to approximately one-half h, so that when $h=$ 30 meters the most permissible distance between trees 1 must not be greater than 30 meters. Thus, in felling areas not less than 15 trees per hectare must be left standing in order to provide conditions for reforestation, while the tree spacing 1 must not be less than 30 meters.

Consequently, plots of a locality in which the numher of trees is 15 and less per hectare and $1=30$ meters and more, can with full justification be classified as part of an open, unforested locality with free-standing trees. From the timbering point of view, the plots are not of any lumber value. In traversability they do not differ from ordinary, non-forested localities. In cover properties the plots are equivalent to an open locality. From this it is clear that the category of a forest with $\mathrm{N}=15$ and $1=30$ meters mist be retainer in the overall classification of forest by density, since it can serve for an approximate delimitation of forest and non-forest, sparse forest and free-standing trees.
ive will now attempt to establish a second limit of a sparse forest, that is, to solve the question of the density that marks the uppermost limit of a sparse forest. As we know, forestry organizations appraise forests from the economic standpoint and subdivide them by yield of building materials per hectare and by levels of merchantability.

Instructions on forest apprajsal stipulate the classification of forest plots as independent when there is a yjeld difference of 30 cubic meters, and the first yield group includes plots with 2 values up to 50 cubic meters. Forests Fith occupancy of 0.2 are so classified as a matter of course, since they can for large h and dree values have yielits of about 90 cubic meters and, consequently, entor the second yield group. But here for an occupancy of 0.1 even mature forests are regarded as so sparse that they cannot be represented as plots economically profitable for exploitation. Additionally, determination of occupancy is carried out with a precision up to 0.1. It is obvious that from the lumbering viempoint as well, for all species and forest ages plots of 0.1 occupancy can be regarded as critical for establishing the second limit of sparse forests. Under average conditions mature forests with occupancy 0.1 will have density N equal to about 60 trees per hectare, but the mean tree spacing will be about 15 meters (Table 1). The visibility range in such
forests in most cases is more than 400 meters in a level locality and in the absence of underbrush (Table 5).

Forest plots of 0.1 and less closure with $1=15 \mathrm{me}-$ ters and more have unsatisfactory conditions of concealment from aerial and ground observation.

Then $1=15$ meters and more universal traversability of the forest between trees is ensured for vebi:les of any size.

The following gradation of forests by density could be usefully associated, from the geobotanical and forestry points of vier, with the differentiation of the most widespread thinned-nut forests, since they, even though distinguished by low density, still are frequently encountered in localities, especially in northern geobotanical zones. From foresters' data, such forests have a density of the order of $\mathrm{N}=100-200$ trees per hectare, a closure of about 0.3-0.4, and a yield of up to 150 cubic meters. To secure a yield of 150 cubic meters per hectare, 150 tress with a volume of one cubic meter each are required. Trees attain a stem volume of one cubic meter in a mature ace with large thickness and height. Thus, pine will be one cubic meter in volume for h $=27.5$ meters and $d_{\text {tree }}=32 \mathrm{~cm}$, and larch when $h=26$ and dtree $=32 \mathrm{~cm}$.

When $\mathrm{N}=150$, mean tree spacing $1=9$ meters and nocupancy is approximately 0.25-n.3. Occupancy rates of $0.3-$ 0.4 are considered very low. Obvinusly, plots with density N from 60 to 150 and 1 from 15 to 9 meters can be classified as low-density forests.

Such forests are traversable between trees by mnst vehicles and have satisfactory conditions for concealment from observation, since crown spacing is equal to approximately one mean crown diameter.

It is important to retain gradation of forests by density when $1=5.5$ meters, since this l value is practically critical for forest traversability.

Also vital in importance is crown closure $C=0.5$, for at this C value reliable natural concealment from observation is ensured. In forest appraisal closure or occupancy close to $0.5-0.6$ is regarded as average. Thus, the limit of mean-density forests from all points of view must be taken as $1=5.5$ meters or $C=0.5$.

Finally, it is worth while classifying as dense forests those that have crown closure close to 1.0 and mean tree spacing $1=3.5$ meters, which value characterizes forests impassable (between trees) for all vehicles.

Bearing the foregoing in mind, we can propose a classification of stands by their density in the form of Table 51.

Table 51

Legend: l -- forest type; 2 -- number of trees per hectare; 3-- mean tree distance; 4-- very dense forest; 5 -- dense forest; 6 -- moderatedensity forest; 7 -- low-density forest; 8-sparse foreet; ? -- greater than $1,0 \cap \cap ; 10$-from 1,000 to 400 ; ll -- from 400 tn $150 ; 12 \ldots$ from 150 to 60; 13 -- from 60 to $15 ; 14-$ less than 3.5 ; 15 -- from 3.5 to $5.5 ; 16$-- from 5.5 to 9 ; 17 -- from ? to $15 ; 18$-- from 15 to 30

The forest density D and the mean tree spacing 1 are given in the table with rounded values.

Direct features characterizing density, that is, N and 1 , underlie classification of forests. Nean tree spacing introduces specificity and simplicity in the effort to differentiate sparse forests and other gradations of stand density in the field andi nn aerial photographs. We could characterize gradations of forest density by other features, for example, by canopy closure c or by crown spacing Δ dexpressed in units of crown diameter D_{C}, which hear an approximate relationahip with 1 and N (Table 4). Jt is clear from Table is that when $1=9, C=0.25$, then $\Delta d=1 D_{c}$, but when $1=10, C=0.2$, and $\Delta d=1.2 D_{C}$. But, first of all, C and
Δ d are already indirect, and not direct characteristics of forest density and, secondly, for the same canony closure forest density can differ, for example, when $C=0.2$ density
\therefore can take on values from 407 to 72 , and 1 from 5.5 to 13 meters depending on the variation in the value of D_{C} in the forest plot.

It appears worth while adopting the classification of stands by their density in characterizing forests in all mans, in textbonks, and in the literature on cenbotany, sylviculture, topography, and cartomraphy.

CIAPTER 6

methods of determining forest density and mean TREE SPACING

26. Some Problems in the Thenry and Methodology of Measurement Nethods of Determining Appraisal and Topographic Information from Aerial Photographs and Field Work

Information about forests (tree stand density, mean tree spacing, height, thickness, and crown diameter of trees, canopy closure, and yield) is essential for appraisal, forest management, and compiling state topographic maps. In the USSR and abroad, major studies on interpretation of aerial photocraphs have been carried out since 1920 through 1962. llowever, as many appraisers and forest management specialists have noted, the theory and methodology of measurement interpretation still has not been fully formulated and requires further improvement. It is not by chance that the International Photogrammetric Society adopted in 1956 recommendations on the need to conduct scientific research in all countries with the aim of developing in the immediate future the thenry and methods of determining forest characteristics from aerial photographs, and that in 1961 the Eichth All-Union Conference on the Theory and Practice of Interpretation of Aerial Photographs tonk note of the underdevelopment of theory and adopted as the top-priority problem the formulation of general thenretical fundamentals and objective methods of interpreting aerial photographs. Today everyone admits that the empirical approach cannot yield a satisfactory solution to practical problems, but that the scientific solution of these problems is possible only as we endeavor to understand correlations and to formulate suitable theory and methods.
lie know that in topography and geodesy theory, procedures of measurement, and methors of mathematical treatment
of information about the planar-height position of points in a locality are well developed. The situation is altogether different with information about forests. In pr sotical terme, this information has remained outside the field of interest of the topographic and geodesic sciences. But they still have not been able to resolve these problems with classical methode of geodesy and topography, since a forest is in the class of phenomena whose correlations are apprehended by other methode, mainly mathematical-statistical methods of study. Forests occupy about 30 percent of the land surface of the earth, and about 25 percent of the world's forests lie within the USSR, and so information about fores is bears the same national-economic and defense importance as does any other kind of information about a locality. Therefore, it has become self-evident in our time that information about forests munt also have its own theory, measurement procedures, methods of mathematical treatment, and substantiated principles on precision and reliability of securing this information both from aerial photographs as well as from field work.

As we see it, at least seven principles must underlie the theory and methods of obtaining information about foreste.

1. Discovering and using statistical correlations of the distribution of stand indexes for the purpose of applying them to secure information about forests from aerial photographs and from field work. These correlations of distribution have been described in the foregoing chapters.
2. Determination of mean values of appraisal indexes as parameters of distribution series. The heart of the matter is that we always estimate not a single object -- a tree, but a population of objects -- trees of stands. A couplete idea about a tree population is yielded only by a distribution series, and the latter, if it is known, is characterized by specific parameters. Therefore, determination of tree stand indexes means determination of parameters of a distribution series. In most cases the mean values emerge as such parameters, that is, mean distance between trees, mean height, mean diameters of crown and stem, etc. Recognition of the etatistical nature of appraisal indexes requires a stochamic approach to setting up operations and appraising measurement resillts. From habit we sometimes attempt to apply ordinary estimation criteria to statistical phenomena which differ sharply from functional relationships. We can never require from statistical phenomena what they by their nature do not exhibit, however they are marked by specific correlations which must be known and properly employed.
ive mist alsn clearly see a fundamental difference between precision in measuring a single nbject and precision in determining mean variables as functinns nf narameters and distribution series. Inint studies conducted by the Alabama Polytechiaic institute in the United States and hy the Committee of Forest Phntogrammetry of Sweden can serve as a fresh example of research on presision in measuring individnal tress. These investigations are narrnv and specialized, since precision in measurine the height of a single tree from aerial photocraphs characterizes the precision of the instrument and the properties of the aerial photographs, but says nothing about and gives no idea as to the precisinn of determining mean height of a population of trees in a forest plot analogous to the situation in which the precision of measuring the height of an individual point in a terrain has nnthing to say aboit the precision of determining the mean height in a section of a locality. If we measure quite precisely the distance between twn given trees, this distance gives us no idea about forest density. The mean distance is annther matter altngether, for by it we get data abnut density and about the percentace ratin of different distances in the given forest tract.
3. Discovery and use of correlations between indexes of stands, especially multiple and curvilinear correlationi.
4. Use of the sampline methnd in formilas for calculating the number of measurements for a given level of precision and rel lability of information about trees ne have secured. Compared with exhaustive measurements, the sampline method considerably redices the laboriousness of nerations and affords the required precision when the sultable methods of measurements are applied for aerial photographs and in the field. In using sampling methnd formulas, knowing the variance coefficients of tree-stand indexes and the mandatory use of a prinri information given us by aerial photngraphs and visual nbservation of tree stands at the locality are of decisive importance.
5. Study of tree stand composition at the locality and the structure of the photographic image of the upper forest canopy in aerial photographs of different scales with the aim of discnvering the reasons for discrepancies between field and office measurements and taking them into account in determining forest characteristics from aerial photographs.
6. Use of the general method of regionalizing a forest using aerial photographs, based on the regionalized method of sampling and on the structural types of photo imaging
of different tree stands. Depending on the size and nature of crown, density, and age of stands reference standard aerial phintographs are prepared with precise quantitative indexes of tree stands. These reference standards in conjunction with ncular and stereoscopic inspection of aerial photographs afford a more detailed and precise delimitation of forest plots differing in appraisal indexes.
7. Development and verification of all methoris of determining indexes by experimental measurements in forests and on aerial photngraphs of different scales with calculation and analysis of distribution series of deviations, mean square deviations, relative errors, and systematic corrections. As in any measurement work, we must provide for independent control of field and office measurements by different methods of determining forest characteristics with the aim of preventing gross errors even at the moment when operations are carried out.

Let us now look at several principles relating to operational methods. An aerial phntocraph bears consirlerable information about forests; however, all this information is transmitted in craphic form in the aerial photocraph. fo secure information about forests in quantitative digital form it is necessary to carry out measurement operations using methods ensuring satisfactory precision in determining tree stand indexes. \because ith this purpose, we must first of all carry out regionalization of forest tracts in aerial photographs. This regionalization is best conducted in three stages.

The primary reginnalization has the aim of delimiting homogeneous tracts within the forest expanse; it is carried out ocularly besed on clearly enough distinguishable structures of the photographic imaging of the upper forest cannpy.

Second regionalization is carried out within tracts with the aim of delimiting plots that are even more homogeneous as to density and crom size in the interests of ensuring higher preciaion in determining appraisal indexcs. Here reference standaris are used and when necessary stereoscopic inspection of the tracts.

The third regionalization is carried out within the limits of tracts for the purpose of determining the habitat of sample plots, in which indexes of tree stands will be subsequently measured by methods described in the following sections. The singled-nit plots are inspected stereoscnpically. The total number of square or rectilinear plots, strajeht
lines, polygons, and their size is calculated according to sampling method formulas to the specified precision and reliability of determining forest density, mean distance, thickness, height, and crown diameter of trees, as well as canopy closure.

To boost reliability of information obtained, control over measurements is indispensable. It is possible to use repeated measurements by different persons or measurements of the same variable by two different methods, which of course is preferable, as control measurements. The criteria of inacceptable disparities is best taken as deviations exceeding the tripled value of the mean square deviation, and for the latter it is best to take the specified precision of the determination of the tree stand index.

Since in forest appraisal the main job boils down to determining the yield, it appears worth while to establish the precision of determination of individual appraisal indexes depcnding on the specified precision in determination of stand yield. However, in determining yield wide use is made of occupancy, which is determined by an indirect procedure via canopy closure, where the very concept of occupancy has no quantitatively precise and unambigunus expression and gives rise to doubts about the concept of normal stands. Thus, determination of yield via nccupancy hampers discovery of the causes of errors and establishment of strict precision for measurements of all variables. Accordingly, it appears sensible to determine yield from actual measured variables (forest density, mean tree spacing, height and thickness of stems) and from tables of stem volumes [14, 56]. Under this method precision in determining yield cpa be checked by the precision of directly measured variables and by the precision of tables of stem volumes.

If the volume of a single stem

$$
\begin{equation*}
v_{0}=f\left(l_{m,}, l_{1}\right) . \tag{C}
\end{equation*}
$$

and the yield per hectare

$$
\begin{equation*}
I_{0}=F(N, V) \tag{81}
\end{equation*}
$$

then the precision of field determination

and the precision of stam volume determination

Let us assume that $\mathrm{m}_{\mathrm{C}}=15$ percent, and $\mathrm{m}_{\mathrm{N}}=\mathrm{m}_{\mathrm{D}}$, then $\mathrm{m}_{\mathrm{N}} \approx 10$
percent. In determining N from 1 , our investigations showed that

$$
\begin{equation*}
m_{4} \approx T_{1}=0,0, N_{0} \tag{84}
\end{equation*}
$$

but when $\mathrm{mD}=10$ percent precision in determining mean diameters and tree heights, respectively, is $m_{\mathrm{H}} \approx 5$ percent and $m_{h} \approx 4$ percent, if we use the existing stem volume tables.
iVe took by way of example the precision of yield determination $\mathrm{mZ}_{\mathrm{Z}}=15$ percent and nbtained the required precision in determination of all the remainin: appraisal indexes ($m_{N}=10$ percent, $m_{D}=10$ percent, $m_{d}=5$ percent, $m_{h}=4$ percent, and $\mathrm{ml}_{\mathrm{l}}=0.63 \mathrm{mN}$). In a similar way we can compile precision classes for estimation of yield (for example, each 10 percent) and the precision classes in apprajsal index determination corresponding to them. In our view, this method of establishing precision classes in appraisal work bears certain advantages.

Thesa precision levels of appraisal indexes are then used as criteria for control of measurements using different methods and for calculating the number of measurements based on sampling method formulas.

Precision in yield determination by the described method can be boosted by increasing the precision of existing stem value tables and by using distribution series of trees based on thickness determined by sampling in the stands under appraisal.

Yield is determined by several procedures. The procedures of determining yield by stories and species with calculation of total cross-sectional area for the corresponding thickness classes and height categories are ton complex. Procedures of yield determination from stand growth pattern tables require information about nccupancy, site, age, and species composition.

Simpler is a procedure of determining yield from stem volume tables, whose use requires information about thickness classes, height categories, species composition, and forest density per hectare.

The nomographic method of yield determination proposed by Professor N. P. Anuchin requires for the dominant species preliminary determination of occupancy, and occupancy has to be determined from mean tree spacing, mean height, and mean diameter.

The formilas of Professor N . V. Tret 'yaknv afford a simple method of determining yield when there is information available about mean height, nccupancy, and dominant species. However, here as well we must take into account occupancy, and to replace nccupancy by cannpy closure evidently leads to a drop in precision of yield estimation.

The simplest method of yield determination from aerial photographs can be regarded as the method that affords estimation of the yield even though in approximate terms from measured mean heights, mean tree spacing, canopy closure, and mean thickness oltained from tables of its correlation with height and crown diameter.

We obtain from h and dree in stem volume tables the volume of an average tree in a stand. For l, we get from Table 1 N , the number of trees per hectare. Multiplying these variables, we find the yield in cubic meters per hectare. Ve measure the forest plot area from the aerial photograph or a map. The product of the area in hectares by the yield per hectare gives us the overall yield for the forest plot. ithen information is available on the dominant species, this variant of yield determination is simplest of all. In the absence of information on species composition, this method will yield lower precision of yield estimation.

Precision in ground ocular determination of yield in sample plots is customarily taken as $\pm 10-12$ percent. The yield from scale $1: 10,000$ aerial photographs for the dominant species is estimated to be approximately 20 percent less than the overall yield determined by ground methods.

For practical verification of the precision in the approximational method of yield determination from h, dtree, and 1 and from stem volume tables, limited field work has been carried out.

In the first sample plot ground methods of appraisal were used to determine the yield by two procedures. Based on forest elements (stories and species) the yield of first-story pine $Z_{1}=217$ cubic meters, yield of first-story spruce $Z_{2}=$ 136 cubic meters, and yield of second-story spruce $Z_{3}=19$ cubic meters. The overall yield per hectare $Z=372$ cubic meters. From tables of stem volume, thickness class and height categories the overall yield $Z=389$ cubic meters.

Consequently, determination of yield by the two procedures gives a difference $\Delta Z=17.5$ cubic meters, or 5 percent.

We will give data from a determination of yield by an approximational procedure relying on l, h, and $d_{\text {tree }}$, and on stem volume tables.

In the first sample plot $1_{0}=4.4$ meters (obtained by exhaustive measurements), which from Table $1 \mathrm{gives} \mathrm{N}=624$ stems per hectare.
$\mathrm{h}_{0}=22.2$ meters and d^{0} tree $=29.6 \mathrm{~cm}$. Based on h_{n} and d^{0} tree, we obtain from the stem volume table for pine the volume of a single mean tree $\mathrm{V}_{\mathrm{C}}=0.620$ cubic meter. Then the overall yield $Z=0.620 \cdot 624=387$ cubjc meters, which gives an error $\Delta Z=387-389=-2$ cubic meters, or 0.5 percent. It is clear from this that determination of total yjeld based on l_{0}, h^{n}, and d^{0} tree gives good precision.

Let us now determine yield based on mean distance obtrined by the sampling method, that is, $1_{\text {samp }}=4.34$. (polygon method). Then $1=4.34, N=645$. Then $\mathrm{z}_{\text {samp }}=0.620 .64 .5=$ 400 cubic meters, which gives an error $\Delta Z=400-398=+11$ cubic meters, or 3 percent.

In the second sample plot the yield, determined by two precise methods, $Z_{1}=525$ cubic meters and $Z_{2}=512$ cubic meters. From $h_{0}=27.6, \mathrm{~d}^{0}$ tree $=38.1$, and $1_{0}=5$, or $\mathrm{N}=488$, the yield $Z_{\text {tree }}=585$ cubic meters, and the error $\Delta Z=73$ cubic meters, or 15 percent. Based on the sampling determined $l_{\text {samp }}=4.9$, or $X=51^{\circ}$, the yield $Z_{\text {samp }}=622$ cubic meters for an error $\Delta Z=92$ cubic meters, or 18 percent.

For the third sampling plot the yield determined by the appraiser from stem volume tables is $Z_{1}=297$ cubic meters, but from standard tables via occupancy $Z_{2}=294$ cubic meters.

Based on $h_{0}=24.5, \mathrm{~d}^{0}$ tree $=31.2$, and $1_{n}=5.9$, or $N=356$, yield $Z_{3}=315$ cubic meters, which q jves an error $\Delta \mathrm{z}=23$ cubic meters, or 9 percent.

For the fourth sample plot the yield determined by an appraiser from occupancy and from tables, $Z_{1}=246$ cubic meters, from model trees $Z_{2}=247$ cubic meters, and from stem volume tables $Z_{3}=247$ cubic meters.

Based on $l_{0}=4.3, N=657, h_{0}=25$, and d^{0} tree $=24$, the yield $Z 4=326$ cubic meters, which gives an error $\Delta Z=$ 79 cubic meters, or 30 percent.

Based on the sampling $1_{\text {samp }}=4.45$ and $N=603$, the yield $Z_{\text {samp }}=299$ cubic meters, which gives $\Delta Z=52$ cubic meters, or a 20 -percent error. Here we must bear in mind that the appraiser determined the yield only for the dominant species without taking into account the second-story yield.

In the fifth sample plot the yield (hased on standard tables) $\mathrm{Z}_{1}=325$ cubic meters, and from volume tables $\mathrm{Z}_{2}=$ 330 cubic meters. Based on $l_{0}=5.07, \mathrm{~N}=482, h_{0}=24.8$, and d^{0} tree $=31.1$, the yield $Z 3=398$, but based on sampling $1_{\text {samp }}=5$ and $\mathrm{N}=492$, the yield $Z_{\text {samp }}=406$ cubic meters, which gives in the first case a 20-percent error, and in the second 22 percent.

Table 52 lists composite data on precision of yield determination based on sampling-determined mean tree spacing, height, thickness, and on stem volume tables, where $Z_{\text {samp }}$ is taken for $l_{\text {samp }}$ arrived at by the sampling method.

Table 52

Legend: A -- plot; B -- field; C -- $Z_{\text {samp }}$ sampling

It is clear from Table 52 that the simplified method of determining yield from mean tree spacing gives on the average a 15 -percent error, toward the overstatement side.

Procedures and precision in determining yields from aerial photographs have been described in detall in the works of many Soviet appraisers.

In 1941 the Experimental Station of the U.S. Forest Servinc made an attempt to determine yield from aerial photographs with field control.

