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Introduction 
This is the final report, covering the period May 1, 2005 through August 31, 2008. In this 
report, we discuss our progress on nonlinear systems analysis, based on Lyapunov and dissi- 
pation inequalities, using sum-of-squares (SOS) decompositions to verify set containments. 

We have improved our ability to analyze uncertain system dynamics, including nonaffine 
parametric uncertainty as well as unmodeled dynamics. This entailed polytopic covering 
methods for graphs of vector-valued polynomial functions, and local small-gain theorems. 
We use simulation as a key step in aiding the nonconvex search for proofs (Lyapunov func- 
tions) and proof certificates (multipliers). Some aspects of the calculation are trivially par- 
allelizable, and we have employed a 9-machine cluster to speed-up the analysis of uncertain 
systems. We also began more detailed study of systems with marginally stable linearizations 
(ie., adaptive systems). Finally, we made precise our claim that these techniques represent 
a quantitative and definitive improvement over linearized analysis. 

Notation: R[x] represents the set of polynomials in x with real coefficients. For n £ R[x], 
<9(7r) denotes the degree of ic. The subset E[x] := {K\ + • • • + n^ : TTi, • • • ,7TTO € R[x]} is 
the set of SOS polynomials. 

Uncertain Systems Analysis 

Uncertainty in the vector field includes non-affine dependence on a parameter vector 8 lying 
in a polytope A, namely 

x(t) - /0(x(i)) + £>£(*(*)) + I>(*)W*(*)),     5 e A 

20101110209 



and unmodeled dynamics, 

z   =   h(x) 
w   =   $(2) 

Here 4> represents unmodeled dynamics, for example, finite-dimensional, linear, time-invariant 
operators with specified upper bound on induced £2 norm, for example ||$||£ _£  < 1. 

The tools we have developed to address this problem are 

1. region-of-attraction analysis for systems with affine parameter uncertainty using a sin- 
gle Lyapunov function 

2. local induced £2 —• £2 gain analysis for systems with affine parameter uncertainty, 
using a single polynomial storage function 

3. covering, with a polytope, the graph of vector-valued polynomial function over a poly- 
topic domain, 

4. informal branch-and-bound 

5. local small gain theorems. 

Next, we illustrate the calculations that are possible with these methods. 

Controlled short period aircraft dynamics, parametric uncertainty 
We apply the robust ROA analysis for uncertain controlled short period aircraft dynamics 
(see the project website for the parameters used in the model) 

Xp — 

coi(xp) + (JiCn(Xp) + 5\qzx{xp) 

902 (Xp) + Si^jXp + 52<722(£p) 
Xi 

+ 
§xp + fen + 612*1 

&21 + &22*2 
0 

11. 

where xp = [x\ £2 £3] , £1, £2, and £3 denote the pitch rate, the angle of attack, and the 
pitch angle, respectively, CQI and en are cubic polynomials, q02, 922 > and q^ are quadratic 
polynomials, ^12 and 4 are vectors in 1Z3, fen, fei2, &2i, and &22 € 71, and u, the elevator deflec- 
tion, is the control input. Variations in the center of gravity in the longitudinal direction are 
modeled by *i € [0.99,2.05] and variations in the mass are modeled 82 G [—0.1,0.1]. Note 
that the parametric uncertainty includes one nonafnne term (ie., 8\). The control input is 
determined by £4 = —0.864j/i -I—0.321y2 and u = 2x4, where x4 is the controller state and 
the plant output y = [xi £3] . Define x := [xj £4] and the shape factor p(x) := £rx. 
We applied a branch-and-bound type procedure with d(V) = 2 and d(V) = 4 on a 9- 
processor computer cluster: after the first B&zB iteration, the cell with the smallest lower 
bound is subdivided into 3 subcells and cells with 2-nd, 3-rd, and 4-th smallest lower bounds 
are sub-divided into 2 subcells. Fig. 1 shows the lower bounds and upper bounds. Note 
that quadratic Lyapunov functions (several, as different Lyapunov functions are employed 



2 3 4 
number of B&B steps 

Figure 1: Lower bounds for 0*± with d(V) = 2 (solid black with "x") and d(V) = 4 (solid blue 
curve with "o") and 0• (solid red with "o") computed at the centers of the cells generated by the 
BfcB Algorithm for the d(V) = 4 run. Dashed curves are for (computed values of) @t&\ where 
5 is the center of the cell with the smallest lower bound at the corresponding step of the BfoB 
refinement procedure for d(V) = 2 (dashed black with "x") and d(V) = 4 (dashed blue with "o"). 

in different cells across the parameter space) certify that all initial conditions x0 G R4 satis- 
fying XQ xo < 5.4 are in the region-of-attraction. Likewise, a collection of quartic Lyapunov 
functions certify that all initial conditions Xrj G R4 satisfying XQXQ < 7.8 are in the region- 
of-attraction. The smallest value of p attained on divergent trajectories, 0"^, is 8.6 and 
obtained for {5X,52) = (2.039, -0.099) and the initial condition (0.17,2.65, -0.10,1.24). 

Aircraft dynamics, parametric uncertainty and unmodeled dynamics 
Next, consider the same system with additional unmodeled dynamics at the plant input, as 
shown in Figure 2. 

1—-  $  — V 

x4 = Acx4 + Bcy 
v — CCX\ 

0.75 
u Xp = fp(xp, Sp) + B(xp, Sp)u 

y = [xi  x3]T 

y 
•   l.AO      •£ 

Figure 2:   Controlled short period aircraft dynamics with unmodeled dynamics (<5P   := 

The assumption is that $ is any stable, linear time-invariant (this could be relaxed) operator, 
with induced £2 norm less than 1. We again repeat the analysis using both quadratic and 
quartic storage functions, which locally certify bounds on the gain (with $ removed) from 
w to z (recall that this system is not globally stable) in the presence of the parametric 
uncertainty. These local £2 gains are used in conjunction with a local small-gain theorem to 
yield results such as: 

• (using quadratic storage functions) For all (finite-dimensional, linear, time-invariant) 
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$, satisfying ||$||;C2_>£2 < 1, assuming that the initial condition of <J> is 0, then all 
plant/controller initial conditions x0 G R4 satisfying XQX0 < 2.4, are in the robust 
region-of-attraction. 

• (using quartic storage functions) For all (finite-dimensional, linear, time-invariant) 
$, satisfying ||^>||£2^£2 < 1, assuming that the initial condition of $ is 0, then all 
plant/controller initial conditions Xo G R4 satisfying XQX0 < 4.1, are in the robust 
region-of-attraction. 

In conclusion, we have established provable and certifiable inner estimates of the region-of- 
attraction of a (nominally) 4-state nonlinear system with both parametric and unmodeled 
dynamics uncertainty. The informal use of branch-and-bound in the parametric uncertainty 
space was handled efficiently using a small-scale parallel cluster of 9 machines. 

Viewing our approach as quantitative extension of linearized analysis 

Practical nonlinear analysis often couples extensive nonlinear simulation with extensive lin- 
earized analysis (such as stability, stability margins, Bode plots of linearized I/O maps, etc). 
Here we show that common linearized analysis techniques can be rigorously quantified using 
the SOS approaches. The next lemma is key to these derivations. 

Lemma: Let z(x) be a vector of all monomials of degree 2 with no repetition. Let Q = 
QT >- 0. There exists a positive definite matrix H = HT such that xTxxTQx = z(x)THz(x). 

SOS region-of-attraction analysis: For the autonomous system x = f(x), and a positive- 
definite function p, if there exist positive-definite, radially unbounded function /l5 positive- 
definite function l2, SOS polynomials Si,S2 and S3, a polynomial function V, and positive 
constants 7 and f3 such that V(0) = 0 and 

V-keE[x], (la) 
-p-p)Sl + (V-7)]€S[x], (lb) 

- [(7 - V)s2 + VVfs3 + l2) € E[x], (lc) 

then {x : p(x) < (3} C {x : V(x) < 7} =: f2, and for all x(0) G O, the solution satisfies 
x(t) G Q Vt and limt^00x(i) = 0. 

Now, consider the system x{t) = Ax(t)+f23(x(t)) where A is Hurwitz, and f23 is a polynomial 
with quadratic and cubic terms. For any quadratic, positive-definite li,l2 and p, the equations 
(1) are feasible using quadratic V, constant «i, S3 and quadratic s2 (suboptimal, feasable 
values are easily determined from A and 723). Consequently, if the local stability of an 
equilibrium point of a system with a cubic vector field is decidable using linearized analysis, 
then the SOS region-of-attraction analysis will always yield a quantitative, certified, inner 
estimate of the region of attraction. 

SOS £2 gain analysis: For the driven system x = /(x, w), z — h(x), if there exist positive- 
definite, radially unbounded function /1? SOS polynomial S\, a polynomial function V, and 



positive constants 7 and R such that V(0) = 0 and 

V-li €£[*], (2a) 

(R2 - V)Sl + VVf - wTw + XhTh] e E[x], (2b) 

then for all w, with ||w||2,r < R, the solution from x(0) = 0 satisfies V(x(t)) < R2 and 
lkll2,T^7lk||2iT. 

Now consider the system x — Ax + J2{x) + fs(x) + [B + gi(x)] w and z = Cx + /i2(:r) where 
#1 is purely linear, /2 and h2 are purely quadratic, and /3 is purely cubic. 

Suppose the linearization (A, B and C) has A Hurwitz, and \\C(sI — A)~1B\\OQ < 7. For 
any quadratic, positive-definite l\, there exist R > 0 such that the equations (2) are feasible 
(possibly after scaling the state coordinates, x <— ax, by a computable scalar a > 0) using 
quadratic V, and quadratic s\ (suboptimal, feasable values are easily determined from A, 
/2>/3) etc.). Consequently, if the local input/output gain around an equilibrium point of a 
system with a cubic vector field is bounded using linearized analysis, then the SOS £2 gain 
analysis will always yield a quantitative, certified, ball of disturbances such that the same 
gain bound holds for the nonlinear system. 
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Robust Region-of-Attraction Estimation 

Ufuk Topcu, Andrew Packard, Peter Seiler, and Gary Balas 

Abstract 

We propose a method to compute invariant subsets of the region-of-attraction for the asymptoti- 

cally stable equilibrium points of polynomial dynamical systems with bounded parametric uncertainty. 

Parameter-independent Lyapunov functions are used to characterize invariant subsets of the robust region- 

of-attraction. A branch-and-bound type refinement procedure is implemented to reduce the conservatism. 

We demonstrate the method on an example from the literature and uncertain controlled short period 

aircraft dynamics. 

I. INTRODUCTION 

We consider the problem of computing invariant subsets of the region-of-attraction (ROA) for 

systems with polynomial vector fields and bounded parametric uncertainty. Since computing the 

exact ROA, even for systems with known dynamics, is hard, research has focused on determining 

Lyapunov functions whose sublevel sets characterize invariant subsets of the ROA [8], [9], [19]. 

Recent advances in polynomial optimization based on sum-of-squares (SOS) relaxations [12] are 

utilized to determine invariant subsets of the ROA for systems with known polynomial and/or 

rational dynamics solving optimization problems with matrix inequality constraints [21], [15], 

[7], [14], [17]. The literature on ROA analysis for systems with uncertain dynamics includes 

a generalization of Zubov's method [4] and an iterative algorithm that asymptotically gives 

the robust ROA for systems with time-varying perturbations [11]. Systems with parametric 

uncertainties are considered in [5], [13], [18]. The focus in [5] is on computing the largest 

sublevel set of a given Lyapunov function that can be certified to be an invariant subset of 

the ROA. References [13], [5] propose parameter-dependent Lyapunov functions which lead to 

U. Topcu (utopcu@jagger.me.berkeley.edu) and A. Packard are with the Department of Mechanical Engineer- 

ing, The University of California, Berkeley; P. Seiler is with the Honeywell Labs; G. Balas is with the Department of Aerospace 

Engineering and Mechanics, The University of Minnesota. 



potentially less conservative estimate of the ROA compared to parameter-independent Lyapunov 

functions at the expense of increased computational complexity. 

This paper follows [16], using bilinear sum-of-squares optimization to determine invariant 

subsets of the robust ROA. The differences he in the allowed uncertain parameter dependence 

and the class of Lyapunov functions. The approach in [16] employs parameter-independent 

Lyapunov functions for systems whose vector field depends affinely on uncertain parameters 

known to he in a given polytope. This is reminiscent of quadratic stability analysis [3], where a 

single quadratic Lyapunov function certifies the stability of an entire family of uncertain linear 

systems, usually described by a polytope of linear vector fields. Of course, in both cases, using 

a common Lyapunov function tends to yield conservative results. Additionally, the restriction to 

polytopes of vector fields is undesirable. This paper partially alleviates both of these hmitations. 

First, vector fields are allowed to depend affinely on polynomial functions of the uncertain 

parameters, and we develop methods to cover these with a polytope of vector fields (so that 

[16] applies). Additionally, we propose a branch-and-bound type refinement procedure [10] to 

partition the uncertainty set and compute a different parameter-independent Lyapunov function 

for each cell, hence implicitly using piecewise constant (across uncertainty space), yet parameter- 

dependent Lyapunov functions. In fact, in robustness analysis involving time-invariant unknown 

parameters, it is common, [2], [22], to combine easily-computable sufficient conditions with 

branch-and-bound strategies, often yielding improved analysis results. 

An alternate for the conservativeness of parameter-independent Lyapunov functions is using 

polynomially parameter-dependent Lyapunov functions as proposed in [5], [13]. Although SOS 

optimization can be used with parameter-dependent Lyapunov functions, the ensuing optimiza- 

tion problem is challenging because uncertain parameters are treated as additional independent 

variables in the SOS conditions, which can greatly affect the size of the semidefinite programs. 

Moreover, choosing a suitable and effective polynomially parameter-dependent basis for the 

Lyapunov function is not intuitive. 

Finally, we remark that the methodology based on the branch-and-bound algorithm, applied 

to robust region-of-attraction analysis here, is generally applicable to local reachability and gain 

analysis of systems with parametric uncertainty. 

Notation:   R[x] represents the set of polynomials in x with real coefficients. For 7r G R[x], 

<9(7r) denotes the degree of n. The subset E[x] := {*f + h n^   :   wi, • • • , Jrm e R[x}} is 



the set of SOS polynomials. For rj e 1Z and g : 1Zn —• 1Z, the 77-sublevel set £25iT? of g is 

defined as QgtT) := {x G 7£n : <7(x) < 77}. In several places, a relationship between an algebraic 

condition on real variables and state properties of a dynamical system is claimed, often using the 

same symbol for a particular real variable in the algebraic statement as well as the state of the 

dynamical system. This could be a source of confusion, so care on the reader's part is required. 

II.   ESTIMATION OF THE ROBUST ROA OF SYSTEMS WITH PARAMETRIC UNCERTAINTY 

Consider the system governed by 

x(t) = f(x(t),S), (1) 

where 8 G A c TZm is the vector of unknown parameters and A is a known bounded polytope. 

For each 8 G A, /(•,<$) : Kn -> TZn is locally Lipschitz and satisfies f(0,S) = 0. The 

robust ROA is the intersection of the ROAs for all systems governed by (1), i.e., Hag A {*<> e 

7cn limt—oo ip(t; xo, 6) = 0}, where tp(t;xo,8) denotes the solution of (1) at time t with 

initial condition XQ and fixed parameter value S € A. Trivial extensions of results found in 

classic textbooks [20] show that sublevel sets of appropriate Lyapunov functions are invariant 

subsets of the robust ROA. For a subset D C 1Zm and continuously differentiable function V. 

define MDy := f\seD ix e nn : VV(x)/(x,<J) < 0} . 

Proposition 2.1: If there exist 7 > 0 and a continuously differentiable V : 7cn —» TZ such that 

V(0) = 0 and V(x) > 0 for all x ^ 0, (2) 

1V,7 is bounded, and (3) 

ftv.7\{0} C M±y, (4) 

hold, then for all xo G fiv,7 and for all 5 G A, p(t; xo, S) exists, satisfies </?(<; xo, 6) G £V,7 for 

all t > 0, and limt^oo ip(t; xo, 5) = 0, i.e., f2v,7 is an invariant subset of the robust ROA. < 

We now restrict our attention to a special case, where the dependence of / on 8 is affine, to 

obtain conditions equivalent to (4) for this special case and suitable for numerical verification (a 

generalization to polynomial dependence on 8 is treated in section III). Assume that the vector 

field in (1) is in the form 
771 

x(t) = f0{x(t)) + ^2Sifi(x(t)), (5) 



where /0, /i,..., fm : W1 -> Hn are known locally Lipschitz functions and satisfy £(0) = 0 

for i — 0,1,..., m, and 5 € A. Further, denote the set of vertices (extreme points) of A by £A. 

Then, the following follows from the affine dependence of the vector field on 5, [16]. 

Proposition 2.2: For the vector field in (5) and and continuously differentiable function V, 

the equality M&y = Me^y holds. < 

Consequently, for any continuously differentiable function V satisfying (2), (3), and 

fiv,7\{0} C Me±,v, (6) 

the sublevel set f2yi7 is an invariant subset of the robust ROA. In order to enlarge the computed 

invariant subset of the robust ROA by choice of V, we introduce a fixed, positive definite, convex 

function p, called the analysis shape factor and maximize 0 while imposing the constraints (2)- 

(3), (6), and S1P$ := {x € TZn  : p(x) < /?} C Qy^. This is written as an optimization problem, 

ff£(V) :=      max        0  subject to (2), (3), (6), and np0 C QVy. (7) 

Here, V denotes the set of candidate Lyapunov functions over which the maximum is computed, 

for example all continuously differentiable functions. In practice, p is problem-dependent, and 

chosen by the analyst. Since the form of the certified inner estimate of the robust region-of- 

attraction is a sublevel set of p, the sublevel sets of p should be well-understood (for in high- 

dimensions they cannot be visualized), and should reflect directionality/scaling information that 

the analyst is interested in learning with regard to the robust region-of-attraction. In order to 

relax the problem in (7) to a SOS programming problem, we require /o, /i, •• •, /m and p to be 

polynomials and restrict V to be a polynomial in x of fixed degree. Further, we use generalizations 

of the S-procedure [16] to obtain sufficient conditions for the set containment constraints in (7) 

and the well-known SOS sufficient condition for polynomial nonnegativity [12]: if n G E[x], 

then 7r is nonnegative. 

Let Vpoiy C V, «Si, S2, and 53 be prescribed finite-dimensional subsets of K[z], and denote 

S = («Si,«S2,«S3). For a polytopic subset D of A and positive definite polynomials l\ and l2 



(typically ^(x) = €iXTx with small scalars e,), define /^(Vp^S) as 

PD(Vpoiy,S) '•= max p subject to 

si e S[x], s2<s €. £[«], sM € E[x],   for all 5 e £D, (8a) 

/? >0, 7 > 0, 7(0) = 0, V G Vpo/y,   V-he E[4 (8b) 

- [(0 - p)si + (V - 7)] € S[x], and (8c) 

- [(7 - V)s2S + W(/0 + ££i ^/i)s3<5 + y € E[»],   for all 5 € SD. (8d) 

The feasibihty of the constraints in (8) is sufficient for the feasibility of the constraints in (7). 

Therefore, MV^S) < #f (V). 

The optimization in (8) is naturally converted to a bilinear semidefinite program (SDP), with 3 

"types" of decision variables: the free parameters in V, the free parameters in the s polynomials, 

and the free parameters introduced by the SOS constraints. The SDP is bilinear in the free 

parameters in V and multipliers s, as evidenced by the product terms (e.g. Vs2s, VV/s3<5, etc). 

We have made significant pragmatic progress in obtaining high-quality solutions to (8), using 

simulation to first derive a convex outer-bound on the set of feasible V parameters [17], followed 

by coordinatewise optimization over V and {si,s2s,szs)- Nevertheless, the nonconvexity is not 

to be taken lightly, and any numerical attempt to compute PoiVpoiyiS) must itself treated as a 

lower bound. 

Finally, note that, if l\ and l2 have positive definite quadratic part, then the feasibihty of 

(8) implies the robust stability of the uncertain linearized dynamics using common quadratic 

Lyapunov function. For systems with cubic vector fields, the feasibihty of (8) is also necessary 

by the following theorem whose proof is in the Appendix. 

Theorem 2.1: Let fo,...,fm °e cubic polynomials in x satisfying /0(0) = ... = /m(0) = 0, 

P >- 0, L\ >- 0, L2 >- 0, p(x) = xTPx, li(x) = xTL\x, and l2(x) = xTL2x. For S e A, let 

As be such that A$x is the linear (in x) part of /0(x) + £*Li $ifi(x)- If tnere exists Q >- 0 

satisfying AjQ + QAs -< 0 for all 5 e £&., then the constraints in (8) are feasible. < 

III.   POLYNOMIAL PARAMETRIC UNCERTAINTY 

We extend the development in section II to systems with polynomial parametric uncertainty. 

Specifically, we consider the system 



*(*) = Mx(t)) + 5>/,(*(*)) + £gJ(8)fmv{z(t)), (9) 

where /o,/i,.-.,/m./m+i •••,/m+mpu : lln -> 1ln are vector valued polynomial functions 

satisfying /0(0) = ... = /m+mjm(0) = 0, and gu.. .,gmpu € R[S\ are scalar valued polynomial 

functions, and S takes values in a bounded poly tope A. Note that g\,..., gmpu are bounded since 

they are polynomials with the bounded domain A. We begin with m^ = 1 (for simplicity) and 

then generalize for m^ > 1. 

Replacing gx (6) by an artificial parameter 0, the dynamics in (9) can be written as 
m 

x(t) = f0(x(t)) + ^26ifi(x(t)) + <f>fm+1{x(t)). (10) 
i=l 

Our approach is based on covering the graph of g, {(£, g(Q) € 1Zm+l : £ G A} • by a bounded 

polytope T C TZm+y. Then, the dependence of the vector field in (10) on the parameters (6,(f)) 

is affine and (8,4>) takes values in the bounded polytope T. Therefore, results from section II 

are applicable for the system in (10) by replacing A by T. 

A polytope T covering the graph of g can be obtained by bounding g from above and 

below by affine functions a[5 + bu and afS + bi over the set A, namely F(ai,au,bi, bu) := 

{(C, *l>) € 1lm+l :(£A, of C + k < IJJ < alC + bu} . The volume of T is a linear function of 

at,au,bi, and bu, Volume(r(ai,au,6i,6u)) = (o„ - cn)T / C^C + (K - k) / dC- The polytope 

with smallest volume among such covering polytopes can be characterized via 

min      Volume(r(a/,au, bi, bu)) subject to 

g{6) - {afS + 6i) > 0   and   g{8) - {(%6 + bu) < 0,   V<5 G A. 

Using the generalized S-procedure [16], an upper bound for this minimal volume can be com- 

puted by a linear SOS optimization problem. To this end, let affine functions hi, i = 1,..., JV, 

provide an inequality description for A, i.e., A = {C G TZm  :  hi(Q > 0, i — 1,..., N]. 

