Naval Surface Warfare Center Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-TR-98/005 April 1997

Survivability, Structures, and Materials Directorate Technical Report

Development of HWAM Li_xCoO₂ Reserve Battery

by

Charles J. Kelly (Alliant Techsystems, Inc.)

Edited by Charles W. Fleischmann (Advanced Technology & Research Corporation)

Approved for public release - distribution is unlimited.

19991005 033

Naval Surface Warfare Center Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-TR-98/005 April 1997

Survivability, Structures, and Materials Directorate Technical Report

Development of HWAM Li_xCoO₂ Reserve Battery by

Charles J. Kelly (Alliant Techsystems, Inc.)

edited and reviewed by Charles W. Fleischmann, (Advanced Technology and Research Corp.)

Approved for public release - distribution is unlimited.

REPOR	T DOCUMENTATIO	N PAGE		Form Approved OMB No. 0704-0188					
Public reporting burden for this collection data sources, gathering and maintaining t estimate or any other aspect of this collec Information Operations and Reports, 1215 Paperwork Reduction Project (0704-0188	he data needed, and completing and revi tion of information, including suggestions 5 Jefferson Davis Highway, Suite 1204, A	ewing the collection of for reducing this burd	information. Send en. to Washington H	comments regarding this burden leadquarters services, Directorate for					
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 1997		TYPE AND DATES 95-March 199						
4. TITLE AND SUBTITLE Development of HWAM Li	xCoO₂ Reserve Battery	5	. FUNDING NUM	IBERS					
6. AUTHOR(S) Charles J. Kelly									
 PERFORMING ORGANIZATION NA Naval Surface Warfare Ce Carderock Division 9500 MacArthur Boulevard West Bethesda, MD 2081 	enter d	. 8	PERFORMING REPORT NUM NSWCCD-						
 SPONSORING/MONITORING AGEN ONR Ballston Centre 800 North Quincy Street Arlington, VA 22217-5000 		1	0. SPONSORING/ NUMBER	MONITORING AGENCY REPORT					
1. SUPPLEMENTARY NOTES									
2a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 12b. DISTRIBUTION CODE									
3. ABSTRACT (Maximum 200 words)									
Battery successfully demo to meet the tactical needs that internal and external s Because of its reserve des supply power for HWAM S demonstrated in fully-deve small adjustments in volur	development program for a re- onstrated the capability of a lit of the HWAM. Extensive sa short circuit abuses do nothin sign, long term storage has n Standby, Alert, and Launch m eloped hermetic cell hardware ne. This production-ready de ffordable unit price in practica	thium metal/lithin fety testing, as p og to change the o effect on the b odes. Fourteer e, can be increa esign demonstra	um cobalt dio bart of a deve benign beha battery's readi ampere-hou sed to above tted extensive	xide electrochemical system lopmental program, proved vior of the power source. iness when called upon to rs of reserve capacity, twenty ampere-hours with					
	•								
14. SUBJECT TERMS lithium/lithium cobalt oxide lithium primary reserve ce lithium cell lithium/metal oxide cell		eserve lithium b	attery	5. NUMBER OF PAGES 181 6. PRICE CODE					
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLAS OF ABSTRACT UNCLASSIF		0. LIMITATION OF ABSTRACT SAR					
NSN 7540-01-280-5500				Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18					

Contents

Introduction	-1
Requirements	2-1
Alliant Techsystems, Inc. Battery Design Development Philosophy	
Process Development	-1
Test Results	i-1
Preprogram Testing	j -1
Fixtured Cell Testing at Environmental States	j -7
Hermetic Cell Performance Testing at Environmental States	
Hermetic Cell Safety Testing	
Studies	
Cell Improvement Studies	
Li _{0.5} CoO ₂ Comparison with SOC1 ₂	5-3
Battery Life Expectancy	j - 4
HWAM Active Li/Li _{0.5} CoO ₂ Battery6	j-4
Li/Li _{0.5} CoO ₂ Capacity Not Lost to Depassivation Requirements	5-20
Unit Price Cost Estimate for HWAM Reserve Battery	5-21
References	-1
Appendices	
AHWAM Drawing Package A	\-1
BU.S. Patent No 5,667,660: Synthesis of Charged Li _x CoO ₂ (0 <x<1) for<="" td=""><td></td></x<1)>	
Primary and Secondary BatteriesB	3-1
CCompilation of Hermetic Cell Test ResultsC	2-1
DSafety Study Presentation of July 20, 1995D	
ESpecification Sheets for Ordnance BatteriesE	
Distribution	(1)

Figures

Number

1-1	Pasanza Dattanz Outling and Interface	2
2-1	Reserve Battery Outline and Interface	
2-1 2-2	HWAM Activation Time Requirements	
	HWAM Power Profile	.3
4-1	Block Diagram of Charging Process for $Li_{0.5}CoO_2$ and Subsequent	•
4.0	Fabrication and Testing of a Cell	
4-2	Discharge Tests of Low Rate Charged Li _{0.5} CoO ₂	
4-3	Discharge Test	-4
5-1	Picatinny Cell Modified with a Precharged Li _{0.5} CoO ₂ Cathode	.3
5-2	Storage and Test Matrix for Option 7, Picatinny Cell	
	(Modified with Li _{0.5} CoO ₂ Cathodes)	4
5-3	Fresh Discharge Performance of Picatinny Reserve Cell in Small Hermetic	
	Hardware (Modified Picatinny Cell 99275567)5-	.5
5-4	Subcell No. 103 of HWAM Type, Reserve Battery Design, Using	
·	Precharged LiCoO ₂ Cathode and Cycled after First Discharge at the	
	Indicated Rates	-6
5-5	HWAM Single Cell Hardware Test Fixture	
5-6	HWAM Anode Assembly - Lithium Foil Press and Trim	
5-7	HWAM Cathode Assembly Installation	
5-8	HWAM Assembled Cell Stack	
5-9	Pulse and Capacity Rundown Profile, Cell WAMF06	
5-10	Pulse profile of (4) 3.5 Amp, 0.5 Second Duration at Beginning of Life 5-	
5-11	No Load Voltage Rise Time (T_R)	
5-12	Fixtured Cell Test Profile	
5-13	Pulse and Capacity Discharge Profile, Cell WAMF11	
5-14	Erect Pulse, 8 Seconds After Activation, (WAMF12)	
5-15	Individual Cell Case	
5-16	HWAM Battery	
5-17	Pulse and Capacity Discharge Profile, Cell WAMH05	
5-18	Pulse and Capacity Discharge Profile, Cell WAMH05	
5-10 5-19	Pulse and Capacity Discharge Profile, Series Test	
5-20		
5-20 5-21(a/b)	Pulse and Capacity Discharge Profile, Cell WAMH075- External Short Circuit Test, Cell WAMH08	23
5-22(a/b)		
5-22(arb) 5-23	External Short Circuit Test, Cell WAMH22	29
	Internal Short Circuit Test and Capacity Discharge Profile, Cell WAMH095-	31
5-24(ab/c) 5-25	Short Circuit and Cell Reversal Test, Cell WAMH18	
6-1	Abuse Test, Activated with 10% Electrolyte, WAMH06	
	Separator Evaluation, +75°F	5
6-2	Separator Evaluation, +28°F	
6-3	Separator Evaluation, 0°F	
6-4	Separator Evaluation, -25°F	8
6-5	Modified Picatinny Cell 9275567, Li/Li _x CoO ₂ /DSMF, 1 Layer Veretek 6-	
6-6	Modified Picatinny Cell 9275567, Li/Li _x CoO ₂ /DSMF, 1 Layer Veretek 6-	10

Figures (Cont.)

Number

6-7	Modified Picatinny Cell 9275567, Li/Li _x CoO ₂ /DSMF, 1 Layer Veretek	6-11
6-8	Modified Picatinny Cell 9275567, Li/Li _x CoO ₂ /DSMF, 1 Layer Veretek	6-12
6-9	Cell Capacity Versus Cutoff Voltage	6-13
6-10	Normalized Power Curves for Li/Li _{0.5} CoO ₂ and Li/SOC1 ₂	6-14
6-11	Power Output Comparison Between Li/Li _{0.5} CoO ₂ and Li/SOC1 ₂	6-15
6-12	Fast Run Down Versus Slow Run Down of Picatinny Hermetic Cells,	
	Picatinny #9275567 (Modified), Room Temperature	6-17
6-13	HWAM Active Battery Design	6-18
6-14	HWAM Reserve Battery, 30 Ampere-Hour Capacity	6-22

Tables

Number

Page

2-1	Form and Function Requirements	2-1
4-1	Fabrication Data for Charging Cells Li _{0.5} CoO ₂ Material	4-5
5-1	Modified Picatinny 9275567 Cells with Precharged Cathodes LiCoO ₂	
	Stored in Reserve State (6 months)	5-7
5-2	HWAM Fixtured Cell Test Data at Room Temperature	5-11
6-1	Physical Comparisons	6-2
6-2	Capacity Comparison between Li/Li _{0.5} CoO ₂ and Li/SOC1 ₂	
	in Same Size Hermetic Cells	6-16
6-3	HWAM Active Battery Electrode Design	6-23
6-4	HWAM Active Battery Weight Summary	6-23

v

Preface

Contract No. N60921-93-C-0060, Option 7, awarded to Alliant Techsystems, Inc. by the Naval Surface Warfare Center, and funded by Office of Naval Research, developed large (100 Ah) rechargeable lithium/lithium cobalt oxide cells for batteries to propel undersea vehicles. As built, these cells were in the discharged state because the available precursor cathode material was of the electrochemically-discharged chemical composition. Charged precursor cathode material was not only unavailable, but its chemical stability was unknown and suspect. Obtaining it required development of a preparatory process and an understanding of its handling requirements for cathode manufacture. Recognizing that there could be advantages to building cells in the charged state because the user could put them immediately into service, and that applications needing reserve cells require them, the Navy was pleased to include a development effort to prepare charged precursor cathode material when given the opportunity via Army funding. Under Option Item 7 to the contract, the Army (Project Manager for Mines, Countermine, and Demolitions) funded development of charged lithium/lithium cobalt oxide cells to power Hand-Emplaced Wide Area Munitions (HWAM). This effort intended to develop reserve cells, which were also capable of a limited number of charge/discharge cycles, as an alternate to the baseline system, lithium/thionyl chloride, a non-rechargeable battery.

Chapter 1

Introduction

The first goal of this program was to conduct a cell and battery design analysis such that the final battery design would comply with the specified weight and specific geometric volume identified in Customer Specification No. 29224A Figure 1-1, Reserve Battery Outline and Interface. This specification is for the Hand-Emplaced Wide Area Munitions (HWAM). To meet the second goal, the battery's unit cell would have its design detailed for eventual demonstration build and test. The battery design analysis was required by contract to include the following key elements:

- design for battery rechargeability,
- battery state-of-charge indication,
- design circuitry to control recharge,
- comparison of the advantages/disadvantages of an internal/external reservoir,
- battery production cost analysis,
- battery environmental issues of manufacture and disposal,
- safety of the battery design and analysis of probability of battery explosion on internal or external short circuit.

The battery design analysis, once completed, was the basis for a detailed cell design. The cell design was documented by a drawing package. Revision updates to the drawing package resulted from the contract-required execution of cell fabrication and testing. The final drawing package is given as Appendix A. The cell development process was one of verification by experiment of key concerns regarding form factor, reserve capability, rate, and environmental limits for an advanced electrochemistry, namely, lithium/lithium cobalt dioxide (Li/Li_xCoO₂). The steps were as follows:

- The cell design was evaluated in single-cell, bolt-together test fixtures of a configuration that represented the final cell internal design, except the number of plates per cell were not the same as that anticipated for the final design.
- In a parallel effort, the cell build procedures were optimized, particularly with regard to the synthesis process for manufacturing electrochemically-charged lithium cobalt dioxide for cell cathodes.
- Next, the cell design was demonstrated in single cell test fixtures containing multi-plate electrodes of anticipated full-cell design quantities. Voltage versus discharge rate data obtained from these tests were used to project battery performance for a three-cell, series design at full Hand-Emplaced Wide Area Munitions (HWAM) load requirements.
- Finally, cells were constructed of the final design in hermetically-welded cell cases and tested at the environmental extremes outlined in the contract specification.

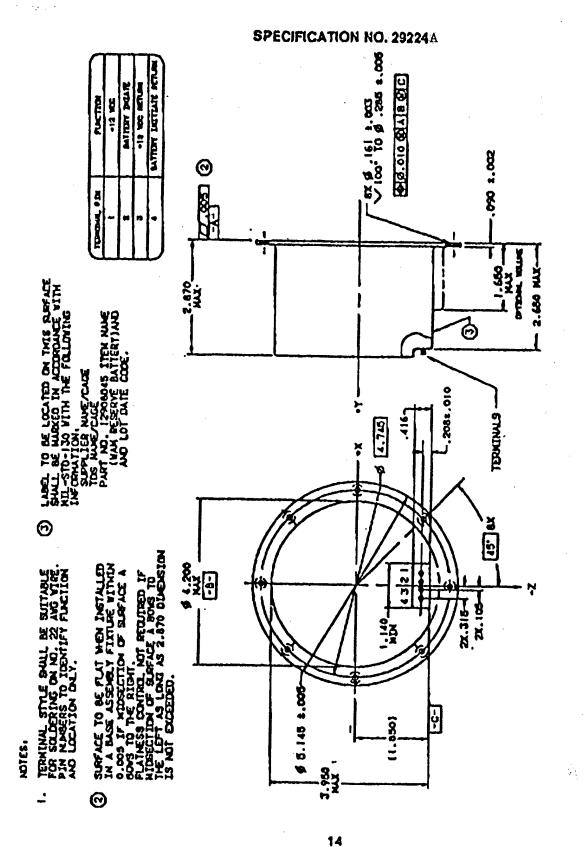
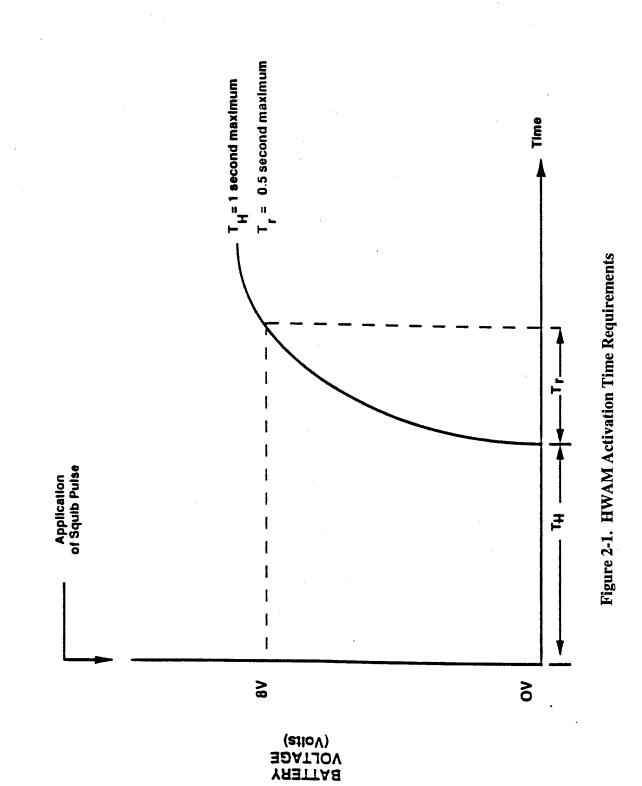


Figure 1-1. Reserve Battery Outline and Interface

14

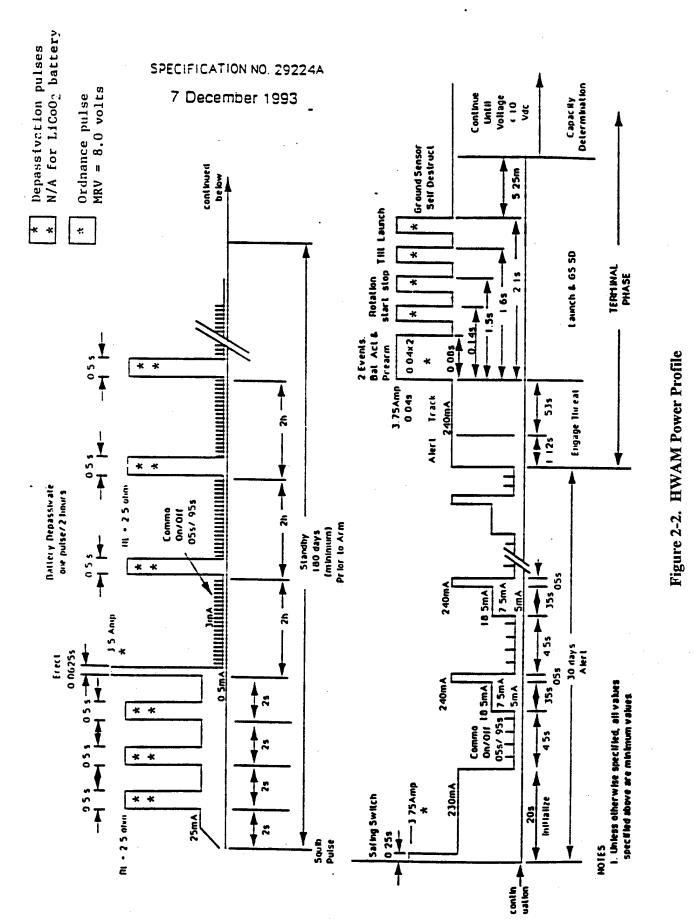
Chapter 2

Requirements


The battery electrical specifications, physical requirements, and environmental conditions are outlined in Table 2-1. In a similar manner, Figure 1-1 is a reproduction of the HWAM Battery outline drawing from Specification No. 29224A, dated 17 August 1993. This drawing provides all of the interface information needed to mate the battery to the HWAM. Figure 2-1 is also a reproduction from Specification No. 29224A and schematically shows the desired battery activation time for both the hydraulic flow time, T_H (time for the electrolyte in the battery reservoir to reach the electrode stack), and the electrical rise time, T_r (time for the battery to come up in voltage from 0 volts to a minimum of 8 volts).

The power demands of the HWAM have a duration of a minimum of 180 days at "Standby" mode prior to device "Arming," followed by up to 30 days in the "Alert" mode, and finally ending on command in a terminal phase of engaging the threat and launch. Details of the power profile are shown in Figure 2-2. Because some use scenarios would benefit if the battery could be cycled a few times, the cycle life was determined.

	Reference: Spec. No. 29224A, 17 August 1993
Dimensions (Fig. 1-1):	
- Flange Diameter:	5.145 in max.
- Case Diameter:	4.200 in max. (3.95 in flat side diameter)
- Height:	2.870 in max.
Weight:	3.0 pounds +0, -0.3 pounds
Leakage:	The battery shall be a hermetically sealed device.
Activation:	Activate in any orientation relative to the local horizontal.
	Voltage rise time: 0.5 seconds max. to 8.0V (2.67 V/cell) from first detectable voltage.
Voltage and Load:	
- Maximum Voltage (240 Ma):	15.0 volts (5.0 volts/cell)
- Minimum Voltage (240 Ma):	10.0 volts (3.33 volts/cell)
- Minimum Voltage for Ordnance	
Loads (3.75 A):	8.0 volts (2.67 volts/cell)
Capacity:	
When discharged at a constant load of	32.5 hours at 145°F, 13.0 Ah
400 ± 10 Ma, the battery shall	
maintain a minimum output voltage of	35.0 hours at 72°F, 14.0 Ah
10 volts for the following number of	
hours:	26.5 hours at -25°F, 10.6 Ah
Temperature - Non Operating:	The battery shall meet the requirements after exposure to temperatures from -50°F to
High Temperature - Operating:	+160°F.
Low Temperature - Operating:	The battery shall meet the requirements during exposure to temperatures as high as +145°F.
	The battery shall meet the requirements during exposure to temperatures as low as - 25°F.


Ta	able	2-1.	Form	and	Function	Requir	rements
_	-		~				

SPECIFICATION NO. 29224A

SPECIFICATION NO. 29224A

17 August 1993

Chapter 3

Alliant Techsystems, Inc. Battery Design Development Philosophy

The strategy used by Alliant Techsystems, Inc., to develop a safe design for the HWAM power source contained the following key criteria:

- Separation of the three cells required for the voltage demand. Each cell is an hermetically sealed unit that remains electrically and electrochemically isolated over the 210 day minimum active life.
- Selection of an electrochemistry that is innately safer than the baseline system, lithium thionyl chloride; specifically, lithium/lithium cobalt oxide, which has the capability of high energy density and benign short circuit behavior.
- The electrochemistry must also be capable of reserve battery function. Lithium/lithium cobalt dioxide was further developed during this program to demonstrate reserve capability. A complete scale-up process for synthesizing electrochemically-precharged lithium cobalt dioxide was achieved.
- Maximize electrode surface area as a means of lowering the discharge rate to a conservative value, affording long battery Standby and Alert mode life.
- Design electrode shape to facilitate an overall battery structure that would conform to the envelope constraints of the HWAM Reserve Battery Outline and Interface as defined in Specification No. 29224A and shown in Figure 1-1 in this report.
- Design of a safety vent to release internal pressure should an abnormal pressure level occur. Note: During safety tests, an internal, built-in short circuit and externally applied short circuits did not result in sufficient internal pressure to open rupture-type diaphragm vents.

Chapter 4

Process Development

Rechargeable Li/Li_xCoO₂ cells are built^{1,2} using LiCoO₂ as the active cathode material (*i.e.*, the x value in Li_xCoO₂ is unity). Cells are cycled by charging from the composition where x is unity to a value of x about 0.5. Therefore, when x = 1, the cell is in the discharged state. That state is employed for fabrication because it is commercially available, and it can be handled under ambient conditions.

When a reserve primary cell is required, as is the case for the HWAM application, the cell must be ready to discharge immediately upon activation. Therefore, the cell must be built in the charged state. For Li/Li_xCoO₂ cells, this means the cathode must be of the composition $Li_{-0.5}CoO_2$. At the beginning of the development work on the HWAM battery, it was not known if the charged material could be synthesized chemically. Obviously, it could be synthesized electrochemically, within the cell as that occurs during each charge cycle. Nevertheless, it was not known if that material was stable outside the cell, or if it could be reprocessed into a cathode after electrochemical preparation and still maintain its state of charge.

Additionally, this positive electrode material had to be producible in quantities sufficient to meet production quantities of HWAM units. Experimentation proved that the only successful method of synthesizing charged Li_xCoO₂ was electrochemical. For this technique, a "Charging Cell" is fabricated without binder in the cathode. In this cell, the composition^{*} of the cathode mix was 90 percent LiCoO₂ and 10 percent carbon. After charging, the "charged" Li_{0.5}CoO₂ mix is removed, rinsed, and dried for later fabrication into HWAM cathodes of particular shape and area. The fabrication was sufficiently novel to be patented.³ The patent (Appendix B) provides additional details of the synthesis technique as well as amplifying its advantages. One notable advantage is the ability to employ stainless steel rather than aluminum as the current collector. A cell composed of these cathodes is then capable of storage in the dry state for an indefinite period of time (estimated at 20 years). A cell of such construction, with lithium metal anodes, is a reserve cell until electrolyte is supplied from a reservoir. The baseline electrolyte for these cells was 2-molar lithium hexafluoroarsenate with 0.4-molar lithium tetrafluoroborate (2M LiAsF₆ + 0.4M LiBF₄) in methyl formate. Alliant uses the acronym DSMF for this electrolyte, for "Double Salt Methyl Formate." An alternate solvent, methyl acetate, was also evaluated as its cost is lower than the formate. This solvent, with the same salts, is called DSMA in the report. An alternate, using this solvent and only the hexafluoroarsenate salt is called SSMA to represent "Single Salt Methyl Acetate."

^{*}All percentages are by weight unless otherwise indicated.

A block diagram of the cathode fabrication process is shown in Figure 4-1. During process development, both the size of the Charging Cell, and the rate of charge were increased, adding significantly to the scaled-up yields. Figures 4-2 and 4-3 show that a progression of charge rate increase had no effect on the discharge capacity of quality control cells used to verify charged $\text{Li}_{0.5}\text{CoO}_2$ material performance. The number of Charging Cells built during this program and their respective data are shown in Table 4-1.

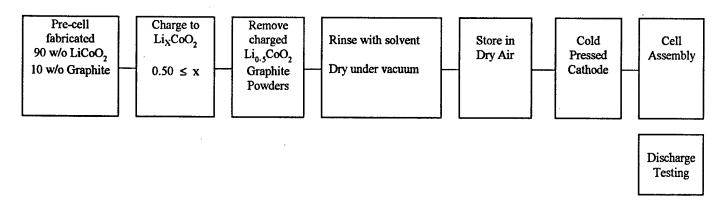


Figure 4-1. Block Diagram of Charging Process for Li_{0.5}CoO₂ and Subsequent Fabrication and Testing of A Cell.

H-WAM PRECHARGED CATHODE LOT WAMPC10

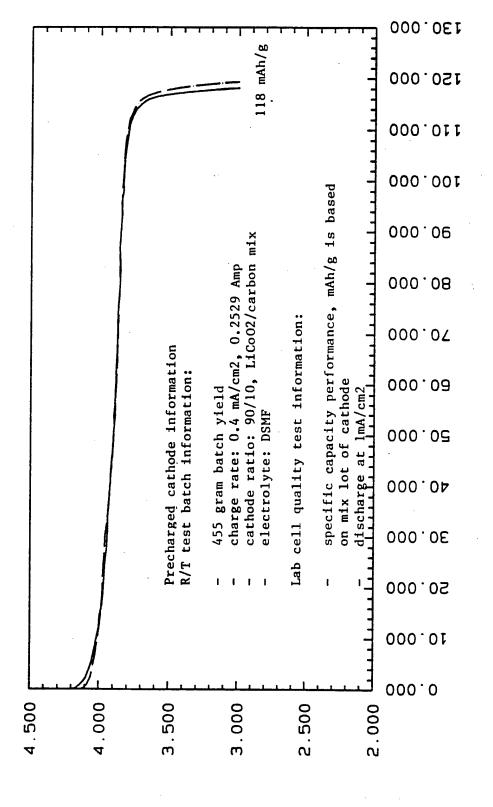


Figure 4-2. Discharge Tests of Low Rate Charged Li_{0.6}CoO₂

mAh/gram

VOLTS

130.000 118 mAh/g 120.000 000.011 000.001 specific capacity performance, mAh/g is based 000.06 cathode ratio: 90/10, LiCo02/carbon mix 000.08 charge rate: 1.0 mA/cm2, 0.632 Amp 000.07 Precharged cathode information 000.03 cell quality performance: R/T test batch information: on mix lot of cathode discharge at 1 mA/cm2 462 gram batch yield 000.02 electrolyte:DSMF 40.000 30.000 20.000 Lab 1 1 ŧ 1 1 I 000.01 000.0 3.000 2.500 2.000 3.500 4.500 4.000

WAMPC32

LOT

PRECHARGED CATHODE

H-WAM

SIJON

4-4

NSWCCD-TR-98/005

Figure 4-3. Discharge Test

mAh/gram

.i _{o.6} CoO ₂ Material
I Cells L
Charging
Data for (
Fabrication
Table 4.1. I

Precharged Cathode Information H-WAM

						BEFORE	DRE		Test results	ults		Lab Cell	Lab Cell Evaluation
						CHARGE	RGE		After Charge	arge		1 m	I mA/cm ₂
			Cathode	Theoretical	Charge	AC Imped.				AC Imp.	ocv	ocv	Average
LC003	Manufacture's	LIC ₀₀₂	Weight	Capacity Ah	rate	mili-		Capacity	End	ц Ш	After	before	2 cells
Manufacturer	lot Number	Grade	grams	0.55 F/M*	mA/cm ₂	ohms	000	(AH)	Voltage	ohms	24 hrs	Discharge	mAh/gram**
FMC	501-01-WBE4-003	Battery	449.20	60.881	0.4	186	3.437	60.881	4.257	140	4.237	4.288	121.49
Johnson Matthey	F08C06	industrial	388.70	52.681	0.4	180	3.694	52.681	4.305	1 8	4.252	4.310	110.24
FMC	501-01-WBE-003	Battery	474.90	71.515	0.4	200	3.593	71.520	4.095	ß	4.025	4.085	90.70
FMC	501-01-WBE-0003	Battery	465.40	70.085	0.8	160	3.582	70.090	4.217	33	4.136	4.156	111.51
FMC	501-01-WBE-0003	Battery	455.25	61.700	0.4	120	3.64	61.700	4.245	8	4.226	4.283	118.78
FMC	501-01-WBE-0003	Battery	426.87	57.854	0.4	110	3.644	57.854	4.266	ន	4.234	4.267	120.72
FMC	501-01-WBE-0003	Battery	390.87	52.972	0.4	115	3.560	52.972	4.212	8	4.163	4.200	114.14
FMC	501-01-WBE-0003	Battery	450.70	61.079	0.4	145	3.545	61.079	4.288	32	4.159	4.092	115.41
FMC	501-01-WBE-0003	Battery	443.50	60.110	0.4	145	3.520	60.110	4.189	28	4.087	4.037	102.01
FMC	501-01-WBE-0003	Battery	464.61	62.969	0.4	100	3.590	62.969	4.285	8	4.169	4.230	111.44
FMC	501-01-WBE-0003	Battery	445.65	665.09	0.4	50	3.590	60.399	4.290	8	4.245	4.330	114.97
FMC	501-01-WBE-0003	Battery	473.49	64.172	0.4	80	3.630	64.172	4.265	55	4.245	4.300	118.32
FMC	501-01-WBE-0003	Battery	370.441	20.206	0.4	180	3.630	50.206	4.287	52	4.2331	4.233	114.88
FMC	501-01-WBE-0003	Battery	448.30	60.758	1.0	180	3.629	60.758	4.270	53	4.233	4.300	117.07
FMC	501-01-WBE-0003	Battery,	467.20	63.320	0.4/0.2	130	3.428	63.320	4.248	8	49229	4.275	115.24
FMC	501-01-WBE-0003	Battery	466.70	63.252	1.0	170	3.430	63.252	4.306	55	4.300	4.275	114.39
FMC	501-01-WBE-0003	Battery	454.70	61.626	1.0	105.000	3.620	61.626	4.338	80	4.275	4.240	119.16
FMC	501-01-WBE-0003	Battery	453.40	61.449	1.0	95	3.630	61.449	4.238	20	4.220	4.200	116.31
FMC	501-01-WBE-0003	Battery	462.30	63.274	1.0	175	3.560	63.274	4.316	ജ	4.264	4.277	118.45

Note:

4-5

Cathode surface: 632.26 cm²

WAMPCI I Shaded due to a burr in the grid edge

WAMPC13 used a solid aluminum current collector

WAMPCIS through WAMPC23 used 10 psi CO₂ head pressure to drive the electhalyte into the calls

WAMPC19 through WAMPC24 shortedd during the charge cycle

WAMPC24,25 used a solid aluminum current collector with holes in it in place of aluminum grid. plus 3 layers of 3M-E003 separator plus 1 layer of celgard 2300 par Interface to help preven prevent shorting. No CO₂

WAMPC25 (New test fixture)

WAMPC26 Aluminum grid, 1.0mA/cm² charge rate, 3 layers 3M-E003 + 1 layer celgard 2300 per interface

WAMPC27, Aluminum grid, 0.4mA/cm² for the first (3/4%) Ah, then 0.2 mA/cm² for the remaining (1/4%) Ah WAMPC28 through WAMPC32 built like WAMPC26

*0.55 Faradays per mole, i.e., x in Li_xCo0₂ is 0.45.

**active material only (Li_xCo0₂) does not include inert components of the mix.

***OCV=open circuit voltage, in volts.

Chapter 5

Test Results

Following the scheme of Alliant Techsystems' Design/Development Philosophy, testing was broken down into a number of categories. Given below is an outline of the testing of precharged $\text{Li/Li}_{0.5}\text{CoO}_2$ cells. Following that are representative results of the cells tested in the various categories.

Section Title

TEST ENVIRONMENT

Preprogram Testing

Fixtured Cell Testing at Environmental States Hermetic Cell Performance Testing at Environmental States

Hermetic Cell Safety Testing

- Modified Picatinny Cell 9275567 stored at room temperature and at 149°F discharged at room temperature.
- Flat plate cell cycled at HWAM rates at room temperature tests.
- Room temperature multi-plate cell tests.
- Cold temperature multi-plate cell tests.
- Room temperature performance tests. (WAMH05)
- Four-month storage at room temperature followed by 25°F discharge performance test. (WAMH07)
- Three-month storage at 65°F followed by 145°F discharge performance test. (WAMH20)
- Three cells in series; discharge performance at room temperature.
- External short circuit safety test. (WAMH08 and WAMH22)
- Internal short circuit safety test. (WAMH09)
- External short-circuit and discharge reversal safety test. (WAMH18)
- Short electrolyte fill discharge safety test. (WAMH06)

Preprogram Testing

Preprogram testing, done as part of Naval Surface Warfare Center Option 7 to the 100 Ah Program, Contract N60921-93-C-0060, evaluated precharged $Li_{0.5}CoO_2$ cathode material in an Army munitions cell which is a production item, Picatinny Arsenal Cell 9275567 (Alliant Techsystems' ATK G2666), Figure 5-1, modified for that purpose. The modification consisted of replacing the vanadium pentoxide cathode of the G2666 by a $Li_{0.5}CoO_2$ cathode, and, for some

cells, using only the AsF₆-salt in lieu of the DSMF electrolyte of the G2666. The lithium metal anode and Veritek Type M separator were the same as for the G2666. The storage and test matrix of 26 of these cells is shown in Figure 5-2. Results of testing to this matrix is shown in Figure 5-3 for a typical fresh cell and in Table 5-1 for all stored cells summarized in hours of run time to 3.33 volts. That voltage corresponds to the cut off voltage per cell for HWAM applications. For three cells connected in series, ten volts is the minimum HWAM voltage.

Preprogram testing of a flat plate cell was done as an early attempt to fabricate flat plate cathodes from dry precharged $\text{Li}_{0.5}\text{CoO}_2/\text{graphite}$ mix material. Characterization of these cells included cycle life testing. The flat plate cells were fabricated with microporous polypropylene (Celgard 2300) separators (See Section 6) and cycled through a test profile that included an initial pulse load of 5.0 mA/cm² to begin each discharge. The pulses were at the same pulse rate anticipated for the HWAM battery (3.75 amp equivalent). Following the pulse, each discharge continued at a rate designed to test the ability of the cathode. The rates were increased for successive cycles, first at 0.5 mA/cm², second at 1.0 mA/cm², and third at 2.0 mA/cm². Then the process was repeated. All of this testing was conducted at room temperature. Figure 5-4 is a plot of one of two cells tested to this regime. As expected, the cycle life was less than for cells built¹ to achieve about 50 cycles because the formulation of the electrolyte for those cells included dissolved carbon dioxide, a component known to improve the cycle life of lithium metal anodes. It may be seen from the results in Table 5-1, that the SSMA performed as well as the DSMA. That result is desirable as it reduces cost.

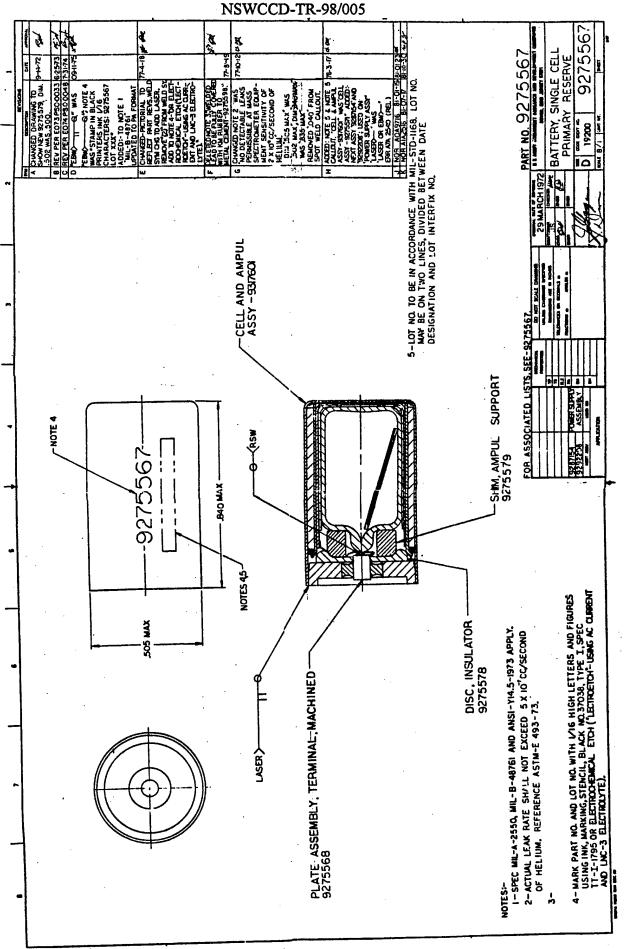
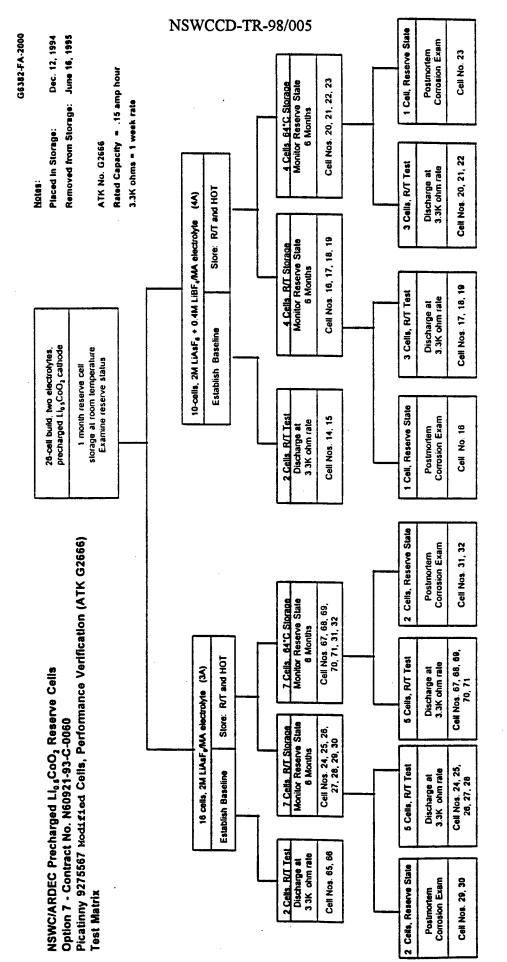
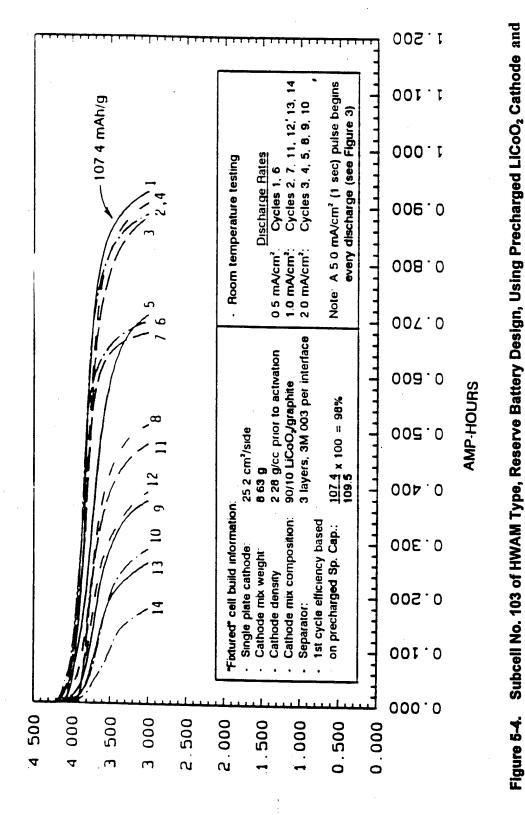



Figure 5.1. Picatinny Cell Modified with a Precharged Lio. Coo2 Cathode

Storage and Test Matrix for Option 7, Picatinny Cell (Modified with Li_{0.6}CoO₂ Cathodes) Figure 5-2.