Since 1942 serious articles and works on forest interpretation have begun to appear in the United States and

Canada. Following 1945, more major studies on measuring height, crow diameter, and canopy closure from aerial photographs have been begiun in Canada. The question of compiling tables suitable for describing yields from aerial photographs has also been raised. In 1946 Spurr (United States) drew up the first yield table specially adapted for determination of yield based on crom diameters, closure, and tree heights measured from aerial photographs.

In Canada workers have begun to determine yield in the field by using aerial photographs and then have commenced efforts to find methods of determining yield directly from aerial photographs. Aerial photo-tables of yields (Photovolumes) per acre (0.4 hectare) have been compiled for this purpose.
assentially, these are reference standard aerial photographs in which forest plots with known yields are specified. Comparison of these reference standards with the aerial photographs of other forest tracts has made it possible to determine yield. In the United States, in 1948 Nash, in 1950 Pope, and in 1952 Spurr, and in Canada in 1051 Moessner compiled tables for yield determination hased on D_{C}, C, and h measured off of aerial photographs. In 1958 Spurr noted that the low precision of tables conmiled in the Inited States had impeded their wide use. Therefore (in 1963) the principal method of forest appraisal in the United States was the methorl of combining field work with use of acrial photographs. In Canada use of special yield tables adapted for determination of C from crown diameter, mean height, and canopy clnsure measured from aerial photographs began to be used. The first type of yield table gave the volume of the single tree which was determined from two input data -- crown diameter and mean tree height. These tables are used only in mature forests (they are not employed in dense forests). Table 53 is an example of a talle giving the volumes of a single tree.

The second type of yield table is called standard volume table. The tables give the volume per acre in cubic meters and have three input variables -- the mean orom diametor, or the measurement visible in acrial photographs, the standard (mean) height, and canopy closure (crown cover) in percentages. An example of the second type of yield table is Table 54.

The variable h is determined from the shadows and measurements of parallax in the aerial photographs. The variable D_{c} is measured on the aerial photographs using an incline

GR^ DTrTCS
 NOT REPRODÜCIBLE ${ }_{\text {rable } 53}$

Legend: $A=-d_{c}$, in feet; $3--$ mean height h_{0} in feet

Table 54

Legend: $A-h_{\text {in }}$ feet; $B-D_{C}=10-14$ feet; C -- C in percent
level, or else a template consisting of circles with previously calculater diameters. Templates of circles are printed on transparent film. Under the stereoscope, D_{C} is determined by visual selection of the appropriate template.

Canopy closure is determined also from scales, consisting of a series of squares with black circles covering from 5 to 95 percent of the square area. 3y visual comparison of the scale with the forest tract on the aerial photograph C is determined (the value of C is imprinted along the borders of the squares) under the stereoscope, thus excluding the effect of shadow cast by crown. As Moessner has noted, this procedure of yiold determination gives satiafactory precision. The Canadians determine the mean tree thiciness in the field on sample plots.

In 1958 most appraisers in Canada used the combination of determining appraisal indexes from photographs with field control in saniple plots. Use of the two earlier-described tables of interpretation yields considerably reduces the number of sample plots processed under field conditions.

In order to study possibilities of considerably reducing field operational fork ly determining appraisal characteristics from aerial photographs, Losee conducted studies on aerial photographs of scales $1: 7200$ and 1:1200. Field bork was carried out on 0.1 acre sample plots with determination of mean h, C, and H_{c} values. The yield tables were also compiled from ficld data for h, C, and D_{C}. Using 1:7200 scale aerial photocraphs mean height was determined with an error of ± 2.1 with systematic error of +0.6 , and 1:1200 scale aerial photographs werc used for determination of mean height $w i t h$ an error of ± 0.5 and a systematic error of +2.1 . Canopy closure was measured at the locality with a precision of ± 1.7 percent. Canopy closure was determined from aerial photographs, as Losee enphasized, by an original method developed on the basis of extended study. The count in each section vas conducted 12 times. C was determined by this method on 1:1200 scale aerial photographs with an error of +5.5 percent and a systematic error of -0.3 percent, and on 1:7200 scale aerial photographs with an error of ± 9.9 percent and a systematic error of -1.3 percent. Ye note that this method is too laborious (12 counts per area) and yielded the specified precision only because 12 counts were made. ivith a smaller number of counts the methorl will yield a considerable error, since it is not associated with direct measurement of canopy closure and gives only an inclirect idea of the variable measured. Nean D_{C} was determined by measurement under the stereoscope of 30 crowns for cach area. D_{c} was measured on 1:1200 scale aerial photographs with an error of \pm). 33 and a systematic error of $\mathbf{- 0 . 0 9}$.

The yield was determined from measured h, C, and D_{c} and from yield tables compiled from field data h, C, and n_{c}.

2 per acre was obtained from the table, and the overall yield for the entire area vas cletermined by multiplying Z ?y the total area of the forest section. The error in determining total yield fron 1:1200 scale acrial photographs was ± 7.6 percent, but from 1:7200 scale aerial photographs ± 4.3 percent. Losee viowed the results as highly satisfactory, demonstrating the practical pcssibility of excluding all field work in forest appraisal, with the exception of collecting data for compiling yield tables (based on input data $-\mathrm{h}, \mathrm{C}$, and D_{C}).

Director Garver of the Forest Service of the U.S. Department of Agriculture noted in 1953 in an article "Interpretation of Aerial Photographs in the Forest Service" that aerial photographs are widely used in the U.S. in forest appraisal. Plots of one-fifth acre size serve as standard sample plots in which all field measurements are made. Some efforts have been made to determine yields directly from aerial photographs, but thus far this has not become standard practice. Efforts are underway to develop volume tables for a single tree based on h and D_{c} measured from aerial photographs. In other cases use is made of standard yield tables based on mean heights, crown diameters, and canopy closure. In appraisal 1:15,840 scale aerial photographs are mainly used.

Rogers (U.S. Forest Service) wrote in 1956 that use of aerial photographs for yield determination where high precision is not required affords bypassing altogether or in large part of field work. But even where precision is required and is important, use of aerial photographs reduces the volume of field work.

There are two directions in yield determination in the United States. The first consists of estimating the yield directly from aerial photographs without verification in the field. This method is supported by a minority of appraisers. Most special ists endorse the combination of work with aerial photocraphs detorminins

Precision in determining tree heights from aertal photographs has been investigated by Professor Samni of New Yoric University [80]. In the University of Pennsylvania \#orly and Landis [83] are studying precision in measuring heights, crown diameters, and canopy closure from aerial photographs. Yang has been engaged in determining tree counts from aerial photographs. IIe has concluded that the number of counted trees is reduced by 20 percent as one turns from 1:3500 scale aerial photographs to those of $1: 15,000$.

Hendrich and Meyer assume that yield can be determined from aerial photographs with an error of 25 percent.

Meyer and 7orly [71] hold that estimation of yield by using standard tables and measurements made from aerial photographs can be carried out with an error up to 50 percent.

Rogers [78], in characterizing scientific research in aerial photography of forests and interpretation in the United States, Great Britian, Canada, France, the FRG, Sweden, Norway, the Netherlands, Thailand, and Czechoslovakia, believed that precision of yield determination for large forest tracts is close to 10 percent. Rogers has suggested that there is a possibility of estimating yields from aerial photographs without using yield tables.

A characteristic feature in the progress made in interpretation of aerial photographs of forests and other plant cover in the United States and Canada is that many military and intelligence establishments have dealt with this problem in wartime and especially in the postwar period.

Thus, Churchill (Military Intelligence Board of the U.S. Army) prepared the study, "Types of Vegetation for interpretation of Aerial Photographs and Use of Vegetation as an Indicator of Habitat Conditions," in 1953.
0^{1} Neinl, a PhD of the Catholic University in Washington, has developed a method of preparing reference standards -- keys for interpreting veretation from aerial photographs [75].
Colations Thow that without theory and without a grasp of cor-

Corest jervice has outlined a program of scientific research in this area.

Axelson (Sweden) has studied the question of precision in determining tree height from aerial photographs of different scales and has concluded that scale does not affect precision of measurement of h. Error in determining h from aerial photographs amounts to 1.5-3 meters. He has asserted that largescale aerial photographs do not afford advantages in determining canopy closure and yield, where the canopy measured from aerial photographs is generally overstated. Axelson recommends use of $1: 33,000$ scale aerial photographs, but with a subsequent increase in scale to $1: 15,000$ for interpretation.

In 1960 the American Society of Photogranmetry, with participation of American and Canadian specialists, published Landbool on Interpretation of Aerial Photographs, in volume about 50 author's sheets [each sheet containing 3,00n square centimeters of printed material] [72]. The handbook includes 16 chapters in which different forms of aerial photocraph interpretation are set forth (geological, soil, forestry, agriculture, engineering, geomorphological, archaeological, hydrological, zoological, etc.).

This handbook repeats and reinforces several findings arrived at by Soviet specialists in forest interpretation of aerial photocraphs. To increase precision in measurement interpretation of dense forests winter photographs are recommended; it is noted that yield correlates more closely with height, and not with crown diameter and canopy closure; a point method of measuring areas is proposed. This method has been developed and advanced for use in the U.S.S.R. [13].

In spite of the existence of large studies conducted by specialists of many countries of the world, the theory and methor of interpretation of aerial photographs of forests are in need of further advances.

Underlying ocular appraisal is visual comparison of the given tree stand with a tree stand of a sample training plot. Information in the form of the visulal image of the tree gtand in the sample plot is retained in the appraiser's memory. Accumulation of such $v i s u a l$ images is acquired by experience. However, remembering, preserving in one's memory, and reproducing visual images of complex tree stands is extremely difficult; they are forgotten and essential details are lost, which calls for constant replenishment of the images by training sessions obligatory for each appraiser before work berins.

Accordingly, a suggestion about the possibility and value of replacing complex images of tree stands in all their completeness by simpler images of individual appraisal indexes which can be easily remembered, compared, and controlled by the measurements with desired precision has been advanced. It is very difficult to control the precision of ocular appraisal, since the appraiser and the control individual perceive and reproduce the same visual images of tree stands even in the sample plots dissimilarly. Therefore, methods of determining yields by relying on direct-measured $1, N, d^{0}$ tree, and h_{n} bear purely practical advantages as mell.

In conclusion, we cannot fail to nnte that the thenry and practice of the use of aerial photngraphy and aerial photographs in forest management in the U.S.S.R. in many respects has been better advanced than in the United States and Canada.

In fact, in the study and understanding of statistical correlations of tree stand structure the U.S.S.R. dountless leads all nther countries.

A well-argued and scientifically substantiated program of scientific research and solution of practical problems dealing with methods of appraisal and forest management has been set forth in the stury [31] by Dncent B. A. Fnzlovskiy, Director of the All-Union Amalgamation Lesproyekt.
27. Methods of Determining Mean Tree Spacing and Forest Density in Fieldwork

Seven procedures of the sampling method have been used, tested, and verified for determination of density and mean tree spacing.

1. Procedure of measuring distances in a specified direction. Exhaustive measurements of all distances in five forest plots were conducted following the methnd set forth in sections 4 and 5 . Sampling determination of mean spacing $l_{\text {samp }}$ was carried out by measuring distances between trees encounteren along a route following a selected direction. Sampling lsamp was obtained as the arithmetic mean oi all measurements. The true mean distance l_{0} was determined from data of exhaustive measurements.

Table 55 gives the characteristics of the precisinn of determination made in five plotf.

Table 55

Legend: A-- plot number; B-- number of directions; C -- number of distances; D -- $l_{\text {samp }}$

The data in Table 55 evidence the instability of the results, for the mean l_{0} exhibits decided deviations hoth toward the overstatement side (34 percent) as well as to the understatement side (-28 percent) depending on the practitioner, the choice of direction, and the number of directions. This procedure is subjective and cannot ensure satisfactory precision.

In 1952 N. P. Anuchin proposed a nomographic method of determining occupancy and yield based on measurement of mean tree spacings.

However, his rocommended method of determining mean spacings by measuring 1 between 30 trees encountered in a given direction cannot afford any satisfactory precision.
2. Procedure of measuring distances in traversing an external contour of the forest plot. In the course of experimental studies distances are measured only between those trees that stand close to the boundary of the plot, while trees along the bends of the contour are not counted. The mean lsamp determined by this method proved to be 3.4 meters greater than the true l_{0}. For supplementary verification of the method, measurements were made of distances between all trees standing along the boundary of a tortuous contour of the forest plot. In all, 90 tree distances were measured as compared to 36 in the first case.

The mean lsamp proved to be $1 / 4$ percent less than the true value. Thus, this procedure is too laborinus and not fully reliable, although it is important for appraisers and topographers who, in moving through felling areas and along roads, will be able to determine the mean distance without traversing within the forest.
3. Procedure of measuring all distances in samplinc plots 20×20 meters in size affords satisfactory precision, but is too laborious.
4. Procedure of counting trees in sampling plots.

All trees in typical plots 20×20 meters in size (or 10×10 meters) were counted, and the mear distance was calculated from N taken from Table 1.

Table 56 gives the results of $1_{\text {samp }}$ determination.

GPAPHICS
 NOT REPRODUCIBLE ${ }_{\text {Table }} 56$

Legend: A - plot number; $B--$ number of plots; C -- lsamp; D -- true value

We can plainly see from Table 56 that the procedure of counting trees in plots 20 x 20 meters in size gives satisfactory precision when determining mean tree spacing and stand density.

In dense forests we can take smaller areas, that is, 10×10 meters, which reduces the volume of work hy four to eight times. Reducing area size and increasing the number of plots involved affords fuller coverage of the diversity of distances within the section, that is, obtaining a more representative sampling population. Ilowever, further decrease in section dimensions is not worthwhile.

The required number of sampling plots can be determined from the following formula:

$$
\omega_{0}^{i v_{0}^{2}} b_{i}^{s_{i}^{2}}
$$

Legend: 1 -- Ssamp
Literature on forest management contains no information about the variance of tree stand density. From our investigations, the variance of tree stand density in areas 20×20 meters in size is $\forall n \approx 15-18$ percent.

The approximate value of the variance of stand density was determined from the data of field measurements and counts made in two sections of pine-spruce mature tree stand covering an area of $10-15$ square plots 20 x 20 meters in size each. Calculations of the variance of density for the two sections are shown in Table 57.

GRAPHICS
 NOT REPRODUCIBLE
 Table 57
 Section no 1
 Section no 2

Legend: A -- plot number
If we take as standard plots squares $4.1_{0} \times 4 \cdot 1_{0}$ in size, where $l_{0}=$ mean tree spacing, then the number of trees n in these plots will be a constant, invariant relative to lo, that is,

$$
\frac{a_{1} \cdots}{m_{n i}}=\cdot a
$$

where $\mathrm{N}=$ number of trees per hectare.
Formula (86) is based on the reciprocal function relating 1 and N in point systeme (which well characterizes the curve in Figure 24) and the approximate correlation of the function $\omega=1^{2 N} \approx$ const remarked on by the author. If the square areas are taken as $5 \cdot 10 \times 5 \cdot 10$ in size, the number of trees in these plots will also be a constant, but equal to

GRAPHICS
 NOT REPRODUCIBLE:

Formula (86) can be used for control of fieldwork using the sampling method of determining tree stand density and mean tree spacing.
5. Procedure of measuring sides of polygons. A polygon is formed by a group of neighboring trees. The distance between trees is measured along the smallest sides (straight lines), where none of the sides must intersect any other side (Figure 25).

Figure 24. Tree spacing as a function of forest density

Polygons are selected in typical sites of the forest plot for the purpose of discovering precisely the mean tree spacing. Polygons must not be selected in thinned-out areas that are becoming clearings, or in sites of intense clumping of stems. Precision in determination of $l_{\text {samp }}$ depends on the correctness in choice of polygon location in the plot. Here principles of the regionalized method of sampling studies are fully applied.

Table 58 gives the results of a determination of mean spacing lsamp by the polygon method with approximately 20-24 distances provided in two polygons. The true mean distance lo was obtained from data of exhaustive measurements of distances or counts of the number of stems in the forest plot.

It is clear from Table 58 that the error in determining mean tree spacing by this method does not exceed 6 percent, or 0.3-0.4 meter. This precision must he deemed satisfactory, since most practitioners have used this method the first time and have become acquainted with it from a brief explanatory note. The sampling method of determining l_{0} by the polygon procedure with the condition of regionalized sampling method complied with can give satisfactory precision.

Table 58

Legend: A -- plot number; B -- number of polygons; C -- lsamp
6. Procedure of counting trees along straight lines. This procedure consists in drawing lines in the selected plots for measurements and counting trees, whose croms intersect or are tangent to a straight line, where only those trees that are projected onto the straight line along the perpendicular are counted. The mean tree spacing is obtained by dividing the length of the line by the number of trees counted.

Figure 26 shows a copy of a forest plot 20×20 meters in size on the l:100 scale with point location of each tree and point projection of crowns. The straight lines are designated No 1 and N $n 2$, and the croms intersecting the lines are designated by numbers. The true $10=4.4$ meters. From the two mitually perpendicular straight lines the sampling lsamp $=4.58$ meters. The error $\Delta 1=+0.18$ meters, or 5 percent.

In the second forest section two pairs of straight lines 20 meters in length were selected in the two sampling plots, which gave an error $\Delta 1=-0.07$ meter, or 1.5 percent.

The straight line procedure considerably simplifies and speeds up work, since time-consuming measurements of

Gn>0rros
 NOT REPRODUCIBLE

Figure 25. Polygon for determination of mean tree spacing
distances are replaced by a simple count of stems whose crows intersect or touch a straight line. Whoever counts the trees, the results will always be identical. Therefore, the procedure does not depend on the practitioner, while in the procedure of determining distances in a specific direction each practitioner decides on his own what trees to include and what not to include in measuring tree spacing.

From experimental data, the straight line method can give satisfactory precision for four pairs of strajeht lines in a section, however in choosing the placement of the straight lines we must be strictly governed bj the rules of the sampling method. The necessary number of lines and the length of the lines can be calculated from the author's formulas presented below.

Let us assume that n points separating r mean spacings lo will lie on the line L.

Then

$$
\begin{align*}
& \prime=\frac{l}{n}, \tag{87}\\
& r=n-1 . \tag{HZ}
\end{align*}
$$

GRAPHIC:
 NOT REPRODUCIBLE

Section nol

(A)

Legend: projections of tree crowns Figure 26. Copy of forest plat on the scale 1:10n for determination of mean tree spacine by the straicht line procedure
but the number of straight lines
(4)

Legend: A -- Sgtr
where the number of measured spacings ssp in determination of lo with a desired precision \triangle and confidence t is calculated from the formula

$$
\begin{equation*}
\text { (4) } u \cdots v_{1}^{2} \tag{90}
\end{equation*}
$$

Legend: A -- ssp

GRAPHICS
 NOT REPRODUCIBLE

Consequently, the number of lines can be determined from the following approximate formula:

(A)

Legend: A -- Sst
We assume that we will limit ourselves to a single straight line. Then when Sst $=1$ from formula (91), we obtain the required length of the straight line from the following approximate formula:

The length of the straight lines must satisfy the condition $\mathrm{L}>4 \cdot \mathrm{l}_{0}$. It is best to round off the calculated line length to a whole number of tens of meters. It is useful to divide the total length of the line into four to five segments. These new straight lines $A=L / 4$ are placed in the plot being appraised in typical locations. Use of the straight line procedure when $l_{0}=>7-8$ meters is not worth while in forests that have tregs bearing small croms.
7. Procedure of selecting the most typical spacings in the forest section. The ocular choice of mean spacing requires inspection of the forest section. This procedure is typical in the sampling method. Its use requires special training like the kind that appraisers always undergn before carrying out ground ocular appraisal. For successful use of this method one must be well acquainted with the law of spacing distribution and the theory of sampling method. Typical spacings selected are measured with a tape measure. According to experimental data, the procedure gave an error of 511 percent for two forest sections.

These data evidence that with suitahle experience the procedure can afford satisfactory precision.

Experimental verification of the seven procedures of determining the mean spacings and tree stand density under field conditions have shown that the following procedures give satisfactory precision as well as stability of results: the polygon procedure, the procedure of counting stems in plote, and the straight line procedure. The simplest procedures are: the procedure of selecting the typical spacing and the straight line procedure. The polygon procedure and the procedure of counting stems in plote are approximately the same in their workload.

Studies have show that the sampling method of determining mean spacing given requisite compliance with its rules does give satisfactory precision.

Control of field measurements is best carried out by two independent procedures of determining stand density and mean tree spacing.
28. Procedures of Determining Forest Density and Mean Tree Spacing From Aerial Photocranhs

If separate imaging of the crown of all trees located in the forest tract shows up on aerial photographs, then determination of tree stand density and mean spacing from aerial photorraphs does not differ in precision from the precision attained by procedures proposed and verified under experimental conditions (section 5) and in fieldwork (section 27). But, as has been pointed out, the crown of all trees do not alvays show up on aerial photographs. Therefore, it becomes necessary to establish the nature and extent of reduction in the number of imaged crowns on aerial photographs of different scales compared to the total number of trees in the locality.

Experimental studies on counting crowns on aerial photographs of the following scales: $1: 4000,1: 6000,1: 8000$, $1: 9000,1: 12,000,1: 15,000,1: 19,000,1: 20,000$, and $1: 21,000$ were conducted by the author beginning in 1944.

In 1951-1954, a continuous and sampling count of trees in the field and from aerial photographs was conducted by the author jointly with engineer N. A. hornilov. As a result, the number of trees, as to he expected, counted from the number of crowns imaged in aerial photocraphs in most cases proved to be less than actually found on the spot. Mean trec spacing determined from aerial photocraphs was somewhat larger than the mean spacing between all trees in the locality. An exception to this rule relates to sparse forests and forests in which tree spacing amounts to 7-12 meters and more, as a consequence of which their crowns in most cases were imaged on moderate-scale aerial photographs.

Investigations aimed at determining the number of croms of trees imaged and those not imaged on aerial photographs of different scales have been conducted by Russian specialists in forest management: Professor G. G. Samoylovich, T. T. Mazhugin, A. M. Berezin, J. A. Trunov, and A. Ya. Zhukov.

As studies have show, the number of trees standing under the croms of neimhtoring trees and not particinating in forming the projection of the upper canopy crown increases with increase in occupancy and decreases with greater age, and in most ceses thin-stem trees prove to be lncated under the crowns of adjoininc trees. This problem has been detailed in section 2.
fhe deviation of mean spacings on aerial photocraphs and in the locality can be accounted for hy the following main causes. Some of the low-standing trees are under the crowns of their neighboring, higher stems or stand in their shadow at the moment of aerial photocraphy, especially alone the borders of aerial photographs, which leads to a reduction in the number of imaged crowns.

