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Introduction

This is the final report, covering the period May 1, 2005 through August 31, 2008. In this
report, we discuss our progress on nonlinear systems analysis, based on Lyapunov and dissi-
pation inequalities, using sum-of-squares (SOS) decompositions to verify set containments.

We have improved our ability to analyze uncertain system dynamics, including nonaffine
parametric uncertainty as well as unmodeled dynamics. This entailed polytopic covering
methods for graphs of vector-valued polynomial functions, and local small-gain theorems.
We use simulation as a key step in aiding the nonconvex search for proofs (Lyapunov func-
tions) and proof certificates (multipliers). Some aspects of the calculation are trivially par-
allelizable, and we have employed a 9-machine cluster to speed-up the analysis of uncertain
systems. We also began more detailed study of systems with marginally stable linearizations
(ie., adaptive systems). Finally, we made precise our claim that these techniques represent
a quantitative and definitive improvement over linearized analysis.

Notation: R[z] represents the set of polynomials in z with real coefficients. For 7 € R[z],
d(m) denotes the degree of m. The subset L[z] := {nf+ .-+ 7 : m, - ,7™m € Rlz]} is
the set of SOS polynomials.

Uncertain Systems Analysis

Uncertainty in the vector field includes non-affine dependence on a parameter vector ¢ lying
in a polytope A, namely

m Mpu
2(t) = fo(@(t)) + D &ifum(t)) + Y gi(8) fmss((t), €A
=1

§=1
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and unmodeled dynamics,

#(t) = fo((ﬂ;( + 2 i 8:fi(2(t), w(t)) + 527 95(8) fimas (2(2), w(?))
w = %(2)

Here ® represents unmodeled dynamics, for example, finite-dimensional, linear, time-invariant
operators with specified upper bound on induced £, norm, for example [|®||.,_, g <L

The tools we have developed to address this problem are

1. region-of-attraction analysis for systems with affine parameter uncertainty using a sin-
gle Lyapunov function

2. local induced £, — L3 gain analysis for systems with affine parameter uncertainty,
using a single polynomial storage function

3. covering, with a polytope, the graph of vector-valued polynomial function over a poly-
topic domain,

4. informal branch-and-bound

5. local small gain theorems.

Next, we illustrate the calculations that are possible with these methods.

Controlled short period aircraft dynamics, parametric uncertainty
We apply the robust ROA analysis for uncertain controlled short period aircraft dynamics
(see the project website for the parameters used in the model)

co1(p) + Src11(zp) + 51‘131 (@) (zz;xp + b1y + b120;
Tp = | Qoa(Zp) + 8105aTp + 2gaa(zp) | + bo1 + boody u,
T 0

where z, = [z z2 m3]T, Z1, T, and z3 denote the pitch rate, the angle of attack, and the
pitch angle, respectively, cg and c¢;; are cubic polynomials, ggo, g2, and ¢3; are quadratic
polynomials, 4;5 and ¢, are vectors in R3, b1, b1, b1, and byy € R, and u, the elevator deflec-
tion, is the control input. Variations in the center of gravity in the longitudinal direction are
modeled by §; € [0.99,2.05] and variations in the mass are modeled §, € [—0.1,0.1]. Note
that the parametric uncertainty includes one nonaffine term (ie., 42). The control input is
determined by 14 = —0.864y, + —0.321y, and u = 2z4, where z,4 is the controller state and
the plant output y = [z; z3]7 . Define z := [aT m4]T and the shape factor p(r) = zTz.
We applied a branch-and-bound type procedure with (V) = 2 and (V) = 4 on a 9-
processor computer cluster: after the first B&B iteration, the cell with the smallest lower
bound is subdivided into 3 subcells and cells with 2-nd, 3-rd, and 4-th smallest lower bounds
are sub-divided into 2 subcells. Fig. 1 shows the lower bounds and upper bounds. Note

that quadratic Lyapunov functions (several, as different Lyapunov functions are employed



"quasi-upper” and lower bounds fora(V) = 2

1 6

2 3 4

' number of B&B steps
Figure 1: Lower bounds for 3, with (V) = 2 (solid black with “x”) and (V) = 4 (solid blue
curve with “0”) and 5™ (solid red with “o”) computed at the centers of the cells generated by the
B&B Algorithm for the (V) = 4 run. Dashed curves are for (computed values of) B(sy where
4 is the center of the cell with the smallest lower bound at the corresponding step of the B&B
refinement procedure for 9(V') = 2 (dashed black with “x”) and 9(V') = 4 (dashed blue with “0”).

in different cells across the parameter space) certify that all initial conditions zy € R* satis-
fying T xzo < 5.4 are in the region-of-attraction. Likewise, a collection of quartic Lyapunov
functions certify that all initial conditions zo € R* satisfying z2 7o < 7.8 are in the region-
of-attraction. The smallest value of p attained on divergent trajectories, g™, is 8.6 and
obtained for (), §2) = (2.039, —0.099) and the initial condition (0.17,2.65, —0.10, 1.24).

Aircraft dynamics, parametric uncertainty and unmodeled dynamics
Next, consider the same system with additional unmodeled dynamics at the plant input, as
shown in Figure 2.

Z'LU

j:4 = Ac$4 = ch
v = Cc$4

Tp = fp(xp,gp) + B(zp, op)u| Y
Y= [-’171 373]

Figure 2: Controlled short period aircraft dynamics with unmodeled dynamics (4, :=
(51352))'

The assumption is that ® is any stable, linear time-invariant (this could be relaxed) operator,
with induced £, norm less than 1. We again repeat the analysis using both quadratic and
quartic storage functions, which locally certify bounds on the gain (with ® removed) from
w to z (recall that this system is not globally stable) in the presence of the parametric
uncertainty. These local £, gains are used in conjunction with a local small-gain theorem to
yield results such as:

e (using quadratic storage functions) For all (finite-dimensional, linear, time-invariant)

3




®, satisfying [|®[|;,_,,, < 1, assuming that the initial condition of ® is 0, then all
plant/controller initial conditions o € R* satisfying 23 zo < 2.4, are in the robust
region-of-attraction.

e (using quartic storage functions) For all (finite-dimensional, linear, time-invariant)
®, satisfying ||®]|;,_ ., < 1, assuming that the initial condition of ® is 0, then all
plant/controller initial conditions zo € R* satisfying zzy < 4.1, are in the robust
region-of-attraction.

In conclusion, we have established provable and certifiable inner estimates of the region-of-
attraction of a (nominally) 4-state nonlinear system with both parametric and unmodeled
dynamics uncertainty. The informal use of branch-and-bound in the parametric uncertainty
space was handled efficiently using a small-scale parallel cluster of 9 machines.

Viewing our approach as quantitative extension of linearized analysis

Practical nonlinear analysis often couples extensive nonlinear simulation with extensive lin-
earized analysis (such as stability, stability margins, Bode plots of linearized I/O maps, etc).
Here we show that common linearized analysis techniques can be rigorously quantified using
the SOS approaches. The next lemma is key to these derivations.

Lemma: Let z(z) be a vector of all monomials of degree 2 with no repetition. Let Q =
QT > 0. There exists a positive definite matrix H = H7 such that 27zz7Qz = z(z)T Hz(z).

SOS region-of-attraction analysis: For the autonomous system ¢ = f(z), and a positive-
definite function p, if there exist positive-definite, radially unbounded function [;, positive-
definite function l,, SOS polynomials s;, s2 and s3, a polynomial function V, and positive
constants vy and [ such that V(0) = 0 and

V — l] & 2[2:], (1a)
— [(B—p)s1 + (V —7)] € Z[z], (1b)
— (Y= V)82 + VV fs3+ lo) € Z[a], (1c)

then {z :p(z) < B} C {z:V(z) <~} =: Q, and for all z(0) € , the solution satisfies
z(t) € Q Vt and lim, . z(t) = 0.

Now, consider the system £(t) = Az(t)+ fo3(z(t)) where A is Hurwitz, and fo3 is a polynomial
with quadratic and cubic terms. For any quadratic, positive-definite [,, l» and p, the equations
(1) are feasible using quadratic V, constant s;, s3 and quadratic s (suboptimal, feasable
values are easily determined from A and fao3). Consequently, if the local stability of an
equilibrium point of a system with a cubic vector field is decidable using linearized analysis,
then the SOS region-of-attraction analysis will always yield a quantitative, certified, inner
estimate of the region of attraction.

SOS L, gain analysis: For the driven system z = f(z,w), 2 = h(z), if there exist positive-
definite, radially unbounded function /;, SOS polynomial s;, a polynomial function V', and



positive constants ¥ and R such that V(0) = 0 and

V-l €2z, (2a)
= [(32 V)1 + VVf —wTw+ ;lthh] € Zz], (2b)

then for all w, with |lw]|,
||Z||2,T = ||w||2,T'

Now consider the system & = Az + fo(x) + f3(z) + [B + 91()] w and z = Cz + hy(z) where
g1 is purely linear, f, and h, are purely quadratic, and f3 is purely cubic.

Suppose the linearization (A, B and C) has A Hurwitz, and ||C(s] — A)"'B||_ < 7. For
any quadratic, positive-definite /;, there exist R > 0 such that the equations (2) are feasible
(possibly after scaling the state coordinates, z < az, by a computable scalar o > 0) using
quadratic V, and quadratic s; (suboptimal, feasable values are easily determined from A,
fa, f3, etc.). Consequently, if the local input/output gain around an equilibrium point of a
system with a cubic vector field is bounded using linearized analysis, then the SOS L, gain
analysis will always yield a quantitative, certified, ball of disturbances such that the same
gain bound holds for the nonlinear system.

< R, the solution from z(0) = 0 satisfies V(z(¢)) < R? and
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Robust Region-of-Attraction Estimation

Ufuk Topcu, Andrew Packard, Peter Seiler, and Gary Balas

Abstract

We propose a method to compute invariant subsets of the region-of-attraction for the asymptoti-
cally stable equilibrium points of polynomial dynamical systems with bounded parametric uncertainty.
Parameter-independent Lyapunov functions are used to characterize invariant subsets of the robust region-
of-attraction. A branch-and-bound type refinement procedure is implemented to reduce the conservatism.
We demonstrate the method on an example from the literature and uncertain controlled short period

aircraft dynamics.

I. INTRODUCTION

We consider the problem of computing invariant subsets of the region-of-attraction (ROA) for
systems with polynomial vector fields and bounded parametric uncertainty. Since computing the
exact ROA, even for systems with known dynamics, is hard, research has focused on determining
Lyapunov functions whose sublevel sets characterize invariant subsets of the ROA [8], [9], [19].
Recent advances in polynomial optimization based on sum-of-squares (SOS) relaxations [12] are
utilized to determine invariant subsets of the ROA for systems with known polynomial and/or
rational dynamics solving optimization problems with matrix inequality constraints [21], [15],
[71, [14], [17]. The literature on ROA analysis for systems with uncertain dynamics includes
a generalization of Zubov’s method [4] and an iterative algorithm that asymptotically gives
the robust ROA for systems with time-varying perturbations [11]. Systems with parametric
uncertainties are considered in [5], [13], [18]. The focus in [5] is on computing the largest
sublevel set of a given Lyapunov function that can be certified to be an invariant subset of

the ROA. References [13], [5] propose parameter-dependent Lyapunov functions which lead to

U. Topcu (utopcu@ jagger.me.berkeley.edu) and A. Packard are with the Department of Mechanical Engineer-
ing, The University of California, Berkeley; P. Seiler is with the Honeywell Labs; G. Balas is with the Department of Aerospace

Engineering and Mechanics, The University of Minnesota.




potentially less conservative estimate of the ROA compared to parameter-independent Lyapunov
functions at the expense of increased computational complexity.

This paper follows [16], using bilinear sum-of-squares optimization to determine invariant
subsets of the robust ROA. The differences lie in the allowed uncertain parameter dependence
and the class of Lyapunov functions. The approach in [16] employs parameter-independent
Lyapunov functions for systems whose vector field depends affinely on uncertain parameters
known to lie in a given polytope. This is reminiscent of quadratic stability analysis [3], where a
single quadratic Lyapunov function certifies the stability of an entire family of uncertain linear
systems, usually described by a polytope of linear vector fields. Of course, in both cases, using
a common Lyapunov function tends to yield conservative results. Additionally, the restriction to
polytopes of vector fields is undesirable. This paper partially alleviates both of these limitations.
First, vector fields are allowed to depend affinely on polynomial functions of the uncertain
parameters, and we develop methods to cover these with a polytope of vector fields (so that
[16] applies). Additionally, we propose a branch-and-bound type refinement procedure [10] to
partition the uncertainty set and compute a different parameter-independent Lyapunov function
for each cell, hence implicitly using piecewise constant (across uncertainty space), yet parameter-
dependent Lyapunov functions. In fact, in robustness analysis involving time-invariant unknown
parameters, it is common, [2], [22], to combine easily-computable sufficient conditions with
branch-and-bound strategies, often yielding improved analysis results.

An alternate for the conservativeness of parameter-independent Lyapunov functions is using
polynomially parameter-dependent Lyapunov functions as proposed in [5], [13]. Although SOS
optimization can be used with parameter-dependent Lyapunov functions, the ensuing optimiza-
tion problem is challenging because uncertain parameters are treated as additional independent
variables in the SOS conditions, which can greatly affect the size of the semidefinite programs.
Moreover, choosing a suitable and effective polynomially parameter-dependent basis for the
Lyapunov function is not intuitive.

Finally, we remark that the methodology based on the branch-and-bound algorithm, applied
to robust region-of-attraction analysis here, is generally applicable to local reachability and gain
analysis of systems with parametric uncertainty.

Notation: R(z] represents the set of polynomials in z with real coefficients. For 7 € R[z],

d(m) denotes the degree of m. The subset [z] := {nf +---+ 72 : T, ,7m € Rz]} is




the set of SOS polynomials. For n € R and g : R™ — R, the n-sublevel set (2, of g is
defined as €2, ,, := {x € R" : g(z) < n}. In several places, a relationship between an algebraic
condition on real variables and state properties of a dynamical system is claimed, often using the
same symbol for a particular real variable in the algebraic statement as well as the state of the

dynamical system. This could be a source of confusion, so care on the reader’s part is required.

II. ESTIMATION OF THE ROBUST ROA OF SYSTEMS WITH PARAMETRIC UNCERTAINTY

Consider the system governed by

(t) = f(z(t), ), M

where § € A C R™ is the vector of unknown parameters and A is a known bounded polytope.
For each 6 € A, f(-,6) : R® — R™ is locally Lipschitz and satisfies f(0,§) = 0. The
robust ROA is the intersection of the ROAs for all systems governed by (1), i.e., (sca {Xo0 €
R™ : lim.e p(t;X0,6) = 0}, where ¢(t;Xo,d) denotes the solution of (1) at time ¢ with
initial condition x, and fixed parameter value 6 € A. Trivial extensions of results found in
classic textbooks [20] show that sublevel sets of appropriate Lyapunov functions are invariant
subsets of the robust ROA. For a subset D C R™ and continuously differentiable function V.,
define Mpyv = \sep {z € R : VV(z)f(x,0) < 0}.

Proposition 2.1: If there exist v > 0 and a continuously differentiable V : R — R such that

V(0) =0 and V(z) > 0 for all z # 0, (2)
(ly. is bounded, and 3)
QVn\{O} < MA.V’ (4)

hold, then for all xy € v, and for all § € A, ¢(t;X0,0) exists, satisfies p(t;xo,d) € Qv for
all ¢ > 0, and lim,_., ¢(t; Xo,d) =0, i.e., {ly, is an invariant subset of the robust ROA. <

We now restrict our attention to a special case, where the dependence of f on ¢ is affine, to
obtain conditions equivalent to (4) for this special case and suitable for numerical verification (a
generalization to polynomial dependence on ¢ is treated in section III). Assume that the vector

field in (1) is in the form -
(t) = folz(t) + Y _ &ifilz(t)), (5)
i=1




where fo, f1,...,fm : R™ — R" are known locally Lipschitz functions and satisfy f;(0) = 0
fori=0,1,...,m, and § € A. Further, denote the set of vertices (extreme points) of A by Ex.
Then, the following follows from the affine dependence of the vector field on 4, [16].
Proposition 2.2: For the vector field in (5) and and continuously differentiable function V/,
the equality Ma v = Mg, v holds. 4

Consequently, for any continuously differentiable function V' satisfying (2), (3), and

QV,‘y\{O} (& MSA,Vv (6)

the sublevel set {2y, is an invariant subset of the robust ROA. In order to enlarge the computed
invariant subset of the robust ROA by choice of V, we introduce a fixed, positive definite, convex
function p, called the analysis shape factor and maximize 3 while imposing the constraints (2)-

(3), (6), and Q5 := {z € R* : p(z) < B} C Qy,,. This is written as an optimization problem,

B = val B B subject to (2), (3), (6), and Q,5 C Qy,. (7

Here, V denotes the set of candidate Lyapunov functions over which the maximum is computed,
for example all continuously differentiable functions. In practice, p is problem-dependent, and
chosen by the analyst. Since the form of the certified inner estimate of the robust region-of-
attraction is a sublevel set of p, the sublevel sets of p should be well-understood (for in high-
dimensions they cannot be visualized), and should reflect directionality/scaling information that
the analyst is interested in learning with regard to the robust region-of-attraction. In order to
relax the problem in (7) to a SOS programming problem, we require fo, f1,..., fm and p to be
polynomials and restrict V' to be a polynomial in z of fixed degree. Further, we use generalizations
of the S-procedure [16] to obtain sufficient conditions for the set containment constraints in (7)
and the well-known SOS sufficient condition for polynomial nonnegativity [12]: if = € [z],
then 7 is nonnegative.

Let Vpory € V, S1, S, and Ss be prescribed finite-dimensional subsets of R(z], and denote
S = (81,8,,83). For a polytopic subset D of A and positive definite polynomials /; and I,



(typically l;(z) = ;zTz with small scalars ;), define Bp(Vyor, S) as

Bl Vi S) = Vevpdwﬂmsfggfm682‘336683[3 subject to
81 € Lfz], 525 € X[z], 835 € Z[z], for all § € &p, (8a)
>0 v>0, V(0)=0, VEVpuy, V-1 €X[z], (8b)
—[(B-p)s1 +(V —7)] € E[z], and (8¢)
— (v = V)s2s + VV(fo+ 3 in) 0ifi)sas + Io) € Z[x], forall § € Ep. (8d)

The feasibility of the constraints in (8) is sufficient for the feasibility of the constraints in (7).
Therefore, Ba (Vpoly, S) < BZH(V).

The optimization in (8) is naturally converted to a bilinear semidefinite program (SDP), with 3
“types” of decision variables: the free parameters in V, the free parameters in the s polynomials,
and the free parameters introduced by the SOS constraints. The SDP is bilinear in the free
parameters in V' and multipliers s, as evidenced by the product terms (e.g. Vsa5, VV fs35, etc).
We have made significant pragmatic progress in obtaining high-quality solutions to (8), using
simulation to first derive a convex outer-bound on the set of feasible V' parameters [17], followed
by coordinatewise optimization over V' and (s, 25, S35). Nevertheless, the nonconvexity is not
to be taken lightly, and any numerical attempt to compute Sp(Viy, S) must itself treated as a
lower bound.

Finally, note that, if [; and [; have positive definite quadratic part, then the feasibility of
(8) implies the robust stability of the uncertain linearized dynamics using common quadratic
Lyapunov function. For systems with cubic vector fields, the feasibility of (8) is also necessary
by the following theorem whose proof is in the Appendix.

Theorem 2.1: Let fo,..., fm be cubic polynomials in z satisfying fo(0) = ... = f,(0) =0,
P=0,L; >0, Ly = 0, p(z) = 2T Pz, [,(z) = 2TL1z, and ly(z) = zTL,z. For § € A, let
Aj be such that Az is the linear (in z) part of fo(z) + Y i, difi(z). If there exists Q > 0
satisfying ATQ + QA;s < 0 for all § € €4, then the constraints in (8) are feasible. Q

III. POLYNOMIAL PARAMETRIC UNCERTAINTY

We extend the development in section II to systems with polynomial parametric uncertainty.

Specifically, we consider the system




m Mpu
3(t) = fo(z(t)) + D 8fi(2(8) + Y 95(8) fmss(2(2)), ©

i=1 9=
where fo, fi,-- ., fms frne1 -+, fagm,, + R® — R™ are vector valued polynomial functions
satisfying fo(0) = ... = frim,.(0) =0, and g1, ..., gm,, € R[d] are scalar valued polynomial

functions, and ¢ takes values in a bounded polytope A. Note that g;, . .., gm,, are bounded since
they are polynomials with the bounded domain A. We begin with m,, = 1 (for simplicity) and
then geheralize for my, > 1.

Replacing ¢;(d) by an artificial parameter ¢, the dynamics in (9) can be written as

2(t) = fo(z(t)) + D 6:fi(2(t)) + $fmer(z(t)). (10)

i=1
Our approach is based on covering the graph of g, {(¢, 9(¢)) € R™*! : ¢ € A}, by a bounded
polytope I' C R™*1. Then, the dependence of the vector field in (10) on the parameters (J, ¢)
is affine and (4, @) takes values in the bounded polytope I'. Therefore, results from section II
are applicable for the system in (10) by replacing A by I'.

A polytope I' covering the graph of g can be obtained by bounding g from above and
below by affine functions alé + b, and a]d + b, over the set A, namely I'(a;, ay, bi, by) =
{(C, P)ER™L: (e A, alC+b <P <all+ bu} . The volume of T is a linear function of
ay, Gy, by, and b,, Volume(I'(a;, ay, bi,b,)) = (ay — al)T/ACdC + (b, — b,)/AdC. The polytope

with smallest volume among such covering polytopes can be characterized via

min  Volume(I'(ay, ay, by, b,)) subject to
a1,0u,by,bu (1)

g(0)—(afé6+b) >0 and ¢g(é) — (aTd+b,) <0, V€ A.
Using the generalized S-procedure [16], an upper bound for this minimal volume can be com-
puted by a linear SOS optimization problem. To this end, let affine functions h;, 1 =1,..., N,
provide an inequality description for A, i.e., A={(€R™ : hi(() >0, i=1,...,N}.