5.00 4.50 4.00 3.50 3.80 2.50 2.00 0.50 1.50 0.00 1.00 02.0 104.3 mAh/g of mix 61.0 ARDEC OPTION 7 (MODIFIED) G2666 CELL #15 81.0 21.0 91'0 0112 **PI.**0 typical hermetic cell (Picatinny 99275567 except modified cathode) 013 S1.0 II .0 **AMPHOUR** normal (Picatinny cell 9275567) capacity 0.10 Ah 01.0 efficiency based on precharged Sp. Cap.: LiCoO₂ mix wt. 1.419 g electrolyte: 2M LiAsF₆ + 0.4M LiBF₄/mA 60.0 current density 0.25 mA/cm² at 3.3K Ω بداميم المعدابية بالمعدابية 80.08 20.0 $\frac{104.3}{109.5} \times 100 = 95.25\%$ to 3.0V for V20s cathode 90.06 50.05 40.0 8.83 R/T test 20.02 10.0 00.00 5.00 4.50 4.00 3.50 **3.8**0 2.50 2.00 0.50 0.00 1.50 1.00


VOLTAGE

NSWCCD-TR-98/005

Figure 5-3. Fresh Discharge Performance of Picatinny Reserve Cell in Small Hermetic

Hardware (Modified Picatinny Cell 99275567)

5-<u>5</u>

Cycled After First Discharge at the Indicated Rates

ST JOY

	Table 5-1. Modified Picatinny 9275567 Cells with Precharged Cathodes LiCoO2									
		Sto	red in Reserve	State - 6 Mon	ths					
		Dis	charged with	3.3K Ohm Los	ad					
Cell	Channel	Stored		Hours to						
No.	No.	Condition	Electrolyte	3.33 Volts						
17	71	6 months R/T	DSMA	122						
18	72		DSMA	122	Average Run Time: 121.66 hours					
19	73		DSMA	121						
24	61	6 months R/T	SSMA	121						
25	62		SSMA	120						
26	63		SSMA	119	Average Run Time: 120.60 hours					
27	64		SSMA	121	_					
28	65		SSMA	122						
	Equivalent to 10 Years Reserve Storage									
20	74	6 months, 60°C	DSMA	115						
21	75		DSMA	113	Average Run Time: 114.0 hours					
22	76		DSMA	114						
67	66	6 months, 60°C	SSMA	114						
68	67		SSMA	115						
69	68		SSMA	116	Average Run Time: 115.40 hours					
70	69		SSMA	117	_					
71	70		SSMA	115						
	Notes:	SSMA: 2M LiAs	F ₆ / MA							
		DSMA: 2M LiAs	$F_6 + 0.4M$ LiB	F4 / MA						
		3.33 Volt Cutoff								

Fixtured Cell Testing at Environmental States

Fixtured cell testing on this program had the purpose of simulating a full HWAM cell (one of three needed to meet the HWAM power requirements), without the long lead preparation needed to create a hermetic cell case. Photographs of a typical HWAM fixtured cell case and cell assembly are shown in Figures 5-5 through 5-8. Drawings of the fixture are included in Appendix A, HWAM Cell Drawing Package.

Fixtured cell testing done at room temperature is summarized in Table 5-2. These tests all had a background load of 400 milliamperes and pulse loads of 3.75 amperes every 5 hours. This regime was used to simplify the complex and lengthy power profile of the actual HWAM (Figure 2-2). It was particularly interesting to note that all of the pulse loads stayed above 2.67 volts. In a three-cell seriesed battery, 2.67 volts per cell provides the 8.0 volt battery voltage that all pulses must exceed. Also, run time, counted to 3.33 volts, exceeded 35 hours. Please refer to Figure 5-9 as a typical example. Voltage history during pulse loads is detailed in Figure 5-10. Each pulse load consisted of four, 3.5 ampere, 0.5 second pulses, with a 2.0 second open circuit between pulses. During this test phase we also checked voltage rise time during activation from a remote reservoir. Since design and build of an actual HWAM reservoir is not a part of this program, only T_R , or time to raise voltage against cell internal resistance, was measured. This

was done without external load applied and is shown in Figure 5-11. Based on the results in the Modified Picatinny Cell 9275567, all cells were built with SSMA electrolyte.

Fixtured cell cold temperature testing proved to be the first performance challenge of the program. Testing at -25°F presented difficulties for the design selections made up until that time. In particular, the 400 milliampere background load caused cells to reach the 3.3 volt cutoff well ahead of required run time. Two design items were varied during this study in an effort to achieve the -25°F load sustaining goal. Cell stack compression and separator type were the variables. Additionally, re-examination of the HWAM power profile showed a 240 milliampere background load to be more realistic to the standby needs than 400 milliampere, which had been primarily specified for the purpose of faster discharge, to hasten test time. Thus a new test profile was programmed, and it is shown in Figure 5-12.

At the conclusion of the fixtured cell testing effort, the combination of elements that held the most promise were an 11-plate cathode cell stack, either Whatman DBSB30A or Veretek TYPE M Separator, and no stack compression. Figure 5-13 showing performance of cell WAMF11 (Whatman separator) and Figure 5-14 for cell WAMF12 (Veretek Separator) shows the ability of the cell design to maintain a 240 milliampere background load and pulse support above 2.67 volts all at the -25°F temperature extreme.

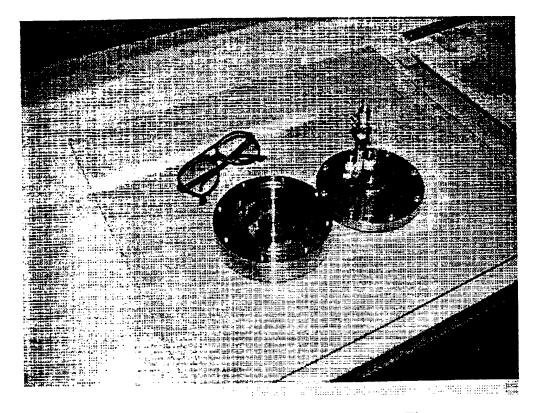


Figure 5-5. HWAM Single Cell Hardware Test Fixture

Figure 5-6. HWAM Anode Assembly - Lithium Foil Press and Trim

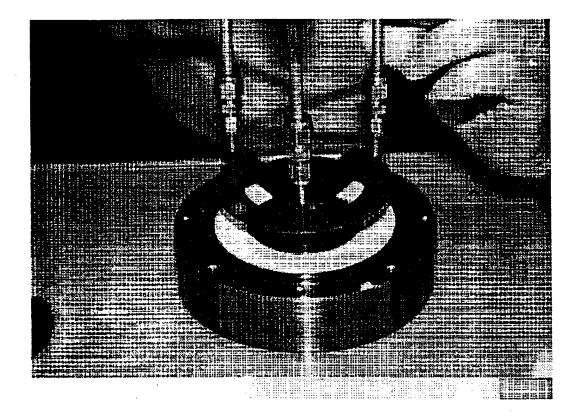


Figure 5-7. HWAM Cathode Assembly Installation

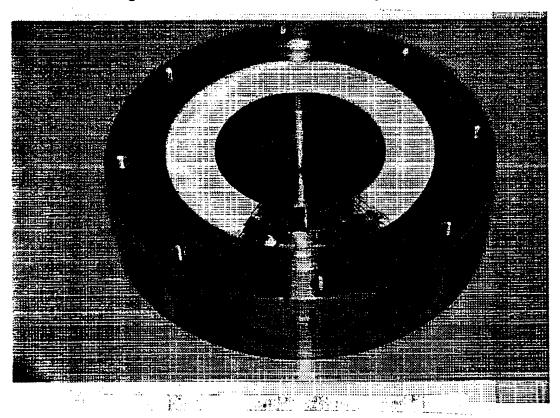
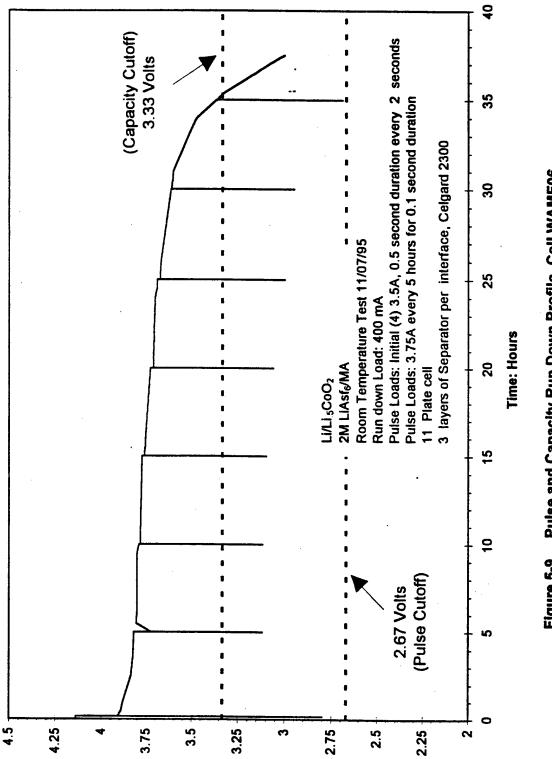
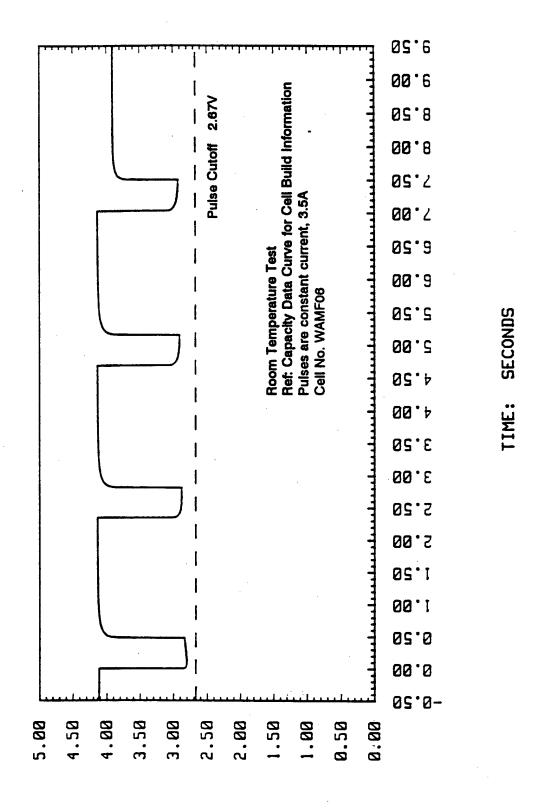



Figure 5-8. HWAM Assembled Cell Stack 5-10

Ξ.,

	Table 5-2.	HWAM F	ixtured (Cell* Tes	st Data a	at Room	Temper	ature	
Cell Number				WAMF01	WAMFO2	WAMF03	WAM05	WAM06	WAMF07
Test Date				10/3/95	10/6/95	10/11/95	10/20/95	11/7/95	11/14/95
Test Temperature				R/T	R/T	R/T	R/T	R/T	R/T
Open Circuit voltage (volts), b	etore test			4.160	4.062	4.160 595	4,190	4.140	4.110 280
Activation time (milliseconds)	<u></u>	<u>l</u>	1	345		393		<u> </u>	
First sequence of pulses									
	3.50A		Initial	3.070	2.588	3.228	3.291	2.800	2.882
	3.50A		End	2.966	2.350	3.144	3.291	2.840	2.901
	3.50A		Initial	3.144	2.766	3.270	3.313	3.010	3.049
	3.50A	<u> </u>	End	2.990	2.322	3.156	3.234	2.880	2.936
	3.50A		Initial	3.196	2.842	3.293 3.162	3.327 3.245	3.055 2.905	3.113 2.965
	3.50A 3.50A		End	3.006	2.316 2.916	3.102	3.342	3.111	3.154
	3.50A		End	3.020	2308	3.169	3.252	2.919	2.986
	0.001			- <u>1</u>		<u></u>		<u></u>	
Second Pulse (5 hour)						0.700	2 000	2.040	2.844
	400mA	Voltage I	pefore pulse	3.822 3.294	·	3.790	3.886	3.819 3.208	3.844 3.321
· · · · · · · · · · · · · · · · · · ·	3.75A 3.75A		Initial End	3.294	•	3.225	3.371	3.208	3.248
				1		<u></u>		<u></u>	
hirdPulse (10 hour)	400mA	Voltage I	before pulse	3.758	-	3.736	3.839	3.790	3.792
	3.75A		Initial	3.226	•	3.222	3.341	3.203	3.288
	_375A		End	3.116	-	3.118	3.289	3.118	3.200
ourth Pulse (15 hour)	400mA	Voltage I	before pulse	3.704	-	3.666	3.816	3.760	3.782
	3.75A		Initial	3.174	-	3.120	3.345	3.181	3.278
	3.75A		End	3.044	•	3.008	3.283	3.100	3.212
fifth Pulse (20 hour)	400mA	N/ottogo l	before pulse	3.668		3.607	3.802	3.726	3.753
	3.75A	Ivolage i	Initial	3.100		3.100	3.330	3.131	3.254
				1		1		3.061	3.183
	<u>3.75A</u>		End	2.916	•	2.916	3.267	3.001	3,185
ixth Pulse (25 hour)	400mA	n c u				7 2 545	0.700		2 605
	400mA 3.75A	voltage l	before pulse Initial	3.626 3.086	-	3.515 2.911	3.780 3.304	3.683 3.091	3.695 3.194
			1						
	_ <u>3.75</u> A		End	2.998		2.772	3.2431	3.000	3.114
eventh Pulse (30 hour)		1							
	400mA	Voltage I	before pulse	3.594	•	3.421	3.741	3.365	3.570
	3.75A		Initial	3.064	•	2.795	3.266	3.000	
	3.75A		End	2.976	-	2.648	3.212	2.950	2.988
Cell Capacity (Ah)		1	<u> </u>	18.81	15.93	15.19	15.43	14.96	15.67
Delivered Capacity (Ah) to 3.3	13 volts		1	13.32	-	13.6	***	14.24	13.39
Total run time (hours) to 3.33			1	33.30	-	34.00	***	35.59	33.33
Cell capacitance (nf)				12.83	13.16	14.15	15.7	16.2	24.5
Precharged LiCoO ₂ capacity ((mAh/gram)			121.49	118.78	111.51	117.43	114.14	115.41
lote: VAMF01: Zero % Compressi VAMF02. Zero % Compressi VAMF03. 4 % Compression, VAMF04. 10 % Compression	on, Baked cathodes a Vacuum dried cathod	t 170 deg. C und es (no heat), 10	der vacuum, 10 cathodes @ 6	cathodes @ 0 mil. thick	60 mil. thick,	uncoated call f	xture		
VAMF05. 4.6 % compression		des (no heat), 1	1 cathodes 🙆	54 mil. Thick,	2m LiAsF6/M				
VAMFO6 4.6% compression							· ·		
NAMF07: 3.0% compression	, Vacuum dried catho	ies (no hest). 13					face		
* Electrolyte for all cells was 2	2M LiAsF ₆ in methyl ac	etate							



Pulse and Capacity Run Down Profile, Cell WAMF06 Figure 5-9.

5-12

Sell Voltage

NSWCCD-TR-98/005

Pulse Profile of (4) 3.5 Amp, 0.5 Second Duration at Beginning of Life Figure 5-10.

CELL POTENTIAL: VOLTS

STJOV

CELL POTENTIAL:

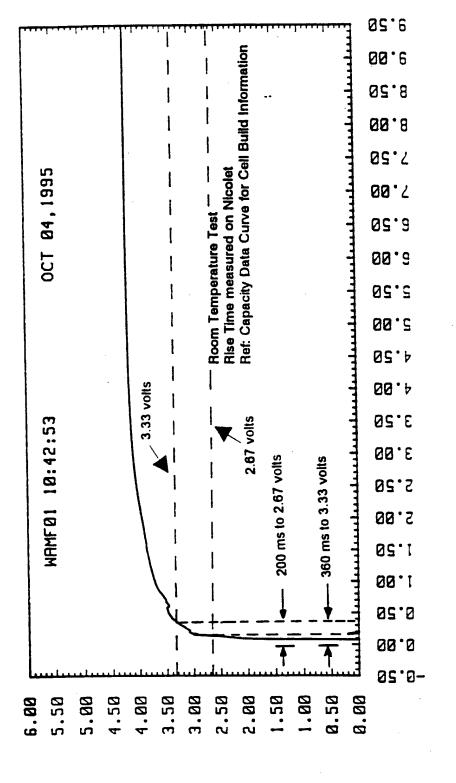
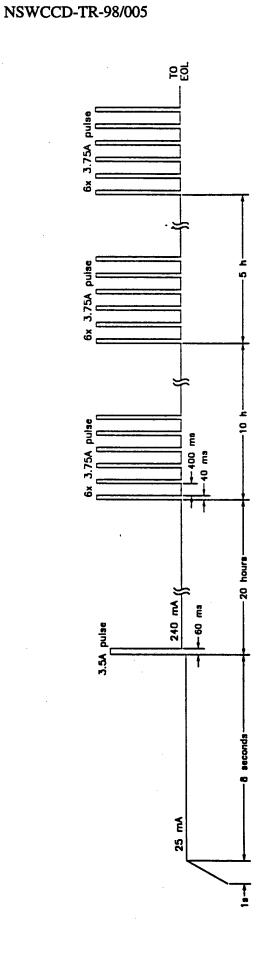



Figure 5-11. No Load Voltage Rise Time (T_R)

SECONDS

TIME:

NSWCCD-TR-98/005

Figure 5-12. Fixtured Cell Test Profile

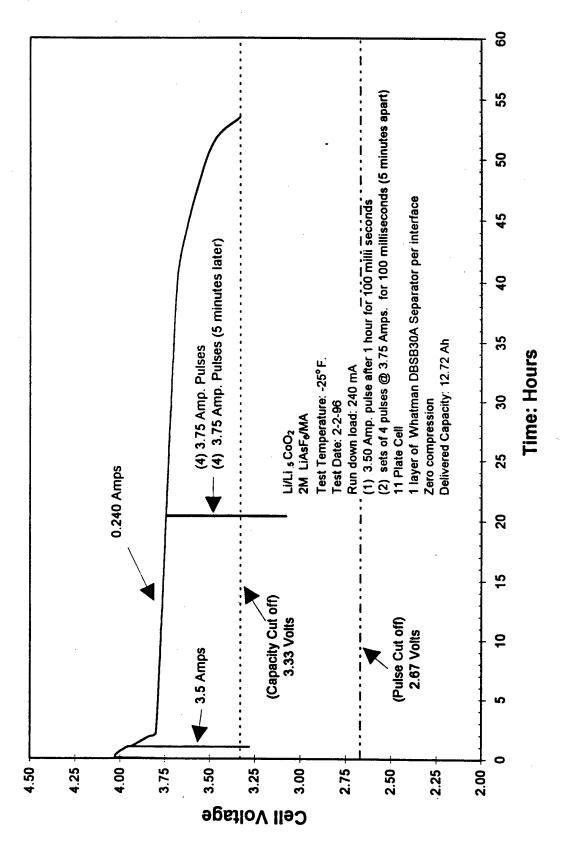
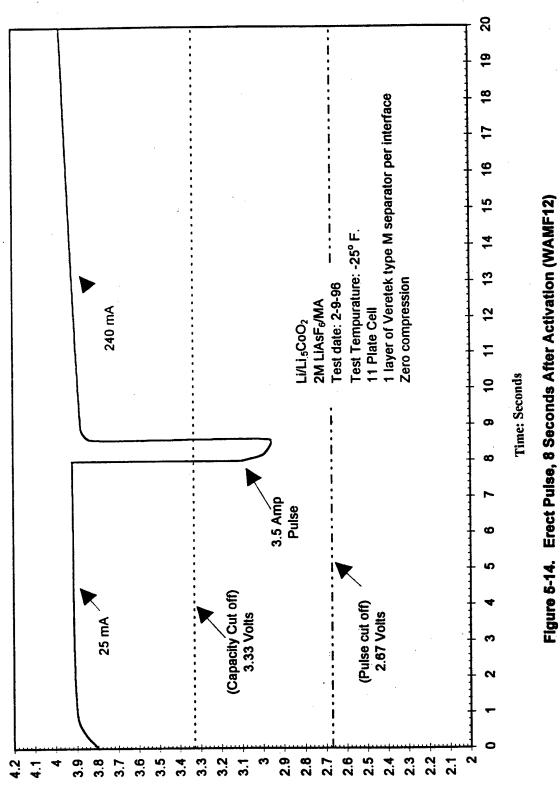



Figure 5-13. Pulse and Capacity Discharge Profile, Cell WAMF11

Sell Voltage

Hermetic Cell Performance Testing at Environmental States

Hermetic cell testing essentially moved the same electrode stack designed during the fixtured cell work into a fully-configured metal cell case. The hermetic cell case and cover were designed to facilitate electrode stack assembly. Sealing the cover onto the cell case required a laser welder to follow a computer-defined path conforming to the cells "C"-shaped geometry. Once sealed, the cells were able to be flooded with electrolyte by means of the fill tube in the terminal end of the cell. Reference to Figure 5-15 for a graphic illustration of the "C"-shaped cell. It was necessary during testing to place the hermetic cells into a test fixture that simulated the battery housing and its external support. The housing is shown in Figure 5-16, in cutaway, as part of the complete HWAM concept battery. Since development of the battery reservoir was not a part of this program, a remote steel sample cylinder was used to hold the cell's electrolyte prior to pressure activation.

Performance testing first concentrated on run time evaluation and capacity achieved at a given temperature. Room temperature performance was verified and was found to equal that obtained in the fixture cell testing. More than 57 hours of run time (13.865 Ah) were obtained from cell WAMH05. Please refer to Figure 5-17 for pertinent data on this test. None of the 3.75-ampere pulses went below the minimum limit of 2.67 volts. Performance was ended when the continued background current of 240 amperes caused the voltage to descend to 3.3 volts. In a 3-cell HWAM battery concept 3.3 volts is equivalent to the 10-volt minimum operating voltage.

A pivotal point was reached in performance testing when cold temperature test results proved to be poorer than expected. These are presented in Appendix B. Design changes made during the fixture cell testing were not enough and an additional change had to be made. Much of the testing had already been conducted with the two molar single salt, methyl acetate electrolyte (SSMA). The more expensive, but better at cold temperatures, double salt methyl formate electrolyte (DSMF) had to be substituted. This was demonstrated in a cell stored for three months at 160°F and in a cell stored for three months at room temperature (See data for WAMH 23 and 24 in Appendix B).

Note that Alliant Techsystems' recommendation is that the DSMF electrolyte is necessary for cold temperature operation and is thus the preferred electrolyte for the HWAM battery. In reviewing the test data of this report, remember that many earlier tests are for cells with the SSMA electrolyte. It is Alliant Techsystems' position that the methyl formate electrolyte does not represent a significant change when conducting safety tests and, as such, the safety test results reported for the methyl acetate electrolyte could be accepted as comparable to those expected for the methyl formate electrolyte.

High temperature performance at 145°F was checked on a cell that had been stored for three months at the specification minimum temperature of -65°F. The test temperature and maximum operating temperature is 145°F. Cell number WAMH20, (Figure 5-18), produced a better than expected 60 hours of run time, 14.365 Ah capacity. Pulse handling capability was, as before, not the life limiting issue. Cutoff at the minimum required voltage, 3.33 volts, was due to

background load; but only after required the run time was exceeded. Similar results were obtained for cell WAMH 21, similarly stored, but discharged at room temperature. (See Appendix B)

Capacity testing on three hermetic cells connected in series used cells numbered WAMH01, WAMH03, and WAMH04. These three cells functioned as a single HWAM battery and provided voltage above 10 volts for more than 56 hours. The capacity of the battery was 13.65-ampere hours. Figure 5-19 shows the discharge. The reason for the pulsed voltage delay for the first pulse of 3.5 amperes is not known. Electrolyte delivery was via a single reservoir and should have been completed over the one hour of open circuit duration prior to loading the battery with the 3.5-ampere pulse.

Cold temperature testing at -25°F was conducted on cell number WAMH07 after the change was made to the double salt, methyl formate electrolyte. This cell delivered the best overall capacity of any cell, 14.8-ampere hours. Figure 5-20 shows that it also performed well on pulse handling except for the initial pulse of 3.5 amperes. Some exposure of the lithium anode during the fabrication phase of the cell, when dry room conditions were less than ideal due to a power failure, is suspected to have produced a passive layer on its surface. However, that assumption has not been substantiated.

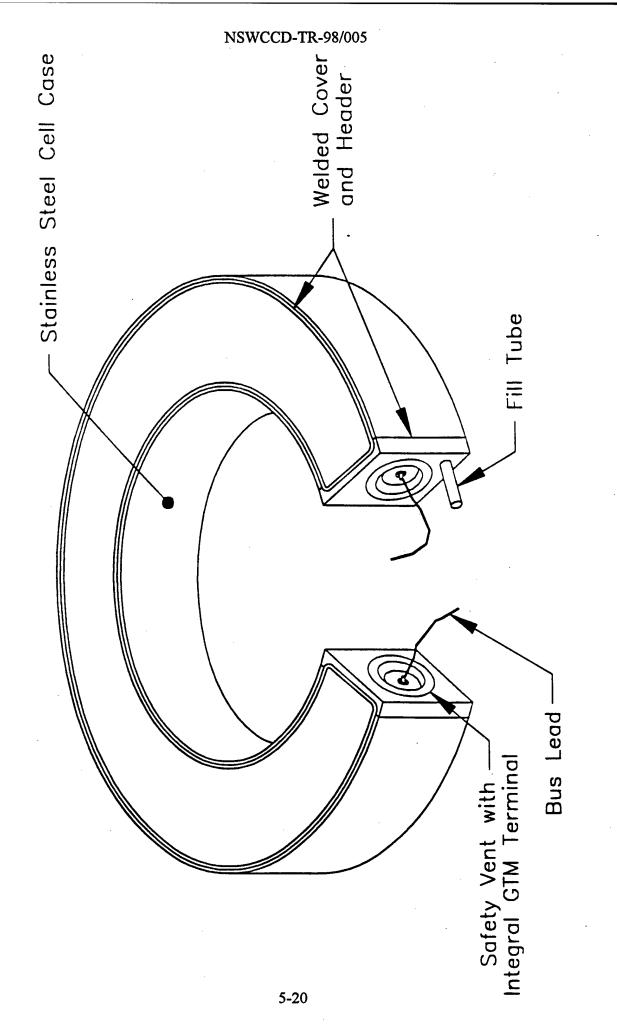
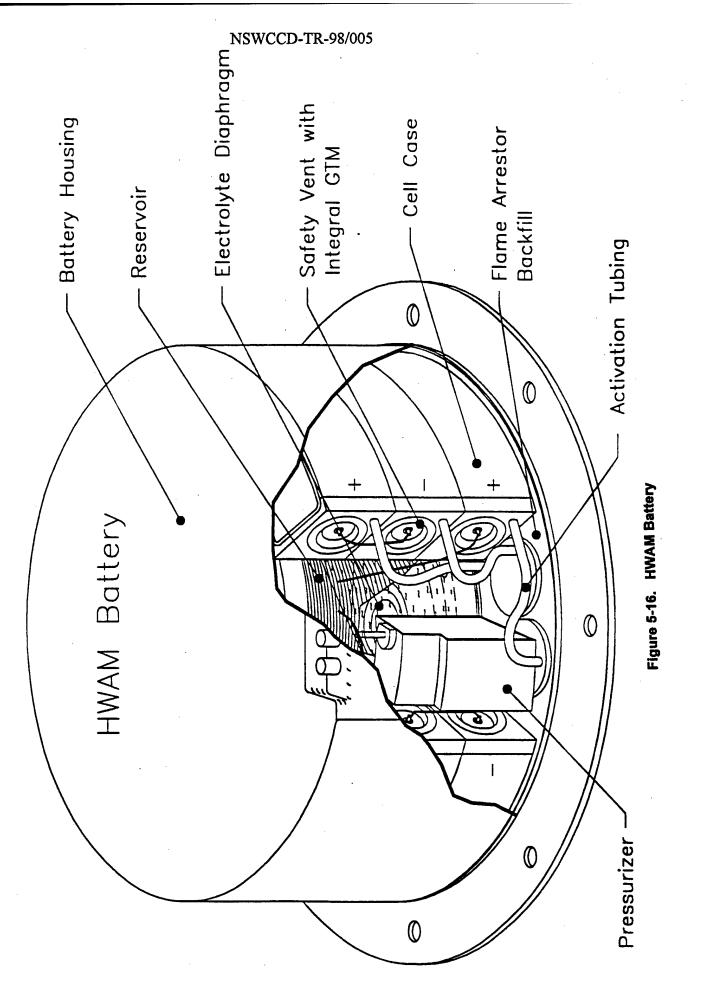



Figure 5-15. Individual Cell Case

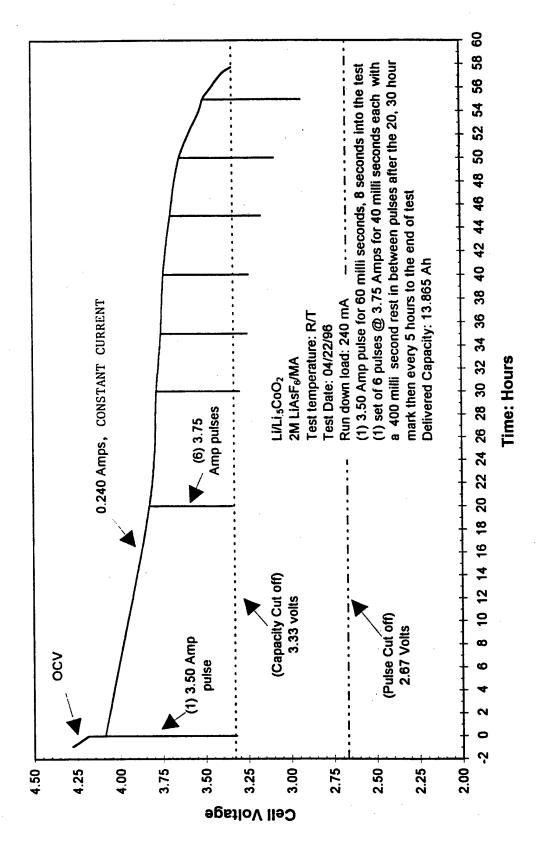


Figure 5-17. Pulse and Capacity Discharge Profile, Cell WAMH05

NSWCCD-TR-98/005

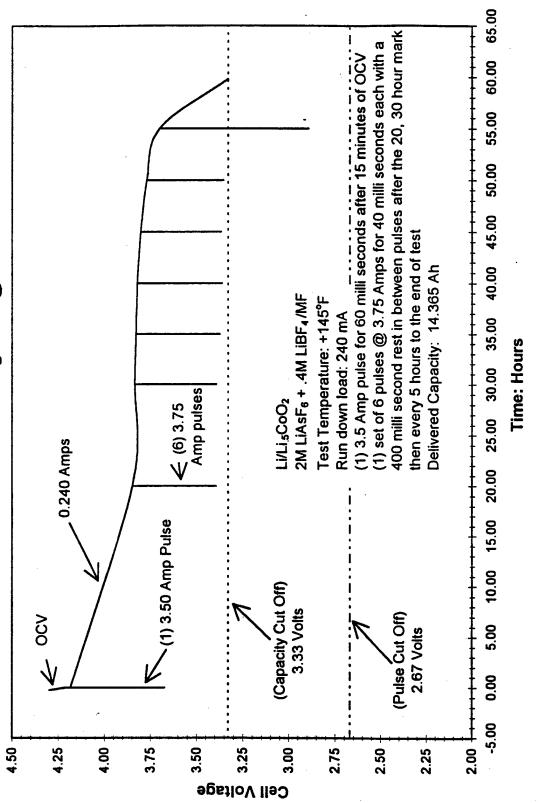


Figure 5-18. Pulse and Capacity Discharge Profile, Cell WAMH20

NSWCCD-TR-98/005

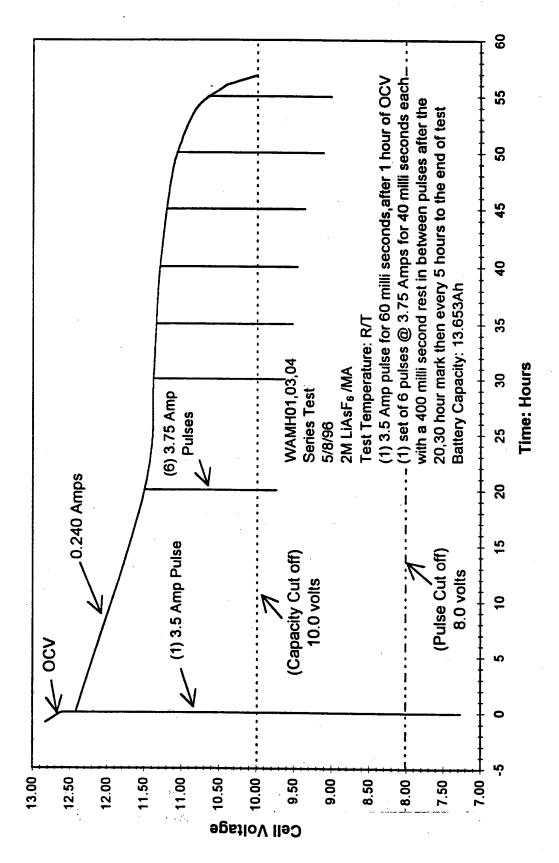


Figure 5-19. Pulse and Capacity Discharge Profile, Series Test

NSWCCD-TR-98/005

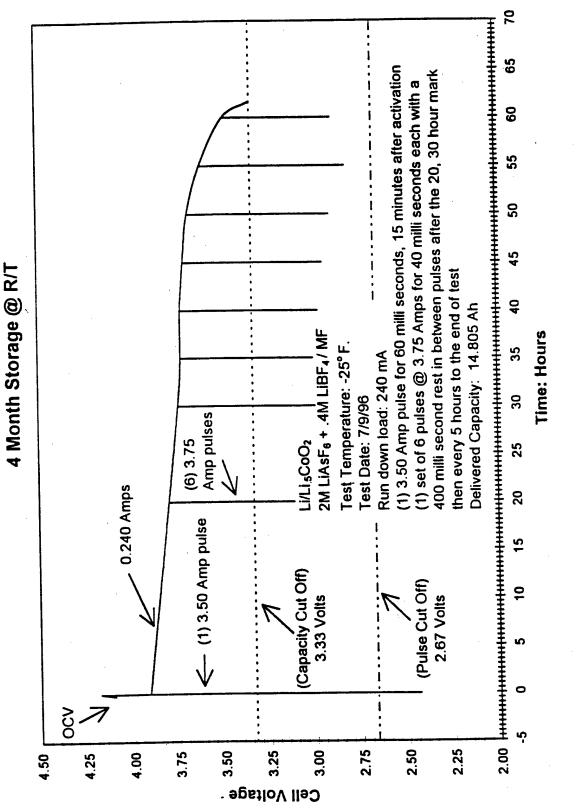


Figure 5-20. Pulse and Capacity Discharge profile, Cell WAMH07

NSWCCD-TR-98/005

Hermetic Cell Safety Testing

First in the series of safety tests was an external short circuit test of cell number WAMH08. This cell was activated and allowed to develop full open circuit voltage before the external short was applied by way of a relay. The short was conducted at room temperature (approximately 72°F). The maximum short circuit current developed was 41-amperes. The short circuit was maintained for 30 minutes during which time the temperature increased to 92°F then gradually declined. Figures 5-21(a) and 5-21(b) show the short circuit record and the discharge capacity that followed while under a load of 12 ohms. At no time did the cell rupture or vent. The safety vent diaphragms in the cell terminal header remained intact throughout the entire test. A total of 7.2 ampere-hours were removed during the 12 ohm discharge. The test was repeated with similar results using cell WAMH19 (See Appendix C).

The next short circuit test was also applied externally, but to a cell that had been stored for three months in the reserve-state. This cell, number WAMH22, was activated with the substituted electrolyte; the double salt methyl formate. During the course of the applied short circuit, a maximum current of 30 amperes and a maximum temperature of 116°F were developed. The run time of useful cell capacity, removed after the short circuit provided 30 hours across a 12 ohm load. This load was equivalent to about 0.3 amperes, slightly more than the normal HWAM background load of .24 amperes. (See Figure 5-22(a) and 5-22(b)) The cell did not vent. It remained hermetic throughout the test and subsequent discharge.

To further investigate the effects of cell short circuit behavior, a short circuit test was arranged in which the short was internal to the cell. This was done by fabricating a cell stack (cell number WAMH09) without key separators between electrodes. Specifically, two separators were left out of the middle of the stack and two separators were left out of the top of the stack. In these locations, anode and cathode plates were in direct contact. This fabrication represented the case of misassembly or assembler error. Cell activation occurred at room temperature and the maximum temperature developed during 30 minutes of short circuit was 85°F. After removing the short circuit, a 12 ohm resistive load was applied to rundown the cell. A total of 4.9 amperehours were removed during that load application. No venting or rupture occurred during the short circuit test, another external short circuit test was conducted, followed by discharge into reversal with the 12 ohm resistive load. Cell number WAMH18 was the subject cell. No venting or case rupture occurred. The maximum temperature developed during the short circuit was 147°F with a maximum short circuit current of 22 amperes (Figures 5-24(a-c)).

Finally, an abuse test was conducted to simulate the scenario of an underfilled cell stack. This would happen if the reservoir collapsing force misfired or partially closed the reservoir. In an unlikely case where only 10% of the electrolyte in the reservoir is delivered to the cell stack a severe electrolyte starved condition would exist. Cell WAMH06 was tested under these conditions while being loaded with the full background load of 240 mA. Initially, after 2 hours of open circuit, a 3.5-ampere pulse was applied prior to the background load. No venting or case rupture occurred and 1.38 ampere-hours of capacity were removed (Figure 5-25).