Arrangement of trees in the form of a curtain or group side hy side with standing trees, and also the growth of two stems from the same ront in thickets learls to meraing on aerial photogranhs of the imaces of several croms, which reduces the number of crowns counted, if no correction is made in the value of the laree meraing "patches" of crow.is on aerial photogranhs when malking measurements.

The number of crowns on aerial photocrants of yonne, usually very dense forests containing crom peals small in size is considerably reduced; the broader sectinns of croms are concealed by the crowns of trees closely overlapning them.
lith increase in age and reduction in forest density the deviation of mean spacings on aerial photographs and in the locality is reduced.

The strongly pronounced double-story state of stands (for hirh occumancy rates of the upper and lower stories) and high undergrowth or underbrush density have an appreciable effect on reducing the number of crowns counted on aerial photographs.

As scale is reduced, some of the small crowns do not show up in the scale of aerial photocraphs or else the ir image is so small that they are not visually discernible, which also leads to a reduction in visible crom imaces. In this case preparation of magnified aerial photorraphs for measurement purposes can be of help. The quality and freshness of the aerial photogranh is of creat importance. Convercence of spacings on aerial photographs and in the lncality depends on the year the aerial photography was done and the year the spacings were
measured. 0ld, especially small-scale aerial photographs can give perceptible disparity between mean spacings, which of ten is bound up both with artificial as well as with the natural change in tree stands during the years elapsing since the aerial photocraphy.

The effect of aerial photorraphic scale, forest density, and crown size is well illustrater by the experimentally-built models of different density types and tree crown sizes on different scales shown in Figure 14 (section 5).

Consequently, many factors not easily allowed for and expressed numerically have a bearing on precision of determination of stand density and mean spacine from aerial photocraphs.

Precision of mean tree spacing determination that is satisfactory for actual use can be obtained from aerial photographs of the larce scales 1:5000-1:10,000.

If moderate-scale aerial photographs are used, it is necessary to determine the corrective coefficients for intrnducing them into measured spacings from aerial photorraphe of different scales taken of forests differing in density and age with allowance for the effect of species composition, number of stories, undergrowth and underbrush, characteristics of tree arrangement in different areas, and forest expanse types.

The author has proposed a method by which the mean spacinf is determined not between all trees at the locality, mit only between the principal trees that are of chief importance in appraising the tree stand.

In this case we must establish the trees that we can nerlect.

Traversability, camouflaging and protective properties of a forest are generally determined by the thicker and higher trees in the upper cannpy that have hroader crows, that is, by those trees which are more commonly imaged in aerial photographs. Yield also depends on counting the principal trees of moderate and high thickness classes producing images in aerial photographs in most cases.

Thus, for example, yield calculated from aerial photographs proves to be $10-20$ percent closer to the actual yield than the number of counted crowns on the same aerial photographs
with respect to the total number of stems in the locality. This is explained by the small effect on yield of thin and low-standing trees which usually do not show up on aerial photographs.

Overall yield of stands is produced hy trees of moderate and thick classes of thickness which are more generally imaged on aerial photocraphs. The thickness callce usually leads to a discrepancy, and its inclusion must be made, in approximate terms, from tables of stand crowth pattern.

In the Instructions [26] the main story is considered to be the story that constitutes the part of the stands largest in yield and has the highest economic value.

The second story is differentiated and appraised only when the mean tree stand thickness exceeds 8 cm , and the difference in mean heights amounts to more than 20 percent, which for a height variance $\mathrm{Vh}=8-10$ percent is an infrequent phenomenon.

As far as undergrowth and underbrush are concerned, in appraisal they are generally not taken as stories and are separately accounted for in the overall picture.

The experience of Canadian and American appraisers who determine yield directly from aerial photocraphs by using specially-prepared yield tables based on heirhts, canopy closure, and the so-called visible crom diameters measured from aerial photocraphs is of some interest.

The principal and most important part of trees is imaced on aerial photographs (for more detail see Chapter l).

Based on the foregoinc, we outline an approach in determining mean spacincs not between all, but only between the most important trees that in fact determine economje and other importance of the given forest tract.

This principle has in fact been adopted in further efforts to find approximational methods of determining mean tres smacinc and stand density from aerial photographs. To do this, experimental studies have been carried out counting trees of different thicknesses at the locality and from aerial photographs in order to arrive at an approximate idea about the stand structure that shows up in aerial photographs of different scales.

For example, take a forest section which is a non-mature forest with a large amnunt of underarowth. 3ascrl on aerial photocraphs of scale l: 6000,100 nercent of trees more than 6 cm thick werc comnted; on $1: 80 n 0$ scale - 100 percent
 cent with diree $>1 n \mathrm{~cm}$; on a $1: 10, n 0 n$ scale -- abont 8 (i-on percent with dtree $>1^{\prime \prime} \mathrm{cm}$; and on a l:10, non scale -- about Go percent.

Investimations on determination of the mmber (percentare) of trees standing umer the croms of neirhboring trees, in relation to species composition, ocompancy, and are are deseribed in section ?. ?'hese stadies, bemm on the initiative
 of the correction that has to be introdiced into the variables \because aind 1 measured from acrial photocrabls. These correctinns are best folme! on the bagis of experimental fiela and nffice work in mathematical statistical treatment of information enllocterl. As a result of this treatmont of the information, we can obta in menerill all! differentiated corrections for pure and mixed (contrining three to five reradations in snecies conmositinni stands, for two to four reradations in cannpy closure (or ncompancy), and for three to five rradations in are and density of tree stands.

Also of interest is a thenretical anproarh to solving this problem based on an understanding of correlations of stand structure. Since correlatinns of trıo distributinn hy thictnoss, hoirlt, aml erown diaיmeter and ?y tree spacing is Inome, for ionamonoons !orsels :a can obtitin from listributinn serins the apmroximate morcontice nf thia, lon-stanime, and smallcrownes? trons that bo ent show in milerial onotorraphs.

Jeln: are listed the values of mean thichness l^{n} tree ind tliceronss direo of trees constituting 5 mercent of the thtill number of stems in a forest for a miven dntree and the distrilution corrosemmaling to it.

d_{m}	10	15	20	25	30
d_{m}	5	8	10	12	15

Consequently, ir in a forest soction intree $^{n}=20 \mathrm{~cm}$, then trees with itree $=10 \mathrm{~cm}$ and less will be about 5 percent. This means that ri? can state in advance that trees of which thidiness ditree must unt be cointed for a riven dotree, and what percent they renresent of the tontal number of trees at the Incality. Tlis percentare is best intronluced as a
enrection into meall spacincs measured from acrial photonranhs, which is easily done in relyine on tables relating 1 and \because.

In forests deviating very decidedly from linmogenenis alands, thin trees will evidently be areater than 5 nercent. Gimilar calculations can be made also in the retermination of the percenta"e of small erowns an! small tree heirbits whiel rost probably will not he imared on aerial photoeraphs for a "riven mean ho and !nce bistribution series of heimhts and crowns wive an idea ibont the sion of the nercentame of these trees (of sectinns 19 and 20).

Experimental sturlies in the field and with aerial montosranles aimed at verifyine and apmaisine the nrinciple of determining mean spacincs between the ma in trees in stands set forth here vere carried out in two forest areas of the !'nsenw and Tul'skaya nilasts in 153 forest nlots from nerial photneraphe of the following scales: $1: 80 \cap n, 1: n 00 n, 1: 1 n, \cdots$ non, l:1n,000, and $1: 21,0 n 0$. Studios were made on aerial phontoeraphs of the scales 1:500n-1:25,00n following the same metholl in 105t-1055 [10]. Altocether, more that 2,000 mensurements were made. Stoms trowing from the same ront were taken as ne trec.

Field determinations of mean spaciness were conducted by the polyenn procerlure, the procechire of enintive stems in plots, the straicht line nrocedure, and the procerture of chonsime the most typical spacing. Field measurements werc controlled hy exhanstive measuremonts or were carrica nut ly two nractitinners. The most experienced practitinners made the measurements in forests of linsenw obliast. spocially trained, but ponrly qualified practitinners made the measurements in the forests of "ul'slaya ohlast with the aim of verifyine the measurement nrocedures.
lrocedures of determining mean spacine from arial nintogranhs (following the methon presented in sectinn 26) descrihed below were used.

In all cases, ocular recinnalization of the forest tracts into plots differinc in tree density was the first sten in worling with aerial photocraphs. Lecionalization was earried nut hased on photo-imacing structure visible on individual aerial photocraphs. The plonto-imagine structure denender on ace, density, heirht, crown size, and scale of the nerial photocraplis. In accordance with this approach, seven different structures were differentiated: mercen, fine-rrain, molerategrain, coarse-grain, small-patch, moderate-patch, and coarsepatch.

Nature and maturing forests usually have high height, low density, large thickness, and bushy crowns, which produce coarse- and moderate-patchy photo-imaging structure on aerial photneraphs.

Moderate-aged forests have moderate height and thickness, adequate density, and crowns of moderate size, which produce small-patchy and coarse-grained structure on aerial photographs. A young forest (zherdnyak, molndnyak) differs in high density, low height, and thin trees with small crows, which produce moderate- and fine-grained structure intergrading into merged structure.

Forest regionalization on aerial photographs was in fact based on these features of forest photo-imaging structure. To simplify regionalization, typical specimens (reference standards) of aerial photocraphs were used for forests of different structure and density. Typical specimens (reference standards) were prepared by field and office measurements of ail forest characteristics whose variables were appended to the reference standards [14]. Visual comparison of tyue specimens and aerial photogranhs (best done under the stereoscone) made possible preliminary regionalization of the forests by density and other features. Within the limjts of differentiated sections typical plots were selected, on which measurements were then made with different procedures. A similar methodology was adopted in determining all other forest characteristics.

The number of differentiated plots depends on the diversity of forest photo-structures and on the amount of detail necessary in the actual practice of securing information about forests. Based on classification of forests by density developed by estimating the economic value, geohotanical factors, and other forest properties, we can, for example, limit ourselves to five cradations of forest density and the photostructural gradations corresponding to them (of section 25): The book [14] lists typical specimens (reference standards) of aerial photo images for 13 forest photo-structures.

Four procedures were used in measuring spacings in the selected plots within forest sections.

1. The procedure of measuring the sides of a polygon consisted in selecting a typical group of neighboring crowns under the stereoscope with subsequent measurement of spacings between crown senters of 5 to 7 trees along straight lines chosen in accordance with the rules in sections 3 and 4. The
number of polygons (groups) mast not be less than 2 tn 3. Measurement of spacings was carried out ioj using parallaxmeasuring sterenscopes. The mean of all the measured spacings was taken as l_{0} of the forest section. This method can be used in all forests.
2. The procedure of counting orowns on straight lines consisted in drawing straight lines 0.5-1.0 cm (depending on the scale of the photocraphs and forest density, the length of the lines can be increased) and 0.2 mm thick across the plots. The straight lines were drawn at an angle in approximately two mutually perpendicular directions for the purpose of embracing different variants of crown placement. All the crowns that intersected or touched a line were counted along the straight lines. For control, the count was made twice under the stereoscope. Morging patches of crowns were counted as two to three crowns depending on the size of the image of the average-sized crowns in the forest section. The quotient obtained from dividing the length of straight lines by the total number of counted crown gave the mean spacing between trees. The number of pairs of lines must not be less than three to four, and by increasing the length of the straight lines the number of pairs can be reduced to twn to three. The count of the number of measured spacings and the length of the lines was conducted according to formulas in sections 8 and 27.

To get more precise results, it is necessary to determine as precisely as possible the scale of the aerial photographs, and to make the measurements on working areas of the aerial photographs. This procedure is best used for dense and moderately dense forests and on moderate-scale aerial photographs.
3. Procedure of counting crnms on plots ranging in size from 0.5×0.5 to $2 \times 2 \mathrm{~cm}$ (depending on forest thickness and acrial photographic scale; in sparse forests the plots were expanded). The number of crowns counted on the plots was converted into forest thickness X per hectare, and from the value of N the mean spacing l_{n} was found in Table $l_{\text {. }}$ This procedure is laborious, it is best used in sparse forests, but sometimes in forests of moderate density.
4. The procedure of type specimens (reference standards) of forest density on aerial photographs. Type specimens (reference standards of density) were prepared in advance on aerial photographs with several successive values of l_{0} hy careful measurements (best done with field control) in the most widely used aerial photographic scales.

By visual comparison of several specimens with the data of a forest section, the closest reference standard was determined from aerial photographs, and subsequently used to arrive at the mean spacing.

As experience has shown, errors in determining mean spacing by using specimens (reference standards) prove to be the same as those resulting from measuring $15-20$ spacings. This procedure cons iderably cuts down work volume. The procedure is simple and easily executed even by persons lacking adequate training [10].

The reference standaris procedure is especially convenient for regionalization and differentiation nf sections by gradations in forest density adopted on topographic and special mape.

Since typical specimens can be prepared with data on all forest categories, including yield, then they are best used also in determining yield when special precision is not called for.

In making measurements on aerial photographs, existing instruments (stereoscopes, parallax sheets, measurement magnifiers, rulers, gauges, styluses) are used that have not been adapted for work in measuring forest characteristics, and so cut down on precision and increase time spent. Therefore, it is best to develop a special set of instruments for forest interpretation. Based on experience in making measurements, we can recommend manufacturing special thin and transparent rulers, with openings for pricking of crowns and with divisions along the lower edge at intervals of $1 \mathrm{~cm}, 1 \mathrm{~mm}, 0.2$, and 0.1 mm colored red. Such rulers and also stereoscopes with magnifiers replace the magnifiers unsuitable for measurements. For the straight line procedure, it is useful to make standard rulers (strips) on transparent base material, which precludes drawing these lines with styluses.
29. Experimental Data on Determination of Mean Tree Spacing From Aerial Photographs

Results of determining mean spacings from 1:8,000 aerial photographs in the forests of Tul'skaya Oblast are presented in Table 59.

It is clear from Table 59 that almost 88 percent of the examples give an error less than 0.1 meter. The mean square

GRAPHICS
 NCT REPMODUCIBLE

error in determining the mean spacing $\sigma= \pm 0.68$ meter, but if we exclude four coarse errors, then $\sigma= \pm \overline{0} .5$ meter.

Table 59
(A)

Legend: A -- greater than 1.5
The size of relative errors in percentages of different spacings was of interest. Table 60 lists σ values and their expression in percentages fercent with respect to l_{n} ranging from 1.5 to 10 meters.

Systematic correction $\Pi=-0.5$ meter was introduced into measured l_{0}. It is clear from the table that the greatest error in percent pertains to l_{0} values, that is, pertains to very dense and young forests, which was to be expected. Since these forests do not have a substantial bearing in estimating yields, their mean spacing is best indicated on the map in the form of gradations, that is, indicated simply that in the given forests, $\mathrm{l}_{0}<2$, or 1.5 , etc.

Table 60

On the average, however, the mea spacing in forests ranging from $l_{0}=2$ meters to $l_{0}=10 \mathrm{~m}$ uers was determined with an error of 11 percent.

GRAPHICS
 NOT REPRODUCIBLE

Field and office measurements of l_{0} on 1:9,000 aerial photographs taicen in the forests of Moscow Oblast are shown in Table 61.

Table 61

Legend: A -- greater than 1.5
The mean square error $\sigma= \pm 0.49$ meter with systematic correction $\Pi=-0.3$ meter. If we drop one coarse measurement, then $\sigma= \pm 0.34$ meter. For the most important and widespread tree stands with spacings from 4 to 6 meters, the average $\sigma= \pm 0.35$ meter, or only 7 percent. The higher precision is reached here owing to the experience of the practitioners taking measurements in the field and from aerial photographs.

The results of field and office measurements on 1:10,000 aerial photographs are show in Table 62.

Table 62

1
(1) 11

Legend: A -- greater than 1.5
The mean square error $\sigma= \pm 0.66$ meter with systematic correction $\Pi=-0.5$ meter. For spacings of $4-6$ meters, tho error $\sigma= \pm 0.63$ meter, or 12.5 percent.

GRAPHICS NOT REPRODUCIBLT

Distribution of deviations in measuring mean spacinge on 1:19,000 aerial photographs is shown in Table 63.

Legend: A -- greater than 1.5
The mean square error $\sigma= \pm 0.92$ meter with systematic correction $\Pi=-0.8$ meter. For spacings within the range $4-6$ meters, $\sigma= \pm 0.96$ meter, or 19.2 percent, but when four coarse measurements are dropped, $\sigma= \pm 0.70$, or 14 percent.

These data evidence that determination of l_{0} from 1:19,000 aerial photographs gives greater errors, about twice as great as the errors got ten when measuring aerial photographs within the range of scales 1:9,000-1:10,000. To cut down on the size of errors it is necessary to magnify small-scale aerial photographs by two to three times, but only those sections for which measurements are projected. Thus far there are no other ways of boosting measurement precision (if we exclude use of winter aerial photographs), since we cannot alter the distribution of random deviations and the systematic corrections have been incorporated.

The distribution of deviations when measuring mean spacinge on 1:21,000 aerial photographs is given in Table 64.

The mean square error $\sigma= \pm 0.48$ meter, with systematic correction $\Pi=-1.2$ meters. For distances in the range of $4-6$ meters, the mean $\sigma= \pm 0.5$ meter, or 10 percent. The higher precision compared with $1: 19,000$ aerial photographs is realized owing to the experience of practitioners and as a consequence of the work mainly involving measurement of large spacings, and the fact that there were no sections with dense forests and small $l_{0}\left(1_{0}<3\right.$ meters) in the experiments.

GRAPHICS NOT REPRODUCIBLE

(D)

Legend: A -- greater than 1.5

Methods of determining mean tree spacing in the principal canopy of a gtand yield, of course, approximate, but still quite satisfactory results.

However, experiments have show that in this variant as well mean spacirgs determined from aerial photographs of ten prove less than field values of l_{0}. Therefore, we must introduce a correction into the measured lgv of approximately -0.5 meter on $1: 10,000$ aerial photographs, and -1.0 to -1.3 meters on 1:20,000 aerial photographs.

Then used with aerial photographs in range of scales 1:10,000-1:15,000, for forests with $l_{0}>2$ meters the proposed procedures will obviously give satisfactory precision in mean spacing determination.

Then used with aerial photographs in the range of scales 1:18,000-1:25,000, we can get precision that is applicable in practice for forests with $1_{0}>9-10$ meters, but when magnifying aerial photographs by two to three times, there are grounds to anticipate realizing satisfactory precision even in forests with $l_{0}>5$ meters.

He must also bear in mind that mean spacing, let us say, of 5 or 6 meters is only a parameter in a spacing distribution series from which we get an idea about the percentage ratio of different spacings.

By way of example, let us present two values of mean spacings, $l_{0}=5$ metrars and $l_{0}=6$ meters. We will assume the mean spacings were determined with an error of 1.0 meter, that is, mach greater than the errors that we get on 1:10,000 aerial photographs.

Cunヶrrićśn
 NOT REPRODUCIBLE

We will now write out the spacing distribution series when $l_{0}=5$ meters and $l_{0}=6$ meters in Table 65.

Table 65

It is clear from the table than an error of 1 meter in determining mean spacing leads to a situation where instead of 19 percent of spacings $1=6$ meters, we get 16.9 percent, that is, 2.1 percent less than the actual.

Small-scale zerial photographs used in determining mean spacings can be employed, given the condition that there is an improvement in quality of photographic film and choice of the most suitable time for aerial photography.

In estimating precision of determinations made of spacings and stand density from aerial photographs, we must bear in mind that in forestry inspection and management of forests in the U.S.S.R. at all levels is carried out by the ocular method, but in topog:aphic work, prior to use of the author's method, such primitive procedures in mean tree spacing determination were recommended as had no theoretical foundation for reliability and precision of results produced.

CILAPTER 7

METHODS OF DETERMINING MEAN HEIGHTS, GROIN DIameters, and canopy closure of stands

30. Methods of Determining Mean Crown Diameters

The tree distribution series in crow diameters is expressed by the normal distribution curve (section 20). Therefore, the mean crom diameter in forest sections will be determined as a parameter of the distribution series. This formulation of investigations differs fundamentally from studies of the precision of measuring crown of individual trees.

In the U.S.S.R. detailed etudy on precision of crowns measured from aerial photographs of different scales has been conducted by Professor G. G. Samoylovich, N. I. Baranov, and others.

Worly and Meyer (University of Penneylvania, United States) have investigated precision in measuring crowns of individual trees on 1:12,000 aerial photographs. They measured the crows of 36 trees three timea using different methods, which required taking 432 measurements. The error in determining an individual crown proved to be 3-4 feet, or 0.9-1.2 meters with systematic correction of 1-2 feet, or 0.3-0.6 meter. Moessner (Central Forest Experimental Station of Canada) obtained at error equal to ± 0.33 foot, or ± 0.1 meter with systematic correction of -0.3 metur. These measurements do not afford data for sstimating the precision in determination of the mean diameter of the entire population of croms in a forest section.

To determine the mean crom diameter by the sampling method with a precision of $\Delta=10$ percent at a significance level $\alpha=5$ percent and variance $v_{c}=30$ percent, we have to measure $=36$ crowns.

In making measurements of mean D_{c} from aerial photographs, it is important to know characteristics of crown pho-to-imaging structure. It is obvious that croms of tall and moderate-sized trees and some smaller trees will show up for the most part on aerial photographs. These trees exhibit larger crowns, therefore the measured crowns will give some overstatement of mean D8. But, on the other hand, the widest part of the crown usually is located below the peak and is partially covered by the branches of neighboring trees, therefore it is not the widest part that will be imaged on the aerial photographs, but a narrower part, which leads to some understatement of mean $D 8$ on aerial photographs. This simultaneous overstatement and understatement will mutually cancel out, but not entirely and some of the neighboring crowns will blend into one image, which can lead to an overstatement of mean $D 8$. As the scale of aerial photographs is reduced, the number of small crown that will not show up at the scale used and will not enter into measurement will rise, which will lead again to some overstatement of mean $D 8$.