Proposition 3.1: The value of the optimization problem 

min Volume(r(a/,au,bi, bu)) subject to  aui € E[5], au e E[5] ,z = 1,...,N, 

- g(3) + {aTJ + bu) - Eii **(*)*(*) e E[(J], (12a) 

ff(5) - (of<5 + 6/) - £* <ru(8)hi(5) E E[S] (12b) 

is an upper bound for (11). Here <S's are finite dimensional subsets of 



Remarks 3.1: Note that Volume(r(a,, au, bu bu)) = Volume(r(0, au, 0,6U))-Volume(r(0, a<, 0,6,)), 

and therefore the optimizing values of the variables at,au,bi, and bu in Proposition 3.1 can 

equivalently be computed by two smaller optimization problems. < 

In case ra^ > 1, affine upper and lower bounds for g1,..., gmpu can be used to construct a 

polytope (with 2m+m»m vertices) covering the graph of (gx,.. .,gmpJ, [1]. 

Proposition 3.2: For j' = 1,..., m^, let afaS + 6y and a^-5 + 6UJ be affine functions bound- 

ing ^j over A from below and above, respectively. Then, the polytope T with the vertex 

set£r:=   |J {((ii,...imJer+^   :  ^ = aT
ajC + baj, a^{lu}, 3 = 1,...^^} 

CG£A 
contains the graph of (gx,..., gmpu). < 

This gives one specific procedure to cover the graph of a vector-valued multivariate polynomial 

by a convex polytope. Further research that advances graph covering strategies and quantifies 

the trade-off between the number of vertices and the volume of the covering polytope would be 

relevant and applicable to the robust ROA problem. Finally, Proposition 3.2 can be used with 

bounded non-polynomial ^s as long as affine upper and lower bounds are provided. 

IV.   BRANCH-AND-BOUND TYPE REFINEMENT IN THE PARAMETER SPACE 

The optimization problem in (8), when applied with D = A, provides a method for computing 

invariant subsets of the robust ROA characterized by a single Lyapunov function. Therefore, 

results by (8) may be conservative: the certified invariant subset may be too small relative to the 

robust ROA. On the other hand, a less conservative estimate of the robust ROA can be obtained 

by solving (8) for each 8 € A with D = {8}. For a subset D C A, define 

PbO>roiv,S) := min  /^(V^S). (13) 

Then, (3&.(Vpoiy,S) < /?l(Vpojy,5). However, computing /^(Vp^S) requires solving an opti- 

mization problem for each 8 e A, and consequently is impractical. Next, we propose an informal 

"branch-and-bound" type procedure for computing lower and upper bounds for f3*^{ypoiy, «S), i.e., 

localizing the value of (3±(Vpoiy,S). The method is based on computing a different Lyapunov 

function for each cell of a finite partition, V, of A. 

Branch-and-bound (B&B) is an algorithmic method for global optimization based on two 

steps: first the search region is partitioned into a union of smaller regions , or cells (branching) 

and then upper and lower bounds for the objective function restricted to each cell are computed 



(bounding) [10]. These steps are repeated, refining the partition each repetition (e.g. subdividing 

the cell with the worst lower bound). If the upper and lower bounds are such that their difference 

converges to zero uniformly as the size of the cell goes to zero, then the B&B algorithm converges 

to a global optimum. Without such specific guarantees, steps are simply repeated until the gap 

between the upper and lower bounds gets suitably small or a maximum number of steps is 

reached. Additionally, for our problem, we take into account the polytopic covering described 

in section HI, and recompute this covering whenever any cell is subdivided. 

The lower and upper bounds are defined over any polytope D € A. Certainly (3D (Vpoiy,S) 

is a lower bound for /^(Vp^S). Upper bounds for Ph(Vpoiy,S) can be obtained via divergent 

trajectories and infeasibility of certain necessary conditions for the constraints in (8). Let S € D 

and /?nc(<5) be the minimum value of p attained on all non-convergent trajectories of (5), with 

(^(S) := oo if there is no non-convergent trajectory. Since every trajectory entering an invariant 

subset of the robust ROA has to converge to the origin, Qpjjnc^ cannot be a subset of the robust 

ROA; hence, for any V^y and S, P*D(Vpoiy,S) < (^{S). Unfortunately, /^(S), as defined, is 

impossible to compute. But, any non-convergent trajectory yields an upper bound on /?"c(<5), and 

consequently on /^(Vp^S). In order to establish another upper bound, let (3 > 0 and S e D 

be fixed. If there exists V eV certifying that Qp%p is in the robust ROA through the constraints 

in (7), then V has to be (i) positive for all nonzero x G 1Zn. (ii) less than or equal to 1 (without 

loss of generality) and decreasing along every trajectory of (5) (for this fixed 6) starting in ttp<p. 

Therefore, if no K € V satisfies properties (i) and (ii), then there is no V £ V certifying that 

QPt0 is in the robust ROA via (7). The minimum such value, denoted (3lp(5), is an upper bound 

on PbiVpoiyiS)- In the case V is parameterized as V{x) = aTz(x) with z a vector of basis 

functions and a a vector of real scalar decision variables, constraints on V along trajectories are 

affine constraints on a; consequently, an upper bound on (3lp(5) can be determined by simulation 

and linear programming (see [17] for more details). As in all B&B algorithms, the minimum 

(over the subsets that make up the partition of A) of these upper and lower bounds are upper 

and lower bounds for 0±(Vpoiy,$)- 

V.  IMPLEMENTATION ISSUES 

The optimization problem in (8) provides a recipe to compute invariant subsets of the robust 

ROA. However, the number of constraints in (8) and consequently the number of decision 



variables increase exponentially with m + m^ because (8d) contains a SOS constraint for 

each vertex value of the uncertainty polytope. The increase in the problem size may render 

(8) computationally challenging for even modest values of m + m^. This difficulty can be 

partially alleviated by accepting suboptimal solutions for (8) in a sequential manner [16]. To this 

end, let D be a polytopic subset of A and Dsampie be a finite sample in D: 

• Solve (8) with Dsample, Vpoly, and S and call the optimizing Lyapunov function Vsample. 

• For each 5 € So, compute 

7,5 := max 7     subject to s2& 6 E[i], and s3s € E[x], 
0<7.s2«e52,s3(se53 ^4) 

-[(7 - Vsample)s2S + VVsample(f0 + ££1 Sif^szs + l2] € Z[x], 

and define Yubopt := min {7,5  :  <5 G £#} • At this point, i}VaamplcrfS*>>°pt is an invariant subset 

of the robust ROA. 

• Determine the largest sublevel set fi ^Su6opt(v     ~ of p contained in ^vaom ,ei7»«»<>p' by 

solving 

^^(Vpoiy, S) :=  max      /?     subject to Sl € E[s] 

-P - p)«! + V^mpte - 7SU&OPt] € E[X]. 

While this sequential procedure sacrifices optimality (i.e., for a given polytopic subset DCA, 

P*^01*(Vpoiy, S) < 0D{Vpoiy, S)), it provides practical advantages: For a fixed Lyapunov function 

candidate Vsampie, constraints in (8d) (which contain one SOS constraint for each vertex value 

of D) decouple. Therefore, it is possible to determine largest value of 7 such that Qv,amplta C 

{x e TZn : Wsampie(x)f(x, S) < 0} for every S 6 So by solving (14) independently for each 

5z£D. 

Remarks 5.1: Let D C A and Dsampie C D be a singleton. Then, the value 0D3ample (Vpoiy, S)- 

(3s£bopt (V^iy, S) is always non-negative and can be interpreted as a measure of potential improve- 

ment in the lower bound for l3*^(Vpoiy,S) from further sub-dividing D in the B&.B refinement 

procedure. Therefore, it may be used as a stopping criterion in an informal B&.B algorithm. 

However, we re-emphasize that f3'D3ampU (Vpoiy,S) is computed solving a non-convex optimization 

problem, so that its use as an upper bound is ad hoc and referred to as a "quasi-upper" bound 

(for example see Figure 2). < 
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Fig. 1. Top figures: Bounds for 0{ol] vs. number of BkB iterations with d(V) = 2 (left) and d(V) = 4 (right). Curves 

with "o" are for the lower bounds obtained by directly solving (8) with D taken as the vertices of the corresponding cell and 

curves with "o" are for the lower bounds obtained by applying the sequential procedure from section V by taking Dsampu as 

the center of the corresponding cell. Bottom figure: Intersections of sublevel sets of V's certified to.be in the robust ROA with 

d(V) = 2 (inner red, solid curve) and d(V) = 4 (outer red, solid curve), Sublevel sets of p certified to be in the robust ROA 

d(V) = 2 (inner black, dashed curve) and d(V) = 4 (outer black, dashed curve), estimate of the robust ROA reported in [6] 

(blue, dotted curve). Gray dots are the initial conditions of trajectories which do not converge to the origin for some 6 € [0,1]. 

VI. EXAMPLES 

For the following examples, we implemented the sequential procedure from section V using 

the method from [17] in the first step with h(x) = l2(x) = l(T6xrx and p(x) = xTx. 

A. An example from the literature 

Consider the system, [6], governed by 

-X\ -6x2+X2+xf 

3a: i — 2x2 
x 5 + 

Ax-2 - x\ 

Ylx\ - 4x2 

5\ 
-lOX! +6X2 + X\X2 

with 6 € [0,1]. We applied the refinement procedure with the initial partition {[0,1]} for d(V) = 

2 and d(V) = 4. Upper and lower bounds for p*0%l] (top left for d(V) = 2 and top right for 

d(V) = 4) and certified invariant subsets of the robust ROA are shown in Fig. 1. In both cases, 



the first iteration (a parameter independent Lyapunov function for A, [16]) and even a few more 

do not yield a certified region. 

xp = 

tfxp + bn + b128i 

+ 621 + 622^2 

0 

B.  Controlled short period aircraft dynamics 

We apply the robust ROA analysis for uncertain controlled short period aircraft dynamics (see 

the Appendix for the parameters used in the model) 

coi(zp) + Sicn(xp) + <^<?3l(Xp) 

902 {xp) + 6i?f2Xp + 62q22{xp) 

Xi 

where xp = [xi xi x3] , x1? X2, and X3 denote the pitch rate, the angle of attack, and the pitch 

angle, respectively, coi and cu are cubic polynomials, 902, 922, and 931 are quadratic polynomials, 

^12 and 4 are vectors in 1Z3, bn, 612,621, and 622 £ H, and u, the elevator deflection, is the 

control input. Variations in the center of gravity in the longitudinal direction are modeled by 

Si G [0.99,2.05] and variations in the mass are modeled £2 6 [—0.1,0.1].. The control input is 

determined by £4 = —0.864?/! H—0.321y2 and u = 2x4, where x4 is the controller state and 

the plant output y = [xi x3] . Define x := [xj X4] . We applied the branch-and-bound type 

refinement procedure with d(V) = 2 and d(V) — 4 using the sequential implementation on a 

computer cluster with 9 processors: after the first BkB iteration, the cell with the smallest lower 

bound is subdivided into 3 subcells and cells with 2-nd, 3-rd, and 4-th smallest lower bounds 

are sub-divided into 2 subcells. Fig. 2 shows the lower bounds and upper bounds. Smallest value 

of p attained on divergent trajectories, ^"c, is 8.60 and obtained for (<5i, 52) = (2.039, -0.099) 

and the initial condition (0.17,2.65, -0.10,1.24). 

C. Controlled short period aircraft dynamics with first-order unmodeled dynamics 

Consider the closed loop system in Figure 3 where uncertain first-order dynamics are intro 

duced between the controller output (v) and the plant input (u) from section VI-B 

s — <54 
u(s) = 1.25 + G{s; S3,54)v(s) = 1.25 + 0.75<53 s + 64 

v{s). (16) 

Here, S3 E [-1,1] and 64 e [10 2,102] are uncertain parameters and G(s; 63,64) is introduced 

to examine the effect of unmodeled dynamics on the ROA. Let x5 = — 64X5 — 64V and u = 



2 3 4 
number of B&B steps 

Fig. 2. Lower bounds for 0± with d(V) = 2 (solid black with "x") and d(V) = 4 (solid blue curve with "o") and 0nc (solid 

red with "o") computed at the centers of the cells generated by the B&.B Algorithm for the d(V) =4 run. Dashed curves 

are for (computed values of) f}{s) where 5 is the center of the cell with the smallest lower bound at the corresponding step of 

the B&LB refinement procedure for d(V) = 2 (dashed black with "x") and d{V) = 4 (dashed blue with "o"). 

x4 = Acx4 + Bcy 

v = CcXi 

r-\0.7563*=^\- ls+*« 

1.25 
u 

+ 
ip = fp{xp,Sp) + B(xp, 5p)i\y_ 

y = [xi x3]  

Fig. 3.    Closed-loop system with the uncertain first-order dynamics between the controller and the plant (Sp = (61,63)). 

rp 

1.5^3X5 + (1.25 + 0.756s)v be a realization of G and x = [xj x4 x5] denote the state of 

the closed loop dynamics. We applied the B&.B refinement with d(V) — 2 for two cases: (i) 

(61,62) = (1.52,0), (ii) 61 and 5% are treated as uncertain parameters (as in section VI-B) where 

the resultant vector field is affine in 6\, 62, 63, 64, 6163, 6263, and 6\ and the covering poly topes 

are in TV with 128 vertices. For p(x) = xTx, ^,4.90 is shown to be in the robust ROA for case 

(i) whereas J2P,2.80 is certified to be in the robust ROA for case (ii). 

VII.   CONCLUSIONS 

This paper considers the problem of finding certified, inner-estimates of the region-of-attraction 

for a certain class of uncertain nonlinear systems. At its core, the solution approach combines 

Lyapunov analysis, S-procedure relaxations, and SOS/SDP optimization. Four factors contribute 

to the problem complexity: number of state variables; degree of vector field; number of uncertain 

parameters; dependence of vector field on uncertain parameters. The challenges associated with 

state dimension and vector field degree (often large optimization problems) appear somewhat 



common across solution techniques. By contrast, the issues which arise from uncertainty are 

attacked using a variety of diverse techniques. 

We address the difficulties due to parameter uncertainty through parallelization, partitioning 

the parameter space, solving a large number of (uncoupled) sub-problems. While the Lyapunov 

function for each sub-problem is independent of the uncertain parameter, the net result yields a 

parameter-dependent (piecewise-constant in the parameter) Lyapunov function. This is an alter- 

native to more direct approaches which use explicitly parameter-dependent Lyapunov functions, 

e.g. [13], [5], and a single optimization (with additional indeterminate and decision variables, 

used to represent the uncertain parameters and capture their constraints) to solve the problem. 

Of course, the question of how fine the parameter space partition must be before the proposed 

method yields a certified robust ROA is still largely open, so it is impossible to say that one 

approach is superior/inferior to another. Similarly, we do not claim that the proposed strategy 

is practical for all instances of systems modeled by (9). Indeed, large numbers of uncertain 

parameters, entering the dynamics in complex ways might require an untenable level of parameter 

space partitioning to yield a positive result. Nevertheless, we have illustrated the approach on 

several academic, but nontrivial, examples, including a 5-state, 4-parameter model with non-affine 

parameter dependence. Moreover, for cubic (in state) vector fields, we have a (weak) positive 

result which follows from Theorem 2.1: for any specific partition of the parameter space, if 

over each cell, the linearized uncertain dynamics are quadratically stable, then the certification 

conditions (8) are guaranteed to be feasible (with analytically derived choices for the decision 

variables). Among other things, this implies that the uncertain linearization could provide insight 

into the level of parameter space division needed for robust region-of-attraction certification. 
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IX. APPENDIX 

Let z(x) be a vector of all monomials of degree 2 with no repetition and nz be its length. 

Lemma 9.1: Let Q € fcn and Q = QT y 0. Then there exists a positive definite matrix 

H e Kn*xn* such that xTxxTQx = z(x)THz(x). < 

Proof: Let U e ftnxn2 be such that L\z{x) = xtx, then (xTx) xTQx = Y^i(xix)TQ(xix) = 

DILi z(.x)LjQLiz{x) = z(x)THz(x) Note that L = [Li ... LT
z]    has full column rank since 

every entry of z(x) is XjXk for some 1 < j, k < n; consequently, H = LT(In <g> Q)L y 0.      • 

Proof of Theorem 2.1: Let Q ^ 0 satisfy ASQ + QA5 ^ -2L2, for all S G £A, and Q t Lx 

(such Q can be obtained by properly scaling Q). Let e = Xmin(L2), V(x) := xTQx, and // be a 

positive definite Gram matrix for (xTx)V(x) (which exists by Lemma 9.1). Let M2g € 1Zn*nz. 

and the symmetric matrix M3(s € 1ln*xnz be such that xTM2sz(x), and z(x)TM3,$2(x) are 

cubic and quartic (in x) parts of W(fo(x) + Ylu=i ^ifi(x))^ respectively. Define Si(x) = 

Amax(<9)/Amin(J'), sw(a:) = a2Sx
Tx with a25 = A^ (Mj~s + ^M^&M2S) /Amin (//) (where for 

a symmetric matrix A, A+ denotes the projection on the positive semidefinite cone), s^(x) = 1, 

7 = min {e/(2a2<5) : 5 € £A}, and 0 = 7/(2*1). Then, V - Zx and - [(/? - p)3l + (V - 7)] 

are SOS since they are positive semidefinite quadratic polynomials. For S € £&., bs(x) = 

- [(7 - V)S2S + %f5s3S + h] = [*T  z(*)T] B5 [xT  z(x)T]T, where 

-7a2SI -L2- (AJQ + QA5)      -M2S/2 

-M&/2 a2SH - MM 
Bs = y V -M25/2 

My2   a2SH-Mu 

(17) 

Note that a2SH = x•*(M^j^M") H y Ama* (M+ + iM^sM2&) I > A^ (M3(5 + £M£M2,) 11 

Mzs + ^M^M2(5. Consequently, B^ is positive semidefinite by the Schur complement formula 

applied to the far left term in (17) and bg € E[ar]. • 

Parameters for the uncertain controlled short period aircraft dynamics: coi(xp) = —0.24366x2+ 

0.082272x1x2 + 0.30492xj + 0.015426x2x3 - 3.1883*! - 2.7258x2 - 0.59781x3; th = [0 - 

0.041136 0]T; bn = 1.594150; q02(xp) = -0.054444x^+0.10889x2x3-0.054444x3
!+0.91136x1- 

0.64516x2 - 0.016621x3; 621 = 0.0443215; cn(xp) = 0.30765xi + 0.099232x| + 0.12404X! + 

0.90912x2+ 0.023258x3; bl2 = -0.06202; £12 = [0 0.00045754 0]r; 922(xp) - -0.054444x| + 

0.10889x2x3 - 0.054444x| - 0.6445x2 - 0.016621x3; 622 = 0.044321. 



Local Stability Analysis for Uncertain Nonlinear Systems 

Ufuk Topcu and Andrew Packard 

Abstract—We propose a method to compute provably invariant subsets 
of the region-of-attraction for the asymptotically stable equilibrium 
points of uncertain nonlinear dynamical systems. We consider polynomial 
dynamics with perturbations that either obey local polynomial bounds 
or are described by uncertain parameters multiplying polynomial terms 
in the vector field. This uncertainty description is motivated by both 
incapabilities in modeling, as well as bilinearity and dimension of the 
Mim-of-squarcs programming problems whose solutions provide invariant 
subsets of the region-of-attraction. We demonstrate the method on three 
examples from the literature and a controlled short period aircraft 
dynamics example. 

I. INTRODUCTION 

We consider the problem of computing invariant subsets of the 
region-of-attraction (ROA) for uncertain systems with polynomial 
nominal vector fields and local polynomial uncertainty description. 
Since computing the exact ROA, even for systems with known 
dynamics, is hard, researchers have focused on finding Lyapunov 
functions whose sublevel sets provide invariant subsets of the ROA 
[1], [2], [3], [4], [5]. Recent advances in polynomial optimization 
based on sum-of-squares (SOS) relaxations [6], [7] are utilized to 
determine invariant subsets of the ROA for systems with known 
polynomial and/or rational dynamics solving optimization problems 
with matrix inequality constraints [8], [9], [10], [11], [12], [13]. Ref. 
[14] provides a generalization of Zubov's method to uncertain sys- 
tems and [15] investigates robustness of the ROA under time-varying 
perturbations and proposes an iterative algorithm that asymptotically 
gives the robust ROA. Parametric uncertainties are considered in [16], 
[17], [18]. The focus in [16] is on computing the largest sublevel set 
of a given Lyapunov function that can be certified to be an invariant 
subset of the ROA. [17], [18] propose parameter-dependent Lyapunov 
functions which lead to potentially less conservative results at the 
expense of increased computational complexity. 

Similar to other problems in local analysis of dynamical systems 
based on Lyapunov arguments and SOS relaxations [9], [11], [12], 
[17], [13], [19], our formulation leads to optimization problems with 
bilinear matrix inequality (BMI) constraints. BMIs are nonconvex 
and bilinear SDPs (those with BMI constraints) are generally harder 
than linear SDPs. Consequently, approaches for solving SDPs with 
BMIs are limited to local search schemes [20], [21], [22], [23]). 

The uncertainty description detailed in section III contains two 
types of uncertainty: uncertain components in the vector field that 
obey local polynomial bounds and/or uncertain parameters appearing 
affinely and multiplying polynomial terms. Using this description, 
we develop an SDP with BMIs to compute robustly invariant subsets 
of the ROA. The number of BMIs (and consequently the number of 
variables) in this problem increases exponentially with the sum of the 
number of components of the vector field containing uncertainty with 
polynomial bounds and the number of uncertain parameters. One way 
to deal with this difficulty is first to compute a Lyapunov function for 
a particular system (imposing extra robustness constraints) and then 
determine the largest sublevel set in which the computed Lyapunov 
function serves as a local stability certificate for the whole family of 
systems. Once a Lyapunov function is determined for the system in 
the first step, second step involves solving smaller decoupled linear 
SDPs. Therefore, this two step procedure is well suited for parallel 
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computation leading to relatively efficient numerical implementation. 
Moreover, recently developed methods [13], [24], which use simula- 
tion to aid in the nonconvex search for Lyapunov functions, extend 
easily to the robust ROA analysis using simulation data for finitely 
many systems from the family of possible systems (e.g. systems 
corresponding to the vertices of the uncertainty polytope when the 
uncertainty can be described by a polytope). In the examples in this 
paper, we implement this generalization of the simulation based ROA 
analysis method from [13], [24]. 