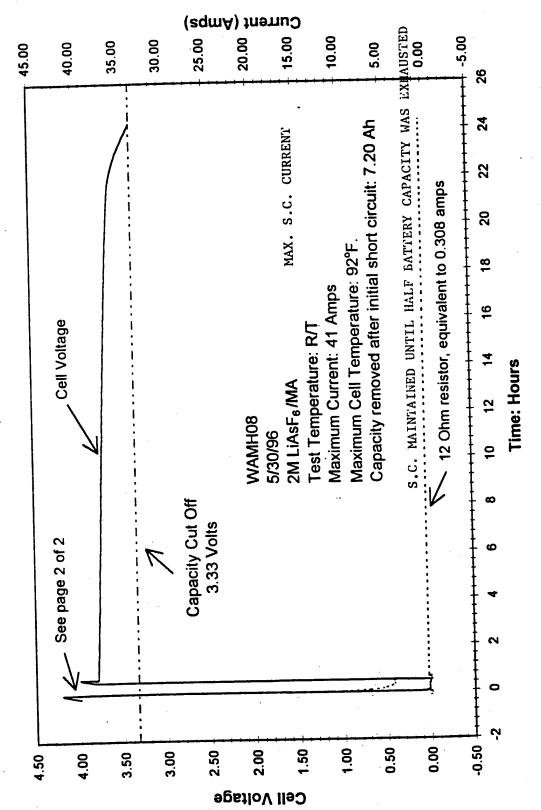


Figure 5-21(a). External Short Circuit Test, WAMH08

page 1 of 2

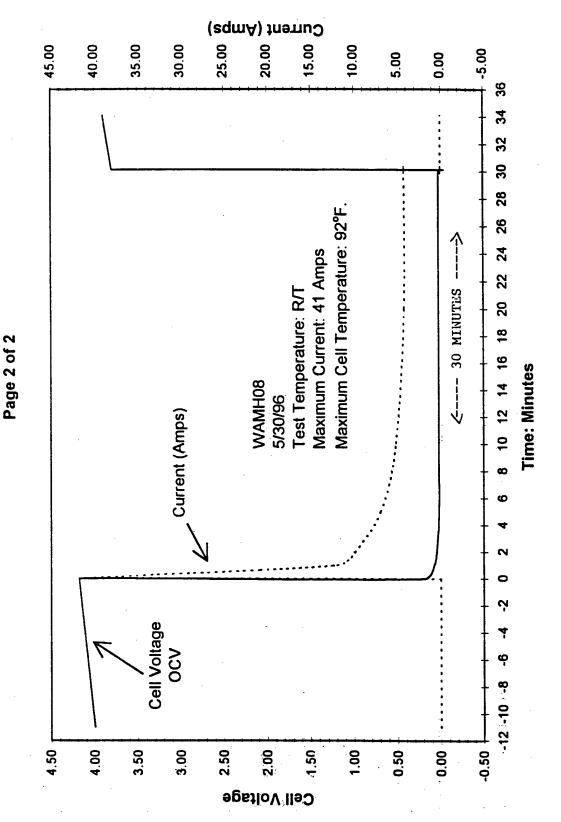


Figure 5-21(b). External Short Circuit Test, WAMH08

5-28

3 Month Storage @ R/T, (page 1 of 2)

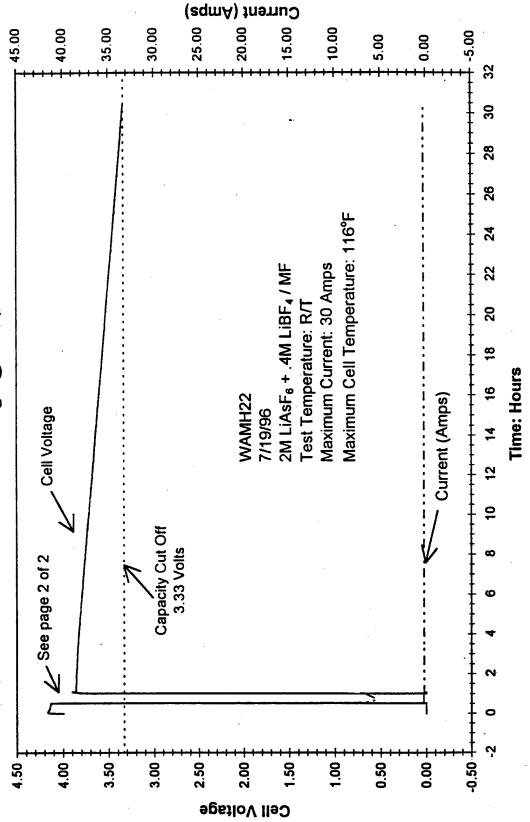


Figure 5-22(a). External Short Circuit Test, WAMH22

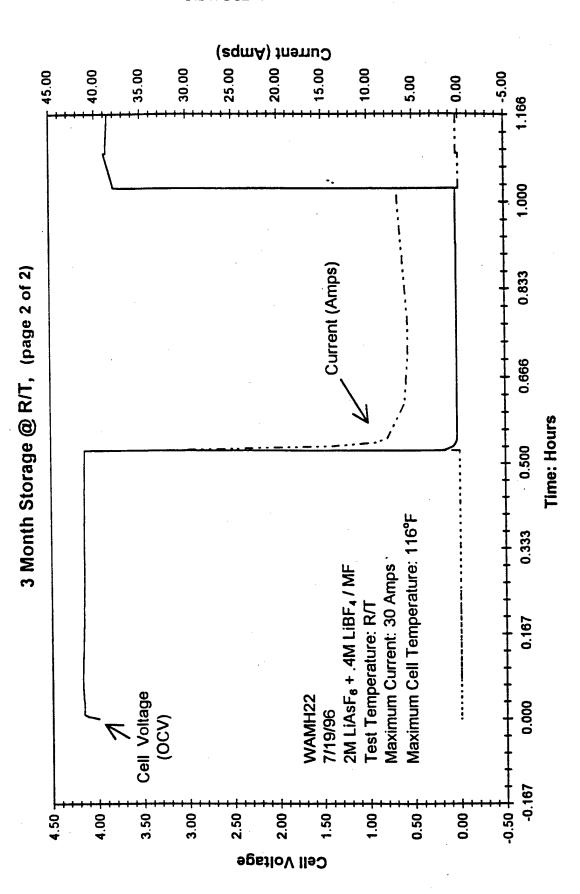
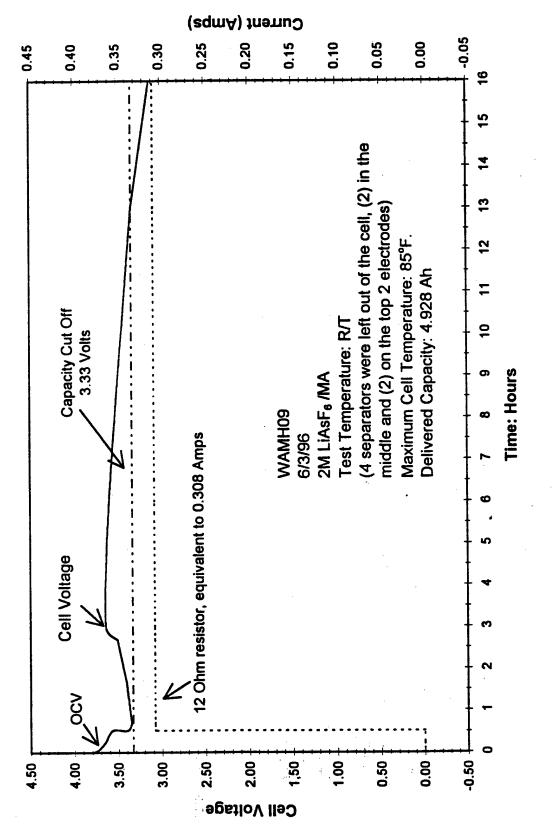
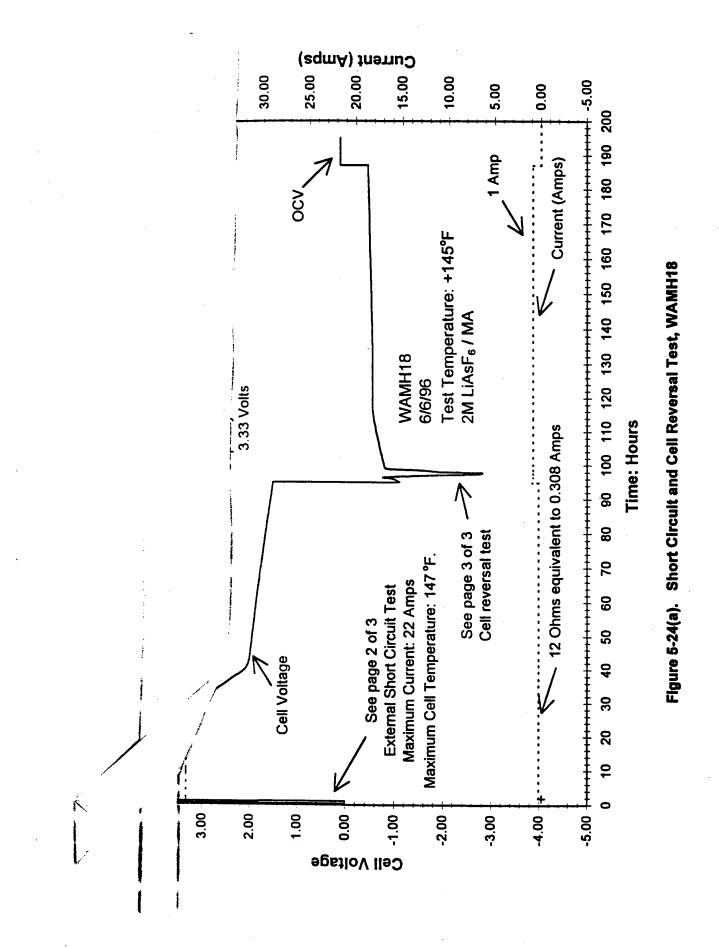




Figure 5-22(b). External Short Circuit Test, WAMH22

5-30

Figure 5-23. Internal Short Circuit Test and Capacity Discharge Profile, Cell WAMH09

25.00 26.00 Current (Amps) -5.00 10.00 30.00 45.00 35.00 40.00 0.00 5.00 2.00 Maximum Cell Temperature: 147 °F 1.83 Maximum Current: 22 Amps Test Temperature: +145°F 2M LiAsF₆ / MA External Short Circuit Test 6/6/96 1.67 ocv 、 1.50 WAMH18 1.33 1.17 Time: Hours < 15 milli Ohms 1.00 0.83 0.67 0.50 0.33 Current (Amps) **Cell Voltage** 0CV 0.17 0.0 -0.50 -0.50 0.0 1.50 1.0 2.50 2.00 4.50 3.50 3.00 4.00 egstioV lisO

NSWCCD-TR-98/005

Page 2 of 3

5-33

Figure 5-24(b). Short Circuit and Cell Reversal Test, WAMH18

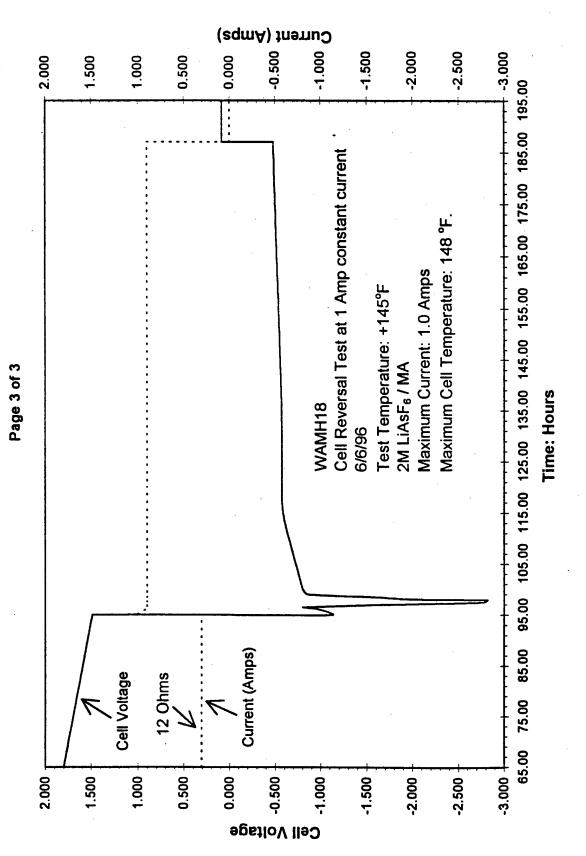


Figure 5-24(c). Short Circuit and Cell Reversal Test, WAMH18

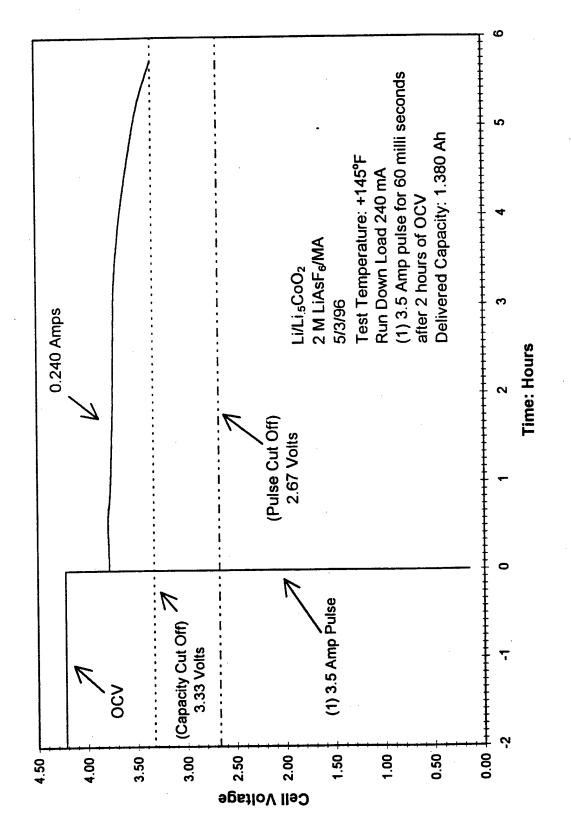


Figure 5-25. Abuse Test, Activated with 10% Electrolyte, WAMH06

Chapter 6

Studies

Alliant Techsystems Inc. committed several engineering studies to further the information base on the HWAM battery. Some of the studies were directed toward maximizing power of a reserve battery design beyond the current values while restricting the battery to the space allotment of Specification No. 29224A (Figure 1-1). The studies are listed below and described further in this chapter.

- Cell Improvement Studies
- Comparison of Li_{0.5}CoO₂ with Thionyl Chloride (SOC1₂) performance and safety
- Battery Life-Expectancy, reserve and active
- Battery Disposal and Pollution Prevention
- Battery Projected Unit Price Cost
- Battery Design Analysis
- Capacity Calculations for an Active Battery Design
- Capacity Required by SOC1₂ Battery for Depassivation Pulses
- Reserve Battery Concept with External Reservoir

Cell Improvement Studies

Building an hermetically sealed, HWAM configured cell in the laboratory is time consuming because of the lack of production tooling and automation. At the same time, many choices are available to the designer for materials selection. Design choices need to be made rapidly because of schedule constraints. The selection process during cell design is based on experience; then, the most likely materials are tried in prototype cells. A fast approach is to experiment with a smaller cell configuration to eliminate the cost of trying every variable in fullsize cell hardware. This was the path chosen on this program. Fortunately, a very good small cell, a modified Alliant Techsystem's production cell, Picatinny Arsenal Cell 9275567 (Figure 5-1), was an excellent choice for this work. It has hermetic construction and lends itself to modification by using alternate materials. The cathode, for instance, a mixture of vanadium oxide and graphite is constructed by pressing. Processing of the HWAM cathode, a mixture of cobalt oxide and carbon, is nearly identical. As a whole, the validity of choosing the Picatinny cell as the test vehicle is a good one. Only two attributes are not accurately matched with this test cell. They are:

<u>The activation methods</u> - *via* a glass ampul *in situ*, for the modified ATK G2666. The electrodes are wetted once the ampul is broken. In the case of the HWAM cell, a remote reservoir feeds the electrodes once a gas pressure driver ruptures a metal diaphragm. The pressure-driven electrolyte conceivably wets the electrodes rapidly, as opposed to the capillary action electrolyte feed of a broken ampul.

<u>Electrode compression</u> - The modified ATK G2666 is constructed bobbin style, without positive pressure on the electrode sandwich. The HWAM cell is a stacked arrangement of flat plates that receive a positive compression when the case cover is welded in place. However, compression was kept to a minimum.

Physical comparison between the two cells is made in Table 6-1. The table shows that the current density is identical for the two cells as well as being close in gravimetric parameters such as the cathode specific capacity. The variables evaluated were: temperature, separator type, cathode mix ratio and electrolyte type.

Attribute	HWAM	G2666 (Modified)		
Cathode Area / Cell (cm ²)	729.2	5.24		
Cathode Mix Wt./Cell (grams)	150	1.45		
Cathode (Li _x CoO ₂) Wt./Cell	132.3	1.28		
(grams)				
Cathode Volume/Cell (cm ³)	49.9	0.428		
Cathode Thickness (inches)	.027 (per side)	.030		
Cathode Density (grams mix/cc)	3.0	3.39		
Cathode Loading (grams mix/cm ²)	0.206	0.277		
Cathode Capacity (mAh/cm ²)	24.5	33.0		
Lithium Area/Cell (cm ²)	800.6	3.94		
Lithium Weight/Cell (grams)	6.5	.054		
Lithium Thickness (inches)	.006 (per side)	.010		
Lithium Capacity (mAh/cm ²)	31.4	52.9		
Defining Area/Cell (cm ²)	729 (cathode)	3.94 (anode)		
Defining Capacity (mAh/cm ²)	28.5 (cathode)	33.0 (cathode)		
Cell Capacity (Ah)	17.9	0.121		
Current (c.d.) @ 400 mA	$400 \text{ mA} (.55 \text{ mA/cm}^2)$	$2.16 \text{ mA} (.55 \text{ mA/cm}^2)$		
(HWAM)				
Current (c.d.) @ 3.75 Amps	$3,750 \text{ mA} (5.14 \text{ mA/cm}^2)$	$20.27 \text{ mA} (5.14 \text{ mA/cm}^2)$		
(HWAM)		,		

Table 6-1. Physical Comparisons

The first test series evaluated three types of separators which were: Celgard 2300, Veretek 141-583, and Whatman BSB-3DA. Two different mix ratios of Li_xCoO_2 and carbon graphite were employed. The ratios compounded were one of 90%-10% and 81%-19% of Li_xCoO_2 /Graphite. Graphite is added for conductivity, but it displaces Li_xCoO_2 . Two different current density levels were evaluated. They were 0.5 mA/cm² corresponding to HWAM background load rates and 5.0 mA/cm² which corresponds to HWAM pulse load rates (3.75 amperes). Four test temperatures were also a part of this test series, 28°F, 75°F, 0°F, and -25°F

(See Figures 6-1 through 6-9). Mix ratios of Li_xCoO_2 and graphite made no significant difference in performance. High percentages of graphite reduce the cost of the battery since Li_xCoO_2 is an expensive product. Using a non-microporous separator such as Veretek or Whatman does limit the battery to being primary and not capable of recharges. Other microporous separators would need to be identified for a rechargeable HWAM battery.

The test results showed clearly that non-woven separators, i.e., Veretek or Whatman, were superior to Celgard for electrical activation from the reserve state and overall discharge performance.

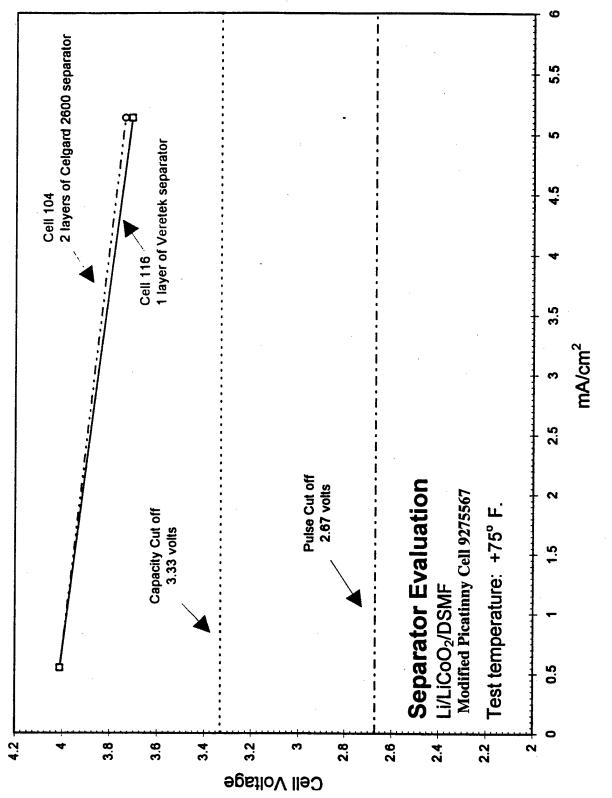
Li_{0.5}CoO₂ COMPARISON WITH SOC1₂

Prior to developing the Li/Li_xCoO₂ system to power the HWAM, the Army developed Li/LiSOC1₂ for this application. A specific advantage of Li/Li_{0.5}CoO₂ electrochemistry over Li/SOCl₂ is due to the higher load voltage, 3.85 volts versus 3.4 volts. The open circuit voltage in both cases is about 0.2 volts higher. Lithium anodes passivate with time when exposed to SOC1₂ at open circuit or low rate discharge, unless extremely low. A voltage dip occurs at the beginning of discharge unless the passivation has been removed. That can be done by applying a high rate discharge pulse. Such pulses are shown in Figure 2-3. The Li/LiCoO₂ system does not require depassivation pulses. Furthermore, lithium/lithium cobalt dioxide is safer than lithium/thionyl chloride for all the reasons outlined in the Safety Study attached as Appendix D.

The thionyl chloride system is not rechargeable. While $\text{Li}/\text{Li}_x\text{CoO}_2$ can be recharged. This was demonstrated in this work (See Section 5-1 and Figure 5-4). Furthermore, under the base contract, of which this work was an option item, $\text{Li}/\text{Li}_x\text{CoO}_2$ was developed as a rechargeable system.¹ It is being developed for the Navy for rechargeable propulsion power, specifically as prismatic 100 Ah cells. Those cells use a microporous separator. The rapid rise time required by HWAM negated a microporous separator because it is slow to wet. Microporous separators would be needed for rechargeability. Therefore, further development work would be required to develop a separation system that would permit rapid rise time and rechargeability.

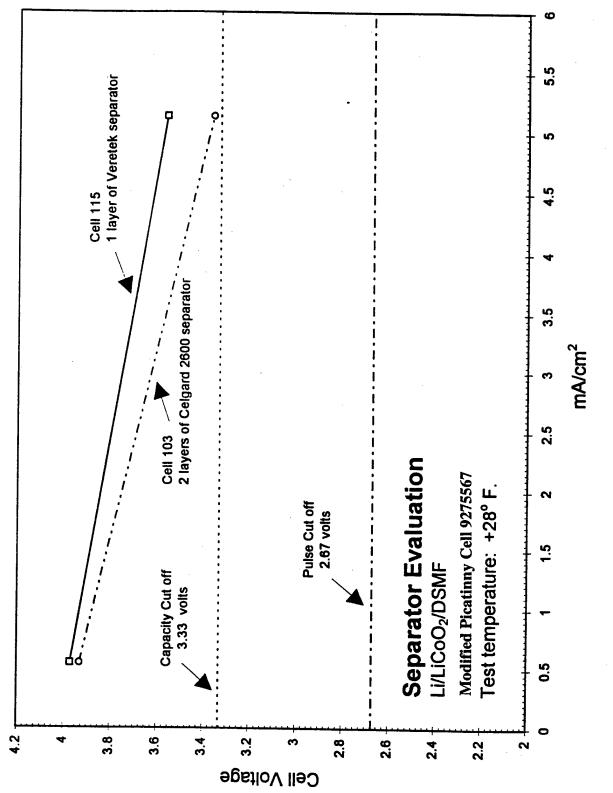
Lithium/thionyl chloride, on the other hand, has better rate capability than does lithium/lithium cobalt oxide. The difference is at least an order of magnitude in current density, i.e., 3-4 mA/cm² for Li/LiCoO² and 30-40 mA/cm² for Li/SOC1.² Energy density is another advantage of Li/SOC1₂. Practical values of 80 Wh/lb for Li/LiCoO₂ versus 200 Wh/lb for Li/SOC1₂ in 100 to 200 ampere-hour cell sizes. Nevertheless, the Li/LiCoO₂ system is sufficiently energetic for HWAM.

Both Li/LiCoO₂ and Li/SOC1₂ have excellent power capability, and both have good low temperature performance, which make them the primary electrochemistry choices for HWAM. Figures 6-10 and 6-11, and Table 6-2 give comparison data between LiCoO₂ and SOC1₂. The SOCl₂ comparisons are for two very different embodiments of the electrochemistry. They are both reserve cells, but the HED battery (Alliant Techsystem's G2666B1), a version of the Alliant's G26666 (Figure 5-1) based on the oxyhalide cathode instead of vanadium oxide, has a 1 Watt-

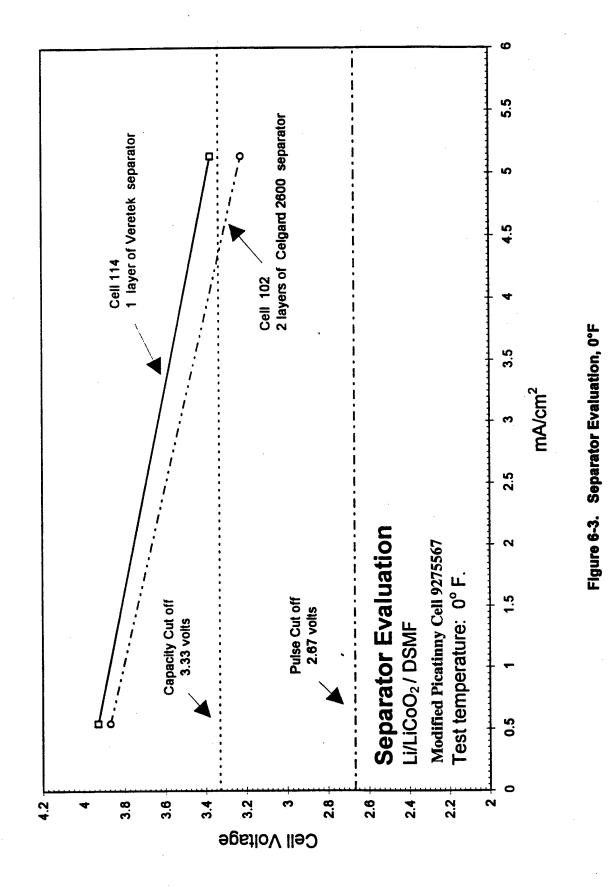

hour capacity while the SPM unit (Alliant Techsystem's G3070A2) is a 4000 Watt battery for powering sonobuoys. These batteries have been produced on production lots. Further information on these power sources may be found in Appendix E, taken from an Alliant Techsystems marketing brochure.⁴

Battery Life Expectancy

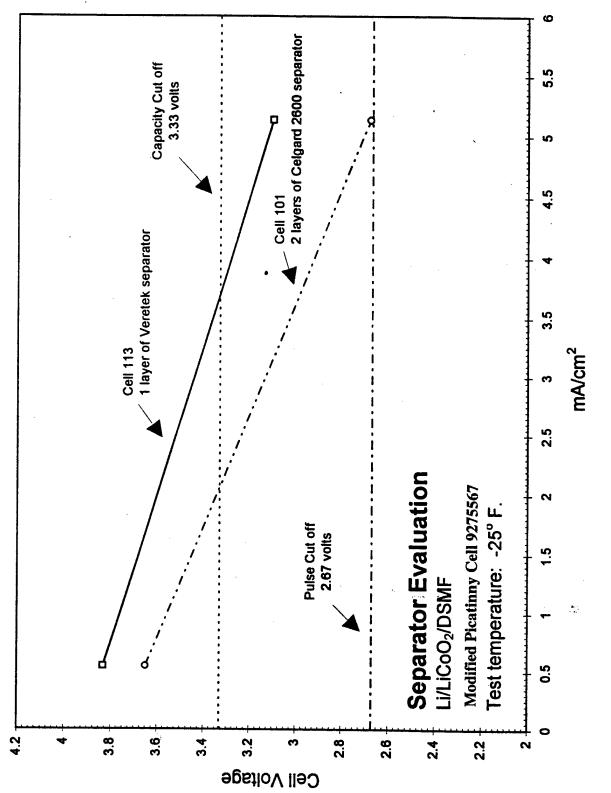
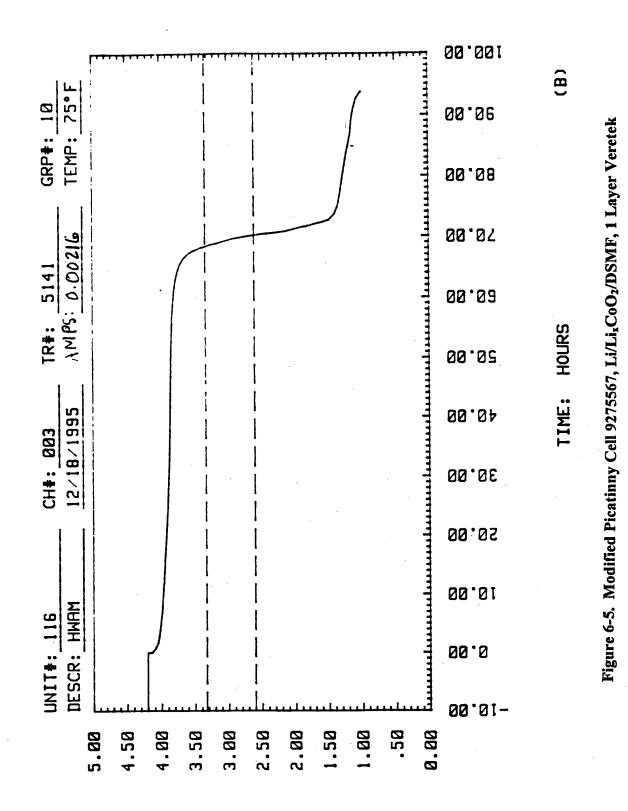
Life expectancy for Li/Li_{0.5}CoO₂ batteries is excellent as shown by real time test data of hermetic cells. The Picatinny cell 9275567, modified with the HWAM cathode of precharged lithium cobalt dioxide, was activated and placed on a slow rundown load (150K-ohms) equivalent to the HWAM 7 months background rate. The cell ran for 7.13 months (5,136 hours). This was then compared with a fresh cell of the same type that was activated and discharged at a fast rate, 31 hours (900 ohms). The fresh cell yielded 132 milliampere-hours of capacity, whereas the slowly discharged cell yielded 134 milliampere-hours of capacity. Essentially, no loss in life expectancy for slow, long time use. These tests were conducted at room temperature and are plotted together in Figure 6-12. No tests were conducted on cells that were first activated, and then left on open circuit for 7 months, followed by a fast discharge. However, in many ways the test presented is a better representation of HWAM requirements. Life tests at temperature extremes also need to be conducted in a future program.

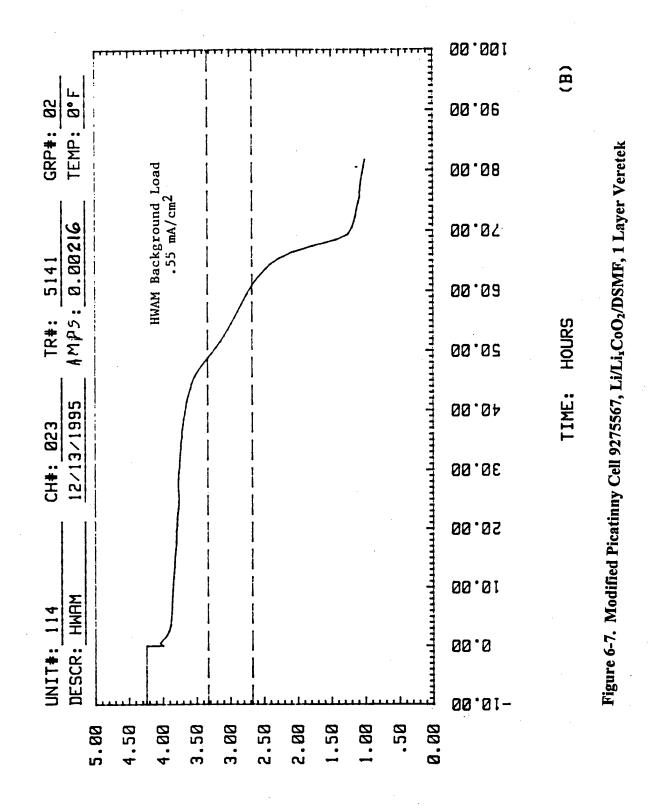

HWAM Active Li/Li_{0.5}CoO₂ Battery

One of the tasks requested during the development of the HWAM Li/Li_{0.5}CoO₂ battery was an evaluation of the capacity of an active battery using the same volume constraints as the HWAM Reserve Battery. Nominal capacity for the reserve battery was 14 ampere-hours. Using the volume displaced by the reservoir for additional electrode space, an active battery was designed with a cross-section as shown in Figure 6-13. The component electrode design summary is shown in Table 6-3. The nominal capacity expected from this design is 35-amperehours. The weight budget for the active battery design is shown in Table 6-4. Total battery weight is 4.5 pounds. If a weight maximum of 3.0 pounds (present specification, see Table 2-1) were to be imposed on the battery design, then the maximum expected capacity would be 22.4 ampere-hours.

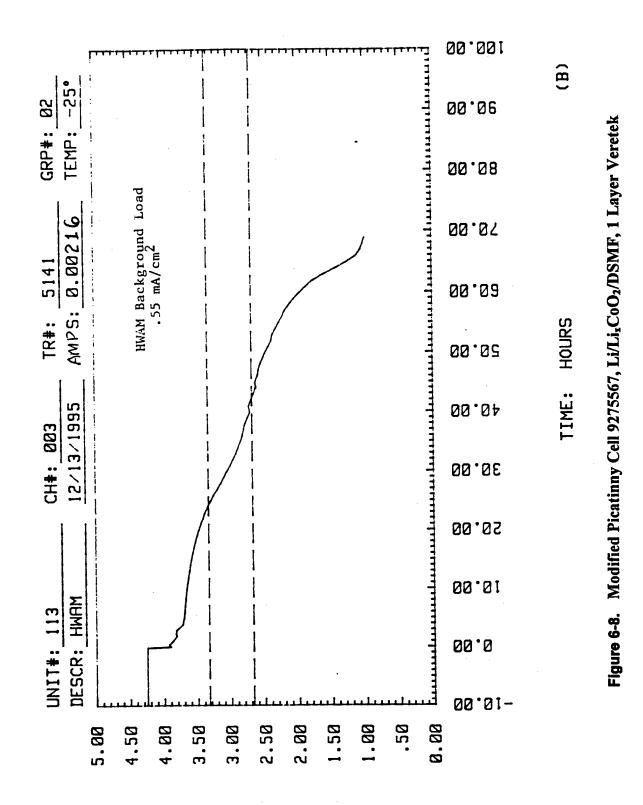


•

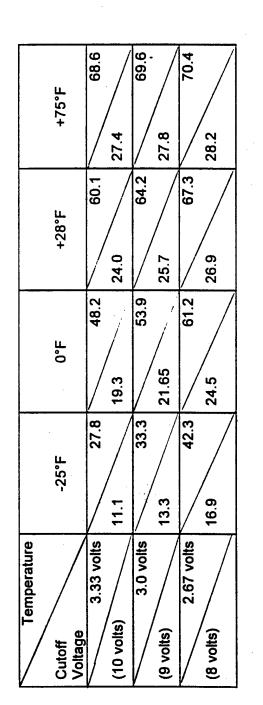

Figure 6-4. Separator Evaluation, -25°F

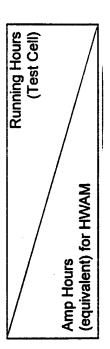
CELL POTENTIAL: VOLTS



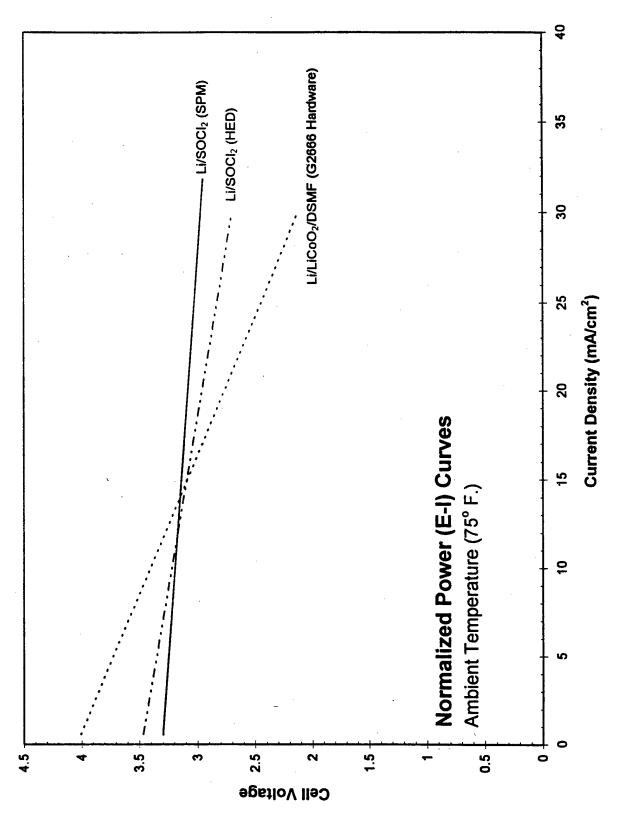
CELL POTENTIAL: VOLTS

STJOV


CELL POTENTIAL: VO



CELL POTENTIAL: VOLTS



Li_xCoO₂ Cathode Veretek Separator DSMF Electrolyte Discharged @ .55 mA/cm² (equivalent to 400mA on HWAM cell)

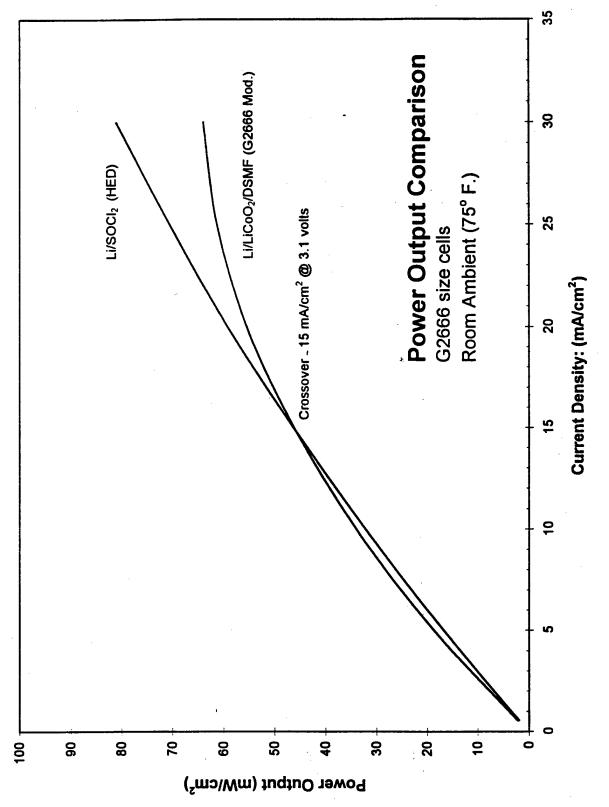
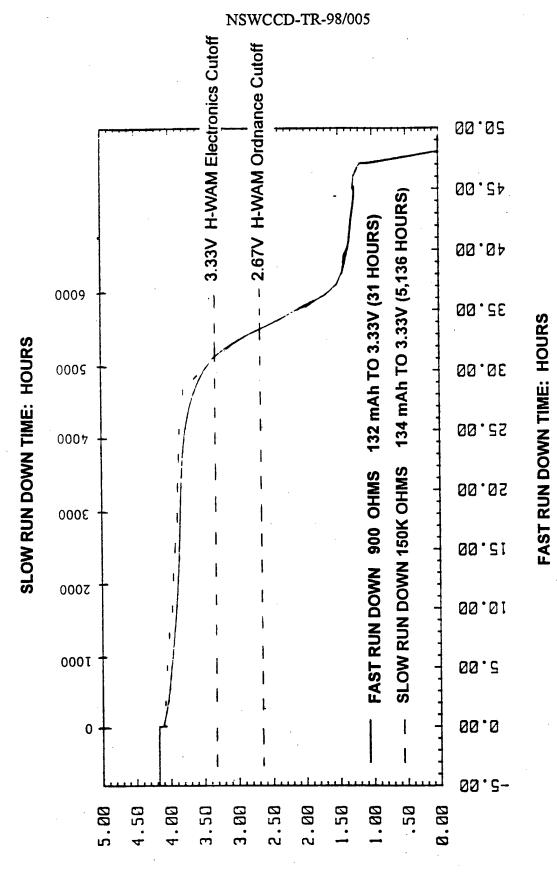


Figure 6-10. Normalized Power Curves for Li/Li_{0.5}CoO₂ and Li/SOCI₂

Table 6-2. Capacity Comparison Between Li/Li_{0.5}CoO₂ and Li/SOC1₂ in Same Size Hermetic Cells*

Energy Comparison


Modified Picatinny Cell 9275567 (Li_xCoO_2) DSMF Electrolyte 1 Veretek Separator Weight: 6.33 grams Volume: 2.66 cc (.163 in³)

Discharged at 2.16 mA Milliamp hours to cut-off voltage HED (SOC1₂) SOC1₂ Electrolyte 1 Glass Separator Weight: 5.27 grams Volume: 2.66 cc (.163 in³)

Temperature							1	
Cutoff	-25	Ϋ́F	0	Ϋ́F	+28	8⁰F	+7:	5°F
Voltage								
3.33 volts	1	60.0		104.1		129.8		148.2
5.55 VOICS	0.9		0.9		1.3		260.5	
3.0 volts		71.9		116.4		138.7		150.3
5.0 voits	77.3		158.5		205.2		284.3	
2 67 volto		91.4		132.2		145.4		152.6
2.67 volts	114.5		182.3		211.68		288.6	

	Li _x CoO ₂ , mAh
HED, mAh	

* Both cells have the same external dimensions and have similar construction features including the ampul reservoir.

Fast Run Down Versus Slow Run Down of Picatinny Hermetic Cells,

Figure 6-12.