111 these factors listed that have a bearing on crom structure imaged on aerial photographs in totality then determine the value of mean D_{c}^{0}. However, the mean crown diameter depends also on procedures used in measuring crowns on aerial photographs. In our investigations we proposed and used two main methods of measurement. The first method consisted of, after preliminary regionalization of the forest tract into sections and choice of plots within the sections for conducting measurements, the plots were examined under the stereoscope to discover the actual size of crom images.

In the plots, a group of trees was selected, and the membership of this group is best taken as trees in the polygons already used in measuring mean spacings. Each crown was measured with magnifiers at a 10-12-fold magnification in two mitually perpendicular directions in order to discover the actual mean diameter of each crown. A group of crown usually consists of five to seven trees. The number of groups mist not be less than three.

If we have to obtain the mean diameter with high precision, we must then appropriately enlarge the size of the sampling population.

The second method of determining crows is based on measuring the widths of crown images and openings along a straight line. Just as in measuring mean spacing, a straight line is drawn with a stylus. All crown images intersecting
or touching this line are measured and counted. Then the overall value of the measured crom images, divided by the number of croms, gives the mean crom diameter. In the plot two mutually perpendicular lines are always drawn and the mean value of D_{c} is taken along these tro lines. The number of pairs in the section must not be less than two to three. As the length of the straight line is increased, the number of pairs can be reduced to tro. This procedure is very simple, and as a result measurements do not depend on subjective perceptions of the persons taking the measurements.

Experimental studies on measuring crowns in the field and on aerial photographs were carried out for 121 sections using aerial photographs of scales $1: 8,000,1: 10,000$, and 1:19,000. A total of more than 800 measurements were taken with the testing of the two main methods described earlier.

Table 66 lists the results of the field and office measurements of crowns on $1: 8,000$ aerial photographs using the first method.

Table 66

(A)

Legend: A -- $\Delta D_{C} ; B--g r e a t e r$ than 1.5
The mean square error of mean crown diameter determination $\sigma^{\prime}= \pm 1.0$ meter, but when coarse measurements are dropped, $\sigma= \pm 0.8$ meter with systenatic correction $\Pi=+n .1$ meter.

Table 67 gives the results of measuring crowns on 1:8,000 aerial photographs using the second method (measurement and count along straight lines).

The mean square error $\sigma= \pm 0.68$ meter, with systematic correction $\Pi=-0.1$ meter. For mean diameters from 3 to 5 meters, the mean $\sigma= \pm 0.51$ meter, or 12.7 percent, which can be taken as satisfactory precision.

GRAV-CS
 NOT REPRODUCIBLE

Table 67

(A)

(B)

Legend: A -- $\Delta \mathrm{D}_{\mathrm{c}}$; 3-- greater than 1.5
Table 68 gives the results of measuring crown on 1:8,00n aerial photographs.

Mean square error $\sigma= \pm 0.64$ meter with systematic correction $\Pi=-0.2$ meter.

Table 68

(A)

(B)

Legend: A -- $\Delta \mathrm{D}_{\mathrm{c}} ; \quad 3$-- greater than 1.5
For crowns rangine in size from 3 to 5 meters, $\sigma=$ ± 0.64 meter, or 16 percent.

Table 60 gives measurements of croms on $1: 10,000$ aerial photographs.

The mean square error $\sigma= \pm 0.77$ meter, with systematic correction $/ 7=-0.4$ meter.

For crowns from 3 to 5 meters in winth, the mean $\sigma=$ $\pm n .78$ meter, or 19.5 percent.

cr:merng
 NOT Rerimoductible
 Table 69

Legend: A -- $\Delta \mathrm{D}_{\mathrm{C}}$; $\mathrm{B}-\mathrm{g}$ greater than 1.5
Investigations showed that in determining crowns by the method of counting them and making measurements along straght lines on $1: 8,000$ aerial photographs, overstatement of croms is small and requires introduction of systematic correction into measured $D_{C}^{2 v}$ values on aerial photographs of only $\Pi=-0.1$ meter, on $1: 10,000$ aerial photographs -. about -0.2 meter, and on $1: 19,000$ photographs the correction $\Pi=-0.4$ meter.
31. Methods of Determining Mean Height of Tree Stands From Aerial Photographs

Determination of heights of trees from photographs by the method of measuring shadow length was conducted by Mikhayav in 1917, by Martsinskovekiy in 1925, by G. G. Samoylovich in 1927, A. K. Pronin in 1931, and N. I. Baranov in 1933.

Determination of mean heights of tree stands by the ocular method using stereoscopic height was investigated by the scientific research laboratory of the forest aviation trust in the Forest Engineering Academy imeni S. M. Kirnv. Determination of heights by distances and longitudinal parallaxes was conducted by G. G. Samoylovich, Andrews (United States), Losee (Tanada), and others. Precision of tree height measurement using the D-5 sterenscope and the PL-2 parallax sheets was investigated in the studies [48, 49, 52]. D. M. Kireyev investigated precision in determination of tree stand heights by the method of measuring the parallax shift of the tree apex relative to its base (the method does require use of etereomeasuring instruments) and by the method of measuring heights using the STD-1 stereometer.

In ground appraisal, precision in determining mean height is taken as equal to ± 10 percent. If h_{0} is determined by the sampling method with a precision $\Delta=10$ percent, then at a confidence level $\mathrm{p}=0.99$ and variance $\mathrm{v}_{\mathrm{h}}=10$ percent, it is required to measure the heights of 9 trees. Separate sections are marked out when the difference in mean heights is greater than 2 meters.

A great many studies on determination of precision in measuring heights of individual trees have been conducted in recent years in our country and abroad. However, the main issue does not lie in studying precision of measurements of individual tree heights, but in determining the mean height of a tree stand, for these are two distinct problems. The following problem was resolved in the experimental studies described below. Measurement of tree stand heights in the field and from aerial photographs was carried out on 158 forest sections. The measurements were taken independently by three practitioners on aerial photographe of scales $1: 10,000$, and $1: 19,000$ in three areas using parallax sheets and a stereometer.

Precision in determining mean tree stand height depende a great deal on how trees are distributed by height at the locality and on the structure of those trees that show up on the aerial photograph. In field measurements, sometimes mean height is overstated, since unwittingly one's attention is dram to the principal stems of the upper canopy of the tree stand.
on aerial photographs it is mainly trees that are higher than the average and close to the average height that are imaged, while lower-standing trees participate to a lesser extent in forming the upper canopy that is imaged on aerial photographs. In stereoscopic measurements, we must bring the crosshair of the instrument precisely at the level of the tree stand canopy. Aligning the crosshair on the apex of trees projecting above the main canopy will lead to overstating the mean h_{ρ} values, but placing the crosshair below the main canopy will bring about an understatement of mean height. Deviations above and below the main canopy have a very sensitive effect on precision of mean height determination, since the variance of height is very small. Then $v_{h}=10$ percent and $h_{0}=20$ meters, the limits of deviation of the main caopy will lie within the limits $\Delta \mathrm{h}= \pm 2$ meters. If we express Δh in stereoscopic he ight, then when $f_{c}=200$ wim and the stereoscopic magnification $k=1.5$, the doubled value h will be $0,8-0.9 \mathrm{~mm}$ on aerial photographe of scale $1: 10,000$.

Given these data, a 0.2 mm error in crosshair alignment can give a deviation of ± 1 meter. Therefore, careful choice of the surface level of the principal canopy of the stand is of great importance in precision of determining the mean tree stand height from acrial photographs. In actual practice, in measuring heights individual tsees are selected, but it is best if there is an opportunity to conduct measurements at the surface level of the main canopy by selecting the most typical locations for this. When measuring mear. heights based on individual trees, the latter must be selected according to their closest approximation to the mean height of the principal canopy of the stand. If however we take any outstanding tree, standing alone and convenjent to measure, in making our measurements, then this tree can have a height as distinct as we wish from the mean tree stand height. When there is high forest density, the principal canopy surface on aerial photographs is formed by the higher trees with $h=h_{0}$ and higher. So, overstating mean hejght is probable in this case. We mist also keep in mind that it is not the very uppermost parts of the crom that participate in forming the surface of the principal canopy, but the lower crown cross-sections, which reduces the visible surface of the canopy, especially in small-scale aerial photographs in which the narrow and fine tips of the crowns can be imaged not at all or else be hard to differentiate if they are. This phenomenon, most likely, will lear to understating mean heights measured on small-scale aerial photographs.

In addition, the stereoscopic height of a forest on 1:20,000 aerial photographs (or smaller in scale) is very decidedly reduced, therefore a 0.1 mm error in crosshair alignment on poorly differentiable crown apexes will give a deviation of 0.5 meter. Density, shape, and illumination of crowns affect precision of height determination [51,52]. For reliable determination of mean height, the number of trees to be measured is calculated from formulas in section 8 , but the number of alignments on the upper canopy of a forest plot must not be less than three.

All these features of mean height measurements were taken into account in the experimental work.

Table 70 lists the results of measuring mean heights of trees from l:10,000 aerial photographs.

The mean square deviation $\sigma= \pm 1.3$ meters with systematic correction $7=+0.5$ meter. For heights from 14 to 22 meters, that is, on the average for 18 meter, the deviation $\sigma= \pm 1.3$ meters, or 7.2 percent, which can be deemed permissible error.

Table 71 lists the results of measuring mean heights from 1:10,000 aerial photographs in another area.

Then two cnarse measurements are dropped, the mean square deviation $\sigma= \pm 1.26$ meters, with systematic correction $=+0.4$ meter, which can be accounted for owing to tree growih, since field measurements of heights were conducted after the aerial photography session. When two coarse measurements are allowed for, $\sigma= \pm 1.67$ meters, or 10.8 percent. For heights in the range $14-2 \overline{2}$ meters, or averaging for $h_{0}=18$ meters, the error was 8.1 percent. In this experiment, the deviation did not exceed 2 meters in 92 percent of all cases, that is, precisely the difference in heights that is taken in delimiting appraisal sections.

Table 72 lists the measurements of heights on $1: 10,000$ aerial photographs in the third area.

The mean square deviation $\sigma= \pm 1.7$ meters with systematic correction $\Pi=-0.1$ meter. For heirhts $h=18$ meters, $\sigma= \pm 1.64$ meters, or 9 percent.

Table 73 gives measurements of mean heights from 1:19,000 aerial photographs.

Then one coarse measurement is excluded, the mean square deviation $\sigma= \pm 1.64$ meters, with systematic correction $\Pi=+2.0$ meters. The clear understatement of hejghts measured from these aerial photographs can be explained by two factors. The first is that field measurements of h_{o} were made three years after the aerial photography har been completed. In three years the mean growth increment of the tree stand was approximately 0.7 meter. The rest of the 1.3 meters can be explained as stemming from the structure of imaging and shape of crowns on small-scale aerial photographs. Based on these facts, we cannot agree with the findings of Johnsons (United States), who on the bas is of combined studies conducted by the Committee of Forest Photogrammetry of Sweden and the Alabama Polytechnic Institute in the United States asserted that precision in determination of tree heights does not depend on the scale of aerial photographs. This conclusion was arrived at on the grounds of studies made of precision in measuring heights of individual trees, but he is not justified in determination of the precision of measuring mean tree stand heights. Studies conducted by D. M. Kireyev (U.S.S.R.) and by Losee (Canada) also bear this out.

GRAPHICS NOT REPRODUCIBLE

Table 73

Legend: A -- greater than 3.0
As experience has shom, determination of mean height is possible with $1: 19,000$ aerial photographs, but this requires introduction of corrections, while on the average the error can be close to 10 percent. Worly and Meyer (United States) obtained an error of from 8 to 10 feet on $1: 12,000$ aerial photographs, that is 2.4 meters to 3 meters. Moessner (Canada) got an error of 10 feet on 1:20,000 aerial photographs. As a whole, however, based on data of foreign researchers the error in determining tree heights is close to 12 percent. From the experimental studies presented earlier, it is clear that mean tree stand heights from aerial photographs of scale range 1:10,000-1:15,000 ars determined with a precision of 7-10 percent, but when 1:20,000 aerial photographs are used -- with an error of $10-12$ percent. We must, of course, bear in mind that one can encounter individual deviations even greater in size, but we can guarantee the deviations given above with a probability close to unity, if all conditions of the sampling method and the measure-techniques are correctly met.

32. Methods of Determining Canopy Closure From Aerial Photographs

In forest appraisal, canopy closure is used to determine occupancy of tree stands with allowance for interaction between tree stands and occupancy in turn is used to calculate stand yield, that is, to solve the main problem in inventorying the forest resources of the country. Canopy closure is necessary also for canopy representation on maps.

Accordingly, deriving methods of determining canopy closure from aerial photographs and in fieliwork is of practicel interest in securing appraisal and topographic information about forests.

In 1939, it was recommended in studies of the All-Union Trust of Forest Aviation to divide forest sections, by canopy closure, into four groups: $C_{1}=1.0 ; C_{2}=0.75 ; C_{3}=0.5 ;$ and $\mathrm{Cl}_{4}=0.25$.

Determination of occupancy from canopy closure is vital in forest interpretation, but at the same time, according to A. K. Pronin, "this problem has not been at all fully dealt with."

Canopy closure is determined either ocularly or by superimposition in the plane of openinge in the crown canopy with subsequent measurement of the areas occupied by the openings. Abroad, chiefly in Canada and the United States, following the Second World War appraisal and inventory of forests from aerial photorraphs were advanced based on determination of crom cannpy, for the latter mas adnpted as one of the chief variables in compiling standard yield tables (Standard Volume Tables) from which yields of tree stands were estimated.

Studies by the author on determination of cannpy closure were conducted in 1947-1950 based on small samplings, but broader experimental work in the field and on aerial photographs was conducted in 1951-1959.

In determining canopy closure, just as in determining nther forest characteristics, the sampling method was used, on the basis of which several mensurement procedures in estimating canopy closure in the field and from aerial photographs were proposed.

It is necessary to know the variance of canopy closure when using the sampling method. In the literature available to us in the U.S.S.R. and abroad we have been unable to find data on investigations of crown cannny variance. The lack of information abnut variance has compelled, for example, losee (Canada), regarded as one of the top specialists in the United States and Canarla, to conduct investigations on the precision of canopy closure determinations without theoretical calculations and to conduct extremely laborious empirical studies in order to arrive at data satisfying a significance level of 5 percent, that is, a reliability of measurement equal to the probability $p=0.95$

To determine the variance of canopy closure, experimental studies have been conducted in two forest sections. im a 1:100 sketch, all trees and point projections of their crowns,

GRAPHICS
 NOT REPRODUCIBLE

totalling 1514 stems, were plotted with instruments. Areas occupied by the croms of 1514 trees were measured on 102 plote each 10×10 meters in area. From these data, the actual canopy closure was calculated in each of the 102 plots. Data of 42 plots were used in sampling determination of canopy closure variance.

Based on these measurements, the author calculated the variance, dispersion, and mean canopy closure.

The variance of canopy closure proved to be equal to

(A)

The precision of canopy closure determination needed in practice can be established indirectly, since there is no data on this problem in the literature. In forest appraisal, the precision in determining occupancy is taken as 0.1 (ground ocular appraisal). For topographic purposes, it is quite adequate to determine canopy closure with a precision of 10-15 percent. Thus, we can assume that canopy closure in the field and from aerial photographs is permiseibly determined with an error of the order of 10 percent or even $10-15$ percent. If we take the precision in canopy closure determinations as equal to $\Delta=15$ percent, then with a confidence level $t=2$ ($\mathrm{p}=0.95$), the sampling population is
plots

In the straight line procedure (20 meters in lencth), four 10×10 meter plots correspond approrimately to a pair of straight lines. Then the number of straicht lines required to determine canopy closure with a precision of 10 percont at a confidence level $p=0.95$, will be

linowing the variance $v_{c l}$, the desired precision \triangle, and the dosired confidence t, it is easy to thenretically calculate the required sampling population of measurements in any methods of canopy closure determination.

The following methods of determining canopy closure in the field and on aerial photographs have been proposed and tested:

GRAPHICS
 NOT REPRODUCIBLE

the method of determining canopy closure on typical polygons; the method of determining canopy closure on square plots 20×20 meters and 10×10 meters in size; the method of determining width of crown and intercrown openings along straight lines; the method of measuring mean crown diameter and mean tree spacing; the method of typical specimens (reference standards) of canopy closure on aerial photographs.

Exhaustive measurements of canopy closure were taken on two forest sections.

True canopy closure in the first section $C=0.535$. Mean crow diameter was determined based on these same measurements. The total area occupied by the crowns in the section was $P_{c}=2486.6$ square meters, and the total number of stems N - 262, so the area of the average crown was
(1) $p_{k}=\frac{248,1}{2 ; 2} \approx 9,5 \mathrm{~m}^{2}$.

Legend: A-- \mathbf{p}_{c}
Assuming that $p_{c}=\pi / 4\left(D_{c}^{2}\right)$, we get
(1) $D_{n}=1,131 \overline{p_{x}}$.

Legend: A-- D_{C}
From expression (93) and P_{C}, the mean crom diameter $D_{C}^{0}=1.13 \times \sqrt{9.5}=3.5$ meters.

The actual mean tree spacing $l_{0}=4.4$ meters, while the relative clearance between crown was

$$
\Delta d=\frac{1-D_{s}^{(d)}}{(A) D_{1}}=\frac{1}{3,8} g_{0}
$$

Legend: A-- D_{C}
Based on the approximational relationship between C, 1, and d (from the graph in Figure 15 or Table 4), closure $C=0.58$ was determined, giving an error $\Delta C=0.58-0.53$ $=0.05$, or only 5 percent.

Based on data of continuous measurements in the second section, the actual $C=0.572$, and the mean crom area was
(1) $P_{R}=\frac{3005,9}{203} \approx 13,3 \mathrm{~m}^{2}$,

Legend: $\boldsymbol{A}=\mathbf{p}_{\mathbf{c}}$
mean spacing $1_{0}=5.17$, and mean crown diameter $D_{c}^{0}=4.1$ meters, while $\Delta d=1 / 3.3\left(D_{c}^{0}\right)$. Based on Δd and ${ }^{c} 1_{0}$ from Table 4 or rom Figure 15 we get $C=0.50$, which gives an error $\Delta C=0.07$, or 7 percent. These examples show that canopy closure can be determined approximately from Table 4 or from Figure 15 if we know D_{c}^{0} and l_{0}, where the error in determination proved to be equal to 5-7 percent, of course, given the condition that there are precise values of D_{c}^{0} and l_{0}. Since l_{0} and D_{C} will be determined by the earlier described methods, then they can be used to determine also C from Table 4 or from Figure 15.

Determination of canopy closure by the polygon method (using the same polygons on which sampling determination of mean spacing was conducted) was carried out under field conditions.

In the firet section, the actual $\mathrm{C}_{0}=0.53$, but the sampling (based on six polygons) $\mathrm{C}_{\text {gamp }}=0.53$. In the second section, $C_{0}=0.57$, but $C_{\text {samp }}=0.53$.

We will cite measurements of canopy closure in the forest on plots 20×20 meters in size. In three plots of the first section $\mathrm{C}_{\text {samp }}=0.43$, which gives an error $\triangle \mathrm{C}=$ 0.1 or 10 percent. In the second section, based on three plots $C_{\text {samp }}=0.48$, which gives an error $\Delta c=0.09$, or 9 percent.

In the third section, canopy closure was determiner from two 20×20 meter plots, which gave $\mathrm{C}_{\text {samp }}=0.67$ with $C_{0}=0.70$ and an error of 3 percent. Still we have to recognize that determination of canopy closure from 20×20 meter plots is too laborious. It is simpler to determine C from 10×10 meter plots with the same precision.

The simplest measurement method in determining canopy closure must be deemed the method of measuring crom width and inter-crown openings along straight lines. Lines (as in the method of straight lines when determining mean tree spacings) are drawn along the boundaries of a homogeneous forest section. The width of croms intersecting or touching a line $0.1-0.2 \mathrm{~mm}$ thick (on aerial photographs) as well as the length of intervals between crown along the line are measured, using a magnifier along these lines. The overall length of these values is equal to the length of the line. Then the overall crown width in percentages of the straight line length gives canopy closure in percentages or in fractions of unity. Line segments are best dram in two mutually
perpendicular directions for more accurate allowance for crown size in different orientetions.

Figures 26 and 27 show copies of forest plots 20×20 meter each in size on a l:100 scale with point projections of the crowns of all trees in the locality. The method of determining canopy closure based on two mutually perpendicular straight lines 20 meters in length at the locality or 20 cm on the sketch gave the following results.

Figure 27 shows that the overall winth of crome alone the first line $l_{1}=13.5 \mathrm{~cm}$, and along the second $l_{2}=6.2 \mathrm{~cm}$, which correspondingly gives $\mathrm{C}_{1}=13.5 / 20=0.62$ and $\mathrm{C}_{2}=0.31$, and the mean Csamp $=0.46$. With the true $C_{0}=0.53$, the error was 7 percent.

To boost the precision of determining canopy closure it is necessary to take not less than two pairs of mutually perpendicular straight lines, placing them along the most typical forest sections. The straight line method, along with its simplicity and precision, also exhibits objectivity, since the results of measurements of crown and inter-crown openings along straight lines do not depent on subjective perceptions of the practitioner. Precision will depend on the choice of the placement of straight lines in the section, and this requires preliminary inspection of the aerial photographs under the stereoscope. Magnification of the strajght, lines leads to a greater allnwance for differences in canopy, and, consequently, to higher precision in determining the mean closure value.

The thickness of the lines drawn on the aerial photograph has an effect on precision of cannpy determination. Straight lines 0.2 mm in thickness and 1.0 cm long are dram on Figure 2;. Based on the pair of straight lines 0.2 mm thick, the closure $\mathrm{C}_{1}=0.46$, but alone the straight lines 1.0 cm in thickness (cross-hatched) $\mathrm{C}_{2}=0.58$, while the true $C_{n}=0.53$. So, increasing the thickness of lines leads to an increase in C. As the scale of the aerial photographs is reduced, straight lines of the same thickness (for example, $0.1-0.2 \mathrm{~mm}$) will cover increasingly hroader strips and this under otherfise equal conditions will lead to an increase in C, which must alao be borne in mind when determining canopy closure by the straight line method on aerial photographs of different scales. precision in determination of C by the straight line method also depends on forest density. In sparse forests, the straight line method will yield gross errors and in such forests it is best to determine C from reference standards (on aerial photographs) by ocular comparison.