Proposition 3.1: The value of the optimization problem

min Volume(I'(ay, ay, bi, b)) subject to oy; € X[d], o € Z[d] ,i=1,...,N,
1,0u,by,bu 0 €Sui,01: €St
— 9(6) + (aT6 + b,) — SN 0. (6)hi(8) € T[4], (12a)
9(8) — (af § + &) = L., ou(8)hi(6) € T(s] (12b)

is an upper bound for (11). Here S’s are finite dimensional subsets of R[d]. <




Remarks 3.1: Note that Volume(I'(a;, ay, by, b)) = Volume(I'(0, ay, 0, b, ))—Volume(I'(0, a;, 0, b)),
and therefore the optimizing values of the variables a;,a,,b;, and b, in Proposition 3.1 can
equivalently be computed by two smaller optimization problems. <

In case my,, > 1, affine upper and lower bounds for g, ..., 9m,, can be used to construct a
polytope (with 2™*™r« vertices) covering the graph of (g1, ..., gm,.), [1].

Proposition 3.2: For j = 1,...,My, let af;6 + by; and al;6 + b,; be affine functions bound-
ing g; over A from below and above, respectively. Then, the polytope I' with the vertex

set & == | J {(G;¥1,- - ¥mp) ER™™ ¢ gy =0l +baj, a€ {lu}, G=1,...,mp}
(e€a
contains the graph of (g1,...,9m,.,)- <

This gives one specific procedure to cover the graph of a vector-valued multivariate polynomial
by a convex polytope. Further research that advances graph covering strategies and quantifies
the trade-off between the number of vertices and the volume of the covering polytope would be
relevant and applicable to the robust ROA problem. Finally, Proposition 3.2 can be used with

bounded non-polynomial gs as long as affine upper and lower bounds are provided.

IV. BRANCH-AND-BOUND TYPE REFINEMENT IN THE PARAMETER SPACE

The optimization problem in (8), when applied with D = A, provides a method for computing
invariant subsets of the robust ROA characterized by a single Lyapunov function. Therefore,
results by (8) may be conservative: the certified invariant subset may be too small relative to the
robust ROA. On the other hand, a less conservative estimate of the robust ROA can be obtained
by solving (8) for each § € A with D = {¢}. For a subset D C A, define

BpVroty, S) = ?gg B8} Vroly, S)- (13)

Then, Ba(Vpoty, S) < Ba(Vpoly,S). However, computing 33 (Vpoyy, S) Tequires solving an opti-
mization problem for each 6 € A, and consequently is impractical. Next, we propose an informal
“branch-and-bound” type procedure for computing lower and upper bounds for 83 (Vpory, S). i.€.,
localizing the value of %4 (Vpoy,S). The method is based on computing a different Lyapunov
function for each cell of a finite partition, D, of A.

Branch-and-bound (B&B) is an algorithmic method for global optimization based on two
steps: first the search region is partitioned into a union of smaller regions , or cells (branching)

and then upper and lower bounds for the objective function restricted to each cell are computed




(bounding) [10]. These steps are repeated, refining the partition each repetition (e.g. subdividing
the cell with the worst lower bound). If the upper and lower bounds are such that their difference
converges to zero uniformly as the size of the cell goes to zero, then the B&B algorithm converges
to a global optimum. Without such specific guarantees, steps are simply repeated until the gap
between the upper and lower bounds gets suitably small or a maximum number of steps is
reached. Additionally, for our problem, we take into account the polytopic covering described
in section III, and recompute this covering whenever any cell is subdivided.

The lower and upper bounds are defined over any polytope D € A. Certainly 3p (Vyoiy, S)
is a lower bound for 87, (Vpory, S). Upper bounds for 87,(Vpory, S) can be obtained via divergent
trajectories and infeasibility of certain necessary conditions for the constraints in (8). Let § € D
and "(6) be the minimum value of p attained on all non-convergent trajectories of (5), with
B™¢(§) := oo if there is no non-convergent trajectory. Since every trajectory entering an invariant
subset of the robust ROA has to converge to the origin, {2 gnc(5) cannot be a subset of the robust
ROA; hence, for any Vyoy and S, B85 (Vpoy, S) < B™(9). Unfortunately, 57¢(d), as defined, is
impossible to compute. But, any non-convergent trajectory yields an upper bound on 3(4), and
consequently on 5} (Vpoiy, S). In order to establish another upper bound, let 3 > 0 and 6 € D
be fixed. If there exists V' € V certifying that {1, g is in the robust ROA through the constraints
in (7), then V has to be (i) positive for all nonzero z € R", (ii) less than or equal to 1 (without
loss of generality) and decreasing along every trajectory of (5) (for this fixed ¢) starting in 2, 5.
Therefore, if no V' € V satisfies properties (i) and (ii), then there is no V € V certifying that
), is in the robust ROA via (7). The minimum such value, denoted 3'7(6), is an upper bound
on 33 (Vpoly, S). In the case V is parameterized as V(z) = a”z(z) with z a vector of basis
functions and a a vector of real scalar decision variables, constraints on V' along trajectories are
affine constraints on «a; consequently, an upper bound on 3'?(§) can be determined by simulation
and linear programming (see [17] for more details). As in all B&B algorithms, the minimum
(over the subsets that make up the partition of A) of these upper and lower bounds are upper
and lower bounds for SA (Vpoly, S).

V. IMPLEMENTATION ISSUES

The optimization problem in (8) provides a recipe to compute invariant subsets of the robust

ROA. However, the number of constraints in (8) and consequently the number of decision



variables increase exponentially with m + my, because (8d) contains a SOS constraint for
each vertex value of the uncertainty polytope. The increase in the problem size may render
(8) computationally challenging for even modest values of m + my,. This difficulty can be
partially alleviated by accepting suboptimal solutions for (8) in a sequential manner [16]. To this
end, let D be a polytopic subset of A and D,,mpe be a finite sample in D:

« Solve (8) with Dsample, Vpoly, and S and call the optimizing Lyapunov function Vi,mpie.

« For each § € £p, compute

s max subject to s95 € X[z], and s35 € X[x],
Y= mEX Y j 2 € Z[z] 3 € Z[z] i}

—[(7 = Vaampte)s26 + VViampie(fo + J_im; 0:f:)) 35 + l2] € Z[z],

and define v***"* := min {; : &§ € Ep}. At this point, Qy,_ . ewor is an invariant subset
of the robust ROA.

« Determine the largest sublevel set S)p’ﬁgbopt(vpolws) of p contained in vample'.,mom by
solving :
subopt (), . S) := max subject to s; € Xz
D ( poly> ) R ) B ) 1 [ ] (15)

—[(8 = p)s1 + Veampie — 7***%] € Z[z].
While this sequential procedure sacrifices optimality (i.e., for a given polytopic subset D C A,
P (V) oty S) < B0 (Violy, S)), it provides practical advantages: For a fixed Lyapunov function
candidate V;gmpie, constraints in (8d) (which contain one SOS constraint for each vertex value
of D) decouple. Therefore, it is possible to determine largest value of y such that Qv . C
{z € R" : VViampe(z)f(z,0) < 0} for every § € Ep by solving (14) independently for each
d € &p.
Remarks 5.1: Let D C A and Dgympie C D be a singleton. Then, the value (p, ... (Vpory: S)—
E"b"”‘(vpoly, S) is always non-negative and can be interpreted as a measure of potential improve-
ment in the lower bound for 33 (Vpoiy, S) from further sub-dividing D in the B&B refinement
procedure. Therefore, it may be used as a stopping criterion in an informal B&B algorithm.
However, we re-emphasize that (p,,,.... (Vpoly, S) is computed solving a non-convex optimization

problem, so that its use as an upper bound is ad hoc and referred to as a “quasi-upper” bound

(for example see Figure 2). N
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Fig. 1. Top figures: Bounds for 3y ;) vs. number of B&B iterations with 8(V) = 2 (left) and 8(V) = 4 (right). Curves
with “o” are for the lower bounds obtained by directly solving (8) with D taken as the vertices of the corresponding cell and
curves with “o” are for the lower bounds obtained by applying the sequential procedure from section V by taking Dsampte s
the center of the corresponding cell. Bottom figure: Intersections of sublevel sets of Vs certified to_be in the robust ROA with
8(V) = 2 (inner red, solid curve) and (V) = 4 (outer red, solid curve), Sublevel sets of p certified to be in the robust ROA
8(V) = 2 (inner black, dashed curve) and 8(V') = 4 (outer black, dashed curve), estimate of the robust ROA reported in [6)

(blue, dotted curve). Gray dots are the initial conditions of trajectories which do not converge to the origin for some s ef0,1].

VI. EXAMPLES

For the following examples, we implemented the sequential procedure from section V using

the method from [17] in the first step with Iy (x) = ly(z) = 107527z and p(z) = z7z.

A. An example from the literature

Consider the system, [6], governed by

-7, —6z9 + 12 + 23 dzy — 23

6%,

3z, — 2x4 —10z; 4+ 629 + 7179 12z, — 4z,
with & € [0, 1]. We applied the refinement procedure with the initial partition {[0, 1]} for 8(V) =
2 and §(V) = 4. Upper and lower bounds for 3, (top left for d(V) = 2 and top right for

d(V) = 4) and certified invariant subsets of the robust ROA are shown in Fig. 1. In both cases,



the first iteration (a parameter independent Lyapunov function for A, [16]) and even a few more

do not yield a certified region.

B. Controlled short period aircraft dynamics

We apply the robust ROA analysis for uncertain controlled short period aircraft dynamics (see

the Appendix for the parameters used in the model)

cor(zp) + d1c11(Tp) + % qa1(zp) Lz, + by + b12b)

Ty = qo2(zp) + 51({2% + 62q22(zp) s ba1 + bggds U,
I 0

where z, = [z, T, :z:3]T, Ty, Iy, and z3 denote the pitch rate, the angle of attack, and the pitch
angle, respectively, co; and c;; are cubic polynomials, go2, 22, and g3, are quadratic polynomials,
¢4 and ¢, are vectors in R3, by, big, ba1, and byy € R, and u, the elevator deflection, is the
control input. Variations in the center of gravity in the longitudinal direction are modeled by
81 € [0.99,2.05) and variations in the mass are modeled d, € [—0.1,0.1].. The control input is

determined by z, = —0.864y; + —0.321y, and u = 2z,, where z, is the controller state and

T

E :z:4]T. We applied the branch-and-bound type

the plant output y = [z, 73" . Define z := [z
refinement procedure with (V) = 2 and (V') = 4 using the sequential implementation on a
computer cluster with 9 processors: after the first B& B iteration, the cell with the smallest lower
bound is subdivided into 3 subcells and cells with 2-nd, 3-rd, and 4-th smallest lower bounds
are sub-divided into 2 subcells. Fig. 2 shows the lower bounds and upper bounds. Smallest value
of p attained on divergent trajectories, 3¢, is 8.60 and obtained for (4,,52) = (2.039, —0.099)

and the initial condition (0.17,2.65, —0.10, 1.24).

C. Controlled short period aircraft dynamics with first-order unmodeled dynamics

Consider the closed loop system in Figure 3 where uncertain first-order dynamics are intro-
duced between the controller output (v) and the plant input (u) from section VI-B

8—64

u(s) = 1.25 + G(s; 83, 64)v(s) = |1.25 + 0.75633 =

v(s). (16)

Here, 63 € [—1,1] and &, € [1072,10?] are uncertain parameters and G(s; 83, 4,) is introduced

to examine the effect of unmodeled dynamics on the ROA. Let 5 = —d,25 — 64v and u =



"N\ "quasi-upper" and lower bounds for i(V) = 4
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[ 1

"quasi-upper” and lower bounds for 4(V) = 2
} mzjmber ofaB&B stegs
Fig. 2. Lower bounds for B3 with 3(V') = 2 (solid black with “x™) and 8(V') = 4 (solid blue curve with “o™) and 3™ (solid
red with “o™) computed at the centers of the cells generated by the B&B Algorithm for the 8(V) = 4 run. Dashed curves
are for (computed values of) B3;5) where ¢ is the center of the cell with the smallest lower bound at the corresponding step of
the B& B refinement procedure for (V') = 2 (dashed black with “x”) and 8(V) = 4 (dashed blue with “o™).

0.7563 5744
x‘4 = Acx4 + ch 'U" m -[ u ip =! fp(xp, 6p) + B(xp, 6p)u y
{ i + T
v = Cexq y=[x1 z3]

Fig. 3. Closed-loop system with the uncertain first-order dynamics between the controller and the plant (8, = (81, 62)).

156335 + (1.25 + 0.7583)v be a realization of G and z = [z7 z, x5]T denote the state of
the closed loop dynamics. We applied the B&B refinement with (V) = 2 for two cases: (i)
(0y,69) = (1.52,0), (ii) 6; and &, are treated as uncertain parameters (as in section VI-B) where
the resultant vector field is affine in 6y, 09, 83, d4, 0103, 0203, and &2 and the covering polytopes
are in R7 with 128 vertices. For p(z) = 27z, (2,490 is shown to be in the robust ROA for case

(i) whereas €, 5 g0 is certified to be in the robust ROA for case (ii).

VII. CONCLUSIONS

This paper considers the problem of finding certified, inner-estimates of the region-of-attraction
for a certain class of uncertain nonlinear systems. At its core, the solution approach combines
Lyapunov analysis, S-procedure relaxations, and SOS/SDP optimization. Four factors contribute
to the problem complexity: number of state variables; degree of vector field; number of uncertain
parameters; dependence of vector field on uncertain parameters. The challenges associated with

state dimension and vector field degree (often large optimization problems) appear somewhat




common across selution techniques. By contrast, the issues which arise from uncertainty are
attacked using a variety of diverse techniques.

We address the difficulties due to parameter uncertainty through parallelization, partitioning
the parameter space, solving a large number of (uncoupled) sub-problems. While the Lyapunov
function for each sub-problem is independent of the uncertain parameter, the net result yields a
parameter-dependent (piecewise-constant in the parameter) Lyapunov function. This is an alter-
native to more direct approaches which use explicitly parameter-dependent Lyapunov functions,
e.g. [13], [5], and a single optimization (with additional indeterminate and decision variables,
used to represent the uncertain parameters and capture their constraints) to solve the problem.

Of course, the question of how fine the parameter space partition must be before the proposed
method yields a certified robust ROA is still largely open, so it is impossible to say that one
approach is superior/inferior to another. Similarly, we do not claim that the proposed strategy
is practical for all instances of systems modeled by (9). Indeed, large numbers of uncertain
parameters, entering the dynamics in complex ways might require an untenable level of parameter
space partitioning to yield a positive result. Nevertheless, we have illustrated the approach on
several academic, but nontrivial, examples, including a 5-state, 4-parameter model with non-affine
parameter dependence. Moreover, for cubic (in state) vector fields, we have a (weak) positive
result which follows from Theorem 2.1: for any specific partition of the parameter space, if
over each cell, the linearized uncertain dynamics are quadratically stable, then the certification
conditions (8) are guaranteed to be feasible (with analytically derived choices for the decision
variables). Among other things, this implies that the uncertain linearization could provide insight

into the level of parameter space division needed for robust region-of-attraction certification.
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IX. APPENDIX

Let z(z) be a vector of all monomials of degree 2 with no repetition and 7, be its length.

Lemma 9.1: Let @ € R™ and @ = QT > 0. Then there exists a positive definite matrix
H € R™*"= such that z7zz7Qz = 2(z)THz(x). q

Proof: Let L; € R™ " be such that L;2(z) = z;z, then (z7z) 27Qz = Y"1 (z:2)TQ(x;z) =

>ty 2(x)LTQLiz(x) = z(z)THz(x) Note that L = [LT ... sz]T has full column rank since
every entry of 2(x) is z;z, for some 1 < j, k < n; consequently, H = LT([, ® Q)L ~0. m

Proof of Theorem 2.1: Let Q > 0 satisfy AsQ + QAs < —2L,, forall § € €4, and Q > L,
(such Q can be obtained by properly scaling Q). Let € = Amin(L2), V(z) := 27Qxz, and H be a
positive definite Gram matrix for (z7z)V/(z) (which exists by Lemma 9.1). Let M,5 € R"*™:,
and the symmetric matrix Mz; € R™*™ be such that z7Mysz(z), and z(z)T M3sz(x) are
cubic and quartic (in z) parts of VV(fo(x) + >_1-, 8:fi(z)), respectively. Define s,(z) =
Amaz(Q)/Amin(P), $25(T) = o557z With @25 = Anaz (M35 + 5 MEM3s) [ Amin (H) (Where for
a symmetric matrix A, A* denotes the projection on the positive semidefinite cone), s3s(z) = 1,
v = min{e/(2as) : § € Ea}, and B = v/(2s1). Then, V —1; and —[(8 — p)s1 + (V — )]
are SOS since they are positive semidefinite quadratic polynomials. For 6 € Ea, bs(z) =
— [(v = V)25 + 9% fssas + lo] = [zT #(z)T) B; [z7 z(a:)T]T, where

g _ | el — L= (AfQ+Q4s)  —Mw/2 | | 51 —My/2
§ = | = .
—Mg;/? 025H = M35 =5 27‘;-/2 025H — M35

(17)
mazx 2 _L TM
Note that agsH = 2mee(t S MaMad) 1 o 3 (Mg 4+ L MEMas) I = Moo (Mg + £ MEMas) I =

M5 + %M%Mg&. Consequently, B; is positive semidefinite by the Schur complement formula

applied to the far left term in (17) and bs € X[z [

Parameters for the uncertain controlled short period aircraft dynamics: co (z,) = —0.24366x3+
0.082272x1z9 + 0.30492:1:% + 0.015426z973 — 3.1883z; — 2.7258z5 — 0.59781z3; &, = [0 —
0.041136 0)T; by; = 1.594150; goo(,) = —0.05444473+0.10889z,23—0.05444423+0.911362, —
0.64516z7 — 0.016621z3; by = 0.0443215; ¢11(z,) = 0.30765z3 + 0.099232z3 + 0.12404x; +
0.90912z, + 0.023258z3; by, = —0.06202; £15 = [0 0.00045754 0]7; goa(z,) = —0.05444473 +
0.10889z,73 — 0.054444x2 — 0.6445z, — 0.016621x3; bye = 0.044321.



Local Stability Analysis for Uncertain Nonlinear Systems

Ufuk Topcu and Andrew Packard

Abstract—We propose a method to compute provably invariant subsets
of the region-of-attraction for the asymptotically stable equilibrium
points of uncertain nonlinear dynamical systems. We consider polynomial
dynamics with perturbations that either obey local polynomial bounds
or are described by uncertain parameters multiplying polynomial terms
in the vector field. This uncertainty description is motivated by both
incapabilities in modeling, as well as bilinearity and dimension of the
sum-of-squares programming problems whose solutions provide invariant
subsets of the region-of-attraction. We demonstrate the method on three
examples from the literature and a controlled short period aircraft
dynamics example.

1. INTRODUCTION

We consider the problem of computing invariant subsets of the
region-of-attraction (ROA) for uncertain systems with polynomial
nominal vector fields and local polynomial uncertainty description.
Since computing the exact ROA, even for systems with known
dynamics, is hard, researchers have focused on finding Lyapunov
functions whose sublevel sets provide invariant subsets of the ROA
(11, (2], [3], (4], [5]. Recent advances in polynomial optimization
based on sum-of-squares (SOS) relaxations [6], (7] are utilized to
determine invariant subsets of the ROA for systems with known
polynomial and/or rational dynamics solving optimization problems
with matrix inequality constraints [8], [9], [10], [11], [12], [13]. Ref.
[14] provides a generalization of Zubov’s method to uncertain sys-
tems and [15] investigates robustness of the ROA under time-varying
perturbations and proposes an iterative algorithm that asymptotically
gives the robust ROA. Parametric uncertainties are considered in [16],
[17), [18). The focus in [16] is on computing the largest sublevel set
of a given Lyapunov function that can be certified to be an invariant
subset of the ROA. [17], [18] propose parameter-dependent Lyapunov
functions which lead to potentially less conservative results at the
expense of increased computational complexity.

Similar to other problems in local analysis of dynamical systems
based on Lyapunov arguments and SOS relaxations [9], [11], [12],
[17), [13), [19), our formulation leads to optimization problems with
bilinear matrix inequality (BMI) constraints. BMIs are nonconvex
and bilinear SDPs (those with BMI constraints) are generally harder
than linear SDPs. Consequently, approaches for solving SDPs with
BMls are limited to local search schemes [20), [21], [22], [23]).

The uncertainty description detailed in section III contains two
types of uncertainty: uncertain components in the vector field that
obey local polynomial bounds and/or uncertain parameters appearing
affinely and multiplying polynomial terms. Using this description,
we develop an SDP with BMIs to compute robustly invariant subsets
of the ROA. The number of BMls (and consequently the number of
variables) in this problem increases exponentially with the sum of the
number of components of the vector field containing uncertainty with
polynomial bounds and the number of uncertain parameters. One way
to deal with this difficulty is first to compute a Lyapunov function for
a particular system (imposing extra robustness constraints) and then
determine the largest sublevel set in which the computed Lyapunov
function serves as a local stability certificate for the whole family of
systems. Once a Lyapunov function is determined for the system in
the first step, second step involves solving smaller decoupled linear
SDPs. Therefore, this two step procedure is well suited for parallel
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computation leading to relatively efficient numerical implementation.
Moreover, recently developed methods [13], [24], which use simula-
tion to aid in the nonconvex search for Lyapunov functions, extend
casily to the robust ROA analysis using simulation data for finitely
many systems from the family of possible systems (e.g. systems
corresponding to the vertices of the uncertainty polytope when the
uncertainty can be described by a polytope). In the examples in this
paper, we implement this generalization of the simulation based ROA
analysis method from [13], [24].