The rest of the paper is organized as follows: Section II reviews 
results on computing the ROA for systems with known polynomial 
dynamics. Section III is devoted to the discussion of the motivation 
for this work and the setup for the uncertain system analysis. In 
section IV provides a generalization of the results from section 
IT to the case of dynamics with uncertainty. The methodology is 
demonstrated with three small examples from the literature and a 
five-state example in section V. 
Notation: For a; 6 V,n, x>zO means that x* > 0 for A; = 1, • • •, n. 
For Q = QT e nnxn, Q £ 0 (Q >- 0) means that xTQx > 0 
(< 0) for all x e Tln. R[x] represents the set of polynomials in 
x with real coefficients. The subset E[x] := {IT e R[x] : ff = 
f? + i2 + --- + 7r£l, 7ri,---,7rm € R[x]} of R[x] is the set of SOS 
polynomials. For n 6 R[x], d(n) denotes the degree of it. For subsets 
X\ and Xt of a vector space X, X\ + X* := {xi + X2 : X\ € 
X\, X2 € Xi'). In several places, a relationship between an algebraic 
condition on some real variables and state properties of a dynamical 
system is claimed, and same symbol for a particular real variable in 
the algebraic statement as well as the state of the dynamical system 
is used. This could be a source of confusion, so care on the reader's 
part is required. < 

II. COMPUTATION OF INVARIANT SUBSETS OF 

REGION-OF-ATTRACTION 

In this section, we give a characterization of invariant subsets of 
ROA using Lyapunov functions and formulate a bilinear optimization 
problem for computing these functions when they are restricted to 
be polynomial. These results will be modified to compute invariant 
subsets of the ROA for systems with uncertainty in section IV. Now, 
consider the system governed by 

x(t) = f(x(t)). (1) 

where x(t) € Tln is the state vector and / : ~R.n -> Kn is such 
that /(0) = 0, i.e., the origin is an equilibrium point of (1) and / is 
locally Lipschitz on 7ln. Let <p(t\ xo) denote the solution to (1) with 
the initial condition x(0) = xo. If the origin is asymptotically stable 
but not globally attractive, one often wants to know which trajectories 
converge to the origin as time approaches co. This gives rise to the 
following definition of the region-of-attraction: 

Definition 2.1: The region-of-attraction Ro of the origin for the 
system (1) is 

flo:=(xo€7en   :    lim y>(«;x0) = o) . 

< 
For T] > 0 and a function V : TZn —> 7Z, define the 77-sublevel set 
of V as 

ftv,„ := {x e Tin  :  V(x) < r/}. 

For simplicity, Qv.i is denoted by fiv- Lemma 2.2 provides a 
characterization of invariant subsets of the ROA in terms of sublevel 
sets of appropriate Lyapunov functions. 

Lemma 2.2: If there exists a continuously differentiable function 



V  : Kn ->K such that 

V(0) = 0 and V{x) > 0 for all x / 0, (2) 

Qv is bounded, and (3) 

Qv\ {0} c {x G Un  : W(at)/(») < 0}, (4) 

then for all xo G Qv, the solution of (1) exists, satisfies <p(t;xo) G 
Qv for all t > 0, and lim^oo ip(t; xo) = 0, i.e., Qv is an invariant 
subset of Ro. < 

Lemma 2.2 is proven in [11], [12] using a similar result from [25]. 
If the dynamical system has an exponentially stable linearization, one 
can impose a stricter condition replacing (4), for n > 0, by 

TABLE I 
/VSDP (LEFT COLUMNS) AND iVdeci8ion (RIGHT COLUMNS) FOR 

DIFFERENT VALUES OF n AND 2d. 

Qv\ {0} c{xenn •. vv(x)f(x) < -nv{x)} (5) 

With nonzero fi, (5) not only assures that trajectories starting in Qv 
stay in Qv and converge to the origin but also imposes a bound 
on the rate of exponential decay of V certifying the convergence 
and provides an implicit threshold for the level of a disturbance that 
could drive the system out of Qv- Therefore, one may consider the 
stability property implied by (5) with nonzero /x to be more desirable 
in practice. With this in mind, all subsequent derivations contain the 
/xV term. The relaxed condition in equation (4) can be recovered by 
setting ji = 0. 

III. SETUP AND MOTIVATION 

We now introduce the uncertainty description used in the rest of the 
paper and explain its usefulness in ROA analysis based on computing 
Lyapunov functions using SOS programming. Consider the system 
governed by 

x(t) = /(*(*)) = fo(x(t)) + 4>(x{t)) + t/>(x(t)), (6) 

where /o, <j>, V : T^n ~+ ^n are locally Lipschitz. Assume that /o is 
known, <t> 6 £>*, and %p € £>v wnere 

£>« := {</>  :  <t>i{x) r= <t>(x) * <M*) Vx € £}, 

Dtf := {xp  :  xp(x) = #(x)a VX G Q, an < a^ au}. 

Here, Q is a given subset of 1Zn containing the origin, 4>i and <£„ are 
n dimensional vectors of known polynomials satisfying <pt (x) X 0 ^ 
0u(x) for all x eG, a,ai,au G TZN, and * is a matrix of known 
polynomials. Let fa, fa,u <f>u,i, on, oti.i, and au,i denote i-th entry 
of fa fa, fa,, a, at, and au, respectively. Define V := V^-VV-^. We 
assume that /0(0) = 0, 0(0) = 0 for all ^ G X>* (i.e., fa(0) - 0, 
and 0U(O) = 0), and V(°) = 0 for all ip G V* 0*. *(0) = 0), 
which assures that all systems in (6) have a common equilibrium 
point at the origin.' In order to be able to use SOS programming, we 
restrict our attention to the case where /0, <t>i, 4>u, and * have only 
polynomial entries and Q is defined as Q := {x G Un : g{x) £ 
0, gi G R[x], i = 1,... ,m}. Note that entries of <j> do not have to 
be polynomial but have to satisfy local polynomial bounds. 

Motivation for this kind of system description stems from the 
following sources: 

(i) Perturbations as in (6) may be due to modeling errors, aging, 
disturbances and uncertainties due to environment which may 
be present in any realistic problem. Prior knowledge about 
the system may provide local bounds on the entries of <t> 
and/or bounds for the parametric uncertainties a. Moreover, 

'The assumption that all possible systems in (6) have a common equilibrium 
point can be alleviated by generalizing the analysis based on contraction 
metrics and SOS programming studied in [26] to address local stability 
(rather than global stability as in [26]). However, this method leads to higher 
computational cost. Therefore, we do not pursue this direction here. 

n 
2d 

4 6 8 10 

2 
5 
9 
14 
16 

6 
21 
55 
120 

6 
105 
825 
4200 

10 
56 

27 
1134 

15 
126 

75 
6714 

21  165 
252  2*4 
• * 

• * 

• * 

220 
680 
* 

le4 
* 

715 
* 
* 

2e5 
• 

* 153 6936 

uncertainties that do not change system order can always be 
represented as in (6) (see p.339 in [27]). 

(ii) Analysis of dynamical systems using SOS programming is 
often limited to systems with polynomial or rational vector 
field. In [28], a procedure for re-casting non-rational vector 
fields into rational ones at the expense of increasing the state 
dimension is proposed. Another way to deal with a non- 
polynomial vector field is to locally approximate the vector 
field with a polynomial, and bound the error. For practical 
purposes only finite number of terms can be used. Finite-term 
approximations are relatively accurate in a restricted region 
containing the origin. However, they are not exact. On the other 
hand, it may be possible to represent terms, for which the error 
between the exact vector field and its finite-term approximation 
obey local polynomial bounds, using <j> in (6). 

(iii) SOS programming can be used to analyze systems with 
polynomial vector fields. The number of decision variables 
^decision and the size NSDP of the matrix in the SDP for 
checking existence of a SOS decomposition for a degree Id 
polynomial in n variables grows polynomially with n if d is 
fixed and vice versa [6], However, NSDP and NdecUion get 
practically intractable for the state-of-the-art SDP solvers even 
for moderate values of n for fixed d (see Table 2. where solid 
lines in the table represent a fuzzy boundary between tractable 
and intractable SDPs). Moreover, using higher degree Lyapunov 
functions and/or higher degree multipliers (used in the sufficient 
conditions for certain set containment constraints in section IV) 
as well as higher degree vector fields increases the problem 
size, and, in fact, the growth of the problem size with the 
simultaneous increase in n and d is exponential. Therefore, 
in order to be able to use SOS programming, one may have 
to simplify the dynamics by truncating higher degree terms in 
the vector field. In this case, 4>i and <pu provide local bounds 
on the truncated terms. This is discussed further at the end 
of section (IV). It is also worth mentioning that bilinearity, 
a common feature of the optimization problems for local 
analysis using Lyapunov arguments (see section IV), introduces 
extra complexity [29] and therefore a further necessity for 
simplifying the system dynamics. 

In summary, representation in (6) and definitions of X>* and T>^, 
are motivated by uncertainties introduced due to incapabilities in 
modeling and/or analysis. 

IV  COMPUTATION OF ROBUSTLY INVARIANT SETS 

In this section, we will develop tools for computing invariant 
subsets of the robust ROA. The robust ROA is the intersection of the 
ROAs for all possible systems governed by (6) and formally defined, 
assuming that the origin is an asymptotically equilibrium point of (6) 
for all S G V, as 



Definition 4.1: The robust ROA RQ of the origin for systems 
governed by (6) is 

flJ:=P)   {xoenn   :    ]im <p(t;xo,6) = 0}, 
6€T> 

where <p(t;xo,S) denotes the solution of (6) for S 6 V with the 
initial condition x(0) = xo- < 
The robust ROA is an open and connected subset of TZn containing 
the origin and is invariant under the flow of all possible systems 
described by (6) [15]. We focus on computing invariant subsets of the 
robust ROA characterized by sublevel sets of appropriate Lyapunov 
functions. Since the uncertainty description for </> and rp holds only 
for x 6 Q, we will also require the computed invariant set to be a 
subset of Q. To this end, we modify Lemma 2.2 such that condition 
(5) holds for (6) for all <5 € V (i.e., for all <j> e V+ and ip e "D+\ 

Proposition 4.2: If there exists a continuously differentiable func- 
tion V : TZn —» 72. and p. > 0 such that, for all 6 € V, conditions 
(2M3), 

Clv Q Q, and (7) 

Clv\ {0} C {x € Un : VV(x)(/o(x) + <5(x)) < -pV(x)} (8) 

hold, then for all xo € Clv and for all 5 € V, the solution 
of (6) exists, satisfies <p(£;xo,(S) 6 Clv for all t > 0, and 
limt_oo ^(tixo^) = 0, i.e.. Clv is an invariant subset of KQ- < 

Proof: Proposition 4.2 follows from Lemma 2.2. Indeed, for 
any given system x = fo(x) + 6(x), (8) assures that (5) is satisfied. 
Then, for any fixed 5 € V and for all xo € Clv, <p{t;xo,S) exists 
and satisfies <p(t; xo, 5) e Clv for all£ > 0, limt—oo <fi(t; xo, S) = 0, 
and Civ is an invariant subset of {xo € TZn '. y(t\XG,6) -» 0}. 
Therefore, Civ is an invariant subset of JRJ. • 

Remark 4.3: In fact. Civ is invariant for both time-invariant and 
time-varying perturbations. The conclusion of Proposition 4.2 holds 
for time-varying <5(= <j> + a) as long as 0i(x) •< 4>{x,t) -< 4>u(x) 
and Qi < a(t) X a„ for all x <E Q and t > 0. Recall that, in the 
uncertain linear system literature, e.g. [30], the notion of quadratic 
stability is similar, where a single quadratic Lyapunov function proves 
the stability of an entire family of uncertain linear systems. < 

Note that V has infinitely many elements; therefore, there are 
infinitely many constraints in (8). Now, define 

£4, := {4> : <j>,e R[x] and fa is equal to <j>i,i or </>„,<}, 

£•>!> •= {i>  • il>(x) = *(X)Q, Q< is equal to aj,< or au,i}, 

and £ := £4, + £y. £\ a finite subset of V, can be used to transform 
condition (8) to a finite set of constraints that are more suitable for 
numerical verification: 

Proposition 4.4: If 

Clv\ {0} C {x € TZn : W(x)(/o(x) + £(x)) < ~liV(x)}     (9) 

holds for all £ € £. then (8) holds for all 5 e V. < 
Proof: Let x e Clv be nonzero and 6 € T>. Then, x € Q by (7); 

therefore, there exist ft,• • • ,£»,fci,...,kn (depending on x) with 
0 < £i < 1 and 0 < kt < 1 such that <5(x) = L^i(x) + (7 - 
L)<j>u(x) + *(X)(/<'QI + (I - K)au), where L and K ate diagonal 
with Lu = it and Ku = fci. Hence, there exist nonnegative numbers 
V(_ (determined from ts and fc's) for ^ e 5 with S^ef Kt • 1 
such that <5(x) = ^Jef f«£(*)- Consequently, by W(x)(/o(x) 4- 
5(x)) = VV(i)(/0(x)+E{6£ v^(x)) = Z(te uiVV(x)(fo(x)+ 
i(*)) < ~ E«€£ ^M^(x) = -/iV(i), (8) follows. • 

In order to enlarge the computed invariant subset of the 
robust ROA, we define a variable sized region Vg := 
{x € Tln : p(x) < 0}. where p € R[x] is a fixed, positive definite, 
convex polynomial, and maximize 0 while imposing constraints (2)- 

(3), (7), (9), and Vp C Clv- This can be written as an optimization 
problem. 

0' (V) :=    max     0 subject to 
vev,0>o 

(10a) 

1    ) 5d,  J 
(10b) 

(10c) 

V(0) = 0 and V(x) > 0 for all x ^ 0, 
Clv = {x € nn : V(x) < 1} is bounded, 

VB = {x € Hn : p(x) < 0} c nv, 

fiv\{0}C 
f] {x G TZn : VV(/0(x) + £(x)) < ~nV(x)} .      (10d) 

Here, V denotes the set of candidate Lyapunov functions over which 
the maximum is defined (e.g. V may be equal to all continuously 
differentiable functions). 

In order to make the problem in (10) amenable to numerical 
optimization (specifically SOS programming), we restrict V to be 
a polynomial in x of fixed degree. We use the well-known sufficient 
condition for polynomial positivity [6]: for any 7r £ R[x], if 7r e 
E[x], then 7r is positive semidefinite. Using simple generalizations of 
the 5-procedure (Lemmas 8.1 and 8.2 in the appendix), we obtain 
sufficient conditions for set containment constraints. Specifically, let 
li and I2 be a positive definite polynomials (typically exTx with 
some (small) real number e). Then, since l\ is radially unbounded, 
the constraint 

V-/ieE[x] (11) 

and V(0) = 0 are sufficient conditions for the constraints in (10b). 
By Lemma 8.1, if s\ € E[x] and 84* € E[x] for k = 1,... ,m, then 

_ [(/J - p)Sl + (V - 1)] € E[*j (12) 

Sfc-(l-V)s4fc6E[x], fc=l,...,m, (13) 

imply the first and second constraints in (10c), respectively. By 
Lemma 8.2, if 82^,83^ S S[x] for £ e £. then 

- [(1 - V)s2i + (W(/o + 0 + pV)s3i + h] 6 E[x]       (14) 

is a sufficient condition for the feasibility of the constraint in (lOd). 
Using these sufficient conditions, a lower bound on 0'{V) can be 
defined as an optimization: 

Proposition 4.5: Let 0'B be defined as 

0'B(Vpoiy,S) := max 0 subject to (11) - (14),    (15) 
V,g.ai,33i ,«3£,a4ik 

V(0) = 0, V 6 Vpo,v, si € Si, s2« € Sa<, sH 6 5^, 
stk € <S4/t, and 0 > 0. Here, Vpoiy C V and <S's are prescribed 
finite-dimensional subspaces of R[x] and E[x], respectively. Then, 
0'B(VPOIV,S)<0*(V1>OIV). < 

The optimization problem in (15) provides a recipe to compute 
subsets of 1Zn that are invariant under the flow of all possible systems 
described by (6). The number of constraints in (15) (consequently the 
number of decision variables since each new constraint includes new 
variables) increases exponentially with N and n — h where n is 
defined as the number of entries of the vectors 4>i and 0V satisfying 
</>((*) = <Mx) = 0 for all x € Q. Namely, there are 2(n_fl)+N 

SOS conditions in (15) due to the constraint in (14). Revisiting the 
discussion in item (iii) at the end of section III, we note that covering 
the high degree vector field with low degree uncertainty reduces 
the dimension of the SOS constraints but increases (exponentially, 
depending on n — h) the number of constraints. Consequently, the 
utility of this approach will depend on n — fi and is problem 
dependent. Example (3) in section V-A illustrates this technique. 

This difficulty can be partially alleviated by accepting suboptimal 
solutions for (15) in two steps: First compute a Lyapunov function for 



a finite sample of systems corresponding to the finite set T>sampu C 
V (for example, T>aampu can be taken as the singleton corresponding 
to the "center" of V) solving the problem 

0 subject to max 
V,(3,3i,S2i,»3<5,»4/t 

V-he E[x], 
-[(/3-P)s, + (V-l))€E[x] 

gk - (1 - V)s4k 6 £[*], k = 1,..., m, 
- [(1 - V)s2i + VV(/o + 5)S3S + h] € E[x], 

(16) 

for 5 € T>,ampit, where Si 6 Si,S2« 6 Si,S3t € <S*3,S4fc € 54 
are SOS, V e Vpoiv, V(0) = 0, and let V the Lyapunov function 
computed by solving (16). In the second step, compute the largest 
sublevel set Vg.-ubopt such that V certifies V0,UboPt to be in the ROA 
for every vertex system by solving several smaller decoupled affine 
SDPs. For {ef, define 

7{ := max       7 subject to  S2,S3€E[i], 
T.«2€S2,33€S3 (17) 

- [(7 - V>2 + VV(/0 + Oss + h] e E[s], 

and Yubopt := min{7« : (ef}. Then, a lower bound for 0,ubopt 

can be computed through 

pubopt ._      max p subject t0  s   € s[i] 
0,ji€Si 

[(^-P)Sl + (V-7su6opt)]eS[x]. 
(18) 

While the two-step procedure sacrifices optimality, it has prac- 
tical computational advantages. The constraints in (14) decouple 
in the problem (17). In fact, for each £ e £&, the problem in 
(17) contains only a single constraint from (14). Therefore, this 
decoupling enables suboptimal local stability analysis for systems 
with uncertainty without solving optimization problems larger than 
those one would have to solve in local stability analysis for systems 
without uncertainty. Furthermore, problems in (17) can be solved 
independently for different £ G £A and therefore computations can 
be trivially parallelized. Advantages of this decoupling may be better 
appreciated by noting that one of the main difficulties in solving 
large-scale SDPs is the memory requirements of the interior-point 
type algorithms [31]. Consequently, it is possible to perform some 
ROA analysis on systems with relatively reasonable number of states 
and/or uncertain parameters using the proposed suboptimal solution 
technique. 

Finally, the following upper bound on the value of p, for which 
(14) can be feasible, will be useful in section V. 

Proposition 4.6: Let Li >• 0 and li(x) := xTLix. Then. 

p := max p    subject to 
M>O,P=P

T
>:0 

AjP + PA( + pP< -Li,   for all £ <E £, 
(19) 

where A{ :=  9<>fy*®        , is an upper bound for the values of \x 

such that (14) can be feasible. < 

Proof: With l2 as defined and s2«,S3< € £[3], if 6?(x) := 
- [(1 - V)si( + (VV(/o + £) + fJ.V)s3i + h} € E[x], then s2? 

and 6{ cannot contain constant and linear monomials and the 
quadratic part of b{ has to be SOS and equivalently positive semidef- 
inite. Therefore, the result follows from the fact that, for fixed n > 0 
and positive definite quadratic h, the existence of P fc 0 satisfying 
Aj P + PAs + nP •< -Li is necessary for the existence of V, S2{, 
and S3( feasible for (14). • 

Note that the problem in (19) can be solved as a sequence of affine 
SDPs by a line search on /x. 

Fig. 1. Invariant subsets of ROA reported in [16] (solid) and those computed 
solving the problem in (15) with d(V) = 2 (dash) and d(V) = 4 (dot) along 
with initial conditions (stars) for some divergent trajectories of the system 
corresponding to a = 1. 

TABLE II 
OPTIMAL VALUES OF 0 IN THE PROBLEM (15) WITH DIFFERENT VALUES 

OF /i AND d(V) = 2 AND 4. 

^-^a(v) 
2 4 

0 0.623 0.771 
0.01 0.603 0.763 
0.05 0.494 0.742 
0.1 0.404 0.720 
0.15 0.277 0.698 
0.2 0.137 0.676 

v. EXAMPLES 

In the following examples, p(x) = xTx (except for example (2) 
in section V-A), h(x) = 10~6xTx, and h{x) • 10"6xTx. All 
certifying Lyapunov functions and multipliers are available at [32]. 
All computations use the generalization of the simulation based ROA 
analysis method from [13], [24]. Representative computation times 
on 2.0 GHz desktop PC are listed with each example. 

A. Examples from the literature 

(1) Consider the following system from [16]: xi = xi and 
±2 = —xi + Q(—Xi + xf), where a € [1,3] is a parametric 
uncertainty. We solved problem (15) with d(V) = 2 and d(V) = 4 
for p. = 0,0.01,0.05,0.1,0.15, and 0.2. Note that p, (as defined 
in Proposition 4.6) is 0.244. Typical computation times are 5 and 8 
seconds for d(V) = 2 and 4, respectively. 

Figure 1 shows the invariant subset of the robust ROA reported 
in [16] (solid) and those computed here with d(V) = 2 (dash) and 
d(V) = 4 (dot) for p. = 0 along with two points (stars) that are initial 
conditions for divergent trajectories of the system corresponding to 
a = 1. Table II shows the optimal values of 0 in the problem (15) 
with d(V) = 2 and 4 for different values of p.. 

(2) Consider the system (from [17]) of xi = -X2 + 0.2QX2 and 
xi = Xi + (x? — 1)X2 where a 6 [—1,1]- For easy comparison with 
the results in [17], let p(x) = 0.378x? - 0.274xix2 + 0.278x2 and 
p = 0. In [17], it was shown that P0.545 (with a single parameter 
independent quartic V), P0.772 (with pointwise maximum of two 
parameter independent quartic K's), T'o.600 (with a single parameter 



Fig. 3.    Invariant subsets of ROA with d(V) = 2 (solid) and d(V) = 4 
2       (dash) along with initial conditions for divergent trajectories (" * " for <p(x) = 

(0.76i|,0.19(if+i^))and"x"for*(i) = (-0.76i^,-0.19(i?+i^))). 

Fig. 2. Invariant subsets of ROA with d( V) =4 (inner solid) and d{ V) = 6 
(dash) along with the unstable limit cycle (outer solid curves) of the system 
corresponding to a = —1.0, —0.8,.. •, 0.8,1.0. 

TABLE III 
OPTIMAL VALUES OF 0 IN THE PROBLEM (15) WITH DIFFERENT VALUES 

OF n AND 8(V) = 4 AND 6. 

~\9(V) 4 6 
M       "~^-~^_ 
0 0.773 0.826 
0.01 0.767 0.820 
0.05 0.741 0.803 
0.1 0.708 0.787 
0.2 0.640 0.750 
0.5 0.517 0.651 
0.75 0.406 0.573 

13 and 35 seconds for d(V) = 2 and 4, respectively. 