GRAPHICS NOT REPRODUCIBLE

Section No 1

(A)

Figure 27. Copy of forest plot on $1: 100$ scale for determination of canopy closure by the atraight line method. Legend: A -- projectinns of tree crowns

The method of type specimens (reference standards or closure scales) of canopy closure on aerial photographs with previously measured values of C can be used for any forests. In those cases when we have to regionalize forest sections by three closure gradations (0.5, 0.25, and 0.1) indicated in the forest classification scheme (section 25), it is required to prepare only three reference standard aerial photographs, corresponding to $C_{1}=0.5, C_{2}=0.25$, and $C_{3}=0.1$. Visual comparison of standards with forest sections on aerial photographs of the same scale allows us to determine the approximate closure without any measurement calculations. In actual practice, the reference standard method is

GRAPHICS
 NOT REPRODUCIBLE

the simplest and the speediest. The method of determining canopy closure based on specially prepared artificial transparencies on which circles of different diameters have been drawn is used in Canada and the United States. The blackedin area of the circles expresses the cannpy closure. Choice of such transparencies is made for closures from 0.5 to 0.75 . Comparing these artificial "reference standards" with forest sections on aerial photographs, the closest reference standard is determined, and this is used to estimate canopy closure.

Experimental studies on determining canopy closure have been conducted by us on 1:10,000 aerial photographs in 36 forest plots by the straight line method.

Table 74 lists the results of office measurements of canopy closure.

Table 74

Legend: A -- greater than 15
The mean square deviation $\sigma_{c l}= \pm 0.08$, or 8 percent, with systematic correction $\Pi=+0.06$, or 6 percent. It follows from this that the straight line method gives satisfactory precision in determining canopy closure from aerial photographs. Still, it was found that the straight line method gives an approximate 6 percent understatement of closure. To eliminate this understatement, it is best to take lines nct 0.1 mm thick on $1: 10,000$ acrial photographs, but $0.2-0.3 \mathrm{~mm}$ thick, but not thicker, since this would lear to systematic overstatement of closure.

It is clear from these studies that the sampling method of determining canopy closure using the straight line procedure ensures a precision under field conditions of 5-7 percent, and 8-12 percent when using aerial photographs.

Canopy closure (by methods used in the United States and Canada) is determined on 1:12,000 aerial photographs with an error of 10-20 percent in Canada and the United States, bafed on data of Coleman and Rogers given by them at the congress of the International Society of Photogrammetry. According to Logee's data (Canada), the mean square error in determining closure from l:7,200 aerial photographs is $\sigma_{c l}=$ ± 9.9 percent, with systematic correction of -1.3 percent, which approximately agrees with the precision of determining canopy closure in our experiments. From the data of Worly and Meyer (United States), they have obtained an error in determining canopy closure from l:12,000 aerial photographs of about 10 percent (with systematic correction of $5-10$ percent), which is to be expected, since the method of transparencies is based on ocular data on not on instrumental measurements. As we can see from comparison of studies conducted in the U.S.S.R. and abroad, methods we have proposed will be productive of more precise results, since they are based on objective measurements on the sampling method theory.

CHAP'TER 8

METHODS OF DETERMINING MEAN THICKRESS OF TREES IN

 a stand fhom aerial piotngraphisCalculation of the number of measurements proceeds according to the formulas under the sampling method (section 6). The diameters of 25 trees must be measured to determine the mean tree diameter in the locality to a precision of $\Delta=10$ percent for a confidence level $p=0.95$ and variance $\mathrm{v}_{\mathrm{d}}=25$ percent.

In actual practice, mean diameter is determined by ocular sampling of seven to ten trees that are of average thickuess.

For control in determining mean diameter, its ratios with the thinnest and the thickest trees in a homogeneous stand can be used. Field determinations of mean diameter are made more simply than determinations of mean height and crown diameter. Precision of mean diameter determinatior. in ground appraisal is set at ± 10 percent; delimiting of forest plots into independent areas is carried out when there is a difference of more than 4 cm in the thickness of the average tree. In topographic work, determination of mean thichess precision is not stipulated in instructions.

While height, crown diameter, tree spacing, and canony closure can be measured with the same degree of precision directly from aerial photographs, it is not possible to measure tree diameter at a height of 1.3 meters from the ground using flat aerial photographs. Therefore, the only method of determining mean thickness from aerial photographs is preliminary derivation and mathematical expression of the correlation between diameter and other tres characteristics. The correlation equation and the correlation table of the ratio between

GRAPHICS
 NOT REPRODUCIBLF,

thickness, height, and cromn diameter, calculated on the basis of the correlation equation, are given in sections 22 and 24 . This last-named section gives the results of experimental studies on determination of mean thickness by relying on the correlation Table 47 based on crown diameters, heights measured from aerial photographs, and on these two variables considered $i:$ combination.

Determination of stem thickness under office conditions from aerial photographs is of practical importance in resuming topographic maps and in forest appraisal. So searchine for even approximate and indirect methods of determining mean thickness from aerial photographs is of theoretical and practical interest.

The experimental studies described below were conducted gradually, beginning from 1948, from aerial photographs of scales $1: 8,000,1: 10,000$, and $1: 19,000$ in four areas, totalling 262 forest sections, which required more than 2500 measurements in the field and from o.erial photographs.

As the result of these studies, the precision of correlation equations relating forest characteristics was verified as well as the precision of various methods of measuring and determining these characteristics from aerial photographs of various scales covering tree stands differing in density, height, and composition.
33. Determination of Mean Tree Thickness From Crom Diameters and Correlation Table

In the experiments, the goal of discovering the precision of determination of dree from D\& measured from aerial photographs as well as from the correlation Table 47 was posed.

Table 75 lists the resulte or field and office measurements from 1:8,000 aerial photngraphs.

GRAPHICS
 NOT REPRODUCIBLE

The mean square deviation $\sigma_{d}= \pm 3.6 \mathrm{~cm}$ with systematic correction $\Pi=-0.3 \mathrm{~cm}$.

Table 76 lists results of the determination of dree from l:10,000 aerial photographs.

Table 76

Legend: A -- greater than 6.0; $m=$ [subscript] tree
The mean square deviation $\sigma_{d}= \pm 4.6 \mathrm{~cm}$ with systematic correction $\Pi=-1.2 \mathrm{~cm}$, the emergence of which is accounted for by the +0.2 meter overstatement of the measured crowns.

Table 77 lists measurements from 1:19,000 aerial photographs .

Table 77

Legend: A -- greater than 6.0; $m=$ [subscript] tree
The mean square deviation $a_{i}= \pm 4.67 \mathrm{~cm}$ with systematic correction $\Pi=-3.1 \mathrm{~cm}$, which is accounted for by the approximately +0.4 meter systematic overstatement of measured crown using data of aerial photographs.

It is clear from the data given that as the scale of the aerial photographs is reduced the error of determination of mean tree thickness from $D_{C}^{a /}$ and from Table 47 rises. On $1: 8,000$ aerial photographs the mean equare deviation $\sigma_{d}= \pm 3.6$ cm lies within the bounds of permissible arror, but deviations on 1:10,000 and 1:19,000 aerial photograpins exceed the possible

GRAPHICS NOT REPRODUCIBLE

allowances. As a whole, however, precision in determining thickness from crown size is not high, which evidences the not wholly intimate correlation between these variables and that the correlation between D_{c} and $d_{\text {tree }}$ requires further investigation and refinement. This in fact is also true of crown measurements from aerial photographs. Still, sxperience shows that there is a possibility of approximation or estimation of tree thickness from crowns measured on aerial photographs and efforts in this direction must be kept up.
34. Determination of Mean Tree Thickness From Mean Tree Stand Height and From the Correlation Table

Table 78 lists the results of determination of $d_{\text {tree }}^{0}$ from h_{n} and correlation Table 47. The mean heights are measured from $1: 10,000$ aerial photographs.

The mean square deviation $\sigma= \pm 2.5 \mathrm{~cm}$. If we count deviations for trees from 18 to 26 cm in thickness, that is, on the average for $\mathrm{d}_{\text {tree }}=22 \mathrm{~cm}$, then we get an error of mean tree diameter determination of roughly 12 percent, that is, a precision close to the precision of mean thickness determination in ground appraisal of forests (10 percent).

Table 78

Legend: A -- greater than 6.0
Table 79 lists data of the determination of dfee based on h values measured on $1: 10,000$ aerial photographs of the second area.

The mean square deviation $\sigma= \pm 3.0 \mathrm{~cm}$, but when four coarse measurements are excluded, $\sigma= \pm 2.5 \mathrm{~cm}$ with eystematic correction $\Pi=-1.7 \mathrm{~cm}$, which is accounted for by a +0.1 meter systematic overstatement of h^{0}. The deviation in percentages for the mean thickness $d_{\text {tree }}=22 \mathrm{~cm}$ is 10.9 percent, which actually does not exceed the permissible error of 10 percent. We must note that large deviations relate mainly to elender

GRAPHICS
 NOT REPRODUCIBLE

and low-standing trees. If we take the most important ind the most widespread thickness values from 18 to 26 cm , the mean deviation and distribution of deviations for these are more satisfactory, for example, in the given area 80 percent of the deviations are less than 4 cm and only 20 percent lie within the limits 4 to 6 cm .

Table 79

$$
\text { (1) } \ldots
$$

Legend: A -- greater than 6.0
Table 80 liste the results of determination of deree based on h measured on $1: 10,000$ aerial photographs in the third area.

Table 80

Legend: A -- greater than 6.0
The mean square deviation $\sigma_{d}= \pm 3.4 \mathrm{~cm}$ with systematic norrection $\Pi=+1.1 \mathrm{~cm}$, which is accounted for hy a -0.5 meter systematic understatement of measured h_{n} values and hy other factors. If we drop cnarse measurementa, $\sigma_{d}= \pm 2.6 \mathrm{~cm}$, and the error in percentages will be clnse to 12.6 percent for mean thickness values diree $=22 \mathrm{~cm}$.

Table 81 lists data of the determination of $\mathrm{d}_{\text {tree }}^{0}$ made from 1:19,000 aerial photographs.

The mean square deviation $\sigma_{d}= \pm 2.5 \mathrm{~cm}$ with systematic correction $\Pi=+1.1 \mathrm{~cm}$. For trees with $\mathrm{d}_{\text {tree }}=22 \mathrm{~cm}$, the error is close to 12 percent. In this case, distribution

GRAPHICS
 NCT REPRODUCIBLE

of deviations is somewhat poorer than on $1: 10,000$ aerial photographs. But owing to the fact that systematic understatement of hejghts amounts to -1.5 meters and the correla$t i o n$ between h and $d_{\text {tree }}$ gave understated values of diree, fairly good results were obtained when mean thickness was determined even from 1:19,000 aerial photocraphs.

Table 81

Legend: A-- ereater than 6.0
As a whole, $i t$ can be held that determination of mean thicknean from heights measured on aerial photographs and by Hes of the correlation Table 47 is greater in precision than determination of diree that rely on DO.
35. Determination of Mean Tree Thicknese Simultaneously From Height, Crown Diameter, and Correlation Table

Under this method, in determining mean thickness multiple correlation between three characteristics of tree stands is used. Mcan tree thickness is taken from Table 47 hased on two input data - mean hejght and mean crown diameter, and for the final value the average of two determinations $i s$ adopted. It is presumed that this metholl afforis mutual comm pensation of deviations obtainod in independent determination of diree from h_{o} and from D_{c}^{n} and thus securing a mnre satisfactory precision of office determinations of mean thickness.

Table 82 lists the reanlta of determination of difee rrom h_{0} and D_{C}^{0} measured on $1: 10,000$ aerial photographe.

The mean square deviation $\sigma_{\sigma}= \pm 2.4 \mathrm{~cm}$ with systematic correction $\Pi=-0.4 \mathrm{~cm}$. The small systematic correction results from mitual extinction of systematic overstatements of D_{C} and understatement of h measured on aerial photncraphs (+1.2 and -1.1 meters, reapectively).

GRAPHICS
 NOT REPRODUCIBLE ${ }_{\text {tablo }} 82$

Legend: A -- greater than 6.0
Distribution of deviations is also considerably improved, since almost 97 percent of all deviations are less than 4 cm . The mean square deviation for trees ranging in thickness from 18 to 26 cm is equal to +2.2 cm , or only 10 percent of the mean thickness $d_{\text {tree }}=\mathbf{2 \overline { 2 }} \mathrm{cm}$.

The resulting precision of mean thickness determination using this method can be held satisfactory, since in general it is difficult to anticipate getting more satisfactory precision for variables that are statistical and that have been subjected to numerons natural factors, and also owing to causes associated with the techniques of making measurements on aerial photographs and the approximational correlation between $h, d_{\text {tree }}$, and D_{c}.

If so great a diversjty of factors still affords satiafactory precision in mean thickness determination, then this above all evidences that in nature a statistical correlation which shows up ultimately among the mass of random events does actually exist and takes on the force of necessity.

Table 83 lists the results of the determination of dires based on h_{0} and D_{C}^{n} measured from 1:19,000 aerial photographs.

Table 83

Legend: A -- greater than 6.0

The mean square deviation $\sigma_{d}= \pm 2.0 \mathrm{~cm}$ with systematic correction $\Pi=-1.4 \mathrm{~cm}$, which is accounted for by the large systematic overstatements of $D_{C}(+3.1$ meters) and understatements of $h_{0}(-1.1$ meters). For average trees 22 cm in thikness (from 18 to 26 cm), the error is about 10 percent.

The results obtained for $1: 19,000$ aerial photographs mast be held as satisfactory, but this precision is a consequence of the fact that the measurements were taken mainly on tree stands with trees more than 17-18 cm in thickness. Determination of dree for tree stands with lower thickness classes will obviously have lower precision.

As a whole, determination of mean tree thickness similianeously from h_{0} and D_{C}^{D} gives higher precision, and in the experiments run the error of 10 percent correaponds to a precision of field appraisal. This precision can be viewed as wholly adequate for topographic and other purposes.

Determination of mean tree thickness fron height and correlation Table 50. This table affords the opportimity of allowing for the effect of species composition of tree stands on the precision of mean thickness determination. it is approximational. However, its use afforded some increase in precision of estimation of $\mathrm{i}_{\text {tree }}^{0}$. In mixed stands, $\mathrm{d}_{\text {tree }}$ is taken from the table for the same height for different species, but the mean diree is ohtained by allowing for the percentage ratio of tree species. This method advanced by the author has proven quite laborious, but it nonetheless has meant a reduction in deviations. This denotes that stand composition does have an effect on the precision of dree determination.

Since this experiment was verified for a small number of plots, we do not present the results of the test here. Table 50 requires refinement and inclusion of tree species widespread in Siberia and other parts of the U.S.S.R. Completion of studies aimed at discovering miltiple correlation between $d_{\text {tree }}, h$, and D_{c} with provision made for composition of mixed and pure stands in different parts of the U.S.S.R. is a separate undertaking.

The following conclusions can be drawn from the results of the studies conducted.

Determination of mean thickness based on h_{0} and D_{c} measured on aerial photographs and taken from the correlation tables give approximational information about forests. However,
until other, more precise methods are found, we will have to use existing methods and be satisfied with the precision they can give us.

The simplest method must be viewed as the method of determining mean thickness from tree stand height. The method of determining difee from croms affords low precision as a consequence of the low intimacy of the relationship betweon D_{C} and $d_{\text {tree }}$. A more intimate and more stable correlation has been found hetween h and $d_{\text {tree, ensuring in most cases }}$ determination of d tree based on h_{ρ} values with an error of the order of 12 percent. The method of determining doree simultaneously from h_{o} and D_{C}^{n} gives higher precision and on the average affords determination of diree with an error of 10 percent.

Analysis of deviations ereater than 4 cm affords grounds to assert that in most cases they pertain to those forest plots for which ton great a vinlation in the ratio of $h, d_{t r e e, ~ a n d ~} D_{c}$ has been observed, for example, $h=18.5$ meters, $d_{\text {tree }}={ }^{1}+0 \mathrm{~cm}$, and $\mathrm{D}_{\mathrm{c}}=6.8$ meters. In plots differing sharply from normal plots in low height and in large thickness of trees, or in contrast, in large h and small dtree values, crown diameter often proves to be very larce in the first case and too small in the second. It is best. in these plots to determine doree simultaneously from h_{0} and D_{C}^{C}, which affords more satisfactory diree values.

However, we also can encounter cases of other relationships between $d_{\text {tree }} D_{C}$, and h, and here this procedure will not bring 118 desired results. Studies described earlier have been conducted by the author to secure topographic information about forests, but the theory, methods, and procedures set forth in this work can be used (transformed and developed) also for forest-inventory work of different precision classes.

CHAPTER 9

APPLICATYONS OF MEASIREMENT INTERPRETATION OF a ERIAL PICOTCGRAPIIS in FOREST MANAGEMENT AND AERTAL APPRAISAL OF FRRESTS

36. Use of Measurement Interpretation oi Aerial Photographs in Forest Management

Interpretation of aerial photographs is used in forest management at different levels. However, ihe extent of its application, content, and scope differ. mly one principle is wholly obvious: thus far, recognition and measurement properties of aerial photographs or, as the term now is, the information capacity of aerial photographs, have not been fully utilized. The quality of forest management and its profitability depend entirely on this ure.

Materials of aerial photocraphy and office interpretation using measurement procedures will be of the areatest importance in primary forest management hoth in the first, as well as in the second year of operations. Success in forest management above all will depend on the quality of the aerial photocraphic materials.

Aerial photocraphs in scales from 1:5,000 to $1: 15,000$ are the most shitable for measurement interpretation. in the latter, the number of details is considerably rednced and crown sizes are minute. However, it is possible to use a two or three-fold magnification of aerial photngraphs which can compensate for some of their drawhacks. As far as $1: 25,000$ aerial photographs are concerned, although their magnification leads to a relative increase in crown sizes and openings between croms, this dnes not introduce substantial changes into the nature of the imaging of the stand canopy. Aerial photographs of this scale can be used under reserve zone conditions not intended for exploitation in the immediate future.

Spectrozonal aerial photographs are the most suiftable as well as aerial photographs on panchromatic and orthochromatic aerial films obtained during the period of seasonal changes in the forest tracts. If the aerial photography is not performed in a stereotyped way, but with allowance taken of the condition of stands, then the quality of the aerial photographs, their measurement properties and ultimately savings of funds can be boosted.

In all cases the aerial photography must be performed a year ahead of forest management. During this time measurement properties of aerial photography must be studied and preparatory work carried out. Aerial photographs not more than two-three years old are most suitable for interpretation. In mature and overmature stands of the near-tundra and reserve zones, no substantial changes mist be introduced into the stand themselves during this period, though in felling areas, in young forests, and in moderate-aged stands owing to the intensity of ongoing processes changes in the nature of phntographic images can be substantial.

Preliminary aerial-visual observations will assist in singling out those sections that will be subjected to repeated aerial photography, therefore a new sampling session of aerial photography is possible, even when there are five-year old aerial photographs available.

In the first season of forest management work (after obtaining aerial photographs for the area), before entering the forest it is essential to study the nature of the stands from materiais of the early aerial-appraisal inspection of forests or other available material. Information summaries are dram up in which the scope of stand diversity is shown for the main appraisal indexes of the stands (in composition, growth classes, occupancy rates, site classes, forest types, etc.)

Then aerial photographs are studied aiming at finding the extent of differentiation of different categories of stands, and the possibility of using these to measure appraisal indexes, and tests are made of the suitabjlity of measurement instruments, templates, and scales.

On this basis, premises are developed on the use of measurement methods of interpreting aerial photographs in determining the main appraisal indexes of stands.

And, finally, by using reproductions of superimposition montage, photo-layouts, one or several flight routes are plotted for the purpose of familiarization with the nature and condition of stands in the given area. These flights are of importance for the final choice of the appraiser training locations, sampling plots, and number and extent of paths for ground training appraisal, bearing in mind the covering of the moft diverse stands and the compact layout of training areas.

Later, all work with aerial photographs must be conducted in conjunction with ground operations, with office and measurement interpretation of aerial photographs, or with aerial appraisal of forests in given combinations and scope depending on local conditions and the problems dealt with. After delimiting the sampling plots, the latter must be carefully coordinated at the actual locality and drawn on the aerial photographs based on easily discernable markers.

Appraisal-interpretation description and a count of crown participation in stand canopy are carried out at the sampling plots, in addition to ordinary work stipulated in the forest management instructions, as applied to the method set forth in our study [50].

In addition to necessary measurements of trees and their crowns, training is conducted at the same sampling plots on visual determination of tree crom diameters, stand canopy closure, composition of stand canopy, and the mean tree spacing, as well as determination of average height of stands and average height of trees making up the horizontal projection of stand canopy.

If color aerial photographs are available, additional training is conducted on recognition of tree species, species composition of stands, and their age based on differences in color tones.

The number of samples must be found in accordance with the diversity of the stands and must not be less than $20-30$ per object of operations.

Besides sampling plots, in this same field season appraisal sections are delineated on aerial photographs along pathlines, they are subjected to preliminary examination in the stereoscope, appraisal indexes are measured, and there is office comparison of appraisal ciescriptions with those entered into the appraisal log.

After this preliminary preparation, on-the-scene appraisal of stands is carried out with entry into the appraisal log of the indexes of crown shape and size, composition of stand canopy closure, and features of canopy structure that have a bearing from the point of view of measurement interpretation of aerial photographs.

In parallel with on-the-scene appraisal, after the aerial photographs have been inspected, the characteristic features for interpreting them and for nerial appraisal of forests are entered. Along witl ncular appraisal, the following necessary measurement are taken: height of tree stands, mean breast diameter, mean tree spacinc, and crown diameters by species.

This work on appraisal paths laid down along the most diverse and representative siands serves as a reliable basis for subsequent training of appraisers. llere the appraisal station locations must be marked (by pricking) on the aerial photographs. All known methods and measurement instruments are used for appraisal characterization of stands in these localities to formalate the most objective and reliable characterization of the tree stands.

The extent of the training paths must he such that for each area of operations a quite specific familiarization with stand arowth conditions and the correlations in their canopy structure is secured. 3y way of a guideline, we note that the extent of paths mist not be less than 10 kilometers with the description aiong the paths of not less than 50 apprajsal sections. This same number of sections can he obtained ty random selection from the forest tract.