Picatinny #9275567 (Modified), Room Temperature

CELL POTENTIAL: VOLTS

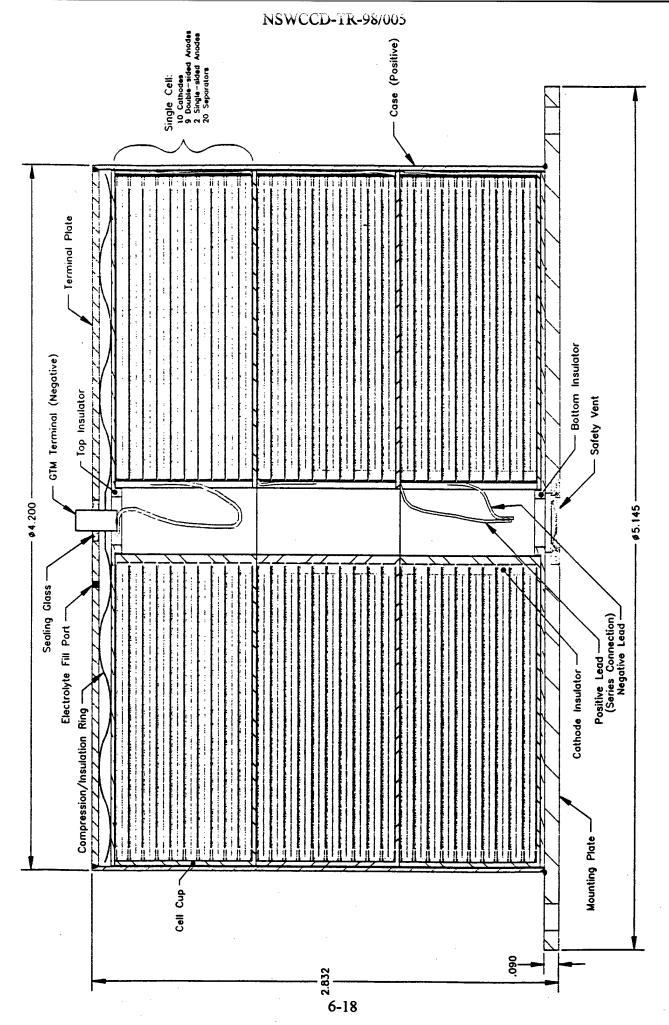


Figure 6-13. HWAM Active Battery Design

Component	OD	ID	Thickness	Surface Area	Volume		# /Ce 11	Vol /Cell	Total #
	(in)	(in)	(in)	(in ²)	(in ³)	(cm ³)		(cm ³)	
Cathode:	4.04	0.62	0.06	12.52	0.75	12.31	10	123.0 7	30
Anode: Single Sided Double Sided	3.94 3.94	0.52 0.52	0.007 0.013	11.98 11.98	0.08 0.16	1.37 2.55	2 9	2.75 22.97	6 27
Separator:	4.08	0.50	0.005	12.88	0.06	1.06	20	21.10	60
Cathode Insulator:	0.62	0.50	0.06	0.11	0.01	0.10	10	1.04	30

Table 6-3. HWAM Active Battery Electrode Design

Battery Capacity:

37.45 Ah

Component	Weight	tery Weight Summary No./Battery	Weight/Battery
Component	(g)		(g)
Cell Cup	23.45	3	70.34
Anodes, Complete Assembly:			
Single Sided	1.26	6	7.55
Double Sided	1.82	27	49.06
Separators	0.43	60	25.64
Cathodes, Complete Assembly	36.92	30	1107.64
Electrolyte	280.22	1	280.22
Leads, Positive/Negative	3.28	6	19.66
Compression/Insulation Ring	16.22	1	. 16.22
Insulator, Top/Bottom	9.21	2	18.42
GTM Terminal	0.55	1	0.55
Insulator, Intra-Cell	1.76	2	3.52
Terminal Plate	70.67	1	70.67
Battery Case	117.87	1	117.87
Mounting Plate	241.42	1	241.42
Battery Vent	1.56	1	1.56
		Total:	2030.34 (g)
			4.47 (lbs)
This active battery was designed to	the same volume a	s the current reserve H	WAM battery
without regard to weight. If the ba	ttery is designed to	conform to the weight	restriction of 3 lbs

without regard to weight. If the battery is designed onform to the we ıв 0.3 lbs., the capacity would be: 22.47 Ah

Li/Li_{0.5}CoO₂ Capacity Not Lost To Depassivation Requirements

Since $Li/Li_{0.5}CoO_2$ cells do not passivate with storage, the need for depassivation pulses to clean-up electrode surfaces does not exist. Thionyl chloride systems do passivate and clean-up capacity contingency must be factored into battery design. For one of the study tasks, Alliant Techsystems was asked to calculate the capacity saved by not needing depassivation pulses in the $Li/Li_{0.5}CoO_2$ HWAM battery. Calculations, given below, show that a nominal 2 ampere-hours of additional capacity are needed to compensate for passivation clean-up.

Energy Removed - Depassivation Pulses Estimated Battery Voltage - 3.2 vpc x 4 = 12.8 voltsLoad Resistance (Fig. 3 spec 29224A) = 2.5 ohmsPulse Duration* (Fig. 3 spec 29224A) = 0.5 sec.Pulse Interval (Fig. 3 spec 29224A) = 1 every 2 hoursDays Under Load (Fig. 3 spec 29224A) = 180 days minimumPulse Current = 12.8 volts = 5.12 amps 2.5 ohmsAmp Hours/Pulse = 5.12 amps x .5 sec x 1 hour = .000711 amp hours 3600 seconds

Number of Pulses:

<u>1 pulse x 24 hours x 180 days minimum = 2160 minimum 2 hrs.</u> day

Capacity Removed At Any Assumed Low-Rate Efficiency:

2160 pulses minimum x .000711 amp hours/pulse = 1.53 amp hours minimum

<u>However</u>: As the rate of discharge is increased, the system deliverable capacity is lowered as a result of increasing losses due to irreversible processes occurring within the cell. The capacity reduction due to the high current (5 amp) pulses would be considerably greater than the same capacity removed at the nominal .625 milliamp standby current. Based on published data,⁴ (5 amp) capacity would be 25-35% less than at the low standby nominal rate. Therefore, using a capacity 30% less, the resultant effect on capacity (compared with a steady low rate discharge without the depassivation pulses) would be:

1.53 amp hrs. minimum x $\frac{100\%}{(100\% - 30\%)}$ = 2.19 amp hours

^{*} An unofficial change proposal from the HWAM device manufacturer dated 4/18/95 indicates a doubling of the depassivation pulse duration from 0.5 sec. to 1 sec. with no change in frequency or load. Under this regime the capacity removed would also double to 3.0 amp hours (180 days minimum) and the expected reduction would be on the order of 4 - 4 1/2 amp hours.

Unit Price Cost Estimate For HWAM Reserve Battery

The estimate was based on ground rules and assumptions which are highlighted below:

- Bidding rates are Alliant Techsystems' Fiscal Year 1997.
- The HWAM Battery Design has considered ease of manufacturability. As of this writing, it has not been optimized or tooled.
- Based on input at the Milestone Meeting 2/22/96, the need for "smart control" electronics for the HWAM battery is not a priority at this time and therefore is not included in the design or costed.
- Material costs were based on actual purchase orders placed in 1995 and have not been upgraded to present day.
- Labor estimates use an 85% learning curve for projected builds prior to reaching the lowest estimated UPC. The start of the learning curve assumes having completed at least 200 pre-production units.
- Non-recurring tooling is separately funded and not included in the UPC.
- The battery lot builds are consecutive and are scheduled closely, such that workstations and tool setups dedicated to HWAM battery production do not need to be torn down. The build of 5,000 batteries follows the 3,000 battery build which follows the 1,000 HWAM Reserve Battery build.

The Unit Price Cost goals are shown below for the quantities listed:

first 1,000 units	\$3,000 each
following 3,000 units	\$2,000 each
following 5,000 units	\$1,500 each

Design changes necessary to accomplish the UPC goals are:

- A common TefzelTM molded reservoir of the type shown in Figure 6-14 but not limited to the oversized reservoir shown.
- A revised activation system of the type shown in Figure 6-14 but not limited to that configuration.
- Work with vendors to improve parts designs for producibility, which may require some vendor non-recurring cost to reduce part unit costs.
- A cathode fabrication method that is more cost effective than pressed cathodes.

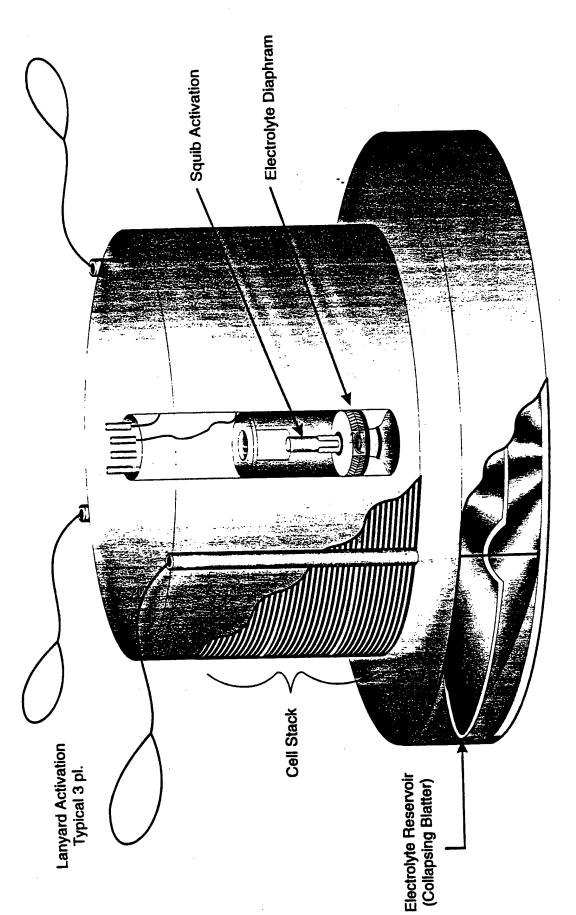


Figure 6-14. HWAM Reserve Battery, 30 Ampere-Hour Capacity

REFERENCES

- 1. Lin, H. P. W.; Kelly, C. J.; Chua, D. L.; Smith, P. H.; James, S. D.; and Fleischmann, C. W., "Development of a 30-Ampere-Hour Lithium/Lithium Cobalt Oxide Rechargeable Battery," NAVSWC TR 91-184, 30 Sept 1994.
- Lin, H. P. W.; Kelly, C. J.; Chua, D. L.; Smith, P. H.; James, S. D.; Murphy, T. C.; Fleischmann, C. W.; and Zoski, G. D., "Rechargeable Lithium Cells with High Energy Density Transition Metal Compound Cathodes – Characterization in AA-Size Cells," CARDIVNSWC-TR-95/034, Apr 1996.
- 3. Lin H.P. W. and Burgess, K., "Synthesis of Charged Li_xCoO₂ (0 < x < 1) for Primary and Secondary Batteries," U. S. Patent No. 5,667,660, Sept 16, 1997.
- Linden, D., Chapter 14, "Lithium Cells," in Handbook of Batteries, Second Edition, Linden, D., Ed., McGraw-Hill, New York, 1995, p. 14-1, especially Figure 14.27, pp. 14.36, 14.37.
- 5. Designer's Casebook, Honeywell Power Sources Center, 1985.

Appendix A

HWAM Drawing Package

ALLEMNITECH SYSTEMS

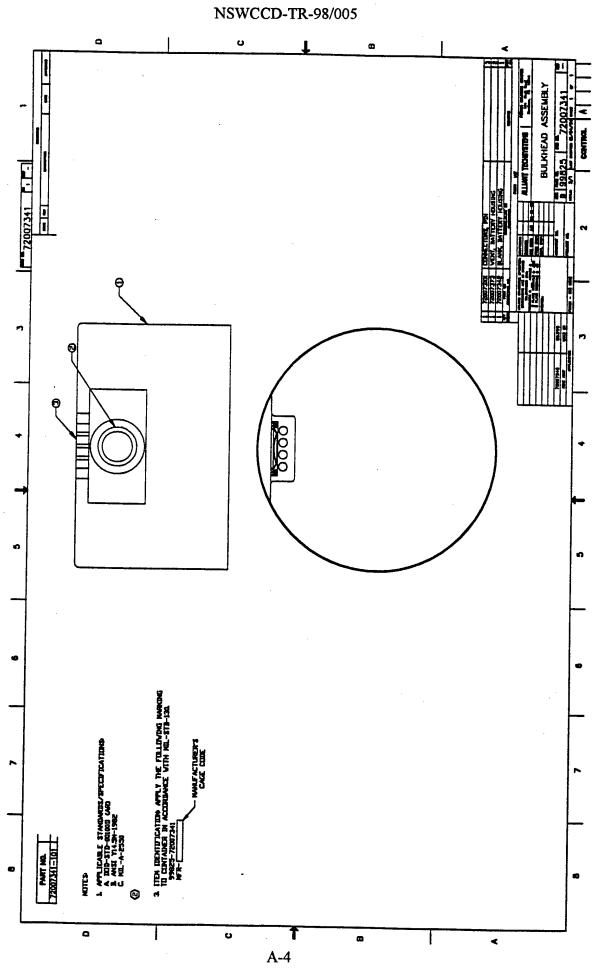
[E60222-2.ppt]*paw

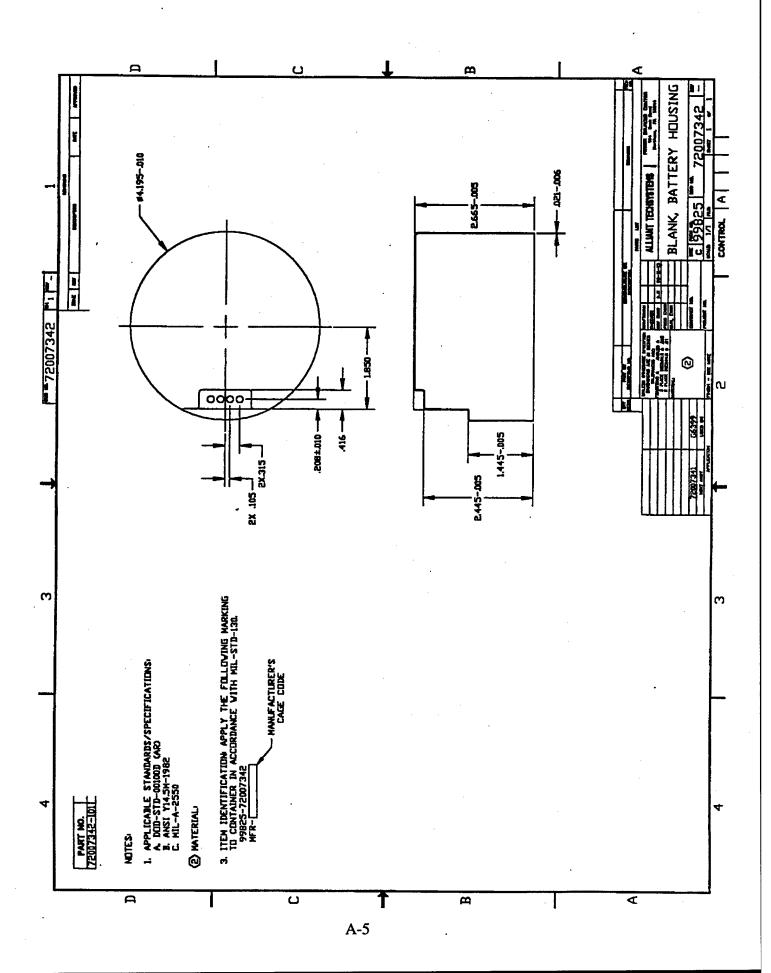
H-WAM Battery Device No. G3169A1 Drawing Package

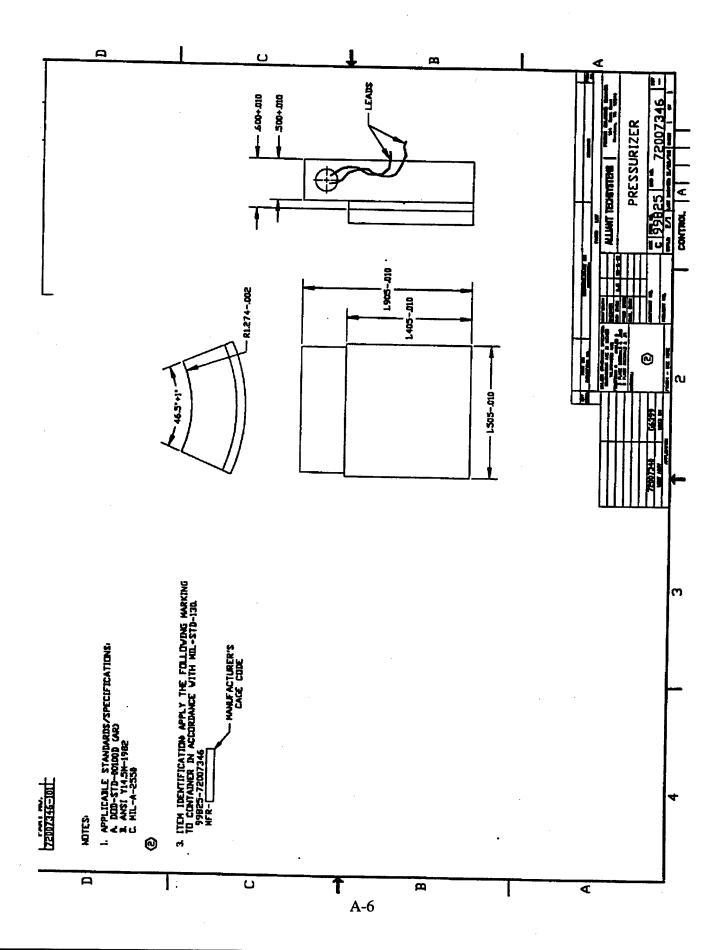
22 February 1996

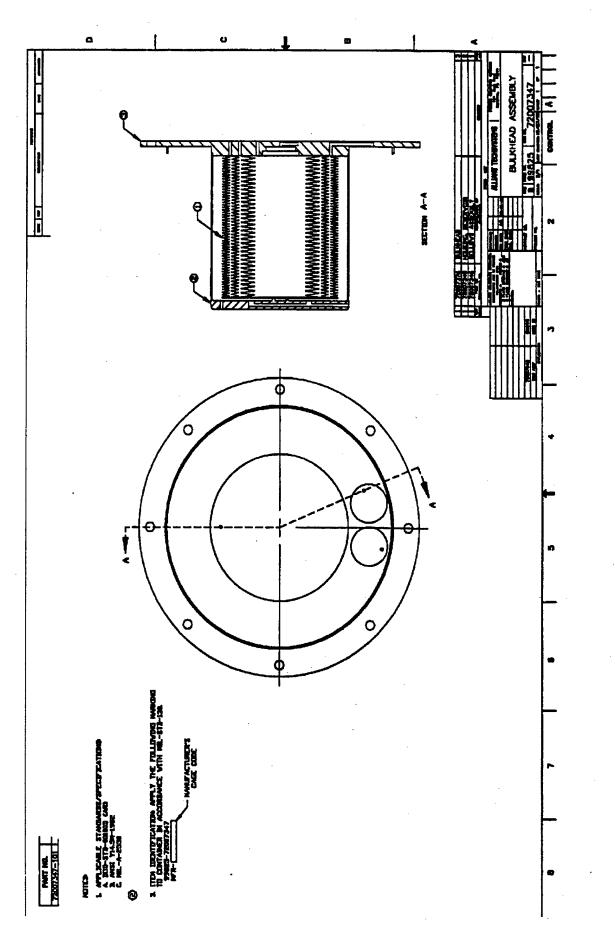
A-2

H-WAM DRAWING LIST

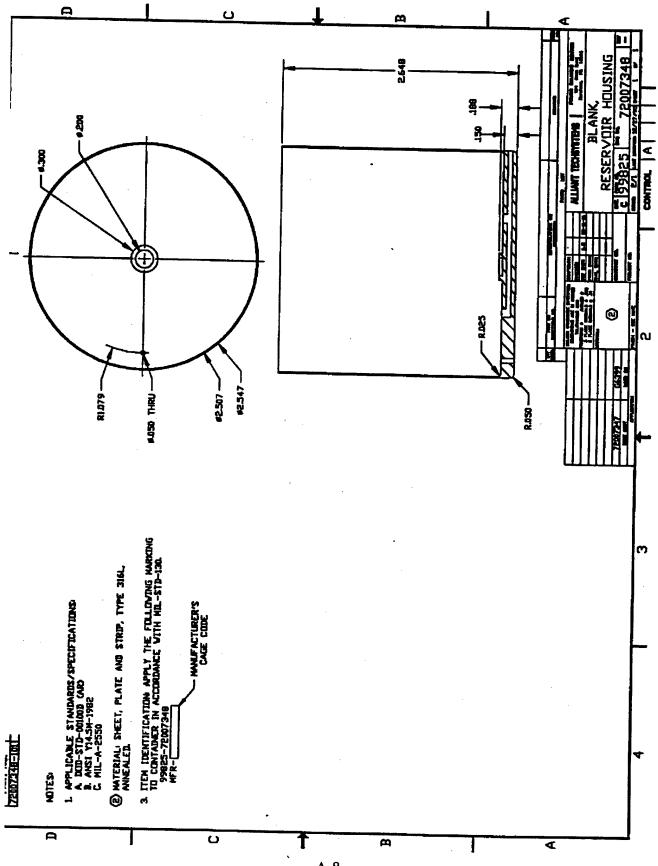

Drawing Package Requirements:

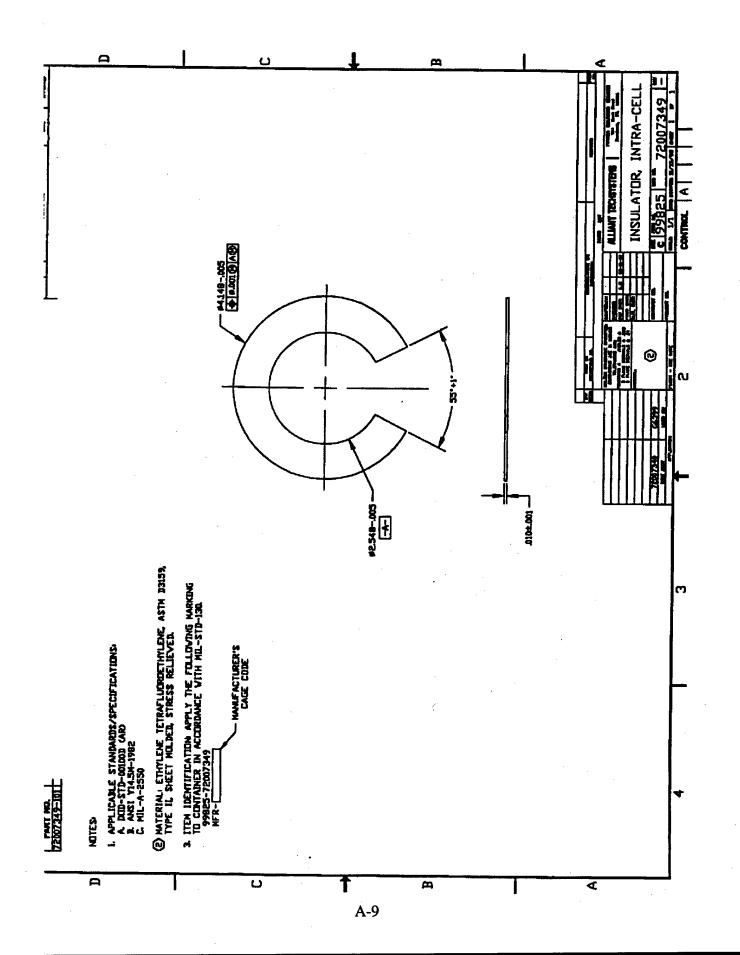

Drawing	Drawing Number	Used On/Next Assy
Battery Assembly	72007340 ×	•
Battery Housing Assembly	72007341	72007340
Battery Housing Blank	72007342	72007341
Pressurizer	72007346	72007340
Bulkhead Assembly	72007347	72007340
Reservoir Housing	72007348	72007347
Insulator, Intra-Cell	72007349	72007340
Cell Case Assembly	72007350	72007340
Cell Case/Headers Assembly	72007351	72007350
Cell Case	72007352	72007351
Cell Case Cover	72007353	72007350
Cathode Separator Assembly	72007354	72007350
Anode Separator Assembly, Single-Sided	72007355	72007350
Anode Separator Assembly, Double-Sided	72007356	72007350
Anode Assembly, Single-Sided	72007357	72007355
Anode Assembly, Double-Sided	72007358	72007356
Cathode Assembly	72007359	72007354
Anode, Lithium Foil	72007360	72007357,58
Cathode Current Collector	72007361	72007359
Anode Current Collector	72007362	72007357.58
Header Assembly, Positive	72007363	72007351
Header, Positive	72007364	72007363
Tube, Fill	72007365	72007363
Eyelet, GTM	72007366	72007375
Spring, Compression	72007367	72007340
Header Assembly, Negative	72007368	72007351
Header, Negative	72007369	72007368
Electrolyte Diaphragm, Inlet	72007370	72007347
Electrolyte Diaphragm, Outlet	72007371	72007347
Vent, Cell Case	72007372	72007375
Battery Housing Vent	72007373	72007341
Tubing, Activation	72007374	72007340
Cell Case Vent/GTM Eyelet Assembly	72007375	72007363,68
Bulkhead	72007376	72007347
Cathode Lead Assembly	72007378 ×	7200xxxx
Anode Lead Assembly	72007379 ×	7200xxxx
Ball	72007975	72007347
Lead Routing Assembly	720073xx ×	7200xxxx
Pin Connectors (Outside Housing)	720073xx ×	72007341


Spec Control Drawings:		
Drawing	Drawing Númber	Used On/Next Assy
Separator Material	(720073Z7 ×	72007354,55,56
Glass, Sealing	7200xxxx >	7200xxxx
Electrolyte - 2M LiAsF6/MA	7200xxxx >	7200xxxx
Flame Arrestor Material	7200xxx >	7200xxxx
Cathode Process Spec.	7200xxx ×	7200xxxx
Tefzel (ETFE)	7200xxx ×	72007351

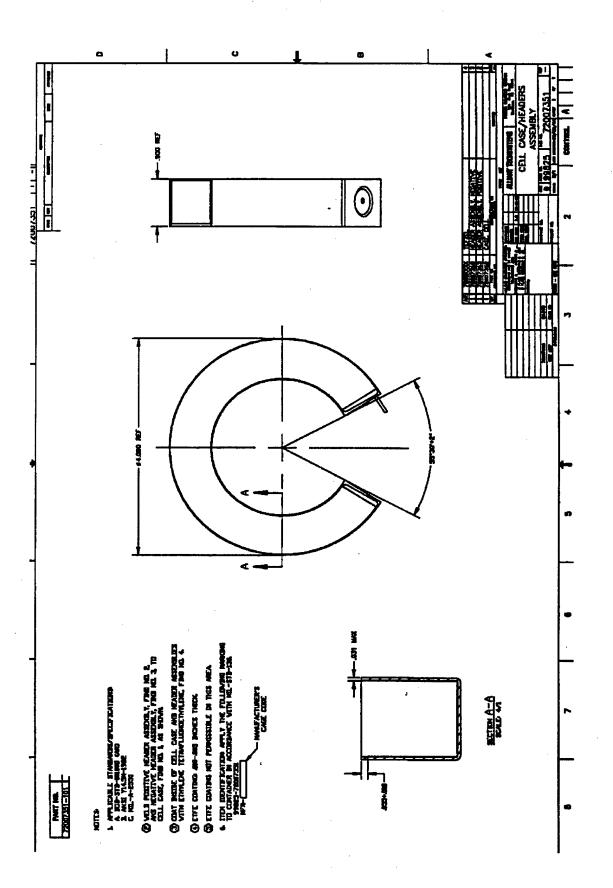

HWDWGLST

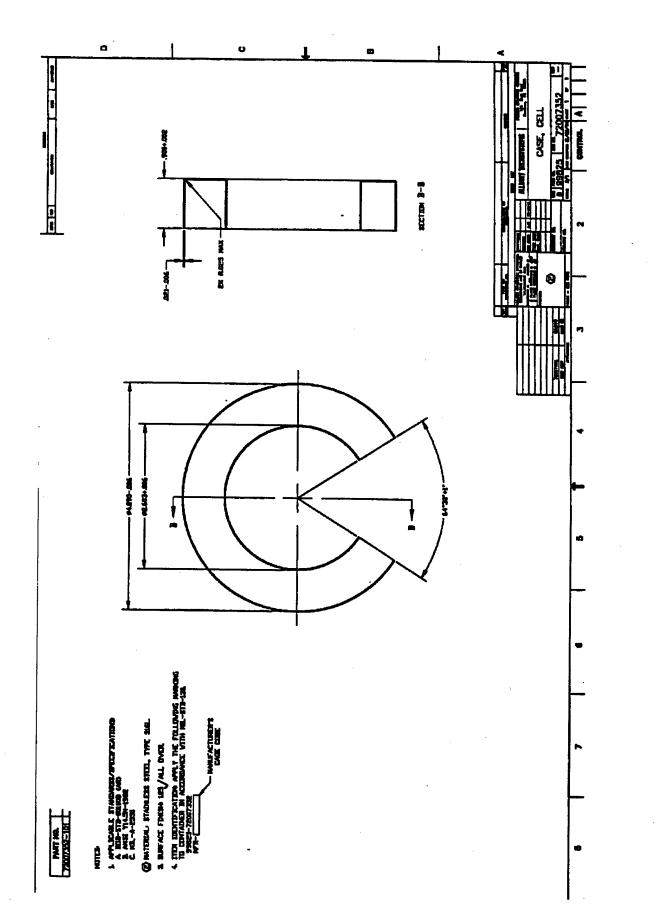
2/15/96

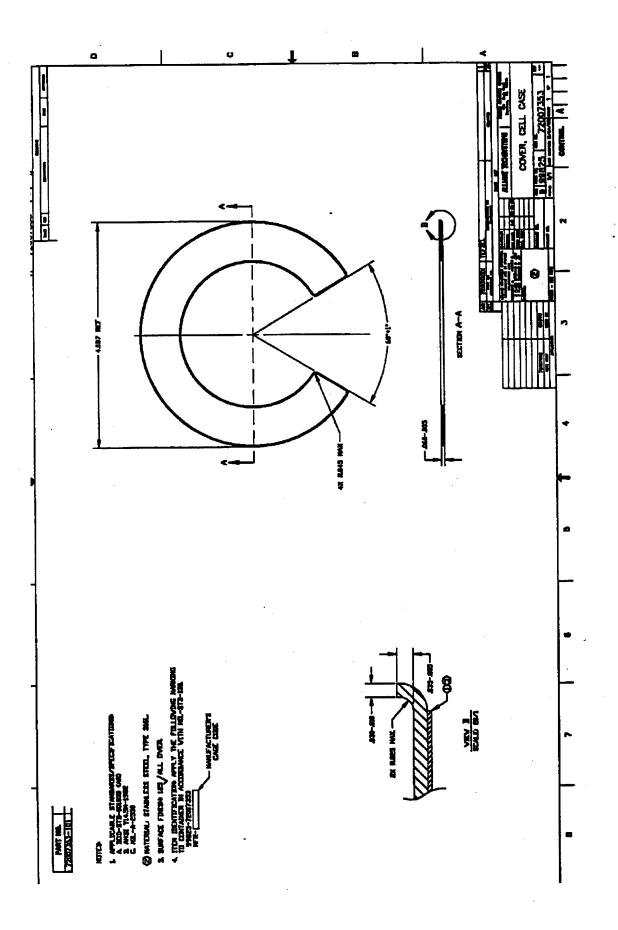


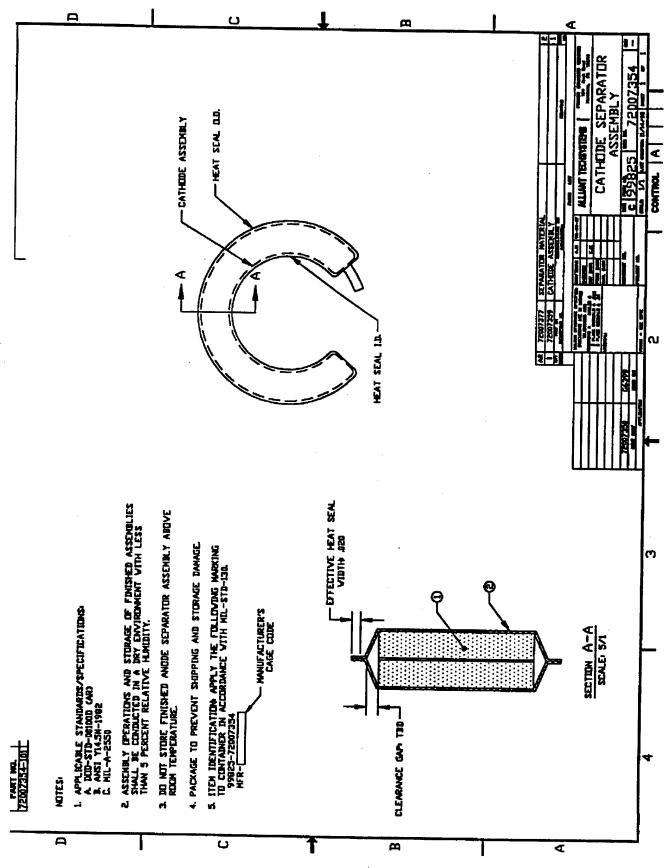


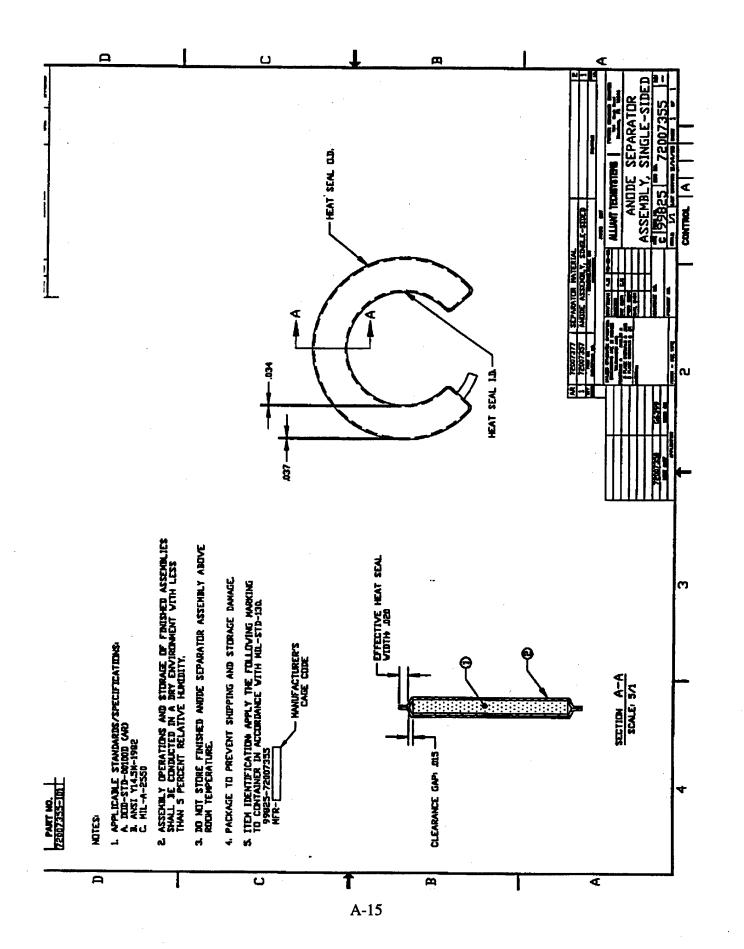


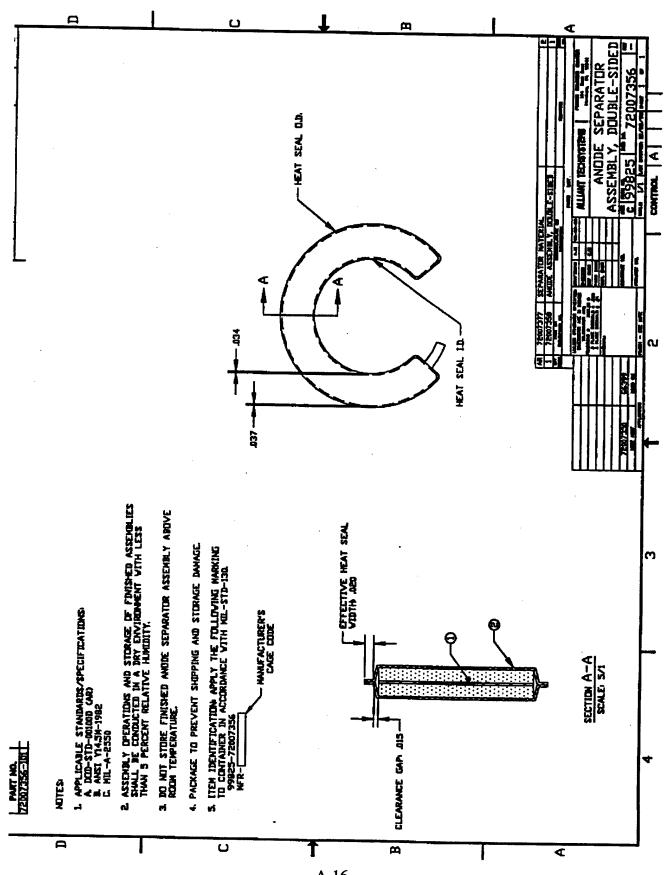


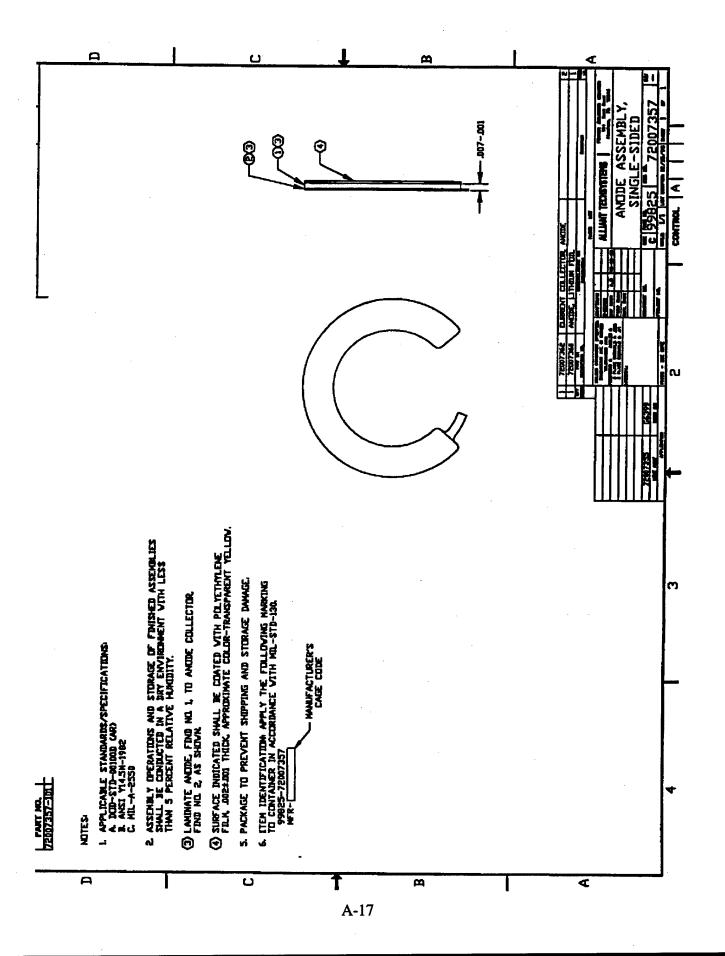

_'