B. Controlled short period aircraft dynamics 

Consider the plant dynamics 

-3     -1.35    -0.56] [ 1.35-0.04.22 
0.91    -0.64    -0.02     z + 0.4 
10 0     J        L ° 

(1 + ai)(0.08ziz2 + 0.44z| + 0.01z2z3 + 0-22z$ 
(1 + O2)(-0.05z| + O.IIZ2Z3 - 0.05z|) 

0 

dependent quartic (in state) V), Po.soe (with pointwise maximum of 
two parameter dependent quartic (in state) V's) are contained in the 
robust ROA. On the other hand, the solution of problem (15) with 
d(V) = 4 and d(V) = 6 certifies that P0.773 and VO.MB are subsets 
of the robust ROA, respectively. Figure 2 shows invariant subsets of 
the robust ROA computed using d(V) = 4 (inner solid) and d(V) = 
6 (dash) along with the unstable limit cycle (outer solid curves) of the 
system corresponding to Q = —1.0, —0.8,... ,0.8,1.0. In order to 
demonstrate the effect of the parameter /x on the size of the invariant 
subsets of the robust ROA verifiable solving the optimization problem 
in (15), the analysis is repeated with /j. = 0.01,0.05,0.1., 0.2,0.5, 
and 0.75. Note that p. (as defined in Proposition 4.6) is 0.769. Table 
III shows the optimal values of 0 in the problem (15) with d(V) = 4 
and 6 for different values of p.. Typical computation times are 19 and 
24 seconds for d(V) = 4 and 6, respectively. 

(3) Consider the system governed by 

-2xi +X2 + x? + l.58xl 
-xi -x2+ 0.13X2 + 0.66xfo;2 

0(x),      (20) 

where <j> satisfies the bounds -0.76x2 < 4>i(x) < 0.76x2 and 
-0.19(xj + x\) < <fo(x) < 0.19(x? + x\) in the set Q = {x € 
V? g(x) = xTx < 2.1}. Fig. 3 shows invariant subsets of 
the robust ROA computed with d(V) = 2 (solid) and d(V) = 4 
(dash) along with two points that are initial conditions for divergent 
trajectories (" * " for </>(x) = (0.76x1,0.19(x? + xl)) and " x " for 
4>{x) = (-0.76x2, -0.19(xi+X2))). Typical computation times are 

(21) 

y = [zi Z3] , where z\, zi and, Z3 are the pitch rate, the angle of 
attack, and the pitch angle, respectively. The input u is the elevator 
deflection and determined by 

-0.60 
0 

0.09 
0 

-0.06    -0.02 
-0.75    -0.28 

(22) 

u = 7)1 + 2.2r/2, where r\ is the controller state. Here, Qi and Q2 are 
two uncertain parameters introducing 10% uncertainty for the entries 
of the plant dynamics that are nonlinear in v, i.e., o.\ € [—0.1,0.1] 
and a2 € [—0.1,0.1]. Entries in the vector fields above are shown 
up to three significant digits. The exact vector field used for this 
example is available at [32]. The solution of (15) with d(V) = 2 
and fi = 0 verifies that 777.2 C #0 whereas it can be certified 
that T's.6 is a subset of the ROA for the nominal system (i.e., for 
Qi,i = c*i,2 = Qti,i = c»u,2 = 0). With d(V) = 4 the problem in 
(15) has more than 4000 decision variables. Therefore, we computed 
a suboptimal solution in two steps for n = 0: We first computed 
a Lyapunov function for the nominal system (35 minutes, which 
certifies that Pi 5.2 is in the ROA for the nominal system) and then 
verified (3 minutes) that V<z.$ is an invariant subset of the ROA for 
the uncertain system. To assess the suboptimality of the results, we 
performed extensive simulations for the uncertain system setting QI 

and 0:2 to their limit values and found a diverging trajectory with 
the initial condition satisfying p(z(0),T7(0)) « 14. The gap between 
the value of 0 M 14 for which Pg cannot be a subset of the robust 
ROA and the value of 0 = 9.6 for which Vg C Ro is verified 
may be due to the finite dimensional parametrization for V, the 
issues mentioned in Remark 4.3, the fact that we only use sufficient 
conditions and/or suboptimality of the two step procedure used for 
this example; nevertheless, it demonstrates a necessity of further study 
to make local system analysis based on Lyapunov functions and SOS 
relaxations more efficient. 



VI. CONCLUSIONS 

We proposed a method to compute provably invariant subsets of the 
region-of-attraction for the asymptotically stable equilibrium points 
of uncertain nonlinear dynamical systems. We considered polynomial 
dynamics with perturbations that either obey local polynomial bounds 
or are described by uncertain parameters multiplying polynomial 
terms in the vector field. This uncertainty description is motivated by 
both incapabilities in modeling, as well as bilinearity and dimension 
of the sum-of-squares programming problems whose solutions pro- 
vide invariant subsets of the region-of-attraction. We demonstrated 
the method on three examples from the literature and a controlled 
short period aircraft dynamics example. 
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VIII. APPENDIX 

Following two lemmas are simple generalizations of the S- 
procedure. The proof of the first one is trivial. We provide a proof 
for the second one. 

Lemma 8.1: Given go,Si, •• ,<?m £ R[x], if there exist 

»i,•••,««! € £[z] such that go - YliLi s*9* € ^lx\- men 

{ier   : gi(x),.. .,gm{x) >0}C{xenn: g0{x) > 0} .      < 
Lemma 8.2: Let  g   6   R[x]  be positive definite,  h   6   R[x], 

7 > 0, s\,S2 € £[z], ' € R[E] be positive definite and satisfy 
1(0) = 0. Suppose that - [(7 - g)si + hs2 + I] € E[x] holds. Then, 
^9/A{0} C {x € Kn   :  h(x) < 0 and si(x) > 0}. < 

Proof: Let x € fig,-, be nonzero. Then. 

0 > -l{x) - (7 - g(x))s2(x) > h{x)s2(x), 

and, consequently, S2(x) > 0 (since S2(x) > 0) and h(x) < 0.     • 
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1     Introduction 

The region-of-attraction (ROA) of a locally asymptot- 
ically stable equilibrium point is an invariant set such 
that all trajectories emanating from points in this set 
converge to the equilibrium point. Computing the exact 
ROA for nonlinear dynamics is very hard if not impossi- 
ble. Therefore, researchers have focused on determining 
invariant subsets of the ROA. Among all other meth- 
ods those based on Lyapunov functions are dominant in 
the literature (Davison and Kurak, 1971; Genesio et al, 
1985; Vannelli and Vidyasagar, 1985; Chiang and Thorp, 
1989; Chesi et cd., 2005; Papachristodoulou, 2005; Tan 
and Packard, 2006; Hachicho and Tibken, 2002; Tibken 
and Fan, 2006; Tibken, 2000). These methods compute 
a Lyapunov function as a local stability certificate and 
sublevel sets of this Lyapunov function, in which the 
function decreases along the flow, provide invariant sub- 
sets of the ROA. 
Using sum-of-squares (SOS) relaxations for polynomial 
nonnegativity (Parrilo, 2003), it is possible to search for 
polynomial Lyapunov functions for systems with poly- 
nomial and/or rational dynamics using semidefinite pro- 
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+ 1 510 642 6163. 
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gramming (Papachristodoulou, 2005; Tan and Packard, 
2006; Hachicho and Tibken, 2002). Reliable and efficient 
solvers for linear semidefinite programs (SDPs) are avail- 
able (Sturm, 1999). However, the SOS relaxation for the 
problem of computing invariant subsets of the ROA leads 
to bilinear matrix inequality (BMI) constraints. BMIs 
are nonconvex and bilinear SDPs, those with BMI con- 
straints, are known to be NP-hard in general (Toker and 
Ozbay, 1995). Consequently, the state-of-the-art of the 
solvers for bilinear SDPs is far behind that for the linear 
ones. Recently PENBMI, a solver for bilinear SDPs, was 
introduced (Kocvara and Stingl, 2005) and subsequently 
used for computing invariant subsets of the ROA (Tan 
and Packard, 2006; Tibken and Fan, 2006). It is a local 
optimizer and its behavior (speed of convergence, qual- 
ity of the local optimal point, etc.) depends on the point 
from which the optimization starts. 
By contrast, simulating a nonlinear system of moderate 
size, except those governed by stiff differential equations, 
is computationally efficient. Therefore, extensive simu- 
lation is a tool used in real applications. Although the 
information from simulations is inconclusive, i.e., cannot 
be used to find provably invariant subsets of the ROA, it 
provides insight into the system behavior. For example, 
if, using Lyapunov arguments, a function certifies that a 
set V is in the ROA, then that function must be positive 
and decreasing on any solution trajectory initiating in V. 
Using a finite number of points on finitely many conver- 
gent trajectories and a linear parametrization of the Lya- 
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punov function V, those constraints become affine, and 
the feasible polytope (in ^-coefficient space) is a convex 
outer bound on the set of coefficients of valid Lyapunov 
functions. It is intuitive that drawing samples from this 
set to seed the bilinear SDP solvers may improve the 
performance of the solvers. In fact, if there are a large 
number of simulation trajectories, samples from the set 
often are suitable Lyapunov functions (without further 
optimization) themselves. Effectively, we are relaxing the 
bilinear problem (using a very specific system theoretic 
interpretation of the problem) to a linear problem, and 
the true feasible set is a subset of the linear problem's 
feasible set. Information from simulations is also used in 
(Prokhorov and Feldkamp, 1999) and (Serpen, 2005) for 
computing approximate Lyapunov functions. 

Notation: For x £ TZn, x >z 0 means that Xk > 0 for 
k = l,-- ,n. For Q = QT £ ftnxn, Q t 0 (Q X 0) 
means that xTQx > 0 (< 0) for all x £ Un. R[x] repre- 
sents the set of polynomials in x with real coefficients. 
The subset E[x] := {w £ R[x]   :   n = TX\ + 7rf H + 
7r£,, 7Ti, • • • , 7rm £ R[x]} of R[x] is the set of SOS polyno- 
mials. For TV £ R[x], d(n) denotes the degree of n. Cl de- 
notes the space of continuously differentiable functions. 
We use the term "semidefinite programming" to mean 
optimization problems with affine objective function and 
general (not necessarily affine) matrix (semi)definiteness 
constraints. < 

2    Characterization of invariant subsets of the 
ROA and bilinear SOS problem 

Consider the autonomous nonlinear dynamical system 

x(t) = f(x(t)), (1) 

where x(t) £ Un is the state vector and / : Kn -» Un 

is such that /(0) = 0, i.e., the origin is an equilibrium 
point of (1), and / is locally Lipschitz. Let <£(£, t) denote 
the solution to (1) at time t with the initial condition 
<£(£, 0) = £. If the origin is asymptotically stable but not 
globally attractive, one often wants to know which tra- 
jectories converge to the origin as time approaches oo. 
The region-of-attraction Ro of the origin for the system 
(1) is Ro := {£ € Tln : limt_oo <£(£, t) = 0} . A modifica- 
tion of a similar result in (Vidyasagar, 1993) provides 
a characterization of invariant subsets of the ROA. For 
n > 0 and a function V : TZn —• H, define the 77-sublevel 
set Qv,v of V as Qv,7 := {x e Kn : V(x) < 17}. 

Lemma 1 Let 7 £ 11 be positive. If there exists a C1 

function V : Kn —• K such that 

Qv,i is bounded, and (2) 
V(0) =0 and V(x) >0 for allx£Kn (3) 
nVl7\ {0} C {x £ Tin  : VV(x)/(x) < 0} , (4) 

then for all £ £ Qv,-,, the solution of (1) exists, satisfies 
</>(£, t) £ 17v,7 for all t > 0, and limt_oo <j>(£, t) = 0, i.e., 
f2v\7 is an invariant subset of Ro. < 

In order to enlarge the computed invariant sub- 
set of the ROA, we define a variable sized region 
Vp := {x£lln : p(x) < 0}, where p £ R[x] is a fixed 
positive definite convex polynomial, and maximize 0 
while imposing the constraint Vp C Qyi7 along with the 
constraints (2)-(4). This can be written as 

0* (V) :=    max     0 subject to (2) - (4), Pg C fiVr 

(5) 
Here V denotes the set of candidate Lyapunov func- 
tions over which the maximum is defined, for example all 
C1 functions. Lemma 1 and the associated optimization 
problem in (5) provide a characterization of the invari- 
ant subsets of the ROA in terms of the sublevel sets of 
Lyapunov functions. 

The problem in (5) is an infinite dimensional problem. 
In order to make it amenable to numerical optimization 
(specifically SOS optimization), we restrict V to be all 
polynomials of some fixed degree. We use the well-known 
sufficient condition: for any 7r £ R[x], if n £ E[x], then 
•K is positive semidefinite (Parrilo, 2003). Using simple 
generalizations of the 5-procedure (Lemmas 2 and 3), 
we obtain sufficient conditions for set containment con- 
straints. Specifically, let l\ and I2 be a positive definite 
polynomials (typically exrx for some small real number 
e). Then, since h is radially unbounded, the constraint 

V - h £ E[x] (6) 

and V(0) = 0 are sufficient conditions for (2) and (3). 
By Lemma 2, if si £ E[x], then 

-[(/3-p)s1 + (V-7)]eE[x] (7) 

implies the set containment Vp C fiyi7, and by Lemma 
3, if S2, S3 £ E[x], then 

- [(7 - V)s2 + WVfs3 + Ia] G E[x] (8) 

is a sufficient condition for (4). Using these sufficient 
conditions, a lower bound on /9*(V) can be defined as 

0*B{V,S) :=       max     0 subject to (6) - (8), 

V(O)=O,Si£i:{x},0>O. 

Here, the sets V and <S, are prescribed finite-dimensional 
subspaces of polynomials. Although 0B depends on these 
subspaces, it will not always be explicitly notated. Note 
that since the conditions (6)-(8) are only sufficient con- 
ditions, 0B(V,S) < 0*(V) < 0*(C1). The optimization 
problem in (9) is bilinear because of the product terms 
0S\ in (7) and VS2 and VV/S3 in (8). However, the prob- 
lem has more structure than a general BNfl problem. If 
V is fixed, the problem becomes affine in 5 = {si, S2, S3} 
and vice versa. In section 3, we will construct a convex 
outer bound on the set of feasible V and sample from 
this outer bound set to obtain candidate V's, and then 
solve (9) for S, holding V fixed. 



3    Relaxation of the bilinear SOS problem using 
simulation data 

The usefulness of simulation in understanding the ROA 
for a given system is undeniable. Faced with the task of 
performing a stability analysis (eg., "for a given p, is Vp 
contained in the ROA?"), a pragmatic, fruitful and wise 
approach begins with a linearized analysis and at least a 
modest amount of simulation runs. Certainly, just one di- 
vergent trajectory starting in Vp certifies that Vp <£. RQ. 

Conversely, a large collection of only convergent trajec- 
tories hints to the likelihood that indeed Vp C RQ- Sup- 
pose this latter condition is true, let C be the set of Nconv 

trajectories c converging to the origin with initial condi- 
tions in Vp. In the course of simulation runs, divergent 
trajectories d whose initial conditions are not in Vp may 
also get discovered, so let the set of d's be denoted by 
D and Ndiv be the number of elements of D. Although 
C and D depend on /? and the manner in which Vp is 
sampled, this is not explicitly notated. 
With (3 and 7 fixed, the set of Lyapunov functions which 
certify that Vp C RQ, using conditions (6)-(8), is sim- 
ply {V € R[x] : (6) - (8) hold for some Si € £[x]} . Of 
course, this set could be empty, but it must be contained 
in the convex set {V € R[x]  :  (10) holds}, where 

W(c(t))/(c(«)) < 0, 

h(c(t)) < V(c(t)), and V(c(0)) < 7,        (10) 

>y + 6<V(d(t)), 

for all c € C, d € D, and t > 0, where 5 is a fixed (small) 
positive constant. Informally, these conditions simply say 
that any V which verifies that Vp C RQ using the condi- 
tions (6)-(8) must, on the trajectories starting in Vp, be 
decreasing and take on values between 0 and 7. More- 
over, V must be greater than 7 on divergent trajecto- 
ries. In fact, with the exception of the strengthened lower 
bound on V (beyond mere positivity), the conditions in 
(10) are even necessary conditions for any V € C1 which 
verify Vp C RQ using conditions (2)-(4). 

S.l    Affine relaxation using simulation data 

Let V be linearly parameterized as V := {V £ 
R[x] : V(x) = <p(x)Ta}, where a e Knb and 
<p is rib-dimensional vector of polynomials in x. 
Given (p(x), constraints in (10) can be viewed as 
constraints on a € TZnb yielding the convex set 
{a € Tlnb : (10) holds for V = y(x)Ta}. For each 
c € C, d 6 D, let Tc and Td be finite subsets of the 
interval [0,00) including the origin. A polytopic outer 
bound for this set described by finitely many constraints 
is y8im •= {<* 6 Hnb  :  (11) holds}, where 

[V^(c(rc))/(c(rc))]
Ta<0, 

/i(c(rc)) < <p(c(rc))
Ta, and v>(c(0))Ta < 7,     (H) 

if{d{Td))
Ta > 7 + S 

for all c e C, TC € Tc, d € D, and rd € Td. Note 
that v?(c(0))Ta < 7 in (11) provides necessary condi- 
tions for Vp C 1V,7 since c(0) e Vp for all c € C. 
In practice, we replace the strict inequality in (11) by 
[V<P(C(TC))/(C(TC))]

T
 a < -Z3(C(TC)), where Z3 is a fixed, 

positive definite polynomial imposing a bound on the 
rate of decay of V along the trajectories. 
The constraint that VV/ be negative on a sublevel set 
of V implies that VV/ is negative on a neighborhood 
of the origin. While a large number of sample points 
from the trajectories will approximately enforce this, 
in some cases (eg. exponentially stable linearization) it 
is easy to analytically express as a constraint on the 
low order terms of the polynomial Lyapunov function. 
For instance, assume V has a positive-definite quadratic 
part, and that separate eigenvalue analysis has estab- 
lished that the linearization of (1) at the origin, i.e., 
x = V/(0)x, is asymptotically stable. Define C(P) := 
(V/(0V)TP + P(V/(0)), where PT = P >- 0 is such 
that x1Px is the quadratic part of V. Then, if (8) holds, 
it must be that 

C(P) ~< 0. (12) 

Let yHn :={a£Knb : P = PT >- 0 and (12) holds}. 
It is well-known that yun is convex (Boyd and Vanden- 
berghe, 2004). Again, in practice, (12) is replaced by the 
condition C(P) ^ — el, for some small real number e. 
Furthermore, define ysos •= {» € %nh : (6) holds}. 
By (Parrilo, 2003), ysos is convex. Since ysim, yun and 
ysos are convex, y := ysim n yiin n ysos is a convex 
set in 1Znb. Equations (11) and (12) constitute a set of 
necessary conditions for (6)-(8); thus, we have y ^ B := 
{a € Hnb : 3s2,s3 € E[x] such that (6) - (8) hold}. 
Since (8) is not jointly convex in V and the multipliers, B 
may not be a convex set and even may not be connected. 
A point in y can be computed solving an affine (feasi- 
bility) SDP with the constraints (6), (11) and (12). An 
arbitrary point in y may or may not be in B. However, if 
we generate a collection A := {a^}fc=o_1 OI Nv points 
distributed approximately uniformly in 3^, it may be that 
some of the points are in B. To this end, we use the so- 
called "Hit-and-Run" (H&R) random point generation 
algorithm as described in (Tempo et al., 2005). When 
applied to generate a sample of y, each step of HhR 
algorithm requires solving four small affine SDPs. 

S.2   Algorithms 

Since a feasible value of 0 is not known a priori, an iter- 
ative strategy to simulate and collect convergent and di- 
vergent trajectories is necessary. This process when cou- 
pled with the H&cR algorithm constitutes the Lyapunov 
function candidate generation. 

Simulation and Lyapunov function generation (SimLFG) 
algorithm: Given positive definite convex p 6 R[x], a 
vector of polynomials i/?(x) and constants &SIM, Nconv, 
Nv, Pshrink € (0,1), and empty sets C and D, set 7 = 1, 
•<*more = Nconv, Pidiv = 0- 

i. Integrate (1) from iVmore initial conditions in the 



set {xeTln  : p(x) = 0SIM}- 
ii. If there is no diverging trajectory, add the trajec- 

tories to C and go to (iii). Otherwise, add the di- 
vergent trajectories to D and the convergent tra- 
jectories to C, let Nd denote the number of diverg- 
ing trajectories found in the last run of (i) and set 
Ndiv to Ndiv + Nd- Set 0SIM to the minimum of 
PshrinkPsiM and the minimum value of p along the 
diverging trajectories. Set Nmore to Nmore — Nd, 
and go to (i). 

iii. At this point C has Nconv elements. For each i = 
l,---j,Nconv, let Ti satisfy d(r) £ VpstM forjill 
T >Tf. Eliminate times in % that are less than r*. 

iv. Find a feasible point for (6), (11), and (12). If 
(6), (11), and (12) are infeasible, set 0SIM = 
0shrink0siM, and go to (iii). Otherwise, go to (v). 

v. Generate Ny Lyapunov function candidates using 
H&R algorithm, and return 0SIM and Lyapunov 
function candidates. < 

The suitability of a Lyapunov function candidate is as- 
sessed by solving two optimization problems. Both prob- 
lems require bisection and each bisection step involves a 
linear SOS problem. Alternative linear formulations ap- 
pear in the appendix. These do not require bisection, but 
generally involve higher degree polynomial expressions. 
Problem 1: Given V £ R[x] (from SimLFG algorithm) 
and positive definite 1% € R[x], define 

7? :=  max 7 subject to S2,S3 £ £[x], 7 > 0, 
7,«2,»3 (13) 

- [(7 - V)s2 + W/s3 +12] £ £[*]. 

If Problem 1 is feasible, then 7^ > 0 and define 
Problem 2: Given V £ R[x], p £ R[x], and j*L, solve 

01 := max (3 subject to sj £ £[x], 0 > 0, 
0,si (14) 

-[(/?-p)Sl-(V-7l)]GEN. 

Although 72 and 0*L depend on the allowable degree of 
S\, S2, and S3, this is not explicitly notated. 
Assuming Problem 1 is feasible, it is true that V$'L \{0} C 
fivvy£\{0} C {x £ Tln : W(x)/(x) < 0}, so V certifies 
that T>$* C Ro- Solutions to Problems 1 and 2 provide a 
feasible point for the problem in (9). This feasible point 
can be further improved by solving the problem in (9) 
using PENBMI and/or iterative coordinate-wise linear 
optimization schemes, one of which is given next. 
Coordinate-wise optimization (CWOpt) algorithm: 
Given V £ R[x], positive definite h,h £ R[x], a con- 
stant £jter> and maximum number of iterations Niter, 
set k = 0 

i. Solve Problems 1 and 2. 
ii. Given s\, s2, S3, and 7^ from step (i), set 7 in (7)- 

(.8) to 7^, solve (9) for V and 0, and set 0*L = 0%. 
iii. If k = Niter or the increase in 0*L between successive 

applications of (ii) is less than £iter, return V, 7^, 
and 0*L. Otherwise, set k to k + 1 and go to (i).   < 

The algorithms (SimLFG, Problems 1 and 2, and 
CWOpt) yield lower bounds on 0*(C1), as they produce 
a Lyapunov function which certifies that a particular 
value of 0 satisfies VQ £ Re- Upper bounds (i.e., values 
of 0 that are not certifiable) may also be obtained. More 
specifically, diverging trajectories found in the course of 
simulation runs provide upper bounds on 0*(Cl) while 
inconsistency of the constraints (6), (11), and (12) pro- 
vide upper bounds on 0*B. A diverging trajectory with 
the initial condition xo satisfying p(xo) = 0 proves that 
V0 cannot be a subset of the ROA, i.e., 0* (C1) < 0. Fur- 
thermore, restricting Lyapunov function candidates to 
Vip := {ifi(x)Ta : a £ Hnbj has additional implications. 
Infeasibility of any of the constraints (6), (11), and (12) 
for some value of f3 (recall (11) implicitly depends on 
0) verifies 0% (Vv,5) < 0* (vj < 0, regardless of the 
subspaces constituting <S. Moreover, the gap between 
the value of 0 proven unachievable and what we actu- 
ally certify, namely a lower bound to 0*B (V^,, S), can be 
used as a measure of suboptimality introduced due to 
the finiteness of the degree of the multipliers and the 
fact that the bilinear search and the coordinate-wise lin- 
ear search are only local optimization schemes. Finally, 
H&cR, SimLFG and CWOpt algorithms become more 
efficient using parallel computing. 

