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FOREWORD

This publication includes individual papers of Danmpi '93 held February 24-26,1993, San
Francisco, California. The Conference was sponsored by the Air Force Wright Laboratory, Flight
Dynamics Directorate, Wright-Patterson Air Force Base, Ohio.

V



TABLE OF CONTENTS

The Role of Damping and Durability in Secondary Structure for Air AAA*
Vehicles
(Keynote Address)

Dr. John W. Lincoln

Non-obstructive Particle Damping Technology AAB
(Invited Speaker)

Dr. Hagop Panossian

SESSION BA - Various Vibration Suppression Technologies

Energy Absorption Due to Cyclic Deformation of Shape Memory Alloys BAA
Dr. Darel E. Hodgson

Passive Damping Applications BAB
Dr. Stepan S. Simonian

Design of Passive e Damping for Space Structures BAC
Dr. Andreas H. von Flotow, J. Aldrich, Nesbit Hagood, and
David W. Vos

SESSION CA - Spac Applications I

CAA
An Advanced Controls Technology Fight Experiment

R. A. Manning, R. E. Wyse, and S. R. Schubert
CAB

Optimized Passive Vibration Isolator Design for the Space Station
Freedom Exercise Treadmil

Richard Armentrout and Harold H. Doiron

CAC*Design of Spacecraft Damped Precision Platform
Dennis Hill, John Molnar, John Chionchio, Clyde Stahle, and Michael
Zeigler

CAD*
Elastomertc Materials Applied Internally to Turbine Blades

Eric M. Austin and Lyn M. Greenhill

*Not available for publication vi



TABLE OF CONTENTS (continued)

SESSION CB - Analysis and DesignI

Consistent Damping Method for Spae Structural Systems CBA
Wan T. Tsai, Joseph T. Leang, and Richard S. Chao

Transient Solution of Coupled Structural Components Using System CBB
Modal Coodinates with and without Coupled System Damping

Edwin E. Henkel and Raymond Mar

Multiple Scales Methods for Structural Dynamics CBC*
Wing Kam Liu

Formlation of a Frequency Dependent Damping Matrix CBD*
Antonio M. Claret and Fernando Venancio-Filho

SESSION CC - Vismelastic Materil M1 urmmeb

Fourier Tramsform Mechmaical Analysis (rrMA) Technique to CCA
Determine Dynamic Mechanical Properties of V1scoelastlc Materials

Dr. Surendra N. Ganeriwala

Dynamic Comprenulty Apparatus CCB
Wayne T. Reader, N. Scott Emery, and Fred Schloss

Dynamic Durometer Meaurement of Young's Modulus and Loss Factor CCC
Dr. Walter Madigosky and Dr. Ralph Fionito

Integrated Direct Stiffness Test System for Viscoelastic Material CCD
Properties (Work in Progress)

Bryce L. Fowler, Bradley R. Allen, and Dr. David A. Kienholz

SESSION DA - Space Applications I

Passive Damping Analysis for an Advanced Spamce Interceptor DAA*
Eric M. Austin, Victor J. Wagner, and David H. Merchant

*Not available for publication vil



TABLE OF CONTENTS (continued)

Variations in the Damping of Space Structures in One Gravity and Zero DAB
Gravity

Dr. A. S. Bicos, Dr. E. F. Crawley, M. S. Barlow, M. C. van Schoor,
and B. Masters

Impact of Interface Stiffness and Damping on Payload Responses in DAC
Space System

Dr. Wan T. Tsai

SESSION DB - Analysis and Testin

Modal Parameter Estimation Effects on Damping Matrix Identiication DBA
Dr. A. Agneni, Dr. L Balis-Crema, Dr. A. Castellani, and F. M.
Onorati

The Relation Between Internal Friction in Metals and Elastic Wave DBB
Velocities

Dr. Augusto Capecchi

Some Frequency and Damping Measurements of Laminated Beryllium DBC
Beams

Dr. Lynn C. Rogers and John Andriulli

I SESSION DC - Characterization of Polymeric Materials

Accurate Characterization of Passive Damping Materials with Database DCA
Storage and Retrieval on Different Computer Platforms

Bryce L Fowler and Dr. Lynn C. Rogers

Results of Recent Analysis of the Frequency-Temperature Behavior of DCB
Polykobtyice

Dr. David I. G. Jones

Estimation of Dynamic Properties of Rubber Materials and their DCC
Applications to Vibration Isolation

Chun-hwa Ryu, Hyeong-oh Kweon, Gyu-Seop Lee, and Sang-Kyu
Park

*Not available for publication viii



TABLE OF CONTENTS (continued)

SESSION EA - Damping/Isolation for the Launch Environment

Perfg Tradeoffs in Active and Pasive Launch Isolation EAA
David C. Cunningham

A Launch Isolation System for the Shuttle Resupplied Hubble Space EAB
Telescope Solar Array

L. Porter Davis, Terry Allen, and John Vise

A New Structural Design Concept for Launch Vehicle Shrouds to EAC
Decrease Payload Noise Environment

Jefferson Newton, Dr. Roy Ikegarni, and Paul D. Nedervelt

Protection of Attitude Control Thrusters Against Pyrotechnic Stage EAD
Separation Shock

Dr. Ernst Hornung and Huba Oery

I SESSION EB - Analysis and Design I

A Boundary Element Formulation for Dynamic Analysis of Viscoelastic EBA
Fluid-Dampers

Dr. Nicos Makris, Dr. G. F. Dargush, and Dr. M. C. Constantinou

Vibration Responses of Viscoelastically Damped Plates EBB
Dr. Sung Yi, M. F. Ahmad, Dr. H. Hilton, and G. D. Pollock

Damping Capacity of Scarf-Joints EBC
Dr. Mohan Rao and Haiming Zhou

Siniltude and Modelling Damping Forces in Bolted Connections EBD*
Dr. M. Groper

*Not available for publication ix



TABLE OF CONTENTS (continued)

SESSION EC - Shiape Memory Alloys

Low Frequency Damping and Ultrasonic Attenuation in ThSn-Based ECA
Alloys

Catherine Wong and Rober L. Fleischer

Fully Cyclic Hysteresis of a Ni-Ti Shape Memory AHoy ECB
Dr. Edward J. Graesser and Dr. Francis A. Cozzarelli

Design and Seismic Testing of Shape Memory Structural Dampers ECC
P. R. Witting and Dr. Francis A. Cozzarelli

The Vibration Characteristics of Composites with Embedded Shape ECD
Memory Alloy

Lee Chin Hai and Dr. C. T. Sun

I SESSION FA - Aircraft Applications

A Magnetic Tuned-Mao Damper for Buffet-Induced Airfoil Vibration FAA
Joseph R. Maly and Kevin L. Napolitano

Attenuation of Empennage Buffet Response Through Active Control of FAB
Damping Using Piezoelectric Material

Jenimfer Heeg, Jonathon Miller, and Robert V. Doggett, Jr.

Analytical Evaluation of Damping Treatments for F-15 Wing FAC
Scott R. Schroeder

I SESSION FB - Nonlinear Structures

The Influence of Constrained-Layer Damping Treatment on Parametric FBA
and Autoparametric Resonances in Nonlinear and Internally Resonant
Nonlinear Structum

Lawrence D. Zavodney and Joseph Schudt

*Not available for publication x



TABLE OF CONTENTS (continued)

ParLNo.

Incorporating a Full Damping Matrix in the Transient Analyses of FBB
Nonlinear Structures

J. Michael Chapman

Treatment of Structural and Frequency Dependent Damping on FBC*
Nonlinear Systems by a Step-by-Step Linearization Procedure in
Frequency Domain

Dr. Antonio M. Claret

I SESSION FC - Friction

Analysis of Dry Friction Hysteresis in Cables under Uniform Bending FCA
Dr. X. Huang and Dr. 0 Vinogradov

On the Linearization of Structures Continng LInear-Friction FCB
Dissipating Devices

Jose A. Inaudi and Dr. James M. Kelly

Analysis of Dry Friction Hysteresis in Tension Cables FCC
Dr. X. Huang and Dr. 0. Vinogradov

SESSION GA - Tuned Mass Dampers/Vibration Energy Absorbers

Increasing the Impact Energy Absorption of Containment Structures GAA
with Viscoelastic Materials

R. G. Holn, M. A. Mendelsohn, and S. S. Sattinger

The Effect of Viscoelasticity on the Performance of Reaction Mass GAB
Actuators

Dr. H. Hilton, L. A. Bergman, and T. C. Tsao

Enhanced Passive Vibration Absorbers Using Acceleration Feedback GAC
Capt. D. Stech and Dr. R. Quan

Improved Precipitation Static Discharge (PSD) Unit Attachment Method GAD*
T. Gerardi, J. Weiher, Lt. G. Agnes, J. Shaw, and C. Hitchcock

*Not available for publication Ai



TABLE OF CONTENTS (continued)

Paper No.

SESSION GB - Smart Structures

Finite Element Modeling of Sensors/Actuators for Smart Structure GBA*
Applications

Salvatore L. Liguore and Jack H. Jacobs

Piezoelectric Composites for Use in Adaptive Damping Concepts GBB
Wayne T. Reader and David F. Sauter

Damping in Smart Materials and Structures GBC
Nisar Shaikh and Sam D. Haddad

Actively Damped Piezoelectric Composite Wing GBD
Dr. P. Santini, F. Betti, P. Gasbarri, and A. Rossi

I SESSION GC - Composites

Stratified Layer Model for Composite Lamiinates GCA*
Capt. Vincent Levraea and CoL Ronald Bagley

Damping Analysis for Thick Composite Laminates and Structures GCB
Dr. D. A. Saravanos

Vibration Responses of a Composite Shell Made of a Metallic Material GCC
with Damping Treatments

Dr. Y. P. Lu, A. J. Roscoe, and H. C. Neilson

Damping Thin-Walled Composite Structures with Embedded GCD
Constraining Layers

Stanley Sattinger and Z. N. Sanjana

I SESSION HA - Civil Structures

Analytical and Experimental Study of a Mass Damper Using Shape HAA
Me-ory Alloys

J. A. Inaudi, Dr. J. M. Kelly, W. Taniwangsa, and Robert Krumme

*Not available for publication xii



TABLE OF CONTENTS (continued)

Ea~LNo

High Damping of Antique Walls HAB
Dr. Juval Mantel

Temperature Control in Viscoelastic Dampers for Buildings HAC
Dr. Warren C. Gibson, Kevin L. Napolitano, Bradley R. Allen, and
Dr. Roger Scholl

SESSION HiB - Control Structure Interaction

Response Study of Optimum Structural and Control Design HBA
Dr. Narendra Khot

Uniform Modal Damping of an Elastic Ring by the Natural Control Law HBB
Dr. J. Q. Sun and Dr. J. Rossetti

Two-DOF Small Strucunrs-Optics-Controls System, A Parametric Study HIBC
Dr. Ernest B. Paxson, Jr.

SSESSION HC - High Damping Materials

Damping Behavior of 6061 AI/SiC/Gr Metal Matrix Composites HCA
Robert J. Perez, Jinmin Zhang, M. N. Gungor, and Dr. E. Lavernia

Development of Room Temperature Vibration Damping Steel HCB*
Dr. Shian-Ing Chen

A Simple Approach to Design, Installation, and Testing of Passive HCC
Damping for an Optical System

Eric M. Austin and James C. Goodding

FSESSION IA - Industrial Applications

Vibration Attenuation by Configuration Variation of Machines and IAA
Structures

Dr. Z. Parszewski, J. M. Krodkiewski, and K. Krynicki

*Not available for publication xii



TABLE OF CONTENTS (continued)

Stiffnes and Damping In Automobile Seats IAB*
Dr. W. M. Patten, Dr. B. Yang, and Li Liu

Noise Standardization In Machine Deign IAC*
fija D. Tsukernikov and Boris A. Seliverstov

Damping in the Noise Reduction of Liquid Separators IAD*
Boris A. Seliverstov

SESSION B - Active Damping

Active Vibration Control Using Parallel Processing Techniques IBA
Dr. G. S. Virk

Active Contrained Layer Damping IBB
Dr. Amr Baz

Comparing Passive Damping and Active Control on Flexible Structures IBC
with Either Closely Spaced or Coincident Modes

Major Steven Webb and 2Lt Dean Cibotti

Damping of Structural Vibration with Piezoelectric Materials and IBD
Parameter Optimization

T. Yongjie, Z. Shenbi, H. Xieqing, and H. Xuanli

SESSION IC - Damping Properties and Materials

Damping Properties of PTMG/PPG lends ICA
Gilbert Lee, John D. Lee, Dr. B. Hartmann, and Dr. D. Rathnamma

Investigation of Damping Properties for the Fiber Enhanced Viscoelastic ICB
Damping Polymers

Dr. Thomas Alberts and Houchun Xia

On the Dynamic Properties of Natural Rubber and Epoxidized Natural ICC
Rubber

H. A. Ahmadi, Dr. A. H. Muhr, and Dr. K. N. G. Fuller
*Not available for publication xiv



TABLE OF CONTENTS (continued)

Effect of Long Space Exposure upon Properties of Viscoelastic Materials ICD
Dr. John Kirby, Dr. Donald Edberg, and Dr. David L. G. Jones

I SESSION JB - Analysis and Design I

A Modal Strain Energy Approach to the Prediction of Resistively- JBA
Shunted Pleoceramic Damping

Christopher Davis and Dr. George Lesieutre

A Refined Theory of Flexural Vibration for Viscoelastic Damped JBB
Sandwich Beams

J. M. Bai and Dr. C. T. Sun

A Simple Approach to Design, Fabrication, and Testing of Passive JBC*
Damping for an Optical System

Eric MX Austin and James C. Goodding

I SESSION JC - Characterization

A Constitutive Equation for Thermoviscoelastic Behavior of Polymeric JCA
Materials

Dr. Surendra Ganeriwala

Relating the Complex Moduli of Viscoelastic Materials to the Complex JCB*
Stiffness Characteristics of Anti-Vibration Mounts

Dr. S. 0. Oyadiji and G. &. Tomlinson

Sensitivity Analysis For Estimation of Complex Modulus of JCC
Viscoelastic Materials by Non-Resonance Method

Dr. Kwang-Joon Kim and Tai-Kil Ahn

*Not available for publication xv



The following is a list of authors and their addresses who where unable to submit their papers for
publication in the Damping 93 Proceedings.

Dr. John W. Lincoln
USAF/ASC/ENFS
Area B, Building 125
2335 Seventh Street, Suite 6
Wright-Patterson AFB, OH 454433-7809
telephone: (513) 255-2576
fax: (513) 476-4546

John Molnar
GE Astro Space
P.O. Box 800
MS NP IA
Princeton, NJ 94303-0800
telephone: (609) 951-7804
fax: (609) 951-7911

Eric M. Austin
CSA Engineering, Inc.
2850 West Bayshore Road
Palo Alto, CA 94303-3843
telephone: (415) 494-7351
fax: (415) 494-8749

Wing Kam Liu
Northwestern University
Department of Mechanical Engineering
Evanston, IL 60208-3111
telephone: (708) 491-7094
fax: (708) 491-3915

Antonio M. Claret
Escola de Minas / UFOP
Pc Tiradentes No. 20
CEP 35400-000 Ouro Preto, MG
Brasil
telephone: (031) 551-1139
fax: (031) 551-1689

xvi



Dr. Lynn C. Rogers
Oak Ridge National Lab
USAF/WIJFIBG (Center for Passive Damping)
Area B, Building 24C, Room 220
2145 Fifth Street, Suite 2
Wright-Patterson AFB< OH 45433-7006
telephone: (513) 255-6622 extension 252
fax: (513) 255-6684

John Andriulli
Oak Ridge National Lab
K-25, Site/K-1225, MS-7294
P.O. Box 2003
Oak Ridge, TN 37831-7294
telephone: (615) 576-0424
fax: (615) 574-8481

Dr. M. Groper
Western Michigan University
College of Engineering and Applied Sciences
Department of Mechanical and Aeronautical Engineering
Kalamazoo, MI 49008-5065
telephone: (616) 387-3380
fax: (616) 387-4024

Salvatore L. Liguore
McDonnell Douglas Aerospace
P.O. Box 516
St. Louis, MO 63166-0516
telephone: (314) 232-3109
fax: (314) 777-1171

Capt. Vincent Levraea
WLJFIBG, Wright Laboratory
2145 Fifth Street, Suite 2
Wright-Patterson APB, OH 45433-70'f,.
telephone: (513) 255-5229 extension 452
fax: (513) 255-6685

Col. Ronald Bagley
WI/FIB, Wright Laboratory
Wright-Patterson APB, OH 45433-7006
telephone: (513) 255-5200 extension 457
fax: (513) 255-6684

ivil



Dr. Shian-Ing Chen
China Steel Corprton
Lin Hai Industrial District
P.O. Box 47-29
Hsiao Kang Kaohsiung
81233 Taiwan, Republic of China
telephone: 07-802-1111 extension 3353
fax: 07-802-2511

Dr.W.M.Patten
The University of Oklahoma
School of Aerospace and Mechanical Engineering
865 Asp Avenue, Room 212
Norman, OK 73019-0601
telephone: (405) 325-5011
fax: (405)325-1088

nja D. Tsukernikov
Head of Vibroacoustics Sector
123308 Moscow, Marshal Zhukov Avenue, 1
Russia
telephone: (095) 195-6974
fax: (095) 195-1043

Boris A. Seliverstov
Chief of Laboratory
123308 Moscow, Marshal Zhukov Avenue, 1
Russia
telephone: (095) 195-6974
fax: (095) 195-1043

IL A. Ahnadi
Malaysian Rubber Producer's Research Association
B k- nbury
Hertford SO13 8NL, England
telephone: (0992) 584-966
fax: (0992) 554-837

Dr. S. O. Oyadiji
University of Manchester
E e Department
Simon Building
Manshest M13 9PL, United Kingdom
telephone: (44) 61-275-4444
fax: (44) 61-275-3844

xv-a



Performance/Sizing Tradeoffs

in Active and Passive Launch Isolation

Dampn '93

Kotea Nikko
San Francisco, CA

EAA-1
) Copyrght 1993, Honeywell Inc.



PERFORMANCE/SIZING TRADEOFFS IN ACTIVE AND PASSIVE LAUNCH ISOLATION

David C. Cunningham
Honeywell Inc.

Satellite Systems Operation
Glendale, AZ 85308-9650

ABSTRACT

Active and passive systems for spacecraft launch isolation are compared in terms
of performance and size. Performance is characterized by the peak acceleration
provided to the isolated payload, and includes the component due to the
quasistatic acceleration transient (due to ignition and burnout, as well as random
vibration). Size is characterized by the peak-to-peak stroke during launch, and
again contains both a quasistatic acceleration and a random component.

INTRODUCTION

Both active (magnetic) and passive (viscous) isolators are finding increasing application in spacecraft because
of the need to provide high pointing stability and quiescent vibration to sensitive experiments. The use of these
mechanisms for launch isolation, however, has been very limited, even though the launch environment typically
determines the size of all structural elements in the device being launched (e.g., bearings, housings, circuit boards,
etc).

To better understand the tradeoffs involved between performance and sizing of both active and passive
isolators for launch, the study reported in this paper was performed.

PROBLEM DESCRIPTION

As an example of an application that would benefit from launch isolation, a current-production momentum
wheel program is used. In this program, the wheel is isolated at approximately 15 Hz to reduce the transmission
of emitted vibration from the wheel into the spacecraft under operational (in-orbit) conditions. The isolator
designed for this program is not required to operate during launch; in fact, it includes stops that are designed to
limit travel during launch. The wheel weighs approximately 194 lb and is launched on a Titan IV.

In reviewing launch vibration data for Titan IV, two effects are apparent: a random vibration and a quasistatic
acceleration profile. The quasistatic acceleration is bounded by a constant 3.5g having a step turn-on and turn-off
as shown in Fig. la. As will be discussed later in this paper, the sharp turn-off is of importance in determining the
total stroke of the isolator. Random vibration is modeled by the acceleration Power Spectral Density (PSD)
shown in Fig. lb. This is the design or qualification level for which the isolation system must show positive load
margins.

0.1

Accl 0.1 - - . ..(g)l , II' ,,

0o - - ii - 1x10

10 100 1000 1 X 104

Frequency (Hz)

Fig. la Quasi-static Acceleration Fig. lb Base Acceleration PSD
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The following sections of this report evaluate performance and sizing of different isolator designs for this
launch environment. Depending on the form of isolation considered, each isolator can be described by two or
more design parameters (in addition to the suspended mass, which is considered fixed). For example, the simplest
isolator is characterized by a parallel stiffness and damping constant. We parameterize each of the isolators to
make the study as general as possible. The parameter that is varied is the open-loop crossover frequency, because
it has the most direct effect on both performance and size. In this context, performance is taken as the peak
acceleration of the isolated payload in g's, and sizing is taken as the peak-to-peak stroke of the isolator. The other
parameter(s) in the isolator is generally associated with its peaking and/or roll-off characteristics; these were not
parameterized, but were fixed at what seemed to be reasonable values for the application.

PASSIVE SECOND-ORDER ISOLATOR

The simplest isolator design consists of a parallel spring and damper as shown in Fig. 2. This is the form of
isolation currently used on the Titan IV momentum wheel program, which is taken as the example fo; this study,
with the exception that the production isolator includes stops that limit the travel (and isolation) during launch.

A block diagram of the isolator is shown in Fig. 3. Note that the mechanical impedance consists of a
normalizing gain factor and a lead term. Although not necessary for the purposes of this paper, it is a simple
matter to relate the open-loop design parameters a and wco to the hardware parameters K and C:

K= M. -oco2  (1)

C = M. axo/at (2)

XPXb + 1 8 11 2X

4i Z(S)

Fig. 2 Passive Second-order Fig. 3 Passive Second-order Isolator Block Diagram
Isolator Schematic

Typically, C is relatively small in this type of isolator, causing the zero at aowco to be well above the
crossover frequency woco. Fig. 4 shows a Bode diagram of the open-loop system. We fix a to be 5.5 for this
isolator, which provides a Q of about 6, which is typical for this type of design. The crossover frequency oco is
then varied to see the effect on the isolation transfer function, the payload acceleration, and the relative stroke
across the isolator itself.

Letting Z(s) denote the complex mechanical impedance, GI(s) the isolation transfer function (payload
acceleration over base acceleration), and GA the stroke transfer function (relative displacement between the
payload and base divided by the base acceleration):

Z(s)=(M .O)co2).(s- + 1 (3)

Z(s)
GI(s) = M s2 +Z(s) (4)

_ 386. MGA(s) = M s2 + Z(s) (5)
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Fig. 4 Open-loop Bode Diagram of Passive Second-order Isolator

The response to the random vibration component is obtained in the frequency domain. The payload PSD is
simply the base PSD times the magnitude squared of GI(s), and the peak value is obtained by taking the square
root of the integral of the PSD and multiplying by 3. Similarly, the stroke response is obtained by multiplying the
base PSD by the magnitude square of GA(s), integrating across the frequency range, taking the square root, and
multiplying by 6 to get the peak-to-peak value.

To obtain the transient response of the system to the step acceleration of 3.5g, a simple time domain
simulation is made. The peak acceleration is noted as well as the peak-to-peak stroke.

Finally, the random and transient response accelerations and strokes are added to obtain the worst-case
values; this is shown in Table 1 below. As would be expected, the payload acceleration increases as the
bandwidth (which is proportional to the crossover frequency) increases, and the stroke decreases. However, the
peak acceleration due to the launch transient is nearly independent of the bandwidth.

Table 1 Passive Second-order Isolator Performance

Crossover Frequency (Hz)

Performance 13.0 16.0 20.0

Payload Acceleration due to PSD (g's pk) 4.51 5.17 5.88

Stroke due to PSD (in. pk-pk) 0.514 0.388 0.282

Payload Acceleration due to 3.5g step (g's pk) 6.24 6.23 6.19

Stroke due to 3.5g step (in. pk-pk) 0.519 0.357 0.225

Total Payload Acceleration (g's pk) 10.75 11.40 12.07

Total Stroke (in. pk-pk) 1.033 0.745 0.507
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PASSIVE (OR ACTIVE) THIRD-ORDER ISOLATOR

Fig. 5 shows the mechanical schematic of an isolator that includes a series spring. This (or any other) passive
isolator could also be implemented actively. A block diagram of the dynamics is shown in Fig. 6. Again, the
open-loop impedance parameters oxo and a can be related to the mechanical model parameters KA, KB, and CA:

KA = M- oxco 2 /a (6)

KB = KA. (a 2 - 1) (7)

CA = KB/(ot. •co) (8)

Fig. 7 is a Bode plot of the open-loop gain of this system. It should be noted from Fig. 7 that the isolator
parameters have been selected in a particular way to cause the lead and lag frequenmies to be equally spaced
below and above the crossover frequency. By making the geometric mean of the lead and lag frequencies equal
to the crossover frequency, the phase margin of the system is maximum, and the damping (for a given lead/lag
separation) will also be maximized. We refer to this type of isolator as tuned because there is an optimum value
(given by Eq. (8)) for the damping constant CA that maximizes the damping.

a SK+ oKB fi

K-i ~Xb __ _ _ _ __ _ _ _ _ __ _ _ _ _

FIg.5 Third-order Isolator Schematic Fig. 6 Third-order Isolator Block Diagram

\\)

11-

LC 0C

'-2

Fig. 7 Open-loop Bode Diagram of Third-order Isolator

To illustrate the effect of varying the separation ratio (a 2 ) on the isolation transfer function, the crossover
frequency was held constant at 20 Hz, and the plots shown in Fig. 8 were generated. It should be remembered
that these are third-order-system responses, and the peaking is due not only to the complex pole pair, but also to a
real zero below the natural frequency. When the system is properly tuned, the three poles all have the same
natural frequency; two are complex conjugates and the third is real.
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The isolation transfer characteristics shown in Fig. 8 may be compared with the isolation characteristic of a
second-order isolator such as discussed in the previous section. For a system of the same natural frequency and
peaking (Q), the third-order system provides greater isolation at high frequencies.

io I
I.

•Na6.0
0." 3.32

2.0

0.1
1 10 100

Frequency (HZ)

Fig. 8 Third-order Isolation Transfer Characteristics

A typical value for ax was selected to be 3.32, and the accelerations and strokes resulting from the random
vibration PSD and 3.5g step transient were computed using the same procedure as outlined in the previous
section. Results are listed in Table 2.

Table 2 Third-order (Tuned) Isolator Performance

Crossover Frequency (Hz)

Performance 13.0 16.0 20.0 24.0 29.0

Total Payload Acceleration (g's pk) 6.63 6.97 7.45 7.95 8.58

Total Stroke (in. pk-pk) 1.110 0.762 0.511 0.371 0.268

ACTIVE ISOLATOR WITH INTEGRATION (FOURTH ORDER)

The passive second- and third-order isolators have a static stroke proportional to the steady-state acceleration,
which is significant. For example, the 20 Hz third-order isolator stroke of 0.511 in. includes a static deflection of
0.284 in. A potential advantage in an active system is the capability to include a free integrator that would drive
this steady-state stroke to zero. This is shown in the schematic of Fig. 9, the block diagram in Fig. 10, and the
Bode plot of Fig. 11.

j isl. ~ inear
S_ Xb

Fig. 9 Active Fourth-order Isolator Schematic
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Fig. I10 Active Fourth-order Isolator Block Diagram
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Fig. 11 Open-loop Bode Diagram of Active Fourth-order Isolator

In the region around the open-loop crossover, the active system is identical to the passive, third-order, tuned
system described above; however, at low frequencies below roco/(2. a) the loop transfer function is dominated by
the integral term.

This approach works fine until the launch acceleration is removed. At that time, the integrator has acquired
an output that exactly balances the force due to the 3.5g steady-state acceleration. But when the 3.5g ii suddenly
removed, the integrator causes the payload to move up. This results in a transient response at the end of launch
that is equal and opposite to the transient that occurred at the start of launch. The peak-to-peak strok, that sizes
the actuator and position sensor thereby doubles, resulting in a net stroke increase over the passive system without
the integrator.

Table A summarizes the accelerations and strokes.

Table 3 Performance of Active Isolator with Integrator (Fourth Order)

Crossover Frequency (Hz)

Performance 13.0 16.0 20.0 24.0

Total Payload Acceleration (g's pk) 7.27 7.64 8.15 8.68

Total Stroke (in. pk-pk) 1.151 0.805 0.544 0.396
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ACTIVE ISOLATOR WITH HIGH-ORDER ROLIOFF (SIXTH ORDER)

Another potential advantage of an active system is its ability to provide high-order rolloff. For the same
bandwidth isolator, the attenuation at high frequencies will be much greater. Assuming the stroke to be related to
the low- and/or mid-frequency characteristics, this approach should provide better isolation at about the same
stroke.

The schematic diagram of this isolator is the same as Fig. 9. The block diagram given in Fig. 12 shows that
the compensation comprises a first-order zero followed by two identical second-order lags. The Bode diagram of
Fig. 13 shows that the zero frequency is a factor of a below the crossover, and the lag breaks are at a factor of
X ac above crossover. After some experimenting, a was selected to be 3 and X was chosen to be 1.5. A damping
ratio of ý = 0.5 is used on the quadratic terms. Note that no free integrator is used, for the reasons cited in the
previous section.

Xb + (I s) 2

a [ 2 + Sc 2 MS2

GCs)

Fig. 12 Active Sixth-order Isolator Block Diagram

log IG .,io' )I 1 '-
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Fig. 13 Open-loop Bode Diagram of Active Sixth-order Isolator

Table 4 lists the results of varying the crossover frequency. Although the stroke is approximately the same as
a third-order tuned system having the same crossover frequency, the peak acceleration is higher. This is
predominantly due to the random component of vibration, not the 3.5g transient response. The high-order isolator
provides a steep high-frequency rolloff, but it also has a broad transmissibility around resonance. Because the
random vibration PSD increases with frequency in the range between 20 and 200 Hz, any tendency of the isolator
to maintain transmissibility in this frequency range results in an increased payload acceleration. At frequencies
above 100 Hz, the high-order isolation out-performs the passive tuned isolator, but this improvement is more than
compensated for by the poorer isolation below 100 Hz.
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Table 4 Performance of Active High-order Isolator (Sixth Order)

Crossover Frequency (Hz)

Performance 13.0 16.0 120.0 24.0

Total Payload Acceleration (g's pk) 8.38 9.02 9.90 10.82

Total Stroke (in. pk-pk) 1.041 0.719 0.485 0.355

ACTIVE ISOLATOR WITH INERTIAL SENSING (FIFTH ORDER)

The tuned third-order isolator described in the Passive (or Active) Third-order Isolator section can be
augmented by an accelerometer feedback loop. The idea is to sense the payload inertial acceleration and force it
towards zero over a selected frequency range, using an actuator such as shown in Fig. 14. Although the diagram
in Fig. 14 shows the system as all active, it can also be implemented in a hybrid fashion, using a passive isolator
to replace the displacement sensor and G(s) compensator.

M

Accel

GA(s Unear

Dis1. G(s - Act.

0 -t Xb

Fig. 14 Tuned Inertial Sensing Isolator Schematic

Fig. 15 shows the block diagram of the tuned inertial sensing isolator. The outer loop involving displacement
8 is identical to the passive (or active) third-order isolator design, and the inner loop involving payload
acceleration a0 is intended to provide a higher effective mass over the frequency range bounded by col and o)2. If
the acceleromnter bandwidth was not limited on the low end by wl, the static stroke of the isolator would increase
under the 3.5g static load. The high frequency bandwidth W02 is necessary to prevent excessive noise in the servo.

as + ap T-1
Xb + 0)C +_ _L___ -Zbs M•I•- S2

- OXO0 /2•MEQS

G(s)

((S+0)1slw)("--2 +1)

GA(s)

Fig. 15 Tuned Inertial Sensing Isolator Block Diagram
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Fig. 16 shows the open-loop Bode plot. It should be noted that the frequencies oI and 0)2 are the same as the

lead and lag frequencies used in the displacement loop:

a)1 = oco/a (9)

0)2= a - (oo (10)

--2

aM+MEG)

--3 L ao

FIg. 16 Open-loop Bode Plot of Tuned Inertial SensWg Isolator

Two values were tried for the equivalent (augmented) mass: Meq = M and Meq = 2. M. Results are listed in
Table 5. Increasing the equivalent mass has the effect of increasing the stroke and slightly lowering the peak
acceleration.

Table 5 Accelerometer Augmented Isolator Performance

Crossover Frequency (Hz)
and Equivalent Mass

Performance 20.0 20.0 24.0
M 2xM 2xM

Total Payload Acceleration (g's pk) 6.81 6.67 6.94

Total Stroke (in. pk-pk) 0.649 0.830 0.610
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SUMMARY

Peak acceleration is plotted against peak-to-peak stroke in Fig. 17 for each of the isolators studied.
Performance is proportional to peak acceleration, and size is proportional to the peak-to-peak stroke for either
active or passive isolators, therefore, the best design would be closest to the origin in Fig. 17.

14

Peak Acceleration(g's)

12 _____

•2 ~ ~ ctv wit PasieSqon-e

00

Peak-to-peak Stroke (in.)
(i-. Smaler Size. Weight)

Fig. 17 Comparison of Launch Isolator Performance

Based on these results, it is concluded that:

(1) The tuned third-order passive isolator shows significant isolation improvement over the conventional
second-order isolator.

(2) The use of a free integrator or higher-order rolloff (possible in an active isolator) does not result in
net improvement in performance and/or sizing.

(3) Accelerometer augmentation of the tuned third-order isolator provides a small improvement.

It should be emphasized again, that these results are based on a specific launch vibration environment and

may not be applicable to other applications.

4-
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A LAUNCH ISOLATION SYSTEM FOR THE SHUTTLE RESUPPLED
HU•DLE SPACE TELESCOPE SOLAR ARRAY

Pottr Damv Tenry Allen, and John Vise

Glnale Arism 93 93

ABSTRACT

A new shuattle-basd payload launch isolation system, developed specifically to
reduce launch and landing vibration for the Hubble Space Telescope replacemen
solar arrays, can be reconfigured to acmmodat a wide variety of shuttle
payloads, including small satellites. The six-axis system provides break
frequencies of approximately 8 Hz in each of six axes for a 2240-lb payload.
High values of viscous damping improve performance over systems with zero or
very low damping. The system is made up of four sets of three isolator elements
(or tripods) attached at four locations on the payload and twelve locations on the
shuttle interface. The angles formed by this arrangement of elements enable the
system to be configured or reconfigured to provide the performance needed in
each axis, while the elements themselves remain identical. Minor changes to the
design would enable the system to accommodate payloads of up to 4250 lb.
Larger payloads could be accommodated by adding additional elements. The
"system could potentially be used as a satellite launch isolator, this would reduce
the cost and weight of some satellites or their subsystems and enable others,
which had been qualified for lower-vibration-level launch systems, to be
launched by the shuttle. A large operating temperature range (-43 to +49 °C)
avoids the need of costly active thermal controL

INTRODUCTION

Honeywell completed the Solar Array Carrier Isolator (SACI) program in August 1992 with the delivery of
the system to Fairchild Space. The SACI is a subsystem of the Hubble Space Telescope's Solar Array Carrier
being developed by Fairchild for NASA Goddard. Swales and Associates Inc., provided system analyses. NASA
will use this system and the Shuttle to resupply new solar arrays to the Hubble Space Telescope. As of September
1992, the carrier was being assembled at the NASA facility by Fairchild.

The SACI is required to reduce launch and landing loads that would cause damage if the solar arrays were
hard mounted to either the shuttle directly or the carrier. The original solar arrays were protected by virtue of the
large mass and flexibility of the telescoope. Analysis showed that isolating the carrier with undamped spring
elements would adequately reduce the higher frequency response but would cause a problem at the resonance
frequency. This fact demanded the development of the SACI system with its ability to provide high values of
damping. An alternative to isolating the arrays would have been to redesign them. NASA judged this to be a
higher-dollar cost alternative.

SYSTEM DESCRIPTION

The SACI is part of the solar array ' .,, shown in Fig. I. The SACI is composed of 12 elements arranged
in four tripods. The tripods attach betweeri de solar array support structure and a pallet assembly. A photograph
of one tripod undergoing static load testing is shown in Fig. 2.

Each element is modeled as a classical two-parameter viscously damped system (Fig. 3). Tests confirmed
that it was not necessary to model stiction or end play; this is because the launch or landing loads and
displacements are large compared to seal friction or ball-joint end play. NASTRAN models of the complete
structure were a part of the total analysis. Much of the design synthesis was conducted to determine the optimum
amount of damping and the maximum stroke requirements.
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Fig. 2. SACI Tripod During Static Load Testing
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ELEMENT DESCRIPTION

The SACI element is shown partially disassembled in Fig. 6. A cross-sectional sketch is provided in Fig. 7.
The element provides both damping and stiffness. Damping is provided by the motion of the piston within the
damper cylinder. As motion occurs, fluid is forced from one side of the piston through a rather narrow annulus,
formed by the piston and the cylinder, to the other side of the piston. This action shears the fluid, resulting in a
force opposing the motion and directly proportional to the velocity. The isolation spring provides a force directly
proportonal to the displacement.

Fig. 6. Solar Array Carrier Isolator Element, Partially Disassembled

Put tidluam•Im

Fig. 7. Isolator Element Cross Section
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The element is designed to meet a 20-year mission fife with refurbishment allowed every 5 years. Within
each 5-year segment is 4.3 years of ground storage, 0.7 years of Orbiter integration, and I shuttle mission. Slight
leakage from the premssure chamber may occur during the life of the unit. The outer housing provides a redundant
fluid seal to contain the fluid within the element to avoid any possibility of external contamination. A spring-
loaded reservoir housed within the element's shaft provides reserve oil to make up for any loss. This reservoir
also accommodates thermal expansion and contraction of the fluid. The spring preload enrmes that the fluid will
remain under positive pressure during launch and landing. This prevents voids from occurring within the fluid,
which could result in high vibration levels similar to "water hammer."

The elements are filled with 500 centistoke, McGhan Nusil CV-7300, controlled-volatility silicone fluid
designed for applications requiring low outgassing (Collected, Volatile, Condensable Mass [CVCM] 0.01%; Total
Mass Loss [TML] 0.50%). The vapor pressure is estimated by the manufacturer to be less than 10.20 mm of
mercury; and outgassing is an order of magnitude lower than typical lubricants used for space applications.

Titanium alloy is used for both the damper spring and the reservoir spring to provide both size and weight
savings. Life tests performed by the spring manufacturer demonstrated full, reversing cycle lives greater than five
times the performance specification requirement of 100,000 cycles.

Because SAC! isolators develop high internal pressure during operation, the piston and cylinder assembly was
classified as a fracture-critical pressure vessel. As a result, an extensive fracture mechanics analysis was
performed to verify safe life and leak-before-burst per NASA requirements for manned (Shuttle) missions. In
addition, fracture mechanics techniques were used to show that there was no danger of fracture at the rod ends of
the Isolator, which would create a free swinging condition that could damage adjacent structures.

The element was initially designed to operate over a temperature range of 10 to 30 OC. Later, to lower costs,
NASA elected to eliminate temperature controls from the cargo pallet and require the elements to operate from
-43 to 49 °C. An extensive study and test programn confirmed the need to change seal materials and fits to avoid
seal leaks at the extreme low-temperature limit. Acceptable values of stiction. long wear life, resistance to
radiation, and outgassing requirements also had to be maintained. The result was the selection of fluorosilicone
and ethyleneproplene elastomers and the elimination of fluorocarbon elastomers. A brief summary of the
element specifications are presented in Table 1.

Table 1. Isolator Element Specification

Item Description

Ufe 20 years
Length 27 in.
Weight 22.5 lb
Steffness 3750 bin.
Damping

Ambient 32.7 b-Mn.
Cold (.43 C) 143.9 lb-sAn.

Resonant frequency 8 Hz axial
Resonant frequency 100 Hz lateral
Resonant 0, Ambient 2.4 axial
Deflection 10.9 in.
Velocity, Tes Rqmts

Ambient 40.3 inJs
Cold (43 'C) 15.0 inJs
Hot (+49 "C) 45.6 inJs

"With refurblshnents allowed at 5-year
Intervals
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TESTING

Element performance testing was carried out by mounting one end of the isolator to a rigid mass, while the
other end was vibrated axially. Acceleration was measured and a transmissibility plot was generated. Stiffness
and damping were then calculated. The setup is shown in Fig. 8. The transmissibility at 27 °C for one of the
isolators is shown in Fig. 9.

hImlmr Lndm Test

__ •-- Inlt Aecam"m

sru06700

Fig. 3. Element Performance Test Setup

UU

Fig. 9. Measured Transmissibility at 25 °C

Damping ratios of the elements ranged from 22% at 27 0C to 101% at -43 0C. With this element
performance, system performance is predicted to exhibit the same damping values in certain axes and damping
ratios as low as 11% and 50% for corresponding temperature conditions in other axes. Under these conditions,
loads on the solar arrays will be reduced a minimum of 2 to 1 when compared to a hard mount. RMS launch
vibration spectrums are expected to be reduced by at least 10 to 1.

Other tests required to qualify the elements included:

* Over pressure (1200 psi)

* Over velocity
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* Brekaway ffiction
* Radom vibration (lateral and axial)
SThenmal cycle
SExcuwsion extremes

L e stiffih
* Spring life (100,000 full-stroke cycles)

ADAPTABILITY TO OTHER PAYLOADS

The SACI can be adapted to a large variety of payloads ranging in size, weight, shape, and isolation needs.
This may bxt accomplished by making one or mome of the following changes:

* Number of elements used and their orientation
* Element damping
* Element stiffness

Changing the number of elements, their points of attachment, or orientation can avoid the need to change !be
design of the elements themselves. Once the element impedance is known, system performance in a payload
frame of relerence is a simple matter of geometry and axis transformation. Reconfiguration of the elements that
form the truss can provide the specific performance desired in each of the six spatial axes. The SACI uses 12
elements lozated in tripods at four separate locations. Four of the 12 elements provide redundancy. Without
redundancy the system would be composed of four sets of bipods or eight total elements. Six is the minimum
quantity that can be used to provide six-axis isolation; Honeywell developed such a system for a French
satellite.[ 11

The amaunt of damping can be changed simply by changing the viscosity of the damping fluid. Available
viscosities range from 1 to 300,000 centistokes.

Stiffness of the element is a function of the size of the coiled spring (or isolation spring). Analyses were
conducted t3 determine how large a spring could be used without changing any part of the design other than the
spring itself and its holder. A summary of the results are shown in Fig. 10, which compares the capabilities of the
current design to what is called a future maximum capability. Fig. 11 shows a cross section of the element with
the enlarged spring diameter in phantom. Fig. 12 is a spring-design summary that shows that the new spring at
full stroke cndures the same maximum stress as the current design. The conclusion is that the stiffness capacity
could be increased from 3,729 lb/In, to 7,994 lb/in. This would increase the maximum potential energy that could
be absorbed (since stroke is not changed) from 1,510 to 3,238 in.-lb. Changing the spring stiffness within these
limits provides a significant range of capability while avoiding the need for a risky requalification program.

Solar Array Future

Description (Current) (Spec) Maximum Capability

Length 27 in. Same No change
Diameter 5.42 in. Same No change
Weight 23 lb 31 b 31 Ib
Spring stress 85 kpei 85 (kps) No change

Stroke 0.9 Same 0.9
Stiffness 3750 bl'm. Same 7994 tbdtn.
Damping coefficient 32.7 Ibfslm. Same 69.7 Ib/sfm.
Maximum velocity 32.2 inA/ No change
Temperamre range -35 to 49 OC Same No change

20 Io 30 OC Same No change
Static load capacity 3729 b 3375 7195
Maximum payload weight 2200 2200 4245
First-mode frequency 8 Hz No change
Piston area 3.93 in. 2  None 11.24 in.2

Maximum damping pressure 473 psi None 355 psi
Preload pressure 199 Ipi None 100 psi

Fig. 10. SACI Capabilities Summary
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I11. SACI with Enlarged Spring

VW
Desin N D MV E CIm Y 1.)<4 Freq" S tr K F EnewgW L WT

2 2.4 3 0.6 5.6 0.18 0.9 2.17 519 85.411 4,425 3,982 1,792 6.51 2.04
3 2.6 3 0.85 5.6 0.18 0.9 2.34 509 85,752 5,205 4,685 2,108 7.03 2.50
4 2.4 3.2 0.895 5.6 0.16 0.9 2.24 510 85,531 5,711 5,140 2,313 7.17 2.73
5 2.6 3.2 0.95 5.6 0.18 0.9 2.42 500 65,866 6,692 6.023 2,710 7.74 3.33
6 2.8 3.2 1 5.6 0.16 0.9 2.59 466 85,825 7,629 6,666 3,090 8.29 3.96
7 j 3 g M M si ed SAC,
6 2.7 3.3 1.11 5.6 0.18 0.9 2.72 529 96,163 10,952 9,857 4.435 8.98 4.87
9 2.8 3.3 0.86 5.6 0.18 1.2 2.30 395 85.990 3,805 4,566 2,740 7.60 3.03
10 2.8 3 0.895 5.6 0.18 0.9 2.51 497 85.644 5,941 5,347 2,406 7.52 2.99
11 3.1 3 0.96 5.6 0.16 0.9 2.76 482 85,591 7,103 6.393 2,877 8.29 3.80
12 2.7 3.3 1.1 5.6 0.18 0.9 2.70 524 94,877 10,562 9,506 4,278 8.91 4.78

N - Number of lurns KS - Shear-sumg defecloti Iactr Freq - spdng frequency (Hz)
D - CONl dlenelhr (rn) Shme - Con*ie sher and trian F - faoie b)

DW - Wkv dneler (in.) K - Stilness (Mbn.) WT- Wh (b)
E - Modim of tslsicty (n•O/1000000 nery - Enwg (h-hb)
WT/n. 3 - dgnSily L - Lengh (in.)
Y - S~dW kL) WT - wihtQ)
SI - Spfn Index (D/DW) L/D - bngthdimmetwr

Fig. 12. Spring Design Alternatives

Fig. 13 provides an approximation of the interrelationship of break frequency, payload weight, spring
stiffness, and the number of isolators. SACI, with the solar array carrier payload of 2240 lb, is marked on the
plot. This plot can be used to provide a "ball park" figure for an end user with a different set of payload
requirements. The plot assumes the isolator configuration remains the same as that described for the solar arrays.
A more accurate analysis can be performed when a specific configuration is selected.
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Fig. 13. Payload Weight vs Frequency, Spring Stiffless, and Number of Isolators

GROWING DEMAND FOR LAUNCH ISOLATION

Launch vibrations are a major cost factor in the development of payloads, not only in dollars, but in size, weightl,
power, relkbility, and schedule. Launch vibrations dictate th e design of almost all spacecraft, their subsystems,
and compo~ients. The Hubble solar arrays are only one example. The reaction wheels on the Hubble Space
Telescope, which use very large bearings simply to withstand launch, are another example. The Skynet satellite,
launched on a Titan III in 1990. required a complete launch isolation system because of a sensitive antennae
subsystem. Several other launch isolation systems have been employed in a variety of applications over the years,
including a Shuttle-based system developed by NASA Marshall Space Flight Center (MSFC). These examples
are evidence of the fundamental need for launch isolation systems. T'he demand should increase even more
rapidly in the near term because of several new factors:

"* The availability of qualified isolation systems such as the SAC[
*Incnreased number of sensitive optical subsystems and payloads carried within new satellites that can be

replaced in orbit
"* The move to small satellites, which expose their components to vibration levels in the 18 to 40g category,

up flum the 9 to 16g levels for which most components and subsystems have been qualified
"* The general awareness of the community to launch and operational dynamics issues brought on by the

Stmratgic Defense Initiative, NASA, and the Air Force through their research into control structure
intetactions
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CONCLUSIONS

1. Significant amounts of viscous or rate-proportional damping substantially improves an undamped isolation
system.

2. RMS launch vibration spectrums are reduced by an order-of-magnitude with properly designed launch
isolation systems.

3. Operation over large temperature range is possible without active thermal control.

4. A truss-like system enables analysis and reconfiguration of the system to accommodate a wide variety of
payloads varying in size, weight, and isolation needs without costly element redesign and requalification.

5. Spring size can be doubled and damping can be changed almost without limit to provide additional payload
adaptability.

6. The SACI launch isolation system is the first adaptable system to be qualified for shuttle applications. The
cost, risk reductions, and schedule savings advantages for sensitive payloads and small satellites should lead
to repeated application of this system.
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TO DECREASE PAYLOAD NOISE ENVIRONMENT
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ABSTRACT

This paper describes the design, analysis, fabrication and testing of a structural design concept
for launch vehicle shrouds which provides increased sound aborption and transmission loss while
decreasing cost and weight. The design utilizes a synergism between very lightweight stiff, deep
panels; carefully tailored constrained layer damping; and tuned cavity absorption using Helmholtz
resonators. Analyses were performed to predict panel composite loss factors using modal strain
energy methods. Tuned cavity absorber characteristics were analyzed and tested, and statistical
energy analyses (SEA) were used to predict panel test results and noise reductions for full size
shrouds. Shroud structure utilizing this concept was designed. Acoustic testing was performed to
provide proof of concept. Structural test articles were built using fabrication methods developed to
obtain realistic cost and weight data.

INTRODUCTION

The impetus behind this work was the need for a shroud structure that would decrease the noise
and vibration environment for payloads on board large launch vehicles during lift-off. In the course
of concept development, testing, and trade studies performed over the past three years, it has become
evident that this structure also provides cost, weight, and stiffness benefits over current shroud
designs and is a promising candidate for applications other than payload shrouds.

Initial noise and vibration reduction concepts were based upon application of earlier Boeing
research on passive viscoelastic damping (PVD), performed on independent research and development
[1], and the "Reliability for Satellite Equipment in Environmental Vibration (RELSAT)" contract
performed by Boeing for Wright Laboratories Flight Dynamics Laboratory [2], to shrouds for future
launch vehicles. It was clear from the outset that a new approach to acoustic protection would be
necessary for the large boosters envisioned for future space programs. The reasons for this are that,
as boosters become larger, the rocket exhaust noise not only increases in absolute magnitude, but it
peaks at lower and lower frequencies. In fact, for boosters planned for the National Launch System
(NLS) 1.5-Stage and Heavy Lift Launch Vehicle (HLLV), the noise spectrum at lift-off peaks
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between 50 and 100 Hz. As shown in Figure 1, for the HLLV, fully two-thirds of the sound power
lies below 100 "`z! Figure 2 illustrates that at these frequencies the noise suppression techniques
presently relied upon are of little use. Such things as fiberglass blankets, foam, lead-loaded vinyl, etc.,
which are effective at higher frequencies, become almost totally ineffective below 100 Hz. This fact
in conjunction with the low frequency peaking of the noise spectrum result in a "noise window" in
the spectral region between 50 and 200 Hertz in which new noise suppression techniques mus: be
developed.
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The intention of this study was to investigate alternative approaches, preferably doing away with
the fiber-glass acoustic blankets currently in use. The result is a new structural design concept called
"Macrocore" which combines PVD (to enhance transmission loss) and tuned cavity resonators (to
provide absorption in the noise window) into a very stiff, lightweight shroud structure. Testing,
analysis, and trade studies conducted over the past three years have confirmed that this structure is
superior acoustically to conventional shroud construction, especially at low frequencies. It is lighter
in weight, lower in cost, and does away with the fiberglass blankets. In the following sections, the
theory and design concept development, and the results of tests, analyses, and trade studies are
described.

DISCUSSION

Theory
As mentioned above, the higher frequency region does not usually present a problem as regards

exhaust jet noise within the payload shroud. Mass law transmission loss and the intrinsic absorption
of nearly any structure used as a payload shroud will provide sufficient noise reduction above a few
hundred Hertz. It is in the low frequency region that the problem occurs. For this reason, it was
decided to look into the practicability of utilizing two basic concepts to provide the needed noise
reduction (NR) at low frequencies: (1) PVD to increase transmission loss (TL), and (2) tuned cavity
resonators to provide tailored absorption. We will discuss these two concepts separately, and then
explain how they are combined in the Macrocore structure.

Passive Damping. Passive damping is effective in increasing TL in a panel above the critical
frequency, fc, which is defined as that frequency at which the panel bending wave velocity is equal
to the velocity of sound in air. [31 The relationship between frequency, panel bending wave velocity,
panel bending stiffness, and fc is shown in Figure 3. Here it is seen that panel bending wave velocity,
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CB, is proportional to the square root of frequency and the fourth root of bending stiffness. In order
to move fc to lower frequency, it is necessary to make the panel stiffer. The design problem, then,
was to devise a way of providing high composite panel loss factor while simultaneously making the
panel very stiff.

Computer programs were written to calculate the composite panel loss factor, bending stiffness,
and critical frequency, fc,. as a function of the structural panel materials and geometry for both
symmetrical and unsymmetrical panels, using the modal strain energy method. [4 & 5] A statistical
energy analysis (SEA) program was written to predict the TL of a given damped panel design when
tested in the Boeing Noise Engineering Laboratory (NEL) anechoic/ reverberant facility (ARF).
These programs were used to perform damping design trade studies of various panel configurations
and to design panels for testing in the NEL ARF. The first panel tested was a symmetrical panel
designed to provide proof-of-concept. Figure 4 shows the construction of this panel, and Figure 5
illustrates the TL test. The test was conducted using an acoustic intensity probe to measure the
intensity of sound transiting the test panel from the reverberant room to the anechoic room, which
gives a direct measure of TL. [6] Two panels were tested: a baseline panel having no viscoelastic
material (VEM) or septum plies, and the damped panel shown in Figure 4. The noise transmission

Core Face sheet Pyclamber . Mcpo

Fbm• 4. Symmetric Test Pae Figure 5. NELACOUS&l TL Test
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losses measured during the test for these two panels are shown in Figure 6. The damped panel was
designed to increase TL in the 100 to 1000 Hz region. It can be seen that a 5 to 9 dB improvement
was, in fact, realized in the frequency band of interest.
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Tuned Cavity Resonators. Increasing TL is a necessary condition to providing acoustic
protection at low frequ icies, but it is not sufficient in itself. There has to be absorption as well. As
long as there is AU noise transmitted into the interior of the shroud, unless there is absorption, the
interior noise level will build up until it equals the exterior noise level. We have already seen that
ordinary absorption becomes very ineffective at frequencies below 100 Hz; so, to provide the
necessary absorption, an alternative approach is necessary. Tuned cavity resonators seem to provide
the only effective means of supplying the necessary absorption at low frequency. These devices are
frequently known as Helmholtz resonators (Figure 7), and whether they act as a muffler or a resonator
depends upon the value of the acoustic resistance of the passage connecting the cavity and the
acoustic space (the interior of the payload shroud in our case). For a given cavity of frequency fo, there
is one value of acoustic resistance that will theoretically provide perfect absorption at fo. However,
the absorption bandwidth of the resonator in this case will be very narrow. In practice, resonators
tuned to several frequencies covering the spectral region from 50 to 200 Hz can be used, with acoustic
resistances tailored to provide reasnably high absorption and rasnably wide bandwidth.

The low frequency tuned cavity resonator concept was tested experimentally at Cambridge
Collaborative, Inc. using a large impedance tube. The results confirmed theory and indicated that
useful absorption could be obtained, even at the low frequencies of interest. Experimental results are
shown in Figure 8. The dashed portion of the curves corresponds to a region in which the impedance
tube structure had resonances.
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After the acoustic test of the symmetric panel of Figure 4, the panel was cut up into 15.2-cm-wide
(6 in) beams and a modal test performed to determine the modes, frequencies, and loss factors. The
results corroborated the loss factor predictions, but the inclusion of the VEM reduced the bending
wave velocity, and hence, fc and the mode frequencies. It was felt that, although the principle had
been proved satisfactorily, it would not be useful for our purposes unless a structure could be built
that had high composite loss factor and low fc; that is, it would have to be very stiff. Also to satisfy
structural and thermal design requirements for the launch vehicle shroud, it was decided that the
VEM could only be placed on the interior side of the panel. Consequently, the unsymmetrical panel
loss factor analysis program was used to design a panel with both the necessary loss factor and the
necessary stiffness to bring fc down to 100 Hz. The resulting panel was a deep sandwich structure
on the order of 15.2 cm (6 in) thick that was constructed with lightweight core and stiff face sheets.
It was at this point that the synergism of combining the deep, stiff sandwich panels necessary to
achieve TL with the PVD, with the tuned cavity resonators became apparent. The cavity volume
required to tune resonators down to the 50-200 Hz region is quite large, and would be impractical
to integrate into conventional honeycomb panels with thickness in the 25- to 50-cm (1-2 in) range.
But a 15.2 cm (6 in) deep panel gave the necessary room to provide adequate numbers of properly
sized resonators.

The resulting sandwich structure, referred to as "macrocore", is shown in Figure 9. The outer face
skin of the sandwich provides most of the protection against the launch vehicle external environment
and will provide most of the structural strength required to support the combined axial loads and
bending moments due to aerodynamic and inertia forces. The outer skin is supported by a very
lightweight large-cell core (the "macrocore"). A septum ply, made of a thin sheet of cured, reinforced
thermoset or thermoplastic composite, is bonded to the inner surface of the macrocore, acting both
to stabilize the thin core walls, and to transmit the shear from the core to the VEM, which lies between
the septum and the inner face skin of the macrocore sandwich. Thus, the VEM is placed in full planar
shear. The inner skin is relatively thinner and lighter than the outer skin, and holes or orifices through
it connect the individual cavities formed by the macrocore hexagonal cells to the inside volume of
the payload shroud. The acoustic resistance of the orifices is controlled by their size, length, number,
and the mesh-size of the screens covering them.
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The macrocore design concept illustrated in Figure 10 typifies an all aluminum construction. The
macrocore cell walls are constructed from corrugated aluminum ribbon, and the face skins are
conventional honeycomb panels. Another design that is under active development is a thermoplastic
version, in which the outer face skin is made of thermoplastic honeycomb panel, and the inner face
skin and the macrocore are made of relatively lighter weight thermoplastic honeycomb panel. The
thermoplastic design is shown in Figure 11.
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A large panel was built to test the above concept acoustically. It incorporated the necessary
features to reproduce acoustic performance, but the core was structurally somewhat different to
reduce cost. The hexagonal core cells were replaced by square cells, allowing a simple, low-cost egg-
crate construction to be used. A 1.8 m by 1.8 m (6 ft by 6 ft) panel was constructed for test in the NEL
ARF. The panel is shown in Figure 12 and the TLresults are shown in Figure 13, along with the results
from the prior test of the symmetric panel previously discussed. The upper curves are for tests of the
panel with the orifices open, closed, and covered by a screen of known acoustic resistance. The lower
curves are those from the symmetric panel, already shown in Figure 6. It is seen that everywhere in
the "noise window" the new panel is as good as, and usually much better than the symmetric panel.
Interpretation is made somewhat difficult, however, by the fact that the 50 to 200 Hz region lies in
the stiffness controlled region of the macrocore panel. Tests with much larger curved panels or large
scale shroud sections will be required to completely verify real shroud performance.
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In order to evaluate the acoustic performance of the macrocore shroud, Cambridge Collaborative,
Inc. performed SEA predictions of noise reduction and shroud internal noise level for a macrocore
shroud and an isogrid-type shroud. (Figure 14) The shrouds were assumed to be one of the NLS"growth" shrouds, 10.7 m in diameter by 36.3 m in length. (35 ft by 119 ft) The Isogrid-type shroud
was provided with the usual 7.6 cm (3 inch) thick fiberglass acoustic blankets. It can be seen that themacrocore is predicted to outperform the Isogrid-type shroud by 5 dB in OASPL, with the biggest

part of the improvement lying in the desired 50 to 200 Hz region.
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AfhtwWsang d ,nlyals had validated the acoustic perfomance of the macmrcore shroud design
co.cep% the next step was tD perform a study to verify such things as structural integrity,
m ft ra ty, weight and cost. Initial steps have been completed to validate the macrocore
design including both analysis and testing. Basic structural requirements were taken to be those for
a growth NLS vehicle with a 10.7 m diameter by 36.3 m long shroud (35 ft by 119 ft), thus providing
a comservative estimate for shrouds likely to be needed in the next 20 years. The macrocore
construction was designed to meet the structural loading and acoustic requirements. NLS trajectory
analyses gave a value for a maximum compression design lineload of 403 kgm (2250 lb/in), which
was used for this study. The outer honeycomb face skin was assumed to carry the total design
lineload. The macrocore cell was sized to meet acoustic requirements and stabilize the outer face
skin. Tokeepourestimates conservative, it was initially assumed that the inner face skin carried no
of the load. Buckling analyses were performed to determine compression buckling strength of the
shroud walls. Core shear tests were conducted to assess the shear strength of the design and
determine the shear stiffness properties of the macrecore for the buckling analyses. The shear test
setup and some results are shown in Figure 15. In addition, tensile tests and bond strength tests were
performed to verify the joining methods. The results of the tests performed to date were universally
positive, with the macrocore performing as predicted.
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An important structural consideration was heat transfer to the VEM layer due to aerodynamic
heating of the shroud external surface. Analyses were conducted both for a worst case launch
trajectory and for heat soak on the launch pad. The results are shown in Figure 16. Due to the thermal
lag between the inner and outer face skins, the maximum temperature at the inner surface of the
shroud is only 54 degrees C (130 degrees F), which is acceptable for the VEM and within NLS
thermal requirements. The temperature history of the inner and outer skins is shown. The inner and
outer skins are effectively isolated from each other by the macrocore. The only physical conductor
being the thin walls of the core, heat transfer must be accomplished primarily by radiation and
convection.
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Detailed studies have been conducted of the manufacturing processes for both thermoplastic and
aluminum macrocore shrouds. A natural outgrowth of the manufacturability study are cost and
weight estimates. These are summarized in Figure 17, where comparisons are made with an Isogrid-
type shroud
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CONCLUSION

In summary, a new structural design concept has been developed for use in launch vehicle
payload shrouds. This structure has several unique features, resulting in the following advantages:

Effective noise reduction in the low frequency region of 50 to 200 Hz, where the principal
acoustic problem lies for large launch vehicles.

Very high composite panel loss factor effective in reducing structure-borne vibration.

Lighter weight than present shrouds.

Lower cost than present shrouds.

Eliminates the necessity for fiberglass blankets.
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Eliminates a major source of contamination.

Highly effective thermal barrier.

The very stiff, lightweight panels can be assembled into an essentially monocoque structure,
without the requirement for extensive internal stiffening.

These features and advantages, though aimed specifically at use in launch vehicle payload
shrouds, are potentially useful in many other structural applications. The designs are still conceptual
in nature and will require additional extensive analysis and testing.
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PROTECTION OF ATTITUDE CONTROL THRUSTERS AGAINST PYRO-
TECHNIC STAGE SEPARATION SHOCK

Ernst Hornung, Deutsche Aerospace, ERNO Raumfahrttechnik*)
Huba Oery, Technical University Aachen**)

This paper investigates a simplified analysis, simulation and evaluation on violent
pyrotechnic shocks. The shock environment at thruster location was specified in terms
of a shock response spectrum (SRS) with a maximum level of 35,000 g above 3,000 Hz.
These values are far above the strength of the elements of the monopropellant thrusters
with flow-control values, transducers, catalyst and wire mesh sieves as potentially critical
items. Therefore, the design approach was to use shock mounts between the 5.4 m
cylinder and the thrusters. Shock mounts with minimum damping have been found to be
efficient against pyrotechnic shocks. The mechanism will be explained by simple idealiza-
tion as a single degree of freedom system. The shock input is idealized as base motion
excitation. Two phases are distinguished which may be typical for a pyro shock environ-
ment at a location close to the pyrocharge:

• A single pulse with an extreme high acceleration level and extreme short duration
(r)

* Followed by quasi-cyclic excitation on a much lower level and with a much longer
duration at high frequencies

Shock testing of the thruster on a shock machine was rejected because of potential
errors in the definition of the specified environment and in the realization of that
environment and in the realization of that environment, especially at the lower frequen-
cies. Full model testing for development of the thruster was possible. The test results as
well as further numerical simulations approved the "minimum damping concept". Anot-
her important issue is that shock severity should be related to the vibration velocity and
not to the acceleration itself.
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Protection of Attitude Control
Thrusters Against Pyrotechnic

Stage separation Shock

1. Introduction

Aerospace structures must be light, consequently they become flexible, thin-walled and
susceptile to buckling and vibrations. Considerable analytical progress has been achieved
in the last years concerning the dynamic response analyses. Modal or global approaches
has been used for arbitrary input excitations.

One area at the response problems, however, has not been deeply dealt with, this is the
structural response on very high level very short duration shocks. In this context the
attempt is made to summarize some basic knowledges and considerations.

Excessive dynamic responses jeopardize the correct function of the vehicle or lead to
structural failure.

Guidance and control sensors can be seriously disturbed by vibration outputs. Large am-
plitudes hurt the clearance limits between substructures or block the control surfaces, or
the gimbaling rocket nozzles.

The most frequent troubles caused by dynamic responses are due to mechanical stresses,
such as structural collapse, rupture or fatigue, or also the failure of electronic devices,
black-boxes and cables. Mechanical stresses are proportional to the vibrations velocity,
therefore the velocity of the vibrations is more suitable to judge the criticality of a
dynamic output than the acceleration. This statement will be explained in more details
in § 2.