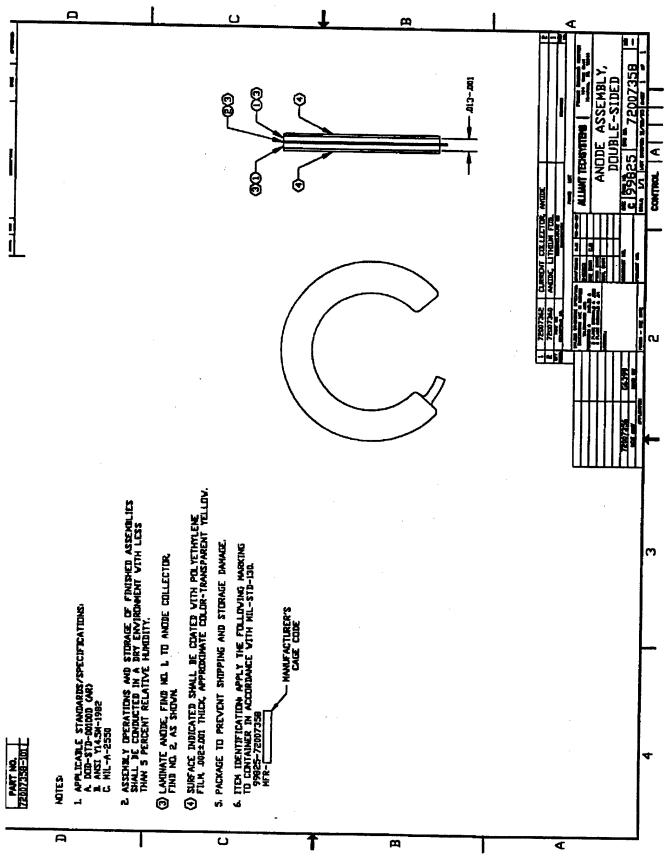


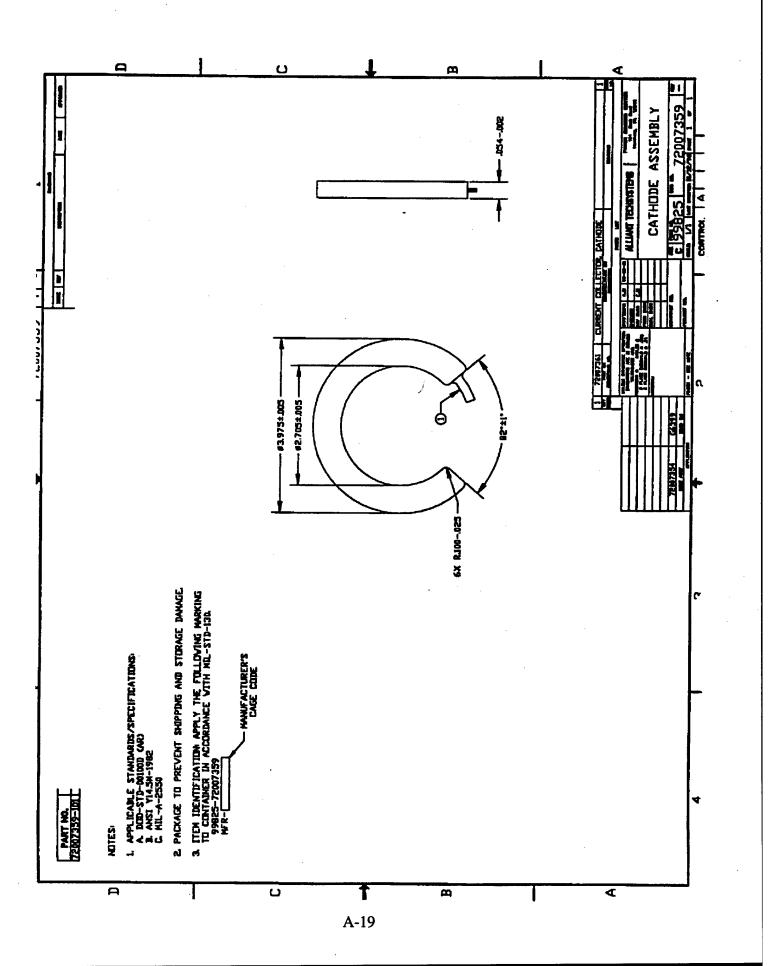


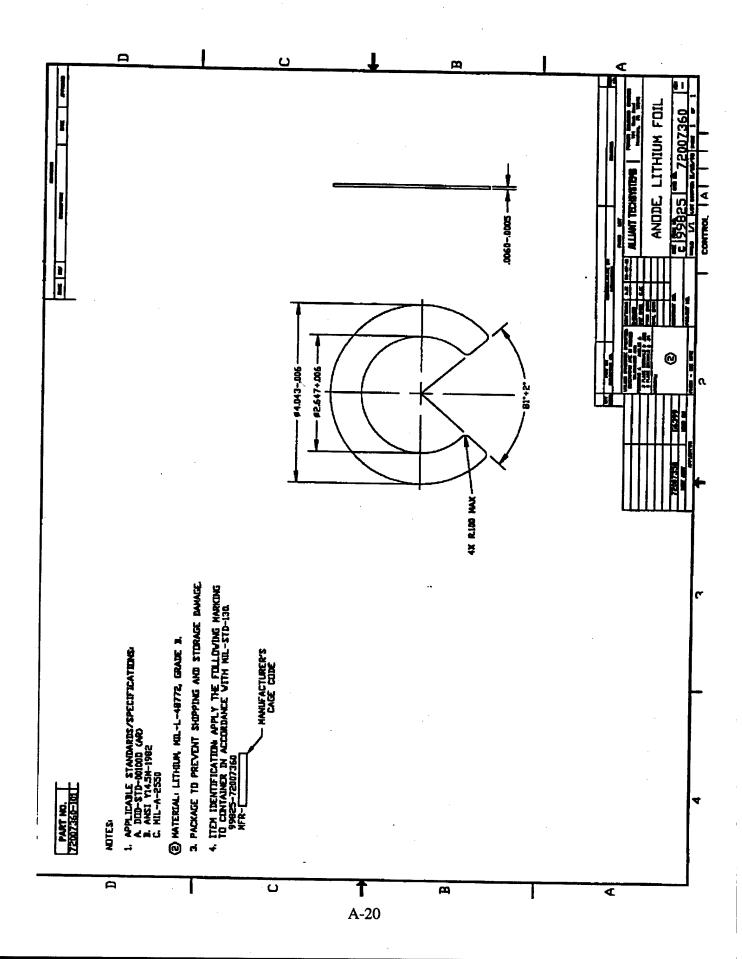


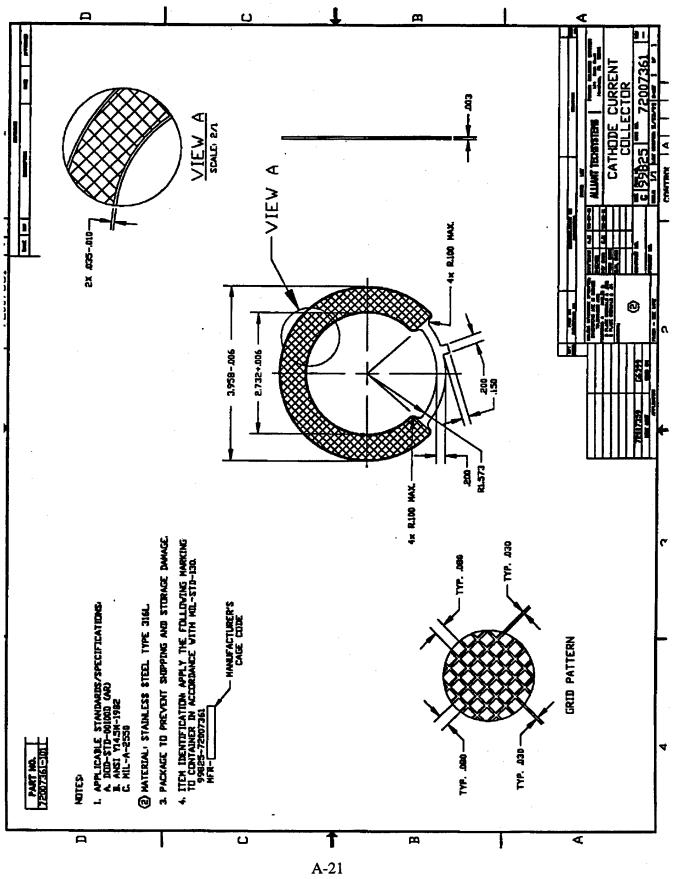


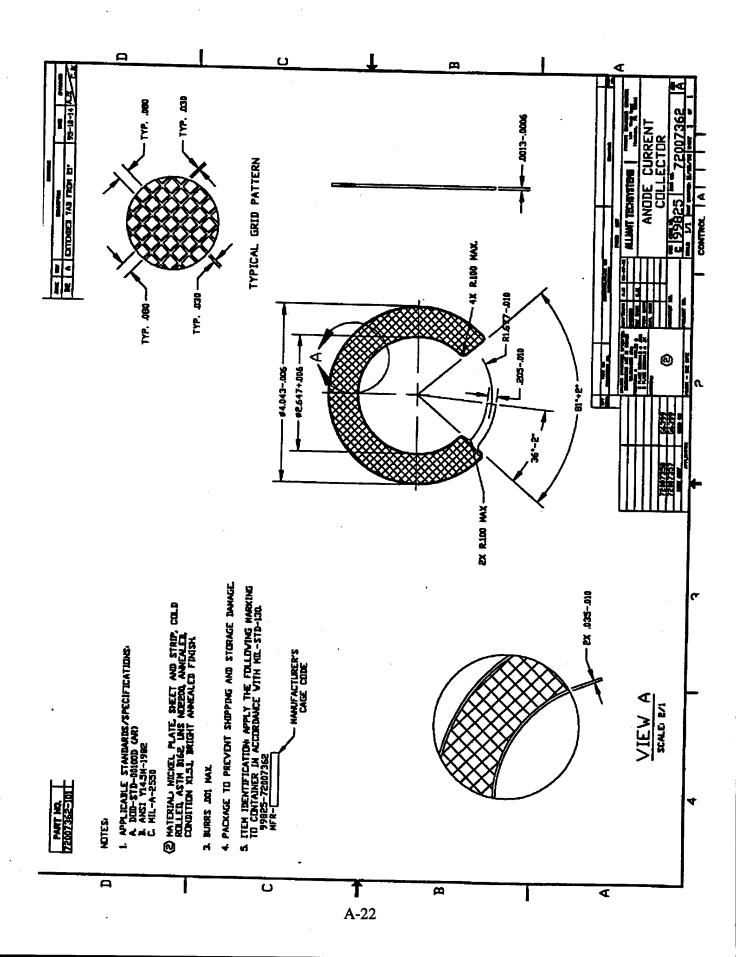


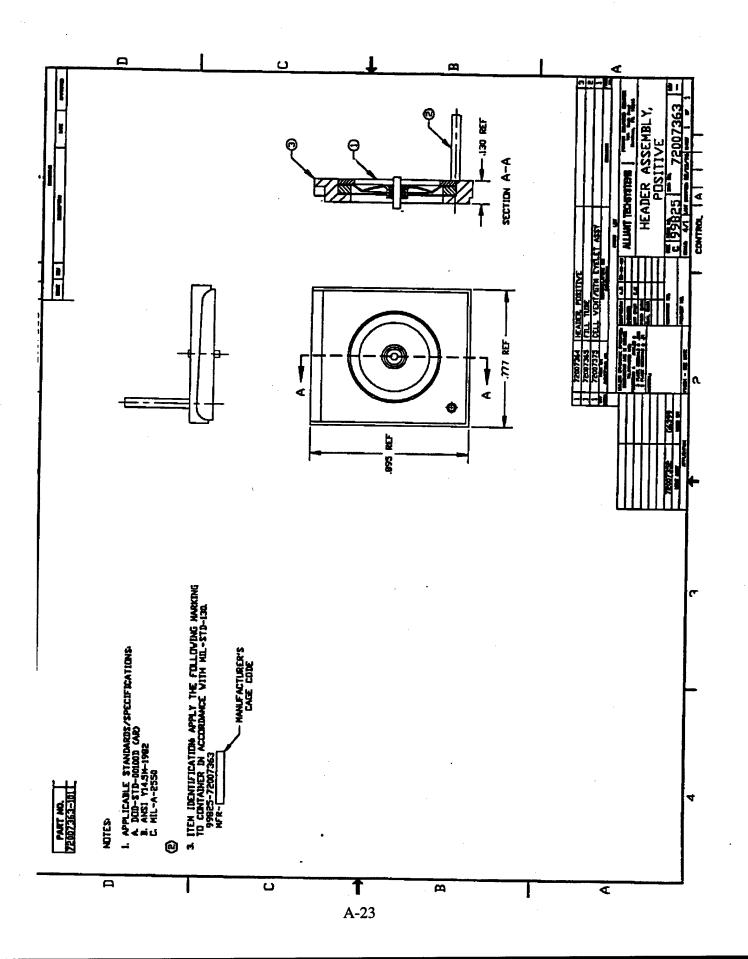


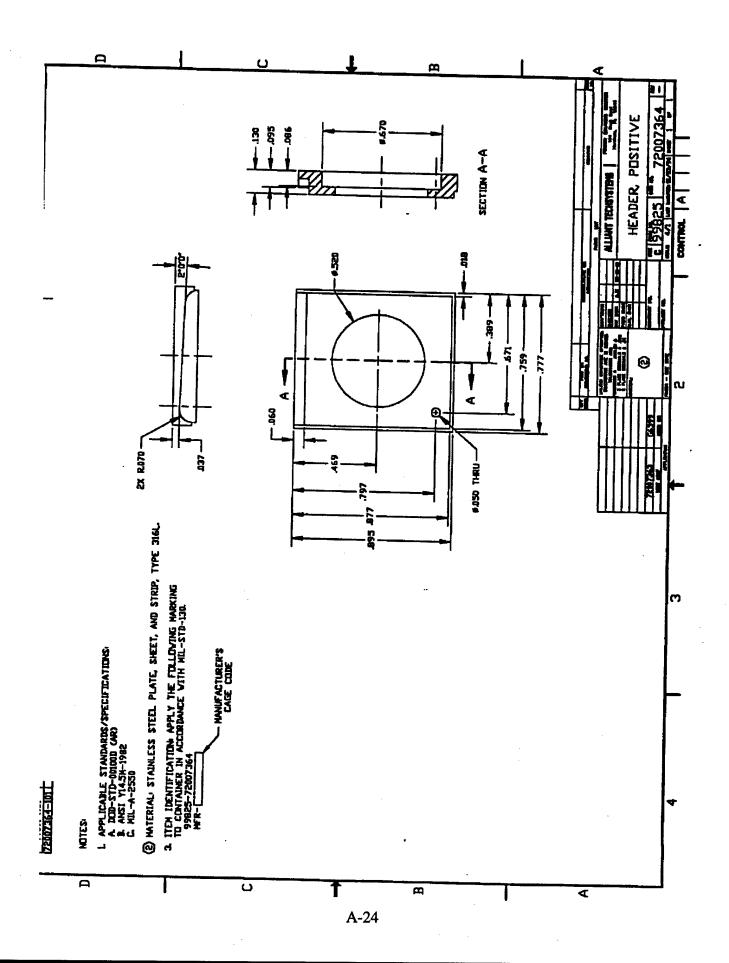


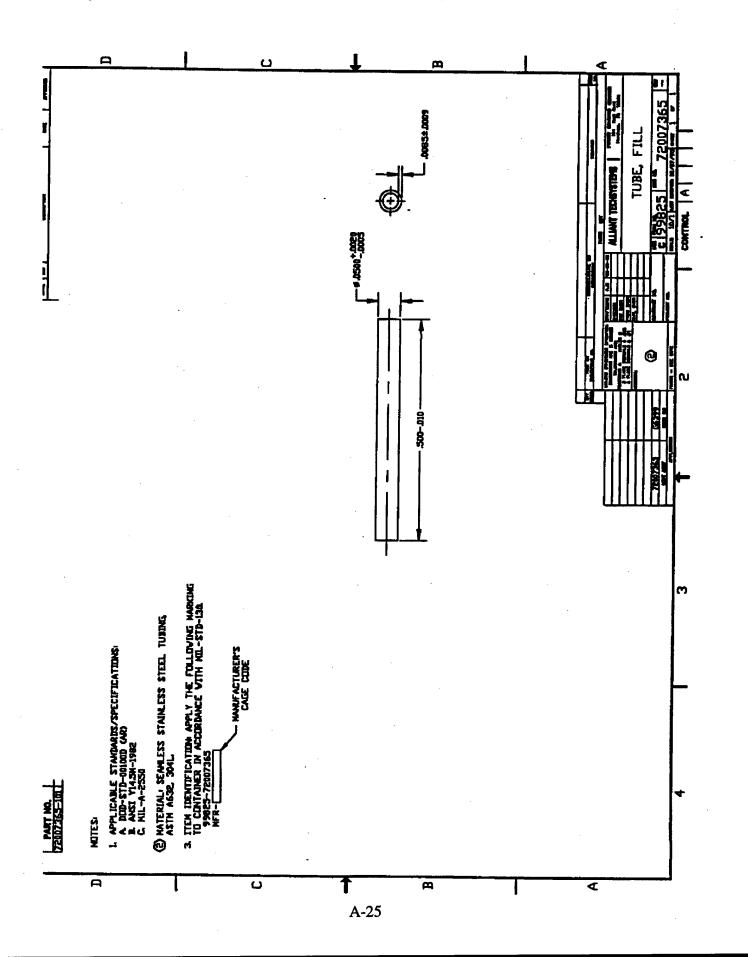


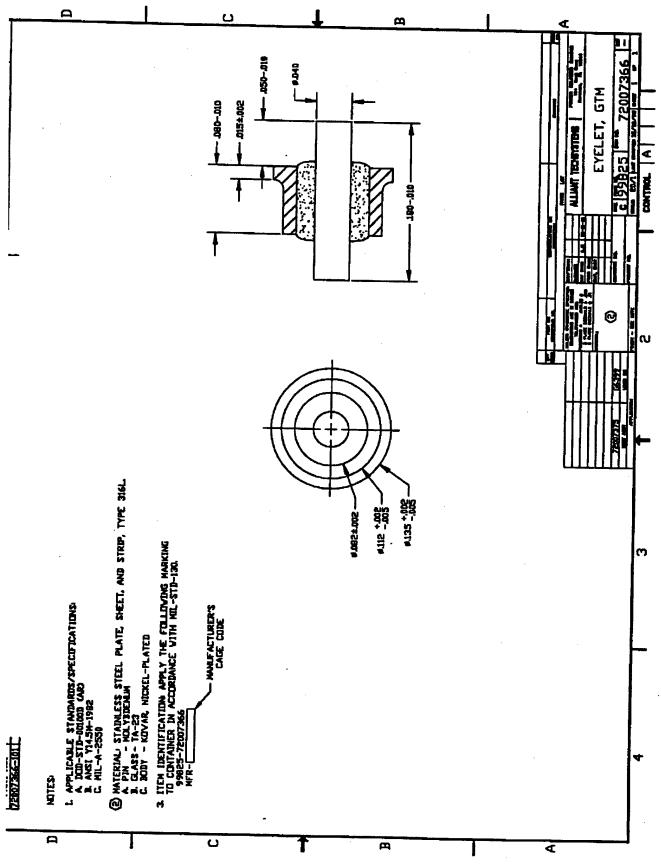






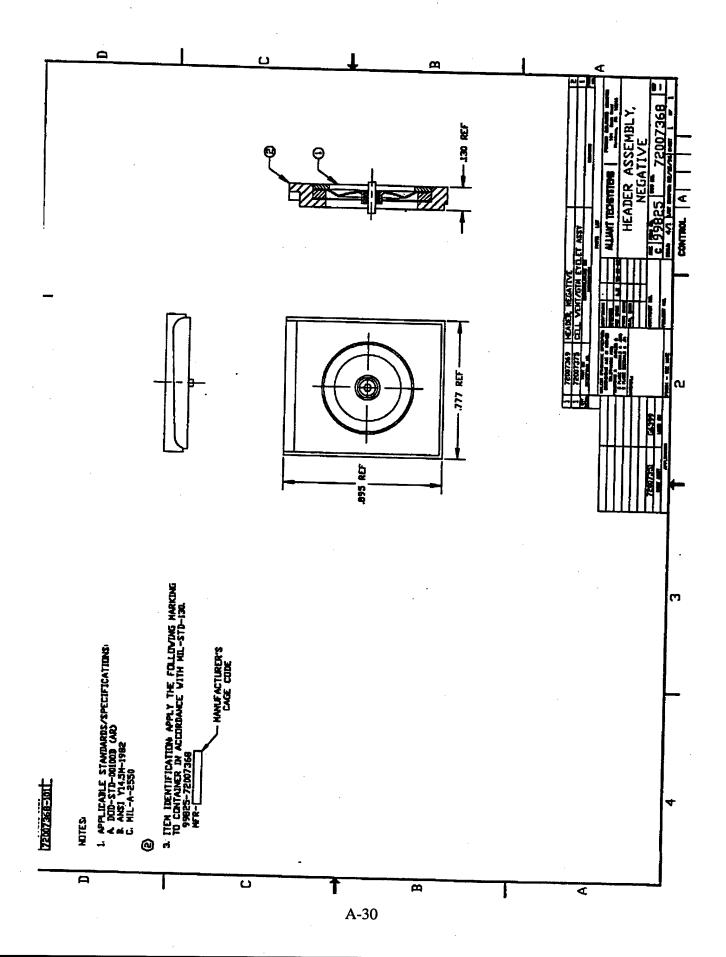


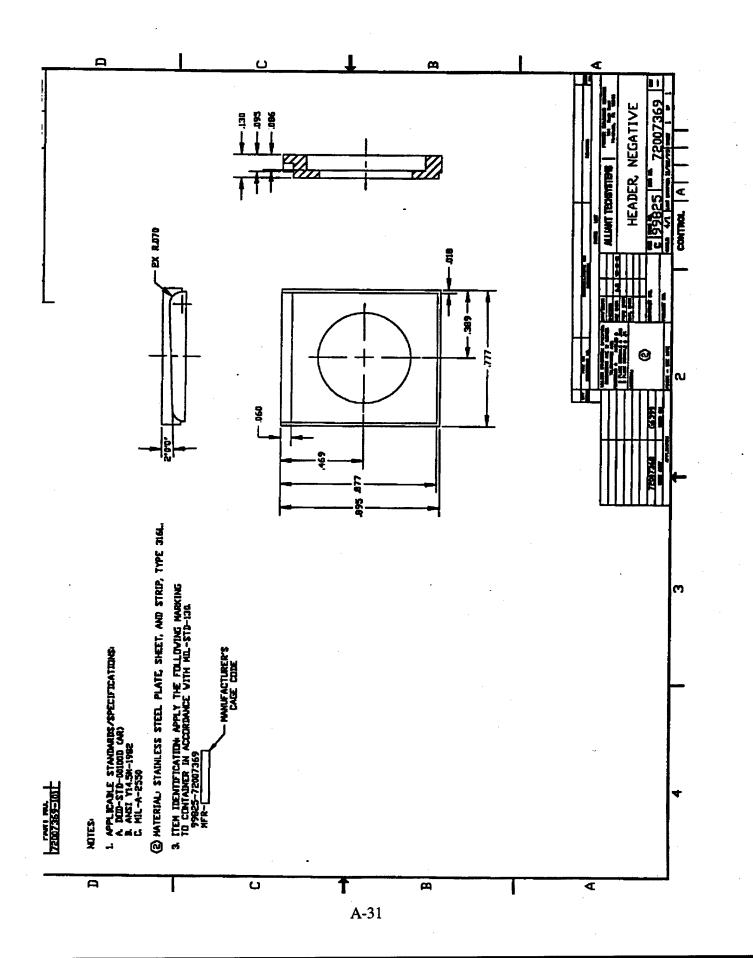


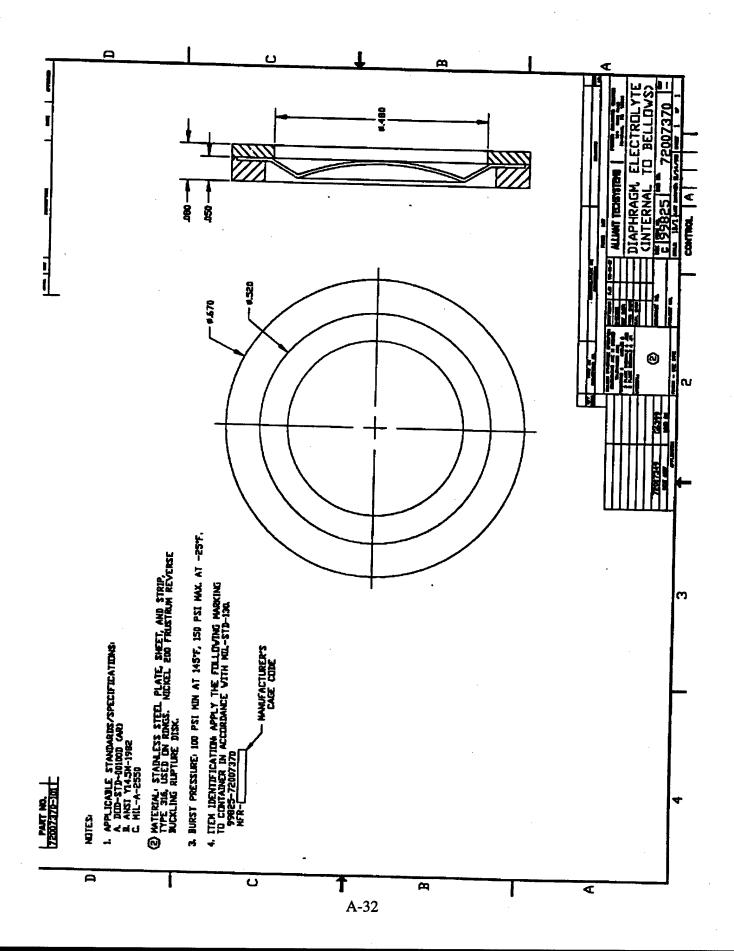


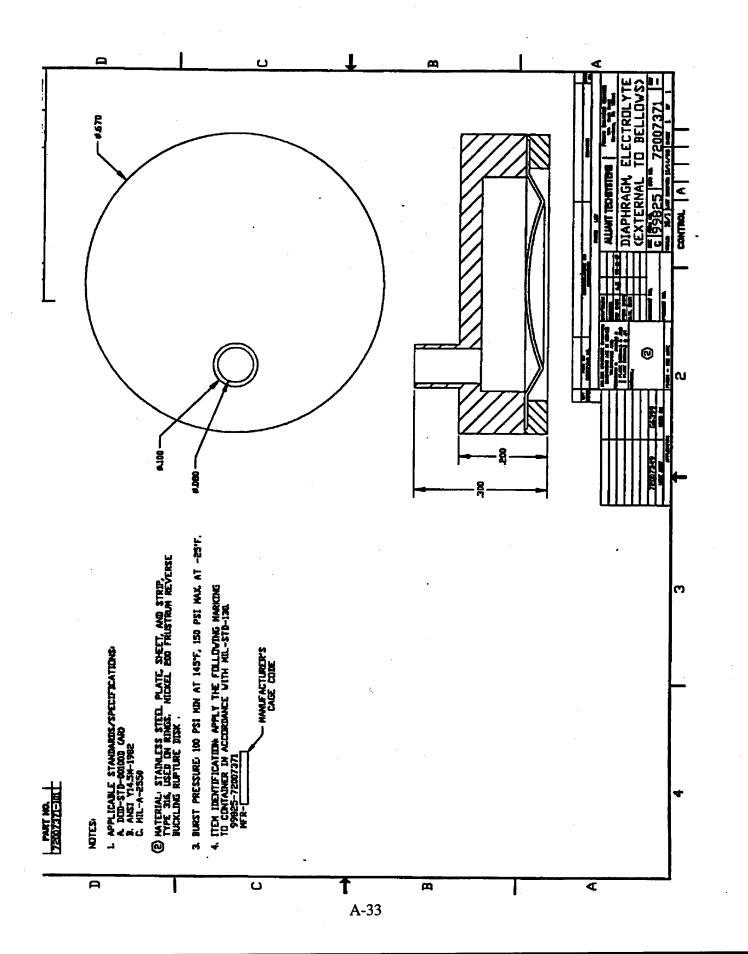
APPLI	CATION							RE	EVISI	ONS				
NEXT ASSY	USED	ON	LTR	2		DE	SCRIPT		_	T	DATE		APPR	OVED
72007340	G63	99	-		H-WA	M					9/22/95		AJS	
						:								
				ļ										
						•		-						
	<u> </u>			SUG	GEST	ED SO	URCE(S	5) OF	SUPP	'LY				
				INDO	R				VEN	VENDOR		TEM		
PART NO. 72007367	LEE SPI	ADDRE	_				ECODE		_	UMBER	IDEN	TIFIC	ATION	
12001301	1462 62		-	WNY			TBD		TE	BD			07367	.
	BROOK			9							MFR-LC	-021/	AR-3W/	
	FSCM N							1						
0.0														
SPE REV STATUS OF SHEETS	REV	-	•	-	N	cc)N1	R	OI	_ DI	RAV	VI	NG	
REV STATUS		CA	\ TI - 2	- 3	N	cc	DN 7	R	QI	_ DI		VI	NG	
REV STATUS	REV	-	- 2	- 3										
REV STATUS	REV SHEET	-	- 2 P	- 3 AF			0.			/200)736	<u> </u>	·-1()1
REV STATUS OF SHEETS	REV SHEET	- 1	- 2 P	- 3 AF			0. syste	MS I		7200		<u>67</u>	- <u>1(</u>)1
REV STATUS DF SHEETS ONTRACT NUMBER COMPUTER GENERATED	REV SHEET R DRAWN BY	- 1 AJS	- 2 P	- 3 AF			0. syste	MS I		7200)736	<u>67</u>	- <u>1(</u>)1
REV STATUS DF SHEETS CONTRACT NUMBER COMPUTER GENERATED SYSTEM	REV SHEET R DRAWN BY	- 1	- 2 P	- 3 AF	RT ANT 104	N TECHS Rock	O. SYSTE Road,	MS II Hors	NC., F	720(POWER S Pennsy)736 SOURCE Ivania 19	67 5 C1	2-1(ENTER)1
COMPUTER GENERATED SYSTEM PT WINDOWS	REV SHEET R DRAWN BY DATE 95	- 1 AJS -09-22	- 2 P	- 3 AF	RT ANT 104	N TECHS Rock	O. SYSTE Road,	MS II Hors	NC., F	720(POWER S Pennsy)736	67 5 C1	2-1(ENTER)1
COMPUTER GENERATED SYSTEM SOFTWARE REVISION	REV SHEET R DRAWN BY DATE 95 CHECKER	- 1 AJS	- 2 P	- 3 AF	RT 104	NI Rock	O. SYSTE Road, NG,	MS II Hors	NC., F	720(POWER S Pennsy)736 SOURCE Ivania 19	67 5 C1	2-1(ENTER)1
COMPUTER GENERATED SYSTEM PT WINDOWS SOFTWARE REVISION 4.0	REV SHEET R DRAWN BY DATE 95 CHECKER ENGINEER	- 1 AJS -09-22	- 2 P	- 3 ALLI	ANT 104	NO TECH Rock	O. SYSTE Road, NG,		NC., F	720(POWER & Pennsy)736 SOURCE Ivania 19	67 5 C1	2-1(ENTER)1
REV STATUS DF SHEETS ONTRACT NUMBER COMPUTER GENERATED SYSTEM PT WINDOWS SOFTWARE REVISION 4.0	REV SHEET SHEET DRAWN BY DRAWN BY DATE 95 CHECKER ENGINEER MATL ENGR	- 1 AJS -09-22 AJS	- 2 P		ANT 104	NO TECH Rock	O. SYSTE Road, NG,			720(POWER S Pennsy /IPRI	0736 SOURCE Ivania 19 ESS	37 55 CF 9044	2-1(ENTER N)1
REV STATUS DF SHEETS COMPUTER GENERATED SYSTEM PT WINDOWS SOFTWARE REVISION 4.0 DISK NO. - -	REV SHEET SHEET DRAWN BY DATE 95 CHECKER ENGINEER MATL ENGR SLIAL ENGR	- 1 1 AJS -09-22 AJS	- 2 P		RT 104 SF	NO TECHI Rock PRI BE CO	O. SYSTE Road, NG,			720(POWER S Pennsy /IPRI)736 source lvania 19 ESS	67 57 10 67	2-1(ENTER N)1

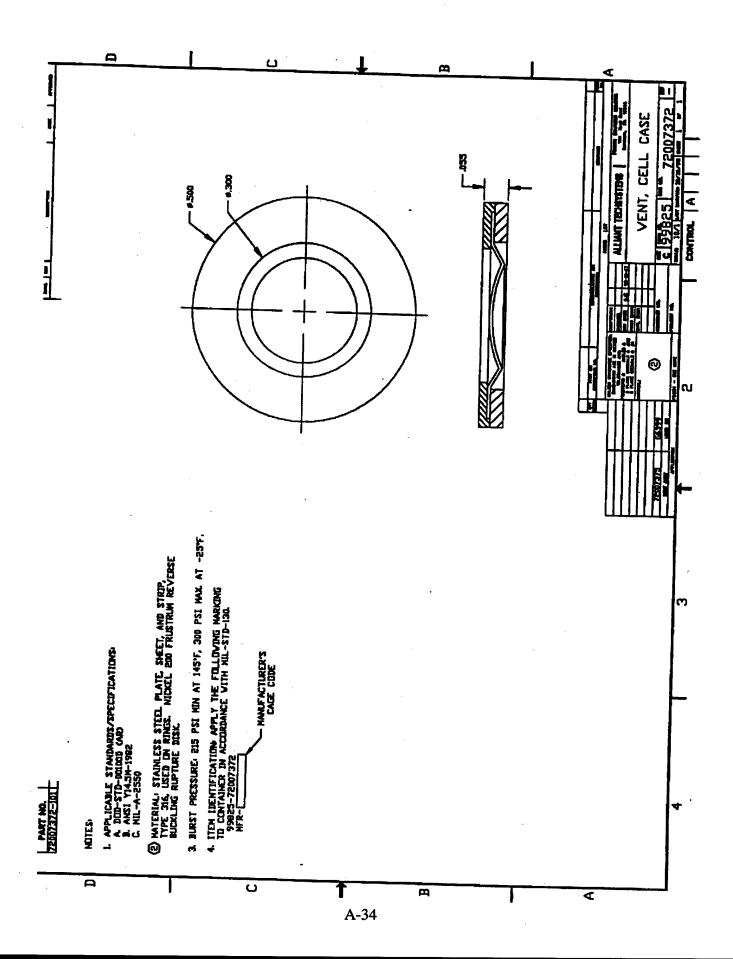
٦			¥			
-	1.0 REQUIREMENTS:					
	1.1 MATERIAL: STEEL V					
	1.2 SPECIFICATIONS:	4 17 X, 141	USIC SPRING QUAL	.ITY, ASTM A22	8.	
					To	
	1.2.1 MUSIC WIRE DI	AMETE	R	.021 +/001	15	
	1.2.2 OUTSIDE DIAME			.148 +/003		
	1.2.3 APPROX. LOAD		LID HEIGHT	4.0 LBS		
4	1.2.4 FREE LENGTH			.374 NOM,		
	1.2.5 SPRING RATE L	.B/IN		20.0 +/2		
	1.2.6 SOLID HEIGHT			.185 NOM		
I	1.2.7 ZINC PLATE, AS	TM B63	3	.0002 THK.		
I	1.2.8 TYPE OF ENDS		so	UARE NOT GR		
ļ	1.2.9 DIRECTION OF	WIND		OPTIONAL		
I						
	2.0 QUALITY ASSURANCE F					
	2.1 RESPONSIBILITY FO	R INSP	ECTION: UNLESS O	THERWISE SP	ECIFIED IN THE	
		CHASE	ORDER, THE CONT	RACTOR IS RE	SPONSIBLE FOR THE	
ł			SPECTION REQUIRE	EMENTS. THE	CONTRACTOR MAY USE	
ĺ	PERFORMANCE OF I		ACILITIES APPROVI	ED BY THE GO	VERNMENT FOR THE	
I	PERFORMANCE OF I	NSPEC	TION REQUIREMEN	ITS SPECIFIED	HEREIN. THE	
ł	FORTH IN THE DRAW		HE RIGHT TO PER	FORM ANY OF	THE INSPECTIONS SET	
	ASSURE THAT SUPPL			CTIONS ARE D	EEMED NECESSARY TO	
Į	2.2 INSPECTION CONDIT	IONS.	UNI ESS OTHEDIAN	RIBED REQUIR	EMENTS.	
	SHALL BE CONDUCTE	ED AT F		SE SPEGIFIED,	THE INSPECTION	
	2.3 QUALITY CONFORMA	NCE:	UNITESS OTHERM			
	APPLICABLE, THE QU		CONFORMANCE TE	ST LISED IN DE		
	ACCEPTABILITY OF P	RODUC	TS SHALL BE IN AC			
	CONTRACTOR'S INSP	ECTIO	NPLAN, INSPECTIC			
	SUBMITTED FOR ACC	EPTAN	CE SHALL BE PERF	ORMED BY TH		
	CERTIFIED TEST DATA	A WITH	ACCOMPANYING T	EST RESULTS		
		SIZE	CAGE CODE	DWG. NO.		٦
		Α	99825		72007367	
-		SCALE	NONE UNITWT		SHEET 2 OF 3	1

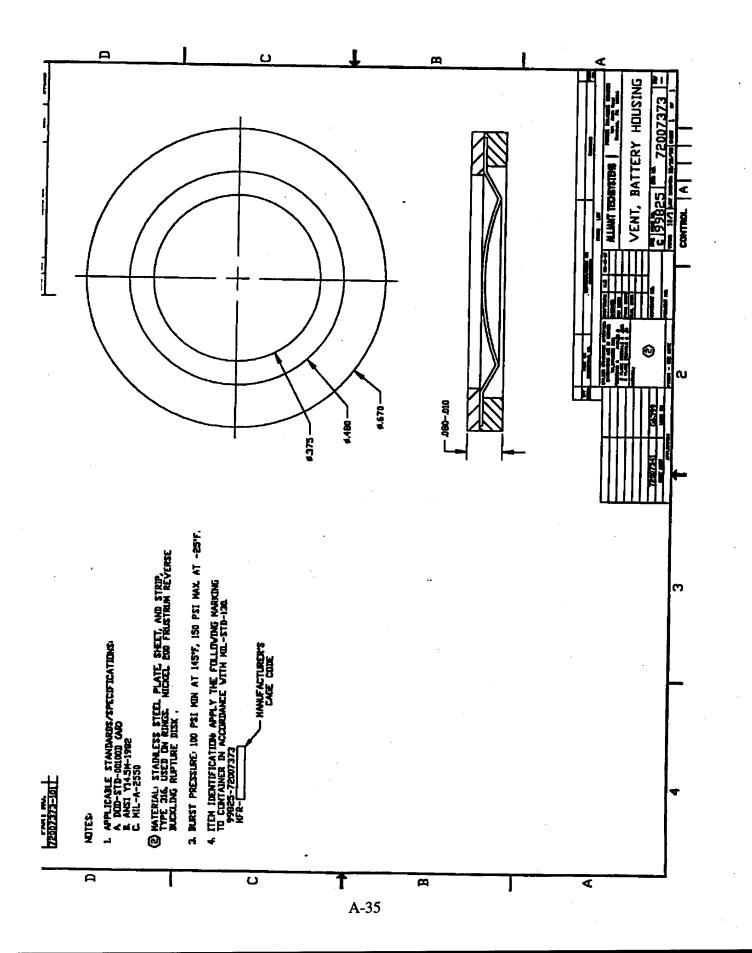

SHEET 2 OF

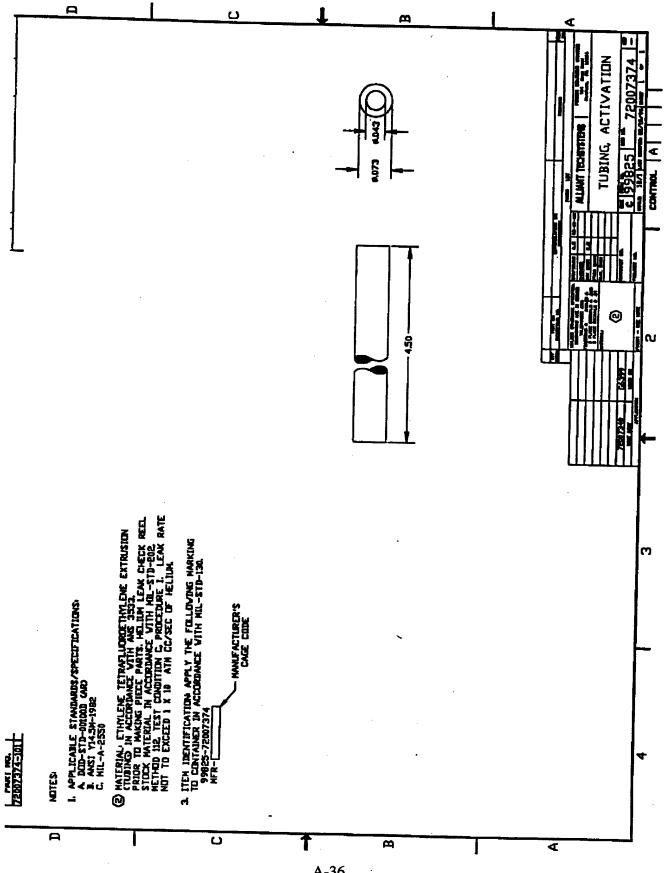

CONTROL -A-28

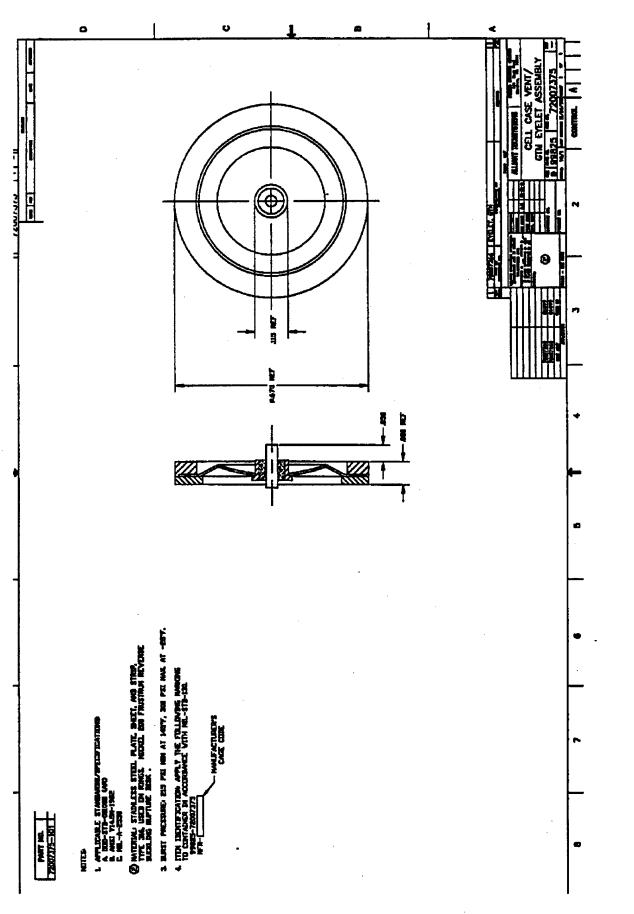

3

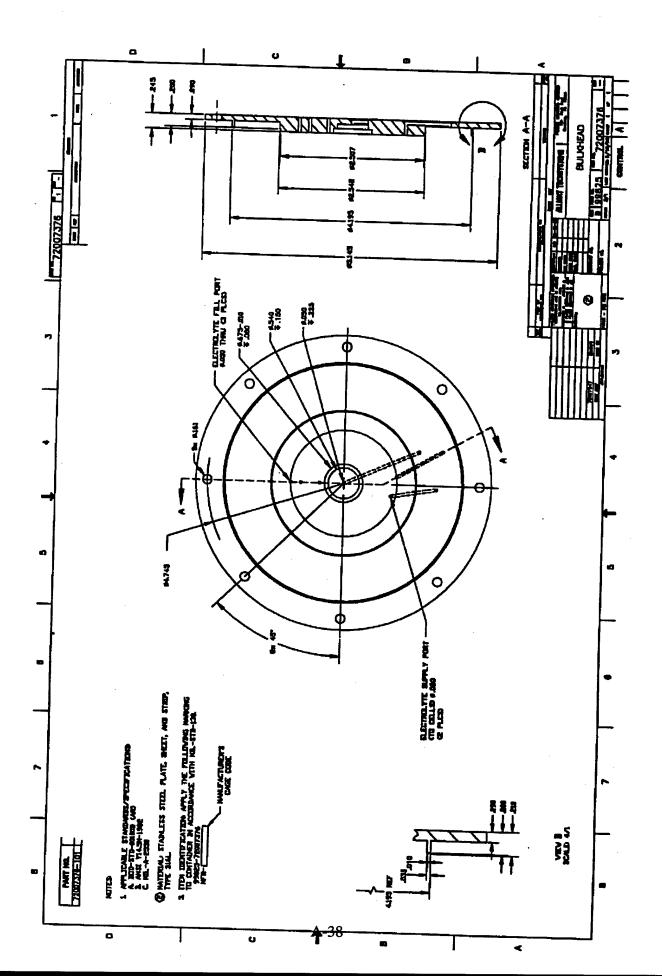

END ITEM


 3.0 MARKING: 3.1 RUBBER STAMP OF STENCIL "99825-72007373" IN ACCORDANCE WITH MIL-STD-130, IN .125" HIGH CHARACTERS ON ITEM CONTAINER, USING BLACK STENCIL INK, TT-I-1795, TYPE II.
4.0 IDENTIFICATION OF THE SUGGESTED SOURCE(S) OF SUPPLY HEREON IS NOT TO BE CONSTRUED AS A GUARANTEE OF PRESENT OR CONTINUED AVAILABILITY AS A SOURCE OF SUPPLY FOR THE ITEM(S).
8175 L 0405 0057 L 5145 4
SIZE CAGE CODE DWG. NO. A 99825 72007367
SCALE: NONE UNITWT SHEET 3 OF 3
PROJ ENDITEM CONTROL - A-29









