

US Army Corps of Engineers

Los Angeles District

OTIC FILE CORY

SANTA ANA RIVER BASIN, CALIFORNIA

AD-A204 543

Design Memorandum No. 1

SELECTE FEB 0 3 1989

PHASE II GDM ON THE SANTA ANA RIVER MAINSTEM including Santiago Creek

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

VOLUME 3 LOWER SANTA ANA RIVER APPENDIXES

89 2 C 107

· · · · · · · · · · · · · · · · · · ·	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOV	ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
Design Memorandum No. 1	- I II I I I I I I I I I I I I I I I I
Design nemotandum No. 1	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Phase II GDM on the Santa Ana River Main	nstem
Including Santiago Creek	Final
Volume 3, Lower Santa Ana River	6. PERFORMING ORG. REPORT NUMBER
Appendices	
AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
U S Army Corps of Engineers	
Los Angeles District	}
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Paris and a District	AREA & WORK UNIT NUMBERS
Engineering Division	
300 N Los Angeles Street	
Los Angeles, CA 90012	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Project Management Branch	August 1988
300 N Los Angeles Street	13. NUMBER OF PAGES
Los Angeles, CA 90012	entrolling Office) IS. SECURITY CLASS. (of this report)
MONITORING NOCHOT HAME I HOUSE SQUI INTERIOR HOLD	
	Unclassified
Same as Controlling Office	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the abetract entered in Block	20, Il dillerent from Report)
	•
Approved for Public Release; Distribut:	ion Unlimited ·
18. SUPPLEMENTARY NOTES	
•	
9. KEY WORDS (Continue on reverse side if necessary and identify	y by block number)
- Geology - Geotechnical Condi	tions - Borrow
- Geology - Geotechnical Condi - Seismicity - Laboratoty Testing	tions - Borrow - Revetment
- Geology - Geotechnical Condi	tions - Borrow - Revetment
- Geology - Geotechnical Condi - Seismicity - Laboratoty Testing	tions - Borrow - Revetment
- Geology - Geotechnical Condi - Seismicity - Laboratoty Testing - Invert - Design Application	tions - Borrow - Revetment s - Concrete Materials
- Geology - Geotechnical Condi - Seismicity - Laboratoty Testing - Invert - Design Application	tions - Borrow - Revetment s - Concrete Materials
- Geology - Geotechnical Condi - Seismicity - Laboratoty Testing - Invert - Design Application	tions - Borrow - Revetment s - Concrete Materials by block number)
- Geology - Geotechnical Condi Seismicity - Laboratoty Testing - Invert - Design Applications 20. ABSTRACT (Continue so reverse side H necessary and Identify This appendix provides a description for	- Borrow - Revetment - Concrete Materials - by block number) - the project area, the geology,
- Geology - Geotechnical Condi Seismicity - Laboratoty Testing - Invert - Design Application: 20. ABSTRACT (Continue on reverse side if necessary and identify This appendix provides a description for faulting, seismicity, groundwater cond	- Borrow - Revetment - Concrete Materials by block number) or the project area, the geology, itions; describes the geotechnical
- Geology - Geotechnical Condi Seismicity - Laboratoty Testing - Invert - Design Application: 10. ABSTRACT (Continue on reverse elds if necessary and identify This appendix provides a description for faulting, seismicity, groundwater cond explorations and testing performed; pro-	- Borrow - Revetment - Concrete Materials by block number) or the project area, the geology, itions; describes the geotechnical esents the existing foundation
- Geology - Geotechnical Condi Seismicity - Laboratoty Testing - Invert - Design Application: - ABSTRACT (Continue on reverse side if necessary and identify This appendix provides a description for faulting, seismicity, groundwater cond	- Borrow - Revetment - Concrete Materials by block number) or the project area, the geology, itions; describes the geotechnical esents the existing foundation
- Geology - Geotechnical Condi Seismicity - Laboratoty Testing - Invert - Design Application: O. ABSTRACT (Continue on reverse elds if necessary and identify This appendix provides a description for faulting, seismicity, groundwater cond explorations and testing performed; pro-	- Borrow - Revetment - Concrete Materials by block number) or the project area, the geology, itions; describes the geotechnical esents the existing foundation
- Geology - Geotechnical Condi Seismicity - Laboratoty Testing - Invert - Design Application: O. ABSTRACT (Confinue on reverse side H recoverary and identify This appendix provides a description for faulting, seismicity, groundwater cond explorations and testing performed; pro-	- Borrow - Revetment - Concrete Materials by block number) or the project area, the geology, itions; describes the geotechnical esents the existing foundation
- Geology - Geotechnical Condi Seismicity - Laboratoty Testing - Invert - Design Application: O. ABSTRACT (Confinue on reverse side H recoverary and identify This appendix provides a description for faulting, seismicity, groundwater cond explorations and testing performed; pro-	- Borrow - Revetment - Concrete Materials by block number) or the project area, the geology, itions; describes the geotechnical esents the existing foundation
- Seismicity - Laboratoty Testing - Invert - Design Applications 20. ABSTRACT (Continue on reverse slide if necessary and identify This appendix provides a description for faulting, seismicity, groundwater cond explorations and testing performed; pro-	- Borrow - Revetment - Concrete Materials by block number) or the project area, the geology, itions; describes the geotechnical esents the existing foundation
- Geology - Geotechnical Condi Seismicity - Laboratoty Testing - Invert - Design Application: D. ABSTRACT (Confinue on reverse side if necessary and identify) This appendix provides a description for faulting, seismicity, groundwater cond explorations and testing performed; pro-	- Borrow - Revetment - Concrete Materials by block number) or the project area, the geology, itions; describes the geotechnical esents the existing foundation

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

A GEOTECHNICAL

C

R

LOWER SANTA ANA RIVER PHASE II GENERAL DESIGN MEMORANDUM APPENDIX A

GEOTECHNICAL APPENDIX

Mark COPL

U.S. ARMY CORPS OF ENGINEERS
LOS ANGELES DISTRICT

AUGUST 1988

Acces	ion For			
DTIC	ounced			
By				
Availability Codes				
Dist	Avail an Speci			
A-I				

CONTENTS

		Page
ī.	INTRODUCTION	A-I-1
	Purpose and Scope	A-I-1
	Location	A-I-1
	Pescription of Existing Conditions	A-I-1
	Weir Canyon Road to Katella Avenue	A-I-2
	Katella Avenue to Garden Grove Freeway	A-I-3
	Garden Grove Freeway to 17th Street	A-I-3
	17th Street to Adams Avenue	A-I-3
	Adams Avenue to Pacific Ocean	A-I-3
	Santa Ana Canyon	A-I-4
	Description of Proposed Improvements	A-I-4
	Weir Canyon Road to Imperial Highway (Reach 1)	A-I-5
	Imperial Highway to Katella Avenue (Reach 2)	A-I-5
	Katella Avenue to Santiago Creek (Reach 3)	A-I-5
	Santiago Creek to 17th Street (Reach 4)	A-I-6
	17th Street to Fairview Channel (Reach 5)	A-I-6
	Fairview Channel to Hamilton-Victoria Street	
	(Reach 6)	A-I-7
	Hamilton-Victoria Street to Pacific Ocean	
	(Reach 7)	A-I-7
	Santa Ana Canyon	A-I-7
	Material Disposal	A-I-7
II.	OPOLOGY	A-II-1
11.	GEOLOGY	
	Topography	A-II-1
	Regional Geology	A-II-1
	Local Geology	A-II-2
	General	A-II-2
	Coastal Plain	A-II-3
	Santa Ana Canyon	A-II-3
	Geologic Structure	A-II-4 A-II-4
	Faulting	A-11-4 A-11-4
	General	A-11-4 A-11-4
	Whittier Fault Zone	H-TT-4

		Page
	El Modeno-Peralta Hills Faults	A-II-5
	Newport-Inglewood Fault Zone	A-II-5
	Seismicity	A-II-6
	Historic Seismicity	A-II-6
	Fault Zone Seismic Parameters	A-II-7
	Potential Seismic Hazards	A-II-8
	Groundwater	A-II-8
	Basin Description	A-II-8
	Groundwater Levels	A-II-9
	Construction Considerations	A-II-11
	Sea Water Intrusion	A-II-12
	Subsidence	A-II-13
III.	INVESTIGATION	A-III-1
	General	A-III-1
	Existing Levees and Foundation	A-III-1
	Previous Investigation	A-III-1
	Recent Field Investigation	A-III-2
	Drop Structures and Stabilizers	A-III-2
	Previous Investigation	A-III-2
	Recent Field Investigation	A-III-2
	Invert	A-III-3
	Previous Investigation	A-III-3
	Recent Field Investigation	A-III-3
	Borrow	A-III-3
	Revetment	A-III-3
	Santa Ana Canyon	A-III-4
	Disposal Beach	A-III-4
IV.	LABORATORY TESTING	A-IV-1
	General	A-IV-1
	Levee Material	A-IV-1
	Foundation Material	A-IV-2
	Invert Material	A-IV-2
	Revetment	A-IV-2
	Disposal Beach	A-IV-2
٧.	GEOTECHNICAL CONDITIONS	A-V-1
	Weir Canyon Road to Imperial Highway (Reach 1)	A-V-1
	Imperial Highway to Katella Avenue (Reach 2)	A-V-2
	Katella Avenue to Santiago Creek (Reach 3)	A-V-5
	Santiago Creek to 17th Street (Reach 4)	A-V-6
	Seventeenth Street to Fairview Channel (Reach 5)	A-V-7
	Fairview Channel to Hamilton-Victoria Street	
	(Reach 6)	A-V-8
	Hamilton-Victoria Street to Pacific Ocean (Reach 7)	8-V-A
	Santa Ana Canvon	4 _V _Q

		Page
VI.	ANALYSES	A-VI-1
	Levee Analysis	A-VI-1
	Design Values	A-VI-1
	Seepage	A-VI-1
	Slope Stability	A-VI- 4
	Slope Protection	A-VI-7
	Drop Structure and Stabilizer Analysis	A-VI-8
	Design Values	8-1V-A
	Underseepage	8-VI-8
	Stone Protection	A-VI-9
	Bearing	A-VI-9
	Lateral Pressures	A-VI-9
	Sliding	A-VI-9
	Concrete Trapezoidal and Rectangular Channel	
	Analysis	A-VI-9
	Design Values	A-VI-9
	Subdrain	A-VI-10
	Levee Slope Stability	A-VI-10
	Bearing	A-VI-11
	Lateral Forces	A-VI-11
	Disposal Beach Compatibility Analysis	A-VI-11
	Compatibility Criteria	A-VI-11
	Disposal Beach	A-VI-12
	Invert Material	A-VI-12
	Compatibility	A-VI-12
VII.	DESIGN APPLICATIONS AND CONSTRUCTION CONSIDERATIONS	A-VII-1
111.	Project Dewatering	A-VII-1
	General	A-VII-1
	Diversion	A-VII-1
	Groundwater	A-VII-2
	Cofferdam	A-VII-2
	Levee Construction	A-VII-2
	New Construction	A-VII-2
	Geometry	A-VII-2
	Foundation Treatment	A-VII-2
	Sources of Material	A-VII-3
	Construction Requirements	A-VII-3
	Reconstruction	A-VII-4
	Geometry	A-VII-4
	Foundation Treatment	A-VII-4
	Sources of Material	A-VII-4
	Construction Requirements	A-VII-
	Slope Protection	A-VII-5
	Stone Sources	A-VII-5
	Stone Quality	A-VII-5
	Stone Assessment	A-VII-6
	Revetment	

		Page
	Filter Stone	A-VII-8
	Grouted Stone	A-VII-9
	Drop Structure and Stabilizer Construction	A-VII-9
	Required Excavation	A-VII-9
	Foundation Preparation and Backfill	A-VII-10
	Geometry	A-VII-10
	Invert Structure Stone	A-VII-10
	Drain Blanket	A-VII-11
	Levee Facing	A-VII-11
	Santa Ana Canyon Sheetpile	A-VII-12
	Concrete Channel Construction	A-VII-12
	Channel Excavation	A-VII-12
	Foundation Preparation	A-VII-12
	Subdrain Construction	A-VII-12
	Embankment Construction	A-VII-14
	Backfill	A-VII-14
	Beach Disposal	A-VII-15
	Acceptable Invert Excavation	A-VII-15
	Placement	A-VII-15
VIII.	CONCRETE MATERIALS	A-VIII-1
	General	A-VIII-1
	Aggregate Sources	A-VIII-1
	General	A-VIII-1
	Blue Diamond Materials	A-VIII-1
	Foster Sand and Gravel	A-VIII-2
	Owl Rock	A-VIII-2
	Transit Mixed Concrete	A-VIII-2
	Cementitious Materials	A-VIII-2
	Cement Sources	A-VIII-2
	Pozzolan Source	A-VIII-4
	Admixtures	A-VIII-4
	Water	A-VIII-5
	Curing Compounds	A-VIII-5
	Transit Mixed Concrete	A-VIII-5
	Recommendations	A-VIII-5
	Aggregates	A-VIII-5
	Cements	A-VIII-6
	Pozzolans	A-VIII-6
	Admixtures	A-VIII-6
	Air Entraining Admixtures	A-VIII-6
	Accelerating Admixtures	A-VIII-6
	Retarding Admixtures	A-VIII-6
	Water Reducing Admixtures	A-VIII-6
	Mix Proportioning	A-VIII-7
IX.	SELECTED BIBLIOGRAPHY	A-IX-1

		Page
	Tables	
1. 2. 3.	Existing Channel Conditions	T 1.1 T 2.1
4. 5. 6.	Since 1900	T 3.1 T 4.1 T 5.1 T 6.1
7. 8. 9.	SPD Laboratory Tests	T 7.1 T 8.1 T 9.1
11.	Test Results	T 10.1 T 11.1
	Pigures	
1. 2. 3. 4. 5. 6. 7.	Index Map of the Los Angeles Region Showing Major Alluvia General Physiography and Structural Features of the Los A Basin Orange County Groundwater Basin Orange County Groundwater Basin-Groundwater Contour Map Drop Structure-Proposed Section Invert Stabilizer-Proposed Section Beach Compatibility Gradation Envelopes	
	Plates	
3/3! 1 5	Project Location - Site Map Existing Condition - Typical Details Proposed Improvements - Typical Details General Site Geology - Plan Earthquake Epicenter and Fault Location Map Groundwater Profiles Seawater Intrusion	
84 8B/I	Plan and Profile - Sta. 1210 to Sta. 1160 Logs of Investigation - Corps of Engineers Logs of Investigation - Others Plan and Profile - Sta. 1160 to Sta. 1095	
9A/E 90 10 10A/E 100	Logs of Investigation - Others Plan and Profile - Sta. 1095 to Sta. 1030 Logs of Investigation - Corps of Engineers	

Plates (Continued)

Plan and Profile - Sta. 1030 to Sta. 965 11A/C. Logs of Investigation - Corps of Engineers 11D/E. Logs of Investigation - Others 12. Plan and Profile - Sta. 965 to Sta. 905 12A/C. Logs of Investigation - Corps of Engineers 12D/F. Logs of Investigation - Others 13. Plan and Profile - Sta. 905 to Sta. 845 13A/C. Logs of Investigation - Corps of Engineers 13D/E. Logs of Investigation - Others 14. Plan and Profile - Sta. 845 to Sta. 780 14A/C. Logs of Investigation - Corps of Engineers 14D/F. Logs of Investigation - Others 15. Plan and Profile - Sta. 780 to Sta. 715 15A/C. Logs of Investigation - Corps of Engineers 15D/F. Logs of Investigation - Others 16. Plan and Profile - Sta. 715 to Sta. 650 16A/B. Logs of Investigation - Corps of Engineers 16C/D. Logs of Investigation - Others 17. Plan and Profile - Sta. 650 to Sta. 585 17A/B. Logs of Investigation - Corps of Engineers 17C/D. Logs of Investigation - Others 18. Plan and Profile - Sta. 585 to Sta. 520 18A/C. Logs of Investigation - Corps of Engineers 18D/E. Logs of Investigation - Others 19. Plan and Profile - Sta. 520 to Sta. 455 19A/C. Logs of Investigation - Corps of Engineers 19D. Logs of Investigation - Others 20. Plan and Profile - Sta. 455 to Sta. 390 20A/B. Logs of Investigation - Corps of Engineers 20C. Logs of Investigation - Others 21. Plan and Profile - Sta. 390 to Sta. 325 21A/B. Logs of Investigation - Corps of Engineers 21C/D. Logs of Investigation - Others 22. Plan and Profile - Sta. 325 to Sta. 260 22A/C. Logs of Investigation - Corps of Engineers 22D/E. Logs of Investigation - Others 23. Plan and Profile - Sta. 260 to Sta. 195 23A/C. Logs of Investigation - Corps of Engineers 23D. Logs of Investigation - Others 24. Plan and Profile - Sta. 195 to Sta. 130 24A/C. Logs of Investigation - Corps of Engineers 24D. Logs of Investigation - Others 25. Plan and Profile - Sta. 130 to Sta. 60 25A/F. Logs of Investigation - Corps of Engineers 25G. Logs of Investigation - Others

Plates (Continued)

- 26. Plan and Profile Sta. 60 to Sta. 0+00
- 26A/E. Logs of Investigation Corps of Engineers
 - 26F. Logs of Investigation Others
 - 27. Plan and Profile Santa Ana Canyon
- 27A/B. Logs of Investigation Corps of Engineers
 28. Plan of Disposal Beach Investigation
 29. Slope Stability Conditions Reach 1
 30. Slope Stability Conditions Reach 1,2

 - 31. Slope Stability Conditions Reach 2
 - 32. Slope Stability Conditions Reach 3
 - 33. Slope Stability Conditions Reach 3,4
 - 34. Slope Stability Conditions Reach 4
 - 35. Slope Stability Conditions Reach 5
 - 36. Slope Stability Conditions Reach 5
 - 37. Slope Stability Conditions Reach 6,7
 - 38. Slope Stability Conditions Santa Ana Canyon 39. Sources of Aggregate Cements and Pozzolans

Attachment

1. Report of Soils Tests-SPD Laboratory

January 1980 September 1983 December 1985 January 1986

I. INTRODUCTION

Purpose and Scope

1-01 Geotechnical investigations were conducted to determine and evaluate the topography, geology, and groundwater and foundation conditions of the Lower Santa Ana River. This appendix provides a description of the project area; the geology, faulting and seismicity; groundwater conditions; describes the geotechnical explorations and testing performed; presents the existing foundation conditions; and parameters used in the project design. Recommendations are given for foundation treatment, embankment design, subdrainage systems, disposal site compatibility, and construction applications.

Location

1-02 The channelization measures for the Lower Santa Ana River discussed in this report extend approximately 23 miles through the northwestern portion of Orange County, California. The project begins at Weir Canyon Road and ends at the Pacific Ocean between Huntington and Newport Beaches. Localized improvements are also proposed within Santa Ana Canyon, immediately below Prado Dam. The proposed project is shown on plate 1. All Lower Santa Ana River stationing within this report is based upon the Phase I GDM alignment, as shown in table A. The Santa Ana Canyon stationing will not be adjusted.

Description of Existing Condition

1-03 Channelization of the Lower Santa Ana River, from Weir Canyon Road to the Pacific Ocean, currently consists of several types. Typical channel sections are described in the following paragraphs. The reaches are defined by the existing geometry and structures. A tabulation of designed and existing conditions along the Lower Santa Ana River is shown in table 1. Typical existing cross-sections from the original construction drawings are shown on plate 2.

Table A. Lower Santa Ana River.

Phase I-Phase II Stationing
Equation Table

Landmark	Phase I Station (as used in this appendix)	Phase II Station
Weir Canyon Road	1202+00	1207+10
Imperial Highway	1057+50	1055+50
Lakeview Avenue	975+50	983+48
Riverside Freeway	918+50	926+28
Santa Fe Railroad	890+00	897+80
Lincoln Avenue	813+50	821+50
Ball Road	742+00	749+30
Katella Avenue	701+00	708+92
Orange Freeway	675+00	682+45
Santa Ana Freeway	617+50	625+40
Garden Grove Freeway	595+00	603+17
Santiago Creek	558+50	566+00
17th Street	513+50	521+30
Edinger Avenue	385+00	392+80
Harbor Boulevard	342+00	349+90
San Diego Freeway	254+34	262+20
Adams Avenue	163+71	171+32
Fairview Channel	145+00	150+32
Hamilton-Victoria	82+16	90+40
Pacific Coast Highway	9+47	17+20

WEIR CANYON ROAD TO KATELLA AVENUE

1-04 From Weir Canyon Road downstream to a point about 1100 feet south of Katella Avenue, a distance of 9.5 miles, the existing channel is trapezoidal in cross section with a soft bottcm invert and stone revetted side slopes of 1V on 2H, extending to a depth of 9 feet below invert. It has a base width ranging from 300 feet at the upstream end to 320 feet near Katella Avenue, and levee heights ranging from 12 to 14 feet. Below Imperial Highway, to Katella Avenue, a series of water retention basins exist which parallel the river outside the right levee. The water elevation in these basins is controlled by weirs and is retained at an elevation approximately level with that of the adjacent river invert. Within this reach there is one invert stabilizer and eight drop structures.

KATELLA AVENUE TO GARDEN GROVE FREEWAY

1-05 Downstream from Katella Avenue to the Garden Grove Freeway, a channel reach of 2.1 miles, the earth-bottom trapezoidal channel has a base width varying between 240 to 270 feet, a levee height ranging from 12 to 16 feet, and side slopes changing from 1V on 1.5H to 1V on 3H. The upper 500 feet of channel with the steeper side slopes has concrete slope protection, and the remaining reach of this channel has flatter stone-revetted slopes, extending to a depth of 9 feet below invert. Within this reach of channel, two drop structures, approximately one mile apart, were constructed by the Orange County Flood Control District. There are also two invert stabilizers.

GARDEN GROVE FREEWAY TO 17TH STREET

1-06 For a distance of 1.5 miles, from south of the Garden Grove Freeway to the vicinity of north of 17th Street, the river has only limited improvement. About half of the banks are protected by pipe and wire fence, and the remaining banks within the River View Golf Course are stabilized by turf. One drop structure has been constructed at the southern end of this reach.

17TH STREET TO ADAMS AVENUE

1-07 From approximately 1200 feet upstream of 17th Street to about 3000 feet downsteam of Adams Avenue, a reach of 7.4 miles, the channel is well entrenched with a soft bottom, trapezoidal cross section, and levee heights ranging from 13 to 17 feet. The side slopes, varying from 1V on 1.5H to 1V on 2H, are protected with reinforced concrete, which extends 8 feet below invert. The base width of the channel varies significantly within this reach, ranging from 180 to 230 feet. Since 1980, seven invert stabilizers have been constructed within this reach.

ADAMS AVENUE TO PACIFIC OCEAN

1-08 Downstream from Adams Avenue for a distance of 1.8 miles, the base width of the soft-bottom trapezoidal channel varies from 230 to 160 feet. The channel height varies from approximately 16 to 18 feet. The side slopes of the channel are 1V on 1.5H and are protected with reinforced concrete, which extends to 4 feet below invert. A riprap toe protection continues to a depth of 7 feet below invert.

1-09 From the above reach to the Pacific Coast Highway, the distance is 0.6 miles. The channel base width is 160 feet except at the downstream 0.2 miles where the width changes to 180 feet and the soft-bottom channel changes in cross section from trapezoidal to rectangular. The wall height for both types of channel sections is approximately 16 feet. The vertical channel walls are constructed with reinforced concrete. The invert is concrete paved.

1-10 The outlet of the Santa Ana River is located south of the Pacific Coast Highway in Huntington Beach where the river enters the Pacific Ocean. The outlet consists of a transition section, from rectangular to trapezoidal, with a stone jetty containment. The 700-feet long channel reach has a soft bottom invert with a base width that increases from 180 to 316 feet, as the Greenville-Banning and Huntington Beach channels converge with the Santa Ana River at the mouth.

SANTA ANA CANYON

1-11 This portion of the Santa Ana River is located just below Prado Dam in an area that has limited development and minor floodproof improvements, by locals, scattered throughout this reach. The entrenched river meanders through the 9-mile long canyon with a base width ranging from 250 feet at the drop structure to approximately 100 feet in the Green River Golf Course area. At the drop structure, there is an approximately 8 feet change in elevation of the river with the surrounding terrain being typical of flood plain areas. At the Green River Golf Course, the river flows under the Santa Fe railroad bridge and continues on through the golf course in a well defined path flowing under several foot and golf cart bridges. The surrounding floodplain area (golf course) is a well kept grass with many mature trees and shrubs.

Description of Proposed Improvements

1-12 The Lower Santa Ana River improvements vary according to the parameters of hydraulic capacity, right-of-way constraints, and geotechnical conditions. For the purpose of geotechnical analyses, seven reaches of the river have been identified as having distinguishing characteristics. The proposed project is described in the following subparagraphs in terms of the unique geometric conditions of each particular reach. See plate 3 for proposed typical cross sections of each reach. The geotechnical conditions within these reaches will be discussed in subsequent paragraphs. A summary of the future flow conditions, including the design flow of 30,000 cfs, is presented below:

All River Plan - Future Flow Conditions

Q - cfs	2000	5000	10,000	20,000	30,000	
Days Exceeding Q in 100 years	3490	1512	655	201	10	

WEIR CANYON ROAD TO IMPERIAL HIGHWAY, (REACH 1; Main Report-Sta. 1207+10 to 1055+50; This Appendix-Sta. 1202+00 to 1057+50).

1-13 Along this 3-mile reach the existing cross-section of channel will be utilized to the extent practical. Two new drop structures will be constructed between Weir Canyon Road and Imperial Highway to supplement the existing one, with four stabilizers added between the drop structures. Material between invert structures will be removed and the result will be that the invert level will be about 5 feet lower. The new levee crest will be about the same or up to 4 feet higher than the existing, depending on the location. The levee slopes will be revetted with grouted stone.

1-14 As the levee height is increased on the south side of the river upstream from Imperial Highway, the levees will be built upward and outward into the existing river channel. The close proximity of the Riverside Freeway on the south side makes it impractical to encroach into the freeway right-of-way. In order to obtain a usable channel base width of between 290 and 300 feet it will be necessary to rebuild about 2-1/2 miles of the existing north levee. The channel centerline would be shifted about 20 feet northward. A transition will bring the channel back to the existing centerline just upstream of the Imperial Highway bridge.

IMPERIAL HIGHWAY TO KATELLA AVENUE, (REACH 2; Main Report-Sta. 1055+50 to 708+92; This Appendix-Sta. 1057+50 to 701+00).

1-15 Improvements in this 7-mile reach will consist of upgrading the existing trapezoidal earth-bottom channel. To provide greater channel capacity, levee heights will generally remain at the existing height, but will be raised up to 3 feet, depending on location with respect to drop structures. Typically, the channel side slopes will be revetted with grouted stone. Approximately 1 mile of channel slopes, however, will be covered with riprap. The rock toe revetment will be extended to a lower elevation. The seven existing drop structures will be hydraulically redesigned. Twelve new invert stabilizers will be located within this reach. The spreading basins adjacent to the flood control channel will remain. At bridge crossings, a minor amount of work will be necessary; for example, access ramps above and below the bridges will be provided or restored as necessary. Ramp work will be designed by the County.

KATELLA AVENUE TO SANTIAGO CREEK, (REACH 3; Main Report-Sta. 708+92 to 566+00; This Appendix-Sta. 701+00 to 558+50).

1-16 In the 3-mile reach of river from south of Katella Avenue downstream to the Garden Grove Freeway, the channel will be trapezoidal with a soft bottom. The existing channel base width narrows from about 320 feet upstream of Katella Avenue to 270 feet downstream. Rather than widen the channel, the levee crest levels will be raised about 3 to 5 feet. The channel will continue with about a 270-foot base width and an average 16-foot depth, to the confluence with Santiago Creek. The

revetment will be strengthened by the uses of approximately 1 mile of grouted stone slope protection, and a generally larger riprap size. There are three new drop structures and five new stabilizers in this reach.

SANTIAGO CREEK TO 17TH STREET, (REACH 4; Main Report-Sta. 556+00 to 521+30; This Appendix-Sta. 558+50 to 513+50).

1-17 At the Santiago Creek confluence, the east revetment will bend around to the north bank of the creek and stop about 200 feet upstream. On the west side of the river, a grouted stone slope will continue to a transition into a concrete channel about 700 feet upstream from 17th Street. A grouted stone drop structure will be constructed immediately upstream from the Santiago Creek confluence.

17TH STREET TO FAIRVIEW CHANNEL, (REACH 5; Main Report-Sta. 521+30 to 150+32; This Appendix-Sta. 513+50 to 145+00).

- 1-18 This 7-mile reach of channel currently has concrete side slopes extending about 8 feet below the existing soft bottom invert. To gain more capacity, the recommended plan calls for conversion to a paved, hard bottom channel.
- 1-19 In the reach from 17th Street down to about the San Diego Freeway, the top width of channel would be about the same as the existing top width, in the range of 242 to 250 feet. The slopes and invert would be paved. The channel will be about 18 feet deep.
- 1-20 South of Edinger Avenue, the river is no longer deeply entrenched. The levees rise to about 12 feet above the natural ground line, with the river bottom only about 3 feet below the ground line. The river bottom will be lowered an average of about 5 feet in order to increase channel capacity.
- 1-21 In the reach from the San Diego Freeway down to the Fairview channel, the top (and base) width of channel would be about the same as the existing top width, but within this reach the channel would be converted to a rectangular, hard-bottom channel.
- 1-22 Near Adams Avenue, the channel gradient flattens from 9 feet per mile to about 3 feet per mile. At this point the concrete channel will widen from 250 to 365 feet, and the wall heights will increase from about 18 to 21 feet to accommodate the slower flow. To avoid additional right-of-way requirements along the east side of the Greenville-Banning channel near Adams Avenue, the Santa Ana and Greenville-Banning channels will be located very close to one another. Thirty feet of clearance will be maintained between the two channels to provide for an elevated access road. Ramps constructed along the reach will provide access into the concrete channel. At several bridges, tunnel underpasses will be constructed to retain grade-separated crossings. Several bridges will be rebuilt or modified. All bridge, tunnel and ramp improvements will be designed by the County.

FAIRVIEW CHANNEL TO HAMILTON-VICTORIA STREET, (REACH 6; Main Report-Sta. 150+32 to 90+40; This Appendix-Sta. 145+00 to 82+16).

1-23 The Santa Ana River will transition and widen to 450 feet in the area adjacent to the Greenville-Banning channel confluence with the Fairview channel. The main channel will transition from concrete to soft bottom with revetted slopes. A soft bottom (approximately 8 feet lower than the existing) is required in this tidal zone of the Santa Ana River for environmental reasons. The Greenville-Banning channel will parallel the Santa Ana River as a concrete bottom channel.

HAMILTON AVENUE-VICTORIA STREET TO THE PACIFIC OCEAN, (REACH 7); Main Report-Sta. 90+40 to End; This Appendix-Sta. 82+16 to End).

1-24 The Santa Ana River and Greenville-Banning channels will be merged into one common soft bottom channel just below the Hamilton Avenue-Victoria Street Bridge. The Santa Ana River and Greenville-Banning combined channel will be about 22 feet deep and 480 feet wide. The channel bottom will be lowered to 10 feet. The revetted channel slopes will continue to within 500 feet of the ocean; at that point, the channel walls will transition to stone jetties that extend to the low tide line.

SANTA ANA CANYON

1-25 The Corps of Engineers will construct localized improvements in the canyon reach, to supplement existing improvements by others. The proposed Corps improvement at the existing drop structure (below Hwy. 71) will consist of extending a 23 foot deep steel sheet pile wall on both sides. The sheet piles will extend 45 degrees back from ends of the drop structure, for a length of 100 feet, to prevent eddy current erosion.

1-26 The proposed Corps improvement at the Green River Golf Course area will consist of a levee along the south side of the river to protect an existing mobile home park. The upstream portion of the levee will tie into the existing Santa Fe bridge abutment and the dowstream end will tie into the Riverside Freeway (State Highway 91). The levee will be approximately 4 feet higher than the existing ground surface and the riprap slope protection will extends downward at a 1V on 2H slope approximately 40 feet to provide protection below the river's thalweg.

MATERIAL DISPOSAL

1-27 During construction of the river channel, an estimated 4.5 million cubic yards of material will be excavated from the channel bed. Some of the required excavation will be used for channel improvement. The excess material, which naturally would be deposited in the ocean by floodflows, may be placed on neighboring beaches between Anaheim Bay and Newport Bay if it is deemed suitable for such use. Additional inland disposal sites have been identified, by utilizing existing landfill operation and depleted gravel mining sites. The inland disposal sites are discussed in the environmental appendix.

II. GEOLOGY

Topography

2-01 The Lower Santa Ana River project is situated within the southeastern (Orange County) part of the Los Angeles basin (see fig. 1), a broad alluviated lowland plain on the coast of southern California at the north end of the Peninsular Ranges province. The physiographic basin is bounded on the east and southeast by the Santa Ana Mountains and San Joaquin Hills and on the northwest and north by the Santa Monica Mountains and the Elysian, Reppetto, Puente and Chino Hills of the Transverse Ranges province. Elevations in the rolling hills to mountainous terrain that rim the coastal plain range from 200 feet to more than 5000 feet above sea level.

2-02 The Santa Ana River has its headwaters in the San Bernardino Mountains and flows across the Upper Santa Ana Valley to Prado Dam. Downstream from Prado Dam, the Santa Ana River flows through the relatively narrow steep-sided Santa Ana Canyon for a distance of approximately 9 miles. The north side of the canyon is bounded by the rolling topography of the Chino Hills (also known as the eastern Puente Hills). On the south side, the more rugged, higher, and more geologically diverse Santa Ana Mountains bound the canyon. Downstream from Santa Ana Canyon, the river flows across the Los Angeles basin, also referred to as the central plain in figure 2. The river flows through a coastal lowland known as the Santa Ana Gap before entering the Pacific Ocean. The gap is an alluvial valley about 2-1/2 miles wide, bounded on either side by highland areas known as the Huntington Beach and Newport Mesas. The mesas range in elevation from about 50 to 85 feet higher than adjoining areas in the gap.

Regional Geology

2-03 The Los Angeles basin is underlain by a northwest trending structural depression (see fig. 2), parts of which have been the site of discontinuous deposition since late Cretaceous time and of continuous

subsidence and deposition since late Tertiary time (Yerkes and others, 1965). The Precambrian to Cretaceous age igneous and metamorphic basement rocks are overlain, in the deepest part of the basin, by approximately 30,000 feet of chiefly marine sediments ranging in age from Cretaceous to Holocene (Recent). Locally around the margins of the basin, particularly in the Santa Ana Mountains, these sediments have been stripped away by erosion to reveal the complex assemblage of basement rocks. A geologic map of the project area is shown on plate 4.

2-04 The Los Angeles basin in late Tertiary time extended well beyond its present day margins. However, tectonic forces subsequently produced several smaller depositional basins including the San Fernando, San Gabriel and Upper Santa Ana inland valleys. The rapidly rising mountains bordering the basin as well as changes in the sea level began to affect the cycle of erosion and deposition. As a result, up to several thousand feet of alluvial sediments derived from the surrounding highland areas were deposited in the ever deepening basins during the Pleistocene; a process which continues even today.

2-05 Near the mouth of the Santa Ana River, at the Santa Ana Gap, the geologic conditions are further complicated by deformation and uplift along the Newport-Inglewood structural zone. As a result of this deformation, early Pleistocene formations are exposed in mesas on either side of the river. The gap itself was created near the end of the Pleistocene when a major decline in sea level occurred. The ancestral Santa Ana River, in response to this changing base level, eroded a valley, the Santa Ana Gap, about 200 feet deep across the elevated coastal plain. After the last of the ice age glaciers melted and the sea level began to rise, the river began to aggrade, depositing coarse alluvium (the Talbert aquifer). As the rate of sea level rise slowed, the sediments became finer grained. These relatively impervious silts. clays, and organic deposits effectively confined the very permeable sands and gravels below. Generally speaking, these finer grained deposits are present from the Pacific Ocean to just below the confluence of the Santa Ana River and Santiago Creek. As a result, the Los Angeles basin in Orange County is hydrologically divided into two main subbasins (see fig. 3), the Santa Ana Forebay, which occurs generally north of the Santa Ana Freeway and is characterized by unconfined groundwater and the Santa Ana Pressure Area, which lies south of the freeway and is characterized by confined groundwater (California Department of Water Resources, 1959).

Local Geology

GENERAL

2-06 The Los Angeles basin contains a thick succession of Late Cretaceous through Pleistocene marine and nonmarine clastic sedimentary rocks and interbedded volcanic rocks of middle Miocene age. This assemblage overlies rocks of the Jurassic to Late Creteceous-age basement complex. Regional stratigraphic studies infer that, in the

central part of the basin, the lower parts of this succession are thinned or missing beneath younger rocks; the Pliocene and Quaternary strata are as much as four times as thick as in the Santa Ana Mountains; and the entire depositional sequence attains a maximum thickness of about 30,000 feet (Yerkes and others, 1965). The basement complex includes the Bedford Canyon Formation, the Santiago Peak Volcanics, and intrusive plutonic rocks of the southern California batholith.

COASTAL PLAIN

2-07 The lowest sedimentary rocks overlying the basement complex consist of up to approximately 10,000 feet of predominantly sandstone and conglomerate of Late Cretaceous to early Miocene age. These rocks are overlain by up to several thousand feet of middle and upper Miocene marine sandstones, siltstones, and conglomerates assigned to the Topanga and Puente Formations. Locally, thick sequences of Miocene age intrusive and extrusive igneous rocks occur in several parts of the basin. Rocks of Miocene age are overlain by about 2000 feet of lithologically similar marine sediments of the early Pliocene lower member of the Fernando Formation. The upper member of the Fernando Formation, locally called the Pico Formation, follows in stratigraphic sequence, and consists of up to 5000 feet of Late Pliocene age marine sediments, similar in composition to those of the lower member. Pleistocene marine and nonmarine deposits range in thickness from about 200 to 2500 feet. They are divided into the San Pedro Formation of early Pleistocene age, unnamed middle Pleistocene deposits, and the La Habra Formation of Late Pleistocene age. In the Santa Ana Gap, the entire upper Pleistocene section, which ranges in thickness from 0 to 400 feet, has been designated the Lakewood Formation by the California Department of Water Resources (1961). Sediments of Holocene (Recent) age consist of alluvial and littoral deposits of clay, silt, sand, gravel, and peat. In the Santa Ana Gap, the Recent unit has been divided into upper and lower zones. Fine sand, silt, and clay of low permeability form the upper zone above the permeable coarse sands and gravels of the lower zone. These deposits range in thickness from 0 to a maximum of 180 feet in the Santa Ana Gap.

SANTA AMA CANYON

2-08 The Santa Ana Canyon is approximately 9 miles long and only 0.3 miles wide at the narrowest place, just below Prado Dam. The Quaternary alluvial fill in the canyon has a nearly uniform thickness of from 80 feet near the upper end to 100 feet in the lower part. The alluvial deposits are coarsest at depth, where boulders from 1 to 2 feet in diameter are present. The deposits are predominantly sandy near the surface. The bedrock floor beneath the streambed alluvium is deeper above the head of the canyon and below its mouth. Remnants of alluvial material deposited by the Santa Ana River at elevations now above the active stream channel are present as terraces on both sides of Santa Ana Canyon. Bedrock exposures in the mountains and hills which border the canyon consist generally of marine and nonmarine sandstones, siltstones, and conglomerates of Late Cretaceous to Pleistocene age. Rocks of the

older basement complex, consisting of Santiago Peak Volcanics and related intrusive rocks, outcrop near the upper end of the canyon in the Santa Ana Mountains.

GEOLOGIC STRUCTURE

2-09 The depth to the basement surface along the Santa Ana River is influenced by several northwest-trending structural features, the major ones being a doubly plunging synclinal trough underlying the central part of the basin and an anticlinal feature known as the Anaheim nose (see fig. 2). Depths to basement rock range from about 14,000 to 16,000 feet below sea level in the Santa Ana Gap area, rising gently to an average subsea depth of 9500 feet in the axial part of the Anaheim nose. The northeast flank of the anticline slopes down to an average subsea depth of about 12,000 feet in the lower portion of the Santa Ana Canyon area. Depths to basement rock are much shallower in the upper reaches of the canyon, where they have been complicated by faulting.

Faulting

GENERAL

2-10 The Lower Santa Ana River. like most locations in southern California, is surrounded by active or historically active faults capable of generating earthquakes which could cause seismic shaking along the river. The most significant of these faults are listed in table 2 along with the magnitudes of maximum probable and maximum credible earthquakes, and postulated maximum horizontal accelerations in rock attenuated to the nearest limits of the project. The maximum credible earthquake (MCE), as defined by the U.S. Army Corps of Engineers (1983b), is the earthquake(s) associated with specific seismotectonic structures, source areas, or provinces that would cause the most severe vibratory ground motion or foundation dislocation capable of being produced at the site under the currently known tectonic framework. It is determined by judgement based on all known regional and local geological and seismological data. The maximum probable earthquake (MPE), however, is the earthquake that by probabilistic determination of recurrence could occur during the design life of the project. The major structural features within a 100-mile radius of the project area are shown on plate 5. The Lower Santa Ana River improvements between Prado Dam and the Pacific Ocean are in close proximity to or actually cross three main separate zones of faulting (see pl. 4), which are discussed in the following paragraphs.

WHITTIER PAULT ZONE

2-11 At the upstream end, the Whittier fault zone lies approximately 1 mile north and 0.5 miles south of the Weir Canyon Road and Green River Golf Course improvements, respectively. The Whittier fault zone, which consists of northwest trending sub-parallel branching and en echelon faults, extends from Whittier Narrows in Los Angeles County to Santa Ana

Canyon, a distance of about 25 miles, where it merges with the Elsinore fault zone, and continues through the Peninsular Ranges to the Gulf of California. As stated previously, lateral and vertical movement along the Whittier fault, since the late Tertiary, is at least partially responsible for the formation of the Chino Hills. Recent fault investigations along the trace of the fault have uncovered offsets in Holocene age alluvium (Dames and Moore, 1980). In addition, both micro and macro seismicity in the area suggest that the Whittier fault is active (Dames and Moore, 1980).

2-12 North of the Whittier fault zone lie two subsidiary west-trending faults, the Scully Hill and the Aliso Canyon faults (see pl. 4). The projected trace of the Scully Hill fault crosses the alluvial fill of the Santa Ana Canyon about 1200 feet north of the proposed Green River Golf Course improvements while the inferred trace of the Aliso Canyon fault is just below Prado Dam and less than 100 feet south of the Prado Dam outlet channel drop structure. These faults may be associated with either the Whittier or Elsinore fault zones, but they do not appear to be direct extensions or splays of either (Woodward-Clyde Consultants, 1980). The activity of these two faults is not known but apparently unfaulted Quaternary-age terrace deposits have been mapped across the Scully Hill fault in the Horseshoe Bend area of Santa Ana Canyon (Durham and Yerkes, 1964).

EL MODEMO-PERALTA HILLS FAULTS

2-13 Approximately 7 miles downstream of Weir Canyon Road, near Lincoln Avenue, the river crosses a poorly defined zone of possible concealed faulting, which might be a projection of either the Peralta Hills or El Modeno faults. The Peralta Hills fault, an east-trending, north-dipping thrust fault, has a mapped surface trace of more than 5 miles along the southern side of the Peralta Hills. The El Modeno fault is a northwest-trending, steeply-dipping normal fault which extends along the southwestern flank of the Santa Ana Mountains. fault trace segments lie separated by short expanses of alluvial materials but may in fact be connected into a continuous and discrete feature (Ryan and others, 1982). There is some evidence suggesting that both the El Modeno and Peralta Hills faults may displace Holocene (Recent) alluvium (Morton and others, 1976; Bryant and Fife, 1982; Ryan and others, 1982), including a possible groundwater barrier as evidenced by a significant differential in static water levels between key wells downstream from well no. 4S/9W-6P01 and upstream from well no. 4S/9W-8C01 (see pl. 6). The trace of the northern portion of the El Modeno fault has not been precisely located. Its trend may lie parallel to that of the Peralta Hills as shown on plate 4, or the fault, as Bryant and Fife (1982) suggest, may be truncated by or pass beneath the Peralta Hills fault.

HEWPORT-INGLEWOOD FAULT ZONE

2-14 The Newport-Inglewood fault zone, which extends from possibly Baja California to at least Santa Monica in Los Angeles County (a distance of approximately 150 miles), is the predominant structural/tectonic feature

to cross the Santa Ana River. The zone is approximately 4 miles wide near the mouth of the river (Santa Ana Gap). It is characterized by northwest trending parallel faults and folds. Within the Gap (downstream of the San Diego Freeway), three primary branch faults within the Newport-Inglewood fault zone have been mapped (see pl. 4). These branches are referred to as the South Branch fault, the North Branch fault, and the Bolsa-Fairview fault. The location and extent of the numerous individual faults in the gap area are predominantly defined in the subsurface from oil well data and groundwater barriers in the older basin sediments. Geologic evidence of surface faulting within the fault zone is minimal. Guptill and Heath (1981) reported that possible evidence of surface faulting on the North Branch of the Newport-Inglewood fault zone at Newport Mesa may be associated with the 1933 Long Beach earthquake. A study by Woodward-Clyde Consultants (1984) demonstrated that near-surface faulting on the Newport-Inglewood North Branch fault at Huntington Beach Mesa may be late Pleistocene or possibly Holocene in age. No evidence of surface faulting on these branches has been documented within the Santa Ana Gap. Despite the fact that there is little or no indication of direct shearing or displacement in the main body of the Recent sediments extending across the fault zone, the zone is seismically active as evidenced by the 1933 Long Beach earthquake, as well as subsequent macroseismic activity (Barrows, 1974).

Seismicity

HISTORIC SEISMICITY

2-15 The Lower Santa Ana River is located in Zone 4 of the Seismic Zone Map of the Contiguous States (U.S. Army Corps of Engineers, 1983a), an area of high seismic potential. The California Institute of Technology's seismologic data base for southern California, Nevada, and Arizona indicates a total of 592 earthquakes with Richter magnitudes equal to or greater than 4.0 have occurred within a 100-mile radius of the project area between February 1932 and January 1987. A plot of their epicenter locations, including magnitude 6.0 or greater events since 1900, are shown on plate 5. The most significant earthquakes (Richter magnitudes of 6.0 or greater) to occur within a 100-mile radius of the project area and their likely fault sources are listed in table 3. Earthquakes which could cause shaking along the river range from a major event on the San Andreas fault zone (approximately 30 miles northeast of the project area at its closest extent) to shaking and possible ground rupture from a near-field event on the Newport-Inglewood fault zone at the lower end of the project. The California Institute of Technology's 55-year computer record lists 165 earthquakes as having occurred within a 25-mile radius of the project area. The majority (150) of the events had Richter magnitudes between 4.0 and 4.9. Fourteen earthquakes had assigned magnitudes between 5.0 and 5.9, while the 1933 Long Beach event, with a Richter magnitude of 6.3 was the largest instrumentally recorded event in the area. However, the rate of seismicity has not been uniform throughout this period. Approximately 90 percent of these shocks occurred during the first 10 years of the record. Much of this

seismicity can be attributed to the 1933 Long Beach earthquake and aftershock sequence. Between January 1962 and January 1987, only six events, none with a magnitude greater than 4.5, occurred locally. The October 1, 1987 Whittier Narrows earthquake, with a Richter magnitude of 5.9 and an epicenter location a minimum of 19 miles northwest of the Santa Ana River, was the largest instrumentally recorded earthquake to occur near the project area since the 1933 Long Beach event.

FAULT ZONE SEISMIC PARAMETERS

- 2-16 The historical record, although brief, indicates that potentially damaging earthquakes have occurred, and, given the developed pattern of seismic activity, would be expected to occur during the design life of the project. Using the attenuation curves for horizontal accelerations in rock developed by Schnabel and Seed (1973) and Greensfelder (1974), a maximum credible earthquake of Richter magnitude 7.0 generated on the Newport-Inglewood fault zone near the mouth of the Santa Ana River would produce a maximum rock acceleration of approximately 0.7 g at that location. However, a maximum probable earthquake with a Richter magnitude of 6.0 would result in a lower maximum rock acceleration of slightly less than 0.6 g at the epicenter location. Similar rock accelerations could be produced at the upstream end of the project by a local maximum credible or maximum probable event on the Whittier-Elsinore fault system. Horizontal bedrock accelerations resulting from the recent (1987) Whittier Narrows earthquake were recorded by instrumentation at three Corps of Engineers' dams near the project area. Peak accelerations of 0.16 g and 0.22 g were recorded by the respective left abutment accelerometers at Brea Dam, located 5 miles northwest of the Santa Ana River and 14 miles southeast of the earthquake epicenter, and at Carbon Canyon Dam, located 9 miles north of the river and 17 miles southeast of the epicenter. A peak acceleration of 0.07 g was recorded at the left abutment of the more distant Prado Dam (28 miles from the earthquake epicenter). The magnitude 5.9 earthquake produced an estimated maximum rock acceleration of less than 0.15 g along the middle portion of reach 2 of the channel. However, no damage to any existing structures along the Lower Santa Ana River was reported.
- 2-17 Considerable uncertainty exists as to the tectonic significance of the Peralta Hills and El Modeno faults. Both faults may be capable of producing large-magnitude earthquakes (probably in the Richter magnitude 5.5 to 6.0 range). However, the Peralta Hills fault could represent only a surficial flexural-slip reverse fault which is related to the regional tectonics but is incapable of generating a large magnitude earthquake.
- 2-18 Despite the possibility of a magnitude 8-plus event on the San Andreas fault, attenuation of ground motions would produce a maximum acceleration in rock of only 0.25 g at the upstream limit of the project. A relationship between maximum accelerations on rock and on various soil conditions was developed by Seed and others (1976). Given a maximum acceleration in rock of 0.2 g, the maximum ground accelerations

developed on various alluvial deposits would range from approximately 0.15 to 0.2 g. However, for a higher rock acceleration of 0.5 g, acceleration values for soil would be more variable, ranging from approximately 0.25 to 0.45 g. In most cases, except when maximum accelerations in rock fall below 0.1 g, the highest values for alluvium are in stiff soil conditions.

2-19 Lamar, Merifield and Proctor (1973) have estimated point recurrence intervals for both the southern segment of the San Andreas fault system and the Whittier-Elsinore fault system. For magnitude 6 and 7 events on the Whittier-Elsinore system, recurrence intervals of 300 and 2000 years, respectively, have been estimated. In contrast, a magnitude 8 earthquake on the San Andreas fault has a much shorter recurrence interval, estimated to be about 200 years. Little information is available on recurrence intervals for the Newport-Inglewood fault zone. Woodward-Clyde Consultants (1983) estimated a return period of approximately 200 years for a large earthquake (magnitude 7.0).

POTENTIAL SEISMIC HAZARDS

2-20 In the historic past, the 1933 Long Beach earthquake with a Richter magnitude of 6.3 probably caused the greatest shaking along the Lower Santa Ana River (see pl. 4 for epicenter location). The Long Beach earthquake resulted in numerous surface expressions other than ground rupture. These included surface cracking due to lurching and settling, landslides and/or rockfalls, changes in water table elevations in wells and structural damage due to liquefaction, settling, or lurching. Disruption of the ground surface, not necessarily along known faults, will probably occur during any future event of the magnitude and duration of the Long Beach earthquake (Barrows, 1974). Cracking of the ground might cause damage to the project during any large magnitude shocks. In addition, elevation changes resulting from possible earthquake induced subsidence and uplift may also occur.

2-21 Rapid tectonic subsidence and/or uplift in the project area would most likely be associated with a major seismic event (magnitude greater than 6) on the Newport-Inglewood or Whittier-Elsinore fault zones. Elevation changes resulting from events with magnitudes less than 6 would be more localized and probably not measurable (Morton and others, 1976). Leveling surveys bracketing the Long Beach earthquake showed possible earthquake induced subsidence of as much as 0.4 feet and apparent uplift of as much as 0.6 feet in portions of the southern coastal plain area (Morton and others, 1976).

Groundwater

BASIN DESCRIPTION

2-22 The Lower Santa Ana River lies within the Orange County groundwater basin (see fig. 3) which includes the Santa Ana Gap area. The water-bearing sediments in the basin consist of Quaternary and some

late Tertiary alluvial deposits. In general, at least three distinct bodies of groundwater have been identified in the project area (Poland and others, 1956). They are: (1) a "semiperched" or shallow zone of water of variable chemical quality that occurs in the upper part of the Recent alluvium; (2) a zone of fresh groundwater or deeper zone that occurs in the lower part of the Recent alluvium as well as in Pleistocene and older units, and (3) a body of saline groundwater that underlies the fresh-water body and occurs in sediments of Tertiary age. The most important aquifer in the Recent alluvial deposits are the Talbert sands and gravels which extend from the lower end of Santa Ana Canyon to the Pacific Ocean. The Talbert aquifer has an average thickness of approximately 70 feet, and generally occurs above elevation -200 feet below sea level. The most important source of groundwater in the Pleistocene age sediments, underlying the Recent alluvium is the Main aguifer within the San Pedro Formation. This aguifer generally occurs at elevations between -500 and -200 feet below sea level and also tends to be continuous across the basin.

2-23 The groundwater basin is replenished naturally and artificially in the area generally north of the Santa Ana Freeway. To the south, groundwater occurs under artesian pressure in aquifers which are interbedded with sediments of low permeability. Thus percolation of surface waters to the aquifers in the pressure area is greatly restricted. The upper "semiperched" zone is essentially unconfined, and, according to Robbins (1986), regionally extensive rather than being composed of isolated discontinuous lenses. An evaluation of various types of groundwater data, including gradient directions, elevation of water levels, and water quality suggests an interrelation (i.e., hydraulic continuity) between the upper shallow zone and the deeper aquifers in the forebay area. The shallow zone generally occurs above a depth of 50 feet in the Recent deposits.

2-24 The Newport-Inglewood fault zone forms a more or less effective barrier to groundwater movement to and from the Pacific Ocean in sediments underlying the Recent deposits in the Santa Ana Gap area. These formations have been tilted and extensively faulted so that barriers to hydrologic continuity have been created and the saline ocean water cannot directly intrude them. Groundwater, however, appears to move in an unrestricted manner within the Recent sediments across the fault zone.

GROUNDWATER LEVELS

2-25 Groundwater information for the Lower Santa Ana River was obtained from Orange County Water District (OCWD) groundwater contour maps (OCWD, 1987), state water well records compiled by the California Department of Water Resources, and Robbins (1986). A November 1986 groundwater contour map of the Orange County groundwater basin is shown in figure 4. Water well data available for the project were used to develop piezometric groundwater profiles along the river which are shown on plate 6. The highest and lowest recorded groundwater elevations are depicted for key wells in the vicinity of the river. In addition, three

generalized water level profiles, two derived from OCWD November 1984 and November 1986 groundwater contour maps and one derived from a November 1984 shallow groundwater contour map by Robbins (1986) are shown. The upper 1984 profile represents the approximate level of the shallow zone while the lower 1984 profile and the 1986 profile are composites of water levels from the various deeper fresh water aquifers. In general, water levels along the Lower Santa Ana River tend to undergo monthly and seasonal fluctuations, primarily in response to the seasonal and cyclic unbalance between groundwater replenishment and draft. Examination of individual state well records indicates that water table elevations have varied considerably since the 1920's. Net changes range from as little as 10 feet to more than 150 feet. Recent though limited well data available for the project reach between Adams Avenue and Lincoln Avenue indicate that in 1985 seasonal variations in groundwater levels of between 4 and 15 feet occurred. In general, the highest water levels were measured during the winter and spring (February and May) while the lowest water levels were recorded in the summer and fall (August and November).

2-26 Upstream of the Santa Fe Railroad bridge, and in Santa Ana Canyon, the water table is fairly shallow because of the relatively thin alluvial cover. In the upper reaches of Santa Ana Canyon, between the Green River Golf Course and the Prado Dam drop structure, groundwater is generally present at an average depth of 20 feet outside the channel thalweg. A water table elevation of 435 feet was established for the Prado Dam outlet channel drop structure area as a result of field investigations by the Corps of Engineers in 1987. Water well data available for that reach of the canyon downstream of Prado Dam covering the proposed Green River Golf Course channel improvements indicate that the groundwater table in 1966-68 ranged from elevation 435 feet approximately 2 miles upstream from the golf course to elevation 417 feet near the golf course. Water levels were at their highest (5 to 6 feet above current levels) in this reach during 1939-40, prior to construction of Prado Dam, and only minor fluctuations, up to a maximum of about 15 feet, have been recorded since then. In the vicinity of Weir Canyon Road, the groundwater was at depths ranging from 15 to 18 feet (elevation 312 feet) in August 1982. In 1984, water levels recorded in wells just upstream of Weir Canyon Road near the Savi Ranch levee, showed similar depths to groundwater but with an average groundwater table elevation of 320 feet. In November 1986, water levels ranged from approximately 20 feet (elevation 240 feet) near Imperial Highway to approximately 35 feet (elevation 200 feet) near the Riverside Freeway.

2-27 As the river emerges from the canyon onto the coastal plain and the depth to bedrock increases, water levels in the deep aquifers decline sharply, to depths exceeding 100 feet. Plate 6 indicates a maximum depth to groundwater in November 1986 of about 135 feet (elevation +60 feet) near well 45/10W-7M01 (upstream of Lincoln Avenue). This rather anomalous steep gradient may indicate the existence of a possible fault related groundwater barrier (see paragraph 2-13). Downstream of Lincoln Avenue, water levels, despite some extreme fluctuations due to local recharge conditions (see November 1984 deeper

zone groundwater profile), become progressively shallower towards the ocean as the ground surface elevation decreases. Near the coast, the water table elevation tends to be at or near sea level (see pl. 6), fluctuating with the amount of natural and artificial recharge and pumping. This lower reach is also affected by the Newport-Inglewood fault zone. Between 1977 and 1985, there has been an overall rise in deeper groundwater levels throughout most of the basin, ranging from 10 feet in state well 6S/10W-5BO3, between Adams Avenue and the San Diego Freeway, to 30 feet in well 4S/10W-25FO1, near Orangewood Avenue. Information on water level trends in the shallow zone is not available but if the upper zone does mimic the deeper groundwater flow regime as Robbins (1986) suggests, then similar upward trends might be expected although the magnitude of such changes would probably be much less.

2-28 The "semiperched" shallow zone, as depicted on plate 6, generally occurs above a depth of 50 feet, and also becomes progressively shallower towards the ocean. Downstream of 17th Street, water levels in this upper zone are typically within 25 feet of the existing channel ground surface. A comparison of the differences in elevation between the shallow zone and deeper zone water levels by Robbins (1986) reveals that elevation differences on the order of 40 to 60 feet are common for most of the basin while in the northern portion of the basin (near Santa Ana Canyon) and near the coast, differences are minor and the two zones in a sense merge together. The Orange County Water District (1981) monitored the semiperched groundwater zone as part of their Green Acres Project study. Three observation wells, located near the river channel between 5th Street and the San Diego Freeway, encountered water at depths ranging from 27 feet (approximate elevation, 48 feet) in the upstream well to 9 feet (approximate elevation, 11 feet) in the downstream well.

2-29 Water levels encountered during subsurface explorations by the Corps of Engineers, along the Lower Santa Ana River alignment (see pls. 8 through 26), generally do not reflect the regional groundwater conditions previously described but instead are indicative of a localized zone of influent seepage (a mounded condition) which exists because of perennial low flows in the channel. However, downstream of the San Diego Freeway where groundwater levels are fairly shallow, there is good correlation between the depths to water in subsurface borings and the local groundwater conditions.

CONSTRUCTION CONSIDERATIONS

2-30 A review of published groundwater information available for the Lower Santa Ana River project indicates that the regional groundwater table will probably be encountered during construction in at least two reaches of the channel: (1) upstream from Lakeview Avenue (sta. 975+50) and (2) downstream from the San Diego Freeway (sta. 254+34). However, the localized mound of subsurface water, generally present at depths between 1 and 5 feet in the active river channel, will be encountered throughout the construction reach. Both shallow groundwater and mounded subsurface water would require implementation of a dewatering scheme prior to construction. Diversion and control of the perennial surface flows in the river channel will also need to be addressed during

construction. In addition, tidal variations within the lower reach of the project downstream of Adams Avenue (sta. 163+71) will create additional dewatering requirements. Groundwater conditions within the project area will continue to be monitored in the future to detect any possible changes which might affect channel design or construction.

SRA WATER INTRUSION

- 2-31 The Talbert and older Pleistocene aquifers are very productive and have yielded great quantities of water since the early 1900's. By 1930, the pumping of groundwater had lowered pressure levels in the shallow aquifers to below sea level and sea water intrusion began. See plate 7 for a piezometric profile of the Talbert aquifer in 1963. Since the Talbert aquifer was in continuity with the ocean it was the first to experience the effects. By 1960, the intrusion had also begun to affect certain water bearing zones below the Talbert aquifer.
- 2-32 The problem of sea water intrusion in the Santa Ana Gap and methods to prevent it were studied in detail by the California Department of Water Resources (1966). One of the suggested plans to control intrusion was to create an injection ridge along Ellis Avenue. This plan was later implemented by construction of the Talbert Barrier Project, which maintains a seaward hydraulic gradient in the underlying aquifers by the injection of potable water under pressure. The barrier project, which consists of a water supply, a distribution pipeline, a series of closely spaced injection wells, extraction wells, and numerous monitoring wells, was completed in 1975 and water was first injected in 1976. This plan has been successful in reversing the gradient and halting the intrusion of saline water. Plate 7 shows a recent piezometric profile and contour map of the gap. As a part of the injection program, the Orange County Water District monitors a series of wells, see plate 7, on a weekly, monthly, and biannual basis. In addition to the piezometric levels in the aquifer, various water quality parameters are measured and the results published in a Talbert Barrier Performance Report.
- 2-33 In 1979, ten shallow soil borings were drilled by the Corps of Engineers with a hollow stem auger between Hamilton Avenue and the Pacific Coast Highway along the existing Santa Ana River channel. The generalized information from these borings in addition to data from previously drilled observation wells and shallow soils investigations conducted along the Santa Ana River channel by various geotechnical firms are presented in cross-section on plate 7. The top of the Talbert aquifer is positively identified in the deeper observation wells at an elevation between -40 and -70 feet below sea level. Downstream from well M-10 the top of the aquifer is not positively known. However, it may daylight at sea level near the Pacific Coast Highway. Regardless, excavations for a soft bottom channel in this reach would not affect the quality of the groundwater because the Talbert aquifer is already in hydrologic continuity with the ocean and the injection program upstream maintains a positive gradient which would not allow landward movement of degraded water.

Subsidence

2-34 Only minimal land subsidence has been reported in the immediate vicinity of the Lower Santa Ana River even though significant amounts of both oil and water have been extracted from the subsurface. Morton and Miller (1976) indicate that the only measureable subsidence (up to 0.15 feet) occurred along the river south of Warner Avenue between the leveling surveys of 1964-65 and 1968-69-70. However, a maximum of 5 feet of subsidence due primarily to petroleum withdrawal has been estimated for the period 1920 to 1972 in the vicinity of Huntington Beach (Morton and Miller, 1976). Very localized subsidence due to possible soil consolidation or oxidation of peat layers caused by lower groundwater levels has also been reported to have occurred in scattered inland areas from Sunset to Newport Beaches (Leighton-Yen and Associates, 1974). Subsidence due to petroleum withdrawal has been stabilized by water injection and little additional effect due to soil consolidation or peat oxidation is expected.

III. INVESTIGATION

General

3-01 Information on conditions of the foundation, levee, invert, and sources of borrow along the approximately 23 miles of river alignment has been collected from several sources. Previous investigations conducted for the County of Orange by various geotechnical firms supplement recent investigations by the Corps of Engineers. The investigation techniques included hollow stem and bucket auger borings, and backhoe trenching. Both disturbed bulk samples and undisturbed tube samples were obtained for testing. All test site excavations were logged. The logs of the Corps of Engineers' investigations are presented on sheets immediately following each plan of investigation plate. The logs of investigation conducted for the County of Orange are presented on sheets following the Corps of Engineers' logs and the appropriate plan of investigation plate. See plates 8 through 27 for the plans, profiles, and logs of the investigation. The investigation methods and sites are discussed in subsequent paragraphs, in relation to the location and structural feature of the proposed improvements. The individual locations of test sites may be utilized for the assessment of more than one feature and, in those cases, those sites are mentioned several times.

Existing Levees and Foundation

PREVIOUS INVESTIGATION

3-02 The existing levee system along the Lower Santa Ana River has been the subject of many subsurface investigations. The specific investigations are referenced in tables 4 and 5. The logs of the levee investigations by others (for the County of Orange) are reproductions from the original reports and are shown on plates 8 through 26.

RECENT FIELD INVESTIGATIONS

3-03 A levee foundation and embankment investigation was conducted by the Corps of Engineers, over a period of several years. In 1979, 10 hollow stem auger holes were drilled between Hamilton-Victoria Street and the Pacific Ocean, as part of Phase I of this study. Between 1982 and 1985, the investigation was continued with additional hollow stem and bucket auger holes drilled between Weir Canyon Road and the Pacific Ocean. A complete listing of the investigation, including locations, depths and equipment types, is shown in table 6.

3-04 Generally, the borings were started on the levee crest and were extended down into the foundation materials. Occasionally, borings were made on the landside of the levee where access was a problem, or where a new levee alignment was being considered. The materials encountered were visually logged. Disturbed samples of the materials were obtained from each boring at intervals of 3 feet, or less if the material changed. Representative, undisturbed drive samples were obtained of the finer grained and cohesive materials.

3-05 Standard penetration testing was conducted in each boring in accordance with ASTM D 1586, at approximately 3-foot intervals.

3-06 The logs of investigations by the Corps of Engineers are presented on plates 8 through 27.

Drop Structures and Stabilizers

PREVIOUS INVESTIGATION

3-07 The foundation investigations conducted for the County of Orange, for the existing drop structures and stabilizers are included within this report as a source of general information on foundation conditions. The specific investigations are referenced in table 4.

RECENT PIELD INVESTIGATION

3-08 Bucket auger and backhoe were used to sample the representative materials for the proposed drop structures and stabilizers.

3-09 The foundation materials encountered were visually logged. Disturbed samples were obtained for laboratory testing of each material type, at depth intervals of 3 feet or less. Standard penetration testing was conducted in each boring, at approximately 3 foot intervals.

Invert

PREVIOUS INVESTIGATION

3-09 There are several invert investigations, conducted by other agencies that were considered in preparing this report. The previously conducted levee investigations, which contain information on foundation conditions adjacent to an invert location, were also used to supplement the Corps of Engineers' investigation of the invert materials.

RECENT FIELD INVESTIGATION

- 3-10 The primary means of obtaining representative information about the invert materials was a series of backhoe trenches excavated between 1979 and 1985. Each trench went approximately to the depth of the proposed invert. In addition to the backhoe trenches, several bucket auger holes were also drilled within the invert. The location and depth of each exploratory hole along the invert are included in table 6.
- 3-11 Disturbed representative samples of the invert materials were obtained from each trench or hole at intervals of 3 feet, or less if the material changed. Densities were determined by standard penetration testing at approximately 3 foot intervals within the borings.

Borrow

3-12 The source of borrow for the project will be both the required invert excavation and existing levees in the reaches which are to be realigned and reconstructed. As a result, the sources of borrow were investigated as part of the previously discussed levee, foundation and invert investigations.

Revetment

3-13 The design stone revetment along the lower Santa Ana River varies in gradation and in thickness as indicated on both plate 2 and table 1. Most of the existing riprap placed prior to 1970 was designed for a 400-pound maximum stone size (W50 of approximately 120-pound) based upon the Corps criteria set forth in EB 52-15, "Slope Protection". Subsequently placed riprap was designed for a 750-pound maximum (W50 of approximately 200-pound) stone, which was designed using EM 1110-2-1601, "Hydraulic Design of Flood Control Channels". The 400-pound stone was specified to be placed in an 18 inch thick layer, and the 750-pound stone in a 24-inch thick layer. The levee revetment was inspected by Geotechnical Branch personnel in 1983 and 1987, and the stone visible at the ocean jetties was inspected in 1986. Results of the inspections are discussed in section V.

Santa Ana Canyon

3-14 Subsurface investigations of foundation material for both the drop structure (TH 87-1, 2 and 3) and the Green River Golf Course area (TH 87-4, 5 and 6) were conducted in April 1987, and July 1987, respectively. A 24-inch bucket auger was used in obtaining disturbed samples. Densities were determined by Standard penetration testing (SPT) at approximately 5-foot intervals during the first 20 feet of exploration. Location of the borings and logs are shown on plate 27. Depths of the borings ranged from 23 to 43 feet at the drop structure site, and 40 to 49 feet at the golf course site.

Disposal Beach

3-15 Approximately 15 miles of beach, adjacent to the mouth of the river, were evaluated as possible disposal sites for the required invert excavation materials from the lower Santa Ana River. Twenty-four transects, or lines, perpendicular to the proposed disposal beach were surface sampled at every 6-foot change in elevation from +12 to -30 feet MLLW. The sampling was done in October 1982. The sample locations are shown on plate 28.

IV. LABORATORY TESTING

General

4-01 Laboratory testing of all the materials sampled during geotechnical investigation were conducted to determine mechanical analysis, Atterberg limits, and moisture content. The samples were classified in accordance with the Unified Soil Classification System. The logs of the Corps test sites are shown on the investigation plates 8 through 27. Tests of remolded and undisturbed samples were conducted by the South Pacific Division (SPD) Laboratory to determine shear strengths, permeabilities, compaction properties and consolidation characteristics. The tests were performed in accordance with Engineering Manual EM 1110-2-1906, "Laboratory Soils Testing," dated 30 November 1970. The soil test results are contained in attachment 1. Summaries of the testing are shown in tables 7 and 8.

4-02 The statistical summaries of the mechanical analyses are presented in table 9. The summaries are for each reach of the river, for the sites of the proposed drop structures, and for the proposed invert borrow areas. Composite summaries are typically for the materials in a potential borrow area materials and frequency summaries are generally for the materials that are to remain in place.

Levee Material

4-04 Representative disturbed samples from the levee embankments were tested to determine gradations, Atterberg limits, and moisture contents. Samples of the typical material types were compacted by both ASTM methods D 698 and D 1557, for maximum density and optimum moisture determinations. Representative material types were then remolded for R-type triaxial and direct shear strength tests at densities typical of the existing or proposed embankment conditions.

Foundation Material

4-04 The foundation samples were tested to determine gradations, Atterberg limits, and moisture contents. Disturbed samples of typical material types were compacted in accordance with both ASTM D 698 and D 1557 in order to determine maximum density and optimum moisture content. Remolded materials were subjected to R-type triaxial strength testing at densities typical of the existing conditions. Undisturbed samples were subjected to unconfined strength testing, R-type triaxial strength testing, and consolidation and permeability testing.

Invert Materials

4-05 Disturbed samples, representative of the invert materials, were tested to determine gradations, Atterberg limits and moisture content. Typical materials were compacted by both methods ASTM D 698 and D 1557 in order to determine maximum density and optimum moisture characteristics. Representative samples were remolded to typical in situ densities in order to determine R-type triaxial strengths and permeabilities.

Revetment

4-06 Recent quality compliance testing has been conducted on existing quarry sources in the project area. In addition, samples of the existing levee riprap material were collected for quality compliance testing. Stone samples from both the quarries and river levees were subjected to the following tests: petrographic and x-ray diffraction analysis, specific gravity and absorption, wetting and drying, Los Angeles abrasion and magnesium sulfate soundness. The results of petrographic analyses and research of historic records were used to determine possible quarry sources for the levee riprap. See table 10 for the compliance test results.

Disposal Beach

4-07 The materials from the proposed disposal beach were tested by performing a mechanical analysis on each disturbed sample. The composite average of all samples along each particular range sampling line was then computed to determine the representative gradation of that section of beach. The composite averages of all sampled range lines are shown in table 11.

V. GEOTECHNICAL CONDITIONS

Weir Canyon Road to Imperial Highway, (Reach 1)

5-01 The materials in the streambed foundation and in the existing levees in reach 1 are predominantly well-graded, noncohesive sands with significant but varying amounts of silt and gravel. Up to 20 percent cobbles to 6 inches in diameter are present in many areas that were explored, along with occasional boulders up to 2 feet in diameter. Atterberg limits tests conducted on the samples from this reach indicate that clayey fines are relatively uncommon. However, layers of sandy silt up to 6 feet thick were found at three locations, though generally below the proposed invert elevations. Groundwater was encountered under the right levee adjacent to Yorba Regional Park at depths ranging from 15 to 18 feet in four test holes. Natural moisture contents above the water table were mostly between 2 and 8 percent in the sandy materials and between 19 and 40 percent in the silty layers. The sand and silty sand materials are generally medium dense to dense as indicated by SPT blow counts in the range from 11 to 40. However, loose layers with blow counts less than 10 were commonly encountered during the exploration.

5-02 The active streambed materials in the invert are poorly-graded, noncohesive sands with virtually no fines and up to 40 percent gravel. Occasionally, cobbles and boulders up to 15 inches in diameter were encountered. Groundwater was encountered at depths of 5 feet or less. Densities were estimated to range from loose to medium dense, based on visual observations and ease of excavation.

5-03 Based on water level data from the exploration program, the ground-water table appears to maintain a gentle downstream gradient, from elevation 293 feet just downstream from Weir Canyon Road, to elevation 267 feet just upstream from Imperial Highway. This would result in groundwater being at elevations ranging from 0 to 10 feet below the proposed channel invert. The gradient for the 1986 groundwater (deeper zone) profile shown on plate 6 is much steeper for this same reach. The water table drops from elevation 293 feet near well 35/8W-30R01 to elevation 248 feet near well 45/9W-2B03. Water

levels within this reach of the project are probably influenced to varying extents by low flows within the channel and by irrigation and seepage from small ponds at the park, and therefore, would be expected to undergo seasonal or yearly fluctuations.

5-04 An inspection of the existing river levees between Weir Canyon Road and Imperial Highway determined that the existing stone revetment generally does not meet the original size and thickness requirements as discussed in paragraph 3-13. The rock also tends to be of unsuitable quality. Various lithologies are represented in the levee riprap. However, the predominant rock type, as classified petrographically, is a gray, moderately hard to hard, slightly to moderately weathered, porphyritic meta-andesite. Individual pieces contain numerous rust stained surfaces and incipient fractures. These fractures, which are generally open but occasionally filled with quartz or calcite, are present in random orientations. It was estimated that up to 70 percent of the volcanic rocks contain these fractures, which can part very easily under only light to moderate hammer blows, and occasionally hand pressure. Numerous individual pieces were observed to be breaking down along these planar discontinuities which may explain the apparent undersized nature of the riprap. Only minor amounts (probably 1 percent) of soft, decomposed to highly weathered rock were noted. Minor rock types identified by field or laboratory methods include a mottled white and black, slightly weathered, hard, fine to coarse grained granodiorite; a pink and gray, hard, slightly weathered micropegmatitic granite; and a tan to gray, moderately hard, slightly to moderately weathered, fine to coarse grained arkosic sandstone. These rock types, in contrast to the meta-andesite, are generally sound, with only minor breakdown and decomposition noted. The levee riprap is typically subangular to angular in shape. Only the sandstone tends to exhibit more pronounced subrounded edges. North of the Imperial Highway bridge, an overlay of fresher, larger, more durable andesite rock was apparently placed. The rock in reach 1 is generally poorly graded and ranges in size from 2 to 8 inches, with a random maximum rock size of from 1 to 2 feet. Significant breakdown in localized areas on the grade has resulted in patches of 1- to 2-inch diameter rock. It appears that the stone revetment was probably obtained from local sources in the Corona-Riverside area. The meta-andesite rock appears to be diagnostic of material from the Harlow Quarry near Corona while the Riverside quarries may be possible sources for the granodiorite. The granite may have been obtained from the Magnolia Quarry near Corona. The sandstone is not indicative of a known quarry source but might represent material obtained from the local streambed.

Imperial Highway to Katella Avenue, (Reach 2)

5-05 In reach 2, the materials along the left bank, invert and right bank are significantly different. The differences are due to the various methods utilizied to place the materials in their present position.

5-06 The left bank is largely composed of natural alluvial deposits laid down over a period of time when the river channel meandered through the area. Its stratifications, therefore, include a variety of materials ranging from clays to sandy gravels, distributed somewhat randomly with depth. The majority of the materials are noncohesive sands with varying amounts of silt and gravel. Both well-graded and poorly-graded layers are common, as are cobbles in the 3 to 6 inches range. Occasionally, larger boulder size rocks were encountered. Fine grained clays, silts, and clayey or silty sands occur at various depths in layers up to 11 feet thick throughout the reach. Subsurface water. primarily the result of a mounded condition due to low flows in the channel, was encountered at depths ranging from 16 to 29 feet in about half of the test holes. Subsurface water was not observed in other test holes drilled to depths ranging from 35 to 40 feet in this reach. The natural water contents above the water levels ranged from 1 to 19 percent in the granular materials, and from 6 to 34 percent in the fine-grained clays and silts. Most of the materials are medium dense to dense, as characterized by SPT blow counts in the range from 11 to 50. However, significant numbers of loose layers are indicated by blow counts between 4 and 10, mostly in relatively clean sandy materials with few fines. The widely varying densities of these naturally occuring alluvial materials reflect the depositional environment and energy level present at the time of their formation. Because the historic floodplain in this area is relatively wide and level, layers of soft or loose materials are assumed to extend over significant areas instead of occuring in isolated pockets. Stability analysis (described later) of critical levee sections reflects the occurence of these weak layers in the foundation and levees.

5-07 The right bank of the river in this reach is a combination of natural alluvial deposits and a built-up levee section which separates the main channel from a parallel series of groundwater recharge basins. Nearly all of the materials in the upper portions of the right bank and levee are noncohesive sands with varying amounts of silt and gravel. Cobbles up to 4 inches are common, along with occasional larger cobbles and boulders. Clayey and silty materials, in layers 3 to 11 feet thick, are commonly encountered, but only from depths of 15 to 30 feet below the top of the levee. However, just downstream from Imperial Highway, a layer of hard sandy clay is located at a depth of 9 feet below the top of the levee. Blow counts in the range from 13 to 60 indicate that the most of the materials along the right bank are medium dense to very dense. Relatively few low SPT blow counts indicating loose material were recorded, and these were nearly all in noncohesive sands below a depth of 20 feet. The foregoing gradation and density data verify that the upper portions of the right levee are predominately compacted fill materials, likely obtained from streambed excavation, and the lower sections are composed of both compacted fill and natural alluvial materials. Subsurface water, primarily related to low flows in the channel, was encountered in 12 of the 20 test holes drilled in this reach, at depths ranging from 15 to 22 feet below the top of the levee.

The test holes in which subsurface water was not observed were drilled to depths of 34 to 43 feet. The water levels under the right levee would be expected to vary seasonally in general response to the presence and depth of water in the adjacent groundwater recharge basin. Natural water contents above the water levels were found to range from 3 to 16 percent in the sandy materials and from 13 to 37 percent in the silty and clayey materials.

5-08 The active streambed materials are predominately clean, noncohesive poorly-graded sands and gravelly sands, with occasional thin layers of silty sand or fine-grained silt or clay. Relatively few cobbles and boulders were encountered during exploration. Subsurface water was at a depth of 1.5 to 14 feet below the surface in three of the test holes in the streambed, and was not observed in five other test holes drilled to depths from 7 to 17 feet. The unconsolidated invert materials are very loose near the surface and medium dense below the active streambed depth, with SPT blow counts ranging from 3 to 16.

5-09 A comparison of water level data from the published literature and the field exploration program indicates that within the reach one mile downstream from Imperial Highway, water levels observed in the test holes and test trenches probably reflect the regional groundwater table. Downstream from that reach, subsurface water levels are probably indicative of a more localized perched water table associated with a mounded condition due to low flows in the active channel and the adjacent groundwater recharge basins. Composite water levels in the deeper zone of fresh water aquifers drop very rapidly in this lower reach (see pl. 6), to depths well below the proposed channel invert. Information on the shallow semi-perched zone within this reach of the project was not available but water levels in this zone would probably also be below the influence of construction activities. Subsurface water was encountered during the field exploration program at elevations ranging from 2 feet above to 15 feet below the proposed channel invert.

5-10 An inspection of the existing river levees between Imperial Highway and Katella Avenue determined that the condition of the stone revetment is similar to that in reach 1 because of breakdown along fracture planes in the volcanic rock. Two major rock types were noted during the field inspection, the volcanic andesite characteristic of reach 1 and a dark gray, fine to medium grained, moderately hard to hard, slightly to moderately weathered, undifferentiated granitic rock. The petrographic analyses distinguished two volcanic and three granitic rock types. The volcanic lithologies were composed of the meta-andesite and an associated meta-dacite. The granitic rocks consisted of diorite, granodiorite and gabbro/meta-gabbro. The amount of incipient fracturing observed in the volcanic rock varied from approximately 50 percent near Lakeview Avenua and the Riverside Freeway, to 60 to 70 percent downstream near Ball Road. Less fracturing and rust staining, but more decomposition was noted in the granitic rocks. The amount of soft, highly weathered to decomposed rock ranged from less than 5 to 15 percent. The rock is predominantly subangular to angular in shape, although localized decomposition has resulted in more subrounded rock surfaces. Rock sizes at the different sampling sites were more variable. Larger well graded rock (generally ranging from 3 to 12 inches) was common near Lakeview Avenue and Glassell Street. Poorly graded rock near the Riverside Freeway and Ball Road generally ranged from 2 to 8 inches in diameter, while poorly graded rock, usually between 2 and 6 inches in diameter (with scattered areas of 1- to 2-inch rock) was noted near Lincoln Avenue. A random maximum rock size of 2 feet was common throughout reach 2 except near Lincoln Avenue, where a random maximum size of only 8 to 10 inches was observed. Local quarries in the Corona-Riverside area again appear to be the most likely sources for the stone revetment. The volcanic rocks were probably obtained from the Harlow Quarry while the Corona Pacific Quarry and the Riverside quarries may have supplied the granitic rock types.

Katella Avenue to Santiago Creek, (Reach 3)

5-11 The condition of the foundation and levee materials in reach 3 are controlled by the existing fine-grained materials more so than in the upstream reaches. Silts, clays, and silty and clayey sands are the predominant materials throughout the reach, although significant quantities of relatively clean sands were encountered in test holes drilled through the left levee between Katella Avenue and the Santa Ana Freeway. Very few cobbles were encountered. Subsurface water was measured at depths from 12 to 28 feet in seven of the test holes. No subsurface water was observed in the other twelve test holes, which were drilled to depths ranging from 25 to 36 feet. Natural moisture contents above the water levels ranged from 1 to 17 percent in relatively clean sands, and from 3 to 39 percent in the fine-grained material. Most of the sandy materials are medium dense to dense, with SPT blow counts in the range from 11 to 50. Occasionally, loose layers with blow counts less than 10 were encountered in the levee foundations. Silts and clays are generally of a medium to stiff consistency, with SPT blow counts in the range from 5 to 15.

5-12 The surficial materials in the active streambed, to a depth of 3 feet, are poorly-graded, noncohesive sands with less than 2 percent gravel or fines. The foundation materials below this unconsolidated layer range from sand and silty sand in the upstream half of the reach to silt at the lower end. Cobbles, up to 4 inches, were only rarely encountered. Subsurface water was encountered at the top of the silt layer just downstream from the Santa Ana Freeway, but not elsewhere in the invert. Densities were estimated to range from very loose near the surface to medium dense with depth, based on visual observations and ease of excavation.

5-13 Subsurface water encountered during the field exploration program is generally the result of a mounded condition due to low flows in the channel. The groundwater profiles for the shallow semi-perched zone and the deeper fresh water aquifers, as shown on plate 6, are well below the proposed invert of the channel. Subsurface water levels would be at elevations ranging from 6 feet above to 15 feet below the proposed channel invert.

5-14 An inspection of the existing river levees between Katella Avenue and Garden Grove Boulevard revealed that the stone revetment, in contrast to the upstream reaches, is generally in good condition and therefore would be suitable for reuse in project construction. Two major rock types were noted during the field inspection, the volcanic andesite characteristic of Reaches 1 and 2, and a medium to dark gray, hard, fresh to slightly weathered, fine to coarse grained granitic rock, resembling a quartz diorite. The volcanic rock is the dominant type between Katella Avenue and Orangewood Avenue, while the granitic rock predominates downstream of Orangewood Avenue. Petrographic analyses again confirmed the presence of the meta-andesite and a variety of granitic rocks, including diorite, monzodiorite and granodiorite. The volcanic rock is of better quality than that described previously, with only about 30 to 50 percent of the individual rocks containing incipient fractures. Only localized pockets of highly weathered to decomposed material (probably less than one percent of the total rock mass) were observed. The granitic rock is generally sound and durable. The individual rocks tend to be subangular to angular in shape and very little rust stained, cracked or decomposed rocks were present. A slight increase in weathering was observed near the Garden Grove Freeway. The granitic rock is mostly well graded, 4 to 12 inches in size, with random maximum sizes of between 2 and 3 feet. The granitic rock tends to be larger and more durable than the volcanic rock. The volcanic rock is generally poorly graded and ranges in size from 2 to 10 inches, reaching a random maximum diameter of from 2 to 3 feet. The stone revetment was most likely obtained from the same sources mentioned for Reach 2.

Santiago Creek to 17th Street, (Reach 4)

5-15 The foundation materials in this reach are predominantly silts, clays, and silty and clayey sands, with cleaner sandy materials derived from the streambed in the built up levee sections. Relatively little gravel and pratically no cobbles were encountered during the investigation. Subsurface water was present at depths ranging from 15 to 26 feet in four test holes in the upstream half of the reach, and was not observed in the three test holes which were drilled to 30 feet in the downstream half. Natural moisture contents above the water levels ranged from 2 to 13 percent in the relatively clean sands, and from 12 to 37 percent in the finer-grained materials. The density of the sandy materials are mostly medium dense to dense, with occasional layers of loose material, as determined from SPT blow counts ranging from 5 to 38. The clayey and silty materials generally had blow counts in the range from 5 to 15, indicating medium stiff to stiff consistencies.

5-16 As in the upstream reaches, the surficial streambed materials in reach 4 are relatively clean, poorly-graded, noncohesive sands to an average depth of about 3 feet. These are underlain by moderately consolidated alluvial deposits varying from clays to sands. Subsurface water was not encountered in the relatively shallow exploration conducted in the invert of reach 4.

5-17 Subsurface water encountered during the field exploration program is generally the result of a mounded condition due to low flows in the channel. The groundwater profiles for the shallow and deeper zones, as shown on plate 6, would be below the influence of any construction activities. Subsurface water levels would be at elevations ranging from 5 to 20 feet below the proposed invert of the channel.

5-18 The existing slope protection, inspected in 1983 and found to be of acceptable quality, has since been removed from the right bank of the river downstream of the Santiago Creek and Santa Ana River confluence.

Seventeenth St. To Fairview Channel, (Reach 5)

5-19 The foundation conditions in this reach include the condition of the active streambed as well as deeper materials. The active streambed materials, located at or near the surface of the existing streambed, are mostly silty sands with occasional gravel and cobbles to 12 inches. Moisture contents of the streambed materials ranged between 25 to 30 percent and indicate that the materials are saturated. These materials will be excavated to the proposed invert elevation. The foundation materials at the proposed invert elevation are predominantly loose to medium dense sands and silty sands with 1- to 3-foot thick lenses of medium stiff to stiff sandy silts and sandy clays. The plasticity of the clay lenses increases between Harbor Boulevard and the Fairview Channel. Typical SPT blow counts in the sands and silty sands ranged from 9 to 20 blows per foot, and in the silts and clays from 5 to 15 blows per foot. Water well data indicate that upstream of the San Diego Freeway, current (1986) maximum groundwater depths increase from 20 to 90 feet below the proposed invert elevation. However, the shallow semiperched zone is only 5 feet below the proposed channel invert elevation near the San Diego Freeway, increasing to 20 feet below the invert elevation near Seventeenth Street. Subsurface water, the result of a mounded condition due to low flows in the channel, was encountered during exploration. Between the San Diego Freeway and the Fairview Channel, groundwater was observed at an elevation as high as 5 feet above the proposed channel invert. Although groundwater levels in the areas surrounding the channel alignment may vary by more than 10 feet seasonally, perennial low flows in the channel keep the proposed invert area wet year round.

5-20 The channel embankment materials are primarily sands and silty sands with occasional 2- to 3-foot thick clay and silty lenses to the invert elevation. Between Seventeenth Street and Harbor Boulevard, the materials are loose to medium dense, and between Harbor Boulevard and the Fairview Channel, the materials are primarily medium dense. Moisture contents encountered typically range from 5 to 15 percent.

5-21 Materials from the required excavation for the proposed improvements are generally active streambed material, as described above. The gradations of materials to be excavated are summarized statistically for various reaches in table 9.

5-22 Slope protection within this reach of the channel consists of 6 inches of reinforced concrete or 4 to 8 inches of reinforced concrete on 3 inches asphaltic concrete.

Fairview Channel to Hamilton-Victoria Street, (Reach 6)

- 5-23 The foundation materials in this reach, not including the active streambed materials, are primarily silts and clays but a significant amount (about 30 to 40 percent) of the soils are silty sands. Much of the fine grained material is highly plastic with plasticity indices of 35 to 40. These silts and clays are typically stiff to very stiff with SPT blow counts ranging between 10 and 30. Clay layers encountered were up to 15 feet thick and extend well below the proposed invert elevation. The silty sands are typically medium dense to dense with SPT blow counts between 20 and 40. Subsurface water, primarily groundwater, was encountered at depths ranging from 15 to 20 feet from the top of the levees (from 10 feet below to 5 feet above the proposed invert) throughout the reach. Thus, foundation materials in the reach are typically saturated. The materials remain wet in this reach year-round due to flow in the channel and the tidal surges from the mouth of the river.
- 5-24 Embankment materials in this reach are primarily silty sands but high proportions of clay and silt are present. Clays in the embankment are generally not highly plastic and are found in layers up to 5 feet thick. Embankment materials are medium dense and typical moisture contents range from 10 to 25 percent.
- 5-25 The active streambed materials in this reach are generally very fine grained. Silt and clay were the most frequently encountered material, but there are also some small lenses of silty sand and sand. Particles larger than 3/8 inches were not found. Within the existing channel, groundwater was encountered at depths from about 1 to 20 feet below the existing invert elevation; that is, from about 10 feet below to 5 feet above the proposed invert elevation.
- 5-26 Slope protection in this reach of the channel consists of 6 inches of reinforced concrete.

Hamilton-Victoria Street to Pacific Ocean, (Reach 7)

5-27 Foundation materials in this reach are generally silty sands and poorly graded sands. These materials are medium dense to very dense with SPT blow counts typically between 20 and 60. Groundwater remains high in this reach year-round due to flow in the channel and to tidal surges from the mouth of the river. As a result, moisture contents in the foundation are at or near saturation levels.

- 5-28 The embankments within this reach are composed primarily of silty sands, however, significant lenses of silt and/or clay up to 5 feet thick were encountered. The materials are medium dense to loose, and moisture contents vary over a wide range, typically between 10 to 30 percent.
- 5-29 Materials at or below the proposed invert elevation are mostly sands and silty sands. Occasional silt layers up to 2 feet thick were found primarily at the proposed invert elevation. Particles larger than 3/4 inches are not encountered and materials are generally saturated.
- 5-30 An inspection of the stone jetties at the mouth of the Santa Ana River in Huntington Beach determined that the 1/2 to 3-ton capstone is generally in good condition even after a maximum 30-year service record. The majority of the rock is fresh to only slightly weathered, with less than one percent breakdown noted. The dominant rock type present appears to be a medium to dark-gray, fresh to slightly weathered porphyritic andesite. The fresher, dark gray rock is located mostly in an approximate 300-foot section on the east jetty which was restored under a Corps contract in 1970. Minor amounts (approximately 10 percent) of a light gray to medium gray, slightly to moderately weathered porphyritic andesite and a light gray, coarse grained granodiorite are also present. The lighter colored andesite is characterized by numerous healed to rust stained incipient fractures and surface coatings of hematite and limonite. Most of the rock breakdown noted appeared to have occurred along these fractures. Most of the rock placed on the jetties probably came from the Harlow Quarry, south of Corona.

Santa Ana Canyon

- 5-31 The foundation material at the drop structure consists of most sandy silts and clays, silty and clayey sands with some layers of poorly graded sands and gravels to 3 inches. Moisture contents range from 3 to 12 percent in the coarser materials, and from 28 to 46 percent in the finer materials. Some cobbles are encountered below 20 feet. Standard penetration testing (SPT) indicates that materials in TH 87-1, located on the south side of the drop structure, are loose with blow counts ranging from 3 to 9. The other two holes (i.e. TH 87-2 and 3), on the north side, indicates an increase in density naving blow counts ranging from 11 to 40. Groundwater was encountered approximately 20 feet below the ground surface.
- 5-32 At the Green River Golf Course area, foundation materials are generally coarser than those found at the drop structure. They are composed of poorly graded sands, and silty sands with some layers of poorly graded gravel and sandy silts. Drilling in this area required drilling fluid within the first 5 feet. SPT data taken within material above 15 feet indicate that it is loose with blow counts below 15. Below this zone, the material increases in density, which was reflected by an increase in drilling effort. Penetration tests in these zones were not done due to the gravel and cobbles. Groundwater was encountered approximately 20 feet below the ground surface.

VI. ANALYSES

Levee Analysis

DESIGN VALUES

6-01 Representative design values have been selected for the foundation, levee and other construction materials. The selected design values are based on the results of detailed laboratory testing conducted on disturbed samples of representative materials from the foundation. levee, and invert: and on previous tests on similar materials from other projects; and on extensive construction experience with alluvial and streambed materials in the general vicinity of the project. Because the exploration revealed a wide variety of material types, and numerous loose or soft layers in the foundation and levees, laboratory tests were conducted on the various materials compacted to both 80 and 90 percent of maximum density as determined by ASTM test method 1557. The 80 percent compaction values were chosen to simulate the loose layers of in situ materials, and the 90 percent values were chosen to approximate the firmer in situ foundation and levee materials, and to represent the expected densities in the compacted levee embankment materials. The moisture-density relationships established by compaction studies and in situ foundation tests were used to determine the dry and moist unit weights. The saturated unit weights were determined by calculating the volume of voids at 80 and 90 percent of maximum density and assuming those voids were filled with water. The shear strength and cohesion values selected are interpretation of consolidated undrained triaxial compression test data, with pore pressure measurements used to determine consolidated drained values (R-type test). Conservative permeability values for calculating seepage through the levees were chosen from test results on similar materials. The adopted design values for the various materials in the foundation and levee are shown in the following table.

SEEPAGE

6-02 The proposed levees were analyzed for potential through seepage on the landside slopes. The seepage analysis addresses both the concerns of quantity of flow and of the factor of safety against piping.

LOWER SANTA ANA RIVER
THE ADOPTED FOUNDATION AND
LEVEE DESIGN PARAMETERS.

TABLE B

UNIT MEIGHT DENSE	COMPACTION	ED AVERA		124 111 123 132	122 105 117 129	128 117 127 136	122 106 120 129	123 107 121 130	124 111 122 131	128 117 127 136
UNIT WEIGHT LOOSE	(COMPACTION)	MOIST	ME IGHI	109	104	112	106	107	109	113
<u> </u>	MOO)	AVERAGE	WEIGHT SA (PCF)	66	94	104	94	95	86	104
	, 1.1	TION	COHESION C (PSF)	200	100	0	0	0	0	100
RENGTHS	DENSE	COMPACTION	FRICTION ANGLE (DEGREES)	30	32	37	36	34	35	32
STREN	Z Z	NOI	COHESION C (PSF)	200	80	0	0	0	0	100
S	T.0005E	(COMPACTION)	FRICTION ANGLE OFGREES	24	97	32	31	87	30	56
				009	400	0	0	300	0	400
GTHS	DENSE	90% COMPACTION	FRICTION COHESION ANGLE C C OFCREES) (PSF)	23	25	35	33	30	32	27
STRENG		(NO1.	(<i>J</i> SJ) 0 NOISZ	009	200	0	0	200	0	400
OΣ	3500T	(COMPACTION)	FRICTION ANGLE (DEGREES)	15	20	28	27	24	56	22
OPTIMEN	MOISTURE		(\$)	11	21	8	13	12	11	8
PAXINA	DRY	WEIGHT	(PCF)	121	111	130	118	119	123	130
DESIGN		/	SOIL	CLAY	ITS VI-2	SILTY GRAVELLY SAND	SAND	SILTY	SAND/ SILTY SAND	CLAYEY SAND

6-03 Variables that significantly affect the seepage analysis are the levee height (including decreases in invert elevation), the slope of the levee faces, the ground level behind the levee, the elevation of impervious layers, and the water level. The levee side slopes were set to be 1V on 2H, the top width was set at not less than 15 feet to allow for construction and maintenance equipment access, and the water surface was established at the maximum flood elevation, with 3 additional feet of freeboard determining the levee height. The transient flow condition was determined for the design flow period of just more than 4 days, although the maximum design water level would actually exist for less than 2 days.

6-04 A permeability for the embankment and foundation materials of 10 ft/day was selected as a value representative of the lower quartile gradations, from the frequency studies of samples. The seepage exit points were estimated for the different levee heights typical of those conditions found in the project area, and were then compared to the ground heights behind the levees. All of the areas in which the ground height behind the levees is above the exit point were eliminated from further analysis as they would not develop seepage problems. There are percolation ponds on the backside of the right side of the levee in reach 2. For the purpose of the seepage analysis, the ponds were assumed to contain water to their weir elevations during floodflows. This assumption allows areas where the exit point is lower than the weir elevation to be eliminated as a seepage problem area due to the fact that the water on the backside of the levee would counteract the seepage forces.

6-05 The remaining levee areas were then analyzed to determine the extent of any seepage that might occur. The sections analyzed within each reach included those with the greater typical heights on both sides of the levee. The critical seepage sections within reaches 1 through 4 were developed as a 15-foot high levee on an impervious base. The maximum seepage quantity for the brief period of maximum design flow was calculated to be less than 20 cubic feet per day per lineal foot of levee, with a factor of safety against piping of about 2. The critical seepage sections within reaches 6 and 7 were develoed as a 22-foot high levee with groundwater at the invert elevation. The maximum seepage quantity within this area was calculated to be about 30 cubic feet per day per lineal foot, with a factor of safety against piping of about 2. The factors of safety against piping are considered conservative since they are based upon steady state conditions rather than the transient seepage condition, as discussed in subparagraph 6-03. The quantity of seepage is not considered a concern other than a consideration for the hydraulic design of side drainage. Rainfall behind the levees, for any storm large and long enough to develop seepage through the levees, would be added to the calculated seepage quantities, and the resulting quantities would be contained by the side drainage system. Local sections of levee that are affected by the design seepage conditions are listed in the following table:

Table C. Levee Areas Possibly Affected by Seepage.

Station	Reach	Levee	Comments
830+00*	2	Right	
740+00#	2	Right	
710+00*	2	Right	
640+00*	3	Left	
610+00*	3	Right	Left & right levees contained within higher existing banks.
150+00			-
to 0+00	6/7	Right	Private property on backside of right levee.

^{*} Seepage within sections 1,000 feet in length unless noted otherwise.

SLOPE STABILITY

6-06 This analysis of the slope stability is based on the recommended plan. The stability of the levee slopes (including the trapezoidal portion of reach 5) was initially analyzed for the existing soil conditions, and additionally analyzed for new construction conditions where the proposed alignment would require placing new material.

6-07 Cross-sections representing typical and composite soil conditions were developed for both the left and right levees. Typical cross-sections generally represent the most common soil conditions encountered during the field investigation and composite cross-sections generally represent weak materials (such as loose sand, low strength silt and clay) and locally higher levees. Material types and properties used in the analysis were determined from field investigations and laboratory test results. The cross-sections have a top width of not less than 15 feet, and 1V on 2H side slopes. They are analyzed for end of onstruction, critical flood stage, sudden drawdown, steady seepage, and earthquake slope stability cases as required by EM 1110-2-1913. See plates 29 through 38 for representative cross-sections, including the failure arcs and a table of the safety factors obtained.

General conditions of the existing or new embankments and foundations are identified for each of the required slope stability cases. These conditions form the basis for the slope stability analysis, and are discussed in the following paragraphs:

end of Construction. Slope stability for the case of end of construction takes into consideration any build up of pore pressure in impervious soils during the construction period. A major portion of the proposed levee construction will utilize existing levees, and, therefore, the end of construction condition would not be applicable. There will be some relocation and construction which would generally utilize free-draining materials and, therefore, consolidated-drained, S, shear strengths have been used for the end of construction analysis. For areas in reaches 3 through 7, construction of new levees may utilize a less pervious material. Although the less pervious materials are expected to drain faster than construction proceeds, consolidated-undrained, R, shear strengths have been conservatively used for the analysis.

The end of construction condition was analyzed for reaches 1, 3, 5, 6, 7 and the Canyon for newly constructed embankments and Reach 4 for new material placed on existing embankments. The analyses indicate factors of safety above the minimum required.

during prolonged flood stages in which the levee embankments may become saturated and develop a condition of steady seepage. Shear strengths for the less pervious soils were defined by a strength envelope midway between the R and S test envelopes for high normal stresses, and with the S strength envelope for low normal stresses. For free-draining materials, the slopes were analyzed with the S strength envelope. Most of the existing materials in the levees and the proposed borrow materials, are free-draining and the S strength envelope was used in the analyses. However, some of the existing materials in the lower reaches, 3 through 7, are not free-draining and the combined R and S strength envelope, as discussed above, was used for the critical flood stage analyses.

Each of the levee cross-sections was analyzed with the water level at the design flood stage. All factors of safety for these analyses were above the required minimum factor of safety of 1.4.

Sudden Drawdown. In general, the sudden drawdown analyses are based on the conservative assumption that the embankments are saturated and remain saturated during drawdown when the water surface is lowered instantaneously from maximum design flood stage to the minimum stage at the invert. Where the above conservative assumption resulted in factors of safety less than required, a more realistic condition was assumed and analyzed.

This condition took into account the fact that the time required for the flood waters to recede is estimated to be at least 3 days, and that, for most of the levees, the existing materials and the proposed borrow materials are free-draining. These conditions allow drainage of the slope face to proceed concurrently with the lowering of the flood waters. However, in areas of Reaches 3 and 7, some of the existing materials are not free-draining and the general assumption that pore pressure does not dissipate would be the more representative approach. For free-draining materials the S shear strengths was used and for less pervious materials the minimum of the R and S shear strength envelopes was used in the sudden drawdown analysis.

Each of the levee cross-sections analyzed for sudden drawdown met or exceeded the required factor of safety of 1.0.

Steady Seepage. The condition of steady seepage occurs when water levels remain at the flood stage long enough to develop a steady state phreatic surface through the limited sections of levee not paved or grouted. Hydrographs for the Santa Ana River indicate that the maximum flood waters will be of a duration just long enough to dewelop the condition of steady seepage with the more pervious levee materials. The stability analyses for the case of steady seepage were performed for the landside slopes. For less pervious materials, a shear strength envelope which uses S strengths for low normal stresses and an envelope midway between the R and S test envelope for higher normal stresses were used. The S strength envelope was used for freedraining materials. Even though conservative values were chosen for analyzing the steady seepage condition, the full phreatic surface would only develop for storms of the magnitude of 100-year or greater.

All the cross-sections developed a factor of safety equal to or greater than the minimum required 1.4 for steady seepage without earthquake. The acceptable factors of safety, even for the more shallow stability arcs (3- to 5-feet deep) within cohesionless embankment materials, indicate that sloughing of the slopes due to the short term steady seepage will not be a concern.

- Earthquake. The slope stability cases of end of construction, critical flood stage, and steady seepage were analyzed with earthquake forces. The representative design coefficient of 0.15 g for the earthquake case was selected in accordance with EM 1110-2-1902, after a combined seismic and flood risk analysis determined that the use of maximum probable accelerations to preclude the release of only occasional floodflows (as quantified below), was not required.
 - (a) The calculated combined risk associated with a 0.2 g local surface acceleration produced by an earthquake on the San Andreas fault, is less than 0.0007 during a period of design flow.

(b) The calculated combined risk associated with a 0.45 g near field surface acceleration produced by either an earthquake on the Whittier-Elsinore fault zone at the upper end of the project or the Newport-Inglewood fault zone at the lower end of the project, is only about 0.0001 during a period of design flow.

In all cases analyzed, the levee cross-sections met or exceeded the minimum required factor of safety of 1.0.

SLOPE PROTECTION

6-08 Revetment stone is required on the unpaved riverside levee slopes. Hydraulic design (see Main Report-Vol. 3) determined the maximum riprap thickness required for the levees will vary considerably as indicated in table D. In areas near drop structures and places of higher velocities, maximum riprap thickness will be as much as 60 inches, with grouted stone proposed as an alternative where riprap thicknesses are excessive. Riprap placed under water would have a 50 percent thicker layer. Grouted stone revetment is proposed to be placed as a 15-inch layer, as a possible alternative to the riprap, throughout the project.

6-09 In order to prevent erosion and loss of fines through the voids in the riprap stone revetment, some type of filter will be required. Two types of filter material were evaluated so that the most economical could be used. The two types are filter stone and filter cloth.

6-10 The stone and filter requirements were designed in accordance with EM 1110-2-1913 and ETL 1110-2-120.

Table D. Riprap/Filter Thickness.

Riprap Thickness			Filter Thickness		
(D50)	(Dry)	(Wet)	(Dry)	(Wet)	
8"	12"	18"	6"	9"	
10"	15"	54"	6"	9"	
12"	18"	27"	6"	9"	
14"	21"	33"	6"	9"	
15"	24"	36"	9"	12"	
24"	36"	54"			
33"	48*	72"			

Drop Structure and Stabilizer Analysis

6-11 In order to maintain the invert grade line, drop structures and invert stabilizers are proposed within the soft bottom reaches of the project. Typical cross sections of the structures are shown in figures 5 and 6.

DESIGN VALUES

6-12 Based on the foundation conditions at the proposed invert structure improvements, the following values are selected for design:

Table E. Invert Structure - Design Values.

Moist unit weight, (pcf)	120
Saturated unit weight, (pcf)	130
Angle of internal friction, (deg)	34
Active earth pressure coef.	0.28
Moist equiv. earth fluid, (pcf)	34
Saturated equiv. earth fluid, (pcf)	80
Passive earth pressure coef.	3.5
Moist equiv. earth fluid, (pcf)	420
Saturated equiv. earth fluid, (pcf)	300
At-rest earth pressure coef.	0.45
Saturated equiv. earth fluid, (pcf)	93
Allowable bearing pressure, (psf)	3000
Permeability,(fpd)	50
Coefficient of sliding friction	0.40

UNDERSEEPAGE

6--13 A drain blanket will be required beneath the proposed drop structures in order to preclude the effects of uplift and piping due to underseepage. Two water surface conditions were considered for this analysis; one for a saturated invert, and another considering full flow conditions. The permeabilities of the foundation materials were based upon the D_{10} of the foundation materials. The uplift forces for both conditions indicated that the saturated invert condition is more critical, and thus is the basis for design. The drain blanket was designed in accordance with ETL 1110--2--236.

STONE PROTECTION

6-14 The hydraulic design has established that the stone requirements for the drop structures, will include derrick stone at the leading and trailing invert areas. The invert stabilizers will be constructed of grouted cobblestone, and will require derrick stone at the trailing invert areas. The gradation requirements for the required stone have been designed in accordance with ETL 1110-2-120, and the filter requirements are in accordance with EM 1110-2-1913.

BEARING

6-15 The existing foundation materials encountered beneath the proposed drop structures will provide a bearing capacity of 3000 psf. Settlement is expected to be negligible for the invert structures, since the additional load due to the improvements is not an appreciable increase from the existing overburden.

LATERAL PRESSURES

6-16 The lateral pressures acting on the breast walls have been determined, assuming that all backfill will be from local required excavation. It has been assumed that drop structure breast wall backfill will remain saturated, and that the driven steel sheetpile wall backfill within the Canyon will drain.

SLIDING

6-17 The coefficient of friction between the base of drop structure slab and the foundation material is assumed to be 2/3 the angle of internal friction of the foundation material.

Concrete Trapezoidal and Rectangular Channel Analysis

DESIGN VALUES

6-18 The soils design values selected for the proposed concrete channel are based on conservative interpretations of the field and laboratory test results. Consideration was given to design values selected for similar material on major projects constructed by the Los Angeles District Corps of Engineers. Permeability of the foundation materials is based on tests performed at 80 and 90 percent of maximum density (ASTM D 1557) on samples representative of lower quartile gradations from frequency studies of all foundation samples taken. The following values are selected for the rectangular channel and for the trapezoidal channel design:

Table F. Concrete Channel Design Values.

undations	
Allowable Bearing Pressure, (psf)	1500
Permeability, (fpd)	5
kfill .	
Dry Unit Weight, (pcf)	100
Moist Unit Weight, (pcf)	108
Angle of Internal Friction, (deg)	28
Cohesion, (psf)	0
Active Earth Pressure coef.	0.36
Equivalent Earth Fluid Weight, (pcf)	40

SUBDRAIN

6-19 A subdrainage system will be required between 17th Street and Fairview Channel in the Santa Ana River Channel, and in the Greenville-Banning Channel between the San Diego Freeway and Hamilton-Victoria Avenue. A subdrainage system is necessary to control hydrostatic uplift forces under the channel invert and low flow area, due to high groundwater levels or a perched water condition. The subdrain system was designed in accordance with ETL 1110-2-236 and the Los Angeles District Report on Manhole Subdrain System, July 1957. The design was based on channel dimensions given as amended in the Phase II GDM hydraulic design, and an estimated minimum channel invert thickness of 10 inches. A design hydrostatic head of 10 feet above the top of the subdrain collector pipes was used and subdrain pipes were assumed to flow a maximum of 80 percent full. The effect of adjacent subdrains in both the main and Greenville-Banning channels was considered in the subdrain design. Where possible, consistent pipe sizes were maintained along the channel while discharge distances were varied. The design (as discussed in paragraph 7-35) was verified by the construction of full channel flow nets.

LEVEE SLOPE STABILITY

6-20 From Seventeenth Street to about the San Diego Freeway, the channel will be a trapezoidal concrete lined channel. Existing levees will be utilized to some degree. Levee heights, however, will not be increased. The stability of the existing levee materials along the proposed trapezoidal channel reach was checked in accordance with EM 1110-2-1902, as presented in paragraph 6-06.

BEARING

6-21 The bearing capacity of the foundation soils was determined in accordance with EM 1110-2-1903, accounting for both shear and settlement considerations. The allowable foundation bearing pressure of 1500 psf is based on a maximum allowable settlement of 1-inch considering each of the material types encountered in the rectangular channel reach.

LATERAL FORCES

6-22 The lateral earth forces acting on the rectangular wall were determined in accordance with EM 1110-2-2502. The forces were selected assuming that wall deflections will be sufficient to reduce wall pressures to the active state. An active earth pressure coefficient (Ka) of 0.36 and equivalent earth fluid weight (EEF) of 40 pcf are given in paragraph 6-18 with other pertinent design values. These values are based on a cohesionless silty sand (SM) backfill compacted to 90 percent of maximum density (ASTM D 1557).

Disposal Beach Compatibility Analysis

6-23 The analysis of compatibility is based upon the gradations of representative materials obtained from both the disposal (beach) and the borrow (required invert excavation) sites. The gradations of the sampled range lines along the proposed disposal beach have been grouped into composite blends representing similar materials within adjoining sections of beach. The same type of grouping was done for the materials that are to be removed down to the proposed invert within functional construction reaches. The groupings were made so that increased flexibility would be obtained in utilizing all available required invert excavation for the replenishment of adjacent beaches.

COMPATIBILITY CRITERIA

6-24 The criterion for beach fill materials is set within the Code of Federal Regulations, Title 40, Part 230. Specifically, within Section 230.4-1.b.1, the code states that beach restoration materials are to be composed predominately of sand, gravel or shells with particle sizes compatible with the material on disposal beaches.

6-25 The Los Angeles District Corps of Engineers has established quantitative guidelines for the compatibility of beach and borrow materials. The guidelines say that in order to determine compatibility, the grain size distribution curves for the disposal beach samples will be plotted. These curves define an envelope within which all the existing beach material will fall. For the borrow material to be considered compatible, the composite curves for the borrow should fall within the envelope of curves for the disposal beach with the following exceptions. The coarse grained portion of the composite curves may fall outside of the envelope if not restricted by esthetic considerations.

The fine grained portion may also fall outside of the envelope, however, the percentage of silt and clay (percent passing the No. 200 sieve) shall not exceed that of the finest beach sample by more than 10 percentage points.

DISPOSAL BEACH

6-26 Composite gradations for each particular range line were determined using every sample along each range line. The range line gradations are shown in table 11. Range line gradations for similar sections of beach were then compiled, and the average and upper quartile composite and upper limit gradations of the combined areas were plotted. See figure 7 for representative beach gradation envelopes.

INVERT MATERIAL

6-27 All invert areas of required excavation were sampled. The gradation of each sample was obtained and compared with the gradations of adjoining reaches of invert. A composite gradation summary was then developed for functional areas of similar materials, within each reach where excavation is required. See table 9 for representative composite gradations of the invert material to be removed.

COMPATIBILITY

6-28 The Los Angeles District guideline was used to determine grain size compatibility. The average and upper quartile composite and upper limit gradations of one combined section of disposal beach were plotted. The composite average gradation of each representative reach of excavated invert was then plotted on the same figure. Invert materials judged to be generally suitable for beach replenishment are those functional composite groupings that contain up to 10 percentage points more fines than the upper quartile gradation of a section of disposal beach. See figure 7 for the gradation comparisons.

VII. DESIGN APPLICATIONS AND CONSTRUCTION CONSIDERATIONS

Project Dewatering

GENERAL.

7-01 The construction of all levee embankments, invert structures, hard-bottom channel sections will be accomplished free of standing water.

7-02 Dewatering could be accomplished by some combination of drainage ditches, dikes, cofferdams, wellpoints, and pumps or other techniques proposed by the contractor. Each of these methods will be discussed in the following paragraphs. This report also presents a suggested scheme for estimating the dewatering for each typical reach or section.

7-03 The groundwater conditions along the project alignment have been discussed, herein, before. The groundwater basin is illustrated in figures 3 and 4, and groundwater profiles along the project alignment are shown on plate 6.

Diversion

7-04 Surface flow is expected to be continuous along the Lower Santa Ana River, during construction. Generally, water could be diverted to the inactive side of the channel, by means of dikes and drainage ditches. The dikes will be of sufficient height to preclude overtopping, and of sufficient sectional width to eliminate piping. It is recognized that the dike section(s) will be pushed-up and continuously maintained by the contractor, as an area is worked. Any drainage ditch construction, or excavation of dike fill that goes deeper than the final invert elevation will be backfilled and compacted. Overexcavation in reaches of the proposed hard-bottom sections will also be backfilled with compacted fill material.

Groundwater

7-05 Subsurface water may generally be removed by pumping the gravity flow from a sump system, since the foundation materials for this project are typically sand or silty sand. The pumping rates for the preconstruction dewatering of each proposed improvement, will be discussed in the following paragraphs. The rates are discussed as an aid to estimating construction costs. Excessive flows in the cleaner sand foundation materials may be controlled with sheet pile cutoff walls. Seepage into any excavation may be removed by pumping from a sump trench. Based on a 15-foot wide excavation 12 feet deep, a required pumping rate of about 150 gpm per 100 feet of excavation can be expected. A sheet pile cutoff around the excavation could be used to reduce the seepage rate. A cutoff to a depth of 10 feet below the bottom of the excavation would reduce the required pumping rate to about 70 gpm per 100 feet of excavation.

Cofferdams

7-06 Tidal variations within the lower reach of the Santa Ana River will create additional dewatering requirements. The tide is expected to rise as high as +8 feet MLLW (+10 feet NGVD), meaning that tidal surface flows could effect construction as far inland as Adams Avenue. Cofferdams may be used to control the upstream movement of the tides.

Levee Construction

NEW CONSTRUCTION

7-07 New construction will consist of building new levees to the alignment and elevations required by the hydraulic design where existing levees cannot be modified or do not currently exist. Paragraph 7-12 discusses the proposed levee modifications, including widening or raising existing levees as described in paragraphs 1-13 through 1-24. Closely related construction in the channel, including stabilizers and drop structures and channel excavation, are discussed in the following paragraphs 7-22 through 7-40.

Geometry

7-08 The new levees would be constructed with 1V on 2H side slopes and a top width of not less than 15 feet. Typical dimensions and cross sections are shown on plates 29 to 37.

Foundation Treatment

7-09 The foundation areas for new levee construction would be cleared and grubbed to expose the foundation soils, and proof-rolled to at least 90 percent of maximum density (ASTM 1557) to provide a firm foundation for the compacted fill materials and to reduce underseepage and settlement. Control of surface water in the channel can be accomplished

with diversion levees to direct the flows to the opposite side of the channel, however dewatering may still be required in some areas to allow excavation and construction of the levee toe. Dewatering could be accomplished with a system of well points or a collection ditch with sump pumps. Temporary excavation slopes for the toe construction would be no steeper than 4V on 3H, and in areas of relatively loose noncohesive granular soils, may need to be flatter. The required excavation for toe construction will preclude the need for the excavation of a separate inspection trench. Unsuitable foundation soils such as soft clays, loose sands or open-graded gravel or cobble layers would be removed and recompacted or replaced with compacted levee fill materials.

Sources of Material

7-10 The new levees will be constructed with materials from the required channel invert excavation. Hydraulic design of the channel requires the lowering of the existing invert elevation at various locations. The two locations within reasonable haul distances that could provide suitable materials from the required excavation are in reach 1, above Imperial Highway, and just downstream of reach 4 between Seventeenth Street and Edinger Avenue. The materials available in the upper borrow area are primarily sands with relatively small amounts of silt and gravel, as described in paragraphs 5-01 through 5-10. The materials available in the lower borrow area are finer grained, primarily silty and clayey sands with occasional gravels and cobbles, as described in paragraphs 5-19 through 5-22. The balance factors for materials from either borrow site would be approximately 0.85 when excavated, hauled, placed, and compacted with conventional construction techniques. The relatively pervious granular materials from the upper borrow area are preferred due to their ease of handling and free-draining characteristics. Excess pore pressures and marginal slope stability under sudden drawdown conditions would be largely eliminated if these materials are used to construct the new levee sections. Finer-grained, slower-draining materials from the lower borrow area would reduce the hauling distance and costs for the levees in reaches 3 and 4, but would probably increase the potential for slope distress during the life of the project. A discussion of the stone and filter materials to be used on the levees is presented in paragraphs 7-17 through 7-21.

Construction Requirements

7-11 Conventional heavy construction equipment would be suitable for construction of the levees. Excavation of the borrow materials from the channel invert could be accomplished with self-propelled scrapers if the haul distance is reasonably close, or with rubber-tired loaders and hauled in off-road trucks if haul distances are longer. After clearing, grubbing and proof-rolling the foundation, borrow materials from the channel invert excavation would be placed and spread in lifts no thicker than one foot. Cobbles and boulders larger than 3/4 of the lift thickness would be removed on grade before compaction. Processing of the excavated materials to remove the oversize particles would not be

required due to the relatively small amount of stone in the borrowed areas. Moisture content of the fill materials would be adjusted to near optimum by adding water on grade if too dry, or by scarifying and aerating if too wet. The conditioned fill material would then be compacted to at least 90 percent of maximum density as determined by ASTM D 1557 by rolling with a rubber-tired or other type roller suited to the materials being compacted. Field density tests (ASTM 1556) would be conducted in sufficient numbers to assure that the required compaction is accomplished. Slope protection requirements are discussed in paragraphs 7-17 through 7-21.

RECONSTRUCTION

7-12 The existing levees would be modified in some locations by increasing the height of the levee or by a realignment of the centerline.

Geometry

7-13 The modified levees would be constructed with 1V on 2H side slopes and a top width of not less than 15 feet, the same as the new levee sections. Typical sections showing the variations and extent of levee modification are shown on plates 29 through 36.

Foundation Treatment

7-14 Where new fill material is to be placed over existing levees, the levee will be prepared as a suitable foundation by removing any pavement on the crest and any slope protection or vegetation on the side slopes. Sloped surfaces steeper than 1V on 4H will be flattened or stepped so that the compaction equipment will bear fully, and proof-rolled to at least 90 percent of maximum density as determined by ASTM test method D 1557. New foundation areas will be cleared grubbed, proof-rolled, and scarified before the first lift is placed. As with the new levee construction, dewatering may be required in some areas where the riverside slope of the existing levee is to be modified.

Sources of Material

7-15 Borrow materials for modification of the existing levees will be obtained from the same channel excavation sources as for the new levee construction. Free draining granular materials will be available within all the construction reaches of the project.

Construction Requirements

7-16 Reconstruction of the existing levees can be accomplished with conventional heavy construction equipment following the same procedures described for new levee construction, except that the existing slope protection would be removed and stockpiled if adequate for reuse.

SLOPE PROTECTION

Stone Sources

7-17 Slope protection materials for the Lower Santa Ana River project would be available from two sources, nearby commercial rock quarries and portions of the existing river levees. Local quarries which have produced suitable stone within the past 5 years for Corps of Engineers' construction projects are listed in table G. All these sources are within 30 miles of either the upstream limits (Santa Ana Canyon) or downstream limits (Pacific Ocean) of stone placement for the project. The Corona group of quarries (Corona-Pacific, Harlow and 3M) would be the closest sources to the upper reaches of the project. Stone could also be obtained from the more distant Atkinson, Declezville and Stringfellow operations in the Jurupa Mountains near Riverside. The Slover Mountain Quarry near Colton and the Fish Canyon Quarry near Azusa would also be potential sources of stone. The closest source to the downstream limits of the project is the Pebbly Beach (Connolly-Pacific) Quarry on Santa Catalina Island.

Table G. Rock Quarry Locations.

Quarry	Nearest City	inimum Distance to Site (mi)
Atkinson	Riverside	18
Corona-Pacific	Corona	9
Declezville	South Fontana	18
Fish Canyon	Azusa	22
Harlow	Corona .	11
Pebbly Beach	Avalon (Santa Catalina Is.)	30
Slover Mountain	Colton	24
Stringfellow	Riverside	18
3M	Corona	10

During construction, suitable stone may also be reclaimed from portions of the existing levees (see paragraph 5-14). Reach 3 from Katella Avenue to Santiago Creek would provide stone suitable for reuse as slope protection. Armor stone currently in place on the existing jetties could be utilized in the jetty reconstruction.

Stone Quality

7-18 Results of recent quality compliance tests conducted by SPD laboratory on stone samples from the quarries listed in table G and from the existing levees are summarized in table 10. In addition, the most recent Corps of Engineers project associated with each quarry source is

shown. Although the quarries listed in table 10 have provided suitable stone for Corps projects in the past, restrictions were placed on recent usage of stone from the Harlow Quarry near Corona. Stone from this source was accepted for use only as grouted stone in the Warm Creek-Santa Ana River Confluence project because of the breakdown which occurred during the June 1985 wetting and drying test. Despite high abrasion losses shown for the Pebbly Beach and Declezville quarries, and a sulfate soundness loss much greater than the specified limit of 10 percent for the Pebbly Beach source, stone from both quarries has previously been accepted for use on Corps projects based on proven satisfactory service records. Stone from Declezville was placed in the San Pedro Breakwater, completed in 1912, and has shown no appreciable deterioration since that time. Stone from Pebbly Beach, despite its heterogeneous character, has given good service in the Long Beach and Middle Breakwaters, beginning in the mid-1930's.

7-19 Results of quality compliance tests conducted in February 1988 on samples of the existing levee riprap indicate an overall improvement in rock quality between reaches 1 and 3 (see table 10). However, the test results do not accurately reflect the deteriorating physical condition of the volcanic andesite rock in reaches 1 and 2. Although the rock types common to each reach passed the wetting and drying tests, the andesite, which is diagnostic of Harlow Quarry, has demonstrated an unsatisfactory service record because of its tendency to breakdown along incipient fractures. This fact in itself would make the riprap on the existing levees between Weir Canyon Road and Katella Avenue unsuitable for reuse as slope protection and might preclude or restrict the use of stone from Harlow Quarry on the project.

Stone Assessment

7-20 More than one source may be required to supply the estimated 500,000 plus cubic yards of riprap required for the Lower Santa Ana River project. Suitable stone may be available form additional quarries in the Riverside-Corona area or from other locations, but information on these potential sources is not included in table 10 due to lack of either recent test data or service records on Corps projects. Although the majority of the sources have produced acceptable stone in the past, it cannot be assumed that they will continue to do so. Therefore, any stone source considered for use as slope protection will require further field inspection and evaluation, and may require additional quality compliance testing prior to stone placement.

Revetment

7-21 Stone revetment meeting the gradation requirements as analyzed in paragraph 6-08 can be placed with conventional methods from either the top or bottom of the levee. Care must be taken during placement to prevent segregation and unnecessary displacement of the underlying filter or bedding layers. Riprap stone gradations, for each dry thickness presented in the hydraulic design, are as follows:

Table H. Riprap Gradations.

Riprap - 12" thickness

Approximate Weight of Individual Pieces (1bs)	Percent Passing (by weight)		
86	100		
35	65-100		
26	50-70		
17	15 - 50		
5	0-15		

Riprap - 15" thickness

Approximate Weight of Individual Pieces (lbs)	Percent Passing (by weight)		
169	100		
67	65-100		
50	50 -7 0		
34	15-50		
11	0-15		

Riprap - 18" thickness

Approximate Weight of Individual Pieces (1bs)	Percent Passing (by weight)
292	100
117	65-100
86	50-70
58	15-50
18	0-15

Riprap - 21" thickness

Approximate Weight of Individual Pieces (lbs)	Percent Passing (by weight)		
463	100		
185	65~100		
137	50-70		
93	15-50		
29	0-15		

Riprap - 24" thickness

Approximate Weight of Individual Pieces (1bs)	Percent Passing (by weight)
691	100
276	65-100
205	50 - 70
138	15-50
43	0-15

Riprap - 36" thickness

Approximate Weight of Individual Pieces (lbs)	Percent Passing (by weight)		
2333	100		
933	65-100		
691	50-70		
467	15-50		
146	0-15		

Riprap - 48" thickness

Approximate Weight of Individual Pieces (lbs)	Percent Passing (by weight)
5520	100
2200	65-100
1647	50-70
1111	15~50
350	. 0-15

Filter Stone

7-22 Layers of filter stone can be placed with conventional construction methods. Recommendations for filter stone are as follows:

- 1. The layer thickness of filter stone will be in accordance with the table presented in subparagraph 6-08.
- 2. Filter fabric is an alternative to filter stone in areas where dewatering is a concern, since placing filter stone under water could cause segregation. If filter stone is placed under water, a 50 percent thicker layer should be used.
- 3. Filter fabric will be used in the higher energy revetment sections downstream of Pacific Coast Highway in order to eliminate both segregation concerns and multiple layer costs.

4. The filter stone gradation of the 12-, 15-, 18-, 21- and 24-inch thick riprap stone follows:

Table I. Filter Stone Gradation.

Sieve Size	Percent Finer (by weight)
3 inch	100
1-1/2 inch	65-100
1 inch	50 – 85
1/2 inch	15-50
No. 4	0-15

7-23 Filter fabric will have an equivalent opening size (EOS) of 70 and should be nonwoven to prevent tearing. A 15 percent increase in slope area should be considered in estimating filter fabric requirements, to consider the effects of lapping and bunching. Filter fabric would need to be anchored at the top and the bottom, and protected from puncture with an overlying layer of crushed rock. The top and bottom can be anchored in narrow trenches at the top and bottom of the levee by placing the edge of the fabric in the trench and backfilling with soil. A 6-inch thick (9-inch when placed in wet) layer of crushed rock or sandy streambed materials on top of the fabric would cushion the fabric from the impact of larger stones during the placement of the revetment. Steambed materials would be placed with a controlled drop height not to exceed 12-inches, and would not be used as bedding in higher energy areas (i.e., when dry riprap thicknesses exceed 24-inches). Splicing segments of filter together in the field would be in accordance with the manufacturer's recommendations.

Grouted Stone

7-24 Stone to be grouted can be placed with the same methods and equipment used to place stone revetment. No filter layer would be required beneath the grouted stone. If groundwater is present near the surface, dewatering of the toe excavation may be necessary to carry out the grouting operation. For estimating purposes, the volume of grout may be expected to be about 30 percent of the calculated volume of the grouted stone layer. For a 15-inch layer of grouted stone, the stone would be well graded and vary in size from 3 to 12-inches in diameter.

Drop Structure and Stabilizer Construction

REQUIRED EXCAVATION

7-25 The proposed invert structures will be founded on the native invert materials. The invert will be excavated to an average depth of about 5 feet for invert stabilizer construction, and 10 feet for the construction of the drop structures. Temporary slopes will not be steeper than 4V on 3H.

7-26 The excavation will be kept free of standing water during construction. Any surface flows will be diverted around the construction area by means of temporary dikes. Seepage into the excavation will be removed by means of pumping from sumps. The pumping rate to dewater the drop structure excavations is conservatively estimated to be not more than 200 gpm, based upon an open excavation of half the channel width. Dewatering rates for the invert stabilizer excavations would be less than half of that for the drop structures.

FOUNDATION PREPARATION AND BACKFILL

7-27 The foundation subgrade surface will be trimmed and proof-rolled to a smooth and uniform grade prior to any structural improvement.

7-28 The backfill and fill materials will be selected from the required excavation. Materials with greater than 20 percent fines should not be used as backfill for the breast walls. The backfill will be placed in 1-foot lifts and will be compacted to not less than 90 percent of maximum density as determined by ASTM method D 1557. Fill materials will be placed on surfaces that have been cleared and scarified to a depth of 6 inches. Sloped ground surfaces steeper than one vertical to 4 horizontal will be flattened or stepped so that the compaction equipment will bear fully on the fill layer. The fill will be compacted to not less than 95 percent of maximum density.

GEOMETRY

Invert Structure Stone

7-29 The invert structure stone will be placed to the dimensions shown in figures 5 and 6. The stone will be graded as presented in following table. Grouted stone will be placed in a uniform mass in order to eliminate double decking or layering of the stone.

Table J. Invert Structure Stone Gradations.

Gravel Drain(1-1/2 inch crushed rock)

Sieve Size	Percent finer (by weight)
1-1/2 inch	100
1 inch	90-100
3/4 inch	55-90
3/8 inch	8-20
No. 4	´ 0 - 5

Bedding Stone

Weight of individual Pieces (Pounds)	Percent Finer (by weight)
85	100
35	65-100
15	15-50
5	0-15

Derrick Stone

7-30 The derrick stone will be approximately 36 inches in diameter, will extend 30 feet upstream and downstream of the structure. On the downstream portion, the stone will slope downward at a 1V on 2H slope. The thickness of the derrick stone will be 5 feet with 2 feet of bedding stone, a layer of filter fabric, and 6 inches of bedding sand (raked, native material, 3-inch material) beneath the derrick stone layer.

Grouted Stone

7-31 The grouted cobblestone will be reasonably well graded between 3 and 12 inches.

Drain Blanket

7-32 The gravel drain material and 6-inch collector drain pipe will be placed to the dimensions shown in figure 5. Additionally, 3-inch weep holes, 10-foot on center, will drain the breast wall backfill. The gravel drain material will be graded as presented in the previous table. Segregation and contamination of the drain materials will be avoided. The gravel drain material will lie over a filter fabric and 6 inches of native invert materials which have been raked of +3-inch material. The grouted stone drop structure will have 3-inch diameter horizontal weepholes spaced at 10 feet on center and will be placed one foot above the elevation of the end sill. Each weephole will be backed with a one cubic foot gravel drain pocket completely bound by filter fabric. The interface between the gravel pocket and the grouted stone will be separated by a 12-inch by 12-inch section of galvanized wire mesh (1/4 inch openings). The gravel drain material will be 1-1/2-inch crushed rock as shown in table J.

Levee Facing

7-33 To preclude the possibility of piping around the invert structures, the grouted stone levee facing should extend not less than 5 feet below the deepest portion of grouted facing stone of the invert stabilizers, or 10 feet below the bottom of the base slab of the drop structure.

SANTA ANA CANYON SHEETPILE

7-34 At the drop structure, improvements will consist of extending the steel sheetpile wall 23 feet deep on both sides of the river down to an elevation of 435 feet. Materials in this drop structure area should not be a problem for standard sheetpile driving procedures.

Concrete Channel Construction

CHANNEL EXCAVATION

7-35 From Seventeenth Street to Fairview Channel, the proposed concrete channel will be founded on native soil and will be constructed by open cut. The invert will be excavated up to a depth of 5 feet below the existing streambed surface. Invert materials are generally medium dense poorly graded sands and silty sands. In addition to the invert excavation, it will be necessary to cut into some existing levees for construction of the channel walls and new levee slopes. Temporary slopes will not be steeper than 4V on 3H.

7-36 The excavation will be kept free of standing water during construction. Surface flows will be diverted around the active construction area by means of temporary earth dikes, and seepage into the excavation will be controlled by means of pumping from sumps. Based on an open excavation of half the channel width and 5 feet deep, the pumping rate required to dewater the excavation is about 100 gpm per 100 feet of channel.

FOUNDATION PREPARATION

7-37 In areas where the proposed channel invert is below the existing streambed, the subgrade will be excavated to the design grade, approximately 1 foot below the bottom of invert slab-elevation, then trimmed to a uniform grade. The subgrade will then be proofrolled to 95 percent of maximum density (ASTM D 1557) so that no stone protrudes more than 3 inches above grade. Any soft or yielding materials encountered would be removed, backfilled with select material, and recompacted to 95 percent of maximum density (ASTM D 1557). Where the proposed channel invert is above the existing streambed, fill material from the required excavation will be placed on the existing grade in compacted lifts no thicker than 12 inches. Lifts will be built up to the design grade elevation and will be compacted to at least 95 percent of maximum density (ASTM D 1557). To prevent hydrostatic uplift of the fill and paved invert, fill material placed beneath the invert will contain not more than 15 percent fines.

SUBDRAIN CONSTRUCTION

7-38 The subdrainage system in the Santa Ana River Channel will be constructed in three configurations, and a fourth configuration will be constructed in the Greenville-Banning Channel. Each configuration will include a 6-inch gravel drain layer placed between a 6-inch thick layer of filter sand and the concrete channel invert. The subdrainage system

for the downstream end of the rectangular channel will consist of an 8-inch diameter collector (perforated) pipe placed longitudinally behind either channel wall and two 6-inch diameter collector pipes placed longitudinally under each half of the invert slab at 50 foot spacings. starting from the channel wall collector. A final or third 6-inch diameter collector pipe will be placed adjacent to either side of the low flow channel, inset 60 feet from the previous invert collector. The system for the upstream (narrower) portion of the rectangular channel will be the same but with one less collector pipe and constant 50 feet spacing. The subdrainage system for the trapezoidal channel will consist of three 6-inch diameter collector pipes placed longitudinally under each side of the invert slab. The first collector will be under the outer edge of the invert, the second will be inset 30 feet, and the final pipe will be inset 40 additional feet. The drain and filter materials will extend up, beneath the channel slope paving, 5 feet above the invert. The subdrainage system for the Greenville-Banning Channel will consist of one 10-inch diameter collector pipe behind either side of the channel just above the base of the channel walls.

7-39 The collector pipes under the invert slab will empty into 10-inch diameter nonperforated discharge pipes. The nonperforated pipes will be spaced at 300 feet for the lower portion of the rectangular channel, 400 feet for the upper portion of the rectangular channel, and 600 feet for the trapezoidal channel. The collector pipes behind the rectangular channel L-walls will discharge directly through a flap gate in the channel wall. Flap gates in the channel walls will be spaced at 500 feet for the lower portion of the rectangular channel, and 600 feet for the upper portion of the rectangular channel. Flap gates in the Greenville-Banning channel walls will be spaced at 300 feet for the rectangular channel and 600 feet for the trapezoidal channel.

7-40 The design configuration plates for the subdrain systems are presented within the Main Report-Vol. 3.

7-41 The filter and gravel drain materials will be graded between the standard limits specified below:

Table K. Subdrain Stone Gradations.

Filter Material (Washed Concrete Sand)

Sieve Size	Percent Finer (by weight)
3/8 inch	100
No. 8	80-100
No. 16	5 0-8 5
No. 30	25-60
No. 50	10-30
No. 100	2-10
NO. 100	2-10

Gravel Drain (1-1/2 inch crushed rock)

1-1/2 inch	100
1 inch	90-100
3/4 inch	55 - 90
3.8 inch	8-20
No. 4	0-5

Care will be taken to avoid contamination or segregation of the sand filter and gravel drain materials during placement. Precautions, such as use of light equipment, will be employed to ensure uncontaminated layers of the required thickness.

EMBANKMENT CONSTRUCTION

7-42 The existing left and right levees of the Santa Ana River Channel that will be paved as a trapezoidal section may be either cut back or built out, depending on the location, in order to create the new channel alignment. Conventional heavy construction equipment will be suitable for excavation of existing levees and construction of new levee fills. Fill materials will come from the required levee and invert excavation. Excavation of the borrow materials may be accomplished with self-propelled scrapers for short haul distances or with rubber-tired loaders and hauled in trucks for long haul distances. Levee fill will be placed in compacted lifts no thicker than 12 inches. Fill will contain no particles greater than 9 inches and will be compacted to 90 percent of maximum density (ASTM D 1557). Where new fill material is placed over existing levees, the levee will be prepared as a suitable foundation by removing any pavement or vegetation and flattening or stepping slopes steeper than 1V on 4H so that compaction equipment will bear fully on the compacted layer.

BACKFILL

7-43 Structural backfill behind the rectangular channel L-walls will consist of select material from the required excavation. Backfill materials will consist of sands and silty sands containing no particles larger than 3/4 of the compaction lift thickness and no more than 10 percent passing the #200 sieve. Backfill will be placed in 12-inch thick loose lifts and compacted to not less than 90 percent of maximum density (ASTM D 1557) and within 2 percent of optimum moisture content. Compaction of backfill material will be accomplished by means which do not overstress the L-wall. Mechanical hand tampers may be employed, but heavy equipment will not be permitted within 3 feet of the wall.

Beach Disposal

ACCEPTABLE INVERT EXCAVATION

7-44 The acceptable invert materials for beaches are shown in the figure 7 series of compatibility envelopes, as described in paragraph 6-28. Acceptable materials have been identified only to the depth of the proposed invert. All composite areas of required invert excavation (see table 9) are useable for beach placement. Because it vert materials are subject to change during periods of significant channel flow, the suitability of any required excavation designated for placement on the beach should be monitored during construction. Acceptable materials are identified only by grain size in this appendix.

PLACEMENT

7-45 The method of placing renourishment materials on a beach is a critical factor in retaining the materials. Specific methods of placement and geometry will be presented in the Coastal Design Appendix.

VIII. CONCRETE MATERIALS

GENERAL.

8-01 This section discusses the availability and suitability of concrete materials. Prior to the preparation of plans and specifications, a detailed concrete materials investigation will be prepared for the concrete structures. The scope of the investigation will be in accordance with the requirements of EM 1110-2-2000, Standard Practice for Concrete, dated 5 September 1985.

Aggregate Sources

GENERAL

8-02 The following paragraphs summarize the potential sources of concrete materials available for the project. The material sources listed are representative of those currently used by the local producers. Plate 39 shows the locations of aggregate, cement, and pozzolan sources. Detailed investigations, which evaluate the quality of the aggregates from those sources are in progress. Additional sources will be investigated and the complete analysis of the results will be presented in the Feature Design Memorandum addressing major items of concrete construction.

BLUE DIAMOND MATERIALS

8-03 This producer of concrete aggregate is located on an alluvial sand and gravel deposit along the Santiago Creek in Irvine, CA. Blue Diamond has been at this location for 12 years and expects to be in production there for a minimum of 8 more. The plant produces 1-1/2" aggregate, 3/8" pea gravel, and washed concrete sand. Additionally, the plant produces 3/4", 1/2", and 3/8" crushed rock as well as some boulders of up to three foot diameter. The plant has an annual output of approximately one million tons and is located 28 miles from the Santa Ana River at both Prado Dam and its juncture with Pacific Coast Highway.

FOSTER SAND AND GRAVEL

8-04 Foster Sand and Gravel is located along Temescal Wash near Corona, California, and consists of an alluvial sand deposit. Foster has been at this location since 1972 and expects to be in production there for a minimum of 25 more years. The plant produces chiefly sand for fine aggregate although about 15 percent of its output consists of 1 inch aggregate and 3/8 inch pea gravel. The plant has an annual output of approximately one million tons and is located 15 miles from the Santa Ana River at Prado Dam and 45 miles from the river at Pacific Coast Highway. Located in the immediate vicinity of Foster are several other producers of sand for use in concrete including R.J. Noble, Chandler, Concrete Products Inc., and C.L. Pharris.

OWL ROCK

8-05 The Owl Rock Plant in Rialto has been located along Lytle Creek since 1955 and expects to be in production there for a minimum of 80 more years. The site consists of an alluvial deposit and produces 1-1/2 inch and 1 inch aggregate, 3/8 inch pea gravel, and washed concrete sand. The plant has an annual output of almost two million tons and is located 30 miles from the Santa Ana River at Prado Dam and 60 miles from the river at Pacific Coast Highway. While this source is not located in the immediate vicinity of the project area it is included here because it supplies aggregate to many ready mix firms which are in the project area.

TRANSIT MIXED CONCRETE

8-06 Transit Mixed Concrete mines a deposit along the San Gabriel River in Azusa, CA which is alluvial in nature. Transit Mixed has been at this location for over 40 years and expects to be in production there for a minimum of 15 more years. The plant produces 1-1/2 inch and 1 inch aggregate, 3/8 inch pea gravel, and washed concrete sand and has an annual output of over three million tons. It is located 25 miles from the Santa Ana River at Prado Dam and approximately 45 miles from the river at Pacific Coast Highway. Located in the immediate vicinity of Transit Mixed are several other aggregate producers including Blue Diamond Materials and Cal Mat.

Cementitious Materials

CEMENT SOURCES

8-07 There are a relatively wide variety of cement producers in and near the Los Angeles Basin which are capable of supplying cement certified by the Corps of Engineers ongoing cement certification program. Among these plants are the California Portland Cement Company plant at Colton, the Kaiser Cement Company plant at Lucerne Valley, the

Southwestern Cement Company plant at Victorville, and the Riverside Cement Company plant at Riverside. All of these plants are in the state of Califorina. The following paragraphs summarize the types of cements which these plants produce. Table L supplies prices of various cements from the sources specified, and Table M contains cost data on the shipping of cement.

8-08 The California Portland Cement Company plant at Colton, located approximately 25 miles north of Prado Dam and 55 miles north of the Santa Ana River's juncture with the Pacific Coast Highway, produces Type II and III cements conforming to the requirements of ASTM C-150.

8-09 The Kaiser Cement Company plant in the Lucerne Valley, located approximately 89 miles north of Prado Dam and 119 miles north of the Santa Ana River's juncture with the Pacific Coast Highway, produces Type II cement conforming to the requirements of ASTM C-150. This plant also produces a blended cement conforming to the requirements of ASTM C-595, Type IP.

8-10 The Riverside Cement Company plant at Riverside, California, located approximately 17 miles west of Prado Dam and 47 miles northeast of the Santa Ana River's juncture with the Pacific Coast Highway, produces Type II cement conforming to the requirements of ASTM C-150.

8-11 The Southwest Cement Company plant at Victorville, California, located approximately 66 miles north of Prado Dam and 96 miles north of the Santa Ana River's juncture with the Pacific Coast Highway, produces Type II and V cements conforming to the requirements of ASTM C-150.

Table L. Cement Prices in Dollars Per Ton. (FOB Plant, December 1987)

		Cement	Туре	
Cement Plant and Location	IP	II	III	V
California Portland, Colton		73.00	78.00	_
Kaiser, Lucerne Valley	74.30	60.00	~	-
	-	64.00	-	80.30
Southwestern, Victorville				

Table M. Cement Shipping Prices in Dollars Per Ton.
(December 1987)

Distance (Miles)	Cost	Distance (Miles)	Cost	Distance (Miles)	Cost
3-5	3.142	30-35	4.480	70-80	7.828
5-10	3.296	35-40	5.200	80-90	8.446
10-15	3.450	40-45	5.922	90-100	9.012
15-20	3.760	45-50	6.386	100-110	9.682
20-25	3.966	50-60	6.902	110-120	10.300
25-30	4.224	60-70	7.314	120-130	11.072

POZZOLAN SOURCE

8-12 ETL 1110-1-127, dated 17 August 1984 requires the Federal Government to allow the use of flyash in concrete construction except in those cases where it's use can be proven to be undesirable. The local practice of the ready-mix concrete industry is to use flyashes as pozzolanic admixtures in concrete. The reasons for this is the reduction of heat of hydration, reduction in cost due to the price of flyashes in comparison to the price of cement, increased workability at lower water contents, and the reduction in the alkali-aggregate reaction. The practice of local agencies is to specify Type F flyash generally conforming to the requirements of ASTM C-618. The Corps of Engineers has recently started a program to evaluate the quality and uniformity of flyashes and has set up a certification plan, for flyashes, similar to the one used for cements. Materials conforming to these requirements are produced at the plants shown on plate 39.

8-13 The closest local producer, the Western Ash Company, supplies flyash, conforming to the requirements of ASTM C-618, Type F, from a plant at Page, Arizona, approximately 555 miles northeast of Prado Dam and 585 miles northwest of the juncture of the Santa Ana River and Pacific Coast Highway.

Admixtures

8-14 A wide variety of admixtures are regularly used by ready-mix concrete suppliers in southern California. These include all of the following: air entraining agents, accelerators, retarders, water reducers and high range water reducers. The relatively common methods anticipated for construction of the strutures described above should not require any specialty admixtures other than those recommended in the section: Recommendations.

Water

8-15 Water of sufficient quantity and suitable quality for the production of concrete will be available from local municipal water systems.

Curing Compounds

8-16 A wide variety of curing compounds are available for use from the aggregate suppliers to the local ready-mix concrete industry. Curing compounds will be specified in accordance with project requirements and ASTM C-309.

Transit Mixed Concrete

8-17 Commercial ready mixed concrete plants are located within competitive hauling distances of all sections of the Santa Ana River downstream of Prado Dam. As of December, 1987 the approximate cost of a cubic yard of concrete in the project area is \$60.

Recommendations

AGGREGATES

8-18 Aggregates suitable for the production of concrete are produced at the sources previously discussed. These sources are capable of supplying sufficient amounts of aggregates to meet the needs of this project. All aggregates used shall conform to the requirements of ASTM C 33. Coarse aggregate gradations should be 1-1/2 x 3/4, 1 x No. 4 as described in CALTRANS specifications, or should be size No. 467, No. 57, or No. 67 as described in ASTM C 33, as required by the design/engineer. All aggregate used shall conform to the requirements of ACI 350 and ASTM C 33 with the following limitations.

- a. Soft particles: 2.0 percent.
- b. Chert as a soft impurity (defined in Table 3 of ASTM C 33):1.0 percent.
- c. Total of soft particles and chert as a soft impurity:2.0 percent.
- flat and elongated particles (long dimension more than 5 times short dimension): 15 percent.
- e. Maximum aggregate size shall not exceed 1-1/2 inches, except where structural or other considerations require a difference.

CEMENTS

- 8-19 The following cements and requirements will be specified.
 - a. Cement would be Type II, low alkali (0.6 percent maximum), conforming to the requirements of ASTM C-150.
 - b. Blended cements would conform to the requirements of ASTM C-595, Type IP.
 - c. For applications in which high early strengths would be desired due to construction scheduling, ASTM C-150, Type III cement would be acceptable.

POZZOLANS

8-20 The only pozzolanic materials generally in use locally are type F flyashes conforming to the requirements of ASTM C-618. Specifications will call for flyashes conforming to the requirements of ASTM C-618, Type F, with the loss in ignition limited to 6 percent.

ADMIXTURES

8-21 Construction of the structures described above involve relatively simple construction procedures. The necessity for sophisticated admixtures is not anticipated. However, calcium chloride wil not be permitted to be added for reinforced concrete because of the deleterious effect it may create by accelerating the corrosion of the reinforcing steel and concrete (ACI 201). The following types of admixtures will be specified in all construction.

Air Entraining Admixtures

8-22 If air-entrained admixtures are used, they would conform to the requirements of ASTM C-260.

Accelerating Admixtures

8-23 Accelerating admixtures will conform to the requirements of ASTM C-494, Type C, except that no calcium chloride will be allowed in reinforced concrete.

Retarding Admixtures

8-24 Retarding admixtures will conform to the requirements of ASTM C-494, Type B or D.

Water Reducing Admixtures

8-25 Water reducing admixtures will conform to the requirements of ASTM C-494. Type A or D.

MIX PROPORTIONING

8-26 All materials used should be so proportioned as to produce a well graded mixture of high density and maximum workability, with a specified 28-day compressive strength of 3500 psi (ACI 350), except where special structural or other considerations require concrete of greater strength. The water-cement ratio should be limited to .45 maximum (ACI 211), thus producing a very dense and low permeable concrete. Slump in the range of 1 to 3 inches is recommended for workability.

IX. SELECTED BIBLIOGRAPHY

- Barrows, A.G., 1974. Review of the geology and earthquake history of the Newport-Inglewood structural zone, Southern California: California Division of Mines and Geology Special Report 114.
- Bowles, E., 1982. Foundation Analysis and Design. McGraw-Hill, Inc.
- Bryant, M.E. and D.L. Fife, 1982. The Peralta Hills fault, a transverse range structure in the northern Peninsular Ranges, Southern California, in Fife, D.L. and J.A. Minch, eds., Geology and Mineral Wealth of the California Transverse Ranges: South Coast Geological Society.
- California Department of Public Works, Division of Water Resources, 1934. South Coastal Basin investigation; Geology and ground water storage capacity of valley fill: California Division of Water Resources Bulletin No. 45.
- California Department of Water Resources, 1959. Santa Ana River investigation: California Department of Water Resources Bulletin No. 15.
- California Department of Water Resources, 1961. Planned utilization of the ground water basins of the coastal plain of Los Angeles County, Appendix A: Ground water geology: California Department of Water Resources Bulletin No. 104.
- California Department of Water Resources, 1966. Santa Ana Gap Salinity Barrier, Orange County: California Department of Water Resources Bulletin No. 147-1.
- California Department of Water Resources, 1975. Sea-water intrusion in California: Inventory of coastal ground water basis: California Department of Water Resources Bulletin No. 63-5.
- Cedergren, H.R., 1977. Seepage, Drainage and Flow Nets. John Wiley & Sons, Inc.

- Dames and Moore, 1980. Phase I and II fault study report and high resolution reflection geophysical survey: Whittier Narrows Dam: prepared for U.S. Army Corps of Engineers, Los Angeles District.
- Departments of the Army, the Navy, and the Air Force, 1983. Dewatering and Groundwater Control. Army TM 5-818-5
- Department of the Navy, Naval Facilities Engineering Command, 1982. Soil Mechanics: NACFAC DM-7.1 Foundations and Earth Structures: NAVFAC DM-7.2
- Durham, D.L. and R.F. Yerkes, 1964. Geology and oil resources of the eastern Puente Hills area, Southern California: U.S. Geological Survey Professional Paper 420-B.
- Greensfelder, R.W., 1974. Maximum credible rock acceleration from earthquakes in California: California Division of Mines and Geology Map Sheet 23.
- Guptill, P.D. and E.G. Heath, 1981. Surface faulting along the Newport-Inglewood zone of deformation: California Division of Mines and Geology, California Geology, July 1981.
- Krinitzsky, E.L. and W.F. Marcuson III, 1983. Principles for selecting earthquake motions in engineering design: Bulletin of the Association of Engineering Geologists, Vol. XX, No. 3.
- Lamar, D.L., P.M. Merifield, and R.J. Proctor, 1973. Earthquake recurrence intervals on major faults in Southern California, in Moran, D.E., J.E. Slosson, R.O. Stone and C.A. Yelverton, eds., Geology, Seismicity, and Environmental Impact: Association of Engineering Geologists Special Publication.
- Lamb, T.W. and R.V. Whitman, 1969. Soil Mechanics. John Wiley and Sons, Inc.
- Leeds, D.J, 1979. Seismic criteria: Whittier Narrows Dam, Santa Fe Dam, Sepulveda Dam, Carbon Canyon Dam, Hansen Dam: Prepared for U.S. Army Corps of Engineers, Los Angeles District.
- Leighton-Yen and Associates, 1974. Geotechnical inputs: prepared for Huntington Beach planning department.
- Moreland, J.A. and J.A. Singer, 1969. A study of deep aquifers underlying coastal Orange County, California: U.S. Geological Survey Open-File-Report.
- Morton, P.K. and R.V. Miller, 1981. Geologic map of Orange County, California showing mines and mineral deposits: California Division of Mines and Geology Bulletin 204, plate 1.

- Morton, P.K., R.V. Miller, and J.R. Evans, 1976. Environmental geology of Orange County, California: California Division of Mines and Geology Open-File Report 79-8 LA.
- Orange County Water District, 1981. Monitoring wells, supplement to Green Acres wastewater reclamation and conveyance facilities project report.
- Orange County Water District, 1987. 1985-86 Engineers report on groundwater conditions, water supply and basin utilization.
- Poland, J.F., A.M. Piper, and others, 1956. Ground-water geology of the coastal zone Long Beach-Santa Ana area, California: U.S. Geological Survey Water-Supply Paper 1109.
- Randell, D.H., J.B. Reardon, J.A. Hileman, and others, 1983. Geology of the City of Long Beach, California, United States of America: Bulletin of the Association of Engineering Geologists, Vol. XX, No. 1.
- Real, C.R., T.R. Toppozada, and D.L. Parke, 1978. Earthquake epicenter map of California: California Division of Mines and Geology Map Sheet 39.
- Robbins, G.A., 1986. "Perched" groundwater conditions in Orange County, in Saint, P.K., ed., Hydrogeology of Southern California:

 Geological Society of America Cordilleran Section, Field Trip Guidebook 17.
- Ryan, J.A., J.N. Burke, A.F. Walden, and D.P. Wieder, 1982. Seismic refraction study of the El Modeno fault, Orange County, California: California Division of Mines and Geology, California Geology, January 1982.
- Schnabel, P.B. and H.B. Seed, 1973. Accelerations in rock for earthquakes in the Western United States: Bulletin of the Seismological Society of America, Vol. 62.
- Schoellhamer, J.E., D.M. Kinney, R.F. Yerkes, and J.G. Vedder, 1954. Geologic map of the northern Santa Ana Mountains, Orange and Riverside Counties, California: U.S. Geological Survey Oil and Gas Investigations, Map OM 154, Map scale 1:24,000.
- Schoellhamer, J.E., J.G. Vedder, R.F. Yerkes, and D.M. Kinney, 1981. Geology of the northern Santa Ana Mountains, California: U.S. Geological Survey Professional Paper 420-D.
- Seed, H.B., R. Murarka, J. Lysmer, and I.M. Idriss, 1976. Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes: Bulletin of the Seismological Society of America, Vol. 66.

- Sowers, B. and G.F. Sowers, 1970. Introductory Soil Mechanics and Foundations. Macmillan Publishing Co., Inc.
- Terzaghi, K. and R.B. Peck, 1948. Soil mechanics in Engineering Practice. John Wiley and Sons, Inc.
- Tinsley, J.C. and T.E. Fumal, 1985. Mapping Quaternary sedimentary deposits for areal variations in shaking response, in Ziony, J.l., ed., Evaluating Earthquake Hazards in the Los Angeles Region--An Earth-Science Perspective: U.S. Geological Survey Professional Paper 1360.
- U.S. Army Corps of Engineers, 1952. Soils Mechanics Design, Seepage Control: EM 1110-2-1901.
- U.S. Army Corps of Engineers, 1953. Settlement Analysis: EM 1110-2-1904.
- U.S. Army Corps of Engineers, 1958. Bearing Capacity of Soils: EM 1110-2-1903
- U.S. Army Corps of Engineers, 1961. Retaining Walls: EM 1110-2-2502.
- U.S. Army Corps of Engineers, 1970. Engineering and Design, Stability of Earth and Rock-Fill Dams: EM 1110-2-1902.
- U.S. Army Corps of Engineers, 1978. Design and Construction of Levees: EM 1110-2-1913.
- U.S. Army Corps of Engineers, 1983a. Earthquake design and analysis for Corps of Engineers projects: ER 1110-2-1806, 16 May 1983.
- U.S. Army Corps of Engineers, 1983b. Interim procedure for specifying earthquake motions: ETL 1110-2-301, 26 August 1983.
- U.S. Army Engineer District, Los Angeles, Corps of Engineers, 1957. Report on Manhole Drainage System.
- United States Steel, 1975. Steel Sheet Piling Design Manual.
- Woodward-Clyde Consultants, November 1980. Fault study report for Prado Dam, Riverside County, California, Volumes I and II: Prepared for U.S. Department of the Army, Los Angeles District, Corps of Engineers.
- Woodward-Clyde Consultants, 1983. Preliminary evaluation of liquefaction potential, Bolsa Chica Local Coastal Program, Bolsa Chica Planning Unit, Orange County, California: prepared for Signal Landmark, Inc. and Orange County Environmental Management Agency.

- Woodward-Clyde Consultants, 1984. Preliminary evaluation of surface faulting, Bolsa Chica Local Coastal Program, Bolsa Chica Planning Unit, Orange County, California: prepared for Signal Landmark, Inc. and Orange County Environmental Management Agency.
- Yerkes, R.F., T.H. McCulloch, J.E. Schoellhamer, and J.G. Vedder, 1965. Geology of the Los Angeles Basin California - an introduction: U.S. Geological Survey Professional Paper 420-A.
- Yerkes, R.F., 1985. Earthquake and surface faulting sources: Geologic and seismologic setting, in Ziony, J.I., ed., Evaluating Earthquake Hazards in the Los Angeles Region an Earth Science Perspective: U.S. Geological Survey Professional Paper 1360.

A GEOTECHNICAL

TABLES

TABLE 1 LOWER SANTA ANA RIVER: WEIR CANYON ROAD TO PACIFIC OCEAN

					****	EXISTING	CHANNEL	CONDITIONS	***** SN		
REACH STATION FROM	HEA NOT 70	LANDMARK (STATION)	ORANGE COUNTY DRAWING NUMBER	CHANNEL BASE WIDTH (ft.)	LEVEE BERM WIDTH (ft.)	LEVRE HEIGHT (ft.)	INSIDE SIDE SLOPE (H: 1V)	OUTSIDE SIDE SLOPE (H:1V)	HEIGHT OF UNFRTECTD TOP OF LEVEE (ft.)	SLOPE PROTEC- TION	TYPE AND DEPTH OF TOE PROT- BOTTON
REACH 1											
1220+00 1207+63	1207+63		B-107-108	varies		12-22				1	100
1207+63 1204+75	1204+75		B01-701-8 & B01-101-26	varies	8	13-22	~	~		stone w/ 1 8" filter 1	stn + 3' drrck stn
1204+75 1198+08	1198+08	WEIR CTN. RD. (1202+00) M.W.D. OUTLET (1200+50)	E01-701-8 # 1 E01-101-4-A# E01-101-26	340-320	8,38	13-21	N	~ ~ ~ ~ ·	5,	2-4' facing stone w/ 6-8" filter	6-11' fcg stn + 3' drrck stn
1198+08 1197+60	1197+60	DROP STRUCTURE (1198+07)		350	R R	22-14			0	8" R.C.	conc invert
1197460 1196407	1196407	er til Sel Se	E01-701-8 # 1	315	R 	18.2-22			α	18-36" grtdl fcg stone w/1 6" filter	6' facing
1196407 1174400	1174+00	DO		varies	&	18-18.5 1			2	18" fcg stnf w/ 6" fltr i	stone + 3' derrick stone
1174+00 1148+50	1148+50		D01-701-8 & 1	 %	20,21	17.5-18 1			0,2		
1148+50 1129+50	1129+50		E01-501-1-AE	360-295	20,21	14.5-17.51				tra 400 4	11-13' fog stn + 3'
1129+50	1129+50 1128+70	STABILIZER (1129440)	B01-101-4-A		20,21	14.5,15.51				24,18" facing stone w/	grid stone
1128+70	1128+70 1110+00			£	20,21	14.5-17					11-13' fog 1 stn + 3' 1 drrck stn 1
1110+00 1074+70	1074+70		E01-501-1-A& E01-101-4-A	8	20,21	12-14			2,0		6' facing
1074+701	1074+70 1056+00	IMPERIAL HWY. (1057+50)	E01-501-1-A	e 8	 	22	~	~	0	24" fog atni w/6" fltr	2
				_	-	-	_	~	_		

TABLE 1 (cont.)

100 100						***	EXISTING	CHANNEL	CONDITIONS	S)		
Marker (Station) Disastric (Titt) (Tt.)	REACH			ORANGE	CHANNEL	LEVEE	gana i	INSIDE		HEIGHT OF UNIPRIECTO	SLOPE	DEPTH OF
99 100 100 100 100 100 100 100 100 100 1	STATIOI FROM	_p	LANDHARK (STATION)	I DRAWING I MUMBER	(ft.)	MIDTH (ft.)	HEIGHT (ft.)	SLOPE SLOPE (H: 1V)		icves (rt.)	TION	TOE PROT- ECTION
99 BROP STRUCTURE (1022+98) 10 LAMENTER (1022+98) 11 LAMENTER (1022+98) 12 LAMENTER (1022+98) 13 LAMENTER (1022+98) 14 LAMENTER (1022+98) 15 LAMENTER (1022+98) 16 LAMENTER (1022+98) 17 LAMENTER (1022+98) 18 LAMENTER (102	REACH 2 - UI	1878 1878			·							
200-200 24, 13,7-15,2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1056+00 16	049492		E01-101-10-A	8	21,24	15.2	N			24" facing	6' facing
20 LATENTISM AVE. (707-50) 59 DROP STRUCTURE (1022-98) 50 LATENTISM AVE. (707-50) 50 LATENTISM AVE. (7		032+20	•		300-320	21,24	13.7-15.2	- 	~	·	6,16" fltr	stone + 3' derrick
24 INCOLAR WE (1022+98) 50 LANGENTREE (1022+98) 50 LANGENTREE (1022+98) 50 LANGENTRE (1022+98) 50 RIVESTIE NAT. (1918-50) 51 RROP STRUCTURE (1024-90) 52 LANGENTRE (1024-90) 53 LANGENTRE (1024-90) 54 LANGENTRE (1024-90) 55 LANGENTRE (1024-90) 56 LANGENTRE (1024-90) 57 LANGENTRE (1024-90) 58 LANGENTRE (1024-90) 59 LANGENTRE (1024-90) 50 LANGENTRE (1024		86+220	•		82	র	13.0-13.71	 •	0,2	-		etone
00 LAMENTEM AVE. (975+50) ED1-101-0-A		85+230	DROP STRUCTURE (1022+98)			お	17.9-13.01	 •		0	24" facing atone w/	
Street S		976+30	•	B01-101-10-A		24 etn !	14.1-17.91				16" filter	
13.5-13.5 15.		970+00	LAKEVIEW AVE. (975+50)	E01-101-9-A		21 mtn	13.5-14.11					
S.P.R.R. (#994-50) EDI-101-9-4 13.5-18.5 0,2 1 1 1 1 1 1 1 1 1		09+696	DROP STRUCTURES (970400)				18.5-13.51	- - (0		
19,4-13.5 2 0 0 0 0 0 0 0 0		907+00	RIVERSIDE FAT. (918+50)				13.5-18.51		2,0	-	stone w/	
S.P.R.R. (890+00) EDI-101-9-A 16.4-19.4 1 1 1 1 1 1 1 1 1		306463	DROP STRUCTURE (907+00)				19.4-13.51	- -	7	0		
S.F.R.R. (890-00) ED1-101-9-A 14.7-16.4 1 1 1 1 1 1 1 1 1		902+00		1 M-6-101-103		1	16.4-19.4			-		
State Structure Self-tool Edition Ed		984+00			(14.7-16.41	~ ~ '		~~		
893+90 DROP STRUCTURE (884+00) EDI-101-72-A	EACH 2 - 14	CHEER				•					24" fcg stn	
895+00 841+71 GLASSEL ST. (859+00) ED1-101-5-AB 836+93 CARBON CTN. DIV. CN. (841+00) ED1-101-5-AB 836+93 IROP STRUCTURE (836+50) ED1-101-5-AB 803+93 IROP STRUCTURE (835+50) ED1-101-5-AB 803+93 IROP STRUCTURE (835+50) ED1-101-5-AB 803+93 IROP STRUCTURE (737+50) ED1-101-6-AB 737+93 IROP STRUCTURE (737+50) ED1-101-6-AB 737+93 IROP STRUCTURE (737+50) ED1-101-6-AB 703+14 S.P.R.R. (725+50) ED1-101-6-AB 703+14 S.P.R.R. (725+50) ED1-101-6-AB 701+94 ZA0-250 Z6 15 15 1.5 - 2 701+94 ZA0-250 Z6 16 16 115 115 115 115 115 115 115 115		983+59	DROP STRUCTURE (884,+00)			•	18.7-14.71				TO A	
841+77 GLASSEL.ST. (858+00) E01-101-5-AB		859+00				21 a tn	16.7-18.71		2	-	w/ 6" fitr 1	
836+50 CARBON CTN. DIV. CH. (841+00) ED1-101-6-A 14.9-15.3 114.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9-15.3 116.9 116.		841+71	GLASSEL ST. (858+00)	E01-101-5-AE 1		20 Edn	15.3-17		0,2	-		
803+63 DROP STRUCTURE (836+50) BD1-101-5-A 23.9-14.9 1 1-5 1 1-5 1 1-5 1 1 1 1 1 1 1 1 1 1 1		83 6+ 50 C		E01-101-6-A			14.9-15.31			-		
803+50 LINCOLM AVE (813+50) 803+50 LINCOLM AVE (803+50) 737+50 BALL RD. (742+60) 737+50 BALL RD. (742+60) 737+50 BALL RD. (742+60) 737+51 BOI-101-6-A 737+52 BALL RD. (742+50) 801-101-6-A 703+14 S.P.R.R. (725+50) 801-101-6-A 701+54 701+54 701+54 701+54 701+54 701+56 701+50 701		836+03	DROP STRUCTURE (836+50)	1 201-101-5-A			23.9-14.91			0		
803+03 IROP STRUCTURE (803+50) 20 min 23.8-14.91 0 737+50 BALL RD. (742+00) E01-101-6-A 21 min 15.1-25 1 min 737+03 DROP STRUCTURE (737+50) E01-101-6-A 21 min 15.3-24 0 703+14 S.P.R.R. (725+50) E01-101-6-A 320 21 min 15.3-24 0,2 1 - 10 701+94 F01-101-6-A 320 21 min 16.7-15.31 2 2 1 701+20 F01-101-3-A 240-250 26 15 1.5 - 2 1 701+20 F080-101-3-A 250 26 15 1.5 - 2 1		903+50	LINCOLM AVE (813+50)				14.9-23.91	•		1-5-1		
737+50 BALL RD. (742+00) 737+50 DROP STRUCTURE (737+50) 801-101-6-A 703+14 S.P.R.R. (725+50) 801-101-6-A 703+14 S.P.R.R. (725+50) 801-101-6-A 703+14 S.P.R.R. (725+50) 801-101-6-A 703+14 S.P.R.R.R. (725+50) 801-101-6-A 703+14 S.P.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.		803+03	DROP STRUCTURE (803+50)				23.8-14.91			0	stone w	
737+03 DROP STRUCTURE (737+50) B01-101-6-A 21 min 24-15-1 0 1 - 10 703+14 S.P.R.R. (725+50) B01-101-6-A 320 21 min 15.3-24 0,2 1 - 10 702+14 B01-101-3-A 240-250 26 15 1.5 - 2 701+20 F01-101 F01-101-3-A 250 26 15 1.5 - 2 701+20 F01-101 F01-101 250 26 16 15 1.5 701+20 F01-101 701+00		737+50	BALL RD. (742+00)			20 mg/n 2	15.1-25	•	- - -	1 min	o IIIVer	
703+14 S.P.R.R. (725+50) B01-101-5-A 21 min 15.3-24 0,2 1-10 702+14 B01-101-6-A 320 21 min 16.7-15.3 2 2 1 701+94 B01-101-3-A 240-250 26 15 1.5-2 701+20 698+92 KATELIA AVE. (701+00) 250 26 16 16		737+03	DROP STRUCTURE (737+50)	B01-101-6-4		21 atn	24-15.1			0		61 Ac-4-1
702414 702414 701420 E01-101-6-A 320 21 min 16.7-15.31 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		703+14	S.P.R.R. (725+50)	B01-101-5-A		21 mdn 12	15.3-24	· •	0,2	1 - t		stone +
701+94, 701+20		702+14		E01-101-6-A	350	21 utn	16.7-15.31	~	~	-		stone stone
701+20		701+94		B01-101-3-A	240-250	%	15	1.5 - 2			8" reinf.	9' reinf.
698+92 KATELIA AVE. (701+00) 1 1 250 1 26 1		701+20			250	%	15	1.5		, -	an a rougo	3' derrick
	701+20	698492	KATELLA AVE. (701+00)		- -	8	9	~ ~ •				

TABLE 1 (cont.)

					*****	ECUSTING	CHANNEL	CONDITIONS	***** S		
REACH	74 ·		ORANGE	CHANNEL	LEVEE	LEVEE	INSIDE	OUTSIDE	HEIGHT OF UNDERTREETD TOP OF	SLOPE PROTEC-	TYPE AND DEPTH OF TOE PROT-
STATION PROM '	2	LANDMARK (STATION)	MUMBER	(ft.)	(ft.)	ft.)	(R: 1V)	(H:1V)	(rr.)	rice	ECTION .
C ROVER											
26+869	697+83			520	*	13-16	1.5	- -			concrete +
697483	80+769		1 B01-101-3-A	520	**	5	2 - 1.5	~~.		concrete i	3' derrick stone
80+769	00+289	CHANNEL (693+48) A.T.& S.P.R.R. (685+50)	B01-101-22	250-260	20 mtn	12-13.4	~	0	0		
00+289	87+189	DROP STRUCTURE (682+00)	B01-101-22	98	20 mtn	20.5-12			0		
87+189	900+609	•	B01-101-3-A	98	20 mtn	15-20.5			0	•	
00+6/29	664+75	ORANGE PAT. (675+00)		% %	15 adm	13			-		
664+75	662+75			260-270	15 atn 1	13			-		
662+75	659+50	CRANCESTOOD AVE. (661+00)		82	15 mdn (13			-		6' facing
659+50	657+50		E01-101-3-A	270-260 1	15 mtm ?!	t3		0	~	18" facing	3' derrick
924-00	00+959		101-101	210	% ## %	12.5-12		~	0	, 849 949	Brone
00+959	637+50			210-240	20 mdn.	12.5	~		0	13. 13.	
637+50	637+00			240-260	20 etn	12.5	3-2		0		
637+00	636+43	DROP SRUCTURE (637+00)		98	20 a th	20-12.5	6		0		
636463	628+95	CHAPMAN AVE. (630-80)	1 201-101-22	260-210	20 a fn	15.2-20		~	1 - 0		
628495	622+06		101-101-3-A	98	15 min !	13	- - •	0	-		
622+06	617+50	BITTERBUSH CANAL (621+00) SANTA ANA FWY. (617+50)	E01-701-2A		20 ata	12	- -	~	4		stone
617+50	593+35	S.P.R.R. (616+50)	B01-101-22		20 min.1	12.5	2,3	0	0		6' facing
\$93+35	592+84	DROP STRUCTURE (593+35)			% ut	19.6-12.51	~	0	0		3' derrick
292+84	590+63		101-101-22		20 min (15.6-19.61	~ ~	0	0		
590463	557+25	CARDEN GROVE BLVD. (575+00) STABILIZER (574+00)			8	21	m	~ ~ ~	2	none	none
REACH 4		SAMILAND UN. CURPL. (226720)	E01-701-1 & 1								
557+25	551+00				8	12.5-13	~ ~	~	2 - 4:	18" rock	4' rock
						~ ~	v. elde:	v side:		v. side:	v. side:
551+00	526400	- 	1-108-701-1	98	ୡ	13-12.5	e. side:	e side:	2 - 4	e. side: 18" rock 1	e. side
£ . 7.	WTCC3		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	250-220	19 -	13.4	2	0	3.70	2-8" reinf. reinforced	8' reinforced

TABLE 1 (cont.)

					*****	EXISTING	CHANNEZ.	CONDITIONS	****** S		
REACH	중		ORANGE	CHANNEL	LEVEE	Gentles i	INSIDE	OUTSIDE	HEIGHT OF UNPRIECTO	SLOPE	TYPE AND DEPTH OF
STATION	, <u>2</u>	LANDMARK (STATION)	DRAWING I NUMBER	WIDTH (ft.)	Cr.)	(ft.)	SLOPE SLOPE (H:1V)		LEVEE (ft.)	TION	TOE PROT- ECTION
REACH 5 - UPPER	UPPER										
909400	609-00 425-00	PAIRVIEW ST. (501+00) STABILIZER (4,98+00) S.P.R.R. (4,81+00) STABILIZER (4,74+00) FIFTH ST. (4,66+00) BOISM AVE. (4,52+00) STABILIZER (4,45+50)	E01-101-18	87	유 원	13.4	(cr. cr. cr. cr. cr	l a	3.7		8' reinforced concrete
772	398+00	MCPADDEN AVE. (421+50)	1 BO1-101-18 & 1	83		13.4					
398+00	393+00	STABILIZER (419+00)	1 BO1-101-13-A 1	220-180		14.5-13.4				8-7	
393+00	356+64	EDINCER AVE. (385+00)		8		14.5				reinf. conc.l	concrete
356464	354+60	STABILIZER (382+50)		85		15-14-5			3.7	 ·	
354.460	261+00	HARBOR BLVD. (342+00) MARNER AVE (334+00) STABILIZER (229+30) SLATER AVE (311+00) TALBERT AVE (282+00) STABILIZER (275+00)		8		÷	~		0 - 3.7	- 4 - 	6-8' reinforced concrete
REACH 5 - LONGR	LONGER							- ~ -			
261+00	260+00		1 DO1-101-13-4	180-190		17-15	1.5 - 2		3.7-1		
360+00	235+00	SAN DIEGO FWY. (254+32)	E01-101-15-A	8		12	1.5			reinforced	1,7
235+00	219+00			8						929-12000	+ 7! + 7!
219+00	215+00		E01-101-15-A	8.	20 min.						
215+00	214+00		B01-101-19-A	190-230	8				0	- -	
214+00	170+54		E01-101-19-A	230	8					- 	.
170+54	158+10	ADAMS AVE. (163+71)	F01-701-7	230	ୡ			~			
158+10	153+00		E01-101-19-A	530	20,25			1.75,21		**	4,1
153+00	133+71	PAIRVIEM CHANNEL (143+00)	E01-101-19-A	230	20,25	12	1.5	1.75,21	0	reinforced	rip-rup

TABLE 1 (cont.)

	ĺ		-		****	EXISTING	CHANNEL.	CONDITIONS	****** SN		
REACH STATION FROM	, <u>2</u> # 5	LANDMARK (STATION)	ORANGE COUNTY DRAWING NUMBER	CHANNEL BASE WIDTH (ft.)	LEVEE BERN WIDTH (ft.)	LEVEE HEIGHT (ft.)	INSIDE SIDE SLOPE (H: 1V)	OUTSIDE SIDE SLOPE (H:1V)	HEIGHT OF UNIFFIECTO TOP OF LEVEE (FL.)	SLOPE PROTEC- TION	TTPE AND DEPTH OP TOE PROT- BCTION
REACH 6											concrete
133+71	132+71		1 E01-101-21	230	20,25	18-17	2.5	1.75,21	0	6" 6	rip-rap
132+71	07+16			230		18	 :			concrete	
07+16	07+88		·	230-220			- - •				
REACH 7					- - ·					 •	-7
07+88	00+67	HAMILTON AVE. (82+16)		8	20,25		 •			 -	+ 3+
43+00	71+00			220-195	20-45						du-dia
41+00	30+00			195	15-57	~ ·	· •				
30+00	23+18		- - ,	195	%	18	1.5				concreted
23+18	20+00		1 301-101-21	195-160	25-20	16-18	2 - 1.5	1.75,21	·· •• ·	concrete	stone
20+00	14+50		E01-701-1-A	160-180	~ - .	18-16	0-2	~		8-18" R.C.	
14+50	\$35	PACIFIC COAST HWY. (9+47)		180-176	20-25	16-18	0	1,2	** *** *	10-18" R.C.	concrete
9+35	7+00			176-204	12-0-51	91	2 - 0	1.5,1		8-18" R.C. 1	THARL
7+00	00+00	_	B01-701-1-4 I	204-316	120	16 1	2,1.5	1.75,11	0	7-6' rock	6-7.5' stn

Table 2. Lower Santa Ana River. Major Significant Faults

Fault	Fault Length (mi)	Min. Dist. to Site (mi)	Epice Magni MCE ^a		Max. I Accel. MCE	
San Andreas	630	32	8.5.	8.25	0.25	0.25
Newport- Inglewood	35+	0 ,	7.0	6.0	0.70	0.60
Whittier- Elsinore	145	1	7.5	6.5	0.73	0.65
San Jacinto	145	27	7.5	7.2	0.20	0.18
Sierra Madre	60+	18	7.0	6.0	0.25	0.15
Palos Verdes	40	11	7.0	5.5	0.35	0.15

<sup>a. MCE: Maximum Credible Earthquake, from Leeds (1979).
b. MPE: Maximum Probable Earthquake, from Leeds (1979).
c. Data in columns from Schnabel and Seed (1973) and Greensfelder</sup> (1974).

Table 3. Lower Santa Ana River.

Significant Earthquakes (Richter Magnitude 6+) Since 1900^a

Date	Probable Causative Fault	Richter Magnitude	Min. Dist. to site (mi)
9/20/1907	San Andreas (?)	6.0	42
5/15/1910	Elsinore (?)	6.0	21
10/23/1916	?	6.0	96
4/21/1918	San Jacinto	6.8	41
7/23/1923	San Jacinto	6.3	33
3/11/1933	Newport-Inglewood	6.3	1
3/25/1937	San Jacinto	6.0	90
12/4/1948	Mission Creek	6.5	77
2/9/1971	San Fernando (Sierra Madre)	6.4	51

a. From Yerkes (1985) and Real and others (1978).

Table 4. Lower Santa Ana River.

Channel Foundation Investigation Reports

			Location	Station
Title	Prepared By	Date	Symbol	reach
Geotechnical Evaluation of Proposed Improvements of Santa Ana River Channel	Woodward-Clyde Consultants	1/6/78	WC78	20-133
Geotechnical Investi- gation Santa Ana River Channel Improvements	Woodward-Clyde Consultants	1/17/77	WC77	50-190
Dike Stability Investi- gation Santa Ana River	Woodward-McNeill & Associates	6/15/73	WM73	220-470
Soils Investigation, Santa Ana Interceptor Sewer	Geolabs- California, Inc.	7/27/71	GC71	225 - 702
Soil Investigation, Santa Ana River Drop Structures	Moore & Taber	5/31/78	MT78	558-701
Santa Ana River Study	Moore & Taber	3/19/64	MT64	605-1053
Foundation Investigation, Santa Ana River Structures	Moore & Taber	4/3/68	MT68	638-686
Foundation Investigation, Santa Ana River Levee	W.A. Wahler & Associates	7/24/69	WA69	708-854
Buttress Stabilization of Burris Sand Pit	Foundation Engineering Co., Inc.	4/15/75	FE7 5	730-820
Stability Investigation, Santa Ana River Levee	Moore & Taber	5/13/66	MT66	737-796
Preliminary Site Evalu- ation, Santa Ana R ⁴ er Spreading Basin Development	Woodward-McNeill & Associates	8/2/74	WM74	768-975
Soil Investigation, Santa Ana River Channel	Moore & Taber	10/29/70	MT70	846-1057
Soil Investigation, Santa Ana River Interceptor Sewer	Southern California Testing Laborato	5/12/75 ry	SCT75	910-1058

Table 4. (Continued)

Title	Prepared By	Date	Location Symbol	Station Reach
Soil Investigation, Santa Ana River Interceptor Sewer	Southern California Testing Laboratory	9/10/75	SC75	1112-1216
Geotechnical Investi- gation Santa Ana River Drop Structure Weir Canyon Road	Moore & Taber	3/12/80	MT80	1171-1196
Foundation Investi- gation & Analysis, Santa Ana River	Geolabs- California, Inc.	5/24/72	GC72	1171-1215

Table 5. Lower Santa Ana River.

Bridge Foundation Investigation Reports

Title	Prepared By	Date	Location Symbol	Station
Foundation Investigation, Hamilton-Victoria Bridge Across Santa Ana River	Orange County	3/31/76	0076	82
Foundation Investigation, Adams Ave. Bridge Across Santa Ana River	Orange County	6/5/68	0C68	164
Foundation Investigation, Slater-Segestrom Bridge Across Santa Ana River	Orange County	12/9/71	0071	311
Foundation Investigation McFadden Ave. Bridge Across Santa Ana River	Orange County	12/15/75	0075	421
Foundation Investigation, Seventeenth Street Bridge Across Santa Ana River	Orange County	8/20/75	0075	513
Soils Logs for Garden Grove Blvd. Bridge Across Santa Ana River	Orange County	10/71	OC71	575
Foundation Investigation Weir Canyon Rd. Bridge Across Santa Ana River	Moore & Taber	8/26/82	MT82	1202

TABLE 6

LOWER SANTA ANA RIVER SUMMARY OF EXPLORATIONS

STATION	LOG NUMBER	DEPTH (ft.)	EQUIPMNT	DATE	WATER DEPTH (ft.)	LOG PLATE	SAMPLES
REACH I							
1207+00R	0801	25.0	B.A.	10-31-84		8	F
1171+50R	0805	27.0	B.A.	10-26-84		8	L,F
1171+00L	0806	30.0	B.A.	11-19-84		8	L,F
1171+00C	0871	15.0	B.H.	11-19-84	5.0	8	I
1148+00R	0901	40.5		11-19-84	18.0	9	L,F
1148+00L	0902	40.0	B.A.	11-16-84		9	L,F
1130+50R	0903	30.0		10-29-84	15.0	9	L,F
1129+00L	0904	26.0		11-14-84		9	L,F
1115+00R	0905	25.0	B.A.	11-20-84	18.0	9	L,F
1097+00R	0906	40.0		10-31-84	16.5	9	L,F
1097+00L	0907	40.0	B.A.	11-14-84		9	L,F
1080+00R	1001	30.0	B.A.	11-01-84		10	L,F
1080+00L		30.5		11-13-84		10	L,F
1080+00C	1071	11.5		11-19-84	4.5	10	I
1062+00C	1072	13.0	B.H.	11-20-84	5.0	10	I
1063+40R		30.0		10-29-84	16.0	10	L,F
1062+00L	1004	30.0	B.A.	11-13-84		10	L,F
REACH II							
UPPER							
1046+00C		15.0	B.H.	11-20-84		10	I
1064+00R		30.0	B.A.	11-12-84	17.5	10	L,F
1046+00L		30.0	B.A.	11-12-84		10	L,F
1023+00R		40.0	B.A.	10-30-84	21.0	11	L,F
1023+00L		39.0	B.A.	11-12-84		11	L,F
1007+00C		8.6		11-15-84		11	I
1007+00R		35.0	B.A.	11-02-84		11	L,F
1007+00L		35.0	B.A.	11-09-84		11	L,F
985+00C		7.0	B.A.	11-15-84		11	I
985+00R		35.0	B.A.	11-15-84	18.0	11	L,F
985+00L		35.0	B.A.	11-07-84		11	L,F
970+00L		39.0	B.A.	11-09-84		11	L,F
960+00R		30.0	B.A.	11-20-84		12	L,F
950+00R		35.0	B.A.	11-05-84		12	L,F
950+00L		35.0	B.A.	11-08-84		12	L,F
940+00L		27.0		11-08-84	22.0	12	L,F
	1206	34.0		11-07-84		12	
					22.5		
910+00L					16.5		
900+00R					17.4		
895+00L					16.5		
885+00R	1303	35.0	B.A.	11-08-84	20.0	13	L,F
BA=BUCKI	ET AUGER		BH=BACK	HOE	FA=FLIGHT	r Augei	ર

BA=BUCKET AUGER BH=BACKHOE FA=FLIGHT AUGE
L=LEVEE F=FOUNDATION I=INVERT

TABLE 6 (Cont.)

LOWER SANTA ANA RIVER SUMMARY OF EXPLORATIONS

STATION	LOG NUMBER	DEPTH E	QUIPMNT	DATE	WATER DEPTH (ft.)	LOG PLATE	SAMPLES
REACH II			<u> </u>		-		
LOWER							
875+00I		38.5	B.A.	11-09-83	19.5	13	L,F
875+000		21.0	B.A.	12-12-84	18.0	13	_ <u>I</u>
875+001		45.0	B.A.	11-16-83	17.0	13	L,F
865+001		35.0	B.A.	11-17-83	17.0	13	L,F
854+000		17.0	B.H.	11-23-84		13	_ I
854+001		24.0	B.A.	11-10-83	21.0	13	L,F
854+001		40.0	B.A.	11-17-83	21.0	13	L,F
840+001		35.0	B.A.	11-23-83		14	L,F
830+001		36.0	B.A.	12-19-84		14	L,F
820+001		40.0	B.A.	11-23-83		14	L,F
820+001		34.0	B.A.	11-19-83		14	L,F
810+001		31.0	B.A.	11-25-83		14	L,F
800+001		40.0	B.A.	11-21-83		14	L,F
789+000		15.0	в.н.	11-23-84		14	<u> </u>
789+001		43.0	B.A.	11-28-83		14	L,F
789+001		40.0	B.A.	11-22-83	29.0	14	L,F
780+00		34.5	B.A.	11-30-84		15	L,F
771+00		40.0	B.A.	11-28-83	20.0	15	L,F
771+00		40.0	B.A.	11-29-84		15	L,F
760+001		35.0	B.A.	11-30-84		15	L,F
753+00		15.0	в.н.	11-27-84	3.5	15	I
753+00		40.0	B.A.	12-04-84		15	L,F
753+00		40.0	B.A.	11-06-84		15	L,F
740+00		30.0	B.A.	11-27-84		15	L,F
730+00		36.0	B.A.	11-27-84		15	L,F
719+00		12.5	B.H.	11-27-84		15	_ I
719+00		40.0	B.A.	11-05-84		15	
719+00		40.0	B.A.	11-26-84		15	
710+00	L 1601	25.0	B.A.	12-04-84		16	L,F

BA=BUCKET AUGER BH=BACKHOE FA=FLIGHT AUGER
L=LEVEE F=FOUNDATION I=INVERT

TABLE 6 (Cont.)

LOWER SANTA ANA RIVER SUMMARY OF EXPLORATIONS

STATION		DEPTH (ft.)	EQUIPMNT	DATE	WATER DEPTH (ft.)	LOG PLATE	SAMPLES
REACH III							
699+00C	1671	15.0	B.H.	11-29-84		16	I
699+00R	1602	18.0	B.A.	08-17-83		16	Ĺ
699+00L	1603	25.5	B.A.	08-17-83		16	L,F
690+00L		26.0	B.A.	08-16-83	18.0	16	L,F
680+00L		36.0	B.A.	08-12-83		16	L,F
665+00L		30.0		08-11-83	14.0	16	L,F
657+00R		36.0		12-11-84		16	L,F
657+00L		30.0		08-10-83		16	L,F
657+00C		15.0		11-26-84	1.0	16	I
644+00L		30.0		08-10-83		17	L,F
636+00L		40.0	B.A.	08-08-83	21.0	17	L,F
622+00L		31.0	B.A.	08-08-83	19.0	17	L,F
615+50R		30.0		08-11-83	29.5	17	L,F
615+00C		15.0		11-29-84		17	I
614+00L		30.0	B.A.	08-05-83		17	L,F
601+50L		27.0		08-04-83	24.0	17	L,F
590+00L		35.0	B.A.	08-04-83	12.0	17	L,F
574+00L		23.0	B.A.	08-03-83		18	F
572+00R		31.5	B.A.	08-01-83	27.0	18	L,F
561+00R	1803	30.0	B.A.	08-01-83.		18	L,F
561+00L	1804	20.0	B.A.	08-02-83	16.0	18	L,F
559+00L		S 30.0	B.A.	10-01-79	27.5	18	F
553+00R		30.0	B.A.	07-29-83	24.0	18	L,F
548+50L	1805	27.5	B.A.	08-02-83	20.0	18	F
540+00R	1806	30.0	B.A.	07-28-83	26.0	18	L,F
535+00L	1811	26.0	B.A.	08-02-83		18	F
531+00R	1808	30.0	B.A.	07-28-83		18	L,F

BA=BUCKET AUGER

BH=BACKHOE

FA=FLIGHT AUGER

L=LEVEE

F=FOUNDATION

I=INVERT

TABLE 6 (Cont.)

LOWER SANTA ANA RIVER SUMMARY OF EXPLORATIONS

STATION	LOG NUMBER	DEPTH (ft.)	EQUIPMNT	DATE	WATER DEPTH (ft.)	LOG PLATE	SAMPLES
REACH IV		*					
524+50E		30.0	B.A.	07-28-83		18	L,F
522+501	1810	29.0	B.A.	07-27-83		18	L,F
518+000	TT79-22	10.0	B.H.	07-13-79		19	Ï
518+000	1981	5.0	B.H.	11-26-84		19	I
REACH V						19	
UPPER						19	
508+801		30.0		07-26-83	17.5	19	L,F
	C TT79-21			07-13-79		19	Ī
495+001		31.0		07-26-83	17.0	19	L,F
485+001		29.0		07-22-83	23.0	19	L,F
	TT79-20		B.H.	07-13-79		19	Ι
477+000		10.0		12-04-84		19	ī
474+001		31.5		07-22-83	28.5	19	L,F
474+00F		30.0		12-14-84		19	L,F
468+001		31.5		07-20-83	24.0	19	L,F
460+001		31.5		07-19-83		19	L,F
458+000				07-12-79		19	I, I
449+001		31.5		07-18-83		20	L,F
440+001		31.5		07-18-83	22.0	20	L,F
	TT79-18			07-12-79		20	Z,I
437+500		10.0		12-04-84		20	Ī
430+001		29.0		07-07-83		20	L,F
420+00R		31.5		07-19-83		20	L,F
419+001		28.0		07-07-83		20	L,F
	TT79-17			07-12-79		20	-/I
410+001		28.0		07-06-83		20	L, F
400+00L		30.0		07-01-83		20	L,F
	TT79-16			07-11-79		20	Į, į
395+000		4.0	B.H.	12-14-84		20	ī
390+00L		34.0	B.A.	06-30-83		20	L, F
380+00L		31.0	B.A.	06-24-83		21	L,F
	TT79-15		B.H.	07-11-79		21	I, F
370+00R		26.5	B.A.	06-23-83		21	L,F
370+00L		31.0	B.A.	06-27-83		21	L,F
360+00L		31.0		06-28-83		21	L,F
358+00C	TT79-14	2.0		07-10-79		21	I, I

BA=BUCKET AUGER	BH=BACKHOE	FA=FLIGHT AUGER
L=LEVEE	F=FOUNDATION	I=INVERT

TABLE 6 (Cont.)

LOWER SANTA ANA RIVER SUMMARY OF EXPLORATIONS

	LOG UMBER	DEPTH E(QUIPMNT	DATE		LOG LATE	SAMPLES
REACH V						•	
LOWER				06 00 00			
350+00L	2105	31.0	B.A.	06-29-83		21	L,F
338+00L	2106	31.0	B.A.	06-29-83		21	L,F
337+50C			B.H.	07-10-79		21	_ I
330+00L	2107	30.0	B.A.	12-13-83		21	L,F
320+00R	2201	30.0	B.A.	12-22-83		22	L,F
320+00L		30.0	B.A.	12-17-84		22	L,F
317+00C			B.H.	07-10-79		22	I
310+00L	2203	30.0	B.A.	12-14-84		22	L,F
300+00L	2204	31.5	B.A.	06-20-83		22	L,F
299+00C			B.H.	07-10-79		22	I
290+00L	2205	30.0	B.A.	06-16-83	20.0	22	L,F
280+00L	2206	30.0	B.A.	06-15-83	21.0	22	L,F
276+00C	TT79-10	4.0	B.H.	07-10-79		22	I
276+00C	2282	3.0	B.H.	12-11-84		22	I
270+00R	2207	28.5	B.A.	06-22-83		22	L,F
270+00L	2208	30.0	B.A.	06-15-83	20.0	22	L,F
260+00L	2209	31.0	B.A.	06-14-83		22	L,F
257+00C		10.0	B.H.	07-10-79		23	Ī
246+00R	2342	30.0	F.A.	03-23-83	16.5	23	L,F
238+00L	2301	21.0	B.A.	12-06-84	_	23	F
237+00C		10.0	B.H.	07-09-79		23	I
236+00R	2344	30.0	F.A.	03-23-83	19.0	23	L, F
227+50L		9.5	B.A.	03-10-83	6.5	23	F
226+00R	2346	30.0	F.A.	03-22-83	15.0	23	L,F
222+00L		10.5	B.A.	03-10-83	7.5	23	2, 1
217+00L	2307	29.0	B.A.	03-07-83		23	L,F
216+00C		10.0	B.H.	07-09-79	23.0	23	I, I
216+00R	2348	30.0	F.A.	07-09-79	14.0	23	
211+00L	2348	11.5			6.5	23	L,F
			B.A.	03-07-83			F
206+00R	2340	30.0	F.A.	03-22-83	19.0	23	L,F
200+00L	2311	27.0	B.A.	02-28-83	24.0	23	L, F
199+00C		10.0	в.н.	07-09-79		23	_ <u>I</u>
196+00R	2332	30.0	F.A.	03-18-83		23	L,F
190+00L	2401	29.0	B.A.	02-28-83	23.0	24	L,F
185+00R		30.0		03-16-83		24	•
182+30L				03-07-83		24	
179+78L				02-25-83		24	•
177+50C				07-06-73		24	
175+00R		30.0	F.A.	03-16-83		24	
170+00L		26.0 21.0	B.A.	02-25-83	22.5	24	
157+00L		21.0	B.A.	03-08-83		24	
152+00R			F.A.	03-16-83	19.5	24	
147+00L	2409	23.5	B.A.	03-08-83	18.5	24	L,F
BA=BUCKI	ET AUGE	R	BH=BAC	КНОЕ	FA=FLIGH	T AUG	ER
L=LEVEE			F=FOUN	DATION	I=INVERT		

TABLE 6 (Cont.)

LOWER SANTA ANA RIVER SUMMARY OF EXPLORATIONS

STATION	LOG NUMBER	DEPTH F	EQUIPMNT	DATE	WATER DEPTH (ft.)	LOG PLATE	SAMPLES
REACH VI							
142+50E	2440	45.0	F.A.	03-23-83	19.0	24	L,F
140+000	TT79-4	10.0	B.H.	07-06-79		24	ľ
138+50E	2433	45.0	F.A.	03-25-83	16.5	24	L,F
130+001	2531	45.0	F.A.	03-31-83	25.0	25	L,F
125+001	2532	35.0	F.A.	03-31-83	13.0	25	·F
120+00E	R 2533	45.0		03-25-83	18.0	25	L,F
117+500	TT79-3	10.0		07-06-79		25	Ĭ
117+500	TT79-2	4.0		07-05-79		25	I
115+001	L 2534	35.0	F.A.	04-01-83	15.0	25	F
111+001	L 2535	45.0	F.A.	03-10-83	21.0	25	L,F
110+001	R 2536	45.0	F.A.	03-25-83	22.0	25	L,F
105+001	L 2537	44.0	F.A.	03-30-83	26.0	25	L,F
100+001	R 2538	45.0	F.A.	03-28-83	28.0	25	L,F
98+000	2581	10.0	E.H.	12-11-84		25	·I
98+000	TT79-1	10.0	B.H.	07-05-79		25	I
95+001	L 2539	35.0	F. A.	04-01-83	15.0	25	F
90+501	L 2541	40.5	F.A.	03-29-83	20.0	25	L,F
90+001	R 2540	45.0	F.A.	03-28-83	25.0	25	L,F
86+001	L 2542	35.0	F.A.	03-29-83	20.0	25	F
81+001	L TH79-10		F.A.	08-07-79		25	F
REACH VI	[
76+721	R 2543	50.0	F.A.	04-07-83	24.0	25	L,F
70+501	L 2546	50.5	F.A.	04-08-83	11.0	25	F
67+501	R TH79-9	28.0	F.A.	08-02-79	20.0	25	F
67+501	L TH79-8	39.0	F.A.	08-02-79	9.0	25	F
60+00I	R 2638	45.0	F.A.	04-07-83	17.5	26	L,F
57+50]	L TH79-7	39.0	F.A.	08-06-79	14.0	26	F
54+251	L 2631	45.0	F.A.	04-12-83	11.0	26	L,F
50+000		10.0	B.H.	12-13-84		26	I
48+001	R 2632	45.0	F.A.	04-06-83	17.0	26	L,F
47+001	L TH79-6	39.0	F.A.	08-07-79	13.0	26	F
38+501	L TH79-5	38.0	F.A.	08-02-79	20.0	26	L,F
37+251	2633	45.0	F.A.	04-11-83	10.9	26	F
30+00E	R 2634	45.0	F.A.	04-04-83	20.0	26	L,F
27+501	L TH79-4	39.0	F.A.	08-06-79	18.5	26	F
17+501	L TH79-3	39.0	F.A.	08-08-79	10.6	26	F
17+00F	R 2635	45.0	F.A.	04-04-83	15.0	26	L,F
13+00F	R TH79-2	39.5	F.A.	08-01-79	10.5	26	F
12+001	2636	45.0		04-11-83		26	F
10+001	R 2637	45.0	F.A.	04-05-83	11.0	26	F
6+001	L TH79-1	39.0	F.A.	08-01-79	12.0	26	F
BA=BU	CKET AUG	ER	BH=BA	скное	FA=FI	IGHT AU	IGER
L=LEV	EE		F=FOU	NDATION	I=INV	ERT	

TABLE 7 LOWER SANTA ANA RIVER SPD SOIL TEST RESILT SUMMARY

oi o					5				Analy.		Field	. 5	Densities Compac	compaction max	•••••	X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	₽	ģ ⊐				Con	Con- : soli-:Permea
Mole Serial Report: Uepth :Liassisand fine.L. No. : No. : Date :From To : :84 \$200;	: Date : From To : : : : : : : : : : : : : : : : : :	: Date : From To : : : : : : : : : : : : : : : : : :	oth : class: sand To : : : \$4	oth : class: sand To : : : \$4	655: 56nd 	8 4				4	- L	Hoist	#t	P 7	٦,	test.	samp t	tsf de	deg tsf	deg t	tsf c	981 CC	detio:bility: Cc :ft/day:
801 : 91509 : 12-85 : 6.0 9.0 :SH : 86 24 :23	:12-85 : 6.0 9.0 :SH : 86 24	:12-85 : 6.0 9.0 :SH : 86 24	: 6.0 9.0 :SN : 86 24	9.0 : SN : 86 24	SH : 96 24	96 24	2.			w í	•••							·			1	•••	••
15.10 12-85 13.0 18.0 16.1 36 61 14.1 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	112-85 135.0 18.0 14. 36 67 14.	112-85 135.0 18.0 14. 36 67 14.	11.0.01 18.0 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01 1.0.01	18.0 16. 17.0 PC	25 15 17 17 17 17 17 17 17 17 17 17 17 17 17	75 67 71	15. 45	Ī	• •	- 2				130.0	2		, e	-				<i>-</i>	
3.0 9.0 iSP : 92 4 i	12-85 : 3.0 9.0 :SP : 92 4 :	12-85 : 3.0 9.0 :SP : 92 4 :	3.0 9.0 iSP : 92 4 i	9.0 iSP : 92 4 :	SP : 92 4	95	•		Z	. م				118.0	12.5	8	9-E		30 0.0	98	0.0	•	
; ; 91513 ; 12-85 ; 21.0 24.0 ; SM ; 97 28 ; ;	:12-85 :21.0 24.0 :SM : 97 28 :	:12-85 :21.0 24.0 :SM : 97 28 :	:21.0 24.0 :SM : 97 28 : :	24.0 :SM : 97 28 : :	: SM : 97 28 : :	97 28 :	28:	••		۵			. 1 10.	119,3	12.2		3-R	•				••	
112-95 :33.0 37.0 :CL : 100 76 :47	12-95 :33.0 37.0 :CL : 100 76 :47	12-95 :33.0 37.0 :CL : 100 76 :47	:33.0 37.0 :CL : 100 76 :47	37.0 :CL : 100 76 :47	:CL : 100 76 :47	100 76 147	26:47	7	•••	7.5	 88	32.3	•••		•••		∂- E					 .	
	12-95 145 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12-95 145 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	12.0 5.0 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.			90	 r v			È 2	• •		• •										
:21.0 25.0 :SP-5H: 73 6:	12-85 121.0 25.0 15F-5H; 73 6 1	12-85 121.0 25.0 15F-5H; 73 6 1	:21.0 25.0 :SP-5H: 73 6:	25.0 :SP-SH: 73 6 :	3	3				£													
12-85 12.0 15.0 15P 82 3	12-85 12.0 15.0 15P 82 3	12-85 12.0 15.0 15P 82 3	12.0 15.0 15P 1 82 3 1	15_0 :SP : 82 3 :	SP 82 3	82 3	·			£					•••							· ••	
; 91518 ; 12-85 ; 26.0 30.0 ; CL	; 12-85 ; 26.0 30.0 ; CL	; 12-85 ; 26.0 30.0 ; CL	:26.0 30.0 : CL : 86 56 :	30.0 : 1. 30.00	: 98 26 : 13:	36	36	••		2	••			124.0	10.4	8	9-E	-	16 0.0	2	0.0		
1 91519 112-85 127.0 30.0 15W-SM1 93 12 1	: 12-85 :27.0 30.0 :SW-SM: 93 12 :	: 12-85 :27.0 30.0 :SW-SM: 93 12 :	:27.0 30.0 :SW-SM: 93 12 :	30.0 SW-SM: 93 12	15W-SM: 93 12 :	12	12			<u>+</u>	 .		è.	122.8	10.5		۳. ج	•				 ·	
20.0 24.0 SP : 92 4:	12-85 120.0 24.0 15P 1 92 4 1	12-85 120.0 24.0 15P 1 92 4 1	20.0 24.0 SP : 92 4:	24.0 SP 92 4	SP 92 4	 T (T (٠ 2													
			2 L9 . HC: 0.00 0.12:	2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1				•	£ 2			.		- •								- • •
1 91523 112-85 133.0 35.0 15C	12-85 133,0 35,0 15C 1 85 28 134 1	12-85 133,0 35,0 15C 1 85 28 134 1	35.0 : 50 : 85 28 : 34 :	35.0 : 50 : 85 28 : 34 :	50 85 28 34	28 :34	28 :34	7		12													
1 91524 :12-85 :21.0 24.0 :5M-5M: 68 6 :	12-85 :21.0 24.0 :5W-SM: 68 6 :	12-85 :21.0 24.0 :5W-SM: 68 6 :	:21.0 24.0 :54-5H: 68 6 :	24.0 : SW-SN: 68 6:	SW-SM: 68 6:	9 89	9		••	£	•••				••								
: 91525 : 12-85 : 25.0 27.0 : SC : 93 37 : 28 :	:12-85 :25.0 27.0 :SC : 93 37 :28 :	:12-85 :25.0 27.0 :SC : 93 37 :28 :	:25.0 27.0 :SC : 93 37 :28 :	27.0 ; 50 ; 50 37 ; 28 ;	: SC : 93 37 :28 :	93 37 128 ;	37 :28 :	 88	••	유			. Ho.	130.3	8.2	08			12 0.1	1 30	0.0	••	
:12-85 :36.0 38.0 :CL : 100 82 :34 :	:12-85 :36.0 38.0 :CL : 100 82 :34 :	:12-85 :36.0 38.0 :CL : 100 82 :34 :	:36.0 38.0 ;CL : 100 82 :34 ;	38.0 icl. : 100 82 :34 :	: CL : 100 82 : 34 :	100 82 34	82 :34 :	K	••	13	117.3	10.8					1-c	3.2\$					
91045 112-85 38.0 40.0 CL 100 81 31	12-85 38.0 40.0 ; CL 100 81 31	12-85 38.0 40.0 ; CL 100 81 31	38.0 40.0 :CL 100 81 :31	40.0 : CL : 100 81 : 31 :	100 81 31	100 81 31	81 :31	31	• • •	•	97.3	-			•••								
. H2-0 22 0 72: CR-21:	12-85 127.0 29.0 131 1 39 21 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1	12-85 127.0 29.0 131 1 39 21 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1	24 0 27 0 121 1 39 21 1	22 0 25 1 27 25 25 25 25 25 25 25 25 25 25 25 25 25		2000	200		Ž				ţ	117 2	10 0							• •	2 1-15
12. 12. 12. 12. 12. 12. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	12-85 :40-0 :CL : 100 82 :35 :	12-85 :40-0 :CL : 100 82 :35 :	: 40.0 : 10: 0:12 : 15: 0:13: 140.0	: SE: 58 001 : 10:	101 82 135	100 82 35	82 : 35	35		. =	• • •			114.8	11.5	90	A-R	-	14 0.3	3 33	0.0		
: 91529 : 12-85 : 24.0 27.0 : CL : 100 77 : 33 :	: 12-85 : 24.0 27.0 : CL : 100 77 : 33 :	: 12-85 : 24.0 27.0 : CL : 100 77 : 33 :	:24.0 27.0 :CL : 100 77 :33 :	27.0 :CL : 100 77 :33 :	CL : 100 77 33	100 77 33	77 :33 :	33	•••	2				123.5	11.5		. • :						
:12-85 :15.0 18.0 :CL-NL: 100 23 :21 :	:12-85 :15.0 18.0 :CL-NL: 100 23 :21 :	:12-85 :15.0 18.0 :CL-NL: 100 23 :21 :	:15.0 18.0 :CL-NL: 100 23:21:	18.0 :CL-ML: 100 23:21:	:CL-ML: 100 23 :21 :	100 23 :21 :	23 :21	21		Ŧ								1					
: 91047 : 12-85 : 38.0 40.0 : CL : 100 80 : 33 :	:12-85 :38.0 40.0 :CL : 100 80 :33 :	:12-85 :38.0 40.0 :CL : 100 80 :33 :	138.0 40.0 ICL 100 80 133	40.0 :CL : 100 80 :33 :	: CL : 100 80 :33 :	100 80 33 3	80 :33	E.	•••	8 5	114.4	16.6		,		Ş	0 7-1	0.7\$,		Ä	c	•••	
11C-83 12C-8 30.0 13H 1 3C	11C-83 12C-8 30.0 13H 1 3C	11C-83 12C-8 30.0 13H 1 3C	121 0 20 0 121 121 21 22 0 121	20 0 SH 37	SU-CH 97	, o				2			e v	113.0	4.0		£	-		5		• • •	: 15-180
: 91532 :1-86 :18.0 21.0 :SP : 99	11-86 118,0 21,0 1SP 99	11-86 118,0 21,0 1SP 99	18.0 21.0 SP 39	21.0 :SP : 99		· &				£				107.1	15.3			. •					25-150
:12-85:18.0 :ML : 100 58:	:12-85:18.0 :ML : 100 58:	:12-85:18.0 :ML : 100 58:	: 18.0 : HL : 100 58 :	: HL : 100 58 :	: ML : 100 58 :	100 58 :	28 :		••	£		24.5			••		3 - 0		23 0.0	96 0	0.0	•	••
; 91049 ; 12-85 ; 30.0 ; CL ; 100 90 ; 38 ;	:12-85 :30.0 :CL : 100 90 :38 :	:12-85 :30.0 :CL : 100 90 :38 :	130.0 001 101 0.061	: CL : 100 90 : 38 :	100 90 38	100 90 38	36:06	38	• • •	<u>.</u>		53	••									٠	
1 91050 12-65 111.5 10. 86 36	12-65 111.5 CL 100 86 36	12-65 111.5 CL 100 86 36	111.5 100 86 36	100 86 36	100 96 36	100 96 36	96 36	9	• • •			21.3					1-0-1	. us					
113.0 001	. 36; 68 DOI : HJ: 0.61; 68-51;	. 36; 68 DOI : HJ: 0.61; 68-51;	. 45; 66 DOI : H1; 0.51;	96: 66 DOT . H7:	100 93 55 TO	100 93 55 TO	90 EE	900		, -	25.0				• •								
5 1 41533 112-85 127.0 30.0 1CL 100 79 130 15	: 12-85 :27-0 30.0 :CL : 100 79 :30 :	: 12-85 :27-0 30.0 :CL : 100 79 :30 :	127.0 30.0 CL 1 100 79 30 3	30.0 25 30.1	100 79 30	100 79 30	29	90	• • •														
3 : 91534 : 1-86 : 27.0 30.0 : ML : 100 56 : 25	:1-86 :27.0 30.0 :ML : 100 56 :25	:1-86 :27.0 30.0 :ML : 100 56 :25	:27.0 30.0 :ML : 100 56 :25	30.0 :ML : 100 56 :25	:ML : 100 56 :25 :	100 56 25	56 125	25					st.	111.5	13.5								. .c.
1 : 82536 :9-83 : 3.0 4.5 :SP-SM: 100 12 :	:9-83 : 3.0 4.5 :SP-SM: 100 12 :	:9-83 : 3.0 4.5 :SP-SM: 100 12 :	: 3.0 4.5 :SP-SH: 100 12 :	4.5 :SP-SH: 100 12 :	: SP-SH: 100 12 :	100 12 :	12 :		Ž					102.5	15.5	•	;	•				•••	
100 23	112-85 : 10.0 : SM : 100 23 :	112-85 : 10.0 : SM : 100 23 :	10.0 SM 100 23	SH : 100 23	100 23	100 23	23	?				26.3	•-•					N 4	28 1.0	32	0.0	· · ·	···
001 : 72: 0.ct; ca-51; Ps016;	. Et : 57 . 101 :	. Et : 57 . 101 :	י בי יני יני יני יני יני יני יני יני יני	י בבי כבי ככי י	56. 55. 50.	56. 55. 50.		2	• •	_	21.0	9 6						^ -				36 0.	
91055 112-85 20.0 i.t. 100 r8 3r	: 12-85 ;20,0 ; CL ; 100 r8 ;3r ;	: 12-85 ;20,0 ; CL ; 100 r8 ;3r ;		י ביי ייטי יאין ייטי ייטי ייטי	יכר יים זמם עם יפרי	100						3.5	. 1										<u>.</u> .
. 6.3 6.3 SP-SR: 100 10 10 1	. 9-83 ; 6.3 6.3 6.3 ; 78-56 ; 100 10 ; 6.6 ; 6.6 ; 6.6 ; 6.7 ; 6.	. 9-83 ; 6.3 6.3 6.3 ; 78-56 ; 100 10 ; 6.6 ; 6.6 ; 6.6 ; 6.7 ; 6.	. 6.3 6.3 SP-SR: 100 10 10 1	11 0 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	. SF -SH: 100 101	01 001) OI	10	• •					115.6	12.0		<u>a</u> -	•					 .
00000000000000000000000000000000000000	170 CC 110 DTT 0.5 1 CO.C.	170 CC 110 DTT 0.5 1 CO.C.	14 0 14 0 15 0 15 0 15 0 15 0 15 0 15 0	14.0 12(1 1.02) 32 32 32 34 1.02 34 1.02 34 1.03 34 1.	CM . 92 02.	92 25	, ,							10.0		8 8	2	• "	22 - 22	· ~			
1 82540 19-83 120-0 21.0 15H 1 99 22 1	:9-83 :20-0 21.0 :SH : 99 22 :	:9-83 :20-0 21.0 :SH : 99 22 :	21.0 :SH : 99 22 :	21.0 :SH : 99 22 :	SH : 99 22 ::	99 22 :	22 : 2	}	• • •	ž			. S.	115.0	11.7		:	•					
: 82541 :9-83 :27.0 28.0 :ML : 100 56 :	9-83 :27.0 28.0 :ML : 100 56 :	9-83 :27.0 28.0 :ML : 100 56 :	28.0 : ML : 100 56 :	28.0 : ML : 100 56 :	. HL : 100 56 :	100 56	26			È				101.5	18.2							••	
1; 82542;9-83; 4.0 6.5;SH ; 97 14;	: 9-83 : 4.0 6.5 :SH : 97 14 :	: 9-83 : 4.0 6.5 :SH : 97 14 :	6.5 :SH : 97 14:	6.5 :SH : 97 14:	:SH : 97 14:	97 14:	 	••	Ξ.	۰				118.3	11.3							••	
: 19E 96 : MS: 2'6 2"9 : E8-6:	: 19E 86 : HS: 2"6 5"9 : E8-6:	: 19E 86 : HS: 2"6 5"9 : E8-6:	: 1 96 36 : HS: 5.6	: 1 96 36 : HS: 5.6	: 19E 96 : HS:	36 36 :	36 :	••	=	호	••			115.7	13.0								••
: 82544 :9-83 :20.0 22.5 :SH : 100	:9-83 :20.0 22.5 :SH : 100	:9-83 :20.0 22.5 :SH : 100	22.5 : SH : 100	22.5 : SH : 100	100			 -		Ž.	••			110.3	14.3								••

1.

TABLE 7 (continued) LOWER SANTA RWA RIVER SPD SOIL TEST RESULT SUMMARY

•	82546 82546 82546 82546 82554 82554 82555 82555 82552 82552 82625 82626 82627 82627 82628 82628 82628 82628	t.		0,00000	8	send fine: LL:	finer: fine:LL \$200;	! ''		Field : dry 2 : PCF Moist:		Compaction max dry %	X P R	9 2 0 2		ت. ت.	 	`			oli-in	soli-:Permea: datio:bility: Cc :ft/day:
· ·	82547 82546 82547 82554 82554 82555 82555 82555 82552 82582 82827 82828 82828 82828 82828 82828 82828	Per de la company de la compan		0 000000	9	Send **	#1 Pe				st: mth		N.	60		u	0	,		• • •	10:1	interior of the second
	 				***			•					Moist	:test	SAMP	tsf.	deg t			•		1
			18 18	** ** ** ** ** ** ** ** ** **	表表	8	¦	21 :	~	• • • • •	:54.	119.5	10.7		1 1 1	! ! !	7 () ! !	 			ļ	
	** ** ** ** ** ** ** ** ** ** ** ** **		18 18		表	100	33	20 :	 N		St.	116.6	12.0	8 	9-R		25	1.0	¥ 0.0		••	••
	** ** ** ** ** ** ** ** ** ** ** ** **		18 18 1	** ** ** ** ** ** ** *	-	001	23	-	<u>۔</u>		. st.	106.0	7.5							••	••	••
			18 18 1		SC-SH:	66	••	 %	··		. St.	118.0	12.5							••	••	
i	** ** ** ** ** ** ** ** ** ** **		18 18 1	•• •• •• •• •• •	₩.	93	17		 =		St.	114.7	11.3	8	3-R		27 1	1.2	32 0.	0.0	••	••
					SH-SH:	98	5	:	 E		st.	111.5	13.3							••		
						8	88	<u></u>	 ₽		. St.	109.6	13.5							••	••	
						001		••	 0		••	108.0	18.0									•-
	** ** ** ** ** ** ** **			E	·· 天	901		<u></u> 92	₽ 											••	••	••
	** ** ** ** ** ** **				··	001	•••		••	93.9 29.7	·-										••	
1	** ** ** ** ** **			•		200	••	98	ট 	78.7 42.9											•-	
1	** ** ** ** **			•		100	•••	-	 <u>a</u>											••	••	
1				16.5 :0	3	100	66	53	9											••	••	••
1				•••		100	•••		24												••	
I		•		•••	··	9	83	•••		-	•••			·						••		
1		29-63	24.5 27	27.5 15	 	1000	7	=	 4											••		
1	,				SP-SH:	901	11	.	=	03.1 14.8										••	••	••
0117+00; T-79-2	••	••		•••	P-SH;	92	۲-	.	 ≩		: 54.	109.1	0.3		9-R			•	41× 0.0		••	••
		••	12.0	::	 天	200	••	69	₽						3-E		16 0	2.0	28 0.		••	••
0115+00; "	: 91057	: 12-85 :	15.0	£	₽	100			••	91.1 31.7	••				<u>ا</u> ۔د	2.0					••	••
		••		••	 ॠ	901	••			103.2 21.4	••										••	
Ė	1: 71824	••		10.0 :C	 ببر	90	••	:: *	•-		Št.	103.3	20.0	 8	ų, et				29% O.			
0082+00; 79-10;	::	••	16.0	Ξ ,	壬	901	55			92.9 30.4					2-C		29	 ~.				0.015
0070+50: 2546			4 .5	ب	 بر	81	••	4	٠.	84.3 32.7					1-C	9.0					••	
••	: 91063	: 12-85 :		••	 F	8			 S	90.1 19.8										• •	0.11	••
		: 1-80 ::	0.0	3:0.8	급	100	••	35 ::	 ლ		. St.	103.3	19.5	 8	₩.			m i	35% 0.0		••	•••
•••		1-80		•••	 F.	0 0 1	•••	•••	••		St	110.5	14.5	\$	٠ ا					•••		· {
<u>.</u> .	71830					8	51		- 2						5- 0		25	0.1		•	0.13	3
		-1-8		Ξ:	;;	9									7					•••		015
N	••	: 68-6:		••		2	••	••	30											-	•	•
		: 69-6:		••	 F	8	<u>ب</u>	 გ	••	۲.										••	••	••
0048+00; 2632	••	: 6-83 :		••	 ૠ	100		••		83.9 34.1					7	•				••	••	
0047+00: 79-6		•-	0.0	••	=	100	••	••	15:		. St.	99.3	20.8	- 95	۵- ۳-		21 0		34 0.0			
0042+00: "		: 1-80 :		••		100	96	53 :2	22		\$	99.5	21.6	- 95	٩- ٣-			0.1				••
••	82835		20.0	Ï.		100	••	61:2	<u>ب</u>	71.1 49.7					2-C					••	••	••
<u>~</u>	71826	-1-80		•••	:	9	2	46 .2			. St.	106.1	20.5	92	e i		13	m. 0	28 0.2		•••	•••
••	•-	: 1-80		5: 0.6	မှ	DO :					••	113.7	13.8	<u>F</u>	Ä,			7		•••	 1	
<u>α</u>		: 12-85	13.0		SP-SH:	9		:	 <u>Q</u>	97.3 23.8				••						.	 90 - 0	• •
0012+00;	91060	: 12-82 :	16.0	#1 *•	SP-SH:	100	~		 <u>a</u>		••									•	•	-

NOTES:

R - Remolded sample
U - Undisturbed sample
* - Direct shear test
\$ - Unconfined Compression Test
I - Test trench
Perweebilities range from 80% to 95% of max. density

TABLE 8
LOWER SANTA ANA RIVER
COMPACTION TEST RESULT SUMMARY
(ASTM D 1557)
Mech. Analy.