Later, data ni the sampling plois and data nbtained alone appraisal routes underen processing in establish irue relationships essential for further pronduction and measurement interpretation of aerial photographs, between the following:
crown diameters and diameters at breast height;
stereosconic heights of tree stands of forest elements and calculated mean tree stand heights;
mean tree stand heights and mean diameters;
composition of horizontal stand canopy projection and actual composition of stands calculated from yielis;
extent of stand canopy closure and stand necupancy rates;
mean distance between crowns visible on the photncraph and mean tree spacing in the actinal locality.

As a result of establishing these relationships hetween these indexes, a composite tahle is drawn up specifying the size of the corrections that are necessary to he inserter for proper determination of the compositions of mixed stands, occupancy via canopy closure, mean tree spacings, mean tree stand heights, and from this listing indexes essential for determining stand y ields are refined.

If color photngraplis are available, a table is drawn up for determination hased on color tones of species comprsition of stands, tree stand age, and habitat conditions (aite class).

At the conclusion of this perion, by using a variety nf instruments, templates, and scales and the above-pronosed methods, appraisal indexes are measured for all the objectives of forest appraisal. As a result, the methods of operations are refined for subsequent regular interpretation of aerial photographs, the suitability of particular equipment is determined, and the indexes of confidence with which apprajeal features of stands discovered after statistical treatment of data are calculated.

Contnur and appraisal-measurement interpretation of aerial photographs is undertaken in the office nerind by sterenscope analysis.

Based on fieldwork with aerial photocraphs, features of the interpretation of different catecories of foresta or forest types are refined. The appraisal interpreter morking under field encitions must have suitable tables of relationships between D_{c} and diree; h and $\mathrm{d}_{\text {tree; }}$ the extent nf crown closure and occupancy rates; canony composition based on the participation therein of various species and stand compositinn by yield levels, as well as tables of corrections th be inserted into appraisal indexes of stands and onlor characteristics for species, forest generations (ages), and habitat conditions.

Prior to the onset of recular and measurement interpretation of aerial photographe, it is recommended that training be conducted in the determination and measur ment of appraisal
indexes of stands ir sampling plots and along appraisal routes using available tables. By combining these with true data, analysis must be made of errors of interpretation and measurement.

The results of measuring tree heights or heights of tree stands as well as other appraisal indexes that require calculations are written up in individual reports that are later compiled into log form.

Tree stand heights are measured by difference in parallax if the ground surface in the actual plot or close to it is visible in the photograph. After sujtable training, the measurement of heights by the ocular-sterenscnpic method is possible $[47,54]$.

Determination of diameters at breast height $\boldsymbol{d}_{\text {tree }}{ }^{\text {is }}$ accomplishad based on measurement of crown diameters and mean tree heights. The number of measurements is determined hy relying on field determination of variants. The valles of $d_{\text {tree }}$ are obtained from correlation equations or tables previously compiled on the basis of such equations.

Stand composition is measured by using templates made for the given aerial photographic scale, with the insertion of corrections into the tand makelp coefficient if there are mixed or complex stands.

Stand occupancy is determined from crown closire by inserting required corrections in the event of pronounced discrepancy therein. Mean tree spacing and the number of trees are determined by the methods described above.

Forest type, stand age, and site class are determined by ocular interpretation using previously calculated data that serve as the starting-point for obtaining appraisal characteristics of the stands. Auxiliary tables published in the work [54] can be used in determining site class.

The follnwing must be verified under local conditions (in sampling plots) for determination of stand yields:
applicability of standard tables of the sums of crosssectional areas [basal areas] and stand jields for an occupancyof 1.0, using the above-calculated mean heights and occupancies by stand stories for those determined from aerial photographs;
the method described in section $26 ;$
or by use of other methods of determining stand reserves (according to I. A. Trunov and G. G. Samnylovich).

Methodologically, it is above all desirable to determine the forest type, species composition of stands, height by individual species and then to proceed to measurement and determination of other appraisal indexes of stands that are interrelated.

If summer panchromatic aerial photos are avajlable when the difference in species is poorly pronounced, the methodological recommendations set forth by the alithor in Geograficheskiy Sbornik [Gengraphic Collectim], No 5, 1955, mist be borne in mind.

In summing up a balanced analysis of the opportunities of appraisal-measurement interpretation, we determine the properties of aerial photocraphs and the necessity for those supplements that must be carried out during the field period of the second year of operations, as well as refine work methods. To be specific: the question of whether it is best to use office interpretation or to engage in aerial appraisal nver part. or all of the tract is being resolved, as is the issue of which of the appraisal indexes should be determined by measuring aerial photographs and which by supplementing as a result of aerial appraisal by helicopters or fixed-wing aircraft.

For instance, if spectrozonal photographs of mixed and complex stands are available, the following can be determined in the office: stand composition, occupancy, and site class and age -- by aerial appraisal. If panchromatic aerial photographs are aveilable for the same region -- composition of stands and age can be determined by aerial appraisal, and the rest of the indexes -- by interpretation of aerial photographs. This is an approximate scheme that must be corrected depending on the nature of the stands predominating in different, parts of the forest tract under appraisal.

Finally, the volume of essential ground operations that rake it possible to coordinate into a single whole all the most rational suggestions in forest inventory for a particular forest-plant cover area are determined.

In summing work done during the first year, methods of subsequent operations and preparation for second-year field appraisal are undertaken. These other nperations must include
contour and measurenent-appraisal interpretation of aerial photographs within the bounds of each appraisal plot. This work is done by specialists who have undergone suitable preparation and training.

Forest-management instructions at level iv of primary forest management recommend ground appraisal only for blnck clearings, but if spectroznnal photographs of a scale not smaller than $1: 15,000$ and not more than five years are available, appraisal-measurement stereosconic interpretation of aerial photography must be conducted instead of aerial appraisal from heliconters.

In particular cases, it is permissible to encace in aerial appraisal or sterenscopic interpretation without around appraisal in block clearings. fround soutes are mursued only in those localities where diversity in appraisal characteristics is pronounced.

At level lll of forest manacement, both appraisalmeasurement interpretation of inter-clearing expanses as well as their terial appraisal are conducted in econnmically lowvalue plots in individual sparsely inhabited sections of the tree farm that has been established (forest industry area).

This recommendation greatly limits the possibilities of materials of aerial photography and must be re-examined With characteristics of the forest tract taken into nccount.

Appraisal-measurement interpretation will be of antonomous importance for refining characteristics of aroup ll! forests in which forest exploitation will proceed in the long run. In areas of the near-tundra zone, the northern reaches of Siberia, and the Far East proviously subjected to aerial appraisal, it is quite possible with a small volume of ground appraisal to use widely measurement methods of interpretation and their automation hased on interpretation ry forest categnries. By way of example, we can cite the work done in Conrnaya Shoriya, the results of which have been published in the atudy [44].
37. Combined Method of Forest Inventory via Aerial Appraisal With Measurement lnterpretation of Aerial Photographs

Aerial appraisal of forests (in conjunction with fieldwork in forest management levels III and lV) is carried out in sparsely-settled forest regions of the North, the Urals, Siberia, and the Far East.

At present, acrial appraisal of forests by helicopter is carried out at a flight velocity of $40-50 \mathrm{~km} / \mathrm{hr}$ and from a flight altitude of 50-100 meters. Under this flight regime, appraisal description of stands proceeds, in which, in addition to stand composition, occupancy, site class, and age, mean tree stand height, and diameter at breast height are indicated.

Aerial photocraphs serve chiefly to distinguish plot contours, and photo-layouts -- to project flight routes, orientation during flight, superimposition of plot contours, and within their limits entering of appraisal characteristics of stands.

It is quite understandable that the operational methods employed are not hased on the full-fledged use of recoznition and measurement properties of aerial photographs. These methods must be improved both as to preparatory and appraisaltraining work, as well as in the use of measurcment interpretation of aerial photocraphs.

Aerial photography for purposes of subsequent primary forest management is carried out one year ahead of operations.

For all kinds of aerial appraisal, color spectrozonal aerial photographs of a scale not smaller than l:15,000 will he the best for operations. Preliminary calculations have show that some of the costly flight and field operations will be cut back by relying on quality of aerial photocraphs and the possibility of using them to secure greater information.

Ground training of aerial appraisers essentially must go hand in hand with the training of appraisers in the same scope and content as described earlier.

The aerial appraiser, just as an ordinary appraiser, must engage not only in contour, but also in appraisalmeasurement interpretation. Additionally, during ground training aerial photographs mast be used for simultaneous characterization both of interproiation as well as aerialvisual features of stands side by side with determination of appraisal indexes of stands. These features must include above all those that determine the nature of sitand canopy structure (shape and size of tree croms, composition of the visible part of the stand canopy, canopy closure, etc.) and also account for the relationship between appraisal and interpretation indexes of stands.

In compiling appraisal characteristics of stands, one must simultaneously analyze both the interpretation qualities of aerial photographs as well as aerial-visual features of stands.

In conducting training together with appraisers and in measurement interpretation of aerial photographs, aerial appraisers will be wholly trained for independent work with aerial photographs.

Preliminary study of natural interrelationships between appraisal indexes of stands mast precede serial appraisal of forests and must be a constituent part of the whole technological process.

The mission of aerial appraisers in preparing for flighte, along with contour-tonographic interpretation of $1: 15,000$ aerial photographs, will embrace measuring the heights of tree stands of forest elements and other apprajsal indexes of stands (composition, canopy closure, crom diameter, tree stand density, etc.). If panchromatic, autum panchromatic, or spectroznnal aerial photographs are available covering the boinds of the plot contours, those appraisal indexes that can be differentiated with full certitude in sterenscopic interpretation are written down in the course of interpretation. For example, the numerator gives the composition and height of tree stands by species and the denominator -- canopy closure and sjte class. The rest of the missing appraisal indexes are written up during flight over these same plots.

Given black-and-white summer panchromatic aerial photographs, the stand coefficients must be written down during flight time, and height by species or forest generation (if the latter is readily distinguishable) from data of measure-ment-interpretation of aerial photographs.

Thanks to the opportimities afforded by aerial photographs for a complete survey of the entire appraisal tract, determination both of stand composition as well as occupancy Will be more objective and precise than when flying over the plot during a single, or on rare occasions several, minute. The same can be said for tree stand height. Its measurement With the use of steren-instruments in different plots of the tract will be more precise than when scanning a narrow etrip from a helicopter. Introduction into ocular aerial apprajsal of measurement indexes increases its objectivity and quality of operations and leads to refinement of the indexes calculated, in particular, stand yields.

Parallax-measuring stereoscopes, parallax sheets, templates, and scales can be used in measurement characterization of stands as well as stereo-measurement instruments.

Thus, depending on stand characteristics, quality, and interpretation properties of aerial photographs, for each tract only those appraisal indexes that can be interpreted confidently and free from doubt are determined.

Composition coefficients, if they are not written down during the course of interpretation of aerial photographs, age by species and forest cenerations, site class, forest type, merchantability of tree stand, and percentage of windfall and dead standing timber are written up by the aerial appraiser in helicupter flight from a specified altitude.

Under this combined method of operations, interpreta$t i o n$ properties of aerial photographs and the advantages given by aerial appraisal when inspecting stands from shalln flight altitude are more fully used.

Incorporation into operational use of the proposals recommended, taking into account also the possibility of landing the helicopter when necessary close to or in the middle of stands, will make it possible to secure, in conjunction with a limited scope of fieldwork, quite reliable materials in forest inventory, especially in near-tundra and semibog areas of the north and homogeneous forests of Siberia and the Far East applicable to the requirements of forest management levels IV and even III.

If forests are located only along streams, scattered among bogs, are homogeneous in appraisal indexes, and will not be explojted for several decades, office appraisal-measurement interpretation based on a mall volume of field appraisal for several flights by helicnpter for landing to become familiar with stand character will fully replace exhaustive aerial appraisal of forests and cut the costs of operations down to one-fourth or one-fifth.

CLAP'TEA 10

PROSPECTS PIR AUPTMNATING INT:RRIRETATION OF AERIAL PIIOTOGRAIILS UF FORESTS ANI) ELECTRONIC COMPUTERS IN FOREST NAN:AGEMEXT

38. Hypothes is on Types of Tree Arrancement and Cybernetic Princinle of Stand Study

The method of point sets and systems and the geometric analogues of tree arrangement with their characteristics dervic from the main appraisal indexes (chapter 2), constructed on the basis of this methon, can be used as the mathematical framenork for modeling.

In principle, this method can be applied to the sturly of any phytocenosis. The method of mathematical modeline is best combined with the cybernetic principle of stand study in the course of stand development in time and space. successes in cyhernetics, information theory, electronics, and mathematics stroncly affect procress in many branches of knowledge.

At the present time, cybernetics and mathematics have also penetrating the science studying animate nreanisms. They assist in solving problems of mathematical statistica modeling of biolocical phenomena and in exploring and modeline certain functions of the activity of the brain and nervous system.

Tne of the main principles adopted in cybernetics is the principle of feedback, which allows us to retain the stable oxistence, self-orcanization, and self-regulation of animate organisms and certain automata. The commen ground of the feedhack control principle in control of processes in animate and inanimate nature has been confirmed. There are no grounds
either to refute the operation of this principle in developmental processes of phytocenoses, including forests.

From this viewnoint, the stand can be represented as a hiolngically self-reculating system developing in time and space on the principle of multilateral feedback. The siccessful survival and development of this system is based on those interrelationships and stable quantitative ratios of stand indexes that have been formerl in the course of adaptation to ifiven havitat conditions.

If self-remilation is vinlated in this system (as a consequence of violation of multilateral feerthack), then the system and the natural quantitative ratios inherent in it (onrrelations of arrancement and distribution, correlatinnal ties, etc.) are also vinlated. !iscovering the reasons for the develnpment and disturbance of this system is a problem for foresters and geobotanists. Accordingly, we must recngn ize as mosif vital the research and concepts of l'rofessor V.
 ods of meteorolosical criterion of plant moisture content and the rariahle "decorrelation coefficient" as an indicator of the perfection of plant nreaniams.
"ifthout taking up these involved problems, it appears to us to be useful to advance a working hypothesis ahoit the types of tree arrangements in stands and the types of tree spacing distribition functions corresponding to them in the dymamics of stand develnpment as self-reculating systems with feedthack.

For differentiating and mathematical descriptinn of the most probable types of tree arrangements in stands we liso the method of point sets and systen.i. Tree arraneement in nreas (plants in rencral, points, and discreto obiects) can be divided into two main classes: regular and non-recular.

The Swedish scientist 亏̈vedberc adopted as a criterinn nf remularity of individual plant arrancement in a plot $n f a$ locality to be the coefficient of plant density dispersion per unit area. The number of plants per unit area he called "profusion," however in the more exart sense this corresponds

[^0]to plant density. Svedberg made an error when he characterized arrangement types as plant density in areas, since arrangement of plants in a given area at the same density can be most varied in regularity. Therefore, we cannot deem density to be a satisfactory criterion of regularity or nonreqularity of plant arrangement in an area.

Accordingly, the author proposes that we consider as the meaning of mathematically precise tree (plants or points) arrangement in the form of any regular point system investigated in chapter 2 to correspond to the term "regular arrangements." As noted earlier, the regular system of points placed at the apexes of adjoining equilateral triangles is a most remarkable system. In this system, the distances between all neighboring points are the same, and this arrangement gives the lareest number of points for the area covered. Therefore, we must accept as the first class and first arrangement type the recular placement of points at apexes of adjoining equilateral triangles.

The second class -- the class of nonregular arrangement -- is best divided into a series of types which differ in degree of nonregularity.

We can propose the following arrangement types as the firgt variant:
type I-- regular arrangement of trees in the area;
type II -- weak nonregularity of arrangement;
type IIJ -- optimal nonregularity of arrangement;
type iV -- severe nonregularity of arrangement.
What then are the characteristics and mathematical features of the four arrangement types?

Type J -- regular arrangement. This arrangement type has precise mathematical characteristics. Points (trees) are located at the apexes of adjoining equilateral triancles or in the centers of circles touching each nther. Distances between points (trees) are the same. Therefore, $l_{0}=l_{1}=$ $l_{2}=. . \quad=l_{n} ; \sigma=0, \nabla=0$.

The spacing distribution type is expressed by a single vertical straight 1 ine equal to 100 percent of the spacings (Figure 28).

The distribution function $f_{1}=$ const. It can be represented as the maximum case of normal distribution in the form of a series out of the same interval l_{n} when $\sigma=0, v=$ 0 , and frequency fraction $w_{n}=1.0$. Then, $f_{1}=w_{0}$ and f percent $=100$ (Figure 29). The relationship between spacing 1 and density X is determined by formulas (4) and (5).

Is such an ideal type of plant arrangement met in nature? \quad y artificial plentings (seedings) we can get this type of tree (plant) arrangement. This arrangement has several advantages over all other arrangement types, including those with any regular systems.

The most favorable spatial conditions for develnpment of each tree (plant) are provided under this system. Each stem is given the same feeding area, the hest conditions for spreading of the root system to all sides, and the largest number of directions for access to air and sun (when the row planting layout is used there is just one direction, in the square-nested arrangement -- two directions, but in the triangular arrangement -- there are four directions). The greatest number of plants per hectare is provided for.

It is obvious that under these arrangement conditions we can anticipate the greatest harvest yield, the highest forest site class, and the fullest use of the area (locality). And it is approximately to this ideal arrangement type that we can classify the "normal" stand.

In our view, the firet type of arrangement is of practical importance for application in farm work as the most profitable type of planting (sowing) system for many farm crops. In addition to the above-noted propitinus conditions for plant development, the proposed system of planting (sowing) can yield the greatest harvest (under otherwise equal conditions), since this system makes possible within the same area the placement of the greatest number of plants (considerably greater than in the row and square planting systems). As an example, let us take an area of one hectare and locate plants in it at distances of 0.5 meter. Under the square plantinc system, one hectare can accommodate 40,401 plants, but under the triangular system -- 46,717 plants, that is, 13.5 percent more, which is tantamount to increasing the yield by 13.5 percent from each hectare. If the planting (sowing) of corn, for example, is carried out on 100,000 hectare and each hectare gives a harvest increment of about 14 percent, and each percentage is equal to even one pood [36 pounds], the increment would be reckoned by the enormous figure of $1,400,000$ poods.

GRAPHICS NOT REPRODUCIBLE

I!owever, in luture in natural forests the type 1 arrangement is not encomotered. Nonregular tree arrangement, as we know, is observed in forests. The reason is to be found in the numerous factors of forest habjat and development which in totality govern the nonreaularity of stem arrangement in a section nf a locality.

Type II ... weak nouregularity of arrancement (Figure 28). Mathematical characteristics of this arrancement type can as a premise be formulated as follows.

Tree spacings are not identical. Therefore, a mean distance l_{2} is arrived at. When there is weak irregularity, most tree spacings have small deviations from l_{2}, which leads to σ_{2} small in value. Then the spacinc distribution type f_{2}, retaining the general correlation of normal distribution, will be character ized by a distribution curve swelling upward with a sharp decline toward the X-axis. Table 84 lists calculations of the fumction f_{2} for $\sigma_{2}=0.1, l_{2}=0.44$ meter, and $v_{2}=10$ percont, with the parameters $l_{2}=4.4$ and $\Delta 1=$ 0.9 .

(A)

(8

(c)

(D)

Figure 28. Arrangement types for trees and their approximational mathematical characteristics: type l-- recular; type lJ -- weakly nonrecular; type IJ] -- optimally nonregilar; type 1 V -- severely nonregular.

Legend: A -- type I; B -- type II; C -- type III; D -- type IV

GRAPHICS NOT REPRODUCIBLE

©

(B)
(A)

(E)

(D)
(${ }^{\text {® }}$
(6)

Figure 29. Types of tree spacing distribution curves

Legend: A -- when $\sigma=0.44, v=10 \% ; 3-$ tupe 1 ; C -- type I; D -- when $\sigma=1.3, \mathrm{v}-43.2 \%$ E - σ $=3.96, V=50 \%$; F -- type Jll; G -- type IV

Figure 29 shows the type 11 distribution curve constructed from the function $f_{2}(1)$.

If we consider the arrangement type 11 as applied to forests, then as an assumpion this type in schematic form as well can apply to the youngest forest, starting with sprouts and up to the point when the trees can exist only in an intimate comminity of high density as simjlar individuals and with very small stem distances.

Thus, for example, a vast number of spronts of young pine and spruce are nbserved in felling areas -- up to several tens of thousands per hectare; they give the appearance of a thick brush. Nonregularity of arrangement in this period is caused by the randomess of natural scattering of seeds in the plot. Under the given conditions, we can expect weak

GRAPHICS NOT REPRODUCIBLE

nonregularity of arrangement and small deviations in individual spacings from the mean plant spacinc, the mean spacinc itself being very small. Here jt is most probable to expect also very small values of σ.

* I_{2}-- upper 1 ine when $\sigma_{2}=0.44, \nabla_{2}=10 \%, \Delta 1 / \sigma_{2}=2.05$;
$\mathrm{f}_{4}-\mathrm{l}$ lower line when $\sigma_{4}=3.96, \nabla_{4}=90 \%$, and $\Delta 1 / \sigma_{4}=$
0.227 .
This arrangement will be preserved until the young saplings acquire stability adequate for independent existence. Until that moment, all plants can successfully develop solely on account of intimate joint existence of the entire plant comminity. If this dense stable community did not exist, each young plant considered separately could survive only with great labor.

Later, with growth the young plants begin to displace each other, their root systems intermingle, and capture of nutrient and moisture takes places; the negligibly small feeding area becomes inadequate for normal development of all this dense plant mass and upon root interweaving the process of self-thinning sets in. Particular individuals outpace others in growth. Securing greater amounts of light, they develop a stronger root system and crom. Individuals lageing in growth, falling under the canopy of other plants, become feeble and gradually expire.

This is approximately how the process of natural thinning of a young forest takes place [1,2]. An increase in the feeding area of each plant affords surviving plants an opportunity to acquire individual stabilijty, and this stable comminity is consolidated, successfully developing under normal habitat conditions.

It can be assumed that from this moment the type li arrangement intergrades into the type JJJ arrangement, that is, to a more nonregular plant arrangement. Gradual thinning of plants becomes random.

In one way or another this plant comminity acquires the optimal nonregular arrangement in the plot that is produced by nature itself for successful development of the community. Thinning will occur even later, but more weakly, which is mainly reflected in an increase in mean tree spacing and not in the arrangement type, which by this time has been consolidated and become stable and most favorable for the development of each plant and for the entire plant community in the given plot of the locality.