Dynamic excitations cannot be avoided, therefore remedies have to be found in order to
reduce the danger of the consequencies. General methods cannot be applied, there are
different devices and design rules for different sort of excitations. Here in § 3 we will
consider the possibilities to reduce the structural responses on violent pyrotechnic
shocks.

2. The Vibration-Velocity Concept

2.1 The Vibration Propagation in a Uniform Elastic Rod

If the end of a uniform elastic rod see Fig. 1 will be hit by a force

P = A()
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the stress will propagate with the velocity
of the stress-wave "c". After the time "t"
the length I = "ct" will be compressed by
the stress a and, consequently, this length

S'l111111 I II I(0,will be shortened by

A w = !I-ct (2)
E E

Milg. 1: Propagation of stress In a rod. giving an end velocity to the initial sec-

tion of

t £

(4)
C This reasoning enables us to define the

stress in an elastic medium, if the vibra -
tion velocity is known

The same argumentation shows that all the sections within the shadowed area of the rod,
Fig. 1 have the velocity V. This way the momentum-equation will define the stress-wave
velocity as follows

JPdt - mAY' (5)

AoAt = Actp c (6)

C2 (7)
p

cmH (8)

Similar analyses can be repeated on a modal basis. We consider now a rod with the
finite length of L which experiences a velocity shock with the velocity Vo, given by a very
large rigid mass M arriving with this velocity, as shown in Figure 2. The relative velocity
(-V.) can be developed in modal components and used as initial condition.

The absolute velocity will be subsequently defined in each instant as the sum of the local
relative modal velocities and of the transport velocity V,.

In this chapter we found out that for a shock-excited rod the absolute vibration velocity
measured in one specific point of the continum is directly proportional to the stress at
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the same location in the same direction,
if the propagation of the stress is due toZ an impact force applied.

V0  -V

FIg. 2: Development of relative velocity In modal
components

2.2 The Relation between the Modal Velocity and the Modal Stress in a free
Vibration of a Continous Beam

It exists a similar relation between the maximum stress and the maximum vibration
velocity in the case of a pure free modal vibration as well:

a.. = 1 X (9)

= 1C, I.p. (a._1 ) (10)

Here, however, the modal velocity vi = aoio and the modal stress a., are measured at
different locations as shown in Figure 3. For the formulas in Figure 3 the beam, if bent,
is uniform and has a full rectangular cross section. For other cross section forms working
in bending holds e.g. for the 1st and 2nd case in Fig. 3:

I H1ff -(11)

2r,

where H is the height and r. radius of gyration of the cross section. This formula shows

that K is equal to 1.73; 2; 1 and 1.41 for a rectangular, circular, two-flange, and thin-
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walled tube cross section form, respectively. In all cases, only the bending or extensional
flemxbility (no shear) has been conside:.ed.

It is worth noting that for a simply supported beam with a concentrated central mass m
(rn/m beam = 10) we find K = 9.7.

Actual Case Proportionality: r

1,732

IV"

14 1,732

Fig. 3: Relation between the maximum modal
vibration velocity and modal stress for uniform
beams with full rectangular cross-section and
without shear deformations.
location of: v modal displacement (velocity, accel-

eration) measurement
' modal stress measurement
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2.3 Correlation between Vibrations Velocity and Stresses for different Materials

Material p E ,,iodt The formula
Kg/r 3  Pa of Thoh eoaon formul

c4--- f Ns/m3 VQ 1  P Pi (12)

n/s has been explained in the chapter 2.1 and
ilt aio~y 70 7S 2M00 7.S.10' 5.175.4

T6 1.45.10, in Figure 3. The factor Vp is depen-
Sto Co.M. 70 .110.11 S,18.7 4.0,7.l0' dent on the structural materials, as shown

TMtanum 6ALAV 4700 1.1.1011 4A37.8 2.27.16' in the Table I.
Consequently, a vibration velocity of e.g.

Table I: The factor VE p is dependent on the 1 m/sec and K = 1 corresponds to a
structural materials stress of 1.45'10 N/m2 (or 14.5 N/mm2)

in a light-alloy beam. We recall, however, to § 2.1 where we stated that K could be for
a SDOF system easily as high as 10.

In general, in aerospace structures vibration velocities up to 1-2 m/sec are allowable,
depending on the circumstance whether a unique stress peak or an alternating load has
to be taken into account.

2.4 Comments to the Shock Environment Definitions per Shock Response Spectra
(SRS) Concept

It is common practice to define transient excitations by a shock response spectrum
(SRS), calculated with SDOF systems having a standard (say C = 0.05 or Q = 10)
viscous damping. The shock response spectrum gives the maximum response for each
resonant frequency of a potential equipment experiencing the base motion excitation, to
be specified. This approach (SRS) could be a useful approximation tool, if the shock is
not too violent ("violent" i.e. "very high" amplitude for "very short" duration) although
also in these cases the SRS cancels and/or distorts some important information. Atten-
tion must be payed, in additon to check wether the mathematical model used for the
calculation of the shock-response-spectrum is representativ for the specific problem
investigated or not.

We believe, however, that pyrotechnic shocks - which are really "Very violent" - need a
more precise definition, as this necessity can be proven by the invetigations decribed in
this paper.

The specifications of pyrotechnic shocks if based on shock response spectra, belonging
to a given damping value (mostly Q = 10) should therefore be revised. Indeed, the
usualy defined straight lines envelope is not representative, even for the tested structure
for many reasons:
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i) it does not consider phase relations and multi DOF generalization

ii) the same shock spectra can belong to an infinite number of excitation time-histories

iii) shock spectra are not complete without the knowledge of the place and direction
of the measurement (or prediction)

iv) the enveloping of the response curve ignores the feedback effects of the compo-
nents and this way can lead to important over- or under-estimations

v) the establishment of the shock-spectra should consider the different types of shocks
(short duration or long lasting shocks: force/motion/velocity or acceleration shocks
etc.) and their time histories. Indeed, e.g. the structural damping can be useful or
unimportant or even harmful and decisive according to the type and duration of the
shock as well as type and location of the damping.

The standard shock spectra are usualy established using a Q-amplification factor of
Q= 10 (strictly speaking a damping of 5 %). It is necessary to do so, because the forcing
functions contain sometimes periodic terms which would lead to infinite responses for
non damped resonators. However, especialy concerning the point v.), the arbitrarily
chosen model and damping value can influence the conclusions in a good or in a bed
direction.

3. The Pyrotechnic Separation of the ARIANE 5. 2nd Stage (EPS)

The actual task was the protection of thrusters for the ARIANE 5 attitude controle
system against pyrotechnic stage separation shocks.
Figure 4 shows the configuration of ARIANE 5 with

main stage
solid propellant booster EAP
separation plane

and above separation in a concentric arrangement

vehicle equipment bay VEB
at the periphery

second stage EPS
in central position.

In our case, the attitude control thrusters are located at the VEB. They are combined
to clusters of three. The clusters are located at the lower edge of the VEB, in order to
provide maximum lever arms for the attitude control maneuvers. Thus they are very
close to the separation plane.

The local cross section to be separated by pyrotechniques is an aluminium cylinder with
a 5.4 m diameter, 6 mm thick in the separated section.
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The shock environment at cluster location
was specified in terms of a classic shock

2nd Stage, EPS response spectrum (SRS) with a maxi-
mum level of 35000 g above 3000 Hz

Vehicle Eqmt. Bay VEB (corresponding to a velocity v = 18.6 m/s
at 3000 Hz, and with a structural dam-
ping of 5% or Q = 10 of the responding

ACS Thruster Cluster 1 DOF system, see Figure 5. This speci-
fication corresponds in order of mag-

Separation Plane nitude to actual measurements made in a
pretest, where half sine like shocks with
peaks up to 45000 g and duration of
40jus ÷80 jss have been monitored on
the shell.

6 Solid Propellant These response values, even at 3000 Hz
Booster EAP with v = 18.6 vibration velocity are far

above the strength of the elements of the
SMain Stage monopropellant thruster with flow controlvalves, transducers, catalyst and wire

Peak acceleration

Fig. 4: ARIANE 5 Configuration

mesh sieves as potentially critical items. There- 10_0_ _

fore, the design approach was to use shock35ooo g t• i t -

mounts between 5.4 m cylinder and cluster. g I 1_ 1_ 1 _1
I10000 IIt must be pointed out, in addition, that these 0 3 s 10 15 20 25

clasic shock spectrum seem to have been kHz
calculated with a specific, damped SDOF
model. We find this model in the relevant Frequency
literature Ref. [3] (Harris and Crede) and Fig. 5: ARIANE 5, specified shock respon-
show it on Fig. 6. se spectrum for Zone '21"

The diagram in Figure 6 shows smaller respon-
ses when the damping is increased.

EAD-8



However, when looking to the equation of motion:

M I C-1 + - usin -*
k k

we see that the term which represents the damping force

C .1

here is depending on the absolute displacement of the mass m and on the absolute
velocity t, but not on the relative displacement x-u. I.e. the dashpot is between mass m
and inert reference.

Such a system, however, is normally not
re[resentative for a shock mount, where
stiffness k and damping c are properties CP%"
of one and the same elastic member -
between moving base and mass m, see U
Figure 7 and the shock is a half sine
acceleration shock without final remai- PiI.
ning displacement and velocity.

With the information so far, we were able , 2 2

to establish the input/output requirement T
for the shock mount (see Figure 7). The at C 79t

mechanism of the shock mounts be k ÷ k P -
explained by simple idealization as given
in Figure 8.

The excited equipment is idealized as a
single degree of freedom (SDOF) system, Fig. 6: 1DOF system with damping w.r.t. an
tuned to a low resonant frequency. inert reference per ref. [3] Harris & Crede. Not

representative for the present problem.The low damping of the shock mount is

represented by the dashpot with a small damping coefficient c. The shock input is
idealized as base motion excitation. Two phases are distinguished which may be typical
for a pyro shock environment at a location close to the pyro charge:
"o First a single pulse with extreme high acceleration level and extreme short duration

(7)
"o Followed by quasi-cyclic excitation on much lower level and with much longer

duration at high frequencies.

(Such quasi cyclic excitation can arrive with several frequencies at the same time the
sonsequencies can be superimposed)

It is understood that no residual displacement and velocity of the base exist after the
shock. The response of the SDOF system to the first very short duration pulse is mainly
due to the forces transmitted by the dashpot, since the duration is too short (i.e.
fo«<<1) to Fild up relevant relative displacement and spring force. Therefore, the
response will be low as long as the damping constant c is small.
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response will be low as long as the dam-
ping constant c is small.

Innut System Output The response of the SDOF system to the

subsequent quasi-cyclic excitation is that
half sine pulse IDOF SRS <057 f to an overcritical stationary excitation, i.e.

40000 g the responses will be low with the low

damping ration • = c/cct.

"cc For extreme short shock pulses and for
subsequent quasi-cyclic excitation, which
is overcritical a shock mount with low

L40 s lo.f damping is advantageous.

The second ovservation was that in case
of a pyro shock the displacement of the
base at the end of the shock event asM~g. 7: Input/Output requirement already stated is and remains zero. (Ta-
ble II)'

for 0 -C t T fort: o and t -r For short duration shocks i.e. rf.<<1

a ausin 0 19 = U =0 provided the system is undamped, onlya - m 1 t affi •., •othe impulse

I = fi tdt
is important, not the time history. If the
system is additionally damped, also the

a --- A ow 0 t +A initial velocity 6 (t = 0) can play a consi-
a derable role - especially for extreme short

S-2 sin 0t+ A t + Bdurations.

020wbut a. aB

at t-0 and t=I

Table A: Acceleration shock with no final dis-
placement
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UndamW %mtem

During the time of the shock 0 < t < r the acceleration is due to the spring force

= -. S2!,kLm2

I 
(13)L - 4(f.,' (1?

wit =--;o= w.f.2x

in the inital phase.
After the shock (t > r) the system per-

System forms a residual vibration

I' I I PAd t"" •
m " (14)

k f uA 4 444 --1.t an0

leading to
R : / ,-n {c)_(15)

S• - 16 (f.i)'

in the residual phase.

' SAO ! Damped Wstem

. The first observation "rf.<< 1 allows toS~neglect the spring force and to concen-

trate on the damping force.

,F(dm) - A - c at ta- 0

fo f• >F(damp) >-a• at o<t<t

Response is low when: 
(16)

The second observation; u (final) = 0;
f small f <allows to define the velocity of the base
C small c small ag.. a. -- (17)

at It-aO.
Fig. 8: Shock mount with minimum damping
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Equation (16) and (17) yield the max force within the dashpot at t=O.
The resulting acceleration response S.. is:

1

with e,= 2wom - 4xfom (18)

F_, - 4 a.. v "Cfon

F_, .4a,.-c.( No.€m• • 4, Io C (19)

1.0 ________undAmwpe

n. ._ -- I In the cases where the assumption (fr=

"(.) < < C) is no more fullfilled, both dam-
u.r,•pW ping force and spring force should be
i tal _,,considered, leading to the formula

0 •.01 /belonging to the initial short phase.
4- 4C(for) i •,

In the residual phase, the maximum
acceleration can be given approximately
for the damped system as follows:

(1) = *+ 4C2 16 (f%:)' (21)

Equations (13), (15) and (19) give the
shock response evaluations as shown in
principle in Figure 9.

001 Reps oAll the measurements on the shell during

Fig. 9: Response of SDOF system to very short the simulated stage separation show after
duration half sine pulse. the above treated half sine peak a quasi-

harmonic motion with very high frequen-

cy giving a periodic excitation for the equipments assembled to the shell.
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The force transmitted between the mass-point and the base, vibrating in a harmonic
motion, is given by the formula

(FP - C (0-6) * k (x-u) (22)

and, the acceleration of the mass m

+ A (k-N) (23)
- U

The transmissibility T, which is the ratio between the output/input acceleration am-
plitudes is in stationary motion:

-" 1.(2C•1r) 2 (24)
a -:l+

the phase angle will be defined as follows:

Wo0

These formulas have been plotted in Figure 10.
For very highly overcritical excitation (HOC) i.e. w/wo 2 10 and low or moderate
damping, the above formulas can be reduced to

for 1o (26)
EDo



In the case of even higher excitation
SOC

- 0 frequencies i.e. > 100, also

I0 _ the following formula gives a good
I0M_ approximation

Tvvc=2 C -ý ; for -!ý > 100
to(a (aO

I I low I1I

6 1f (27)
I IW, U-llll

S .In Figure 10 as well as in the above
X &M III equations it can be seen that for

/. ,such excitations the damping is
rather harmful, it increases conside-

,,, .. rable the transmitted force.
Ilt I , I I!J

The Table III summarizes all theI 10.10" shock response formulas defined in
Go- I this chapter.

Let us consider a realistic example,
a 4 2 0.3 0.4 0.6 aL .o 2 3 4 , 1 to with the following input data.

RATIO: FORCING IFROUCICY-
NATURAL FRtOUtNCY -Shock input:

ISO 0+ "o A half-sine violent peak
440

-,oo~ql ., .1=010-6 see

Go .o followed by a quasi-periodic mo
Z Qt0 tion

0 Ha =5000 g;

0•1 02 0.4 0.60C4 2 4 ,1to f,= =10000Hz
RATIO: FORCING FRtOUENCY *.

NATURAL FREOUENCY * 71

Fig. 10: Transmissibility and phase angle SDOF System

o f= 50 Hz
o =0.05
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Shock resAx~ses

o to the half sine peak (f.r = 50 • 40 • 10- = 2 . 10"3)
- initial phase

(A). 4c 10(P)

or * 16 g

Half-sine shock Harmonic excitation

Initial peak Residual amplitude

. P ((C) A (f (Aj ÷ ii)

P~f; W4.v A (f*;) -i ý1 4C2.

-16 V4:9 T-(.) - J -

orif- =T(__. 1O

TH~ =E() 2 2+Q(

1_ + ( 2 C1 )

or if 2L k 10

and if
- > 100

wo

TIO - 2C-'

Table lI: Shock response formulas
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"o residual phase

( ')lh - / + 4 ( 2 • 1 6 Qr )3  1 .3 1 0- '

or ? = 5.2.10-3 g

10'"o to quasi-periodic excitation (/w. -=L- = 200) (equ. 24)so

or I, =5104-5000=2,5g

We reproduce now the same values without and with damping:

without damping with 5 % damping

2 [8| 0.64 g 16 g

in [9] 1.28 .10-7 g 5.2 _103 g

Sfg1 0.125 g 2.5 g

Specific Requirements for the Design of Shock Mounts

With the dimensionless acceleration response (Equ. (19))

the requirement is to design in the first approximation for

"o low resonant frequency f.
and

"o low damping ration •.
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The physical meaning of the above two requirements is to design for a low viscous
damping coefficient c.

C Cc¢ca.'--"2oom"- =4:fom C (29)

In the Fig. 11 we enlarged further this mathematical model, using the same reasoning.
Now the platform holds a component. Feed-back effects will be disregarded as before,
based on the very low mass relations between the platform and the resonant elements
inside the component. It can be seen, that in the component respons we will find besides
a shock peak, responses at the eigenfrequencies of the platform, of the component and
of the periodic excitation of the shell.
Some numerical examples have been presented on the Table IV. We can conclude that
a "very low" suspension frequency for the platform with "very low" damping is the best
protection for the components on the platform against very short duration violent
acceleration shocks and/or very high frequency excitations. High damping inside the
components is desirable.

Component
X

x"- Oin W~t

<K I t•/q

Platform o /••

7x U

!l I I asin w,t**10

u~sin Wt

'a,,

Fig. 11: Output accelerations on platform and component (no feed-back).
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Initial Peak Quasi-Harmonic Residuals

Component o free

x. = PfT

A, o Wi: ' (z )j O )

o excited (2); (3)

X =T (-)%& sin tV

RII1

ju we

=T(* A (=v) * ÷ s4- Wi I

Tx = T(-:2) * T ¢ (-L!) snW

Platform o, free

o exiated

z T () 5%* sin w/

o T1I+ (2Coj/W) 2

P f)4(f IJFC I ~ + (2Co/0)2

A +f) 4C2 . 16 (f C3oif z1

o if -ý! > 100
w*

TT 0 Cw
= C21+ w 5)

Fi. 1 on~d Otptacelraios n ltfrman cmpnet (nofe-ack
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NO FEED-BACK

Platform response WfI Component response [gi

Cp 14 Us Cc Sharp harmonic harmonic Sharp half harmonic harmonic f, harmonic f
half f Saie

10. 18.06 0.573 62.7 7.4"10' 1.48"10" 28.68 0.169
5.10.1 113.2 0.576 140.1 4.65"101 9.29"10" 28.82 0.378
0.10 0.01 224.7 0.585 258.3 9.2"102 1.84"102 29.24 0.697

0.15 200 336.5 0.599 318.1 0.138 2.76.103 29.94 1.028
0.20 448.3 0.617 505.0 0.183 3.67"10- 30.89 1.363

1.10-3 0.058 1.84-10s 292.4 0.647
2.5"10'3 0.606 1.84"10' 116.9 0.65

200 5.0"10' 224.7 0.585 258.3 0.068 1.84.10-' 58.48 0.66
1.0"10' 0.092 1.84"10,3 29.24 0.70

0.10 5.0"10W 0.361 1.85"10, 5.88 1.45

50 5.75.10. 2.88"10' 3.9-10' 3.35"10-2
100 1.7.10" 2.3-10- 0.195 0.164
200 0.06 1.84"103 116.9 0.65
500 2.5"10-3 224.7 0.585 258.30. 0.362 2.88"10-' 0.696 4.10

0.10 1000 1.44 0.23 0.610 17.2
2000 5.75 1.84 0.59 86.1
4000 23.01 14.72 0.586 5.17"10'

10' 4000 2.5"10": 18.06 0.573 62.7 1.85 1.18 0.57 1.25"10'
0.05 1.94 1.18 0.57 630.2

Table IV: Some numerical response examples for the Fig. 14

Indices: r = 4"10 sec
"p" = platform dii = 70 000.0 [g]
"c" = component fs 4 000.0 [Hz]
"s" = shell iUR = 25 0 0 0 [g]
"i" = initial fp= 200 [Hz]
"R" = residual p=

4. Hardware Development

It was decided to have two shock mount typs during the development phase:

"o A typical visco-elastic shock mount
"o A steel spring shock mount with low damping
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4.1 Viscoelastic Shock Mount

The viscoelastic shock mount
is shown in Figure 12.
The design principle was

o to use a selected viscoelastic
material with good resilient
properties in tension and
shear in form of washers
bonded to the aluminium
members

o to use multiple joints i.e. to
increase the number of J/F's
and to change several times
the material of the trans-
"mission path for the in-
coming shock wave

o to change the direction of
the transmission path two ti-
mes by 900

o to use floating bolts i.e. to
protect nut and head by
viscoelastic washers.

o to have no row of connec-
tion bolts along the lower
edge of the dummy in

Fig. 12: Vlsco-elastic shock mount. parallel and close to thepyro charge.

Identical number and hole pattern for J/F bolts to the primary structure for visco and
steel shock mount was foreseen in order to have the same boundaries. It has to be noted
that corresponding to § 3 with the viscoelastic shock mount higher responses were to be
expected than with the steel spring design.

4.2 Steel Spring Shock Mount

The steel spring shock mount is shown in Figure 13.
The design principle was to realize the low fundamental resonances for the three degree
of freedom of vibration (in translation) and the low damping ratio by
"o a steel strip spring design
"o made from high strength steel
"o dimensioned for conservative displacement
"o with minimum J/F damping achieved by use of thin narrow washers at J/F's which

efficiently reduce the J/F area. No counter plates.
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The shock mount consisted of four L-
shaped steel strip springs, which provide
elasticity in axial and tangential direction,
in combination with four U-shaped steel

1 a strip springs, which provide elasticity in
S I radial direction (with respect to the

0. launch vehicle). In order to save space,
the stcel strip springs are somehow
"wrapped" around the edges and corners
of the cluster plate. Plus/minus 5 mm

1 dynamic clearance was foreseen in all 3
directions.

000 0

Counter plates were removed in order to reduce
damping

FIg. 13: Steel-spring shock mount In 2 m diame-
ter model.

FIg. 14: A resonating comb (an
array of reeds) - measurement
device.
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5. Pyro Shock Tests

5.1 Test Approach

2 m Diameter Model / Development Test Shock testing of the thruster cluster on a
- with two 14 kg cluster dummies shock machine was rejected because of

- one on viscoelastic shock mount potential errors in the definition of the
- one on steel spring shock mount specified environment and in the realiza-

Full 5 e Model tion of that environment, especially at
- with viscoelastic shock mounts lower frequencies, in this case below

- one with thruster dummies 1000 Hz, where the thrusters might beco-
- one with real thruster me critical.

Table V: Test Mod&,ils for Pyro Shock Tests Full model testing for development of the
thruster cluster was possible, since such a
test program already existed with the goal

to provide an acceptable shock environment for the equipment platform within the VEB.

Thruster cluster hardware became involved in two models of this test program. (see

Table V.)

5.2 Test Results

The ACS clusters were instrumented with accelerometers on the dummy plate and
thrusters. For the Full-Model-Test an additional mechanical measurement device was
installed, a resonating comb (an array of reeds) with different SDOF systems. (see
Figure 14). The responses are measured with strain gages. This data allows to proof the
shock spectra for components located on the platform.

5.2.1 Evaluation Philosophy

Since acceleration vs. time signals are not directly informative about the damage potenti-
al of the shock, they have been transformed into
"o low pass filtered signals with different cut off frequencies in order to obtain structu-

ral design loads from low frequency excitation for supports and shock mount itself.

"o Standard shock response spectra (Q=10) (acceleration response of a series of single
DOF systems) in order to estimate potential resonant responses at equipment fun-
damental and higher order modes.
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o Velocities from shock response spectra i.e. comparison against "0.80 f' rule in order
to check the criticality of the shock for the thrusters on the cluster panel. The allow-
able vibration velocity of say, 1.25 m/sec can be namely expressed in terms of the
acceleration as follows

a [g] 0.8 f [ o .t (30)

5.2.2 Evaluation at Low Frequencies

Structural Design Load Factor for ClusterPanel

The structural design load factor for the
2 m 4 - Model $ W,, . cluster panel and the shock mounts them-

Model selves is found by low pass filtering of the
Visco Panel Steel Spring Panel Visco Panel acceleration signals with a filter cut-off
f. - 180 H-z If. - 50 Hz f. = 125 Hz frequency in order to cover conservatively

Filter Cut-Off Frequency the effects of higher order modes.
1 • f, - 200 Hz 1 .f. = 50 Hz - 200 Hz

nt fi64 g (nt =i<13 g) nL= 15 g The longitudinal load is in the plane of
Filter Cut-Off Frequency the cluster panel and therefore less criti-FilterO0Hz 2u-ff 10qHc -cal. The radial load factors nR are of

2•f,-40Hz= 2 g f. - Hz - 400 Hz higher interest. (see Tabel VII)
I!L = 92 g I nL = 13 g InL = 30 g

2.4,•- Model j5 m 4- Model

Table VI: Longitudinal Design Load Factor Visco P Motel Spring VisoPel
Visco Panel Steel Spring Visco Panel

f, = 180 Hz Panel f. = 125 Hz
f. = 44Hz

With nR between 35-54 g for the visco panel Filter Cut-Off Frequency
the shock is becoming the design driver. I • f- 200 Hz . f. = 44 Hz _ 200 Hz

design load factor. Also a stiffness require Fi 44 Fre<uen2y

ment for the panel alone has to be observed. Filter Cit-Off Frequenc4
2 -f.'400 Hz 2 -f. 0 0IHz 2 -f. -400

¢2 " "v• " = -54Hz (31) Hz
nR 54 g nR = 6 g nR =f3J5g

However, there will be no problem to fulfill
the 54 g and 254 Hz requirements.

Table VII: Radial Design Load Factor
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5.2.3 Evaluation at Medium Frequencies per SRS

ShockShock Rtsponoe Sptctiuni %-Ltous absorb
Sb~~~~k i±A17 ti41a str U

W ill- ...... ....

~ La~reiacu~. adia~xi IU.t$4:. ha~ ~ amp~ieASM2

t bsokr ~. .

IU'~~~~J.4~t 
-_ A~ t B W a 111

2 0.140 .1 (14 ** .1, . _L28. .1O I6M
.7..... l C-osi. A BSMA r•**r.

...._ ......... . %iumtk All S Ma X

IOU00610. 60.

41t44 - 4

* ý .. ..... ::: Cl'I1 BSM XPW5::..J ~ ~ ~ ~ ~ ~ ~ 'Uok *'A'{i' MAXolt B AX-i3jI:i
24 IR IOU all)taltj lo -

Ta uid .. ..... .. .~ *4:'-~: .... i..,~.I~a~reomc' I J~zr:,..................
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Fig. 15: Test Results from the 2 m iameter Fg.1:TsReusfrmte5mDatr

resonances ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Copok ofS hecmoetmihbealctdthnwcacmprm values
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Visco Panel Steel Spring Panel

nm, ff= nL = 280 g nL = 70 g
nR= 200 g n,,,p = nR = 1log

It is obvious that here the design of the components has to be checked against shock
loads on a case-by-case basis using the SRS and info on resonant frequencies, for all
three axes.

Test results from the 5 m diameter Model Test (see Figure 16) (visco
panel only)

The viscos panel SRS fulfills the .57 f requirement. The maximum acceleration responses
are nL = 130 g

nR = 250 g

5.2.4 Evaluation at High Frequencies f > 500 Hz per SRS

o 2 m 46 Model

The steel spring panel SRS is in the hole range below the allowable (0,57 f) line, the
viscous panel SRS exceeds it in the range 550 Hz - 2400 Hz.

o 5 m 46 Model

The visco panel fulfills the .57 f requirement.

5.2.5 Evaluation of the Comb-Device-Measurements on the 5 m Diameter Model

Not yet available. Will be published later on.

6. Final Conclusion for ARIANE 5

For ARLANE 5 the viscous shock mounts were selected with the following justification

"o No problems have to be expected w.r.t
- stiffness requirement
- damping requirement
- sine vibration test responses
- random vibration test responses

o The shock responses of the thrusters on top of a viscous shock mount are within the
actual capability of the thruster and below the 0.57 f requirement for the actual
model, they were higher in the previous tests using a 42 m model.

"o potential general problems with the material characteristics of the viscoelastic
material are solved for ARIANE 5.
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6. Summary

o Shock is not the only structural dynamic environment. There are also low frequency
transients, sine and random vibrations.

o As long as the shock is not a design driver, equipment boxes are protected by
conservative requirements w.r.t
high fundamental frequency and
high damping.

These requirement sometimes might be very conservative. However, one has to admit
that they always increase the margins of safety of equipments against low frequency
transients, sine and random vibrations.

"o For shock protection the needs are opposite. When in future high level shocks may
become the design driver, then high resonant frequency and high damping will
decrease the margins. Then an optimum has to be found which considers vibration
and shock.

"o Thus for minimum damped shock mount there exist problems with applicable
requirements w.r.t. damping C = 1/2Q, fundamental frequency f. and w.r.t. vibration
test responses. So the minimum damped shock mount has to be adapted to the
applicable requirements of the specific program.

"o For the use of viscoelastic material there exist general problems with the material
characteristics, as
scatter in mechanical properties
creep and permanent set
sensitivity against temperature
sensitivity against different chemicals
(for ARIANE 5 these problems are solved)

"o The vibration velocity concept directly relates vibration induced stresses in a structu-
ral member to the vibration velocity of the member.

"o It has been shown that shock mount with low damping gives the best protection for
sensitive components against pyroshock environments.
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A BOUNDARY ELEMENT FORMULATION FOR DYNAMIC ANALYSIS OF
VISCOELASTIC FLUID-DAMPERS

NICOS MAKRIS1

University of Notre Dame
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ABSTRACT

A general boundary element formulation is developed to predict the dynamic response of
viscous dampers containing viscoelastic fluids with constitutive models containing generalized
(fractional or complex order) derivatives.

The fundamental solution of the equation of motion of such fluids is first derived. This
solution is used within the framework of integral equations to formulate a boundary element
method for the dynamic analysis of generalized viscoelastic fluids. The method is applied for
prediction of the response of a viscous damper containing a viscoelastic fluid in the form of
silicon gel which is modeled by a fractional derivative Maxwell model. The predicted response is
an excellent agreement with experimental results.

1. Presenting Author: Department of Civil Engineering and Geological Sciences, University of Notre Dame,
Notre Dame, IN 46556-0767.
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INTRODUCTION

Viscous dampers have found wide application in the shock and vibration isolation of
industrial machines, equipment, pipework systems and buildings (Huffman 1985, GERB 1986,
Makris 1991b,1992). Modeling the behavior of viscous dampers is an increasingly important
problem because of their wide range of applicability. The difficulty in constructing realistic math-
ematical models stems from the strong viscoelastic behavior of the fluid used in such units. The
mechanical properties of this viscoelastic fluid are strongly frequency dependent. This frequency
dependency is responsible for the significant elastic stiffness that these dampers manifest as
frequency increases and a ten-fold decrease of their damping coefficient within the range of 0 to
50 Hz.

Structural engineers are primarily interested in macroscopic models that describe the
response of structural elements, including viscous dampers, at the force-displacement level.
Although such models are practical and they can be directly used for analyzing the global
response of structures, the parameters depend both on the mechanical characteristics of the mate-
rial as well as on the geometry of the unit. This latter dependency results in calibration of the
model parameters for each different damper size, and therefore individual testing of every single
configuration is required.

Analytical procedures which can predict the mechanical properties of these devices and,
thus, reduce or eliminate the need for comprehensive testing are useful. Particularly, they are
useful in the design process of new configurations of such devices. One such attempt has been
made by the authors (Makris 1993b) in modeling the behavior of a particular type of viscous
damper. In this case, a macroscopic model for the behavior of the damper was proposed and its
parameters were determined by analytical means. This involved a series of physically motivated
assumptions, which simplified the governing equations to the extent that closed-form solutions
were possible.

The procedure described in this paper is general as it can be applied to any geometry. It
requires only knowledge of the constitutive law of the fluid. Within the limits of linear viscoelas-
ticity the constitutive law is considered in its most general form, containing fractional or complex
order differential operators (Makris 1991a,1993a). The basic fluid dynamics problem of solving
the equations of motion and continuity together with the constitutive equations is resolved by
application of the boundary element method. These equations are first transformed into the
Laplace domain, and an infinite space fundamental solution is obtained. An integral representa-
tion is then developed to produce a formulation exclusively in terms of surface variables. The
resulting integral equations are solved approximately by employing the method of collocation,
along with numerical quadrature. The computed mechanical properties are found to be in excel-
lent agreement with experimental results over a wide range of frequencies.

DESCRIPTION OF VISCOUS DAMPER

Figure 1 shows the geometry of a typical viscous damper. It consists of cylindrical
container of radius r2 which is filled with silicon gel, a high viscosity fluid. Within the container a
piston is able to move along all directions. The outer surface of the piston features a smooth top
portion and a lower portion containing ribs. The ribs serve the purpose of interlocking the fluid,
thus preventing fluid slippage during motion of the piston. The bottom of the piston is hollow and
contains a large number of inner pipes of small diameter (usually 15 to 20 mm diameter). This
arrangement allows for penetration of the fluid into the pipes and ensures full contact and bond of
the fluid with the bottom surface of the piston. The effectiveness of this arrangement is demon-
strated in Figure 2 where recorded force displacement loops appear to be perfectly symmetric.
This observation also indicates that gravity forces are insignificant in the response of the system.
The analyzed damper had the following geometrical properties: r, = 0.062m, r2 = 0.13m,
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H1 = 0.12m and H 2 = 0.06m.

IThe fluid used in the tested damper is a form of silicon gel with mass density of 930 kg/

m3, which is slightly less than that of water. The rate-dependent and frequency-dependent proper-
ties of the fluid were determined in tests employing the cone-and-plate method (Bird 1987).

First, the cone-and-plate method is steady shear flow was used to obtain measurements of
the dynamic viscosity of the fluid. Figure 3 depicts measured values of viscosity as function of
rate of strain for two samples of the fluid at temperature of 250 C. At low strain raTes the viscosity
has a value of about 2000 Pa-sec (20,000 poise). Beyond the value of 2 sec , the viscosity
reduces considerably.

Oscillatory shear flow experiments using the cone-and-plate method were used to measure
the storage and loss shear moduli of the fluid. In this test, oscillatory shear flow is imposed and
measurements of the induced shear stresses are made (Bird 1987). Figure 4 shows measures
values of moduli G1 (w) and G2 (o) as function of frequency at 10% amplitude of shear strain.

Attempts were made to fit the properties of the fluid with conventional models of
viscoelasticity (Makris 1991a). It was not possible to achieve satisfactory fit of the experimental
data over the entire range of frequencies. However, a very good fit of the experimental data was
achieved when the Maxwell model was used with its first order derivatives replaced by fractional
order derivatives.

The shear stress-strain relationshiy in the fractional derivative Maxwell model is

S+ .D" [,1 = ADoq [7 (1)

in which r; and y are the shear stress and strain, respectively, X and gt are generalized material
constants, and Dr = d"/d( is the fractional derivative operator of order r with respect to time.
Representations of fractional derivatives in terms of the Riemann-Liouville integral, or the Grun-
wald infinite series may be found in Oldham and Spanier (1974). Herein we shall define the frac-
tional derivative of order r of a time-dependent function f(t) in terms of its Fourier Transform.

F ]Drf(t)I = F d'f(t) 3 = (iw)rFf(t) ] (2)

For the calibration of the proposed model, analytic expressions of the storage and shear
moduli were determined from equations (1) and (2):

C0)qcos (jq) l+ ;Lcrcos (-) n + gktwcq + r sin (,r-) sin (,q)

G = (0) = d (3)

jJo(qsin ( F)[ + Xcrcos (2)] -Xcq+ sin(2)cos(i)
G2 (0) = T d (4)

d- 1 + X2(2 + 2Xorcos (2) (5)
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The four parameters of the model for i.ie silicon gel fluid were determined by the
following procedure. Based on the fact that at vanishingly small strain-rates the behavior of the
viscoelastic fluid reduces to that of a Newtonian fluid, parameter q was set equal to unity. Accord-
ingly, parameter g. becomes the zero-shear-rate viscosity and should be equal to about 2000 Pa-
sec (Figure 3). Parameters X, r and g were determined in a least square fit of the 8q•perimental
data on the storage and loss modulus at 5% strain. The result was . = 0.3 (sec)", r = 0.6,
q = I and g = 1930 Pa-sec. The value of gt is in very good agreement with the experimental
results for the viscosity. The values of moduli G, (w) and G (w) predicted by the calibrated
equations (3,4) are plotted against the experimental results in Figure 4. The agreement is seen to
be very good.

GOVERNING EQUATIONS AND FUNDAMENTAL SOLUTION

The equations of motion and continuity for an infinitesimal element on the fluid which is
assumed incompressible are, in tensor notation,

[ (7i + jvi) = ij ap(6( a -a N -a(6

S= 0 (7)

where p is the density, v: is the velocity vector, 'r.. is the stress tensor due to the viscoelasticity of
the material and p is the pressure. The generalize8 Maxwell model of (1) is now written in tensor
form in terms of velocity gradients

dr /Cl)- +C)Vj(8)

Equations (6) to (8) form a set of noninteger differential equations that have to be inte-
grated over the domain occupied by the fluid. Equation (8) describes the behavior of a fluid with
memory and therefore in its present form is valid only for infinitesimal displacement gradients.
Under this condition, the nonlinear term of the substantial derivative in equation (6) drops for all
values of Reynolds number (Landau and Lifshitz 1987), resulting in a linear set of differential
equations. Accordingly, this set can be transformed into the Laplace domain by noting the prop-
erty of the Laplace transform of a fractional derivative

n-i

L {Dr f(t) } = srL U(t) I - I skDr- I -k[f(o), n - I < r < n (9)
k=O

where s is the Laplace parameter.

In the Laplace domain the equation of motion and constitutive equation become, respec-tively

psvi = ij a- (10)

~It (s)(a-i + av)(11)

with pt* (s) representing the complex viscosity of the material
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j.* (s) -G* (s) (12)

Valuable insight is gained by recalling that s = a + iw where a. is the independent variable in the
frequency domain and a is, in general, a real number, its value defining the region in the complex
space where the Laplace integral converges. For functions that do not diverge at infinity, a = 0
and the two sided Laplace transform can be regarded as a Fourier transform with s = iW. Substi-
tuting (11) into (10) one obtains the linearized Navier-Stokes equation in the Laplace domain with
complex viscosity:

S(S) 2 i+a i a si= 0 (13)(a ýax v i 2v ") •p

For incompressible material avj/Ix. & 0 and the second term in the parenthesis in equation (13)
drops. '

The linearity of the governing equations makes the boundary element method (Banerjee
and Butterfield, 1988) an attractive approach for the solution of this problem. This approach,
however, requires the infinite space fundamental solution of equation (13). This solution can be
derived in a straightforward manner by employing exponential Fourier transforms (details of the
procedure can be found in Shi 1992). For a unit force, ej (4, s) , in the j-direction acting at a point

in an infinite three-dimensional space, the Laplace domain velocity in the i-direction at point x
is

vi (x, s) = aij (x - t, s) e, (t, s) (14)

where Gij (x - t, s) is the velocity kernel

Go (x- ,s) = -S d2 x4 ,)xk + C)xiD)xr (15)

with

cIX(r,s) = _( rji* (s) 1 1 - r(ps/t*) 1)2(16)

P rs

r2 = YiYi (17a)

Yi = Xi (17b)

where 5 ij is the Kroneker delta.

The traction field is derived from the velocity field. The rate of infinitesimal strain tensor
is

ik = I (av. - ki = 1 i' ( -4,x) + W (x-,x e(,x) (18)

ik iN)C Xk + at,

The stresses due to the viscoelasticity of the fluid are
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Tik = 21*eik (19)

and the traction field, ti, is given from the Cauchy formula

ti = 19ijnj-pni (20)

where nj is the outward normal to the surface upon which ti reside.

The pressure, p, that develops due to the same unit force is

p(x-t,s) = Gpj(x- ,s)ej(ts) = I Y rej(4,s) (21)4xr2r

Substituting (19) and (21) into (20), the traction in the i-direction due to the unit force is

t: (x, s) = Fij (x- 4, s) ej (4, s) (22)

where Fij (x - 4, x) is the traction kernel.

Substituting (16) into (15) and carrying out the required differentiation, the explicit form
of the velocity and traction kernels in the Laplace domain is derived:

G (r, s) i [g ((Xr)- e - +'21 [- 3g (Xr) + e-x 1} (23)
F. (r, s) = 1gt (s) rY- +k~ r

Fij (r, { (-_ni.+-in+8..-Ynt) [-3g((Xr) +e- ]
2cr2  r r ai r

I k +Yi -• YYj lX k IYj

+(ijr nk +rni)(l+Xr)e r2 [-15g(•r)+( 6 +).r)e-]Yn+ rni} (24)

where

g(r) e r e (25)
-)2r2 - j.2 r2

)= Ps ) (26)
(S)

In the limiting case of creeping motion or Stokes flow (slow motion where inertial effects
are vanishingly small), the dynamic kernels of (23) and (24) must reduce to the incompressible
static Kelvin kernels. Accordingly, by taking the limit as Xr tends to zero one can easily obtain
that

lim Gi.(x- ,s) = Gij(x - I1 (8 ij(27)Ir -*O 0 Upl~ r r2+"-- (7

= F 1 1 3 yiYjyhnk (28)
m .+ (- , Tx = (- - r2 r2
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which are indeed the Kelvin kernels.

For the special case where the viscosity is both real and independent of frequency, the
fundamental solution (23) can be transformed analytically back to the time domain. The resulting
velocity kernel for an instantaneous pulse force can be written as

=t 8 2 0(r, t- t') + 2 0(r,t-e) (29)

with

lila ( pa 2  )da (30)•~~ ~ 0r t-t) -te 4gt* (t - te))

This is precisely the form given for a Newtonian fluid by Oseen (1927) in his classical mono-
graph.

INTEGRAL FORMULATION

An integral representation for the fractional derivative viscoelastic fluid can be developed
directly from the governing differential equations written in the Laplace domain (a similar, more
detailed derivation for a Newtonian fluid in the time domain can be found in Dargush and
Banerjee 1991a). The governing equation (13) must, of course, hold at all points of the fluid.
Therefore, the left hand side of (13), when multiplied by an arbitrary function and integrated over
the volume V, must remain equal to zero. That is

f[Aik * v +A*aj -v - Psvi +A,,(-v')]dV = 0 (31)

Next, integration-by-parts can be applied repeatedly to the applicable terms of (31) to transfer the
spatial derivatives from vi and p to Aik and APk. The result of this operation can be written as

j[S k~ (ava~ - (?j~i-k ~k pn~i

+f { a2 Al + + 2A• ' -i aA -psAikVi+ {--- dV = 0 (32)

V1 (xjx aaixi PSx- ik}- V

where S is the surface of the fluid.

An integral equation for the velocity v. is obtained by letting Aik and Ak correspond to
the fundamental solution defined in (23) and (11), respectively. Consequently, for a general loca-
tion, ý,

Cii (4) Vi (4, S)= f [Gij (x - 4, s) te (x, s) - Fij (x - ý, s) vi (x, s) ] dS (x) (33)
S

where the tensor C.. depends only upon the local geometry at 4, and reduces to the Kroneker del-
ta function 8 for ý interior to the surface S. The right-hand-side of (33) involves only velocities
and tractions on the surface of the three-dimensional viscoelastic fluid region. Volume integration
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has been completely eliminated through the use of the fundamental solution of (13). Additionally,
the pressure does not appear explicitly in (33). Due to the imposition of incompressibility, pres-
sure can be determined at any location from the surface velocities and tractions.

Equation (33) represents a general three-dimensional formulation. In some applications,
such as the analysis of vertical vibration of viscous dampers, we are primarily interested in purely
axisymmetric motion. For this case, it is convenient to introduce a cylindrical coordinate system
(r, 0, z) and to consider the surface S to be formed by a generator C, which lies in the r - z

plane. Transforming (33) to this system produces

Co l(•a(•S) f= J [Galp(x - ,s)i.(x,s) -Fcp (x- ,s) %a(x,s)IdC(x) (34)
C

where Gap and p are the two-dimensional axisymmetric kernels and the indices ot and J3 show
the r or z direction. The axisymmetric kernels Gal and Fp are formed from Gi and Fu via cir-
cumferential integration.

In order to utilize (34) for the solution of boundary value problems of engineering interest,
such as the analysis of viscous dampers, discretization is required. In the present work, the
boundary element method is selected for the numerical implementation. Three-noded conforming
surface elements are used in conjunction with the method of collocation. Thus, a discretized
version of (34) is written at each boundary node. The integration is completed in both the circum-
ferential direction and along the generator C via numerical quadrature. Variable order Gaussian
formuli and element subsegmentation are included to insure accuracy of the resulting coefficients.
This is of vital importance in the analysis of incompressible media. Furthermore, a modification
of the standard indirect method was introduced to obtain strongly similar diagonal block of F.
Additional information concerning various aspects of this numerical implementation can be found
in Dargush and Banerjee (1991 a,b,c) and Ahmad and Banerjee (1988).

ANALYTICAL PREDICTION OF MECHANICAL PROPERTIES OF DAMPER

For harmonic input, the dynamic stiffness of the damper is the ratio of the amplitude of the
imposed displacement, U0, to the amplitude of the force, P 0 , that develops on the piston in order
to maintain the motion. For U0 being real, P 0 is complex to accommodate the phase difference.
Accordingly the calculated dynamic stiffness is

K + iK2 = PO (35)

The analytical procedure presented in this paper was employed and the tractions on the
surface of the moving piston were calculated. They were subsequently integrated over the piston
surface to yield the force needed to maintain harmonic motion. Use of (35) gave the dynamic
stiffness.

Dynamic tests of the viscous damper were conducted by imposing to the piston of the
damper vertical harmonic motion of specific amplitude and frequency. From records of the force
needed to maintain the imposed motion, the mechanical properties of the damper were determined
under conditions of steady-state motion. The mechanical properties measured were the storage
and loss stiffnesses (defined as the corresponding moduli in a stress-strain relationship). All tests
were conducted at room temperature (about 250C). For description of the test arrangement the
reader is referred to Makris (1991a).
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Figure 5 compares the analytical results on the storage and loss stiffnesses (continuous
line) against experimental data. The model predicts very well the mechanical properties of the
device for the entire range of frequencies. The accuracy of the analytical solution demonstrates
that it is possible to predict the mechanical properties of devices containing generalized
viscoelastic fluids and, thus, reduce and even eliminate the need for comprehensive testing.

SUMMARY AND CONCLUSIONS

A general method for the analysis of linear viscoelastic fluids under dynamic loading has
been presented. The material constitutive relation was not restricted to classical models of
viscoelasticity. Rather, this constitutive relation was assumed to contain generalized derivatives,
that is non-integer order derivatives.

The fundamental solution of the equation of motion of such fluids was derived. This solu-
tion was used within the framework of the boundary element method to formulate a method for
analysis of generalized viscoelastic fluids. The accuracy of the numerical formulation was verified
by comparison to an exact solution of a simple problem. Subsequently, the model was applied in
the prediction of the mechanical properties of viscous dampers. The predicted mechanical proper-
ties were in excellent agreement with experimental results. It is concluded that the presented
procedure may be used, among other problems, to the prediction of mechanical properties of
viscous dampers and, thus, reduce or eliminate the need for comprehensive testing.
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VIBRATION RESPONSES OF

VISCOELASTICALLY DAMPED PLATES

Yil, Sung, Ahmad2 , M. Fouad, Hilton3 , Harry H. and Pollock", Gerry D.

Abstract

Dynamic transient responses of plates with free damping layers have been

studied in order to evaluate free layer damping treatment performances. The forcing
frequencies and temperature effects of free-layer viscoelastic damping treatment on
plates are investigated. The damping layer thickness effects are also explored.

Introduction

Vibration and noise control is very important in automobiles, flight vehicle
structures and electronic devices, and viscoelastic materials have been and are being

used as shock absorbers, vibration and flutter dampers, acoustical barrier, etc.

Viscoelastic damping reduces structural fatigue and vibration amplitudes at elastic

resonant frequencies and attenuates structure-borne noise.

Damping refers to any form of energy dissipation in any non-conservative
system. When the deformation energy is lost as heat through viscous action then
this mechanism is known as viscoelastic damping, which is solely due to material
properties. Structural damping on the other hand refers to enegy dissipation in

joints, fastener, and interfaces. Structural damping is dry solid friction and its
constitutive relations are independent of frequency and displacements, velocities and

accelerations. In an elastic material, Hook's law is maintained but the elastic moduli
are replaced by complex ones. Viscoelastic materials, however, obey differential or

integral stresses-strain relationships, which are associated with stresses, strains and
their time derivatives. Lazan (1968) has called structural damping rate-independent

'Post-Doctoral Research Associate at NCSA
2Research Scientist at NCSA
3 Professor Emeritus, AAE Department
"Graduate Research Assistant at NCSA
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damping since material properties such as Young's modulus and specific damping
coefficients are all independent of strain and stress time derivatives, frequency and
temperature, while viscoelastic damping corresponds to rate-dependent damping
where constitutive relations are functions of those variables.

Z .....•..'•::•:-:......................... ::.......... ::... ..

iii~ .iiiiii .. iii: ........... ..

d Viscoelastic Daefpfn Layer

Fig. 1 The plate with free layer damping treatment.

Since damping plays an important role in the proper design of the vibration
systems, many studies have been conducted to develop proper viscoelastic damp-

ing technologies. Viscoelastic and structural damping have been analyzed by Hilton
(1991). In Refs. 3 and 4, expressions for stored and dissipated energies in anisotropic
viscoelastic bodies are formulated using generalized Maxwell models, and the re-
lationships between shapes of master relaxation modulus curves and dissipation
energy and the latter's influence on passive structural motion control have been

investigated. Recently, Yi (1992) also developed more computationally efficient and

accurate algorithms for analyzing transient responses of viscoelastically damped

composite structures in the real time domain than the previous studies (Bagley and
Torvik, 1983; Holzl6hner, 1974; Golla and Hughes, 1985; Johnson and Kienholz,
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1982; Yamada et at, 1970; Xie et al., 1989). Recursion formulas also are obtained
in order to reduce computer storage, and only the previous time solution is required
to compute the next time solution.

Free layer damping treatment is the simplest procedure for introducing light
weight damping into structures (see Fig. 1). In this paper, we consider the problem

of forced oscillations of a plate with viscoelastic damping treatment. Our goal is
to evaluate the herditary integral governing vibrations. The vibration responses
of plates with free damping layers are calculated using the finite ele!',•ent method.

The loading frequencies and temperature effects of free-layer damping treatment on
plates are studied and the damping layer thickness effects on the damping perfor-

mances are also evaluated and discussed.

Viscoelastic Damping Mechanics

The master relaxation modulus curves are the characteristic shapes defining
viscoelastic material behavior. Such curves for viscoelastic relaxation moduli can be
determined by using the time temperature superposition principle or vibrating beam
tests (Hilton, 1964). One way to characterize the material properties of viscoelastic
materials is to measure its moduli as functions of temperature and moisture con-
tents, since polymer moduli are functions of time as well as being highly sensitive to
temperature and moisture. By using time-temperature superposition, moduli mas-
ter curves and shift factors can be generated. The superposition principle states
that the viscoelastic modulus at one temperature can be related to another one
at a different temperature by a change in time scale only. For thermorheologically
simple anisotropic materials, the relaxation moduli can be represented in the form:

Cjk,[T, AI, t] = Ci.kl[To, MA, (ijk(x,t)] (1)

where the subscript o denotes reference conditions and Cijkl are reduced times, which

are related to the shift functions. aijkl.. in the following manner

(ijk,(X,t) = j 1a j,[T(xs), M(xs)] ds (2)

The Cijk moduli are now representable by single master relaxation curves.

Experimental data obtained in the time plane at temperatures lower than
the reference temperature are shifted to the left of the master curves, while those
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obtained at temperatures higher than the reference temperature are shifted to the
right. Materials which have such horizontal temperature shift behaviors are referred
to as a thermorheologically simple materials and otherwise as thermorheologically

complex materials. Shift factors can be determined directly from experimental
relaxation curves. Williams, Landel, and Ferry (1955) observed that many polymers
exhibit similar temperature dependent behaviors and proposed an empirical shift
function relationship

log a ,jig + (T - T.) (no summation) (3)

where aikI are shift functions, V.-ki and C?,4 are universal parameters which vary
from polymer to polymer, T is the temperature, and T. is the reference temperature
of the master curves.

Damping material systems may be expressed mathematically in terms of rheo-
logical constitutive equations and the general rheological representation for defining
the stress-strain relationships for polymeric and rubberlike materials is called vis-
coelasticity. The constitutive equations for such materials depends not only on
the strain and stress but also on the strain and stress rates, and their higer-order
derivatives with respect to time, and can consequently stated as

t a
ric(x, t) = Cijkl[To, M,,(ij,_..(X, t) - (:jk(x, r) Tekl(X, r) dr (4)

The complex modulus properties of viscoelastic damping materials are evalu-
ated by the vibrating beam test methods. The dynamic response of the beam with
or without the damping layer is measured for several modes of vibration as func-
tions of frequency and temperature. By using vibrating reeds, Bland and Lee (1955)

determined complex moduli of isotropic linear viscoelastic materials. Jones (1981)
studied complex moduli of damping materials at reduced temperatures as well as re-
duced frequency domains. Rogers (1981) proposed that the damping characteristics

of viscoelastic materials can be analyzed using fractional derivative representations.

The complex moduli are obtained by taking Fourier transforms of the vis-

coelastic stress-strain relationships in the time domain and master curves for coin-
plex moduli are similarly obtained. The stress-strain relationships transformed into
the frequency domain become
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,+,)= X,,(x,.). Ek,(x,2.) (5)

where -, denotes Fourier transforms and the complex moduli, Ci'jk(X, LZ), are related
to the relaxation moduli by

p00C,.kl~~w = . Cjk,(X, T) (6)~d
2w_0

where i =- t"Z1.

The complex moduli in Eqs. (6) can be decomposed into

Cikl(X.CZ) = C¢kl(x.,ý) + C,"j(x,'.) (7)

where the real functions ClI(x, ) and C jk(x, ;) are the real and imaginary parts
of complex moduli which are refered to as storage and loss moduli.

Finite Element Equation of Motion

The finite element procedures are formulated based on the variational prin-
ciples. For the dynamic viscoelastic boundary value problem, the finite element
equilibrium equation of motion can be expressed as

n) t + Kmn[(,(x,t) _ Cr(xr)] -8U3 () di = Fm(t) (8)

Mmn(X) UNo + E00or1=-oo Or d•= m) (8

where m, n = 1,2,... ,N, N is the number of nodal degrees of freedom, Mmn is

global mass matix, Km,, is stiffness matirx. and Fm represents the nodal force
vector due to specified surface tractions.

Since the above equibrium equations are hereditary integral equation, all the
previous solutions must be stored in order to evaluate displacements at any specific
time. In the previous study, a numerical algorithm is developed for the solution
of Eqs.(8) using the Newmark average acceleration method and Prony series rep-
resentations for relaxation moduli. Recursion formulas also have been obtained in
order to reduce computer storage and only two previous time solutions are required
to compute the next time solution. Additional detail for the transient viscoelastic
finite element formulation can be found in Ref. 4.
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Results and Discussion

Mindlin-Reissner type theories which account for first order transverse shear de-
formations are employed in the present study. Twenty five four-node plate elements
with three degrees of freedom for each node are used. The material behavior of
the plate is linearly elastic with properties for the isotropic plate E.t = 1 X 107 psi,

"v. = 0.3 and -Y. = 0.33 lb/in 3 . The plate dimensions are 20 in (lenght) x 20 in
(width) and the thickness is 0.5 in. Isothermal conditions are assumed.

1.2 0f 11 M9M m q. W.MM
10~ ~ ~ ~ ~ ~ ~~E UflVTTfl n~m-r~- =.

1.010

80101 ~~ .~E. S ..-.. i~.. 4 ~-

L2. 6.1 57440 444 1'd . 4--rm- Ma

2.01071

_2.0 10 441 6 1 4 NU.1 I.44......446 344444 4+43 449 443.4-33'4

As shown4.44 in Fig 1,.49. th 44eacdmiglye satce ntpo h

Figt. 2Timh dpndn Young's modulus forth viscoelastic damping materialistm-endt.

Time variations of the modulus are plotted in Fig. 2. The elastic Young's modulus
for the damping material is 2 x 106 psi, Poisson ratio vd = 0.3 and material density

7Yd = 0.25 lb/in 3 . Time step size is taken as At= 0.001 secs and shift factor is 10
at 40 0 C.

First, the effects of free damping layer thickness are studied. Plates with
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various damping layer thicknesses (hd) are considered and their transverse responses
of square plates are calculated. At the center of the plate, dynamic transverse
deflections of the damped plates with hd = 1, 3 and 5 are plotted in Figs. 3, 4,
and 5 respectively. The results show that the vibration amplitudes significantly
decrease with increasing damping layer thickness. The vibration is damped out
after 1.1 secs for hd = .3 and 0.6 secs for hd = 0.5 respectively. Increasing the
damping layer thickness also results in decreasing vibration amplitudes at the initial
time and frequencies. For thicker damping layers, the small creep deformations
occur because of the degradation of material properties of damping layers. For five
different damping layer thicknesses, the vibration responses from t=0 to 0.5 secs
are replotted in Fig. 6.

Another numerical example is undertaken in order to evaluate the effects of
temperature on the damping performance of viscoelastic free damping treatment.
The plate is subjected to a uniformly distributed unit step load at lower tempera-
ture (shift factor =1, temperature=18 0C). It can be readily seen from Figs. 7 and
8 that changes in temperature affect both amplitude and frequency responses. This
is due to the smaller damping material capabilities with decreasing temperatures.
Temperature induced material degradation results in smaller amplitudes and vibra-
tion frequencies. As shown, in Fig. 7, after 2 secs, the vibration amplitudes at 40
°C are reduced by 95 %, while those at 18 0 C decrease only by 56.7 %.

Young's modulus ratio (Es/Ed) effects on the damping ability are also investi-
gated. Three models (Es/Ed = 5, 10, 100) are used. The results indicate that the
damping capacity decreases as the Young's modulus ratio increases as seen in Fig.
9. At Es/Ed = 100, the vibration amplitudes are reduced only by 9 %. However, for
larger moduli, the vibration frequency increases since the stiffness of the structure

increases.

Next, the time dependent responses of viscoelastically damped plates sub-
jected to uniformly distributed sinusoidal loading, P(t) = P. sin(wt), are studied.
The Young's modulus ratio is 0.2 and a time step At = 5 x 10- secs is used. Two
different forcing frequncies w = 102, and 10i rad/sec are employed in this study.
The results are illustrated in Figs. 10 and 11 which show that vibration ampli-
tudes are significantly influenced by the forcing frequency. Vibration amplitudes at

w = 10P rad/sec are much smaller than those at w' = 102.
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Fig. 3 Vibration response of plate with damping layer (Ed/F, = 5, d= 0.1, a&r = 10).
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Fig. 4 Vibration response of plate with damping layer (Ed/E, = 5, h1 = 0.3, aTr= 10).
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Fig. 5 Vibration response of plate with damping layer (Ed/EF = 5, hd = 0.5, aT = 10).
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Fig. 6 Vibration response of plate with damping layer (Ed /E_ = 5, aT = 10).
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Fig. 7 Vibration response of plate with damping layer (Ed /Es = 5, bh1  0.1).
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Fig. 8 Vibration response of plate withdarnping layer (Ed/E, = 5, hd = 0.2).

EBB-10



a4.010~
o~ 3.0 10E /E u510

CLO ~ 3.0 ...... el

2. .010

~ o~oiA

3.0 100

.1- .010

1.010-3

2.1
IS

E
0.0 le

-2.010-

-3.010-3.........I......... ....... I.. ......... .....I

0 0.4 0.8 1.2 1.6 2

Trlni (Secs)

Fig. 10 Vibration response of plate with damping layer ( hd = .2, arr = 10, W= 102).
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Fig. 11 Vibration response of plate with damping layer (hd = 0.2, aT = 10, w = 10P).

Conclusion

The vibration amplitudes are significantly affected by the viscoelastic damp-

ing layer thickness, temperature, forcing frequency, and the Young's modulus ra-
tio. The vibration amplitudes remarkablely decrease with increasing damping layer
thickness. Since damping material abilities increase with increasing temperatures,
increasing temperatures result in decreased vibration amplitudes and frequencies.

The damping capacity decreases with smaller damping material Young's moduli.

Proper dynamic viscoelastic analysis is important in the design of the viscoelasti-

cally damped structures because of the altered nature of vibration amplitudes and

frequencies.
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DAMPING CAPACITY OF SCARF-JOINTS1

Mohan D. Rao2 and Haiming Zhou3

Mechanical Engineering-Engineering Mechanics Department

Michigan Technological University

Houghton, MI 49931

ABSTRACT
An analytical model to study the bending vibration of a scarf-jointed beam is formulated in this

paper. This model development is based on the concepts of equivalent bending stiffness of the
joint, energy method and Hamilton's principle. The adhesive material is modeled using the com-

plex modulus approach and governing equations of motion for a general case of forced motion

under arbitrary boundary conditions are derived. The solution for free vibration for the case of a
simply supported beam is obtained using finite-difference method. A parametric study has been

conducted to observe the effects of various design parameters on the system resonance frequen-
cies and loss factors. It has been found that an increase in the adhesive thickness leads to an

increase in the system damping at the same time decreasing the system dynamic stiffness. The
joint angle is a key parameter that can be controlled to obtain maximum loss in the system. For a

particular joint configuration, there exists an optimum joint angle which maximizes the system

damping. Design plots presented in this paper in terms of non-dimensional parameters should be

of considerable value in the design of scarf joints.

1. A full paper of this work is scheduled to appear in the April 1993 issue of the Journal of the Acoustical
Society of America.

2. Assistant Professor
3. Visiting Research Scholar
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m Adhesive
Material

(a) Single Lap Joint

(b) Double-Strap Joint

(c) Stepped-Lap Joint

(d) Scarf Joint

Configurations of Common Adhesively Bonded Structural Joints
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Why Scarf Joints?

Scarf and stepped lap configurations are the more effi-

cient joints chosen for joining thick members and are

ideal for repair purposes.

Scarf joint is sometimes preferred over other types

because of its aerodynamic smoothness, and ability to

join adherends of two different materials, such as

joining titanium to a composite.

Objectives of This Research

(1) Formulate an Analytical Model for Predicting the

Modal Dynamic Parameters of Scarf Joints under

Flexural Vibration

(2) Study the Effects of Structural parameters, and Mate-

rial Properties on the system loss factors and reso-

nance frequencies
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Approach

The governing equations of motion of the system, for a general case of forced
vibration under transverse distribution load, are first derived using the energy..
method and Hamilton's principle.

The adhesive material is modeled using the complex modulus approach.

By using finite-difference method. the numerical solutions of the governing
equations for free vibration are obtained.

E f
Ei El E2

12

Assumptions

1. The beams are elastic and isotropic. The adhesive layer is viscoelastic whose

elastic modulus (assumed constant with frequency) is modeled using the
complex modulus approach. Orthrotropic beams could also be analyzed

using this model.

2. The cross sections before and after bending, remain plane not only in

unbonded areas but also in the scarf joint area. This assumption is quite

reasonable as long as the adhesive layer is thin and there is perfect bonding

with no slip between the adherends and the adhesive.

3. It is also assumed that the damping of the system comes mainly from the vis-
coelastic adhesive, and the material damping of the beam material is

neglected.
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REGION 4
REGION 2

REGION 1 3 REGION 5

REGION I REGION 2 REGION 3 REGION 4 REGION 5

Equivalent Sections of the Scarf Joint for Analysis.

Bending Stiffness
-ab3  Reion1

K(x) = El-•- Reg 1

K(x) = Eb 3  Region 5
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For REGIONS 2, 3 AND 4

Obtain the location of neutral axis for each section, and then determine
the area moment of inertia and equivalent bending rigidity for the sec-
tion as a function of the x- coordinate

EXAMPLE: FOR REGION 2

When xE [-Lt b bt

E2

o z

b/2 1x7+ /2) tana

Area A is given by:

A= t2 auretaa - )+L

=(x+t/2)tanct b/2

Jfd yaady f y~ay=a(E(Xc )2 (= )
A -b/2 (z + i/2) tan E

Now, y =fydA and
A

(x+ 8/2)wra b/i 2
1. J 9jady+ f y

-b/2 E (z+ t/2) was E

a 3 3E E 3 aSEc El=-(x+2 (tana)t•2-_ 2)+-a - :2+E-1

1~2 E (4lE2 E2)

EBC-6



The moment of inertia with respect to the neutral axis is

11= . A= I. yd)'A (x+!) (lana)3(j- ý!)+ý :(+ ý11

a4 (E2 E ,,E2 E2  ) 2 ( E

The bending stiffness for this region is K(x) = E2, (x)

Similarly, for region 3,

1(,) +!•- E(- , )3 E-) + 2 E2 E•)k 2 24 4+2

(& ( (x - t/2) tana) 2 ( 1 - E,/E2) + 2 ( (x + t/2) tan a) 2 (E, - Ej) /E2 + -8-2 (El /E2 _ 1) 2

a ( (x- t/2) tana + b/2) + a (E,/E 2 ) ana+ a (EI/E 2) (b/2 - (x+ t/2) tana)

: b t b.. _

The bending stiffness is K(x) = E21 (x). for b 2 j_ b

and for region 4,

a~ 2 2 b - 2

K(x) = ga ( )(Ent3 -z ab ... .