							. Analy				
	1	-					finer :			Compaction	;
Station		Report			Class				! PI	•	% }
	No.	Date	i From	To	¦ 	1#4 	#200		; 	! PCF	Moist :
910+00	1208	13-26-84	13.0	15.0	:SW-SM	1 90	8		INP	117.2	9.7 1
		13-19-84			SP-SM	89	6		!NP	119.5	10.5
895+00	1302	14-9-84	29.0	35.0	ISC	100	31 :		: 28	120.8	11.8 :-
885+00	1303	13-15-84	9.0	18.0	ISM	88	12		:NP	127.0	7.5
875+00		14-5-84		15.0	ISP-SM	87	7		INP	116.9	11.0
875+00		14-12-84		34.0	ICL	100	69	35	: 18	1 121.9	12.3
875+00	1304	14-12-84	35.5			: 66	20		: NP	135.7	7.8 ;
875+00		14-26-84				9 9	6		:NP	111.8	14.1
		14-29-84				100	88		1 30		19.1
• • • • • •		14-12-84			IML	100	63		INP	130.3	8.9 :
820+00		13-29-84			ICL	100	76			125.2	10.2 :
820+00		_	25.5		:SC	64	22			133.5	7.0 :
800+00			38.0	40.0		100	85			118.5	11.6
789+00		14-12-84		41.5		100	29			121.0	12.0
719+00		12-17-84		18.0		100	19		INP	132.0	5.0 ;
719+00		12-17-84			ISP-SM	93	8		!NP	115.1	7.7 :
710+00 699+00		12-17-84		24.0 12.0		96	3 1		INP	104.4	10.7 :
690+00		11-18-83				1 75	23			134.8	5.7
680+00	1605		1.0	12.0	isr ¦GW-GM	1 94 1 55	10		INP	1 106.7	4.6 1
	1701	•	12.0	21.0		1 95	12		INP INP	134.0	7.3 4.5
646+00	1701		21.0	30.0		1 100	70			1 117.0	
622+00	-	13-29- 84		12.0		195	4		INP	111.1	13.5
	1705		15.0	24.0		1 100	86			111.1	13.8 ¦ 14.2 ¦
	1706		17.0	27.0		100	78			1 114.0	15.5
		11-5-84	1.0	15.0		100	61			1117.0	12.1
590+00	1707		24.0	32.0	-	100	86			1114.2	12.9 1
561+00		13-29-84		14.0		100	75			117.0	12.6
-		13-19-84		13.0		100	73			1119.3	11.5
561+00		13-19-84		18.0		100	37		INP	119.0	11.0
548+50	1805	1	12.0	18.0		100	76			119.0	13.5
460+00	1808	;	3.0	15.0		89	4		INP	104.2	3.3
522+50	1810	11-12-84		6.0		97	23		I NP	116.5	6.8 1
508+80	1902	11-12-84	4.0	7.0		99	14		:NP	1 110.0	12.2
474+00	1906	13-26-84	9.0	18.0	ISM	98	5 1		INP	111.2	12.5
474+00	1906	14-5-84	22.0	30.0	!CL	100	80	33	1 10	119.3	11.0 :
468+00	1907	13-19-84	6.0	12.0	ISM	1 100	32		: NP	119.0	12.0 :
468+00	1907		18.0			95	4		I NP	110.0	7.0 1
460+00		11-12-84	3.0	12.0	1SM	100	13		INP	115.0	10.0 :
460+00	1908	-	24.0	30.0	IML	100	94	37	1 12	107.0	19.0 :
420+00		13-26-84				97	12			119.8	9.0 1
420+00	2004			18.0		100	54			118.0	11.5
390+00		11-8-84		15.0		99	13			111.5	12.9
390+00		13-29-84				100	82			1 112.7	13.2
390+00		13-26-84				100	66		!	1 117.5	12.2 1
370+00			26.5			1 100			!NP	123.9	7.9
350+00 350+00			28.0	29.0		1 100	54			125.8	9.2
330+00		13-26-84		28.0		98	43		INP	121.8	11.2
330+00 310+00		13-26-84			_	94	9 1		INP	118.2	10.4
270+00		13-26-84 14-9-84		15.0		1 96			INP	123.2	9.2
260+00		11-11-84		28.0		100	59			1117.9	9.9
		11-23-84				99			INP	112.8	8.0 :
		11-18-84				100				120.8	11.8
200.00	. 2207	11 10 04	. 67.V		ICH	1 100	61	. 60	1 34	1 110.0	17.0

TABLE 9

LOWER SANTA ANA RIVER
SUMMARY GRADATION AT RIVER

	MEC	HAN I C	AL AN	ALYSI	S (PE	RCENT	FINE	R) \$1	EVE S	12E			GRAIN SIZ MILLIMET		
LOWER SANTA ANA RIVER		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200	D10	D50	085	015
REACH-1											i				
Right Embankment	UL	100	100	99	97	94	90	82	55	33	25	0.00	0.36	1.52	0.00
Composite Summary	UQ	100	98	94	89	87	81	72	35	17	13	0.02	0.73	3.90	0.11
	AVG	99	94	90	86	82	75	66	36	17	11	0.06	0.77	8.18	0.13
	LQ	100	92	88	83	78	71	61	29	11	7	0.13	0.92	13.51	0.21
	LL	95	89	81	77	72	66	57	27	6	3	0.20	1.01	28.50	0.26
Right Embankment	UL	100	100	100	100	99	97	95	89	80	71 J	0.00	0.00	0.30	0.00
Frequency Summary	UQ	100	100	98	96	92	86	77	45	20	11	0.07	0.54	1.91	0.11
	AVG	99	94	90	86	82	75	66	36	17	11				
	LQ	100	93	85	81	75	67	57	26	7	4	0.19	1.02	19.05	0.26
	LL	84	45	42	38	34	31	27	9	2	1	0.46	42.98	77.18	0.68
Left Embankment	UL	100	100	100	100	100	98	96	86	62	42	0.00	0.10	0.41	0.00
frequency Summary	UQ	100	100	97	94	90	85	75	42	21	12	0.06	0.61	2.00	0.10
	AVG	99	95	90	86	79	74	66	36	15	10				
	LQ	100	92	85	81	73	68	60	28	9	5	0.16	0.95	19.05	0.23
	LL	81	81	69	65	8	7	5	4	3	1	4.93	8.27	76.20	5.35
Foundation	UL	100	100	100	100	100	98	97	90	90	81	0.00	0.00	0.11	0.00
Frequency Summary	UQ	100	100	98	96	92	86	75	42	25	16	0.00	0.61	1.93	0.07
	AVG	99	94	89	83	77	68	59	33	19	15				
	LQ	100	93	86	77	68	57	43	17	6	4	0.25	1.60	17.99	0.37
	LL	67	45	42	37	31	23	16	4	1	1	0.31	46.76		1.13
Invert	UL	100	100	100	99	98	95	86	76	68	37	0.00	0.00	0.39	0.00
Frequency Summery	UQ	100	100	95	89	80	71	55	18	3	2	0.28	1.09	7.41	0.37
•	AVG	96	92	88	82	75	63	49	14	3	2				
	LQ	94	89	85	74	69	59	42	8	1	0	0.47	1.57	19.05	0.58
	LL	70	64	63	61	58	42	27	4	0	0	0.62	3.38		0.79

NOTE

UL = UPPER LIMITS
UQ = UPPER QUARTILE
AVG = MEAN (AVERAGE)
LQ = LOWER QUARTILE
LL = LOWER LIMITS

TABLE 9

LOWER SANTA ANA RIVER
SUMMARY GRADATION AT RIVER

	MEC	HANIC	AL AN	IALYSI	S (PE	RCENT	FINE	R) \$1	EVE S	IZE			RAIN SIZE MILLIMETE		
LOWER SANTA ANA RIVER		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200	D10	D50	D85	D15
REACH-2												i 			
(ABOVE STA.880)															
Embankment	UL	100	100	100	100	100	100	99	96	89	84	0.00	0.00	0.09	0.00
Frequency Summary	UQ	100	100	99	98	95	91	84	56	26	16	0.00	0.37	1.31	0.07
	AVG	100	99	96	93	90	85	78	48	23	14				
	LQ	100	100	95	92	88	82	74	38	14	8	0.10	0.68	3.38	0.16
	LL	79	65	60	57	53	44	38	11	4	2	0.38	3.84	92.53	0.53
Embankment	UL	100	100	98	97	95	92	86	62	44	34	 0.00	0.24	1,15	0.00
Composite Summary	UQ	100	100	98	95	92	86	80	54	27	15	0.00	0.38	1.89	0.07
•	AVG	100	99	96	93	90	85	78	48	23	14	0.04	0.47	2.14	0.09
	LQ	100	97	94	91	87	83	75	44	17	11	0.05	0.57	3.30	0.13
	LL	96	95	93	89	83	77	67	34	11	6	0.14	0.80	6.41	0.20
Foundation	UL	100	100	100	100	100	100	99	96	88	75	0.00	0.00	0.13	0.00
Frequency Summary	UQ	100	100	100	98	96	91	85	51	23	15	0.00	0.41	1.19	0.07
	AVG	99	97	94	90	86	79	71	41	22	16				
	ΓĐ	100	96	92	87	82	69	58	25	8	4	0.18	1.00	7.62	0.26
	LL	74	65	51	40	31	23	17	8	1	0	0.59	18.18		1.02
Invert	ÜL	100	100	98	91	79	62	43	19	7	4	 0.22	1.49	7.14	0.33
Frequency Summary	UQ	100	100	95	85	72	54	41	17	4	3	0.27	1.75	9.53	0.38
, , = ,	AVG	94	91	82	74	64	50	38	12	3	2	, - '			
	LQ	100	81	71	63	55	46	38	9	2	1	0.45	3.23	76.20	0.58
	LL	74	69	62	54	47	39	30	8	1	0	0.49	6.80		0.67

NOTE

UL = UPPER LIMITS
UQ = UPPER QUARTILE
AVG = MEAN (AVERAGE)
LQ = LOWER QUARTILE
LL = LOWER LIMITS

TABLE 9

LOWER SANTA ANA RIVER
SUMMARY GRADATION AT RIVER

LOWER SANTA ANA RIVER	MECHANICAL ANALYSIS (PERCENT FINER) SIEVE SIZE											GRAIN SIZE IN MILLIMETERS			
		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200	D10	050	085	D15
REACH-2											ļ				
(BELOW STA.880)											1				
Embankment	UL	100	100	100	100	100	100	99	96	89	71	0.00	0.00	0.13	0.00
Frequency Summary	UQ	100	100	100	99	97	93	85	52	19	12	0.05	0.40	1,19	0.11
	AVG	100	99	97	95	92	87	78	46	19	12				
	LQ	100	100	97	94	90	84	73	37	9	4	0.16	0.70	2.46	0.21
	LL	80	75	69	63	49	40	32	6	0	0	0.54	5.10		0.69
Embankment	UL	100	100	100	100	99	96	90	63	43	34	0.00	0.25	1.04	0.00
Composite Summary	UQ	100	100	99	98	96	91	83	51	20	13	0.04	0.41	1.42	0.09
	AVG	100	99	97	95	92	87	78	46	19	12 j	0.05	0.52	1.83	0.11
	LQ	100	99	95	92	88	83	74	37	10	5 j	0.14	0.69	3.15	0.20
	LL	98	92	89	82	73	64	50	13	1	0	0.35	1.19	13.61	0.46
Foundation	UL	100	100	100	100	100	100	100	99	96	92	0.00	0.00	0.00	0.00
Frequency Summary	UQ	100	100	100	100	99	97	93	73	48	31	0.00	0.17	0.88	0.00
	AVG	100	98	95	91	87	83	76	51	29	22				
	LQ	100	98	95	91	85	76	66	31	8	4	0.17	0.84	4.76	0.23
	LL	76	70	56	44	33	26	22	8	1	0	0.53	14.29		0.81
Invert	UL	100	100	100	100	100	99	97	90	85	84	0.00	0.00	0.15	0.00
Frequency Summary	UQ	100	100	100	99	97	92	82	37	12	5	0.13	0.64	1.43	0.18
	AVG	100	98	95	92	87	81	72	35	13	8				
	LQ	100	97	91	89	84	76	64	21	2	- 1 į	0.26	0.94	5.71	0.33
	LL	87	80	75	60	48	42	33	6	0	o į	0.53	5.55	65.31	0.68

NOTE

UL = UPPER LIMITS
UQ = UPPER QUARTILE
AVG = MEAN (AVERAGE)
LQ = LOWER QUARTILE
LL = LOWER LIMITS

TABLE 9 LOWER SANTA ANA RIVER SUMMARY GRADATION AT RIVER

	MEC	HANIC	CAL AI	IALYSI	S (PE	RCENT	FINE	(R) SI	EVE S	IZE			RAIN SIZE MILLIMETE		
LOWER SANTA ANA RIVER		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200]	D10	D50	D85	D15
REACH-3											ļ				
Embankment	UL	100	100	100	100	100	100	100	99	93	90 j	0.00	0.00	0.00	0.00
Frequency Summary	UQ	100	100	100	100	99	98	91	74	42	31 j	0.00	0.22	0.92	0.00
	AVG	100	99	99	98	96	93	77	58	29	21				
	LQ	100	100	99	98	96	91	67	41	9	4	0.16	0.69	1.80	0.20
	LL	99	78	66	62	54	43	35	19	1	0	0.28	3.76	50.80	0.36
Embankmen t	UL	100	100	100	100	100	97	94	92	77	64	0.00	0.00	0.30	0.00
Composite Summary	UQ	100	100	100	99	98	96	87	62	25	18 Í	0.00	0.33	1.14	0.04
•	AVG	100	99	99	98	96	93	77	58	29	21 j	0.00	0.35	1.61	0.01
·	LQ	100	99	99	98	96	92	71	47	13	8	0.10	0.53	1.73	0.16
	LL	100	95	91	89	85	78	62	32	1	0 j	0.23	0.88	4.62	0.27
Foundation	UL	100	100	100	100	100	100	100	100	99	99	0.00	0.15	0.15	0.00
Frequency Summary	UQ	100	100	100	100	100	99	98	98	91	8 0	0.00	0.00	0.11	0.00
	AVG	100	99	98	97	95	93	88	79	62	51 [
	LQ	100	100	100	94	98	95	81	58	29	12	0.07	0.35	1.42	0.09
	LL	95	82	64	48	35	26	20	14	1	0	0.34	10.72	46.89	0.55
Invert	ŲL	100	100	100	100	100	99	99	98	96	94	0.00	0.00	0.00	0.00
Frequency Summary	UQ	100	100	100	100	100	98	97	87	68	51	0.00	0.07	0.39	0.00
	AVG	99	99	98	97	96	92	87	56	33	27				
	LQ	100	100	99	97	95	88	81	30	3	2	0.22	0.72	1.65	0.27
	LL	95	92	89	79	69	55	40	6	0	0	0.51	1.73	15.24	0.62

UL = UPPER LIMITS

UQ = UPPER QUARTILE

AVG = MEAN (AVERAGE)

LOWER QUARTILE

LQ = LL = LOWER LIMITS

TABLE 9

LOWER SANTA ANA RIVER
SUMMARY GRADATION AT RIVER

												GI	RAIN SIZE	IN	
	MEC	HANIC	AL AN	IALYSI	S (PE	RCENT	FINE	R) SI	EVE S	IZE		1	MILLIMETE	RS	
LOWER SANTA ANA RIVER		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200	D10	D50	D85	D15
REACH-4											ľ				
Embenkment	UL	100	100	100	100	100	100	100	99	93	90	0.00	0.00	0.00	0.00
Frequency Summary	UQ	100	100	100	100	100	100	99	96	78	58	0.00	0.04	0.25	0.00
• •	AVG	100	100	99	98	97	95	93	79	49	34				
	LQ.	100	100	100	99	98	95	91	66	23	10	0.07	0.32	1.01	0.10
	LŁ	100	94	88	81	70	53	42	20	6	3	0.23	1.78	14.97	0.32
Embenkment	UL	100	100	100	100	100	100	100	98	87	68	0.00	0.00	0.14	0.00
Composite Summary	UQ	100	100	100	99	99	97	94	83	55	39	0.00	0.12	0.54	0.00
•	AVG	100	100	99	98	97	95	93	79	49	34	0.00	0.16	0.74	0.00
	LQ	100	100	99	98	96	94	91	73	31	21	0.00	0.27	0.93	0.04
	LL	100	99	96	93	90	86	79	52	21	8	0.09	0.40	1.88	0.12
Foundation	UL	100	100	100	100	100	100	100	100	99	99	0.00	0.15	0.15	0.00
Frequency Summary	UQ	100	100	100	100	100	100	100	98	92	82	0.00	0.00	0.10	0.00
• • •	AVG	100	100	100	100	100	98	98	94	80	68				
	LQ	100	100	100	100	100	98	98	93	73	57	0.00	0.04	0.31	0.00
	LL	100	91	91	83	71	63	56	41	19	10	0.07	0.88	11.91	0.12
Invert	UL	100	100	100	100	100	100	99	96	76	43	0.00	0.09	0.27	0.00
Frequency Summary	UQ	100	100	100	100	100	94	92	62	14	9 j	0.09	0.35	1.01	0.15
•	AVG	100	100	100	99	98	94	91	67	25	15 j				
	LQ	100	100	100	100	100	94	92	62	12	9 j	0.10	0.35	1.01	0.17
	LL	100	100	98	95	92	87	80	51	12	4 [0.13	0.41	1.77	0.17

UL = UPPER LIMITS
UQ = UPPER QUARTILE
AVG = MEAN (AVERAGE)
LQ = LOWER QUARTILE
LL = LOWER LIMITS

TABLE 9

LOWER SANTA ANA RIVER
SUMMARY GRADATION AT RIVER

				٧	o (DE	DOENT	FIME		eve c			_	RAIN SIZE		
	MEC	HANIC	AL AN	ALTSI	\$ (PE	KCENI	LIME	R) SI	EAE 2	12E		,	4ILLIMETE	RS	
LOWER SANTA ANA RIVER		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200	D10	D50	D85	D15
REACH-5											l				
(ABOVE STA.350)											1				
Embankment	UL	100	100	100	100	100	99	98	93	60	36	0.00	0.12	0.36	0.00
Composite Summary	UQ	100	100	100	99	99	97	94	75	39	21	0.00	0.23	0.81	0.05
	AVG	100	100	99	99	98	95	90	70	34	18	0.00	0.27	1.00	0.06
	LQ	100	100	99	98	97	94	89	67	27	14	0.05	0.31	1.05	0.08
	LL	100	99	98	96	94	91	69	47	16	7	0.10	0.51	1.79	0.14
Foundation	UL	100	100	100	100	100	100	100	100	100	100	0.00	0.15	0.15	0.00
Frequency Summary	UQ	100	100	100	100	100	100	99	97	87	71	0.00	0.00	0.14	0.00
	AVG	100	100	99	99	98	96	93	77	50	38				
	LQ	100	100	100	100	99	97	92	57	14	7	0.11	0.38	1.04	0.16
	LL	100	80	64	63	41	40	37	14	1	0	0.34	6.71	47.63	0.45
Invert	UL	100	100	100	100	100	99	98	96	89	81	0.00	0.00	0.11	0.00
Frequency Summary	UQ	100	100	100	100	99	98	98	96	89	81	0.00	0.00	0.11	0.00
	AVG	100	100	99	98	95	89	84	57	35	31				
	LQ	100	100	99	98	95	82	70	33	2	1	0.22	0.77	2.64	0.26
	ŁL	100	96	87	73	64	56	50	14	1	0	0.34	1.19	17.69	0.44
REACH-5															
(BELOW STA.350)											1				
Embankment	UL	100	100	100	100	100	100	99	93	69	44	0.00	0.09	0.33	0.00
Composite Summary	NG.	100	100	100	100	99	98	97	85	52	30	0.00	0.14	0.45	0.00
	AVG	100	100	100	99	99	97	95	76	41	24	0.00	0.22	0.79	0.04
	LQ	100	100	99	99	98	96	91	61	25	13	0.06	0.34	1.04	0.09
	LL	100	99	97	95	89	71	53	17	. 1	1	0.30	1.13	4.15	0.39
Foundation	UL	100	100	100	100	100	100	100	100	99	96	0.00	0.00	0.00	0.00
Frequency Summary	UQ	100	100	100	100	100	100	100	98	89	66	0.00	0.02	0.14	0.00
	AVG	100	100	100	100	99	99	98	88	63	44				
	LQ	100	100	100	100	100	99	98	88	42	16	0.00	0.20	0.40	0.07
	LL	100	93	89	83	79	71	53	17	1	1	0.30	1.13	12.70	0.39
Invert	UL	100	100	100	100	100	100	100	99	95	93	0.00	0.00	0.00	0.00
Frequency Summary	UQ	100	100	100	100	100	100	99	92	48	16	0.00	0.16	0.38	0.07
	AVG	100	100	99	98	97	94	90	66	28	15				
	LQ	100	100	99	97	94	89	81	43	7	2	0.17	0.56	1.60	0.21
	LL	100	93	91	90	88	71	53	17	1	1	0.30	1.13	4.27	0.39

UL = UPPER LIMITS
UQ = UPPER QUARTILE
AVG = MEAN (AVERAGE)
LQ = LOMER QUARTILE
LL = LOMER LIMITS

TABLE 9

LOWER SANTA AMA RIVER
SUMMARY GRADATION AT RIVER

	MEC	HANIC	CAL AN	IALYSI	S (PE	RCENT	FINE	R) SI	eve s	IZE			RAIN SIZE MILLIMETE	•	
LOWER SANTA ANA RIVER		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200	D10	D50	D85	D15
REACH-6											- 1				
Embankment	UL	100	100	100	100	100	100	100	98	95	84	0.00	0.00	0.08	0.00
Composite Summary	UQ	100	100	100	100	100	100	99	94	75	62	0.00	0.01	0.29	0.00
	AVG	100	100	100	100	100	99	99	90	63	44	0.00	0.10	0.37	0.00
	LQ	100	100	100	100	100	99	98	87	59	40	0.00	0.11	0.40	0.00
	LL	100	100	100	100	99	99	97	83	46	26	0.00	0.18	0.55	0.04
Foundation	UL	100	100	100	100	100	100	100	100	99	99 {	0.00	0.15	0.15	0.00
Frequency Summary	UQ	100	100	100	100	100	100	100	99	95	83	0.00	0.00	0.09	0.00
	AVG	100	100	100	100	100	98	97	95	74	51 j				****
	LQ	100	100	100	100	100	99	98	95	65	16 j	0.00	0.13	0.33	0.07
	LL	100	100	100	95	87	78	73	58	6	1 [0.17	0.38	4.15	0.20
REACH-7												•			
Embankment	UL	100	100	100	100	100	100	100	100	97	88 i	0.00	0.00	0.05	0.00
Composite Summery	UQ	100	100	100	100	100	100	99	98	80	55 İ	0.00	0.06	0.22	0.00
•	AVG	100	100	100	99	99	98	97	89	61	42	0.00	0.11	0.38	0.00
	LQ	100	100	100	99	98	97	95	89	44	22	0.00	0.19	0.40	0.05
	LL	100	100	99	98	97	94	92	62	4	1	0.18	0.36	1.02	0.20
Foundation	UL	100	100	100	100	100	100	100	100	99	98	0.00	0.00	0.00	0.00
Frequency Summary	UQ	100	100	100	100	100	100	100	98	63	10 j	0.07	0.13	0.32	0.08
	AVG	100	100	100	100	99	97	95	83	37	12				
	LQ	100	100	100	100	99	97	93	78	16	3	0.11	0.30	0.78	0.14
	LL	100	100	97	91	83	77	67	24	3	1	0.24	0.89	5.95	0.30

UL = UPPER LIMITS
UQ = UPPER QUARTILE
AVG = MEAN (AVERAGE)
LQ = LOMER QUARTILE

LL = LOWER LIMITS

TABLE 9

LOMER SANTA ANA RIVER
SUMMARY GRADATION AT RIVER

													RAIN SIZE		
	MEC	HANIC	AL AN	IALTSI	5 (PE	KCENI	FIRE	R) SI	EAF 9	125			MILLIMETE	RS	
LOWER SANTA ANA RIVER		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200	D10	D50	085	D15
DROP STRUCTURE FOUNDATION FREQUENCY SUMMARIES															
STA.875+40	UL	100	100	100	100	100	99	97	92	83	81	0.00	0.00	0.21	0.00
	UQ	100	100	99	98	97	90	81	45	21	15 j	0.00	0.53	1.55	0.07
	AVG	99	97	94	90	86	79	70	42	22	16				
·	LQ	100	96	94	90	85	74	65	29	12	7	0.12	0.87	4.76	0.20
	LL	87	80	75	60	48	42	33	13	1	0	0.35	5.55	65.31	0.50
STA .1023+50	UL	100	100	100	100	100	99	98	92	88	75	0.00	0.00	0.13	0.00
	UQ	100	100	100	100	99	98	95	86	67	55	0.00	0.04	0.41	0.00
	AVG	99	94	90	87	84	81	75	55	38	3 0				
	LQ	100	94	77	71	63	57	50	25	9	6	0.17	1.19	28.01	0.25
	LL	84	65	51	40	31	23	17	9	5	3	0.52	18.18	78.21	1.00
STA. 1098+50	UL	100	100	100	99	98	95	92	84	82	81	0.00	0.00	0.52	0.00
	UQ	100	100	99	96	92	84	76	27	13	10	0.07	0.78	2.35	0.19
	AVG	99	94	89	83	72	64	54	28	18	15				
	LQ	100	94	86	81	67	54	41	16	5	3	0.27	1.75	17.15	0.40
	LL	90	55	43	37	8	7	5	4	3	2	5.09	30.16	70.76	5.91
STA. 1148+60	UL	100	100	98	97	96	92	87	68	44	39	0.00	0.22	1.11	0.00
	UQ	100	100	97	93	85	80	65	32	20	6	0.10	0.84	4.76	0.12
	AVG	97	93	88	82	74	64	52	25	12	9				
	LQ	100	93	88	78	67	57	34	14	5	3]	0.30	1.75	16.19	0.46
	LL	67	59	50	44	40	34	26	6	2	1 j	0.57	19.05		0.77

UL = UPPER LIMITS
UQ = UPPER QUARTILE
AVG = MEAN (AVERAGE)
LQ = LOMER QUARTILE
LL = LOWER LIMITS

TABLE 9

LOWER SANTA AMA RIVER
SUMMARY GRADATION AT RIVER

	MEC	:KAN I C	AL AN	ALYSI	S (PE	RCENT	FINE	R) SI	EVE S	IZF			RAIN SIZE VILLIMETE		
LOWER SANTA ANA RIVER		3.0	1.5	3/4	3/8	#4	#10	#16	#40	#100	#200	D10	050	D85	D15
INVERT BORROW COMPOSITE SUMMARIES															
STA. 1207 TO 1075	UL	100	100	99	95	90	78	57	18	4	3	0.27	1.05	3.61	0.36
5FT.DEPTH	UQ	100	99	95	88	81	70	55	17	3	2	0.28	1.08	7.51	0.38
	AVG	100	97	92	84	74	60	43	11	3	1	0.38	1.52	10.65	0.51
	LQ	100	93	88	77	68	55	41	8	1	1	0.47	1.70	16.79	0.59
	LL	87	80	73	70	66	51	38	6	1	0	0.52	1.94	65.31	0.64
STA. 509 TO 398	UL	100	100	100	100	100	100	99	98	82	61	0.00	0.04	0.20	0.00
7FT.DEPTH	UQ	100	100	100	100	98	94	86	52	12	9	0.11	0.41	1.17	0.17
	AVG	100	100	99	98	95	89	84	60	35	26	0.00	0.31	1.34	0.00
	LQ	100	99	98	92	88	82	74	29	2	1	0.23	0.77	3.20	0.28
	LL	100	96	87	73	64	56	50	14	1	0	0.34	1.19	17.69	0.44
STA. 393 TO 356	UL	100	100	100	100	100	99	95	38	2	1	0.21	0.53	1.05	0.25
SFT.DEPTH	UQ	100	100	100	100	99	98	93	37	1	1	0.21	0.60	1.08	0.25
	AVG	100	100	100	99	98	95	89	37	2	0	0.21	0.61	1.13	0.25
	LQ	100	100	100	99	97	95	89	34	1	0	0.22	0.64	1.13	0.26
	LL	100	100	100	99	97	93	87	33	1	0	0.23	0.66	1.16	0.27
STA. 354 TO 261	UL	100	100	100	99	96	92	88	60	26	15	0.00	0.34	1.10	0.07
7FT.DEPTH	UQ	100	100	99	98	95	92	87	56	14	6	0.11	0.38	1.15	0.15
	AVG	100	99	98	97	94	89	81	44	11	6	0.13	0.54	1.58	0.18
	LQ	100	99	97	96	94	89	78	34	6	3	0.18	0.71	1.72	0.23
	LL	100	97	96	95	91	80	67	27	5	2	0.22	0.86	3.25	0.28
STA.219 TO 215	UL	100	100	99	99	99	98	96	86	60	40	0.00	0.11	0.41	0.00
13FT.DEPTH	UQ	100	100	99	98	97	96	95	85	59	40	0.00	0.11	0.45	0.00
	AVG	100	99	97	96	95	94	93	83	59	39	0.00	0.12	0.60	0.00
	LQ	100	99	97	95	94	93	92	82	58	38	0.00	0.12	0.66	0.00
	LL	100	99	96	94	92	92	90	80	57	37	0.00	0.12	0.78	0.00
STA. 132 TO 91	UL	100	100	100	100	100	100	99	92	69	55	0.00	0.05	0.34	0.00
8FT.DEPTH	UQ	100	100	100	100	100	100	99	90	61	50	0.00	0.07	0.37	0.00
	AVG	100	100	100	100	100	99	98	86	53	44	0.00	0.13	0.41	0.00
	LQ	100	100	100	100	99	99	97	. 81	41	37	0.00	0.21	0.62	0.00
	LL	100	100	100	100	99	97	95	79	8	2	0.16	0.31	0.69	0.17
STA. 77 TO 13	UL	100	100	100	100	100	100	100	100	100	99	0.00	0.00	0.00	0.00
10FT.DEPTH	UQ	100	100	100	100	100	100	100	100	90	74	0.00	0.02	0.13	0.00
	AVG	100	100	100	100	100	100	99	96	74	57	0.01	0.06	0.23	0.02
	LQ	100	100	100	100	100	100	98	93	57	35	0.03	0.13	0.27	0.04
	LL	100	100	100	100	99	97	95	89	46	13	0.07	0.16	0.03	0.08

UL = UPPER LIMITS
UQ = UPPER QUARTILE
AVG = MEAN (AVERAGE)
LQ = LOWER QUARTILE
LL = LOWER LIMITS

Table 10. Lower Santa Ana River. Potential Stone Sources - Quality Compliance Test Results.

Stone Source	Specifi Rock Type (fic Gravity Bulk (SSD)	<u>y</u> Apparent	Absorption (%)	Sulfate Soundness (\$ loss)	Abrasion (% loss)	Date ¹ Tested	Remarks ²
			Coun	Commercial Qu	Quarries			
Atkinson	Monzonite/ Monzodiorite	2.76	2.77	0.1	2.0	25.2	6/85	Sepulveda Basin
Corona-Pacific	Tonalite	2.67	2.68	0.3	0.5	14.1	4/88	San Pedro Breakwater
Declezville	Granodlorite	2.77	2.79	0.3	2.3	46.5	11/83	Morro Bay North and South Breakwaters.
ron Fish Canyon	Granite	2.74	2.76	4.0	1.53	16.9	11/86	Redondo Beach (King Harbor) North Breakwater
Harlow	Andesite	2.66	2.66	0.2	1.6	14.3	6/85	Warm Creek-Santa
Pebbly Beach	Meta-Cgl. Graywacke Meta-Volcanic	2.67 2.64 2.66	2.71 2.65 2.68	8.00	34.8 4.7	43.4 15.3 20.7	10/86 10/86 10/86	Ana Alver Confluence Port San Luis Breakwater, San Pedro & Middle Breakwaters
Slover Mtn.	Marble Metasediment	2.72	2.73	0.5	1.0	38.0	11/83	Morro Bay North Breakwater
Stringfellow	Granite	5.66	2.67	0.2	η.ο	18.3	6/85	San Pedro Breakwater
3 x	Andesite	5.69	2.70	π.0	0.5	10.0	9/83	Dana Point Breakwater

Table 10. (Continued)

Stone Source	Spec 1 Rock Type	Specific Gravity Bulk (SSD)	Apparent	Absorp- tion (%)	Sulfate Soundness (# loss)	Abrasion (% loss)	Date ¹ Tested
			Ex	Existing Levees	vees		
Reach 1	Granite/ Granodiorite	2.68	2.69	0.2	2.6	31.3	2/88
	Meta-Andesite Sandstone	2.61 2.53	2.64	0.7			
Reach 2	Diorite	2.75	2.76	0.2	2.0	20.8	2/88
	Granodiorite	2.69	2.70	0.2			
	Gabbro/Meta- Gabbro	2.78	2.79	0.3			
	Meta-Dacite	2.67	2.68	0.1			
	Meta-Andesite	2.63	2.63	0.1			
Reach 3	Diorite	2.73	2.73	0.1	9.0	15.3	2/88
	Monzodiorite	2.72	2.72	0.1			
	Granodiorite	2.59	2.59	0.5			
	Meta-Andesite	2.73	2.74	0.3		•	

1. Only the most recent test results are shown for each stone source.

2. Rock from Harlow Quarry was only suitable for use as grouted stone on the Warm Creek-Santa Ana River Confluence project due to 50 percent failure during the wetting and drying test. The Declezville and Pebbly Beach Quarries have provided suitable rock for Corps of Engineers projects based on service records.

3. April 1982 test.

Table 11. Lower Santa Ana River.

Composite Gradation of Proposed Disposal Beach

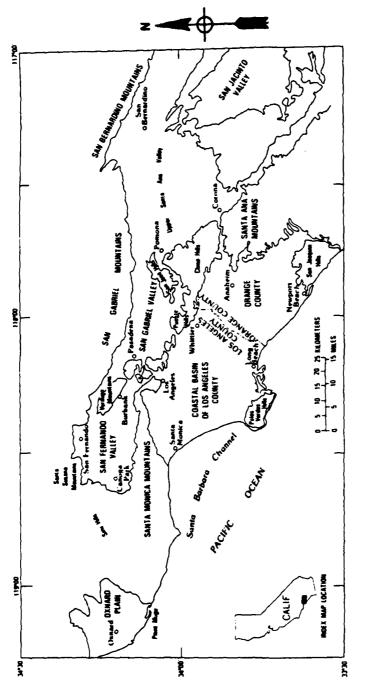
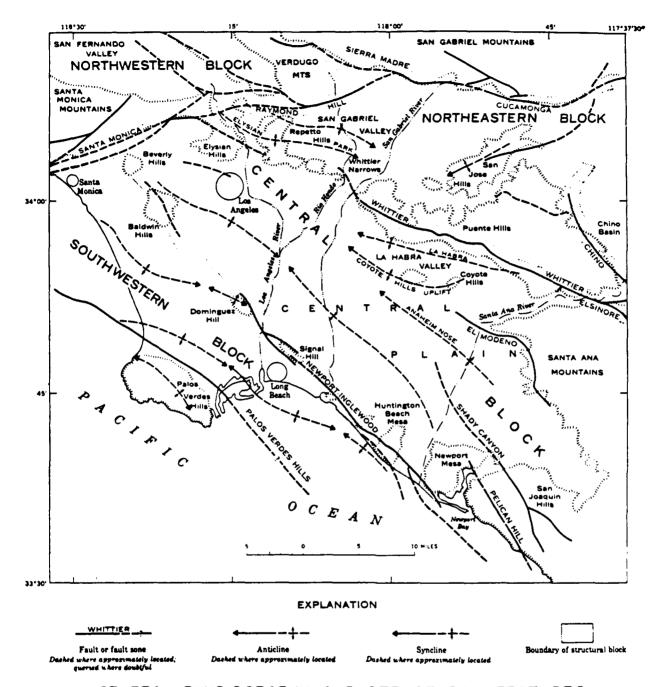
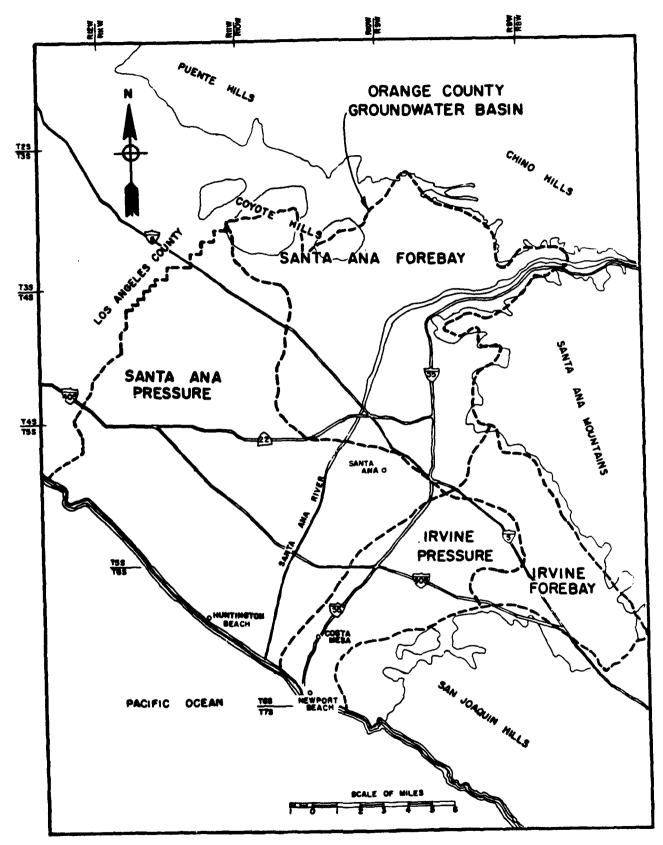
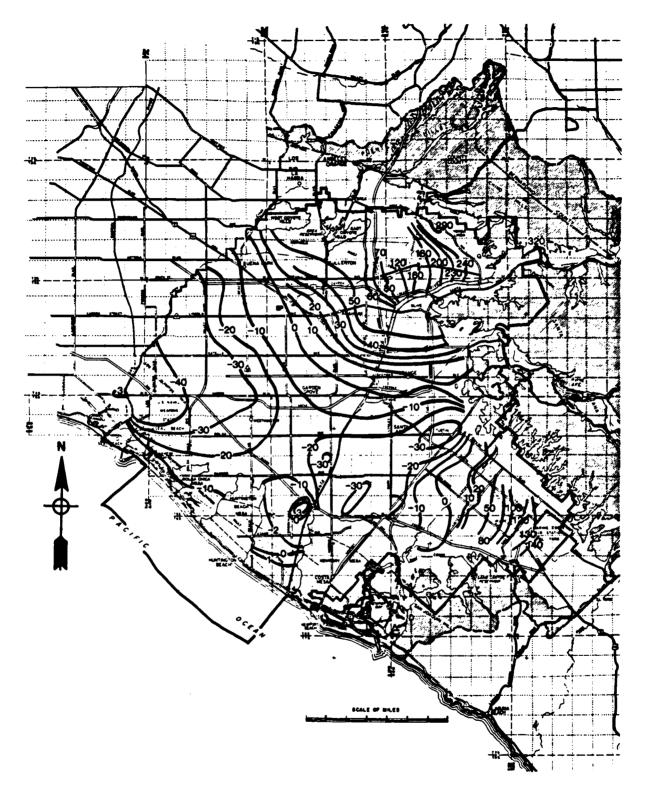

Range					Perc	ent F		- Pas	ssing					
Station	4	7	10	14	18	25	35	45	60	80	100	120	170	200
107+84	97	93	92	90	87	84	79	72	62	56	54	48	28	19
117+83	100	100	100	100	99	97	89	77	65	59	58	50	29	15
127+84	100	100	100	95	94	90	83	73	62	58	57	48	25	12
137+84	100	99	99	98	95	91	79	66	51	42	40	35	22	9
147+84	100	100	100	100	99	97	91	81	68	57	53	46	28	11
157+84	100	100	100	99	98	97	90	81	70	61	60	55	33	15
167+85	100	100	100	100	99	97	91	81	66	58	56	50	32	16
177+86	100	100	100	99	98	96	90	82	68	58	54	48	30	14
187+84	100	100	100	99	96	89	75	61	45	31	27	20	10	3
197+87	100	99	98	96	93	88	80	68	56	50	47	39	19	9
207+87	100	100	100	98	97	95	88	77	59	42	36	30	17	7
217+87	100	100	100	99	98	95	89	79	65	55	49	38	19	8
227+87	100	98	98	96	94	90	83	73	61	52	49	40	21	10
237+87	100	100	100	99	97	93	85	75	69	58	54	44	22	11
247+87	100	100	99	98	95	90	78	65	54	44	40	30	15	7
267+88	100	100	100	100	99	95	83	65	48	40	38	31	15	8
307+88	100	100	100	99	98	95	84	66	45	36	33	23	10	6
367+85	100	100	100	99	99	97	89	75	63	47	39	28	14	8

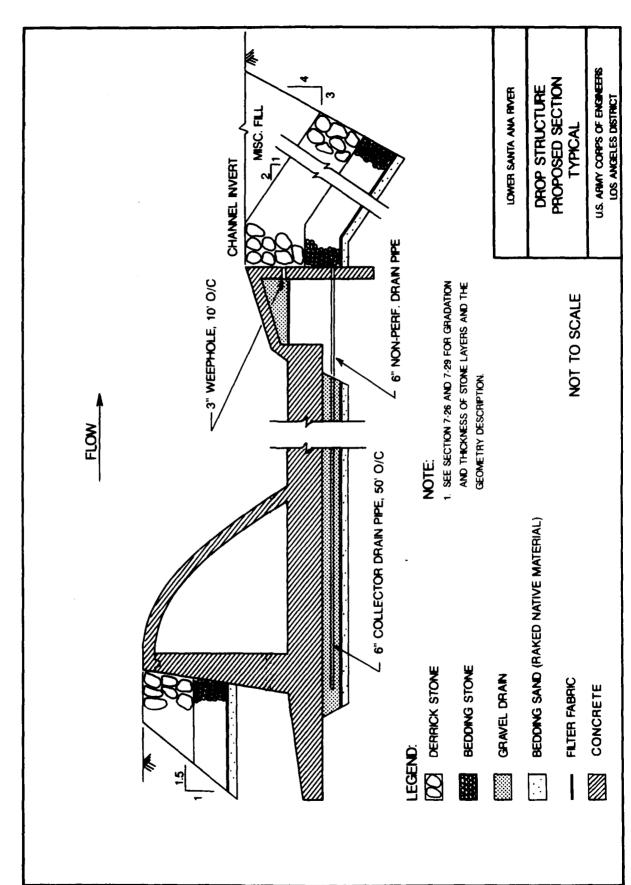
Table 11. (Continued)

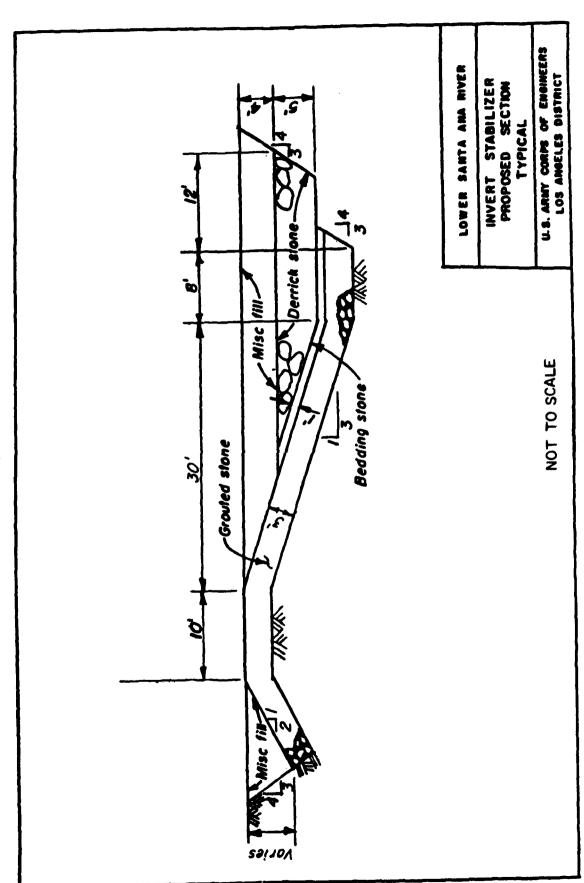

Range					Perce	nt F	iner	- Pa	ssing	Sie	eve N	lumbe	er	
Station	4	7	10	14	18	25	35	45	60	80	100	120	170	200
477+12	100	100	99	99	97	94	85	74	67	60	57	47	30	18
547+84	100	100	100	100	99	98	93	86	78	64	58	45	30	18
649+31	100	100	100	100	100	98	94	86	72	54	51	43	37	29
750+94	100	100	100	100	100	100	100	96	86	70	59	44	24	17
840+44	100	100	100	98	96	89	79	68	58	56	42	15	10	9
899+53	100	100	100	99	98	94	85	71	54	41	37	24	8	6

A GEOTECHNICAL


FIGURES

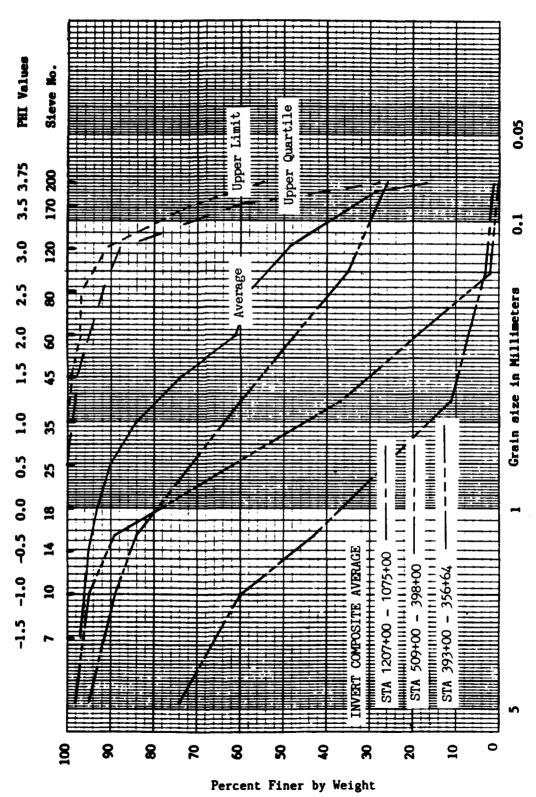

INDEX MAP OF THE LOS ANGELES REGION SHOWING MAJOR ALLUVIAL BASINS (FROM TINSLEY AND FUMAL, 1985)


GENERAL PHYSIOGRAPHY AND STRUCTURAL FEATURES OF THE LOS ANGELES BASIN (YERKES AND OTHERS, 1965)



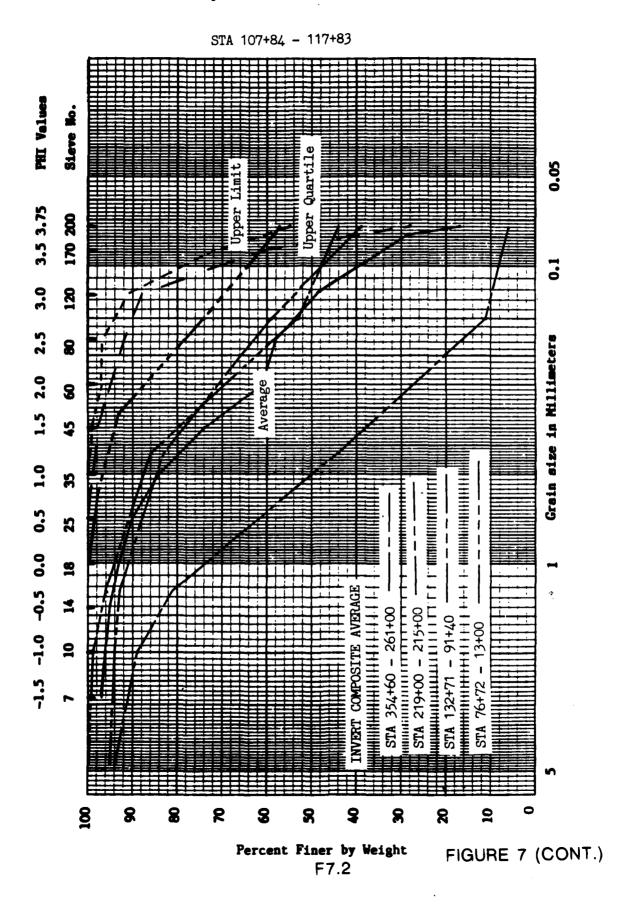
ORANGE COUNTY GROUNDWATER BASIN

ORANGE COUNTY GROUNDWATER BASIN - GROUNDWATER CONTOUR MAP, NOVEMBER 1, 1986 (FROM OCWD, 1987)

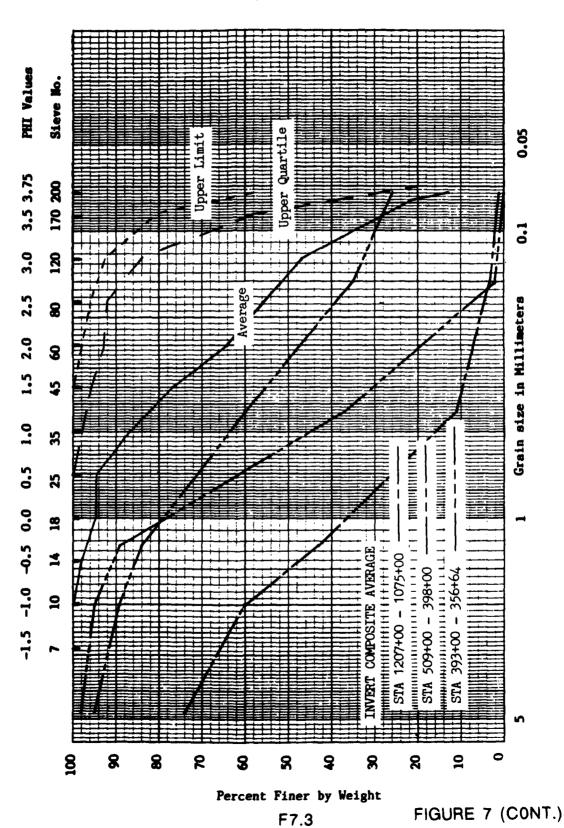


F 6.1

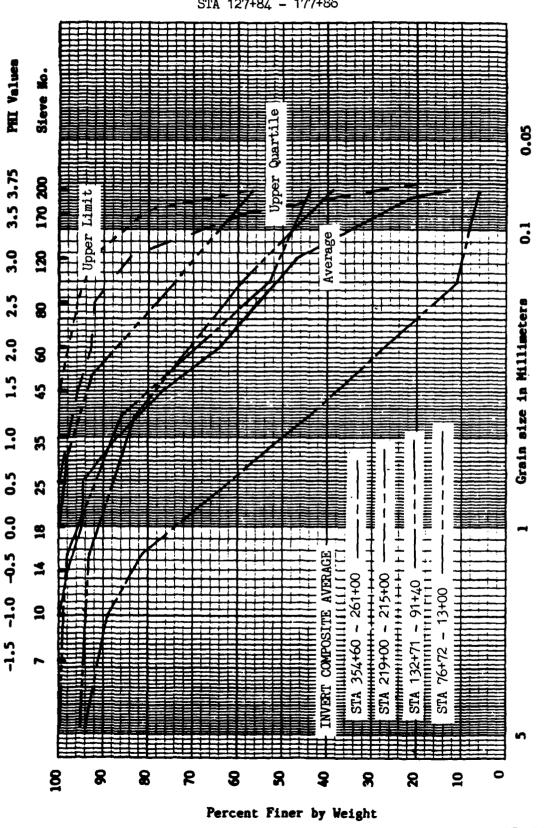
LOWER SANTA ANA RIVER BEACH COMPATIBILITY COMPOSITE BEACH GRADATIONS


STA 107+84 - 117+83

F7.1

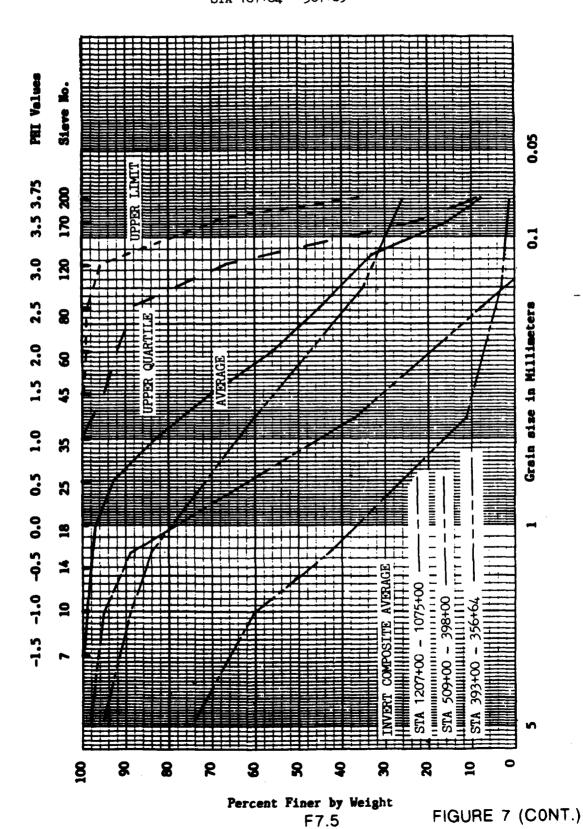

FIGURE 7-A

Lower Santa Ana River Beach Compatibility Composite Beach Gradations

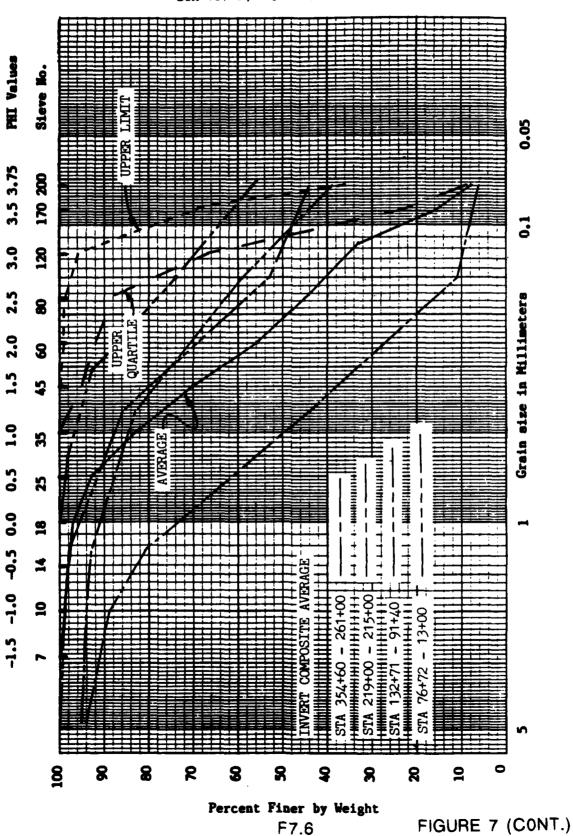

LOWER SANTA ANA RIVER BEACH COMPATIBILITY COMPOSITE BEACH GRADATIONS

STA 127+84 - 177+86

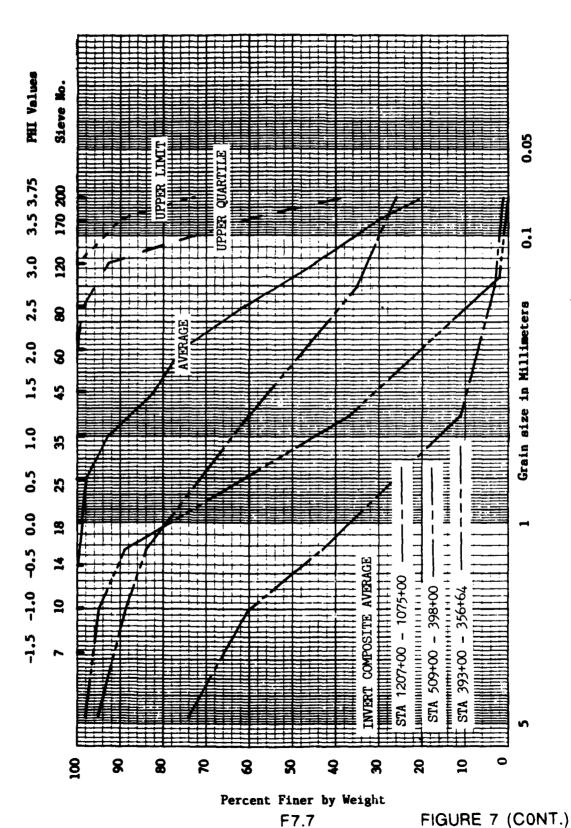
Lower Santa Ana River Beach Compatibility Composite Beach Gradations


STA 127+84 - 177+86

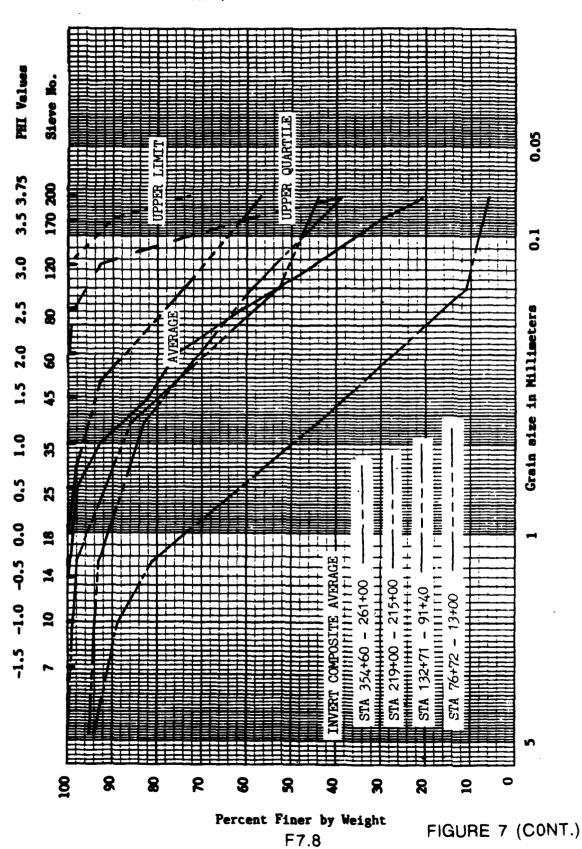
F7.4


FIGURE 7 (CONT.)

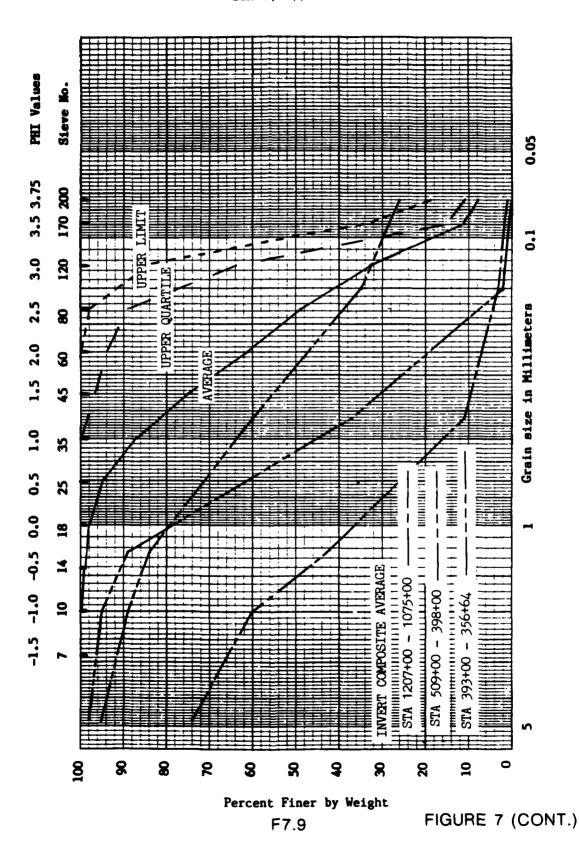
LCWER SANTA ANA RIVER BEACH COMPATIBILITY COMPOSITE BEACH GRADATIONS STA 187+84 - 367+85


Lower Santa Ana River Beach Compatibility Composite Beach Gradations

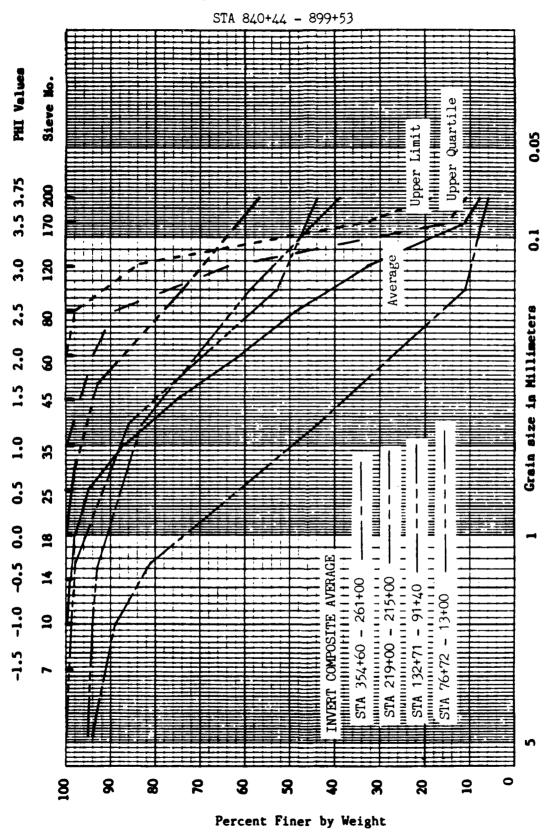
STA 187+84 - 367+85


LOWER SANTA ANA RIVER BEACH COMPATIBILITY COMPOSITE BEACH GRADATIONS

STA 477+12 - 750+94


Lower Santa Ana River Beach Compatibility Composite Beach Gradations

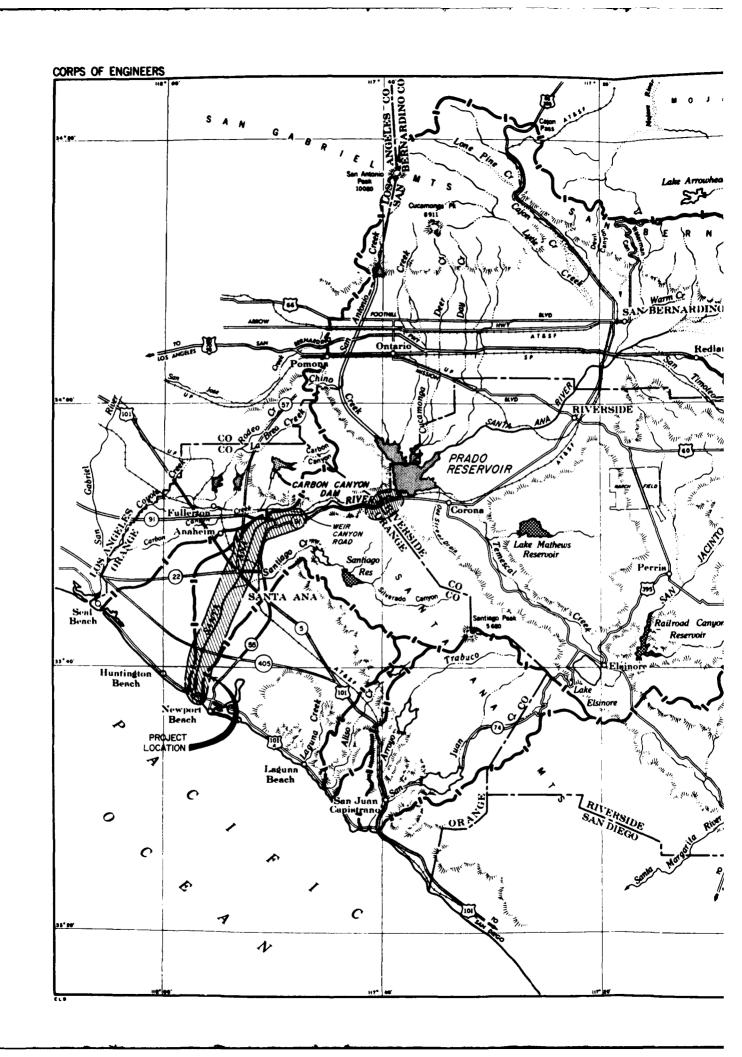
STA 477+12 - 750+94



LOWER SANTA ANA RIVER BEACH COMPATIBILITY COMPOSITE BEACH GRADATIONS

STA 840+44 - 899+53

Lower Santa Ana River
Beach Compatibility
Composite Beach Gradations



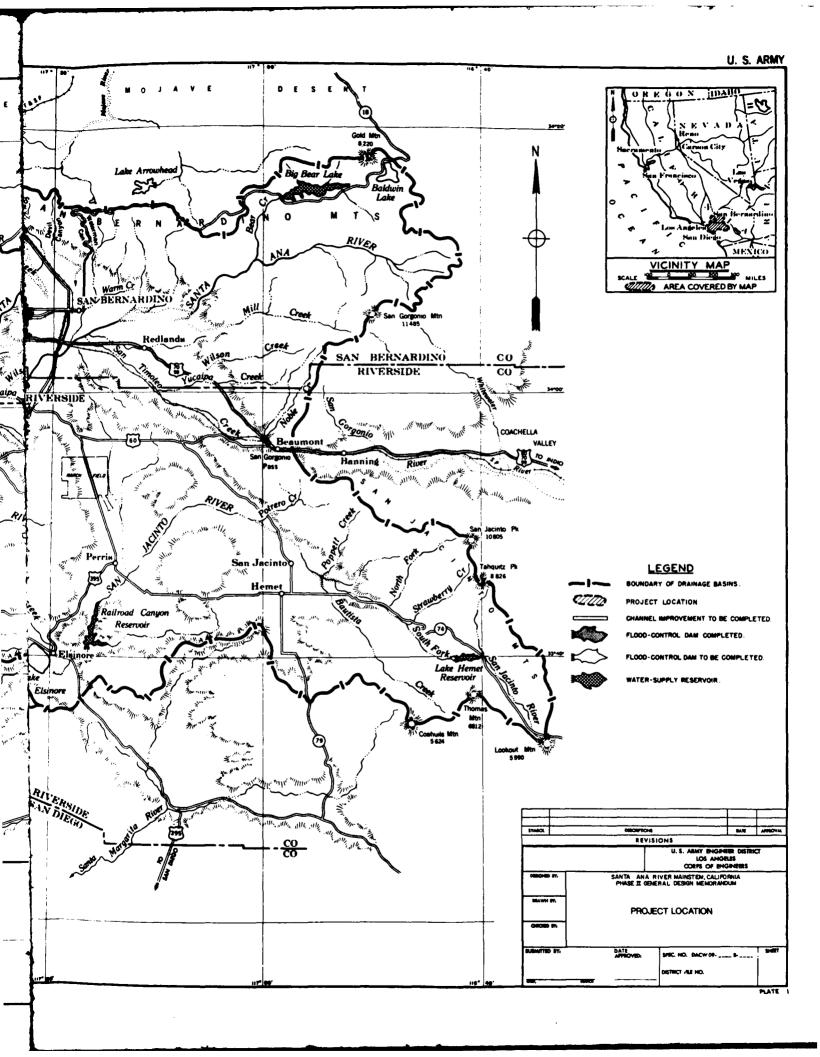
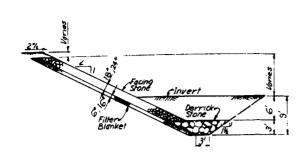
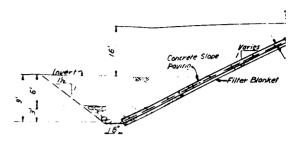

F7.10

FIGURE 7 (CONT.)


A GEOTECHNICAL

PLATES



VALUE ENGINEERIN

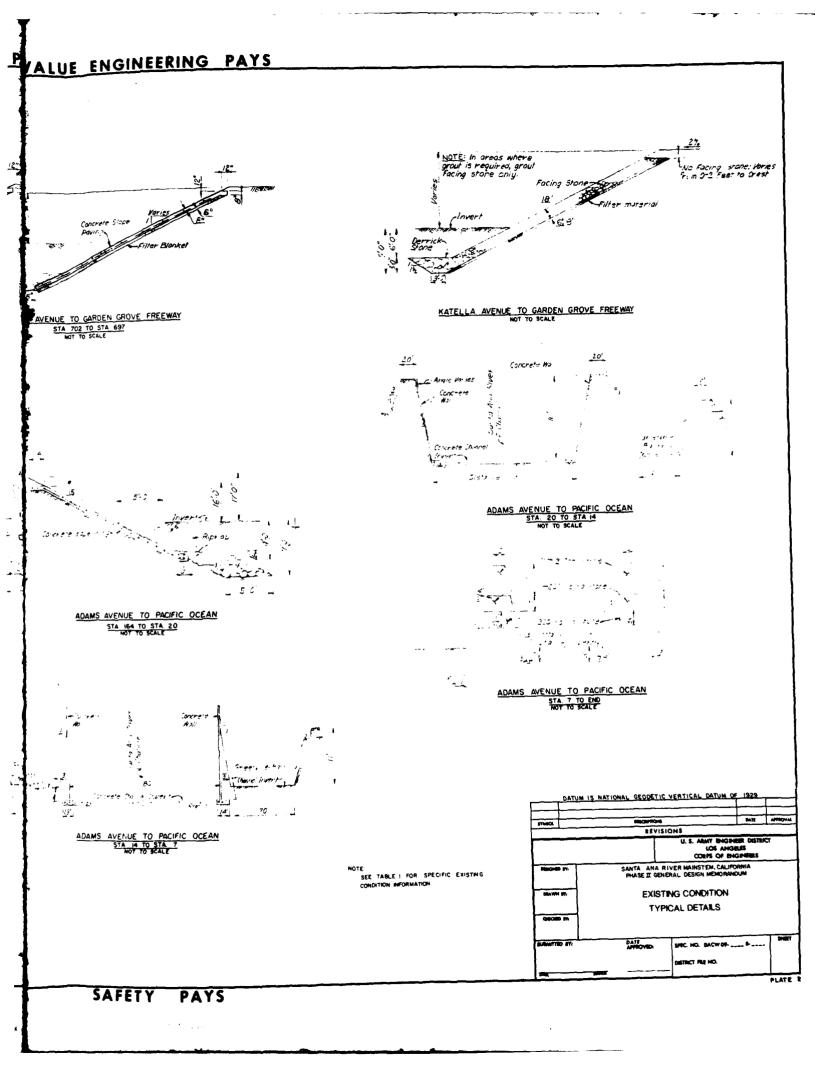
WEIR CANYON ROAD TO KATELLA AVENUE

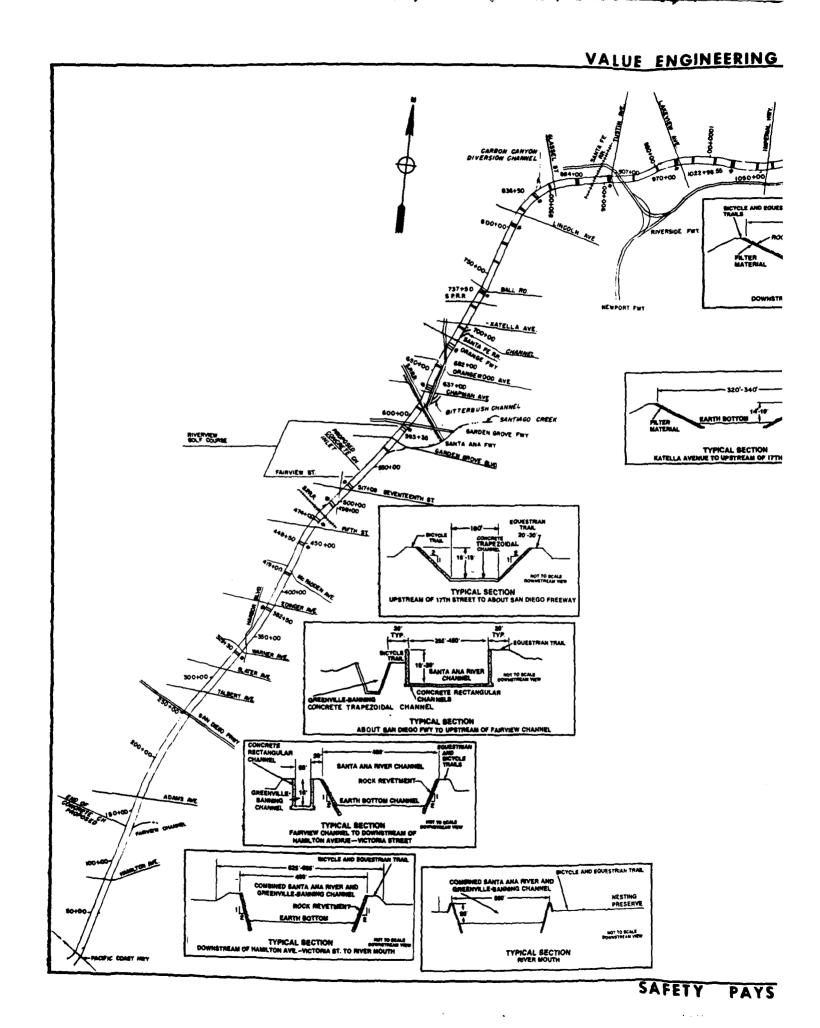
KATELLA AVENUE TO GARDEN GROVE FREEWAY

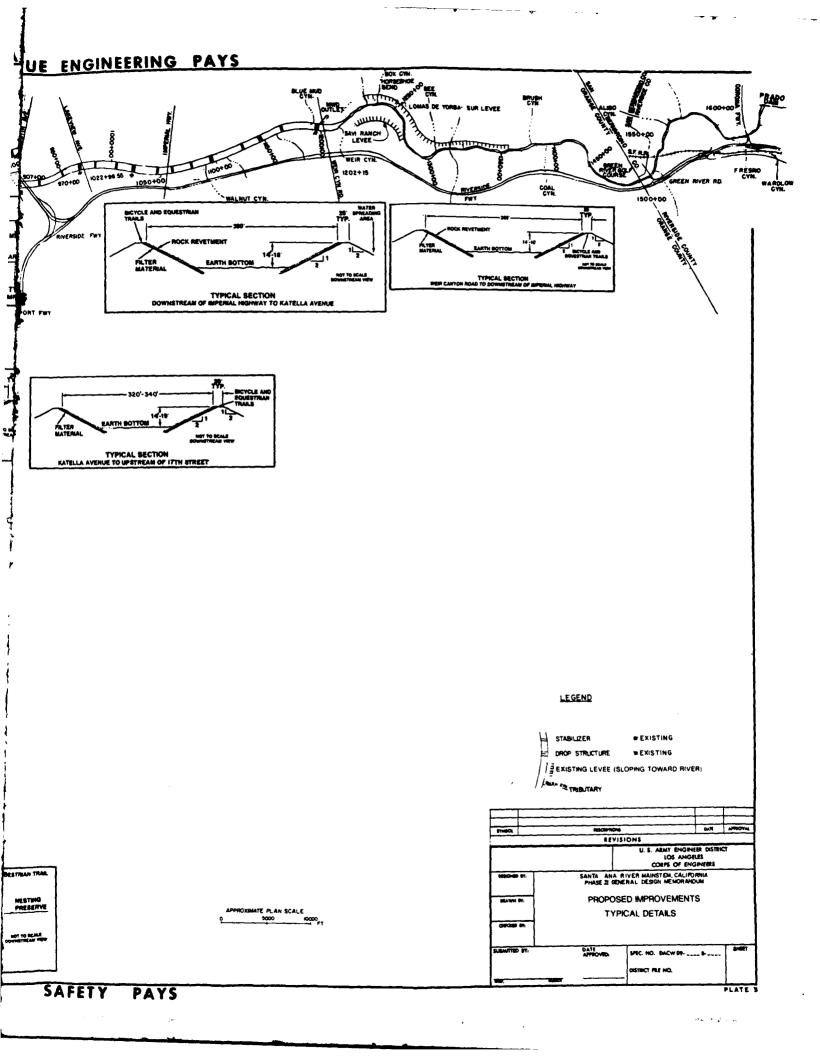
STA 702 TO STA 697
WOT TO SCALE

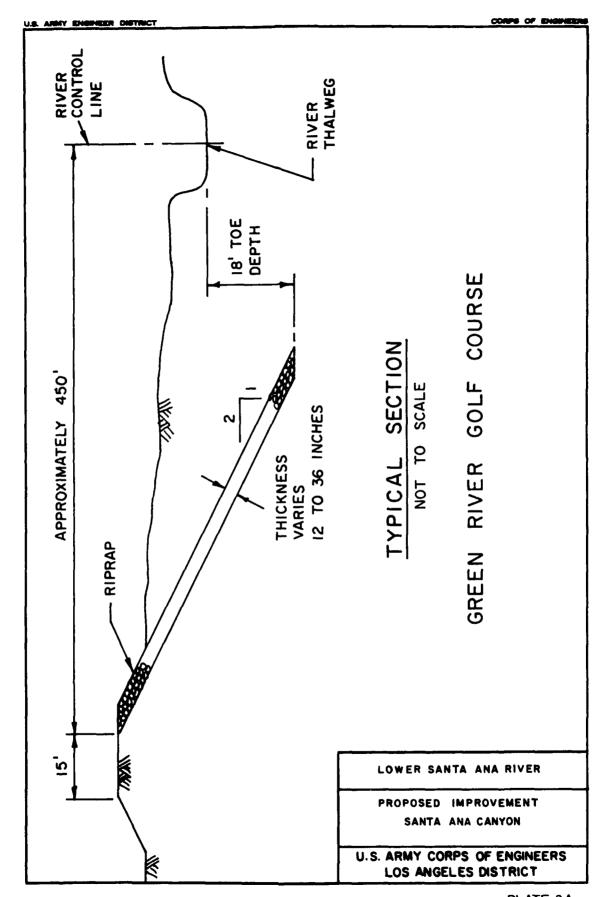
LIMITED EXISTING IMPROVEMENT

- . PIPE AND WIRE FENCING.
- . TURF STABILIZED EMBANKMENTS

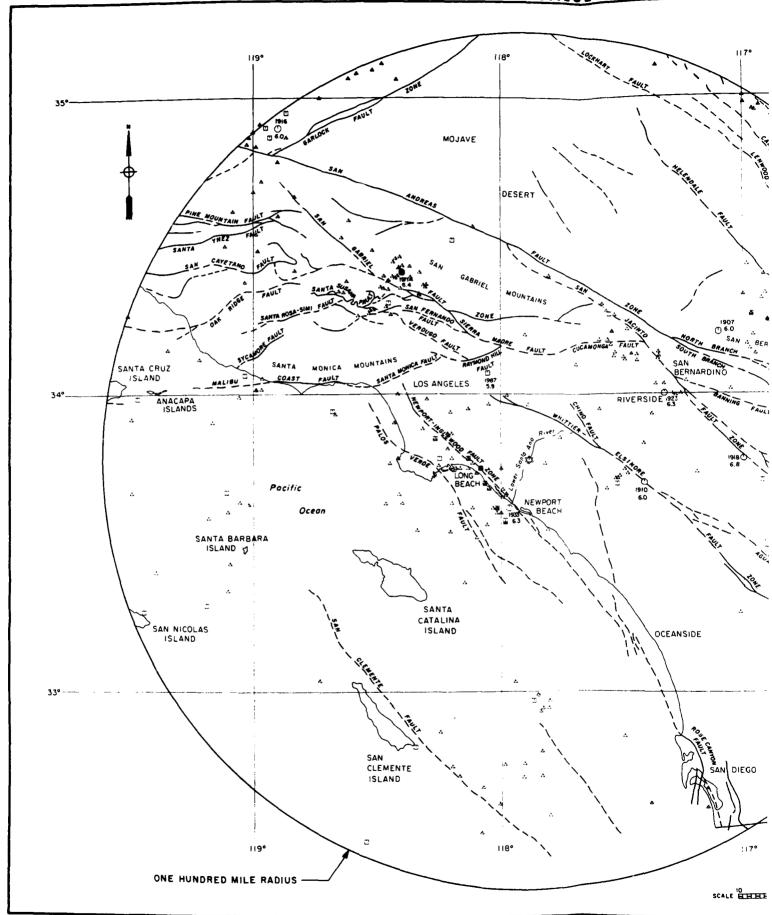

ADAMS AVENUE TO PACIFIC OC STA. 164 TO STA. 20 NOT TO SCALE


GARDEN GROVE FREEWAY TO 17TH STREET

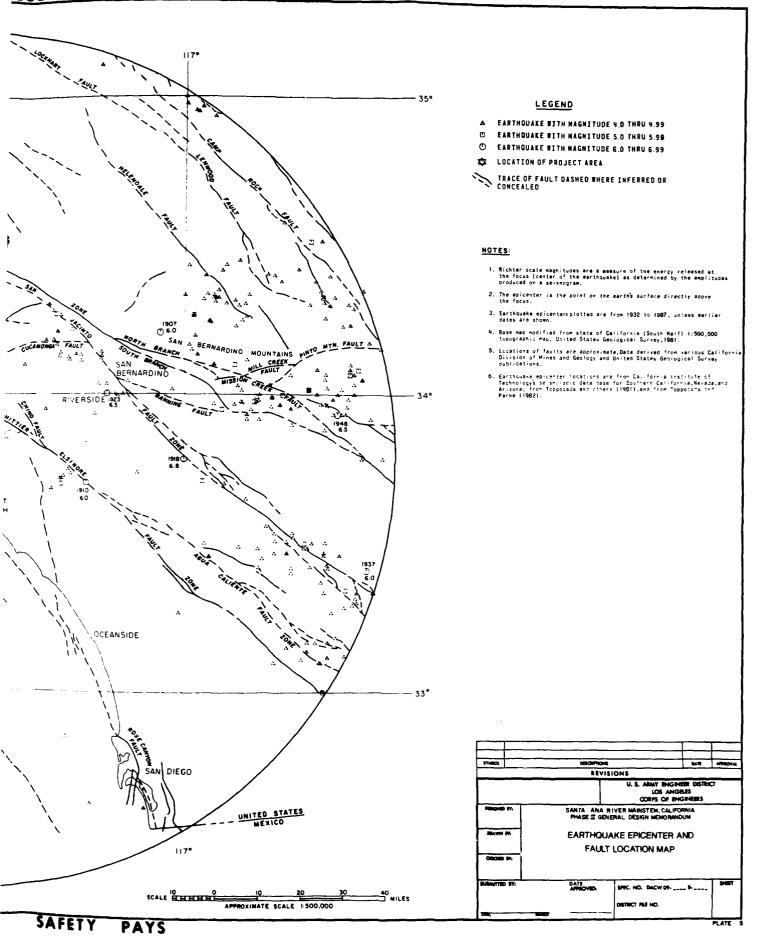


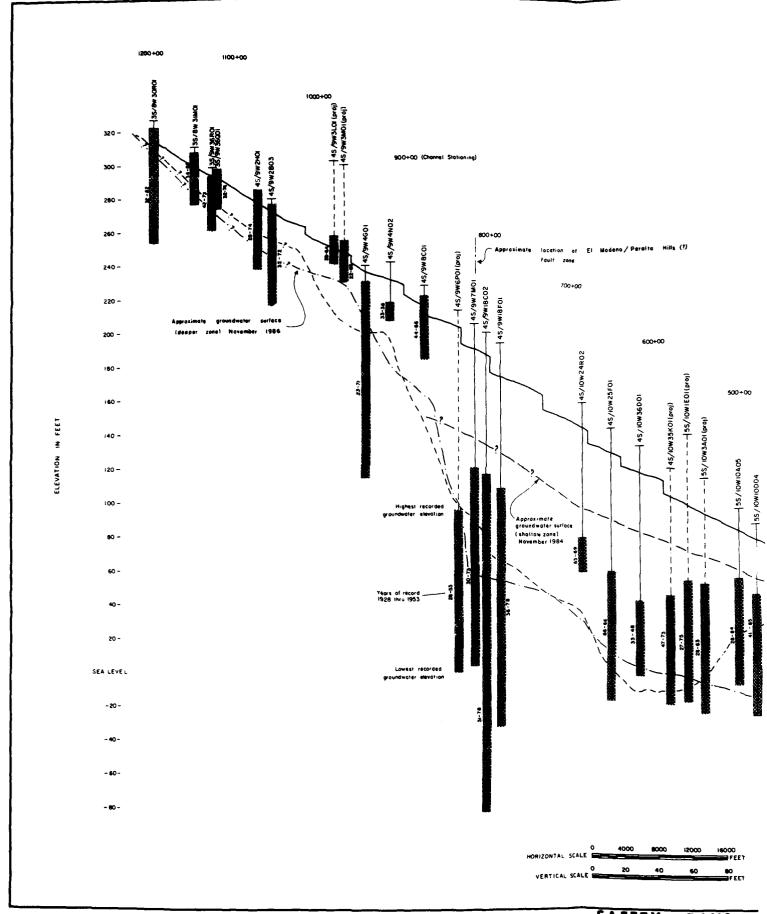


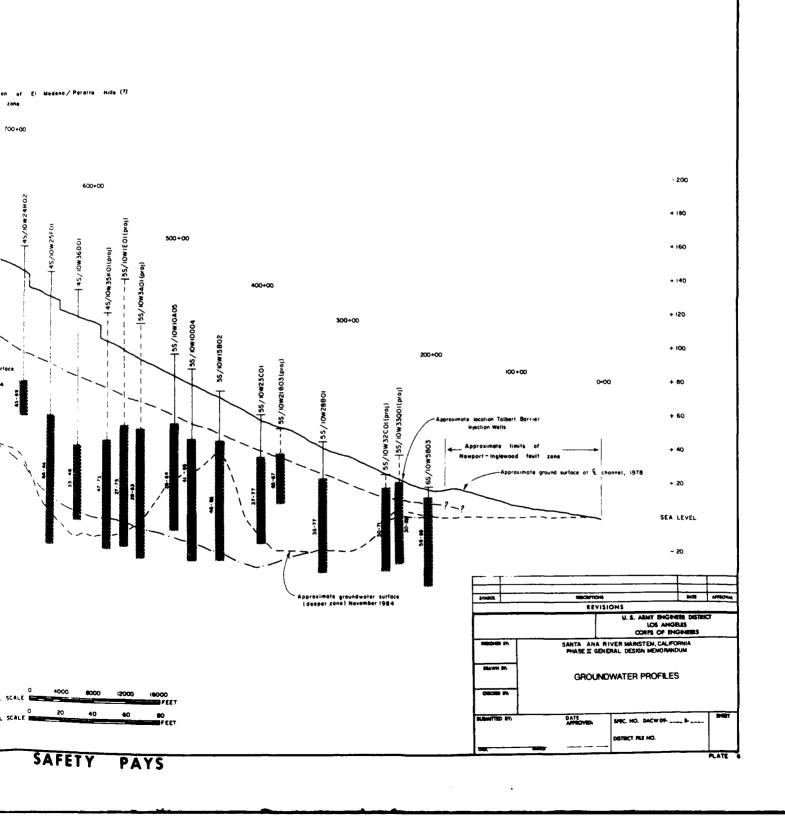
ADAMS AVENUE TO PACIFIC OC

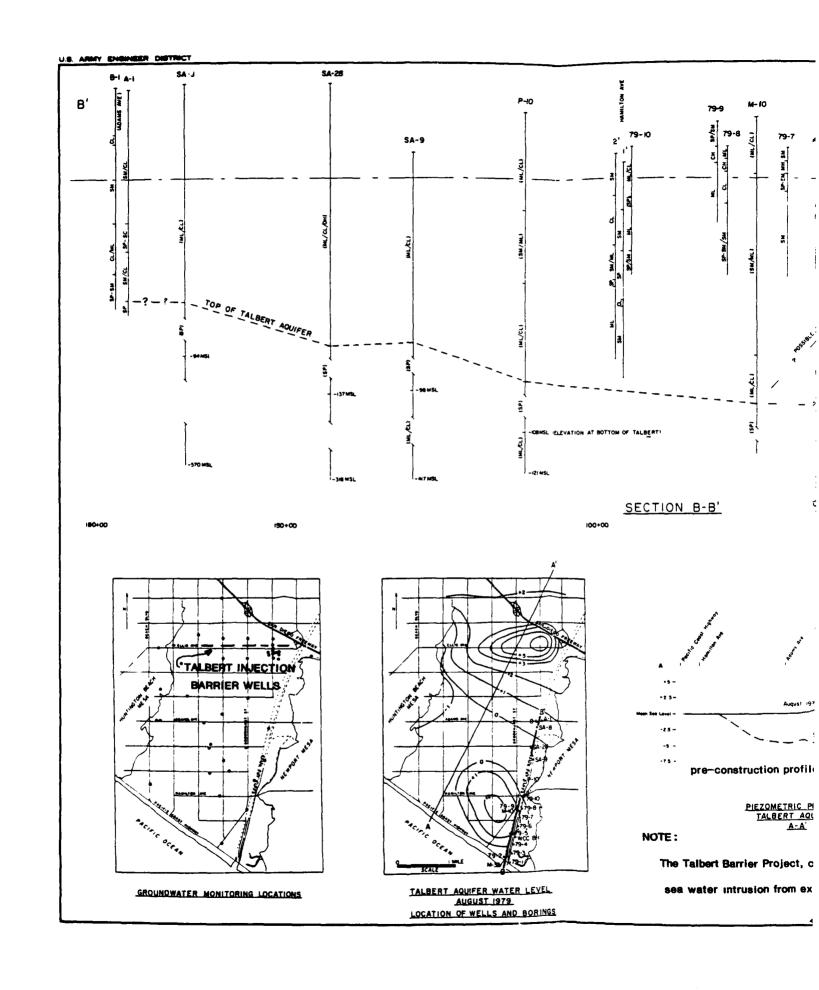


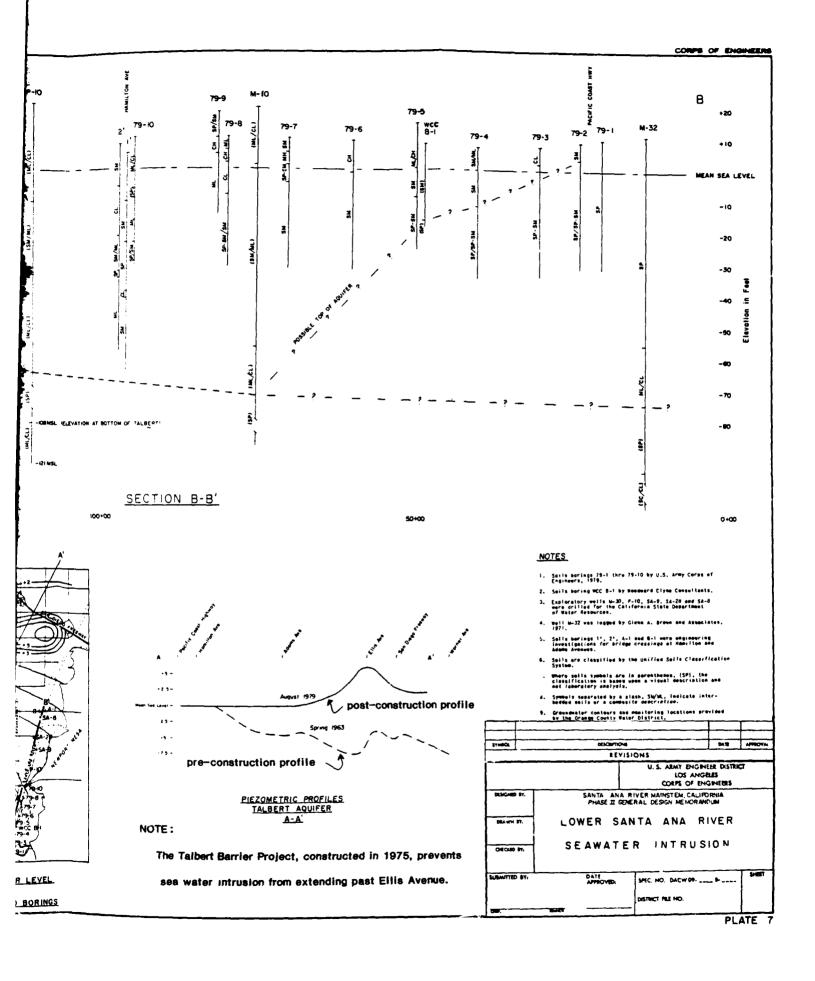
VALUE ENGINEERING & SANTAGO CREEK GARDEN GROVE TALBERT BARRIER INJECTION INGLE MOOD FAULT PACIFIC OCEAN NEWPORT MESA Epicenter 1933 Long Beach Earthquake

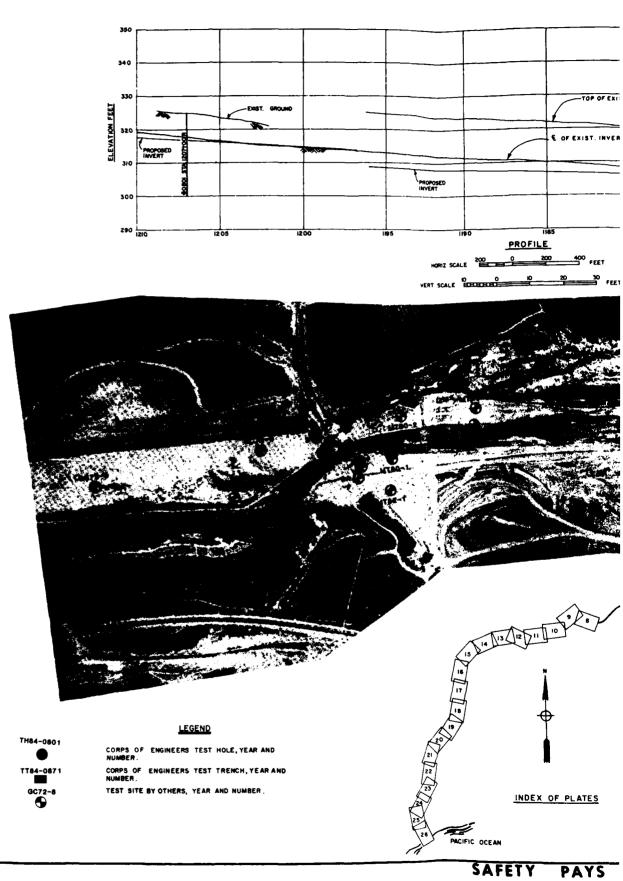

AFETY PAYS

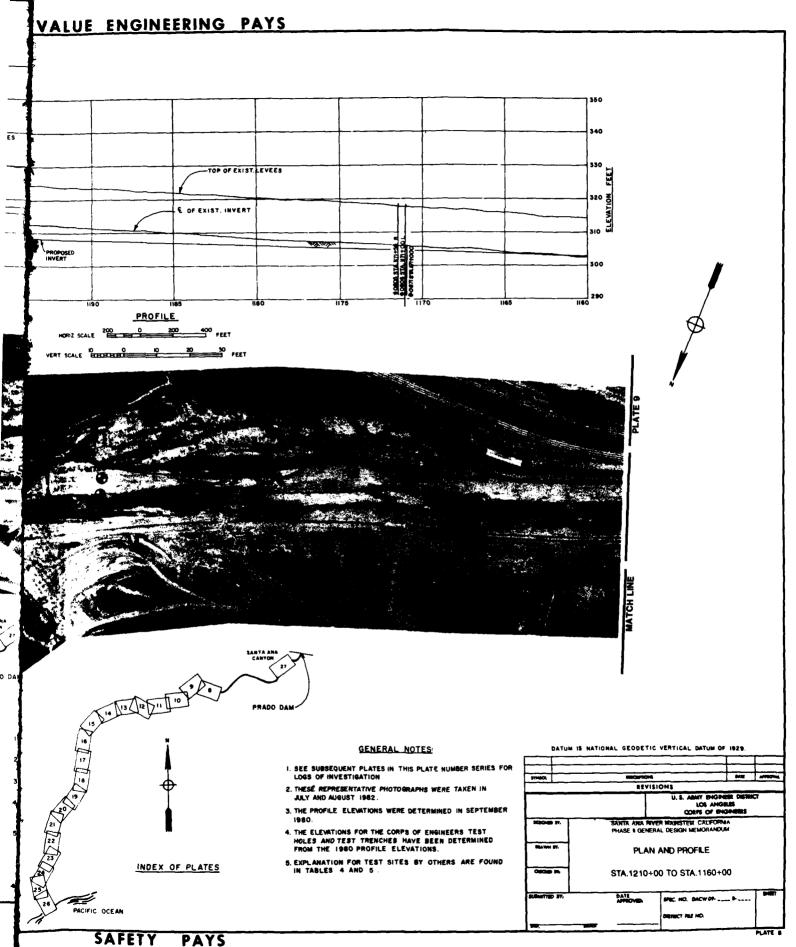

ALUE ENGINEERING PAYS CHINO HILLS PRADO DAM SANTA ANA MOUNTAINS S/e 700 *00 117°40' — 33°45' LEGEND • •00•00 Tertiory and pre-tertiory formations Pleistocene sediments Foult, dashed where approximately localed, dotted where inferred or concealed Thrust fault NOTES Base map and geology after Mortan and Miller (1981), Schoellhamer and others (1981), and Durham and Yerkes (1964). 2. Location of Percita Hills Fault from Bryant and Fife (1982). REVISIONS U. S. ARMY BHIGHER DISTRICT LOS ANGELES CORPS OF ENGINEERS SANTA ANA RIVER MAINSTEM, CALIFORNII PHASE II GENERAL DESIGN MEMORANDUM GENERAL SITE GEOLOGY SCALE MILES PLAN DATE APPROVED. SPEC. NO. DACWOR-____ B-_ DISTRICT FILE NO. SAFETY PLATE 4 PAYS


VALUE ENGINEERING PA




LUE ENGINEERING PAYS





VALUE ENGINEERING F

TH84-0801

THB4-06	1 01	STA 1207+00 R						EL - 325¢
DEPTH	F06	MC	ш	PI	4	-200	н	DESCRIPTION
	99	2			95	3	15	SAID: MHITE, LOOSE TO MEDIUM DENSE, FINE GRAINED SAND-
3.0					70	2	12	GRAVELLY SMID: SAVE AS ABOVE WITH A FBN GRAVEL MID COMBLES TO 5 INCHES.
6.0	99				95	•	11	SAINT: NEDIUM BROWN, LOOSE TO MEDIUM DENSE, OCCASIONAL CLUMPS OF CLIMEY MATERIAL.
9.0	SPI			MP.	99	24	7	SILTY SMIT: MEDIUM DANK BROWN, LOSSE, MEDIUM TO FINE GRAINED SAND.
12-0	SM				73	4	10	GRAVELLY SAMD. MEDIUM BROWN, MILITOLOMED, LOOSE TO MEDIUM DENSE, MEDIUM TO COMISE GRAINED SAMD, 10 PERCENT COMMLES TO 6 INCHES.
15.0		40	41	15	99	70		SAMOY SILT: DANK GREY-GREENISH, NEDIUM DENSE, NO GRAVEL. NODERATE PLASTICITY.
	rL.		33	,	100	67		SME: MITH PRECUENT YEINS OF REIGHT BROWN SILTY SAND THROUGHOUT.
21-9			29	6	86	13	7	SILTY SMITH: DANK SREY-SREENISH, HEDIUM DENSE, MOTERATE PLASTICITY.
25.5	SM			₩	74	?1	30	SILTY GRAVELLY SAND: "JANK GREY-ROOM, MULTICOLORED, MEDIUM GRAINED SAND, FEM GRAVEL.

TH84-0805

TH94-05	TH94-9905		57	A 1171	+50 R			EL. 318‡			
DEPTH	LOG	MC	LI.	Pl	-4	-290	×	DESCRIPTION			
	91			н¢	52	13	30R	SILTY SAMOY GRAVEL: BARK BROWN, MOIST, GRAVEL TO 3", REPUSAL AT 1:0" DUE TO ROCK-			
3.1	9P/SM			۴	90	q	22	SAMB/SILTY SAMD: "MANK BROWN, MOIST, FINE GRAINED SAMD-			
6.0	714/2M			# P	92	5	23	SAPE: VERY MOIST, FINE GRAINED SAND, GRAVEL TO 374".			
.2.2	59/5H			*	91	5	19				
12-0	SW				77	3	9	GRAVELLY SIMID: Diane before, very moist, coarse grained simb, gramel to 3/A indies, for complex to 9 indies, used hub from 15 feet to 37 feet.			
15:0					34	1	15	SARDY GRAVEL: RAMK BROWN, VERY MOTST, COARSE GRAINED SAND, COPPOLES TO 5 INCHES, BOLLDERS TO 14 INCHES.			
	₽P				37	5					
21.0	SW			₩	96	35		SILTY SAPO: DANK GREY, VERY MOIST, FINE SAND-			
21.5	SM/SM			₩	ъ	6		GRAVELLY SMP/STLTY GRAVELLY SMRD: Duex BROWN, VERY POIST COMMSE BRAINED SAND, GRAVEL TO 374 INCHES-			
30.0											

TH84-0806

TH84-01	906		5	TA 117	1+00 L			EL. 3181
DEPTH	L06	MC	ш	Pį	-4	-200	N	DESCRIPTION
3-0	SH	6		NP.	73	n		SILTY GRAVELLY SAMD: BANK BROWN, MOIST, LOO- TENSE, SOME COMESSION, GRAVIEL TO 1", COLANSE GI SOME COMBLES.
6.0	SM/SM	4		ИP	80	9	18	GRAVELLY SAND, SILTY GRAVELLY SAND: NICHOL, GRAVEL TO 1-1/2 INCHES, SOME O
9.0	SP/SH			*	65	5	31	SAME: GRAVEL TO 7 INCHES, 17 INCH BOULDER A
12.0	SN/SH	4		₩	78	9	26	
		_	40	,	95	41		SILTY SAND: TROOM, MOIST, FINE GRAIMED SAND CONESTVE:
			35	10	39	42	9	
	SM	_		¢	95	17		CAME: LIGHT GREY-BROWN, TAMP, DENSE TO VERY COMMITTEN, FINE GRAINED SAND, MOCK AT \$7'.
				₩P	99	14	3/MP	PERUSAL AT 27-0) FEET OUT TO ROOK
							٩	REFUSAL AT 24.5 FEET DUE TO ROOK.
				φ	95	14	2	PERUSAL AT ?7.0 FEET DUE TO ROOK-
0.0				····				

TT84-0871

	NVERT 194-9871							Ft. 3062		
neptu .	LOG	*	Ü.	P!		-?~	4	°. PTION		
					75	7		SAMT: TAN-BROWN, VERY TIME, LOD		
<u>w</u> 5 <u>0</u>					s.	2		GRAVEULY SAMTI: GREV-BACKN, SOME MOISTIPE, 5".		
	99				51	_1.		SAPE: SMEY, GRAVEL TO 4 INCHES.		
					32	1		SAMD: SAME, COMMUNES TO 10".		
					9? .	_1				
15:1 <u> </u>					. 58			GRAFELLY SAMD: MAITICOLOMED, SATURATED, C 15" BOLLDER AT 14"		

TH84-0806

1+00 L			EL. 3181
+	-200	,	DESCRIPTION
. 73	21		SILTY GRAPELLY SAND: DANK BROWN, MOISY, LOOSE TO MEDIUM MEDIEE, SOME COMESION, GRAPPEL TO [*, COARSE GRAINED SAND, SOME COMBLES-
80	9	18	GRAVELY SAMD/ SILTY GRAVELY SAMD: MODER, MODEST, COMPSE GRAINED SAMD, GRAVEL TO 1-1/2 INCHES, SOME COMMILES.
ĸ	5	31	SAFE: GRAVEL TO ? INCHES, 17 INCH BOLLDER AT R FEET.
78	9	25	
95	41		SILTY SMID. "Prime, MOIST, FINE GRAINED SAMP, SLIGHTLY CONSIVE.
38	42	9	
85	17		SMF. LIGHT SHEY-BROWN, THEFF, DENSE TO VERY DENSE, WELL CHAPTER, FINE ANALYED SAND, FOCK AT $18^{\prime\prime}$.
99	14	370	PERISAL AT 27.7 PEET OUE TO ROOK.
•		*	REPUSAL AT 24-5 FEET DUE TO MODE.
95	14	1	Reprise at 21-9 FEET QUE TO POOK.
			Value of the state

TT84-0871

:°1+00 (

-4	-200	4	TESCRIPTION
Śŧ	,		SAN' SAN-SPORT, VERY LITTLE MOISTIRE, LOOSE-
3 n	2		CONVEY CAN'T GOEVERACHM, STHE HOLSTURE, SOME COMMUES ET.
_51	2		SAME THEFT CRANEL TO 9 THICKES.
.92	1_		SAMP. SAME. COBBLES TO [IT.
3/	2		GRAFILY SAND: Quaricologen saturated, commiss to 10°,
ce	,		15" BOLLTER AT 14" SATURATED, COMBLES TO 10",

F: Tibe

UNIFIED SOIL CLASSIFICATION SYSTEM

	MAJOR DIVISIONS		GROUP SYMBOLS	TYPICAL NAMES
931	- 3 : 3 1	11	GW	Well-graded gravels, gravel-send misturitt, little er no fings,
311	TANKS OF THE PROPERTY OF THE P	0 1	GP	Poorly-graded gravels, gravel-send mintures, little or no fines.
	1 1 1 1 1 1	111	GM	Sity gravels, gravel-sand-sity mistures.
	4/111	215	GC C	Clayer grands, grand-sand-clay mintures.
9 2	3141	11	5 W	Well-graded sands, gravelly sands, little or no fines.
24	1	8 1	SP	Pearly-graded sands, gravelly sands, little or no fines.
20 M	3 7 8 7 8 7	111	SM	Silty sends, send-silt mintures.
0234	3 3 3 3 3 3	3 1 4	sc	Clayey sands, sand-clay ministrus.
. ; 1		j	ML	inorganic silts and vary fine sands, rack flour, silty or clayay fine sands, or clayay silts, with elight plusticity.
23 SOULS	S S	1	CL	learganic clays of low to madium plasticity, gravelly clays, sendy clays, sity clays.
ONIVE	9		OL	Organic sitts and organic sitty clays of law planticity.
8	A E	1.	мн	Inorganic sits, micacoous or discomectous fine sendy or sity soils, elastic sits.
= 1 1	•	3.1	CH	Inorganic clays of high planticity.
		₹	ОН	Organic clays of medium to high plasticity, organic silts.
	Highly organic soils		Pt	Past and other highly organic sails.

- 1. Soundary Chamification: Soils passessing characterial, well-graded gravel-seed minture with clay binder.

 Z. AE sieve sinus on this chart are U. S. Standard.
- 2. The terms "bit" and "clu" are used respectively to distinguish materials calibring lower planticity from those with higher planticity lines on, 200 siere marterial is sit if the liquid heart and planticity index plot below the "A" line on the planticity chart, and is clay if qued limit and planticity index plot planticity index plot planticity index plot planticity index plot opens.
 - 4. The Soi Classification System is based on the American Society for Testing and Materials (ASTM),
 a. (ASTM) D2487 Standard Test Method for Classification of Soils for Engineering Purposes.
 b. (ASTMI D2488 Standard Recommended Practice for Description of Soils (Visual Manual Procedure).

 - 5. This Classification System is applicable to Corps of Engineers Logs Only

LEGEND:

THR4-0801 TEST HOLE, YEAR AND NUMBER.

TT84-0871 TEST TRENCH, YEAR AND NUMBER

M.C. PIELD MOISTURE CONTINT IN PRICENT OF SEY WHENT.

LL

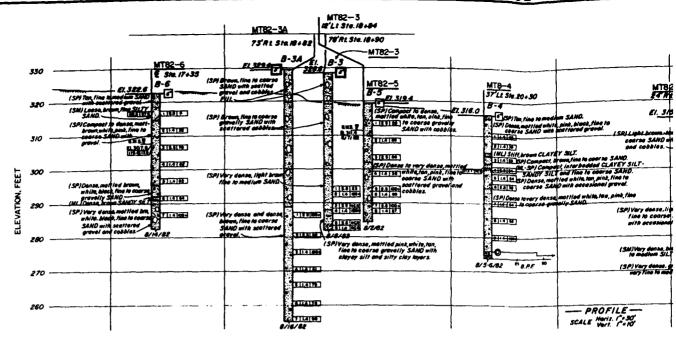
P1 PLASTICITY INDEX (LIQUID LIMIT -- PLASTIC LIMIT).

PRICENT OF MATERIAL BY WEIGHT RETAINED ON NO. 4 SIEVE

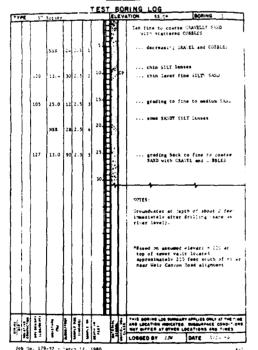
PERCENT OF MATERIAL BY WEIGHT PASSING NO. 200 SIEVE. - 200

NUMBER OF BLOWS BY A 140 POUND HAMMER PREE FALLING 30 INCINES REQUISED TO DRIVE A STANDARD OPEN BIND SAMPLER SPOON ONE POOT.

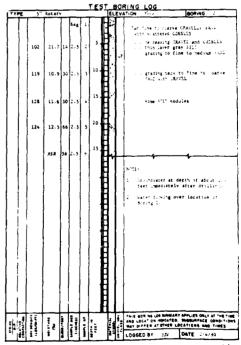
OBSERVED WATER LEVEL


NOTES

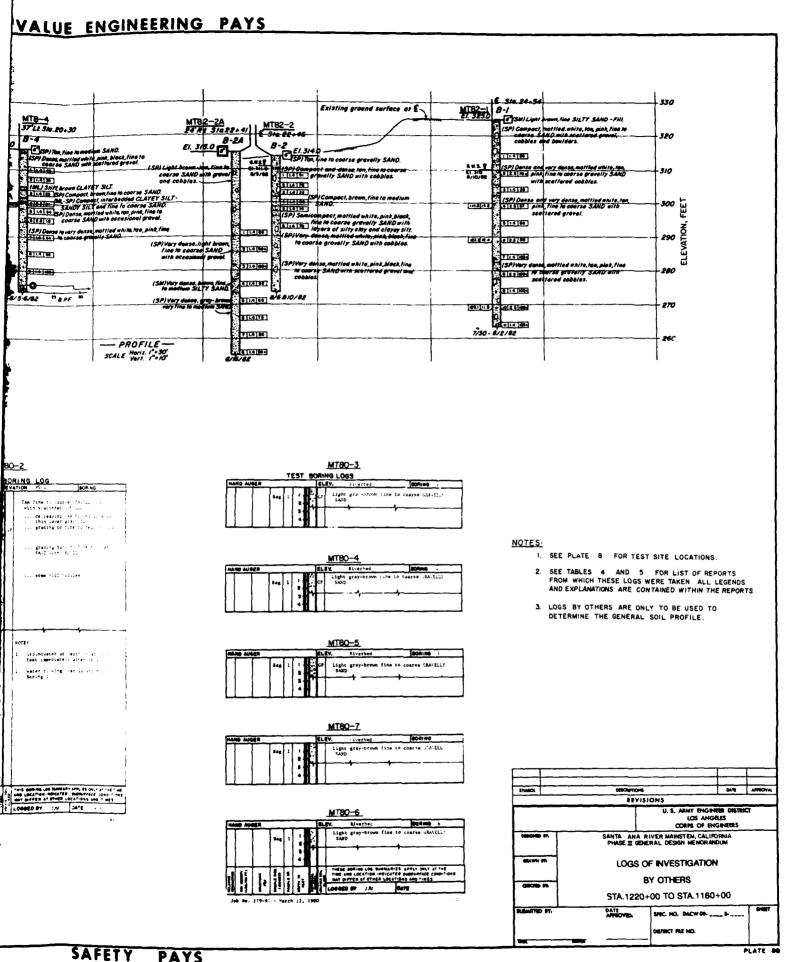
- SEE PLATE 8 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- SEE TABLE & FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL OR "EXISTING GROUND" ON BACK SIDE OF THE LEVEE THE ELEVATIONS FOR THE CORPS OF ENGINEERS LOGS HAVE BEEN DETERMINED FROM THE 1980 PROFILE ELEVATIONS (\$1 FOOT)
- THE OBSERVED WATER LEVELS INDICATED ON THE LOGS ARE AS RECORED AT THE TIME OF EXPLORATION THESE WATER LEVELS MAY VARY CONSIDERABLY WITH TIME, ACCORDING TO UPSTREAM RELEASES RAINFALL OR OTHER FACTORS

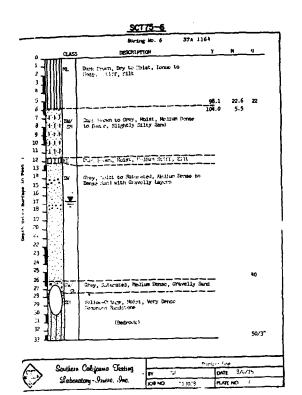


SYMBOL	official to 16		DATE	APPROVAL
	REVIS	IONS		
		U, S. ARMY ENGINE LOS ANGE CORPE OF BNE	LES	3
DIESCHARD BAY		RIVER MAINSTEM, CALIFO ERAL DESIGN MEMORAN		
CEAWN SY,		F INVESTIGATIONS S OF ENGINEERS	S	
CHROMA IN		+00 TO STA.1171+	+00	
SUBMITTED BY:	DATE	SPEC. NO. DACWOR	_ F	30007

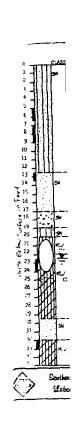

VALUE ENGINEERING

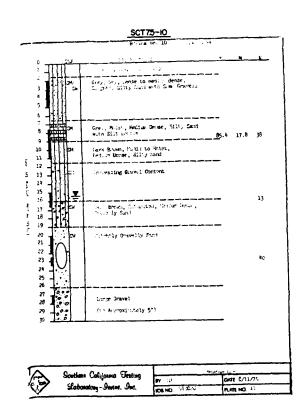
MT60-1

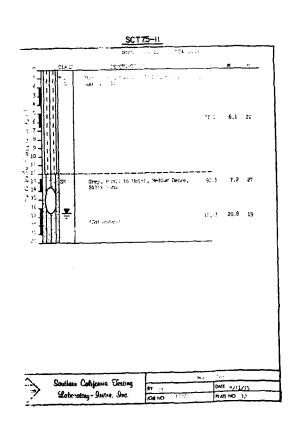

MT80-2



Joh No. 179-97 - March 12, 1980


A-:


s en grand i



	Borring	10.7 STA	172		_
CLASS	DESCRIPTION	s	Y		
5w 5w 1111 1111 1111 1111 1111 1111	Groy to Disk tween, In Section forme, 212 dails Gravelly Lance (Caying Boice 41)	y to Moist, Lugar / Sifty Susi with	10		
SA/ MI	Dark Block, Plast, to Very Silty Sand	tium Dense,	108.2	14.3	33
59	Grey to Milto, Skint t Hedium Donze to Dense,	to Suturnited, Sand	109.5	3,0	N2
*			118.8	13.4	51
	Brown-Grey, Caburoled Gravelly Jane	, Mcdium Douse to	Droze,		
Came -	California Testing	T	* 16.5 s	· K	
	ncechicanic Desired	BY S'	DAI	E 8/°/	
		IOS NO 513028		IT NO.	

ALUE ENGINEERING PAYS

•				
117				1
. 10	<u> </u>			-
k 10				- (
•				
				- [
	108.2	14.3	33	- 1
				ĺ
	109.5	3.0	N2	-
•				- }
•				
	118.8	13.1	52	- 1
) Denis				1
	•••			
				-
				Į
				Į
	ofter top	,		\dashv
	DATE			_
	PLATE			\Box

78.1 (.1 3)

103.3 21.5 19

PLATE NO

_			75-8				
			g teo. a	374 1185			
. 4	LTH ^{SA}	363091	PTION		Y	#_	
: 1		Light Brown, Dry to Donne, Silty Sens	Keud, Loo	se to Medium			
3 1 9 1		(Caving Scion 71)			97.8	6.6	11
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		amengered, to a Day to to Device of the	Tambu, Mo	Notari Dende	797. 9	3.4	75
1	30	Stage-Mitte, My to					
1,1	3	Druce to 11 .75 agri	Orane)	STORE DATES			
33	34	Ten so 3 men, eet, M	edium Dens	e, Clity yand			
4 3	∕ \•	Brown, Situated, A-	uium stiff	Sundy 511t			
	*	Grey, Saturated, Med Trayer C.T. with Sun		waim,	106.0	21.9	25
	##	Shico, Carlenated, Mc	Hiz Peni.	. 5 nc			
		Oreni, Saturanuri, Mid Liatro (St	ua unn				
$\triangle \subset$	Souther	n Californa Testing	<u> </u>	;r:	ing Lar		
1		ratasy-Israer. Inc.	103 NO	51,624		3/11/7	•
			14.540		PLATE	40 ,	

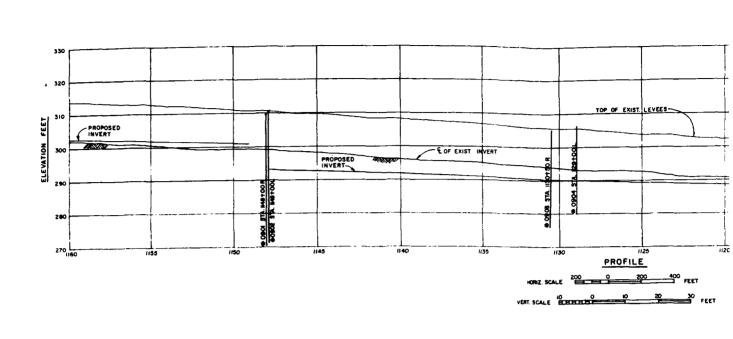
		775-9	A 11.15		
. CLAS					
8.0 m	Light Brown, Dry to Cobbley Onavel		D'86.		_
0.00	(Caving Below 411				
; - [[] ya	Dank Brown, Hum-d to	Motet, Median	Area, Silv	ieni	
80	Brown, family to hot				
3 T T T T T T T T T T T T T T T T T T T	Elegat Diray to Dark : Mecdum Decem, Solty	Scorn, Runda ro Nand	4551,		
2 1 1 1 2 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Stank (Mount), Milist to Striggerty, Tairly, Sand	n erc, Nedsan (e	n.4.		
23 - 1111 24 - 1111 25 - 1111 27 - 1111 28 - 1111					
000	Terroris, audiensira, M Lagrandi (Mostanis)	oduse ferun til b Na Je	e:se,		
	lank arety a killing the mount	77 5 40 540	च्याचक.		
Courters	California Testing	1	· · · · · · · ·		
	stony-Inine. Inc.	\$1 .	DAY	10015	
	zony - Seine. Sec.	108 10	" PLAT	E NO	

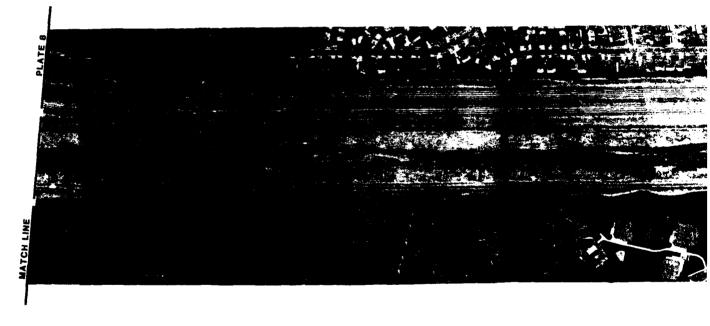
NOTES

- I. SEE PLATE 8 FOR TEST SITE LOCATIONS.
- 2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE.

STWECK	SECURION .	649	APPROVAL						
	REVISIO)NS							
		U. S. ABMY BYGINESS DISTRIC LOS ANGELES CORPS OF BYGINESS	3						
1980-10 W.		VER MAINSTEM, CALIFORNIA AL DESIGN MEMORANDUM							
SEAWN ST.	LOGS OF	LOGS OF INVESTIGATION							
GROSS IN	BY	BY OTHERS							
	STA.1220+00 TO STA.1160+00								
SUBMITTED BY:	DATE APPROVED	SPEC. NO. DACWOF F	SHEET!						
		DISTRICT FILE HO.							

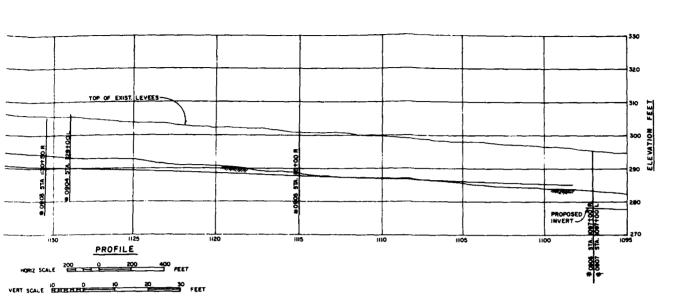
SAFETY PAYS


PLATE


GC72-I GC72-3 GEOLABS, INC. GEOLABS, INC. GEOLABS, INC. BORING LOG BORING LOG STATION NO. 1173 + 30 BORING LOG STATION NO. 1181 + 40 STATION NO. 1171 + 25 SURPACE ELEVATION 311.0 DOPOP CLASSIFICATION (% Send, % Silt, % Clay) (% Sand. % Sitt. % Clay) (% Sand, % Sill, % Clay) an SAND, SF, fine grained at surface grades to course below 1 foot, medium dense, soist, trace of gravel. rades to GRAYKLLY SAND. 0 123.d 10.5 0 4 122.d 7.0 -**-**---||O||²² SPT 7.5 @ h SPT Occasional cobbles. Grades to dense. ② 17 SPT Thin lense of ORGANIC CLAY, OR, at 10 feet. (3) k₁ LOST 3 3 24 116.0 20.5 3 h Grades to GMAVELLY SAND, SP, saturated ray ORGANIC CLAY, OH, soft to med-ium stiff, saturated. Thin lense of fine SAND, SP, slightly silty at 19 feet. 4 81 SPT 11.1 **(4)** Gray ORGANIC CLAY, OH, medium stiff, 80/07133.0 Tay GRAVELLY SAND, SP, seturated. 3 3 set Gray CLAYEY FINE SAND, ML. organics, medium danse, saturated. Brown SILTY SAND, SM, dense, saturat 3 Brown, gravelly SAND, SP, very dense, saturated, Gray coarse SAND, SP, with gravel ray SAMD SILT, ML, trace of organics medium dense, saturated. (37, 47, 16) ⊕ snt 8.7 SAMDY SILT Tab, gravelly SAND, SP, dense, satura ted. (0) **⊘** |804... Lost Gravelly SAND Dark gray CLAYEY FINE SAND, ML, trace of organics, saturated. 0 GC72-8 GC72-6 GC72-7 GEOLABS, INC. GEOLABS.INC. GEOLABS, INC. BORING LOG STATION NO. 1205 - 70 BORING LOG DO STATE OF O JECUTATION OF THE PROPERTY O O DE STATE DE LEGION DE LE CLASSIFICATION CL ASSIFICATION CI ASSIFICATION (% Sand , % Silf, % Clay) (% Sand , % Silt, % Clay) (% Sand , % Silt, % Clay) an, gravelly SAND. SP, any at some to one foot, moist and medium in below one foot. Tan SILTY SAMD, SM. loose, dry. Fill, tan SAND, SP, coarse, moist, Ten SAND, SP, coarse grained with gravel, cleen, medium dense, moist 124 C 25 125.5 ① 14. Saturated. 9 SPT 1.0 Tan SAND, 5P, with gravel, medium dense, moist. 2 95.5 17.6 2 Grades to seturated and dense below 5 feet. Tan gravelly SAND, SP, very dame, 3 ¥... Thin layer of brown SILTY CLAY, CL, soft, wet. (6") SPT 13.0 3 32 1 (Hat cot Gray SANDY GRAVEL, GP, dense to ver dense, very difficult to menetra saturated. 4 125.5 - 20-Gray ORGANIC CLAYEY SILT, OL. BATUTAL 3)" 10.5 4 134.0 5.0 an SAMD, SF, medium grained, trace of gravel, very dense, wet. 5 108.5 21.2 25. 3 40 3 PT 4.0 3 18.1 SPT Tan, course SAMD, SP, with appreciable amount of gravel, saturated, very dense. Black SILTSTONE, moist hard, with SAND, SAND, SP, interbed. 6 28 116.d 18. Lawer of STLTY CLAY, CL. stiff (4"). **②** •• 122.5 13.6 _ 35. Ø

GC72-2

ALUE ENGINEERING PAYS GC72-4 GC72-5 GC72-3 GEOLABS, INC. GEOLABS.INC. GEOLABS, INC. STATION NO. 1193 + 00 BORNES No. ... BORING LOG STATION NO. 1199 + 60 BORING LOG 30 10. 1181 + 40 CL ASSIFICATION CLASSIFICATION (% Send, % Sill, % Clay) (% Sand, % Sitt, % Clay) (% Sand, % Sill, % Clay) Fill, brown SAMD, SP, trace of gravel moint below 3 inches, loose. on SAMD, SP, fine grained at surface grades to coarse below 1 foot, medium dense, moist, trace of gravel. rades to GRAVELLY SAMD. 122.0 0 0 6 116.0 127.5 Occamional cobblem. Grades to decase. ② 17 SPT NO SAMPLE **~**☐② þ₁ room SAND, SP, fine grained, clean, medium dense, motec. 10 3 × 116.0 20 Tan, gravelly SAND, SP, medium dense, (3) ks 4.2 3 5" 116.5 16.6 Brown SAMD, SP, medium dense to dense saturated. Thin lense of fine SAMD, SP, slightly silty at 19 feet. **(4)** @ 35 131.0 5.8 (O) Frown SILTY SAND, SM, dense, saturate 3 52 SPT 123.0 tust brown SILTY FINE SAND, ML. medius dense, saturated. Brown, gravelly SAND, SP, wery dense, saturated. 3 h SPT 6 36 SPT (b) 48 124.0 13.0 7 50% SPT 11.0 7 100/ 1061 Gray CLAYEY SANDSTONE, hard, moist] @ 10. 12. 1 136. GC72-8 GEOLABS, INC. BORING LOG DRIVING WI. 300 15s. 10H HO. .214 + 15 ACE ELEVATION OROP. CLASSIFICATION (% Sand, % Salt, % Clay) an, gravelly SAND. SP, dry at surface to .nm foot, moist and medium dense below one foot. C 23 125.2 NOTES: Saturated I. SEE PLATE 8 FOR TEST SITE LOCATIONS. 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS. () |* 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE. The color many pare enses of SiLTY SAND, SH, and gray ORGANIC CLAY, OL, saturated. rsy SANDY GRAVEL. GP, dense to very dense, very difficult to penetrate saturated, 9)" REVISIONS U. S. ARMY ENGINEER DISTRICT LOS ANGELES CORPS OF ENGINEERS SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM Block SILTSTONE, woist hard, with SAND, SAND, SP, interbed. LOGS OF INVESTIGATION BY OTHERS STA.1220+00 TO STA.1160+00 DATE SPEC NO. DACWOR.____ B.__ SAFETY PAYS


VALUE ENGINEERING PA

VALUE ENGINEERING PAYS

NOTES

- I. SEE PLATE 8 FOR LEGEND AND GENERAL NOTES.
- 2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

PRINCE DESCRIPTIONS REVISIONS U. S. ARMY EN	A) FEE					
U. S. ARMY BY NEET DISTR. LOS ANGRES CORPS OF ENGAGES SOUTH OF ENGAGES SANTA ANA RIVER MAINSTEM, CALIFORNIA	G					
LOS ANGRES CORPS OF ENGRICHS MINISTER CALIFORNIA	a					
SANTA ANA RIVER MAINSTEM, CALIFORNIA						
THE VETER LEVEL STATE OF THE ST	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM					
PLAN AND PROFILE						
STA.1160+00 TO STA.1095+00	STA.1160+00 TO STA.1095+00					
SUBMITTED SY: DATE SPEC. NO. DACWOP. B.	SH					

SAFETY PAYS

, i

TH84- 0901

TH 84 -0901			\$	TA 114	8+00 R			£. 311‡		
DEPTH	L06	ΑC	и	PĮ	4	-200		DESCRIPTION		
		GRAVELLY SI COMPOSE GRAV TO 6 THORE: SMUSH 2 MP 67 5			GRAPELLY SAND/SILTY GRAPELLY SAND: BROWN, MOIST, FINE TO COMPAS GRAVED SAND, GRAPEL TO 3 INCHES, 5 PERCENT COMPLET TO 6 INCHES.					
	SM/SM	2			67	5				
		2		₩	75	6	38			
5.0	SW	3			81	•	37	GRAVELLY SMITH: MULTICOLORED, HOIST, COURSE GRAINED SMID, GRAVEL TO 3 INDIES.		
) <u>.0</u> _	5P/SP			₩	96	5	22	SAMD/SILTY SAMD: LIGHT BROWN, MOIST, FINE GRAINED SAMD, GRAME, TO 1-1/2 INCHES		
2.0	SV				74		19	GRAVELLY SANT: HULTICOLORED, HOIST, COARSE GRAINED SAND, GRAVEL TO 2 INCHES, STATE COMPLES-		
i.Q	···				97		23	SAND: MALTICOLORED, MOIST, COMPSE GRAINED SAND, GRAVEL TO 2 HOURS, SOME CORBLES, USING MUD AT 13 FEET, MATER AT 13 FEET.		
18-0	58/5N		_	•	55	5	15	GRAVELLY SAND/SILTY GRAVELLY SAND: PULTICOLORED, MOIST, COMPSE GRAINED SAND, GRAVEL TO 2 INCNES, SOME COMBLES.		
.0				_				FRAMELLY SAMM: MULTICOLOMED, MOIST, COMMSF GRAIMED SAMD, GRAMEL TO ? INCHES, STORE CORRLES-		
	5*			₩P	86	٥	84	SME: REPUSAL AT 25-0" DUE TO COARSE SPAYEL-		
.2										
.2	SM		32	5	η	18	v	SILTY FRANKILY SAND: MULTICOLORED, MOIST, COAPSE GRAIMED SAND, GRAEL TO 2 INCHES, SOME CLUMPS OF SILT, DARK GREY, MOIST, COMESINE-		
	52				67	3	21	RRAVELLY SAMD: MULTICOLURED, MOIST, TO MET. COARSE GRAINED SAMD, SOME FINE SILTY SAMD, GRAVEL TO 2 IMCHES, SOME COMMILES.		
.1	SH				"	•	37			
2	çο			····	40	?	34	SAMITY GRAVEL: PALITICOLORED, MOIST, COAPSE GRAINED SAMO, GRAVEL TO 2 INDIPES, REPIREAL AT 35.5 THE TO ROCK.		
.1	ф				52			GRAVELLY SEAM: MILITICOLORED, MOIST, COMPSE GRAINED SAND. GRAVEL TO 7 INCHES.		

TH84 - 0902

T484-0902			_ :	STA LL	#8+00 L			EL. 31±	
DEPTH	L06	MC	Ц.	P)	-4	-200	N	DESCRIPTION	
				_				GRAVELLY SAND/STLTY GRAVELLY SAND: RAGGE 3 INDIES, 30 PERCENT COPPLES TO 9 INDIES	
	SM/SR			NP.	60	12			
á.0								SAME: Fine to coarse grained samp grave; some comples, mud used at 6 feet due to	
	-		•				10	GRAVELLY SAND: MULTICOLORED, HOIST, LOO- SAND, GRAVEL TO 2 INCHES, LARGE BOULDER	
	92				79	3			
							11		
2.0							20	GRAVELLY SAND: MULTICOLORED, MOIST, CHARGE TO 3 ICHES, 70 PERCENT MIRELES TO METAL ORAFCE AT 15 FEET AND 15 FEET.	
	Sw				<i>7</i> 9	¥		METAL OBJECT AT 15 FEET AND 13 FEET.	
.0									
	SW/SM			40	38	6		SMM/STLTY SAND: MULTICOLORED, MOTST, C. SAND, SRAVEL TO 3 INCHES, 20 PERCENT TORR	
1-0	SN	-			76	4	11	GRAVELLY SAND: MULTICOLORED MOIST, COAPS GRAVEL TO 3 INCHES, 20 PERCENT CORR.E. C. 5 INCHES.	
-0	94		1¢	1?	95	21	3 2	SILTY SAND: GREEN-BROWN, MOIST, FINE TO SAND, CONESIVE, GRAVEL TO 1 INCH.	
7.3							35	GRANTULY SANT: MALTICOLORST NOTES, 1940 GRANTU TO 1-1/7 INCHES	
	3 2				۳ŋ	1	30	SAME: SMALL POCKETS OF SILTY SAME.	
j. <u>0</u>								GRAVELLY SILTY SWIT: TARK TREY, 411	
	S#		.32_	. 3	95	39_	17	GRAINED SAND, COMESIVE	
:-2				¥	19	15		SILTY SAND: GREEN TO BROWN, MOIST TO WET GRAINED SAND.	
	39				97	•	29	SAND: LIGHT GREEN, MOIST TO WELL FINE SP OCASSIONAL GRAVEL.	
1.9									

TH84 - 0902

•:	-4 	-270	•	THE SCRIPTION
				FRANTLLY SAND/SILTY FRANTLLY SANDL MOME, DRY, GRAVEL T TIMORES, 30 PERCENT COMPLES TO 9 INDRES.
•	4.	17		
				SAME. FINE TO COARSE GRAINED SAMD GRAVEL TO 3 INCHES, SOME CURRLES, MUD USED AT 5 FEET DUE TO CAYING.
			13	SRAYELY SAND. MULTICOLORED, MOIST, LOOSE, COARSE GRAIN SAND, SRAYEL TO 2 INCHES, LARGE BOULDER AT 17 FEET.
	٠,	:		
			11	
		e == , ,	75	GRANDLY SAMP. MELTICOLORD, MOIST, CHARSE GRAINED SAM GRANDL TO 3 TOMES, 10 PERCENT CHARLES TO 6 INCHES, LARGE METAL DRUPCT AT 15 FEET AND 13 PEET.
	٠.			
Ye	 -32			SWO'X' I'Y SWO. MULTICOLORED, HOIST, CHARSE GRAINEE SWO, SRAYEL TO \$ INCHES, TO REPORT COMPLEX TO S INCHES
	75	•		SAND, GRAVEL TO 5 INCHES, 20 PERCENT CORRUES TO 5 INCHES
	**	•	::	PRIVELLY SAMP. MULTICOLORED MOJSY, COMPSE SRAINED SAMP. SPAREL TO 3 THICKES, 20 PERCENT COMMUNES COMMUNES TO S INCHES.
	:-	:		CLITY CAN'T: GREEN-BROWN, MOIST, FINE TO COMPSE GRAINED SAND, COMESTIVE, GRANEL TO [INCH.
			25	cases, in the trace men, enter, make seather our leading to 110 though
			2.	TAME CHALL SOCKETS OF SILTY SAND.
				PANE + COUTY TANK THEY, HOUST TO HET, FONE PANES SAME, COMESTION
3_	11	1.	,.	
¥F				THE TY CAN'T GREEK TO SHOWN, MOTOR TO WEET, FINE TO COM LOT TRAINET SAME.
				"W" ISHT TREEN, MITST TO WET, FINE BRAINED SWIT, YEARTONNEL SPANEL.

TH84-0903

TH84-0903			s	TA 1130)+50 q			FL 3062	
DEPTH	ſuĸ	MC	u	PI	4	-200	4	PESCRIPTION	
3.0	6M			NP.	50	27	SOR	SILTY SMOY GRAVEL: MEDIUM BROWN, MOIST, GRAVEL REPUSAL AT 1-0 FEET DIE TO VERY BOKSE MATERIAL:	
6.0	الاد. ٢			*	82	8	25	SMB/SILTY SMM: MEDIUM BROWN, MOIST, MEMIUM OBISE, FEI SRAMEL.	
	SW.	5			qq	4	26	GRAVELLY SMITH. SISHET BROWN WITH MALTICOLORED HINERALS, MOIST, MEDIUM DENSE TO LONSE, COMISE SHAIMEN SMITH, SOME SPANEL.	
י נ							11		
15-0	¥	3		чр	90	16	11	SILTY SWID. LIGHT SPONN, DWP "FRISH DENSE TO LONGE. COMPTE GRAINED SWID. LARGE CLIPPS OF DARK ROOMS Q.AYS, MATER AT 15 FEET.	
	Sw/5ª			φ	30	5	ą	PANELLY SANTYSILLY GRAVELLY SANT: LISHT BROWN TO SHEY. COMPSE SRAINER SANT, FEW CORRECT, SIME PLASTICITY.	
	7				3n	,	\$	SAYN. "NUTTICOLORED SPAINS "HITS, "NN. YPHIGE , COARSE GRAINED SMO, SPIKE LARSE ROLOGE.	
. <u> </u>	52				*3			SATE: MANY STRANCE, AR CORALES TO STRANGS, MISSER BY DIE TO BROKELY SOUTH APPLICATION OF THE SATISTIC PRINCIPLE OF THE CREATER SOUTH METITICIPED CRAIMS, MATTER TWO, DRINGS CHARSE TORINGS SAND.	
	S#/5#			r	٠	:	: ,ye	PRAMELY CANDISELED GRAVELY THE RECORDS GREEN CHAPTER SHEW CLIMES TOGETHER IN LARKE CLIMES, GREEN ALL AT 15.0 REC.	
			-	*	:.			SAMP/SELTY SAMP. MAINTOCHORED SPAINS FINE SPAINET CAND DEVISE, MET CLAY LENSES AT 2015 FEET.	
;									

NOTES

- SEE PLATE 9 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE 84 FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- A ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEL CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

SYMBOL	DESCRIPTIONS		DATE	MARON				
	REVISI	ONS						
		U. S. ARMY ENG LOS AN CORPS OF E	GELES	d				
DESIGNED BY,	SANTA ANA R PHASE II GENE	IVER MAINSTEM, CALI RAL DESIGN MEMORA	IFORNIA ANDUM					
DRAWN SY.	LOGS OF	LOGS OF INVESTIGATIONS						
	CORPS	OF ENGINEERS	3					
Gecrap tri	STA.1148+	00 TO STA.113	0+50					
UMMITTE 11	DATE APPROVED:	SPEC. NO. DACWOR-	6	y-est				
		DISTRICT PLE NO.						

VALUE ENGINEERIN

TH84-0904

TH64-05	904		S	IA 112	9+00 L		EL. 3062			
DEPTH	L06	HC	ш	PI	4	-200		DescriPTION		
	SM2C	5	26	5	n	19		SILTY GRAVELLY SAMD/QLAYEY GRAVELLY SAMD: RIGHA, MOIST, LODGE, SOME FINE GRAINED SAMD, SOME COMMLES TO $^{\rm A}$ -1/ $^{\rm A}$ -2.		
3.0	SH/SH	3		HP.	100	12	16	SARD/SILTY SARD: Recom, HOIST, SOME COBBLES 4-1/2".		
6-0	9P/SM	3		æ	 79	6	129	GRAVELLY SMAP/SILTY GRAVELLY SMID: COMESE GRAINED SAND, SOME COMMLES TO 5-1/2" MEPUSAL AT 7.0" DUE TO ROCK.		
9-0_	SP				90	4	15	SAID: MULTICOLORED, MOIST, FINE TO COMMSE GRAIMED SAME, SOME COMMILES TO δ^2 , MUD ADDED AT 12^\prime DUE TO CAVING.		
12.0	5P/SH			нp	99	5	14	SAND/SILTY SAND: LIGHT GREY, MOIST TO MET, FIME GRAIMED SAND.		
15-0							. 9	GRAVELLY SAND: MULTICOLORED, MOIST TO MET, FINE TO COMPS GRAINED SAND, SOME CONBLES TO 6".		
	٦			₩₽	83	3	7			
21.6										
20.0	SH/SM			₩	76	5	19	GRAVELLY SMID/SILTY GRAVELLY SMID: MULTICOLORED, MOIST TO NET, COMMSE GRAINED SAND, SOME COMBLES-		
24.9	50/SP			Ψ	66	6	•	SAME: MULTICOLORED, MOIST TO MET, COARSE GRAINED SAMO, 75 PERCENT COMPLES, 10 PERCENT BOULDERS, LARGE BOULDER AT 26.5'.		
25.5										

TH84-0905

T-664-79	905		STA	1115+9	10 R			£1. 301±
DEPTH	FUR	MC	LL	21	-4	-200	k	DESCRIPTION
1.0	SH/SM	-		₩	75	3		PRAMELLY SAMD/SILTY GRAMELLY SAMD: RROWH, MOIST, COAPSE MAINED SAMD, 5 PERCENT COMPLES TO 5 IMPLES.
	92	3			79	?	t8	GRAWELLY SMM): BROWN, MOIST, COAPSE GRAINED SAND. 5 PERCENT COMMILES TO 5 INCHES:
	Ø-124			¥p	36	,	50	SAMP/SILTY SAMD: LIGHT BROWN, MOIST, FINE SPAINED SAMD-
.9.0.	S#		74	ţ	79	4?	n	SILTY SAMP: Dawy gags, Moist, Commissive, Fine GRAIMED SAMD, LARGE CLUMPS.
12.3_							7	SATE: MULTICOLORED, COMPSE GRAINED SAND, SOME FINE GRAINED SAND, GRAMPL TO 1/2 INCHES
	39				_33_		15	SAME: Moist to Het, water at 13 feet, using Muo at 13^{\prime} .
# 18.0	ì							
21.0					51	1		GRAVELLY SAMD: "MULTICOLORED, COARSE GRAINED SAMD, SOME COBALES TO 5 INCHES-
-	9/34			₩	74	3	17	GRAVELLY SAMPLYSTEP ORANGLEY SAMPL. MELTICOLOMBY, MET, COARSE GRAINED SAMD, SYME COMBLES IN \$ INCHES, SOME CLUMP OF DAMY GREY SILTY SAMP, CRESIVE.
25-5							39	

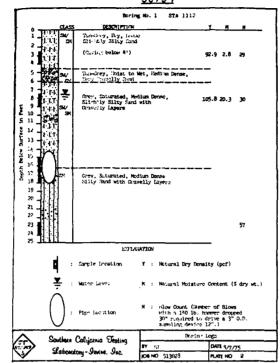
TH84 - 0906

STA 1097+00 R	0
LL PJ -4 -200 N	De
GRANELLY SAMBA 56 FINE-VEDIUM ON	D/SILTY GRA BRAINED SAME
₩ <i>7</i> 5 9	
29	
SILTY GRAVELLY 31 GRAVED SAND. 8 PRET. 80 74 24	LY SAND: M
GRAVELLY SAND. 32 MEDIUM DENSE, up 57 10 communes to 6	B/SILTY GRA , FINE TO N INDIES, PR
GRAVELLY SAND 31 SAND, GRAVEL 77 3	ID: LIGHT 8
GRAVELLY SART 23 GRAVED SARD, 16-5' DEPTH-	ID: WHITE TO
SAMO: PALTIC 2 Feet Boolds 94 3	(COLORED, C DEPRATIS A
GRANELLY SAM: NP 74 10 COLONED, COM	MT/SILTY GR
SAMOY STATEL 31 MULTICOLORED NP 41 7 OCCASIONAL C	L/SILTY SAM
GRAVELLY SAN 7 COLORED , COV NO. SPT AT 33	WID/SILTY GO DARSE GRAINE 13.5 FEET D
w 70 7	
<u> </u>	
SILTY SAND: 21 SAND, COARS CLUMPS THRO	SE CLEAR SA
SAMMY STAVE COLORED. ME NP 31 5 33-40 PERCE	EDITH TO VE

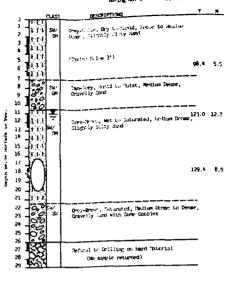
PATALUE ENGINEERING PAYS

7	i	-464 (1976		And the
_}	Ste sperage etc.	Z :	water with the second	: 🖦
1	: in the contract	s promis	Maria 196 A 196 A 196 A	Business
		Street, compared the street, and street, and a street of the street of t		TALL STATE . THE STATE STATE IN THE PERSON
Į.	• • •		N4 9 W 1 S	SAME THE TO PROBE MALES WIND, WHE THERE T
ŧ		*	,	BOOK OF THE BOOK OF THE BUT WELL
1			W.W	And in the street was de trans.
ł		Contract contract in the state of the state	,	
1		e a la company de la compa	14	
5.	• 3	STATE OF THE STATE		THE SECURE WE SHE WAS THE SECURE AND AND
1		**************************************	44	
Ł		STATE OF THE PROPERTY OF THE P		Market, and the mark that the death that the mark that the
Æ			25/2	
7	•	TO SEE SHOOT HE THERE IS NOT HE WAS NOT AT A SECOND TO SECOND AS A SECOND TO SECOND AS A S		THE SALE LINES AND ASSESSED AND ASSESSED.
1			₹	
4		CARCO TRANSPORT TOWARD TO THE A SHAPED CARCO TO SEE SHAPED CARCO	,	
Ŧ	¥		<u>***</u>	
ŀ			3	Note that we have the many one many with
ŧ			3	
1	¥ 1. ;	STATE OF STA	a	SHE THE DESCRIPTION OF THE DAY OF
		பாரு இது இரு இது இது இது இது இது இது இது இது இது இத	•	
	.	THE DATE OF THE PERSON OF THE	• ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	· (我以知道是我的 我 他们们一个时间,我
Į		京将上に関する。下京将上に関する他の大田田 を上で の。第四、江南県 京本地区 (神田 中) 京都県 下上 (田田) 東京 (中) 下午 田田 (日)	<u> </u>	
1		79.950 日本教授 多有物理 (1986年 1996年 1996年 17.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	• • • • • • • • • • • • • • • • • • •	TERM TO THE PROPERTY OF A THE SECTION OF THE SECTIO
₹_	<u></u>			
<u> </u>	<u> </u>		P.77 * 4 4	PREATORITY TO PARE AND STORES AND STORES AND SECURITY OF THE
1		TOTAL THE PROPERTY OF PROPE	3	*** <u>*</u>
1	#P γ 1≤	TOTAL THE THE PROPERTY OF PRINC SHE TURK MALE INC TOP TOTAL THE DREAM THE TURK THEMPS INC.	A.7*	
	MP 31 5	DEMONSTRATE TO THE DESIGNATION OF THE PROPERTY		

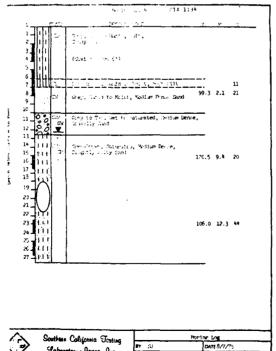
1948 * 177 Terretain


188 to \$12. \$ 21\$. 17\$*** 1\$ 1251 . My 25 \$40. 1251.

- y speciment as the electric sector, sector or the transition of the control of
- A SECTION OF A COMPLETE CONTROL OF THE CONTROL OF T


Profits	-	
	## 1 /2m1	
		r Point Mic Claight 7 Point
Marie P	LANTA MALE TOP MAKE TO SHAPE T	
Write &	JA F NISTO	FORE
10000 0	SOPPE OF BIGH	
4	574 1126-00 TO 578	k, 1197 − 181
Cities in the second	**************************************	O*
		E

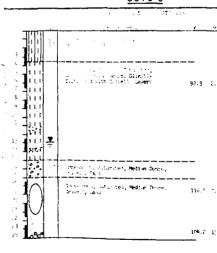
VALUE ENGINEERING



SC 75-2 Boring No. 2 STA 1126

$\overline{}$	0.4. 04. 67.	T	8√:	*- (<i>~</i> -
	Southern California Testing	8Y -:		DATE Q
	Laboratory-Device. Inc.	108 NO	ביף ני	PLATE NO

SC75-4



SY (S)

PLATE NO.

Laboratory - Device, Onc.

SC 75-5

	Southern California Tosting		the ing top
	Stabonatory - Jovine. Inc.	ev 10	DATE
<u>~</u>		IOR NO 1/1 state	PLATE NE

ALUE ENGINEERING PAYS

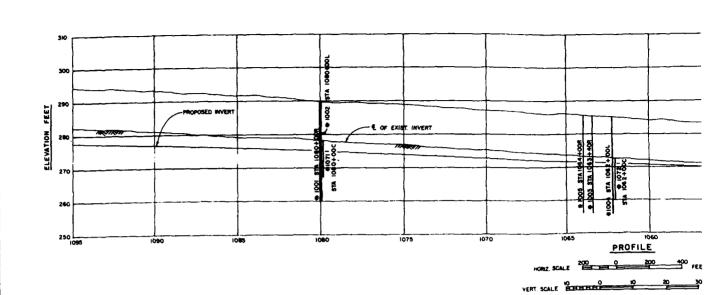
٤	<u> 5C 75-2</u>			
	Borang No. 2 STA 312	:6 Y	ĸ	N
SH	Organization Company of the Company	_		
1	(Ox - 31 # 31)	98.¥ .—	5.5	n
0 3 j	Thus lity, would be litted, Medium Deuse, Grunolly Consi	_		
= 2	developed, Seria Constructed, Colium Domas Milyardy Silvy And		8.9	33
0.000000	Only-Bream, intuner s, festion Dense to Den Gravely land with line dottles	15°.		
73.3	Menural to Emilitary on Hard "Numerical (No sample returned)			100+

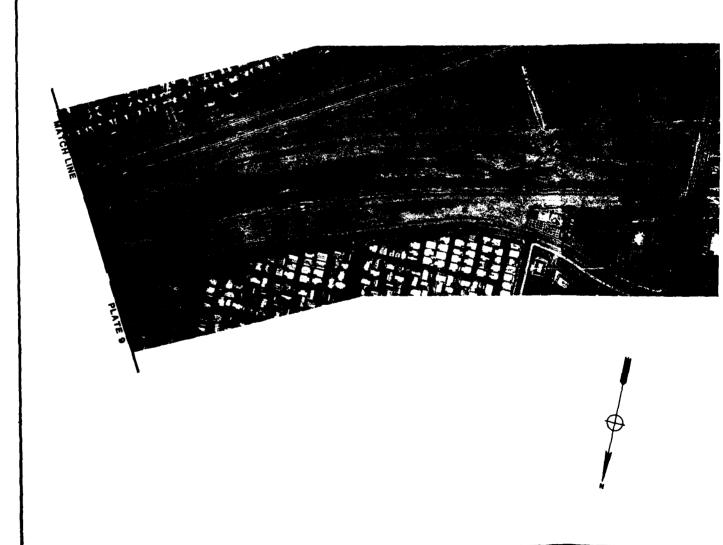
DATE 9/1/1

Southann California Testing

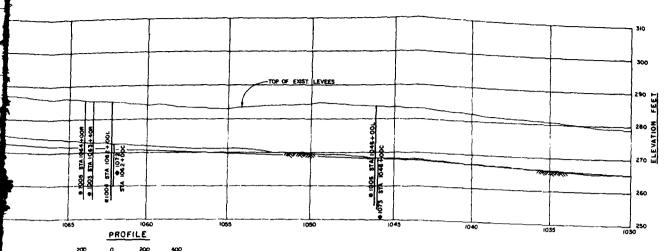
Laboratory - Inne. Inc.

SC 75-5 Electric comment 92.3 2.9 21 10 in, Meddun Sense, 7- 200 April 100 Medical Desire 116.7 7.0 19 104.2 15.6 90 Southern California Testing DATE 8/8/75 E 18 Staboratory - General Proc.

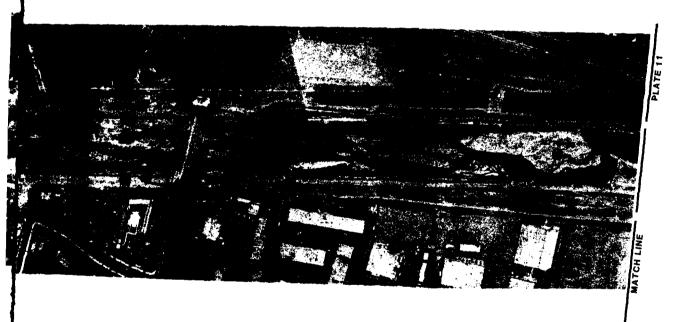

		SC 75-3		
	Buri	ng No. 3	STA 1126	
P CLASS	DESCRIP	TION		
1991	Grey-Milte, Dry to dense, Olightly Cit	Hamid, leogo t Ly Mard	e "Ne Came	_
	(Cavin; Relow 5')			
0.00	Tan-Gray, Hundd to Gravelly Sand	Moist, Medium (Densie,	
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Grey-Treen, Met to: \$11dddy Solty Seed	Saturated, Medi	lum Donse,	
15 - N 19 - O N 20 - O O 21 - O O 22 - O O 23 - O O 24 - O O 25 - O O 26 - O O 27 - O O 28 - O O O 28 - O O O 28 - O O O 28 - O O O O 28 - O O O O O O 28 - O O O O O O O O O O O O O O O O O O	Grey-Invers, Saturational Property Stand With 1	et, Medico Dens Sumo Ocubles	se to Dense,	
24 - 1888	Befund to Brilling	on Hard Sateri	.e.l	
Southern (California Testing			
	DAY - SAVIEC. UNC.	IOS NO. 513		DATE BATAS
		IOENO US	السينا	LATE NO. 4


NOTES:

- I. SEE PLATE 9 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE.


SYMBOL	DESCRIPTIONS		DATE	MARCH
	REVI	IONS		
		U. S. ARMY BNGS LOS AND CORPS OF B	ELES	ICT
S880+60 97:		RIVER MAINSTEM, CALIF ERAL DESIGN MEMORA		
DEAWN SY.		OF INVESTIGATIO	N	
CHICAGO IV.		BY OTHERS		
	STA.1160	+00 TO STA.1095	5+00	
EURANTTED BY:	APPROVED	SHEC. NO. DACWOR-	+	Sheet.
		DISTRICT FILE NO.		1

VALUE ENGINEERING



VALUE ENGINEERING PAYS

HOME SCALE 200 0 200 400 FEET

VERT SCALE BEFERENCE 3 30 FEET

NOTES

- I. SEE PLATE 8 FOR LEGEND AND GENERAL NOTES.
- 2. SEE SUBSECUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

	 			├
SYMBOL	 MICHITONS		DATE	APPROV
	 REVIS	IONS		
		U. S. ARMY ENGINE LOS ANGE CORPS OF ENG	LES	CT .
DESIGNED BY:	SANTA ANA P PHASE II GEN	IVER MAINSTEM, CALIFO ERAL DESIGN MEMORANO	RNIA UM	
DEAWN BY.	PLA	N AND PROFILE		
08020 3%	STA.1095-	+00 TO STA.1030+	00	
PLANATTED BY:	 DATE APPROVED	SPEC. NO. DACWOF		1.5
		DISTRICT FILE NO.		l

TH84-1001

001		\$	TA 109	0+00 R			EL · 290t
1.06	PIC;	u	PI	4	-200	*	DESCRIPTION
							GRANELLY SAND/SILTY GRANELLY SAND: LIGHT BADGE, MOIST, FINE TO MEDIUM GRAINED SAND, GRANEL TO 2 INCHES-
	2		182	n .	1.		
							SAME: MEDIUM BADIM, FINE TO COARSE GRAINED SAND, FEM CORBLES TO 6 INCHES, NO SPT AT 3-5 FEET DUE TO ROCK-
SWSH				72	7		
	_						SAND/SILTY SAND: SAME AS ABOVE, NO SPT AT 6.5 FEET DUE TO ROCK-
	3		₽	88	8		
						24	GRAVELLY SAND: MULTICOLORED, WHITE, MOIST, FINE TO MEDIUM GRAINED SAND.
SM	2			83			
-							
				70	,	26	
sc		36	14	78	44		GRAVELLY FLAYEY SAND: MEDIUM BROWN, MEDIUM DEMSE, MEDIUM GRAINED SAND, SLIGHT TO MODERATE PLASTICITY-
ÇP				46	3		SANDY GRAYFL: MULTICOLORED SAND GRAIMS, COARSE GRAIMED SAND, CORRLES TO 8 INCHES, 12" x 8" BOULDER, NO SPT AT 15-5 PEET DUE TO ROCK-
PZ/WZ			NP	77_			GRAFELLY SAND/SILTY GRAFELLY SAND: MEDIUM BROWN TO MULTI- COLORED, MEDIUM TO COARSE GRAINED SAND, GRAFEL TO 1", COMBLES TO 9 INCHES, AT 23-5 PEET TO 24 PEET.
						37	Cumiles 10 9 Inches, At 23-3 Peer 10 (4 Peer-
			Ψ	68	9		
39				56	3		GRAVELLY SAMD: MULTICOLORED, MEDIUM TO COMPRE GRAINED SAMD COMMILES TO 4 INCHES, NO SPT AT 24-5 FEET.
							SAMOY SILT: DANK BROWN TO DANK GREY, STIFF, SOME MEDIUM GRAINED SAMO.
_						14	
٦.	29	45	12	93	57		
	SM/SPI	2	106 RC LL 2 SM/SH 3 SM 2 SC 36 SP	106 PK LL P1 2 MP SM/SP1 3 PP SM 2 SC 36 14 SP SM/SP1 4P	2 NP 71 SM/SH P 88 SM 2 83 FP 86 SM 2 83 79 SC 36 19 78 CP 96 SM/SH P 77 40 68	106 MC LL P1 -4 -200 2 NP 71 7 3 P 88 8 SN 2 83 4 79 3 SC 36 14 78 49 SP 46 3 SM/SH NP 77 1	106 MC LL P1 -4 -200 N 2 NP 71 7 3 NP 88 8 SN 2 83 4 24 SN 2 83 4 26 79 5 SC 36 14 78 44 46 3 SN/SH NP 77 1 40 68 9 37 SP 56 3

TT84-1071

INVERT

TT84-10	וע		S	A 1080	0+00 C			9. 278±
DEPTH	L06	AC	ш	ΡĮ	4	-200	H	[®] ESCRIPTION
1:0	51		_		65			GRAVELLY SAID: TROOK, DAMP, MEDIUM DENS 2 INCHES, OCCASIONAL CORBLES TO 12 INCHE GRAINED SAID.
¥4.5.					_1_			SAME: BROWN, NET, MEDIUM DENSE, FON COR COARSE SAMD, GRAVEL TO 3 INCHES-
	ф	_			80	0_		SME: BROWN, SATURATED, LOOSE TO MEDIUM CONNESS GRAINED SAMO, GRAVEL TO 2 INCHES, CORRLES, MATTER AT \$1.5 FEET.
11-5		_				<u> </u>		SAME: BROWN, SATURATED, MEDIUM DENSE, COMBLES TO 17 INCMES, CAVING AT 11-5 FE

TH84-1004

TH 8 4-11	104		STA	1062+0	Bι			FL. 285±
DEPTH	106	MC.	u	PĮ	4	-200	4	^D ESCRIPTION
	SP	4		Ψ	75	17		SILTY GRAVELLY SAND: LIGHT TO DARK BROWN, MOIST, FINE GRAINED SAND, GRAVEL TO 3 INCHES, SOME COBALES TO 5 INCHES.
3.0								
	5H/5M	2		۳	95	5	16	SAND/SILTY SAMD: LIGHT GROWN, MOIST, FINE TO COARSE GRAINED SAMD, GRAVEL TO 1-1/2 INCHES, SOME COMPLES TO 5 INCHES.
5.0								
	SP/SH			₩	75	5		GRAFELTY SAND/SILTY GRAFELTY SAND: LIGHT BROWN, MOIST, FINE TO COMPSE GRAIN SAND, GRAMEL TO 1-1/2 INCHES SOME COMPSES TO 3 INCHES, USING MUD AT 12 FEET DUE TO CAVING.
					-			
							15	
12.0						·		
							?6	SAME: MULTICOLORED, MOIST, FINE TO COARSE GRAINED SAMD, GRAVEL TO 2-1/2 INCHES, SOME CORBLES-
	SW/59			¥P	79	ş		
							373	
13.2								
	6P							SAMDY GRAVEL: MULTICOLORED, HOIST, MARSE GRAINED SAND,
	a.				45	2		GRAVEL TO 2-1/2 INCHES, SOME COMPLES TO 8 INCHES, NO SPT AT 13-5 FEET.
21.2_								
	SMVSM			Ψ	97	10	33	SAND/SILTY SAND: LIGHT BROWN, MOIST, SOME COARSE GRAINED SAND BUT MOSTLY FINE GRAINED SAND, FEW GRAVEL-
24.0.								
								CLAYFY SAND: LIGHT BROWN, MOIST, VERY STIFF TO MAPD, COMMISE TO FINE GRAINED SAND, OCCASIONAL GRAVEL, FBY CLIMPS OF LIGHT TO DAMY GOEY SILT: WET, STIFF, ORNESIVE.
	SC	_	50	22	95	41_		
30.0			42	20	93	40		

TH84-1003

Tr84-100	13		31	TA 1963	5+45 R			EL. 2952
95P14	<u>(</u> 16	*(Ų,	PĮ	-4	-200	¥	DESCRIPTION
• • •	c.	3	- - -		30	4	37	GRAVELLY SANT: LIGHT BROWN, WITH SOM ICLES, MOIST, GRAVEL, FIME TO COARSE
3.3	> ⁴	•		,	95	วก	ą	SILTY CAND. MEDIUM BROWN TO BLACK, M MENSE, SUME PLASTICITY, HENJUM GRAINE
9.0							18	
322					73	2	24	GRAVELLY SMID: MULTICOLORED, COMPSE DRAVEL TO 2-1/2 INCHES, FEW CLAYEY CL
							13	
W, 160								SAMD: MEDIUM TO FINE GRAIMED SAND-
	20				94	4		
							50	
					91	4	41	SAME: MEDIUM TO COARSE GRAINED SAND-
24:0								
25.5	50				63	29		CLAYEY SMIDY GRAVEL: MULTICOLORED. C
27-0	SM			φ - -	89	13		SILTY SAND: MULTICOLORED, COARSE GRA 2-1/2 INDIES.
	GP.				31	1	27	SAMDY GRAVEL: MULTICOLORED, CHARSE & TO R INCHES
30-Q								

ALUE ENGINEERING PAYS

TT84-1071

	SI	A 106)+00 C			£L · 2782
kr.	11	PI		-200	1	PESCHIPTION
1			65			GRAFELLY SAND: TROWN, DAMP, MEDIUM DENSE, GRAFEL TO 2 INCHES, OCCASIONAL COMBLES TO 12 INCHES, FINE TO COARSE
Ī						GRAINED S. MO-
						SAME: ARGMI, MET, MEDIUM DENSE, FEM CORRLES, MEDIUM TO COARSE SAND, GRAVEL TO \$ INCHES-
						SAME: ROOM, SATURATED, LOOSE TO HEDLUM DENSE, HEDLUM TO COMMISE GRAINED SAND, GRAVEL TO ? INCHES, OCCASIONAL COMMLES, MATER AT 4.5 FEET-
_			80_			
•						
·-						SAME: BROWN, SATURATED, HEDIUM DENSE, COARSE GRAINED SAME COBBLES TO 17 INDMES, CAPING AT 11-5 PEET-
			69			

TH84-1003

		43 5			E. 2851					
ŲĻ	ΡĮ	7	-200	4	PESCRIPTION					
		si.		ņ	PAST 1 TANT 1 19HT SHOW, WITH SOME MULTICOLORED PARTY 10ST, THIST, THAVEL FIME TO COARSE PLAINED SHOW					
	•	25)7	1	C. To TAN'T Sent HE BOTHER TO REACH, MOIST, LUCKER TO HERDLER TRACE OTHER ASSISTED, HERDLER GRANET CHIED.					
				11						
		_		24	#AUS Y CHIT MULTICOLINGS, COMPSE GRAINING SAND, FRA SPANSE TO TELL THE SERVICE AND CLARES CLIPPES.					
		n	?	15						
					"AN" MEDI AF TO ETHE STATIMED SAND.					
		74	ů							
				50						
		91	•	41	SAME MEDIUM TO COMPSE SHAIMED SAMEN					
27	3	63	29		TLAYEY SWOY GRAVEL MAINTOLORED, COARSE GRAINED, SOME					
	*	89	15		STAIL POSKETS OF CLAY. SILTY SMIP. MULTICOLOMED. COMPSE GRAIMED SMIP, GRAVEL TO 2-1/2. INCHES.					
		Ŋ	1	27	SAMITY GRANTS - MALTICOLORED, COARSE GRAINED SAMO, COMBLES TO 5 INDES.					
		27 3	9) 75 76 91 27 3 53 40 89	* 25 27 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	91					

TH84-1002

THE4-1(002		\$1	4 1080	₩6G L			FL . 290t
DEPTH	L/16	MC	ц	rl	4	-200	11	DESCRIPTION
3.0	SM/SM			φ	89	6		SMOUSILTY SMID: LIGHT BROWN, MOIST, LODGE, COMESE TO FINE GRAINED SAND, GRAVEL TO 1-1/2 INCHES-
		_					10	SAME: FINE GRAINED SAND, FEN GRAMEL TO 1 INCHES-
		2		160	97	7		
	SP/SH						28	
12.0				₩°	80	,		GRACILY SWID/SILTY FRANCLY CAME: SWE, FIRE TO COMPSE GRALHED SWO, GRAVEL TO $^{\circ}$ INDRES, SOPE COBBLES TO $^{\circ}$.
							13	SAND/SILTY SAND: TARK BRIDGE, HOIST TO WET, COARSE GRAINE SAND, GRAVEL TO 2-1/2 INCHES, BESAN LISTES HUD AT 15 FEET DUF. TO CAPING.
	2H/ <h< td=""><td></td><td></td><td>Ψ</td><td>86</td><td>5</td><td></td><td></td></h<>			Ψ	86	5		
18.0							20	
						_	19	GRAVELLY SHIP: DARK BROWN, MOIST TO WET, COARSE GRAINED SAND, GRAVEL TO 2-1/2 INCHES
	50				7	4		
							4	
24-0								STUTY SWID. GREY, MENUM NEWS, MENUM TO CHAPSE GRAINET
27.8	SM		711	6	95	ذر	śū	SAND, CLAYEY CLUMPS-
<u> </u>	50/24				95	5	35	SAND/SILTY SATD: FIREY, DENSE, MEDIUM TO COARSE SPAINED SAND, LARGER CLAYEY CLUMPS.
30.5				WD	73	1.0		PRAYELLY SAND/SILTY GRAVELLY SAMP: MULTICOLORED, MOIST, COARSE GRAINED SAND, SOME CLAYEY CLUMPS, GRAVEL TO 3/4".

NOTES

- I SEE PLATE 10 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

			l	L						
SYMBOL	passes trovs		DATE	APPROVAL						
*****	REVISE	ONS								
		U. S. ARMY ENGINE LOS ANGE CORPS OF ENG	LES	7						
DESIGNED BY:	SANTA ANA R PHASE II GENE	IVER MAINSTEM, CALIFO RAL DESIGN MEMORAND	RNIA							
DRAWN ST.	LOGS 0	LOGS OF INVESTIGATONS								
	CORP	CORPS OF ENGINEERS								
CHECKING IN:	STA.1080-	STA.1080+00 TO STA.1062+00								
SUBMITTED BY:	DATE APPROVED	SPEC. NO. DACW 09-	. +	SHEET						
		DISTRICT FILE NO								
158										

VALUE ENGINEERING P

TH84-1005

INVE	ERT							<u>64 1072</u>			
T184-10	FTSN-1072 STA 1062+00 C				2+00 C		€. 277±				
DEPTH	L06	MC	ш	Pl	4	-200	N	DESCRIPTION			
					90	1		SAMD: LIGHT BROWN, DRY, MEDIUM TO COMPSE GRAINED SAND, LOOSE-			
M5 -0					78	0		GRAVELLY SAMD: MIROWH, DAMP, MEDIUM DERISE TO DENSE-			
	3 P				74	0		SAPE: SATURATED, 10 PERCENT CORRLES TO 6", MATER AT 5.0".			
					76	0		SAME: MEDIUM TO COMPSE GRAINED SAMO, 10 MEMCENT COMMLES AT 12 HOGES, BOULTERS AT 13 FEET, POSSIBLE TOE STORES.			
13.0					77						

TH84-1006

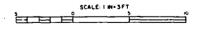
236		57	1946	5+00 C			Ft. 2942
F 0/6	MC.	Li	PJ	-4	-?90	*	JESCHIPTION
50		35	!1	94	5.		CLAYEY SAMD, ROOM, MOIST, LODGE, FOR GRAVEL, FINE GRAINED SAME.
SH/S#	3		Ψ	ðú	,		SAND/SILTY SAND: BROWN, HOIST, DENSE, GRAVEL TO 3 INCHES RINE GRAINED SAND.
SW/SC	,	23	f	59	15	48	SILTY GRAFILLY SAMPLEASY OF ACTULY SAMPL. LIGHT TO DARK GREY, "GUST, GENES, GRAMEL TO T HOWES, CORRUES TO \$ INCHES PERISAL AT \$1.5 PERI OR TO ROOMS.
						139	SAND: MULTICOLORED, MOIST, FEN GRAVEL, FINE GRAINED SAND.
æ	1			11_		35	GP RYELLY SAMD: SAME AS ADBIVE, SRAYEL TO ? INCHES, SOME COMPALES TO S INCHES.
				71	3		
Sw				59	;	10	SAME: MULTICOLOMED, MOIST, LONSE, COMPSE GRAINED SAME, GRAVEL TO 2 INCHES, 10 PERCENT COBBLES
Þ				52	9	6	SAME: 20 PERCENT COMMLES TO 10 INCHES, NO SPT AT 20.5'.
مار√رة.			No.	55	5		GRAFTLY SAMT/FILTY SPANELLY SAMT: PREYECTLORED, MOIST, COURSE GRAINED SAMD, GRAFEL TO 2 INCHES, COMPLEX TO
CH/SH			10	79	5	য়	
SH				n	4	v 5	GPANELY SMID: MALTICOLONED, MOIST, COMPAR GRANMED SMID, GRANEL TO 2 (MORES, COMPARES TO 10 IMPORES.
	50 SH/Sh SH/Sh SH/Sh SH/Sh SH/Sh Sh S	106 NC 50 50 50 50 50 50 50 50 50 50 50 50 50	106 PC 1: 50 35 SM/SR 3 3M/SC 7 23 SM 3 106 MC 1: P3 50 35 11 SM/SM 3 4P 3M/SC 7 23 5 SM 59 79 79/SM 40 GM/SM 10	106 MC 1: P3 -4 50	106 PC 1: PJ -4 -200 50 35 11 94 72 SM/SP 3 P 39 7 DM/SC 7 23 5 59 15 00 1 1 1 3 SM 59 7 79 52 9 CM/SP 40 79 55 SM/SP 40 79 5	106 MC 1: P3 -4 -200 N 50 35 11 94 27 SM/SM 3	

TH 84 -1(005		2	TA 1046	+00 R			EL - 2841
DEPTH	L06	MC	ш	Pţ	4	-200	Ķ	PESCRIPTION
	SW/SM	3		*	97	7		SAND/SILTY SAND: MEDIUM BROWN, MOS MEDIUM GRAINED SAND, FON GRANFL TO 3
3.0							49	SILTY SAMD: DANK GREY, MOIST, DENSE 1-1/2 INCHES, SLIGHT PLASTICITY, REP
	24	2			91			
9-0		5		100	92	15	268	
	α	19	26	16	97	n	379	SANDY CLAY: DARK GREY, MEDIUM BROWN IN ZONES), MOIST, HARD, MODERATE PLA
12.0	SH/SH	5		Ю	97	11	?9	SAMP/SILTY SAMD: (.IGHT TO MEDIUM BA DENSE, FINE TO MEDIUM GRAINED SAMD-
07.S	Ç#			•	98	25	13	SILIY SAMIT: GREY TO BROWN, MEDIUM TO SAMO, MATER AT 17.5 PEET.
18-0	SH/St			ND.	79	,	11	GRAVELLY SAND/SILTY GRAVELLY SAND COLORED, LOOSE, COARSE GRAINED SAND 2 INCHES.
1.0	34		¥C.	9	34	25	9	GRAVELLY SILTY SAND: GREYISH BROWN, LOOKE, MEDIUM TO COARSE GRAINED MIZE
4.3							148	GRAVELLY SHID/SILTY GRAVELLY SAND: MULTICOLORED SAND, DENSE, MEDIUM TO FEN CORRUES, SOME LANGE SILTY CLUMPS
	in sch	_		ND.	81	10_		
				Ψρ.	31	5	36	
0.C								

INV	RT							
T 18 4-19)73		\$1	a 1048	5 + 00 C			EL - 258:
DEPTH	L06	М.		P)	7	-200	4	DESCRIPTION
					68	0		GRAVELLY SAND: "NULTICOLORED, DAY, GRAINED SAND, GRAVEL TO 3 INCHES, 5
6 .3								SAMD: MULTICOLORED, MOIST TO HET, F GRAMEL TO I INCH-
	50				74	1		SRAVELLY SAND: SAME AS ABOVE, 15 PE 8 INCHES, WATER AT 5-0 FEET.
					59	,		SAME: COBBLES TO 10 INCHES-
14.D	٠		i i		99	 63		SARTY SILT: GREV, MIST TO WET, COM

LUE ENGINEERING PAYS

TH84-1005

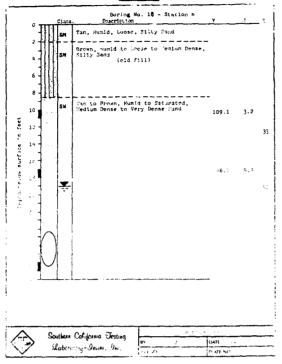

SŦ	A 10%	+00 R			EL - 2841
u	PI	4	-200	H	RESCRIPTION
	*	90	,		SMEZ/SILTY SAND: PEDIUM BROWN, MOIST, DBMSE, FINE TO HETIUM GRAINED SAND, FINE TRANSIT, TO 3/A INCHES.
				49	SILTY SMM: DARK GREY, MOIST, DENSE, FEW GRAME, TO 1-1-2 INDES, SLIGHT PLASTICITY, REPUSAL AT 7-0 PEET.
	HΨ	9	_20_		
	NP	Q	15	259	
25	15	97	n	39	SAMTY DAYK GREY, MEDIUM BROWN, (2 DISTINCT COLORS IN ZONES), MOIST, MAND, MIDERATE PLASTICITY.
	NP	97	1:	*4	CMPICELTY SMID: LIGHT TO REDIUM BROWN OR TAN, MEDIUM DENCE, FINE TO MEDIUM GRAINED SAND.
	•	98	75	ij	SUPPLIANT GREY TO BROWN, MEDIUM DENSE, FINE GRAINED CARD, MATER AT 17.5 FEET.
	MD.	7g	•	Į:	THE COUNTY TO THE PROPERTY SAID MEDIUM BROWNING THE COUNTY LOSSE. COARSE GRAINED SAND AND GRAVEL TO 1 14C-65.
·	q	3a	.5	ā	WANTER SELTY SAND. SREVISH BROWN, MODERATE PLASTICITY, LOTE, MEDITAL TO COARSE GRAINED HILTICOL/RED SAND.
				0ي د	GAMPLY SWAYSILTY GRAWFILT SAMP. GREYISH BROWN SILT. **QLTISTLOWER SAMD. DENSE, MEDIUM TO COMPSE GRAINED SAMP. **EM TRALES, SOME LARGE SILTY CLUMPS, REPIREL AT 75.0"
	HP.	31	13		
	•	31	5	¥.	

TT84-1073

T# 1046	HGC (€L. 268±
0!	7	-50c	*	DESCRIPTION
	58	2		FASCUY CANT: MULTICOLORED, DWY. LOOSE, FINE TO COARSE WAINET SAND. SPAREL TO 3 INCHES, 5 PENCENT COMMES.
				JAN - PULTICOLORED, HOLST TO HET, FINE GRAINED SAND, JRANEL TO , INCH.
	74	1		GRAFILY SAME. SAME AS ABOVE, 15 PERCENT COMBLES AT 2 INCHES, HATER AT \$10 FEET.
	50	,		SATE TORRUES TO 10 THOMES
:	24	<u>-</u>		(MPY 7) THEY, WOLST POWET, COMESTIVE, FINE GRAINED 1400
		. 58 ./a . 50	91 -4 -200 68 7 74 1	0! ~ -20° × 68° 2

NOTES

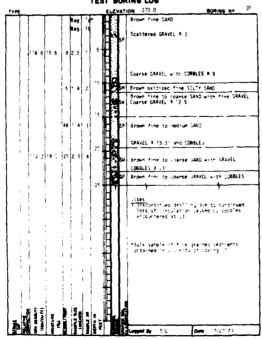
- I SEE PLATE 10 FOR LOCATION OF TEST HOLES AND TEST TRENCHES.
- 2 SEE PLATE 8 A FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTEO AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

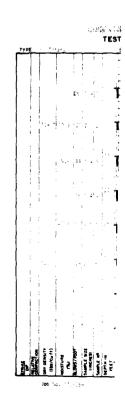


SYMBOL	DESCRIPTIONS		DATE	APPROVA						
	REVIS	IONS								
		U. S. ARMY ENGIN LOS ANG CORPS OF EN	ELES	icī						
DRINGHO BY. SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM										
BRAWN BY,	LOGS OF INVESTIGATIONS									
	CORPS	S OF ENGINEERS								
CHROSED IN										
ł	STA.1062	STA.1062+00 TO STA.1046+00								
SUBMITTED BY:	DATE APPROVED	SPEC. NO. BACW 09-	+	SHEET						
		DISTRICT PILE NO.		1						

SAFETY PAYS

PLATE IOB

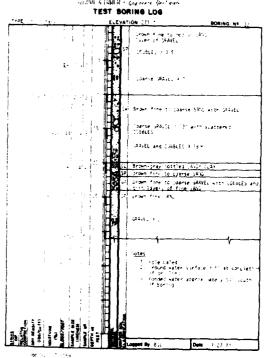

SCT75-18



Soutien Conjerus.

MT70-31

MARRE & TABER - Conners Genlower TEST BORING LOG

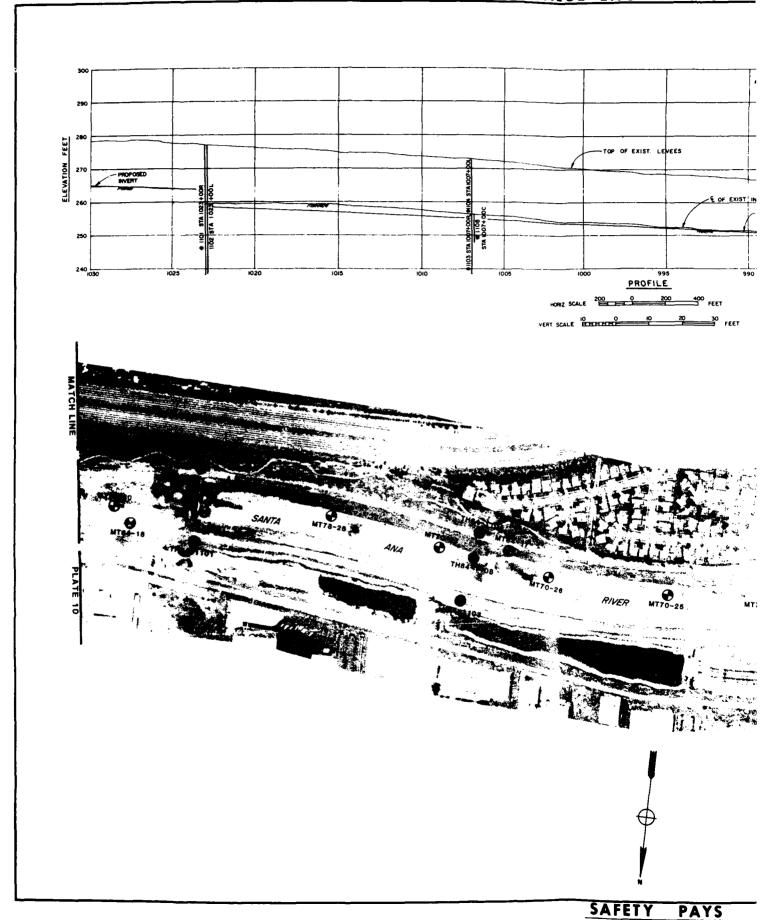


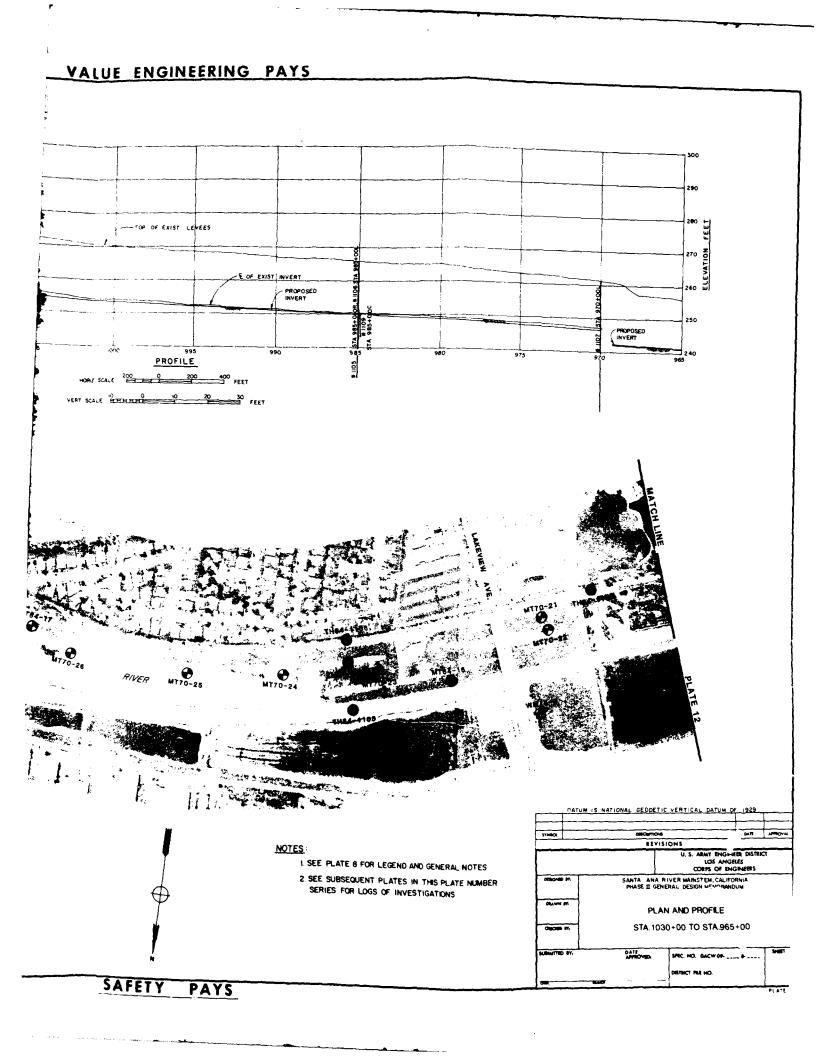
SCT75-19 Boring No 19 111 14 dam, Jeng, Bollmito Monit, Stiple Stiff to Litte, Stapey List. 110.4 15.1 Solve on, and you story long of the composition of 26 Southern California Testina Dob maryaly, w. Jan

MT70-32

Wind DE & TURER . Gag orers for over

MT64-19


_	F	-	=		-	_	1=	-	-	6.1. 270.71 BORING NO. 10 Elevation 279.46 Completed - 2.17.6.
,	,,		_:			7	ľ			Brown fine to course sand with scattered gravel.
•				Ť	1					
2	70.	+		-	+		20	 - -		Brown fine to course sand with fine gravel, and scattered large gravel.
26 E				+	+		- (+	Brown fine to course sand and fine gravel.
ien it levation)		1	_	ĺ	t	-	-3	1		Intorio ice onekets of From Sand, sandy and silty cirys and blad sandy and silty cirys.
25	, 	+		\vdash	+	-{	ς γ	ŀ.		drown cravelly charge said.
25*	\perp						e ()			Brown fine to course sand with gravel.
•										Boring Incated on tee of slope approx. Act from top of south unprotected benk. Ground water was encountered at elev. 216 in the hole.
										Stagmant unter 350 away at cley. 276. 100 cather flux and was needed. Slight caving show ground sater plus severe caving from 23 to 29 feet. Slow and difficult drilling.
	Dry density		· -	Signal Penetropion (Disastring)	Je 1176	(meher)	Simp + N		Unified soil	
	20 00	Mo.St. are	Ċ	1	١٤	ξį	ę.		10.00	


NOTES:

- 1. SEE PLATE TO FOR TEST SITE LOCATIONS.
- 2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE.

		 -	 -	├								
SYMBOL	DESCRIPTIONS		DATE	APPROVAL								
	REVISI	ONS										
		U. S. ARMY ENGINE LOS ANGE CORPS OF ENC	LES	ci -								
DESIGNED SY.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM											
DEAWN SY.	LOGS OF INVESTIGATION											
OSCORO EV	8	Y OTHERS										
	STA.1095+00 TO STA.1030+00											
SUBMITTED BY:	APPROVED.	SPEC. NO. DACWOF	·	SHEET								
- TE	er ———	DISTRICT PLE NO.										

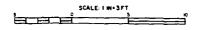
VALUE ENGINEERING PA

A-11	n		ST	A 1023	•00 t			EL 2771	FHB4-1102			STA 1023-00 L					
EPTH 11	L06	MC		PI	-	-200		DESCRIPTION	DEPTH	L06	RC	ш	Pl	•	-200	•	
_								SILTY SARD: BROOM TO DARK BROOM, REDIUM TO FINE GRAINED SARD, SORE CLAYEY CLIPPS, OCCASIONAL GRANEL TO 1 INCH. 30 BLOSS FOR 5 INCAS PRON 1.0 PRET TO 1.5 PRET		SP/GH		_	Ψ	53	8		33
		5		*	90	15			3.0								v1, * v
							22									:*	N. 4
											11		<u>#</u>	90_	_15_		arth.
	54						34	SARY: DANK BARRYISH SAREN, MGIST, FINE GRAINED SAND, SARE CLAYEY CLAPPS:		S #						ζ,	
		12		IP	94	72					_		r	Ĭ.	_::_		
							13				11		ę	98	₹;	×	
							1 5		12.0								Sant.
							כי										>447
<u> </u>							159	GRANFILY SMIP: LIGHT BROWN AND MILITICOLOMPD, WOIST, FINE GRAINED SAND, OCCASIONAL GRAVEL AND COMMLET TO 9 INCHES, REPUSAL AT 16 FEET DUF TO A COMMLE-		SP/SH			₩	97	•	٤	
	50				53	,			¥18.0								
							34			99				¥	•	1.6	7.14
<u>a_</u>									21.0								
								SAMPATETY SAMP, Regy and MILTICOLORER, CHARSE GRAIMED SAMD-		34	19	46	:	97	57	•	
	3P/S#			₩	97	6			29.0								
							58									-), 44 0
										σ		<u>. 3</u> .		25	55		
							athe.					Ħ		99	-e	•	
_	24-24			•					36:C_								_
							æ	SWITH SIJT BROWN TO REDDISH BROWN, MY GRAWEL, VERY STIFF TO WARD, SOME CONSSION-		۹.		4.	÷	99	75		Ţ. 1**
	٩		33	;	39	*4			33.0							٠	_
							#E			24		?~	:	59	Ţŧ		;; •
									<u>35.1</u>							•	3 M
	3*	ĸ		•	130	25	27	STUTY SAME. REPORT TO REPORTSM BROWN, MEDITIM DENSE-		æ.2•			*	53	;		31 M 37 M 3.E
									39-0				 -				

ALUE ENGINEERING PAYS

Ł					<u>T</u>	84-1102
ľ	STA	10234	00 L			£L · 2772
I	u	PI	4	-200	N	DESCRIPTION
		IP	53	8	-	SANDY GRAVEL/SILTY SANDY GRAVEL. THOSEN, MOIST, GRAVEL TO 2-1/2 INCHES, FINE GRAINED SAND, FEW COMBLES.
	_				23	$\tau_{\rm LLTY}$ SAMI): Dags brown, moist, gravel to 1-1/2 inches, fine grained samp, some gravel.
Ł		·	_90_	_13		
ľ					37	SAFE: BROWN-
		MP.	<u>æ</u>	15		
			98	31	29	SAME: DANK GREY-
	;				25	SAND/SILTY SAND: LIGHT BROWN, MDIST, SOME CLUMPS OF STIFF SANDY SILT, MATER AT 18 PEET, ADDING MUD AT 18 PEET.
6		₩	97	5		
•					42	
•			22		té	GRAVELLY SANTY ROOM, MOIST, FINE GRAINED SAND, GRAVEL TO 2-1 7 INCHES, CORRLES TO 5 INCHES.
 •	35	9	97	52	-	SILTY SAMP. REBOISH DAWK BROWN, MOIST, COMESIVE, REPUSAL AT 21.5 FEET DUE TO ROOK.
					,	SARDY Z.MY - REDDISH DARK BROWN, MOIST, CONESIVE-
	29_	3	_3_	_55_		
	32	14	99	58	,	
-	+5	15	99	75	4	CARRY SANTY STOTE: REDDISH DARK BROWN, MOIST, CONESTVE
	n.	*	53	1.4		SILTY TRAVELY SANT. PEDDISH BROWN, MOIST, SOME CONESION, DRAVEL TO S INCHES, COMBLES TO B INCHES.
		ΝP	53	:	ı	SPANELY SAND/SILTY GRAWELLY SAND: MULTICOLINED, MOIST, SPANEL 79 % INCHES, COBMICS TO 9 INCHES, REFUSAL AT 35.0" CIE TO RICK-

Part .


AVE:

TH84-1103

M84-1103				TA 100	/+00 R		EL. 273±			
DEPTH	L06	MC	u	Pi	4	-200	H	DESCRIPTION .		
								GRAPELLY SAND/SILTY GRAVELLY SAND: Brown TO DANK SACH, MOIST, FINE TO MEDIUM GRAINED SAND, FOR GRAVEL TO 1-1/2 INCHES		
	SW/SM	9_		₩.	. 83					
6.0				WP	83	7	24R	SAID/SILTY SAID: SAME AS ABOVE, BLACK STREAKS THROUGHOUS REPUSAL AT 0.0 FEET-		
	SPI	10		HP	93	25	37	SILTY SMID: DANK GREY TO BLACK, MOIST, DENSE, SLIGHT PLASTICITY, FIME TO HEDILPI GRAINLD SAND.		
0.0	SN/SM	5		11	90	6	19R	SAMD/SILITY SAMD: BROWN, MEDIUM TO COMPSE GRAINED SAMD, FEW GRAVEL TO 3/9 INCHES, REPUSAL AT 10:0 FEST.		
2.0								LEN ON WEST 10 314 INChES, MELOZIE W. TO-0 LEST-		
4.5	29				59	2	21	GRAVELLY SMID: BROWN, DAMP, TOMSE, GRAVEL TO 1-1/2", FI TO MEDIUM GRAIMED SAMD, REFUSAL AT 13-0 FREET-		
8.0	SP/SM	4		Mb.	58	5	44	GRAVELLY SMMO/SILTY GRAVELLY SMM: MALTICHLONED, MEDIUM TO COMNES GRAVINED SAMD, GRAVEL TO 7 INCHES, LARGE BROWN, CLAYEY CLUMPS AT 17 PEET.		
					. 83	9_	22	GRAVELLY SAND: MALTICOLORED AND 379MM, MEDIUM TO COARSE GRAINED SAND, GRAVEL TO 7 INDIES.		
	SP							SAND: BROWN AND GREY, DRISE, MEDIUM GRAINED SAND-		
							42			
		_			_89					
5-0					58	3_		SAME: GREY AND MULTICOLORED, DIENSE, FINE TO MEDIUM GRAINED SAND-		
2:4	SM/SM	_		Ψp	85	ς ,	29R	GRAVELLY SAMPISTICTY GRAVELLY SAND: MULTICOLORED, CONFISE GRAINED SAND, GRAVEL TO 2 INDIES, REFUSAL AT 25-3 FEET.		
7.0							a	SMIN: MATICOLORED, COMPSE GRAINED SAND, SRAVEL TO ? INCHES, REPUSAL AT 27-5 DUE TO POCK-		
	39				91	4		The Lay no traction of the late of the lat		
.5							17			
5-0	99/59	31		φ	95	5		SAND/SILTY SAND: BROWN, MEDIUM TO COMPSE GRAINED SAND, DEMSE-		
5-Q .	SW/S#			₩	94	9	22	SAMB/SILTY SAND: MULTICOLORED, FEW SRAVEL TO I INCH-		

NOTES.

- I. SEE PLATE II FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE 84 FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTEO AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

										
SYMBOL	DESCRIPTIONS	DATE	APPROVAL							
	REVISIONS									
	LOS	NGINEER DISTR ANGELES F BNGINEERS	icī							
SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE IZ GENERAL DESIGN MEMORANDUM										
98AWN 97.	LOGS OF INVESTIGATI	IONS								
	CORPS OF ENGINEER	RS								
CONCRED PIN	STA.1023+00 TO STA.10	007+00								
SUBMITTED BY:	DATE APPROVED. SHEC. NO. DACWO	+ +	\$1400							
	DISTRICT FILE NO.		1							
	·		1							

SAFETY PAYS

PLATE HA

<u>4-1108</u>	INVERT										
£. 2562			•00 C	TH84-1108							
DESCRIPTION	*	-200	4	Pi	ш	ĸ	L96	DEPTH			
GRAVELLY SAID: LIGHT BROWN, LOX SAID, GRAVEL TO 2 INCHES, SOME (OF HOLE-	5	3	56			_	29				
								3.0			
SAMEN GRAVEL: PLATICOLOMED, MO: SAMED, GRAVEL TO 2-1/7 INCHES, SI	17	1	47				5P				
								6.0			
PRANELLY SAND: MULTICOLONED, M COMBLES, NEPUSAL AT 8-5 FEET DU		4	55				8				
	28							8.5			

TH84-II05

MC	ш				fl. 266t			
		P1	4	-2110	*	DESCRIPTION		
t		₩	97	15		SILTY SAMP: BROW, DRY TO MOIST, LOOSE TO MEDIUM DENSE, PEDIUM TO COMPSE SHAINED SAMD, GRAVEL TO 3 INCHES, FEW CORRLES.		
		¥P	972	8	229	SAMO/SILTY SAMO: Regain, MOIST, MEDIUM TO COMESE GRAINED SAMO, FBH GRAMEL TO 3 INCH, FBH COMMLES, MERUSAL AT 4.0 FEET.		
		*	91	15	42	SILTY SAND: GREENISH BROWN, MOIST, DENSE, MEDIUM TO COMES GRAINED SAND, LENSES OF DANK GREY SILT, COMESTVE-		
			37	2	42	SMID: I JOHT BROWN, HOIST, MEDIUM TO COMPSE GRAINED SAND, FRY COMPLES.		
		MР	17	12	24	GRAVELLY SAND/STILLY FRANKLLY SAND: LIGHT MICHAY, MOIST, MEDIUM DEN Y YUM TO CHORSE GRAINED SAND.		
	54	19	79	34	12	SILTY SAND: DARK GREY, MIST, CREAMIC SMELL, CONESIVE-		
			95	4	^	SAND: GREY TO BROWN, MET, FINE TO MEDIUM GRAINED SAND, WATER AT 18-0 FEET-		
			94	3	21	GRAVELLY SAMD: MULTICOLONED, MEDIUM TO COMPSE GRAIMED SAMD, GRAVEL TO I INCH. ADDED MUD AT 18 FEET-		
	3 0	6	97	M)	7	SILTY SAMD: FARENISH BROWN, FINE TO RETIUM GRAINED SAMD SAML PROCETS OF SILT, NOW COMESION-		
		•	94		26	SAMP: MULTICOLORED, MEDIUM TO COMPSE GRAINED SAND, OCCUSTOMAL GRANG, TO 1 INCH-		
					32			
					15	GRAVELLY SAND: FULTICOLONED, COMMER GRAINED SAND, GRAVEL TO 3 INCHES, FOR COMBLES TO 5 INCHES.		
			69	4				
		54	\$P 54 19	92 37 90 77 54 19 79 95 98 90 6 97	92 25 37 2 39 27 12 54 19 79 34 95 4 94 3 30 6 97 40	92 15 42 37 2 42 37 12 24 54 19 79 34 32 95 4 21 30 6 97 4 7 40 94 4 25		

1

INVE	RT							TH84-1109
THB4-11	109		S	A 985+	00 C			FL- 251±
DEPTH	1.06	۳Ç	LL	P!	-4	-200	ų	DESCRIPTION
					79	ą		GRAVELLY SAME: LIGHT BROWN, DRY TO I COARSE GRAVINGS SAME, GRAVEL TO 2 INC START OF HOLE-
	3 P	_						
					72 6 0	2	16	SAME: MULTICOLORED, MOIST TO MET CO GRAVEL TO 3 INCHES, SOME COMMLES, FA
<u> 1.0</u>								

NOTE:

TH84-1104

	1						ΙH	84-1108
TO #	ł		ST	A 100	7 -00 (£1 - 256±
SIM	1	MC.	ц	Pi	4	-200) N	DESCRIPTION
·, co	f				66	3	5	SLASLLY SAID: LIGHT BROWN, LODGE, FINE TO REDUM GRAINED SAID, GRAWEL TO Z INCHES, SOME COMMLES, USING MILD AT START OF HOLE:
IT, SI					47	1	- 1º	SHEW SRINEL: "RALTICOLONED, MOIST TO HET, CONRSE GRAINED SHE, GRAVEL TO 2-1/7 INDRES. SOME CHEMILES.
	ŀ	;			55	•	- . 24	RUNCLY SMIT: MALTICOLOMED, MOIST TO MET, STYE LANGE COMBLES, REFUSAL AT 8.5 FERT DIR 171 LANGE BILLITER
	f							
į								
	ŀ							
1								
4	•							
							TH 84	<u>1-1(09</u>
1		TA 98	5+00 C					FL 25[#
) 	LL	Þį	-	-2	700 —	•		"ESCRIPTION
			79		Э		GPAVELL! Charse (Start in	Y SAND. LIGHT BADON, DRY TO MOIST, VERY LOOSE, SPAINED SAND, GRAVEL TO 2 INCHES, USING MUD AT FIGURE.
7			72	_	2	16	SAME II	NE TION ORDER MODER TO A SECOND
-			S)		T -			BLITICOLORED, MOIST TO MET COMPSE GRALMED SAMO, 10 3 IMOMES, SOME COMBLES, FACING STONE AT 7-0 FT.

YHB4-1	104			IA LU	07+00 L			a. 2731		
DEPTH	L06	M.	u	PI	4	-200	1	DESCRIPTION		
3.0	60		372	11	55	13		CLATEY SAMET GRANEL: TAM, DRY TO MOIST, LODGE, MERLA, N TO SAMEQUIDED GRANEL TO \$ THOSES, PINE GRAINED SAME, 5 PERCENT COMMLES TO 4 THOSES.		
6-0	29/SH		_		94	10	21	SAND/SILTY SAND: TAN, HOLST, HEDLUN DENSE, HOLANDED TO SUMPOUNDED OR MANEL.		
9.0	sc		35	12	94	29	28	OLAYY SAMD: BLACK ORGANIC SHELL, HEDILM DENSE, NO CONSTON, COLARSE GRAINED SAMD, HEW MISLEM TO ROUMED DRAMEL TO 3 INCHES.		
	591	28	n	ı	89	υ	ŧΊ	SILTY SMIT: BLACK, OMERHIC SPELL, REDILIA DEPOSE TO DEPOSE OF CONTROL OF THE PROPERTY OF COMPANY OF THE PROPERTY OF THE PROPER		
5. <u>0</u>							230	SAND/SILTY SAND: THE, FINE GRAINED SAND, SUB-NASULAR TO ROUNDED GRAVEL TO 2-1/2 INDES-		
	SN/SM	_			34	5	29	GRAVELLY SAND/SILTY GRAVELLY SAND: SAME AS ABOVE.		
<u></u>					972	,		NO SPT AT 18.5 PEET DUE TO MOOK.		
1-0	SPI				122	17		SHITY SAND: BROWN-GREY, WET, SOME COMESTON, RIME GRAIN SAND A POCKET OF DAMK, GREY STLT. COMESTOR, MAYER AT 21-0 FRET, ADDED NEVERT.		
.0	r.		49	16	100	64	32	SAMPY SILT: BROWN, MET, MEDIUM DENSE, SOME COMBLES, COMPSE GRALMED SAME.		
.a	SW/SH				59	,		GRAVELY SAMPUTED TO SHAVELY SAMD: "ROOM, COMESE GRAVELY SAMD, ROUNDED TO SHAROLNOED GRAVEL TO 3 INCHES, ROUNDED COMMES TO 5 INCHES, NO SPT AT 24.5 FEET.		
•	SM		30		100	25	16	SILTY SMO. SARYISH BROWN, CONESTIVE CLUMPS, FINE GRAINE SAND, OCCASIONAL ANGLER TO SUBMERLAR GRAFEL TO 2-1/2"		
os	SM/SM	_			31	3	21	SAND/SILTY SAND: LIGHT BROWN, SOME COMESTON, OCCASIONAL ROUNDED TO SUBROUNDED GRAVEL TO I THON-		
	4.		51	6	190	77		SARTY SILT: ROOM, SOME CONESTON, OCCASIONAL ROUNDED SRAYEL TO L INCH, OCCASIONAL COBBLES TO 4 INCHES.		

SCALE: I N-3FT

NOTES

- I SEE PLATE II FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4. ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

REVISIONS U. S. ARMY ENGINEER DISTRICT LOS ANGELS CORPS OF ROWNERS SANTA ANA RIVER MAINSTEIN, CALIFORNIA PHASE XI CRICKPAL DESIGN MEMORIADUM LOGS OF INVESTIGATIONS CORPS OF ENGINEERS GROWN BY STA. 1007+00 TO STA. 985+00				<u> </u>	-
LOS ANGRES CORPORD OF INCOMESS DIRECTION OF THE CALIFORNIA PHASE IT GENERAL DESIGN MEMORIANDUM LOGS OF INVESTIGATIONS CORPS OF ENGINEERS CHICAGO PH STA.1007+00 TO STA.985+00 LIMINITYD ST. DATE ANGRESIA SPEC. NO. DACW OF	<u></u>		IONS	DAR	MACH
PHASE IT GENERAL DESIGN MEMORANGUAL BRAWN PL LOGS OF INVESTIGATIONS CORPS OF ENGINEERS STA.1007+00 TO STA.985+00 BLAMMITTED SYL DATE APPROVED. SPEC. NO. DACWOP6	·		LOS ANGE	LES	3
CORPS OF ENGINEERS STA.1007+00 TO STA.985+00 RIGHTIND SY: DATE APPROVED. SPEC. NO. DACWOF6	ness by,	SANTA ANA I PHASE II GEN	TIVER MAINSTEM, CALIFO ERAL DESIGN MEMORANI	PRIA DUM	
STA.1007+00 TO STA.985+00 STA.1007+00 TO STA.985+00 SEMITTED ST. DATE APPEICHED. SPEC. NO. DACW 096	WH 97.	LOGS O	F INVESTIGATION	s	
STA.1007+00 TO STA.985+00 DATE ANSONED SPEC NO. DACWOP		CORP	S OF ENGINEERS		
APPEOVED. SPEC. NO. DACWOPS	300 Mg				
APPEONED SPEC NO. DACWOP6			+00 TO STA.985+	00	
DISTRICT FILE NO.	780 GY.		SPEC. NO. DACWOF		2000
			DISTRICT PLE NO.		{
			DISTRICT PILE NO.		

SAFETY PAYS

ATE ES ATE BLR F E

ST VER CHA

TH84 - 1106

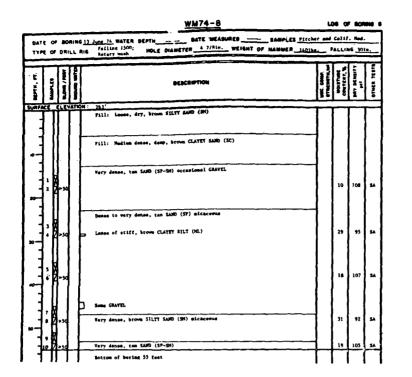
TH84-1]	106		S	TA 985+	00 L			EL+ 256#
DEPTH	L06	MC	u	PI	4	-200	H	DESCRIPTION
	SM/SM			NP.	90	8		SAID/SILTY SAID: TAN, LOOSE TO MEDIUM DENSE, FINE GRAINET SAID, FEN ROUMED TO SUBROLANDED GRAFEL, FEN ANGULAR COR- BLES TO A INCHES.
3.0_	SM	,		•	98	17	15	SILTY SAMO: TAN, MOIST, "THE GRAINED SAMO-
6-0	SP				92	3	12	SAMD: TAM, MOIST, MEDIUM DENSE, COARRY GRAINET SAND, FEN ROUNDED GRAFEL TO 1/2 INCH. OCCASTIONAL MIGULAR TO SUB- MIGULAR CORRES TO 5 INCHES.
9.3	SP/SM	3		IP.	89	5	18	SMID/SILTY SMID. THE MOIST, COMPSE GRAINED SMID. FEM ROUMEDS GRAVEL TO 1/2 INCHES, 5 PERCENT MIGULAR TO SUB- MIGULAR CORRULES TO 5 INCHES.
12-9_		2			77	4	26	GRAFELLY SMID: TAN, MDIST, COMMSE GRAINED SAMD, ROLANDED GRAFEL, 5 PERCENT ANGULAR TO SUBMIGULAR COBBLES TO 6 INDRES.
15-0	SW/SM	3		*	86	7	7 9	SMEUSILTY SMM: TAM, MOIST, COARSE GRAINED SMD, ROUNDER GRAVEL, S PERCIPIT ANGLER, TO SUBANFILAR CHARLES, MATER AT 18-0 FEET, ADD REVERT AT 18-0 FEET.
¥13.0_	y y				38	2	23	SAMD: COARSE GRAINED SAMD, SHAVEL TO 3 INDIES, COARLES TO 5 INDIES, CAVING AT 19-0 FEET.
21.0	SH/SH			NP.	93	7		SAMP/SILTY SAMP: COMPSE GRAINED SAMD, ANGILAP TO SUB- ROUNDED GRAPEL TO 3 INCHES, FEM ANGILAR TO SUBANFULAR COBBLES TO 3 INCHES.
24-0					61	1	11	GRAVELLY SAND: Two, MEDIUM DENSE, COARSE GRAINED SAND, ANGULAR TO SUBROUNDED GRAVEL.
	9*				96	3	14	SAMD: TAM, COARSE GRAINED SAMD, FINE GRAINED GRAVEL TO 177 INCH, POORTS OF BROWNISH GREEN SILT AT 79.0 FEET, SOME COMESSION
30.0	41			нр	92	29	7	PRANTLY SILTY SAME: TAN, COLAMSE GRAINED SAME, POWETS OF BROWLSH GREEN SILT.
33.0 35.0	SW/SM			HP	33	9	,	GRANDLEY CONTINUED GRANDLEY SOND. FORMER GRAINED SAND, SUBROUNDED TO ANDLER GRANDLETTO Z. INCHES, POOCETS (CLIPPS OF SILL BINDING SAND TORETTER, DOZE CORESION.

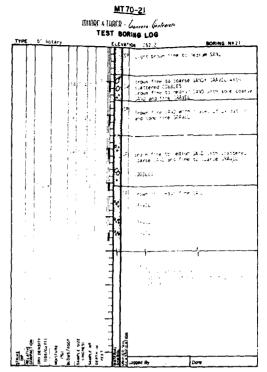
NOTES

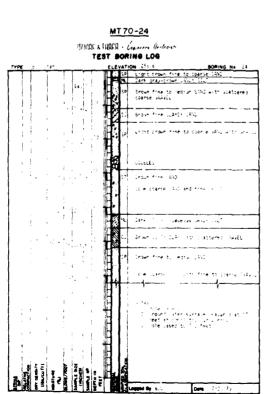
TH84-1107

**-1	œ		5'4 \$'0	-30 L			the foliation
E ***	.%	₹	*!	4	-3%	١	BRAINIA
							de acteurs, de crematre et servisió de la la contrata mental de la contrata del contrata de la contrata de la contrata del contrata de la contrata del la contrata de la contrata de la contrata de la
	¥ 97			<u>. ¥</u>			
3.3		•	•	(x	ŝ	35	
	7			Ŋ	•	;;	SMIT Land both 40.5" 421.8 bette fire paying see the paying mile wides compared to land at 42 ages.
	3r Sa		•	×	;	×	SMED STUTT SMED THAT SHOW ALL OF THE SHARED HAD AT THE STUTTED HAD AT THE SHARED HAD THE SHARED HAD AT THE SHARED HAD AND THE SHARED HAD THE SHARED HAD AND THE SHARED HAD THE SHARED HAD AND THE SHARED HAD THE SHARED HAD AND THE SHARED HAD AND THE SHARED HAD THE SHARED HA
14.2	7			5.8	•	; 7	AT MELL TOMP SHE MANNE MELLS TO A MELLS SHE AT A MELLS TO A ME
						:	SUM SAME BROWN MIST PRAISE TO THE MORE SOME COMESCORE
	3		•	N	٠,		
• •			•	35	14	ż	SPE to super.
	33		•	ž.	;	.:	SAME SIGN CARD III. ART AROUND NO. AND DROOK TOO DRANG TO CARDON
3.	>+7°		•	F	:	-	GENTLY SMITS IT GENTLY INTO THE TOURS OF AND AND SMITS.
ii. Ma	7			¥	:	÷.	PARTY THE SUPPLIES SOFT THREE PLUS DISC HAS TO THE SORT
I.3	73		¢	¥		34	SMOOTH DATE I AM SOME NOT THE DRIVED DATE THE CHILD DATE.
<u> </u>	<u>.</u>						BME 1000 BOW IS TICKED PURSONS DAS.
ندن	(# 7 2		#	1.	-	ئ	2805 (*) 285 - Grigowiller (*) 1 Fe Shied (Md 3865 で くく Kod (1862 で Kod (1865 (Md (1865)))
-	7 W		•	f.	1	ទ	
13. <u>1</u> 13.1	7					.9	TOTAL STATE OF THE

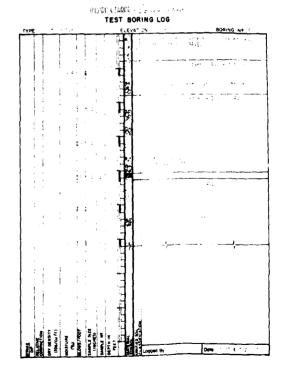
\$04.E =+3**

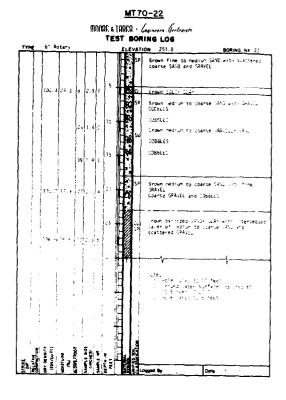

SEE PLATE - POR LOCATION OF TEST HOLES AND TEST TRENDIES

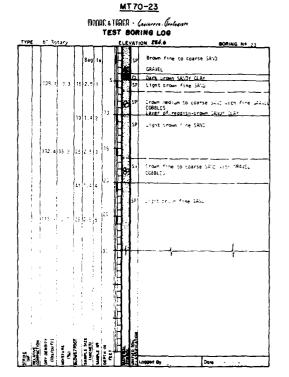

- 2. MEE PLATE BE FOR LEGENG AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 4 TOP CATE OPPLIED OF EXCAVATED ME
- 4 ALL TEST MOLES AND THENDES WERE SET IN TO THE LETE CREST INLESS STHERMINE WOTES AS THURSHY IN THE CHANNEL AND TEX STHER SHOUND ON BACK SING OF LETE.