Type III -- optimal nonregularity of arrangment (Figure 28). Mathematical characteristics of the type JII arrangement are as follows: mean distance l_{3} is variable; $\sigma_{3} \approx$ $0.43 \cdot 1_{3} ; v_{3} \approx 43.2 \%$. The spacing distribution type is determined by a statistical function (47) and by the distribution series shown in Table 26; the type III distribution curve f_{3} (Figure 29). It can be aspumed that the nonregular type II arrangement is the most widespread, the most stable and the most optimal for the natural development for the plant community under ordinary habitat conditions and during the period of life that is characteristic generally of most stands. During this period all trees affect each other and form an intimately interacting and successfully developing plant community in which those changes in tree indexes occur
(height, thickness, and mean spacing) with development of the community, but the entire community continues its development as a mutually related complex adapting to given habitat conditions, with a stable arrancement type induced by nature itself and with a spacing distribution type which is induced by the correlation of the latter. Therefore, this type of arrangement and distribution can be called optimal.

If the forest has taken hold, adapted to given habitat conditions, and constituted a stable community, this state and type of arrangement and distribution can be retained even in old foresta, where different habitat conditions, it appears, will he reflected to some extent only in the value of l_{n}, but not in the arrancement type and spacinc distribution. But only under especially habitat conditions (soil-climatic factors or artificial measures) can intense nonrecularity of tree arrancement in the aren take hold, which of course will lead to a change in the stem spacing distribution type. in this case, a transition to the type iV arrancement is probable.

Type iV -- severely nonregular arrangement (Figure 28). Approximate mathematical characteristics of the arrangement type are as aollows: variable and usually large mean spacing $1_{4} ; \sigma \approx 0.9 \cdot 1_{4}$ and $v_{4} \approx 90 \%$. The distribution curve f 4 is shom in Figure 29. it is a gradunl, low normal distribution curve extended along the X -axis.

The distribution function f_{4} has been calculated in Table 84 with the perameters $\sigma_{4}=3.96 ; \nabla_{L}=90 ; \Delta 1 / \sigma_{4}=0.227$.

Carlier jt was noted hypothetical under which conditions the existence of type iV arrangement in nature and the type f 4 spacine distribution corresponding to it are possible. Under these conditins, unetable, severely nonreaular tree arrangement in a plot of the locality appears and a violation of the interrolationships between plants essentially sets in, as a result of which the plant community gradually disintergrates. At first they break dom into individual parts (aroups) within which proceeds a weak interrelationship with individualf, can gtill be retained, but subsequently stem spacines become so great that within the groups a breakdom in relationships sets in and the forest as a plant comminity ceases to exist for stem spacincs attain such values that any relationships between trees are lost and free-standing trees are formed at large spacings from each other.

Tree arrangement types and tree spacing distribution functions described are viewed by the author as a first
hypothesis, which needs to be verified hy experimental measurements for different stand types and ages.

For type lll it is useful to investigate the stahility limits of the function to either side frnm $V \approx \nmid \begin{aligned} & \text { n percent }\end{aligned}$ within the limits $v=40 \pm 20$ percent in order to determine the bundary reginns between the distribution types il and lll, and between types iv and 'T'.

Some remarks can he madn about normal stands as related to the arrancement types ennsilered here. it apnears mne :nrthwhile to view as "normal" (mnre correctly, nntimal stands) not stands that exhibit ncoupancy elnse ton unity, hut stands clnse to tyne lll arrancement and the distributinn correlatinns corresponding th them, for in nature this arrangement tyme predominates and is most stable during the greater part of the life of each forest.

Foresters and appraisers have lone since arrived at these findines about normal stands. 'the difference here is only that nur assumptions are based on mathematical investigations of arrancement types and tree spacing distrimition types in stands.

The correlation and stability of type lif can be accounted for by the presence of binlogically self-regulating systems in the form of a plant comminity with multilateral feedback.

In conclusinn, we must once again emphasize that the suggestions advanced here about arrangement types must be viewed as a first hypnthesis, which requires experimental verification for tree enver. In the erenbntanical methnd, it appears to be worthwhile to use as indicators first of all mean spacine, the most powerful indicator of principal differences in develnmment of a plant community, and then distrimution types and curves with variable parameters σ and v, which taken together are secondary indicators of other factors of plant habitat.
30. Principles for Allomating Aerial Photo-lnterpretation of Forests

That we by tradition have become accustomed to recarding as interpretation of aerial photorraphs appears best to call the thenry and methods of obtaining information ahout a locality from aerial photographs. An aerial photograph is a
source and carrier uf diverse information about a lncality, including forests. A large amount of information from an aerial photograph can be ohtained by simple visual inspectinn without any interpretation or decoding. The advantage of an aerial photocraph here lies precisely in the fact that it passes on its information in graphic form and not in especially coded or enciphered form requiring some keys or onde for deciphering or decoding information visible to the eye. Alsn, the photograph bears that information about objects that is difficult or impossible to obtain hy direct visual nbservation with required precision and in a quantitative numerical expression. In these cases it hecomes necessary to develnp a theory, methods, procedures, instruments, and techniques.

Advances in interpreting aerial photographs have come in successive stages from ocular estimation to measurement methods, from simple visually observed information the the securing of more precise and diversified information ahout various objects and phenomena. At the first stace, interpretation of aerial photocraphs is limited to ocular estimation, and at the second stage simple measurements and reference standards begin th be used. The third stage is characterized by use of complex photocrammetric instruments for precise measurements of a stereo model of the aerial phntographs and hy the elaboration of thenry, methods, and procedures of measurement interpretation based on an understanding and use of statistical correlations of distribution, correlations, and the sampling method. Thus, interpretation of aerial photngraphs of forests eradually acquire all the features of a scientific solution of a problem. The essential prerequisites for moving on to the fourth stage -- the stage of serching for methods of mechanization and antomation -- have also been provided.

Given today's stage of science and technology, it is not at all too early and not wishful thinking to start searching for methods of allomation. linile the third stage is involved mainly with opticomechanical photocrammetric instruments, the fourth stage invariably will be associated with the use of electronic instruments, which in turn will require application of advances in such scjences as cybernetics, information theory, electronics, the thenry of algorithmization and programming, and also electronic computers.

Right now it appears possible to use three principles of the automation of securing and processing about forests from aerial photographs: the principle of comparison, the principle of measurement, and the principle of comparison and measurement simultaneously.

The principle of comparison is used also in ordinary ocnlar interpretation of aerial photocraphs that rely on reference standards. An aerial photorraph of the forest plot under interpretation is successively comparen with a series of reference standard aerial plotographs, whose apnrajsal indexes were known in advance. The human labor \therefore, reduced to visual comparison of the structure of the photo-imaze of the aerial photograph pair and to detection of the greatest similarity of the given structure to one of the given reference standard photographs. Ise of this principle in allomatic interpretation amounts to performing the comparison and detection of similarity of images by machine and not by man. If we are able to model the process of comparison in the form of logic operations, then machines can do this work.

What then are the theoretical and technical possihilities today for solving this problem?

The problem of comparison and discovery of similarity hetween photoimages of a forest from aerial phntographs is closely bound up with the cybernetic problem of recognjtion or reading of imaces by allomatic devices. R number of allotnmatic devices have been developed in the U.S.S.R. and abroad in recent years for reading (recognition) of alphabeticonumeric information, and some successes have been recorded in developing devices for recognition automatically of such images as figures and other similar representations. Underlying the reading automatic devices is the principle of comparison and identification of images and objects by the human brain and the principle of self-teaching of machines to recounize visual images. Thus, the theory of autnmatic reading devices is founded on physical modeling of the proposed process of recognizing images and objects by man, on the use of hionics.

This process in systematic form can be represented as follows. Visual apperception of nbjects is subjected to processing and transformation, as a result of which images of the object -- referenco standards -- pile up in the human brain. Recognition of objects upon their repeated visual apperception occurs by comparison of the image received with the reference images stored in the brain. The agreement of these two images is recorded and understood by the individual as the fact of the recognition of the given object. In recognizing images, machines employ this same principle. In actual practice, the images themselves, binary codes of images, geometric features of figures (letters, digits, arbitrary
signs), and point sabsets of images can in fact be comparen. In these cases, logic rules of forming figures from simple elements (straicht lines, curved lines, ancles of intersection, their arrancement and mutual relationships), countine of the number of elements and the corresponding algorithm describing the figure of each sign are used. Reference standard images prepared in advance in program form are stored in the machine's memory bank. The images to he recomized are perceived and compared with reference standards stored in the machine's memory. This principle can be used also in automating the interpretation of aerial photographs of forests. However, here we immediately encomer the problem of what to compare and what to take as reference standard images?

Photocraphic representation of a forest on aerial photographs can be denicted in the form of a point set (analngous to the screen imaging of half-tone oricinals) and then point subsets of various structures of the photographic image of tree stands on aerial photographs can be taken as the ohject of comparison. But this compels us to find a method of transforming a half-tone image into a discrete point set and to express the latter in digital form, that is, to carry out binary coding of an image. All imaces can he divided into two groups based on the complexity of binary codinc: hatched (discrete) and half-tone (continuous).

In hatched images the boundary of the transition from black to white is expressed in jumplike fashion and corresponds to the locical principle -- Yes -- No, which in hinary representation is identical to -- me -- Zern. If we designate the black elements by one's and the white with zern's, then by using the onticomechanical line scanner, we can carry out binary codine of the hatched images and thus convert the graphic image into digital form in the form of hinary numbers, and the latter can be entered into punched and inserted into the electronic computer's memory for subsequent processing and comparison of binary codes of images with the codes of images to be interpreted (recnanized).

The process of transforming half-tone images of an aerial photograph into digital binary code. This requires first the transformation of the continuous image into a discrete image, that is, quantification of the image on the aerial photograph or film. D. S. Lebedev [36] proposed a device for entering a motion picture film onto punched cards by determining and quantifying the transparency coefficients (ratio of light intensity for light passing through the film
to the intensity of impinging light). This method evidently can be used also for entering aerial photocraphs of forests onto punched cards. Now we can propose a possible technological scheme of allomatic interpretation of aerial photographs. Its basis will be the principle of comparing binary codes of images of the aerial photograph to be deciphered with reference standard aerial photocraphs:
preparation of reference standard (identical in area of square sections) of aerial photographs of forests of different density, height, and thickness of trees, canopy closure, species composition, age, and yield; determination of precise values of this information about tree stands by measuremonts at the lncality;
quantifying and entering of binary codes of the images on reference standard photographs onto punched cards with the insertion of the latter into the electronic computer's memory (with a program of hunting for the reference numbers of the reference standard sections);
entering binary codes of point values of appraisal indexes for the stands of each reference standard area onto punched cards and inpit of the latter into the electronic computer's memnry;
quantifying and insertion of the binary code of the image of the standard forest area being interpreted onto punched cards and input of the latter into the electronic computer's memozy;
compilation and input into the electronic computer of a program for comparinc codes of the images of the reference standards and aerial photomraphs undergoing interpretation with logic operations of estimating the greatest agreement between two codes and a command to release for printing digital values of appraisal indexes.

In this method, the greatest agreement of binary cones will serve as the criterion of reliability of interpretation. Actually, we estimate the confergence of subsets of zero's and one's. We can determine the size of the permigsible deviations in codes by experimental mathematical statistical studies. For this purpose, it is worthwhile using the method of statistical tests, which sometimes is called in the scientific literature the Nonte-Carlo method, or the methorl of trial and error. The basis of this method is modeling of tests in a scheme of random events and corresponding agreement criteria described hy us in chapter 3 .

The principle of combining comparison and measurement has been proposed and described in tho studies [15,16]. In this method of automation, codes of the numerical values of appraisal indcxes of reference standard aevial photorraphs are compared with the codes of the numerical values of these indexes measured electronically on the aerial photorraphs (films) being interpreted. The basis for measurements consists of methods developed and described carlier for measurementinterpretation of aerial photos of forests, but transformed appropriately for processing binary codes based on the approprinte alcorithm. Schematically, this method is as follows:
preparation nf reference standards (atandard square areas) of aerial photncraphs of a forest with precise values of canopy closure, mean tree spacine, mean crown diameter, mean height and thickness $n f$ trees, yield, species componition, and age;
binary coding of precise numerical values of these appraisal indexes of reference standard aerial photographs and their input via punched cards into the electronic computer's memory;
quantifying, binary coding, and measurement of canopy closure, mean tree spacing, and mean crown diameter on the standard areas of the aerial photographs being interpreted; binary coding of the numerical values of three indexes and their input into the computer's memory;
compilation and input into the computer of a program for comparing codes of measured (three) indexes of the aerial photographs being interpreted with codes of the precise values of these indexes for reference standard aerial photographs and logic operations of the estimation of greatest agreement between codes of indexes of the aerial photograph under interpretation with one of the codes of the reference standard aerial photographs; issuance of a command to print appraisal indexes of the aerial photographe undergning interpretation.

Execution of the scheme described requires an algorithm for determining l_{0}, C_{0}, and D_{C} in hinary code. We can use opticomechanical scanning of the forest photo-imaging as the technical means of determining and measuring these indexes in binary code.

An alcorithm for determining three appraisal indexes of a stand in binary code has been propnsed in the studies
[15,16]. Essentially, this algorithm consists of the following: let us assume that in scanning of an aerial photograph covering a standard area, corresponding to the crom image are one's, and to the openings - zero's. Then canopy closure can be represented in the form of a ratio of the total of one's to the total of nne's and zero's of the standard area. The C_{n} obtained in this way is compared with the reference standard C_{s} stored in the memory of the computer. IVe can adopt the logic rule $\mathrm{C}_{0}-\mathrm{C}_{s t} \leqslant 0.1$ as a criterion of convergence.

The mean tree spacing in the line l_{1} equals the ratio of the length of the line L to the number of discrete groups of one's in the line N. The length of the line of the standard area is known to us. The number of groups of one's expresses the number of crowns in the line n. The ratin of the total of mean areas over all lines to the number of lines in the standard area is taken as the mean tree spacing of of the aerial photorraph being interpreted, that is, $1_{0}=\sum i_{i} / n$. The criterion of convergence l_{0} with reference standard 1_{0} values is determined hy the logic rule $1_{n}-1_{\text {gt }} \leqslant 0.1$ meter.

The mean crown diameter is determined by the following method. For the length of the images of all crowns along the line we can take the number of one's in the line m and multiply it by the linear size of the scanning unit, that is, $D \approx 0.2$ meter. The crown diameter in the line is equal to the ratio of the length of all crowns in the line to the number of discrete groups of one's in the line, that is, $D \frac{1}{c}=\mathrm{D} / \mathrm{n}$. The ratio of the total of crown diameters over alf lines to the total number of lines in the standard reference area is taken as the mean diameter ni crowns in the aerial photograph undergoing interpretation, that is, $D_{c}^{0}=\sum D_{c}^{i} / l$. The criterion of convergence of crown diameters 0.1 meter $\gg D_{c}^{n}-D_{C}^{\mathcal{A t}}$, where $D_{c}^{s t}$ is the mean crown diameter of the reference standard areas.

The method described includes three criteria of interpretation reliability, where the program of comparison and selection of the reference standard aerial photograph clnsest in its appraisal indexes can be refined by resorting to correlations and insertinc corrective coefficients obさained via experimental statistical tests. The precision of appraisal index determination can be affected by shadows cast by crowns, but since this effect is systematic in character, it can be allowed for by a statistical method. In the future, however, it is possible to use a method of automatic determination of mean heights from a stereo-model of the forest, which
doubtless will increase precision of automatic interpretation of aerial photographs of forests.

The methods of allomating interpretation that we have described doubtless must be viewed as the first approximatinn and as one of several possible approaches ton solving this complex prol)lem.
40. Prospects for Slectronic Computers in Porest Manarement

Use of electronic computers for solving scientific and probluction problems in forest management is altogether possible and at the present time dnes not represert any fundamental difficulties. Formulating alanrithms and procrams for solvinc problems in forest management hy use of compiters does present some complications, but these prohlems are reaolvable in practical terms.

The advantares of computers is that they afford complete automation of labor-consuming calculations and processinf of diverse information about forests, where the machines do this work thousands of times faster than a large number of highly qualified encincers and technicians. Statistical correlations of distribution, correlational functions, and compilation of stand rrowth pattern tables require for their study fairly complex formilas, processinc a vast amount of starting data, and carryinc out laborious calculatinns requiring larce outlays of time and efforts, for which even scientific personnel are not always enthusiastic. Vee nf electronic computers opens up here unbounded vistas for science and production. Imly mastery of the working principles required in preparing problems for computer solution is required.

Ye know that computers can perform simple arithmetical and lorical operations. Therefore, in preparing for solutions of problems on the computer, preliminary breakdown of formulas or systems of equations into specified elementary operations which the machine will execute in strict sequence following a man-formulated program is required. lljgh-speed electronic computers perform tens of thousands of such elementary operations per second.

To use the electronic computer, we must first of all have starting information on foresta for which we have resolved to obtain the entire set of appraisal indexes of tree stands. We will conventionally call such information we
wish to get after processing starting information "processed information." Appraisal indexes measured and determined by methons of field and office appraisal and entered on fnrms of appraisal descriptions of tract, card entries of sampling plots and model trees can serve as the starting data. The following can be the processed information obtained by using electronic computers:
table of classes of ace, site, occupancy, merchantability, and yield for dominant and nther species; this information can be provided by the machine in summary form for each quarter, economic accounting unit, forestry station, tree farm, oblast, kray [territory], and republic;
statistical correlations on the distribution of appraisal indexes of stands in the form of thenretical functinns, series, and tables for any species (pure and mixed), ares, and areas of U.S.S.R. forests with data about variance, dispersion, and mean values of appraisal indexes;
correlation equations and tables of the function relating apraisal indexes of stands of any species composition, age, and densjty (for any territory of the coluntry's forests) with curvilinear and multiple correlation taken into account;
tables of stand growth pattern, pure and mixed, for which fractionalizing of areas occupied by forests is suitable;
optimal variants of the system of plantines, oreanization, and planning of tree plantatious, location, and construction of forest roads.

Solution of the listed problems using computers can be carried out separately, at different times, without any rigorous system of orranization and storage of starting and processer information about the country's forests. This approach to the overall prohlem area is not rational and economically expeditious. As it appears to us, use nf the electronic computer in forest management from the very nutset mist be orcanized most advantacenusly from the scientific and production points of view. This requires compiling a new type of map adapted for combined lise with electronic computers. Kight now many maps and layouts of tree farms and other territorial units are being compiled. Ilowever, nrdinary maps are not suitable for securing all essential information about forests. This information must be obtained by ocular and manual methods, but obtaininc processed information involves great outlays of time and effort.

For successful use of electronic computers in forest management, it is best to prepare special maps bearing information about forests, used in conjunction with electronic computers. Compiling such maps does not hovever present any fundamental difficulties. Essentially, they amount to the following. The boundaries of the tracts, blocks, forestry stations, tree farms, and other territorial units are written on the sheet of the map of a suitably selected scale and projection. Each of these units are given an ordinal number, which then is written on the map in the center of the area that images this unit. For cuidance and conrdination of forest areas with the rest of the objective and lncality, roads, inhabited localities, hydro-sites, and their names are also specified on the map. Thus, all the starting information abnut stands of tracts will be linked by numbers to the information map.

The starting information is inserted in standard tables giving the number of the tract indicated on the map. Information about standard tables is added to the external memnry of the electronic computer via preliminary binary coding and punching. Data programs are drawn up for processing original information for the above-listed problems. The programs are inserted into the operational memory of the computer. With the information card in front of him, the engineer chooses the necessary unit numbers for which it is required to secure processed information out of the machine. Thus, the computer can be fed any version of problem solution and any territorial units. Extremely convenient and economical methods of storage and replenishment of all the information about the country's forests are being formulated, since this information will be entered on magnetic tapes and as necessary any starting or processed information in printed form without any human participation, that is, automatically, can be rapidly secured from the tapes.

As a whole, organization and methods of working with computers in forest management can be presented, in our opinion, in the followine order:
compilation of information maps adapted for work with electronic computers;
preparation of tables containing starting information, punching them onto cards (binary coding), and insertion into the computer's external memory on magnetic tapes;

Formulation of algorithms and compilation of programs for the solution of scientific and production problems in
forest management using computers, and input of programs into the operatinnal memory of computers;
the practical solution of problems in forest management with the aid of information maps and computers relying on original information and programs inserted into the machine.

What then are the chief features of the executinn of the second and third stages of methods for working with enmputers in forest management?

1. Tables of starting information mist be prepared and the latter must be fed to computers. Starting information (appraisal indexes) about stands within the bounds $n f$ tracts is determined by methods of field and office appraisal and is entered onto standard forms. The forms of original information tables are best desioned anew, since forms of appraisal descriptions of tracts, sampling plots, and model trees are unsuitable for punched card work (hinary conding) and subsequent feed of thejr information content into computers.

Since modern computers ars digital machines, all the starting information to be fed into the compiter mist be expressed in digital form. In the computer's memory cells all information is entered and stored inbinary digital form. Therefore, all data mist be expressed in the starting information tables in decimal or other counting systems sujtable for transformation (punched card) into binary form, that is, into digits of binary counting.

Quantitative indexes are easily and simply transmitten into information tables by decimal digits. it is also necessary to express the qualitative characteristics of stands that now are transmitted into apprajsal descriptions in alphabetic(wnrd) form, for example, species composition. Fnr transmittine alphabetic information into digital form, arbitrary coding can be used, which mist be retained unchanced in all information tables. A method of encoding, using the example of digital transmission of information about ten tree species, is show in Table 85.

In accordance with this table, the usual inscription of species composition 5C3E2, [5 Pine 3 Spruce 2 Cedar] in decimal code must be entered in the starting information table as -- 503124, and in hinary code -- 101011110100.

GRAPHICS
 NO'T REPRODUCIBLE

Table 85
(1) (3) (2) (4)

Owing to the economy nf the computer's memory, the most widespread and the most frequently encolintered species are best assigned the smallest code dicits. Such data as are class, site class, and forest type should be entered in starting information tables in a standardized decimal code, and Roman numerals, for exanple, must never be used.

It is not necessary tolist information that cannot be used by the electronic conmuter in the starting information tables, and there is no requirement to provide the information that can be obtained ly arithmetic and other operations on the starting information, since the machine does this itself more rapidly and better than man and man does not have to encage in this worl. In a word, the tables must include only the information that has been obtained by the appraiser hy direct measurements and determinations.
it is clear from this table that all the information has been expressed in decimal dicital form. Similar tables are compiled hy appraisers for each tract.