3 ~ -)aa~ (-p +-aa)2
t b t b

which encompasses (- + <x< + b

In the above equations: E, = E, (I + iyr.).
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Strain energy in the system due to bending

V= f lK(x)Wn2dX

-4t

System Kinetic energy

T= f'pýA (x) -2dx
-I1

The work done by the external forces q(x,t)

12

W = Jqwdx- (SIw-Mw')I,.-,, + (S 2 w-MMw')),. 1
--II

Hamilton's principle 8'(T-V+W)dt,= o, gives

the governing equation of motion

K" (x)w" +2K'(x)w"' +K(x)w(4) +p2A,(x)w = q(x,t)

and the natural boundary conditions are

[S- (K'(x)w" +K(x)w- ) II, = 0

[-M+K(x)w"I, = 0.

Using separation of variables method,

let w(xt) = w(x)e ',and get

p (x)w"+q (x)w" x)w(4) _)L4 0 where

K" (x)

p(x) p2A (x)
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2K' (z)
q (x) = ( andprA (x)

r(x) K (x)
S-2A(x)

= damped complex resonance frequency of the system.

The System loss factor i and

Resonance Frequency a, for each mode i are

w= real (X,) and

imag (X2i)
'15 - real(X?)

SOLUTION OF GOVERNING EQUATIONS

By Finite Difference Method for continuous systems

If the interval [-11, 121 is n aliquot, each part length is h =
n

I ~I I I

X0 = -!X Xk Xk.%Xk÷ 2  X= 12

For the division point xk, we have second, third and fourth derivatives as:

(w")k = h(W; -2wk+wkt)

1
I

(w(4) (6w, - 4(wk+ + wk_,) + Wk+2 + WA2).
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Now the boundary value problem will be changed to a

difference equation solution.

q k + p + kj + + q . 4 r ,, k -I -( _ r .(-f _
+ W 2 + -1P), 6 ork k)iL.2h' h4')WI+2 P 3 Wh4V)k+l (), h2 hz4)khhh) W W

(k= 1,2,..., n-1)

Input data: (El =E 2 = 71GPa, 11 = 12 = 0.1m, b = 0.01,Ui = 0.1),E, = 0.1E 1,

p = 2770kg/rn3, P, = 0.12p

joint system was simply supported at both ends.

CONCLUSIONS

An analytical model to study the bending vibration of a scarf-jointed beam is
formulated in this paper.

This model development is based on the concepts of equivalent bending stiff-
ness of the joint, energy method and Hamilton's principle.

The solution for free vibration for the case of a simply supported beam is
obtained using finite-difference method.

It has been found that an increase in the adhesive thickness leads to an increase
in the system damping at the same time decreasing the s, stem dynamic stiff-
ness.

The joint angle is a key parameter that can be controlled to obtain maximum
loss in the system. For a particular joint configuration, there exists an optim-
joint angle which maximizes the system damping.
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Low FREQUENCY DAMPING AND ULTRASONIC ATrENUATION IN TI3 SN-BASED ALOYS

Catherine R. Wong,

Carderock Division, Naval Surface Warfare Center*

and

Robert L Fleischer*

General Electric Research and Development Center

Studies of high-temperature alloys in the Ti-Sn system based on the intermetallic compound
Ti3 Sn have identified alloys that damp strongly both at low frequencies (0.1 to 10 Hz) and high
frequency (5 to 20 MHz). Although the basic mechanism or mechanisms of energy dissipation are
presently unknown, the alloys are notable for unusual shapes of microhardness indentations. The
deformations imply that large reversible strains can occur at temperatures from 23C to 1 150C.

* Code 2812 Annapolis, MD 21402-5067 Phone (410)267-2835

** Now at Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute,
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Introduction

Mechanical damping is of interest both because of the need for basic scientific
understanding and because energy absorption can be used in many practical applications such as
minimizing noise that is distracting or harmful to human beings, minimizing vibrations that would
be harmful to equipment, and reducing unwanted acoustic reflections and emissions. A number of
metal alloys have long been known for their high damping capacity. These include a variety of
dilute Mo alloys[l], Cu-Zn alloys[2] and Mn-Cu alloys[3]. It is also noteworthy that the well-
known shape-memory alloy NiTi also shows high damping at room temperature[4]. The purpose
here is to report on two alloys in another high-damping system (Ti-Sn) that have some unusual
features and a high melting temperature (1590 C). We describe the damping capacity and wiiat
is known structurally about the two alloys studied here and discuss other related compositions
that have some key properties in common and are therefore prime candidates for further study.

Motivation

The origin of interest in the alloys studied here was the failure to determine elastic
constants in high-frequency (5 to 20 MHz) pulse-echo measurements[5]. Reflections from
acoustic pulses could not be identified after a 1 cm travel distance in TisOSn2O, Ti78Sn22, and
Ti75Sn21V4. Subsequent work with the same technique[6] showed similar attenuation in
Ti72Sn18 All 0 and in a different system, Ti36Cr54A1 0. Two binary compositions, Ti3Sn and
Ti8 7Sn13, that bracket those that showed the strong attenuation behaved normally in that their
elastic constants could be determined.

Experimental Procedure

Preparation Of Samples

Samples were arc melted into disk-shaped ingots using the highest purity components that
were reasonably available. Titanium was 99.99% pure and tin >99.999%. Purities of other
elements in alloys to be cited for comparison were (Al) 99.9999%, (Cr) 99.99%, (Nb) 99.99%,
and (V) 99.9%. Interstitials in weight ppm were (C) 100, (N) 15 and, (0) 500 for Ti80Sn20 and
(C) 100, (N) 25, and (0) 1000 for Ti78Sn22 . Samples were annealed at 1350 "C in Ar-filled SiO2
ampoules that included a small piece of Y to getter oxygen. Microhardness was measured up to
1150 °C using a Nikon-GM tester, a diamond pyramid indenter, and a load of 1000 or 500 g. The
pressure during testing was typically less than 10-8 atmospheres, with a possible exception at the
highest temperature (where outgasing or vaporization may occur).

Phases Present

The expected phases and melting temperatures for both compositions[6J are listed in Table
1, along with the observed phase fractions that were measured using point counts on photographs
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of polished metallographic sections. The specific compositions have been checked by traditional
wet chemical methods. The results, given in the second column of Table 1, are generally in good
agreement with the requested compositions. However, the phase volume fractions imply that the
nominal chemical compositions are more accurate than the chemically measured values.

Table 1. Alloy Composition, Phases Expected And Observed, And Properties
Volume

Fractions
Nominal Measured Melting Heat Observed
Atomic Atomic Temp. Specific Treatment Phases Expected (100 Points

Composition Composition (7C) Gravity *C/HI) Volume Fraction Counted)

Ti8 0Sn2 0  79:21 1590 5.76 1350/20 0.79 DO19 ;0.21 A3 0.79;0.21
1Ti 7 85n2 2  78:22 1590 5.82 1350/20 0.89 DO 19 ;0.11 A3 0.90;0.10

Damping Capacity Measurements

The samples tested for damping capacity were electro-discharge machined to
approximately 4.0 x 1.0 x 0.1 cm. The damping capacity measurements were carried out at
frequencies between 0.01 and 10 Hz and temperatures from -30 "C to 100 *C. The damping
capacity and Young's modulus were measured with a Polymer Laboratories Dynamic Mechanical
Thermal Analyzer (DMTA) using a fixed-guided cantilevered test configuration. In this
configuration, shown in Fig. 1, the clamp on the left holds the sample to a stationary frame while
the right clamp attaches the sample to the controlled drive shaft. When the samples are not firmly
held, erroneous damping capacity measurements may result due to slip between the sample and
clamps. In order to minimize such errors, three-pronged clamps were used. A torque wrench
was used to tighten the clamps in order to achieve consistent clamping.

The damping capacity was measured by applying a small sinusoidal mechanical force to
the drive shaft and measuring the displacement of the sample. The phase angle, 6, of the lag
between the applied load and the measured displacement was calculated. The tangent of 6 is a
measure of the damping capacity, commonly called the loss factor. Comparison of the amplitude
of the load and displacement signals yielded Young's modulus, E'. All samples were tested at
three distinct frequencies of vibration: 0.1, 1, and 10 Hz. The dependence of tan 6 and E' on
temperature was determined by vibrating the samples at 100 microstrain (maximum) while
ramping the temperature 1°C per minute from -30 to 100°C and continually alternating the
frequencies. The run was then repeated to check for consistency. The dependence of the
damping capacity on the strain was found by measuring the damping capacity at 25 *C while
continually alternating the frequencies and periodically increasing the amplitude of the vibration.
The reported values are the average of the damping capacity over thirty minutes.

The values of E' were corrected to account for error which arose from end-effects at the
clamping point of the beam. These effects are due to the uncertainty in the point at which the
metal starts to bend in the grips. These "end corrections" are based on the measured modulus and
are calculated from an empirically generated curve. Corrections to the tan 6 values were made to
account for the friction between the air and the moving sections of the DMTA, including the
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FIG. 1. Dynamic Mechanical Thermal Analyzer: grip setup.
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sample, as the sample was vibrated. The correction factor is frequency dependent, and for
measured values of the loss factor below 0.01 it was necessary to correct the 10 Hz data. This
was done by averaging the loss factor daita values over a temperature range in which tan 6 was
nominally flat. The average of the 1 Hz tan 6 data was subtracted from the average of the 10 Hz
tan 6 data and that number was then subtracted from the 10 Hz tan 6 values over the whole
temperature range.

Materials Characterization Tests.

In order to determine the stress-strain behavior at ambient temperature a 1.0 x 0.5 x 0.5
cm sample of Ti78Sn2e was compressed at a strain rate of 14 ss-r 1 first to a strain, , of 3. 1%
and subsequently to incipient failure. Metallographic and transmission electron microscopic
examinations were done on both deformed (s = 3.1%) and as-annealed material.
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Remuts

Damping Capacity

Damping capacity measurements at low frequency shown in Fig. 2 revealed a peak in the
damping capacity near 20 C at 0.1 Hz, 30 C at 1 Hz and 35 C at 10 Hz for the Ti7 8 Sn2 2
sample and near 15 C for all three frequencies in the Ti80Sn20 sample. The amplitude of the
damping capacity peaks decreased with increasing frequency in both samples, from a loss factor of
0.04 at 0.1 Hz to 0.017 at 10 Hz in the Ti78 Sn22 sample and from a loss factor of 0.025 at 0.1
Hz to 0.015 at 10 Hz for the Ti80Sn20 sample. The data from the second runs on each sample
closely repeat these values, as shown in Fig. 3. Although distinct discontinuities that are
attributed to experimental error appeared in the modulus measurements (Fig. 4), the general trend
of the data is thought to be correct- The modulus decreased with increasing temperature until 40
"C in the Ti78 Sn2 2 sample and 35 C in the Ti80Sn2O sample and then increased. Since a
discontinuity in the curve occurs near the damping capacity peak in the TisoSn2O in both runs of
this sample it would be necessary to repeat that experiment in order to define confidently the
damping capacity peak. The plot of the strain dependence of the damping capacity shown in Fig.
5 reveals an unexpected frequency dependence of the Ti7 8 Sn2 2 sample. The loss factor
decreases from 0.03 to 0.015 in the Ti7 8Sn2 2 sample as the strain increases from 50 to 1100
microstrain. Similarly in the Ti80Sn2 0 sample the loss factor decreases from 0.04 to 0.01 as the
strain is increased from 50 to 500 microstrain, and the damping capacity at 10 Hz is always higher
than the damping capacity at other frequencies. This implies that 25 C (the temperature at which

FIG. 2. Damping capacity versus temperature for Ti-Sn alloys measured from -30 to
1006C at 100 microstrain.
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FIG. 3. Duplicate measurements of damping capacity versus temperature for Ti-Sn alloys.
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FIG. 4. Bending modulus versus temperature for TI-Sn alloys measured from -30 to 100"C
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FIG. S. Damping capacity versus strain amplitude for TI-Sn alloys measured at 25"C.
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the strain dependence was measured) is higher than the r~laxation peak temperature for 0.1 and 1
Hz and below the peak temperature for 10 H-z. This is not confirmed by the temperature scan
data. Ile plot of the strain dependence of the TisoSn20 sample shows very little frequency
dependence, especially at higher strains.

Plastic Mechanical Properties Results

T'he compressional stress-strain result for Ti78Sn22 is shown in Fig. 6. it is doubly
noteworthy first for its low work hardening rate and second for the fact that at this low
temperature extensive plasticity was present in an alloy that consists of 90 volume percentage of a
normally highly brittle intermetallic compound (DO19(hP8) Ti3Sn). The low work hardening rate
is, however, similar to what is seen in Ti-based and Ti3A] alloys. The moderate strength is in
contrast to the very high hardness that has been measured[61 for single-phase Ti3Sn.

Another noteworthy feature of the deformation of the two alloys is the geometry of the
hardness indentations in these materials. Usual Vickers hardness indentations match the square-
base diamond-pyramid shape of the indentor, giving a clean regular square shape. Fig. 7 shows
indentations that were made at different temperatures in Ti78Sn22, and Ti80Sn20 shows similar
results. These shapes are vastly distorted relative to the conventional square profile, a graphic
indication of extensive reverse deformation during the unloading of the indentor.
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FIG. 6 Stress-Strain Curve For Compressional Room-Temperature Deformation of
7170112 2
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FIG. 7 Vickers diamond-pyramid microhardness indentations in T17 8 Sn 2 2 at six
temperatures.
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Metallographic And TEM Observations

The deformation markings on a mechanically polished external surface of the compression
sample were photographed after a true plastic strain of 0.031. Prominent deformation bands are
shown at high and low magnification in Figs. 8 and 9. Deformation proceeds commonly on more
than one plane. The dominant slip at room temperature is prismatic with a [0001] slip vector, and
only four independent slip systems normally act[7]. TEM (transmission electron microscopy) of
undeformed Ti7 8 Sn2 2 and Ti80Sn20 confirmed that the expected equilibrium phases were
present, hexagonal Ti in a matrix of the ordered hexagonal intermetallic compound Ti3 Sn.

FIG. 8. External surface of compression le of n after a strain of 0.031.

FIG. 9. As in Fig. 8, but at lower magnification, Intersecting bands are prominent.
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More unusual was the observation of fine-scale twinning on the pyramidal {1010J planes,
first in the undeformed sample (Fig. 10), but more abundantly present after a strain of 0.031 (Fig.
1 1). Typical twin widths were 17+5 nm in the undeformed sample and 134+6 in the deformed one,
i.e., not meaningfully different. The ordered phase also showed high grown-in dislocation
densities in some areas (Fig. 12)

FIG. 10. Twins In undeformed TI7 8 Sn2 2 , D0 1 9 phase. The width of the photo
is 1.10 mm.

FIG. 11. Twins in deformed Ti7 8 Sn 2 2 (e =0.031). The width of the photo is 1.80 mm,

DO1 9 phase.
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FIG. 12. Dislocations in deformed (e =0.031) Ti78Sn22, DOI9 phase. 8.10mm = width of
the photo.

Discussion

Origin Of Damping

The hysteretic process producing energy dissipation in this material has not been
identified. The highly asymmetrical Vickers hardness indentations show the mechanism to be
anisotropic, which is not uncommon in HCP materials. The abundant fine twins in the deformed
sample and the high level of grown in dislocations may point to the mechanism of energy
dissipation. They raise the possibility of a stress-induced reversible transformation. The low rate
of work hardening and coarse deformation bands are consistent with the high damping capacity of
the two alloys.

Systematics -- Possibility Of Identifying Other High Damping Alloys.

The two alloys that were shown here to have high damping capacities at low-frequencies
have three other properties in common, high MHz attenuation, misshapen hardness indentations,
and fine-scale twinning. Can these characteristics be used to identify other composites that damp
well at low frequencies? TEM examination for fine twins is laborious and expensive, but MHz
acoustic measurements and hardness tests are far simpler, and we have a body of information on
these tests for many intermetallic compositions[6,8]. Table 2 shows some titanium-intermetallic-
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based alloys in a sequence of (presumed) descending Young's moduli (E'). Blank lines indicate
where attenuation of MHz elastic waves prevented measurement of E'. Values where asterisks
appear were derived from the low frequency measurements, which have been done on only two of
these alloys. All alloys on the list are two-phase except Ti3 Sn.

Of the five alloys with the high MHz attenuation four have odd hardness impressions; only
one of the six samples with the lowest moduli has normal indentations. From this list
Ti7 5 Sn2 1V4 and Ti7 2 Sn1 8 AI1 0 would be the prime candidates as further alloys to study,
followed by Ti3 6 Cr5 4Al 10 and Ti70 Sn 1 6 AI 14.

Table 2. Moduli and hardness shapes for some titanium-based intermetallic compounds
Ultrasonic Young's Modulus Atomic Composition Indentation Character

(GPa) n=normal; o=odd

207 Ti3 Sn n
190 Ti36 Cr5 4Nb 10  n
150 Ti3 6Cr5 4Zr1 0  n
120 Ti8 7 Sn 13  n
106 Ti70 Snl 6Al14  o

-- Ti3 6 Cr5 4 A11 0  n
-- T7 2Sn 18Al 0 o
-- Ti7 5Sn2 1V 4  o

77* T"isoPn20 0
55* Ti7 8 Sn2 2  o

* From low frequency measurements

Conclusions

Two alloys, Ti7 8Sn2 2 and TisoSn2O have been recognized to have unusually strong
damping from 0.1 to 10Hz and also from 5 to 20 MHz. If this anisotropy is basic to the damping
mechanism then high temperature damping may be possible because the anisotropy persists to 950
"C or 1150 *C.
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ABSTRACT

A nickel-titanium shape memory alloy (SMA) was subjected to tests for fully cyclic hysteresis in
axial tension-compression under strain control. The tests were made in support of a project to
examine new materials for added passive damping in earthquake-isolated structures. The
material was heat-treated to an extent which produced hysteresis closely approaching room
tm e superelasticity. The tests gave results exhibiting markedly different behavior for
tension and compression. Various quasi-static rates were used and a rate dependence was
exhibited in the inelastic modulus. One sequence of tests showed that the material is able to
sustain repeated cycles of axial strain to limits of ±4.5%. This ductility property is of benefit for
potential use in the design of energy absorbing devices for large deformation events such as
earthquakes.

Presenting Autlor, Mechanical Engineer, (410) 267-2112
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NWRODUMMION

This paper reviews an experimental program which involved the testing of a nickel-
titanium shape memory alloy, often referred to as Nitinol (for Nickel-Titanium Naval Ordinance
Lab, where it was first discovered). A number of efforts have been devoted to the study of the
material behavior of shape memory alloys (SMAs) in either tension or compression. Some of
these include [1, 2, 3]. Most studies have involved tensile material characterization tests applied
to thin wire samples under conditions of varying temperature, material composition, and heat
treatment. Such studies usually focus on phase transformation phenomena and associated
deformation behavior for some fixed rate of deformation or change in temperature. In [3J the
changing characteristics of superelastic hysteresis in Nitinol were examined after repeated tensile
cycling up to 100 cycles. The study in [3] used a constant strain rate for loading and unloading
of samples throughout the test program and showed that a fatigue of tensile hysteresis exists
above the threshold stress for stress-induced nlrtensite (SIM) formation.

In earthquake engineering energy absorbing devices, the peak levels of strain which can
be induced by seismic activity are typically large, extending well into the inelastic range. In
addition the strain histories are fully cyclic with non-constant rates of loading. Therefore a
program of material characterization was undertaken to evaluate the fully cyclic hysteresis of
SMAs to strain levels of ±4.5%. Other work pertaining to the effect of strain rate on the material
response of SMAs undergoing fully cyclic large deformation had not been reported in the
litemrau during the period of this research. Thus a program of experimental characterization
was undertaken to achieve two goals:

1. Develop uniaxial, fully cyclic hysteresis patterns based upon testing
under strain control for the Nitinol SMA to various strain levels.

2. Examine the effect of the applied strain rate on the material response
in the fully cyclic loading condition.

The data obtained in Items 1 and 2 also allowed for a comparison with an SMA model from [4].
Studies pertaining to experimental shear charactermation or biaxial testing were not pursued in
this work and need to be done [5].

Nitinol is perhaps the best known of the SMAs and it is used in a variety of applications
(e.g. see [6]). The material response characteristics of SMAs can vary depending on alloy
composition, heat treatment and temperature. The basic behavior of the SMA is shown in Fig. 1.
The first hysteresis loop (Fig. la) has a large area which results from twinning of the martensite
microstructur under applied stress. It should be noted that the important transformation
temperatures are M., M1 , As, and Af , which are the martensite start temperature, martensite
finish temperature, austenite start temperature, and austenite finish temperature, respectively.
The hysteresis in Fig. la is exhibited when T < M1 .

The second hysteresis loop (Fig. Ib) is often referred to as superelastic material behavior,
and occurs when T > Af. In this material response the unloaded virgin material possesses a stable
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Fig. 1 Schematic stress-strain curves for shape memory alloys

(a) at temperatus below MAf: twinning hysteresis

(b) at temperatures above Af: superelasticity
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austenitic microstructure. Upon applying a stress the austenite is loaded in an elastic manner
until a threshold stress as reached whereupon a stress-induced phase transformation begins.
Specifically, the austenite is transformed to martensite at stresses above the threshold stress, and
causes a long loading stress plateau to develop in the stress-strsin curve. Thus the onset of the
phase transformation is also accompanied by a reduction in stiffness giving the appearance of
plastic yielding and inelastic deformation. This stress-induced martensite (SIM) is stable due to
the applied stress. As unloading is initiated the martensite undergoes a reverse transformation
back to austenite. This reverse transformation occurs because the SIM is stable only due to the
presence of the applied stress. As such the original undeformed shape will be returned when
unloading is complete. The reverse transformation occurs on a lower stress plateau and
hysteresis manifested. This potential for absorption of energy may be very useful for the
damping of earthquake-induced structural vibration and was the motivation for much of this
research.

Some basic mechanical properties of Nitinol are pointed out in Table 1. The high
ultimate stress and large elongation at fracture are good properties for an earthquake engineering
material to possess. There are however two inhibiting factors regarding the use of Nitinol as an
earthquake engineering material. The first is its cost; approximately $150/lb which is almost six
times more expensive than other SMAs (such as Cu based SMAs). The second is its resistance to
machining. The aspect of machining will be discussed in detail in a following paragraph. Despite
these drawbacks the Nitinol material was nevertheless tested in this research as the advantageous
material properties of superelasticity, due,-li:j, and high strength are attractive features for
application in the fields of base isolation and structural damping. Also, higher material costs
may be justified if effective devices can be fabricated for earthquake protection.

Table 1: Selected Properties of Two Shape Memory Alloys

Elastic Modulus 106 psi 4-12 10-12
Yield Stress (@ .2%) 103 psi 10- 100 11 - 51
Ultimate Stress 103 psi 130 90
Elongation @ Fracture % 40-50 10-15
Fatigue Strength (N=-106) 103 psi 51 39
Material Damping Capacity SDC-% 15 30

(@ e amplitude of 10-5

In the experimental testing of Nitinol, MTS (Mechanical Testing System) servo-
controlled electrohydraulic equipment was used for two separate programs of tests. The closed
loop servo-controlled axial machine was used in conjunction with a PC based OPTILOG data
acquisition system. The MTS machine was used in uniaxial tests on samples which were stressed
and strained mechanically using feedback control of either load, strain, or displacement. Loads
and displacements were measured by internal electronics. All test sample strain measurements
were made using an MTS extensometer, Model 1 lB-20. This extensometer was able to
accurately measure the average strain over a one inch region of the sample test section. During
all tests, the OPTILOG data acquisition system received voltage signals from the MTS system
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which represented load, strain, and displacement readings. These electronic voltage signals were
then converted to appropriate mechanical measurements and subsequently stored computer files.

The first program of material characterization testing involved uniaxial load-unload tests
in tension only. These tests were carried out using displacement control. Thus, the first series of
tests did not involve fully cyclic loading. These were conducted to determine the effect of heat
treatment on the tensile response of Nitinol. These tests also gave preliminary estimates of the
elastic modulus and initial tensile yield point for SIM. The load-unload tests were applied to
standard tensile-type samples of Nitinol.

The second program of material characterization testing involved fully cyclic strain
controlled testing of button-ended Nitinol samples. These tests produced data for the fully cyclic
tension-compression bysteretic response of Nitinol to various levels of peak strain. These cyclic
tests were also carried out using selected strain-rates to evaluate Nitinol for rate effects in its
mechanical response.

All Nitinol test samples were machined from a raw stock of cylindrical bar having a
19/32 inch diameter. The composition of the received material was as follows: Ti - 50.8 atom%
Ni in a cold worked condition. This stock was purchased from Raychem Corporation in Menlo
Park California. The Nitinol stock was extremely hard and abrasive in machining operations.
Triple-coated carbide inserts with a positive relief angle were required for the lathe cutting tools.
Lathe turning operations required the application of a positive feedrate and high feed pressure in
conjunction with a stiff (heavy) tool holding fixture.

HEAT TREATMENT PROCEDURES AND AXIAL TENSION TESTS

It was known at the outset that the test samples would need to be heat treated prior to
mechanical testing. It was also known that variation in heat treatment would lead to a variation
in the ultimate mechanical behavior. Measurement of the SMA superelastic material response
was a target objective due to the beneficial properties which are associated with this response.
Therefore selection of a heat treatment to achieve the superelastic response was pursued in
conjunction with uniaxial tests. A technical paper from Raychem Corp. [7] was helpful in the
selection of the heat treatment which was ultimately applied to the Nitinol samples.

In the heat treatment of Nitinol, the level of annealing and ageing temperatures, as well
as the annealing and ageing times are known to be factors affecting the stress-strain material
response characteristics. The ageing treatment has the effect of decomposing Nickel rich alloys
through a series of more stable compounds: Nil 4 Till, Ni4 Ti3, Ni3 Ti2 , and finally Ni3Ti [7].
These precipitates effectively strengthen the Ni-Ti matrix and augment the superelastic response.
However they may also have the adverse effect of shifting the transformation temperature away
from that which is desired in an application. In the experiments conducted as part of this
dissertation research, it was found that the heat treatment which was necessary to approach the
superelastic material response involved an annealing treatment followed immediately by a water
quench and then an ageing treatment also followed immediately by a water quench.
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For annealing treatments which were carried out at high temperatures (T > 500 0C) an
environment was needed so that corrosion of samples could be avoided. A suitable annealing
environment was found to be a salt bath containing Tempering Salt A from Heat Bath
Corporation. This salt is a mixture of nitrates and nitrites and was found to give an excellent
non-corrosive and uniform temperature environment for annealing of Nitinol. The lower
tem ageing treatments were carried out in a conventional air furnace.

The results of four different tension tests carried out using displacement control will now
be discussed. In these tests, each end-tabbed sample was loaded in tension at a constant
displacement rate and then unloaded at the same rate to zero stress. These results will show the
effect of heat treatment on the material behavior as well as the associated mechanical responses
which were achieved. First refer to Fig. 2. The information given above the plot of the stress-
strain response gives the heat treatment which was applied to the sample prior to the test. For the
experimental response of Fig. 2, the test sample was given a low temperature heat treatment
involving annealing only. The annealing temperature was 385 °C and was held for 30 min. after
which the sample was quenched.

The uniaxial load-unload tensile test which was then applied was run under displacement

control out to a maximum strain of 3.7% at a displacement rate of t = 1.6x10"4 in/sec. For the
loading process, the elastic modulus, E, is calculated as 3x10 6 psi. As the sample enters into the
inelastic range, the transition proceeds along a smoothly changing curve without passing through
a sharply defined yield point. Upon unloading from the maximum strain level, the slope of the
stress-strain curve shown in Fig. 2 is initially equal to the slope of the elastic loading branch, as
expected. However, upon continued unloading to zero stress there is a reduction in slope which
is referred to as the springback effect and is associated with pseudoelastic behavior.
Pseudoelasticity is the term generally used when referring to any nonlinearity in the unloading
curve of the stress-strain diagram wherein more strain is recovered than that associated with
purely elastic unloading [7]. The term superelasticity is used more specifically with
pseudoelastic materials which display an unloading plateau stress such that the springback of
strain proceeds completely back (or nearly so) to the undeformed geometry. Due to the low
modulus, smooth transition to inelasticity, and small springback, it is believed that a mixed
phase transformation process took place involving martensite only. Thus for superelastic
behavior of the Ti-50.8 at% Ni composition used in this research, a heat treatment which
increases the amount of springback from that shown in Fig. 2 was required.

Further heat treatments based upon recommendations from [7] were carried out and then
followed by uniaxial load-unload tensile tests. The most profound springback was exhibited after
heat treatment processes involving both annealing and ageing treatments. An annealing treatment
of 650 *C for 30 minutes followed by a water quench and a subsequent ageing treatment was
found to significantly improve the effect of springback in the response of the Nitinol compound.
From Fig. 3 it is seen that the material response approached that of superelasticity following
ageing at 325 *C for 30 minutes and quenching. In the recorded material response a much more
profound transition from elastic to inelastic deformation is observed. The yield stress is Y =-

45000 psi. Computation of the elastic and inelastic moduli reveals that E - 10xl0 6 psi and Ey -

200x10 3 psi. Notice in Fig. 3 that the springback effect is significant. The sample was strained to
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Re-Heat Treatment : 385 deg. C for 1/2 hr.

Water Quench

6 = (.075/T) * t (T = 8 min)

Test Section Diameter: D = .249 in

Test Section Length: L = 1.75 in

NiUnol Test B9 Sample B Re-Treated
60.00-

40.00-

b

20.00-

X

0.00-

-20.00-

0.000 0.020 0.040
Axial Strain: r (in/in)

Fig. 2 Tensile load-unload test of Nitinol using displacement control
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Re-Heat Treatment : 650 C 1/2 hr. (NaCI). W.Q.

: 325 C 30 min. (Air). W.Q.

6 = (.A125/T) * t (T = 12.8 min.)

Test Section Diameter: D = .249 in

Test Section Length: L = 1.75 in

Nitinol Test C8 Sample C Re-treated60.00-. I . .I. . . I . .

40.00--

b*
S20.00--

X

0.00

-20.00 . . . . ; ' ' ' ' ; . .

0.000 0.010 0.020 0.030 0.040
Axial Strain: v (in/in)

Fig. 3 Load-unload response of Nitinol for a higher annealing temperature
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2.1%, and recovery of stain following unloading was essentially complete with no detectable
residual strain. The response of the material is short of the superelastic response however since a
well defined unloading mess plateau is absent.

Mechanical responses which were obtained during the course of simila tensile tests for
variations of heat treatment were unable to attain a clearly defined superelastic response. The
cause of this problem is most likely related to the composition of the material Since the
composition is somewhat rich in Nickel, Af is likely to be higher than room temperature. Recall
that Af is the temperature above which the micrsructur is fully austenitic. Differential
scanning calorimeter tests were carried out on small Nitinol test samples to test this hypothesis.
These tests were conducted at Mernry, Inc. with the help of Dr. L McD. Schetky, Chief Scientist
of the company. The results of these tests are as follows:

Without Heat Treatment As - -13 °C A- 35 0 C

After 600O°C for I hr. A, - 3 *C A- 35 OC

Recall that A. represents the temperature at which austenite starts to form in the i.

Thus it is seen that the annealing treatment given above has the effect of increasing A.
while giving little change to A1 . Since Af is well above room tempeature the microstructure was
not fully austenitic, and a fully superelastic response at room temperature was impossible.
However, it was found that through the use of a specific heat treatment the effect of
pseudoelastic springback was enhanced to the point wherein fully cyclic hysteresis approached
the response seen in superelastic materials. The specific heat treatment range which was used to
achieve this end is as follows:

Annealing Treatment: 630 - 650 °C, Water Quench
Ageing Treatment : 325 - 350 OC, Water Quench

The tensile tests which have been discussed here were all carried out using a constant
displ t rate for both loading and unloading conditions. In the displacement control tests,
samples were found to have a grealy varying strain rate associated with their mechanical
response. Since the constant displacement rate did not produce a constant strain rate, use of
strain control was mandatory for fully cyclic tests.

CYCLIC AXIAL TESTS ON NITINOL

Cyclic tension-compression testing of Nitinol was carried out using button-ended test
samples. These samples were clamped in a split-ring fixture and attached to the MTS axial
machine. The design of the button-ended test sample was adequate such that compression
buckling was avoided. All samples were heat-treated prior to testing as specified in the last
section.
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A total of four samples (samples F, G, H, and I) were used in fully cyclic tests.
Following initial tests, some samples were re-heat treated and used again in subsequent tests.
This recycling of test samples was possible due to the utilization of the memory effect which
restores stress induced changes to the sample microstructure via re-application of the original
heat treatment.

Axial strains were measured using an MTS strain extensometer, Model 1 IB-20, which is
highly accurate to strain levels of ± 15% over a one inch gage length. In addition, the
extensometer is the key instrument for feedback control of strain when operating in the strain
control mode. Obviously strain control is the best means of carrying out such cyclic tests. In
each cyclic test which was conducted, strain was applied to the sample using ramp loading. This
gave a constant strain rate during the loading and unloading processes. In this manner strain rate
effects may be evaluated when reducing the data from a variety of different tests.

The first result for cyclic loading of Nitinol pertains to Sample F and is shown in Fig. 4
for Nitinol Test F2. This figure shows two successive cycles of strain controlled loading to
different peak strains. The first cycle is given in the inner hysteresis loop wherein the sample
was cycled between strain limits of -1.5% and +1.5% using ramp strain loading. Each ramp
segment was applied over 500 seconds thus corresponding to a strain rate of 3x10 5 sec-1. The
second cycle of strain applied to the sample during the test is shown in the figure as the outer
hysteresis loop. The strain limits for this cycle are ± 2% with a strain rate of 4x10- 3 sec"1. The
strain histories for each of these two cycles are given in Fig. 5 and show the ramp loading which
was used. It is clear that this mode of strain control gave well defined, constant rates of strain
during loading, unloading, and reloading. The use of a different peak strain for the second cycle
shows that the material behavior in the second cycle is consistent with that of the first with no
apparent plastic deformation. This is seen by noting that there is there is very little residual strain
at zero stress following the second full cycle of loading.

In Fig. 4 the shape of hysteretic response is much different than the hysteretic responses
of steel, aluminum, or other metals which exhibit plastic deformation once past the proportional
limit. The shape exhibited here is unique to the behavior of SMAs and in this case closely
approaches a superelastic response. Indeed, note that following two full cycles of relatively large
strain deformation, little or no residual strain is detectable. After unloading from the peak strains
in either tension or compression, a profound springback of strain takes place. In tension, when
zero stress is reached during the unloading process, there still exists a finite amount of residual
strain in the test sample, approximately .35%. However, upon continued unloading of strain
(through the application of a small compressive force) the remaining amount of residual strain is
recovered. Then, compressive strain loading of the sample proceeds along an elastic path as
though the sample was in its initial (or virgin) state. This aspect of the hysteretic behavior is
repeated during the second cycle of strain loading to strain limits of ± 2%. Thus, during cyclic
loading, reloading of the sample from the completely unloaded state takes place along a common
elastic line which passes through the origin of the stress-strain coordinates. This line corresponds
to the elastic loading line of a virgin sample possessing an identical material composition and
heat treatment.
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Re-Heat Treatment: 630 C 1/2 hr. (NaCl) V.Q.

: 325 C 30 min (Air) V.Q.

c Limits : -. 015/.015, -. 02/.02 (Ramp Time 500 sec)

Test Section Diameter-. D - .40 in

Extensometer Gage Length: L - 1.0 in

NiUnol Cyclic Test 12 : Sample F
60.00.

30.00-

0.00.
01
in
._o
x
<C

-30.00--

-60.00-

-0.030 0.000 0.030
Axiol Strain: c (in/in)

Fig. 4 Two cycles of tension-compression hysteresis for heat treated Nitinol
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Strain History Applied to Test F2
0.03- • •

0.01-=

Iii 0.0

-0.01

0.000 O.100E+04 0.200E+04

Time: t (sec)

Fig. 5 Ramp loading and unloading used in Test F2: constant strain rate
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We will use the word "yield" rather loosely here. The term "yield point" as it applies to
SMAs actually corresponds to the stress level at which stress induced phase transformations take
place in the material and has nothing to do with plastic deformation. Nevertheless, the generic
term "yield" will be retained for the sake of simplicity in this discussion. Inspection of Fig. 4
reveals that the yield points in tension and compression are not the same. During the course of
the first cycle, the yield point (corresponding to a .2% offset in strain) in compression exceeds
the yield point in tension by 7200 psi. Also, compressive stress levels at peak strains are greater
than corresponding tensile stress levels by as much as 16 ksi. These results agree with the
findings of Wasilewskd [1] which stemmed from separate tests on compressive and tensile Ni-Ti
samples for monotonic uniaxial behavior.

Another aspect of the mechanical response which was observed in Fig. 4 is the stress
relaxation which occurred following tensile yield. Reports from the literature pertaining to this
observed behavior in Nitinol were not found during the course of this research. Similar behavior
following initial tensile yield is reported for A-36 steel in [8]. But for steel this effect is
attributed to a yield point instability that results from rate dependence of the material combined
with geometrical effects associated with sample mounting and alignment. For the behavior of
Nitinol in Fig. 4 the relaxation phenomenon is repeated in the second cycle of deformation
although it is less pronounced. This aspect of the mechanical response will be addressed again as
it pertains to additional test results yet to be discussed.

Next consider a case where repeated cycles of strain were applied as shown in Fig. 6 for
the response of Sample G in Test G1. The strain limits were ± 1.5% and strain was applied at the
rate of 7.5x 105 sec-1. In this test the hysteresis loop is seen to shift by small increments for each
repeated cycle. The trend of this shifting process is indicated by arrows for cycles 2 through 5.
The first cycle is indicated separately by the number 1. Note that a relaxation in stress again
occurs for deformation past the peak stress at yield in tension. Also the first cycle of the
hysteresis pattern differs slightly in its shape as compared to the subsequent cycles 2-5.
Furthermore, when examining the tensile quadrant of the plot, the position of the first cycle is
not consistent with the trend of hysteresis loop "shifting". This indicates that a hysteretic
stabilization takes place during the first full cycle of strain loading. For cycles which follow
thereafter any changes in shape which occur from one cycle to the next are incremental. Here, no
major changes in shape are manifested once stabilization takes place. Similar stabilization of
hysteresis loops are observed in cyclic deformation of metals into the plastic range (e.g. see [8])

Let us now re-examine the portion of the hysteresis loop pattern which corresponds to the
inelastic behavior following yield in tension. The stress relaxation which follows yielding is
most pronounced for the first cycle of deformation. In the cycles of strain loading which follow
thereafter, relaxation of the stress in tension also occurred after the transition from elastic to
inelastic behavior. This is indicated by the presence of a negative valued slope in the inelastic
region. Thus, in contrast to the behavior of metals which undergo plastic deformation, stress
relaxation following initial tensile yielding is maintained for repeated cycles of strain controlled
deformation in Nitinol. However the level of stress relaxation is slightly reduced as additional
cycles of strain are applied.
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Heat Treatment: 650 C 30 rin (Nae) W.Q.

350 C 30 mini (Air) V.Q.

c Limits : -. 015/.015. (Rateo - .000075/me)

Test Section Diameter. D - .400 in

Extensometer Gage Length: L - 1.0 in

Nitinol Cyclic Test G1 : Sample G : 5 Cycles
60.00- ••.

-0.00,

-30.00-1

-30.00

-0.020 0.000 0.020
Axial Stroin: c (in/in)

FI 6 Five cycle test of heat treated Nitinol using i = 7.5xi0"5 sec- 1
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What happens to the mechanical response from the previous test for an increased rate of
strain application? To address this question Test Sample G was re-heat treated and tested again
for five new cycles of strain between the limits of 1 1.5%. However in this test (Test G2) shown
in Fig. 7 the strain rate was doubled to 1.5x10"4 sec"1. By comparing this response to the
previous response it is immediately evident that the slope of the inelastic region is has increased.
The yield points in tension and compression do not show a significant variation however. As in
the case of Test G1, the first loop of the cyclic pattern is raised slightly above the stabilized loop
in the tensile quadrant of the plot. Note that the stabilized loops of the cyclic hysteresis in Test
G2 undergo very little variation in shape or position as cycling proceeds. Of all these points, the
fact that the inelastic modulus has increased for an increased rate of strain application is the most
important because it indicates a change in the overall hysteretic response. More will be said
about this as we discuss other test results.

How do we know that the results for Test G2 shown in Fig. 7 are not affected by the
previous cyclic test (G1)? First, the test sample had very little residual strain at the end of Test
GI (e = 1.0xl0"4 in/in). Also, the sample was re-heat treated prior to Test G2 thus re-
establishing the initial micrstructure via the shape memory effect. However, to properly
demonstrate that the response given in Test G2 is valid, Sample G was re-heat treated again
following the test and was then re-subjected to the conditions of Test G1. The response given
previously in Fig. 6 is expected to be reproducible in this case due to the properties of the SMA.
In Fig. 8 the mechanical response of Sample G in Test G3 is shown for two cycles of strain
ranging between ± 1.5% at a strain rate of 7.5x10-5 sec-1 (as in Test G1). The first two cycles of
Test G1 (Fig. 6) were reproduced in Test G3 as shown in Fig. 8. By superimposing Fig. 8 onto 6
careful comparisons show that the paths of the hysteresis loops in the stress strain diagram are
nearly coincident. Thus the response in Fig. 7 is shown to be independent of any previous
mechanical response by virtue of the heat treatment/memory effect which was applied prior to
the test

In the next series of figures, the mechanical responses of additional cyclic test samples
(H, 1) are shown for cases of larger strain. Note that strain rates of 1.0xl0-4 , 1.5xlO"4, and
3.OxIO04 sec-1 were used to give a measure of the rate dependence of the material response.
Sample H was cycled between strain limits of ± 3.0%. Sample I was cycled between strain limits
of ± 4.5%. The cyclic responses of Sample H in Tests HI, H2, and H3 are shown in order of
increasing strain rate in Figs. 9, 10, and 11 respectively. The cyclic responses of Sample I in
Tests I1, 12, and 13 are shown in order of increasing strain rate in Figs. 12, 13, and 14
respectively. These results show that there are four primary effects exhibited in the mechanical
response for conditions of increasing applied stain and increasing applied strain rate.

The first effect concerns the yield points in tension and compression. For all test results
which have been discussed thus far, variations in the values of the yield stresses do not show a
tendency to increase for the variations of strain rate considered herein. The second effect to be
pointed out pertains to the changes of the slope of the inelastic response which occurs for
increasing strain rates. By viewing the results of Tests HI, H2, and H3 successively in Figs. 9 to
11, the slopes of the inelastic portions of the of the hysteretic stress-strain loops are seen to
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Heat Treatment- O60 C 30 raln (NaCl) V.Q.

: 350 C 30 min (Air) W.Q.

c Limits : -. 015/.015, (Rate w .00010/se)

Test Sectiom Diameter. D - .400 in

Extensometer Goge Length: L - 1.0 in

NiUnol Cyclic Test G2 Sample G 5 Cycles
60.00- I

1

30.00-

0.00-

-30.00-

-60.00-----
-0.020 0.000 0.020

Axial Stroin: c (in/in)

FIg. 7 Five cycle test of heat treated Nitinol using d -1 .Sx 104 sec-
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Heat Treatment: 650 C 30 min (NaCI) W.Q.

: 350 C 30 min (Air) W.Q.

e Limits : -. 015/.015. (Rate = .000075/sec)

Test Section Diameter-. D = .400 in

Extensometer Gage Length: L - 1.0 in

NiUnol Cyclic Test G3 Sample G 2 Cycles
60.00-

30.00--

MI

f 0.030--
t//

-30.0- -

-60.00

-0.020 0.000 0.020

Axiol Stroin: v (in/in)

Fig. 8 Two cycle test to reproduce the response of Test GI
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increase with increasing strain rate. The same observation can be made for Tests I1, 12, and 13 in
Figs. 12 to 14.

The third effect is a by-product of the second effect just discussed. In the sequences of
Figs. 9 to 11 and 12 to 14 the peak tensile and compressive stresses corresponding to peak strain
levels increase with increasing applied strain rates. The result is much more dramatic, however,
in compression. This is due to the fact that the inelastic modulus in compression is significantly
larger than that in tension.

The fourth effect which is observed for this sequence of tests pertains to the variation in
the shape of the hysteresis loop pattern. In the previously discussed tests of Figs. 5, 6, 7, and 8,
the hysteresis loops were, for lack of a better term, tightly pinched. This pinching behavior
resulted from the material response which was developed during unloading processes. As the test
samples were unloaded from their peak strains, the descending branches of the hysteresis loops
approached the origin of the stress-strain diagram. As such those responses approached the
superelastic material response. For the sequence of tests just shown in Figs. 9 to 1I and 12 to 14,
pinching of the hysteresis loops is less pronounced. Two factors contribute to this effect. The
first and primary factor is the level of strain which is applied to the sample. Inspection of the
figures shows that the hysteresis loop "opens up" more in the pinched region for Figs. 12 to 14
than for Figs. 9 to 11. That is to say, the hysteresis loop widens in the region of the origin of the
stress-strain plot. As such the shape of the full hysteretic response of Nitinol is dependent not
only on the strain rate, but also on the level of applied strain.

The second factor which contributes to the change in shape of the hysteresis loop is the
level of strain rate applied in the test. Increasing rate of strain application will also tend to open
up the hysteresis loop in the pinched region. This is shown by referring to Figs. 12 to 14 wherein
the effect is most pronounced. This effect can also be seen, although less dramatically, in Figs. 9
to 11. It is possible that only a limited amount of pseudoelastic springback is available, and once
past a certain strain limit load reversal is required to complete the reverse transformation thus
widening the hysteresis loop. However a clearer metallurgical basis for these observations is
require.

SUMMARY

We will now summarize the results obtained up to this point. For the tests discussed
herein, and also for similar tests which were not discussed, two important points regarding strain
rate behavior in Nitinol are noted:

1) Axial tensile and compressive yield point behavior does not show a
pronounced sensitivity to the varying levels of strain rate which were applied
here.

2) The inelastic uniaxial response of Nitinol is strongly rate dependent and
affects the overall shape of the fully developed cyclic hysteresis.

These points are depicted graphically in Figs. 15 and 16 respectively.
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Heat Treatment- 650 C 30 min (NaCl) W.Q.

: 350 C 30 min (Air) W.Q.

e Limit : -. 03/.03. (Rate - .0001/sec)

Test Section Diameter. D - .398 in

Extensometer Gage Length: L - 1.0 in

NitUnol Cyclic Test HI Sample H 5 Cycles
100.00 . I

50.00-

A

0.00-

X

-50.00-

-100.00~
-0.040 0.000 0.040

Axiol Stroin: c (in/in)

Fig. 9 Hysteretic response to 1 3% strain at 9 = l.OxlO-4 sec-I
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Heat Treatment- 650 C 30 ain (NaCI) W.Q.

: 350 C 30 min (Air) W.Q.

t Limits : -. 031.03, (Rate = .00015/seC)

Test Section Diameter: D = .398 in

Extensometer Gage Length: L - 1.0 in

Nitinol Cyclic Test H2 Sample H : 4 Cycles
100.00 . I

50.00-

* 0.00

-50.00 -/

-100.00- .

-0.040 0.000 0.040
Axial Stroin: c (in/in)

Fi9. 10 Hysteretic resmonse to ± 3% strain at d = 1.5xO0-4 sec-
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Heat Treatment- 650 C 30 min (NaCl) W.Q.

: 350 C 30 min (Air) W.Q.

e Limits : -. 031.03. (Rate = .0003/sec)

Test Section Diameter: D - .398 in

Extensometer Gage Length: L - 1.0 in

Nitinol Cyclic Test H3 : Sample H 5 Cycles
100.00- . I

50.00-

i

-50.00-

- MOM.0' ' '

Axial Strain: & (in/in)

Fig. 11 Hysteretic response to ±t 3% strain at d = 3.0x10•4 sec"1
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Heat Treatment: 650 C 30 min (NaCl) V.Q.

350 C 30 min (Air) V.Q.

e Limits : -. 045/.045. (Rate - .0001/sec)

Test Section Diameter. D = .400 in

Extensometer Gage Length: L = 1.0 in

Nitinol Cyclic Test I1 : Sample I 5 Cycles
120.00- . I

60.00-

U

Inl 0.00

-60.00-

-120.00'

-0.060 0.000 0.060
Axial Strain: c (in/in)

Flg. 12 Hysteretic response to ± 4.5% strain at e = 1.OxlO-4 sec-1
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Heat Treatment 650 C 30 min (NaCl) W.Q.

350 C 30 min (Air) w.Q.

c Limits : -. 045/.045. (Rate - .00015/sec)

Test Section Diameter. D = .400 in

Extensometer Gage Length: L : 1.0 in

Nithnol Cyclic Test 12 : Sample 1 5 Cycles
120.00 . .

60.00-

U)* 0.00-

-60.00-

-120.00 '

-0.060 0.000 0.060
Axial Strain: c (in/in)

Fig. 13 Hysteretic response to ± 4.5% strain at 9 = 1.5x10-4 sec"1
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Heat. Treatment: 650 C 30 min (tNaCl) W.Q.

350 C 30 mlin (Air) V.Q.

c Limits : - .045/.045. (Rate. - .0003/sec)

Test. Section Diameter: D = .400 in

Ext~ensomet~er Gage Length: L =1.0 in

Nitinol Cyclic Test 13 Sample 1 3 -Cycles
120.00-

60.00-

iU

I'

a 0.00-

!U

-60.00-

- 120.00-

-0.060 0.000 0.060
Axial StrGai: c (in/in)

FI. 14 Hysteretic response to ± 4.5% strain at 9 = 3.x10- secy
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Heat Treatment 650 deg. C for 1/2 hr. V.Q.

350 deg. C for 1/2 hr. W.Q.

0 Compressive Yield Points

ED Tensile Yield Points

Yield Stress vs. Strain Rate Experimental Results
50.0. I

0 0
45.0 0 0

0
AA 0 0 0

0 40.0- 0

0 o

35.0-
U)

30.0

.000000 .000200 .000400

Applied Uniaxial Strain Rate (in/in/sec)

Fig. 15 Tensile (0) and compressive (0) yield stresses vs. strain rate
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Strain Limit of Test - 1.5%

0 Strain Limit of Test - 2.0%

o Strain Limit of Test - 3.0%

0 Strain Limit of Test = 4.5%

Tangent Modulus at 1.5% vs. Strain Rate Exp. Res.
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F 16 lnelastic tensile modulus as a measure of shape of hystemrsis
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In Fig. 15 yield stresses (at .2% strain offset) in tension and compression are plotted
versus the applied strain rate. The boxes indicate tensile yield points while the circles indicate
compressive yield points. These experimental values do not indicate any pronounced sensitivity
of the uniaxial yield point to strain rates varying in the range between 3x10"5 and 3x10"4 sec"1.
However, the data plotted in Fig. 15 shows that the measured compressive yield stresses were
consistently larger in magnitude than their counterparts in tension.

A measure of the strain rate dependent shape of hysteresis is taken here as the inelastic
modulus of Nitinol in tension. Inelastic moduli were measured using the slope of the line drawn
tangent to the stress-strain curve at common tensile strains of 1.5%. The tangent lines were
drawn to stress-strain curves of stabilized hysteresis loop patterns. For the sake of consistency,
the second loop of each cyclic test was selected for all tangent modulus measurements. The
results of this procedure are plotted in Fig. 16. Here, a line representing a least squares linear fit
of the experimental data is shown as a solid line. A correlation coefficient of R = 0.83 was
calculated for the data points of Fig. 16. Even though the data given here are not strongly
correlated (0.9 < R < 1) the correlation is adequate to demonstrate an observed trend for the
inelastic response. The indicated trend demonstrates a strong rate dependence of the inelastic
response properties of Nitinol to the applied strain rates which were used in this research.

It should be noted that the strain rates which were used in these experimental studies are
significantly less than actual (earthquake induced) strain rates developed in the energy absorbing
devices of seismically protected structures. Higher strain rates were not used in these studies
because only a limited number of test samples were available. Nevertheless, the responses of
Nitinol given here show that this material has a strong potential for possible use in earthquake
engineering energy absorbing applications. This is due to its ability to undergo deformation to
large strain levels without succumbing to damage and fatigue resulting from plastic deformation.
Also the elastic modulus of the material is high enough to give adequate stiffness for small strain
levels. Ultimately, SMAs need to be characterized for cyclic hysteresis properties at larger
strains and strain rates, both mechanically and metallurgically. SMA characterization studies
also need to be made for cyclic shear and cyclic biaxial behavior.
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INTRODUCTION

The use of structural dampers and base isolators have been shown to greatly
reduce the damage to a structure due to an earthquake [1,2,3,4,5]. The study of these
devices is somewhat limited, in terms of the material used in the structural dampers and
base isolator devices. Viscoelastic structural dampers have been studied in [1,5], and
frictional structural dampers were studied in [2,3,4]. Rubber bearing base isolation
devices have also been studied. These are, however, only a few of the many materials
which may be used to create the vibration control desired during an earthquake. The
emphasis in this study is to research the possible benefits, to passive structural vibration
control techniques, of the relatively new class of materials, the shape memory alloy.

Constitutive relationS for the shape memory alloy (SMA) have been developed in
[6,7,8,9,10]. In addition, the material properties of a few different shape memory alloys
are explored in [11,12,13,14]. The objectives of this study were to design, build and test
a structural damper which uses a shape memory alloy. The testing of the SMA damper
included a study of the dynamic response of a 2/5 scale five-story steel frame structure
with added SMA dampers. These results were then compared to viscoelastic dampers,
which were tested on the same structure.

PSEUDOELASTICITY

A shape memory alloy (SMA) undergoes a reversible phase transformation or
phase reorientation when deformed. in addition, the SMA can undergo a reversible
change in geometry with a change in temperature, which is due to a phase
transformation. Pseudoelasticity is the constitutive behavior which describes the above
mentioned phenomena. In this study, however, we will only be concerned with stress
induced pseudoelastic behavior.

There are two different classes of stress induced pseudoelastic behavior: large
area hysteretic behavior and superelasticity. The difference between the two is due to
differing A, and MK temperatures. The M, temperature is the temperature below which the
alloy has a body centered tetragonal (BCT) martensitic crystal structure. Conversely,
above the A, temperature the alloy has a body centered cubic (BCC) austenitic crystal
structure. It should be pointed out that Af>M 1. In addition, if the material tempirature falls
between A, and M, the material will have a mixture of both BCC and BCT crystal
structures.

If a SMA at a temperature below its K temperature is cyclicly loaded, a large area
hysteresis loop is formed. This hysteresis loop, however, is not formed by the dislocation
glide mechanism typical of a plastically deforming metal. This loop is due to the growth,
shrinkage and rotation of the martensitic crystals. This allows the SMA to undergo many
more large strain high damping cycles than a typical plastically deforming metal. In
addition to resistance to large strain fatigue, the material reverts back to the original
crystal orientation and therefore to its original shape, if the tomperature is raised above
the A, temperature. Thus the material exhibits a shape memory effect.
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The superelastic constitutive model describes the stress-strain relation of a SMA
at a temperature above the A, temperature. At low stress levels, a material with
superelastic properties will behave etastically. However, at some higher stress level,
which depends on the material and its heat treatment, a phase transformation from BCC
to BCT begins. This transformation will reduce the modulus of the material as seen in
Fig. 1. Upon unloading, the material undergoes a reverse transformation at a lower
stress level. The difference in the transformation stress level between loading and
unloading is due to internal friction in the diffusionless phase transformation. Once the
reverse phase transformation is complete, the material behaves elastically, and with
complete unloading of the material, a complete recovery is ideally seen. The complete
cycle is shown in Fig. 1. St ress--

S~Strain

Fig. 1 Superellastic Stress Strain Relationship

REQUIREMENTS OF SMA DAMPER

The essential idea behind the damper design was to create a structural damper
that would take advantage of the Cu-Zn-Al superelastic material properties to damp the
building's motion and generate a centering force on the building. The Cu-Zn-Al SMA
was chosen because it not only has desirable material properties, but it is also easily
machined and relatively inexpensive. The purpose of this form of a damper is to minimize
the motion of the building during the earthquake, and to restore the building to its original
position after the earthquake is over.

The dampers had to be designed to satisfy the requirements of a model five story
building at the National Center for Earthquake Engineering Research, where the
earthquake tests were performed. This model five story building was built by the joint
U.S.-China Cooperative Research Program. The building was designed to allow different
dampers to be installed in the cross bracing. Since the building is used for many tests,
these tests must of course not damage the building. To prevent such damage, the
maximum inter-story drift was limited to .25 inches. Furthermore, since we did not want
to drastically change the natural frequency 'the building, the maximum additional inter-

story stiffness, due to the presence of thE .-ampers, was set at 9000 lbs/inch maximum.

Along with constraints imposed by the building there were also some material
constraints to be considered in the design. The maximum strain in the Cu-Zn-Al was set
at 2% to guarantee that the material would not yield plastically. However the design had



to ensure that strains up to this 2% maximum would be induced, because larger energy

absorbing shape memory hysteresis loops occur at the high strain levels.

SELECTING DAMPER DESIGN

Four designs for producing a damping device using Cu-Zn-Al were investigated.
The designs' principal mechanisms were the bar in torsion, beam in bending, axially
loaded beam and the clamped plate loaded in the center. In the comparison of these
different types of devices, a linear constitutive law was used although it is quite clear that
a nonlinear model would more accurately predict the behavior. However, it became clear,
from the linear analysis to follow, which design would work the best. A nonlinear model
was then used to more accurately determine the exact dimensions of the design.

In the following analysis, the shear and Young's moduli were estimated from tensile
tests on Cu-Zn-Al [13]. The shear modulus was taken to be half the Young's modulus.
The values gave a rough estimate of the performance of the damper, and was all that
was needed to determine which design to use.

The first design considered was the Cu-Zn-Al annular plate clamped at the inside
and outside edges. After an examination of the force deflection equation [15], with
thicknesses and radii of Cu-Zn-Al washers that were practical to machine, it was found
that the annular plate design was much too stiff and resulted in very small strains. The
axially loaded beam was also found to be unsuitable, because the constraints of stiffness
and strain would cause a beam, made from Cu-Zn-Al with the properties required by the
building, to buckle.

The torsional bar and bending beam designs both could be made with suitable
stiffness and desirable strains. Therefore an analysis comparing the energy absorbing
capabilities of the two designs was completed in order to determine which design is best.
Since larger strains clearly result in more energy absorbed during cyclic loading, the strain
ranges e, to e,. that contain 90% of the strain energy was compared between the two
designs. Below is the development of the analysis for both the bending beam and
torsional bar designs.

The bending beam design (Fig. 2) is clamped in the middle and at the outside
edges. Note that the direction of the deflection of the damper (8) is in the same direction
as the applied force (F). The force-deflection equation in terms of the length of the beam
(L), width of beam (B), height of beam (H), and modulus of Cu-Zn-Al (E) is [15]

F= 2EBH 3
8  (1)

L3

Due to the constraint of stiffness (S) imposed by the building, we shall ensure the proper
stiffness S by setting it to the expression
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S2EBH3  (2) Force F

L3

Therefore the force deflection equation
reduces to F=S& The bending moment Cu-Zn-Al Beam

equation along the length of the beam [16]is/
M(X)f= 2X-L] (3)

4

Combining the linear elastic constitutive
law r,,=Ee,, the strength of materials 6
flexure formula, and the bending moment
equation above, and then solving for the
strain yields

,-H [3( Fig. 2 Bending Beam Design

The maximum strain Emu occurs at x=L,
y=H/2, and the maximum force F equals SA, where A is the maximum expected
displacement of the damper. Substituting these values in Eq. (4) yields

3LSA()

2EBH2  (5)

Solving Eqs. (2) and (5) for B and H then yields

B= 27SA3  H= eL 2 (6)

2E4exL3 3A

Substituting Eq. (6) back into Eq. (4) yields

e 8A= 6A(2x-L)y (7)L 3

Eq. (6) and Eq. (7) allow the constraints of stiffness (S), maximum strain (E,=), and
maximum deflection (A) to be prescribed, so that the height (H) and thickness (B) of the
beam is a function of L only.

The strain energy density is given by U=-/2Ep2 . The strain energy function is
symmetric in both the horizontal and vertical directions. Therefore, it is necessary to
integrate over only one quarter of one of the beams, then multiply the result by eight.
The integral of the strain energy is

U =8f'f f 2n=E exdzdydx (8)
Ymny zn. 2

In order to integrate over the region of high strain, the limits of integration must be
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found. The region of high strain shall be defined as the region with strains between e.
and E..=. Since the strain is not a function of the z direction, the limits become z,,O== and
z,=B. Clearly the end of the beam is the high limit of integration in the x direction thus
x,,=L. The lower limit can be found by substituting into Eq. (7) the values E•,., and
y=H/2, and solving for x. Substituting Eq. (6) into the resulting expression yields

X L [= eIOW!t- 1 (9)

The top of the beam is clearly the max limit in the y direction y,=H/2. The lower limit
can be found as a function of x by setting , and solving for y. This limit becomes

LOe k (10)
6A (2x- L)

Integrating Eq. (8) with the above limits and substituting 1=ew1Fe,, yields
U= =- 2[1 -_ps.3p31In(P)] 11

2
If e,.=O then 13=0 and Eq. (11) simplifies to U=A2S/2 which is the total energy of the
system.

The strain energy of the torsional bar will now be investigated. The basic
dimensions of the damper used in the design are the torsion arm length D, radius of
torsion bar R, and length of torsion bar L (Fig. 3). Note that the torsion bar length L is
defined as the distance between the torsion arm and the side grips as shown in the
drawing of the torsional bar design (Fig. 3). The torsion arm length D is measured from
the center of the torsion arm to the center of the pivot. The displacement 8 is again in
the same direction as the force F (Fig. 3).

Cu-Al-Zn Bar-2R

Fig. 3 Torsional Bar Design

i=-6



The angle of twist e due to the displacement 8 is expected to be small, therefore
8=DSin(0)zDO. The equation for shear strain •,•, in terms of the L,D,S and the radial
distance from the center of the Cu-Zn-Al bar r, is

e Or 8r (12)
2L 2LD

Also, the equation for the force F on the damper in terms of L,D,S and r is given by

F.= GR 48 (13)
LD

2

As before, the stiffness S is defined so that F=SS, giving

s. 7GR 4  (14)
LD 2

The maximum shear strain occurs at r=R when 8 is equal to the maximum deflection
allowed (A). Substitution into Eq. (12) yields

AR (15)

Solving Eq. (14) and Eq. (15) for L and D yields

L= A 2S D= 2GRAe (16)
4-nGR 2•4 RS

Upon substitution of Eq. (16) into Eq. (12) the following simple expression for shear strain
results e,.r (17)%=R

The equation for strain energy density is Uo=2Gr4•. This equation must be
integrated over the high strain region in a manner similar to the procedure used for the
bending beam design. The strain is independent of the y and 0 directions, so those limits
become Ymin= 0 , ymax=L, emin= 0 and 0m,= 21c. The maximum limit in the r direction is rm,==R.
The minimum value of r can be found by substituting •. for e,, in Eq. (17); this limit then
becomes ri.=RF1/e,, . The total strain energy function, after using Eq. (16) to eliminate
L, finally becomes

A' 2Ge
U=2 04 !°'eRlmmfR" G- r rsdrdyde (18)

Integrating and substituting 3=qw/ ,n,= yields
U= A2-[1 - p4] (19)

2 (9

If c== then 0=0, and Eq. (19) simplifies to U=A2S/2 which is the total energy put into the
system.
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The strain energy equations, Eq. (11) and Eq. (19) can be divided by A2S/2 to
yield the percent of the total strain energy A2S/2 as a function of the strain range 0
integrated over. Fig. 4 is a comparative plot of the percent total strain energy vs the
strain range I0 for the torsional bar and the bending beam designs. It can be seen from
Fig. 4 that for any given 03 between 0 and 1 the percent of total strain energy contained
within that region is higher for the torsional bar damper design. This means that more
of the energy is put into higher strain regions in the torsional bar design than, the bending
beam design. The larger strain results in a greater amount of energy absorbed, and
therefore the torsional bar design apparently results in a more effective damper.
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E 40
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Fig. 4 Percent Strain Energy vs Strain Range 13

FINAL DAMPER DESIGN

The finalized damper design was determined though analytical and experimental
methods. The first damper was designed by employing available analytical tools and
material data. This design was then built and tested on the MTS tensile tester. The
results were then used to modify the estimated material properties and determine a new
design.

After the torsional bar design was chosen, a more accurate nonlinear model for
design was developed. The constitutive law used in the analysis was bilinear, i.e.