The rest of the paper is organized as follows: Section 11 reviews
results on computing the ROA for systems with known polynomial
dynamics. Section 111 is devoted to the discussion of the motivation
for this work and the setup for the uncertain system analysis. In
section IV provides a generalization of the results from section
11 to the case of dynamics with uncertainty. The methodology is
demonstrated with three small examples from the literature and a
five-state example in section V.

Notation: Forz € R™, z > 0 means that 2z >0 fork=1,---,n.
For @Q = QT € R™ ", Q » 0 (Q > 0) means that 27Qz > 0
(£ 0) for all z € R™. R[z] represents the set of polynomials in
z with real coefficients. The subset L[z] := {7 € R|z] o=
7+ n3 4475, M1, -, Tm € R[z]} of R[z] is the set of SOS
polynomials. For 7 € R[z], 8(r) denotes the degree of 7. For subsets
X1 and A of a vector space X, Xy + X2 := {z1 +x2 : 2 €
X1, 22 € X2}. In several places, a relationship between an algebraic
condition on some real variables and state properties of a dynamical
system is claimed, and same symbol for a particular real variable in
the algebraic statement as well as the state of the dynamical system
is used. This could be a source of confusion, so care on the reader’s
part is required. <

11. COMPUTATION OF INVARIANT SUBSETS OF
REGION-OF-ATTRACTION

In this section, we give a characterization of invariant subsets of
ROA using Lyapunov functions and formulate a bilinear optimization
problem for computing these functions when they are restricted to
be polynomial. These results will be modified to compute invariant
subsets of the ROA for systems with uncertainty in section IV. Now,
consider the system governed by ’

2(t) = f(z(2)), m

where z(t) € R” is the state vector and f : R™ — R" is such
that f(0) = 0, i.e., the origin is an equilibrium point of (1) and f is
locally Lipschitz on R™. Let (t; x0) denote the solution to (1) with
the initial condition z(0) = xg. If the origin is asymptotically stable
but not globally attractive, one often wants to know which trajectories
converge to the origin as time approaches co. This gives rise to the
following definition of the region-of-attraction:

Definition 2.1: The region-of-attraction Ro of the origin for the
system (1) is

Ry = {xo eR™ : tl_i}g(p(t;xo) = 0}.

<
For n > 0 and a function V' : R™ — R, define the 7-sublevel set
of V as

Qua={zeR” : V(z)<7n)

For simplicity, 2v,; is denoted by Qv. Lemma 2.2 provides a
characterization of invariant subsets of the ROA in terms of sublevel
sets of appropriate Lyapunov functions.

Lemma 2.2: If there exists a continuously differentiable function




V : R™ — R such that

V(0) =0 and V(z) > 0 for all z # 0, )
Qv is bounded, and 3)
Qv\{0} Cc {zeR" : VV(z)f(z) <0}, @)

then for all xo € Qv, the solution of (1) exists, satisfies ©(t;xo) €
Qv for all £ > 0. and lim¢— oo 9(¢; X0) =0, i.e., Qv is an invariant
subset of Rg. q

Lemma 2.2 is proven in [11], [12] using a similar result from [25].
If the dynamical system has an exponentially stable linearization, one
can impose a stricter condition replacing (4), for i > 0, by

Qu\{0}C{z eR" : VV(z)f(z) < —uV(z)} (5)

With nonzero , (5) not only assures that trajectories starting in Qv
stay in Qv and converge to the origin but also imposes a bound
on the rate of exponential decay of V certifying the convergence
and provides an implicit threshold for the level of a disturbance that
could drive the system out of 2v. Therefore, one may consider the
stability property implied by (5) with nonzero u to be more desirable
in practice. With this in mind, all subsequent derivations contain the
1V term. The relaxed condition in equation (4) can be recovered by
setting p = 0.

1II. SETUP AND MOTIVATION

We now introduce the uncertainty description used in the rest of the
paper and explain its usefulness in ROA analysis based on computing
Lyapunov functions using SOS programming. Consider the system
governed by

(t) = f(z()) = fo(z(t)) + &(z(t)) + ¥(2(t)), (©)

where fo, ¢, : R™ — R™ are locally Lipschitz. Assume that fo is
known, ¢ € Dg, and ¥ € Dy, where

Dy :={¢ : &1(z) X d(x) = du(z) VT € G},
Dy:={% : v@)=T=)aVzel, et T a=Xay}

Here, G is a given subset of R" containing the origin, ¢: and ¢u are
n dimensional vectors of known polynomials satisfying ¢i(x) < 0 =
ou(z) forall z € G, a,ar,au € RN, and ¥ is a matrix of known
polynomials. Let @i, ¢1,i, du,i, @i, 0,4, and ¢ denote i-th entry
of &, d1, du, a, au, and @y, respectively. Define D := Dy + Dy. We
assume that fo(0) = 0, ¢(0) = O for all ¢ € Dy (ic., ¢1(0) = 0,
and ¢, (0) = 0), and ¥(0) = O for all ¥ € Dy (i.e.. ¥(0) = 0),
which assures that all systems in (6) have a common equilibrium
point at the origin.' In order to be able to use SOS programming, we
restrict our attention to the case where fo, ¢, ¢u, and ¥ have only
polynomial entries and G is defined as G := {x € R" : g(z) =
0, g: € R[z], i =1,...,m}. Note that entries of ¢ do not have to
be polynomial but have to satisfy local polynomial bounds.

Motivation for this kind of system description stems from the

following sources:

(i) Perturbations as in (6) may be due to modeling errors, aging,
disturbances and uncertainties due to environment which may
be present in any realistic problem. Prior knowledge about
the system may provide local bounds on the entries of ¢
and/or bounds for the parametric uncertainties a. Moreover,

!The assumption thal all possible systems in (6) have a common equilibrium
poinl can be allevialed by generalizing the analysis based on contraction
metrics and SOS programming studied in [26] to address local stability
(rather than global stability as in [26]). However. this method leads to higher
computational cosi. Therefore, we do nol pursue this direction here.

TABLE 1
Nspp (LEFT COLUMNS) AND Ngecision (RIGHT COLUMNS) FOR
DIFFERENT VALUES OF n AND 2d.

2d

n 4 | 6 I 8 [ 10

2 6 6 :10 27 ;15 75 : 21 165
S 21 105 56 1134126 6714 [252 2ed |
9 || 55 825 [220 1ed : 715 2e5 ; x =

14 || 120 4200 | 680 * E * * E * *

16 || 153 6936 + * ., % * 1 0% *

uncertainties that do not change system order can always be

represented as in (6) (see p.339 in [27]).
(ii) Analysis of dynamical systems using SOS programming is
often limited to systems with polynomial or rational vector
field. In [28], a procedure for re-casting non-rational vector
fields into rational ones at the expense of increasing the state
dimension is proposed. Another way to deal with a non-
polynomial vector field is to locally approximate the vector
field with a polynomial, and bound the error. For practical
purposes only finite number of terms can be used. Finite-term
approximations are relatively accurate in a restricted region
containing the origin. However, they are not exact. On the other
hand, it may be possible to represent terms, for which the error
between the exact vector field and its finite-term approximation
obey local polynomial bounds, using ¢ in (6).
SOS programming can be used to analyze systems with
polynomial vector fields. The number of decision variables
Nyecision and the size Nspp of the matrix in the SDP for
checking existence of a SOS decomposition for a degree 2d
polynomial in n variables grows polynomially with n if d is
fixed and vice versa [6]. However, Nspp and Ngecision gCt
practically intractable for the state-of-the-art SDP solvers even
for moderate values of n for fixed d (see Table 2, where solid
lines in the table represent a fuzzy boundary between tractable
and intractable SDPs). Moreover, using higher degree Lyapunov
functions and/or higher degree multipliers (used in the sufficient
conditions for certain set containment constraints in section V)
as well as higher degree vector fields increases the problem
size, and, in fact, the growth of the problem size with the
simultaneous increase in n and d is exponential. Therefore,
in order to be able to use SOS programming, one may have
to simplify the dynamics by truncating higher degree terms in
the vector field. In this case, ¢; and ¢, provide local bounds
on the truncated terms. This is discussed further at the end
of section (IV). It is also worth mentioning that bilinearity,
a common feature of the optimization problems for local
analysis using Lyapunov arguments (see section [V), introduces
extra complexity [29] and therefore a further necessity for
simplifying the system dynamics.

(iif)

In summary, representation in (6) and definitions of Dy and Dy
are motivated by uncertainties introduced due to incapabilities in
modeling and/or analysis.

1V. COMPUTATION OF ROBUSTLY INVARIANT SETS

In this section, we will develop tools for computing invariant
subsets of the robust ROA. The robust ROA is the intersection of the
ROA:s for all possible systems governed by (6) and formally defined,
assuming that the origin is an asymptotically equilibrium point of (6)
for all § € D, as



Definition 4.1: The robust ROA R of the origin for systems
governed by (6) is

Ri= (] {x€R" : lim ¢(t;xo,8) =0},
seD =
where ¢(t;x0,9) denotes the solution of (6) for § € D with the
initial condition z(0) = xo. q

The robust ROA is an open and connected subset of R™ containing
the origin and is invariant under the flow of all possible systems
described by (6) [15]. We focus on computing invariant subsets of the
robust ROA characterized by sublevel sets of appropriate Lyapunov
functions. Since the uncertainty description for ¢ and ¢ holds only
for z € G, we will also require the computed invariant set to be a
subset of G. To this end, we modify Lemma 2.2 such that condition
(5) holds for (6) for all § € D (i.e., for all ¢ € Dy and Y € Dy).

Proposition 4.2: 1f there exists a continuously differentiable func-
tion V : R™ — R and p > 0 such that, for all § € D, conditions
(2)-(3),

Qv € G, and (N
Qv\{0} C {z e R™: VV(2)(fo(z) + 6(z)) < —uV (x)} (8)

hold, then for all X € $v and for all § € D, the solution
of (6) exists, satisfies ¢(t;x0,8) € Qv for all ¢t > 0, and
lim; .0 @(t; X0,8) = 0, i.e., Qv is an invariant subset of R5. <
Proof: Proposition 4.2 follows from Lemma 2.2. Indeed, for
any given system & = fo(z) + &(z), (8) assures that (5) is satisfied.
Then, for any fixed § € D and for all xg € Qv, ©(t; Xo0,d) exists
and satisfies ©(t; X0,8) € Qv for all t > 0, lims—.o0 ¢(2;%0,8) = 0,
and Qv is an invariant subset of {xo € R™ : ¢(t;X0,8) — 0}.
Therefore, 2y is an invariant subset of Rg. |
Remark 4.3: In fact, Qv is invariant for both time-invariant and
time-varying perturbations. The conclusion of Proposition 4.2 holds
for time-varying §(= ¢ + ) as long as ¢i(z) < ¢(z,t) < du(x)
and a; < a(t) <X ay forall z € G and ¢ > 0. Recall that, in the
uncertain linear system literature, e.g. [30], the notion of quadratic
stability is similar, where a single quadratic Lyapunov function proves
the stability of an entire family of uncertain linear systems. 4
Note that D has infinitely many elements; therefore, there are
infinitely many constraints in (8). Now, define

Es = {0 : ¢ € Riz] and ¢ is equal to @y,; or P i},
Ep = {9 1 ¥(z) = V(x)e, o is equal to a; s or @y},

and £ := £, + Ey. £, a finite subset of D, can be used to transform
condition (8) to a finite set of constraints that are more suitable for
numerical verification:

Proposition 4.4: 1f

Qv\ {0} C {z € R" : VV(z)(fo(z) +£(2)) < —pV(2)} )

holds for all £ € £, then (8) holds for all é € D. q
Proof: Let € Qv be nonzero and § € D. Then, £ € G by (7);
therefore, there exist £y, +,4n,k1,...,kn (depending on ) with
0<% <1and0 < ki <1 such that () = Lon(g) + (I —
L)¢u (%) + ¥(%)(Kai + (I — K)au), where L and K are diagonal
with Li; = ¢; and Ky = ki. Hence, there exist nonnegative numbers
ve (determined from ¢'s and k's) for £ € &€ with 3, ve = 1
such that §(Z) = 3., ve€(Z). Consequently, by VVEE:)( fo(Z) +
8(2)) = VV(@)(fol@)+ Leee YeE(E) = Teee veVV (@) fold)+
§(2)) < —Leee VepV (&) = —pV (£), (8) follows. |
In order to enlarge the computed invariant subset of the
robust ROA, we define a variable sized region Pg =

{z e R" : p(z) < B}, where p € R[] is a fixed, positive definite,
convex polynomial, and maximize 3 while imposing constraints (2)-

(3), (7). (9). and Pg C Qv. This can be written as an optimization
problem.

B (V) := Vg\l){;é()o B subject to (10a)
V(0) = 0 and V() > 0 for all = # 0, 10b
Qv ={zx € R":V(x) <1} is bounded, )
R eRit: Z(?,S 8} 0y, } i
Qv\ {0} C
() {z € R™ : VV(fo(z) + £(2)) < —pV(z)}. (10d)
geE

Here, V denotes the set of candidate Lyapunov functions over which
the maximum is defined (e.g. V may be equal to all continuously
differentiable functions).

In order to make the problem in (10) amenable to numerical
optimization (specifically SOS programming), we restrict V to be
a polynomial in x of fixed degree. We use the well-known sufficient
condition for polynomial positivity [6]): for any 7 € R[z], if = €
Z{z], then 7 is positive semidefinite. Using simple generalizations of
the S-procedure (Lemmas 8.1 and 8.2 in the appendix), we obtain
sufficient conditions for set containment constraints. Specifically, let
1 and I, be a positive definite polynomials (typically ez”z with
some (small) real number €). Then, since !; is radially unbounded,
the constraint

V—heE[a:] (1)

and V(0) = 0 are sufficient conditions for the constraints in (10b).

By Lemma 8.1, if 8; € E{z] and s4x € Zfz] for k = 1,...,m, then
—[(8=p)s1 + (V — 1)] € Zfa]

g —(1=V)se € 2[:1:], R s TR

(12)
(13)

imply the first and second constraints in (10c), respectively. By
Lemma 8.2, if s2¢, 33 € L[] for £ € £, then
—[(1 = V)sae + (VV (fo + &) + puV)sae + I2] € T[a]

is a sufficient condition for the feasibility of the constraint in (10d).
Using these sufficient conditions, a lower bound on 3°(V) can be
defined as an optimization:

Proposition 4.5: Let Bp be defined as

BB (vpolvv S) =

(14)

B subject to (11) — (14), (15)

max
V.8.91,92¢,83¢ .84k
V) = 0, V € Vpoiy, 81 € S1, 82¢ € Sa¢, 83¢ € Sag,s
84k € Sax, and B > 0. Here, Vpory, C V and S’s are prescribed
finite-dimensional subspaces of R[z] and X[z], respectively. Then,
B (Vpoty, S) < B”(Vpory)- 4
The optimization problem in (15) provides a recipe to compute
subsets of R™ that are invariant under the flow of all possible systems
described by (6). The number of constraints in (15) (consequently the
number of decision variables since each new constraint includes new
variables) increases exponentially with N and n — fi where i is
defined as the number of entries of the vectors ¢; and ¢, satisfying
é1(z) = ¢u(z) = 0 for all z € G. Namely, there are 2"~"+N
SOS conditions in (15) due to the constraint in (14). Revisiting the
discussion in item (iii) at the end of section Il1, we note that covering
the high degree vector field with low degree uncertainty reduces
the dimension of the SOS constraints but increases (exponentially,
depending on n — 7) the number of constraints. Consequently, the
utility of this approach will depend on n — i and is problem
dependent. Example (3) in section V-A illustrates this technique.
This difficulty can be partially alleviated by accepting suboptimal
solutions for (15) in two steps: First compute a Lyapunov function for




a finite sample of systems corresponding to the finite set Dsampie C
D (for example, Dsampte can be taken as the singleton corresponding
to the “center” of D) solving the problem

max (3 subject to
V.B.:31:925,835 84k

V-l € T,
—[((B=p)s1+ (V —1)] € Zfz]
gk —(1=V)sax € Zfz], k=1,...,m,
—[(1 = V)s2s + VV(fo + 8)s3s + l2] € T[z],

for 6 € Dsampte, Where 81 € 51,825 € 52,835 € S3,84x € Sy
are SOS, V € Vpoiy, V(0) = 0, and let V the Lyapunov function
computed by solving (16). In the second step, compute the largest
sublevel set Pgaubope such that V centifies Pgsubope to be in the ROA
for every vertex system by solving several smaller decoupled affine
SDPs. For £ € £, define

(16)

e = ~ subject to 382,33 € X[z],

max
7.62€52,83€53
- [(’Y —V)s2+VV(fo+&)sas+ 12] € X[z,

and 7***°P* .= min{ye : € € £}. Then, a lower bound for B**°P
can be computed through

B°u°Pt .= max f subjectto s1 € E[z]
B.s1€5, g (18)
- [(B —p)s1 + (V- 'y"‘""”‘)] € [z].

While the two-step procedure sacrifices optimality, it has prac-
tical computational advantages. The constraints in (14) decouple
in the problem (17). In fact, for each { € £a, the problem in
(17) contains only a single constraint from (14). Therefore, this
decoupling enables suboptimal local stability analysis for systems
with uncertainty without solving optimization problems larger than
those one would have to solve in local stability analysis for systems
without uncertainty. Furthermore, problems in (17) can be solved
independently for different £ € £a and therefore computations can
be trivially parallelized. Advantages of this decoupling may be better
appreciated by noting that one of the main difficulties in solving
large-scale SDPs is the memory requirements of the interior-point
type algorithms [31]. Consequently, it is possible to perform some
ROA analysis on systems with relatively reasonable number of states
and/or uncertain parameters using the proposed suboptimal solution
technique.

Finally, the following upper bound on the value of u, for which
(14) can be feasible, will be useful in section V.

Proposition 4.6: Let Lz > 0 and l2(z) := 27 Laz. Then,
S uzo.rggT:o ¥
ATP+ PA¢+pP X —L,, forall§ €€,

subject to
19

where A¢ = ﬂ%é*ﬂ) , is an upper bound for the values of p
such that (14) can be casible. q

Proof: With la as defined and s2¢,33¢ € X[z], if be(z) :=
—[(1 = V)s2g + (VV(fo+€) + uV)sse + o] € Elz], then 35
and be cannot contain constant and linear monomials and the
quadratic part of b¢ has to be SOS and equivalently positive semidef-
inite. Therefore, the result follows from the fact that, for fixed 4 > 0
and positive definite quadratic l2, the existence of P > 0 satisfying
ATP + PA¢+ puP < —L; is necessary for the existence of V, sz,
and s3¢ feasible for (14). [ |

Note that the problem in (19) can be solved as a sequence of affine
SDPs by a line search on p.
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Fig. 1. Invariant subsets of ROA reported in [16] (solid) and those compuled
solving the problem in (15) with 8(V') = 2 (dash) and 8(V') = 4 (dot) along
with initial conditions (stars) for some divergem trajeciories of 1he sysiem
corresponding 10 a = 1.

TABLE I
OPTIMAL VALUES OF 3 IN THE PROBLEM (15) WITH DIFFERENT VALUES
OF u AND8(V) = 2 AND 4.

V)1 2 4
m
0 0.623 0.771
0.01 0.603 0.763
0.05 0.494 0.742
0.1 0.404 0.720
0.15 0.277 0.698
0.2 0.137 0.676

V. EXAMPLES

In the following examples, p(z) = z” z (except for example (2)
in section V-A), Li(z) = 107%2Tz, and lo(z) = 107 %zTz. Al
certifying Lyapunov functions and multipliers are available at [32].
All computations use the generalization of the simulation based ROA
analysis method from [13], [24]. Representative computation times
on 2.0 GHz desktop PC are listed with each example.

A. Examples from the literature

(1) Consider the following system from [16): £ = z2 and
#2 = —z2 + a(—z1 + z3), where a € [1,3] is a parametric
uncertainty. We solved problem (15) with (V) = 2 and 8(V') = 4
for 4 = 0,0.01,0.05,0.1,0.15, and 0.2. Note that i (as defined
in Proposition 4.6) is 0.244. Typical computation times are 5 and 8
seconds for (V) = 2 and 4, respectively.

Figure 1 shows the invariant subset of the robust ROA reported
in [16] (solid) and those computed here with 3(V) = 2 (dash) and
8(V) = 4 (dot) for 1 = 0 along with two points (stars) that are initial
conditions for divergent trajectories of the system corresponding to
a = 1. Table II shows the optimal values of 3 in the problem (15)
with 8(V') = 2 and 4 for different values of .

(2) Consider the system (from [17]) of £, = —z2 + 0.2az2 and
#2 = z1 + (z? — 1)z2 where a € [—1, 1]. For easy comparison with
the results in {17], let p(z) = 0.378z% — 0.274z12, + 0.2782% and
p = 0. In [17], it was shown that Pp 545 (with a single parameter
independent quartic V), Py.772 (with pointwise maximum of two
parameter independent quartic V’s), Po goo (With a single parameter




Fig. 2. Invariant subsets of ROA with (V') = 4 (inner solid) and (V) = 6
(dash) along with the unstable limit cycle (outer solid curves) of the system
comresponding to a = —1.0,—0.8,...,0.8,1.0.

TABLE 11
OPTIMAL VALUES OF 3 IN THE PROBLEM (15) WITH DIFFERENT VALUES
OF 1 AND 8(V) =4 AND 6.