A-36

ρ C æ ∢ F 99825-72007975 NFR-DENTIFICATION SPECIFICATION CONTROL DRAVING BALL SIELENBICEL LIMITAN VENDOR PART NE VENERS SUBCECED IF SUPPLY CAGE CODE 27872 VINSTED PRECISION BALL CORP. PO BOX 679 VINSTED, CT 06098-0679 0 1 ADDRESS Identification of the "succested source(s) of supply herein is not to de constried as a garantee of present or continued avallability as a source of supply for the items). A MATERIALI STAINLESS AND HEAT-RESISTING STEEL DARS AND SHAPES, ASTH A276, CONCIRMING TO THE CHEMICAL COMPOSITION OF UNS \$44004, B. HARDESSI 59-65 MRC OR EQUIVALENT. C. TOLERANCE FTB Interview. C TOLERANCE FOR INDIVIDIAL BALLS I. ALLOVABLE DALL DIMETER VARIATION IDXID⁴. R. ALLOVABLE DALL DIMETER VARIATION IDXID⁴. 3. ALLOVABLE SUFFACE ROLGHESS (ANTIMETICAL AVCRAGEN LOXID⁴. D. TOLERANCE FOR LOTS OF BALLS. C. ALLOVABLE LOT DIMETER VARIATION 20X10⁴. 2. ALLOVABLE LOT DIMETER VARIATION 20X10⁴. 3. ALLOVABLE DALL GAGE DEVIATION. 3. ALLOVABLE DALL GAGE DEVIATION. 4. LOVA - 40X10⁴. 4. LOVA - 40X10⁴. PART ND. 72007975

NSWCCD-TR-98/005

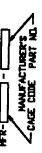
100547270057

A

1. APPLICABLE STANDARDS/SPECIFICATIONS

A DUD-STD-001001 CAD R. ANSI Y14.5H-1982 C. MIL-A-2550

A HATERIALI


ບ

4. CONTAINER MARKONG INCREMENTI JOXUD⁻⁴. E. MATERIAL, DENSITY, 277 LBS/CUBIC, INCH.

പ്

ITEN IDENTFICATION APPLY THE FOLLOVING MARCING TO CONTAINER IN ACCORDANCE VITH NOL-STD-130, 99825-72007975 HFR-______-

A-39

B

٩

220022

រោ

∢

2 **- 1**591

N

ო

Appendix B

U.S. Patent NO.: 5,667,660 Synthesis of Charged Li_xCoO₂ (0<x<1) for Primary and Secondary Batteries

United States Patent [19]

Lin et al.

[54] SYNTHESIS OF CHARGED LI_xCOO₂ (0<×<1) FOR PRIMARY AND SECONDARY BATTERIES

- [75] Inventors: Hsiu-Ping W. Lin. Princeton, N.J.: Kevin Burgess. Horsham, Pa.
- [73] Assignce: Alliant Techsystems Inc., Hopkins, Minn.
- [21] Appl. No.: 527.208
- [22] Filed: Sep. 12, 1995

- - 427/201. 126.6

[56] References Cited

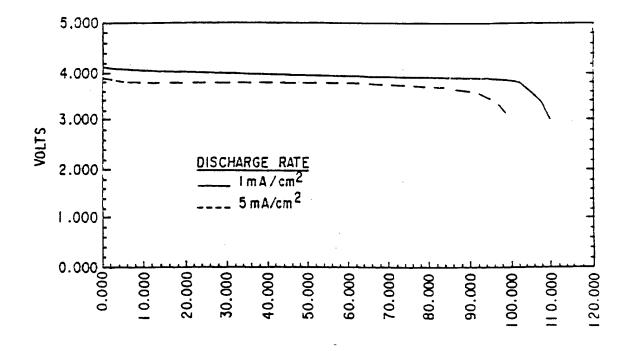
U.S. PATENT DOCUMENTS

[11] Patent Number: 5,667,660

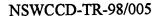
[45] Date of Patent: Sep. 16. 1997

4.804.596	2/1989	Ebner et al 429/194
4.818.647	#1989	Plichta et al
5.110.696	5/1992	Shokoohi et al
5.296.319	3/1994	Bito et al 429/218 X
5.427.875	6/1995	Yamamoto et al 429/218 X

OTHER PUBLICATIONS

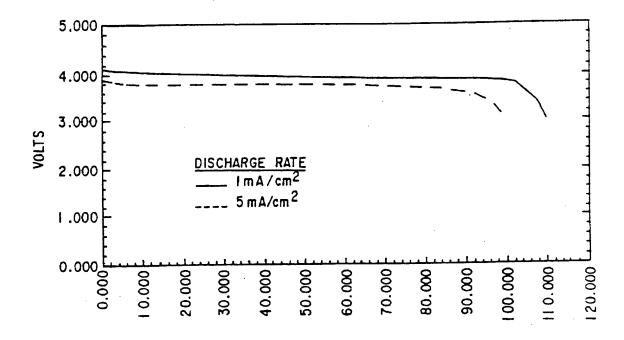

Gummow et al., "Characterization of $LT-Li_xCo_{1-x}Ni_yO_2$ Electrodes for Rechargeable Lithium Cells". J. Electrochem. Soc., vol. 140, No. 12, Dec. 1993, pp. 3365–3368.

Primary Examiner-Stephen Kalafut Astorney, Agent, or Firm-Haugen and Nikolai, P.A.


[57] ABSTRACT

A method for producing stable pre-charged Li_xCoO_2 as the cathode active metal in primary or secondary active metal non-aqueous cells and cells using such material are disclosed.

13 Claims, 5 Drawing Sheets

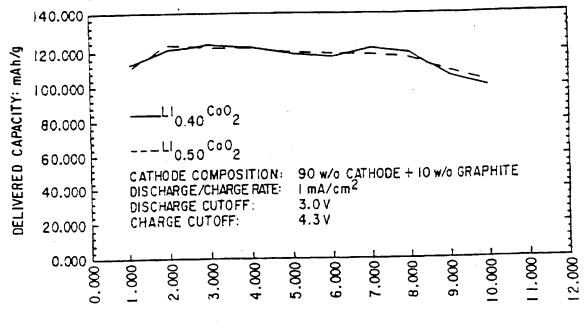

DELIEVERED CAPACITY: mAh/g

U.S. Patent

Sheet 1 of 5

5,667,660

DELIEVERED CAPACITY: mAh/g


FIG. 1

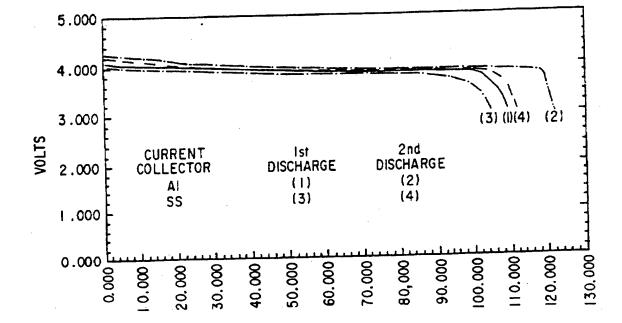
B-3

U.S. Patent

Sep. 16, 1997

5,667,660

CYCLE NUMBER


FIG. 2

U.S. Patent

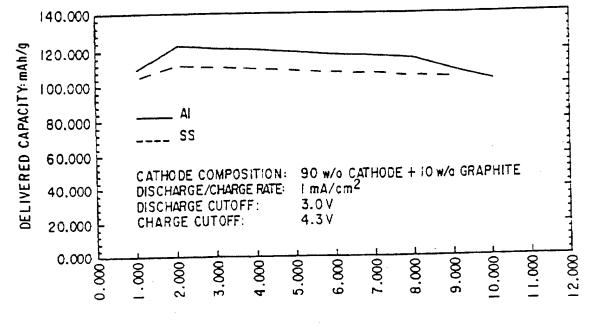
Sep. 16, 1997

Sheet 3 of 5

5,667,660

DELIVERED CAPACITY: mAh/g

FIG. 3

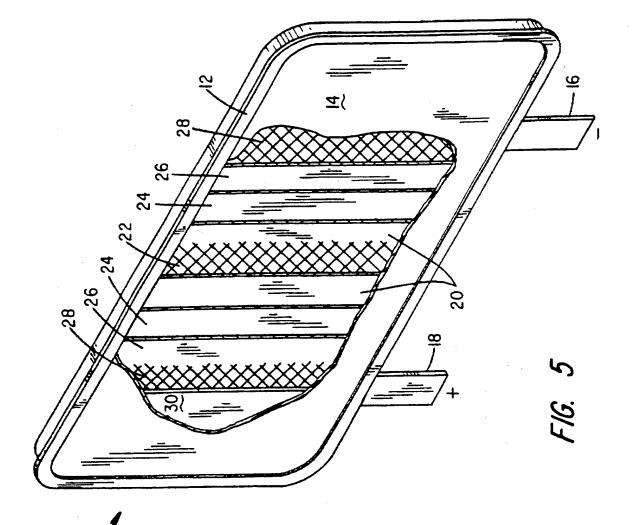


U.S. Patent

Sep. 16, 1997

Sheet 4 of 5

5,667,660



CYCLE NUMBER

FIG. 4

U.S. Patent Sep. 16, 1997 Sheet 5 of 5

5,667,660

20

SYNTHESIS OF CHARGED LI_xCOO₂ (0<×<1) FOR PRIMARY AND SECONDARY BATTERIES

BACKGROUND OF THE INVENTION

The Government has certain rights in this application pursuant to Contract N60921-93-C-0060 with the Department of the Navy.

1. Field of the Invention

The present invention is directed generally to the field of high energy, non-aqueous electrochemical cells and, more particularly, to improvements in such cells employing Lix-CoO₂ cathode material which enable the cathode material to be synthesized in a pre-charged state prior to incorporation 15 Electrochemical titration has been used on pre-fabricated in the cell.

2. Related Art

Non-aqueous, active metal cells have become well known for achieving very high energy densities or energy to weight ratios. i.e., higher than was previously known with other types of electrochemical cells. Active metal cells typically consist of a light, strongly reducing anode, normally of an alkali metal such as lithium (an aprotic, non-aqueous solvent into which an appropriate quantity of the salt of the anode 25 metal has been dissolved to form a conductive solution, and an oxidizing agent as the cathode material. Such cells can be in the form of primary or secondary (rechargeable) cells.

It is further known to employ the material Li_cCoO₂ (0 < x < 1) as the active cathode material of such cells. For 30 example, its use is disclosed in U.S. Pat. No. 4,497,726 and further discussed in Mizushima. K. et al. "Li,CoO₂ (0<x<1): A New Cathode Material for Batteries of High Energy Density." Mat. Res. Bull., Vol. 15, 783 (1980). A lithium non-aqueous secondary electrochemical cell having an esterbased organic electrolyte solution and a cathode active material comprising Li CoO, (0<X<1) is illustrated and described in U.S. Pat. No. 4,804,596 to Walter B. Ebner and Hsiu-Ping W. Lin (an inventor in the present application) which is also assigned to the same assignee as the present 40 application. That reference describes the use of Li_xCoO₂ as the active cathode material in a cell in combination with an ester-based electrolyte solution that can withstand the high operating and charging potentials characteristic of that system. The Li₂CoO₂ cathode material in that system, however, must be incorporated in the discharged state and thereafter charged. Furthermore, because of corrosion problems in stainless steel, an aluminum grid is required to withstand the initial charging voltage.

Lithium-cobalt oxide (LiCoO2) and lithium-cobalt-nickel 50 oxides (LiCo_{1-x}Ni_yO₂) ($0 \le y \le 1$) are described for use as electrodes for rechargeable lithium cells by R. J. Gummow and M. M. Thackeray in "Characterization of LT-Li₂Co₁₋ Ni, O. Electrodes for Rechargeable Lithium Cells", J. Electrochem. Soc., Vol. 140, No. 12, December (1993). They 55 electrical lead, and the surface thereafter smoothed. The describe the use of acid leaching to improve the recycling properties of certain materials. Data supplied in the reference for the charge/discharge profiles of acid leached LT (Low Temperature) LiCoO₂, however, shows achievement of only about 63 mAh/g for the first discharge and this 60 degrades quickly to <20 mAh/g in only four cycles. Certain Ni doped Li/LT-LiCoNiO2 cells assembled in a charged state were found to be significantly more cycle tolerant. However, success was limited to Ni'doped materials.

Thus. Li,CoO- heretofore has been available for incor- 65 poration as a successful cathode material only in a fully discharged state because Li_xCoO₂ as it is known to exist in

,

the charged state is not stable with respect to elevated temperatures normally required in the manufacturing environment. The batteries have, therefore, been assembled in the discharged state and charged prior to first use. The 5 charging process has certain drawbacks. It results in the plating of an amount of lithium from the cathode onto the anode, and batteries have had to be designed to accommodate the extra lithium plated out of the cathodes during the initial charging after assembly: otherwise, internal shorting 10 of the battery could be a problem. Also, the high voltage required to the initial charging of the battery has required the cathode collector to be made from aluminum rather than the preferred material, stainless steel. Other approaches have been tried to improve the cycle efficiency of Li_xCoO₂. cathodes to obtain charged Li_xCoO₂ material. However, this process has been used with limited success as it produces only limited quantities of charged material and the final products have to be determined by the pre-fabricated shapes and compositions.

Accordingly, it is a primary object of the present invention to provide a synthesis for charged Li_xCoO_x (0<X<1) suitable for use as the cathode active material in primary and secondary battery applications.

It is a further object of the present invention to provide a synthesis for charged Li_xCoO₂ (0<X<1) for primary and secondary cell applications in which the charged material is in a stable powdered form which can than be shaped and incorporated in any composition of cathode desired.

Other objects and advantages with respect to the present invention will occur to those skilled in the art through familiarity with the specification and claims herein.

SUMMARY OF THE INVENTION

The present invention provides a new cathode process in which charged Li, CoO, cathodes can be manufactured in an efficient and cost-effective manner. The product is superior to acid-treated embodiments, delivering twice the capacity of those materials with improved cycling efficiency. The positive current collector for the cathode is not limited to aluminum. It may be stainless steel. The present invention provides a process to manufacture charged Li_xCoO₂, preferably where $0 \le x \le 0.5$, in a powdered form for use as a raw 45 material in the subsequent manufacture of cathodes. The powdered form can be combined in any desired cathode composition and worked into any configuration or shape.

In the preferred process, pure LiCoO₂ commercially obtainable from FMC Corporation, for example, is used as the starting material. A small amount of solvent, for example, methyl formate (MF) is added to the LiCoO2 powder to wet the powder and to form a wet slurry or paste. The material is then formed as a layer on a pre-cut metal grid, preferably of aluminum, and suitably provided with an pasted material is then sealed inside microporous separators which may be a polyethylene envelope which is itself thereafter sandwiched between two sections of lithium anode of approximately the same dimensions also provided with electrical connections. The three-plate stack which itself forms a large lithium cell is then confined in an alluminated trilaminated envelope with anode and cathode leads protruding out from the envelope. Next, electrolyte is injected into the bag and the large cell charged. After charging the desired amount, the cell is opened in a dry room and the cathode envelope opened and the material rinsed with solvent and vacuum dried.

B-8

5

The charged Li, CoO2 powder is now ready to be removed from the original aluminum charging grid and utilized in a cathode mixture in any manner desired. The value of x can be controlled by the amount of coulombic titration, and is preferably less than about 0.5.

The charged material is still in powdered form and can be used as raw cathode material for any batteries. The material is normally mixed with a conductive diluent such as carbon or graphite in a binder such as polytetrafluoroethylene (PTFE) and the cells can be used for primary or secondary 10 applications without initial charging.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

15 FIG. 1 represents the discharge performance of cells using the pre-charged Li_{0.5}CoO₂ cathodes in accordance with the invention at two discharge rates. 1 and 5 mA/cm²:

FIG. 2 is a graphical representation of cycle performance of pre-charged Li_{0.5}CoO₂ cells over ten cycles; 20

FIG. 3 is a discharge plot of pre-charged Li_{0.5}CoO₂ cells at 1 mA/cm² rate comparing aluminum and stainless steel current collectors:

FIG. 4 shows cycle performance of pre-charged $Li_{0.5}CoO_2$ cathode cells over ten cycles comparing alumi-²⁵ num and stainless steel current collectors: and

FIG. 5 is a perspective schematic view with parts broken away of a charging system for producing pre-charged Liz-CoO₂ in accordance with the invention.

DETAILED DESCRIPTION

The present invention enables the advantages associated with the unusually high energy density of Li_CoO₂ cathode material to be incorporated in a pre-charged state by subjecting it to a pre-charging process prior to incorporation in the cathode mixture. The process makes use of Li_xCoO₂ in the uncharged state and transforms it into a pre-charged Li,CoO₂ (0<x<1) powdered raw cathode material for incorporation in a cathode mix suitable for any battery, primary. 40 secondary. etc. in which such cathode material is desired. As a powder, the material can be worked into any shape or mixture combination required.

A system for pre-charging the LiCoO₂ powder for use as the cathode active material according to the invention is 45 depicted in FIG. 5. The charging system generally takes the form of a rather large lithium cell shown generally at 10 and includes a metallic retaining shell having a retaining rim as shown at 12 which may be stainless steel and which further supports a metallized plastic bag 14. preferably a trilami- 50 nated envelope having an aluminized inner surface (not shown). Protruding anode and cathode leads shown respectively at 16 and 18 are designed for external connection to a source of charging voltage. The LiCoO₂ 20 is pressed onto both sides of the metallic grid. preferably aluminum. 22. 55 Grid 22 which with a pair of semipermeable microporous polymer separators 24 is sandwiched between a pair of lithium anodes 26 with metallic, preferably nickel, current collectors 28. This forms what is known as a three-plate stack cell with the cathode material sandwiched between a 60 pair of large area anodes. This may be covered by a layer of material such as Tefzel 30 within the trilaminated metallized envelope 14.

In the preferred embodiment of the process, finely divided LiCoO₂ powder, approximately -325 mesh, obtained in a 65 substantially pure form from FMC Corporation. is combined with a small amount of solvent, such as methyl formate

(MF), to form a heavy slurry or paste. The paste is then spread onto both sides of the pre-cut metallic grid 22 which is of a metal which can withstand the required charging voltage without corroding, such as aluminum. The thickness of the paste is typically 0.25" and that of the grid is 0.01". The surface of the paste may be made generally smooth using a stainless steel plate. or the like. The pasted material is then sealed inside separators 24 which may each be a layer of microporous polymer material, normally a polyethylene envelope, represented by separators which itself is thereafter sandwiched between the pair of lithium anodes 26 with nickel grids 28. This sandwich or three-plate stack is thereafter confined inside the metallized (aluminized) trilaminated envelope (which may be polyethylene terephthalate). An electrolyte material is then injected into the bag to activate the cell. The electrolyte is preferably a 2 molar double salt methyl formate (LiAsF₆+LiBF_y) system but any suitable material including methyl acetate may be employed. The cell is typically charged at a potential of 4.3 volts. After

charging, one trilaminated envelope was opened in a dry room and the internal cathode envelope cut open and the material rinsed with solvent and vacuum dried. The result was a charged Li₂CoO₂ powder in ready-to-use form in which the value of x can be controlled by the amount of coulombic titration and is preferably less than 0.5.

The typical grid size used experimentally has been about 9 cm by 19 cm which can process about 100 grams of LiCoO₂. This is enough material for about 25 size "AA" rechargeable Lio 5CoO2 cells. The system works well for 30 fairly high production rates. The normal charging voltage is about 4.3V and about 5 mA of current. The metallized trilaminate envelope may be any compatible gas-tight system which is easy to apply and remove in the process.

As can be seen from the above, the construction of the cell 35 charging system is simple and inexpensive and the charged material requires no special handling. Desired quantities of conductive diluent, such as carbon or graphite, and binder. such as polytetrafluoroethylene (PTFE), can be added and the material processed into the finished cathode. Such cathodes, of course, can be used for primary or secondary applications without the initial charging LiCoO₂ requires.

The discharge performance of pre-charged Li_{9.5}CoO₂ cathodes is depicted in FIG. 1 for the discharge rates of 1 and 5 mA/cm². In addition, the delivered capacity, which was 113 mAh/g based on total cathode weight, is quite comparable to the typical delivered capacity of approximately 120 mAh/g LiCoO₂ after charging a cell manufactured in the discharge state. FIG. 2 confirms that the material is cyclable and so suitable for use in secondary cells.

The materials as processed in accordance with the present invention represent a drastic improvement over the acid leached materials previously known and are comparable to materials utilized in the cells previously assembled in the uncharged state. In addition, the positive current collector material for the cathode need not be limited to aluminum in the case of the pre-charged material and can be made from stainless steel or other materials. It had previously been found that stainless steel corroded because of the high required charging voltages in cells built with the discharged LiCoO₂ cathodes. FIGS. 3 and 4 compare cells utilizing aluminum and stainless steel positive current collectors. FIG. 3 depicts discharge performance of pre-charged Lio CoO, at 1 mA/cm² during four discharge cycles. The Figure shows that results are comparable using either material as the positive current collector. FIG. 4 makes a similar comparison for secondary cell cycling and indicates that either material would also be satisfactory in this respect.

10

This invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principies and to construct and use embodiments of the example as required. However, it is to 5 be understood that the invention can be carried out by specifically different devices and that various modifications can be accomplished without departing from the scope of the invention itself.

We claim:

1. A method of preparing a cathode incorporating heat stabilized charged Li_xCoO_2 as the cathode active material comprising the steps of:

(a) preparing the cathode active material by:

- (1) providing a layer of particulate $Li_{z}CoO_{2}$ on a ¹⁵ metallic current collector.
- (2) subjecting the Li_xCoO_2 on said current collector to a charging current voltage to plate out Li and produce charged Li_xCoO_2 (0<x<1), and
- (3) separating the charged particulate material from ²⁰ said current collector; and
- (b) incorporating said particulate cathode active material in the cathode.

2. The method of claim 1 wherein $(0 \propto \le 0.5)$ after charging.

3. The method of claim 1 wherein the charging voltage is from about 4.2 to about 4.3 volts.

4. The method of claim 1 wherein said current collector is aluminum.

5. The method of claim 1 wherein said charged particulate ³⁰ material is combined with quantities of a conductive diluent material.

6. The method of claim 5 wherein said diluent material is a form of carbon.

7. The method of claim 5 further comprising the step of combining said charged particulate material with a binder.

8. The method of claim 6 wherein said charged particulate material is further applied to a stainless steel current collector material.

9. The method of claim 7 wherein said charged particulate material is further applied to a stainless steel current collector material.

10. A method of preparing a cathode containing heat stabilized, charged $Li_{x}CoO_{2}$ (0<x<1) as the active material comprising the steps of:

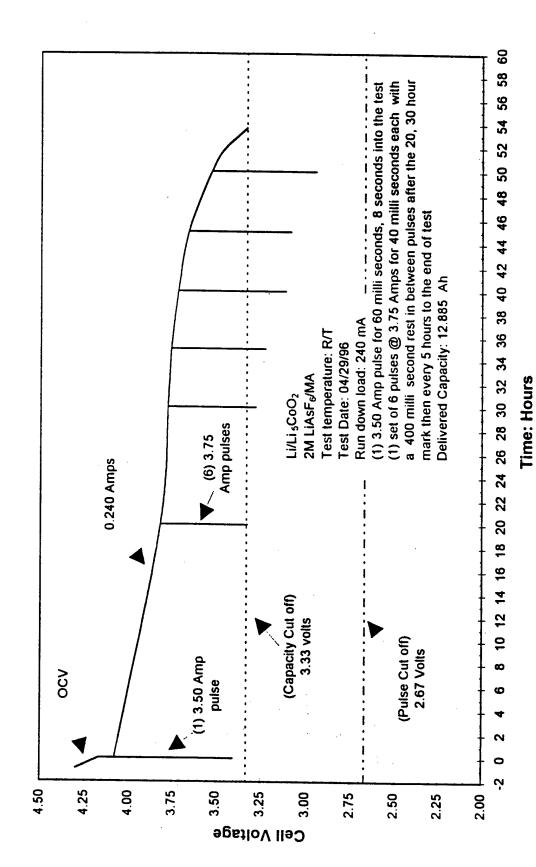
(a) preparing the active material by:

- (1) creating a layer of powdered Li₂CoO₂ from a solvent slurry thereof on a metallic collector grid.
- (2) sandwiching the collector grid between a pair of lithium members separated by semipermeable separator membranes to form a three-plate stack.
- (3) confining the three-plate stack cell in a gas-tight environment.
- (4) providing electrolyte to the three-plate stack:
- (5) charging the cell using externally supplied power until an amount of charge corresponding to a value of x, where 0<x<1 is achieved, and
- (6) separating the charged particulate material from said collector grid; and

(b) combining said separated charged particulate Li₁CoO₂ material into a cathode mix for application to a current collector for use in a non-aqueous electrochemical cell.

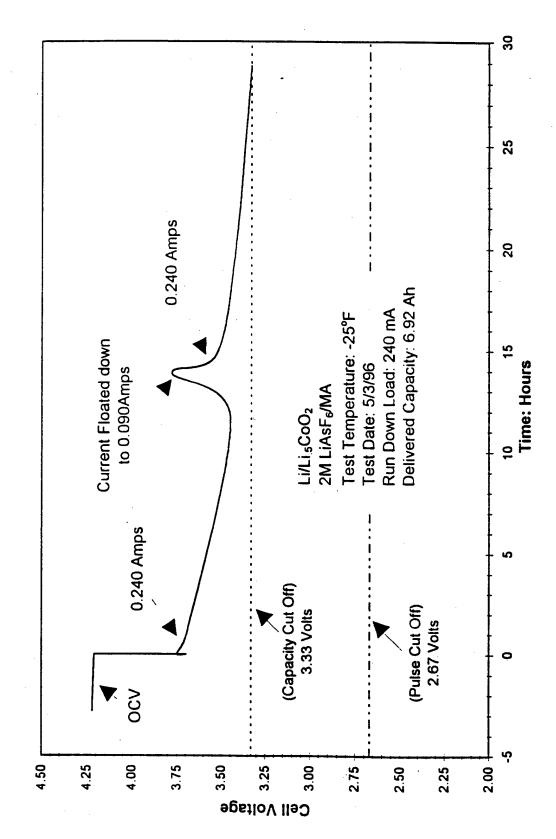
11. The method of claim 10 wherein the gas-tight environment is a metailized coated polymer envelope.

12. The method of claim 10 wherein the metallic collector grid is aluminum.

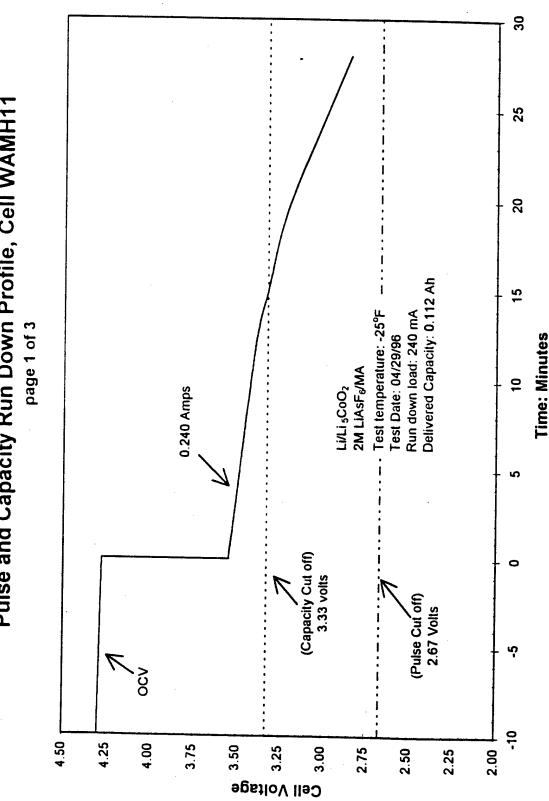

13. The method of claim 10 where $x \le 0.5$ after charging.

.

Appendix C

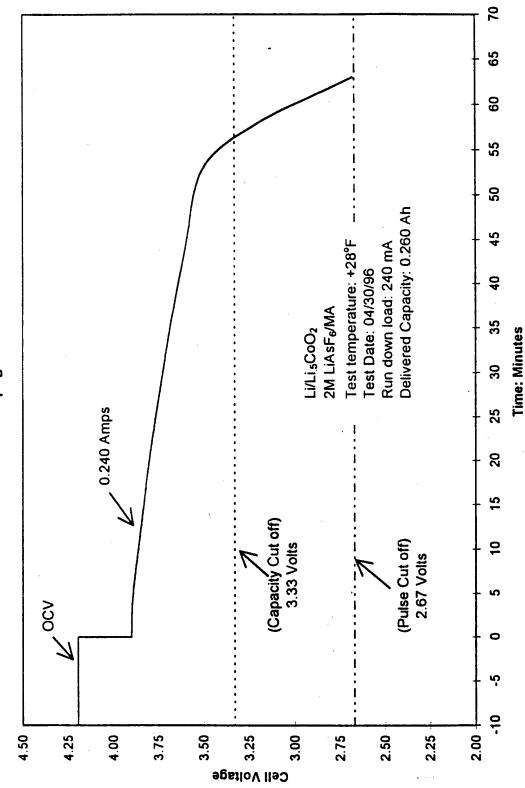

Compilation of Hermetic Cell Test Results

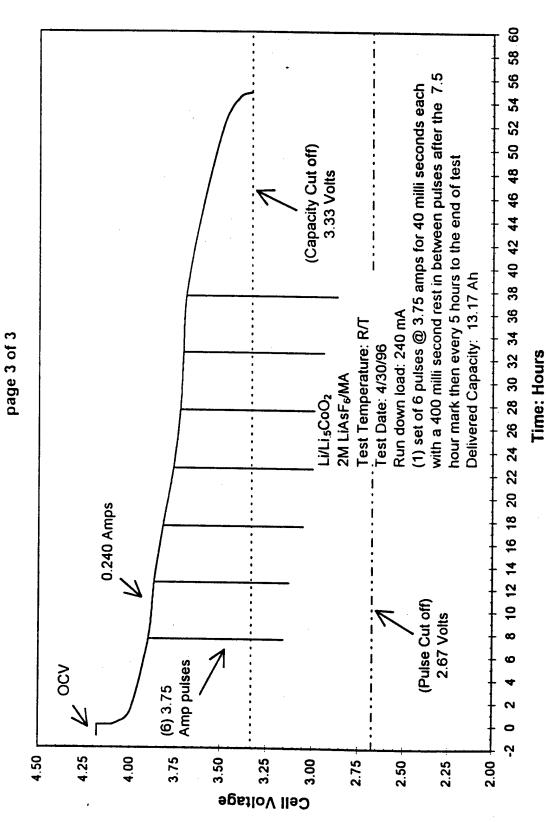
Pulse and Capacity Run Down Profile, Cell WAMH02



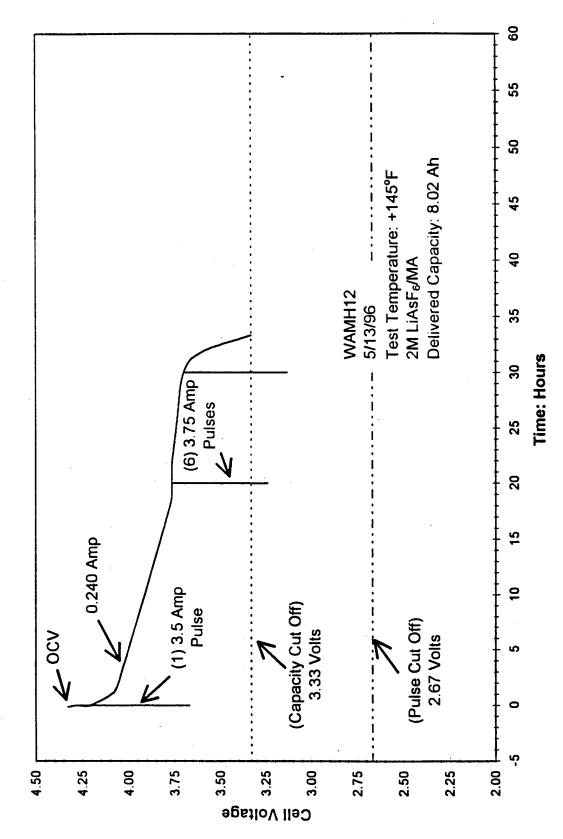
NSWCCD-TR-98/005

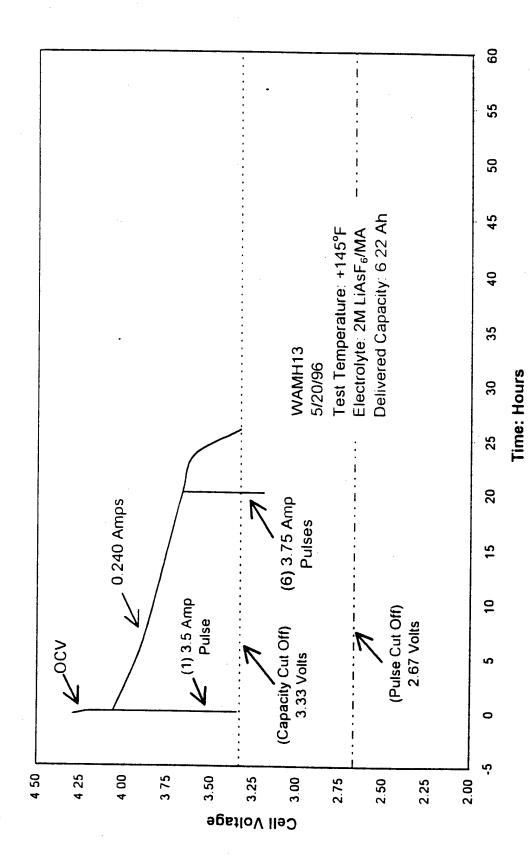
Pulse and Capacity Run Down Profile, Cell WAMH10


NSWCCD-TR-98/005

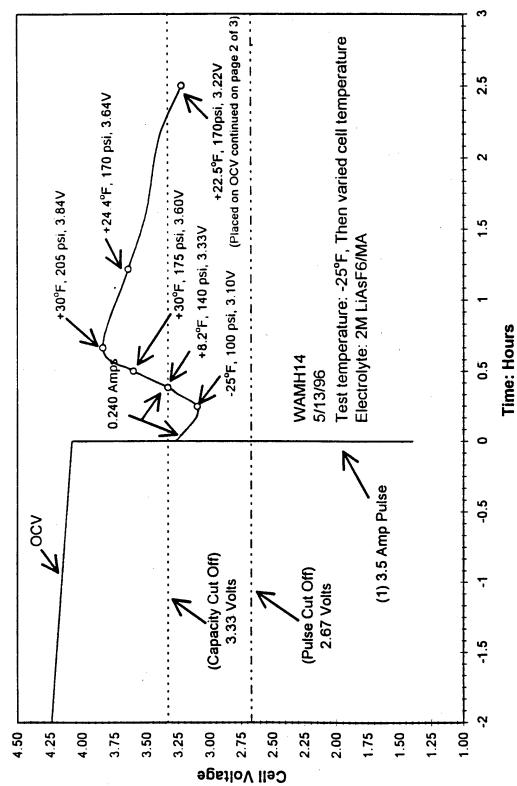

Pulse and Capacity Run Down Profile, Cell WAMH11

C-4

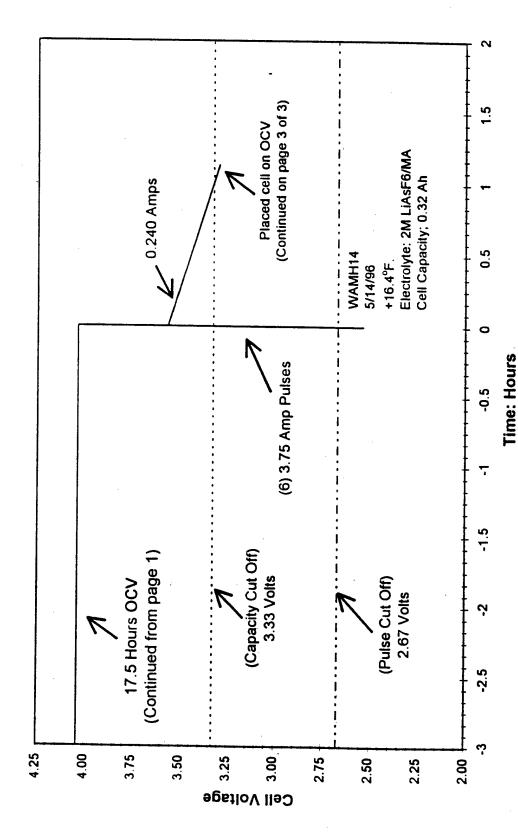




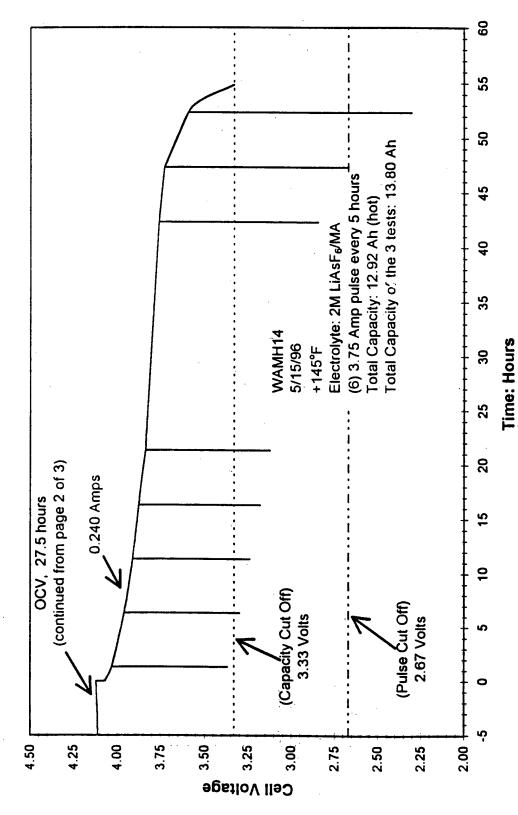
Pulse and Capacity Run Down Profile, WAMH12