Sxy=2G 1exy+[2(G 1- 2)(e t-e y)JU (ex -e,) (20)

Note there are two shear moduli: G1 which is the elastic shear modulus and G2 the
inelastic shear modulus (see Fig. 5). Also note from the figure that E, is the value of the
strain at which the stress strain curve changes slope. The term U(ey -F,) is a step function
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Fig. 5 Stress Strain Curve Used to Model Damper

and is defined as follows:

U(x)= If x>OI (21)

The torque produced from the two torsional bars in the damper design (Fig. 4) is

T= FD=2f'f '(t ,x r)rdrdO (22)

Substituting in the constitutive law, Eq. (20), and Eq. (12) for the shear strain and
assuming that R>2LD3/8, the integration of Eq. (22) simplifies after some manipulation
to

F•G2R4 8+ t (2L3)~F= 8 +!-Te-(G1-G2)[R 3 2(L ] (23)

LD2  3D 83
The above equation gives the force deflection curve for different values of L,D and R.
For design, however, we must control the maximum strain c,, and the stiffness S. The
stiffness will now be redefined as the force needed to produce the maximum deflection
A, divided by A. With 8 equal to A and with S as defined above, Eq. (15) and Eq. (23)
are solved for D and R in terms of L. The results are as follows:
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D-( 
3S, 4e % r ae. - xtG~ e ¶~e , ItG (24)

R-( 3S,,2en=
R2 2 1d43G2 4L+et(Gi -G2)(44-e-fl

The original damper was designed to err on the stiff side, because the radius of
the torsional bar could be turned down on the lathe ar.d then retested until the correct
stiffness was achieved. After the first damper was built and tested at different radii, the
shear modulus was modified to fit the results of the testing and the final design was
determined.

It should be noted that in the torsion bar design, the Cu-Zn-Al bar acts as a beam
in bending in addition to the desired mechanism of a bar in torsion. Since the Cu-Zn-Al
bar is clamped on both ends, the deflection of the Cu-Zn-Al bar due to bending can be
modeled as a beam clamped at the ends and loaded at midspan. Using a linear
constitutive relationship, the stiffness K of the torsion bar in bending is

Ku Sit ER4 (25)L3

The stiffness due to torsion for the same bar is given in Eq. (14). Dividing Eq. (14) by
Eq. (25) and replacing G with E_(l+v) gives with a little rearrangement

K~~ B(1 +v) (D 2 (6

To ensure that the deflection of the Cu-Zn-Al bar in bending is insignificant in comparison
to the deflection due to the torsion, we set S/K<0.1. Assuming v=0.3, D>1.13L would
satisfy the above conditions.

Cu-Zn-AI DAMPER TESTING

After the damper had been constructed and the Cu-Zn-Al heat treated, the damper
was tested on the MTS machine. Fig. 6 shows the force deflection relationship of the
Cu-Zn-Al torsional bar structural damper. The first cycle of the force deflection curve has
a much more pronounced superelastic characteristic than the subsequent cycles.

A comparison between the stiffness and energy loss between the SMA damper
and the viscoelastic damper can now be made. The stiffness of the SMA damper was
8813 Ib/inc, which was near the target stiffness. In addition, the energy loss per cycle
was calculated to be 68.1 lb-in. The fourth cycle was used for this calculation since the
force deflection curve has stabilized at that cycle. The viscoelastic damper's stiffness and
energy loss per cycle varied with frequency, temperature and percent strain [1]. At 0.1
Hz, 5% strain and 40'C, the viscoelastic damper had a energy loss per cycle of 69 lb-in
and a stiffness of 322 lb/inch. However at 4 Hz, and 20% strain and 21 "C, the same
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Fig. 6 Force vs Disp. of Cu-Zn-Al Damper

viscoelastic damper had a energy loss per cycle of 28431 lb-in and a stiffness of 5311
lb/inch. These results would indicate that the viscoelastic damper would provide greater
damping than the SMA damper.

It should be pointed out that while the SMA damper does not provide as much
damping as a viscoelastic damper, it can be used in applications where the viscoelastic
damper cannot. The three fundamental advantages of a damper designed with SMA
material over viscoelastic material are: SMA are much stronger, relatively insensitive to
temperature, and can provide a restoring force. These three factors make SMA materials
suitable for a base isolation system. A base isolation system must be strong enough to
support the building and should restore the building back to its original position after an
earthquake. The viscoelastic damper could not be used for this purpose since the
material is much to soft to support this type of load.

EARTHQUAKE SIMULATOR TEST SET UP

As noted earlier, the test structure used was a five-story model building. The
model building is 224.0" in height and 52.0" on each side. Diagonal braces with SMA
dampers were bolted to the gusset plates welded to the girders. The acceleration and
absolute displacement in the horizontal direction were measured on the east and west
sides of the concrete base and on each floor of the building. In addition, the
displacement 8, across the damper between the second and third floors on both sides of
the building, was also measured. The placement of the displacement and acceleration

ECC-11



measurement devices is shown in Fig. 7.
Temposonic displacement transducer's
and Endevco accelerometer's were used -E
for the displacement and acceleration
measurements. Strain was also
measured using strain gauges on the top E
and bottom of the girders of the second
and third floors, where the strain was
expected to be the largest.

A banded white noise test was run
to determine the frequency response
function of the structure. This frequency

response function was then used to
construct simulated ground motions of the
Hachinohe, Olympia, El Centro and
Quebec earthquake records. To prevent
damage to the structure, each ground
motion was initially run with a
conservatively small peak acceleration of
0.06g's. The magnitudes of the ground = ,
motions were then increased until it was n TiO,,pIA Dwifat snw,,uc.

determined that the atructure would be =A DMP
damaged by any further increase. The Fig. 7 Instumwentation of Model Structure
maximum inter-story drift and maximum
strain measured during the tests
determined whether or not an earthquake of greater magnitude would be run. All four
earthquakes and banded white noise were run with peak accelerations of 0.06g, 0.12g,
0.24g and 0.36g. In addition, the structure was subjected to banded white noise and the
four ground motions at 0.06g's with no dampers.

SEISMIC TEST RESULTS

Bar graphs, which compare the damped to undamped building responses for the
El Centro earthquake record, are given in Figs. 8-10. Fig. 8 presents the maximum
relative floor displacements, with and without dampers. Fig. 9 presents the maximum
floor accelerations for the same case. Finally, Fig. 10 presents the maximum inter-story
drift. Table I summarizes the results of building responses to the four earthquake
records, by listing the maximum responses of the undamped structure and the percent
reduction of responses of the damped structure.

We have previously noted that larger damper displacements resulted in larger
energy absorbing hysteresis loops. It was also noted that the damper stiffness decreases
with increasing deflections. This change in stiffness and energy absorbing hysteresis
loops with deflection, was expected to cause a change in the natural frequency and
damping ratio of the building as the magnitudes of the ground motions increased. Since
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Table I Summary of Dynamic Response of Model Building

Maximum Floor Earthquake's with 0.06g max acceleration
Response Level Hachinohe El Centro

Undamped % Reduction Undamped % Reduction
Relative 1 0.074 60.4% 0.039 53.4%

Floor 2 0.211 62.7% 0.113 66.4%
Disp. 3 0.237 48.9% 0.182 67.6%
(inch) 4 0.436 64.4% 0.238 68.9%

5 0.507 63.5% 0.283 67.5%
Maximum 1 0.119 12.6% 0.093 11.8%

Floor 2 0.267 29.20/6 0.163 23.3%
Acc. 3 0.387 36.7% 0.203 33.5%
(g's) 4 0.461 36.2% 0.251 34.7%

5 0.554 35.6% 0.303 37.3%
Inter- 1--B 0.074 60.4% 0.039 53.4%
Story 2-1 0.144 65.3% 0.077 68.8%
Drift 3-2 0.130 64.6% 0.070 70.00/%

(inch) 4-3 0.100 66.0% 0.059 71.2%
5-4 0.071 57.7% 0.045 60.0%

Quebec Olympia
Undamped % Reduction Undamped % Reduction

Relative 1 0.015 13.3% 0.032 37.5%
Floor 2 0.039 20.5% 0.088 44.3%
Disp. 3 0.053 0.0% 0.136 42.6%
(inch) 4 0.060 -8.3% 0.181 44.2%

5 0.083 4.8% 0.217 44.7%
Maximum 1 0.094 33.0% 0.131 32.1%

Floor 2 0.167 37.7% 0.190 28.4%
Acc. 3 0.141 13.5% 0.203 15.3%
(g's) 4 0.119 -23.5% 0.187 -23.5%

5 0.182 8.8% 0.292 16.4%
Inter- B-1 0.015 13.3% 0.032 37.5%
Story 2-1 0.026 15.4% 0.059 49.2%
Drift 3-2 0.022 4.5% 0.050 42.0%

(inch) 4-3 0.021 28.6% 0.048 52.1%
5-4 0.033 51.5% 0.039 51.3%

the damper stiffness decreases with larger deformation, the natural frequency of the
building was also expected to decrease under the larger earthquakes. Fig. 11 shows the
"decrease in the natural frequency with increase of the base excitation. Under larger
deformation, larger energy absorbing force deflection cycles are experienced which
causes an increase in the damping ratio. Fig. 12 shows such an increase in damping
with larger earthquakes.
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It should be noted that the above mentioned damping ratios were calculated by the
half-power method [17] for the first mode of vibration only. Since the damping ratio is
less than 15%, the half-power method can be considered accurate. A plot of a typical
third floor acceleration frequency transfer function with and without SMA dampers
(Fig. 13), reveals the first and second modes of vibration clearly. However, the frequency
response of the second mode of vibration is less then half that of the first mode.
Therefore, the discussion of results will be limited to the first mode of vibration, since it
dominates the dynamic response of the structure. The bare frame transfer function is
characterized by a tall and narrow spike at 3.2 Hz. This indicates little damping. The
frequency response of the SMA damped building is wider and shorter which shows an
increased damping from the undamped case.
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DISCUSSION OF RESULTS

It seems apparent from an examination of Table I that the effectiveness of the
damper varies with the earthquake. For instance, the percent reduction of the maximum
relative floor displacement due to the Hachinohe ground motion averaged over the five
floors is 60.0%, while same averaged percent reduction for the Quebec earthquake case
is only 6.1%. In fact, the fourth floor maximum relative floor displacement and maximum
acceleration of the damped building was greater then the response of the undamped
building in the Quebec earthquake case. The other floor's maximum responses as well
as the inter-story drift response for all floors, however, were smaller in the damped case
then the undamped case. These sizable differences can be accounted for by noting that
the frequency contents of the four ground motions are different. The Quebec earthquake
has a larger content of higher frequencies then the Hachinohe earthquake. Since the
SMA dampers increase the natural frequencies of the building (Fig. 11), the SMA
dampers will be more effective against earthquakes with lower frequencies.

The calculated damping ratios are less dependent upon the frequency content of
the earthquake record. Fig. 12 shows an increase of damping over the undamped case.
However, the damping for SMA dampers is not as great as for viscoelastic dampers.
Viscoelastic dampers have been shown [1] to yield a damping ratio between 5% and
14%, depending on the temperature of the viscoelastic material, for the same five story
model building. Whereas the SMA damper properties are not highly temperature
dependent, the damping measured was less than for the viscoelastic dampers at their

ECC-16



least favorable temperature. Since the SMA damper was designed to maximize the
benefits of the Shape Memory Material properties of Cu-Zn-At, there is no evidence to
indicate that a redesign of the damper would result in improved damping on this test
building.

In spite of the above drawbacks, the potential for effective SMA damping is
apparent. The dampers did mitigate the building's motion and the building was safely
tested with the SMA dampers at levels where the building would have been severely
damaged without the dampers. In addition, the test results indicate that the SMA damper
is probably best suited for base isolation applications. One of the features of the SMA
damper is the potential for a self-centering hysteresis loop. This feature is not effectively
utilized in strutural damping, because the building's inherent stiffness creates a self-
centering force that is much greater than the damper's. However, in base isolation this
self-centering property would be of great benefit, since the base isolation device acting
alone must restore the building to its original position.

Another indication that the SMA damper would be useful in base isolation is the
change in natural frequency of the building with increased levels of base excitation
(Fig. 11). A base isolation device should be stiff for small deflection, so that wind loading
and small tremors will not cause the building to move excessively. In the event of a large
earthquake, the stiffness should reduce and allow the building greater mobility to isolate
itself from the ground motion. The decrease in natural frequency of the damped building
(Fig. 11) with increased base excitation indicates a corresponding decrease of damper
stiffness with increased damper deflection. This same change in damper stiffness was
also noted earlier.

SUMMARY AND CONCLUSION

The results of experimental studies on the material properties of the shape memory
material (SMA) Cu-Zn-Al have been presented and analyzed. Experimental results on
the seismic behavior of a Cu-Zn-Al SMA damped steel-frame 2/5 scale model structure
have also been presented. In addition, a discussion of the advantages of the torsion bar
SMA damper over other SMA damper designs was included.

The material test results show that this composition of Cu-Zn-Al has a superelastic
stress strain relation for a very limited number of cycles. After a few cycles, the internal
friction will increase and cause a hysteretic material behavior with a very small amount
of spring back. The final hysteretic stress strain behavior was found to be caused by
martensitic transformation rather than by slip/glide dislocation motion.

The seismic test results demonstrated that Cu-Zn-Al dampers are effective at
mitigating the 2/5 model five story building's response to various ground motions. The
results were compared to results of tests done with viscoelastic dampers, and it was
concluded that the Cu-Zn-Al dampers were not as effective as the viscoelastic dampers.
The test results of the structural dampers indicated that the SMA dampers are better
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suited for base isolation.
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ABSTRACT

The objective of this paper is to explore new technique to improve dynamic response and
vibration characteristics of composite plates or beams by using shape memory alloy wires(
SMA wires). Analytical method is developed to predict the natural frequencies at large
amplitude under activation or deactivation (heating or cooling).

A dynamic model is also developed in predicting the beam responses at activation
/deactivation phases. The model could be used to estimate natural frequencies, damping (loss
factor) of SMA hybrid laminated beams at simply-supported boundary conditions. The dynamic
response of sandwich beam with SMA embedded were calculated in both time domain and
frequency domain.
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INTRODUCTION

Smart materials [1] [21 are intelligent materials with special ability to change their physical
properties and geometry (i.e, stiffness, damping, viscosity, shape, etc) due to certain stimuli or
inputs, such as optical fibers, piezo-electric polymers, piezo-ceramics, electrostrictors, electro-
rheological fluids, (SMA)shape memory alloy, and magnetostrictors. Adaptive materials and
structures are but a subset of smart materials and structures.

The unique feature of smart material in the latest decade have been shown in a great
number of components in large space structures or special mechanical devices comparing to
its older generation. The employment of smart materials is the only reason to reach such a full
adaptive control effectiveness of the dynamic response of structures, like space crane , robot
arms.. .etc. It not only has reduced the weight of traditional adaptive actuators(as hydraulic
actuators), but has evolved to a new concept of dynamic properties tunning in smart structure.
Though, the smart materials employed in smart structure have many special advantages yet,
the lack of solid test database in some smart materials (as Shape Memory Alloy or Electro-
Rheological fluid) [1] applied in structure elements has hindered further research in this area.
Besides, this brand new area needs interdiscip';nary coordination, such as material properties

structural mechanics, controls, electrical devices, testing engineering and fabrications.

The shape memory alloy used in the past few years on robot arm was indeed an effective
control element, its simple construction and the possibility to move smoothly without
environmental pollution( shedding lubricant hydraulic oil ). We will be able to reduce
complexity of mechanical elements if so constructed, also the fact of long fatigue life and
corrosion resistent capability made the material more fascinating to engineers. Besides, the
only energy it needs is any type of thermal energy such as the application of electric current
through SMA wire. The shape memory alloy might also be a good candidate as key element
in performing active vibration control, or passive vibration control [31. We found that its wire
type could be embedded in various kinds of composite materials serving different purpose for
vibration suppression, changing structure stiffness to avoid the resonance at various vibration
mode, acoustic vibration control, working as geometry variation device and so forth.

In general, single rod or beam element may not necessarily have to change stiffness to
evade resonance while excited by external disturbance at fundamental mode, but single beam
possessing constant mechanical properties could reach resonance at higher modes. A
progressive concept in changing stiffness of structures is important for some reasons:

For example, at a global view of a complex structure which contain many spars, rod or
beams, we can activate one or few of its elements to alter the global structure natural frequency
in order that certain maneuver can be achieved. We could activate some particular SMA wires
in rods or beams of a space structure, a crane or jacking arm, to consummate a series of
movements. By using the smart material served as adaptive control members is more efficient
and weight saving.

A space structure or satellite are flexible bodies in space maneuver. We can stiffen some
particular members as it rotates in space, the whole structure will act as rigid body or at least
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semi-rigid one such that we could spent less analytical work at flexible structure. Besides,the
changing vibrational characteristics of the hybrid structure may be of practical interests too. All
in all, the trend is, well tuned elements in natural frequency change of large flexible structure
may be imperative for some applications.

SPECIAL FEATURES OF SMA(shape memory alloy)

There are two types of solid state transformation : one is diffusional transformations which
a new phase is formed by migrating atoms randomly in all directions, with different chemical
composition than the matrix from which it is formed. This progression of transformation is
dependent upon both time and temperature. The other is displacive transformations which do
not require atomic migration or change in the chemical nature of the matrix to alter its solid
state. Its crystal structure is merely rearranged into a more stable one. This progression of
transformation is only dependent upon temperature. [4]

The austenite <--+ martensite transformation of SMA material is displacive transformation.
The progression of transformation from one phase to the other depend on temperature only,
volume fraction of martensite increases as temperature decreases from the parent phase
(austenite)-each atomic layer packed together in packed shape at austenite phase, and each layer
moves a little to achieve the martensite phais., this phenomena is called Bain strain. [91

In general, shape memory alloy (NITINOL) will undergo an accommodation step: the
lattice shape change is not merely caused by Bain stain, owing to the other layers of austenite
do not always change to the slant structure described previously. It will accommodate itself to
a more relaxed shape dubbed twinning (the general shape after cooling from austenite phase),
the twinning process plays a key role in the shape memory effect.

VIBRATION CHARACTERISTICS OF SANDWICH BEAMS

There are two kinds of vibration control technique which were currently applied. One
is passive vibration control technique, the other is active vibration control technique. Yet, the
emerging smart materials come to the world had create other ramifications in the vibration
control studies. It is showed unique abilities of smart materials that could change material
viscosity, stiffness, and so forth, while activated by electric current, magnetic field, heating
processes. The ability of SMA wire to change stiffness in SMA hybrid laminated beam has
been described above, the test results have shown unique potential to shift the structure natural
frequencies. Thus, resonant condition of vibration induced by impinging loads, sinusoidal loads,
etc, could definitely be subdued by activating the SMA wires embedded in the composite
structures. However, the test results in laboratory also showed the lower damping coeficients
while SMA hybrid laminated beam was full) activated. All the tests of SMA hybrid laminate
beams were done under the clamp-clamp boundary condition, which is not very useful in many
engineering applications. We often choose cantilever beam or simply-supported beam as
candidates in practical vibration problems. Still, the tests showed vivid evidence of structure
stiffening effect and changing of damping properties.

In practical applications, cantilever beams are used commonly, such as moving beams
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fixed at one end, a robot arm, helicopter rotor blade, an electric post, a fan blade of jet engine,
and miller arm of a milling machine, just name a few. The cantilever beams require strength
and bending regidity to serve as sound structure. One of the best choices is sandwich beams
construction. There are many advantages of using sandwich structures; (1) sandwich structures
have great strength/weight ratio, superior flexural regidity/weight ratio, (2) tailored composite
skins perform excellently under various design requirements and, (3) the sandwich core, which
is softer and less weight, could be made out of very good damping materials in order to reduce
vibrations caused by mechanical loading or acoustic loading.. .etc. The bonding material could
be film adhesive and spray-on primer which serve the purpose to join sandwich faces with core
materials. Thicker core can be cut in smaller blocks stringed together for making curved
sandwich panels.

VIBRATION SUPPRESSION IN STRUCTURES

Vibration suppression is a very broad subject in which a lot of techniques are available
to achieve such purpose. Passive vibration control has simpler technique by using extra mass,
spring attached on the main structures or by using vicoelastic damping material on structures.
They require predetermined dynamic system analysis and open control scheme. Active
vibration control is mainly closed loop control to suppress mechanical vibration. They require
more effort in designing feed back control law plus intrigue electronic devices in structure
system like large space station.

EQUATION OF MOTION OF SANDWICH PANEL

Our primary goal in this section is to establish the principles of mechanics for sandwich
panels, whose faces are made of SMA hybrid composite laminate. A large flexible structures
like wind turbine, may face plenty of vibrational problems. We are assuming that this flexible
wind turbine panel is the said sandwich panel which vibrate with large amplitude. This large
amplitude creates geometric nonlinearity. The structure is under elastic deformation. No normal
or in-plane stresses in the core, core thickness is constant The only significant stress in the
core is the transeverse shear. The face skins are thin comparing to the core thickness. They
take the in-plane forces only with upper skin identical to lower skin. The panel is assumed in
perfect bonding between the skins and the core.

A. DERIVATION OF EQUATION OF MOTION

The activation of upper skin shows general approach of unsymmetric plate lay-up. The
unsymmetric effect occurs at various boundary condition. The skin stiffness varies with
temperature and time, the young's modulus of SMA wire denoted by E,(t), like that in [5] ,
could be linearized according to diagram in [4] young's modulus - temperature relation. Since
E,(t) are different at activation and deactivation due to hysteresis effect [4] p.98, thus:

At heating:
E,(At) = 3.5 + .25 (AT/At) At (Msi) (1)
E$(At) = 24.13 + 3.10 (AT/At) At (Gpa) T: °C

where, AT = 32°F , 17.78°C respectively
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At coolima after activation:
E,(At) = 11.5 - .34 (AT/At) At (Msi) (2)
E,(At) = 79.29 -4.22 (AT/At) At (Gpa)

where, AT = 23.5°F, 13.07°C respectively

E,(At) : SMA wire Young's modulus
AT temperature range
At time step (sec.)
AT/At ac f(I,V,G)

I: electric current
V: electric voltage
G: heat flux

We can approach the problem with energy variation to derive the equation of motion
of sandwich panel. Assuming that only strain energy of the SMA hybrid skins (upper and
lower), and transverse shear energy of the core are considered. We neglect flexural rigidies of
the face skins for its small thickness comparing to the core thickness. The recent research on
nonlinear analysis of composites by Whitney and leissa [6], Bai [7], and a collective work on
geometrically nonlinear analysis Chia [8], can serve as good indication in deriving the
equation of motion. The effects of skin stiffness variation at activation/deactivation will also
be considered.

The displacement fields are assumed in the following: ( starting from 2-D plate
approach)
Non-activation:

u(x,y,z,t) = uo(x,y,t) + z U/. (3)
v(x,y,z,t) = v0(x,y,t) + z ivy (4)
w(x,y,t) = w(x,y,t) (5)

These assumption lead to the conventional results by previously collected work as [9].

Activation mode: upper skin deforms by heating and recovery stresses, assuming that core
is good insulator to temperature, and the extra terms appeared in (6),(7)
are small.

u(x,y,z,t) = uo(X,y,t) + z w - f(x,t) (6)
v(x,y,z,t) = vo(X,y,t) + z Wy - g(y,t) (7)
w(x,y,t) = w(x,y,t) (5)

where, f, g are the shrinkage of upper skin at activation (c~atilever beam)
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T = To +_ ~tA t
SAi t

Introducing core shear rotation due to skin activation(cantilever beam)

V'. (X, 0 f (x, t d.

t(y t ) 0 g ( y , 0 t ) 

( 8 )

where,
uo(xyt) panel neutral plane displacement in x-dir.
v0(x,y,t) panel neutral plane displacement in y-dir.
w(x,y,t) panel neutral plane deflection in z-dir.

y,,x~yt) panel neutral plane rotation about y-axis
Wp3(x,y,t) panel neutral plane rotation about x-axis
z local normal dir. to neutral plane of panel
f(x,t) deformation of upper skin at activation in x-dir
g(y,t) deformation of upper skin at activation in y-dir

Score shear rotation due to upper skin activate in x - dir.
Ir i core shear rotation due to upper skin activate in y - dir.

thermal expansion in x-dir.
ethermal expansion in y-dir.

oXy skin thermal expansion coeficient in x-dir.
ay skin thermal expansion coeficient in y-dir.
To •ambient air temperature

The strains of skins can be expressed as

g= au,) _ h atox + 1 p (aw) ki - aat(Xvt) (9)
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Figure 1 Large deformation of sandwich panei

E _ au+ h 0#+ 1 (W)2 (10)

Ov_ h 0#, + 1 w)2 ag(y, t) (ii)

E I a v+ + 1(w)2  (12)

D uo Dvo h DV' DV,) +Dwaw•

y U 4 O+ 8v + OY + aw 1w)13)

"C'; + D h V-1 + D , + W'1W' (14)
-Ty- + * (--"

The core transeverse shear strains are
According to the asymmetrical skin laminated sandwich panel at activation (upper skin
stiffness change) and compare to [7], we find :
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+ - ÷ (15)

Skin strain expressed [Eu"]T [ ey E u

in (9) to (14) as CE'] = C E E 1

Neutural plane strain (which cause bending by coupling stiffness), and sandwich panel
curvature K as below:

8 0 + u 1 ( 1 W ) -va + 1 ( av) 2  aU O +8v + a+ awV )
MY 2 x- FY -2Ty -FY a-T-y

a*. a*. a#,_ *. a*,+ a*.

Also according to principles of variation, total strain energy of the sandwich panel could be
expressed as:

aA 12 A1

V = .{ CEU]T'=.2 e-7 A,, [eu] dx dy

1  J1 2 A 3+ I [f ,•1 IA 2 A2, (ell dxdy

I-, I A32 A33J~I

+ f 72 3 0 ] dz dy dx (17)
0h G23

""2
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where A v , A, , ,D are the laminated plate stiffness properties. The superscript u, 1 , c
indicate ypper, lower, aore respectively.

The kinetic energy form could be derived as following:
from equations (5),(6),(7)

a b

U j fpAh ( d.2 + f.'+ V) dy dx (18)

TV 1 ph, ( C + Of+ V.2) dy cb 20

a b

where, po is SMA hybrid laminate skin density (lb/in3), p, is Sandwich core density (lb/in3)

uO, vo is neutural plane displacements

Total kinetic energy of sandwich panel is:

T = Tr + T + Tr (21)

External work can be expressed due to a uniform loading qo as
•b

W= - Iq ~w dy dx (22)

Thus, employing the variation principle minimizing the total energy, we have the following:

U = -T + V + W (23)
6U = -6T + 6V + 6W = 0

From Appegdix A (A.25),(A.26),(A.27),(A.28), we assume that under simply-supported or
cantilever boundary conditions, beams are under cylinderical bending (1-D static condition).
Ignoring the coupling stiffness effect of upper, lower skin at activation, and there are no
nolinear part containing N.-' in the (A.28), We have the following governing equations

2 All( 02u, + a-w )3= 0 (24)

A* ( a2U 8W 2W_ h ) 2#. _ 02f ) + G2(3 -#+• ) (2O)

= D. a2(, -a2
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+- a = D a2(0. - 0 (26)

G13 h( - + aW) + q0 = 0 (27)

The above equations of motion are able to draw the same conclusion as Whitney [9] if we
neglect equations (24) , (25) and preserve the bending equations (26),(27). The _y.. varies in
different materials, but often it is negligible if the structure is stiff enough.

VIBRATION ANALYSIS OF SANDWICH BEAMS

The recent studies in the analysis of laminated beams and plates are abundant. We have
found that a large portion of the researches done in composite structures are devoted to solid
laminated beams and plates or shells, and its increasing use in the field of mechanical
engineering, aerospace engineering, marine engineering, auto-industry, sporting goods, proved
that the realms of application will definitely be expanding.

The paper surveyed by Kapania and Raciti [10],[1I] have shown direct evidences of
applying Classical Kirchhoff Plate theory on thin plate analysis at early stage of applications
on composites. The method proved effective in thin laminate stress-strain analysis, and the
classical laminate theory quoted in most of engineering text books are still used by composite
engineers. Yet, people learned that CLT (Classical Laminate Theory) would lead to
considerable errors in analyzing composite plates. CLT underpredicts plate deflections and
overpredict its natural frequencies, especially when transverse shear moduli (interlaminar shear
moduli) of laminated composite beams and plates are usually very low compared to in-plane
tensile moduli. Therefore, shear effect is crucial in composite laminates and has been
acknowledged ever since. There are two categories in shear deformation theory which have
been used after CLT; that is, the first-order theory and the higher-order theory. The first-order
theory, well known Reissner-Mindlin theory, were developed by Reissner [12], Mindlin [131.
The more extensive work by Yang, Norris, Stavsky [14] and Whitney, Pagano [15], followed
the earlier Mindlin theory, has worked well for laminated beams and plates analysis in
predicting deflections, natural frequencies, and buckling loads. The higher-order theory, more
sophisticated idea, consider through-the-thickness stress response, such as az, 'rz, in regions of
discontinueties at the boundaries. Thus, the higher-order theory gives more accurate results than
CLT or Mindlin's theory. However, the theory requires higher computing cost which made it
impractical. Owing to this limitation, higher-order theories involving higher-order derivatives
of transverse displacement (the shear rotations of beams and plates) were developed in the 80's
and the more popular applications made by Reddy [16] is a typical one in the higher-order
theory for laminated composites.

The survey work in [10],[I I] has mensioned a lot of researches on vibration of
composite beams and plates also. We could find references in particular papers on the dynamic
behavior of composites and sandwich plates by Bert [17]. The said are all pertained to

mnimetrically laminated plates and linear vibration problems with first-order or higher-order
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approach. Their solution methodologies involving analytical (closed form, Galarkin, Rayleigh-
Ritz) and numerical (such as FEM method). In recent years, there are considerable amount of
researches about the unsymmetric laminated composites (with nonzero B matrix). The reasons
of this particular research area evolved may be for the purposes of, 1) providing built-in self-
damping mechanism when subjected to dynamic responses, or 2) the results of fabrication error
in orienting different plies of a structure component, or 3) for aeroelastic tailoring to control
mode shape and frequencies of lifting surfaces. One new reason is 4) to analyse the dynamic
characteristics of the unparallel activations of smart material embedded in composites or
sandwich structures, such as the sandwich beam, made of SMA hybrid composite skins and
soft core. The upper skin is stiffer at full activation than lower skin, indicating that B,, * 0.
Some analytical approaches to unsymmetric laminates were presented by Whitney [181 and
vibration analysis in unsymmetric composite plates were analyzed by Jensen [19].

Selecting first-order shear deformation theory as assumption of sandwich panel
dispalcement field is due to its fairly thick and soft core, the thin and stiff SMA hybrid
laminated skins are bonded between core. The higher-order theory may not fit for the
unprecedented thermal activation and combined core deformations. Long and flexible beam or
sandwich beam might confront large-amplitude vibration which lead to nonlinear vibration
problems, and its nonlinear governing equations require special technique to obtain fairly good
results. The researches in this particular area can be found recently in Kapania & Raciti [201.
They apply FEM technique to obtain the nonlinear governing equations, then using multiple-
scale method to solve the nonlinear ordinary differential equations.

Reviewing the work by Bhimaraddi [21] [22] and Eslami & Kandil [23] [241 have
helped the author how to solve group of nonlinear partial differential equations. The method
assign two known admissible functions for w, y, which satisfy the sturcture boundary
conditions, then apply Gelarkin method transforming these nonlinear governing equations into
one nonlinear ordinary differential equation take the form as 9 + a~s + a2s2 + a3s3 = q0 . The
final step is to use multiple-scale technique to solve this nonlinear ordinary differential equation
for free vibration analysis.

Reviewing the latest research work have shown that they are mostly related to
composite beams,plates,shells, of solid laminates. There are very few work contributed to
sandwich structures, especially in sandwich beam with embedded smart materials. The
nonlinear vibration problems of SMA hybrid sandwich beam will be studied at different
boundary conditions in the following subsections.

SOLUTION OF SIMPLY-SUPPORTED BEAM

The nonlinearity induced by unsymmetric laminates of the sandwich beam
,a/ax(Nxufw/ax)+ a/ax(N,'ow/ax),expressed in governing equations( u0 = 0) for I -D beam case,
obtaining

+1 w ) + B aW _ )2W = I0" (28)
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G,1 1h +~ 61W )3 (A,+A, ( a') , a2W + h(A,,_ - A,) a2W

(, -2. All + (N.'u + Nj, 1) W
+ (A11 - A11) ( aJ) -• N + q. = (2poh1 + p~h) Q/

two nonlinear partial differential equations where,

N.*' Applied inplane load due to SMA wire recovery stress in uper
skin (lb/in)

N"1' Applied inplane load due to SMA wire recovery stress in lower
skin (lb/in)

Boundary conditions (simply-supported beam) are

w = 0 (30a)
VA/8x = 0 (30b)

xfL
w = 0 (30c)
8 W/O-x = 0 (30d)

We could assume the admmisible functions

w S(t) sin(ax) (31)
S= -S(t)/L cos(ax) (32)

a =nx/L
n = 1,2,3,...
S(t) flexural amplitude (function. of time)

equations (31), (32) satisfy boundary conditions (30a), (30b), (30c), (30d). Take derivative of
(28) w.r.t x then add (29), and insert the o8v/x of (29) in D1I term of a/ax of (28). Noting that
the shear effect and the inplane load effect are included in D,,1 8/axx2 term. Ignoring non-linear
part in D,, a2/ax2 [...], then substitute (31), (32) in (29) and apply Gelarkin method for (29)
with weighting function sin(ax). The simply supported free vibration beam equation become

L -4

a = nr/L

-S [ D."(1+ Nxu+Nx';)4 + (NU+NrI)2 +

S2 2-a-Bn _ haj (A,,_-A,,,) 3a 4 L (-,, ) (33)

+2qL= A[(2P~h1 +P h) (1*+--11 (Y2) + lo] L
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llliminate inertia term, we obtain static problem of external uniform load q0 over span of L.

For free vibrational analysis, we deleLe q0 and (33) could be simply expressed as

a,§ + a2s + a3s2 + a4s3 - 0 (34)

a, = (2poh.+p) (1+_I) + (35)

a2 = DU (1+.*l C1' + (A*U+AI,)o2 (36)

ha2 2 (27

a3 = ( A"(A1-) - B11.00) 27

a4 = .'(A,.,A 1 ) 2 (38)

(34) can also be expressed as

A + W28 + a!•S 2 + a4., = 0 (39)
a, a1

N:U+N
1l

XC4+ (NJU+N.*l) C2

13 (40)

(2P~h1 +ph) ((1 a2) +-fIa

Equation (39) is the Duffin's equation without damping term. The current methods
treating (34) include Newton-ralphson approach like Singh & Rao [25], the finite element in
time (FET) method in Bauchan & Hong [261, the finite element method in Hou & Yuan [27]
and the multiple scale technique in Bhimaraddi [21] [22). The cubic non-linearity described in
(a4/a1)s3 is a stiffening factor as vibration amplitude become large enough, or this term can be
a softening factor if (a4/a,) is negative. The phenomenom could be found in Cartwell [28],
Schmidt & Tondl [29] which investigating some parametrically excited systems or coupled
nonlinear vibration systems.

DAMPED SYSTEM UNDER HARMONIC EXCITATION
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We constructed the nonlinear vibration model illustrated in previous sections for merely
the studies of undamped free vibration. It inherit special features of increased natural
frequencies with respect to higher vibration amplitudeLALh under the prescribed condition. Yet,
our primary goal , in this section, is to excite the known nonlinear model with harmonic load
in order to seek for the dynamic response in either time domain or frequency domain.
Hopefully, we are able to obtain the equivalent structure transfer function in refer to lnmman
[30]. The phsical model is sandwich beam of composite faces with SMA wires embedded. The
core is fairly soft and good damping material. All the properties of the model were mentioned
in the previous sections. However, this damped system is not viscously damped but hysterically
damped system. The rationale is based on the fact that composite material of polymer matrix
are following the elastic-viscoelastic correspondence principle(their moduli could be expressed
as complex moduli). In view of [31], [32], the governing equation is adding (34) with a
harmonic forcing term at the right hand side, the equation become

9 + ows + d 2s' + d3s3 = cq' cosilt (41)

where ()
2 , d2, d3, were defined in equation (40), (35) to (38) and & is small , q'= 4q0/(najh)

(#/slug in) as indicated in (33). Q is forcing frequency (rad/sec), t is time step, and s is
nondimensional amplitude (A/h). Since I is very small and L is large for long beam, (35) can
be simplified as

a, = (2poh1 +p.:h) (1+ DIL 00) (42)
G13h

We then apply correspondence principle from [33] and [34] by substituting (43) in (42) to (46)
G13 = G13 + i Tic G13  (43a)
D11 = D + i ibD D (43b)
(AI-All)* =(All-All) + i ql(AI1-AIl) (43c)
B11 '=Bjj + i 1d BIL (43d)
(All+A11) =(Aj1 +Ajj) + i l.(A 1+A1ll) (43e)

where rib , 1"., 1id, r1' are the loss factors for the composite laminate [34], i = -1, the value
of lib' la, ,id, mle are approximately .2_., _.I (loss factor of epoxy matrix) = .0151. core rio
is approx. .4. Therefore, the known values of loss factor can be substitute in the following
expressions, N x'l

D 1 1 (1+ ) Ct" + (N.u+N 1 ) o2W• 2 (44)
a.

d2 = d2 / a, (45)

a 2 = h ( 2 B 3)3 2 (45a)

d3 = a- 3 / a, (46)

- 3,v
4
T.2

a 3 = 31.6L(A,,+A,)" 2 (46a)
16E"1
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Therefore, the nonlinear ordinary differential equation (41) with its nondimensional A

may also be expressed in complex form

s = X+iY

we substitute the expression into equation (41)

(X + ij) + (e, + ie6)(X + iY) + (e7 + ie8)(X + iY)2 + (e9 + ie,o)(X + iY)3 =

e q' cos"Qt (47)

separation of the real and imaginary part in equation (47)

real Mrt

X + e5X - e6Y + e7 (X2-Y2) - 2eXY + eg(X 3 - 3XY2) + en0(Y 3 - 3X 2Y) = c q' cosik
(48)

f + e5X + e6Y + e*(X 2-y 2) + 2e7XY - ((Y3 - 3YX2) + elo(X 3 - 3Y2X) = 0
(49)

solving (48), (49) system of highly nonlinear and coupled equations with assumed initial
conditions as

X(0) = x(0) = Y(0) = (0)= 0 (50)

we get the calculated dynamic response under harmonic excitation. However, there is no
analytical solution for the system of equations except using numeriacl method. Using higher
order Runge- Kutta approach to obtain the time response of the physical model. We insert the
prescribed SMA sandwich beam model in (48), (49) and (50) and apply ode45 of MATLAB
to get the response plot as following Figures. The real part A is the physical nondimensional
amplitude-time response. Frequency response could also be obtained by applying FFT (fast
fourier transform) to the time response.

CONCLUSION AND DISCUSSION

The calculated response showed that how much the vibration can be suprressed through
the use of SMA in sandwich beam structure. The beam length, core thickness, and inplano
recovery stresses of SMA are important parameters in predicting dynamic response of sandwich
beam. Further studies in 2-D SMA hybrid sandwich piate will be pursuited.

The practical use of activated sandwich structures and the realistic boundary conditions
in engineering applications demand detailed studies. A more effecient numerical method is
essential for predicting large amplitude response of elastic structures and treating SMA wires
as sensors could induce more advanced study in vibration control.
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A MAGNETIC TUNED-MASS DAMPER
FOR BUFFET-INDUCED AIRFOIL VIBRATION

Joseph R. Maly
Kevin L. Napolitano

CSA Engineering, Inc.

1. Abstract

Vibrations are an inherent problem for aircraft structures, especially military aircraft
that perform high-speed maneuvers causing extreme acceleration levels. A form of
unwanted vibration called buffet occurs when an aircraft surface is directly exposed to
an unsteady, vortex flow generated upstream during high-angle-of-attack maneuvers.
In the case of the F/A-18 aircraft, buffeting of the twin vertical stabilizers excites
the bending and torsional modes of these structures, and, over time, fatigue failures
occur. Failures of this nature are unpredictable and result in millions of dollars every
year in maintenance costs.

A tuned mass damper solution for this problem is proposed. Analysis indicates
that an array of dampers employing eddy currents induced by rare earth magnets
for the damping mechanism will provide sufficient damping to significantly reduce
the dynamic response of the twin-vertical-tail buffet. A prototype damper was built,
and it was determined by testing that this concept is a valid approach to solve this
problem. The prototype was tested on a simple structure, selected so that the mass
ratio with the prototype applied to the structure is equal to the mass ratio of the
TMD array applied to the F/A-18 tail. The amplitude of the undamped response
was reduced by a factor of 20 when the magnetic TMD was applied.

FM-i



Figure 1: Schematic of vortex flow field generated during F/A-18 maneuver (courtesy

McDonnell Aircraft Company)

2. Introduction and Summary

Vibrations are inherent to aircraft structures, especially military aircraft that perform
high-speed maneuvers causing extreme acceleration levels. A form of unwanted vibra-
tion called buffet occurs when an aircraft surface is directly exposed to an unsteady,
vortex flow generated upstream during high-angle-of-attack maneuvers. In the case
of the F/A-18 aircraft, buffeting of the twin vertical tails excites the bending and
torsional modes of these structures, and, over time, fatigue failures occur. Figure 1
shows a simplified sketch of this flow field and the buffeting of the F/A-18 empennage.
Failures of this nature are unpredictable and result in millions of dollars every year
in maintenance costs.

Vibration damping is often a preferred solution when resonant vibration cannot
be eliminated. Integral damping concepts, which incorporate damping mechanisms
into structural designs in the early stages of development, are becoming design tools
throughout the aerospace industry, but excessive vibration in existing aircraft requires
a solution that can be appended to a current design. Thned-mass dampers (TMDs)
are more feasible for aircraft aerodynamic surface vibration problems than other types
of dampers, especially for modifications to existing aircraft. This is because of the
capability to add a significant amount of damping to a single mode with a minimal
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addition of weight; past research has supported this.1 2

The goal of this effort was to develop a self-contained damping device (capable
of mass-production for retrofit to existing aircraft) to attenuate the dynamics due
to buffeting of the F/A-18 vertical tail. Research showed that the F/A-18 tail is
subjected to such a severe dynamic environment that a single, conventional TMD
would require a displacement far in excess of the allowable "rattle" space (the space
between the skins) in the tail; this led to the concept of an array of TMDs positioned
near the top of each tail. Analysis predicted that a 10-pound TMD was needed to
achieve a goal of 40% added (structural) damping. The analysis was based on the
assumption of 10% baseline (aerodynamic) damping. It was determined that the space
limitation that precluded the implementation of a single TMD could be overcome if
the moving mass was divided over ten individual units, each weighing one pound.

Previous research has shown that a conventional TMD employing viscoelastic
materials (VEMs) would not survive the dynamic environment of the F/A-18 vertical
tail, so a design was developed employing eddy currents induced by rare earth magnets
for the damping mechanism. A prototype was built, and it was determined by testing
that this concept is a valid approach to solve this problem. The prototype was tested
on a simple structure, selected so that the mass ratio with the prototype applied to
the structure was equal to the mass ratio of the TMD array applied to the F/A-18
tail. The results of this test are plotted in Figure 2; the amplitude of the undamped
response was reduced by a factor of 20 when the magnetic TMD was applied.

Magnetic TMDs are unaffected by temperature variations and will have appli-
cations in many other fields. This work was performed for the Naval Air Systems
Command under the Small Business Innovation Research (SBIR) Program.

3. Background

Design studies have indicated that a tuned-mass damper (TMD) is more feasible for
aircraft aerodynamic surface vibration problems than other types of dampers, espe-
cially for modifications to existing aircraft. This is because of the high damping/weight
ratio achievable with this type of damper and its ability to add significant damping
to a single vibrational mode.

A TMD is a device consisting of a mass and a damped "spring" attached to a
structure at or near an antinode of a troublesome mode of vibration. It is actually a
special case of a vibration absorber. The application of a TMD to a structure

'Gibson, W. C., Maly, J. R., and Austin, E. M., "Conceptual Design of Damping Treatments for
the F/A-18 Vertical Tail," CSA Report No. 88-11-02, November, 1988.

VParin, M. and Nashif, A. D., "Development of Vibration Control Measures for the F/A-18
Vertical Tail," Anatrol Report No. 88024, February, 1989.
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Figure 2: Frequency response for a test structure with and without prototype TMD

results in two coupled modes replacing the original "target" mode. These "split"

modes typically have significantly lower amplitudes than the original mode, with the
amount of reduction dependent on the loss characteristics of the damped spring. One
of the modes has a lower frequency than the original mode, while the other mode is
higher in frequency. These effects are shown in Figure 3 for a simple system.

TMDs are constructed using a "tuning mass" and a spring with complex stiffness.
The spring is often a simple pad of viscoelastic material in compression or shear, or the
TMD can be built as a damped structure such as a cantilever beam with viscoelastic
material sandwiched between two face-sheets. The damping mechanism can also be
achieved with magnetic or viscous (fluid) damping.

Because of the extreme loading conditions to which the F/A-18 vertical tail is sub-
jected under high-angle-of-attack maneuvers, a traditional viscoelastic-based TMD
will not solve this problem. The extreme case of the loading environment is a con-
siderable one; displacements of over 12 inches and accelerations in excess of 500 G's
(zero to peak) at the tip of the tail have been observed in ffight. 3 There are two
reasons why a "standard" TMD cannot be used under these conditions.

1. A TMD composed of VEM would not be able to survive the high G-loads that
are generated in the high-angle-of-attack maneuvers. VEMs are soft, polymeric
materials, and stress failure of the TMD would occur under the extreme dynamic

3Liguore, S., Ferman, M., Yurkovich, IL, "Integral Damping Treatment for Primary Aircraft
Structures," Damping '91 Conference, San Diego, CA, February, 1991.
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Figure 3: Effects of an absorber and a tuned-mass damnper

loads of the buffet environment. This failure would occur whether the TMD
spring is a simple pad of VEM in compression or shear (in which case the VEM
will fail) or the TMD is a damped structure, such as a damped cantilever beam,
with the VEM sandwiched between two face-sheets." In addition, heating of the

VEM as the vibration energy is dissipated at these extreme levels would cause
unpredictable deterioration of the viscoelastic properties of the material.

2. Under the extreme conditions of the high-angle-of-attack maneuvers, "rattle
space" (required displacement of the TMD mass relative to its base, where it
is mounted to the aircraft) far exceeds the amount of space available inside the
vertical tail.

Because of these reasons, alternative approaches were investigated, but the best ap-
proa~ch was still the original TMD concept. The primary concerns associated with
employing a TMD solution (enumerated above) were addressed as follows:

1. The damping mechanism for the TMD is magnetic damping, thereby eliminating
the need for incorporating VEMs into the design. The details of this damping
mechanism are described below.

'For a damped cantilever beam to be used as the TMD, the facesheets would have to be very
thin to achieve the 15-Hz frequency. It has been shown by test that even thin steel facesheets would
fail due to stress under dynamic loading at this frequency of about 12 G's.
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Figure'4: Finite element model of F/A-18 vertical tail

2. The problem of limited rattle space is addressed by employing an array of ten
TMDs. By increasing the number of individual TMD units, damping can be
obtained for much higher acceleration levels by effectively increasing the TMD
moving mass, and, therefore, the associated effective mass ratio. (The effective
mass ratio is the ratio of the moving mass of the TMD to the modal mass
of the structure for the mode of interest scaled to a unit displacement at the
point of attachment of the TMD.) A higher effective mass ratio permits a TMD
design with a higher level of damping. Because of this effect combined with
distributing the mass over ten individual units, less rattle space is required.

4. Analysis

The TMD concept was analyzed using the finite element model of the F/A-18 vertical
tail shown in Figure 4. This model was developed by CSA Engineering for McDonnell
Aircraft Company as a baseline model for damping treatment design; it was based
on a more complex finite element model for stress analysis created by Northrop Cor-
poration. Dynamic loading simulating the extreme buffet environment was used to
excite the model and make predictions of system performance. A baseline damping
level of 10% was assumed due to aerodynamic effects.

The fundamental modes of this structure are the first bending mode, predicted by
the finite element model at 15 Hz, and the first torsion mode, at 43 Hz. These are
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the primary modes of interest for this problem because of the nature of the loading;
the buffet pressure PSD, which is a function of angle of attack, air speed, and air
density, typically peaks in the frequency range of 10-50 Hz.' These modes occur at
frequencies that are far enough apart that a TMD for one of these modes will have
virtually no effect on the other mode. Since TMD design for a low frequency is more
difficult, this effort focused on a design for the 15-Hz bending mode. A solution for
the torsion mode could also be designed.

A TMD was derived for the bending mode that would contribute 10% damping.
The parameters for this TMD are the following: weight = 0.8 lbs, spring stiffness =
17.5 lbs/in, loss factor = 0.2.

Eigenanalysis was performed with this TMD applied to determine the response of
the vertical tail under the extreme loading conditions (500 G's at the tip of the tail). 6

While the above design did produce 10% damping for the bending mode and the
response of the tail below 40 Hz was reduced significantly, the amount of displacement
required for the TMD mass (relative to the TMD base) was in excess of 18 inches.
If the rattle space is 1 inch, the maximum relative displacement is 0.5 inches, and,
assuming linear behavior, the TMD would only be effective for accelerations of up to
(500)(0.5)/18, or about 14, Gs.

To solve this problem of high relative displacement in the TMD, the mass of the
TMD in the finite element model was increased. Adding mass to the TMD increases
the effective mass ratio, and, it can be shown that, as the effective mass ratio increases,
the allowable loss factor of the TMD also increases. (If a higher-than-allowable TMD
loss factor is used, however, the TMD will not be "tuneable.") The resulting modal
loss of the structure also goes up with increasing effective mass ratio.

TMDs with weights of 5, 10, and 15 pounds were analyzed with the finite element
model. Iterations on these models were performed, varying the TMD spring stiffnesses
and loss factors to "tune" the TMDs. The corresponding spring stiffnesses and loss
factors and the resulting modal loss factors and relative displacements under the 500-
G loading are listed in Table 1 and shown in graphic form in Figure 5. Obviously,
relative displacement decreases as modal damping increases. The corresponding TMD
base displacements (at the point on the tail where the TMD is mounted) are 2.9, 2.7,
and 2.5 inches, respectively, compared to approximately 8 inches for the basebrie
model. Figure 6 shows the displacement response plot for the baseline configuration
compared to responses with the 0.8-, 5-, 10-, and 15-pound TMDs added.

An auxiliary, but important, advantage to designing a TMD solution with a high
effective mass ratio is the resulting low sensitivity to mistuning of the TMD. This

5 Zimmerman, N. H., and Ferman, M. A., "Prediction of Tail Buffet Loads for Design Application,"
McDonnell Aircraft Company, July, 1987.

6 The analyses performed here assumed accelerations of 500 Gs at the tip of the tail for the first
mode. It has since been determined that the actual accelerations for the first mode are up to 120
Gs, and that the second mode has peak accelerations of 500 Gs. This reduces the order of difficulty
for a first-mode TMD, and relaxes the rattle space requirements.
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TMD relative
weight stiffness loss modal displacement

(lb) (lb/in) factor damping (in)
0.8 17.5 0.2 10% 18.
5.0 100. 0.45 26% 6.8
10.0 150. 0.9 42% 3.8
15.0 190. 1.2 48% 2.9

Table 1: Design and modal parameters for three TMDs for the bending mode
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Figure 5: Displacement and damping trends versus TMD weight
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Figure 6: Displacement responses at TMD attachment point with 0.8-, 5-, 10-, and
15-pound TMDs compared to baseline response at attachment point

is illustrated in Figure 7. The displacement response at a point on the tail with
the 10-pound TMD is compared to the response at the same point if the TMD were
mistuned, with respect to frequency, by 15%. Another perspective on the sensitivity
of the TMD to mistuning can be observed in Figure 8. This plot shows the effect on
the modal damping of the split modes due to variations in the spring stiffness of the
TMD.

It should be pointed out that simply adding mass to a system to increase modal
mass does not reduce amplitude of modal response, even though frequency is directly
related to mass. Figure 9 shows the effect on the response of a single-degree-of-
freedom system when mass is added to the system without also adding the stiffness
and damping of the TMD.

4.1 Tuned-Mass Damper Array

To keep the overall weight of the solution as low as possible, a variation of the 10-
pound TMD was pursued. Given the space limitations inside the tail, it would be
physically impossible to install a single 10-pound TMD, so ten 1-pound TMDs were
positioned at discrete nodes of the finite element model, and the analysis sequence
was repeated. This group of ten 1-pound TMDs will be referred to as the TMD array.
Each TMD had the same loss factor as the 10-pound TMD, with one-tenth the spring
stiffness. Figure 10 shows a typical displacement response, for the extreme loading
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Figure 9: Single-degree-of-freedom system: displacement response with added mass,
with and without damped spring

condition, with the TMD array applied compared to the baseline response.

The displacements of the TMD masses relative to the TMD bases for the ten
units of the TMD array are shown plotted versus frequency in Figure 11; these dis-
placements represent the required strokes for the TMDs under the maximum loading
conditions. The maximum relative displacements vary from 3.4 inches to 4.6 inches,
a significant decrease from 18 inches for the 0.8-pound TMD. Since the maximum
available stroke for each TMD is about 1 inch (corresponding to a maximum relative
displacement of 0.5 inches), the maximum G-load for which each individual TMD will
be effective is between (500)(0.5)/4.6, or 54.3, Gs, and (500)(0.5)/3.4, or 73.5, Gs.

4.2 Nonlinear Behavior at High Acceleration Levels

At accelerations greater than these maximum G-levels, the TMD masses will "bottom
out" and collide with the TMD end caps. Even though the analyses predict that the
TMD array will effectively decrease response levels up to accelerations of 54 to 74
Gs, when the loading exceeds these levels the TMD mechanism becomes ineffective.
The behavior of the TMD array at these high acceleration levels was analyzed with
nonlinear analysis.

To analyze the non-linear behavior of this TMD mass impact, the F/A-18 vertical
tail with the TMD applied was modeled as a simple two-degree-of-freedom system,

Sshown in Figure 12. A FORTRAN code was written to numerically integrate the
i

FAA-II



C100

C

E
0)

i3 10-1

10-2 I
0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

Figure 10: 'Thpical displacement response, for extreme loading condition, with TMD
array compared to baseline response

5

4-

C
0
E

0I

o' 10 2f0 4 0 60 7 0 9 0Frqunc (Hz
Fiur 1: M sroe esu feqecyfo teinivduluntsofte MDara

FA-1



ik

xo=Uosincot x1 X2

Figure 12: Two-degree-of-freedom model of F/A-18 vertical tail with TMD

time-domain response of this system, based on the following assumptions:

1. Baseline damping is represented by a viscous dashpot, cl(w).

2. A perfectly plastic collision results when the maximum TMD relative displace-
ment is reached.

The variables shown in the Figure are the following:

"em1 = modal mass of the baseline finite element model = 64.3 lb
"k = modal stiffness of baseline finite element model = w2ml = 1507 lb/in
"* cl(w) = baseline damping of finite element model = ki 7/w)
" M2 =TMD mass = 10 lb
"* = TMD stiffness = 155 lb/in
" c2 = TMD viscous damping = 1.54 lb-sec/in
" i2 = maximum TMD relative displacement condition, 1x2 - X1 1 < 0.5 in
"* xO = input excitation displacement, xo = Uosin(wt)
" x, = TMD base displacement (the point on the tail where the TMD is mounted)
"* x 2 = TMD mass displacement

A mathematical description of this physical system is the following (assuming a
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perfectly plastic collision):

2X1
{Y}= ml m2}[0 i k1 ±+k2  -k2  -clci +C~2 -2 X

Y2 0 -k2 k2  0 -C 2  C2  o

i22

xo = Uosin(wt)
Yo = WUocoS(wt)

IX2 - zXl < 0.5

Since the system is nonlinear, performance has to be calculated not only over the
frequency range but also for a range of input excitation values. The response quantity
of interest is xj, the TMD base displacement; this is the displacement of the tail at
the point where the TMD is mounted. The equations of motion were numerically
integrated to obtain the steady-state response of the system. The response was cal-
culated over several periods to allow the homogeneous solution to deteriorate and
the response to become periodic. The maximum TMD base displacement, xi, in the
last period of response was stored for a given frequency and input excitation. This
was done over a frequency range of I to 31 Hz. The frequency domain responses are
shown in Figures 13 and 14. Two excitation levels are shown:

1. TMD stroke < 1.0 in, with the TMD acting as a linear system (Figure 13), and

2. maximum expected base excitation (undamped base displacement = 7.7 in),
with the TMD acting as a nonlinear system (Figure 14).

Three cases were analyzed for each excitation level:

1. baseline (no damping treatment),

2. TMD configuration (spring-mass-damper), and

3. TMD mass only (pure impact absorber, i.e., k2 = C2 = 0).

These analyses indicate that the nonlinear properties of the TMD, i.e., after it
"bottoms out," will not adversely affect the displacement response. However, as base
excitation increases, added damping to the system decreases. It is not clear whether
damping at high excitation levels is due to the linear behavior of the TMD, the
nonlinear behavior, or a combination of these. The operation of the TMD at high
acceleration levels will require further investigation.

FAA-14



1.0 
LEGEWID

I boseline
- with TMD

0.8

C"S--" 0.5 /
C

E0
a
0
0L - 0.4

0.2 ,

0.0

0 5 10 15 20 25 30 35
Frequency (Hz)

Figure 13: Response at TMD base with TMD in linear mode

8 ' ' LEGEWD

- boseline7 - --- with TMD

6
I'

E 5I

S4

0

o I

I\

/

0 5 10 15 20 25 30 35

Frequency (Hz)

Figure 14: Response at TMD base with TMD in nonlinear mode

FAA-15



5. Design

A prototype TMD was developed subject to the constraints associated with the F/A-
18 vertical tail geometry and the specifications derived from the analyses. The proto-
type was designed and built as one of the ten (identical) units for the proposed TMD
array. The design requirements consisted of the following:

e overall dimensions of the TMD:

- thickness (in the direction of motion of the TMD mass, which is normal
to the tail) < 2 in

- height and width should be kept to a minimum, < 4 inx4 in

* overall weight should be kept to a minimum,

* moving mass of the TMD - 1 lb

"* spring stiffness , 15 lb/in

"* damping coefficient - 0.14 lbf.sec/in @ 15 Hz (corresponding to a TMD loss
factor of , 0.8)

5.1 Magnetic Field Configuration

The basic operating principle of magnetic damping is that energy is dissipated in the
form of induced eddy currents in a metal when it moves relative to an established,
DC magnetic field. In the case of a TMD, an array of magnets can be built into the
moving mass, which is suspended on mechanical springs. When this magnetically
charged mass moves relative to the housing of the TMD (composed of a conducting
material and oriented so that the field generated by the magnets in the moving mass
passes through it), a restraining force is generated proportional to the velocity of the
mass. To obtain the desired level of damping in the TMD, the variables that can be
manipulated are the magnetic field strength, the volume of intersection of the field
with the conductor, and the resistivity of the conductor. More precisely,

c -. (B'v)lp,

where
c = damping coefficient = force/velocity,
B = magnetic field strength,
v = volume of field/conductor intersection, and
p = conductor resistivity.
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Figure 15: Prototype TMD

5.2 Prototype Fabrication and Testing

The prototype design for the magnetic TMD consists of a combination of mechanical
springs and mass to provide the desired natural frequency for the system, and pairs
of permanent magnets which move relative to a conductor to provide the damping.
Figure 15 shows a photograph of the prototype TMD.

To verify the effectiveness of the prototype design, two tests were performed:

1. The TMD was mounted directly to an electrodynamic shaker, and the trans-
missibility of the TMD moving mass relative to the TMD base was measured.
This test was performed to measure the natural frequency and damping of the
TMD.

2. Using as a base structure a cantilevered aluminum beam with a bending fre-
quency approximately equal to the target bending mode frequency of the F/A-18
vertical tail, frequency response functions were measured with and without the
TMD. This test was done to verify the effectiveness of the TMD.

5.2.1 Transmissibility Test

For the transmissibility test, an adaptor plate was machined so that the TMD could
be bolted directly to the armature of a 50-pound shaker. The TMD was subjected to
random excitation with a low-pass cutoff frequency of 50 Hz and a peak
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Figure 16: Measured transmissibility of the prototype TMD

3 Gs. Acceleration was measured with accelerometers mounted to the moving mass
and the TMD base. The transmissibility was measured with respect to frequency as
the ratio of the mass acceleration to the base acceleration.

The measured transmissibility function is shown in Figure 16. The discontinuity in
the function below 1 Hz is due to the fact that the function represents the ratio of two
accelerations, and both of these approach zero at very low frequencies. The natural
frequency of the TMD was observed at 11.3 Hz; the TMD loss factor (structural
damping generated by the TMD) was computed as 0.5. These results verified that
the prototype design satisfies the requirements for a working TMD).

5.2.2 Frequency Response Measurements

A 48" x4"xl1" aluminum beam was used as the base structure for the frequency
response measurements. When this beam is mounted in a cantilevered configuration
so that the cantilever beam length is 45.5", the first bending frequency of the beam
is 13.5 Hz. The TMD) was bolted to the beam, and a frequency response function
was taken by applying a random excitation (8-1bf peak) to the beam at the location
of the TMD attachment; force input and acceleration output were measured at this
point. This test configuration is shown in Figure 17. The results of the measurement
are shown in Figure 18, compared with an equivalent measurement taken without the
TMD). The two lower plots show an amplitude comparison on log and linear scales.

The effect of the TMD on the dynamic response of the beam was dramatic. The
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Figure 17: Prototype TMD test configuration
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Figure 18: Acceleration/force versus frequency for cantilever beam with and without
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Figure 19: Acceleration/force versus frequency for cantilever beam with mistuned
TMD

original 13.5-Hz mode was split into two modes, at 10.9 Hz and 15.7 Hz, and the
amplitude of the response was attenuated by a factor of 20. The effective mass ratio
of this single TMD applied to the aluminulm beam is approximately equal to the mass
ratio of an array of ten of these TMDs applied to the F/A-18 vertical tail.

As mentioned previously, a high effective mass ratio permits a high TMD loss
factor, which in turn yields a high level of damping as well as a low sensitivity to
mistuning of the TMD. The high level of damping obtained is shown in Figure 18.
To illustrate this low sensitivity to mnistuning, the bending frequency of the cantilever
beam was modified by changing the cantilever length to 40", raising the undamped
frequency to 15.5 Hz. This represents a frequency change of 15%, but the response
of the structure is still attenuated by a factor of 8.5. The response of the beam with
the mistuned TMD is shown in Figure 19. (For this test, the beam frequency, not
the TMD frequency, was changed, i.e., mistuned.)
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6. Summary

Previous efforts at developing damping treatments for the buffet-induced vibration
problem associated with the twin-tail configuration of the F/A-18 aircraft were re-
viewed. Because of the severe dynamic environment and space limitations within
the structure, solutions to this problem based on reducing the associated structural
dynamics are extremely limited.

An innovative approach involving the well-estabnshed vibration suppression tech-
nique of the tuned-mass damper (TMD) is suggested. By installing an array of TMDs
near the top of each vertical tail, the space limitation can be, to a great extent, over-
come, and a high level of damping can be achieved for high-G loading conditions.
Limitations on standard TMD design using viscoelastic materials have been over-
come with a TMD that employs permanent, rare earth magnets for the damping
mechanism.

A prototype tuned-mass damper was designed, built, and tested. The test results,
together with the analyses, indicate that this is a viable solution to the problem of
the buffet-induced vibrations of twin-tailed aircraft. A magnetic tuned-mass damper
could be used to reduce the response of any airfoil; many other aerospace and com-
mercial applications will be found for a magnetic tuned-mass damper.

FAA-21



Attenuation of Empennage Buffet Response Through Active Control of Damping
Using Piezoelectric Material

Jennifer Heeg, Jonathan M. Miller, and Robert V. Doggett, Jr.t
Structural Dynamics Division

NASA Langley Research Center
Hampton, VA 23681-0001

ABSTRACT

Dynamic response and damping data obtained from buffet studies conducted in a low-speed
wind-tunnel by using a simple, rigid model attached to spring supports are presented. The two
parallel leaf spring supports provided a means for the model to respond in a vertical translation
mode, thus simulating response in an elastic first bending mode. Wake-induced buffeting flow
was created by placing an airfoil upstream of the model so that the wake of the airfoil impinged on
the model. Model response was sensed by a strain gage mounted on one of the springs. The out-
put signal from the strain gauge was fed back through a control law implemented on a desktop
computer. The processed signals were used to "actuate" a piezoelectric bending actuator bonded to
the other spring in such a way as to add damping as the model responded. The results of this
"proof-of-concept" study show that the piezoelectric actuator was effective in attenuating the wake-
induced buffet response over the range of parameters investigated.

NO Stop 242, NASA Langley Research Center, Hampton, VA 23681-0001.
Phone 804-8642934; Fax 804-864-7792.
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INTRODUCTION§

Randomly varying pressures produced by such phenomena as separated flow, shock-wave
boundary-layer interaction, and wake flows can produce significant buffeting structural response
of airplane components. The internal structural loads resulting from these responses are important
for two reasons. First, when added to loads from other sources, the resulting total load can ap-
proach limiting values. Second, the random nature of the loading can adversely affect the fatigue
life of the structure.