L

m

0 0773 0826
001 0767 0820
0.05 0741 0803
0.1 0.708 0.787
02 0.640 0750
0.5 0.517 0.651
0.75 0406 0573

dependent quartic (in state) V'), Po.sos (with pointwise maximum of
two parameter dependent quartic (in state) V'’s) are contained in the
robust ROA. On the other hand, the solution of problem (15) with
A(V) = 4 and 8(V) = 6 centifies that Po.773 and Po.s26 are subsets
of the robust ROA, respectively. Figure 2 shows invariant subsets of
the robust ROA computed using 8(V') = 4 (inner solid) and (V) =
6 (dash) along with the unstable limit cycle (outer solid curves) of the
system corresponding to a = —1.0,—0.8,...,0.8,1.0. In order to
demonstrate the effect of the parameter 1 on the size of the invariant
subsets of the robust ROA verifiable solving the optimization problem
in (15), the analysis is repeated with x = 0.01,0.05,0.1.,0.2,0.5,
and 0.75. Note that fi (as defined in Proposition 4.6) is 0.769. Table
[1I shows the optimal values of 3 in the problem (15) with 8(V) = 4
and 6 for different values of u. Typical computation times are 19 and
24 seconds for (V) = 4 and 6, respectively.
(3) Consider the system governed by

G [ —2z1 + 22 + 7} + 1.5823

—zy — 22 + 0.13z3 + 0.66z2 22
where ¢ satisfies the bounds —0.76z3 < ¢1(z) < 0.76z3 and
—0.19(z? + 23) < ¢a(z) < 0.19(z? +23) inthe set G = {z €
R? g(z) = zTz < 2.1}. Fig. 3 shows invariant subsets of
the robust ROA computed with (V) = 2 (solid) and 8(V) = 4
(dash) along with two points that are initial conditions for divergent
trajectories (“*” for ¢(z) = (0.76z3,0.19(z3 +z3)) and “x ” for
é(z) = (—0.76x%, —0.19(z? + z3))). Typical computation times are

+o(z), (20

Fig. 3. Invariant subsets of ROA with 8(V) = 2 (solid) and 8(V) = 4
(dash) along with initial conditions for divergent trajectories (“x” for ¢(z) =
(0.762%,0.19(z% +22)) and “x " for ¢(z) = (—0.76z3, —0.19(x? +z2))).

13 and 35 seconds for (V) = 2 and 4, respectively.

B. Controlled short period aircraft dynamics
Consider the plant dynamics

-3 -135 -0.56 1.35 — 0.042,
2=1091 -064 —0.02 |z+ 0.4 u
1 0 0 0
(1 + 01)(0.0821 22 + 0.4422 + 0.012223 + 0.2223) 2n
- (1 + a2)(—0.0522 + 0.112223 — 0.0523)
0

y = [21 23]7. where 21, 22 and, z3 are the pitch rate, the angle of
attack, and the pitch angle, respectively. The input u is the elevator
deflection and determined by

—-0.06 —0.02

. _[-060 009] .
o 0 B || o -0

u = 73 + 2.212, where 7 is the controller state. Here, a; and a3 are
two uncertain parameters introducing 10% uncertainty for the entries
of the plant dynamics that are nonlinear in v, i.e., a; € [—0.1,0.1]
and az € [~0.1,0.1]. Entries in the vector fields above are shown
up to three significant digits. The exact vector field used for this
example is available at [32). The solution of (15) with &(V) = 2
and 4 = O verifies that P72 C R whereas it can be certified
that Pse is a subset of the ROA for the nominal system (i.e.. for
ar = a2 = @y = Guz2 = 0). With (V) = 4 the problem in
(15) has more than 4000 decision variables. Therefore, we computed
a suboptimal solution in two steps for 4 = 0: We first computed
a Lyapunov function for the nominal system (35 minutes, which
certifies that P52 is in the ROA for the nominal system) and then
verified (3 minutes) that Pog is an invariant subset of the ROA for
the uncertain system. To assess the suboptimality of the results, we
performed extensive simulations for the uncertain system setting o
and o to their limit values and found a diverging trajectory with
the initial condition satisfying p(z(0), 7(0)) = 14. The gap between
the value of 3 = 14 for which Pg cannot be a subset of the robust
ROA and the value of 8 = 9.6 for which Ps C Rg is verified
may be due to the finite dimensional parametrization for V, the
issues mentioned in Remark 4.3, the fact that we only use sufficient
conditions and/or suboptimality of the two step procedure used for
this example; nevertheless, it demonstrates a necessity of further study
to make local system analysis based on Lyapunov functions and SOS
relaxations more efficient.

(22)




VI. CONCLUSIONS

We proposed a method to compute provably invariant subsets of the
region-of-attraction for the asymptotically stable equilibrium points
of uncertain nonlinear dynamical systems. We considered polynomial
dynamics with perturbations that either obey local polynomial bounds
or are described by uncertain parameters multiplying polynomial
terms in the vector field. This uncertainty description is motivated by
both incapabilities in modeling, as well as bilinearity and dimension
of the sum-of-squares programming problems whose solutions pro-
vide invariant subsets of the region-of-attraction. We demonstrated
the method on three examples from the literature and a controlled
short period aircraft dynamics example.
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VIII. APPENDIX

Following two lemmas are simple generalizations of the S-
procedure. The proof of the first one is trivial. We provide a proof
for the second one.

Lemma 8.1: Given go,g1,"*,9m € R[z], if there exist
81,-+-,8m € X[z] such that go — Y .-, 8¢ € Zz]. then
{zeR” :qi(x),...,9m(z) 20} C{z € R : go(z) 20}. <«

Lemma 8.2: Let ¢ € R[z] be positive definite, h € R[z],
v > 0, 51,82 € Z[z], | € R[z] be positive definite and satisfy
1(0) = 0. Suppose that — [(7 — g)s1 + hs2 + ] € [z] holds. Then,
Q. \{0} C{z€eR" : h(z) <0 and s2(z) > 0}. q

Proof: Let z € Q2 be nonzero. Then,

0> —l(z) — (v — g(z))s2(z) = h(z)s2(z),
and, consequently, s2(z) > 0 (since s2(z) > 0) and h(z) < 0. =
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Abstract

The problem of computing bounds on the region-of-attraction for systems with polynomial vector fields is considered. Invariant
subsets of the region-of-attraction are characterized as sublevel sets of Lyapunov functions. Finite dimensional polynomial
parameterizations for Lyapunov functions are used. A methodology utilizing information from simulations to generate Lyapunov
function candidates satisfying necessary conditions for bilinear constraints is proposed. The suitability of Lyapunov function
candidates are assessed solving linear sum-of-squares optimization problems. Qualified candidates are used to compute invariant
subsets of the region-of-attraction and to initialize various bilinear search strategies for further optimization. We illustrate the
method on small examples from the literature and several control oriented systems.
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1 Introduction

The region-of-attraction (ROA) of a locally asymptot-
ically stable equilibrium point is an invariant set such
that all trajectories emanating from points in this set
converge to the equilibrium point. Computing the exact
ROA for nonlinear dynamics is very hard if not impossi-
ble. Therefore, researchers have focused on determining
invariant subsets of the ROA. Among all other meth-
ods those based on Lyapunov functions are dominant in
the literature (Davison and Kurak, 1971; Genesio et al.,
1985; Vannelli and Vidyasagar, 1985; Chiang and Thorp,
1989; Chesi et al., 2005; Papachristodoulou, 2005; Tan
and Packard, 2006; Hachicho and Tibken, 2002; Tibken
and Fan, 2006; Tibken, 2000). These methods compute
a Lyapunov function as a local stability certificate and
sublevel sets of this Lyapunov function, in which the
function decreases along the flow, provide invariant sub-
sets of the ROA.

Using sum-of-squares (SOS) relaxations for polynomial
nonnegativity (Parrilo, 2003), it is possible to search for
polynomial Lyapunov functions for systems with poly-
nomial and/or rational dynamics using semidefinite pro-

* This paper was not presented at any IFAC meeting. Cor-
responding author A. Packard. Tel. +1 510 642 6152. Fax
+1 510 642 6163.

Email addresses: utopcu@jagger .me.berkeley.edu
(Ufuk Topcu), pack@jagger .me.berkeley.edu (Andrew
Packard), peter. j.seiler@honeywell.com (Peter Seiler).

Preprint submitted to Automatica

gramming (Papachristodoulou, 2005; Tan and Packard,
2006; Hachicho and Tibken, 2002). Reliable and efficient
solvers for linear semidefinite programs (SDPs) are avail-
able (Sturm, 1999). However, the SOS relaxation for the
problem of computing invariant subsets of the ROA leads
to bilinear matrix inequality (BMI) constraints. BMIs
are nonconvex and bilinear SDPs, those with BMI con-
straints, are known to be NP-hard in general (Toker and
Ozbay, 1995). Consequently, the state-of-the-art of the
solvers for bilinear SDPs is far behind that for the linear
ones. Recently PENBMI, a solver for bilinear SDPs, was
introduced (Ko¢vara and Stingl, 2005) and subsequently
used for computing invariant subsets of the ROA (Tan
and Packard, 2006; Tibken and Fan, 2006). It is a local
optimizer and its behavior (speed of convergence, qual-
ity of the local optimal point, etc.) depends on the point
from which the optimization starts.

By contrast, simulating a nonlinear system of moderate
size, except those governed by stiff differential equations,
is computationally efficient. Therefore, extensive simu-
lation is a tool used in real applications. Although the
information from simulations is inconclusive, i.e., cannot
be used to find provably invariant subsets of the ROA, it
provides insight into the system behavior. For example,
if, using Lyapunov arguments, a function certifies that a
set P is in the ROA, then that function must be positive
and decreasing on any solution trajectory initiating in P.
Using a finite number of points on finitely many conver-
gent trajectories and a linear parametrization of the Lya-
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punov function V, those constraints become affine, and
the feasible polytope (in V-coefficient space) is a convex
outer bound on the set of coefficients of valid Lyapunov
functions. It is intuitive that drawing samples from this
set to seed the bilinear SDP solvers may improve the
performance of the solvers. In fact, if there are a large
number of simulation trajectories, samples from the set
often are suitable Lyapunov functions (without further
optimization) themselves. Effectively, we are relaxing the
bilinear problem (using a very specific system theoretic
interpretation of the problem) to a linear problem, and
the true feasible set is a subset of the linear problem’s
feasible set. Information from simulations is also used in
(Prokhorov and Feldkamp, 1999) and (Serpen, 2005) for
computing aepprorimate Lyapunov functions.

Notation: For z € R", z > 0 means that z; > 0 for
k=1,.-,n.ForQ = QT € R™*", Q > 0 (Q > 0)
means that 7 Qz > 0 (< 0) for all z € R™. R[z] repre-
sents the set of polynomials in = with real coefficients.
The subset Z[z] := {r € R[z] : n=ni+ni+---+
w2, T, ,Tm € R[z]} of Rz] is the set of SOS polyno-
mials. For 7 € R[z], 8(7) denotes the degree of 7. C! de-
notes the space of continuously differentiable functions.
We use the term “semidefinite programming” to mean
optimization problems with affine objective function and
general (not necessarily affine) matrix (semi)definiteness
constraints. q

2 Characterization of invariant subsets of the
ROA and bilinear SOS problem

Consider the autonomous nonlinear dynamical system

#(t) = f(z(t)), (1)

where z(t) € R" is the state vector and f : R" — R"
is such that f(0) = 0, i.e., the origin is an equilibrium
point of (1), and f is locally Lipschitz. Let ¢(&, t) denote
the solution to (1) at time ¢ with the initial condition
@(£,0) = &. If the origin is asymptotically stable but not
globally attractive, one often wants to know which tra-
jectories converge to the origin as time approaches oo.
The region-of-attraction Ry of the origin for the system
(1) is Rp := {€ € R™ : lim¢— o0 (€, t) = 0} . A modifica-
tion of a similar result in (Vidyasagar, 1993) provides
a characterization of invariant subsets of the ROA. For
n > 0 and a function V : R™ — R, define the n-sublevel
set Qu, of VasQu, :={z €R" : V(z) <n}.

Lemma 1 Let v € R be positive. If there exists a C'
function V. . R™ — R such that

Qv is bounded, and (2)
V(0)=0andV(z) >0 forallz e R" (3)
v\ {0} C {z € R : VV(2)f(z) <0}, @)

then for all £ € Qy ., the solution of (1) exists, satisfies
#(&,t) € Qv for allt > 0, and lim;_.o ¢(&,t) =0, ie.,
Qv is an invariant subset of Ro. q

In order to enlarge the computed invariant sub-
set of the ROA, we define a variable sized region
Pg := {r € R" : p(z) < [}, where p € R[z] is a fixed
positive definite convex polynomial, and maximize /3
while imposing the constraint Pg C v, along with the
constraints (2)-(4). This can be written as

8" (V)= max §subject to (2) - (4), Ps C Qv
(5)

Here V denotes the set of candidate Lyapunov func-
tions over which the maximum is defined, for example all
C! functions. Lemma. 1 and the associated optimization
problem in (5) provide a characterization of the invari-
ant subsets of the ROA. in terms of the sublevel sets of
Lyapunov functions.

The problem in (5) is an infinite dimensional problem.
In order to make it amenable to numerical optimization
(specifically SOS optimization), we restrict V to be all
polynomials of some fixed degree. We use the well-known
sufficient condition: for any = € R[z], if # € X[z], then
m is positive semidefinite (Parrilo, 2003). Using simple
generalizations of the S-procedure (Lemmas 2 and 3),
we obtain sufficient conditions for set containment con-
straints. Specifically, let I; and Is be a positive definite
polynomials (typically ez z for some small real number
¢). Then, since [, is radially unbounded, the constraint

V-1, € Tl (6)

and V(0) = 0 are sufficient conditions for (2) and (3).
By Lemma 2, if 5, € X[z], then

—[(B=p)s1 +(V —7)] € Z[x] (7)

implies the set containment Ps C Qy,4, and by Lemma
3, if 52,83 € Z(z], then

—[(y = V)s2 + VV fs3 + o] € Tlz] (8)

is a sufficient condition for (4). Using these sufficient
conditions, a lower bound on 3*(V) can be defined as

Ve\?ﬁ?e&ﬁ subject to (6) — (8), ©)

V(0) =0,s; € T(z],8 > 0.

Bg(V,S8) ==

Here, the sets V and S; are prescribed finite-dimensional
subspaces of polynomials. Although 3% depends on these
subspaces, it will not always be explicitly notated. Note
that since the conditions (6)-(8) are only sufficient con-
ditions, B5(V,S) < B*(V) < B*(C!). The optimization
problem in (9) is bilinear because of the product terms
Bsy in (7) and Vsz and VV fs3 in (8). However, the prob-
lem has more structure than a general BMI problem. If
V is fixed, the problem becomes affine in S = {sy, s2, s3}
and vice versa. In section 3, we will construct a convex
outer bound on the set of feasible V' and sample from
this outer bound set to obtain candidate V'’s, and then
solve (9) for S, holding V fixed.




3 Relaxation of the bilinear SOS problem using
simulation data

The usefulness of simulation in understanding the ROA
for a given system is undeniable. Faced with the task of
performing a stability analysis (eg., “for a given p, is Pg
contained in the ROA?”), a pragmatic, fruitful and wise
approach begins with a linearized analysis and at least a
modest amount of simulation runs. Certainly, just one di-
vergent trajectory starting in Ppg certifies that Pg ¢ Rp.
Conversely, a large collection of only convergent trajec-
tories hints to the likelihood that indeed Pg C Ry. Sup-
pose this latter condition is true, let C be the set of N ony
trajectories ¢ converging to the origin with initial condi-
tions in Pg. In the course of simulation runs, divergent
trajectories d whose initial conditions are not in Pg may
also get discovered, so let the set of d’s be denoted by
D and Ny;, be the number of elements of D. Although
C and D depend on § and the manner in which Pg is
sampled, this is not explicitly notated.

With 3 and « fixed, the set of Lyapunov functions which
certify that Pg C Ry, using conditions (6)-(8), is sim-
ply {V € R[z]|: (6) — (8) hold for some s; € X[z]}. Of
course, this set could be empty, but it must be contained
in the convex set {V € R[z] : (10) holds}, where

VV(c(t) f(c(t)) <0,
lLi(c(t)) < V(c(t), and V(c(0)) <7,  (10)
v+ 6 < V(d(t)),

forallc € C,d € D, andt > 0, where § is a fixed (small)
positive constant. Informally, these conditions simply say
that any V which verifies that Pg C Ry using the condi-
tions (6)-(8) must, on the trajectories starting in Pg, be
decreasing and take on values between 0 and 7. More-
over, V must be greater than « on divergent trajecto-
ries. In fact, with the exception of the strengthened lower
bound on V' (beyond mere positivity), the conditions in
(10) are even necessary conditions for any V € C! which
verify Pg C Ry using conditions (2)-(4).

8.1 Affine relazation using simulation data

Let V be linearly parameterized as V := {V €
Riz] : V(z) = ¢(z)Ta}, where @ € R™ and
¢ is np-dimensional vector of polynomials in z.
Given ¢(z), constraints in (10) can be viewed as
constraints on o« € R™ yielding the convex set
{a € R™ (10) holds for V = ¢(z)Ta}. For each
c € C,d € D, let T, and 74 be finite subsets of the
interval [0, 00) including the origin. A polytopic outer
bound for this set described by finitely many constraints
is Vsim 1= {@ € R™ : (11) holds}, where

[Ve(e(re)) fc(re))T e < 0,
li(e(re)) < ple(re))Ta, and p(c(0))Ta <y, (11)
e(d(ra))Ta>v+6

forallc € C, 7. € 7., d € D, and 74 € T4. Note
that ¢(c(0))Ta < 7 in (11) provides necessary condi-
tions for Pg C Qv since ¢(0) € Pg for all ¢ € C.
In practice, we replace the strict inequality in (11) by
[Vo(c(re)) f(c(re )T a < —la(c(rc)), where I3 is a fixed,
positive definite polynomial imposing a bound on the
rate of decay of V along the trajectories.

The constraint that VV f be negative on a sublevel set
of V implies that VV f is negative on a neighborhood
of the origin. While a large number of sample points
from the trajectories will approximately enforce this,
in some cases (eg. exponentially stable linearization) it
is easy to analytically express as a constraint on the
low order terms of the polynomial Lyapunov function.
For instance, assume V has a positive-definite quadratic
part, and that separate eigenvalue analysis has estab-
lished that the linearization of (1) at the origin, i.e.,
z = Vf(0)z, is asymptotically stable. Define L(P) :=
(VF(O)T P + P(Vf(0)), where PT = P » 0 is such
that z* Pz is the quadratic part of V. Then, if (8) holds,
it must be that

L(P) <0. (12)

Let Viin :={a € R™ : P=PT » 0 and (12) holds}.
It is well-known that };, is convex (Boyd and Vanden-
berghe, 2004). Again, in practice, (12) is replaced by the
condition L(P) < —el, for some small real number ¢.
Furthermore, define Ysos := {a € R™ : (6) holds}.
By (Parrilo, 2003), Ysos is convex. Since Vsim, Viin and
Ysos are convex, Y := Vsim N Viin N Vsos is a convex
set in R™. Equations (11) and (12) constitute a set of
necessary conditions for (6)-(8); thus, we have Y D B :=
{a € R™ : 3sz,s3 € X[z] such that (6) — (8) hold}.
Since (8) is not jointly convex in V and the multipliers, B
may not be a convex set and even may not be connected.
A point in Y can be computed solving an affine (feasi-
bility) SDP with the constraints (6), (11) and (12). An
arbitrary point in J may or may not be in B. However, if
we generate a collection A := {a(®} NV =! of Ny points
distributed approximately uniformly in Y, it may be that
some of the points are in B. To this end, we use the so-
called “Hit-and-Run” (H&R) random point generation
algorithm as described in (Tempo et al., 2005). When
applied to generate a sample of )V, each step of H&R
algorithm requires solving four small affine SDPs.

8.2 Algorithms

Since a feasible value of 3 is not known a priori, an iter-
ative strategy to simulate and collect convergent and di-
vergent trajectories is necessary. This process when cou-
pled with the H& R algorithm constitutes the Lyapunov
function candidate generation.

Simulation and Lyapunov function generation (SimLFG)

algorithm: Given positive definite convex p € R[z], a
vector of polynomials p(z) and constants Ssrar, Neonv,
Ny, Bshrink € (0,1), and empty sets Cand D, set vy = 1,
Npore = Nconv) div = 0.

i. Integrate (1) from Npyore initial conditions in the



set {z € R" : p(z) = Bsim}-

ii. If there is no diverging trajectory, add the trajec-
tories to C and go to (iii). Otherwise, add the di-
vergent trajectories to D and the convergent tra-
jectories to C, let V4 denote the number of diverg-
ing trajectories found in the last run of (i) and set
Nyiy to Ngiy + Ng4. Set Bsrym to the minimum of
BehrinkBsiam and the minimum value of p along the
diverging trajectories. Set Nmore t0 Npmore — Ny,
and go to (i).

iii. At this point C has Nony elements. For each ¢ =
1,...,Neony, let T; satisfy c;(7) € Pgg,,, for all
7 > T;. Eliminate times in 7; that are less than 7;.

iv. Find a feasible point for (6), (11}, and (12). If
(6), (11}, and (12) are infeasible, set Bsim =
BshrinkBsim, and go to (iii). Otherwise, go to (v).

v. Generate Ny Lyapunov function candidates using
H&R algorithm, and return 3ssp and Lyapunov
function candidates. <

The suitability of a Lyapunov function candidate is as-
sessed by solving two optimization problems. Both prob-
lems require bisection and each bisection step involves a
linear SOS problem. Alternative linear formulations ap-
pear in the appendix. These do not require bisection, but
generally involve higher degree polynomial expressions.
Problem 1: Given V € R[z| (from SimLFG algorithm)
and positive definite l; € R[z], define

o= bject to sz,53 € L >0,
7; = max 7 subjec 2,83 € Z[z], v )

—[(y = V)sz2 + VV fs3 + Ig) € Z[z].

If Problem 1 is feasible, then v; > 0 and define
Problem 2: Given V € R[z], p € R[z], and v}, solve

Biie= I;Ialg'x 3 subject to s; € X[z, >0,
—[(B-p)s1 — (V —71)] € Z[z].