4    Examples 

Certifying Lyapunov functions, multipliers and missing 
parameters for all examples in this paper are available 
at http://j agger.me.berkeley.edu/"pack/certify. 
In the examples, k(x) = 10_6xTx for i = 1,2,3. 

4-1    Van der Pol dynamics 

The Van der Pol dynamics ±i = —X2, ±2 = xi + (xf - 
l)x2 have a stable equilibrium point at the origin and an 
unstable limit cycle. The limit cycle is the boundary of 
the ROA. We applied SimLFG algorithm with p(x) = 
xTx and the parameters Nconv — 200, 0SIM = 3.0 (ini- 
tial value), 0shrink = 0.9, and Nv = 50 for d(V) = 2,4, 
and 6. We found NdiV = 21 diverging trajectories dur- 
ing the simulation runs and feasible solutions for (6), 
(11), and (12) in step (iv) with 0SIM = 1-44, 1.97, 
and 2.19 for d(V) = 2,4, and 6, respectively We as- 
sessed (computed corresponding values of 0*L for) the 
Lyapunov function candidates generated in step (v) solv- 
ing Problems 1 and 2 and further optimized initializing 
PENBMI with the solutions of these problems. Fig. 1 
shows 0*L and corresponding 0B values for d(V) — 4 and 
6. Practically, every seeded PENBMI run terminated 
with the same [3B value which is the largest known (at 
least by us) value of 0 for which (9) is feasible with the 
prescribed families of Lyapunov functions and multipli- 
ers. In addition, we performed 10 unseeded PENBMI 
runs for d{V) = 4 and 6. Of these runs 90% and 50%, 
respectively, terminated successfully (with an optimal 
value of 0 equal to that from the seeded PENBMI runs). 
Moreover, unseeded PENBMI runs took longer compu- 
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Fig. 1. Histograms of 0'L (black bars) and 0"B (white bars) 
from seeded PENBMI runs for d(V) = 4 (left), 6 (right). 

Table 1 
Volume ratios for (Ei )-(ET) . 

example volume ratio example volume ratio 

(£i) 16.7/10.2 (£2) 0.99/0.85 

(ft) 37.2/23.5 (£4) 1.00/0.28 

(ft) 62.3 /7.3 (ft) 35.0/15.3 

(E7) 1.44/0.70 

sponding references are contained in those computed by 
this sequential procedure. 

Fig. 2. The invariant subsets of the ROA (dot: d{V) = 2, 
dash: d{V) = 4, and solid: d{V) = 6 (indistinguishable from 
the outermost curve for the limit cycle)). 

tation times than seeded PENBMI runs. For compari- 
son, seeded PENBMI runs took 3 - 8 and 11 - 24 sec- 
onds for d(V) = 4 and 6, respectively, on a desktop PC, 
whereas they took 50 - 250 and 1000 - 2500 seconds, 
respectively, for unseeded PENBMI runs. Fig. 2 shows 
the level sets of the Lyapunov functions corresponding 
to the value of (3g. 

4-2   Examples from the literature 

We present results obtained using the method from 
the previous section for the systems in (15). (Ei)-(E3) 
are from (Chesi et al., 2005), (E4) and (E7) are from 
(Vannelli and Vidyasagar, 1985), and (E5) and (2?6) 
are from (Hauser and Lai, 1992) and (Hachicho and 
Tibken, 2002), respectively. Since the dynamics in (£1)- 
(£7) have no physical meaning and there is no p given, 
we applied SimLFG algorithm sequentially: Apply 
SimLFG algorithm with p(x) = xrx and Ny = 1 for 
d{V) = 2. Call the quadratic Lyapunov function ob- 
tained V. Set p to V and apply SimLFG algorithm 
with this p and Nv = 1 for d{V) = 4. For {E5)-(E7), 
we further applied CWOpt algorithm with Niter = 10. 
Table 1 shows the ratio of the volume of the invari- 
ant subset of the ROA obtained using this procedure 
to that reported in the corresponding references. Em- 
pirical volumes of sublevel sets of V are computed by 
randomly sampling a hypercube containing the sublevel 
set. Values in Table 1 are volumes normalized by n and 
47r/3 for 2 and 3 dimensional problems, respectively. For 
(£4), (E6), and (£7), we also empirically verified that 
the invariant subsets of the ROA reported in the corre- 

(£1) : { ±1 = X2, ±2 = -2x\ - 3x2 + x?x2. 

Xl = X2, 

±2 = —2xi — x2 + X1X2 — x? 4- xiXj + x\. 

Xl = X2, X2 = X3, 

±3 —  -4xi - 3X2 - 3X3 + X*X2 + xf X3. 

Xl = -X2, ±2 = -X3, 

x3 = -0.915x1 + (1 - 0.915x?)x2 - x3. 

Xl = X2 + 2X2X3, ±2 = X3, 

±3 = —0.5xi - 2X2 — X3. 

(E6) : { xi = -Xi +x2x§, x2 = -x2 + xix2,x3 = -x3. 

(ft) : { 

m: { 

(ft) = { 

(ft) : { 

(ft) : { xi = -0.42xi - 1.05x2 - 2.3x? - 0.5xix2 - x\, 

±2 = 1.98xi +X1X2. 
(15) 

4-3    Controlled short period aircraft dynamics 

The closed-loop dynamics in (16) have an asymptotically 
stable equilibrium point at the origin. 

Z)i=i ai»x> + ]Ci=i riiXiX2 + ri6x| 

Hi=l a2i*i + Hij=2,5 rijxixj 

A345X 

(16) 

Here, x = [xi,X2,X3,X4,X5]T is the state vector, xi, 
X2, X5 are pitch rate, angle of attack, and pitch angle, 
respectively, X3 and X4 are the controller states, and 
A345 € 7£3x5. Before applying our method, we performed 
excessive simulations and found a diverging trajectory 
whose initial condition xo satisfies xjxo = 16.1: there- 
fore, initialized 0SIM with 16.0. We applied algorithm 
SimLFG with p(x)   =  XTX,  ^shrink   =  0.85, Nconv   = 
4000, Nv = 1 for d{V) = 2 and 4. We assessed the 
Lyapunov function candidates solving Problems A.l and 
A.2 and further optimized using CWOpt algorithm with 
jViter = 6. Certified values of 0 before and after ap- 
plying iterations and from unseeded PENBMI runs are 
shown in Table 2. Unseeded PENBMI runs led to slightly 
higher values of (3. However, this benefit was at the ex- 
pense of high computational effort. For example, the 
unseeded PENBMI run took 38 hours for d{V)  =4 



Table 2 
Certified values of p before and after applying CWOpt algo- 
rithm and from unseeded PENBMI run. 

d{V) m 2 d(V) = 4 

before iterations 6.56 8.99 

after iterations 8.56 14.4 

PENBMI (unseeded) 8.60 15.2 

u 
1 

0, - §K 
X3 3    0 \ X 

-0.5 I S5i 
-1.5 

-1.5 -1       -0.5 0         0.5 
xi 

1.5 

Fig. 3. A slice of the invariant subset of the ROA (solid line) 
and initial conditions (with 12 = 0 and x4 = 0) for diverging 
trajectories (dots). 

whereas our method took 36 minutes (15 minutes for the 
SimLFG algorithm and 21 minutes for the CWOpt al- 
gorithm). Finally, the dependence that the starting point 
of CWOpt algorithm has on its performance is signifi- 
cant. For example, simply initializing CWOpt algorithm 
with V(x) = xTPx + 0.001 £?=i x?, where PT = Pv0 
satisfies C(P) — —I yields poor results. After 30 itera- 
tions, the CWOpt iteration converges, but the resultant 
Lyapunov function only certifies 7^.5 C Ro- 

4-4    Pendubot dynamics 

The pendubot is an underactuated two-link pendulum 
with torque action only on the first link. We designed 
an LQR controller to balance the two-link pendulum 
about its upright position. Third order polynomial ap- 
proximation of the closed-loop dynamics is ±\ = X2, 
x2 = 782xi + 135x2 + 689x3 + 90x4, x3 = x4 and 
x4 - 279xix§-1425xi-257x2-(-273x|-1249x3-171x4. 
Here, Xi and X3 are angular positions of the first link and 
the second link (relative to the first link). We applied 
SimLFG algorithm sequentially exactly as described in 
section 4.2 and CWOpt algorithm with 10 iterations and 
obtained &*L = 1.69. Conversely, we found a diverging 
trajectory with the initial condition x with p(x) = 1.95 
proving that 1.69 < P*{Cl) < 1.95. Fig. 3 shows the 
X2 = 0 and x4 = 0 slice of the invariant subset of the 
ROA along with initial conditions (with X2 = 0 and 
x4 = 0) for some diverging trajectories. 

4-5    Closed-loop dynamics with nonlinear observer based 
controller 

For the dynamics ±1 = u, X2 = — X\ + xf/6 — u and 
y = X2, where xi and X2 are the states, u is the control 

input and y is the output, an observer L with polynomial 
vector field z = L(y, z) with d(L) = 3 and a control law 
in the form u = —145.9zi -I- 12.3z2i where z\ and Z2 are 
the observer states, were computed in (Tan, 2006). The 
application of SimLFG algorithm with d(V) = 2 and p 
from (Tan, 2006) and CWOpt algorithm with Niter = 4 
lead to PI = 0.32. We also applied CWOpt algorithm 
(initialized with the quadratic V found in the first ap- 
plication) with d(V) = 4 and Niter = 6 and obtained 
P*L = 0.52. Conversely, we found a diverging trajectory 
with the initial condition (x, z) satisfying p(x, z) = 0.54 
proving that 0.52 < P*{Cl) < 0.54. 

5    Critique and Conclusions 

5.1    Sampling vs. Simulating 

A common question we get is "why simulate to get the 
sample points? - just sample some region, and impose 
VV(x)/(x) < 0 there." There are a few answers to this. 
Intuitively, even running a few simulations gives insight 
into the system behavior. Engineers commonly use sim- 
ulation to assess rough measures of stability robustness 
and ROA. Moreover, as converse Lyapunov theorems 
(Vidyasagar, 1993) implicitly define a certifying Lya- 
punov function in terms of the flow, it makes sense to 
sample the flow when looking for a Lyapunov function 
of a specific form. Furthermore, we have the following 
observation demonstrating that merely sampling some 
region and imposing W(x)f(x) < 0 there carries mis- 
leading information. Consider the Van der Pol dynamics 
with p(x) = xTx and let Sg denote a finite sample of 
Pp. It can be shown that the set of quadratic positive 
definite functions V that satisfy 

Si.8\{0} C {x G Kn  : W(x)/(x) < 0} (17) 

is nonempty. In fact, for V(x) = 0.32xf — 0.25xiX2 4- 
0.31x2, (17) is satisfied (actually for all x € Pis, 
VV(x)/(x) < — ls(x)). This naively suggests to draw 
samples from the set of quadratic positive definite 
functions satisfying (17) in order to try to prove that 
Pl.s C Ro- However, simulations reveal a contradicting 
fact: Using trajectories with initial conditions in Si.8 for 
d(V) = 2, i.e., with <p(x) = [x\, x\Xi, x%\T, constraints 
(6), (11) (with 7 = 1), and (12) turn out to be infeasi- 
ble. This verifies that no quadratic Lyapunov function 
can prove P\& C RQ using conditions (6)-(8), with the 
additional constraint that V[x) < -10~6xTx on all 
trajectories starting in P\&. Recall though, that using 
quartic Lyapunov functions we know /?* {V^,,S) > 2.14. 
By these observations, we have the following series of in- 
clusions for the subsets of the positive definite quadratic 
polynomials 

{V : V certifies P& C Ro using (6) - (8)} 

C {V  :  W(C(T))/(C.(T)) < 0 Vr, Vs G S^} 

C  {V : W(s)/(s)<0VseS6}, 



where cs denotes the trajectory with the initial condi- 
tion s G S@. Therefore, merely sampling instead of using 
simulations leads to a larger outer set from which the 
samples for V are taken in step (v) of SimLFG algo- 
rithm and it is less likely to find a function that certifies 
that V0cRo. 

5.2    Conclusions 

We proposed a method for computing invariant subsets 
of the region-of-attraction for asymptotically stable equi- 
librium points of dynamical systems with polynomial 
vector fields. We used polynomial Lyapunov functions as 
local stability certificates whose certain sublevel sets are 
invariant subsets of the region-of-attraction. Similar to 
many local analysis problems, this is a nonconvex prob- 
lem. Furthermore, its sum-of-squares relaxation leads to 
a bilinear optimization problem. We developed a method 
utilizing information from simulations for easily gener- 
ating Lyapunov function candidates. For a given Lya- 
punov function candidate, checking its feasibility and 
assessing the size of the associated invariant subset are 
affine sum-of-squares optimization problems. Solutions 
to these problems provide invariant subsets of the region- 
of-attraction directly and/or they can further be used 
as seeds for local bilinear search schemes or iterative 
coordinate-wise linear search schemes for improved per- 
formance of these schemes. We reported promising re- 
sults in all these directions. 
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A    Appendix 

Lemma 2 Given go, g\, •• • ,gm G R[x], if there exist 
8i,• • • ,sm € £[x] such that go - JCJjli SJ5J G E[x], then 
{x£Kn  : ffi(x),..., gm{x) >0}C{xeTZn: g0(x) > 0} . 
Lemma 3 Given go, pi, 52 G R[x] such that go is positive 
definite and go{0) = 0, if there exist s\,S2 G £[x] such 
that giSi + P2S2 — <7o G E[x], then {x G ~R.n : </i(x) < 
0}\{0} C {x G TZn  :  <?2(x) > 0}. < 
Problems 1 and 2 in section 3 compute lower bounds 
on the largest value of 7 and 0 such that, for given V 
and p, ftv,7\{0} C {x G TZn : W(x)/(x) < 0} and 
Vp C fiv,7- We propose alternative formulations, that do 
not require line search, to compute similar lower bounds. 
Labeled 7* and /?*, these are generally different than 7^ 
and 0*L. For h,g € R[x] and a positive integer d, define 



fj,°{h,g) := infx^o h(x) sucn that g(x) = 0, and 

li*(h,g,d) :=      sup     fj. subject to 
jj>0,r€R[x] 

(h - /*) (x?d + • • • + x2
n
d) - gr G E[x]. 

Note that n*{h,g,d) < n°{h,g). 

Lemma 4 Let g, h : 1Zn —* TL be continuous, h 
be positive definite, g(0) = 0, and g(x) < 0 for all 
nonzero x G O, a neighborhood of the origin. De- 
fine 7° := n°(h,g). Then, the connected component of 
{x G V.n : h(x) < 7°} containing the origin is a subset 
of{xeTln  : g(x) <0}U{0}. < 
Proof: Suppose not and let x ^ 0 be in the con- 
nected component of {x G TZn : h{x) < 70} containing 
the origin but g(x) > 0. Then, there exists a contin- 
uous function i9 : [0,1] -> Hn such that i?(0) = 0, 
t?(l) = x, and h(d(t)) < 70 for all t G [0,1]. Since 
g(0) = 0 and g(x) < 0 for all nonzero x G O, there 
exists 0 < € < 1 such that g(d{e)) < 0. Since x is 
not in {x G Kn : g(x) < 0}, 3(0(1)) > 0. Since g and 
d are continuous, there exists f G (0,1] such that 
g(ti{t*)) = 0, which implies /i(tf(t*)) > 7°. This contra- 
diction leads to x G {x G Un  : g(x) < 0}. • 

Corollary 5 LetV G R[x] be a positive definiteC1 func- 
tion and satisfy (12) and V(0) = 0. Then, for all 7 such 
that 0 < 7 < /x°(V, VV/), the connected component of 
Qv 1 containing the origin is an invariant subset of the 
ROA. < 

Proof: Since the quadratic part of V is a Lyapunov 
function for the linearized system, there exists a neigh- 
borhood O of the origin such that W(x)/(x) < 0 
for all nonzero x G O. By Lemma (4), the connected 
component of Q.y,^ containing the origin, a subset of 
the connected component of {x  G  ~R.n V(x)  < 
H°(V,Wf)} containing the origin, is contained in 
{xeHn : W(x)/(x) <0}U{0}. Corollary (5) follows 
from regular Lyapunov arguments (Vidyasagar, 1993). 
• 
Corollary 6 For some positive integer d\, define 7* := 
H*'{V, VV/, di). Then, i/7 < 7* for some positive integer 
d\, then the connected component ofClv,-y containing the 
origin is an invariant subset of the ROA. < 

Corollary 7 Let 0 < 7 < 7*, efe be a positive integer, 
V,p G R[x] be positive definite and p be convex. Define 
01 := i?{p,V- 7, <h). Then for any /3<0*a,V0C fly,-, 
andVp C RQ. < 



Stability Region Analysis using polynomial and 

composite polynomial Lyapunov functions and Sum 

of Squares Programming 

Weehong Tan and Andrew Packard 

Abstract 

We propose using (bilinear) sum-of-squares programming for obtaining inner bounds of regions- 

of-attraction for dynamical systems with polynomial vector fields. We search for polynomial as well as 

composite Lyapunov functions, comprised of pointwise maximums of polynomial functions. Results for 

several examples from the literature are presented using the proposed methods and the PENBMI solver. 

I. INTRODUCTION 

Finding the stability region or region-of-attraction (ROA) of a nonlinear system is a topic 

of significant importance and has been studied extensively, for example in [1-12]. It also has 

practical applications, such as determining the operating envelope of aircraft and power systems. 

Most computational methods aim to compute an inner bound on the region-of-attraction, 

namely a set that contains the equilibium point, and is contained in the region-of-attraction. 

The methods above can roughly be split into Lyapunov and non-Lyapunov methods. Lyapunov 

methods (the focus of this paper) are based on local stability theorems and search for functions 

satisfying conditions which quantitatively prove local stability. Nonlinear programming is used in 

[1] to optimize (by choice of positive definite matrix) the volume of an ellipsoid contained in the 

region-of-attraction. Rational Lyapunov functions that approach oo on the boundary of the region- 

of-attraction are constructed iteratively in [2], motivated from Zubov's work. Computational con- 

siderations limit the degree of the rational function, and inner estimates to the ROA are obtained. 
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Easy to compute estimates are considered in [3], which restricts the Lyapunov function search to 

low-dimensional manifold of quadratic Lyapunov functions, obtaining analytical simplifications. 

Following [1], but employing semidefinite programming techniques, [4] aims to maximize the 

volume of an ellipsoid whose containment in the region-of-attraction can be ascertained with 

sum-of-squares (SOS) decompositions. Attention is restricted to odd, polynomial vector fields, 

and SOS optimization is combined with general nonlinear programming. A sequence of functions, 

called nested Lyapunov functions, are introduced in [5] to derive stability region and rate- 

of-convergence estimates. Both [6] and [7] solve a sequence of linear semidefinite programs, 

iteratively searching over Lyapunov function candidates and sum-of-squares multipliers. The 

"coordinatewise" ascent method is generally effective, though no convergence result holds. By 

contrast, the formulation here is more direct, but yields a single bilinear (nonconvex) SOS 

program. Closely related to Lyapunov methods are viability methods, which effectively integrate 

an invariant set backwards in time, obtaining increasing estimates for the region-of-attraction. 

Both [8] and [9] use discretization (in time) to flow invariant sets backwards along the flow 

of the vector field, obtaining larger and larger estimates for the region-of-attraction. In [8], the 

invariant sets are restricted to be sublevel sets of polynomials, and the discretized backwards flow 

is approximated with semidefinite programming. The approach of [9] also requires discretization 

in space and suffers from exponential growth in state dimension. Generally, the method is exact, 

but computation may require exponential growth in state dimension. Depending on the user's 

point of view, problems of modest (between 4 and 8) state dimension are intractable. Non- 

Lyapunov methods, [10] and [11] focus on topological properties of regions of attraction. A 

survey of results, as well as an extensive set of examples and new ideas, is presented in [12]. 

In this paper, we present a method of using sum-of-squares (SOS) programming to search 

for polynomial Lyapunov functions that enlarge an inner estimate of the region-of-attraction of 

nonlinear systems with polynomial vector fields. SOS programming, coupled with polynomial 

Lyapunov functions has roots that can be traced back at least to Bose and Li [13] and Brockett, 

[14] and the power transform of Barkin et.al [15], which was used in [16] to find non-quadratic 

Lyapunov functions for uncertain linear systems. Recent theoretical work, [17], [7] and [18], 

continues to further the role of this approach. An impediment to using high degree Lyapunov 

functions is the extremely rapid increase in the number of optimization decision variables as the 

state dimension and the degree of the Lyapunov function (and the vector field) increase. Here, 



we propose using pointwise maximums of polynomial functions to obtain rich functional forms 

while keeping the number of optimization decision variables relatively low. Pointwise maximum 

and other composite Lyapunov functions have been used in many instances, [19], [20], [21], 

including stability and performance analysis of constrained systems and robustness analysis of 

uncertain systems, where affine and polynomial parameter-dependent Lyapunov functions are also 

used, [22], [23]. The notation is generally standard, with TZn denoting the set of polynomials 

with real coefficients in n variables and Sn C 1Zn denoting the subset of SOS polynomials. 

II. ESTIMATING A REGION OF ATTRACTION 

Consider an autonomous dynamical system of the form 

x(t) = /(*(*)) (1) 

where x(t) G Rn and / is an n-vector of elements of IZn with /(0) = 0. The following lemma 

on invariant subsets of the region-of-attraction is a modification of ideas from [24, pg. 167] and 

[25, pg. 122]: 

Lemma 1: If there exist continuously differentiable functions {K}?^ : Rn —»R such that 

V{x) := max Vi(x) is positive definite, (2) 

fi:={iGtn| V{x) < 1} is bounded, (3) 

Li := {x e W11 max VAx) < V^x) < 1},      i = 1,...,q (4) 
1<3<9 

Li \ {0} c {x € Rn | fg/(z) < 0},     i = 1,..., g, (5) 

then for all x(0) G it, the solution of (1) exists, satisfies x(t) e il, and limf^oo^(0 = 0. As 

such, fl is invariant, and a subset of the region-of-attraction for (1). 

Proof: The proof is written for q = 2. The extension to q = 1 or q > 2 is straightforward. 