Wake-flow-induced empennage buffeting, the subject of this paper, has been a significant area
of concern for a number of years, beginning with the crash of the Junkers F13 commercial trans-
port airplane at Meopham, England, in July 1930. This tragic accident, attributed to buffeting by
British scientists1 but blamed on other causes by an independent German investigation2, precipi-
tated a surge of empennage buffet research in Europe.3-6 At the same time, independent studies in
the United States had begun to focus on empennage buffeting.7,8 During World War H many mili-
tary airplanes of both U. S. and British design were affected by empennage buffeting. 9 ,10

Following the war, buffet studies while continuing to address the buffet problems of specific air-
planes were expanded in attempts to gain a better understanding of buffeting and develop empirical
means for predicting buffet responses and loads.1 1-17 Currently, empennage buffeting is a signifi-
cant area of concern for the teen-series fighter airplanes such as the F-15 18 and F-18 19 ,20 , al-
though most of the work has focused on the F- 18. Even though a large proportion of recent em-
pennage buffeting studies have addressed military airplanes, it can be a problem for commercial
airplanes as well. This fact is evidenced by the tail damage due to buffeting that occurred for a DC-
10.21

Typically, undesirable buffet response of empennage surfaces has been treated by passive
means--either adding structure to increase strength or extend fatigue life, or streamlining upstream
components to reduce wake flows. An alternative approach would be to use an active control
feedback system to attenuate the buffet response. Although active control methods have been eval-
uated extensively for flutter alleviation and other aeroelastic applications22 , such methods have
been virtually ignored for buffeting, the work of Destuynder2 3 that treated wing buffeting being a
notable exception. Because recent active flutter suppression studies using piezoelectric actuators in
feedback control systems have yielded some promising results for controlling wing and panel flut-
ter24 -27 , it appeared logical to evaluate this concept as a possible means to attenuate buffet re-
sponse. Accordingly, a "proof of concept" study was initiated and the results therefrom are re-
ported herein.

In particular, the purpose of this paper is to present buffeting response measurements made on
a simple wind-tunnel model that was equipped with an active control feedback system that used a
piezoelectric actuator. The tests were conducted in a small, laboratory-type, low-speed wind tun-
nel. The model was subjected to wake flow produced by an upstream airfoil. The wake produced
by this airfoil buffeted the model in much the same way that the wake of the wing might buffet the
empennage of an airplane. The model was attached to leaf springs that were configured such that
the model was free to respond in a vertical translation degree of freedom thus simulating response
in a first elastic bending mode. A strain gage mounted on one of the leaf springs was used to

§The references cited in the brief historical review presented in the second paragraph of
the INTRODUCTION are only a small illustrative sample of the many works that are
available in the open literature. A comprehensive historical review with complete bibli-
ography was not intended.
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measure the dynamic response of the model. These response signals were fed back through a
computer-implemented control law that supplied voltages to a piezoelectric actuator mounted on the
other spring. Damping and dynamic response data are presented for three cases--open loop
(control system off) and two values of feedback gain.

PIEZOELECTRIC CHARACTERISTICS

Piezoelectric materials generate a mechanical strain when subjected to an applied voltage, or
conversely generate a voltage when they are mechanically strained. Certain manmade materials
may be made piezoelectric by applying a relative large voltage across a sample of the material. The
applied voltage causes the dipoles within the material to become realigned in an orderly fashion
such that the positively charged ends of the dipoles are oriented towards the negative pole of the
applied voltage. If the voltage is applied for a sufficient length of time, the dipoles retain their ori-
entation when the voltage is removed. The sample is now said to be poled. Subsequent applica-
tions of smaller voltages to the sample will cause the dipoles to reorient themselves, positive ends
of dipoles attracted to negative pole of applied voltage thus causing the specimen to deform. When
this smaller voltage is removed, the dipoles return to their poled alignment and the sample returns
to its undeformed shape. This electromechanical coupling is illustrated by the sketch in figure 1
which shows a sample of material that was originally poled in the z direction. If a voltage differ-
ence is applied in the z, or 3, direction but in the opposite sense from the original poling voltage,
the specimen will, as shown in the figure, thicken and shorten (a Poisson-like effect) in the two in-
plane x and y directions. If the applied voltage is in the same sense as the poling voltage, opposite
effects take place. The subscripted symbol d is commonly used to represent this coupling.

By attaching small pieces of piezoelectric material to an elastic structure it is possible to create
actuators which can be used to deform the structure. By controlling the voltages applied to the
piezoelectric patches the structure can be made to deform in a desired manner. A bending actuator
(commonly referred to as a bimorph configuration) is illustrated in figure 2. The sketch at the top
of the figure illustrates a beam to which a piece of poled piezoelectric material has been bonded to
each side. The arrows indicate the direction of the original poling voltage. If excitation voltages
are applied to the patches as shown in the bottom sketch, the top patch will expand whereas the
bottom patch will contract, thus causing the beam to bend. By controlling the magnitude and sense
of the excitation voltages supplied to the actuator the beam can be bent in a prescribed fashion.

An excellent review and extensive bibliography of the use of piezoelectric actuators and other
"smart structure" concepts is given in reference 29.

MODEL

The wind-tunnel model was a modified version of the one used by Heeg25 in a previous study
using piezoelectric actuators for active flutter suppression. A photograph of the model system is
presented in figure 3. The rectangular-planform wing had a 4-inch span and 4.5-inch chord. The
airfoil section was a 5-percent-thick double wedge with the point of maximum thickness at the one-
quarter chord. The wing was constructed of an aluminum alloy plate that was covered with balsa
wood. Mass balance was provided by aluminum alloy tape. The wing panel was very stiff, rigid
in the content of the present study.

As shown in the figure, the wing was attached to a pair of parallel leaf springs mounted outside
of the flow. Each steel spring was 0.016 inches thick, 1.25 inches wide, and 6.0 inches long.
The springs were clamped at both ends. One end of each spring was clamped to a support strut
that was tied to the plastic plate that formed the ceiling of the wind-tunnel test section. The other
ends were clamped to a medal block that was in turn attached to a very stiff rod that passed through
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a slot in the ceiling plate and attached to the model. This mounting arrangement provided for a
vertical translation degree of freedom with a natural frequency of about 8.9 Hz.

A four-active-arm resistance wire strain gage bridge was mounted near the root of one of the
leaf springs. The output signal of the gauge was proportional to the vertical displacement of the
model.

For the present study a bending actuator made of lead zirconate titanate (PZT), a piezoce-
ramic, was used. This actuator was installed near the root on the spring without the strain gage. A
1.5-inch-long by 1.00-inch-wide by 0.0075-inch-thick PIZT plate was bonded to each side of the
spring. The actuator can be seen in the figure 3 photograph. A sketch of the installation is shown
in figure 4. The plates were bonded to the spring with like poles oriented toward the spring. The
0.005-inch-thick bonding layer electrically insulated the piezoelectric plates from the steel spring.
Small copper tabs were attached to the plates during the bonding process to provide a mean of ap-
plying voltages to the bonded side of each piezoelectric plate. Additional insulation was applied to
the exposed portions of the copper tabs to insulate them from the spring.

WIND TUNNEL

The experiments were conducted in the Langley Flutter Research Experimental Device (FRED)
which is a small, low-speed, laboratory-type, open-return wind tunnel. A photograph of the
FRED is presented in figure 5. A sketch of FRED is presented in figure 6 as are some of its char-
acteristics. The wind tunnel is powered by a two horsepower, variable speed electric motor con-
nected to a squirrel cage fan located downstream of the 6-inch-square test section. Honeycomb
screening at the beginning of the entrance cone is used to ensure smooth flow in the test section.
The tunnel speed is continuously controllable up to a speed of about 74 knots. The walls and ceil-
ing in the test section are made of clear plastic so that the model may be easily observed. Models
are usually mounted from the ceiling as was the case for this study.

For the present study FRED was modified so that a rigid airfoil could be placed just upstream
of the beginning of the test section. A schematic representation of this setup is presented in figure
7. The wake from this airfoil was used to generate buffeting flow. The angle of attack and posi-
tion of this airfoil could be easily adjusted so that the resulting wake would impinge on the model
mounted downstream. The angle of attack and airfoil position selected for the present test was ob-
tained by trial and error. The configuration finally selected was the one that produced the largest
buffet response of the model. Once the final position of the airfoil was selected, the wake-generat-
ing airfoil was clamped into place. Therefore, all of the buffet response data presented herein were
obtained for the airfoil in the same location and orientation. Although no quantitative measure-
ments were made of the characteristics of the wake flows, some qualitative measurements were
made using a pressure probe to ensure there were not any unusual peaks in the spectrum of the
wake in the frequency range of interest. None were found.

FEEDBACK SYSTEM

A block diagram of the feedback system is presented in figure 8. The output analog signal
from the strain gage bridge mounted on one of the support springs was amplified and routed to an
analog-to-digital converter which had a sample rate of 1/'T. The strain gage signal is proportional to
and in phase with the displacement of the model. The digitized signal was then sent to the control
law which was implemented on a desktop personal computer. The control law was a simple gain
system. That is, the digital signal was only multiplied by a constant value -K. The gained signal
was next routed to a one step time delay e-Ts where s is the Laplace operator and T the time be-
tween samples as indicated above. The time delay provides a means for changing the phase of the
feedback signal. The gained- and phased-shifted signal was converted back to an analog signal by
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a zero-order-hold digital-to-analog converter. The transfer function of this converter is (1 - e-'IS)/s.
The converted signal was routed to an operational amplifier. The output signal from this amplifier
was used to drive the piezoelectric actuators. The range of output voltage for this amplifier was +/-
80 volts.

For the present study a sampling rate of 400 samples per second was used. This relatively
high rate was chosen to ensure that the wave form of the response signal was well defined. The
transfer function amplitude and phase that results from this rate are presented in figure 9 as a func-
tion of the ratio of frequency to frequency of the vertical translation mode, f/fans. The magnitude
of the transfer function is almost constant over the range of f/firans shown in the figure. The phase
angle gradually decreases from its value of 1800 at zero frequency as f/finsf increases. The phase
shift at the frequency of the translation mode, f/ftran=l.0, is about 1680. Had a lower sampling
rate been used, the phase angle at f/frans= 1.0 would have been smaller. The closer the phase angle
to 90* the more effective the feedback system should be in introducing damping into the system.

Two values of the gain -K were used, namely, 14 and 29. The 29 gain was the value that
caused the system to begin to saturate at a tunnel velocity of about 39 knots. The 14 gain was the
value that caused saturation to begin at a velocity of about 74 knots.

The feedback system was implemented on a personal computer with a 80386 processor and a
80387 co-processor running in real time under a UNIX operating system. The computer was pro-
grammed in C-language. All calculations were made using floating point arithmetic. The analog-
to-digital converts were 12 bit units. Some additional information about the components of the
computer system is given in reference 29.

TEST PROCEDURE

With the control law gain set to the desired value the tunnel speed was increased to and then
held constant at a preselected value. Damping and buffe. response measurements were made at
velocities of 9.7, 19.4, 29.2, 38.9, and 48.6 knots. Damping data were also obtained at a velocity
of 4.4 knots. (Because the present study was conducted at nominal sea level altitude and the
speeds were very low, the test section density was essentially the sea level value. Consequently,
the true velocity is essentially equal to equivalent airspeed.) The output signal from the strain gage
bridge was routed to a transfer function analyzer that was used to calculate the autocorrelation
function of the response signal. The final autocorrelation function was an ensemble average of
many individual measurements. The root-mean-square value of the response was obtained by
taking the square root of the value of the function at time zero. The damping of the response was
obtained from the log decrement of the function. A typical autocorrelation function is presented in
figure 10. Autospectra of the responses were also obtained to ensure that there was no model re-
sponse in spurious modes. These spectra showed that the model responded only in the vertical
translation mode. The quality of the autocorrelation functions as indicated by the typical one
shown in figure 10 supports this fact as well.

RESULTS AND DISCUSSION

Total damping and dynamic response data were acquired over a range of speeds for open loop
(control system off), and two values of control system gain, namely, 14 and 29. The results of
these measurements are presented and discussed in this section. The data are presented as their re-
spective variations with velocity measured in knots. As discussed previously, the damping and re-
sponse data were obtained from autocorrelation functions of the model response.
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Damping

The variations of damping ratio g with airspeed V in knots are presented in figure 11. The val-
ues of damping at zero velocity for the open-loop case correspond to the structural damping ratio.
The use of the feedback system increased the structural damping ratio substantially--the higher the
gain, the larger the damping. For the open-loop case, circle symbols, the damping increases with
increasing velocity. This trend is essentially linear. The curve faired through the data points is a
linear least square fit. The increase in damping that occurs with increasing velocity is due to aero-
dynamic effects. So, for the open-loop case, the difference between the total damping at a given
velocity and the structural damping at zero velocity is the aerodynamic damping ratio. The closed-
loop gain=14 data also show a linear increase in total damping with velocity. Again, the curve
faired through the data is a linear least square fit. There is more scatter in these data than there was
for the open-loop data. The difference between the gain=14 data and the open-loop data at the
same velocity is the damping increase produced by the feedback system. This increase is constant
over the range of velocities studied because the curves through the open-loop and gain=14 data are
parallel. The closed-loop gain=29 data, triangle symbols, show a further increase in damping.
The curve fared though these data is also a linear least square fit. The scatter in the data for this
gain is the worst of the three cases. For this gain, the relative performance of the feedback system
deteriorates with increasing velocity. For example, the damping added by the control system at
V=29 knots is less than the damping added at 10 knots.

Although for gain=29 the control system began to saturate at about V=39 knots, it was still
possible to estimate the damping for this and the higher test velocity, about 49 knots, from the au-
tocorrelation functions. These values are indicated in the figure by the solid triangle symbols. As
would be expected, control system performance was adversely affected once saturation began to
occur. Note that the estimate of the total damping for the gain-29 case at V=49 knots is lower than
it is for the open-loop case.

The effectiveness of the active control system in increasing the damping can be seen also by
comparing the three autocorrelation functions presented in figure 11 for V=19.4 knots. A visual
inspection of there functions clearly shows the increase in damping that occurs as control system
gain is increased. As can be seen from the autocorrelation functions, the frequency of the response
in the vertical translation mode differed only slightly from its open-loop wind-off value of 8.9 Hz.
For all practical purposes the response frequency remained constant over the range of parameters
covered in this study. However, the frequency was observed to decrease slightly with increasing
feedback gain.

Response

Variations of the root-mean-square response a with flow velocity are presented in figure 13.
The open-loop data, circle symbols, show an increase in response with increasing velocity.
Although the trend appears at first glance to be linear, close examination shows that there is a small
amount of nonlinearity present. The curve through the data is a second degree least square fit
which fares through the individual data points quite nicely. The closed-loop gain=14 data, square
symbols, indicate a similar trend but with a lower response. Again, the faired curve is a second
degree least square fit. A similar trend was found for the closed-loop gain=29 data, triangle sym-
bols, with these responses being the lowest of the three cases. A second degree least square fit
was also used to fair the curve though these data points. The two solid triangle symbols represent
gain=29 data for the two test velocities where some saturation of the feedback system had oc-
curred. As would be expected, saturation adversely affected control system performance. Indeed,
the response at the highest velocity, about 49 knots, is higher than for the open-loop case. This is
consistent with the damping estimates at this velocity which were lower than the open-loop case.
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CONCLUDING REMARKS

Data have been presented from using a piezoelectric actuator in a feedback control system to
attenuate the buffet response in low-speed, wind-tunnel tests of a relatively simple model that was
free to response in a vertical translation degree of freedom. The vertical translation degree of free-
dom was provided by two parallel leaf springs. The wake of an upstream-mounted airfoil was
used to produce wake-induced buffeting response as might be experienced by an airplane empen-
nage. Model response was measured by a strain gage mounted on one support spring. These sig-
nals were feedback through a control law implemented on a desktop computer. The resultant out-
put command signals were routed to a piezoelectric bending actuator mounted to the other support
spring. Data were acquired for open-loop and two closed-loop conditions. Over the range of pa-
rameters covered, the control system was effective in increasing the damping of the translation
mode and attenuating the buffeting response--the higher gain the larger the damping and the smaller
the response.

It should be pointed out that this relatively simple study was in the nature of a "proof of con-
cept." It should not be inferred that piezoelectric materials are ready for use in full-scale airplane
applications. Such applications will depend on many factors which were not investigated in this
study, and many factors which are still unknown. What should be inferred, however, is that
piezoelectric materials have the potential for use as "buffet suppressers," but considerably more re-
search and development work is needed before this potential can be realized.
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Figure 5. - Flutter Research Experimental Device (FRED).
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Type: Low speed, open return

Power: 2hp electric motor
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Speed: 125 ft/sec, 74 knots

Test section: 6-Inch-square

Model mounting: ceiling

Figure 6. - Sketch of Flutter Research Experimental Device (FRED).
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Objective

* Determine through analysis and testing the effectiveness of
damping treatment for F-15 wing

- Treatment was designed by

Air Force Flight Dynamics Directorate

- Effectiveness measured by fatigue life extension for
wing with damping treatment

CSA's job was to analyze the effectiveness of a damping treatment that was
previously designed by the Flight Dynamics Directorate of the Air Force.

FAC-2



Approach

" Characterize material properties

"* Credto finite element model of wing and damping
treatments

"* Verify modeling technique In a test and analysis correlation
stdy

"• Predict ratio of damped to undamped peak stresses In wing

"* Use Palgren-Miner Fatigue Law and damped to undamped
stress ratio to determine fatigue life extenson[ dHSP 323

The dynamic material properties of the materials used in the damping treatments were
needed for the analysis.

Paigren-Miner Cummulative Fatigue Law:'1 T -3.323

where: f[vH ]
Nd-damped life

Nu=undamped life

Sd=damped stress

Su=undamped stress

I Lavrea, Vincent, Lynn Rogers, Arnel Pacia, and Mike Parin, "Add-On Damping
Treatment for the F-15 Upper-Outer Wing Skin," Paper No. WL-TR-92-3069, July
1992.

FAC-3



Background on F-15 Fatigue Cracking

"* Fatigue cracking on upper-outer wing skin

"* Cracking has limited F-15 CJD service life to 1300 hours

- Designed for service life of 8000 hours

"• Cracking attributed to local stiffener-rocking modes

"* Two-part passive damping treabtent designed by
Flight Dynamics Directorate

- External, constralned-layer treatment

- internal, stand-off constrainedlayer treatment with
damped links

Cracks have been found across entire upper-outer wing skin, typically near the rivets.
According to the Flight Dynamics Directorate, these cracks are caused by vibratory
stresses induced from separated flow.'

The Air Force conducted flight and modal tests to identify the problem modes. The
flight tests shows the frequency range of high stresses in wing skin, and modal tests
identified stiffener-rocking and local panel modes in the frequency range of interest.'

Wing-skin cracking has significantly limited the service life of the F-15. Designed for
a service life of 8000 hours, the F- 15 A/B aircraft only realized service lives of 250
hours. The C/D versions, with reinforced skins and stiffeners, only realized service
lives of 1250 hours.

1 Lavrea, Vincent, Lynn Rogers, Arnel Pacia, and Mike Parin, "Add-On Damping
Treatment for the F-15 Upper-Outer Wing Skin," Paper No. WL-TR-92-3069, July
1992.
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Extemal Treatment

O.OID-1 2 " io so- 113) 005'°AL

Ulu via 
,0- M

lad

The external treatment covers entire upper-outer wing skin exterior. All constraining
layers are made of aluminum. Alternating layers of ISD 112 and 113 viscoelastics
provide a wide temperature range of effectiveness.
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Internal Treatment

0oar r-440 005" AL 080' 5TAND-O(f

M• VISCOELASTIC
LINK (VEL)

NOTE: D "MAMTREATMENTAPP"IEDOTO NOTE: VEL APPLIED IN RIE NOTCH
MTERIOR SURFACE OF WIG SI•(
GETIwEEN STIFFENERS.

The internal treatment covers entire upper-outer wing skin interior. There are three
aluminum constraining layers. FD-440 viscoelastic, manufactured by Hueston
Industries, is used. The viscoelastic links damp relative motion between ribs and
spars.

The stand-off syntactic foam acts as a mechanical amplifier of surface strain into
viscoelastic.
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Characterization of Material Properties

"• Need dynamic material properties of syntactic foam,
FD-440, and viscoelastic links

- ISD 112 and 113 properties obtained from database

"* Syntactic foam properties found from cantilever-beam
resonance test

- Foam samples pulled from production line

- Found a Young's modulus of 200,000 psi, nearly
constant over frequency range of 0-3000 Hz

The material properties needed are real modulus, poisson's ratio, loss factor, and
density. The VEM Database was used to obtain ISD material properties.

The properties of the syntactic foam were found by a cantilever-beam test. The nearly
constant modulus of the foam over the frequency range indicates low loss.
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Characterization of Material Properties (cont)

"* FD-440 viscoelastic tested at CSA

- DCS (direct complex stiffness) test

- Stiffness tested at several temperatures

- Properties characterized In nomogram

"• Viscoelastic links tested at CSA In DCS test

- Tested at room temperature

- 150 Hz Is upper bound of accuracy for this test

- Quick, Inexpensive test

Temperature range is 500 to 75° Fahrenheit for F-15 wing under damaging flight
conditions.'

I Lavrea, Vincent, Lynn Rogers, Arnel Pacia, and Mike Parin, "Add-On Damping

Treatment for the F-15 Upper-Outer Wing Skin," Paper No. WL-TR-92-3069, July
1992.
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Simplifications Needed to Model
Damping Treatment

SimpIfy the model of triple constraining layer

- Attempted to lump three layers Into one equivalent layer

"* adjusted equivalent VEM and constraining-layer
thidmess

"* Looked for agreement In results between detailed
and simplified models of a damped beam specimen

- The simplification of multiple constraining layers did not

produce acceptable agreement with detailed model

The analysis will look for local modes; thus significant detail is needed across the
planform of the wing.

The initial plan of this project was to model the entire F-15 wing, with and without the
damping treatments. However, modeling every layer of damping treatment would
create too many degrees of freedom. Thus a simplification was pursued for the
multiple-layer treatment.

A simplified model of a multiple-layer treatment was made by grouping all layers into
a single layer. For this single layer, the equivalent VEM and constraining-layer
thicknesses were adjusted to match the frequency and loss predicted by a detailed,
multiple-layer model. Unfortunately, the simplified constraining-layer model did not
predict the same modal frequencies or modal damping as the detailed model. The
multiple-layer treatment would have to be modeled in detail, with a single layer of
solid elements for each layer of the treatment.
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Modeling Simplifications (cont)

Simplify Oh model of stand-off foam

- A single sold element was used for foam cut with
grooves

• Material properltes first estimated then optimized

- Accuracy checked with detailed model of beam
specimen

- Analytical agreement was excellent after a number of
iterations on material properties

Grooves are cut into plane of foam to minimize shear stiffness while maintaining
out-of-plane stiffness. These grooves would require too much detail in the finite
element model of the wing. Thus a simplification was needed for the foam cut with
grooves.

An analytical study was done to develop a simplified element for the foam cut with
grooves. First, a detailed model of a damped beam was created. Next, a simplified
model of the same damped beam was created with a single layer of solid elements
through the thickness of the stand-off foam. For the simplified model, the stiffness of
solid elements was reduced in directions affected by grooves, and the properties were
modified until the simplified model agreed with the detailed model. The agreement
between the two analytical models gave confidence in the modeling simplification.

VC-1O



Verification of Modeling Technique

Test and analysis correlation of a beam specimen

- Test specimen built and modal tested

- Predictions from NASTRAN complex elgenvalue

analysis compared well to test resultsmod 1 2
oBwn I=rq (Hz) Ilossator fmq (Hz) f loss lactor

Tet I100 0.220 330 0.31

FA~naslysa 114 0. 20 O7 4) 329 lie1

A final verification of the modeling technique was needed. This verification was
found through a test and analysis correlation on a sample damped beam. A sample
beam was layered with a layer of FD-440, the stand-off foam, another layer of
FD-440, and an aluminum constraining layer. This test specimen was modal tested.
In parallel, a finite element model was created of the test specimen. The excellent
agreement between test and analytical results gave confidence in the modeling
technique.
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Finite Element Model of
Typical Section of F-15 Wing

"• Typical section of the upper-outer wing skin was modeled

"* Typical section includes two ribs and three stiffeners

"* Each layer of treatment was modeled with a single layer of
solid elements

"* Simplification used for stand-off foam

- Used equivalent properties from study

The multiple-layer damping treatment requires many degrees of freedom in the finite
element model, too many degrees of freedom to model the entire wing. Therefore, a
typical section of the outer wing was modeled. This typical section included two ribs
and three stiffeners. The ribs were modeled as pinned connections to ground, since
the ribs are much more stiff than the rest of the structure. Symmetric and
antisymmetric boundary conditions were applied at the other edges in order to model
the continuation of the structure.

The damping treatment on the typical section was modeled according to the
previously-verified technique. The stand-off foam was modeled with single layer of
solid elements through the thickness and the equivalent material properties. Each
layer in the multiple constraining layer was modeled with a layer of solid elements.
The viscoelastic links were modeled as springs to ground. This model contained
12,000 degrees of freedom.
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Solution Using Typical Section Model

"* Used typical-section model to predict ratio of damped to

undamped RMS stress response

"* NASTRAN modal random response

• Symmetric and antisymmetric boundary conditions were
run In separate analyses

"• Broad-band, unit PSD pressure applied to wing exterior

The finite element model was analyzed in a NASTRAN modal random response. One
percent structural damping was assumed. RMS stresses were output for the damped
and undamped models at various locations across the section.
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Results

"* Ratio of damped to undamped RdS stres calculated at
elements with largest strese

"• Palgren-Miner cummulative fatigue law used to calculate
"fatigue life extension

"* The teatmentt works!

- Fatigue life of wing extended beyond 8000 hours

•(d/,) | 0.555 .0 0.9332 | 0.3 0.7 | 047
(iNd/Nu) | 093 | 5*27 3ý9,0 15.7 33.7 1 - 1.7 1

J~o hwg)l .00 $600 $070 I 2040 15 43e0 I ý.00

For the calculation of damped to undamped RMS stress, the location with the greatest
undamped RMS stress was used.

The analytical predictions for the service life show a large margin of safety.
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THE INFLUENCE OF CONSTRAINED-LAYER DAMPING TREATMENT ON
PARAMETRIC AND AUTOPARAMETRIC RESONANCES IN NONLINEAR AND

INTERNALLY RESONANT NONLINEAR STRUCTURES

Lawrence D. Zavodney*
Cedarville College

Joseph A. Schudt
Department of Engineering Mechanics

Ohio State University

1.0 ABSTRACT
The influence of viscoelastic constrained-layer damping treatment on parametric

resonances of single-degree-of-freedom (SDOF) systems and autoparametric
resonances of multiple-degree-of-freedom (MDOF) nonlinear systems possessing
autoparametric coupling was investigated. The results show that commercially
available aluminium-backed treatment is effective in suppressing parametric
resonances in SDOF systems by moving the regions of parametric resonance away
from the frequency axis. In the MDOF systems the damping affects the highly
nonlinear response characteristics of each mode and the nonlinear coupling between
modes; it can suppress the modulation between modes. In general, the effect of
increased application of damping treatment is to contract the regions of nonlinear
modal interaction and, in some cases, actually suppress the nonlinear modal coupling
entirely with a sufficient amount of damping treatment. Experimental results include
slow swept-sine excitations at constant amplitude and slow swept-amplitude excitations
at constant frequency. Particular attention was paid to the nonlinear resonances and
the modal interaction regions bounded by the Hopf bifurcation.

"Chairman, Department of Engineering, Cedarville, Ohio, 45314, (513) 766-7682
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2.0 Introduction

Parametric resonances are not uncommon in structural vibrations. Zavodney [1]
and Zavodney, et al [2-41 nave provided a summary of parametric resonance in SDOF
nonlinear structural systems. Damping is a common method of controlling or reducing
vibration for externally excited resonances. However, damping plays quite a different
role in parametrically excited systems. When systems exhibit nonlinear behavior, the
analysis is more complicated; the nonlinearity and the damping together affects the
system response so it is not always obvious what part the damping plays in the
response. Zavodney and Shihada [5] investigated the influence of linear viscous
damping on the fundamental and principal parametric resonances of SDOF systems
possessing quadratic and cubic nonlinearities. The results showed that linear viscous
damping plays a significantly different role than in the externally excited oscillator; if
reduction in amplitude at resonance is the objective, then in some cases certain critical
levels of damping must be exceeded--otherwise one can increase the damping by an
order of magnitude but realize less than 5% reduction in the response amplitude.

When the structure possesses more than one mode, as is usually the case,
there is the possibility of nonlinear modal coupling. When modes are coupled, it is
possible to exchange energy from a directly excited mode to another mode. The end
result is that more than one mode is participating in the response and, hence, the
structure is vibrating at other frequencies in addition to the frequency of the excited
mode-which is not always the same as the excitation frequency. As a result the
analysis becomes even more complicated. Attempting to find appropriate mathematical
models for these behaviors is extremely difficult. One particular mathematical model
may describe one type of behavior, but when the excitation frequency is changed by
only 0.1 Hz, the behavior is something else-qualitatively and quantitatively--i.e., a
bifurcation has occurred. The nonlinear coupling responsible for this behavior is
further enhanced if the structure possesses an internal resonance; an internal
resonance occurs whenever any natural frequencies are commensurate (i.e., in a 2:1,
3:1, 3:2, etc. ratio). When a structure simultaneously possesses an internal resonance
and appropriate nonlinear coupling terms, it is possible for one mode to parametrically
excite another mode; this phenomenon is called an autoparametric resonance. When
this happens, the nonlinear effects are greatly intensified and completely dominate the
response. Nayfeh and Zavodney [6] and Balachandran and Nayfeh [7] provided a
theoretical model and experimental results showing that such behavior can lead to
long-time responses that are not steady-state; mathematically a Hopf bifurcation has
occurred.

The objective of this paper is to investigate theoretically and experimentally the
effects of damping on parametric and autoparametric resonance in nonlinear SDOF
and MDOF flexible structures. The experiments were performed on structures
fabricated from prismatic beams and lumped masses. These types of structures were
easy to prepare and tune-i.e., by adjusting the position of the masses the resonant
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frequencies could be changed. This was essential for the MDOF structure when an
internal resonance was desired.

3.0 Single-Degree-of-Freedom Structure
3.1 Theoretical Analysis

Many structural elements can be modelled as slender beams and lumped
masses. When the support undergoes motion, the beam is subject to vibration-either
external or parametric, or both. In this section the governing equations are derived for
inplane fiexural vibration of a thin elastic prismatic cantilever beam subject to
parametric vibration at the base. The nonlinear terms arising from the curvature and
coupling effects are retained. Galerkin's method is used to discretize the governing
nonlinear partial differential equation of motion. The linear eigenvalue problem is
solved to determine the eigenvalues, and the eigenfunction is used to determine the
coefficients of the time modulation equation. A multiple-scales perturbation solution is
obtained for the temporal modulation equation.

The governing equation of motion is derived using Euler-Bernoulli beam theory.
The beam, shown in Figure 1, is cantilevered at the oscillating support, has a length L,
and carries a concentrated mass m at an arbitrary distance s = d along the neutral axis
of the beam. We assume that the thickness of the beam is so small compared with the
length that the effects of shearing deformation and rotatory inertia of the beam can be
neglected. Since we are investigating parametric resonances (transverse vibration),
we will not consider axial resonances of the beam since the frequency of excitation will
be far below the first axial resonance. If the beam is kept relatively short (< 30 beam
widths), the transverse vibration is purely in-plane (if the lumped mass is symmetrical
with the centerline); if the excitation frequency is far below the first torsional mode, then
we can neglect the torsional modes of the beam in the analysis. These assumptions
are consistent with observations in the laboratory. Also, we do not observe any
combination or internal resonances. When the mass is removed and the length is
increased by an order of magnitude, combination resonances do occur.

Using Euler-Bernoulli beam theory, the governing equation of motion is given by
Zavodney and Nayfeh [8] as

El v= + 1v=v,2 + 3v vvs,+v 3+1 1 2_),+MS dý

E Nv.) + vs~vs. 2vvv

ta p+m( ~d -as(.18(s - d)[i. (I +2 vs +.
-2(v,) + v2vv..)cV+m(V d)d o.

2 0 " (1)

where N is given by
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-( d d + L( - ' ~ ) (2)

and the following nomenclature has been used:

x,y - Newtonian Cartesian reference frame
g - acceleration of gravity
s - reference variable along beam
k - variable of integration along beam
dE, - differential length of beam element
L - beam length
w - beam width
t - beam thickness
d - position of mass center of mass m
p - mass density of homogeneous beam per unit length
c - coefficient of viscous damping
m - mass of concentrated weight on beam
J - polar moment of inertia of mass m
v(t,t) - lateral displacement of beam element dx
u(t,t) - longitudinal displacement of beam element dc
*(s) - angle with respect to vertical of beam at s
ic(s) - curvature of beam at s
I - cross-sectional moment of inertia of beam
E - modulus of elasticity of beam.

This field equation is subject to the following boundary conditions:

v(O,t) = 0, v,(0,t) = 0, v.(L,t) = 0, v,(L,t) = 0 . (3),(4),(5),(6)

The governing problem (1)-(6) is nonlinear and does not admit a closed-form solution.
An approximate solution was sought that satisfies both the equation and the boundary
conditions. Since the boundary conditions are spatial and independent of time, the
solution of the nonlinear problem is assumed to take the form

v(s,t) = ry (s) G. (t) (7)
n

where r is a scaling factor, y.(s) is the shape function of the nth linear mode, and G.(t) is
the time modulation of the n" mode.

The general solution for the shape function can be stated as the composite
function
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y(s) = sinks - sinh S)- L(coskS - coshk s)] +C1 s-U g ,

sin-k s - d) - sinh k(s -d +h Csk( - d) - cohk (s-d)] Lh
L L L L

sin k(s d sinh k (s -d)] L 4 cos-~ coh( d)(s - d) - cohk d'1' (8)L L [ L L

where C1 is an arbitrary constant and k is the characteristic root of the frequency
equation [8]. The frequency of oscillation is given by

02 E,(k)•'

Galerkin's method was used to obtain a non-linear differential equation governing the

temporal modulation of the beam which contained cubic stiffness terms.

3.2 Experimental Analysis

Experiments were performed on the structure shown in Figure 1. The excitation
was a base displacement (along the axis in the vertical direction) at a frequency nearly
twice that of the first flexural mode of the cantilever beam. The resonant response that
ensues is called a principal parametric resonance. The exper -ents consisted of
frequency sweeps at constant-amplitude acceleration and amplitude sweeps at
constant frequency. The amplitude was held constant by a computer-controlled
feedback loop; as the frequency was changed, the corresponding excitation amplitude
required adjustment to keep the acceleration level constant. The excitation level was
chosen as large as possible without causing excessive amplitudes of displacement; a
maximum level of 0.350 g's was selected. The response was measured by strain
gages mounted on the beam.

The experimental frequency response of the undamped structure (where
undamped means before any damping treatment was applied) for two levels of
excitation is shown in Figure 2. It shows that the system is softening because it bends
to the left. This behavior was neither expected nor predicted. These experiments were
conducted by increasing the frequency of excitation very slowly while simultaneously
keeping the table acceleration constant. The arrows indicate jumps; for example, when
the excitation level is 0.350 g's (denoted by the circles), the response jumps up to the
large amplitude and then slowly decreases as the frequency is increased. When the
frequency is decreased, the response follows the same curve and extends it into an
overhang. The response eventually jumps down to the trivial response. The response
for the 0.250-g excitation level is qualitatively the same but at a lower amplitude.

Additional experiments at the same levels of excitation were performed with one
and two strips of viscoelastic damping treatment applied, as shown in Figures 3 and 4.
For the 0.250-g excitation level, the principal parametric resonance was completely
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suppressed with only two strips of damping treatment applied. Two 0.1 0-inch strips of
damping treatment covers only 5% of the surface area of the beam between the
support and the lumped mass and has an equivalent viscous damping coefficient of
0.0073.

The regions of parametric resonance in the excitation-amplitude versus the
excitation-frequency plane were also determined. These experiments were performed
by repeating the frequency response experiments for different levels of excitation and
plotting only the bifurcation points where either the trivial response becomes unstable
(during both a sweep up and a sweep down) or a nontrivial response jumps to the trivial
response. An example is shown in Figure 5. This figure shows three boundaries which
divide the domain into two interior regions; the inner-most region (bounded by the
center curve and the right curve) represents the loss of trivial stability for the linear
system. The additional curve on the far left represents the extension of the instability
region caused by the overhang due to the softening nonlinearity in the system.
Because nontrivial responses exist at excitation frequencies below those predicted by
linear theory, the system is said to possess a subcritical instability. The amount of
overhang is reduced for increased damping levels, as shown in Figures 6 and 7.

A summary of the bifurcation boundaries showing only the region where
nontrivial responses exist is shown in Figure 8. As the equivalent linear viscous
damping coefficient increases, the instability regions move away from the frequency
axis. The bifurcation boundaries predicted from the theory using the experimentally
measured damping coefficients are also shown in Figure 8. The values of the
equivalent damping coefficient were obtained from the free response data. The
Eigensystem Realization Algorithm (ERA) [11] was used to estimate the damping
coefficients and natural frequencies. The agreement between theoretical curves and
experimental data in Figure 8 is excellent.

3.3 Discussion of Experimental Results

Principal parametric resonances can be attenuated by the application of
constrained-layer damping treatment. The experiments show that just a small quantity
of the material can be effective. The theoretical model using a first-order perturbation
solution did a good job in predicting the stability boundaries for the parametric
resonance, but did not predict the softening behavior of the beam nor predict the jump
down.

In summary, increased application of the damping treatment reduces the
amplitude of the resonant response, and reduces the region of parametric instability.
The only way to completely suppress a parametric resonance is to move the instability
region far enough away from the axis so that it is completely removed from the area of
interest.
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4.0 Multiple-Degree-of-Freedom Structure
4.1 Theoretical Analysis

Several researchers have investigated this model and have developed
mathematical models. The equations describing the displacement of m, and m2 are
given by [10]

v1(x0t) = sllf 1 (x)ui(t) +Celf, 2(x)u 2 (t) (10)
v2 (y. t) = P4~21 (y)u, Mt + ZlVf2 (yu2 Mt 1

where the ui are given by

61 + 2cFp 1u. +o 1 ul +X 1 1 (M) 2 + 6X126 1 6 2 + 6X13 (6 2 ) -- Y1 uu 1

+ FY12 u,1 2 + BY13u201 + 8Y14U2 . 2 + 2sZ.F Q ucosflt
+2eZ, 2F )u2cos 0 t = 2FKcos Ot (12)

G2 +2cjA 262 +2D+U2 + )( 21( 1 +EX22U61 2 +•cX•( 2 )2 +(6 Y2 1uj

"+ cY22 uiO2 + SY23U 2U1 + eY24u2 i2 + 2.Z 2 fF 0) uIcos(t

"+ 2&Z2F fu 2cos C t = 2FK2cos CIt (13)

The two cases of particular interest are when nI ft c1 and (I " 02 which corresponds
to a direct excitation to the first mode and to the second mode.

For the case of an internal resonance and excitation to the first mode, the

detuning parameters are defined as

Co2= 2o, + e, and 0 = o, +802 . (14)

From a multiple-scales perturbation analysis, the steady-state equations are obtained:

a, = G2 (15)
a; = 2a2 - a, (16)

a2 = az I(11 +(2a2 -o,) 2 ) V2 (17)

a6, +2[p, 9 2 -02(202 -,)]a 4 +[A2 +(2G2-_ a)2I(G2 +pA2)a 2-F2 ] = 0. (18)

The stability of these solutions is obtained by perturbing each steady-state solution and
studying the behavior of the disturbance. Any solution of (15)-(18) is stable if the real
parts of all eigenvalues are less than zero.

For the case of internal resonance and an excitation to the second mode, we put

(02 = 2o, + ra, and C' = 0)2 + c:2 (19)

and obtain the following steady-state equations:

a,(p- a2siny,) = 0, (20)

a,1[(, 1+ 2 )12+a 2cosf, I = 0, (21)
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p~a2+asiny,-Fsiny= 0, (22)

02a2 +a~cosy,+Fcosy 2 = 0. (23)

There are two possible solutions to these equations: the solution which corresponds to
the linear problem given by

a =O and a2 = Fl/2 + (24)

and the nonlinear solution which corresponds to

a==•1201+2) -2t 21 ]IF2 _[902 '(2 01 )]+ 02 (

a2= 2 (o;; o ; )2 

(2 6)

2 126)

The stability of the solutions for a direct excitation to the second mode is obtained in a
similar fashion. The nature of the response predicted from these equations will be
discussed later.

4.2 Expedmea Analysis

Experiments were performed on a muftiple-degree-of-freedom (MDOF) structure.
The structure used for these experiments is shown in Figure 9; it has been studied by
several researchers [6,7,8,9]. It was chosen because it was easy to fabricate and could
be easily tuned (to create an internal resonance) by adjusting the lengths of the beams
and position of mi2 . The shaker was an Unholtz-Dickie model 200 which has a capacity
of 1100-lb force. Data was obtained by strain gages attached to the structure. The
signals were monitored on a digital oscilloscope and captured by a Hewlett-Packard
data acquisition system attached to a PC. The experiments consisted of the following:
a) random excitation to determine resonant frequencies and damping coefficients; b)
harmonic excitation at constant frequency and amplitude to determine steady-state
response levels; c) harmonic excitation at constant amplitude of acceleration and
small changes in the frequency of excitation to effectively cause a slow frequency
sweep; d) harmonic excitation at constant frequency and small changes in the
amplitude of excitation to effectively cause a slow amplitude sweep; e) impulse
response resulting from a sudden release from a deformed position approximating the
first mode shape, the second mode shape, and a combination of the two; and f)
impulse response resulting from an impact to the lower mass. The nature of the
response was quite complicated at times, so a variety of the above techniques was
used throughout the experimental phase.

The procedure used for applying damping treatment to the SDOF structure was
used for the MDOF structure: thin strips of 0.10-inch width damping treatment were
applied in increasing numbers to each beam, increasing the damping of the structure.
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The responses of this structure--both to impulse and harmonic excitation-were
very complicated. The primary source of the quadratic modal-coupling nonlinearity in
this structure was due to the asymmetrical geometry. When an internal resonance
existed, the nonlinear coupling was significantly intensified and would dominate the
response; when this happened, the response amplitudes were three to four times larger
than the linear response. Internal-resonance detuning is a measure of the difference
between the frequency of the second mode and two times the frequency of the first
mode; the detuning parameter is defined by equation (14) or (19).

Because the results of the SDOF experiments showed that a parametric
resonance could be suppressed with a small amount of damping treatment, the
experiments on the MDOF structure were performed at very high levels of excitation.
Studies [6,7,9,10] have shown that under some conditions, nonlinear responses can be
achieved with very small levels of excitation (on the order of 20 mili-g's). In the
experiments performed here, the excitation levels were on the order of 100 mili-g's -
five times that required to solicit a nonlinear response. This large excitation level was
used to extend the range for which damping treatment could be applied; in other words,
more damping treatment could be applied before the nonlinear motion was expected to
be suppressed.

Damping treatment was applied in five steps. With each application of damping
treatment the model was adjusted (i.e., the length of the lower beam) to return it to the
original amount of detuning. This was a painstaking procedure because it sometimes
required more than a dozen adjustments in the length of the lower beam just to get the
results reported here.

The labels in the subsequent figures correspond to the following amounts of
damping treatment: the unmarked or "0" for none, "I" for one strip on each beam, "lr'
for two strips on each beam (17% of the surface area), "Ill" for four strips on each
beam, "IV' for six strips on each beam (50%), and '" for 100% coverage.

The structure shown in Figure 9 was tuned such that the first resonance
occurred at 4.012 Hz and the second resonance occurred at 8.040 Hz; this
corresponded to an internal resonance detuning of +0.016 Hz, or +0.20% (of the
second resonant frequency). This was as close as practically possible to perfect tuning
on a real structure; a tuning closer to 0% could be accomplished at the expense of
more painstaking effort (i.e., moving the lower beam into the clamped support in 0.001-
inch increments and repeating the experiments until the desired detuning is achieved).
After each application of damping treatment, the model was retuned to get nearly 0.0%
detuning.

The structure was forced with low-level random excitation; the input acceleration
was measured by an accelerometer mounted on the base clamp and the response
displacement was measured by the strain gages. The roots were estimated by a
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complex exponential curve fit. The estimates of the natural frequencies and damping
coefficients are listed in the figure captions and summarized in Table 1.

The frequency responses for the structure without treatment and for three of the
five cases of damping treatment are shown summarized in Figures 10 and 11. This 3-D
perspective plot aids in visualizing the qualitative and quantitative changes caused by
the increase in the damping. The frequency axis is shown normalized with respect to
the excitation frequency because the addition of the damping treatment caused the
frequencies to shift slightly. The response amplitude (displacement of mi) is
represented in units corresponding to the ratio of the lower mass displacement
amplitude to the length of the lower beam. This scaling provides a convenient
comparison of all of the results for all of the experiments. For example, the peak
amplitude of the response of the first mode is approximately 8% of the length of the
lower beam.

When the first mode is directly excited with a large-amplitude excitation at a
frequency near the first resonance, the response is nonlinear, as shown in Figure 10.
Figure 10(a) shows the first mode response and Figure 10(b) shows the second mode
response. The response of the untreated structure shows the most interesting
behavior. As the frequency of excitation is increased from 0.90, the amplitude initially
grows until the second mode is also excited; this happens at a frequency near 0.97. As
the frequency is increased further, the amplitude of the first mode decreases
dramatically-almost four times! When a Hopf bifurcation occurs near a frequency of
1.0, no steady-state responses are possible. This region is denoted by dots which
represents an "average" amplitude. Actual bounds on the modulation are shown later
in the amplitude response curves. As the frequency is increased further, the amplitude
of response increases until it jumps down (at the first mode frequency of 1.072) to the
linear response amplitude. The linear response consists only of the directly excited
mode-no other modes are present. If the frequency is decreased from above, the jump
up occurs at a lower frequency (i.e., 1.044) than did the jump down during a sweep up.
This indicates an overhang or double-valued steady-state response. Theory shows
that these two solution branches are connected by an unstable solution branch; this is
shown by the dashed line on the response (note-there are no data points for this
dashed line because they cannot be realized in the laboratofy). Further decreases in
the excitation frequency cause the response to follow the same path as that followed
during the sweep up. The frequency response is almost symmetrical; because it is
slightly skewed to the right, it indicates that a slight positive detuning of the internal
resonance is present.

The frequency response curve for the undamped structure shows four distinct
types of motions that are possible when the excitation frequency is near the first mode:
(1) the linear solution where only the directly excited mode participates in the response,
(2) a region where nonlinear coupling is present and causes two steady-state solutions
to co-exist-the linear one and a nonlinear one, (3) only a nonlinear response where the
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modes achieve one steady-state amplitude, and (4) a region bounded by a Hopf
bifurcation where no steady-state solutions exist.

As damping treatment was applied to the structure, response amplitudes were
attenuated. Certain trends can be observed in Figure 10. The second application of
damping treatment [11] consisted of two strips on each beam (17%). Both response
peaks are significantly attenuated. The peak at a frequency below the resonance is
almost completely eliminated while the response peak at the upper frequency is
reduced in amplitude sufficiently to eliminate the hysteresis. The fourth application of
damping treatment [IVM consisted of six strips (50%) and caused further peak
broadening and smoothing, resulting in a frequency response that was so broad that it
appeared as if it had a large damping coefficient. The fifth application (100%) almost
completely eliminated the modal coupling; however, when one compares the harmonic
response (i.e., Figure 10) to the stochastic response, it is obvious that linear-based
modal analysis techniques (i.e., random excitation) cannot be used to identify this type
of nonlinearity. This figure shows that damping treatment can attenuate the nonlinear
hysteretic behavior and eliminate the amplitude of the response.

A direct excitation to the second mode is shown in Figure 11. Similar
observations can be made from these curves. The frequency axes have been
nondimensionalized with respect to the excitation frequency; hence the second mode
has a resonance at 1.0 and the first mode, representing a frequency nearly one-half
that of the excitation, has a resonance at 2.0 (representing a subharmonic resonance
of order 1/2). The indirectly excited mode (i.e., the first mode) remains trivial until it is
strongly (and nonlinearly) coupled to the second mode; when it is, the amplitude of the
second mode is drastically attenuated. Furthermore, during a sweep down, there is no
jump up in the second mode response-only a jump down-because the lower branch
merges with the upper branch; it is not a turning point bifurcation as was the case for a
direct excitation to the first mode as seen in Figure 10. The first mode response
demonstrates both a jump up and a jump down during a frequency sweep. For the fifth
application of damping treatment, the nonlinear coupling between the modes is
completely suppressed; the end result is that the system behaves like a moderately
damped linear system.

Experiments were also conducted to measure the amplitude responce at
selected frequencies of excitation; these curves are cuts across a particular frequency
response curve shown in Figures 10 and 11. For the case of no damping treatment, a
cut at a frequency of 1.004 (first-mode excitation) passes through the modulation
region. The amplitude -ponse at this frequency is shown in Figure 12. ,J the
amplitude of excitation is increased, the system experiences a Hopf bifurcatio, and
begins to modulate; i.e., energy begins to flow back and forth between the two modes.
As the amplitude of excitation is increased, the "average" amplitude tends to increase
and the maximum excursions increase.
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At a frequency of 1.067 the first-mode frequency response curve (for no damping
treatment) in Figure 11 (a) shows a double-value steady-state amplitude. An amplitude
sweep through this region, as shown in Figure 13, reveals a jump phenomenon. When
starting on the lower branch, increasing the amplitude of excitation causes a jump up to
the upper branch; decreasing the amplitude of excitation causes a jump down at a
lower value of the amplitude of excitation.

When the maximum damping treatment was applied, there was essentially one
response; Figure 14 shows an amplitude sweep through this resonance at a frequency
of 0.979. Although the curves are quite tame, they still show nonlinear coupling
because the second mode is excited. Even though the excitation is driving the first
mode, some of the energy is channeled into the second mode.

Amplitude-excitation experiments were also performed for a direct excitation to
the second mode. Figure 15 shows a cut across the 0.998 frequency line (the 1.999
frequency line for the first mode) in Figure 10 for the structure with no damping
treatment applied. Although the second mode is directly excited, its response is
attenuated; instead, the energy goes into the first mode which responds like a
parametrically excited SDOF system. An amplitude sweep at the 1.057 frequency line
(2.119 for the first mode) in the region of the overhang is shown in Figure 16. During
the experiment, the amplitude of the excitation was increased slowly. At 0.32 g's rms,
the linear solution became unstable. However, the divergence growth rate was so slow
that it was possible to stay on the unstable branch long enough to locate some of the
equilibrium points. These are shown in the figure as isolated circles. However, by
waiting long enough, the response went to the steady-state nonlinear solution which is
shown as a solid line. During a sweep down, the response followed the upper curve
rather than the lower curve. At an excitation level of 0.075 g's rms, the response
jumped down to the linear response on the lower branch and remained there. Note that
the overhang region in Figure 10 is qualitatively different than the overhang region in
Figure 11; hence, it is not surprising to see a qualitative difference in the double
solution region of Figures 13 and 16.

When damping treatment was applied to the structure, the regions of multiple
solutions contracted and eventually disappeared. For small levels of excitation the
linear solution appeared; this is shown in Figure 17. At this frequency of excitation
(0.992 for the first mode, 1.991 for the second mode), when the excitation level
exceeded 0.09 g's, the second mode saturated. The energy that was put into the
system at the second-mode was channeled into the first mode; essentially the second
mode frequency was parametrically exciting the first mode. Hence, the first mode
response appears to have a parametric type response.

4.3 Discussion of Results and Comparison with Theory

The experimental results were compared with the theoretical results using
values of the damping coefficients and natural frequencies shown in Table 1 obtained
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from the random excitation experiments and complex exponential curve fits. The
response of the structure to a direct excitation of the first mode is given by equations
(17) and (18); typical results are shown in Figure 18-0. Two additional theoretical
curves were generated for increasing amounts of damping; these are shown in Figures
18-111 and 18-V. These curves also capture the qualitative behavior seen in the
experimental results.

5.0 Summary and Conclusions

Analysis and experiments were performed to study the effect of commercially
available viscoelastic damping treatment on parametric and autoparametric resonances
in nonlinear systems. Both SDOF and MDOF structures were used; they consisted of
flexible beams and masses.

For the SDOF structure, experiments were conducted at several levels of
excitation and it was found that the damping treatment was particularly effective in
reducing-and even suppressing-the resonance entirely. The first-order theory
predicts the region of the loss of trivial stability very well, but failed to predict the
softening behavior of beam 2 and the closing (i.e., merging of the two branches) of the
frequency response curves.

For the 2DOF system, the particular case of an internally resonant structure was
considered. The qualitative and quantitative effects of the damping treatment were
determined for very large excitation levels; it was observed that increased amounts of
damping treatment reduces the nonlinear modal coupling and modulation regions and
reduces the amplitude of response. For the case of direct excitation to the second
mode, a large amount of damping treatment was capable of eliminating the nonlinear
coupling.
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Table 1. Natural frequencies (Hz) and damping coefficients (percent of critical) estimated from
complex exponential curve fits to the frequency response data for low-level random excitation
of the 2DOF tuned and slightly detuned structure.

Damping O C2 041 C ( 2OA lad 1 ja21

0 4.012 8.040 0.410 0.016 0.191 0.004 0.012 0.022
I 4.091 8.050 0.569 0.022 0.396 0.008 0.006 0.020
II 4.062 8.161 0.485 0.019 0.531 0.010 0.010 0.022
III 4.131 8.220 0.476 0.018 0.863 0.017 0.011 0.026

IV* 4.175 8.283 0.593 0.023 1.135 0.022
V 4.278 8.620 1.425 0.053 1.731 0.032 0.007 0.011

* Estimated from sinusoidal-dwefl data because random excitation data unavailable.
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Incorporating a Full Damping Matrix in the
Transient Analyses of Nonlinear Structures

J. Michael Chapman*
Boeing Defense & Space Groupt

Damping '93 Conference
February 24-26, 1993

Abstract

The common practice in the aerospace industry of diagonalizing the damp-
ing matrix to obtain approximate solutions for the transient response of large
structures is in many cases inappropriate. While most aerospace structures
are lightly damped and constructed from component structures having modal
damping, the composite damping matrix constructed using the "triple matrix
product" is usually not diagonally dominant. Here it is shown that large errors
in the transient response will occur when two mode- )f the component struc-
tures have identical or nearly identical frequencies but different assigned modal
damping.

This paper then gives an efficient numerical algorithm to include the full
damping matrix in the transient response without calculating the complex
eigenvalues and eigenvectors of the structure. The algorithm also permits the
efficient calculation of any nonlinear forces by reducing the size of the nonlin-
ear problem down to the number of nonlinear forces while eliminating repeated
calculations involving the full damping matrix. The algorithm also uses a nu-
merically attractive "differencing" technique to calculate the transient response
thereby increasing the precision of the results. Finally, several criteria are pre-
sented to determine which off-diagonal terms in the damping matrix to retain.
The performance of the integrator is then enhanced by using sparse matrix
multiplies.

"Principal engineer, Boeing, M/S 8M-80, ph. (206) 773-1846
tpo Box 3999, Seattle, Wa. 98124-2499
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1 Introduction

In the aerospace industry, transient analyses are generally performed to calculate the
response and maximum expected loads for large multiple degree-of-freedom struc-
tures experiencing various dynamic environments such as liftoff, buffet, or main en-
gine cutoff. These analyses are initiated by constructing dynamic models for all the
sub-structures composing the total vehicle, and by specifying the forcing functions
and equations of motion that apply to this system. The dynamic response is then
determined by integrating these equations of motion for the composite vehicle.

The construction of the composite structural model from the component models
is accomplished using modal synthesis techniques. The component models specify the
mass, stiffness, and damping of each sub-structure. While the specification of the mass
and stiffness of the component models is clearly defined and gives consistent results
using a variety of modal synthesis techniques, inconsistent results have been obtained
using the various techniques generally accepted in the industry for constructing the
damping models. The purpose of this paper is to discuss and resolve some of the
inconsistencies that arise when using these different damping models.

Damping is generally specified for the composite system model in either one of
two ways. First and simplest, the modal damping for the system modes is specified
directly. The equations of motion for the system model then has the form:

Q "" 2&wQ +w 2Q = OT F (1.1)

where the modal damping C is specified for each mode directly according to the
frequency of the mode.

The second most common method for generating the system damping matrix is
to specify the damping for each of the component models and to use modal synthesis
techniques to construct the composite damping matrix. This technique is usually
referred to as the TMP (triple matrix product) method and the resulting system
damping matrix is generally full. The equations of motion for the system model then
has the form:

Q + Do + W2Q = TF (1.2)

where the damping matrix D is constructed using:

D = qOTC (1.3)

and C contains the damping matrices for the component models.
The integration of the equations of motion in Eq. 1.2 generally requires the M, 'u-

sion of all terms in the matrix D to obtain accurate results. An inexpensive method
to do this without calculating the complex eigenvalues and eigenvectors of Eq. 1.2 is
given in Section 3. The common practice of only using the diagonal of D to obtain
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an approximate and inexpensive solution of Eq. 1.2 is useful in many situations but
can lead to erroneous solutions when applied indiscriminately as demonstrated in the
next section. A criterion specifying when the diagonalization procedure can be used
is discussed in Section 4. Conclusions and summary are given in Section 6.

2 Erroneous Results Using the Diagonal of D for
Identical Frequency Modes

Consider a two degree of freedom system having identical frequencies but arbitrary
damping given by:

[] 2w 0 ]i [o ]2][ZJ[oJ (2.1)
1 ,0 il I +0

The dependent variables x, and X2 in Eq. 2.1 are uncoupled and the modal damp-
ing values 4i and 62 are arbitrary. The natural frequencies of both x, and X 2 are
identical and equal to w.

The exact solution to Eq. 2.1 is given by:

X,(t) = Xi-•eCw cos(/ -i ,T t + WO) (2.2)

where i = (1,2) and Xi and Vi are constants determined by the initial conditions.
Now apply an orthonormal transformation x = Oq to Eq. 2.1 to obtain:

4 + 2W[r1]ý04 + w2q = 0 (2.3)

where OT9 5 = OOT = I is the identity matrix and

x q= ( , I ,and [ 2 (2.4)X2 q2 •

In practice, the damping matrix obtained using the TMP method is generally cou-
pled for identical frequency modes since the eigensolver when applied to the composite
mass and stiffness matrices is only required to generate a set of eigenvectors that are
orthonormal. The eigenvectors obtained for the repeated eigenvalues are linearly

independent and made to be orthogonal using techniques such as Gram-Schmidt Or-
thonormalization. An infinite number of choices for the eigenvectors are possible and
the choice made by the eigensolver will generally not diagonalize the damping matrix
for those repeated eigenvalues. Eq. 2.3 is therefore representative of the normal case
obtained from the eigensolver since the damping matrix is generally not considered
in the process.
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Let the orthonormal transformation 4, be expressed in terms of an angular rotation
9 so that:

[cos0 -sine0 (2.5)S = sin 0 Cosa I

The transformed matrix of modal damping coefficients can then be expressed as:

[ i+sin 2 0(t 2 - G) COO 0sin 0(42 -ti 1(symmetric) ý, + cos2 (6- l) (2.6)

The transformed matrix of damping coefficients 4,Tf is therefore diagonal for arbi-
trary 0 only when ýl = &

Let ill and q2 represent the diagonal terms in Eq. 2.6 and let 4 represent the
solution of Eq. 2.3 when the off-diagonal terms in Eq. 2.6 are ignored. The equation
governing 4 is then:

q + 2qq + w• 0(2.7)

The exact solution of Eq. 2.7 is given by:

=) ? 1(~o~ 'Y wt) + MO() + r/,WqO) sin(VTT_ 1,2t)} (2.8)

where i = (1,2) and 4i(0) and .i(O) are constants determined by the initial conditions
and are given by:

4(0) = ,Tx(O) and 4(0) = 0T (o) (2.9)

Construct diagonal matrices ic and a using the terms:

Ic = e-- t {(C ( V' 2Wt) + Vi sin(VI _-,2Wt)} (2.10)

and -= e1 sin(VFI - I.wt) (2.11)

Let i represent the solution obtained for x when the off-diagonal terms in Eq. 2.6
are ignored. Then using i = k, the solution for i becomes:

i = (4,K4,T] X(0) + (40,O4TJ go) (2.12)

Using the orthonormal properties of 4,, Eq. 2.12 can be re-expressed as:

il E = ici.+sin 20(sC2-XIc) -sin~cosO(X 2-Xl) X1 (0)1
i2 = (symmetric) XC2 - sin2 0 (X 2 - KI) X2 (0)

+ [ra+ssin2 0(0 2 -ua) -sin cosO(( 2 -- al) 1 1,(0)1
(symmetric) a2 - sin2 a (a 2 - al) ;i 2 (0)

(2.13)
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This equation demonstrates that the solution for •i is strongly coupled to the initial
conditions for X2(0) when 'h # 172 or equivalently when t, # G. This result clearly
contradicts the exact solution given in Eq. 2.2. Moreover, since the initial conditions
for xi(O) and ii(O) are arbitrary, the solutions for i(t) can differ dramatically for
t > 0 from the exact solution for x(t) as given in Eq. 2.2. Therefore, i obtained by
diagonalizing the equations of motion in Eq. 2.3 and given by Eq. 2.12 does not closely
approximate the exact solution for x(t) given in Eq. 2.2 when ti 9 &. This conclusion
also follows for the nonhomogenious solutions of Eq. 2.3 as can be demonstrated by
examining the transfer function.

The preferred method to solving Eq. 2.3 is simply to calculate an orthogonal
transformation 4 that will diagonalize the damping matrix. So instead of having a
fully coupled set of equations to solve as in Eq. 2.3, uncoupled equations are obtained
as in Eq. 2.1. The technique of diagonalizing the damping matrix obtained from the
TMP procedure for general aerospace structures should therefore include provisions
for modes having identical frequencies.

In this section it was shown that large off diagonal terms in the damping ma-
trix will arise for identical frequency modes having different assigned modal damping
when the modes are subjected to some arbitrary orthonormal transformation. This
is also the case for modes having different modal frequencies, and it is reasonable to
expect that these modes will also be strongly coupled. In section 4, criteria are given
specifying when diagonalization can and cannot be used. In particular, it is shown
that the off diagonal terms cannot be ignored for nearly identical frequency modes
when the frequency separation is of the "same order of magnitude" as the off diago-
nal terms in the damping matrix. Since this is generally the case for most aerospace
structures having a high modal frequency density and constructed from components
having different modal damping schedules, an inexpensive numerical integration tech-
nique to determine the transient response for the these structures must be developed.
The next section gives a numerically efficient algorithm that can be used to include
all terms in the damping matrix for linear and nonlinear structures.

3 An Inexpensive Algorithm to Incorporate the
Full Damping Matrix in the Transient Response

Techniques integrating Eq. 1.1 when the forcing function F is permitted to be a non-
linear function of time t and the dependent variables Q, Q, and Q have been in use
by the aerospace industry for some time [1, 2, 3, 4]. The integration algorithm used
in [1, 2, 4] can be used to include all terms in the damping matrix D in Eq. 1.2
without an excessive increase in computation time. If n represents the number of
modal coordinates in Eq. 1.2, the algorithm requires that an (n by n) matrix inverse
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be performed prior to the integration, and n2 + 0(n) multiplications at every time
step. For comparison, the numerical solution of Eq. 1.2 using a fourth-order fixed
step Runge-Kutta algorithm requires 0(4n2 ) multiplications per time step as demon-
strated in section 5. An improved version of the algorithm presented in [1, 2] will be
presented here.

The exact solution of Eq. 1.1 when F = F(t) is a prescribed function of time can
be expressed as:

e { Q, (0) COS(V _72~Wt) + Q, (0) + tiwi Qi(0) sn(T~i)
Qj sinwiv/i-7-wi.