(14)

Although ~; and (B} depend on the allowable degree of
$1, 2, and s3, this 1s not explicitly notated.
Assuming Problem 1is feasible, it is true that Pg; \{0} C
Qviy; \{0} C {z € R" : VV(z)f(z) <0},s0V certifies
that Pg; C Ry. Solutions to Problems I and .2 provide a
feasible point for the problem in (9). This feasible point
can be further improved by solving the problem in (9)
using PENBMI and/or iterative coordinate-wise linear
optimization schemes, one of which is given next.
Coordinate-wise optimization (CWOpt) algorithm:
Given V € R|z], positive definite I,l2 € R[z], a con-
stant €iter, and maximum number of iterations Njer,
setk=0
i. Solve Problems 1 and 2.
ii. Given s;, sz, 53, and v} from step (i), set v in (7)-
(8) to 71, solve (9) for V and S, and set 37 = Gp.
iii. Ifk = Njr or the increasein 37 between successive

applications of (ii) is less than &, return V, ~;,
and B . Otherwise, set k to k + 1 and go to (i). <

The algorithms (SimLFG, Problems I and 2, and
CW Opt) yield lower bounds on 3*(C!), as they produce
a Lyapunov function which certifies that a particular
value of 3 satisfies Pg € Ry. Upper bounds (i.e., values
of 3 that are not certifiable) may also be obtained. More
specifically, diverging trajectories found in the course of
simulation runs provide upper bounds on 3*(C') while
inconsistency of the constraints (6), (11), and (12) pro-
vide upper bounds on B%. A diverging trajectory with
the initial condition zq satisfying p(z¢) = 3 proves that
Pg cannot be a subset of the ROA, i.e., 3*(C!) < 3. Fur-
thermore, restricting Lyapunov function candidates to
Vy = {¢(z)Ta: a € R™} has additional implications.
Infeasibility of any of the constraints (6), (11), and (12)
for some value of 8 (recall (11) implicitly depends on
B3) verifies 85 (V,,S) < B* (V) < B, regardless of the
subspaces constituting S. Moreover, the gap between
the value of 3 proven unachievable and what we actu-
ally certify, namely a lower bound to 85 (V,, S), can be
used as a measure of suboptimality introduced due to
the finiteness of the degree of the multipliers and the
fact that the bilinear search and the coordinate-wise lin-
ear search are only local optimization schemes. Finally,
H&R, SimLFG and CWOpt algorithms become more
efficient using parallel computing.

4 Examples

Certifying Lyapunov functions, multipliers and missing
parameters for all examples in this paper are available
at http://jagger .me .berkele%y .edu/"pack/certify.
In the examples, l;(x) = 107 8zTz for i = 1,2, 3.

4.1 Van der Pol dynamics

The Van der Pol dynamics #, = —x2, 2 = ) + (2% —
1)z have a stable equilibrium point at the origin and an
unstable limit cycle. The limit cycle is the boundary of
the ROA. We applied SimLFG algorithm with p(z) =
2Tz and the parameters Neony = 200, Bsra = 3.0 (ini-
tial value), Bsnrink = 0.9, and Ny = 50 for (V) = 2,4,
and 6. We found Ng;, = 21 diverging trajectories dur-
ing the simulation runs and feasible solutions for (6),
(11), and (12} in step (iv) with Bsrp = 1.44, 1.97,
and 2.19 for 3(V) = 2,4, and 6, respectively. We as-
sessed (computed corresponding values of 3; for) the
Lyapunov function candidates generated in step (v) solv-
ing Problems 1 and 2 and further optimized initializing
PENBMI with the solutions of these problems. Fig. 1
shows 3] and corresponding 3% values for 8(V) = 4 and
6. Practically, every seeded PENBMI run terminated
with the same (3}, value which is the largest known (at
least by us) value of 3 for which (9) is feasible with the
prescribed families of Lyapunov functions and multipli-
ers. In addition, we performed 10 unseeded PENBMI
runs for (V) = 4 and 6. Of these runs 90% and 50%,
respectively, terminated successfully (with an optimal
value of 8 equal to that from the seeded PENBMI runs).
Moreover, unseeded PENBMI runs took longer compu-
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Fig. 1. Histograms of 37 (black bars) and 83 (white bars)
from seeded PENBMI runs for 8(V) = 4 (left), 6 (right).

Fig. 2. The invariant subsets of the ROA (dot: 8(V) = 2,
dash: 8(V) = 4, and solid: (V) = 6 (indistinguishable from
the outermost curve for the limit cycle)).

tation times than seeded PENBMI runs. For compari-
son, seeded PENBMI runs took 3 — 8 and 11 — 24 sec-
onds for (V') = 4 and 6, respectively, on a desktop PC,
whereas they took 50 — 250 and 1000 — 2500 seconds,
respectively, for unseeded PENBMI runs. Fig. 2 shows
the level sets of the Lyapunov functions corresponding
to the value of 35.

4.2 Examples from the literature

We present results obtained using the method from
the previous section for the systems in (15). (E1)-(E3)
are from (Chesi et al., 2005), (E4) and (E7) are from
(Vannelli and Vldyasaga.r, 1985), and (Es) and (Es)
are from (Hauser and Lai, 1992) and (Hachlcho and
Tibken, 2002), respectively. Since the dynamics in (E;)
(E7) have no physical meaning and there is no p given,
we applied SimLFG algorithm sequentla.lly Apply
SimLFG algorithm with p(z) = 27z and Ny = 1 for
8(V) = 2. Call the quadratlc Lyapunov function ob-
tained V. Set p to V and apply SimLFG algorithm
with this p and Ny = 1 for 8(V) = 4. For (Es)-(E7),
we further applied CWOpt algorithm with Niter = 10.
Table 1 shows the ratio of the volume of the invari-
ant subset of the ROA obtained using this procedure
to that reported in the corresponding references. Em-
pirical volumes of sublevel sets of V' are computed by
randomly sampling a hypercube containing the sublevel
set. Values in Table 1 are volumes normalized by 7 and
47/3 for 2 and 3 dimensional problems, respectively. For
(E4), (Es), and (E7), we also empirically verified that
the invariant subsets of the ROA reported in the corre-

Table 1
Volume ratios for (E1)-(E7).

I example l volume ratio ” example | volume ratio I

(Er) 16.7/10.2 (E2) 0.99/0.85
(Es) 37.2/23.5 (Es) 1.00/0.28
(Es) 62.3 /7.3 (Es) 35.0/15.3
(E7) 1.44/0.70

sponding references are contained in those computed by
this sequential procedure.

(Ey): £ = To, To = —221 — 3z2 + T225.
xl = T2,
(Ba) : . 2_ .5 4
Zg = —2T) — T2+ 173 — 23 + 7175 + 3.

Ty = %3, To =&
(E3) 1 2, L2 3

&3 = —4xy — 312 — 323 + 1312 + Tix3.
%) = —Zq, T2 = —I3,

i3 = —0.915z; + (1 — 0.91522)z3 — x3.
Iy = z2 + 2x213, T2 = T3,

(Es) :

$3 = —0. 511 212 — I3.

(Es) :

(Er) :

= —z + 2923, &2 = —Tp + 2122, 3 = — 3.
= —0.42z, — 1.05z, — 2.3z%

:L‘2 =1 9811 + z1T5.

- 0.5z,75 — 73,

{
{
{
(Ba) : {
{
{3
{

(15)
4.8 Controlled short period aircraft dynamics

The closed-loop dynamics in (16) have an asymptotically
stable equilibrium point at the origin.

5 5
Yotm1 016 + Yy T1eTiTs + 71673
O 5
=1 Too102i%i + Yy jug s TUTE (16)
Azssz

Here, z = [71,%2,%3,%4,25|T is the state vector, zi,
Ty, T are pitch rate, angle of attack, and pitch angle,
respectively, 3 and x4 are the controller states, and
Aags € R3*5, Before applying our method, we performed
excessive simulations and found a dlvergmg trajectory
whose initial condition z¢ satisfies xo o = 16.1; there-
fore, initialized Bsras with 16.0. We applied algorithm
SimLFG with p(.’l:) = :L.T:L.’ Bshrink = 0.85, Neony =
4000, Ny = 1 for 8(V) = 2 and 4. We assessed the
Lyapunov function candidates solving Problems A.1 and
A.2 and further optimized using CWOpt algorithm with
Niter = 6. Certified values of 3 before and after ap-
plying iterations and from unseeded PENBMI runs are
shown in Table 2. Unseeded PENBMI runs led to slightly
higher values of 3. However, this benefit was at the ex-
pense of high computational effort. For example, the
unseeded PENBMI run took 38 hours for (V) =




Table 2
Certified values of 3 before and after applying CW Opt algo-
rithm and from unseeded PENBMI run.

| a(vy=2|a(v)=4|

before iterations 6.56 8.99

after iterations 8.56 144

PENBMI (unseeded) 8.60 15.2
1.5

-5 -1 5 9o 05 1 15

Fig. 3. A slice of the invariant subset of the ROA (solid line)
and initial conditions (with z2 = 0 and z4 = 0) for diverging
trajectories (dots).

whereas our method took 36 minutes (15 minutes for the
SimLFG algorithm and 21 minutes for the CWOpt al-
gorithm). Finally, the dependence that the starting point
of CWOpt algorithm has on its performance is signifi-
cant. For example, simply initializing CW Opt algorithm
with V(z) = 27 Pz +0.001 3__, ¢, where PT = P > 0
satisfies L(P) = —1I yields poor results. After 30 itera-
tions, the CW Opt iteration converges, but the resultant
Lyapunov function only certifies Pg 5 C Ro.

4.4 Pendubot dynamics

The pendubot is an underactuated two-link pendulum
with torque action only on the first link. We designed
an LQR controller to balance the two-link pendulum
about its upright position. Third order polynomial ap-
proximation of the closed-loop dynamics is #1 = z2,
2o = 7822, + 135x5 + 689x3 + 90x4, 3 = x4 and
F4 = 2792, 73 — 1425z, — 25722 +27323 — 124923 —17124.
Here, z; and 3 are angular positions of the first link and
the second link (relative to the first link). We applied
SimLFG algorithm sequentially exactly as described in
section 4.2 and CW Opt algorithm with 10 iterations and
obtained 3} = 1.69. Conversely, we found a diverging
trajectory with the initial condition Z with p(Z) = 1.95
proving that 1.69 < *(C') < 1.95. Fig. 3 shows the
29 = 0 and z4 = O slice of the invariant subset of the
ROA along with initial conditions (with z2 = 0 and
x4 = 0) for some diverging trajectories.

4.5 Closed-loop dynamics with nonlinear observer based
controller

For the dynamics £, = u, #2 = —; + z3/6 — u and
y = T2, where z; and z are the states, u is the control

input and y is the output, an observer L with polynomial
vector field 2 = L(y, z) with (L) = 3 and a control law
in the form u = —145.92; + 12.329, where z; and z; are
the observer states, were computed in (Tan, 2006). The
application of SimLFG algorithm with (V) = 2 and p
from (Tan, 2006) and CW Opt algorithm with Ny, = 4
lead to 87 = 0.32. We also applied CWOpt algorithm
(initialized with the quadratic V found in the first ap-
plication) with (V) = 4 and Ni.r = 6 and obtained
B1 = 0.52. Conversely, we found a diverging trajectory
with the initial condition (%, Z) satisfying p(Z%, Z) = 0.54
proving that 0.52 < 3*(C') < 0.54.

5 Critique and Conclusions
5.1 Sampling vs. Simulating

A common question we get is “why simulate to get the
sample points? - just sample some region, and impose
VV(z)f(x) < 0 there.” There are a few answers to this.
Intuitively, even running a few simulations gives insight
into the system behavior. Engineers commonly use sim-
ulation to assess rough measures of stability robustness
and ROA. Moreover, as converse Lyapunov theorems
(Vidyasagar, 1993) implicitly define a certifying Lya-
punov function in terms of the flow, it makes sense to
sample the flow when looking for a Lyapunov function
of a specific form. Furthermore, we have the following
observation demonstrating that merely sampling some
region and imposing VV'(z)f(z) < 0 there carries mis-
leading information. Consider the Van der Pol dynamics
with p(z) = 7z and let Sg denote a finite sample of
Ps. It can be shown that the set of quadratic positive
definite functions V' that satisfy

S15\{0} Cc {z e R* : VV(z)f(z) < 0} (17)

is nonempty. In fact, for V(z) = 0.32z% — 0.25z,z; +
0.31z3, (17) is satisfied (actually for all z € Pig,
VV(z)f(x) < —I3(z)). This naively suggests to draw
samples from the set of quadratic positive definite
functions satisfying (17) in order to try to prove that
P18 C Rpy. However, simulations reveal a contradicting
fact: Using trajectories with initial conditions in S, g for
a(V) =2, i.e., with ¢(z) = [z?, z,72, z3|T, constraints
(6), (11) (with v = 1), and (12) turn out to be infeasi-
ble. This verifies that no quadratic Lyapunov function
can prove P1 g C Ry using conditions (6)-(8), with the
additional constraint that V(z) < —107%27z on all
trajectories starting in P g. Recall though, that using
quartic Lyapunov functions we know 3* (V,, S) > 2.14.
By these observations, we have the following series of in-
clusions for the subsets of the positive definite quadratic
polynomials

{V : V certifies Pg C Ry using (6) — (8)}
C {V : VV(cs(r))f(cs(r)) <0 Vr, ¥s € Sg}
C {V : VV(s)f(s) <0VseSg}



where cs denotes the trajectory with the initial condi-
tion s € Sg. Therefore, merely sampling instead of using
simulations leads to a larger outer set from which the
samples for V are taken in step (v) of SimLFG algo-
rithm and it is less likely to find a function that certifies
that Ps C Ro.

5.2 Conclusions

We proposed a method for computing invariant subsets
of the region-of-attraction for asymptotically stable equi-
librium points of dynamical systems with polynomial
vector fields. We used polynomial Lyapunov functions as
local stability certificates whose certain sublevel sets are
invariant subsets of the region-of-attraction. Similar to
many local analysis problems, this is a nonconvex prob-
lem. Furthermore, its sum-of-squares relaxation leads to
a bilinear optimization problem. We developed a method
utilizing information from simulations for easily gener-
ating Lyapunov function candidates. For a given Lya-
punov function candidate, checking its feasibility and
assessing the size of the associated invariant subset are
affine sum-of-squares optimization problems. Solutions
to these problems provide invariant subsets of the region-
of-attraction directly and/or they can further be used
as seeds for local bilinear search schemes or iterative
coordinate-wise linear search schemes for improved per-
formance of these schemes. We reported promising re-
sults in all these directions.
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A Appendix

Lemma 2 Given go, 91, - ,gm € Rlz|, if there erist
1, ,8m € Z[z] such that go — Y v, $i9i € Zlz]|, then
{xeR™ :q1(z),...,gm(z) 20} C {z € R : go(z) 2> 0} .
Lemma 3 Given go, g1, 92 € R[z| such that go is positive
definite and go(0) = 0, if there exist 51,82 € Z[z] such
that 9151 + g282 — go € Zlz], then {x € R™ : gi(z) <
0}\{0} C {z e R" : ga(z) > 0}. 4
Problems 1 and 2 in section 3 compute lower bounds
on the largest value of v and 8 such that, for given V'
and p, Qv,\{0} C {z € R" : VV(z)f(z) < 0} and
Ps C Sy,,. We propose alternative formulations, that do
not require line search, to compute similar lower bounds.
Labeled 7} and 3, these are generally different than ~}
and 8y. For h,g € R[z] and a positive integer d, define




u°(h, g) := infz40 h(z) such that g(z) = 0, and

u*(h,g,d) ;== sup u subject to
u>0,reR|[z]

(h—u) (23 +--- +23%) - gr € Sfa).

Note that u*(h,g,d) < u°(h, g)-

Lemma4 Let g, h : R* — R be continuous, h
be positive definite, g(0) = 0, and g(z) < 0 for all
nonzero x € (O, a neighborhood of the origin. De-
fine 4° := u°(h, g). Then, the connected component of
{x € R™ : h(zx) < ~°} containing the origin is a subset
of {freR"™ : g(z) <0}U{0}. 4
Proof: Suppose not and let T # 0 be in the con-
nected component of {x € R™ : h(z) < 4°} containing
the origin but ¢g(F) > 0. Then, there exists a contin-
uous function 9 : [0,1] — R" such that J(0) = 0,
9(1) = Z, and h(J(t)) < +° for all t € [0,1]. Since
9(0) = 0 and g(z) < O for all nonzero z € O, there
exists 0 < € < 1 such that g(d(¢)) < 0. Since F is
not in {z € R" : g(z) <0}, g(¥(1)) > 0. Since g and
9 are continuous, there exists t* € (0,1] such that
g(d9(¢*)) = 0, which implies h(9(t*)) > +°. This contra-
diction leads to F € {x € R™ : g(z) < 0}. o
Corollary 5 LetV € R|z| be a positive definite C! func-
tion and satisfy (12) and V(0) = 0. Then, for all v such
that 0 < v < u°(V,VVf), the connected component of
v, containing the origin is an invariant subset of the
ROA. <

Proof: Since the quadratic part of V is a Lyapunov
function for the linearized system, there exists a neigh-
borhood O of the origin such that VV(z)f(z) < 0
for all nonzero z € O. By Lemma (4), the connected
component of Qv containing the origin, a subset of
the connected component of {x € R"* : V(z) <
1°(V,VVf)} containing the origin, is contained in
{zeR™ : VV(z)f(z) < 0}U{0}. Corollary (5) follows
from regular Lyapunov arguments (Vidyasagar, 1993).
O

Corollary 6 For some positive integer d,, define v} :=
u*(V,VV f,dy). Then, if y <~ for some positive integer
dy, then the connected component of v, containing the
origin is an invariant subset of the ROA. <
Corollary 7 Let 0 < v < 3, d2 be a positive integer,
V,p € Rlz] be positive definite and p be convez. Define
Bs = u*(p,V —~,ds). Then for any B < B3, Ps C Qv
and Pg C Rp. <




Stability Region Analysis using polynomial and
composite polynomial Lyapunov functions and Sum
of Squares Programming

Weehong Tan and Andrew Packard

Abstract

We propose using (bilinear) sum-of-squares programming for obtaining inner bounds of regions-
of-attraction for dynamical systems with polynomial vector fields. We search for polynomial as well as
composite Lyapunov functions, comprised of pointwise maximums of polynomial functions. Results for

several examples from the literature are presented using the proposed methods and the PENBMI solver.

I. INTRODUCTION

Finding the stability region or region-of-attraction (ROA) of a nonlinear system is a topic
of significant importance and has been studied extensively, for example in [1-12]. It also has
practical applications, such as determining the operating envelope of aircraft and power systems.

Most computational methods aim to compute an inner bound on the region-of-attraction,
namely a set that contains the equilibium point, and is contained in the region-of-attraction.
The methods above can roughly be split into Lyapunov and non-Lyapunov methods. Lyapunov
methods (the focus of this paper) are based on local stability theorems and search for functions
satisfying conditions which quantitatively prove local stability. Nonlinear programming is used in
[1] to optimize (by choice of positive definite matrix) the volume of an ellipsoid contained in the
region-of-attraction. Rational Lyapunov functions that approach co on the boundary of the region-
of-attraction are constructed iteratively in [2], motivated from Zubov’s work. Computational con-

siderations limit the degree of the rational function, and inner estimates to the ROA are obtained.

Department of Mechanical Engineering, University of Califonia, Berkeley. Email: {weehong,
pack}@jagger.me.berkeley.edu




Easy to compute estimates are considered in [3], which restricts the Lyapunov function search to
low-dimensional manifold of quadratic Lyapunov functions, obtaining analytical simplifications.
Following [1], but employing semidefinite programming techniques, [4] aims to maximize the
volume of an ellipsoid whose containment in the region-of-attraction can be ascertained with
sum-of-squares (SOS) decompositions. Attention is restricted to odd, polynomial vector fields,
and SOS optimization is combined with general nonlinear programming. A sequence of functions,
called nested Lyapunov functions, are introduced in [5] to derive stability region and rate-
of-convergence estimates. Both [6] and [7] solve a sequence of linear semidefinite programs,
iteratively searching over Lyapunov function candidates and sum-of-squares multipliers. The
“coordinatewise’ ascent method is generally effective, though no convergence result holds. By
contrast, the formulation here is more direct, but yields a single bilinear (nonconvex) SOS
program. Closely related to Lyapunov methods are viability methods, which effectively integrate
an invariant set backwards in time, obtaining increasing estimates for the region-of-attraction.
Both [8] and [9] use discretization (in time) to flow invariant sets backwards along the flow
of the vector field, obtaining larger and larger estimates for the region-of-attraction. In [8], the
invariant sets are restricted to be sublevel sets of polynomials, and the discretized backwards flow
is approximated with semidefinite programming. The approach of [9] also requires discretization
in space and suffers from exponential growth in state dimension. Generally, the method is exact,
but computation may require exponential growth in state dimension. Depending on the user’s
point of view, problems of modest (between 4 and 8) state dimension are intractable. Non-
Lyapunov methods, [10] and [11] focus on topological properties of regions of attraction. A
survey of results, as well as an extensive set of examples and new ideas, is presented in [12].
In this paper, we present a method of using sum-of-squares (SOS) programming to search
for polynomial Lyapunov functions that enlarge an inner estimate of the region-of-attraction of
nonlinear systems with polynomial vector fields. SOS programming, coupled with polynomial
Lyapunov functions has roots that can be traced back at least to Bose and Li [13] and Brockett,
[14] and the power transform of Barkin et.al [15], which was used in [16] to find non-quadratic
Lyapunov functions for uncertain linear systems. Recent theoretical work, [17], [7] and [18],
continues to further the role of this approach. An impediment to using high degree Lyapunov
functions is the extremely rapid increase in the number of optimization decision variables as the

state dimension and the degree of the Lyapunov function (and the vector field) increase. Here,




we propose using pointwise maximums of polynomial functions to obtain rich functional forms
while keeping the number of optimization decision variables relatively low. Pointwise maximum
and other composite Lyapunov functions have been used in many instances, [19], [20], [21],
including stability and performance analysis of constrained systems and robustness analysis of
uncertain systems, where affine and polynomial parameter-dependent Lyapunov functions are also
used, [22], [23]. The notation is generally standard, with R, denoting the set of polynomials
with real coefficients in n variables and ¥, C R, denoting the subset of SOS polynomials.