Since Lx U L2 = ft, condition (5) insures that if x(0) € ft, V{x(t)) < V^O)) < 1 while the 

solution exists. Solutions starting in ft remain in ft while the solution exists. Since ft is compact, 

the system (1) has an unique solution defined for all f > 0 whenever x(0) € ft. 

Take c > 0. Define Se := {x e W11 f < V(x) < 1}, so Se C (Lx U L2) \ {0}. Note 

that for each i, (St n Lt) Ci,\ {0} C {x G K" | ^f(x) < 0}, so on the compact set 

St n Lu 3rii£, such that f^-/(x) < -r^ < 0. Consequently, if x(t) 6 S€ n Lx on [tA,tB], 



then V{x(tB)) < -ru{tB ~ tA) + V(x(tA)). Similarly, if x(t) G 5£nL2 on [tA,tB], then 

V(x(tB)) < -ru(tB - tA) + V(x(tA)). Therefore, if x(t) G Se n (Li U L2) on [tA,tB], then 

V{x(tB)) < -rt(tB - tA) + V(x(tA)), where r£ = min(ri,e, r2j£). Since r, > 0, this implies that 

3t* such that V{x(t)) < e for all * > **, i.e. x(t) G Tf := {x G Kn | V(x) < e} for all f > t*. 

This shows that if x(0) G ft, V(x(t)) -» 0 as t -» oo. 

Finally, let e > 0. Define ft£ := {x G Kn | ||x|| > e, V(s) < 1}. fte is compact, with 0 £ fte. 

Since V is continuous and positive definite, 37 such that V(x) > 7 > 0 on fte. We have already 

established that V(x(t)) —* 0 as t —> 00, so 3£ such that for all t > t, V(x(t)) < 7 and hence 

x(t) £ ft0 which means ||a;(t)|| < e. So x(t) —• 0 as t —• 00. • 

Remarks: Standard modifications to the hypothesis of Lemma 1 can yield global stability 

conditions as well. However, neither formulation can yield exact results for systems whose 

region-of-attraction is unbounded, but not all of R" (since in Lemma 1, ft must be is bounded). 

See section III-C for further details. The constraints in equations (2)-(5) are not convex constraints 

on V, as illustrated by a 1-dimensional example, [26]. Take fix) = — x, q = 1 and Vf(x) = 

16x2 - 19.95x3+6.4x4 and Vftx) = O.lx2. Then Vf and V? satisfy (2)-(5), but 0.58^ + 0.42^ 

does not. 

In order to enlarge ft (by choice of V), we define a variable sized region P0 := {x G 

R" I p(x) < /?}, and maximize (3 while imposing the constraint Pp C ft. Here, p(x) is a fixed, 

positive definite polynomial, chosen to reflect the relative importance of the states. Applying 

Lemma 1, the problem is posed as an optimization: 

max    (5       s.t.       VJ(0) = 0 

V(x) := max K(x) is positive definite, (6) 
l<i<9 

ft := {x G Rn I V{x) < 1} is bounded, (7) 

P0 C ft (8) 

{x G Rn I max Vj{x) < V<(x) < 1} \ {0} C {x G Rn \ f£/(x) < 0} (9) 

where (9) holds far i = 1,... ,q. Let Zi(x) be a fixed, positive definite polynomial. For each V*, 

if we require Vi — l\ G En for i = 1,..., q, then both (6) and (7) are satisfied. Clearly, (8) holds 



if and only if 
<? 

{xeRn\ p(x) <(3}C f]{x € W11 Vi(x) < 1}, (10) 
1=1 

Introducing another fixed, positive definite polynomial, li(x), we can aPPty Lemmas 2 and 3 

(see appendix) to obtain sufficient conditions which ensure constraints (9) and (10) hold. Written 

as an optimization, the problem is 

max (3    over 0 e R, V{ £ Un, Vt(0) = 0, su, s2i, s3i, sWj e En, i = 1,... q 

such that 

Vi-heZn, (ii) 

-((^-p)«W + (V<-l))eEn, (12) 

Q 

- [(1 - Vi)s2i + ^/s3i + h] -^%W - ^) S Sn. (13) 

All constraints are sum-of-square constraints, however (even for q = 1) products of decision 

variables are present. Therefore, the optimization cannot be translated into a linear semidefinite 

program, but is converted to a bilinear semidefinite program. Two of the conditions require 

positivity (beyond nonnegativity), and the fixed positive-definite polynomials, /i and l2 are 

introduced as offsets to enforce this. Next we present results from several small problems. We 

have chosen to rely on the PENBMI solver [27], a local bilinear matrix inequality solver from 

PENOPT to attack our problems. This uses a penalty method. Alternate approaches to BMIs, 

such as linearization and homotopy, [28] and interior point methods, [29, Chap 7], may yield 

improved results and/or superior computational efficiency. Resolving these questions is left for 

further research. 

III. EXAMPLES 

All of the systems considered are locally exponentially stable. The notation nv denotes the 

degree of V, specifically each V* includes all monomials of degree 2 up through ny. In all 

examples, p is quadratic, and the degree of su is chosen so that the degree of the polynomial 

in equation (12) is equal to ny. The integer nA denotes degree of the polynomial in (13). Once 

nv is chosen, and the vector field / is fixed, nA limits the degrees of the multipliers S2u S3» 

and soij through simple degree counting. In each case, the positive definite polynomials l\ and 



Rxr- 

l2 are of the form lk(x) = YOwi eMx? • For the purposes of computation, the ek,i are treated as 

additional decision variables, and constrained to satisfy ekyi > 10~7. 

A. Example 1 - Van der Pol equations 

The system is X\ = —x2,x2 = X\ + {x\ — l)x2. It has an unstable limit cycle and a stable 

equilibrium point at the origin. Finding its region-of-attraction has been studied extensively, for 

example, in [1], [12], [11]. The region-of-attraction for this system is the region enclosed by its 

limit cycle, which is easily visualized from the numerical solution of the ODE. However, our 

goal is to use the bilinear SOS formulation. For this example, p is chosen to be xTRx, for two 

different Ri e E2x2, 

0.38   -0.14 0.28   0.14 
,     and    R2 := 

-0.14      0.28 0.14   0.38 

The results using shape factor defined by Ri using the pointwise maximum of two fixed 

degree polynomials are listed in Table I. Fig. 1 shows the limit cycle and the level sets of 

the certifying Lyapunov functions'. The level set of pointwise maximum of two 6th degree 

polynomial functions includes nearly the entire actual region-of-attraction. The dashed line is 

the level set of p (for ny = 6), which clearly shows that our p has been preselected to "align" 

closely with the actual region-of-attraction. Of course, this would be impossible to do in general, 

and we discuss the implications of this later in this section. Our results compare favorably with 

[11] as well as the degree 6 solution from [7], and the final (40th) iterate from degree 6 solutions 

of [8], all of which are shown in Figure 2. Clearly, the solution of [8] is a very high quality 

estimate of the true ROA. Parametrizing the boundaries using polar coordinates reveals that as 

a function of angle, the radius of [8] exceeds our ny = 6 radius on 52.6% of [0 27r]; is 0.22% 

larger, on average, than our ny = 6 radius; exceeds our riy = 6 radius by as much as 1.4% in 

some directions; is smaller than our ny = 6 radius by as much as 0.8% in other directions. We 

conclude that the result in [8] is very similar, though slightly superior to our result. 

It is interesting to observe how the Vj functions interact in, for example, the 6th degree case. 

Figure 3 shows the level sets {x | VJ(x) < 1}. For V\, there are 3 connected components, one 

'The   certifying   Lyapunov   functions   and   SOS   multipliers   for   all   examples   in   this   paper   are   available   at 

http://jagger.me.berkeley.edu/~pack/certificates 



"large" component centered at the origin (whose boundary is essentially the limit cycle), and 

2 "islands" in the 2nd and 4th quadrants. For V2, the level set is one connected component 

centered at the origin, visually the same as the large component of V\. Label the two islands as 

I\ and I2, and the intersection of the two (nearly identical) centered components as il. 

Inside Ix and I2, V\ <£ 0, but V2 > 1 > V\, so I\ and I2 are excluded in the set il. Moreover, 

on il, Vi < 0 where Vj > V2, and V2 < 0 where V2 > Vx, proving that Q is a region-of-attraction. 

Since {x \ V2(x) < 1} » f2, it is tempting to assume that V2 alone can prove the stability claim. 

However, many points have V2>0 (the shaded region in Q). 

In this example, using pointwise maximum of three polynomials does not offer additional 

benefits (row 1 and 4 of Table I). Better results are obtained (row 5) by increasing the degree 

of the {s^, but this increases the number of decision variables, so the computational benefit is 

effectively erased. 

Finally, optimizing with the shape factor defined by R2 yields almost identical results (in 

terms of Q). Fig. 4 illustrates the analogous level sets of V, and also shows a level set for this 

p. Clearly, the level sets for this shape factor are not aligned with the actual region-of-attraction, 

nevertheless, the optimization performs quite well. 

B. 6 examples from [4] 

Reference [4] aims to maximize the volume of an inner ellipsoidal estimate of the region of 

attraction, presenting results from 6 examples. The volume reported in [4] is normalized: in 

R2 it is 2-dimensional area divided by jr, while in R3 it is 3-dimensional volume divided by 

3p As an exercise, we solve the same problems here. The results are summarized in Table II. 

Maximizing volume is not directly compatible with our scalar objective involving the function 

p (whose level sets may or may not be ellipsoidal). We began with a simple approach: using 

a spherical shape factor, p(x) := xTx, solve the optimization problem and then compute the 

volume of the level set {x : V(x) < 1} (easily computed for a quadratic V, and estimated with 

Monte Carlo integration for high degree and pointwise-max V^'s). Problems SI, S2, S3 and S4 

are successfully addressed using this approach. Note the improvement for S2 when the degree 

of the multipliers is increased (via UA) even though ny is held constant. Problem S5 required 

an alteration, referred to as bootstrap, to obtain large volumes. In this calculation, the initial 

optimization was as above, with a spherical p, using quadratic Lyapunov function candidates. 



Subsequent optimizations, with richer Lyapunov function candidates used, for p, the obtained 

quadratic Lyapunov function (as opposed to xTx). Problem S6 is more challenging and the 

methods we present here do not obtain volumes as large as those reported in [4]. The S6 table 

entry involving quartic functions is empty, as PENBMI exhibited unreliable behavior on this 

problem, exposing some genuine deficiences in our overall approach. 

C. Unbounded Region-of-Attraction 

Consider ii = x2,x2 = -(1 - x\)x\ - x2 from [30]. The region of attraction to the stable 

equilibrium at x = 0 is unbounded, but not all of IR2. Exact methods, such as those in [9], may 

obtain the correct answer in this problem. By contrast, the formulation in equations (11)-(13) 

cannot, since Q is necessarily compact. Using a simple p(x) := x\ + x\ shape factor, we obtain 

nearly identical results for quadratic and pointwise-max quadratic Lyapunov functions, yielding 

(3 such that Pp nearly touches the stability boundary, and the bounded level set {x : V(x) < 1} is 

ellipsoidal, roughly aligned with the true region-of-attraction. Using the bootstrap, with ny = 6 

yields significant improvement. The two level sets are shown in the left panel of figure 5, along 

with some trajectories of the system. 

D. An example from reference [2] 

Another 2-state example with polynomial vector field comes from example 4 in [2]. The 

dynamics are i\ = —0.42a;! — 1.05x2 — 2.3xf — 0.5x\X2 — x\;x2 = 1.98xi + X\X2. The inner 

estimate from [2] along with our estimate using quadratic, quartic, pointwise-max quartic, and 

degree 6 functions are shown in the right panel of Figure 5. Pointwise-max (q = 2) degree 6 

solutions yielded no appreciable improvement over the q = 1 case, and are not shown. 

IV. BENCHMARK STUDY 

There are several drawbacks to our approach, most notably searching over the non-convex 

decision variable space. Given this deficiency, it is useful to investigate how equations (11)- 

(13), coupled with the PENBMI solver perform on an "easy" nonlinear problem, with respect 

to "arbitrary" data and increasing problem size. Let x = —Ix + [xTBx)x where x(t) e Rn, and 

B 6 Rnxn, B y 0. For this system, inspired by Example 5 of [1], the set {i 6 1" | xTBx < 1} 

is the exact region-of-attraction for the x = 0 equilibrium point (use V(x) := xTBx to prove 



this). Let P0 := {ieRn|xTRx < /?}, R e Rnxn, R y 0. The supremum value for 0 such 

that P0 C {x E Rn\xTBx < 1} is 0 = [An^iHSiH)]-1. Equations (11)-(13) can yield 

this answer, specifically, take q = 1 and for any 7 > 1, choose r such that 1 < r < 7. Then 

for large enough a (depending on fixed choice of quadratic Z2) the choices V(x) := ~fxTBx, 

s2 := 2arxTBx and s3 := a satisfy (13), prove that {x\xTBx < 1} is in the region-of- 

attraction. Hence, this class of problems provides a test for any specified BMI solver to actually 

discover the known-to-exist solution. For each n, 100 trials are performed. Each trial consists of 

a random choice of positive definite B and R, each with eigenvalues exp(2rt) where each rj is 

picked from a normal distribution with zero mean and unit variance, and random, orthonormal 

eigenvectors. For each trial, we run the PENBMI optimizer 3 times (initial point randomly chosen 

each run). Table III shows the results of the test. 

A run is classified successful if the solver returns the message "No problems detected", and 

classified failure otherwise. Except for the case of n = 6, there are no trials that fail for all 3 runs 

(for n = 6, one trial did fail in all 3 runs, and note that this single instance, 3-trial failure is not 

taken into account in the table entries described below). Among the successful runs, the quality 

of the answer is assessed by the nearness of (3 x Amax to 1. The worst case (smallest) value among 

the (296-300) successful runs is given. The next column shows the worst case Q x Amax over 

100 trials, exploiting the 3 repeated attempts and the randomized initial starting point chosen by 

PENBMI. The entries are w 1, which indicates that repeated runs of the same problem eventually 

lead to the optimal solution for this example. For this limited benchmark example, although our 

problem formulation is bilinear in the decision polynomials and the bilinear solver, PENBMI, 

is a local solver, the results obtained are encouraging. 

V. CONCLUSIONS 

In this paper, we presented techniques using sum-of-squares programming for finding provable 

regions-of-attraction for nonlinear systems with polynomial vector fields. Several small examples 

are presented. For systems with cubic vector fields, analyzing local stability using Lyapunov 

functions which are the pointwise-max of quadratic and quartic functions appears to be a useful, 

and modestly tractable extension to simply using polynomial Lyapunov functions. 
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VII. APPENDIX 

A monomial ma in n variables is a function defined as ma(x) = xa := x^x^2 • • -x%n for 

Q € Z". The degree of a monomial is defined, degmQ := YH=i a»- A polynomial f in n 

variables is a finite linear combination of monomials, with cQ e R: 

/ := ^2cama = ^2cax
a. 

a a 

Define TZn to be the set of all polynomials in n variables. The degree of / is defined as deg / := 

maxQ deg ma (provided the associated cQ is non-zero). Additionally define Sn to be the set of 

sum-of-squares (SOS) polynomials in n variables. 

Sn := { p € Tin P = Y.fi   , fienn,i = i1...,t[ 

Obviously if p € £„, then p(x) > 0 Vx € Rn. A polynomial, peEniff30^QG Rrxr such 

that p(x) = zT(x)Qz{x), with z(x) a vector of suitable monomials. The set of Q that satisfies 

p(x) = zT(x)Qz(x) is an affine subspace, so that semidefinite programming plays the key role 

in deciding if a given polynomial is SOS. The lemmas below are elementary extensions of the 

5-procedure, [32], and very limited special cases of the Positivstellensatz, [33, Theorem 4.2.2]. 

In both cases, the SOS polynomials {sk}^ are often called the "SOS multipliers." 

Lemma 2: Given pi,p2 € Tin, and positive definite h G TZn, with h(0) = 0. If si,s2 € En 

satisfy piSi +P2S2 - h G E then {x : pi(x) < 0} \{0} C {x : p2(x) > 0}. 



Lemma 3: Given {Pi}•0 6 7^. If there exist {«*}& 6 En such that p0 - ££i s.p* € En, 

then iXifr € Kn |Pi(z) > 0} C {x € Rn |po(x) > 0}. 

SOSTOOLS, [34], [35], GloptiPoly, [36], and YALMIP, [31] automate the translation from 

SOS programs to semidefrnite programs, converting to solver-specific, e.g., SeDuMi [37] or 

SDPT3 [38], syntax. YALMIP also handles bilinear decision polynomials, using PENBMI [27]. 

Despite these software tools, and even ignoring the nonconvexity of our formulation, there 

are significant dimensionality problems as well: [39, Table 6.1] illustrates the unpleasant growth 

in the number of decision variables with n and the polynomial degree. 
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TABLES 

TABLE I 

POINTWISE MAX FOR VAN DER POL 

degree of 

P 

total no. of 

Q V Su S2i S3i sOij decision variables 

2 2 0 2 0 2 0.75 38 

2 4 2 2 0 2 0.93 120 

2 6 4 2 0 2 1.03 338 

3 2 0 2 0 2 0.75 73 

3 2 0 4 2 4 0.82 265 

TABLE II 

CERTIFIED NORMALIZED VOLUME ON EXAMPLES S1-S6 FROM [4]. THE VECTOR FIELDS FOR EXAMPLES S3 AND S4 HAVE 

DEGREE EQUAL TO 5, WHILE ALL OTHERS HAVE DEGREE EQUAL TO 3. 

from [4] (nv,nA) q    Vol from [4] (nv,nA) q    Vol from [4] (nv,nA) q      Vol 

Sl(10.2) (2,4) 1     7.5 S2(27.1) (2,4) 1    24.9 S3(9.51) (2,6) 1      1.68 

(2,4) 2    13.7 (2,4) 

(2,6) 

2    24.9 

2    43.0 

(2,6) 2    global 

S4(0.85) (2,6) 1    0.83 S5(23.5) (2,4) 1    21.3 S6(10.9) (2,4) 1       8.5 

(2,6) 2    0.92 (2,4) 2    21.3 (2,4) 2      9.4 

(4,8) 1    1.12 (4,6) 1    32.9 (4,6) 1 

(4,8) 2    1.16 (4,6) 2 



TABLE m 

COMPUTATION STATISTICS FOR THE BENCHMARK EXAMPLE 

n variables successes worst (in 300) over 100 time (sec) 

2 13 298 0.99995 1.00000 0.70 

3 25 296 0.90955 0.99984 1.12 

4 48 297 0.07687 0.99999 2.14 

6 157 297 0.99997 0.99998 11.2 

8 420 300 0.99989 0.99992 99.7 



FIGURE CAPTIONS 

Fig. 1. Provable ROA using pointwise maximum of two polynomial functions, with shape factor 

xTR\x 

Fig. 2. Provable ROA, from [11], [7] and [8]. 

Fig. 3. VDP: Level sets of two 6th degree polynomials at Vj, V2 = 1 

Fig. 4. Provable ROA using pointwise max of two polynomial functions, with shape factor xTR2x 

Fig. 5. Trajectories and level sets V < 1. LEFT panel: example from Section III-C; RIGHT 

panel: example from Section III-D 



FIGURES 

Fig. 1.    Provable ROA using pointwise maximum of two polynomial functions, with shape factor xTR\x 
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Local Robust Performance Analysis for Nonlinear Dynamical Systems 

Ufuk Topcu and Andrew Packard 

Abstract—We propose a computational method for local 
robust performance analysis of nonlinear systems with poly- 
nomial dynamics. Specifically, we characterize upper bounds 
for local £2 —• £2 input-output gains using polynomial Lya- 
punov/storage functions satisfying certain dissipation inequali- 
ties and compute safe approximations for these upper bounds 
via sum-of-squares programming problems. We consider both 
bounded parametric uncertainties and bounded uncertainties 
due to unmodeled dynamics. 

I. INTRODUCTION 

We consider the problem of quantifying robust perfor- 
mance properties of uncertain nonlinear dynamical systems 
with polynomial vector fields around asymptotically stable 
equilibrium points. The amount of amplification of bounded 
£2 input norms at the output channels is used as a measure 
of performance. Two types of uncertainties are considered: 
(1) bounded uncertainties due to unmodeled dynamics and 
(2) bounded parametric uncertainties. Following [1], [2], [3], 
we characterize upper bounds on local input-output gains 
due to bounded £2 disturbances by Lyapunov/storage func- 
tions which satisfy certain "local" dissipation inequalities 
[4]. Similar problems were studied in [1], [2], [5], [6], 
[7] mainly for systems with no uncertainty. Input-output 
properties of uncertain nonlinear systems were examined in 
[8] (for discrete time nonlinear systems with a finite-time 
horizon performance metric) and [9] (input-output gains for 
sufficiently small input signals). 

In this paper, we use polynomial Lyapunov/storage func- 
tion candidates, simple generalizations of the S-procedure 
[10], and sum-of-squares (SOS) relaxations for polynomial 
nonnegativity [11] and compute upper bounds on the input- 
output gains via (bilinear) SOS programming problems. 
Uncertainties due to unmodeled dynamics are accounted for 
in the setting [12] shown in Figure 1 where M models 
the nominal part and $ is an unknown operator satisfying 
certain relations between the input z and the output tu2- The 
objective is to compute upper bounds on the £2 norm of the 
exogenous output e in terms of the £2 norm of the exogenous 
input wi. The approach is composed of two steps: first bound 
the £2 norm of the internal input W2 to M in terms of the £2 

norm of w\ and then perform an input-output gain analysis 
for M from the inputs (w\, w2) to the output e. 

The approach for the bounded parametric uncertainties is 
similar to that developed in [13], [14] in the context of 

U. Tbpcu is with Control and Dynamical Systems at California Institute 
of Technology. Pasadena, CA, 91125 (utopcuScds . caltech. edu) 
and A. Packard is with the Department of Mechanical Engineer- 
ing, The University of California, Berkeley, CA, 94720-1740, USA 
(pack@ jagger .me . berkeley. edu). 
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Fig. 1.    Input-output system with the feedback interconnection of * and 
M. 

robust region-of-attraction analysis. Namely, a parameter- 
independent Lyapunov/storage function is used to charac- 
terize input-output properties of uncertain systems over the 
entire set of admissible values of uncertain parameters. The 
input-output relations characterized by a single parameter- 
independent certificate may be more conservative compared 
to those by parameter-dependent certificates. This potential 
conservatism is simply reduced by partitioning the set of un- 
certain parameters into subregions and computing parameter- 
independent certificates for each subregion. The partition of 
the uncertainty set can be refined following ideas parallel to 
branch-and-bound algorithm [15] to further reduce the con- 
servatism. Although it is simplistic (compared to techniques 
based on parameter-dependent Lyapunov functions), this ap- 
proach offers certain computational advantages as discussed 
in [14] for robust region-of-attraction analysis. In fact, in 
robustness analysis involving time-invariant unknown param- 
eters, it is common, [16], [17], to combine easily-computable 
sufficient conditions with branch-and-bound strategies, often 
yielding improved analysis results. 