+~ SF.. fe i"(t-) sin( 1 ~wj(t - ,F T) (t - r)dr (3.1)+ _ si (o- 7

Assume the force F varies linearly in time from time step ti to t2. Then knowing all
quantities at time tj, the solution at time t2 can be expressed as:

Q+2) a + i + d,.i 2 ) (3.2)

Q(2) = ,+ /�Q�, ,) + .. (i) + oi.) (3.3)

(2) = .i2) -_ - wg2_ q' 2') (3.4)

where F = 4TF and the vector coefficients (a, b, c, d, a, l, y, and a) are defined in
terms of fi,wi and b =t - t1 and are given by:

ai = e-f'q V1 sin Z;,6b + cos ii6) (3.5)

b,= sinCi/b (3.6)
cWi

a- -- d, (3.7)
W,2

di (sinzCi± + 2i cos •i6)

1 2i b2(
+ w? _w? _ 6 0(b3) (3-8)

C,, = -wibi (3.9)

fi = ai - 2ýjwjbi (3.10)

7i = bi- ai (3.11)
ci + di I - ai 8

=ri = :T- -zý 2 + 0(6) (3.12)
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=i -- , (3.13)

The Eqs. 3.2 to 3.4 can be cast into a superior form by calculating the differences in
Q and Q from time t1 to t 2 . Doing so gives:

AQj = 1 - a, (Qý) + 2ý,wQ 1)) + b&') + djA.F (3.14)

AQ, = b& )- + (ai - + X - A.Fj (3.15)

where A is an operator giving changes in the operand from t1 to t2, e.g., A. -
2) - .74'). Eqs. 3.14 and 3.15 are numerically attractive because the differences in

large nearly identical quantities are not required in the evaluations of AQ and AQ.
In contrast, Eqs. 3.2 and 3.3 do not have this advantage and a loss of precision can be
expected for computer calculations using a finite number of decimals. Nevertheless,
numerical studies performed on large aerospace structures (such as the Shuttle or
the Titan vehicles) have shown acceptable agreement between the two methods for
linear analyses using diagonal damping. Precision advantages for full damping and/or
nonlinear problems remains to be demonstrated.

To apply Eqs. 3.14 and 3.15 to the solution of Eq. 1.2, identify the diagonal and
off-diagonal terms of the damping matrix D as Dd and Do, respectively, so that:

D = Dd + D, (3.16)

The modal damping values are then obtained using 2ý,w, = [Dj1,,. The off-diagonal
terms are carried over to the right hand side of Eq. 1.2 and are treated as a damping
force prescribed by

y •(dmp) - -DoQ (3.17)

Separately identify the applied, nonlinear, and damping force contributions to the
generalized force so that

'F = r(applied) + .. (n'nlne') + F(damp) (3.18)

Substituting Eqs. 3.15 and 3.18 into Eq. 3.17 and solving for A.1"("'nP) gives:

AT(da-p) = [I + Doo]-l D, (AQ(Gaphied) + aA.71no"'nlie)) (3.19)

where
AQ(wpplied) = bQ( 1) + (a - 1)Q(1) + oAjea(pp7lied) (3.20)

As can be seen in Eq. 3.19, when .(nlinm"r) = 0, the only additional labor
required to include the full damping matrix into the transient response as governed
by Eq. 1.2 is to calculate the inverse of a matrix and to multiply this matrix times
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a vector of known quantities at each time point. The matrix inverse needs only to
be performed once, prior to actual integration. When the modal coupling is small,
the inverse in Eq. 3.19 can be expanded into a Taylor series and A d"'P) can be
determined using predictor-corrector algorithms. While these algorithms will work
when the modal coupling is small, they will in general require more work to ensure
convergence.

Now let the generalized force F have a nonlinear dependence on a small subset of
displacements, velocities, and accelerations so that

F7(rnoninear) =•,F&1 (t, Xd, i,,, i) (3.21)

where Fn1 is permitted to be a nonlinear function of selected physical displacements
Xd, velocities i, and accelerations i. given by:

, i= OdQ + G h( i)F, (3.22)

iv = OQ (3.23)

XGa = 0. (3.24)

where G is the residual flexibility at the Xd locations due to the nonlinear
forces Fn and is included within Eq. 3.22 to account for modal truncation effects.

The numerical algorithm given in Eqs. 3.14 and 3.15 will now be modified to permit
an efficient calculation of the nonlinear forces and the modal transient response. Let

A~~ap (applied
.an4died - - [1'+D ,,j.-1D.AQ(ý Pi (3.25)

S -,AFn (3.26)

4.1 [I + aDo-' (3.27)

Eq. 3.19 can then be expressed in the form:

'-.-',,"+ "y + Ayinl) (3.28)

Substituting Eqs. 3.18 and 3.28 into Eqs. 3.14 and 3.15 and using Eq. 3.4 evaluated
for times tj and t2 then gives:

A.F = A1.Qinear) + Ayint) (3.29)

AQ = AQ(linear) + dAF('l) (3.30)
'&0 = AO(`'''°) + aA.T'nl) (3.31)

Aý = AQ(Iinear) + £A7(ni) (3.32)

where
fC =- [I - 2ýwa - w2d] (3.33)
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and

.FAappli+d (3.34)

AQ(Iinear) = 1 -a ()(,) + 2&wQ(1)) + W(1) + dAF(,Yi,) (3.35)Wj2

Aý(Iinear) = Aý(applied) + (3.36)p)r^(mp)i (3.36)

AQ(Iincar) = AF(yinea) - 2&wAQ(unewa) - w2AQ(Ii'et) (3.37)

The modal responses at time t2 can then be expressed as:

f2) = yFl) + h•" = y.Qine.r) + A ) (3.38)

Q(2) = Q(l) + AQ = Q(iraGr) + dAy.(l) (3.39)
ý(2) = (1) + AO = ~Q(in..r) + oA.j-(n (3.40)
0(2) = 00) + AO = 4 (Line•) + £A71-() (3.41)

17(2) - 2gwO(2) - W2Q( 2) (3.42)

where

yF(iraear) = .r-) + hy-linar) (3.43)
Q(lifle6) = Q(l) + AQ(tiear) (3.44)

( -ie = 0(1) + A((inar) (3.45)
0(linea,) = 0(l) + AO(linear) (3.46)

= jr(linear) _ 2gwoQ(lite,) _ w2Q(tiea,) (3.47)

The initial value for F(') is the initial value for .F given by Eq. 3.18. Note that
Eqs. 3.44 and 3.45 are numerically more efficient than Eqs. 3.2 and 3.3 since less mul-
tiplications per time step are required. Note also that the modal accelerations calcu-
lated using Eqs. 3.42 and 3.47 accommodates all numerical round off errors that may
creep into the calculated responses, and therefore maintains numerical consistency at
each time step between the modal displacements, velocities, and accelerations. Since
the numerical algorithm given in Eqs. 3.38-3.47 explicitly calculates the accelerations
using the modal stiffness and displacements, the technique will be referred to as a
"stiffness" technique.

An alternative numerical algorithm using a "flexibility" technique is also possi-
ble. The algorithm is nearly identical to that given above except that numerical
consistency is maintained by using:

Q(2) 1 (.F(2)_ 2_wg,(2 ) _ 0(2)) (3.48)
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for the flexible displacements where the accelerations are obtained using:

ý$2) = Q(IneaT) + £CA.F(n) (3.49)

and the linear accelerations are obtained by substituting Eq. 3.35 and 3.36 into
Eq. 3.37 with the result:

(IVinear) = (a - 2bwb)Q(1 ) _ w2 b(1) +,Cyl(inear) (3.50)

It is interesting to note that for linear problems this technique does not require the
calculations of the displacements during the integration and that these may be de-
termined during post processing or only for the data recovery times. However, the
"flexibility" and the "stiffness" techniques have yielded essentially identical results
when both are performed in double precision.

To determine the nonlinear forces specified in Equations 3.21-3.24, use Eqs. 3.38-3.47
to obtain the following expressions:

Xd = Xdiner)+ GdAFnl (3.51)
iv = -i(linear) Anl(.2

- • ~Qna+ G•AF, a (3.52)

a = i(linear) GaAFn, (3.53)
AF.1 = AFnl(t, Xd, i,,i) (3.54)

where

(linear) - dQ(linear (3.55)

j(linear) - ,,(lineao) (3.56)
V(iiav) - B , (3.57)
a a-3-7

and the matrices Gd, G, and G. are defined as

Gd = ddO +1 G(reidual) (3.58)

,= a€,a (3.59)

Ga = (3.60)

The nonlinear forces AFn1 are determined by solving Eqs. 3.51-3.54. Note that
these equations have only as many unknowns as there are nonlinear forces and that
the terms X~li~ear) for i = (d, v, a) are constants during the nonlinear solution. Many
existing nonlinear solution techniques can be employed to solve these equations inex-
pensively.

Once the nonlinear forces have been determined, the modal responses are deter-
mined using Eqs. 3.38-3.41. Note that the only expensive operation in the algorithm
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is the calculation of 1-4-d"") in Eq. 3.25 and that this calculation is not required in

the iterative nonlinear solution of Eqs. 3.51-3.54.
Various approximation techniques can be used to calculate .,%p inexpensively

when the modal coupling terms in [Do]ij. are small compared to [DdIii. Given a
representative maximum modal velocity Q(m) selected elements in the symmetric
matrix H =- -[I + Doa]-i'D can be ignored and set to zero whenever

[D.Jojý(max) .24wQmax) (3.61)

A sparse matrix multiply of H and AO• can then be used in Eq. 3.25. More on this
subject will be given in the next section.

4 Diagonalization of the Damping Matrix

In a recent paper by Ma and Hwang[5], approximate solutions to Eq. 1.2 for periodic
excitation can be obtained by diagonalizing the damping matrix when the normalized
damping matrix is strongly diagonally dominant; i.e. when

aLi
-i < 1, for all i = 1,...,n (4.1)

where
n

, = Z_ 1 Dik j (4.2)
k=1
k~i

and D is the (n by n) damping matrix as defined in Eq. 1.3. Note that when the
damping matrix is strongly diagonally dominant, that no additional criterion speci-
fying adequate frequency separation between the modes is necessary. Moreover, the
paper goes on to state that when the damping matrix is not diagonally dominant,
then additional conditions on the modal damping values and frequency separation
are needed to neglect the modal coupling for periodic or harmonic excitation.

While diagonal dominance is a sufficient condition to neglect the off diagonal terms
for periodic excitation, the condition is overly restrictive for many transient analyses
of aerospace structures. Examples include ignition and burnout events which are
generally characterized by forcing functions that are nearly step functions. Since
the transient response to these forcing functions is governed primarily by the initial
conditions, less restrictive conditions to ignore the off diagonal terms of the damping
matrix can be derived by examining the homogeneous response of Eq. 1.2 for lightly
damped structures.

Using the perturbation technique of multiple time scales, Kevorkian and Cole
give the homogeneous response to Eq. 1.2 for lightly damped structures [6]. The
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results will be summarized here for convenience. The response for each mode Qi(t)
is represented by a power series in ý, so that

Qi(t) = Q(O)(j,, r,) + ýiQ?)(i,, r,) + ý, Q 2,(t,, r,) +.. (4.3)

where

1i - iwjt is the "slow" time, (4.4)

wi wit(1 + •i + -*") is the "fast" time. (4.5)

The formula for yj is given below. The elements DiA are assumed to be O(ý,) (order
of ýi) for all k so that

Dik = ýidik and dik is assumed 0(1). (4.6)

The solutions for QýO)(ij, ri), Qýl)(ji, ri), and pi are given by

I= e-C' (As) cosTi + BiO) sinrl) (4.7)

Q,)(iri) = e-Ii (AýI) cost, + B(1)sin r)

+ j d,, -Wk .2e [A(°)i nk- B0°) cos rk] (4.8)
k=I,k#i k" - Wjk

E d 1,k2i(4.9)k=l,k96iW?-k

The constants Al') and B!') for all i and m = 0, 1 are determined from the initial
conditions.

Some observations are worth noting. First, the solution response for QýO) for
t < 0(1/ý,) is obtained using only the diagonal elements of D. Second, the solution

response for Q(1) is valid only when the quantity

oW k is 0(1) or smaller. (4.10)

And third, whenever wi = Wk the condition Dik = 0 must be satisfied which is always
possible by using an orthonormal transformation as discussed in Section 2.

Let QT' = max lQ(°)l for all t > 0. The perturbation solution to Qi(t) given
above will then be valid whenever the following condition is satisfied.

E IDikI _- < Qmax < Qo x ,for all i (4.11)

k=I,k9i I
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Eq. 4.11 provides a convenient test for demonstrating the adequacy or inadequacy of
only using the diagonal of D to obtain a close approximation for the homogeneous
solution to Eq. 1.2. Also, since the transient analysis of Eq. 1.2 at any time t can
be considered the superposition of the homogeneous solution determined by the dis-
placements and velocities at that time point and the particular solution with zero
initial conditions, Eq. 4.11 must be satisfied for any transient analysis of Eq. 1.2 if
the solution obtained using only the diagonal of the damping matrix is to be a close
approximation to the solution obtained using all terms in the damping matrix.

Note that Eq. 4.11 is generally a much less stringent requirement for decoupling
than Eq. 4.1. Qualitatively, Eq. 4.11 only requires D = O(C) when the frequencies
are adequately separated to obtain a 0(1) solution that has an error of only 0(.),
whereas Eq. 4.1 requires D = O(ý2) to permit a harmonic response that is O(1/1) for
selected modes while having an error that is O(C) for all modes. Therefore, Eq. 4.11
may be satisfied permitting diagonalization of the damping matrix even when the
damping matrix does not satisfy Eq. 3.61 or Eq. 4.1.

Note .lso in Eq. 4.11 that the inequality is violated for frequencies that are suf-
ficiently close; i.e., whenever Dik/(wi - •k) = 0(1). The approximate solution will
therefore be invalid whenever wi - Wk = O(C) and Dik = O(C,). Unfortunately, this
is precisely the case for many structures analyzed in the aerospace industry.

Given that all off-diagonal terms in the damping matrix cannot generally be ne-
glected, it would be desirable to determine which terms that must be retained. Then
assuming that a substantial number of terms can be neglected, the transient response
as determined by the numerical integrator in Section 3 can be made more efficient by
using a sparse matrix multiply.

One criterion to determine which off-diagonal terms to neglect is given by Eq. 3.61
discussed in Section 3. A less restrictive criterion can be developed using Eq. 4.11;
i.e., elements Dik can be ignored whenever

IDikI Wik2 Q_•k - 2_ ,,Q"' (4.12)Iil - Wki <

Note that this expression requires Dik to be only 0(4j) when the frequencies are
adequately separated, but requires Dik to be O(C?) when (wi -wA)Iwi = 0(&,). The
assumed expansion for Dik given in Eq. 4.6 is therefore violated for frequencies that are
very close. The perturbation solution when the off-diagonal elements are O(C?) and
the frequency differences are allowed to be O(4i) or smaller remains to be performed.

One other common technique to determine the insignificant terms in the damping
matrix is to explicitly calculate the modal coupling that exists between the modes
and to neglect those terms that have very small coupling. In [5] the modal coupling
cik between any two modes i and k during sinusoidal excitation at frequency w is
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shown to be given by:

jwDik (4.13)
= - w2 + j24,ww w• - w2 + j 24kwkW

where j = VCT. Notice that the maximum modal coupling in Eq. 4.13 will be at a
frequency between wi and wk and will satisfy

IIk1: i Dikj (4.14)

and that Cik is unity along the diagonal. Note also that the larger the frequency
separation between two modes, the smaller the ratio of Icikl to Cik and as a result
the smaller the modal coupling. Using Eq. 4.13, this ratio can be shown to be 0(1)
until the frequency separation becomes prohibitively large. The technique of ignoring
elements in the damping matrix whenever the modal coupling is small can then be
stated most simply as

Cik << 1. (4.15)

This condition thus requires Cik to be 0(4,) and is consequently more restrictive than
Eq. 4.12. In [5] it is also shown that the modal coupling will always be small whenever
the damping matrix is strongly diagonally dominant.

In conclusion, several criteria have been given to determine which terms in the
damping matrix that must be retained. The criterion given by Eq. 4.12 is generally
the least restrictive and only requires the off-diagonal elements to be 0(4) when the
response of all the modes are of the same order of magnitude and the frequencies
are adequately separated. This criterion is invalid, however, when the frequency
differences of selected modes become close in value. Alternatively, the frequency
independent criteria given by Eqs. 3.61 and 4.15 are also acceptable but generally
require the off-diagonal elements to be 0(42) and are therefore more restrictive than
necessary for modes having large frequency differences.

5 Results

Proof that the diagonalization of the damping matrix leads to erroneous results has
now been demonstrated for both the Shuttle and Titan IV liftoff loads analyses. In
both of these analyses the payload has 1% modal damping while the booster has
modal damping generally greater than 1 percent. The Shuttle is generally assigned
modal damping values of 1% and 2% for modes less than and greater than 10 Hz,
respectively, while the Titan IV vehicle is generally assigned 1.5% modal damping
for modes less than 14.5 Hz and increasing to 3% for modes greater than 20 Hz.
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Exceptions to this Titan IV damping schedule are also given for slosh modes and the
first three pitch and yaw bending modes with assigned modal damping values less
than one percent.

Peak payload accelerations during a Shuttle liftoff carrying a TDRS spacecraft
attached to an Inertial Upper Stage have been calculated both by diagonalizing the
full damping matrix and by retaining all terms in the damping matrix. The result that
the diagonalization approximation both over and under predicts the peak acceleration
levels can be demonstrated by examining the peak lateral accelerations of a single
TDRS antenna rib tip. The two lateral accelerations of 27.2 and 12.8 G's calculated
using the diagonalization approximation change to 7.3 and 14.3 G's when all terms in
the damping matrix are retained. Similar results are also demonstrated for all phases
of flight of the Titan IV vehicle; e.g, a critical payload acceleration during the T=35
seconds buffet flight event changes from 40.0 to 2.9 G's when the transient response
is calculated first with and then without the diagonalization approximation.

The above results for both the Shuttle and Titan IV vehicles clearly demonstrates
that the diagonalization approximation grossly over and under predicts the peak
acceleration levels of selected payload components and that all terms in the damping
matrix must be accounted for. Efficient numerical integrators that can accommodate
the full damping matrix are then desired.

The algorithm described in section 3 was coded in FORTRAN on a SGI IRIS
workstation. The algorithm was validated by requiring the peak modal accelerations
for a typical Titan IV flight event to converge (as the step size is reduced) to the
results obtained using two different but highly precise integrators. The first validation
integrator chosen was as a variable step 5th order Runge-Kutta-Fehlberg algorithm
and the second was a 12th order Adam's predictor-corrector algorithm. Both had
tight error control bounds to control the internal step size. In addition, to ascertain
the relative efficiency of the algorithm proposed here, a fixed step 4th order Runge-
Kutta integrator was also used.

The Titan IV buffet flight event at T=35 seconds was used in the validation and
efficiency studies. The system model was cutoff at 40 Hz giving a model size of 202
modes. The prescribed buffet aero forces consisted of 30 seconds of data given every 5
milli-seconds. The data recovery step size was selected as 2.5 milli-seconds to ensure
ten points of response data during the period of the highest frequency mode. Peak
modal accelerations over the 30 seconds were obtained.

Results from the two validation integrators agreed to less than 0.05%. The in-
tegration times, however, were 3:09:01 (hrs:min:secs) for Adam's method and 42:00
(min:secs) for the 5th order Runge-Kutta algorithm. By contrast, the faster fixed
step 4th order Runge-Kutta algorithm took 26:33 (13:27) using an integration step
size of 1.25 (2.5) milli-seconds and had a maximum percentage error of 0.3% (5.1%).
The modified closed form algorithm presented in section 3 had integration times of
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13:30, 7:03, and 3:47 (min:secs) when the integration step size was selected as 0.625,
1.25, and 2.5 milli-seconds, respectively. The maximum percentage errors on any
modal acceleration was likewise calculated as 0.1%, 0.6%, and 2.5%, respectively.
These results clearly indicate not only that the new algorithm is approximately four
times faster than the fixed step 4th order Runge-Kutta algorithm using the same step
size, but also can achieve greater precision in less time. Similar results for nonlinear
problems can also be expected.

6 Summary

The common practice in the aerospace industry of diagonalizing the damping ma-
trix to obtain approximate solutions to Eq. 1.2 is in many cases inappropriate. While
most aerospace structures are lightly damped and constructed from component struc-
tures having modal damping, the composite damping matrix constructed using the
TMP (triple matrix product) is usually not diagonally dominant even though the
modal coupling between any two modes is small. Moreover, structures having high
modal coupling between modes having identical frequencies are frequently not re-
orthogonalized to diagonalize the damping matrix for these modes. Many cases can
be cited whereby the inappropriate diagonalization of the damping matrix led to large
spurious loads and accelerations.

The proper course of action is, of course, to determine prior to the integration of
the equations of motion, whether the damping matrix is strongly diagonally dominant.
For the usual case when this is not so, inexpensive integration techniques can be
used to determine the transient response without the need to calculate the complex
eigenvalues and eigenvectors for the system. Furthermore, several criteria can be
used to determine which off-diagonal terms in the damping matrix to retain, thereby
permitting sparse matrix multiplies to be used to further enhance the performance of
the integrator.
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ANALYSIS OF DRY FRICTION HYSTERESIS IN

CABLES UNDER UNIFORM BENDING

By Xiaolun Huang' and Oleg Vinogradov2

ABSTRACT: A cable is considered as a system of interacting wires with

distributed dry friction forces at the interfaces. Deformations of the cable

subjected to a uniform bending are analyzed. It is shown that there is a critical
bending curvature when a slip between the wires starts. It starts in the neutral

axis of the cross section of the cable and then spreads symmetrically over the

cross section with the increase of bending. The effect of the interwire slippage
on the cable stiffness is investigated. This model is also used to analyze a cable
under the quasi-static cyclic bending. Explicit expression for the hysteretic losses
per cycle of bending is derived. Numerical examples are given to show the
influence of the interwire friction and helix angle on the bending stiffness and
hysteretic losses in the cable.
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INTRODUCTION

Internal damping in vibrating cables has been of interest for a long time (Pipes, 1936; Yu, 1952;
Claren and Diana, 1969; Luchansky, 1969; Hobbs and Raoof, 1984; Vinogradov and Pivovarov,
1986). Although it is clear that the interaction between the wires is the cause of energy losses
and Sturm (1936) had postulated it long time ago, a precise mechanism of slippage in a deformed
cable still remains unknown in many respects. One of the reasons is the difficulty of analyzing
a complex structural system with internal degrees of freedom, which is due to the internal
discontinuity of displacements at the interfaces in the presence of finite friction forces. Because
of that, most researches analyzed two extreme cases of the cable model: either infinite-friction
(solid bar model) or friction-free (loose wire model) (Hruska, 1951; Machida and Durelli, 1973;
Costello and Phillips, 1976; Knapp, 1983). Neither of the models assumes internal structural
losses. LeClair and Costello (1988) calculated the friction forces in a cable by assuming that
each helical wire is deformed like a free spiral spring. But this approach cannot be applied to
study the hysteretic behaviour of cables either.

Another approach, in which a multilayered cable is modelled by a system of coaxial
orthotropic shells, has been developed by Hobbs and Raoof (1984), Blouin and Cardou (1989).
This approach was also used by Raoof and Huang (1991) to analyze the damping in uniformly
bent cables. But the model of coaxial shells does not- include the twisting and bending
deformations of wires in the cable.

An attempt to relate the internal friction to the damping properties of a cable was made
by Vinogradov and Atatekin (1986). In their study, a cantilever cable was bent under a
transverse load applied at the free end, and the interwire slip was assumed to occur due to the
twisting of helical wires. Later they justified such an assumption in responding to the discussion
by Sathikh and Pathasarathy (1988). In the paper by Lanteigne (1985), slippage was assumed
to occur only between the layers in a bent cable. According to the recent theoretical paper by
Ramsey (1988), twisting slippage was confirmed to be an inevitable mechanism of slippage in
an uniformly deformed cable. Twisting strains were also used by Knapp (1983) as a criterion
of occurrence of interwire slippage. More recently, an axially loaded cable in the presence of
dry friction was studied by Vinogradov and Huang (1991). They considered the effect of the
interwire slip on the macro-properties of the cable. This model was applied to investigate the
hysteresis in a cyclically stretched cable (Huang and Vinogradov, 1992).

The objective of this paper is to analyze the friction hysteresis in cables subjected to
uniform bending. The paper will study the origination and development of the interwire slippage
in the uniformly bent cable and the slipping effect on the macro-properties of the cable. An
approach employed here is based on Love's theory for thin rods. The mathematical model
incorporates interwire friction and slippage into the existing cable mechanics. Numerical
examples are used to show the friction effect on the cable stiffness and hysteresis.
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CABLE MODEL

The fundamental structure that has most features of cable geometries is a single layered cable
(see Fig. 1). Such a basic model of a cable allows simplifying mathematical derivations without
loosing the characteristic features associated with the slip and energy losses. The following
assumptions are used in this study:

Rc
(1) Wires in the same layer are identical in geometrical and

material properties.
(2) Cable is subjected to a uniform bending, and the r

deformations are assumed to be small so that only the
elastic properties of the material are important.

(3) Constituent wires in the cable are treated as thin rods
with the initial shape of a straight helix.

(4) The Poisson effect on changing transverse dimensions of
the wires is neglected. I

(5) Local contact deformations in wires are ignored. a
(6) Cable is considered to be initially pre-stretched, and the

interwire friction forces caused by the pretension are
much larger than those induced by the fluctuating
component of the bending.

A global system of Cartesian coordinates (x, y, z) is placed in the
cable, with the z-axis coinciding with the cable axis and the Figurc I A six-wire cable.
bending is in the (y, z) plane. A local system of coordinates is
introduced by a trihedron (t, n, b) moving along the centerline of the helical wire; the unit
vectors of the trihedron are as follows: t is the tangent vector, n is the vector in the principal
normal direction, and b equals to txn and is called the binormal vector. The location of the
wire's centerline in the cross section of the cable can be also Z
determined in the polar coordinates (r, qp). The global and
local coordinate system are shown in Fig.2.

When the bending of the cable is small that the
interwire friction forces is sufficient enough to hold the wires t
together, the cable behaves like a solid beam. In such a case,
the centerline of each wire can be described as a helixembedded in a torus. Then the curvatures in the principle

normal and binormal directions of the helical wire, denoted by
K and x", and the torsion, denoted by 'r, are given by (Huang,
1992)

It sinsgcCs 2 U0  (1) Figure 2 Coordinate systems for
P helix.

% s + sin9  (2)
r p
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S.T 1 s_•• sinaocooda (3)
r p

where a0 is the helix angle of the wire in initial configuration, r is the radius of the centerline
of the wire as a helix, p is the bending radius of the cable, (p is the polar coordinate of the wire's
center at the cross section of the cable.

When the bending is such that the dry friction forces between the wires cannot hold them
together any more, a slip occurs. As a result, continuity of deformations in the slipping region
would be violated. Also, once interwire slippage occurs, a wire will be bent and twisted around
its own neutral axis, instead of around the cable axis when the cable behaves as a solid beam.
In this situation, each wire, because of its dimensions, should be treated as a thin rod, and thus
the cable is considered as a system of interacting helical thin wires.

It should be noted that due to the presence of dry friction at the interfaces between the
wires, the helical wire may behave differently from a free spring. In general, the procedure of
solving the problem can be outlined as follows:

(1) For a given bending deformation of the cable, check if the interwire friction is sufficient
to prevent any slippage between the wires.

(2) If the friction forces are exceeded, a slip occurs. Then each wire in the slipping region
of the cable is treated as a thin rod, and the internal loads and deformations in the wire
are found from the equations of equilibrium.

Let us denote the components of the interwire force acting on the cross section of the wire by
Ft, F. and Fb and the components of the moments acting on the cross section by Mt, M. and Mb.

The components of the distributed force per unit length of the wire are pt, p. and Pb and the
components of the distributed moment per unit length are in, m% and Mb. If the tangential strain
in the wire is denoted by e, then the axial force of the wire is represented by

P= Aet (4)

where A=EneR2. For small deformations, the components of internal moments acting on the cross
section of the wire are related to t, ic and K' by

(a) Mt•- B• (T-To) , (b) M,-B (x-iKo) , (c) M -B (xi-4) . (5)

where B=EDcR 4/4, E is the Young's modulus of the wire material, R is the radius of the cross
section of the wire, and the subscript "0" refers to the initial configuration.

Furthermore, considering the fact that there is no radial shear force in the cable's cross
section when it is subjected to the axial loads, the shear force component in the principle normal
direction of the wire, Fn, should be equal to zero. This fact was also noted by Costello (1990).
When a cable is under pure and small bending, this shear component of the internal force in the
wire is equal to zero, in both cases a cable behaves as a solid beam or as an assembly of free
springs. Also, since the wire and core are in cross contact, the component of the distributed
friction moment %, should be equal to zero.
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For small deformations of the cable, the difference between the deformed wire and
undeformed one is so small that we may always take the undeformed state of the wire as our
reference. Then the length of an infinitesimal element of the helical wire can be approximated
by

der deo - (6)

Note that F,, Mt, M. and Mb, can be expressed by Eqs.4 anO 5 as functions of q, c, Ki and
x'. Then substitution of the above relationships into the six equations of equilibrium (Love,
1944) give the following

*+ Pe = 0 (7)dmo

x0 F' -o;b + P - o (8)

- Ph +Pb= 0 (9)
da¢

1 dc reir. + f 0 (10)1iv, d-, B

_) (-o) b 0 (11)
_t°o (NI -O)

d + Tax +±-- . 0 (12)
de,, B

where to, r0 and r%' are the torsion, curvatures in principle normal and binormal direction of the
wire in the initial straight state, and are given by

sin2.,, WO___o_(_13
o 2 , - O, 2 - CoBr (13)

In most engineering applications cables are pre-stretched. Under small deformations, each
outer wire remains in contact with the core, so that the centerline of the wire is always on the
cylindrical surface with the radius r=R,+R. From this observation, the expression for the
binormal curvature, i', may be shown to be the same as Eq.2 which is valid for any curve on
the torus. In fact, comparison of Eq.2 for the helix on a torus to that for a free spring (Huang,
1992) shows that the expressions for the binormal curvature x' in these two cases are very close
for the helix angle c% is nearly equal to 900 (which is valid for most structural cables).
Therefore, it is reasonable to approximate the binormal curvature K' by Eq.2 for a helical wire
in the cable for any friction conditions.
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SLIPPING MECHANISM

In order to understand the mechanism of the interwire slippage in a bent cable with dry friction,
it is helpful to examine the deformations of the wire in a friction-free cable.

From the condition of no-friction, the following external forces and moments on the
helical wire vanish

Pt m P1 =Mt = m, a mb = 0 (14)

Then from Eqs.2, 12 and 13, the curvature in the principle normal direction is found to be

K in- an cos (15)p

When the latter is substituted into Eq.10, the following is obtained

-J - 1+vsinfoCOSq (16)dso zp

Integration of this equation, subject to the boundary condition that E=•T at 94=0 (in the neutral
axis of the cross section), leads to

sin2ao (1+Ov)sin2ua sin0  (17)
2r 2p

Finally, when these expressions for x, Kc and r from Eqs.2, 15 and 17 are substituted into Eq.11,
it is found that

' 0 a o (18)

It is of interest to compare these results to those
for the free spiral spring (Huang, 1992). As
could be expected, they have similar forms. For p P'
the case that vcos2 %0<<2 which is satisfied for
most structural cables, they are identical. PO

From Eqs.7 and 14 it follows that the dz
tangential force component Ft should be constant, zo
because its derivative with respect to the wire a
length is equal to zero. From the analogy ao
between the wires in a friction-free cable under 0
pure bending and the free spiral spring, it is rd7

found that rdro

Ft = 0 (19)

Now let us consider the possible modes of
slipping in a friction-free cable. Slip is a Figure 3 Displacement of the wire's
discontinuity of displacements between the two
surfaces in contact. According to the geometry of
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a developed helix shown in Fig.3, it is easy to obtain the following relationship between the
tangential strain, E,, and the stain along the cable axis, Ec, in the helical wire

sig _-1 (20)
sina0

Considering that the change of the helix angle

before and after bending is small, the above can
be linearized as follows

ev = et+ An.-• (21)
tan&, ( Figure 4 Displacement of wire's centerline

where Aa--a-ao. It follows from Eq.19 in a on the cylindrical surface.
friction-free cable ;t will be zero as well. Using
Eq.15 and the boundary condition that a--a0 at 9--0, Ac can be found to be

Ad = [-r -=tano sini (22)

Then the strain e, in Eq.21 for the wire in a friction-free cable can be found to be

e = -rsin9 (23)p

which is exactly the same as when a cable is considered as a solid beam. It suggests that there
is no slipping tendency between the wire and the core along the direction of cable axis.

On the other hand, when the cable is uniformly bent, the wire in the very top and bottom
of the cross section of the cable will not move. However, the wires between these points could
move. In Fig.4 the displacement is shown schematically. Fig.3 can help to understand how the
wire on the upper part of the cable would move. Because there is no internal force in the helical
wire, the length of the wire would not change (OPO--OP"); in order to incorporate the bending
of the cable, therefore, the wire have to slip on the core's surface by increasing the helix angle
(line OP' moves to OP"). As a result, the trace of the centerline of the wire would be like that
being schematically shown in Fig.4. In addition, the twisting and bending deformations of the
helical wires are also the source of slippage. It is known that a twisting deformation is always
associated with the bending in a helical wire; in contrast, there is no twisting deformation in the
core whose initial shape is a straight rod. Thus slipping tendency due to the twisting of the wire
always exists in a deformed cable.

CRITICAL BENDING CURVATURE AND SLIPPING BOUNDARY

Bending of a cable without slipping

For some level of bending when slippage does not take place, the helical wire's centerline
is simply a helix embedded on a torus. Consequently, the three geometrical parameters, K, K' and
T, can be described by Eqs.1, 2 and 3, respectively.

Recalling Eq.21, ; can be expressed as a function of -c and Acm. For the wire described
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in a polar coordinate system in the cross section of the cable, the axial strain along the cable axis,
E., can be presented from the simple beam theory

e- -M rsin (24)
p

which is the same as Eq.23 for the wire in a friction-free cable. Note that Aa can be found by
integrating the equation dc/ds=-ic (Eq.1) subject to the boundary condition a=a0 at Cp=O. The
result is

Ac = f-Kd -z sin2aoainv (25)
COBU 2

Substitution of the above two formulas into Eq.21 yields

et - rsin2, 0sinq (26)p

Then, after substituting et together with r, ic and ic into the equilibrium equations in Eqs.7-12,
the following results for the external distributed forces and moments are found

Pew-A --, Asiný&OcosG° Co09 (27)

sin22&0 [B(sinaao-vcos2x.) 2]
,- p - Ar sine (28)
4rp L 1+VJ

BsiniruCo 2au° (sin~ao-vcoa2uo) c o aq (29)
P - (1+v) 2 (P

me "ainr cos2u (sin2ao-vcos 2 60 ) cosB (30)

mb . Bain'uoco cosa C0 (31)
rp

Criterion of slippage

Since the wire is treated as a thin rod, the slippage is defined as the relative displacement
of the wire's cross section with respect to its neighbouring wires and the core. Such a
displacement becomes possible if on a surface of the wire, the traction force from all the external
loads exceeds the resultant of the interwire friction forces. From Fig.5 we can present the
condition causing an interwire slip by

qm& (pe-f)2 + (pb )+ (32)
RR

where qf is the resultant distributed friction force.
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(a) (b)
Figure S External loads acting on the wire. (a) force and monmnt components;
(b) equivalent traction forces.

Critical bending radius and slipping boundary

From Eqs.27, 29-31, we can see that all the friction force components are in inverse
proportion to the bending radius and is direct proportion to cosqp. Therefore, for a given bending
radius of the cable, p, the resultant friction force will achieve its maximum at 9p=O. This result
shows that the onset of slip is most will take place at the neutral plane in the bending cable.

After taking the equal sign in Eq.32, we can obtain the critical bending radius associated
with the onset of slip from

qr(PC) = 4 (-•) +(p+'!)'

When the results in Eqs.27, 29-31 are substituted in Eq.33, it is found

Bain2ao0 Sigg (_A_ - 1n2Io) 2+co,2.o ( 8'n24o-VCosa 90-vo-Vs2ao ,
R2zq unn-o( - + o z)

(34)

As the bending increases, the slip spreads symmetrically from the neutral plane towards
the top and bottom of the cross section of the cable. The slipping boundary can be determined
from the consideration of equilibrium and compatibility of the internal loads (forces and
moments) at the interface of the slipping and non-slipping regions. Obviously, from the concept
of dry friction, the distributed friction forces and moments acting on the wire in the slipping
region will be constant. We will identify the forces and moments acting on the wire's cross
section by adding a bar over the notation.
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Taking into account the symmetry of cable structure, only the first quarter part of the
cross section of the cable, that is (pr [0, n/2], is necessary to analyze. Let us consider, for
example, the tangential component of the internal force. Inside the slipping region, the
corresponding distributed friction force pt is found from Eq.27 by taking p=pc and cosgp=l. The
result is

Arsin2ao
7 f= _]-P- COS = 0__ 4 (35)

0 u PC

At the slippipig boundary, which is characterized by the polar angle %s on the cross section, the
force component Ft should be equal to that of the wire in the non-slipping region given by Eq.27.
Then it follows that

S_ sin_ (36)

Pc P

Similar relationship can be also found from the equilibrium conditions for other components of
internal forces and moments. In Fig.6 a scheme is shown for the slipping boundary 4p as a
function of the bending radius p. The slipping regions in the cross section of the cable are
described by [-9s, 9s] and [nt-q%, n+Ts], duo to the symmetry of the structure (see Fig.7).

IY

Be.n Cuvature. P.10

Figure 6 Slipping boundary as a function of Figure 7 Slipping regions (hatched
the bending radius p. portions) in the cross section of the cable.

BENDING OF CABLE WITH FINITE FRICTION

In a cable, the friction forces are finite. So there is always some critical bending curvature i/pc,
below which slip does not occur, as discussed in the previous sections. When the bending
increases above this level, an interwire slip will inevitably occur. In this case, the continuity
conditions for displacements on the surfaces in contact will be violated.

FCA-10



In the following the equations of equilibrium are used to find the deformations of the
wire, including the axial strain, torsion and bending curvatures of the wire, as well as the internal
forces and moments in the cross section of the wire. The derivation will focus on the wire in
the first quarter part of the cross section, and then the results are extended to the entire cross
section.

Note that the distributed friction forces and moments for the wire in the slipping region
have been found in Eqs.27, 29-31. Substitution of these results into Eqs.7-12 will lead to

-!Et- sin= a c°os0  (37)
dso PC

=. : O•b,-•'t (38)

So• 1 C(3)

1 el K j~ ins~oCS 2 60  2(40)s~

I+v doo zp (i+v)

-ao To-o + V 1+v - 0 (41)

aV sin4aocosao

W TW 
(42)

Recalling that e, can be found from Eqs.21 and 23, we can rewrite Eq.37 as follows

co840 + F = sinamcosco (43)
P tango PC

from which Kc is found to be

sin3 ao sinao (44)
PC P

Substituting the latter into Eq.42, we obtain

s-- = - sinaco [a [(l+v) cos-v-P-]P (45)
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from which r is found to be

T= 'o- 2p [8(10 v) sing-v -P-9] (46)

From Eqs.42 and 44, we can see that Eq.2 is still applicable for the binormal curvature of the
wire in the slipping region, i.e.

X - K = + sin'so sing (47)
P

The tangential force F, has been derived in Eq.35. Another force component, Fb, is easily
found by integrating Eq.39. That is

"]Pb=- Bsinico°s°0 (sin2c 0-vcos2zo) q (48)
(+v) zpC

Now let us check the two bounds of the theoretical model of the cable. First, consider the case
where the interwire friction is absent. In this extreme condition Eq.34 shows that the critical
bending radius becomes infinite, which means that slip starts immediately when the cable is bent.
Then Eq.44 yields, when p.--oo,

- sing0  49K _ cos9 (49)

Similarly, when p,-4-, the torsion c in Eq.46 is found to be

T=ro- 1+v sin2cosin9 (50)

These two equations are the same as Eqs.15 and 17 for the wire in a friction-free cable.

Alternatively, if the interwire friction is infinite, the slipping would never occur, no matter
how severe the bending is. It means that the critical bending curvature is always as large as the
given bending radius, i.e., 1/p,=cosq/p (see the derivation of Eq.33). Then Eqs.44 and 46 will
be reduced to

- -sinaosa° C0o49 (51)

P

. (1_sing) sin2c0  (52)
ix p 2

which are the same as those in Eqs. 1 and 3 for the helix fixed on a torus for the condition of an
absolute friction.

The above results for a wire in the slipping region (ge [0, %] and 0<93,<R/2) can be easily
extended to other parts of the cross section. As mentioned before, the slipping regions are
symmetrical to the neutral axis and defined by [-%P, (p] and [7r-(s, lt+Tj. Recalling Eq.27, we
can see that the distributed friction force pt takes opposite signs in two different parts of the cross
section (e (-n/2, n/2] and 6e (7r/2, 3n/2]. It implies that the friction force changes its direction
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at these two regions. Therefore, the tangential force component Ft should be written in the form

Azsin 2uo -s 2

pC 2 2 (53)
Mrsin*o (-) <9<1-

PC

Following the same approach, the other terms of the internal forces and moments can be found.
From Eqs.29 and 39, it is obtained that

Ba-n2(1+ 0- (sin a-vcos 2
0°) -1

2 (1+v)1p2 (54)

- (Bsin2a°v 0p (sin2z0-VC082ag°) (X-9) -1 4 <-LW----3

(sin2 .0 z 2 2

Similarly, the torsion -i and normal curvature r can be found, and then the corresponding
components of the internal moment are equal to

Bsin2z° [ (1 +V) sing -v -- 9]p 1- <9q <-.S

2p PC (55)

J"'n2l° [ (+v) sinq-v-P (wc-9) I S•<g< 3

-Batng 0 (Cosg--s-e~nso) -.1 <49<.!
P P2 (56)r-Baind Mg<-I sn° (co8+ •st na°p0  "2" < -2": (56)3

[ P PC2 2

One exception is the binormal component of the internal moment Mb. As shown in Eq.47, the
expression for the binormal curvature i' of the wire does not change in the slipping region, so
that the corresponding component of the moment will remain the same as in the case of no
slippage. That is

u - Mb - Bsin2 osing (57)

BENDING STIFFNESS OF CABLE

If no slip inside the cable takes place, then it behaves as a solid beam, and the corresponding
bending stiffness is calculated as the sum of the inertia moments of all the wires in the cable's
cross section. Note that for the wire wound around the core with large helix angle, its cross
sectional area is nearly an ellipse. Taking this into account, the bending stiffness of the cable
comprising n helical wires and a core can be represented by (see Fig.8)
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EI + EEI1  (58)

where

EI, - B (2g1j°n2.) + B n n coo2q + sinaq (59)
2sinX-g, 2sinuata .oS O GiniO

q,- 2(.j-) j-1, 2, ... n (60) 2R/sin

Since, for n>2,
A a r %2R%2

cos21pe 0, isin29- . (61) __

Eq.58 can be reduced to 2 1
____ pB 1 -Core

S)1+ 1 (62)E + =2sin g0  sin 2.0
Figure 8 A cross section of the

However, when bending exceeds the critical value and slip cable.

occurs, the bending stiffness of the cable will be different. In
the slipping part of the cable, wires will deform individually and the cable can not be considered
as a solid beam any more. If the ith wire is located in the slipping part of the cable, its
contribution to the bending stiffness can be presented by

97., IT Hp (63)

where

R1'= (•tsinfm-Rtjcosao+rP•isina 0 +r?•cosa0 ) sinq1 -R3ucosg1  (64)

in which all the components of the internal force and moment in the wire's cross section have
been given by Eqs.53-57.

Therefore, the bending stiffness may be in general written as

EX= E07rR,, RXEl + EI(65)E=4p E-I El i15

When Eqs.59, 63 and 64 are substituted into Eq.65, the following is obtained
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"N-I B 1~ 1 (A2. 8 j 6 )jaZZ-B. - •.• s--- A+ ++ ÷(-A -sinlao) sin29•j
sinsi 2 2am~2 . B

V 3-9•9ASU9.

-sin2 aocos 291 + c2-9-1 ] + _p (Cq 1sinq1 -Bsin3aocos9i)
2tanxs PVu0 '-9.,9j'.

+ Iz *p[Clu-9) s.in,+Bsin3 0cosgp])

where

C - Bsinro (Axzsin2ao-vcosae.-cos2eisin~ao+ _v co8zo) (67)
B 0 . . 1e+V

Obviously, as Eq.66 shows, the stiffness of a cable with the interwire slip would be a function
of the bending curvature p.

Two extreme cases are of interest here: absolute and zero interwire friction conditions.
When the interwire friction is absolute, it will prevent any slip and the cable will behave like a
solid beam. Then Eq.66 gives an upper bound for the bending stiffness

EI - RI, for 4,=O (68)

On the other hand, if the cable is friee of friction, it would behave as an assembly of
helical springs. Such a condition can be described by l/p,=O and p-,irt. Then Eq.66 will give
the lower bound of the bending stiffness

E• M RA . +nBsincgo (69)
4

BIb m E4R (9

The ratio E4b:E4a depends on the cable structure. To get an impression of the magnitude
of this ratio, let us consider a numerical example: a cable with a single layer of 6 wires around
the core, i.e., n=6, R,=0.788mm, R=0.737mm, Uo=70*, E=Ec=207GPa, v=0.25 and r=R+R, for
the wire-core touching situation. Using Eqs.62 and 69 we can find that EIb:EI. is about 0.11.
This shows that slippage would cause significant reduction in the bending stiffness.

In general, friction always exists in some degree, so that the stiffness given by Eq.66 lays
between the two extremes. From Fig.6 it is found that, once a slip starts, it will easily spread
over the entire cross section of the cable. When the slip occurs in the entire cable, the bending
stiffness in Eq.66 yields, after using the results from Eq.61,

El, = EI, -2n [ 1 i+ 1 + Ar2-2sin2a.) + -P_ (70)2sina, sin2a0  B P

where
p (Cglsinyp -Bsin 3

4 0 cosgp) + I C(ic-9) singi+Bsin3acosCO 1] (71)

-z/2zsps<9/2 %/2z.C35/2

FC-A-15



Taking into account Eqs.62 and 69, the above can be rewritten as

EIX - EIb + -p- (72)
PC

HYSTERESIS OF A CABLE UNDER CYCLIC BENDING

A symmetrically cyclic mode of bending deformations in cables is characterized by two phases:
loading and unloading phases. In the last section, it was shown (Eqs.62 and 71) that the bending
stiffness of a cable is constant for a non-slipping state and is a linear function of the bending
radius for the slipping state. During the range of transition from a nan-slipping state to fully
slipping state, the relationship becomes non-linear (Eq.66). However, the transition range is
usually short (see Fig.6).

As shown in Fig.9, the bending M
moment may be approximated as a piece-wise
linear function. The turning point of the
moment-curvature function, denoted by l/pc,
is determined from the condition that the
moments for the two different states are equal
and it can be found from Eqs.62 and 71

EIa EIb +_L (73)-_ = __ _ 7 )I

Pe Pe PC

It follows form the latter _ _

1 P(E a-Elb) (74) P

Pe Pt Figure 9 Approximation of the bending-
curvature relation as a piece-wise linear

EIb = (75) function.

After this simplification, a bending moment-curvature relationship for the cable under cyclic
bending can also be simplified as shown schematically in Fig.10.

The loading and unloading phases of the cycle comprise two stages: one without slip and
the another with slipping. In the non-slipping stage of the loading phase, the bending moment
is related to the curvature by

M1 = _MmaX+EIa[!+(L) max], (1) max< () ffl)aX+ (76)

()fllOX P Pe (6

In the slipping stage of the loading phase, the bending moment can be written as

M,= -Ma+~ I+L ( 1) "- 1 < 1< (2) max (77)
P P PC P PePT P

Since MI=M'ax at l/p=(l/p)m, it is found from Eq.77 that
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M"ax - EIb( )Max+ (78)

Using Eq.78, Eqs.76 and 77 can be rewritten as

EL I . 1)EIa maxs I I 1 ) max+1 (79)

M, ý!I + A .)- -55()-(0--r C ( P Pe P P

Similarly, the moment-curvature relationship for the cable in the unloading phase are found

M, --E [p (1) max_ ]1 +__'.,E (4.)i -x_ 1 :515_l(-!)max (81)

M2 EIb _ IL -(1) t .151- .(1) lX+_ (82)

The energy dissipated per cycle of M

bending is defined by

W J (M1-M2)d(-E) (83)

where L is the length of the cable. After ,I I
substituting Eqs.79-82 into Eq.83, it is found -

= PL P --. (84) 2 V

which shows that, (a) a bending will cause
energy dissipation if the amplitude of
bending curvature exceeds the equivalent Figure 10 Moment-curvature relationships for
critical curvature l/p., and (b) the energy the cable under cyclic bending.
dissipation in a cable due to the interwire
slippage is a linear function of the bending
curvature. This is a typical characteristic of frictional damping.

NUMERICAL EXAMPLE

To compare the theoretical model to experimental results, a sample cable used by Yu (1952) in
experiment is used. The specification is: n=6, Rc=R=l.524mm, L=l.016m, E,=E=2OOGPa,
v=0.25.

In Fig.1 1 the effect of the interwire friction on bending stiffness is shown. In this case,
the bending curvature exceeds a critical value, slip occurs inside the cable and it leads to great
reduction in stiffness. The transition, in terms of bending deformations, from the non-slipping
to fully slipping state is relatively short, as shown by the rugged segments in the curves (note:
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the horizontal axis is in logarithm scale). The
bending moment-curvature relationships for the
cable having various interwire friction forces and
helix angles are shown in Figs.12 and 13. They
are piece-wise linear functions, and the hysteresis 4

loops are caused by the unloading and reloading
phases. Fig.12 shows that, for a given bending ,
curvature, the higher the friction, the larger the
bending moment. However, as far as damping is
concerned, the effect of friction is not
monotonous. The areas enclosed by the hysteretic 1"

loops in Fig.12 represent the energy losses. It is
clear from the picture that when the friction is too
small or too large it could lead to reduction of
energy dissipation. Similar effect of the helix
angle can be found from Fig.13.

Comparison of the results from the present
model with the experimental data by Yu (1952) is
shown in Figs.14 to 16. When the interwire Bendivaturel,/p 1(/•)

friction force is assumed to be 480N/m, the
comparison between the results from the
theoretical model and the experiment in the Figure 11 Stiffness-Curvature relationships
relationships between the bending nrr'ment and for bending cables.
angular displacement (see Fig.14), the energy dissipation and angular displacement (see Fig.15),
shows good agreement. Fig.16 also indicates a qualitative agreement between the theory and
experiment.

0.8 0.U

0.6' %-so*0 o.6 q,,10C~r

04 CA

j0.2 j 0.2,

00) OD

OA -OA

-0h6 -0.6

-20 -16 -12 48 -4 0 4 8 12 16 20 -20 -16 -12 -8 -4 0 4 8 12 16 20
Bending Curvature (10'3/m) Bending Curvature (10"3/m)

Figure 12 Moment-curvature relationship in Figure 13 Moment-curvature relationship in

bent cables with various friction forces. bent cables with various helix angles.
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Figure 14 Comparison of moment- Figure 15 Comparison of energy dissipation
displacement relationship between theory from theory and the experiment (Yu, 1952).
and the experiment by Yu (1952).

CONCLUSIONS

A theoretical model of a cable which takes into
120 account the interwire friction and slippage is

developed. It allows analysis of the hysteretic
behaviour in cables. It is found that there exists a

9*0 critical bending curvature causing interwire
slippage. A slip starts at the neutral axis and then

Vo spreads symmetrically over the entire cross
section of the cable. As a result, hysteretic loops
are formed in the moment-curvature chart of a

A pait• Yuc(1952) cable under cyclic bending. The interwire
slippage, slipping boundary, as well as its effect

0 ____1 _1_1_1_1_1_1_1_1_1_on the internal forces and deformations of the
,n a, 092 OW o,,O 0c, OW 0Amo, component wires, the reduction of bending

Angular Displacomnent (radius) stiffness and energy losses of the cable, are

theoretically investigated. It is shown that the
energy dissipation is linearly proportional to the

Figure 16 Comparison bending stiffness deflection. Comparison of the model with the
obtained from theory and the experiment by experimental results is very encouraging.
Yu (1952).
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ON THE LINEARIZATION OF STRUCTURES CONTAINING
LINEAR-FRICTION DISSIPATING DEVICES

Jose A. Inaudi"
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ABSTRACT

This paper deals with the response of structures containing linear-friction energy dissipat-
ing devices (EDD). This type of EDD exhibit triangular hysteresis loops when loaded cycli-
cally, dissipating energy proportionally to the square of the deformation amplitude and
independently of the deformation frequency. The free-vibration response of single-degree-of-
freedom structures with linear-friction elements is studied. Two linearization techniques are
applied to estimate the response of structures with linear-friction elements to harmonic and
broad-band excitation: the harmonic linearization method, and a linearization based on a linear
hysteretic element. Both linearizations show excellent accuracy.

EERC, 1301 South 46th Street, Richmond, CA 94804; Tel.: (510) 231-9519.

FcB-1



INTRODUCTION

Several energy dissipating devices (EDD) show triangular hysteresis loops when loaded
cyclically. The energy dissipation per cycle in these devices is quadratic in the deformation
amplitude and independent of the frequency of the deformation. Such type of hysteretic
behavior is encountered, for example, in the Energy Dissipating Restraint (EDR) proposed by
Richter et al. (1990). This passive device, based on a friction mechanism, has been proposed
to provide damping in structures with the aim of reducing earthquake induced vibrations. The
EDR can be configured to provide a piece-wise linear force-deformation relation with stiffness
vK in the loading stroke, and stiffness 1/v K in the unloading stroke, where K the stiffness of
the spring contained in the device, and v (> 1) is a parameter that depends on the
configuration of the EDR (Richter et al., 1990). Inaudi and Kelly (1992) have recently pro-
posed a hysteretic mass damper in which a friction damper device acting transversely to the
direction of the motion of the mass damper provides the energy dissipation mechanism. The
mechanical behavior of this frictional system can be approximated by the following memory-
less force-deformation relation:

f (A, A) - Kh A(t) sgn(A(t)A(t)) (1)

where f represents the force in the mechanical device, A represents the deformation in the
EDD; the constant Kh is given by Kh = 2 TIL, where T is the capacity of the frictional device,
and L is the length of the the rods where the frictional devices are embedded.

Reid (1956) has suggested the use of this piece-wise linear relation (Eq. (1)) for the con-
stitutive relation of materials presenting hysteresis energy loss per cycle proportional to the
square of the strain amplitude and independent of the frequency. Caughey and Vijayaragha-
van (1970, 1977) have studied the free-vibration response and the response to sinusoidal exci-
tation of structures with nonlinear elements that satisfy the memoryless relationship described
by Eq. (1). This nonlinear model was given the name of Reid's model (Caughey et al.,
1970).

In certain occasions the EDD with triangular hysteresis exhibits memory: the element
presents a finite stiffness in the transition between loading and unloading. This occurs, for
example, due to finite stiffness of the connections of the mechanical device to the structure.
A hysteresis loop of a linear-friction element with memory is shown in Figure 1. In the figure
K, represents the stiffness in loading (AA > 0) (State 1), K2 is the stiffness in unloading (State
2), and K 3 is the tangent stiffness of the transition between loading and unloading (from State
1 to State 2 or vice versa). When unloading occurs (AA < 0) at a certain deformation Al, the
tangent stiffness of the element is finite and given by K3 (State 3). If the deformation reaches
A. the tangent stiffness changes to K, (State 2). The memory of the element affects the
force-deformation relationship when the deformation A satisfies

Al(t) < A(t) < A,(t) (2)

where Al is the previous unloading deformation, and A,, satisfies
A M K3 - K , 3- (3) K
Al K 3 - K 2
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Figure 1. Force-deformation relation of a linear-friction EDD with memory.
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Similarly, when loading starts at a deformation A,,, the tangent stiffness of the element is K 3

(State 3) provided the deformation satisfies Eq. (2) with A, satisfying Eq. (3). If the deforma-
tion reaches A1 in the loading process, the tangent stiffness changes to K, (State 1). This
memory transforms the mechanical element into a dynamic element in which past deforma-
tions affect the force-deformation relationship of the element. Clearly the memory of the ele-
ment "decreases" with an increase in the ratios K3/K, and K3/K2. For dissipativeness we
require K2 < K, < K 3.

The force in a linear-friction element with memory can then be represented by

K, A(t) if 1(t) - 1 , and iA(t)l > A1(t)
f(A, z, ) - K2 A&.(t) + K3 (A0t) - A,(t)) if 1(t) - 1 and z(t) - A.(t) < A(t) A(t) (4)f ,Z )-K2 40t if 1(t) - -1 , and 1,A(t)l <,&,,(t)(4

IK2 A,(t) + K 3 (A14) - A,(0)) if I(t) - -1 and A.(t) < A(t) < A (t) - z(t)

where z(t) is the element state variable storing the information of the previous unloading
deformation or previous loading deformation, and 1(t) - sign(A A). It is convenient to write
Eq. (4) as

f(A, z, 1) - K. A(t) + g(A(t), I(t), z(t), Kh, y) (5)
11 (K 2,ad K3- K,

where K, - (KI + K2), K, is defined as Kh -• - The force-
e 2 K-e

deformation relation g(A, 1(t), z(t)) is illustrated in the bottom figure of Fig. 1. Clearly
1 < y < o and in the limit case of I - a, Eq. (5) reduces to the memoryless relation (Reid's
model):

f(A, ,) - Km A(t) + Kh A(t) sgn(A(t)A(t)) (6)

The Reid's model is then a special case of the linear friction model described in Eq. (4).

The authors refer to the model of Eq. (4) as 'linear friction' not without reason: as it will
become apparent the adjective linear in the expression 'linear friction' refers not only to the
fact that this model can be realized by means of frictional forces increasing linearly with
deformation, but also tc :he fact that structures containing this type of nonlinear devices exhi-
bit some characteristics typical of linear systems. The purpose of this paper is to analyze the
characteristics of structures containing this type of nonlinear dissipating devices and to apply
different linearization techniques foi Cie estimation of the response of these structures. The
harmonic linearization method and a linearization based on a hysteretic linear element are
used to estimate the response of these systems subjected to deterministic and random excita-
tion. These linearization procedures and be used in the preliminary design of structures con-
taining energy dissipating devices exhibiting triangular hysteresis.

FORMULATION OF THE PROBLEM

Consider a linear, undamped N-degree-of-freedom system containing linear-friction dissi-
pating devices. The system can be described by the following differential equation
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N.My_(t) + K y(t) + 1: IJ fi (t) - L. w(t), y(0) - y. , j(0)-, j. (7)

i-i

where M and K represent the positive-definite mass and stiffness matrices, respectively; L,, w
represents the excitation, fi is the force in the i-th energy dissipating device, LT is the
appropriate force transformation, and Ne is the number of energy dissipating devices. The
force in the i-th EED can be expressed as

f8 (t) - KW) A(t) + g (AQ(t), I(t), z(t), 4•(5), yi) (8)

where K,,), IV) and y, are the parameters of the i-th EDD previously defined; zi(t) represents
the state (memory) of the i-th EDD, 1i(t) - sgn (Ai , 1), and the element deformation A, in the
i-th element is given by

A (t). y(t) (9)

By defining I - K + 1ý L7r KQ) Li, Eq. (7) can be written as
i-I

M W(t) + k' y(t) + 1 L7 Li g(Ait(t), 1i(t), zi(t) KA1i), yi ) " L., w(t) (10)
i-1

The analysis of the response of this nonlinear system to deterministic or random loading
requires numerical integration. The use of response-spectrum techniques in the preliminary
design of structures subjected to dynamic loading is common practice in the engineering com-
munity. The earthquake-resistant design of structures, for example, is typically based on a
seismic response spectrum. Obtaining a linearized system of equations which approximates
Eq. (10) for a given type of excitation is then highly desirable. In the following sections
different linearization techniques are employed to approximate the response of this nonlinear
system to harmonic and random excitation.

The linear-friction element is homogeneous of order one in its input variables [A i]. This
property is transferred to a system such as that of Eq. (7). It can be easily shown that, if the
initial conditions and the input excitation are scaled by a fe 'tor g, the response of the system
is simply gt times the response of the original system. This property is typical of linear sys-
tems. It is also simple to show that Eq. (7) fails to satisfy the addition principle of linear sys-
tems (superposition). Owing to the dissipation of energy-per-cycle of this nonlinear element
is quadratic in the deformation amplitude, excellent accuracy is obtained with the linearization
methods. In fact, the accurate predictability of the response of this nonlinear system by means
of equivalent linear systems is a very convenient characteristic of EED with triangular hys-
teresis.

FREE VIBRATION OF SDOF SYSTEMS WITH LINEAR-FRICTION EDDs

Consider a SDOF system with a linear-friction EDD described by

A st + 2 y(t) + 1 g(y(t), I(t), z(t), Kh, y) -0 (11)
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with initial conditions y(o) . yo, ý,(0) - 0, and z(0) - y.. In Eq. (11) W2 - (K + K. Ym, where
K and m are the stiffness and mass of the oscillator. The function g(t)/m takes three
different expressions in the state space depending upon the variable z(t), the deformation, y,
and the deformation rate y. These expressions are

- t) =w 2y)(t (State1) (12)

j t-• - -•2 2yt) (State 2)
m

-t . 2z(t) - ycw2(z(t) - y(t)), z(t) - Yt (State3)

where • - Kk/(w2m), and yj is the current unloading deformation (A, in Eq. (2)). Defining the
dimensionless variable 0 - wt, Eq. (11) can be written as

y"(0) + y(6) + u (y(O), 1(0), z(0), r, y) - 0 (13)

where u(t) Igtl and y' - dy/dO. Equation (12) can be written as

y"+(1+ )y -0 (State 1) (14)

y" + (1- •)y -0 (State 2)

y"+(1+yt)y -z(0)t (y-1) (State3) -

Equation (13) can be solved exactly for specific initial conditions by solving the correspond-
ing linear system in each region of the state space and ensuring the corresponding continuity
conditions. It can be shown that, in free vibration, the system presents fixed switching lines
in the reduced state space defined by y (6) and y'(0). As shown in Fig. 2, the switching lines
are given by

y(O) - 0, y'(0) - 0 and y'(0) - -a y(0) (15)

where the constant a can be computed as
y [2 (y12_Y )2 ]1216

a(Cy, - _ + 1 + y- 2t(y- 1)-(I + y)( (16)y-1 y +lY

In the case of the Reid's model (y - co) the differential equation of the SDOF system is

y"(0) + y(0) + t y(0) sgn (y(O)y'(0)) - 0 (16)

The lines y(6) - 0 and y'(0) - 0 of the state space constitute the switching lines between two
different linear systems with dimensionless frequencies Vi74+ and %ri----. The Ried's oscillator
shows a periodic response with a constant decay ratio between consecutive peaks (Caughey et
al., 1970). The dimensionless period of the oscillator, To, is independent of the amplitude of
oscillation and given by

TOt - T) (17)
To(•)-TV1-• + 1+•

where T represents the period of the system in units of time. The ratio of peaks Y, between
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two successive cycles, n and n +1, is constant and given by

- (18)

In the case of finite y (Eq. (13)) this nonlinear system still exhibits a vibration period
independent of the amplitude of oscillation, T0(t, y). Naturally, the period is a function of y
and t. The effect of y in the free vibration response of a SDOF system described by Eq. (13)
is illustrated in Fig. 3 for t - 0.30 and y - 10, 20, 50 and oo. Small values of y yield a reduc-

tion of the period (stiffening effect) and an increase in the ratio between consecutive peaks
(effective damping reduction). Figure 4 shows the variation of the period To(', y) with y for
different values of t. The results are normalized by the period of the system without
memory, To(Q) (Eq. (17)), and given for t - 0.2, ,0.5, 0.6 and 0.8.

Like the Reid's oscillator, the linear-friction oscillator (Eq. (13)) shows a constant decay
ratio between peaks in free vibration. To analyze the effect of y in the decay ratio of the
oscillator, an apparent damping ratio is computed based on the well known result of linear
viscously damped systems

--. -e ¢I-•' (19)Y,

Given the decay ratio h(y, K) - Y,, 1/Y, as a function of y and t, The apparent damping ratio of
this nonlinear system, t(y, •), can be computed using Eq. (19) as

___ln(h (y:,
2aY (20)

[1+ 1 2 ln2(h (y, )]

4nr

where the decay ratio h (y, ) = Y,,,I/Y,, is obtained by solving the free vibration problem over
one cycle of oscillation. Figure 5 shows the apparent damping ratio t(y, t) as a function of y
for t - 0.2, 0.5, 0.6 and 0.8. The effect of a reduction in y is to decrease the effective damping
ratio. For y > 100 the effect of memory on the equivalent damping ratio is negligible and t
could be taken, without significant error, as that of the Reid's oscillator (which can be com-
puted using Eqs.(18) and (20)).

Two characteristics of time-invariant linear structures are exhibited by SDOF structures
with linear-friction elements: the free vibration period and the logarithmic decrement are
independent of the amplitude of oscillation.