PHICK	MOP'O4	2671
	PEV.SIONS	
	u. s	ANNY BIGHTER DISTRICT LOS ANGELES CORPS OF BIGHTERS
Militaria pr.	CARL THE SAME OF STREET	
100 mm (st.	LOGS OF INVE	STIGATIONS
	CORPS OF E	NGNEEPS
2000as es	STA.965-90 TO	STA.970+ 00
31,000 PM	MINOR WIC .	G 34C#34 \$
	SUPPLET	₩ •6

SAFETY PAYS


1.415




MT 70-25

LUE ENGINEERING PAYS

BORNS

25

TEST BORING LOG

CLEVATION

SORING No. 25

SORING N

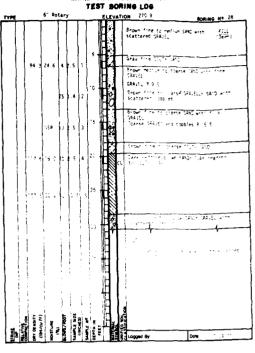
MT 70-26

NOTES:

- I. SEE PLATE II FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

SYMPOL	ossCarnovs.	DATE .	APPROVAL								
	REVISIONS		ATTENDED								
	U. S. ARMY ENGI LOS ANG CORPS OF B	GELES.	.1								
SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM											
DEAWN SY	LOGS OF INVESTIGATIO	N									
CHRONED BY:	BY OTHERS	BY OTHERS									
	STA.1030+00 TO STA.965+00										
SUBMITTED BY:	DATE APPROVED SPEC. NO. DACWOP.	+	SHEET								
	DISTRICT FILE NO.		}								

SAFETY PAYS


PLATE IID

TEST BORNES - Commons Gerbasers

Security - Commons - Com

MT 70 - 28

MODE & TABLE : Counter Verlouse
TEST BORING LOG

ура	14.	* Buc:				۲. ۱ ۲۰۵		T 64		6 .::4.99		BOR IN		16 - 2-17-54
,,,-	اً ا	- Suc.				9		1	FOUN				*1th	eravel mr:
	250	h.5,			,	4			TAVE		coalse	1271	e'th	scattered
	245	*-3.	-		1	-[-	In.a	ilne te	cears	gand	-11-	trwel
(60	240				-	4	•		TAVE		COATS	9 535/	+16,	scattered
feet (elevation)	235		_		-				ar	nit e	1av =1	t> san	.t ten	1~3
•	23:-					·¢			o FAVa					
Pepel			:			9	13	+-		1.332.1	14-4	44 144 1 4 144	- W11'	scittered
	225							Gi	ring from ther c.5' d ea	top of water we was po e was po t down to sing the	Lor po success w on ruo multure	ected Ounter Stor 1 Fing o Was no	north ed at 0.01 <u>1</u> lev. edr.	propox. 30' ba: 0.5' alti- and; and as there are ar pround
			 						wat:	r.				
		Dry Centily (16s. ca.ft.)	Voisture	Stand Penetration (boxs/food	Somple 3/28 (1)CA63)	Sangle Nº		Charles sou						

T)	rpe _I .		Pric At
ւ			
-		Γ	
]	3-0	t	+
		Ì	1
1	265	ŀ	士
}		1	T
l	260	ł	-+-
ł	· s		i
1	E 255	1	
1	į	T	
	į		1
	E 250	ť	
į	Depth in feet (Lifewarden)		1
	24	ا • •	
	İ	1	1
	"	٦-	-
	1		
	1		
	1		
	(The cutt
	L_	_	9, ta

LUE ENGINEERING PAYS

· ... 3. hd 124,822 120 are e 395 125, 1 (22,5, 27.5 BORING NO. Crepleted in sind

MTTO-29

MORRE & DARRE - Concerns - Enclosure
TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING LOS

TEST BORNING

TEST BORNING

TEST BORNING

TEST BORNING

TEST BORNING

TEST

Dans

TYPE 6 Rotery TEST BORING LOG

SECUND 170.3 BORING NO 30

ELEVATION 270.3 BORING NO 30

ELEVATION FINE to medium SAND with Same SAND LICENSES SAND SELECTION OF SA

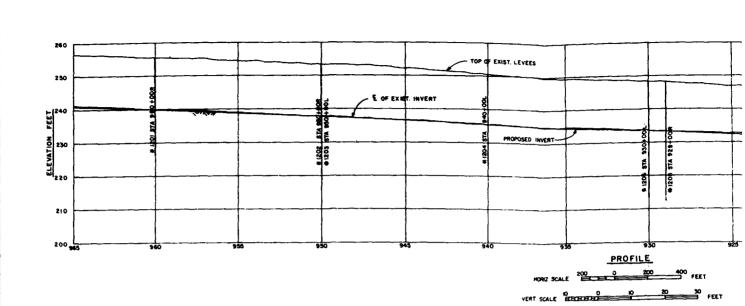
MT 70-30

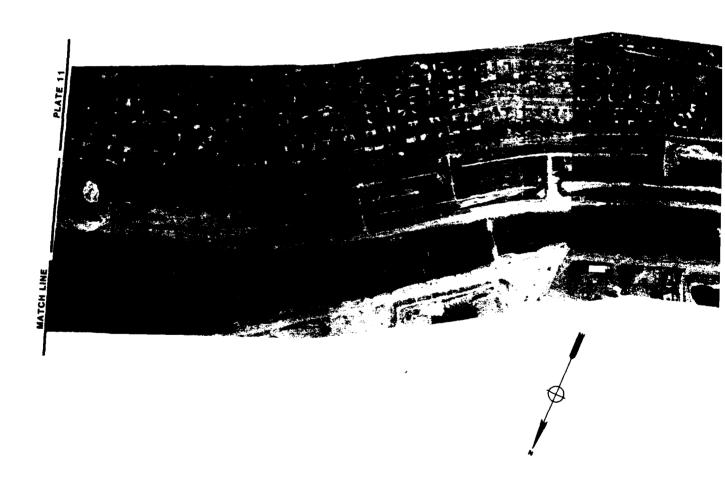
Type | 10 Pac | 10 Pa

NOTES:

- I. SEE PLATE II FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

	·							
STMBOL	DESCRIPTIONS	CASE	APPROVAL					
	REVISIONS							
	LOS	PHGINEER DISTRI ANGELES OF ENGINEERS	 					
CERCHIC IV.	SANTA ANA RIVER MAINSTEM, O PHASE II GENERAL DESIGN MEM	CALIFORNIA IORANDUM						
DEAWH ST.	LOGS OF INVESTIGAT	LOGS OF INVESTIGATION						
Official Pr	BY OTHERS	BY OTHERS						
CHICAGO SV.	STA.1030+00 TO STA.965+00							
SUBMITTED SY.	DATE APPROVED, SPEC. NO. DACWI	OP &	SHIRT					
6€ .	DISTRICT FILE NO.		}					


SAFETY PAYS


contered at 15th in the course for the state of the series

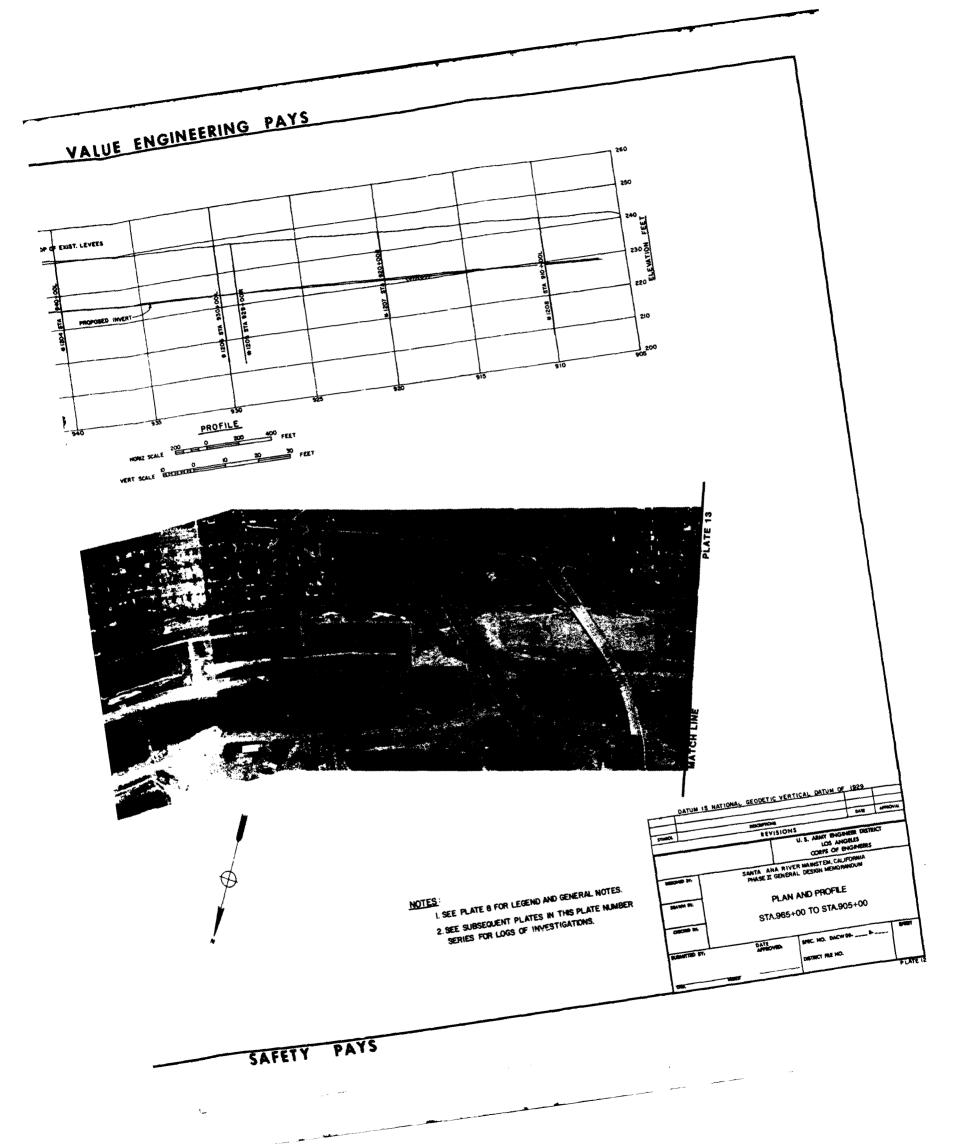

whe he ind in there
ports in all hiter
to end sites as
it won't difficult

PLATE ILE

VALUE ENGINEERING PA

TH84 - 1201

TH 04- 1	201		S	TA 960	+00 R			EL · 256#
DEPTH	L06	MC	u	Pl	-4	-200	н	DESCRIPTION
	SW/SM			æ	90	8		SAID/SILTY SAID: BROWN, LOOSE, FINE GRAINED SAID, FON GRANEL TO 1 INCH-
3-0	SP/SPI			NP.	94	5	•	SME: WITH CLIMPS OF BROWN, HOIST, CONESIVE SILTY SAND, REPUSAL AT 4.0 PRET-
<u>6.0</u>	571	9		₩	98	20	188	SILTY SAMO: GREY, MOIST, FINE GRAINED SAMD, REPUSAL AT 7.0 PEET-
9-0_	SH/SH			NP	92	10		SAND/SILTY SAND: GREY, MOIST, FINE GRAINED SAND, FEW GRAND, TO 1-1/2 INCRES.
12-0						_	40	SILTY SMIT: GREY, MOIST, FINE GRAINED SMID, CLIMPS OF CLIMPY MATERIAL, ADDED MUD AT 18.0 FEET, REPUSAL AT 16.0'.
	54			NP	96	73	27R	
18-0							•	
¥ 19-5				w o	55	,	179	GRAFELY SAMINISELTY GRAFFELY SAMID, MULTICOLORED, SATU- RATED, COARSE GRAINED SAMID, GRAFFEL TO 3 INCHES, REFUSAL AY 19-0 FEET, MATER AY 19-5 FEET.
				•	75	·	16	
	SANSM						11	SMID/S[LTY SMIP: BROWN-NULTICOLORED SATURATED, FINE TO COURSE GRAINED SMID, FEW GRAVEL TO 2 INCHES.
				Ψ	90	5		
29-J 80-0	1		34	,	33	77		SAMY SILT: BROWN, MET, CHESTVE, FINE GRAINED SAND, OCCASIONAL GRAVEL-

TH 84 - 1204

1484-12	04		\$1	A 940-	ζų Γ			£L- 251±						
EPT4	L05	*(u	FI	4	-200	H	DESCRIPTION						
	PR/W2			*	98	12		SAND/SILTY SAND: TAN, DRY TO MOIST, LODGE, FINE GRAINED SAND.						
3-1														
	SM	5		NP.	98_	13_	12	SILTY SMID: TAN, MOIST, MEDIUM DENSE, FINE GRAIMED SMID, OCCASIONAL ROUNDED TO SUBROUNDED GRAVEL TO \$72 INCH-						
5.0				₽.	_35	38		SAFE: TANK BROWN, MOIST, COMESTI E.						
							6	SAND/SILTY SAND: Brown, SLIGHT CONESION, FEN SUBROUNDED GRAVEL TO 3/4 INCHES:						
		8		₩.	93	_11_								
	SM/SM						9	SAME: MOIST, FIBM GRAVEL TO 2 INCHES, SUME ROOTS, SOME COMMLES AT 10-0 PEET.						
				WР	93	11								
							7	SML: ROOTS AND BARBED WIRE AT 14-5 FEET-						
								SILTY SANT: REGION, HOLST, SOME CONSISION, COARSE GRAINED						
5.0	SR			#P	<u> 35</u>	20		SAD:						
	5M/5M	8		₩	90	12	3R	SAND/SILTY SAND: BROWN, MOIST, FEW GRAMEL TO 2 INCHES, COMPLES TO 6 INCHES, REPUSAL AT 16-0 PEET DUE TO ROOK.						
9.0														
			25	6	99	35		SILTY SAND/CLAYEY SAND: BROWN, MOIST, OCCASIONAL GRAVEL TO 2-1/2", COMBLES TO 6"						
22.0			()	٠	"	"		SME: LANGE BOLLDERS, DIFFICULT DRILLING, HATER AT 22-0"						
	SANSC													
			26	5	97	49		SAME: BANK BROWN, SLIGHT CONESION, FINE GRAINED SAND, 1-172 ' BOLLOER AT 27-0'-						
27.g														

TH 84 - 1202

THB4-1202			STA	950+	0G R			£ . 254t
DEPTH	L06	ж	LL	Pſ	4	-200	N	DESCRIPTION
								SAND/SILTY SAND: BROWN, MOIST, GRAVEL TO REFUSAL AT 3.5 FEET DUE TO ROCK.
		4		κp	86	3		
							21R	
	SM/SM							
		9		#P	94	12	R	SAME: GREY, SLIGHT CONESION, ORGANIC SME TO 1/2 INCH, REPUSAL AT 9.5 FEET.
12-0				40	90	10		SAFE: BROWN, FINE GRAINED GRAVEL
<u> </u>	SM	9		MP	8 9	15	R	SILTY SAID: GREY, MOIST, SLIGHT CONESION REFUSAL AT 12.5 PEET-
15.0	5P/SM			·	64	5		GRAVELLY SAND/SILTY GRAVELLY SAND: BROWN ROUNDED TO SUBANGULAR GRAVEL, COBRLES TO
18-0	SW/SM			MP	86	10	7 9	SAND/SILTY SAND: BROWN, MOIST, ROUNDED T GRAVEL, CORBLES TO 9 INCHES, PROCETS OF S AT 18.5 PRET DUE TO LARGE CORBLES.
21.0 1.21.5	SW			 ,	75	4	R	GRAVELLY SAND: COARSE GRAINED GRAVEL, SU ROUNDED GRAVEL AND COBBLES, MATER AT 21.5 REVERT AT 21.5 FEET, REPUSAL AT 21.5 FEET
24-0	99				91	4	R	SAMD: BROWN, ROUNDED TO SUBROUNDED, COARGRAVEL TO [INCH, REFUSAL AT 25.7 FEET.
27.0	SM/SM			up.	97	9	6	SAND/STLTY SAND: BROWN, LODSE, SLIGHT CO GRAINED SAND-
30-0	3PV%C		27.	5	96	15		STLTY SAMO/CLAYEY SAMO: BROWN, INCREASE GRAINED SAMO, REFUSAL AT 30 5 FEET.
33.0								
3 5.0	26				\$8	2	þ	SAND: BROWN-MULTICOLORED, DENSE, PEF " &
36.0	SM/SM			ΝP	93	ó		SAND/SILTY SAND: BROWN-MULTICOLORED I E

NOTES

- SEE PLATE :
- 2 SEE PLATE
- 3 SEE TABLE TYPE OF EC
- 4 ALL TEST + THE LEVEE IN THE CHAI LEVEE

VALUE ENGINEERING PAYS

	s	TA 95	0+00 R			EL - 2542				
	u	PI	4	-200		DESCRIPTION				
		_				SME/SILTY SMED: BROWN, MOIST, GRAVEL TO 3 INCHES, REFUSAL AT 3.5 FEET DUE TO ROOK.				
,		¥Ρ	96	9						
					218					
_				12		SAME - SDEV. SLIGHT CONCEING. DREAMIC SMELL. INM REAMER				
_				10	R	SME: SREY, SLIGHT CONESION, ORGANIC SMELL, FEN GRAFELS TO 1/2 INCH, REFUSAL AT 9.5 FEET. SME: BROWN, FINE GRAINED GRAFEL.				
_		**	90							
		1P	80	15	*	SILTY SAMD. ERRY, MOIST, SLIGHT COMESION, OMEANIC SMELL NEEDS. AT 12.5 PEET.				
-		₩	64	5		GRAVELLY SAMPLYSTATE GRAVELLY SAMP. BROWN, MOIST, SUB- MOUNDED TO SUBMIGULAR GRAVEL, CORRLES TO 5 IMPLES-				
-		NP	36	La .	72	SMP/STI-TY SAM? BROWN, HOLST, ROUNDED TO SUBROLUMED GRAVES, COBBLES TO 3 THOMES, POORETS OF GREY STLT, REPUSAT 18-5 FEET DUE TO LARGE CORRLES.				
			75	4	ę	SRAYELY SAID COARSE GRAINED GRAVEL, SURROUNDED TO ROUNCED GRAVEL, MO CORNLES, MATER AT 21.5 FEET, ADDING REVERT AT 21.5 FEET DUE TO ROOK.				
			91	4		SAMP ROOM POLNDED TO SUBROUNDED, COARSE SRAINED GRAVE, TO 1 1954, REFUSAL AT 75-7 FEET.				
~		·	37	9	5	SMIDIST TO SMITE. BROWN, LODGE, SLIGHT COMESTON, FINE GRAINED SAND.				
_	7:	5	96	15		SILTY SAMO (LAYOY SAMO BROWN, INCREASE IN CONESION, RIN BRAINED CHEN, REPURAL AY \$0.5 REET.				
-			36	2	2	SMID BROWNING FECUNDAL DENSE REF-ISAL AT \$3.5 FEET.				

TH84 - 1203 TH84-1203 #" STA 950+00 L EL. 2531 DEPTH LOS MC LL PT -4 -200 M SILTY SAMO: MOIST, LOOSE, FINE GRAINED SAMO, ROLLINED PINE GRAINED GRAVEL TO 1/2 INCHES, 1 INCH PROCETS OF FINER MATERIAL. P 97 14 ₩P 99 31 1¢ 41 16 100 84 SAMBY CLAY: BROWN, MOIST, SOFT TO STREET, COMESTIVE. 4 MP 98 11 5 SAMD/SILTY SAMD: LIGHT TAN, MOIST, OCCASIONAL ROLNDED GRAVEL TO 1/A INCHES, CAVING AT 8-0 FEET. SW/SM MP 96 10 10 SAME: PROOM, COARSE GRAINED SAMO, FBM GRAVEL TO 3 INCHES. SOME POCKETS OF SILT, ADDRED MUD AT 9-0 FEET DUE TO CANING. 92/98 12-0 68 3 17 3 INCHES. ROOM, CHARSE GRAINED SAME, GRANEL TO GRAVELLY SAND/SILTY GRAVELLY SAND: MULTICOLORED, MOIST, COMPSE GRAINED SAND, GRAVEL TO 3 INCHES, REPUSAL TIME TO PRO-MP 72 3 34 COMBLES TO 6 INCHES-24-0 61 12 COANCILY SIME MULTICALOPED, MOIST, COMPSE GRAIMEN SAND, 13 CRAFEL IN 3 INDIES: 25.0 59/54 SAMPLESTON SAME. REGION, MOIST, MEDIUM DENSE TO LINDSE, SLIGHT CONESTON, GRANE, TO 1-17 INCH. GREATH TO THE THE TRUTTE OF THE THE CHARGE SPANNER SAME. iju t SILTY SMY: "NANK BROWN, SLISHT COMESION, FINE GRAINED SAME, BY MIDED GRAMEL TO 1 INCH, CORPLES TO 1 FEET, ROLLPED SOLLDERS TO 1-1/2/.

SCALE I N-3FT

NOTES

I SEE PLATE 12 FOR LOCATION OF TEST HOLES AND TEST

35.Q_____

- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

SYMBOX	SECUTIONS	BAR APROVA						
	REVISIONS							
	u.	S. ARMY ENGINEER DISTRICT LOS ANGELES CORPS OF ENGINEERS						
CERCONED SY.	SANTA ANA RIVER N PHASE II GENERAL D	IAINSTEM, CALIFORNIA ESIGN MEMORANDUM						
50A-W711 ST.	LOGS OF INVESTIGATIONS							
	CORPS OF E	ENGINEERS						
COCCUR IN								

VALUE ENGINEERING P

TH84-1205

05		S	ra 9294	00 R		EL · 248±					
L06	AC	ш	Pl	-4	-200	*	DESCRIPTION				
SW/SM	6		۳	86	10		SAND/SILTY SANTH: BROWN, MOIST, LOOSE, GRAVEL TO 1 INCH.				
						30	STELTY SAMD: BROWN, MOIST, FEW GRAVEL TO 2 INCHES, SOME CLUMPS OF STET.				
SM	_		NP.	92	14	30	SAME: GREY, SLIGHT CONESION, OCCASIONAL GRAVEL TO 1 INC				
			MP	92	19	30					
						30	SAMPLYSILTY SAMP: LIGHT BROWN, MOIST, FINE TO COARSE GRAINED SAMP, SRAWEL TO I INCH.				
5X/\$M	5		ĦP	97	3	30	SAME: MATER AT 12 FEET, USING HID AT 19.0 FEET.				
SM			₩P	33	15		SILTY SMIT: GREY TO BROWN, MOIST, SLIGHT CONESION, FINE TO COURSE GRAINED SMID, GRAVEL TO 1-1/2 INCHES-				
31/51			WP.	91	7	252	SAND/SILTY SAND: MALTICOLORED, WET, FINE TO COMPSE SAND, FEN GRAVEL TO 1-1/2 INCHES, 5 PERCENT CORNLES TO A INCHES.				
						41	GRAFFLLY SARTY: TRULTICOLORED, MET, COARSE SPAINED SAND, GRAWEL TO 2 INCHES, 10 PERCENT CHARLES TO 5 INCHES.				
à				73	?						
						3					
						19					
5₩				73	3						
						15					
	SH/SH SH/SH SH/SH	LO6 MC SM/SM 6 SM SM/SM 5 SM/SM 5	LOG MC LL SM/SR 6 SM SM/SR 5 SM SP SP SP SP SP SP SP SP SP SP SP SP SP	LO6 PIC LL PI	LOG MC LL P1 -4 SM/SM 6 NP 85 SM NP 92 SM/SM 5 NP 92 SM/SM 5 NP 92 SM/SM 7 NP 91	SM/SM 6 NP 85 10 SM/SM 6 NP 85 10 SM NP 92 19 SM/SM 5 NP 97 3 SM/SM 5 NP 97 3 SM/SM 5 NP 97 3	LOS MC LL P1 -4 -200 N				

TH84-12 ——— THEPTH

11.2

12.2

25.∸

29.0

34.5

VALUE ENGINEERING PAYS

TH84-1206

TH84-12	06		ST	A 930+	30 L			FL - 2482
BEPTH	L06	HC	ш	PI	-4	-290	H	PESCRIPTION
			27	_10	85	29_		GRAFELLY CLAYEY SAMI): DARK BROWN, MOIST, COMESE GRAINED SAMO, ROUNDED TO SERROUNDED GRANEL TO 2-1/7 INCHES, REVANDED COBLES TO 6 INCHES, REVERTIENT STOME TO 12 INCHES AT 2 FREET, 3 INCH SILTY/CLAYEY CONESIVE CLUMPS.
							?9	CLAYEY SAMP: SAME AS ABOVE
	sc	u	25	11	36	40		
							26	GRAVELLY CLAYEY SAND: SAME AS ABOVE, MEDIUM DENSE, ROLADED GRAVEL TO 1 INCH, CORBLES TO 1 FOOT, DIFFICULT DRILLING-
		11	26	19	79	28		
11-0							16	
								SILTY SAMP/CLAYEY SAMP. DARK GREY, HOIST, MEDIUM DENSE, SLISHT CONESION. CORRSE GRAJHED SAMD, FEW ROUMED TO SAMP. CORREE TO 5 INCHES, ORGANIC SMELL, STEEL CARLE AT 13.0 FEET.
	SM/SC		27	7	94	4?		
								SME: For GRAVEL TO 3 INCHES, COMBLES TO 9 INCHES, ORGANIC SMELL-
13.0						<u>-</u>	2?	GRAVELLY CLAYEY SAMP: FAREY, MOIST, MEDI-DEMSE, COMESIVE.
	SC		29	8	83	37		
							20	
25-5		_	11	1ª	32	33		SUMPS: PARK PROMIN ROUNDED TO SUBBOUNDED RPAYEL, \$ INCH SILTY/CLAYEY CLUMPS.
ω.,_	54		29	7	94	37		CRANFILLY SILTY SAID: SREY, MOIST, MEDIUM DENSE, SLIGHT CHRESION, ORGANIC SMELL, COMESE BRAINED SAND, MOINDED TO SURROUNDED GRAVEL TO 1 INCH, 5 PERCENT COMBLES
Z9-Q							29	
<u> </u>						-		CLAYEY SAND: GREY SAND, POCKETS OF BROWN CONESIVE CLAYER CLAYES, FEW GRAVEL TO 1/2 INCH, 5 PERCENT CORBLES TO 5" DIFFICALT DRILLING DUE TO MOLLDERS.
	sc		27	9	93	35	15	

NOTES

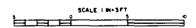
- 1 SEE PLATE 12 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST NOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

			
SYMBOL	Teccersore	DAR	APPROVAL
	REVISIONS		
		GINER DISTR NGBLES ENGINERS	ict
DESIGNED 87:	SANTA ANA RIVER MAINSTEM, CAI PHASE II GENERAL DESIGN MEMOR	LIFORNIA RANDUM	
STATE OF	LOGS OF INVESTIGATION	ONS	
	CORPS OF ENGINEER	S	
OROS 94	STA.930+00 TO STA.929)+00	

VALUE ENGINEERING P

TH84-1207

07		ST	A 9204	00 R			EL. 246±
L06	MC	u	PI	4	-200		DESCRIPTION
	_						GRAVELLY SAND/SILTY GRAVELLY SAND: BROWN, MOIST, FINE TO COMPSE GRAINED SAND, GRAVEL TO 1-1/2 INCH-
	4		HP.	85	9		
							SAND/SILTY SAND: SAME, SOME COBBLES-
SW/SM							
			•	66	11		SAFE: REPUSAL AT 7-0 FEET DUE TO BOULDER.
						25R	
				•			SART: LIGHT BROWN, MOIST, FINE GRAINED SAND, FOR GRAVEL TO I INCH-
3 °				- 7 4			
				95	10		SILTY SAMD: GREY, MOIST, SLIGHT CONESION, FINE GRAINED SAMD.
•			-	"	•		
			<u>.</u>	 -		164	SAND/SILTY SAND: GREY, MOIST, FINE GRAINED SAND, SOME COMBLES, REFUSAL AT 16-0 FEET.
							SAME: MOIST TO WET, FINE TO COARSE GRAINED SAND, FOR
						36	GRAVEL TO 1 INCH-
C14 (CM)			мо	97	,		
2M/3h	9		•	3/	•		SAME: REFUSAL AT 22-8 FEET, MATER AT 22-5 FOOT, JISING
						239	MUD AT 22.5 FEET-
						9	GRAVELLY SMIR: PULTICOLORED, MET. LODGE TO MEDIUM DENSE COARSE GRAIMED SAND, GRAVEL TO 3 INCHES, 5 PERCENT COBNLES.
&				. 54			
				60	2	18	
				~	•		
	SM/5FI 9P SRI	LO6 NC -4SM/SR	1 LOS MC LL SM/SM SP SM SM/SM SP SM SM SM SM SM SM SM SM	1.06 MC LL PT 4 MP SM/SM SP SP SP NP	LOG MC LL PI -4 9 MP 85 SM/SR MP 88 SP 94 SP 95 MP 95 MP 95	SM/SM	SM/SR 9 NP 97 7 SM/SR 9 NP 97 7 SM/SR 9 NP 97 7 18


LUE ENGINEERING PAYS

TH83-1208

								03 IE00			
THEA-1	208			010 A	-00 L		Q. 2432				
DEPTH	L06	r(C	Ľ.	PĮ	4	-200	#	DESCRIPTION			
	SW/591			₩.	85	12	23	SAND/SILTY SAND: BROWN, MEDIUM DONSE, COARSE GRAINED SAND, COMBLES TO 12 INCHES-			
3.0							2₩				
	r.			*	98	57	9	SAMPLY SILTY: THE-BROWN, MOIST, LODGE, FINE GRAINED SAMD-			
_6.0								SILTY SAND: TAN-BROWN, MOIST, LOOSE, MEDIUM GRAINED SAND			
	SM			NP	98	16	18				
								SAFE: PEDIUM DONSE-			
11.5							19	SAND/STLTY SAND: TAN-BROWN, HOIST, MEDIUM GRAINED SAND-			
								SAME: WET, MEDIUM TO COARSE GRAINED SAME-			
		_		_£_	95	10_	25				
W_16	5							SAMELLY SMOVSILTY GRAVELLY SMOTE SREY, MET, MEDIUM DEMSE, COMMSE SRAIMED SAMO MODED REVERT AT 15-5 FEET-			
				Ψ	85	6	19				
	3X/4H										
							12				
								SAME/SILTY SAMP: AREY, MET, MEDIJM DENSE, COARSE GRAINED SAMD-			
							17				
				Ψ	99	u	12				
<u> 32-0</u>							21				
							15	SILTY SMITH: GRAY, MET, MEDIUM DENSE, MEDIUM TO COMPSE GRAIMED SMID-			
	24			₩	99	14					
35-3											

NOTES.

- I SEE PLATE IZ FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE ORILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

STANCE.	MICETION .	DATE	APPROVAL
	REVISIONS		
	U, S. ARMY BNG LOS AN CORPS OF E	GELES	.ci
CERTIFICATION SY.	SANTA ANA RIVER MAINSTEM, CALI PHASE II GENERAL DESIGN MEMORA		
GEAVIN SI.	LOGS OF INVESTIGATION	V S	
-	CORPS OF ENGINEERS	3	
	STA.920+00 TO STA.910	+00	

VALUE ENGINEERING

WM74-5

LOS OF BORBUS

22 mares	Same Annual	BESCRIPTION	FR. 68	CONTENT, %	P. M. Beller	1111
J	ELEVATIO	#: ≥ 245' Fill: Loode, dry, brown SILTY SAMD (SH)				Γ
•		Fill: Loose to medium dense, damp, brown GRAVELLY SAMD (SN-SM)				
-		Medium denoe, damp to wat, brown 2AND (SH-SH) with CRAVEL				
• - • - • -	>50 	Very dense, damp to wat, thm SAMD (ST-DN) with CRAVEL		12	120	u
₹,		Very stiff-hard, reddish-brown SILTY CLAY (CL)				
];∦	۱» ا	Very dense, reddish-brown SILTY SAND (SP-SH) with GRAVIL		16	113	

WM74-6

t .	1		
1	Ì		эсистетом
SURFACE	<u>ELE</u>	ATK	M = 250
1			fill: Loose, 617, brown SILTY SAME (SN-SN) with CRAFEL fill: Loose, 417, brown SILTY SAME (SN-SN) with CRAFEL
~]			САПУ
1, 2	> 50	2	Dense to very dense, damp, tem SARDT CRAFEL (CH-CR) to CRAFEL SARD (SH-SH)
1;	44	۲	Dense, tan SAND (SP)
*-			Yery denge with GRAYEL

WM74-9

DATE OF BORING 11 long 16 WATER DEPTH 12: DATE MEASURED IT Jun 16 SAMPLES Mone

TYPE OF DRILL RIS Felling 1500: MOLE DIAMETER 6 17/2 in. WEIGHT OF MAMMER 3/4 FALCING 3/4

BESCRIPTION

DESCRIPTION

PLANT OF MAMMER 3/4 FALCING 3/4

PROPERTY WISH STORM STATE SAMPLES MONE

FILL: Loose, 477, brown STATELY SAMPL (SN-SN) with layers containing

ROWN ROW DATE OF BORNES OF BORNES OF BORN STATELY SAMPL (SN-SN)

ROW DATE OF BORNES MONE

RECEIVE SAMPLES MAMMER 3/4 FALCING 3/4

RECEIVE SAMPLES MAMMER 3/4 FALCING 3/4

RECEIVE SAMPLES MAMMER 3/4 FALCING 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMPLES MAMMER 3/4

RECEIVE SAMP

MT70-10

TEST BORING LOG

TYPE		tar.					ING LOG DN 226 3 BORING NO
- !						SP	Loose brown time to counter JANU 1 to scattered GPANCE
1	í			#	Z	7	Pery soft park gray Lu-12 122
	:			: [SF	Loase to seminous pact organiles . 1. coarse SALS
				. #		50	Sero-compact trown fine Jan.
1				,	ľ	sc	Singur Cine 124761 (49)
						50	From time (A))
					k		State Alige Sec.
				- 1	Ŀ	اکد اهر	3roun fine Lt.: At
					Ľ	1	Grown from to course only one only
				. (U	SC.	Red-prown fine 1 1.30. Taler
				T.	К	CL SP	Flick T. T.
				1	Ц	<u></u>	roun fine to coarse a wit uping
				- 11	۳	H	
						-	otes Timble election them after nebage at a neet on a Die to facing emight on the
1				ŀ	}		
į					1		
13	1		. žė		L	¢	
2. 4	1	1	1	i i i i i	Ħ	А	
	1 5	نتف		1 2 1		Ш	Done

VALUE ENGINEERING PAYS

WM74-6 LOS OF BORNS 6 5 June 74 WATER DEPTH 12" DATE MEASURED 19 June74 SAMPLES Pitcher and Calif. Hoe. 6 Buche, Rotary usts HOLE DIAMETER 4 7/Ain. WEIGHT OF HAMMER 1401bg FALLING 30th Fill: Loose, Sty, brown SILIT SAMD (SH)] awaa Dennes to very dense, damp, ten SANDY GRAVEL (CH-CH) to GRAVELLY SAND SAND (SA-SI) 11 125 Dense, ton SAME (SP) 13 117 S.A Tory dense with CRAFFE Section of bering 36 feet

WM74-7 LOG OF SORMS T DATE OF BORING 12 June 74 WATER DEPTH DATE MEASURED TYPE OF DRILL RIG FALLIAN 1500; MOLE DIAMETER 4 3/410. WEIGHT SAMPLES Pitcher and Calif. Med. HOLE DIAMETER 4 3/4th. WEIGHT OF HAMMER 1401bs. FALLING 301a DESCRIPTION Fill: Longe, dry. hrom SILTY SAND (SH) with CORSUS Hedium dense, moist, dark brown CLAYEY SAND (SM-SC) with GRAVEL 7 112 Dense to very dense, ten SAND (SP-SH) with GRAVEL 103 12 124 12 114 Very dense, tan SAMD (SP) with GRAVEL 17 109 This layer of brown SAMOT CLAY (CL) Sector of boring 625 feet

MT70-10

TEST BORING LOG

(LIVATION BORING No. 1)

And the state of the state o

MT70-11

TEST BORING LOS

ELEVATION JOL BORING NO 13

ELEVATION JOL BORING NO 13 JULY STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

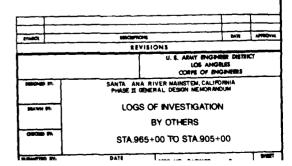
ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

ENGINEER TO STATE

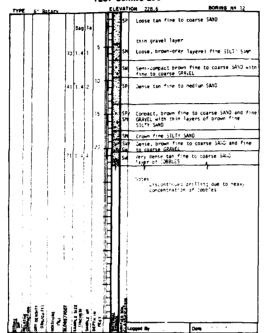
ENGINEER TO STATE


ENGINEER TO STATE

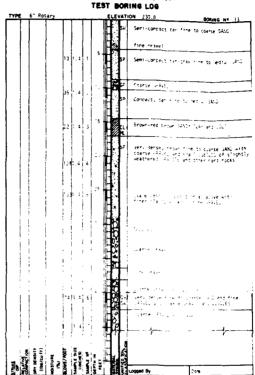
ENGINEER TO STATE

ENGIN

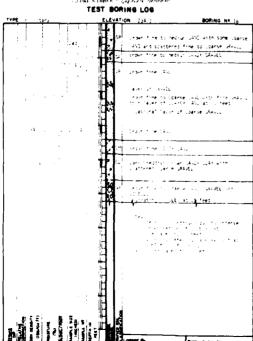
NOTES:


- I. SEE PLATE 12 FOR TEST SITE LOCATIONS
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

VALUE ENGINEERING PA


MT70-12

MANAGE TABER - Conserve Genteerte TEST BORING LOG


MT70-13

MARRE & TARCH - Lagineers Gentagist.

MT 70-16

CHORDER INDER . GARRIER Mentrose

MT 70-17

RIBERE & TOPPER + Con and the form

		TEST BORING LOG	
TYPE .	Stary	ELEVATION	BORING NO
		io i	1.21.12
1			
	1 11		
	i i		
		#1	
1			
:		##	
		1111	(
1	. ::		
i	1 11		
	i .		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 E		[m

maa

11.2 12.1 45 2 5

ALUE ENGINEERING PAYS

BORING NO

ine to coarse 140

ray time to lebul ACC

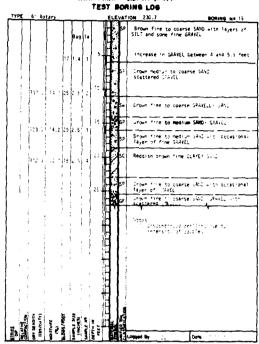
ANDY CLAY and :.."

is from as accepted to

ti usarse (A), and rina se (AA), and (Buil)

BOR-NG 10

fine to quarse SAME with a small (1380LC) of sirghtly and other hard rocks


MT 70-14

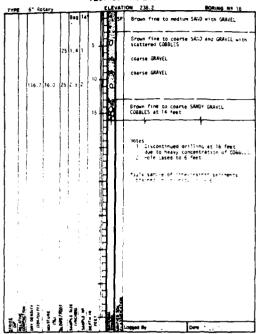
IRANAR & TARER - Commerce Gertemate

Comments and fine to coarse SACC and fine 3 years and the 4 years and the 4 years and the 4 years and the 4 years and the 4 years and 4 years	TYPE	6 · 2				EST 80	Consider Control of the Control of t
Community, pressure to course out of the Secretary of the		<u> </u>	T				. Compact tan fine to coarse SAUC and fine the
Sense can fine to coarse until fine 20 Sense can fine 20 Sens					ا د	#	Compact, gray time to course (10% glob)
Sente can fine to coarse on the fine included and course for the coarse of the coarse			1	24 : 4 	2		LOCUALT tan fine to coarse Jacobia fine GRAVEL
Section of the state of the sta				21: 4		111	1
SE COTTENT STORM OF THE SE OCCUPANT SANCE OF THE SECOND STATE SANCE OF THE SANCE OF							
Security for the security of t							
S Carettermonia equal Standard							The mode has note to compact out of the compact of
AS CONTROL STORM OF THE STORM O						- G - G	The second of th
45 Carmet shower fine to education that the second start state to very dense tan fine to coarse contact the second start state and the second start state and the second start state and the second start state and the second start state and the second start state and the second start			1				
Construction of the constr				1 1 ,		132	Carrect brown fine to ledius \$1679 SAND
							Dense to wery dense familine to coarse (ACC with stattered rine and coarse (ACC)
		1.		ંડમ	1 44		
Construction of the constr		,	:				
Service Servic			;		-		
The state of the s	100	Harren Pr	S C	INCHES		1	

MT70-15

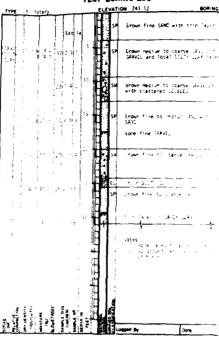
MINNE & TARER - Canarers Genteniere

NOTES

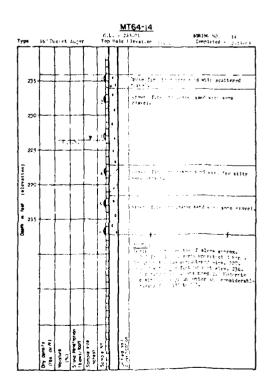

- 1. SEE PLATE 12 FOR TEST SITE LOCATIONS.
- 2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

			T	
SYMBOL	очеснитона		DATE	APPROVA
	REVI	SIONS		
		U. S. AMMY BNG LOS AN CORPS OF B	GBLES	7
CRECHED BY.		RIVER MAINSTEM, CALI MERAL DESIGN MEMOR		
MANN BY.	LOGS	OF INVESTIGATIO	N N	
09000 FT.		BY OTHERS		
1	STA.965+	00 TO STA.905+	00	
BURNATTED BY.	DATE	SPEC. NO. DACWOP.		SHEET

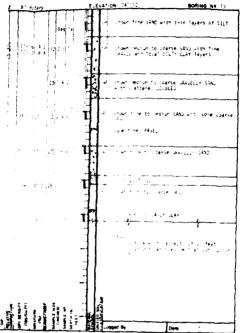
VALUE ENGINEERING PA


MT70-18

MORRE & TARER - Learners Genteries


MT70-19

MANACE TARCE - Considerer Geologists
TEST BORING LOG


ŧ.

Тур	- 1:	um Dice		it ger		Ģ.,	L . 12		164-13 Seatten 232.4a	8081%G NO. 11 Completed = 2-12-64
	23 C.				,.	, ,	7.2			• to coarse sand vith grave coarse sand with grave!
	225					,,@				
Daom a fed (alevation)	220 215					ķ			aron fine to some era.c.	waty coarse sand with
180	265					*			Approx. "I see Approx. "I for Ground later was the holl. (or at elev. 201. 15' distriction hold. Committee water. This boring relo	r fairly steep rime extend- th concrete rollested bind or ton of tent. 200 in recombined server 200 in red better 25 feet away roll was needed to odvance rable enving bilow ground roll 110 feet because of feet doilt on first
		Dry demarty (13s ou.ft)	Mostore	Stand Perefrolian (Blows/Bod)	Somble 1128	Spanpio At		Lastred Ball Classif Coton		

MT70-19

MARRIE TURES Comment Verlager

MT70-20

MINIAR & TARER . Conneces Geologists

_	61	Ro	ary			_		ELE	VAT	ION 246.6 BORING Nº 20
[-	T	Bag	10			SP	Brown wedium coarse SAND with occasional layer of dark prown SILT
						1		Ħ.		layer of SRAYEL
	e2. €	5	30. 34.	; <u> </u> .	i.5	ŀ	5	#	7,	Dark gray micaceous fine pAND with layers of SILT (organic)
					İ		}	H.	S.	arown fine to coarse GRAVELLY SAME
		į		13	1 4	2	12	11:		toto layer of oxidized SILTY GLAY
		ļ		-	!		!	H		COBOLES
		į			}	ì		Ho		scattered COBBLES
ı ı i		i		l _e	 -]]	1'3	H	SP	Srown fine to medium SAMD wit GPAVEL and occasional COoBLE
		j		-		1		H:	SJ	Grown fine to coarse SANG and JPAVEL
		1	552	15	. 5	:	4.7	П.	Н	
		1		1	į	İ		12	3	rown fire to coarse SRA/EL afth Libbur.
		,		Ì	1		25	Η.	ì.	Grown fire to quarse IANS with fine GPA-Es
				į	1	Ì		HZ	32	main DRAVIL and Cossils
1	٠,	i		Ι,	: 2 5			H		crown fine to toarse SARCOCK SAND
							10	Щ		
		i			1					intes of elual at this feet
		į		1	į			\mathbf{H}		المعدد در دوم دام ۱۹۰۰ و الوزاورية .
. :						i		H	ł	market 1 control 1
									U	
								H	ı	
					:		•	П	} ;	
					i			#	la	
9		Ē	¥	2	38	1	ŗ	H.	á	
- 7	8	ž'	2:	è	179	2	: 5	- 1	B	inner St.
		એ.ં		0; e2:5 33 1: C.o. 34.	5; e2.5 33.3 2 C. 6 34.7	8 as 3 as 3 as 3 as 3 as 3 as 3 as 3 as	6 es la 6 es l		6 es la estada del estada de la estada del estada de la estada del estada de la estada del estada de la estada de la estada del estada de la estada de la estada de la estada de la estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del estada del esta	Section 1

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

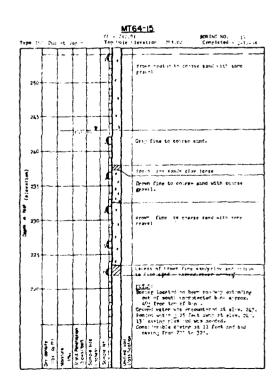
Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

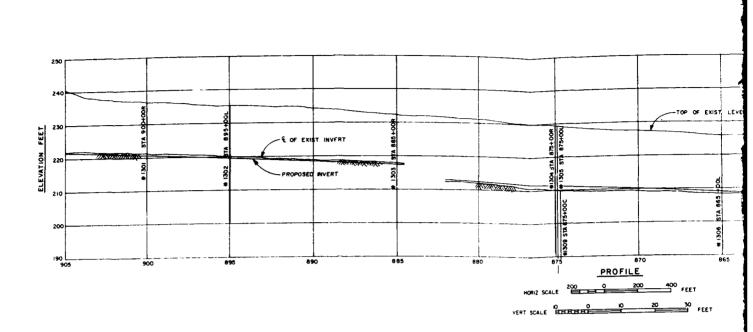

Completed and only seathers.

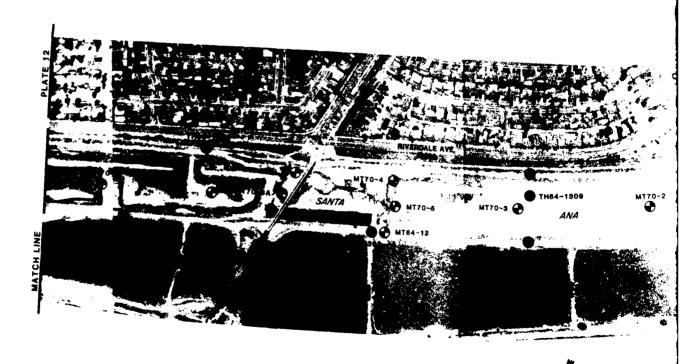
Completed and only seathers.

Completed and only seathers.

Completed and only seathers.

Comple

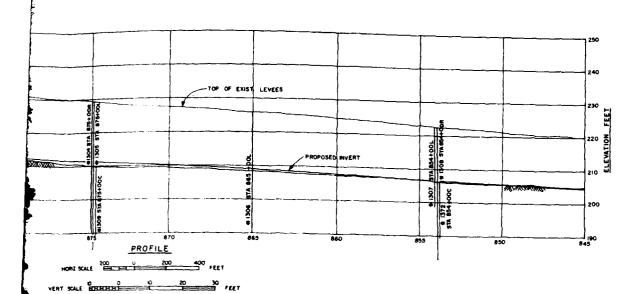



NOTES:

- 1. SEE PLATE 12 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

				1							
SYMBOL	DESCRIPTIONS		DATE	APPROVA							
	REVISI	DHS									
		U. S. ARMY ENGEN LOS ANG CORPS OF EN	R.ES	CT							
OSSIGNAD ST.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM										
BRAWN SV.	LOGS OF	INVESTIGATION									
GROSS IN	В	OTHERS									
Ì	STA.965+	00									
MANITTED BY:	DATE	SPEC. NO. BACW 09-		SHOPET							

VALUE ENGINEERING PAY



NOTES

VALUE ENGINEERING PAYS

NOTES:

1. SEE PLATE 8 FOR LEGEND AND GENERAL NOTES.

2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF AVESTIGATIONS.

			+						
SYMBOL	DESCRIPTIONS.	9479	AFFROVA						
	REVISIONS								
		AY BNGWEIR DISTI LOS ANGELES PS OF ENGINEERS	iict						
0050HB 611	SANTA ANA RIVER MAINSTE PHASE II GENERAL DESIGN I								
SQAWN SY.	PLAN AND PROFILE								
STA 905+00 TO STA 845+00									

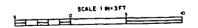
VALUE ENGINEERING

TH84-1301

THEN-13	0 1		S	TA 900	100 R			£L · 237±				
DEPTH	L06	NC	ш	ΡĮ	4	-200	11	DESCRIPTION				
				NP.	90			SMED/SILTY SMED: BROWN, MOIST, FEW GRAVEL TO 3/4 INCHES. 3 INCH AC AT SURFACE:				
	SM/SM	_		- H2	90	12	R	SAPE: DANK BROWN, COARSE GRAINED SAND, FEN GRAVEL TO 1/2 INCH. REPUSAL AT 2-0 FEET-				
								SAFE: FEH GRAVEL TO 1-1/2 THORES, REPUSAL AT 5-0 FEET-				
6.0				100	90	10	R					
8:11	SPA			ΨP	. 93		"	SILTY SAND: BARK BROWN, MOIST, COMMSE GRAINED SAND, FEW GRAVEL TO 1/2 INCH, REPUSAL AT 8.5 FEET DUE TO ROCK-				
				Ψ	83	16	798	SILTY GRAVELLY SAMD: DANK BROWN AND GREY, MOIST, GRAVEL TO 1 INCH-				
10.5								SILTY SAMD: GREY, MOIST, COARSE GRAINED, SAMD, FEM GRAVE 1-1/2 IMDRS-				
12.0	SW/SM		_	ΗP	88	16		SAMD/SILTY SAMD: GREY, MOIST, COMPSE GRAINED SAMD, GRAVE TO 1-1/2 LINGUES.				
								SILTY SAMD: GREY, MOIST, DENSE, COARSE GRAINED SAMD, FEW GRAVEL TO 1/2 INCH, REPUSAL AT 14-5 FEET-				
		_		e	_92	15_	298	SAME: MATER AT 17-5 FEET, ADDING HLD AT 17-5 FEET-				
	54							SHEET THIER AN 17-7 PECT, ADDISED FULL AT 17-2 PECT				
<u>V 17 4</u>				_#P	91		36					
				₩	91	13						
21.1							5	SRAWFLLY SAND/SILTY GRAVFLLY SAND. TAN, COMMISE GRAINED				
24.0	SM/SM			ЖP	97	9	20	SAND, GRADE, TO 7 INCHES-				
								SILTY SAMD: SHOWN TAN, SLIGHT CONESTON, FEW GRAVEL TO ? INDES-				
27.0	SM			•	95	14	10					
	SP/SH			ш0	90	12		SAND/SILTY SAND: LIGHT THE, SLIGHT CONESTON, COARSE GRAINED SAND, FOR GRAVEL TO 1/2 INCH-				
50.a							19					
	SM/5PI			φ	97	11		SATE: Few grants. TO 3 INCHES, FEW COMBLES TO 4 INCHES, NO SPT AT 33-0 PEET DUE TO COMBLES.				
3.0												

TH84-1302

THB4-13	W2		- 21	A 895+	90 L			EL . 2
DEPTH	L%	MC	U.	P)	4	-200	4	Descri
							39	SAND/SILTY SAND: BROWN, MO SAND, REFUSAL AT 2-5 FEET-
		5		¥	86	6_	198	SAFE: TAN-BROWN-
		3_		<u> </u>	97	<u> 11</u>		SWE: "REDIUM DENSE-
		<u>4</u>					ę	
	\$P/\$*	<u>. 4</u>		₩.	96	5	72	
M: 16-5	Ĺ	: _					17	SAME: NET, WATER AT 16.5
				*	93	12	3	SAME: LOOSE-
21 -0 2 <i>1</i> -0	SM-2M	·····•		•	85	9		GRAVELLY SAND/SILTY GRAVEL
<u> </u>				<u> </u>	99	_ 25_		SILTY SAND: TAN-BROWN, WE CORBLES, REFUSAL AT 23-0 F
		25		*	. 39		٩	
		26		¥	T00 93		9	
	<₩					_	R R	SAPE: GREEN, FINE GRAINET
	Ç#	27		٠	700			REPUSAL AT 26-0 PEET TO BY SAFE: SHEEM W/ LEVIS OF PIN SAFE: SHEEM W/ LEVIS OF PIN SAFE: SHEEM; FINE TO COMP


TH84-1302

	ST					EL. 2362					
×	LL.	PĮ	•	-200		DESCRIPTION					
					9 9	SAMO/SILTY SAMD: BROWN, MOIST, DENSE, COARSE GRAIMED SAMD, REFUSAL AT 2.5 FEET.					
		₩P	. 16	6_	198						
•						SAFE TAN-BROWN.					
۱			97	11							
						SAME MEDIUM DEMSE-					
<u></u> -											
•											
ــــــــــــــــــــــــــــــــــــــ		Ψ	96	5	22						
,											
·					;7						
						SAME HET, WATER AT 15-5 FEET, ADDING REVERT AT 15-5-					
						SME : DOSE					
		Ψ	93	12	3						
			a 5	-		SRAYELLY SAND/SILTY GRAVELLY SAND: Since As ABOVE, FEN					
		_				(COL. 25.					
		JP.	. 99			SILTY SAND: TAN-BROWN, MET, COMPSE GRAINED SAND, FEM CORNLES, MERISAL AT 23-9 REET DUE TO MOCKS-					
<u>ئ</u> ــــــ		咿	25_	33	ę	REFUSAL AT 25-3 FEET TO ANOKS.					
						SAFE - GREEN, FINE GRAINED SAND-					
22		<u> </u>	_100_								
7.6		***	100	25	٠	SAME. SPEEN H/ LENS OF PINC, VERY DENSE, REPUSAL AT 29-0" SAME. FREEN, FINE TO COARSE GRAINED, REPUSAL AT 32-5 FT.					
						STEE MEETS THE 19 CONTROL GRAINED, REPUSAL AT 7212 TT					
					20e						
5		₩P	100	39							

NO

TH84-1303

THE4-13	103		\$1	A 885+	00 R		EL- 2332				
DEPTH	L06	r(c	Ł.	P!	-4	-200	×	DESCRIPTION			
1.5	SP/SM			Ψ	88	5	R	SAMD/SILTY SAMD: TAN-BROWN, DRY, CORRLES TO 6 INCHES. REFIELD, AT 0.5 FEET DUE TO BOOKS.			
3.0	SW/SM			MP_	91	10	30A	SAME: DANK BROWN, DENSE, REFUSAL AT 2-5' DUE TO GRAVEL-			
				₩.	91	13	34	STLTY SAMD: DAWK BARDAN, DAY, DENSE-			
	SM							SAME: GREY, FBH GRAVEL TO 3 INCHES, FBH COBBLES-			
				Ψ	99_	13_	,	SAPE: FEW SHAVEL TO $3^{\prime\prime}$, consides to $6^{\prime\prime}$, repusal at $8\text{-}0$ feet Dup to shavel-			
		8		\psi	90	16	•				
12.0	SW/SM	,			91	 ii	P	SAMD/SILTY SAMD: GREY, MOIST, DENSE, REPUSAL AT 14-7 FEET DUE TO GRAMEL.			
15.3_	3#/3n				,,		R				
	SP/S¥	å		. _ ¥.	_#_	6_	ę	REPUSAL AT 17.3 FEET DUE TO SPAMEL.			
195	0 54/54	10 21		*	- ¥-	10		GRAVELLY SAMIUSILTY GRAVELLY SAMI. SAME AS ANDRE, THE GREY, WATER AT 19-5 FEET.			
4 .50	9.30/31			E.				QUAYEY GRAVELLY SAND: BROWN-THM, MET, NO SPT AT 29-3 FEE DIE TO COMBLES-			
	sc	<u> 51</u>	···	.12	66			SAFE: Ten-			
							6	Q_AYEY SAMD: TAN-BACHA, L10SE-			
26.0			+3	29	34	45					
	٦.			¥	37	,		SANDY STUT GREY-YAN, COARSE GRAINED SAND-			
28.0					45	<u>-</u>	. 20	SAND SREY-TAN, COARSE GRAINED SAND-			
30.0						·	19				
	SW/SP			'p	97	5		SANY/SJETY SAND: GREY-TAN; MICHIUM DENSE, COARSE GRAIMED SAND:			
<u> 33.0</u>							. 19				
35.0	99/94		11		39	12					
-							-				

NOTES:

- 1 SEE PLATE 13 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS STHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

				<u> </u>					
STMBOL	egg eggenore								
	REVIS	IONS							
		U, S. ARMY ENGINE LOS ANGE CORPS OF BNC	L25	.					
980040 FT.	SANTA ANA I PHASE II GEN	RIVER MAINSTEM, CALIFO ERAL DESIGN MEMORAN	PINIA XVIM						
MANN St.	LOGS	F INVESTIGATION	S						
	CORP	S OF ENGINEERS							
GROWN PM	STA.900	+00 TO STA.885+0	00						
BANTTED BY:	DATE	MEC. NO. BACWOR.		340					

VALUE ENGINEERING I

<u>TH84 — 1304</u>

THBA-1	304			STA &	75+00 R			EL- 290±
DEPTH	L06	Æ	Ц	. P	-	-200	Ħ	RESCRIPTION
			_		96	10		SAND/STLTY SAND: BROWN, MOIST, COMBLES TO 12 INCHES-
	SWSM	3		w	91	9	60R	SAFE: DENSE, COMBLES TO 6", REPUSAL AT 2-5" DUE TO GRAVEL-
6.0							439.	SAFE: Dringe, comples to 4", repusal at 5.5" due to gravel.
		٩					198	GRAVELLY SAND/SILTY GRAVELLY SAND: SAME, REPUSAL AT 8-5" DUE TO ROCK-
	SP/SM	5		HP	80	7	194	SAME: MOIST, GRAVEL TO 5/4", REPUSAL AT 11-0" DUE TO ROOK-
12.0							R	
		5		ĸ	85	8	32 9	SAME: ROUSE, TO 2", REPUBL. AT 14.5" DUE TO ROOK. SAME: ROUSE, GRAVEL TO 1", SOME COMMETTE DERRIS TO 4", REPUBL. AT 17.5" DUE TO ROOK.
	SW/SM	3					36R	
19-5		11 19		нP	98	9		SAMD/SILTY SAMD: SAME, MOIST TO MET. SAME: LIGHT BROWN, WET, WATER AT 19.5'.
							22	SAME: TAN-BROWN, COARSE GRAINED SAND-
		_		NP	90	8	23	
z.g							20	
8-0		22_			87_			SAND: REDDISH TAN, CORRSE GRAINED SAND-
1.0	a.	n	33	16	100	69	24	SANDY CLAY: REDDISH TANK STIFF.
	SM	25	23	2	74	37	R	GRAVELLY SILTY SAND: REDDISH TAM, MEDIUM DENSE, REPUSAL AT 72-0 DIE TO ROOKS-
5.5				₽_	71	24		SILTY SRAWELLY SAMO; SAME, NO SPT AT 35-0' DUE TO BOOKS-
4.5	SH-SM			₩	55	9		GRAVELLY SARTI/STLTY GRAVELLY SARTI: REDDISH TAM, MEY, POLL DERS TO 16" AT 58-5", NO SPT AT 58-0" DUE TO ROCKS.

TH84 -- 1309

309		S	TA 875	+00 C			EL. 210±
٤06	MC	ц	P1	4	-200	*	DESCRIPTION
						6	GRAVELLY SAND: LIGHT BROWN, MOIST TO HET COMISE GRAINED SAND, GRAVEL TO 1/2", WATE
				73	1		
20						3	
							SAMO: MULTICOLOGO, HET, LOOSE, COARSE SH
				35	4		GRAVEL TO 3 IMCHES-
						16	SAMITY GRAVEL: PROME, MET, MEDIUM TIBNSE, SAMO-
GΡ	-		_	46			
						16	
64/6C		27	7	58	23	[R	SILTY SMMY GRAVEL/CLAYEY SMMY GRAVEL: MET, COMPSE GRAVMED SMMD, GRAVEL TO \$ INC TO \$ INCLES, SOME CLUPPS OF CLAYEY SILT, 15-0 FRET-
2b\2¥	3			95	s	15	SAMP/SILTY SAMP: DANK IMPON, MET, MEDIUM CONESTON, FINE GRAINED SAMD, FEN GRAME, T
	\$P	SP SP SA/SC	\$9 FP GA/6C 27	\$P	106 MC LL P1 4 73 59 55 69 68 68/6C 27 7 58	1.05 AC LL PI 4 -200 73 1 \$9 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 4 \$6 5 \$6 4 \$6 4 \$6 5 \$6 5 \$6 5 \$6 6 \$6 7 \$6 7 \$7 58 23	106 NC LL P1 -4 -700 N 6 73 1 59 35 4 16 69 48 4 16 69/6C 27 7 58 23

ALUE ENGINEERING PAYS

TH84 - 1309

S1	A 875+	00 C			€L. 210±
<u>.</u>	Pl	4	-200	1	DESCRIPTION
Г				δ	GRANCLLY SAMP. LIGHT BROWN, MOIST TO MEY, LOOSE, FIME TO CORP. "PAINED SAMD, GRAWPL TO 1/2", MATTER AT 1.5 PEET-
		73	1		
				3	
-					SAMP: "ULTICOLOED, NET, LOOSE, COARSE GRAINED SAMD, FEN
		35	4		GRAME, 70 T INCHES-
				15	SAMPY GRAVEL ROOM, WET, MEDIUM DENGE, "I'ME GRAINED SAMD.
L		-			
ľ				16	
F -	,	99	23	Ĭŧ	SILTY SMAYY GRAVEL/CLAYEY SAMBY GRAVEL: NATIOOLONGO, MET, COMPSE GRAVED SMAD, GRAVEL TO 3 PHONES, SOME COMPLE TO 3 INCHES, SOME CLAYES OF CLAYEY SILT, REPUSAL AF \$2.0 PEET.
F		95	5	15	CANDISCON CARD DARK MODEL, MET, MEDIUM DENSE, SOME CONCESSOR, FINE GRAPH, TO \$ IMPLES.

TH83-1305

TH83-13	05		ST	4 875+0	99 L		EL. 2291	
DEPTH	1.06	HC	Щ	PĮ	-4	-200	×	DESCRIPTION
	SH/SH		-	#P	92	8	33 298	SMO/SILTY SAMD: BROWN, DENSE, COARSE GRAINED SAMD- SAME: CORBLES TO 4", REPUSAL AT 2-5".
	<i>3</i> 17.31			МP	93	9	49	
9.0	-				<u>-</u> -		15	
11.0	_8_		51_	. 72	99	70		SAMPLY SILT: BROWN, MOIST, COMESTVE, COARSE GRAINED
							29	SAMB/SILTY SAMD: TAM-BROWN, MOIST, MEDIUM GRAINED SAMD-
				۱۴	99	3	32	SAME: COMPSE GRAINED SAND-
¥ 17.0							72	SAME: MET, MATER AT 17-0'-
	SW/SH						/2	SAME: "MOUNTIAN, COBBLES TO 5", NO SPT AT 20.0" DUE TO ROCKS-
				ND	87	,		SAME: COBALES TO 8", NO SPT AT 23.4 DUE TO POORS-
24.0								SAME: COMMLES TO 12 IMPHES
26.0			75	59	97	31	27	SAMBY SILT: GREEN, MOIST, SLIGHT CONESION, FINE GRAINED SAMD.
	494							SNF: SREEN WETH RUST COLOR-
30.0			75		_97_		26	
				₩	94	15	D	SILTY SAME: GREEN, WET, COARSS SPAINED SAME, I INCH LESS MUSTARD COLORER SILT. SAME: NO LENS OF SILT, REPUSAL AT \$1.97.
								SHE: NO LENS OF SHELLY HELD ON THE SHELLY HE SHELLY HELD ON THE SHELLY HE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HELD ON THE SHELLY HE
	SH.	_			_		. •	REPUSAL AT \$5.01. SAME: FINE TO COMPSE CRAINED SAMO, CON TRAMEL, REPUSAL
				₩2	97	13	,	gt ²⁸ . ⁹ .
42.0							- 6	REFUSAL AT 41-2'
45.0	\$×/\$	•			- 99	3	,	SWO/SILTY SAMP: GREEN-RUST, WET, FINE TO COARSE GRAIN SAMD, FEW GRAVEL, REFUSAL AT 49.2.

NOTES:

- I SEE PLATE IS FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4. ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

									
STIMBOL	Mario4	DATE	APPROVA						
	REVIS	U. S. ARMY ENGINEER DISTRI LOS ANGELES CORPE OF ENGINEERS	G						
DESIGNATE BY.	SANTA ANA I PHASE II GEN	RIVER MAINSTEM, CALIFORNIA ERAL DESIGN MEMORANDUM							
BRAWFF BY.	LOGS OF INVESTIGATIONS CORPS OF ENGINEERS								
GOOD IN	STA.875+00								
SUBMITIED BY:	DATE STAD	SPEC. NO. BACWOF B	94987						

VALUE ENGINEERING

TH83-I306

T183-1	306		:	TA 86	5+00 L			EL. 226±			
DEPTH	L06	MC	u	Pt	-4	-200	N	DESCRIPTION			
				. MP	. 95			SAND/SILTY SAND: BROWN, MOIST, COMPSE GRAINED SAND, COM- BLES TO 8", BOULDER TO 24", NO SPT AT 0.5" DUE TO ROCKS-			
							24	SAME: MEDIUM DENSE, COMMLES TO 6 INCHES-			
		5		IP	91	6					
							20				
	SH/SM						,	SAPE: ORGANIC AND INDRGANIC DERRIS AT 9.0, STEEL WIRE AND CARLE, WERLSAL AT 8.0.			
	3H7 3F1	15		NP	31	lu	_				
				NP	95	7		No SPT AT 11-0 PEET DUE TO ROOKS-			
								SAME: ADDING MATTER AT 15-0 FEET QUE TO CAVING.			
15.0					·		35				
_	59/58							SAME: TAMPARORM, MET, COARSE GRAINED, REW GRAVEL, NO SPT AT 17-9 REET THE TO ROOKS, WATER AT 17-9 FEET-			
8.0				_#P	_95_			CMMW CTI T COMMW CT AV T.			
	a.M.		29	7	100	65	55	SMPTY SILT/SMPDY ("LAY: TAM-BROWN, WET, HARD, COMESTIVE, FIME BRAINED SMPD-			
27.0											
24.0			49	21	100		45	SMEY SILT: TAN-BROWN, WET, HARD, CONESIVE, FIDE FINE			
								SAMPY (LAY: TAN-BROWN, WET, HARD, CONESIVE, FINE GRAINED SAND.			
27.3	0		35	14_	100	. 81	41				
								SILTY SMIDY GRAVEL: BROWN, NET, FINE TO COMPSE GRAINED SAND, COMMLES TO 4 INCHES.			
	GM.			*	53	13	₹6				
33.0								No SPT AT 32-0' DUE TO ROOKS-			
350	SP/6#			*	33	6		SAMOY GRAVEL/SILTY SAMOY GRAVEL: RRINK, MET, COARSE GRAINED SAMO, COMBLES TO 5 INCHES.			

TH63-1307

1183-1307			S	IA 8544	09 L			न्. २२३४
del 1	LOS,	*	tı	Pį	4	-200	*	uEacutation
1.5.	SH/24	4			35_			SANT/SILTY SAMI: ARGUM, DENSE, SR COMPLES, REPUSAL AT 0.5" DAR TO HOOKS.
3. 0	7	5			-53		•	SAMPY GRANTL: BROWN, VERY DENSE, SE COMPLES TO 4", SEPLEME, AT 2-0' THE TO BOOKS:
								SAND/SILTY SAND: GREY, MOIST, VERY DENSE, COMPSE GRAINED SAND, TEMUSAL AT 5-0".
		1_			97			
								SME: Two-grey, moisy to day, dense, SX confles to $\mathbf{k}^{*},$ measure, at 3.5'.
		٠			97_	9_	96P	
	SW/598							SME: TAM-RAGIN, MOIST, VERY DENSE, REPUSAL AT 11-5'-
	4-1.1	1_			91_	11_	51 •	
		<u>s</u> _			95	9_	76#	deputat at [4.5" rule injeriors.
		2			91	_1	76R	Remarks at 17-5" aut to moks-
9.5						9		SAFE: SAM, MOIST, COMISE GRAINED SAND.
11-0							129	SILTY SWID: RADIN, MEY, COMMISE, ARALMED SWID, REFUSAL AT 20.5° , WATER AT 21.0°
2.5	S 1				87_	<u>25.</u>		
5.0	\$				91	٠	9	PROPERTY SAITS: SHOWN, NET, COMPAR GRAZINET SAID, REPUSAL AT 25-11 DUE TO LARGE MOCK.

TH83-1308

TH83-1308			SI	TA 854+	00 R			Q. 223±
DEPTH	F06	МС	ц	Pį	4	-200	N	DESCRIPTION
3.0	SH/SH	8		•	80	5	33 98	GRAVELLY SAND/SILTY GRAVELLY SAND CLARSE GRAINED SAND, 5 PERCENT CO REFUSAL AT 2-5 FEET DUE TO ROOKS-
2.11							3 4	SAPE: TAN-BROWN, FINE GRAINED SA
6.0	9 1 			-	84	, 	22	
	29	4			96	2		SMD: TAN-BROWN, MOIST, MEDIUM TO SAND-
8.5			*****				24	SILTY SMITH: TAN-BROWN, MOIST, MEI GRAINED SAND, WIRE DENRIS AT 9-8 H
		1		₩.	_92	15_	15	SME: BARK BROWN, MOIST, MEDIUM
	SPI							GRAINED SAND-
		27		۳	99	35	28	
18-0	···-							SMIDY GRAVEL/SILTY SANDY GRAVEL:
20.5	5P/9N	6		₩	5?	5	15	GRAINED SAID
0.5 (21.0								GRAVELLY SAMD: REGAL, MET, COARS TO A INCHES, NO SOT AT 23-0 FEET 21-0 FEET, ADDING REVERT AT 21-0
	39				59	7		
27Q		-						NO SPI AT 26-0 FEET DUE TO ROOKS
								SAMDY GRAVEL: BROWN, NET, COMPSE TO B INCHES, NO SPT AT 29-0 PEET
	G o				49	4		No SPT at 32-0 FEET DUE TO ROCHS
16-0	· 							No 97 at 75-0 DUF to 900-
	6 ₩				43	3		MO SPT AT 33.7 THE TH MOCK.
0.0								

ALUE ENGINEERING PAYS

TH83-1308

	st	A 854+	90 R			£. 223±
ί	ш	PI	4	-200	*	DESCRIPTION
-		•	80	5	33	GRANT LY SAMD/SILTY GRAVELLY SAMD: BROWN, MOIST, DENSE, COMPS, CRAIMED SAMD, 5 PERCENT CORRUES TO 4 INCHES, HEPUSAL AT 2-5 FRET PUE TO ROCKS.
ŀ		¥P	94	,	72	SAVE: TAM-BROWN, FINE GRAINED SAND, MEDIUM DEMSE-
			96	2	74	SMID: TAN-BROWN, MOIST, MEDIUM TENSE, COARSE GRAIMED SAND-
						SILTY SAMP: TAN-BROWN, MOIST, MEDIUM DEMSE, COARSE GRAINED SAMD, WIRE DEPRIS AT 9.0 FREET.
		_ P	92	15_	15	SWE: DARK BROWN, MOIST, MEDIUM DEMSE, COMESTVE, FINE GRAINED SWO:
27		₩P	99	35	.79	
6		IP	57	5	15	SHIPY GRAVEL/SILTY SARDY FRANEL: TAN-RADIAN, MET, COARSE SHAIMED SARD-
		-	59	,		PAINTLY SAMP. ROOM, MET, COMESE GRAINED SAMD, CORMLES DIN INNES, NO CT AT 21-0 FEET THE TO ADDYS, WATER AT 21-0 FEET. ADDING REVERT AT 21-0 FEET.
						%0 SPT AT 25-0 FEET OME TO ROOKS-
					•	JARTY (PAINT): BROWN, WET, COMPSE STAINED SAME, COMBLES TO A THO-ES, NO SPT AT 29-0 FEET DUE TO ROCKS-
			49	ti		No GPT AT 32:0 PREET DUE TO MOCKS-
					-	% 97 AT \$5-9 DIE 107 400×-
			43	3		No (27 at ₹3.0 que πι 800κ-

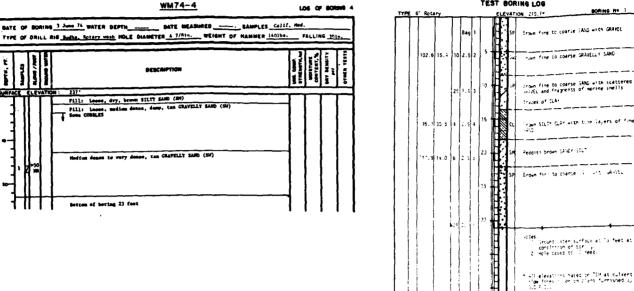
TT84-1372

INVERT 1784-1372						I	1184-1372		
			57	A 8544	00 C		£L- 206±		
DEPTH	L06	MC	LL	PI	4	-200	H	DESCRIPTION	
3.0	39				39	1		SAID: MULTICOLORD), LOISE, COARSE GRAINED SAID, FON GRAVEL GRAVEL TO $1/2$ [MCVES.	
6.0	SM			**	97	14		SILTY SMID: LIGHT BROWN, MOIST, LOOSE, FINE TO COMPSE GRAINED SMID.	
								GRAVELLY SAND/SILTY GRAVELLY SAND: MULTICOLORED, MOIST TO MET, LOOSE, COMESE GRAINED SAND, GRAVEL TO 1-1/7 INCHES.	
	SW/SM			¥Ρ	9 5	5			
13.0								SAMPATILITY SAMP: SAME, LIGHT GREY, S. 194T COMESTON, FINE	
14-0	59/5H			, jap	98	. 6		GRAINED SAND.	
	SW/SM			МP	74	5		GRAVELY SAMP/SILTY GRAVELY SAMD: MULTICOLORED, MOIST TO MET, LOOSE, COARSE GRAINED SAMD, GRAVEL TO 1-1/2 INCHES.	
17.0		_							

NOTES.

- I SEE PLATE 13 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE & FOR DATE DRILLED OF EXCAVATED AND TYPE OF EQUIPMENT USED.
- A ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

		ļ	
STREEDL	MACOPTIONS	9479	MADCAW
	REVISIONS		
	U. S. ABMY BNOR- LOS ANG CORPS OF EN	eus	ict
20000100 FT.	SANTA ANA RIVER MAINSTEM, CALIF PHASE II GENERAL DESIGN MEMORAN	ORNIA IDUM	
STATE OF	LOGS OF INVESTIGATION	48	
<u> </u>	CORPS OF ENGINEERS		
CHOCK PA	STA.865+00 TO STA.865+	00	

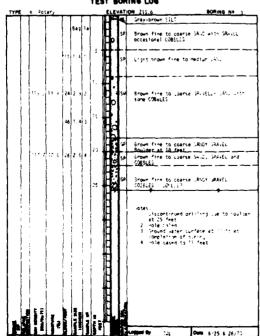

VALUE ENGINEERING

All elevations hased on TSM at cultient rigg trops of ten on thems furnished by DLCF.DLD

Dame 6 20 5 23/

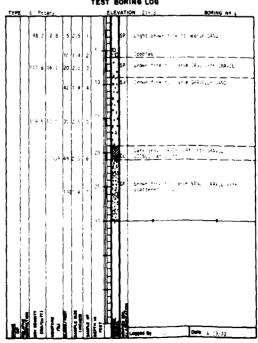
MT70-1

MADRE & TARER . Commerce Gordons TEST BORING LOG

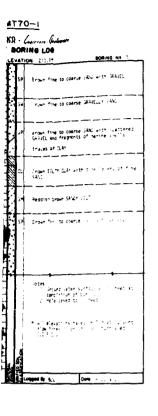

MT70-3

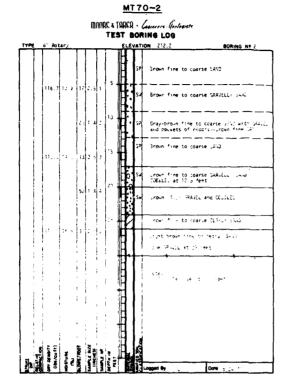
BATE OF BORING 3 June 74 WATER DEPTH ----

Bettem of boring 23 feet

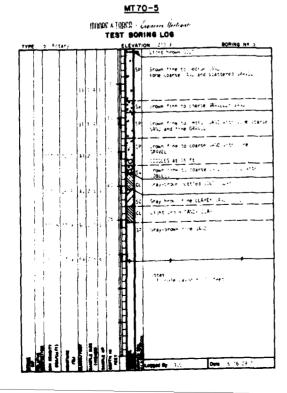

Same / FE.

MINNER & TARER . Lagracore Gardonne TEST BORING LOG




MT70-4

MODRE & TARER . Gagarers Vectors TEST BORING LOG



ALUE ENGINEERING PAYS

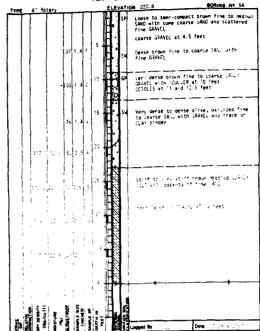
Jackenste OB ur while relationed polyaku. tine to partir Adil History Fig. of American 4: 212 end to Later the Above in

MT 70-6

HHORE & THREE . Gamere Gelenste

PE	6 નેંદ	tar/	_				ELE	ATIO	ON 280.4 BORING Nº 6
				5ag	14				One Toose brown fine to coarse IAID with SPARE
		1120		2.4	1	7		5.	Loose to compact prown micaceous fine COLTY SAVO
		i	li	ĺ	i		H.	Sa	Jense proun fine to coarse 394-000 (15)
j	ļ			; .		;-	E	3	Dense under fine to coarse sAtur unnill
	Ì		-				800		Dense brown fine to coarse DRAVELO (2007) 2007
			5;	٠.	3	*: +	ģ		
					!		Н		Dense fine to coarse L-13 Little WAVEL
-		{		١		-5	18	30	scatteres la ers of COLUES
1							H¢.		orignees by spearse who and fine Phaville
			Į.	, ,		، د.	H)	50	Dense of valories (Largo Largo to more about on largo pointing)
3		1					H.		lavers of fine or .
	1	i	i			: ·	ľ		Lense time to lentury out 177 in such
	.,) 27	ļ.,		1	İ	H.	9	o daut to on eluit. I safe st interperue lib off un un anter-
1	:	i	1				Ħ	1	neterberge it offs will us of seed
1	ŧ			1		ĺ	H	1	
1	!			ĺ		1	H		ense gra i naskoso, utsiko ukuli nt i prise stanni
Ì	109	19.6	52	2.5	7		H	1	
-			-		1	ì	В	l	
- }						15.	H	1	
-							H		
- 1		ĺ	İ	ĺ		52.	H	•	Coanse SAND and DRAVEL
-]	1		33	1.4	3	1 2	H	1	mand office ILA-EVICILT with thirm intercess layers of fine SAND
- !							H		Dense to compact office fine IA-C with occasional thin layer, of StC
1		İ	ĺ	į		55.	111-1		occasional thin layer, or 5.0
		1		1	ļ		Щ.		layer of GRAVEL at 57.5 feet
-						63	H		sone CLAY
j	72	33.4	33	2 5	,	53	T.		Jery stiff dam office issi
			i	j					.otes: 1. Acte intito cale hole insuccessivi due to obstructions caused by cook es
!	8 E E			77			1	1	i sistma t
u	ON DE MESTY	- Destune	Š	1	12		-	133	Logged By Date

NOTES:

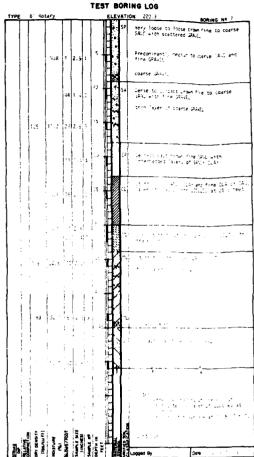

- I. SEE PLATE 13 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE.

			=								
STRECK	оволитона		BAR	MINONA							
	REVIS	IONS									
		U. S. ARMY ENGINEER LOS ANGELES CORPS OF ENGIN	1	-							
CORRORAD SY.	Santa ana river mainstem california Phase II general design memorandum										
SEAWN SY.	LOGS OF INVESTIGATION										
Opcide to	8	Y OTHERS									
	STA.905	-00 TO STA.845+00									
BURNINTED BY:	DATE APPROVED.	SPEC. NO. DACWUP		201021							

VALUE ENGINEERING PA

MT70-6A

MORRE & TORER . Conneces Gelauste
TEST BORING LOS



WA 69-1

Ditt fig Rotary Wash	NIL E	LEVELIDA	457.2		16611	2 81	_	c. <u>c</u>		_
(Alumbriff Berin) See Notes	MOLE B	1313001	6.1	nch	BATS	97.1			/3/6	
SOIL DESCOI	711 94						Г	P	UI.	4
SESCULATION AND REGISES	(81.00	1011111E	CORESST	56 to 1494	84778	1	ş	5	1	17 (17 (17 (17 (17 (17 (17 (17 (17 (17 (
Fine SAMP with 6 Inch SILT	Ten	Met	Looss	87	_	Ė	Γ			
			H Dense							
CLAY lenses	জ	}	1	ļ	,	ļ		T		
Sandy GRAVEL	97	Vot	V Dense		10.		Ì			
with veriable size cebbles throughout								卢		100
f inch less of SAND w/lerge cobbles Fine to Carron SAND	Z-E-		<u> </u>	_	13	1		L]	
Sandy GRATEL	Oy Bro Oy Bro	We t	V Dras	-	ţ]		F	}	100
with some cobbins		İ			10	1	Ì	-		100
BOTTOM OF NOTE AT 24 PERT MOTTES: 1) Coving of Boring walls curre with see of extra likel dril 1) Mile net builed to determine groundwater level; 3) Mile terminated due to sever drilling conditions, counting size progress. Hony cabiles and some bouldness.	070				25					
TA WOLF Sents Am Miver L		<u> </u>	## 1 E E	110,00		1.	L	Ч		11.6
Photogram County, Calif		730	147 60	991			111	_		18

MT70-7

MININE & TABER . Contineers declearste

MT64-11

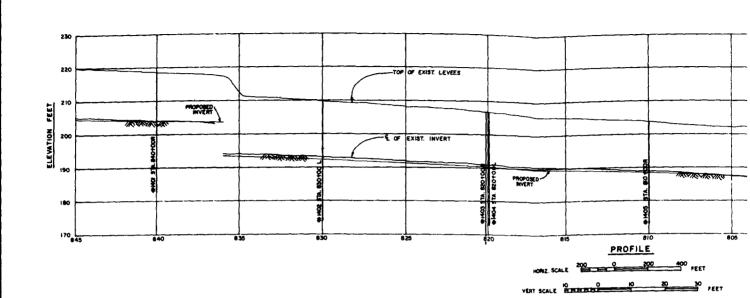
yp^	10" 640	•!		r	Top	, Ho	e Ei	%, U. ≥90.71 BORING NO. 17 evation 200.16 Completed - 2-11/11
205					. C		-	Street tity, tong with laters of street v.a. and clayer that. Reddishehren fine to coarse rank with sandy clay leases and stattered gravel.
195		- ;			, (-	êtoer sandy clay.
î.					١.			Reddisn-prown fine to course sand.
in line	-	-	-		, (Gray medium to fire sand.
: }				¥ _	٠ (drom medium to fine same.
s ₁₂ :								NOTES: Foring located on fairly steet ramp coming off pouth bark super.: 75 set from top of bank. The steet of the steet of the steet of the steet of the steet of the steet of the steet of the steet of the steet of the steet of the steet of the steet of steet of steet of steet of steet of the steet of steet of steet of steet of steet of the steet of steet of the stee
	Dry density (25s qu.ft)	17.40m	Stand Terretophyna Colema/ Teth	Sompre act	Scenpte No.		Unified soul	

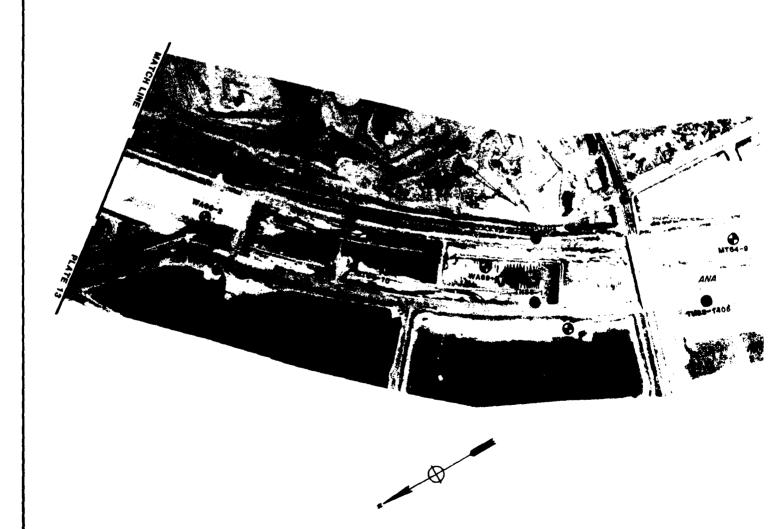
ALUE ENGINEERING PAYS

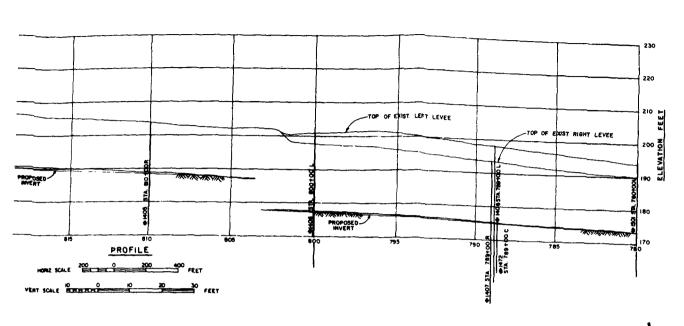
MT70-9 MARRE & TARER - Coursers Genteurs TEST BORING LOG ELEVATION 223,7 BORING N Brown medium to coarse SAiO cose provin fine to coarse area applica-Dark gray to brown SILT edium to poamle paul and Brown medium to coarse SAND with GRAVEL with thin layers of fine SALD t under file to lastis Gray-prown SANDY CLAY with scattered Grown fine to coarse SANO with fine GPAVEL coarse GPAVEL between 15.5 and 16.5 feet | s. | · 2 | 4 | 22 Coarse SPAVEL countries at laste sery of the last laste. Fromh fin - to coarse GRAVELLE SAND with scattered - 320223 and thre was the Presummants, Occided educen 45 and 20 ft Brown fine to overse unit loanse whereboard locality at at feet otevictic dales follo fretvinomever, 100 ground Latter Lyffele excuent as Lenstein Kilolourich 1 mote Laier to fill fret 1 The state of the s to surrought of the Dong MT64-11 MT64-12 NOTES: G. L. 218.50 Top Hole Plevation 273.2 Top Hole Stevation (b) Type 6" Dietet Jager Brose gravelly slith same with some tourse gravel. are to a result broom of sindy class 220 sendy clay levent and scattered gravel. Brown milto mand and grayel with few milty clay lenges. brown clean fine to coarse sand with some gravel. promining com-Tedersa, town fine to cheese sand. From sang clay. Star medica in fire same. Brow fine to course ment with course gravel.

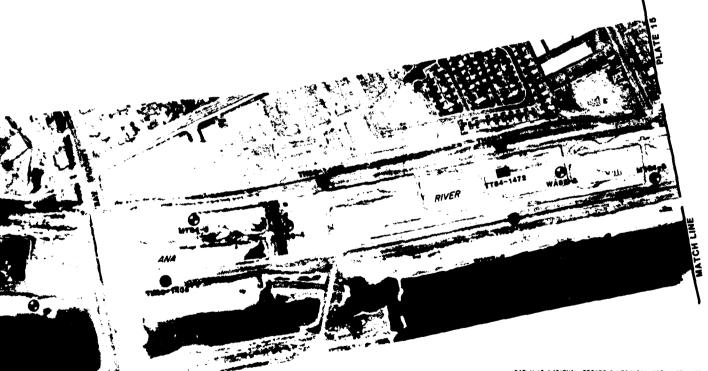
MT70-8

HINDAR & TAARA . Commerce Gootcarte TEST BORING LOG EVATION 224.8 Loose brown medium to coarse sAND with fine GRAVEL thin layers of SIL? Brown fine to coarse sAIO with interbedded layers of CLAYER SAIO occasional trin layer of TVAVEL grown fine to sparse SRAVILLE Selv Brown time to heature LAND Tan very fine SILTY SAID Gray-timbur fine skill with SkillsTG/E fragment Design 1972 1985 otes Tomble reservity 11 met


Milli-per a craimed on fairly steem mamp coming iff could have surgers 25 feet formed to be a. Commission of bear and a servation in although three was recuting water 1.30 feet at almost on 20%. Fact to megrate full rate with no significant cave.


Earling incited in getting remisoring of Dearling increased in microckethod in migrous 30% for top of books. The promotion of the promotion was undergeters, in the books although their books promotion where 20 feet amount on 10 feet before books and the feet before the state of the time. The time of time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of time of the time of time of the time of the time of time


- I. SEE PLATE 13 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE


-F		= $=$ $=$								
SAME	DESCRIPTIONS	DATE	APPROVAL							
	REVISIONS									
		A DA BAGAGES OF VACGORES	ict							
concrete Pri	SANTA ANA RIVER MAINSTE PHASE II GENERAL DESIGN I	M, CALIFORNIA MEMORANDUM								
STATES ST.	LOGS OF INVESTI	BATION								
OFFICE PA	BY OTHERS	BY OTHERS								
	STA.905+00 TO STA.	845+00								

VALUE ENGINEERING PAY

- I. SEE PLATE 8 FOR LEGEND AND GENERAL NOTES
- 2 SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

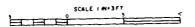
STANCE.	740700		-	1
,,,,,,		ISIONS	1 244	
		U. S. ABMY THIGH LOS AND CORPS OF EN	A.B	CT
OEMONED EV.		RIVER MAINSTEM, CALIF NERAL DESIGN MEMORAN		
SEA VINE SW	PL	AN AND PROFILE		
GROSS SI	STA.845	5+00 TO STA.780+	00	
SUBMITTED ST:	DATE	SPEC. NO. BACWOP		T

TH 83-1401

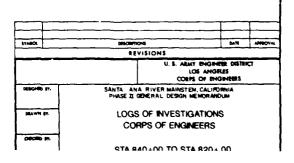
TH83-1	401		S	TA 840	+00 R			EL • 219±
DEPTH	L06	MC	ŧL.	PŢ	4	-200	N	RESCRIPTION
2-5	591	7		NP	81	18		SILTY GRAVELLY SAND, BROWN, MOIST, DENSE, MEDIUM GRAINED SAND, REPUSAL AT 2-5 PEET.
2.2	SP/SM			<u> </u>	92		2 3 R	SAND/SILTY SAND: Brown-tam, Moist, Medium Grained Sand, FEM GRAVEL, REFUSAL AT 5-5 FEET DUE TO ROCKS-
7.0	377381	,			32		21R	
8.5	GM/GC	9	23	6	57	16		SILTY SANDY GRAVEL/CLAYEY SANDY GRAVEL: GREY-TAN, DENSE, COMBLES TO 6°, NO SPT AT 8.0' JUNE TO BOOKS.
		6		Ψ	80	10		GRAVELLY SAND/SILTY GRAVELLY SAND: GREY-TAM, DENSE, CORRLES TO 5 INCHES, NO SPY AT 11.0 FEET DUE TO ROOKS.
	SH/SM	6		ПР	78	,		SAME: TAN-GREYISH BROWN, MOIST, MEDIUM GRAIMED SAMD, FBH GRAVIEL.
		5		₽	90	8	Ą	SAME: MEDIUM DENSE, REPUSAL AT 17-0 FEET DUE TO ROOKS-
1.0	···						24	
5-û	2h			幣	89	14		SILTY SAMD - GREY, MOIST, ORGANIC SMELL.
		<u> 5</u>		¥ρ	87		40	SAND/SILTY SAND: TAN-BRN, MOIST, MED. TO COARSE GRND- SND-
	SH/SM	, ह		•	8 9	ę	30	SAPE: Medium dense to dense-
								SAME: Dense
0.0							47	SAMD/SILTY SAMD: TAN-BROWN, MOIST, EDIUM TO COARSE GRAINED SAMD.
	92/5#	8		₽	98	6	46	

TH 84-1402

EL - 210:				•00 L	A 830	S1		¥02	THB4-14
DESCRIPTI		H	-200	-4	PI	Щ	MC	L06	DEPTH
SAND/SILTY SAND: LIGHT BROWN, SOME CLUMPS OF COMESIVE CLAYEY	SAK		12	94	MР		12	SH/SH	7.0
SAMD: LIGHT BROWN, MOIST, FIN	SAN	40					_		3.0
			3	34			3		
		28							
SAME: FEW GRAVEL TO 1/2 INCH	SAM	8							
			3	93			4	SP	
		26							
SAME: FEW GRAVEL TO 1 INCH-	SAYE	39	2	35	-		;		
		12	2	88		-	_		1.0
SAMPY STLT/SAMPY CLAY TARE TO COMESTIVE, FINE GRAINED SAME.		77	65	39	5	79		۴.	-
SAMOY GRANEL/SELTY SAMOY PRIVE TO MEDIUM DENSE, FINE TO COMPT 3 INDRES, COBBLES TO 5 INCHES, COARSE GRANEL, NO SPT at 27.5	SAM!	R	5	39	₩P			as ige	4-1
									<u></u> .
SAMDY GRAVEL: DARK BROWN, 401 FINE TO COARSE SRAINED SAMD > TO 5 INCHES, NO SPT AT 79.5 SE	SANG FINE TO		4	36				٠.٤	
GRAVELLY SAND/STLTY GRAVES YOU LOOSE TO MEDICAL DENSE, FINE YO	GRAY		·	 57				12-54	3.1


VALUE ENGINEERING PAYS

TH 84-1402


12		2.	4 3304	-00 L			EL - 2102
1.06	MC	ш	PI	-4	-200	4	Description
EN/SH	12		¥		12		SARTYSILTY SAMD: LIGHT BROWN, MOIST, FIME GRAINED SAMD, SOME CLUMPS OF COMESIVE CLAYEY SILT:
	3					4 S	SMIT: LIGHT BROWN. MOIST, FINE TO COARSE GRAINED SAND, FEN OR APEL.
						29	
ţ	4			1!		3	SAME - FEN GRAVEL TO 1/2 INCH.
•						25	
	3			•	,	19	SAME FEW GRAPEL TO LINON.
						13	
	÷	, i			<u>-</u>	٠.	CANNY CILTICANNY (LAY. TARK BRIMM, MOIST, VERY STIFF, COMESIVE, FIME GRAIMED SMED.
2.64			*	**		3	SAMPL PANEL/SI, TO SAMPL SPANEL. THAN BROWN, HOLST, LOOSE TO HEDITH DENSE, FIRE TO COMMISS SHALMED SAMD, GRAVEL TO 3 LINCHES, GERISAL AT 24-5 FEET DUE TO COMMISS SPANEL, NO SPI AT 27-5 FEET DUE TO ROOKS.
٠							TARTY TRAFF. THAN BROWN, MISST, LODGE TO MEDIUM DENGE, FINE TO COMPSE TRAINED SIND, GRANGE TO \$ INCHES, COMBLES TO MOVER OF \$ 7.5 FEET DUE TO COMBLES.
							TO CHARMAN HAS SPT AT 19.5 REET DIE TO COMMUNES. TRUST Y SAMONSTEIN GRAMMELY SAMON DANK MENNAL HOIST.
ः द्व			*				LONGE TO MEDI A DENSE, EINE TO COMPSE BANKED SAND, SANGE, TO STINCHES, COMMES TO STINCHES.

TH 83 1404

THB3-14	104		s	TA 820	+00 R			EL - 2072
DEPTH	L06	NC.	LL	ρį	4	-200	H	DESCRIPTION
1.5		_10_		P	89	_14_	37	SILTY SAID: BROWN, MOIST, DENSE, FINE TO COMPSE GRAINED SAID, FEN GRAVELS, FIRST 6 INCHES ORGANICS.
3.0	32/24			MP	93	6_	22	SAND/SILTY SAND: TAN-BROWN, MOIST, MEDIUM DENSE, FINE TO MEDIUM GRAINED SAND, FEN GRAVEL.
								SAND: TAN-BROWN, MOIST, MEDIUM DENSE, MEDIUM TO COARSE GRAINED SAND, FEW GRAMEL.
	SP	8			91	3	19	SACTOR SA
		6			95	3	-	
9.0							22	
	SP/SH	6		No	83	5		SAMD/SILTY SAMD: TAN-BROWN, MOIST, MEDIUM DEMSE, MEDIUM TO COARSE GRAINED SAMD.
12-0							18	
13-5	20	6			69	2_		GRAVELLY SAMD: BROWN, MOIST, MEDIUM DENSE, COARSE GRAINED SAMD, FEW CORRLES TO 4 INCHES.
15-0	SW/SM	. 6		. 192	72	_5_		GRAVELLY SAND/SILTY GRAVELLY SAND: BROWN, MOIST, LOOSE, COMMISE GRAINED, SAND, FBH COMMISES TO 9 INCHES.
		20	_25	5	99	59_		SANDY SILT/SANDY CLAY: TAN-BROWN, MOIST, MEDIUM STIFF, COMESIVE, FINE GRAINED SAND, FEN GRAINEL, ADDING MID AT
	ML/CL	24	25	5	90	53		15.0 FEET-
		24	24	5	97	55		SAFE: PEDDESH BROWN.
21.0							7	
	α		24	9	99	63		SAMDY CLAY: REDDISH BROWN, MDIST, VERY STIFF, COMESIVE, FIME GRAINED SAMD, OCCASIONAL GRAVEL.
24.0							42	
25,5	sc_	16	_27_	8_	100	43		CLAYEY SAND: REDDISH BROWN, MOIST, COMESIVE-
27.0	64/SC	_	26	7	50	15	14	SILTY SAMBY GRAVEL/CLAYEY SAMBY GRAVEL. REDDISH BROWN, MOIST, COMESIVE-
	ge.	16		ΝР	55	27		SILTY SMIDY GRAVEL: REDDISH BROWN, MOIST, CONESIVE, FINE GRAINED SAND-
31.0		12		₩	59	29	Q	SAME: "EDILM TO COARSE GRAINED SAND, TORBLES TO 4 INCHES. REFUSAL AT 29.7 FEET.
	SW/GM			NC.	47	6	R	SMMY GRAVEL/SILTY SMMY GRAVEL: PERDISH RADWH, WET, FIME TO CHARSE GRAINET SAMD, OCHASIONAL COMMLES, REPISAL AT 37-0 FEET-

- 1 SEE PLATE 14 FOR LOCATION OF TEST HOLES AND TEST
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED ,H EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT"

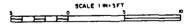
TH83-I403

THB3-1	403			STA 82	0+00 L			EL. 207\$
DEPTH	T06	MC	ш	PI	4	-200	N	Description
2-0	SPI	8		167	59	17	_	SILTY GRAVELLY SAND: BROWN, MOIST, TOP 1-5 PEET, ASPI MIXED IN SOIL-
		3		ıφ	91	6	50R	SMID/SILTY SMIT: TAN-BROWN, MOIST, DENSE, MEDIUM GRAI SMID, FEW GRAVEL, MERUSAL AT 2-5 FEET-
	SP/SM	3		₩P	93	6	20R	SAME: REPUSAL AT 5-5 PEET DUE TO ROOKS-
8-0	591	,		#P	88	13	198	SILTY SAND: TAN-BROWN, MOIST, DENSE, REFUSAL AT 8.0 F DUE TO ACCKS.
12-0								SAND/SILTY SAND: TAN-BROWN, MOIST, DENSE.
	SP/SM				92		39	
8-0		6		₽	91	7	46	
***	SM/SM	19		IP.	91	8	~	
1.0 2.0							5	
··0	98/SH HL/QL	19	23	_ 12 _5	99 100		11	SAME: BROWN, FINE TO MEDIUM GRAINED SAMD- SAMDY SILT/SAMDY CLAY: REDDISH BROWN, MOIST, LOOSE SLIGHT CONESION.
							**	SANDY CLAY: REDIDISH BROWN, MDIST, FIRM, SLIGHT CONESIO
	α	17	33	17	100	71	15	
3.0	_	ष	29	10	100	77		
2:0	5C	5	26	3	53	n		Q.AYEY SAMPY GRAVEL: PEDDISH-RROWN, MOIST, 9.16HT COMESION, COMBLES TO 5 INCMES, NO SPT AT 29.0 PEET DUF ROCKS.
	GP/GM	6		Ψ	45	5		SMOY GRAVEL/SILTY SMOY GRAVEL. ROOM, MOIST, MEDIUM ODAYSE GRAINED SMO. COMBLES TO 6 INCRES.
i-U								GRAVELLY SAND/SILTY GRAVELLY SAND: BROWN, MOIST, MEDIUM
	26/24	5		MD.	61	7		TO COARSE GRAINED SAND, COMMLES TO 6 INCHES.
3.9								

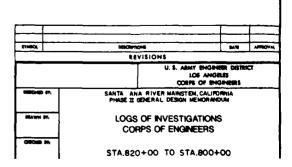
TH83-1405

7183-1	405		s	ia sic	H00 K			EL . 2041
DEPTH	L06	MC	ш	PĮ	4	-200	11	DESCRIPTION
1.5	_9	_ 9			96			SAND: GREY, HOIST, FRI GRAVEL
2.0	0	13	- 29	1	_00°			SAMEY CLAY: RETORISH MICH. HO SAMEYSILIY SAMO: GREYISH TAN-I
3.0	SW/SM	٩.		-₽	_99_	11_	2字	HES TO S INCHES, MERICAL AT Z
	34	9	20	4	72	18		SILTY GRAVELLY SAID: BROWN, PO GRAINED SAID, FEW GRAVEL-
5.5							44	
<i>1:</i> Q_	SP/SH	4			93	5_	•	SAME/SILTY SAMD: BROWN, MOIST, GRAINED SAMD, FEM GRAVEL.
		و		IIP	91_	16_	168	STLTY SAND: BROWN, MOIST, SLIS GRAINED SAND, FEW GRAVEL, REPA
	SP!	12			81	20	104	GRAVELLY SILTY SAME: SAME, DAY 0000R-
						_		SILTY SAND: SAME, BADAN, REFUE
13.0		19		Mb.	92	7	16R	
14.D	SW/SM	- 6		10	96	8		SAND/SILTY SAND: TAN-BROWN, DA
15.0				-			27R	SILTY SAID: TAN-BROWN, DATE,
	571	3		ДP	9.7	33	27.	GRAVEL, REFUSAL AT 14.5 FEET.
7.0								
18.0	ZM/24			_12	95	9_	23	SAND/SILTY SAND: GREY, MOIST.
		15						CLAYEY GRAVEL: REDDISH BROWN. MEDIUM DENSE-
	60	17	32	13	57	45	27	
22-0							23	
3.0	20	. 5		- 8	69.	22		GRAVELLY CLAYEY SAMD: REDDISH MEDIUM GRAINED SAMD:
								SAMOY GRAVEL/STLTY SAMOY GRAVE
	6P/6M	5		₩	43	9		FINE TO MEDIUM GRAINED SAND, RI ROOKS-
7.0							208	
		2				_	2.00	STUTY SAND: REDDISH DROWN, HO
	SM			40	199	14		SAND, FEN COBBLES TO 5 INCHES, GRAVEL-
	-	1		•	• • • •	• •		
		-						SAVE: MOIST TO HET, CAVING AT
2.0								

VALUE ENGINEERING PAYS


TH83-1405

77


_ }		S	FA 8104	00 R			EL- 2042
	MC	ш	PI	-4	-290	N	DESCRIPTION
ONAL G							SAND: GREY, MOIST, FEN GRAVEL ASPHALT MIXED WITH SAMPLE-
DEN		79		-36 -	- 59		SAIDY CLAY: REDUISH BROWN, MOIST, OCCASTIONAL GRAVE.
FINE	1 9		NP	99	!!_	298	SILTY GRAVELLY SAND: BROWN, NOIST, DENSE, FINE TO MEDIUM
ro *	9	20	4	7?	18		GRAINED SAND, FEN GRAVEL-
FIL	4		100		5	44	SAND/SILTY SAND: BROWN, MOIST, DENSE, FINE TO MEDIUM GRAINED SAND, FEN GRAVEL
EY.	9		10	91	.16		SILTY SAND: BROWN, MOIST, SLIGHT COMESION, FINE TO MEDIUM GRAINED SAND, FEW GRAVEL, REPUSAL AT 8.5' DUE TO ROCKS-
EE7	12		ıφ	81	20_	16R	SRANELLY SILTY SAND: SAME, DANK GREY TO GREY, ORGANIC ODDR-
_	10		100	92	,	15R	SILTY SAMD: SAME, BROWN, REPUSAL AT 11-5 FEET-
ENSE	6						SAND/SILTY SAND: TAN-BROWN, DAMP, MEDIUM DENSE-
OCC FEE		_	R_	_ 96_		2. 7A	SILTY SAND: TAN-BROWN, DAMP, MEDIUM DENSE, OCCASIONAL GRAVEL, REPUSAL AT 14-5 FEET, MATER AT 15-0 FEET.
GP.	8			9.7			
u cd	1.2			95		23	SAND/SILTY SAND: GREY, MOIST, FINE TO MED. GRAINED SAND.
j	15						QLAYEY GRAVEL: REDDISH BROWN, MOIST, SLIGHT COHESION, HEDIUM DEMSS:
	17	32	13	57	45	23	
 BRO	 5		8	59	22		GRAWULY (LAYEY SAND: REDDISH BROWN, MOIST, FINE TO
.5° e	ç		φ	ų3	g		SANTY GRAVEL/SILTY SANDY GRAVEL. REDDISH BROWN, MOIST, FINE TO MEDIUM GRAINED SAND, REPUSAL AT 26.5 FEET DUE TO ROCK.
						209	
9 FE	1						STILTY SMID: REDDISH BROWN, MOIST, FINE TO MEDIUM GRAINED SMO, FEW COBBLES TO 5 INCHES, NO SPT AT 29 FEET DUE TO GRAVEL.
Ī	-ģ-		*	127	Ţ. ,		SAME: Moist to MET, CAVING AT 32-0 FEET-
- 1							SAFE: MUIST TO MET, CANTING AT 32-0 PEET-

TH83~1406

TH83-14	106		S7	A 800	+00 L			EL. 201#
EPTH	L06	MC	ш	Pl	4	-200	R	DESCRIPTION
1.5	94	3		MP_	91		23	SAND: BROWN, MOIST, MEDIUM TO DENSE, FINE TO MEDIUM GRAINED SAND-
		3_		IP.	- 98	6_	16	SAND/SILTY SAND: BROWN, MOIST, FINE TO MEDIUM GRAINED SAND, FEM GRAVEL.
							18	
		.4	•	₩.	97	5_	22	
	SW/SM	5_		. NP	97	6_	14	
		5		MP.	96	5_	12	50e - 7
18.0		4		NP.	97	5	17	SME: TAN, MEDIUM TO COMPSE GRAINED SAND, CAVING AT 18.0 PRET, ANDING REVERT AT 18.0 PRET.
	SP				93	4		SAMD: TAN, MOIST, MEDIUM TO COARSE GRAINED SAMD-
21.0_							18	SILTY SAND: RROWN, MOIST, MEDIUM GRAINED SAND-
	91	19		MP_	100	41	36	
27-0		17		Ψ	99	31	35	
28.5	211/21			M2.	_100	<u>9</u> .		SAND/SILTY SAND: RROWN, WET, MED- TO COARSE GRAINED SAND
	SC	25	39	15	100	42	25	CLAYEY SAND: BROWN, NET, CONESIVE, FINE TO MEDIUM GRAINET SAND-
33.0	•		15	39	100	49	32	
35.0	SP/SM			NP.	190	9		SAMD/SILTY SAMM: BROWN-TAN, WET, MEDIUM TO COAPSE GRAINES SAMD-
37.0	M.			*	100	60		SILT: BROWN, MET, STIFF, MEDIIM GRAINED SAND-
	a.	25	36	16	100	92		CLAY: REDOISH BROWN, MOIST, FINE GRAINED SAND-
90.0							12	

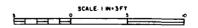
- 1 SEE PLATE 14 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE GA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

TH83-1407

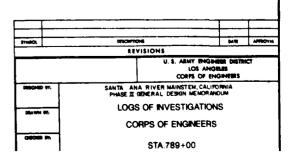
THB3-1	407			STA 7	39+00 R			EL- 1932
DEPTH	٤06	MC	u	. Р	1 -4	-200	H	DESCRIPTION
3.0	SM/SM	<u> </u>		98	79	9		SAMD/SILTY SAMD: BROWN, MOIST, MEDIUM GRAINED SAMD, OCC. STOWAL GRAPEL, ASPHALT TO 2.5 FRET, MERISAL AT 2.5 FRET DUE TO MOCKS:
	SPI	9		16	99	18	•	SILTY SANTI: BROWN, MOIST, DENSE, FINE TO MEDIUM GRAINED SAND-
6.0							_ 60	SAND/SILTY SAND: BROWN, MOIST, VERY DENSE, FINE TO MEDILI GRAINED SAND.
		2					56	
								SME: Occasional gravel, FeW combles to 4 inches, No SPT at 11.0 FeET DUE TO ROOKS-
	SW/SM	_6_		160	95	13		SAME: MIRE DEBRIS, NO SPT AT 14-0 FEET DUE TO ROOKS-
		<u>6</u>						
		7						SAME: NEDIUM GRAINED SAMO.
8.0							41	
	99	16			99	2		SATD: BROWN-TAN, MOIST TO NET, DENSE, MEDIUM TO COARSE GRAINED SAND, OCCASIONAL GRAVEL, FEM CORRLES TO 4 INCHES.
2.0							32	
1.5	3P/5M	13		ΝP	98	5	39	SAND/SILTY SAND: BROWN-TAN, MOIST TO NET, DENSE, MEDIUM TO COARSE GRAINED SAND, OCCASIONAL GRAVEL.
7.0	99				95	2	84	SMIT: GREY, NET, DENSE, COARSE GRAINED SAND-
	SM	32		Ψ	lw	34	44	STLTY SAND: PROMIN, MET. SLIGHT CONESION. MEDIUM TO COMPSE GRAINED SAND.
1.1							17	
								CLAY: RECHI, MET, STIFF, FINE TO MED. GRAINED SAND.
		57_ 52	41	15	190	85	17	
	دد						13	
								SANDY FLAY: SANE & MOVE, REDDISH BROWN-
		18_	28	12	100	77	21	
.5								
.0.	ዎ					_		CANEL & CAND: PEODISH PROMI, NET, 30 PERCENT GRAVEL.

TT84-1472

TT 84 -14	אַנ		s	TA 789	900 C			EL- 1752
KTGBØ	106	МС	ш	PÍ	-4	-200	•	DESCRIPTION
								SAND: MALTICOLORED, MOTST, LONSE, FI
	39				97	0		
6-0 7-0	•		_	•	98	50		SAMITY SILT: LIGHT GREY, MOIST FINE O
								GRAVELLY SAMD: MULTICOLORED, MOIST, 1 INCH, SOME SILT-
	3º				84	2		
					94	3		SAND: SANE AS ABOVE, FEN GRAVEL TO ?
M 14-0								
15-0			63	30	100	84		SAMPY SILT: DARK MONI, HET-


VALUE ENGINEERING PAYS

TT84-1472


	st	A 789	08 C			EL- 175±
-	LL	Pi	4	-200	4	DESCRIPTION
						SAME: MULTICOLORED, MOIST, LODSE, FEM GRAVEL TO 2 INCHES-
			37	9		
j		Ψ	98	70		SAME SULL LIGHT GREY, WAST FINE GRAINED
-						GRAVELLY SAME: MULTICOLORED, MOIST, LOOSE, FEW GRAVEL TO 1 INCH., SOME SILT.
_			84	2		
			94	3		SARP SAME AS ABOVE, FEN GRAVEL TO 3", MATER AT 14-0".
-	63		100			SAMPY SI I DARK BROWN, MET-

TH83-1408

THB3-14	108		\$1	A 789	•00 L		£L- 1961				
DEPTH	L06	MC	LL	PI	-4	-20N	H	RESCRIPTION			
1.5	50	_ 5_			97_	4	24	SAMS: BROWN, MOIST, MED- GRAINED SAND, OCCASIONAL GRAFE			
3.0	SM			*	100	7]	15	STLTY SMITH: BROWN-GREY, MOIST, MEDIUM GRAINED SAND-			
	3 P	4			99	3		SAME: BROWN-GREY, MOIST, MEDIUM GRAIMED SAME, NO SPT AT $5.0~{\rm FEET}$ DUE to $8~{\rm IMCM}$ Cobbins.			
7.5		18	_		39	2		SAME: DARK BROWN, FINE TO MEDIUM GRAINED SAND-			
		٤					25	SAND/SILTY SAND: BROWN-GREY, MEDIUM GRAINED SAND-			
	SP/SM	6		φ	99	7		SAME: FINE TO MEDIUM GRAINED SAND-			
12.0							16				
	39	4			98	3		SMID: BROWN-GREY, MOIST, FINE TO MEDIUM GRAINED SAND-			
15.0							12				
		12						SAMPY SILT: BROWN, MOISY, STIFF, FINE TO MEDIUM GRAINED SAMPI			
	۳.	76		ΨP	100	52	17				
21-0							23				
23.0	SH	6		100	99	14		SILTY SAID: BROWN, MOIST, MEDIUM GRAIMED SAND-			
		<u>.</u>					₹2	SAND: "ROWN, MOIST, MEDIUM GRAINED SAND-			
					99	2					
	ès.	18					?5	SME: MET, WATER AT 29.0 FEET.			
<u>⊭ 29-0</u>											
							21	SAME - COARST GRAINED SAME-			
52.0							10	SAMPY CLAY: REDDISH-BROWN, MOIST, VERY STIPE TO HARD,			
		44	25	9	39	53	18	EINE PSYLMED SWED- SWELL CENT. JEDOLD-HARMA MOIST, APAG 211 10 AMMIN'			
	_	••			••		35				
	a.										
							40				
90.0											

- I SEE PLATE 14 FOR LOCATION OF TEST MOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

VALUE ENGINEERING FE75-10 WM74-2 FE75-6 LOG OF TEST HOLE LOG OF TEST HOLE TN-10 MC DO 4 200 DATE OF BORING 3/53114476 WATER DEPTH 10 . DATE MEA NO DESCRIPTION 77-4 E SILTY SAND- Brown, damp 95 10 SAND- Brown, Fine to course, damp, med dense to dense, TYPE OF DRILL RIG BUILD, SQUARY WASH HOLE DIAMETER 6 7/RE SANO - Brown, damp, dense, 115 100 10 DESCRIPTION 4 gaving. SILTY SAVD - Brn, v/moist, Soft / med. 42 109 100 50 Some gravel to 1.º Fill: Looke, dry, brown GRAVELLY SAID (SW 95 5 SAND- Brown, Moist/wet, | Montly tan, course-crained SAMD (SW) med dense, 4 100 5 - Thin lease of brown CLAY Fill: Loose, tan, MAND (SP) occasional G Severe orving Excavated 3-4-15 Loose, tem GRAVEL
Soft-medium stiff, gray Silly CLAY (CL) Loose, gray SILTY SAMD (SP)

Dense to very dense, tan SAMD (SP-SH) with FE75-9 Irravated 2 24 75 THO SILTY STAID - LOOSE, Clamp. disturbed SAND- Brown, damp, fine to coarse, dense. 5 112 100 10 Hedium stiff, gray SILTY CLAY (CL) Hedium Jamas, Rray CLAYET SAND (SC) Discontinuous Silty layers water seeps at 3; Caring, 7 108 100 5 With GLAVEL Dense, brown GRAVELLY SAMD (SP-9C) more moist u/ depth Danne, brown GRAVELLY SARD (SP-SH) 97 100 15 Bottom of boring 52 feet Esconated 3.4.75 WA 69-3 WA 69-2 CRIFF 44.0

HILL BIG Rotary Wash		ftettim.	201.		LACOR				/69	_
to beliebe i'nealf.		METER	6 Inc		SATE	PAIL	ш	_	110	
SP12 BESCAI	P\$109 CBC 99	e0 : 51700F	C001111	MIK.	DEFTO		=	-	10 000	Tani te
Medium to Course SARD	Brown	Wet	Louis	1795 SD		3	ž	53		8=
Maries to contra 2002	\$FOWN		H Dense	•						
with layers of Gravel throughout		į	Dense		,					
			V Donas		10					
!					. 15			1		
vick occasional small cobbles		ļ			20			T		
neat of cobblee					. 75			_		
HOTES: 1) Cowing of buring wells curt with use of sates thick dr	atted				. 30			Г		
med, 2) Mole not bailed to determin groundwater level, 3) Mole terminated due to seve drilling conditions, causin					15					
nius progress. Neap cabble and some boulders.					40			H		
Sendy GRAYEL with cubbles throughout	Gy Ben	W.C	V Benev	æ	45					
	L	ا	<u> </u>		50	L		Ь	L	L
Senta Ana River L BASSINGS Ovenge County, Cali	fornis	<u> </u>	01111	0 6 L	· .			Д		

GILL RIS ROTATY Wash	MOLE	EFOL: 48	fe. a		10-45	2 85	C.0	. 6	W,W	
Manufill Miffin	#OLE I	Likery Tipe	4 10.		9118	5611	LED		1514	
1914 9130	191164						F		4	
BERCHIBLIGG web BEarer?	CD1 60	BN - \$7 c/8 (·68513*	34.74 1.04	5(714	1	ĝ	3	1	
Gravelly SAND	Lt Brn	Wet	M Dente	CP.		Г	i			
	Brewn	Hotet to Wet		!	,			1		
SILT	Gy Brn	Hotet to Wet	Fire	WE.	10			1		
Sandy SILT	Rd Brn	Wet	H Dense	41.	15			1		
Sandy GRAVE	Gy Brn	Wet	Dense- V Dense		20			J.		100
with some cobbles					25	1		ı		
with cobbles throughout					10			_		104
SOTTOM OF WILE AT 31.5 FEET WITES: 1) Caving of boring valls cur with use of extra thick dr shall	ters'		† ·		15			_		
 Wele not beind to determing reundwater level. Hole terminated due to new drilling conditions, caust slew progress. Hony cobbl and some boulders. 						-				
UA MAILE Sente Ana River SASSILATES Orange Grenty, Cal	Leves Ifornia	1	99111	ļ.,		1			H 0	1

Pine t

Crave!

Siley

MOTE:

W A.

VALUE ENGINEERING PAYS

Dense, brown GRAVELLY SAMD (SP-SM)

Notion of boring 52 feet

33 j

WM74-2 DATE OF BORING MANUFACTS WATER DEPTH 10 . DATE MEASURED 1 June 24 SAMPLES Piccher and Calif. Not. TYPE OF DRILL RIG B. ISS. SOLSEY WASH MOLE DIAMETER 4 7/AIn. WEIGHT OF HAMMER 1401bs. OTHER 76579 DESCRIPTION Fill: Loose, dry, brown CRAVELLY SAND (SW) Hostly can, course-grained SARD (SM) Thin lense of brown CLAY Fill: Loose, tan, SAMD (SF) occasional GRAVEL 41 Loose, ten GRAVEL Soft-medium stiff, gray SILTY CLAY (CL) Loose, gray SILTY SAND (SH) Dense to very dense, tam SAMD (SP-SM) with GRAVEL T Had tom dense 17 114 Medium Miff, gray SILTY CLAY (CL) 38 Neetten Jones, Fray CLAYET SAMD (SC) Dense, brown GRAVELLY SAMD (SP-SC)

DATE OF BORNES 3 OATE OF BORN

WM74-3

WA 69-4

FILL BIG ROLATY WITH	MULC	Flererola.	187.4		recre	0 81	_	¢.c.	1, D	. P .
mes tree carries See Notes	HOLE	D17*** 14 *	6 Inc		2616	BRIT	ten	6/	5/69	_
SOIN OESCO	P1 64	, -			#F#F#				1	1
pitteritim we etwert	(8,90	m) styne	COM5157	101L		1117	170		3	Ż
Fine to Medium (Clean) SARD	Cy Brn	Vet	Loose	SP						
		ļ	M Dense							
Stity CLAY	2d 5rm	Holet	Stief	-				T		
	1	Ì			10					
Gravelly SAND	Dk Cy	Wet	Dense	SP				1		
Sandy CRAVEL, with cobbins	Grey	Wet	V Brner	GP .	. 15			Ι		100
Siley Clay	td äre	Wet .	30177	cī.	20			_		
,		-	v setif							i
Silty SAND and Sendy GRAVEL	Lt Tan	Wet	Drnee.	SH GP	. 25			I		
with cabbles and some boulders					30	L	L			_
SOTTON OF HOUR AT 30 PERT					: :					
NOTES: 1) Coving of boring wells curt- with use of extra thick dri mus.	i fed lare									
2) Hole not beited to determing roundwater level. 3) Hele terminated due to seve										
drilling conditions, country slow progress. Heavy cobbles and some boulders.	1						l			
		l								

NOTES:

Dense to very dense

Bottom of boring 32's feet

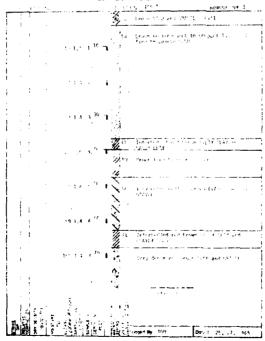
- I. SEE PLATE 14 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.

127 SA

3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

		L	
DESCRIPTIONS		DATE	APPROVAL
REVISIONS			
1	LOS ANGE	LES	
SANTA ANA RIVER MAINSTE PHASE II GENERAL DESIGN	EM, CALIFO MEMORANO	MINIA	
LOGS OF INVESTI	BATION		
BY OTHERS	3		
STA.845+00 TO STA	.780+0	0	
	SANTA ANA RIVER MAINSTIPHASE IT GENERAL DESIGN LOGS OF INVESTM BY OTHERS	REVISIONS U.S. ARMY BHORN LOS AND ENGINE CORPS OF BHO SANTA ANA RIVER MAINSTEM, CALIFO PHASE II GENERAL DESIGN MEMORANC LOGS OF INVESTIGATION BY OTHERS	REVISIONS U. S. ARMY ENGINEER DISTRICTION ANGRES CORPS OF ENGINEERS SANTA ANA RIVER MAINSTEN, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM LOGS OF INVESTIGATION

WA69-5


MILL SIG ROTARY Week	- INUE	ELEVAT HOU	101.6		IAGN			D,C.		\Box
.etter terme protect. 16 Feet	MALE	PLANETED	6 In	ch	BATE	981 1	LEB	6/9/		
SBIL DESCR	17184							78	₩-	. F
96520171100 AND 967M062	COLM	10111007	comsest.	to it.	MPIU	1	100	-		100 C
Time Silty SAMD	LE Gy	Hotet	Loose	811	_	Г				_
<u> </u>		1	1			ļ I	ľ			. 1
l	l	l	K Dense	1		}		١ ١		. 1
İ	1	1				1		П	ļ	
SAND	Lt Cy	Wet	Dense	127	٠ ٠	١.				
1	" "					1				. 1
l	ì	j	l	l	10			П		· 1
i		1	1	i l		1	ш		ĺ	ſ
1	l	1				١				
Fine Silty SARD C.V.S.	Bra	1	Denos	34	. 15 .	1	l	Н	ĺ	- 1
6/10/69	[1	ĺ	1 1		l	i		1	- [
	1		ļ	ł I		1	Н		. !	- 1
		1	i	i l	- 20	1		\vdash		- i
ŀ	l	ł				1				- 1
1	1	l	}			í	П			ĺ
	l	!	Ī	1	25	1	П			l
With Clay Lenses		ļ		1				Н		- 1
1	1	}	J	J		i.			ļļ	- 1
CLAY	Rd Brn	Wet	V BELEE	a 1	. 30	1	Ш	_		- 1
				L		1		ч		- 1
Clayey GRAYEL	Ad Dra	Wet	V Denr			1				ı
L	<u> </u>	↓	ļ	L.,	. 25	1.			ļ	J
Gravely SAND with few cobbles	Grey	Met	V Dence	5P	-	1	H	Ч		- 1
	1	1	l			1	il			- 1
1	l	L	L		. 40	1			}	
Sandy GRAVEL with large cobbies	Grey	Met	y Dense	(a)		┝	Н	Д	\vdash	100+
and few boulders		-	 	r	:	1	j l			. 1
NOTION OF HOLE AT AL FEET			ļ		45	1				1
1) Caving of boring walls curt	lied wi	h wee o	extra	hick	,	1	1			
drillers' mud. 2) Hole not bailed to determin	ground	patet le	41.			1	ı			1
3) Note terminated due to seve	to decil	ine cond	tions,	Aus-		1.				.
WA WALLE Sonta Ana River L			# # ! L L	# 9 L		16		Т	H O	
\$ ASSECATES Orange County, Call	formia		c1 10	P411		Τ,				۵. ا
POLE ALTE - DESPOSE BES!		1 (4	47.	67167	0# <u>/</u>		er. 2	_	_ 5	

MT66-1

				TEST	BOR	ING LOG
YPE	le" f	uchel			LVAL	ON 15 1 BUSHING ST
		2.1	i di j	1 4		Modified in ~ -0.01 graded SF+O with scattered include
	aŋ,:	3.6 3.5	hag	٠,		
		4.1	1 4 4	. 1 .7		
		3.3		20 🕝		
!	111.5	:	1	71	· la	Cray-treen SILTY CLAY
	-6.0	, ,,,,		10		Recallsh-brown unto sandy soft fenses a scattered drawel
		4.4	i i Pare i		 ناه دو	Settled troom fine to media- SHITY
!!		3.5	i ideo	1	r i	stead of fine gravel
	97.º		8 7.50		Cost Sci	Seddist-Univer CLAYEY SAID
		12.E 1	1 that 1	d C	22	South decree 1278 (279), sie of sot Clinia News Congress and See See 1288
		 !			¥-	Bets 1 Cause themproof 5: 2. Not most sound store 6. Lake most filled
				4		
			. ,	-		
;			:			
!!		,				
				1	, j	
		:				
ان اربعا افعاد عاظ	100	E S		(a		
	\$ =	1 2		7		Little 1 (Co. 11)

MT66-3

TEST BORING LOG

MT66-3 (cont'd)

TEST EORING LOG

1166		ECHING No.
		The second of the season
!!	•	
[]	•	
	,	
1:	•	
11 :		of a live of bearing that is
	i sinah I 🚉	
- i I	ન્યું -	S
		the first manner on the
i i	San Paris Contract	
1		en de la la la la la la la la la la la la la
11 1	1. 10.10	Section 1997 and 1997
11		
1 1		to disposit to the property of the second
1.1	an 1	
1 1	175 1,414	
4		
	100 1,410 C B	Į.
11		
11		
()		
	•	
1 2 3 -		
1 3	والمراجع المراجع المراجع المراجع	counting time term of the 177-45

VALUE ENGINEERING PAYS

MT66-1

TEST BORING LOG

Latination M release of the process of the season send with totk) i 1.6 1 2.5 to 7 myle of p 1.4 Multi 8

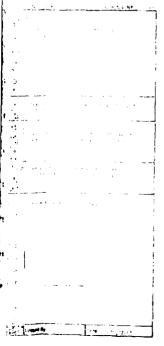
1.4 Multi 8

1.5 P.2.5 to the order SILIY CLAY

scale Proper site and said length and scattered grown

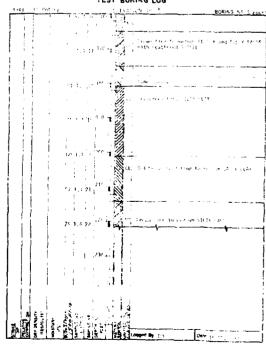
1.4 Multi 8

1.5 P.2.5 to the order site to produce SILIY Security 1


1.6 Security 1 7. Faxon thoughten to 2. Faxon thoughten to 3. Faxon thoughten to 3. Tule natifilled

MT66-2

TEST BORING LOG SSW Mottled brown well graded SALOD with 10 1.4 2 10 1 15.2.51 3 1991.4 a. Of tensors of fire to reduce \$500 the state of the s


66-3 (cont'd)

T EDRING LOG

MT66-3(contd)

TEST BORING LOG

- 1. SEE PLATE 14 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

							
BYMBOL	DESCRIPTIONS	OA1	1 APPROV				
	REV!	48					
		5. ARMY ENGINEER DE LOS ANGELES CORPS OF ENGINEER					
1000-00 tr.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE IZ GENERAL DESIGN MEMORANDUM						
MPWAN BY	LOGS O	F INVESTIGATION					
-	8	Y OTHERS					
	STA.845	+00 TO STA.780+00					
Albufrito In	DATE	MSC. NO. BACWS9 B.	94071				

MT66-4

т	EST BORING LOG	BORING Nº 1
TYPE 16" Bucket	ELEVATION 193.5	
	SP Brown very fine to me	
2.4 9ulk 1	L preces or sceer and	pitce, tr trit
2.9 Gulk 2	SP Mottled trown well gr	aded SAMD with scatter
2.7 Bulk 3	1004 12" face sand feet	
	SH Cray-brown CLAYEY SIL	
124.0 5.7 8 ,2.515	SF Brown very fine to fi	
3.5 Hulk 6	SW Mottled brown well gr	aded SAND
108.1 3.1 4 2.5 8	ML: Gray-brown SILT	
98.2 12.0 2,2.5,10:	CL Gray-brown SILTY FLAY	
83.6.37.4 ?12.5.11	CL Reddish-brown SILTY C	LAY with
115.6 16.6 2 2.5 12	133	
5.3 Bull 13	SC - SH YELT LES HE THE WELL SE	PREES SAUD with about
5,3 Bulk 13,	Notes: 1. Minor cavir 2. Water not e 3. Hole backfi	q throughout ncountered
	311	
	1 1 1	
	H] '	
•	្រុំផ្	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	(4) §	
Part of the Control o	Lugged By cr	per solves

MT66-17

TYPE 15" Pucies SELEVATION 197 SOURCE CONTROL 197 SOURCE CONTRO			
SM Reddish troom file to charse (RALC) : 1 SM Prown file to charse SANO Small Reddish troom file to charse SANO No water and size carries shaw 31			
3 2.2 7 5 Prown fine to charse GAALCY (Fill) Rowater and 2 for cartic strips 31	TYPE 15" Pucher	ELEVATION 197 BO	RING Nº
to pater and see carro selon 3.		3 2.3 1 5 7	GRAVET +
to water and a remeaning tribum 31			
The state of the s		ho water and size carries in	ov ?*
	Par Of an Office of the Office	The state of the s	

MT64-9

Турч 1/."	Buck	t			Top	1101	e E	t. L. 189.9 BORING NO. 9 levation 192.9 Completed ~ 2-17-64
145 LEO (6175 - 177)	Birch							
	Dry density (Ds. ce.ft)	Month ore	Srond Payersphon (5'0ms//both	Somble 1110	Somple Nº		closs from	

MT64-10

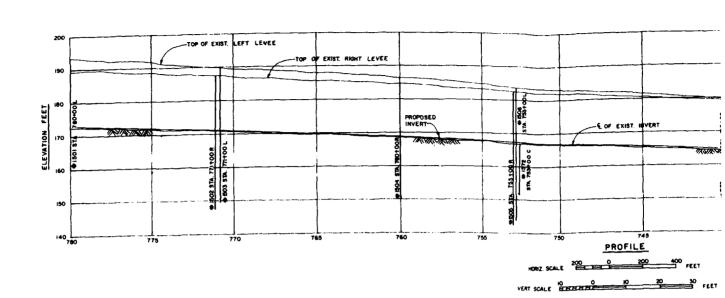
175	-	Poly just bound in	,		seem motion to fine said at! I were of states that the said at the
Deprin on teer of broad transfer			5 (term. Dine to course sand with sold to
195			, 4		Same as three vital lenger of elite variant clare sand
201			2		Clean fine to coarse sand with some pro

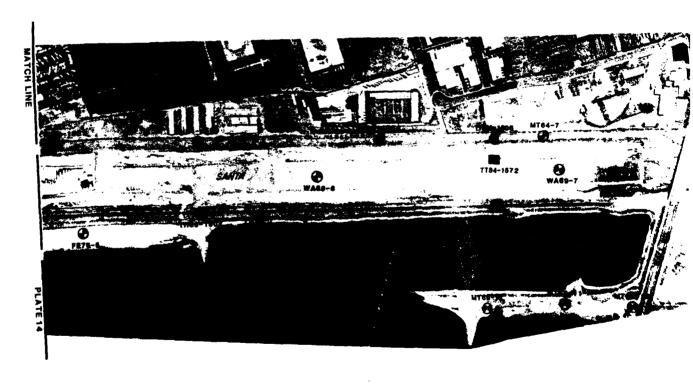
LUE ENGINEERING PAYS

MT66-17

	TES1	BORING LOG	
" Party		LEVATION F	BORING Nº 17
		So record troub face 1937	to coarse GRAVELEY SAMD
		July teme tine to chan	se 5/MD)
Ţ	i . 1	J	
		to water and size :	cavino 301gm 31
}			
			}
{ !			
(Barent)	COMPANY OF STREET	5 5 5 5 5 5 5 5 5 5 7 7 8 7 8 7 8 7 8 7	Corp

MT64-10

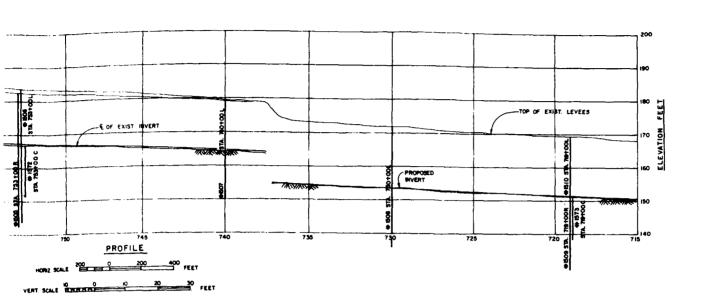

er tractic		Top No	do Elevation Completed - 1-11-1
			library fine to course send wat acre gravel.
			Same at the section tenses of silty sand same page 1.
	-		The control of the co
Or general	Stand Personalian Stant Book	Name of the state	Will in for in benuing the minding and if north entry the nectated benuing the form of the

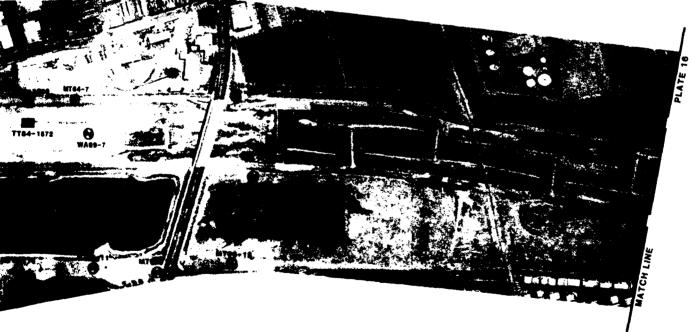

MT64-8

yp•	16" Bucket	Top II	r, 1, 171,4 MORING NO. 8 Ple Elevation (79). Completed -2-10-64
			Brown clean fine to course sand with scattered gravel.
175		1	Drown cleen fine to coarse gravelly sand
120			Rrown clean fine to coarse send with scattered gravel.
		4	-rown section some with sitty sand lonses.
Maria (E. Joyattes)			ermin silty medium sand, -rown silty clay, I means of homes silty consum to fine sand entering silty and silty consum to
155		160	Srown stity clay.
150			Boring located wast side better about 50 feet from existing concrete protected for the state of
	Ory demisty (10s ou ft.) Moisture (%) (1%) (2km / beatesten (2km / beatesten	Somple use (orchas) Somple Ne	Parket and

- I. SEE PLATE 14 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

	980397016	DATE APPROV								
REVISIONS										
	1	ALMY ENGINEER DISTRICT LOS ANGELES DRPS OF ENGINEERS								
DESIGNATO ST.	SANTA ANA RIVER MAINSTEM, CALIFORNIA AMASE II GENERAL DESIGN MEMORANOUM									
684 WH 57.	LOGS OF INVESTIGATION									
	BY OTHERS STA.845+00 TO STA.780+00									
CORCUSO PI										
SLEWITED BY:	DATE	. DACW 09 4								





NOT

VALUE ENGINEERING PAYS

- I. SEE PLATE 8 FOR LEGENO AND GENERAL NOTES.
- 2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

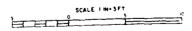
REVISIONS REVISIONS U.S. ARMY ENGAGES DISTRICT LOS ANGELS CORRES OF ENGAGES SANTA ANA RIVER MARKSTEM, CALPONNIA PHASE ZI GENERAL DESIGN MEMORNADUM	APPROVA								
U. S. ABMY ENGINEER DISTRICT LOS ANORESS CORPE OF ENGINEERS SANTA. ANA RIVER MAINSTEM, CALIFORNIA PHASE ZI GENERAL DESIGN MEMONINOUM									
LOS ANGRES CORRES OF ENGINEERS SANTA ANA RIVER MARISTEM, CALIFORNIA PHASE ZI GENERAL DESIGN MEMORNIOUM	7								
PHASE II GENERAL DESIGN MEMORANDUM									
PLAN AND PROFILE									
STA.780+00 TO STA.715+0\)									

VALUE ENGINEERING PAT

TH 84-1501

T1694-	1501		\$1	78C	0+00 L		EL- 194¢						
DEPTH	L06	HC	u	ρį	-4	-200	*	DESCRIPTION					
	SP/SM			₩P	91	9		SAMO/SILTY SAMO: LIGHT SAMON, MOIST, FIME GRAIMED SAMO, GRAVELS TO 1 INCH-					
3.0					93	3	- 19	SAID: TAM, MOIST, FINE TO MEDIUM GRAINED SAND, SOME GRAVEL TO 3/4 INCHES, ROUNDED, MEDIUM INSHITY, CLEAN-					
					97	3	12						
		4			98	3	ı,	SAME: TAN, MOIST, FINE GRAINED SAME, SOME STREAKS OF BLACK (ORGANIC).					
	ዎ	3		_	88	3	u	SAFE: LIGHT BROWN-MULTICOLORED, COARSE GRAINED SAND-					
		3			77	1	7	GRAVELLY SAND: SAME AS ABOVE, GRAVEL TO 2-1/2 INCHES-					
		3			94	3	16	SAND: TAN, COARSE GRAINED SAND, GRAVEL TO 2-1/2 INCHES-					
					38	4	29	SAME: TAM, MEDIUM DENSITY, FEW GRAVEL-					
·a							30						
0_	3P/SP			*	98	9		SMB/SILTY SMB: MEDIUM BROWN WITH MULTICOLOREN GRAINS, COMES GRAINED SMB. SOME COMESTON.					
.2	Þ				97	4	37	SMID: MEDIUM BROWN WITH MULTICOLORED GRAIMS, COMPSE GRAINED SAND.					
-	39/SP			₽	99,	5	14	SMID/SILTY SMID: LIGHT BROWN, MOIST TO MET, FINE TO COMMISE OR ALMED SAND, SOME GRAVEL.					
5							19						

TH 83-1502


				131 77.	1+00 R			£1. 188±		
DEPTH ———	1.06	NC.	u	PI	~4	-200	ĸ	DESCRIPTION		
								SAND/SILTY SAND: PROMIL MOIST, DENSE, I GRAINED SAND, FEW GRAVEL, ASPHALT SURFAL		
		<u>.</u>		HР	98	10		The desired, resident Supply		
		.5_					56			
		<u>.6</u>		NP	97	10	54			
	SW/SM	7								
		_					55			
								SAME. PROMY-GREY, NO PENTROMETER TEST D STEEL FOUND IN HOLE:		
				MP	97	12	R			
4.5		6					37			
								SANT): BROWN, MOIST, MEDIUM GRAINED SAND		
	20	6		MP	98	4	25			
20.0		7						SAME: GREY-BROWN, WET-		
	\$9/\$#	25			93	5	22	SANDY/SJLTY SAND; BROWN, HET, COARSE GR		
5.0							13			
	3#	28		WP	92	23	1,7	SILTY SAND: BROWN, WET, FINE TO COARSE		
7.0							27			
5.5	24.20	24		MP.	100	· ·		SAMP/SILTY SAMP. SAME AS ABOVE.		
		η	46	22	100	7ŋ	23	SAMTIY CLAY: PROMI, NET.		
	ů,	37	49	23	89	73	15	SAFF: REDOLSH-BROWN, MEY SCHE SPANE,		
		27	3 2	12	94	56		GRAVELLY SANDY CLAY: REDDISH-BROWN, WE		
							23	CLAYEY GRAVELLY SAND: REDDISH BROWN -		
		72	17	30	60	18		The second secon		

ALUE ENGINEERING PAYS

TH 83-1502

TH 84 1503

	STA	771 + 00	٩			EL. 1881	TH84-15	03			A 771+	00 L		_	EL. 190±
" (ц.	P!		- 2:00	*	PESCRIPTION	DEPTH	L06	*K	Li.	PI	-4	-700	*	DESCRIPTION
<u>5</u> .		4	as	10	56	SAMP/SILTY SAMP. RECOME, MOIST, DENSE, FIME TO MEDIUM (RAIMED SAME, FEM GRAVEL, ASPHALT SURFACE)	3-6		10	39	;	100	53		SMMY SILT. LIGHT BROWN, MOIST, FINE GRAINED SAND, FEM GRAVEL, SCHE CONESTON.
<u> </u>					-27						NP	97	21)	16	SILTY SAME: LIGHT BROWN, MOIST, FINE GRAINED SAME, FEB GRAVEL TO 2 INCHES IN SIZE-
.5_		₩r :		Ÿ	f,									10	SME: BROWN, MOIST FINE GRAINED SAND, CLUMPS OF CONESIVE DAW. BROWN MATERIAL.
-					44	CAME REQUAREDREY, NO PENTROPRETER TEST DUE TO DEBRIS AND STEEL FOLKED IN HOLLE.		S#	,		*	97	?9	20	
<u>.</u>	,	ys ÷	;*	::	;		<u>12.6</u>					96		İŧ	CAS): "ROOM, MOIST, FINE TO COMPSE GRAINED SAMD, SOME GRAME, TO I INCH IN SIZE.
,					,	"UN" - PRINK, MOIST, MEDIUM ORAINED SAND, FEN GRAVEL							•	17	
	•	uc :	ž.	•	*\$	104 Testably vet			3			g,		54	SAME RADAY MUIST, LIDSE, COARSE GRAINED SAMD, GRANEL TO 2-17 SHORES IN SIZE.
75		¥	;1		1	THE TOTAL ROWN, HET COMPRE GRATHED SAND-			**.,			95		₹ņ	SAME TILL TICOLORED, MOIST, LOUSE, EINE TO COMESE GRAINED SAME, 19-2 MOVES IN STORE BESIN ADDITION DRILLING MICH. SHE TO COMESE SAME SAME TO THE SAME SAME SAME SAME SAME SAME SAME SAM
ני.		¥	ij	٠.;	.*	171 189 Payer, NET, FINE TO COMPSE GRAINED SAND		Ŧ						42	
		¥ .	,			SATISTICS CAPE AS ABOVE.			-			3.	,	;**	TAPE TIGHT RADAY, MOIST, FINE GRAINED SAND, STIPE GRAFEL TO JULY TO NOT IN SIZE, PENETROPETER TEST ENDED MITH. I MAN TO STO.
			,			Min (), tr. — Region, ≪en						 -	٠.	::	
	.,					35 Pond on grown life this state graves.								4	
7.7		: :	٠.		,	FIRST CONTROL OF SECULOR BROWN, NET.	1 5.2		-						UNCY CLAY TARK BROWN HOIST TO MET, STIFF, COMESIVE, ONE SPACE TO 1 TOO IN SIZE
4,	.•	٠ .						:		۲,	:	;r	•4	1.8	
							10.1								

- I SEE PLATE 15 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF

			I							
	procernovs	DATE	MEGAN							
STMBCK	REVISIONS									
U. S. ARMY ENGINEER DISTRI LOS ANGELES CORPS OF ENGINEERS										
Opposed by	SANTA ANA RIVER MAINSTEM.	CALIFORNIA IOR ANDUM	_							
SEAWN ST.	LOGS OF INVESTIGATIONS CORPS OF ENGINEERS									
Cleding (A/	STA.780+00 TO STA.7	71+00								

TH84-I504

THEA	1904		STA	760	+00 R			EL. 1871
DEPTH	L06	MC	u.	PI	4	-200	H	DESCRIPTION
							-	SAND/SILTY SAND: BROWN, MOIST, LOOSE, FINE TO MEDIUM BRAINED SAND, FEW GRAVEL TO 3 INCHES!
	SP/SH	3		MP	94	5		
							15	
6.0								
					gi	3	13	SAND: SAME AS ABOVE, LESS FINES, GRAVEL TO 2 INCHES-
								SAME: PROMIN, MOIST, FINE GRAINED SAND, GRAVEL TO 2-1/2".
	99						10	Service of the servic
		4			97		13	SAME: LIGHT BROWN, MOIST, CLEAN, FINE GRAINED SAND, FEN GRAVEL TO 1 INCH-
15.0		•			3/	,	15	GEAVEL TO 1 INCH-
							18	SAND/SILTY SAND: GREY-BROWN, FINE TO COARSE GRAINED SAND, GRAVEL TO 2 INCHES, SOME COMESION-
			•	P	87	12		
	5P/5#						12	
	G 73							
							30R	PENETROPETÉR HIT ROCK -
23.5			-	_	OC	-3 C		SILTY SAME: MEDIUM TO DANK BROWN, MOIST TO HET, LOOSE,
							8	COHESIVE, FINE GRAINED SAND.
	S#			, ;	.00	36		
29-0					99	25	28	
								SAMP/SILTY SAMP. LIGHT BROWN-MULTICOLORED, FINE TO COARSE GRAINED SAMD, SOME SILT.
	50/S#		¥		39	8	23	Services and and area.
33.0								
35.0	20			19	00	3	3 0	SANT: SAME AS ABOVE-
							30	

TT84-1572

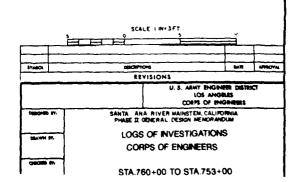
	INVE	ERT					I	TT84-1572					
1184-19	ת		2.	14 753	10 0 C			EL- 1572					
DEPTH	L76		ů.			-500	*	DESCRIPTION					
					¥	ş		SAMD: MILTICOLORED, MOIST, FINE GRAINED SAMD, 3 INCH LAVER OF CLAYEY SILT.					
<u>w 35</u>	\$₽				20	1		GRAYELLY SAND: "NULTICOLONED, MOIST, FEW GRAVEL TO } INCH					
2.0					96	,		SAMT: PALTICOLORED, MOIST, COMPSE GRAINED SAMD, FEW GRAPEL TO 3 INCH.					
0.0	31			¥_	100	29		SILTY SHID: DANK BROWN, PDIST, SOME COMESION.					
	SH/SH			•	84	5		FRAVELLY SAMD/SILTY FRANKLLY SAMD: PARTICOLORED, MOIST TO HET, FIRE TO MEDIUM GRAINED SAMD, FEW GRANEL TO 7 INCHES.					
<u>ه</u> .ی	***********												

TH84-1505

THB4-1	~ 			TA 753	+00 R			Đ.
DEPTH	L06	nc .	Ц	Pį	~4	-200		Desc
		4		10°	96	6		SAND/SILTY SAND: LIGHT I GRAND, TO 3/4 INCHES IN S
							30R	
	SH/SM	,		¥	95	12	30R	SAPE: GREY, MOIST, FINE IN SIZE-
	347 g1						R	PENETROPETER HIT ROOK.
		~		Nb	91	9	30R	
8-0_		,		Ψ	95	9	R	SAME: GREY, MOIST, FINE IN SIZE, CORRLES TO 4 IN LARGE ROOK-
1.0	9P/SH			NP	96	5	30R	SAME: RROWN, MOIST, FIR
5-2	54		?'	:	99	23	15	SILTY SAND: GREY, MOIST COMESIVE.
J.J					96	4	26	SAMD: BROWN, MOEST TO E
				·	26	4	23	SAME: MULTICOLORED-
	à						22	
					98	4	20	
					98	4	20	
٠							34	

FINE

LUE ENGINEERING PAYS


TH84-1505

	STA	7534	00 R			£L. 1832
•	3.	P;	-4	-200	H	DESCRIPTION
Į		¥P	96	4		SAMD/SILTY SAMD: LIGHT BHOWN, MOIST, FINE GRAINED SAMD, GRAVEL TO 5/4 INCHES IN SIZE.
ļ	•				30R	
		¥Ç	ν,	12	3 JR	SAVE: GREY, MOIST, FINE GRAINED SAND, GRAVEL TO $\tilde{5}$ INCHES IN SIZE-
	,				o	PENETROMETER HIT ROCK
ł		NP	91	3	tgg	
		φ	ж,	3	ą	SAME: GREY, MOIST, FINE GRAINED SAMD, GRAVEL TO 3 INCHES. IN SIZE, COMMUS TO 4 INCHES IN SIZE, PENETROMETER MIT LARGE ROOK.
		₩	*	ç	tņe	SAME PROMY, MOIST, FINE GRAINED SAND
		?	-4] F.	SILTY SANO, SHEY, MOIST TO WEY, FIME GRAIMED SAND, COMESIVE-
			*	•	ne.	SAMP GROWN, MOIST TO WET, FINE TO COMPSE GRAINED SAMD.
			¥		78	TAME TRATICOLOMED-
					¥ 1	
,			ng.	-	29	

TH84~1506

TH84-1	506		- 2	TA 753	9•00 L			EL. 184±
DEPTH	LOF	HC	u	PI	-4	-200	N	DESCRIPTION
• •	39	1			74	4	36	GRAFELLY SAND: LIGHT BROWN, MOIST, FINE GRAINED SAND, 5 PERCENT CORBLES, GRAFELS SUB-MOULAR TO ANGULAR (1-17, MAX.).
3.0	5P/SM	4		æ	98	5	19	SAID/SILTY SAID: LIGHT BADIN, MOIST, FINE GRAINED SAID FEN GRAVEL.
6.0								CMD. Cara ta man
	29				98	4	18	SAMD: SAME AS ABOVE.
9.0	SW/SM			ND.	98	8	16	SAND/SILTY SAND: SANE AS ABOVE.
12.0					99		.,	SAMD: SAME AS ABOVE.
		,				,	16	
					97	4	18	SAME: LIGHT BROWN, MOIST, COARSE GRAINED SAND, SUB-ROUNDED GRAVEL TO 1/2 INCHES-
	99							
							16	
2.0						·	16	
29.0_	α.	25	41	16	100	67	16	SAMDY CLAY: DANK BROWN, MOIST TO MET, NO GRAVELS, FINE GRAINED SAMD, STIFF CONSISTENCY.
	SW/SM			WР	100	9	2?	SAND/SILTY SMID: DARK BROWN, MOIST TO NET, FINE GRAINER SAND, MEDIUM DENSITY.
27.6	574	2		NP.	93	?3	22	SILTY SAMD: TAH, MOIST, COARSE GRAINED SAMD, SUB-MIGULE TO SUB-ROUNDED GRAVEL (1/2 INCH MAK-), MEDIUM DENSITY-
0.0								
	90	-			190	4	40	SAM): TAW, MOIST, FINE GRAINED SAMO, 5 PERCENT GRAVEL 1 17: IMCH, DEMSE:
					99	3	37	
6.0								SANDY SILT. PARK BROWN, MOIST TO WET, FINE GRAINED SAND
	٩.	34	43	14	95	18	12	SOME GRAVEL, CONESTVE

- 1 SEE PLATE 15 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGENO AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE & FOR DATE DRILLED ON EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF

	er.	A 740+	0 0 1			€L. 180*	THB4-15	ine		CT	00.0		១. 16
				-200		DESCRIPTION						-200	N DESCRIF
3		IP.	82	8		GRAVELLY SAND/SILTY GRAVELLY SAND: BROWN, MOIST, FINE TO COLORED GRAVINED SAND, GRAVEL TO 2 INCHES IN SIZE, SOME SILT.		SP/SH				,	SAND/SILTY SAND: LIGHT BROW ROUNDED TO HOUNDED GRAVEL TO
			92		30R	SAND/SILTY SAND: SAME AS ANOVE-	3.0	SW/SH					SMID/SILTY SMID: SAME AS ALL DENSE-
			_				6:0						SILTY SAMD: SAME AS ABOVE.
					30R					ų.	96	16	3(F1) 24(n): 245 v2 v20cr.
5		MP	95	7				SP1		W	93	n	SAME: GAREY, MOIST, COMESIV
_			87		35 52	SAVE: GRAVEL TO 3 INCHES, SOME COBBLES TO 4-1/2 INCHES-						19	SME: GREY, MOIST, SOME SU
_							18.0			~	,, 		
		₩	97	7	20			3P/SP		ψ	81	5	GRAVELLY SANDASILTY GRAVEL TO I INCH. I
27	33	9	100	74	5	SAMOY SILT: PROMM, MOIST TO WET, COMESIVE, FINE GRAINED SAMO, STIFF.		4.	•	4]]4	96	52	SAMPY STLT: PLANK BROWN, MI
	37	9	100	80	19			ML/N.		χο 7	100	51	SANDY SILT/SANDY CLAY: BRO GRAINED SAND.
18		₩	100	23		SILTY SAIN: BROWN, MOIST TO WET, FINE STAINED SAID, SOME CONESION.		SM		•	96	13	SILTY SAND: LIGHT BROWN.
						_	202	99/38		φ	99	5	SAMP/STLTY SAMD: SAME AS
				I	<u> 184</u>	<u>— 1508</u>	53:0			···			SAND/SILTY SAND: SAME AS
						£[. 172t							
MC 6	LL.	P!	95	-200 -3		DESCRIPTION SAMD: LIGHT BADAH, MOIST, FINE BRAINED SAMD, SOME GRAVEL TO 1/7 INON IN SIZE, SOME SILT.		2ñ\a		ųp	97	6	
					17		40.0	-	-				
						Cambridge Camp							
		Ψ	99	,	16	SHIUTILIT SHU: "MULTICOLORED, MUIST FIRE TO LUMISE GRAINED SHID, GRAME, TO 2 INCHES; SOME SILT-							
		•	98	5	25	SMO/SILTY SMO: Light Brown, MDIST, FINE GRAINED SAND, SONE GRAVEL TO $1\!-\!1/2$ INCN IN SIZE, SOME SILT.			INVE	ERT.		Ī	T 84 - 1573
											19+00	: 	FL-
					19		DEPT	+ L0	. #C		1 -	-200	D N hest
		w	 36	13	17	SILTY SAMO: MULTICOLONED, MOIST, PINE TO COMPSE GRAINED SAMO, GRAME, TO 7 INCHES IN SIZE, SOME SILT-					90) 1	SAMD: MULTICOLONED, RIME L
**					***			4			9	,	SAME: MOIST, COMPSE GRA
													CAME . Con scano 3 to
			30	4	34	SAMO: SAME AS ABOVE-					9	7	SAME: FEN GRAVEL TO \$ 11
			98	29		STLTY SAND: BROWN, MOIST, COMESIVE, FINE TO COMESE GRAINED SAND, MEDIUM DENSE, GRAVEL TO 3/4 INCHES IN SIZE-		0			3 10	0 6	9 SANTOY CLAY GREYISH BRO
								3			9	5	0 SAND: MULTICOLONED, MOT SAND, FER SEARCE, TO 1 LH
			39	4	5 1	SMMD: Light BROWN, MOIST TO NET, FINE TO COMPSE GRAINED SMMD, GRANEL TO [77 INCH IN SIZE, SOME SILT.							
	5 5 27 18	5 27 33 37 19 S1 MC LL 5	S IP 10 17 18 19 17 18 19 19 19 10 10 10 10 10 10 10	## 92 ## 92 ## 92 ## 95 ## 97 27 33 9 100 57 9 100 19 ## 130 *** 35 ## 99 ## 99 ## 99 ## 99	NC LL P -4 -200	MC (L P! -4 200 M 3 NP 82 8 NP 92 8 30R 50R 50R 50R 97 7 50 27 33 9 100 74 5 37 9 100 80 19 19 P 130 23 TH84 S14 730400 L **C LL P! -4 -200 N 5 95 3 8 17 **P 99 7 16 **P 99 7 16 **P 99 7 16 **P 99 7 16 **P 99 7 16 **P 99 7 16 **P 99 7 16 **P 99 7 16	No.		Marrier Marr	No. 11	March 1	March 10 10 10 10 10 10 10 1	March Marc

ALUE ENGINEERING PAYS

1	ļ.				THE	34 - 1509
ł	• •	FA 71	9+00 R			EL· 169±
1	ш	PI	4	-290		DESCRIPTION
		MP	95	,		SAMO/SILTY SAMO: LIGHT BROOM, MOIST, FINE SAMO, SOME SUB- ROLHOED TO ROLHOED GRAPEL TO I INCH.
		*	89	7		SAND/SILTY SMID: SAME AS ABOVE, GRAMEL TO 2 (MOJES, VERY ORIGIN.)
		¥	96	16		SILTY SAMT: SAME AS ABOVE, MOIST-
	;	Ψ.	93	n		DME HERY, MOIST, COMESIVE, SOME ORGANICS, DENSE,
		₩	95	18		SAME RAEY, MOIST, SOME SUBMOUNDED GRAVEL TO E INCH.
		₩	91	5		TRAVELLY SAND/SILTY GRAVELLY SAND: LIGHT BROWN, MOIST, REMOTE GRAVEL TO 1 IN., DENSE, FINE GRAINED SAND.
-	4;	14	95			SAN'Y SILT THAN BROWN, MOIST, COMESIVE, FEW GRAVEL.
	.39	7	100	51		TAMPY TJ.T/SAMINY TLAY: BRITING, MOIST, COMESTVE, FINE SHALMED SAME.
-		•	*	13		COTY SAND LIGHT BROWN, MOIST, LOOSE, FINE GRAINED SAND-
		¥	99	;		SAMP/SILTY SAMD - SAME AS ABOVE-
		*	97	1		SMOUSILTY SMOD. SAME AS ABOVE.

TH84 - 1510

TH84-					9+00 L			EL. 1692					
DEPT	L06	MC	u	PŢ	4	-200	1	DESCRIPTION					
		3	3		87			SAND: LIGHT BROWN, MOIST, LOOSE, FINE GRAINED SAND. GRAVEL TO I INCH.					
	_				96	4	30	SAPE: CLUMPS OF DARK BROWN, COMESTVE MATERIAL.					
	39				87	3	48	SAFE: FINE TO COARSE GRAINED SAND, GRAVEL TO 2 INCHE PENETROMETER HIT ROOK.					
							30						
2.0	n			₩	100	n	30	SAMBY SILT: BROWN, MOIST, FIRM, FIME GRAINED SAMB-					
5-0	SM	16	24	3	100	42	5	SILTY SAND: DRK BROWN, MOIST, CONESIVE, FINE GRAINED SAND-					
8-0					97	3		SMO: LIGHT BROWN, MOIST, FIME GRAINED SAND, FEM GRAIN TO 1/2 INCH.					
	æ						26						
					99	,	23	SAPE: Brown-					
7.0				ΙΦ	97	5	13	SAND/SILTY SAND: LIGHT BROWN, HOIST, FINE TO COARSE GRAINED SAND, FEW GRAVEL TO 1/2 INCH.					
	5P/SA						23						
			-	*	97	5	37						
.0	۹.		21	1	99	60	5	SANDY SILT: THAN BROWN-GREY, MOIST, FINE GRAINED SAND CONESIVE, SOFT.					
.0	ď.	17	30	17	99	n	-	SANDY CLAY: "ROWN, MOIST, FINE TO MEDI'M GRAINED SAND					

TT 84 - 1573

VERT

504

	STA 713+90 r			FL: 151±			
•	LL.	Pį	4	-? 3 f	T PESCRIPTION	۹.	
			Ж	:	SAND MALTICOLONED, FINE TO MEDIUM GRAINED.		
			93	;	"APE MOIST, COMPSE GRAINED SAND, FON GRAVEL TO L (EHCH-
			97	:	TATE FEW SPAYEL TO 5 INCH, FBW COMMUES TO 5 INCH-		
	51	25	100	69	SARRY CLAY: AREYISH BROWN, HOLST, COMESTVE-		
			95	1	SAYO: PLATICOLORED, HOIST TO WET, YEAY CHARSE HRAIN SAND, FRISHBARE TO 1 1804		HED

NOTES

- I SEE PLATE 15 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3. SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

SCALE I IN-3FT

SYMBOL	GENCHIFTIONS	DATE	APPROVA
	REVISIONS		
	1	AY ENGINEER DISTI LOS ANGELES PS OF ENGINEERS	ICT
CERCHED SY.	SANTA ANA RIVER MAINSTE PHASE II GENERAL DESIGN		
District ST.	LOGS OF INVESTIG	BATIONS	
	CORPS OF ENGIN	EERS	
	STA.740+00 TO STA	.719+00	

FE75-1	<u>FE75-4</u>	FE75-
LOG OF TEST HOLE	LOG OF TEST HOLE	LOG OF
THE NO DESCRIPTION	14-4 MC 00 4 200 D ESCRIPTION	TN-8
0 SELTY SAND - Daterbed, Ness, damp. SILTY SAND - Sand \(\) fine grave! layers	1/2	O' SANOY SUT B.
7 102 100 10 SAND- Clear, peorly serted, inc. med, bra, damp. 5 SIT- Brey, bra, most to wet, med to soft.		isalated
.1(()()()()()()()()()()()()()()()()()()(1' heavy caving	
State - Very Lett. Caring	77-44 <u>FE75-4A</u>	SILT Moist, bra
TH-2	SAND- Brown, damp, loose on Surface, med, danse with depth	SAND- Brown, most to we
5 107 95 15 SANCS - Sits & Small grave! Source Samuel Small grave! Jayoro, Same Small racks, Jayoro, Same Small racks, Jayoro, Same Small racks,	more maisture	
3½ SANOS. Clean, more measture with depth.	78-5 <u>FE75-5</u>	74-9 <u>FE75-</u>
6 SILTY SAVO - Wet,	18 T 100 100 5	A- FOR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
coving too somety	SAND- Moist, some gravel Cross- bedded alluviai	6 00 25 5
FE75~3	layers, dense	
7W-5 <u>FE 13-5</u>	SILTY SAND- Brn, most to	4 100 5
SAND - Brn. damp, med.	d. III dan in ages	5 12 100 35 5
2½ Sift at 2% Small layer	SAND- With fine grove!	•
Yeny wet sand.	wet, periodic caving	6 1005
Georg severtly.	Henry caving.	9 22 100 55 5
Excessived 2-19-75	Excepted 2-24-75	Exameted 2-24-75
Bround water at 42.	No ground water	No ground water

WA69-6

POWERLIES BERTH		1111111	175.7		1986	$\overline{}$	_	5,Ç.	_	-
11 20 10100 1 11 11 See Notes	POLE 3	1.461.152	6 Inch		Batt	0011	LEB	6/17		
SOIL DESCR	FTIGN			1			ΙÌ	-	10	-
BESCHIFT: IP WG GERINS	291.69	W0 - 51 v4 F	C045+5*	18 · 1 1****	****	5	3	3.5	1	2
Fine to Medium Silty SAND	Lt cy	bry to Noist	Locse	SM						Γ
Medium SAND Percolation Test A	Lr Gy	Holet	M Dense	SP	- ,			Ι		
from 5 to 7 feet Percajation Test 8 from 10 to 12.5 feet					10.			Н		ļ
Fine Silty SAND and Sandy Silt Percolation Test C	Rd Brn	Motst to Wet	H Dense	SM HL	15					
from 15 to 17 feet CLAY	Pd Brn	Wet	Hard		70					
Sandy GRAVEL with few cobbies	oy bra	u+t	V Denov	ci-	75					-
with large cobbles and boulders		<u></u>			10					
P-TTOM OF WHIE AT 11 FEET NOTES: 1) Ceving of boring wells cur the way of extra thick de nod. 2: Note not belied to deservi groundwater level. 3: Mole terminated due to seve drilling conditions, conditions, elow progress, Many cobbl- and some boulders.	l lers'	A) Ho cid	PRECOLAT e not ad sned 600 feet	quete Tear	JA 1y 35					
W& WARLES Santa Ann River Overce County, Ca:	ifornis		1011	1000					+0	10

WA 69-7

MILL BIG ROTATY Wash	HOLE I	11111100	107.8		Luck	1.49	DCF	
ROUNGHATER DEPTH See Notes		+4P(15B	6 Incr	,			5 6/11	.6.
zort bezei							1000	. 165
	1	96151988	C745-57	19:1	٠,٠٠٠	:		
BESCHIPTING AND ATMINES	C01.00			92		,		762
Silly SAND	11: 69	Dry to Moist	M Dense	· }		ţ	11	i
Percolation Teat A (O to 5')	ì	}	H Dense	. , . ,		1		
Sandy CRAVEL	Mottle: Cy Brn	Ve:	H Denre	~	•	1		1
Hedium SAHD	Lt Cy	Wet	Dense	59	19		H	
Percolation Test 8 (10 to 15')								
Percolation Test C (15 to 70')					247			
Siley CLAY	Dk GV	Hotet- Vet	V 51111	cı	25			
Fine Silty SAND and Sandy SILT	Lt Gy	Wet	Dense	 G-1	10			
Silty CLAY	Rd Srn	400	v 5011	E.				1
			1		<u>'</u> "	11		İ
CLEYEY THAVEL WITH THE CORRIES	RE STA	wat -	A Deva	CP .			山	110
BOTTOM OF HOLE AT 33.5 PEET NOTES:	i A)	200,000	ATION C	+ 1	40			
 Coving of boring walls cur- tailed with use of extra thick driller's mud. Hole not balled to determine 	(6)		test/ve					!
groundwater level. 1) Nois terminated dur to sevi drilling conditions, causing s	14							!
Progress. Heny robbies and ex-		"		* 6 1			$\neg \tau$	#81
WA WARLER Sints And River 1 \$ ASSOCIATES Ovence County, Cal	formio			- 10/16			=	46
7410 4176 - MOPET BIT	ta . (85.0	0.3	40	D/16	, 44	: !-		<u> </u>

\$5550 F1 P0 46.7
Fine Silty SAND
SAMD
with few gravel
Fine Stity SAND
2-inch thick grav Sandy SILT
CLAY
Sandy CLAY
Fine Clavey SANT
WA WARLER SA

PRILL RIG ROTATY PROPRIES SEPTH

- I. SEE PLATE 15
- 2. SEE TABLES 4
 FROM WHICH THAND EXPLANATION
- 3. 1068 BY STUE

LUE ENGINEERING PAYS

TH'S ME [00] 4 [30] DESCRIPTION ESTABLE SANDY SUF. Brown, damp, suff.

0'	SANDY SILT. Brown, damp, Saft.
	SAND- Med. brn, damp. Isolated coving.
6	SILT: Maist, bon, soft.
2	SAMD- Brown, fine to coarse, mast to wet, caving.

0	6	100	25	SILTY SAND- Brn, Fine to med.,
	4	95		SAND - Brown, fine to coarse I" max size, damp,
	4	100	5	Some caring.
5	17	100	35	SILTY SAVO - Bra, moist, fine to med.
	16	100	5	SAND - Brown, fine to course, damp.
9'	22	100	55	SANDY SILT - BAR, v. met, med Suff.

WM74~I

		-		228.504		_	BORIN	6
TYP	e of	DRI	LL	RIG BUDY A TOTALLY WORLD DEPTH 36" DATE MEASURED 3 JUN. 73 SAMPLES FITC RIG BUDY ROLLY WORLD HOLE DIAMETER 4 7/8 In. WEIGHT OF MAMMER 1601	her and		<u>. Nod</u> 16 <u>J</u> r	10.
Ξ	=	Ξ	_				Ξ	Ξ
MOTOR, PT.	BAMPLES	1004 / POOT	STAN DIALONS	DESCRIPTION	UMC COMP. STRENGTH, W	MOISTURE CONTENT, %	1448#30 AMO	
SURFA	<u> </u>	ice.	(411)	Fill: Loose, dry, hrown, fine-to course-grained SAMD(SW) some fine-				_
1 1 1	1 7	15	SW	Fill: Medium dense, dame, tan fine-to medium-grained SAND (SP), meacuous	$\frac{1}{2}$	۱.	96 .	SA
•	3 2	21	5W	Thin leases of dark brown SILTY CLAY (CL) Medium dense, damp, gray fine-to medium-grained GRAVEL (GF)	-	1,	104	SA
	• 🛚		_	Medium dense, damp to moist, tan fine-to medium-grained SAMD (SP) Then lenses of brown-green SILTT CLAY (CL.)				
» -	s X		-	Medium stiff, wat, brown CLAY (CL) Loose-medium dense, wat, brown SAMOT SILT (ML) to SILTY SAMD (SM) GGAVELLY	-	27	,,	МА
1	, 2	100	₽.	Desarq, wet, can CRAVELLY SAND (SW) to SANDY CRAVEL (CW-CM)				
*1								
•								
1					\perp			
1	Ш	1 1		Bottom of boring 67feet	1	l	i	1

<u>WA 69-8</u>

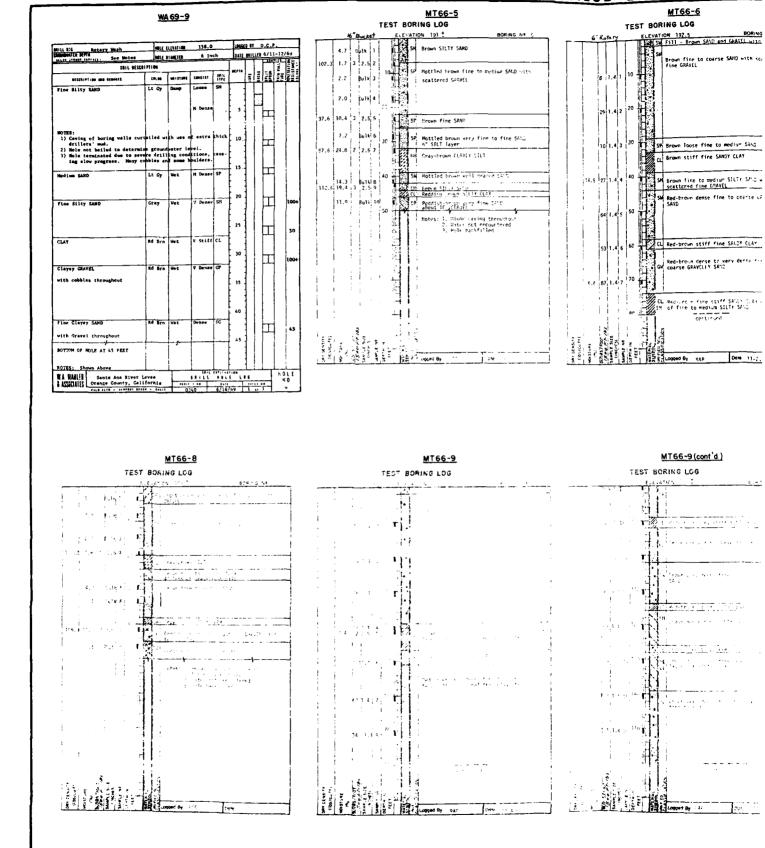
A #16 Roracy Work	100	{T41106	162.5		1066	0 81	D.0	.r
See Motes	HOLE	INC.	6 In	ch	CASE	39: L	LFD 6/	11-17/69
3011 0630	11 PT 104			1		Π	2.5	1
cente et en me neuenns	C01.00	00 : 51 WE 4	C045157	1011		=	\$ 28	11.51.00
ine Silty SAND	Crey	Dry	Loose	SH		Ī		
	!	!	H Jense	1				
CMAS	ļ	¥*:	y her or	I	5	-		
		ĺ		! į		1	lί	
				[10		-	
		İ	ļ	1			🛱	1
with few gravel		İ		1	15	1		1 11
						1		1
					70	1		
Fine Silty SAKD	Grey	Wet	1 Dense	SH]		1
7-inch thick gravet layer						1	1	1
Sandy SILT	Rd Brn	we t	Stiff	}n.	25	1	上	1
						1		
CLAY	Rd Bra	Wet	V SELFF	ei -	30	ł	۱ Ь	1
						}] [
					35	1		21
						1		1 1
					40	1		
Sector CLAT	Rd Brn	Holet	Stiff	CL.	0	}	FF]],
	i		1			1	11	1
	1	ļ		L	45	1	14	11.
Fine Clayey SAMP	Rd Brn	Wr. e	H Dense	× (1	 - 1.	- ! "
		ـــــ	1	117,100	50	1_	Щ	
# A WARLES Santa Ana River 1 & ASSOCIATES Crange County, Call		Ĺ	1111	001	<u> </u>	• 6		HOLE

NOTES

. xr

144

II.


1 SEE PLATE IS FOR TEST SITE LOCATIONS.

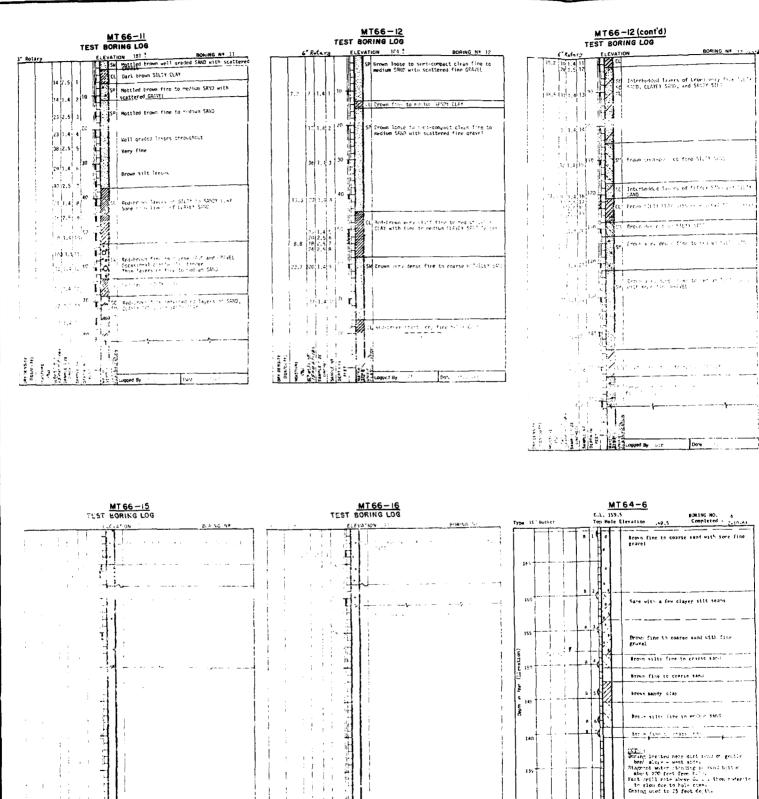
2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.

WA69-8 (cont'd)

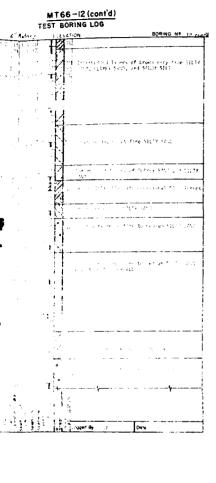
			6 1					11	₹ =
SOIL DESCAI	FILEN				5691#		ΙĒ	7.3	ij
RESTRICTION AND REMARKS	CO1 84	m : \$1 erf	C0H3 ST	1924	*****	1			Ċ
Sandy CLAY	Rd brn	Wet	v štiff	CL.	55				
BOTTOM OF HOLE AT 59.5 FEET					60				22
HOTES: 1) Caving of boring wall: curt with use of extre thick drt mud. 2) Hole not balled to determing groundwater level. 3) Hole terminated dur to seve drilling conditions, causin alow progress. Hamy cobble and seme boulders.	llere'				65				
Y A WANTER Santa Ana River to & ASSOCIATES Orange County, Col:		<u> </u>	11155					H 6	

SYMBOL	089CHF110H4	DATE	APPRO					
	REVI	IONS						
		U. S. ARMY ENGINEER DISTRI LOS ANGELES CORPS OF ENGINEERS	ČT .					
DESIGNAD BY.	SANTA ANA RIVER MAINSTEM CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM							
DEAWN ST.	LOGS	OF INVESTIGATION						
		BY OTHERS						
ORCED BY	STA.780+00 TO STA.715+00							
SUBMITTED BY:	DATE	SPEC. NO. DACWOP B	544					

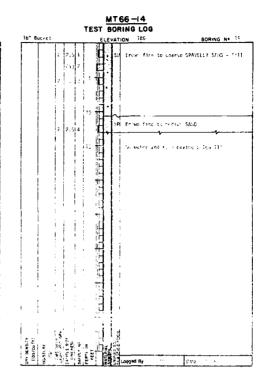
VALUE ENGINEERING PAYS MT66-6 (cont'd.) MT66-7 TEST BORING LOG TEST BORING LOG TEST BORING LOG ELEVATION 192.5 BORING NOT SAUD and GRAVEL with piece ELEVATION 192.5 ELEVATION 190 É Brown fine to coarse SAND with scattered fine GRAVEL 9 7.5 7 10 Brown very dense fine to coarse GRAVELLY SAND with some coarse GRAVEL 1. 151.43, 184 100 🖺 .] Brown dense fine to medium SILTY SAID


A Brown fine to coarse SAND with fine to зс I SP Brown loose fine to medium SAND CL Grown stiff fine SANDY CLAY 40 Ssc Rottlen Iron ... it graded 1895 SC Red-brown illrer said with int Gar-Ei SM Brown fine to medium SILTY SAND with scattered fine GRAVEL scattered fine GRAVEL
SAN Beel-troon dense fine to coerse GRAVELLY
SAND
CLL Reg-brown stiff fine SANDY CLAY di Gray-troon Mil'r szil CL Brown stiff SiLTY CLAY with layers of dense fine to medium CLAYEY SAND oray-trown till's sind 2.1,4:11 11.5 37 1.4 17 Red-broun dense to very dense fine to coarse GRAVELLY SAID H 70 TOTAL POSTERIOR STORY GRAVEL CL Outsiden in the colff SANDY SLAT with tayers of fire to medium SILTY SAND continued. Intercedded brown dense SILTY SAID and very dense GRAVILLY SAID

170 1 SAID Prior very dense fine to coarse STID with some fine to medium GRAVEL Date 11-2.3-65 25 2.5 21 44 2.5 22 60 2.5 23 E DOSCOUL BY PAP Date 31-2,3-65 MT66-10 MT66-9 (cont'd.) MT66-9 (cont'd.) TEST BORING LOG TEST BORING LOG TEST BORING LOG ELEVATION 18x 1 F. EVATION 116 The section The state of the s Property of the fire of the party 3.3 Section 2 Section Trumpy you - V. Estallill i trata de la composición del composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la 1,4 2 | 21/1 and the second second Notices For Greek to Strate Comments

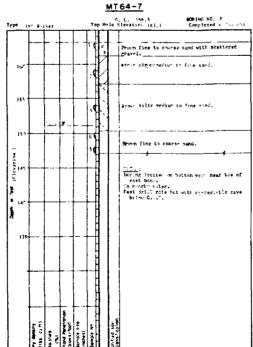

There give not comments

Trates out on the form REVISIONS U. S. ARMY ENGINEER DISTRICT LOS ANGELES CORPS OF ENGINEERS SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM LOGS OF INVESTIGATION NOTES: 1. SEE PLATE IS FOR TEST SITE LOCATIONS. BY OTHERS SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS STA.780+00 TO STA.715+00 SPEC. NO. DACWOR-____ B-___


VALUE ENGINEERING PAY

LUE ENGINEERING PAYS

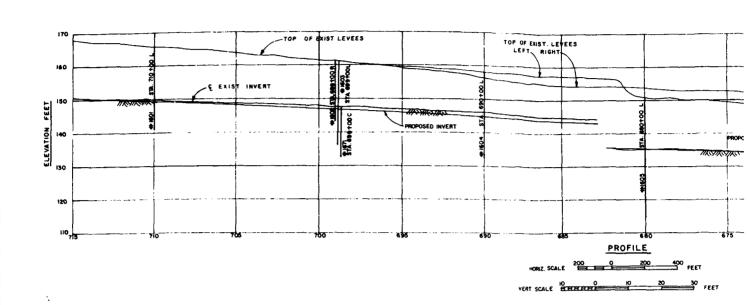
			TEST BO		
" Buc	ket		ELEVAT	TION 174	EORING N® 13
	3.4 5.3	P 2.5		Erown very fin CRAVEL	o to fine SCHO with scalter
i	1,0	1.54			
	1	Bulk 4	1 1	Mothed brown	casto estudistins
	2.5	1111		!	
j	i		16 TEE	CHOWN STATE 1.	
- 1	7.0	tulk		1	
4.8	2.5	2 2.5	,	Centen vany Or	ar for file SANO
- 1	2.8	eu1x E		fire to medius	
i		11:		Tire to wastu	
į	÷.	dutal,	, Tail		
				1 Z. Dec 8	o chourement (*1555-35) , uniterestate at 3 (* . ustrethed
	,				
		· 3		:	
(Ibs/coff)	10.7		و ا اد مادست ا		
5 2	52.			crosec By	fora (1.5)



MT64-6

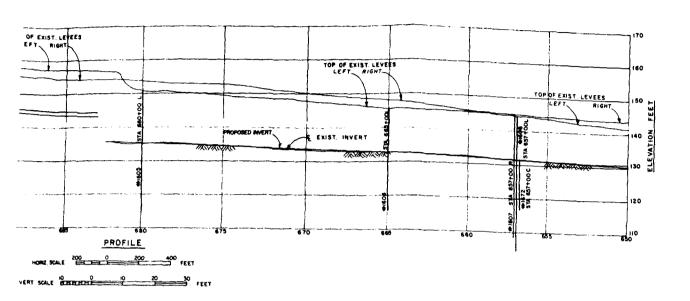
Site 199.

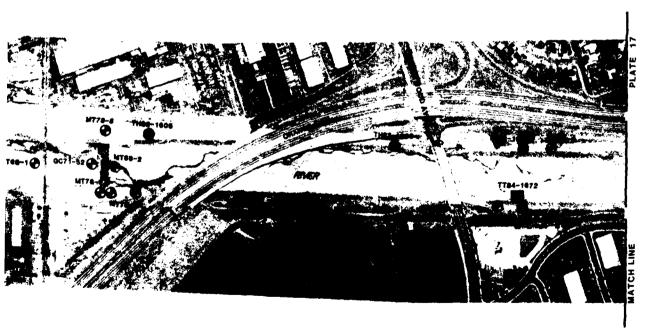
Site 199.


Agriculture of course and with sore fine state of course said with sore fine state of course said with sore fine state of course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction of the course said with fine fraction to hold out the fraction of the course said with said of the course said with s

- I. SEE PLATE 15 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

SYMBOL	DECEMPNON	DATE	APPROVA
	REVI	SIONS	
		U. S. ARMY ENGINEER DIS LOS ANGELES CORPS OF ENGINEER	
DESIGNED BY.		RIVER MAINSTEN, CALIFORNIA NERAL DESIGN MEMORANDUM	
Disawer ST.		OF INVESTIGATION BY OTHERS	
GROSS SV.		+00 TO STA.650+00	
SUBMITTED BY:	DATE	SPEC. NO. DACWOFB	9/4021


VALUE ENGINEERING PAY



ALUE ENGINEERING PAYS

- I. SEE PLATE 6 FOR LEGEND AND GENERAL NOTES.
- 2. SEE SUBSECUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

	ATUM IS MATIONAL GEODETIC VE	TICAL DATUM OF 1929							
			 						
SYMBOL	SSSC SIETTONS	DATE	APPROVAL						
	REVISION								
		U. S. ARMY ENGINEER DISTRI LOS ANGELES CORPS OF ENGINEERS	c a						
8800-40 P	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM								
BRANCH ST.	PLAN AND PROFILE								
Crecitie III.	STA.7 15+00 TO STA.650+00								
SUBMITTED BY	APPROVED SPEC	MQ DACWOR	SHEET						

TH84-1601

TH 84-1	60 <u>n</u>		2	TA 710	90 L			EL - 1662
DEPTH	1.06	MC	ш	P]	4	٠. ٥	N	DESCRIPTION
								SAND: BROWN, MOIST, FINE GRAINED SAND, COMMLES TO 6 INCH. SOME SILT.
	92	5			89	4		
							50	
6.0								
							60	GRAVELLY SAMP/SILTY SRAVELLY SAMD: BROWN, MDIST, FINE TO COARSE GRAINED SAMD, COMMLES TO 7 INCH, SOME SILT-
	SN/SM	5		NP.	82	3		
							60	
12.0								
					94	4	24	SAND: BROWN, MOIST, FINE TO COARSE GRAINED SAND, COMMLES TO 7 INCH, SOME SILT.
	æ	_			92		ıı	
	•	•			74	•		
							25	
21.0								SAND/SILTY SAND: BROWN, MOISY, FINE TO COMPSE GRAINED
22.0	SH/SH			Ψ.	98		21	SAND, COMMES TO 7 INCH. SOME SILT. SAND: LIGHT BROWN, MOIST, FINE TO COMPSE GRAINED SAND-
	92				99	3		Series Claus mounts (State Claus III Charles Georgian State)
25.1							23	

TT84-167)

INVERT

4-55	τ.	5TA 699-037 C				EL - 148:		
EPTH	_Y.	*	-t	3 1	-4	-/10	4	DESCRIPTION
	P				19	:		SAMP: MULTICOLIMED, MEDIUM GRAINED SAND.
5:2					49	1		FRAFELY SAID. MULTICALORED, MOIST, COMME GRAIMED SAID SPAREL TO 7 INCH.
	79			Ψ	243)<		SILTY SMID DAM MAYAN, MOIST, SOME CONESION, FINE SHAIMED SAND.
2.2.								
2:1	æ				39	2		SMID. PLETICOLORED, MOIST, FINE GRAINED.
	34			*	17	רי		STOTY SMITH - IGHT BROWN, MOIST, CONESIVE, FINE GRAINED SMITH.
<u></u> .								

TH83-1603

T#3-1	503		\$	74 69	3+00 L			EL. 161#
DE PTH	F06	MC	l.	P:	4	-200	N	DESCRIPTION
	SH	5		ЖP	96	21		SILTY SAID: BROWN, MOIST, GRAVEL TO 1 INCH.
3-0		10	19	2	99	31	19	SAME: SLIGHTLY COMESIVE, GRAVEL TO 3/4 INC
5.0	SPVSC	14	27	-,	96	50	18	SILTY SAND/CLAYEY SAND: BROWN, MOIST, 9.15- BRAVEL TO 3/4 INCHES-
	sc	12	28	12	99	18		CLAYEY SAND: BROWN-RED. HOIST-
7.0 9.0	529	•	16	,	98	18	28	SILTY SAID: PROME, MOIST, MEDIUM TO COMPSE GRAVEL TO 1-1/2 INCH-
	SAVSC	12	25	÷	94	35	20	SILTY SAND/QLAYEY SAND: BROWN, HOIST, © 154 GRAMEL TO 3/8 INCH-
12-0	54	5		Ψ.	95	13	18	SILTY SAND: LIGHT BROWN TO GREY, MOIST, SRA
15-0	SP/SM	4		 ye	97		8	SAND/SILTY SAND: LIGHT BRN. GREY, MOIST. SE
18-0	ф	3			95	4	8	SAND: LIGHT GREY, FEW GRAVE, TO 1-172 INCH.
21 <u>.0</u> 22.0	SHASH	17		-w-	- 94-			SMO/SILTY SMIT: 1.1SHT GREY, SATURATED, SEW 1-1/2 INDES-
	SM		21	·	99	39		SILTY SMID: LIGHT SROWN, SATURATED FINE GR
24.0	4	21	25		100	60	31	SANDY SILT: LIGHT BROWN, SATURATED, FINE GRO

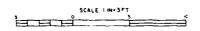
TH83-1604

* 48 3-1	504		\$ 14 590	+90 t			Ft. 159±
DEPTH	FUe		 	-4	-270	N	in a subject to the s
1-0_	25	_2_	 	94	4		SAND: GREY, MEDIUM GRAINED SAND, FEN GRAVE
3.0	SH/SM	4	 Ab.	37	8	50	SAND/SILTY SAND: GREY-LIGHT MICH. WITT - SAND: GRAVEL TO 3/4 INCH.
	3 5	4		97	4	40	SANT: GREYTLIGHT BROWN, MOIST, MEDIUM GRAIN GRAVEL TO 3/4 IMCHES
. 5 .:C	20 /SH		 %.	96	4	13	SAND/SILTY SAND: SREY-LIGHT BROWN, MOIST HI GRAIMED SAND, GRAVEL TO 5/9 IMDRES:
1.3		5		95	4	Į4	SAMD: GREY-LIGHT BROWN, "DIK", "EDIHM TO DIS SAMD, GRAVEL TO 3/4 INCHES.
						23	
	ф				3		
		٠. د	 		<u>.</u>	74	
18.0		13	 	-36	1_		SAFE - SATIRATED
		2*		à	3	32	Just Authority
1.0							
	\$P/\$P	•	*	97	5	22	SAND/SILTY SAND GRAY, SATURATED, MEDIUM TO GRAINED SAND, GRAVEL TO T/A INCHES.
4.0	æ	19	 	39			SMID: GREY, SATURATED, "EDILIN TO COARSE GRE
6.0							BRAFEL TO 3/4 INCHES.

VALUE ENGINEERING PAYS

TH83-1603

	\$	FA 699	-0 0 L			€L · 161‡
MC.	ш	Pl	-4	-230	N	DESCRIPTION
5		MP.	96	21		SILTY SAND: BROWN, MOIST, GRAVEL TO 1 INCH-
13	19	2	79	31	19	SAME: SLIGHTLY COMESTVE, GRAVEL TO 3/4 INCHES-
[4	27	, ^	*		18	SILTY SAND/FLAYEY SAND: BROWN, MOIST, SLIGHT CONESTVE GRAVEL TO $3/4$ INCHES
12	.75	13	×			CLAYEY SANT ROOM-RED, MOIST-
	16	1	*	1.5	÷	SE TY SANTE ROOM, MOIST, MEDIUM TO COARSE GRAINED SAND. SRAFE, TO 1-1/2 INCH.
12	25	6	1 <u>u</u>	:.		SHOWN SAMP AYEY SAME BROWN, MOIST, SLIGHTLY CONESTVE, JEWISE TO \$75 INCH-
ţ		19 0	 34	:	13	COTY SANC LIGHT BROWN TO GREY, MOIST, GRAVEL TO 3/9".
4		Mb.	 i'		,	SMN/SILTY SMN- LIGHT BRN. GREY, MOIST, GRAVEL TO 3/8".
						Takin Tohr shev, FRH dirams, to 1-1/2 show.
;		W	- T			THE STATE THEY SATURATED, SEN GRAVEL TO
	11		33	73		TO CAN'T (134" SROWN) SATURATED, FINE GRAINED SAND
	Zt.	2	,ı		r.	IANDY SIL" (13H" BROWN, SATURATED, FINE GRAINED SAND-


TH83-1604

STA 590+00	Fil. 159±
er pr	2 JEWINITH
2 2 2	REY TEDI M GRAINED SAND, FEW GRAVEL TO 72
. ΨP .* .	THE THE TAMES GREYTLISHE RACHEL MOIST MEDITAL GRAINED AND JOANEL TO THE LINES.
. "	AT THE PULLSHIE BROWN, MOIST, MEDIUM GRAIMED SAND, HAVE, PUTTA INQUES.
. V S ,	AN' (1. "r SAN') - SPEYFLESHT BROWN, MOIST, MEDIUM TO
. •	THAT HE THAT TO \$74 INCHES
з и ,	SMC GREY-13HT BROWN, MOIST METH M TO CHARSE GRAINED MC CHARSE TO \$10 (MCHES)
	:
• • • • • • • • • • • • • • • • • • •	
A	
<u>.</u>	AF CERTS.
2 4 	HAY THE FEMALE GRAM SATURATED, MCTEUM TO COMPSE PAINED SAND GRAME, TO 374 EMONES:
13 19 1	TAYO THEFY, SATURATED MEDIUM TO GOARSE GRAINED SAND. GRANE TO THE INCHES.

TH83-1602

TH83~11	502		S	TA 6994	100 K			EL. 1612
DEPTH	L06	MC	u	Pį	-4	-200	н	DESCRIPTION
								CLAYEY GRAVELLY SAND: DARK BROWN-RED, MOIST, CORBLES TO 12 INCHES.
							50	
	sc							
							37	
								SAME: SPANEL TO 2-INCH, SLIGHTLY CONESIVE-
9.0							18	
								SMDY CLAY: DARK BROWN-RED, MDIST, COHESIVE, SOME GRAVE TO 3-INCH, CAVING AT 14 FEET.
	α						9	
5-0	-50						9	A NOW FIRM
6.0)l.							CLAYEY SAME IS ABOVE.
	50/54							SANT: GREY, MOIST, GRAMEL TO 1-INCH-
8.0							8	

- 1 SEE PLATE 16 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVER". IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

SYMBOL	DESCRIPTIONS	DATE	APPROVA
	REVISIONS		
	l u	Y ENGINEER DISTR OS ANGELES S OF ENGINEERS	icī
DESIGNED BY:	SANTA ANA RIVER MAINSTEI PHASE II GENERAL DESIGN M		
DEAWN SY.	LOGS OF INVESTIG	ATIONS	
- (CORPS OF ENGIN	EERS	
Officials In			
İ	STA.710+00 TO STA	690+00	

TH83-1605

TH 83-1	605		\$	TA 680	+00 L			EL- 151#
DEPTH	L06	MC	u	PI	-4	-200	N	DESCRIPTION
1-0	sc		29	10	93	Ð	50	CLAYEY SAND: BROWN, HOIST, GRAVEL TO 3", CORRLES TO 5".
2.5	SIVSC	4	26	6	99	15	•••	SILTY SAMD/QLAYEY SAMD: GREY, MOIST, GRAVEL TO 1 INCH-
	sc	7	29	10	99	27	43	CLAYEY SAND: BRN, HOIST, SLIGHTLY CONESIVE FINE GRAINED
4.0	SP/SH	3	=	-	*			SAND/SILTY SAND: BROWN, MOIST, MEDIUM GRAINED SAND GRAVELS TO 1/2 INCH-
6-0							41	
		1			97_			SATE: MEDIUM TO COARSE GRAINED GRAVELS UP TO 3/4 INCHES FOR FIRES.
		2			97	3		
	92	2		_	97		8	
		_					21	
		5			100	4		SAME: LIGHT BROWN, MOIST, FINE TO MEDIUM GRAINED-
14.5		3		_	99		11	SME: BROWN, MEDIUM TO COMPSE GRAINED-
	sc	8	27	8	100	22	-	OLAYEY SAND: BRN, FINE TO HEDILM GRAINED, MOIST SLIGHTLY
6.5								
	a.	18	26	8	100	52	22	SMIDY CLAY: BROWN, COMESTVE, MOIST-
19-0	SP/SH	4		NP	100	6		SAND/SILTY SAND: CLEAN, MOIST-
21-0							24	
	sc	16	37	v	77	47		CLAYEY SAND: BROWN, MOIST, PLASTIC GRAVELS TO 3 INCHES, CORBULES TO 5 INCHES.
24.0							12	
	60	12	v	9	50	26		CLAYEY SANDY GRAVEL: SAME AS ABOME-
26.5							46	
	6W/GM	,	23	6	48	10		SILTY SANDY GRAVEL: BRN, MOIST, MEDIUM TO COARSE GRAINES BRAVELS TO 3 IMCHES, COBBLES TO 5 INCHES
	OH / GE	•		ū		10		
30.0								CLAVEY CHAPM COLUCT BROWN AND CO. MITTIGHT TO COMPANY
	GM/GC	6	27	10	35	6		CLAYEY SANDY GRAVEL. BROWN, MOIST, MEDIUM TO COARSE GRAINED, COBBLES TO 7 INCHES.
33.0								
	6P/6C	5	24	8	49	9		SAME.
56 -0								
N.17								BOULDER AT BOTTON (36 FEET)

TH84-1672

DEPTH LOS	*	U,	PI	-4		
₩ 10 %				-4	-230	DESCRIPTION
,				120	2	SMIT: LIGHT BAN-MULTICOLORED, MOIST TO MET, FINE GRAINED
3 0						
			Ψ	15	5	SAND/SILTY SAND: MULTICOLORED, WET, COARSE GRAINED, FEM GRAVEL TO I INCH-
3P/S#						
			#	31	5	SAME: FEW GRAVEL TO 2 THON-
10-1						
						SAMP. MULTICOLORED, WET, COARSE GRAINED, FOR COMPLES TO 9 INCH.
30				49	5	
15-0						

TH83-1606

THB3-11	606		S	TA 665	+00 L			EL 145±
DEPTH	L06	MC	ш	P1	-4	-200	ĸ	DESCRIPTION
2.0	sc	4	30	18 12	86 90		29	CLAYEY SAID: BRM, MOIST, NO COMES- SAME: MEDIUM DENSITY GRAVEL TO 1
		3		NP	97	5	48	SMID/SILTY SMID: COARSE GRAINED, I LIGHT GREY-BROWN, GRAVEL TO I (NOW
		2		МЪ	95	5	15	
	SP/SM	3		*	96	8		
0.0		3		Nº	96	5	10	
0.5 1.0 2.0	25-24	27 52	30 30	1	100	- 73	16	SARTY SILT: BOOM, HOLST, SLIGHTLY SARTY SILTY SART: BOOM, HOLST, NO SARTY SILT: BROWN, HOLST, CONESTVE
L 14.0	SP	7			99	4		SMID: BROWN, MOIST, HEDIUM TO COM
6-0		14			99	4		SAFE: LIGHT BROWN, WET, NO CONESIO
	SP/SR	23		ИP	99	9	5	SMB/SILTY SMB: LIGHT BROWN, SATU MEDIUM TO COMPSE-GRAINED
0.0		21		*	98	7	•	
	591	29_	. 24	3	100	. 50	7	SILTY SANT: DARK GREY BROWN, SATUR
4.0	•	23	24	3	100	47	5	
26-0	4.	34	31	7	99	80	,	SANDY STET. PROME, SATURATED, COME
w.w	α.	31	37	15	94	80		SAMOY CLAY: BROWN, SATURATED, COM
	u	25	31	11	98	54		
30.0								

TH83-1608

THB3-15	i08	_	\$1	A 557	•00 L			EL: 1451
DEPTH	L06	MC	LL	٥Į	-4	-200	4	DESCRIPTION
1:0	SIVSI 12	-}-	30	10 10	83 97		50	SMD/SLT SMD: SRN. MOIST, COARSE SI CLAYEY SAMD: BROWN, MOIST, MEDIJA
		3		¥	98	6	39	SILTY SAND: RROWN, MOIST, MEDIUM
	SP/SH	-		.	99			SAME: SPANEL TO 1/2".
6.0							17	
2.0	29				37	2		SAND: LIGHT BROWN, MOIST, LOAPSE
		19	37	11	100	55		SMITY DAY, BROWN "SREVISH , MOT
	0.	16	29	1,	100	50	A	
		16	32	74	99	59		SAME: REDDISH BACHN, SLIGHT CON€
14-0	3P/SC	12	74	, ,	100	45	13	STLTY/SAND/CLAYEY SAND REDRISH CONESTVE
		17		#F	100	45		STUTY SAME - GREYTSH BROWN, MOTST GRAINED SAME IN 17.
	54	,		W.	199	13	20	SME: No conjection, printe to hebbi
		6		₩¢	100	70		
21.0							11	
22.5	n.	27	23	;	100	59 		SAMIY STUT: REDUCTSH BROWN, MITS
	54	18		*	100	29	g	SILTY SAND: REDDISH BROWN, MOIS
25.Q_	n.	24	71	۰ ۰.	100	82		SANDY STLT: REDISH MICHIN, MOTS
27.5					100	•••	7	SANOY CLAY - REDDISH BROWN, MOIS

ALUE ENGINEERING PAYS

TH83-1606

15

COBBLES

CONESION

SIVE

ver to

] Via :

MELL I

¥ 1...

. CO-E 1

COMESI

					_	
	ST	A 6654	00 L			£L. 145¢
1	LL	P1	4	-200	4	DESCRIPTION
	勃	18	36 90	- 23	29	CLAYEY SAND: BRH, MOIST, NO COMES- GRYL TO 3", COBBLES 6". SANE: MEDIUM DENSITY GRAMEL TO 1 INCH-
		1P	97	5	48	SAMP, CILTY SAMP: COARSE GRAINED, DENSE, CLEAN, MOIST, LIGHT GREY-BROWN, GRAVEL TO I INCH-
	-	NP	95	5	15	
		MP	36	8	•	
		NP	98	5	10	
-	30	4	100	.72		SMOY SILT: BROWN, MOIST, SLIGHTLY CONESIVE.
		72	- 41	7		CAMPY STITE FROM, MOIST, NO CONESION-
	30	7	100	70	16	SHO. SICI. MONT, 10:51; CO-COTT
			99	4		SANO- BROWN, MOIST, MEDIUM TO COARSE GRAINED-
3		•	99	4		SAME LIGHT BROWN, HET, NO COHESTON-
-		ф	99	;	5	SAMOUSILTY SAMO: LIGHT BROWN, SATURATED, NO CONESION MEDIUM TO COARSE-GRAINED.
		₩	98		•	
-	24		100	50_	٠	STUTY SAME: DARK GREY BROWN, SATURATED, COMESTVE-
	24	3	100	4*	5	
	3:	,	99	33		SANDY ST.7. BROWN, SATURATER, COMESTIVE, GRAVE, TO 1/2 *-
. –	17	15	94	83		SAMPLE TAY, BROWN, SATURATED, COMESTIVE, GRAVEL TO 1/2".
	31	11	98	64		

TH83- 608

51	4 557	90			€ 145±
٧.	οį		-200	4	DESCRIPTION
12	10 10	39	<u>i</u>	ξ.	ACT SAID. Seek. MOIST, COARSE SHD, GRY TO 3" COR. TO 5".
	₩	39	5	₹Ġ	TUTY CART - PROMIS MOTOTS MEDIUM GRAINED, GRAVEL TO TO
	₩	30			TATE - TO AVE., 10 (1/21)
		22		17	181. Light Money PLST, CORPSE GRANNED GRANNES TO 1/2"
12	н	.00	45		SANTY TAY - PROMY SARYESH , MOEST-
,a	15	130	5"	4	
5	19	29	59	;*	TANK PEDDICH BASHA, SLIGHT CONESIVE.
29	4	139	45	•	U.TY ISAND TLAYER SAMD REDNISH BRN. MOIST, SLIGHTLY DRESPRE
	Ψ.	in.	45		TE THE TAKE THE SECOND HOLSE, SCIENTLY CONSIDER FINE TRANSPORMED THE TE
	*	130	13	m	ME IN THEODY ONE DIMEDING GRAINED.
	₩	100	ν.		
21	5	130	59	•	MATY " REDDISH BROWN, HOLST, SOME CONESION-
	φ	190	 M		T PY CARD. REDUCES BROWN, MOIST, SLIGHTY COMESIVE.
τ η	Ą	100	12		ANDY SPLT - REDTISH THOMAL MOIST, TELENTLY CONESIVE-
*)	10	100	94	,	SAMPY CLAY - REDDISM BROWN, MOIST, SLIGHTLY CONSSIVE-

TH84-1607

TMB4-1607			S	A 657-	-00 R			£. 145¢
DEPTH	L06	MC	u	PI	-4	-200	N	DESCRIPTION
		4			93	4		SAND: BROWN, MOIST, LOOSE, FINE GRAINED SAND, FRM CORBLE TO 5 INCH-
	3 P				99	3	13	
							12	
9.0	SM	31	29	£	100	36	7	SILTY SMID: LIGHT BROWN, MOIST TO NET, LODGE, FINE TO COMPSE GRAINED SMID, SOME SILT.
							19	
15-0	a		34	13	100	η	₹	SAMBY (LAY: BROWN, MOIST, STIFF, CONESIVE, SOME FINE GRAINED SAMD AND SILT.
18-0			30	2	100	52		SMOY SILT. BROWN, MOIST, STIFF, CONESIVE, SOME FINE SHALL SAME MAD SILT.
							11	
	4	_	?9	6	100	65	11	SAME: DARK BROWN, SOME CONESTON-
			34	19	100	74	9	
33 .0								
ed : M	y	9			94	1	13	GRAVEULY SAND: DARK BROWN, MOIST, FINE GRAINED SAND.
56-D								

- I SEE PLATE 16 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVENT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

SYMBOL	DESCRIPTIONS	DATE	APROVA				
	REVISIONS						
		U.S. ARMY ENGINEER DIST LOS ANGELES CORPS OF ENGINEERS					
0570160 44:	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM						
DEAWN ST.	LOGS OF INVESTIGATIONS						
	CORPS OF	ENGINEERS					
STA.680+00 TO STA.657+00							

MT78-8 MOORE & TABER CONSULTING ENGINEERS AND SECLOSISTS

TEST BORING LOS

ELEVATION IND. S | SORRING 8

PROMITE LO WELLIM SILTY SAND WITH
CARRYLA CURBINS - FILL
CARRYLA CHARACTER CARRYL & CUBBLES

TO SM ... decreased SILT

SM ... decreased SILT

In reaved GRAVEL and COBBLES

TO SM ... decreased SILT

SM ... in reaved GRAVEL and COBBLES

TO SM ... decreased SILT

TO SM ... decreased SILT

TO SM ... decreased SILT

TO SM ... decreased SILT

TO SM ... decreased SILT

TO SM ... decreased SILT

TO SM ... decreased SILT

TO SM ... decreased SILT SAND

TO SM ... decreased SILTY SAND WITH SAND

TO SM ... decreased SILTY SAND WITH MARKET SILTY SAND WITH M 51 Sa 198 15.9 6 2 212 tnvers Flev 1 Societing.
Societing encontered.
Fiscines dry

MT78-9

MOORE & TABER CONSULTING ENGINEERS AND DECIDORS TEST BORING LOG On the sect of spirits 1 × 171.1% to betting a sign of THE SOURCE LOS SUMMERS APPLES ONLY AT THE THE AND LOCATION INDICATED SUBSURFACE COMDITION WAS DIFFER AT OTHER LOCATIONS AND THRES

WATER

GC 71-51

THIS BORNER LOS SUBMEARY APPLIES ONLY AT THE TIME AND LOCATION MOCKATED SUBMEMPACE CONSTITUTES THE PROPERTY OF THE LOCATIONS AND THREE TO THE LOCATIONS AND THREE TO THE LOCATIONS AND THREE THREE TO THE LOCATION AND THE LOCATION

BORING No	STATION	W.O 22-164 DRILL DATE JUNE
SURFACE ELEVAT	1914	DRIVING WEIGHT 15% 1 18.10.
MAJER GARING CARING	wer to be a 16 from dispets). Secondition	GRUSS SPACE USCS SPACE BLOWN COST CORE D CHERT C CHERT SPACE CHERT
	150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150 1 150	559
		# 1 (0) Page 1 (1)
-10-		3 00 1 7.9
13	V 90 pht teroto, out terot	- MG
-20-	ST St. 1944 - EERSPOL PRIST	sp 3 (6) 106.3 7.4 9.
-25		

GC 71-52

BORNS No		# c 22-4c) ORALL CATE 1 1011 OF LAG WEIGHT 100 161 18 IF
ODEPTH FEET DATES CANADOL CYMBOL CYMBOL	procyption	CONTRACTOR CONTRACTOR
	1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
5	Median in the second of	
-10-		
15 - 11	Sthright Conservation Communication of the Communic	
	Silva in the tree, cont dried	1
	Company of the second section	
-30	SAND OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF T	

ALUE ENGINEERING PAYS

WO THE DR. CATE

C

GC 71-50

	44.1 00						
BORING No	STATION 414 + 60	W.O.,	22-16	4 DF	BLL D	ATE 3/	10/71
CCCVAII	UN	DRIV	NG W	FIGHT	1.1500	15	18 to
[] [] []	hurter tuger: 16 inch Staneter						
WATER ODEFTH FEET GRAPHIC SYMECL	DESCRIPTION	SCS.	E. RES		CRY CENSITY per	STURE	RELATIVE
1 6 time		8∍	캶	0.0	8 8	Įğΰ	£ 5
	medium derag] F 524	Ī		j	 -	1
		11		ļ		!	1 1
5 -	Sir. Sr. White to pray coarse storm to hop, median dense.	SP			_		H
		15	1	0	92.5	1.8	89
		<u> </u> -					
-10-		lŀ					7
		F	2	0	91,0	3,0	SE
		-				ļ	1
		 -	1			!	4
	State of the Same Same and the brown,		H				-
	tien	IL"	_ į			i	4
-20-	$\frac{3}{n}\frac{\lambda_{n}}{2}$ 1° that, every as land, they,					1	7
; H 1			1			<u>;</u>	7
		-			i	!	7
		IF I	- 1	ļ	- !	:	1
[25]	The second of th			-		- -	
		-	- 1		i	-	7
			}		į	- !	1
-30					-		\dashv
							_

GC71-53

воныз ма — (1). Зеягась перам		WO 27 (C4 DESCE DATE
WATER CORFUE FUET FRAFMIC STRINGL	DESCRIPTION	ORIVING WEIGHT 1/2 1/2
	A second district of the second district of t	[M]
	19 ONTO S. Co. I write to you come of the description of the contract of	SF
-10-111	dze	
	225. Double to project provide Project of the damage of some least of	O
	den in the broken to be a recorded	SM O NO
	Service on the present many	31 (3)
-36-	dena.	

- I SEE PLATE 16 FOR TEST SITE LOCATIONS.
- 2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

\$7MBOL	DESCRIPTIONS	DATE	APPROX						
	REVISIONS								
		NY ENGINEER DISTI LOS ANGELES PS OF ENGINEERS	ici						
DEMONSO ST.	EM, CALIFORNIA MEMORANOUM								
DEAWN BY.	LOGS OF INVESTIGATION								
	BY OTHERS								
CHECKED BY,	STA.715+00 TO STA.650+00								
(ANATTED 87)	DATE	A.650+00	_						

145____

140____

135____

130____

125

ELEVATION F

110____

105____

100___

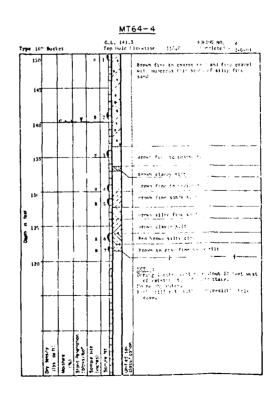
155

3

135

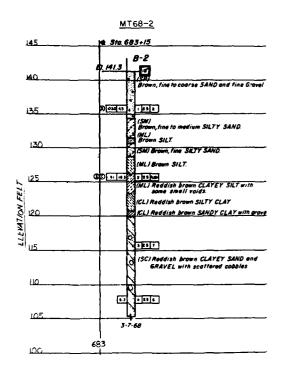
W.O. 22-164 DRILL DATE 3/9/71 DRIVING WEIGHT 1500 16., 18 in STATION 453 + 76 BORING No. ____54 ODEPTH FEET TO STANGOL GROUP SYNGOL U.S.C.S. BLOWS/FOOT CORE O BANG O DRY DRY DRY DRY WOSTURE CONTEMT %. Burket Auger: 16 inch diameter. DESCRIPTION FILL: GAYEY SAND: SC; brown, moist, medium dense; some gravel. NATURAL GROUND: SAND: SF; white to gray, medium grained, moist, dose. 10-111 2 2 107.5 4.8 ML CL SANDY SI'T: MI; SILTY CLAY; CL; intercolded, moist, firm. 15 /// SAVD. SP; white to gray, medium grained, moist, medium dense. **-2**0 3 @ 101.5

10 3 100. 2.5


-25

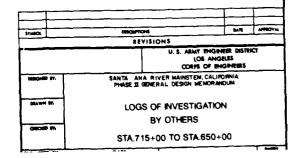
GC 71-54

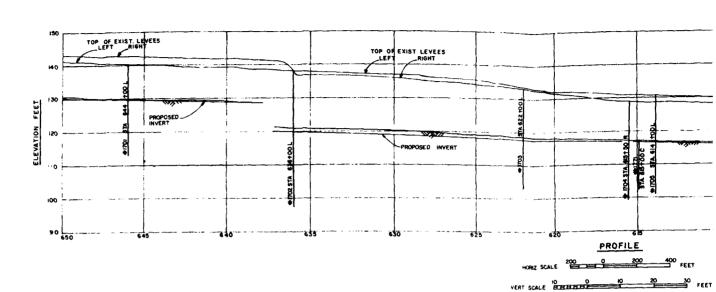
Rill Ric Portery Wesh Ringsill Sirin Sec Notes	FOLE E	151.4	1 20 3.6.7.					
SOIL DESC		10-110			1-11-19. (C 6/11/6*			
	T		r	,		1		í
DESCRIPTION AND BEHALES	Carde	80.57645	CGMS (ST	in		Ξ,	1.315	į
Fine Silty SAND	Lt Gy	D.12	icose	58	;	П		٦.
	1					1	1 1	
		[M Dense	1	[;		
Fine SANO	Lt Gy	Hec	Dinse	52		1 :		
	!	!	,	:		1 :		
with few Gravel	D'k Gy		r Dens.	1	١.	1		-
	,	!		1		1 !	\equiv	
	1	1		1		1		
	i	l		!		ļ.	-	
		ì	1	i] :	\equiv	
	1		İ		-	ł		
Carrel 1aa			1		٠	i :	1 .	
Gravel layers	•	į.	i			1 1	1	
	i.c .y	;		•		4 1	: —	
	1			1		1		
	;	i i				ļ.	į.	
		! 		•	:	i.	-	
Sandy CLNY	St Dec.		F 564-1		٠.	-		
Complete Com	,3d een		1			1		
Clayey (RAVE)			V Sense			1 :		
		l	i		١.	1	1.1	
Sundy CLAY	Ad Ern	4. c	51	<u></u>	,	1		_
BOTTOM OF HOLE AT 36.5 FEET	İ		ř		-	1.		
NOTES:	1	1	1	1	٠.			
 Caving 1. on the walls con drillers' and. 	1		1	1.44		1		
2) Hole not based to determ 3) Hole reconnected due to ser	in grount rete drill	lacter of	diam's		-	3		
ing slor pro serve. Many o	0.50	0-7	er.			2		
						:		
								_
and health and Salta in a very	tare a				•	t:		٠

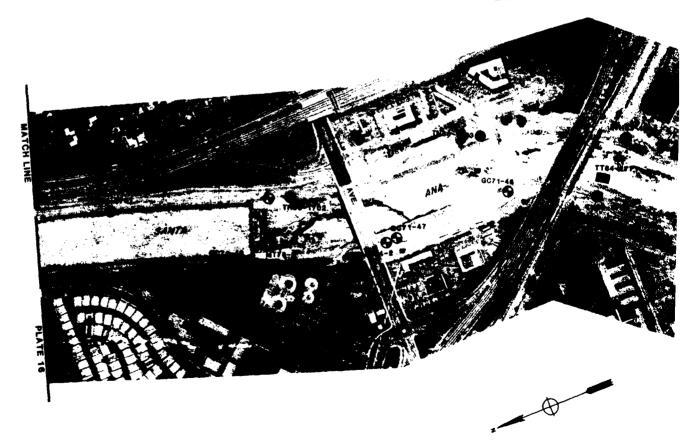

WA 69-10

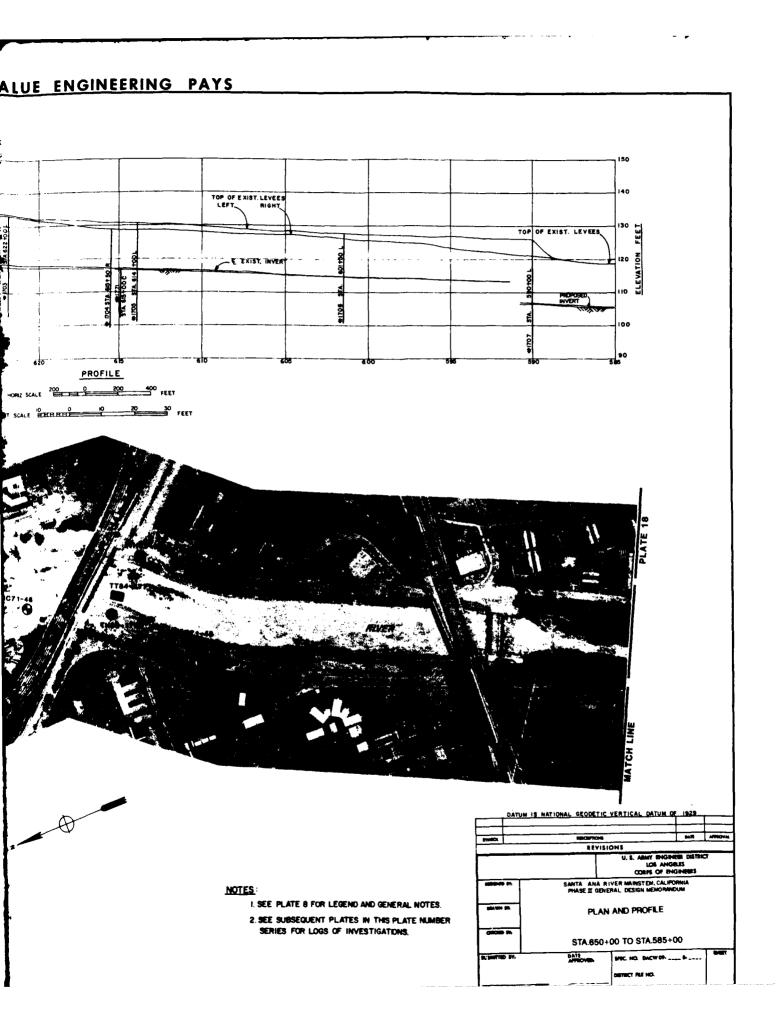
							<u>M</u>	T64-3
Туре		16"	nicke	t		G.L. Top il	31.4 olc 1	Stevation 135.0 Completed - 3-4-61
	135				*			brown first in coarse sund and fine grave! Brown clayey silt
	130					d.		drown fine sandy silt
	125					ď		Grown shity fine sand with a few thin slit sears
	120				,	,		Brown circly slit Zrown fine sandy slit with silty sand score
3	115		-		,			Sel-Yrown siley clay
Days or the	11e ·							Ten of located most side bottom about 60 feet form bank 100 nearly makes in river. Fifth feet arill rate with no appreciable mayor.
		Ory density (15s ou ft)	a projective (3%)	Stand Naveration	Sump's size	.h : 64.5	Gert #4 500 0.0851* 601@	

registed at the orn


		MT68-I
145	♦ Ste.	686+00
140	El 141.6	B-I SP Brown line to sparse SAND with scattered
<u> 135</u>	⊕ =3••	fine grove! (SP) Brown, fine to medium SAND [18]
I 3 O	(B) (B) (B)	X MALI Brown GLAYEY SILT (CLI Brown SANDY CLAY. 1 1
125	®[F7]ss	(ML) Brown, fine SANDY SILT 2 12100 2 / INL Brown CLAYEY SILT
ELEVATION FEET	<u> </u>	ICL) Reddish brown SILTY CLAY
ELEWI	3 -2-4-44	ICL-MLI Reddish brown SILTY CLAY with thin
ШО	③	· fize I
105	③ •02 • 2	(ML) Reddish brown CLAYEY SILT with occasional
100	® 6. 4⁵	[SM] Reddish brown fine SILTY SANO
	66	17 SW) Reddish brown SAND, GRAVEL and COBBLES




Type 16" nuclet Top Hole Lievation 150.1 Seminated - 5 2-7-64 Top Hole Lievation 150.1 Seminated - 7 2-7-64 Seminated - 7 2-7-6


NOTES

- I. SEE PLATE IS FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS
 FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS
 AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

TH83-1701

1183-1	701		S	TA 644	₩00 L			EL- 140±
DEPTH	L06	MC	u	Pţ	-4	-200	*	DESCRIPTION
1.5	SIVSC.	_5	29		97			SILTY SANS/CLAYEY SAND: BROWN, MET, MEDIUM TO COARSE GRAINED, GRANEL 1-3 INCHES, COMM.ES TO 4 INCHES.
	sc	5	26	8	93	19		QLAYEY SMID: BROWN, MET MEDIUM TO COARSE GRAIMED SMID, GRAVEL TO 1-3 INCHES. COMMLES 4 INCHES.
5.0	59/59	5		WP.	94	5		SAND/SILTY SAND: TROOM, MOIST, COMISE GRAIMED, GRAVELS TO 2 INCHES
		6	_	NP	90	6		
9-0							15	
0.5		23	- 58 	28	100	 		SMIDY SILT: GREVISH BROWN, MOIST, CONESTVE-
2.0	39/SM	6		WP.	99	7	13	SAND/SILTY SAND: LIGHT BIN COARSE GRAINED, GRAVELS TO 1"
	SP	8			90	4		SAND: LIGHT BROWN, COARSE GRAINED, GRAVEL TO 1 INCH-
	y	5			100	3	24	
5.0	SP/SM	4		NP.	99	5		SAND/STLTY SAND: BRN, MOIST, COARSE GRAINED, GRYL TO 1".
0.0	9	4			99	4	15	SAMD: 980HH, HOIST, COARSE GRAINED GRAND, TO I INCH-
1.5	sc	11	40	21	34	22	6	SRAYFULY CLAYFY SAND: BRM, MOIST, MED TO COARSE GRAINED- SRAYFL TO 1/2 INCH. COBBLES TO 3 INCHES.
4-0	α	23	31	12	98	52	,	SAMBY CLAY: BROWN, MOIST, MED- GRAINED- GRAVEL TO 1".
5.5	٩.	39	43	15	100	99	,	CLAYEY SILT: REDDISH BROWN, MOIST, CONESIVE-
	CH	32	58	31	100	98	8	CLAY: REDUISH BROWN, MOIST, CONESIVE-
8.0	1	23	34	13	100	74		SANDY CLAY: REDDISH BACKN, HOIST, COMESTIVE-

TH83-1704

THB3-1/	704		\$	TA 615	5+50 4			EL - 129±
DEPTH	L96	MC	t.t.	Pį	4	-200	N	PESCRIPTION
2.0		11	29	19	*	- 3		LATEY SAME: BROWN, MOIST, MELL GRADED FROM FINE "COMPSE GRAVEL TO 3 INCHES- SAME: MEDIUM GRAINED BRAVEL TO 7 INCHES-
		٩		₩	97	10	26	SAND/SILTY SAND- PRN. MOIST, MED. TO COARSE GRAINED SAND NO CONESION.
<i>1.</i> 0	SP/SM	3		Ψ	98	5	25	SME: LIGHT BROWN, NO CONESTON, CLEAN GRAVEL TO $1/2^{\circ}$
<i></i>	9	2		¥	99	6	24	SAND: LIGHT BROWN, MOIST, CLEAN, MED. TO COARSE GRAINED, NO COMESION, GRAVEL TO 1/2 INCHES.
9-8		2		180	100	2		
1.0		1		7	10	- 25		SILTY SAID: SECON, HOLST, FIRE, NO CONESION-
	SP/SM	4		φ	79	5		SAMP/SILTY SAMD: MOIST, LIGHT BROWN, MED. TO COARSE GRAINED, NO CO-ESION.
5-0		4		₩	99	5	14	
	_	21	32	13	92	S6		SANDY CLAY: BROWN, HOIST, MEDIUM TO COARSE GRAINED SAND
8.0	2	33	47	20	99	92	5	SME: SOME CONESTON-
n.u	Ü#	34	51	25	100	98	,	CLAY: MOON, MOIST.
2.5	4	50	23	5	100	n	10	SAMBY SILT. GREY, MOIST, FINE GRAINED, SOME CONESION, STEE PLASTICTY.
		26	35	14	100	90	10	CLAY: DARY GREY, BROWN, MOIST, CO-ESIVE-
	J	27	93	17	100	78	6	SAMOY CLAY: SAME AS ABOVE.
29 S		27	41	19	100	77	10	

TH83-1702

£1. 130			100 L	A 636	21		702	
DESCRIP	N	-200	4	ρĮ	LL	#C	L06	ЭЕРТН
CRAVELLY CLAYEY SAID: BROWN, COMBLES TO 4 INCHES. CLAYEY SAND: GREYISH BROWN,	50	29 14	85 93	1	30	¥	SC	2.0
SMD/SILTY SMD: GREY, MOIST GRAVEL TO 1/2 INCHES-	26	5	99	IP.		2	SP/9H	
SAPE: MEDIUM TO COMPSE GRALI	10	5	98	WP.		2	SW/SM	6.5
		4	99	WP.		3		
		5	98	ЖP		2	SP/SM	
	13	6	99	₩P		3		
	13	5	99	4		3		9-0
SAND: RREY, MOIST, MED- TO C 1/4 INCH-		4	99			3	26	
SAMDY STLT: BROWN, HET, SOME	16	90	99	5	31	27	٦	6-0
CLAY: BROWN, MET, COHESIVE-		94	100	28	54	37	CH	8.Q 9.Q
SILTY CLAY: PROMY, MET. COM		96	100	19	44	?]	¢.	210
SANDY SILT: BROWN, WET, SOME		70	100	2	27	Z ^Q	۹.	3.0
SILTY SANT: BROWN, HET, SOME		5)	100	1	24	29	S#	
		66	100	2	24	Ţη	•	6.5
CLAYEY SAND: BROWN, MET, SO		81	100	10	34	35	<u>'</u> ;	8.5
SANDY FLAY- BROWN, WET, SOME		78	98	12	35	35		
		69	90	14	35	25	ì	
		72	100	10	52	·1		
SAMMY SILT: MROWN, WEY, 50M		77	106	9	33	31	4	5. <u>2</u>
SILTY SAMB/CLAYEY SAND FRE		28	99	5	23	71	3#75;	8.0

IVERT		TT84-1771
1184-177	STA 615+00 C	

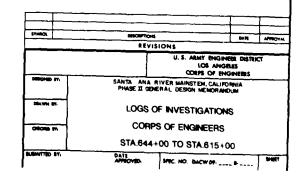
				00 C	A 6154	ŝĪ			1184-17
∂ε		*	-200	-4	PI	IJ.	*	h	DEPTH
D: MULTICOLORED, MITS VEC TO 1 INCM.	SANO: GRAVEL		ŋ	93					
ARK BROWN, "9"	di.								13
			14	190	13	45		٦	
DV 5161- Jame beden d	SANDY		69	100	9	45	_		
			51	99	1	24	_		15-0

TH83-1702

z			TA 630	5+00 L			EL. 1381
L 06	MC	LL	οį	-4	-200	N	DESCRIPTION
sc	+	3 0	11	85 93	29 14	50	GRAFELLY CLAYEY SAID: BROWN, MOIST GRAFEL TO 3 INCH. COMMES TO 4 INCHES- CLAYEY SAID: GREYISH BROWN, MOIST, GRAFEL TO 1 INCH-
29/S#	2		₩	99	5	26	SAMD/SILTY SAMD: GREY, MOIST, MED. TO FINE GRAIMED- GRAPE, TO 1/2 INCHES
SW/SP4	2		*	26	5	10	SAFE: MEDIUM TO COARSE GRAINED.
	3		HP	99	4		
P/SM	2		₩.	98	5	13	
2	3		•	99	6	15	
? 	3		*	19	5-	13	
39	3			9 9	u		SAND: GREY, MOIST, MED. TO COARSED GRAINED. SRAVEL TO 174 INCH.
٦.	27	Ę	ş	349	90	16	SANDY STLT: BROWN, MET, SOME CONESTON-
CH	57	54	28	(30	94		CLAY: BROWN, HET, COMESIVE-
2	15	44	13	;00	96		SILTY CLAY: ROOM, HEY, COMESTVE-
٩	74	27	:	1.9	77		SAMPY SILT: BROWN, MET, SOME COMESION.
SM	29	24	:	:200	51		STLTY SANT: SHOWN, WE'T, SOME COMESTON-
	30	24	:	:x:	66		
sc	35	34	1.7	; 10	81		CLAYEY SAND: BROWN, MET. SOME COMESSION-
	35	ŧi,		»;	*3		SANDY (LAY: BROWN, MET, SOME COMES!ON-
1	25	*)r	69		
	51	;;	:	:y	7		
۹	31	11	1	100	,,		SAMPY STUT: PROMIN, WEY, SOME CONESTON-
	29	`1	-:-	*?	28		SILTY SMID/CLAYEY SAND. BROWN, SATURATED, NO-CONESION, HEDIUM TO COMESE GRAFINED SAND.