The rest of the paper is organized as follows: A character- 
ization of upper bounds for £2 —• £2 input-output gains 
by Lyapunov/storage functions is discussed in section II. 
Section nj is devoted to the development of the results for the 
case with unmodeled dynamics and this is followed by the 
method to account for parametric uncertainties in section IV. 
Implementation details are given in section V. Demonstration 
of the methodology with examples in section VI precedes the 
concluding remarks. 

Notation: For £ <E Hn, f h 0 means that & > 0 for 
k = 1, • •• , n. For Q = QT e ft"xn, Q £ 0 (Q X 0) means 
that £,TQ(, > 0 (> 0) for all £ £ KN. R[£] represents the set 
of polynomials in £ with real coefficients. The subset £[£] := 
{K = -K\ + TT| + • • i-*ii »!,••• ,TM  €R[£]>Of R[£] 
is the set of SOS polynomials. For n € R[£], d{n) denotes 
the degree of n. For 77 > 0 and a function g : Hn —» TZ, 
define the 77-sublevel set fiffjT) of g as 

fi9,„ := {x € TV1   :  g(x) < r?}. 



In several places, a relationship between an algebraic con- 
dition on some real variables and state properties of a dy- 
namical system is claimed, and same symbol for a particular 
real variable in the algebraic statement as well as the state 
of the dynamical system is used. This could be a source of 
confusion, so care on the reader's part is required. < 

II. UPPER BOUNDS ON THE £2 -» £2 INPUT-OUTPUT 

GAIN 

Consider the dynamical system governed by 

Proposition ILL For given 7 > 0 and positive definite 
polynomial I, let Rc2 be defined through 

x(t)    = f(x{t),w(t)) 
z(t)    =h(x(t)), (1) 

where x(t) € TZn, w(t) € ft"•, and / is a n-vector with 
elements in R[(x,tt>)] such that /(0,0) = 0 and h is an 
n2-vector with elements in R[x] such that h(0) = 0. Let 
<f>(t; xo, w) denote the solution to (1) at time t with the initial 
condition x(0) = xo driven by the input/disturbance w. For 
a piecewise continuous map u : [0,00) —» Hm, define the 
(truncated) C2 norm as 

Mkr := J£ u(t)Tu(t)dt. 

V€Vpo,v,R>0,s£S 
/?-' s. t. 

For notational simplicity, denote ||u||2,<» by ||u||2- 

A. Upper bounds on local C2 —* £2 gain 

Lemma ILL [2] If there exist a real scalar 7 > 0 and a 
continuously differentiable function V such that, for R > 0, 

QV.R* '5 bounded, 

V{0) = 0 and V{x) > 0    for all nonzero x € 1ln,       (2) 

Wf(x,w) < wTw - 7"22T2   Vx € nVR2 and Vto € ftn•, 
(3) 

then it holds that for the system in (I) and for all T > 0 

\\W\\2,T <Rand x(0) = 0 => ||z||2,T < 7lMla,r-     (4> 

In other words, 7 is a local upper bound for the input- 
output gain for the system in (1). We call 7 to be a local 
upper bound because the upper bound on the norm of the 
output z is only supposed to hold whenever the norm of the 
input is bounded by R. This is unlike the input-output gains 
for linear systems which hold for all values of input norms. 

Let 7 > 0 be fixed and V be the space of continuously 
differentiable functions. Define Rc7,opt(V,l) be the max- 
imum value of R such that the conditions in Lemma II. 1 
hold for some V € V. Let Vpoiy be a subset of V that 
is composed of all polynomials in x of some fixed finite 
degree (omitted in notation). By restricting the search for V 
satisfying the conditions in Lemma II. 1 to Vpoiy, utilizing 
a generalization of the S-procedure (see Lemma VIII. 1 in 
the Appendix) to obtain sufficient conditions for the set con- 
tainment constraints in Lemma II. 1 and SOS relaxations for 
polynomial nonnegativity, the following proposition provides 
an upper bound on i?£2,opt(V,7). 

V(0)=0,   5€E[(i,ti))], (5) 

V-1 € E[x], (6) 

-[{R2-V)s + VVf-wTw + 1-
2zTz]      (7) 

€£[(*,«)]. 
where Vpoiy Q V is as defined above and S is a 
prescribed finite-dimensional subset of R[(x, w)}. Then, 
Rc3(Vp0iy,S,'y,l)<Rc3,0pt(V,'y). < 

Note that Rc2,opt depends on 7 and V and Rc2 depends 
on Vpoiy, S, e, I, and 7. Hereafter, this dependence will not 
be notated explicitly unless it causes confusion. 

The optimization problem in Proposition II. 1 can be cast in 
a bilinear SDP (i.e., nonconvex in general). Bilinear SDPs are 
known to be harder than linear ones [18]. Consequently, the 
state-of-the-art of the solvers for bilinear SDPs is far behind 
that for the linear ones and methods for bilinear SDPs are 
generally based on heuristics such as coordinate-wise affine 
search or specialized solvers e.g. PENBMI[19]. Although 
these techniques are local search schemes and convergence to 
a global optimum is not guaranteed, coupled with efficient 
initializations, they have been effectively used for several 
system analysis questions [20], [21]. For the examples in 
this paper, we use a coordinatewise affine search scheme as 
detailed in section V. 

For given 7 > 0, the optimization problem in Propo- 
sition II. 1 maximizes R (that can be verified through the 
families of admissible Lyapunov function candidates (V) 
and S-procedure multipliers (s)) such that ||z||2 < 7||to||2 
whenever ||u;||2 < R- One can also choose to minimize 7 
for a given value of R and this can be formulated as an 
optimization problem similar to that in Proposition DL1 with 
minor changes. 

III. ROBUST PERFORMANCE IN THE PRESENCE OF 

UNMODELED DYNAMICS 

Consider the input-output system in Figure 1. Let 

x(t)     = f(x(t),Wi(t),W2(t)) 
z(t)    =hi(x{t)) (14) 
e(t)    = h2(x(t)) 

be a realization of M, where wi(t) 6 W"», u>2(*) € H*1•*, 
/ is an n-vector of polynomials in R[(x,w\,W2)] with 
/(0,0,0) = 0, hi and h2 are nz and ne dimensional vectors 
with entries in R[x] satisfying /ii(0) = 0 and h2(Q) = 0. 
Furthermore, assume that * is causal and, starting from rest, 
satisfies 

||*(z)||2.r = ||«*||2,r<||*kr (15) 

for all T > 0. Lemma HI. 1 provides a bound on ||t02||2,r in 
terms of ||tui||2,r for T > 0. In the following proposition, 
this result will be used to establish a local upper bound on 
the norm of the exogenous output e in terms of the norm of 
the exogenous input w\. 



R2 := max 
VeVpoiv,R>0,s€S 

R2     subject to 

V(0) = 0,   s€Z{(x,w1,w2)},   V-leZ[x], 

[{R2 - V)a + VVf(x,Wl,w2) - (02wjwx + w\w2) + a-2zTz] e E[(z,t«i,t«2)], 

(8) 

(9) 

(10) 

-[( 
ft? 

7i := rnin 
QeVp<),y,-y>0,s€5 

7     subject to 

Q(0)=o,   *€E[(«,toi,toa)],  Q-IeE[i], 

Qjs +V(5/(x,u;i,u;2)-(/32wfiyi + tujt^) + 7~2eTe   € E[(x,u;i,t02)]. 

(11) 

(12) 

(13) 

Lemma III.l. For R > 0, 0 < a < 1 a/u/ /3 > 0, if there 
exists a continuously differentiable, positive definite function 
V such that V(0) = 0, fly.R2 *s bounded, and 

2„..T„..    i „..T„.,_       \-z
Tz W f(x,W\,W2) < 0 w[ W\ + W2W2 a' 

for all x £ flv.R*, wi 6 7£n<"i, and w2 € ft"*"*, tfien /or $ 
starting from rest and for all T > 0 

x(0) =0and \\WI\\2,T < 
0 

|W2||2,T < VT^a2 

Lemma HI. 1 and Proposition III. 1 can be used to construct 
relations between ||u>i||2,r and ||e||2,r- Similar to Propo- 
sition n.l, one can obtain sufficient conditions for those 
in Lemma m.l and Proposition UI.l using Lemma VIII. 1 
and SOS relaxations for polynomial nonnegativity. For given 
0 > 0, a > 0, and l(x) = exTx ( with e > 0 fixed), solve 
the problems in (8)-(10) and (11)-(13). Then, for # starting 
from rest and for all T > 0 

x(0) = 0and \\WI\\2,T < 
Ri 

=> llelkr < 
7-Ri 

VT a' 

Proof:  While solutions to (14) exist, for T > 0 

^2IKIIi,T + lh2lll.T-^NIl,r 
< /?2Klli,r - ^Mli/r < ^IKIIlr- 

(i6) 
Since CIV,R* is bounded, as long as 

Ikilkr < 
^R2 - V{x(0)) 

0 
solutions to (14) exist for all T > 0 and satisfy 

2,92 a20 a~ 
Il*«2ll2,r ^ IMH.T ^ jTT^2NiHLr + fZ^2 v(x(°))- 

In particular, for x(0) = 0, V(x(0)) = and ||t»a||M,T < 

Proposition III.l. /n addition to the conditions in Lemma 
III.1, if there exists a continuously differentiable, positive 
definite function Q such that Q(0) = 0 and 

VQf(x,wi,w2) < 02wTwi +w2w2 ~eTe 
7 

for allx € fiQ,flJ/(i-oJ). •i € ^n-,», u>2 € ftn»a, then for 
$ starting from rest and for all T > 0 

Hlla.r < -g <•* i(0) = 0 => ||e||2,T < 7«/\/l - a2. 

Proo/-  By Lemma HI. 1, 

iJ2 

Ikilkr < #/£ =* ^Ikilllr + lltuallir < yry 

Consequently, the result follows from Lemma n.l. • 

When $ is unknown but a global gain relation between its 
inputs and outputs is known, then the results of this section 
provide a framework for robust performance analysis for the 
feedback interconnection between M and #. On the other 
hand, even when the operator $ is known, the procedure 
outlined in this section can be used as a framework for 
compositional performance analysis. Note that conditions 
in Lemma III.l and Proposition III.l do not involve the 
states of (the realization of) $. When $ has the state space 
realization x2(t) = f2(x2(t),z(t)), then the gain relation 
||*(*)||2,T < IMb.r can be established by determining 
a positive definite, continuously differentiable function V2 

satisfying 

W2/2(X2, Z) < ZTZ w\w2 Vz2€ftns, Vzenn' 

which does not depend on the states x\ of M. Consequently. 
Lemma III.l and Proposition III.l enable performance anal- 
ysis for the feedback interconnection between M and * 
based on the input-output properties of individual blocks. 
Of course, this analysis may be conservative. Nevertheless, 
compositional analysis may be a fruitful direction which 
extends the applicability of SOS programming based non- 
linear analysis tools for reasonably larger dimensional sys- 
tems whenever it is possible to establish an interconnection 
structure as in Figure 1. Furthermore, it may be possible 
to refine the input-output relations between w\ and e by 
using transformations at the interconnections similar to the 
D scales in linear robustness analysis [12]. 



IV. ROBUST PERFORMANCE ANALYSIS IN THE PRESENCE 

OF PARAMETRIC UNCERTAINTIES 

We now generalize the development in section II to the 
case where the vector field contains unknown but fixed and 
bounded parameters. Following the methodology proposed 
in [14] in the context of robust stability analysis, we first 
restrict our attention to 

x(t)    = f(x,w,8) 
:= f0(x(t), w(t)) + YZl SiMx(t), w(t))     (17) 

z(t)    = h(x{t)), 

where /o,/i, • • • ,/m are n-vectors with elements in 
R[(x,to)] such that /o(0,0,<5) = /i(0,0,<5) = ... = 
/m(0,0,<5) = 0, for all 8 G A C Hm, and A is a known 
bounded polytope. Let 4>(t;xo,w,8) denote the solution of 
(17) for 8 at time t with the initial condition x(0) = xo 
driven by the input/disturbance w and £A denote the set of 
vertices of A. 

Proposition IV.l. If there exist a real scalar 7 > 0 and a 
continuously differentiable function V such that V(0) = 0, 
V(x) > 0 for all nonzero x G ft•, ftv.R? is bounded, and 

Wf(x, w, 8) < wTw — 7 -2   T Z   Z (18) 

for all x G fiv,R2, w G TV1"', and 8 G £A, then the system 
in (17) with x(0) = 0 satisfies ||z||2 < 7IIHI2 whenever 
\\u1W2 < R and <5 G A. < 

Proof: Since the vector field is affine in <5 and 
A is a bounded polytope, it follows that, for 8 G A, 
Wf(x,w,6) < u;Tiy for all x G flv,R?, w G ftn"\ By 
Lemma n.l, for each 8 G A, \\z\\2 = \\h{<f>(-;0,w,8))\\2 < 
7||tu||2 whenever ||w||a < R. 0 
Note that restricting the attention to affine uncertainty 8 
dependence and polytopic A, Proposition IV.l enables to 
compute upper bounds on £2 —* £2 gain for the system 
in (17) by imposing the conditions in (18) at finitely many 
8 G 5A instead of at infinitely many 8 G A. Furthermore, 
sufficient conditions for those in Proposition IV.l can be 
obtained using Lemma VIII. 1 and SOS relaxations. 

The approach proposed here is restrictive: (1) only affine 
dependence on 8 and polytopic A are allowed (2) SOS 
relaxations for the conditions in Proposition rv. 1 may include 
a large number of SDP constraints (3) single (<5-independent) 
Lyapunov/storage function is to certify properties for an 
entire family of systems. These limitations can be partially 
alleviated using techniques proposed in [14] in the context of 
robust region-of-attraction analysis. For example, polynomial 
dependence on 8 in the vector field and the output map can 
be handled by covering the graph of non-affine functions 8 
(in the conditions in Proposition IV.l) by bounded polytopes. 
Furthermore, the fact that constraints in the SOS relaxations 
for the conditions in rv.l are only coupled through the 
Lyapunov/storage functions (which include relatively small 
portion of all decision variables in associated SDPs) can 
be exploited through a suboptimal two-step procedure: pick 
a point in A, compute a Lyapunov/storage function for 
the system corresponding to that point, and then in the 

second step determine an input-output relation certified by 
the Lyapunov/storage function determined (fixed) in the 
first step which holds for the entire family of admissi- 
ble systems. This procedure effectively decouples the large 
number of constraints in the second step enabling use of 
trivial parallelization. Finally, conservatism (due to using a 
single parameter-independent Lyapunov function and due to 
the suboptimal two-step procedure) can be reduced by an 
informal branch-and-bound type refinement procedure where 
A is partitioned into smaller subregions and a different 
Lyapunov/storage function is computed for each subregion. 
See [14] which develops a similar methodology in the context 
of robust region-of-attraction analysis. 

V. IMPLEMENTATION ISSUES 

The SOS relaxations in (5)-(7) lead to bilinear SDPs due 
to the multiplication between the decision variables in V 
and the multipliers. Therefore, solution techniques for these 
problems are usually limited to local search schemes such 
as PENBMI [19] or coordinate-wise affine search based 
on the observation that, for given V and R, constraints 
in these problems are affine in the decision variables in 
the multipliers. For example, one can obtain a suboptimal 
solution for the problem in (5)-(7) by alternatingly solving 
the following two problems until a maximum number of 
iterations is reacaed or the increase in the value of certified 
R becomes smaller than a pre-specified tolerance . For given 
V 

max    R2 subject to s € £[(x,iu)] and (7),        (19) 
R>0,s€5 

which can be solved using an off-the-shelf affine SDP solver 
through a line search on R, and for given (feasible) multiplier 
s 

max      R2 subject to V-l € Efx], V(0) = 0, and (7). 
R>o.vevpoll, 

(20) 
Furthermore, by a change of variables, it is possible to 

iterate without a line search in the first step. Indeed, for 
/3 > 0, if the problem in (5)-(7) has the solution Rf, V( and 
S(, then 

nun •55 subject to 
•     ifevp„ivti7fl2>o,s65 R2 

s G £[(x,t/>)], K G R[x], K - h/R2 G £[*], 
- [(1 - K)s + VKf - -^{wTw - i-2zTz)} 

6E[(x,ttf)]. 
(21) 

Note that for given K constraints in (21) are affine in \/R2 

and s. In fact, optimal values of s and K are s = Rfsi, and 
K = Vi/R2. 

VI. EXAMPLES 

Consider the controlled short period aircraft dynamics in 
Figure 2 where xp := [xi X2 X3]T, xi, X2, and X3 denote 
the pitch rate, the angle of attack, and the pitch angle. 



z * Wi W\ 
1 

1 ' 1 
0.4 

X4 = A.CX4 + Bcy 
V = CCX4 

' ±p = fp{xp) + B(ip)u 
y = [n   i3]T 

Xi =: e 
t 1.25 + X? 

Fig. 2.   Controlled short period aircraft dynamics with unmodeled dynamics. 

respectively, and 

c(xp) 
q{xv) + 

Xi 

tT bxp + bi 
b-2 

0 
u, (22) 

where, c and 9 are cubic and quadratic polynomials, respec- 
tively, lb € K3, 61 and 62 are real scalars (see [22] for 
the values of the missing parameters). The plant output is 
[xi X3]T. The input u to the plant is 

u = 1.25v + W\ + W2 

where v, the elevator deflection, is the controller output 
determined by 

x4 = -0.864yi - 0.321J/2 
v = 2x4, 

where X4 is the controller state. Assume that $ : K —* K 
satisfies, starting from rest, 

||*(z)||2,T = ||*"2||2,T < \\AW,T 

for all T > 0. We performed the following analysis: 

(i) For several values of a € [0.55,0.9], solve the prob- 
lems in (8)-(10) and (11M13). 

(ii) Apply linearized robust performance analysis for the 
feedback interconnection [23] and fit a first order stable 
minimum phase transfer function, say H(s), to the 
optimal D-scales. For several values of a € [0.55,0.9], 
solve the problems in (8)-(10) and (11)-(13) for the 
system HMH~l with a minimal realization for H. 

(iii) Solve the problem in Proposition II. 1 for the system 
with no uncertainty for several values of 7. 

Figure 3 shows the £2 norms of the exogenous outputs e 
versus the £2 norms of the exogenous inputs w\ in each of 
these cases: (i) with marker "+", («) with marker "•", and 
(iii) with marker "x". 

Figure 3 illustrates the trade off between the robustness 
and performance: As a gets larger, the gap between the 
nominal performance level and the "robust" performance 
level increases deduced from the divergence between the 
curve with "+" and other two curves. 

VII. CONCLUSION 

We proposed a computational method for local robust 
performance analysis of nonlinear systems with polynomial 
dynamics. Specifically, we characterized upper bounds 
for local £2 -» £2 input-output gains using polynomial 
Lyapunov/storage  functions  satisfying certain  dissipation 

inequalities and computed safe approximations for these 
upper bounds via sum-of-squares programming problems. 
We considered both bounded parametric uncertainties and 
bounded uncertainties due to unmodeled dynamics. 
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VIII.  APPENDIX 

The following lemma is a simple generalization of the S- 
procedure [10] and is used to obtain sufficient conditions for 
certain set containment constraints throughout the paper. 

Lemma Vm.l. For g0,gi,--- ,gm € R[x], if there exist 
«!,••• , sm G E[x] such that 

90 ~^>2si9i e £[x], 
i=l 

then 

{xeUn :gi(x),...,gm(x)>0} 
C{xeRn: g0{x) > 0} . 
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Linearized Analysis versus Optimization-based Nonlinear Analysis for 
Nonlinear Systems 

Ufuk Topcu and Andrew Packard 

Abstract—For autonomous nonlinear systems stability and 
input-output properties in small enough (innnitesimally small) 
neighborhoods of (linearly) asymptotically stable equilibrium 
points can be inferred from the properties of the linearized dy- 
namics. On the other hand, generalizations of the S-procedure 
and sum-of-squares programming promise a framework poten- 
tially capable of generating certificates valid over quantifiable, 
finite size neighborhoods of the equilibrium points. However, 
this procedure involves multiple relaxations (unidirectional 
implications). Therefore, it is not obvious if the sum-of- 
squares programming based nonlinear analysis can return a 
feasible answer whenever linearization based analysis does. 
Here, we prove that, for a restricted but practically useful 
class of systems, conditions in sum-of-squares programming 
based region-of-attraction, reachability, and input-output gain 
analyses are feasible whenever linearization based analysis is 
conclusive. Besides the theoretical interest, such results may 
lead to computationally less demanding, potentially more con- 
servative nonlinear (compared to direct use of sum-of-squares 
formulations) analysis tools. 

I. INTRODUCTION 

Internal stability, input-to-state, and input-to-output prop- 
erties of dynamical systems are commonly analyzed by 
constructing Lyapunov/storage functions satisfying certain 
conditions (such as dissipation inequalities) [1], [2], [3], 
[4]. Generalizations of the S-procedure [5], [4] and sum-of- 
squares (SOS) relaxations for polynomial nonnegativity [6] 
provide a framework for the search of such Lyapunov/storage 
functions for systems with polynomial vector fields based on 
(linear or bilinear) semidefinite programming (SDP) prob- 
lems [7], [8], [9], [10], [11], [12], [13], [14], [16], [17], [18]. 

On the other hand, it is well known that if there exist Lya- 
punov/storage functions for the linearized dynamics (around 
an asymptotically stable equilibrium point) then, by certain 
continuity assumptions, these functions (always) serve as 
Lyapunov/storage functions for the nonlinear system possibly 
only locally, i.e., corresponding Lyapunov or dissipation 
inequalities only hold in a "sufficiently small" neighborhood 
of the equilibrium point. The promise of SOS programming 
based nonlinear analysis is that it may be possible to con- 
struct Lyapunov/storage functions that satisfy the Lyapunov 
or dissipation inequalities not only in a "sufficiently small" 
neighborhood of the equilibrium point but also over quan- 
tifiable, non-trivial subsets of the state space. However, the 
transformation from system analysis questions to correspond- 
ing SDP problems (in nonlinear analysis) involves a series 

U. Topcu is with Control and Dynamical Systems at California Institute 
of Technology, Pasadena, CA, 91125 (utopcu@cds . caltech. edu) 
and A. Packard is with the Department of Mechanical Engineer- 
ing, The University of California, Berkeley, CA, 94720-1740, USA 
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of sufficient (but not necessarily necessary) conditions. For 
example, except certain special or hypothetical cases, S- 
procedure is not lossless and not all nonnegative polynomials 
are SOS [9], [6], [19]. Therefore, it is not obvious if (SOS 
programming based) nonlinear analysis yields a certificate 
for the nonlinear system whenever the linear analysis does. 

In this paper, we propose conditions for the feasibility 
of SDP problems (equivalently SOS programming prob- 
lems), proposed in [5], [20], [7] in the context of stability 
robustness, reachability, and input-output gain analyses of 
nonlinear systems around asymptotically stable equilibrium 
points, based on the properties of the corresponding lin- 
earized dynamics. We focus on systems with cubic polyno- 
mial vectors fields mainly due to practical reasons. Although 
SOS programming based analysis can theoretically be used 
for systems with polynomial vector fields of any finite 
degree, there are practical bounds on the degree imposed by 
the capabilities of current SDP solvers and computational 
resources (see [7], [14] for a more detailed discussion). 
Therefore, nonlinear analysis with cubic vectors fields is 
a pragmatic extension for linearization based analysis with 
tighter approximations for the actual dynamics and richer 
families of Lyapunov/storage functions. 