II. ESTIMATING A REGION OF ATTRACTION

Consider an autonomous dynamical system of the form

(t) = f(z(t)) (1)

where z(t) € R™ and f is an n-vector of elements of R,, with f(0) = 0. The following lemma
on invariant subsets of the region-of-attraction is a modification of ideas from [24, pg. 167] and
[25, pg. 122]:

Lemma 1: 1f there exist continuously differentiable functions {V;}7_, : R® — R such that

V(z) := max V;(z) is positive definite, (2)
1<i<q

Q:={z € R*|V(z) < 1} is bounded, (3)

L,-:={:1:GIR"|II?J%VJ-(:E)SVE(:E)SI}, S (4)

LA\{0}c {zeR*|&f(z) <0}, i=1,...,q, (5)

then for all z(0) € (2, the solution of (1) exists, satisfies z(t) € , and lim, . z(t) = 0. As
such, Q is invariant, and a subset of the region-of-attraction for (1).

Proof: The proof is written for ¢ = 2. The extension to ¢ = 1 or ¢ > 2 is straightforward.
Since L; U L, = , condition (5) insures that if z(0) € Q, V(z(t)) < V(z(0)) < 1 while the
solution exists. Solutions starting in {2 remain in §2 while the solution exists. Since {2 is compact,
the system (1) has an unique solution defined for all t > 0 whenever z(0) € .

Take € > 0. Define S, := {z € R*|§ < V(z) < 1}, s0 S¢ C (L1 U Ly) \ {0}. Note
that for each 4, (S. N L;) C L; \ {0} C {z € R"|&4f(z) < 0}, so on the compact set
Se N L;, 3r;, such that %i f(z) € —r;¢ < 0. Consequently, if z(t) € S.N L; on [ta,tp],



then V(z(tg)) < —ric(tp — ta) + V(z(ta)). Similarly, if z(t) € Sc N L; on [ta,tp], then
V(z(tg)) < —rae(te —ta) + V(2(ta)). Therefore, if z(t) € S. N (Ly U L) on [t4,tp], then
V(z(tg)) < —re(tp —ta) + V(z(ta)), where 7. = min(ry ¢, 79). Since r. > 0, this implies that
3t* such that V(z(t)) < € for all t > t*, i.e. z(t) € T, := {z € R*|V(z) < €} for all t > ¢t*.
This shows that if z(0) € Q, V(z(t)) — 0 as t — oo.

Finally, let € > 0. Define . := {z € R"|||z|| > ¢, V(z) < 1}. Q. is compact, with 0 & €),.
Since V is continuous and positive definite, 3y such that V(z) > v > 0 on §2.. We have already
established that V' (z(t)) — 0 as t — oo, so 3¢ such that for all ¢t > £, V(z(t)) < v and hence
z(t) & ., which means ||z(¢)|| < e. So z(t) — 0 as t — oo. [

Remarks: Standard modifications to the hypothesis of Lemma 1 can yield global stability
conditions as well. However, neither formulation can yield exact results for systems whose
region-of-attraction is unbounded, but not all of R" (since in Lemma 1, 2 must be is bounded).
See section III-C for further details. The constraints in equations (2)-(5) are not convex constraints
on V, as illustrated by a 1-dimensional example, [26]. Take f(z) = —z, ¢ = 1 and V(z) =
1622 — 19.9523 +6.42* and V() = 0.1z2. Then V;? and V® satisfy (2)-(5), but 0.58V;% +0.42V}
does not.

In order to enlarge €2 (by choice of V), we define a variable sized region P := {z €
R" | p(z) < B}, and maximize § while imposing the constraint P3 C Q. Here, p(z) is a fixed,
positive definite polynomial, chosen to refiect the relative importance of the states. Applying

Lemma 1, the problem is posed as an optimization:

max s.t. Vi(0)=0
BER,Vi€RR
V(z) := max V;(z) is positive definite, 6)
1<i<q
Q:= {z € R"|V(z) < 1} is bounded, (7
PsCQ ®)
{z € R"| max Vj(z) < Vi(z) 13\ {0} C {o € R*| & f(2) < 0} )

where (9) holds for ¢t = 1,...,q. Let [;(z) be a fixed, positive definite polynomial. For each V;,
if we require V; —[; € &,, fori =1,..., g, then both (6) and (7) are satisfied. Clearly, (8) holds




if and only if
q
{z eR"|p(z) < B} [ [z e R*|Vi(z) < 1}, (10)

i=1

Introducing another fixed, positive definite polynomial, I3(z), we can apply Lemmas 2 and 3
(see appendix) to obtain sufficient conditions which ensure constraints (9) and (10) hold. Written

as an optimization, the problem is

max 3 over B €R,V; € Ry, Vi(0) =0, s, 5%, 53, 50ij € Zn, i =1,...¢

such that

Vi—l € X, (11)

= ((ﬂ —p)sii + (Vi — 1)) €L, (12)

_ [(1 — V;)sq; + %E‘fss,,- + l2] - isoﬁ(Vi -V;) e L,. (13)
p=

J#i
All constraints are sum-of-square constraints, however (even for ¢ = 1) products of decision
variables are present. Therefore, the optimization cannot be translated into a linear semidefinite
program, but is converted to a bilinear semidefinite program. Two of the conditions require
positivity (beyond nonnegativity), and the fixed positive-definite polynomials, [; and [, are
introduced as offsets to enforce this. Next we present results from several small problems. We
have chosen to rely on the PENBMI solver [27], a local bilinear matrix inequality solver from
PENOPT to attack our problems. This uses a penalty method. Alternate approaches to BMIs,
such as linearization and homotopy, [28] and interior point methods, [29, Chap 7], may yield
improved results and/or superior computational efficiency. Resolving these questions is left for

further research.

III. EXAMPLES

All of the systems considered are locally exponentially stable. The notation ny denotes the
degree of V, specifically each V; includes all monomials of degree 2 up through ny. In all
examples, p is quadratic, and the degree of s;; is chosen so that the degree of the polynomial
in equation (12) is equal to ny. The integer n4 denotes degree of the polynomial in (13). Once
ny is chosen, and the vector field f is fixed, n4 limits the degrees of the multipliers s9;, s3;

and sq;; through simple degree counting. In each case, the positive definite polynomials /; and




I are of the form lx(z) = }°7; ex;x?. For the purposes of computation, the ey ; are treated as

additional decision variables, and constrained to satisfy e ; > 1077,

A. Example 1 - Van der Pol equations

The system is T, = —Zq,%9 = 71 + (zf — 1)z,. It has an unstable limit cycle and a stable
equilibrium point at the origin. Finding its region-of-attraction has been studied extensively, for
example, in [1], [12], [11]. The region-of-attraction for this system is the region enclosed by its
limit cycle, which is easily visualized from the numerical solution of the ODE. However, our

goal is to use the bilinear SOS formulation. For this example, p is chosen to be z7 Rz, for two

different R; € R?*2,

0.38 —0.14 0.28 0.14
Ry = , and Ry:=
—0.14 0.28 0.14 0.38

The results using shape factor defined by R; using the pointwise maximum of two fixed
degree polynomials are listed in Table I. Fig. 1 shows the limit cycle and the level sets of
the certifying Lyapunov functions'. The level set of pointwise maximum of two 6th degree
polynomial functions includes nearly the entire actual region-of-attraction. The dashed line is
the level set of p (for ny = 6), which clearly shows that our p has been preselected to “align”
closely with the actual region-of-attraction. Of course, this would be impossible to do in general,
and we discuss the implications of this later in this section. Our results compare favorably with
[11] as well as the degree 6 solution from [7], and the final (40*") iterate from degree 6 solutions
of [8], all of which are shown in Figure 2. Clearly, the solution of [8] is a very high quality
estimate of the true ROA. Parametrizing the boundaries using polar coordinates reveals that as
a function of angle, the radius of [8] exceeds our ny = 6 radius on 52.6% of [0 27]; is 0.22%
larger, on average, than our ny = 6 radius; exceeds our ny = 6 radius by as much as 1.4% in
some directions; is smaller than our ny = 6 radius by as much as 0.8% in other directions. We
conclude that the result in [8] is very similar, though slightly superior to our result.

It is interesting to observe how the V; functions interact in, for example, the 6th degree case.

Figure 3 shows the level sets {z | Vi(z) < 1}. For V}, there are 3 connected components, one

"The certifying Lyapunov functions and SOS multipliers for all examples in this paper are available at
http://jagger.me.berkeley.edu/ pack/certificates




“large” component centered at the origin (whose boundary is essentially the limit cycle), and
2 “islands” in the 2nd and 4th quadrants. For V5, the level set is one connected component
centered at the origin, visually the same as the large component of V;. Label the two islands as
I, and I, and the intersection of the two (nearly identical) centered components as 2.

Inside I; and I, V; £ 0, but V; > 1 > Vi, so I; and I, are excluded in the set 2. Moreover,
on ), V; < 0 where V; > Vs, and V3 < 0 where V, >V}, proving that 2 is a region-of-attraction.
Since {z | Va(z) < 1} = Q, it is tempting to assume that V, alone can prove the stability claim.
However, many points have V; > 0 (the shaded region in ).

In this example, using pointwise maximum of three polynomials does not offer additional
benefits (row 1 and 4 of Table I). Better results are obtained (row 5) by increasing the degree
of the {s;}, but this increases the number of decision variables, so the computational benefit is
effectively erased.

Finally, optimizing with the shape factor defined by R, yields almost identical results (in
terms of €2). Fig. 4 illustrates the analogous level sets of V', and also shows a level set for this
p. Clearly, the level sets for this shape factor are not aligned with the actual region-of-attraction,

nevertheless, the optimization performs quite well.

B. 6 examples from [4]

Reference [4] aims to maximize the volume of an inner ellipsoidal estimate of the region of
attraction, presenting results from 6 examples. The volume reported in [4] is normalized: in
R? it is 2-dimensional area divided by 7, while in R3 it is 3-dimensional volume divided by
4—3’5. As an exercise, we solve the same problems here. The results are summarized in Table II.
Maximizing volume is not directly compatible with our scalar objective involving the function
p (whose level sets may or may not be ellipsoidal). We began with a simple approach: using

Ty, solve the optimization problem and then compute the

a spherical shape factor, p(z) = z
volume of the level set {z : V(z) < 1} (easily computed for a quadratic V, and estimated with
Monte Carlo integration for high degree and pointwise-max V’s). Problems S1, S2, S3 and S4
are successfully addressed using this approach. Note the improvement for S2 when the degree
of the multipliers is increased (via n4) even théugh ny is held constant. Problem S5 required
an alteration, referred to as bootstrap, to obtain large volumes. In this calculation, the initial

optimization was as above, with a spherical p, using quadratic Lyapunov function candidates.



Subsequent optimizations, with richer Lyapunov function candidates used, for p, the obtained
quadratic Lyapunov function (as opposed to zTz). Problem S6 is more challenging and the
methods we present here do not obtain volumes as large as those reported in [4]. The S6 table
entry involving quartic functions is empty, as PENBMI exhibited unreliable behavior on this

problem, exposing some genuine deficiences in our overall approach.

C. Unbounded Region-of-Attraction

Consider &, = 3,79 = —(1 — z2)x; — 15 from [30]. The region of attraction to the stable
equilibrium at z = 0 is unbounded, but not all of R2. Exact methods, such as those in [9], may
obtain the correct answer in this problem. By contrast, the formulation in equations (11)-(13)
cannot, since 2 is necessarily compact. Using a simple p(z) := z? + z2 shape factor, we obtain
nearly identical results for quadratic and pointwise-max quadratic Lyapunov functions, yielding
3 such that Pg nearly touches the stability boundary, and the bounded level set {z : V(z) < 1} is
ellipsoidal, roughly aligned with the true region-of-attraction. Using the bootstrap, with ny = 6
yields significant improvement. The two level sets are shown in the left panel of figure 5, along

with some trajectories of the system.

D. An example from reference [2]

Another 2-state example with polynomial vector field comes from example 4 in [2]. The
dynamics are &; = —0.42x; — 1.05z3 — 2.3z% — 0.51,72 — z3; 2 = 1.98z; + 7;72. The inner
estimate from [2] along with our estimate using quadratic, quartic, pointwise-max quartic, and
degree 6 functions are shown in the right panel of Figure 5. Pointwise-max (g = 2) degree 6

solutions yielded no appreciable improvement over the ¢ = 1 case, and are not shown.

IV. BENCHMARK STUDY

There are several drawbacks to our approach, most notably searching over the non-convex
decision variable space. Given this deficiency, it is useful to investigate how equations (11)-
(13), coupled with the PENBMI solver perform on an “easy” nonlinear problem, with respect
to “arbitrary” data and increasing problem size. Let £ = —Iz + (z7 Bz)z where z(t) € R", and

B € R™™ B » (. For this system, inspired by Example 5 of [1], the set {z € R* |z7 Bz < 1}

is the exact region-of-attraction for the z = 0 equilibrium point (use V (x) := zT Bz to prove




this). Let P := {z € R"|zTRz < 8}, R € R™", R = 0. The supremum value for 3 such
that P; C {z € R"|2TBz < 1} is 8 = [Amax(R"2BR2)]~1. Equations (11)(13) can yield
this answer, specifically, take ¢ = 1 and for any v > 1, choose 7 such that 1 < 7 < +. Then
for large enough a (depending on fixed choice of quadratic [;) the choices V(z) := vz7 Bz,
sy = 2arz"Bz and s3 := a satisfy (13), prove that {z|2TBz < 1} is in the region-of-
attraction. Hence, this class of problems provides a test for any specified BMI solver to actually
discover the known-to-exist solution. For each n, 100 trials are performed. Each trial consists of
a random choice of positive definite B and R, each with eigenvalues exp(2r;) where each r; is
picked from a normal distribution with zero mean and unit variance, and random, orthonormal
eigenvectors. For each trial, we run the PENBMI optimizer 3 times (initial point randomly chosen
each run). Table III shows the results of the test.

A run is classified successful if the solver returns the message “No problems detected”, and
classified failure otherwise. Except for the case of n = 6, there are no trials that fail for all 3 runs
(for n = 6, one trial did fail in all 3 runs, and note that this single instance, 3-trial failure is not
taken into account in the table entries described below). Among the successful runs, the quality
of the answer is assessed by the neamness of 3x Anax to 1. The worst case (smallest) value among
the (296-300) successful runs is given. The next column shows the worst case 3 X Apax Over
100 trials, exploiting the 3 repeated attempts and the randomized initial starting point chosen by
PENBMI. The entries are =~ 1, which indicates that repeated runs of the same problem eventually
lead to the optimal solution for this example. For this limited benchmark example, although our
problem formulation is bilinear in the decision polynomials and the bilinear solver, PENBMI,

is a local solver, the results obtained are encouraging.

V. CONCLUSIONS

In this paper, we presented techniques using sum-of-squares programming for finding provable
regions-of-attraction for nonlinear systems with polynomial vector fields. Several small examples
are presented. For systems with cubic vector fields, analyzing local stability using Lyapunov
functions which are the pointwise-max of quadratic and quartic functions appears to be a useful,

and modestly tractable extension to simply using polynomial Lyapunov functions.
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VII. APPENDIX

A monomial m, in n variables is a function defined as m,(z) = z* := z{1z5? .- - 22 for
a € Z%. The degree of a monomial is defined, degm, := Y I | ;. A polynomial f in n

variables is a finite linear combination of monomials, with ¢, € R:

b — E Gl o E S
a «

Define R, to be the set of all polynomials in n variables. The degree of f is defined as deg f :=
max, deg m,, (provided the associated c, is non-zero). Additionally define ¥, to be the set of

sum-of-squares (SOS) polynomials in n variables.

e B {pERn

t
=3 J ,fiE'Rm,z'=1,...,t}.
1=1

Obviously if p € I, then p(z) > 0 Vz € R™. A polynomial, p € ¥, iff 30 < Q € R™" such
that p(z) = 27 (2)Q=2(z), with z(z) a vector of suitable monomials. The set of @ that satisfies
p(z) = 27 (z)Q=z(z) is an affine subspace, so that semidefinite programming plays the key role
in deciding if a given polynomial is SOS. The lemmas below are elementary extensions of the
S-procedure, [32], and very limited special cases of the Positivstellensatz, [33, Theorem 4.2.2].
In both cases, the SOS polynomials {s,}/%, are often called the “SOS multipliers.”

Lemma 2: Given p;,py € R, and positive definite h € R,,, with h(0) = 0. If 51,8, € &,
satisfy p1s; + p2ss — h € T then {z : pi(z) < 0} \{0} C {z : p2(z) > 0}.



Lemma 3: Given {p;}7_y € R,. If there exist {sy}}2, € ., such that po — 37, s;p; € T,
then (72, {z € R" | pi(z) > 0} C {z € R* | po(s) > 0}.

SOSTOOLS, [34], [35], GloptiPoly, [36], and YALMIP, [31] automate the translation from
SOS programs to semidefinite programs, converting to solver-specific, e.g., SeDuMi [37] or
SDPT3 [38], syntax. YALMIP also handles bilinear decision polynomials, using PENBMI [27)].

Despite these software tools, and even ignoring the nonconvexity of our formulation, there
are significant dimensionality problems as well: [39, Table 6.1] illustrates the unpleasant growth

in the number of decision variables with 7 and the polynomial degree.
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TABLES

TABLE |

POINTWISE MAX FOR VAN DER POL

degree of total no. of

q |V | 1|52 |83 |50 | B | decision variables
2121012 10| 2 |07 38
2(4(2]12(0] 2 ({093 120

2{6| 4|2 (0] 2 ]1.03 338
3(2(0]12]0 2 10795 73 .
3/]21014(2] 4 (082 265

TABLE 11

CERTIFIED NORMALIZED VOLUME ON EXAMPLES S1-S6 FROM [4]. THE VECTOR FIELDS FOR EXAMPLES S3 AND S4 HAVE

DEGREE EQUAL TO 5, WHILE ALL OTHERS HAVE DEGREE EQUAL TO 3.

from [4] | (nv,na) ¢ Vol | from [4] | (ny,na) g Vol || from [4] | (nv,n4) Vol
S1(102) | 24) 1 75 ||S227.1)| @4 1 249 S309.51)| (2,6) 1.68
Q4 2 137 24) 2 249 (2,6) global
2,6 2 43.0
S4(0.85) | (2,6) 1 0835235 | (24 1 213 5S6(109)| (2,4 8.5
2,6) 2 092 24 2 213 2,4) 9.4
@8 1 112 @46 1 329 (4,6) -
4,8 2 1.16 (4,6) -




TABLE III

COMPUTATION STATISTICS FOR THE BENCHMARK EXAMPLE

n || variables | successes | worst (in 300) | over 100 | time (sec)
2 13 298 0.99995 1.00000 0.70
3 P 296 0.90955 0.99984 42
4 48 297 0.07687 0.99999 2.14
6 ) b 297 0.99997 0.99998 11.2
8 420 300 0.99989 0.99992 99.7



FIGURE CAPTIONS

Fig. 1. Provable ROA using pointwise maximum of two polynomial functions, with shape factor

TRz

Fig. 2. Provable ROA, from [11], [7] and [8].

Fig. 3. VDP: Level sets of two 6th degree polynomials at V;,V, =1

Fig. 4. Provable ROA using pointwise max of two polynomial functions, with shape factor z7 Ryx

Fig. 5. Trajectories and level sets V' < 1. LEFT panel: example from Section III-C; RIGHT

panel: example from Section III-D
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Local Robust Performance Analysis for Nonlinear Dynamical Systems

Ufuk Topcu and Andrew Packard

Abstract— We propose a computational method for local
robust performance analysis of nonlinear systems with poly-
nomial dynamics. Specifically, we characterize upper bounds
for local £, — L> input-output gains using polynomial Lya-
punov/storage functions satisfying certain dissipation inequali-
ties and compute safe approximations for these upper bounds
via sum-of-squares programming problems. We consider both
bounded parametric uncertainties and bounded uncertainties
due to unmodeled dynamics.

I. INTRODUCTION

We consider the problem of quantifying robust perfor-
mance properties of uncertain nonlinear dynamical systems
with polynomial vector fields around asymptotically stable
equilibrium points. The amount of amplification of bounded
Lo input norms at the output channels is used as a measure
of performance. Two types of uncertainties are considered:
(1) bounded uncertainties due to unmodeled dynamics and
(2) bounded parametric uncertainties. Following [1], [2], [3],
we characterize upper bounds on local input-output gains
due to bounded L, disturbances by Lyapunov/storage func-
tions which satisfy certain “local” dissipation inequalities
[4]. Similar problems were studied in [1], [2], [S], [6],
[7] mainly for systems with no uncertainty. Input-output
properties of uncertain nonlinear systems were examined in
[8] (for discrete time nonlinear systems with a finite-time
horizon performance metric) and [9] (input-output gains for
sufficiently small input signals).

In this paper, we use polynomial Lyapunov/storage func-
tion candidates, simple generalizations of the S-procedure
[10], and sum-of-squares (SOS) relaxations for polynomial
nonnegativity [11] and compute upper bounds on the input-
output gains via (bilinear) SOS programming problems.
Uncertainties due to unmodeled dynamics are accounted for
in the setting [12] shown in Figure 1 where M models
the nominal part and ¢ is an unknown operator satisfying
certain relations between the input z and the output ws. The
objective is to compute upper bounds on the £, norm of the
exogenous output e in terms of the Lo norm of the exogenous
input w;. The approach is composed of two steps: first bound
the £, norm of the internal input we to M in terms of the Lo
norm of w; and then perform an input-output gain analysis
for M from the inputs (w;, wz) to the output e.

The approach for the bounded parametric uncertainties is
similar to that developed in [13], [14] in the context of

U. Topcu is with Control and Dynamical Systems at California Institute
of Technology, Pasadena, CA, 91125 (utopculcds.caltech.edu)
and A. Packard is with the Department of Mechanical Engineer-
ing, The University of California, Berkeley, CA, 94720-1740, USA
(pack@jagger.me.berkeley.edu).