TT84-1771

						EL. 1175
<u>'</u>	3		٠.	-236	٧	DESCRIPTION
÷			e.			SAMD: MULTICOLORED, MOIST, MEDIUM GRAINED SAND, FEN GRAVE, TO I FROM:
				· ~ -~		Tam become, MOIST.
٦		.,	. •	••		
		•	; •	54		SAMOY SELT: DARK BROWN TO GREY, MOLET TO HET, COMESIVE-
			n	51		


TH83-1703

THB3-1	/03			TA 62	2+00 L			EL- 132±				
DEPTH	L06	MC	LL	PI	4	-200	*	DESCRIPTION				
1-0	SM/SC	4	26		98	_19_		SILTY SAID/CLAYEY SAID: BROWN, MOIST, FINE TO MEDIUM GRAINED SAID, GRAFEL 2 INCHES.				
	sc	4	25	8	99	20		CLAYEY SAND: BROWN, MOIST, FINE TO MEDIUM SAND, GRAV				
	~	9	27	8	99	27		TO 3 INCHES-				
4.0		3			99	3	18					
					100			SAND: GREY, MEDIUM GRAINED SAND, GRAVEL TO 3/4"-				
		•			100	,						
	SP	3			- 99		11	SME: COARSE GRAINED-				
		3			99	2		ore, correct districts				
		_					14					
		3			99	7	17					
2-0												
4.8	Œ.	35 35	42	18	100	- 88 -		SAMIY CLAY: BROWN, MOIST, FINE GRAINED- CLAY: BROWN, MOIST-				
5.0	SH	23		NP.	100	50		SILTY SAND: BROWN, MOIST, FINE GRAINED.				
								SANDY CLAYEY SILT: BROWN, MOIST-				
	M	22	58	27	100	90						
							13					
8.0 7 19 0 0.0	PL.	36	47	71	100	92		CLAYEY STLT: BROWN, MOIST.				
1-3	SC	33	25	10	100	45		CLAYEY SAND: SAME AS ABOVE				
		34	34	12	100	79		SILTY CLAY: YELLOWISH BROWN, WET-				
	CL	36	34	12	100	74		The state of the s				
3.5 3.5	32	71	23	5	99	.25	19	LAYEY SAND: DARK BROWN, MET, MEDIUM TO FINE GRAINED.				
	SP/SM	23		ИP	100	12		SAND/SILTY SAND: SAME AS ABOVE-				
3-0							40					
	α.	27	37	18	100	64	70	SAMDY CLAY: DARK BROWN, NET-				
1·5 1·0	sc		28	9	81	 36		GRAVELLY CLAYEY SAND: BROWN, NET, GRAVEL TO 1 (MCH-				

NOTES

- I SEE PLATE 17 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3. SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT ISED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

TH83-1705

NB3-17	05		ST	A 614	00 L			EL - 1312
XEPTH .	L06	MC	u	Pį	-4	-200	N	DESCRIPTION
		8.0	32	13	96	99		CLAYEY SAND: DARK BROWN, MOIST, FINE TO MEDIUM SAND, FEW SRAMEL TO 2 INCHES:
	SC	90	31	12	94	45		SME: GRAVEL TO 1 INCH, COMESTVE-
3-0	CL.	11	32	11	39	52	15	SANDY CLAY: DARK BROWN, MOIST, COMESTVE, GRAVEL TO 1° .
4.0	SW/SH	3		180	99	10	20	SAND/SILTY SAND: GREY, MOIST, MEDIUM TO COARSE GRAIN-
5.0	α	19	37	12	99	56		SANDY/SILTY CLAY: DARK BROWN, MOIST, COMESTVE, FINE GRAIMED SAND-
7.0	SW/SM	3		φ	39	12	14	SAMD/SILTY SAMD: BROWN, MOIST, MEDIUM TO COMPSE GRAINER
9.0		17	37	11	100	A ()	12	SMOY (LAY: 1.16HT BROWN, MOIST, COMESTVE, FINE GRAINED-
		18	36	16	100	74	11	
		28	32	. 10	100	76_	12	SAME: "LIGHT YELLOW BROWN.
		20	30	ģ	190	71		
	C.	31	51	15	190	91	5	CAY: LIGHT BROWN, MOIST-
		32	36	14	100	94	15	
		23	32	11	:00	.79		
		_					9	
		23	13	11	100	n		
29 <u>. </u>		10			130			SILTY SAID: DARK BROWN, MOIST, FINE TO MEDIUM SAND

TH83-1706

TH83-17	706		ŞT	A 601+	50 L			£L. 127±
DEPTH	L0G	MC	ŁŁ.	PI	-4	-200	N	DESCRIPTION
	sc.	5	28	10	94	35		GRAVELLY CLAYEY SAND: BRH, MOIST, SOME (
3-0	•	8	30	11	71	32	21	CLAYEY SAND: BROWN, MOIST, GRAVEL TO 3
5.0_	SEVSM	3	-	40	96	6	22	SAMELYSILTY SAME: GREY, MOIST, MEDI-M GR
	GW/GM		25	1	54	11		SAMPY GRAVEL/SILTY SAMPY GRAVEL: BLACY-
7.5 8.6	Ş₩.	~	23	2	79	13	11	STETY SRAVELL SAND: BLACK-DARK BROWN, S
		3		MP.	99	11		SAND/SILTY SAND: DANK GREY, MOIST, MEDI
	50/S#			¥	95	6	22	SAME: GREY, COARSE GRAINED, MAXIMUM 1/?
14.5		•	ĽS	,	97	11	6	SAME: GREY, MOIST, COARSE GRAINED
A1:4			34	15_	-99	- 51		SANDY CLAY: BROWN, FINE SRAINED, 9.1547
	C.	79	74 165	14 14	\$ \$	- 13		D.AY: BROWN, FINE GRAINED, COMESTVE- SAME: LIGHT BROWN, MOIST-
18-0								
10 f	٦	ş.,	₹¢	12	190	96		CLAYEY SILT: LIGHT BROWN, MOIST, COMEST
29.5	1	5.	÷.	9	100	69	3	SANTY CLAY: LIGHT YELLOW-BROWN, 4ET. CO
₩ 24	0	٢.	;·	13	100	73	,	
<u>26.5</u>								

NOTES

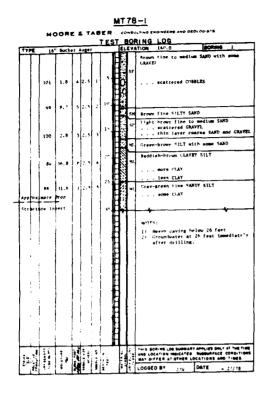
3

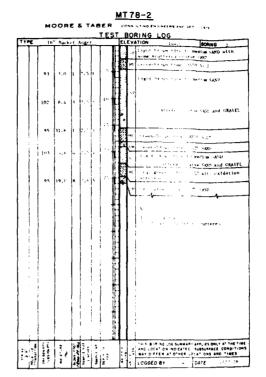
4

TH83-1706

14 501·	SU L			EL - 1271
25		-240	4	DESCRIPTION
	14	75		GRAVELLY CLAYEY SAND: BRN, MOIST, SOME GRAVEL TO 2".
11	1.	ξ'n	21	CLAYEY SAMD: BROWN, MOIST, GRAVEL TO 3 INCHES
чр	¥	-	٠.	SANTYSTELTY SANTY: GREY, MOIST, MEDITAL GRAINED.
	÷+	:		CAMPY GRAVEL/SILTY SAMPY GRAVEL: BLACK-DARK BROWN, COBBLES TO 5", ORGANIC SMELL-
	7	. ir	::	STITY FRANCLL SAND: BLACK-DARK BROWN, SOME ORGANICS,
ų¢.	n	-:		SAND/STUTY SAND- BAPK GREY, MOIST, MEDIUM GRAIN.
·*·	45			SAFE SREY, COARGE GRAINED, MAXIMUM $1/2$ INCHES-
	<u>.</u> .		•	CAME AREY, MOIST, COARSE GRAIMED.
1	75	<u> </u>		CANTY "LA" BROWN, FINE SRAINED, SUIGHT CONESION-
Ħ.	ř	Ţ		CAY: PROM. FIME GRAIMED, COMESIVE. CARE: 134T BROWN, MOIST.
12] Y			TAYER STORY LIGHT BROWN, MOTEST, CONESTVE.
:	. 1			MULA L'EN TENT AETTON-BECHNY MET COMEZINE
	.,	**		

TH83-1707


TH83-17	707			TA 591	0+00 L			FL - 1252
DEPTH	L06	MC	ĮĮ.	PI	-4	-200	4	THESCRIPTION
1.5	SH	1		НP	95	16		SILTY SAMD: GREY, DRY, COARSE GRAINED SAND, MON-COHESTY SOME GRAVEL AND ORGANIC MATERIAL.
		18	33	14	99	75	14	SANDY CLAY: BROWN-GREY, MOIST, MEDIUM GRAINED SAND, SLIGHTLY COMESIVE.
		13	26	8	100	55		
	a.	26	45	20	96	98	9	CLAY: BROWN, MOIST, COMESIVE-
		24	30	10	100	67	7	SAMBY CLAY: BROWN-GREY, MOIST, COMESIVE-
12-0 3-0	SA	76		- Ip	100	73		STILTY SAMPL. BROWN, WET, NON-CONESTIVE.
	α	35	42	17	100	90	5	CLAY: GRAY, WET, COMESIVE-
4.5 5.5	54	24		10	100	33		SILTY SANT: RRW, NON-COMESIVE, FINE TO MED. GRAINED SAND
	α	16	25 26	- 8	199	- <u>51</u>	7]	SANTY CLAY: BROWN-GREY, HET, FINE TO MEDIUM GRAINED SAME
7. <u>5</u> 9.5	SP/SM			ΙP	100	12		SANT/SILTY SANT): AREY, NET, NON-CONESIVE
	SPI			₩.	100	19	17	STLTY SAMP GREY, NET, COMPSE GRAINED SAMD.
2.J 4.D	٩.		15	4	120	96	۶	SILT. PREV. HET. SCHOPTLY PLASTIC.
			35	15	130	34	Q	SANTY TAY. ARONN, SCIENTLY CONESIVE.
			Th,	15	190	95	ų	TAY, REY, COMESIVE,
	1		55	12	100	97	13	
2			33	-13	त्ता	- 79		SAMPY CAY SEEV, MOIST, SLIGHTLY CONESIVE.
	SM/SC		28	,	100	l6		STUTY SAME/CLAYEY SAME: GREY, MOIST, COMESTVE
.0.	<u> </u>				100	 64		SANDY SILT, GREY, POIST, FIRE TO PESTUP GRAINED SAND


SCALE IN-3FT

NOTES

- SEE PLATE 17 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLI,D OR EXCAVATED AND TYPE OF EQUIPMENT USED
- ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

EYMBOL	DESCRIPTIONS	DATE	APPRO
	REVISIONS		
		ARMY ENGINEER DISTR LOS ANGELES ORPS OF ENGINEERS	ICT
DESIGNED SY.	SANTA ANA RIVER MAINS PHASE II GENERAL DESIG		
CEAWN ST.	LOGS OF INVES	TIGATIONS	
O8030 In.	CORPS OF EN	GINEERS	
ì	STA 614+00 TO	STA 590±00	

MT78-7
MOORE & TABER
TEST BORING LOG

					LES	Τ,	BQ	RING LOG
*70E	<u>.</u>	<u> </u>	``	•	, ,	Ε.	£ ×	
	:		1.4	ıİ.	!	II.	ł٠	
, ,			i i	-	;	F	F	The second security of SECT with the Ac-
1				i	' <u>1</u>	Н	}-	1
				i	:		1	1
1			ı i			ľ	1-	12 AND
i ; .	. 1		1.1	1	. 1	t	1	
- 4			1.1	1	.		1	1
1 7	ï			v	i i			1
		+ 1	t	1	1	ij,	L	
			1 1	-	ì	f	Ϊ.	1 317
			1	- (1	Н	ĺ	i. • == ======
				1	1	H		E. C. C. C. C. C. C. C. C. C. C. C. C. C.
			1 .			1	ı	the second section of
				i		1	l	The second section of the second section is a second section of the second section of the second section is a second section of the second section section is a second section of the second section s
				!		1	ı	i ·
				•			1	T.
				i	- 1	-	ļ	E.
			· 1	-		1	ĺ	1
	:		; ;		į.	1	l	1
			1			1	l	r I
	- 1		1 .		d	ł	ł	
			1		1	-	l	1
	- 1		:		1	П	l	
	j] :		á			1
	- 1				1	1	ı	
	Į		1			1	l	
i	- 1					1	ı	
,	- 1	1				1		
ļ	- 1		: :	1		1		
	į		,	1	i 1	1		
++		-4	1	-	1.1	Ļ	L	
	1			;		Ŀ	A 466	THIS BOSTING LOG SUMBARY APPLIES GOLY AT THE TIE AND LOCATION HIGHCATES SUSSUIFFACE CONDITION
**	1			1	(MAY DIFFER AT OTHER LOCATIONS AND TIMES
1.1			9 7 2	1.	i s	l.	I۲	LOSSED BY FIN DATE 4 75 75

GC 71-43

ا الله	GE C	LG - A1	<u>ses.</u> Marana and an anim	100	er Leight 1.77 Main 18
WATER	G 559" H - FEF	Granine Simbole	Day of Allers of the Allers Bundary (N		COPE O LEAN OF COLORS OF C
			Professional Control	1	
	. 5 -				
		7.7	Maria Cara Cara Cara Cara Cara Cara Cara	-	
	-10-	; ! ; ; i	MANAGER AND STREET][_ -	
			i		
	- 15 -				
-	-20-		ا در ۱۹۰۱ د اینیا ۱۹۰۱ د ا نتیا		
-	- i		· Januar need and John St. St.		
-	- 10				

	1	
CATE	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<u> </u>
-	h in-	
İ	• • • • • • • • • • • • • • • • • • •	
j		
	3 -	
1	-44:	i
	\vdash :	
1		i .
		į -
		ĺ -
		1 -
	il	i
į	\rightarrow	1
		İ
		ĺ
A	-	<u> </u>
j ,_	ļ ` <u> </u>	1
1		1
1		1
1	1	
		ļ
1	1 -1111	
1		Ì

L. ...

BORNES Ford an NAV

DATE

MT78-3

		••••	
MOORE &	TABER	40.00	THO THOMETERS AND GEO. AND STO

TYPE	15."	Mary & C	t Augst		E	EVA	TION	LOG	BORING)
					A CO A CO		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	time to make the control of the cont	edium CTETY SAND with commiss - Fill f modules Targe boulder -
	1	7	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	1.	T,		CATION INDICA	WARTAPPLIES ONLT AT THE T TED SUBSURFACE CONDITI TE COCATIONS AND TIMES

1			-	ger				ELE	VA	TION 125.0 BORING 3A
	120	12.5	~	7.5		3	THEFT	0.0.0	į,	Rrown SILTS SAXD WITH CLAY and some GRANYS = FSII
	u,	13.1	,	ļ., '	2	100	1		,,	Front fine to medium SAND = Fill SAND intermixed with grew SANDI:
}	129	25.0	F	5	ļ,	15		11/1	F.	remongrations SAMOY SILT
1	٥,	77.9	r	1.5	-			///////		, , s attered - emented modules
c.	-	nvert			ţ-	_ 25	F			Teen intown time STITY SAND
						The state of the s				Model 1 Dickloreducing Dickloreducing Dickloreducing at 30 feet (5) 1 bour after rel310(g)

GC 71-44

6.	STATE STATE	wo protest that the second
		1,200
-		
	- 	

NOTES

- I SEE PLATE IT FOR TEST SITE LOCATIONS
- 2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS
 FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS
 AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOL PROFILE

SYMBOL	DESCRIPTIONS		DATE	APPROVA		
	REVISION	\$				
		U. S. ARMY ENGINE LOS ANGE CORPS OF EN	RES	.ct		
DESIGNED BY.	SANTA ANA RIVE	R MAINSTEM CALIFO DESIGN MEMORAN	PNIA DUM			
DRAWN ST	LOGS OF	INVESTIGATION	V			
	BY OTHERS					
OWCORD PT-	STA 650+00 T	O STA.585+00				
SUBMITTED BY.	DATE SE	EC NO DACW 09.	₽	SHOPET		

GC 71-45

8001	ii No	45	STATION 365 + 49	W.O. 27-164 DRILL DATE 3/10,71
SURF	ACE C	LEVAT	ICN	DRIVING WEIGHT 1500 18. 18 1-
WATER	DEPTH FEET	SYMBOL SYMBOL	Pucket Augre. 16 auch disseter. DESCRIPTION	U.S.C.S. PELE, RESST. BLOWS/FOOT CORE O BASE O DINSTIT pet MOSSIUFE COLITENT % FICLATIVE FICLATIVE
	- ō -		Fill: Siffy SAND: SB, brow., reist, medium Jones.	581
			SAND SP, brow, coarse grained, moist, medium densi.	SI
	- 5 -		SIGN CAST So; breed, moist, medium	SH 3
-	-10-		8/1004 (2 ph 5/KM/51/2-H brown, set, fire.	MC . (5) IVI. 2 27 65
	-15 -	1	SIER AND bears, boost, a farm derver.	
_			:	SX
-	-20-		STEEN TELEVISION MONEY, SETUI.	ML 7 3 TE. 17.2 E.
			oftenski i 11. besem, repell tedese.	54
F.=			S. Line Charles of the St. of the Samuel State Co.	
	-:0-			

GC71-46

URF	ACE E	LEVAT	ION LV	DRIVING WEIGHT 130%
WATER	ОЕРТН РЕЕТ	GP 4PHIC SYMBOL	Bucket Auger: 16 inch diameter. DESCRIPTION	ACUP SABLE US CS THE REST REST CO CC C C CC C C CC C C CC C C CC C C CC C C CC C C C CC C C C CC C C C CC C C C CC C C C C CC C C C C CC C C C C C CC C C C C C CC C C C C C C CC C C C C C C C CC C C C C C C C CC C C C C C C C C C CC C C C C C C C C C C C C C C C C C C C
	- 0 -		FILL: SILTY CARD: SM; brown, meinn, meinn, meinn den co.	
_	- 5 -		Saley Sales, Ph. br w., relat, f	
	-10-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sun Sun Marawa to the dense.	0 115.1
_	-15 -		MARKAT GEORGE WITE SAIT OF CORE	
	-20-		SHIV NUMBERS BOWN, COLD, Lond Communication of the	[
	-21		DEFINE DE L'IL CONTRACTOR DE SERVICIONES DE L'ACTUAL D	
	10			

GC 71-49

BORING No. 1.	STATION 1 1 1 July	WIO 22-161 DRILL DATE 11 12 11
SURFACE E CVACION	**.	DRIVING WEIGHT THE THE LE
MATER Comp. (Et.) Jew. viit. Com. A.L.	DESCRIPTION	DRIVING WEIGHT
	in the transfer of the second	-511
- 5	gregoria (n. 1945) 1960: Esta (n. 1965)	
	The second second	
-20 1.1	Do No Control With a distance of the other with a distance of the control of the	m. : 🔘
	e en en en en en en en en en en en en en	- P
10		

MT 64-1

Type	or Jucort	G. I Top He	113.9 SORING NO. 1 No Clevation 114.2 Committed to Automate
rts Fre			Upton the decision of Americans
Dapm in feet (Florestein)	, ; v -		7
E Edded			State of the state
	Dy density (198 ca.n.) (198 ca.n.) (198 ca.n.) (198 ca.n.) (198 ca.n.)	Service No.	Fact 7.55 extensity of the Able fole

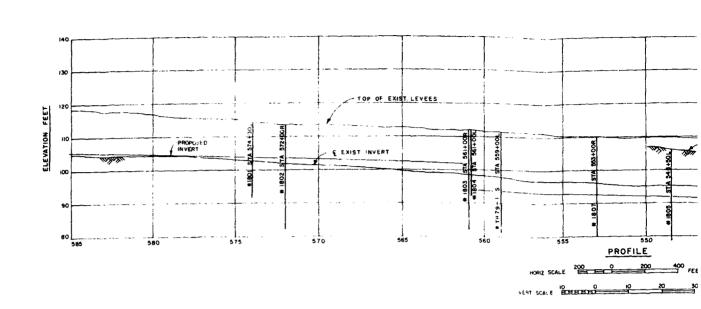
22-16" DRALE DATE 1. ...

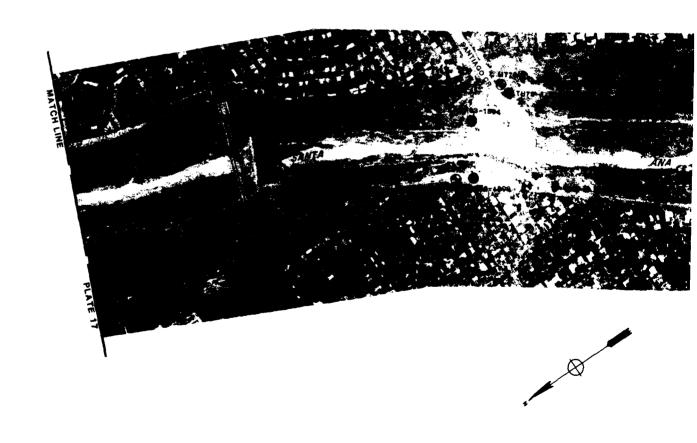
GC 71-47

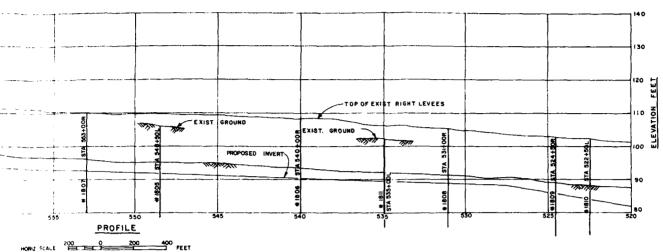
BORING No	STATION 38. + 29		w.	o	22-	16	DF	MLL D	ATE3!	10/21
SURFACE FLEVAT	1011 1		DF	NVI						18 19.
MATER ODEFTH FEET GRAFHIC SYRIBOL	Bucket Auget — To such dismeter DESCRIPTION		CENTRE STATES	U.S.C.S.	PENE. RECIST.	BLC'X SVFCCT	CORE O	CRY DENS TY and	MCISTURE CONTENT %	RFLATIVE CCMPACTION
T I	S117Y * Sec. '4; brown, moist, medium		F	SH	Ţ				Π	H
- 5	Section Street, medical to corse granted, the street, medical dense; some graves.		F	SP		-				
			-							
- 0-1			-	-	ľ	1	O	97.1	4,5	F
-15-	SANN SHITE . brown, wet, soft.		-					-	<u> </u>	
			Ľ	и1.						
			Ĺ				0	8"	1	
		-	-		1			!		. 4
			1.		-		:	 	! 	
		j	L	_	+-		_	ļ	Ĺ	\exists

GC 71-48

URFA	ACE E	48 LEVAT	STATION 394 + 09					_ DF	150		. 18
WATER	O DEPTH FEET	GRAF NC SYN-BOL	Bucket Anyol. 12 such dismeter DESCRIPTION						CAY		RELATIVE
	- 0 -		FILE: SILTY SAND: SM; provn. moist, medium dense.	1	Зн						-
_	- 5 -		NATURAL CHOUNT: SAND. SF; tan, coarse grained, moist, medium dense		SP.					-	
	-10-		Silvy (Mir. 58; brown, moist, medium derse.		SH						
		G T	SAND: SP; thu, coarse grained, dry, section delse. 1. Y 1998: 54, brown, point, 2006	-	SP	,	-	ত —	93.	; ;. 	61
	-15		Acente; stagetly perous.		\$# 				-		
	-20					1		Õ	to".		1 2 63 1
	-25-									 	1 1
	-30	į		IF.			-			i I	


MT64-2


ype	h" wester		122.0 BORING NO. 1 Die levation [1].1 Completion grand
1.e. 1			the of the contract of the con
			single properties of sets and sets are reported to the set of sets and sets are reported to the set are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the set are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the set are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the sets are reported to the set
v 4.0a.			Company (water weet sile close to bur to bur to server instead of the devices brings of meanly with a result of the devices brings of meanly with a result of forces and acceptable of the acceptable of the processing of the facilitate of the devices before the devices of the facilitate of the devices of the facilitate of the facilitate of the devices of the facilitate of
	Ory density (Os. 20.1) Mosture (%)	Spring V.6 1. 1741 Spring V.6	


NOTES:

- I. SEE PLATE 17 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

			_
SYMBOL	DESCRIPTIONS	DATE	APPROV
	REVISIONS		
		AY ENGINEER DISTI LOS ANGELES PS OF ENGINEERS	ici
DESIGNED SY.	SANTA ANA RIVER MAINST PHASE II GENERAL DESIGN	EM, CALIFORNIA MEMORANDUM	
GRAWN SY.	LOGS OF INVEST	GATION	
	BY OTHER	S	
OROSO IV-	STA.650+00 TO ST	A.585+00	

VERT SCA : HHHERET TO SEE

NOTES:

- I. SEE PLATE 8 FOR LEGEND AND GENERAL NOTES.
- 2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

			t	
SYMBOX	SSCHPTONS		DATE	APPROV
	REVISI	ONS		
		U. S. ARMY BNGIN LOS ANGI CORPS OF EN	PLES	a
MINORED PY		VER MAINSTEM, CALIFO RAL DESIGN MEMORANO		
SEAWIN SY.	PLAN	I AND PROFILE		
CHICAGO SA	STA.585+	00 TO STA.520+	00	
SUBMITTED BY:	DATE	SPEC. HO. BACWOP.		200

TH83-1807

THB3-18	07		ST	A 5534	100 R			EL - 102t				
DEPTH	F06	ж	ц	PI	4	-200	Ħ	DESCRIPTION				
	SP/SM	2		IР	100	8		SAND/SILTY SAND: TAN, DRY, FINE GRAINED SAND-				
3.0							8	SILTY SAID: TAN, SLIGHTLY DAMP. FINE-GRAINED SAND.				
	98	13		#	100	— <u>19</u>	7	SME: LIGHT BROWN, FINE GRAINED-				
2.0_	SP/SR	3		187	99			SAND/STLTY SAND: LIGHT TAN, DAND, MEDIUM GRAINED SAND,				
8.0	35	3			93	3		GRAVELLY SAND: MOIST, MEDIUM TO COARSE GRAINED, GRAVEL TO 3 INDES-				
10.0	- PC	21		100	100	50		SANDY STLT: MARK BROWN, MOIST, COMESTVE-				
11-0	SM	22		ИP	100	47		SILTY SAND: DARK BROWN, MOIST, SLIGHTLY COMESIVE.				
12.5	α	22	35	13	100	67		SAMDY CLAY: DARK BROWN, MOIST, COMESTVE-				
14.0	sc	17	32	12	100	49		CLAYEY SAND: BROWN, SLIGHTLY COMESIVE-				
15.5	SM	12		ιφ	190	24		SILTY SAND: BROWN, MOIST, MEDIUM GRAINED-				
16:5		26	43	?0	100	78		SAMBY CLAY: DANK GREY, MOIST, COHESIVE				
		30	\$5	13	190	93		CLAY: LIGHT BROWN, MET, SOFTER-				
W 24	a. 9	25	37	15	109	80		SAMOY (LAY: GRAY-BROWN, LESS PLASTIC-				
		27	42	17	100	38		CLAY: SAME AS ABOVE-				
28.0	ŞĦ	23		φ	100	17		SILTY SMID: SREY, WET, FIME-GRAINED, MON-COHESIVE-				
2												

TH79-1 S

479-1 <			57	4 55 9 +	00 %		FL. 117t				
EPTH	Lue	MC .	Ľ.	2;	-4	-200	H	DESCRIPTION			
	-							SILTY GRAVELLY SAND- PROMY, HEDITH DENSE, 99ME PEA-SIZE GRAVEL.			
		3		₩0	75	17	p				
	3 H						24				
		_						STUTY SMIN. PROMIN, MOTSY, LYDSE, CHINKS OF CLAY, MIGHLAR GRAVEL TO T. THOM, CONESTON.			
		12		•	n	ţn	,				
3-0											
							14	SAMP/SILTY SAME LIGHT BROWN, MOIST, METILIPHOENSE, ANGULAR GRAWEL TO \$ TACH, NO CONSTON-			
	"" . ሳ#	4		4	44	•		Anna de marco () () () () () () () () () (
1.5							18				
	~	21	30	וי	:*	n	77	SARTY CLAY REGION, HOTER, VERY STIFF, GRAVEL TO 1 INCH.			
6.5											
							70	CILTY SAMP. TAN, HOLST, MEDIUM NEMSE, GRAVEL TO 1/2 INCHCOMESTON.			
	* #	17		1*	:10	ur.					
14.2							18				
								SAMOY D_AY: "NAME BROWN, MOIST, STIFF, POLINTED GRAVEL TO I HINT MAXIMUM (5 PERCENT). CONESSON.			
	J.	'!	32	l-	;an	47	9				
25.5											
	0.74	72	76	ς	100	52	17	SAMBY (LAY/SAMBY SILT: SHEV BROWN, HET, COMESTON-			
<u># 27.5</u> 28.5 .			٠	·		,					
30.0	Ç#	23			100	14		TILTY CAUTY GREEN SACRAIN, MET, COMPSION-			

TH83-1802

H83-18	02		ST	A 572+	00 R			EL- 1142			
DEPTH	1.06	MC	u	PI	4	-200	,	Description			
3.5	SW/SM	4		нр	n	11	ע	GRACLLY SAND/SILTY GRAVELLY SAND: BROWN, MOIST, FIN TO MEDIUM GRAINED SAND.			
2.3	SP/SH	3		₩	99	9	8	SAND/SILTY SAND: BROWN, MOIST, MEDIUM GRAINED SAND-			
6-0 7-0	W.	16	57	9	100	65		SANDY SILT: NAM., MOIST, FINE GRAINED SNC, SLIGHT COM			
9.0	SM	6		NР	100	20	8	SILTY SAND: LIGHT BROWN, MOIST, SLIGHT CONESION-			
10.5	SP/SM	4		*	100	6	9	SAMO/SILTY SAMO: LIGHT BROWN-TAN, MEDIUM GRAINED.			
		17	28	ę	190	58		SAMEN CLAY: BROWN, MOIST, SLIGHT COMESION.			
	CL	20	40	25	100	82		SAME: DARK BROWN-			
	•	16	28	13	100	52		SAFE: GREY-BROWN-			
		18	ķņ	11	190	- 51		SAME: PROM-			
21-0		25	49	24	100	98		CLAY: BROWN, MOTST, COMESTVE-			
	SW/SF	14	22	5	100	42	11	SILTY SANTI/CLAYEY SANT); PROM, MOIST, FINE SPAINED			
24:0		24.	30		.100	75		SMINY CLAY: BROWN, MOIST, CONESIVE-			
<u>n 27.</u>	n 1	27	۱	14	1117	76	8				
28 :0	SMVSC	15	23		130	41	26	SILTY SAND/CLAYEY SAND: BROWN, MOIST, FINE GRAIMET			
50-0 31-5	SP/SM	15			130	10	- 21	SAHD/SILTY SAND: BROWN, MOIST, MEDIUM GRAINED SANS			

TH83-1803

1435-18	03		171	561	Où B			EL- 112:
NEPTH	LOG	M (i.	P;	-4	-200	4	DESCRIPTION
	SM	5		ψ.	79	31		GRAVELLY SILTY SAND: GROWN, MOIST-
1.5	<u> 2642</u>	3		Æ	:05	4		SAND/STETY SAND. TAN, DAY, MEDITAL GRAINED SAND.
2-5 4-0	n.	15		*	1,4	5 <u>5</u>	16	SANDY SILT: BROWN, MOIST, COMESIVE, FINE GRAINET S
	26	,			γ:	1	9	SAND: LIGHT BROWN, MOIST, NON-CONESIVE, MEDI M SAN SAND-
5.5	SP/SM	4	23		# + [10]	٠,	1	SAND/STLTY SAND. GRAY, MOIST, NOM-COMESIVE, FINE S SAND.
_9.C 10.5	ъ. 				7:	4	3	SMID. GRAY, HOIST, NON-CONFSIVE, MEDIUM GRAINED S
TU:-2		??	41	į.	13	*9		SANDY CLAY: BROWN-GREY, MOIST, COMESIVE.
		23	ųt	7.		3t	22	FLAY: DARK BROWN.
	Ĵ	21	44	24	137	35		SAME PROMP-
		19				7	17	SAMMY CLAY: MRCHIN.
		38	44	21	13	àυ		CLAY- RACHAN-GREY.
14.5		IJ.		. 15	D.	7.15	14	SAMTY PLAY: YELL THE BROWN, MITTER
	ÇH	45	51	26	* 4	àr		
. بنوند								
	a.	72	13	1.	(a)		11	SAMPY FLAY: FRAK BROWN, MOIST, SLIGHTLY PLASTIC
24:0	5 47	<u>7</u> 1`		y	137	· 46	u	STETY SAID: BROWN, HOIST, SLIGHTLY CONESIVE.
25.0_	<u>a</u>	20	44		D:	3 6		CLAY: BROWN, MOIST, COMESTIVE, SLIGHTLY PLASTIC-
22:0.		70	55		াদ	₩.	-	TILT: MONN, MOIST, COMESTVE, SLIGHTLY PLASTIC-
28 G	- 18 7A		78		- 130			SARTY STLY/SARTY CLAY: MODEL, MOIST, COMESTIVE-
29.0			60		100	া সুচ	-	TAY- MONTHEY, MOIST, CONESIVE, PLASTIC-
30.0.							-	

TH83-1802

EL. 1142 -200 N DESCRIPTION GRAPELY SAMO/SILTY GRAVELY SAMD: BROWN, MOIST, FI TO HEDIUM GRAINED SAMO. 11 17 8 SAMO/SILTY SAMD: BROWN, MOIST, MEDIUM GRAINED SAMO. 55 SEMOY SILT: New, MOIST, KINE GRAINED SAMO, SLIGHT COM- 9 SILTY SAMP: LIGHT BROWN TAN, MEDIUM GRAINED. 58 58 58 58 58	
######################################	
11 17 18 SMO/SILTY SMID: BROWN, MOIST, MEDIUM GRAINED SAND- 55 SERVI SILT, New, Moist, Sim Grained SMD, SLIGHT COM 20 8 SILTY SMID: LIGHT SHOWN, MOIST, SLIGHT COMESION- 58 SMO/SILTY SMID: LIGHT BROWNTAN, MEDIUM GRAINED. 9 SMOYSILTY SMID: LIGHT BROWNTAN, MEDIUM GRAINED. 58	
9 8 SMOVSILTY SMO: BROWN, MOIST, MEDIUM GRAINED SMOO- 65 9 SMOVSILT; BRN. MOIST, FIRE GRAINED SMO, SLIGHT COM- 20 8 SILTY SAMP: LIGHT ROOM, MOIST, SLIGHT COMESION. 6 9 SMOVSILTY SAMP: LIGHT BROWN TAY, NEDIUM GRAINED. 58 58	
9 58 SMENT SILT: New, MOTEY, FINE GRAINED SMED, SLIGHT COM- 20 9 SILTY SAMP: LIGHT RACHA, MOTEY, SLIGHT COMESTON- 5 SMED/SILTY SAMP: LIGHT BROWN TAN, NEDTUM GRAINED. 9 SAMEN CLAY: RECEN. MOTEY, SLIGHT COMESTON- 58	
20 8 SELTY SAMP: 1.16+T BROWN, MOIST, SLIGHT COMESION- 6 9 SAMPLY SLAMP: LIGHT BROWN TAW, MEDIUM GRAIMED. 58 SAMPLY CLAY: "ROWN, MOIST, SLIGHT COMESION.	ESION.
5 SWIVSLITY SAMP: LIGHT BROWN TAN, NEDIUM GRAINED. 5 SWIVSLITY SAMP: LIGHT BROWN TAN, NEDIUM GRAINED. 58 SWEW CLAY: "ROWN, NOIST, SLIGHT CONESION.	
9 SMEY CLAY: Rhow, HC15T, SLIGHT CONESION-	
58	
·	
SAME: TARK BROWN. 32	
SAME: SAEY-BROWN.	
5T SAFE: PROM-	
98 (LAY: RACHA, MOTOT, CHERINE.	
11 SILTY SMITH, SYTY SAY RETHE, MOIST, FINE GRAINED 42	SMC.
ZE SHIPP (CAY SPOOK), MILEY CONESIVE.	
76 8	
41 SILTY SAMPY CLAYER CARP RESENT MOLEST, FINE GRAINED	SAD.
10 SAND/SILTY SAND RACHA MOIST, MEDIUM GRAINED SAND-	

TH83-1803

· •			F. 130e
	-270	•	1.00
٠:	"1		SPANE Y TO THE CAN'T SPONN, MOIST.
			SMITTER THE THE TOWN WEDLIN GPAINED SAND
	<u>55</u>	1:	SMOV CL. * SHOWN MOSTS COMESTVE, FINE GRASHED SAND-
	*	7	CAND LIGHT RESIDE MILEST, WON CONCESSIVE, TEDLEM GRAIMED SAME.
			and the second s
	.5	1	THE CONTROL OF THE STATE OF THE
	•••		
í.		•	DRIT HAY, MI, I WINTERPROTE MEDICAL GRAINED SAND-
٠,	79		THINK THE PROME NEW MITST, COMESIVE.
	86	27	CM Cap Janes
5 .1	85		WE ROSA
y	79	17	SARTY CAY POYME
	ar.		Tight Remark Surviv
Ψ.		, tt	THE TELESCOPE WITH THE TELESCOPE THE TELESCO
	ЭŔ		
			=
e,	17	11	THE LAY DEPOSED . MISSET, SUIGHTLY PLASTIC.
ন্	· · 35 -	11	STOW THE SHOWN, HOUSE, SLIGHTLY CONESIVE.
מר	34		TAY SOME TOIST COMESTVE, SLIGHTLY PLASTIC-
	· · · · · · · · · · · · · · · · · · ·		TT Sense, Spist, consider, Sciently PLASTIC-
T	<u>ā</u> .		THE THE PER PARTY THE THOMAN MOIST, COMESTVE
	····		TAY MINE THEY, MIST, COMESTVE, MARTIC.

TH83-1801

THB3-18	301		\$1	A 574	+00 L			EL- 114t
DEPTH	L06	MC	u	PĮ	-4	-200	H	DESCRIPTION
	98	2		MP.	90	17		SILTY SAND: GREY, DRY, SOME ORGANIC MATERIAL, GRAVEL TO 3 INCHES, COMPSE GRAINED SAND.
2.5							18	
		9	28	9	100	42	-	CLAYEY SAND: BROWN, MOIST, MON-COMESIVE, FINE GRAINED SAND.
	SC	16	23	9	100	42	11	
6.0								
								SAMDY SILT: BROWN, MOIST, COMESIVE-
	**	29	63	13	100	84		
0.0	ML/IL	20	25	5	100	72		SAMBY SILT/SAMBY (LAY: BROWN, MOIST, NON-CONESIVE-
2.0	α.	23	33	11	100	-67		SAMPLY ILAY: BROWN, MOIST, SLIGHTLY CONESIVE-
3.0		23		HD.	190	 29		SILTY SAND: Becom-GREY, MOIST, NON-CONESIVE-
5.0	31	.,			LUJ	ξ3		STOTE SHALL DECIME ONCE, PARTY MAN CONCESTAGE
		31	33	8	100	52		SAMOY SILT: BROWN, MOIST, COMESIVE-
								SAME: BROWN-GREY.
		26	33	4	100	52		
	M.							SAME: GREY-
		33	33	8	190	52		
		 29	39	11	100	96		SILT: Broker-Skey.

TH83-1804

THB3-18	134		\$7	4 561	+30 l			FL- 11/22
DEPTH	L09	#Ç	LL.	ρį	-4	-200	н	DESCRIPTION
1.0		. 3	32	10		40		CLAYEY SAMD: LIGHT BROWN, DAMP, FINE GRAINED SAND. ROOTS ANT GLASS FIRST 5 INCHES:
		13	41	21	100	65	18	SANDY CLAY: BROWN, MOIST, SUIGHTLY COMESTVE, FINE GRAINED.
	CL	η	323		100	77		SAME: THANK BROWN AND LIGHT BROWN LENS-
4.5							1!	
	Mi.	52	5 5	?5	100	90		SILT - PROMIN, MOIST, SLIGHTLY COMESIVE.
2.0		-15	30	- 5	100			SHOY STLT: LET BAN, MOIST, FINE STAINED SHO, SLIGHTLY COM-
	4	19		NР	100	70		SAME: BROWN-
10.0			30		100	70		SAMITY CLAY: BROWN GREY, CONESIVE, TIME GRAINED SAMO
11.0								SILTY SANT: Region, MOIST, NON-COMESIVE-
	34	15		*	100	रह	16	
14.5								
H_16-0	ď	50	30	10	1073	87		SAMPY PLAY: RECHIN. MOIST, COMESIVE-
	S#	۱5	25	4	130	37		STEIN SAND: SREY, MET, COMESTVE
19-0 20-0			35	70	100	72		SAMY ST. BROWN GREY, SLIGHTLY COMES IVE

SCALE I NO 3FT

NOTES

- 1 SEE PLATE 18 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT"

SYMBOL	DESCRIPTIONS		DATE	AFFECVA					
	REVISIO	ONS							
		U. S. ARMY ENGL LOS AND CORPE OF E	SELES	icī					
DESIGNED BY:		IVER MAINSTEM, CALII RAL DESIGN MEMORA							
DEAWN ST.	LOGS OF	NVESTIGATIO	NS						
CHICARD 9%	CORPS	OF ENGINEERS	S						
į į	STA.574+00 TO STA.553+00								

TH83-1805

THB3-1	805			TA 54	8+50 L			EL- 1062
DEPTH	L06	MC	u	PŢ	-4	-200	N	DESCRIPTION
	ML/QL	14	29	,	100	54	8	SAMOY SILT/SAMOY CLAY: BROWN, MOIST, FIME TO MEDIUM GRAINED SAMO, ORGANIC MATERIAL.
1.0							8	
	CH	24	54	30	100	83	٠	SANDY CLAY: DARK BROWN, MOIST, SLIGHTLY PLASTIC-
6.0								CHINA CLASS TO THE CONTRACT OF
		77	- #	- 24	100	- <u>79</u>		SAMDY CLAY: DANK BROWN, MOIST, SLIGHTLY PLASTIC- SAME: LIGHT BROWN, MOIST, FIME GRAINED SAME-
		12	31	12	100	73		SHIC: Clari SHOW, HUIST, FINE GRACINED SHOP.
		_					12	
		18	45	26	100	85	_	C. YY: GREY-BROWN, MOIST, SLIGHTLY CONESIVE-
	α	17	37	19	100	76	21	SAMON CLAY: GREY-BROWN, MOIST, SLIGHTLY COMESTIVE
		23	32	10	100	69	13	
		24	32	9	100	65	_	
20-0	sc	17	75	8	100	48	9	CLAYEY SAND: BROWN-GREY, MOIST, COMESIVE-
	<u> </u>	17		- 6	93	74		
3	37/31	15		-7	71	-11	10	SILTY SAND: BROWN, MET, SOME GRAVEL I INCH-
	PL.	28		· ·	100	50		SAVE SILE BROWN, MET, SLIGHTLY CONESIVE, MEDIUM GRAINES
0	SP/SH	22	29	2	93	. 11	19	SAMPASILTY SAMPA. SPORAL TO THE SAMPASIA SAMPASA SAMPASIA SAMPASIA SAMPASIA
		21		NP.	100		,,,	SMD/SILTY SMD: BROWN, NET, MEDIUM GRAINED SAND.
	24	22		100	100	40		SILTY SAMD: DANK GREY, NET, FINE GRAINED SAND- SAME: BROWN-

TH83-1806

EL- 1082			+00 R	TA 540	\$		06	THB3-18
DESCRIPTION	H	-200	4	Pį	LL	MC	L0G	DEPTH
SILTY SAND: LIGHT BROWN, MOIST, HON-C							_	
		14	98	#P		4	34	
	38							3.5
SMOY SILT: BROWN, MOIST, SLIGHTLY CO	12	69	100	14	41	22	M,	_6-0
STLTY SAID: LIGHT BROWN, MOTST, NON-C		31	99	¥		3	SY	7.0
	8							
SANDY CLAY: BROWN-RUST, MISST, COMPSI		70	100	16	35	21	a_	
CILTY SANT: BROWN, FINE GRAINED SAND	31	17	97	160		4	- 51	9.5
GRAWILLY SAMO/STLTY GRAWITY CHIN.	•		70	YP		7	क्राक्र	10.5
SAMOY DLAY: DARK BROWN, MOIST, SLIGHT					_			11.5
COHES I VE	9	61	100	n	40	27	Q.	13-0
SILTY SANT: TARK BROWN, MOIST, SLIGHT COMESTVE-		73	99	*		3	SM	14.5
CLAY: DARK BROWN, YDIST, COMESIVE.		87	100	12	34	23	α	15.5
STLTY: DARK BROWN, HOIST, CONESIVE-		86	100	12	46	24	٩	17:0
SMOY CLAY: "ARK BROWN-GREY, HOIST, C						21.		
	12		100	23	49_	24_	۵	
	12	79	100	20	43	24	~	
						-		
								22.3
SILTY SATE: BROWN-GREY, WET, OLIGHTLY		48	190	40		[9	34	24-0
CUT. Dec.				_				24.9
STUT: DARK MICHIN, WET, COHESTVE-	9	99	10n	21	59	33	**	26.0
		.,		••		•	-	
								8-0
SANDY CLAY: DARK GREY-BROWN, -ET. CO-		78	100	19	42	29	a.	
								0.0

TH83-1806

	\$1	A 540	+00 R			EL- 1982
L	i.	PŢ	4	-200	,	DESCRIPTION
F						SILTY SAND: LIGHT BROWN, MOIST, NON-COMESIVE-
Ĺ		₩.	98	i#		
•					38	
'n	41	14	100	59	12	SMDY SIL* BROWN, MOIST, SLIGHTLY CONESIVE-
<u>-</u>		Ψ	99	31		STUTY SAME CIGHT BROWN, MOIST, NON-COMESIVE-
					8	
	36	16	190	70		SMANY (LA" BROWN-RUST, MAIST, COMPSIVE-
<u>. </u>		Ψ	V	17	31	CT TV CHIA BROWN, FINE GRAINED SAND
r		*	70	2		GRAINELY CHRISTILLY GRAVELLY SAND: LIGHT BROWN, COARSE GRAINEL SAND.
	40	22	100	61	٩	GRAINED SAND. SARDY CLAY THANK BROWN, MOIST, SLIGHTLY COMESIVE TO NON-COMESIVE.
Ţ		-	9	- 73	,	ST. TY SMITH TARK BROWN, MOIST, SLIGHTLY CONESIVE TO NON-CONESIVE
3	34	12	100	- 87		TAR BROWN, MOIST, COMESTIVE-
	46	12	100	36		SILTY: TARE BROWN, MOIST, CONESIVE.
	44	23	100			SMMOV CLAY: "TARK BROWN-GREY, MOIST, COHESIVE-
					12	
,	43	20	100	.79		
:		₩	100	48		CLIFE SAME BROWN SPEY, MET, MIGHTLY CONESIVE-
į		٠.			9	TOTAL SAME SECOND WET, CONESIVE.
,	69	21	100	39		
	42	15	100			SAMPY (LAY DARK GREY-BROWN, HET, COMESTIVE, PLASTIC-

TH83-1811

THB3-18	11		\$1	A 535	•00 L			EL. 102±
DEPTH	F08	*C	LL	PI	-4	-200	N	DESCRIPTION
1.0	51	8		NP.	100	25.		STLTY SAND: BROWN, MOIST, MON-COMESTVE, MEDIUM GRAINEL SAND, ORGANIC MATERIAL.
	9P/SM	5		W	100	10	16	SAND/SILTY SAND: GREY, MOIST, MEDIUM GRAINED SAND, NON-COMESIVE-
4.0					90	3	24	SANT: GRAY, MOIST, COARSE GRAINED SAND.
	₹º						18	SAME: SRAMEL 1/2 INCHES DIAMETER
10-0		4			100	4		
		19	48	27	100	84	29	SANDY CLAY: BROWN, MOIST, SLIGHTLY COMESIVE-
		27					12	SAME: GREY-BROWN, CONESIVE-
1.15.5		 25						SAME: BANK BROWN-
	α	<u></u>					13	SAME: RECOM-
		ЭĘ	Ŋ	9	100	55	,,	
		57	ĸ2	19	100	30	_	SAME - TANK BROWN, WET-
		372	34	17	100	88	7	CLAY- TARK GREY, WET, COMESTVE-
5-0		33	ŧg.	17	100	88	10	

SCALE I IN-3FT

NOTES.

- I SEE PLATE IS FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE SA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

PTIMOL SECURIOUS DATE APPROVAL REVISIONS U.S. ARMY ENGINEER DISTRICT LOS ANGELS ORRES OF ENGINEERS SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANOUM LOGS OF INVESTIGATIONS CORPS OF ENGINEERS OSCUR OF STA.548+50 TO STA.535+00 SAMMITTED BY: DATE APPROVED. SHEET PLANS DISTRICT FILE NO.

TH83-1808

TH83-1	908		S	TA 53	1+00 R			EL. 1052
DEPTH	L06	MÇ	ш	PI	4	-200	N	DESCRIPTION
		3	_		98	4	18	SAND: TAN, DRY TO MOIST, MEDIUM GRAINED SAND, HON- CONESIVE-
		3			98	4	5	SAME: MOIST-
6-0 5-5	SI	_10_		•	100			SILTY SAND: LIGHT MOON, MOIST, FIRE GRAINED SAND
	39	8			99	4	7	SAND: TAN, MOIST, FINE TO MED. GRAINED SAND, NON-CONESIVE
9-0	sc	20	46	25	100	50	17	CLAYEY SAND: DARK BROWN, MOIST, FIRM-
	SM	5		ИP	100	19		SILTY SAND: GREY, MOISY, SLIGHTLY COHESIVE.
1.0	a	-19	31	15	100	53	10	SAMOY CLAY: DARK BROWN, MOISY, SOME COMESION.
5.5	SM/SC	#	24	7	190	42	9	SILTY SAMP/CLAYEY SAMP: DARK BROWN, MOIST, SOME COMESION- SAME: BROWN, WET-
		25	ul.	24	100	91	3	SAMITY CLAY: RECOM, MET, PLASTIC ORGANIC MATERIAL.
	Ţ	75					11	SAPE: GREY-DARK BROWN-
2.0		25						
							9	SANTY SILT: BROWN-GREY, NET, PLASTIC-
	4	23	55	4	100	56	9	
·.a								
.2	2	21	29	14	100	57		SAMMY (LAY: SQUE-GREY, WET, PLASTIC-
.0	<u> </u>	?1		100	190	<u> </u>		SILTY SANT, GREY, WET, PLASTIC-

TH83-1809

TH83-1	809			STA 521	₩50 R			EL : 103±
DEPTH	L06	нс	u	PI	-4	-200	*	DESCRIPTION
		5		NP	95	23	38	SILTY SAMD: SROWN, MOIST, COMMLES T
	5%	9		_ NP	100	25	13	SAME: FINE GRAINED SAND-
		8		NP	190	26		SAME: LIGHT BROWN-
23	57/57			- 10	100			SAMP/SILTY SAMP: LIGHT BROWN, MOIST
8.0	58	13		. HP	100		9	SILTY SAND: "ARK BROWN, MOLST, SOME
10.5	٩	32	48	19	100	77	8	SAMDY STLT: DANK BROWN, MOTST, COME
		12	26	3	190	40	٠	CLAYEY SAND: DARK BROWN, MOIST, CON
	SC	17					10	
15.5 15.0	_1	34	- 47	16	100			SANDY SILT: GREY-BROWN, MOIST, COHE
17-0	SMVSC	- 73	27	5	100	7 <u>5</u> 33	9	STILTY SAND/CLAYEY SAND: DARK BROWN.
18.5	N /0.	28	27	6	110	73		SANDY SILT/SANDY CLAY: DARK GREY, W
		26	52	15	100	72	8	SANTY CLAY: PROMIN MET, SLIGHTLY PL
		\overline{r}	45	25	100	72	8	SAME: "MARK GREY, WET, PLASTIC.
	α	30					10	
		3?						
30.0								

TH83-1809

### 171 13 SILT SAVE. TARK BROWN, MOIST, SOME COMESION. 19 121 72	19	-4	-290	*	DESCRIPTION
SAFE LIGHT SPONN.	нP	45	23	38	SICTY SAMP ROWN, MOIST, COMMLES TO 4 INCHES-
## 13 25 ## 13 5 ## 10 15 5	IP.	্ল	- 3	13	SAME. FINE GRAINED SAMD-
## 20 13 SILT CAP. TAR. BROWN. MOIST, COMESION. SAMIN DIT TARK BROWN. MOIST, COMESION. 19 13 TO 40 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 22 TARK BROWN. MOIST, COMESIVE. 23 TO 40 TARK BROWN. MOIST, COMESIVE. 24 TARK BROWN. MOIST, COMESIVE. 25 TARK BROWN. MOIST, COMESIVE. 26 TARK BROWN. MOIST, COMESIVE. 27 TARK BROWN. MOIST, COMESIVE. 28 TARK BROWN. MOIST, COMESIVE. 29 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 22 TARK BROWN. MOIST, COMESIVE. 23 TARK BROWN. MOIST, COMESIVE. 24 TARK BROWN. MOIST, COMESIVE. 25 TARK BROWN. MOIST, COMESIVE. 26 TARK BROWN. MOIST, COMESIVE. 26 TARK BROWN. MOIST, COMESIVE. 26 TARK BROWN. MOIST, COMESIVE. 27 TARK BROWN. MOIST, COMESIVE. 28 TARK BROWN. MOIST, COMESIVE. 29 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 22 TARK BROWN. MOIST, COMESIVE. 23 TARK BROWN. MOIST, COMESIVE. 24 TARK BROWN. MOIST, COMESIVE. 25 TARK BROWN. MOIST, COMESIVE. 26 TARK BROWN. MOIST, COMESIVE. 26 TARK BROWN. MOIST, COMESIVE. 27 TARK BROWN. MOIST, COMESIVE. 28 TARK BROWN. MOIST, COMESIVE. 29 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 20 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 21 TARK BROWN. MOIST, COMESIVE. 22 TARK BROWN. MOIST, COMESIVE. 23 TARK BROWN. MOIST, COMESIVE. 24 TARK BROWN. MOIST, COMESIVE. 25 TARK BROWN. MOIST, COMESIVE. 26 TARK BROWN. MOIST, COMESIVE. 26 TARK BROWN. MOIST, COMESIVE. 27 TA	Ψ	ix	26		SAME :: 10HT BROWN-
SAMPY TARK BROWN, MOIST, COMESION-	_			3	SAMP SILTY JAMP TO BROWN HOLST, COMESE GRAINED SAM
3 170 40 121 142 SACHE TARK SACHER, MOIST, CHESSIVE. 5 17					
SANTY 1 SANTY 1.3Y PARK GREY, MET, PLASTIC. 5 100 19 19 19 19 19 19 19 19 19 19 19 19 19	3	:º:	46	9	TIMEN SAME SACHAN, MOIST, CONESSIVE
SAMPLE TO SAMPLE TO SAMPLE DAME GREEN HET PLASTICE SIGNATULE SPENNING HET SLIGHTLY PLASTICE SIGNATULE SPENNING HET SLIGHTLY PLASTICE SIGNATULE SPENNING HET SLIGHTLY PLASTICE SIGNATULE SPENING HET SLIGHTLY PLASTICE SIGNATULE SPENING HET SPENING HET SLIGHTLY PLASTICE SIGNATULE SPENING HET				::	
5 GANTY D. 11 PROMAL MET, SUIGHTLY PLASTIC. 5 DY 19	5	3	- 1	3	AND JAPE BROWN DIST. COMESTVE
5 17 19 	ń	He	ۋە		SAMTY TO SAMEY TOLEY - CARK GREY, MET, PLASTIC
	ń	177	°q	8	CARTY I. T. PROMI. HET, SLICHTLY PLASTIC.
and the second of the company of	5	ix:	77	9	UMF TARK (MEN. HET PLASTIC)
P				17	

TH83-1810

THB3-18	310			TA 52:	2+50 L			FL- 102±
DEPTH	L06	MC	u.	PI	-4	-20n	N	DESCRIPTION
				MP.	96	23		SILTY SAMD: RROWN, SLIGHTLY MOIST.
		_		φ	99	15		SAPE: LIGHT BROWN, NON-COMESSION-
	24	5		NP	95	22	6	SAME: PROKEN A/C AND CONCRETE, MOIST.
8.0		5		МÞ	96	17	10	SAME: GRAVEL TO 2 INCHES.
0.0	n.	29	18	29	100	86		CLAY: DARK BROWN GREY, MOIST, CONESIVE-
1.0	St	27		Ψp	100	43	8	STUTY CAND. B
		20		NP	100	51		SILTY SAND: DARK BROWN, MOIST, COMESIVE. SANDY SILY: DARK GREY, MOIST, COMESIVE.
		19						SAME: PARK BROWN.
	۹.	23	\$7	5	100	77		SAME - DARK SREY.
1.0		31	47	13	100	78		
		51	4E	74	100	76		SAMOY CLAY. GRAY, MET.
	c							
		_						
		34						
.0								

NOTES

- SEE PLATE IN FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

SCALE IN STT

SYMBOL	SESCRETIONS		DATE	APPROV				
	REVISIO	NS .						
		U, S. ARMY ENG LOS AN CORPS OF E	GELES	CI				
OFSIGNED BY	FORNIA NOUM							
DRAWN SY.	LOGS OF	LOGS OF INVESTIGATIONS						
	CORPS	OF ENGINEERS	3					
CHICAGO Ph	\$TA.531+0	00 TO STA.522	+ 00					
SUBMITTED BY:	DATE	SPEC. NO. DACWOF-		\$1400				

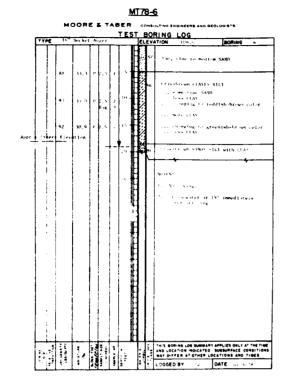
MT78-4

MOORE & TABER CONSULTING ENGINEERS AND GEOLOGISTS

TYPE	16"	Bucket	Aunt	-	TES	EL	EVA	TION 113.0	BORING 4
1	,,,,,		7	7	7	ďΫ	n	Scown fine SILTY	AND
	98	11.1	1 2.	5 1			7	SiLT lennes	
		H.B.	1 2.	, 2	111-	2	SP	Light brown Fine t	
	110	17.5	3 2.	,,	15	//////	9	Grav-green GLAVFY etroaks	SILT with exidation
	101	24.1	1 2	.5 4	20	(11)/411		less CLAY -	
pptox	ma**	nvert 24.1	,		25			SAND seaps	
					30	W. X. #.	<u>اء</u>	Green-trown fine !	SANDY SILT
İ	9,	31.4	1 2	5 4		M	۳	Creen-trose CLAYE	
!	:	<u> </u>		ļ				1) No ravins	t 23 feet 17 hours
1		ļ !							
:	į								
1									
				1	1				
		**.*	7				١.,	THIS BORING LOC SUMMA- AND LOCA" DR MOCATEL MAY DIFFER AT DTHER	RY APPLIES ONLY AT THE TIE 3. SUBSUMFACE COMBITION LOCATIONS AND TIMES
	1 4 7	1 2 1	5.0	1	12.	1:1	: [LOGGED BY	DATE

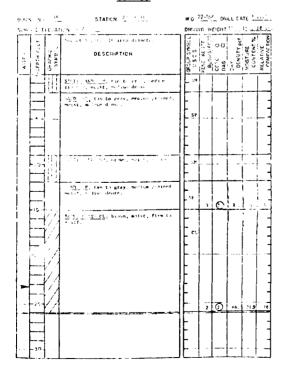
MT 78-5

Ange Labert 1


GC 71-37

BO-PAS NO	12	STATION 253 + 21	WO 22 164 DRILL DATE 3/11(1)
SHEFFICE	CLEVAT	rion 2	DRIVING WEIGHT 1500 15. 15
WATER ODEOTH FLET	STAIBUL	BUNCE Augro. 16 Linds the DESCRIPTION	PR.VP 57WC. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S. U S C S C S. U S C S C S C S C S C S C S C S C S C S
		String of the SM, brown, moret, more, or uses	- 3h
		Fig. br. ten. mother, measure dense.	5"
			38 · Q 107 · C × E
		The Colored breven, model fac-	H
	1	_ETE - 2 28 hrien, sc Cardt i - Fre.	EH
			10 10-11-1
	Ш	SANDY St. J. Mr. brown, cols., fire.	- m
25	$\exists ! i :$	SETT 5550 SM; Srown, House, medium dele	-5H -
iF	1		
	1		
	-		<u> [</u>
30	1		<u> </u>

URF		LEVAT	_ 51A1				
waten	O DEPTH FEET	GRAPHIC SYMBOL	0 6 .0				
	-07		<u>\$1</u> 17 10 10 10 10 10 10 10				
			SOB 11 1 BOSK, 6				
	- 5 -	-					
		-					
	-10-						
]! <u>]</u>	17g - 18g - 18g - 18g				
	-15	77					
			\$ 7. T. = -				
		V LZ					
		1/					
-	<u> </u>						
	-25-	Z.					
	E						
	-30						



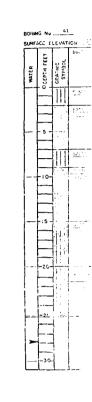
DATE

GC71-36 W.O. 22-164 DRILL DATE 3/11/71 STATION 276 + 18 BORING No 36 DRIVING WEIGHT 150. 18., 18 in. WATER ODENTH FEET GROUP STAZOL BY U.S.C.S. PENE RESST. BLOWS/FOR CORE OF CORE OF CORE OF CORT BY CONTENT OF COMPACTION COMPACTION Sucker auger: 16 inch diameter Sitty Sales: M; brevn, moist, medium dense. SAUD: 12; tan, moist, medium dense. --5-1 10 107.0 2.6 92 -10-1 1 SILTY : No: 58; brown, moist, medica +15-SINGY SHIT: Mr brown, roist. fire. STATY SWO: SM: brown, moist, medaum dense. -20-

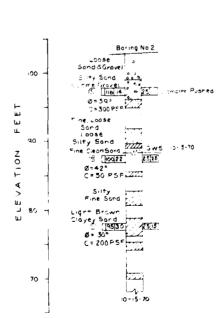
GC 71 - 38

NOTES:

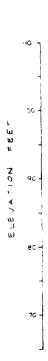
- I. SEE PLATE 18 FOR TEST SITE LOCATIONS
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

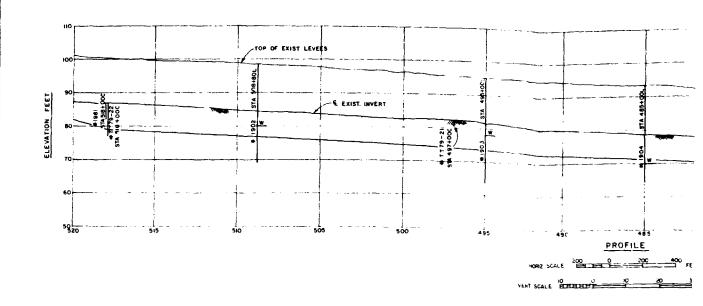

			_						
SYMBOL	DESCRIPTIONS	DATE	APPROV						
	REVISIO	INS							
		U. S. ARMY ENGINEER DISTR LOS ANGELES CORPS OF ENGINEERS	icī						
DESIGNED ST.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM								
SEAWAL SY.	LOGS OF INVESTIGATION								
	BY	OTHERS							
08080 IV									
	STA.585	+00 TO STA.520+00							
SUBMITTED BY:	DATE	SPEC. NO. DACWOR-	1 946						

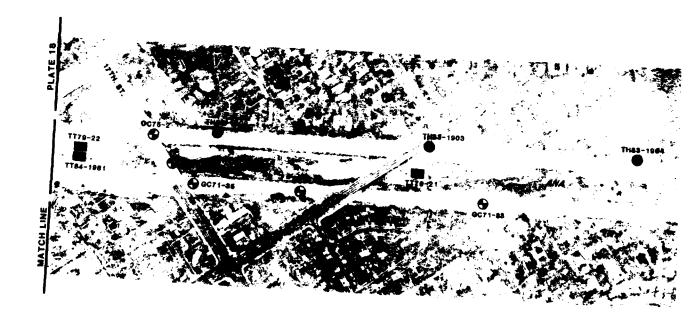

GC 71-39

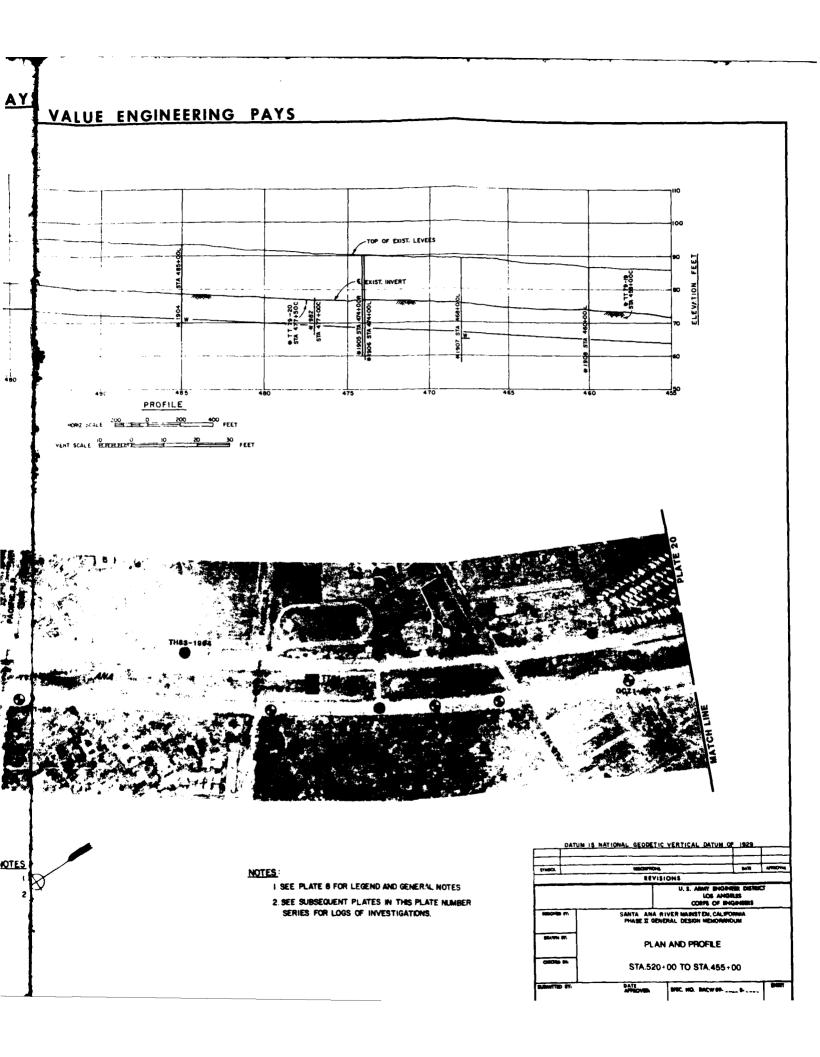

	G No.		STATION!11 + 28		N. O			1500	15.,	18
URFA	CE EI	EVAT	ION 48			46 W	EIGH		_	_
WATER	ODEPTH FEET	SYMBOL SYMBOL	Bucket Auger 16 inch diameter. DESCRIPTION		GROUP SYNBOL U.S.C.S.	PENE. RESIST. BLOWS/FOOT	CORE O	DRY DENSITY DE	MOISTURE CONTENT %	RELATIVE
	-		SILTY SANG. SH; brown, moist, medium Jenso.		- sh		L			L
			SAND 59; can to grav, medium to coarse grained, moist, medium dense.		-					
	- 5 -	_			SP					
					-					
-	-10-	•		ļ	_		0	91.5	د .5	13
					<u>-</u>		 			
-	-15-	#:	dense.		- 5H					-
				ļ	_					
-	-20-		Fig. 2t M., brown, wet, soft to	i	HL		Ø	Et.	13.	. 4
			National State of the State of		-,н		 			
	- :-					!	_	11-2		
ļ				l	-	: : !		!		
_	-20				-			_		

GC 71-40


Bucket Anger 16 tich disector. 10		IG No		STATION "21 + 1"	W.O. 27-161 DRILL DATE (1-11-1)
	SURF	ACE E	LEVAT	10N	DRIVING WEIGHT 1000 11 . 18 11
	WATER	CEPTH FEET	GRAPHIC SYMBOL	-	HILLS CONTROL IN SCOOL IN THE SCOOL IN THE SCOOL OR AND THE SCOOL OR AND THE SCOOL CONTROL IN THE SCOOL
5 Sile			11	nedium dons .	
		- 5 -		RATING THE NAME OF THE PROPERTY OF THE PROPERT	34
- 15 dem		-10-			G = 4 - =
		-15 -		<u>SHT. Ship Cr.</u> brown	
F1 511 - 1.2.2. 1.2.2.2 1.2.2.2 1		-50-		SACTOR BOOK VICE	
			111	Statution Living of E dense.	
	-12-	- :::	11.1		
		- 30-			




OC 71-2


	<u>6Ç71-41</u>	<u>6C 71-42</u>
_ DRL VI	BOHNO No. 41 STATION 311 29 W.O. 22-164 DIGLE CATE 125	Bottes: No. 42 STATION 239 + 32 W.O. 22-164 DRILL DATE 1/16/21
	SOURCE (14) VATION 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SURFACE CONVATION 100 PRODUCE WEIGHT 150 18 19 ic.
985 J. S. S. S.	LE CO DESCRIPTION CONTROL DESCRIPTION	MATER MATE
	12 M 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	535 C 5554 , 57744 45 6551	Strain St
·		Windows and the control of the contr
. 1	11 SE 121 E Storm vista from M.	
G 2 2 2 1 1 1	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
7		1 2 22 5 41 41 41 41 41 4 1 1 1 1 1 1 1 1 1 1
- -		
		
:		
± :± . ₩		
- -		
er integ	Boring No 3 Westure Stand Use Stand Westure Stand Westure Stand Soft Ca, y Sand Soft Ca, y Sand Soft Ca, y Sand	NOTES I SEE PLATE 18 FOR TEST SITE LOCATIONS 2 SEE TABLES 4 AND 5 FOR LIST OF "YOPTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS 3 LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE
	5 17, Sand 30ft Clayer Sat 1	179HOL DESCRIPCIONS REVISIONS U. S. ARMY ENGINERE DISTRICT LOS ANGELES CORES OF ENGINERS CRISCHO ST SANTA ANA RIVER MAINST EM, CALIFORNIA PHASE II CONERAL DESIGN ME MORANOLM CHANNE ST. LOGS OF INVESTIGATION

STA:585+00 TO STA:520+00

TT84-13		ERT		TA 518	+09 C	1	<u>T 8</u>	4 - 1981 EL - 975
DEPTH	L06	MC	u	PI	-4	-200	N	DESCRIPTION
	39/38			W	100	9		SAND/SILTY SAND: LIGHT BROWN, MOIST TO WET, FINE GRAINED SAND-
3.0	5H 5P		36	3	100	43		SILTY SMID: GREY BLACK, MOIST TO NET, FINE GRAINED SAND. SOFE ORGANIC PATERIAL. SAND: LT BENEGREY, MOIST TO NET, FINE TO MED, GRAINED SAND SANG GAMEN, 1/8-3 INDMES, SOFE CORRUST TO 8 INDMES.

-22		INVERT							
P 87			00 E	2 518	51			TT7:J-22	
DESCRIP	Ħ	-200	-4	PI	ů.	H(L06	DEPTH	
GRAVELLY SAVID: GREY, MOIST, OCCASIONAL BOULTERS TO 74-IN		3	59			4	9	2.0	
SANDY CLAY: BROWN, WET, COM		86	100	2?	44	32			
		57	100	13	31	26	σ		
SAME: BROWN, MET, COMESIVE.		58	100	12	31	2.7		10-0	

1483-19	03		\$1	A 495	•00 L		THE	8 <u>3 - 1903</u> EL- 95±
DEPTH	L16	MC	üL	PI	-4	-200	N	DESCRIPTION
2.5	SP	3		*	91	24		SILTY SAM": LIGHT BROWN, MOIST, GRAVEL TO 2". 1/8 INCH. COBBLE-
-	SW/SM			φ	36	יון	35	SAMP/SILTY SAMP: LIGHT BROWN, MOIST, GRAVEL TO I INCH-
5.0				P	99			STLTY SAND- I, IGHT BROWN, MOIST, SOME GRAVEL TO I INCH-
	24	1.		up.	100	31_		SAME: GREY, FINE GRATHED SAND-
	34	,		ψo	98	13		SAME: LIGHT BROWN, MOIST-
10-9 11-3		9		Ą	99	25	21)	SAME: SMOWN-RUST. FINE TO MEDIUM GRAINED SAND-
U:V	- 2E	-43	47		170			CLAYEY SAND: GREY, MOIST
12-5	<u>.</u>			- 				STUTY SANT: "ROWN, MOIST." SAND/STUTY SAND: GREY, MOIST, FINE TO MEDIUM GRAINED-
	50/54	-					19	SAME: COARSER SHAIN, SOME SHAME, RIST STAIN TO PLOUD GRAINED.
ئىن		÷		130	97	5		THE COMMENT MAKES THE WARREST THE STATE OF T
	20	u			49	•	19	SAMD: GREY, MOLST, COARSE SHALMED SAMD, STIME GRAVEL.
	\$P/\$#	14		*	93	5	13	SAMO/SILTY SAMO: GREY-BROWN, MEY, MEDITH GRAINED SAMO-
			33		57	37		CLAYEY GRAVELLY SAND: AREY, WET, COMESTVE-
					71	1	8	SAMP/CLAYEY SAMD: GREY, MON-CONESTVE, GRAVEL TO 3 THOM
25:5		• • • • • • • • • • • • • • • • • • • •					4	
 .	•	\$2	45	19	39	55		SAMPY STILT: PARK GRIPY, COMESSIVE, NO GRAVELY
28.0 29.0	3 7/5#			•	4	<u> </u>	16	CHAT/CTCTY CHAT: GRACING, FIRE GRACINGS SAVE, HON- COMESTYR.
51.0	ı	23	45	25	100	57		SMEN CLAY. SHEY, CHESTVE.

HB3-13	04			4494	50 1	11	183	<u>-1904</u> ೯∟. 93±
KEPTH	L06	40				-200	N	TESCRIPTI IN
		٤.		_1°		8		SAND/STUTY SAND: LIGHT GREY, MO GRAVEL TO 1-1/7 INCHES, CORRUS
	SH/SM	1		*	1			SAME: LIGHT BROWN, GRAVEL TO 5
4.5				₩:	3.	11	ξij	SATE: LIGHT BROWN, GRAVEL 10 5
<u>6.0</u>	y•	2			12	17		SILTY SAND: TARK BROWN, HDIST, T GRAINED SAND, GRAVEL TO 3/4 INCH
		9	13	£	17	42	27	SAND/SILTY SAND, RACHAL HOLST, - SAND-
	۲ .	-;	ŧ,		.,	47		SAME: SOME ORGANIC MATERIAL.
12.5 12.0	Φ/5#	4		ų.	37	3	14	SAND/SILTY SAND: (1941 BOOM & ORGANIC MATERIAL, GRAVEL 3/4 INC.
13.5	SP	ę,			6	?	16	SAMD: BROWN-GREY-RUST, MOIST, M
	SP/5M	5		ψ:	13.	,		SAND/STLTY SAND: EIGHT BROWN, M TO 2 INCHES?
16.2	32	74	37	.,1	; ¥	20	13	CLAYEY SAND: BROWN, MOIST, WOME
18:0	α	28	ţı			69	ζ	SAMDY SILT: THAY BROWN, HOIST,
20.0		?5	14	14		 5g		SANDY OLRY, DARK BRIDGE, MICH.
متد	Q.	3.7	44	1	.**	10		CLAY: NET-
<u>25.0</u> .				ų	 (3 °	74		SAMDY SILT: "MARK BROWN, 4ET, DO
23.0	<u></u>		- 15	173	17	71		SANDY (LAY: TANK BROWN WEY, CO

	9	FA 519	•00 C			F), 872				
	LL	P:	-4	-200	4	DESCRIPTION				
			59	7		GRAVELLY SAND: GREY, MOISY, ORGANIC ODOR, VEGETATION OCCASIONAL BOULDERS TO 74-INCH-				
	44	2"	:00	**		SAMEY (LAY, BROWN, MET, COMESIVE-				
	31	Ħ	100	5.*						
į.	31	12	100	 58		[44] - Arom, Het, Comesive, Groundmater encountered-				

185+00 I		r gte
. 4 -2		Echieli M
<u>-</u>	1	PART (1 LAY) 1547 (JREY L MOIST, MEDIUM GRAIMED SAND.
3	<u>†</u> : ,	TARE 1991 SHOWN, SRAVEL TO \$ THOSESS
· # :	-	SPAINED LAND, SPANEL TO 3/4 INCHES
199 .	2 7*	SAN TO THE REPORT OF THE TO TEDLOM SHAINED
ln .	-	TATE OF STREET MATERIAL.
	4	MANUS THE SEAL SAME TO SEAL SAME SAME
- ···· <u>-</u>		MIT PROMESPECERIST, MOIST, MEDIUM TO COMPSE GRAINED
1.10	,	CANDIST TO CANT 15HT BROWN, MOIST, MON-COMESIVE, GRAVEL
170 2		1 sect (58) Somme MOIST, SOME COMESSION, COMMUES 1-4".
176 60		CANNY 10 " TANK BROWN HOIST, TOWESTAR.
190 sq		SANDA L'EN SAMA BASANT MILLE COMEZINE
100 10	-	OM et
		CARTY CHILL THANK BRIDGE WET, CONFISIVE
তো স		MIN TAN MON, NET, COVESTIVE.

TH83-1	902		s	TA SQE	1-80 L		11	TH 83~1902				
DEPTH	L06	MC	u	PI	4	-200	- N	DESCRIPTION				
	SW/SM	1		WP.	91	12	5	SAMP/STLTY SAMP: LIGHT BROWN, MOIST, MON-CONESIVE, SOME CORRUES 4 INCHES				
3.0		2		ΨÞ	96	7		SAFE: MEDIUM GRAINED SAND, GRAVEL TO 1 INCH-				
4.0	1	77		МÞ	100	53		SARDY SILT: MARK BROWN, MOIST, SOME COMESTIVE.				
		9		NP	96	37	7	SILTY SAND: BROWN, MOIST, FINE GRAINED SAND.				
	Se.						8					
		4		**	99	14		SAME: CIGHT BROWN-GREY, HOW-COHESIVE.				
2.0												
	SPICH			¥	99	,		SAND/SILTY SAND: LIGHT BROWN GREY, MON-CONESIVE-				
.0		75	34	10			10					
	N2/W2	15	24		38	<u>51</u>		SAMP SILT: DARK BROWN, MOIST, COMESTVE				
-0	5	-2:	74	19	-	39		SAMD/SILTY SAND: BROWN, WET, SOME COMESION. CLAYEY SAMD: DANK GREY-BROWN, WET, COMESIVE.				
·0							11	CLRET THRU: UNK GREY BROWN, MET, CONESIVE-				
17.5	SN	18		₩.	100	32		SILTY SAMD: DARK BROWN, HET, COMESTVE.				
-5												
		29		*	133	76		SANDY SILT: BROWN, WET, COMESTVE, PLASTIC-				
	٦	30		No.	100	76						
-D							3					
-	î.	30	35	13	100	15		SAMBY CLAY: BROWN-RUST, WET. COMESIVE, PLASTIC-				
.0	*						3					
		28		Mb.	100	76		SAMBY SILT: BROWN-RUST, WET, COMESIVE, PLASTIC-				
	*	34			190	76						
.0			-1		*	,0						

	INVE	RT				T.	T 79	-21
1179-21	rr79-21 		5	74 4974	50 C			£L · 87±
DEPT#	-06	ж	U.	ÞJ	-4	-200	н	DESCRIPTION
1.0	20	1						GRAVELLY SAID: BREY, VESETATION, GRAVES TO 2" - SROUNC-

I SEE PLATE 19 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
2 SEE PLATE 84 FOR LEGEND AND CLASSIFICATION SYSTEM 3 SEE TABLE 8 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED

4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS STHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

SYMBOL	SECURIO S	DATE	1					
*******	REVISIONS							
	l c	PENGINEER DISTR OS ANGELES OF ENGINEERS	cī					
DESIGNED ST.	SARTA ANA P /ER MAINSTEI PHASE II GENERAL DESIGN M							
BRAWN ST.	LOGS OF INVESTIGATIONS							
	CORPS OF ENGINE	ERS						
CHICAGO PA	STA.518+00 TO STA.	485+00						

TT79-20

TT84-1982

£.		00 C	A 477+	51	ERT	T 18 4~19							
THESCH	-200	-4	ÞI	ů.	MC	L06	DEPTH						
SILTY SAND: LIGHT GREY, M	 79	100	•			94							
							3.0						
SAMPY STLT: PARK BROWN, H	80	100	11	4 3		٩							
							5.0						
FLAY: THANK BROWN, MOIST,	89	99	13	43		α							
							7.0						
CLAY: BARK BROWN-GREY, ME COHESTIVE	97	100	22	5.5		ÇH							
							10.0						

TT84-1982

2.	TA 477	4 00 1		EL. 77±
	»:	-a	-2 Y:	N PESCRIPTION
	*	117	т,	SILTY SAMP. LIGHT GREY, MOIST, FINE GRAINED SAND, CONESIVE.
u)	11	;7		SANTY SILT: TARK BROWN, MOIST, CONESIVE-
45	<u>'</u> 9	14	₹1	CLAY- PAGE BROWN, MOIST, COHESTIVE, ORGANIC MATERIAL-
7.		.``	3.	CLAY: DARK BROWN GREY, MOIST, SOME GRAVEL TO 1/2 THOMES, CONESTIVE:

TH84 - 1905

THB4-1	905		S	TA 474	+00 R			FL- 90±
DEPTH	L06	MC	LL	PI	-4	-200	н	DESCRIPTION
	SP/SM	4		HP	96	6		SAND/SILTY SAND: BROWN, MOIST, LOOSE, FINE GRAINED SAND, SOME GRAVEL.
3.0	SM	6	_	u p	98	21	30	SILTY SAND: ROOM, MOIST, FINE GRAINED SAND, SOME GRAMEL
6.0	_				<u>_</u>		17	SAND/SILTY SAND: LIGHT BROWN, MOIST, FINE GRAINED SAND, SONE GRAVEL.
	9P/SK	5		*	99	5	11	
2.0	۹.	30	44	15	100	÷5	17	SANDY SILT. PARK BROWN, MOIST-MET. COMESIVE, STIFF, FINE GRAIMED SAND.
5.0							8	SILTY SAND: TROWN, HOIST-WET, CONESIVE, FINE GRAINED SAND
	571			φ	99	26	17	
1.0								
		34	t)	5	99	73	11	SMMTY SILT: MARK SREEN, MOIST-WEY, COMESIVE, STIFF, FINE SMAINED SAND.
	۹.	 54	£)	,	99	71	14	SAME: BARK SPOWN.
			54	9	39	73	7	
1:1								

SCALE. I HN+3FT

NOTES.

- I SEE PLATE 19 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE SA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

			1	$\downarrow =$					
SYMBOL	DESCRIPTION	4	DATE	APPROVAL					
	REV	ISIONS							
		U. S. ARMY ENGIN LOS ANG CORPS OF EN	ELES	a					
DESIGNED BY.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM								
DRAWN SY,	LOGS OF INVESTIGATIONS CORPS OF ENGINEERS								
CHECKED BY.	STA.477	+00 TO STA.474+0	00						
SUBMITTED BY:	DATE	T		34657					

TH83-1906

TH83-1	906		S	TA 474	+00 L			
DEPTH	LOG	MC.	u	Pl	-4	-200	N	DESCRIPTION
	SPI	3		*	92	14		SILTY SAID: LIGHT BROWN, MOIST, FINE TO MEDIUM GRAINE SAND GRAVEL TO 1-1/2 INCHES.
1.0	SP/SM	6		NP.	98	12	24	SAND/SILTY SAND: LIGHT BROWN, MOIST, FINE TO MEDIUM GRAINED SAND, GRAVEL TO 3/8 INCHES.
2.5		6	_	MP.	99	13		SILTY SAND: LIGHT BRN, MOIST, FINE TO MED. GRAINED SA
	SĦ	6		WP	100	14	25	
6-0	J.,	П	23	1	100	40		SAME: DARK BROWN, MOIST, FINE GRAINED SAMD-
7.5	14.	16	29	1	100	61	7	SANDY SILT: DARK BROWN, MOIST, FINE GRAINED SAND, (6L IN SPT).
··2 ··0	SM	5		MP	100	15		SILTY SAND: BROWN-GREY, MOIST, FINE TO MED., CHAINED S
a.s	26	2			98	4	16	SAND: GREY-LIGHT BROWN, DAMP, MEDIUM GRAINED SAND GRAIN TO 3/4 INCHES:
2-0	3p/SH	2		НP	99	6		SAND/SILTY SAND: GREY-LIGHT BROWN, DAMP, MEDIUM GRAIN SAND, GRAVEL TO 3/9 INCHES:
3.5	99	3			99	4	21	SAND: FREY-LIGHT BROWN, DAMP, MEDIUM GRAINED SAND, GR
5.0	69	3		МP	41	3		SANTY FRAVEL: GREY-LIGHT BROWN, DAMP, MEDIUM GRAINED 5 GRAVEL TO 3/9 INCHES-
6-5	SP/SP	6		₩P	100	9	21	SAND/SILTY SAND: GREY-DARK BROWN, MOIST, MEDIUM GRAIN
3.0	SH	8		МP	100	15		SILTY SAND: LIGHT BRN. MOIST, FINE TO MEDIUM GRAINED S
9.5	39	4			100	4		SAND: GREY, DAMP, MEDIUM GRAINED SAND-
	SIVSC	22	28	5	100	42		STLTY SAND/CLAYEY SAND: PUST-BROWN, WET COMESTIVE, MED GRAINED SAND.
	3/1/30	23	27	5	100	27	,	SAME: "DARK GREY-
2.5	1./0.	30	28	- 6	190	66	,	SAMPY SILT/SAMDY CLAY: GREY-BROWN, NET, COMESTVE, CIN
4. <u>0</u>	۹.	28		NP	100	79		GRAINED SAND. SANDY SILT: DARK BROWN-GREY, WET, CONESIVE.
5.5		31	45	24	100	77	6	SANNY CLAY: THANK BROWN-GREY, HET, COHESIVE-
7.3	٦	39		₩	190	70		SAMMY SILT: MARK BROWN-GREY, WET, COMESIVE
29.5		5C	38	16	130	80	7	SANNY (LAY: TARK BROWN-GREY, WET CONESIVE.
	7.							2 2234
31.5		29	47	14	100	90	8	

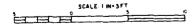
TH83-1908

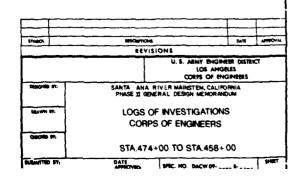
7. 49 .4-13	178		4	4 46/2	•00 ·			FL . 97±
¥FT4	_ Y:	Ψ(Q.	91	-4	-270	N	DESCRIPTION.
				Ψ	91			SAMP/SILTY SAMP. MROWN, MOIST, FINE TO MEDIUM GRAINED SAMP, COBPLES TO 4 INCHES.
	70/SH	4		¥£.	35	S	43	SAME: LIGHT BROWN, MEDI:M TO COARSE GRAINED SAND, GRAVES $1.1 \mathrm{MOMES}_{\odot}$
		<u>3</u> .		Mb.	26 ng	7		SAME: PROWN-GREY, MOIST, MEDIUM TO FINE GRAINED SAND.
٠ كـــــ	 *L	24	30	٠	100	 54	18	SAMEY SILT: SROWN, MOIST, FIME GRAIMED SAMED.
r (<u>1</u>		16		ЯÞ	100	13		SILTY SAMD - BRN-GREY, MOIST, FINE TO MEDIUM GRAINED SAM
	3 P	3		ΝP	100	18	3	SAFF. LIGHT BROWN-
<u>.</u>		7		#p	គ្រា	18		
L.2							10	SANN/SILTY SANN- LIGHT BROWN-LIGHT GREY, HOIST, HEDIUM
	SP/SM	_نـ		140 140	_100	11		GRAINED SAND.
	3F7 3H				10.	·	12	SAME: MEDIUM TO COARSE GRATHED SAME.
1		4		40	100	6		
	9	4			83	•	10	GRAVELLY SAND: LIGHT BROWN, MOIST, COARSE GRAINED SAND,
	591	23		Ψ	100	18		SILTY SAND- THANK BROWN, HET, SLIGHTLY COMESTVE-
							9	
ساد ما	ď	19	44	20	170	90		SMIDY CLAY: 1.1847 BROWN-GREY, NET, CONESIVE.
		53	39	12	100	90	5	SMMY SILT: LIGHT MICHIN-GREY, HET, COMESTIVE-
		31	25	ı	100	53		SAFE: FREY, WET, SLIGHTLY CONESIVE.
		28					5	SAF: TAR BROWN, MET, CONESIVE.
	٦.	33					,	
		;	35	10	100	82	5	
		38					,	
i 5		29					,	

TH83-1907

TH83-19	907		51.	a 468	₩00 L			FL. 89±
DEPTH	1.06	HC	u	PI	4	-200	И	DESCRIPTION
	SM	- }		*	188	13		SILTY SMO: LIGHT BROWN, MOIST, F SAND, GRAVEL TO 2-1/2 INCHES-
	311	<u>a</u> .,		W.	100	14		SAME: COMBLES TO 6 INCHES-
3.0 4.5	۶	2		_	100			SAND: BROWN-LIGHT GREY, MOIST, ME
4.2		10		₩	99	· · · · · ·		STUTY SAND: DARK BRH GREY RUST, F
	SM	11		•	100	38		SAME: SAND LENS, ORGANIC MATERIAL
3.0		16		MD.	92	49		
1.0		13		Ψ	100	17		SAND/SILTY SANT: "JARK BROWN-GREY- TO HEDLIN GRAINED SANT.
	SP/SM	2		NP.	100	5		SAME: GREY, MOIST, MEDIUM GRAINET
		4		40	100	7		SAME: SOME ORGANIC MATERIAL, SAME
15.0		2		ЩP	92	5		SAPE: FEW GRAVEL TO 3/8 INCHES
	'n	2			92	3		SAND: GREY, MOIST, MEDIUM GRAINES 3/4 INCHES
18.0		2			100	4		
	SW/SM	6		ψ	94	6		SANT/SILTY SAND: SREY, MOIST, MED
21.0		5		Mb.	35	8		SAME: DARK GREY, COARSE SRAINED
22.5	ςρ.				93	4		SAMT: DRK GREY, MOIST, COARSE SRA
H 24./)	72/4	.:		¥	36	12		SAMD/SILTY SAMD: DARK SMFY, HET. GRAVEL TO 3/8 INCHES-
25.5	20	18			96	3		SANT): THANK GREY, MET, CHARSE GRA
<u></u>		c,	33	12	100	73		SAMILY (LAY: BROWN, WET, COHESIVE
23.5	-	2-	57	12	100	51		
£812		t ₅	51	29	100	$\overline{\eta}$		SANDY CLAY: BROWN, WET, COMESTVE
31.5		ž. 	52	25	100	88		CLAY: GREY-BROWN, WET COMESTVE
24.2								

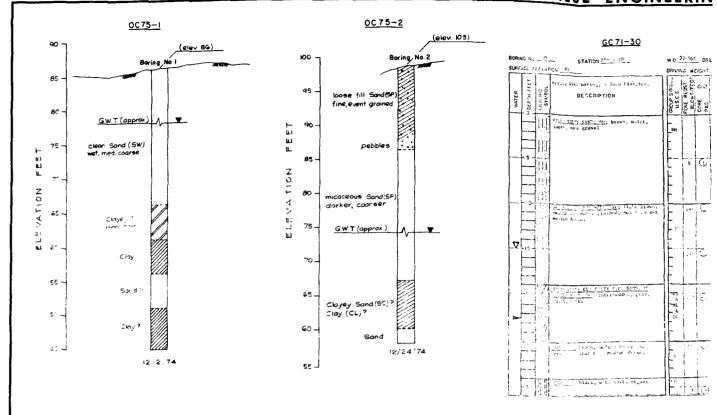
TH83-1907


SF# 468+00 1					EL. 89±							
٠,١	PI	-4	-200	3	DESCRIPTION							
		100	13		SILTY SMIT: LIGHT BROWN, MOIST, FINE TO MEDIUM GRAINED SAND, GRAVEL TO 2-1/2 INCHES-							
_	_	100	14		SAME: COMMLES TO 6 ENCHES-							
	. 40	toc										
		100	4		SAND: PROMN-LIGHT GREY, MOIST, MEDIUM GRAINED SAND-							
	*	39	٥,		SILTY SAND: DARK BRN-GREY-RUST, MOIST, FINE GRAINED SAND.							
	₩	193	ţ3		SAME: SAMO LENS, ORGANIC MATERIAL-							
	Mb.	972	44									
	40	יין	!2		SMIT/SILTY SAME: TANK RROWN-GREY-RUST, SAME LENS, FINE TO MEDI: 99 SRAIMED SAME.							
	¥C	18	5		SME: RREY, MOIST, MEDIUM GRAINED SAND-							
	40	191			SAME: SOME ORGANIC MATERIAL, SAMO LENS 1/2 INCHES-							
ŗ	40	£.			SAME: FEW GRAVEL TO 3/3 INCHES-							
· _		9.			SAND: GREY, MOIST, MEDIUM GRAINED SAND, FEW GRAVEL TO 3/4 INCHES:							
		1.75	4									
	¥				SANT/STUTY SAND: SREV, MOIST, MED- TO COARSE GRAINED SAND-							
	晔		3		SAME - DARK GREY, COARSE SRAINED SAMD, GRAVEL TO \$78".							
)ı			SANT_{1} THIC GREY, HOIST, COARSE GRAINED SAND GRAVEL TO 3.8%							
	Æ.	10			SAMP/SILTY SAMP: DANK GREY, HET, COARSE GRAINED SAMD, JRAHEL TO 378 INCHES:							
		7+	;		SAND, TARK GREY, WET, COARSE GRAINED SAND-							
11		.,	*1		CAMEY CLAY BROWN, WET, COMESTVE-							
۳	12	. Y	4.									
:	n	_			SANDY CLAY- BROWN, HET, COHESTVE-							
	.35		.3		QAY TREV-BROWN, MET COMESIVE.							


TT 79-19

INVERT	
9-19 STA 458+00 C	
TM LOG MC LL PI -4 -200 M DESCRIPTION	
97 6 98 7 SMIT: GREV, MOIST, VEGETATION, OCCASION O GROUNDMATER ENCOUNTERED.	AL GRAVEL TO 3/4",

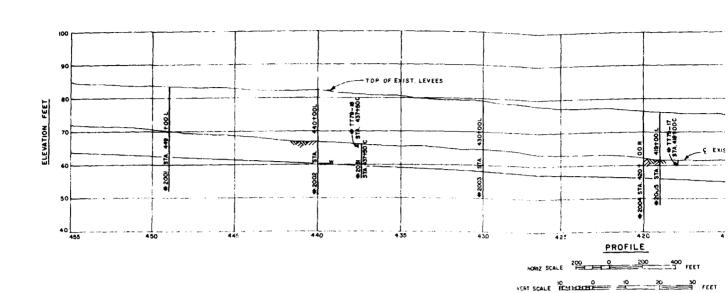
NOTES

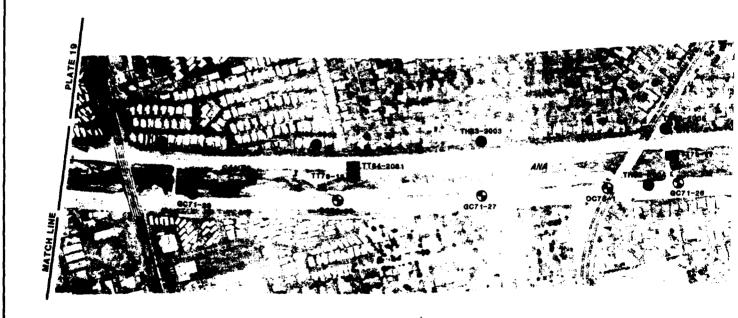

- 1 SEE PLATE 19 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGENO AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE ORILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTEO AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

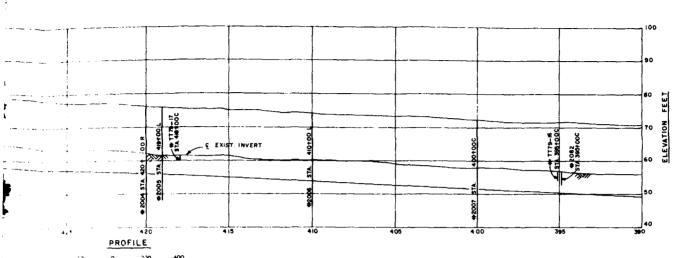
BORNO No . _ . SUSFAIL E. E.

WATER S

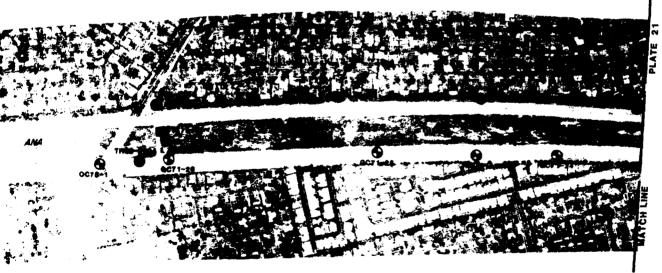
				GC 71-3	<u>3</u>						
	ING RE		STATE	TION ILL		DRIVIA	IG W	CHOM	200		1
WATER	1332 H13330	GRAPHE "YMMGE	Process book to the BETS	on, a celoda. Serpición	an t	USCA SMACL	PENE REPORT 6, 3WS FOOT	CURE O	164 T. 24 P.C.	POETS	RELATIVE COMESCICE
			ETT TELE gravers, rick,			SP.					
	- 5	ц П	Hall a store	neded, morre,	:- 	EN EL					
	- 20-					<u> </u>		0			1 1 1
7	18	101					, be	<u></u>	104.	! !	1
-	-20-	31) 11. 11.	**************************************	gra , rashtat		s# I	7.	o l	\ \ \ \		
-			t * arvela	të vesëlit uni. :	witter,			-		- ;	4 4 7 7 7 7
	-34			aran was ere		-		7 .2	_	_	-


				
80:	NG No		STATION 19 1 12	with Soloning the Mills.
SURF	ACE D	LEVA	69 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	To the Actor of Table 18 at
WATER	TABLE REATS	Deletars Straigs		
	Ļ.	.u.i		
	- 5 -		mosofy melium dense; here is 1.	
		17) (1)	Section Control of the Control of th	
	-10-	111	(1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
	-15 -	11) 210 211	The state of the s	
7	-20-	11 1 11 1 11 1 11 1	d Marin Chedon (1977)	
	:			
	- 10-		in south of succession	


GC 71-34


VALUE ENGINEERING PAYS GC 71-31 GC 71-32 GC 71-30 BORING No ______ LEATION . WO 22-164 DRRL DATE 3/11/21 STATION 218 + 61 W.O. 22-164 DRILL DATE 3/12/71 STATION 233 + 65 W.O. 22-164 DREL DATE 3/12/71 BORING No. 32 DRIVING WEIGHT 500 15 .. 20 in. DRIVING WEIGHT 500 15., 18 fr. SURFACE ELEVATION ____91 DRIVING WEIGHT 500 15., 18 :-. WATER SOUTH FEET SOUTH FEET STANGE GROUP SINGLE USC E PERE RESST PERE RESST CORE O CORE O CORE O CONTENT OC CONTENT OC CONTENT OC CONTENT OC CONTENT OC CONTENT OC FENDESCES. 10.5.C.S. PENDESCESSION ELOWS/FOOT ELOW OROUP STANDOL U.S.C.S. BLOWS/FOOT CORE D BAG D CAPE DE STANDOL CORE D CORTURE CONTENT SECTOR CONTENT SECTOR CONTENT SECTOR CONTENT SECTOR CONTENT SECTOR FEET Retury wash boring; 4 inch diam ter Rotary wash buring: 4 Inch diameter ODEPTH FEE GRAZ HIC SYNBOL DESCRIPTION FIRE SHITY SAND: SM; tan, moist, tree to provide the second to the SH LUE VILL: NILTY CARD: SE; brown, maist, medium dense. SM SAND: SF; white to gray, medium grained moi.t, redium dense; some gravel SAND: SP; tan to gray, medium prained, moist, radium dense; some pravel. - 5 -92.5 15.6 SF 15 1 24.0 5.5 93 11 (1) 0 NATUTAL ORGAND: SHATE SAND: SAT tan to gray, moist, medium deuse. 15 -15 411 · 6 100 d -15 3 96.2 20. V 17.0 S. P. LANDI STLEY SAND: 5"; brown or st. st. sector dense; saturated relow Saturated of 17.0 SUNCIA ELLA, MI, Line Z -SM 111 Lau - 2U - -171 story all the second of th Tim -25-11(1 Οţ 4.0 -----روز ال $\exists m$ Tigri į <u>WM73-5</u> DATE OF BORING 24 Nev 1973 WATER DEPTH 14" DATE MEASURED 2- (a. 1975) TYPE OF DRILL PIG_COTE. File's AUGET MULE DAMETER 5" WEIGHT OF HAMMER 110 15s. FALLING 33" SAMPLES I' Modified California GC 71-35 and the second STATION world to the DCR140 153 SUFFECT OF THE STATE OF THE STA BAMPLES BLOWS/FOOT GROUNG WATER UNIC COMP STREADTH, NO MOISTURE CONTENT, No DAT DENSITY PER OTHER FESTS District Control of the Control of t DESCRIPTION FLOCK IT-ON SUPFACE ELEVATION Dense, damp, light brown fine to medium-grained SAND (SP) with trace of SILT 102 At Sure Sure fine to coarse-grained 49 | | 5 -| Thedium dense, very fine-grained SAID Medium dense, unist light brown fine-grained l ----1<u>0</u> 4 1 1 1 1 # Fine to coarse-grained 86 ∗ oi⊩ 50 Botton of boring at 25k ft. ;_ 1. 1,00 SYMBOL REVISIONS U. S. ARMY ENGINEER DISTRICT (OS ANGELES CORPS OF ENGINEERS SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM LOGS OF INVESTIGATION NOTES DEAWN BY. BY OTHERS I. SEE PLATE 19 FOR TEST SITE LOCATIONS. 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.

3. LOGS BY OTHERS ARE ONLY TO BE USED TO


STA.520+00 TO STA.455+00 SPEC. NO. DACWOP- B-

HONEZ SCALE HONELHETT TO SO FEET

NOTES:

- I SEE PLATE 8 FOR LEGEND AND GENERAL NOTES.
- 2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

DATUM 1	NATIONAL GEODETIC VERTICAL	DATUM OF 1929	,						
SWINGL	SERCEPTONS	BATT	APPROPR						
	REVISIONS		·						
		MY ENGINEER DISTR LOS ANGELES RPS OF ENGINEERS	icī						
SERGICAL PIL	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MENORANDUM								
Sharps St.	PLAN AND PR	OFILE							
GROW M	STA.455+00 TO S	TA.390+00							
BUSINETTED BY:	APPROVED SPEC NO. (MCW 04 4	94						
	DEFRECT FLE		}						

TH 83-2001

TH83-2001			\$1	TA 449	+00 L			EL- 931				
DEPTH	1.06	MC	LL	PI	-4	-200	N	DESCRIPTION				
1.0	211/21	3		₽	94	100		SAMD/SILTY SAMD: ROUN, MOIST, MEDIUM TO FINE GRAINED SAMD, GRAVEL TO 3/4 INCHES:				
		6		ИP	98	15	34	STUTY SAND: PROWN, MOIST, FINE TO MEDIUM GRAINED SAND, GRAVEL TO \$74 INCHES.				
	SPT	7		MP	97	20		Graves III 1/4 INCHES.				
3.5 4.5	SP/SP	6		10	96	- 6	39	SAMP/RILTY SAMP: BROWN, MOIST, COARSE GRAINED SAND, GRAVEL TO 1-1/2 INCHES-				
6.0	SM/SM	3		NP	92	6		SAMO/SILTY SAMO: BROWN, MOIST, COARSE GRAINED SAMO, GRAVEL TO 3/8 INCHES.				
7.5	29	4			95	4	35	SMID: BROWN, MOIST, COARSE GRAINED SAND-				
9.0	SW/SM	4		*	97	10		SAMD/SILTY SAMD: BROWN, MOIST, COARSE GRAINED SAMD, GRAVEL TO 3/8 INCHES				
	SP/SM	4		NP	96	7	8	SMID/SILTY SMID: LIGHT BROWN, MOIST, COARSE GRAINED SMID GRAVEL TO 1 INCH-				
12.0		6		ЖP	99	10	-					
		3			96	4		SANT: LIGHT BROWN, MOIST, COARSE GRAINED SAND, GRAVEL TO				
		2			99	4						
	So	?			76	,	11					
		9			99	4	••	SAME: WET, GRAMEL TO 1-1/7 INCHES				
9.5				_	95	4	8	SAME: BROWN, GRAVEL TO 3/3 INCHES-				
	MZ	5	22.	ı	99	25	Ī	STLTY SAND: BROWN, WET, COARSE GRAINED SAND-				
2.5	-	22	23	5	100	43	6					
4.0	AL/C	26	29	,	98	62	·	SANDY SILTY SANTY CLAY: DARK GREY, HET, COHESIVE.				
		27	29	٩	10C	57	6	SAMBY CLAY: DANK GREY, MET, COMESTVE-				
	(L	28	₹6	15	100	80						
		tr.	W,	17	99	78	9					
c.a		য়া	14	13	100	71	,	SAME - PARK BROWN -				

TH 83-2003

TH83-2003			\$1	A 430	•00 L		FI _. . 79±					
DEPTH	LNG	ac	LL	21	-4	-200	N	DESCRIPTION				
1.0	24		. – –	NO.	100	15		SILTY SAND: LIGHT BROWN, MOIST, FINE TO MEDIUM GRAINED SAND.				
A:V	\$2/54	-5		1	97	8	11	SAND/SILTY SAND: LIGHT BROWN, MOIST, FINE TO MEDIUM				
3.0		٦- 		Ŧ	95			GRAINED SAND, GRANEL TO 3/4 INCHES				
1.5	3 0	ţ			95	2	10	SAND: LIGHT BROWN, MOIST, MEDIUM TO COARSE GRAIMED SAND. GRAVEL TO 1. LINCH.				
		4		₩	95	6		SANT/SPLTY_SANT: 1, IGHT BROWN, MOIST, HEDDIM GRAINED SAND,				
	SP/SM	7-		Ψ-	77			GRAFEL TO 5 INCHES∙				
4.9	21	3.		\$	170	25		SILTY SAND: LIGHT BROWN, MOIST, FINE GRAINED SAND-				
	\$4750	9	?5	6	100	47		SILTY SAMP/CLAYEY SAMD: JIGHT BROWN, HOIST, FIME GRAIMED SAMD.				
12-5	3#	2		d D	100	26	15	STUTY SAND: LIGHT BROWN, MOIST, FINE GRAINED SAND-				
		1		Ψ	98	7		SMID/SELTY SAMD: LIBHT BROWN, MOIST, FINE GRAIMED SAND-				
		1		₩	170	8		SA E - RREY, MOIST-				
	SP/SM	3		Ψ	98	,		SME: SANK GREY-				
		5		₩	98	5		SATE: GREY, FINE TO REDUM GRAINED SAND-				
18-0		3		IP.	100	8						
45.3		8		₩.	100	14		SILTY SMITE: GREY, MOIST, FINE TO MEDIUM GRAINED SAND-				
	99	12		Ψ	100	15		SAME: NAME GREY-				
		16		40	130	16	10					
21.0		<u> </u>		*	138	- 15	,,	SATE: DARK BROWN, NET-				
24:Q	<u>C4</u>	35	53	78	100	95		D.4Y- NAW DREY, WET, COMESTVE, PLASTIC, SOFT-				
	SM.	78		P	100	49	5	STUTY SARTS: "MAR GREY, HET, SOFT-				
27.0		25		*	100	33		SAME: FINE GRAINED SAMD-				
<i>u</i>		8		-	100	- 52		SMITY SILT: BANK OREY, WET, FINE GRAINED SAND.				
28. 5. 29.0	1	- 3	¥	¥	100	9	12	SILTY SIND: May beek waty, MET, FIRE TO FED. GRAINED SID.				

TH 83-2002

TH83-20	02		51	A 440	+00 L			EL. 82±		
DEPTH	L06	MC	LL	PI	4	-200	М	DESCRIPTION		
		10_	_	Мb	100	35		SILTY SAND: BROWN, MOIST, NON-COMESIVE,		
		<u>16</u>					16			
		11								
		16		*	100	37	4			
	SM	12					•			
		20		₩	100	49	7			
		11		ЯP	100	29		SAPE: LIGHT BROWN-		
10.5		12					8			
12.0	0.	4	39	3	100	59	•	SANDY CLAY: BROWN, MOIST, FINE TO MEDI		
13.5	39	2			190	2	14	SAND: 1,16HT BROWN, MEDIUM TO COAPSE GR		
	SP/SM	4		40	100	8	14	SAND/SILTY SANT: E.IGHT BROWN, MOIST, E		
16.5	377311	6		ψ	37	10	14	SAME: LIGHT BROWN-GREY-		
		17			100	2	14	SANT: 1,13HT BROWN-SREY, NET, HETTUR T		
	99							SAND		
	,	20					17			
21-0										
# 22.0		32		¥	100	8		SAND/SILITY SAND: LIGHT BROWN-SREE #21 GRAINED SAND		
	SD/SH	_								
25.0		19 -								
2:0		34.	39		:70	59		SAMINY CLAY: PROMY, WE'T COME ! UP		
		26								
		28						SAME: TARK SROWN		
	σ	 33								
		_								
31.5		30								

TT 87 - 81

f 184-2	181		51	A	. с			w4 ?
DEPTH	ĻNG	MC		٥٠	-4	-200	N	Tewarer, w
	SH/SH			v	35	11		SAND/STUTY SANT TEAM THERE IS THE PARTY OF THE SPANEL TO TO CHOOK
3.0								
								SANDA SEAN COMO DEDME HET COM C
	ű.		44	54	40	91		
10-0								was a second of the second of

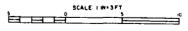
VALUE ENGINEERING PAYS

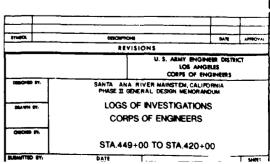
TH 83-2002

:	STA 440	₩00 L			EL- 82±
Ų	L PI	4	-200	*	DESCRIPTION
	₩.	100	35		STETY SAND: BROWN, MOTST, HON-COMESTVE, FINE GRAINED SAND
•				16	
	¥P	100	3.7	4	
	Ψ	100		,	
	ЖP	100	7:		SAME: LIGHT BROWN-
		·		8	
3	9 3	100			SAMDY CLAY: BROWN, MOIST, FINE TO MEDIUM GRAINED SAMD.
		inc	;	19	SANT:
F	¥	192	:		SAMO/SETY SAMO: LIGHT BROWN, MOIST, FINE TO MEDIUM GRAINED SAMO:
•	**	à.	11	19	SAPF: LIGHT BROWN GREY-
		;e	:	•	SWP: (15HT BROWN-GREY, WET, MEDIUM TO COARSE GRAINED SWID-
				:1	
·	*	11.	•		SACKS IT SAME. LIGHT BROWN GREY, HET, HEDILM TO COMPSE GRASHED SAME.
		,70°	257		SAPY TAY: BROWN, WET, CONESIVE-
					SAME CARE SROW-

TH 83-2004

HB3-20	004		\$1	A 420	+00 R			FL . 76±
EPTH	L06	MC	LL	Pl	-4	-200		DESCRIPTION
1.0	SW/SM	4		NP	98	15	38	SAND/SILTY SAND: BROWN, MOIST, FINE TO MEDIUM GRAINED SAND:
		4		NP	94	13		SILTY SAND: SROWN, MOIST, MEDIUM GRAINED SAND-
		7		T.	98	13		
	SM	5	21	ı	81	15	40	SILTY GRAVELLY SAND: GRAVEL TO 1 INCH-
6.0		6		MP	94	14		SILTY SAND: DARK BROWN-
7.5	SP/SH	7		₩	37	6	41	SAND/SILTY SAND: BROWN-GREY, MOIST, MEDIUM TO COARSE GRAINED SAND, GRAVEL TO 3/8 INDIES.
		3			94	3		SAMD: GREY, MOIST, COARSE GRAINED SAMD, GRAVEL TO 3/8
	3 P	4		:	94			
0.0		10	21		99			
	SH	1			100	34		SILTY SAMD: DARK BROWN, MOIST, FINE GRAINED SAMD-
2.0		10	??		100			
	SP	3			97	4	14	SAND: GREY, MIST, MEDIUM TO COARSE GRAINED SAND-
		4			97	3		
5.0	SM	20		MP	99	14	10	SILTY SAND: BROWN GREY, MOIST, NON-CONESIVE, FINE TO MEDIUM GRAINED SAND, LAYERED SAND-
2:2 8:0	sc	15	31	9	98	25	Ĭū	CLAYEY SAND: THANK GREY-BROWN, MOIST, FINE TO MEDIUM GRAINED SAND.
2.4	SP/SM	19		MР	100	11	17	SAND/SILTY SAND: SREY, MET, MEDIUM GOALMED SAND-
1-0	3-7311	17		MP	190	9	.,	
	ML/CL	27	25	5	190	41	6	SAMOY SILT/SAMOY (LAY: DANK GREY, WET, COMESIVE-
		27	25	5	100	52	-	
4-0	a	31	37	13	100	- 65		SAMBY STLT: DARK GREY, WET, COMESIVE-
5.0		26	25		100	.65	13	Owen, oren, many many men, companies
	M.						ıs	SANDY SILT: DARK GREY, HET, FINE TO MEDIUM GRAINED SA
7.0		26	27	1	99	54		NON-COHFSIVE-
3.5	54	23		Ψ	100	24	18	STUTY SAND: SREY, WET, FINE TO MEDITAL GRAINED SAND-
	α	37	40	17	39	24		SAMBY CLAY, MARK GREY, WET, COMESIVE-
		32	36	12	100	92	,	SAME: RLACK, HET, COMESTIVE.


TT 84-81


74 47 MSC 7	5 66±
et en je nj	TESCRIPTION
A. fe	CAND/SILDY SAME THAN THROWN, WEY, TREBUTE TO COMPSE SAME, TO 1 INCH.
	ARTY "LEY DARK BROWN, MET, COMPSIVE.
· 39	

TT 79-18

INVER			57	A 4374	53 C			°L. 552				
DEPTH	L06	#C	Lt.	PI	-4	-200	H	PESCRIPTION				
1:0	\$	6			97	<u> </u>		SAND: REY, MOIST, VEGETATION, GROWNDMATER ENCOUNTEMED				

- I SEE PLATE 20 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

VALUE ENGINEERIN

TH83-2005

THB3-2	005		S	TA 419	+00 L			EL. 76±
DEPTH	L06	MC	u	Pl	4	-200	Ħ	DESCRIPTION
1.0	581	2		NP.	96	13	9	STLTY SAMD: BROWN, MOIST, FINE TO MEDIUM GRAINED SAND, GRAMEL TO 1-1/2 INCHES:
3.0	SP	+			90	3		SAND: GREY, MOIST, MEDIUM GRAINED SAND, GRAVEL 3/4".
2:1		1		₩	96	5	8	SAND/SILTY SAND: GREY, MOIST, MEDIUM GRAINED SAND, GRAVE TO 3/4 INCHES
	2P/SH	1		MP.	39	9		SAME: Moist-
6.5 7.5	SA	3		MP	100	19	12	STLTY SAND: GREY, MOIST, MEDIUM GRAINED SAND-
	SP/SM	2		МÞ	100	5		SAND/SILTY SAND: GREY, MOIST, MEDIUM GRAINED SAND-
9.5 10.5	SP	1			97	2	17	SAND: SREY, MOIST, MEDIUM TO COURSE GRAINED SAND, GRAVEL TO 3/8 INQUES
12.0	SP/SM	3		MP	99	7		SAND/SILTY SAND: GREY, MOIST, MEDIUM GRAINED SAND-
13.5	SP	1			100	2	14	SAND: GREY, MOIST, MEDIUM GRAINED SAND-
15.0	SP/SM	22		₩P	100	8		SAND/SILTY SAND: GREY, MOIST, MEDIUM GRAINED SAND-
16.5	٩	28	41	14	199	- 100 59	14	SILT: GREY, MOIST, MEDIUM GRAINED SAMD- SAMDY SILT: BROWN, MET, PLASTIC-
18-0	SP/SH	11		₩	100	9		SMID/SILTY SMID: BROWN-RED, WET, MEDIUM TO COARSE GRAINES
19.5	39	3			100	4	26	SAND: GREY, MET, MEDIUM TO COARSE GRAINED SAND-
21-0	9P/SM	19		Ψ	100	5		SAMBUSELTY SAMP: GREY, HET, MEDIEUM ITT MARSE GRAINED SAMO
22.5	29	11			100	3	19	SAND: SREY, MET, MEDIUM TO COAPSE GRAINED SAND-
24.0	5P/5M	23		₩	100	3		SAND/SILTY SAND: GREY, HET, HEDIUM TO COARSE GRAINED SAND
		18	34	15	100	65	3	SANDY CLAY: DARK BROWN, WET, PLASTIC-
6.5		25	37	17	100	50		
8.0	24	23		₩2	100	15	29	STUTY SANTI: DARK GREY, HET, FINE TO MEDIUM GRAINED SAND-

TH83-2006

1485-20	XX6		51	A 410	+00 L			51. 74±
DEPTH	L06	ΝÇ	LL.	P!	-4	-200	н	DESCRIPTION
1.0	\$	1			99			SAND: LIGHT BROWN, MOIST-
3.0	Z# -	10		-	97	21	14	STUTY SAND: LIGHT BROWN, HOIST, MEDIUM GRAINED SAND
23	72	16	31	_21	100	47		LAYEY SAND: LIGHT MOON, HOLST, FINE-GRAINED SAND-
4.5	SH	10		-	菊	- 15 33	20	SILTY SAND: LIGHT BROWN, MOIST, FINE GRAINED SAND- SANE: LIGHT BROWN, MOIST, MEDIUM GRAINED SAND-
5.5	-	1		Ψ.	191	74	20	STLT: LIGHT BROWN, MOIST, MEDIUM GRAINED
10					130			SILTY SAND: LIGHT BROWN, MOIST, MEDIUM GRAINED SAND
	co/94	4		₩P	29	9	1?	SAND/SILTY SAND: LIGHT BROWN, MOIST, MEDIUM GRAINED SAND
3.3		3		140	39	12		
10.5	ф.	1			36	4	29	SARD: LIGHT BROWN, MOIST, HENIUM TO COARSE GRAINED SAMP, GRAVEL TO \$73 INCHES-
		2		40	99	,		SAMO/SILTY SAMD. LIGHT BROWN, MOIST, MEDIUM TO COAPSE GRAINED.
	39/5#	7		₩	39	5	20	
15-0		21		Ψ	95	5		
	20	,			95	4	25	SMIT: LIGHT BROWN, MOIST, MEDIUM TO COARSE GRAINED SAND, GRAVEL TO 1/2 INCHES.
12-0		13		Ψ-	99			
	52/SM	10		100	39	5	30	SAMD/SILTY SAMD. LIGHT MAGHN, MOIST, MEDIUM TO COARSE GRAINED.
	<i>Y</i> / 351	23		•	99	6	39	
22.5		20		₽	99	9	15	SATE - SAIN TO 1/4 INDIES.
		75		40	38	45	19	STLTY SAMD: GREY, MOIST, FINE TO MEDIUM GRAINED SAMD.
29.5 	- <u>25/21</u>	7		I	7		10	SAFE. LIGHT BROWN GREY.
W	22	<u>n</u> .	28	19	100	41	t U	CLAYFY SMID: BROWN SHIGHT, HOLST, FINE GRAINED SAND.
27.0 24.0	27/3n	3	_7	*	100	- 1	28	STRUCTURE CONTROLS. FOR STRUCTURE ST

TH83-2007

T HB3 -29	907		5	A 400	+00 L			
DEPTH	L06	ĸ	ĽĹ	PI	-4	-200	N	
	SW/SM	3			99	10		SAMP/STLTY SAMP: L
2-0							25	
				*	99	79		CILTY CANT: PROMI.
	34	7		160	93	30		
9.5			74		(10)	- 56	15	SHOW CILT: BOSON.
5.5	- a	17	3		100	- 72		CHAIN LA. BOUNT
6.5 7.5	- 34	·-			100	- 21		STUTY SAND: GREY.
	59/SH	10					13	SAMPY/SILTY SAMD:
8.5	3P/3F	10			39	12		2Min / 21E34 2460:
		2		М	99	13		STLTY SAND: GREY,
	Zvi						14	
1.5		15		•	99	23	-	
		;			99	9	17	SAND/SILTY SAND S
							-	
		٦		*	99	7		
	39/54						17	
				*	34	- 5	U	
		3			199	9		
9.0		2.4		9	39	5	15	
	7.	3	-	•	98	18		STLTY SANTI- SHEY.
2.5								
		21		æ	39	8	٦	SANDISTLTY SAYD: 3
	7P/9H	3		- 785	73	g _		SAND-
		10		-	99			
9.0								
	y	25			98 100		7	SAND: GREY, MOIST,
5.5		35			100			SAME: FINE TO MENT
	(E/S#	25		40	39	5	27	SAND/STETY SAND: 5
9.0								
19.5	70	34			199	4		SREY, MOIST,
11.1	1	<u></u>	ব	7	100			STT: "REY, MOIST,

TH84-2082

T 134-20	82		7.7	A 3954	e) r			F(,)
DEPTH	L06	ч(ξ.	21	-	-230	4	DESCRI
	3º				3'	1		SAND: MULTICOLOR, MOIST, M GRAMEL TO 1 INCH, VERY LIGOS
3-0 4-0	क्र			····yr·	- 9 7	25		STETY SAND: DARK BROWN, MC SAND, WITH FON GRAVEL, DON'S

INVER	•						<u>T</u>	T79-16
T\$79 L6	,		ç,	re 2044	95 E			૧
DEPTH	LM	" (Ļ.	21	4	-200	١	. Au
	99	4	_	-	95	1		SAND- GREY, MOIST, DOCK TATION, GROUNDMATER ENC

VALUE ENGINEERING PAYS

TH83-2007

	51	A 400	-00 1			FL : 73±				
MC	ш	PĮ	-4	-200	н	DESCRIPTION				
3		*	99	10	25	SAND/SILTY SAND: LIGHT GREY, MOIST, MEDIUM GRAINED SAND				
7		10 10	<u></u>	**	2"	SILTY SAND: PROMI, MOIST, FINE TO MEDIUM GRAINED SAND-				
-	74	-	18	<u></u>	15	CANTY CILT: "ROMM, MOIST, FINE GRAINED SAND.				
12	28	3	140	- 72		CARTY (LAY: MATHEN, MOIST, FIME GRAINED SAND.				
7			30	. 1		CTLIN SAND, GREY, MEDIUM GRALPET SAND				
0		NO.	3:	1.	. 5	SANDY/SILTY SAND: GREY, HOIST, HEDERM GRAINED SAND-				
7		*	31	14		STUTY SAND. SREY, MOIST, MEDIUM GRAINED SAND-				
5		•	* :	.3	14					
₹		*	39	3	!"	SANT/SILTY SANTE GREY, MOIST, MEDIUM GRAINER SAND-				
,		**	36	•						
•		\$	h.	4	12					
		•	1"	3						
₹		40	Pì	ζ.	15					
;		•	¥2	12		CTUTY CAND - SREY, HOIST, HEDIUM GRAINED SAND.				
		*	,4	4	1	SAND/SILTY SAYD. SHEW, HOIST, MEDIUM TO COARSE GRAINED SAND.				
		-	77	3						
		10	- 50	5						
			<u> </u>			SAMP: SHEY, MOIST, COARSE GRAINED SAMP				
			139	-	,	SAME - FINE TO MEDIUM GRAINED SAND-				
ş				5	27	SANT/SILTY SANTE GREY, MOIST, MEDIEM GRAINED SAND				
_		40	¥5.	•						
5		4 c	17°			STATE SREY, MOIST, MEDI M GRAINED SAND-				

TH-2008

MB3-2	008		S1	A 390	+00 L			EL. 71#				
DEPTH	LOG	MC	u	PI	-4	-200	N	DESCRIPTION				
2.0	SM	,		цр	98	14	7	SILTY SAMD: BROWN, MOIST, FINE TO MEDIUM GRAINED SAND GRAVEL TO 3/8 INCHES				
3.5	\$9/\$# \$9/\$#	1 ?		#₽°	98	6		SMD/STUTY SMD: LIGHT BROWN, MOIST, MEDIUM TO COARSE GRAINED SMOD, GRAVEL TO L INCH-				
4.5_ 6.0	SM	4	50	20	96	13	37	SILTY SAND: PROMY, MOIST, FINE TO MEDIUM GRAINED SAND				
7.5	SP/SM	3		ML,	10	3	9	SAND/SILTY SAND: ROOMY, MOIST, FINE GRAINED SAND-				
3.5	54	4		W	130	- !7	,	STLTY SAND: BROWN, HOIST, FIME GRAINED SAND-				
	SP/SH	2		¥	100	10_		SAND/SILTY SAND: BROWN, MOIST, FINE GRAINED SAND-				
1.5		2		₩	98	6		SAME: LIGHT GREY, MEDIUM GRAINED SAND-				
3.0	SP	1			98	3		SAND: LIGHT GREY, MOIST, MEDIUM GRAINED CAND-				
4.5	SP/SM	5		蟾	94	6		SAND/SILTY SAND: LIGHT GREY, MOIST, MEDIUM TO COARSE GRAINED SAND.				
		8		MP	100	15	18	SILTY SAMP: LIGHT GREY, MOIST, MEDIUM GRAINED SAND-				
		24		МÞ	100	28		SAME: DARK GREY, MET-				
	SM	18	51	22	100	45	6					
		26	41	12	100	31						
		22		颗	100	18	q					
3.5		27		-	100	45	ĺ					
		31	32	8	100	81	9	SAMOY SELT: DARK-LIGHT GREY, WET, COMESIVE-				
		30	٠-	10	100	85						
		39		*	100	39	g	SAME: DARK GREY-				
	٩	37		₩	100	84						
		32		190	100	ำเ	16					
		_		₩	100	100						
4.:2		29		- 18	100	<u>54</u>						

TH84-2082

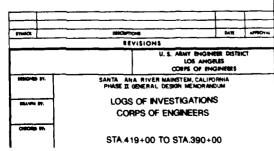
** 395	-00-1			Fi. 57±
Pİ	-4	230	•	DESCRIPTION
	37			SAID - NULTICOLOR, MOIST, MEDIUM TO COARSE SRAIMED SAND. JAAREL TO L INCH. VERY LODSE.
······	·· ? ;) इ.		STUTY SAND DANK BROWN, MOIST, FINE TO COMPSE GRAINED

TT79-17

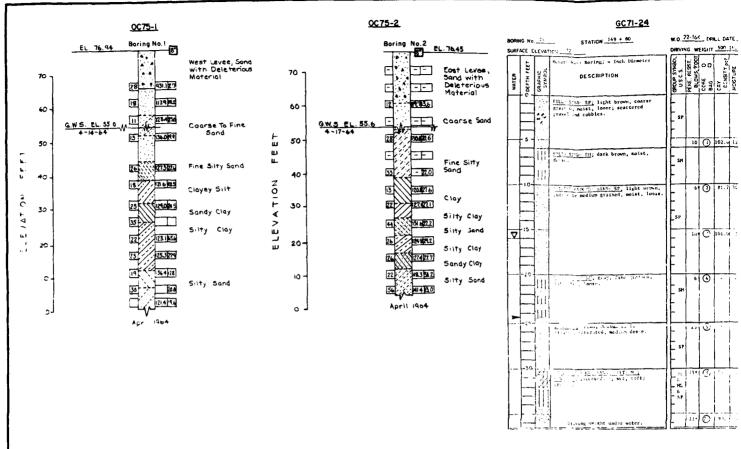
TT79-17	,		\$1	ra 418+	0 0 C			ej. 67\$
DEPTH	L/16	W.	u,	PI	-4	-270	H	DESCRIPTION
1.0	37	Б			98	7		SAND: GREY, MOIST, VESETATION

TT79-16

99	5	1	SAME: GREY, MOIST, OCCASIONAL BRAVEL TO T/A-INCH, VEGETATION. GROUNDMATER ENCOUNTERED AT 7-5 FEET
a! 4	-7	n u	DESCRIPTION
14 195400	ί		Fi , 579


NOTES

I SEE PLATE 20 FOR LOCATION OF TEST HOLES AND TEST TRENCHES


INVERT

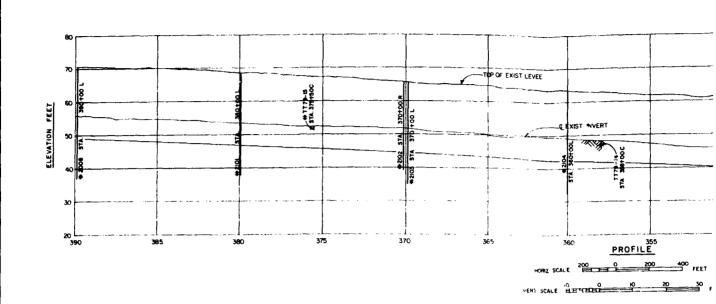
- 2 SEE PLATE 64 FOR LEGENO AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVRE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

VALUE ENGINEERING

BOP NO No 2	STATION 174 + 70	WO 27-164 DRILL DATE /11/71 DHIVING WEIGHT 105 16 , 18 In.
WATER C.E. THE FEET	Actain Valib Chaing, 4 Inc. Dia ofer	PERE PESSON U.S.C.S. PERE PESSON PERE PESSON CORE CORE CONSTITUTE CONTENTS FREATURE CONTENTS FREATURE
	FILL CONTINUES SMOL SP: brown, coarse grains; maist, dense to very dense; interworded with GRAVEL; GP.	- sı
	- - -	50 128.5 8.7
-10-1		(6) (6)
	MAD The TMP Some SP, light become, mid to recesse that mid, exist, dense.	
7		5P 28° ③ 110,Cu,5 95
20		11. (2) 46. 10. 21 15.
	one some of \$1031 (144 of at 14.0)	
		127 (\$) 113, 23, 6 (87) - SH
-30	52 00 5 limbt brown, coarse grained, with lone.	55 (G) 115, NO. 6 109

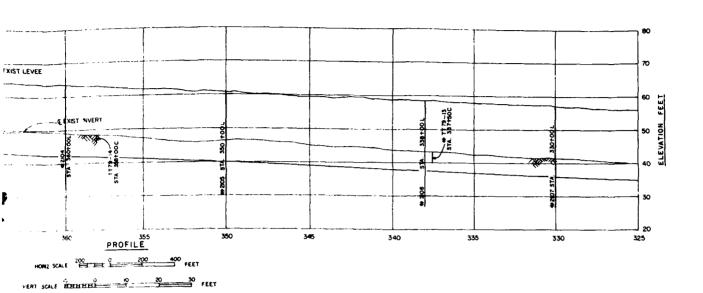
GC71-28

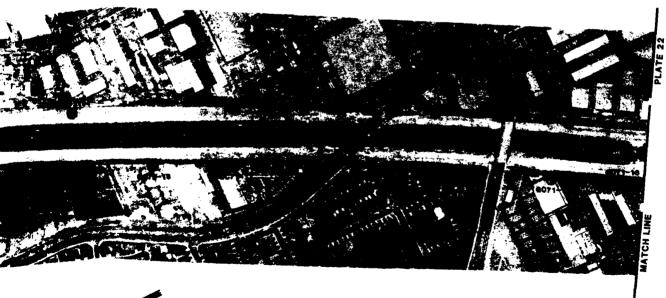
BOHING N


WATER S

SRING N			WO 27 TUT DRILL DATE 3/11/7
URFACE	ELEVAT	19 1101	BRIVER WEIGHT 201 Pt. 16
WATER OCEPTH FLET	GRAPHIC SYR:BOL	ROTATE MARK POTENCY OF THEM IN THE STATE OF	COST COST COST COST COST COST COST COST
		Ettit. Pro SP: From. Sc.	
	ا [ned remains a sec	
	7		
	7		
<u> </u>	ן ∶		
	1.		[[• [Ø]
\vdash	1		
<u> </u>	٦ :		1
	min	TOWN THE PLANT	
-	+	or arrors' thin soon of the	11 1 1 1
			19-0 - 1- 6
-	- Minin		
-			11-11-1-1
-	- .		OF I I I I I
			1-10-10-10-1
Z.	nin in		F 1 10 10 10 10 10 1
-	1		1 - 1 1 1 1
- ⊢-	-{		11-11-11
	- 1		
	45.44		
\perp	.WY	SHITE COLUMN BLAKE METERS OF A	1 10 1
L.	Jru i	Teter man with salar all and	
(C.	Juil		140 1 i i i
	JIII		
	JIIII		11
	ำเน		IL I I i
	ТИИ		$W \cap V \cap V \cap V$
<u> </u>	71/1/1		
- 1	וליד	Salar Clas Ut gray to dark beem,	GE 1 19 (3) 102 12.4 FE
⊢	Y/)	muint, soit, trace of organic.	
	~//	Or very weight under water	

VALUE ENGINEERING PAYS GC71-25 GC71-24 GC 71-27 STATION 149 + 80 W.D. 22-164 DRILL DATE 3/10/21 BORING No. 26 STATION 169 + 61 W.O. 22-164 DRILL DATE 3/10/71 W.O. 22-164 DRILL DATE3/10/71 STATION 159 + 72 BORING No 25 ELEVATION 72
CON ACT N.
CON ACT N.
CON ACT N. DRIVING WEIGHT 500 lb., 18 in. SURFACE ELEVATION 76 WEIGHT 500 15, 70 In. SURFACE ELEVATION 74 RIVING WEIGHT 500 15. 20 in. GROUP STAGO.


U.S.C.S.
RELEWISTST.
RELEWIST OF CONTENT Rocary Was . Borting; + Incl. Diemeter Autary Warh Soring; 4 Inch Diameter. US.C.S.
US.C.S.
FENE. RESST.
BLOWS/FOOT
CORE.
DAY
OENSITY BE!
NCSTURE
CONTENT.
RELATIVE
CONTENT. GROUP SYMBOL U.S.C.S. PR.O.W.S.T.BOL CORE O BAG O OPY CENSITY per CENSITY per CONTENT OCUTE COMPACTYON 5 Rotary Wash Boring, 4 Inch Diameter МАТЕЯ ООЕРТИ F DESCRIPTION DESCRIPTION FILL: SILTY SAND: SH; brown, moist, FILE: SHITT SAND: SH; brown, moist, losse; trace of gravel. FILL SAND SP; light brown, course Reained, most, loose; scattered gravel and rabbles. 111 101 [[li -111 10 1 102.0 12.9 MATIFAL CROUND: SAID: SP; brown, medium to coarse grained, moist, loose to medium derse; occasional thin seam of SULT: ML. 19 (105. MATURAL CROUED: SAND: SF; gray, med.um grained, moist, medium dense. (1) Sittle same registers brown, make the control of th -10 6 3 81.7 34.5 Silit FIRE SAND; ML; brown, damp, medium dense. 15 162.3 coarse to realize ground, roist, losses, (2) 108.5 5.3 69 Pocket of GRAVEL: GP at 12.0'. ▼ 15 10 (101.0 12 1 9:..1 7 SAID: 50; light brown, coarse grained, maist, medium dense. 22 (3) 103. 89 SILTY CL'Y: OL; SAND: SP; SILTY SAND: SM; interbedded, wet to saturated, soft; organic, SILTY - W.D. SM; brown, medium grained, musst, medium dense. 6 (4) 27 @ 102.4 20.1 24 0 - S21 Ш 1111 HÀ 20 (3) SAND: SF; brown, medium grained, moist, medium dense From the terms of the 10 26 (72.1 :9.3 SIGTY SACT: Six dark brown to gray, (6) i St. o. (IV: Oh. black, moist, stiff; - No 12 12 1 1 1 1 29. Je WM73-4 LOG OF BORING 4 DATE OF BORING 24 Nay 1973 WATER CEPTH 15" DATE MEASURED 24 MAY 1973 TYPE OF DRILL RIG COST. Tight Auger HOLE DIAMETER 6"
WEIGHT OF HAMMER 140 1bs. FALLING 30" SAMPLES 2" Pedified Celifor C71-28 GC71-29 UNE. COMP STREAGH, 144 MONETUR CONTENT, 76, DRY DENSITY Set OTHER TESTS Wit 27-164 print DATE wo <u>344 to ceustant and t</u> DONNG No. 27 STATICS 112 * 2.1. BAUTLES BLOWS/TOOT GROUND WATER DRIVING WEIGHT HIS _-SURFACE ELEVATION sign were realized they be recta-DESCRIPTION OCEPTH FEL UNFACE ELEVATION: DESCRIPTION Dense, moist, orange-brown fine to coarse-erained SAND (SP) with GRAVEL and COBBLES 11. *P.1 S.2.a. 19. began, worst, Medium dense, with trace of CLAY and organic material cobt is at 2.01 HH 1 94 Hedium dense, moist, light brown-orange fine-grained SAMD (SP) $-|*|_{\mathcal{O}}$ most missished, most, medicin, dense. Becoming wet, with SILT lenses (SP-SM) 23 93 T Caving 15.7 -10tiff the set brom, moret, median 15. 0 100 11...7 Fine to coarse-grained (SW) 24 100 - 25 -SUP: "Ty right brown, merium to course prain f, wit, donse. 244 (1) 132 27 4 16+ Bottom of boring at 25% ft. Poct to at http://district.com SYMBOL 25 30 REVISIONS 16 O 100 410 U. S. ARMY ENGINEER DISTRICT LOS ANGELES CORPS OF ENGINEERS *Driving weight under water SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM LOGS OF INVESTIGATION NOTES: BY OTHERS I. SEE PLATE 20 FOR TEST SITE LOCATIONS SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS. 2. SEE TABLES 4 STA.455+00 TO STA.390+00 SPEC. NO. BACW 09- ____ 8- ____


VALUE ENGINEERING

VALUE ENGINEERING PAYS

- I. SEE PLATE 8 FOR LEGEND AND GENERAL NOTES.
- 2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

DATUM IS	NATIONAL GEODETIC	C VERTICAL DATUM DE	1929	二
StringCt.	100 CEPTIONS		DATE	APPROV
	REVIS	IONS		
		U. S. ABMY BHGBNE LOS ANGRE CORPS OF INC	LES	a
CHICAGO PA	SANTA ANA P PHASE II GEN	RIVER MAINSTEM, CALIFO IERAL DESIGN MEMORAND	ROUA ILM	
35A-1674 ST.	PLA	IN AND PROFILE		
000as IM	STA.390	+00 TO STA.325+0	30	
RAWTED IV.	DATE	SPEC. NO. BACWOF		240
		DISTRICT FLE NO.		1

VALUE ENGINEERING P

TH 83-2101

N83-2101			5	TA 380)+00 L			€1.68±		
ept#	1.06	MC	u	Pl	4	-200		DESCRIPTION		
1.5	SM/SM	٠	_	140	94	7	25	SAME/STLTY SAME: BROWN, MOIST, GRAVEL TO 3/8 INCHES, FIR TO MEDIUM GRAINED SAME, I INCH LANGE OF MED. GRAINED SAME		
	SPI	4		*	94	13		SILTY SMIT: SAFE AS ABOVE.		
4.0		10		10	100	17	16			
5.5	92	2			95	3		SAND: GREY, MOIST, MEDIUM GRAINED SAND-		
7 .0	SP/SN	1		P	100	10	9	SAND/SILTY SAND: SAME AS ABOVE-		
	a.	33	44	27	100	88		CLAY: BROWN, MOIST, FINE GRAIN SAND-		
] <u>.0</u>	1	8		-	100	79		SMOY SILT: SAME AS ANOME.		
1.5	<u>33</u>	27			100	<u></u>		SILTY SAND: BROWN AND GREY, MET, MEDIUM GRAIN SAND. SANDY SILT: BROWN, MET, FIME TO MEDIUM GRAINED SAND.		
1.2	S#	23		Ψ.	100	22	10	SILTY SANT: BROWN AND GREY, WET, MEDIUM SRAIN SAND-		
1.5	•	15		100	98	16	10			
-	•	51	38	ın	100	<i>7</i> 5	9	SAWRY SILT: RREY, MET, FINE GRAIN SAWD, IRON OXIDE-		
1.5		43	45	15	100	95		SILT: LIGHT GREY, WET-		
	SM	18		NP	100	27	10	STUTY SAND: GREY, MET, FIME GRAIN SAND-		
.5	SP/SM	19		₩	100	10	19	SAND/SILTY SAND: GREY, MET, MEDIUM GRAINED.		
د		17		NP	100	31		SILTY SAND: BROWN, HET, MEDIUM TO FINE GRAINED.		
	S#	23		۳	100	04		SAME: LIGHT GREY, FINE GRAINED		
-5		19		WP.	130	73		SAFE - RICHN, MEDIUM TO FINE GRAINED-		
	SP/\$M	23		140	100	16	17	SAMP/SILTY SAMP: GREY, WET, HEDILM TO COMISE GRAINED SAMP.		
	SH/SN	79		Ψ	130	12	19			

TT 79-15

INVER			\$1	TA 375	•50 C			e _{1.} . \$24
3€ ₽14	£96_	46	LL	₽1	-4	-270	*	DESCRIPTION
1.0	4	3			131	1		SAME: SAES, MOIST, VEGETATION, ERGUNDHATER AT 1-FOOT.

TH 83-2102

EL - 661			90 R	k 370	THB3-2102			
DESCRIPT	_	-200	4	PI	ц	HC.	L06	DEPTH
SILTY SAND: BROWN, MOIST, FE TO 3/4 INCHES-	_	18	96	IP.		5		
		39	96	*		10		
		24	98	. IIP		6	SH	
		18	98	MP.		3		
		13	96	₩P		3		Z: <u>5</u>
ZWWZIFIA ZWIJ! FIGHL MICHI		9	97	#0		3	2P/2H	2.5.
STLTY SANTY LIGHT BROWN, MOI					_			4.2.
		14	190	*		4		
SAME - ROOM, MOIST, FINE TO		7	100	P.		1		
SARE: BROWN, TOTSY, FIRE TO							571	
		49	100	₩		19		
SAME: BROWN, HET, MEDIUM GRA		29	99	щP		16		9-0
SMITT CLAY: TANK GREV, HEY-		_ <u></u>	99	16	भ	52	Œ.	0.0
STILTY SIMP: GREY, WET, MEDIU		ŀŧ	19	₩2		ę		
		14	130	*		20	ć.	
								<u>3.5</u>
SMMY SULT: TARK BROWN, WET, COMPSIVE.		56	130	ş	24	24	4.	
								6.5

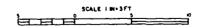
TH 83-2104

						_			
HB 3-2	[04		51	A 960	+00 L			6 : 67:	
¥PTH	LUG	Mr.	11.	PI	-4	-200	H	ŋ€2Cbini	
	20124	5		140	92	7	75	SAMD/SILTY SAMD: BROWN-SREV. MEDIUM TO FIME GRAIMED SAMD.	
ų -Q		4		100	94	9			
5.5	50/54	-		#	97	6	34	SAND/STLTY SAND: BROWN, MOIS	
7:0	ØN/\$H	ķ		*	98	9		SAND/SILTY SANT: SAME AS ABO	
8.5.	Ze \da			100	97	,	77	SAMOUSILTY SAMO: SAME AS ABO	
		3		φ	99	1.8		STUTY SAND: "ROW, MOIST, FI	
1.5		13	_	₩2	99	43	8	SME: RAGIN, MOIST, MEDIUM T	
3-Q	Ø				94	3		SAND: SREY, MOIST, MEDIUM TO TO 3/8 INDES	
4.5	19/5#	:		₩	97	5	10	SAMITY/STLTY SAME: SAME AS AS	
	n,p	5			83	2		FRANKLY SAND: SAME AS ABOVE	
Z- 5					62	4	13		
	50/5A	jo.		#P	92	,	15	SMINISTED SMIN: FIREY-LIGHT B BRAVEL TO T/B INCHES	
		18	· <u> </u>	₩	100				
4:0 6:5	1	a۱	32	9	l(A)	53	7	SANDY CLAY- DAME RINEY-BROWN	
W		F)	~	•	99	n		SHEW SILT- GREY, FINE DEAD	
	4	- 31		112	100	57	13		
	-	,,		_	100				

LUE ENGINEERING PAYS

TH 83-2102

	12	STA 370+00 R				EL - 661						
PC	u	Pİ	-4	-200	ĸ	DESCRIPTION						
5		₩.	96	18		SILTY SAND: BROWN, MOIST, FINE TO MEDIUM GRAINED, GRAVEL TO 379 INCHES-						
::		NP	96	73								
5		WP-	98	74	25							
3		₩	38	18								
3		#	*	13								
5		¥c.		3		SMP/SIETY SMM: LIGHT MICHA, MOIST, MEDIUM GRAINED-						
4			1.10		10	STITY SAMES - LIGHT BROWN, MOIST, METHUM SRAIMED-						
		•										
7.		.	IX.		9	SAME: BROWN, MOIST, FINE TO MEDIUM GRAINED-						
19		¥	1.02	49								
					9							
15		¥	7	27		SAME: BROWN, MET, MEDIUM GRAINED-						
V	भा	ŢF.	- 	म्		SMITT ELTY: THAK GREY, WET-						
4		¥	н;	12		CILLY SMIN: SREY, WET, MEDIUM TO CHARSE GRAINED.						
27		¥	 	1.	11							
24	?a		t)F	7.	6	GMPY CT.T. BARK BROWN, WET, FINE TO MEDIUM GRAIMED, COMPCIVE.						


TH 83-2104

	2:	1 360-	œ			ন্ . 672
40		,		33	•	NESCHIPTION
1	~	₩	ī.		э¢	CAMB/SILTY SAME. RECOM-GREY, MOIST, FEW GRAVEL TO 3/4", HEDILM TO FIME TRAINED SAME.
4		_	 Tale			
		•	ý.	,		
3		¢	27	5	Č4	SAND/SILTY SAND - SHOW, MOISY, MEDIUM GRAINED SAND-
5		Ψ	P	1		SMID/SICTY SMITE. GAVE AS ANOTHER
5		*	÷*	•	77	2 main Colling Amagin - 2 Maging -
3		Ψ	'n	- 8		STETY SARTE - THYSIAN, MINISTE FRING DRALMED SANGE
13		•	94	98	9	SATE PRODUCT PROTECT TO FIRE GRAINED SARD-
\$		**	34	•		SARD SHEY, HOLST, MEDIUM TO COMPSE GRAINED SAND, SPAYEL TO JAN JANUARY
5		₩.	37	5	19	TO 379 INDES: SMITH SUITS SAID - SAID AS ABOVE, GRAVEL TO 1-172 THOSES
3			51	<i>)</i>		GRANDIT SHIP SHE AS MOVE.
			4.7	- 4	13	
70		Ψ.	77	7	15	SMOUSTLY SMOTH SMEET-COME BROWN, MOIST, MEDIUM TO COMMISE GRAMME TO \$78 IMPLES.
18		•	190	, s	7	
9 0	25	٦.	f.Ju	51		SAMOY (1.4Y - PANK WREY-WARM), NET-
5 5		•	29	77		SMITT SILT. GARY, FIRE GRAINED SAWN, R. HAPTLY CONESTVE-
31		٠	190	57	13	
ซ		٠	!90	n		

TH 83 2103

(HB3-2)	.03		ST	A 370	100 L			EL - 56±
EPTH	F08	MC	ц	PĮ	4	-200	N	DESCRIPTION
	SP/SM	٠		#P	98	8		SAND/SILTY SAND: RROWN, MOIST, MON-COMESTVE, PEN GRAVEL TO 3/8 INCHES-
4-0		٠		MP	99	8		SAFE: BROWN AND GREY, MEDIUM TO COURSE GRAINED SAND-
5.5	M,	19		MP	93	62		SANDY SILT: BROWN, MOIST, MEDIUM TO FINE GRAINED SAND-
		14		₩	100	26	5	SILTY SAND: BROWN MOIST, HEDIUM TO FINE GRAINED SAND-
	24	11		46	98	31		
3 -0		19					7	
		5		Mb	99	11		SANO/SILTY SANT: GREY TO LIGHT BRN. MOIST, MED- GRAINED
	SP/SM	3						SAME: GREY-
4.5		5		NP.	100	5		
		-5		1	100	14		STUTY SAMT: BROWN, MOTST, MEDIUM TO FINE GRAIN-
5.5 6.0		25	. 75	7	100	- 38		SAMOY STLT: DARK BROWN, MOIST, FINE GRAINED.
	SM	17		HP	100	46		SILTY SAMD: BROWN, WET, COMESIVE, FINE GRAINED-
9.0		28					20	
		19		#	95	57		SAMPY STUT: FREY, MET, MEDIUM TO COARSE GRAINED SAME.
	M.	22						
3.5		24						SAME: DARK GREY, COHESTVE-
		28		NP	35	19		SILTY SAND: DANK GREY, NET, HON-CONESTVE, MEDIJM TO FIN STAINED.
		24						
	SM	24						SAFE: PEDIUM GRAINED SAND-
		25						

- I SEE PLATE 21 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4. ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CHEST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

STHEEGR	GENCEPTICAL	DATE	APPROX
*	REVISIONS		
	· · · · · ·	MY ENGINEER DISTR LOS ANGELES PS OF ENGINEERS	ici
00000-00 NV.	SANTA ANA RIVER MAINST PHASE II GENERAL DESIGN	EM, CALIFORNIA MEMORANDUM	
SEAWN Dr.	LOGS OF INVESTIG	SATIONS	
Ì	CORPS OF ENGI	WEERS	
GEOST IN	STA.380+00 TO S1.	360+00	

VALUE ENGINEERING P.

TT79-14

INVER	т							
1179-14	,		\$1	A 353+	00 C		EL . 482	
DEPTH	L06	*C	LL	PI	4	-200	RESCRIPTION	
	9	1			75	0	 SAND: FREY, MOIST-	
2-0			-		95	0	SAME: FREY, MOIST- GROUNDHATER ENCOUNTERE	n at ?-sept.

TT79-13

MAEN	т						
1179-1	t		51	FA 337	50 r		EL. WAT
NEPIH	36ء	*	u	01	-4	-200	PESCRIPTION
	9	2			%	ı	SAMD: GHEY, MOIST-
2:0 3:0	28/28				gr	n	SAND/SILTY SAND: GREY, MOIST: GROUNDHATER ENCOUNTERED:

TH83-2105

T HB3- 23	105		511	1 350	+00 L			£L 61:
DEPTH	L06	#C	п	2;	4	-200	4	DESCRIPTION
	39	1			100		 75	SAND- BROWN, MOIST, MEDIUM GRAINED SAN
1.5		3		T	100	9	45	SMIDY/SILTY SIMID: SAME AS ABOVE
	2P/5H	4		₩.	100	6		SAFE: FOR GRAVEL TO 1-179 INDIES-
5.5		2		4	190	5		SAME: "BY GRAVEL TO T INDIES-
7.0	SH/SH	4		Ţ	100	3		CAMBUSTICTY SAMPLE SAME AS ABOVE.
	S*	6		· ·	:m	:\$	12	SILTY SART: MICHAEL, MOIST, FINE TO MET
9.5	\$P75H	- 4		. _¥ .	14			SMEASILTY SAITH SAVE AS ABOVE.
0.5					-T90			CILTY SUP); BROWN GIPEY, MOTST, FINE
2-0	SPI	12		¥	130	- 15	6	
		1		<u>.</u>	מנ	<i></i>		SMMI/SILTY SMID: BRN-GPEY, ≪€1. **: **
		4		¢	9.7			SAME: SPAMEL TO 1 INCH-
		Π-		*	- 17	-	11	
	3P/3N	19		40	33			
		12		•	93		٠,	
		20			137		11	
		20		10	130	·- 4-		
1.5 2.1	3	23		_	100		٥	THO SHEY, HE'S, HEDRUM GRAINE LAND
	∵9/ 9 #	20		#0	:00		4	SAMPLES - CAME AS APPLES
5-0		23		₩	110	•	י	SME - GREY, HET, HEREIR TO COMPSE THE
6-0	٦.	39	44	- 14	199			STET THE GRAINET CANS
7.5	sc	25	53	12	100	41	6	CLAVEY SAME IS MALVE.
	54	27		¢	190	43		STEETY SAND: SAME AS ANONE-
a a								
9:0		- 25	31	Π.		- 27		SHOW THE BOOK SET, FIRE TRAINE

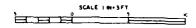
TH84-2107

48 4-213	,			• • • • • • • • • • • • • • • • • • • •				ស , ទ <u>*±</u>
EPT#	LNS	۳K	•		-4	-3JU	4	peacatatine
	78	;		ď.		15		SILTY SAMP). MIROWN, MOTOT, LOOSE, FIVE GRAMPL TO [77] THOMES, SOME OLIMPY OF TH
3.0	SW/SM	3		ч		,	14	SAMPLYSTUTY SAME: SAME AS AMERICA
							4	
9.0				-	34	4	4	SMP: BerMI, MRIST, LOOSE, FINE WAINE CHESION
	39							
							11	
5.0	A			ţa.	100	۲۱	14	SAMOY (LAY- DAME METHON THIST CONESIVE SAMO, STIFF
B-0	٦.			¥	180	75	5	SAMBY SILT GREY, MINIST, COMESTME, FIN STIPP.
9-2								SILTY SMAN. REEY, MOIST, COMESTIVE, FIN

₽ 100 🖦

ALUE ENGINEERING PAYS

TH83-2105


\$1	TA 3504	X 0 :		€1. 61.2
u	b 1		200	
		: 6		SAMP BROWN MOIST, MEDIUM G. AINEU SAMD-
	Ψ-	TT	7	CANTO CANTO SAME AS ANDRE-
	•			SUPE - Feli GRANG TO 1-1/7 INDIES-
	·			
	. ¥			OME SEW GRAVEL TO T INDIES.
	*			THIS IT THE AS ABOVE.
				TY SAMP MICHAEL MOIST, FINE TO MEDITH GRAIN SAND.
	*			1 to the administration state to agents another 2 miles
	· •-	14		WE'T TO CART SHE AS MIGHE
	- -	res est	7	THE BROWN SHEY HOLST, FINE GRAINED SAND.
	. .			ANT OF THE SAND BRIN-GREY, WE'T, WE'D TO COMPSE GRAINED SHIP.
	•			24 SHIMEL TO I TRICH-
	<u>.</u>	,,	-	
	-			
	*	22		
	 ♥			
	₩		•	
				THE MET MET MEDIUM GRAINED SHIP
	•			AND STORY SAME AS ANOME.
•	₩			WE HET WET TO COMPSE GHAINED CAND.
a	r5 -		Y	THE SHEY FINE SHALVED CHID.
				AND DARK A LINE PROVIDED CAND
13		•		LAYER SHE AS MONE.
	•			T MY AS MOVE.
<u>π</u>	ni:			
24	- 44 − 1 Ψυ		•	MIN TY. Brown, SET, FIRE SEALURD SMIN.
	•	*		" "Y "AM" GREY HET, MEDIJA GRAJAED SAND GRAVEL IN 1".

			ŢHĘ	14-2107
ma zeres		٠,	,	D . CTs Description
 •	••			** APP *** *** STEEL CODE. FIRE CRESSED SHED, FRU- WINDS TO TO SENES SOME TELEPOSITY CONSISTER SECT.
•				HI I THE REMAINS
				भा केन्स्रक जारत । प्राप्त राज्य प्रकासको प्रकार प्रकार पर्व । प्रम
 .g. u.	i	-		MBDY TAY THAN SPINSE HONEY CHRESTING, FINE GRAINED HER CTEES
₩	,			APP 10 Files Anton CONCINE, FIRE MAINED SHIP.
<u> </u>	- 'e'	٠		TO BY CART GREY, ROIST, CONTRIVE, FIRE MAJARD SARD, STEE
•	'n			

TH83-2106

T#83-2	106		S	TA 335	3+00 L			EL. 59±
DEPTH	L06	MC	u	Pī	4	-200	1	DESCRIPTION
2.5	SPI	10		₩	97	18	18	SILTY SAND: BROWN, MOIST, FINE TO MEDIUM GRAINED SAND, GRAMEL TO 1-1/? INDIES-
	SP/SH	2		P	99	8		SAND/STLTY SAND: GREY-BROWN, MOIST, MEDITH GRAINED SAND.
5.5		4					11	
	S#	5		₩	99	13		SILTY SAID: GREY-BON, MOIST, FINE TO MEDIUM GRAINED SAND,
8.5		in		Ψ	98	18	4	SAFE: BROWN, HET. FINE TO MEDIUM GRAINED SAND-
	QP / SM	3		₩P	99	10		SAND/SILTY SAND: LIGHT BROWN, MET, MEDIUM GRAINED SAND-
12.C		4					7	
3.5	SM/SC	24	26	5	98	72	5	SILTY SAMO//LAYEY SAMO: PROMI, MET, FINE TO MEDIUM GRAINED SAMO.
	٦.	*5	33	2	120	87	,	SILTY: Brown, HET, COMESIVE
6-0 2-5	SM	71		*	98	18	8	SILTY SAMD: PROM, MET, MEDIUM GRAINED SAMD.
		34		Mb.	100	61		SANDY STLT: DARK GREY, FINE GRAINED SAND, SOME CONESTON
		13					5	SATE. THAT GREY, CONESIVE-
	4	11		*	100	63		SAME - LIGHT GREY, SLIGHTLY CONESTVE, FINE GRAINED SAND-
		!3	58	11	100	31	2	SAFF: Liter GREY, HEY, COHESIVE.
4.5		4						
		27		₩	190	וי	11	CILTY SWY); "REY-BROWN, HET, "ENLIN GRAINEN SAND-
	9*	19		Ψ	100	18		
	-	יוי					::	
1.2		.7						

- I SEE PLATE ZI FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE 84 FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

				
STIMBLE .	4807	NOM	DATE	MERCEN
	R	EVISIONS		
		U. S. ARMY BNGIN LOS ANGE CORPS OF BNG	LES	ici .
**************************************		NA RIVER MAINSTEM, CALIFO GENERAL DESIGN NEMORANG		
Statute St.	LOGS	OF INVESTIGATIONS	3	
	CO	RPS OF FNGINEERS		
000aio m.				
i	STA.35	58+00 TO STA.330+0	0	
- THE ST.	DATE			9487

GC71-13

			13		W.O .	22-16	4_ DĄ	1/00	ξΕ η ³	/ <u>\$/71</u>
Γ	MATER	DEPTH FEET	SYMBOL	NON_4L Rocary wish boring, 4 inch dismerer and 16 inch bucket anger DESCRIPTION	GROUP STABOL U.S.C.S.		CORE D	DRY DENSITY act	MCISTURE CONTENT%	RELATIVE
	V.	- 0 -	111	SILTY SAND, SM; brown, medium to coarse grained, moist, medium dense.	_ s#					4
-	_	- 5 -	正胜其	SAMEY SAME, St. pray, model firm. SILTY SAME, St. pray, firm to made or grained, saturated, looks to medium dense.	Fa.	P*	0	-	-	-
,	•	- 0		SANCY	_ C1 _ SM		3		22.5	
+		5 -		SIL JAPASE BOSON to 149, 140, grand of the control	SM	11	<u></u>		•	
		-20		C. B. S. S. S. S. S. S. S. S. S. S. S. S. S.	sı	٠	٩	-	12.5	1
		,a			-		ş			

GC 71-14

		14 	STATION 81 + 78					TE 3/	
300	T	LEVA					140	1b .3	
WATER	ODEPTH FEET	GRAPHIC SYMBOL	Retary wash bering; 4 inch diameter DESCRIPTION	ORCUP SYNBOL USCS.	PENE RESST	CORE O	DPY CENSITY pcf	MOISTURE CONTENT %	RELATIVE COMBINETION
Г			FILL DAYD: OF; medium to course grained, moint, loost; clean.	SP		<u>II</u>	-		-
-	- 5 -] 	0		-	
- ,	-10-			- - -		T _C			
4	-15 -	/// ///	STRAIL OF CODE CLASE FIRE SAND MAY SUPPLEAD, OLD	- - -		<u>ئ</u>		-	
_	-20-		STLT FISE DATE; M. intribuded			(c)			-1
	-25-					6.			
-		/// ///		-			- !		1 1 1
Ĺ	-30-		roof the London Color					;-	- '

			T
WATER	SOEPTH FEET	SYMBOL	
	- 30 -		SART :
			SAND,
			med current
	oxdot	ļ.,	L
	J35 _	1114. 11 TT	Silve of the fire.
			firm
-			
	40	'	
	-"" H		
1	-5		
	- 1		
j		- 1	
- [- 1	
ı		- (
	_ 50		
- [l	
ļ]		
- [
- [1	i	
(نہ ۔		
` -		1	
ĺ		i	
ĺ		i	
- 1	!	į	
	1	j	
- 1	- 1		

GC71-16

BONN 1 16	Station 53 * Pv	WO 27-144 DREL DATE 1/8/1
SUMPACE ELECTION	· · · · · · · · · · · · · · · · · · ·	DRIVING WEIGHT 14 II IS IF
AN CR	ne ve gi nea vivi i De vevi tran	280.2 Shell of the control of the co
	gi Marjan (m. fari home). A set, E., Gerryecom of we	Lal
4	ight on his corresponds, the of graves	13 (1)
		[37 11 ①
	「And Merty Color State	N N N N N N N N N N
	Discount of the common of the greatered,	51 (3)
	2 St., r.y. vet, soft	• (3)
	The bearing of the second of the second of argument	m • 6
30	- · =	<u> </u>

GC71-17

nor.	.6	:'_	STATION	E .	1 1	SR	L. PA	: <u>/</u>	
SUFIF	ect c	E VAT	rev V	to Si	·		2.1		<u>" '_</u>
MATER	OCCPTH FEET	SYMBOL	OESCRIPTION	3,000	17. Fr. 7.	. 3	Car Sensorrer	STUBE CALENT N	CLATINE
	0		10° 4'\$ sec. e	ļ.,	-	0 B		-	=
		Ш	Fr bi TY SAND SY 15t Se of	! - _	. bu -vv s				
			Marin i moreologi agistiggi, i ist broom we i ver footi.		1	! !			
V	- 5 -		Pocket zrave' at 5.0'	-	i	 			
						i ' ,			
	- 1	Tr H	The state of the s	 	:	ξΩ I	9,		
-		Щ	\$20 Jan. 11 Recorporate mental and an extension	F E.			157		
			\$1.5 to the Action of the State		:	:			1
	-20	11/1/	STEEL STEEL	 - -		6			
-		Í	disquist from a correct commen.	-	 	Ō			-
			• decision, sought under water	+	; ;		_		-
	- 50-	_1		ΙΓ.			-1		

	_	1	T
#ATE9	DEFICH FEET	GRAPHIC	
		111	1
	\vdash		
	-	111	}
			1
7	ت ا		1
		111	
	\vdash	Ш	X ²
	\vdash \dashv	HH	
	L.o.	μH.	-
	Ι		12
-			
	Н		
٠- ا	-50-		
	-	111	Thur. 1s.
	-		Pre-1
		-	mana and a
	\vdash		Pear
	لمدا		

ALUE ENGINEERING PAYS

O 27-164 DRALE CATE 1/6

io

GC71-14 (Cont'd)

BOR	NG Na	_14_	STATION 81 + 78		w.o.	27-16	4_ DR	LL DA	Τ£ _1	/9/71
SUR	ACE !	LEVA	10N <u>57</u>	,	DAIVE	46 W	CIGHT	140	16. 3	O In.
WATER	SDEPTH FEET	CALPHIC	DESCRIPTION		SOSO OBJUS ANDED	PENE. RESST. BLOWS/FCOT	CORE O	DRY DENSITY RE	MCISTURE CONTENT %	REL ATIVE COMPACTION
			SAND: Sr; brown medium grained, dense, grides to gray and brown Silly time. SAND: Sr; gray and SANDY Sill; ML, moist medium dense.	I,	- - 5P	15	0	•		
	15	\coprod	SiLTY 1175 SIND; SP; gray, wet, dense; grading to 5. NDY SHT, NL, brown, moise, firm.		ŠР ні.	18	O			
					-					
!					- :					-
1		_			- - -			 - -		-
					-			İ		=
1	- `	-		-	-	-			!	
!					-					1
	-			-	-		-	}		- 1
				-	-			İ		1
<u> </u>				t						

GC71-15

			STATION 87 + 34					ML GA		
SURFAC	3	LEVAT	ION _62	. 1	DRIVE	YG W	EIGHT	ههد	ئے۔	<u> </u>
WATER	DOEPTH FEET	GRAPHIC SYN:BOL	Rotary with boring; 4 inch diameter DESCRIPTION		CROUP SYNAOL U.S.C.S	PENE. RESST. BLCWS/FOOT	CORE O	DRY DENS:TY oct	ROSTURE CONTENT %	
₹		unner	SAND, SP; brown, fine to medium grained, wet, loose; thin seam of Silty CLAY; CL; brown, wet, medium stiff of 2.0	il	- SP	6	©		-	
	5	ريزين درندند درسيد	SAID ; SP; SILT; MU; SILTY CLAY, CL; interbundled, wet, soft.	Į	SP ML		0		37.0	
 - - - -	10-		SAMP, SP; gray, fine to reduir grained, net; loose,	L	SP	٠,	0	-	- 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5		21.T Short, SM: gray brown, fin. to defend grained, wet, loose to section dense: Thin war, of <u>CLAYEY SILT</u> , Mi; brown, wet, firm.	-	SH	10	0	-		
- - - -	20-	14			•	ti	Ó		-25	
	25-		S. C. M. C. gree, moist, median tri. not-bodded with CLATER FIRE SAMPLES, wit, loose.		C.	8	0	-	اة.	
	,0.				-	-			- 1	-

GC71-19

встыз и	1.6	STATION LILL 35.	wa	:2-16	<u>.</u>			4 ;
SUHPING :			ORIVE	NG W	rFitf	- J.		
MATE 4	GRAPHIC	Service Control of Services	GRILLO STABILL	BYLL RESET	CCGE C	1 5 Lav	MC STAR	harat Control
		Fj. (19 <i>97 <u>fATO, St</u>.) ti</i> s hown, outst, back to dervr) some pares of competer:	*					
Δ - ; -		My and the state of the state o	1 1 1 1	25	G.			- -
- 6		Mag. (E. laubt brown, or line grace), safety of the first	-	174	Ģ	 ,, ,] 2-	· -
A			- - -	îe:	G	<u>,</u> ,,	; ;	
-20-	114	Thurstonic of the Garage Living Common Living The Garage Living Common L		19*	0	up 1	· · · · · ·	
0			<u>.</u>	28.	(j	w.c	16.2	-
-10		i Brising wilght under soles	F	~		-		-

- 1. SEE PLATE 21 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

SYMBOL			+	
STATE OF THE PARTY	REVIS	IONS	DATE.	MAGONAL
		U. S. ARMY ENGIR LOS AND CORPS OF EN	ELES	CT
50000FGD BY.	SANTA ANA P PHASE II GEN	RIVER MAINSTEM, CALIF ERAL DESIGN MEMORAN	DRIVIA IDUM	
DÉAWN ST.	LOGS O	F INVESTIGATION	1	
)	E	BY OTHERS		
G8088 9h				
ı	STA.390+	00 TO STA.325+0	00	
SUBMITTED SY.	DATE	SPEC. NO. DACWOP.		94907

GC71-18

South Company with boring; 4 inch dismeter DESCRIPTION DESCRIPTION DESCRIPTION 35' E g sever DESCRIPTION	CORE O CORE O CORE O CORE O CORSTURE NOSTURE NEL ATIVE CONTENT % THE LATIVE COMPACTION
BEACHTON Wish boring, 4 tech dissect Company wish boring, 5 tech dissect Company wish boring, 6 tech d	CORE O BAG CO CRY CRY CRY CRY CRY CONTENT'S RELATIVE COMPACTION
Fith SAND SF ; brown, medium grained,	
soist, medium dense.	(7) (0), (2), (5)
STATE A TABLE to dash Fray, wet,	
▼ 15 13¢	
	89.8 22.8 7
-30	0 * 12 2

GC71-18 (CONT.'D)

	NG No		CONL . STATION 105 + 92	WO 27-164 DELL DATE 3/9/71
WATER	15	SYNIBOL	DESCRIPTION	FECUP CASCOLOGY FECUP
	Ħ		SAND, SP: light to dark gray, wet, loose to redime dense.	18 (6) \$2.5 \$1.7 \$4
	35		* 750 lbs. driving wigh:	N D 02 0 8
-				
		- -		
_				

GC71-22

BORING No	22	374TION 129 + 26	W.O 27-184 DOLL DATE 1 8 21
SURFACE E	. EVAT	ion ' -	ERIVING WEIGHT 10 15 14 10.
WATER OCEPTH JEET	SYNBOL SYNBOL	DESCRIPTION 4 1 4 1 1 1	FOUR SALES FOUR S
		till 1 25, the control to medical control to the second control to	57
3 -		Then 1 is it <u>\$750 - 52</u> , it 3.7	
		<u>B.B.C.</u> The second for the second for the second s	s, G, 17,
7			[-
-20-			100 @ 100 d d 100
1 2 1			177 (5) (m. 17) (m.
			11. (3 mg 1 180

GC71-23

BOP 12 No		with the part of 1911
SURFACE ELEVAT	ON '	19 1 4:30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WATER OS, ETH FEET CLARHO 'YMEDL	ocscniet.or	
	48 1 2 25 3 3 3 3 3 3 3	
	to the start to the to	
7	part of an <u>IAA, in the form</u> of	
-20	SALSON COLUMN STATE AND SOLETON OF SOLETON STATE OF STATE	
	"Mr. of, t. hi brown, were to concer prained, married, within date to	5711 (855) 65
30	dente,	
	continued or next sheet	JL., . i <u>- 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 </u>

ICALUE ENGINEERING PAYS

ق

10

0

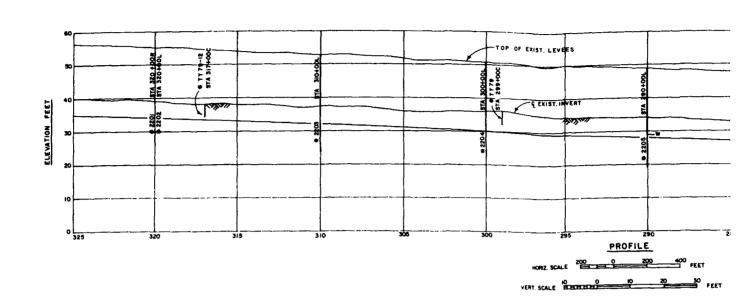
12-164 DREL DATE 3/9/71

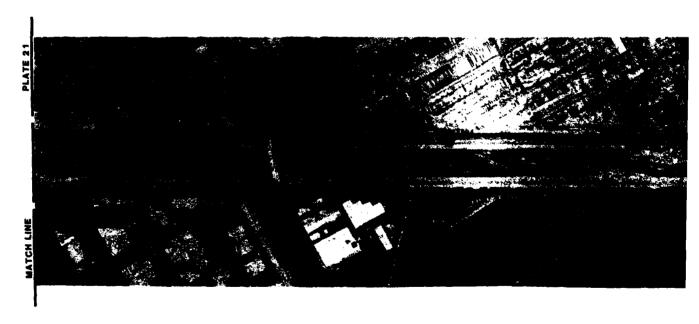
GC 71-20

BORING No		W.O. 27-164 DRUL DATE 3/5/7:
SURFACE CLEVAT		DRIVING WEIGHT 500 16., 20 1:
WATER OCEPTH FEET GRAPHIC SYMBOL	Rotary Math Borton, 4 Inch Diameter DESCRIPTION	USCS USCS PERE AESST. BACWS/FOOT CORE O BAS TONY EENSITY EL MOSTURE CONTENT EL CONTENT EL CONTENT EL CONTENT EL CONTENT ENT EL CONTENT ENT ENT ENT ENT ENT ENT ENT ENT EN
	SAMDY clAY; CL; dark brown, moist, soft	
7.	SHIT CLAY; CL., gray to black, weist, soft.	ct. 2 (Q) 81.8 39.0 70
10-111	Subj. 2P. is hit brives, coarse grained, raturaled, middle dense.	17* (2) 102.0 22.5 1 15
15		11.0 10 11
	Alexander of Alexander Character (C. 1871).	5M
-30-	Paris q wight under water	36* ③

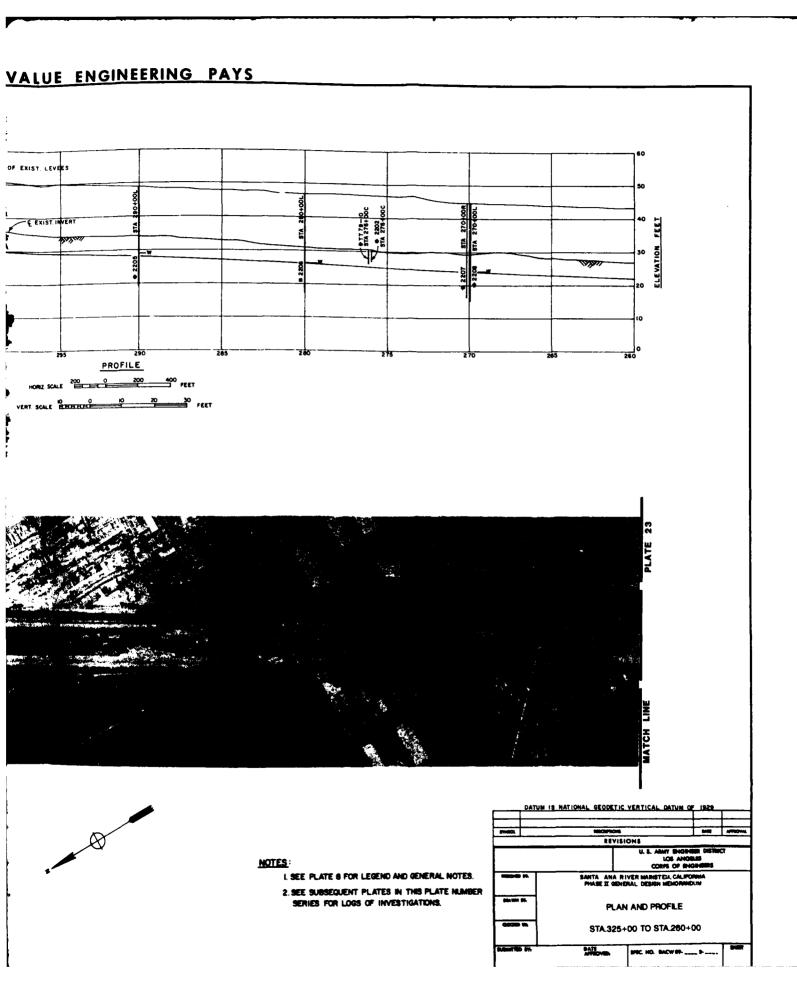
GC 71-21

UPIF /	CE EL	EVAT	ION	DRA				_140	16.	20
WATER	ODEPTH FEET	GRAPHIC SYMBOL	Botary Wash Boring, 4 Incli Diameter DESCRIPTION	GROUP STAZOL	0.50.5	PENE. RESIST. BLOWS/FOOT	CORE O	DRY DENSITY pcf	MOIST URE	RELATIVE
		/*** <i>1</i>	SAMD. S2; brown, fine to medium Brainvo, medat, losses, occasional thin seem of <u>CLAYEY SILT; ML</u> , Wet at 5,0°	- - - - -	,	7	O	-	26.6	
₹			met at 5,0°	-		3	ତ		-	
	-10-		SAMD: SP: brown, medium to course grained, v.e., medium dense.	- 5	,	12	0	·		-
-	-15 -		SAMPY SIIT; ML; brown, wet.	-		2	©			
	-20-		<u>SAND: SP.</u> proven, sedium grained, uer, mulium dense.	- 5	12					
				- s		16	0	-	-	
_	ř	iiiii iagi iiiii	SAMP: SP; STATY SAMP, SN; HATY CLAT; CL intermedical, wet, soft.	-0		5	0	-	34.2	
~~				Ē	1					_


GC 71-23 (CONT.D)


GOT NOT THE TOTAL STATION OF SIME	W. G. 27 (64_ DHR.) DATE
THE LACK ON THE CONTROL OF CONTRO	DRIVING WEIGHT 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Discounties	II to be in the
	[[4] [10] 2]
Tr eight ell wite.	

- I. SEE PLATE 21 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE


STINGOL STINGOL		FAC	APPROVA				
*****	REVISIONS						
	LO	ENGINEER DIST ANGELES OF ENGINEERS	NCT .				
1000-00 Nr.	SANTA ANA RIVER MAINSTEM, PHASE II GENERAL DESIGN ME	CALIFORNIA MORANDUM					
SEASON DE.	LOGS OF INVESTIGATION						
ł	BY OTHERS						
OSCIO IN	STA.390+00 TO ST	A.325+00					
* A	DATE		\$1000				

VALUE ENGINEERING PA

VALUE ENGINEERING P

TH83-2201

163-27	201		ST	A 320	00 R			EL. 962					
EP TH	L06	IK;	ii.	Pl	4	-200	H	DESCRIPTION					
	SM/SM	5		NP	82	g		GLMELLY SAMD/SILTY GRAVELLY SAMD: LIGHT BROWN, MOIST, MO CONESION, MEDIUM GRAVINED SAMD-					
3.0	SP/SN			₩	95	6	27	SAND/SILTY SAND: SANE AS ABOVE.					
3.0	31	-6-		- 10	100	15-		STOTY SMITH: LIGHT BROWN, MOIST, NO CONESCON, MED- TO PINE					
<u>.a</u> _	O.	78	21	8	100	87		CAY: BOWN, HOIST, SIPE CONESION-					
2.0	571	9		۳	95	21		SILTY SMO: Norms, MIST, NO CONESION, OCCASIONAL GRANEL TO 1-1/2 INCHES: NEGAN ADDING DRILLING PLD DUE TO CAYING-					
0.5 1.5	- 18	57	55	Z 4	100	₹		TILT: MON, CHESIVE-					
L-2		V5		W.	94	ļq		SILTY SAND: LIGHT AROM, NO CONESTON, MEDIUM GRACH SAND.					
	SM	15		*	199	29		SME: SME AS ABOVE WITH FINE GRAIN SAND-					
		21		*	100	14		SAPE: SHOW, HET, MEDIUM GRAIN SAND-					
8.0	-	38	45	15	100	64		SMEY SILT: BROWN, WEY, FINE TO HEDIUM GRAIN SAND-					
0.0	CL.	29	35	11	100	55		SMENY CLAY: TANK GREY, WET, FINE TO MEDIUM GRAIN SAND.					
2-0	sc	30	43	13	190	42		CLAYEY SAND: DANK GREY, MEY, FINE GRAIN SAND.					
3.5		28			199	9	10	SAMPLETY TAND: AREY, NET, MEDIUM TO COMPSE SPAIN SAMO-					
	59/54	30		₩	190	7							
9.C		77		-	<u>נעין</u>	14		STELL SHALE AS MEDIE.					

TH84-2203

THB4-22	203		51	s 310	+00 L			FL. 53t
DEPTH	L06	TC.	T	01	-1	-200	*	DESCRIPTION
	9P/SN	4		*	38	,		SAND/SILTY SAND: LIGHT BROWN, LOOSE, FINE GRAIN SAND, STORE CLUMPS OF SILT.
<u> </u>					 .			SPLTY SAID: SAIE AS ABOVE.
							25	TICIT 3417: TARE AS ABOVE.
	54	5		40	39	v		
							5	
11					·			
							,	SIGTY SAME PROME, MOIST TO MET, LODGE, COMESIVE, VERY FIRE TRAIN SAME, STATE GRANGE.
		73		•	99	21		
							11	
	SP							
		34		-10	13	43	15	SME: LANGE CLIMPS OF STET.
		~		*	100	23		
1.0								
		99	51	\$	1,700	55	Ж	SAMPY SILT: GREY, WET, STIFF, FIMF GRAIN SAME, COMESIVE LARGE CLAMPS.
	4	-						
			31	4	100	52	20	
<u></u>								
	24			•	190	44		STI,TY SMID; SAME AS ABOVE.
8.0								

TH84-2202

THB4-2	202		s	TA 320	H00 L			FL - 56#		
DEPTH	L06	Æ	u	PI	-4	-200		DESCRIPTION		
.3.	SW/SP	4		•	98	9		SMB/SILTY SAMD: MINIMA, MOIST, LOOSE, SOME GRAVEL. TO PEREVROPETER TEST DUE		
_				`			21	SANT: SAME AS ABOME-		
	%	2			97	5				
							•			
9-0							5	SMB/SILTY SMB: LIGHT BROWN, MOIST, L GRAIN SAND, SOME GRANEL. BEGAN ADDING TO CAPTAGE.		
	SP/5M			P	99	5				
15-0							13			
	2 M			₩	39	14	ţţ	SILTY SMIT: LIGHT BROWN, MOIST, FINE COMESIVE, STHE SHAPEL.		
18-0_										
	SP/SH	ψŋ		₩	92	17	20	SUMP CLUMPS OF SMEY SILT, STIFF, COHES		
21.0	**	.79	 50	15	100	51	5	SMMY SILT: DARK GREY, FINE GRAIN SILE		
24.0										
	S*	£,	51	3	190	43	55	SILTY SAND: MACHIN, FINE SHAIN SAND, S		
27-0			•					SANDY SILT: SAME AS ANOVE-		
30.0	٩.		54	į	190	73	Į3			

TH83-2204

						TH83-2204					
1-83-27	n,		51	4 300	•90 L			P., 512			
DEPTH	£96	W.	U.	PI	-4	-200	Ħ	DESCRIPTION			
		•						SAMPUSILTY SAMP: PROMILISHT RESERVED TO THE INCHES.			
	PZ/WZ	1		₩0	100	ų					
		1									
9.0											
				*	fun	14		CILTY CARTY, PROME MAY GREY, MITCY, FINE TO METITIM GRAIN SAND, LAYEVED			
		ų									
	94	18			100			SAFE: PROUBLAND SREY, HET, FINE TO			
		15		•	Įno	13		SME: GREY, HET, HEDTIN GRAIN SAND			
		"		•	100	41		SAME: GREY, MET-			
23.5	1	28.		7	100	_3_		SMEY SLT. SMEY, MET, FIRE MAIN			
		75		NP	เขา	2		STLTY SAMD: GREY, MET, MEDITM GRAI			
	SH.							SAME: YELLING SH GREY, HET, HETIIM			
		21		ę	109	8		Owner: (Efficient St. Barger, and L' Lafolline			
30 .5	7	78	- 35	17	100	79		SARRY OLD TO THE SARRY, MET.			

VALUE ENGINEERING PAYS

TH84-2202

	2.	14 320	₩ 0 L			FL- 56t
×C	u	PI	4	-200	N	Description
4		100	98	3	-	SAME/SILTY SAME: BROWN, MOIST, LOOSE, FINE GRAINED SAME, SOME REASH. NO PENETROPETER TEST DUE TO LARGE GRAFEL-
					21	SARP: SAME AS ABOVE-
2			97	7	4	
					ŝ	SWID/SILTY SWID: LIGHT BROWN, MOIST, LOOSE, FINE TO COMPOSE GRAVEL. BESAN MODING DRILLING MUD DUE TO CANING.
-		*	39	5	Į\$	
,		HP	19	٠,	1,1	SILTY SAMP: LIGHT BROWN, MOIST, FINE GRAIN SAMD, COMPSIVE, SYME GRAMPL.
51 61		φ	3.7	1,	סי	SMIN/SILTY SAME: LIGHT BROWN, FINE GRAIN SAME, COMESIVE, SPEE CLUMPS OF GREY SILT, STIFF, COMESIVE.
	50	15	jm		5	SAMITY SILT: DANK GREY, FIME GRAIM SILT, CONESIVE, SOME FIME GRAIM SAMO-
	ŧĮ	?	i.a. 	4)	22	SILTY SMITH: PROMIN, FINE SPAIN SAND, SOME CONESTON-
	ţa.	1	; m	"	Įŧ.	SANDY SILT: SAME AS ANOVE-

TH83-2204

51	4 300	17.1		Ft 512						
			-23:		DESCRIPTION					
					SAMS/SILTY SAMS. SHOWLLIGHT HROWN, MEDISM GRALM SAMS MOIST, GRAMS TO THE HODES.					
	**	; 25	٠,							
			· · · · •							
	•	(r	14		CILIT SAME: "Brown was dame, whist, "se dames, to 5/A" FIRE TO WEITING GRAIN SAME, LANGARD SILITY SAME.					
		·	····		SATE: AROUN AND GREY, WET, FINE TO MEDIAN GRAIN SAND-					
	•		1*		SAFE: GREY, WET, MEDIUM GRAIN SAMI-					
		199			SIT: SHEY, MET					
	V	100	51		SMAN SILT: SMY, MEY, PINE MAND SAND-					
	•	190	,		STLTY SMID: GREY, MET, MEDIUM DRAIM SAND-					
	•	100	27		SAFE: YELLOWISH GREY, HET, HERHIRI GRAIN SARD-					
5	-17	(00	71		SMITTER SMITTERS					

TT79-12

1779-12		STA 317+00 C						EL. 38±			
DEPTH	L06	MC	u	Pį	-4	-200		DESCRIPTION			
	SP	13			99	2		SAMD: GREY, MOIST-			
3.5					88	1		SAFE: FIREY, MOIST, GRAVEL TO 3/4 INCHES-			
								GROUNDMATER ENCOUNTERED AT 3-5 FEET-			

- I SEE PLATE 22 FOR LOCATION OF TEST HOLES AND TEST TRENCHES.
- 2. SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

─ ─										
										
STREET	REGIFTICH)	DATE	APPROVAL							
	REVISIONS									
	U. S. ABMY SINGRES LOS ANGEL CORPS OF SING		a							
2000 Fr.	SANTA ANA RIVER MAINSTEM, CALIFOI PHASE II GENERAL DESIGN MEMORAND	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM								
60AWP 511.	LOGS OF INVESTIGATIONS	LOGS OF INVESTIGATIONS								
ł i	CORPS OF ENGINEERS	CORPS OF ENGINEERS								
STA.320+00 TO STA.300+00										
948MFT100 811.	DATE NO. DACHAR		91007							

VALUE ENGINEERING F

TH83-2205

WVER 1179-1			5	TA 299	• 00 C		П	79-∐ ε. %±
DEPTH	L 0 6	枚	Ħ	PI	4	-200	1	DESCRIPTION
	5P/SH	•		P	95	,		SAMO/SILTY SAMO: BROWN GREY, MOZST-
3.0 4.0	31	77		P	100			STLTY SMID: RLACK, MET- GROUNDMATER ENCRUPTERED.

THB3-2205				STA 290+00 L				EL- 49±
_	.06	MC	и	P	4	-200		DESCRIPTION
1-0	CH	20	69	T.	100	73		SANDY CLAY: BANK MINDRE, ASPHALT CHEPS-
		4					19	SILTY SAND: LIGHT BACHN, FON GRAVEL TO GRAIN SAND-
		4		*	100	13	•	SATE: SAME AS ABOVE HETH LESS GRAVEL.
:	S#I	4					2	
							5	SAME: LIGHT BROWN, MEDIUM TO COURSE GRA- LIBES OF GRAMPILLY SAME, GRAMPIL TO 378 INC
		17		φ	100	45	7	SME: BROWN, MOIST, FINE TO MEDIUM GRAL
6.0		<u>a</u> .			100	- N		SAFE: BROWN, MEDIUM SRAIN SAND-
7-0 m (G.	28 14	27		100	- []	5	SHETY STLT/SMEDY CLAY: DARK BROWN, FINE SILTY SAND: BROWN, MEDIUM GRAIN SAND.
20 0		38	48	23	100	65	9	SAMEN CLAY: DANK MICHIN, MET, MEDIUM TO
		23						
LO		74,	43	71	100	יָז	7	SAVE: SREY, WET, IRON OXIDE, FINE GRAIN
		25		*	109	29	6	SILTY SMIT: SREY AND BROWN, MET, MEDIUM SMID-
24	•	 z:		y p	100	27	20	SAME: MROWN, WET, FINE TO MEDIUM GRAIN
.0								

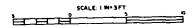
	TT84-2282										
182		\$1	A 275	•00 C			FL - 90±				
L05	*	ш	Pİ	4	-200	,	Description				
9				94	;		SMR: PULYICOLORED, NET, FOR GRAVEL TO 1/2 INCH-				
					_						
591			NP.	95	12		STLTY SAND: DARK GREY TO BLACK, NET, FIRE TO METILING GRANNING SAND, SOME CONSTIGN. HIT RIP-RAP AT 5 FT.				
	105 105 3°	162 1.05 Pc 5P	\$2 SI LOS ME LL 5P	#2 STA 275 LOS *C LL P1	\$2 STA 275+00 C LOS PE LL P! -9 5P 99	#2 STA 275400 C LOS PC LL P; -4 -200 99 94 5	92 STA 275-00 C				

INVER	T				T79-10				
1179-1	3		51	4 275	•00 C			વૃ. જા•ુ	
DEPTH	106 5P/5M	MC CL	(L	PI	4	- 200	N	DESCRIPTION	
				ø	25			SNIT/STLTY SNITE: GREY, SOME GRAVEL TO MATER ENCOUNTED AT 3.5 FEET.	
_اند									

VALUE ENGINEERING PAYS

TH83-2205

	\$1	A 290	• 0 0 E			EL- 49±
	u	PI	-	-200	1	DESCRIPTION
3	69	H	100	73		SAMEN CLAY: DARK BROWN, ASPINALT CHEPS.
•					19	SILTY SAND: LIGHT BROWN, FEW GRAVEL TO 1 INCH, MEDIUM GRAVE SAND-
_						SAVE: SAVE AS ABOVE HETH LESS GRAVEL.
•		P	100	13	4	
•					2	
					4	SAME: LIGHT BROWN, MEDIUM TO COMPSE GRAIN SAMD, 1 " LINS OF ORAMELLY SAMP, GRAMEL TO 37R IMONES."
F		Ψ	100		,	SINE: BROWN, MOIST, FINE TO MEDIUM GRAIN SAND-
,		P	100	ज		SAFE: BROWN, MEDIUM GRAIN SAND-
8	. 27	1.	186	12	i	SHOTY SILT/SHOTY CLAY: DANK BROOM, FINE GRAIN SAND- SILTY SAND: BROOM, HEDITAR GRAIN SAND-
8	48	23	100	65	4	SAMOY CLAY: DANK BROWN, NET, MEDIUM TO FINE GRAIN SAMO
₹-						
	43	71	100	ņ	,	SAME: SOEY, MEY, IRON OXIDE, FINE GRAIN-
;			100	 .*1	s	SILTY TANTO- GREY AND BROWN, WE'T, MEDIUM TO FINE GRAIN SAND.
			100	····	79	SAME - GROWN, WET, FINE TO MEDIUM GRAIN SAMO.


<u>T 79-10</u>

	57/	2/54	9 0 5			ન્. જી≵
₹	u	Pţ	-4	-200	•	Description
3		•	*	5		SAMOUSH IT SAME. REEV. SOME GRANTEL TO 1/2-INCH. GROUND-HATER ENCOUNTED AT 3.5 FEET.

TH83-2206

THB 3-22	36		ST	A 280+	0 0 L			EL- 47±
DEPTH	L06	MC	u	PĮ	4	-200	*	DESCRIPTION
	SP 1			ИP	100	29		SILTY SARD: BROWN, MOIST, GRAVEL TO 1/2 INCH. MEDIUM GRAIN SARD, & INCH ASPHALTIC CONCRETE PAYING.
3.5	0		79	9	100	53		SAPPE CLAY: BECOME, MOIST-
				MP	100	22	21	SILTY SAND: BROWN, MOIST, CLAY CLODS, NEDIUM TO FINE GRAIN SAND.
	S#			#P	100	19	12	
				ИP	100	16	5	
12.0		7		NP	100	14		
13-0	997SH	7	_	10	100	12	9	SAND/SILTY SAND: GREY AND BROWN, MED- TO FINE SHAIN SAND
15-0	Ħ,	24	32	3	100	56		SMITY SILT: TROUG TO DARK BROWN, FIRE BEASM SAND-
	591	23		HP	100	50	9	STLTY SANTS: RACHEL TO DAME MADINE, FINE GRAIN SAND-
18-0		34	40	14	100	82		SMITY SILT: DARK GREY, DREAMICS-
<u>₩ 21.</u>	o 4.							
		43						
29-0							-	
	SM	78		咿	190	71	9	SILTY SAND: GREY, WET, MEDIUM GRAIN SAND-
28-0		26					14	
30.0	a .		42	20	190	92	g	SAMITY (I, AV: SHEY TO DAMM GREY, MET-

- 1. SEE PLATE 22 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTEO AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

			ļ	├
			-	APPROVA
STREETS	REVIS	10111		
	KEAIS			
		U. S. ARMY ENGIN		a
ŀ		LOS ANGI		
1000000 17.	SANTA ANA F	RIVER MAINSTEM, CALIFE ERAL DESIGN MEMORAN	DUM	
1 1				
		ATION	-	
	LOGS O	F INVESTIGATION	13	
! }	CORP	S OF ENGINEERS		
G8000 W				
(i	STA.299	+00 TO STA.276+	00	
\	DATE			900
SCHOOL IN	APPROVED	SHIC HO. DACMOR	P)

VALUE ENGINEERING P.

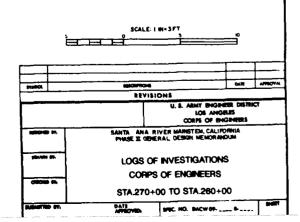
TH 83-2207

THB3-27	107		2.	TA 270	+00 R			五、454				
DEPTH	L06	MC	ц	Pţ	4	-200	N	DESCRIPTION				
								SILTY SAND: BROWN, MOIST, MEDIUM GRAIN SAND, GRAVEL TO 3/8 DROSES				
	SM	5		φ	100	16	21	NA IMARA				
4.5		8		NP	99	27	7	SAME: BROWN TO DARK BROWN, MOIST, I INCH LAVERED CLAVEY SAND, FIRE TO MEDIUM GRAIN SAND.				
6-Q	CL.	26	49	?5	100	65		SAMOY CLAY: BROWN TO DANK BROWN, MOIST, MEDIUM TO FINE SHAIN SAMO, PLASTIC-				
8 -0	SC	5	37	19	100	13	6	CLAYEY SMID: BROWN AND GREY, MOIST, MEDIUM TO COMPSE GRAIN SMID, GRAVEL TO 3/8 INCHES-				
<u> </u>		9		1P	98	19		STETY SAND: "MYNN, MOIST, MENUM GRAIN SAND, CLAY CLODE				
	SM							SAME: NO CLAY				
2.0		5		•	99	13						
	SMSM	5		₩.	100	12		SAND/STLTY SAND: SAVE AS ABOVE-				
4-0		13	27		99	48		STLTY SAND: DANK PROMI, HOIST TO WET, CONESIVE-				
	211	8		HP.	99	14	5	SAME: LIGHT SHOWN, MOIST, MON-CONESIVE.				
7-0							,					
• •	SP/SM	16		•	130	,		SMIN/SILTY SMID: BROWN, WET, MEDIUM TO COARSE GRAINED SMID.				
9-0		36	45	18	100	76	3	SANDY STLT: GARRY, MET, PLASTIC, ADDED DRILLING MUD TO REQUIDE CAVING.				
	٨.	 34	34	8	100	97	,	STLT: TROOP AND GREY, SAME AS ABOVE-				
				-		-						
5.0	ক্সমূ	29		-	191	10		SMIT/SILTY SMIT: SREY, FINE GRAINED SAND, NON-CONESTVE-				
	CH	53	50	23	100	91	3	CLAY: SREY, PLASTIC.				
8.0	- 51	77	য়		100	- 57	10	SILTY SAME: BROWN, CONES PVE				

TH 83-2208

THB3-221	08		5	TA 270)+00 L			EL. 45±
DEPTH	LOG	ΝC	Ц	PI	-4	-200	*	DESCRIPTION
-			_					STLTY SAME: RICHMI, MOIST, CLINY DUTIES, MEDI-
		5		Ψ	100	91		
	SM	8					12	
9-0		10		φ	100	43	۵	SAME: BROWN, MOIST, FINE GRAIN SAND.
12-0	α	11	39	3	100	52	8	SAMPY CLAY: BROWN, MOIST, FEWE GRAIN SAMO. CLODS.
	SM	ų		φ	ln.	27	4	SILTY SAYD: BROWN, MOIST, MEDIUM TO FINE GR SOME CLAY OLOOS-
5.0	r.	27		40	130	74		SMITHY STLT: SAME AS ABOVE.
6.5 Z.0 8.0	(년 92/5년	7 <u>q</u> 75	50_	25	100	87	9	CANTO TAY: ROME, MOIST, IRON ONITE, ORGAN
<u> </u>		48_						ELAY: ROOM AND GREY, WET, MEDIUM GRAIN SAN
N 50 0		41	4?	27	in	85	8	SAME: GREY, MET, ORGANICS
		79					7	
	n							
		29	45	32	190	43	à	SAMTY CLAY: GREY, WET-
		76	34	;,) (In	55	10	SATE: PROME AND GREY-
u-D								

UE ENGINEERING PAYS


TH 83-2208

0 L			FL- 45\$
4	-200	*	PESCRIPTION
			STETY SAMP. ROOM, MOIST, CLAY CLODS, MEDIUM GRAIN SAND,
100	v		
		:'	
00.1		э	SAPE RROWN, MOIST, FINE GRAIN SAND-
nn	57	;	SAMPLY (LAY BROWN, MOIST, FINE GRAIN SAMO, SOME CLAY 2,005.
	••		CLT SMT): PROM, MOIST, MEDIUM TO FINE GRAIN SAND, 599F CLM CLODS-
JD	74	q.	CHINY STITE AS MOVE-
-		7	CHANGE TO SHE AS MOUNTE, CHECKELLE.
			CAY ROOM MY GREY, MET, MEDIUM GRAIN SAND-
m	45	,	CAME SHEV, HET, ORNANICS-
		,	
10	4.	٠	SAMETY CLAY - FIREY, MET-
	<u>-</u>		
199	44		SATE PRODUCED SPEY.

TH 83-2209

THB3-22	109		ST	A 2604	6 0 L			न्. १ 4±				
DEPTH	LNG	MC	U,	ΡĮ	-4	-200	×	TRESCRIPTION				
		6		No	gŧ	14		SILTY SAMD: RROWN, DRY TO MOIST, MEDIUM GRAIN SAMD, OCCURRENCE OF JAMES JAMOS STATEMENT OF THE STATEMENT OF THE SAME OF THE SA				
	SM	10		160	100	16		SAME: LESS FINES, FEM CLUMPS OF COMESTVE MATERIAL-				
5-0	SH/SM	•		IIP	37	11	21 9	SAND/SILTY SAND: BROWN AND GREY, MEDIUM GRAIM SAND-				
3.0	n,		٠,	13	100	55		SAMMY CLAY: BROWN, WET, LAVING OCCUPRED-				
13-0												
15-0	۳.	32		40	100	87	5	SILT: MRYMM, WET, METILM GRAIN SAME.				
	a.	39	43	18	100	87		CLAY: BROWN, WET, MEDIUM SPAIN SAMO, SIME PLASTICITY				
18-0	a			Ψ	100	19		SILTY SMID: PROMI, NET, MEDIUM GRAIM SMID, GRAVEL TO 3 INCHES-				
<u>20-0</u> 21-0	T.			- NP	רוין"	74	6	SAMIN SILT: FREY, NET, TRACE OF IRON OKIDE-				
	n.	31	42	ייץ	100	54		SAMPLY (LAY: SAME AS APOVE)				
25.5	571			wp	100	75	11	SILTY SAYD: BROWN, WE'T, WITHIN THAIN SAYD.				
	ď	42	24	18	100	92		CLAY: GREY, MET, TOACE OF IRON CIXINE-				
29 .0	٦.	3C		₩	100	79	11	SAMITY STUT: PROMIL, GREY, FIME GRAIN SAND-				
1.0												

- I SEE PLATE 22 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAMITED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

VALUE ENGINEERING PA

GC 71-3

		1					_		TE V	
URF	KE C	LEVAT	ION	DR	VIN	G W			<u>ь, зо</u>	
WATER	Fight auger and hollow stem auger 4 inch diameter DESCRIPTION DESCRIPTION				C.S.C.S	PENE RESST BLOWS/TSOT	CCRE O	ORY DENSITY pef	MOISTURE CONTENT %	RELATIVE
	•	111	SILTY SUD. SM. brown, fine to medical grained, moist, loose, saturated at we feet.	- 59		6	0		18.5	
4	- 5		SILTY CLAY, Cl., brown, valurated soft. Interfeeded both CLAYFY SILD, 11, brown,	-	_	1	Q	-	35.0	-
			saturated, wift, traces of decord: rootlets.	11	i.		} }			
_	10-		saud (P. brown, Fine praised, saturated, loose, medicions	 -	r	٩	ര	1	36.2	1
	-		SILTY clay; cl; brown to kray, ser, section or of the terrebodo, sort clay; SILTY ", Sorurated, sort.		:: \		(3)	-	-	
	-15	111	SATE to began bet, a con terminate with the control with the training gray, set, solice a new, and the control	=			9	-	33.	
	-50-		SAND SC. Top, to dain crasmin, saturass I, teder Sc. se	1 1 1 1 1	5.9	:	-			
	5	-		1		! ~		-		
	30	<u> </u>				:		-		

5	URF	cc c	LEVAT	104
	WATER	ODEPTH FEET	GRAFHIC SYPBOL	2016
	-	- 5 -		1/1
	4			<u> </u>
	-			<u> </u>
		15		
	-	-20	1	1
			- - -	
	 -	-		1
	_			

GC 71-6

BORING No 1 STATION 30 STATION 30 STATION 30	36 WO 22-154 ORB L DATE 3/3/71 SERVING WEIGHT 3/4 15 20 15.
Rotaty wash boring; 4 th and 16" burnet DESCRIPTION	GROUP FIREC. U.S. S. S. S. S. S. S. S. S. S. S. S. S.
HAT THE CASE SEA TO AND SEA AN	and turn to conditions defined a
HAN DO NOT BE MADE TO A	Disch work,
Sept. My Ca Record. Sept. My Ca Record. The lawer of Sill M.	and two graphs d
20	1 3
Sign Clay Ct. brownish soft to modium stiff Sign; SP, light brown, se	firm to coarse,
-25 will me, vir dense. Addressing writis under	

GC 71-7

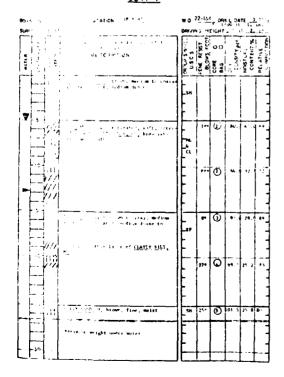
	IG No.		STATION 18							
SURF	SURFACE ELEVATION 3									
WATER	ООЕРТН РЕЕТ	SYMBOL SYMBOL	Retary was a constant of the age of the constant of the consta							
	t°1	11.1	SILTE OF STATE OF THE STATE							
1	$\overline{}$		gtaife							
4		111								
	Ы	1//	\$1 <u>1.7</u> 10							
		7.77 [[[] 7.77	realist with 1987							
ļ	Ł., I	111	}							
1,	۲'°	Ш								
-										
-	113-	1	\$550 gr up 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5							
			Short and the state of the first term of the first term of the state o							
1	-	V///	General at the fact of the party of the							
F	-20-	lin	<u>"</u> .							
1	<u></u>	111	ł							
ì	} —		1							
1	-	1	}							
1			j							
-	1.50	}	SHITE AND S. Brown, 1500, No. 1							
Į	-	litt								
_	T-	1	1							
- (F	ł	Metaling with more with							
1	}	1	1							
E	-30	Ŀ	<u></u>							

LUE ENGINEERING PAYS

10 22-164 DRILL DATE 1 - 12

PENEL RESET TO CHARLES

का छ।


GC 71-4

		4	STATION 19 + 83		22-16 WG W				
WATER	O DEPTH FEET	GRAPHIC STREOL	Return cash boring, 4 their diameter DESCRIPTION 40' W (sever	CHOUP SYNACL	PENE RESIST.	CORE O	DRY CENSITY act	MC:STURE CONTENT %	RELATIVE
			SACTY Sitt, ML, brown, moist, soft,	- M	,	0	98.0	18.2	-
4	-,-		SAND, SE, light brown, course to measure, seturated, loose.	- ,	,				-
_	-10-		Situating a mortal Ct. and SAND, SP. antecknoted, well film	- K	ł	อ	81.5	36.6	70
	- 15 -		SSAN_of, (with blown to brien, fine to read a coursed were those to very dense.	-	1-	v	ذ, د	عد	-
-	-29-			عدالمه	د. ا	0	<u></u>		44_
			And the factor of the state of	- 5		<u>ම</u>	,o.	-	-
	-'>			-	-		-		

GC 71-5

BORN	NG No	. 3	STATION_25 + 64	w.c	. 27	2-16-	C DR	LL DA	TE 3/	5/71
SURF	ACE E	LEVAT	TION3?	DRI	VIK	6 W	EIGHT	140	16. M	Oic.
WATER	O DEPTH FEET	CHAPHIC	Kotary with boring, 4 (neh diameter. DESCRIPTION 10' E L. <euer< th=""><th>GROUP STANSOL</th><th>U.S.C.S.</th><th>BLOWS/FOOT</th><th>CORE O</th><th>ORY CENSITY pet</th><th>MOIST URE CONTENT %</th><th>RELATIVE CUMPACTION</th></euer<>	GROUP STANSOL	U.S.C.S.	BLOWS/FOOT	CORE O	ORY CENSITY pet	MOIST URE CONTENT %	RELATIVE CUMPACTION
V			hdfft (NY), SM, troon, woding practice, locally unite, more, acting dense; locally unite sum of medium triff clay at 21.	t	.4	12)	-	16.	, -
-	5 -		Story SLAV: Cl; brown, wet, soft; theories and with 1781 SAME \$P; attended, loose.	Γ.	IL IP	8	0			
A	-10-	別別		1 - 1 - 1	-	4	0		Ţ	
	-15 -		SHITE of Ct. starishedreen, wet.	1		7	O	 	37.	4
	-50		The I give, time telledism pointed, scienter water drive, scattered grave		i P	23	ઉ	-		-
,	-17-		∑ 7	الما	-	- 3	0		5	
 	-30-			-			_	ļ		-

GC 71-7

- I SEE PLATE 22 FOR TEST SITE LOCATIONS
- 2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE

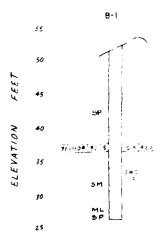
STWECK			BAR	APPROVAL
	REVI	SIONS		
		U. S. AMY BYGHER LOS ANGELES CORPS OF BYGH	3	π
8000749 BY.	SANTA ANA PHASE II GE	RIVER MAINSTEM, CALIFORN MERAL DESIGN MEMORANDUR	HA d	
MANUAL DI.	LOGS	OF INVESTIGATION		
		BY OTHERS		
0000 P.	STA.3	25+00 TO STA.260+0	00	
9/20/F/10 6V.	DATE	\$FEC. NO. DISCWOF	-	SHORT!
		CHESTON SELVE		

VALUE ENGINEERING PAY

GC71-8

	NG No		STATION 46 + 31	W.O.	WG W	4 pr	500	18.20	
MATER	DEPTH FEET	GRAPHIC SYMBOL	Potary wash boring: 4 inch diameter a-d 18" bucket auger. DESCRIPTION 100' U E sever	GROUP STABOL	PENE. RESST.	CORE 0	DENSITY pet	MOISTURE CONTENT %	COMPACTION
▼	5 -	主 学生 "三"	SILT SAMP, SN brown, fine to medium grained, mairt, medium dende. Thirty interhedded layers of very fine SAMP; SF; and SILT; ML;		1	0	ورو	27_1	
A	-10-		SANT N.T. M. pray, saturated, soft to firm, nucrebodied with SAND, SF, Bray brown, saturated, loos.		P*	3	95.2	<u>14u</u>	-
	15 -	11			Pa	O	78.4	4,5	1
	-zo-		SILTY FIDE SAME, ME. Light brown, saturable ordina dense to dinne.	- %	22	9	65.0	29-1	
-	-30		Control of the state of the sta	, sc		O	RE.S	-	

GC71-9


	IG No		STATION 52 + 28	W.O.	72-16-	- 06	44.08° 500.	16. ¹ /	6/71 7 15.
WATER	O DEPTH FEET	GRAFHIC SYMBOL	Rotary wash boring: 4 inch diameter and 16" bucket auger DESCRIPTION	GROUP SWIBC.		SAG CORE		MOISTURE CONTENT %	RELATIVE
₹	- 5	ni m	SILTY SAND: 31 brown, coarse to fine grained, wet, loose to medium dense; eathersted at 2.2.	7	Pas	1	-		1 1 1
	10-	111 111		r 	16*	Œ	06.3	29.0	95
1	-15 -	in u				ව	,		
			SILTY CLEY, Cl.; grayesh-brown, moter, ecft.	- -	6.	0	103.	27.0	8e _
	-20-	的证此	SHIR Style See light from, fire grained, set, seeding dense to dense. Thin layer of CLATTY fit 5 Mg, at 13.15	- 54	9-	0	108	24	85
	-25-	Ű	*driving wright midra water.		16.	Ø	iir.	21.	,,-
	-30-			IE_		<u>_</u>		-	

SUFFF	IG NO ACE E	LEVAT	STATE
WATER	ODEPTH FEET	GRAPHIC SYMBOL	Rotary was bern and 16" binket DESCR
	F-	111	STITE SATE
١		111	
V,	- 5 -	111	Saturate 1 :t
	<u> </u>		
	-10-		SAND THE CONTRACT
~	_		
_	13-		
	-20-		
		罹	int to add the
		///	
	-25-	7/7	1868, 1877 B
	30.		
	<u> </u>		<u></u>

GC71 - 12

URFAFF	ELEVAT	ICH LEE	0	WEV)	46 A	EIGHT	1700 1700 1804	۱۰. ۱ الــطن	-10
OCEPTH FEET	ST7:BOL	RUDIN WISH HOTIME, - Inch disector and it unch business and it unch business of the Communication of the Communica		JSC 8.	FENE. RESST BLOWS, FOOT	COME	DRY DENSITY act	ACISTURE CONTENT%	RELATIVE
P		Sitty of 18, brown, medium to conreg grand miss, modium sange, interbridded with high brown, wer, firm.		\$# 4					
- !:	iji iji			·	1	Ō		44,0	
10		SAN'S . U. lines, sat rete , soft.		CL.	3	(i)		41.8	
- 15		The tree to great a sette red matter einer, there of organities		- SH -		<u> </u>			
].]	<u>いたこう</u> light brown, medium gratered, entiretion, entire dense.		. 57	•	0.			
		reduction fit dark provincest, roft, toft, the stay and sally that the stay at a stay at the stay at t		,CI.	- 5	O		irī.	
75			-		11	<u>o</u>		25.1	-
30	1			. !					