GRAPHICS NOT REPRODUCIBLE

As an example, we present part of a starting informaltin table:

Legend: A -- block number
D) -- species composition

3 -- tract number
: -- age
C -- area of tract
F -- mean indexes
$\mathrm{m}=$ [subscript] tree; $k=[$ subscript] crown
The position system of entering information into tables economizes the memory capacity of completers. Feeding infermotion from tables into the computer makes use of punched cards. Information is entered onto the punched cards from tables by perforator that automatically the decimal code to binary code in the form of punches. This part of the work is done by ordinary methods and does not present any difficulties. It appeared rational that starting information tables about each section be entered onto a separate punched card. From the cards the starting information is fell in strictly specific order into the external memory of the compouter, and best of all, onto magnetic tape. Thus, the Strela electronic computer has a 43-column cote cell. The external memory consists of magnetic tapes. A single tape has 511 zones, and each zone contains 2048 numbers (cells). It is best that all information for a block or a forestry station be entered onto the same zone, and information about forests of an oblasts stored on the same magnetic tape. Thus, all starting information will be entered into the memory of the computer.
2. Algorithms must be developed, programs for processing starting information compiled, and programs fed into the operational memory of the computer.

This stage of computer use in forest management is the most complex. First of all, a list must be compiled and the problems that we wish to solve on the electronic computer formulated, and then the algorithms for their solution drawn up. Simple sequences of arithmetic operations of addition, subtraction, multiplication, and division can serve as such

GRAPHICS
 NOT REPRODUCIBLE

algorithms: for example, counting the area of sections by blocks, forestry stations, eic.; formulas for calculating yields from starting information (for example, from $N_{n}, d_{\text {tree }}^{0}$ and h_{n}, and from stem volume tables, the latter being best replaced by formilas for calculating the volume of a single tree by relying on doree and h_{n}); formulas of thenretical functions of the distribution of appraisal indexes proposed in chapters 3 and 4; systems of equations for calculating the correlation between tree height and thickness given in chapter 5; forest management project-planning, etc.

All these algorithms must have a strict sequence of arithmetic and logic operations, as a result of the execution of which the person or the machine receives the final solution of the problem posed. By relying on the algorithms thus developed, a program is dram up in alphabeticonumeric form, which ensures solution of the bulk of closely related problems under the same, but with different starting information for different forested areas of the U.S.S.R. The programs are fed in the usual way into the computer.

To clarify the second stage of the undertaking, let us give one example. A problem is posed: calculate the table of the correlation between tree height and tree thickness. We use as the alcorithm the correlation equation (94) similar to the equation we derived in section 22, that is,

$$
\begin{equation*}
n=1{ }^{\circ} \cdot \quad 1,11 d^{\prime} \tag{0,1}
\end{equation*}
$$

Now we will compile the basic program for calculating the correlation table based on formula (94) and on starting information fed into the computer's memory. To do this, we break dow the right-hand side of the formula into several successive arithmetic operations, as the result of the execution of which the machine will issue forth the sought-for correlation table.

Let us designate the constants in formula (94) by letters, that is, $a=1.157$ and $b=0.011$. Then, to calculate h we have to carry out the following four operations:

$$
\begin{gather*}
A=a \cdot d_{m} \\
A_{2}=d_{n} \cdot d_{m} \\
A_{1}=b \cdot A_{2} \\
A_{1}=A=A_{1}-A_{3} .
\end{gather*}
$$

GRAPHICS NOT REPRODUCIBLE

Each of the elementary operations A is conducted by an electronic computer on a separate command, therefore successive command numbers must be stipulated in the program -- we will call them A_{1}, A_{2}, A_{3}, and A_{4}.

Then we must indicate in the program the nature of the operation-command to be carried out (addition, subtraction, multiplication). At this point, then, the numbers of the cells from which we must take the starting information to carry out the stipulated operation on it are entered into the program, and the results of the operation are placed in the cell whose address has been entered into the successive section of the program.

Let us call the addresses (numbers) of the cells in which starting information is placed $\alpha_{1}=a, \alpha_{2}=b$, and $\alpha_{3}=d_{\text {tree }}$ and the addresses of the cells in which intermediate and final results of the operations are placed $\omega_{1}=$ $A_{1}, \omega_{2}=A_{2}, \quad \omega_{3}=A_{3}$, and $\omega_{4}=A_{4}$. The fundamental diagram of the program dram up following the stipulated rules is shown in Table 86.

Table 86

Legend: 1 -- command number; 2 -- operation code; 3-- starting information; 4-- operation results; 5-- remarks

Starting information from the external memory is conveyed into the cells of the operational memory. The program stipulates other operations-commands as well which are not described here. A similar program is compiled for each problem to be solved. A set of programs is fed in the ordinary way into the computer's memory, which automatically performs all operations and issues the results of solving the problem in printed form.

Such are the principles for using computers in forest management. It is clear from what has been said that here we dn not have any basic difficulties and the concern is only that we enter this extremely promising innovation for science and practice in forest management in a practical way.

31!LIM:RAPMY

1. Alekhin, V. Y., Cengrafiya Rasteniy (Plant fieneraphy), Moscow, l'chpedeiz, jogo.
2. Alckhin, V. V., Rastitel'nnst' SSSR (Veqetation of the l.s.S.R.), Ynocow, sovetskayn Nauka Puh. Thise, 1051.
3. Anuchin, v. P., Lesnaya Takbatsiya (Finest Appraisal), Mnscow, Consleshumizilat, 1052.
4. Marannv, ". '., "?s ebjective interpretation Based on Counts and Measurcments Possible?" Lesnnye l:hozyayston (Forestry), No 2, 1040.
5. Belnv, S. V., Aernfotos"yemka Lesnv (Aerial Phntngraphy of Forests), Moscow, U.S.i.R. Academy nf Sciences luh. House, 1950.
6. Berezin, A. M., and Trunov, I. A., "Correlation of Tree Diameter at Brenst Height with Crown Diameter for Tree Stands of Differant Parts of the Soviet Union, " Uchonyye Zaniski Lesnoy Grunny LAEI AN SSSR (Scientific Notes of the Forests Croup of the Serial Methods Laboratory of the li.S.S.R. Academy of Sciences), Leningrad, 1957.
7. Bocharnv, M. K., "Relatinnship Jetween Distance and Number of Points in a Given Area," Kestnik_VIA (Bulletin of the Military Encineering Academy), No 6, Mosenm, 1053.
8. Bocharnv, M. K., Methods of Calculating Traversability, Canouflaging Properties, and Protective Cover of Foreste," Vestnik VIA, Mosenw, N $31,1055$.
9. Bocharov, M. k., "lmaging Sparsely Standing Forests on Topographic Maps," Sb. States no Ceodezifi (Cnllection of Articles on Geodesy), Unsenw, No 10, 1055.
10. Bocharov, M. I.., and Tolmacheva, Z. I., "Determination From Aerial Photngraphs of the Thickness of Trees and Mean Tree Spacing," Sh. Nallchnn-Tenreticheskikh i Proizyodstvennykh Statey no Geodezi i, Aerofotntonografii i hartngrafii (Collection of Scientific-Technical and Production Articles on Gendesy, Aerial Photo-topography, nad Cartography), Xn 2, 1956, RIO Vrs (Editorial and Publishing Section of the Mili.. tary Topographic Service).
11. Bocharov, M. 1., "Use of the Sampling Methed in Determining the Main Characteristics of Forests and Inhabited Localities," Yestnik ViA, Moscom, No 101, 1056.
12. Bocharov, M. K., "Transformation of Point Sets and Their Use in Appraising the Camouflaging Properties of Forests," Vestnik VIA, Moscov, No 124, 1957.
13. Mocharov, M. K., and Nikolayev, S. A., MatematiknStatisticheskiye Metody v hartografii (Mathematical Statistical Methods in Cartography), Moscow, Ceodezizdat, 1957.
14. Bocharov, M. I., Metody Opredeleniya Takticheskikh Svoystr Lesa i Fartngraficheskoye Izobrazheniye Rastitel'nosti (Methods of Determining the Tactical Properties of Forests and Cartographic Imaging of Plant Cover), Moscnm, Via Publishing llouse, 1958.
15. Bocharov, M. K., "Altomation of Topocraphic interpretation of Aerial Photncraphs of Forests," Izvestiya Vysshikh Uchermykh Zavedeniy. Gendeziya i Aernfotns"yemka (News of the Higher Educational Institutions, Geodesy and Aerial Phntneraphy), Noscom, No 5, Moscow Institute of Engineers of Gendesy, Aerial Surveying, and Cartocraphy Pub. IInuse, 1962.
16. Incharov, M. K., Matematikn-statisticheslinve Issledovaniye Topograficheskoy informatsij o Lesakh (Mathematical statistical studies on Topooraphic Information About Forests), Moscom, Allthor's Abstract of Dissertation, 1962.
17. Buslenkn, N. P., and Shreyder, Yu. A., Metod Statisticheskikh lspytaniy (Method of Statistical Tests), Moscow, Fizmataiz, 106i.
18. Viner, N., hibernetika (Cybernetics), Snvetsknye Madin Pub. Honse, Mnecow, 1958.
19. Viktornv, S. V., Ispol'zovaniye Geobotanicheslagn Yetoda pri Genlogicheskikh i Gidrngenlogicheskikh lsslednvaniyakh (Uge of the Geobotanical lethor in Genlogical and lydrogenlogical Research), : oscow, U.S.S.R. Academy of Sciences Publishine llouse, 1255.
20. Gaydayev, P. A., Teoriva Oshibnk 'zmereniy (Thenry of Errors of Measurement, VIA Publishing linse, Mnsenw, 1957.
21. Gabr, Ya., Lineynoye Programmirovaniye (Linear Programming), Mnscow, Gnsstatizतnt, 1060 .
22. Gol; dman, L. M., "Editing of Topneraphic Maps of Scale l:10,000," Trudy TsNiGAit (Transactions of the Central scientific Research Institute of Gendesy, Aerial Surveying, and Cartneraphy), Moscow, Xo 101, 1954.
23. Gordeyev, P. V., "Study of Forest, Maw Material Base Usine Axonometric Aerial Phntocraphy," Lesnaya Promyshlennost." (Forest Industry), No 6, 1954.
24. Deynekn, V. F., Aerofntngendeziya (Aerial Phntngendesy), Moscow, Gendezizdat, 1955.
25. Dunin-Barkovskiy, I. V., and Smirnov, N. V., Tenriya Veroyatnostey i Matematicheslaya Statistika v T'elihn ike (Thenry of Probability and Mathematical Statistics in Technology), Moscom, Gostekhizdat, 1955.
26. Instrulstsiya po Ustroystru j Obsledovaniyulesnv. Gnsudarstvennogo 7nacheniya Soyuza SSR (Instructions nn Manarement and Appraisal of State-Rated Forests of the Uninn nf the SSR), Moscow, Goslesbumizdat, 1952.
2.7. I'ireyev, D. $\therefore .$. , and Samoylnvich, G. F., Metodika. Maboty s izmeritel'nymi Prihorami pri Lesnom Deshifrirnvanii Aernsniminy (Methnds of forking with Measurement instruments in Forest Interpretation of Aerial Photographs), Leningrad, LTA (Leningrad Forest ingincering Academy imeni S. M. Jirnv) Publishing House, 1961.
27. Kitov, A. J., and Irinits!ciy, N. A., Elektronnyye Tsifrovyye Mashiny i Programmirnvaniye (Electronic Digital Computers and Proeramming), Noscow, Fizmatais, 1050.
28. Lozlovsliy, 3. A., "?mproving Techniques and Methods of Forest צamacment," Lesnnye lhnzyaystyn, i.n 3, 1057.
29. lnzlovsliy, is. A., Lesoustroystro za (indy Sovetskoy Ylasti, Shornik Statey (Forest Manarement During the Years of
 try of Arriculture), Moscon, 1350.
30. : nalovsliy, 13. A., " lasks Ahead in Forest Management, " Lesnoye lhnzyaystvn, ㅇn $12,1062$.
31. Innzlnvskiy, 3. A., Yalakhnv, A. Ya., lanashztenkn, 1. A., and lern, L. 1., Spravnchnik Lesoustrnitelya (Forest Manarement Mandhonal, Moscon, Goslesbumizdat, 195゚.
32. Inzlovsiky, V. 7., "lise of Experimental Tahles of Crnwth Patterns," Lesnnye lhnzynystvn, Nn 3, 1055.
33. I ramer, Ci., Matematichesliye Metody Statistiki (Nathematical Methons in Statistics, Minsen, ilI, 1048.
34. : ruchinin, A. F., fartografiya vesonstroystye, Shornil: Statey (Cartneraply in Fnrest Sanagement, Collection of Articles), Lesproyekt !'sll, !osens, 1950.
35. I, leedev, 5. S., "llevice for llecording imares on Puncher Tape," Yroblemy Peredachi lnformatsit (Problems of information Transmission), \therefore 2, Moscow, 1950.
36. Lobanov, A. N., Fototnpografiya (Planto-topneraply), Mosenv, ViA Publishing House, 1057.
37. Lesknv, A. 1., "Prohlem of the Variability of Tree Spacings," "rudy Leningradskngo Obshchestva Yestestvnispytateley (Proceedings of the leningrad Snciety of Naturalists), in 1 , Ieningrad, 1027.
38. Mazhugin, 1. r., "Study of the Canopy of Mixed and Complex Pine Stands of the Lisinskiy Tree Farm for Purpnses of Forest Interpretation of Aerial Photocraphs), 'rudy L'TA (Transactions of the Leningrad Forest Ingineprinc Academy imeni S. N!. I.irov), No 87, Leningrad, 1750.
39. Mazhugin, 1. N., "Study of Complex and Mixed 3irch Stands for Forest Interpretation of Aerial Photographs and Aerial Appraisal of Forests," Sbornik, Uchet Lesosyr 'yeryikh llesursov i Ustroystvo Lesov (Collection: Recording Forest haw Material Resources and Forest Management), No 3, Leninarad, 195?.
40. Nesterov, V. Gr., Onshcheye Lesovodstvo (feneral Silviculture), Mnscow, Gnslesbumizdat, 1954.
41. Pronin, A. F., Ruknvodston po Deshifrirnvaniyn Lesnykh Aerosnimkov (Manual on Internretation of Forest Aerial Photocraphs), !!oscow, Gnslestekhizdat, 1938.
42. Romanovskiy, v. '., Matematicheskaya Statistika (Mathematical Statistics), Noscon, Cnstek̆īnat, 1938
43. Samnylovich, (G. G., "Aerial Photngraphy in the Forests of the luzbass," Trudy L'TA, No 5 (43), Leningrad, 1935.
44. Samoylovich, G. G., "Determining Number nf Trees From Aerial Photorraphs," Lesnoyelhozyaystro, No 3, 1040.
45. Samoylovich, G. f., "Experience in Stury of Interrelationships Between Crom Diameters and Certain Apprajsal Characteristics of Trees for Their Determination From Aerial Photographs," Sbornik Statey Povol गhek ogo Lestotekhnicheskngo Instituta (Collections of Articles of the Volma Forestry Encineering lnstitutel, No 2, 1040.
46. Samoylovich, G. G., Primeneniye Aviatsif i Aerofotos"yemki v Lesnom lhnzyaystve TUse of Aviat inn in Aerial. Photography in Forestry), Leningrad, inslesbumizdat, 1953.
47. Samnylovich, G. G., "Measuring Crown Diameters From Aerjal Photocraphs of Moderate Scale," Sbornik Staiey LaEn (Collection of Articles of the Aerial Methods Laboratory), Leningrad, 1954.
48. Samnylovich, G. G., "Recomizability of Trees From Aerial Photographs and Measurement of Their Dimensions, " Gencraficheskiy Sbornik ((reocraphic Collection), No 5, Leningrad, 1055.
49. Samoylovich, G. G., Metorika Izucheniya Nasazhdeniy dlya Lesnogo Deshifrirovaniya Aerosnimkn i Aerotaksateij Lesov (Methods of Studying stands for Forest interpretation of Aerial Photographs and Aerial Appraisal of Forests), Leningrad, LTA Publishing House, 1956.
50. Samoylovich, G. G., "Importance of Studying Stand Canopy for Silviculture, Interpretation of Aerial Photographs, and Aerial Appraisal of Foreste," 'Trudy LTA, No 81, Leningrad, 1957.
51. Samoylovich, G. G., "Experience in Neasuring lleights of Trees and Stands from Aerial Photographs," Trudy LAER (Transactions of the Aerial Methods Laboratory), Lenjngrad, 1954.
52. Sergeyev, P. A., "New Tecimiques in Forest Management, " Lesnoye E hnzyaystyo, No 2, 1957.
53. Tret'yaknv, N. V., frorskiy, Y. V., and Samoylovich, G. G., Spravochnik Taksatora (Appraiser's llandbook), Leningrad, Goslesbumizdat, 1952.
54. Tret'yakov, N. V., Zakon Yedinstva v Stroyenii Nasazhdeniy. (Law of Unity in Structure of Tree Stands), Noscon, 1927.
55. 'Trunov, I. A., "Experience in Tsing Correlations of Tree Stand Siructure for Measurement Interpretation of Forest Aerial Photographs), Trudy LAER AN SSSR (Transactims of the Aerial Methods Laboratory of the U.S.S.R. Academy of Sciences), Vol 10, Leningrad, 1960.
56. Tyurin, A. V., Normal 'naya Proizvoditel 'nost' Nasazhdeniy (Normal Productivity of Tree Stands), Mnscow, Selkhozgiz, 1931.
57. Tyurin, A. V., Taksatsiya Lesa (Forest Appraisal), Moscow, Goslestalihizdat, 1945.
58. Tyurin, A. V., Osnovy Variatsionnoy Statistikj. V. Primeneniik Lesovodstvu (Fundamentals of Variatinnal Statistics for Application in Forestry), Moscon, Goslesbumizdat, 1961.
59. Khal'd, A., Matematicheskaya Statistika s Telchnicheskimi Prilozheniyami Mathematical Statistics with Technical Application in Forestry), Moscow, Coslesbumizdat, 1961.
60. Eytingen, f. K., "Effect of Tree Stand Density on Stand Growth," Lesnny. Thurnal (Forestry Journal), Nos 6-8, Leningrad, 1918.
61. Andrews, F_{r}. S., "Air Survey and Forestry," Forestry Chronicle, No $10,1934$.
62. Coleman, Ch., and Rogers, E., "Report of Commission 7 (Photographic Interpretation) to the International Society of Photocrammetry," Photogrammetric Engineering, No 1, 1956.
63. Conklin, f. N., "Interpreting the Military Aorial Photograph for Tactical Use," Photogrammetric Engineering, No 3, 1754.
64. Dilworth, J., Timber Volume Estimating Directly. From Aerial Photographs, U.S., $1 \overline{955 .}$
65. Forestry Handbook, New York, 1955.
66. Fnrestry Practice, London, 1958.
67. Carver, R. D., "Aerial Photn-interpretation by the Forest Service," Photogrammetric Engineering, No 1, 1953.
68. Johnson, E. 'Y., "Effect of lhotngraphic Scale on Precision on Individual Tree Height Measurement," Photngrammetric Ong ineering, No $1,1958$.
69. Losee, S. T., "'rimber Estimations From Large-Scale Photorraphs," Photogrammetric Engineering, No 5, 1953.

7l. Meyer, H. A., and Vorly, D. P., "Volume Determinations From Serial Stand Volume Tables and Their Accuracy," Iournal of Forestry, No 5, 1957.
72. Manual of Photographic Interpretation, Washington, 1960.
73. Moessner, K. E., "Photo-interpretation in Forest Inventories," Photogrammetric Engineering, No 3, 1953.
74. Nash, A., "Some Volume Tables for Use in Air Survey," Forest Chronicle, No 24, 1948.
75. O'Neill, I!. Th, "I.eys for Interpreting Vegetation From Air Photographs," Photogrammetric Engineering, No 1, 1953.
76. Pope, R., "Aerial Photo Volume Tables," Photogrammetric angineering, No 3, 1950, p 16.
77. Rogers, E. J., "Proposed Forest Survey Applying Aerial Photographs in Regression Technique," Photngrammetric Engineer ing, Yo 3, 1959.
78. Rogers, 5 . J., "Report of Yorsing Group 4 (Foresters), Commission 7 of the International Sncjety of Photogrammetry," Photomrammetric Ingineering, in 4, 1058.
70. Sammi, !. C., "The Application of Statiatics to Photomrammetry," llhntogrammetric Mgineering, No 11, 1956.
80. Sammi, I. C., "Limitations of Tree Meisht, Measurements to Parallax," Photnrrammetric ingineering, in $4,1053$.
81. Spurr, S., Fnrest Inventory, Sew York, 1052.
82. Voresack, 3., "!ilitary Photocraphy, Bapecially lts Uses in intelligence Scrvice," Photngrammetric engineering, Nin 1, 195\%.
83. Worly, D., and Landis, !., "the Accuracy of lleight Seasurement \because ith Parallax Instruments on $1: 12,000$ Photncraphs," phntorrammetric mincering, N 5 5, 1054 .

DOCUMENT CONTROL DATA.RED

(Security clesaification of ilfle, body of abstract and indering annototion muet to enforect mhen tho oweroll repert la clecelfled)

Onigina tinc Activitr (Comoreto euther)	
Foreign Science and Technology Center	UNCLASSIEIED
US Army Materiel Command Department of the Army	20. GROUP

MATHEMATICAL FUNDAMENTALS OF AERIAL PHOTO-INTERPRETATION OF FORESTS

M. K. Bocharov and G. G. Samoylovich

[^1]The present status of photo-interpretation of forests is discussed along with results of theoretical and experimental studies on use of mathematical modeling in investigating tree stands.

The use of computers in forest management is feasible and requires starting information and the preparation of special maps bearing information essential for electronic computer operation.

Nathematical modeling expands the theory of timber stand study and leads to new methods of measurement and determination of appraisal indexes concerning timber stands.

[^0]: IV. G. Nesterov, "Experience in Determining the Automatism of reaniems and Its Applications," Binlogicheskiye Asnelty lihernetiki (3 inlorical Aspecta of CyherneticsT, 1 . S.S.R. Acarlemy of Sciences Pub. llouse, Noscow, 19 i2.

[^1]: 13. ABSTRACT