Pulse and Capacity Run Down Profile, WAMH13

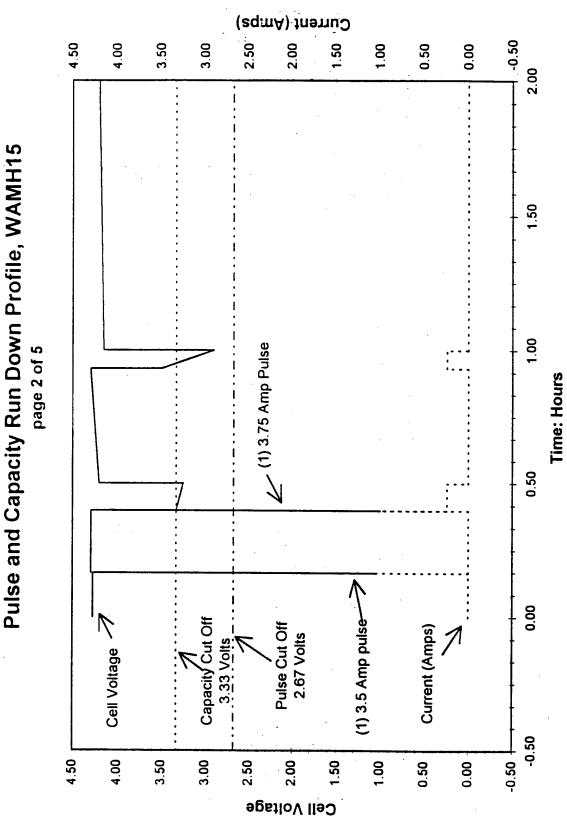

NSWCCD-TR-98/005

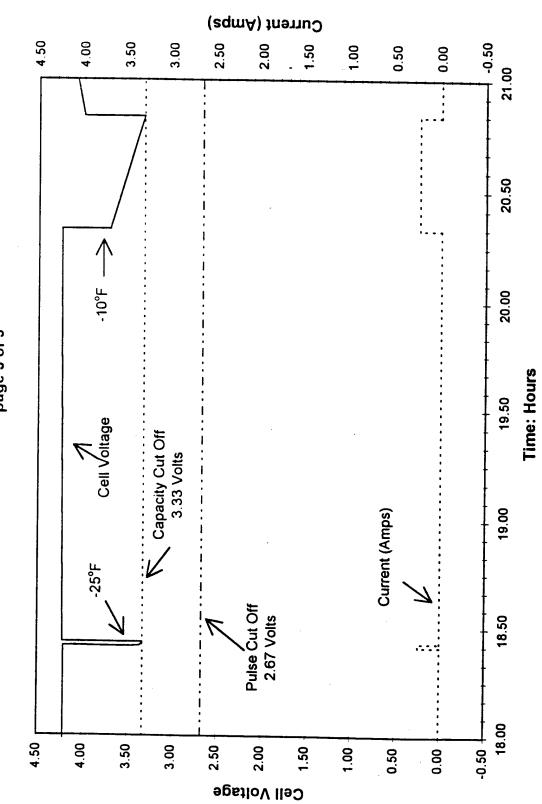
Pulse and Capacity Run Down, WAMH14 Page 1 of 3

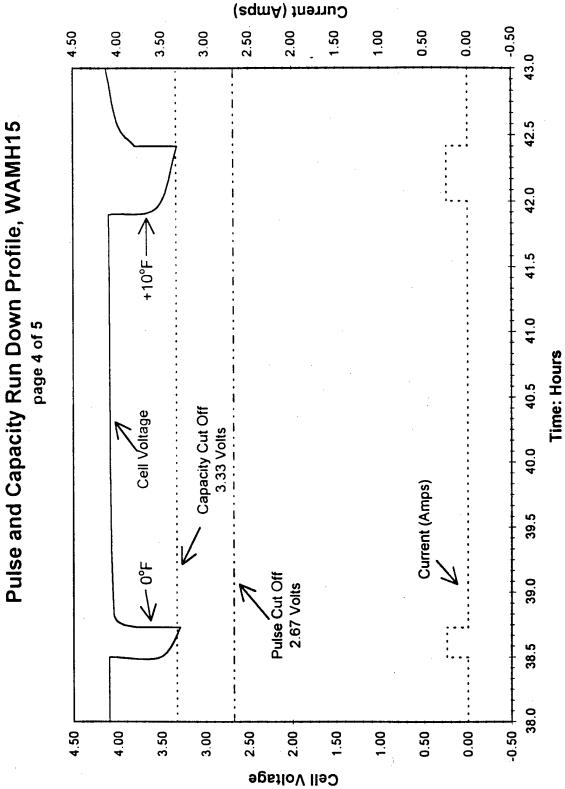


C-9

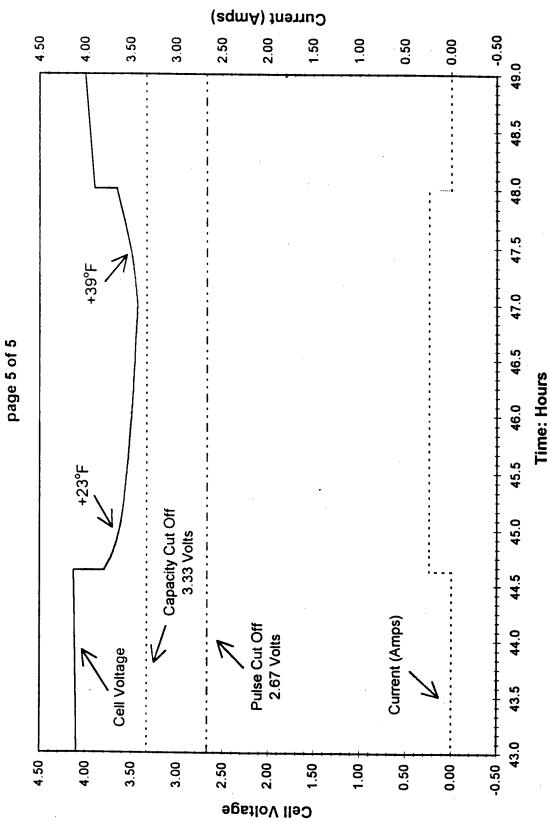


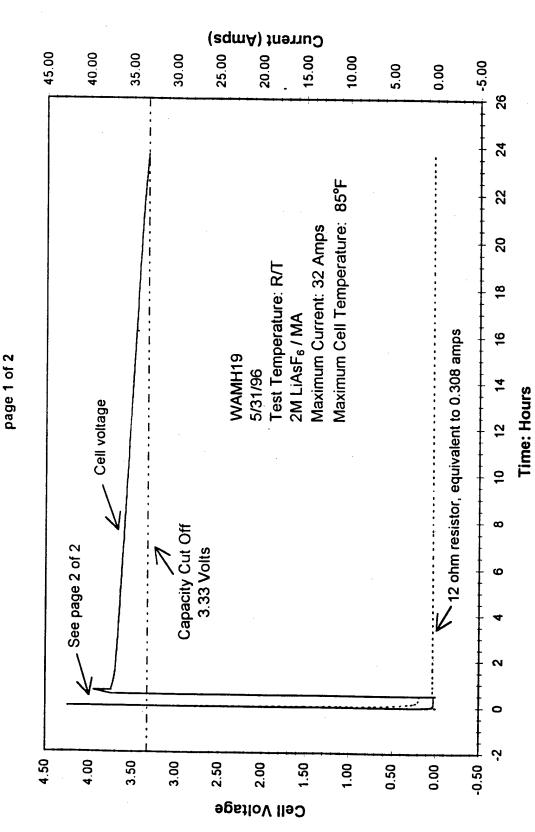



Pulse and Capacity Run Down Profile, WAMH15 Page 1 of 5



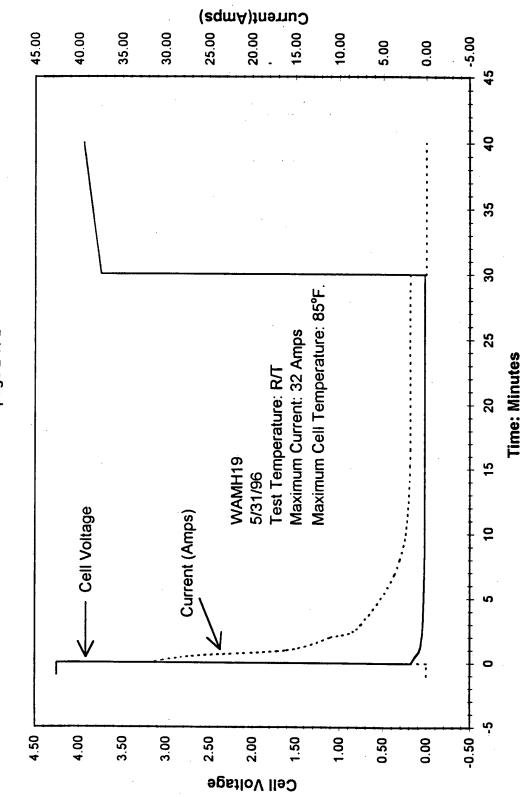
NSWCCD-TR-98/005

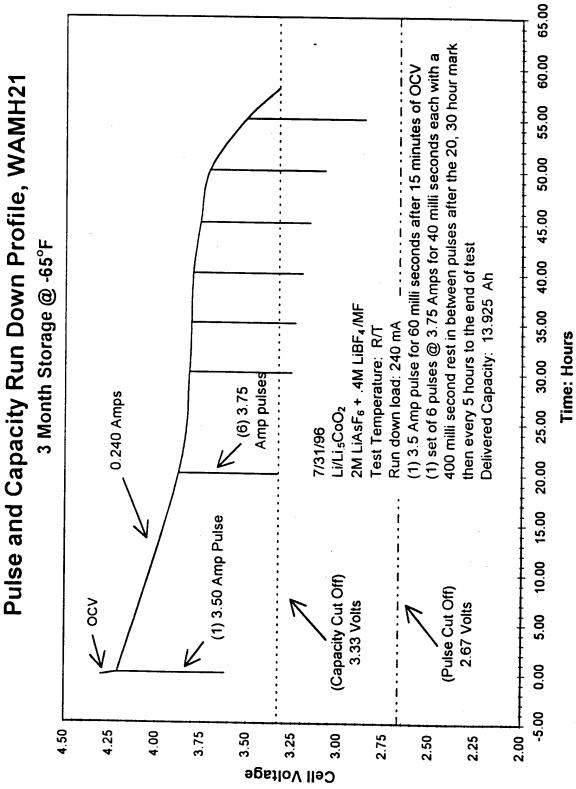

Pulse and Capacity Run Down Profile, WAMH15 page 3 of 5



46 44 (Capacity Cut Off) 4 400 milli second rest in between pulses after the 20, 30 hour mark (1) set of 6 pulses @ 3.75 Amps for 40 milli seconds each with a Pulse and Capacity Run Down Profile, WAMH16 3.33 Volts 1) 3.50 Amp pulse for 60 milli seconds, 1 hour after activation 6 38 30 34 32 80 3 Month Storage @ R/T then every 5 hours to the end of test 28 **Delivered Capacity: 9.528 Ah** 26 Run down load: 240 mA 2M LiAsF₆ + .4M LiBF₄ / MF Fest Temperature: -25° F. 24 22 Fest Date: 7/9/96 20 18 Li/Li₅CoO2 16 14 4 0.240 Amp Warming up to R/T OCV 9 RT ω (Pulse Cut Off) 2.67 Volts 0.240 Amp -25°F 2 200 F 0 Ņ 4.25 4.00 3.75 3.25 4.50 3.50 3.00 2.75 2.25 2.00 2.50 egetioV IIeO

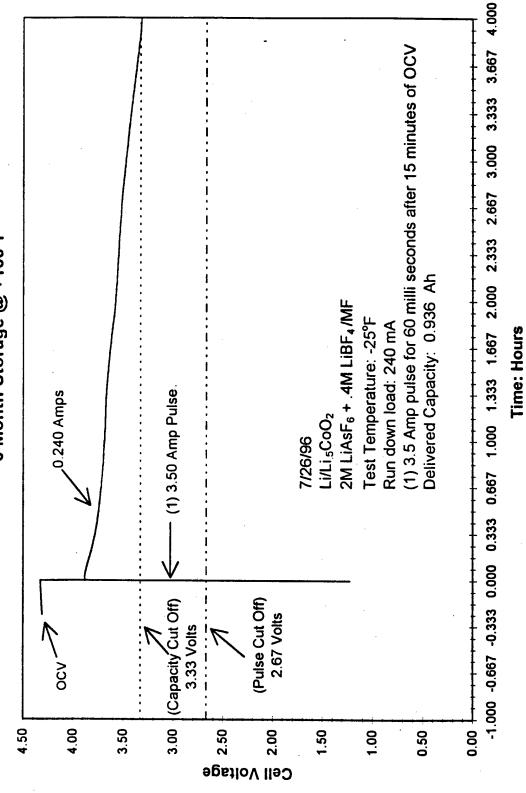
Time: Hours


NSWCCD-TR-98/005


External Short Circuit Test, WAMH19

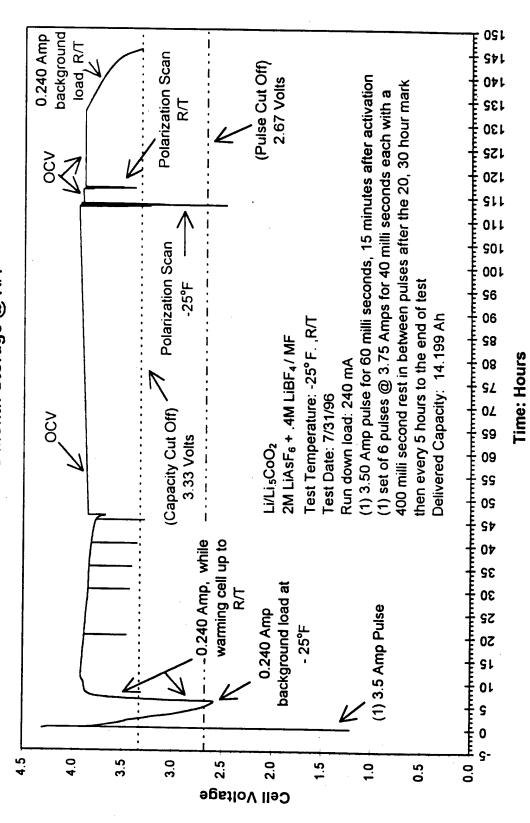
C-18

H-WAM External Short Circuit Test, WAMH19 page 2 of 2



NSWCCD-TR-98/005

C-20


Pulse and Capacity Run Down Profile, WAMH23 3 Month Storage @ +160°F

NSWCCD-TR-98/005

C-21

C-22

Appendix D

Safety Study Presentation of July 20, 1995

[M50720-1.wp]*paw

NSWC Option 7 LICoO₂ H-WAM Battery Safety Review 20 July 1995

ALHART LECHSYSIEBS

NSWC Option 7

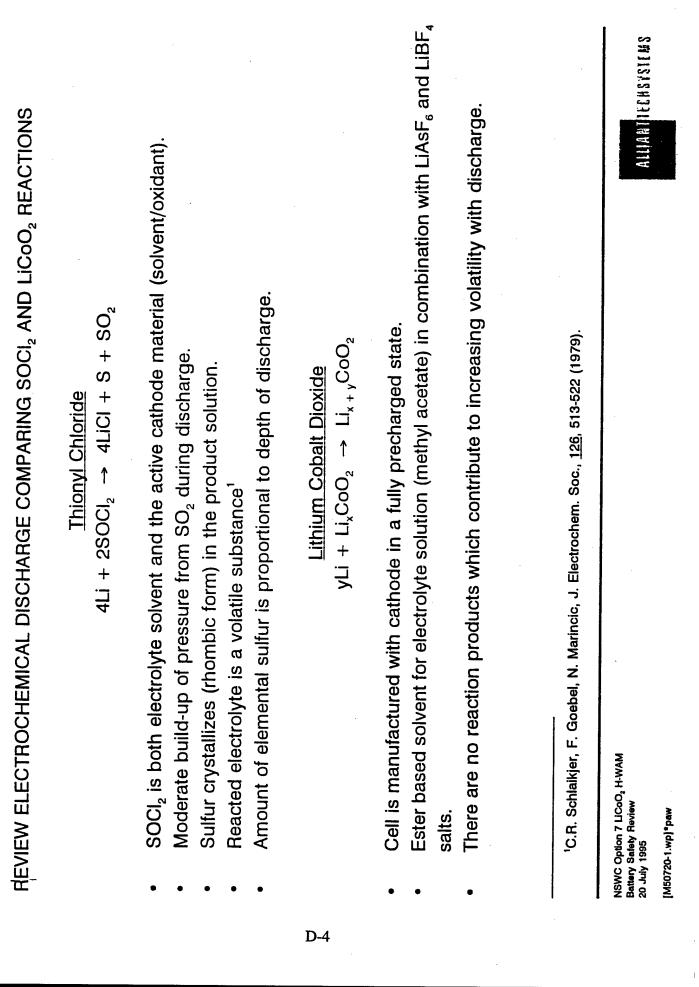
LiCoO₂ H-WAM Battery

Safety Review

20 July 1995

D-2

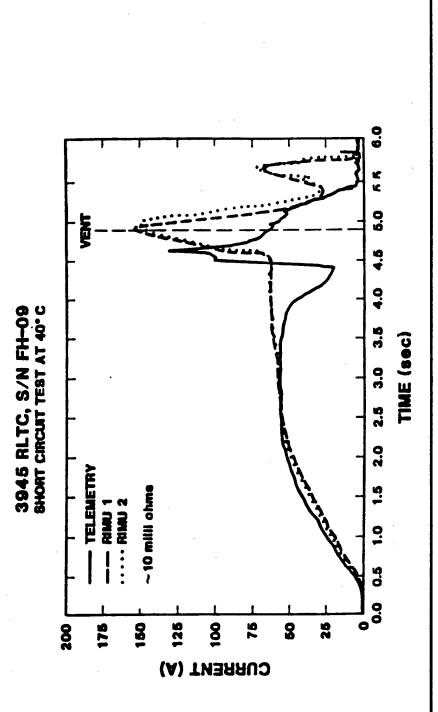
NSWCCD-TR-98/005



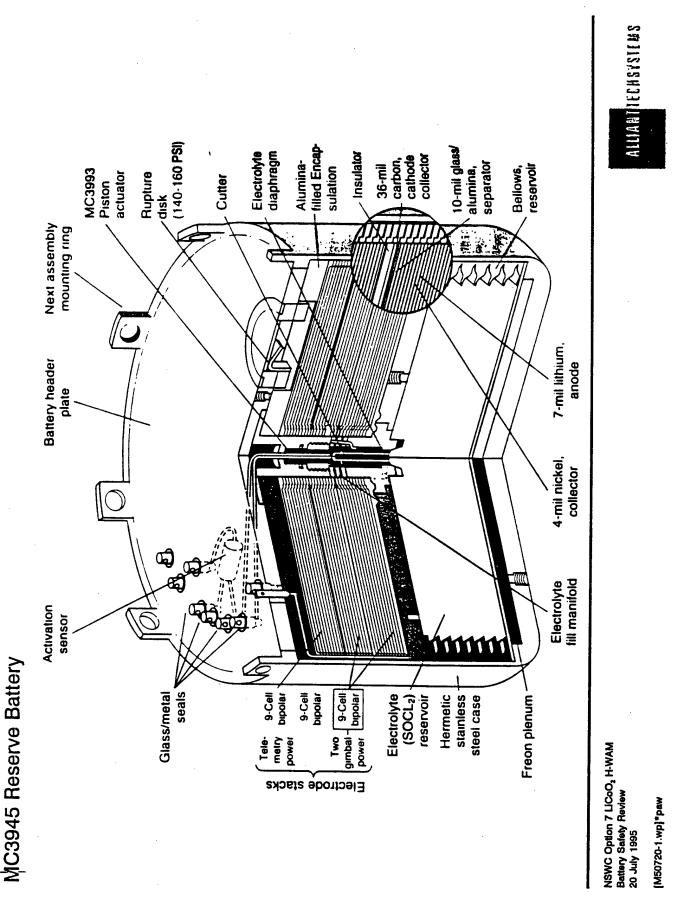
- Review electrochemical discharge comparing SOCI₂ and LiCoO₂ reactions
- Discuss hazard potential of the LiCoO₂ electrochemical system
- Compare the potential for energy release of LiCoO2 battery with a Li/SOCI2 battery
- Review of design and manufacturing characteristics relevant to safety
- Discuss a LiCoO₂ battery reaction to abusive external conditions
- Open Discussion

[M50720-1.wp]"paw

NSWC Option 7 LICoO₂ H-WAM Battery Safety Review 20 July 1995

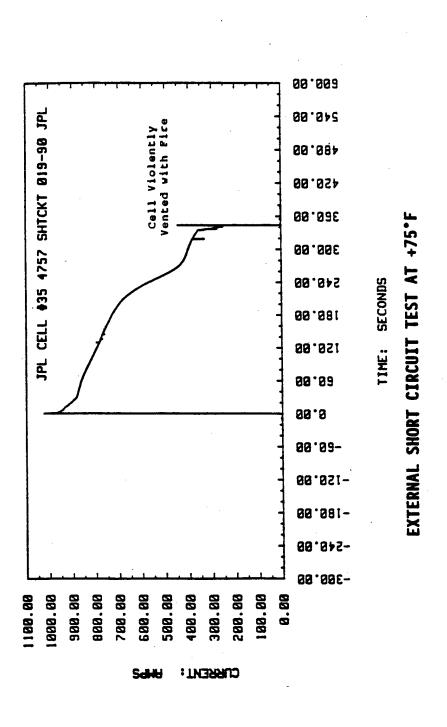

SMILLSASHJALI MENTAN

Violent case rupture \approx 4 seconds after activation. Total current exceeded External Short ($\approx 10 \text{ m}\Omega$) before activation MC3945 Reserve Li/SOCI, Battery 400 amps (≈1000 mA/cm²). Test Conditions: Test Item:

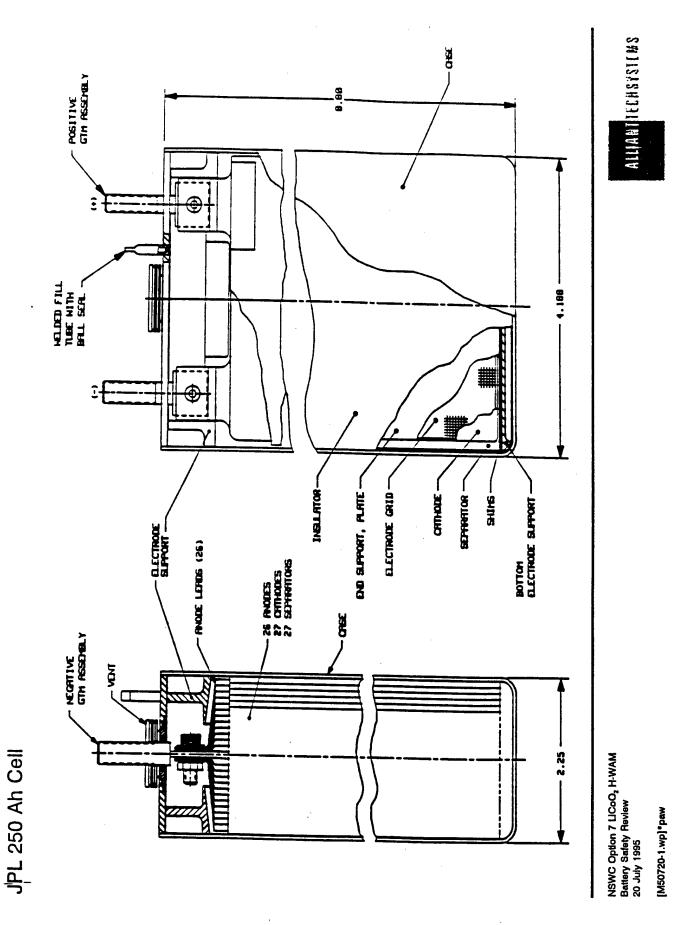

Results:

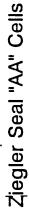
[M50720-1.wp]*paw

NSWC Option 7 LICoO₂ H-WAM Battery Safety Review 20 July 1995

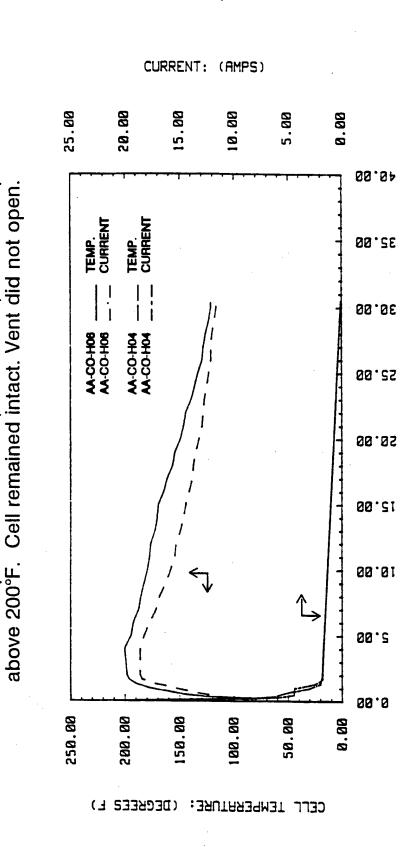

ALUARTIC HSYSTERS

Test Item: JPL 3 Test Conditions: Exter Results: Viole


JPL 250 Ah (320 Ah) SOCl₂ Active Cell Externally shorted fresh cell ($\approx 2 m\Omega$) Violent venting/case rupture ≈ 5 minutes after shorting



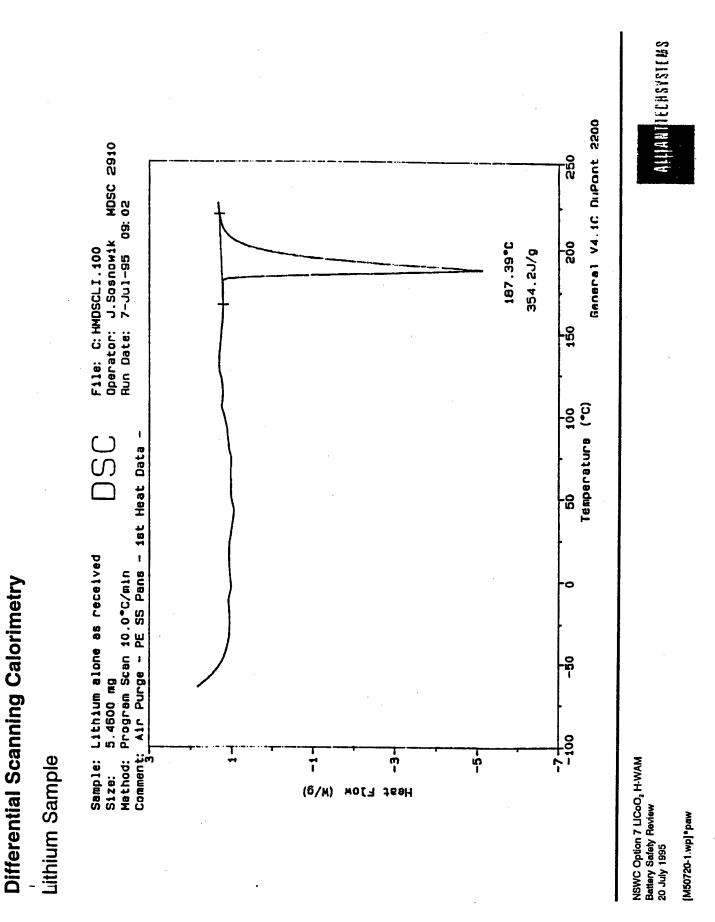
NSWCCD-TR-98/005


[M50720-1.wp]*paw

NSWC Option 7 LICoO₂ H-WAM Battery Safety Review 20 July 1995

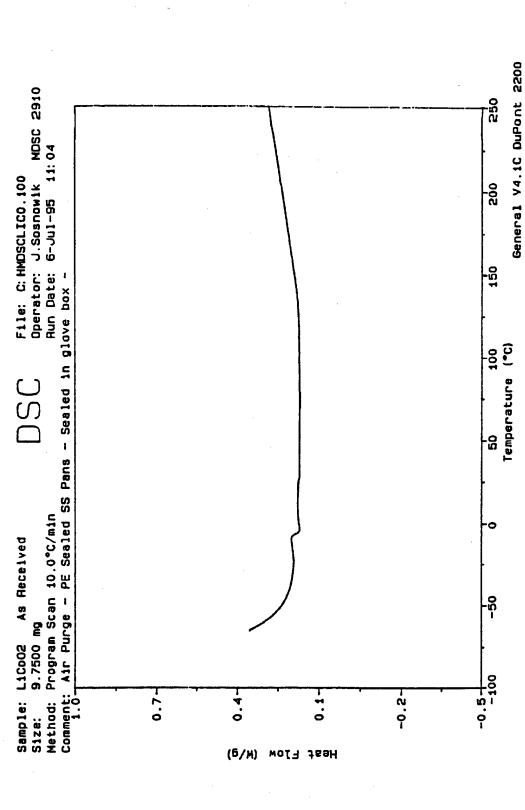
Measured peak current 20A (328 mA/cm²). Case temperature did not rise Externally shorted charged cell LiCoO2 "AA" Cell (0.8 Ah) Test Conditions: Test Item: **Results:**

D-9


AULAATTECHSYSTERS

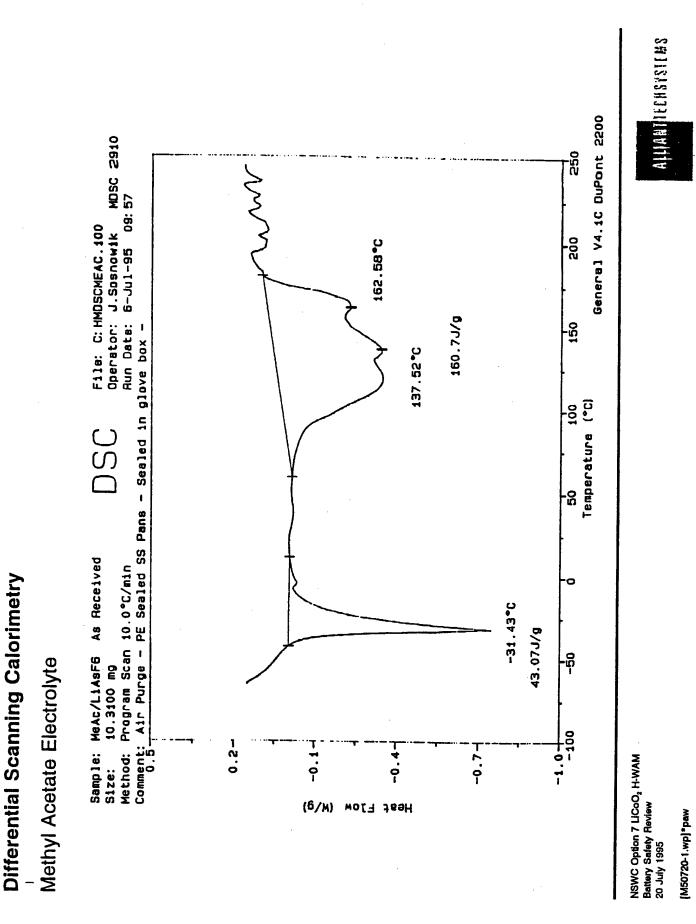
TIME: (MINUTES)

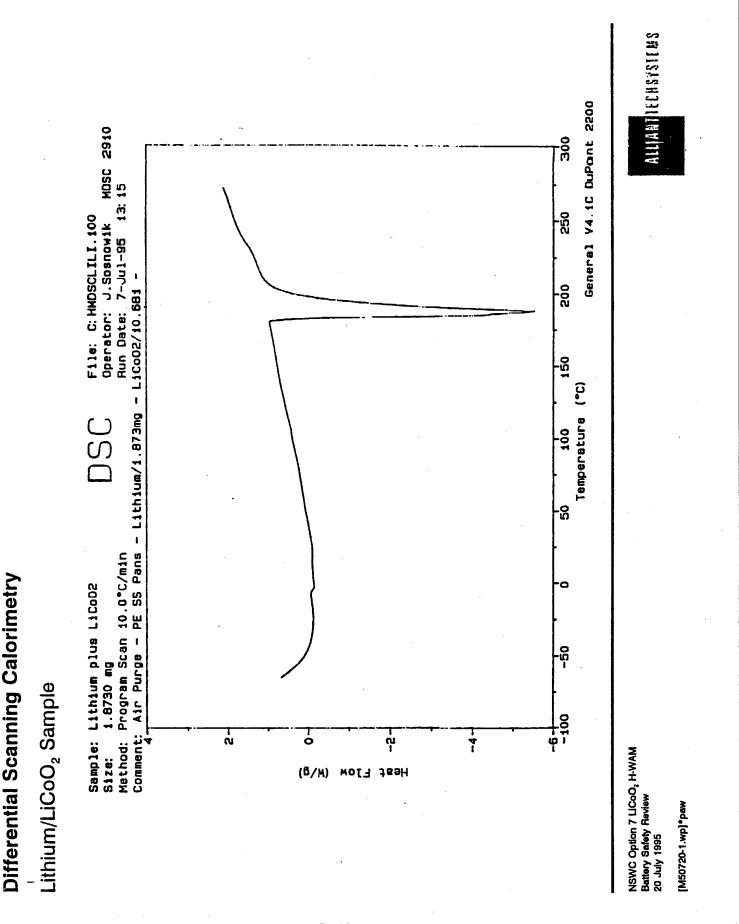
[M50720-1.wp]*paw

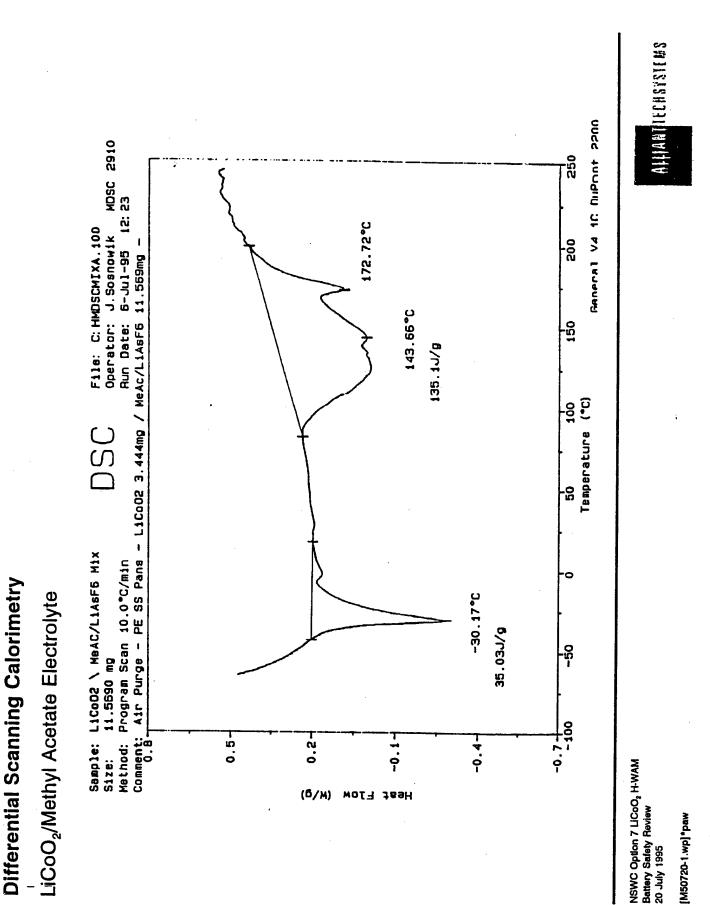

NSWC Option 7 LICoO₂ H-WAM Battery Safety Review 20 July 1995

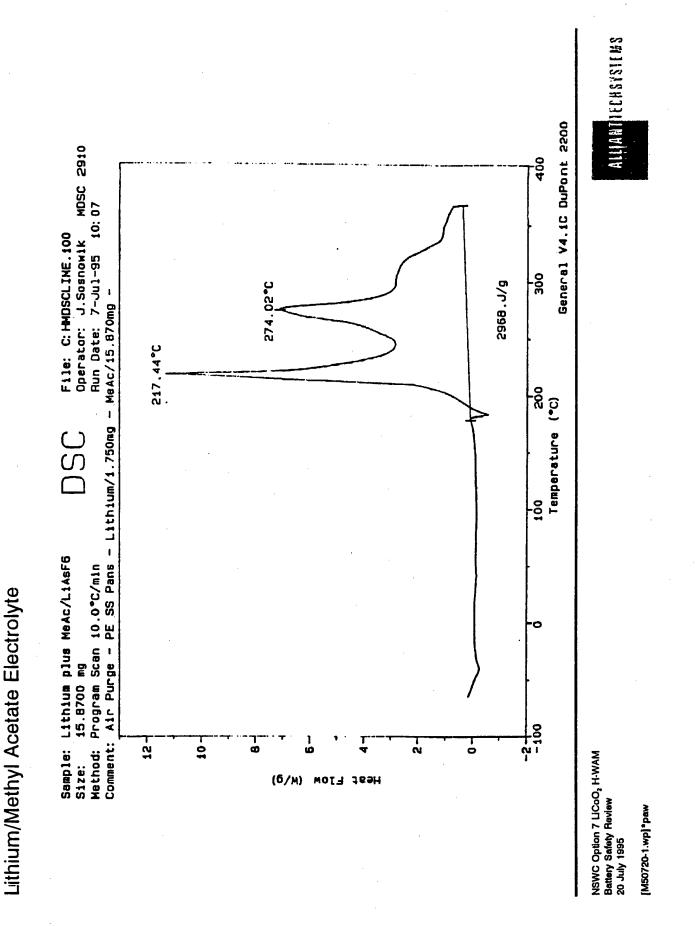
NSWCCD-TR-98/005

LiCoO₂ Sample

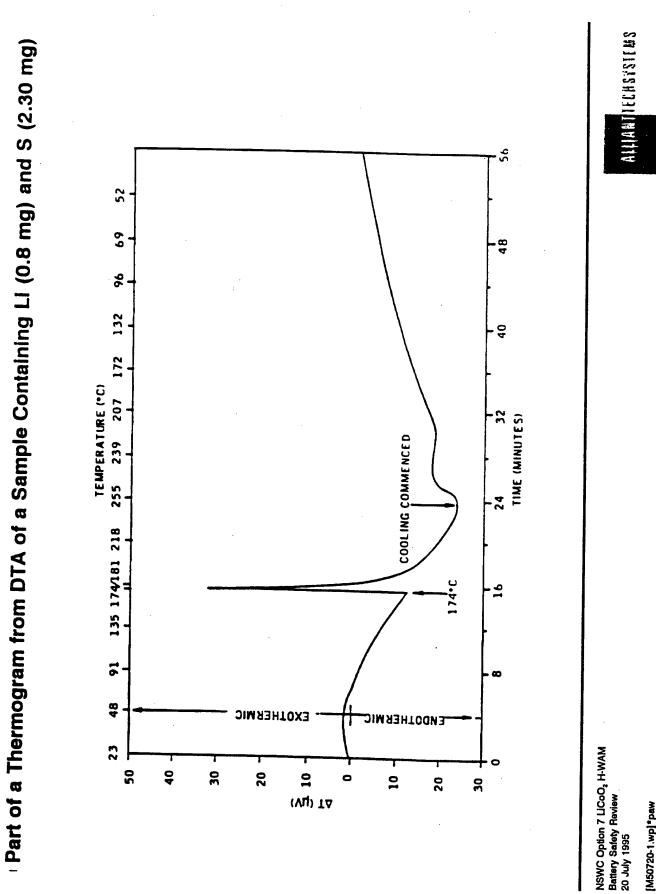

[M50720-1.wp]*paw


NSWC Option 7 LICoO₂ H-WAM Battery Safety Review 20 July 1995


AUTORI IECHSYSTEMS


1

NSWCCD-TR-98/005



D-15

Differential Scanning Calorimetry

D-16

[M50720-1.wp]*paw

NSWCCD-TR-98'005

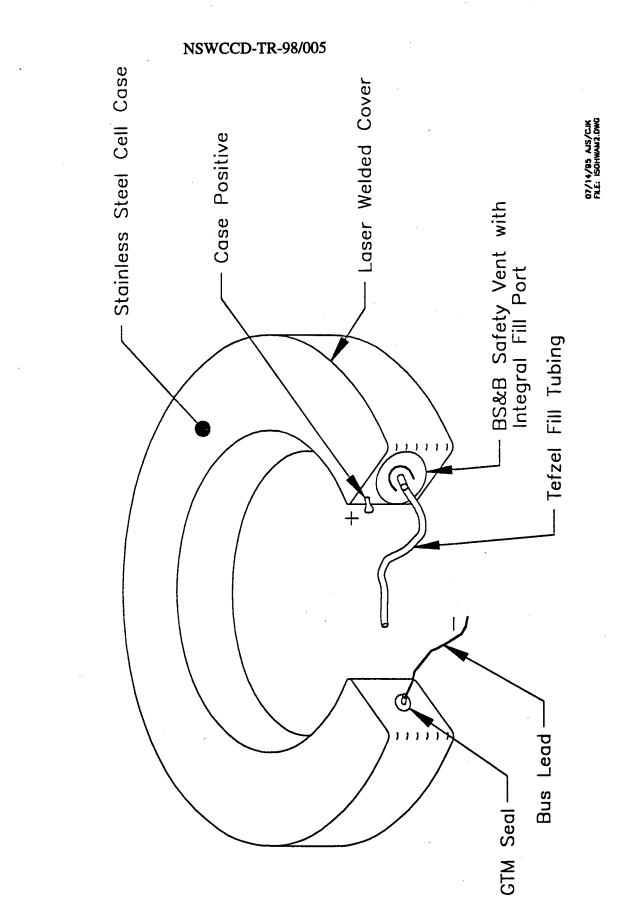
Results
Analysis
Thermal
Differential

	Temperature of	Temperat	Temperature and description ^a of exotherms	ption ^a of exo	therms
Sample (mg)	endotherm (°C)	Under 300°C	300-360°C	360-380°C	Over 380°C
Li (0.8) + S (2.3)		174, 1, sh	1	-	8
Li (5.8) + SOCI ₂ (2.1)	179		356, 1, sh		;
Li (4.8) + SO ₂ Cl ₂ (6.6)	178	252, s, b	357, 1, sh	362, 1, sh	408, s, b
Li (4.8) + S ₂ CL ₂ (14.0)	180	Upward drift	357, m, sh	370, s, sh	390, 1, sh
Li (3.5) + S (6.5) + SOCl ₂ (12.0)	180	Upward drift, started 280°C	334, 1, sh	:	
Li (8.0) + S (12.8) + SO ₂ Cl ₂ (16.0)	179	293, 1, sh	334-348 four s, sh	3	1
Li (3.4) + S (11.3) + S ₂ Cl ₂ (11.8)	178	250, s, b		:	390, 1, sh
Li (2.0) + Cathode Mix (5.0)	174		1	:	429, 1, sh
Li (10.3) + Glass (4.1)	176	1	1	;	587, s, sh