OC 71-1

io	
45	'71-1101 ' \$
40	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
15	

0C715

ELEVATION

10:

S¢

ALUE ENGINEERING PAYS

0. 22-164 DREAL SATE 3/4-71 PRIVING WEIGHT 1 15, 20 10.

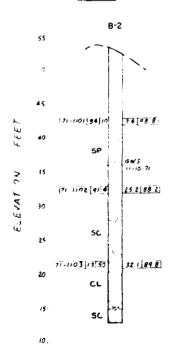
G

C

: 4 922

PENE, RESST.

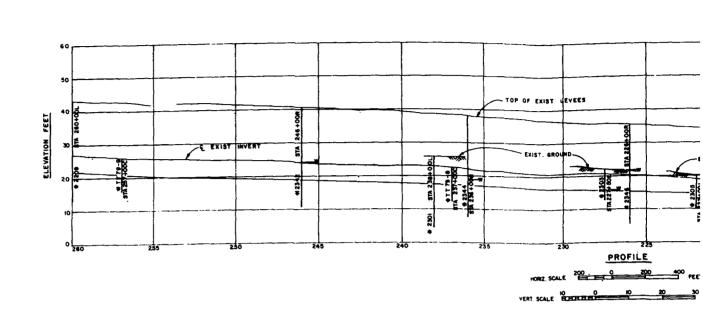
RICUS/COOT OF COME OF SAGE OF SA

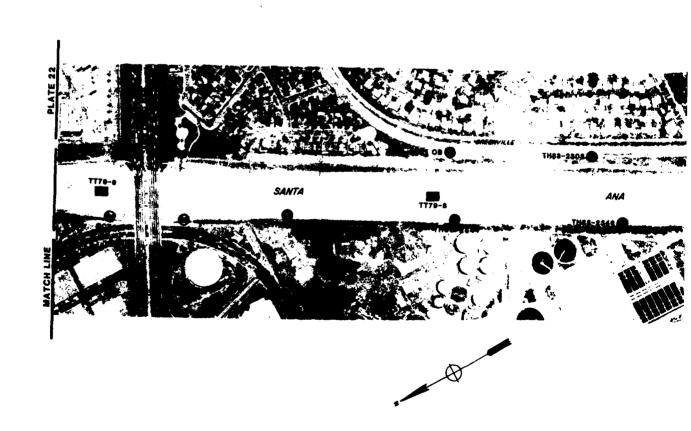

GC71-10

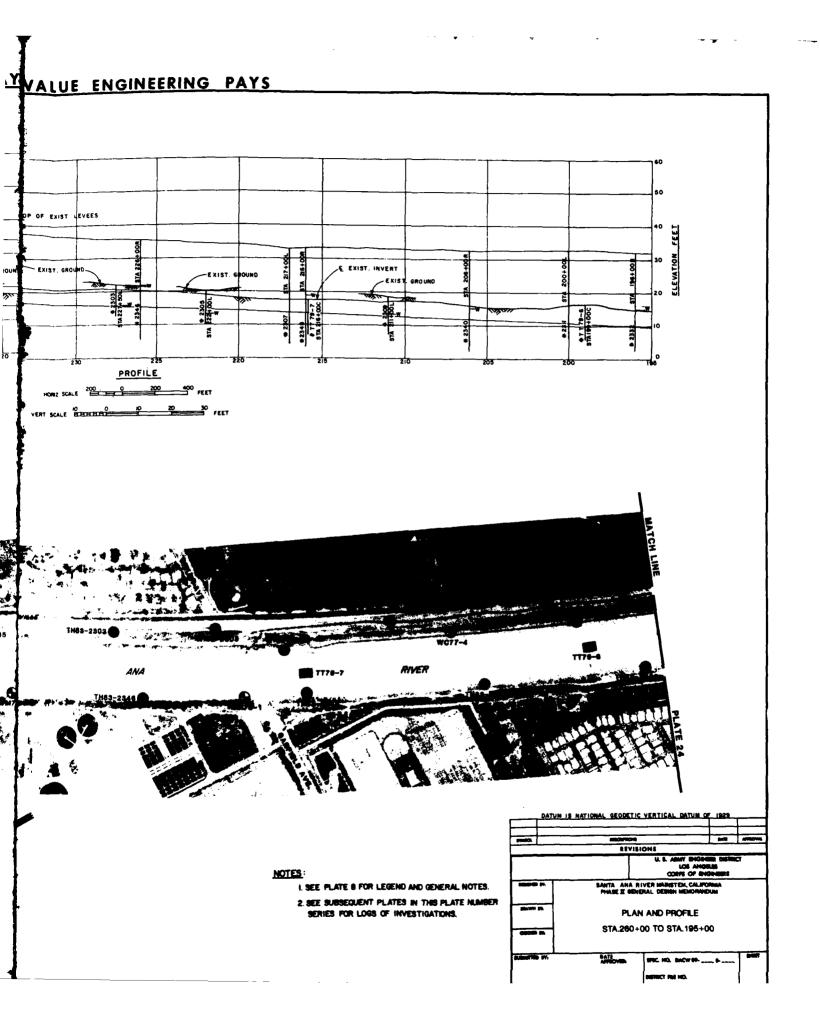
BORIA SURF	IG No	LEVAT	STATION 58 + 28	W.O.	22-16 4G W	EIGHT	140	TF-3/ 16. 3	4/11 2 1: 0 16
WATER	ODEPTH FEET	GRAFHIC SYMBOL	Rotary wan boring, 4 inch diameter and 16" bucket auger OESCRIPTION	PROUP STABCL U.S.C.S		CORE 0		MOISTURE CONTENT %	7
4))) }	\$1177 SAT') SAT; brown sendrum to custee grain(), solid, lung*	SH	*				
	- 3 -					0	50.	23.3	, T
-	-10-		SARD SP. Brayesh brown, fire ground, waturered, loose to address dense.	SP	*	G	-		
	-13-				11	0			
	-23-	17711	STAN CLAY, Co., gray, well rofe; trained a wate. Stany 1 (** 50%). St., gray, interated, making to ye.	- 1 5 4 E	A	0			-
	5	(i) (2.2)	Section (1) The section of the secti			ত	-	-	-
_	_10_			E				_	

GC71-11

	IG No		STATION 64 + 28	W.O.	22-16	4_ DR	140	1 F.→	3/5/7 2 1m. 0 in.
WATER	DEPTH FEET	SYNBOL	Rotary work boring: 4 such diameter DESCRIPTION	JOENE STATE	15 6		SITY oct	1 1	RELATIVE
₹	- 5 -		SILIT SAID So: brown, redium to custae grained, noist, medium dense; interpedde SILI; mi; gaysish -brown, wet, firm, Saturated at 3.0°	- SM - ML	p.	0	100.	5 17.	
-	-10-		SAND; SP, light brown, fine to coara- grained, saturated, medium dense.	5.	10	O	-	-	-
	-15 -		SILTY CLAY, CL; SILTY SAND, SS; CLAYEY SAND; SC; Interbedded, wee, soft.	CL 4 54 50		0	Ę.	Lb."	-
			SILTY CLAY, Cl.; yellowish gray, wer; wedium stiff, see the stiff Source, brown, saturated, medium dense. CLAY Transpose; gray to black, wet, looks.	[-	11	0		24.	-
	-25				,	3	-	35.6	


OC71-2




- NOTES:
 1. SEE PLATE 22 FOR TEST SITE LOCATIONS.
- 2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE.

REVISIONS U. S. ARMY ENGRAGER DISTRICT LOS ANGELES CORPS OF ENGINEERS SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE IZ GENERAL DESIGN MEMORANDUM LOGS OF INVESTIGATION BY OTHERS STA.325+00 TO STA.260+00 SPEC. NO. DACW 09- 8-

VALUE ENGINEERING

VALUE ENGINEERING

TH83-2342

₹₹		SI	A 257	00 C			TT 79-9 E. 26t
LOG	MC	ц	PI	4	-200	-	BESCRIPTION
							SILTY SNID: GREY, DRY-
24	3			89	2		
	34			Q4			SAND: GREY, MOLST-
9							
-							
	125			96	4		
	LOG	LOG PC	SI 5	STA 25/4 LOG PC LL P1 SM 5	STA 257-00 C LOG	STA 257-400 C LOG MC LL P1 -4 -200 SM 5 89 2 14 99 3 SP	STA 257400 C LOG

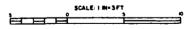
EL- 41±		+00 R	7A 246	2		342	TH83-2
BESCRIPT	-200	4	PÌ	u	MC	UNG	DEPTH
SILTY SAMD: PROMI, MOIST, MET TO I INCH-	 13	94	*		8		
	71	98	•0		15		
	14	89	•		6	94	
SAPE: BROWN, HEDIUM GRAINED-	v	98	10		9		
SAFE: LIGHT TO DARK BROWN-	24	78	4	27	5		
			_				12.0
SMM/SILTY SMM: LIGHT BROWS TO I THOM-							
	4	99	MD.		12	Φ\2 4	
							N 16
CANDY CLAY: RACHEL, MET, COMP.	75	100	17	41	33	a.	9-0
SMIT: SPRY, WET-							
	٩	100			19	26	
							2.5
SAMP/SI!,TY SAMB: PROM. MET,	5	190	₩		27	SP/SM	
			_				5.5
SMIT STUTE FREY, WET, COMES	65	100		35	18	٦	5-5
STUTY SMITH: MINIMA, MET, COME	47	100	रह	55	57	ŞI	7.5
SARD: SARTY, MET-	4	1.00			47	20	
							0.0

								TH83-2344
THB3-23	A4			STA 23	5+00 R			EL- 38#
DEPTH .	LN6	MC.	u	PI	-4	-200	1	DESCRIPTION
	59	11		¥	98	19		SILTY SAND: BROWN, MOIST, FINE GRAINED, NON-CONESTVE-
5.0		9		*	100	24	27	
							20	SANT: 1, IGHT BROWN, MEDIUM GRAINED.
	ዎ	2			39	•		
9.5							29	
		3		*	98	s		SMED/STUTY SMED: 1,1947 RECORD, HEDGUM GRAINED.
	20/3H	3		*	38	5	25	
		н		•	100	8	14	
2.0								
W ,19 <u>.0</u>		20			100	٠	*0	SAND: LIGHT MOON, WET, MEDIUM GRAINED-
	9						8	
		20			100	3	9	
		1,8			99			
.a	a	¢1	45	19	100	86	7	CLAY: DANK MILEY, CHEMIC SPELL, CONESTON-
1.5	99	8			100			SARD: LIGHT OREY, FIRE TO HEDIUM GRAINED.
<u></u>						<u> </u>		Cian act, the rolled division

INVE	RT					1	T79	9-8
1179-8			٠,	14 237	+00 €			 FL. γ
DEPTH	Luc.	PC	u	P۱	4	-200	*	PESCRI
	9P/9#	3		¥	90	8		SAMIL/STLEY SAMIN: GREY, HOT
4.0	 -				10n			SMID: SREY, MOIST.
	Sp.							
		16			95	ı		
0-0	·							

ALUE ENGINEERING PAYS

TH83-2342


	\$1	A 246	00 R		£L. 412
	ш	PĮ	-4	-200	DESCRIPTION
_		иp	ng.	13	 SILTY SAMD: RHOM, MOIST, MEDIUM TO FINE GRAINED GRAVEL TO I INCH.
,		•	78	ગ	
,		•	39	14	
		•	98	V	SAFE: BROWN, MEDIUM GRAINED-
1	77		98	74	SAPE: LIGHT TO DARK BROWN-
_		_	99		SAMPL/SILTY SAMP: LIGHT BRYON, MEDIUM GRAINED, FON GRAVEL TO 1 INCH.
-	.				
	41	17	100	75	SAMBY (LAY: RACHA), MET, COMPSIVE.
)			100	ů	SMD: SPRY, WET-
		Ψ.	190	ς	SAMP/ST:TY SMID: PROM, NET, MEDIUM GRAIMED-
١.	35		190	85	COMIN SILT: FREY, MET, COMESTME-
-	55	75	107	47	STUTY SMITH; MACHINE, MET, CONESIVE-
-			ומיו	1	C學D: GREY, MET-

EXIS		GRO					THE	34-2301
TH84-23				A 238	-00 L			EL. 26*
DEPTH	L06	MC	ш	PI	-4	-200	N	DESCRIPTION
	SM	,		ЖP	37	3		SILTY SAND: BROWN, MOIST, LOOSE, FINE GRAINED SAND-
3.0					_		11	
	SP				99	4		SAMT: BROWN, MOIST, LOOSE, FIME GRAINED SAMD-
6.0							3	
	ΝL	34		10	100	62		SAMDY SILT: DARK BROWN, MOIST TO WET, LOOSE, FINE GRAINED SAMD, SOME COMESSON.
9-0							5	
		33		ĦР	100	47		SILTY SAND: DARK GREY, WET, LOOSE, FINE GRAINED SAND, SOME COMESION.
	S *1	_					3	
				₩.	99	27		SAPE: BLACK, OMGANICS-
15-0								
	α		41	24	100	<i>7</i> 5		SANDY CLAY: DARK GREY, MOIST TO WET, STIFF TO SOFT, SOM ORGANICS.
18.0								
	CH		51	25	100	75		SAMBY CLAY: LIGHT GREEN, MOIST TO WET, STIFF TO SOFT, SOME GRAVEL.
21.3								

TT79-8

				_			
	*	A 237	00 C			FL. 772	
•	U.L	ÞĮ	-4	วาก	4	PESCRIPTION	
		*	90	3		SAMPL/SILTY SAMPI: GREY, MOIST-	
						SARTY SREY, MOIST-	
			19r	,			
			ŗ	:			

HB3-23	J3		\$1	A 227	-50 L			FL. 27t
ÆPT#	L06	r	ιL	PĮ	-4	-200	4	DESCRIPTION
		ß		₩	100	25		SILTY SAND: "ROWN, MOIST-
3.0	-	21		ΝР	1-10	24	8	SAIE: GREY, MOIST, CAVING-
4.5	'n	3)	5-9	13	100	58		SILT: Moist, conesive-
		30		Мo	130	10	ó	SAND SILTY STATE THEY, MOIST, FINE GRAINED.
W 85	SP/5#	25		¥Ρ	100	q	4	

- I SEE PLATE 23 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

SYMBOL	• • • • • • • • • • • • • • • • • • •		BATE	AFFECYAL
-	REVI	SIONS		
		U. S. ARMY ENGINEE LOS ANGEL CORPS OF ENGI	15	đ
10000-00-07:	SANTA ANA PHASE II GE	RIVER MAINSTEM, CALIFOR MERAL DESIGN MEMORANDU	NIA Re	
SRAWN ST.	LOGS	OF INVESTIGATIONS		
	CORP	S OF ENGINEERS		
GROSS 6s.	STA.257	-00 TO STA.227+50		
MANIFED BY:	OATE ATTIOVED	SPEC. HO. BACWOP.		94007
				l l

VALUE ENGINEERING

TH 83 2346

TH 83-2	346		ST	A 220	5+00 R			£. 36t
DEPTH	1.06	MC	u.	Pī	4	-200	-	Description
	98	8		*	99	ע		SILTY SAND: Brown, MOIST, MON COMESTIVE.
4-0				-	100	7	. 34	
-	S#/S#	6		1P	99	12	10	SAND/SILTY SAND: GREY, MOIST, FINE TO MEDIUM GRAIMED-
7.0	SH	6		₽	100	13	. 22	SILTY SAND: BROWN, MOIST, FINE TO MEDIUM GRAINED.
0.0	2M/2M	9		*	93	12	u	SAMP/SILTY SAMP: BROWN, MOIST, FINE TO MEDIUM GRAINED GRAVEL TO 1 INCH-
3.0 V 15.0		7		19	99	11	10	SANTA/STLTY SANTA: GREY, WET, MEDIUM GRAINED,
	•	26		IP	100	6		
		29		₩	100	5	12	
	SP/SH	_					9	
		24		₩	100	5	372	
				IP	100	5	17	
1-0							15	

TH 83 2346

TH83-2	348			TA 21	6 +00 R			EL. 332		
DEPTH	L06	r(C	u	PĮ	4	-200		PESCRIPTION		
								SILTY SAND: LIGHT BROWN, FINE GRAINED, NON-CONESIVE-		
	94	9		#P	99	79	61			
7.0		र		- PF	197	15	21			
		6		MP	99	12	12	SANTASTETY SANTA: LIGHT BROWN, FIRE BRAINED, HOW-COMESTVE		
	92/94	-			94	,				
3.5					- XB		5			
14.	31		_	_P)(1)	_ A .		SILLY SUP: BOOK, CONSINE.		
7.p	39/59	22		۳	99	9	8	SAMO/SILTY SAMO: LIGHT BROWN, MEDIUM GRAINED, NON-CONESINE.		
<u>/</u>		42	53	9	100	66	5	SANDY SILT: Brown, coverive.		
La_		33	33	,	190	61	n			
5.a	Q.	44	37	14	100	70	**	SARRY CLAY: BROWN-PRRY, DRAWISC, CONESTVE-		
	7	u	3	-	100	1		SIN A THE ROOM PLANTS.		
1	7/1	1	_	1		7		AND THE PARTY OF THE PARTY.		
5.0	a	77	×	11	100	-6		SMAN CLAY: MARY, COMESTVE.		
	97	28		•	100	13	16	STLTY SAITH: BROWN, PROTUR WATER		
.0										

TH 83 2305

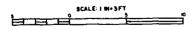
TH83-23	05		2.	TA 222	+00 L			EL- 20±
DEPTH	L06	N,	tĻ	Pl	-4	-200	H	DESCRIPTION
2.5	54	В		180	96	34		SILTY SAND: BROWN, HOIST, FINE GR
4.0	cī	28	41	21	130	71	51	SANDY CLAY: BROWN, DENSE, COMESTA
		15		#	100	31	7	SILTY SAND: GREY, WET, FINE GRAIN
W 7 5	SM							
		23		ię	97	21	4	
10-0 10-5	2007	3		P	100			SHE SILIY SAND: GREY, MET, CAVIS

7-14-7			5	14 21 5	+ 0 0 (EL- 18±
DEPTH	L06	40	U.	PĮ	4	-200	N	DESCRIPTION
	94	,		ø	9 1	13		SILTY SAND: GREY, MOIST, FISH CI
4.Q.	 SP	n			100	2		SAND: APEY, MOIST-
	Ĩ	16			99	2		
10-0								

LUE ENGINEERING PAYS

TH 83 2305

ST	ā 222+	eja i			EL. 70#							
L	21	-;	-24	4	DESCRIPTION							
 ;	*	*	ţ ₄		SILTY SAND: SROWN, MOIST, FINE GRAINED, SOME GRAVEL-							
	21	.)	71	"1	SWOY CLAY: BROWN, DENSE, COMESTVE-							
_	N/P	, y:	п		SILTS SAND: GREY, MET, FINE GRAIMED-							
ß	¥)*	21	4								
-	NP.				CANDIAGILITY SATURE GREY, MET, CAYLOY.							


TT 79-7

ŞΪ	A 215•	no c			EL- 181								
.4	Pj	-4	-200	4	DESCRIPTION								
	Ψ	a !	; τ		SHIP SAME: GMEY, MOLST, PMH COMBLES TO 12-IMCH-								
		. m	· · · · · · · · · · · · · · · · · · ·		SAND. GREY, MOIST-								
		19	2										

TH83-2307

H83-23	07		ST	A 217	90 L			EL- 18±
EPTH	LOG	MC	u	Pi	4	-200	Ħ	DESCRIPTION
	94	,		MP	94	19		SILTY SAID: BROWN, MOIST, NON-CONESIVE, MEDIUM TO FINE GRAINED-
		7		WP	98	21		
4.0 5.0	SV/SH	5		₩.	92	12		SMID/STLTY SMIT: SAME, GRAVEL TO 2 INCHES.
		9	19	3	100	29	16	SILTY SMIT: PROM, MOIST, SOME COMESTON, FINE GRAINED-
		8		IP.	100	42		
	SM						24	
		10		ЖP	100	14		
13-0 14-0		6		NP.	95	20	21	
	SC	16	ठ	8	100	41		CLAYEY SAMM; MARK RROWN, COMESTIVE.
		7		160	97	15		SILTY SAND: BROWN, MOIST, NOW-CONESIVE, GRAVEL TO 3 INCHES-
		14	70	3	100	33		
	SPI	13		w.	100	34	16	SME: GREY, MOIST, ORGANIC SMELL-
1.0		15		10	100	71	22	
2.0	37/31	22		1	100		Lr.	SMID/SILTY SMID: BROWN-
23.0	SPI	23	30	2	100	49		SILTY SAMD: GREY, WET-
9-0		33		P	100	46	5	
	2C	39	41	v	100	46		CLAYEY SAND: GREY, WET, CONESTVE-
27.0							5	
	4	41		110	100	50		SAMOY CLAY: SAME AS ABOVE-
29.0							5	

- I SEE PLATE FOR LOCATION OF TEST HOLES AND TEST TRENCHES.
- 2. SEE PLATE FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3. SEE TABLE FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTEO AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

FTNeCA .	MC19104	DATE APPROVA							
	REVISIONS								
		MANY ENGINEER DISTRICT LOS ANGELES ORPS OF ENGINEERS							
1000 Pr.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM								
BOATON DA	LOGS OF INVESTIGATIONS CORPS OF ENGINEERS								
STA.226+00 TO STA.216+00									
BURNITYRD BY:	DATE APPROVED MEC. NO.	DACW 09 8							
l	ļ								

VALUE ENGINEERING F

Πŧ	93	_ 23	^^

EXIST 1183-23		GR	INUC S	_	+00 L		_	EL. 19±		
DEPTH	L06	NC.	u	PI	-4	-200	N	Description .		
	SM	15		NP	97	36		SILTY SAND: Brown, MOIST, MON-COMESTVE.		
							30			
5.0		14		165	100	29				
6.5	n.	34	42	15	190	76	В	SAMELY STELT: GREY, MOIST, COHESIVE-		
8.0										
	SM	30		MP	100	16	3	SILTY SAND: GREY, WET, MON-COMESIVE.		
1:0	u	31	亚	19	190	93	3	SAKIY (LAY: GREY-		

TH83-2332

33-233	2		5	TA 19	6+00 R			EL- 32±
тн	106	ж	u	ÞĮ	-4	-200	H	DESCRIPTION
		9		W	99	30		STLTY SAND: BROWN, MOIST, NON-CONESIVE-
	SM	5		NP.	100	22	31	
-				TP	100	Z		
								SILT: DANK BROWN, FDIST, COMPSIVE.
L	54	6		₩	99	16	15	STLTY SAME: BROWN, MOIST, MON-COMESTYE-
		3		₩	99	6		SAND/SILTY SAND; LIGHT BROWN, HON-COMESTIVE.
							10	
5	P/SM	4		MP	100	8		
		_					9	
		4		#	93	8		SAFE: GREY-
							8	
	SPI	26			99	26	•	SILTY SAND: BROWN, WET, LITTLE COMESTON-
.0	1			P	100	- 55		SMIT SILT: MON. NET. CONTRIVE:
		24		•	190	6	8	SAMB/STLTY SAMD: GMEY, MON-CONESTVE-
2	P/S#	24						SME: Brownery, non-onestive.
		4		•	199	,	9	
	T.	40		P	100	55		SMOY STITE MORE, CONSIDER
	W	50	53	23	100	71		SHOY YILT: SHEY, CONESTVE.
	OI.	10	51	74	190	69 -		SMAN CLAY: BROWN, COVESTIVE.
		53			100	<u>p</u>		SAMPY SILT: FINEY, MON-CONESTIVE.
	A.	40		P	100	60	6	ALTERNATION STATES AND STATES
		r	33		100	80		

TH83-2340

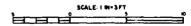
NOT 334 0						1H83-2340				
TH83-2340			TA 20	15+00 R			EL. 34±			
DEPTH LOS	MC	ш	PI	4	-200	*	DESCRIPTION			
							STLTY SAID: Brown, MOIST, HON-COHEST			
	14		Ψ	99	?4	44				
	ıΤ		P	100	19	25				
34	39		#	100	20		SAFE: LIGHT BROWN, LAVERED WITH DARKS			
	11		WP	99	19	8				
2.0 2.5 9 79	7		*	100	44	٠	CHRET W CHA			
3.0	4			100	<u>\$0</u>	8	SULTY SAND: LIGHT MICHAEL, FINE SE SILTY SAND: LIGHT MICHAEL.			
59/59 5:0.	27		φ	100	10	9	SMED/STLTY SMED: LIGHT PRODUCT MEDIUM 1			
	23		4P	100	36		STLTY SAND: DANK BROWN-			
<u>19-0</u> 94	34		₩	100	27		SME: Retion, NON-COMESTVE-			
.5	79	23	5	100	47					
M	ш	n	53	190	58		SAPPY SILT: PROWN, COMESTVE-			
<u>.5</u> 54	25		ИP	100	23		SILTY SAND: GREY, FINE GRAINED, ORGAN			
59/5H		_	H P	109	9		SAND/FILTY SAND; GREY, FINE TO MEDIUM CONESTME.			

1179-6	R (57	TA 199	+30 C			FL- 164
DEPTH	1,06	۳K	1,1	Pį	-4	-200	M	DESCRIPTION
		1:		Мo	98	34		SILTY SAMT: GREY, MOTST.
	S#	_						
		16		ИP	100	41		SAFE: RATHER, MOIST.
7.0								
	3 P/5 4	20		Ψ	100	10		SAMPLYSTETY SAMPLE BROWN, WET, GROUNDING
10.0								

LUE ENGINEERING PAYS

TH83-2340

				-115	70 _=+ · -
ST	206	+00 R			£L- 34#
	PI	-4	-290	N	DESCRIPTION
					SILTY SAND: BROWN, MOIST, MON-COMESIVE-
	•	99	?4	44	
_	P	100	19	25	
;	₩	130	20		SAME: LIGHT BROWN, LAVERED WITH DANKER SILTY SAND-
•	₩	99	19	3	
	P	100	44	*	SAIDASTETY SAID: LIGHT ROOMS, FIRE GRAINED-
	Ŧ.	130	10	•	SILTY SARD: LIGHT RECENT
•	Ψ	139	10	9	SMID/SILTY SMID: LIGHT THOOM, MEDIUM TO FINE GRAINED SAND
	*	100	₹6		STETY SAND: NAME BROWN-
	•	100	27		SATE: PRIMAL NON-COMESTIVE-
ļ-	5	100	47		
je J	58	190	58		SAFTY STLE: "ROWN, COMESTVE-
	₽P	100	3		S'. I'Y SAND: GREY, FINE GRAINED, ONGANIC SMELL, CONESIVE-
	IP	Įm	3		SWEDTILTY SANT: GREY, FINE TO METIUM GRAIMED, NON-CONCEIVE.


TT79-6

STA 199	100 C			FL. 162
9!	-4	-290	×	DESCRIPTION
não	Ħ	34		SILTY SAMT: GREY, MOIST.
₩P		'aj		SAT: BROWN, MOIST.
₩	18	:		SAMYSIL IV SAMITE BROWN, WET, GARDMANERS ENCOUNTERED-

TH83-2311

								100 EUI
TMB3-23	NB3-2311 STA 200+00 L			FL. 33±				
DEPTH	L06	MC	ш	PI	4	-200	Ħ	DESCRIPTION
		11	24	4	100	45		SILTY SANO: BROWN, MOIST, SOME GRAVEL TO 3 INCHES-
		8		W	100	34	*	
		8		₩P	96	14	61	SAME: LIGHT BROWN, MOIST, MEDIUM TO FINE GRAINED, GRAVEL TO $1\!-\!1/2$ INCHES-
	SM	9		HP	99	37	22	SAME: BROWN, MOIST, GRAVEL TO 3 INCHES-
		9		нP	100	31	15	
		12		ИP	100	31	.,	
15.0							24	
17-0	M.	12		F	100	51		SAMITY STLT: DANK BROWN, MOIST, SOME CONESION, SOME GRAVE TO 3 INCHES:
17 ·U		6			100	21_	14	SILTY SAMD: LIGHT BROWN, MOIST, FINE GRAINED-
		10		₩2	100	35		MEET OFFICE COMMISSION OF THE OWNERS.
	SM	7		MP.	96	17		
		16	24	3	100	31		SAFE: LIGHT BROWN, MOIST, COHESIVE-
22.5								
¥ 24.0		34	*	,	100	75	5	SAVIDY SILT: GREY, WET, SOFT, COMESIVE, SOME ROOTS.
	rt.	35	48	20	100	80		
27 -0							5	

- I. SEE PLATE 23 FOR LOCATION OF TEST HOLES AND TEST TRENCHES.
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3. SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4. ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

			T					
STREET	WEGUTAO-	948	MERCH					
	REVI	SIONS						
		U. S. ARMY ENGINEER DISTI LOS ANGELES CORPS OF ENGINEERS	HCT					
Place IV.	SANTA ANA RIVER MANSTEM, CALIFORNIA PHASE IL GENERAL DESIGN MEMORANDUM							
STATUTE STA	LOGS OF INVESTIGATIONS							
	CORPS OF ENGINEERS							
0000 M								
	STA.211+00 TO STA.196+00							
SURMITTED ST.	PATE	SFEC. NO. DACWOR	. 9407					
			1					

WC77-4

1 THE 1	BLOWL/POT	10	DESCRIPTION	UNIC COMP	CONTRACT, %	DAY BANKITY DAY	
111	,		MARTIN BLYNTON: Maction dense, to dense, moist, brown, SILTY SAND (80) With trace of SILTY CLAY				14. CO
2 1 1 1 1 1			Slight odor, bluish gray Modium dense to dense, moist, light brown madium- grained SAME (SP) with some GRAVEL				¥.0
•	,		Stiff, moist, brown SILTY CLAY (CL)		6	87	
• ;	١		Bluish gray with organic material Medium dwegs, motar, light brown medium grained, SAMOY SILT (ME.) with roots to 1" Mat. brown SILTY SAMO (SW)	3.00	39	75	
•	,	8	Bottom of Maring at 264 ft.		28	93	

WM73-1

m	E GI PE DI	, 0	MILL	LOG 5 24 May 1973 WATER DEPTH DATE ME. ROG Coot. Filght Auger HOLE DIAME* MMER 140 2bs. FALLING 30" SAMPLES 2" Med'	ASUR1	6"	4 Noy	-
BEPTH, PT.	SAMPLES	BLOWS/POOT	GROUND	DESCRIPTION RAPPACE ELEVATION:	UMC. COMP STREEMTN, No	MOIETURE CONTENT, %	Derr DC HBITT	OTHER TERTS
	1	33		Burner, ELEVATION: Dense, damp, brown fine to coarse-grained SAND (SP) with trace of SILT		10	100	
•	2	26		Fine to medium-grained				#A
1.0	3	16						٤,
1 5	4	20		Fins to coarse-grained, wet, coving		٠	94	MA.
20	3	30	₹					
28								
L	1_1	1		With trace of CLAY Settom of ling at 26 ft.	لــا	لــا	Ш	_]

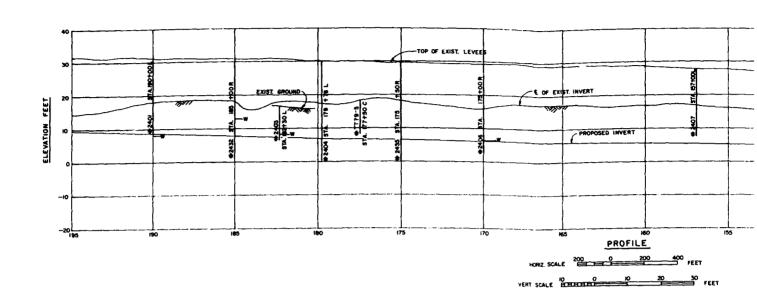
GC 71-1

DESCRIPTION DESCRIPTION SILTY OF JUST BEAUTY TO STAND TO STAND TO STAND TO STAND TO STAND TO STAND THE S	T I GROUP SYMBOL	l	0 3800	CRY DENSITY act	KOSTURE CONTENT %	RELATIVE
SEEN CAN CO. dark brown, word, and to see to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to medical decreased to the second decreased to	ŀ	l			Ī	-
Silly the same to gray, coarse to m has craimed, saturated, loose to reduce dense. 10 111 112 113 114 115 115 117 117 118 119 119 119 119 119	- "		1	1		l
20 Silty vist 5.00, Str. Nick, seturated	ļ			1	İ	£ .
20 Silty vist 5.00, Str. Nick, seturated	ŀ		l	1	1	i
20 Silty vist 5.00, Str. Nick, seturated		1	}	1	1	1
10 1) I Call (127, 25, black to gray, wet, acti, new organic interhedded with the last to at \$350, \$1, saturated loose. 15 III	-	13	n	89.0	20.1	1 17
1)// Cit. / Cit. 2: black to gray, wet, act	r	1	~	İ	1	1
1) 1 11 1 23, 25, black to gray, with the second state of sales and sales and sales are second state of sales and sales are second sales and sales are second sales and sales are sales are sales and sales are sales ar	[.,	l		1	1	İ
1) 1 11 1 23, 25, black to gray, with the second state of sales and sales and sales are second state of sales and sales are second sales and sales are second sales and sales are sales are sales and sales are sales ar			1	1		l
15 - 117 SILTY FULL 5-100 Ser, March, saturated,		ļ		L.	L .,	ļ.,
15 - 117 SILTY FULL 5-100 Ser, March, saturated,	ļ.	15	0	100.5	20.1	87
15 - 117 SILTY FULL 5-100 Ser, March, saturated,			├	 	<u> </u>	╀╌
20 1 Silty vive 5.500, Sp., Mach., saturated.	F	1	1	1	1	
NA SILITY VILL SAND, Str. March, seturated,	ŀ		i	I	1	į .
20 SILTY FREE SIND, SH. Merch, seturated,	-	10	ত	96.1	25.0	۲.,
20 SILTY FREE SIND, SH. Merch, seturated,	F %	1	1	1		
SILTY FINE SAND, SH. black, seturated,	["	1	ı]	ì	ļ.
SILTY FINE SAND, SH. black, seturated,	[l			[]
SIELY SIEL SAND, SH. Black, saturated,	L_	ļ	L	L	L	
[]	L		1	ĺ	ĺ	
	├ sm		0	83.7	36.0	86
	1		٠٠٠	† -		-
<u>}-</u> -	} '	1	1	1		١.
		-		 -	ļ	ļ <u>.</u>
	r		1	!	1	١.
	F			!		-
	r	l			i	١.
	Ε.		i		i	

GC 71-2

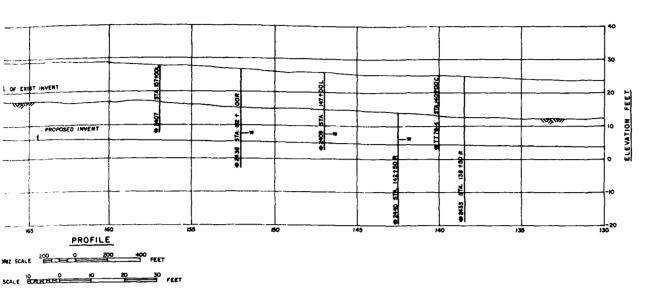
BORING No		STATION 7 . 39				ALL DA		
SURFACE L	LEVAT	10:1?	DRIVE	4G N	/EIGH1	- 20°	lb :	9 (
WATER OCEPTH FEET	GRAPHIC SYMBOL	Rotary with borary, with the filterist DESCRIPTION	OROUP SYNAD U.S.C.S.	PENE RESST.	CORE O	DRY DENSITY act	MOISTURE CONTENT %	RELATIVE
	ĮĮJ.	SPIN 1 201 SAND, SM. Crost, Carlo Carl	- SM					Ī
F	Ш		E			ļ	ļ	l
▽ , -			[-	-,	0	89.2	24 . :	76
Ē	14. 14.		E					
	111 111		<u> -</u>					L
Ë	777	SILTY Clab: C., black, were note to e erganic. Triorbed of anti-pit notice SAND: St. wet. bosse.	- cr		Q	84.	34 , (
			- 511					
	,,,		[0	83.7	37,5	72
E			-	-	┝	-	_	-
-20-		SAND SP, cruy, Eine grain d, vet. loose.	se	94	0	88.8	25.1	76
E			-					
-25-		CTAY (T) black carefulated (VII)		 -		_	-	
<u> </u>		CHAYAGE, black, saturated, coll	- (3)	-	0	68.5	53.0	39
E		Driving weight under water	-					ŀ
30				<u>t_</u>	上		<u> </u>	-

LOG OF BORING I


DATE MEASURED 24 May 1979 MOLE DIAMETER 6" VES 2" Hodified California								
	UNC. COMP WTMEHGTH, No	WORTLAND CONTENT &	DAY DENBITY Bef	DTHER TESTS				
grained SANO		10	100					
				*				
				2,				
		٠	96	PA.				
				Ш				


Device were a service of the service

worlden rest park Valla


- I. SEE PLATE 23 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE.

	- 			
STHECK	SESCEPTIONS		DAR	AFFROVA
	REVIS	IONS		
		U. S. ABMY ENGINE LOS ANGE CORPS OF ENG	Les	.i
10000040 SV.		IVER MAINSTEM, CALIFO ERAL DESIGN MEMORAND		
BRAWN SV.	LOGS O	F INVESTIGATION		
!	6	Y OTHERS		
COMCONN ST.	STA.260+	00 TO STA.195+0	0	
SUBMITTED SY:	DATE	SPEC. NO. BACW 09		3/4027
1				1

NOTES

I. SEE PLATE & FOR LEGEND AND GENERAL NOTES.

2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

DATU	M IS NATIONAL SECCETIC VI	ERTICAL DATUM OF 19	29	
F-T-			<u> </u>	<u> </u>
STREET,	encursor4		Selfig.	MINDRE
	REVIS	ONS		
		U. S. ABMY SHIGHT LOS ANGS CORPS OF SHIG		.
Mingres (A)		IVER MAINETEN CALIFO DRAL DESIGN MEMORAND		
SECOND SE	PLAN	AND PROFILE		
	STA.195+0	00 TO STA.130+00)	
SAMPLE IN	DATE APPROVED.	SHEC. HG. SHCW 85		944
		PRINCY FIR NO.		}

TH83-2401

NB3-24	01		2	TA 190	+0 0 L			£L. 3\±
EPTH	L06	MC	ш	Pl	4	-200	N	DESCRIPTION
		9		10	99	27		SILTY SAND: BROWN, MOIST, NON-COHESTVE. FINE GRAINED-
		7		- IP	99	30	46	SAME: "CCASIONAL CORRLE TO 4 INCHES-
	SM	8		NP.	100	27	36	
1.5		8		1P	100	39	22	
2.0	N.	15		¥P	99	55	18	SANDY SILT: DANK BROWN, MOIST, FINE GRAINED, NO GRANEL
		5		ЖP	97	?0	10	SILTY SAND: LIGHT NAPHN, MOIST, FINE GRAINED, HON- CORESIVE, NO GRAMEL.
	91	6		40	100	39	26	SAME: POCASIONAL GRAVEL TO 1-1/2 INDIES.
		10			100	24	74	
. <u>.</u>	य	70	77	-5	100	12	q	CLAVEY SAPO: GREY, MOIST.
23.0	M.	74	ম	3	100	67		SAMY SILT: GREY, HET, COMESIVE, FINE GRAINED. SAME: GREY, MET, COMESIVE, FINE GRAINED.
-0	α	30	29	,	100	55	5	SAMDY CLAY: SREY, WET, FINE GRAINED-
. <u>o</u>	1	35	29	4	100	57		CARTY SILT: SHEY, HET, COMESTME. SAVING AT 29 FT.

TH83-2404

43-24	104		4	STA 179	9+78 L			£L - 30±
EP TH	L06	TC.	u	PĮ	-4	-200	4	DESCRIPTION
		10		¥	99	16	31	SILTY SAMD: BROWN, MDIST, LOOSE, MEDIUM GRAINED, OCCASIONAL COMBLES TO & INCHES:
		3		φ	91	'1	,,	SAFE: GRAVEL TO 3 INDIES-
	581	5		₩	100	19	23	SAME: LIGHT BROWN, MOIST, FINE GRAINED, NO BRANEL.
		П			99	TO TO		SAFE: BROWN, LAYERS OF CONESIVE SANDY STUT-
1.5		9		P	136	75	28	SAME: "POCCASIONAL GRAVEL TO 3/4 INCHES, MON-CONESIVE-
! ;	SW/SM	4		P	95	12	34	SAND/SILTY SAND: BROWN, MOTSY, MON-CONESTVE, MEDIUM TO FIRE GRAINED, SOME COMMLES TO 5 IMPRES.
		3		P	luo	28	35	SILTY SAMT: "ROOM, MOIST, MON-COMESIVE, FINE MRAINED, SOME MOOD FRAMENTS, NO GRAVEL.
.3	SP	,		*	99	75	29	
	34/54	5		₩	31	8		SAMPL/SILTY SAMP: 1.10-IT MIGHE, MOIST TO HET, MEDIUM TO
1	OI	Đ.	59	79	100	- 34	14	SAUT CATE SET IN RIST STAIRS, MET, FIRE BRAINED
.د	SM.	12			97	19		SILTY SAND: BROWN, MET, MEDIUM GRATMED, LAYERS OF LIGHTER, SALT.
								SAMETY SILT: GREY, HET, SOFT, FINE WAINED, COHESIVE-
	•	7	79	,	100	73	9	
<u>.a</u>								
	CH*	50	91	25	lon	e?		SAMPY CLAY: GREY, NET, SOFT, FINE MAXINED, COMESTVE-
1								

TH83-2432

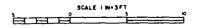
THB3-20	132		21	A 189	+90 R			E. 312
DEPTH	L06	MC	u	Pļ	-4	-200	N	DESCRIPTION
_	_			м	99	14		SILTY SAND: NOON, NEDIUM GRAINED-
				-		_		
	SM			—			23	
		9		₩	100	18		
6.0							23	
								SAND/SILTY SAND: LIGHT BROWN, MEDIUM GRAINES
		4		ИP	100	g		
		_					8	
		2		ıφ	100	6		SAFE: FIREY, MOIST-
	SP/SM	_					6	SAFE: LIGHT BROWN, MEDIUM GRAINED.
		r		Ψ	100	9		
							6	
				ж	100	9		SAME: FREY, MOIST, MEDIUM GRAINED.
7.5.				*	100	,		
18.0							5	SAMOY SILT: BROWN, MOIST-
	SM			NP	100	40		
	371			10-	100	43	9	
2.5								SANDY SILT: BROWN, MOIST-
	M.	13		帕	100	55	9	gator ster, many serat-
5.0 5.5	a		38	14	100	55		SANDY CLAY: GREY, MET.
				MP	100	56	۵	SAMBY SILT: GREY, MET-
	п.	_					4	
	-			Ψp	100	65		
0.0					-		5	

INVE	२ Т						<u>TT79-5</u>				
T179-5			5	TA (1)	+50 C			FL - 180			
DEPTH	L76	P(U.	Ρ;	-4	-?00	4	PESCRIPTION			
	SH/SM	-		₩	79	11		PRINTELLY SAND/STUTY GRAVEULY SAND. GREY, MOSS VESSETATION.			
4.0											
	SM	22		¥	190	46		SILTY SMIT: SREY, MOIST-			
7.0											
	۹.			¥:	190	59		SAMOY SILT: SREY, MOIST, SOME COMESION.			
10.0											

TH83-2432

P!	-4	-200		DESCRIPTION
₩P	99]4		SILTY SAND: PROM. MEDIUM GRAINED-
			23	
*	1.10	19		
			23	
*	122	4		SAND/SILTY SAND: LIGHT BROWN, MEDIUM GRAINED-
٠	1,00			
			8	SAME: GREY, MOIST-
Æ	1 %	a		SWE: THEY, TOTAL
			5	
_				SAME: LIGHT BROWN, MEDIUM GRAINED-
•	•	•		
			5	SAME: Reey, Moist, MEDIUM GRAINED.
¥	: •	;		SAME: HREY, HOIST, MEDIUM GRAINED
			٤	
				SANTY SILT: BROWN, MOEST-
۳	14	-,		
			,	
¥		-6	1	SAMOY SICT. BROWN, MOIST-
		·2		SWAY CLAY: GREY, MET:
.±2 ¥€		35		SAMPY SILT: GREY, WET-
			3	
wo		44		
			5	

TT79-5


11.1146	Ft. 182
o	V DESCRIPTION
# 14	CORNELLY CANDICELLY GRAVELLY CAND. GREY, MOIST, VOICE FATOR.
	T. T. MT. Segy, MIST.
* 1	
	PROCESSOR STATE OF THE PROPERTY CONTRACTOR OF THE PROPERTY OF
♥ 17	SMPY (11.1 SHEY, MOTST, SOME COMESTON-

EXISTING GROUND

TH83-2403

MB3-24	103	STA 182+30 L					FL: 142				
EPTH	LOG	MC	ίL	PĮ	-4	-200	*	DESCRIPTION			
	S*	14		MP	99	16		SILTY SAND: BROWN, MOIST, MON-COMESTVE-			
9 -D		10		9	100	17	8				
5.5	Ø2/QH	9		MP	100	12	6	SAND/SILTY SAND: PROM, MOIST, HON-OTHESIVE-			
7.0	<u> </u>	35	75	TS.	100	- 55		SAMINY ILAY: THANK GREY, MET, COHESTVE-			
0.0	\$P/\$H	74		40	100	9	11	SANTI/STILTY SANTI: BROWN, WET, NON-CONESIVE, STOPPED DRILLING DUE TO CAVING.			

- I SEE PLATE 24 FOR LOCATION OF TEST HOLES AND TEST TRENCHES.
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

SYMBOL	DESCRIPTIONS		DATE	APPROVA
	REVIS	IONS		
		U. S. ARMY ENGIN LOS ANG CORPS OF EN	RLES	σ
ORNOVAD IN	SANTA ANA PHASE II GEN	RIVER MAINSTEM, CALIR ERAL DESIGN MEMORAN	ORNIA DUM	
DRAWN BY		F INVESTIGATION	s	
OROSE IN	CORP	S OF ENGINEERS		
	STA.190+	-00 TO STA.1774	-50	
PUBMITTED SY:	DATE	SMC, NO. DACWOR-		344007

TH83-2435

							-	
T183-24	35		\$	TA 17	5+00 R			EL. 30t
EPTH	L06	MC	u	PI	4	-200	1	DESCRIPTION
		8		IP	100	29		SILTY SAND- BROWN, NOIST, MEDIUM GRAINED-
		_					. 41	
				NP	100	25		
				- NP	99	13	7	SAME: LIBHT BROWN, DRY, FINE GRAINED-
	291			MP	100	34	3	
				MP	100	23		SAFE: GREY-BROWN, MOTST-
		_						
				*	100	19	5	
<u>} </u>	3/51			P	100			SANDASILTY SAND: SALEY, MOIST, MEDIUM GRAINED.
.0	SM			MP.	100	32	5	SILTY SAND: DANK GREY, MOIST, FINE GRAINED-
.0	Æ			1	100	71		SAMUY SILT: BROWN, MOIST, FINE GRAINED.
.0	4			N.	100	31		STETY SANTE BROWN, MOTST-
5	4		_	-	100	3		SMOV STUT: Becom, HOIST. SILTY SAND: BECOM, HOIST.
	CH		52	28	100	58		SANTY CLAY: BANK BREY, CONESIVE.
g				-	100	_		SILTY SAND: 58EY, FIRE TO REDUCE GRAINED.
0	3			-	-199	7		SIL 1: Brose.
0	CH CH		51	77	100	56-		SMOT CLAY: DANK GREY.
1	N.			-	100	90	15	SMRY SILT: FREY.
<u> </u>	57			10	100		•-	
5	517SC		76	6	100	- 13 13		STLY SAID ALL SAID; GREY.
			34	,	100	79	17	SAFTY CILT: DANK GREY-
					100	71		

TH83-2406

TH83-2406				STA 1/	0-00 L			EL- 29t
DEPTH	L06	PC	u	PI	-4	-200		DESCRIPTION
		6		φ	99	29		SILTY SAMD: BROWN, MOIST, OCCAS 3 INCHES-
		7		•	100	22		SAVE: CLEAN SAND, NO GRAVEL.
		9		*	99	24	n	
	SM	13		WP.	97	26	15	
		ia		*	100	39	19	SME: FINE GRAINED SMID, LENSES
		3		Ψ	95	23		SAFE: REDIUM GRAINED, CHUNK OF I CONESTVE-
		19		*	99	19	8	SAPE: LIGHT BACHN, FINE GRAINED
.0		9		φ	100	77		SAFE: BROWN, MOIST-
-0_	SP/SH	20		*	100	11	9	SARB/SILTY SAMP: LIGHT BROWN, FE
<u>.v</u>	CH	33	59	52	100	67		SANDY CLAY: BROWN, MOIST, COMEST
	ZIVZC	25	74	-5	100	27	14	CLAYEY SAND: BROWN, MOIST, COMES
0 22 5 0	51	27		*	100	70		STLTY SAND: NET.
	a	35	43	34	100	87	6	CLAY: GREY, PLASTIC, SOFT-
.00	_	37	29	,	100	71	8	SAMELY CLAY: SHEY, FINE GRAINED S.

							Ţ	183-2438
THB3-2	438			STA 1	52+00 P			EL - ?7t
DEPTH	L06	MC	u.	P	1 4	-200	,	PESCRIPTION
		_		*	99	25		SILTY SAND: DANK BROWN.
				×	99	35	. 12	
				15	39	37		
	5 **	_		W.		40	. 13	SAFE: LIGHT BROWN, MOIST, FINE GRAINES
					98			SAME. A SAME THE PROPERTY OF T
				•	100	35	. 6	SME: LIGHT BROWN TO GREY, LYDSE, DRY.
		2		100	100	74	. •	
2.0		·		•	100	4	_	
	7P/9#				ton		9	SAND/SILTY SAND: GREY, DRY, FINE TO MEDIUM GRAINED.
5:0		•		•	(0)	11		The state of the s
1	37				100	15	9	STUTY SMID: GREY, HOLST-
1				-	101	4		SILT CON MONEY
.0		76	प्र	5	100	51	6	SHOT SILT: DAW MOUNT, HDEST.
19.5								SANDY CLAY: THANK BROWN, MET-
	α		Ŋ	14	100	80		
							6	
.s	्रम		58	76	100	75		CAY: TIME MEY, COMESTAE.
			27	-	100	53	12	were weer, coessive.
	۹.		42	17	100	78	12	SAMDY STLT: DARK MICHAEL GREY.
.5	_							
							14	
	SM			w	100	49		SILTY SAID: DARK BROWN, FIRE TO REDICH GRAINED.
						-		

DEPTH LOG MC 11 PT -4 -200 N PESCRIPTION STLTY SAID: BROWN, MOTST, HON-CO-S¶ 11 ¥P 99 42 3.0 SAMBY SILT: RADAN, MOIST, FINE GI ML 17 9 96 94 5.0 32 STUTY SAMP: 1,10HT HROWN, MOTEST. SM 6 NP 99 21 25 13.5 6 10 100 27 14 15 19 190 51 19 4P 100 51 19 SANDY SILT- BROWN, MOIST, STHE! THETY SAME: LIGHT BROWN, MOIST.

5 PLAY: NACHA, MET, COMESTIVE.

(H 58 53 29 100 92

23.5 PL 54 MP 100 N7 5 SANDY STLT: BROWN, NET. 25.5

TH83-2409 STA 147400 L

TH83-2409

SAFE: PROM, MET, CAVING.

EL. 252

TH83-2406

	12	A 170	100 L			£L. 29t
₽ TO	a la	P1	-4	-200	1	DESCRIPTION
1		₩.	99	24		SILTY SAME: BROWN, MOIST, OCCASIONAL GRAVEL UP TO 3 INDES-
		*	100	22		SAFF: FLEAN SAND, NO GRAVEL-
1		₩	99	39	Я	
r. 1		Ψ	97	26	15	
HES.		Mb.	190	39	19	SAME: FINE GRAINED SAME, LEMSES OF GREY SILT-
AVEL .		φ	*5	23		SME. TEDIUM GRAIMED, CHUNK OF $M^{\prime}_{\rm c}$ to 3 inches, non-comestim.
1	-	۱¢P	39	19	8	SAME: CIGHT BROWN, FIME GRAINED SAMD, NO GRAVEL, COOSE-
SME		₩	100	27		SAF RADIM, MOIST-
		*0	100	ı!	g	SAND/STUTY SANTY LIGHT BROWN, FINE GRAINED SAND, CAVING, NOW CONESTYE.
- 1	54	Ŧ?	100	- 67	14	SARRY CLAY TROOM, MOIST, COMESTVE-
	524	5	[00	77		TAYEY SAME THOMA, MOIST, COMESIVE-
9	F	*	100	Ŋ		ST. TV SMIT. WET-
NG FR	:3	Ţ/s	(30)	87	é	CAY TREY, PLASTIC, SOFT-
}	29	,	100	n	3	SARCY TAY Brev. FINE GRAINED SANDS, CAVING FROM ABOVE-

TH83-2407

THB3-2407			12	TA 157-	100 L			F . 28±
DEPTH	L 06	AC	u	PI	4	-200	- 1	DESCRIPTION
		10		MP.	99	47		SILTY SAND: BROWN, MOIST, SOME COMESTON, ONE BOLLDER 4 INCHES X 10 INCHES
		9		MP	98	35	45	
	511	4	_	₩P	97	14	58	SAFE: LIGHT BROWN, NON-COMESTIVE, GRAVEL TO 1 THOM-
10.5		4		₩	39	16	35	
	SW/SM	4		ø	100	ıı	25	SAND/SILTY SAND: 1.10HT BRIMN, MEDIUM GRAINED-
15.Q	-	10		₩	100	22		SILTY SAND: BROWN, NEY, HON-COHESTIVE, CAVING-
	S FI	19		•		16		
20.5 21.0	SW/SR	 			100	10	8	SMD/SILTY SMD: MON, ET, SOFE GPAREL

TH83-2409

57A 147	+ 0 0 €			EL: 252
Pſ	-4	-200	•	DESCRIPTION
Ψ.	99	Q		SILTY SAME - BROWN, MOIST, MON-COMESTVE-
ф	16	94		SAPPY SET SHOWN HOLST, FINE GRAINED-
Ψ	76	17	32	CILTY CAND - COMP MOTION, MOTESTA
₩	393	21	21	
₩	170	- 27	n	_
*	130	51	19	SARDY of 1 Bernel, MOIST, SIME CONFSIGN-
**	ţ.e	15		CENT SAFT - ISKT ARDAY, HOIST-
₩0	179	46	٠	SAME Torsen with carries.
	100	77	5	CAY Tenant, NET, connective.
•	מנן מנן	v	5	SWOY SP. (SHOW), MET
			3	

NOTES:

- I SEE PLATE 24 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3. SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

SCALE: I M-3FT e e e e

				<u> </u>					
SYMBOL	Madamov	·	943	MASCAM					
	REVI	SIONS							
		U. S. ARMY BINGON LOS ANGE CORPS OF BING	LES	ct					
SESSOPED ST.		RIVER MAINSTEM, CALIFO MERAL DESIGN MEMORANO							
60AWN 99.	LOGS	LOGS OF INVESTIGATIONS							
00000 80	COR	PS OF ENGINEERS							
	STA.175	5+00 TO STA.147+0	00						
SUBMITTED BY:	DATE	100 MO 040WM	-	20007					

TH83-2440

TW83-2	TN83-2440			STA 1	12+50 R		EL. 25±				
DEPTH	F06	ric.	: u	. Р	7 -4	-200	*	DESCRIPTION			
		12			100	32		SILTY SAMD: LIGHT BROWN, MOIST, NON-CONESIVE-			
							. 56				
		_					- ~	SAPE: PARC BROWN-			
	514	10		19	100	42					
							9				
		9		*	100	38	• •	SAME: 1,1987 BROWN			
		,		•	100	75					
1.0				·	100	39	. 8				
								SMIT/CLAYEY SMIT: LIGHT BROWN, MEDIUM TO FINE GRAINED SMIP, MON-CONESTIVE, 4 INCH THICK LAYER OF DMIKER FINE SILTY SMID AT 12-5 FEET.			
	3P/SC	4	32	11	100	12	14	SILTY SAND AT 12-5 FEET.			
5.0											
6.5	20/2H			NP	100	9		SAMP/STLTY SAMD: LIGHT BROWN, MEDIUM TO FINE GRAINED SAM MON-CONESTVE-			
		32	53	10	100	97	10	CLAY: LIGHT GREY TO LIGHT BROWN, CONESIVE, "INE GRAINED SAME, MATER AT 19-0 FEET.			
19.0	a	-									
		63	37	13	130	85	7				
.5						•					
	٦.		40	14	100	79	18	SAMDY SILT: DANK GREY TO BROWN, MOIST, COMESIVE, FINE GRAINED SAMD, ORGANIC-			
.5			~	.,	100	′,		GRALMED SAME, ORGANIC-			
	2	33	42	21	100	93		CLAY: THANK GREY, HOLST, ORGANIC-			
		39	35	9	100	97	10	STUT: LIGHT BROWLEN GREY, MOIST, SLIGHTLY CONESIVE.			
.5	۹.	41	43	15	100	89		SAFE: TARK GREY, PLASTIC, CONESTYE, ORGANIC-			
	a_	35	44	70	190	85	5	SILTY TLAY: BROWNISH GREY, MOIST, COMESIVE, ALTERNATING 9 INCH LAYERS OF LIGHT GREY CLAY-			
·5	_	-						A MICH LANSING OF CIGHT GREY CLAY-			
							27	SAMOY SILT: SHEY, MOIST, MON-COMESTIVE, FINE GRAINED			
	ą.	33		IP.	100	52		SAID.			
.5		29		160	130	37		SII TV CMD			
	\$11	_					37	SILTY SMID: GREY, HET, HON-CONESIVE, FINE GRAINED SMID.			
-		35		Ψ	100	44		SAME: GREVISH BROWN, ALTERMATING 2 INCH LERSES AT \tilde{g} INCH SPACING OF DAMA GREV ORGANIC SILTS:			
5			~				9	CARTO CAY			
		44	39	17	100	74		SAMOY CLAY: FINEY, MET, COMESTIVE, SHELL PRABMENTS.			
	æ						11	SAME: DANK GREY, MARY SMELLS, DAGANIC-			
		33	42	23	100	73		THE PARTY PRINT SPEELS, TREASTC.			
0											

INVE	RT						<u>TT79-4</u>				
1179-4			2.	TA 140	+00 C				EL. 135		
DEPTH	L06	MC	u	PĮ	4	-200	N		DESCRIP		
		6		IP.	100	84		SAMEY SILT:	GREY, MOIST, VIS		
	Ħ.										

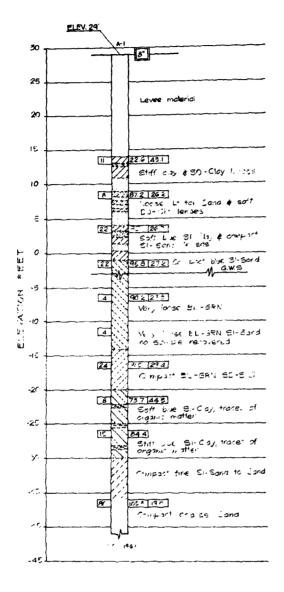
CH 45 60 30 100 91

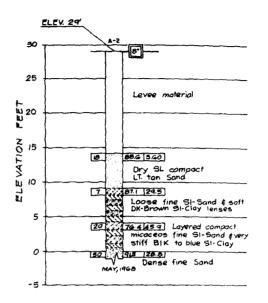
CLAY: GREY, NET-

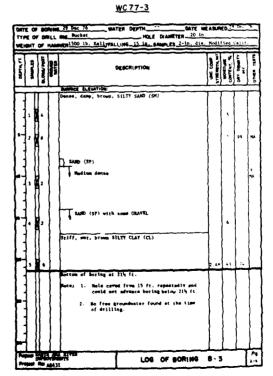
TT79-4

\$1	FA 140	•0 0 C			EL- 132				
ц	PI	-4	-290	,	DESCRIPTION				
1	1 P	100	84		SMEY SILT: GREY, MOIST, VEGETATION-				
	φ	100	RI						
50	30	10C	я		CLAY: GREY, MET-				

TH83-2433

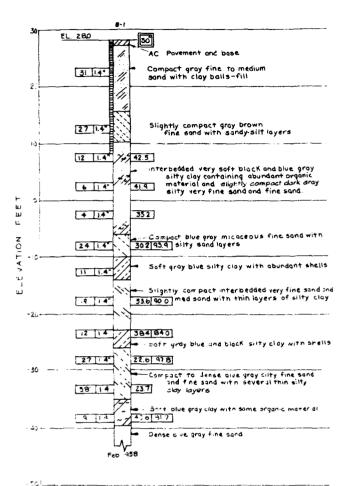

THB3-29	HB3-2433			A 138	+50 K			El 25±
DEPTH	L06	MC	u	PI	-4	-200	ĸ	DESCRIPTION
	SM	10		₩.	100	32		SILTY SAID: LIGHT BROWN, MOIST, MON-COMESIVE, 2 INCH SILTY CLAYEY LENS AT 3 PEET-
3.0							45	
	SC	10	31	12	100	39		CLAYEY SAMD: LIGHT BROWN, MOIST-
6-0							19	
		•		NP	100	24		SILTY SAND: MOIST, NON-COMESIVE, MEDIUM TO FINE GRAINED SAND-
							4	
	SM	6		MP	100	42		SME: FINE GRAINED SAND-
		5		NP.	100	42	7	
		 9		MP.	100	36		
14-0		,		**	100			
	SP/SH	3		Ψ	100	10	10	SAMD/SILTY SAMD: MOIST, MEDIUM TO FINE GRAINED SAMD, MON-COMESTIVE-
16.0 116.5								
	191	40	51	31	199	53		SAMOY SILT: MOIST, FINE GRAINED SAMO, SLIGHT COHESION, MATER AT 16-5 FEET.
		79	71	37	100	- 96	12	
20-0	-				100	<u></u>		SARTY SILT: WET, SLIGHT CONESION, FINE GRAINED SAND.
	α	35	32	10	100	76	10	SAMOY CLAY: LIGHT BROWN, MOIST, COMESIVE-
22.0	54	37		WP.	100	46		STLTY SAND: BRN, MET, SLIGHT COHESION, FINE GRAINED SAND
23.0		47		P	190	58	22	SAFTY STLT: BOW, WET, SLIGHT CONESION, FINE GRAINED SAND-
		40		MP.	100	69	22	SAME: BRINISH GREY, WET, MED TO FINE GRAINED SHO, CONESIVE
		33	-	WP.	100	67		SATE: GREY, MOIST, CONESIVE, FINE GRAINED SAND-
		78		₩	100	94	14	SILT: LIGHT GREY, MET-
	M.							
		36		W	190	51		SAWRY SILT: SLIGHT CONESSION, MED TO FINE GRAINED SAND-
		36		1	100	89		STET: LIGHT GREVISH PROM, FINE GRAINED SAND, CONESCVE-
							17	SATE: FREY I SH BROWN, CONESTIVE, LESS CONESTIVE WITH
				ΝP	100	33		INCREASE IN HEPTH-
34.0								
								SILTY SANT: GREY, MOIST, NON-CONESIVE, FINE GRAINED SANS
	31	38		MP	100	43		
39.0		4			Ym.		27	CAME. TARK CORV. MET. SI JOHN V. COMESTON.
22.0		-			100	51	11	SAME. THREE GREY, HET, SLIGHTLY CONESION. SAMIN SILT; GREY, HOIST, SOME CONESION, SMALL SHELLS AND
		_		AP	100	72		ONGANICS- SAME: DANK GREY, COMESTVE-
	٩	45		ΨP	100	73		SAME. GREVISH BROWN, SMALL SHELLS AND ORGANICS-
		39		10	100	77	24	
		37 31		-	100	// 5-		SATE: THANK GREY, MET, COMESTVE, FINE GRAINED SAND, MANY SHELLS, COGNICS:
15.0					100			and the second s

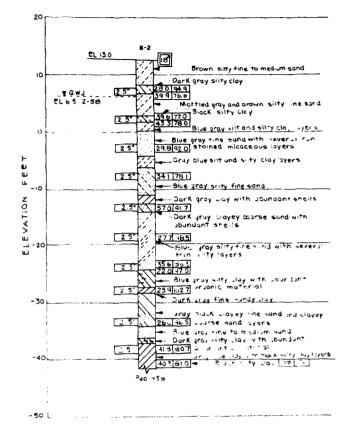

- 1 SEE PLATE 24 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE SA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3. SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4. ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE MOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.


SYMBOL	GESCHIFTIONS		CANE	APPROV					
	REVIS	IONS							
		U. S. AMMY ENGIN LOS AMOI CORPS OF EN	6,85	.					
10000HD 011.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM								
SEAWN ST.	LOGS OF INVESTIGATIONS								
1	CORPS OF ENGINEERS								
(100m) In.	STA. 142+50 TO STA 138+50								
SUBMITTED BY:	DATE	SPEC. NO. BACWOF.		946					

OC 68-AI

OC 68-A2

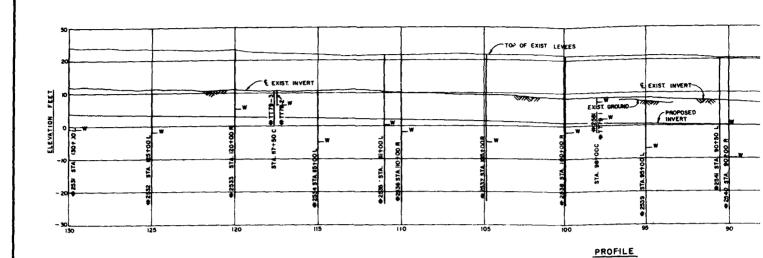


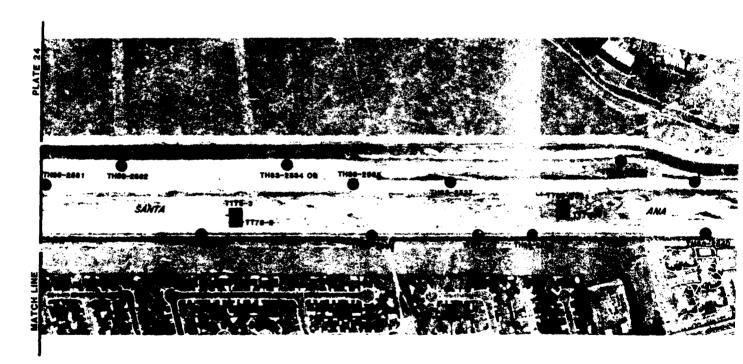

NOTES:

3.

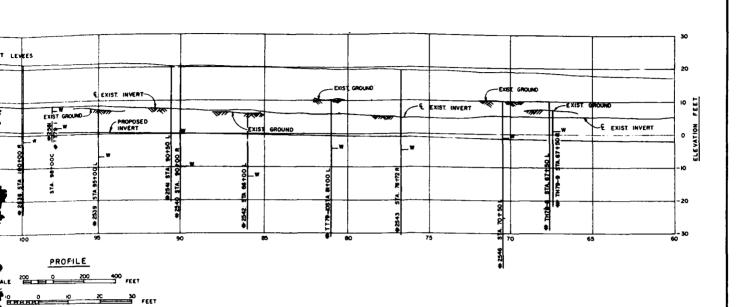
OC 68-BI

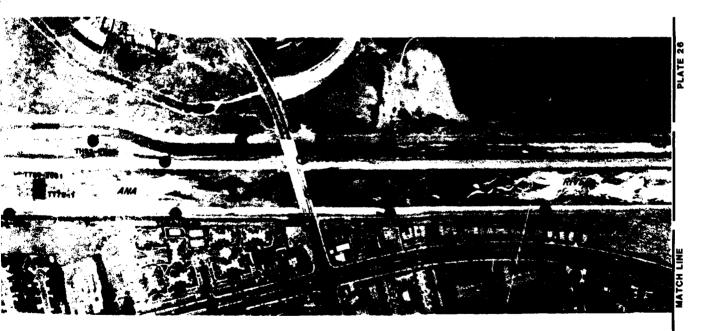
OC 68-B2




- I. SEE PLATE 24 FOR TEST SITE LOCATIONS.
- 2. SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS.
- 3. LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE.

F									
Street	(6003790)46	MR	AFROVAL						
	REVISIO	ONS							
		U. S. ARMY BIGGINER DISTRIC LOS ANGELES CORPS OF BIGGINERS	ੜ						
ampun M	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM								
STAWN ST.		OGS OF INVESTIGATION BY OTHERS							
OROGE Ph	STA.195+00 TO STA.130+00								
BLOWITED SY.	DATE APPROVED.	SHEC. HO. DACWOP B	•						


HORIZ SCALE 200 0 200 400 FEET


VERT SCALE HAMMEN DE ZC

- I. SEE PLATE & FOR LEGEND AND GENERAL NOTES.
- 2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

PROJECT.	4902704	balt	AFRED				
	REVISIONS						
		NY BYGONOR DISTR LOS ANGELES PS OF BYGONORS	ICT				
	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORMOUM						
Charles Ch.	PLAN AND PRO	OFILE					
	STA.130+00 TO ST/	1.60+00					

TH83-2531

TM83-25	531			STA 1	20+0G F			£L. 24t			
DEPTH	LOG	HC	ш	P	1 -4	-200	H	DESCRIPTION			
								SILTY SME: BROWN, HOIST, MON-CONESTVE, MEDIUM TO FINE GRAINED SMED.			
	SH	5					58				
5.5		10					. 46	SAPE: FINE GRAINED SAND.			
		14						SAMDY SILT: DANK BROWN, MOIST, SLIGHT CONESION-			
	•	21						SAME: LESS SAND AS DEPTH INCREASES-			
		- 21						STE. CESS STEP AL DEFIN INDEXAGES.			
							21				
12.5											
13.5	8	13					37	SILDY SMID: DANK RECORD, HOLST, NON-CONESTVE. SMID/SILTY SMID: ROIST, NON-CONESTVE, FINE GRAINED SAND			
	26 \ 2K	u						SAME STATE CONTROL THE CONTROL SAME			
6.5							35				
8.0	5P	7						SAME: LIGHT BROWN, MOIST, MEDIUM TO FINE GRAINED SAND-			
	SM	15						SILTY SAMP: MOIST, NON-COMESIVE, FINE GRAINED SAND.			
1.2							11	PART ENT			
3.0	- SM	.53						SHITY SPIT: PARK BROWN, MOIST, CONESIVE. SILTY SAND: BROWNISH GREY, MOIST, SLIGHT CONESION.			
							13	SANOT SILT: BROWNISH GREY, MOIST, CONESIVE, FINE GRAINE SANO, MATER AT 25-0 PEET,			
25.0								CR. TV CR. M			
	a	49					3	STLTY CLAY: PROMY AND GREY INTERPLIXED, WET, COMESIVE.			
8.5								SAME: BANK GREY, COMESTVE, SHELL PRAGMENTS, ORGANIC-			
0.0	CH	40	76	43	100	99		CLAY: SMEY.			
2-ù	α	34					14	SMETY CLAY: LIGHT GREY, INTERMIXED WITH BROWN SILT, MEY, CONESIVE, FINE GRAJHED SAND.			
	sc	45						CLAYEY SAND: THANK GREY, SLIGHT CONESSION FINE BRAINED SAND, ORGANIC-			
1-0							23				
	2P./2C	37						SAND/CLAYEY SAND: GREY, MON-COMESTIVE, FINE GRAINED SAND			
		夏									
1.0	CH	40					16	CLAY: GREY, MET. COMPSIVE.			
.5											
-0	٩	5 0	32	7	100	77		SAMMY SILT.			
	sc.	13						CLAYEY SAND: THANK GREY, WET, NON-COHESTVE, FINE GRAINED SAND, SHELLS.			
								and and			

TH83-2532

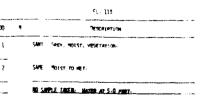
TIMG	CDC	N IND				_	
	ORC			÷06 Ł			£L, 112
F08	MC	и	Pł	4	-200	,	DESCRIPTION
59/SI	16		_			20	SAND/SILTY SAND: MOIST, HEDIUM GRAINED SAN SANDY SILT: BROWN, MOIST, HOW COMESTIVE- SAND: MOIST, MEDIUM TO FINE GRAINED SAND-
- 32	20						SWID: MOISY, MEDIUM TO FINE GRAINED SAND-
4.	15					6	SANDY SILT: BROWN, MOIST, NON-CONESIVE, FI
56	27		_	==			SILTY SAID: LT MAL MOIST, NON-CONST., FIN
a.	38					,	SILTY CLAY: LIGHT GREY WITH BROWN, MOIST,
						,	
me	42						SANDY CLAYEY SILT: GREYISH BROWN, MOIST, C GRAINED SAND,
						11	
CH	43	80	45	100	99		QLAY: GREY, WATER AT 13-0 FEET.
	45		_				TAKEY SILT; BROWN, MOIST, COMESTVE.
CH	53						CLAY: LIGHT GREY, VERY CONESIVE, SLIGHT IN
5"	*;		Ψ	130	29		SILTY SAND: FINE GRAINED SAND-
							SMIT/SILTY SMIT: HET-
	30					là	2min 25(1) 2min; set.
50/51	-						
	,,					24	
CN	39						CLAY: FREY, WET, VERY COVESTIVE.
ù	52					11	SMBY CLAY: BARK GREY, CONESTVE, SHELL, Y
SP/S#	78					74	SANT/SILTY SANT): FREY, WET. MON-COMESIVE, 30.0 PRET.
Q.	33					14	CANDY STUTY CLAY: SREY, CONESTVE, SINE CO.
	252 266 25/258 25 26 26 27 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1312 1005 Mc 1005 Mc 1007 Mc	572 S LOS MC LL 59/59 16 59 20 11 15 58 27 CL 38 MH 42 CH 43 8C 15 CH 53 CH 55 CH 53 CH 55 CH 53 CH 55 CH 53	LOS NC LL PI SP/SP 18 18 59 20 41 15 58 27	572	572 STA 125-00 L 1.05 MC LL PI -4 -200 59-759 1.5 59-20 1.15 58-27 CL 38 FM 42 CH 43 80 45 100 99 1. 45 CH 53 CM 53 CM 76 CM 79 L. 52 CN 79 L. 52 CN 79 L. 52 CN 79 L. 52 CN 79 L. 52	572

<u>TT79-3</u>

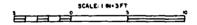
TT79-5			\$1	[4 1 <u>1</u> 7	450 C		EL- 11#			
DEPTH	106	MC	LL	Pļ	-4	-200	DESCRIPTION			
							 SAMPY SILT: GREY, MOIST, VENETATION-			
	4	5		Þ	100	34				
		10		₽	100	81				
7.0										
	OH.	45	50	33	100	91	CLAY: GREY, MOIST-			
0.0										

1179-2

1179-2			5	74 11 ⁷	•50 f			%. 11±
DEPTH	106	MC.	LL	PI	-4	-290	4	JEGCHIALION
		14			98	1		SAMD: GREY, MOIST, VEGETATION.
	99							
		26			100	?		SME: Moist to MET.
4.0								
¥ S.O .								NO SAPLE TAKEN: MATER AT 5.0 FEET-


TH83-2532

25+	00 L			EL- 112
'I	4	-200	,	DESCRIPTION
=			20	SAID/SILTY SAID: NOISY, MEDIJIN GRAINED SAID- SAIDY SILT: BROM, MOISY, MOR-CHESTYE. SAID: MOISY, MEDIJIN TO FINE GRAINED SAND.
_			5	SAMOY SILT: BROWN, MOIST, NON-COMESIVE, FINE GRAINED SAMO.
				SILTY SAME: Ly man, MOIST, MON-CONSV., FINE GRAINED SAME
			ş	SILTY CLAY: LIGHT GREY WITH BROWN, MOIST, COMESTVE-
			11	SAMEY CLAYEY SILT: GREVISH BROWN, MDIST, CONESIVE, FINE GRAINED SAMO
5	100	94		CLAY: GREY, MATER AT 13-0 FEET.
				TANEY SILT: BROWN, MIST, COMESTIVE.
				CLAY: LIGHT GREY, VERY CONESTVE, SLIGHT INCLUSIONS OF SILT.
p	100	, '0		SILTY SAMD: FINE GRAINED SAMD-
			13	SMIN/SILTY SMIN: MET-
			?4	
				CLAY, FIFEY, WET, WERY COMESTIVE-
			11	SANDY (LAY: NARY GMEY, COMESTYL SHPLLS, ORGANIC-
			٦,	SAND/SILTY SAND: GREY, WET, MON-COMESIVE, SHOLLS RELOW \$10.7 PEET.
			14	SANTY SILTY IT, AY: "RREY, COMESTVE, "THE GRAINED SAND-
				CLAYEY SAND. GREY, MET, MEDIUM TO FIME GRAINED SAND.


TH83-2533

183-25	33		S1	A 120	+00 R			EL. 2致
EPTH	L06	K	ш	PI	4	-200	,	Description
	SP/SM	9		ЖP	100	7		SAMO/SILTY SAMO: MEDIUM TO FINE GRAINED SAMO-
3.0							48	
		13		180	96	13		SILTY SAND: MEDIUM TO FINE GRAINED SAND-
		9			100	- 33	14	
	SM			-	100			SAME: BRN, MOIST, MED. TO FINE GRAINED SAND, NON-CONESTV
		11		MР	100	18	9	SAME: SREY-
		10			100	30	•	SAPE: Brown.
1-0					100			
	SP/SH	•		MP.	100	10	10	SAND/SILTY SAND: HON-COHESIVE, FINE GRAINED SAND-
4.0								
		30	46	17	100	69	11	CLAYEY SAND SILT: BROWN, MOIST, FINE GRAINED SAND-
	rt.							
18.0		30	42	14	100	61	12	SAME: MET, TRACE OF CLAY, CONESIVE, WATER AT 18-0 FEET.
9.0								
	194	41	51	29	100	92		CLAYEY SILT: BROWN, WET, COMESIVE.
2.0			_				v	
								SAMPY SILTY (LAY: BROWN, MOIST, COMESIVE, FINE GRAINED
	α	44	44	18	199	30	15	SAMD-
6.0_								
	СН	32	62	34	100	94		TLAY: BROWN, MOIST, SOME RUST COLOR-
7.5 8.5	-	фà	42	14	100	95	11	PLAYEY STUT: BROWN, MOIST, COMESTVE-
0-0	781	5n	81	42	100	95		CLAYEY SILT: PRGANIC, BLACK, MOIST-
W-W							12	SANDY CLAY: BROWN, SREY AND BLACK, COMESTIVE-
	CH	40	52	28	100	34		
		7	- 47	24	100	-89		
4.0 4.5	1		- 37	7	100	88	11	TAY: BLACK HET FEN SHELLS
		32	34	0	100	63	21	SAMDY SILT: THANK GREY, WET, COMESTIVE, FINE GRAINED SAME
		_						
	4	41					ůε	SAME: MEDIUM GRAINED SAMD, SHELLS-
	~	٠,						
		Ŧ	-	- 1	100	- 50	25	SAMITY SILT: GREY, COMESTIVE, SMELLS
		37	攰	7	100	52	.,	order dates interacting articles
3.5								
5-0	2"	79		P	100	20	26	SILTY SAND: GREY, WET, SHELLS

TT79-2

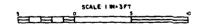
- I SEE PLATE 25 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
 - 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
 - 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
 - 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNILESS OTHERWISE NOTED AS "INVEST" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

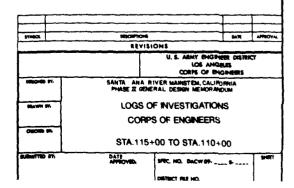
SYMBOL	680M7TONS		DATE	APPROV				
	REVISI	ONS	<u> </u>					
		U. E. ARMY ENGIN LOS ANG CORPS OF EN	ELES	Ċ				
MERCHIN ST.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM							
SEAWIN ST.	LOGS OF INVESTIGATIONS							
	CORPS	OF ENGINEERS						
00000 IA	STA,130+0	0 TO STA.117+	50					
MEMOTTED BY:	DATE	SPEC. NO. DACWOF		SHEET				

~		CD	St (Bur			TH	83~	<u>2534</u>		
XIST 183-253		GA		2 A 1154	00 L			EL- 11t		
EPTH	L06	PC	ц	PI	4	-200	H	DESCRIPTION		
	281	8		NP.	100	16		SILTY SAND: BROWN-GREY, MOIST, NOW-COMESTVE, MEDIUM GRAINED SAND, SOME GRANGE TO 1 INCH-		
-1	т.	27		₩	100	91	229	SILT: BROWN TO LIGHT BROWN, MOIST, NON-CONESIVE, FINE GRAINED		
	1	26	3 2	- 6	100	72	42	SAMEY STAT: BROWN, MOIST, NON-CONESTVE, MEDIUM GRAINED		
7.0	α	31	43	υ	100	86	12	SILTY CLAY: BROWN, MOIST, NON-CONESIVE, FIME GRAIMED SAND.		
0.0		53	52			91	16	CLAYEY STLT: BROWN, MOIST, COMESTVE-		
	194	43		w	100	97				
5-0 16-0 6-5	4			₩.	100	89		SILT: GREY, MOIST, COMESIVE, WATER AT 16-0 FRET-		
		41		*	100	38	23	SILTY SAMP: FARY, WET, NON-COMESTIVE, FINE GRAINED SAMD, 9 INCH CLAYEY SAMD LAYER AT 17-5 FRET-		
	SPI	29		₩.	100	5,	25			
		31		Ψ	100	50	43			
5.0							10	SAMOY SILT: GREY, NET, NON-CONESTYE, FINE GRAINED SAMO		
	4	52		₩	100	51				
3 0.5		23	35	19	100	51	· 9	SATE: SOME SHELL PRINCHENTS.		
51.5	sc_	_27	30	9	100	38		CLAYEY SAND: GREY, WET, HON-COMESTIVE, SHELL FRANKBITS.		
	SM			₩	100	3 0		SILTY SME: GREY, WET, NON-COHESTYE, FINE GRAINED SAND SHELL PRABMENTS:		
33.S	2		u6	24	10º	90	•	CLAY: GREY, MET, COMESTYE-		

<u>TH83-2535</u>

THB3-25	35		\$11	A 111+	00 L			£. 21±
DEPTH	L06	HC	u	PI	4	-200	N	DESCRIPTION
	M.	13		Ψ	100	58		SAMOY SILT: RICHH, MOIST-
3.0							47	
_ <u></u>		17	36	16	100	57	4/	SMITTY CLAY: BROWN, MOIST-
	α	70	39	17	100	76		
5.5							28	SILTY SAND: BROWN, MOIST, FINE GRAINED SAND.
		14	25	4	100	44		SICI SHO: DICAY, 101317
						37	28	
		11		¥P	100	3/		
							44	
	SM	11		*	100	41		
		_						
		3		40		36	22	
		3		•	100	360		
		_					24	SAME: 3 THOH LENS GREY SAMO/STLTY SAMD AT 17-5 F
19-5		12		₩:	100	34		SAME: GREYISH BROWN-
	a							STETY CLAY: "DARK BROWN, I INCH LENS LIGHT GREY M GRAINED SAND:
20.5							9	CLAYEY SILT: GREY, WATER AT 21-0 FEET-
	194	43	óμ	50	100	98		
23.5								
		44	74	44	100	95_		CLAY: GREY- SANDY CLAY: GREY AND DARK GREY, MICACIOUS-
	Сн	34_	_5ï	_2:	100	5		(LAY: GREY-
<u>27.0</u>		-54	58	30	100	97	7	
	194	39	53	74	100	80		SAMOY SILT: "REV-
29.5							16	
		36		¥	100	60	•	SMEDY STLT: PLACK, SHELL PRACHENTS.
	4	33		*	100	50		
	•	32		7	100	51		
		.78	3)	- -	100	§1	33	SME: TARK GREY AND BLACK-
37.0 37.5								
37.5				<u>Y</u>	100			STETY SAID: DARK GREY AND BLACK, SHELL FRACTENT
	SD-84	25		¥	100	12	38	SAMD/SILTY SAMD: BANK GREY AND BLACK, MONTCHES 30 PERCENT SHELLS:
40.5 41.5		95			100		-	SMOY SILT: DARK GREY MO BLACK, SLIGHT CORES;
41.0	Л						- 22	SILTY SAND: THANK GREY AND BLACK, WET, TRACE >
	44	47		*	100	44		50 PERCENT WELL FRAGMENTS:
43.5	20-2	30		4	100	 -	-	SMIT: DARK GREY AND BLACK, MET-
#3:5	ন্	95	51			90	-	FAT CLAY: SREYISH BLACK, HET:


TH83-2535


щ	1+00 L			EL · 21±
PI	-4	-200	4	DESCRIPTION
•	100	58		SAMOY SILT: MROWN, MOIST-
			4.	
16	100	52		SANTY ELAY: PRONN, MOIST-
<u> 7</u>	100	75		
4	100	34	29	STUTY SAND: BROWN, MOIST, RING GRAINED SAND
₩	100	5/	29	
*	:00	41	44	
			37	
*	!00		٠,	
*	107	t _u		SAME: 3 THOH LENS GREY SAMD/STLTY SAMD AT 17-5 PEET- SAME: PREVISH BROWN
				GRAINED SAND.
12	100	æ	٠	CLAYEY SILT: SHEY, WATER AT 21-0 FEET.
42	100	15		CAY SHEY. SARY CAY SHEY AND DANK GREY, HICACIDIS.
23	120	-33		CARCY CLAY - SREY AND DANK GREY, MICROITUS- CLAY- SREY.
30	100	-1'	•	
? 4	iX.	9 0		TMMNY SILT CORY.
•	190	57	[#	CHAPY CITY BLACK, CHELL EPACHENTS.
	;x	\		
	<u>!</u>	37		
	L71	`	*;	ATE CAR SREY NO BLACK
	: X		ч	SAND/SICH SAND TARK GREY AND BLACK, MON-COMESTVE. SAND/SICH SAND TARK GREY AND BLACK, MON-COMESTVE. TO PERCENT SHELLS.
1	T	. . .		THE SEC MO BACK, SIZER CORSION.
Р .	m	144	22	OT ITY SAME "MANK GREY AND BLACK, MEY, TRACE OF CLAY, 5" OFFICENT SHELL FRAMMENTS.
	y.			THE DARK GREY MED BLACK, NET.
	I	7		AT CLAY: "REYLSH BLACK, MET.

TH83-2536

						-44	-	<u>2006</u>
TH83-2	536			STA 11	0+00 R			EL. 21±
DEPTH	L06	MC	u	PĮ	-4	-200	*	DESCRIPTION
2.5	24	16		Mo	100	29		SILTY SAID: HOIST, HON-CONESIVE, MEDIUM TO FINE GRAIN SAID.
5.0	SM/S	15		NP.	100	1?	20	SAND/SILTY SAND: LIGHT BROWN, MOIST, 4 INCH LAYER BRO SANDY SILT AT \$15 FEET, FEB 3/8 INCH GRAVEL.
		8		NP	100	40	53	SILTY SAND: RROWN, MOIST, MON-COMESSIVE, 4 INCH LAYER MEDIUM TO FINE SRAINED SAND.
	SM	5		¥Ρ	100	36	13	SAME: LAYERS OF FINE GRAINED SMODS AND SILTY SAMOS-
		v		Ψ,	99	31	10	SAME: MORE STLY AS DEPTH INCREASES.
14.0		27	58	36	7.00	30	19	SAME: MORE SILT AT PEPTH INCREASES.
	CH		54	"	100	 S0	16	SANDY CLAY: GREY AND BROWN, MOIST, COMESIVE.
22:0	4	45	60	27	100	 46	13	CLAYEY SILT: GREY-BROWN, CONESIVE, MATER AT 27.0 FEET.
3.0		39	72	39	100	97	20	G.47: SREY, 40(ST.
9.5	C#	 53	52	39	100	ŝa	4	SAMPY FAT (J.AY: SAME, LIGHT SREV-
	44	35	73	4?	100	47	5	CHAPPY SILT: Serv, COMESIVE, SMPLLS, ORGANIC
2-1	٦.	33	39	?	130	55		SAMEY SILT: "MARK GREY, MOIST, SLIGHT COMESION, SHELLS, DROWNIC-
i.S	34	۰	~ 	40	130	19	E	STUTY SANT: DARK GREY, NET, NON-CONESTME, SHELLS-
1.0	Ø₽/ØH	23		 140			39	SMOJCILTY CAYN: SREY, NET, NON-CONESTVE, SOME SHELLS-
۵.	yr1	45		7	*/	3		
.0	8	51		¥P.	100	_7_		CANCE THE LIGHT ODEN HET CHOICE.
-W	SH .	29			100	23		SHEY SAMO: DARK GREY, HET, SHELLS: SILTY SAMO: DARK GREY, HET, FINE GRAINED SAMO:
		47		,,-	100	4.3		THE STATE OF THE PARTY SERVICES

- I SEE PLATE 25 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE 84 FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

TH83-2537

THES	-2597			STA 1	05+00 L			E. 21t
DEPT	N L06	HC	ш	P	1 4	-200	н	DESCRIPTION
		16	39	2	0 100	n		SAMOY CLAY: BROWN, MOIST-
	a						32	
		21	40	19	5 100	84	-	SAFE: LIGHT BROWN, MOIST-
5.5							-	
	SPI	9		ış	100	41		STETY SAMD: ETBAT BROWN, NON-CONESTIVE.
9.0							16	
10.5	SM/S	v	25	6	100	45		STLTY SAND/CLAYEY SAND: BROWN, MOIST, HON-COHESIVE.
	rt.	14	29	6	100	58	28	SWEY SILT: 1,18HT BROWN, MOIST, 1 INCH LENS QLAY, 1 INCH LENS DECOMPOSED MODE:
13.5	a .	21	41	22	100	79	26	SAMPLY CLAY: LIGHT BROWN TO BROWN, MOIST-
16.0	571	13		₩	100	44		SILTY SAND: GREY, MOIST, HON-COMESIVE
13.0	a	32	47	71	100	31	16	SAMOY CLAY: BROWN, MOIST, CONESIVE, 172 INCH INTERNITTENT
19.5							10	SILT LENS-
	791	51	80	25	100	94	14	CLAYEY SILT: RICOM, MOIST, COMESTVE, ORGANIC, SILFER COOR, 2 INON REACK LEWS.
23.0	СН	42	55	37	190	98	15	CLEY: BROWN, MOTST, CHESTME.
25.5 ¥ 26.0		36	34	,	100	83	-	SARTY SILT: GREYISH BROWN, MET, MON-CONESIVE, MATER AT 26-9 FEET.
	A.	32	37	à	100	98	20	SILT: SAME, GREY-
30.0		n		*	190	15		SILTY SAND: GREY, NET, HON-COHESIVE, FEN SMALL SHELL
	24						22	FRAGRENTS.
59.0		?8		w 0	100	47		
35.2	Y/X	_26		·P	100	11	15	SMP/STLTY SMIT: GREY, HET, HON-CONESTVE, NO PERCENT SHELL FRAGMENTS:
37.5	591	26		*	170	15		STELLY SAME: GREY, WET, MON-COMESTIVE, AT PERCENT SHELL FRAGMENTS.
39.5	SP/SH	29		40	100	8	71	CAMIT/STILTY SAMIT: GREY, NET, HON-COMESTIVE, 20 PERCENT SHELL PRAGMENTS.
		73			100		,	SMID: GREY, NET, MON-CONESIVE, SHELL PRAGMENTS.
	',ο	27			100	-	10	
<u> 14. 2</u>							10	

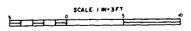
TT79~1

179-L			3	TA 98+	973 C			€L. 9t			
EPT4	L06	4	Lu.	Pī	•	-200	*	DESCRIPTION			
	3 #	11		•	94	19		STLTY SAMP: LIGHT BROWN, MOIST, WEED GROWTH-			
L		79	FT	9	100	74		SANTY SILT: FINEY, NET, MATER AT 7-0 FEET-			
<i>I</i> .a		·		13	100			SANDY CLAY: BLACK, NET, ORGANIC SPELL.			

TH83-2538

7/83-7 	2538		S	TA 100	P 00+C			EL. 21±
DEPTH	106	ж	ū	PI	4	-200	Ħ	DESCRIPTION
1.0	SP/SP	- 4		. MP	99	11		SAND/STLTY SAND: BROWN, MOIST, NON-CONESION
		11		MP	99	40		SILTY SAND: LIGHT BROWN, NON-CONESIVE, MEDI GRAINED SAND-
		20			99	49		SAME: BROWN, MOIST, FINE GRAINED SAND-
		_					19	
	24	12		r	100	41		
		9		₩	100	37	15	
		12		¥	100		11	
		14	74	7	100	45		
								SAME: GREY-BROWN-
		5		*	99	14	,	
6.0								
		30	53	24	100	77	13	SANDY CLAY: BROWN, MOIST, CONESIVE-
	CH	36	5/	29	100	94		CLAY: WATER AT 23-0 FEET.
		48	58	3 0	100	96	15	į
23.0								1
		36	58	27	100	95	16	SILT: "ROWN, MOIST, CONESIVE-
	M	92_	55	22	100	-98		SME: GREYISH BROWN-
g -	- CH	85	55 69 57	23	100	- 86 99 54	5	SAFE: DARK BROWN, CONESIVE, ORGANIC
.5 28 (103	57	17	100	54	•	SAMILY SILT: DARK GREYISH BROWN, CHESTVE, SA
28 0)	32	37	12	100	60		SANDY STET: DARK GREY, COMESTME, SHELL TRAG
	n.	32		₩	100	55	30	SAME: PRE:NIC-
		32		Ψp	100	30		SAFF: FIREY, SLIGHT CONESION-
1-0	_						19	
.0	50 /SM	29		40	90	8		SAND/SILTY SAND: GREY, HET, 50 PERKENT CO
		>5			98	4	57	SAMT: PARK GREY, NET, 25 MERCENT SHELL FOR
	20							
		95			95	4	17	SAFE: 17 PERCENT SHELL FRAGMENTS.
.0	- A -		-	-,	-		5 4	
.0	PL 97/5H	29 75	47	11	110	54		SAMIY SILT: DAW GREY, WET, COHESIVE [T
<u>Q</u>	y/3n	/3			[চ্যা	3		SMO/SILTY SMID: TANK GREY, WEY, FEW THE

TH83-2538


i.	Pl	-4	-200	н	DESCRIPTION
_	HP.	99_			SAND/SILTY SAND: BROWN, MOIST, NON-CONESIGN-
	МP	99	40		CILTY SAND: LIGHT BROWN, NON-COMESTVE, MEDIUM TO FINE GRAINED SAND.
	₩	99	42		SAME: BROWN, MOIST, FINE GRAINED SAMO-
				19	
	Ł	1,00	4)		
				15	
	*	13	1-		
_	₩.	1X	70	1"	
•		17	7.5		
,					SAME TREVERROMAN
	ΨÞ	39		٠	
	24	100	•••		SMIDY CLAY - BROWN, MOIST, CONESIVE-
				įt.	
,	29	100	ji.		CLAY WATER AT 23-0 FEET-
3	ŧΩ	100	*	ię	
	27	122		14	TILL ROOM, MOIST, COMESIVE-
5	22	ix.	_3		SAME SPEYISH BROWN
_	23	-3	21	,	SAFE THE BROWN CONESTYE ORGANIC
} -	- 27	19	_ 		TAY SREY COMESTYS BROWN, COMESTYE, SHELL PRASMENT
,	12	:00:			MANDY SILT DARK GREY, CONESTYE, SHELL STAGMENTS.
	•	: 7 :		ξ.	SAME PAGINIC
	φ.	:1:			CAME GREY, SUIGHT CONESSION-
				13	
_	**	25			TANOMIC TY SAND GREY, WET, SO PERCENT SHELL FRAGMENTS
-		*		**	"MA" "NAW GREY, WE'T, "IS DERCENT SHELL EPAGMENTS.
					TAPE 11 PERCENT SHELL FRABMENTS
		Ψ,			

THE TANK THE

TT84-258I

MC .	U	Pį MP	100	-200 5	4	DESCRIPTION SAND/SILTY SAND: MALTICOLORED, MOIST TO NET, MEDIUM TO FINE GRAIMED SAND, OCCASIONAL GRAVEL, NATER AT 1-0 PEET.
			100	5		SAND/SILTY SAND: MULTICOLORED, MOIST TO WET, MEDIUM TO FINE GRAINED SAND, OCCASIONAL GRAVEL, MATER AT 1-0 PEET-
	33					
		6	100	62		SAMDY SILT: DANK BROWN, WET, CONESIVE-
	85	54	100	93		CLAY: LIGHT GREY WITH BROWN AND RED VEINS OF ORGANIC MATERIAL, CONESIVE
		₩	100	29		SILTY SAND: DARK GREY, NET, COHESIVE, FINE GRAINED SANE
		85				

- 1 SEE PLATE 25 FOR LOCATION OF TEST HOLES AND TEST
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

SYMBOL	DESCRIPTION		DATE	MAMOAM					
	REVI	SIONS							
		U. S. ARMY ENGR LOS AND CORPS OF ER	PLES	cī					
DESIGNED BY:	SANTA ANA PHASE II GEI	RIVER MAINSTEM, CALIF MERAL DESIGN MEMORA	ORNIA OUM						
SLAWN SY.	LOGS OF INVESTIGATIONS								
	CORPS OF ENGINEERS								
CHICKED SH	STA.105+00 TO STA.98+00								
SUBMITTED BY:	DATE APPROVED	SPEC NO. DACWOP.	b	94007					
		DISTRICT PLE NO.							

TH83+2541

							Ţ	H83-2539
EXIS		GRO) STA 95	•00 I			ել, <u>8</u> ±
								
DEPTH	L06	HC .	u	PĪ	4	-200	*	DESCRIPTION
	M.	19		₩P	100	65		SANDY SILT: BROWN, MOIST, MON-COMESIVE.
3.0							. 14	
4-0		19_	.46	21_	100	82		SMIDY CLAY: TANK BROWN, MOIST CONESTATE.
5.0	SH	13	24	2	100	29		SILTY SAID: LIGHT BROWN, MOIST, NON-CONESIVE-
5.0	CH_	10_		MP	100		. 17	SAMITY SILT: LIGHT BROWN, MOIST, NON-COMESIVE
7.0 8.0	- 11	.14		MP.	190 190	98_ 54		CAY: BROWN HOIST, CONESIVE
<u>g.u</u>					120	29_	. 6	SAMTY SILT: PROBEL MOIST, MON-COMESIVE. SAMTY CLAY: PROBEL MOIST.
	ď,	44	#8	25	100	79	0	Servi (Ent. mediat, motor.
1.0								
		<u>a</u>	n	40	100	70		SAMINY (S.AV. Borney, HOVEY,
	CH	R			196	48		SAMINY CLAY: BROWN, HOIST- CLAY: GREY, MOIST-
4-0								
15-0		33	25	_4	188	54		SAMBY SILT: BORY, MOIST, NON-CONFSIVE MATER AT 15.0 ET
	M.	弱 切			190	- K		SMBY SILT: GREY, MOIST, NON-CONESIVE, MATER AT 15:0 FT. SME: GREY-BROWN, MET, SOME CONESION- SME: GREY, NON-CONESION-
5.5							33	
	80				1:30	2		SAND: GREY, WEY, 40 PERCENT SHELL PLAGMENTS.
3.2								
		27		180	10n	4	14	CAMB/STILTY SAME: GREY, HET, 13 PERCENT SHELL GRACHENTS.
		2,		*	5.46	٠		
	\$P/\$M							
				Yp:	inn	5	3	SAFE: FON SHELLS.
				•	.5	,		
.0								
								SANT: GREY, WET, 40 PERCENT SHELL FRAGMENTS.
		3.1			1,00	ī		
	_	2/			130	2_	22	SAND GREY, HET, 40 PERCENT SHELL FRAGMENTS.
	\$	27			()n	4		CAME. FEW SHELL PRASHENTS.
		75			TO:	~		SAME AT PERCENT SHELL PRAGMENTS.
							10	Service Course datas
		27			199		37	
<u></u>								

DEPTH LOG				STA 99	+50 L		€1. 202
DEPTH	L09	МС	Li.	PI	-4	-200	N DESCRIPTION
3-0	9P-SH	17		₩	.30	,	SAND/SILTY SAND: LIGHT BROWN, DRY, F
	sc	10	29	12	100	49	CLAYEY SAND: BROWN, MOIST, FINE GRAIN
8.5	sc.	6	41	18	100	19	SAME: BROWN AND GREY-
		23	31	:7	120	67	SAMDY CLAY: DANK BROWN, MOIST, FINE O
	2						
		25	47	72	170	71	
		29	47	33	727	75	
5.5		70-	3		1.0	70	SAME: BROWN-
7.0	٩	25	57	· · · · ·	130	68	SAMMY CLAYEY SILT: "ROWN, MOIST, FINE
8.5	ı	45	42	1,	130	¥6	SILTY CLAY; DARK BROWN, MOIST.
20-0 3-5	СН	29	Si	24	1.0	92	CLAY: DARK BROWN, MOIST. SAME: LIGHT GREY, WATER AT 23-9 FEET.
	sc	34	41)	16	ini	21	CLAYEY SAND: BROWN AND GREY, SATURATE
13	975 1			W	7.55	_11	SMO/SILLY SAMO: SREY AND GREEN.
		35	56	٤.	:ກ	14	STETY SAND: BARK GREY AND MIXED WITH
		72	£: _		[1]	٦٢	SME: THANK GREY, WHETE BROVEN SHELLS.
	SM.	29		*		43	SAME: TARK GREY WITH BROWN.
				V F	ins.	49	SAME: BARK GREY-
.5	ςρ	•					SAND: DARK GREY, COARSE TO FINE GRAINE
<u></u>					122		FR AGMENTS.
				/			SAND/CLAYEY SAND: DARK GREY, WHETE SHE
					1.01	_	

MD.

TH83-2541

-4	-200	N TESCRIPTION
	200	
190	,	SAMO/SILTY SAMD: LIGHT BROWN, DRY, FINE GRAINED SAMD-
		CLAYEY SAND: BROWN, MOIST, FINE GRAINED SAND-
100	49	
120	19	SAME BROWN AND GREY-
100	6"	SAKITY CLAY - DARK BROWN, MOIST, FINE GRAINED SAND-
191	$-\eta$	
100	75	
130	7	CATE BROWN
106	58	TANDY CLAYEY SILT: PROWN, MOIST, FINE GRAINED SAND
100	*	CILTY CLAY, DARK BROWN, MOEST-
1.00	ď,	TAY DARK BROWN, MOIST
•		SAME LIGHT GREY, WATER AT 20-0 FEET-
100	2.	24/5Y SAND: PROM AND GREY, SATURATED-
100		SARD/ST. TY SARD, GREEN GREEN
:00	1.0	OF THE SAME THANK SHEW AND HISKED HIS DHE BROWN.
110	<u>[x</u> _	THE - TARK GREY, WHITE BROKEN SHELLS.
j.r	-3	"AME "ARY GREY HIT TH BROWN:
176	73	TAME TARK GREY.
;1		THE THAT GREY, CLAPSE TO FINE GRAINED SAND, SHELL THAT HEATS.
		THE CLASS CARD - THE GREY, WHITE SHELL STREETS.
	1000 1000 1000 1000 1000 1000 1000 100	100 49 100 17 100 6° 100 6° 100 71 100 75 100 75 100 88 100 80 100 80 100 17 10

TH83-2540

TH83-25	4 0			TA 90+	JO R			EL. 20±
DEPTH	L06	MC	ш	Pį	4	-200	H	DESCRIPTION
		9		ΝP	100	13		SILTY SAMD: LIGHT BROWN, MOIST, MEDIUM TO FINE GRAINER SAND, NON-CONESIVE.
							12	
		8		жР	100	24		SAFE: BROWN-
		•			100	24	20	
	SM	11		ųР	100	41		SAFE: LIGHT BROWN, FINE GRAINED SAND-
		7		MР	100	29	8	
		_						
		14		МЪ	100	38	6	
		4		ﻪ	100	16		
3.5	n.	74	37	18	100	55	17	SAMBY CLAY: FREY-BROWN, MOIST, COHESIVE-
5.5								
	294	u	52	22	100	88	11	SILT: GREY-BROWN, MOIST, COMESIVE-
8.5								
n.5	CH	41	57	35	100	91		CLAY: "MARK BROWN, MOIST, COMESIVE-
0.5 1.0 2.0	đ	- <u>\$5</u>	19	23	100	93		O AYEY SILT: LIGHT AROSH, COMESIVE, TRACES OF OLAY. SILTY CLAY: GREY, MOIST, STIFF, COMESIVE.
3.5	СН	39	78	47	100	92		CLAY: LIGHT GREY, MOIST, STIFF, COMESTVE-
	S#	31		Ψ,	100	37	29	SILTY SAKO: PARK GREY, MET, NON-COMESIVE, ORGANIC-
6.5								
v:2			_					SANDY CLAY: NAPY SREY, WET, MATER AT 30-0 FEET.
	α	35	39	ts	100	84	35	
(<u>30-0</u>	u.							
							27	
2.5								SILTY SAMD: THANK GREY, WET, MON-CONESIVE, COARSE TO P GRAINED SANDS, 20 PERCENT SHELL FRAGMENTS, ORGANIC-
	514	26		М	97	15		GRAINED SANDS, 20 PERCENT SHELL TRACMENTS, ORGANIC-
56.5							19	
		25		4 0	35	11		SAMB/SILTY SAMB: "MARK GREY, WET, NON-COMESTVE, 10 THE SHELL FRAGMENTS, ORGANIC-
	45/4						25	SAME: 5 PERCENT SHELL FRAGMENTS-
								SATE: 10 PERCENT SHELL FRAMENTS.
5.0							26R	

SCALE: I M-SFT

- 1. SEE PLATE 25 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE SA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3. SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

				-					
SYMBOL	ОВЯСИРТОН		DAN	APPROVA					
	REV:	SIONS							
		U. S. ARMY BYGINE LOS ANGE CORPS OF BYG	LES	CT					
0000H89 8Y		RIVER MAINSTEM, CALIFO MERAL DESIGN MEMORAND							
SRAWM ST.	LOGS OF INVESTIGATIONS								
i	CORP	S OF ENGINEERS							
CHICAGO Ph	STA.95	5+00 TO STA.90+00)						
BURNATTED SY:	DATE	WEC NO DACWOS.		94007					

TH83-2542

THB3-2	TING 542			STA 86	+00 L			£L. 7\$
DEPTH	L06	RC	u	PI	-4	-200	*	DESCRIPTION
								SAMPY SILT: Recent, MOIST, MON-COMESTVE-
	A.	15	44	7	100	56	_	
		-77		-18	100	- en	. 38	CASE. POSTERIO
9.5		23			100	50		SAME: COHESTYE-
i.5	SC	14	41	19	100	45	398	CLAYEY SMID: GREYTSH BROWN, MOIST, SOME CLUMPS OF SILT-
	SPI	9	50	21	100	20		SILTY SMID: GREYISH BROWN, MOIST, NON-CONESIVE, MEDIUM TO FINE GRAINED SAND-
	α	21	4.7	24	10^	72	24	SANDY CLAY: BROWN, MOIST, CONESTIVE, SHELL FRASMENTS-
.1	٠	72	F4	31	100	5.7	24	SAMPY SILT: BROWN, MOIST, COMESIVE, SHELL FRAGMENTS-
.0	•	••		^	100	<i>.</i> .		Jan - Vict. Brown, Forst, Committee, Street Principalis-
.5	581	18	62	23	100	48		STLTY SMITH: LIGHT BROWN, MOIST, NON-COMESTVE, SOME SHEL PRAGRESTS.
		24	48	21	100	51	24	SANDY (LAY: GREY, MOIST-
	α	23	42	19	100	56	30	SAPE: SLIGHT ORGANIC SHELL, MATER AT 20-0 FEET-
20.0 .5	3	23	- 57 61	Į.	100	69		SANDY SILT: GREY, WET, ORGANIC, ROOTS-
.5		<u>"</u>		<u>~</u>	100		18	CLAY: LIGHT GREY, HOIST-
	sc	29	45	23	190	24		CLAYEY SAND: 1, IGHT GREY, NET-
.0		31		40	190	2º	25	SILTY SMID: GREY, WET, MON-CONESTIVE, FIRE GRALMED SAND, SHELLS-
	SM			•	100	35	2 9	SAME: MAGANIC-
0								
	sc	39	39	15	190	45	*1	CLAYEY SAND GREY, MET, FINE GRAINED SAND, SHELLS-
.0								
5	21_	18		P	100	36_		SILTY SMID: SMEY, MET, OMERATIC-
0	P/SI	35		MD.	100	6		SMOVSILTY SMO: GREY, HET, ORGANIC:

TH79-10

DEPTH	1.06	MC	ш	P)	-4	-200	N	DESCRIPTION
	n.	14	29	6	100			SAMOY SILT: LIGHT BROWN, MOIST, FIRM-
3-0		_				-		
							12	CLAY: SAME AS ABOVE-
	α	74	42	21	100	86	••	SAFE: STIFF.
			72	21	100	œ		CHE Company of the co
9.0								SAFE: FREY BROWN WITH RUST, MOIST, FI
							9	SANDY SILT: SAME AS ABOVE-
							9	SAME: GREY, MET, FIRM TO STIFF, INTERIFIES SAND.
		32		Mb.	100	53		FIRE SAND-
14-5								
14:2		_					15	
		39		₩°	100	73		SAME: LIGHT GREY, WET, DENSE-
			_					
	ų							SAFE: FREY, HET, FIRM TO STIFF, SLIGHT
		53		*	100	95	เก	
							17	SAME: SCATTERED SHELL PRAGMENTS, INTERN
		30		¥C	100	88		SHEET SHEET SHEET PRINGERIS, 14150
						~~		
.5	 .						15	
								SILTY SANT: SAME AS ABOVE.
	78	17		*	100	17		
.5								SAME: GREY, MOIST, VERY DENSE, OWELLS PRABMENTS.
.1							66	SAMD: ARRY, MOIST, VERY DENSE-
	9	<i>j</i> :			100	4		The second secon

TH83-2543

					_	10	TH83-25	43			1A /0+	/2 R			€L. 192
ND					<u></u>	179-10	DEPTH	LOS	MC	u	PI	-4	-200	H	DESCRIPTION
ST	92+	00 L				EL. 10±		92						24	SAND: LIGHT BROWN, HEBIUM GRAINED, HOW-COMESIVE-
u	Pl	-1	4	-200	N	DESCRIPTION	3.0							•	
29	6	100	0	56		SAIDY SILT: LIGHT BROWN, MOIST, FIRM-	_2:0		9						SILTY SAND: BROWN, MOIST, NON-CONESIVE.
<u> </u>						OLAY: SAME AS ABOVE-	8.0	SP/SA						12	
					12	SAFE: STIFF.	8.0		10						SAND/SILTY SAND: BROWN TO LIGHT BROWN, FINE TO MEDIUM GRAINED, HON-COHESIVE-
42	21	170	}	%		SAME: GREY BROWN WITH RUST, MOIST, FIRM TO SOFT.		29	8					5	SANT): LIGHT BROWN, FINE GRAINED, NON-COMESIVE-
							12-0							8	SAME: GREY, DRY
,					,	SAMILY STUT: SAME AS ABOVE-	13.5	M.							SILT: RROWN, MDIST, COMESIVE-
*	¥	190		59		SAME: GREY, MET, FIRM TO STIFF, INTERBEDS OF SILT AND FINE SAMO:		СН	37	73	40	100	99		CAY.
							16-5								
					15		18.5	۹.	-Z5 						SILT: BROWN, MOIST, COMESIVE
	I ₽	130		*1		SME: LIGHT GREY, WET, DENSE-					54	100	190		(LAY.
							21.5								SILT: WATER AT 24-9 SEET.
					10	SAME - GREY, MET, FIRM TO STIFF, SUIGHTLY MICAGENIS.	<u>4 24 0</u>	*	35	41	ĬΦ	190	99		DELL MARIES AT SANT PEET-
	₩	170		#			79.5								CILTY SANT.
								24	27		*	100	14		if it Ander
							27.5	<u>A</u>							SMATE GREY, SATURATED, AT PERCENT SHELL BRADENTS.
					;'	SAME SCATTERED SHELL PRAGMENTS, INTERBEDS OF SILT.	20.0	OI.					===		CLAY: SREY, MOIST-
	MP	ĮX		só		· · · · · · · · · · · · · · · · · · ·		SP/SM	15		% P	199	ıı		SAMO/SILTY SAMO.
					14		11.5		25				_	5.2	SATO: GREY, SATURATED, SHELL FRAGMENTS.
_						SELTY SAMP. CAME AS ABOVE.									
	•	į.v		:•					25					วรุง	
						TAME THEY, MOTIT, VERY DEMSE, SWELLT AND SWELL STADISHTS.			_						
			-		4	TAMO GREY, MOIST, VERY DENSE-			29					72	
		y				many many regression		50							
		•		•					27					56	
					114				~						
									23						
														504	
									24					25	SPE: LARGE SHELLS.

SCALE: I N-3FT

- 1. SEE PLATE 25 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE & FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

SYMBOL	DROSTRONS	\$47E	APPROVAL
	REVISIONS		
	U. S. ARMY ENG LOS AN CORPS OF E	GELES	
00000-01.	SANTA ANA RIVER MAINSTEM, CALI PHASE II GENERAL DESIGN MEMORI	FORMIA NDUM	
MAWN BY	LOGS OF INVESTIGATION	NS	
į	CORPS OF ENGINEERS	;	
CONCRED BY			
	STA.86+00 TO STA.76+	72	
SUBMITTED BY.	PATE APPROVED. SPEC. NO. DACWOS.	.	\$14001
i	DISTRICT FILE NO.		

TH83-2546

EXIS	TING	GR	OUN	D.		10	00_	2346
TH83-25	346		S	TA 704	50 L			EL. 10#
DEPTH	L06	HC	ц	PI	4	-200	H	DESCRIPTION
	α	18	32	9	100	81	15	SAMBY CLAY: BROWN, MOIST-
	u	10	^	,	100	••		
3.0	n.	31		100	100	82		SAMDY SILT: BROWN, MOIST, NON-COMESTVE.
4.5								
	α	43	30	15	100	97	5	CLAY: BROWN, MOIST-
8-0								
		22_		100	100			STLT: BROWN, NET, CONESIVE-
¥ 11.0	M.	37		No.	99	65		SAMIN SILT: SAME, GREY, MATER AT 11-0 FEET-
12.0							21	
								SILTY SAMD: GREY, SATURATED, NON-COHESTIVE-
	SM	20		NP	100		24	
16-0		25		MP.	100	18		SAFE: SHELL FRAMENTS-
17-0	37/31	25		_	97		37	SMID/SILTY SMIT: FREY, SATURATED, SHELL PRABPIENTS.
		26_		165	99_	27		STLTY SAMD: GREY, SATURATED, 2 INCH LENS OF 50 PERCENT SHELL PRAGMENTS.
	SM	28		Mb.	100	16	36	SAME: NO LENS OF SHELL FRAGMENTS-
22.0								
								SMID: SREY, SATURATED.
	SP	27			100	3	440	
	•	_						
					100	2	48	
23.C							12	SAND/SILTY SAND. GREY, SATURATED
	56/24	25		180	100	5		Service Service and Services
							39	
11-0	3 9	26			100		9	SAND: FIREY, SATURATED.
3.0						<u> </u>		
	SP/SM	26		•	100	5	18	SMM/SILTY SMM: GMEY, SATURATED-
56.Q							26	
							32	SASTI: GREY, SATURATED-
		?5			100	3	इर	
							17	
		?5			190	3	57	
	Ş						21	
		25			100	4	31	
							36	
		24			100	3	13	
								
		25			120	3	35 37	
1-5								

TH79-9

INVE			S	A 67•	50 R			£L. 8±
DEPTH	L06	MC	ц	PS	4	-200	H	DESCRIPTION
	9P/SM	11			100	12		SAME/SILTY SAME: LIGHT BROWN, MOIST, LOOS SAME: LIGHT GREY, MOIST, DENSE-
4.0							47	
	4.					-		CLAY: LIGHT GREY, MOIST
8.0	CH	57	79	46	100	96		SAME: BROWN, MOIST-
							18	SANDY SILT: DANK BROWN, HOIST-
	M.	31		МP	100	63		
13-0								
	SM	28		NP	100	28	10	SILTY SMID: DARK GREY, MOIST, SLIGHTLY MIL
18-0								
<u>₩ 20-0</u>		29		#P	100	73	22	SANDY SILT: INTERMEDS OF SILT.
	A.							
							28	SILT: DARK GREY, MOIST-
		33		*	100	89		
28.0							16	

TH79-9

IA 67+5	0 R			£L. &#
PI	4	-200	N	DESCRIPTION
IP.	100	12		SMBUSILTY SMBD: LIGHT BROWN, MOIST, LOOSE- SAME: LIGHT GREY, MOIST, DEHSE-
46	100	96	47	CLAY: LIGHT GREY, MOIST-
 ;	100	63	18	SMBY SILT: DANK BROWN, MOIST-
MP	100	28	10	SILTY SAMD: DANK GREY, MOIST, SLIGHTLY MICACEQUIS-
HP	100	73	22	SANDY SILT: INTERBEDS OF SILT-
**	100	89	29	SILT: DAMK GREY, HOIST-
			16	

TH 79-8

79-8	TING	אט		IA 67+5	10 L			EL- 10t
ED IH	L06	MC	u	PI	4	-200	H	DESCRIPTION
								QLAY: LIGHT BROWN, MOIST, SOFT-
	CH	25	62	33	100	86		
.و.								
							5	SANDY CLAY: GREY BROWN WITH RUST, MOIST, SOFT-
	a.	45	47	28	100	52		
.0								
-0							5	CAND/SILTY SAND: GREY, WET, MANY SHELL PRABMENTS
	SP/SA	25		HP	100	8	9	
-0		_					**	SILTY SAND: GREY, WET, TENSE-
							"	Sieri sale. Sieri et la la la la la la la la la la la la la
	SM	26		ЖP	100	14		
.0								
							53	SAND/SILTY SAND: GREY, HET, VERY DENSE-
		23		МP	100	7		
	SP/SA	_					22	SAME: GREY, WET, MEDIUM DENSE, SHELL FRAGMENTS.
		24		WP	100	12		
								SAME: DENSE-
.0								
							36	SILTY SAND: GREY, WET, DENSE, SWELL FRAGMENTS.
	SM	21		190	100	17		
٠.0								
							56	

SCALE: I M-SFT

- I SEE PLATE 25 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE SA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

SYMBOL	BESTERON	SIONS	DATE	APPROVA
		U. S. ARMY ENGIN LOS ANG CORPS OF EN	ELES	ict .
CESICHED BY.		RIVER MAINSTEM, CALIF NERAL DESIGN MEMORAN		
BRAWN Pr.	LOGS	OF INVESTIGATION	4 S	
	COR	PS OF ENGINEERS	}	
CHICUS IN	STA.70)+50 TO STA.67+5	60	
SUBMITTED BY:	DATE	Ti		SHET

Ele. 5.2'

0.55

083

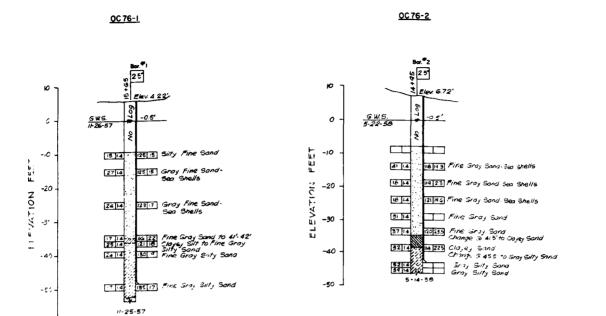
C 50

018

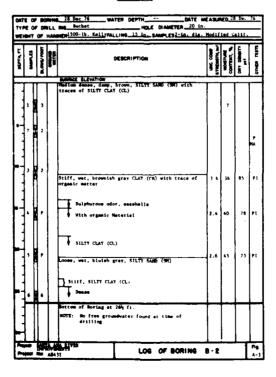
050

-[2]

[19]


water table in surs

-10


F-IJ IJ

-70 i

VATION

WC 77-2

- I SEE PLATE 25 FOR TES
- 2. SEE TABLES 4 AND 5 FROM WHICH THESE LOGS AND EXPLANATIONS ARE CO
- 3. LOGS BY OTHERS ARE OF DETERMINE THE GENERAL

Sana-Seo shells

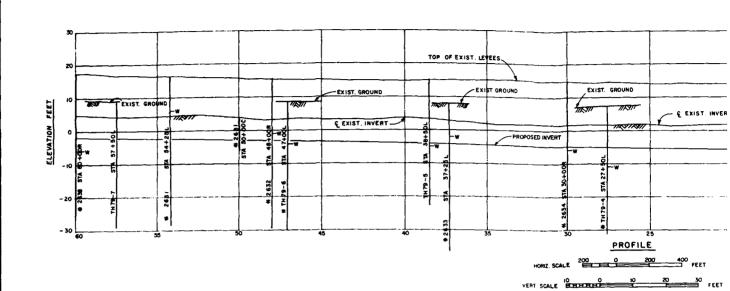
y Sond 4.5' to Clayey Sond

100 455 to Snay Sity Sno.3 ty Sond ty Sond

r. Sund

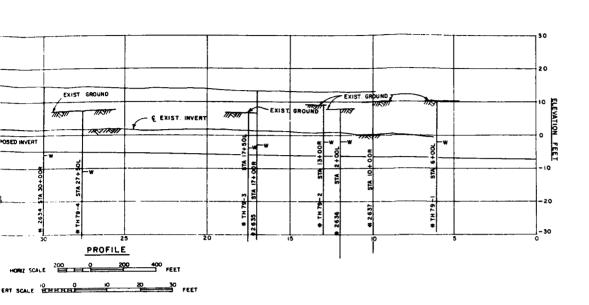
<u>0076-3</u>

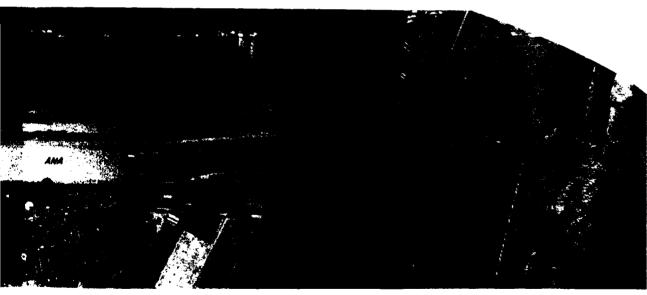
Elev 5.2' 0 7-3-57 Compact silty sand -10 0.85 21 14 Compact si sulty sand+shells 는 1) 보 -20 -089[20]14 | 182|30 | Compact Sity sand | 186|21 | Sense Slear fine sand 0.50 20 14 NCITAVE-0.18 48 14 water table | 46|14 | 15 :majer | 45|14 Dense clean coarse sond+shells St. 4 clay derse with some pent 050 3 4 Sil confloct silty sond 1211714 7-3-57


0C76-4 Ю Elev 3,1" GWS ELev-2.3'

Compact black fine suity sund -10 052 0 1A FEET Hard 01124 5/14 2/3 -20 U2 |58 4 ELEVATION 114 48 . 4 -30 081 61 14 -40 219 42 14 Attention of the second ET:Ta

--0


- SEE PLATE 25 FOR TEST SITE LOCATIONS
- 2 SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WERE TAKEN. ALL LEGENDS AND EXPLANATIONS ARE CONTAINED WITHIN THE REPORTS
- 3 LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE


STMBOL	DESCRIPTIONS	DATE	APPROVAL
	REVISIONS		1
	LOS	NGMEER DISTR ANGELES OF ENGINEERS	icī
DESIGNED SY.	SANTA ANA RIVER MAINSTEM, C PHASE II GENERAL DESIGN MEM		
CEAWN SV.	LOGS OF INVESTIGAT	TION	
	BY OTHERS		
CHECKED BY.	STA.130+00 TO STA.6	0 +00	
PARTIED BY:	DATE		SHEET

- I. SEE PLATE 8 FOR LEGEND AND GENERAL NOTES.
- 2. SEE SUBSEQUENT PLATES IN THIS PLATE NUMBER SERIES FOR LOGS OF INVESTIGATIONS.

DATUM	IS NATIONAL GEODETI	C VERTICAL DATUM C	F 1929	1
STHEOL .	SECCUTION S	LIONS	SATE	APPROV
	Revi	U. S. ARMY BHGR LOS ANG CORPS OF BH	6.25	cr
		RIVER MAINSTEM, CALIFO IERAL DESIGN MEMORAN		
STATUTE ST.	PLAN AND	PROFILE		
CORDONO DA	STA.60+00 TO	OSTA.0+00		
SUBMITTED BY.	DATE APPROVED	SPIC. NO. PACWOR	•	946
		DISTRICT FILE NO.		1

						IH	83 - 1	2638 ճ. ւ 17ե										
7#3-263V	ı		5	TA 60+0	NG R										1	<u>H</u> 7	9-1	L
EPTH	L06	MC	u	Pĵ	4	-200	H	Description	<u>EXIS</u> 1109-7	TING	GR		_	-				FI. 19#
		.,	34	14	100	47		CLAYET SAND: BROWN, MOIST, MON-COMESTIVE, 2 INCH LENS OF SILT-					TA 57•					DESCRIPTION
	æ	12	*	14	100	•	44		DEPTH	L06	MC .	ш	Pl	-4	-200		-	
3-0		15		*	100	55	"	SMOY SILT: PROM, MOIST, HON-C'MESIVE.		SM	9			100	37			SILTY SAMD: ORANGE-BROWN, MOIST, METH GRAMEL TO 3/4 INCH-
5.0								SILTY SAMD: LIGHT BROWN, MOIST, NON-CONESIVE, PERILUM TO	2:0		35			100	73	-		SMOY SILT: GREY-MATHIN HETH RUST, HITE
		3		M	100	15	8	FINE GRAINED SAND.	4.0	MH	-"			100			3	CAMEN / CILITY CAMEN: GREY, MOIST, SOFT TO
	SM																	MICACEGUS, SHALL ROOTS.
		6		₩.	100	35	2			59/54	35		40	190	11			
		-																
11.0		32		MP.	100	91	3	SILT: BACK MICHAL, MOIST, COMESIVE, ORGANIC MATERIAL.	9.0							_	5	SILTY SAND: GREY, MOIST, SOFT TO FIRM
		52		•	Like	•					19		197	190	ı	6	,	
		-					- 5							100	•	_		
									MILE.C		_					_		
W 17.5									•								24	SAME: GREY, MET, MEDJIM DENSE, SHELL 2 INCH LENS SILT, BROWN, MET, SOFT.
		39		100	170	97					23		•	100	, ,	5		SAME: FIREY, MOIST, MEDIUM DENSE, SM
	1																	FRACHENTS-
											_					_	23	
		-					-	SANDY SILT: GREY, MET, MON-COMESTVE, MEDIUM TO FINE										
		3	•	ΨP	190	70	5	GRAINS, SOME SHELL PRASMENTS.			18		,	P 19	, :	26		
		_					_											
		2	3	₩.	100	55	4			\$1	٠ -					_		
21-0							_				5.	,		P (1	n	16	33	
								SILTY SAND: GREY, WET, FINE GRAINED SAND, SHELL SANDREY.			э.	4		, ,				
	34	4	1	4	33	3	3											
											_						29	SAME: WET, MEDIUM NEWS TO THEMSE.
33:2 34:0	975	7 7	5		9	7	.	SAMM/STILLY SAMD: THEY, NET, FINE GRAINED SAMD, SHELL PROPERTY.							~	21		
23_			.4		12	,	4 20	SAND: SHEY, HET, NON-COMPSIVE, MEDIUM GRAINED SAND-			2	5		¥P !!	.N	21		
		•			• "												23	
	9						_	SME: SHELL FRABMENTS.										
			85		19		4	•										
40.S			74		7 7 TO		र र	CHINAST TO SAME, GREV, SATURATED, METEUM CRAIMED SAMES.										
	39 7	Ç# .					ı		39.	0			•					
45.0			20 ———		P 3		_										34	
	3	n	虭	•	to IJ	n 1	.3	CILTY SAMP; GREY, SATURATED, FINE GRAINED SAMED										

TT84 - 2681

194-25			\$1	A 50+0	n c			£L. 4±				
EPTH	L06	-MC	u	Pf	-4	-200	H	DESCRIPTION				
	9				ເກ	1		SAND: PLULTI-COLPR. WET, MEDIUM GRAINED SAND-				
3.0	۹.		₩,	15	100	η		SILT: TANK THOM WITH REDDISH BROWN PARTICLES, MET, CHESTVE.				
5.0			57	. 40	100	80		SAMIY (LAY: LIGHT GREY, WET, CONESIVE-				
	CH	***	54	85	100	70		CLAY: THE BROWN WITH RESIDESH BROWN PROFICUES, NET, CONESIVE.				
10-0												

<u>TH79-7</u>

•	j0			€L- 10±
	4	-200		DESCRIPTION
	100	77		SILTY SAVID: DRANGE-BROWN, MOIST, MEDIUM DENSE, SOME GRAVEL TO \$/4 LINCH-
	100	73		SMBY SILT: GREY-BRIMM WITH BUST, MOIST, SOFT-
_	100	ţ1	*	SAMO/SILTY SAMT: GREY, MOIST, SOFT TO FIRM, SLIGHTLY MICAGEOUS, SMALL ROOTS.
	100	15	٤	SILTY SMITE: SREY, MOIST, SOFT TO FIRM, SLIGHTLY MICAGEOUS-
-			74	SAPE GREY, MET, MEDITH DENSE, SHELL PRABMENTS AT 15 FEET, 7 INCH LENS SILT, SHOWN, MET, SOFT-
	190	,,		SAME: RARY, MOIST, MEDIUM DENSE, SMELLS AND SMELL CRAGMENTS.
			23	
	190	76		
			17	
	130	.4		
-		·	313	CANT AFT, HERRICH TENST TO MENSE.
	100	"		
			٠,	

TH83-2631

TM83-26	TING 31			A 54+2	25 L			EL- 1/2
DEPTH	L06	MC	ıı	P[-4	~200	N	DESCRIPTION
	1.	25		МP	100	n		SILT: LIGHT BROWN, MOIST, MON-COMESIVE-
3-0	CH	'r)	50	24	190	99	18	CLAY: BROWN, MOIST, VERY FINE MATERIAL, COMESIVE-
6-0								Cht. Da
3.5	'n	47		NΡ	100	33		SILT: Brown, Moist, COMESIVE-
11.0	Sri	55		No	199	41		SILTY SAMD: GREY, HEDIUM GRAIN, HOIST, NON-COHESIVE, SOM SHELL FRAGMENTS.
3.0	31	29		;(P	94	35	13	SAIE: GREY, SATURATED, MEDIUM GRAIN, MON-COMESIVE, 20 PERCEYT SHELL FRAMENTS.
		19		ΥP	90	15	?5	SAMD/SILTY SAMD: GREY, SATURATED, MEDIUM TO COARSE GRAINED, MON"COMESIVE, 40 PERCENT SHELL FRAGMENTS.
	3P/5/1	20		ήs	36	30		
		?u		ηo	÷	12	45	
1-1 2-5	3P/3C	25	81	1.7	199	11		SAND/CLAYEY SAND: GREY, SATURATED, MEDIUM TO FINE GRAIN.
1.2	gr \$ 1	2.7		r	34	3	43	SAID/SILTY SAKU: GREY, SATURATED, MEDIUM GRAIN, SOME SHELL FRAGMENTS:
		.7		¥	127	15		SILTY SWO: GREY, SATURATED, MEDIUM GRAIMED, FEM SHELL FRAGMENTS.
	\$7	%		v	18	:-		
							35.3	
		27		*10	<i>p-</i>	, *		
3.0		11		F	, v.		• •	STRAFFIL IN SATE: SHEY, SAT MATER, HE THAN TO FERE GRAFFICE NONTCOMESTIVE.
				7	e)	1.	41	SATE: GREY, SATURATED, MEDIUM TO FINE GRAIN, NOMCOMESTIA FOR SMELL FRACTENTS:
	59/S.1			52	: \		:)	SAT: LEW SHELLS.
				No.	19%			
)								

- I SEE PLATE 26 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE 84 FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

			Ţ							
SYMBCA	RECEPTIONS.	OAW	APROVA							
	REVIS	IONS								
		U. E. ARMY ENGINEER DISTR LOS ANGELES CORPS OF ENGINEERS	ICT							
DESIGN-GED SY.	SANTA ANA P	RIVER MAINSTEM, CALIFORNIA ERAL DESIGN MEMORANDUM								
	LOGS OF INVESTIGATIONS									
DRAWN BY	CORP	S OF ENGINEERS								
CHECKER BY	STA.60	+00 TO STA.50+00								
SUMMITTED BY:	DATE	SPEC. NO. DACW 07 B	SHIET							
		DISTRICT FRE HO.								

TH83-2632

THB3-;	THB3-2632		51	TA 48	+00 R			£. 16t	
DEPTH	£06	ж	ц	PĮ	4	-200	N	DESCRIPTION	
		9		ИР	99	20		SILTY SAND: BROWN TO LIGHT BROWN, MOIST, MON-CONESIVE	EXISTI
	58	12		•	95	35	23	SAFE: Birn, MOIST, FON GRAVEL TO 3/4 INCHES, MON-CONESTVE.	DEPTH
		12		1P	100	34	19	SAVE: THROWN, MOIST, MON-COMESIVE	4-0
9.0							9		
10.5	20/41	4		100	100	12		SAMP/SELTY SAMD: LIGHT BROWN, MOIST, NON-COMESTVE	
11.5	ď	29	42	23	97		5	SARTY CLAY: BROWN, MOIST-	
19-0	SM	19 21		₩	700 700	44		SILTY SAMD: LIGHT GREY, MOIST, FINE GRAINED, NON-COMESTVE. SAME: GREY AND BROWN.	
	4	44		*	100	93	18	SILT: BANK GREY, MOIST, COMESIVE.	
₩ 1.7-0									<u>H 13-0</u> 14-0
20 <u>.û</u>				₩	95	48	5	SILTY SMID. SREY, MET, FINE GRAIN, MON-CONESIVE, SOME	5
	5*	19		IP	33	14	35	SMELL FRAMEWITS: SILTY GRANCLY SANO: GREY, NET, FINE TO MEDIUM GRAIN, NON-CONSTITE, SOME SHELL "RAMMENTS."	19.0
25.0	æ	3			98	4	23	SWID: SREY, NET, MEDIUM GRAINED, NON-CONESIVE, SOME SHELL PRAGMENTS.	
		25		۳	110	5		SAMD/SILTY SAMD: GREY, MET, FINE GRAINED SAMD, NOT-CHESIVE, SOME SHELL FRAMENTS.	29-0
		21		16)	93	,	29	SATE: FIREY, SATURATED, MEDIUM GRAIM, MON-COMESTVE, AD PRECENT SHELL PRABMENTS.	S 20 0
	SP/54	23		* P	100	,	47	CAME: GREY, SATURATED, MEDIUM TO FINE GRAIN, NON-COMESIVE.	29-0
		27		*	100	6	24		
							13		
41.0		29		₩	190	5			
	P	30			100	4		SMIN: SPEY, SATURATED, FINE TO "EDILUH SPALINED, NON- COMESIME:	39.0
95.)									

TH79-6

EXIS TH79-6			s	TA 47-	Λ0 F			FL 9±
DEPTH	L06	MC	ш	PĮ	4	-200	N	DESCRIPTION
	СН	36	53	26	100	96		CLAY: BROWN, MOIST, SOFT TO FIRM.
4-0							5	SILTY SAND: BROWN, MOIST, COOSE-
		37		4 P	190	10		
	SM			p	100	13	3	SAME: FREY, MEY, LOOSE, ROOTS TO 11 FEE
W 13-0 14-0								SAME: GREEN-BROWN, NET. SOFT-
	59/5M	20		₩	109	12	29	SAND/SILTY SAND: GREY, MET, DENSE, SHEL:
19.0	SM	20		Ψ	100	19	31	SILTY SAMO: FORTY, WET, TENSE, SHELL FOR
29-0	5P/5N	21		Ψ,	107	12		SAMP/SILTY SAMD: RMEY, WET, DEVISE, SHE
9-0				4 c	100	16	65	SILTY SAND: SAREY, WET, VERY DENICE, SHELL
	ÇM	w= v		***				S. M. C. C. C. C. C. C. C. C. C. C. C. C. C.
		2:		₩	100	14		SAME: FREY, MET, DENSE, SHPLUS AND SE.
9:1							77	

TH79-5 FL . 15\$ STA 38+508 TH79-6 DESCRIPTION DEPTH LOG MC 11 PI -4 -200 M SAMDY CLAY: BROWN, MOIST, STIFF-TA 47+10 FH 43 62 35 100 77 15 SMF: 1 IGHT BROWN, HOIST-SAFE: LIGHT BROWN WITH RUST, MOIST-SILTY SAND. ROOM, MOIST, LOOSE-SANDY SILT: GREY BROWN WITH RUST, MOIST, SOFT-ML 40 48 20 100 89 13-0 COME. SHEY MET, LADSE, ROOTS TO 11 FEET-SILTY SAND: GREY, MOIST, MEDIUM MENSE-34 29 ₩ 100 21 144 REEN-BROWN, HET, SOFT-BY TO ITY SAND SREY, HET, DENSE, SHELL PRAGMENTS. 18-0 SAND/SILTY SAND: FREY, MEDIUM DENSE, MOIST. £ 19.5 Ψ 1° 1° SAME: HET, SHELL FRAGMENTS. 7 ¥P 100 SAME: GREY, MET, MEDIUM DENSE TO DENSE, MANY SHELL REAGMENTS. MP 100 19 28 - 3 **v** ∂ 2 \$6 46/95 ₩P 100

TH79-5

₩ 100 10

NOTES:

ME HARY, WIT, NENSE, SHELLS MAD SHELL FRAGRENTS.

- I SEE PLATE 26 FOR LOCATION OF TEST HOLES AND TEST
- 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED
- 4 ALL TEST HOLES AND TREMCHES WERE SET IP ON THE LEVEE CREST UNLESS OTHERWISE NOTEO AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE

SCALE: I N. SFT

DESCRIPTIONS	0476	AFFROYAL									
REVI	SIONS										
U. S. ARMY ENGINEER DISTRIK LOS ANGELES CORPS OF ENGINEERS											
SANTA ANA RIVER MÄINSTEM, CALIFORNIA PHASE II GENERAL DESKIN MEMORANDUM											
LOGS OF INVESTIGATIONS											
CORPS OF ENGINEERS											
STA.484	-00 TO STA.38+50										
DATE	SPEC. NO. DACWO9 B	\$1000									
	DISTRICT FILE NO	1									
	SANTA ANA PHASE II GE LOGS (CORP STA,484	REVISIONS U.S. ARMY ENGINEER DE LOS ANGELES CORPS OF ENGINEER SE CORPS OF ENGINEER SANTA ANA RIVER MAINSTEM CALIFORNIA PHASE II OPMERA DESIGN MEMORANDUM LOGS OF INVESTIGATIONS CORPS OF ENGINEERS STA.48+00 TO STA.38+50 DATE APPROVED. SPEC. NO. DACW 09									

TH83-2633

							100-20	27							
EXISTING THB3-2633		GRO	UND ST	TA 37+	25 L			ff - Az							
DEPTH	1,06	HC	u	PĮ	4	-200	1	DESCRIPTION							
2.5	a.	10	32	13	100	56	SANDY	CLAY: Brown, MOIST, MEDIUM TO FINE GRAIN, NON- VE-							
4.5	SM	10		ЩР	100	31	15 SILTY	SAND: LIGHT BROWN, MOIST, FINE GRAIN, NON-COHESIVE							
	СН	48	59	30	100	94		BROWN, MOIST, COHESIVE-							
7.0		27		HP.	100	52	SILTY:	SMRD: LIGHT BROWN TO GREY, MOIST, FINE GRAIN, NON- WE, SOME SMELL FRAGMENTS:							
109	SM	23		NР	97	14	17 SAME: SOME S	GREY, MOIST, MEDIUM TO FIME GRAIN, NON-COMESTYE, MELL PRAGMENTS.							
3.1	5P/5M	22		*	100	5	76 —— 7/IMA2	ILTY SAMD: GREY, MEDIUM GRAIN, MOIST, NON-COMESIVE							
5-5							780:	SHEY, SATURATED, MEDIUM TO CHARSE GRAIN, NON-							
).1	99	20			100	?	75 CTHEST	vē.							
	SP/SM	22		¥P	190	5		ILTY SAND: SREY, SATURATED, HEDIUM GRAINED-							
5.0	2º	25			99	4	6 24 SAND: 32	GREY, SATURATED, METHUM GRAINED.							
·.a	50/04	23		y o	197	•	38 SM(1)/5	II.TY SMITE: SREY, SATURATED, HEDE:H GRAINED-							
.0		24			131	4	19 5#11:	SREY SATURATED, "EDIUM GRAINED-							
	20	??			เวอ		39 50								
1	SP/17#	.74		¥0	100	5	SAMD/S	ILTY SAM): Grey, saturated, hedi:/h grained, fish nhaherts:							
Ŀ1		r)		~~~~~	<u> </u>		الان موجه الله المراكبة الله	SAMP: GREY, SATUYATED, FINE GRAIN, NOW-COMESTVE, ELL MACHENTS.							
	19				100	 PT	SAFE	BARK GREY, SATURATES, HON-COMESTME, ORGANICS							

TH83-2634

THB3-26	34		\$1	A 30+	00 R			£L · 15±
DEPTH	L06	HC	ш	PI	4	-200	N	DESCRIPTION
		13	23	5	87	34	17	CLAYEY SAID: BROWN, MOTST, GRANON-COMESTVE-
	sc	15	24	5	100	24	9	SAME: BROWN, MOIST, FINE GRAIN
		14	79	11	190	35	10	
10.0		12	52	13	101	- 59		PLAY: LIGHT BROWN, MOIST, FINE
	ű	 26			100	95		SAPE: BROWN, MOIST, VERY FINE I SAPE: RED-BROWN, MOIST, FINE GR
13.0	SH	. 25 . 25	30	9 190	100	54 22		STLTY SMID: RED TO LIGHT BROWN
	a.	46	%	14	100	75		SANNY CLAY: GREY, MOIST, VERY OTHER INCHESS, ORGANIC-
15.5	99				100	3		SAND: FREY, MOTST-
18.0							14	
¥ 20.0		5?	36	12	100	31	23	SILTY SAND: TANK GREY, NET, FI CONESIVE, ORGANIC, STORE SHELL R
	SH	78		ų.	190	19	.,	SAME: GREY, MET, FINE SPAIN, N PRAGMENTS:
24.0							19	
	SP/9H	24		¥¢.	fut)	ŝ		SAMOUNTILEY SAMO: SMEY, WET, WE
<i>7.</i> 1	Ээ. 	*:			ເກດ	3	11	SMD: SREY, WET-
30.0							34	
4.4	59/SM			٧c	100	5		SAMO/STETY SAND: GREY, HET, HE
33.O							25R	
	\$₽	?4			193	3		SMID: SHEY, WET, NON-CONESTVE-
35 :C							₹7	
	Φ/ (%	24		₩.	190	5		SMIT/SILTY SMO: SREY, NET
¥•¥		22			37	,	15	SMID: ARSY, WET, MEDICH SPAIN. FRAGMENTS:
	Sp						11	
		24			700	3	18	
ne o								

TH83-2634

	8	TA 30+	90 R			FL - 15±
5 1	LL	PI	-4	-200	н	DESCRIPTION
	23	5	37	34	17	CLAYEY SAMD: BROWN, MOIST, GRAVEL 3/4 INCHES MAKIMUN, MON-CONESIVE-
	2	5	170	29	9	SAFE: BROWN, MOIST, FINE GRAINED, MON-COHESTYE-
1	.79	11	100	75	10	
1	37	13	(gr	-59		TIY- LIGHT BROWN, MOIST, FINE GRAIN, NON-COMESIVE
ł			100	35		SAYE: BROWN, MOIST, VERY FINE MATERIAL, COMESIVE:
Ì	130	9	190	54		SAME: PET-BROWN, MOIST, FINE GRAIN W/ SOME COMESIVE CLODS.
4	7.	*	(30)			STITY SMITE. RED TO LIGHT BROWN. FINE GRAIN, HON-COMESIVE.
	<u>ئ</u> د	14	130	75		SAMMY (LAY: GREY, MOIST, VERY FINE MATERIAL, SOME COMESIVENESS, ORGANIC-
1		₩P	100	3	14	SANT. SREY, MOTSY-
	ч	12	135	*I	21	TILTY SMITE THAPK GREY, MET, FINE TO VERY FINE MATERIAL, CONESSIVE, TROUBLE, STITE SHELL PRACHENTS:
	ř	¥0	131	:1		SAFE SHEY, MET, FINE GRAIN, MONTCOMESIVE, SOME SHELL PRACHEMYS.
		₩	; 7 0	:	13	SAMP SET SAMP: SPEY, MEY, MOTIUM SRAIM, MOMEOMESTIVE
	****	-	100	;	::	₩° legw, wer.
		₩	1,0)	5	ě.	SMINSS TY SMIN - FREY, MET, MEDIUM GRAINED-
			108		25#	'MA': 'GREY, KET, MON-COMESTVE-
		w p	LY.	 :	**	CMPT/STI_TY SMET - GREY, WET.
			17		;*	"M" (PCY, 4E", NEDIUM COAIN, NON-CONESIVE, SOME SHELL COAD-ENTS.
ŀ					::	
1			\mathcal{A}_{ℓ}	•	₹\$	
			-			

TH79-4

DEPTH	L06	MC	u	PI	4	-200		DESCRIPTION
	SM	17		MP.	100	29		SILTY SAND: LIGHT BROWN, MOIST, MEDIUM DENSE-
2.0		31	78	8	100	87		
4.0	M.	28	40	8	100	85		SAMBY SILT: BLACK AND VERY DARK GREY, MOIST, SOFT, HIGHL ORGANIC, SLIGHTLY MALCODOROUS.
								SILTY SMID: SAVE AS ABOVE.
		22		Ψ	100		10	Sign of the same
		u		•	100	30		SAME: GREY, MOIST, MEDIUM DENSE, MANY SHELL FRAGMENTS.
	SM							
	3FI	_						
							20	
		14		₩P	110	15		
								SAME: GREY, MOTST, MEDIUM DENSE-
14.0								SAND: GREY, MOIST, DENSE-
	_							SMIO: GREY, MUIST, BERSE-
	29	24			100	3	32	
₩ 18-5								
19.0								SAND/SILTY SAND: GREY, WET, DENSE-
								SHIP SHIP. SHIP. SHEY, WELL, DEPISE-
		26		₩	190	9		
							24	
	SP/SM	18		φ	190	9		
		22		*	100	8	22	
<u> 4-0</u>								CMA. Copy of annual poor can a
								SAMP: GREY, HET, HEDITUM DENSE, SHELL PRACHENTS-
	26	24			100	3		

NOTES:

- 1. SEE PLATE 26 FOR LOCATION OF TEST HOLES AND TEST TRENCHES.
- 2 SEE PLATE SA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE & FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVIE.

SCALE: I N- 3 FT

	_									
244C/	CENCEPTIONS.	DATE APPROVAL								
	REVISIONS									
	LOS	INGINEER DISTRICT ANGELES OF ENGINEERS								
DESIGNAD BY.	SANTA ANA RIVER MAINSTEM, C PHASE II GENERAL DESIGN MEM									
PRAWN ST.	LOGS OF INVESTIGATIONS									
	CORPS OF ENGINEE	ERS								
OSCIED SIN	STA.37+25 TO STA.2	7+50								
SUBMITTED BY:	APPROVED, SPEC. HO. DACW	09 B								

TH83-2635

							_		71663-2	635		s	TA LT+	DO R			Q. 132
ever.			*				TH	<u>79–3</u>	DEPTH	106	r(C	LL.	οį	-4	-200	,	DESCRIPTION
EXIST INF9-3	ING	GRU		A 17+	50° L			£L. 7t								25	SAMT: THE BROWN, FINE GRAINED-
DEPTH	L06	nc	ш	Pl	-	-200	*	DESCRIPTION		20	14			92	3	-6	
1.0								FILL: SILTY FINE SAND, LIGHT BROWN, DAMP, LOOSE-	3.5								
	a.	29	44	21	Loa	93		CLAY: BLACK MED VERY DARK CLIVE GREEN, MOIST, SOFT, HIGHLY GREANIC, SLIGHTLY NALOBORDUS.			9		₩	99	18	39	SILTY SAND: LIGHT BROWN, MOIST, FIN CORESIVE:
0.0								SAMD/SILTY SAMP: SAMP-BROWN WITH RUST, MOIST, SOFT-			12			100	16		
	SP/SM	21		MP.	190	10					_		P	100	27	42	
								SAME: GREY, MOIST, MEDIUM DENSE, SHELL FRABMENTS:		SM	13		₩2	100	37		SME; DARK GREY, MOIST, FIRE GRAINE
9-11				-				SAND: GREY, MOIST, MEDIUM DEMSE, SHELL FRAGMENTS.			~					248	
110.5	50	23			100	4	22				13		₩	190	17		
	•					•		SAME: NET-	¥.15.0		_					13	
4.0								Series metr	V. 0		20		¥F	100	13		
							36	SMID/SILTY SMID: GREY, MET, DEMOSE-	19-0	SP/SH	25		4	100	6		SAND/SILTY SAND: GREY, WET, FINE GR
		24		NP	100	7			ACX	591	30		₩P	96	13	25	SILTY SAND: LIGHT GREY-BROWN, MET.
		_							2.3		77			100	 - 	5	
							33				_				<u> </u>	٠	SAND: LIGHT GREY, HET, FINE TO MEDI
		25		₩	100	5				Ф	24			190	4	28	
		_						CAND/SILTY SAMM: SAME AS ARRIVE.	27.5								
	g9/g#	10		•	100	5	35	Seminated and the seminated seminated		59.15H	27		₩	96	5	5	SAMP/STILTY SAME: TUGHT GREY, FINE T
		••							30.5								
																	SANTI: LIGHT GREY, MEDIUM GRAINED, 51
							54	SME: GREY, WET, DENSE, SHELLS, GRAVEL TO 1/2 (MICH.			ν			97	2		
		23		₽	100	7										26	
											10			97	?		
		72		₩	100			SAFF: Lens of Rust and Black.		82				100	2	26	
		1.2		•	1.0	,	52				22			<i>1</i> 90	2		
								SATE: GREY, WET-			18		v	100	4		
9.0											•••		-		•	35	
							52				19		10	100	2		
									45.0							25	

LUE ENGINEERING PAYS

TH83-2635

7+00 R				£L. 13±									
1 -4		200	1	DESCRIPTION	EXIST	ING.	CROI	MID.				<u>TH79-2</u>	
			76	SAMT: TRAPK BROWN, FINE GRAINED-	TH79-2			STA	13400 (ł			EL. 92
32	?	3			MEPTH	L06	MC	LL I	Pt .	-4 -2	00	4	DESCRIPTION
×,	,	13	† 9	SILTY CAND: LIGHT BROWN, MOIST, FINE GRAINED, MON- COMESI .		SH	13	1	P 10	00	46	SILTY SAM	D: FINE, LIGHT BROWN, MEDIUM DENSE-
: 10		15			4-0							21 ——	
x		- 27"	42									CMUNCILLI	I SAND: THANK GRAY-BADAN, MOIST-
įγ		21	••	SAME: DARK GREY, MOIST, FINE GRAINED, NON-CONESTIVE-		SP/S#	23	1	P 10	00	г		
			Ş ¢ ₽		9.0							SAME: GRE	EY, MOIST, MEDIUM DENSE.
; w		:*			¥ 10.5							SAND: GRE	EY, MOIST, MEDIUM DENSE.
			!3				18		10	0	4		
100				SAND/SILTY SAND: SHEY, MET. FIME GRAIMED.									
*			15	SILTY SMO: LIGHT GREY-BROWN, MET, FINE GRAINED NON- COLESIVE.					-		1	, SAME: GRE	EY, MET, DENSE, SHELL ARAGMENTS.
		.	ė			99	57		10	9	5		
		·		SAMD LIGHT GREY, WET, FINE TO MEDIUM GRAINED.							2	\$	
1,10		•	28										
											s	SAME: VER 2 PRAGMENTS:	N DENSE, SRAVEL TO 1/2 INCH. MANY SHELL
¥		4	£	CANT/STUTY SAND: 1 IGHT GREY, FINE TO MEDIUM GRAIMED.									
					28-0								Y, WET, VERY DENSE-
٠.		2		SMO LIGHT GREY, MEDIAN GRAINED, STRE GRAVEL TO 1/2 INCH.							_		SAYN: SREY, WET, DENSE-
			*		,	P/ ? 4	13	٠	100		,		
1.					53.0								
	-		3 6		53.0						- 3:	SAND: SRE	Y, WET, TENSE-
.1'						3 P	20		199		4		
											37	!	
		•	15										
					39.5						- x		
٠,			52								×	•	

MOTES

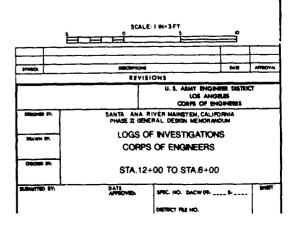
- 1. SEE PLATE 26 FOR LOCATION OF TEST HOLES AND TEST TRENCHES
- 2. SEE PLATE SA FOR LESEND AND CLASSIFICATION SYSTEM
- 3 SEE TABLE & FOR DATE DRILLED OR EXCAMITED AND TYPE OF EQUIPMENT USED.
- 4 ALL TEST HOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS OTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

SCALE: I RI-SFT

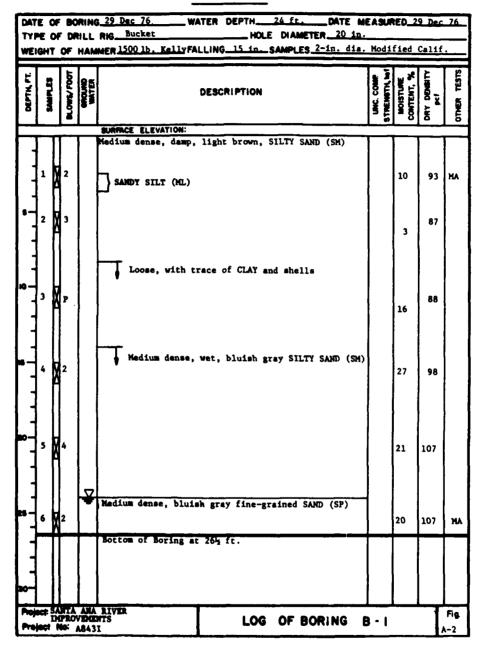
SYMBOL	Michigan	<u>, </u>	DATE	APPROVAL
	REVI	SIONS		
		U. S. ARMY ENGINE LOS ANGE CORPS OF ENG	LES	7
DESIGNATION BY,	santa ana Phase II Ge	RIVER MAINSTEM, CALIFO NERAL DESIGN MEMORAND	RINIA IUM	
GEAWN ST.	LOGS	OF INVESTIGATIONS	3	
_ }	CORP	S OF ENGINEERS		
CHICARD SI	STA,17-	+50 TO STA.13+00)	
SUBMITTED BY:	DATE APPROVED	SPEC. NO. BACWOP-		SHORT
		DISTRICT PLE NO.		

VALUE ENGINEERING

EXIST		GR				IH	83-	<u>2636.</u> g. 8±	<u>EXIS</u> TH83-2		ĢF		<u>D</u> TA 1000	rc A	<u>1H</u>	33-	2637 EL. 100
WB3-263				TA 12*				Description	DEPTH	L06	MC	LL	Pí	-4	-200		DESCRIPTION
DEPTH	(.06		ш 	PI		-200 		SMIT SILT: BROWN, MOIST, FINE GRAINED, MON-CONESIVE.		SM	,		æ	81	15		SILTY GRAVELLY SAND: BROWN, MOIST, N
	ĸ.	20		# ·	100		15		25							12	SMID: LIGHT BROWN, MOIST, NON-COREST
		21,		MP	1/10	81	5				4	•		99	4		 -
5.5 6.0	3	\equiv	\equiv	-	-18			SILTY SADE BROWN, POIST, NON-CONFSIVE			-					8	
		59		WP	100	89		SILT: GREY, MOIST, COMESIVE, ORGANIC SMELL.			4			99	3		
	A.	36			100	62		SAMOY SILT: GREY, WEY, FINE TO MEDIUM GRAINED, NON- COMESIVE-			-					6	
¥ 10-0											12	!		96	2		
12-0		57		*	סניז	43		SILT: SAME AS AROVE, COMESIVE- SMIN/SILTY SMID: SREY, MET, MEDIUM TO COARSE GRAINED.								15	SAME: LIGHT BROWN, WET, NON-CONESIVE GRAINED SAME-
	SP/\$M	18		炉	93	7		MINSIL'T SMU: MEY, WI, MINOR OF THE SMALL	<u>W 11</u>	ō							
15-0								SILT: GREY, MET, COMESIME.								16	
17-0	181 	58	59		100	98		310. 66.7 6.7 6.7						100	1	10	
		25			100	3		SMID: GREY, MET, COURSE GRAINED.									
											2			100	2		
											-			100	4		SAME: GREY, WET, NON-CONESTYE, MEDIT
											-						FRAGMENTS-
		_								20	1	3		100	3		
		22			100	3					•	-		200			
											-					•	
											1	4		94	2		
	SP		_	_							1	5		100	2	-	SAPE: GREY, SATURATED, MEDIUM TO CO
		20			100	2					-					-	NON-CONESTVE.
											1	4		99	2		
								SAME: GREY, HET, COARSE GRAINED, ORBANIC SHELL-									
																-	
		_					•					.5		98	2		
		23			100	2						17		100	3	-	
		_					-					 17		100	1	-	SAME: GREY, SATURATED, COAPSED GRAIN SMELL, PRAGMENTS.
		22			100											-	SAME: FIME GRAINED SAMO
45.0		रा			100	7	-					24		100	. ;		HONEY COME ANNAUGH SAME.


ALUE ENGINEERING PAYS

			TH	83~2	<u>2637</u>
ND STA	10 10;	: R			£L. 10±
	Pl	-4	-200	N	DESCRIPTION
	IIP	91	15		SILTY GRAVELLY SAND: BROWN, MOIST, MON-CONESIVE-
		39		12	SAID: LIGHT BROWN, MOIST, NON-CONESIVE, MEDIUM GRAINED SAID:
				8	
		М	ŧ		
				•	
		98	2		
				15	SAME: LIGHT BROWN, WET, MON-COMESIVE, MEDIUM TO COARSE GRAINED SAMD-
				15	
		100	:	10	
		130	7		
		130	4		SAME: GREY, NET, NON-COMESTVE, MEDIUM GRAINED, SHELL GRAGMENTS.
		100	ı		
			:		
		10.	;		SAME - ROPM, NATURATED, MEDITAL TO COARSE GRAINED SAME, MON-CONESTME.
		×	-		
_		·			
		100	3		
		In.			SAFE: SREY, SATURATED, COMPSED GRAINED SAND, HOP-COHESIVE, SHELL REASHENTS.
		iau 			SAFE: FINE GRAINED SAND-

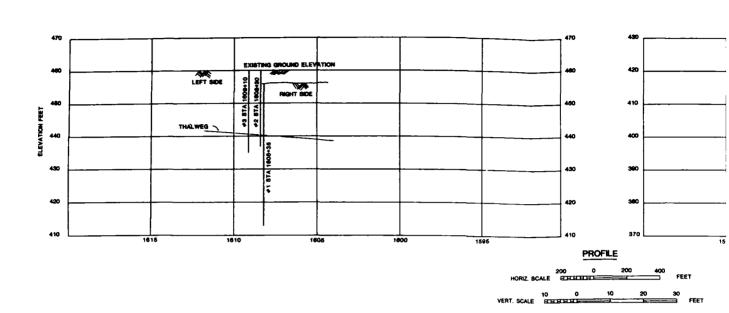

TH79-1			STA	6+00	}			EL. 10±
DEPTH	1.06	MC	u	Pi	-4	-200		DESCRIPTION
		3			100	3		SAND: LIGHT MOON, MOIST, LODSE, SOME GRAVEL TO 1/2 INC SHELL FRAGMENTS.
	SP				100		6	SAVE: MEDIUM DENSE-
8-0					100			SAFE: MOIST, GRAVEL TO 2-1/2 INCHES-
								SAND/SILTY SAND: LIGHT BROWN, MEDIUM DENSE, MET, SHELL PRAGMENTS-
¥.12.0	SP/SM	22		IP.	100	5		
14.0								SAFE: SREY-
		18			100	4	24	SAND: GREY, MEDIUM DENSE, MET-
	29	16			100	4		SAME: GRAVEL TO 1/2 INDH-
		22			100	2	33	SWEST GROWER TO TAK THOMP
29-0							13	SAND/SILTY SAND: GREY, MEDIUM DENSE, MET, GRAVEL TO 1/2 INCH-
	SP/SM	v		NР	100	8	33	
39.0								SAME: FINE, DEMSE, NO GRAVEL-
							39	

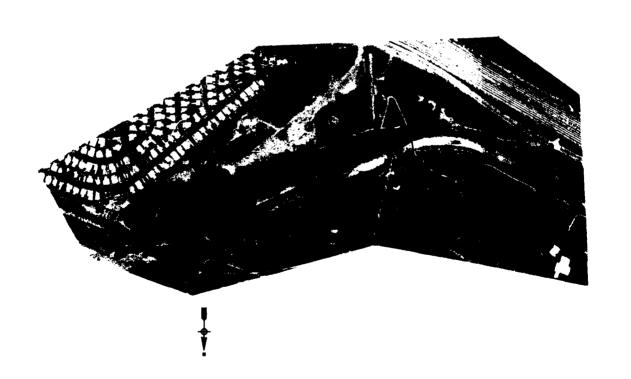
NOTES:

- I. SEE PLATE 26 FOR LOCATION OF TEST HOLES AND TEST TRENCHES.
- 2. SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM.
- 3 SEE TABLE 6 FOR DATE DRILLED OR EXCAVATED AND TYPE OF EQUIPMENT USED.
- A ALL TEST MOLES AND TRENCHES WERE SET UP ON THE LEVEE CREST UNLESS CTHERWISE NOTED AS "INVERT" IN THE CHANNEL AND "EXISTING GROUND" ON BACK SIDE OF LEVEE.

WC 77-I

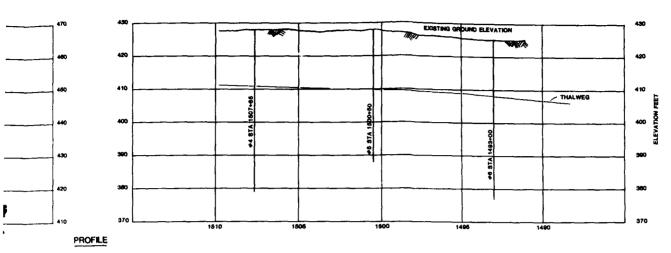
NÔTES:

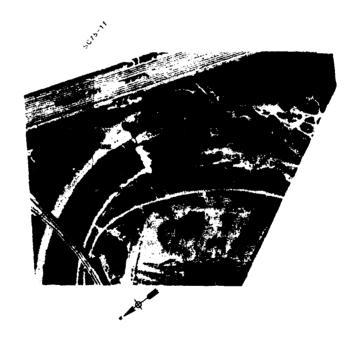

- 1. SEE PLATE 26 FOR TEST SITE LOCATIONS
- 2.SEE TABLES 4 AND 5 FOR LIST OF REPORTS FROM WHICH THESE LOGS WHERE TAKEN. ALL LEGENDS AND EXPLANATIONS AND CONTAINED WITHIN THE REPORTS.
- 3.LOGS BY OTHERS ARE ONLY TO BE USED TO DETERMINE THE GENERAL SOIL PROFILE.


LOWER SANTA ANA RIVER

LOGS OF INVESTIGATION
BY OTHERS
STA. 60+00 TO STA.0+00

U.S. ARMY CORPS OF ENGINEERS
LOS ANGELES DISTRICT


VALUE ENGINEERING PA


ALUE ENGINEERING PAYS

200 0 200 400

HORIZ SCALE HEBERET 10 9 10 20 30

T SCALE GREATER 15 10 10 70 70 FEET

GENERAL HOTES:

- SEE SUBBEQUENT PLATES IN THIS PLATE NUMBER
 SERIES FOR LOGS OF INVESTIGATION.
- 2. THESE REPRESENTATIVE PHOTOGRAPHS WERE TAKEN
- 3. PROFILE ELEVATION WERE DETERMINED IN SEPTEMBER 1987.

	IS NATIONAL GEODETIC VERT		\top
STIMBÜL.	1660-978046	ga/g	AFFEC
	REVISIONS		
	u.	E. AMY INGONER DIST LOS ANGELES CORFS OF BYGINERS	BCT
testine in	SANTA ANA RIVER M MASE IL GENERAL DE	AINSTEN, CALIFORNIA DEIGN MEMORANDUM	
Marian Pr	PLAN AND	PROFILE	
00000 44	SANTA ANA	CANYON	
Married In	APPEOVED. SPEC. (10. MCW 61 1	. 340
	DISTRIC	T FUE HO.	1

VALUE ENGINEERING PA

TH87-1

THB7-1			_	57A- 1	508+3 5			EL. 4571
DEPTH	L06	MC	ш	PI	-4	-200	N	DESCRIPTION
				ЖР	93	22		SILTY SAND: Brown, MOIST-
	_						3	
	SPI	_12		HP	97	35		SAME: BROWN TO GREY, SLIGHTLY CONESTVE-
9-0		_			97		3	SME: Loose.
11.5	SP/SM			HP	97	6		SAND/SILTY SAND: GREY, MOIST, LOOSE-
4.9_		_			100	3	,	SAND: GREY, MOIST, LODSE-
	•	3			94	3		
20.0 21.0	- 1	. 45	.43	9	100	- 78 -		SHOTY SILT: DANK GREY, NET, CORESTYE, PLASTIC-
20.0 1.0	g.	. 16	. 43	1	100	<u></u>		SARDY SILT: DANK GREY, MET, CORESTYE, PLASTIC: SARDY GRAVEL: GREY, CORRSE GRAFRED SAND, COMBLES TO 5 INCHES.
		. 15		1	48	3		SANDY GRAPEL: GREY.COMPSE GRAINED SAND. COMPLES TO 5 INCHES. SANDY GRAPEL/YILLY PAUNEL: "MAN GREY, COMPSE GRAINED.
4.0	SP/GA			- g	48	12	3	SANDY GRAPEL: GREY, COMPSE GRAINED SAND, COMPSES TO 5 THORES. SANDY GRAPEL/SILTY BRANEL: "YARK GREY, COMPSE GRAINED SAND, THICK LAYERS OF COMESTIVE MATERIAL."
4.0	SP/GA	45	57	23	48	12	3	SANDY GRAPEL: GREY.COARSE GRAINED SAND, COMBLES TO 5 THORES. SANDY GRAPE/SILTY BRANKEL: "MARK GREY, COARSE GRAINED SAND, INDICE LAYERS OF COMESIVE MATERIAL." SANDY GLAY: RULE GREY, POIST, A FEW GRAPELS TO 177 THOM. SERY CORESIVE AND PLASTICE.
4.0 6.0 7.0	SP/GA			•	48	12	3	SANDY GRAPEL: GREY, COARSE GRAINED SAND, COMBLES TO 5 INDES. SANDY GRAPEL/SILTY SHAWEL: "MARK GREY, COARSE GRAINED SAND, INDO: LAYERS OF COMESSIVE MATCRIAL." SANDY GLAY: RULE GREY, POIST, A FEM GRAPELS TO 1/7 INCH.
24.0 26.0 27.0	SP/GA			23	48	12	3 198	SAMOY GRAVEL: GREY.COMESE GRAINED SAMO. COMBLES TO 5 INCHES. SIMOY GRAVELYSILTY BRAINEL: NAME GREY, COMESE GRAINED SAMO, TO CLAYERS OF COMESIVE MATERIAL. SAMOY GLAY: Rule GREY, MOIST, A FEW GRAVELS TO 17? INCH. SEX. COMESSIVE MAD PLASTIC. SILTY SAMO: MULTI COLOR, A FEW GRAVEL TO 1 INCH.
24.0 26.0 27.0	SP/GA			23 NP	48 48 94 97	12 67		SAMOY GRAVEL: GREY.COMESE GRAINED SAND. COMBLES TO 5 INCHES. SIMONY GRAVEL/SILTY BRANKEL: VIANK GREY, COMESE GRAINED SAND. HOLD LAYERS OF COMESIVE MATERIAL. SAMOY GLAY: Rule GREY, MOIST, A FEW GRAVELS TO 17 INCH. SENT COMESIVE MAD PLASTIC. SILTY SAND: MULTI COLOR, A FEW GRAVEL TO 1 INCH.
24.0 26.0 27.0	SP/GA			23 NP	48 94 97 39	12 67 14		SAMEY SHAPEL: GREY, COARSE GRAINED SAND, COMBLES TO 5 INCHES. SAMEY SHAPELYSILTY SHAPEL: "NAME GREY, COARSE GRAINED SAND, INCHES OF COMESSIVE MATERIAL. SAMEY FLAT: RULE GREY, MOIST, A FEM GRAMELS TO 1/7 INCH. SAME COMESSIVE AND PLASTIC. SHILTY SAMD: "MULTI-COLORED, COARSE GRAINED SAND, SOME GRAMEL TO 1 INCH. SAME, GRAMEL TO 5 INCH, COMBLES 10 4 INCH. SAME, GRAMEL TO 5 INCH, COMBLES 10 4 INCH.
20.0 21.0 24.0 25.0 27.0 29.0	6P/GR 6H 5H 5H 529/5R	u\$	\$7	23 HP HP	48 94 97 39 53	12 67 14 5		SANDY GRAPEL: GREY, COMPSE GRAINED SAND, COMPSES TO 5 INDESS. SANDY GRAPEL/SILTY SHAPEL: THANK GREY, COMPSE GRAINED SAND, INDO. LAKENS OF COMESSIVE MATERIAL. SANDY GLAY: RULE GREY, MOIST, A FEM GRAPELS TO 1.7? INDM. SERV. COMESSIVE, MOIST, EACH CO., A FEM GRAPEL TO 1. INDM. SAND/SILTY SAND: MULTI-COLORED, COMPSE GRAINED SAND, SOME GRAPELS TO 1. INDM. SAND/SILTY SAND: MULTI-COLORED, COMPSE GRAINED SAND, SOME GRAPELS TO 1. INDM.
224-0 225-0 27-0 29-0 4-0	SP/SM SM SP/SM	28	\$7 37 38	23 MP MP 11	48 94 97 39 53 48	3 12 67 14 5 9		SAMEY SHAPEL: GREY, COMPSE GRAINED SAND, COMPSES TO 5 INCHES TO 5 INCHES. SAMEY SHAPELYSILTY SHAPEL: "MARE GREY, COMPSE GRAINED SAND, INCHES OF COMESSIVE MATERIAL. SAMEY FLAT: RULE GREY, MOIST, A FEM GRAMELS TO 1/2 INCH. SHETY SAMD: "MULTI-COLORED, COMPSE GRAINED SAND, SOME GRAMEL TO 1 INCH. SAMELSTATE TO 5 INCH., COMPSES GRAINED SAND, SOME GRAMEL TO 5 INCH., COMPSES GRAINED SAND, SOME GRAMEL TO 5 INCH., COMPSES GRAINED SAND, SOME SAMEL TO 5 INCH., COMPSES GRAINED SAND, SOME SAMEL TO 5 INCH., COMPSES GRAINED SAND, SOME SANDY SILTY SHAPEL: BUJE GREY, BROWN LAWREN OF SAND.
224-0 225-0 27-0 29-0	6P/GR 6H 5H 5H 529/5R	u\$	\$7	23 NP NP	48 98 94 97 39 53	12 67 14 5 9 24		SANDY GRAPEL: GREY, COMPSE GRAINED SAND, COMPSES TO 5 INCHES TO 5 INCHES TO 5 INCHES TO 5 INCHES TO THE SAND, COMPSES GRAINED SAND, THOSE LANDING OF CONESSIVE MATERIAL. SANDY GLAY: RULE GREY, MOIST, A FEW GRAPELS TO 1.7 INCH. SANDY GLAY: RULE GREY, MOIST, A FEW GRAPELS TO 1.1 INCH. SANDY SILTY SAND: MULTI-COLORED, COMPSES GRAINED SAND, SOME GRAPELS TO 1.1 INCH. SANDY SILTY SAND: MULTI-COLORED, COMPSES GRAINED SAND, SOME GRAPEL TO 5 INCH. SANDY SILTY SANDEL: BUJE GREY, BROWN LAYERS OF SAND, GRAPEL TO 3 INCH.

TH87-2

TH87~2			s	TA- 16	08+30			EL - 450±
DEPTH	L 06	MC	ш	ΡI	4	-200	Я	DESCRIPTION
	SP/SM	9		ΗP	93	6	20	SAMB/STLTY SAMD: LIGHT BROWN, DRY, SL
4-0								
			42	10	98	55		SMIDY SILT: BROWN, DRY, A FBH GRAVELS CHURKS
		-	32	5	93		29	SAME: PLANK BROWN-
	n.		24	3	99	68	18	SAME: MOIST, SOME WHITE STREAKS, COME
		31	48	15	99	85		SAME: GREY-
				WP	100	84	8	
8-0		υ		HР	100	53		SAME: RUBE MITH GREY STREAKS, SOME OR WOOD FIBERS-
			30	1	190	49	11	SILTY SAND: RULE GREY, MOIST, FINE OR FINERS.
	24							
3.0				MP	100	32		

<u>TH87-3</u>

		s	TA. 15	09+10			EL. 45::
L06	ж	LL	Pj	-4	-200	H	DESCRIPTION
59759			WP	100	15		SAMO/STLTY SAMO: RECORD, DRY, LOOSE-
n /N		25	4	100	55	25	SAPPY STUTY CLAY: "TARK BROWN, THEY
		20	4	95	54		SAME: LIGHT BROWN, SLIGHTLY COMENTS
SC/SM		23	4	99	44		SILTY CLAYEY SAND: LIGHT BROWN, DR
4	12	ħ	6	98	55	40	SAMOY SILT: BROWN, MOIST, A FON GRA
a.m.		υ	7	99	69		SAMOY SILT: BROWN, MOIST, A FEW GRA
٩		49	21	99	82		SAMOY SILT: FREY, MOIST-
SC	42	50	8	98	72	11	PLAYEY SAND: BLUE, MOIST, THIN LAVE
5C.75M	n	29	4	99	47	••	STLTY CLAYEY SAND. RLUE GREV WITH B
24			NP	100	29		STETY SAND: "RUIE GREV, MOIST, KINE
20 / ZH			۳	100	12		SAND/SILTY SAND: GREY, WET, FINE YOU LINGE PIECES OF WOOD-
			W	π	- 9-		SAME: GRAVEL TO 1/2 INCH.
	L06 597587 Q./ML 507584 ML Q./ML ML 500 500584	CL/ML SC/SH 12 SC/SH 25 SC/SH	LOS NC LL 99758 CL/ML 25 NL 12 51 CL/ML 27 NL 12 51 CL/ML 27 NL 12 52 SC 42 50 SC/SM 22 24 SM	CL/ML 25 4 SC/SH 25 4 ML 12 31 6 CL/ML 27 7 ML 49 21 SC/SH 22 30 8 SC/SH 22 24 4 SC/SH 22 44	CL/ML 23 A 99 ML 12 31 6 98 CL/ML 27 7 99 ML 49 21 99 SC/SM 22 50 8 98 SC/SM 22 1 99 SC/SM 22 1 99 SC/SM 22 1 99 SC/SM 22 1 99 SM 49 21 99 SM 49 21 99 SM 49 21 99 SM 49 21 99	LOG NC LL P]	106 NC LL P]

LUE ENGINEERING PAYS

TH87-2

2	A. 16	06+30			EL. 450#
ц	PI	4	-200		DESCRIPTION
	r.	93	5	20	SAMD/STLTY SAMD: LIGHT BROWN, DRY, SLIGHTLY CONESTIVE-
10	10	98	 95		SMEDY SILT: BROWN, DRY. A FEW GRAMELS, COMES UP IN ORANGS.
32	5	93	69	29	SAPE: DARK BROWN.
 24	3	99	58	18	SAME: MOIST, SOME WHITE STREAKS, COMESTVE.
46	15	99	55		SAME: GREY.
	*	100	34	8	
	₩	ino	53		SAPE: PLUE WITH GREY STREAKS, SOME ORGANIC MATERIAL, WOOD FIBERS:
*0	:	100	an 	u	SILTY SAND: RESE GREY, MOIST, FINE GRAINED SAND, WOOD FINERS.
	*	1:00	57		

TH87-3

	31	A. 15	09-13			EL: 4512
c	LL	P:	- 14	-210	٠	DESCRIPTION
_		#	100	-2		\$40V\$1(17 \$40) - Now, per, 1005E-
	25	à	199	द्	25	SAMMY SILTY (LAY: "TANK BROWN, DRY-
	2:1	•	15	-i4		SME LIGHT BROWN, SLIGHTLY COMENTED.
	23		39	44		SILTY CLAYEY SAMD: LIGHT BROWN, DRY-
2	ņ	:	78	35	40	SNEW SILT: BROWN, MOIST, A FEW GRAVEL TO 2 INCHES, CONESIVE.
	ij		7Ģ	59		SHETY SILT: BROWN, MOIST, A FEW GRAVEL TO 2 INCHES, COMESIVE.
_	ga	71	10	82		SAMPLY STLT: FREY, MOEST-
2	· v	3			11	TAYEY SAND: BLUE, MOIST, THIN LAYERS OF SANDY MATERIAL ORGANIC SPELL, PLASTIC-
?	29				••	STETY FLATSY SAME: TILLE GREY WITH BROWN STREAMS, MOIST, FINE GRAINED SAMD-
		•	139	29		STUTY SART: NUR GREY, MOIST, FIRE GRALMED SAND.
			i/10			SMIT/SILTY SAND, FAREY, MET, FIME TO COMPASE GRAINED SAND, LIMITE PIECES OF MODE.
		-	- τ	7		SAFE. FARMEL TO 1/2 INCH-

TH87-4

THB7-4			STA 15					EL . 428±
DEPTH	L06	MC	ш	PI	4	-200	Ħ	DESCRIPTION
	_			NP	96	36	3	SILTY SAMD: LIGHT BROWN, DRY, LOSSE, MEDIUM TO FINE GRAINED SAMD, OCCASIONAL GRAVEL TO 1/2 INCH, SOME GRASS ROUTS.
				₽P	100	 28	12	SME: FINE GRAINED SAND, NO GRAYEL, NO GRASS ROOTS, NEVERT ADDED AT 4 POOT.
	~			JE.	100	21		
	SH			WP	99	23	14	SAME: BROWN WITH STREAKS OF RUST, A FEW GRAVEL-
				NP	100	17		SAME: LIGHT BROWN WITH STREAKS OF RUST-
				жP	99	14		SME: GREY TO BROWN WITH STREAKS OF AUST-
15:0				#	97	19		SME: LIGHT AROSE GRAVEL TO 2.5 INDESS. SMOUSILTY SMO: GREY, FINE TO NETHUM GRAINED SMO. GRAVEL TO 3 THOM, FOR COMBLES NOUNCED TO SURROUNDED.
	5P/5N	_		Мb	91	11		GRAVEL TO 3 INCH, FBM COMMUES ROUNDED TO SUBROUNDED. SME: SOME GRAVEL TO 1/4 INCH.
18-0	SW/SM			NP	83	7		SAND/SILTY SAND: BROWN, FINE TO COARSE GRAINED SAND, GRAVEL TO 3 INCH COBBLES TO 7 INCHES, SUBROMOED.
20.0	GP				48	3		SMIDY GRAVEL: BROWN, COMPSE GRAINED SMID, GRAVEL TO 3 HIGH, COBBLET TO 5 HIGH, ROUNDED MID ANNULIAR, SOME POOCETS SILTY CLUYS:
23.0	 6#	···-	38	8	71	43		SILTY GRAVEL: DANK GREY, SOME CORBULES, COMESIVE, CAVING IN AT 24 PEET.
25.0				ИP	100	43		SILTY SMID: DARK GREY, FINE GRAINED SAID, A FEX GRAVEL, SOME CONESION, SOME ORGANIC MATERIAL.
	24							
<u> 31</u> .0				MP	97	28		SMF: MEDIUM TO CHARSE GRAINED SAND, A FEN GRAVEL TO 1/2 INCH., ROUNDED COBBLES TO 5 INCHES.
	SM/SM			ИÞ	92	9		SMINITH TY SMIN: DANK GREY, REDIUM, TO COARSE GRAINED SMID, SOME GRAVEL TO 1/2 INCH, ROLLIGED CORRLES TO 5 INCHES.
34.0	5 P				83	3		SAMD: GREY, MEDIUM TO COMPSE GRAINED SAMD, GRAVEL TO 1-1/2 INCHES
37.0	SP/SH				65	6		SRAYELLY SAND/SILTY GRAVELLY SAND: GREY, MEDIUM TO COMPS GRAINED SAND, CUBBLES TO 4 INDIES.
40·C				MP	77	5		FRANCLLY SAND/SILLY FRANCLLY SAND: SARY, COMPSE GRAINED SAND, SRANEL TO \$ INDICES CORRECT TO \$ INDICES, POCKETS IF SILLY OR CALL TO
	SW/SM			HP	5 6	5		SWE: NO COMPLES.
46.0					84	2		SMIT: GREY TO HALTI-COLOR, COLORSE GRAINED SAND, GRAVEL TO 1/2 INCH, SMAL POCKETS OF BROWN CLAY OR STLET-
49-0								

NOTES

- 1. SEE PLATE 27 FOR LOCATION OF TEST HOLES.
- 2 SEE PLATE BA FOR LEGENO AND CLASSIFICATION SYSTEM

SCALE:1 N.* 3 FT.

STINEOU DECEMBERS

STINEOU DECEMBERS

REVISIONS

U.S. ARRIVE PROBRESS DISTRICT

LOG ANOBLES

DISTRICT

LOG ANOBLES

SOUTH OF PROBRESS

PHASE E GENERAL DESIGN MEMORANDUM

LOGS OF INVESTIGATIONS

CORPS OF ENGINEERS

STALEOUS PA

STALEOUS PA

STALEOUS PA

STALEOUS PA

DESTRICT FILE NO.

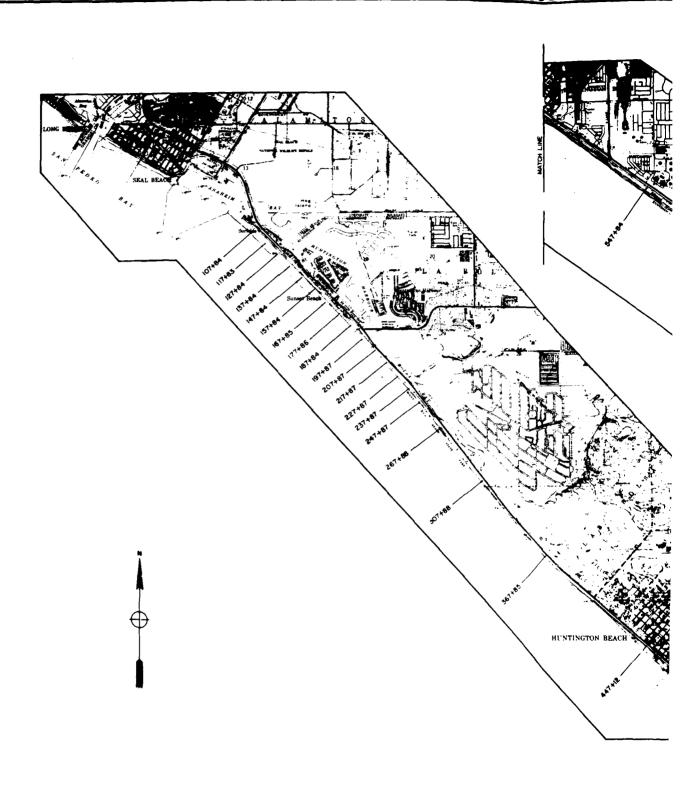
SHEET

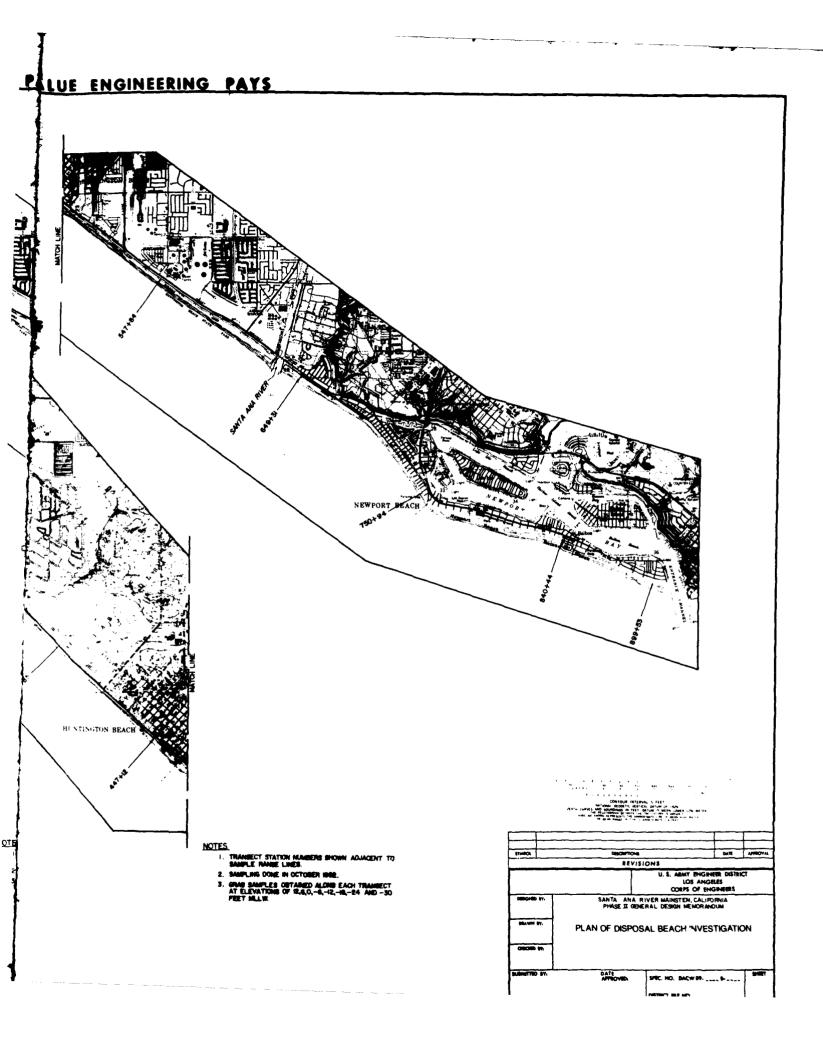
APPROVED.

VALUE ENGINEERING PA

THB7-5	5			STA 15	00+50			EL. 428t						
DEPTH	L06	MC	LL	PI	-4	-200	N	DESCRIPTION						
•	SN/SN			ИP	99	11	11	SAMD/SILTY SAMD: LIGHT BROWN, DRY, FINE GRAINED SAMD, SOME GRAMEL, GRASS ROOTS, SOME COMMLES TO 5 INCHES-						
3.0	SM			₩P	99	34	4	SILTY SMID: LIGHT BROWN, MOIST, LOUSE, FINE GRAINED SAND SMALL PIECES OF CEMENTED SAND, REVERT ADDED-						
6.0			30	1	100	70		SANDY SILT: LIGHT BROWN WITH STREAK OF RUST, FINE GRAINES SAND-						
	•		49		100	90								
12.0	SM			۴	100	18		SILTY SAND: LIGHT BROWN, FINE TO MEDIUM GRAINED SAND-						
5.0_				10	99	3	26	SMD/SILTY SMD: LIGHT BROWN, FIRE TO MED-, GRAINED SAND, SORE GRAVEL TO 3 INDIES, SUBPOUNDED.						
	SN/SH			MP	82	6								
3.0	φ				50	2		SANDY GRAVEL: LIGHT BROWN AND GREY, CDANSE GRAINED SAND, CORRLES TO 4 INCHES.						
6.0	SW/SM		_	¥	81	6		SAMIL/SILTY SAMID: GREY, COARSE GRAINED SAMID, GRAVEL TO 1 MICH, SOME SHALL POCKETS OF SILTS:						
1.0														
			38	3	74	26		SILTY SRAVELLY SMID: GREENISH GREY, MOIST, FINE SAND, GRAPEL TO \$ INDIES, SOME COMBLES TO \$ INDIES, COMESIVE-						
	SM _		31	3	75	19		SME: Streaks of rust colored material.						
.0	-	-	41	3	72	44		SAME: VEINS OF COARSE GRAINED SAME						
	\$P/\$#			w	53	5		PRAFELLY SAND/FRAMELLY SILTY SAMP: GREYISH GREEN, LOOSE, FINE TO COARSE GRAINED SAND, SOME CORNLES TO 10 IMONES, SOME OFFICIAL PRAFERIA.						

THB7-6				STA 14	93+00		EL. 427t
DEPTH 	L06	нс	u	Pj	-4	-200	N DESCRIPTION
		4	37	6	95	56	SAMOY SILT: LIGHT BROWN, DRY, FINE GRAINED S. GRAVEL, LOOSE.
	n.	6	33	5	100	73	SAME: MOIST-
8-0			41	13	99	71	SAME: Some organics-
11.0	SM	-	24	4	100	31	SILTY SMID: LIGHT BROWN-GREY, FINE TO MEDIUM SMID.
· · · · · · · · · · · · · · · · · · ·				MP.	58	7	GRAVELLY SAMD/SILTY GRAVELLY SAMD: BROWN, FINGRAINED SAMD, SOME GRAVEL
	SP/SH			*	57	7	SAME: BROWN-GREY, MEDIUM TO COARSE GRAINED SA TO 3 INCHES, SUBANGULAR TO SUBROLADED.
	or≀on	_		4P	57	7	SAME: DANK BROWN, COMPSE GRAIND SAND, GRAVEL COBBLES TO 6 INCHES, DRILLING VERY DENSE-
1.5			?5	1	56	16	SILTY GRAVELLY SAND: TARK GREY, COARSE GRAINET GRAVEL TO 3 INCHES, SOME COBBLES.
	S M		31	,	75	21	SAME: GRAVEL TO 1.5 INCHES-
1.0				ИC	54	8	GRAVELY SAMM/SILTY GRAVELLY SAMD: DARW GREY COMESE GRAVED SAMD, GRAVEL TO 3 MODES, SOME COMESIVE MATERIAL.
2	H/SM .			we.	58	10	
.0	Ф.				58	3	SRAVELLY SMID: DARK GREY, MEDIUM TO COARSE GRAINER TO 3 INCHES, CORRUES TO 10 INCHES, ROYNCE
				40	66	9	GRAVELLY SAMD/SILTY GRAVELLY SAMD: "ARY GREY." CDARSE GRAINED SAMD, GRAVEL TO 3 INDES: CLUMPS MITTISH BUIE WATERIAL WHICH HAD A STROMG PROADLE AT QU'ERET.
SI	n/sm -			ήc	71	8	
				ψp			

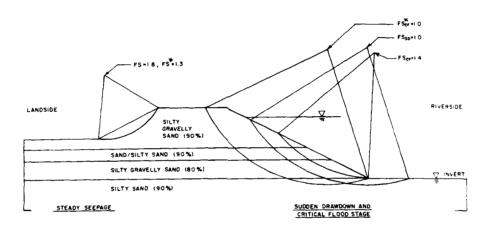

LUE ENGINEERING PAYS


+00		EL · 427±	
-4	-200	DESCRIPTION	
95	56	SIMPY SILT: LIGHT BROWN, DRY, FINE GRAINED SAND, GRAVEL, LOOSE-	FBI
100	73	SAME. Motst-	
99	n	SAME: Some organics-	
100	11	SILTY SAID: LIGHT BROWN-GREY, FINE TO MEDIUM GRAIS SAID.	MED
58		RAVELY SAND/SILTY GRAVELLY SAND: BROWN, FINE TO RAINED SAND, SOME GRAVEL.	COARSE
57	,	SAME - ROWN-GREY, MEDIUM TO COARSE GRAINED SAMO, 13 3 (MONES, SUB-MIGULAR TO SUBROLADED)	græel
57		SME TARK BROWN, COARSE GRAIND SAND, GRAVEL TO 2 CORRUES TO 5 IMPACES, DRILLING VERY DRINSE.	INCHES,
5 6		THE TO GRAVELLY SAINT THANK GREY, COARSE GRAINED S'	Mn,
75	15	SVE - FRANKL TO 1.5 INCHES-	
<u>`</u>	4	IRANFIL! SAMPISIL'N SHAPELLY SAMDI. DANK GREY, LOC THANKE GRAHED SAMO, GRAPEL TO 3 INCHES, SOME COMM TAPPUNICED, PODIETS OF CONESIVE MATERIAL	SE, LES,
5.E			
 9	,	$^{\rm GRAVE_V}$ SAND. Dank grev, Hebitum to coarse grafme to avec, to 3 inches, corbles to 10 inches, holyded-	D SAND,
hr	,	PARK LY SAND/SILTY SRINELLY SAND: MARK GREY, HED MARKE GRAINED SAND, GRAYEL TO 3 INDIES, CLUMPS GREY-TISH BULE MATERIAL MHICH HAD A STRONG DISGARIC OF A 12-TER.	IUM TO A DOR
	·····		
٠	•		
	_		
2 H			
*	•		

NOTES

I SEE PLATE 27 FOR LOCATION OF TEST HOLES 2 SEE PLATE BA FOR LEGEND AND CLASSIFICATION SYSTEM

SCALE IIN 3 FT 25 0 75



VALUE ENGINEERING

REACH CROSS ----Left Ty Right Ty Left Co Right Co

LEVEE	DESIGN	PARAMETERS
LEVEE	DESIGN	LWUMMIT I TIME

DESIGN	мадмим	OPTIMUM MOISTURE		R STR	ENGTHS		S STRENGTHS				UNIT WEIGHT LOOSE (80% \			UNIT WEIGHT DENSE		
PARA- METER	WEIGHT	CONTENT W. C.	/ 80	OSE OS ACTION)	DEN 90 COMPA	۱ ۵۰	COMPA	۱ %		NSE 0% NCTION)	AVERAGE	MPACTION MOIST WEIGHT	SATURATED		90% OMPACTIO	N)
SOIL	(PCF)	(%)	FRICTION	CONESION			FRICTION ANGLE (DEGREES)	COMESION		COHESION	UNIT WEIGHT Ya (PCF)	WEIGHT (PCF)	WEIGHT	UNIT WEIGHT	WEIGHT	WEIGHT
CLAY	121	11	(DEGREES)	600	23	600	24	200	30	200	99	109	124	111	123	132
SILT	117	12	20	200	25	400	26	80	32	100	94	104	122	105	117	129
SILTY	130	8	28	0	35	0	32	0	37	0	104	112	128	117	127	136
SAND	118	13	27	0	33	٥	31	0	36	0	94	106	122	106	120	129
SILTY	119	12	24	200	30	300	28	0	34	0	95	107	123	107	121	130
SAND/ SILTY SAND	123	11	26	0	32	0	30	٥	35	0	98	109	124	111	122	131
CLAYEY SANC		8	22	400	27	400	2 6	100	32	100	104	113	128	11-	127	(36

LEFT LEVEE

TYPICAL CROSS SECTION

LEFT LEVEE

LEGEND

FS. - FACTOR OF SAFETY.
FS. - FACTOR OF SAFETY WITH SEISMIC COEFFICIENT OF 0.15G.
FS₃₀ - FACTOR OF SAFETY FOR SUDDEN DRAWDOWN.
FS_{CF} FACTOR OF SAFETY FOR CRITICAL FLOOL STAGE (MAXIMUM DESIGN FLOOD CONDITION) TOTAL CROSS-SECTION GENERALLY REPRESENTS THE MOST COMMON SOIL CONDITIONS:
COMPOSITE CROSS-SECTION GENERALLY REPRESENTS WEAKER MATERIALS AND LOCALLY

HIGHER LEVEES.

NOTES:

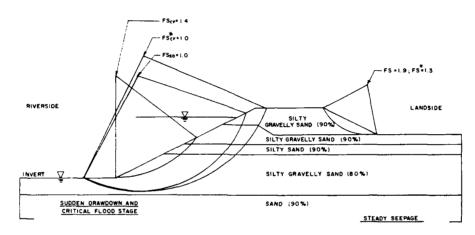
- 1.END OF CONSTRUCTION ANALYSIS WAS NOT PERFORMED ON EXISTING LEVEES SINCE IT IS NOT APPLICABLE.
- 2. PERCENTS190%, 80%) REPRESENT PERCENT RELATIVE COMPACTIONS USED IN ANALYSES; SEE LEVEE DESIGN PARAMETERS TABLE.
- 3. STABILITY CROSS SECTIONS ANALYZED WITH IV ON 2H SIDE SLOPES

COMPOSITE T CROSS SECT SCALE I IN - IOFT

LUE ENGINEERING PAYS

. 21

:22


130

36

FACTOR OF SAFETY FOR SLOPE STABLITY ANALYSIS (EM 1110 - 2-1913 DATED 31 MARCH 1978)

l .							_					
WEIGI DENSE	нт				R	IVERSIDE				LANC	SIDE	
90%) (M	REACH	CROSS SECTION	EOC	EOC W/EQ	SD	CR/FL	-Stage W/EQ	EOC	EOC W/EQ	\$5	SS W/EQ
WOIST UNIT WEIGHT	SATURATED WEIGHT		(Req min FS)	1.3	1.0	1.0	1.4	1.0	1.3	1.0	1,4	1.0
(PCF)	132	l,	Left Typical - Existing Right Typical - Existing Left Composite - Existing	NA NA	NA NA NA	1.0 1.0 1.0	1.4 1.4 1.5	1.0 1.0	NA NA NA	NA NA NA	1.8 1.9 1.8	13 13
117	129		Right Composite - Existing	MA	NA	1.0	1.4	1.0	NA	NA	1,7	1.2
27	136											

FACTOR O	F SAFETY TABLE NOTES:
£00	End of Construction
SD	Sudden Drawdown
Cr. / F1	Critical Flood
55	Steady Seepage
W/EQ .	Applied Earthquake Seismic COEF =0.15 G
NA	Not Applicable

RIGHT LEVEE

TYPICAL TOSS SECTION

FS_{CF}*1 4 (FOR DURATION OF 3 DAYS)

FS_{SCF}*1 0

FS**12

SILTY GRAVELLY SAND (90%)

SILTY SAND (80%)

SAND/SILTY SAND (80%)

SAND (80%)

SILTY SAND (80%)

SILTY SAND (80%)

SILTY SAND (80%)

SILTY SAND (80%)

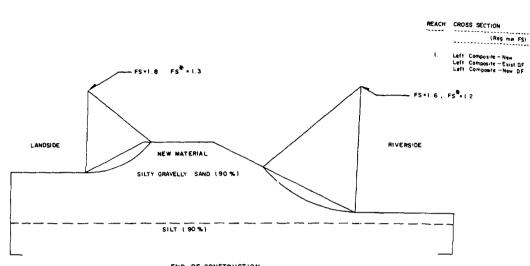
RIGHT LEVEE

COMPOSITE CROSS SECTION

SCALE IIN - IOFT
10 0 10 20 30

TRIBOL .	BERCHFRONS		DATE	MISON
	REVISION	18		
		U. S. ARMY BYGRY LOS ANGE CORPS OF BYC	LES	icī
********** 67.		R MAINSTEM, CALIFO L DESIGN MEMORAN		
SQANNI Sh	SLOPE STAB	LITY CONDITIO	NS	
ŀ	R	EACH 1		
04030 80	EXISTING S	OIL CONDITION	IS	
	RIGHT AN	D LEFT LEVEES	3	
Libert No.	DATE	MC. NO. BACWOF-		T

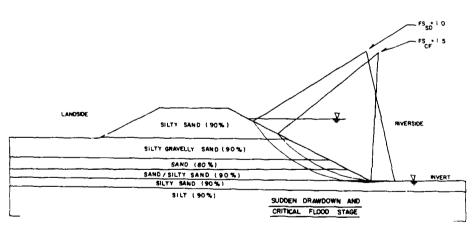
VALUE ENGINEERING


FACTOR OF SAFETY FOR SLOPE STABILITY ANA

1.0

RIVERSIDE EOC EOC SD Cr./FI.-Stage W/EQ. W/EQ.

1.0 1.4


1.0

END OF CONSTRUCTION

NEW CONDITION (See notes I and 2)

COMPOSITETCROSS SECTION

EXISTING DRAINED FACE CONDITION

LEGEND

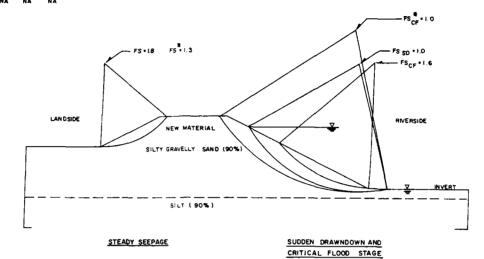
COMPOSITETCROSS SECTIO

FS — FACTOR OF SAFETY
FS — FACTOR OF SAFETY WITH SEISMIC COEFFICIENT OF 0 15G.
FS SD — FACTOR OF SAFETY FOR SUDDEN DRAWDOWN
FS CF — FACTOR OF SAFETY FOR CRITICAL FLOOD STAGE (MAXIMUM DESIGN FLOOD CONDITION).

TYPICAL CROSS SECTION GENERALLY REPRESENTS. THE MOST COMMON SOIL COMOVITIONS: COMPOSITE CROSS SECTION GENERALLY REPRESENTS WEAKER MATERIALS AND LOCALLY HIGHER LEVEES.

✓ — WATER SURFACE

NOTES:


- I NEW LEVEES WERE ANALYZED FOR END OF CONSTRUCTION 2 NEW REFERS TO THE SOIL CONDITION AFTER RECONSTRUCTION.
- 3. SEE PLATE A-29 FOR LEVEE DESIGN PARAMETERS.
- 4. PERCENTS (90%,80%) REPRESENT PERCENT RELATIVE COMPACTIONS USED IN ANALYSES. SEE LEVEE DESIGN PARAMETERS TABLE. 5 STABILITY CROSS-SECTIONS ANALYZED WITH IV ON 2H SIDE SLOPES.

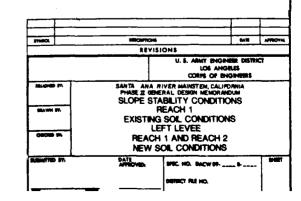
ALUE ENGINEERING PAYS

OR OF SAFETY FOR SLOPE STABILITY ANALYSIS


min FS)

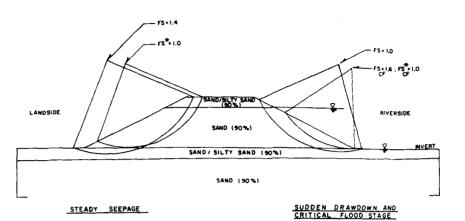
	R	IVERSID	E			LAND	SIDE		FACTOR OF SAFETY TABLE NOTES
ĒŌĊ	EOC W/EQ	SD	Cr./Fi	W/EQ.	EOC	EOC W/EQ	SS	SS W/EQ	EOC End of Construction SD Sudden Drawdown
1.3	10	1.0	1.4	1.0	1.3	1.0	1.4	1.0	Cr./fl Critical Flood
									SS Steady Seepage W/EQ Applied Earthquake Seismic COEF.*
16	1.2	10	1.6	1.0	J.8	1.3	1.8	1.3	NA Not Applicable
NA	NA	1.0	1.5	NA	NA	NA	NA	NA	

NEW CONDITION (See notes 1 and 2)

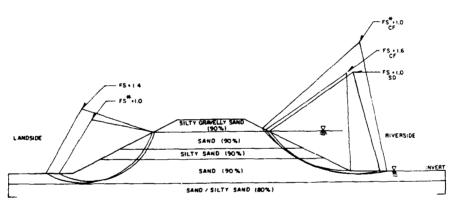

COMPOSITE TORS SECTION

NEW DRAINED FACE CONDITION (SEE NOTES | AND 2)

COMPOSITE TORONS SECTION


3CALE IIN + 10 FT

TARI 6


VALUE ENGINEERING I

	FACTOR OF	SAFETY	FOR	SLOPE	STA	<u> BILIT'</u>
	1201011			VERSIDE		
REACH	CROSS SECTION	ÉÓC	EOC W/EQ	SD	0.7FI	- Stage W/EQ
	(Reg. min FS)	1.3	1.0	1.0	14	1.0
2	Left Typical ~ Existing Right Typical ~ Existing Left Composite ~ # J	NA NA NA	NA NA NA	1.0 1.0 1.0	1.6 1.5 1.6 1.5	1.0 1.0 1.0

LEFT LEVEE

TYPICAL CROSS

STEADY SEEPAGE

SUDDEN DRAWDOWN AND CRITICAL FLOOD STAGE

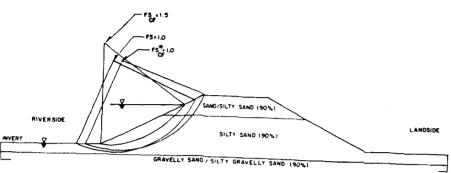
LEFT LEVEE NO. I

COMPOSITE CROS

- FS FACTOR OF SAFETY
- ${\sf FS}^{\frac{1}{2}}-$ FACTOR OF SAFETY WITH SEISMIC COEFFICIENT OF 0.15 G.
- $\mathsf{FS}_{\overline{\mathsf{SD}}}$ FACTOR OF SAFETY FOR FOR SUDDEN DRAWDOWN
- FS CF FACTOR OF SAFETY FOR CRITICAL FLOOD STAGE (MAXIMUM DESIGN FLOOD CONDITION).
- † GENERAL CROSS-SECTION GENERALLY REPRESENTS THE MOST COMMON SOIL CONDITIONS: COMPOSITE CROSS-SECTION GENERALLY REPRESENTS WEAKER MATERIALS AND LOCALLY HIGHER LEVEES.
- ▼ WATER SURFACE

NOTE:

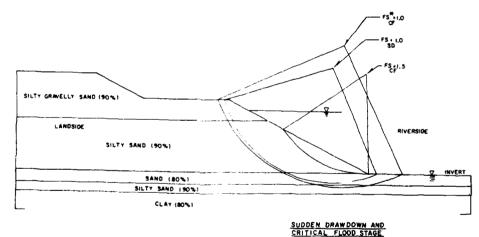
- 1 END OF CONSTRUCTION AMALYSIS WAS NOT PE FORMED ON EXISTING LEVEES SINCE IT IS NOT APPLICABLE.
- 2. SEE PLATE ASS FOR LEVEE DESIGN PARAMETERS.
- 3. PERCENTS (90%, 80%) REPRESENT PERCENT RELATIVE COMPACTIONS USED IN AMALYSES; SEE LEVEE DESIGN PARAMETERS TABLE
- 4. STABILITY CROSS-SECTIONS ANALYZED WITH IV ON PH SIDE SLOPES.


ALUE ENGINEERING PAYS

FACTOR OF	SAFETY	FOR	SLOPE	STA	BILITY	ANALY	(SIS		
			VERSIDE					SIDE	
ROSS SECTION	EOC	EOC W/EQ	SD	O. /Fi	- Slege W/EQ.	ĒÕČ	EOC W/EQ.	\$\$	SS W/EQ.
(Reg min FS)	1.3	1.0	1.0	1.4	1.0	1.3	1.0	1,4	1.0
Bical - Existing Dical - Existing	NA NA	N A N A	1.0	1.6	1.0	NA NA	NA NA	I 4 NA	I O
mposite - # 1	NA NA	NA NA	1.0	1.6	1.0	NA NA	NA NA	i.4 NA	I O

FACTOR OF SAFETY TABLE NOTES:

EOC. End of Construction
SD Sudden Droedown
Cr./FI Critical Flood
SS Steady See page
N/EO Applied Earthquake Seistric COEF + 0.15G
NAT Applied To The Common Seistric COEF + 0.15G EOC. SD Cr. / F1 SS


FS. 1.6 . FS. 1.0 RIVERSIDE

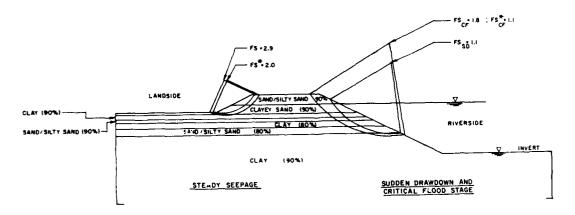
SUDDEN DRAWDOWN AND CRITICAL FLOOD STAGE

RIGHT LEVEE

TYPICALTCROSS SECTION


LEFT LEVEE NO.2

COMPOSITE CROSS SECTION


STRECK	1007104	BASE	AFFROYAL							
	REVISION	48								
		U. S. ARMY BIGGINEER DIST LOS ANGELES CORPL OF BIGGINEES	RICT							
100,00°C (11,	SAITA "A RIVE MALE II LIMERA	SAI-TR * A RIVER MANISTEM, CALIFORNIA PI-4C.S. I. RIVERAL DESIGN MEMORANDUM								
MANUAL BID	SLOPE STABILITY CONDITION									
	FEACH 2									
0000	EXI" TING SO	OIL CONDITIONS								
	RIGHT AND	EFT LEVEES								
SUBMITTED SY.	ATTECHES. M	C 10 DICKS1 P	. 3000							
1		BRICT FLE HO.								

NVERT

RIGHT LEVEE

TYPICAL TOROS SECTION

LEFT LEVEE

COMPOSITE CROSS SECTI

LEGEND

FS - FACTOR OF SAFETY

FS#- FACTOR OF SAFETY WITH SEIMIC COEFFICIENT OF 0.15G.

FS SO FACTOR OF SAFETY FOR SUDDEN DRAWDOWN.

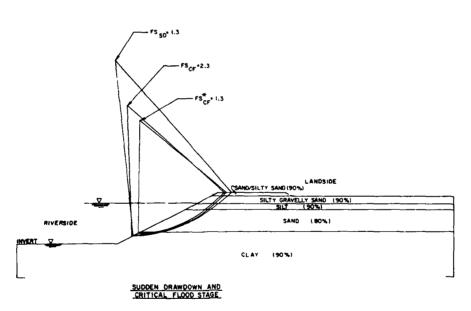
FSCF FACTOR OF SAFETY FOR CRITICAL FLOOD STAGE (MAXIMUM DESIGN FLOOD CONDITION).

TYPICAL CROSS-SECTION GENERALLY REPRESENTS THE MOST COMMON SOIL CONDITIONS: COMPOSITE CROSS-SECTION GENERALLY REPRESENTS WEAKER MATERIALS AND LOCALLY HIGHER LEVEES.

T -- WATER SURFACE

NOTE

- I. END OF CONSTRUCTION ANALYSIS WAS NOT PERFORMED ON EXISTING LEVEES SINCE IT IS NOT APPLICABLE.
- 2. SEE PLATE A-29 FOR LEVEE DESIGN PARAMETERS.
- 3. PERCENTS 190%, 80%) REPRESENT PERCENT RELATIVE COMPACTIONS USED IN ANALYSES; SEE LEVEE DESIGN PARAMETERS TABLE.
- 4. STABILITY CROSS-SECTIONS ANALYZED WITH IV ON 2H SIDE SLOPES.


ALUE ENGINEERING PAYS

FACTOR OF SAFETY FOR SLOPE STABILITY ANALYSIS

				RIVERSIDE	Ε	LANOSIDE				
REACH	CROSS SECTION	EOC	EOC W/EQ.	SD	Cr/FI.	STAGE W/EQ.	EOC	EOC W/EQ.	ss	SS W/EQ.
	Req. min. FS	1.3	1.0	1.0	1.4	1.0	1.3	1.0	1.4	1.0
3	Right Typical - Existing	NA.	NA	1.2	1.7	1.1	NA	NA	1.6	1.1
	Left Composite - Existing	NA	NA	1.1	1.8	1.1	NA	NA	2.9	2.0
	Right Composite - Existing	NA	NA	1.3	2.3	1.3	NA	NA	NA	NA

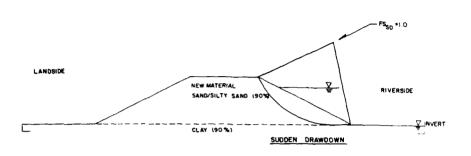
FACTOR OF SAFETY TABLE NOTES:

EOC End of Construction
SD Sudden Drawdown
Cr./FL Crincol Flood
SS Steody Seepage
W/EQ. Applied Earthquake Sers mic COEF = 0.15G
NA Nor Applicable

RIGHT LEVEE

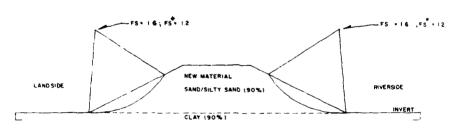
COMPOSITE CROSS SECTION
SCALE: IN. - IOFT.

VERT


SYMBOL	DATE DATE									
	REVISIONS									
		ARMY ENGINEER DISTR LOS ANGELES CORPS OF ENGINEERS	iCT .							
***		SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM								
BRAWN BY.	SLOPE STABILITY	SLOPE STABILITY CONDITION								
i	REACH 3									
OSCIAL DV.	EXISTING SOIL C	EXISTING SOIL CONDITIONS								
	RIGHT AND LEFT LEVEES									
REMOTED BY.	DATE APPLICATE SPEC. NO.	. DACWOP B	346							

VALUE ENGINEERING PA

FACTOR OF SAFETY FOR SLOPE STABILITY ANALYSIS


LANDSIDE

			R	VERSID	E		LAN	
REACH	CROSS SECTION	EOC	EOC W/EQ	SĎ	Cr /FI	-Stoge W/EQ	ÉOC	EOC W/E0
	(Reg min FS)	13	1.0	1.0	1.4	10	1 3	1.0
3,	Left Typical - New, wi D.F. Left Typical - New, *2 D.F. Left Typical - New	NA NA 1 6	AA AA 1 2	1.0 1.1 1.0	N A N A L.7	NA NA I.O	N A N A I.6	NA NA L Z

LEFT LEVEE #1 DRAINED FACE

TYPICAL + CROSS SECTION

END OF CONSTRUCTION

LEFT LEVEE

TYPICAL CROSS SECTION

LEGEND

FS — FACTOR OF SAFETY.

FSS — FACTOR OF SAFETY WITH SEISMC COEFFICIENT OF 0.15G.

FS OF FACTOR OF SAFETY FOR SUDDEN DRAWDOWN.

FS OF FACTOR OF SAFETY FOR CRITICAL FLOOD STAGE (MAXIMUM DESIGN FLOOD CONDITION).