HARMONIC LINEARIZATION

This technique, often called the describing function method or the method of harmonic
balance (Siljak, 1969), seeks for a linear element that approximates the response of a non-
linear element when the input to the nonlinear element is harmonic. Caughey et al. (1970)
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have used this technique in the case of the memoryless element described by

f (A, i) -1, A0) sgn (A0(t)) (21)

to obtain an equivalent viscous damper c, -Ce A that approximates Eq. (21). The parameter
c, that minimizes

2m

a

J(c,). f (I(i)-f(A,A)9dt (22)
0

for AQ) -A s*(t), is given by

C-2K (23)

Cox-

Naturally, the equivalent viscous parameter is inversely proportional to the deformation fre-
quency, 0, (since the response of the nonlinear element is rate-independent) and independent
of the deformation amplitude, A, (since the energy dissipation per cycle is quadratic in the
deformation amplitude). As noted by Beucke and Kelly (1985), the result of Eq. (23) can also
be obtained by matching the dissipation of energy in a cycle of harmonic deformation of the
equivalent viscous damper, E, to that of the nonlinear element, Ek; where

E, - Co c A 2 X , Eh -2A 2 Kh (24)

In this work we seek for an approximate linear element of the form

k ,k A(t) + c.4(t) (25)

to replace the nonlinear hysteretic element (linear-friction model with memory)

f(AA, z) - g(A, I(t), z(t), Kh, y) (26)

Letting the deformation A(t) - A sin(Wt), we seek for the parameters k, and c, such that the
integral of the mean square error is minimized; i.e.,

2X

minimize J(c,, k,) - f [ (A(t), A(t)) - g(A(t), (t), z(t)) 2 d (27)
0

After some algebra, the following expressions are obtained for kl and c,

k, - Kh Pk(Y) (28)

c - 2 Kh P(Y) (29)

where the functions PMy(Y) and pc(y) are given by

Pk[ - [acos(y11) (l+y) - 2Vy l1] (30)
X Y+1 Y+l

1 +4-- 4Y2  + (Y-1 )21 (31)
2 • +41 (y+1) 2  y+l
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The functions Pk(Y) and Pc(Y) are plotted in Fig. 6. Pk(Y) is a monotonically decreasing func-
tion of y and pk(1) - 1, pN(M) - 0. On the contrary, P,(y) is a monotonically increasing func-
tion of y and p,(l) - 0, p,(ao) - 1. For y - ®, k, is zero and c, naturally coincides with the
result obtained for the memoryless element (Eq. (23)). It can be shown that the same value of
c, can be obtained by matching the dissipation of energy in a cycle of deformation of the
equivalent viscous damper to that of the linear friction element (Eq. (26)), Ek. Therefore, Et
can be written as

E, - 2A 2 Kh Pc(Y) (32)

A characteristic frequency of the deformation response is required to define c, in Eq.
(29). In the case of narrow-band excitation an appropriate selection of @ is the forcing fre-
quency since the steady-state response of this nonlinear system to harmonic loading is
periodic with the same period of the excitation. To approximate the steady-state response of
the nonlinear system to harmonic excitation, the following equivalent linear system is pro-
posed:

:Nt) + 2 t. w, ý (t) + w.2 y(t) - W ei•' (33)

where the equivalent frequency w,•= - 7 + I K1/rn is computed using Eq. (28) as

we -W (1 + t Pk(Y) (34)

and the equivalent damping ratio is computed from • - with c, given by Eq. (29) and
2m w

c equal to the forcing frequency C - 1ow,

= - Pc(Y) (35)41 VI + t pk(Y)

Figure 4 illustrates the exact and approximate response of a SDOF system to harmonic load-
ing for of y - 50 and • - 0.30. As shown in the figure good accuracy is obtained.

In the case of broad-band excitation, the natural frequency of the oscillator is an
appropriate choice for C in Eq. (29); the equivalent damping ratio in this case can be obtained
from Eq. (29) taking co - w, as

]+ t Pk(Y) (36)

To illustrate the accuracy of the harmonic linearization method in the estimation of the
response to broad-band excitation, the response of the nonlinear SDOF to support excitation
was obtained and compared with that of the linearized system. The support acceleration is the
recorded acceleration in the NS direction during El Centro earthquake (Fig. 8). The exact and
approximate response spectra are shown in Fig. 8 for y = 5 and 50, and t - 0.1, 0.3 and 0.6.
The spectra show the normalized maximum deformation of the system YmaxW2 /g, where g
represents the acceleration of gravity and w the natural frequency of the structure without the
linear-friction element. As shown in the figure, good accuracy is obtained in the estimation of
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the peak deformation response using the linearized system.

In MDOF systems with well separated frequencies the Modal Strain Energy method in
combination with the harmonic linearization technique can be used to estimate the response of
the nonlinear system described by Eq. (7) under broad-band excitation. We seek for a set of
decoupled differential equations that approximates the response of the nonlinear system. Let
us define the real-values modes shapes, 0+ and modal frequencies, Wj by replacing the non-
linear term of Eq. (7) by the corresponding linear spring elements, KV), and neglecting the
equivalent damping elements, co),

N,
wa2 M +j - (K + LIT K(3) Li (37)

*T M 0j - 6o (38)

where KY) is given by Eq. (28) with Kh - KhV) and y - yi. By defining the modal coordinates,

q, as

y(t) - 4, q(t) (39)

and using the orthogonality property of the modal matrix, 0 - [+j ... ], the equivalent
linear system can be described by

N1

•j(t) + g 2 q(t) + 4lT • LT C(i) Li j (4(t) _ IzTLw w(t) (40)
a.!

where 0 is a diagonal matrix with w. in the diagonal. Neglecting the interaction between the
modal coordinates we obtain the following N decoupled equations of motion for the system

q4(t) + 01
2 q1(t) + O+ T LT C,() L, 0t i1(t) = .[ L. w(t) I - 1, 2,..., N (41)

i-I

In the case of broad-band excitation, the equivalent damping constant C,(') in the l-th equation
of Eq. (41) is taken as

C ).2 Kho) p, (yj,,42C =' - K~~P~ (42)
W1 Ar

Finally, the following modal equations are obtained to approximate the response of the non-
linear system

41 (t) + 2wohl qI(t) + w,2 qt(t) = OITL. w(t) I = 1, 2,..., N (43)

where the equivalent modal damping ratios, ý1, are given by

1 N1•

1 . =- , 2: X*[L[ Kh(s) pc(y1 ) Li 01 , - 1, 2,..., N (44)

Figure 9 shows a comparison of the exact and approximate response of a 2DOF system
under El Centro earthquake. The properties of the 2DOF system are

Mm[0 1 K-i L_100 100 11s2 Lr=[] Li=[ 1  Lw- .
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Two linear-friction elements with parameters K1 /m - 50 1/s2, K/IA - 1 1/W2, and
KyAm - 300 11s2 are connected to the structure (top figure in Fig. 9). The natural frequencies
of the structure without the EED are wo1 - 6.18 radls and w2 - 16.18 rad/s. Using Eqs. (30)
and (31) and the assumed parameters KI, K2 and K 3, we can compute y - 11.204, Pk - 0.474,
Pc - 0.836. K.1/m - 25.5 1/s2 and the equivalent stiffness of each EDD is Kl/m - 11.608 1/s2.

The mode shapes, modal frequencies and modal damping ratios of the equivalent linear sys-
tem are obtained as

1 [0.5257 0.8507] w, = 7.237 radls t - 0.0476

- [-0.8507 0.52571 w2 - 18.946 radIs t2 - 0.0476

As showed in Fig. 9 excellent accuracy is obtained using the linearization technique. The bot-
tom figure of Fig. 9 shows the force-deformation relation of the linear friction element of the
first story of the structure obtained in the simulation of the response of the nonlinear system.
It is worth mentioning that the relative accuracy of this linearization (maximum error in a cer-
tain response quantity normalized by the maximum response value) does not depend on the
amplitude of the excitation since both this nonlinear system and the equivalent linear system
dre homogeneous (of order one) in the input excitation.

STATISTICAL LINEARIZATION OF THE REID'S MODEL

The statistical linearization method is used in this section to estimate the mean square
response of structures containing memoryless elements with triangular hysteresis subjected to
stationary random excitation. Let us obtain the equivalent damping constant, ce, of a linear
damper that approximates the nonlinear element of Eq. (21) by minimizing the mean square
error assuming a stationary jointly-Gaussian deformation deformation-rate process. The
coefficient of the equivalent linear element can be computed by solving the following minimi-
zation problem:

minimize A[c,] - E (45)

where the error E is given by

c - Kh A(t) sgn(A(t) A(t)) - c, A (46)

and the expectation operator E [.1 is taken as
x2 i2

E 1 ff e 2  e 2 (.)dxdi (47)E[.]=2noo% _aD_ao

After some algebra, the equivalent damping parameter is obtained as
2 Kh OA (48)

The stationary response of the nonlinear system Jescribed in Eq. (7) (with yi - co) under ran-
dom loading can be estimated using this linearization technique; Inaudi and Kelly (1992) have
shown that excellent accuracy in the estimation of mean square response of MDOF structures
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with memoryless linear-friction devices is obtained with this technique.

HYSTERETIC LINEARIZATION OF THE LINEAR-FRICTION ELEMENT

The method of statistical linearization is a convenient technique to treat memoryless non-
linearities. The mechanical element described by Eq. (26), however, shows dynamic behavior
through the state variable z(t). If a differential equation were written for the dynamics of
z(t), the statistical linearization method could still be used since Eq. (26) would represent a
function of the variables A, A, and z associated to which we could assume a Gaussian distri-
bution (Roberts and Spanos, 1990). In this section a linearization based on a linear hysteretic
model is proposed to estimate the response of the nonlinear system to stationary random exci-
t•tion.

A pure imaginary spring is a linear model that presents energy loss per cycle quadratic in
the deformation amplitude and independent of the frequency. In the frequency domain this
linear element is represented by

f, (/'6) - j sgn (Co) Sh, A(/'• (49)

The energy dissipation in a deformation cycle of amplitude A in this linear, non-causal ele-

ment, E&k is given by

E,, - A2 S, (50)

As noted Eq. (32), the dissipation of energy per cycle in the nonlinear element (Eq. (26)) is
quadratic in the amplitude and independent of the deformation frequency. It naturally follows
that a complex-valued spring element is a suitable candidate for the linearization of 2he
linear-friction element with memory. The following linear model is proposed in the frequency
domain

0"•) - ( K, + j sgn((5) S, ) A(jF) (51)

where K, is given by Eq. (28) and S, is obtained by matching the energy dissipation of both
models. From Eqs. (32) and (50) we obtain

S,- ..... PAY) (52)X

The stationary respotse of the equivalent hysteretic system can be computed using frequency
domain techniques for a given power spectral density of the the excitation process. The
dynamics of the equivalent linear structure can be expressed in the frequency domain as

[i•) iM + k + 1: 4T ( K,") + j sgn (@) Si) )L I y(jy6) -L. w(j&) (53)
i-1

where KQ' and S,( are given by Eqs. (28) and (53), respectively, with the parameters of the
i-th element. The stationary mean square response to a stationary excitation can be computed
as

E[ y yTj . f H,(jC) S,(c) H, ,(j) dic (54)
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where Hy,(j6i) is the transfer function from w to y, Sw(i) is the power spectral density of the
excitation, and 0" represents complex transposition.

A simple numerical example is developed to illustrate the accuracy of this method in the
estimation of the mean square response of the nonlinear system containing linear friction ele-
ments with memory. The mean square response of the nonlinear system described by Eq. (7)
subjected to support acceleration modeled by a zero-mean white process with autocorrelation
function

E[w(t) w(t + T)J - W 8(T) (55)

is computed using Monte Carlo simulation techniques. The 2DOF system described previ-
ously was subjected to white noise excitation of intensity W - 1000 cm 21s 3. The parameters of
the linear friction elements are K1 nm - 50 11s 2, K2/m - I 1/s2, and K31m - 300 11s 2 . The sta-

tionary root mean square displacement of the nonlinear system was computed by averaging in
time the mean square deformation response obtained in a Monte Carlo simulation (250 simu-

lations) between t - 10 s and t - 20 s, giving

-y, - V'- = 2.66 cm

The hysteretic linearization procedure is used to estimate the mean square response of the sys-
tem. For parameters assumed we can compute y - 11.204, Pt - 0.474, Pc - 0.836,

K1/m - 11.609 ls2, and Se/m w 13.041 1/s2. The stationary root mean square displacement of
the equivalent linear hysteretic system, oy•, is computed using Eqs.(53) and (54) as

-I = 2.70 cm

Again, the accuracy is excellent. Figure 9 shows the results obtained in the Monte Carlo
simulation and compares them with the stationary value estimated by means of the hysteretic
linearization procedure.

CONCLUDING REMARKS

The free vibration response of SDOF structures with linear-friction EDDs has been

investigated. This nonlinear system shows period of oscillation and decay ratio independent of
the amplitude of vibration.

The harmonic linearization technique has shown excellent accuracy in the estimation of
the response of MDOF structures with linear-friction elements subjected to harmonic and
broad-band excitation.

A linearization using a linear hysteretic element has been proposed to estimate the mean
square response of structures containing linear-friction elements subjected to random excita-
tion. Using Monte Carlo simulation techniques the excellent accuracy of the hysteretic lineari-
zation method has been demonstrated. Both linearization techniques are valuable tools for the
preliminary design of structures with energy dissipating devices exhibiting triangular hys-
teresis loops.
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ANALYSIS OF DRY FRICTION HYSTERESIS

IN TENSION CABLES

by Xiaolun Huang' and Oleg G. Vinogradov2

ABSTRACT: An analysis of hysteretic losses in tension cables is presented.
A basic model of a cable which comprises a core with several wires around it, is
used in the analysis. Deformations of the cable in loading, unloading and
reloading phases of the first loading cycle are investigated. As a result, formulas
for the energy losses during a symmetric cycle are derived. It is shown that the
energy dissipation per cycle is proportional to the cube of the axial load and is in
inverse proportion to the distributed friction force. In the paper, the influence of
the helix angle of the wires on energy losses is investigated numerically. It is
suggested that in applications a cable may be modeled as a solid rod with
amplitude-dependent damping properties. The corresponding damping coefficient
is obtained by using the equivalent linearization technique.

Research Associate, Dept. of Mech. Eng., Univ. of Calgary, Calgary, AB, Canada T2N 1N4.
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INTRODUCTION

Cables are commonly used as tension members in light and flexible structures. Recently,
increasing interest has been shown in utilizing the unique damping characteristic of cables in
large space engineering structures and robot arms (Vranish, 1990).

A conventional way to deal with the energy dissipation in a cable is to assume it to be
a viscous type of damping. However, as shown in many experimental studies (Yu, 1952; Claren
and Diana, 1969; Vinogradov and Pivovarov, 1986), damping in a cable is virtually amplitude-
dependent, which is a characteristic of frictional losses.

The problem of frictional hysteresis in tension cables was considered by Hobbs and Raoof
(1982), who modelled a multi-layered cable as a set of coaxial orthotropic shells and predicted
losses resulting from the slip between the wires along the contact lines. The possibility of an
interwire slip in a tension cable was also investigated by Utting and Jones (1989). An attempt
to explain the frictional hysteresis in a bent cable was made by Vinogradov and Atatekin (1986),
who proposed that the losses are caused by the twisting slippage of the helical wires. More
recently, Vinogradov and Huang (1991) developed a model of a cable, in which the cable is
treated as a system of thin wires with the dry friction at the interfaces. This model allows the
analysis of the interwire slip and its influence on various mechanical properties of cables to be
mode (Huang and Vinogradov, 1992, Huang, 1992).

In this paper, the cable model developed by Vinogradov and Huang (1991) is used to
analyze the dry friction hysteresis in tension cables. Since this type of hysteresis is caused by
the interwire slip, the analysis of deformations of the cable in each phase of the symmetric cycle
is presented in full. The results are then extended to determinate the equivalent coefficients of
stiffness and damping of the cable as a solid rod. Since frictional damping is not frequency- but
amplitude-dependent, the problem will be assessed in a quasi-static approach.

CABLE MODEL

A fundamental structure that has all the features of most cable geometries is that of a number of
wires wound helically around a cylindrical core, as shown in Fig. 1. Each wire in the cable may
be treated as an elastic thin rod, and thus a cable is considered as a system of interacting thin
rods.

As shown by Phillips and Costello (1973) using Love's theory of thin rods (Love, 1944),
a tensile load on the cable can cause distributed contact forces between the wires. Consequently,
any slip at the interfaces will be constrained by the friction forces. Considering that cables are
subjected to pretension in most applications and that the amplitude of the fluctuating loads are
relatively small, it is reasonable to assume that the interwire friction is constant and determined
by the pretension.

Due to the space limitation, some results from Vinogradov and Huang (1991), and Huang
(1992) are briefly summarized in following.
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Rc
When the interwire traction force caused by the tensile R

load on a cable does not exceeds the interfacial friction, no slip
takes place and the cable behaves as a solid rod. In this case the - - -

extension stiffness of the cable with n helical wires around the r-
core, Kn, is equal to

S= 
+ (1)

where E is the elastic modulus of the material, and R is the
radius of the circular cross-section, whereas the subscripts "c" /10
and "w" refer to the core and the outer wires, respectively.

Since dry friction is finite, interwire slip could occur at
some part of the cable where the interfacial traction force
exceeds the friction constraint. In that part of the cable,
deformations in the wires should be found from the conditions
of equilibrium for thin rods.

Figure 1 A six-wire cable.
From the geometry of an elemenmary length of the

developed helical wire (see Fig.2), it is easy to obtain the
following relationship between the axial strain of the wire, e, and the axial strain of the core (or
say the cable), e.,

sinag

Taking into account that the change in the helix angle is small, which is valid for most metallic
cables, the above can be linearized as

Ca = et+ A6 (3)

where Aa=a-axo.

The rotational deformation of the helical centerline around the cable axis is defined by
(see Fig.2)

zo (dv-dpo) (4)
dz°

where r0 is the radius of the helix in the initial configuration. For the case when the helical
wires are in contact with the core, r0 is equal to R,+Rw. According to the geometry of a
developed helix, see Fig.2, Eq.4 can be expressed by
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E l. _(5)z" tan tas,~

r "1 Since the effect of Poisson's ratio on changing
ithe diameter of the wires is negligible (Utting

ds 7s -and Jones, 1987), it is assumed that r--r0 . If
d2 dz the cable is fixed at the ends, no rotation is

allowed. Then Eq.5 yields

tane -1 (6)ea=tann
0

d After linearization of the latter it is obtained

Figure 2 Deformation of an elementary length An - 2co (7)
of helix. 2

It should be noted that the relationship between the change in the helix angle and axial strain in
the cable, given by Eq.7, is valid for any part of the tension cable, with slip or without slip. In
the non-slipping part of the cable, the axial strain in the cable, e.c, is simply equal to

em (8)

where P is the tensile load on the cable. Correspondingly, the change of the helix angle in the
non-slipping part of the cable is obtained from Eq.7

An M an- sin2a° p (9)
0 = -2 Ka

where subscripts "n" and "0" refer to the non-slipping and initial states, respectively.

In the slipping part of the cable, the change in the helix angle is the sum of two
components: Aocn, corresponding to the cable as an equivalent solid rod, and Aas=a8,-on, which
takes into account the interwire slippage. If the axial strain in the slipping part of cable is
denoted by Ecc, the following is obtained from Eq.7

sin2=o
Aan+Acgs a siu cc& (10)

2 (0

Although in a tension cable, the centerline of each outer wire has the same displacement
in the direction of the cable axis as that of the core, a slip may still appear due to the twisting
and bending deformations of the wire as a helical thin rod. This mechanism can be understood
from the deformations of a spiral spring subjected to stretching. Because the twisting and
bending deformations of the helical wire and the core are different, a slip can occur at the
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interface when the friction constraint is exceeded. The corresponding deformations of the helical
wire are governed by the equilibrium conditions. In an ideal situation when the cable is uniform
in geometrical and material properties, and the local effect at the fixed ends is negligible, the slip
is expected to start at the middle of the cable and then propagate towards the two ends as the
tensile load increases.

If the distributed friction force is given by qf, the change of the helix angle along the axial
length of the cable can be found from Love's equations of equilibrium for thin rods (Vinogradov
and Huang, 1991; Huang, 1992)

dcg .C~rr(11)dz

where C is a constant related to the cable structure

C- - sinco

(Atano+ Bsin2-o)2+(B2 [0cos2Uo-coS2 ao(1+2vsin2 z.) 13 (12)
_ORW (1+V) 2X4

in which A=EidRw,, B=Ew7ER, 4/4 and v is the Poisson ratio of the wire material.

Let us denote the length of the slipping section, or simply called the slipping length, by
H,.At the boundary of the slipping section where z=H, (origin of the z-axis is set at the middle
of the cable), the helix angle must be equal to that in the non-slipping part of the cable, i.e.,
af=a. at z=H5 . Solving Eq. 11 subjected to this boundary condition will give

Cgs M m+cqr(H,-z) (13)

Furthermore, from the principle of energy conservation, the slipping length can be found
(Vinogradov and Huang, 1991) to be proportional to the tensile load

H, = D (14)qf

where D is the constant determined by the cable structure and is equal to

D - -- (b+Fb2 -4ac) (15)
2a

in which

a = C(aO+a 2 ) (16)
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airA26; -3a,(&+a) (17)

c -3a.a 12+ 3 1~.

n (C092 2s i 2g+ 2E1%x4 (19)

sain_2s° (20)
2 Ka

a 2-nB(.L' 4 tan2.+ C06 22 0 (1a= a n' o+ -i - =o+4 sin s oc o s ==, (2 1 )
a2 T0 R 2(1+v) sin.0 +s, n 0 £0)

The axial strain in the slipping part of the cable in slip can be found by substituting Eqs.9,
13 and 14 into Eq.10

g as 2 Cq n . )-z- (22)
K. ~_s qf

After this introduction of the cable model, the hysteretic behaviour of cables subjected to cyclic
stretching will be investigated in the following sections.

HYSTERESIS

The beginning of a cyclic loading is characterised by three phases: loading, unloading and
reloading. The result of the first cycle is the hysteretic loop formed by the unloading and
reloading phases of the cycle. However, to find out the hysteretic behaviour, the load-elongation
characteristics during the entire first cycle must be analyzed. The behaviour of a tension cable
in the loading phase has actually been introduced in the last section. In this section, the
treatment of the following unloading phase of the cycle is based on the results obtained for the
loading phase. In other words, the state of the cable at the end of the loading phase will be used
as the initial conditions for the unloading phase. Similarly, the state of the cable at the end of
the unloading phase will be used as the new initial conditions for the following reloading phase.
Thus the problem is solved as the initial value problem. For this reason, the state of the cable
at the end of the loading phase is presented first. Parameters related to the three phases of a
cycle are identified by the subscripts 1, 2 and 3, for the loading, unloading and reloading phases,
respectively.
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Loadini

In general, at the end of the loading phase the cable comprises two parts: one in which
the slip took place, and another one where it did not (see Figs.3a and 3b, where, due to the
symmetry, only a half-length of the cable is considered). The length of the slipping regimn
during the loading is proportional to the axial load and is given by, from Eq. 14,

H,1 - DP3 (23)
qf

In the nonslipping part of the cable, the helix angle is given by Eq.9
sinx2g

9'"=090+ 2Ka,, , (24)

whereas in the slipping part of the cable, the helix angle is, from Eq.13,

-cc = •a ,cqr(H,1-z) (25)

A sketch of the variability of the helix angle along the cable at the intermediate state of dhe
loading phase is shown in Fig.3b.

For the cable with length 2H, the total elongation is a sum of the elongations from the
slipping and non-slipping parts of the cable. Let us denote the cable elongation by 81. Then,
from Eqs.8 and 22, it follows that

81=2f H cdz+2 if d=2HP1  2CD 2 p12(6J aU K " qtsin2ao (26)

From Eq.26 it is found that d28l/dP,>0, so that the load-elongation curve 81=81(P1) is convex.

Unloadina

The unloading is considered as a process of loading which starts at the end of the loading
phase, during which the load changes according to the following relationship

p pmiX.+p2 O:P 2 a<pmx (27)

where Pm'a is the amplitude of the cyclic tension force, and P 2 ' is the relative load in the
unloading phase, -p :<P2"_<0.

The state of the cable at the end of the loading phase is used as an initial state for the
following unloading phase. Under the action of a compressive load, a slip in the direction
opposite to that of the loading phase will start again at the middle of the cable. As a result, the
cable at any intermediate state of unloading will have three distinguished segments (see Fig.3c):
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Consider the helix angle first. At the beginning of the unloading phase, the helix angles
in various segments should be equal to those at the end of the loading phase, i.e. from Eqs.24
and 25,

U02 = % sin2uao.., p'jH9'zsH (29)11°2 ~ ~ °+2K.

02 - o02 +Cqf (4'1 -z) OSZ'<H (30)

where %02 and a'02 are the initial helix angles in the nonslipping and slipping parts of the cable
at the beginning of unloading, respectively.

In the nonslipping segments, the relative axial strain in the cable caused by load P'2 can
be found to be

c • 2(31)

By substituting Eqs.29 through 31 into Eq.9, the helix angles in the two nonslipping segments
are found to be

sin2a0 P2 H.'<ZSI (32)
2 Ka

/ sin2so P2Una=402+ 233

It is seen that the varying components in Eqs.32 and 33 are equal. Correspondingly, the solid
lines in Fig.3c, representing ot. and a'., are at the equal distance from the dashed lines for %02
and a'02.

In the new slipping segment H,2, the process of a reversed slip would not start until the
slip which occurred at the previous stage has been recovered. It is equivalent to having a double
friction force along the length H.2 resisting the new slip. In addition, the friction force acts in
the direction opposite to that at the initial phase. Therefore,

qf2 = -2qf (34)

After taking Eq.34 into account, the helix angle in the new slipping region H,2 can be represented
by, from Eq.13,

aA=f2 z-2 Cqf (H,- z) O0gz&H,2  (35)

After substituting Eqs.30, 31, 33 and 34 into Eq.35, the latter can be written in the form
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£,u=6..+Cq,(li•~'-2H,•+z) O SZ•S, (36)

The relative axial strain in the new slipping region is found by substituting Eqs.32 and 36 into
Eq.1o

4cq,, (H,-z) (37)

Note that the only difference between the unloading and loading phases is in the magnitude and
direction of the friction force, as given by Eq.34. Consequently, the relationship between AH.2
and AP'2, chai ,terising the propagation of the slip during unloading, can be found in a way
similar to that in the loading phase. As a result, the length of the reversed slipping segment H2
is found to be directly proportional to the relative load 11' 2 in the unloading phase

H" DMal (38)qzz

or, after substitution of qf2 from Eq.34,

WDal (39)

Then the relative elongation, F'2, with respect to that at the end of the loading phase, is obtained
by integrating the cable's relative strains in the nonslipping and slipping parts given by Eqs.31
and 37

8 ,/. 22 C(DP)2 (40)
a'-IC q r-2 oin2

The actual elongation is equal to the elongation at the beginning of the unloading phase (which
is also the elongation at the end of the first loading phase) plus the relative elongation 6'2, i.e.

82 =8•+82' ((41)

Since 81r'ax can be found from Eq.26 by setting PI=Pm and 82' by Eq.40, the above equation
can be expressed as

-2HP2 2C(Dp=X) 2 CD2 (pnp1)2(4
K, qfsin2a 0  qfsin2ao

At the end of unloading, when P2--O, the elongation, given by Eq.42, equals to
amuin= C(Dp ) 2 *0 (43)

qin2ao(4

The fact that 2min;'O indicates at the existence of residual strains. This is understandable because
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the interwire resistance forces during the unloading becomes twice as large and so a complete
recovery of the initially deformed wires cannot be achieved. Note that in this phase, d2a8/dP2

2 <0,
and thus the response curve 82=8 2(P2) is concave.

During the reloading phase, the load P3 increases from 0 to Pn". Again, the state at the
end of the previous phase, the unloading phase, is taken as the initial state of the cable for the
reloading phase.

In Fig.3d it is shown that at the beginning of the reloading phase, the cable can be
characterized by three distinguished segments: (1) segment H.1,'" where the cable behaves like
a solid rod during the cycle, (2) segment H.2-" where the wires slip only once and that is in the
first loading phase, and (3) segment H2m" where the wires experience alternate slippage.
Correspondingly, the initial helix angles in these segments are found, by using Eqs.32, 33, and
36 and setting P' 2=-P'a and H,2=Ha , to be

sin28o p, Hr=z•S (44)

90302- 2 (45)

9 0 3 a 0 3 -2Cq, (Hg-Z) O&ZIE2 1  (6

When the relative load increases in the reloading phase, a slip reversed with respect to the
previous phase will start again at the middle of the cable and then spread out. For a symmetrical
loading, a new region with a relative slip will not exceed the slipping limits of the previous
unloading phase, which means that

H. +H. 3 =R.ij (47)

Note also that the axial load at the beginning of the reloading phase is equal to zero. Then the
relative load at this phase is equal to the absolute value of the load on the cable, namely

P3 =P (48)

In the nonslipping region, the relative axial strain in the cable caused by the load P'3 is
equal to

taw= P (49)

The helix angles in the various nonslipping segments are found to be, by substituting Eqs.44-46
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awd 49 into 9,

uia6so P. (50)

ao + U• Io J (51)

U = alt,, 2uo Wa (52)

These relationships are shown in Fig.3d by the solid lines equally spaced from the dashed lines
characterising the initial angles o%, a'o3 and ot"o3.

The helix angle in the new slipping segment H,. is found to be similar to Eq.35 for the
unloading phase

u8 lau +2Cq,(HO-z) O:9zsHV3  (53)

In arriving at Eq.53, it has been taken into account that the friction force acts in an opposite
direction with respect to the previous phase.

The strain in the new slipping segment, found after substituting Eqs.52 and 53 into 22,
is equal to

ea~.1 2Cq'3(H. (54)

where
wqr - 2q, 

(55)

The relationship between H,3 and P'3 is found to be similar to that in the unloading phase

H13 (56)
qh

or, after substituting q'3 from Eq.55,

SDP
3  

(57)
2 qr

The relative elongation 8'3, with respect to the previous phase, is obtained by integrating Eqs.49
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and 54 and using H,3 given by Eq.57

/ .2 P C C(DP3)' P

3 =. _+ - - (58 )
qe~in-2o

The actual elongation is then

636'+-8a'3÷ (59) Loding no~i
83118+8 LoainiUnloading

where 82," is the residual elongation at the end
of the unloading phase given by Eq.23 for P2=0.
Thus, using Eqs.43 and 58, the actual elongation
(Eq.59) can be written as

2HP3 )2 (p)2+p 3
2 ) O6Jr,-•- q•:lIr,2a° (g )+PooPs

(60) Figure 4 Scheme of the relationship
between load and elongation during the first

Note that d283/dP23>(), so that the response curve cycle.
63 =83(P3) is convex during the reloading phase.

Obviously, at the end of the reloading phase, when P'3=pmD, the cable elongation is

am ' -2 H P " 2 C Z)
3+,+ qfao (P0) 2 (61)

that is it is equal to that at the end of the first loading phase. Therefore, the load-elongation
curve in a cyclic loading will form a hysteretic loop enclosed by the unloading and reloading
curves, as shown schematically in Fig.4. For this reason, in the analysis of cyclic loading the
two phases - unloading and reloading - are of interest, since in an ideal multi-cyclic loading the
hysteretic loop will repeat itself.

Thus, as far as hysteretic losses are concerned, only the unloading and reloading phases
are important. In this sense, the residual elongation, shown in Fig.4, can be excluded from the
consideration. This is achieved by subtracting Eq.43 from Eqs.42 and 60 for unloading and
reloading phases. As a result, the load-elongation relationship for the cable in a cyclic loading
can be written in the form

2H,+ a)fox loading

6 "- 0 (62)

2H P+ CD0 (2Pmx-P)P for unloading-F,. qoinia° o uladn

This equation includes two nonlinear functions forming a closed loop as shown in Fig.5.
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Tie energy loss in a half-cable p ------- I I

subjected to cycli IoodiS is defind by

W,,/Pd(6•4a) (63) ,quihaint A

After substitution of 82 (Eq.42) and 83 (Eq.60) - - - -l
the integration in Eq.64 leads to the following..
expression SI -in Ii

W (P (64) ,
I 15

where 0 0.6... 6...
y-_ 3sna° (65)

3 aM2u -noFigure 5 Hysteretic loop from the cable.

which is a constant characterizing structural and material properties of the cable. Eq.64 indicates
that the energy dissipation is proportional to the cube of the load amplitude and in inverse
proportion to the interwire friction force, which is a classic energy dissipation pattern in lap joints
(Goodman, 1959).

CABLE AS AN EQUIVALENT ROD

As it has been shown above, a model of a cable with finite friction ke ce
between the wires has nonlinear stiffness characteristics and
amplitude-dependent damping properties. In this section a model of z
a cable as a rod, having material properties such that the properties T t
of a cable and those of the rod are equivalent, is introduced. This is _J
done for the simplest situation when a cable in a system serves as a1
nonlinear spring and dashpot element. In other words, an equivalent Fsinwt
rod can be found by considering oscillations of a single-degree-of-
freedom system, shown in Fig.6. The forced oscillation of this Figure 6 SDOF model.
system is governed by the equation of motion

=*+ 2vPing t (66)

where F and 0 are the amplitude and frequency of excitation, respectively; x is the elongation
of the cable, and T is the force in the cable.

Note that in Eq.66, T=T(x). The force-elongation relationship can be found by using
Eq.62. However, the latter should be rewritten in a symmetrical form to be used in Eq.66. This
is done by using a substitution: x=-&x. and T=P-T., in which x.--8/2 and T, =Pmf/2 (see
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Fig.5). As a result, the load-elongation relationship can be written in a form

2 (V2 (T+Ti"n) ] (T+T..) -x.. for loading
X , 2qsin2a (67)

2[ ÷D 2 (3 Ts-n ) I (T+Tm,) -x. for unloading
K~, 2 qesin2c0

From the latter it is found that

T -(Tm÷+Bi) +÷B1+B2 (x+x.) for loading (68)
T=+rB,-V(2T,+B1 ) 2-B2 (x+x5z) for unloading

where

B,= Hqfsin2a° B2 qlsin2%° (69)

Now the equivalent linearization technique (Minorsky, 1974) is used to find the equivalent
damping, c., and stiffness, k., coefficients in the linearized equation corresponding to Eq.66. The
equivalent linearized equation is

nk ÷cq* +kx =FsinDtt (70)

where

c.- • 1 _T(x..cos#) sin~d# (71)

-Rt

1 f T(x~cos#) cosd$c (72)
XXuax

First of all, since B12>>2B2xmaY1, it follows from Eq.68 that there exists a nearly linear
relation between the load and elongation. When x=xmax, T will be equal to Tmu and can
approximately be expressed from Eq.68 in a linear form

B2

where B, and B2 are constants given by Eq.69.

1 It follows from the comparison of the elongations of the cable treated as a solid rod (without slip)

and the component of the elongation due to the interwire slip.
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The equivalent coefficient of damping is found, by substituting Eq.68 into 71 and again
taking into account that B,½>2B2xin, to be

c2 T (74)

C.-

The la expression, after substituting Tn= from Eq.73, is reduced to

Co.A. (75)

Similarly, k. is found from Eq.68 and 72 to be

k 4ý (~ 1+ (76)

As it is seen, both c. and ke are functions of the amplitude of vibration x.m. These
functions are shown qualitatively in Figs.7 and 8. However, since x= is very small in
comparison with B1

2, ke can be approximated by, from Eqs.69 and 76,

k..B_2 K- (77)
2B1 2M

The latter shows that k. is constant and equal to the stiffness of the equivalent solid rod.

k. C9

B2
2B1

B 2 2
4B1 1

113,za

0 0 0

Figure 7 Stiffness-elongation relation. Figure 8 Damping-elongation relation.
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EXAMPLES

In this section some numerical examples are given to demonstrate the theory and present some
results. The structural data for a single layered cable given by Utting and Jones (1987) are used,
specifically, n=6, R,=l.97mm, R=l.865mm, a0 =76.160 , H=0.75m, E=Ec=197.9GPa, v=0.3. The
interwire distributed friction force is assumed to be constant and equal to lkN/m, except where
it is indicated otherwise.

The elongation of the cable during a cycle of loading is shown in Fig.9, where one can
see a closed loop formed by the unloading and reloading curves. The enclosed area indicates,
therefore, the energy losses during the cycle. The broken line is shown for the case of the
friction-free cable (Costello's model). Note that due to the interwire slip the cable's elongation
is not equal to zero at the end of the unloading phase.

Fig.10(a)-(c) show the changes of the helix angle during the various phases of the cycle,
calculated by using the present theory. In Fig.10(b) one can see that at the end of the unloading
phase, when the axial load is equal to zero, the helix angle (shown by the solid line) does not
return to a constant value. The reason is that in a slipping region a reversed slip cannot occur
until the initial state is restored and only then a slip in an opposite direction becomes possible.
This is why the recovering process driven by the elastic strain energy can not be completed, and
half of the previous deformation is "locked" in the slipping region.

50.t0 •

oV76.16-

30,0 Dy.4 a! Is II ([ i II )I I' Iztm a I ISk )
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Figure 9 Load-elongation relationship Figure 10a Variability of helix angle during
under cyclic loading, the loading phase of a cycle.
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Eq.64 indicates that the energy dissipation per cycle is proportional to the cube of the
axial load and is in inverse proportion to the friction, the type of relationship characterising
energy dissipation in the lap joints (Goodman, 1959). In Fig. l Ithe influence of friction, and in
Fig.12 the effect of the initial helix angle on energy losses are shown. Note, that smaller helix
angles lead to larger slipping lengths and thus larger energy losses.

CONCLUSIONS

The friction hysteresis in a cable subjected to cyclic tension loading is analytically investigated.
The cable model takes into account the friction and slip at the interfaces between wires, and thus
it allows analysis of energy dissipation. Explicit load-elongation relationships are derived for the
loading, unloading and reloading phases of the cycle. It is shown that these relationship are
weakly nonlinear. It is also shown that the unloading and reloading phases of a symmetric cycle
form a closed loop characterising the energy losses in a cable. Explicit expression for these
losses is obtained, showing they are proportional to the cube of the amplitude of the tensile force
and in inverse proportion to the friction forces.

It is suggested that in applications a model of cable as a solid rod with amplitude-
dependent damping properties, can be used. Using the equivalent linearization technique, explicit
expression for the equivalent coefficient of damping is derived. The given numerical examples
show the presence of residual strains in a cyclically loaded cable, and the effect of the magnitude
of friction forces and the initial helix angles on the friction hysteresis.
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INCREASING THE IMPACT ENERGY ABSORPTION OF CONTAINMENT
STRUCTURES WITH VISCOELASTIC MATERIALS

R. D. Holm
S. S. Sattinger

M. A. Mendelsohn

Westinghouse Science and Technology Center*

ABSTRACT

Measurements performed with a unique dynamic bending test
apparatus showed that steel ring specimens with a constrained
viscoelastic damping material absorbed two times more impact
energy than comparable rings of plain steel for a given amount
of permanent set. Ring specimens with an unconstrained
viscoelastic damping material absorbed four times more impact
energy than plain steel rings for a given amount of permanent
set. Further increases in absorption may be attainable through
improvements in material property combinations. These
measurements of energy absorption demonstrate that viscoelastic-
layered metal construction could be especially well suited for
shell structures such as ships, railroad tank cars, tank trucks,
and other containers used for the transportation or storage of
hazardous substances. The energy absorption benefits of adding
constrained or unconstrained viscoelastic layers onto existing
structures in retrofit applications is clear. For new
construction, optimization studies with constraints such as
equal weight, equal cost, or equal volume will be required to
compare the energy absorption of damped structures versus that
of thicker, undamped structures. A major benefit that will be
more difficult to quantify is the puncture protection of the
container shell that will be provided by the external damping
layers.

*1310 Beulah Road

Pittsburgh, PA 15235
(412) 256-1327
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Introduction

Hazardous material spills due to derailment, collisions,
and break-ups of railroad cars, trucks, and ships have become a
concern of both the environmentalist and the average citizen.
Carriers of hazardous materials must improve the impact
protection for their hazardous material containers. Cylindrical
shells are the basic structural components of many of the
containers used for shipping and storing these substances.
Needed are new structural materials, design configurations, and
manufacturing methods for shell structures having increased
impact energy absorption so that these containers will be more
likely to withstand accidents without spillage.

The use of viscoelastic materials and damping treatments
to reduce vibration and structureborne noise is well-known, and
their use for controlling earthquake-induced vibrations in
structures is also being explored. Vibrational energy is
absorbed passively in these treatments by oscillatory strains
that occur in layers of these lossy materials. However, little
work has been reported regarding viscoelastic material
applications for energy absorption during impact transients. We
speculated that with appropriate choices of materials and
dimensions, large overall increases in impact energy absorption
might be obtained by dissipating the energy in viscoelastic
material layers that are well-bonded to the main structural
layers. Because most present-day hazardous-substance containers
are fabricated from ductile metals, their energy absorption is
determined by their behavior in the post-yield range of
strains.

Thus the objective of this investigation was to evaluate
the feasibility of substantially improving the impact energy
absorption of shell-like containment vessels using suitable
layers of viscoelastic materials in combination with main
structural layers of ductile metals. Our approach was as
follows:

"• Using simple calculational models, examine the
effect of damping additions on load-deflection
profiles for pulse-like elastic/plastic bending.

"• Develop procedures for installing the viscoelastic
layers with good mechanical bonding to the main
structural layers.
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"* In lieu of detailed analytical predictions,
perform experiments on simple ring specimens to
further quantify gains in impact energy absorption
and to provide data for possible future use in
validating detailed modeling.

"* Compare the measured energy-absorption performance
of specimens having free-layer and constrained-
layer configurations.

In this paper we show the promising results on impact
energy absorption that we obtained by comparing transient
time-stepping response solutions for simple dynamic models
of damped and undamped elastic/plastic beam bending. We
describe the configurations of three different types of ring
specimens (one undamped and two damped specimen types) which
we constructed to evaluate the energy absorption
experimentally, and we show how pulse-transient bending
loads were applied to these specimens using our unique
dynamic bending test apparatus. We describe the two
Westinghouse-formulated polyurethanes which we used as
damping materials, including a lower-modulus material for
constrained damping layers and a higher-modulus material for
unconstrained damping layers, and the procedure we used for
casting these layers in place. Finally, we present the
measured load-deflection results for the three different
types of specimens for varying amounts of initial kinetic
energy, and we draw conclusions about the effectiveness of
the damping layers that we tested.

Simplified Dynamic Models of Elastic/Plastic Beam
Bending

Yielding and Plastic Hinge Formation

To gain some initial insights into the issues of
applying damping materials to ductile structures which
undergo yield under impact loadings in accident situations,
we considered the case of a beam in bending. Figure 1 shows
the elastic strain and stress distribution through the cross
section of a beam under constant-moment bending load. As
the load on the beam increases the strain and stress also
increase, but as long as the stress (or strain) is less than
the yield stress (or strain), the beam will return to its
unloaded deflection when the load is removed. The elastic
limit is attained when the highest-stressed fiber just
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begins to strain inelastically. The moment, Me, at which

the highest stressed fiber of the beam will just begin to

strain inelastically is
1

SI
M e (1)

e c

where se = Yield stress for the material, psi
I = Moment of inertia for the beam cross section,

in
4

c = Half height of the beam, in

Strain Stress

Distribution Distribution

Fig. 1 - Elastic stress and strain in a beam subjected to
bending.

Strain Stress
Distribution Distribution

Fig. 2 - Inelastic stress and strain in a beam subjected to
bending.

Figure 2 shows the strain and stress distribution in
the cross section of a beam subjected to a bending moment
which causes inelastic (plastic) strain in the outer fibers.
We assume a perfectly plastic beam material which has the

same stress-strain curve in tension and compression. The
beam will not return to its unloaded deflection when the
load is removed. If the beam is further loaded, it will

exhibit plastic deformation over its entire cross section
(see Fig. 3). Reference 2 shows that a rectangular beam

GAA-4



will develop a so-called plastic hinge or yield hinge, when
the moment reaches 1.5 Me. This limit on load-carrying
capability occurs when the material becomes fully plastic
over the entire cross section.

1st.
1.5 me( - . E1. 5Me

Stress
Distribution

Fig. 3 - Stress distribution of a plastic hinge.

Load-Deflection Relationship for a Pinned-Pinned Beam

As an example of a beam structure in which the
bending-moment loading varies from location to location
within the structure, Figure 4 shows a pinned-pinned beam
with a rectangular cross section which is loaded statically
at mid span with a load P. The highest stress will occur at
mid span. If the load is below the elastic limit, the
deflection, y, at mid span is 3

1 PL 3
Y E(2)

where L = beam length, in
E = Young's modulus, psi

If the load is above the elastic limit and below the plastic
limit, the deflection, y p at mid span under monotonically
increasing static load is

4M 341= e 2 L 3 PLyp -- 5 3 + 4M(3)
3- - 4J 2 4M

When the load reaches the plastic limit a plastic hinge
occurs at the middle of the beam and it collapses.
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Fig. 4 - Pinned-pinned beam loaded at mid span.

Shown in Fig. 4 are the loads and mid-span deflection
corresponding to the formation of a central plastic hinge in
a particular pinned-pinned beam. This beam is a flattened
and foreshortened version of the undamped ring specimen
which is described in a later section of this paper.

Simple Dynamic Bending Models for a Mass-Loaded Beam

The foregoing descriptions of elastic/plastic
behavior apply to beams under monotonically increasing,
statically applied loading. Dynamic loading brings the
complications of distributed inertia forces and loading
reversals. Major complexity would be encountered in making
a detailed representation of a damped beam under
elastic/plastic bending because of the concentration of
strains in those regions of the beam that are beyond the
elastic limit.

Because our goal was to make an initial evaluation of
impact energy absorption by bonded layers of viscoelastic
materials, we needed to generate load-deflection profiles
for damped and undamped versions of a simple dynamic model
that would take account of elastic/plastic bending. The
approach we took was to model the case of a point mass
suspended at the center of the pinned-pinned beam using the
very simple models shown schematically in Fig. 5. Stiffness
KB in each of these models is a deflection-dependent,
effective beam stiffness that is determined as outlined in
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the next paragraph. The series spring and dashpot in Fig.
5(b) provide a simple representation of a constrained-layer
damping treatment that provides a beam loss factor of 0.29
at the 23-Hz damped natural frequency of the system with the
beam vibrating elastically. Again for simplicity, we
ignored the effect of plastic strain concentration in the
beam on the behavior of the damping treatment. The value
of the point mass was very large in comparison to that of
the beam itself and corresponds to the loader mass of the
dynamic bending tester, which is described later. This
choice enabled us to represent the beam itself as an
elastic/plastic spring without concern for beam modes of
vibration. The mass is given an initial velocity,
corresponding to an initial kinetic energy, which, if
sufficiently high, causes plastic deformation in the beam.

M M-O.179W.M2d (W-69.1113) L M

Fig. 5 - Simple dynamic models of a mass suspended on an
elastic/plastic, simply supported beam.

Calculated Effects of Dazmping on Energy Absorption
in Beam Bending

To calculate the response of the simple beam model,

we used the Newmark Beta = 1/4 or constant-average-
acceleration method given in Reference 5. We repetitively
evaluated the deflection-dependent stiffness,

K AP
B Ay (4)

by alternatively using Equation (2), Equation (3) with
spread-sheet solver routine, or zero stiffness (plastic
hinge), as appropriate.

Fig. 6 plots the instantaneous total reaction force
acting on the suspended mass versus its displacement during
the portion of the transient up to the first zero-crossing
of force for both the undamped and the damped configuration.
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The area under the load-deflection curve for the undamped
beam represents the energy absorbed by plastic deformation,
and the area for the damped beam is the combined total of
the energies absorbed by the damping treatment and by
plastic deformation. For nearly identical values of
permanent set and with a smaller amount of peak deflection,
the damped beam absorbed significantly more kinetic energy
than did the undamped beam.

The simple model of the damped system provided
insight as to how a damping treatment could become more and
more effective in absorbing energy as a structure goes
progressively further into yield. As the effective beam
stiffness, KB, becomes smaller with further progression into
the plastic range, the system begins to behave as a point
mass suspended totally on the damping treatment, i.e., the
stiffness KB no longer dilutes the system loss factor to the
extent that it did in the elastic range.

600
DAMPED

S400 ,

2 300

200 -MI

100

0
u.00 0.10 0.20

DISPLACEMENT, In

Fig. 6 -Load-deflection results for the dynamic models
shown in Fig. 5.

Design of Ring Bending Specimens

Although the beam example provided a good
illustration of impact energy absorption in damped, ductile
structures undergoing large deformations, we felt that
cylindrical rings would be a better choice for experiments
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to represent the responses of containers and other shell-
like structures.

Yielding and Plastic Binge Formation in Rings

The onset of yielding and plastic deformation in
rings is somewhat more involved than for beams. Fig. 7
shows a ring with a diametral load P. The highest negative
moment occurs under the load (Points 1 and 2 in Fig. 7) and
is given by 6

M = -0.159 PD (5)

where D is the mean diameter of the ring. The highest
positive moment is at 900 to the load (Points 3 and 4 in
Fig. 7) and is given by 6

M = 0.091 PD (6)

As the load increases, the stress at the load reaches the
elastic limit. With further increase in the load, a plastic
hinge will develop under the load P and the elastic limit
will be reached 900 to the load. With plastic hinges at
points 1 and 2 the ring will not be as stiff but it will not
collapse. The ring will collapse when plastic hinges also
develop at the 900 points. The collapse load Pc is given
by

7

8M
P = D (7)

Shown in Fig. 7 are the loads corresponding to the formation
of the initial plastic hinge and the collase of a
particular ring; this is the undamped specimen for the ring
bending experiments which we describe next.

Description of Test Specimens

We evaluated the energy absorption of a set of steel
rings having no damping material and of sets of rings having
both unconstrained- and constrained-layer damping
configurations. The base structure of the unconstrained-
layer rings was kept identical to the undamped rings to
enable direct performance comparisons to be made. Being of
double-wall construction, the design of the constrained-
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layer rings had to strike a compromise between the
conflicting criteria of maintaining the same global damping

b-2.0 in K-53.33EI-3,035 UL (Elatic)
Go.-S.oo0 1 D3 in

.. I -0.05 P Me -367.8 Ib2 2 /0.1SgO

I -. 3L 2 .2 18 S O "0  
4 in 4  -y .mJL..121 in
12•A- 12K i

12 4 5.00 in O.D. 3 K
E-3000 6 psi 0.11 i. wl Mpl.SM@.423.S In Ib
s$,.70,000 psi P MP -544.6 lb

Me..1L-282.3 In- Ib 0.1590
S2 P•.•-e.2693 Ib

D

Fig. 7 - Ring loaded across diameter.

stiffness as for the undamped rings (i.e., simultaneous
bending about a common diametral axis) and maintaining the
same local bending stiffness (i.e., combined stiffnesses of
the two walls in bending about their individual mid-wall-
thickness axes). The dimensions chosen for the specimens
are shown in Figs. 7 through 9. Target values for the
storage moduli of the viscoelastic materials were
established by assuming that the response to a nearly half-
sine loading pulse could be approximated by applying damping
treatment design formulas for steady-state sinusoidal
vibration at the corresponding frequency condition. A
decision to use two different viscoelastic materials (a
softer material for the constrained-layer specimens and a
harder material for the unconstrained specimens), both of
which were polyurethanes formulated by Westinghouse, arose
from these calculations.

The two-inch-long ring test specimens were fabricated
from available thirknesses of cold drawn, low carbon,
seamless mechani - tubing. The yield stress for the tubi.!q
is listed as 70,000 psi. The undamped ring test specimens
(shown in Fig. 7) had a 5.00 in. O.D. and a 0.11 in. wall
thickness. The plain steel ring has a calculated stiffness
of 3,035 lb/in. The calculated collapse load of the plain
steel ring, assuming perfect plastic material and a yield
limit of 70,000 psi, is 693 lb. The damped ring specimens
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were cut from tubing subsequent to the molding operations
described in the next section.

Description of the Viscoelastic Materials and the
Molding Process

Molds

The constrained-layer ring specimens were cut from
two concentric steel tubes which functioned as molds during
the casting process, forming an annular space for the softer
polyurethane damping resin. A base plate with grooves
supported the tubes in an upright position and spacers at
the top maintained their parallel alignment. Fig. 8 shows
the constrained system in which the cast polymer is adhered
to both rings.

In the case of the unconstrained system, a special
outer mold was coated with mold release, and was split and
held together by bolted longitudinal lips so as to
facilitate its removal from the harder polyurethane casting.
Fig. 9 shows a cross sectional view of the unconstrained
coating in which the cast polyurethane is adhered only to
the inner tube.

In order to provide for good adhesion of the resin,
the outer surface of the inner tube for both the constrained
and constrained specimens and the inner surface of the outer
tube for the constrained system were sandblasted, cleaned
with toluene, and stored under nitrogen until use.

A threaded hole in the bottom of the outer tube for
both types of molds provided the connection for the piston
driven resin injector. The piston required only hand
pressure to force the liquid resin into the mold.

Casting Process

The polyurethanes employed in both the constrained
and unconstrained layer damping were prepared from specially
formulated p,p'-diphenylmethane diisocyanate (MDI)
terminated polyether based prepolymers. Although their
chemical formulations differed, both prepolymers were
coreacted with the same chain extending polyol mixture. The
castings were prepared by adding with stirring and under a
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nitrogen atmosphere the extender solution, which was at room
temperature, to the prepolymer which was at approximately
80 0 C. After thorough mixing for one minute the material was
evacuated at 2-5 Torr for about three minutes, at which time
the foaming and bubbling had subsided. The reacting mixture
was then injected into the bottom of the cylindrical mold,
which had been preheated to 80 0 C, until the annular space
had been filled. This was followed by casting a flat sheet
of material, 0.080 in. thick, which was used to provide
specimens for dynamic mechanical properties testing. The
castings were cured for 16 hr at 80 0 C and then demolded.

Dynamic Properties

The dynamic mechanical properties were measured in
shear with a Rheometrics Mechanical Spectrometer. Frequency
scans of the shear moduli and loss factors of the two
materials are shown in Figs. 10 and 11 and a temperature
scan of the constrained layer specimen is shown in Fig. 12.

0.58 m polyurethane

5.00 In O.D.

0.19 in

polyurethane

Fig. 8 - Constrained layer Fig. 9 - Unconstrained layer

damping ring test damping ring test
specimen. specimen.
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Fig. 10 - Effect of frequency on the shear properties of
the polyurethane used in the unconstrained layer.
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Fig. 11 - Effect of frequency on the shear properties of
the polyurethane used in the constrained layer.
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Fig. 12 - Effect of temperature on the shear properties of
the polyurethane used in the constrained layer.

Specimen Test Procedure and Test Results

The ring specimens were tested in a unique dynamic
bending test apparatus that is shown in Fig. 13 and is
described in Reference 8. A schematic of the test apparatus
is shown in Fig. 14. The transfer of kinetic energy from
the drop weight, or exciter mass, to the intermediate or
loader mass is smoothed by means of a rebound spring
inserted between the two masses. The loader mass, after
receiving kinetic energy from the exciter mass, temporarily
interacts with the specimen as a mass-spring oscillator.
Thus, the load rise-time on the specimen is controlled by
the mass-spring oscillator. The peak strain is directly
controlled by choice of the exciter mass drop height and
weight. The exciter mass and loader mass are guided
laterally by ball bushings and cylindrical rails. Vertical
motions are arrested by a pneumatically actuated brake plate
that bears against cemented-on brake shoes.

The test specimen is mounted on a force gage which
measured the impact force. A linear variable differential
transformer (LVDT) measured the deflection of the ring
diameter. The force gage and LVDT signals were captured,
stored, analyzed and plotted with a Norland Digital
Oscilloscope.

The test specimens were given light, medium and heavy
impacts. An attempt was made to have 0.02 in. permanent
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deformation of the diameter after the light impact, .25 in.
deformation after the medium impact, and 0.5 in. deformation
after the heavy impact. Figs. 15 and 16 show the
constrained and unconstrained rings, respectively, after the
heavy impact test. A new specimen was used for each impact.

The loading transients approximated half-sine pulses
having roughly 20 Hz frequency content. Typical impact
load-deflection curves for the heavy impacts of the undamped
specimen and the specimens with constrained layer and
unconstrained layer damping are shown in Fig. 17. The area
under the load-deflection curve was measured to determine
the impact energy absorbed by each specimen. The test
results are summarized in Table 1 and the impact energy
absorbed versus permanent deformation is plotted in Fig. 18.

Conclusions

The constrained-layer-damped specimens had
approximately double the impact energy absorption of the
undamped ring test specimen for the same permanent
deformation. The unconstrained layer specimens had
approximately four times the impact energy absorption of the
undamped ring test specimen for the same permanent
deformation.

The material loss factors and possibly the moduli of
the selected polyurethane damping materials under the
conditions of these tests do not necessarily represent the
most favorable property combinations. Additional impact
energy absorption may be obtained if the desired
viscoelastic material characteristics are better matched.

This approach to increasing impact energy absorption
is feasible. Applications could include ships, railroad
tank cars, tank trucks, and other containers for the
transportation or storage of hazardous substances. Our
testing made no attempt to optimize the energy absorption
per pound, per volume or per dollar spent. We envision that
this kind of systems-oriented optimization would best govern
the damping design for containment shells. A major benefit
that will be more difficult to quantify is the puncture
protection of the container shell provided by the external
damping layers.
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Good adhesive bonding of the viscoelastic materials
to the structural layers will be vital to the success of
these applications. We have demonstrated a viable procedure
for casting these materials in place with excellent bond
strength.

2800

1200 CONSTRAMED LAYER k

00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

DISPIACElMNT, in.

Fig. 17 - Load-deflection for the ring test specimens with
a heavy impact.
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Fig. 18 - Impact energy absorption vs. permanent deformation
of damped and undamped rings.
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Table 1 - Results of the impact energy absorption tests on
the ring specimens.

sPOAN I srm cI. LAYER LA

UHTW•ACT

"NTW ALPOTENTAL ENERGY, 4b 10.75 10.75 10.75
PEAK FORCE. AL 257.1 284.6 384.6

PEAK OSP.. in. 0.071 0.063 0.048
DISP. & RR F09CE ZERIO. in. 0.003 0.031 0.018

IWPACT ENERGY ABSORBED. 1.27 8.78 8.22

LMEMA IMACT

NIAL POTNT. ENERGY. "- 191.9 539.5 747.0
PEAK FORCE. - . 636.0 1265.0 1985.0

PEAK DISP.. in. 0.391 0.538 0.487
DISP.Q FIROT FOC ZERO, hn 0.220 0.337 0.292

IWPACT ENERGY ABSORBED. " 152 501 665

HEAVY WACT

INMTAI. POTENTIAL ENEMY. "i-b 373.5 996.0 1481.0
PEAK FORCE. 646.5 1549.0 9 2598.0
PEAK DISP., in. 0.684 0.780 0.710
DISP. @ FIFST FORCE ZIO. i. 0.408 0.546 0.453
iPACT ENERGY ABSORBEO.b 341 965 1377

References

1. Seely, F. B. and Smith, J. 0., Advanced Mechanics of
Materials, Second Edition, John Wiley & Sons, New York,
pp. 529 (1952).

2. Ibid., pp. 533.

3. Ibid., pp. 445.

4. Ibid., pp. 547.

5. Craig Jr., R. R., Structural Dynamics, John Wiley &
Sons, New York, pp. 154-160, (1981).

6. Roark, R. J., Formulas for Stress and Strain, Fourth
Edition, John Wiley & Sons, New York, pp. 172, (1965).

7. Seely, op. cit., pp. 577.

8. Sattinger, S. S., "A Dynamic Bending Test Method for
Generator-coil Insulation," Experimental Techniques, pp.
18-23, (August 1987).

GAA-18



The Effect of Viscoelasticity on the Performance
of Reaction Mass Actuators

by

Lawrence A. Bergman, Harry H. Hilton, and Tsu-Chin Tsao
University of llUnois

Urbana, Illinois, USA 61801

1.0 INTRODUCTION

Recently Pang, Tsao and Bergman, 1992, developed exact transfer functions for elastic
and single Kelvin model Euler-Bernoulfi beams with external viscous (air) damping in order to
study active and passive damping and the effect of their interaction upon performance. In
particular, a cantilevered beam carrying a reaction mass actuator at its free end was analyzed.
Their analysis is now generalized by using the elastic-viscoelastic analogy (Christensen, 1982;
Hilton, 1964) to extend the formulation to include generalized linear viscoelastic behavior. This
removes the severe restrictions inherently imposed by a single Kelvin model (SKM) viscoelastic
representation through the introduction of a generalized Kelvin model (GKM) material
characterization and makes the present analysis applicable to all real linear viscoelastic materials.
Two related problems are discussed. The first addresses the identification of the coefficients of the
viscoelastic damping terms in the governing equation of motion from vibration test data. The
second is the performance of a co-located sensor/reaction mass actuator on a viscoelastic Euler-
Bernoulli beam.

2.0 ANALYSIS

Consider an elastic Euler-Bernoulli beam with viscous damping due to its motion in air,
shown in Fig. 1. Its governing equation has been derived by Pang, et al., 1992, in nondimensional
form as

2"W +ao = f(x, t) (1)TX4 0& a12

where ao is the distributed viscous damping coefficient and f is the forcing function. The
deformation of the elastic beam neutral axis is represented by we (x, t) . The Laplace transform of(1) yields

a2-e 2
S+ (a0s + s ) W = Jx(s) (2)ax

A general viscoelastic material can be readily described by an equivalent viscoelastic modulus k
in the Laplace s-plane in terms of the generalized Kelvin model (GKM) material representation.
Application of the elastic-viscoelastic analogy requires the substitution of EoE for E. in the
dimensional governing equation, leading to the nondimensional equation for a general
viscoelastic material,
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a'W + -• , (3)

ch4  E
Consistent with the notation of Pang, et at., 1992, the complex eigenvalues . now become

2) /4
(4055(4)

with the attendant boundary conditions and transfer functions given by substitution of (4) into the
corresponding Pang, et al., 1992, elastic results in the Laplace domain.

The transfer function for a GKM viscoelastic cantilevered beam with a co-located
actuator/sensor pair placed at its free end becomes

G(l, l;s) = X (S +cosh -. cos)dh) (5)

The Laplace transform variable s is complex and can be represented by

s = b+io) (6)

where b and (o are real, and o) is the motion frequency. When b = 0, the equivalent viscoelastic
modulus E reduces to the complex modulus E with

E(ow) = E,(o) +iE, (m) (7)

where the real functions ER and E, are, respectively, the storage and loss moduli. A GKM
modulus can readily be representedpby a Prony series in the time plane which has a Laplace
transform E and a Fourier transform E such that

N E(X)

E • I ° + I.-, (8)

and

E((o) =E(s)I. 6  (9)

where the coefficients E relaxation times %, and their number N represent the mechanical
properties of an actual viscoelastic material. A special (degenerate) viscoelastic material
representation, that of a single Kelvin model (SKM), reduces E to

E(s) = I +a 4s (10)

Typical actual viscoelastic material GKM and SKM complex modulus components ER
and E, are shown in Fig. 2. It is readily seen that any SKM describes an unrealistic
characterization of an actual viscoelastic material, as neither its storage nor its loss modulus
resembles its counterpart for real damping materials. Figure 2 and Eq. (10) clearly show the
SKM's behavior consisting of a constant E. and an asymptotically increasing ES governed by the
value of the single relaxation time a4 . Moisture and temperature effects can be represented by a
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time shift function aT (Christensen, 1982, Hilton, 1964, and Nashif, et al., 1985), which shifts the
time scale to the left or right depending on increasing or decreasing temperatures and/or moisture
contents. The equivalent and complex moduli in the s and o planes, respectively, are affected by
changing the denominators of (8) to s +a Ta/% for the GKM's and a4 in (10) to a/aT for the
SKM. This leads to shifting of the omega scale in opposite directions to the shifts in the time
scale, i.e. increased temperatures and/or moistures shift E. and E, to the right in the direction of
increasing frequencies.

Historically, the SKM has found favor because, in many instance, it simplifies analytical
solutions thus making them realizable. In the present and past (Pang, et al., 1992) analyses,
despite the obtainability of analytical transfer function representations (5), root loci can only be
determined numerically even for the simplest case of an elastic beam. Thus the introduction of a
GKM modulus in place of an SKM or elastic modulus offers no additonal analytical difficulty
and, consequently, readily provides damping solutions for real viscoelastic materials. It is to be
noted that (8) embodies characterizations for the SKM when N = 1 and for elastic materials with
N = 0. Extensive catalogues of complex moduli and shift functions for real viscoelastic materials
have been presented by Nashif, et al., 1985 and Lazan, 1968. The effects of various shape
modifications, or changes in E. and E1, on time and frequency responses as well as on damping
have been studied by Hilton and Yi, 1992 and by Hilton, 1991.

The effect of passive damping upon the performance of a cantilevered Euler-Bernoulli
beam with a co-located sensor/reaction mass actuator at the free end (see Fig. 3) has been
examined by Pang, et al., 1992. Here, the distributed structural damping was modeled using a
SKM viscoelastic representation. In particular, the stability of the system was examined under P.
D, and PD control via examination of the root locus behavior. The characteristic equation of the
closed loop system is given by

Q(S) = [D(s) +N(s)MAJ[M"S+C'S+Kj+N(s)M~s [(C.+Kd)s+KO+KPJ = 0 (11)

where

N(s) = (sin)icosh).-cosisinh,)/V (12)

and

D(s) = (1 +a 4s) (I+ cos.cosh.) (13)

Replacement of I + a4 s in (13) by E, with E given by (8), leads to the characteristic equation for
the system incorporating a general linear viscoelastic material.