‘Notation:

P
z w2
M
€ — w1
Fig. 1. Input-output system with the feedback interconnection of & and
M.

robust region-of-attraction analysis. Namely, a parameter-
independent Lyapunov/storage function is used to charac-
terize input-output properties of uncertain systems over the
entire set of admissible values of uncertain parameters. The
input-output relations characterized by a single parameter-
independent certificate may be more conservative compared
to those by parameter-dependent certificates. This potential
conservatism is simply reduced by partitioning the set of un-
certain parameters into subregions and computing parameter-
independent certificates for each subregion. The partition of
the uncertainty set can be refined following ideas parallel to
branch-and-bound algorithm [15] to further reduce the con-
servatism. Although it is simplistic (compared to techniques
based on parameter-dependent Lyapunov functions), this ap-
proach offers certain computational advantages as discussed
in [14] for robust region-of-attraction analysis. In fact, in
robustness analysis involving time-invariant unknown param-
eters, it is common, [16], [17], to combine easily-computable
sufficient conditions with branch-and-bound strategies, often
yielding improved analysis results.

The rest of the paper is organized as follows: A character-
ization of upper bounds for £ — L2 input-output gains
by Lyapunov/storage functions is discussed in section II.
Section III is devoted to the development of the results for the
case with unmodeled dynamics and this is followed by the
method to account for parametric uncertainties in section IV.
Implementation details are given in section V. Demonstration
of the methodology with examples in section VI precedes the
concluding remarks.

For £ € R™, £ > 0 means that & > 0 for
k=1,--- ,n.ForQ = QT € R™*", Q > 0 (Q > 0) means
that E7Q¢ > 0 (> 0) for all £ € R™. R[£] represents the set
of polynomials in £ with real coefficients. The subset X[£] :=
{r=n?+m2+---+7% : m, - ,7m € R[]} of R[¢
is the set of SOS polynomials. For = € R[£], 8(w) denotes
the degree of . For n > 0 and a function g : R" — R,
define the 7-sublevel set Q, , of g as

Rn=JzeR™ : glz) <n).



In several places, a relationship between an algebraic con-
dition on some real variables and state properties of a dy-
namical system is claimed, and same symbol for a particular
real variable in the algebraic statement as well as the state
of the dynamical system is used. This could be a source of
confusion, so care on the reader’s part is required. <

II. UPPER BOUNDS ON THE Lo — Lo INPUT-OUTPUT
GAIN

Consider the dynamical system governed by

() = fla(t), (b)) :
2(t) = h(z(t)), M

where z(t) € R", w(t) € R™, and f is a n-vector with
elements in R[(z,w)] such that f(0,0) = 0 and h is an
n.-vector with elements in R[z] such that h(0) = 0. Let
@(t; %0, w) denote the solution to (1) at time ¢ with the initial
condition z(0) = xq driven by the input/disturbance w. For
a piecewise continuous map u : [0,00) — R™, define the
(truncated) L2 norm as

[T
llull2,r := /ou(t)Tu(t)dt.

For notational simplicity, denote ||u|/2,00 by [|ul|2-

A. Upper bounds on local L, — L2 gain

Lemma IL.1. [2] If there exist a real scalar v > 0 and a
continuously differentiable function V' such that, for R > 0,
QV.R’ is bounded,

V(0)=0and V(z) >0 for all nonzero z € R", (2)

VVf(z,w) < wlw—-+v"2T2 Vzr € Qyp: and Yw € R™,

3)
then it holds that for the system in (1) and for all T > 0

lwll2,r € R and z(0) =0 = ||2|l2,r < vllwl2,7- D
<

In other words, ~y is a local upper bound for the input-
output gain for the system in (1). We call - to be a local
upper bound because the upper bound on the norm of the
output z is only supposed to hold whenever the norm of the
input is bounded by R. This is unlike the input-output gains
for linear systems which hold for all values of input norms.

Let v > 0 be fixed and V be the space of continuously
differentiable functions. Define R, ope(V,7) be the max-
imum value of R such that the conditions in Lemma II1
hold for some V € V. Let Vpoy be a subset of V that
is composed of all polynomials in z of some fixed finite
degree (omitted in notation). By restricting the search for V
satisfying the conditions in Lemma IL1 to Vpoy, utilizing
a generalization of the S-procedure (see Lemma VIIL1 in
the Appendix) to obtain sufficient conditions for the set con-
tainment constraints in Lemma II.1 and SOS relaxations for
polynomial nonnegativity, the following proposition provides
an upper bound on R, opt(V,7)-

Proposition II.1. For given v > 0 and positive definite
polynomial |, let R, be defined through

R%: (vpolyy 8, Y l) = VGVpngn,aéxZO,sGS R2 Sk
V(0) =0, se€ Iz, w)], 4)
V—1le Xz, ©)
—[(R2=V)s+VVf—wTw+ s < D

€ I|(z,w)],

where Vpoiy, C V is as defined above and S is a
prescribed finite-dimensional subset of R[(z,w)]. Then,
RC? (VPOIyysv Y l) S RCg,opt(vv’Y)' <

Note that Rz, op¢ depends on v and V and R, depends
on Vpory, S, €, 1, and «y. Hereafter, this dependence will not
be notated explicitly unless it causes confusion.

The optimization problem in Proposition II.1 can be cast in
a bilinear SDP (i.e., nonconvex in general). Bilinear SDPs are
known to be harder than linear ones [18]. Consequently, the
state-of-the-art of the solvers for bilinear SDPs is far behind
that for the linear ones and methods for bilinear SDPs are
generally based on heuristics such as coordinate-wise affine
search or specialized solvers e.g. PENBMI[19]. Although
these techniques are local search schemes and convergence to
a global optimum is not guaranteed, coupled with efficient
initializations, they have been effectively used for several
system analysis questions [20], [21]. For the examples in
this paper, we use a coordinatewise affine search scheme as
detailed in section V.

For given v > 0, the optimization problem in Propo-
sition II.] maximizes R (that can be verified through the
families of admissible Lyapunov function candidates (V)
and S-procedure multipliers (s)) such that ||z]|2 < v|w]|2
whenever ||w||2 < R. One can also choose to minimize -y
for a given value of R and this can be formulated as an
optimization problem similar to that in Proposition II.1 with
minor changes.

III. ROBUST PERFORMANCE IN THE PRESENCE OF
UNMODELED DYNAMICS

Consider the input-output system in Figure 1. Let

2(t) = f(x(t), wr(t), wa(t))
z2(t) = hy(=(t)) (14)
e(t) = ha(x(t))

be a realization of M, where w; () € R™1, wa(t) € R"vs,
f is an n-vector of polynomials in R[(z,w;,ws)] with
£(0,0,0) = 0, h; and h; are n, and n. dimensional vectors
with entries in R[z] satisfying hy(0) = 0 and h2(0) = 0.
Furthermore, assume that & is causal and, starting from rest,
satisfies

1®8(2)ll2.7 = lw2lle,r < llzll2.r (15)

for all T > 0. Lemma III.1 provides a bound on ||wz||2,7 in
terms of |w;||2,r for T > 0. In the following proposition,
this result will be used to establish a local upper bound on
the norm of the exogenous output ¢ in terms of the norm of
the exogenous input w;.




25—
1 -

= [(B? = V)s + VV f(z,w1,w2) — (B*w]wr + wlws) + @227 2] € B((z, w1, wn)],

M

= max
Vevrnly ;RZO\SES

= min
Qevrnlvv"/>0\368
Q(0) =0, se€Z((z,w,w2)], Q—1!€ZIz],

R?  subject to (8)

V(0)=0, seZ(z,w,w)], V-1I€Z[z], 9)
(10)

7 subject to (11)

(12)

13)

= [(r:@:‘,% = Q) 5+ VQf(z, w1, we) — (Fwl wn + wlwe) + '7'2eTe] € Z[(z, w1, ws)).

Lemma III.1. For R> 0, 0 < @ <1 and 3 > 0, if there
exists a continuously differentiable, positive definite function
V such that V(0) = 0, Qv g2 is bounded, and

1
VVf(Z, w11w2) < ,3210{11)1 + ’w;w2 — a_2.sz

for all z € Qy g2, w1 € R™1, and wy € R™2, then for ®
starting from rest and for all T > 0

aR
\/l—ai'

R
z(0) = 0 and ||wr |2, < 3 = |lwall2,r <

Proof: While solutions to (14) exist, for T > 0

B2lwr 13 7 + lwall3 7 - 51!||2||§,;r
< Bllwli}r — 820131 < BPllwn ”%1%.

Since Qy,r2 is bounded. as long as

R2 -V (x(0
lwrllzr < Ul
B
solutions to (14) exist for all T > 0 and satisfy
o232 2
lwalr < N2l < Tzl + o=V (2(0))-

In particular, for z(0) = 0, V(2(0)) = and ||we]wr <
aR O

Vi-a®*

Proposition II1.1. In addition to the conditions in Lemma
IIL1, if there exists a continuously differentiable, positive
definite function Q such that Q(0) = 0 and

1
VQf(z,wy, w) < BPwlw +wlw; — 7§€T6

forall z € Qg p2/(1-a2), W1 € R™1, wy € R™v2, then for
® starting from rest and for all T > 0

R
lwrll2,r < 5 and z(0) = 0 = |ellz,r <YR/V1 -2
<

Proof: By Lemma IIL 1,

R2
lwiller < R/B = B*lwrll3r + llw2l3r < T

Consequently, the result follows from Lemma II.1. O

Lemma III.1 and Proposition IIL.1 can be used to construct
relations between |w||2,+ and |le]|2,7. Similar to Propo-
sition II.1, one can obtain sufficient conditions for those
in Lemma III.1 and Proposition IT.1 using Lemma VIIL1
and SOS relaxations for polynomial nonnegativity. For given
B>0,a>0, and [(z) = exTz ( with € > 0 fixed), solve
the problems in (8)-(10) and (11)-(13). Then, for ® starting
from restand forall T >0

R R
2(0) =0 and urllaz < 5 = lellar < —m=ms.

When & is unknown but a global gain relation between its
inputs and outputs is known, then the results of this section
provide a framework for robust performance analysis for the
feedback interconnection between M and ®. On the other
hand, even when the operator ® is known, the procedure
outlined in this section can be used as a framework for
compositional performance analysis. Note that conditions
in Lemma III.1 and Proposition III.1 do not involve the
states of (the realization of) ®. When & has the state space
realization z3(t) = fo(x2(t), 2(¢)), then the gain relation
|®(2)|l2r < |lzll2.r can be established by determining
a positive definite, continuously differentiable function V;
satisfying

VVafa(ze, ) < 2Tz —wiw, Vr; € R™, Vze R™

which does not depend on the states z, of M. Consequently,
Lemma III.1 and Proposition III.1 enable performance anal-
ysis for the feedback interconnection between M and &
based on the input-output properties of individual blocks.
Of course, this analysis may be conservative. Nevertheless,
compositional analysis may be a fruitful direction which
extends the applicability of SOS programming based non-
linear analysis tools for reasonably larger dimensional sys-
tems whenever it is possible to establish an interconnection
structure as in Figure 1. Furthermore, it may be possible
to refine the input-output relations between w; and e by
using transformations at the interconnections similar to the
D scales in linear robustness analysis [12].




IV. ROBUST PERFORMANCE ANALYSIS IN THE PRESENCE
OF PARAMETRIC UNCERTAINTIES

We now generalize the development in section II to the
case where the vector field contains unknown but fixed and
bounded parameters. Following the methodology proposed
in [14] in the context of robust stability analysis, we first
restrict our attention to

(L‘(t) = f(xv w, 6)
= fo(z(t), w(t)) + Xix, difi(z(t), w(t)) (A7)
z(t) = h(z(t)),

where fo, f1,...,fm are n-vectors with elements in
R[(z,w)] such that f,(0,0,6) = f£(0,0,8) = ... =
fm(0,0,8) =0, forall § € A C R™, and A is a known
bounded polytope. Let ¢(t;xo,w,d) denote the solution of
(17) for & at time ¢ with the initial condition z(0) = xo
driven by the input/disturbance w and £4 denote the set of
vertices of A.

Proposition IV.1. If there exist a real scalar v > 0 and a
continuously differentiable function V' such that V(0) = 0,
V(z) > 0 for all nonzero x € R™, Qv g2 is bounded, and

VVf(z,w,d) < wiw—~v"2T2 (18)

forall z € Qv g2, w € R™, and § € €, then the system
in (17) with (0) = 0 satisfies ||z||2 < 7|w|l2 whenever
lwll2 < Rand § € A. 4

Proof:  Since the vector field is affine in 6 and
A is a bounded polytope, it follows that, for 6 € A,
VVf(z,w,6) < wTwforallz € Quge, w € R*™. By
Lemma II.1, for each § € A, ||z]|2 = ||h(¢(-;0,w,8))|]2 <
v||w||2 whenever |w||2 < R. O
Note that restricting the attention to affine uncertainty 4
dependence and polytopic A, Proposition IV.1 enables to
compute upper bounds on £, — L, gain for the system
in (17) by imposing the conditions in (18) at finitely many
0 € Ea instead of at infinitely many 6 € A. Furthermore,
sufficient conditions for those in Proposition IV.1 can be
obtained using Lemma VIII.I and SOS relaxations.

The approach proposed here is restrictive: (1) only affine
dependence on § and polytopic A are allowed (2) SOS
relaxations for the conditions in Proposition IV.1 may include
a large number of SDP constraints (3) single (-independent)
Lyapunov/storage function is to certify properties for an
entire family of systems. These limitations can be partially
alleviated using techniques proposed in [14] in the context of
robust region-of-attraction analysis. For example, polynomial
dependence on 4 in the vector field and the output map can
be handled by covering the graph of non-affine functions &
(in the conditions in Proposition IV.1) by bounded polytopes.
Furthermore, the fact that constraints in the SOS relaxations
for the conditions in IV.1 are only coupled through the
Lyapunov/storage functions (which include relatively small
portion of all decision variables in associated SDPs) can
be exploited through a suboptimal two-step procedure: pick
a point in A, compute a Lyapunov/storage function for
the system corresponding to that point, and then in the

second step determine an input-output relation certified by
the Lyapunov/storage function determined (fixed) in the
first step which holds for the entire family of admissi-
ble systems. This procedure effectively decouples the large
number of constraints in the second step enabling use of
trivial parallelization. Finally, conservatism (due to using a
single parameter-independent Lyapunov function and due to
the suboptimal two-step procedure) can be reduced by an
informal branch-and-bound type refinement procedure where
A is partitioned into smaller subregions and a different
Lyapunovi/storage function is computed for each subregion.
See [14] which develops a similar methodology in the context
of robust region-of-attraction analysis.

V. IMPLEMENTATION ISSUES

The SOS relaxations in (5)-(7) lead to bilinear SDPs due
to the multiplication between the decision variables in V
and the multipliers. Therefore, solution techniques for these
problems are usually limited to local search schemes such
as PENBMI [19] or coordinate-wise affine search based
on the observation that, for given V and R, constraints
in these problems are affine in the decision variables in
the multipliers. For example, one can obtain a suboptimal
solution for the problem in (5)-(7) by alternatingly solving
the following two problems until a maximum number of
iterations is reacaed or the increase in the value of certified
R becomes smaller than a pre-specified tolerance . For given
|4

max _ R? subject to s € Z[(z,w)] and (7),

R>0,8€S (19)

which can be solved using an off-the-shelf affine SDP solver
through a line search on R, and for given (feasible) multiplier
s

R? subject to V~I € £[z], V(0) =0, and (7).

(20)

Furthermore, by a change of vanables, it is possible to

iterate without a line search in the first step. Indeed, for

B > 0, if the problem in (5)-(7) has the solution R?,V; and
s, then

max
R>0.VEVpo,

1

1 . .

sy = min — subject to
Rl Ke€Vyoy,1/R?>0,5¢S R?

€ Z[(z,w)], K eR[z], K —1,/R? € £[z},
[(Q-K)§+ VKf — (wTw—~7722T2)]
€ Z{(z, w))].
2D
Note that for given K constraints in (21) are affine in 1/R?

and 3. In fact, optimal values of § and K are § = R?s;, and
K = Vi/R?.

§

VI. EXAMPLES

Consider the controlled short period aircraft dynamics in
Figure 2 where z, := [z; z2 z3)7, z1, 2, and z3 denote
the pitch rate, the angle of attack, and the pitch angle,




g4 = Acza + Bey

[ . I =€
! zp = fp(zp) + B(zp)u

v=_Cczq

3 y=[z1 3|7 r3

Fig. 2. Controlled short period aircraft dynamics with unmodeled dynamics.

respectively, and

C(Ip) [{.’Ep + b]
o= | qzp) | + ) u, (22)
r1 0

where, ¢ and ¢ are cubic and quadratic polynomials, respec-
tively, £, € R3, by and by are real scalars (see [22] for
the values of the missing parameters). The plant output is
[z1 z3)7 . The input u to the plant is

u = 1.25v 4+ w; + we

where v, the elevator deflection, is the controller output
determined by

x4 = —0.864y; — 0.321y2
v= 214’

where z4 is the controller state. Assume that & : R — R
satisfies, starting from rest,

1®)ll2,r = llwall2,r < llzll27

for all T > 0. We performed the following analysis:

(i) For several values of o € [0.55,0.9], solve the prob-
lems in (8)-(10) and (11)-(13).

(ii) Apply linearized robust performance analysis for the
feedback interconnection [23] and fit a first order stable
minimum phase transfer function, say H(s), to the
optimal D-scales. For several values of a € [0.55,0.9],
solve the problems in (8)-(10) and (11)-(13) for the
system HM H~! with a minimal realization for H.

(iii) Solve the problem in Proposition IL.1 for the system
with no uncertainty for several values of ~.

Figure 3 shows the £ norms of the exogenous outputs e
versus the £, norms of the exogenous inputs w; in each of
these cases: (i) with marker “+”, (i1) with marker “o”, and
(44¢) with marker “x”.

Figure 3 illustrates the trade off between the robustness
and performance: As a gets larger, the gap between the
nominal performance level and the “robust” performance
level increases deduced from the divergence between the
curve with “+” and other two curves.

VII. CONCLUSION

We proposed a computational method for local robust
performance analysis of nonlinear systems with polynomial
dynamics. Specifically, we characterized upper bounds
for local £, — Lo input-output gains using polynomial
Lyapunov/storage functions satisfying certain dissipation

inequalities and computed safe approximations for these
upper bounds via sum-of-squares programming problems.
We considered both bounded parametric uncertainties and
bounded uncertainties due to unmodeled dynamics.

Acknowledgements

This work was sponsored by the Air Force Office of Scien-
tific Research, USAF, under grant/contract number FA9550-
05-1-0266. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the AFOSR or the U.S.
Government.

U. Topcu acknowledges partial support from the Boeing
Corporation. A. Packard acknowledges partial support from
NASA under the contract NNX08ACB80A.

VIII. APPENDIX

The following lemma is a simple generalization of the S-
procedure [10] and is used to obtain sufficient conditions for
certain set containment constraints throughout the paper.

Lemma VIIL1. For go,g1, - ,gm € Rlz], if there exist

$1,'** ySm € X[z| such that
m
go — ZS:‘Q:’ € Z[z],
i=1
then
{zeR™ :q1(2),. .., 9m(z) 2 0}

C {z € R": go(z) = 0}.
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Linearized Analysis versus Optimization-based Nonlinear Analysis for
Nonlinear Systems

Ufuk Topcu and Andrew Packard

Abstract—For autonomous nonlinear systems stability and
input-output properties in small enough (infinitesimally small)
neighborhoods of (linearly) asymptotically stable equilibrium
points can be inferred from the properties of the linearized dy-
namics. On the other hand, generalizations of the S-procedure
and sum-of-squares programming promise a framework poten-
tially capable of generating certificates valid over quantifiable,
finite size neighborhoods of the equilibrium points. However,
this procedure involves multiple relaxations (unidirectional
implications). Therefore, it is not obvious if the sum-of-
squares programming based nonlinear analysis can return a
feasible answer whenever linearization based analysis does.
Here, we prove that, for a restricted but practically useful
class of systems, conditions in sum-of-squares programming
based region-of-attraction, reachability, and input-output gain
analyses are feasible whenever linearization based analysis is
conclusive. Besides the theoretical interest, such results may
lead to computationally less demanding, potentially more con-
servative nonlinear (compared to direct use of sum-of-squares
formulations) analysis tools.

I. INTRODUCTION

Internal stability, input-to-state, and input-to-output prop-
erties of dynamical systems are commonly analyzed by
constructing Lyapunov/storage functions satisfying certain
conditions (such as dissipation inequalities) [1], [2], [3],
[4]. Generalizations of the S-procedure [5], [4] and sum-of-
squares (SOS) relaxations for polynomial nonnegativity (6]
provide a framework for the search of such Lyapunov/storage
functions for systems with polynomial vector fields based on
(linear or bilinear) semidefinite programming (SDP) prob-
lems [7], [8], [9], [10], [11], [12], [13], [14], [16], [17], (18].

On the other hand, it is well known that if there exist Lya-
punov/storage functions for the linearized dynamics (around
an asymptotically stable equilibrium point) then, by certain
continuity assumptions, these functions (always) serve as
Lyapunov/storage functions for the nonlinear system possibly
only locally, i.e., corresponding Lyapunov or dissipation
inequalities only hold in a “sufficiently small” neighborhood
of the equilibrium point. The promise of SOS programming
based nonlinear analysis is that it may be possible to con-
struct Lyapunov/storage functions that satisfy the Lyapunov
or dissipation inequalities not only in a “sufficiently small”
neighborhood of the equilibrium point but also over quan-
tifiable, non-trivial subsets of the state space. However, the
transformation from system analysis questions to correspond-
ing SDP problems (in nonlinear analysis) involves a series
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of sufficient (but not necessarily necessary) conditions. For
example, except certain special or hypothetical cases, S-
procedure is not lossless and not all nonnegative polynomials
are SOS [9], [6], [19]. Therefore, it is not obvious if (SOS
programming based) nonlinear analysis yields a certificate
for the nonlinear system whenever the linear analysis does.