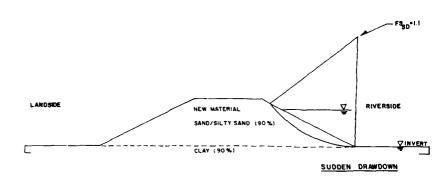
TYPICAL CROSS SECTION GENERALLY REPRESENTS THE MOST COMMON SOUL CONDITIONS: COMPOSE CROSS SECTION GENERALLY REPRESENTS WEAKER MATERIALS AND LOCALLY HIGHER LEVERS

WATER SUMFACE

NOTES

I. NEW LEVEES WERE ANALYZED FOR END OF CONSTRUCTION.
2. "NEW" REFEERS TO THE SOIL CONDITION AFTER RECONSTRUCTION.
3. SEE PLATE A-29 TUR LEVEE DESIGN PARAMETERS.

4. PERCENTS 190 %, 80 %) REPRESENT PERCENT RELATIVE COMPACTIONS USED IN ANALYSES; SEE LEVEE DESIGN PARAMETERS TABLE.

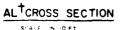

ALUE ENGINEERING PAYS

OR OF SAFETY FOR SLOPE STABILITY ANALYSIS

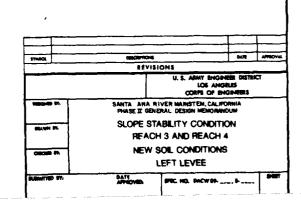
		R	VERSIC	Æ	LANOSIDE					
	EOC	EOC W/EQ	SD	Cr /FI.	-Stage W/EQ	EOC	EOC.	SS	SS WED	
n FS)	1.3	10	10	1.4	10	1.3	1.0	1.4	1.0	
. =1 DF	NA NA	NA NA	10	NA NA	NA NA I.O	N A N A	NA NA L.2	NA NA	NA NA	

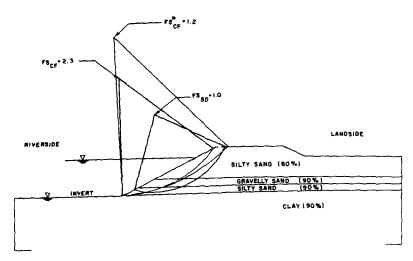
FACTOR OF SAFETY TABLE NOTES:

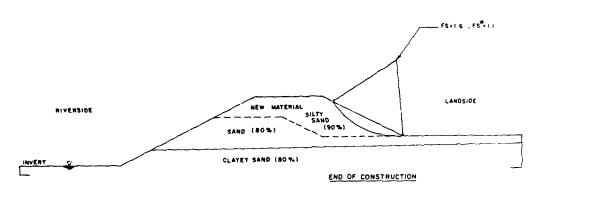
EOC. End of Construction
SD. Sudden Drawdown
Cr./Fl. Critical Flood
SS. Sieady Seepage
W/EQ. Applied Earthquake Seismic CQEF=0,15G
NA. Not Applicable


LEFT LEVEE #2 DRAINED FACE

AL TOSS SECTION SCALE LIN . 10 FT


INVERT


LEFT LEVEE


VALUE ENGINEERING PAT

SUDDEN DRAWDOWN AND CRITICAL FLOOD STAGE

EXISTING CONDITION

TYPICAL+ CROSS SECTION

NEW CONDITION (SEE NOTES | AND 2)

COMPOSITE CROSS SECTION

RIVERSIDE

INVERT V

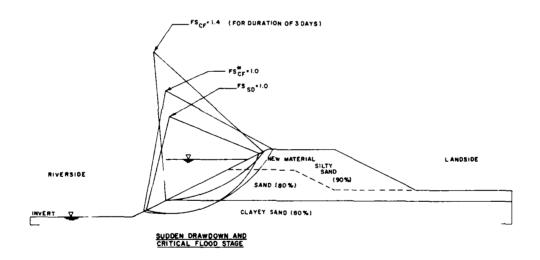
LEGEND

- FS FACTOR OF SAFETY
- FS* FACTOR OF SAFETY
- FS FACTOR OF SAFETY FOR SUDDEN DRAWDOWN.
- FSCF FACTOR OF SAFETY FOR CRITICAL FLOOD STAGE (MAXIMUM DESIGN FLOOD CONDITION).
 - TYPICAL CROSS-SECTION GENERALLY REPRESENTS THE MOST COMMON SOIL CONDITIONS:
 COMPOSITE CROSS-SECTION GENERALLY REPRESENTS WEAKER MATERIALS AND LOCALLY HIGHER LEVERS.

WATER SURFACE

NOTES.

- I. END OF CONSTRUCTION ANALYSIS WAS NOT PERFORMED ON EXISTING LEVEES SINCE IT IS NOT APPLICABLE.
- 2."NEW" REFERS TO THE SOIL CONDITION AFTER RECONSTRUCTION.
- 3. SEE PLATE A-29 FOR LEVEE DESIGN PARAMETERS.
- 4 PERCENTS 90%, 80% REPRESENT PERCENT RELATIVE COMPACTIONS. USED IN ANALYSES; SEE LEVEE DESIGN PARAMETERS TABLE.


FACTOR OF SAFETY FOR SLOPE STABILITY ANALYSIS

				RIVERSIDE		LANOSIDE				
REACH	CROSS SECTION	EOC	EOC W/EQ.	\$D	Cr./ Ft.	STAGE W/EQ.	EOC	EOC W/EQ.	ss	SS W/EQ.
•	(Reg min FS) Right Typical-Existing	-1.3 NA	_ I.O	1.0	-1.4 -2.3	1.0	-1.3 -NA	- <u>1.0</u> -	- I.A -	-1.0 -NA
	Right Composite - Exist / New	NA	NA	1.0	1.4	1.0	1.6	4.1	NA.	N.A.

FACTORY OF SAFETY TABLE NOTES:

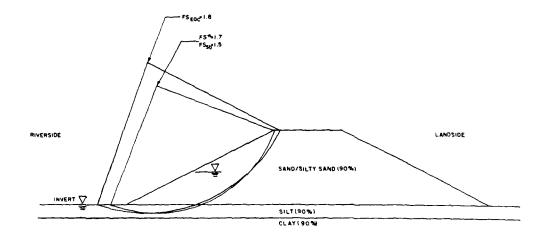
EOC End of Construction
SD Sudden Drd wdown
Cc./Fi. Critical Flood
SS Steady Seepage
W/EQ. Applied Earthquake Seit
NA. Not Applicable

Seismic COEF, +0.15G

EXISTING / NEW CONDITION (SEE NOTES | AND 2)

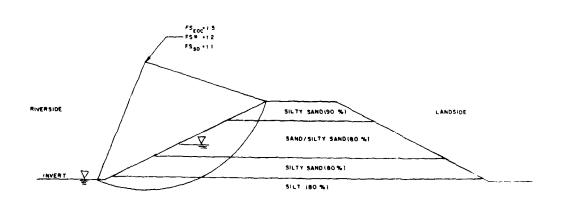
COMPOSITE TCROSS SECTION

TERS TABLE.


9CALE:11N.+10FT. 10 0 10 20

				ļ							
STINSCL	DESCRIPTION		DATE	APPROV							
	REVI	SIONS									
		U. S. ARMY ENGINE LOS ANGE CORPS OF ENG	LES	a							
D0000400 EV.	SANTA ANA RIVER MAINSTEM, CALIFORNIA PHASE II GENERAL DESIGN MEMORANDUM										
SEAWN ST.	SLOPE S	PE STABILITY CONDITION REACH 4									
ORGAN IN	NEW AND EX	NEW AND EXISTING SOIL CONDITIONS									
1	R	RIGHT LEVEE									
NUBMITTED BY:	DATE	SPEC. NO. BACWOF		948							
		DISTRICT PLE NO.		1							

VALUE ENGINEERING PA


BEACH

5

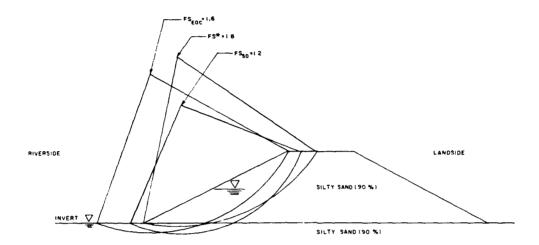
RIVERSIDE INVERT V

TYPICALT CROSS-SECTION

WEAK EMBANKMENT

LEGEND

FS FACTOR OF SAFE FSEC - FACTOR OF S FS SO - FACTOR OF SE T -TYPICAL CRC


NOTES

- I SIDE SLOPES INREA
 2 SEE PLATE 29 FI
 3 PERCENTS 190 %, 8
 SEE LEVEE DE SIGN
 4 STABILITY CROSS:
 5 NEW LEVEE WAS AN
 6 "NEW"REFERS TO TH
 7 EXISTIN" EVEES W
 PRESSUME BUILD
 8 FOR SUDDEN DRAW
 SEE PARAGRAPH C

VALUE ENGINEERING PAYS

FACTOR OF SAFETY FOR SLOPE STABILITY ANALYSIS (EM 1110 -2-1913 DATED 31 MARCH 1978)

		RIVERSIDE				LANDSIDE				FACTOR OF SAFETY TABLE NOTES:		
BEACH	CROSS SECTION (Reg min FS)	EOC	WEQ.	1.0	1.4	Stage W/EQ	E00	EOC W/EQ	5\$	SS W/EQ	EOC End of Construction SD Sudden Drawsown Cr./Ft Critical Flood	
5	TYPICAL - EXISTING WEAK EMBANKMENT - EXISTING	1.8	1.7	1.5	NA NA	NA NA	1.8	1.7	NA NA	NA NA	SS Steady Seepage W/EQ Applied Earthquake Seismic COEF = 0.15G	
	NEW-TO BE CONSTRUCTED	1.6	1,8	1.2	NA	NA	1.6	1.6	NA	NA.	NA Not Applicable	

NEW LEVEE

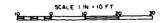
LEGEND:

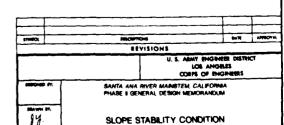
FS - FACTOR OF SAFETY

FS FACTOR OF SAFETY WITH SEISMIC COEFFICIENT

FS COC - FACTOR OF SAFETY FOR END OF CONSTRUCTION

FS SO - FACTOR OF SAFETY FOR SUDDEN DRAWDOWN

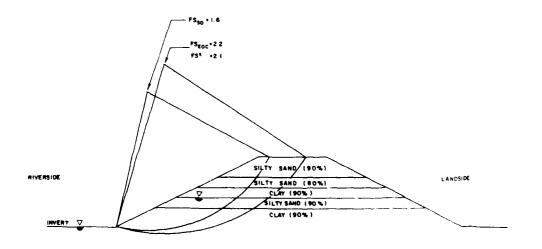

- TYPICAL CROSS - SECTION GENERALLY REPRESENTS THE MOST COMMON SOIL CONDITIONS


-WATER SURFACE

NOTES:

- SIDE SLOPES INREACH 5 ARE CONCRETE LINED
- 2 SEE PLATE 29 FOR LEVEE DESIGN PARAMETERS.
 3 PERCENTS 190 %, 80 %) REPRESENT PERCENT RELATIVE COMPACTION USED IN ANALYSIS,
 SEE LEVEE DESIGN PARAMETERS TABLE.

- 4 STABILITY CROSS SECTIONS ANALYZED WITH IV ON 2H SIDE SLOPES 5 NEW LEVEE WAS ANALYZED FOR END OF CONSTRUCTION
- 6 NEW REFERS TO THE SOIL CONDITION AFTER RECONSTRUCTION 7 EXISTING LEVEES WERE ANALYZED AS STATIC CASES, I.E. WITHOUT EFFECTS OF EXCESS PORE PRESSURE BUILD UP
- 6 FOR SUDDEN DRAWDOWN CASE, SATURATED EMBANKMENT IS DUE TO HIGH GROUND WATER TABLE SEE PARAGRAPH 6-07



VALUE ENGINEERING P

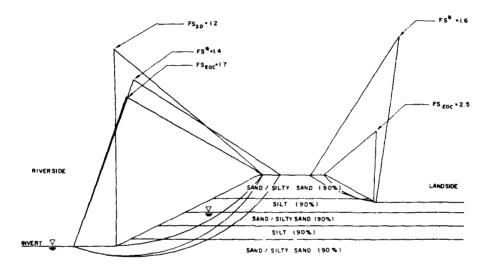
BEACH

RIVERSIDE - LANDSIDE SAND / SILTY SAND (90%) SILT (90%) SAND / SILTY SAND (90%) SILT (90%)

SILT FOUNDATION

CLAY FOUNDATION

RIVER


NVERT_

NOTES:

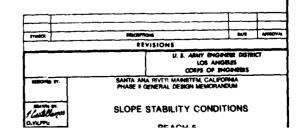
FACTOR OF SAFETY FOR SLOPE STABILITY ANALYSIS (EM IIIO - 2-1913 DATED 31 MARCH 1978)

			R	IVERSIDE		LANDSIDE				
BEACH	CROSS SECTION	EOC	EOC W/EO	SD	CR FL	WEQ	EOC	EOC W/EQ	SS	S S W/E0
	(Req min FS)	1.3	1.0	1.0	1.4	1.0	1.3	1.0	1.4	1.0
5	SILT FOUNDATION - EXISTING CLAY FOUNDATION - EXISTING SAND/SILTY SAND FOUNDATION-	1.8 2.2 1.7	1.7 2.t 1.4	1.4 1.6 1.2	NA NA NA	NA Na Na	NA 22 25	NA 2 I 1 6	NA NA NA	NA NA NA
	EXISTING									

FACTOR OF SAFETY TABLE HOTES: CO. End of Construction
SD. Sudden Drawdown
Cr. / Fl. Critical Flood
SS. Steedy Seepage
W/EQ. Applied Earthquake Salamic COEF = 0.15 g
NA. Mort Applicable

SAND / SILTY SAND FOUNDATION

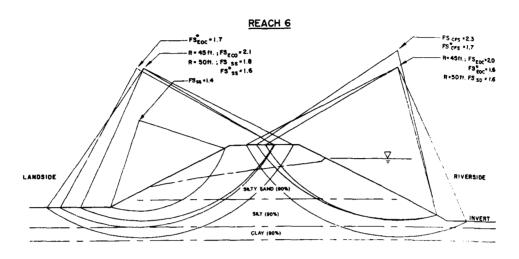
LEGEND

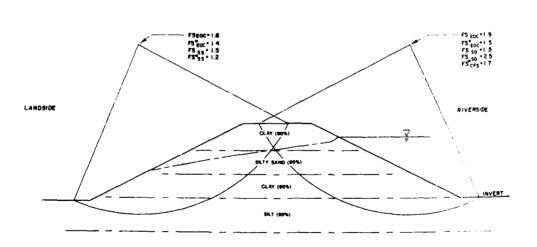

- FS FACTOR OF SAFETY WITH SEISMIC COEFFICIENT FS FACTOR OF SAFETY WITH SEISMIC COEFFICIENT FS SECTOR OF SAFETY FOR SHOOEN DRAWDOWN

 WATER SURFACE

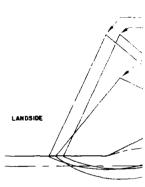
NOTES

- SIDE SLOPES IN REACH 5 ARE CONCRETE LINED
 SEE PLATE 29 FOR LEVER DESIGN PARAMETERS
 PERCENTS (90 %, 80 %,) REPRESENT PERCENT RELATIVE
 COMPACTION USED IN ANALYSIS, SEE LEVER DESIGN PARAMETER TABLE. 4. STABILITY CROSS SECTIONS ANALYZED WITH IV ON 2H SIDE SLOPES.
- END OF CONSTRUCTION AMALYSIS WAS NOT PERFORMED ON EXISTING LEVEES.
 INSTEAD A STATIC ANALYSIS WAS PERFORMED. I.E. WITHOUT EFFECTS OF PORE
 PRESSURE BUILD UP
- FOR SUDEEN DRAWDOWN CASE, SATURATED EMBANKMENT IS DUE TO HIGH GROUND WATER TABLE SEE PARAGRAPH 6-07


SCALE IN . 10 FT


LANDSIDE

VALUE ENGINEERING P


REACH C

SILTY SAND EMBANKMENT

CLAY/SAND EMBANKMENT

FS - FACTOR OF SA FS®- FACTOR OF SA FS®OC FACTOR OF SA FS®O FACTOR OF SA FS®OC FACTOR OF SA FS®OC FACTOR OF SA

NOTES

- SIDE SLOPES F 2. SEE PLATE 2 3. PERCENTS (90 COMPACTION U
- COMPACTION U
- 5 END OF CONST INSTEAD A STA PRESSURE BUI
- 6 FOR SUDDEN I GROUND WATE

LUE ENGINEERING PAYS

EOC - 1.6

SIDE

HVERT

VERT

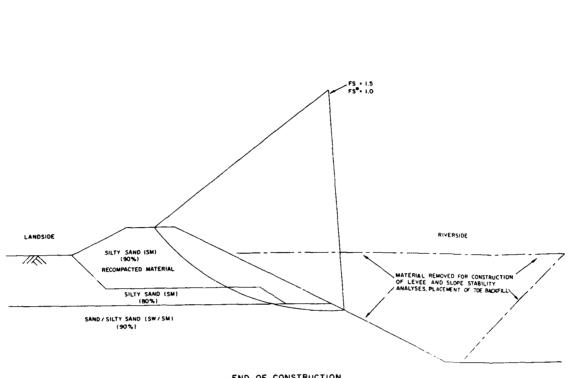
LANDS DE

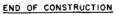
<u> ₹5 €3</u>

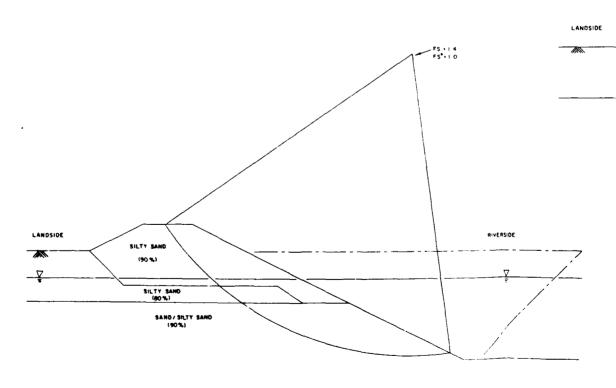
TIO DIESTO STANDARD CASE SATURATES EXPERIENCED IS DUE TO HOS-STOLANS CONTRACTOR, E

"WILLE OF SHIELS AND STONE RINGE", HANDER LEM "O 5 975 ON ED 2 MARCH BLA. SATING SHELL BOOK MITTEE E(A) 80 60 m 14 127 M. W. M. 127 SET SAME EMPLOYMENT CONTRACTOR STATES 2.5 THOUSE, STREET 1 12 10 10 9 -55 ecc . 5 ₹40% T ---- FS gr 1 2 -TIP LA EVBANKMENT .£3800 REVISIONS 1 TE SLIPES IN MERCY S APE CONCARTE LIMBS TEP PLATE 20 PM LIVEE SESSION PARAMETERS PROCESTS SUS-60% INPRESENT PROCEST RELATIVE CONFESTION AND IN AMOUSES SEE LEVEE SESSIO PROMITTED THOLE TO CHOSE SECTIONS MINETZES OFFI IV OR 2H SIDE SECTES. SAFTA AND ONET WATERTED CALFORNIA SLOPE STABILITY CONDITIONS

REACH 6 AND 7

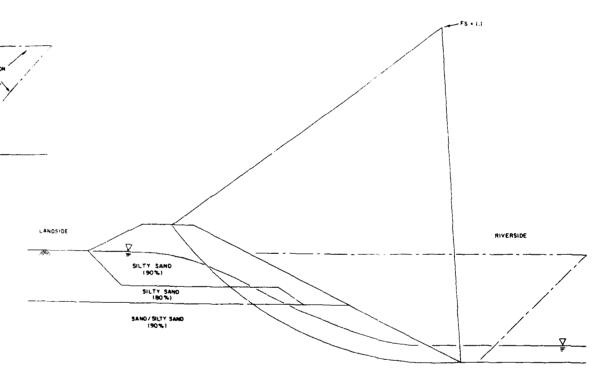

VALUE ENGINEERING PA


FAC


CROSS SECTIO Left Typical

51L**

SAND / SILT


CRITICAL FLOOD STAGE

UE ENGINEERING PAYS

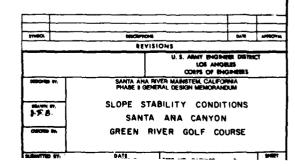
FACTOR OF SAFETY FOR SLOPE STABLITY ANALYSIS (EM 1110 - 2-1913 DATED 31 MARCH 1978)

	_	CANDSIDE							
CROSS SECTION	EOC	EOC W/EO	\$0	CR/FL-	Stoge W/EQ	EOC	EQC.	SS	S S W/EQ
(Reg min FS)	1.3	1.0	10	1.4	1.0	1.3	1.0	14	1.0
Left Typical - New	15	1.0	1.1	1.4	10	NA	NA	NA	NΔ

FACTOR OF SAFETY TABLE NOTES
EOC End of Construction
SD Sudden Drawdown
Cr. / Fl Critical Flood
SS Steady Seepage
W/EQ Applied Earthquake Seismic COEF = 0.150
NA Not Applicable

SUDDEN DRAWDOWN

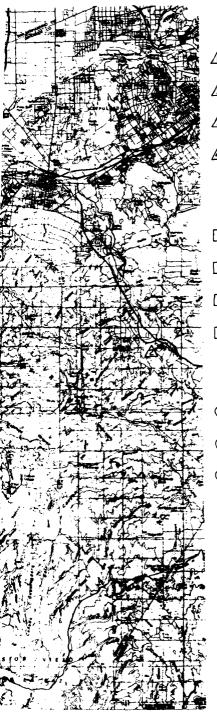
FS - FACTOR OF SAPETY
FS®- FACTOR OF SAPETY WITH SEISMIC COEFFICIENT


V - WATER SURFACE
--- TOE BACKFILL BOUNDARIES

NOTES:

RSIDE

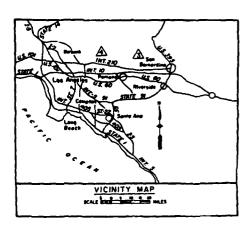
- 1. STEADY SEEPAGE CONDITION WAS NOT INCLUDED; SINCE IT IS NOT APPLICABLE.
- 2. PERCENTS (SOT, SOT) REPRESENT PERCENT RELATIVE COMPACTIONS USED IN ANALYSES; SEE LEVEE DESIGN PARAMETERS TABLE.
- 3. STABILITY CROSS SECTIONS ANALYZED WITH IN ON 2H SIDE SLOPES.
- 4. FOR DESIGN PARAMETERS TABLE SEE PLATE A-29.

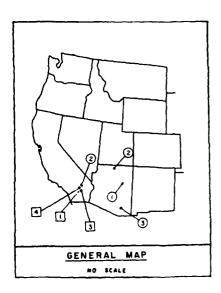

SCALE: 11N. = 10 FT. 0 0 10 20 30

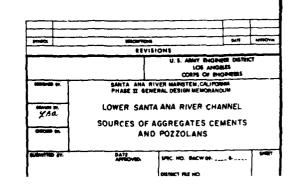
VALUE ENGINEERING PAY

VALUE ENGINEERING PAYS

AGGREGATE SOURCES


- BLUE DIAMOND MATERIALS IRVINE, CA.
- FOSTER SAND AND GRAVEL CO. CORONA, CA.
- OWL ROCK PRODUCTS CO. RIALTO, CA.
- TRANSIT MIXED CONCRETE CO. AZUSA,CA.


CEMENT SOURCES


- CALIFORNIA PORTLAND CEMENT CO. COLTON, CA.
- 2 KAISER CEMENT CO. LUCERNE VALLEY, CA.
- 3 RIVERSIDE CEMENT CO. RIVERSIDE, CA.
- SOUTHWEST CEMENT CO. VICTORVILLE, CA.

POZZOLAN SOURCES

- 1 PHOENIX CEMENT JOSEPH CITY, AZ.
- ② WESTERN ASH CO. PAGE, AZ.
- 3 WESTERN ASH CO. COCHISE, AZ.

A GEOTECHNICAL

ATTACHMENT

DEPARTMENT OF THE ARMY SOUTH PACIFIC DIVISION, CORPS OF ENGINEERS LABORATORY

LOWER SANTA ANA RIVER

REPORT OF SOIL TESTS

EDITED

SAUSALITO, CALIFORNIA

January 1980

REPORT OF SOIL TESTS

LOWER SANTA ANA RIVER

JANUARY 1980

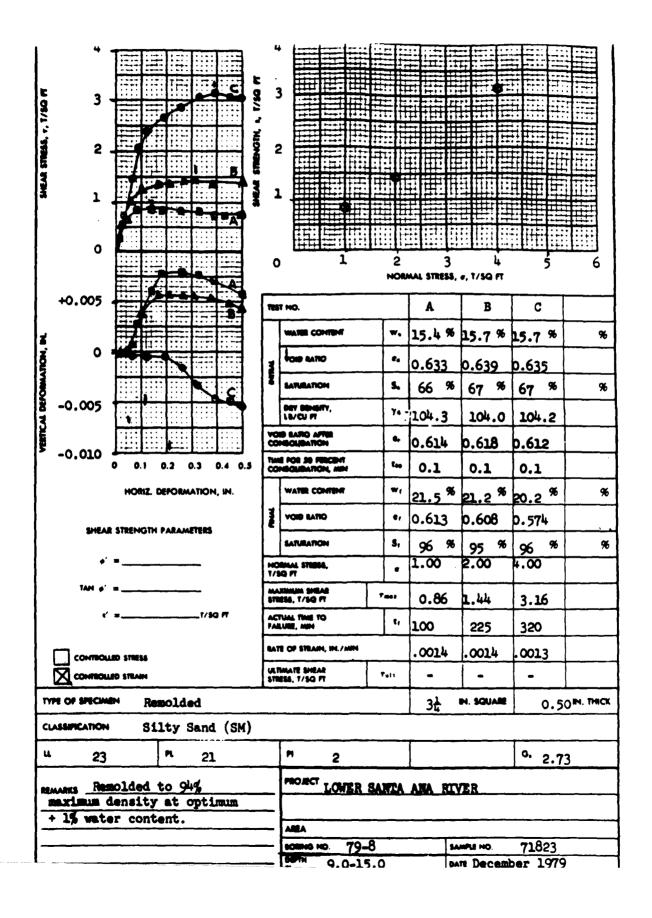
AUTHORIZATION

- 1. Results of tests reported herein were requested by the Los Angeles District in laboratory request No. CIV-80-12 dated 29 October 1979 and change order No. 1 dated 28 November 1979.
- 2. Three undisturbed and eight disturbed samples were received on 7 September 1979. Identification of the samples are shown on the Test Result Summary, plate 1.

TESTING PROGRAM

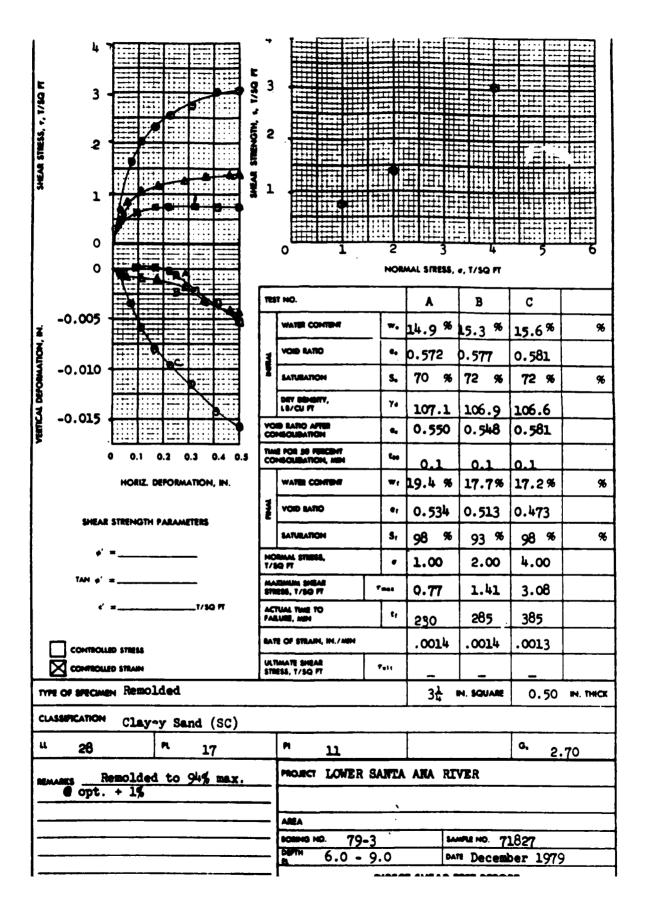
3. The program was in general accordance with the test request and included compaction, classification, specific gravity, direct shear, "R" triaxial compression, consolidation and permeability.

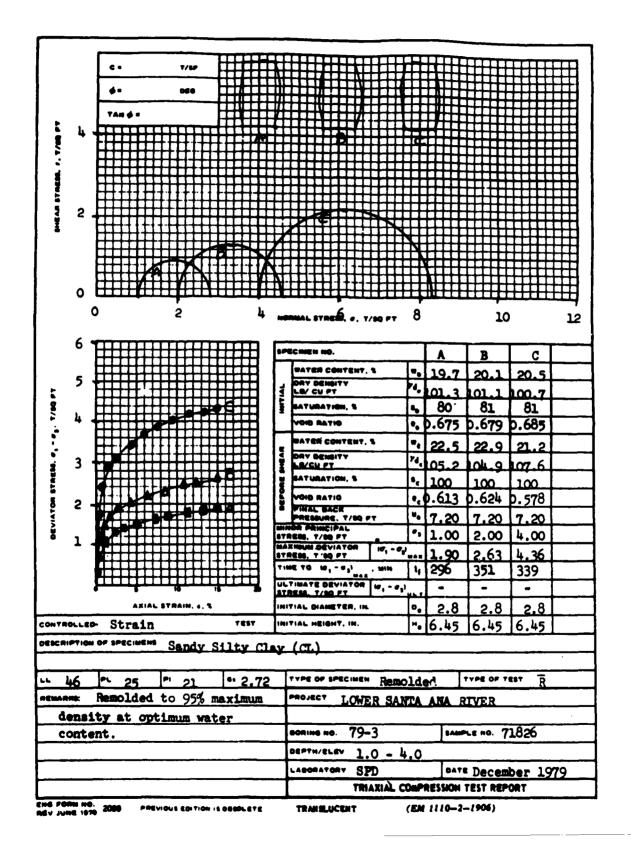
TEST METRODS

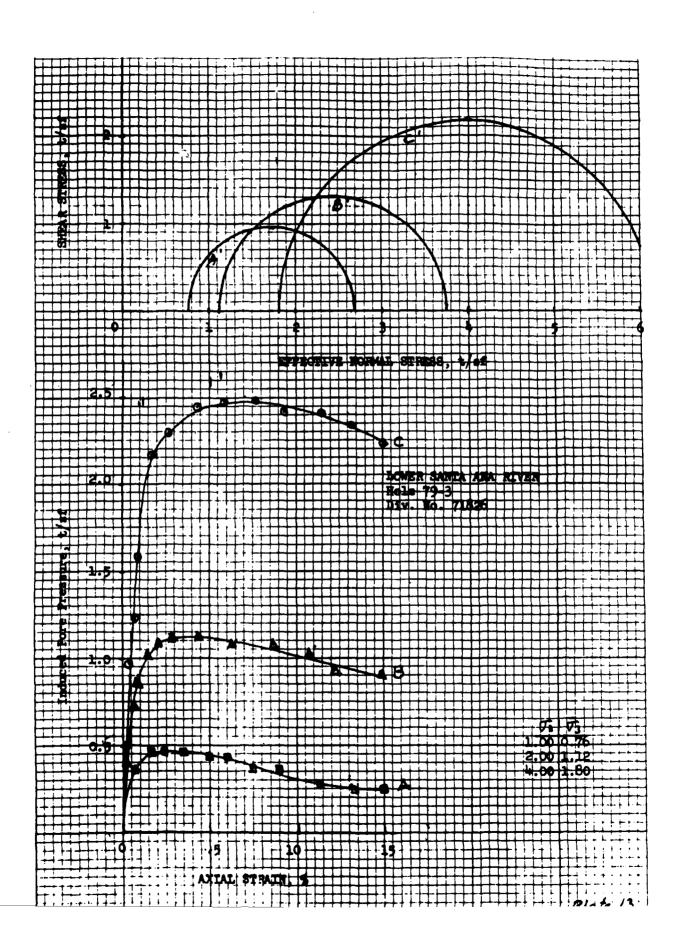

- 4. a. Grain-size Ananlysis, Atterberg Limits, Specific Gravity, Compaction, Permeability, Direct Shear, Triaxial Compression and Consolidation. Testing methods conformed to the procedure described in Engineer Manual, EM 1110-2-1906, "Laboratory Soil Testing," 30 November 1970.
- b. Classification. The soil was classified in accordance with "The Unified Soil Classification System," TM No. 3-357, Appendix A, April 1960.

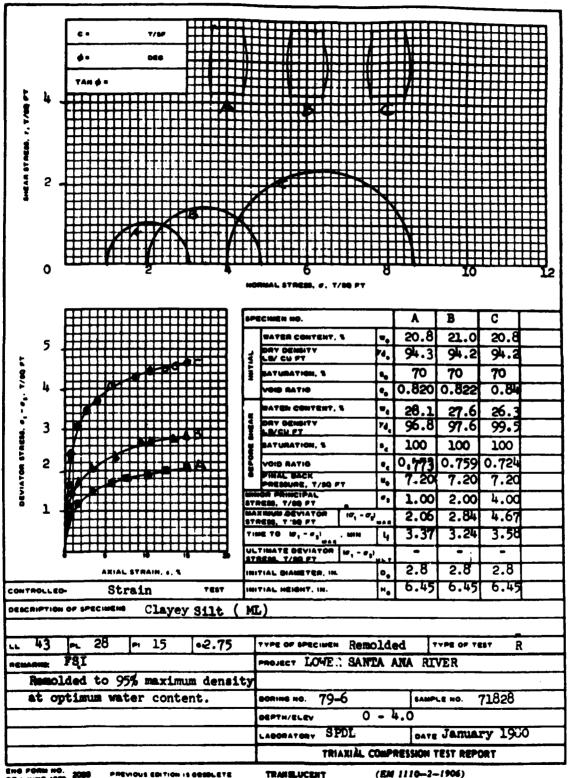
RESULTS

5. Results of tests are shown on the following plates:

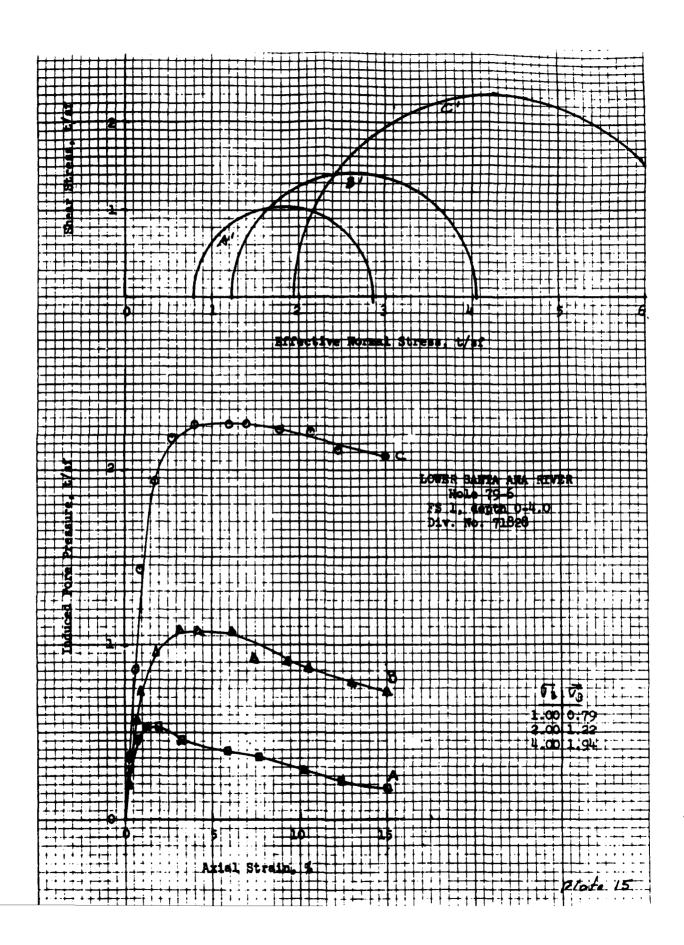

SUBJECT		PLATE NO.
Soil Test Result Summary Plasticity Chart Compaction Test Report Direct Shear Test Report Triaxial Compression Test Consolidation Test Report Permeability	Report	1 2 3 - 6 7 - 11 12 - 23 23 - 35 36

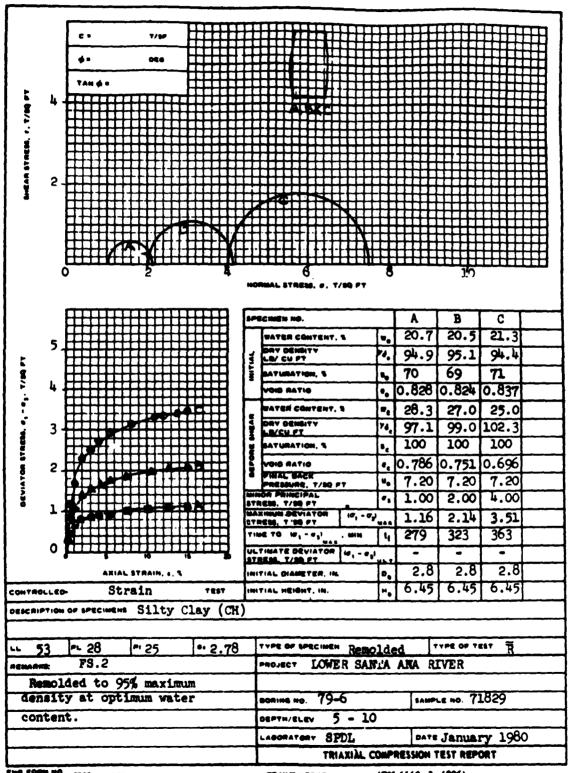

3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	2	3 AAL STRESS,			
	TES				ъ	С	
0		WATER CONTENT	₩.	A 19.7%	B 19.6%	19.6%	%
-0.01	3	VOID RATIO	0,	0.744	0.740	0.745	
	PUTA	SATURATION	S.	73 %	73 %	72 %	%
-0.02 C		DRY DENSITY, LB/CU PT	γ4	98.1	98.3	98.0	
	8	B RATIO AFTER NEOLIBATION	4	0.717	0.700	0.686	
0 0.1 0.2 0.3 0.4 0.5		POR 30 PRECENT HEGUBATION, MIN	Eq.	0.1	0.1	0.1	
HORIZ. DEPORMATION, IN.		WATER CONTENT	₩1	26.3% 24.6%		23.2%	%
SHEAR STRENGTH PARAMETERS	3	VOID RATIO	*1	0.721	0.674	0.636	~
* =		BARRATION BMAL STRESS,	S,	100 %	100 %	100 %	%
TAM 6' =	-	MINIM SHEAR	7000	1.00	2.00	4.00	
e' =1/9Q FI	AC	TUAL TIME TO	.,	0.65	1.41	2.75	
		LUIE, MIN IE OF STRAIN, IN./MIN	Ц	170	.0015	.0014	
CONTROLLED STRESS CONTROLLED STRAIN	ULT	TMATE SHEAR ESS, T/SQ FT	Full	-0015	0015		
TYPE OF SPECIMEN Remolded				31	N. SQUARE	0.50	IN. THICK
CLASSIFICATION Sandy Clay (CL)							
u 35 n 2?		M 13				o. 2.	74
REMARKS Remolded to 95% maximum		PROJECT LOWER	SAN	TA ANA	RIVER		
density at optimum water con- tent.	<u></u>						
	_	SORNO NO. 79=9		SA	MPLE NO	71822	

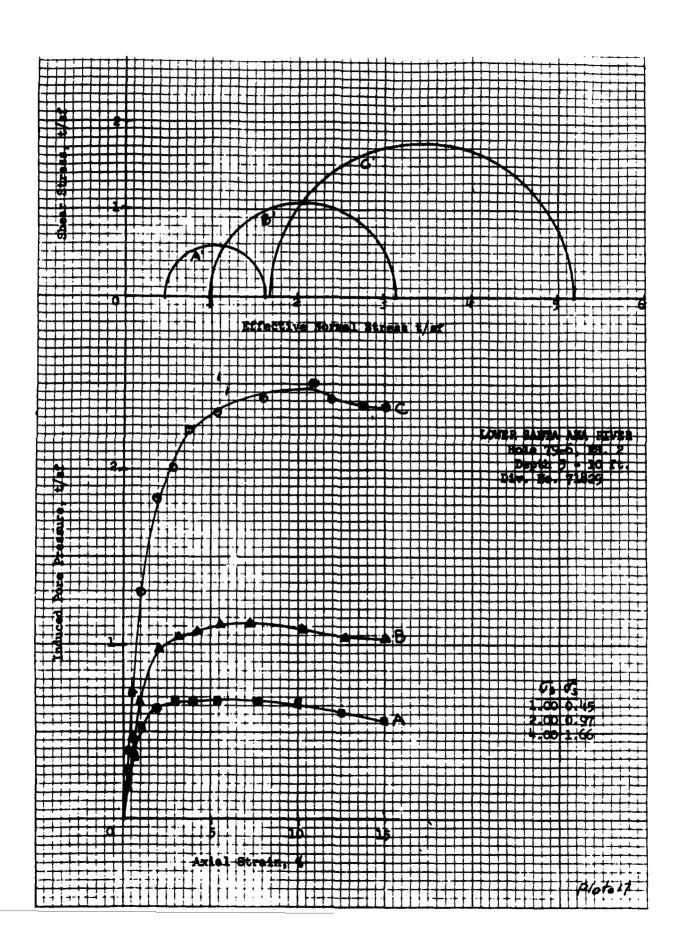



SHEAR STRESS, 1, 1/80 FT	2			1 .	SHEAD STRENGTH - 1/20 FT	2						
	0					TEST	0 1 .	2 NOI	MAL STRESS,	e, 1/5Q FT	5	
Z.	-0.01			- A		4	WASER CONTENT VOID BATIO	w,	21.2 %	19.7 [%]	20.4 %	%
VERTICAL DEFORMATION,	-0.02					TVLLB48	SATURATION DRY DENSITY,	S. 74	77 %	73 %	75 %	%
VERTICAL	-0.03			<u> </u>		VOID BATTO AFFEE CONSCUENTION		•	0.726	98.4 0.691	98.0 0.687	
0.03			0.5	COMEQUIDATION, MIN		Coo W1	0.1	0.1	0.1	96		
				•		3	VOID BATTO	· ·	25.6 [%]	22.9	0.610	~
	SHEAR	STRENGTH	PARAMET	ERS		Ц	SATURATION	Sı	100 %	100 %	100 %	%
	TAN ø'			- -		1/84	mai stress, o Pt Imum Stread	•	1.00	2.∞	4.00	
	ď	*		.1/ 5Q FT		ACT	ISA, T/SQ FT JAL TIME TO USE, MIN	Tman Er	0.61	1.18	2.23	
	covmon	ED STRESS				┢	OF STRAIN, IN./MIN		.0014	.0015	.0013	
	COMMON		· · · · · ·			STRE	MATE SHEAR 26, T/SQ FT	Felt	-		-	
	SPICATION	He	emolde		`				32	N. SQUARE	0.50	IN. THICK
u	44		PL.	27			M 17				G. 2.	74
de	next Remo	appro		пехіп		_	MO ECT	SANTA	ANA RU	7 ER		
Silty Clay(CL)							AMEA SORNO NO. 79	1	544	MPLE NO.	71824	

1	-	1::::	::::	1111						1==		==	łi		:=	4::::	<u> </u>	===	F		
l			====			C						=			1:-	1	1::	: :::	: : :	====	
1_		::::		iΩ			2						Ш	315				7	1	===	1
E	3 -		•		::::		780	3	 								=	#==			! !
1×	•		=							1=			H					* ***			1
13		 	====				3			:::	##	:==	III				=	: 1:::			1
3	2	1:13	##	F	l:;::	:::::	5	2			Ш	===	ш		##		<u> </u>				1
Į	۶.	33	1 .		100	∷ 5	STRENGTH,	_				E	ATE				1	# 17: 5			1
SHEAR STIESS, 1, 1/50			4						###			##	Щ		##		#	##			1 1
15		17					3		- 1111		#	+	1#			-1111	Ш		111	ШЕ	1 1
12	1 .	V_{-}					3	1	. ##		###		Ш				₩	****	#		1 1
ļ		7				+•	1		##			#	Ш		##	4#	Ш		#=	1445	1 1
L				::::								1:	1::				1				1
	0 -		•:::	<u>::::</u>	::::	::::					11111	1.17	i E		ĮĖ.	: [11]	E		Hi	12:11	1 (
1		:::::		:::::	: <u></u> :	==			0	1	Ĺ	2	2		3		4		5		
1	+0.020	 	===									N	Q EA	LAL STR	ESS, c	, T/\$Q	FT		-		
1				5-6		::::															ㅡ
1		===				5		162	1 NO.					A		В		C			- 1
1	+0.010	二	7		===	£						\top			_		_				_
Z						Ξ			WATER			L	٠.	0.2	95	0.3	%	0.4	96		%
		= //	7			-8			VOID BA	no.		Π,									
	0			===				4				_	_	0.62	4_	0.62	7	0.62	8		
DEFORMATION,	•	5.0	::::	::::		:::::		-	SATURAT	10H		!	L	,	96		%		2%		%
18									-	-		十	ᅥ		\vdash	 		 			
			::::	::::	::::				18/00 7	λ FT				103.	0	102.8		102.7			ı
VERTICAL	-0.010			::::	11111				O RATIO												
¥		:	=:		::::	::::		8	MOLDAT				_	0.60	9	0.605		0.602			
1	0 0.1 0.2 0.3 0.4 0.3						.5		E POE 30 NACUDAT			\ •	100	0.1		0.1		0.1			
1													\dashv	<u> </u>				1			
		HOR	IZ. DEI	MRM.	ATION,	IN.			WATER (MINO:	,	'	*,	22.9 %		22.3 %		23.1 %			%
1								3	VOID BATTO				e,								
ı	SHEAR	STRENC	STH PA	RAM	ETERS			1000000					0.64	7	0.62		0.618				
Ì	•								SATURAT	ATURATION			5,	98 %		96 %		100 %			96
	•	=			_				MAL STE			+		90		190		1.00 %			\dashv
١.					_			1/8	9 17	100,			•	1.00 2.00				4.00	,		
ł	TAN ø'	=			_				DAMAN SA												
l								574	ESS, 1/84	<u> </u>		T ma		0.89		1.78		3.51	•		
i	٠,				1/\$Q	FT			UAL TIME				٠,	80		300		م. د	. !		
l													-	- 00		120		240	<u>'</u>		
	COMPROLL	IN CTOS	ı d					RAT	e or star	MN, IN./	MM			.001	ь	.001	L	.001	1.		
1			-					ULTI	MATE SHE	AE					_				-		
	COMMON	D STRAM	M 					579	235, T/3C	PT		Pul		-				-]		
n	THE OF SPECIME	N R	iemo.	1de	1									31	•	N. SQU	ARE	ے ا	50	IN. TH	HCK
																			,, <u>)</u>		
C	LASSIFICATION	S	11t	y Se	and	(SP	- {	SM)													
Ги		_		 N					PI									a			
F										N	<u> </u>							2. 2	2.68		
l	2			- ~	ed _				MORG	.	 .		_		-						
	MARKS _BET							_			MEK	SA	T.	AM		YER					—
1-	density s	41	.r -d	ry \	76 UE	r CC	AI C	STI.	Ŀ						_						:
1-								_	AMEA												
1_							<u> </u>	_	10mmo	NO. 7	3-2	-			944	FU NO.		1825			
_									DEPTH						-			_			
								_	#	6.0	- 7					<u>De</u>			197	<u>y</u>	
								_					-	-			-	_			

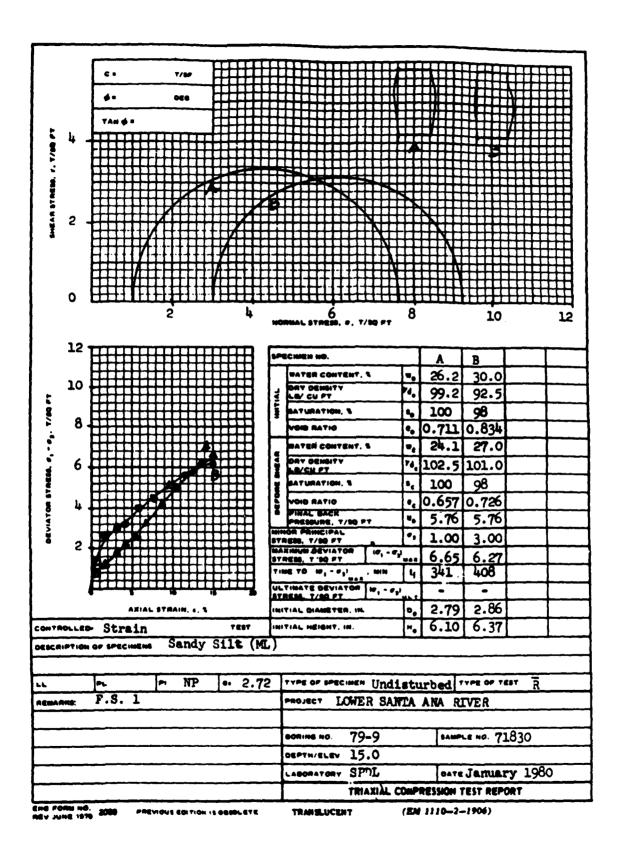
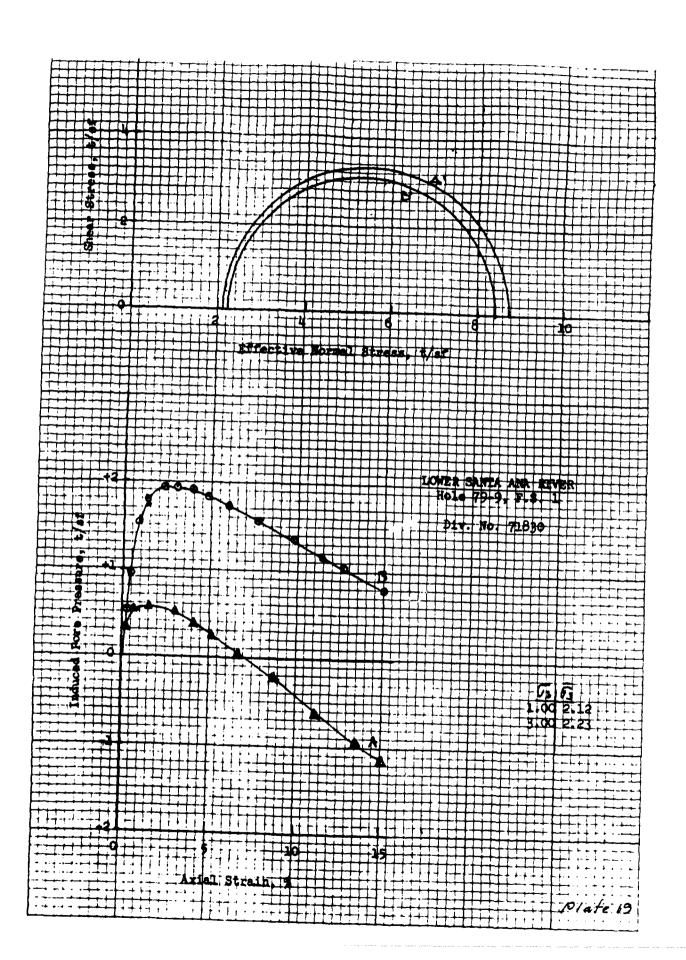
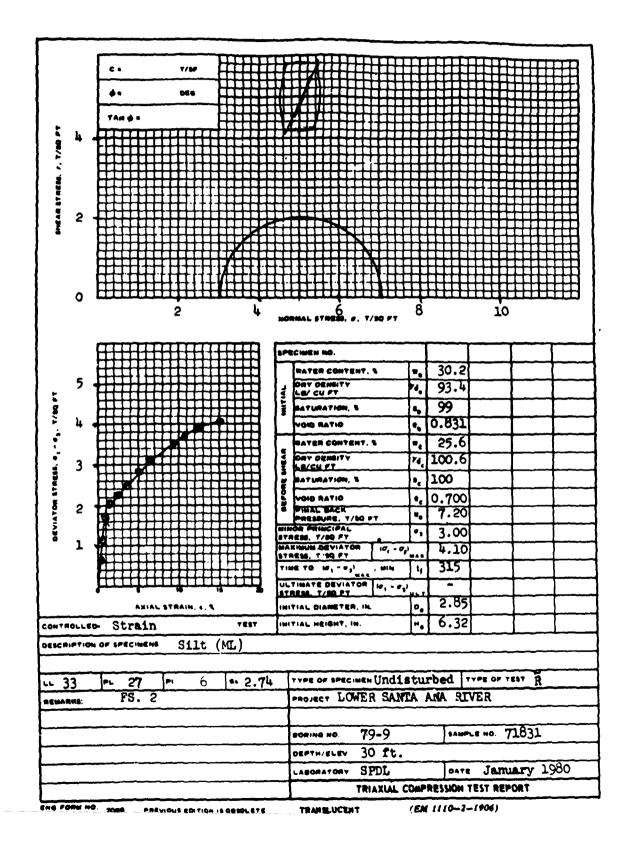
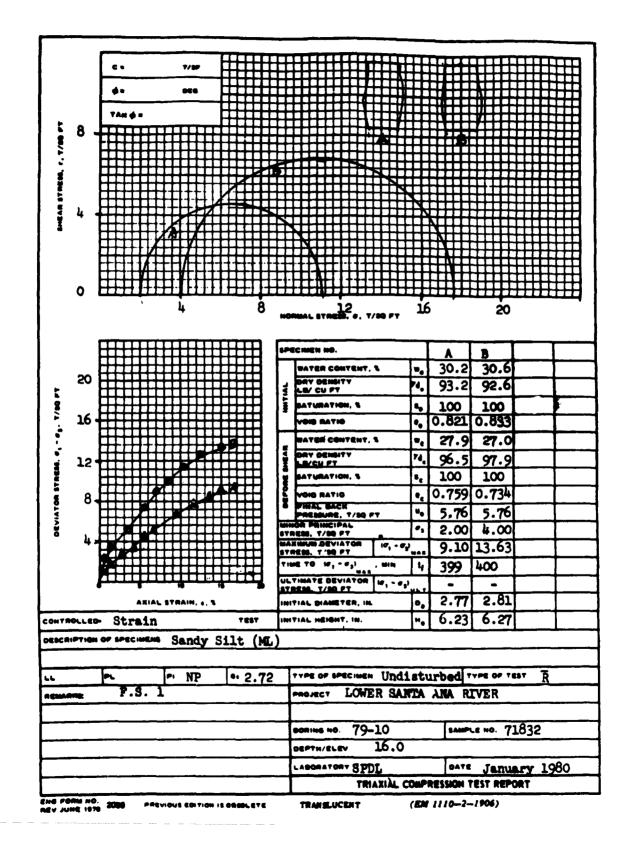
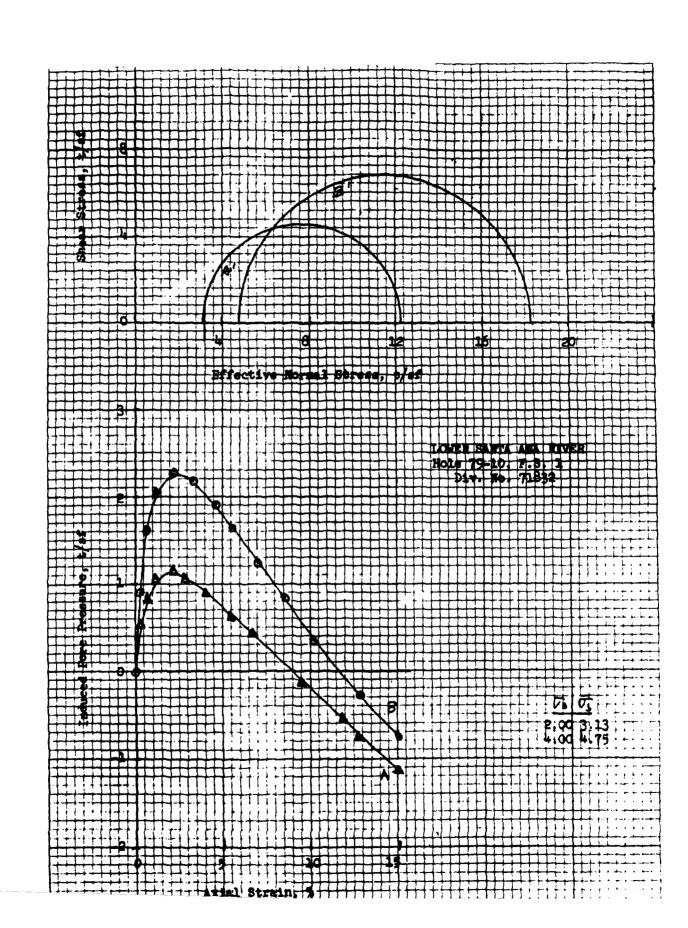


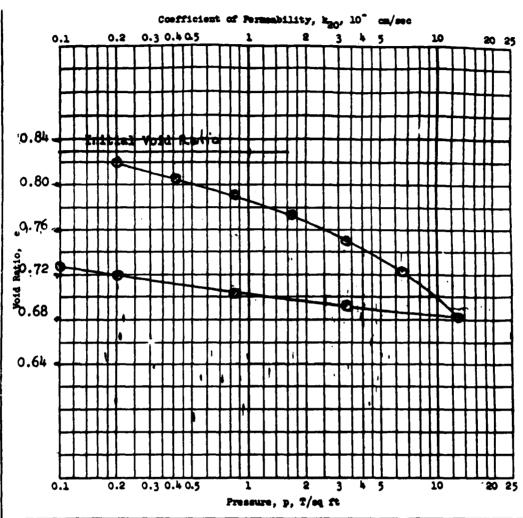


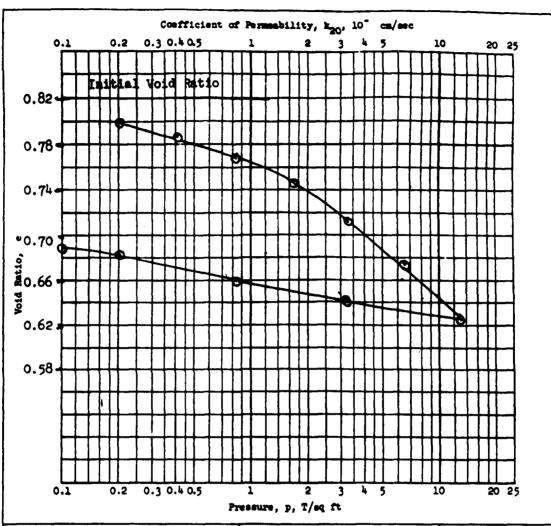

ENG FORM NO. 2000 PREVIOUS COITION IS DESDLETE

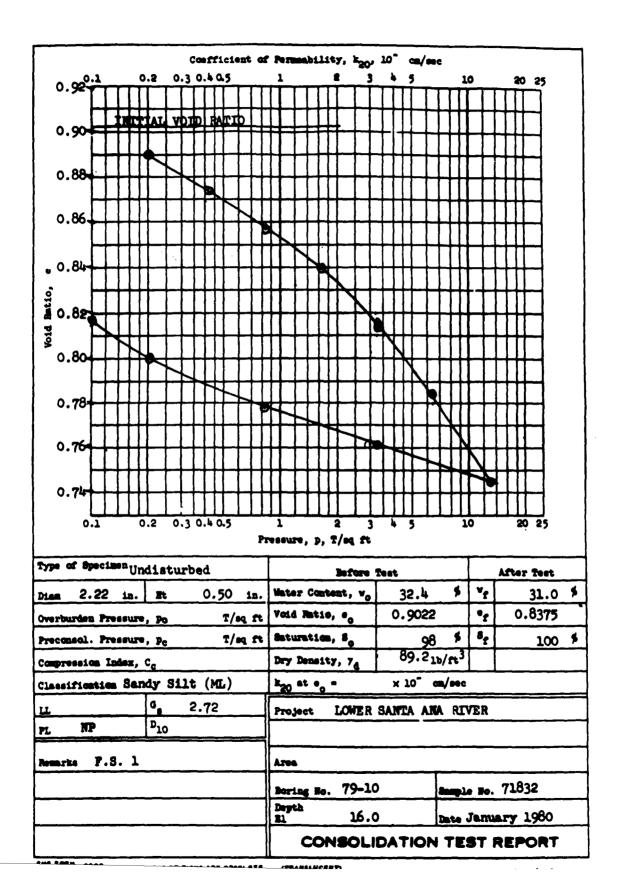
TRANSLUCENT

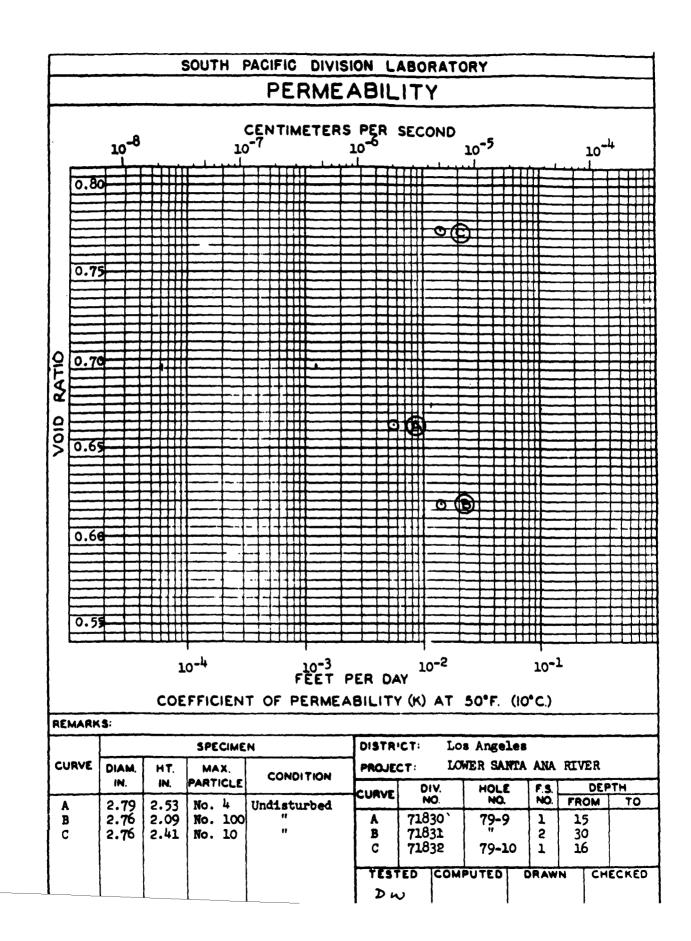
A. L. ...


Plate 18







Type of Specimen Undisturbed	Before	After Test	ter Test									
Diam 2.22 in. Rt 0.50 in.	Water Content, vo	29.4	\$ 4	28.0	\$							
Overburden Pressure, po T/sq ft	Void Ratio, eo	0.830	•2	0.762								
Precensel. Pressure, pc T/sq ft	Seturation, So	96	\$ 8g	100	\$							
Compression Index, Co	Dry Density, 7 _d	92.716/1	t ³									
Classification Sandy Silt (ML)	k ₂₀ at e ₀ = × 10" cm/sec											
LL 0 2.72	Project LOWER	Santa ana	RIVER									
PL MP D10												
Remarks P.S. 1	Ares											
	Boring No. 79-9	Sea	71830									
	Depth 15.0 Date January 1980											
	CONSOLIDATION TEST REPORT											

Type of Specimen Un	disturbed	Before		After Test							
Diam 2 22 in.	m 0.50 in.	Water Content, vo	29.7 \$	V _f	25.4	*					
Overburden Pressure,	po T/sq ft	Void Ratio, e	0.820	••	0.693						
Preconsol. Pressure,	pc T/sq ft	Saturation, So	99 🛊	Sf	100	*					
Compression Index, Co		Dry Density, 7 _d	93.91b/m³								
Classification	Silt (ML)	k20 at e0 =	x 10 cm/sec								
11 33 a	2.74	Project LOWER SA	NTA ANA RIVE	R							
PL 7	10										
Remarks		Area									
		Boring No. 79-9 Sample No. 71831									
		Depth 30.0 Date December 1979 CONSOLIDATION TEST REPORT									

DEPARTMENT OF THE ARMY (SOUTH PACIFIC DIVISION, CORPS OF ENGINEERS LABORATORY

REPORT OF SOIL TESTS

SANTA ANA RIVER

EDITED

SEPTEMBER 1983

SAUSALITO, CALIFORNIA

REPORT OF SOIL TESTS

SANTA ANA RIVER

SEPTEMBER 1983

AUTHORIZATION

1. Results of tests reported herein were requested by the Los Angeles District in laboratory request No. CIV-83-108 dated 20 July 1983.

SAMPLES

2. Thirteen undisturbed tube samples and 17 sack samples were received on 21 June and 25 July 1983. Identification of samples is on the Soil Test Result Summary, plates 1 and 2.

TESTING PROGRAM

3. The program was in accordance with the test request and verbal instructions from Mr. C. Sands/SPLED-GD, and included laboratory classification tests, triaxial shear, field unit weight, and compaction tests.

TEST METHODS

- 4. a. <u>Grain-size Analysis</u>, <u>Atterberg Limits</u>, <u>Compaction</u>, <u>Specific Gravity</u>, <u>Field Unit Weight</u>, <u>and Triaxial Compression</u>. <u>Testing methods conformed to the procedures described in Engineer Manual</u>, <u>EM 1110-2-1906</u>, "Laboratory Soil Testing", 30 November 1970.
- b. Classification. The soils were classified in accordance with the "Unified Soil Classification System", TM 3-337, Appendix A, April 1960, reprinted May 1967.

RESULTS

5. Results of tests are shown on the following plates:

Subject	Plate No.
Soil Test Result Summary	1 - 2
Plasticity Chart	3 - 4
Compaction Test Report	5 - 14
Triaxial Test Report Undisturbed Remolded	15 16 - 19

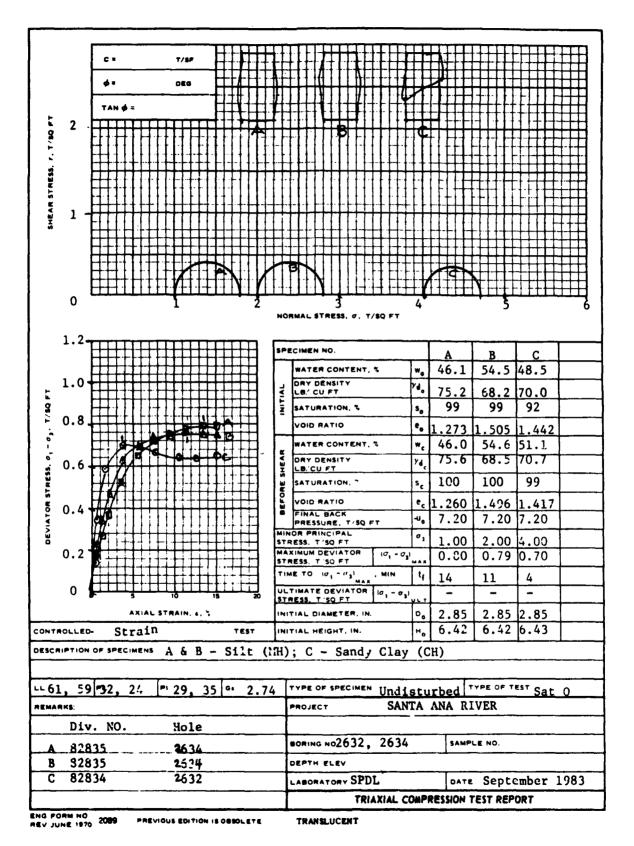
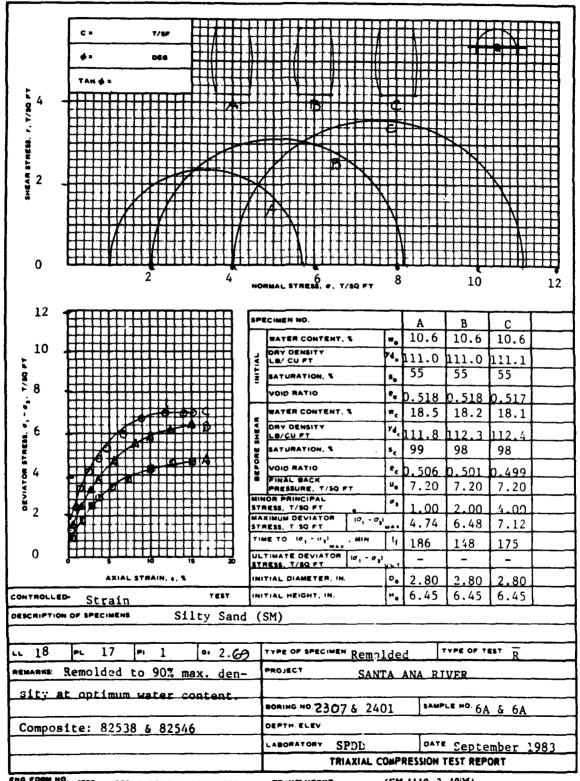
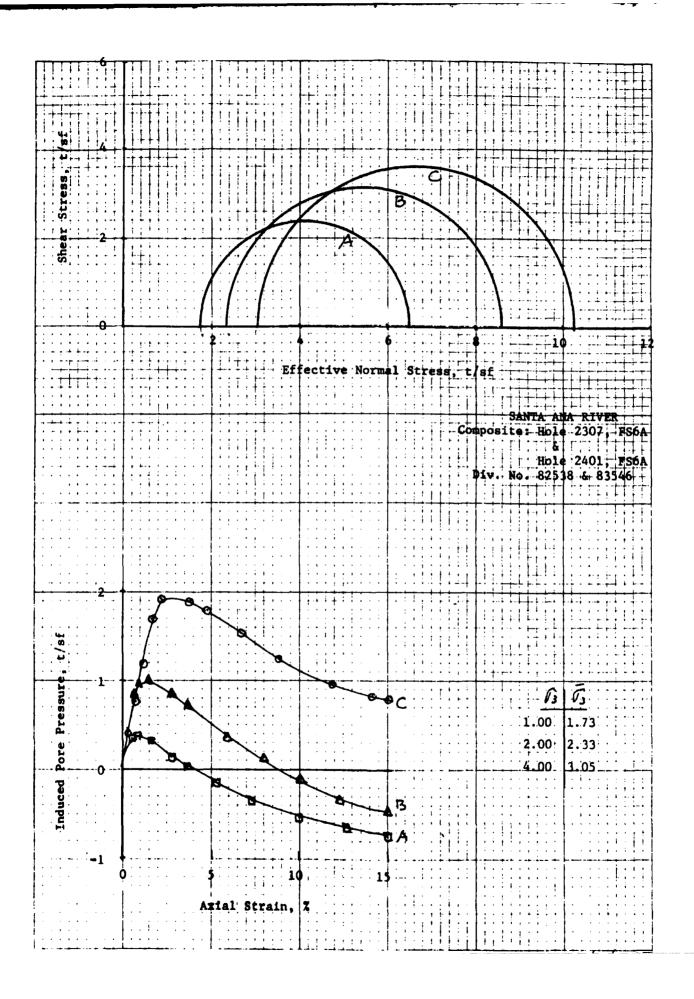
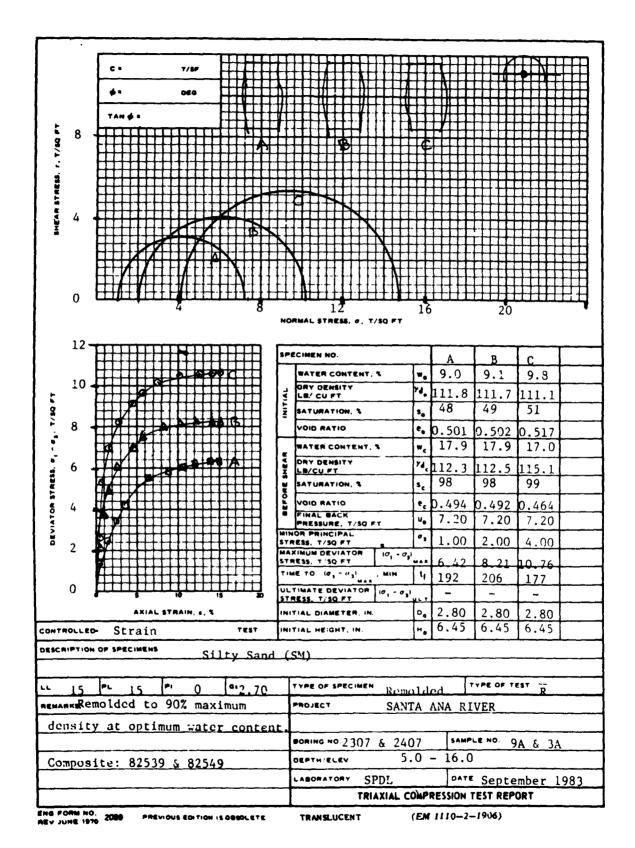
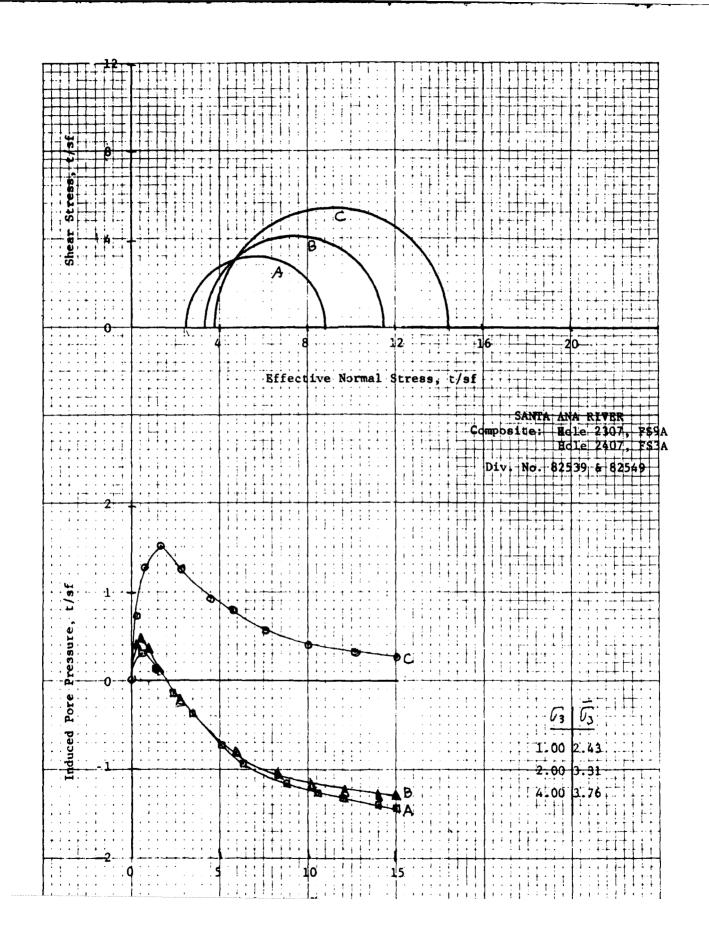



plate 15




ENG FORM NO. MEY JUNE 1970 2089

PREVIOUS EDITION IS GESOLETE


TRANSLUCENT

(EM 1110-2-1906)

plates 18

DEPARTMENT OF THE ARMY SOUTH PACIFIC DIVISION, CORPS OF ENGINEERS LABORATORY

REPORT OF SOIL TESTS

LOWER SANTA ANA RIVER

EDITED

December 1985

SAUSALITO, CALIFORNIA

REPORT OF SOIL TESTS

LOWER SANTA ANA RIVER

December 1985

AUTHORIZATION

1. Results of tests reported herein were requested by the Los Angeles District in laboratory request No. E86-85-0057 dated 14 March 1985.

SAMPLES

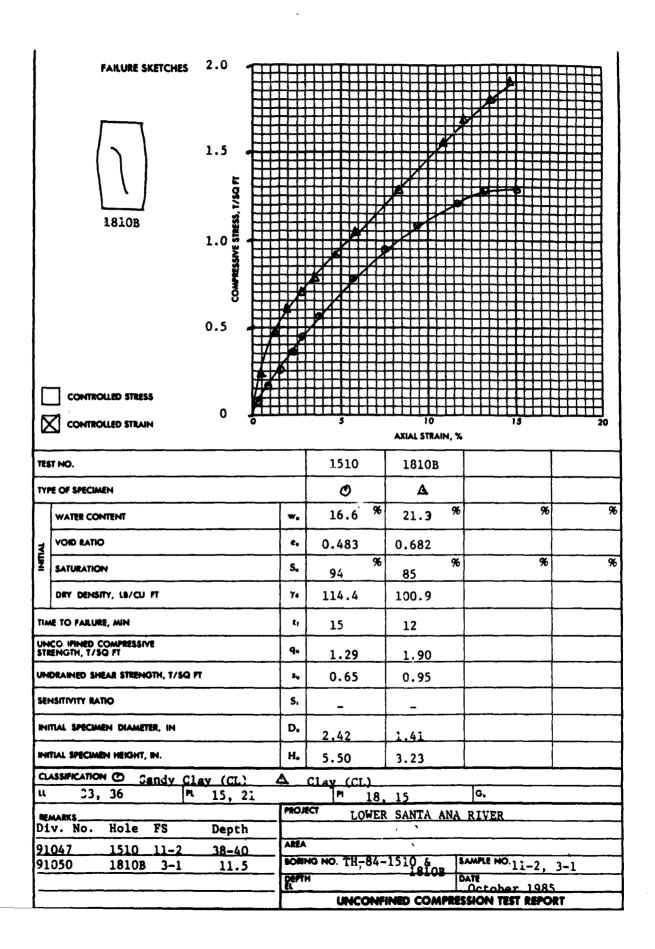
2. Twenty-two undisturbed samples in brass and plastic tubes were received on 17 January 1985. Twenty-six disturbed samples in sacks were received on 25 March 1985. Identification of samples is on the Soil Test Result Summary, plates 1-2 and 36-37.

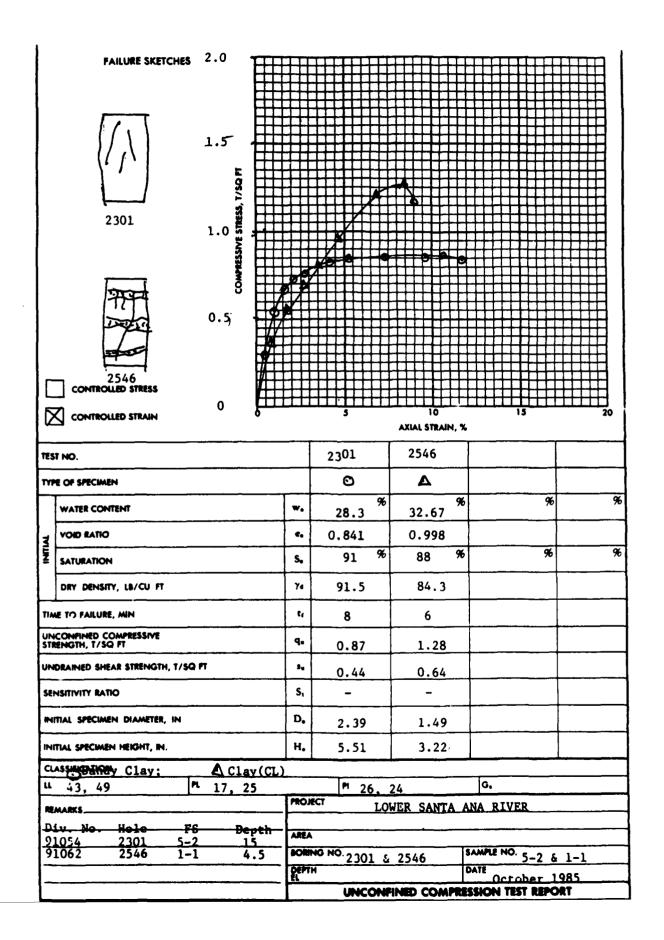
TESTING PROGRAM

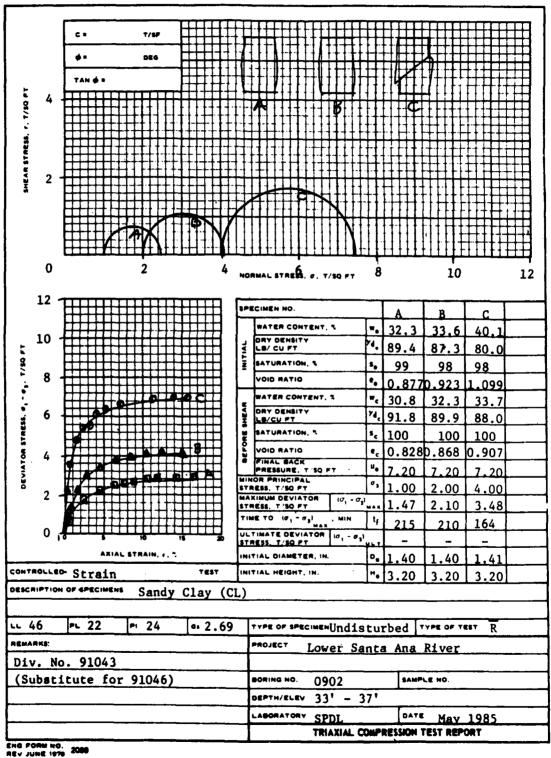
3. The program was in accordance with the test request and included laboratory classification tests, unit weight, unconfined compression, direct shear, consolidation, triaxial shear and compaction.

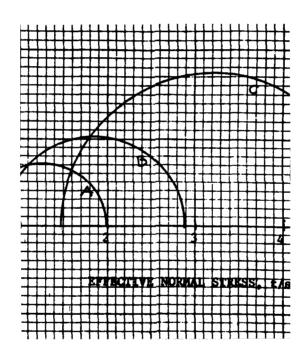
TEST METHODS

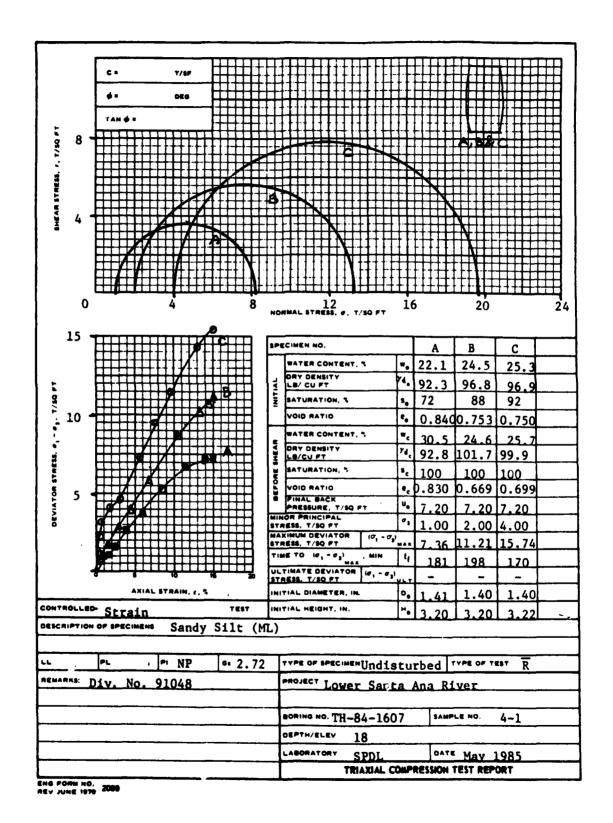
- 4. a. Grain-size Anlaysis, Atterberg Limits, Unit Weight, Compaction,
 Specific Gravity, Triaxial Compression, Unconfined Compression, and
 Consolidation. Testing methods conformed to the procedures described in
 Engineer Manual, EM 1110-2-1906, "Laboratory Soil Testing", 30 November 1970.
- b. <u>Classification</u>. The soils were classified in accordance with the "Unified Soil Classification System", TM 3-337, Appendix A, April 1960, reprinted May 1967.

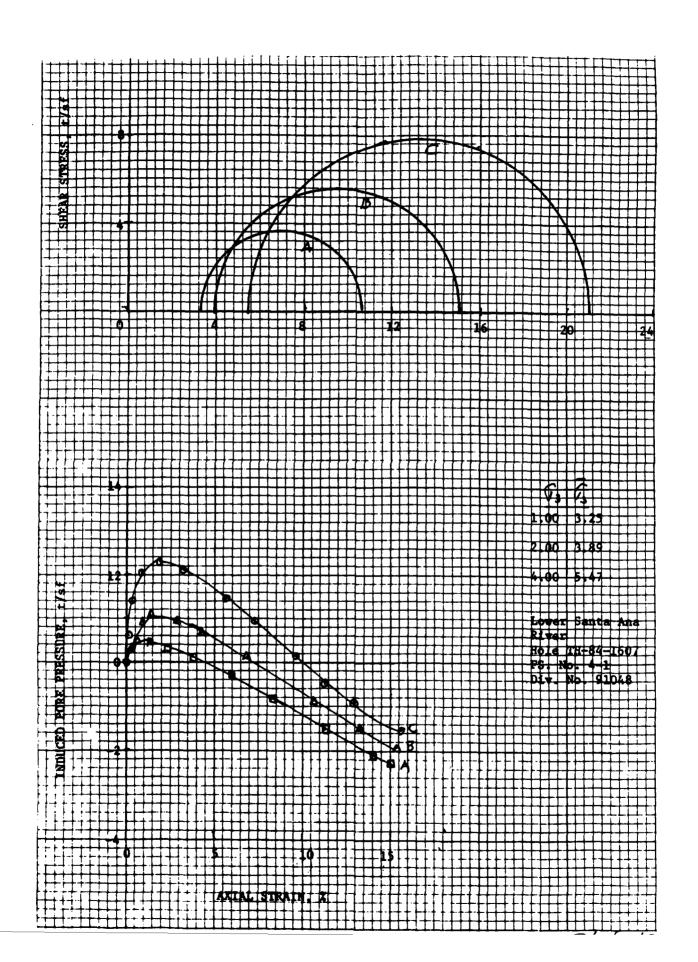

RESULTS

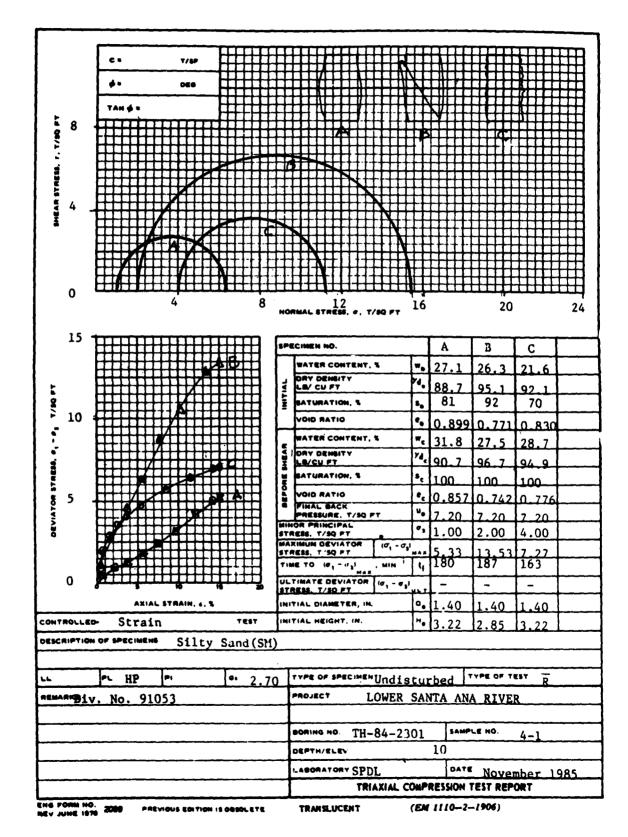

5. Results of tests are shown on the following plates:

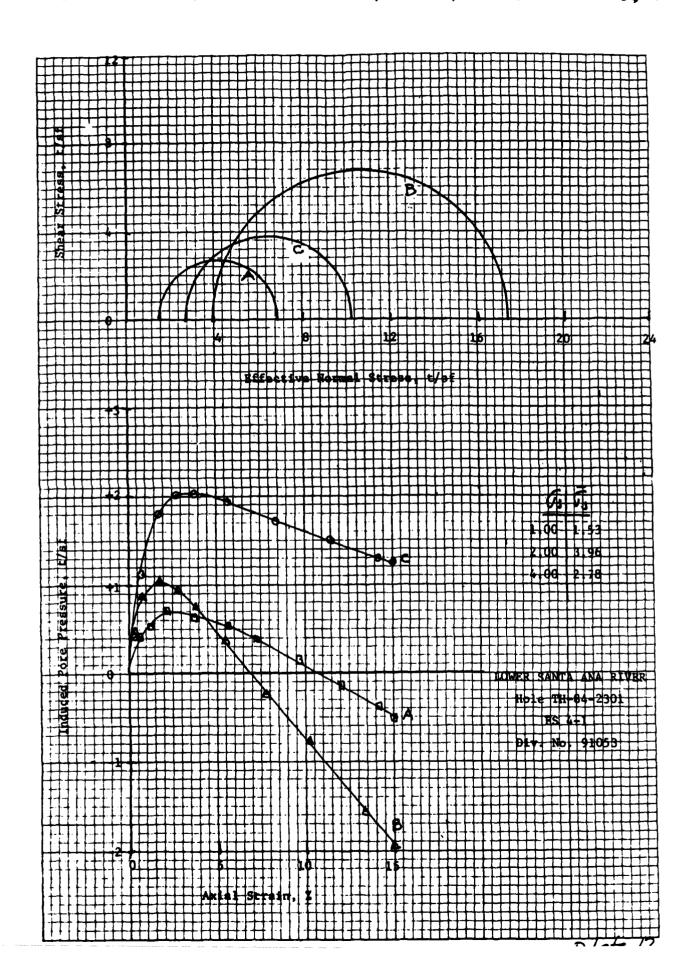

Subject	Plate No.
Undisturbed samples:	
Soil Test Result Summary	1-2
Field Unit Weight Summary	3
——————————————————————————————————————	4-6
•	7-19
Consolidation Test Report	20-35
Field Unit Weight Summary Unconfined Compression Test Report Trisxial Compression Test Report	3 4-6 7-19

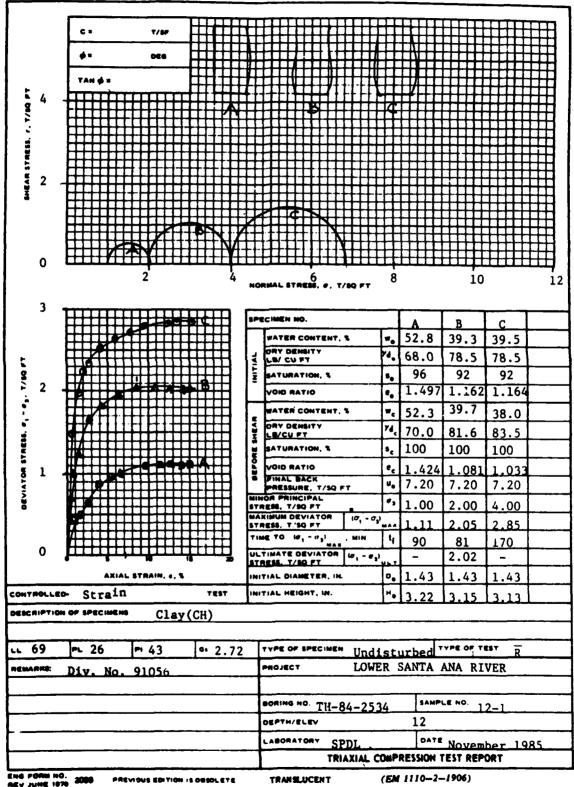

Subject	Plate No.
Disturbed Samples:	
Soil Test Result Summary Gradation Curves Compaction Test Report Triaxial Compression Test Repport	36-37 38-39 40-43 44-61

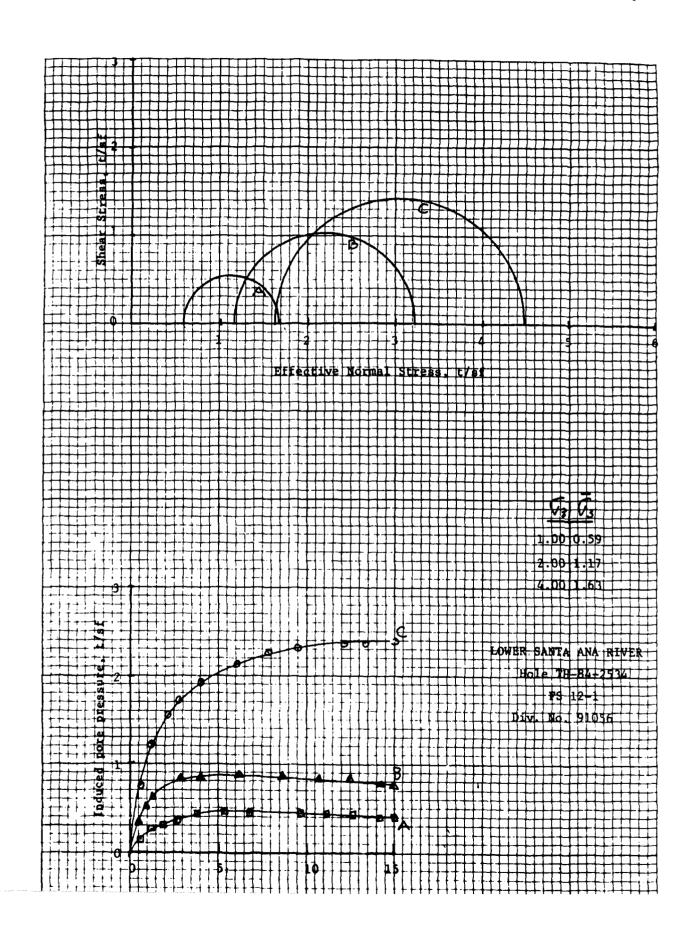

,		8																\neg
	FAILURE SKETCHES	0																
		COMPRESSIVE STRESS, T/SQ FT																
	CONTROLLED STRESS	2																
2	CONTROLLED STRAIN	·	6 '	• (5		AXI	1 (AL STI) RAIN,	*		1:	5				50
TES	NO.		•								T				T			
TYP	E OF SPECIMEN				τ	עו												
	WATER CONTENT			w,	1	10.8			ç			6 9			%			%
INITIAL	VOID RATIO			e,	0.	.442												
N	SATURATION			S.		66	%			9 	6				%			%
	DRY DENSITY, L8/CU FT			γa	11	L7.3												
TIM	E TO FAILURE, MIN			e,		<u> </u>					\perp							
STR	CONFINED COMPRESSIVE ENGTH, T/SQ FT			q.	-	6.47					\perp							
UNI	PRAINED SHEAR STRENGTH, T/SQ FT			Su		3.23												
SEN	SITIVITY RATIO			S,		-			•••									
INI	TAL SPECIMEN DIAMETER, IN			D.		2.34					\perp							
M	IAL SPECIMEN HEIGHT, IN.			н,		5.55	·											
	SSIFICATION	San	dy_C1	ay (ı	CT.)													
u	34 n	15	-			PI		9				G.		2.7	1_			
RE/	AARKS		_	PROJ	ect	LOV	VER	SAN'	TA A	AiiA	RIV	ER						
	Div. No. 91044			AREA									_					
					NG NC). TH-	-84-	150	3		SAN	PLE P	10.		_			
				peri			2-20				DAT	_			<u>-1</u>	000		

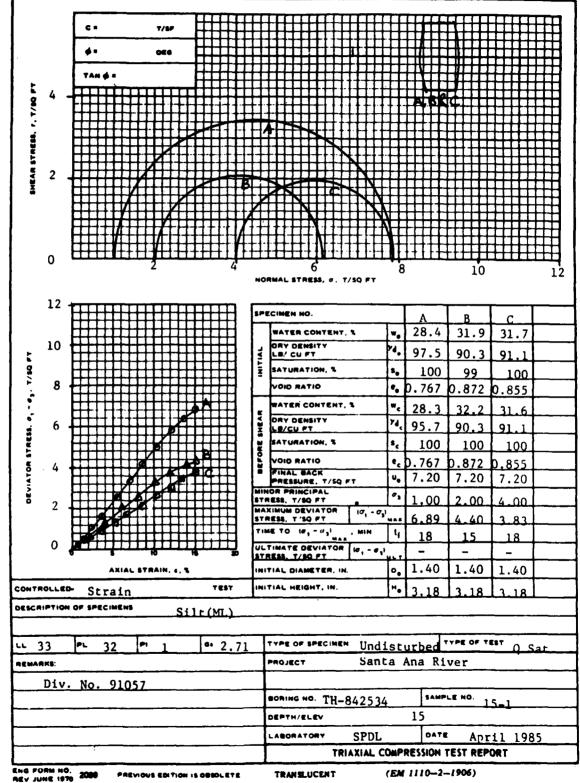


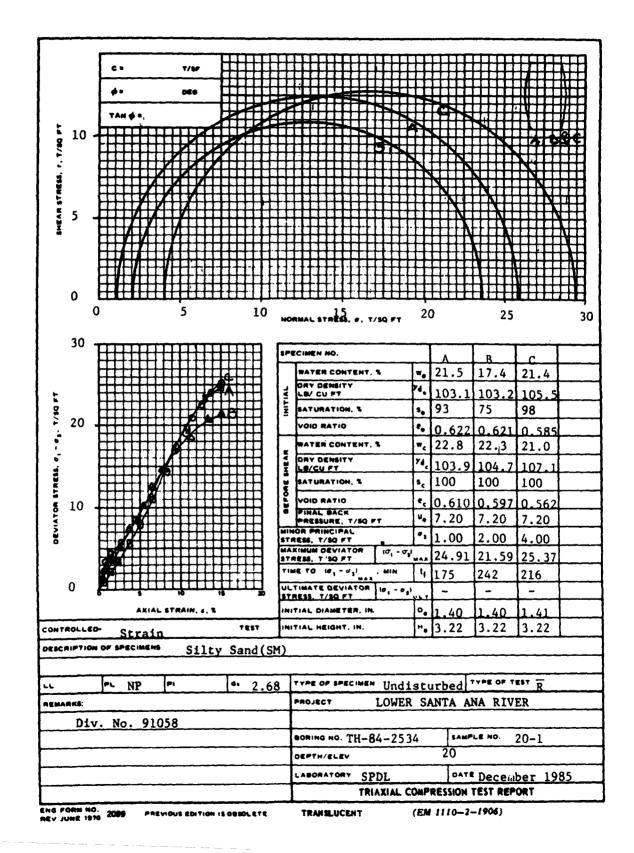


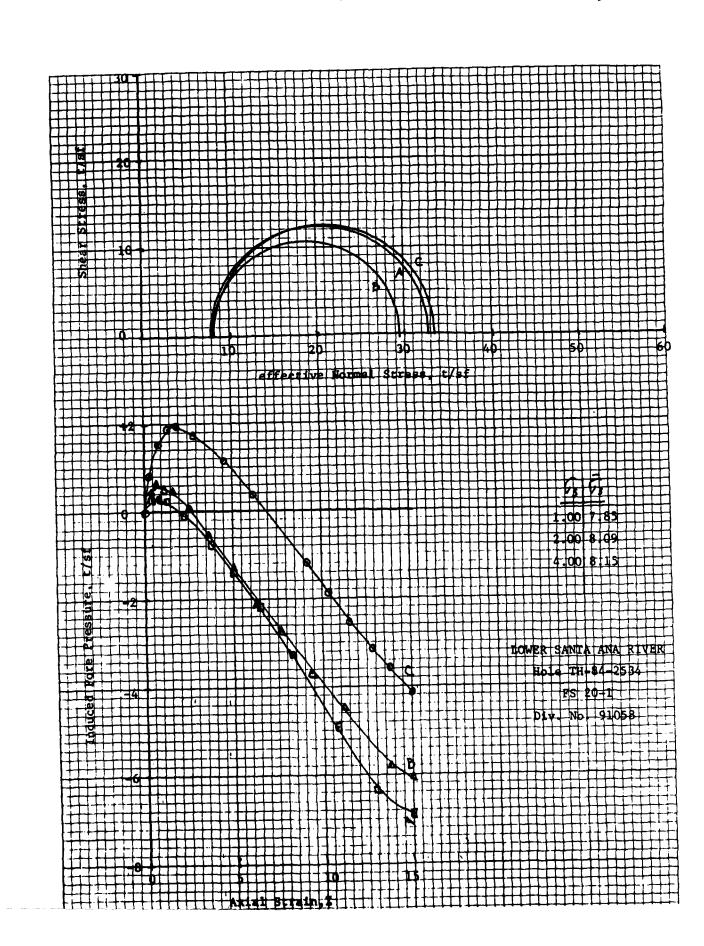


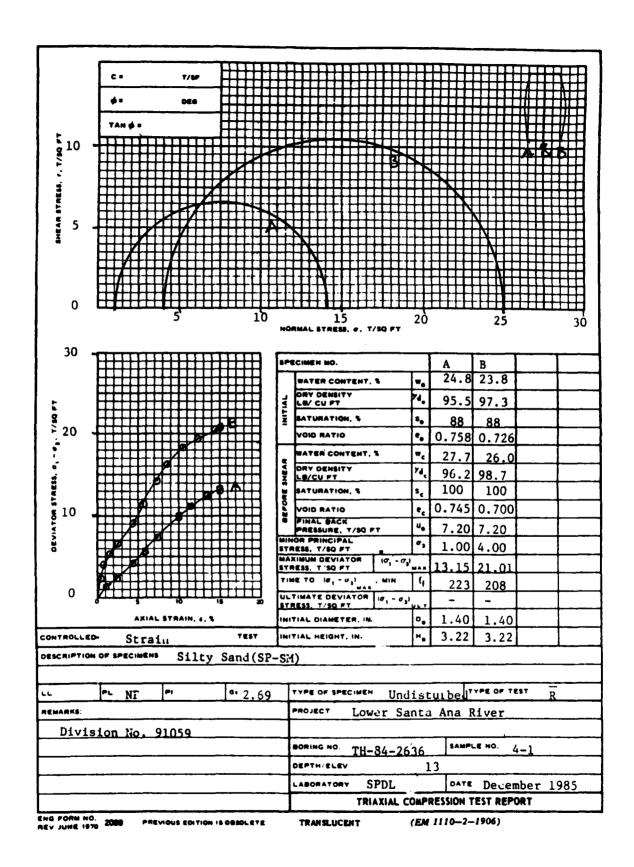


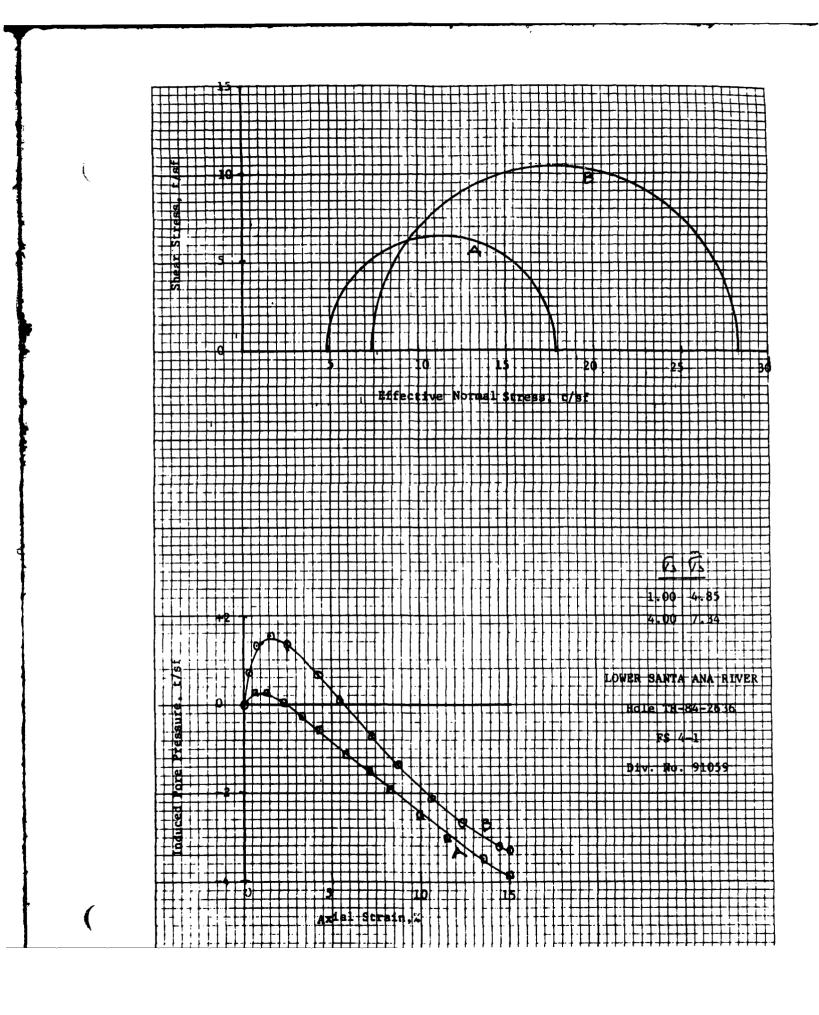


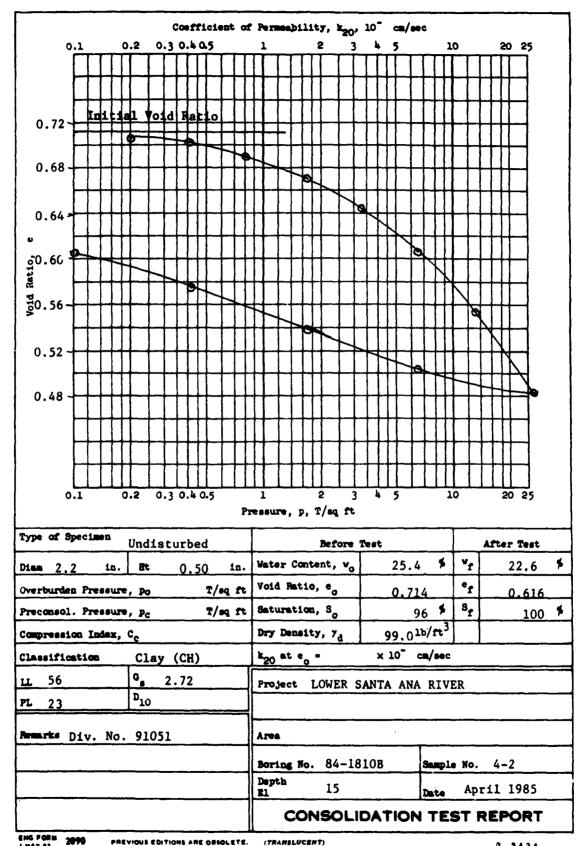


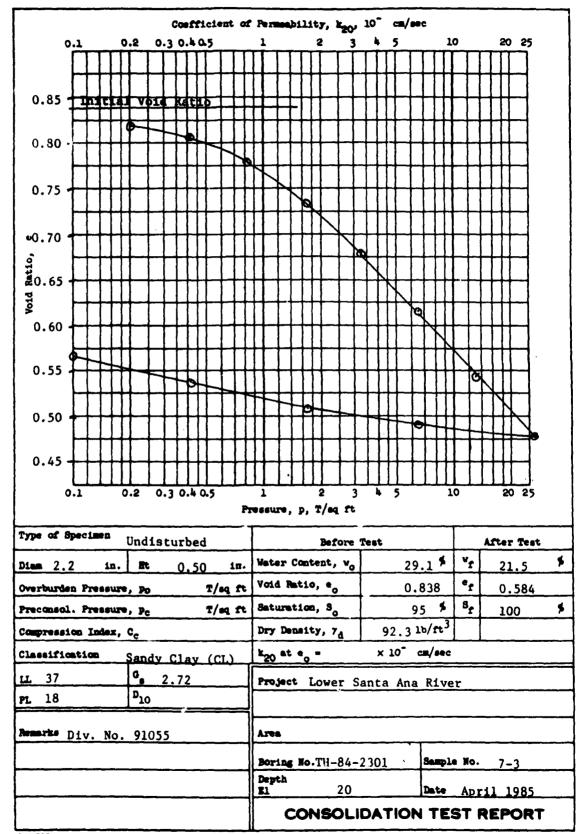

_1-4-11



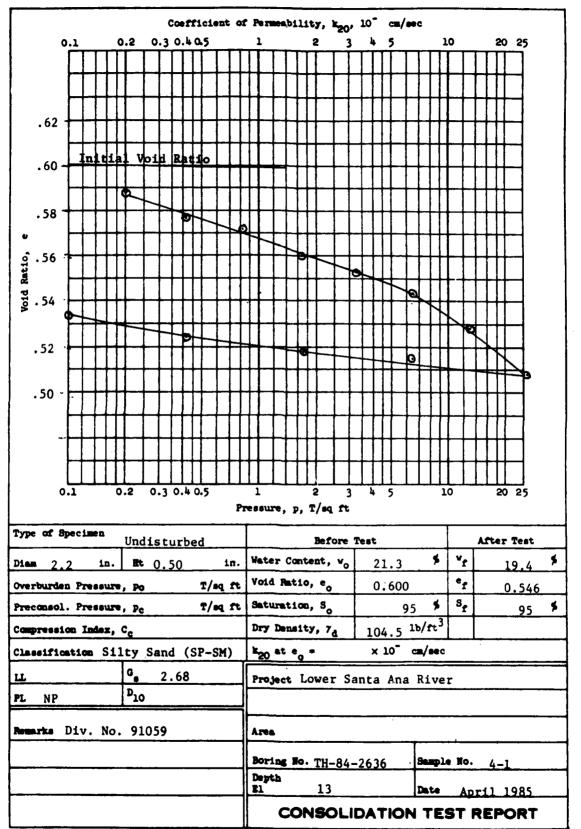


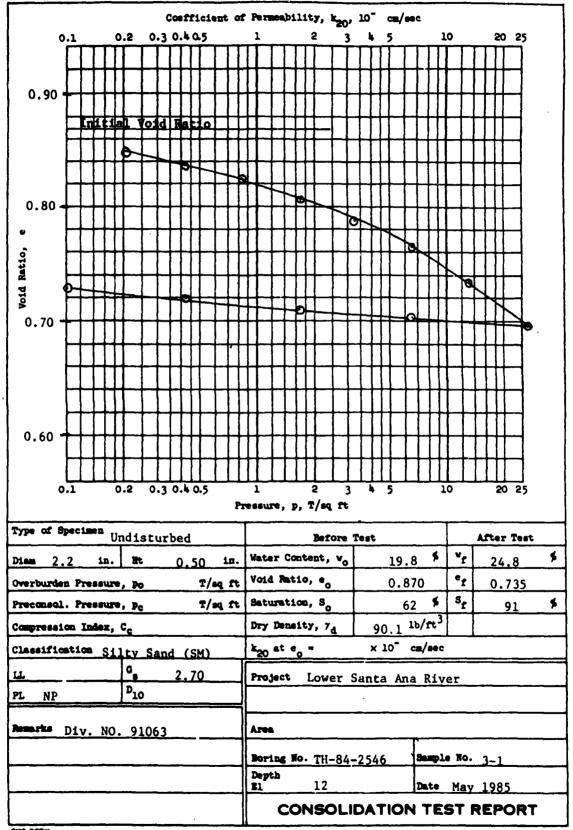






Dlate 18



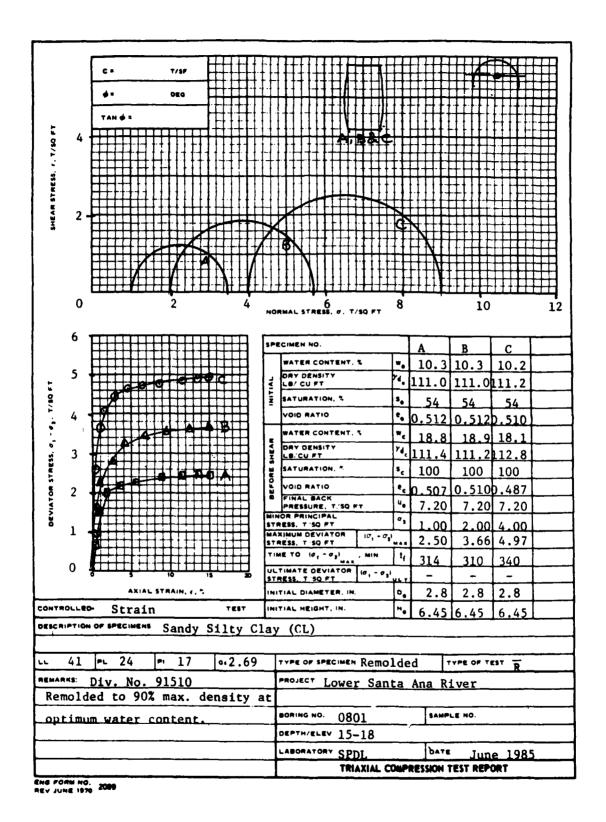
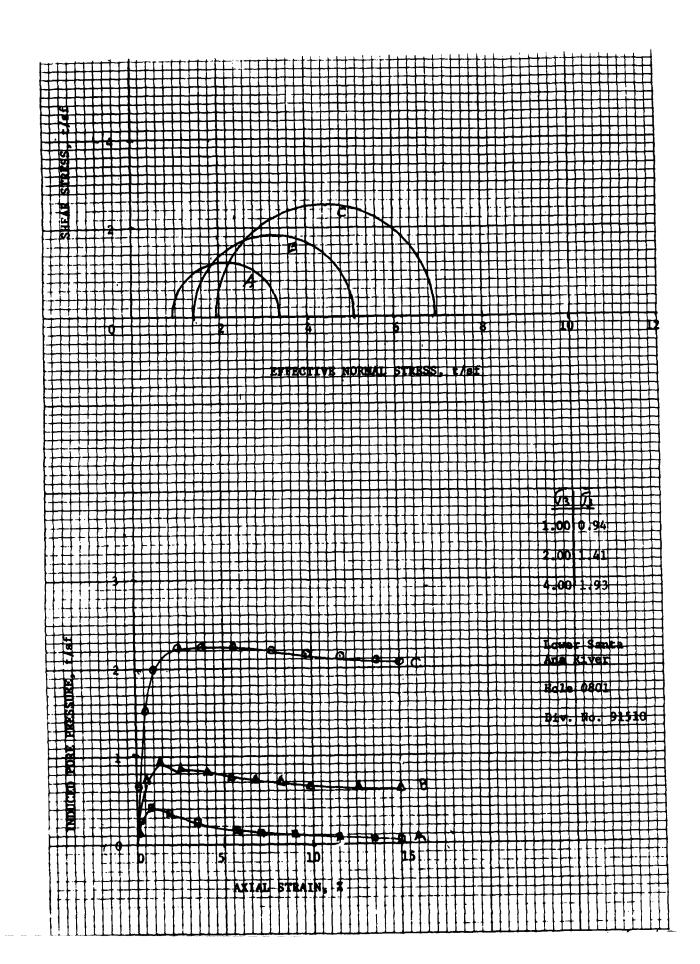
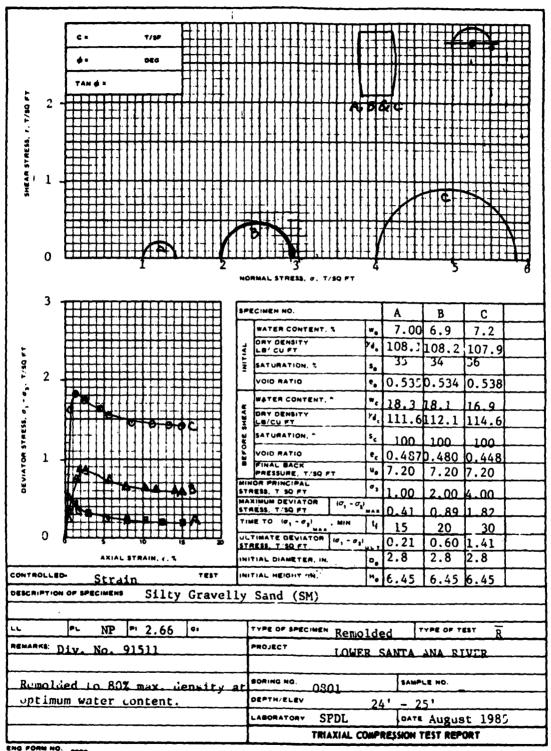
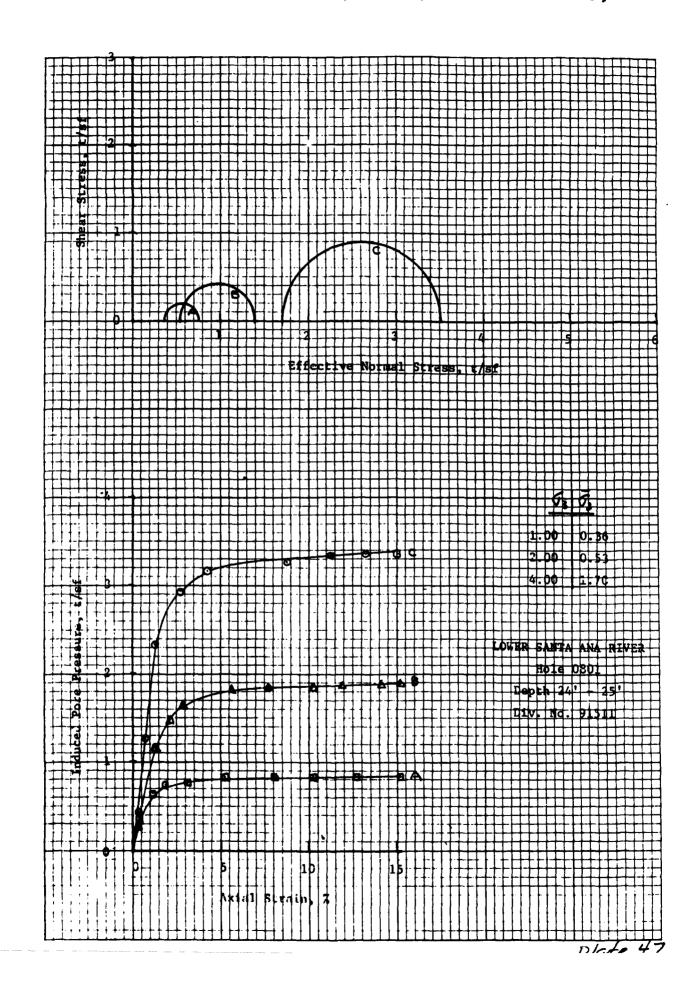


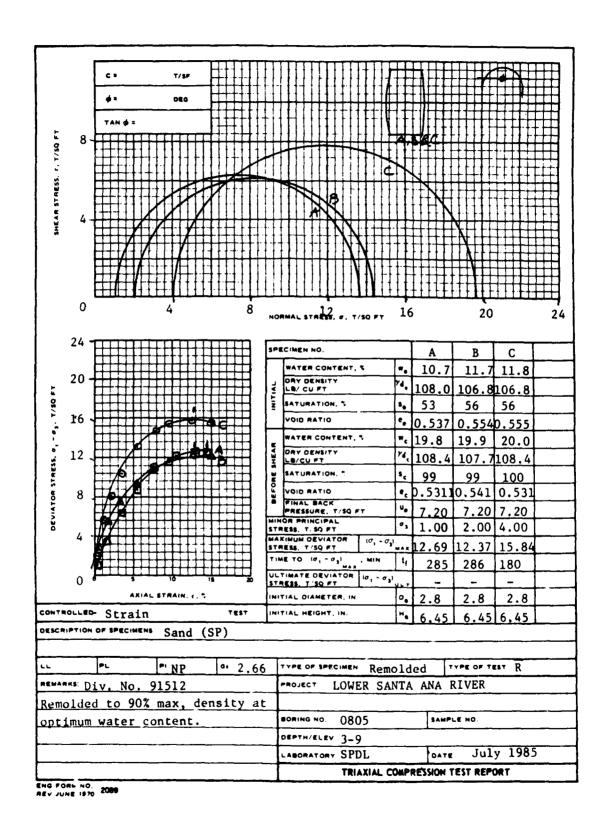
PREVIOUS EDITIONS ARE OBSOLETE. (TRANSLUCENT)

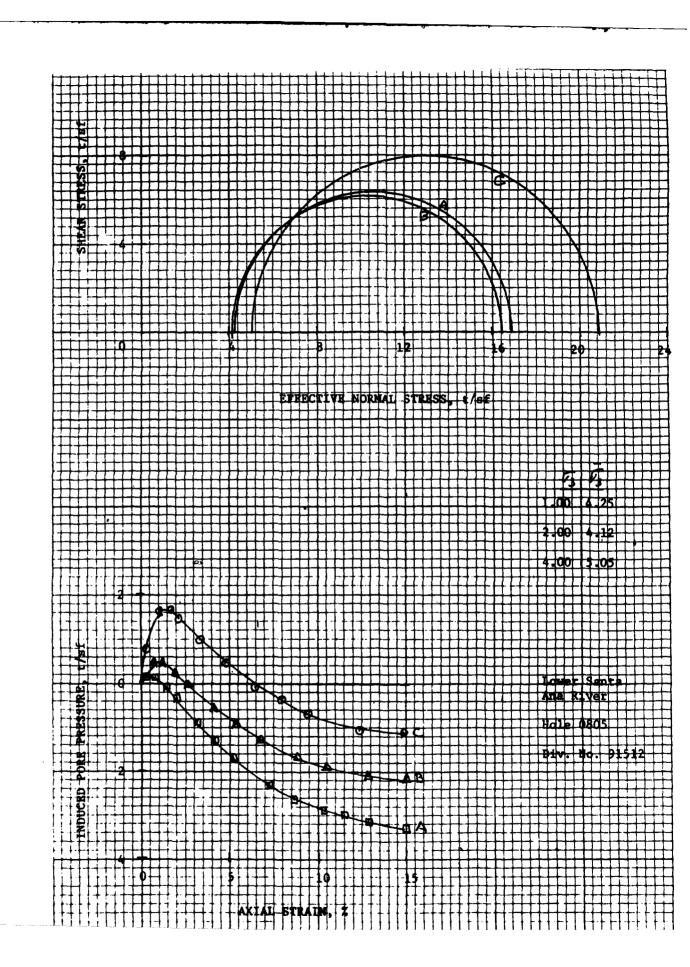
1 3424 Nlate 24

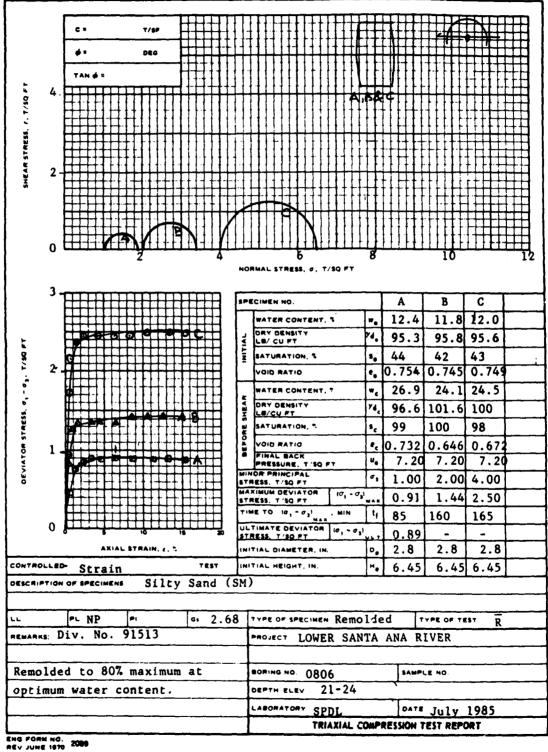
· 3.2.plate 28

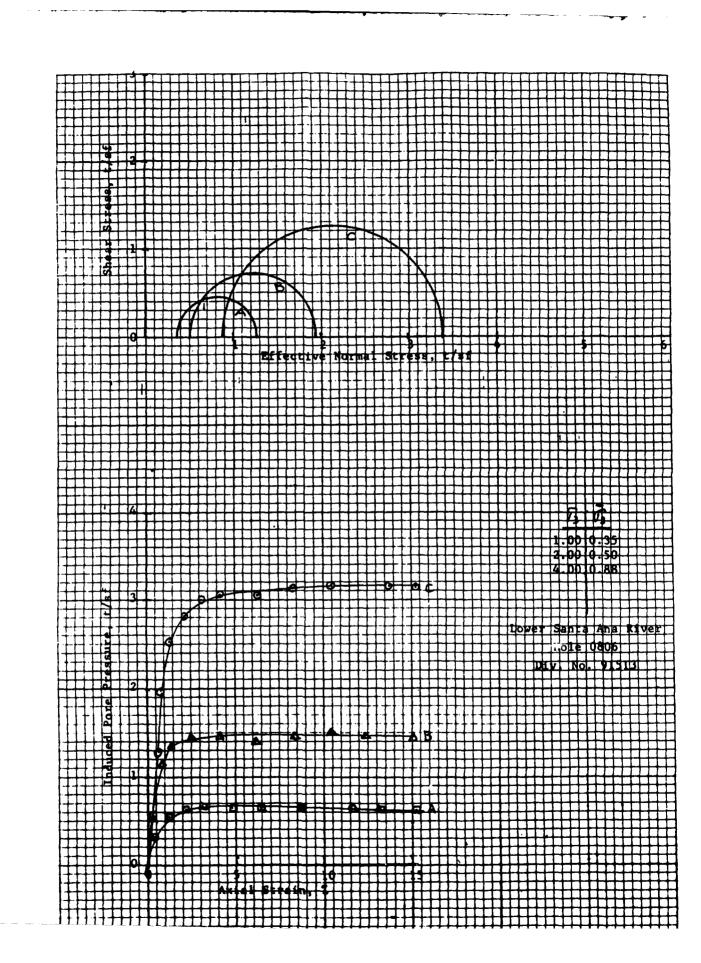
· see plate 32

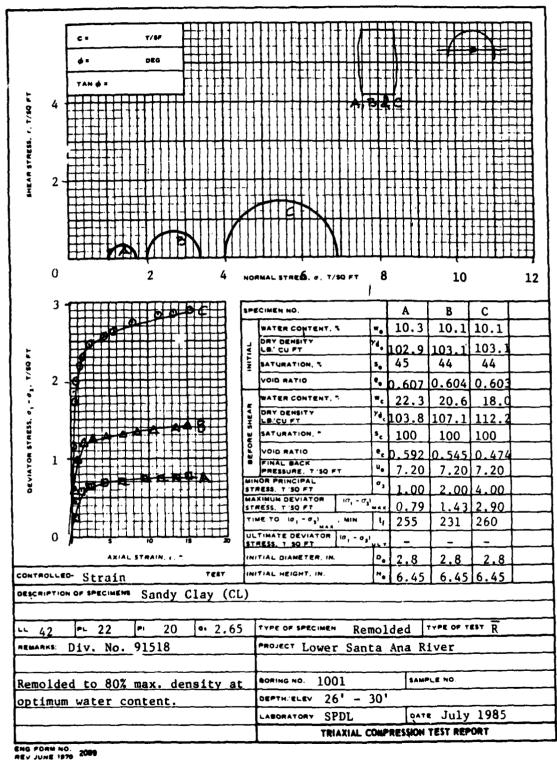





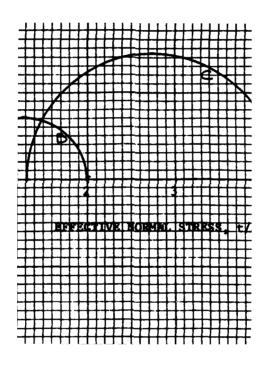

plate 44

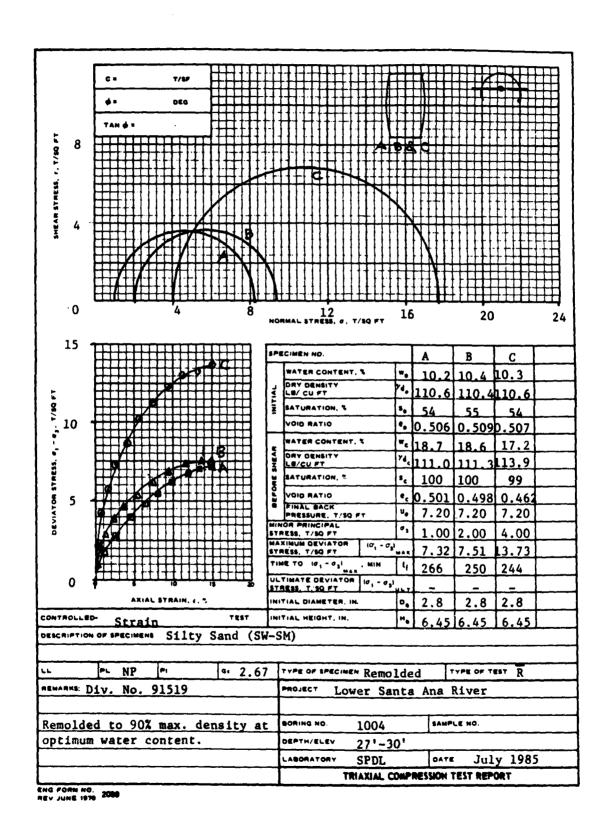


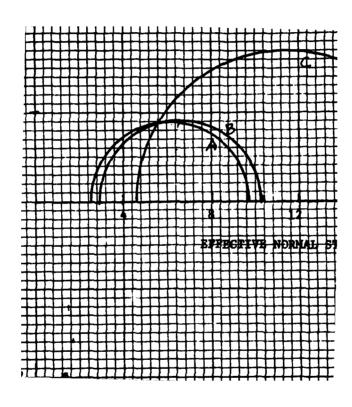


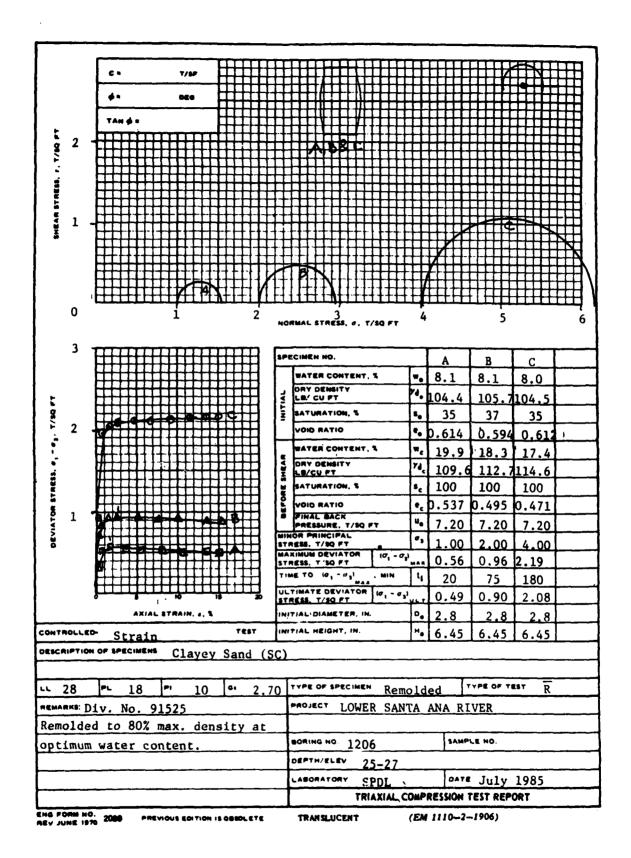
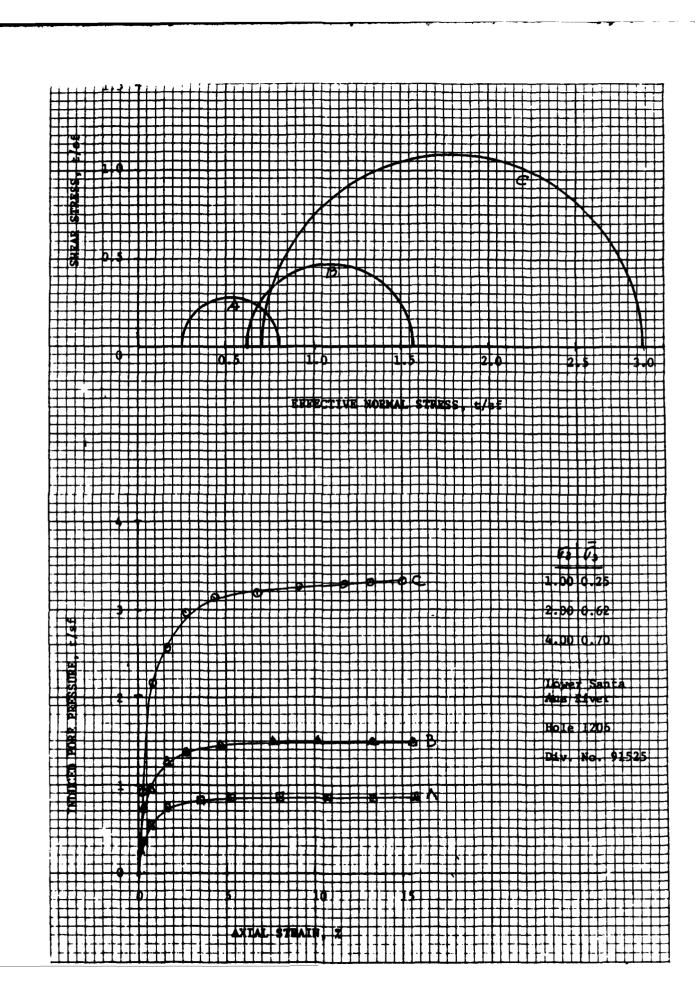
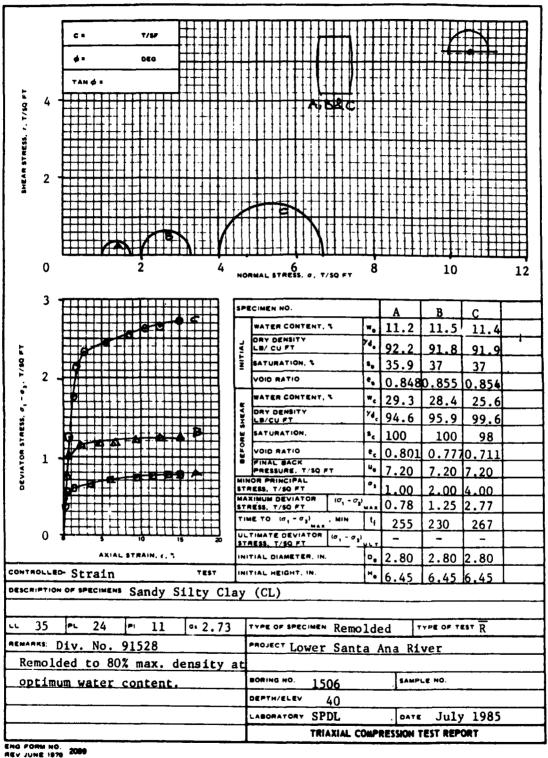
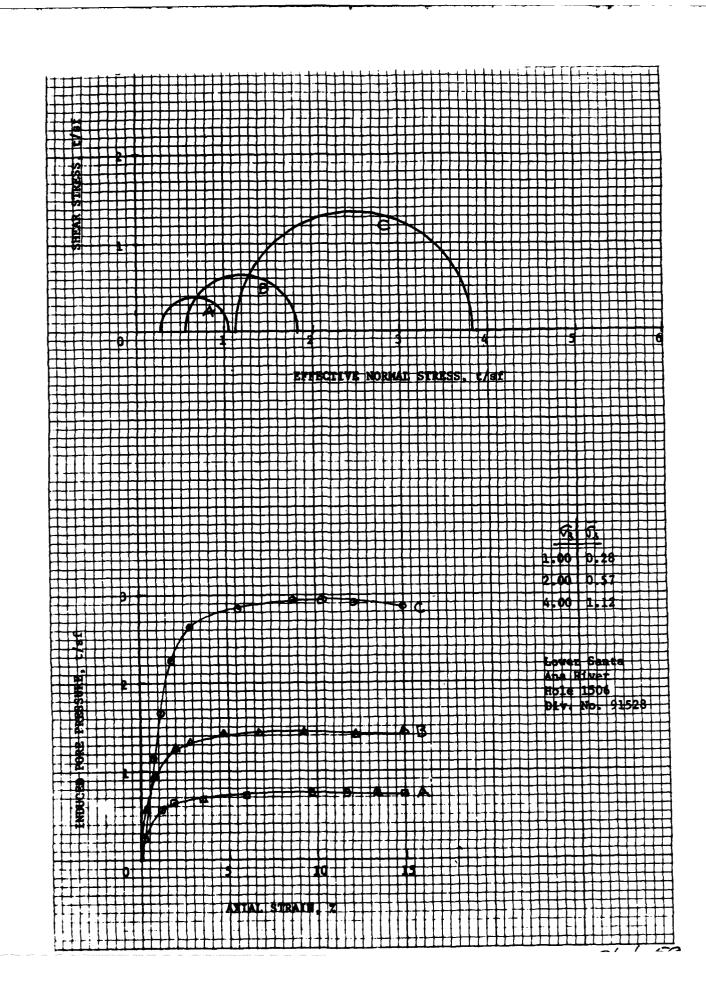
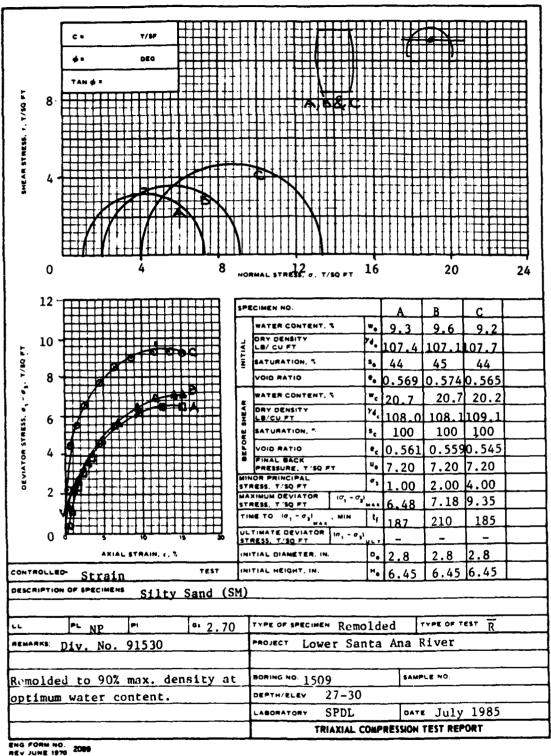

ENG FORM NO. 2008

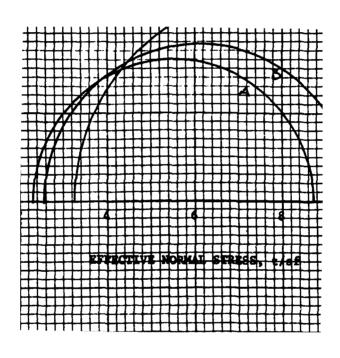









plate 56

DEPARTMENT OF THE ARMY SOUTH PACIFIC DIVISION, CORPS OF ENGINEERS LABORATORY

REPORT OF SOIL TESTS

LOWER SANTA ANA RIVER

EDITED

January 1986

SAUSALITO, CALIFORNIA

REPORT OF SOIL TESTS

LOWER SANTA ANA RIVER

January 1986

AUTHORIZATION

1. Results of tests reported herein were requested by the Los Angeles District in laboratory request No. E86-86-0033 dated 10 December 1985.

REFERENCE

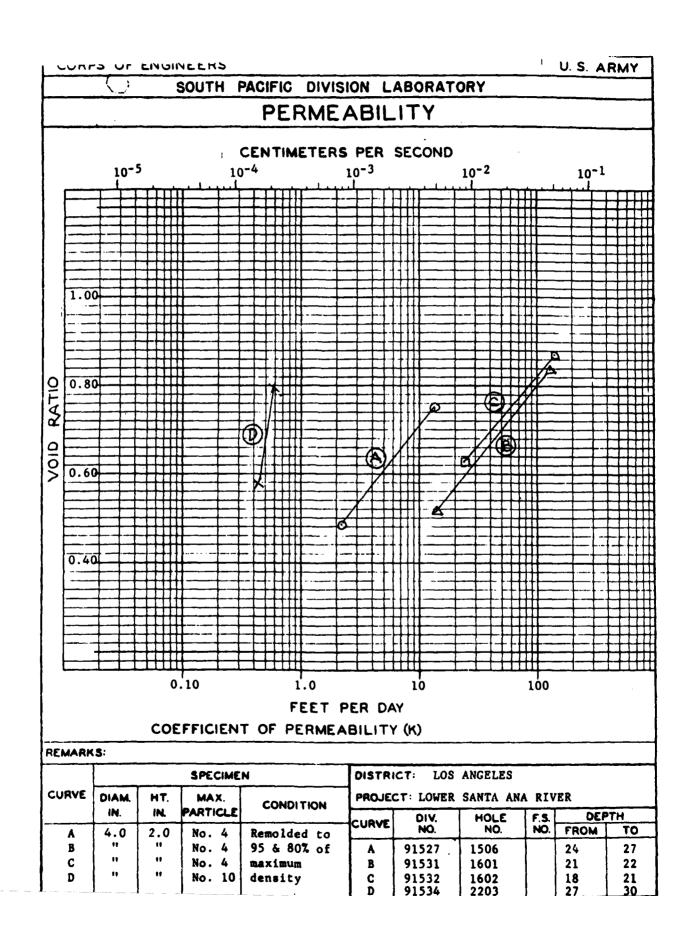
2. "Report of Soil Test, Lower Santa Ana River", December 1985, South Pacific Division Laboratory, Sausalito, California.

SAMPLES

3. Disturbed samples contained in sacks were received 25 March 1985. Identification of samples is shown on the Soil Test Result Summary, Plate 1, and in referenced report.

TESTING PROGRAM

4. The program was in general accordance with the test request and included compacation and permeability.


TEST METHODS

5. Permeability and Compaction. Testing conformed to the procedures described in Engineer Manual, EM 1110-2-1906, "Laboratory Soil Testing," 30 November 1970.

TSULTS

6. Results of tests are shown on the following plates:

Subject	Plate No.
Soil Test Result Summary	1
Compaction Test Report	2
Permeability	3

B COASTAL DESIGN

APPENDIX B COASTAL DESIGN

CONTENTS

		Page
ı.	GENERAL Purpose and Scope	B-I-1 B-I-1
II.	EXISTING CONDITION	B - II-1
	Location	B-II-1
	Santa Ana River Jetties	B-II-1
	Shoaling of Santa Ana River	B-II-2
	Talbert Channel Jetty	B-II-2
	Shoaling of Talbert Channel	B-II-2
III.	TIDES	B-III-1
IV.	CLIMATE	B-IV-1
	Temperature and Precipitation	B-IV-1
	General Winter Storms	B-IV-1
	Local Thunderstorms	B-IV-1
	General Summer Storms	B-IV-2
	Wind	B-IV-2
	Evaporation	B-IV-2
	Fog	B-IV-3
٧.	WAVE CLIMATE	B-V-1
	Wave Exposure Windows	B-V-1
	Wave Data Sources	B-V-3
	Marine Advisers (1961)	B-V-3
	National Marine Consultants (1960)	B-V-3
	Wave Information Study	B-V-3
	Wave Conditions	B-V-4
	Wave Frequency	B-V-9
	Design Stillwater Level	B-V-9
	Design Wave	B-V-10

Contents (Continued)

		Page
VI.	LITTORAL TRANSPORT	B-VI-1 B-VI-1 B-VI-1
	Consequence of Littoral Transport Disruption	B-VI-4
VII.	LITTORAL MATERIALS	B-VII-1 B-VII-1
	Beach Materials	_
	Offshore Materials	B-VII-2 B-VII-2
VIII.	SEDIMENT BUDGET	
	Newport Littoral Cell	
	Shoreline Changes	
	Newport Littoral Cell Sediment Budget	
	Sediment Sources	
	Transport Paths	
	Sediment Sinks	B-VIII-3
IX.	TIDAL INLET	B-IX-1
	Existing Inlet Conditions	B-IX-1
	Existing Tides at the Marsh Entrance	B-IX-2
	Existing Tides in the Talbert Channel	B-IX-2
	Recommended Structure Configuration	B-IX-2
	Tidal Inlet and Tidal Exchange System	B-IX-3
χ.	SANTA ANA RIVER JETTY DESIGN	B-X-1
•••	General	B-X-1
	Stability Coefficients	B-X-1
	Side Slope	B-X-2
	Crest Elevation	B-X-2
	Armor Stone	B-X-3
	Corestone	B-X-4
	Bedding Layer	B-X-4
	Toe Protection	B-X-4
	Scour Protection	B-X-5
ΥT	SANTA ANA RIVER - TRAINING DIKE DESIGN	B-XI-1
71.	General	B-XI-1
	Side Slopes and Crest Elevation	B-XI-1
	Armor Stone	B-XI-1
	Corestone	B-XI-1
	Bedding Layer	B-XI-1
	Toe Protection	B-XI-2
	Scour Protection	B-XI-2
	Second 1. Outcontribution of the second seco	D-YT-5
XII.	CONSTRUCTION MATERIALS	B-XII-1
	Sources of Stone	B-XII-1
	Prieting Stone	D VTT 4

Contents (Continued)

		Page
Ac Di	ECOMMENDED PLAN - MOUTH OF SANTA ANA RIVER	B-XIII-1 B-XIII-3
TI Ge Sa	FFECT OF THE RECOMMENDED PLAN ON THE SHORELINE AND IDAL INLET	B-XIV-1 B-XIV-2
	Tables	
2. Tida 3. Freq	al Data	

Photographs

Aerial View of Santa Ana River Outlet and Adjacent Beaches

Figures

- 1. Wave exposure windows
- 2. Wave rose for station A
- 3. Wave rose for station B
- 4. Wave rose for station P2001
- 5. Wave rose for station P2006
- 6. Newport Littoral Cell
- 7. Sediment sources for Newport Littoral Cell
- 8. Recommended Plan--Mouth of Santa Ana River

Plates

- 1. Lower Santa Ana River Channel Jetty Construction
- 2. Lower Santa Ana River Channel Training Dike Construction

I. GENERAL

Purpose and Scope

1-01 This section presents the results of investigations made for the Lower Santa Ana River in connection with the flood control channel improvement as the River empties into the Pacific Ocean. The objective of this appendix is to provide the structural design of the Santa Ana River Channel Jetties, the training dike, and to determine the impact of shoreline changes as a result of the Santa Ana River Flood Control Project.

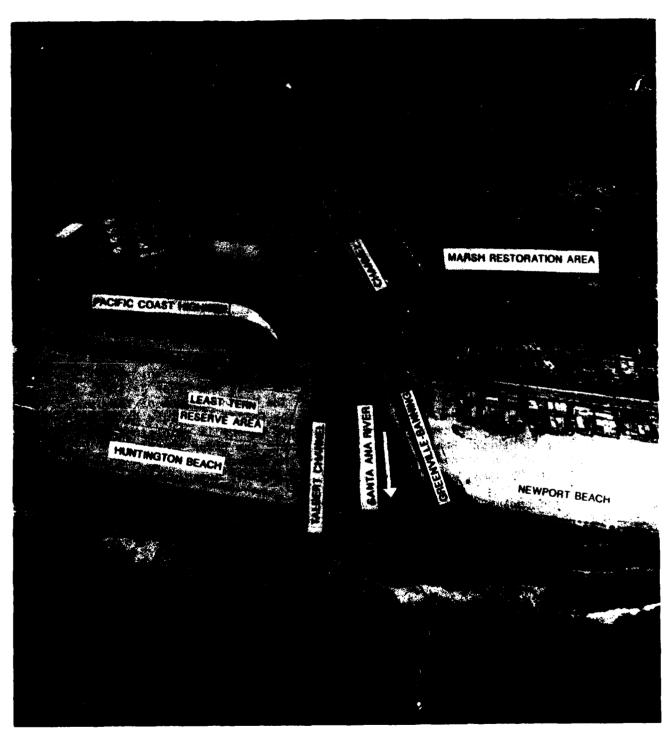


PHOTO 1: LOOKING UPSTREAM FROM MOUTH, LEAST TERM NESTING COLONY TO THE LEFT OF TALBERT CHANNEL.

II. EXISTING CONDITION

Location

2-01 Flows from the Santa Ana River empty into the Pacific Ocean between the cities of Huntington Beach and Newport Beach. The two cities occupy the plateau area which rises about 40 feet above the shoreline. Adjacent to the river on the northeast side of the Pacific Coast Highway is a degraded marsh area used for oil production. The shoreline is a continuous beach broken by the Santa Ana River jetties, and the beach is about 700-800 feet wide. The beach upcoast of the river (Huntington Beach) is maintained by the California State Parks and Recreation while the beach downcoast (Newport Beach) is maintained by the City of Newport Beach. The existing Santa Ana River mouth is composed of four stone jetties separating the Talbert, Greenville-Banning, and the Santa Ana River channel ocean outlets.

2-02 The center and main channel is the Santa Ana River flood-control outlet. The downcoast outlet is the Greenville-Banning and the upcoast outlet is the Talbert Channel. See photo 1, page B-I-2.

Santa Ana River Jetties

2-03 The Santa Ana River jetties consist of two rubble mound structures from Pacific Coast Highway (PCH) to the ocean, terminating near the low water line on Huntington Beach, a distance of about 900 feet. The two jetties form the main channel of the Santa Ana River. The east jetty (downcoast) is about 850 feet long. The west jetty (upcoast) is about 480 feet long and connects with a vertical concrete wall about 420 feet long to PCH. The crest elevations of the two jetties are about +10 feet mean sea level (MSL). The river side slopes of the jetties is 1V on 2H and 1V to 1.75H on the back side.

Shoaling of Santa Ana River

2-04 The Santa Ana River jetties were constructed in 1958, to convey floods from the Santa Ana River to the ocean. The width of the river varies from about 170 feet at PCH to about 320 feet at the ocean. The invert of the river was excavated to a -4.76 feet MSL or -1.96 feet mean lower low water (MLLW) by Orange County Flood Control District during the construction of the two jetties in 1958. Since 1958, the river mouth has shoaled with littoral material to an estimated elevation of +5.0 feet MSL or +7.8 feet MLLW. The Flood Control District often times has to remove portions of the littoral material during the summer months in the riverbed to provide a low flow channel for tidal exchange in the river.

2-05 A river mouth closure study was made by Tekmarine, Incorporated, Sierra Madre, California, for the Los Angeles District in 1986. Fifteen aerial photographs taken between June 1974 and July 1985 were analyzed. Six of the photos were taken during the summer (May-Oct) and nine were taken during the winter months (Nov-Apr). The analysis indicated that the Santa Ana River was open on 11 occasions (73 percent). The analysis also indicated that when the Santa Ana River mouth was closed, the sand plug appeared to have been created by littoral material moving to the northwest (upcoast direction).

Talbert Channel Jetty

2-06 The Talbert Channel jetty is a rubble mound structure about 200 feet long that begins near the low water line on the State Beach extending landward to join with the stone revetment of the Talbert Channel. The crest elevation of the jetty is about +10 feet MSL. The slopes of the jetty is 1V to 2H on the channel face and 1V to 1.5H on the back side.

Shoaling of Talbert Channel

2-07 The rubble mound jetty and stone revetment on the upcoast end of the Talbert Channel and the Santa Ana River west jetty form the ocean outlet for the Talbert Channel. The outlet is about 880 feet long from PCH to the ocean. Talbert Channel is a trapezoidal earth channel that was constructed by Orange County Flood Control District in the 1960's to collect and convey local storm runoff in the cities of Fountain Valley and Huntington Beach to the ocean, a distance of about 5.7 miles. The outlet channel is about 70 feet wide. The Talbert Channel outlet is opened to the ocean about 93 percent of the time for tidal exchange. On the occasions when the outlet was closed, the sand plug appeared to have been created by littoral material moving to the southeast (downcoast direction).

		TRIAXIAL COMP	RESSION TEST REPORT
	LASGRATORY	SPDL	DATE July 1985
optimum water content.	DEPTH/ELEV	27-30	
Kemorded to 90% max. density at	30mm0 m0 1	009	SAMPLE NO.

ENG FORM NO. 2000

plate 60

III. TIDES

3-01 The tides along the Pacific Coast have a semidiurnal inequality. Tidal data for the Santa Ana River and vicinity are given in the following table 1:

Table 1. Tidal Data.

Location	lean Range Feet	Diurnal Range Feet
Balboa (ocean pier)	3.6	5.3
Santa Ana River Entrance (inside)	2.4	3.3
Los Patos (Warner Avenue Bridge)	3.4	4.7
Long Beach, Outlet Harbor Pier A	3.7	5.3

3-02 The mean tidal range is the difference in height between mean high water and mean low water. The diurnal range is the difference in height between mean higher high water and mean lower low water. The maximum annual tide range is from minus 1.9 feet to plus 7.3 feet (MLLW).

3-03 At the Newport Bay Entrance is the closest tide station for which long-term records have been obtained (July 1955 to the present). The most recent tidal elevation data available for the Newport Bay Entrance station are summarized in the following table 2. All elevations are based upon the 1960-1978 tidal epoch with the exception of Extreme High and Extreme Low Water, which represent the historical maximum and minimum water levels recorded at the station.

3-04 The Mean Sea Level Datum (0.0 MSL) is equal to +2.8 feet Mean Lower Low Datum (+2.8 MLLW) for the Newport Bay Entrance.

Table 2. Tidal Elevations at Newport Bay Entrance.

Extreme High Water.	7.86 ft mllw
Mean Higher High Water	5.40 ft mllw
Mean High Water	4.65 ft mllw
Mean Tide Level	2.79 ft mllw
Mean Sea Level	2.76 ft mllw
Mean Low Water	0.93 ft mllw
Mean Lower Low Water	00.0 ft mllw

Note: Station located at 33°36'N; 117°53'W.

IV. CLIMATE

Temperature and Precipitation

4-01 Average daily minimum/maximum temperatures (degrees Fahrenheit) range from 46/63 in winter to 63/74 in summer. All-time low/high extremes of temperature are about 27/110. The area does not experience significant periods of freezing temperatures. Normal annual precipitation over the Lower Santa Ana River ranges from about 10 to 12 inches.

General Winter Storms

4-02 Most precipitation over southern California coastal drainages occurs during the cool season, primarily from November through early April, as mid-latitude cyclones from the north Pacific Ocean occasionally move across the West Coast of the United States to bring precipitation to southern California. Most of these storms are of the general winter type, with hours of light to moderate steady precipitation, but with occasionally heavy showers or thunderstorms embedded. Although these storms frequently produce significant snow in the upper Santa Ana River basin and other high-altitude drainages above 6,000 feet, snowfall and snowmelt are almost non-existent in the Lower Santa Ana River basin.

Local Thunderstorms

4-03 Local thunderstorms can occur in southern California at any time of the year, but are least common and least intense during the late spring. These types of storms occur fairly frequently in the coastal areas during or just after general winter storms. They can also occur between early July and early October, when desert thunderstorms occasionally drift westward across the mountains into coastal areas, sometimes enhanced by moisture drifting northward from tropical storms off the west coast of Mexico. Local thunderstorms can also occur throughout the fall, as upper-level low-pressure centers sometimes trigger left-over summer moisture. These local thunderstorms can at

times result in very heavy rain for short periods of time over small areas, causing very rapid runoff from small drainages. Intense thunderstorms can also be accompanied by hail and strong, very erratic winds. On a rare occasion, a severe thunderstorm can spawn a small tornado or waterspout in southern California.

General Summer Storms

4-04 General summer storms in southern California are quite rare, but on occasion a tropical storm from off the west coast of Mexico can drift far enough northward to bring rain, occasionally heavy, to southern California, sometimes with very heavy thunderstorms embedded. The season in which these storms are the most likely to significantly affect southern California is mid-August through early October, although there have been some effects in southern California from tropical storms as early as late June and as late as early November.

4-05 On rare occasions, southern California has received light rain from non-tropical general summer storms, some of which have exhibited some characteristics of general winter storms.

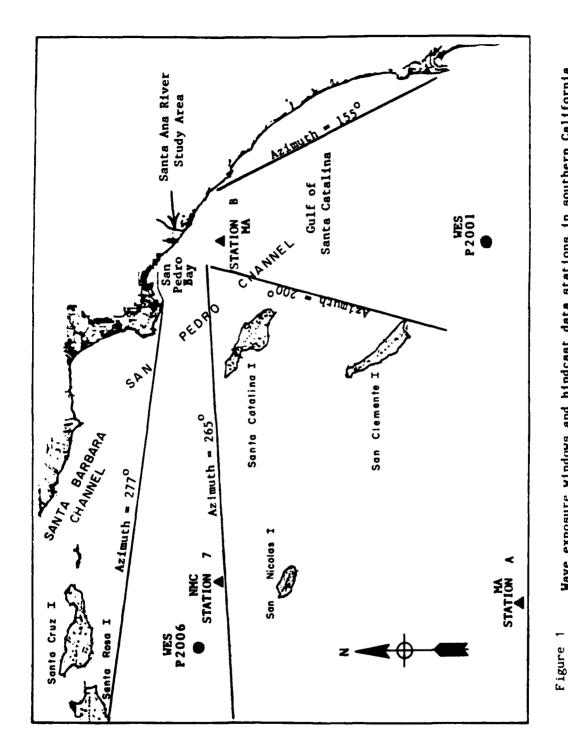
Wind

4-06 The prevailing wind in northern Orange County is the sea breeze. This gentle onshore wind is normally strongest during late spring and summer afternoons, with speeds over the Lower Santa Ana River basin normally 10 to 15 miles per hour. The prevailing wind near the mouth of the Santa Ana River between April and November is west to west-southwest about 7-9 mph. The Santa Ana is a dry desert wind that blows from out of the northeast, most frequently during late fall and winter. Santa Ana winds over the Lower Santa Ana River basin typically average 15 to 20 mph, with gusts to 30-35 mph. On frequent occasions, however, these winds can reach 40 to 45 mph with extreme gusts to 65 mph or greater. These winds are sometimes accompanied by considerable blowing dust and sand.

4-07 Rainstorm-related winds are the next most common type in southern California. Winds from the southwest ahead of an approaching storm average 20-25 mph, with occasional gusts to more than 40 mph. West to northwest winds behind storms often exceed 25 mph, with gusts to 35 mph, but on occasion can rival the Santa Ana winds for speed and gustiness.

Evaporation

4-08 Few formal studies of evaporation have been made in Orange County. Studies from nearby locations indicate that mean daily evaporation ranges from about one-quarter inch in winter to about one-half inch in summer. On days of very strong, dry Santa Ana winds, evaporation can be considerably greater than one inch.


4-09 Dense Fog is fairly common along the southern California coast, especially during the late fall and winter months. On occasion, visibility along the coast between Newport Beach and Seal Beach can decrease to less than 100 feet during the night and early morning hours. Foggy days average about 1 to 2 per month during November, December, and January. During the late spring and early summer, a low cloud deck, some known as "high fog" is prevalent in coastal southern California during night and morning hours, but visibility is seldom reduced to less than 1 mile.

V. WAVE CLIMATE

Wave Exposure Windows

5-01 The section of coastline where the Santa Ana River discharges into the Pacific Ocean is protected to a significant degree from open ocean wave attack by the sheltering effects afforded by the offshore islands of San Clemente, Santa Catalina, San Nicolas, San Miguel, Santa Rosa, Santa Cruz, and, to a lesser extent, Anacapa and Santa Barbara. The shielding provided by the coastline orientation also limits direct wave approach from the northwest direction, since Point Fermin effectively precludes northern hemisphere swell or sea from propagating down the Santa Barbara Channel and into San Pedro Bay (see fig. 1).

5-02 Northern hemisphere swell generated by storms on the North Pacific Ocean can approach the Santa Ana River mouth study region from basically two wave exposure windows. The first window permits northern hemisphere swell propagating from essentially a westward direction to pass through the Santa Cruz Basin between San Nicolas and Santa Cruz Islands. cross the San Pedro Channel, and approach the coastline of interest. This exposure window extends from about azimuth 265 deg to about azimuth 277 deg. A second wave exposure window permits northern hemisphere swell generated by storms on the North Pacific Ocean, and southern hemisphere swell generated by storms on the South Pacific Ocean, to reach the Santa Ana River mouth region from southerly directions. Such swell passes between the mainland coast of southern California and San Clemente and Santa Catalina Islands, traverses the Gulf of Santa Catalina, and impacts the study area. This exposure window extends from the coastline in a southerly direction with an aziumuth of approximately 155 deg to an azimuth directed from the study region toward San Clemente Island, an azimuth of approximately 200 deg. Sea waves can approach the study region from all directions of possible generation from about azimuth 155 deg to about azimuth 277 deg.

Wave exposure windows and hindcast data stations in southern California coastal waters for Marine Advisers (MA), National Marine Consultants (NMC), and U. S. Army Engineer Waterways Experiment Station (WIS).

Wave Data Sources

MARINE ADVISERS (1961)

5-03 Wave hindcasts have been prepared by Marine Advisers (1961) for three specific locations in deep water off the southern California coastline, one of which (Station A) is located in the open ocean beyond the sheltering islands. Station A is located approximately 65 nautical miles southwest of San Clemente Island, and is exposed to open water influences from southeast through west to north-northwest. Station A is considered to be representative of conditions outside the offshore islands. Wave hindcast frequency of occurrence data have been developed at Station A for sea, northern hemisphere swell, and southern hemisphere swell, for 3 years of record (1956-1958). Marine Advisers (1961) Station B is located approximately 8 nautical miles off Newport Beach in sheltered deep water. Decayed sea data from Station A were transferred past the sheltering islands and combined with locally generated sea to produce a sea wave climate at Station B which consisted of decayed plus local sea arriving from southeast through northwest directions. These decayed and local sea hindcast wave data of Station B are an indication of relatively short period waves which exist in the Gulf of Santa Catalina and San Pedro Channel, and which may approach the shore of southern California near the Santa Ana River mouth region. Station B also contains information regarding sheltered northern hemisphere swell and southern hemisphere swell which was transferred past the offshore islands by numerical techniques capable of deducing the reduction in wave height and sheltered direction of approach after passing the islands.

NATIONAL MARINE CONSULTANTS (1960)

5-04 National Marine Consultants (1960) also developed hindcast wave statistics for sea and northern hemisphere swell at Station 7 in deep water off the coast of southern California, for the same 3 years of record (1956-1958). Station 7 is located in the Santa Cruz Basin between San Nicolas Island and Santa Cruz Island, due west of San Pedro Bay. During the development of the hindcast wave statistics at Station 7, consideration was given to the effects of San Nicolas Island to the south, and to Santa Cruz and Santa Rosa Islands to the north. Hence, the resulting hindcast sea and northern hemisphere swell statistics deduced for Station 7 which arrive from a westerly direction propagate directly across the San Pedro Channel and approach the coastline of southern California in the vicinity of the Santa Ana River mouth region.

WAVE INFORMATION STUDY

5-05 A new generation of hindcast wave data are being developed for the Pacific Coast of the United States by the Wave Information Study (WIS) of the U.S. Army Engineer Waterways Experiment Station (WES), for a much greater time period than the 3 years of record used by Marine Advisers (1961) and National Marine Consultants (1960). WIS has computed the

wave climatology of sea and northern hemisphere swell for the U.S. Pacific Coast for three different phases, utilizing 20 years of record (1956-1975) computed at 3-hour intervals. Phase I data have been computed with a grid spacing of 120 nautical miles, and have established 35 stations located near the Pacific coastline. Phase II data have been computed for 53 stations closer to the shore than the Phase I stations. The Phase II grid spacing was established at 30 nautical miles, to provide a better representation of the effects of the geometry of the coastline (but not the effects of the offshore islands) on wave generation near the Pacific coast. Phase III nearshore wave transformation data have been computed for 134 stations from the Canadian border to Point Conception, with each coastal segment being approximately 10 nautical miles in length. The nearshore wave transformation procedures applied to the coastal region between the Canadian border and Point Conception are not applicable to the sheltered Southern California Bight region adjacent to the Santa Ana River mouth region of southern California. Actual nearshore wave hindcasting is presently being performed for the Bight with a much finer grid (10 nautical miles and 5 nautical miles) than that previously used in Phase II hindcasting. Efforts are presently underway to make the nearshore wave hindcast data available for the Southern California Bight, and thus for the San Pedro Channel, San Pedro Bay, and the Gulf of Santa Catalina. Southern Hemisphere swell are also being developed as part of this effort. Upon completion, this WIS study will provide the most complete and detailed wave climate of any coastal region of the nation for the Southern California Bight. Several wave roses are shown in figures 2 through 5.

Wave Conditions

5-06 Wind-generated surface gravity waves produce the most powerful wave forces to which coastal structures are subjected (except for seismic waves). In the absence of a wave gaging program at the project site, the wave characteristics are usually determined by hindcast methods in deep water and then analytically propagated shoreward to the structure. This method has been applied for the Santa Ana River, where the deep water unsheltered wave hindcast data of Marine Advisers (1961) Station A for southern hemisphere swell, and National Marine Consultants (1960) Station 7 for northern hemisphere swell, and Marine Advisers (1961) Station B decayed and local sea have been utilized. Adjustments for island sheltering effects were also included. The deep water waves were then refracted and shoaled by numerical wave propagation methods, resulting in a frequency of occurrence of waves of various heights, periods, and directions of approach at the project area. This analysis is detailed by U.S. Army Engineer Waterways Experiment Station (WES) Technical Report HL-80-9, 1980. Western and southern wave exposures of the Santa Ana River study area are shown in figure 1.

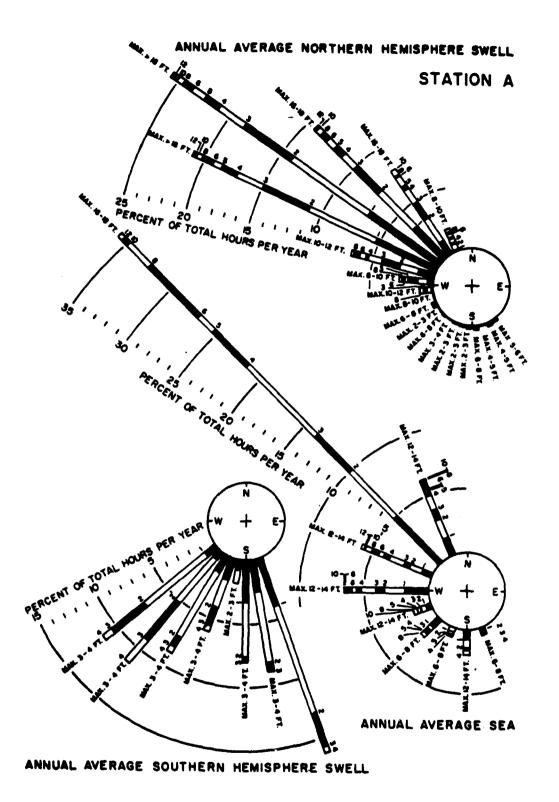


Figure 2 Average annual hindcast wave statistics, southern California coastal waters, Station A, sea, northern hemisphere swell, and southern hemisphere swell (after Marine Advisers, 1961).

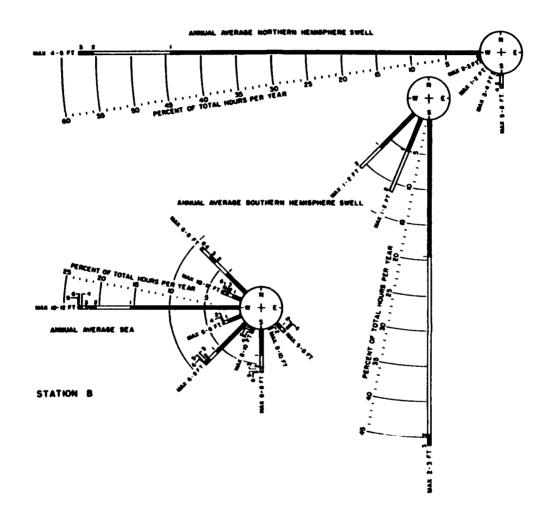


Figure 3 Average annual hindcast wave statistics, southern California coastal waters, Station B, sea, northern hemisphere swell, and southern hemisphere swell (after Marine Advisers, 1961).

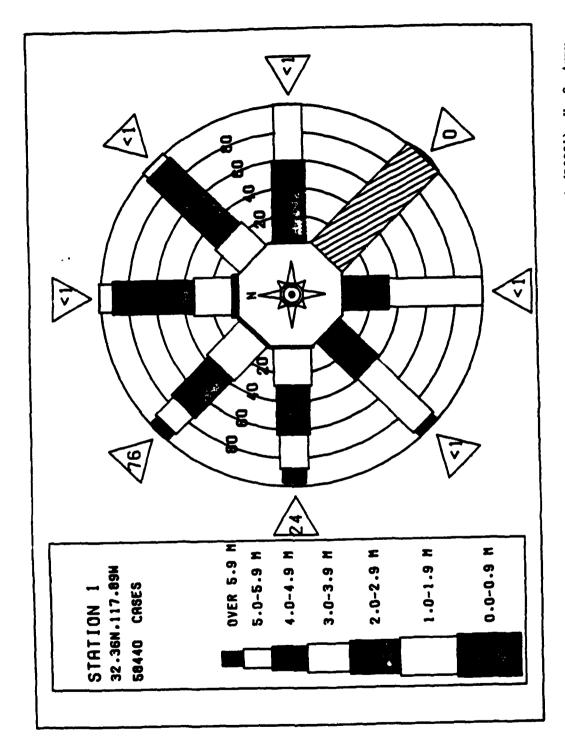


Figure 14 . Combined sea and northern hemisphere swell, Phase II, Station 1 (P2001), U. S. Army Engineer Waterways Experiment Station (WES) Wave Information Study (WIS) (after Corson, et al., 1987).

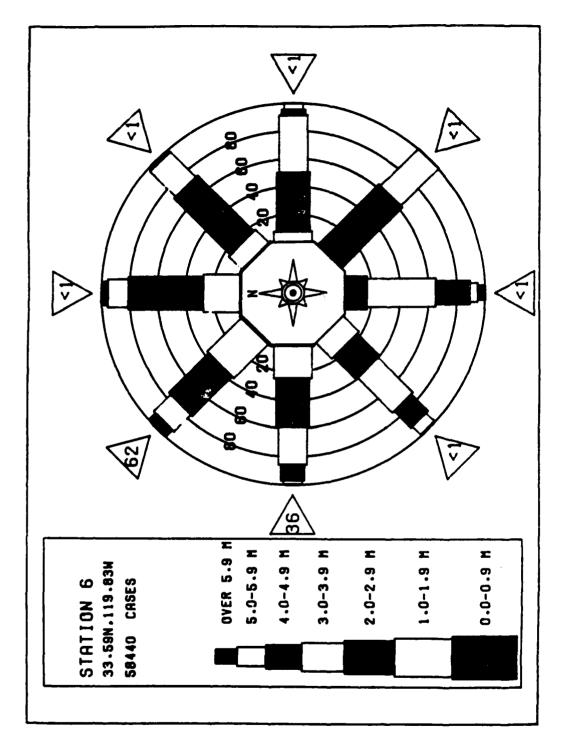


Figure 5 . Combined sea and northern hemisphere swell, Phase II, Station 6 (P2006), U. S. Army Engineer Waterways Experiment Station (WES) Wave Information Study (WIS) (after Corson, et al., 1987). Figure 5

)

5-07 It was determined by Hales (1980) that the Santa Ana River mouth region is exposed to southern hemisphere swell arriving from azimuths 155 degrees to 200 degrees, with unrefracted sheltered deepwater significant wave heights ranging up to 4 feet. These heights, even with periods up to 20 seconds, are not adequate to inflict significant structural damage. Northern hemisphere swell arrives from azimuths 265 degrees to 277 degrees, with unrefracted sheltered deepwater significant wave heights ranging from 13 feet to 15 feet, and associated periods of 10 seconds to 14 seconds. These waves are capable of causing extensive structural damages; however, water depth-limiting conditions on wave heights reduce these extreme wave heights through the breaking process, and such excessive wave heights never break directly on the rubble structure. Shorter-period, locally generated waves with correspondingly large heights exist periodically in deep water off the Santa Ana River mouth region, but the depth-limited breaking process prevents these local sea from striking the structures with extremely high waves. The actual damage caused by the depth-limited breaking wave is inflicted by northern hemisphere swell instead of locally generated sea. Breaking wave damage increases with wave period, other factors remaining constant.

Wave Frequency

5-08 Damage to rubble mound structures is usually progressive, and an extended period of destructive wave action is required before a structure ceases to provide protection. It is, therefore, necessary in selecting a design wave to consider both frequency of occurrence of damaging waves and economics of construction and rehabilitation. The highest waves with the longest periods which occur with some significant discernible degree of frequency at this location are the 10.0-12.0 second waves (0.05 percent occurrence) and the 12.0-14.0 second waves (0.09 percent occurrence) approaching from a westerly direction (azimuth = 270 degrees) (table 3).

5-09 These data are Station 7 data from National Marine Consultants, (1960). Source: Hales (1980).

Design Stillwater Level

5-10 The actual wave conditions at a structure site at any time depend critically on the water level. Consequently, a design still water level must be established in determining the maximum wave forces on a structure. For the Santa Ana River project, the design still water level (SWL) has been established at +7.0 feet MLLW, or +4.2 feet MSL. The design still water level is based on the 1986 high and low water predictions at the Long Beach (Outer Harbor) station by the National Oceanic and Atmospheric Administration (NOAA). The NOAA predicted that a tide level of 7 feet would be exceeded eight times in 1986, once in January, twice in June and December, and thrice in July. The high water prediction by NOAA for 1986 range from 7.0 to 7.3 feet. The extreme high-water level observed by NOAA was 7.86 feet on January 28, 1983.

Table 3. Frequency of Annual Occurrence in Percent of Year, Northern Hemisphere Swell; Santa Ana River Mouth, California.

Deepwater Approach Azimuth = 259° - 281°

Significant Wave Height,			Wave Pe	eriod, sec	onds		
Feet	6-7.9	8-9.9	10-11.9	12-13.9	14-15.9	16-17.9	18+
1.0-1.9	0.02	0.48	0.23	0.02	0.05		
2.0-2.9	0.88	2.07	1.06	0.62	0.35	0.11	0.02
3.0-3.9	0.42	0.87	0.50	0.35	0.02	0.09	0.02
4.0-4.9	0.16	0.48	0.23	0.09	0.12	0.02	
5.0-5.9	0.12	0.28	0.32	0.14	0.10		
6.0-6.9		0.31	0.32	0.12	0.07	0.05	
7.0-8.9		0.22	0.32	0.20	0.02		
9.0-10.9		0.02	0.23	0.16	0.10		
11.0-12.9			0.17	0.02	0.07	0.02	
13.0-14.9			0.05	0.09			
15.0-16.9							

Design Wave

5-11 The proposed Santa Ana River jetties and training dike will terminate at the river mouth in approximately the same location as the existing stone jetties at a depth of about -4.0 feet MLLW. The head sections of the jetties and training dike will be subjected to the full force of ocean waves generated on the Pacific Ocean and propagating past the offshore sheltering islands toward the coastline. Because of the reduction in height afforded by the islands, the waves which finally reach shore will be limited in height to the maximum wave sustainable in water at that specific depth. The forces created by these depth limited breaking waves will constitute the greatest wave forces which the structure will be expected to withstand. These maximum wave forces may arrive simultaneously with extreme high tide and flood conditions on the river, resulting in a larger resultant total force on the structure elements.

5-12 In determining the design wave for the Santa Ana River jetties and training dike, it is assumed that the flood control channel will be excavated to an invert elevation or -4 feet MLLW at the toe of the end of the jetties, and excavation will be maintained horizontally (m=0) until this elevation intersects the existing beach slope seaward of the structure. Hence, the greatest water depth will occur when the SWL is at +7 feet MLLW immediately after construction of the flood channel to an elevation of -4 feet MLLW (assuming the channel does not degrade below the design invert elevation). This maximum still water depth will be 11 feet. The largest wave height which can be maintained in water 11 feet deep on a horizontal slope is about 9 feet ($H=0.78 \times 11$). Table 3 indicates the 14 second wave occurs with significant regularity.

Thus, the 14 seconds, 9 feet breaking wave is considered to be the design wave for the Santa Ana River jetties and the training dike. Other sections further upstream between the ocean and the Pacific Coast Highway will experience broken or diffracted waves of lesser magnitude.

5-13 The design wave at the ocean end of the Santa Ana River jetties (14 sec. 9 ft. breaking wave) is the extreme worst wave condition to be reasonably expected under conditions of complete channel excavation. When this excavated channel shoals to some extent by longshore transport of littoral material in the surf zone or by river transport from upstream, the breaking wave conditions on the structure will be reduced from the maximum valued produced by the design wave height of 9 feet. The actual wave forces depend on the actual wave height, which in turn depends on the actual water depth at the local site.

5-14 Because of inherent instabilities in the breaking process, and since waves will approach at a range of angles to the shoreline (up to plus or minus 30 degrees), breaking of the design wave (14 sec., 9 ft. breaking wave) may not always occur precisely at the tip of the rubble structure head section. However, breaking of the design wave should occur within about 200 feet of the river entrance. That is, all breaking of the design wave should take place before it propagates upriver past west jetty station 9+60 (east jetty sta. 10+30). Hence, the design wave (14 sec., 9 ft. breaking wave) is utilized for both the rubble structure head section and structure trunk section (west jetty stas. 7+90 to 9+60 and east jetty stas. 8+60 to 10+30).

5-15 The wave height reduction by diffraction upriver from the rubble structure head section was estimated by graphical methods for non-breaking waves as discussed in the Shore Protection Manual (1984). For breaking waves, after breaking, the reformed wave height is estimated to be approximately equal to 40 percent of the local water depth. The broken and reformed wave height will be 0.4 x 11.0 = 4.4 feet, say 5 feet, upriver beyond the trunk section (west jetty stas. 9+60 to 11+90 and east jetty stas. 10+30 to 12+60). This value is larger than a non-breaking diffracted wave upriver between the jetties, and is used to design the riprap for the embankment of the jetties. Further up the channel, waves get smaller. Between west jetty stations 11+90 and 13+52 (east jetty stas. 12+60 to 14+22) waves will be about 3 feet high.

VI. LITTORAL TRANSPORT

Condition of Existing Beaches

6-01 The region of southern California coastline encompassed by a study of littoral transport past the Santa Ana River mouth should commence at approximately the eastern end of the Los Angeles-Long Beach Harbor complex (Anaheim Bay east jetty) and extend southeasterly for a distance of approximately 17 miles to the Newport Bay west jetty. This region is so distinctly separated from the adjacent coastlines by Point Fermin on the north and the Newport Submarine Canyon on the south that it can be effectively considered as a littoral cell, referred to as the San Pedro Littoral Cell by Inman (1976) (see fig. 6). A littoral cell is defined as a coastal segment that contains a complete sedimentation cycle including sources, transport paths, and sinks. This region of coastline satisfies these requirements: i.e., the source being the feeder beach located immediately east of Anaheim Bay (Surfside-Sunset Beach) and infrequent transport to the beach by flooding of the Santa Ana River; the transport path being the surf zone energized by breaking waves; and the ultime sink to the south being either the Newport Submarine Canyon or the shoal region off the Newport Beach region.

6-02 The direction of net longshore transport of littoral material in this vicinity is considered to be southerly by most researchers (Emery, 1960; Shepard and Wanless, 1971; Inman, 1976; Hales, 1980). Any material that may be drifting south past Point Fermin will be deposited in the deep water of San Pedro Bay outside the Los Angeles-Long Beach Harbor breakwaters. Correspondingly, any littoral material drifting south past the Newport Beach groin field will either be lost down the Newport Submarine Canyon, or deposited in deep water on the shoal region of the continental shelf located on the west side of the Canyon (Felix and Gorsline, 1971).

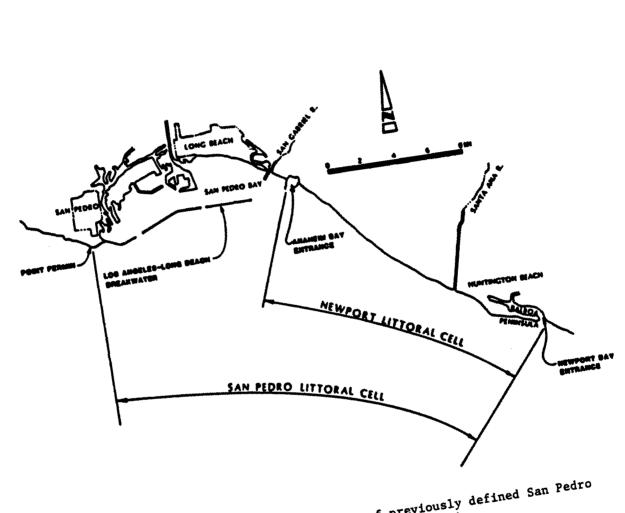


Figure 6 Newport Littoral Cell, a portion of previously defined San Pedro
Littoral Cell (after Everts 1987).

6-03 Since construction of the Anaheim Bay east jetty in 1944, serious erosion of the beaches at Surfside-Sunset Beach has been a continually recurring problem that has necessitated the periodic placement of nourishment material to maintain an acceptable beach for recreation, and for protection of private and public property. The average annual rate of erosion in this area (based on placement volumes and hydrographic surveys) in recent years has been on the order of 300,000 cubic yards per year. Indications are that the net annual littoral drift of material in surf zone is in a southerly direction. Periodic renourishment of the Surfside-Sunset Beach region serves as feeder beach material for Bolsa Chica State Beach, Huntington Beach, and Newport Beach.

6-04 The Santa Ana River enters the Pacific Ocean at the lower extremities of the littoral cell, and has historically contributed a significant amount of sediment to the surf zone. However, in recent years, periods of prolonged drought and the construction of floodwater retarding structures on the river have drastically reduced the amount of river-transported sediment to the ocean. Reduction in the supply of sand to the beaches carries the potential for serious beach erosion. This potential for erosion has been alleviated by extensive beach nourishment at Surfside-Sunset Beach.

6-05 The Santa Ana River mouth region lies immediately upcoast of the Newport Beach groin field. Here, the beaches are relatively wide and stable. The existence of the wide beach upcoast of the Santa Ana River mouth toward Huntington Beach is attributed by Simons, Li, and Associates, Inc. (1987) to the stabilizing control afforded by the location of the west jetty to Talbert Channel, and to the volume of net downcoast movement of littoral material in the surf zone. Immediately after the construction of the west jetty to Talbert Channel, the fillet accumulation against the jetty gradually extended upcoast asymptotically until the existing Huntington Beach shoreline reached a position of dynamic equilibrium. In general, the beach is approximately ±600 feet wide on the upcoast side of the Santa Ana River mouth, and remains at this width because the downcoast end of this segment is fixed at the west jetty to Talbert Channel, and because the adequate nourishment placed on Surfside-Sunset Beach sufficiently reestablishes the asymptotic dynamic location of Huntington Beach following each winter and summer beach cyclic movement offshore and onshore, respectively.

6-06 Further south, the beach near Newport Beach has been stabilized with a groin field, and is approximately ±400 feet wide in this region. The groin field is located immediately north of the Newport Submarine Canyon. This prevents the apparent southerly net movement of littoral drift from depleting the beaches, as it moves either down the Newport Submarine Canyon or onto the shoal adjacent to the Canyon located offshore of the groin field. In either event, this net southerly transport of littoral material is removed from the littoral system, and the reversal in transport direction to the north during summer months would deplete the southern portion of the San Pedro littoral cell were it not for the existence of the Newport Beach groin field.

Littoral Transport Estimate

6-07 Potential longshore sediment transport is defined as the amount of littoral material that a specific wave climate will transport past a region in the presence of an unlimited source (supply) of material. When the feeder beach at Surfside-Sunset Beach has been nourished, an essentially unlimited supply of material exists for transport downcoast past the Santa Ana River mouth region, and on towards the Newport Submarine Canyon and eventually out of the system. Because of the necessity for maintaining a protective beach in the Surfside-Sunset Beach region, ensuing stable beaches result downcoast, and the actual longshore sediment transport past the Santa Ana River mouth region approximates the potential longshore sediment transport of the area.

6-08 Hales (1980) estimated the net longshore transport of littoral material in the surf zone to be toward the southeast with a magnitude of approximately 112,000 cubic yards per year (see table 4). The results of that study compare favorably with historical beach nourishment data for the Surfside-Sunset Beach area (Simons, Li, and Associates, Inc., 1987). This agreement suggests that these littoral estimates provide a reasonable approximation of the actual longshore transport rates. These littoral estimates compare favorably with estimates developed from more recent wave hindcast data by WIS (Phase II), although the definition of sea and swell may not be entirely consistent between the older wave hindcast data of Marine Advisers (1961) and National Marine Consultants (1960), and the more recent WIS data by WES.

Consequence of Littoral Transport Disruption

6-09 For a computational reach of southern California shoreline centered on the Santa Ana River mouth, the net longshore transport of littoral material in the surf zone is toward the southeast, with a magnitude of about 112,000 cubic vards per year on an average annual basis. In consequence, any major disruption of the dynamic equilibrium which presently exists in this region (such as the construction of a long jetty across the surf zone) is likely to cause erosion in the Newport Beach area unless beach nourishment material is placed on the beach south of the Santa Ana River mouth, and in the Newport Beach groin field for that period of time when the Huntington Beach shoreline is responding asymptotically to any lengthened jetty structure across the surf zone. Both the magnitude and direction of longshore transport exhibit distinct seasonal variations, with strong transport toward the southeast dominating in the winter months (January through April), and moderate transport toward the northwest occurring in the summer months (July through October). This annual cycle implies that littoral material would possibly have the capacity for temporary closure of the entrance to the Santa Ana River.

Table 4. Summary of Potential Longshore Transport Computations Santa Ana River Mouth Region, California. (All values in cubic yards)

	Sea	Şa	Northern	n Swell	Southern Swell	Swell	Sum		Net		
Month	+ North	South	+ North	South	+ North	South	+ North	South	+ North	South	Gross
Jan	11,682	28,159	0	68,230	0	0	11,682	96,389		84.707	108,071
Feb		24,159	0	151,881	0	0	66,681	176,040	-	109,359	242,721
far	24,463	38,253	0	47,827	0	0	24,463	86,350		61,887	110,813
l pr	3,445	29,085	0	48,424	0	0	3,445	77,509		74,064	80,954
lay	1,557	22,567	0	10,517	39,604	0	41,161	33,084		•	74,245
Į,	1,720	16,882	0	2,938	19,429	0	21,149	19,820	1,329		10,969
ľul	3,681	17,752	5,237	0	84,507	0	93,425	17,752	75,673		111,177
gni	2,083	16,182	6,498	0	68,904	0	77,485	16,182	61,303		93,667
èp	958	16,625	15,438	570	53,077	0	69,473	17,195	52,278		86,668
et.	3,810	11,181	3,421	14,168	56,780	0	64,011	25,349	38,662		89,360
lov	905	14,446	0	2,070	0	0	905	16,516		15,614	17,418
ခုင	23,220	12,848	0	14,010	0	0	23,220	26,858		3,638	50,078
Innua I	144,202	248,139	30,594	360,635	322,301	0	497,097	140,609	237,322	349,269	1,106,141
Vet		103,937		330,041	322,301			11.947		111.947	

Source: Hales (1980).

VII. LITTORAL TRANSPORT

Sources of Littoral Material

7-01 The region of coastline between the Anaheim Bay east jetty and the Newport Submarine Canyon is essentially a semi-closed system in that major sources of littoral material input are restricted to two finite locations (assuming no significant onshore movement of material from deep water by wave energy). The more significant source of material to the system is the feeder beach region at Surfside-Sunset Beach. Here, it is estimated that, on the average, approximately 360,000 cubic yards of material are placed annually.

7-02 A less significant source of material to the system is riverborne sediment transport by the Santa Ana River. The significance of this source is limited both by the volume of material transported, and by the location of the river mouth near the downcoast extremity of the littoral cell, which experiences a large downcoast movement of material in the surf zone. Any volume of material transported to the coast by the river which is less than the difference between the average annual downcoast transport of littoral material and the average annual net transport will be carried out of the system by deposition into the Newport Submarine Canyon, or placed on the continental shelf adjacent to the Canyon. No river mouth delta will form under these conditions. Only under extreme floodflow conditions on the river will significant quantities of riverborne sediment be transported to the coast sufficient for delta creation. It has been estimated by the Los Angeles District (1987) that for the period 1941-1978, sand outflow to the coast by the Santa Ana River was 80,000 cubic yards per year, on the average. The amount of sand outflow for future years without project is estimated to be only 25,000 cubic yards per year, on the average. With project, the sand outflow to the ocean for future years is estimated to increase to 36,000 cubic yards per year, on the average.

7-03 The ultimate repository for all littoral material removed from the system is the open ocean. Material which disappears from the beach will either be transported alongshore and out of the littoral cell by

movement down the Newport Submarine Canyon, or will be carried offshore by wave forces and deposited in shoal regions sufficiently far from shore to preclude returning to the nearshore zone.

Beach Materials

7-04 It is generally considered that, subsequent to the construction of the Anaheim Bay east jetty in 1944, materials comprising the dynamic surf zone portion of the beaches downcoast to the Santa Ana River mouth have originated as nourishment material placed on Surfside-Sunset Beach. The beaches between the Santa Ana River mouth and Newport Beach consist of a combination of materials, including materials placed on Surfside-Sunset Beach, riverborne sediments transported to the coast by the Santa Ana River, and by placement material used to fill the Newport Beach groin field. Sediment samples were taken from the foreshore slope and backshore of Surfside-Sunset Beach (U.S. Army Engineer District, Los Angeles, 1978) and subjected to mechanical analyses. Results of the analyses indicated that the exposed area of the beach was composed of extremely clean, predominantly medium to coarse grained sand. Those samples contained fines no greater than 2 percent. The subtidal zone of the sandy beach shoreline became more silty. The higher percentage of fines in the subtidal zone appeared to be the result of previous beach nourishment operations, although much of this fine material could have been washed by wave action from the surf zone and transported offshore. Mechanical analyses of samples taken from Surfside-Sunset Beach in 1987 also indicated a similar trend toward finer grained materials offshore (U.S. Army Engineer District, Los Angeles, 1987c).

Offshore Materials

7-05 An offshore source of beach material designated Borrow Area B for nourishing Surfside-Sunset Beach is centered 6,900 feet off Sunset Beach (U.S. Army Engineer District, Los Angeles, 1978). This source lies on the shoreward boundary of an area previously determined by the U.S. Army Coastal Engineering Research Center to contain suitable beach material. That area designated as Area A-II is approximately 7 miles long by 2 miles wide, extending from Seal Beach to Bolsa Chica State Beach. That offshore sand inventory indicated that 220,000,000 cubic yards of suitable sand exists in the area adjacent to Borrow Area B. As is characteristic of San Pedro Bay, the ocean floor encompassing Area A-II is uniformly flat and slopes an average of 0.3 percent. Within Borrow Area B, the floor is also relatively flat, varying from a minimum depth of -31 feet to -41 feet MLLW. No extreme irregularities were found to exist within this borrow area.

7-06 Exploration of Borrow Area B by Los Angeles District, (1978) indicated that the area is covered with a gray, slightly silty, medium grain sand extending to the first silt or clay stratum. These silt and clay strata vary in thickness from 6 inches to 6 feet, are laterally discontinuous, and occur at depths ranging from 3 feet to over 20 feet.

They would not be suitable for use as beach replenishment; only that sand above the first stratum would be considered suitable. The statistical average of fines is 9 percent in the available material for the total borrow area. Laterally, indications were that the shore side of the borrow area should be avoided because of the more shallow clay strata and the greater percentage of fines in the sand. The better material tends to occur seaward and toward the south corner. It was estimated that dredging a section to 20-foot depth and 1,000 feet wide from this region would produce 1.75 million cubic yards of suitable material.

7-07 A study by the University of Southern California for the State of California (Osborne, et al., 1983) defines sand borrow source materials for the offshore region of the San Pedro Littoral Cell. That study indicated that 13 test holes were drilled offshore, a distance of 3,000 to 18,000 feet between the Huntington Beach Pier and the Newport Beach Pier. A sand borrow area exists between Huntington Beach Pier and the Newport Beach Pier, with approximate dimensions of 10,000 feet by 8,000 feet and 6 feet deep, which would yield about 17,000,000 cubic yards of material. The area lies between the 35- and 130-foot MLLW contours. The upcoast and downcoast limits are 12,000 and 4,000 feet, respectively, upcoast of the Newport Beach Pier, and parallel to the shoreline. The seaward limits extend 2,500 to 12,500 feet offshore. Although that study does not provide the depth or detailed material descriptions of each hole, the study report does indicate that the sediments encountered in the test holes are either suitable or marginally fine sand that could be used for beach replenishment (Los Angeles District, 1987).

VIII. SEDIMENT BUDGET

Newport Littoral Cell

8-01 Everts (1987) noted that the southeastern one-half of the contigious San Pedro Littoral Cell also satisfies the requirements for being identified as a littoral cell, and termed this portion the Newport Littoral Cell (see fig. 6). The Santa Ana River discharges into the Pacific Ocean at about the southeastern one-third portion of the Newport Littoral Cell. Before 1899 the San Pedro Littoral Cell extended from Point Fermin to Corona Del Mar. However, since that time, the northern half of the cell has been greatly modified. Today, coastal processes north of Anaheim Bay are essentially completely controlled by artificial structures. Waves are effectively blocked by the Los Angeles-Long Beach Harbor complex breakwaters, thereby eliminating littoral sediment transport behind the structures. Sand delivery to the cell by the Los Angeles and San Gabriel Rivers has been significantly reduced by the construction of sediment impoundment and flood control structures on the rivers. The jetties at Anaheim Bay essentially eliminate all transport of littoral material from the west into the Newport Littoral Cell. Hence, the coastal processes aspects pertaining to sand supply of the Newport Littoral Cell are dominated by beach nourishment projects and the minimal supply of sediments to the coastline by the Santa Ana River (see fig. 7).

Shoreline Changes

8-02 The Newport Littoral Cell is bounded by complete barriers to the longshore transport of sand. Its western boundary consists of the east jetty to Anaheim Bay, and its eastern boundary is the west jetty to Newport Bay, although the approximately 2.5-mile section of the cell between the Newport Submarine Canyon and the west jetty to Newport Bay (the Balboa peninsula) may not be significant to an analysis of the sediment budget of the Newport Littoral Cell. The shoreline of the Newport Littoral Cell is in a state of dynamic equilibrium, with most portions of the cell oscillating about a relatively stable position.

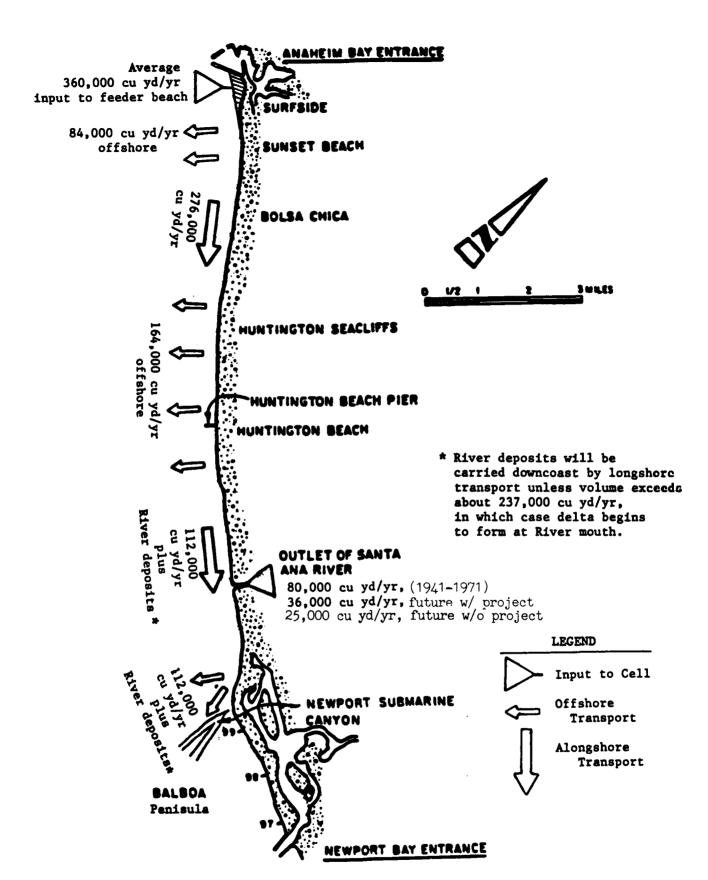


Figure 7. Sediment sources, transport paths, and sinks for Newport Littoral Cell.

The region most susceptible to shoreline change is the Surfside-Sunset Beach renourishment region, with the change being as much as 500 feet over 5- to 10-year periods between renourishment intervals. Other regions of the cell show relatively insignificant changes over long time intervals.

Newport Littoral Cell Sediment Budget

SEDIMENT SOURCES

8-03 The primary source of sediment to the Newport Littoral Cell is the feeder beach renourishment area at Surfside-Sunset Beach. Renourishment activities supply about 360,000 cubic yards per year, on the average, to the cell. A secondary source of sediment to the Newport Littoral Cell is riverborne transport by the Santa Ana River. Under previous conditions, the river contributed about 80,000 cubic yards per year, on the average. After river flood control channel improvements have been completed, the river will contribute only about 36,000 cubic yards per year, on the average.

TRANSPORT PATHS

8-04 The transport path for sediments of the Newport Littoral Cell is the surf zone which is energized by breaking waves arriving from the open ocean. For the section of relatively straight coastline from Surfside-Sunset Beach to Huntington Beach, the net downcoast transport of littoral material in the surf zone is estimated to be about 276,000 cubic yards per year, on the average. For the section of relatively straight coastline from Huntington Beach to Newport Beach groin field (past the Santa Ana River mouth), the net downcoast transport littoral material in the surf zone is estimated to be about 112,000 cubic yards per year, on the average.

SEDIMENT SINKS

8-05 Approximately 360,000 cubic yards of material is placed on Surfside-Sunset Beach each year, on the average; however, the wave climate apparently is able to transport only about 276,000 cubic yards net per year of this material downcoast. Hence, the difference between these two quantities (84,000 cubic yards per year, on the average), is probably being transported offshore to known regions of sand deposits.

8-06 The wave climate in the Surfside-Sunset Beach region is capable of transporting approximately 276,000 cubic yards net per year of littoral material, on the average. However, in the vicinity of the Santa Ana River mouth, the wave climate is capable of transporting only about 112,000 cubic yards net per year, on the average. Since no visible accumulation of sediments is occurring, the difference between these two quantities (164,000 cubic yards per year, on the average), is probably being transported offshore to known regions of sand deposits.

8-07 The net downcoast transport of littoral materials past the Santa Ana River mouth of approximately 112,000 cubic yards per year, on the average. is being lost from the littoral system, either down the Newport Submarine Canyon or onto the continental shelf to the west of the canyon where known regions of sand deposits exist. In addition to the net downcoast transport of littoral material of 112,000 cubic yards per year, the wave climate is also capable of transporting that riverborne sediment which is carried to the ocean by the Santa Ana River, as long as the sum of the riverborne sediment plus the net downcoast transport of littoral material in the surf zone does not exceed the gross downcoast transport capacity of the wave field. Hence, as long as the sediment volume carried to the Pacific Ocean by the Santa Ana River does not exceed 237,000 cubic yards per year, on the average, the wave climate will transport both the riverborne sediments and the net downcoast transport of littoral material past the Newport Beach groin field and out of the littoral system. Under severe flood conditions where riverborne sediment transport to the coast exceeds 237,000 cubic yards per year, temporal deltas and perturbations to the coastline in the vicinity of the Santa Ana River mouth will develop. Such deltas and other perturbations will dissipate as dynamic equilibrium returns to the coastline of the Newport Littoral Cell.

IX. TIDAL INLET

Existing Inlet Conditions

9-01 The recommended plan for coastal structure improvement at the mouth of the Santa Ana River includes a relocation of the Talbert Channel approximately 1,000 feet upcoast, with its base width expanded from 70 feet to 160 feet. The ocean entrance of the river will be expanded from its existing base width of 317 feet to a new base width of 450 feet, with a channel invert elevation established at -4.00 feet MLLW. The Greenville-Banning Channel will merge with the river about 1.5 miles upstream from the Pacific Ocean. To mitigate the loss of 8 acres of coastal salt marsh required for river expansion, and to preserve and enhance an 84-acre habitat for endangered bird species, the recommended plan includes the acquisition and improvement of approximately 92 acres of degraded marshland located east of the river immediately upriver from the Pacific Coast Highway. To the maximum extent possible, it is also necessary to ensure that the relocated Talbert Channel remains open to the ocean; thereby, providing tidal exchange for a proposed 17-acre marsh restoration, located north of the Pacific Coast Highway and upstream from the outlet, by Orange County. It is essential to provide tidal exchange for the planned 92-acre marsh east of the Santa Ana River by keeping the river outlet open to the ocean. The hydraulic design of the mouth of the Santa Ana River provides adequate flushing ability to maintain the tidal inlet system open from the closure effects of littoral transport in the surf zone.

9-02 The tidal range at the project site is of importance both because it will play a central role in the design of the topography and hydraulic inlet structures for the 92-acre marsh, and because it will determine the energy available for scouring littoral material from the Talbert Channel and Santa Ana River outlets during ebb tidal flow. Tidal conditions inside the river mouth at the entrance to the proposed 92-acre marsh will depend upon the extent to which the coastal tides are affected by head losses in the new channel, and by partial or total blockage of the mouth by littoral material.

Existing Tides at the Marsh Entrance

(

9-03 Tide gauge data obtained in the Greenville-Banning Channel by the Orange County Environmental Management Agency supports the conclusions that the channel outlet is frequently blocked. A small water-level fluctuation (generally less than 1 foot) occurs in the channel during closure episodes, apparently as the result of leakage through permeable areas in the intermediate jetties. When the channel is open to the ocean, the tidal range is significantly less than that which occurs along the coast. Whereas the mean tidal range at Newport Bay Entrance is about 3.7 feet, the tidal range recorded at the gauge exceeded 1.5 feet only 46 percent of the 1983-1984 period. The primary cause of the reduced tidal range in the channel appears to be a bar or "sill" at the ocean outlet which obstructs the lower portion of the tidal excursion.

Existing Tides in the Talbert Channel

9-04 Tide measurements analogous to those obtained in the Greenville-Banning Channel are not available for the Talbert Channel or the Santa Ana River. To provide preliminary information on the presence or absence of a sill across the Talbert Channel outlet, the water level upstream of the outlet was determined on 22 September 1986. Whereas the predicted low water elevation at Newport Bay Entrance was +1.0 feet MLLW, the measured water level in the Talbert Channel (1,000 feet upstream of the outlet) did not fall below +2.0 feet MLLW. It thus appears that a sill may exist at the Talbert Channel outlet, but at a lower elevation than that which obstructs the Greenville-Banning Channel outlet. This conclusion is consistent with the observation that the Talbert Channel remains open far more frequently than the Greenville-Banning Channel.

Recommended Structure Configuration

9-05 The existing jetties at the project site will be replaced by four new jetties; (a) two to stabilize the outlet of the widened Santa Ana River, and (b) two to stabilize the outlet of the relocated Talbert Channel. A training dike will also be required for the Santa Ana River outlet.

9-06 The jetty configuration at the new Talbert Channel outlet has been designed to minimize the closure frequency of the outlet while avoiding significant adverse impacts on the existing littoral transport regime. The jetties will terminate approximately 900 feet seaward of the Pacific Coast Highway, a location analogous to that of the existing northwest jetty in terms of proximity to the typical MLLW shoreline. The ability of the existing Talbert Channel to remain open suggests that the new jetties, which will also extend to the MLLW contour, will be sufficient to assist the channel outflow in penetrating the zone of beach drift.

Because the jetties will not extend beyond the present shoreline, however, they will not impound appreciable quantities of littoral material. It is anticipated that sand will bypass the new outlet in much the same manner as it bypasses the existing Talbert Channel outlet, and that the net drift of material toward the southeast will not be materially affected. The alignment of the new jetties is approximately perpendicular to the shoreline.

9-07 Potential sand migration through the proposed structure will not create the sand plug presently experienced at the mouth of the river. Both jetties and the training dike at the mouth of Santa Ana River will terminate at proximity of the MLLW contour. Most of the littoral transport occurs below this elevation. The sand plug is being created almost entirely by the material moving in the littoral zone and entering around the jetties. The small portion of the sand which will penetrate the river through the proposed permeable training dike or the jetties will easily be flushed by the tidal action.

Tidal Inlet and Tidal Exchange System

9-08 Historically, the Santa Ana River and Greenville-Banning Channel have experienced frequent closure. The existing marsh relies on a single tidal gate for exchange of tidal and riverine flows with Greenville-Banning Channel. Tidal exchange in the marsh is extremely poor and should be improved to support future marsh restoration plans. On the other hand, tidal exchange in the existing Talbert Channel has been satisfactory and should be maintained. Restoration of a 17-acre marsh adjacent to the Talbert Channel is currently being planned by others, and will rely on exchange of tidal and riverine flows with the Talbert Channel.

9-09 The tidal exchange system as shown on figure 8 was analyzed by Simons. Li, and Associates, Inc. (1987). It included the following: (a) Training Dike No. 1, to provide a 90-foot channel in the proposed Santa Ana River to prevent littoral sedimentation which may result from channel widening; (b) Training Dike No. 2, located in the middle of the proposed Talbert Channel to retain the self-cleaning capability of the existing Talbert Channel; (c) Tidal Gate No. 1, located on the Santa Ana River east bank above the Pacific Coast Highway to have a similar function as the existing gate; (d) Tidal Gate No. 2, located on the Santa Ana River east bank near the upper end of the proposed 92-acre marsh to provide additional flow exchange to the marsh; and (e) Tidal Gate No. 3, located at the confluence of the proposed Santa Ana River and existing Talbert Channel to provide tidal exchange between the proposed Santa Ana River and the proposed Talbert Channel.

9-10 Because of potential tidal exchange through Tidal Cate No. 3 and the existing Talbert Channel between the proposed Santa Ana River and the proposed Talbert Channel, both the 92-acre marsh and the 17-acre marsh have an auxiliary system to provide tidal or riverine flows, if the primary system fails to function due to unexpected closure of either outlet.

9-11 Performance of the proposed tidal exchange system was carefully evaluated and a general guideline for operation and maintenance was recommended by Simons, Li, and Associates, Inc. (1987). With the proposed training dike structures, the sediment flushing capability and the river mouth opening potential of Santa Ana River and Talbert Channel are comparable with the existing Talbert Channel. The tidal ranges in the Santa Ana River and Talbert Channel near the proposed 92-acre marsh and the 17-acre marsh will be increased when compared to the existing condition. With the proposed Tidal Gates Nos. 1 and 2, and the conceptual 92-acre marsh restoration plan, the tidal range and flow circulation in the marsh can be significantly improved.

9-12 Training Dike No. 2 (located in the Talbert Channel) may be deferred in construction to reduce initial cost, and to allow for observation of performance of remaining aspects of the tidal exchange system. This dike is not as effective as Training Dike No. 1 in increasing the sediment flushing capability of the proposed channel. The requirement and location of this dike can be determined based on field observation following channel construction. During the observation period, tidal exchange may be provided through the proposed Santa Ana River system (with Training Dike No. 1 and Tidal Gate No. 3). If there is a tendency for Talbert Channel to close, construction of Training Dike No. 2 should proceed immediately.

X. SANTA ANA RIVER JETTY DESIGN

10-01 The design of improvements recommended in this appendix is based upon standard engineering practice, consultations with specialists in coastal engineering oceanography and geology, and technical references listed at the end. Plan, profile, and sections of the jetties are shown on plate 1.

General

10-02 Rubble-mound jetties are selected as replacement for the existing rubble-mound jetties in the Santa Ana River mouth. The rubble-mound jetties would be acceptable to Orange County for esthetical and safety aspect, and the character of the shoreline. Other factors for selecting rubble-mound structures for the Santa Ana River jetties are the availability of material, acceptable performance, depth of water, wave action, exposure to the ocean, and construction costs.

Stability Coefficients

10-03 Stability coefficients (K_D) are dimensionless coefficients used in the determination of the weight of armor units of rubble structures. A rubble structure is composed of several layers of random-shaped and random-placed stones, and is protected with a cover layer of selected armor units of either quarrystone or specially shaped concrete units. Relatively satisfactory experience with the existing Santa Ana River jetty design at the Pacific Ocean outlet has provided guidance for the design of proposed channel improvements in this region. The design of the ocean outlet includes jetty head and structure sections comprised of rough angular quarrystone, with random placement of two units of thickness in the armor layer. For the structure head section designed to withstand breaking waves of 14 sec., 9 ft. height, the stability coefficient, K_D is 1.6; for the structure trunk to withstand the same design breaking wave, the stability coefficient, K_D , is 2.0. Upriver from east jetty station 10+30 (west

jetty sta. 9+60), non-breaking waves are expected immediately after construction of the flood control channel. However, after normal shoaling created by riverborne and littoral sediment transport accumulates in the excavated channel section breaking of waves on this section with heights less that the design 9 feet wave height may occur. Hence, the stability coefficient for a breaking wave condition should still be utilized in this section of rubble structure ($K_D = 2.0$) even though the maximum broken wave height will not exceed approximately 5 feet in height.

Side Slope

10-04 The flatter the side slope of a rubble mound structure, the more stable the slopes will be. Side slopes should not be steeper than 1V on 1.5H. Based on empirical knowledge obtained from historical experience with similar rubble structures under corresponding wave and tide conditions, structure head slopes of 1V on 2H have been found to be satisfactory, particularly in light of the fact that this slope is then utilized in conjunction with the appropriate stability coefficient K_D , to determine the stable armor stone size. That is, a change in structure head slope requires a compensating chance in stability coefficient, K_D , to determine the stable armor stone size. Based on previous experience, the slopes of the head sections of the Santa Ana River jetties from west jetty station 7+90 to station 9+60 (east jetty stas. 8+60 to 10+30) should be 1V on 2H in order to provide greater assured resistance to forces from the design wave breaking directly on the seaward end of the structure.

10-05 Upriver beyond the rubble structure head section above west jetty station 9+60 (east jetty sta. 10+30), the side slopes of the jetty structure trunk actually constitute the side slopes of the flood control channel, and the armor stone also functions as channel riprap. The stability of riprap bank revetments is affected by the steepness of channel side slopes. Side slopes on which stone is placed by machine or dumped should not be steeper than 1V on 2H (EM 1110-2-1601, Engineering and Design: Hydraulic Desigh of Flood Control Channels, 1 July 1970). Hence, the 1V on 2H side slopes utilized for the rubble structure jetty head section will be continued for the structure trunk section upriver between the head section and the transition section from the rubble jetty structure to the flood control channel.

Crest Elevation

10-06 The crest elevation of the Santa Ana River flood control channel levee has been established at +11.0 feet MLLW (+8.1 feet MSL) at the outlet of the channel. This results in the head section of the flood control channel having a freeboard of 4.5 feet for the design flood.

10-07 Overtopping of rubble structures such as the Santa Ana River flood control channel terminating jetties can be tolerated only if it does not cause damaging conditions behind the structures. Whether overtopping will occur depends on, among other things, the wave characteristics of height and period, and the maximum tide level. For design SWL = +7.0 feet MLLW, and a design wave at the structure of 14 sec.. 9 ft. height, minor overtopping of the jetties will occur at these extreme wave and tide conditions. The design wave arriving at the design SWL will overtop the seaward end of the jetties by about 0.5 feet. The frequency of occurrence of such an event is extremely low and, additionally, such overtopping will not cause damage to the structure or otherwise adversely affect the flood control channel or other adjacent structure or feature of the landscape. Such minor overtopping may not only be tolerated, it is conceivable that such overtopping will actually be beneficial by allowing wave overflow to backwash fillet formation sand around the tips of the jetties and be transported back into the littoral system.

10-08 Hence, considering the low frequency of occurrence of a minor amount of overtopping which may be actually beneficial, the crest elevation of the terminating jetties of the Santa Ana River flood control channel at the Pacific Ocean is considered to be +11.0 feet MLLW (+8.1 feet MSL).

Armor Stone

10-09 The capstone forms the protective covering of the jetties and covers the corestone, the seaward end, and both sides of the jetties. Capstone weight, crest width, and layer thickness are important factors in the stability of the primary cover layer. The minimum weight requirement for individual capstones is based on the stability formula for rubble-mound structures as follows:

$$W = \frac{w_r H^3}{K_D (S_r - 1)^3 \cot a}$$

Where: W = Weight of armor unit in primary cover layer, pounds

Wr = Unit weight of armor unit, pounds/cubic foot

H = Design wave height measured at the location of the proposed structure, feet

 S_{r} = Specific gravity of armor unit relative to sea water

a = Angle of jetty slope measured from horizontal, degrees

 K_D = Stability coefficient.

The minumum required weight for individual capstone, Class A, for a design wave of 9 feet high, a $\rm K_D$ of 1.6, a slope of 1V on 2H, and a unit weight of stone of 160 pounds per cubic foot, is 5 tons. Therefore, the armor stones between west jetty stations 7+90 and 9+60 (east jetty stas. 8+60 to 10+30) can range from about 4 to 6 tons, with about 50 percent of the individual stones weighing more than 5 tons. The armor stone layer thickness is 8 feet and the crest width is 12 feet. Further up the channel between west jetty stations 9+60 and 11+90 (east jetty stas. 10+30 to 12+60), the weight of individual capstone should be 3 tons and the layer thickness 6 feet. Between west jetty stations 11+90 and 13+52 (east jetty stas. 12+60 to 14+22) the weight for individual capstone should be 2 tons and the layer thickness 5 feet. The crest width remains 12 feet along the jetties.

10-10 The proposed jetty stone size is larger than the existing. Design wave analysis of the Santa Ana River jetties and the training dike resulted in the breaking 9 feet wave height. According to the Hudson formula a 5-ton armor layer is required for stability of the structures. Design wave conditions are constrained by a depth limited breaking wave height. The 14 feet of water depth results from a +7 feet (MLLW) tide and scour elevation to -4 feet (MLLW) which is also a design invert elevation. Offshore wave conditions which can produce the 9 feet breaking wave height can occur several times a year and are typically associated with the winter storm season when maximum scour elevations are expected. Therefore, it is believed that the 5-ton size stone is justified.

Corestone

10-11 Class B stone will be used as corestone to form a dense compact mound to support the cap stone. In accordance with SPM (1984), the weight of the corestone is approximately one tenth the weight of the cap stone units. The corestone is not subject to eroding forces from wave action and will have the following gradation:

Weight of Pieces, Pounds	Percent by Weight Smaller Than
1,000	100
500	80-95
200	40-60
50	5-25
10	0-5

Bedding Layer

10-12 A bedding layer is used to protect the foundation of the rubble-mound jetties from scour and migration. The bedding layer prevents erosion during and after construction by dissipating forces from horizontal wave, tide, and longshore currents. A one-foot thickness is allowed to assure that bottom irregularities are completely covered.

An additional one-foot thickness is required to compensate for disturbance by placement of larger stones, for a total bedding layer thickness of 2 feet. The bedding stone will be quarry waste material, reasonably well graded with the limits specified below.

Weight of Pieces, Pounds	Percent by Weight Smaller Than
50	100
30	40-60
10	20-40
1	0-20

Toe Protection

10-13 Toe protection for the head of the Santa Ana River jetty was designed against maximum scour force based on the following two conditions, outlined in SPM (1984). The first condition is the occurrence of water depth at the toe that is less than twice the height of the maximum unbroken wave height. The estimated maximum unbroken wave height is about 8 feet. The water depth at the toe at a stillwater level of +7 feet is about 11 feet and, therefore, is less than twice the maximum unbroken wave height of 16 feet. The second condition that requires maximum scour force protection is a structure wave reflection coefficient, x, that equals or exceeds 0.25, which is generally true for slopes steeper than about 1V on 3H. The seaward slope of the Santa Ana River jetty is about 1V on 2H and therefore, the reflection coefficient, x, would exceed 0.25.

10-14 As a result, the two conditions in the Shore Protection Manual (1984) govern. The toe protection would have a layer two stone thick of stone weighing about one-thirteenth the weight of the primary armor stone. The toe protection would be 2 feet thick and the weight of the minimum toe protection stone will be about 400 pounds. The width of the toe protection would be 4 feet.

Scour Protection

10-15 The riprap to protect against channel scouring caused by floodflows was designed in accordance with procedures in appendix IV of EM 1110-2-1601 for scour. The riprap against scouring will have a thickness of 5 feet, a slope of 1V on 2H and will extend 10 feet below the flood control channel invert. The stone size W_{50} will be 700 pounds and will range from 2,800 to 90 pounds. The riprap would be connected to the armor stone that will be extended one stone thick (2 feet) into the invert of the channel improvement.

XI. SANTA ANA RIVER - TRAINING DIKE DESIGN

General

11-01 Plan, profile, and sections of the training dike are shown on plate 2. The training dike is designed in accordance with the design criteria and engineering assumptions used in the design of the Santa Ana River jetties. The design wave at the ocean end of the training dike is the 14 seconds, 9 feet breaking wave. The stability coefficient, $K_{\rm D}$, is 1.6 for the structure head and 2.0 for the structure trunk.