An additional topic of interest is the distribution of poles and zeros of the open loop
transfer function. As discussed in Pang, et al., 1992, the open loop poles and zeros of the elastic
beam in vacuo lie on the imaginary axis, with poles and zeros interlaced. These poles and zeros,
denoted s., are related to X through

s2 - (14)

In the presence of distributed viscous damping, i is replaced by

= -s = -(s2 + a0 s) (15)
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leading to roots given by

a, : - -( 16 )
2 2

Here it can be seen that viscous damping shifts the poles and zeros on the imaginary axis into the
left half plane by a,/2 and is uniform for all modes.

When the SKM viscoelastic model is employed, in vacuo, , is related to s through

_$2 (17)
I +a 4a

leading to damped poles and zeros given by

2 22
a4S: Sa (a4so +4)

2 2

From the leading term of (18), it is clear that the effect of the SKM model is to provide
increasingly more damping with mode number. In fact, beyond a certain mode number, all modes
are overdamped. It can be shown that the open loop locus breaks into two branches t! -)on
returning to the real axis, one approaching negative infinity and the other approaching -I/a 4.
Furthermore, the imaginary portion is bounded by I/a 4. In fact, it is readily demonstrated that the
mapping of poles and zeros forms a circle centered at (-1/a 4,O) with radius 1/a 4 , as shown in
Fig. 4.

The combination of the SKM material with viscS leads to a modification of the
mapping to a circle centered at (-l/a4 ,0) with radius 41- aoa4 /a if 1 -aoa 4 >O. This ope
loop pole-zero mapping can be used for direct identification of distributed damping coefficients
appearing within the differential equation of motion by curve fitting the open loop poles and zeros
to a circle in the s-plane. However, this presumes that materials essentially conform to the SKM
model, which can easily be shown to be in error, as evidenced by Fig. 2.

For the GKM beam, a relation corresponding to (17) is obtained from Eqs. (4) and (8),
resulting in

- 2 -(aos +sz)
2 = E a0 , + s (19)

where ao = 0 in vacuo. The solution for the damped poles and zeros of (19) involves extracting
the roots of an N - th order polynomial. For an actual viscoelastic material, where the complex
modulus of Eqs. (8) and (9) is fitted to experimental data, a realistic value of N lies between
twenty and thirty in order to ensure a reasonably accurate fit. The analytical solution of (19) is
therefore not attainable, even for lower values of N, and numerical strategies must be employed.

As can be seen from Eq. (6), s is a complex variable, and Eq. (19) is thus a complex
algebraic equation for the roots b and co. These can be found from the simultaneous solution of
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the two real equations which correspond to the real and imaginary parns of (19). The IMSL
nonlinear equation solver routine DNEQNF was employed for this study as well as for the SKM
analysis.

3.0 DISCUSSION OF RESULTS

The root loci for a typical closed loop system employing both the elastic and SKM beam
models in air with parameters given in Table 1 are shown for several values of gain ratio
a = K/K_ in Fig. 5. It is apparent that, with the sensor applied to the beam at the base of the
RMA, the system can be destabilized in the presence of D control. Furthermore, it can be shown
that, in the SKM beam, instability is a 'first system mode' phenomenon and that the system can be
stabilized by the addition of P control. For the system examined (see Table 1), a critical gain ratio
can be found, in this case a = 0.318, above which the system destabilizes and below which the
system is unconditionally stable. The instability problem is, of course, exacerbated in the case of
the purely elastic beam, also shown in Fig. 5. Somewhat similar results are likely for the GKM
beam, although this work is still in progress.

4.0 CONCLUSIONS

The open and closed loop performance of a viscoelastic Euler-Bernoulli beam has been
examined. In the former, employing a SKM beam, the poles and zeros are seen to map to a circle,
providing a method by which the damping coefficientsao and a4 in the equation of motion can be
determined form experimental data. In the latter, it is shown that a critical gain ratio can be
determined below which the system is unconditionally stable. Assessment of this method as a
means to determine the parameters of a more general viscoelastic model continues, as does the
stability analysis of the closed loop system employing the GKM beam.
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Air Dumping Coefficie ao 0.01

SKM Coeflclmt a4  0,0.01

Frme Mas Mf 0.10

Actmtr Mas Ma 0.10

Actuator Passive Damping C. J2

Aauwao Passive Sdffwue Ka 5

Table 1: Parameters of Typical Closed Loop System (Nondimenslonalzed).

Figure 1. Euler-Bernoulli Beam.

U.

Figure 2. Storage and Loss Modulus for
Single Kelvin and GKM

GAB-6



SdNm4b~ dm~p&& C

.•mtmliomwL of how.is U

Figure 3. Euler-BernouIti Beam with Co-
licated Seunr/PMA.

so.
U

-40.

"-0'lS I 3• 1$0 -l S

Figure 4. Open Loop Poles and Zeroes for
SKM Beam

GAB-7



~doIc

41J 40 4A40 4 40 40 4M4W

(b)

2 SKMd

(b)

CAB-



Enhanced Passive Vibration Absorbers
Using Acceleration Feedback

Capt. Daniel Stech I
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Abstract

A modification to the standard vibration absorber by addition of acceleration feedback
is proposed. The modification gives the absorber additional information on the state of
the structure which results in an increase in performance. Hyperstability theory is used
to derive the bounds on the acceleration feedback which guarantee global stability of the
combined structure absorber system. The enhanced absorber is implemented electronically
as a simple gain feedback controller. Performance of the enhanced absorber on a simple
experimental structure is shown to be double that of the standard absorber. Additional
increases in performance are limited by the stroke length of the absorber.
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Introduction

A spring - mass - damper coupled to a vibrational system is classified as a vibration ab-
sorber. Passive vibration absorbers have a number of advantages for vibration suppression
the most important of which is their stability property. Addition of a vibration absorber
to a vibrational system such as a flexible structure, results in an overall system which is
still guaranteed to be stable. This stability is guaranteed regardless of the fidelity of the
structural model upon which the vibration absorber was based. This property is usually
referred to as stability robustness. It is generally agreed that models of structures which
will be deployed into space will have a high degree of uncertainty, raising questions of sta-
bility for vibration suppression systems designed using model based methods. For flexible
structures deployed into space, stability robustness of the vibration suppression system will
be a valuable property.

The design of a vibration absorber system is an optimization problem. In the general
case, it is desired to couple multiple vibration absorbers to a structure with multiple
vibrational modes. The desigi parameters in this problem are the absorber mass, the
stiffness of the absorber spring, and the absorber damping coefficient. If the mass of the
absorber is fixed to some small fraction of the overall structure - absorber mass, then the
problem is finding the stiffness and damping coefficients which minimize or maximize some
design criteria.

In the 1950's Den Hartog [1] investigated the vibration absorber design problem. For
the case of a single vibrational mode and single vibration absorber he found a closed form
solution for the stiffness and damping coefficients which would minimize the maximum
value of the transfer function. Juang attempted to minimize a quadratic cost [2]. Both
of these approaches gives similar tuning values. Duke attempted to solve the problem of
multiple vibration absorbers coupled to multiple vibrational modes. He used a numerical
optimization of the system transfer functions [3]. This proved to be very computationally
intensive, even for a small system. Posbergh reformulated the tuning problem as a feedback
control problem and showed H. techniques could be used to tune the system [4]. Miller and
Crawley gave an expcrimental technique for tuning multiple actuators [5]. Stech showed
112 methods could be used for the tuning problem [6]. Bruner [71 used a virtual form
of the vibration absorber to design a stable compensator which filtered the acceleration
measurements, the acceleration measurements were not fed directly back to the structure.

It has been shown that the passive absorber tuning problem can be formulated has
a feedback control problem. [4] Viewing the problem in this way, it becomes apparent
that the passive vibration absorber belongs to the class of energy dissipative controllers.
tlyperstability theory has been used in the stability analysis of dissipative systems [8].
Fundamental to hyperstability theory is the concept of positive dynamic systems. Hyper-
stability theory allows for the straightforward stability analysis of interconnected positive
systems. The idea is simple, two positive real systems may be interconnected and the
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overall result is a positive real system. This guarantees global stability. Passive vibration
absorbers are in the class of positive real dynamic systems.

Unfortunately, the performance available from vibration absorbers is limited. Since the
available measurements are restricted to relative position and relative velocity, only the
relative phasing between the absorber and structure mass is known. If it were possible to
incorporate absolute phase information about the structure mass into the absorber without
destroying its positive real nature, then increased performance could be expected while still
maintaining the stability robustness of the vibration absorber.

Researchers have implemented passive vibration absorbers electronically [5, 4]. By ac-
tually measuring relative position and relative velocity and multiplying these signals by
a stiffness and damping gain, a linear motor can be made to behave as a spring - mass -
damper system with electronically tunable stiffness and damping coefficients. Since this
implementation of a passive vibration absorber is analogous to a mechanical spring - mass
- damper system, it is globa.ly stable. In this research it is shown that by introducing ac-
celeration feedback to this system, absolute phase information can be incorporated into the
controller, greatly enhancing performance without losing the property of global stability.

First, the feedback formulation for passive vibration absorbers developed by Posbergh
[4]is reviewed. Next, the stability of the standard and enhanced vibration absorber is inves-
tigated. Finally, the resulting enhanced absorber is implemented on a simple experimental
structure.

Feedback Formulation of the Vibration Absorber

A feedback formulation of the passive absorber problem was developed by Posbergh [4].
The following is a summary of this formulation. Consider the simple case of a single degree
of freedom structure coupled to a single vibration absorber. This is represented in Figure
1. The force f(t) can be viewed as an input to an augmented structure - absorber system
given by, [e m 0 1 [ + 0 z(t) 1 (1)

where z(t) = [x.(t) xo(t)]T. The force exerted on both the structure mass and the absorber
mass by f(t) couples the two systems together. It is given by,

f(t) = k.(x,(t) - x.(t)) + c.(;,(t) - i.(t)) (2)

Equation (2) can be written in matrix form

f(i) = KY(t) (3)

where K = [k. c,] is a gain matrix, and

Y:(t) = [ rX(t) - X(t) (4)
SY2(1) I I i( - i"(1) I
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Figure 1: Model of a single vibration absorber coupled to a single degree of freedom
structure.

or'
f (t) = KCx(t) (5)

where

c0(1-;0 1]

a iid x (t) = [.r,(t) ý,:8(t) "a(t) j"(t)]T.

Choosing the absorber stiffness andl damnping which minimize some design criteria is an
oaptpt feedbackjproblem which has the following first order form,

i(t) = Ax(i) +Bf(t) (6)

where A and B. are the augmented matrices

0 1 0 0-

These two systems are coupled by the output feedback,

f (t) = KCx(t) (7)
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Figure 2: Feedback formulation of a passive vibration absorber
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Figure 3: Nonlinear and/or time varying feedback system

Figure 2 gives a graphical representation of the feedback formulation. Notice that although
the feedback formulation was developed based on the SDOF case, it is equally valid for the
multiple degree of freedom case.

Passive Vibration Absorber Stability Analysis

Once the design of the passive vibration absorber is viewed as a feedback control problem,
the concept of hyperstability can be used to show stability of the combined structure -
absorber system. The following is a review of some useful results from hyperstability
theory [8, 91.

Hyperstability mainly deals with the class of feedback systems which can be put in
the feedback form shown in Figure 3. The hyperstability concept allows the stability of
the total system to be investigated by dealing with the stability of the feedforward and
feedback block separately. The combined system is stable if the feedback block satisfies
the Popov integral inequality,

T10 td) > --y,2
7( yTwdl t' --y for all ti > 0 (8)

where y is the input vector, w is the output vector, and -y,, is a finite positive constant which
does not (lepend on t1 , and the fcedforward block is positive real. For the more specific case
of linear time invariant blocks, positive real transfer functions satisfy the Popov integral.
Therefore, if both blocks are linear time invariant and both are positive real, the system
is stable. Landau (9] showed that a proportional integral derivative feedback block with
positive gains will satisfy the Popov integral.
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Figure 4: Vibration absorber as a feedback control problem

Definition 1 A transfer function H(s) is "positive real" if

1. H(s) is real for real s.

2. Re[H(s)] > 0 for all Re[s] > 0.

Definition 2 A real rational transfer function is "reactive" if all of its poles and zeros are
simple, lie on the Jw-axis, and alternate with each other. [10]

A reactive transfer function is passive [10]. Passive transfer functions also satisfy the Popov
integral [111. Finally, there are two useful properties for the combination of hyperstable
blocks.

Lemma 1 Any block obtained from the feedback combination of two hyperstable blocks is
hyperstable.

Lemma 2 Any block obtained by the parallel combination of two hyperstable blocks is hy-
perstable.

The proofs of the above lemmas can be found in Popov [8].
Given the above, the feedback formulation for the vibration absorber needs only the

slight modification shown in Figure 4 to show its hyperstability. It is equivalent to the
formulation given previously. To guarantee the stability of the system, the feedforward
block must be positive real. Since the feedback block is a PI controller with positive gains,
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by Landau [9], it is positive real. Using the feedback formulation given by Equations (6,7),
the feedforward transfer function for relative velocity to force is,

gMs) = Y2 (s) = k. + (in8 + mn)s 2  (9)

F(s) m~s(k. + ms 2 )

The zeros of the transfer function are

V1- ± ;WT(10)s = +jm 6 + m8

The poles of the transfer function are

S I = 4-J S2 = 0 (1

The transfer function will be reactive and passive if the poles and zeros alternate on the
imaginary axis,

0< ;T (12)

Equation (12) is trte for rn0 > 0. As mentioned previously, since the feedback block is a PI
compensator, the feedback block is positive real, (according to Landau) and the combined
system is stable.

Enhanced Vibration Absorber Stability

The addition of acceleration feedback offers the potential for a significant increase in the
performance of a vibration absorber. In the previous section, the stability of passive
vibration absorbers was proven using the concept of hyperstability. In this section, it is
shown that with certain bounds on the acceleration feedback, the hyperstability of the
system is not effected. As before, the modified vibration absorber can be put in the
feedback system form. The key is to show that the acceleration feedback does not destroy
the passivity of the feedforward block.

Consider a collocated acceleration feedback added to the augmented form given by
Equation (1),

f(t) = [g 0]'(t) (13)

(losing the loo0) gives,

[7ls g 0 Et+ [Lk 0 ] z(t)= 1i jf (t) (14)
9 ] G 0 0.
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and the feedforward transfer function with collocated acceleration feedback becomes,

Y2(s) k, + (mna + Yn,)s 2

g 2(s) -F(s) ?-,,,s(_k. + (, n _ ,,,). 2) (15)

The zeros of the transfer function are

S=+ ±'-k ' (16)
?La -. + ?711

The poles of the transfer function are

"S 12 =0 (17)

The transfer function will be reactive if,

0 < g < m, (18)

The system is passive, and thus globally stable if g < mn.. Since the combined feedback
system is passive, then it may be combined with multiple vibrational modes and still
remain passive. Next a demonstration of the enhanced absorber is given by simulation and
implementation on an experimental structure.

Simulation and Experimental Verification

The enhanced vibration absorber coupled to a flexible structure was simulated. The struc-
ture of interest is an aluminum "T" with two attached lead weights. Total weight of the
structure is 200 lbs. A diagram of the structure is shown in Figure 5. This structure was
designed to produce two isolated low frequency modes, a torsion mode at 6.8 lHz, and a
bending mode at 5Hz. Since the third mode of the structure occurs around 40-50 Hz, the
isolation of the lower modes makes the structure simple to model.

The vibration absorber is implemented electronically. A linear motor consisting of
a rare earth magnet sliding over a coil provides an electromagnetic force to both the
structure and the actuator mass. A Kaman position sensor provides relative position
between the absorber mass and the structure. A linear velocity transducer provides relative
velocity measurements. Relative position and relative velocity signals are multiplied by two
gains, actuator stiffness and actuator damping, respectively. The gain amplified signals are
summed and fed to a current amplifier which feeds back to the linear motor coil. With this
feedback loop in place the linear motor behaves like a mechanical spring - mass - damper
system. The absorber stiffness and damping are electronically tunable. The absorber mass

GAC-9



Vbration Aluminum Beams

CAbsorber

Movable Movable
Weight Weight

Experimental Structure

Figure 5: Experimental Structure

is 4 lbs, making the absorber to structure mass ratio .02, a realistic mass ratio for space
structure applications.

First, a simulation is performed. An undamped model of the structure is damped
using a standard vibration absorber. Using the procedure developed in [6], the absorber
is tuned to minimize an H2 cost. For the simulation, the position of the structure is
initially displaced at the location of the actuator. Figure 6 shows the free response of
the structure compared to the response with the H2 optimal vibration absorber attached.
Next acceleration feedback is introduced and the absorber is retuned. Figure 7 shows
the response of the structure with the enhanced passive vibration absorber attached. A
considerable increase in performance can be realized by using acceleration feedback. Table

CASE Wa C. H2 cost Absorber Stroke
Free Response 0 0 0o 0

Standard Vibration Absorber 5.31 .1094 .28 .085
Enhanced Vibration Absorber 4.61 .7726 .067 .23

Table 1: Summary of simulation results, w. = actuator frequency, ca = actuator damping
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Figure 6: Free response of the structure vs. response with vibration absorber attached.

I .
U

i"

Figure 7: Structure response of standard vibration absorber vs enhanced vibration ab-
sorber.
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Figure 8: Experimental structure response of standard vibration absorber vs enhanced
vibration absorber.

I summarizes tihe performance increase at the expense of stroke length.
The above simulation was verified experimentally. Figure 7 shows the actual response of

tie experimental str ,cture with standard vibration absorber compared with the enhanced

vibration absorber. The stroke length of the absorber will limited the performance of the
absorber.

Summary

Passive vibration absorbers have the desirable property of global stability. Unfortunately
they do not typically exhibit h *igh performance. Standard vibration absorbers can be mod-
ified by the use of acceleration feedback to greatly increase performance. Hyperstability
theory shows this modification does not affect the stability of the system, provided that the
acceleration feedback gain does not exceed the modal mass at the acceleration sensor. The
resulting positive real controller exhibits high robustness and performance. The simple
gain feedback formulation of tihe controller allows for simple implementation and requires
minimal computation.
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PIEZOELECTRIC COMPOSITES FOR USE IN

ADAPTIVE DAMPING CONCEPTS

Wayne T. Reader
and

David F. Sauter

Vector Research Company, Inc.1

ABSTRACT

Piezoelectric actuators are frequently employed as the active element in adaptive or
active systems used to eliminate or "damp" structural vibrations. Piezoelectric
composites of the 1-3 type consist of piezoelectric rods embedded in a polymeric
matrix and can provide strain coefficients comparable to those of the solid ceramic
with less than 20% of the weight. Most 1-3 composites designed to operate in
the thickness mode, e.g. maximize the d33 strain coefficient, select the matrix
polymer to be in its glassy regime. The primary objective of this paper is to show
that this conventional approach does not provide the optimal strain coefficients.
The rigid matrix constrains the rod motion sufficiently to cause significant reduc-
tion of the effective strain coefficients. It is shown that improved performance is
achieved by choosing for the matrix a rubbery polymer containing gaseous
inclusions and applying a lightweight cap plate to the composite's surface.

1 Suite 700, 2101 East Jefferson Street, Rockville, MD 20852.

Tel: (301) 816-5500; Fax: (301) 816-5517.
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INTRODUCTION

Piezoelectric composites of the 1-3 type consist of piezoelectric rods encapsulated
within a polymeric matrix (Figure 1). The N 1 -3 designation' indicates that the
piezoelectric ceramic is connected to itself in one dimension, whereas the matrix
encapsulant is connected to itself in all three spatial dimensions.

The electromechanical coupling factor k is defined by 2

k2 = electrical energy converted to mechanical energy (1)
input electrical energy

It is generally accepted as the most important single measure of the performance
of a piezoelectric material. Examining the coupling coefficient presented in
Figure 2 for a 1-3 composite3 , one may readily understand a primary attraction for
the 1-3 composites used in the thickness mode. The coupling coefficient applica-
ble to the thickness mode of the composite, kt, exceeds that of the solid ceramic
for ceramic volume fractions greater than about 5%.

Additional advantages offered by the composites for structural damping applica-
tions are light weight and flexibility. Composites weigh a fraction of solid ceramic,
and therefore add significantly less loading to light structures. The flexibility
achieved by manufacturing the composite with a rubbery polymer enables the
sensor or actuator to be installed upon complex structural shapes.

Traditionally, 1-3 composites for ultrasonic uses are manufactured with a relatively
rigid matrix encapsulant to ensure that the matrix is carried along with the rod
motion to provide a uniform surface motion. However, as will be shown in some
detail in subsequent sections of this paper, these rigid polymers may constrain the
motion of the rods to less than 50% of their free motion. The use of soft,
compliant matrix encapsulants will be shown to allow essentially unconstrained
motion of the rods.

THEORETICAL CHARACTERIZATION

It is assumed in this paper that the piezoelectric elements will be used in an active
damping scheme to excite the structure perpendicularly to the surface, as shown in
Figure 3. Hence, the composite element will be driven in the thickness mode.
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Figure 1. A piezoelectric composite of the 1-3 type
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Figure 2. kt vs. oc predicted for PZT5H rods and a polymer matrix
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LUGHTWEIGHT STRUCTURE

z1-3 COMPOSIE ACTIVE DAMPER

LIGHTWEIGHT

RIGID CAP PLATE:.- PZT RODS

COMPUANT POLYMER MATRIX

Figure 3. 1-3 composite element used to impart loads perpendicular to a
structural surface
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ANALYTICAL MODEL

Smith and Auld" have developed a simple analytical model to describe thickness
mode oscillations of 1-3 composite layers.

Locating the layer, electroded on its top and bottom surfaces, in the x-y plane,
their simplifying assumptions include:

1. The strain and electric field are independent of lateral position (x-y
plane) throughout the individual ceramic and polymer phases.

2. Symmetry exists in the x-y plane, for example elastic constants
c12 = c21, electric field E = E2 = 0, etc.

3. The ceramic and polymer phases move together in the thickness direc-
tion.

4. The electric fields are identical in the ceramic and polymer phases.

5. The lateral stresses are equal in both the ceramic and polymer phases,
and the composite is laterally clamped.

6. The effective stress and electric displacement in the thickness direc-
tion (parallel to the z axis) are obtained as weighted (volume fraction)
averages over the ceramic and polymer phases.

The resulting theory has proven to be extremel, useful for designing effective 1-3
composites - particularly for medical ultrasonics applications where relatively rigid
transducers of several square centimeter area can be used. One example of the
vast utility of this theory are the results presented in Figure 2 which illustrate the
possibility of obtaining or even exceeding the coupling performance of a solid
ceramic with the small volume fractions in a 1-3 composite.

Transducers intended for applications such as structural damping may not abide by
these assumptions if optimal designs are to be developed. For example, if flexible
transducers are needed, the polymer stiffness may not be sufficient to follow the
motion of the ceramic rods. Further, as suggested previously, the use of rigid
polymers may severely constrain the rod motion - producing surface motions which
may be as little as 50% of the unconstrained rod motion.

In either of these examples, it is apparent that assumption 3, and probably 1 and
5, would be violated. Therefore, analysis of these cases requires the use of
numerical procedures such as Finite Element Analyses.
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FINITE ELEMENT ANALYSIS

Advantages Over Analytical Model

The finite element representation of 1-3 composite behavior holds a significant
advantage over the analytical model described previously. While the analytical
model views the composite as a *macro" system by applying simplifying assump-
tions, the finite element model describes the detailed response of the composite.
For example, solution of the analytical model yields quantities such the average
surface displacement, whereas the finite element solution provides the entire
displacement field for the model. Other quantities, such as the stress, strain,
voltage, and current may be obtained at all nodal points within the finite element
model. The effective or average quantities are then readily computed from the
nodal fields. Hence, from this detailed information the investigator may both
evaluate the performance potential of candidate 1-3 designs, and also gain valuable
insight as to the parameters which influence the performance.

A second advantage is that the finite element method is very flexible. A wide
variety of 1-3 composite configurations (i.e., addition of a rigid cap plate) and
loading conditions may be modeled with simple modeling changes.

Finite Bement Models

The displacement response of piezoelectric 1-3 composite materials has been
predicted using finite element models. Piezoelectric and standard structural finite
elements are used to represent the piezoelectric rods and polymer matrix respec-
tively. Piezoelectric material properties are defined in terms of the elastic stiffness
coefficient matrix, piezoelectric matrix, and dielectric matrix, while the polymer
properties are defined by Young's modulus and Poisson's ratio. A symmetrical
model with nine piezoelectric rods is used to model a 1-3 composite plate of larger
lateral extent as shown in Figure 4. Symmetrical displacement boundary cnndi-
tions are applied at the x = 0, y = 0, and z = 0 planes. Uniform displaceme fields
are enforced in the lateral directions at the x = w and y = w boundaries to 2ulate
the condition of a larger lateral extent. A sinusoidally varying potential 6, dary is
applied at the z = t/2 and z = -t/2 plane, for a total applied potential of 100 Volts.

The finite element analysis is conducted using a forced harmonic analysis proce-
dure. The average surface displacement is then computed from the surface nodal
displacement field (z = t/2).

ALTERNATIVE 1-3 COMPOSITE DESIGNS

Several alternative designs will be examined with finite element analysis to
determine a better design to be used for structural damping applications. Included
are: (1) the traditional design which employs a rigid epoxy to force uniform
surface motion, (2) a variant of the traditional design which replaces the rigid
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Figure 4. Symmetric finite element model representing a 1-3 composite plate

GBB-7



matrix with a softer urethane, and (3) and a design in which the urethane is voided

to increase the compressibility.

TRADITIONAL DESIGNS

The traditional 1-3 composite is comprised of Lead Zirconate Titanate (PZT) rods
embedded in a rigid epoxy matrix. The 1-3 composite's displacement performance
is a function of both the matrix material mechanical properties and the composite
geometrical properties.

Matrix Material

The epoxy matrix promotes the formation of a relatively uniform displacement
profile and decreases the effective density of the composite. The rigid epoxy
possesses a relatively high shear modulus which helps to produce a uniform
displacement field, as shown in Figure 5. However, there is a trade-off because
the correspondingly large elastic modulus (Table 1) constrains the rods to as little
as 45% of the motion of a free PZT rod. Figure 6 shows this constraining effect
for 5 - 20% volume fraction composites. The effective density is reduced because
the polymer matrix is typically 85% lighter than piezoelectric ceramics. For
example, the effective density of a 12% PZT volume fraction 1-3 composite with
an epoxy matrix is 25% of that of a solid PZT ceramic.

Geometic Properties

The geometric parameters which influence 1-3 composite performance are the
ceramic volume fraction and the rod length-to-width aspect ratio. Previous
investigations 5 show that the displacement performance of the traditional 1-3
composite increases proportionally with volume fraction increases as shown in
Figure 6. However, increasing the rod aspect ratio produces only slight perfor-
mance increases.

REPLACEMENT OF THE RIGID EPOXY MATRIX WITH A RUBBERY POLYMER

The Young's modulus of a commercially available urethane is compared in Figure 7
with the modulus of an epoxy which has been used to manufacture 1-3 compos-
ites. For high frequencies, e.g. above a megahertz, both polymers are in their
glassy regime and are seen to be comparable in magnitude. However, for audio
and subaudio frequencies, the urethane is in its transition region and the moduli
differ by at least an order of magnitude. Hence, one might expect the motion of
the rods embedded in the urethane to be significantly greater than that of the rod
embedded in the epoxy.

The finite element analysis procedures summarized in a previous section are used
to predict the performance of alternative 1-3 composite designs. The parameters
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Figure 5. Finite element displaced shape depicting relatively uniform surface
motion of an epoxy matrix 1-3 composite

Epoxy Matrix Aspect Ratio: 8.3
Rod WkIdt 0.76 mm Frequency: 100 Hz
Rod Spacknq 3.4,2.2.1.7 man Applied Voltage: 100 V
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Figure 6. Influence of epoxy matrix on rod displacement as compared to a free
PZT5H rod.
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used to characterize the 1-3 composites in the finite element calculations are
summarized in Table 1.

Figure 8 presents the displacements of 0.76 mm PZT5H rods embedded in either
an epoxy or a urethane matrix when excited with a 100 volt potential. The
0.76 mm PZT5H rods are spaced 3.4, 2.2, and 1.7 mm apart to form ceramic
volume fractions of 5 - 20 %. The maximum rod displacements generated for the
urethane matrix are as much as 115% greater than for the epoxy matrix.

However, upon bonding a 1 mm thick GRP (glass reinforced plastic) cap plate to
the composite to simulate attaching it to a light structure, Figure 9 shows that the
maximum displacement decreases to that predicted for the epoxy matrix. The
reason for this decrease can be shown to be caused by the incompressibility, and
hence Poisson ratio of approximately 1/2, which characterizes the urethane. The
laterally stiff cap plate prevents significant expansion of the composite, essentially
enforcing a constant volume condition (i.e., U,, = 0). To illustrate this effect,
consider a urethane composite without a cap plate, subjected to a zero lateral
displacement condition. Figure 10 shows that the free surface of the incompress-
ible urethane matrix must contract over part of the surface to balance the expan-
sion which occurs in the vicinity of the rod. However, when bonded to the cap
plate, the urethane is constrained from contracting, which in turn constrains
motion of the rod.

COMPRESSIBLE MATRIX

The effect of the bond between the matrix and cap plate can be alleviated by
increasing the compressibility of the matrix, and hence decreasing the Poisson
ratio, by adding voids to the matrix. The influence of voids upon the matrix
compressibility K and Poisson ratio a can be estimated using the effective Lame',
constants calculated from the theory developed by Chaban.e Defining the effective
Lame', constants to be A. and 1., they are expressed in terms of the Lame' con-
stants of the constituent polymer, A and p, and the void content 0 as

1 +15. A+2p (2)
9A+141p

A. A + 2U - 211. (3)
+ - 3A +2/I1 + 20#

4u 9A +14#_
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EpomylUreOm Matrix Aspect Ratio: 8.3
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Figure 8. Comparison of the maximum rod displacement and average surface
displacement for epoxy and urethane matrix polymers.

Urethane Matrix Aspect Ratlo 8.3
Rod Width 0.76 mm Frequency: 100 Hz
Rod Spacing: 3.4.2.2,1.7 mm Applied Voltage:. 100 V
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Figure 9. Influence of a cap plate upon rod displacement in a composite with a
polyurethane matrix.
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(a)

(b) %ift

Figure 10. Deformation of the surface of a urethane composite: (a) No cap
subjected to a zero lateral displacement condition, and (b) With cap
depicting reduced rod displacements.

GES13



The effective compressibility is defined as the inverse of the bulk modulus Be, i.e.
as K. = 1 /B. where the effective bulk modulus is given by

Be = As +321! (4)
3

The effective Poisson ratio is defined in terms of the effective Lame' constants as

A* (5)
a- = 2(A.+pj

The density of the voided polymer is given simply by

p. = p(1-0) (6)

The effective bulk modulus and Poisson ratio of a voided urethane' are presented
in Figures 11 and 12. The inclusion of up to 50% voids decreases the bulk
modulus by about a factor of three in the glassy regime to two orders of magni-
tude in the rubbery regime. In the transition region near 100 Hz the decrease is
approximately an order of magnitude.

The addition of 50% voids decreases the Poisson ratio to approximately 0.36 in
the rubbery regime and 0.31 - 0.32 in the glassy regime.

The effect of these decreased moduli on the performance of a 1-3 composite is
illustrated in Table 2. Compared are the displacements generated by a 100 volt,
100 Hz potential applied to rods (12% volume fraction) embedded in an epoxy and
a urethane matrix which may be covered with a GRP cap plate.

As illustrated previously in Figure 8 the motion of the rod in the epoxy matrix is
approximately 45% of the mo.•on predicted for the urethane matrix. Adding the
cap plate reduces the displacement for the urethane to that predicted for the
epoxy. However, voiding the urethane beneath the cap plate to a 50% volume
fraction restores the displacement to that predicted for the free urethane surface.

The compressibility (or Poisson ratio) has reduced sufficiently with the addition of
the voids to enable the cap plate to move without constraining the rod motion.
The volume of the matrix, in this case the voided urethane, no longer must be
conserved.
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MAXIMUM ROD DISPLACEMENTS FOR
VARIOUS TYPES

OF MATRIX POLYMERS

12% VOLUME FRACTION
8.3 ASPECT RATIO, f = 100 Hz

FREE SURFACE WlI mm GRP CAP
(NO CAP PLATE)

FREE SOUD SOUD VOIDED
PZT EPOXY URETHANE URETHANE URETHANE
ROD MATRIX MATRIX MATRIX MATRIX*

(xl0-Bm) (xl 0"m) (xl0"m) (xl0-9m) (xl0-9m)

29.7 17.4 28.6 19.1 27.5

CONTAINS 50% GAS VOIDS BY VOLUME

Table 2. Rod displacements for various matrix polymers
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CONCLUSIONS

The primary conclusions gleaned from the finite element analysis of 1-3 compos-
ites are twofold:

1. Traditional 1-3 composite designs which employ glassy polymers to
force uniform surface motion may constrain axial displacement of the
rods to 45 % of their free motion.

2. The use of voided polymers as the matrix encapsulant, if selected to
be in their mid-transition to rubbery regimes, enables actuators to be
designed which produce the maximum rod displacement even when
attached to a lightweight structure.
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ABSTRACT

In a class of smart materials being studied, piezoelectric constituent impart the desired
sensing and actuating capabilities. These materials can be designed to exhibit novel vibration
damping characteristics, that can be manipulated or controlled by microprocessor. In vibration
of structures, there is a periodic exchange of kinetic and potential energy, which typically consist
of strain energy. When piezoelectric constituents are present the kinetic energy is also
transformed partly into electrical energy. The novel damping mechanism proposed dissipates
the electrical energy before it could convert back into kinetic energy. Unlike viscous damping
this damping would be independent of frequency. By use of switching circuits and
filters/resonators this damping can be turned on or off as well as manipulated. The preliminary
results of work in progress are demonstrated by varying vibration damping of a beam sample
of a piezoelectric ceramics.

INTRODUCTION

Smart structural composites have been developed by synthesizing carbon filaments by
coating thin films of piezoelectric zinc oxide [1-4]. The primary objective was to impart
intrinsic features of sensing and actuation. The sensing capability enables monitoring vibration
and detecting damage through strain sensing. The actuation capability would allow active
vibration control. In the particular activity reported here, a novel damping is devised exploiting
the presence of piezoelectric constituents. Unlike conventional materials, the damping can be
increased or decreased under command. Different modes or frequency spectrum can be damped
at the desired level, including negative damping where certain vibrations can be amplified if
desired.

EXPERIMENTAL PREPARATION

Small test samples of cantilever beams, 5mm X I mm, 3 to 5 cm in length were fabricated
from ceramics, PZT-5H. Both sides of the ceramic were metalized to construct electrodes and
were connected to a dissipating circuits shown in Figure 1. The vibration was excited by
dropping small ball bearings on the beam and measured by the accelerometer mounted on the
beam.
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DISSIPATION CIRCUIT

A simple circuit using diodes is constructed to remove electrical energy from the
vibrating beam. As the beam vibrates the charge is developed due to the presence of
piezoelectric constituents. The charge is removed by transferring to the capacitor. In this
simple arrangement the objective is to remove all the electrical energy and thus provide
maximum damping indiscriminately. Future activity would device elaborate circuits including
filters that would enable selective damping of certain frequency. It would also be possible to
create a false signature by putting in electrical energy and enhance certain vibration modes.

EXPERIMENTAL RESULTS

The beams were excited by dropping ball bearing and the vibration was measured by
accelerometer. The electrodes were also connected to oscilloscope to measure the electric field
generated, Figure 2 shows the plot of both signals. The electrical switch is at off position and
the case is termed 'damping off.' When the switch turned on the diode clips off the maximum
charge developed, which is shown in Figure 3. The damping is measured by calculating
logarithmic decrement as shown in Figure 4. The computation is shown below, with zero
subscript referring to the case of electric damping turned off. The electrical damping, when
turned on provides additional damping over materials natural damping.

DAMPING ANALYSIS

In a vibrating system there is a continuous exchange between kinetic and potential energy.
In structures, the potential energy is essentially strain energy. There is a continuous loss of the
strain energy to heat due to damping in the material, which results in decay of vibration
amplitude. In material with piezo-electric constituent an additional partition of kinetic energy
in to electrical energy. The electro-mechanical coupling coefficient K2 is defined as follows.

2 PZZEZk2=_2 2

- IeZZEZ2

StrainEnergy 1
StrainEnergy+ElectricalEnergy 1 +k2

Following expressions relate logarithmic decrement 71, through coupling coefficient to
vibration amplitude. The additional damping achieved through electrical dissipation is shown
in the table below. The calculated values are higher than experimentally achieved. This is due
to limitation of a simple dissipation circuit use. There should be no problem in achieving the
full value of theoretical predicted damping by a proper dissipation device.
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o-ln ( A,) S=In(Il/A)

6S-6,=in (AJA)

6-68"=½n ( 1+k2)

t-to= I~nll+k2)
4%

_ _ _ _ _ Estimated Measured

1-60 0.049 0.027

-o 0.0078 0.0043

CONCLUSION

The damping mechanism proposed can be developed to provide additional damping in the
smart material containing piezoelectric constituents. In the material and structure capable of
active control, such a damping mechanism could be used in a passive mode, saving elaborate
capability only for critical phases.
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Abstract

Aerospace structures require low weight and high performances. The interaction of
these structures with their environment can be of different kinds. A very important one is
the aeroelastic interaction between a wing and a subsonic or supersonic stream.

In this paper the aeroelastic interaction of a composite laminate swept wing in a su-
personic stream will be analyzed and modeled by means of the so called 'Piston Theory'.

Due to aeroelastic effects, vibrations will be induced in the wing. These vibrations are,
of course, highly undesidered. Much attention has been paid, during the last decade, to
active vibration control for different kinds of structures.

In this case the vibration control will be achieved by means of direct velocity feedback.
The actuators and sensors needed in order to augment the control will be piezoelectric
elements. This kind of materials offers a number of advantages, such as, for example, the
possibility of being easily shaped, the low weight and cost.

The structural dynamic problem (i.e. finding the modes of vibration and the natural
frequencies of the structure) has been solved by using a modified finite element method.
The equations of motion are then discretised using the same method. This method is
particulary suitable for wing structures and differs from the classical one because it takes as
unknowns chordwise global quantities instead of local ones such as flexural displacements,
torsional rotations, mean-line curvature, etc.

Once the equations of motion for the controlled wing are found, they are solved by
using the Runge-Kutta method. It will be shown how the control system contributes to
give a more damped system.

'Paper presented at Damping '93, February 24-26,1993, San Francisco, CA
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1 Introduction

The problem of the aeroelastic behaviour of a wing is one of the major concerns in
aeronautical design. The advent of composites has greatly amplified the domain of the
relevant investigation.

Due to the high flexibility of their use, composite structure can prevent, or delay,
undesired phenomena, such as divergence and changes in aerodynamics loads. In dy-
namic problems, however, simple use of composite structures may be not sufficient or
viable.

Now, another tool which is to-day available to aeronautical designers is represented
by active structures; in particular, by piezoelectric elements imbedded in the structure
itself. As well known, a piezoelectric element (or 'piezo'), has the property that there
is a coupling, in it, of elastic properties and quantities, with electric properties and
quantities. This means in particular that a piezo, when subjected to elastic deforma-
tions, such as those arising on account on the aeroelastic actions on the wing, exhibits
an electric field, that, for time varying phenomena, give rise to an electric current from
the piezo; so it can act as a sensor. On the other hand, when properly polarized, piezos
may have the role of actuators.

Special attention is here devoted to the so-called Direct Velocity Feedback Control
(DVFB), where output signals from velocity sensors are electronically multiplied by
gains and directly fed-back to co-located force actuators. Co-location is choosen because
in this way the voltage applied to each active element can be related only to the velocity
degree of freedom relevant to the element. The net effect is a closed loop augmented
damping system.

When dealing with aeroelastic problems, adequate modeling for structural and aero-
dynamic behaviour must be provided. For the former, no special problems arise, since
there is a large number of modeling techniques, starting from simple analytical solu-
tions to sophisticated finite elements approaches. However, if one is wishing to obtain
global predictions, then 'global' quantities and not 'local' quantities must be taken to
describe the structural behaviour. For aerodynamics, as a principle, unsteady formu-
lations should be used; quasi-unsteady approximations may give questionable results.

Thus, in the aeroelastic control loop three kinds of forces arise; from structure,
aerodynamics, control. The purpose of this paper is that of showing the possibility
of controlling the aeroelastic phenomena by means of intelligent (or 'smart') elements;
therefore a sufficiently sophisticated structural model is used; for aerodynamics the
simplified Piston Theory in supersonic flow is introduced. Control forces are, as said,
those arising from DVFB control.
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2 Constitutive Relationships of an Orthotropic Piezo-
electric Lamina

The general form of the constitutive equations of a piezoelectric material can be written
in the following form:

e, = S~jo + dEh ; (,j= 1,...,6)

Dh = d4jj + 4hEh ; (k,h= 1,2,3) (1)

where d, = d,.. Superscripts indicate those fields which are kept constant; ai and
ei represent stress and strain respectively, while Sji is tue flexibility matrix, ekh the
dielectric matrix and d4i is the piezoelectric strain/electric field matrix. Choosing the
intrinsic coordinate axes according to the symmetry that exists in certain classes of
piezoelectric materials, the piezoelectric strain/electric field matrix can be written, for
a commonly available class, in the form:

0 0 0 0 dis 0
d={d=kil 0 0 0 d24 0 0 (2)

431 d32 d4, 0 0 46

where the 3-axis is the poling axis. PZT (lead, zirconate, titanate) and PVDF (po-
livinylidene fluoride polymer), for example, belong to this class. Confining our attention
to a piezoelectric lamina, due to its geometry, we assume that the hypothesis of plane
stress state is applicabile, and that only E3 and D3 can be applied or detected.

Based on these assumption, Eqs. (1) can be rewritten as follows:

65" S1 0 [0171 [ d31
C2 = 0 02 +Ads (3)

1 120 0 SO 1 1 712 43

r 12

For our purpose it is more useful to write Eq. (3) in the form:

al] [91 1 "1 ] d3l0'2 = H21 A22 0 I2d2IE1= 9(e - dE3) (5)

where {fA',} = {S} •1 is the stiffness matrix. It should be noticed that Eq. (5) holds
also for a non-piezoelectric orthotropic lamina when E3 is set to zero.

A laminated piezoelectric wing plate is made of several piezoelectric as well as non-
piezoelectric laminae. In general they can be oriented at an angle a with respect to the
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global reference axes. Introducing the stress matrix transformation from the intrinsic
axes of each lamina to the global reference axes of the wing:

C2 .92 -2 s
T(c)= s2 2 2sc (6)

SC --SC C2 -- 82

where c = cosa and a = sin a, we can write:

1" re[a = T(a) a2 ( C7)
J"y T12 7• 712

with T 1 = N-ITN and N = diag {1, 1, 1/2}.
In the wing frame of references, Eq.(5) can be written for each lamina in the form:

[' 1 [H 11  H12 H13 ] IsI r
a = H12 H22 H2 [3- [r 2  E 3 =Hc-rEs (8)

rzy H 13 H 23 H33 7X r3

where:
H = T(a)flTI(a)- 1  (9)

and
r = T(a)]Rd (10)

The classical thin laminate plate theory is used, and Kirchhoff's hypothesis are assumed
for the displacements; so we have:

U(X, Y, z; 0 = Uo(4,/ Y; 0 + ze(=, Y; t)
V(X,Y,z;t) = vo(z,y;t)+zo(,z,1,;t)
W(z,Y,z;t) = oo(z•,;t)

where uo, vo, wo represent the middle plane displacement in the z, y, z direction, and:

S ; = T(11)

As a consequence the strains are given by:

tLO•,z t0, 1
= y VY z w,fY = co + zk (12)
ex Uo,Y + VO, 2w,,,

where eo and k are middle plane deformation and the curvature vectors respectively.
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Assuming that the lamination sequence is such that no coupling mechanical effect
arises between in-plane quantities and out-of-plane quantities (i.e., the layers are sym-
metrically placed with respect to the middle plane), when the electric field is applied
out of phase to each couple of symmetric piezoelectric laminae and no external in-plane
forces exist, the middle plane does not stretch. With these assumptions only internal
flexural moments exist in the wing and they are given by:

M ]= J N z [ra dz = Dk(z, y;t) + p*V(z,y;t) (13)

where V is the vector containing the voltages applied to each piezoelectric lamina, and
p* is the electromechanical coupling matrix. Using the simplified assumption that the
same voltage is applied to each lamina in order to generate the electric field (V =Ejh),

one can write for the vector V:

V =VZ; ZT = [1;1;...;1]

So the following explicit expressions hold:

N Z 2 2
D=2E= z2Hdz= i (z3 - zL.)Hi (14)

P=P*Z=-2 J__ zri .dz=-2rzojrj (15)

j=1hi -1j=1

Eqs. (13), (14) and (15) hold for a wing made of 2N laminae, symmetric with
respect to the middle plane, Np of these laminae are piezoelectric. In Eq.(15), hi
and zJ axe respectively the thickness and the mean value of z for the j. - th lamina.
Eq.(13) is the same as that of the classical laminated plate except for the coupling
electromechanical term pV, p is a 3-elements vector depending on the properties and
the lamination order of the piezoelectric laminae, and V is the voltage applied to each
lamina. Independent commanded voltages in each lamina can be easily accounted for
in the theory.

3 Strain Velocity Sensor Equation

In this work, piezoelectric laminae have also been used as velocity sensors.
The current generated across the thickness direction of every single lamina, caused

by the displacements of the wing, can easily be measured through the surface electrode
of each lamina by connecting it with a current ainplifier.

Following the derivation proposed in [4], Eq.(4) will be used as a starting point to
relate the current generated across the electrodes of the sensor to the strain velocity of
the laminate.
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For a piezo acting as a sensor, we have to consider the case E3 =0; so Eq.(5) reads,
as combined with Eq.(7) and (12):

a2 - T-=(c) av =T- 1(a)H(eo + zk) (16)
TI21 r,

Substitution into Eq.(4) provides the equation:

D 3 = [ex e e=l]{ o + z k ] + C33E3 (17)

where, using the fact that [T•1 (a)]Y =T(a):

e. d 1
e. Ta~ft d32(18)

Gauss' law states that the electric charge enclosed by a surface S is given by the
flux of the electric displacement vector D over the surface S. Now, since the charge
is collected on the electrodes of the piezoelectric lamina and the electric displacement
vector is parallel to the z axis, choosing S as the boundary surface of the lamina,
application of the Gauss' law gives the charge on the electrode of the k. - th sensor
layer: l ; qk(t) = D3dS + D3dS; (k = 1,...,N.) (19)

(zfsZk) k(aush-1)

where S. is the surface of the electrodes (assuming that they cover the whole upper
and lower surface of each lamina), and N, is the number of sensor layers.

Furthermore since i(t) = dq/dt, Eq.(19) yields:

ik=(t) = ISXs( ) b 3dS+jk(S.."_ ) b 3dS (20)

Finally by applying Eq.(17) to the k. - th lamina and by using Eq.(20) we obtain
the following sensor equation:

ik(t) = [e. e. e.]. { odS + ZOk [yy I dS}; (k = 1,...,Ns) (21)

Since we are interested in relating the current signal to the mechanical deformation,
E3 has been dropped in Eq.(21), that means that the surface electrodes on both sides
of the piezoelectric lamina are short-circuited.
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4 Governing Equations

From Eq.(13) the following expressions holds respectively for the strain and kinetic
energies:

U = •jkTDkdE + kTpVdE (22)

= 1jp(-)2 dE (23)

while the work done by external forces per unit area f can be expressed as:

P= jfwdE (24)

From the stationaziety of the functional:

Cdt = (U- T- 7P)dt (25)

the well known equation of motion is obtained:

8L2 L92 ;2 + fp +/+&-2 = f (26)L-X2; j0y2 O' l 2w," y

where fp is the load relevant to the piezo. To solve Eq. (26) we shall use a modified
finite elements method, especially suitable for wing structures, proposed in [1]. This
method takes as unknowns chordwise global quantities (such as displacement of center-
line of the section, torsional rotation, centerline curvature of the section, etc.) instead
of local ones. For spanwise quantities the classical finite element modelling is used.

Let us introduce now the non-dimensional coordinates:

tj = y/L (27)
U = (z-ey)/c

with:
-0.55 < u < 0.5; 0 _< ,9 < 1 (28)

where 0 = tanA, L = semi-span, c = chord-length. In this paper we shall consider
only the case A(u) = cost. For the non-dimensional elastic displacement, W = w/L,
the following expression has been used:

N
W' r7) = L(fOu)kWM(t) (29)

k=O

The term pk has been introduced in order to give all the quantities Wk(iq) the same
order of magnitude.
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u=cost

L _X

17 =yJ.

Figure 1: Coordinate transformations adopted for the wing planform

The explicit expressions for the shape functions, used for Wk(q) in the finite element
formulation, are given in App.[A]

We shall use Eq.(29) with N = 2, so that the Wk(q) functions have a clear physical
meaning: W'0 represents the vertical displacement of a generic section of the wing, W,
is the torsional rotation, while W2 is the chordwise curvature.

In order to write the strain and kinetic energy for the generic finite element, the
following non-dimensional variables are introduced:

2 ML 2  D D&L
T D1 b D -I it - (30)

p . V W L3
ff = 15-(31)

hp=oT)Ypd3l' E..,--' -3

where:

- r = t/T : non-dimensional time;

- M : mass of half wing;

- DII : first element of the D matrix;

- is : density per unit area;

"- hPToT : total thickness of the piezoelectric laminae;

- hp : hpT•o•/Np

- Ema. : maximum electric field that can be applied to the piezoelectric lamina;
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- Yp : Young modulus of the piezoelectric material.

The non-dimensional curvature vector reads:

C 2 (0l#)2W.,, - 2(0l/)W,,u + 1Vn (32)

C3 k], 2(9/.32)W,,, + (2/.O)W,,,,J
where the explicit expression of these quantities are given in App.[A]. Using these non-
dimensional variables the total energy of each element is given by:

el = D211 { a .jWdS - I#( C~fDCdS + 2~ nj CTP'VdS)- jjw }
(33)

where A = Emz.d3l is the maximum value of the strain that can be induced in a not
constrained piezoelectric lamina and

r = Y 7 (34)

D11

These parameters axe very useful in order to relate the strain energy directly trans-
ferred to the element by the piezoelectric lamina, with the strain energy stored in the
element, as it is clear from Eq.(33). Thus the product nA gives an idea of the effec-
tiveness of the piezoelectric laminae in actuating the system. Using Eqs.(29) and (32),
Eq.(33) can be written in finite terms as:

ri = 4 ij x + 2xjxj + x• Pjy -.XF-,; (j = 1, n.) (35)

where n. is the number of elements, Xi is the vector of the degree of freedom of
the j.-th element, that in the present case is, as defined in App.[A]:

x -= [(WoW'W 1WMW 2 MW )o (WoW•W 1WW 2 IW)1 ] (36)

and Pi is given by:
Pj = ATTfj (37)

Mi and Ki are respectively the mass and the stiffness of the element and A is given
in App.[A]. According to the FEM methodology, assembling Eqs.(35) in order to write
the total energy of the wing and differentiating with respect to the whole set of the
degrees of freedom X, we obtain, adding a viscous damping term, the general governing
equation for the discretized system:

MX + AX + KX + F, = F (38)

In Eq.(38) the vector Fp takes into account the actions exerted by the piezoelectric
actuators. This vector can be explicitely written in terms of the control variables, that
is the vector of the voltages applied to each element, in the form:

FP = P'Q' (39)
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where P is a (m x n.) matrix transforming the voltage applied to each element in nodal
forces, and m and n. are respectively the number of degrees of freedom and the number
of elements of the finite element model. It can easily be seen that P is made of blocks
of vectors Pi arranged as it is shown in Fig.(2).

Of course, it is assumed 11 = 0 for non-piezoelectric elements.

Ne

Figure 2: Block structure of the transpose of the matrices P and B.

5 Direct Velocity Feedback Control

Direct velocity feedback (DVFB) [5] is a method for active damping augmentation
in which the output signals from the velocity sensors are electronically multiplied by
gains, and directly fed-back to co-located force actuators. Usually, this method is
applied in conjunction with point-force actuators and point-sensors; in this paper it
will be shown how it applies to piezoelectric actuators and sensors. Since actuators
and sensors should be co-located, the voltage applied to each active element can be
related only to the velocity degrees of freedom corresponding to that element. The
expression for the voltage vector is:

V(t) = GBrX(t) (40)

where G is a diagonal matrix (n, x n.) of gains; of course Ui, should be set equal to
zero for non-active elements. B is a rectangular (m x n.) matrix that, because of the
colocation, is made of blocks of vectors Bj, of order equal to the number of the degrees
of freedom of each element (12 in the present work), arranged in the same way as the
maIax P as it shown in Fig.(2). Each vector Bj depends upon the sensor used for the
elem'-a. The control forces exerted by the active elements can be written as:

FP(t) = Qxt) (41)

with:
Q=PGBT (42)
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Generally Q is not a symmetric matrix, however if its symmetric part is non-negative
definite, the closed loop system with DVFB is energy dissipative. This means that the
DVFB controller cannot destabilize any part of the system no matter what the choice
of the feedback gains is. Also, the pole locations of the closed loop system will never
be placed, in the complex plane, on the right side of their locations for the open loop
system. The net effect is a closed loop damping augmented system. In order to apply
this method it should be checked that for the particular choice of the actuators and
sensors the matrix Q is non-negative definite.

In the following it will be shown how the non-negative definiteness of Q can be
checked on largely reduced matrices relevant to single active elements.

Looking at the structure of the matrices P and B, it can be noted that Q is a block
diagonal matrix obtained by assembling element matrices:

Qi = PjGjjBT, (j = 1,...,n.) (43)

where Gij is the j. - th element gain and Pi and Bj depend on the choce of actuators
and sensors used for the element.

The quadratic form XTSym{Q}X can be written:

XTSym{q}X = T Q1}Xi (44)
j=1

so that a sufficient condition for sym{Q} to be non-negative definite is that all the
SYm{ Qj I are non-negative definite.

From this point of view it is clear that, if the actuators and the sensors of each active
element are choosen in such a way to satisfy that restriction, they are able to increase
the damping of the system. Since piezoelectric elements have already been choosen
as actuators, different choices of sensors can be used to make sym{Qij non-negative
definite. This involves properly choosing the vector Bi.

A mathematical derivation of the constraints that should be imposed on the vector
B, in order to check the aforementioned condition has not been carried out. The
metodology followed in this work has been to use the piezoelectric materials, laminated
in the active elements, as velocity sensors as described in Sec.3, and check that the
resulting Qi matrices satisfy the condition. The expression of the vector B, can be
obtained using the finite element method developed in App.A, in order to evaluate
Eq.(21) for the j. - th element.

Assuming that each couple of symmetric layers of sensor are connected out of phase,
so that their output is independent of the middle plane deformation, we obtain for the
output voltage of the sensor circuit of the j. - th element:

f(t) = bjAX, = BT Xj (45)
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with:

Eiv - (46)1i={2 Z k#l gi 

(]where N. is the number of middle plane symmetric layers. In Eq.(46) the following
non-dimensional quantities have been introduced:

S-' = " 1,.,T ek =

hpkrEmzT; hpY,,d 31

where:

- k : mean value of z for the k-th lamina of sensor;

- go : gain for the current amplifier of the k-th lamina.

The Qj matrix is:

Qj = PiGj j BT = rAGjjAT~j SA (47)

This matrix is very sparse and of a much smaller order than Q (in the present work
is (12 x 12)), hence the non negative definiteness of it can be easily verified for any
choice of the actuators and sensors laminae.

6 Wing Aeroelastic Equations

In order to study the dynamic behavior of the wing two kinds of aerodynamic forces
will be considered: the first one, assiociated to the wing incidence, is given by the
aerodynamic operator; the second ones, are the external loads, for example produced
by a vertical gust.

The Piston Theory is used to build the aerodynamic operator [6]:

_ ___ ____ ± 810- ](w (84=- 2q 8. M. -2,' (48)j

This theory represents an approximation of the aerodynamic theory in which the influ-
ence of three-dimensional aerodynamic effects are neglected. The aerodynamic force,
including the effects of a vertical gust is given by:

2q [,2 (- M 2 1 Ow']()f LWM-I t-• + (491)o

where:

as (50)
V00
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represents the incidence due to a vertical gust of velocity V,.
If the following non-dimensional quantities are used:

o t X=( r = T1)

a non-dimensional expression for the aerodinamic force is obtained:

k[aV (W+ 7 2%W)] (52)

with Twhk 2q T2  
2 = M 2 -1 LM 2 _1 M 2 _1TV(o

Substituting Eq. (49) in Eq. (26), the aeroelastic equations are found. These equations
are then discretized following the procedure described in Sec.4. However, it has to be
noted that the aeroelastic force is dependent from the vertical displacement and Eq.
(29) has to be used.

7 Numerical Results

A considerable reduction of the degrees of freedom in Eq.(38) can be obtained by
eliminating the inertial and elastic coupling. This is accomplished by expressing the
vector X in terms of undamped natural vibration modes. From the equation:

MXi + KX = 0 (54)

it is possible to find the eigenvectors matrix, which contains the natural mode shape
vectors, 4 of order (m x m). By introducing the coordinate transformation X = ,U
and premultipling for the matrix *T, Eq.(38) becomes:

OTM4fj + O4AT4 I + "TK* + *TFP = *TF (55)

where QTMQ, QTAq and QTKQ are diagonal matrices.
In order to carry out the analysis it is possible to work with a reduced set of equa-

tions. Therefore, the number of equations retained in Eq.(55), in practical calculations,
may be restricted to a lower number of degrees of freedom (natural modes), the most
important of which are usually those with the lowest eigenvalues. So, by taking into
account only the first n modes the matrix 4 is rectangular (m x n), and the Eq.(55)
yields the reduced matrix equation:

1•0j + At0 + fu + fp = fF (56)

where the diagonal matrices IKi, A, and AC are of the order (n x n).
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Passive Layers Sensor (PVDF)
Piezoelectric Actuators !

Middle Plane

Figure 3: Wing piezoelectric finite element

This system is the one that has been directely integrated via Runge-Kutta method,
with n =6.

In order to apply the proposed method, a wing active element made of 20 layers
has been used. The first three upper and lower layers are piezoelectric; the first two are
used as actuators while the third one as a sensor, see Fig.(3). Because of the different
mechanical properties of piezoelectric materials, PZT laminae has been chosen for the
actuators, while PVDF for the sensors. The piezoelectric material properties are given
in Tab.1. In the configuration adopted, the intrinsic axes of the piezoelectric laminae
coincide with the global coordinate axes of the wing, so that for each of them a =0.

With this choice of actuators and sensors, the condition that sym{Q,) is non-
negative definite is verified, so that we are sure that the active element acts as a
damper on the system. Each of such active element is assumed to coincide with a finite
element of the FEM discretization.

In the present work, a wing with a positive swept angle A = 450 and aspect ratio
of 10 has been considered; 15 spanwise elements are used to modelize the wing, three
of which are piezoelectric. Starting numbering the element from the root of the wing,
the elements number 1,2,3 are active. The parameter rA has been set equal to 0.01,
moreover for all the elements the feedback gains G(j has been set equal to 100.

The following examples has been considered:

(i) dynamic response to a unit impulse vertical force applied at the tip of the wing;

(ii) aeroelastic response to a vertical gust in a supersonic flow (Mach number: M.. =1.5,
dynamic pressure: q = 5400N/m 2). Two classical laws are considered for the in-
cidence due to the gust; they are the rectangular gust:

1; 0< <T<T
0; r > T,
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PZT PVDF
YP 63 (GPa) 2 (GPa)
d3 1 171 e-12 (m/V) 23 e-12 (m/V)
d3 2  171 e-12 (m/V) 3 e-12 (m/V)
436 0 0

EB.. 10 e+5 (V/m) 80 e+5 (V/m)

Table 1: Piezoelctric material properties

with T. =20; and the 'one-minus-cosine' gust:
{ ~o<,.,T,1= -Co-

with To =5.

Figs.(4) and (5) represent the time histories of the vertical displacement and tor-
sional rotation respectively, corresponding to example (i). The thick line is relative
to the controlled system, while the thin line to the uncontrolled one. These figures
clearly show how the damping of the system has been largely increased by the active
piezoelectric elements in conjunction with DVFB control.

A physical limitation exists to the maximum voltage that can be applied to a piezo-
electric lamina, due to the fact that the electric field should not exceed the depoling field
E,,.. With the adimensionalization adopted in this work (see Eq.(31)), this means
that the non-dimensional voltage Vf, fed-back to each active element, should satisfy the
limitation: -1< V <51.

This condition is satisfied in the present case as it can be seen in Fig.(6). The
figure represents the non-dimensional voltage fed-back to the piezoelectric laminae of
the active element placed at the root of the wing; this element is the one with the
higher voltage applied to, because the root of the wing is a peak strain point for all the
modes.

Figs. (7) and (8) represent respectively the tip displacement and the torsional
rotation due to the rectangular gust of example (ii), while the same quantities relative
to the 'one-minus-cosine' gust are represented in Figs.(10) and (11). In these examples,
because the aerodynamic damping is larger than the structural viscous damping, a
fairly smaller percentage damping augmentaion is obtained. However the controlled
system still shows a satisfactory behaviour.

Figs. (9) and (12) give the voltage feed-back, in the controlled system, to the
element placed at the wing root for the rectangular and the 'one-minus-cosine' gust
respectively. As for the previous example the non-dimensional voltage is well inside the
range [-1,1].
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8 Conclusions

The dynamic aeroelastic behavior of an adaptative swept composite wing was examined.
A vibration control has been achieved by means of direct velocity feed-back. The

actuators and sensors needed in order to augment the control system are piezoelectric
laminae.

The numerical results show how the wing structural damping is increased using
the aforementioned direct velocity feed-back. They also illustrate the potential role of
piezoelectric actuators and sensors in the develpment of vibration control system.

Further investigation will be concentrated on the effects of the number of actuators,
their orientation and position on the wing.

Appendix A

Using the variable transformation adopted for the wing planform Eq.(27), the differen-
tiation rules for a generic function F(z, y) are:

OF [F•- Fu] (57)

OF 1 (F
O-•x c U (58)

where 0 = c/L is the inverse of the wing aspect ratio.
Following this rule we obtain for the non-dimensional curvature vector C the ex-

pression written in Eq.(32) of the main text, where:

C1 (u, i; t) = C1oQ0; )
C2(U,1;t) = C2o(q;t) + (#u)C2(Cq;t) + (#u) 2C22 (?1;t) (59)
C3 (u,17;t) = C3o(i;t) + (Ju)C31 (1;t)

and:

C1o(t 1;t) = 2W2(i7;t)

C2o(77; t) = Wo'(7; t) - 20W•(/; t) + 20 2W2(17; t)

C21(1;t) = W''(q;t) - 40W2(i ;t)
C22(17; 0 = W2'(17; t
C3o(/; t) = 2W•(ri;t) - 40W2(t7;t)

C3 1 (17;t) = 4W2(i/;t)

A local variable is then introduced for each element:

Z = 77- 17i (60)
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where 6i is the non-dimensional length of the finite element, so that the functions Wk(17)
re expressed in the form:

Wk(z; t) = Wko(t)v,1(z) + 6kWk(t)t2(z) + Wkl(t)t(z) + 6kWli(t)16 4(z) (61)

where the O, axe the describing functions used in the classic FEM formulation for a
beam:

h(x) = 1 -3z2 +2z3

062(z) = z(1 - 2z + z2 )

03(z) = -3z 2 - 2z3

04(Z) = -z 2 +Z3

As a consequence the degree of freedom vector of the j. - th finite element is:
= [(WOWMWi W 2W2W•)o (WoW•w WW 2w•)1 ] (62)

Using Eqs.(59) and (61) the classical finite elements rules are used in order to build the
mass and stiffness matrices, and the force vector that appear in Eq.(33) of the main
text.

As far as the vector Pi is concerned, that appears in the piezoelectric elements,
since properties of the piezoelectric laminae and the voltage applied are constant in the
element, from Eqs.(33) and (35), we have:

Pi = rA is. CTds (3pjr ~d i(63)

Using, Eqs.(59) and (61), we can set:

s. CdS = AXi (64)

and finally:
Pi = rAAT j
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Figure 4: Tip displacement response to an impulse force with and without control.
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Figure 5: Tip torsional rotation response to an impulsive force with and without control.
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Figure 6: Voltage applied to the piezo (impulse response).

0.0033 - - -
0.002 2---- CO-t,.

0.001- - Al mIntr-

-0.001 A
Wo -0.002 I -I I -

-0.003 i n-
-0.004 - __

-0.005 -_ --

-0.006
-0.007

0 5 10 15 20 25 30 35 40 45 50
7-

Figure 7: Tip displacement response to a rectangular gust with and without control.
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Figure 8: Tip torsional rotation response to a rectangular gust with and without control.
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Figure 9: Voltage applied to the piezo (rectangular gust response).
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Figure 10: Tip displacement response to the 'one-minus-cosine' gust with and without
control.
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Figure 11: Tip torsional rotation response to the 'one-minus-cosine' gust with and
without control.
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Figure 12: Voltage applied to the piezo ('one-minus-cosine' gust)
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