In this paper, we propose conditions for the feasibility
of SDP problems (equivalently SOS programming prob-
lems), proposed in [5], [20], (7] in the context of stability
robustness, reachability, and input-output gain analyses of
nonlinear systems around asymptotically stable equilibrium
points, based on the properties of the corresponding lin-
earized dynamics. We focus on systems with cubic polyno-
mial vectors fields mainly due to practical reasons. Although
SOS programming based analysis can theoretically be used
for systems with polynomial vector fields of any finite
degree, there are practical bounds on the degree imposed by
the capabilities of current SDP solvers and computational
resources (see [7], [14] for a more detailed discussion).
Therefore, nonlinear analysis with cubic vectors fields is
a pragmatic extension for linearization based analysis with
tighter approximations for the actual dynamics and richer
families of Lyapunov/storage functions.

The motivation is primarily theoretical, showing that the
optimization-based (S-procedure/SOS) methods for nonlin-
ear analysis (as proposed in [5], [20], [7]) always involve
feasible bilinear SDP problems whenever the linearization
is asymptotically stable. Furthermore, these results may also
have some limited practical value in actually constructing
(possibly conservative) quantitative results for the nonlinear
system as outlined in section VI.

Notation: For £ € R", £ > 0 means that & > 0 for
k=1, nForQ=QT e RP*», Q > 0(Q > 0)
means that £7Q¢ > 0 (> 0) for all £ € R™. For z; € R™
and zo € R™, [z1;x9] € R™ ™2 denotes the concatenation
of z; and zo. R[£] represents the set of polynomials in £
with real coefficients. The subset Z[¢] := {r = 7} + 72 +
coo w2 omy,ee o € R[E]} of R[] is the set of SOS
polynomials. For n > 0 and a function ¢ : R"™ — R, define
the 7-sublevel set 2, , of g as

R ={zeR" : glz) <9}

For a piecewise continuous map u : [0,00) — R™, define
the £, norm as

lullz = \/ fo h u(t)Tu(t)dt.



In several places, a relationship between an algebraic con-
dition on some real variables and state properties of a dy-
namical system is claimed, and same symbol for a particular
real variable in the algebraic statement as well as the state
of the dynamical system is used. This could be a source of
confusion, so care on the reader’s part is required. <

II. PRELIMINARIES

Following two lemmas are straightforward generalizations
of the S-procedure [4]. See [21], [7] for the proofs.

Lemma IL1. Given go,91, ' ,9m € R[z], if there
exist 1, -+ ,Sm € X[z| such that go — Y v, 8igi €
=], then {zeR™ : gi(z),...,9m(z) >0}
C {z € R™ : go(z) 20}

Lemma IL.2. Given go, g1, 92 € R|z] such that gg is positive
definite and go(0) = 0, if there exist s1, 32 € Z[z] such that
9151 + 9282 — go € Z[z], then {z € R"™ : gi(z) < 0}\{0}
C {zeR™ : gz) >0} 4

The following fact will be used in the subsequent sections.
Lemma I1.3. Let Q = QT € R™ ™ be positive definite,
f : R® — R be defined as f(z) = zTQzx, c1,---,Cm
be positive real numbers, and g : R™ — R be defined as

9(y) = 1] + U3 + ... + cmy7,. Then, f(z)g(y) can be
written in the form

f(x)g(y) = z(z,y)T Hz(z,y),

where z(z,y) =y ®z and H > 0. q
Proof:
f(2)g(y) =2zTQz(cryf + ... +cmyz)
=0, ci(%ir)TQ(yiz)

= 2(z,y)T Hz(z,y),
where H = HT € RP™X™™ s
a@
Hii=
cn@Q

Clearly, H is positive definite since Q is positive definite. (J

Lemma I14. Let Q and f be as in Lemma I1.3, c1,...,cn
be positive real numbers, and g : R" — R be defined as
g(z) = 12?2 + ... + cazk. Then, f(z)g(x) can be written

in the form =

f(z)g(z) = z(z)" Hz(z),
where z(z) is a vector of all monomials of the form z;y; for
i =1,...,n and j > 1 with no repetition. q

Lemma IL5. Let Q and f be as in Lemma I1.3, ¢y, ... ,Cn4m
be positive real numbers, and g : R™*™ — R be defined as

9(z,y) = ayi+cvd+. . temyt+emi1 i+ ACmenta.
Then, f(z)g(x,y) can be written in the form

f(z)g(z,y) = 2(=, [z;y))T Hz(z, [z;9)),
2

where z(z, [z;y]) is a vector of all monomials of the form z;

fori=1,...,nand z;y; fori=1,...nand j=1,...m
with no repetition. q

Although z (as defined above)depends on z and/or y,
this dependence will not be explicitly notated whenever it
is convenient and does not cause confusion.

III. Lo — L9 INPUT-OUTPUT GAIN ANALYSIS

Consider the dynamical system governed by

£(t) = f(z(t), w(t)) )
y(t) = h(z(t)),

where z(t) € R™, w(t) € R™«, and f is a n-vector with
elements in R[(z,w)] such that f(0,0) = 0 and h is an
ny-vector with elements in R[z] such that A(0) = 0. Let
¢(t; %o, w) denote the solution to (1) at time ¢ with the initial
condition z(0) = xo driven by the input/disturbance w.

Lemma IIlI.1. [22] If there exist real scalars v > 0 and
R > 0 and a continuously differentiable function V such
that

V(0)=0and V(z) >0 forall nonzerox € R", (2)

QV,R’ is bounded, 3)
VVf(z,w) <wTw—y"%yTy VzeQyp, weR™,
4)

then for the system in (1)
z(0) =0 and |w|z2 < R= [lyllz <v[lw[l2. (5
q

In other words, -y is an upper bound for the “local” input-
output gain for the system in (1). For given v > 0, we
restrict V' to be a polynomial of some fixed degree and use
Proposition III.1 to compute lower bounds on the maximum
value of R such that (2)-(4) hold.

Proposition III.1. [2]] For given v > 0 and positive definite
polynomial 1, satisfying 1,(0) = 0, let Rp, be defined
through

RE, = max R?  subject to 6)
VEVpoiy R20,5€S
V(0) =0, s € Z{(z,w)], Q)
V- l] € 2[2:], (8)
—[(R? = V)s1 + VVf(z,w) —wTw+~+"2yTy] (9
€ Z{(z,w)],

where Vpoy © V and S are prescribed finite-dimensional
subsets of R(z]. Then,

z(0) =0 and |wll2 < Re, = [lyllz < 7vliwl2,

q
Now, consider the case where f and h are of the form
f(z,w) =Az+ Bw+ fa(z) + f3(z)
+ (q1(z) + g2(z))w,  (10)
h(z) = Cz + ho(2),




where f2, fa, g1, g2, and hy are matrices (of appropriate
dimension) of (purely) quadratic, cubic, linear, quadratic,
and quadratic polynomials in their arguments respectively
and A, B, and C are matrices (of reals) of appropriate
dimension. Then, the following proposition gives conditions
on the feasibility of the constraints in (6)-(9) based on the
analysis of the corresponding linearized dynamics.

Proposition IIL2. For given v > 0, l)(z) = zT L,z with
Ly, >~ 0, f and h in the form in (10), if there exist a symmetric
matrix Q) and € > 0 such that Q > L, and

[ ATQ+QA+~72CTC @B

Dy BTQ oF
then the constraints in (6)-(9) are feasible. q
Proof: Define V(z) := z7 Qz. Let z = z(z, [z; w]) be

as defined in section II. Then, there exist H > 0, M;, and
M such that

zTHz = (wTw+ 2Tz)(zTQx)
TMiz = zTQ(f2(z) + g1(z)w) + zTCT hy(x)
2T Maz = 22T Q(f3(z) + g2(z)w) + ha(z)Tha(z).
Let a > 0 be such that
| =Do -M,
Dy = { ~MT oH - M, ] zel

and R := y/¢/(2a). Define
s1(z, w) :i= a(zTz + wTw).
Then, V — [, and s; are SOS. Consider

b(z,w) := — [VVf(z,w) — wTw+ AT (z)h(z)]
- a(zTz + wTw) (R?2 -V),

which can be decomposed as

:I j—GI,

b(z, w) = [z;w; z)T D[z; w; 2],

where
aR?I 0 aR?I 0 €
S - =t - =1
g [0 O o[ 2]
Hence, b is SOS. [}

IV. REACHABILITY ANALYSIS

For R > 0 and ||w||2 < R, the set Gg2 of points reachable
from the origin under the flow of (1) is defined as

Grs == {¢(T;0,w) eR™ : T2>0, |lwll2 <R}.

Lemma IV.1 adapted from a Lyapunov-like argument in [4,
§6.1.1] provides a characterization of sets containing Gpa
(51, [22].

Lemma IV.1. If there exists a continuously differentiable
function V' such that
V(z) > 0 for all x € R™\{0} with V(0) =0,
Qy g2 is bounded,
VVf(z,w) < wTw Vr € Qy s, we R™,

(1)
(12)

(13)

then gRQ (& QV,R’- q

For given 3 > 0 and positive definite, convex polynomial
p, the following proposition provides a lower bound for the
maximum value of R such that Gp2 C Q5.

Proposition IV.1. [22] Let 3 > 0, I, be a positive definite
polynomial satisfying 1,(0) = 0, Ryeqcn be defined through

R2,,n = R? subject 1o (14)

max
VE€Vpory,R20,91€851,32€8;

V(0) =0, sy € Z[z], and s2 € Z[(z,w)], (15)
V-l € £fal, (16)
(B-p) - (R*=V)s € Zla], a7

— [(B? = V)83 + VV f(z,w) — wTw] € Z((z, w)](18)
where Vyory, C V and S; are prescribed finite-dimensional
subsets of R(z|. Then,

Gpr2

reach

g QV.R’

reach

C Q.
q
Proposition IV.2. For p(z) = z7 Pz with P >~ 0, I;(z) =

zTLyx with Ly > 0, and f of the form in (10), if there exist
€ >0 and Q > Ly such that

ATQ+QA Q@B
Do = gTQQ Czl ] e T 5
then the constraints in (14)-(18) are feasible. q

Proof: Define V(z) := 27 Qxz. Let z = z(z, [z;w]) be
as defined in section II. Then, there exist H > 0 (by Lemma
11.3), M;, and M, such that

zTHz = (wTw+2Tz)(z7Qx)
TMiz =zTQ(f2(z) + 91(z)w)
zT Moz = 22T Q(f3(x) + g2(z)w).

Let a > 0 be such that
—Dyg -M,
~MT oH - M, ] zel,
and R := \/¢/(2a). Define
sl(z) = /\max(P)//\min(Q)

so(z,w) = a(zTz + wTw).

Then, V — I}, s1, s2, and (8 —p) — (R? — V)s; are SOS.
Consider

b(z, w) := ~VV f(z,w)+wT w—a(zT z+wTw) (R - V),

D] =

which can be decomposed as

b(z, w) = [z; w; z)T Daz; w; 2],

where
aR?I 0 aR?*I 0 €
D2.=D|-—|: 0 0j|>_'€1—[ 0 0j|>_'§1
Hence, b is SOS. a



A. Extensions of the reachability analysis for systems with
degenerate linearization

Consider the system

Z(t) Amz(t) + BAKT (t)z(t) + Ew(t)

K. —T.z(t)zT (t)PB,

where z(t) € R®, B € R™*™, w(t) € R**™«, and P, E,
A, Ap,, and T'; are matrices of appropriate dimension with
Hurwitz A,,. The dynamics in (19) can be considered as
the closed loop dynamics for the system z(t) = A, z(t) +
BAu(t) regulated to the origin by a model reference adaptive
controller of the form[23]

u(t) = Ko (t)z(t)

(19)

in the presence of the disturbance w. Note that the results
in Proposition IV.2 is not applicable to the system in (19)
because its linearization at the origin is not asymptotically
stable. Nevertheless, the nonlinear reachability analysis as
outlined in Proposition IV.1 is still applicable.

Proposition IV.3. Ler z; € R™, 25 € R™?, and w € R™*
and consider

i‘l (t) = Azl(t) . b(Il (t),:l,‘g(t)) + Ew(t) (20)
I2(t) = q(z1(t))
where b : RP1tn2 _, R™ whose entries are bilinear

polynomials in zy and x4, ¢ : R™ — R™ whose entries are
quadratic polynomials in x,, and E and A are real matrices
of appropriate dimension such that there exist @ = QT >0
and € > 0 with

[ AT%ITE?IA Q__lf ] =X —el.

. Then, there exist positive definite V € R[(z1,22)], s €
E[z,]. and R > 0 such that by, € E[(x)1, z2, w)] where

bm(zy, 22, w) := — [VVf(:z:l,:zzg,w) —wlw+ (R2 - V)s] ;

<

Proof: Let V(z) := zTQ,z, + 23 Q272, where @ =
QT > 0. Then, there exist By, By, H; > 0, and H; > 0
such that

] Qib(z1,z2) = ] Biz(z1,%2)

7 Q29(z1) = 2T Byz(z,, z2)
T Qizrizizy = z(z1, 1) T Myz(z1, 71)
3 QezazTzy = 2(z1,72)T Maz(21,22)

and —b,, can be decomposed as

T
) I
b _ w w
me 2(171,1'1) z(xlaxl)
z(x11x2) z(xth)

where D is
ATQ, +QiA+oRI QE 0 By +B»
ETQ, i 0 0
0 0 —alM 0
BT + BY 0 0 —-aM,

and D negative semidefinite by proper choice of o (suf-
ficiently large) and R (sufficiently small). Consequently,
bm € Z[(.’El,l‘g,'w)]. i)

V. REGION-OF-ATTRACTION ANALYSIS

The material of this section is adapted from [24] where
similar results were proven in the context of robust region-of-
attraction analysis for systems with parametric uncertainty.
For simplicity, we focus on the case without uncertainty.
Consider the autonomous nonlinear dynamical system

£(t) = f(z(2)),

where z(t) € R™ is the state vector and f is an n-vector
with entries in R|z] satisfying f(0) = 0, i.e., the origin is an
equilibrium point of (21). Let ¢(¢;xo) denote the solution
to (21) at time ¢ with the initial condition z(0) = xg. The
region-of-attraction of the origin for the system (21) is

{0 € R™: lim g(tix0) = 0}.

A modification of a similar result in [2] provides a character-
ization of invariant subsets of the ROA in terms of sublevel
sets of appropriately chosen Lyapunov functions.

(21

Lemma V.1. Let v+ € R be positive. If there exists a
continuously differentiable function V R™*™ — R such
that
" Qv is bounded, and
V(0)=0and V(z) >0 for all z € R" (23)
Qu\{0} C{zeR™ : VV(z)f(z) <0}, (24)

then Qv ., is an invariant subset of the ROA. 4

(22)

In order to enlarge the computed invariant subset of
the ROA, we define a variable sized region Q2,5 =
{z € R* : p(z) < B}, where p € R[z] is a fixed positive
definite convex polynomial, and maximize J while imposing
the constraint 2, 3 C Qv,, along with the constraints (22)-
(24).

SOS programming and simple generalizations of the S-
procedure (namely Lemmas II.1 and II.2) provide algebraic
sufficient conditions for the constraints in Lemma V.I.
Specifically, let {; and I; be a positive definite polynomials.
Then, since [; is radially unbounded, the constraint

V-1, € Z[z] (25)

and V(0) = O are sufficient conditions for (22) and (23). By
Lemma IL1, if s; € X{z], then

—[(B-p)s1 +(V —9)] € Z[z]

implies the set containment 2, 3 C Qv,,, and by Lemma

(26)




IL2, if 52,53 € Z[z], then
—[(y = V)s2 + VVfs3 + 3] € T[]

is a sufficient condition for (24). Consequently, §2
a subset of the ROA and Qy -
ROA, where

@27

i : ; P.Broa 15
~+ Is an invariant subset of the

(27),

Broa = - 3 subject to (25) —

V(0)=0,s; € Zz],>0

and V* and v* are optimal values of V' and ~ in (28). Here,
the sets V and S; are prescribed finite-dimensional subspaces
of polynomials.

(28)

We now focus on systems governed by ordinary differen-
tial equations of the form

i = f(z) = Az + fa(z) + fa(z),

where fo and f; are vectors of (purely) quadratic and
cubic polynomials, respectively, and A € R™"*™, and prove
that asymptotic stability of the linearized dynamics is also
sufficient for the feasibility of the constraints in (28) (for
sufficiently small v > 0).

(29)

Proposition V.1. Let f be an n-vector of cubic polynomials
in T satisfying f(0) =0, and let P > 0, R, > 0, R; > 0,

p(z) :=zTPz, U(z):=xTRiz, I(z):=zTRozx.
If there exists QQ > 0 such that
ATQ +QA <0,

then the constraints in (28) are feasible for some R > 0. «

Proof: The proof is constructive. Let z = z(z) be as
defined in Lemma I1.4, Q > 0 satisfy ATQ + QA < —2R;
and Q > Ry (such Q can be obtained by properly scaling

Q). Let :
€= A7‘!11'.1’1(}22% V(x) = zTQz’

and H > 0 be such that (z7z)V (z) = zT Hz (which exists
by Lemma I1.4). Let My € R™*™: and symmetric M3 €
R™:XN: gatisfy

Vsz(:l:) =:z:TM2z
VVfi(z) =zT Maz.
Define ”
si(@) = et
maz MM

o =2
so(x) =coxTz
i =%
B =g
s3(z) =1,

where for a symmetric matrix M, M denotes its projection
into the positive semidefinite cone. Clearly, s, € Zz], s2 €
¥[z], and s3 € [z]. Note that

V(z) —hL(z) =zT(Q — Ry)z € =],

since Q — R; > 0.
bi(z) := = [(v = V)s2 + VV fs3 + 5]

Ll

By = [ —ye2l — Ry — (ATQ + QA)

—M,/2
v ]

C2H i M3

P <] M, /2
M
B [ —MI/2 cH — M ] =

by the Schur’s complement formula. Consequently, b;(z) €
Z[z]. Finally,

—[(B—p)s1 +(V =19)]

- [7 wre][3]

|z

Ba
(30)

where B, > 0 and consequently by € £[z]. 0

VI. INTERPRETATION AND DEMONSTRATION OF RESULTS

It is worth re-stating that the motivation here is theoretical
rather than practical. The conclusions can be summarized
as that the nonlinear local analysis (based on S-procedure
and SOS programming relaxations as proposed in [S], [20],
[7]) is always capable of returning a feasible result (i.e.,
corresponding optimization problems are feasible) whenever
corresponding conditions for the linearized dynamics are
feasible. Alternatively, these results may also have some
limited practical value in constructing (possibly conservative)
quantitative results for the nonlinear system. For example,
Propositions V.1, II1.2, and IV.2 can be directly used to
construct feasible solutions for the problems in Eq. (28)
and Propositions IIL.1 and IV.l, respectively. Proofs of
Propositions V.1, III.2, and IV.2 also suggest a recipe for
constructing less conservative feasible solutions for these
problems by searching for an “optimal” quadratic Lyapunov
function (instead of fixing V' to a Lyapunov function for
the linearization). A construction in the case of region-of-
attraction analysis can be summarized as follows: Choose
the multipliers s;, sz, and s3 in the form given in the
proof of Proposition V.1 with the free parameter c,. Affinely
parameterize H, My, and M3 in terms of @ (note that there
may be multiple possible parameterizations for M, and M3
and the choice may change the quantitative results - here
we arbitrarily choose one parametrization). Then. 0, g- is a
subset of the ROA where

= max 3 subject to
7,€2,8,Q=QT>R,;
[ —yel —Ra—ATQ-QA  -My(Q)/2 ] -
-My(Q)T/2 H(Q)-M3(Q) | ~
bl M - 0
0 P-Q|—™

€2))



Note that the above problem can be solved through a series
of convex SDP problems by a line search on c2. Construction
of feasible solutions for the problems in Propositions III.1
and IV.1 can be developed in a similar manner.

The value of such “suboptimal” construction of feasible
solutions for the problems in the context of nonlinear system
analysis may be better appreciated by recalling the fact that
one of the main difficulties in SOS programming based
nonlinear system analysis is the computational complexity
of the SOS programming. The procedure outlined above
provides an ad hoc way of generating (possibly high quality)
solutions for the corresponding optimization problems or
initial seeds for further optimization. The following example
demonstrates this construction for ROA analysis and com-
pares the results with “optimal”solutions from (28).

Example VI1.1. Consider the Van der Pol dynamics

Iy = -—I2
I =1z + (.’L‘% - ].).’132.,

which have a stable equilibrium point at the origin and an
unstable limit cycle around the origin which is the boundary
of the ROA of the equilibrium point. In this example, we will
construct invariant subsets of the ROA using the problem in
Eq. (28) and Proposition V.1. Let T = [z, z2]T, p(z) = 27z,
li(z) = la(z) = 107%zTx. The solution of the problem
in Eq. (28) with a quadratic Lyapunov function candidate,
(purely) quadratic sz, and scalar s, and s3 certifies p,1.57
to be a subset of the ROA. The feasible solution provided in
Proposition V.1 certifies Q2 0.90 to be a subset of the ROA.
Alternatively, by the procedure outlined above certifies that
Qp,0.65 is in the ROA. q

VII. CONCLUSIONS

Sum-of-squares programming based analysis of nonlinear
systems with polynomial vector fields may be regarded supe-
rior to analysis based on linearized dynamics in the sense that
the former is capable of generating quantitative certificates
as opposed to conclusions from the latter valid only over in-
finitesimally small neighborhoods of the equilibrium points.
However, sum-of-squares based approach involves multiple
relaxations. Therefore, it is not obvious if the sum-of-squares
programming based nonlinear analysis can return feasible
answers whenever linearization based analysis does. In this
paper, we proved that, for a restricted but practically useful
class of systems, conditions in sum-of-squares programming
based region-of-attraction, reachability, and input-output gain
analyses are feasible whenever linearization based analysis is
conclusive. Besides the theoretical interest, such results may
lead to computationally less demanding, potentially more
conservative nonlinear (compared to direct use of sum-of-
squares programming formulations) analysis tools.
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