Side Slopes and Crest Elevation

11-02 The side slopes are 1V on 2H. The crest elevation varies from +5.0 feet MSL at the structure head to +3.0 feet MSL at the end of the training dike. The crest elevations are designed to the elevation of the existing sand plug in the river mouth.

Armor Stone

11-03 The armor stones for the training dike are 5 tons and can range from about 4 to 6 tons, with about 50 percent of the individual stones weighing more than 5 tons. The armor stone layer thickness is 8 feet and the crest width is 12 feet.

Corestone

11-04 Class B stone will be used as corestone to form a compact mound to support the capstone. The corestone would not be subject to eroding forces from wave action and will have the following gradations.

Weight of Pieces, Pounds	Percent by Weight Smaller Than
1,000	100
500	80-95
200	40-60
50	5 - 25
10	0-5

Bedding Layer

11-05 The bedding layer to protect the foundation of the training dike from undermining will be 2 feet thick. The bedding stone will be quarry waste material, reasonably well graded with the limits specified below.

Weight of Pieces, Pounds	Percent by Weight Smaller Than
50	100
30	40-60
10	20-40
1	0-20

Toe Protection

11-06 Toe protection for the head of the training dike was designed against maximum scour force used for the Santa Ana River jetties.

11-07 The toe protection will have a layer two stone thick of stone weight about one-thirteenth the weight of the primary armor stone. The toe protection will be 2 feet thick and the weight of the toe protection will be about 400 pounds. The width of the toe protection will be 4 feet.

Scour Protection

11-08 The riprap to protect against channel scouring caused by floodflows was designed in accordance with procedures in appendix IV of EM 1110-2-1601 for scour. The riprap will have a thickness of 5 feet, a slope of 1V on 2H and will extend 10 feet below the flood control channel invert. The stone size W_{50} will be 700 pounds and will range from 2,800 to 90 pounds. The riprap will be connected to the armor stone that has been extended one armor stone thick (2 feet) into the invert of the channel improvement.

XII. CONSTRUCTION MATERIALS

Sources of Stone

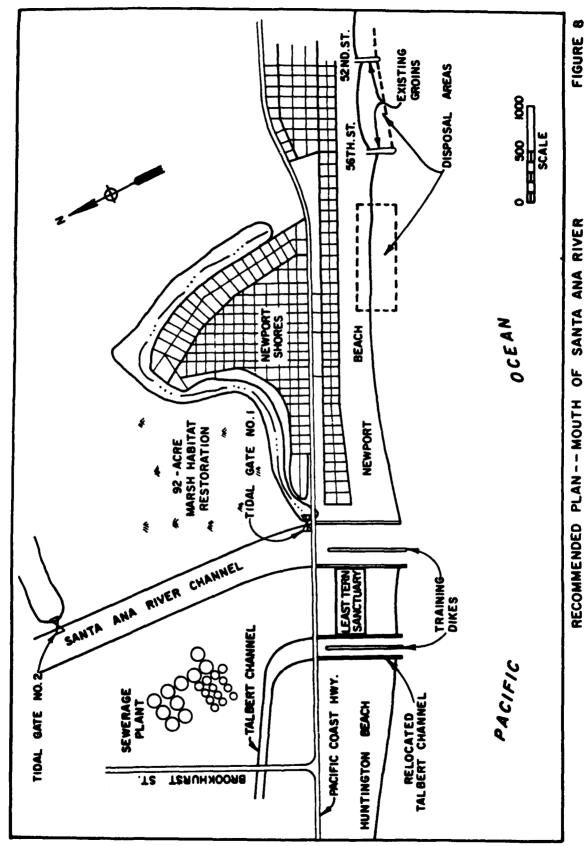
12-01 Sufficient quantities of suitable stone will be available from the existing structures and from privately owned quarries mostly located near Riverside and Corona, California. The unit weight of stone from these quarries ranges from about 164 to 175 pounds per solid cubic foot, and a unit weight of 160 pounds per solid cubic foot was used in the jetty design. Recent laboratory quality compliance tests have been made on stone samples from selected quarries in connection with several other similar Corps of Engineers projects. Although the majority of the stone sources tested have produced acceptable stone in the past, it cannot be assumed that they will continue to do so. Therefore, any stone source considered for use as slope protection, either a quarry or existing structure, will require further field inspection and evaluation and may require additional quality compliance testing prior to stone placement. A list of potential stone sources for which recent laboratory test results are available is shown in the Geotechnical Appendix.

Existing Stone

12-02 Approximately 27,000 tons of Class A, 8,000 tons of Class B, and 24,000 tons of Class C quarry stones were used during the construction of the Santa Ana, Talbert, and Greenville-Banning jetties in 1958 by the Orange County Flood Control District. The weight of the Class A stone, in general, ranged between 0.5 and 3 tons each, with 50 percent by weight not less than 1,500 pounds nor more than 3 tons each. The minimum weight of the Class B stone was 200 pounds, each, and not less than 50 percent by weight of the Class B stone weighted between 600 and 1,500 pounds each. The Class C stone was used for invert and embankment paving and the stone pieces ranged from 8 to 30-inches. Wherever possible, the three grades of stones will be salvaged for the construction of the jetties.

XIII. RECOMMENDED PLAN - MOUTH OF SANTA ANA RIVER

13-01 The recommended plan for the coastal features consists of (1) Santa Ana River jetties to form the ocean entrance of the flood control channel and (2) a training dike to provide an ocean inlet for tidal exchange between the ocean and 92-acre salt marsh. The recommended plan is shown in figure 8.


13-02 The Santa Ana River jetties will begin at approximately the same location as the existing jetties (MSL). The two jetties will extend upstream along the river about 500 feet. The Santa Ana River jetties will increase the existing river width from 317 to 450 feet. The existing Talbert Channel will be relocated by local interests on the upcoast end of the Least Tern colony nest.

13-03 The 850-foot-long training dike will be constructed in the river, paralleling the Santa Ana River west jetty. The dike and the west jetty will form a 90-foot wide trapezoidal ocean inlet to provide for tidal exchange between the Santa Ana River and the 92-acre Saltmarsh, should the river mouth shoal. The trapezoidal ocean inlet will have a sediment cleaning capability to remain open, about 2.5 times greater than the existing Talbert Channel, based on studies by Simon, Li, and Associates (1987).

13-04 Consideration was given to constructing the Santa Ana River jetties about 140 feet south of the recommended alignment to avoid the State Beach. However, the plan was not considered feasible because it would remove 12 residences and would eliminate about 9 acres of marsh land for the 92-acre Saltmarsh restoration project. In addition, the existing Pacific Coast Highway bridge would have to be lengthened 140 feet.

Access Road

13-05 Adequate road access exists for the construction of the Santa Ana River jettles and the training dike via the Santa Ana River.

RECOMMENDED PLAN -- MOUTH OF SANTA ANA RIVER

B-XIII-2

Disposal of Channel Material

13-06 Approximately 4,260,000 cubic yards of material will be excavated from the Santa Ana River during construction of the flood control channel. It is estimated that out of this amount about 2,750,000 cubic yards could be utilized for beach nourishment. During the initial stage of construction, approximately 1,384,000 cubic yards will be removed from the first reach, which extends about two miles up the channel. It is proposed to place 1,000,000 cubic yards of this material within the Newport groin field, filling the cells up to capacity. The remaining 384,000 cubic yards could be used to nourish the beach about 2,000 feet down coast from the mouth of the river.

13-07 Stage two construction will excavate approximately 1,367,000 cubic yards of material from the second reach, which extends up to 5 miles up the river channel. Depending on the time and the wave conditions between these two stages of construction, material placed between the groins and on the beach will be partially depleted due to the coastal processes. Therefore, placement of the material during the first stage of construction can be repeated for the second stage.

Operation and Maintenance

13-08 The existing rubble-mound jetties at the Santa Ana River mouth have sustained little or no damage over the 28-year period they have been in service (1958-1986). Since the new jetties will utilize a larger capstone and will not be exposed to larger waves, very little maintenance is expected. A damage criteria of 0 to 5 percent of the cost of the capstone is used to determine the maintenance cost over the 50 years of the structure life.

XIV. EFFECT OF THE RECOMMENDED PLAN ON THE SHORELINE AND TIDAL INLET

General

14-01 The major improvements contemplated for the Santa Ana River flood control channel from Prado Dam to the Pacific Ocean have the potential for influencing coastal processes at the river mouth from three different aspects.

- a. The enlargement of the flood control channel by the excavation of over 4,000,000 cubic yards of material will affect the outflow of sediment transported to the coastline under floodflow conditions as aggradation within the channel will be influenced following construction, and for that period of time until equilibrium conditions have reestablished.
 - b. The excavated material must be disposed at either:
 - (1) upland disposal sites.
 - (2) in the open ocean,

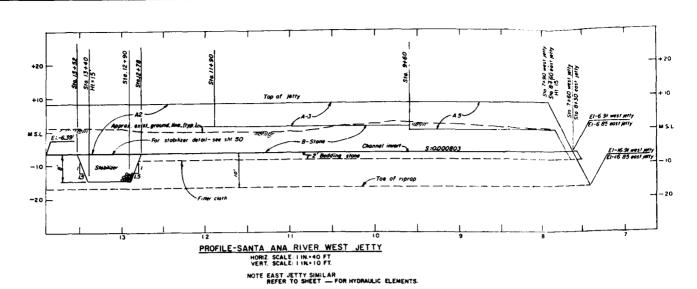
1

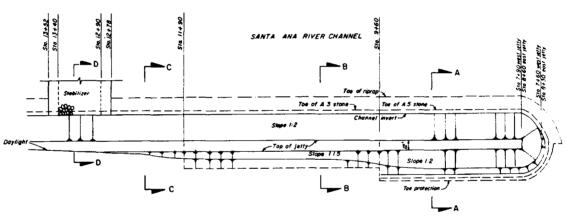
- (3) utilized as beach nourishment if suitable, or
- (4) by combinations of the first three possibilities.

Disposal of large quantities of material in the open ocean or utilization as beach nourishment material by placement on beaches either upcoast or downcoast of the river mouth may affect potential for closure of the river mouth by wave transport of littoral material.

c. The physical location of the oceanward termination of the rubble jetties for stabilization of the location of the improved Santa Ana River will influence the asymptotic orientation of the shoreline upcoast and downcoast of the river mouth.

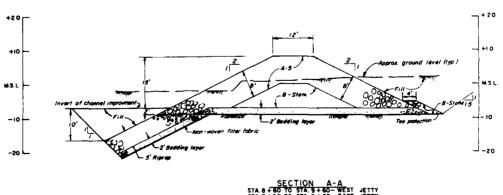
Santa Ana River Sediment Transport

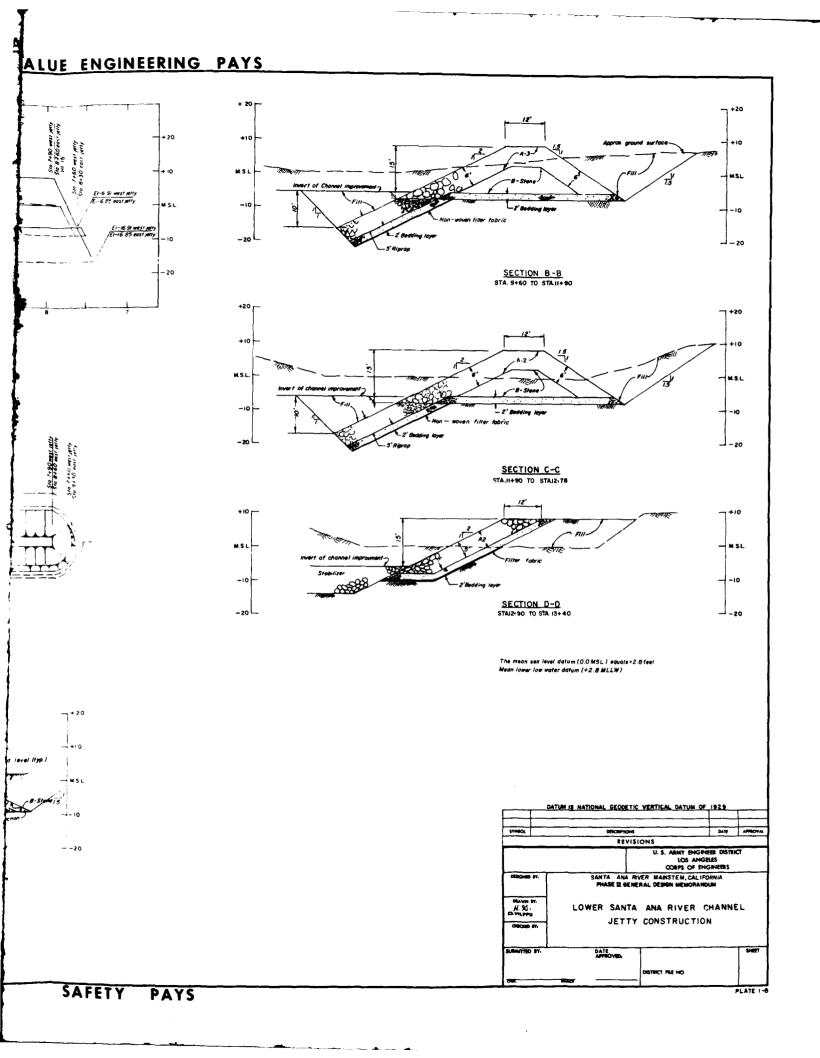

14-02 For the period 1941-1971, an estimate of the coarse sediment discharge by the Santa Ana River was made by Kroll (1975). This estimate was adjusted by the Los Angeles District (1987a) by including sediment outflow to represent the period up to 1978. The estimated average annual sand deposition in the river channel under existing conditions was 60,000 cubic yards per year, and the estimated average annual sand outflow to the ocean under existing conditions during 1941-1978 was determined to be 80,000 cubic yards per year. Under with project conditions, the average annual channel deposition and sand outflow to the Pacific Ocean were estimated to be 31,000 and 36,000 cubic yards per year, respectively. The without project average annual deposition and sand outflow to the coastline were estimated to be 24,000 and 25,000 cubic yards per year, respectively. Hence, the with project condition (from mathematical projections into the future) will increase the quantity of coarse sediment to the coastline by 11,000 cubic yards annually when compared to the without project condition (also computed in the same manner).

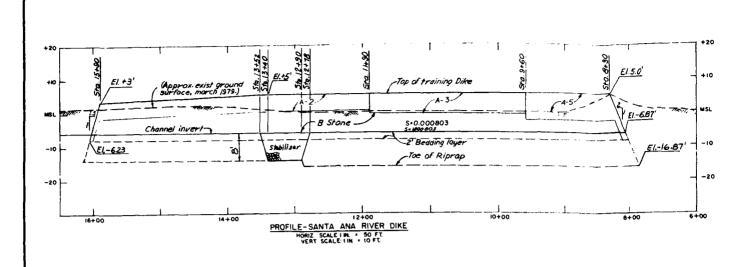

XV. REFERENCES

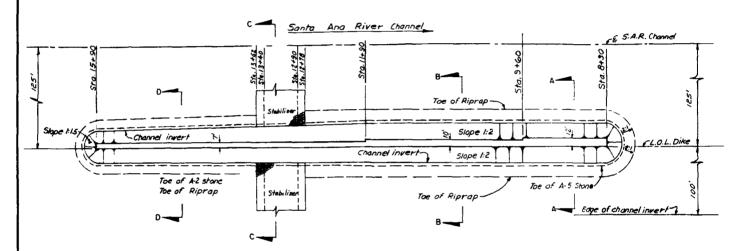
- Emery, K. O. 1960. "The Sea Off Southern California", John Wiley & Sons, Inc., New York, New York.
- Everts, C. H. 1987 (Feb). Draft Report, "Shoreline Changes Between 1852 and 1982 from Portuguese Point, California, to the Mexican Border," Moffatt & Nichol, Engineers, Long Beach, California. Prepared for U.S. Army Engineer District, Los Angeles, Los Angeles, California.
- Felix, D. W. and Gorsline, D. S. 1971. "Newport Submarine Canyon, California: An Example of the Effects of Shifting Loci of Sand Supply Upon Canyon Position," Marine Geology, Vol. 10, pp. 177-198.
- Hales, L. Z. 1980 (Jun). "Littoral Processes Study, Vicinity of Santa Ana River Mouth from Anaheim Bay to Newport Bay, California," Technical Report HL-80-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Inman, D. L. 1976 (Nov). "Man's Impact on the California Coastal Zone," prepared for State of California, Department of Navigation and Ocean Development, Sacramento, California.
- Kroll, C. G. 1975 (Feb). "Estimate of Sediment Discharges, Santa Ana River at Santa Ana and Santa Maria River at Guadalupe, California," Water Resources Investigations 40-74, U.S. Geological Survey, Menlo Park, California.
- Marine Advisers. 1961 (Jan). "A Statistical Survey of Ocean Wave Characteristics in Southern California Waters," La Jolla, California. Prepared for U.S. Army Engineer District, Los Angeles, Los Angeles, California.
- National Marine Consultants. 1960 (Dec). "Wave Statistics for Seven Deep Water Stations Along the California Coast," Santa Barbara, California. Prepared for U.S. Army Engineer District, Los Angeles, Los Angeles, California.

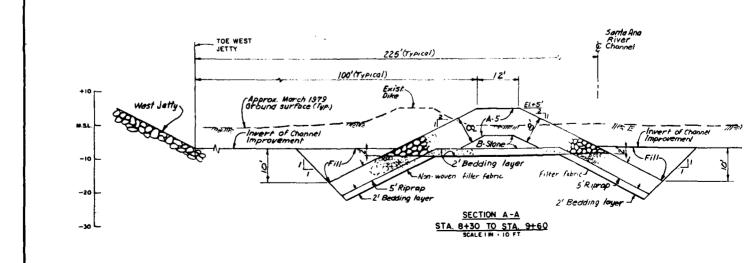
- Shepard, F. P. and Wanless, H. R. 1971. Our Changing Coastline, McGraw-Hill Book Company, Inc., New York, New York.
- "Shore Protection Manual." 1984. 4th ed., 2 Vols, US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, U.S. Government Printing Office, Washington, D.C.
- Simons, Li, and Associates, Inc., 1987 (Feb). "Analysis and Design of a Tidal Exchange System near the Santa Ana River Mouth, Orange County, California," Newport Beach, California. Prepared for U.S. Army Engineer District, Los Angeles, Los Angeles, California.
- Osborne, R., et al. 1983 (June). "Potential Offshore Sand and Gravel Resources of the Inner Continental Shore of Southern California, Appendix E", University of Southern California, Los Angeles, California. Prepared for State of California, Department of Boating and Waterways, Sacramento, California.
- U.S. Army Engineer District, Los Angeles, 1978 (June). "Shore Protection Improvement Design Analysis for Stage 7 Construction, Periodic Beach Nourishment at Surfside-Sunset Beach, Orange County, California," U.S. Army Engineer District, Los Angeles, California.
- U.S. Army Engineer District, Los Angeles. 1987a. Draft Report,
 "Sediment Transport Study for the Lower Santa Ana River," U.S. Army
 Engineer District, Los Angeles, Los Angeles, California.
- U.S. Army Engineer District, Los Angeles. 1987b (May). "Santa Ana River, Offshore Sand Source Study, Geotechnical Report," U.S. Army Engineer District, Los Angeles, Los Angeles, California.
- U.S. Army Engineer District, Los Angeles. 1987c (September).
 "Maintenance Dredging, U.S. Naval Weapons Station, Seal Beach,
 Orange County, California, Geotechnical Report, U.S. Army Engineer
 District, Los Angeles, Los Angeles, California.
- U.S. Army Corps of Engineers, Office of the Chief of Engineers. 1963 (April). "Design of Breakwaters and Jetties," EM 1110-2-2904, U.S. Army Corps of Engineers, Office of the Chief of Engineers, Washington.
- U.S. Army Corps of Engineers, Office of the Corps of Engineers 1985 (April). "Design of Coastal Revetments, Seawalls, and Bulkheads," EM 1110-2-1614, U.S. Army Corps of Engineers, Office of the Chief of Engineers, Washington.
- U.S. Army Corps of Engineers, Office of the Corps of Engineers 1970 (July). "Hydraulic Design of Flood Control Channel," EM 1110-2-1601, U.S. Army Corps of Engineers, Office of the Chief of Engineers, Washington.

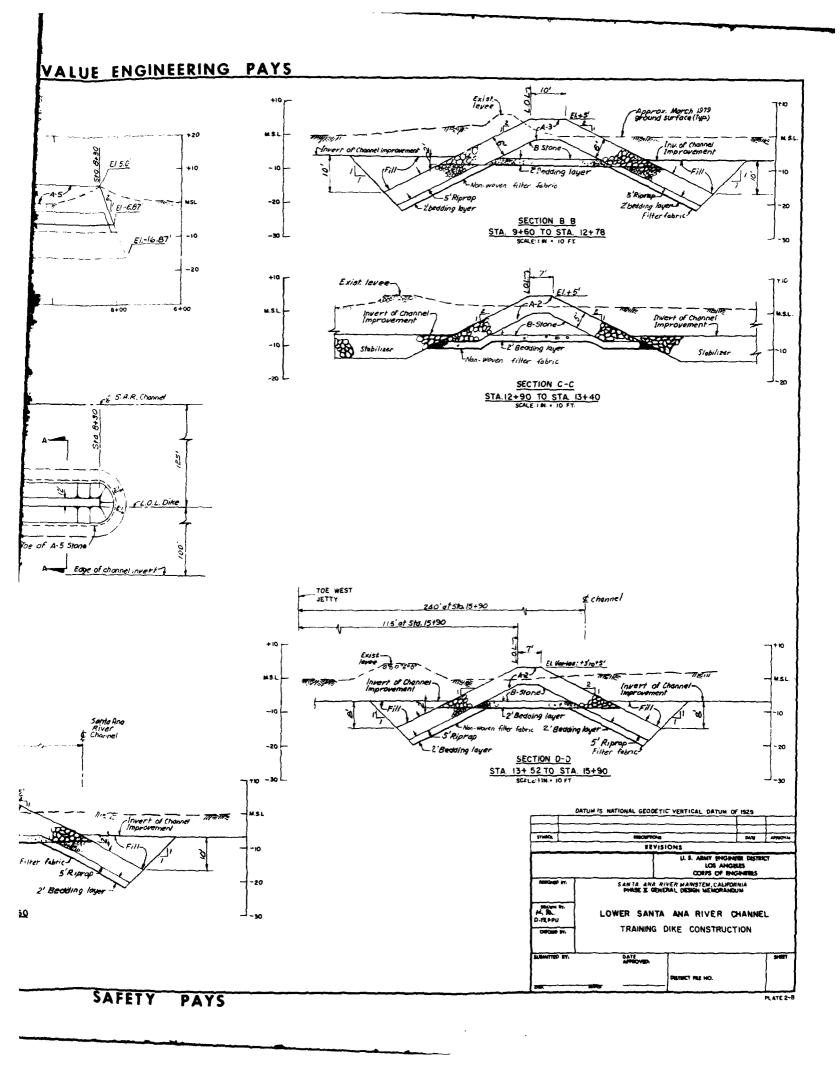

VALUE ENGINEERING




PLAN-SANTA ANA RIVER WEST JETTY


NOTE WEST JETTY SHOWN, EAST JETTY SIMILAR




VALUE ENGINEERING

PLAN-SANTA ANA RIVER DIKE SCALE IIN - 50 FT.

C Sediment Transport Analysis

APPENDIX C

Sediment Transport Analyses Lower Santa Ana River

Appendix C contains three reports. The first report - Main Report-discusses the entire sediment transport analysis using the Phase I GDM channel configuration. The second report is an independent review; which was requested by the Office of the Chief of Engineers. The third report is an addendum to the main report describing the sediment analysis for a trapezoidal channel configuration.

EXECUTIVE SUMMARY

The sediment transport study for the Lower Santa Ana River consists of a complex linking of a large number of basic steps. The executive summary capsulizes how the steps link together and describes the final results.

Main Report

The hydraulic design of the proposed Santa Ana River flood control channel improvement was analyzed to ensure that the channel would function properly under anticipated sediment loads during the design flood and more frequent floods. The study reach extends approximately 31 miles from Prado Dam to the Pacific Ocean and is otherwise referred to as the Lower Santa Ana River (LSAR). The study reach of the LSAR under project conditions was subdivided into four distinct reaches. The four reaches are identified as the canyon reach, drop structure reach, concrete channel reach, and the soft-bottom channel ocean reach. The latter three reaches comprise the proposed channel improvement approximately 24 miles long (referred to in text as the improved channel). Santiago Creek is the only significant tributary and it enters the LSAR approximately 11 miles upstream of the Pacific Ocean. Specifically, the proposed channel was analyzed to: (1) identify reaches of aggradation and degradation; (2) determine channel design requirements to accommodate scour/deposition by the design flood in terms of flow capacity in reaches of aggradation and invert stabilization in reaches of degradation; (3) assess the long term deposition for operations and maintenance requirements of the channel; and (4) assess the long-term sand outflow to the Pacific Ocean. A summary of the sediment analysis follows:

Data collection efforts turned up maintenance records that indicate the average annual sediment deposition in the study reach is 55,000 cubic yards per year. Aerial photos were available for 1982, 1974, and 1938. Bed material analysis indicates about 90 percent sand and 10 percent gravel. Channel surveys were performed after the 1978 and 1980 flood events. Project channel geometry was taken from the Phase I GDM.

Streamflow data was recorded below Prado Dam, at Imperial Highway, at Ball Road and at Fifth Street. Suspended sediment measurements were also made at these gauging sites. The gauge measurements were corrected to account for the unmeasured sediment load.

A qualitative analysis using the Lane relationship indicated that the drop structure reach will experience aggradation; the area just upstream from the Santiago Creek confluence will remain stable; the all concrete reach will flush sediments through maintaining its design invert elevation; the channel ocean reach downstream from the San Diego Freeway will experience deposition.

An equilibrium slope analysis using Yang's equation yields general results similar to the qualitative analysis. It was determined that bed armoring would be unlikely during the design flood due to the relatively small representative grain size. The armor grain size is between 10 and 70 mm. The $d_{Q\bar{S}}$ grain size, however, is 2 mm.

A limiting degradation slope was estimated using four different methods: Schoklitsch bedload equation, Meyer-Peter Muller bedload equation, Shields diagram, and Lane's critical tractive force method. These methods yielded limiting degradation slopes of 0.000029, 0.000029, 0.0000073, and 0.000004, respectively which are milder than the design slopes.

A relationship between sediment discharge and water discharge was developed. The relationship incorporated all sediment sources in the canyon reach upstream from the proposed project inlet at Weir Canyon Road. Stream gauge data was available for sediment loads for discharges up to 14,000 cfs. The computer program HEC-6 was used to estimate sediment loads for higher discharges. Tatum's method was used to estimate sediment yield from the canyon watershed during a design storm. Bank erosion estimates were made by examining aerial photographs. The Pacific Southwest Inter-Agency Committee method and the Flaxman method were also used to estimate sediment yield. A sediment yield rate of 1.64 acre-feet/square-mile/year was determined for the canyon watershed between Prado Dam and the improved channel reach. This yield rate compared well to reservoir deposition data indicating a 1.45 acre-feet/square-mile/year sediment yield rate at nearby Santiago Reservoir. An average annual sediment inflow of up to 132,000 cubic-yards/year was determined to enter the improved channel reach. This value includes sand, silt, and clay sizes.

Sedimentation analysis was carried out using the Corps of Engineers' computer program HEC-6 and a WES modified version known as H6NBS36. The geometric data covered the project inlet at Weir Canyon Road to its outlet at the Pacific Ocean. The program was calibrated using data from the flood of 1978. Yang's unit stream power method was used as a transport function in HEC-6. The calibration was performed by adjusting the Manning's "n" value of each section until agreement was obtained between computed and observed bed changes. The calibrated data set was verified using records from the 1980 flood. The bed changes were reproduced fairly well except for the reach downstream from the Santiago Creek confluence. In this reach, computed degradation was less than the

deg. adation observed during the 1980 flood. The degradation was attributable to finer bed material found only in this reach. The HEC-6 model would not be affected by this fine material since this reach under project conditions calls for a concrete-lined channel.

The data set for the project condition was developed from plans in the Hydraulic Appendix in the Phase I GDM. Grain size analyses were performed throughout the study area and a single representative grain size distribution was used (pl. 3). The project condition was evaluated using balanced hydrographs representing 10-, 25-, 50-, and 100-year frequency flood events as well as the design event. The following roughness values were used for the project condition: n = 0.02 for the downstream channel ocean reach, n = 0.015 for the concrete lined middle reach, n = 0.025 for the drop structure reach. Form drag caused by bed forms was included in the development of "n" values.

The design flood was simulated for the project condition using the HEC-6 computer program. Two different inflowing load curves were used to encompass maximum streambed changes in terms of maximum deposition and scour. The results indicate that deposition of up to 2.2 feet will occur in the upstream subreach of the drop structure reach. Deposition of up to 7.3 feet will occur in the downstream portion of the concrete reach extending into the channel ocean reach. A second simulation using clear water inflow at the improved channel inlet indicated 6 to 8 feet of scour in drop structure reaches. This worst case erosion scenario was used to estimate toe depths of lined banks.

A sensitivity analysis was performed to account for the uncertainties involved in sedimentation analysis. The Manning's "n" value was increased to 0.03 in all reaches. This had only a small effect on computed bed changes. The D_{50} grain size of the bed material was increased from 0.5 mm to 0.75 mm but this also had little effect on the computed results. A sand plug often forms at the Santa Ana River mouth during the summer months. Analysis shows that the sand plug would wash out before the peak of the design flood. An antecedent flow of 5,000 cfs for 30 days resulted in twice as much deposition near the river mouth during the design flood event. A tidal elevation of 2.54 MHHW feet was used for the downstream boundary condition for the design event. Variations in the tidal elevation had little effect on the riverbed near the ocean.

The incremental probability method was used to compute the average annual sand outflow to the ocean and the average annual deposition for the with and without project conditions. The results indicate that 31,000 (with project) and 24,000 (without project) cubic yards of sand per year deposited in the channel reach. The sand outflow to the beach was 36,000 (with project) and 25,000 (without project) cubic yards per year. From gauge records, it was estimated that the sand outflow to the ocean is 80,000 cubic yards per year. It was estimated that the frequency of maintenance in the channel ocean reach would be approximately every 20 years. No maintenance is expected in the concrete and drop structure reaches.

Addendum Report

An additional sedimentation analysis was conducted using the HEC-6 program to determine channel bed profiles for the redesigned channel. The geometric configuration of the channel was changed from a rectangular to a trapezoidal channel in the channel ocean and concrete channel reach. The HEC-6 analysis was performed using similar floods and procedures described in the main report.

The design flood simulation was computed with HEC-6 using two different inflowing loads curves to encompass maximum streambed changes. The results for high sediment inflow indicate general deposition of up to 7.5 feet will occur in the concrete channel reach extending into the channel ocean reach. The second simulation with zero inflowing load at the concrete channel inlet indicates general scour 9 feet below design invert in the channel ocean reach. Results of scour in the drop structure reach were the same as in the main report.

The incremental probability method was applied in the redesigned channel reach to compute average annual deposition and sand outflow. The results indicated deposition in the concrete and channel ocean reach of 37,000 cubic yards per year. The sand outflow was 30,000 cubic yards per year. Based on the upper grade limit in the main report, the estimated frequency of sediment removal maintenance is once every 18 years.

Sediment Transport Study Results

The sediments transport results used for the hydraulic design in terms of the top of and toe of levees were derived from the trapezoidal channel analysis (Addendum Report) for the channel ocean and concrete channel reaches and from the main report analysis for the drop structure reach. The combined results of both studies for project condition are summarized as follows:

- 1. Plates 2A and 3A shown in the addendum report display the design streambed profile with and without sedimentation, respectively. The water surface profile to determine top of levee was computed by applying the design sedimentation slopes in reaches of aggradation and the design slope in the other reaches.
 - 2. The design of levee toe depth for general scour is:

Minimum Toe Depth Below	Reach	
Design Invert (ft)	Phase II Stationing	
8	1204+20 - 1156+60	
5	1156+60 - 535+00	
10	150+50 - Ocean Outlet	

3. Plate 14 of main report titled "Upper Sediment Level Sta. 8+50 to 223+35", displays the allowable sediment deposition. Long term average annual deposition is estimated at 37,000 cubic yards per year.

Frequency of sediment removal is once every 18 years. No sediment removal maintenance is anticipated in the upper portion of the concrete channel and in the drop structure reach.

4. Project sand outflow over project life is estimated at 30,000 cubic yards per year.

CONTENTS

	Page
EXECUTIVE SUMMARY	iii
MAIN REPORT	iii
ADDENDUM REPORT	٧i
SEDIMENT TRANSPORT STUDY RESULTS	v i
1. INTRODUCTION	1 1 2 2 3
2. DATA COLLECTION. General. Aerial Photography. Geometric Data. Existing Condition. Hydrologic Data. Historical Flow Data. Design Flood and Frequency Flood Data. Sediment Deposition and Removal. Bed Material Gradation. Sediment Data.	5 5 5 5 6 6 7 7 8
3. PRELIMINARY ANALYSIS	9 9 9 11 11 12 13

Contents (Continued)

		Page
4.	SEDIMENT INFLOW	21
	General	21
	Design Flood	21
	General	21
	Stream Gauge Water Sediment Discharge Rating Curves	22
	HEC-6 Canyon Analysis	23
	Tatum's Method	23
	Santa Ana River Canyon Bank Erosion	24
	Santiago Creek-Design Flood Sediment Transport	26
	Sediment Yield	27
	PSIAC Method	27
	Flaxman Method	28
	Measured Data	28
	Selected Sediment Yield Rate	28
	Other Tributaries	28
5.	SEDIMENT TRANSPORT ANALYSIS IN THE IMPROVED CHANNEL REACH	33
٠.	General Approach	33
	Calibration of the Program Data	33
	Verification	35
	Sediment Transport Function	35 35
	HEC-6 Input Data	36
	Channel Geometry	36
	Bed Material Gradation	37
		31 37
	Hydrologic Data	
	Improved Channel Hydraulic Roughness	37
	Results	38
	General	38
	Design Flood	39
	Sensitivity Analysis	40
	Roughness Coefficient "n"	40
	Bed Material Gradation	40
	Sand Plug	40
	Antecedent Flow	41
	Tidal Influence	41
6.	AVERAGE ANNUAL DEPOSITION AND SAND OUTFLOW TO THE PACIFIC	
	OCEAN	43
	Methodology and Results	43
	Comparison with Average Annual Yield Calculations for the	
	Santa Ana River Canyon	45
	Frequency of Cleanout	46
7	DEPENDENCES	11.77

Contents (Continued)

11

	Tables	Page	
1.	Stream Gauge Data Evaluation of Qualitative Response Lower Santa Ana River	6	
3. 4. 5. 6. 7. 8.	Project Equilibrium Slopes Lower Santa Ana River Project Bed Armor Size Stable Slope Results of Tatum Calculations for Tributary Sediment Inflow Results of Bank Erosion for Design Flood Flaxman's Method for Sediment Yield Sediment Yields for Various Floods	10 12 18 20 25 26 30 45	
	Figures		
1. 2.	Tractive Force vs. Transportable Sediment Size	15 16	
	Plates		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Streambed Profile at Peak of Design Hydrograph Maximum Streambed Deposition Profile	oad	

Attachments

- Attachment 1 Final report "Review of the Draft Sedimentation Report of the Lower Santa Ana River, Phase II General Design Memorandum", Simons, Li & Associates.
- Attachment 2 Addendum report to the sediment transport analysis.

1. INTRODUCTION

Study Objectives

1-01 The hydraulic design of the proposed Santa Ana River flood control channel improvement was analyzed to ensure that the channel would function properly under anticipated sediment loads during the design flood and lesser frequency floods. The study reach extends approximately 31 miles from Prado Dam to the Pacific Ocean, otherwise referred to as the Lower Santa Ana River (LSAR). The study reach of the LSAR under project conditions was subdivided into four distinct reaches. The four reaches are identified as the canyon reach, drop structure reach, concrete channel reach, and the soft-bottom channel ocean reach. The latter three reaches comprise the proposed channel improvement approximately 23 miles long (referred to in text as the improved channel). Santiago Creek is the only significant tributary and it enters the LSAR approximately 11 miles upstream of the Pacific Ocean. Specifically, the proposed channel was analyzed to: (1) identify reaches of aggradation and degradation; (2) determine channel design requirements to accommodate scour/deposition by the design flood in terms of flow capacity in reaches of aggradation and invert stabilization in reaches of degradation; (3) assess the long term deposition for operation and maintenance requirements of the channel; and (4) assess the long-term sand outflow to the Pacific Ocean.

Scope of Work

1-02 The analysis of the sediment transport conditions includes the following major tasks:

- 1. Collect and evaluate available data including such items as historical channel conditions, stream gauge records, bed sampling, and aerial photography.
- 2. Determine the sediment inflow into the improved channel from the Lower Santa Ana River tributaries for the design flood as well as from the long term runoff patterns.

- 3. Analyze the sediment transport scour/deposition in the proposed project for the design flood.
- 4. Determine the average annual sediment deposition in the project reach and sand outflow to the Pacific Ocean.
- 5. Identify and design any required mitigation measures.

Description of Existing River Conditions

1-03 The portion of the river considered as the Lower Santa Ana River extends from the Pacific Ocean upstream about 31 miles to Prado Dam (see pl. 1). The river from the dam to about 8 miles downstream is known as the Santa Ana River Canyon (referred to as the canyon reach) and is fed by several small tributaries from both sides of the river. In the canyon, the river is somewhat natural with reaches of bank stabilization. The low flow channel ranges from 100 to 400 feet wide and up to 7 feet deep and will carry about 5,000 cfs. Larger floodflows will flood across the canyon bottom with flood widths up to 1,000 feet. The average invert slope of the river is 0.003. The bed material consists mainly of medium size sands with small aprons of cobble material forming armor layers. A recent trench excavation for sewer line placement across the river exposed layers of large material beneath the surface. From a generally meandering flow path through the canyon reach, except near Featherly Park where the river is braided, the river enters a relatively straight alignment as an improved channel. The improved channel extends from just upstream of Weir Canyon Road southwesterly through an urbanized reach to the Pacific Ocean for a length of 23 miles. In the improved reach, the channel is soft-bottom with both vertical drop structures and sloping drop stabilizers. The side slopes are stone-revetted in the drop structure reach from Weir Canyon Road to the Garden Grove Freeway. There is a short subreach where the side slopes are grass-lined at the confluence with Santiago Creek. The side slopes are concrete lined downstream of Santiago Creek to the Pacific Ocean. The channel bottom width ranges from 180 to 320 feet with depths up to 18 feet. The invert slope ranges from 0.003 to 0.001 near the ocean. The natural slope along the channel alignment (without drop structures) is about 0.0025 or 13.5 feet/mile.

1-04 The bed material consists mainly of sand sizes. For most of any given year, the river is dry except for very low flows (100 to 150 cfs) that are diverted for ground water recharge in the drop structure reach.

Project Description

1-05 The proposed channel improvement from the Phase I General Design Memorandum begins immediately upstream of Weir Canyon Road and follows the existing alignment to the Pacific Ocean. There are also some minor improvements, consisting of several reaches of bank stabilization and a levee in the Santa Ana River Canyon just downstream of the Southern

Pacific Railroad crossing to protect a trailer park community. A schematic illustration of proposed channel geometry and grade is given on plate 2. In general, the proposed plan calls for: partial levee and bank improvement from Prado Dam to Weir Canyon Road (canyon reach); a soft-bottom trapezoidal channel from Weir Canyon Road to Santiago Creek confluence (drop structure reach); a trapezoidal concrete channel from about Santiago Creek to downstream of San Diego Freeway (concrete channel reach); a rectangular soft bottom channel from about the San Diego Freeway downstream from Adams Street, then transitioning to a trapezoidal soft bottom channel formed by two jetties at the ocean mouth.

Study Results for the Phase I GDM Channel Configuration

1-06 The following summary outlines the sediment transport, results for the original channel configuration shown in the Phase I GDM.

- a. Plate 11 titled "Streambed Profile at Peak of Design Hydrograph" displays the deposition slope in reaches of aggradation.
 - b. The design of levee toe depth for general scour is:

Toe Depth Minimum (feet)	Reach (Phase(II) Stationing)				
8	1204+70 - 1156+60				
5	1156+60 - 535+00				
6	150+50 - Ocean Outlet				

- c. Plate 14 titled "Upper Sediment Level Sta 8+50 to 223+35", (Phase II Stationing) displays the allowable sediment deposition. Average annual deposition is estimated at 31,000 cubic yards per year. Frequency of cleanout is once every 20 years. No maintenance is expected in the upper portion of the concrete channel and drop structure reach.
- d. Sand outflow over project life is estimated at 36,000 cubic yards per year.
- e. Concrete channel is appropriate between station 535+00 to 150+50.
 - f. The number of drop structures and stabilizers are adequate.

2. DATA COLLECTION

General

2-01 An extensive data collection effort was conducted to obtain existing data relevant to the evaluation of sediment transport for the Lower Santa Ana River. A summary of existing data is presented in this section.

Aerial Photography

2-02 Aerial photos of the river from the Pacific Ocean to Prado Dam were taken in 1982, 1974, and as far back as 1938. Behavior of the river was particularly evident from the 1938 photos, which was photographed shortly after the flood of March 2. The aerial photos reveal a meandering tendency in the confined canyon reach changing downstream to a braided or sheetflow condition in the flat flood plain (outside of the levees).

2-03 In addition, the photos reveal reaches of significant bank erosion. These observations would aid in the development of bank erosion estimates in the canyon reach.

Geometric Data

EXISTING CONDITIONS

2-04 The existing Santa Ana River channel has undergone numerous channel improvements as a result of the damaging floods of 1938, and more recently after the floods of 1969, 1978, 1980, and 1983. The data available for the study in the improved reach consists of as-built channel plans and cross-sectional surveys. Survey data was obtained for the years 1977 to 1983. Geometric data for the canyon reach was obtained from topographic maps (scale 1" = 200', 4' contour interval) prepared by E.L. Pearson and Association for the Orange County Flood Control District (currently known as OCEMA). Examination of the data revealed that there was sufficient data to calibrate the HEC-6 model to the 1978 flood event. For verification of the model, the verification

could only be conducted in the improved reach (downstream of Weir Canyon Road) for the 1980 flood event due to the absence of sufficient survey data and some man-made changes in the canyon reach.

2-05 Project conditions cross-sectional data were obtained from the plan and profile sheets of the Phase I General Design Memoramdum (GDM), for the reach from Weir Canyon Road (Improved Channel Inlet) to Pacific Ocean. For the Phase II GDM, detailed discussion of the design features can be found in the Hydraulic Design, Volume 3. Although some of the Phase II channel features differ from those in the Phase I GDM, the differences are insignificant with respect to sediment transport. Thus, the study results are valid for the Phase II Design.

Hydrologic Data

HISTORICAL FLOW DATA

2-06 There are several locations on the Lower Santa Ana River in which historical streamflow data is available since construction of Prado Dam in 1941. These gauges are operated by the United States Geological Survey (USGS). Pertinent gauge data are provided in table 1.

Table 1. Stream Gauge Data.

Location	Period of Record	Peak Discharges (cfs)	Date		
Below Prado Dam	1940 to current 1930's (intermittent)	7,440 100,000*	Feb 21, 1980 Mar 2, 1938		
At Imperial Hwy At Ball Road	1973 to 1978 1976 to Current	4,000 18,500 11,070	Mar 4, 1978 Mar 1, 1983 Feb 16, 1980		
At Fifth St.	1923 to Current	20,100 16,100 17,800 19,100 46,300*	Mar 1, 1983 Mar 4, 1980 Feb 18, 1978 Feb 25, 1969 Mar 3, 1938		

^{*}Based on slope-area measurement of maximum flow.

²⁻⁰⁷ The streamflow data from these gauges were used to develop the hydrographs for the sediment transport model-calibration and verification phase of the study.

DESIGN FLOOD AND FREQUENCY FLOOD DATA

2-08 The development of the design flood hydrograph and balanced hydrographs at Imperial Highway with assigned frequencies of 10-, 25-, 50-, and 100-year along the main stem were generated from hydrologic study material that supports the Phase I GDM. Residual flood hydrographs for tributaries were also generated for the Santa Ana River Canyon and Santiago Creek. Comparison of the main stem design flood hydrograph from the Phase I GDM with the recently generated main stem hydrograph under the revised Upper Santa Ana River Dam alternative indicates differences are insignificant. Therefore, no adjustment was made to the hydrographs. Further discussion of the hydrologic data is presented in the Hydrology appendix, Volume 7 of this report and from reference 15.

Sediment Deposition and Removal

2-09 Previous investigations (ref. 15) cite deposition and removal quantities for the lower portion of Santa Ana River for the period since 1969. Sediment removal records prior to 1969 are not available; however, according to Orange County Environmental Management Agency (OCEMA), sediment deposition between the time the channel was built after 1938 to 1969 was probably insignificant due to the lack of major flows. An estimate of total sediment removal using information from OCEMA, indicates about 2.7 million cubic yards (yd³) removed between 1969 and 1983. Of that amount, about 500,000, 650,000, and 200,000 yd³ were removed after the 1969, 1980, and 1983 flood seasons, respectively. Using the 48-year period from 1938 to 1986 would indicate an average annual removal of about 55,000 yds³.

2-10 Estimates of sediment deposition during the 1969 flood season vary between 500,000 and 1 million yd 3 . During the 1983 flood, about 200,000 yd 3 of sediment were deposited. Both the 1969 and 1983 floods produced a depositional grade line of S = 0.0011 downstream of Slater Avenue bridge. No estimates were available for the 1978 or 1980 flood seasons.

Bed Material Gradation

2-11 Bed material samples were collected and analyzed at numerous locations from Prado Dam to the Pacific Ocean. The location of the samples are noted on plate 1, and the resulting sieve analysis of each sample are on file in the Los Angeles District. Riverbed samples were collected using a shovel and hand augar to a maximum depth of 2 feet below the surface. In the canyon reach, samples were taken from both the bed and bank of the low flow channel and from the bed of primary tributaries just upstream from the main stem. Occasional patches of surface armor layer, consisting of cobble sizes, were encountered on the bed. These materials were not included in the sampling since they are not representative of the underlying bed material nor the general surface conditions. In the improved channel reach from Weir Canyon Road to the Pacific Ocean the bed materials appear to be similar, except for a clay lense outcrop near Slater Avenue.

- 2-12 The results of the sieve analysis indicate that the bed, bank, and tributary materials in the canyon reach consist of less than 5 percent fines, 60 to 90 percent sands, and up to 40 percent gravels or larger. The bed materials for the improved channel reach indicate no fines, except for the clay outcrop near Slater Avenue where about 30 percent of the materials are fines. Bed materials typically consist of 90 to 100 percent sands, with up to 10 percent gravels.
- 2-13 The bed material gradation for Santiago Creek was obtained from a previous study (ref. 15). The bed material gradations for Santiago Creek were defined by distinct layering beneath the surface. A composite average of bed materials in Santiago Creek indicate about 25 percent fines, about 40 percent sands, and 35 percent gravels.
- 2-14 The grain size distribution for the canyon reach as represented in the HEC-6 model for various points along the canyon reach, was based on the nearest sample rather than the averaging of all of the samples. The model analysis was established in this manner to account for the large materials entering into the main stem from the tributaries.
- 2-15 In the improved channel reach, a representative grain size distribution was developed by overlaying the gradation curves and graphically compiling a single representative gradation curve (see pl. 3). The method was used to achieve a stable solution in the HEC-6 model and to avoid anomalies in sampling. The clay lense at Slater Avenue was not modeled because the improved channel would cover this reach with concrete. Clay material would therefore not enter into sediment transport calculations.

Sediment Data

2-16 The sediment data required for development of sediment transport relationships is available from the same gauging stations used to establish hydrologic data (see table 1). The period of record for sediment data is not as extensive as that for the water data, but data is available from recent floods of 1978 and 1980. Sediment data from the gauging stations was obtained from USGS published records (ref. 5) and from USGS in-house unpublished data. The data consisted of suspended-sediment measurements (measured load) along with the corresponding water discharge, water temperature, and particle size distribution. Additionally, the unmeasured load for a few events was estimated by the USGS using the Modified Einstein procedure to obtain the total instantaneous load. The sediment data were collected for water discharges ranging up to 7,000 cfs below Prado, 2,000 cfs at Imperial Hwy, 14,000 cfs at Ball Road, and 6,000 cfs at the Fifth Street gauge. The data from gauges below Prado Dam and at Ball Road was judged adequate to develop rating curves of water discharges versus sediment discharge. The data at Imperial Highway and Fifth Street was inadequate because of bed scouring at Fifth Street gauge during measurements invalidating the data and because the low water discharges at Imperial were useless for establishing the high flow portion of the rating curve.

3. PRELIMINARY ANALYSIS

General

3-01 The preliminary analysis was subdivided into two separate analyses: (1) a qualitative aggradation-degradation assessement of the river to assess the response to conditions imposed by the improved channel and (2) a quantitative analysis to determine equilibrium and limiting bed slopes. The preliminary analysis evaluates riverbed changes in the proposed river system. The results of the preliminary analysis are used subsequently to verify trends in the HEC-6 detailed sediment routing analysis.

Qualitative Aggradation Degradation Analysis

3-02 Trends of aggradation and degradation were qualitatively identified in the improved channel reach by applying Lane's relationship of dynamic equilibrium. The Lane relationship (ref. 1) can be written

 $q_s D_{50} \propto q S$

where:

q_s = The sediment discharge per unit width of the channel

 $D_{50} = Median sediment size$

q = Water discharge per unit width

S = Slope of the channel

3-03 In this relationship, the qualitative response of the riverbed can be evaluated for a given reach by comparing parameters with those for the reach immediately upstream. An increase in either water discharge or slope will result in an increase in the sediment transport capacity, assuming the median sediment size is constant. When sediment transport rate increases, degradation will occur and the bed slope will flatten. Conversely, a decrease in water discharge or slope will result in a decrease of the sediment transport capacity; deposition will occur and the bed slope will steepen. By comparing average values of unit water discharge (varying with channel width) and bed slope in representative

reaches of the improved channel with the representative width and slope of the supply (canyon) reach, the change in bed slope to maintain equilibrium can be qualitatively assessed. The supply reach (canyon) above the upper end of the improved channel is assumed in equilibrium. The improved channel reach was subdivided into five subreaches with the results shown in table 2. The overall response of the project indicates that the upper drop structure reach (subreaches 2 and 3) will be in an aggrading mode; reach 4, just upstream of the concrete reach, will be in a fairly stable mode; the concrete reach (reach 5) will be in a degrading mode, and the downstream reach (reach 6) will be in an aggrading mode.

Table 2. Evaluation of Qualitative Response Lower Santa Ana River Project Channel.

STATION SUBREACH From To (Location) (phase I)				CHANNEL (CONFIGURATION) Average Channel Bottom Side Invert Width Slope Slope (ft) H:V			Due To Due Pro- To file Width Overal:			
DAM 1		Natural nyon reac	eh)	0.003	200 500		<i>!</i>	N/D	N/D	N/D
2	1196+ (Drop		3+60 re Reach)	0.0016- 0.0017	290 290		2:1	++	0 -	+ +
3	1023+ (Drop		3+90 re Reach)	0.0017- 0.0022	320		2:1	0	+	+
4	708+ (Drop	,- ,	3+00 re Reach)	0.00166- 0.0025	- 270		2:1	0	0	0
- .	528+0 Concr		2+45 nel Reach]	0.0017- 0.002	240 250		Vert	0	-	-
		5 Pacifi nel Ocear		0.0008	200 480		Vert	+	+	+

*TREND DEFINITIONS:

- + Corresponds to increase in slope, or aggradation.
- Corresponds to decrease in slope, or degradation.
- O Corresponds to no change in slope.
- 1/L = low flows
- H = high flows
- N/D Not determined

3-04 The response of the bed slope to improved channel conditions can also be qualitatively predicted by examining historical bed trends since the two conditions generally conform to each other. Based on channel surveys and field observations of the 1980 flood, long duration flows on the order of 5,000 cfs tend to produce minimal bed changes in the upstream drop structure reach, significant degradation in the soft bottom reach downstream of Santiago Creek, and aggradation near the outlet to the ocean. Under improved channel conditions, the channel reach subject to severe degradation will be lined with concrete. The bed response in the other soft bottom reaches should be similar to that experienced in 1980 existing channel conditions.

Quantitative Analysis

3-05 The quantitative analysis consists of (1) determining the aggradation/degradation response of the channel bed using the concept of equilibrium bed slopes and (2) determining the limit of general degradation (stable slope) for reduced inflowing sediment loads. The following sections discuss the methodology and results of the quantitative analysis.

EQUILIBRIUM BED SLOPES

3-06 The concept of equilibrium bed slopes was applied to further identify trends of aggradation and degradation and to estimate the bed slope that the river would seek under project conditions. The equilibrium slope is that bed slope for which the capacity of the stream to transport sediment is just equal to the sediment supply flowing into a given reach. If the slope of the streambed is greater than the equilibrium slope, the bed will tend to degrade; conversely, if the bed slope is less than the equilibrium slope, the bed will tend to aggrade.

3-07 Equilibrium slopes were estimated for a range of discharges for improved channel conditions. Yang's Unit Stream Power equation was used to compute sediment transport capacity at representative sections in the project. The use of Yang's equation is explained in paragraphs 5-08 through 5-10. For each value of sediment supply and water discharge, the equilibrium slope was calculated using a trial procedure by which the bed slope was varied until the transport capacity was equal to the sediment supply. The inflowing load was based on the sediment discharge rating curve developed at the Ball Road gauge from observed data, translated upstream to the improved channel inlet. Translating the rating curve upstream 3 miles was judged acceptable since the bed change was stable during the period of measurement.

3-08 The results of the analysis, summarized in table 3, generally agrees with the qualitative analysis. The results indicate that the equilibrium slopes are sensitive to the water discharge and corresponding sediment inflow. This can be seen from the opposing trends of degradation and aggradation for the low and high flow conditions in reaches 2 and 5.

Table 3. Equilibrium Slopes Santa Ana River Project Channel.

	STA	rion	Q		DESIGN INVERT	EQUILIBRIUM		
REACH	From	To	(x1000	cfs)	SLOPE	SLOPE	TREND*	
1		eam of 6+70	-			-	-	
2	1196+70	1023+60			0.0017	0.0014	_	
			15		0.0017	0.0018	0	
			30		0.0017	0.0021	+	
					0.0017			
3	1023+60	708+90	5		0.0022	0.0030	+	
			15		0.0022	0.0039	+	
			30		0.0022	0.0049	+	
4	708+90	528+00	5		0.0025	0.0022	0	
			15		0.0025	0.0026	+	
			30		0.0025	0.0030	+	
5	528+00	192+45	5		0.0020	0.0016	-	
			15		0.0020	0.0020	0	
			30		0.0020	0.0023	+	
6	192+45	Pacific	5		0.0008	0.0029	+	
		Ocean	15		0.0008	0.0035	+	
			30		0.0008	0.0042	+	

*TREND: + aggradation, - degradation, 0 no change

LIMITING DEGRADATION SLOPES

3-09 A bracketing approach to establish the lower limit of bed slope due to degradation was investigated for the case of reduced sediment supply from the canyon reach into the improved channel reach. The reduced supply reflects the possible condition that the canyon will be depleted of sediment during large flood events of long duration. As a result, the bed response expected in the improved channel reach would be general degradation. The depth of general degradation upstream of invert control locations such as drop structures and stabilizers can be quantified through the bed armor and stable slope concepts. Analysis revealed that degradation was not controlled by armoring, but rather by stable slope conditions. The following sections present the methodologies and results for both concepts.

Bed Armoring

3-10 The type of sediment forming the bed may limit the vertical degradation by development of an armor layer. The armor process is generally defined as the condition whereby there is sufficient quantities of coarse materials which cannot be transported by normal river discharges. As the degradation progresses, coarse size materials segregate from fine materials during transport. The armor layer develops as the fine materials are sorted and moved downstream while the coarse materials settle down into the bedsurface and accumulate. Eventually, enough coarse materials accumulate to form an armor layer over the entire bed surface. The underlying materials are trapped and vertical degradation is arrested. The bed slopes are computed by applying the depth of degradation upstream of invert control locations.

3-11 The methods used to determine the armor size, as summarized by the Bureau of Reclamation (ref. 16) and repeated herein, are:

- 1. Meyer-Peter, Muller (bedload transport equation)
- 2. Competent bottom velocity
- 3. Lane's tractive force theory
- 4. Shields diagram
- 5. Yang incipient motion

It should be noted that several of the equations apply correction factors to account for mixing of units.

Meyer-Peter, Muller (Bedload Transport Equation)

3-12 Bedload transport equations provide a method to compute a nontransportable particle size representing coarse bed material capable of forming an armoring layer. To describe a nontransportable size, the Meyer-Peter, Muller bedload equation for beginning transport of individual particle sizes was applied.

$$D_{c} = \frac{dS}{K \frac{n_{s}}{D_{90}^{1/6}}}$$
 3/2

where:

D_c = Individual particle size in millimeters

K = 0.19 inch-pound units

d = Mean water depth at dominant discharge, ft

S = Slope of energy gradient, ft/ft n_s = Manning's "n" for bed of stream

D₉₀ = Particle size in millimeter at which 90 percent of bed material by weight is finer.

Competent Bottom Velocity

3-13 The competent bottom velocity method for determining armoring size is computed from a relationship between mean channel velocity with armoring size by the equation:

$$D_{c} = 1.88 \, v_{m}^{2}$$

where:

 D_c = Armor size, mm V_m = Mean channel velocity, ft/s

Lane's Tractive Force

3-14 The tractive force method relates the critical tractive force versus the mean particle size diameter in millimeters, which is reproduced in figure 1. This method entails computing the critical tractive force using the channel hydraulics for dominant discharge. By selecting an appropriate curve from figure 1, usually the recommended set of "curves for canals with clear water in coarse noncohesive material," a critical tractive force can be obtained which gives the lower size limit of the nontransportable material $D_{\rm c}$.

where:

T_c = Critical tractive force, lb/ft²

Sw = Specific weight) (mass) of water, 62.4 lb/ft³

d = Mean water depth, ft

S = Slope, ft/ft

Shields Diagram

3-15 Many investigators use the Shields diagram figure 2, to define the initiation of motion for various particle sizes. In the process of armoring of a streambed for predominantly gravel size material greater than 1.0 mm and high Reynold's number R* greater than 500, the Shields parameter given below provides a method for determining an armor size.

$$T_{\pi} = \frac{T_{c}}{(\gamma_{s} - \gamma_{w})D_{c}} = 0.06$$

where:

 T_* = Dimensionless shear stress T_c = Critical shear stress = $_{\rm w}$ dS, lb/ft² /s = Specific weight (mass) of the particle, 165 lb/ft³ /6 = Specific weight (mass) of water, 62.4 lbs/ft³ D_c = Diameter of particle, ft

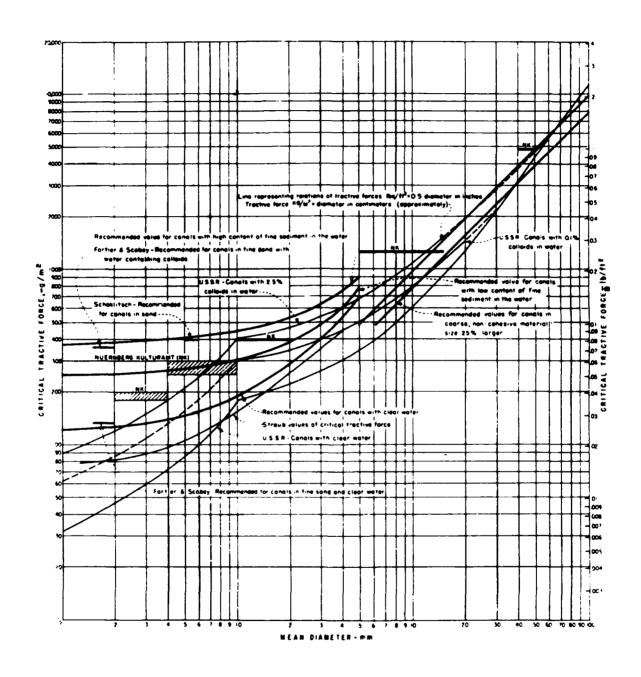
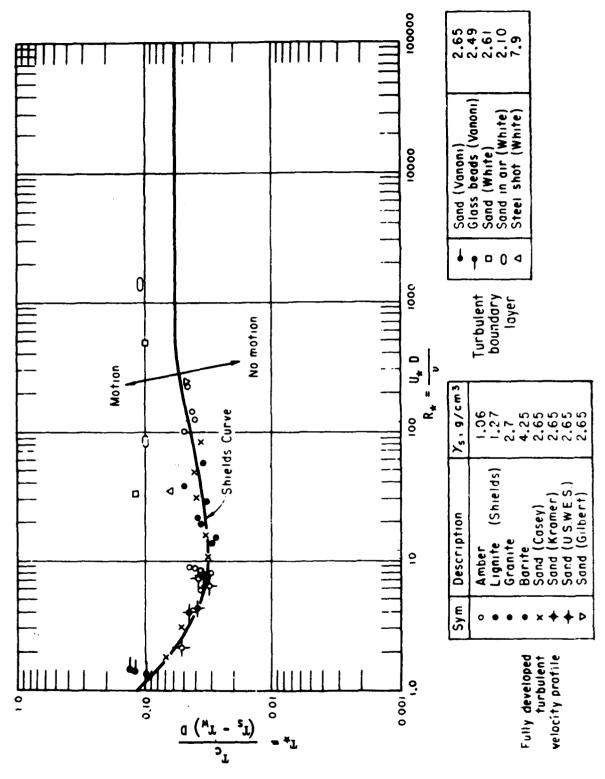



Figure 1. Tractive Force vs. Tranportable Sediment Size (reprinted from ref. 16).

1

Shields diagram for initiation of bed material movement (reprinted from ref. 16). Figure 2.

Inch-pound units

w = 62.4 lb/ft³
s = 165 lb/ft³
d = Depth, ft
S = Slope, ft/ft
D_c = Size, ft

Yang Incipient Motion

3-16 Yang relates the dimensionless critical velocity, $V_{\rm cr}/w$, and shear velocity Reynold's number, $R_{\rm H}$, at incipient motion. Under rough regime conditions where $R_{\rm H}$ is greater than 70, the equation for incipient motion is:

$$\frac{v_{cr}}{w} = 2.05$$

The settling velocity for material larger than 2 mm in diameter will approximate the fall velocity by:

$$w = 6.01 D_c^{1/2}$$

These equations can be combined to give:

$$D_{c} = 0.00659 \, V_{cr}^{2}$$

where:

 $V_{\rm cr}$ = Critical average water velocity at incipient motion, ft/s w = Terminal fall velocity, ft/s $D_{\rm c}$ = Size, ft

3-17 The above equations were applied using hydraulic computations for design discharges in the drop structure reach. Table 4 summarizes the results of the computations. The results indicate that degradation would not be limited by armoring because the minimum armor particle size (10 mm) is not available in sufficient quantities in the bed material, since the d_{95} of the bed material is 2 mm. The method of stable slope was then applied to determine the limiting degradation slope.

Table 4. Bed Armor Size.

Method	Particle Size (mm)		
Meyer-Peter Muller	10		
Competent bottom velocity	65		
Lane's tractive force theory	23		
Shield's diagram	20		
Yang incipient motion	70		
	Meyer-Peter Muller Competent bottom velocity Lane's tractive force theory Shield's diagram		

Stable Slope

3-18 In cases where the general degradation is not limited by the armoring process, the concept of stable slope can be applied. The stable slope method for computing degradation is based on degradation processes occurring until a slope is reached which results in negligible bedload transport. The stable slope is determined by applying several relationship for bed movement (ref. 16).

- Schoklitsch bedload equation.
- 2. Meyer-Peter, Muller bedload equation.
- 3. Shields diagram for no motion.
- 4. Lane's relationship for critical tractive force.

The methods are described as follows:

Schoklitsch Method

3-19 The Schoklitsch equation for zero bedload transport is expressed as follows:

$$S_L = K \left(\frac{DB}{Q}\right)^{3/4}$$

where:

 S_1 = Stable slope, ft/ft K = 0.00174 inch-pound units

D = Mean particle size, mm

B = Channel width, ft

 $Q = Dominant discharge, ft^3/s$

Meyer-Peter, Muller Method

3-20 Limiting slope computations by the Meyer-Peter, Muller beginning transport equation are:

$$S_{L} = \frac{\left(\kappa \frac{Q}{Q_{B}}\right) \left(\frac{n_{s}}{D_{90} 1/6}\right)^{3/2} D}{1/6}$$

where:

 $S_L = Stable slope, ft/ft$ K = 0.19 inch-pound units

= 0.19 inch-pound units = Ratio of total flow in ft³/s to flow over bed of stream (ft³/s). Usually defined at dominant discharge where $\frac{Q}{Q_R} = 1$ for wide channels

 D_{QQ} = Particle size at which 90 percent of bed material by weight is finer

n_s = Manning's "n" for bed of stream
D = Mean particle size

d = Mean depth, ft

Shields Diagram Method

3-21 The use of Shields diagram for computing a stable slope involves the relationship of the boundary Reynold's number R# varying with the dimensionless shear stress T_{*} shown in figure 5 as follows:

$$R_{\#} = \frac{U_{\#} D}{T_{T}}$$

where:

R_# = Boundary Reynold's number

 $U_{\#}$ = Shear velocity $S_L R_g$, ft/s

S_L = Slope, ft/ft
R = Hydraulic radius or mean depth for wide channels

g = Acceleration due to gravity, 32.2 ft/s

D = Particle diameter, ft

 \mathbf{v} = Kinematic viscosity of water varying with temperature, ft²/s

and

$$T_{*} = \frac{Tc}{(\delta s - \delta w) D}$$
 (16)

where:

 T_{\pm} = Dimensionless shear stress

 $c = Critical shear stress lb/ft² equal to <math>_{w}dS_{L}$

is = Specific weight (mass) of particles, 165.4 lb/ft3

 (2.65 t/m^3)

 $\delta w = \text{Specific weight (mass)}, 62.4 \text{ lb/ft}^3$

d = Mean depth, ft

S_L = Slope, ft/ft
D = Particle diameter, ft

Lane's Tractive Force Method

3-22 Critical tractive force is defined as the drag or shear acting on the wetted area of the channel bed and is expressed as:

$$Tc = \Upsilon_{w} dS_{L}$$
 (17)

rewriting in terms of St

$$S_{T} = \Upsilon c / \delta w^{d}$$
 (18)

where:

 τ_c = Critical tractive force, lb/ft² (may be read from the curve in figure 1. Enter the abscissa scale with the D_{50} or Dm in millimeters and read the critical tractive force value from the curves for canals with glear water).

%w = Specific weight (mass) of water, lb/ft3

d = Mean water depth for dominant discharge, ft

3-25 Generally, the method of stable slope would be applied to the dominant discharge. However, to determine the maximum potential for degradation, the method was applied using hydraulic computations for the design discharge. Table 5 summarizes the results of the computations.

Table 5. Stable Slope.

	Method	Slope
(1)	Schoklitsch	0.000029
(2)	Meyer-Peter, Muller	0.000029
(3)	Shield	0.0000073
(4)	Lane	0.000004

3-26 By applying the mildest of these slopes to reaches upstream of invert control points, it was found that general degradation would be no greater than 5 feet below the design invert.

4. SEDIMENT INFLOW

General

4-01 Sediment inflow into the improved channel reach was estimated for the design flood and on an average annual basis. The objective was to determine the bed response and annual maintenance in the improved channel reach. The sources of sediment are from the Santa Ana River Canyon and from Santiago Creek. Other tributaries in the main project reach drain urbanized area and therefore contribute clearwater flow as a result. Design flood and long-term sediment inflow from the canyon reach was estimated with methodologies described in subsequent sections.

4-02 Santiago Creek sediment inflow was developed using the Yang Unit Stream Power sediment transport equation. The total sediment inflow into the improved channel reach consisted of the supply from the canyon reach at Weir Canyon Road and the supply from Santiago Creek at the confluence with the Santa Ana River. The two sediment inflow points were applied in the HEC-6 detailed routing analysis for the design flood to determine the bed response in the improved channel reach. For the long term sediment inflow, only the canyon was considered as the sediment contributor in the HEC-6 analysis since low flows under long term conditions in Santiago Creek will not contribute a significant quantity of sediment.

Design Flood

GENERAL.

4-03 The quantification of the sediment supply for the design flood involves considering the sources of sediment from the Santa Ana River canyon and Santiago Creek. In the canyon reach, the analysis addresses sediment contributions from the riverbed, the banks, the tributaries entering into the canyon, and the outflow from Prado Dam. To account for the net effect of these sources, a rating curve of water discharge versus sediment discharge was developed at the downstream end of the

canyon using two methods. First, a sediment discharge rating curve was established based on actual sediment load measurements from stream gauges located at Ball Road and downstream of Prado Dam. Second, the Corps of Engineers' HEC-6 sediment computer program was utilized to route sediment in the canyon reach during the design flood including sediment contributions from both tributaries and bank erosion. A comparison of the two sediment discharge rating curves revealed that the curves were fairly close. As a result, the rating curve developed from the HEC-6 canyon analysis was selected for the design flood analysis into the improved channel reach. The HEC-6 rating curve was considered to be the maximum sediment load available into the improved channel reach during the design flood event. The analysis and results of both methods are presented in the subsequent paragraphs.

STREAM GAUGE WATER SEDIMENT DISCHARGE RATING CURVES

4-04 As discussed previously in paragraph 2-07, there is sufficient data to establish water-sediment rating curves for the stream gauges located below Prado Dam and at Ball Road. To account for the total sand discharge, the suspended load measurements were adjusted to exclude the wash load (i.e., material finer than 0.062 mm) and to include the unmeasured load (bed load). The unmeasured load was estimated by the Modified Einstein Procedure or the Colby Method (ref. 4). The Colby Method was used where the USGS did not estimate the unmeasured load with the Modified Einstein Procedure. The water sediment discharge ratings were developed in the following form:

$$Q_s = aQ_w^b$$

where $\mathbf{Q_S}$ is the sediment transport load in tons per day, $\mathbf{Q_W}$ water discharge in cfs, and a and b are the best-fit coefficient and exponent from regression analysis of water sediment discharge data.

The resulting relationships are:

$$Q_{s} = 0.003 Q_{w}^{1.42}$$
 below Prado Dam
 $Q_{s} = 0.181 Q_{w}^{1.564}$ at Ball Road

4-05 These relationships were based on flow measurements up to 7,000 cfs below Prado Dam and 14,000 cfs at Ball Road. To account for the sediment discharge at the design discharge, straight-lined extrapolation of these relationships on a log-log scale was considered to be reasonable and was used to give insight on the potential for sediment inflow. The translation of the Ball Road rating curve to the project inlet was judged applicable since the channel between these locations has remained fairly stable during the period of record. It should be noted that data from the Fifth Street gauge was unreliable due to the invalidation of the rating curve as a result of scouring of the bed during the 1980 flood event.

HEC-6 CANYON ANALYSIS

4-06 Sediment transport in the Santa Ana River Canyon was simulated using the HEC-6 sediment program for the design flood event. The HEC-6 analysis included the additional sources of sediment from tributaries and from bank erosion. Tatum's method was applied to estimate tributary sediment inflow and aerial photos along with topographic maps were used to identify areas of potential bank erosion. The HEC-6 method was of significant value since it provided a reasonable estimate of the maximum potential for sediment inflow from the canyon reach for flows in excess of actual measured flows, that is, for flows from 14,000 cfs to the design peas of 38,000 cfs. The resulting outflow of sediment from the canyon reach represents the net effect from all possible sources of materials. The results of the HEC-6 analysis were translated into water-sediment discharge rating curves (see pl. 6) to be used for input data in the HEC-6 analysis for the proposed downstream project (improved channel reach). The rating curves represents the relationship between water and the bed-material load. It was assumed that the wash load, as defined previously, would be transported throughout the improved channel without deposition. The rating curves presented on plate 6 are the sediment load discharges during the rising side and the recession side of the design flood hydrograph. The difference in the rating curves reflects the depletion of available sediment into the project. The analysis and the results of the application of Tatum's method and the bank erosion are presented in the subsequent paragraphs.

Tatum's Method

4-07 Tatum's method (ref. 23), was applied to the Santa Ana River Canyon watershed to estimate the sediment volume that could occur during design flood event. The use of Tatum's method was deemed applicable because it would be applied to tributary watersheds similar to watersheds in Los Angeles County from which the data was drawn. The factors that influence debris production are:

- 1. Drainage area
- 2. Average slope of the longest water course from the uppermost representative elevation to the downstream concentration point.
- 3. Drainage density or ratio of total stream length.
- 4. Hypsometric index or relative elevation at which the drainage area is divided into two equal parts.
- 5. Three-hour rainfall.
- 6. Burn effect.

4-08 This method involves estimation of the total debris production for a one square mile area and adjustment of that value to account for the above six factors. Factors relating to the topography of the study watershed were obtained from USGS Quadrangle maps. Plate 4 defines the tributary boundaries. The 3-hour rainfall values were used for the 3-hour SPF local thunderstorm, which represents a worse case scenario for sediment inflow into the main stem. Table 6 lists the tributaries and the results of the Tatum calculations. The debris productions rates shown represent ground conditions 4 to 5 years after 100 percent burn.

The rates were judged reasonable for use as tributary sediment inflow during the design flood. The tributary sediment was input into the program during the rising side of the design hydrograph and consisted of sand sizes.

Santa Ana River Canyon Bank Erosion

4-09 A one-dimensional program such as HEC-6 for sediment transport modeling is limited to estimating the vertical aggradation/degradation trends in a river. The lateral component of bank erosion cannot be calculated in most sediment transport programs due to problems associated with the prediction of bank erosion. Thus, in order to account for the sediment contribution from bank erosion from the low flow bank line to the edge of bank stabilization or canyon sides, an estimate of the gross volume of eroded sediment was made. This data was then input into the program as a constant rate of sediment inflow consisting of sand sizes for the entire period of the design flood hydrograph.

Table 6. Results of Tatum Calculations for Tributary Sediment Inflow.

Tributa	ary	Drainage Area (mi ²)	Debris Production (yd ³) x 1000	
A. Blue	Mud	4.44	219	
В. *		0.60	46	
C. Box C	Cyn	0.65	65	
D. Bee C	Cyn	1.32	89	
E. *		0.56	55	
F. Brush	Cyn	1.52	82	
G. Aliso	Aliso	10.47	291	
н. *		0.73	56	
I. Walnu	ıt	2.36	95	
J. #		0.52	46	
K. #		1.12	60	
L. Weir		2.00	35	
M. Gypsu	ım	5.17	204	
N. Coal		2.03	265	
0. *		0.65	122	
P. Fresn	10	.170	189	
Q. Wardl	ow Wash	5.71	83	
Total		41.55	2,002,000 yd ³	

^{*}Unnamed Tributaries.

4-10 Basically, banks that are unprotected by revetment and located on curves, that is, banks subject to impinging flood flows, were identified as potential areas for erosion. The limits of bank erosion were estimated primarily by engineering judgement using 1938 aerial photos, observations of erosion caused by recent floods, HEC-2 overflow analysis, and (1982) topographical maps, see plate 5. The volume of sediment was computed as the plan view area of erosion multiplied by the height of the bank. Table 7 presents the results of the analysis. This estimate applies only to the design flood event.

Table 7. Results of Bank Erosion for Design Flood.

Location on Plate 5	Plan View Area Eroded (ft ² x 1000)	Height of bank (ft)	Volume of Eroded Bank (yd ³ x 1000)
E1	245	10	90
E2	1,110	11	448
E3	245	13	118
E4	1,820	8	540
E 5	555	9	185
E6	190	8	56
E7	1,213	11	494
E8	220	13	106

Total = $2,037,000 \text{ yd}^3$

SANTIAGO CREEK-DESIGN FLOOD SEDIMENT TRANSPORT

4-11 Santiago Creek is the only other possible source of sediment to the main stem of the lower Santa Ana River. The total drainage area is 102 square miles. The available bed material load to the Santa Ana River, however, would be severely reduced by the construction of the Santiago Creek Project and the existing gravel pits and reservoirs located on the creek. The drainage area is comprised of: Santiago Reservoir (Drainage Area (D.A.) = 63 square miles), located 13 miles upstream from the confluence; Villa Park Dam (Incremental D.A. below Santiago Reservoir = 20 sq. mi.), located 10 miles upstream of the confluence; and gravel pits (Incremental D.A. below Villa Park Dam = 9.1 sq. mi.), located 7 miles upstream of the confluence. The incremental drainage area downstream of the gravel pits, consisting of urbanized development, is 8.1 square miles. In general, the Santiago Creek Project would consist of enlarging the existing gravel pits and channel stabilization of the lower 6,000 feet of channel immediately upstream from the confluence with the LSAR. The gravel pits would serve as a

regulating reservoir, but would also be a sediment trap for the inflowing bed-material load. The channel improvements downstream of the gravel pits would be designed to prevent erosion. The combined improvements would result in a negligible quantity of sediment load into the LSAR.

4-12 For design flood conditions, a worse case scenario for sediment inflow into the improved channel was developed to include both the Santa Ana River Canyon and Santiago Creek. The analysis objective was to ensure that the project would function under these heavy load conditions. To estimate the sediment inflow from Santiago Creek, a simplified procedure utilizing a sediment discharge rating curve was employed. The rating curve was established using the Yang Unit Stream Power transport function. The necessary hydraulic data was generated from normal depth computations for a representative reach in Santiago Creek. The resulting rating curve was then applied to the coincident design flood hydrograph.

Sediment Yield

4-13 Sediment yield was estimated in the Santa Ana River Caryon to verify the average annual sediment outflow to the Pacific Ocean and the deposition within the channel, both of which were computed on an event basis. The analytical methods presented for determining sediment yield were developed from watersheds in the southwestern United States. Estimates of sediment yield (long term supply of sediment) were made by applying the Pacific Southwest Interagency Committee (PSIAC) method, Flaxman's method, and from sediment depositional data from a nearby Santiago reservoir. The sediment yield estimates developed from the PSIAC and Flaxman methods would then be verified with actual sediment yield measurement from Santiago reservoir.

Pacific Southwest Interagency Committee Method

4-14 The Pacific Southwest Interagency Committee (ref. 22) has developed a method of rating sediment yield from a watershed for use as an aid for broad planning purposes only. The method consists of numerically rating nine factors that influence sediment production in the watershed and then summing up the ratings. This final rating corresponds to a range of sediment yields in acre-feet per square mile. The ranges of estimated yield values indicate that precision is not the intended result of the PSIAC method.

4-15 The PSIAC Committee has tested their method against actual sediment-yield values measured in ponds and dams in the southwest. The comparisons were made on watersheds with drainage areas less than about 20 square miles. The PSIAC results either agreed with or were slightly lower than the actual measurements.

4-16 The nine factors that are rated in the PSIAC method are surface geology, soil, climate, runoff, topography, ground cover, land use, upland erosion, and channel erosion/sediment transport. These factors

were rated for the contributing watershed on the basis of data obtained from aerial photography, topographic maps, Soil Conservation Service soil maps, and on site observation. The nine factors were applied to obtain an average annual yield of 1.64 acre-feet per square mile per year.

Flaxman Method

4-17 A relationship for predicting sediment yield in the western United States was developed by Flaxman (refs. 18, 19 and 20). The equation relates sediment yield to climate, topography, hydrology, and two soil characteristics i.e., percent particles coarser than 1 mm and aggradation or dispersion characteristics of clay size particles. Several forms of the equation exist but the form used in this study is from a paper by Flaxman (ref. 20):

$$y^{0.5} = -86.07 - 5.30 (x_1)^{0.5} + 7.33 (x_2)^{0.5} - 1.63 (x_3)^{0.5}$$
$$+ 10.79 (x_4)^{0.5} + 0.92 (x_5)^{0.5}$$

where:

y = Sediment yield in tons per square mile;

- x₁ is the ratio, in percent, of the average annual precipitation in inches to the average annual temperature in degrees F, quantity divided by 1.43;
- x_2 is the average slope of the watershed in percent;
- is the percentage of particles coarser than 1.0 mm in the surface 2 inches of soil, divided by 72;
- x_{ij} is the percent of clay in the surface 2 inches of soil plus 100 if the pH of the soil is greater than seven, 100 minus the percent of clay if the pH of the soil is equal to or less than seven; and
- x₅ is the 2-year flood discharge in cubic feet per second per square mile (csm).

4-18 A special note should be made here that the units for Y do not work out if a rigid unit analysis is made considering variable units only. As discussed in the 1982 San Diego Sediment Seminar, the coefficients include conversion factors that adjust the input data such that Y is in terms of tons per square mile. The theory used in employing the above variables is as follows:

 χ_1 : The precipitation to temperature (P/T) ratio is intended as an indirect expression of the natural response of vegetation to climate. It was assumed that the higher the P/T ratio, the better the vegetative cover, except when the watershed is disturbed. The divisor of 1.43 represents the best cover as indicated by the highest P/T ratio.

- X_2 : Almost all efforts at predicting erosion and sediment yield have used slope as an influencing factor.
- X₃: The purpose of using soil particles coarser than 1 mm was to determine the effect of desert pavement on erosion and yield. The divisor, 72, is the highest percentage of rock fragments in the population.
- χ_{μ} : This factor is intended to be an indicator of the aggregation or dispersion characteristics of the soil, with an alkaline reaction assumed to symbolize dispersion, an acid reaction, aggregation.
- x_5 : The 2-year flood peak discharge, cubic feet per second per square mile is assumed to resemble average annual maximum climatic stress on a watershed.
- 4-19 Pertinent data and results of the analysis are presented in table 8. Average annual yield ranges from 49 to 1,156 ton per square mile per year (0.02 0.59 acre-feet per square mile per year).

Measured Data

4-20 Sediment yield data was available from Santiago Reservoir, which is located in the Santa Ana mountains about 6.5 miles south of the Santa Ana River Canyon. The data indicated a yield rate of about 1.45 acre-ft/mi²/year for a 16.8 year period of record starting December 1931 through September 1948.

Selected Sediment Yield Rate

4-21 Results of sediment yield analysis indicate that the yield rate from the PSIAC method is reasonable for the area based on comparison to sediment data on Santiago Reservoir. The yield rate from the Flaxman method was unreasonably low. Therefore, the PSIAC method was selected for this study. Applying the PSIAC yield rate of 1.64 AF/mi²/year to the contributing drainage area of the canyon of about 42 to 50 mi² would yield 68.8 to 82 AF/year. Converting units to cubic yards would yield 108,000 to 132,000 yds/year. By applying a ratio that 40 percent of the sediment yield is comprised of sand, which was presented by Brownlie et. al. (ref 7), the sand sediment yield range would be 43,200 to 52,800 cubic yards per year. These figures would later be used for comparison with the average annual sand outlfow and the channel deposition computed using the incremental probability method.

Other Tributaries

4-22 Other tributaries in the improved channel reach are the Greenville-Banning and the Carbon Canyon Diversion channels, which enter into the Santa Ana River at river mile 1.3 and 15.9, respectively, upstream from the river mouth.

Table 8. Flaxman's Method For Sediment Yield.

VAR	ABLE		Х1	XŽ	Х3	χ4	Х5		
Sub area	D.A. mi ²	Precip (P) in	P/T ¹ / T=63 ^o F (\$)	Slope	Soil 1mm %	Clay %	2 yr Flood (cfs/sq mi)	•5 Y	Yield Tons (mi ²)
A	4.44	12.0	.19 (13)	6	.26	86	11	15	225
В	0.60	12.2	.19 (13)	7	.26	86	17	17	289
С	0.65	12.0	.19 (13)	9	.26	86	18	20	400
D	1.32	12.0	.19	7	.26	86	12	17	289
E	0.56	12.0	.19	10	.26	86	18	21	441
F	1.52	12.0	.19	5	.26	86	13	14	196
G	10.47	12.0	. 19	2	.26	86	7	7	49
Н	0.73	13.0	.21	7	.26	86	15	17	289
I	2.36	12.0	. 19	4	.29	85	13	11	121
J	0.52	12.0	.19	7	.29	85	19	17	289
ĸ	1.12	12.0	. 19	5	.29	85 .	14	13	169
L	2.00	12.0	.19	6	.29	85	14	15	225
M	5.17	13.0	.21	6	.29	85	11	13	169
N	2.03	13.0	.21	15	.29	85	13	25	625
0	0.65	13.0	.21	25	.29	85	20	34	1156
P	1.70	13.0	.21	16	.29	85	13	26	676
Q	5.71	13.0	.21	7	.29	85	11	16	256

Avg temp = 63°F @ 710' MSL (1974 SAR Survey Report)

Avg precip from Santa Ana River Survey Report 1974, Plate 3, "Mean Seasonal Precipitation".

4-23 The drainage area on Greenville-Banning is 10.4 square miles. Bed-material load to the Santa Ana River is judged insignificant because the tributary drains urbanized area and therefore clearwater flow. In addition, the magnitude of coincident tributary flow of 1,000 cfs is small as compared to the design flow of 46,000 cfs on the main stem.

4-24 The total drainage area for Carbon Canyon Diversion Channel is 34.2 square miles. The drainage area is comprised of: Carbon Canyon Dam (drainage area = 19.3 sq. mi.), located 5.0 miles upstream from the confluence; and the Miller Stilling Basin (incremental drainage area below the dam of 14.9 sq. mi.), located 1.5 miles upstream from the confluence. There is no significant incremental drainage area downstream of the basin. Bed-material load to the Santa Ana River is also judged insignificant because of the dam and basin cutting off sediment to the downstream channel. The coincident tributary flow of 2,000 cfs is small as compared to the design flow of 38,000 cfs on the main stem.

4-25 This sediment study, therefore, does not include any sediment inflow from the aforementioned tributaries for the design flood and for the smaller floods on the Santa Ana River.

5. SEDIMENT TRANSPORT ANALYSIS IN THE IMPROVED CHANNEL REACH

General Approach

5-01 The sediment transport in the improved channel reach was simulated using both the Corps of Engineers' Hydrologic Engineering Center sediment transport computer program HEC-6 and a HEC-6 modified version H6NBS36 developed by Waterways Experiment Station. Sediment transport in the project was simulated for the design flood and for the 10-, 25-, 50-, and 100-year floods under with project conditions. The computer simulation with HEC-6 involved a detailed process summarized as follows:

- Preparation and input of geometric, sediment and hydrologic data for the program.
- 2. Calibration and verification of the various hydraulic and sediment program parameters from known prototype events.
- Execution of the program under project conditions for various floods of interest.
- 4. Analysis of degradation and aggradation trends and recommendations for design water surface profile computations.
- 5. Sensitivity analysis of the various program parameters and of various design conditions.

The improved channel reach analyzed with the HEC-6 program extended from the inlet at Weir Canyon Road downstream to the Pacific Ocean.

Calibration of the Program Data

5-02 The calibration process is the initial step in the development of the HEC-6 model for latter use in bed response prediction under improved channel conditions. Calibration of the HEC-6 model involves adjusting and selecting various hydraulic and sediment parameters in the model in

order to reproduce known historical bed aggradation and degradation trends in the river over a given period of time. The calibrated model will then serve as a basis for trial against a second set of conditions associated with a flood event to test the model for bed change prediction. This second procedure is referred as the verification of the model. Once the model has been calibrated and verified to reconstitute historical events reasonably, then the model can be used to predict bed changes of different flood events with confidence.

5-03 The geometric data set selected for calibrating the model was the flood of 1978. Sufficient cross-sectional survey data were available before and after the 1978 flood to determine the resulting bed changes for the river reach from Prado Dam to the Pacific Ocean with the exception of the reach near the confluence with Santiago Creek. To be consistent with the model geometric adjustment, which uses a uniform bed elevation change across the cross-section, the average 1978 vertical bed change in each cross section was determined graphically from the survey data plots. Plate 7 presents the before and after 1978 flood invert bed profile. Hydrologic data was obtained from the USGS for the stream gauges located on the Lower Santa Ana River, as discussed in paragraph 2-06. The various parameters in the calibration process which were considered are:

- a. the sediment transport function
- b. the bed material gradation
- c. the sediment inflow load
- d. the percent of the moveable bed surface between cross sections
- e. the Manning's "n" values

5-04 Although setting one of the above parameters may influence another parameter, the most important parameter is the sediment transport function, which is discussed later in paragraphs 5-08 to 5-10. The bed material gradation used in this HEC-6 calibration analysis is shown on plate 3. The sediment inflowing load was zero since the model would begin just downstream of Prado Dam. The data from the stream gauge below Prado Dam indicated virtually zero bed material load passing through the dam. The limits of the movable bed widths were established considering the flow conditions and hardpoints such as revetted banks.

5-05 The actual calibration was performed by setting "n" values based on current field conditions and executing each of the four transport functions available on HEC-6. The Yang transport function was selected (see paragraphs 5-08 through 5-10) and used in all the subsequent analysis with HEC-6 because the Yang function reconstituted the actual changes closer than the other functions. The "n" values were adjusted until a close agreement was accomplished with the observed bed changes. The results of the HEC-6 calibration process are shown on plate 7. It was concluded that the HEC-6 model was calibrated and that it would be reasonable to proceed to the verification procedure.

Verification

5-06 The verification of the calibrated HEC-6 model entails executing the model against an entirely different flood event from which the model was calibrated. The model is said to be verified when it reconstitutes the observed river bed changes. To verify the model, the 1980 flood was selected since there was adequate channel survey and hydrologic data from which to determine the river bed changes and the corresponding flood discharges. The Santa Ana River Canyon reach, however, was the only reach where survey data was unreliable due to numerous man-made changes. Consequently, the verification process was conducted for the reach downstream of Weir Canyon Road, which is at the downstream end of the canyon. To account for the sediment inflow from the canyon reach, a sediment-discharge rating curve was instituted using the sedimentdischarge curve developed at the Ball Road stream gage (see paragraph 4-04 to 4-05. Translating the curve upstream to Weir Canyon Road, which is the project channel inlet location, was judged reasonable, since the channel between these two locations experienced insignificant bed change during the 1980 flood.

5-07 The results of the verification run using Yang's transport function indicate that the model agrees fairly well with the actual bed changes, except for the channel reach extending from confluence with Santiago Creek to the San Diego Freeway. In this reach, the model underestimated the degradation of the channel. To reconstitute the degradation quantities, the model was adjusted (calibrated) on a preliminary basis by inputting a finer bed material gradation to simulate the fine material existing in the channel, (see paragraph 2-11). The adjusted model did reproduce the degradation in this reach. However, the adjustment was judged to be unnecessary because the project calls for lining the channel with concrete in this reach, thus preventing erosion. The bed material gradation in the model should rather represent the material entering into the concrete reach. Therefore, the model was considered to be verified without the preliminary bed material adjustment. Plate 8 displays the before and after 1980 invert bed profile and the results of the HEC-6 verification simulation.

Sediment Transport Function

5-08 The HEC-6 program contains four different sediment transport functions for computing the sediment transport in the river. The four options are: (1) Toffaleti's method, (2) Madden's modification of Lursen's relationship, (3) Yang's Unit Stream Power method, and (4) DuBoy's method.

5-09 The selection of the appropriate sediment transport function was based on two approaches. First, each function in HEC-6 was tested against the historical bed changes in the calibration process assuming the same basis of "n" values, sediment inflowing load, and bed-material gradation. Application of the Toffaleti and the DuBoy's methods in the

program produced changes in bed elevation that were much less than and much greater than the historical, respectively. Attempts were made to use the Laursen method, but internal problems with the program code caused this method to be excluded from the calibration process. Lastly, the Yang function was tested and resulted in predicted bed changes that were in close agreement with the historical.

5-10 Second, the functions were tested against the measured load at the Ball Road stream gage by using the program to compute the sediment load with each function. In addition, the Ackers-White equation was computed manually for comparison with the measured load for possible application in the program if the other functions proved to be unsuccessful. The results of the computed load versus measured load are shown on plate 9. The results indicate that for the measured flow range of 1,000 to about 7,000 cfs, the Duboy and Yang function were fairly close to the measured load. The Ackers-White equation produced lower sediment discharge values than the Yang function and was dropped from further analysis. Additionally, the Yang function proved to be the most successful in calibrating against historical bed changes and was within an acceptable range with the measured load. As a result of this analysis, the Yang Unit Stream Power equation was selected for estimating the bed-material load in the river. The Yang equation (ref. 10) used in this study is:

$$\log C_{t} = 5.435 - 0.286 \log \frac{\text{wd}}{\text{v}} - 0.457 \log \frac{\text{U*}}{\text{w}} + (1.799 - 0409 \log \frac{\text{wd}}{\text{v}} - 0.314 \log \frac{\text{U*}}{\text{w}}) \log (\frac{\text{VS}}{\text{W}} - \frac{\text{VerS}}{\text{w}})$$

where:

= Total sediment concentration, in parts per

million by weight,

= Terminal fall velocity of sediment particles, ft/sec

= Median sieve diameter of bed material, ft

= Kinematic viscosity, ft²/sec

= Shear velocity, ft/sec

= Unity stream power, ft/sec. ft/ft

VorS = Critical unit stream power at incipient motion, ft/sec

HEC-6 Input Data

CHANNEL GEOMETRY

5-11 The channel geometry under project conditions was obtained from plan and profiles sheets in the Phase I GDM. Cross sections were encoded into the HEC-6 model beginning at the project inlet at Weir Canyon Road downstream to the Pacific Ocean. Spacing of the cross sections ranged from 100 to 1,500 feet apart with an average of about 1,000 feet. Cross sections were also located at control invert points in the river such as drop structures and stabilizers.

BED MATERIAL GRADATION

5-12 The representative bed material gradation, as discussed previously in paragraph 2-15, was used in the HEC-6 project analysis for all the various floods, (10-, 25-, 50-, 100-year) including the design flood. The program requires a gradation with each cross section defined in the geometry data set. In order for the HEC-6 to represent the concrete-lined channel and invert hardpoints such as drop structures and stabilizers, the model was encoded with a bed material layer of 0.1 feet to exist on the design invert. The 0.1 feet thick of bed material allows the program to execute in a deposition potential mode only. Scour of the bed will not occur in the concrete reach or at channel invert hardpoints.

HYDROLOGIC DATA

5-13 Several different flood events were investigated with the HEC-6 program to evaluate the adequacy of the project design with respect to sediment transport. The floods analyzed were the project design flood (170-year) and the 10-, 25-, 50-, and 100-year flood frequency events.

5-14 The hydrologic analysis for the Santa Ana River was conducted with the Corps of Engineers' Los Angeles District Flood Hydrograph Package (LADFHP). Flood hydrographs for the design flood were provided along the project reach that included residual flow from tributaries in the Santa Ana River Canyon and Santiago Creek. For all floods, balanced hydrographs were developed based on with project condition and based on both peak and volume frequency analysis from regulated releases out of Prado Dam. For these floods, tributary inflow was neglected since there are numerous coincident flow combinations between the main stem and each tributary. To account for the inflow of sediment from tributaries in the canyon reach, a sediment discharge rating curve was used at the project inlet at Weir Canyon Road. For Santiago Creek, inflow of sediment would be negligible with construction of a stable channel. Plate 10 displays the balanced hydrographs. It should be noted that trit tary inflow from Greenville-Banning Channel and Carbon Canyon Dive. sion Channel would not impact on transport of sediment since the inflow discharges are small relative to discharges on the main stem.

IMPROVED CHANNEL HYDRAULIC ROUGHNESS

5-15 Hydraulic roughness is accounted for in the HEC-6 program by the use of Manning's roughness coefficient "n". Under project channel conditions, three different reaches were considered in terms of the roughness coefficient. The first reach was the channel ocean reach with soft bottom channel and vertical concrete floodwalls at the lower end. The second reach was the rectangular concrete lined channel downstream of the confluence with Santiago Creek, and the third reach was the trapezoidal soft bottom channel drop structure reach from Santiago to the improved channel inlet. The "n" values used in the calibration procedures were numerically estimated using Cowan's method described in Chow's Open Channel Hydraulics (ref. 2) and adjusted to produce the historical bed change. These "n" values would be utilized in the channel ocean reach and drop structure reach; however, they would not be applicable to the concrete lined reach.

5-16 In a concrete lined channel with ephemeral high velocity flow, the standard procedure would be to design the channel using a Manning's roughness coefficient of 0.014. The deposition of sand on the concrete invert could increase this value. If the amount of deposition is less than 0.5 feet, then the increase would be due mainly to grain resistance. Otherwise, any amount greater than this would result in the possibility of bed formation, that is, the development of ripples, dunes, or antidunes, which would cause form drag and increase the resistance to flow. From the initial HEC-6 runs, the amount of deposition was found to be generally greater than 0.5-foot. Deposition would occur in the lower (downstream) portion of the concrete channel reach from station 257+00 downstream to station 150+50. Therefore, the Manning's "n" value would be adjusted to account for bed forms. The remaining part of the concrete channel reach would not experience deposition and be designed with the standard "n" value of 0.014.

5-17 For both the lined concrete and unlined channel ocean and drop structure reaches, the bed forms for various discharges were determined using the methodology by Vanoni (ref. 8). The result of the bed form analysis indicated that at high flows, the bed form for the channel ocean reach and lower part of the concrete channel would be in plane bed, while the drop structure reach would be in plane bed or antidunes. From reference 1, the corresponding Manning's "n" values for these bed forms would range from 0.012 to 0.022 for plane bed and 0.015 to 0.031 for antidunes. Moreover, the suggested values for sediment transport analysis were 0.02 for plane bed and 0.025 for antidunes.

5-18 In summary, the Manning's "n" values utilized in the HEC-6 computations for the Santa Ana River were 0.02 for the unlined channel ocean reach and the deposition portions of the lined concrete channel reach, 0.014 for the concrete channel reach without deposition and 0.025 for the drop structure reach. The effect on the "n" value from the revetment on the side slopes was not investigated because the side slope "n" value applied against the riverbed would not significantly change the composite "n" value. It should be noted that no significant vegetation will be permitted in the channel. Operation and maintenance clearing of vegetation and brush over 3 feet high is required. Low flows will bend over and uproot smaller vegetation. In addition, the current practice using temporary diversion levees located within the channel for ground water recharge at low flows will be permitted since uncompacted sand levees historically wash out at relatively low floodflows of 2,000 cfs.

Results

GENERAL

5-19 The results obtained from the HEC-6 simulation of the design flood as well as the lesser frequency floods appear to be reasonable. Since it is beyond the state-of-the-art capability to accurately predict the scour or deposition at specific locations, the results presented herein

are in terms of the general trends of aggradation and degradation. To ensure that the results are applicable in design, a sensitivity analyses was conducted of various transport parameters in the HEC-6 program which influence the sediment transport calculations. In addition, various channel conditions were investigated since it is possible that the channel would not be at the design invert at the start of the design flood.

DESIGN FLOOD

5-20 The HEC-6 simulation of the design flood was conducted for the reach from the improved channel inlet at Weir Canyon Road downstream to the Pacific Ocean using two different cases of sediment inflow since the sediment inflow would be variable over the project life. The two cases are the maximum and minimum sediment inflow into the improved channel reach. The objective was to bracket the trend of aggradation and degradation within the channel for use in hydraulic design.

5-21 For the case of the maximum sediment inflow, the results of the HEC-6 analysis indicate that at the peak of the design flood, deposition would be significant just downstream of the improved channel inlet and at the lower end of the concrete channel and channel ocean reach. For the first drop structure reach (stations 1204+70 to 1157+60), the depth of deposition would be up to 2.2 feet. The other drop structure reaches show no bed change. In the lower end (stations 242+60 to 0+00), the deposition would be up to 7.3 feet. At the end of the design hydrograph, there are some additional subreaches in the drop structure reach that experience deposition. The overall sediment depths were 1 to 2 feet higher. In the channel ocean reach and downstream end of the concrete channel, the depositional slope ranged from S = 0.0006 to 0.0012 at the peak flow and at the end of the design hydrograph. The depositional slope of 0.0012 compares favorably with the historical slope of S = 0.0011. As a result, the preliminary design depositional slope was selected as that slope that was present at the maximum river water surface elevation, which for all reaches coincided with the peak of the design hydrograph. The preliminary design slope was tested and further refined in the sensitivity part of the analysis. The design of the channel levee heights could be established with these results.

5-22 In contrast, the HEC-6 analysis for the minimum sediment inflow was performed by using a zero value for the inflowing load from all sources. The results indicate a potential for general scour of up to 8 feet below the design invert between invert control points in the upstream reach of the drop structures (station 1204+20 to 1157+60). In the reach just downstream of the concrete-lined channel (channel ocean reach), the scour would be up to 6 feet below the design invert. Although this is an extreme opposite of the analysis above with sediment inflow, the result provides for design of the slope protection toe depths in this reach.

SENSITIVITY ANALYSIS

5-23 Because of the uncertainties involved in the sediment transport theory, additional sensitivity analyses were made of the various HEC-6 program input variables and of various channel conditions likely to occur preceding the design event. The program parameters include the roughness coefficient "n" and the bed-material gradation. The alternative channel conditions include the formation of a sand plug at the ocean outlet, initial deposition in the channel, and high and low downstream water surface elevations with respect to tidal fluctuation.

Roughness Coefficient "n"

5-24 As previously discussed in paragraphs 5-15 to 5-18, the "n" values used in the analysis were based on the channel conditions including the effect of bed forms. To ensure that the improved channel will function in terms of deposition on the bed during the design flood, the "n" value was increased to 0.03 in all reaches of the HEC-6 model. The higher value will result in reduced sediment transport capacities which in turn may result in higher deposition. The result of the computations indicate that the quantity of channel aggradation is not sensitive to the "n" value. The deposition with n = 0.03 was less than or equal to the design deposition amount.

Bed Material Gradation

5-25 The bed material gradation used in the analysis was based on a graphical average of the samples obtained directly from the streambed. The sensitivity of the gradation was examined by increasing the size fraction of the larger particles such that the d_{50} particle size increased from 0.5 to 0.75 mm. The amount of increase was based on the gradation range of the individual samples. The amount of aggradation was found to be insensitive to the increased particle size. The deposition for particle size of d_{50} equal to 0.75 mm was less than or equal to the design deposition amount.

Sand Plug

5-26 Under existing conditions, the littoral drift of sand across the ocean outlet forms a sand plug that reduces tidal ocean waters from flushing in and out of the river. To address the impact of this plug forming under project conditions, the HEC-6 analysis geometric data was adjusted by estimating that the sand would deposit up to elevation 0.0 feet NGVD for the entire lower reach. The design invert daylights at elevation 0.0 feet NGVD approximately 1.9 miles upstream from the outlet and drops to elevation -7.0 feet NGVD at the stabilizer near the ocean outlet. The results of the computations indicate that the sand plug would wash out before the peak of the design flood. The amount of aggradation did not exceed the design deposition slope.

Antecedent Flow

5-27 In addition to a sand plug forming, deposition in the channel ocean reach could also form as a result of lower frequency floods or antecedent floods preceding the design event. In order to simulate the initial movement of sediment prior to the design event, a flow of 5,000 cfs for a period of 38 days, which represents the volume of water to empty Prado Basin, was considered applicable. The flow rate of 5,000 cfs corresponds to historic releases. The sediment deposition during the design flood was quite sensitive to the initial bed conditions. It was found that the quantity of deposition in the channel ocean reach was twice the amount with antecedent flow than without. As a result, a new depositional design slope was determined. It is important to note that this new depositional design slope was considered as the final design slope for use in the subsequent hydraulic design for computing water surface elevations. Plate 11 graphically displays the channel invert profile and the sedimentation profiles for the hydraulic design of the channel at peak design discharge. At the end of the design hydrograph, there are some additional subreaches that experience deposition. Plate 12 graphically presents these results. Plate 12 is provided for trend information only and is not intended to be used in the hydraulic design.

Tidal Influence

5-28 The fluctuation of the starting water surface elevations (WSEL) for backwater computations could influence the sediment transport characteristics and capacity of the downstream channel as noted in a paper by Dixon et al (ref. 30). In the Los Angeles District, the current design practice for the starting WSEL is to use the peak discharge of the design event coincident with the mean higher water (MHHW) elevation above mean-sea-level (MSL). A starting WSEL of 2.54 ft. MHHW was used in this analysis throughout the design hydrograph. To examine the sensitivity of this value with respect to sediment deposition in the downstream channel, an evaluation of the peak flows and higher high tides was conducted using tidal data obtained from NOAA (ref 31). The tidal data was in the form of a statistical month based on 17 years of recorded data at Newport Beach, which is just south of the outlet channel. The timing of the starting WSEL in the model was adjusted such that the peak flow for the design flood hydrograph was coincident with peak MHHW of the statistical month tidal hydrograph. Plate 13 graphically displays the tidal hydrograph. The peak MHHW is about 4.22 ft (MSL Datum), which is only 1.68 ft higher than design condition. The results of the computation indicate that aggradation is not sensitive to the fluctuation. The reason is because the tidal hydrograph fluctuate more rapidly than the design flood hydrograph. The fluctuation in downstream WSEL cause less backwater at low tide levels and transports the aggraded sediment further into the ocean.

6. AVERAGE ANNUAL DEPOSITION AND SAND OUTFLOW TO THE PACIFIC OCEAN

Methodology and Results

6-01 An analysis was conducted to determine the average annual aggradation in the project reach and the sand outflow to the Pacific Ocean for maintenance and mitigation measures as a result of the project. Estimates of average annual aggradation and sand outflow for the with and without improved channel (project) conditions over the project life were determined using the weighted incremental probability method. Estimates of average annual aggradation and sand outflow for historical conditions after closure of Prado Dam in 1941 were performed using existing available data.

6-02 For the with project condition, the incremental probability method is applied by evaluating the 10-, 25-, 50-, 100-year floods, and the design flood, which has a frequency of 170-year, with the HEC-6 program to determine the volume of deposition and sand outflow for each flood. The sediment volumes are then weighted by the incremental probability of occurrence for any given year by the relationship:

$$Qs_{annual} = .006 (VOL_{170}) + .004 \frac{(VOL_{170} + VOL_{100})}{2} + .01 \frac{(VOL_{100} + VOL_{50})}{2} + .02 \frac{(VOL_{50} + VOL_{25})}{2} + .06 \frac{(VOL_{25} + VOL_{10})}{2}$$

Where Qs is average annual (deposition or sand outflow) and the 170-, 100-, 50-, 25-, 10- are the subcripts for floods with their respective return period in years. Floods less than the 10-year flood were not included in the analysis because these smaller floods would not contribute a significant quantity of sediment in terms of channel deposition or sand outflow. Under improved channel conditions, the average annual channel deposition and sand outflow to the Pacific Ocean were estimated to be 31,000 and 36,000 cubic yards, respectively. The total of the two is 67,000 cubic yards.

6-03 For the without project condition, the same procedures were applied as for the with project condition except for the design flood. In this case the design flood would cause levee failure of the existing channel, resulting in sediment exiting into the flood plain. The sediment volumes, not including the design flood, are weighted by the incremental probability occurrence by the relationship:

$$Qs_{annual} = 0.01 (Vol_{100}) + 0.01 \frac{(Vol_{100} + Vol_{50})}{2}$$
+ 0.02 $\frac{(Vol_{50} + Vol_{25})}{2} + 0.06 \frac{(Vol_{25} + Vol_{10})}{2}$

6-04 The without project average annual deposition and sand outflow to the Pacific Ocean were estimated to be 24,000 and 25,000 cubic yards, respectively. The total of the two is 49,000 cubic yards. By not including the design flood, the difference of 18,000 cubic yards (67,000 minus 49,000) reflects the average annual deposition into the flood plain. It should be noted that this figure is a gross estimate since it does not include wash load and it does not account for timing of the levee breach during the design event.

6-05 The average annual deposition and sand outflow under historical conditions were computed by using data from stream gage and historical channel removal records. For the period from 1941 to 1971, an estimate of the coarse sediment discharge was made by the USGS (ref. 6) for the stream gage at Fifth Street in Santa Ana. The estimate was adjusted by the Corps of Engineers by including sediment outflow to represent the period up to 1978. The adjusted sand discharge at the gage was about 140,000 cubic yards per year. From reference 15, the estimated average annual sand deposition downstream of the gage for about the same time period was 60,000 cubic yards per year. Thus, subtracting the deposition yield from the sand discharge yield produces an estimated average annual sand outflow of 80,000 cubic yards per years. It is important to note that these estimates would slightly increase with the inclusion of the recent flood events. However, an attempt to include these events was found to be difficult because of the problem with the streamgage records at Fifth Street during 1980 flood and the channel scour downstream of the gage producing an additional source of sediment. Consequently, the above values without the recent floods were considered reasonable for the long term historical average.

6-06 The average annual deposition and sand outflow for the with and without project channel conditions were estimated with the equation noted previously. The deposition was found to occur in the lower 4 miles of the project channel. Table 9 summarizes the deposition and sand outflow quantities for with and without project conditions and for historical conditions.

Table 9. Sediment Yields for Various Floods.

Channel Condition	Flood (year)	Sediment Deposition (X 1000 yd ³)	Sand Outflow (X 1000 yd ³)
With project	170 100	1,509 679	2,303 524
	50	367	324
	25	180	195
	10	39	54
	annual	31	36
Without project	170	1/	1/
	100	484	<u>9</u> 23
	50	340	336
	25	231	136
	10	90	11
	annual	24	25
Historical Condition			
(1941–1978)	annual	60	80

^{1/} Not included in annual computations because flood would breach levees, resulting in sediment exiting the channel system.

Comparison With Average Annual Yield Calculations for the Santa Ana River Canyon

6-07 In order to determine the reasonableness of the estimate of the with-project average annual sediment production, a comparison was made between the sediment yield estimate of the canyon reach with the project yield. As discussed in paragraph 4-21, several methods were used to estimate the canyon sediment yield. From that analysis, it was determined that the sand sediment yield would range from 43,200 to 52,800 cubic yards per year. The with-project sand sediment yield of 67,000 cubic yards per year compares favorably and would be considered very reasonable with respect to the sediment yield of the canyon. In other words, the difference in sediment yield estimates of about 30 percent is well within the accuracy in sediment transport technology with respect to sediment yield determination.

Frequency of Cleanout

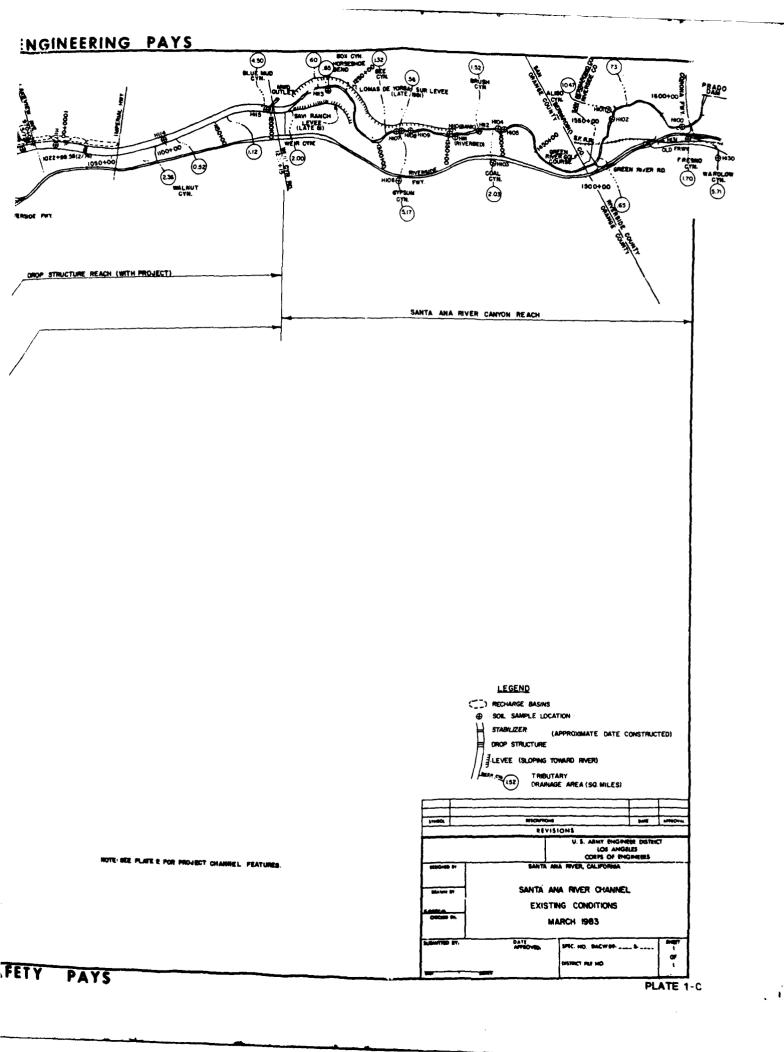
6-08 As part of maintenance requirements for the channel design, an upper grade limit was established to identify the sediment removal required from the channel to maintain the design flood protection. Sediment would be allowed to accumulate to the upper grade limit line shown on plate 14. Once sediment deposition exceeds this limit, the sediment must be removed to the design invert.

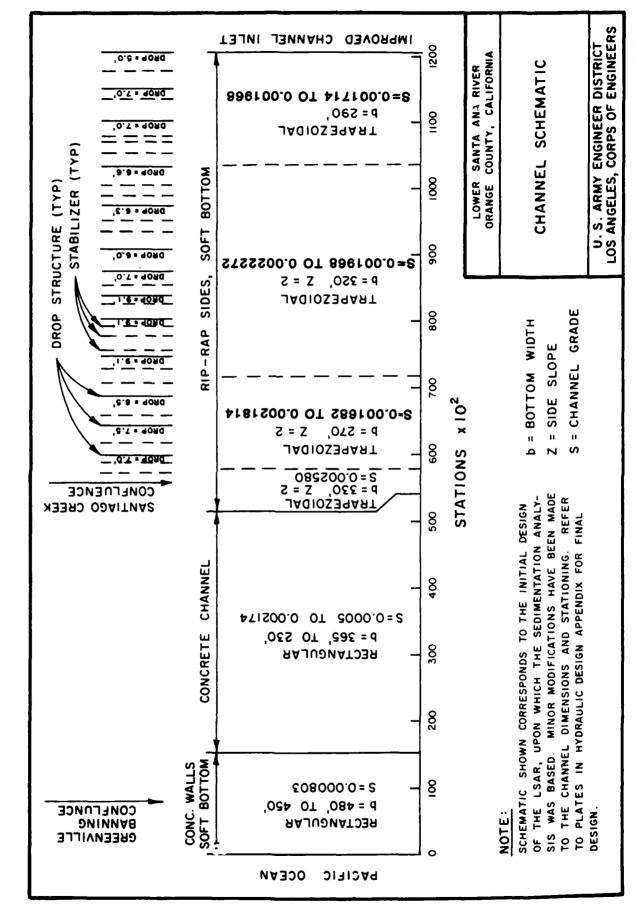
6-09 The upper grade limit was based on the bed change in the HEC-6 analysis after antecedent flow of 5,000 cfs for 38 days. The bed change encompassed a deposition bed slope of 0.0007986. This corresponds to a deposition volume of about 660,000 cubic yards. Based on the average annual sediment deposition of 31,000 cubic yards per year, the channel in the lower reach would have to be cleaned out on the long term average of once every 21 years.

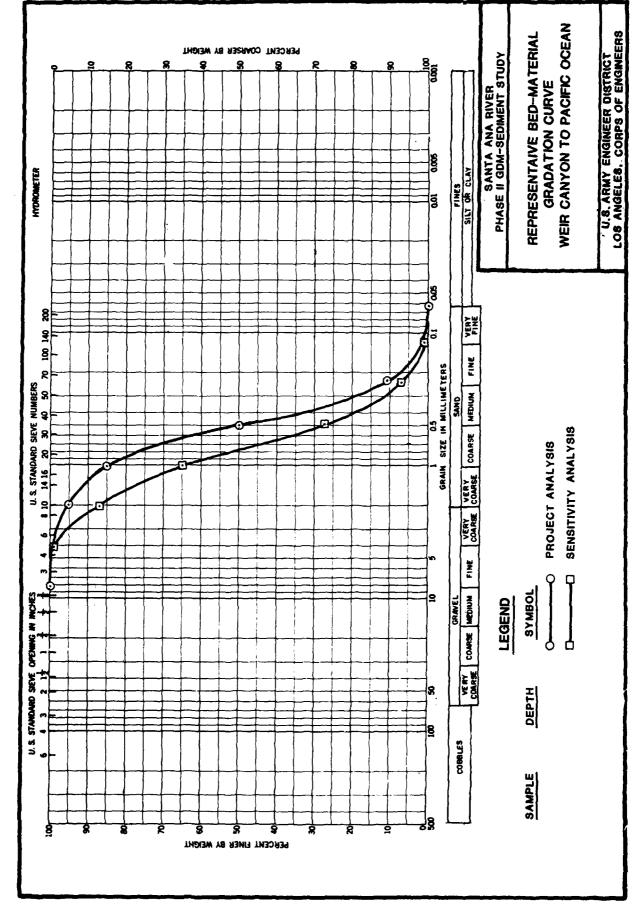
6-10 The upper grade limit was raised to elevation 0.0 feet msl in the reach downstream of where the upper grade limit crosses elevation 0.0 at station 69+33. The adjustment was made to allow sediment to accumulate upstream of the sand plug that usually forms at the river mouth. This geometric condition was also tested in the design HEC-6 analysis. The resulting bed change did not exceed the design deposition amount. Therefore, sediment will be allowed to accumulate to the adjusted limit. No sediment removal maintenance is expected in the drop structure concrete channel reach from the inlet at Weir Canyon Road downstream to the concrete channel station 223+35.

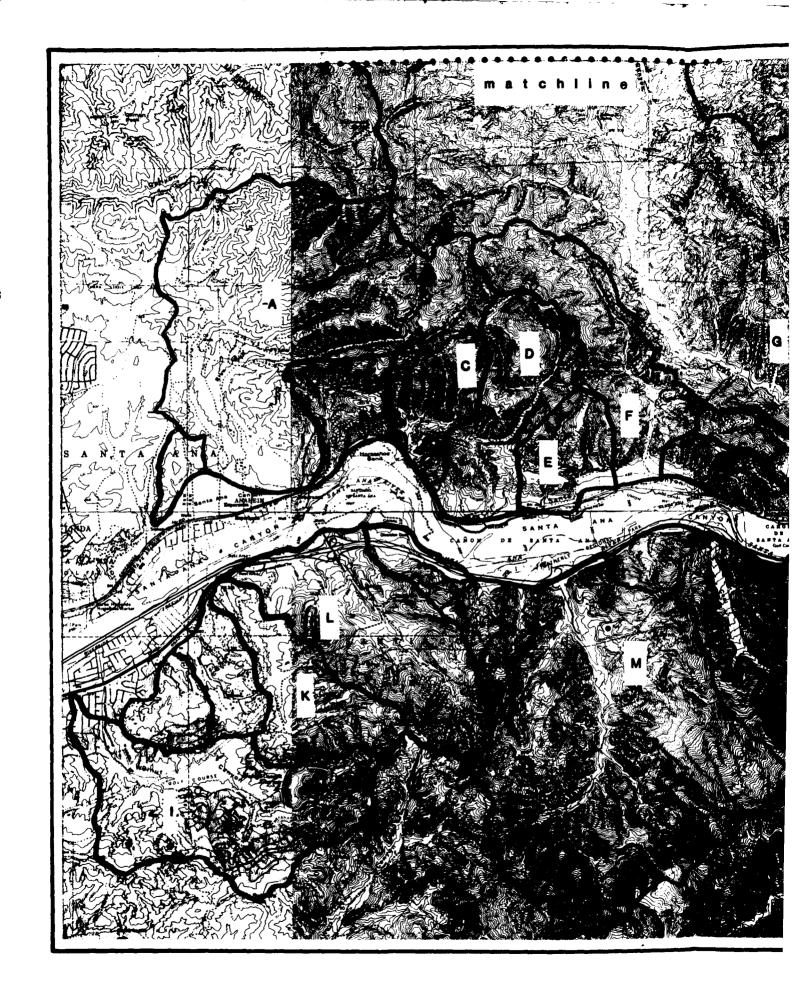
7. REFERENCES

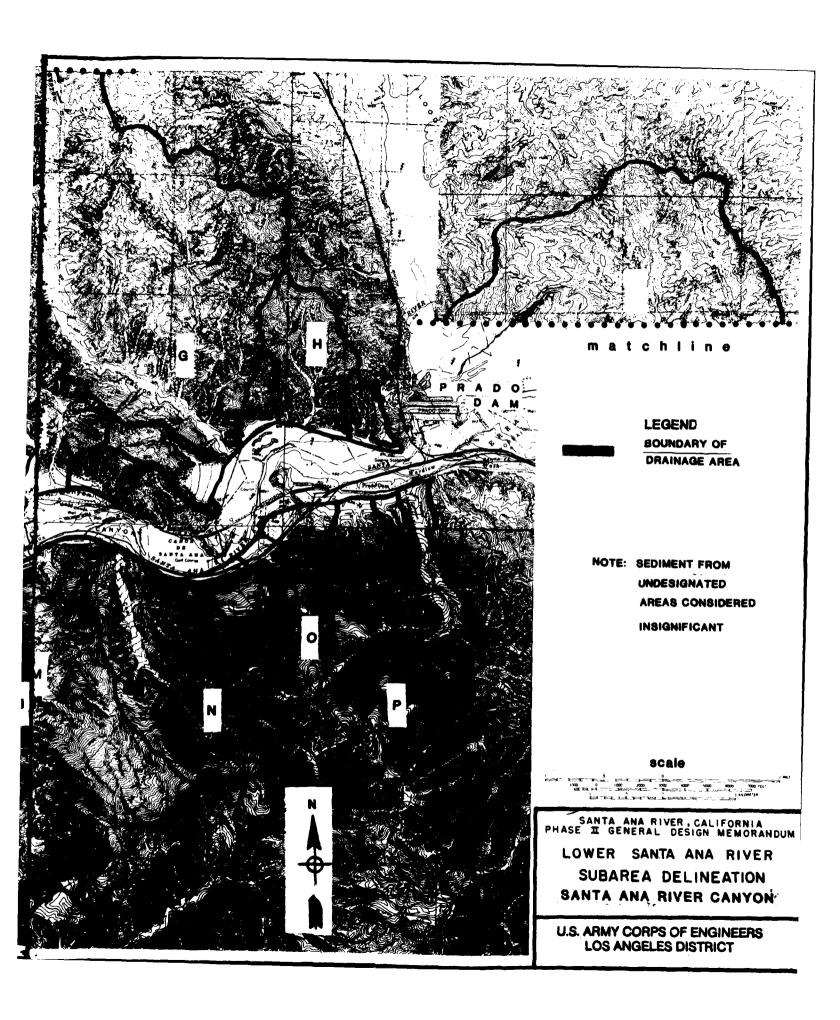
- 1. Simons, Li & Associates. Engineering Analysis of Fluvial Systems, Ft Collins, Colorado, 1982.
- 2. Chow, V. T. Open Channel Hydraulics, New York: McGraw-Hill, 1959.
- 3. Simons and Senturk, <u>Sediment Transport Technology</u>. Water Resources Publications, Fort Collins, Colorado, 1977.
- 4. Vanoni, Vito, Ed., Sedimentation Engineering ASCE M&R No. 54, American Society of Civil Engineers, New York, 1977.
- 5. U.S. Geological Survey, Water Resource Data for California, Surface Water Records. Menlo Park, California: Geological Survey.
- U.S. Geological Survey, "Estimate of Sediment Discharges, Santa Ana River at Santa Ana", Santa Ana, California, February 1975.
- 7. Brownlie, W. R. and Taylor, B. D. "Part C Coastal Sediment Delivery by Major Rivers in Southern California", EQL Report No. 7-C, California Institute of Technology, Pasadena, California, Feb. 1981.
- 8. Vanoni, Vito, "Factors Determining Bedforms of Alluvial Streams", Journal of the Hydraulics Division, ASCE Vol 100, March 1974, pp 363-377.
- 9. Yang, C. T. and Stall, J. B., "Applicability of Unit Streampower Equation", Journal of the Hydraulics Division, ASCE, Vol 102, May 1976, pp 559-568.
- 10. Yang, Chih T., "Minimum Unit Stream Power and Fluvial Hydraulics," Journal of the Hydraulics Division, American Society of Civil Engineers, Vol 102, No. Hy. 7., New York: A.S.C.E. July 1976.

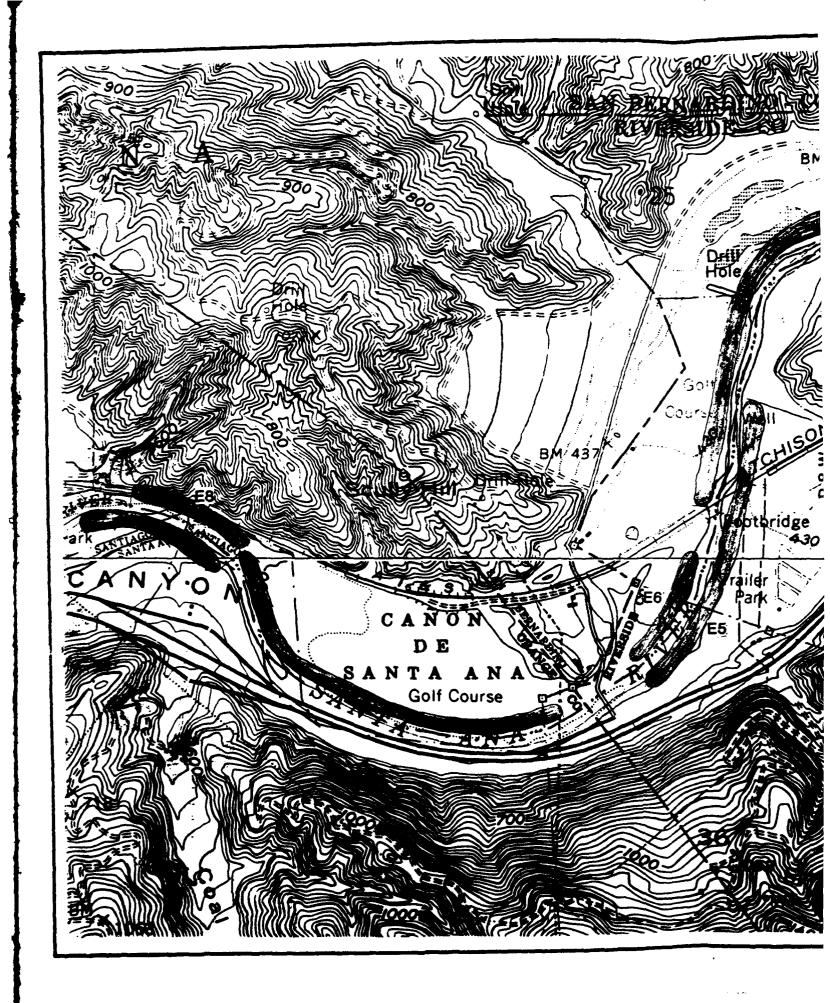

- 11. U.S. Army Corps of Engineers, Hydrologic Engineering Center "HEC-2, Water Surface Profiles, Users Manual", U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, California, January 1981.
- 12. U.S. Army Corps of Engineers, Hydrologic Engineering Center "Volume 12, Sediment Transport", U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, California, June 1977.
- 13. U.S. Army Corps of Engineers, "EC 110-2-241 Draft Chapters of Sedimentation Manual", U.S. Army Corps of Engineers, Washington D.C., November 1982.
- 14. U.S. Army Corps of Engineers, Hydrologic Engineering Center, "HEC-6, Scour and Deposition in Rivers and Reservoirs, Users Manual", U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, California, March 1977.
- 15. U.S. Army Corps of Engineers, Los Angeles District, Santa Ana River Phase I, General Design Memorandum, September 1980.
- 16. Bureau of Reclamation, "Computing Degradation and Local Scour," January 1984.
- 17. Kennedy, John F., Institute of Hydraulic Research, Letter Report, "Hydraulic and Sediment-Transport Calculations, Santa Ana River," July 1984.
- 18. Flaxman, Elliott, Journal of the Hydraulics Division, ASCE, "Predicting Sediment Yield in Western United States", December 1972.
- 19. Flaxman, Elliot, Journal of the Hydraulics Division, ASCE,
 "Predicting Sediment Yield in Western United States,"
 May 1974. (Addendum to discussion of December 1972 publication).
- 20. Flaxman, Elliot, "Measurement and Prediction of Erosion," Lecture Notes from Applied Sedimentation and River Engineering Seminar, January 12-15, 1982 sponsored by San Diego State University.
- 21. "Erosion and Sediment Yield Methods," Pacific Southwest Inter-Agency Committee, April 1974.
- 22. Pacific Southwest Interagency Committee, 1968. "Factors Affecting Sediment Yield and Measures for the Reduction of Erosion and Sediment Yield."
- 23. Tatum, Fred E., "A New Method of Estimating Debris Storage Requirements for Debris Basins", U.S. Army Engineer District, Los Angeles, California, 1963.

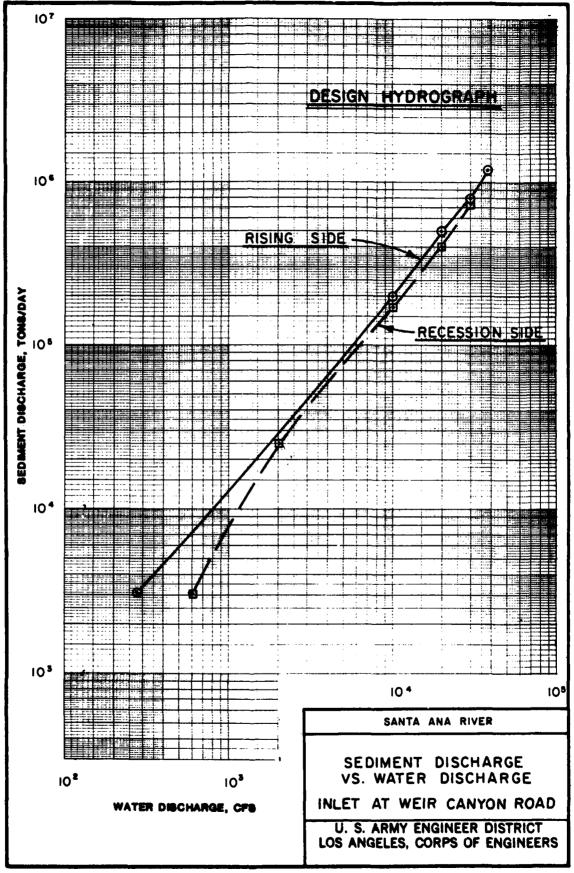

1 °.

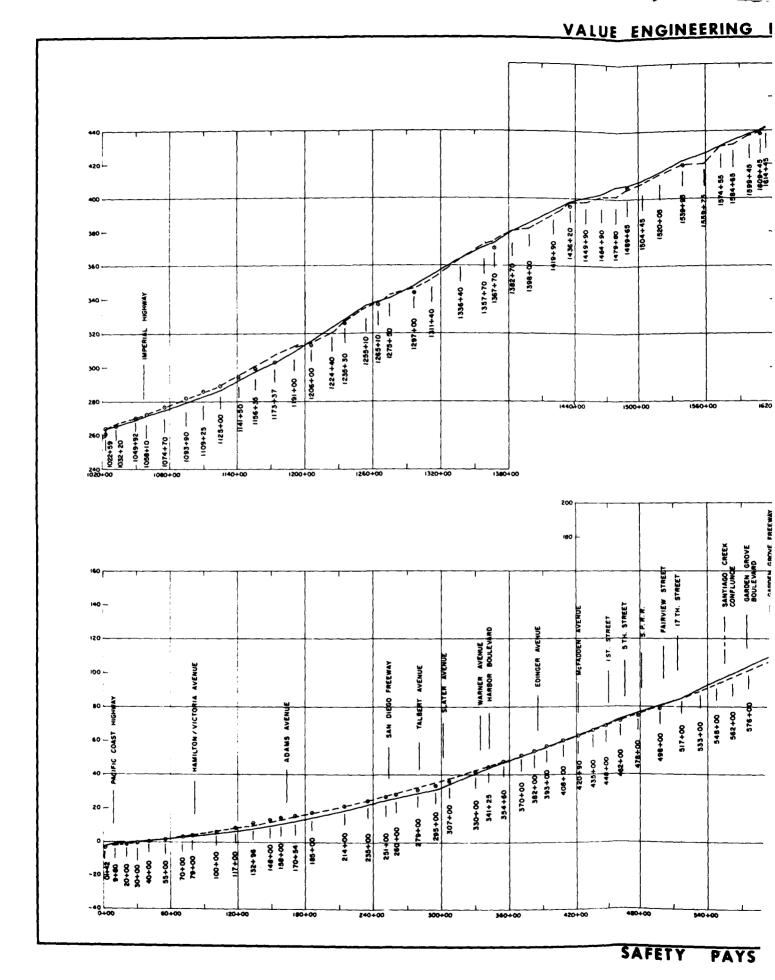

- 24. Leed, Hill and Jewett, Inc., Orange County Flood Control District, "Review Report on Flood Control and Water Conservation in Santa Ana River Channel", August 1969.
- 25. Environmental Management Agency, County of Orange, California, (OCEMA), "Santa Ana River Grade Line Report From Ocean to Seventeenth Street", January 1935.
- 26. Mostafa, M. Gamal, "Sediment Hydraulics Study For Lomas De Yorba-Sur Levee Project on the Santa Ana River", prepared for Robert Bein, William Frost & Associates, April 1981.
- Mostafa, M. Gamal, "Santa Ana River Sediment Hydraulics Study", prepared for OCEMA, May 1981.
- 28. BSI Consultants, Inc., "Engineering Investigation of the Stability of the SAVI Levee", 1985.
- 29. American Society of Civil Engineers, Proceedings "Engineering Workshop on, Sediment Hydraulics", February, 1979.
- 30. Dixon, Lester S., and Sullivan, Belinda A., ASCE Journal of Hydraulic Engineering," Selecting Terminal Water Surface Elevations", May 1986.
- 31. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Record Station 941-0580 Newport Beach, California, 1960-1978 Tidal Datum Epoch.

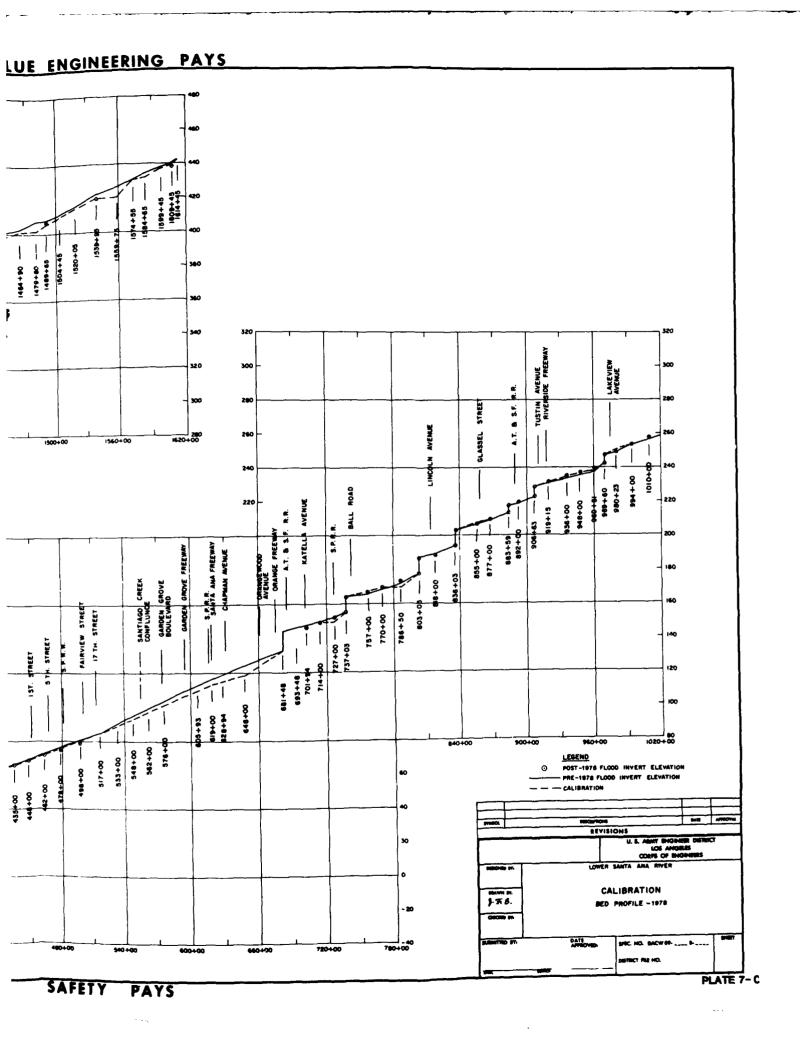

C Sediment Transport Analysis

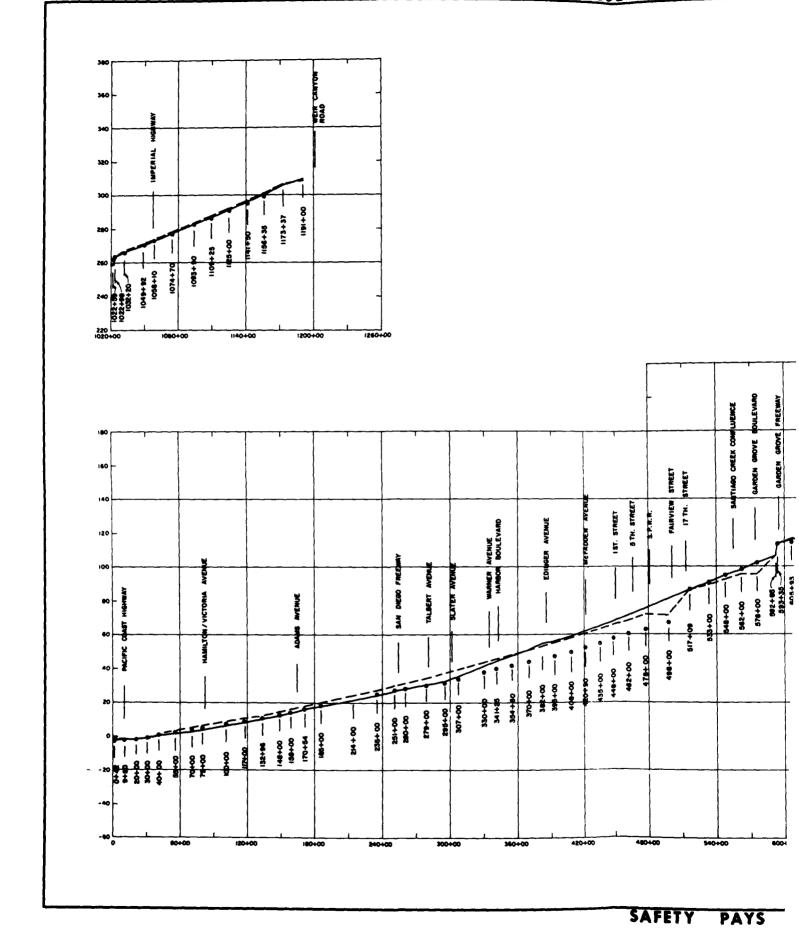

PLATES

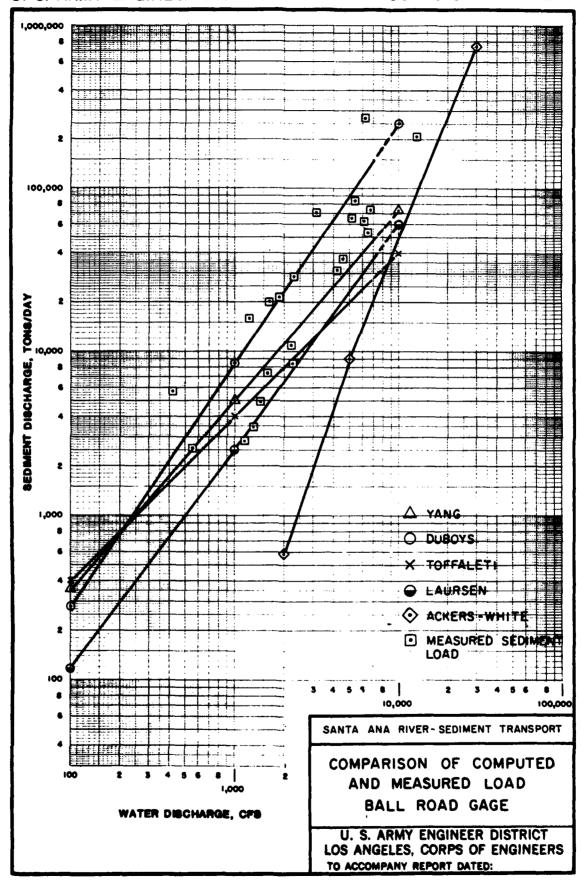


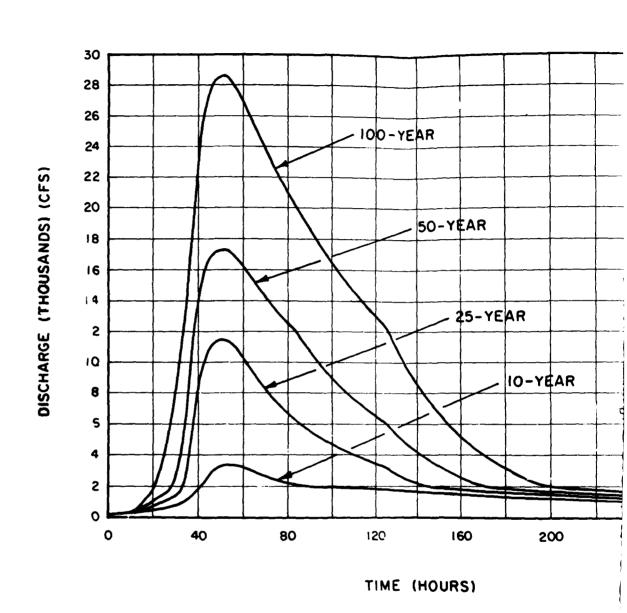


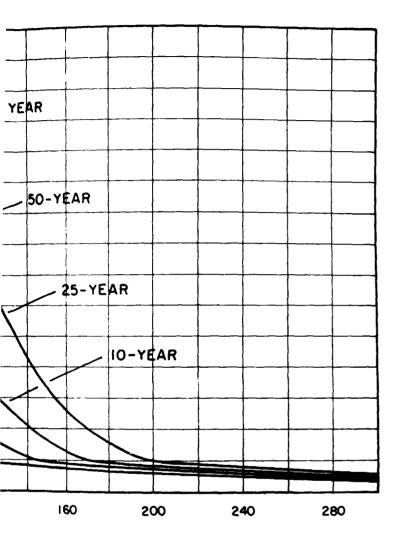



U. S. ARMY ENGINEER DISTRICT


CORPS OF ENGINEERS


man a see that the second of the man and the second of the





U. S. ARMY ENGINEER DISTRICT

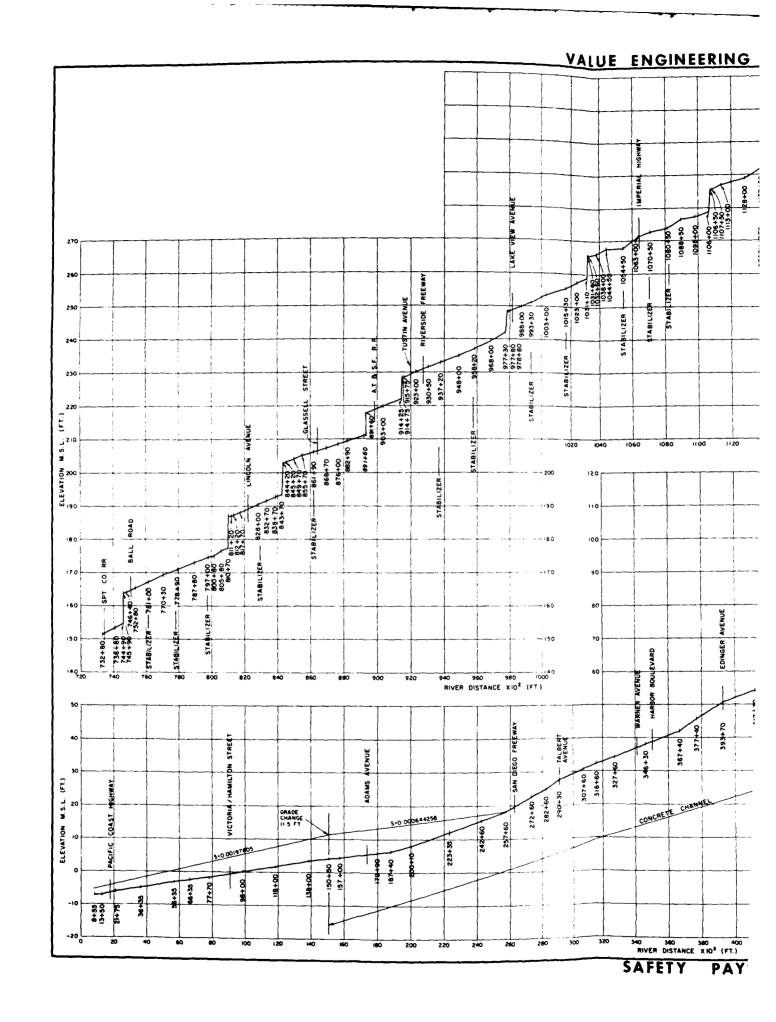
CORPS OF ENGINEERS

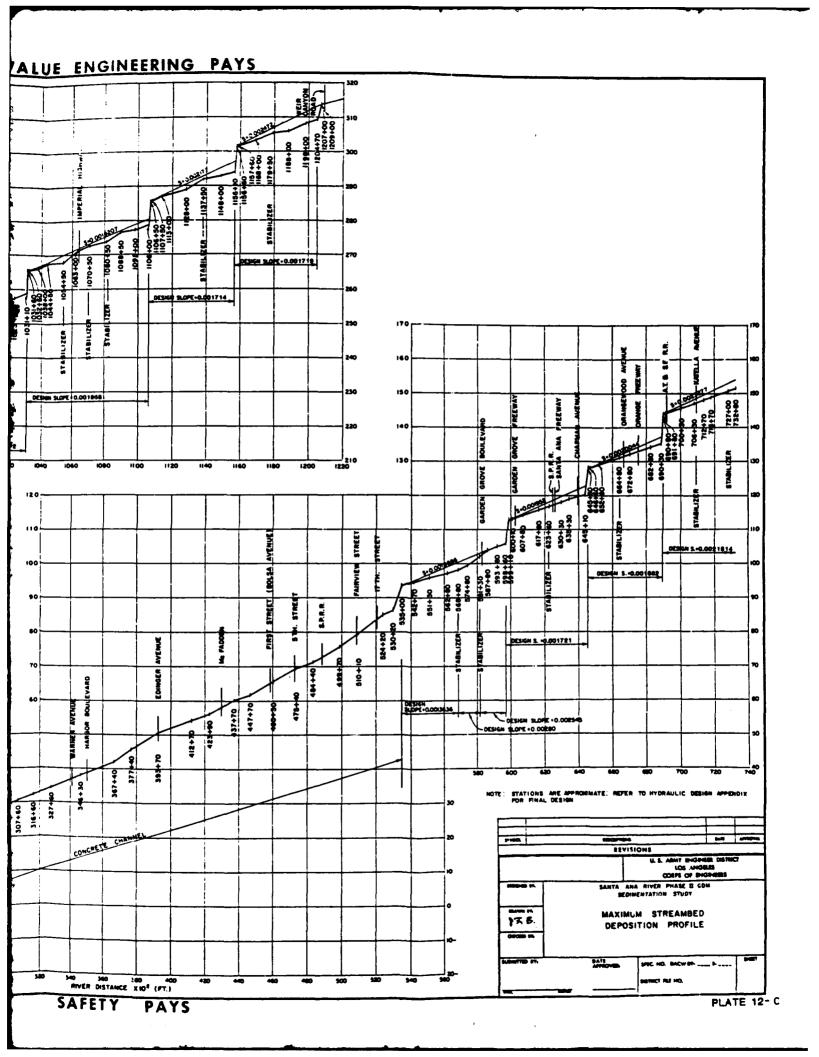
E (HOURS)

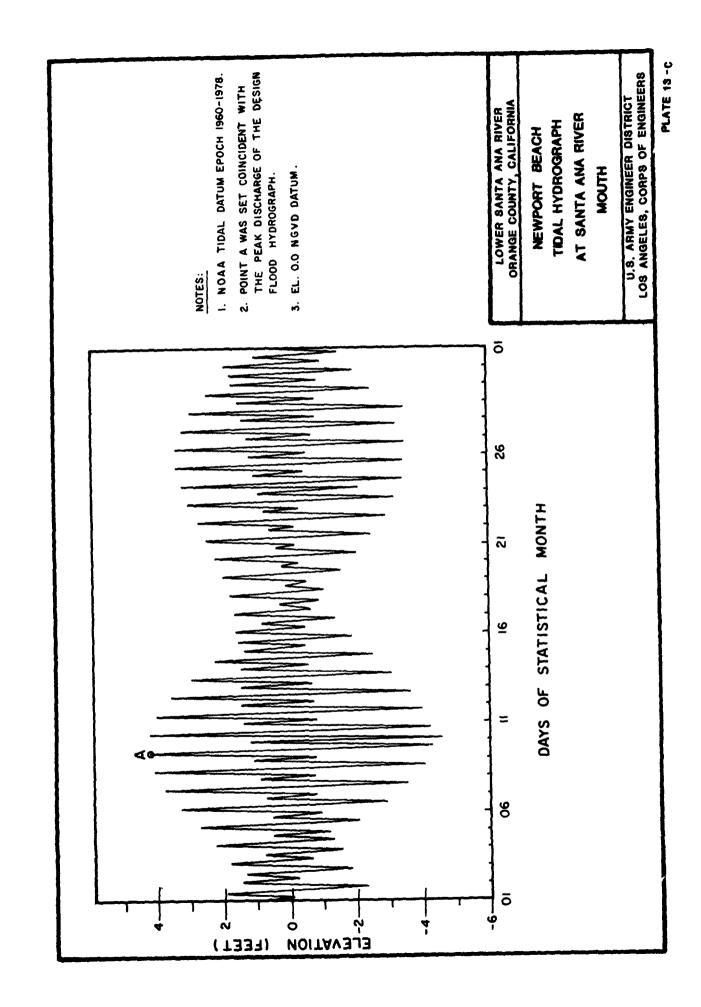
SANTA ANA RIVER

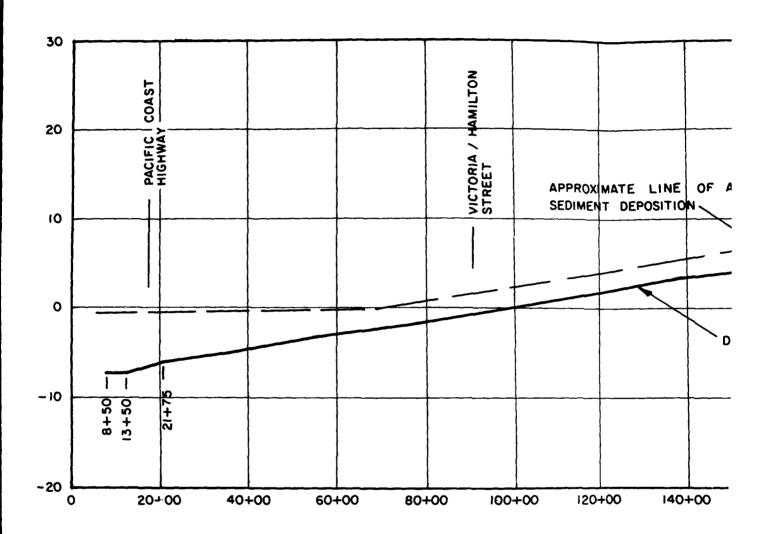
BALANCED HYDROGRAPHS

U. S. ARMY ENGINEER DISTRICT LOS ANGELES, CORPS OF ENGINEERS

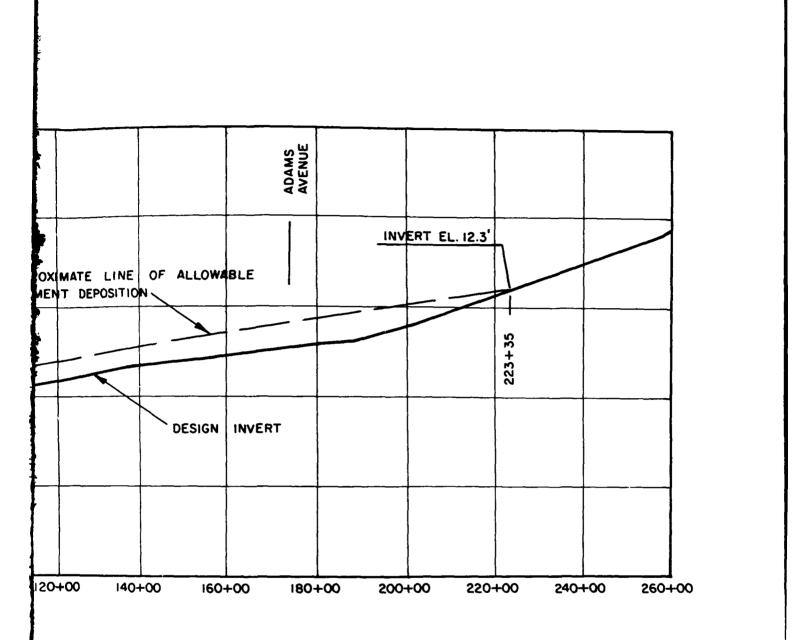



PLATE 11-C


SAFETY


PAYS

SAFETY PA



PROFILE

HORIZ. SCALE: IIN. = 200 VERT. SCALE: IIN. = 10 F

PROFILE

SCALE: IIN. = 2000 FT. SCALE: IIN. = 10 FT.

LOWER SANTA ANA RIVER ORANGE COUNTY, CALIFORNIA

UPPER SEDIMENT LEVEL

STA. 8+50 TO STA. 223+35

U.S. ARMY ENGINEER DISTRICT LOS ANGELES, CORPS OF ENGINEERS

C Sediment Transport Analysis

ATTACHMENT

FINAL REPORT

REVIEW OF THE DRAFT SEDIMENTATION REPORT OF THE LOWER SANTA ANA RIVER, PHASE II GENERAL DESIGN MEMORANDUM

Prepared for

Department of Army
Los Angeles District Corps of Engineers
P.O. Box 2711
300 N. Los Angeles Street
Los Angeles, CA 90053

Prepared by

Simons, Li & Associates, Inc. 3901 Westerly Place, Suite 101 Newport Beach, CA 92660

SLA Project No. CA-COE-16 (R1029/N-57)

June 5, 1987

TABLE OF CONTENTS

		Page
LIST	OF FIGURES	iii
ı.	BACKGROUND	1
II.	DESCRIPTION OF SEDIMENTATION STUDY	2
III.	SUMMARY OF SANTA ANA RIVER SEDIMENTATION REPORT	3
IV.	REVIEW OF SEDIMENTATION ANALYSIS	6
	4.1 Qualitative Analysis 4.2 Bed Armoring Potential 4.3 Equilibrium Slope Analysis 4.4 Limiting Channel Slope Analysis 4.5 Sediment Discharge Relationships from Stream Gage Data 4.6 Sediment Yield from Canyon Reach 4.7 Sediment Transport Analysis Using HEC-6 4.8 Sensitivity Analysis	6 6 7 7
	4.9 Channel Maintenance	11
٧.	INDEPENDENT SLA ANALYSIS	12
	5.1 Sediment Routing	12 15 18 18

LIST OF TABLES

		Page
Table 5.1	Sediment Routing Summary	13
Table 5.2	Levee Toe Depth Evaluation	16

LIST OF FIGURES

		Page
Figure 4.1	Comparison of Computed and Measured Load at Ball Road Gage .	8
Figure 4.2	Sediment Inflow at Weir Canyon Road Computed Using HEC-6	10
Figure 5.1	Plan and Profile for Reach 10-12	14
Figure 5.2	Santa Ana River Profile	17

I. BACKGROUND

The Santa Ana River drains a large, arid watershed and conveys flood water through developed areas valued at many billions of dollars. The lower river is virtually dry most of the year but has experienced peak discharges of up to 327,000 cfs for the flood of January, 1882. The flood of 1938 had a peak discharge of approximately 100,000 cfs and its damage inspired major channelization efforts as well as the construction of Prado Dam. The next major flood occurred in January and February, 1969 and had a peak discharge of approximately 36,000 cfs. The floods of March, 1978 and February, 1980 also caused notable damage.

The Phase I GDM calls for significant improvements to the Lower Santa Ana River. From Weir Canyon Road to the Santiago Creek confluence, the plan calls for a soft bottom, trapezoidal channel with 18 to 24 inch riprap on the banks. From the Santiago Creek confluence to the San Diego Freeway, the channel will be trapezoidal with concrete sides and bottom. From the San Diego Freeway to the river mouth, the channel will be rectangular with concrete sides and a soft bottom. Since this portion of the river has historically been a reach of deposition, there is no need for lining the bottom of the channel.

II. DESCRIPTION OF SEDIMENTATION STUDY

The objectives of the sedimentation study for the Lower Santa Ana River design include the following:

- (1) Convey flood waters safely to the ocean without overtopping in the main stem or its tributaries.
- (2) Account for erosion of the river bed and banks durings a flood event.
- (3) Account for local scour at road crossings, tributary inflows, etc.
- (4) Estimate maintenance involved in removing large quantities of sediment in deposition reaches, especially near the river mouth.

Because of the relationship between hydrualics and sediment transport, it is important to incorporate their effects upon each other into the project design. In order to analyze this complex problem correctly and completely, the following approach was used by the Los Angeles Corps of Engineers.

- (1) Assess the behavior of the existing Santa Ana River using available data and historical accounts of previous floods.
- (2) Use measured data such as flood stages and sediment concentrations to determine the applicability of the HEC-6 computer program "Scour and Deposition in Rivers and Reservoirs."
- (3) Determine the response of the proposed project to the design flood using HEC-6. Areas of scour and deposition should, in general, correspond to historical events.
- (4) Use several qualitative and quantitative methods in addition to numerical modeling to perform sedimentation analysis to provide support for conclusions drawn.
- (5) Conduct a sensitivity analysis by varying parameters that have a large uncertainty such as roughness and sediment loading. Determine the effect of these variations on the computed solution.

This approach is thorough and systematic. It uses available historic data and uses several different analysis methods to verify the results. The following chapter is a summary of the results and procedures of the Phase II GDM sedimentation report for the lower Santa Ana River.

III. SUMMARY OF LOWER SANTA ANA RIVER SEDIMENTATION REPORT

The study was conducted by the Los Angeles District Corps of Engineers, Engineering Division, Hydraulics/Hydrology Branch. A summary of the Corps of Engineers' study follows.

The study reach starts from the river mouth at the Pacific Ocean and ends at Prado Dam approximately 31 miles upstream. From the ocean to river mile 23, the river is channelized with both concrete and revetted side slopes and a soft bottom. From river mile 24 to Prado Dam there is essentially a natural channel through what is known as the Santa Ana River Canyon. Santiago Creek is the main tributary and it enters at approximately river mile 11.

Data collection efforts turned up maintenance records that indicate the average annual sediment deposition in the study reach is 55,000 cubic yards per year. Aerial photos were available for 1982, 1974 and 1938. Bed material analysis indicates about 90% sand and 10% gravel. Channel surveys were performed after the 1978 and 1980 flood events. Project channel geometry was taken from the Phase I GDM. Streamflow data was recorded below Prado Dam, at Imperial Highway, at Ball Road and at Fifth Street. Suspended sediment measurements were also made at these gaging sites. The gage measurements were corrected to account for the unmeasured sediment load.

A qualitative analysis using the Lane relationship indicated the upper portion of the channelized project reach will experience aggradation; the area just upstream from the Santiago Creek confluence will remain stable; the all concrete reach will maintain its design invert elevation; and deposition will occur downstream from the San Diego Freeway. The results are shown in Table 2 of the Corps study.

An equilibrium slope analysis using Yang's equation yields general results similar to the qualitative analysis. It was determined that bed armoring would be unlikely to occur during the design flood due to the relatively small representative grain size. Table 4 indicated the armor grain size is between 10 and 70 mm. The dgs grain size however is 2 mm.

A limiting degradation slope was estimated using 4 different methods: Schoklitsch bedload equation, Meyer-Peter Muller bedload equation, Shields diagram and Lane's critical tractive force method. These methods yielded stable slopes of 0.000029, 0.0000029, 0.0000073 and 0.000004 respectively.

A relationship between sediment discharge and water discharge was developed. It incorporated all sediment sources in the canyon reach upstream from

the proposed project. Stream gage data was available for sediment loads for discharges up to 14,000 cfs. The computer program HEC-6 was used to estimate sediment loads for higher discharges. Tatum's method was used to estimate sediment yield from the watershed during a design storm. Bank erosion estimates were made by examining aerial photographs. The Pacific Southwest Interagency Committee method and the Flaxman method were also used to estimate sediment yield. A sediment yield rate of 1.64 acre-feet/square-mile/year was determined for the canyon watershed above the project reach. This compared well to reservoir deposition data indicating a 1.45 acre-feet/square-mile/year sediment yield rate at nearby Santiago Reservoir. An average annual sediment inflow of up to 132,000 cubic-yards/year was determined to enter the project reach. Note that this number includes sand, silt and clay sizes.

Sedimentation analysis was carried out using the Corps of Engineers computer program HEC-6 and a modified version known as H6NBS36. The geometric data covered the project inlet at Weir Canyon Road to its outlet at the Pacific Ocean. The program was calibrated using data from the flood of 1978. Yang's unit stream power method was used as a transport function in HEC-6. The calibration was performed by adjusting the Manning's n value of each section until agreement was obtained between computed and observed bed changes. The calibrated data set was verified using records from the 1980 flood. The bed changes were reproduced fairly well except for the reach downstream from the Santiago Creek confluence. In this reach, computed degradation was less than the degradation observed during the 1980 flood.

The data set for the project condition was developed from plans in the Hydraulic Appendix in the Phase I GDM. Grain size analyses were performed throughout the study area and a single representative grain size distribution was used (Plate 3). The project condition was evaluated using balanced hydrographs representing 10, 25, 50 and 100 year frequency flood events as well as the design event. The following roughness values were used for the project condition: n=0.02 for the downstream reach, n=0.015 for the concrete lined middle reach, n=0.025 for the unlined upper reach (drop structure reach). Form drag caused by bed forms was included in the development of n values.

The design flood was simulated for the project condition using the HEC-6 computer program. Two different inflowing load curves were used to encompass maximum and minimum streambed changes. The results indicate that deposition of

up to 2.2 feet will occur in the upstream reach. Deposition of up to 7.3 feet will occur in the downstream reach. The middle reach remained fairly stable. Note that all three reaches are channelized. A second simulation using clear water inflow indicated 6 to 8 feet of scour in unlined drop structure reaches. This worst case erosion scenario was used to estimate toe depths of lined banks.

A sensitivity analysis was performed to account for the uncertainties involved in sedimentation analysis. The Manning's n value was increased to 0.03 in all reaches but had only a small effect on computed bed changes. The D50 grain size of the bed material was increased from 0.5mm to 0.75mm but this also had little effect on the computed results. The reason for this is because all reaches with unlined channel bottoms experienced deposition thus bed grain size should have no effect upon solutions computed by HEC-6. A sand plug often forms at the Santa Ana River mouth during the summer months. The sand plug would wash out before the peak of the design flood. An antecedent flow of 5,000 cfs for 30 days resulted in twice as much deposition near the river mouth during the design flood event. A tidal elevation of 2.72 feet was used for the downstream boundary condition for the design event. Variations in the tidal elevation had little effect on the riverbed near the ocean.

The incremental probability method was used to compute the average annual sand outflow to the ocean and the average annual deposition in the project reach. The results indicated that 31,000 cubic yards of sand per year deposited in the project reach. The sand outflow to the beach was 36,000 cubic yards per year. From gage records, it was estimated that the sand outflow to the ocean is 80,000 cubic yards per year. It was estimated that the frequency of maintenance in the downstream reach would be approximately every 20 years. No maintenance is expected in the upstream or middle reaches.

IV. REVIEW OF SEDIMENTATION ANALYSIS

4.1 Qualitative Analysis

A qualitative analysis using the relationship

$$q_s D_{50} \alpha q S$$
 (4.1)

Where q_c = sediment discharge per unit width

 D_{50} = median sediment size

q = water discharge per unit width

S = channel slope

This relationship is based upon Lane's Work (see Reference 1). Section III B of the Phase II GDM states, "When sediment transport rate increases, degradation will occur and the bed slope will flatten. Conversely, a decrease in one of the right hand side variables will result in a decrease of the sediment transport rate; deposition will occur and the bed slope will steepen." The results shown in Table 2 (Evaluation of Qualitative Response of Santa Ana River) of the COE report are basically correct. SLA suggests that the sentence referenced above be modified to "When the sediment transport capacity increases, degradation will occur. When the channel slope decreases, aggradation will occur."

4.2 Bed Armoring Potential

Five methods were used to compute the particle size for which bed armoring would occur. The size ranged from 10 mm to 70 mm. Only a small amount of coarse material is available so bed armoring is not expected to be a dominant physical process in the project reach below Weir Canyon Road. Bed armoring may occur, however, in the canyon reach above the project, especially at lower sustained discharges. The impact will be to slow down bed erosion in the canyon reach. The COE analysis took into account the potential range of sediment supply and the corresponding slope changes. SLA concurs with the COE analysis.

4.3 Equilibrium Slope Analysis

Yang's unit stream power equation was used to compute the slope for which the bed would be stable. This analysis yields results that can be expected under normal flooding and sediment supply conditions. This is sometimes referred as "dynamic equilibrium" condition. The results generally agree with the qualitative analysis.

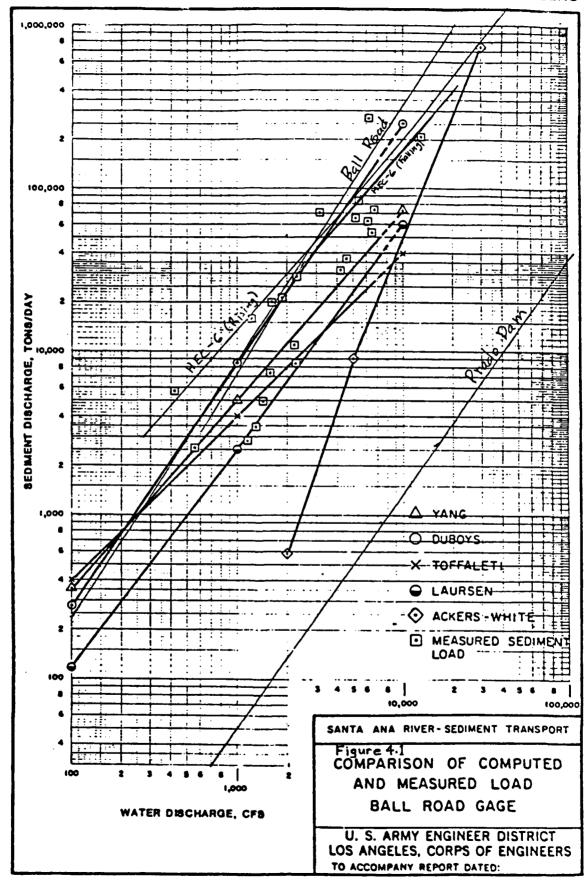
4.4 Limiting Channel Slope

The stable slope is estimated based upon incipient motion criteria for a given particle size and represents a situation that may occur if there is little or no inflowing sediment load. This is sometime referred to as "static equilibrium" condition. A stable slope was computed using four different methods. The design discharge was used to compute the expected bed shear. The stable slope ranged from 0.000004 to 0.000029. This is substantially less than the existing average channel slope and could result in general degradation of up to five feet. SLA concurs that this is a conservative estimate of bed erosion and can be used to estimate toe down on bank lining.

4.5 Sediment Discharge Relationships from Stream Gage Data

The USGS measurements were corrected to exclude wash load and to include an estimate for the unmeasured load. Figure 4.1 shows a comparison of the measured sediment load at Ball Road to load curves predicted by various analytical methods. The inflowing load computed by HEC-6 agrees quite well with measured data. Since there are no sediment or discharge gaging stations at the river mouth, SLA agrees with the COE procedure to use the Ball Road gage to estimate sand outflow to the coast.

4.6 Sediment Yield from Canyon Reach

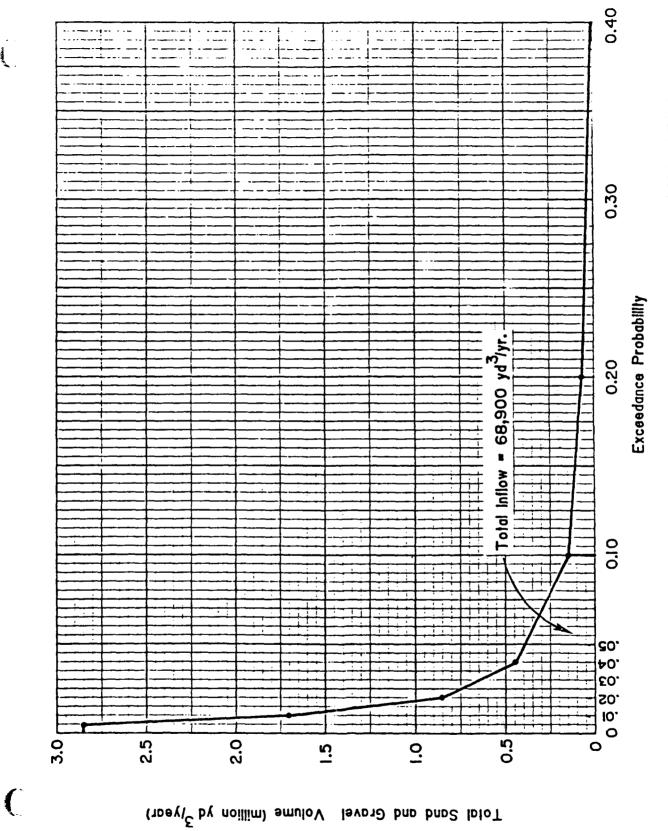

Several techniques were used to estimate the average annual sediment yield from the canyon reach which is just upstream from the project inlet. The Pacific Southwest Interagency Committee (PSIAC) method gave a sediment yield of 1.64 acre-feet/square-mile/year. The contributing drainage area is 42 to 50 square miles. The average annual sediment inflow to the project reach is 108,000 to 132,000 cubic yards/year. The sediment yield estimate based on deposition data from a nearby reservoir indicate a sediment yield rate of 1.45 acre-feet/ square-mile/year. The PSIAC method gives the total sediment yield. The sand yield ranged from 43,200 to 52,800 cubic yards per year. SLA finds that the results of the PSIAC method are resonable based on comparison with the reservoir data.

4.7 Sediment Transport Analysis Using HEC-6

The input data set for HEC-6 was adjusted to reproduce the flood of 1978. The method used was to change the n values until computed bed changes matched

U. S. ARMY ENGINEER DISTRICT

CORPS OF ENGINEERS



the observed changes. A separate HEC-6 data set was used to reproduce the flood event which occurred in 1980. Although there were slight changes in the channel geometry, the river characteristics were similar during the 1978 and 1980 flood events. The second computer simulation revealed that HEC-6 underestimated the severe degradation that occurred downstream from the Santiago Creek confluence during the 1980 flood. It did, however, reproduce the depth and location of the initial degradation (downstream from Fairview St. Bridge). SLA agrees with the Phase II GDM requirement for complete lining of this reach because both observed and computed data indicate that bed degradation would occur if it was unlined. The successful reproduction of the two aforementioned flood events indicate that HEC-6 is an appropriate simulation tool for this flood event.

The Yang equation for total sediment load was used throughout the study. This procedure assumes that the amount of sediment transported is proportional to the unit stream power (the product of the average velocity and the energy slope). This equation was developed by using numerous laboratory and field data pertaining to sand size and the unit stream power is a key parameter in determing the transport capacity. As long as the physical conditions occur near the range of data from which the equation was developed, the results will be reasonable. Plate 9 (Comparison of Computed and Measured Load, Ball Road Gage) of the Phase II GDM indicates that of all the relationships available in HEC-6, the Yang equation fits the observed data the best. SLA concurrs with this choice.

A table should be included that lists the n values used for each reach for each of the various runs. The source of the value should also be listed (either from calibration or from estimation). Any other calibration parameters used in the study should also be displayed in a table. SLA concurs with the values of Manning's n used for the HEC-6 analysis in this study.

Figure 4.2 shows a plot of total sediment volume vs. exceedance probability. The curve was developed by computing the sediment inflow to the project reach for each flood hydrograph using the transport relationships from the HEC-6 analysis of the canyon reach. Using the incremental probability method indicates that the average annual sediment inflow for the project reach is 68,900 cubic yards per year. This is slightly more than the estimated sand yield from the canyon reach of 43,200 to 52,800 cubic yards per year. The deposition (31,000 yd3/year) plus sand outflow (36,000 yd3/year) for the project condition was very close to the HEC-6 inflow volume of 68,900 cubic yards. An HEC-6 analysis for existing conditions may give more insight into the impacts of the project on sand delivery to the beach. Comparing the computed results for project

-

Figure 4.2 Sediment Inflow at Weir Canyon Road Computed Using HEC-6.

conditions to the observed measurements for existing conditions may not give an accurate picture of the potential project impacts. For example, the Draft Phase I GDM for the Santa Ana River states that slightly more sand will reach the ocean under project conditions (page 58). The source of this conclusion is not known but SLA recommends that additional analysis for the sand outflow estimates would be worthwhile.

4.8 <u>Sensitivity Analysis</u>

A sensitivity analysis was performed to test the reliability of the HEC-6 numerical simulations. It is possible that n values could be 0.03 or higher if vegetation is allowed to grow in the channel. This case was tested and found to have only a minor effect on sediment transport behavior. Other factors tested were bed-material gradation, the formation of a sand plug at the river mouth, the effect of a significant antecedent flow before a flood event and the effect of changing the tidal boundary condition. The only factor that had a large effect on sedimentation behavior was the presence of a significant antecedent flow which resulted in a change initial bed condition. This is an important facet of the study because the presence of a dam upstream usually results in a decrease of peak flood discharges and a substantial increase in the duration of a flood. The hydraulic design was performed using the maximum amount of deposition expected during an event. This accounts for the additional freeboard necessary when there are sand deposits on the bed. SLA finds the sensitivity analysis to have been performed appropriately.

4.9 Channel Maintenance

The allowable sediment deposition gradeline is shown in Plate 14 (Upper Sediment Level). The COE estimates that the channel will reach this level about every 20 years. SLA fines this reasonable based upon the estimated average annual sediment deposition of 31,000 cubic yards per year.

V. INDEPENDENT SLA ANALYSIS

In order to check the results obtained by the Corps of Engineers, Simons, Li & Associates performed some additional analysis. A brief description follows:

5.1 Sediment Routing

The Meyer-Peter, Muller bedload equation along with a modified Einstein integration procedure was used to estimate the total sand transport capacity of the river. The river was divided into 20 reaches of similar hydraulic characteristics. Depths and velocities for the design discharge were provided by the Corps of Engineers. Table 5.1 shows the computed sediment transport results. The change in sediment transport capacity divided by the reach length and bottom width yields the rate of deposition or scour. The upper reach has a transport capacity of approximately 1 million tons per day at the design At station 745+40, near Katella Avenue, the design velocity decreases due to a change in slope. This causes the transport capacity to drop to about 650,000 tons/day. The computations indicate that deposition will occur at the design discharge for this reach (reach No. 11). Reach number 10, downstream from the Katella Avenue reach, indicates that scour will occur at the design discharge. This is because the transport capacity is greater than the amount of sediment supplied by the reach just upstream. Although the design slope of this scour reach is the same as the deposition reach just upstream, the channel width decreases so the design velocity increases. Figure 5.1 shows a plan and profile view of the river section discussed here. The channel is likely to develop a new equilibrium slope in reach number 11 after 1 to 2 feet of deposition occur. This will slow down the general scour in reach number 10. The transport capacity in the fully lined reaches (numbers 5 and 6) seems sufficiently high to prevent deposition. Reaches 1 through 4 indicate deposition. In general, SLA finds this analysis to agree with the HEC-6 results for the project condition. SLA suggests that the potential deposition in Reach 11 and the potential scour in reach 10 should be further evaluated.

TABLEST SEDIMENT ROUTING SUMMARY

					AVERAGE	AVERAGE	AVERAGE	TRANSPORT	BED
REACH	STATION	DESCRIPTION	Q	CHANNEL	DEPTH	VELOCITY	HIDTH	CAPACITY	CHANGE
NYBR.	NUMBERS		(CFS)	SLOPE	(FT)	(FT/SEC)	(FT)	(TON/DAY)	(FT/DAY)
1	8+38 TO 146+32	PACIFIC O	46588	8.66126	11.9	8.6	485	666136	EQUIL
2	146+32 TD 191+85	ADAMS AVE	46666	6.88664	13.5	9.3	365	642928	+1.2
3	191+85 TO 248+65		46866	6.56564	18.1	18.6	246	889936	+2.8
4	248+66 TO 273+66	S.D. FWY	46868	£.56182	11.4	11.4	246	1128324	+6.3
5	273+66 TO 398+66	EDINGER AV	- 46888	8.56266	14.8	16.3	268	4342358	CLEAN
6	398+86 TO 525+38	17TH ST	46556	6.86275	14.6	15.1	216	3447692	CLEAN
7	525+38 TO 688+75	GON GRY BL	42666	6.66199	12.9	11.4	366	1447648	-2.5
8	688+75 TO 644+36	S ANA FLY	42666	8.56172	13.3	18.7	366	1187687	-6.5
9	644+36 TO 689+35	ORNGLID AVE	41886	6.66168	13.1	18.6	366	1657388	-1.4
18	689+35 TO 716+88	ORANGE FWY	45669	6.66194	13.3	18.2	296	912874	-4.2
11	716+88 TO 745+48	KATELLA AVE	46666	6.66194	12.7	9.1	344	655278	+6.4
12	745+48 TO 818+98	BALL ROAD	46666	8.66216	11.5	18.6	346	1168328	EQUIL
13	816+96 TO 843+96	LINCOLN AV	46666	6.66269	11.4	18.2	348	1668455	EQUIL
14	843+98 TO 891+48	GLASSELL	38666	6.66221	18.7	18.4	348	1877819	EQUIL
15	891+46 TO 914+85	AT&SF RR	38886	8.66223	18.6	18.5	348	1118608	EQUIL
16	914+85 TO 977+98	RVRSIDE FHY	38886	8.86228	18.6	18.6	346	1168898	EQUIL
17	977+96 TO 1631+76	TICATER YAE	38000	8.68217	18.6	18.5	348	1115251	EQUIL
18	1831+78 TO 1186+3	6 IMPRL HAY	38886	8.55197	11.6	18.5	318	1633186	EQUIL
19	1186+38 TO 1156+3	8	38888	8.56171	11.9	15.2	318	968588	+2.4
28	1156+38 TO 1283+5	S LEIR CYN	38666	8.88213	11.2	18.9	318	1281188	EQUIL

NOTES:

BED CHANGE BASED ON BED HIDTH AND REACH LENGTH
"EQUIL" INDICATES THAT SEDIMENT INFLOH AND OUTFLOH IS
APPROXIMATELY BALANCED.

"CLEAN" INDICATES A FULLY LINED REACH IN WHICH NO DEPOSITION OCCURS.

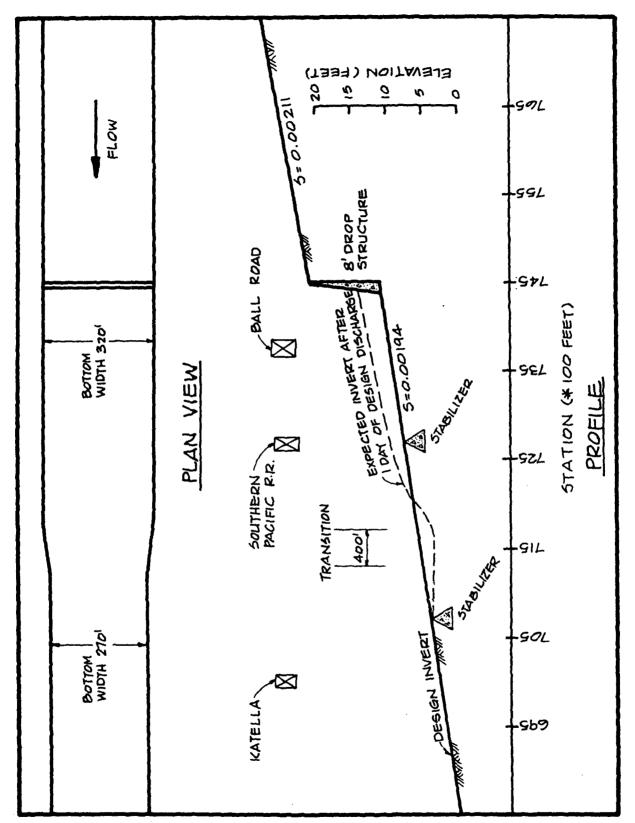


FIGURE 5.1 PLAN AND PROFILE FOR REACH 10-12

5.2 Toe Depth of Channel Lining

The following design criteria were employed to obtain the toe depth of the channel bank lining.

Situation	Toe Depth (ft)
Near Drop Structures	15
Near Stabilizers	10
Near Bridges	5 to 8
Drop Structurs Reach	5 to 8
Coastal Reach (STA 0+00 to 150+30)	8 (rip rap), 20 (cut off wall)
Golf Course Reach (STA 535+00 to 565+00)	5

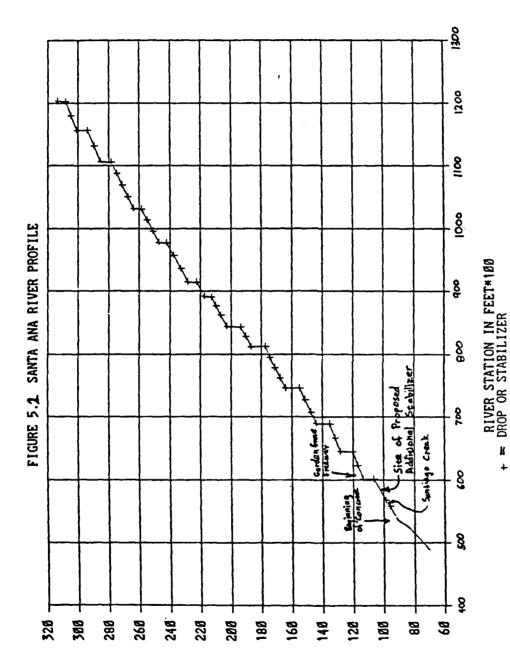
In general, a conservative estimate of toe depth is the sum of degradation, general scour, local scour and a safety factor of about one foot. Degradation and general scour can be estimated by an equilibrium slope analysis or by incipient motion criteria. The latter gives the more conservative value. For the channelized section, the local embankment scour due to the angle of attack is minimized, thus the local scour can be estimated as one-half of the antidune height which is 88% of the velocity head (Sediment Transport Technology, by D.B. Simons and F. Senturk, 1977, p. 230).

The degradation and general scour were computed in Table 5 (Stable Slope) of the Phase II GDM. These computed slopes are essentially flat. If a flat slope was extended upstream from each drop or stabilizer, the maximum amount of degradation in any reach is shown in Table 5.2. The general scour is insignificant because there are no abrupt channel width restrictions. average velocity of 12 feet/sec, the local scour is about 2.2 feet. The total expected scour is shown in column 7 to Table 5.2. The design toe depth at the point of maximum degradation is shown in column 8. The difference between estimated and design toe depths is shown in column 9. Negative values indicate the toe depth is underdesigned at that location. Although the levee toe depths are, in general, adequate, some minor changes should be made. The only area of concern is the drop structure at Station 600+75 (near Garden Grove Freeway). The calculations indicate 7.9 feet of degradation which is well below the toe depth of 5 feet. SLA recommends an additional stabilizer at approximately Station 584+00 (see Figure 5.2) along with an increase of maximum levee toe depth to 7 feet in this reach. The sediment routing in Table 5.1 indicates that this is a reach of scour so the suggested design modification is appropriate. The stabilizer at Station 558+00 appears to be underdesigned but in reality since the channel uses the Riverview Golf as an overbank in this reach the design velocity is lower and thus the scour potential is small.

TABLE 5.2 LEVEE TOE DEPTH EVALUATION

(1)	(5)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			PART I TUE	PAX I PURI	SWETY	TOTAL	DESIGN	OESION
PCITATE	DESCRIPTION	ELEVATION	CHERN	LOCAL	FACTOR	SCOLE	TOE	RINS
(f7+1E8)		(FT)	SCOUR(F1)	SCOUR(FT)	(FT)	(FT)	-	ESTIPATE
						• • •		Carmane
	PROP STRUCTURE	313.58	N/A	NA	N/A	N/A	N/A	
	AT WELR CHANGE MED	364.56	3.56	2.2	•	6.76	18,5	3.38
	STABIL TZER	385 . 88	4.66	2.2	1	7.20	11.0	3.88
	PROP STRUCTURE	381.00	M/A	R/A	RVA	WA	WA	5.00
	NO LANGHARK)	294.06	4.38	2.2	1	7,58	16.6	2.58
	TABILIZER	209.76	4.26	2.2	1	7.48	7.6	-6.44
	NOP STRUCTURE	285.58	N/A	R/A	R/A	N/A	NA	8.88
	NO LANGHANK)	278.58	3.60	2.2	1	6.86	7.6	6.26
	TABILIZER TABILIZER	274.98	3.64	2.2	1	5.84	6.5	-1. ↓4
	7451L12ER	271.26	3.76	2.2	1	6.96	8.5	-6.46
	ROP STRUCTURE	267.58	3.65	2.2	1	6.83	7.5	0.17
	AT SPERIAL NAV)	263.07	WA	N/A	N/A	N/A	N/A	5.00
1013.50 \$		258.87	3.87	2.2	1	7.87	6.5	-0.57
	ABILIZER -	255.00	3.60	2.2	1	7.86	6.5	-1.50
	ROP STRUCTURE	251.26	5,91	2.2	1	7.11	7.6	-0.11
	AT LAKEVIEW MED)	247.29	NA	R/A	N/A	NA	N/A	1.66
	ABILIZER	242.29	4,69	2.2	1	7.89	7.6	-0.09
935.85 51		257.68	4.68	2.2	1	7.98	7.6	-6,06
	OP S'AUCTURE	255.00	4.57	2.2	1	7.77	1.1	0.23
	T TUSTIN AVE)	228.43	N/A	N/A	N/A	N/A	N/A	1.00
	OP STRUCTURE	222.45	5.85	2.2	1	€.23	1.6	-0.23
	T ATESE RAILROAD)	217.48	WA	N/A	N/A	R/A	N/A	1.20
876.77 51		215.66	2.96	2.2	1	5, 16	5.5	5.46
962.15 ST		216.16	3,18	2.2	1	6.36	6.5	F. 26
	OP STRUCTURE	297,06 262,90	4, 18	2.2	1	7.36	7.5	1.25
	T GLASSELL)	194.66	N/A	N/A	WA	RVA.	NA	P. 80
028.50 ST			3.50	2.2	1	6.78	7.5	6.36
	OP STRUCTURE	198.58 167.66	3.SE	7 2	1	6.78	7.8	2.30
	T LINCOLN AVE)	177.58	N/A	N/A	WA	N/A	N/A	8.86
794.50 ST		174.68	2.90 3.50	2.2	1	6.16	7.6	5.96
778.48 ST		171.18	3.50 3.50	2.2	1	5.78	¥.5	₩.2
761.98 ST		167.64	3.50 3.50	2.2	1	5.75	4.5	-1.21
	P STRUCTURE	164,16	N/A	2.2		6.79	7.5	8.36
	EAR BALL ROAD)	155.00	3.56	N/A	N/A	N/A	M/A	F. 86
727.60 514		151,50	3.50	2.2	1	6.78	7.8	8.34
707.00 57		147,68	3.30	2.2 2.2	1	7.10	7.6	-0 .10
\$89.65 OR:	P STRUCTURE .	144.34	N/A	R/A	1	6.54	8.5	F. 86
	AR CRINCE PLAY)	135.30	3.34	2.2	WA	N/A	M/A	8. 24
647.#I ST	WILIZER	152.00	3.70	2.2	1	6.50	6.5	5.M
644.55 DR	P STRUCTURE	126.56	WA	WA	T N/A	6.98	7.8	8.16
644.56 (AT	CHAPTAN)	120.36	3.26	2.2	1	N/A	N/A	1.20
622.50 ST/	BILIZER	117.18	3.76	2.2	i	1. 4	7.6	1.60
	P STRUCTURE	113.4	R/A	N/A	N/A	6.96	7.6	8,16
	GARGEN GRY FLY)	165.44	7.98	2.2	7/4	N/A	RVA	4.00
\$67.56 \$14		90.50	2.54	2.2	1	11.16	5.0	-6.16
SSE.M STA		96.80	5.00	2.2	1	5.76	10.0	4.30
535.80 EC	IN CONDIETE CHIL	91.00	R/A	R/A	N/A	E.D AVA	5.0	-3.20
	TRANSITION	M.M	NA	R/A	N/A	N/A	N/A	1.86
405.00 DEA	DE DWEE	78.00	NA	N/A	N/A	N/A	N/A	1.20
NOTES:					·	~~	R/A	8.24
11 055104	TOE PERTY 10 42 42							

NOTES:


1) DESIGN TOE DEPTH IS AT POINT OF PARTIPLE GENERAL SCOUR

2) LOCAL SCOUR IS 888 OF THE VELOCITY HEAD

3) COLUMN (5): RECATIVE VALUE INDICATES UNDERDESIGN

4) MAI INDICATES THE UPSTREAM STATION OF A DROP STRUCTURE

5) GENERAL SCOUR IS COMPUTED USING A MORIZTAL (5-8.8) SLOPE

ELEVAION IN FEET

5.3 Limiting Deposit Velocity

To insure that the concrete lined channel reach remains clean, flow velocities should be higher than the limiting deposit velocity V_L . The ASCE Sedimentation Engineering Handbook (Reference 4) page 262 indicates that the deposition Froude number F_d should be at least 1.3

$$F_{d} = V_{L}/\sqrt{qD} \tag{5.1}$$

Where V_L is the average channel velocity that prevents sand deposition and D is the hydraulic depth. In the completely lined reach, the typical velocity is about 22 ft/sec and the typical hydraulic depth is 9 feet. The value of F_d for these quantities is 1.29 so the channel should remain clean. SLA finds the design limiting deposit velocity to be reasonable.

5.4 Summary

The configuration of drop structures and bed stabilizers will insure a stable channel for the upper reaches. The concrete channel is of adequate length and slope to prevent scour and excessive deposition. SLA finds the COE sedimentation study to be thorough and complete, resulting in an effective design for the Lower Santa Ana River.

ADDENDUM REPORT TO THE SEDIMENT TRANSPORT ANALYSIS LOWER SANTA ANA RIVER

CONTENTS

		Page
1. 2. 3. 4.	General Revised Channel Features Study Approach Results of the HEC-6 Analysis	1 1 2 2
1 A.	TABLE Sediment Yield for Various Floods	3
	PLATES	
1A. 2A. 3A.		

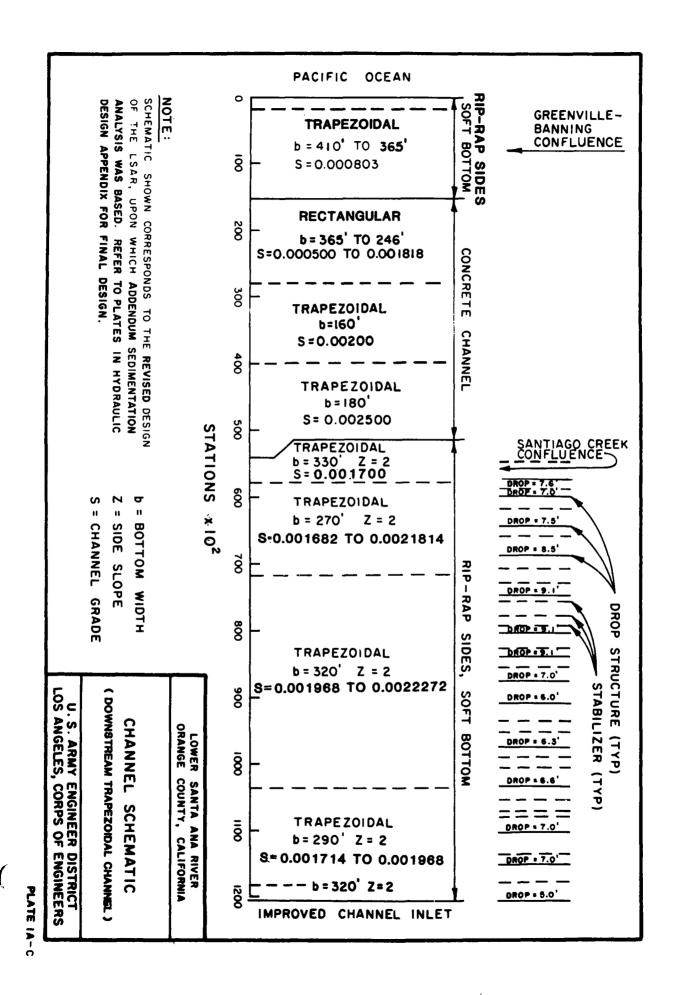
- 1. General: A detailed sediment transport analysis was conducted in support of the Phase II General Design Memorandum (GDM) using the channel configuration shown in the Phase I GDM. Subsequent to that report (referred to in text as the main report) and the independent review, the channel configuration in the concrete and channel ocean reach was changed from a rectangular channel to a trapezoidal channel. As a result, a sediment transport analysis using HEC-6 was deemed necessary to predict channel bed profiles for the design flood and to determine the average annual channel deposition and sand outflow. This report describes the sediment transport analysis and the results for the trapezoidal channel design. This report is appended as part of the sediment transport main report found herein, since it covers only the changes to the Phase II design.
- 2. Revised Channel Features: The redesign of the channel extends from the Pacific Ocean upstream to and including the channel through the Riverview Golf Course. The differences in channel design from the Phase I GDM configuration consist of: changing to a trapezoidal channel from the river mouth upstream to Station 150+00 and in the reach from Station 273+00 upstream to Station 600+73, with base widths varying from 160 feet to 410 feet and side slopes of 1 vertical on 2 horizontal; lowering the channel invert in the reach from Station 460+00 upstream to just upstream of the confluence with Santiago Creek; adding a drop structure and invert stabilizer in the golf course reach; and lowering the crest of the drop stucture located at Station 689+85. A detailed discussion of the project features is presented in the hydraulic design report.
- 3. Study Approach: The impact to the results shown in the main report are the HEC-6 results which established the design deposition slope, design of the levee toe depths, and the determination of the average annual deposition and sand outflow. Sediment transport in the improved channel reach, including the revised trapezoidal channel, was simulated for the design flood and for the 10-, 25-, 50-, and 100-year floods. Two different inflowing sediment load curves were used for the design flow simulation to bracket the bed changes, that is, deposition in the case of high sediment inflow and scour in the case of reduced sediment inflow. The analysis with HEC-6 was streamlined to use only those program parameters that were sensitive to the changes in bed elevation during the design event. The results from the HEC-6 sensitivity analysis indicate the that bed changes were sensitive to the initial channel geometric condition and the antecendent flow hydrograph. To provide a worse case scenerio for the initial geometric condition the channel invert data in HEC-6 for the design flood simulation was adjusted to the upper grade limit established in the main report (see pl. 14 main report). For the design flood scour analysis and the more frequent flood analyses, the channel invert data was set at the design invert (see pl. 3A). In the design flood analysis conducted in the main report, the design hydrograph was combined with an antecedent flow hydrograph of 5,000 cfs for 38 days. The purpose was to represent a worse case flood scenerio. This combined hydrograph, however, was overly conservative and would not be representative of the project release schedule for Prado Dam. To account for the possibility of a flood preceding the design flood, the 1969 flood, which was a major flood event, was selected. The 1969 flood was routed through Prado Dam to provide the project condition antecendent flood hydrograph. The 1969 flood was then followed by the design flood to represent a worse case flood scenerio.

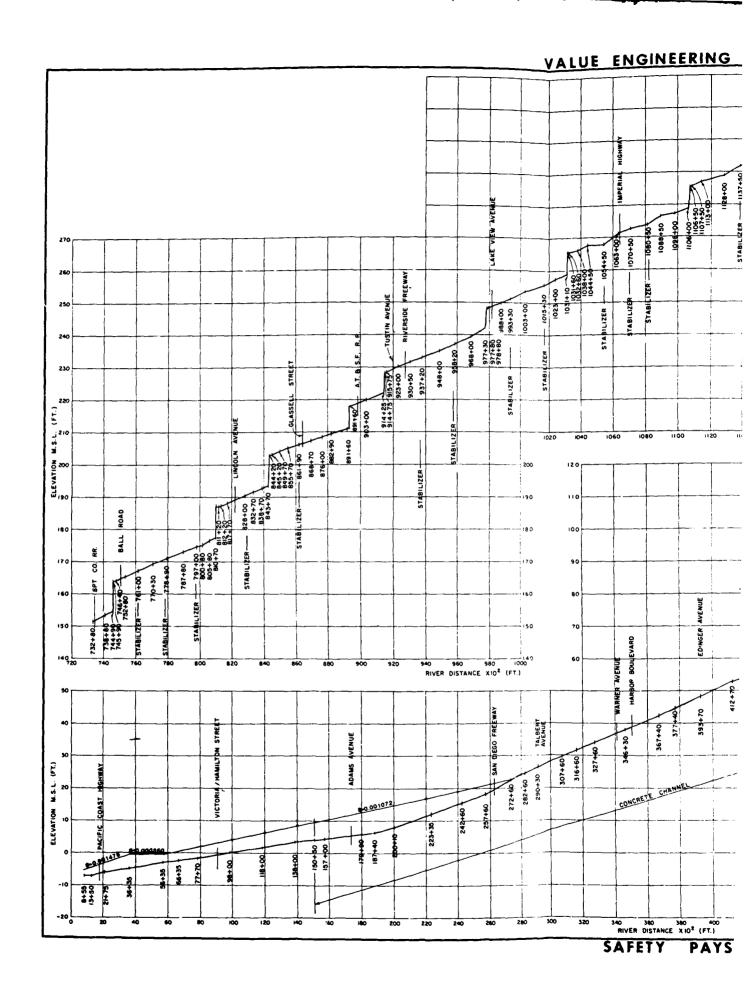
Other program parameters discussed are the Manning's "n" value, the tidal hydrograph, and the bed material gradation. The Manning's coefficient "n" was set in accordance with those values used in the original analysis, n=0.02 in the channel ocean reach, n=0.015 in the concrete channel reach, n=0.025 for the drop structure reach, and checked for sensitivity by assigning a high "n" value of 0.03 in all reaches. The HEC-6 analysis using a tidal hydrograph or an increase in bed material gradation was not conducted because both were found to be insensitive to the channel bed deposition at the peak of the design flood. This study considered only the detailed sediment routing analysis using HEC-6 for which the results are presented in subsequent paragraphs.

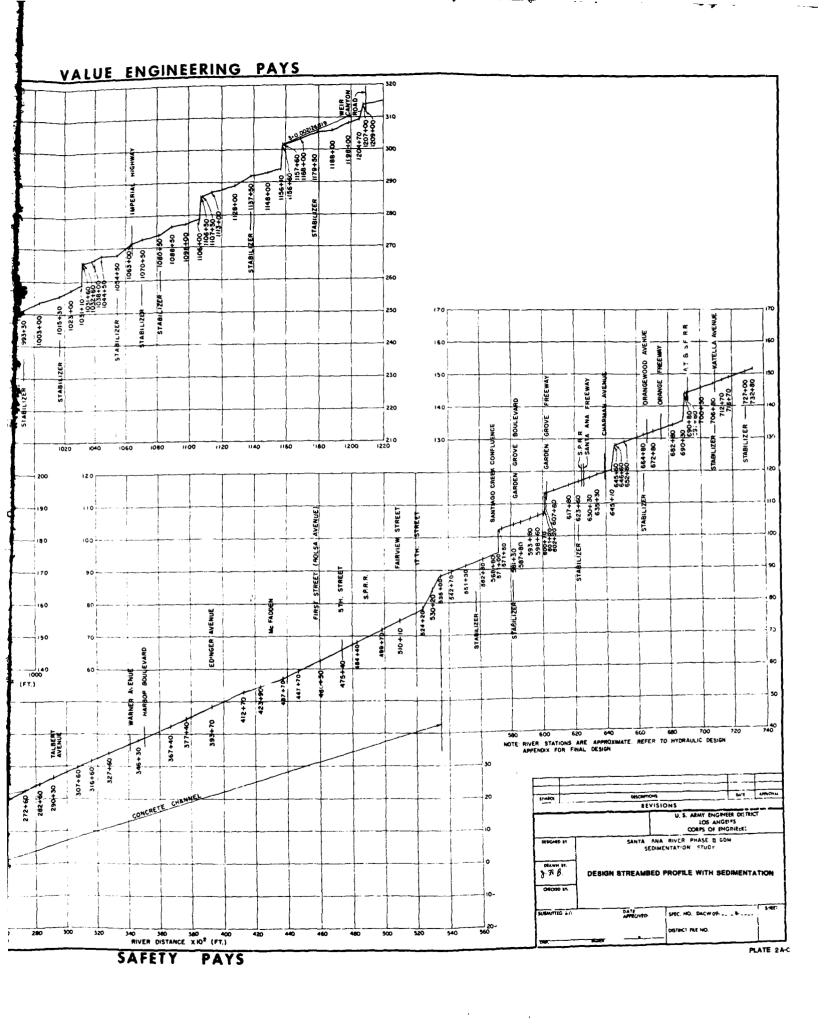
4. Results of the HEC-6 Analysis

4.1 Design Flood: The HEC-6 analysis was conducted by initially setting the streambed at the upper grade limit, and computing bed changes using the combined hydrograph of the 1969 flood followed by the design flood. The results of the HEC-6 computations of the streambed profile for the combination antecedent flow and design flood are reasonable in the trend prediction. The bed change results were depicted at the peak of the design flood hydrograph. The maximum water surface elevation in the channel, including the bed change, also occurred at the peak of the design flood hydrograph. The results are similar to the results found with the Phase I channel configuration. However, the location and quantity of the depositional bed change for the case of high sediment inflow in both the channel ocean reach and the downstream portion of the concrete reach were slightly different. To represent the general magnitude of deposition, a deposition design profile was developed that encompassed the bed changes. The deposition design profile starts at Station 272+60 at elevation 23.0 feet NGVD, extends downstream at a slope of 0.001072 to Station 56+35. At Station 56+35, the deposition profile breaks slope to 0.00035 and continues downstream to Station 36+35. At Station 36+35, the deposition profile again breaks slope to 0.001478 and continues downstream to the ocean outlet at river mouth Station 8+55 at elevation -5.0 feet NGVD. This deposition design profile was also analyzed for sensitivity by applying a higher "n" value of 0.03 in all reaches in the HEC-6 model. The results indicated that the depositional bed change was below the depositional design profile at the peak of the design flood. No significant bed change occurred in the concrete reach upstream of Station 272+60 to the concrete inlet and in the revised channel in the golf course reach. The results obtained in the drop structure reach, including the lowered drop structure at Station 689+85, were the same as shown in the main report (see pl. 11). Plates 2A and 3A display the design streambed profiles with and without sedimentation, respectively, over the entire reach from the Pacific Ocean to the improved channel inlet upstream of Weir Canyon Road bridge. Using the combination of the deposition design profile in the reaches of aggradation with the design invert slopes in the other reaches, the design water surface profile was computed and the levee heights were determined as described in the hydraulic design report.

The HEC-6 analysis for the other design case of levee toe depth was performed for just the trapezoidal channel downstream of the concrete channel inlet. The HEC-6 analysis was conducted by setting the inflowing sediment load to zero at the concrete channel inlet. The HEC-6 results for general degradation in the channel ocean reach were slightly greater that the results

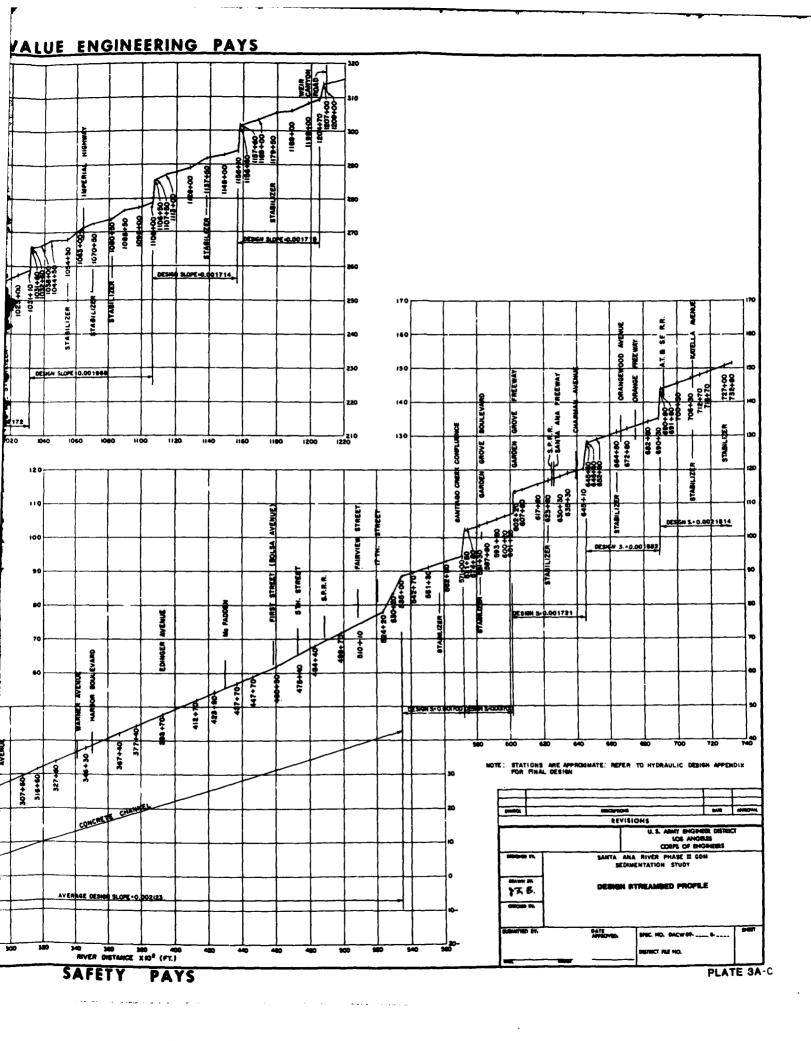

of the Phase I configuration. The maximum general degradation was about 9 feet below the design invert in the portion of the channel ocean reach just downstream of the concrete channel. Based on these results, the levee toe depths were increased from 6 feet to a minumum of 10 feet below the design invert for the entire length of the earth bottom channel ocean reach. The levee toe analysis and results for the drop structure reach can be found in the main report.


4.2 Average Annual Deposition and Sand Outflow: The average annual deposition and sand outflow was analyzed for the trapezoidal channel using the incremental probability method. The method was applied in the HEC-6 analysis for the design flood, 100-, 50-, 25-, and 10-year floods to determine the volume of deposition and sand outflow for each flood. Table 1A summarizes the deposition and sand outflow quantities.


Table 1A. Sediment Yield for Various Flood Downstream Trapezoidal Channel.

Flood (year)	Sediment Deposition (x1000 yd ³)	Sand Outflow (x1000 yd ³)
170	1,590	2,222
100	762	441
50	447	244
25	234	141
10	79	14
nnual	37	30

The results indicate an increase in the average annual deposition from 31,000 cubic yards for the Phase I channel configuration to 37,000 cubic yards for the trapezoidal channel. The results also show a decrease in the average sand outflow from 36,000 to 30,000 cubic yards. Using the upper grade limit with a corresponding volume of 660,000 cubic yards, sediment will have to be removed from the downstream channel reach on an average of once every 18 years. It should be noted that because the annual volume of water/sediment can vary significantly, the average annual deposition rate and maintenance are considered long term averages. No sediment removal maintenance is anticipated in the concrete reach upstream of Station 223+35 and in the drop structure reach, including the golf course.



SAFETY

PAYS

RECREATION

RECREATION APPENDIX to the PHASE II GENERAL DESIGN MEMORANDUM SANTA ANA RIVER MAINSTEM FEATURE

Counties of Orange and Riverside Cities of Newport Beach and Huntington Beach, California

U.S. ARMY ENGINEERING DISTRICT LOS ANGELES, CALIFORNIA

APPENDIX D

CONTENTS

		Page
ī.	INTRODUCTION	D-I-1 D-I-1 D-I-2 D-I-2 D-I-2
II.	DESCRIPTION OF PROJECT AREA. Biological and Ecological Features and Resources. Climate Topography. Geology and Soil Characteristics. Access and Circulation. Operational Limitations.	D-II-1 D-II-1 D-II-2 D-II-2 D-II-2 D-II-2 D-II-3
III.	RECREATION MARKET AREA Boundaries/Region Served Socio-Economic Characteristics	D-III-1
IV.	RESOURCE USE OBJECTIVES Definition Basic Objectives Resource Use Objectives	D-IV-1 D-IV-1 D-IV-1 D-IV-2
٧.	RECOMMENDED PLAN OF PHYSICAL DEVELOPMENT	D-V-1 D-V-1 D-V-1
VI.	COORDINATION WITH OTHER AGENCIES. Federal Agencies	D-VI-1 D-VI-1 D-VI-1 D-VI-1 D-VI-2 D-VI-2

Contents (Continued)

	Page
VII.	MANAGEMENT AND COST SHARING D-VII-1
/III	ENVIRONMENTAL QUALITYD-VIII-1
IX.	COSTS
	Tables
D-1.	Projected Population in Lower Santa Ana River Market Area
D-2.	Potential Trail Demand for Lower Santa Ana River Market Area for Summer Season
D-3.	Maximum Use During Peak Summer Season for Lower Santa
D-4.	Ana River D-III-5 Recreational Development Cost Estimate D-IX-2
	Plates
1. 2. 3. 4.	Lower Santa Ana River/Santiago Creek Regional Parks and Trails Plan Proposed Recreation PlanSanta Ana Canyon Typical Trail Section on Top of LeveeBike/Equestrian Bike Trail on Top of Bridge at Pacific Coast Highway Trail Details

Attachments

1. Draft Cost Sharing Agreement

I. INTRODUCTION

1-01 The following text details the background and authority, purpose, scope, and basic assumptions of this appendix.

Background and Authority

- 1-02 A "Review Report for Flood Control, Santa Ana River, Mainstem", dated December 1975, was prepared by the Los Angeles District, Corps of Engineers. It presented a plan of trails and other recreation facilities to be developed with the proposed Santa Ana River flood control project.
- 1-03 Subsequent to the Review Report was the preparation of the Phase I General Design Memorandum. The purpose of the Phase I General Design Memorandum was to examine the 1975 Review Report and to affirm the validity of the previous plan in light of current conditions and criteria, or to re-formulate the plan as required by such conditions and criteria. Nearly 5 years had elapsed since the Survey Report study conclusions had been made.
- 1-04 The initial study of recreation potential for the Santa Ana River Mainstem, Santiago Creek, and Oak Street Drain was authorized by the Federal Water Project Act of 1965, and as required by the Federal Water Project Recreation Act of 1965, Public Law 89-72, whereby full consideration must be given to the opportunities for public outdoor recreation afforded by the water resource development project. The Water Resource Development Act of 1976, Section 109, authorized the Phase I advanced engineering and design for the Santa Ana River Project. The Phase I General Design Memorandum, including recreation as a project purpose was submitted in September 1980, and approved in January 1982. The recommended plan for recreation development proposed for the Santa Ana River Mainstem and Santiago Creek was found to be economically justified and desirable. Authorization for construction of the Santa Ana River Mainstem Project, including Santiago Creek, was contained in the Water Resource Development Act of 1986.

į

Purpose

1-05 The purpose of this appendix is to identify the recreational and environmental resources along the mainstem of the Santa Ana River Flood Control Project, present public use projections, and show the level of recreational development appropriate to accommodate the anticipated use. The appendix will also serve as a general guide to the orderly and coordinated development and management of the environmental resources of the project lands. Cost estimates for the proposed recreation facilities are provided. The Santa Ana River Flood Control project has been authorized as a local protection project and as a result no Master Plan will be prepared. The information contained in the Phase II General Design Memorandum is considered sufficient for the preparation of plans and specifications.

Scope

1-06 The coverage of this appendix is limited to specific information required to insure an understanding of the basic recreational and environmental resources inherent within the Mainstem Feature of the Santa Ana River Flood Control Project. The information provided consists of the demographic characteristics of the project area; topographical, geological and ecological features; a narrative description of existing and proposed recreational facilities, market area analysis, projected development costs, and coordination activities involving other agencies. The intent of this appendix is to present a plan for the public use of project lands that is compatible with the preservation of existing environmental resources.

Basic Assumptions

1-07 The Corps participation along the mainstem of the Santa Ana River for recreation improvements is limited to lands acquired for flood control purposes. Lands outside the flood control rights-of-way may be acquired for health, safety, and public access on a cost shared basis if required. Flood control improvements by the Corps consist of channel improvements between the Pacific Ocean and Weir Canyon Road, construction of a levee within the canyon at Green River Golf Course, and an inlet structure just below Route 71.

1-08 The recreation plan for the Santa Ana Mainstem was developed in conjunction with the Resource Use Master Plan at Prado Dam and the Santiago Creek recreation plan in order to maintain continuity of the Mainstem recreation system. All features will be designed in an efficient and economic manner to reduce operation and maintenance costs.

1-09 The Environmental Management Agency (EMA) of the County of Orange is implementing a master plan of countywide bikeways. This plan was originally adopted by the Orange County Board of Supervisors on September 29, 1971 as a component of the recreation element of Orange

County's General Plan, and on September 23, 1980 ratified it as a component of the transportation element of the general plan. In conjunction with this plan is an adopted county wide master plan for riding and hiking trails, dated September 1984. The county of Riverside has also developed a bike and equestrian trail network within the county boundary. Local city bicycle and equestrian routes would also make connection to the regional trail in order to establish community links with the 30-mile system. The proposed Santiago Creek bicycle trail, located within the vicinity of River View Golf Course, will also provide an additional important segment or link to the overall regional trail network.

- 1-10 Much of the existing trail system, including the bridge underpasses, was partially funded under the Land and Water Conservation Fund Act of 1965. This act requires that any removed facilities be replaced with ones of equal value and utility (Section 5F of Public Law (88-579). With the proposed flood control improvements, most of the existing Lower Santa Ana River trails and bridge underpasses will be removed due to channel widening and rebuilding. They will be replaced as part of the flood control project. Their replacement will be treated as a relocation cost. Under current cost-sharing policies, relocation is 100 percent a local cost.
- 1-11 For the purpose of this report, 28.5 miles of Lower Santa Ana River trail is considered a relocation. Improvements to the remaining 3.5 miles of trails is discussed in sections 5-03 through 5-06.
- 1-12 Development of previously agricultural and open space lands has dramatically increased the population of the area adjacent to the flood control project. The increased urbanization has produced an urgent need for additional recreation facilities.

II. DESCRIPTION OF PROJECT AREA

2-01 A comprehensive description of the project area is included in the Environmental Impact Statement. Project area features covered in this section are pertinent only to the formulation of the recreation plan.

2-02 Below Prado Dam, the Santa Ana River enters Orange County via the Santa Ana Canyon, flowing in a southwesterly direction. It follows a natural meandering course for approximately 7 miles to Weir Canyon Road. Beginning here, the river becomes channelized. Continuing on its way to the ocean, from Imperial Highway to Katella Avenue, the river flows through a series of water spreading basins, controlled by the Orange County Water District. Now heading in a south-southwesterly direction, it crosses the coastal plain in Orange County to the Pacific Ocean at Huntington Beach. A salt water marsh is located on the east side of the channel at the river's mouth.

Biological and Ecological Features and Resources

2-03 Santa Ana Canyon supports a relatively high value natural riparian habitat for over 200 species of plant and animal life. These include herons, hawks, quail, mice, racoons, coyotes and gray fox. Vegetation along the river varies considerably. In areas downstream of the canyon little vegetation exists, especially near the coast. The mouth of the Santa Ana River is ecologically sensitive and therefore has been eliminated from extensive recreation planning. Within Orange County, the output from sand and gravel mining operations along the river was at one time the second highest in the State. Other minerals have been found in the canyon but not in quantities sufficient to allow for profitable operations. The names of Coal Canyon and Gypsum Canyon, which enter the Santa Ana Canyon, are indicators of earlier mining operations.

Climate

2-04 The climate is mediterranean (mild winters and hot summers). Dry, seasonal winds called the "Santa Anas," come from the desert areas to the northeast and east. Annual precipitation averages 12 inches per year, with 92 percent of it falling between November and April.

2-05 Climate conditions in the immediate coastal area are directly influenced by the surrounding marine air conditions which produce moderate to hot summers and mild winters. There is moderate to heavy fog occurring primarily from mid-December to March. Low clouds are mainly restricted to the late afternoon to mid-mornings.

Topography

2-06 The Lower Santa Ana River basin is relatively flat with a gradient suited for both a bicycle and equestrian trail. Elevations vary from -6 feet near the mouth to +450 feet at the upstream drop structure (sta. 1607+50), a distance of 30 river miles. Surrounding the Santa Ana Canyon are mountain ranges separated by an intermediate valley with the low lying Chino Hills to the north and the Santa Ana Mountains to the south. The remaining route of the river is through the generally level coastal plain.