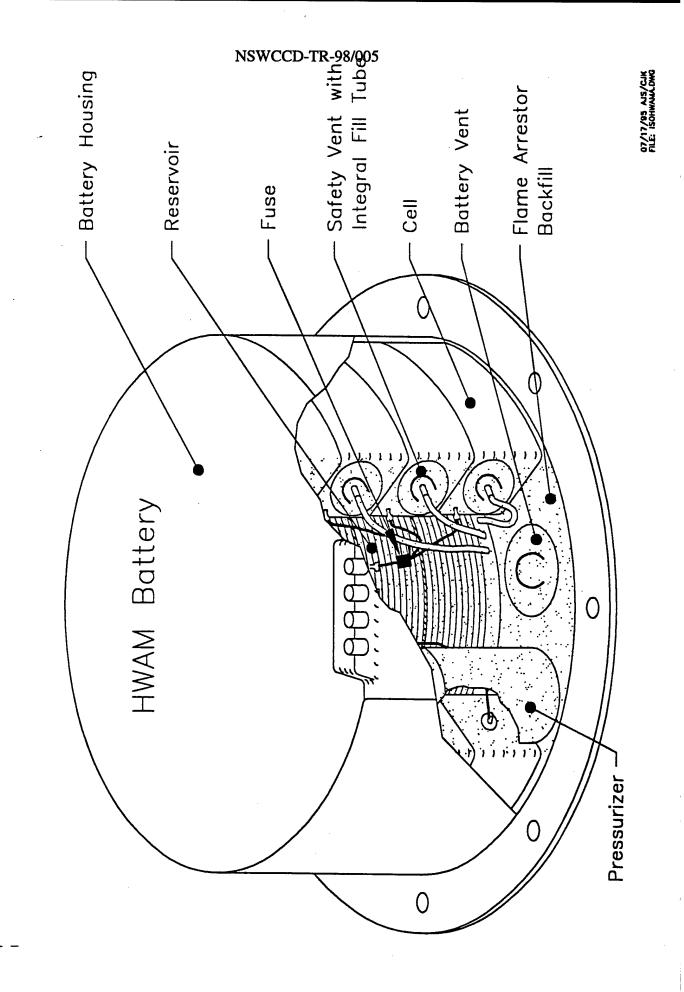
D-17

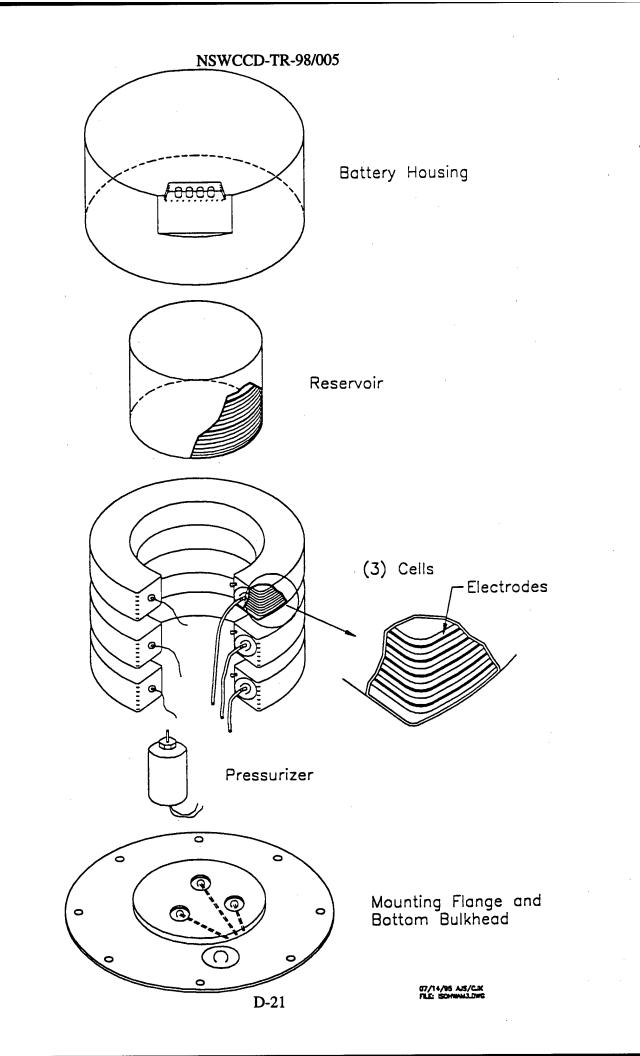
Size: s = small, m = medium, l = large Shape: b = broad, sh = sharp

മ

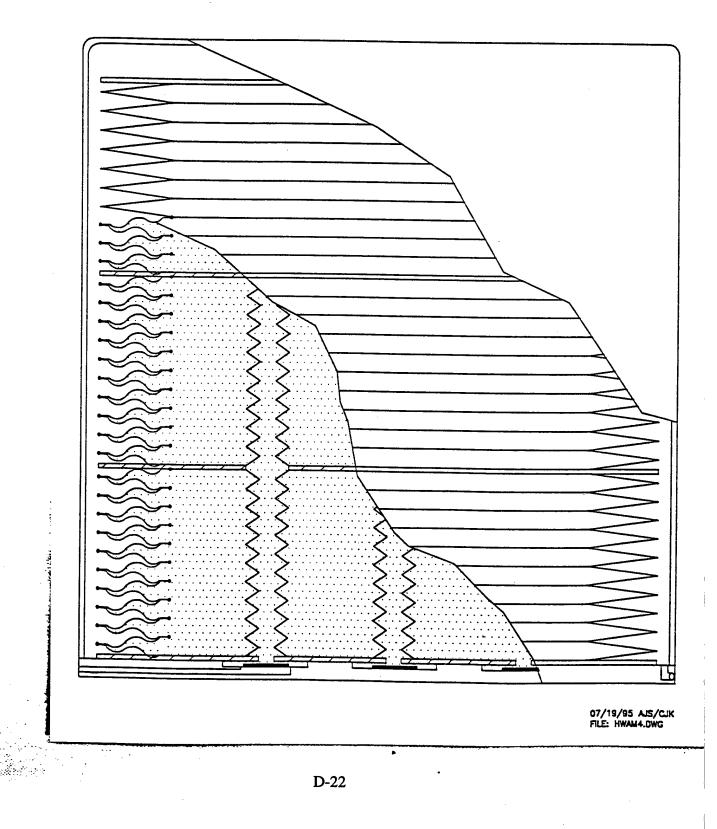

NSWCCD-TR-98/005

ALLIANTIEEHSYSTEMS


[M50720-1.wp]*paw


NSWC Option 7 LiCoO₂ H-WAM Battery Safety Review 20 July 1995

Hermetic metal bellows DESIGN FEATURES AND MANUFACTURING CHARACTERISTICS ENHANCING BATTERY SAFETY Smillensystems No dendrites in reserve state because cathode is precharged before assembly, new lithium Offset electrode edges with separators enveloping and heat sealed around every electrode Independent electrolyte reservoirs for each cell. No intercell leakage. Stack alignment keyed to solid separator edges via assembly tooling. Not glass as used in SOCl₂. Lithium and glass reacts at 207°C. Current collector grids are chemically etched - no burrs. Shut down separator - microporous PP/PE/PP Flame arrestor matting outside safety vents. metal anodes are assembled in reserve cell Safety vents (scored diaphragm type) one per battery housing Fused links in cell leads. Electrolyte flooded cells. one per cell NSWC Option 7 LICoO₂ H-WAM eservoirs. Manufacturing Battery Safety Review 20 July 1995 plate. [M50720-1.wp]*paw Design



Individual Cell Case

Appendix E

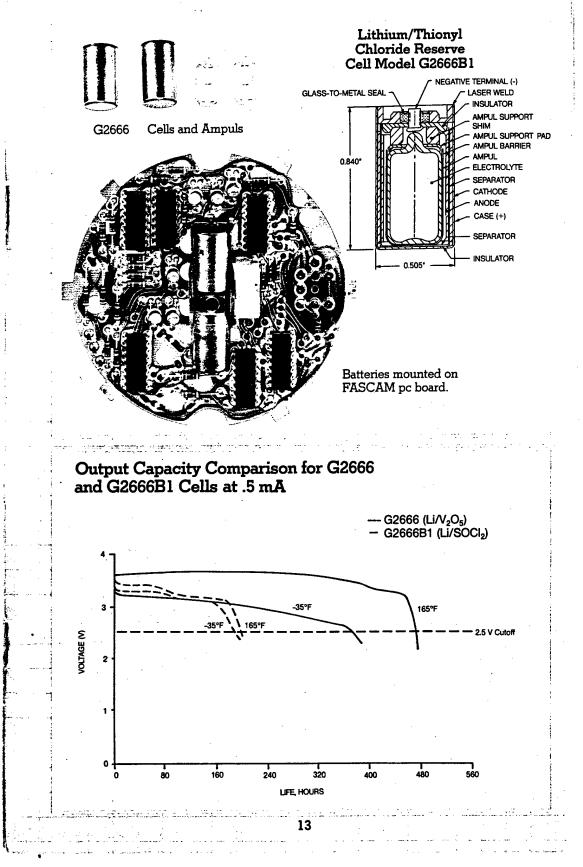
Specification Sheets for Ordnance Batteries

.

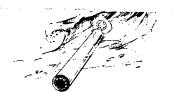
Ordnance Batteries

Electrochemical Variations Give Two Dimensionally Similar Batteries Vastly Different Capacities

Electrochemical flexibility has allowed PSC to produce two electrically and physically interchangeable batteries with very different capacities for the U.S. Army's FASCAM (Family of Scatterable Mines) project. Both reserve batteries are small and low-rate, and they offer long life relative to their size.


In both batteries, electrolyte is held in reserve in a glass ampul until a mechanical, electrical, or explosive impulse fractures the glass to release the electrolyte and activate the battery. This system gives an ambient shelf life of more than 20 years, yet allows rapid rise to full power and fresh cell capacity. The first of the two, the G2666, has been in high-volume production at Honeywell since 1978. It offers a capacity of 100 mAh, and is based on Li/V_2O_5 electrochemistry. Product reliability is greater than .9993 at 98 percent confidence.

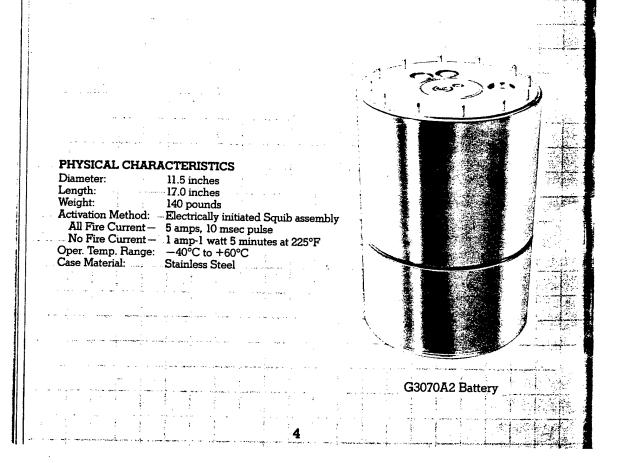
More recently designed and now in pilot production, the G2666B1 uses Li/SOC1₂ electrochemistry to produce a capacity of 280 mAh. Together, the two batteries prove the versatility of the variety of electrochemical configurations available from PSC's design teams.


·	Model No. G2666 Chemistry Li/V ₂ O ₅	Model No. G2666B1 Chemistry Li/SOC12
Performance		
Open circuit voltage: Voltage under load:	3.4 volts 3.3 volts at 0.5 mA/plateau #1	3.6 volts 3.6 volts with 65,000 ohm
lated capacity:	3.1 volts at 0.5 mA/plateau #2 100 mAh to a 2.5 volt cutoff at 0.5 mA load at 72°F	load 280 mAh to a 2.5 volt cutoff at 0.49 mA load at 72°F
nergy density t rated load):	2.06 Whr/in³, 0.122 Whr/cc 27.5 Whr/1b, 0.061 Whr/g	6.13 Whr/in ³ , 0.37 Whr/cc 89.1 Whr/1b, 0.20 Whr/g
hysical Characteristic	8	
iameter:	0.50 inches	0.50 inches
ength:	0.84 inches	0.84 inches
eight:	0.18 oz	0.18 oz
olume:	0.16 inches ³	0.16 inches ³
ositive terminal:	Glass-to-metal seal with 52	Glass-to-metal seal with 52
ase material:	alloy pin 316L Stainless Steel	alloy pin 316L Stainless Steel
AFETY FEATURES	· · ·	
eserve:	Flectroluto stored in clear amount	l. Both cells inactive during storage.

E-2

12

E-3



Underwater Mines/ Buoy Batteries

4000 Watt Battery Employs Standard Technology

The Model G3070A2 is an expendable, high power, remotely activated multicell lithium battery, containing two electrically isolated voltage sections. The low power section operates continuously at 71 watts, while the high power section operates at 4000 watts. Testing has demonstrated the battery can operate at pulses to 200 amps, providing pulse power outputs of 10,000 watts.

Maintaining the battery's reserve integrity is a major safety feature. Until it is electrically initiated, the battery will not activate during handling, shipping, or storage. For test purposes, the battery was activated and allowed to stand on open circuit for 90 days. During the test there were no safety related episodes, and the battery retained 85% of fresh discharge capacity. In the event the battery is subjected to an abusive condition, it contains a series of venting mechanisms.

Specifications

Model No. G3070A2 Battery

Performance

Number of Cells **Open Circuit Voltage:** (Activated)

Voltage under load:

Rated Capacity:

Power:

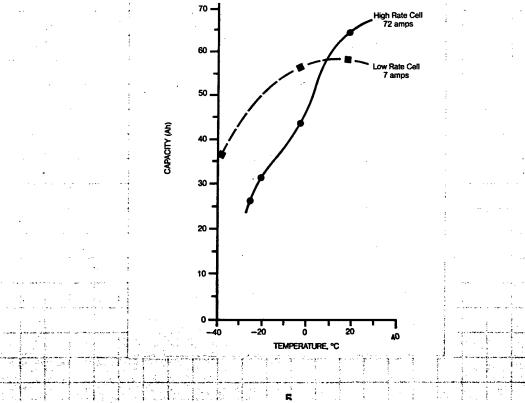
Safety Features Reserve:

Low Power Section Li/SOCl₂ Reserve/Series Connected Multiplate Cells

3 cells 11.0 volts

10.2 volts 7 amps at 20°C 57 Åhr at 7 amps to 8.0 volts at 20°C 71.4 watts continuous

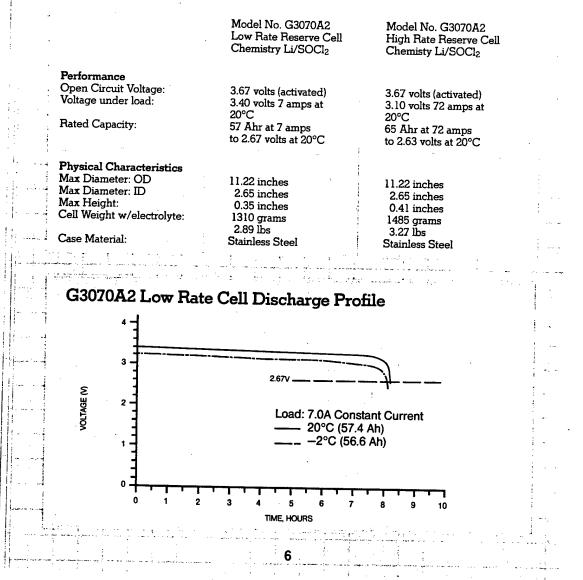
18 cells 66.0 volts

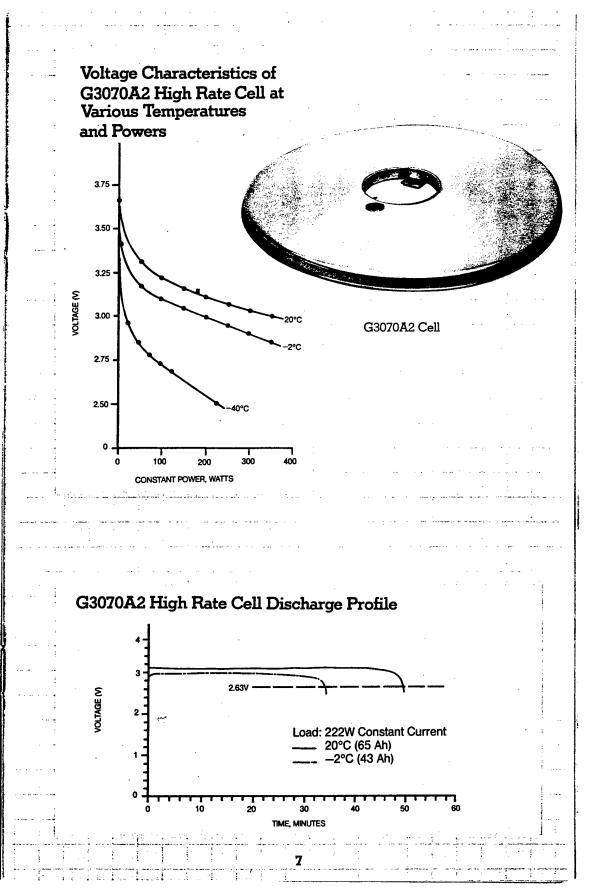

55.8 volts 72 amps at 20°C 65 Ahr at 72 amps to 47.3 volts at 20°C 4018 watts, pulses to 200 amps

High Power Section Li/SOCl₂ Reserve/Series

Connected Multiplate Cells

- Electrolyte stored in stainless steel reservoir
- -Battery case and reservoir vents -Temperature monitoring sensor
- -Cell and cell stack voltage monitoring leads
- -Fully shielded actuator firing leads


Physically Similar, High Power, Reserve Cells, Offer Performance Alternatives


The Low and High Power performance of the G3070A2 Reserve Battery sections (pages 4 and 5) demonstrate the wide current carrying capability of its cells.

These two physically similar, remotely activated cells are tailored for low rate (7 amps) or high rate (200 amp pulses) performance. Differing only in cell height and capacity, as a result of one less set of electrodes, the two cells offer corresponding rate carrying ability. They are the baseline cells for the G3070A2 battery and allow for flexibility in battery design through series/parallel configurations.

As presented in the specifications, the two cells have the same inside and outside diameters. However, they differ in height (0.06 inches), which results in a corresponding decrease in rate carrying ability of the low rate cell.

Specifications

E-7

Distribution

Cop	ies		Copies
DOD - CONUS DEFENSE TECHNICAL INFORMATION CENTER	1	COMMANDER ATTN CODE 824 (J WOERNER) NSWC CARDEROCK DIVISION ANNAPOLIS 3A LEGGETT CIRCLE	
8725 JOHN KINGMAN ROAD SUITE 0944 FORT BELVOIR VA 22060-6218		ANNAPOLIS MD 21402-5067	1
COMMANDER ATTN CODE 8231 (C EGAN) NAVAL UNDERSEA WARFARE CENTER NEWPORT DIVISION NEWPORT RI 02841-5047	1	ATTN R NOWAK DARPA/DSO 3701 NORTH FAIRFAX DRIVE ARLINGTON VA 22203-1714	1
COMMANDER ATTN AMSEL RD C2 AP (R HAMLEN) US ARMY CECOM RDEC	1	COMMANDER ATTN ONR 322 (K DIAL) OFFICE OF NAVAL RESEARCH 800 N QUINCY STREET	1
FT MONMOUTH NJ 07703-5601		ARLINGTON VA 22217-5660	
LIBRARY NAVAL TECHNICAL INTELLIGENCE CENTER 4301 SUITLAND RD WASHINGTON DC 20390	_	COMMANDER ATTN ONR 331 (R CARLIN) OFFICE OF NAVAL RESEARCH 800 N QUINCY STREET ARLINGTON VA 22217-5660	1
ATTN CRS-ENR (A ABELL) LIBRARY OF CONGRESS WASHINGTON DC 20540	1	COMMANDER ATTN PMS403 (V FIEBIG) NAVAL SEA SYSTEMS COMMAND	. 1
ATTN EE-321 (R SUTULA) DEPARTMENT OF ENERGY 1000 INDEPENDENCE AVENUE	1	2531 JEFFERSON DAVIS HWY ARLINGTON VA 22242-5160	
WASHINGTON DC 20585 ATTN CODE 734 B20 ROOM 166	1	ATTN E WHITLOCK US ARMY 5925 QUATRELL AVE NO 202	1
NASA/GODDARD SPACE FLIGHT CENTER GREENBELT RD		ALEXANDRIA VA 22312 COMMANDER	
GREENBELT MD 20771		ATTN CODE E232 NSWCDD	1
COMMANDER ATTN AMSRL-SE-DC (A GOLDBERG) US ARMY RESEARCH LAB 2800 POWDER MILL RD	1	17320 DAHLGREN RD DAHLGREN VA 22448-5100	
ADELPHI MD 20783-1197 COMMANDER		COMMANDER ATTN CODE E35 NSWCDD	1
ATTN AMSRL-SE-DC (S GILMAN) US ARMY RESEARCH LAB 2800 POWDER MILL RD	1	17320 DAHLGREN RD DAHLGREN VA 22448-5100	
ADELPHI MD 20783-1197	1	COMMANDER ATTN CODE N742 (GIDEP)	· 1
ATTN OTS TYLER X MAHY U S GOVERNMENT 130 DUVALL LANE, APT T-1 GAITHERSBURG MD 20877	1	NSWCDD 17320 DAHLGREN RD DAHLGREN VA 22448-5100	
		1	

Distribution

Ca	pies		Copies
COMMANDER		NON DOD	
ATTN CODE 2310 (E RICHARDS) NSWCDD COASTAL SYSTEMS STATION 6703 WEST HIGHWAY 98 PANAMA CITY FL 32407-7001	1	ATTN C KELLY D ROLLER	2 1
COMMANDER ATTN CODE 2330 (G COOPER)	1	ALLIANT TECHSYSTEMS INC 104 ROCK RD HORSHAM PA 19044	
NSWCDD SYSTEMS STATION 6703 WEST HIGHWAY 98 PANAMA CITY FL 32407-7001		ATTN LIBRARY R HIGGINS D SPENCER EAGLE-PICHER INDUSTRIES INC	1 1 1
COMMANDER ATTN R MARSH AFRL/PRPB	1	PO BOX 47 JOPLIN MO 64802	
1950 FIFTH STREET BLDG 18 WRIGHT-PATTERSON AFB OH 45433-7251 COMMANDER		ATTN LIBRARY POWER CONVERSION INC 495 BOULEVARD ELMWOOD PARK NJ 07407	1
ATTN CODE 609 (J GUCINSKI) NSWC CRANE DIVISION 300 WEST HIGHWAY 361 CRANE IN 47522-5083	1	ATTN C SCHLAIKJER BATTERY ENGINEERING INC 100 ENERGY DRIVE	1
ATTN G HENRIKSEN CHEMICAL TECHNOLOGY DIVISION ARGONE NATIONAL LAB	1	CANTON MA 02021 ATTN R REA	1
9700 SOUTH CASS AVENUE ARGONNE IL 60439 ATTN G HUNT	1	RAYOVAC CORP PO BOX 44960 601 RAYOVAC DRIVE MADISON WI 53744-4960	
IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LAB LOCKHEED MARTIN IDAHO TECH CO PO BOX 1625 IDAHO FALLS ID 83415-3830		ATTN F WALSH ECO CORP 20 ASSEMBLY SQUARE DR SOMERVILLE MA 02145	1
COMMANDER ATTN D RADZYKEWYCZ AFRL/VSDV 3550 ABERDEEN AVE SE	1	ATTN T REDDY YARDNEY TECHNICAL PRODUCTS INC 82 MECHANIC STREET PAWCATUCK CT 06379	1
KIRTLAND AFB NM 87117-6008 ATTN D DOUGHTY SANDIA NATIONAL LABORATORIES PO BOX 5800 MAILSTOP 0613	1	ATTN E TAKEUCHI WILSON GREATBATCH LTD 10000 WEHRLE DRIVE CLARENCE NY 14031	1
ALBUQUERQUE NM 87185-0613 ATTN R JUNGST SANDIA NATIONAL LABORATORIES PO BOX 5800 MAILSTOP 0613 ALBUQUERQUE NM 87185-0613	1	ATTN A MAKRIDES EIC LABORATORIES INC 111 DOWNEY STREET NORWOOD MA 02062	1

(2)

Distribution

ATTN A HIMY1ATTN L MARCOUX1J J MCMULLEN ASSOC INC2341 JEFFERSON DAVIS HWYARLINGTON VA 22202BLUESTAR ADVANCED TECHNOLOGYATTN D CHUA1H LIN1MAXPOWER INC1220 STAH RDATTN M KLEIN1HARLEYSVILLE PA 19438ATTN M KLEIN1ATTN LIBRARY1FWC CORP LITHIUM DIV1HIGHWAY 161 BOX 795SHELTER ROCK LANE1BESSEMER CITY NC 28016CODE 734, B-20, ROOM 166GREENBELT MD 20771ATTN N ISAACS1ATTN P BURGHART1B6 LOVETON CIRCLESPARKS MD 211521ATTN C FLEISCHMANN1ATTN E CUELLAR1ATTN C FLEISCHMANN1ATTN E CUELLAR1ATTN F DAMPIER11ATTN C CHANG1ADVANCED TECHNOLOGY &1ATTN C CHANN1A MESKIN11ATTN C CHANG1ATTN F DAMPIER11CARNEGTE MELLON UNIV MATERIAL1ATTN F DAMPIER11CARNEGTE MELLON UNIV MATERIAL1ATTN K ABRAHAM1POWER CONNECTION INC1ATTN C CHANG1ATTN K ABRAHAM1POWER CONNECTION INC495 BOULEVARD44513-3420	
ATTN D CHUA1V7P 1M9H LIN1MAXPOWER INC4TTN M KLEIN220 STAHL RDHARLEYSVILLE PA 19438ATTN LIBRARY1FMC CORP LITHIUM DIV1HIGHWAY 161 BOX 795BESSEMER CITY NC 28016ATTN N ISAACS1MSA COMPANY38 LOVETON CIRCLESPARKS MD 21152ATTN R STANLEWICZATTN R STANLEWICZATTN C FLEISCHMANNG ZOSKIATTN F DAWRIERLITH LUN DON ORDATTN F DAMPIERLITH LUN DON SVILLE MD 20866-1172ATTN F DAMPIERLITHIUM ENERGY ASSOCIATES INC225 CRESCENT STREETWALTHAM MA 02453-3420ATTN K ABRAHAMATTN K ABRAHAM	
DARYOMENTINGInternation220 STAHL RDHARLEYSVILLE PA 19438ATTN LIBRARYFMC CORP LITHIUM DIVHIGHWAY 161 BOX 795BESSEMER CITY NC 28016MSA COMPANY38 LOVETON CIRCLESPARKS MD 21152ATTN R STANIEWICZATTN R STANIEWICZATTN C FLEISCHMANNG ZOSKIATTN F DAMPIERLITHIUM DIV DIVHIGHWAY 161 BOX 795BESSEMER CITY NC 28016BESSEMER CITY NC 28016ATTN N ISAACSMSA COMPANY38 LOVETON CIRCLESPARKS MD 21152ATTN R STANIEWICZATTN R STANIEWICZATTN R STANIEWICZATTN C FLEISCHMANNG ZOSKIATTN C FLEISCHMANNG ZOSKIATTN F DAMPIERLITHIUM ENERGY ASSOCIATES INC225 CRESCENT STREETWALTHAM MA 02453-3420ATTN K ABRAHAMCOVALENT ASSOCIATES INC200 SCIATES INC201 SCIATES INC205 CRESCENT STREETWALTHAM MA 02453-3420ATTN K ABRAHAM1POWER CONNECTION INC495 BOULEVARD	
INTO DENTATTN & G RAO1FMC CORP LITHIUM DIVATTN & G RAO1HIGHWAY 161 BOX 795BESSEMER CITY NC 28016ATTN & G RAO1ATTN N ISAACS1NASA/GODARD SPACE FLIGHT CENTERCODE 734, B-20, ROOM 166GREENBELT MD 20771ATTN N ISAACS1ATTN N ISAACS1ATTN P BURGHART1BESSEMER CITY NC 28016CODE 734, B-20, ROOM 166GREENBELT MD 20771ATTN N ISAACS1ATTN P BURGHART1BESSEMER COURD CIRCLECATTN R STANIEWICZ1SAFT AMERICA INC247 MARGERET KING AVENUERINGWOOD NJ 07456ATTN C FLEISCHMANN2ATTN L DOMINEY1COCKEYSVILLE MD 21030CLEVELAND OH 441141ATTN C FLEISCHMANN2ATTN E CUELLAR1G ZOSKI1ULTRALIFE BATTERIES1ADVANCED TECHNOLOGY & RESEARCH CORP.1ATTN C CHANG1ATTN F DAMPIER1CARNEGIE MELLON UNIV MATERIAL SCIENCE & ENGINEERING DEPT1ATTN F DAMPIER1CARNEGIE MELLON UNIV MATERIAL SCIENCE & ENGINEERING DEPT1ATTN K ABRAHAM COVALENT ASSOCIATES INC1POWER CONNECTION INC 495 BOULEVARD1	
BESSEMER CITY NC 28016CODE 734, B-20, ROOM 166 GREENBELT MD 20771ATTN N ISAACS1MSA COMPANY138 LOVETON CIRCLEATTN P BURGHARTSPARKS MD 21152247 MARGERET KING AVENUE RINGWOOD NJ 07456ATTN R STANIEWICZ1ATTN R STANIEWICZ1ATTN C FLEISCHMANN2ATTN C FLEISCHMANN2G ZOSKI1ADVANCED TECHNOLOGY & RESEARCH CORP.1DINO DRIVE BURTONSVILLE MD 20866-11721ATTN F DAMPIER LITHIUM ENERGY ASSOCIATES INC 225 CRESCENT STREET WALTHAM MA 02453-34201ATTN K ABRAHAM COVALENT ASSOCIATES INC1COVALENT ASSOCIATES INC1POWER CONNECTION INC 495 BOULEVARD1ATTN K ABRAHAM COVALENT ASSOCIATES INC1POWER CONNECTION INC 495 BOULEVARD1	
MSA COMPANYATTN P BURGHART138 LOVETON CIRCLEATTN P BURGHART138 LOVETON CIRCLE247 MARGERET KING AVENUESPARKS MD 21152247 MARGERET KING AVENUEATTN R STANIEWICZ1ATTN R STANIEWICZ1ATTN R STANIEWICZ1109 BEAVER COURT0MG INCCOCKEYSVILLE MD 210302301 SCRANTON RDCOCKEYSVILLE MD 210302301 SCRANTON RDATTN C FLEISCHMANN2A MESKIN1G ZOSKI1ADVANCED TECHNOLOGY &1RESEARCH CORP.1350 ROUTE 88 SOUTH15210 DINO DRIVE1350 ROUTE 88 SOUTHBURTONSVILLE MD 20866-1172ATTN C CHANGATTN F DAMPIER1LITHIUM ENERGY ASSOCIATES INC225 CRESCENT STREETWALTHAM MA 02453-3420ATTN M SCHIMPTATTN K ABRAHAM1COVALENT ASSOCIATES INC1POWER CONNECTION INC495 BOULEVARD	
SD BOLDION OF DEADSPARKS MD 21152247 MARGERET KING AVENUE RINGWOOD NJ 07456ATTN R STANIEWICZ1ATTN R STANIEWICZ1SAFT AMERICA INC1109 BEAVER COURT0MG INCCOCKEYSVILLE MD 210302301 SCRANTON RD CLEVELAND OH 44114ATTN C FLEISCHMANN2A MESKIN1G ZOSKI1ADVANCED TECHNOLOGY & RESEARCH CORP.1BURTONSVILLE MD 20866-1172ATTN C CHANGATTN F DAMPIER LITHIUM ENERGY ASSOCIATES INC1ATTN K ABRAHAM COVALENT ASSOCIATES INC1	
ATTN K ABRAHAMATTN K	
COUNTING THE FORMCLEVELAND OH 44114ATTN C FLEISCHMANN2 A MESKIN1G ZOSKI1ULTRALIFE BATTERIESADVANCED TECHNOLOGY & RESEARCH CORP.1350 ROUTE 88 SOUTH NEWARK NY 1451315210 DINO DRIVE BURTONSVILLE MD 20866-1172ATTN C CHANG CARNEGIE MELLON UNIV MATERIAL SCIENCE & ENGINEERING DEPTATTN F DAMPIER LITHIUM ENERGY ASSOCIATES INC 225 CRESCENT STREET WALTHAM MA 02453-34201ATTN K ABRAHAM COVALENT ASSOCIATES INC1POWER CONNECTION INC 495 BOULEVARD1	
A MESKIN1ATTN E CUELLAR1G ZOSKI1ULTRALIFE BATTERIES1ADVANCED TECHNOLOGY & RESEARCH CORP.1ULTRALIFE BATTERIES15210 DINO DRIVE BURTONSVILLE MD 20866-11721NEWARK NY 14513ATTN F DAMPIER LITHIUM ENERGY ASSOCIATES INC1CARNEGIE MELLON UNIV MATERIAL SCIENCE & ENGINEERING DEPT1225 CRESCENT STREET WALTHAM MA 02453-34201POWER CONNECTION INC 495 BOULEVARD1	
BURTONSVILLE MD 20866-1172ATTN C CHANG1ATTN F DAMPIER1CARNEGIE MELLON UNIV MATERIAL SCIENCE & ENGINEERING DEPT1LITHIUM ENERGY ASSOCIATES INC225 CRESCENT STREET WALTHAM MA 02453-3420PITTSBURG PA 15213-38901ATTN K ABRAHAM COVALENT ASSOCIATES INC1POWER CONNECTION INC 495 BOULEVARD1	
LITH IM ENERGY ASSOCIATES INC5000 FORBES AVE225 CRESCENT STREETPITTSBURG PA 15213-3890WALTHAM MA 02453-3420ATTN M SCHIMPTATTN K ABRAHAM1POWER CONNECTION INCCOVALENT ASSOCIATES INC495 BOULEVARD	
ATTN K ABRAHAM1ATTN M SCHIMPT1COVALENT ASSOCIATES INC1POWER CONNECTION INC495 BOULEVARD	
10 STATE STREET ELMWOOD PARK NJ 07407	
WOBURN MA 01801ATTN LIBRARY1ATTN A MANNING1EVEREADY BATTERY COLITHIUM TECHNOLOGY CORPTECHNOLOGY LAB5115 CAMPUS DRIVEPO BOX 43035PLYMOUTH MEETING PA 19462-1129WESTLAKE OH 44145	
ATTN M SINK 1 SAFT AMERICA INC 313 CRESCENT STREET VALDESE NC 28690	

Distribution

	Copies			Copies	
ATTN R SURAMPUDI JET PROPULSION LAB 4800 OAKGROVE DRIVE PASEDENA CA 91109	1	683 683	KELLER KILROY	1 1	
ATTN S ARGADE TECHNOCHEM COMPANY 203-A CREEK RIDGE RD GREENSBORO NC 27406-4419	1				
ATTN D FOUCHARD POLYSTOR 6918 SIERRA COURT DUBLIN CA 94568	1				
ATTN T CAGGIANO OFFICE OF THE PROJ MANAGER FOR MINES, COUNTERMINES AND DEMOLITIONS AMSTA-LC-8D-BUILDING 162 N PICATINNY ARSENAL NJ 07806	1				
ATTN J STAMBONI DIR FOR BATTLEFIELD SYSTEMS TEXTRON DEFENSE SYSTEMS TEXTRON INC 201 LOWELL ST WILMINGTON, MA 01887	1				
ATTN J MCQUAID SUBCONTRACTS TEXTRON DEFENSE SYSTEMS TEXTRON INC 201 LOWELL ST WILMINGTON, MA 01887	1				
NSWC, CARDEROCK DIVISION INTERN DISTRIBUTION	IAL				
Code Name 011 CORRADO 0112 DOUGLAS 0112 HALSALL 0115 MESSICK 3442 TIC 60 603 CAVALLARO 604 DESAVAGE 65R DEPARTMENT LIBRARY 68 SUDDUTH 683 SMITH 683 DALLEK 683 JAMES	Copies 1 1 1 1 1 1 1 1 2 1 10 1 1			·	``

(4)