The motivation is primarily theoretical, showing that the 
optimization-based (S-procedure/SOS) methods for nonlin- 
ear analysis (as proposed in [5], [20], [7]) always involve 
feasible bilinear SDP problems whenever the linearization 
is asymptotically stable. Furthermore, these results may also 
have some limited practical value in actually constructing 
(possibly conservative) quantitative results for the nonlinear 
system as outlined in section VI. 

Notation: For £ e TZn, £ y 0 means that & > 0 for 
k = I,--- ,n. For Q = QT e 1ln*n, Q fc 0 (Q >- 0) 
means that £TQ£ > 0 (> 0) for all £ € TZn. For x\ e Hni 

and x2 e ft"
2, [xi;x2] e Rni+n' denotes the concatenation 

of xi and x2. R[£] represents the set of polynomials in £ 
with real coefficients. The subset E[£] := {TT — nf + 7r| 4- 
• • • + *u • ffi,-• • ,*M € Rfc]} of R[f] is the set of SOS 
polynomials. For 77 > 0 and a function g : TZn —> TZ, define 
the 77-sublevel set £lg<ri of g as 

fifl,7 := {x € Tln   :  g(x) < 7?}. 

For a piecewise continuous map u : [0,00) —» TZm, define 
the £2 norm as 

MI2 u(i)Tu{t)dt. 



In several places, a relationship between an algebraic con- 
dition on some real variables and state properties of a dy- 
namical system is claimed, and same symbol for a particular 
real variable in the algebraic statement as well as the state 
of the dynamical system is used. This could be a source of 
confusion, so care on the reader's part is required. < 

II. PRELIMINARIES 

Following two lemmas are straightforward generalizations 
of the S-procedure [4]. See [21], [7] for the proofs. 

Lemma ILL Given go,gi, • • • ,gm € R[x], if there 
exist «!,••• ,«m G £[x] such that g0 - YUml *i9t G 
£[x], then {xeKn  : gi(x),... ,gm(x) > 0} 
C{x€Tln:gQ(x)>0}. 

Lemma II.2. Given go,gi,g2 G R[x] such that go is positive 
definite and go(0) = 0, if there exist si,s2 G £[x] such that 
gisi + g2s2 - go G S[s], then {x G ft" : gi(x) < 0}\{0} 
C {x G ft"   : g2(x) > 0}. < 

The following fact will be used in the subsequent sections. 

Lemma 113. Let Q = QT G 7lnxn be positive definite, 
f : lZn —» 71 be defined as f(x) = xTQx, c\,..., Cm 
be positive real numbers, and g : 7lm —• 71 be defined as 
9{y) = CiVi + C22/I + • • • + Cmy^. Then, f(x)g{y) can be 
written in the form 

f{x)g{y) = z(x,y)THz(x,y), 

where z(x, y) = y <8> x and H >- 0. < 

Proof: 

f(x)g(y)    =xTQx{ciyi + ... + cmy?n) 
= Z?=1Ci(yix)TQ(yix) 
= z(x,y)THz(x,y), 

where H = HT G nnmxnm is 

ciQ 

H :-- 

CnQ   . 

Clearly, H is positive definite since Q is positive definite. D 

Lemma II.4. Let Q and f be as in Lemma 11.3, Ci,...,Cn 
be positive real numbers, and g : 7Zn —> 71 be defined as 
g(x) = c\x\ + ... + Cnxl. Then, f(x)g(x) can be written 
in the form 

f{x)g(x) = z(x)THz(x), 

where z(x) is a vector of all monomials of the form x,y_, for 
i = 1,..., n and j >i with no repetition. < 

Lemma II.5. Let Q and f be as in Lemma II.3, c\,. •., c„+m 

be positive real numbers, and g : 7Zm+n —> 71 be defined as 
g(x,y) = cit/f+C2J/2+- • •+cmyll+cm+ix\+.. .+cm+nx£. 
Then, f(x)g(x,y) can be written in the form 

f(x)g(x,y) = z(x, \x;y\)THz{x, \x\y\), 

where z{x, [x; y}) is a vector of all monomials of the form xf 

for i = 1,..., n and Xjj/j for i = 1,... n and j = 1,... m 
with no repetition. < 

Although z (as defined above)depends on x and/or y, 
this dependence will not be explicitly notated whenever it 
is convenient and does not cause confusion. 

III.   £2 -* C2 INPUT-OUTPUT GAIN ANALYSIS 

Consider the dynamical system governed by 

x(t)    = f(x(t),w(t)) 
y(t)    =h(x(t)). (1) 

where x(t) G Kn, w(t) G ftn", and / is a n-vector with 
elements in R[(x,tu)] such that /(0,0) = 0 and h is an 
nv-vector with elements in R[x] such that h(0) = 0. Let 
4>(t; xo, w) denote the solution to (1) at time t with the initial 
condition x(0) = xo driven by the input/disturbance w. 

Lemma HI.L [22] If there exist real scalars 7 > 0 and 
R > 0 and a continuously differentiable function V such 
that 

V(0) =0and V(x) > 0   for all nonzero x G Un,       (2) 

flv.R* is bounded, (3) 

Wf(x,w) < wTw--y~2yTy   VienVfij, we TV1", 
(4) 

then for the system in (1) 

x(0) = 0 and ||w||3 < R => \\y\\2 < l\\w\\2.       (5) 

In other words, 7 is an upper bound for the "local" input- 
output gain for the system in (1). For given 7 > 0, we 
restrict V to be a polynomial of some fixed degree and use 
Proposition in. 1 to compute lower bounds on the maximum 
value of R such that (2)-(4) hold. 

Proposition IIL1. [21] For given 7 > 0 and positive definite 
polynomial l\ satisfying li(0) = 0, let Rc2 be defined 
through 

R2
r   := max R2     subject to        (6) 1-2 V€Vpoiv,R>0,aeS 

V(0)=0,   siG£[(x,•)], (7) 

V-h€E[x), (8) 

- [(R2 - V)Sl + W/(x, w) - wTw + -y~2yTy] (9) 

€E[{x,w)}, 

where Vpoiy C V and S are prescribed finite-dimensional 
subsets o/R[x]. Then, 

x(0) = 0 and \\w\\2 < RCi |2<7lMh. 

Now, consider the case where / and h are of the form 

/(x, w)    = Ax + Bw + /2(x) + /3(x) 
+ (9i(x) + g2(x))w,       (10) 

h(x)        =Cx + h2(x), 



where f2, /3, gi, g2, and h2 are matrices (of appropriate 
dimension) of (purely) quadratic, cubic, linear, quadratic, 
and quadratic polynomials in their arguments respectively 
and A, B, and C are matrices (of reals) of appropriate 
dimension. Then, the following proposition gives conditions 
on the feasibility of the constraints in (6)-(9) based on the 
analysis of the corresponding linearized dynamics. 

Proposition III.2. For given 7 > 0, li(x) = xTL\x with 
L\ >- 0, / and h in the form in (10), if there exist a symmetric 
matrix Q and t > 0 such thai Q > L\ and 

ATQ + QA + 1~2CTC   QB 
BTQ -I 

then the constraints in (6)-(9) are feasible. < 

Proof: Define V(x) := xTQx. Let z = z(x, [x; w}) be 
as defined in section II. Then, there exist H >- 0, Mi, and 
M2 such that 

zTHz   = (wTw + xTx)(xTQx) 
xTMiz   = xTQ(Mx) + gi(x)w) + xTCTh2(x) 
zTM2z    = 2xTQ(/3(x) + g2(x)w) + h2{x)Th2(x). 

Let a > 0 be such that 

D0:= l-el, 

Dxsm 
-D0 

-M,T 
-Mi 

aH-M2 
yel 

and R := y/e/{2a). Define 

si(x, w) := a(xTx 4- wTw). 

Then, V - h and s\ are SOS. Consider 

b(x,w) := - [VV/(af,to) - wTw + hT(x)h(x)] 
- a(xTx + wTw) (R2 - V), 

which can be decomposed as 

b{x,w) = [x;w;z}TD2[x;w;z], 

where 

D2 := Dx 

Hence, b is SOS. 

aR2I 
0 

hel- aR2I 
0 *§'• 

a 

IV. REACHABILITY ANALYSIS 

For R > 0 and \\w\\2 < R, the set QR* of points reachable 
from the origin under the flow of (1) is defined as 

Qm :={4>{T-0,w)eUn  :  T > 0, \\w\\2 < R} . 

Lemma IV. 1 adapted from a Lyapunov-like argument in [4, 
§6.1.1] provides a characterization of sets containing QB? 

[5], [22]. 

Lemma IV. 1. If there exists a continuously differentiable 
function V such that 

V{x) > 0 for all x€Kn\{0} with V(Q) = 0,      (11) 

QV.R* *s bounded, (12) 

VVf{x,w) < wTw Vx € fV,fl*, w e Kn•,       (13) 

then QR2 C Qyjp. < 

For given 0 > 0 and positive definite, convex polynomial 
p, the following proposition provides a lower bound for the 
maximum value of R such that QR2 C Qp g. 

Proposition IV.l. /227 Let 0 > 0, li be a positive definite 
polynomial satisfying lx(0) = 0, Rreach be defined through 

breach •= Vev •f* c-   R2 subject tO   (14) 

V{0) = 0, si e £[x], and s2G E[(x,tu)],       (15) 

V-/i€E[x], (16) 

(/3-p)-(i?2-V)Si€5:[x], (17) 

- [(R2 - V)s2 + Wf(x,w) - tuTtt>] e E[(x. tu)],(18) 

where Vpoiy C V and Si are prescribed finite-dimensional 
subsets ofR[x}. Then, 

Proposition IV.2. For p(x) = xTPx wj'f/j P >- 0, /i(x) = 
xTL\x with L\ y 0, and / of the form in (10), if there exist 
e > 0 awJ Q >r Li .SMCA r/wr 

ATQ + QA   QB 
BTQ -I D0:= :<-€/, 

fften fte constraints in (14)-(18) are feasible. < 

Proof: Define V(x) := xTQx. Let z = z(x, [x; to]) be 
as defined in section II. Then, there exist H >- 0 (by Lemma 
II.3), Mi, and M2 such that 

zTHz = (wTw + xTx)(xTQx) 
xTMiz = xTQ(f2{x) + gi(x)w) 
zTM2z    = 2xTQ(f3(x) + g2(x)w). 

Let a > 0 be such that 

D,:= 
-D0        -Mi 
-Mf   aH - M2 

hel, 

and R := y/e/{2a). Define 

si(x)    :=Amai(P)/Ami„(Q) 
S2(x,u>)    := a(xTx+ wTw). 

Then, V - Ii, «i, s2, and {0 - p) - (R2 - V)s1 are SOS. 
Consider 

b{x,w) := -Wf(x,w)+wTw-a(xTx+wTw) (R2 - V), 

which can be decomposed as 

6(x, w) = [x; w; z]TD2[x; w; z], 

where 

D2 := Di - 

Hence, b is SOS 

aR2I   0 1 
y el - 0       0 J 

cxR2I   0 
0       0 H'- 



A. Extensions of the reachability analysis for systems with 
degenerate linearization 

Consider the system 

x(t)    -    Amx(t) + BAK*(t)x(t) + Ew(t) 

kx  = -rxx(t)xT(t)PB, 
(19) 

where x(t) G Un, B G Hnxm, w(t) G TZnxn-, and P, E, 
A, Am, and Tx are matrices of appropriate dimension with 
Hurwitz Am. The dynamics in (19) can be considered as 
the closed loop dynamics for the system x(t) = Amx(t) + 
BAu(t) regulated to the origin by a model reference adaptive 
controller of the form[23] 

u(t) = kx(t)x(t) 

in the presence of the disturbance w. Note that the results 
in Proposition IV.2 is not applicable to the system in (19) 
because its linearization at the origin is not asymptotically 
stable. Nevertheless, the nonlinear reachability analysis as 
outlined in Proposition rv.l is still applicable. 

Proposition IV.3. Let xi G TZni, x2 G ft"2, and w G ftn" 
and consider 

±i(t)    =   Axi(t) + b(x1(t),x2(t)) + Ew(t) 
x2(t)    =    q(xi(t)) 

(20) 

-<-eI. 

where b : R.ni+n7 —» Hni whose entries are bilinear 
polynomials in xi and x2, q : %ni —> Hn2 whose entries are 
quadratic polynomials in X\, and E and A are real matrices 
of appropriate dimension such that there exist Qi = Q\ >- 0 
and e > 0 with 

ATQl+QlA   QXE 
ETQX -I 

. Then, there exist positive definite V € R[(xi,x2)], s G 
E[xi], and R>0 such that bm G E[(xi,x2,w)} where 

6m(ii,X2,u;) := - [VVf(xux2,w) - wTw + (R2 - V)s] 

Proof: Let V^x) := xfQiXi + xjQ2x2, where Q2 = 
Q% >- 0. Then, there exist Bx, B2, Hi >- 0, and H2 >- 0 
such that 

= xjBiz{xi,x2) 
= xjB2z(xi,x2) 
= z(xi,x1)

TMiz(xi,xi) 
= z(xi,x2)TM2z(xi,x2) 

xjQib{xi,x2) 
x2Q2q{xi) 
x^QiXixfxi 
x2Q2x2x1x\ 

and -6m can be decomposed as 
T 

Xi 

U) 

z(xi,xi) 
z(xi,x2) 

D 
z(xi,xi) 
z(xi,x2) 

0 
0 

-aMi 
0 

B1 4 B2 

0 
0 

—aM2 

where D is 

ATQi + QiA + aR2I QXE 
ETQ1 -/ 

0 0 
Bf + Bl 0 

and D negative semidefinite by proper choice of a (suf- 
ficiendy large) and R (sufficientiy small). Consequently, 
bm G £[(xi,x2,iu)]. D 

V. REGION-OF-ATTRACTION ANALYSIS 

The material of this section is adapted from [24] where 
similar results were proven in the context of robust region-of- 
attraction analysis for systems with parametric uncertainty. 
For simplicity, we focus on the case without uncertainty. 
Consider the autonomous nonlinear dynamical system 

±{t) = f(x(t)), (21) 

where x(t) G TZn is the state vector and / is an n-vector 
with entries in R[x] satisfying /(0) = 0, i.e., the origin is an 
equilibrium point of (21). Let <£(£;xo) denote the solution 
to (21) at time t with the initial condition x(0) = xo. The 
region-of-attraction of the origin for the system (21) is 

(xo G Kn : lim <£(£;x0) = o) . 

A modification of a similar result in [2] provides a character- 
ization of invariant subsets of the ROA in terms of sublevel 
sets of appropriately chosen Lyapunov functions. 

Lemma V.l. Let 7 G TZ be positive. If there exists a 
continuously differentiable function V V.n —» Tl such 
that 

fiyi7 is bounded, and (22) 

1/(0) = 0 and V{x) > 0 for all x£Kn (23) 

nVl7\ {0} C {x G IT   :   W(x)/(x) < 0} , (24) 

then fiv,7 is an invariant subset of the ROA. < 

In order to enlarge the computed invariant subset of 
the ROA, we define a variable sized region Q.p^ = 
{x G Hn : p(x) < 0}, where p G M[x] is a fixed positive 
definite convex polynomial, and maximize 0 while imposing 
the constraint Clp<0 C fiVi7 along with the constraints (22)- 
(24). 

SOS programming and simple generalizations of the S- 
procedure (namely Lemmas HI and II.2) provide algebraic 
sufficient conditions for the constraints in Lemma V.l. 
Specifically, let /1 and l2 be a positive definite polynomials. 
Then, since l\ is radially unbounded, the constraint 

V - U G Efxl (25) 

and V(0) = 0 are sufficient conditions for (22) and (23). By 
Lemma II. 1, if si G S[x], then 

-[(/3-p)Sl + (V-7)]G£[x] (26) 

implies the set containment QPip C Qv,^, and by Lemma 



II.2, if s2,s3 € E[x], then 

- [(7 - V)s2 + Wfs3 + I*] € E[x] (27) 

is a sufficient condition for (24). Consequently, QPtp- is 
a subset of the ROA and fly,-,- is an invariant subset of the 
ROA, where 

0ROA '•= max     0 subject to (25) - (27), 

V(0) = 0,Si e£[x],/?>0 

and V* and 7* are optimal values of V and 7 in (28). Here, 
the sets V and St are prescribed finite-dimensional subspaces 
of polynomials. 

We now focus on systems governed by ordinary differen- 
tial equations of the form 

since Q - Ri >; 0. 

x = f(x) = Ax + f2(x) + /3(x), (29) 

where /a and f3 are vectors of (purely) quadratic and 
cubic polynomials, respectively, and A € Kn*n, and prove 
that asymptotic stability of the linearized dynamics is also 
sufficient for the feasibility of the constraints in (28) (for 
sufficiently small 7 > 0). 

Proposition V.l. Let f be an n-vector of cubic polynomials 
in x satisfying /(0) = 0, and let P >- 0, Ri >- 0, R2 X 0, 

p(x) := xTPx,     Zi(x) := xTR\X,    Z2(x) := xTR2x. 

If there exists Q >- 0 such that 

ATQ + QA^0, 

then the constraints in (28) are feasible for some R > 0. < 

Proof: The proof is constructive. Let z = z(x) be as 
defined in Lemma H.4, QyQ satisfy ATQ + QA r< -2R2 

and Q >z R\ (such Q can be obtained by properly scaling 
Q). Let 

e := Amin(JR2),     V(x) := xTQx, 

and H >- 0 be such that {xTx)V(x) = zTHz (which exists 
by Lemma II.4). Let M2 e Un*n* and symmetric M3 € 
7en«xn« satisfy 

VV/a(x)    = xTM2z 
VV/3(x)    = zTM3z. 

Define 

Am„(M3+ + £M2
TM2) 

C2 :=    Am,„(tf)  
s2(x)    := C2XTx 

T := 2e7 

s3(x)    := 1, 

where for a symmetric matrix M, M+ denotes its projection 
into the positive semidefinite cone. Clearly, si € E[x], s2 G 
E[x], and s3 e E[x]. Note that 

V(x) - h(x) = xT{Q - i?i)x G E[x], 

61(x):=-[(7-K)s2 + Vy/s3+y 
r        r 

X 
>1 

where 

and 

-7C2/ - R2 - (ATQ + QA)      -M2/2 
-M2

T/2 c2H - M3 

^fc 
J/ -M2/2 

-M2
T/2   c2H-M3 

VO 

by the Schur's complement formula. Consequently, 61 (x) € 
E[x]. Finally, 

-[(/3-p)«1 + (V-7)] 
/3si + 7 0 

0 sjP-Q 

where B2 fc 0 and consequently 62 e E[x]. 
(30) 

D 

VI.  INTERPRETATION AND DEMONSTRATION OF RESULTS 

It is worth re-stating that the motivation here is theoretical 
rather than practical. The conclusions can be summarized 
as that the nonlinear local analysis (based on S-procedure 
and SOS programming relaxations as proposed in [5], [20], 
[7]) is always capable of returning a feasible result (i.e.. 
corresponding optimization problems are feasible) whenever 
corresponding conditions for the linearized dynamics are 
feasible. Alternatively, these results may also have some 
limited practical value in constructing (possibly conservative) 
quantitative results for the nonlinear system. For example. 
Propositions V.l, III.2, and IV.2 can be directly used to 
construct feasible solutions for the problems in Eq. (28) 
and Propositions III. 1 and IV. 1, respectively. Proofs of 
Propositions V.l, III.2, and IV.2 also suggest a recipe for 
constructing less conservative feasible solutions for these 
problems by searching for an "optimal" quadratic Lyapunov 
function (instead of fixing V to a Lyapunov function for 
the linearization). A construction in the case of region-of- 
attraction analysis can be summarized as follows: Choose 
the multipliers 81, s2, and s3 in the form given in the 
proof of Proposition V.l with the free parameter c2. Affinely 
parameterize H, M2, and M3 in terms of Q (note that there 
may be multiple possible parameterizations for M2 and M3 

and the choice may change the quantitative results - here 
we arbitrarily choose one parametrization). Then, flp,0- is a 
subset of the ROA where 

0*:-- 0   subject to max 
7,C2,y3,Q=QT>:fii 

-7C27 - B* - ATQ - QA -M2(Q)/2 
-M2(Q)T/2 c2H(Q) - M3(Q) 

-/? + 7        0 
0        P-Q \ 

^0. 

X0 

(31) 



Note that the above problem can be solved through a series 
of convex SDP problems by a line search on ci- Construction 
of feasible solutions for the problems in Propositions in.l 
and IV. 1 can be developed in a similar manner. 

The value of such "suboptimal" construction of feasible 
solutions for the problems in the context of nonlinear system 
analysis may be better appreciated by recalling the fact that 
one of the main difficulties in SOS programming based 
nonlinear system analysis is the computational complexity 
of the SOS programming. The procedure outlined above 
provides an ad hoc way of generating (possibly high quality) 
solutions for the corresponding optimization problems or 
initial seeds for further optimization. The following example 
demonstrates this construction for ROA analysis and com- 
pares the results with "optimaF'solutions from (28). 

Example VL1. Consider the Van der Pol dynamics 

±i    = -x2 

X2      — Xl + {x\ - l)l2, 

which have a stable equilibrium point at the origin and an 
unstable limit cycle around the origin which is the boundary 
of the ROA of the equilibrium point. In this example, we will 
construct invariant subsets of the ROA using the problem in 
Eq. (28) and Proposition V.l. Let x = [x\ X2]T, p(x) = xTx, 
h{x) — h(x) = 10-6xTx. The solution of the problem 
in Eq. (28) with a quadratic Lyapunov function candidate, 
(purely) quadratic s2, and scalar si and S3 certifies fip,i.57 
to be a subset of the ROA. The feasible solution provided in 
Proposition V.l certifies fip,o.20 to be a subset of the ROA. 
Alternatively, by the procedure outlined above certifies that 
^p.o.65 '5 tn the ROA. < 

VII. CONCLUSIONS 

Sum-of-squares programming based analysis of nonlinear 
systems with polynomial vector fields may be regarded supe- 
rior to analysis based on linearized dynamics in the sense that 
the former is capable of generating quantitative certificates 
as opposed to conclusions from the latter valid only over in- 
finitesimally small neighborhoods of the equilibrium points. 
However, sum-of-squares based approach involves multiple 
relaxations. Therefore, it is not obvious if the sum-of-squares 
programming based nonlinear analysis can return feasible 
answers whenever linearization based analysis does. In this 
paper, we proved that, for a restricted but practically useful 
class of systems, conditions in sum-of-squares programming 
based region-of-attraction, reachability, and input-output gain 
analyses are feasible whenever linearization based analysis is 
conclusive. Besides the theoretical interest, such results may 
lead to computationally less demanding, potentially more 
conservative nonlinear (compared to direct use of sum-of- 
squares programming formulations) analysis tools. 
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