Geology and Soil Characteristics

2-07 The coastal plain, a physiographic and structural basin, contains a thick sequence (up to 30,000 feet) of chiefly marine and nonmarine clastic sedimentary rocks overlying igneous and metamorphic basement rocks. These sediments derived from surrounding highland areas, were deposited in the ever deepening basin; an ongoing process which during the most recent geologic time has resulted in the accumulation of up to several hundred feet of alluvium in modern stream channels and associated floodplain and alluvial fans, and beaches.

Access and Circulation

2-08 The urbanized section of the Lower Santa Ana River is crossed by many arterial roads as well as one major highway (Pacific Coast Highway) and five freeways (Garden Grove, Riverside, Santa Ana, Orange, and San Diego). Access to the bicycle and equestrian trails would be provided at all street crossings.

2-09 Due to the dense urbanization of the area between Weir Canyon Road and the Pacific Coast Highway arterial roads are subject to extremely heavy traffic conditions that discourage their use by most bikers. The bike and equestrian trails provide a safe transporation corridor through this region and encourage increased use of the Santa Ana River Regional Trail System. Completion of both trails in the Santa Ana Canyon will maximize trail usage by providing connecting links to other inter-county and city trail systems.

Operational Limitations

- 2-10 Disruption to trail use will occur during reconstruction of the river channel, bridges, and bridge ramp undercrossings which may effectively close the trails for years. During construction periods, temporary routes would need to be provided to assure the maximum interim use possible of the public trail facilities.
- 2-11 The proposed bicycle and equestrian trails at Green River Golf Course cross underneath the Santa Fe Railroad bridge. An easement from the railroad must be acquired in order to allow trail access through this area. To date the railroad, anticipates no problems with granting this access, pending review of final design. In the event the easement is denied, undercrossings of both trails would need to be re-studied for development of alternative routes.
- 2-12 Storm conditions could produce high velocity flows within the river. Equestrian use of the riverbed wet crossings during these conditions will be interrupted periodically. Streamflow during non-storm conditions are anticipated to range from 200 to 300 cfs.

III. RECREATION MARKET AREA

Boundaries/Region Served

3-01 The recreation market area for the Lower Santa Ana River Flood Control Project consists of those residents located within 5 miles of the river's centerline, from the Orange County border to the Pacific Ocean. This area and distance were chosen because 5 miles is considered to be a reasonable travel distance for use of a regional trail. It is anticipated that a minimum of 80 percent of the day use of the bike trail would originate within this zone. Additional usage from outside the market area is also anticipated because the trail makes efficient use of the channel right-of-way and encourages alternate transportation modes within the urban area, it provides direct access to major recreational areas, and serves as a link to the trail corridor extending up Santiago Creek. Because the Corps development would be an integral part of the 30-mile proposed trail system, market area and demand have been analyzed for the entire Lower Santa Ana River trail corridor.

Socio-Economic Characteristics

3-02 Users of the trail system will come primarily from portions of 12 Orange County cities that lie within the lower basin area. Those are Yorba Linda, Placentia, Fullerton, Villa Park, Anaheim, Orange, Garden Grove, Santa Ana, Fountain Valley, Huntington Beach, Costa Mesa, and Newport Beach. Over 1,000,000 people reside or work within this area. Projected populations for the Lower Santa Ana River market area are snown in the table below. The market area for Santiago Creek overlaps portions of the Lower Santa Ana River market area and therefore has been netted out of the 5-mile service area.

Table D-1. Projected Population in Lower Santa Ana Market Area, 1980-2000

1980	1985	1990	1995	2000
931,394	1,004,696	1,055,731	1,109,599	1,138,710

Based on information provided by Southern California Association of Governments and Orange County Preferred Projections 1985 (Orange County Department of Administration - Forecast and Analysis Center).

According to the U.S. Bureau of Census it estimated the uncounted population to be about 2.5 percent. The figures reflected in this appendix do not account for these persons.

3-03 The lower basin is highly urbanized with mostly residential housing. The Santa Ana Canyon area located downstream of Prado Dam to Wier Canyon Road, is the only major area of undeveloped land in the lower basin. Population growth has slowed because developable land within the basin has largely been used up. Because the Santa Ana Canyon River Basin overall is thriving economically, it is a highly desirable place to live. Employment growth in the basin has continued strong since the 1975 Survey Report, but has not increased at as high a rate as the upper basin area. Income levels in the lower basin remain higher, though, than those in the upper basin. Manufacturing, trade, and service continue to dominate basin employment. Pressure to develop remaining open space remains high in the lower basin, particularly in the Santa Ana Canyon area. The percentage of athletically oriented adults and children is higher than average.

Inventory of Existing and Proposed Facilities

3-04 Currently existing trail development in the lower reach of the Santa Ana River includes 26 miles of bicycle and equestrian trails extending from the Pacific Ocean up to Gypsum Canyon Road. Additionally, in the Santa Ana Canyon, between Gypsum Canyon Road in Featherly Regional Park and the Green River Golf Course entrance is 2.5 miles of bicycle and equestrian trails. The existing and proposed facilities are shown on plates 1 through 5.

3-05 The existing trails include underpasses at all tridges and access to trails at all street crossings. In addition, access is available from three adjoining Orange County regional parks--Centennial, Yorba, and Featherly, plus two local parks, located, respectively, in Santa Ana and Huntington Beach.

- 3-06 The bike trail currently has four bridges crossing the trail over the river, with three additional bridges proposed. The equestrian trail has one proposed bridge crossing and four proposed wet crossings (pls. 1 and 2). The four wet crossings are located in the canyon area where the river is not channelized. There are private horse rental and boarding stables adjacent to the equestrian trail at several locations in the city of Anaheim and Santa Ana canyon.
- 3-07 Eight trail rest stops currently exist along the entire channel reach. The local cost sharing agency has no plans to develop additional sites at this time. Because the lower 28.5 miles of trail system, from Featherly Regional Park to the Pacific Ocean, is considered strictly replacement, any improvements to the trail within this reach will not be eligible for cost sharing and therefore must be funded entirely by the local agency.
- 3-08 In order for both trails to run continuously along the entire system all proposed new bridge construction and replacement must be completed.
- 3-09 Future development of bicycle and equestrian trails below Prado Dam would consist of completing the remaining trails planned under the countywide master plan for Orange County and local city wide plans to establish community links with the Santa Ana River regional trail system. For example, the city of Yorba Linda has 12 miles of equestrian and hiking trails that could tie into the Santa Ana River trail.
- 3-10 The most significant recreation facility imposing major impacts on the lower river is the Chino Hills State Park development, located directly west of Prado Basin (pl. 2). The proposed system of trails, campsites, picnic areas and open space will form a land use interface with adjacent recreational areas including the Santa Ana River trails. The State Department of Parks and Recreation estimates that final development of the recreation facilities will include 42 miles of equestrian trails and 18 miles of bicycle trails.
- 3-11 Demand for recreational activities proposed for the Lower Santa Ana River is based upon the application of per capita participation rates to the market area population 5 years of age and older. The recreation market area had a trail demand of over 11.3 million activity days during peak summer months in 1985 and will have over 22.8 million activity days during peak summer months in the year 2000. This is based upon summer season per capita particiation rates and growth factors provided in the Orange County Recreation Needs and Regional Park Study (table D-2).

Table D-2. Potential Trails Demand for Lower Santa Ana River Market Area For Summer Season 1, 1985 and 2000.

	Per Capita Participation Rates ²		Market Area	
	1985	2000	1985	2000
Population Five Years of Age & Over (thousands) ³	NA	NA	894,179	1,024,839
Activities Bicycling Horseback Riding	12.15 .52	21.50 	10,864,274 464,973	22,034,038 50,616
Total Trails Demand			11,329,247	22,884,654

^{1.} Memorial Day through Labor Day.

^{2.} For Population Five Years of Age and Older.

^{3. 89%} of Total Population in 1985, 90% in 2000.

³⁻¹² The Lower Santa Ana River trails could accommodate approximately .4 percent of ultimate trails demand in 1990 and .2 percent of ultimate demand in 2000. This is based upon a maximum peak season use of 55,242 shown in the following table D-3.

Table D-3. Maximum Use During Peak Summer Season for Lower Santa Ana River Trail (From Prado Basin to the Pacific Ocean).

TOTAL USE DUR- ING PEAK SEASON	36,828 18,414 55,242
# OF = PEAK MONTHS IN SUMMER SEASON	3.3
TOTAL x USE DUR- ING PEAK MONTH	11,160
% OF = PEAK USE ON WEEK-	5.
TOTAL + WEEK- END USE IN PEAK MONTH	5,580
WEEK- = END DAYS IN PEAK MONTH	6
# OF x MAX DAILY RECRE- ATION DAYS	310
carion Ratio	
TURN- 3	
units x	31
DENSITY x UNITS x TURN-	20 10
ACTIVITY	bicycling horseback riding

IV. RESOURCE USE OBJECTIVES

Definition

4-01 Resource use objectives state the scope and intent of planning within which the proposed plan of physical development was formulated and outline the plan for optimum use of project lands and resources.

4-02 The upper portion of the lower river reach starts in the Santa Ana Canyon, where Green River Golf Course, owned and operated privately, is bisected by the river's natural course. This area provides an outstanding example of a natural riparian community. The Santa Ana Canyon is one of the few remaining open space habitats in the area. Below this reach of the river, starting just upstream of Weir Canyon Road, the river becomes channelized for 23 miles to the Pacific Ocean. The river is completely contained within channel levees to protect the densely populated, broad, gently shaped coastal plain of Orange County. There are several spreading basins in this 23-mile reach.

Basic Objectives

- 4-03 The basic objectives are outlined below:
 - a. To provide a high quality experience for bicycling, hiking and equestrian riding opportunities through a well-planned trail system. Those sections within the flood control right-of-way not stipulated for channelization or as prime floodways are excellent resource areas for trail development. Esthetic treatment, provision for convenient comfort facilities, multi-seasons use capability and convenient public access are necessary for a quality experience.
 - b. To locate trails and ancillary facilities with respect to resources sensitive to human use.

- c. To interpret the project resources to the public. Public education of the value of the Lower Santa Ana River's natural ecological systems would be increased through personal interactions and experiences with the natural environment.
- d. To limit incompatible development. Trails would be built in a manner which is in harmony with surrounding and abutting uses. Landscaping would provide shade and screening. General esthetic treatments would benefit both the trail users and abutting land users. Structures and signage should be consistent with the surrounding environment.

Resource Use Objectives

4-04 Objective 1: To provide a scenic, safe, high quality bicycle and equestrian trail that would function as an integral component of the 32-mile Santa Ana River Regional Bicycle Trail.

(Discussion) The analysis of pertinent factors indicates there exists a high demand for regional bicycle and equestrian trail development. No additional Class I trails are currently planned within the market area that would compete with the 32-mile Lower Santa Ana River Regional trail. The County of Orange has indicated that development of a county-wide bikeway system would increase the use of regional recreation sites within or on the edge of the metropolitan zone. This project, with its outstanding scenic qualities within the canyon and its central location, provides a key segment in this integrated system. The County of Orange has funded construction of other downstream portions of this trail system with the expectation of Corps involvement. Increased urbanization of the lands surrounding the flood control project would provide a high user rate for the bicycle trail. With the trails gradient suited for bicycle users, a more enjoyable experience will be provided.

4-05 Objective 2: To develop an erosion control and esthetic treatment plan to complement the flood control project.

(Discussion) Construction of the flood control channel would disrupt the surrounding natural environment. Vegetation provided for erosion control and esthetic treatment should be compatible with the existing native vegetation located within immediate surroundings, thereby maintaining the identity and character of that particular area in addition to providing for screening, shading and visual enhancment. Certain non-native plant material noted for its color, foliage and/or flower could be introduced along the lower reach provided it is compatible with the plant communities being established.

V. RECOMMENDED PLAN OF PHYSICAL DEVELOPMENT

General

5-01 The availability of prime vacant land in the middle of a heavily urbanized area, in conjunction with the need to provide safe bicycling and equestrian trails for recreation and transportation, has provided the impetus for providing recreation facilities as an integral element of the Lower Santa Ana River Flood Control Project. As a result of previously unrestrained commercial and residential growth in the northern Orange County area, lands available for open space, and recreation are rapidly decreasing. Lands adjacent to and made available for the single-purpose use of flood control provide a logical choice for multipurpose recreation enhancement. The optimum use of flood control lands is based on the consideration of the open space potential of such lands. This consideration establishes the interrelationship between flood control and recreation use.

5-02 Corps participation in the Lower Santa Ana River trail would be cost shared development of approximately 3.5 miles of paved bike trail and 4.0 miles of graded equestrian trail, located entirely in the Santa Ana Canyon area. Beginning at Green River Golf Course, both trails would connect to the 28.5 miles of replaced downstream trails and would both terminate just below Route 71 at river station number 1607+50 (see pl. 2).

Proposed Trail System

5-03 The proposed flood control project in the Green River Golf Course area provides for a levee on the south side of the river. Starting at the Santa Fe railroad bridge, it extends downstream for approximately 2600 feet, ending just upstream of the Green River Golf Course entrance bridge. The 12-foot-wide asphalt bike trail would run along the top of this levee after crossing over the bridge road. It then crosses under the AT&SF railroad bridge and turns west over the river across a new

bicycle bridge. Once across, the trail would then run parallel with the railroad tracks on a separate lower graded surface, approximately 1800 feet, then follows the Santa Ana River Regional Interceptor (SARI) right-of-way to its connection point with trails going into Prado Basin (sta. 1607+50) - (see pl. 2). Support facilities such as restrooms and drinking fountains have not been proposed for development along this reach of trail system because utility connections are not available, and the remote location would encourage vandalism resulting in excessive operation and maintenance costs. The County of Riverside is currently proceeding with a request for a 30-foot trail easement from the Santa Ana Watershed Project Authority (SAWPA) which has controlling authority over the right-of-way.

5-04 The railroad tracks are not within the floodplain area, as the trails are, but are located on a raised graded surface, primarily to separate the tracks for safety and clear lines of sight.

5-05 The proposed equestrian trail begins further downstream across the river from the eastern most boundary of Featherly Regional Park, approximately at station 1429+25. A wet crossing from Featherly Park picks up the new section of trail on the north river bank From this point the trail runs parallel to and between the Santa Fe railroad tracks and the Green River Golf Course until it reaches the river (see pl. 2). The trail then swings under the railroad bridge, to the left and continues along size the bicycle trail from this point on until river station 1607+50, where the trails into Prado Basin will connect.

5-06 Once completed, the entire 32-mile system of trails would provide direct off road access to major recreational facilities at the Pacific Ocean and proposed facilities within Prado Basin and Chino Hills State Park. The trail is a significant element in a comprehensive recreation plan, consisting of a mountains-to-sea trail corridor, extending from the Pacific Ocean to the San Bernardino National Forest, and tying into the Pacific National Trail as well as various local and community parks adjacent to the trail corridor. The trail would support national and state goals to reduce energy consumption by helping to minimize dependence on motor vehicle transportation to recreation areas.

VI. COORDINATION WITH OTHER AGENCIES

6-01 The following Federal, State, County, and local agencies have been contacted. The roles they played in the planning and coordination of the proposed plan are briefly summarized.

Federal Agencies

6-02 There was no involvement with other Federal agencies in the development of the recreation plan for the Lower Santa Ana River.

State Agencies

6-03 California State Parks and Recreation Department was contacted for information regarding the proposed Chino Hills State Park and general recreation planning data for southern California. The California Transportation Department (CALTRANS) was contacted regarding the design and construction schedule of the Pacific Coast Highway bridge at the mouth of the Santa Ana River.

Count, Agencies

6-04 The County of Orange, Department of Parks and Recreation, Transportation Planning Division and the Department of Administration-Forecast and Analysis Center. Contacts were made concerning local planning in regard to replaced portions of the of downstream bicycle and equestrian trails, development of the recommended plan for trails through Santa Ana Canyon, and demographic information.

6-05 County of Riverside, Parks Department. This agency was contacted development of the recommended plan for recreation trails through Santa Ana Canyon.

Local Groups

6-06 Cities of Newport Beach and Huntington Beach. Contact was made with these agencies concerning the design of the bicycle trail at the mouth of the Santa Ana River.

6-07 Huntington Beach Wetlands Conservancy. Coordination was made with this agency concerning local planning and design of the bicycle trail at the mouth of the Santa Ana River.

Special Problems

6-08 Disruption of trail use will occur during reconstruction of the river channel, bridges, and bridge ramp underpasses. This could effectively close the already existing portions of trail for years. However, according to County policy, the lead agency responsible for the project at hand, would be required to undertake measures to provide bypass routes in order to assure maximum interim use of the public trail facility.

6-09 In the event that the Santa Fe Railroad does not process the easement request for access underneath their railroad trestle, both the bicycle and equestrian trails would need to be redesigned in order to access trails going into Prado Dam.

6-10 The existing recreation trails are considered as a utility, and their replacement will be treated as a relocation to be funded by the County of Orange. Portions of the existing trails have been funded under the Land and Water Conservation Fund Act. The County of Orange, Environmental Management Agency, has assumed the responsibility of determining what clearances or approvals are required in connection with this funding, or any other grant funding, and initiating the appropriate action to maintain compliance with all pre-existing contractural agreements entered into by the County of Orange and other State and Federal Agencies.

VII. MANAGEMENT AND COST SHARING

7-01 The operation and management of all recreation facilities so constructed under this authority will be the responsibility of the local cost sharing agency.

7-02 Public Law 78-534, The Flood Control Act of 1944, Section 4, authorizes the Corps of Engineers, to construct, operate and maintain public recreational facilities at water resource development projects, and to permit local interests to operate and maintain such facilities. Public Law 89-72, The Federal Water Project Recreation Act of 1965, provides a basis for the development of recreation facilities on a cost shared 50-50 basis between a local sponsoring agency and the Federal Government. Proposed recreation facilities are consistent with recreation policy regulation ER 1165-2-400, and all subsequent policy directives. The paved top of levee doubling as maintenance and access roads will be charged to project cost only. The proposed paving of the bicycle trail that is off levee, is not a feature of the flood control project and will be charged to the recreation account. The 28.5 miles of existing trails will be treated as a utility and relocated at 100 percent local expense.

VIII. ENVIRONMENTAL QUALITY

8-01 The flood control project is expected to have very minimal impact on the riparian habitat located directly adjacent to the Santa Ana River as it runs within Santa Ana Canyon, and no impact on the surrounding grasslands to the north of the river. A levee along the east river embankment will be constructed to protect an existing mobile home park (pl. 2), and the bicycle trail will be located on top of this levee. No additional landscaping for recreation is proposed beyond that required for erosion control and bank stabilization and thus no landscaping costs are presented in table D-4, on page D-IX-2, volume 3, appendix D.

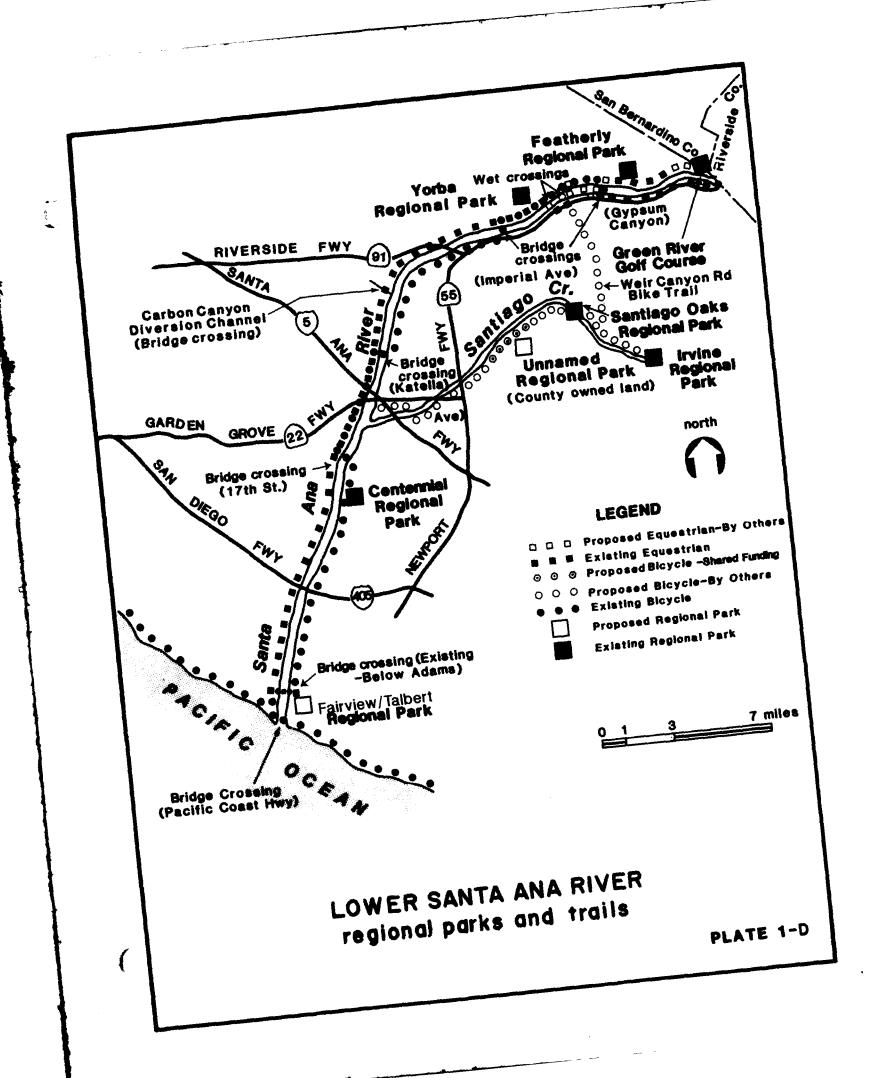
8-02 The bicycle trail will pass under the existing Santa Fe railroad bridge on the east bank of the Santa Ana River, and will cross to the west bank on a new bridge to be constructed directly upstream from the railroad bridge (pl. 2). The equestrian trail will pass under the railroad bridge on the west bank and merge with the bicycle trail immediately upstream of the railroad bridge. From this point on up to Prado Dam, both trails will be located on an existing dirt farm road adjacent to the Chino Hills State Park currently being developed by the State of California Department of Parks and Recreation. This stretch of trail is on open ranch land in a natural grassland environment. It has been requested by the State and the local counties that we do not disturb or change the nature or environmental characteristics within the Santa Ana Canyon. The canyon contains several distinct and diverse piological communities ranging from the ephemerally inundated community along the river through the riparian, grassland, upland chaparral, to the oak woodland at higher elevations. The ecological value is not only in the communities themselves but in the diverse and varied ecotones created between these communities. In view of the above considerations no additional landscaping along the recreation trails is proposed throughout this reacn. No landscaping costs are presented in table D-4, on page D-IX-2. A discussion of the recommended landscape and erosion control plan is included in the General Design Memorandum, Volume 3, on page D-XII-1.

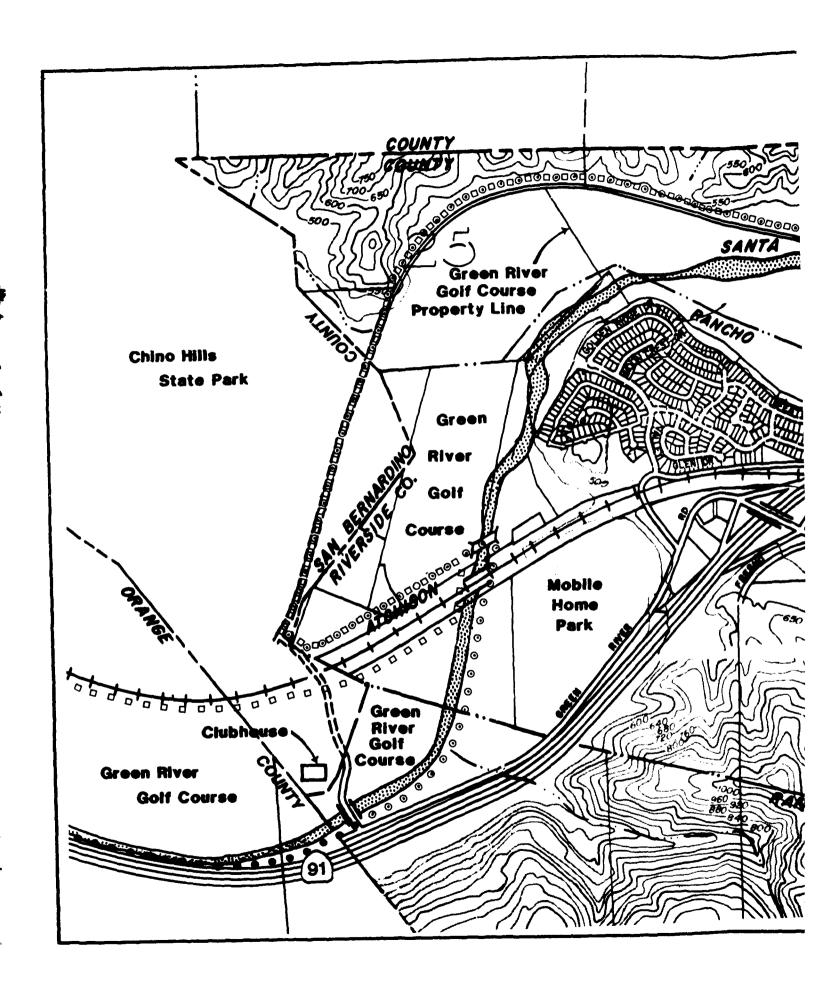
IX. COSTS

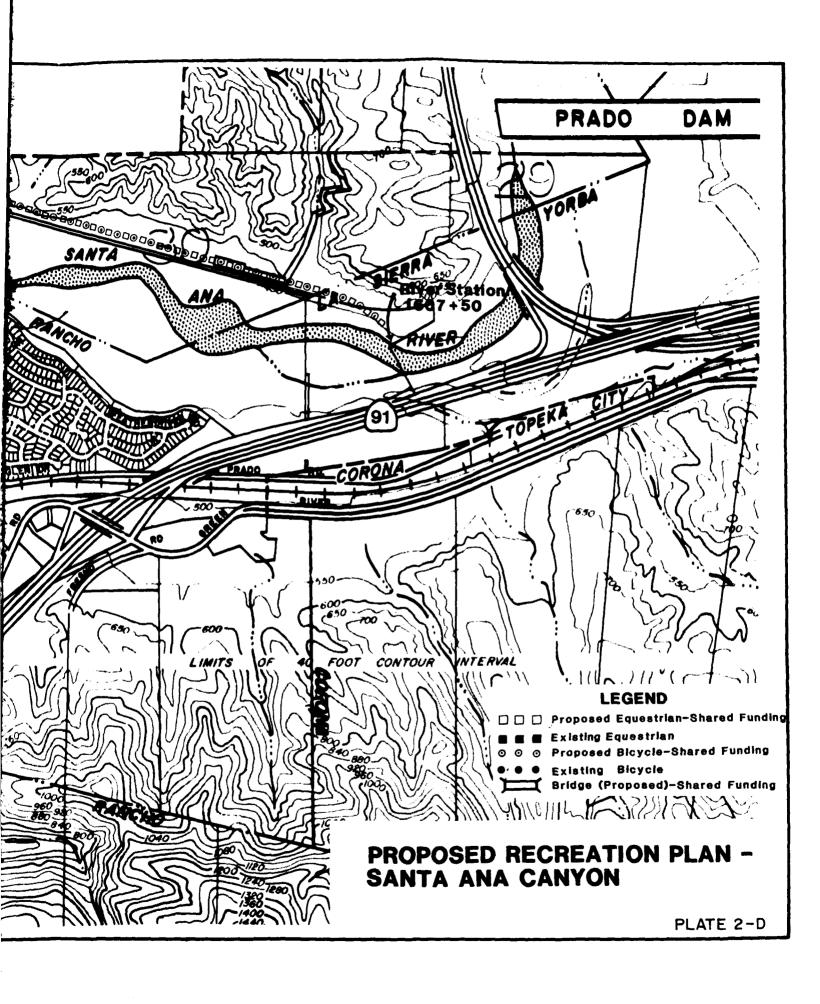
General

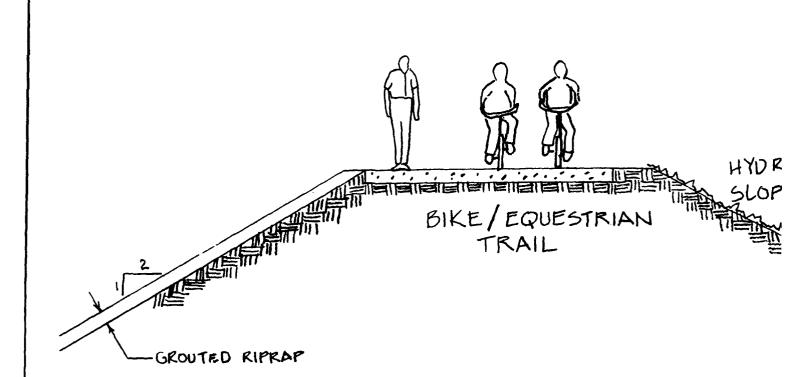
9-01 All separable costs attributed to recreation will be cost shared on a 50/50 basis with local interests. The bike and equestrian trails will be constructed concurrent to the flood control project.

Cost Summary and Estimate

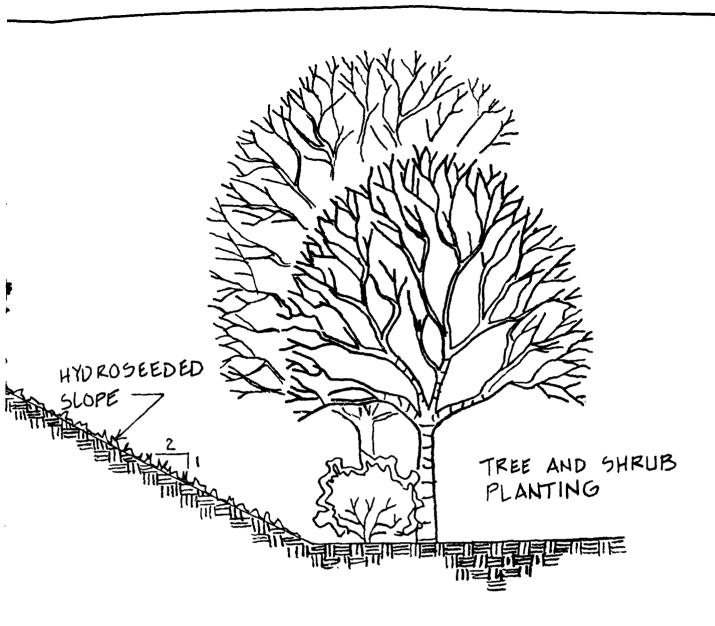

9-02 A detailed cost estimate for the proposed bicycle and equestrian trails is presented in table D-4.

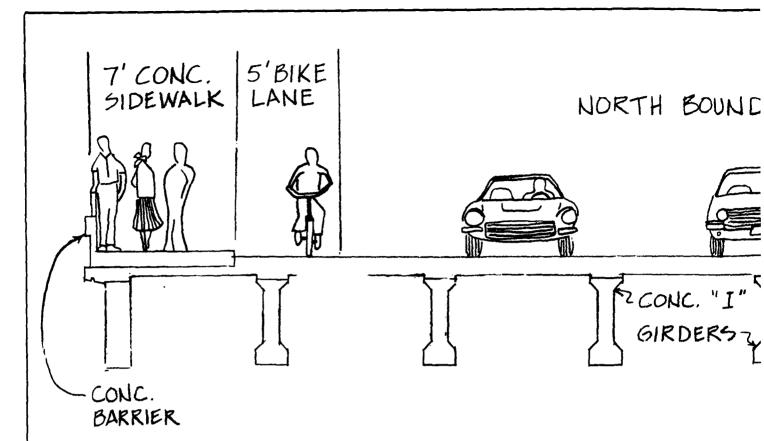

Table D-4. Recreational Development Cost Estimate.
Santa Ana River Canyon


Description	Quantity	Unit	Unit Cost	Totals
Bike Trail	18,100	LF	17.50	316,750.00
Equestrian/Hiking Trail	21,375	LF	4.50	66,200.00
Bridge (10' x 90')	1	EA	65,000	65,000.00
Signs (Marker)	18,100	LF	•25	4,525.00
Signs (Entrance-Directional)	10	EA	600	6,000.00
Signs (Traffic)	6	EA	600	3,600.00
Gate	1	EA	1,000	1,000.00
Subtotal				463,074.00
Contingencies Suptotal				67,926.00 531,000.00
Engineering and Design				37,000.00
Supervision & Administration TOTAL RECREATION				32,000.00 600,000.00

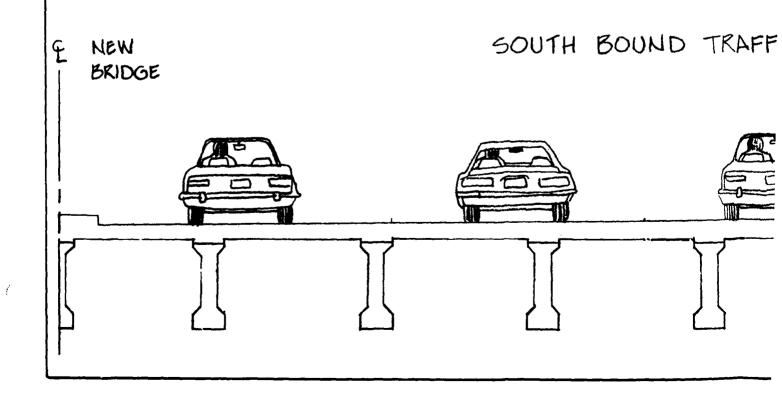

D RECREATION

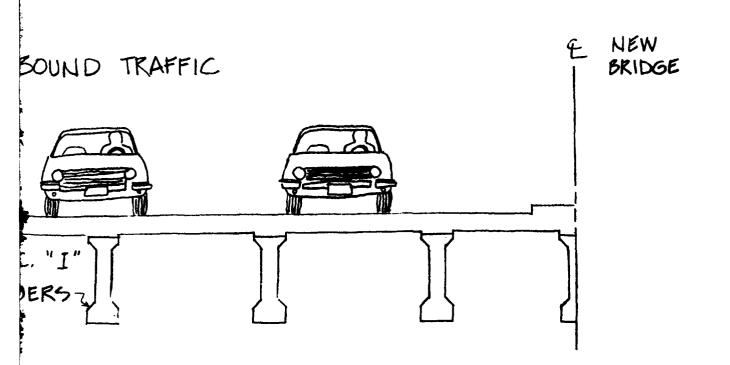
PLATES AND ATTACHMENT



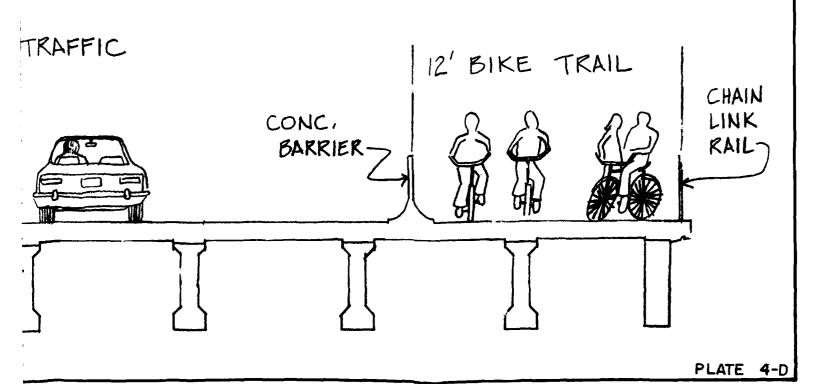


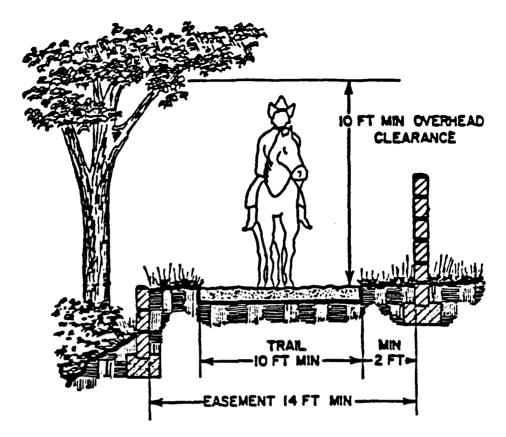
TYPICAL TRAIL SECTION ON TO

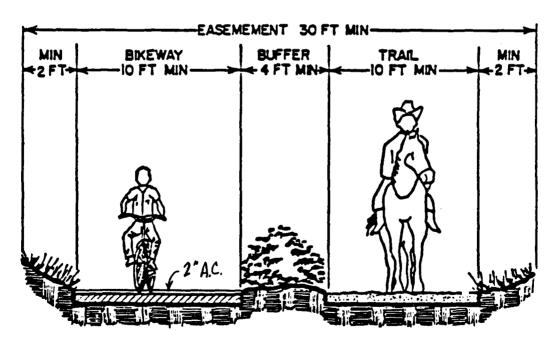



ON TOP OF LEVEE

SCALE : |" = 4'


BIKE TRAIL ON TOP OF BRIDGE




IDGE AT PACIFIC COAST HWY

SCALE: 1"=4'

EQUESTRIAN TRAIL

TRAIL AND BIKEWAY COMBINATION

TRAIL DETAILS

CONTRACT BETWEEN THE UNITED STATES OF AMERICA AND

COUNTY OF ORANGE FOR

RECREATION DEVELOPMENT
MAINSTEM FEATURE
OF THE

SANTA ANA RIVER FLOOD CONTROL PROJECT SANTA ANA RIVER BASIN, CALIFORNIA

THIS CONTRACT entered into this day of , 19 by and between the UNITED STATES OF AMERICA (hereinafter called the "Government"), represented by the Contracting Officer executing this contract and the County of Orange (hereinafter called "County"),

WITNESSETH THAT:

WHEREAS, construction of the lower reach of the Santa Ana River Flood Control Project, Santa Ana River Basin, Orange County, California (hereinafter called the "Project") was authorized by the Flood Control Act of 1944 (Public Law 534, 78th Congress); and

WHEREAS, pursuant to Section 4 of the 1944 Flood Control Act, as amended by Section 207 of the 1962 Flood Control Act, as amended (16 U.S.C. 460d), the Government is authorized to make contracts with non-Federal public bodies for development, management, and administration of the recreation resources of Federal water resources projects; and

WHEREAS, the office of Chief of Engineers has established certain policy for recreation development at Federal non-reservoir water resources projects consistent with Congressional intent as expressed in the Federal Water Resource Project Recreation Act of 1965 (Public Law 89-72).

NOW, THEREFORE, the parties agree as follows:

ARTICLE 1 - DEFINITION OF TERMS. For the purpose of this contract certain terms are defined as follows:

- (a) First Costs: Used interchangeably with the terms "capital costs" and "project costs," are the initial capital costs of the recreation features of the project, including: engineering, design, supervision, and administration; land acquisition and construction.
- (b) Recreation lands: Project lands acquired for flood control or other project purposes as described in a joint use agreement with the Flood Control District of Orange County.
- (c) Recreation facilities: Those facilities for recreation which may be installed pursuant to this agreement.

ARTICLE 2 - LANDS AND FACILITIES.

- (a) The County is required to provide all recreation lands through a joint use agreement with the Flood Control District of Orange County (hereinafter called the "District"). Lands not required for the construction and operation of the flood control project are not subject to the provisions of this contract.
- (b) The Government, in cooperation with the County, will prepare a mutually acceptable General Design Memorandum-Phase II which will depict and identify the types and quantities of recreation facilities which the Government and the County of Orange will construct in accordance with this contract. The presently estimated cost of facilities to be provided is contained in Exhibit A, entitled "Estimated Recreation First Cost", attached hereto and made a part hereof. Such estimate of facility cost is subject to reasonable adjustment as appropriate upon approval of the above mentioned Phase II General Design Memorandum.
- (c) The facilities as shown in Exhibit A, as it may be adjusted in accordance with paragraph (b) above, shall be constructed jointly by the parties through mutually satisfactory division of responsibility for construction that takes into account direct and indirect cost savings which may be gained by the parties in the public interest for certain specific facilities, provided, that the facilities to be constructed by each party shall be formally agreed upon by the two parties prior to construction, consistent with the provisions of Article 3.
- (d) Title to all lands and recreation facilities constructed on flood control project lands, shall at all times be in the County and the County shall not transfer title to any non-public entity. The County shall, under this agreement, dedicate the land for recreation use.
- (e) The performance of any obligation or the expenditure of any funds by the Government under this contract is contingent upon Congress making the necessary appropriations and funds being allocated and made available for the work required hereunder.
- ARTICLE 3 CONSIDERATION AND PAYMENT. Each party hereto will pay or contribute in kind fifty percent (50%) of the first costs of recreation development.
- (a) Development. Fifty percent (50%) of the estimated first costs of recreation development is estimated to be \$300,000. Prior to the advertisement of the first construction contract hereunder and again prior to the advertisement of each subsequent construction contract thereafter, the Government Contracting Officer shall calculate the estimated expenditures which each party shall have made up to the time of advertising of the applicable contract. If the total estimated expenditures by the Government shall exceed those of the County, the County shall pay to the Government such sum as will equalize the expenditures of both parties, prior to award of such contract. In computing expenditures, there shall be considered, in addition to cash expenditures, contributions in kind such as facilities, at the fair market value thereof at the time such land and facilities are provided,

which value shall not include enhancement due to the project. Upon completion of recreation development, an adjustment will be made on the basis of actual costs incurred. It is understood and agreed that the County's share of the cost of the construction shall be computed on the basis of actual costs to the Government of the work included in the Government construction contract above and on the basis of unit prices in the Government contract and final quantities covering labor, materials, and equipment required for the work under the Government construction contract plus the actual amount, estimated at thirty-one percent (31), of the Government's costs for engineering, design, supervision and administration and not on the basis of prior estimates.

- (b) Other Federal Funds. No payment credit of any kind whatsoever will be allowed the County for expenditures financed by, involving, or consisting of, either in whole or in part, contributions or grants of assistance received from any Federal agency in providing any lands or facilities for recreation enhancement hereunder.
- (c) Adjustments to Reflect Costs. The dollar amounts set forth in this Article are based upon the Government's best estimates, and are subject to adjustments based on the costs actually incurred. Such estimates are not to be construed as representations of the total financial responsibilities of each of the parties.
- ARTICLE 4 CONSTRUCTION AND OPERATION OF ADDITIONAL FACILITIES.
 Certain types of facilities including but not necessarily limited to restaurants, lodges, golf courses, cabins, clubhouses, overnight or vacation-type structures, stables, marinas, swimming pools, commissaries, chairlifts, and such similar revenue-producing facilities may be constructed by the City or third parties and may be operated by the City or by third parties on a concession basis. Any such construction and operation of these types of facilities shall be compatible with all project purposes and shall be subject to the prior approval of the Contracting Officer. However, the County shall not receive credit for costs of such facilities against amounts due and payable under Article 3.
- ARTICLE 5 FEE AND CHARGES. The County may assess and collect fees for entrance to developed recreation areas and for use of the project facilities and areas, in accordance with a fee schedule mutually agreed to by the parties. Not less often than every five (5) years, the parties will review such schedule and upon the request of either, renegotiate the schedule. The renegotiated fee schedule shall, upon written agreement thereto by the parties, supersede prior schedules without the necessity of modifying this contractual document.

ARTICLE 6 - FEDERAL AND STATE LAWS.

(a) In acting under its rights and obligations hereunder, the County agrees to comply with all applicable Federal and State laws and regulations, including but not limited to the provisions of the Davis-Bacon Act (40 U.S.C. 276 a-a (7); the Contract Work Hours and Safety Standards Act (40 U.S.C. 327-333); and part 3 of Title 29, Code of Federal Regulations.

- (b) The County furnishes its assurances that it will comply with Title VI of the Civil Rights Act of 1964 (78 Stat. 42 U.S.C. 2000d, et seq) and Department of Defense Directive 5500.11 issues pursuant thereto and published in Part 300 of Title 32, Code of Federal Regulations. The County agrees also that it will obtain such assurances from all its concessionaires.
- (c) The County furnishes its assurances that it will comply with Sections 210 and 305 of the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (Public Law 91-646).

ARTICLE 7 - OPERATION AND MAINTENANCE. The County shall be responsible for operation, maintenance, and replacement without cost to the Government, of all facilities developed to support Project recreation opportunities. The City shall maintain all recreation project lands, waters and facilities in a manner satisfactory to the Contracting Officer.

ARTICLE 8 - RELEASE OF CLAIMS. The Government and its officers and employees shall not be liable in any manner to the County for or on account of damage caused by the development, operation, and maintenance of the recreation facilities of the Project. The County hereby releases the Government and agrees to hold it free and harmless and to indemnify it from all damages, claims, or demands that may result from development, operation, and maintenance of the recreation areas and facilities. The County will not be responsible for Corps negligence or that of the construction contractor during the time the Corps is supervising such construction.

ARTICLE 9 - TRANSFER OR ASSIGNMENT. The County shall not transfer or assign this contract nor any rights acquired thereunder, nor grant any interest, privilege or license whatsoever in connection with this contract without prior approval of the Secretary of the Army or his authorized representative except as provided in Article 4 of this contract.

ARTICLE 10 - DEFAULT. In the event the County fails to meet any of its obligations under this agreement, the Government may terminate the whole or any part of this contract. The rights and remedies of the Government provided in this Article shall not be exclusive and are in addition to any other rights and remedies provided by law or under this contract.

ARTICLE 11 - EXAMINATION OF RECORDS. The Government and the County shall maintain books, records, documents, and other evidence pertaining to costs and expenses incurred under this contract, to the extent and in such detail as will properly reflect all net costs, direct and indirect, of labor, materials, equipment, supplies, and services, and other costs and expenses of whatever nature involved therein. The Government and the County shall make available at their offices at reasonable times, the accounting records for inspection and audit by an authorized representative of the parties to this contract during the period this contract is in effect.

ARTICLE 12 - RELATIONSHIP OF PARTIES. The parties to this contract act in an independent capacity in the performance of their respective functions under this contract and neither party is to be considered the officer, agent, or employee of the other.

ARTICLE 13 - INSPECTION. The Government shall at all times have the right to make inspections concerning the operation and maintenance of the lands and facilities to be provided hereunder.

ARTICLE 14 - OFFICIALS NOT TO BENEFIT. No member or delegate to the Congress, or Resident Commissioner, shall be admitted to any share or part of this contract, or to any benefit that may arise therefrom; but this provision shall not be construed to extend to this contract if made with a corporation for its general benefits.

ARTICLE 15 - COVENANT AGAINST CONTINGENT FEES. The County warrants that no person or selling agency has been employed or retained to solicit or secure this contract upon agreement or understanding for a commission, percentage, broker-age, or contingent fee, excepting bona fide employees or bona fide established commercial or selling agencies maintained by the County for the purpose of securing business. For breach or violation of this warranty, the Government shall have the right to annul this contract without liability or in its discretion to add to the contract price or consideration, or otherwise recover, the full amount of such commission, percentage, brokerage, or contingent fee.

ARTICLE 16 - ENVIRONMENTAL QUALITY.

- (a) In furtherance of the purpose and policy of the National Environmental Policy Act of 1969 (Public Law 91-190, 42 U.S.C. 4321, 4331-4335) and Executive Order 11514, entitled "Protection and Enhancement of Environmental Quality," March 5, 1970 (35 Federal Register 4247, Mar 7, 1970) the Government and the County recognize the importance of preservation and enhancement of the quality of the environment and the elimination of environmental pollution. Actions by either party will occur after considerations of all possible effects upon the Project Environmental Resources and will incorporate adequate and appropriate measures to insure that the quality of the environment will not be degraded or unfavorably altered.
- (b) During construction and operation undertaken by either party, specific actions will be taken to control environmental pollution that could result from their activities and to comply with applicable Federal, State and local regulations concerning environmental pollution. Particular attention should be given to (1) reduction of air pollution by control of burning, minimization of dust, containment of chemical vapors, and control of engine exhaust gases and smoke from temporary heaters; (2) reduction of water pollution by control of sanitary facilities, storage of fuels and other contaminants, and control of turbidity and siltation from erosion; (3) minimization of noise levels; (4) on and off site disposal of waste and spoil activities; and (5) prevention of landscape defacement and damage; and (6) reduction of groundwater mining through safe-yield pumping of wells.

ARTICLE 17 - EFFECTIVE DATE. This contract shall take effect upon approval by the Secretary of the Army or his authorized representative.

IN WITNESS WHEREOF, the parties hereto have executed this contract as of the day and year first above written.

THE UNITED STATES OF AMERICA	THE COUNTY OF ORANGE
By Colonel, Corps of Engineers District Engineer Contracting Officer	By Chairman, Board of Supervisors
DATE	ATTEST:
APPROVED:	(Title)

DATE

Exhibit A

Estimated Recreation First Cost Santa Ana River Mainstem, including Santiago Creek - County of Orange Mainstem Feature

Item No.	Description	Local Cost	Federal Cost
1.	Bike Trail	\$158,375	\$158,375
2.	Equestrian/Hiking Trail	33,100	33,100
3.	Bridge (10' x 90')	32,500	32,500
4.	Signs (Marker)	2,262	2,262
5.	Signs (Entrance/Directional)	3,000	3,000
6.	Signs (Traffic Control)	1,800	1,800
7.	Gate	500	500
	Subtotal	\$231,537	\$231,537
	Contingencies	33,963	33,963
	Subtotal	265,500	265,500
	Engineering and Design	18,500	18,500
	Supervision and Administration	16,000	16,000
	TOTAL RECREATION	\$300,000	\$300,000

Exhibit B

The undersigned, as Chief Legal Officer for the County of Orange approves the foregoing agreement as to form and legality this _____ day of ______ 19___. I have reviewed the contract in the light of the requirements of Section 221 of Public Law 91-611. I further find the County of Orange is a legally constituted body having full legal authority to enter into the foregoing agreement and to respond in damages in the event that it fails to fulfill its contractual obligations.

Title

E SIDE DRAIN TABULATION

age general state of the second

(.

100-YEAR LOCAL STORM PEAK DISCHARGE

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

A SUBARFA TOTAL SIDE-DRAWNOER REQUIREMENTS STATION REMARKS DISPOSITION OF EACES	-			NOT KIND IN	5	ANIA 70 - 10	RIGHT BANK	10001	SHULH ANA KIVEK	y
Mark Size Decourage O Decourage Decoupling State Decoupling State Decoupling State Decoupling State Decoupling Decoupl			SUBAR	EA	TOTAL		DRAINAGE R			
2. 4 " 084 1100 80 1807 CHAUNEL 1804-18 1010 EXIST BOX NO FICESS 3 " " 084 1100 80 140 # 72" RCP 1891-90 1010 EXIST PIPE NO EXCESS PA 4 OVERLAND FLOW DRAINS INTO DROP STRUCTURE FROM REGIONAL PARK # THE CONTENTIONERS WAYS WERE WAS SURFACE WAYS WAYS WATER SON REGIONAL PARK # THE LOWINGS WAS STRUCTURE FROM STRUCTURE FR	NO NO		SI ZE 54. HZ.	DISCHARGE PEAK C.F.S.	O. C.F.S.	DRAIN CAPACITY CF8	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
2. "A" a84 1100 80 140 # 72" RCP 1882-04 1011 EXIST PIPE NO EXCESS R. 4 OVERLAND FLOW ONE STRUCTURE FROM STORY DISHARGE WIRE WARTHROOM THE CONTENT OF REGIONAL PARK HE CONTENT STORY DISHARGE WIRE	^				680	/800		1906+9	FYIGT	776 27
A 100 80 THO RCP 1702-04 JOIN EXIST PIPE NO EXCESS R A 200 THO X 12" RCP 1189-90 JOIN EXIST PIPE NO EXCESS R A 70 RC LAND FLOW TO TROP STRUCTURE FROM REGIONAL PARK A * THE NOTER SURFICE ELEVATON FOR THE CONTENTORNEWS WAS WITH						2271	1		20100	, 20000
# 1100 80 1100 80 140 * 12" RCP 12024 1010 Exist PIPE NO EXCESS FOR 1100 80 140 * 12" RCP 1107.00 1010 Exist PIPE NO EXCESS FOR 1100 1100 FX 151 PIPE NO EXCESS FOR THE LAND ELAN BEGINAL PARK # THE HATER SARRAGE WAS INTERNATED WHITE THE CONTENTION REGIONAL PARK HATE LANTERHORANES WAS STRUCTURE FROM STRUCTURE FROM STRUCTURE WAS STRUCTURED WAS STRU							1			
# 0.84 1100 80 140 # 72" RCP # 0.86 240 # 72" RCP # 0.66 240 # 72" RCP # THE NOTER SURFACE ELEVATION FOR	v!				360		66" RCP	40+2021	Ex157	- 1 :
4 0.84 1100 80 140 × 72" RCP 4 80 140 × 72" RCP * OVERIAND FLOW DRAINS INTO DROP = ** ** ** ** ** ** ** ** ** ** ** ** *		*								
# OVERLAND FLOW DRAINS INTO DROP S # THE NATER SURFACE ELEVATION FOR		9	0.84	1100	•				1 1	1 [
# OVERLAND FLOW DRAINS INTO DROP S # THE NATER SURFACE ELEVATION FOR	v				80	140	12.	1189+90	£x/57	EXCESS
# OVERLAND FLOW DRAINS INTO DROP S # THE NOTER SURFACE ELEVATION FOR										
* OVERLAND FLOW DRAINS INTO DROP S * THE NATER SURFACE ELEVATION FOR	4				80	240	12.	08+68//	11	EKLESS
* OVERLAND FLOW DRAINS INTO DROP &										
* OVERLAND FLOW DRAINS INTO DROP S * THE NATER SURFACE ELEVATION FOR										
* OVERLAND FLOW DRAINS INTO DROP &	-									
* OVERLAND FLOW DRAINS INTO DROP =										
* OVERLAND FLOW DRAINS INTO DROP =										
* OVERLAND FLOW DRAINS INTO DROP : * * THE NATER SURFACE ELEVATION FOR										
* * THE NATER SURFACE ELEVATION FOR		0 V	818			SRAINS	INTO DROP +	RUCTUR	E FRON REGION	101 PARK 1854
	*				ARFA	(FOR	E CONTE	MFORANEUS LOCAL STORM	O DISCHARGE IN THE RIVER

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

	2	E E		PERTINENT INFORMATION ON	5	SUE-DRAINA	AINAGE INVESTIGATION - A	- LOWERS	SANTA ANA KIN	ER
MANK SIZE CREAT			SUBAR	EA	TOTAL		DRANAGE RE	ITS		
Co 100 R 48°CMP 186496 1010 EXIST PIPE 100 EXCESS Co 100 R 48°CMP 186496 1010 EXIST PIPE 100 EXCESS Co 76 R 48°CMP 186400 1010 EXIST PIPE 100 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 100 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 100 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 110 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 110 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 110 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 110 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 110 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 110 EXCESS Co 100 R 48°CMP 186400 1010 EXIST PIPE 110 EXCESS	DRAIN ND	NAME	SI ZE 58.11.	DISCHARGE PEAK C.F.S.	C.F.S	1 .	DESCRIPTION		REMARKS	8
"." 44 4500 100 4 48°CMP 184195 1010 Exist Pipe NO Excess "." 44 4500 100	rb				90	100	18,	1186+90	Ex 15F	EXCESS
"C" 44 4500 90 4 48" CMP 18312 JOIN EXIST PIPE NO EXCESS "C" 44 4500 70	(9				9	00/		26-78//	EXIST	EXCESS
Co 44 4500 100 48 CMP 183125 1010 EXIST PIPE NO EXCESS 100	V				9	96		1122191	ExICT	EVEELL
"." 441 4500 TO # 48"CMP 183428 JOIN EXIST PIPE NO EXCESS 10 100 # 48"CMP 183428 JOIN EXIST PIPE NO EXCESS 2 100 # 48"CMP 183428 JOIN EXIST PIPE NO EXCESS 400 100 # 48"CMP 183409 JOIN EXIST PIPE NO EXCESS 400 3500 19'X 8.5' R.C.A. 180480 JOIN EXIST PIPE NO EXCESS FLOW WAS REGIONAL PARK 2 400 3500 19'X 8.5' R.C.A. 180480 JOIN EXIST PIPE NO EXCESS FLOW WAS PRESENDED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEDURED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEDURED ON EXCESS FLOW WAS PROCEED ON EXCESS FLOW WAS PROCEDURED ON EXCESS FL	Ŋ				,			22 1 2 2 2	in it	160000
"" 44 4500 70 # 48" CMP 183125 1011 EXIST PIPE NO EXCESS 100 # 48" CMP 183100 1011 EXIST PIPE NO EXCESS 100 # 48" CMP 18110 10111 EXIST PIPE NO EXCESS 100 19" 19" 18"					00	90		1184100	EXIST	Ĭ
To 100 # 48" CMP 183100 101N EXIST PIPE NO EXCESS F. E. Lo 100 # 48" CMP 18110 101N EXIST PIPE NO EXCESS F. E. Lo 100 # 48" CMP 18110 101N EXIST PIPE NO EXCESS F. E. Lo 100 # 48" CMP 18110 101N EXIST PIPE NO EXCESS F. E. Lo 100 # 48" CMP 18110 101N EXIST PIPE NO EXCESS F. E. Lo 100 # 48" CMP 18110 101N EXIST PIPE NO EXCESS F. E. Lo 100 # 48" CMP 18110 101N EXPERIMENTAL POR DAY 101N 10	9	<i>v</i> ;			70	00/		1183+28	EX157	1 1
60 100 4 48° CMP 1182410 101N EXIST PIPE NO EXCESS FILE 60 100	0				70	001		1/83+00	EXIST	1 1
2 4000 3500 19'X B. E' RCP 1180180 1010 EXIST PIPE 110 EXCESS FL 4000 3500 19'X B. E' RCP 1180180 1010 EXIST ROX ENESS FLOW WILL REGIONAL PARK OVERLAND FLOW DRAINS INTO DROP STRUCTURE FROM REGIONAL POR	*				3	100			EX157	NO EXCESS FOOD
4000 3500 19'X B. 5' RCB 1180+80 1'DIN EXIST BOX EVESS FLOW WILL REGIONAL PARK) WILL DE PICK-UP B DRAINS * 3L & 41 DRAINS * 3L & 41	12				0	001			EX15T	Z.
4000 3500 19'x 8.5' RCB 1180180 JOHN EXIST BOX EXIGES FLOW LINE REGIONAL PARK) ESPERNATA RO BN UNIL BE PICK-UP B BRAINS #31 & 41										
OVERLAND FLOWS DRAINS INTO DROP STRUCTURE FROM REGIONAL OVERLAND FLOWS INTO DROP STRUCTURE FROM REGIONAL	47				4000		15	П	DIN EXIST	
OVERLAND FLOW DRAINS INTO DROP STRUCTURE FROM REGIONAL							à			DOUNSTREAM ON
OVERLAND FLOW DRAINS INTO DROP STRUCTURE FRON REGIONAL								1		BE PICK-UP
OVERLAND FLOW DRAINS INTO DROP STRUCTURE FROM REGIONAL										15 # 32 6 42
	-	VE R	N#7	,	30	DRAI	CTW1			REGIONAL PARK

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

SIDE-DRAINAGE REQUIREMENTS DESCRIPTION STATION
STATION STATION 211710 JONN EXIS 202120 JOIN EXIS 84450 JOIN EXIS 84450 JOIN EXIS
RCPS 1211+10 JON EXIS 24"RLF LOWER AREA (EXIST) 1202+20 JOIN EXIS (EXIST) 184+50 JOIN EXIS (EXIST) 184+50 JOIN EXIS LOWER AREA PROVIDE OF
RCPS 1211+10 JONN EXIS 24"RLF LOUSE AKE, PROPOSED (EXIST) 184+50 JOIN EXIS (EXIST) 184+50 JOIN EXIS LOUSE AKE, PROVIDE OF,
24"KLF (20110 JON EXIS 24"KLF (PROVIDE OF 100ER ARE) (101N EXIS (EXIST) (184150 JOIN EXIS (EXIST) (184150 JOIN EXIS (24" RLP (PROVIDE OF) 100ER AREA (1980)
24"RLF 24"RLF 1005R AREA PROPOSED (EXIST) 184450 JOIN EXIS 24" RLP PROVIDE OF
24"RLF L4"RLF L908R AREA PROPOSED (EXIST) 84150 101N EXIS (EXIST) 84150 101N EXIS L4" RLP PROVIDE OF
24"RLF 24"RLF 1005R AREA PROVIDE OF (EXIST) (184150 101N EXIS 24" RLP PROVIDE OF, 1008R AREA PROFOSED
L4"RLF PROVIDE OF LOSER AREA PROPOSED (EXIST) MEGASO JOIN EXIS LOWER AREA PROPOSED
LA"RLF PROVIDE OF LOSER AREA PROPOSED (EXIST) MATSO TOIN EXIS LOWER AREA PROVIDE OF
LOWER AREA PROPOSED [EXIST] 184450 JOIN EXIS LOWER AREA PROPOSED
(EXIST) 184+SO JOIN EXIS 24" RLP PROVIDE OP. LONER AREA PROFOSEO
(EXIST) 1841SO JOIN EXIS LOWER AREA PROPOSEO
LONER AREA PROVIDE OF
LONER AREA PROPOSEO
CMIS 1171490 JOIN EXIST

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

FERTINENT INFORMATION ON SDE-DRAINAGE INVESTIGATION - LOLDER SOUTH AND REMARKS LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK LEGY BANK BANK BANK BANK BANK BANK BANK BANK									PAGE 4 OF 39
SOFE-DRAWGE REQUIREMENTS REMARKS DISPOSITION OF EXCESS C.F. C. C. C. C. C. C. C. C. C. C. C. C. C.	NT INFOR	8	ATK	8	SIDE-DRA	ì	LOWER	AND	ע
CFS SIDE-DRANAGE REQUIREMENTS STATION CFS CF						LEFT BANK			
MONDUM DESCRIPTION STATION REMARS DEPOSITION OF EXCESS 20	". BAREA	ă		TOTAL		SIDE-DRAMAGE REQUIREMENTS			
20 35 24" RCP 6646	SIZE DIS		CHARGE PE AK C.F. S.		INDIVIDUAL Q C.F.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
100 (2) - 8' x 6' RCR 53+00 010 EXIST ROX 100 EXCESS 800 (2) - 6' x 6' RCR 57+90 010 EXIST ROX NO EXCESS 15 42 24" RCP 54+40 010 EXIST RIPE NO EXCESS 16 37 24" RCP 59+90 010 EXIST RIPE NO EXCESS R 180 610 3' x 6' RCR x 6 x 7 010 EXIST RIPE NO EXCESS R 16 37 24" RCP 45+90 010 EXIST RIPE NO EXCESS R 16 32 24" RCP 24+40 010 EXIST RIPE NO EXCESS R 16 33 24" RCP 24+40 010 EXIST RIPE NO EXCESS R				20	35	2	1166+60	EX167	EXCES.
100 12 - 8'x 6' 12.00 1163400 1010 EXIST BOX 100 EXCESS 800 800 12 - 6'x 5' R.C.				,					
800 12 - 6' x 5' RCR 157490 JOIN EXIST FOOK NO EXCESS 15 42 24" RCP 159440 JOIN EXIST PIPE NO EXCESS 16 45 24" RCP 14570 JOIN EXIST PIPE NO EXCESS 18 670 3' x 6' RCR Existing 13470 JOIN EXIST ROX NO EXCESS NO EXCESS NO EXCESS NO EXCESS NO EXCESS NO EXCESS NO EXCESS NO EXCESS NO EXCESS NO EXCESS NO EXCESS PROVIDE OPN'G FOR 15 32 24" RCP 124440 JOIN EXIST PIPE NO EXCESS PROVIDE NO EXCESS				28	000/	, w	1163100	EX157	EXCESS
Soo 800 (2) - 6'x 5' RC	22.1 "0"		1500			l			
FREEWAY BOXES 15446 JOIN EXIST PIPE NO EXCESS F 5 42 24" RCP 150190 JOIN EXIST PIPE NO EXCESS F 6 45 24" RCP 145190 JOIN EXIST PIPE NO EXCESS F 180 670 3'x6" RCP (PROPOSE) PROVIDE OPN'G FOR 1241 RCP 124				800	800		1157+90	EXIST	EXCESS
15 42 24" RCP 154+46 Join Exist PIPE NO Excess 154+46 Join Exist PIPE NO Excess 150 45 124" RCP 1145+96 Join Exist PIPE NO Excess 180 610 3 × 6 × CC (Existing) 134+70 Join Exist Box NO Excess 48" RCP (PRoPose) PROVIOE OPN'G FOR 124+46 Join Exist PIPE NO Excess 15 32 24* RCP 1124+46 Join Exist PIPE NO Excess 15 32 24* RCP 1124+46 Join Exist PIPE NO Excess 15 15 15 15 15 15 15									
15 42 24" RCP 154.46 Join Exist PIPE NO Excess 154.46 Join Exist PIPE NO Excess 154.76 Join Exist PIPE NO Excess 145.40 Join Exist PIPE NO Excess 145.40 Join Exist Box NO Excess 148" RCP (PROPOSE) 124,40 Join Exist PIPE NO Excess 124,40 Join Exist PIPE NO Excess 124,40 Join Exist PIPE NO Excess 15 32 24* RCP 1124,40 Join Exist PIPE NO Excess 15 32 24* RCP 1124,40 Join Exist PIPE NO Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 15 32 24* RCP 1124,40 Join Exist PIPE 140 Excess 140	1			1					
15 45 24" RCP		_		3	42	>	1154+40	EXIST	EXCESS
15 45 24" RCP 150190 101N EXIST PIPE NO EXCESS 16 37 24" RCP 1145190 101N EXIST PIPE NO EXCESS 180 670 3'x6' RCB (EXISTING) 134170 101N EXIST BOX NO EXCESS 15 32 24" RCP 1124140 101N EXIST PIPE NO EXCESS F									
16 37 24" RCP		_		'n	45	RCP	1150+90	Ex15T	ExCESS
16 37 24" RCP									1 1
180 610 3'x 6' RCB (EXISTING) 13470 JOIN EXIST BOX NO EXCESS 1 48" RCP (PROPOSED) PROVIDE OPN'G FOR 100 EXCESS 1 49" RCP (PROPOSED) 49" RCP 124140 JOIN EXIST PIPE NO EXCESS 7	0.69	_	640	3/	87	" 0.0	1115.49	2000	77.6
670 3'x 6' RCB (EXISTING) 134+70 JOIN EXIST BOX NO EXCESS 48" RCP (PROPOSE) PROVIDE OPN'G FOR 40" RCP 32 24* RCP 24+40 JOIN EXIST PIPE NO EXCESS P							2/	27131	CACCOS
### ### ### ### ### ### ### ### ### ##				700	(1)	-///			
48" RCP (PROPOSED) PROVIDE OPN'G FOR 48" RCP 32 24" RCP (124,40 JOIN EXIST PIPE NO EXCESS	•	_		90	0/0	XG KCB (EXISTING)	1134+70	Ex/57	EXCESS
32 24" RCP 1124,40 JOIN EXIST PIPE NO EXCESS						RCP			
32 24" RCP 1124,40 JOIN EXIST PIPE NO EXCESS								1 1	
32 L4T KCP 1124,40 JOIN EXIST PIPE NO EXCESS				7/	,	,			
		⅃	1	(2)	32	RCP	1124140	Ex157	EXCESS
		J							

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

SIGNAR TOTAL SIDE-DRAMANGE REQUIREMENTS TOTAL STORY STATION ST	SIGNEA TOTA SIDE-DRAMAGE REQUIREMENTS STATION NEWWORLD STATION	SIGNEGA 1071A SIGNEGATION STATON NELWING DIPPOSITION OF EACESS 1/4 * % 1/2 * %	ΨĮ	TINE	Z Z	PERTINENT INFORMATION ON SIDE-DRAINA	8	SIDE-DRA	GE INVESTIGATION -	Lower	SANTA ANA RIVER	, which is a second sec
SUBANESA TOTAL SOC-DAMMGE REQUIREMENTS NEWARKS DISCONSTINA REMARKS DISCONSTINA C EACH STATION STATION STATION C EACH STATION STATION STATION C EACH STATION STAT	Standard	Standard Standard	ſ						LEFT BANK			
NAME 512E DECAMPE 0 INDIVIDUAL DESCRIPTION STATION RELABORS DESCRIPTION STATION RELABORS DESCRIPTION STATION RELABORS DESCRIPTION STATION RELABORS DESCRIPTION STATION RELABORS DESCRIPTION	11 DECENDED DESCRIPTION STATION REMARKS DEPOSITION OF EXCESS 12	11 DESCRIPTION STATION REMARKS DESCRIPTION STATION REMARKS DEPOSITION OF EXCRESS			SUBAR	ĘV	TOTAL		SIDE-DRAMAGE REQUIREMENTS		-	
G2 079 //20 20 45 24" RCP 116570 JOIN EXIST PIPE NO EXCESS F	62 07 /120 20 45 24" RCP 114-90 JOIN EXIST PIPE NO EXCESS F	62 079 1120 100 1000 (2)-6×8 RCB 114+90 1010 Exist Pipe 100 Excess F	No.	NAME			CFS	•	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
G2 0.79 //20 G2 0.79 //20 L0 46 24" RCP 19570 Join Exist PIPE NO Excess F	G2 079 //20 20 45 24" RCP 165/90 Join Exist Pre No Excess P	GE 0.7 /120 / LO AG EAS RCB WAYD ION EXIST PIPE NO EXCESS F										1 1
" 62 ath 1120 20 45 24" RCP 1105190 JOIN EXIST PIPE NO EXCESS	62 at 1120 20 45 24" RCP 1105190 JOIN EXIST PIPE NO ÉXCESS	G2 a79 /120	20		_ -		00//	1000	(2)- 8'x8' RCB	11/4+90	Ex 157	EXCESS
" GE	62" 079 /120 20 46 24" RCP 106590 JOIN EXIST PIPE NO ÉXCESSS	\$2" 079 1120 45 24" RCP 110579 JOIN EXIST PIPE NO EXCESS								†		
20 45 24" RCP 10579 JOIN EXIST PIPE NO EXCESS	20 45 24" RCP 1055490 JOIN EXIST PIPE NO EXCESS	62 ath /120 20 46 24" RCP 106190 JOIN EXIST PIPE NO ÉXCESS		ર ર	_							
20 46 24" RCP NOST90 JOW EXIST PIPE NO ÉXCESS	46 24" RCP Hostin Join Exist PIPE NO Excess	20 46 24" RCP 105190 JOIN EXIST PIPE NO ÉXCESS		25	0.73							
20 46 24" RCP 110540 JOIN EXIST PIPE NO ÉXCESS	20 46 24" RCP 1105190 JOIN EXIST PIPE NO EXCESS	20 46 24" RCP 1105190 JOIN EXIST PIPE NO EXCESSS										
			N				20	45	24" RCP	1105+90		
						<u> </u>						
										1		

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

			-				R.SAT BANK	N		
700		SUBAREA	EA	TOTAL		SDE-D	SIDE-DRAINAGE REQUIREMENTS			
4	NAME	SIZE Siq. ML	DISCHARGE PEAK C.F. S.	0 CFS	INDIVIDUAL 9 CF.S.		DESCRIPTION	STATION	PEMAPKS	DISPOSITION OF EXCESS FLOW
97				40	70	*	48" CMP	174+95	JOIN EXIST PIPE	NO EXCESS From
67	ED	0.	120	40	//0	*	72" CNP	00+69//	JOIN EXIST PIPE	NO EXCESS FLOW
30				45	0//	Ng.	72" CMP	06+89//	JOIN EXIST PIPE	NO EKCESS FLOW
# 22 M	OVER AT ,	OVERLAND 47 REGIL	Land Flow	2 0	DRAINS	ļ	1NTO DROP ST.	STRUCTURES	:65	

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

TOTAL			RIGHT BANK	•		
35	9	Į				
1	ADIVIDALA.	þ	SIDE-UNATIONSE NEGOMEMENTS			
95	C.S.		DESCRIPTION	STATION	MEMORYS	DISPOSITION OF EXCESS FLOW
32	32		24" RCP	56+8711	JOIN EXIST PIPE	MO EXCESE FLOW
-	-					
		. 1				
000	000/		102" RCP	56-8011	JOIN EXIST PIPE	NO EXCESS FLOW
						l
1	1					
	-					
+	-					
		1				
		,				

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

No. No.							RIGHT BANK	2020	SENIE UNB	KIVEK
35 12 DESCRIPTION STATION REMANNS DESCRIPTION STATION REMANNS DESCRIPTION OF EXCESS 36 12 0.55 0.60 0.77 1184-15 10.10 0.75 717 717 717 717 718			SUBAR	EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
10 500 72" CMP 146+16 101N EXIST PIPE NO EXCESS 10 500 72" CMP 118+90 101N EXIST PIPE NO EXCESS 10 600 CO" CMP 118+90 101N EXIST PIPE NO EXCESS 10 600 CO" CMP 118+90 101N EXIST PIPE NO EXCESS 100 240 54" RCP 118+10 101N EXIST PIPE NO EXCESS 140 1600 (3)-72" CMP 1099+20 101N EXIST PIPE NO EXCESS 140 1600 (3)-72" CMP 1095+20 101N EXIST PIPE NO EXCESS	2 2				O. C.F.S.	INDIVIDUAL 9 CF.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
34 FG 0.35 650 60 72" CMP 114100 101N EXIST PIPE NO EXCESS 36 10 100 100 000 000 000 000 000 000 000	3				90	230	66" CMP	1/46+50	EXIST	EYCESS
34 To Sove 72" CMP 118-40 JOIN EXIST PIPE NO EXCESS 36 60 120 39" RCP 118-40 JOIN EXIST PIPE NO EXCESS 36 60 120 60" CMP 114-10 JOIN EXIST PIPE NO EXCESS 37 80 100 60" CMP 114-10 JOIN EXIST PIPE NO EXCESS 39 100 240 54" RCP 1099-12 JOIN EXIST PIPE NO EXCESS 39 100 240 54" RCP 1099-12 JOIN EXIST PIPE NO EXCESS 39 100 31-72" CMP 1095-12 JOIN EXIST PIPE NO EXCESS										
35	200				,	000	000 1101	77.		
36 FG 0.35 650 60 40 60° CMP 1118490 JOIN EXIST PIPE NO EXCESS 1 30 100 140 54" RCP 1114470 JOIN EXIST PIPE NO EXCESS 1 30 140 54" RCP 1094-28 JOIN EXIST PIPE NO EXCESS 1 39 140 54" RCP 1099-28 JOIN EXIST PIPE NO EXCESS 1					ś		12 2711	114/400	1	EXCESS
36 FG 0.35 650 60 120 39 RCF 11349 JOIN EXIST PIPE NO EXCESS 1 36 100 60 CM CMP 112447 JOIN EXIST PIPE NO EXCESS 1 36 100 340 54" RCP 109942 JOIN EXIST PIPE NO EXCESS 1 39 240 54" RCP 109942 JOIN EXIST PIPE NO EXCESS 1 39 240 54" RCP 109942 JOIN EXIST PIPE NO EXCESS 1	35	1-			`	,	0 0 000			1 1
36 FG 0.35 GEO 60 CMP 1124-91 JOIN EXIST PIPE NO EXCESS 1 37		2			eo	3	SA" KCF	11/3+90	EX16T	Excess
37 (50 100 CMF 1124+9) JOIN EXIST PIPE NO EXCESS 38 100 140 54" RCP 1099+28 JOIN EXIST PIPE NO EXCESS 39 (140 54" RCP 1099+28 JOIN EXIST PIPE NO EXCESS 39 (140 54" RCP 1095+38 JOIN EXIST PIPE NO EXCESS 39 (140 600 (3)-72" CMP 1095+38 JOIN EXIST PIPE NO EXCESS	7	122		_	,	Ş				
31 (50 200 CG" CMP 11/4-20 JOIN EXIST PIPE NO EXCESS 39 (100 140 54" RCP 1099+20 JOIN EXIST PIPE NO EXCESS 39 (140 1000 (3)-72" CMP 1095+30 JOIN EXIST PIPE NO EXCESS	à				e	20		1124+97	Ex157	
30 (200 (36" CMP III/4-20 JOIN EXIST PIPE NO EXCESS 1 30 (40 54" RCP 1099+20 JOIN EXIST PIPE NO EXCESS 1 39 (40 54" RCP 1099+20 JOIN EXIST PIPE NO EXCESS 1	-									
39 (100 (3)-12" CMP (1095-56 10)N EXIST PIPE NO EXCESS 1	37				0,	200	66" CMP	11/4+20	EXIST	EXCESS
39 100 140 54" RCP 1099+20 JOIN EXIST PIPE NO EXCESS. 1		·			.					
39 100 140 54" RCP 1099+26 JOIN EXIST PIPE NO EXCESS. 39 140 1000 (3)-72" CMP 1095+36 JOIN EXIST PIPE NO EXCESS.					1!					
39 (40 1000 (3)-72" CMP 1095+30 101N EXIST PIPE NO EXCESS	20				8	240	54" RCP	02+6601	EX15T	1 1
39 140 1000 (3)-72" CMP 1095+36 JOIN EXIST PIPE NO EXCESS		_								
					140	000/	1 I	1095+30	EXIST	EXCESS
								-		
							·			

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

		S FLOW	F100		المما		7.000							
RIVER		DISPOSITION OF EXCESS FLOW	NO EYLESS F		NO EXCESS ,		NO EXCESS F							
STATE HINT KIN		REMAIKS	JOIN EXIST. PIPE		JOIN EXIST PIPE		וסוא פגופו אודבי							
OWER		STATION	1130+50		1130+50		1116+10			+	-			
RANGE INVESTIGATION - 1000 CK	SIDE-DRAMAGE REQUIREMENTS	DESCRIPTION	72" RCP		42" RCP	" " " " " " " " " " " " " " " " " " " "	60 5 04 KCF							
PERTINENT INTORNATION ON SIDE-LINAMA		INDIVIDUAL Q CFS.	900		/80		007)							
5	TOTAL	C. S.	400	 	9	 7	}		 					
	EA	DISCHANGE PEAK C.F.S.			1040		<u>_</u> _	 						
	SUBAREA	SI ZE 54. M.			0.87									
		HANE		*	, u									
2		DRAIN	40		4/	40	•							

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

í

71780				RIGHTBAN		21647BANK	7		
	S	SUBAREA	V	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
	NAME S	SI ZE 50.71.	DISCHARGE PEAK C.F.S.	O CFS	INDIVIDUAL Q CFS.	DESCRIPTION	STATION	PEMARKS	DISPOSITION OF EXCESS FLOW
-	\vdash								
-									
_									
-			-				1		
42				40	80	36" RCP	1076+40	JOIN EXIST PIPE	NO EXCESS FLOW
<u>, </u>	;					W/FLAP GATE			
<u>, \</u>	7	0/0	/30						
44				an	/20	64" 010	025 2501	Point Fried Inch	410 PYO PS
)	200		211.010	5 123	2000
<u> </u>									
		_							
-									
-									
-									
] 					

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

DRAM.						LEFFBAN	_		
g .		SUBAREA	EA.	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
•	HAME	SI ZE 58.M.	DISCHANGE PEAK C.F.S.		INDIVIDUAL 0 CFS.	NOLEICE DESCRIPTION	STATION	PEMAN'S	DISPOSITION OF EXCESS FLOW
46	" 1"	2.54	0522	2250	4500	(3) - 12'X7' RCB	1096140	JOIN EXIST BOX	NO EXCESS FLOW
	* k."								
40	. 4.	0.57	1720	/238	1440	(3) - 8'x7' RCB	1075100	JOIN EXIST. BOX	PONDING AREA SOUTH
	ì	,				(EXISTING)			WANCH IS OUTSIDE
									OF PROJECT AREA
						-			
47				42	30	24" RCP	1065180	JOIN EXIST PIPE	NO EXCESS FOU
						W FLAP GATE			1 1
48				2	00/	48" RCF	1062+30		NO EXCESS FLOW
4			ب					PROVIDE FLAP (SAI)	

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

SUBANFA TOTAL SIDE-DRANAGE REGIN; LIEUTS RELIABRES NO Mark Size Decambe O Individual Decambridam STATION STATION RELIABRES NO SEC. S	PE	RTINE	N IN	ORMATIO	8	PERTINENT INFORMATION ON SIDE-DRAINA	GE INVESTIGATION -	Lower	SANTA ANA RIVER	K
NOTAL SIGNAM STATION STATION NEWBOUNDARY NEWBOUNDARY							214HT BANK			
# 1.			SUBAR	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
49 I 0.55 \$50 550 750 BxG' RCB 1066150 JOIN EXIST BOX NO 50 'K' 2.72 2500 4400 2400 20'x 11.5' RCB 105914 JOIN EXIST BOX. NO	4	NAME			O. C.F.S.	INDIVIDUAL Q CF.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
19 T 0.55 550 550 750 84.6' RCB 1066.50 JOIN EXIST BOX NO WE 27.2 25.0 440 2400 20'x 11.5' RCB 1059.44 10.10 EXIST BOX, NO										
60 "K" 2.72 2300 4400 2400 20'x 11.5" ROB 1059,4% 101M EKIST BOK, NO	49	Z		650	250	750		1066+50	Ex15T	NO EXCESS FLOW
50 "K" 272 2500 4400 2400 20'x 11.5' ROB 1059+94 10M Exist BOX, NO										
10 "K" 2.72 2300 4400 2400 20'x 11.5' RCB 1057+74 10M EXIST 130K, NO										
ON 151 X CO X (1/2) CO	Ş	Έ,			7					
				}	F		0.//	1057470	CKIST	NO EXCESS FLOW

81.F 173° 23 300 7067

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

CEST CONTROL STATION STATION STATION STATION CEST CONTROL CANADA CEST CONTROL CANADA CEST CONTROL CANADA CEST CONTROL CANADA CA							LEFT BANK		WW WINDS	KIVER
1			NAME OF THE PARTY		TOTAL	"	SIDE-DRAMAGE REQUIREMENTS			
12 0.61 600	g	N. C.	\$1.2E \$4.711.		C.F.S.	L	DESCRIPTION	STATION	PENAMIKS	DISPOSITION OF EXCESS FLOW
1				_						
1, 0.61 600 100 60" RCP PROPOSED PROPOSED 60" RCP 100	16				460	500	00	1046+76	JOIN EXIST S4 "RCP	ExaEss
12 0.61 600 140 200 54" RCP 1037490 JOIN EXIST PIPE JO EXCESS 15 0.48 640 15 10 124 671 PIPE 102440 JOIN EXIST PIPE JO EXCESS FL 15 10 124 671 PIPE 10246 EXIST PIPE NO EXCESS FL 16 10 124 671 PIPE 10246 JOIN EXIST PIPE NO EXCESS FL 170 140 670 JOIN EXIST PIPE NO EXCESS FL 180 760 (4) - 48" RCP 103140 JOIN EXIST PIPE NO EXCESS FL	3 3					160	(PR		OUTLET	
		" "							PROPOSED 6	
40 200 54" RCF 103440 JOIN EXIST PIPE JO EXCESS		7 /	0.6							
(450 680 54° RCP (ENIST) 1029470 JOIN EXIST 54° RCP (10 EXCESS) (15 0.48 640 (15 10) (12 571 p)pg 102149. REPLACE 12° 572 NO EXCESS FL (16 10 (4)-48" RCP (103140 JOIN EXIST PIPE NO EXCESS FL (180 760 (4)-48" RCP (103140 JOIN EXIST. PIPE NO EXCESS FL	Ş				7	2.5	ŀ	1007.4	Evica	
(15 0.48 640 (15 (20) (24 (20) (24) (20) (24) (20) (24) (24) (24) (24) (24) (24) (24) (24	7/				į	2		02115011	(2/2/	Creess
"3" 0.48 640 (15 10 (4) - 48" RCP (EXIST) 1029120 JOIN EXIST 54" RCP 110 EXCESS "15" 0.48 640 (15 10 (17 of AMBHRIT) FOR PROPOSEO 42" RCP "15" 0.48 640 (15 10 (17 of AMBHRIT) FOR PROPOSEO 42" RCP "16 10 (18" CMP 1015+60 JOIN EXIST PIPE NO EXCESS FL "180 760 (4) - 48" RCP 103140 JOIN EXIST. PIPE NO EXCESS F										
13 0.48 640 15 10 10 10 10 10 10 1	į				,					
13 0.48 640 15 10 124 572 102149; 102149; 102149; 102149; 102149; 102149; 102149; 102149; 102149; 102149; 102149; 102149; 102140;	53				430	600			JOIN EXIST 54" RCP	NO EXCESS FLOWS
"13 0.48 640 15 50 124 551 PIPE 102149: REPLACE 12.87L NO EXCESS F 14. RGP (PROR) NOTH 24" RCP 15. 10 (8"CHP 105460 JON EXIST PIPE NO EXCESS F 180 760 (4)-48" RCP 1007440 JOIN EXIST. PIPE NO EXCESS 181 180 760 (4)-48" RCP 1007440 JOIN EXIST. PIPE NO EXCESS									PROVIDE OUTLET STR.	1
"13" 0.48 640 15 To 12" 571 PIPE 102149. KEPLACE 12" 672 NO EXCESS F 15 20 10" CMP 1015460 JOW EXIST PIPE NO EXCESS F 180 760 (4)-49" RCP 100740 JOIN EXIST. PIPE NO EXCESS							BY CITY OF ANSHAIM		FOR PROPOSED 42"RCP	
13 0.48 640 15 fo 124 571 PIPE 102149: REPLACE 12 571 NO EXCESS F 14 RGP PROR) NOTH 24" RCF NO EXCESS F 15 20 10 "CHP 1013460 JOIN EXIST PIPE NO EXCESS F 180 760 (4) - 48" RCP 100140 JOIN EXIST PIPE NO EXCESS	ï	* ,								
16 20 10"CHP 1015+60 JON EXIST PIPE NO EXCESS F 180 760 (4) - 49" RCP 103+40 JOIN EXIST PIPE NO EXCESS	8	67	0.48		Ñ	So.	7.19	1021+9		Excess
15 20 10" CMP 1015+60 JOW EXIST PIPE NO EXCESS F 180 760 (4) - 48" RCP 1007+40 JOIN EXIST. PIPE NO EXESS							701		.72	
180 160 (4) - 48" RCP 1007440 JOIN EXIST. PIPE NO EXCESS F	,				į		•			
180 160 (4)- 49" RCP 103140 JOIN EXIST. PIPE NO EXEESS	;				6	20		10/5+60	Exist	
180 760 (4)- 49" RCP 1001+40 JOIN EXIST. PIPE NO EXEESS										
MOTAL FLAP GATES	56				08/	16.0	- 4011010	10-71.0	27.72	2008
454						3	70 20	100140	1,0/v	CKCCSS
						1		1	47.4	

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

		DISPOSITION OF EXCESS FLOW		EX1585 F.O.S	}				Exects Flow			Excess Flow				
		DISPOSITI		3	L	0			ON	\downarrow		NO.				
	•	REMARKS	1 EXIST 12)-60.8CP	EXIST	15	PROPOSED ,			JOIN ESIST PIPES			N EXIST PIPE				
	1	STATION	W10/ 01+766	1	L.:	FOR	1		01 06+066			43450 JOIN	1	-		
LEFT BANK	SIDE-DRAMAGE REQUIREMENTS	DESCRIPTION	(2) - 60" RCP (ENST) 9.	36" RCP/EXIST)		•			(2) - 30" Crip qu			43° 20P 9				
	г	INDIVIDUAL 0 CF.S.	480						00/			160				
	TOTAL	0 R	440						60			00/				
	<u>ا</u> د	DISCHARGE PEAK C.F. S.							900					_		
) dy gr	NEW C	SI ZE 52. M.							0.44							
		NAME						4	14							
	DRAIN	皇	19					1	89		 	53			 	

1961 AL 22 'CT 1:15

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

						RIGHT BANK	S		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
		SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
NO.	NAME	S1 ZE 54. M.	DISCHARGE PEAK C.F. S.		INDIVIDUAL 0 CF.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
,				,	, ,	1			
9				00	69	30. RCF	1046150	JOIN EXIST PI	PIPE NO EXCESS FLOW
19				*	*	(3)-36" CNP W/F.G	1031+30	JOIN EXIST PIPE	E NO EXCESS FLOW
						FRSION	—		
42						anes			
70				*	*		1030+40	JOIN EXIST PIPE	PE NO EXCESS FLOW
						W/F.G (DIV. WORKS)			
,	" "					(LOCATED IN RIVER)			
63	7//	0,35	360	280	700	12" RCP	1019+10	JOIN EXIST PIPE	E NO EXCESS FLOW
			_			(TO SPREADING GROUMO			
,									
64				20	55	36" RCP	1019+05	JOIN EXIST PIPE	E NO EXCESS. FLOWS
						TO SPREADING GROUND	(9)		
65				*	*	14) - 36" CM DW	979,50	ADIA FXIST DIDE	SANKE ON
						PIVERSION WORKS)			
*		0000	9	DIVERSION	. \	RKS FOR GR		LATER	
	¥	i o	K ローイエス G C	s t		LOCAL SIVER	See See See See See See See See See See		

THE FIS' 88 IFA 1007

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

<u> </u>	RTINE	NI IN	PERTINENT INFORMATION	8	SIDE-DRA	SIDE-DRAINAGE INVESTIGATION -	Lower	SANTA ANA RI	RIVER
						LEFT BANK	V		
1		SUBAREA	EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
N D	NAME	SIZE 5A.M.	DISCHARGE PEAK C.F.S.	O. C.F.S.	INDIVIDUAL Q CF.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
66.				,	72/	000 400	470.7	1 1	3 1 1
)				9	76)	40 KCF	7/6+40	ייין אורה איסיי איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים איסיים	NO EXCESS FLOW
,				,					
19				20	0,7	18° CMP	975+65	JOIN EXIST PIPE	NO EXCESS FLOW
68	.5%	0.63	9006	20	50	24 * RCP	970+60	JOIN EXIST PIPE	NO EXCESS FLOWS
,				•					
64				120	1250	INCEPCION (NOUNE)	365+85	JOIN EXIST BOX	NO Excess From
						יייייייייייייייייייייייייייייייייייייי			
20			-	80	00/	JWD " END	958+30	JOIN EXIST PIPE	NO EXCESS FLOW
									

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

1.

Į	TINE	3	ORMATIO	8	SIDE-DR	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION - Z	Lower	SANTA ANA RI	RIVER
						LEFT BANK			
		SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
NA AN	NAME	SI ZE 54.712.	DISCHANGE PEAK C.F.S.	O CFS	INDIVIDUAL 0 C.F.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
1									
:				2	38	341,62	955+10	JOIN EXIST PIPE	NO EXCESS FLOW
72				9	Ş				
*				20	92/	42" CMP	248+63	IOIN EXIST PIPE	NO EXCESS FLOW
	"/"	,							
		05:0	>06/						
20				170	02/	42" RCP (EXIST)	(EXIST) 938165	JOIN EXIST. PIPE	NO EXCESS FLOW
					36	Rep /		INSTALL ADDITIONAL	1
Ż				480	200		05+864	JOIN FILET. PIPE	NO FICES FOUN
			-		400	2-54" RCP (PROPOSED)		INSTALL GOOTTIONAL	
								2-64" RCP.	

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

DRAIN	Z Z	PORMATIO	8 8	SIDE-DR	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION	LOWER	SANTA ANA	RIVER
	SUBAREA	IEA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
1	E S12E 58.71.	DISCHANGE PEAK C.F.S.	O.F.S.	INDIVIDUAL 0 C.F.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
-	_							
7/N/ SZ	0.87	6/10	510	*	(4) - 36" RCP	916+25	JOIN EXIST PIPES	NO EXCESS FLOW
	<u> </u>				14 697ES		DIVERSION NORKS	1
-					SXYON NOISYENION		TO THE SPREADING	
							GROUND	
	<u></u>							
_								
····-								
	·							
-								
	_							

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

STATION STA	Z	RTINE		ORMATIO	3	SIDE-DRA	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION -	LOWER	SANTA ANA RIV	RIVER
1 1 1 1 1 1 1 1 1 1			SUBAR	EA	TOTAL		PRAINAGE RE			
100 100 60° C N P 126745 JOHN EXIST PIPE NO EXCESS 1	DRAIN		\$12E 50.M.	DISCHARGE FEAK C.F.S.	CFS	اسا	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
11 0.51 870 200 300 RCP 973+75 John Exist Pipe No Excess 1 20 21 18' RCP 973+05 John Exist Pipe No Excess 1 20 21 18' RCP 973+05 John Exist Pipes No Excess 1 40 200 48' RCP 978+00 John Exist Pipes No Excess 1 210 48' RCP 978+00 John Exist Pipes No Excess 1 210 60' RCP 878+00 John Exist Pipe No Excess 1	22				200	200		370+72		1 1 1
[14] 0.51 870 21 18" RCF 923+05 JOIN EXIST PIPES NO EXCESS 1 (40 200 48" RCP \$ 42" RCP 971+85 JOIN EXIST PIPES NO EXCESS 1 (40 200 48" RCP \$ 42" RCP 878+00 JOIN EXIST PIPES NO EXCESS 1 (270 210 60" RCF 871+10 JOIN EXIST PIPE DO EXCESS 1	11				40	. 02	30" RCP	37+22	Exist	NO EXCESS FLOW
174 0.51 870 200 300 (2) - 48° RCP 907+85 JOIN EXICT PIPES NO EXCESS 40 200 48" RCP & 42° RCP 899+90 JOIN EXICT PIPES NO EXCESS W FORP 68755 JOIN EXICT PIPES NO EXCESS 270 60° RCF 877+10 JOIN EXICT PIPE NO EXCESS	18				8	12	18" RCP	50+826	Exist	
40 200 48"RCP & 42"RCP 898+00 JOIN EXIST PIPES NO EXCESS 210 210 60" RCF 811+10 JOIN EXIST PIPE NO EXCESS	19	174	0.51	870	200	300	~ 48°	907+85	EX167	
270 270 60° RCF BITHID JOIN EXIST PIPE NO EXCESS	80				40	700	48"RCP & 42"RCP W FDAP GATES	898+00	EX157	1111
	à				270	270	60" RCF	971+10	EXIST	1 1 1 1

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

DRAIN NO. NAME					RIGHT BANK			
	SUBAREA	(EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
	S 2 2 E 58. M.	DISCHANGE PEAK C.F.S.	0 kg	MOWOUAL CF.S.	DESCRIPTION	STATION	MEMAPHS	DISPOSITION OF EXCESS FLOW
	•							
92 000	Q			*	(4) 24" CMP w/64765	393+90	JOIN EXIST PIPES	NO EXCESS FLOW
					VERSION LOCKS			i I
02								
0				*	(4) 36" RCP	852+15	JOIN EXIST PIPE	CHOIL SEESS ELOW
					(DIVERSION DORKS)			
					DRAIN TO SPREADING			
					GROUND PONOS			
					RELEASE FLOW INTO			
					CARBON CANYON DIVE	DIVERSION		
		-						

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

STATION STATION SHATES CARBON CANYON CHANNEL CONFLUANCE STRUCTURE STRUCTURE STRUCTURE STRUCTURE NO EXCESS FL PONO PONO SEA445 JOIN EXIST PIPE NO EXCESS FL SHA445 JOIN EXIST PIPE NO EXCESS FL TO ALO SUDE CATE TO ALO AND ANY FL TO ENTER FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW ANY FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW W TO ALO ANY FLOW W TO ALL ANY FLOW W TO ALO ANY FLOW W TO A							RIGHT BANK			
11.1			SUBAR		TOTAL		SIDE-DRAMAGE REQUIREMENTS			
"M" 3.80 5300 5500 TRAP. CHANNEL B4615 CA (CARBON CANYON) CHAN CHA STA 30" CMP W/F.G 30" CMP W/F.G 30" CMP W/F.G 40" CMP W/F.G (ONVERSION WORKS) CHAN (ONVERSION CHAN (ONVERS	뎣	N N			c c s	C.S.	DESCRIPTION	STATION	REMANCS	8
*** \$.80 \$5.00 \$5.00 (LOK POW CANYOW) (LUK *** *** *** *** *** *** *** *** *** *							!			
MI 5.80 5500 (CORROW CANYON) CHA STA ** DIVERSION WORKS 84446 ** (4) - 30" CMP WISTERS 84446 ** (4) - 30" CMP WISTERS 84446 ** (7) - 36" CMP WISTERS 813480 ** (7) - 36" CMP WISTERS 813480 ** (7) - 36" CMP WISTERS 813480 ** (7) - 36" CMP WISTERS 813480 ** (7) - 36" CMP WISTERS 813480 ** (8) - 36" CMP WISTERS 813480 **		•			5300	5500		846+25	L	
00° 0.05 - * \$146R510M WORUS 844.45 30" CMP WJ F.G - * (4) - 30" CMP WJGNE 844.25 - * (2) - 30" CMP WJGNE 813.480 - * (2) - 30" CMP WJGNE 813.480 - * (2) - 30" CMP WJGNE 813.480 - * (2) - 30" CMP WJGNE 813.480 - * (2) - 30" CMP WJGNE 813.480 - * (2) - 30" CMP WJGNE 813.480 - * (2) - 30" CMP WJGNE 813.480 - * (2) - 30" CMP WJGNE 813.480 - * (2) - 30" CMP WJGNE 813.490 - * (2) - 30"	Pg	È	3,80	5300			7		CHANNEL	
"00p" 0.05 " * * * * * * * * * * * * * * * * * *	-								STRUCTURE	
000 0.05										
00° 0.05 - * * * * * * * * * * * * * * * * * *										
00° 0.05	,									
00° 0.05	B				1	*	DIVERSION WORKS	844.48	JOIN EXIST	NO EXCESS FLOW
000 0.05							36" CMP W/ F.G			TRAIN TO SPECIOUS ACTION
000 0.05	Ġ									
000 0.05 ** (7) - 36" CMP J/64"E 813+80 (5) VERSION WORKS) (14 14 65 42" RCP W/FG 109+60 100	20				{	*	1	844+25	JOIN EKIST	EKCESS
000 0.05 4 (2) - 36" CMP JENTE 813+80 (010 ERSION WORKS) (14 14 65 42" RCP WIFE 109+00 AND 48" RCP WIFE (PRO) 109+00 AND										
00P 0.05 - # (2) - 36" CMP J64TE 813+80 (DIVERSION WORKS) 114 114 65 42" RCP WJFG 709+00 100	_	•	· ·							
114 114 65 42" RCP 2/64TE 813+80 114 114 65 42" RCP 2/FG 709+20 100		900	0.05							
114 114 65 42" RCP WIFG [09+00 400	Ø1				{	ŀ		812+20	JOIN EXIST PIPE	616655
114 114 65 42" RCP 21 FG 109+10 1 48" RCP2/PG (PROF) 709+00 100)			20.77	30179	
114 114 65 42" RCP W/FG (PROF) 109+00 400	9								1 1	
48" RCP 2/76 (PROP) 709+00 400	00		=	#	4/	65	42" RCP w/FG	709+10		men cory system
Wed Law							1000	109+00	400	BE CONTAINED IN THE
	884								ROY	POND, SEE DUG 18
	7:18	-	rek	RECH.	ore			en DR.	(MA	
WATER RECHARGE BASINS (NO LOCAL STORM DRAIN)										

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

L								7		FAGE 46.0F 39
				COMPAIN	5	FERTINER! INTURNATION ON SIDE-DRAINA	INTERINATION -	1000EK	SHASIA HNA KI	KIVER
							LEFT BANK			
			SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
5	M DM	NAME	SI ZE 5a.m.	DISCHANGE PEAK C.F.S.	OFS.	INDIVIDUAL Q CF.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
7	89				23	9	30" RCP	305+35	JOIN EXIST PIPE	WO Excess FLOW
									1 1	
	8				u u	c/a/	31.11 (118	70000	7010 171AJ (110)	CHOIS STEWNS ON
		-			`			27 2777		
	ò	10			_;	1	000 1101	6		
		ν	1.62	1800	44	09/	42. KCF	19/+40	JOIN EXIST PIPE	NO EXCESS FLOW
	77				/200	1800	(2) 1'x7' RCB	20+887	JOIN EXIST BOX	NO EXCESS FLOW
								,		
	, 00	"	0.27					,		
	-		3	400	00	400	06. KCF	165+50	JOIN EKISI MPE	אס באנבפא הנסי
-	4	400,	0.0/	20	2	3/	24" CMP	830120	JOIN EXIST. PIPE	NO EXCESS FLOW
_							PRAIN FOR GRAVEL			lł
		••••					(7/4)			
z '(T										

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

						LEFT BANK	\ \		
		SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
4	HAME	81 2E 50.711.	DISCHARGE PEAK C.F.S.	O CFS	HEDWELLAL 0 C.F.S.	DESCRIPTION	STATION	PERMANS	DIRPOSITION OF EXCESS FLOW
	_								
95				e	6.5	16" CMP	749+75	JOIN EXIST PIPE	NO EXCESS ROW
•									
•									
2				34	160	54" RCP	5/+84/	JOIN EXIST PIPE	NO EXCESS FLOW
							1		
4	121	0.10	- 20%	00/	/80	49" RCP	740,435	JOIN EXIST PIPE	NO EXCESS FLOWS
:)						
•									
70				2	40	14" ACP.	724+80	JOIN EKIST PIPE	NO EXCESS FLOW
						FORCE MAIN FROM	I		
						N			
6				,	ļ	200 110			
//				9	40	J V	110100	JOIN EXIST FIFE	NO CREESS FLOW
			•			13/ FLAP GATE	1		
							_		
			÷						
						·			

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

100 100	-					RIGHT BANK	丙		
MANK 512E FR.M. C.F.S.	_	SUBA	KEA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
10° 1.05 1400 1400 11° x 9.5° RCB 74749 DISEMBLAS TO 100 STEESES. SPECIAL SPE				O CFS		DESCRIPTION		PEMARKS	DISPOSITION OF EXCESS FLOW
10° 1.03 1400 1400 12 x 9.5' RCB 74710 DISCHARGE TO 100 EXCESS 8 45.10, 8 45.10,									
1.03 1400 1400 12×9.5 RCB 14749 DISCHARGE TO NO EXCESS. 1.03 1400 1400 12×9.5 RCB 14749 DISCHARGE TO NO EXCESS. 1.03 1400 1400 12×9.5 RCB 14749 DISCHARGE TO NO EXCESS. 1.03 1400 1400 12×9.5 RCB 14749 DISCHARGE TO NO EXCESS. 1.04 1400 1400 12×9.5 RCB 14749 DISCHARGE TO NO EXCESS. 1.05 1400 1400 1400 1400 1400 1400 1400 14	3								
3PRE401NG GROUND 8451N,	00000	_		1400	1400	x 9.5'	747+90		
845/W.									
								BASIN.	
			-						
		<u> </u>							
	•								
	-								
	_								
	-								
	_								
	4	_							

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

8	RTINE	N IN	PERTINENT INFORMATION ON SIDE-DRAINA	8	NDE-DRA	GE INVESTIGATION -	Lower	SANTA ANA RIVER	\$ 'S
		9				LOF / BANK			
MYMO		A DAME	SCHARCE	TOTAL	MONDUAL	BUE-URANAGE REGUNERENTO			
đ	MANE	SIZE SQ.M.		C.S.	G G	DESCRIPTION	STATION	remonts	DEPOSITION OF EXCESS FLOW
3	101 "0"		0.4.5	•	2,6		1, 25,		
<u>Ş</u>	ų	4.70	00/6	00/0	00/0	1	027420	JOIN EXIGE BOX	No Ereess Fras
				_		COLLINS CHANNEL		HE BACK LEVES	
								10 ELEY. 103.0I	
							1		
				_					
			ļ						

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

STATION OF EXCESS FLOW
ANS ON YOU THINK WIOL OILER
PUTLET TO SANTA ANA
RIVER FROM 18451
688 160 JOIN EXIST PIPE NO EXCESS FLOWS
686750 JOIN EXIST. PIPE NO EXCESS
0000 3708M

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

B	RTINE	N N	ORMATIC	8	PERTINENT INFORMATION ON SIDE-DRAIN	AGE INVESTIGATION	LOWER R	SONTO AND KIVER	
		SUBAREA	EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
MA d	NAME	S1 2E 50.11.	DISCHARGE PEAK C.F.S.		INDIVIDUAL Q CF.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
901				8	140	48"RCP W/ F.G	01.969	JOIN EXIST PIPE	NO EXCESS FLOW
901				27	38	34,806	682.70	JOIN EXIGT PIPE	NO EXCESS FLOW
107	11,	85%	310	0	210	48"RLP W/ F.G.	02+699	JOIN EXIST PIPE	NO EKSESS FLOW
80)				9/	0//	48, 800	659+00	ION EXIST PIPE WATE	No Exesss Flow
601	_:			9	14	JH2 "B1	654+40	JOIN EXIST PIPE	NO EXIESS FLOW
0//	1,	£9'/	1400	48	7100	(2) 12'x9' RCB TROP CHONNEL	628160	JOIN EXIST. BOX TIE BACK RIER LEVEE TO BITTERBUSH CHANNEL	NO EXCESS FLOW
81.F F73° 33 JeA									

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

1 1 1 1 1 1 1 1 1 1	Stabela Total Side-Damange Requirements Statute Total Description Statute Total Description Statute Stat	4			PORMATIO	3	SIDE-DRA	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION - LEFT BANK	LOWER	SANJA AND KIYER	£ K
MAME 51.25 PERM G. G.S. CESCAIPTION STATION REMANSS DISCOSITION G. EXCESS SATION C.S. CES. C.S. CES. C.S. C.S. C.S. C.S.	NAME 31.0 PREMIURE G WONDOWN STATION PREMIURE DESCRIPTION STATION PREMIURE G G G G G G G G G			SUBAR	REA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
"V" 656 620 400 750 (8) 5'x5' RCB 625415 10M EXIST BOX NO EXCESS. (50 380 76) 2'x5' RCB 625415 10M EXIST BOX NO EXCESS. 20 20 4 24" CMP 665110 10M EXIST PIPE NO EXCESS.	9V" 0.56 620 400 750 750 83 5'x5' 8CB 62540 101N ENIST BOX NO EXCESS 1SO 380 760 22410 101N ENIST BOX NO EXCESS 20 20 4 24" CHP 665110 101N ENIST BOX NO EXCESS FREELONY PROINS	MA DA	NAME				INDIVIDUAL Q C.F.S.	DESCRIPTION	STATION	REMARKS	
"V" 0,56 620 400 750 (3) 5'x5' RCB 625+55 10M Exist Box NO Excess. [30 76) 2'x5' RCB 421+10 10M Exist Box NO Excess. 20 20 40 24" CMP 605+10 10M Exist PIPE NO Excess.	180 620 400 750 (8) 5'x5' RCB 625+15 10N Exist Box NO Excess 180 860 2'x5' RCB 4/RG 621+10 10N Exist Box NO Excess 20 20 4 24" CHP 605+10 10N Exist PIPE NO Excess FREEVAY 2Rows	1				2	9//		675190	Enst	1 1 1
20 20 4(5) 21x3 RCS 4/RG 621x10 JOIN EXIST BOX NO EXCESS	180 860 21.3' RUB W/RG 621410 JOIN EXIGT PIPE NO EXCESS. 120 20 4 24" LIP 665110 JOIN EXIGT PIPE NO EXCESS.	111	"/"			400	150	198,9	55+520	EXIST	EXCEGS
20 20 # 24" CMP 605110 FOIS #0 EXCESS	20 20 # 24" CAP 605 TIO TOWN EXIST PIPE NO EXCESS FREEWOY PRAINS	13				130		2143' 808	01+129	E1/67	1 1 1
	FREEWAY	114				20	50	17	005+10	Ex167	Ercess
	FREEWAY										
	FREEWAY										
	FREEWAY										
	FREEWAY										
	FREEWOY										
	FREEWAY										
	FREEWAY										

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

15 1 2.61 16.00 160 16.00		ERT	NEN	<u> </u>	DRMATIO	8	SIDE-DRA	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION - \angle	LOWER	SANTA ANA RIVER	ķ
MAME 517E PART PA		Ц		SUBARE	Y:	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
"1" [.6] (400 (600 60 x 1" RCB (Exist) 648440 101N EXIST BOX (FICESS OF BOLLOB) 101N EXIST BOX (FICESS OF BOLLOB) 101N EXIST BOX (FICESS OF BOLLOB) 101N EXIST BOX (FICESS OF BOLLOB) 101N EXIST PIPE 101E 101N EXIST PIPE 101N	2 3	2			DISCHARGE PEAK C.F. S.	o CF.S		DESCRIPTION	STATION	PEMARKS	DISPOSITION OF EXCESS FLOW
11" 2.61 1600 1600 10'4.11' RCB (Exist) 64340 JOIN £1157 BOX		-	-								
10 2.61 1600 1600 10 × 11 × 12 × 12 × 12 × 12 × 12 × 12				,				0.0		1	ļ
	<u>"</u>	7 / 6		19:2	009	1600	600	٤١٥	643140	N EX/57	EXCESS FLOW WILL
	15,	_						T	001010	18	To THE IN BUILT
50 50 50 CMP CETTO THE RIVER BRIDGE				-						CARRY EXCESS OF 30LR	OF CHOPMAN AVE
50 56 (2) 30° CMP (27410 101N EXIST PIPE NO E. 1118046A 118046A 12										1	BRIDGE, PROVIDE
50 56 (2) 30° CMP (27410 JOIN EXIST PIPE NO EXIST PIPE NO EXISTS 1010 EXIST PIPE NO EXISTS 1010 EXISTS 101				-							C.B. & PIPE CONNEC.
50 50 50° CMP 627410 JOIN EXIST PIPE NO EAG 10/ E.G. 10/ E.G. JOIN EXIST PIPE NO EAG 10/ E.G. JOIN EXIST PIPE EXLESS FA 10/ E.G. 10/ E.G. JOIN EXIST PIPE EXLESS FA 10/ E.G. 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXIST PIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXCEPTIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXCEPTIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ EXCEPTIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ E.G. 10/ EXCEPTIPE EXCESS FA 10/ E.G. 10/ E.G. 10/ E.G. 10/ EXCEPTIPE EXCESS FA 10/ E.G. 10/ E											7.
"W" 0.16 230 FG (2) 30° CMP (227+10 JOIN EXIST PIPE "W" 0.16 230 Bo 40 42" CMP W/RG 610+60 MANDE PARMA AKEA WY 0.16 230 Bo 40 42" CMP W/RG 610+60 JOIN EXIST PIPE LO 10 10 10 10 10 10 10 10 10 10 10 10 10		\dashv	1								4 THIS POINT.
10	<i>"</i> "	L.				١				1 1	
10 0.16 230 80 30 42" CHP W/RG 620-60 HOWNE FORDING AREA 10	<u> </u>					20	20	(2) 30°CMP	627+10	- 1	NO EXCESS FLOW
"W 0.16 230 80 40 42" CMP W/RG 610+60 MSTALL 36" RCP W/F.G 10 40 42" RCP (PROP) 618+20 MSTALL 36" RCP W/F.G 20 40 42" RCP K/F.G. 607+10 JOIN EXIST. PIPE 20 10 10 10 K/F.G. 607+10 JOIN EXIST. PIPE 36" CMP W/F.G 607+10 JOIN EXIST. PIPE 36" CMP (PROP) SROWING PREM								\ 		•	
UN 0.16 230 80 40 42" CMP W/FG 610+60 MSTALL 36" RCP U/F.G 104 40 42" RCP K/F.G. 607+10 JOIN EXIST. PIDE 20 40 14" RMP K/F.G. 607+10 JOIN EXIST. PIDE 20 40 24" RMP K/F.G. 607+10 JOIN EXIST. PIDE 36" CMP (PROP) PROVING PREN	,					•					Excess Flow will
UN 0.16 230 80 40 42" R.CP (PROP) 618120 MSTALL 36" R.CP W/F.G. 607+10 JOIN EXIST. PIDE 20 10 14" (MP N/F.G 607+10 JOIN EXIST. PIDE 36" CMP (PROP) PROVINE PANDING AREA E 36" R.CP DRAIN			_;			80	30	CMP W/RG	620160	PROWIDE PONDING AREA	RE CONTAINED IN THE
20 40 42" RLP WIFG. GOTATO JOIN EXIST. PIDE 20 10 14" CMP WIF.G GOTATO JOIN EXIST. PIPE 36" CMP (PROP). \$50" RCP DRAIN	<u> </u>	<u> </u>		0.16	230			KCP (PROP)		, ,	PONO SEE GNT. El
20 LP 24 CMP W/F.G GOTHO JOIN EXIST, PIPE 36" CMP (PROP) PROVIDE POWOTHO AREA \$ 36" CMP (PROP) \$ \$ 36" RCP ORAIN	2					80	40	40" 119 11/50	607.10	JOIN FILST. PIDE	EVER ELL ELOES LAW AS
LO LO LO VIEG GOTHO JOIN EXIST. PIPE : 36"CHP (PROP). PROVING PREN						<u> </u>				PROVIDE PONDING APEA	LONTAINED INTHE PON
LO LO LA CHP WIG GOTHO JOIN EXIST. PIPE 36"CHP (PROP) PROVIDE PONDING AREA L						,		1			586 DWG 22.
36"CHP (PROP) PROVIDE PONDING AREA L	1		_			10	42	2/1.6	01+100	JOIN EXIST. PIPE	EXCESS Flow whe RE
\$ 36" RCP DRAIN POND. SEE DWG	119	0			<i>-</i> -			(402)		DNIONOS	CONTRINED IN THE
		-	7							E 36" ACP DRAIN	PONO. SEE DWG 22
					ļ						

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

Ů,

	H	RTINE	NT IN	PERTINENT INFORMATION ON	8 2	SIDE-DRA	SIDE-DRAINAGE INVESTIGATION	Lower	SANTA ANA RIVER	
12 W 0, 190 So So So So So So So S							RIGHT BANK			
			SUBAR	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
20	3 2	NAME			C.F.S.		DESCRIPTION	STATION	PENAPIKS	DISPOSITION OF EXCESS FLOW
2 W 0,11 190 80 120 36" RCP W/150 1010 E1157 PIPE NO E11855 22 W 0,11 190 80 190 54" RCP W/FG 58720 1010 E1157 PIPE NO E11855 23 50 30" RCP 885720 1010 E1157 PIPE NO E11859	120				40	0//	36" RCP	57+009	EX167	EXCE\$5
2 40 120 36" RCP 40+30 540 Exist Pipe 100 Exists 120 1									1	
122 111 190 80 190 54" RCP W F.G 683+26	1				1					
122 WU 0.11 190 80 190 54" RCP W F.G 583+20 JOIN EXIST DIPE NO EXCESS 1					40	07,		120 + 30	PROVIDE FIAP GATE	
	100	•			•					
123 So 50 Marso loin Exist Pipe NO Excess	77/		0.11	061	2	190	W/F.G	583+20	EX157	EXCESS
163 So SO NOT RCP 1881-30 101N EUST 110E NO ESCESS										
20 30 30 30 40 Excess 100 Exc	183				-	,	9	700		
					00	36	KCF	765430	EX151	EXCESS
	-									
	-									

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

<u>'</u>						LEFT BANK	2020	THE THE THEFT	
		SUBAREA		TOTAL		SIDE-DRAMAGE REQUIREMENTS			
र्वे व	MAKE	- 70	DISCHARGE PEAK C.F.S.	O. C.F.S.	MONDUAL O CFS.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
	Ľ,		L					JOIN EXIST. PIPE	
124	1/4	0.04	%	93	82	24"RCP (EXIST)	583+50	PROVIDE ADDITIONAL	No Excesso FLOW
					99	36" RCP (PROPSED)		36" RCP W/FG	
						•			
							1		
175	1.	102.7	coog	Coor	0004	TOOP CHONNEL	566100	HONTINGO COFEE	NO EXCESS FINDS
,					<u>L.</u>	(SANTIAGO CREEK)		CHANNE! CONFLUANCE	
								57RUCTURE	
_					, ,				
	╛								
n, a									

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

								PAGE	PAGE 32 OF 39
M	RTINE	NT IN	ORMATIO	30 Z	SIDE-DRA	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION - LOWER	28 Ma;	SANTA ANA RIVER	35
						RIGHT BANK	15		
9		SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			·
ā	NAME	SIZE SQ.M	DISCHARGE PEAK C.F. S.	Cf.S	INDIVIDUAL 0 C.F.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
			•						
22				001	160	48" RCP	580 185	JOIN EXIST. PIPE	NO EXCESS FLOW
	, ,,,,,	2.2	- 5						
	ž	10:0	06/						
127				64	45	30" RCP WEG	654.00	JOIN EXIST. PIPE	EXCESS F1023
				•					8
·									t i
-				*					WIMIN THE STRETS
									55€ Dug 23.
_									
	•								
_									
-									

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

								,	PAGE	33 00 39
PER	THEN	1	ORMATIO	NO N	PERTIMENT INFORMATION ON SIDE-DRAMA	GE INVESTIGATION -	lower	SONTA ANA	RIVER	
						RIGHT BANK	2			
Ne Ann		SUBAREA	Y.	TOTAL		SIDE-DRAMAGE REQUIREMENTS				
	HANE	\$12E \$4.M.	DECHARGE PEAK C.F.S.	650	MDNYDUAL OF S.	DESCRIPTION	STATION	REMARKS	,	DISPOSITION OF EXCESS FLOW
128	MVS	0.11	66	9,6	44	36" CHP	536+65	JOIN EXIST ,	3010	NO EXCESS FLOW
62/				9.9	9//	56° RCP W156	528.40	IVIN EXIST PIPE	3010	NO EXCESS FIOM
06/				8	130	36" RCP	522+40	JOIN FX167	3010	NO EXCESS FLOW
13/	***	2%	400	280	067	69" RCP	509+35	JOIN EXIST P	5014	NO EXCESS FLOW
135				3	140	36" RCP W/F.G	498135	JOIN EXIST P.	30/10	NO EXCESS FLOW
		\exists								
· · · · · · · · · · · · · · · · · · ·										

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

2			PERTINENT INTORNATION ON SIDE-DRAIN	5	SDE-DR	LEFT BANK	SONER	SANTA ANA RIVER	8
		SUBAREA	EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
M di	NAME	SI ZE 68.M,	DISCHARGE PEAK C.F.S.	O. C.F.S.	INDIVIDUAL Q CFS.	NOLESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
123				00/	00	040,000	0.122		
:				<u>}</u>				ADD FIAP GATE	CONTAINED IN THE
								} }	POND. SEE DUG 23
401									
				120	180	58 x 36" ARCH	534755	JOIN EXIST. PIPE	NO EXCESS FLOW
120	7	,		30	38	92" RCP	687.10	7019 EXIST 010E	NO Frokk Exo
3	2//	1.21	1040						
187				,	,				
90/				40	00	20" KCF	254:40	JOIN EXIST PIPE	NO ERCESS FLOW
137				750	250	(3) 48" RCP W/ F.G	523+10	JOIN EXIST PIPE	NO EXCESS FLOW
									

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

MAME 5172 PERMINE O MENUDAL DESCRIPTION STATION RELIAMS DIRECTOR OF EXCENSION OF EX	MUME SIZE DISCULARE O HONDULAL GES. CES. CES. CES. WW3 0.85 750 750 750 7700	LEFT BANK		
WYS 0.85 750 750 1700 (2) 10x5-1° ECB 50x465 10M ENGT 80X NO ENGESS WHO IDD 100 150 48° ECP 460x0 10M ENGT 1106 NO EXCENSION	WV3 0.85 750 750 1700 100 1200 100 100 100 100 100 100 100	STATION	ENAMES	DISPOSITION OF EXCESS FLOW
WIG 100 100 150 48° RCP 499.00 101N ENIST 1118 NO ENISTS	100 100 240 100 100 240	508165	EX165	NO FILESS FLOW
WIG 100 100 150 48° RCP 4900 101N EXIST 1198 NO EXISTS	200 (00) (100 (200) (100			
		NOI	S414 T21X3	1 1 1

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

	ERTIN	ENT IN	FORMATIO	8	SIDE-DRA	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION -	loure.	SONT DNA PINED	1 NGC 30 OF 39
						13			Ą
	Ц	SUBAREA	κEA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
इ इ	HANE	E SIZE 58.71.	DISCHANGE PEAK C.F. S.	0 CFS	INDIVIDUAL Q CF.S.	}	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
4	140 WW	7. 0.05	00	09	20	1 10 1	99+70		NO EXCESS FLOW
						(Jaxi) Jax 47	\prod	24" RCP	
				-					
4	_			75	91	1.6	353+65	10W EXIST PIPES	NO EXPESS FIRES
	`\ <u>\</u>	0.59	380			П		MA	
142			}	305	380	60" RCP W/ F.G 3.	352+40	JOIN EXIST PIPE	NO EXCESS FLOW
			-						
	-								
	***				T				
							†		
	-								
				1			1		
*CIT *									

1967 🎮 88 °C17 149

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

14				PERTINENT INTORMATION ON SIDE-DRAIN	5	SUE-UK	KIGHT BAN	LUWCK	SANIA ANA KIVEK	
### 5122 PREMISE OF HONOROM PROPERTIES PROPERTIES \$41.81, CES CES CES CES CES CES CES CES CES \$41.82 CES CES CES CES CES CES CES CES CES CES CES CES CES \$75 CES			SUBAR	EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
16 16 14" 16" 100 10 10 10 10 10 10	g g				O. CFS	INDIVIDUAL Q CFS.	DESCRIPTION	STATION	REMARKS	
18 16 16 124' 12 12 12 12 12 12 12 1										
13 140 515					9/	91	\sim	208+10	EX167	1
50 170	143	72		2/2			. 1			748
500 50 50 80 80 80 80 80	£.	2	04/0	0/0			FROM EDISON CO. YARD)			FLOW WILL BEDIVER
500 5 36" RCP W F.G. 16910 101N EXIST. PIPE										TO TAUSER CHANN
500 5)-56 RLP W F.G. 1990 1010										
500 53-56 RLP W R.G. 19410 1010 Exist. PIPE NO EXCESS. 1860 18410 1960 1860										
X2 0.78 500 (5)-56, 120 m/ 6.6 M9410 JOIN Exter. PIPE NO Exters X2 0.78 510 560 m/ 6.15 560 m/ 6.15 560 m/ 6.15 700 m/										
X2 0.78 B10 B10 (4)-42°ECF FURED 9/108 (400/770NAL 2-36" MESTALLED) X2 0.78 B10 B10 (4)-42°ECF FURED 9/108 (010 EXIST PIDE NO EXCESS (FROM PLINE STATION 42"ECF LITTE B5 3 PLINES X 150 NO EACE 10 LITTE B5 3 PLINES X 150 NO EACE 10 LITTE B5 10 STALLED)	144				500	200	18)-36 " P.D W/ F.G	017691	EILET	EVELL
	•					ì	FROM PUMP STOTION	_	(400/Tinas) 7-26"	24500
X2 078 B10 B10 B10 (4)-48°ECP FORCED AND EXIST PIPE NO EXCESS (FROM PUMP STATION 42"ECP LINE B5 5 PUMPS X 150 NOV GFM) INSTALLED)							3 PUMPS 150 000 CAM		11013H 38 1147 52010	
X2 0.78 BIO BIO (4)-40°ECP FORCED 9/105 1010 EXIST PIPE NO EXCESS (APONTIONAL 2- (FROM PUMP SSATION 42"ECP LALL BG 3 PUMPS X 150 000 GM) (NSTALL BO)							£4)			Z
X2 0.78 BIO BIO 64)-42ºECP FORCED 9/105 1012 EXIST PIDE NO EXCESS (FROM PUMP SSQION 42ºECP LALL BE 3 PUMPS X 150 000 GPP) 12574L50)	,									
X2 0.78 510 510 (4)-42° ECP FUREED 91405 1012 EXIST PIPE NO EXCESS (FROM PUMP STATION 42" ECP LITE 185 5 24775 X 150 000 GPM (1857 ALL 50)		• 1	-					_		
A F.G. (ADDITIONAL 2- PUMP SIGNON 42"RCP WILL BG SX (SODO GM) (WSIALLED)	145	72		•	910		(4) - 42 ECP FURCED	Ш	101N EXIST	i
95 x 150 nor GPM 48" ECP LALL 95 x 150 nor GPM) 1455ALL 50)								Ш	2 JANOITICOAN	
03 X 150 000 GPM) 1N55AUE0	·•.						FROM FUMP STATION		١.	
*							3 PUMPS X 150 000 GPM			
		_								

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

							LEFF BAN	IK IK	E WINNEC	CHHWWEL
1			SUBA		TOTAL	-57	SIDE-DRAINAGE REQUIREMENTS			
	3 4	2		DISCHANGE PEAK C.F.S.	0 5		DESCRIPTION	STATION	REMARKS	
11 0.17 241 82 84 89490 PROFOSED ROP NO ETLESS 12 4 42 RCP 54 89450 COLLECTOR CIPE 13 4 42 RCP 54 89450 COLLECTOR CIPE 14 56 4 42 RCP 54 89450 COLLECTOR CIPE 15 5 5 74 RCP 54 84450 COLLECTOR 15 5 75 RCP 54 RAFE STATION COLNECTE 15 5 75 RCP 54 RAFE STATION COLNECTE 15 75 85 RCP RAFE STATION 16 17 8 RCP RAFE RAFE 17 8 86 RCP RAFE RAFE 18 8 8 8 8 8 8 8 18 8 8 8 8 8 8 18 8 8 8 8 8 18 8 8 8 8 18 8 8 8 18 8 8 8 18 8 8 8 18 8 18 8			_							
11 0.17 241 81 42° KCP 54 191.45 COUNECTING TWASE 186.45 COUNECTING TWASE 186.45 COUNECTING TWASE 186.45 COUNECTING TWASE 186.45 COUNECTING TWASE 186.45 COUNECTING TWASE 186.45 COUNECTING TWASE 186.45 COUNCESSCOTICUS 186.445 COUNCESSC	140	_	<u> </u>		26	*	RCP	189.90		Excess
		-					85	174.40		
68				<u>~~</u>		•				
368	147	_			â	*	RCP 54			1
568 # 42" RCP 54 [14+55 57ATION LOCATED 67										
365 68				_					TO THE	
365	148			,	68	*	RCP 54	55+11	57A710N	- 1
01 0.09 (122				363	-			107+80		
01 0.09 (122		_	 -						-	
01 0.09 (122	11/2	-							CHANNEL 15EE	
01 0.09 122 48 100 +60 PUMPS WILL 55	<u>}</u>		_		61	*	RCP 54	166+45	47)	4
126 126		(_				89	100 +60		
55 * 30° RCP 54 159.80 4ATSE TO GANTA —— 48 77.29 4NA RIVER. 41.55 3 PUMPS 50.000 GPN EA. 50.005 GPN EA. 50.005 GPN EA. 50.005 GPN EA. 50.005 GPN EA.		2		~						
4 30" RCP 54 159.80 4.475R TO GANTA —— 48 93.29 ANA RIVER. 1/56 3 PUMPS 50.00 GPN EA. 100N 57RUCT CONCRETE 5UMP 50'x 20'x 16'06EP	•									
48 78125 4NA 415E 3 415E 3 50.000 50N57Ro	2	_			25	*		08+651		- "
10 0 m				,			819	43188	RIVER	
" 0 0 "										
00									USE 3 PUMPS	
8										
		_							CONSTRUCT CONCRETE	
										ø
	7:18									

TABLE 1 100-YR LOCAL STORM PEAK DISCHARGE

STEAMER SUBMER TOTAL SUB-CANAMIGE REQUIREMENTS REMARKS DIGINIOR STATION REMARKS DIGINIOR STATION	X	RTINE	N L	PERTINENT INFORMATION ON SIDE-DRAIN	8	SIDE-DRA	AGE INVESTIGATION	LOWER	SANTA ANA RIVER	
### \$12E POSCUMENT O HOW TOURN O STATION O S			SUBAR		TOTAL		SIDE-DRAMAGE REQUIREMENTS			
414 237 2400 24m 2400 TRAP CHANNEL 1821/4 LONFLYANCE STRUCT. NO EXCESS 4. 616 105 5600 GREENVIEW BANNING BS100 GREENVIEW BANNING NO EXCESS F 54. 613 54. 613 54. 613 54. 613 55. 610 610 611 612 613 613 614 615 615 615 615 616 617 618 618 618 618 618 618	N D	NAME			O CFS	INDIVIDUAL Q CFS.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
414 237 240 240 TRAP CHANNEL 19749 CONFLUANCE STRUE. NO EXCESS STRUE. SEAMING CHANNEL. 616 105 500 GREENVIEW BANNING BS100 GREENVIEW BANNING CHANNEL. 7 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	į			_		┸) ł			
SANNING CHANNEL. SANNING CHANNEL. SANNING CHANNEL. STRUCTURE.	19/	274	_		228			152+90	LONFLYANCE STRUCT.	NO EXCESS FLOW
GV5 10.5 500 500 GREENVIEW BANNING BS100 GREENVIEW RAWING NO EXCESS FLO CHANNEL INTO SANTA GV3 T GV3 T GV3 T GV3 T GV4 T T T T T T T T T T T T T									WITH GREENWEN	
GV6 10.5 500 GREENVIEW BANNING BS100 GREENVIEW BANNING NO EXCESS FLO CHANNEL INTO SANTA GV4 + ANA RIVER AT STRUCTURE + GV3 + GV3									BANNING CHANNEL.	
GVS 10.5 500 500 GREENVIEW BANNING BS100 GREENVIEW BANNING NO EXCESS FLO CHANNEL INTO SANTA GN4 HAMILTON AVE T GV5 GV6 GV6 GV6 GV6 GV6 GV6 GV6										
GVE 10.5 500 GREENVIEW BANNING BS100 GREENVIEW BANNING NO EXCESS FLO CHANNEL OWELLAND SANTA GVA HAMILTON AVE T GVE										
GVE 10.5 500 500 GREENVIEW BANNING BS100 GREENVIEW RAWING NO EXCESS - + GVA - GVA - + HAMILTON AVE - + GVE - GVE -										
GV6 10.5 500 500 GREENVIEW BANNING BS100 GREENVIEW BANNING NO EXCESS -+										
GVS 10.5 5000 GREENVIEW BANNING BS100 GREENVIEW BANNING WO EXCESS + + GVA + ANA RIVER AT GV3 + CHANNEL INTO SANTA CHANNEL CONFLUENCE + ANA RIVER GV3 - T GV7 GV7 GV7 GV8 - T GV8 GV8 GV8 GV8 GV8 GV8 GV8 GV		•								
CHANNEL INTO SANTA CHANNEL PONFLUANCE ANA RIVER AT HAMILTON AVE	152	615			2000	_	GREENVIEW BANNING		GREENVIEW BANNING	Excess
HAMILTON AVE		+ 1					CHANNEL INTO SANTA		CHANNEL CONFLUANCE	
HAMILTON AVE		614					ANA RIVER AT		STRUCTURE.	
		+					HAMILTON AVE			
		673								
		1								
		1								
		2								
					_					
						•				

SPF LOCAL STORM PEAK DISCHARGE

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

1 11 12 12 13 14 15 15 15 15 15 15 15							RIGHT BANK	V 1		
118 ON STATE OF THE COLOR OF STATION STATIAN STATION STATIAN STATION STATIAN STATIAN STATIAN STATIAN STATIAN STATIAN STATIAN STATIAN S			SUBAR		TOTAL		SIDE-DRAMAGE REQUIREMENTS	·		
140 1250 REGI CHANNEL 1001 EXIST. BOX NO EXCESS 140 140 140 160" RCP 100104 1011 EXIST PIPE 10010 10	4	HAME	\$1 ZE	104	CFS	MOVOJA OST	DESCRIPTION	STATION	PEMARKS	DISPOSITION OF ENCESS FLOW
120 120	,				į					
## 0.84 [140 240 260" RCP 100.00 24.57 PiPE 20.00 24.000000 24.000000 24.00000 24.00000 24.00000 24.00000 24.00000 24.00000 24.00000 26.000000 26.000000 26.00000 26.00000 26.00000 26.00000 26.00000 26.000000 26.000000 26.000000 26.00000000 26.0000000 26.0000000 26.0000000 26.00000000000 26.00000000000000000000000	<u>'</u>				002)	/250		1206190	EXIST.	
## 0.64 [140 240 666" RCP 120104 JOIN EXIST FIRE 14041 FLOODS ### 140 150 12" RCP 18914 JOIN EXIST FIRE 14041 FLOODS ### 1742 150 12" RCP 18914 JOIN EXIST PIPE NO EXESSS ### 1742 140 150 12" RCP 18914 JOIN EXIST PIPE NO EXESSS #### 1742 140 150 12" RCP 18914 JOIN EXIST PIPE NO EXESSS ##################################							13,5'xB' RCB			
# 140 140 140 1240 126104 JOIN EXIST PIPE 12681 FLOODS # 1/40 1/40 1/50 1/2" RCP 1/28/10 JOIN EXIST PIPE NO EXCESS # THE WATER SURFACE ELEVATION FOR THE SIPE NO EXCESS # THE WATER SURFACE ELEVATION FOR THE SIPE NO EXCESS # THE WATER SURFACE ELEVATION FOR THE SIPE NO EXCESS # THE WATER SURFACE ELEVATION FOR THE SIPE NO EXCESS # THE WATER SURFACE ELEVATION FOR THE SIPE LOCAL STORM DISCHARGA. # THE WATER SURFACE ELEVATION FOR THE SIPE NO EXCESS # THE WATER SURFACE ELEVATION FOR THE SIPE NO EXCESS # THE WATER SURFACE ELEVATION FOR THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE THE SIPE NO EXCESS # THE WATER SURFACE SURFACE THE SIPE										
## (440 140 66" RCP 1101.04 JOIN EXIST PIPE 100.01 FLOCIDO 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.										
# 0.84 (140 140 124	,				,				ı	
# 0.84 (140) 1, 0.84 (140) 150 12" RCP 189492 1010 6x105T. PIPE NO EXCESS 1, 0.84 (140) 150 12" RCP 189492 1010 6x105T. PIPE NO EXCESS 1, 0.84 (1, 0.0) 1, 0.0	~				640	240	GO" RCP	1202104	-	LOCAL FLOCIONG
# 0.84 2140 150 150 12° RCP 1189.92 John Grist. PIPE NO EREGES 150 150 12° RCP Exist 1189.92 John Grist. PIPE NO EREGES 150 150 12° RCP Exist 1189.92 John Grist PIPE NO EREGES 150 150 150 12° RCP Exist 1189.92 John Grist PIPE NO EREGES 150 150 150 12° RCP Exist 1189.92 John Grist PIPE NO EREGES 150 150 150 150 RCP Exist 1189.92 John Grist PIPE NO EREGES 150 150 150 150 RCP Exist 1189.92 John Grist PIPE John Grist PI										
# 0.84 2140 150 12° RCP 18949, John 6x167. P106 NO 5x2655 150 12° RCP 18949, John 6x167. P106 NO 5x26555 150 12° RCP Exist 18949, John 6x167. P106 NO 5x26555 150 120 12° RCP Exist 18949, John 6x167 P106 NO 5x26555 150 120 12° RCP SAN RCP NO 5x26555 150 120 12° RCP SAN RCP SAN COPACITY.										PLATE. NE
# The Water Sur Foce Elevation For The Species (1999) John Grist Fipe NO Greess # The Water Sur Foce Elevation For The Species (1909) # The Water Sur Foce Elevation For The Species (1909) Capacity, # The Water Sur Foce Elevation For The Species (1909) Capacity, # The Water Sur Foce Elevation For The Species (1909) Capacity,		3	0.04	2/40						(REGIONAL PARK)
150 150 12" RCP 1189,40 JOIN 6x15T. FIPE NO EXLESS 150 130 72" RCP EXIST 1189,40 JOIN 6x15T 199E NO EXLESS 150 130 72" RCP EXIST 1189,40 JOIN 6x15T 199E NO EXLESS 150 130 12" RCP EXIST 1189,40 JOIN 6x15T 199E 190E										
150 130 12° RCP EXIST 1189, 110 JOIN EXIST PIPE NO EXCESS 25 AND 30° RCP 33" RCP STAPE NO EXCESS The NATER SURFACE ELEVATION FOR THE SOR STORM DISCHARGA TYPICOL ALL PAGES	w,				150	150	72* RCP	1189.90	GX/6T.	Excess
# THE WATER SURED TO DETBENN CAPACITY.										
# THE WATER SUIR TO TO DETERMINATE THE DRAW CAPACITY.										
# THE WATER SURFACE ELEVATION FOR THE SPORT CAPACITY. TYPICOL ALL PAGES										
# The Late Page 10 To Derbenders # The Late Pages 10 Derbenders # The Late Pages 10 Derbennare the Drain Capacity. # The Late Pages	`							1		
# The Ware Discussion of the Sor Capacity, IN THE RIVER WAS USED TO DETERMINATE THE DRAW CAPACITY.	4				150	130	72 RCP (EXIST)	1199.00	EXIST	Exeess
# THE WATER SURFACE ELEVATION FOR THE SOF LOCAL STORM TYPICOL ALL PAGES										
* The LATER SURFACE ELEVATION FOR THE SPE LOCAL STORM IN THE RIVER NAS USED TO DETERMINATE THE DRAIN CAPA						52	30.		8	
# THE WATER SURFACE ELEVATION FOR THE SOF LOCAL STORM IN THE RIVER WAS USED TO DETERMINATE THE DRAIN CAPA										
* THE WATER SURFACE ELEVATION FOR THE SOF LOCAL STORM IN THE RIVER WAS USED TO DETERMINATE THE DRAIN CAPA TYPICOL ALL PAGES										
* The Water Surpace Elevation for the SpF Local Storm IN The River was USBD to Deterninate the Drain Capa TYPICOL ALL PAGES	ł	1								
ALL PAGES				N	ser Serve	FACE C	ELEVATIC	TWE &	û.	•
		7	PICE		80	665)		CARIN	14C/74.

SPF LOCAL STORM PEAK DISCHARGES TABLE 2

SUBMER 101A SOE-DRAWAGE REQUIREMENTS NEW WAS OFFICIAL RECORDS OF EXCESS	핆	TINE	Z	PERTINENT INFORMATION ON SIDE-	8		DRAINAGE INVESTIGATION - A	LOUER	SALTA ANA	RIVER
12 12 12 12 12 12 12 13 13			SUBAR	ΙĒΑ	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
100 76 # 48" CMP 18418 John Exist Price Local Floor 100 50 # 48" CMP 18418 John Exist Price Local Floor 100 50 # 48" CMP 18418 John Exist Price Local Floor 100 50 # 48" CMP 185100 John Exist Price Regional 100 75 # 48" CMP 185100 John Exist Price Regional Floor 100 70 # 48" CMP 186110 John Exist Price 1041 16410 John Exist Price 10410 16410 John Exist Price 10410 16410 John Exist Price 10410 16410 John Exist Price 10410 16410 John Exist Price 10410 16410 John Exist Price 10410 16410 John Exist Price 10410	M.G.	NAME	\$1 2E	DISCHARGE PE AK C.F. S.		INDIVIDUAL 0 CF.S.		STATION	PEMARKS	DISPOSITION OF EXCESS FLOW
100 80 # 48" CMP 118418 JOIN EXIST PIPE 1000 FLOOR 100 50 # 48" CMP 118418 JOIN EXIST PIPE 145 MOLGATED 120 75 # 48" CMP 1185100 JOIN EXIST PIPE 145 MOLGATED 120 75 # 48" CMP 1185100 JOIN EXIST PIPE 1000 FLOOR 120 75 # 48" CMP 118710 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118710 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118018 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118018 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118018 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118018 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118018 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118018 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118010 JOIN EXIST PIPE 1000 FLOOR 120 70 # 48" CMP 118018 JOIN EXIST PIPE 1000 FLOOR	w				90/	76	48"	186+90	EXIST	
100 50 # 48" CMP 189412 1013 EXIST PIPE 45 MOLGATED 100 50 # 48" CMP 189412 1013 EXIST PIPE 45 MOLGATED 120 75 # 48" CMP 189515 1013 EXIST PIPE REGIONAL 120 75 # 48" CMP 189710 1013 EXIST PIPE REGIONAL 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 189710 1013 EXIST PIPE 45 MOLGATED 100 70 # 48" CMP 70 MOLGATED 100 70 # 70 MOLGATED 100 MOLGATED 100 MOLGATED 100 MOLGATED 100 MOLGATED 100 MOLGATED	i			 	100	1, 1	48"	1194.95	EK157	
120 50 # 48" CMP 1189490 1011 EXIST PIPE 445 110014 FLOOR 120 121 121 122 145 110014 120 121 1	12				00/	Ш	* 48" CMP	1184+20	EKIST	- 1 1
120 75 # 48"CMP 118515 JOIN EXIST PIPE (REGIONAL 120) TO # 48"CMP 118710 JOIN EXIST PIPE (REGIONAL 100) TO # 48"CMP 118710 JOIN EXIST PIPE 100 TO # 48"CMP 118710 JOIN EXIST PIPE 100 TO # 48"CMP 118710 JOIN EXIST PIPE 100 TO # 48"CMP 118710 JOIN EXIST PIPE 100 TO # 48"CMP 118710 JOIN EXIST PIPE 100 TO # 100 T	80				00/	50		1184.00	EK157	
120 75 * 48".CMP (183100 101N EXIST PIPE) 100 70 * 48".CMP (18110 101N EXIST PIPE) 100 70 * 48".CMP (181410 101N E	o:	"2	4.41		/20	75		1183+25	EXIST PI	STE NE
70 * 48 ° CMP (1824 10 JOIN EXIST PIPE) 3000 (9' x 8.5' RCB (1804) (0IN EXIST ROX (1024) (1200) 5000 (9' x 8.5' RCB (1804) (10IN EXIST ROX (1024) (1200) 5000 (9' x 8.5' RCB (1804) (10IN EXIST ROX (1024) (1200) 5000 (9' x 8.5' RCB (1804) (10IN EXIST ROX (1024) (1200) 5000 (9' x 8.5' RCB (1804) (1804) (1804) (1805) (180	0				120	5%		1183100	EXXST	
6550 3000 19'x 8.5' RCB 180+16 1010 EXIST BOX 10CAL FLOO (FROM YORBD 1908 (REGIONAL PARK					00/	Ш		01 +78/1	EX157	
6550 3000 19'x B.5' RCB 1180+16 1010 EXIST BOX 10CAL FLOO (FROM YORBD 45 NOIGATEL REGIONAL PARK	12				100			1181190	EX/ST	
ONAL PARK PLAYE NE	Ŋ				6550		19'x 8.5'	1180+19	EXIST	LOCAL FLOODING
							ONG!			NE JANG

i.;

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

STATION REMARKS STATION (201-12 Join Exist. Pox No excess respectively) (201-12 ADD 3'x8'RCB & NO excess respectively) STRUCTURE FOR E 8'x8'RCB & 24"RCP 14" RCB 14" RCP 15" RCP 15" R	3			LEFT BANK	LEFT BANK			
CES 0	3	REA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
	≥		C SE		DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
500			1660	100	X4.5'RCB	1211+10	1 1 1	1 1 1
500								
500 6' x 8' RCB (EXIST) 202+20 400 8' x 8' RCB 6 mo excess 900 8' x 8' RCB (MONOS) PROVIDE OUTLET 14 6 6 6 6 6 6 6 6 6								
400 B'XB' ROB (PROPOSE) PROMINE OUTLET U/F.G FOR LOWER AREA B'XB' RCB & 24"RCP STRUCTURE FOR E U/F.G FOR LOWER AREA 14" RCP PROVIDE OPN'G FOR U/F.G. FOR LOWER AREA 14" RCP 40 [4" CTIP (Exist)			1580	L	PCR.		Ann 2'48' D.C.B. 6	í
640 650 60" RCP (EXIST) 1184-56 (OIN EXIST, PIPE NO EXCESS 1/F.G. FOR LOWER AREA (OIN EXIST, PIPE NO EXCESS 1/F.G. FOR LOWER AREA 14" RCP 1/F.G. FOR LOWER AREA 15" RCP 1/F.G. FOR LOW				900	B'x 8' RCB (PROPOSE)		PROWIDE OUTLET	222
40 40 [4" CMP (EXIST) 184-56 1010 EXIST, PIPE NO EXCESS PROPOSED 24" REP PROVIDE OPN'G FOR U/F.G. FOR LOVER AREA 14" RCP 40 40 [4" CMP (EXIST) 171-90 REPLACE 24" CMP NO EXCESS REPLACE WITH 36" BY BOOK REPLACE WITH 36" BY BOOK REPLACE WITH 36" CMP REPLACE WITH 36" BY BOOK REPLACE WITH 36" BY BY BY BY BY BY BY BY BY BY BY BY BY	,	,			PROPOSED 14.RCP		FOR	
650 GO" RCP (EXIST) 1184-15 JOIN EXIST, PIPE NO EXCESS PROPOSED 24" RCP 19/F.G. FOR LOVER AREA 14" RCP 19/F.G. FOR LOVER AREA 14" RCP 14" CTP (EXIST) 1171-90 REPLACE 24" CHP 10 [COLTRANS ORAIN] 10 [COLTRANS ORAIN] 10 [COLTRANS ORAIN]	á	2120			WEG FOR LOWER AREA			
650 (60" RCP (EXIST) 1184-15 JOIN EXIST, PIPE NO EXCESS PROPOSED 24" RCP 19.F.G. FOR LOVER AREA 24" RCP 40 24" CITP (EXIST) 1171-90 REPLACE 24" CHP (COLTRANS ORAIN) REPLACE WITH 36" CHP								
40 24° CTP (Exist) 117140 REPLACE 24"CHP NO EXCESS (COLTRONS DRAIN) WITH 36" CHP			640			1184.50	EXIST.	i 1
40 [4" CTIP (Ex18) 171490 REPLACE 24"CHP NO EXCESS (COLTRONS ORAIN) WITH 36" CHP					24.		OPN'G	
40 24° CTP (84157) 117140 REPLACE 24"CMP NO EXCESS (COLTRONS ORAIN) WITH 36" CMP					WF.G. FOR LOVER AREA			
40 24° Crip (84167) 117140 REPLACE 24"CMP NO EXCESS (COLTRONS DRAIN) WITH 36" CMP								
40 24° CMP (Exist) 117140 REPLACE 24"CMP NO EXCESS (COLTRONS ORAW) WITH 36" CMP REPLACE WITH 36"BP								
WTH 36"			40	40	_			1
					_		36"	
					REPLACE WITH 36'REP			

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

						BANK	••		
9		SURAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
g g	NAME	SizE	DISCHARGE PEAK C.F.S.	C.F.S.	INDIVIDUAL 0 C.F.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
Ø				30	30	24" RCP	1166160	JOIN EXIST PIPE	NO GREGIS FLOW
6	,0,,	72.7	2180	1050	700	(2)-8'x 5' RCB FREEDAY BOXES	1163100	JOIN EXIST BOX UNDER FRWY.	LOCAL FLOODING 45 NOCATED ON PLATE
50				1200	og.	(2)-6'x 6' RCB FREEWAY BOXES	1157+90	Jain Exist BoxEs UNDER FRUY	
12				57	40	24" ReP	1154140	JOIN EXIST. PIPE	NO EYEESS FLOW
22				25	35	24" RCP	1150190	JOIN EXIST. PIPE	NO FILESS FLOW
10	é,	959	062/	25	87	24" RCP	1/45+90	JOIN EXIST. PIPE	NO EXLESS FLOW
#				06//	059	B'rG'RCB (EXIST) 48°RCP (PROP)	1134.70	JOIN EXIST BOX UNDE FRAY. PROVIDE 48"	LOGAL FLOODING US INDICATED ON PLOTE NE
52				25	91	24"RCP	1124140	JOIN EXIST. PIPE	

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

厂			8		9			3								
RIVER			DISPOSITION OF EXCESS FLOW		46 INDICATED		200000	200000								
SANTA ANA			REMARKS	4 7 7 7	UNDER FR- WY.		1 2 2 2 2	JOIN GAIST. FIFE								
OWER			STATION	0.6111	11/4+70		10,00	110011								
DRAINAGE INVESTIGATION - LOUER	LEFT BANK	SIDE-DRAMAGE REQUIREMENTS	DESCRIPTION		מרוש מצמבוש		970 476	12 A 27								CONDITIONS
		3	HEDVOUAL 0 C.F.S.		9		,	5								
8		TOTAL	O CFS	1/ 00	2		2	}	 		-					GRAVITY
PERTINENT INFORMATION ON SIDE-			DISCHANGE PE AK C.F. S.			170										
NT IN		SUBAREA	SIZE			61.0										BLOCKED
RTINE			NAME			25										1870
134			DRAIN	,	20			/2								*

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

L.						,			FAGE GOF 34
	FRIE	FINE TO	FORMATI	3	SIDE-DR	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION -	LOWER	SANTA ANA	RIVER
						RIGHT BANK	岩		
-	_	SUBAREA	REA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
d a	D. NAME	NE SIZE	DISCHARGE PEAK C.F.S.		INDIVIDUAL Q C.F.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
28	•			80*	0	40" CMP	174 +95	JOIN EXIST PIPE	LOCAL FLOODING
									AS INDICATED ON
	_								ĺ
									IN REGIONAL PARK
-							+		
99	9 60	100	285	*					
<u>. </u>	_			9	0	12° CMP	1169100	JOIN EXIST. PIPE	
_							+		
							+		L LOCAL FLOODING
				1					45 INDICATED ON
_				lk (PLATE NE
00	_			20	0	72,640	06.89//	JOIN EXIST, PIPE	IN REGIONAL PARK)
_			· · ·				-		
									
_	_								
_	_								
794									
	$\frac{1}{2}$	4							
* '67									
* 7'		4 //				; 1			
	- 6	מרסרענה	GRAVITY		conor	COUDITIONS			

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

						5		2	7	,	Γ	S								
¥			DISPOSITION OF EXCESS FLOW		LOCAL FLOODING	VOICATED ON	24 37019	IN REGIONAL PARK)	LOCAL FLOODING	AS INDICATED ON	ł	IN REGIONAL PARK)								
RIVER			DISPOSI		1000	11 90	1029	(W R	1000	11 50	1070	/N R	_							
ANA					BUID				3018											
SANTA ANA			REMARKS		JOIN EXIET PIPE				6X157.											
					NIO				3012											
LOWER			STATION		1148195				1/48.95											
-DRAINAGE INVESTIGATION - Z	RIGHT BANK	SIDE-DRAINAGE REQUIREMENTS	DESCRIPTION		24" RCP				102" RCP											
INAGE IN		SIDE-DRAIN	a		2				0/											
SIDE-DR/			INDIVIDUAL 0 C.F.S.		22				900	1										
쥥		TOTAL	CFS		ę				1200											
PERTINENT INFORMATION			DISCHANGE PE AK C.F. S.	7				\ ozc./												
N N		SUBAREA	32 18				0.66													
Z INE			NAME				, u													
PE			CRAIN		ñ	`			33											

THE FIRE IS 100 THE

ī.,

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

			TENTINEN INTONINATION	5	אוטב - טאל	- DRAINAGE INVESTIGATION - Z	LOWER	SANIA ANH	KIVEK
		SUBAREA	ΙĒΑ	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
\$ \$	NAME	SIZE	DISCHARGE PEAK C.F.S.		INDIVIDUAL Q CF.S.	0E5CRIPTI ON	STA":1011	REMARKS	DISPOSITION OF EXCESS FLUW
20				90	300	du3"99	1/46+50	JOIN EXIST. PIPE	NO EXCESS FLOW
34				00/	230	12°CMP	1141400	JOIN EXIST. PIPE	No EXCESS FLOW
35				90	90	39" RCP	11/3+90	JOIN EXIST. PIPE	NO EXEESS FLOW
8	<i>E</i> .	0.35	970	%	0	GG" CMP	1124.9]	JOIN EXIST. PIPE	LOCAL FLOODING
16				%	780	C6 " CMP	11/4+20	JOIN EXIST, PIPE	VIOTE NE IN REGIONAL PACK) NO EXCESS FLOW
38				150	200	54* RCP	216601	JOIN EXIST, PIPE	NO EXCESS FLOW
39				360	750	(8) - 72"CMP	1095130	JOIN EXIST. PIPES	NO EXCESS FLOW
*	BLOCKBO	K & L	1	GRAVITY	1.	CONDITION			

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

Ī						RIGHT BANK			
		SUBAREA	EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
A DE	NAME	3212	DISCHANGE PEAK C.F.S.		INDIVIDUAL 0 CF.S.	<u> </u>	STATION	REMARKS	DISPOSITION OF EXCESS FLOW
				959		World of 1910	27.7%	1011 Fort DIDE	AN ENGER ES
\$					250	60" RCP 10KOP)	20,00	11 000	2
						2		60" RCP	
	*			9	12	250	1		
	r	0.0	8	2	000	# 45. KCF	130+30	JOIN EXIST. PIPE	NU EKEGSS FLAN
4				940	0001	60'4 84" 809	11/2-10	Join Frist Plats	NO GYGES BLOOM
)	-								1 1
	. — .								
			,						
-									
							\dagger		

1967 AN 1067 THE

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

		• 01	000			3				Γ					
		DISPOSITION OF EXCESS FLOW	NO EXCESS FOUR			NO EXCESS RUD									
		REMARKS	JOIN EXIET PIPE			 JOIN EX	WSTALL GODITIONAL	1							
X		STATION	1076+4			1000	0/24/0								
RIGHT BANK	SIDE-DRAMAGE REQUIREMENTS	DESCRIPTION	36" RCP	AP GATE			34 KCF (CA)(0/5+10								
		INDIVIOUAL Q C.F.S.	8			26	45								
	TOTAL	Q CFS	B			 /80	3	-							
		DISCHARGE PEAK C.F.S.			760			-							
	SUBAREA	SI ZE			0,10										
		NAME			1,1						 	 			
	7179	ğ	 43			 44	•		 		 	 	 	 	

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

4	¥ 11	SUBAREA SUBARE	DISCHANCE FEAN C.F.S. 3440	TOTAL O CFS 3460	0 Cf. 8.	SIDE-DRAMAGE REQUIREMENTS DETCRIPTION (3) - 12'x7' RC.B.	S STATION	MEMARYS JOIN EXIST BOX UNDER FRUY	DOPOSITION OF EXCESS FLOW COCAL FLOODINGS DAY
4 4	in we	0.57	2970	2790		(3) -8"x (EX!)		JOIN EXIST. BOX JOIN EXIST PIPE	IN KEGIOUME TAKKI LOCAL FLOODING SOUTH OF RIVERSA THE PROJECT AREA NO EXCESS FLOOD
49	i		,	120	96	1, 56" RLF (PROF) 48" RCF	061-30		LOCAL FLODOING 45 INDICATED ON PLATE NE

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

1	RTINE	N F	ORMATIO	8	SIDE-DRA	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION - LOUER	LouëR	SANTA ANA	RIVER
						RIGHT BANK			
		SUBAREA	EA	TOTAL		SIDE-DRAWAGE REQUIREMENTS			
MG	NAME	Si 2E	DISCHANGE PE AK C.F. S.	O CFS	INDIVIDUAL 0 C.F.S.	HOLLOHD33HI	STATION	REMARKS	DISPOSITION OF EXCESS FLOOR
4	4,4	900		,	_1				
1		6,52	240	840	000	B'xG' R	11066150	JOIN EXIST BOX	No Excess From
					240			THEOLIGON THESAI	
						٠		,	
2	"								
3	×	2.72	3960	3960		000 10 11 100			- 1
					2000	10 × 11.5 × Cm	02.72.50	JOIN FILST. BOX	NO EXCESS FLOW

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

										PAGE 13 OF 39
10 10 10 10 10 10 10 10	2	E E		OPNATIO	3		INVESTIGATION -	OUER	SANTA ANA	RIVER
1										
12 05 04 05 05 05 05 05 05			SUBA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
"[" asi 350 100 54" RCP (Exiet) 1046-76 401N EXIST. 54" RLP 100001 "[" asi 350 100 54" RCP (Exist) 1051-49 44" RLP 1010-41	g	PARE	32 18	DISCHANGE PEAK C.F.S.	o CFS	₹ .	DESCRIPTION	\$TA7108	REMARKS	DISPOSITION OF EXCESS FLOW
12 0.61 350 120 60" RCP (PROP) 140PRUL ADDITIONAL AS INDICATED 100 61 62 62 62 62 62 62 62 62 62 62 62 62 62	ù				/40	90	EA " OA B / E.			, ,
12 a61 1350 290 190 54" RCP (Exist) 1051-19 (MN EXIST PIPE NO EXCESS FR. 100 60 60 60 RCP (PROP) 1051-19 (MN EXIST PIPE NO EXCESS FR. 100 60 60 RCP (PROP) 1051-19 (MN EXIST PIPE NO EXCESS FR. 100 60 60 RCP (PROP) 1051-19 (RCP (PROP) RCP (PROP) 1051-19 RCP (PR	<u> </u>				970	202/	т `	100010	101N EXIST. 54-16.	ŽI.
190 190 54" RCP (ENS) 1051-190 MISTORIAL ADMITIONAL NO EXCESS FILE 120 150 54" RCP (ENS) 1051-190 MISTORIAL ADMITIONAL NO EXCESS FILE 121 12				1220			~		GO" RCP	-
240 40 54" RCP ENST 1057-40 WSTALL ADDITIONAL NO EXCESS FE				<u>}</u>						
13 0.49 1060 250 50" RCP (EXIST) 102474 1011 514" RCP 10 EXLESS 13 0.49 1060 26 50" RCP (EXIST) 102145 REPLACE 12" 67" RCP 14 12 12 12 12 12 12 12 12 12 12 12 12 12	22				290	06/	54" RCP (EXK)			EXC. 855
13 0.49 1060 250 54" RCP (EXIST) 1029.12 101110 41 GG 14						001	42" RCP (PROP)			
15 0.49 1060 15 40 COS RCP (PROP) 102412 ADDITIONAL GG 10 ENLESS 15 40 (27 (PROP) 201145 REPLACE 12 STL NO EXCESS R 15 30 30" CMP (PROP) 20114 30" CMP 16 640 (4) - 48" RCP 100744 1011 EXIST PIPES LOGGE 12 PLATE NE	•				2.0	200		_		
13 0.49 1060 26 12" STILEXIST DILMS REPLACE 12" STL NO EXCENS 16 12" STILEXIST DILMS REPLACE 12" STL NO EXCENS 17 30 30" CMP (PROF) WITH 30" CMP 19 30" CMP (PROF) WITH 30" CMP 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 10 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 11 60 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 11 60 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOCAL FLOOR 12 60 70 70 70 70 70 70 70 70 70 70 70 70 70	ŭ_				3	35,	~	1024120	101N EX16T. 54" RCP	EXCESS
13 0.49 1060 26 40 12" 571 (EXIST) 1021-95 REPLACE 12" 671 NO EXCESS 10 1060 REPLACE 12" 671 NO EXCESS 10 1060 REPLACE 12" 671 NO EXCESS 10 1060 REPLACE 12" 671 NO EXCESS 10 1060 REPLACE 12" 671 NO EXCESS 10 1060 REPLACE 12" 671 NO EXCESS 10 1060 REPLACE 12" 671 NO EXCESS 10 1060 REPLACE 120 GOTES 46 NOICATED 10 1060 REPLACE 120 GOTES 46 NOICATED 10 1060 REPLACE 120 REPLACE 1						200	7		INSTALL ADOLTIONAL GE	
13 0.49 1060 16 40 12" 571(EXIST) 101145 REPLACE 12" 671 NO EXCENS 15 40 24 " RCP (PROP) M346 REPLACE 18" 611 NO EXCESS F 30 30" CHP (PROP) W174 30" CHP 40 640 (4) - 48" RCP 100144 JOIN EXIST PIPES LOCAL FLOOR NO EXCESS F 100144 JOIN EXIST PIPES 1004 FLOOR NO EXIST PLATE NO EXPENSE 100145 M857944 FLOOR NO EXIST PIPES LOCATED PLATE NO EXPENSE 100145 M857944 FLOOR NO EXIST PIPES NO EXPENSE 100146 M857944 FLOOR NO EXIST PIPES NO EXPENSE 100146 M857944 FLOOR NO EXIST PIPES NO EXPENSE 100146 M857944 FLOOR NO EXIST PIPES NO EXPENSE 100146 M857944 FLOOR NO EXIST PIPES NO EXPENSE 100146 M857944 FLOOR GATES NO EXPENSE 100146 M857944 FLOOR GATES NO EXPENSE 100146 M857944 FLOOR GATES NO EXPENSE 100146 M857944 FLOOR GATES NO EXPENSE 100146 M857944 FLOOR M857944 FLOOR GATES NO EXPENSE 100146 M857944 FLOOR M857944 FLOOR GATES NO EXPENSE 100146 M857944 FLOOR M857944 FLOOR GATES NO EXPENSE 100146 M857944 FLOOR M85794 FLOOR M8									Rep	
15 30 20 CMP (EXIS) 1013460 REPLACE 18"AMP NO EXCESS POPOLA (4) - 48" RCP 1007440 1014 EXIST PIPES LOGGE FLOOR INSTACL FLOOR PLATE NE	4		0.49		25		T	2001101	·I	1
16 30 30" CMP (ELIS) 1013460 REPLACE 18" AMP NO EXE 460 640 (4) - 48" RCP 100744 JOIN EXIST PIPES LOGGE 100744 JOIN EXIST PIPES LOGGE 100744 JOIN EXIST PIPES LOGGE 100744 JOIN EXIST PIPES LOGGE 100744 JOIN EXIST PIPES LOGGE 100745 JOIN EXIST PIPES LOGGE 100745 JOIN EXIST PIPES LOGGE 100747 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 10077 JOIN EXIST PIPES LOGGE 1007	-					40	(PROP)		24"	1
460 640 (d) - 48" RCP (007440 101N EXIST PIPES LOGGE NOTES INDICE NOTES LOGGE NOTES INDICE NOTES					10					
960 640 (4) - 48" RCP 1007+40 101N EXIST PIPES LOGGE 1NOTO	٥	***			22		18" CMP (EXIST)	10/3/60	REPLACE 18" AMP	1
960 640 (d) - 48" RCP 1007+40 1014 EXIST PIPES LOGGL 1000						30	30" CMP (PROF)		30,	: :
INSTALL FLOP GATES 48 /NOICE	<u>.</u>				960	640	- 48" OCP	1007140	67.164	- 1
PLATE NE	_							21/2/		As worders
										PLATE NE
	7	7								ı

TOUT AN 28 '(TT 1/5

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

ĺ

SUBAREA NO NAME SIZE PEAK 57 "14" 0.44 1000	TOTAL ZES		BANK			
MANE SIZE			SIDE-DRANAGE REQUIREMENTS			
17, 0.44	3%	INDIVIDUAL Q CF.S.	DESCRIPTION	STATION	PEMARKS	DISPOSITION OF EXCESS FLOW
1,4" 0.44	32	₽				200
17, 0.44		740	RCP	99410	11/5/	NO EXCESS FLOW
17, 0.44			36" RCP (EXIST)		RCP & SG" RCP WITH	
17, 0.44			12 " RCP (PROP)		72" RCP. PROVIDE	
17, 0.44			-		OUTLET STRUCTURE	
1/4 0.44						
	001	22	2-30" CMP (EXIST.)	990+90	JOIN EXIST PIPES	NO EXCESS FLOW
		L_	30"CMP (PROP)		INSTALL ADDITIONAL	
			t		30" CMP	
6.5	1/20	1/2	49, 60.0	984150	JOIN EXIST. PIPE	DNIGOOTH 10707
	<u>}</u>					AS INDICATED ON
						ITE NE
-						

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

L						1			10 10 21 201
		2	PENTINENT INFORMATION ON SIDE-	3		DRAINAGE INVESTIGATION - Zo	LOLIER	SANTE ANA	RIVER
		Ì				RIGHT BANK			
		SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
d	MARK	SIZE	DISCHANGE PE AN C.F. S.	G.S.	HUDIVACUAL O C.F.	MOLECHIPTION	STATION	PEMARKS	DISPOSITION OF EXCESS FLOW
9				59		30' RCP (EUST)	1046+56	REPLACE 30"RCP	NO FROFES HOLD
3)	99	(0000)		121	1 1
्				*	4	127-20"1 MP 1.166	18/180	Join Grist Pipe	1.0 EV. Ecc E.
Ĺ				:		DIVERSION WORKS	20.00	1/2/24	2 1 00 20
						FROM POND TO RIVER			
13									
9	1			*	**	(4) - 36 ° CMP	1030140	JOIN EXIST. P.PS	NO FREESS FLOW
	, %	7,00				12/F.G. (DIV. WORKS)			
_	!	3.2	704/			DCATED IN KINEK			
63				610	610	12" RCP	014/01	JOIN GXIST. PIPE	NO EXCESS FLOW
						(080)			
				,					
64				6//	3/1		10/4/02	JOIN EXIST. PIPE	NO EXEESS FLOW
						IN STREMUNG GRUI			
,									
ê				*	*	MP	979+50	JOIN EXIST. PIPE	No Excess Flow
						GATES			
						(bireksion works)			
*		O. C. W. D.	•	DIVERSI	-	ON WORKS FOR			
			7	349/	1.		<u>ر</u>		
						المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع			

161 to 12 14 161

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

									FAGE 16 OF 34
PER	TINE	N IN	PERTINENT INFORMATION ON SIDE-	8		DRAINAGE INVESTIGATION - Z	Louër	SANTA ANA	RIVER
	j					LEFT BANK			
		SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
2	NAME	SiZE	DISCHARGE PEAK C.F.S.	O CFS	INDIVIDUAL Q CF.S.	DESCRIPTION	STA710N	REMAINS	DISPOSITION OF EXCESS FLOW
79				00/	//0	45" RCP	978140	JOIN EXIST. PIPE	NO EXCESS FLOW
S				8	35	18" CHP/ENS) 975+65	1 1 1	REPLACE 18°CHP	NO EXCESS FLOW
89	.57	0.63	1490	35	40	24. RCP		JOIN EXIST. PIPE	NO EXSESS FULL
69				06/1	1200	DEERFIELD CHANNEL)	392.9%	JOIN EXIST. BOX	NO EXCESS FLOWS
2				/30	03/	42"CHP	958+30	JOIN EXIST, PIPE	No Exerss Row

797 AN 25 177 145

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

			Ft.0#	3073	Fron	Ko		080	П				
3			OF EXCESS FLOW	EXLESS FLOWS				1911					
				1668	EXCESS	Excess		COL	7				
PINER			DISPOSITION	NO E.	No i	NO C		100AL F100 46 WOICATED	PLAIC				
à		L	<u> </u>		111				44		1		
ANA				1	WORFASE TO AS	ADDITIONAL		JOIN EXIST PIPE					
			Ş	3316	2 20	20171		PIPE					
17.			HEMARKS	167	180	1 1 21 1	0	X157	808				
5 A.V.T.A				JOIN EXIST	1000	Jan E.	48"800	JOIN EXIST	24.				
1					1 19		40	1 1 7					
LOWER			STATION	955+10	591866	938165		54" RCP (EVST) 978+56					
	ZAK	ITS			19		++	200	++	H	+		
INVESTIGATION -	LEFT BANK	PEMEN	_			EXIST)		(PROP)					
STIG	37	REQU	DESCRIPTION	24. CMP	42° cnP	1 1/1/1		RCP RCP					
N		MANAG	DESC	54.	42.	42" RCP (24					
DRAINAGE		SIDE-DRANAGE REQUIREMENTS				4.0		2-54"					
			NOIVIDUAL Q CF.S.	2	(95)	33	11	090	$\dagger \dagger$		\top		
QUS N		\ V					11			Ш			
8		TOTAL		30	138	240		150				{	
PERTINENT INFORMATION ON SIDE-		¥3	DISCHANCE PEAK C.F.S.			97/							
IN INF		SUBAREA	Size			0,50							
TINEN			MAN			.9	- 						
PER			đ	2	72	25	,	4				\dashv	

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

SUBAREA TOTAL SIDE-URANAGE REQUIREMENTS	SUBAREA SUBCAMENTS NAME 512E PERM COND. NA	1	PTINE	NT IN	CONTACTION	3	SIDE-DAA	INAGE INVESTIGATION -	1200	0100	0:100
Submer	SUBANTE TOTAL SIDE-URANAGE REQUIREMENTS NEWARTS	4				5		RIGHT BAN	K COSON	Lak Links	איניטא
1.05 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05	NAME 5.22 PROPERTY OF THE STATION STATION REMAINS DOST NAME 5.22 PROPERTY OF THE STATION REMAINS DOST NAME 5.22 PROPERTY OF THE STATION REMAINS DOST NAME 5.22 PROPERTY OF THE STATION REMAINS OF THE STATION REMAINS OF THE STATION REMAINS OF THE STATION REMAINS OF THE STATION REMAINS OF THE STATION OF THE S			SUBAR	EA	TOTAL		SIDE-URAMAGE REQUIREMENTS			
	ALC 032 780 & (4) - 30' RCP 96+15 John Exist. Pipes A JUGERSION WORKS TO THE SPREADING OROUND OR SION WORKS OR WOR WORKS OR WOR WORKS OR WOR WORKS OR WOR WORKS OR WO	3 9			DISCHANGE PE AK C.F.S.	0 CF. N	INDIVIDUAL O C.F.S.	DESCRIPTION	} -	REMARKS	DISPOSITION OF EXCESS FLOW
MIC 033 (NO NO K 44) - 36" KCP 48+15 (DIN EXIST PIPES NO EXCESS (CHUERSION WORKS) TO THE SPREADING (ROCLIND (ROCL	MG 032 (W) R 4 (4) - 36" KCP 96155 1914 EXIST PIPES A UJ GACUNO GROUND	1				,					
	Wake braws for ocho geomo soter brand holocal	Ñ	_			B	*		21/9/6	JOIN EXIST. PIPES	Excess
	Wake braws for othe Geoung works asyn (no local							w/ GATES		SYNOW WOISYZNIQ	
	WYOKE DRAWS FOR DOND GROUND SIDTER RECUDEDR BONN (ND LOCAL							(diversion works	2)	TO THE SPREADING	
	Winks braws for other require softe Recusers near Incident									GROWND	
	Wiaks braws for other ground we local		_								
	WIAKE DRAWS FOR OCHO GROUND SIDTER RECHORAR ROAM (NO LOCAL										
	WYAKE DRAWS FOR OCNO GROUND DITTER RECHORAS BOSIN (NO LOCAL		_								
	WYAKE DRAWS FOR OCHO GROUND SOTER RECHORDS BOWN /ND LOCAL										
	WIRKS DRAWS FOR OCHO GROUND DOTER RECHORGE BORIN (NO LOCAL										
	WYOKE DRAWS FOR OCHO GROUND WOTER RECHORGE ROSIN (NO LOCAL										
	WIRKS DRAINS FOR OCHO GROUND DOTER RECHORGE ROSIN (ND LOCAL										
	WTOKE DRAING FOR OCHO GROUND WOTER RECHORGE ROSIN (NO LOCAL										
	WTOKE DRAINS FOR OCHO GROUND WOTER RECHORGE BOSIN (NO LOCAL										
	WYOKE DRAINS FOR OCHO GROUND WOTER RECHORGE BOSIN (NO LOCAL										
	WYAKE DRAINS FOR OCHO GROUND WOTER RECHORGE BOSIN (NO LOCAL										
	WYOKE DRAINS FOR OCHO GROUND WOTER RECHORGE BOSIN (NO LOCAL										
	WYAKE DRAINS FOR OCHO GROUND WOTER RECHORGE BOSIN (NO LOCAL										
	WYAKE DRAING FOR OCHO GROUND WOTER RECHORGE BOSIN (ND LOCAL										
	WTOKE DRAINS FOR OCHO GROUND WOTER RECHORGE BOSIN (NO LOCAL										
	WTOKE DRAINS FOR OCHO GROUND WOTER RECHORGE BOSIN (NO LOCAL										
	INTOKE DRAINS FOR OCHO GROUND WATER RECHARGE BOSIN (NO LOCAL										
	INTAKE DRAINS FOR OCHO GROUND WATER RECHARGE BOSIN (NO LOCAL										
			/w7w/			FOR		GROUND WATER	RECHO		(WAS STORM DRAIN)

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

SANTA ANA RIVER			REMARKS DISPOSITION OF EXCESS FLOW	JOIN EXIST. PIPE NO EXCESS FLOW		JOIN EXIST. PIPE NO EXCESS FLOW		JOIN EXIST 18" RCP & NO GREESS FLOW	WSTALL 400/TIONAL	18"RCP.		ION EXIST 2-48" RCP NO EXCESS FLOWS	VSIALL ADDITIONAL	18"RCP W/ F.G.		101N EXIST 48" 48" NO EXCESS FLOW	•	1/4.6.		JOIN EXIST GOT RCP NO EXCESS FLOWS.	APDITIONAL	ŀ	0. Kcr.
MUGEN				1 1	1 1	1 3 1										NO EXCE.				1			
SANTA ANA			PEMARKS	JOIN EXIST.		1		JOIN EXIST	INSTALL ADDITIONAL	18" RCP.		1014 Ex158 2-48" KCP	MASTALL ADDITIONAL	48.8CP W/ F.G.		27 8, 87 151X3 NIOF	INSTALL ADDITIONA 48 REP.	W/ F.G.		JOIN EXIST GOT RCP	INSTALL ADDITIONAL		
LouëR			STATION	926+45		67.426		lerks) 923 tos			201485			Ī	898+00				_				
DRAINAGE INVESTIGATION - Z	LEFT BANK	SIDE-DRAMAGE REQUIREMENTS	DESCRIPTION	GO" CHP		36° RCP		وا	18" RCP (DEDD)	•	(2) - 48" RCP	12/ F. G. (Ex157)	48 + RCP 10 / 16 / PROP)	1 /	48. RCPE 47. RCP 898+0		48.4CP w/FG/PROP		60 * RCP (ENNS) B71+10	(008d) dod .09			**************************************
			INDIVIDUAL 0 CF.S.	500		10		6/	Ø)		250		125		180		9		240	240			
NO N		TOTAL	OF.S	340		6	,	22		777	242			•	7			_	470				
PERTINENT INFORMATION ON SIDE-		EA	DISCHANGE PEAK C.F.S.								0001							<u> </u>		, —			
NT IN		SUBAREA	S: 2E								0.30												_
RTINE			NAME						,,		7/7												
15			đ	12		11	,	9		;	2			(80			19	ò				

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

<u> </u>	TINE	¥	PERTINENT INFORMATION ON SIDE-	8		DRAINAGE INVESTIGATION - LOLLER	Louise	SANTA ANA	RIVER		
						KIGHI BANK					
7		SUBAREA		TOTAL		SIDE- DRAINAGE REQUIREMENTS					
d	NAME	31 ZE	DISCHANGE PEAK C.F.S.	O. CF.S.	INDIVIDUAL 0 CF.S.	DESCRIPTION	STATION	REMARKS	DSPOSITION OF EXCESS FLUID	EXCESS FLU	3
28	000				*	(4) 24"CNP W/897ES 893+96	893+90	JOIN EXIST. DRAINS	NO BREESS	ESS FLOW	70
								,	1 1	1	1
	_										Ţ
;											
83					*	(4) 36° RCP	852115	IOIN EXIST DEAINS	NO EXEGSS	1	Frow
						S		ECHAR		1	
						DRAIN TO SPREADIME	2	ľ			
						-					
						6					
*	•	VER.	13	ã	DRAINS	FOR					
	080		3 4	KATER STORY	Kecha M Flow	KECHARGE BASINS FLOW)					
			I			7					1

1961 - 18 1 - 1961

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

ORAM NO BAME					RIGHT BANK	~		
	SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
1	S1 2E	DISCHANGE PE AK C.F. S.	C.S.	INDIVIDUAL Q C.F.S.	DESCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLUW
<u>s</u>		1	7					
84 11	2,6	2500	2200	000	1	- +	BACTES 1014 CARBON CANYON	NO EXCESS FLOW
					CARBON CANYON		CHANNEL CONFLUENCE	
_	L							
- 78			4					
_		_	k	*	\ 1	0466	F.G. 54++4 1010 FX157. INCE! INGIA	NO CICENS FLOW
					BASIN INCET		(NOT A STORM DRAIN)	
2			*	*	(4)- 36°CHP W/GATE	844+25	14)- 36°CMP N/GATE 844+25/011 EVIST. INLET DRAINS	NO GREESS FLOW
					BASIN INLER		(MA A STORM DRAIN)	
			, 	ļ				1
2		-	k	**	(2) - 36" CMP W/ GATE 8/3+80	513180		NO EXCESS FOU
					INVERSION WORKS)		ADO 51.10E GATE	
							IND 4 STORM DRAIN]	
90°			180	(13/11 000,01	20104	Agid Trick Lind	EYPESS FLOW
	3	2	3	N T		22 172	000 4810CP 11/FG	14
88.4			_		18"0(P 1) F.C.	108-10 70	TO FUETY OVER FIOLS	ă
:			_		PROP		92	-

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

			į į			LEFT BANK	2		
		SUBAREA	EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
đ	NAME	S: 2E	DISCHANGE PEAK C.F.S.	G.S.	INDIVIDUAL 0 CFS.	DCCCRIPTION	STATION	REMARKS	DISPOSITION OF EXCESS FLUW
68				\$	55	30° RCP	805139	JOIN EXIST. PIPE	No Excess Flows
90	,0	67/		8	80	347,98	799.25	' JOIN EXIST. PIPE	NO EXCESS FLOW
10			09/7	2	09)	42" RCP	797.40	JOIN EXIST. PIPE	NO EXESSS FLOW
%				2/200	1600	(2) TX7' RCB	788.05	I IOIN EXIST BOX	LOSAL FLOODING 45 NOICATED ON PLATE NE
93	.8,	22:0	610	910	320	GG" RCP (EXX)	163150	TESTSO INSTAUL ADDITIONAL GE" RCF.	NO EX
44	odo	10.0	30	30	3	ו ועטויאו ו וו	650120	JOIN EXIST. PIPE	ND EXLESS FLOW

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

					/EFT BANK			
ı	Surg	SUBAREA			SIDE-DRAMAGE RECHIREMENTS			
1 2	NAME SIZE	DISCHANGE PEAN C.F.S.	CFS CFS	INDIVIDUAL O C.S.	DESCRIPTION	STATION	METAARIUS	DISPOSITION OF EXCESS FLOW
I			20		16° CMP (EXISE)	21.671	REPLACE 16" CMP	NO EXCESS FLOW
				22	CHP(PROE)		1. 7	
			0//	10	54" RCP	6/+6+/	JOIN EXPST. PIPE	1 1
								PLATE NE
• • •	5.0.31	690	38	170	42" RCP	740+35	JOIN EXIST. PIPE	LOCAL FLOODING
	* 	*						PLATE NO
	<u> </u>		10	70	14,400	724.80	JOIN CKIST PIPE	NO GILESS FLOW
			· · ·		FROM PUNP STATION		(FORCE MAIN)	
			145		ZTW RCPIENSITIOSED	110.00	8 50 00 8 97" R.C.	NO EXCESS FOR
		-	•	091	48" RCP (PROP)		WITH 48" RCP.	
_								
	_							

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

SIBARE A TOTAL SIDE-DRAMAGE RECUMENENTS WAME 51.2E PESS CFS CFS CFS PTION STATION REMAYS CFS CFS CFS PTION STATION REMAYS CFS CFS CFS PTION STATION REMAYS CFS CFS CFS PTION STATION REMAYS REMAY	SUBANEA TOTAL SIDE-DRAWLIGE REQUIREMENTS WHANE SIZE OF SIZE O	Subanke Total Side-Dramage Requirements NGAL Babbs Station NGCHARGE Side	*	NE NE		PERTINENT INFORMATION ON	2	SIDE-DRA	DRAINAGE INVESTIGATION - LOWER	LOWER	SALITA ANA	RIVER
SUBANTEA TOTAL SDC-DRAWLGE REQUIREMENTS REQUIREMENTS NAME 51.72	SUBMERA STEE OF CHANGE RECUIREMENTS WAME SIZE OF CAS GS GS GS GS GS GS GS GS GS GS GS GS GS	SIGNATE A STEE ORANNING RECUIREMENTS NAME SIZE OFFINA O MOVOULA OF 2.05 2.100 1200 1200 1200 1200 1200 1200 120							RIGHT DAN	L		
1.0. 2.05 2.200 1200 1200 1200 1200 1200 1200 120	1.0° 2.08 2200 2200 12'x 9.5' RC B 747.40 745 15 745 RC B 100000000000000000000000000000000000	1,0 1,0			SUBAR	EA	TOTAL		SIDE-DRAINAGE REQUIREMENTS			
"0" 2.08 2100 1200 1200 121 95" RCB 745-95 745-8 NO 75-0 15-0 10 10 10 10 10 10 10 10 10 10 10 10 10	WAKE PIPES FOR DEAD GROUND NOTER	WAKE PIPES FOR OCND GROUND STORY)		NAME	SIZE	DISCHANGE PEAK C.F.S.	C.F.S.	3	MOELCH IPTION	 -	REMARKS	DISPOSITION OF EXCESS FLOW
"0" 2.08 2100 1200 1200 12'X 4.5' RCB 147-40 7115 15 77-6 RCB NO 700 77-0 77-0 80-80-80-80-80-80-80-80-80-80-80-80-80-8	1.05 1100 1100 1200 12x4.5' RCB 147.40 1105 15 THE RCB NO	1.05 1100 1100 1200 12x 9.5' RCB 147.4% 1415 15 The RCR NO 15cmared med No 15c										
Sex bisenarging To The Speedoins Ground Afrin.	WAKE PIPES FOR OCND GROUND NATER	WAKE PIPES FOR OCAL STORM DRAIN)	ool	0;		2200	1200	(8)			THE	- 1
GROUND BASIN.	WAKE PIPES FOR OCND GROUND LATER	WOKE PIPES FOR OCND GROWND NATER RECHARGE BASIN (NO LOCAL STORM DRAIN)									(1
GEOWND BASIN.	WAKE PIPES FOR OCND GROUND LOTER	WAKE PIPES FOR OCND GROUND LATER RECHORGE BASIN (NO LOCAL STORM DRAIN)									TO THE SPREADING	
	WYOKE PIPES FOR OCND GROUND LATER	WAKE PIPES FOR OCND GROUND LOTER RECHORGE BASIN (NO LOCAL STORM DRAIN)								_	SROUND BASIN.	
	WOKE PIPES FOR OCND GROUND NAT	WARE PIPES FOR OCND GROUND SAT										
	WOKE PIPES FOR OCND GROUND NAN	WARE PIPES FOR OCND GROUND SAY										
	MOKE PIPES FOR OCND GROUND NAY	WARE PIPES FOR OCND GROUND SAY										
	WOKE PIPES FOR OCND GROUND NAT	WOKE PIPES FOR OCND GROUND SAT								-		
	WOKE PIPES FOR OCND GROUND NAY	INTOKE PIPES FOR OCND GROUND NAT								-		
	WOKE PIPES FOR OCND GROUND NAY	WANKE PIPES FOR OCND GROUND NAT										
	MOKE PIPES FOR OCND GROUND NAY	WAKE PIPES FOR OCND GROUND SATECHORGE 1305111 (NO LOCAL STORM										
	MOKE PIPES FOR OCND GROUND NA)	WARE PIPES FOR OCND GROUND SAY										
	INTOKE PIPES FOR OCND GROUND SAY	INTOKE PIPES FOR OCND GROUND SATE										
	WOKE PIPES FOR OCND GROUND NAN	WINKE PIPES FOR OCND GROUND SATECHORGE BASIN (NO LOCAL STORM										
	WOKE PIPES FOR OCND GROUND NAN	WIDKE PIPES FOR OCND GROUND SAY										
	MOKE PIPES FOR OCND GROUND NAY	WAKE PIPES FOR OCND GROUND SAT										
	INTOKE PIPES FOR OCND GROUND NAY	WARE PIPES FOR OCND GROUND SAS										
	WIDKE PIPES FOR OCND GROUND NAY	WINKE PIPES FOR OCND GROUND SAST									التالة ومدناه المساورة والمساورة والمساورة والمساورة والمتالة والمتالة والمساورة والمتالة والمساورة	
	WIOKE PIPES FOR OCND GROUND SAS	NIOKE PIPES FOR OCND GROUND SAS RECHORGE BASIN (NO LOCAL STORM										
	WOKE PIPES FOR OCND GROUND LAN	NIAKE PIPES FOR OCND GROUND DAY RECHARGE BASIN (NO LOCAL STORM										
	INTOKE PIPES FOR OCND GROUND DAY	INTAKE PIPES FOR OCND GROUND WAS										

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

		T		П	٦	1	S	Q	T		Γ	Γ	Τ	Γ	Γ	Γ	Γ	Τ	Γ	Γ		Г	
RIVER			DISPOSITION OF EXCESS FLOW		COLLINS CHANNEL	DESIGN CAPACITY	15 3200 CFS. FICE	WILL FL	AT THE INCETE TO														
					xoc	164665	168,0																
AND AINHS			REMARKS	7	W CXID	BACK	TO FLEW. I																
1000V			STATION	0.00	671+20				1														
CHAMPOL INTEGLICATION	LEFT BANK	SIDE-DRAMAGE REQUIREMENTS	DESCRIPTION		WY 21 X 21 /2	COLLINS CHANNEL																	
200		S	HEDIVIDUAL Q C.F.S.	7,000	1000																		
5		TOTAL	O CFS	(00)	2000																		
TENTENT IN CHARTICAL ON			DISCHARGE PE AK C.F. S.		0220 0239																		
		SUBAREA	31 ZE	100	4:40																		
			HAME		¥																		
١			A D		j j																		

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

SECRIPTION STATION NEWARTS DISCUSSION OF EXCESS OF A CAPPER PROPERTY OF STATION OF STATES AND STATES OF ST	2			CHAMPIN	5	30c-043	PERTINENT INFORMATION ON SIDE-URAINAGE INVESTIGATION - LE	LOUER	SANTA ANA	RIVER
102 111 0115 570 110 015 017 017 017 017 017 017 017 017 017 017			7	EA	TOTAL		SIDE-DRAWAGE REQUIREMENTS			
105 111 0.15 570 (10 87.12) RCB 175110 (10 81.57 80.8 10 81.655. 105 111 0.15 570 (10 87.12) RCB 18.10 (10 81.57 80.8 10 81.655. 104 (20 36.80.7) 688140 2551.00 81.10 81.655. 105 111 0.15 570 (10 36.80.7) 688140 2551.00 81.10 81.655. 105 111 0.15 570 (10 20.80.7) 688140 2551.00 81.10	4			DISCHAREE FEAK C.F.S.	O. S. S.			STATION	REMARKS	DISPOSITION OF EXCESS FLOW
103 III alf 570 IIO 36" CMP[EXEN] 6881/4 REPLACE 36" CMP IND EXLEGES INT ABOVE TO BE AND MATH 48" ECP TO BE AND MATH 48" ECP TO BE AND MATH 48" ECP TO BE AND MATH 48" ECP TO BE AND END AND END EXPERSE IN BOX END EXPERSE IN BOX END EXPERSE IN BOX END EXPERSE IN BOX END EXPERSE IN BOX END EXPERSE IN BOX END EXPERSE IN BOX END EXPERSE IN BOX END EXPENSE IN	701				*	*	B	35110	12/2	111
100 015 370 10 36." CMP FEREN 68816 CEPLACE 36" CMP 10 EXLESS WITH 48" RCP PROP) WARD. 160 48" RCP PROP) WARD. WARD. WARDE TO SANTA ANA RIVER FROM OLNO GROUND									RIVER	
100 as 370 to as 20" CMP (FRE) 688-66 BEPLACE 30" CMP NO ENLESSE 120 48" RCP (PROP) ORAN MAINTENANCE 120 48" RCP (PROP) ORAN MAINTENANCE 120 48" RCP (PROP) WITH GO'RCP NO ENCESSE 130 48" RCP (PROP) WITH GO'RCP NO ENCESSE 130 48" RCP (PROP) WITH GO'RCP NO ENCESSE 130 48" RCP (PROP) OLNO GROUND		•								
THECHARGE TO SANTA ANA RIVER FROM OCHO GROUND	603	18			110		_	188160		1
THECHARGE TO SANTA ANA RIVER FROM OCNO GROUND						02/	\Box		V	
THECHARGE TO SANTA ANA RIVER FROM OUND GROUND))	
NECHARGE TO SANTA ANA RIVER FROM OCNO GROUND										
ANA RIVER FROM OCNO GROUND	104				260		48 RCP/Entle	26.180	REPLACE 48" RCP	NO EKCESS FLA
ANA RIVER FROM OCNO						260	60" RCP (PROP)		w174 60"RCP	1 1
ANA RIVER FROM OCNO								1		
ANA RIVER FROM OCNO								1		
ANA RIVER FROM OCNO										
ANA RIVER FROM OCNO										
ANA RIVER FROM OCNO										
ANA RIVER FROM OCNO										
	***	2/6C	HAR (Se 70	300	1 9	RIVER FRU	3	1 :	

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

									PAGE MOF 39
8	T E	N IN	PERTINENT INFORMATION ON SIDE-	3		DRAMAGE INVESTIGATION - Z	Lower	SANTA ANA	RIVER
						LEFT BANK		1	
		SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
4	MAN	32 15	DISCHANGE PEAK C.F.S.	Q CFS	BOYDUAL 0 C.S.	DESCRIPTION	STATION	PERABRIS	DIRECTION OF EXCESS FLOW
501				5//	65	48" RCP W/ F.G.	695170	JOIN 6X167. PIPE (NETRY, DODITIONAL 49	NO EXCESS FLOW
24				38	38		01+289	101	No Exests From
101	11,	62.0	069	210	97	48" RCP W/ F.G.	4:699	JOIN EXIST PIPE	NO EXCESS ROW
801				180	زز	RCP	001659	JOIN EXIST PIPE	10881 FLOODING
baj				09	Q	(B"CMP	654.40	REPLACE 18° CAP WITH 36°CMP	PLATE UE NO EKCESS FLOW
011	o.L.	85'/	2060	7060	1500	(2) 12'x9' RCB	7.879	JOIN EXIST. BOX TIE BACK RIVER LEVEE TO BITTER- BUSH CHANNEL	LOEAL FLOODING 45 INO/CATED ON PLATE NE

P. 177 H . 10

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

1

	ATE E		PERTINENT INFORMATION ON SIDE-	3	SDE-DRA	DRAINAGE INVESTIGATION -	LOUER	SANTA ANA	RIVER
_ {						LEFT BANK			
		SUBAREA	EA	TOTAL		SIDE-DRAMAGE REQUIREMENTS			
MD	MA.	\$1.2E	DISCHARGE PE AK C.F. S.	o Cf.s	MDIVIDUAL Q C.F.S.	DESCRIPTION	STATION	NEWATHS	DIRPORTTON OF EXICESS FLOW
				١					
Z				1/2		48" RCP/EXIST 625+94		REPLACE 48" RCP	NO EXCESS FLOW
					02/	60"RCP (PROP)	1	WITH GO"RCP.	
7/1				670	5/0	18) 5/x 5' RCB	55+529	IOIN EXIST. BOX	IOCAL FLOODING
	7, 7	Ì				, ,		1	46 INDICATED ON
	7	95.0	1040						2N 31076
				,					
13				2/0	220	6) 2,x3, BCB	621110	JOIN EXIST BOXES	NO EXCESS FLOW
						/			
711				,		2000		į.	
†				45		* ZA" CDP (ENST)	6051/0	REPLACE 24" CHP	NO EXCESS FLOW
			,		3	48" CHP (PROP)		WITH 48"CMP	
_									
*	FRI	FREENAY		DRAINS	<i>(</i> 0				

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

SUBMER 122 (ALC) 1014 SIDE DANAGE REQUIREMENTS 1. 2.61 2460 240 (Boo D'X ' RCB 643+40 JOIN EXIST BOX LONG LON	### 312 STANDAN TOTAL STREETH	2	RTIME	NT IN	PERTINENT INFORMATION ON SIDE-	N ON N		DRAMAGE INVESTIGATION - 1	LOUER	SANTA ANA	RIVER	_
1.2 1.2	SIGNERA TOTAL BOC-DAMBGE REDUNELIERTS REDUNELIERTS 1.1. [1.6] [1460] [M.O.							RIGHT DANK	, ,			_
1.2 2.61 2460 Mr. 1000 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2 261 2460 240 100 x 11' RCB 64840 2010 EXIST BOX 1.1 261 2460 240 100 EX 11' RCB 64840 2010 EXIST BOX 1.2 24 22 20 CMP 62110 2010 EXIST BOX 1.3 20 24 22 20 CMP 62110 2010 EXIST BIPE 1.4 20 24 20 2010 45 6 2010 EXIST BIPE 2.5 20 24 20 CMP 62 2010 EXIST BIPE 2.7 20 24 20 CMP 62 2010 EXIST BIPE 2.8 20 2010 EXIST BIPE 3.0 2 24 20 CMP 62 2010 EXIST BIPE 3.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 6 2010 EXIST BIPE 4.0 2 24 20 CMP 15 20 CMP 1			SUBAR	EA	TOTAL		NDE-DRAMAGE REQUIREMENTS				~
10 261 2460 7460 1000 10 × 11 RCB 643-46 JOIN EXIET BOX 11 24 RCP (PROF) 647-46 JOIN EXIET BOX 12 24 CMP 611410 JOIN EXIET PIPES 12 350 CMP 41 RG 617-15 PIPE 14 CMP 41 RGP 10 RGP PROJINE POWONG PROJINE 15 C 34" CMP 41 RGP PROJINE POWONG 16 C 34" CMP 41 RGP PROJINE POWONG 17 C 34" CMP 41 RGP PROJINE POWONG 18 C 34" CMP 41 RGP PROJINE POWONG 18 C 36" RCP POWONG 18 C 36" RCP POWONG 18 C 36" RCP POWONG 18 C 36" RCP POWONG 18 C 36" RCP POWONG 18 C 36" RCP POWONG 18 C 36" RCP POWONG 18 C 36" RCP POWONG	1. 2.61 2460 2460 10 × 11 × RCB 64844 JOIN EXIST BOX 1. 2.61 2460 2460 10 × 11 × RCB 64844 JOIN EXIST BOX 1. 2. 42 × CMP 67710 000 EXIST BOX 1. 2. 42 × CMP 67710 000 EXIST BOX 1. 350 12 × RCP 10 × G 1. 42 × RCP 10 × G 1. 63 × RCP 10 × G 1. 63 × RCP 10 × G 1. 63 × RCP 10 × G 1. 63 × RCP 10 × G 1. 63 × RCP 10 × G 1. 64 × RCP 10 × G 1. 64 × RCP 10 × G 1. 64 × RCP 10 × G 1. 64 × RCP 10 × G 1. 64 × RCP 10 × G 1. 64 × RCP 10 × G 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP 10 × RCP 1. 64 × RCP	4	3		¥	CES	MENTELIAL O C.F. S.	DESCAIPTION	STATION	REMARKS		
1 2.61 2460 M60 [800 10 × 11 RCB 64244 JOIN EXIST BOX 24 (2) 30" CMP 671410 (0) EXIST PIPES 10 - 42" CMP 671410 (0) EXIST PIPES 11 0 - 42" CMP 11 6 10 EXIST PIPE 12 0 - 42" CMP 11 6 10 EXIST PIPE 13 8.00 EXIST PIPE 14 80 0 42" RCP 11 6 10 M EXIST PIPE 15 0 42" RCP 11 F.G. 64410 [0) EXIST PIPE 16 0 24" RCP 11 F.G. 64410 [0) EXIST PIPE 17 0 24" RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0) EXIST PIPE 18 0 24 (RCP 11 F.G. 64410 [0] EXIST PIPE 18 0 24 (RCP 11 F.G. 6	12 261 2460 2460 100 x 11' RCB 643446 JOIN EXIST BOX 14 24 (2) 30' CMP 671410 JOIN EXIST PIPES 15 0 -40' CMP 671410 JOIN EXIST PIPE 16 0 -40' CMP 671410 JOIN EXIST PIPE 17 0 -40' CMP 671410 JOIN EXIST PIPE 18 0 -40' CMP 66' 64410 JOIN EXIST PIPE 18 0 -40' CMP 156' CMP 156' CM	!	μ.	_								_
10 10 10 10 10 10 10 10	10 24 (2) 30" CMP 627+10 (01) Exist PIPES	1		_	2460	240	000/	, // ×	643+6	JOIN EXIST BOX	Freess Flaw will From	_
10 0 -40° CMP 67410 1010 EXIST PIPES 10 0 -40° CMP 67410 1010 EXIST PIPES 10 0 -40° CMP 67410 1010 EXIST PIPE 10 0 -40° CMP 67410 1010 EXIST PIPE 10 0 -40° CMP 6760 1010 EXIST PIPE 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 42 (2) 30° CMP 621410 (01N EXIST PIPES 11 0 -42° CMP 621410 (01N EXIST PIPES 12 0 -42° CMP 4/F.G. 614-10 (20N EXIST PIPES 13 0 0 42° KCP 4/F.G. 614-10 (01N EXIST PIPE 14 0 0 42° KCP 4/F.G. 614-10 (01N EXIST PIPE 15 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 16 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 17 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 0 248" CMP 4/F.G. 614-10 (01N EXIST PIPE 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							RCP /	640,000	120	To Lov Point AT CHAPMAN	ĺ
10 0 4 (2) 30° CMP 67710 1010 EXIST PIPES 10 0 -40° CMP 67710 1010 EXIST PIPE 10 0 -40° CMP 16.6 1014 EXIST PIPE 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 -42° CMP 67710 1010 Exist PIPES 10 0 -42° CMP 67710 1010 Exist PIPES 11 0 0 -42° CMP 456 6256 5010 Exist PIPE 12 0 -42° CMP 456 6256 5010 Exist PIPE 13 0.0 42° RCP 456. 63710 1010 Exist PIPE 14 0 0 42° RCP 456. 63710 1010 Exist PIPE 15 0 24° CMP 456 63710 1010 Exist PIPE 16 0 42° RCP 456 63710 1010 Exist PIPE 17 0 24° CMP 456 63710 1010 Exist PIPE 18 0 24° RCP 456 63710 1010 Exist PIPE 18 0 24° RCP 456 63710 1010 Exist PIPE 18 0 26° RCP 50 CM 466 50 50 RCP 18 0 26° RCP 50 CM 466 50 50 RCP 18 0 26° RCP 50 CM 766 70 RCP 18 0 26° RCP 50 CM 766 70 RCP 18 0 26° RCP 76° RCP 18 0 26° R		_							6 24 RCF	AV. WYERE CAE 24"	_
10 24 (2) 50" CMP 671+10 101N EXIST PIPES 10.01 FLOODING	10									,	RCP WILL BE NSTALLS	
10	10 24 2) 30" CMP 67110 101N EXIST PIPES LOLAI FLOPDING NO (4750 0N) 10 10 10 10 10 10 10 1		L					1			•	_
10	10	2				8	24	304	627+10	EX15T	FLOODING	
10	10 0 - 42° CMP W.F.G. 619-60 FORMW.B.F.G. FREESS FLOW STR. 11 A.M. 560							•			INDICATED ON	
10 0 - 42° CMP W/F.G. 600+60 JOIN EVIST PIPE. EVEESS FLOW WINE IN THE SECONTAINSE IN THE SECONTAINSE IN THE SECONTAINSE IN THE PROVINE PROVINE PROVING REE. CONTAINSE IN THE PROVING REE. CONTAINSE IN THE PROVING CONTAINSE IN THE PROVING CONTAINSE IN THE PROVING CONTAINSE IN THE SECONTAINS CONTAINSE IN THE SECONTAINS CONTAINSE IN THE SECONTAINS CONTAINSE IN THE SECONTAINS CONTAINSE IN THE SECONTAINS CONTAINSE IN THE SECONTAINS CONTAINSE IN THE SECO	10 0 -40° CMP W/F.G. 618160 JOINETIST PIPE. ENEESS FLOW WINE 11 0 16 36" RCP 10/ F.G. 618110 PROVINE FONOMG ARE. CONTAINED IN THE 12 0 42" RCP W/F.G. 618120 PROVING REE. CONTAINED IN THE 130 0 42" RCP W/F.G. 618120 PROVING CONTAINED IN THE 14 CMP W/F.G. 618120 PROVING CONTAINED IN THE 15 0 24" CMP W/F.G. 618120 PROVING CONTAINED IN THE FONOMG CONTAINED IN THE							,			PLATE NE	
10 0 - 40° CMP W/F.G. 618+10 PROVINE POWONG REE. CONTRINSO IN THE 36" RCP 10/15G. 618+10 PROVINE POWONG REE. CONTRINSO IN THE PROVINE POWONG POWO. SEE GHT. 10 0 . 42° RCP W/F.G. 607+10 IOM EXIST PIPE EXCESS FLOW THE PROVING CONTRINSO IN THE PROVING POWONG CONTRINSO IN THE ACCESS FLOW THE PROVING CONTRINSO IN THE SC. 605+50 PROVING POWONG CONTRINSO IN THE PROVING POWONG CONTRINSO IN THE PROVING POWONG POW	120											
10 360	10 360 AL" RCP WIFG. 684-10 PROVING REE. 66NTAINSPO IN I END 360 CONTAINS IN I END 568 SUT STORY SEE SUT STORY SEE SUT STORY SEE SUT STORY SEE SUT SEED SEE SUT SEE SUT SEE SUT SEE SUT SEE SUT SEE SUT SEE SUT SEE SU	£	_			120	0		620760		EXCESS FLOW WIR BB	
W P.16 350 120 0 42" RCP W/F.G. 607-10 JOIN EXIST PIPE EXCESS FLOW 120 0 42" RCP W/F.G. 607-10 JOIN EXIST PIPE EXCESS FLOW 120 0 44" CMPU/F.G 607-10 JOIN EXIST. APPE EXCESS FLOW 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE EXCESS FLOW 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE EXCESS FLOW 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE EXCESS FLOW 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE EXCESS FLOW 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE EXCESS FLOW 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE EXCESS FLOW 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMPU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 607-10 JOIN EXIST. APPE BONDONS 120 0 24" CMFU/F.G 6	UV 016 350 120 - 42" RCP W/F.G. 601-10 ION EXIST PIPE EXCESS FLOW AREA 50 0 14" CMPW/F.G 601-10 PROVING POWO. 56F 6NT AREA 50 0 14" CMPW/F.G 601-10 PROVING CONTAINED IN AREA 5 36" RLF W/F.G 601-10 PROVING CONTAINED IN AREA 5 36" RLF W/F.G 601-10 PROVING POWO. 56F 6NT AREA 7 36" RLF W/F.G 7 36" RLF POWO. 56F 6NT AREA 7 36" RLF POWO. 56F 6NT	17.4	-					ecp 10/ FG.		PROVINE PONOING ARE,	CONTRINGO IN THE	
120 C 42" RCP W/F.G. 607-10 JOIN EXIST PIPE EXCESS FLOW PROVIDE PONDING CONTAINED IN 3 SO 24" CMP W/F.G 607-10 JOIN EXIST. APPE EXCESS FLOW 36" RCF W/F.G 605-50 PROVING CONTAINED IN PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PONDING PROVIDE PANDING PROVIDE PONDING PROVIDE PONDING PROVIDE PANDING PROVIDE PONDING PROVIDE PONDING PROVIDE PANDING PROVIDE	120 0 42" RCP W/F.G. 607-10 JOIN EXIST PIPE EXCESS FROM PROVIDE POWOING CONTAINED IN J AREA 100 ON FAIST. PIPE EXCESS FROM 36" RCP W/F.G 605-10 DROVIDE POWOING CONTAINED IN PROVIDE POWOING PAREA			_				7		\$ 36"RCP DRAW W/FG.	SWT.	_
120 0 42" RCP W/F.G. 607-10 JOIN EXIST PIPE EXCESS FLOW PROVIDE PONDING CONTAINED IN J AREA 50 0 24" CMP W/F.G 607-10 JOIN EXIST. PIPE EXCESS FLOW 36" RCF W/F.G 607-10 PROVING CONTAINED IN (PROF) AREA & 36" RCF PONDING DRAIN' FOR PONDING DRAIN' FOR PONDING	120 C 42" RCP W/F.G. 601410 JOIN EXIST PIPE EXCESS FLOW PROUNDS FONDING CONTAINED IN J AREA 50 C 24" CMPW/F.G 601410 JOIN EXIST. PIPE EXCESS FLOW 36" RCF W/F.G 601410 PROUNDS FOUNDING CONTAINED IN PROOF) AREA & 36" RCF FOUND, 568 FM AREA AREA AREA AREA AREA AREA AREA	•										
50 0 24" CMP w/F.G GATIN FAIST. APE EXCESS FLOW 36" RCF w/F.G GATIN FAIST. APE EXCESS FLOW (PROP) F.G GASTS ARCA G 36" RCP POWIN, 568 BAI	50 0 24" CMPW/FG GATIO TOWN EXIST. APE EXCESS FLOW 36" REC W/FG GATIO TOWN EXIST. APE EXCESS FLOW (PROP) REA & 36" RCP POWN, 568 SMI	\$				120	0	42" RCP W/ F.G.	607+20	JOIN EXIST PIPE	FLOW	
\$0 0 24" CMP \(\rightarrow \)	50 0 24" CMP W/FG GATIN FAIST. APE EXCESS FLOW 36" RCF W/FG GOSTS PONDING CONTAINER IN (PROP) RRSA & 36" RCP PONDING PONDING AREA PONDING							,			CONTRINGO IN THE	
50 0 24" CMPW/FG GOTHE TOWN EXIST. APE. EXCESS FLOW 36"RLP W/FG GOTTO PROVIDE POWNING CONTAINED IN (PROP) AREA & 36" RCP POWNING POWNING DRINN FOR POWNING	50 O 24" CMPW/FG GOTHIN EXIST. APE. EXCESS FLOW 36" REF W/FG GOSTS ARCA & 36" RCP PONONS (PROP) DRAIN FOR PONONS AREA							-		4864		
20 0 24" CMPW/FG 601+10 101N EXIST. APPE EXCESS FLOW 36"RCP W/FG 605150 PROVING PONDING CONTAINED IN AREA & 36" RCP PONDING DRAIN' FOR PONDING	20 0 24" CMPW/FG 601+10 101N EXIST. APPE EXCESS FLOW 36"RCP W/FG 601-10 AREA & 36" RCP POWING OW	•				į						
16"RCF W) F.G. GOSTSD PROVIDE PONDING CONTAINED IN (PROP) RGA & 36" RCP POND, 566 BAIL DRAIN FOR PONDING AREA	16"RCF W) F.G. GOSTSO PROVIDE PONDING CONTAINER IN AREA & 36" RCP POND, 568 BAIL DRAIN FOR PONDING AREA	\$				90	0	24" CMP 4/FG	607+10	JOIN EXIST. APE	EXCESS FLOW	
(PROF) AREA & 36" RCP FOND, 568 DAT. DRAIN FOR PONDING AREA	AREA & 36" RCP FOWD, 568 BAT. DRAIN FOR PONDING AREA	70//						36"861 0/ 16	605+50	30	CONTAINED IN THE	
DRAIN' FOR PONOING AREA	DRIVN, FOR PONOING	*/								AREA & 36" RCP	.	
										1		
										AREA		

P. 173. 18 10 1041

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

PAGE 300F 39

JOIN JOIN JOIN JOIN	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION - LOUER SALTA ANA RIVER	INFORMATION	PERTIMENT IN
SUBMER A TOTAL SIDE-DRAMAGE REQUIREMENTS DISCUSSION OF SCRIPTION STATION C.F.S. C.F.S. C.F.S. C.F.C.P. G. C.F.C.P.C.P.C.P.C.P.C.P.C.P.C.P.C.P.C.P.			
DISCHARME O MODIFICUM CESCRIPTION STATION C53 C63 C63 C64 RCP 6401/5 JOHN JW 2/1 2/90 60 1/0 360 RCP 1/6 583126 AVIN C	SIDE-DRAMAGE		Vens
UNU all 280 (40 40 50" RCP 600 130 1010 . 40 40 40 50" RCP 583126 1010 .	MOIVIDUAL Q DESCRIPTION CF.8.	DISCHANGE PEAK C.F.S.	BAABE
10 36 RCP 600+30 1010 . 110 145 54"RCP 2/FG 583+20 LVW 40 40 40 30" RCP 2/FG 583+30 LOLW	100 36" RCP 600115		,0
UW 211 280 100 36° RCP 600+30 10/10 120 145 59" RCP 4/F.G 583+26 10/10 40 40 30" RCP 583+36 10/10			
UW all 280 (120 45 54"KCP 4/F.G 583726 50 to 40 40 50° RCP 555 50° to 40 40	110 36º RCP 600+30		
120 145 54"RCP W/F.G 583724 DIN 40 40 30" RCP 583736 JOIN	1 1		//a//
40 40 20" 200 583+36 1011	145 54"RCP 4/F.G		2
40 40 30" RCP 583+36 10/11			
	40 30" RCP 583+30		w.
			-

1967 AN ME 1017 TAY

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

PAGE 81 OF 39	WER SANTA ANA RIVER			ATION OF ENCESS FLOW	4150 Join Exit P. PFS JARD! Elocoura	(NSTALL ADDITIONAL 45 IND.	36" RCP PLATE NE	П			6100 SANTIAGO CREEK IN ETCESS FIOW	CONFLUANCE STRUS							
PAGE				0 101100	/000/	46 IND.	Г	П			220	100							
	SANTA			REMARKS	F112 [10]	ł	36" 80.0			1	ŀ								
	Louer			STATION	508150						266 100								
	PERTMENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION	LEFT BANK	SIDE-DRAMAGE REQUIREMENTS	DESCRIPTION		36" RCP (PROP)					_ 1	(SANTIAGO CREEK)							
	SIDE-DRA			SC. S.	0					L	2000								
	8		TOTAL	C.S.S	08/					,	2000								
	ORNATIO		AMEA	DISCHANGE PEAK C.F.S.	720						2000			 		_	 	 	
	1		3	\$1.2E	700	1					105.7								
	ATE			¥	1017	<u> </u>				1								 	
	2			1	3	12/				100	122								_

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

						RIGHT BANK	W	שמא שומאה	KIVEK
H		BLBAREA	Y.	TOTAL		BEDE-DRAMAGE REQUIREMENTS			
9	¥	31.ZE	DISCHARE FEAK C.F.S.	O CFS	MONOUAL 0 C.F.B.	DESCRIPTION	STATION	REPORTS	DISPOSITION OF EXCESS FLOW
}									
-		-		240	120	48"RCP (EXIST)	580036	JOIN EXIST PIPE	NO EKCESS FLOW
1564					120	48. RCP (PROP.)			
<u>``</u>	, <u> </u>	0.07	320					48" KCF,	
127				80		30"CMP W/ F.G.	554100	REPLACE 30" CMP	NO EXGESS FLAN
			=			48"CHP W/FG (PROP)		WIN 48" CHP	
						, ,		W/F.G.	
								1	
	_								
_									
	_								
-									
┥									

1

ij

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

No. 1.26 1.20 1	Ē	RTBE	15	OPMATIO	3	XDE-DAY	PERTINENT INFORMATION ON SDE-DRAINAGE INVESTIGATION -	LOWER	SANTA ANA	RIVER
11.26 11.26 12.2										
0.17				2	TOTAL		IDE-DRAMAGE REQUIREMENTS			
"W" 031 300 300 10 36" CMP 586465 1013 EXIST PIPE INDICATED ON PLOTE AUS "W" 034 690 15 120 36" RCP 3/F.G. 5/2440 1013 EXIST PIPE WO EXCESS F. T. T. T. T. T. T. T. T. T. T. T. T. T.	1		3218	***	o C.s		DESCAIPTION	STATION	REMORES	SIGNATURE OF ENGINE FLOW
WYS 0.11 300 300 10 36" CMP 586165 JOIN EXIST FIPE MADIENTED ON W 0.34 690 15 120 36" RCP W/FG. 628140 JOIN EXIST FIPE WO EXCESS A MS 140 210 400" RCP FILES JOIN EXIST FIPE WO EXCESS A MS 510 60" RCP FILES JOIN EXIST FIPE WO EXCESS A MS 140 210 400" RCP FILES JOIN EXIST FIPE WO EXCESS A 105 120 66" RCP ROWING ON 40 125 36" RCP W/FG. 498155 JOIN EXIST FIPE NO EXCESS										
450 300 300 10 26" CM F 2846 1010 EXIST TIPE INDICATED ON 15 100 36" RCP WFG. 52844 1010 EXIST PIPE NO EXCESS R 40 210 40" RCP FRIET 1010 EXIST PIPE NO EXCESS P 40 210 40" RCP FRIET 1010 EXIST PIPE NO EXCESS P 66" RCP. PROVIDE ONL 40 185 36" RCP WFG. 1010 EXIST PIPE NO EXCESS P 66" RCP. PROVIDE ONL 40 185 36" RCP WFG. 1010 EXIST PIPE NO EXCESS				,	•					3
"M" ass 690 15 120 36 RCF WEG. BERTO JOIN EXIST PIPE NO EXCESS A "M" ass 690 15 120 36 RCF WEG. BERTO JOIN EXIST PIPE NO EXCESS A "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL ANDITIONAL "MS TALL AND EXIETS "MS	9	MYS	0.11	200	8	07	26" CMP	536 +65	JOIN EXIST PIPE	
"M" ass 690 15 120 36" RCP WFG. 528140 JOIN EXIST PIPE NO EXCESS A. 450 210 40" RCP [Exist] 509135 JOIN EXIST PIPE NO EXCESS P. 450 210 40" RCP [Exist] 509135 JOIN EXIST PIPE NO EXCESS P. 450 210 40" RCP [Exist] 509135 JOIN EXIST PIPE NO EXCESS P. 460 210 40" RCP [Exist] 509135 JOIN EXIST PIPE NO EXCESS P. 470 216 400" RCP VFG. 498155 JOIN EXIST PIPE NO EXCESS P.	1							1		
45 100 36 RCP WHG. 52844 JOIN EXIST PIPE NO EXCESS AT MANY 034 690 210 600 RCP 100 100 100 100 100 100 100 100 100 10										
460 15 120 36° RCP 57246 JOIN EXIST, PIPE NO EXCESS. 460 210 60° RCP [EXIST TOIN EXIST PIPE NO EXCESS F 66° RCP PROVE ONG 40 125 36° RCP NFG. 498135 JOIN EXIST PIPE NO EXCESS	2:				8	00/	36"RCP W/FG.	528+40	EXIST	1
460 250 400 858 RCP 578 40 10 10 EXIST, P. 1 PE NO EXCESS 1 10 CON EXIST PIPE NO EXCESS 1 10 CON EXCESS 1 10 CON EXIST PIPE NO EXCESS 1 10 CON EXIST PIPE NO EXCESS 1 10 CON EXCESS 1 10 CON EXIST PIPE NO EXCESS 1 10 CON EXIST PIPE NO EXCESS 1 10 CON EXCESS 1 10 CON EXIST PIPE NO EXCESS 1 10 CON EXCESS							/			
WY 0.54 690 15 120 36 RCP 57244 JOIN EXIST, PLPE NO EXCESS 1 460 210 60 RCP (EXIST) 509+35 JOIN EXIST PIPE NO EXCESS F 100 8157								1		
450 210 60"RCP 57244 JOIN EXIST PIPE NO EXCESS F 15 210 60"RCP[EXIST SOUN EXIST PIPE NO EXCESS F 15 30"RCP S/F.G. 498+35 JOIN EXIST PIPE NO EXCESS F 16 36"RCP S/F.G. 498+35 JOIN EXIST PIPE NO EXCESS	8	177			,					
460 210 GO"RCP (EXIST) 509+15 JOIN EXIST PIPE NO EXCESS F 270 GO"RCP (PROP) WSTALL ABBITIONAL 66" RCP. PROVIDE ONG 40 [155 36" RCP w/F.G. 498+55 JOIN EXIST PIPE NO EXCESS		È		670 <	25	150	36 " RCP	1 1	EXIST.	NO EXCESS FLOW
480 210 60"RCP/ENIST JOIN EXIST PIPE NO EXESSE F NSTAUL ADDITIONAL GE" RCP. PROVIDE ONG 40 [185 36"RCP N/F.G. 498+35 JOIN EXIST PIPE NO EXEESS										
460 210 60" RCP (PROP) 509+35 101N EXIST PIPE NO EXESSE P (10 (25 36" RCP N/F.G. 498+35 101N EXIST PIPE NO EXESSE P	3				•					
40 (25 36" RCF (PROP) INSTAUL ANDITIONAL GE" RCP. PROVINE ON'S FREEKS					480	210	(00"RCP (Exist)	504135	7	1
40 (25 36 RCP W/F.G. 498+55 JoIN EINST PIPE NO ETEEKS						210	Cac" RCF (PROP)		1	
40 125 36" RCP W/F.G. 498+55 JOIN EINST PIPE NO ETCESS								7	66" RCP. PROVIDE ONG	
TO 182 DO-KCT W/T.G. 498155 JOIN EAST PIPE NO BYCEKS	20				,					
	2				6	(22)		498155	EKIST	
	ı								i	

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

2W 31070

the oil, in the sets

1 1

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

PAGE SEOF 39	R SANTA ANA RIVER	l i		MENARMIS SECRETARISM OF ENGINE FLOW	18 JOIN GAIST BOX NO SYCESS FLOW		NO JUIN BRIST PIPE NO EXCESS FLOW					
	OWER			STATION	59.509		20141					
	PERTINENT INFORMATION ON SIDE-DRAINAGE INVESTIGATION – $LoueR$	LEFT BANK	SDE-DRAMAGE REGUMENENTS	DESCRIPTION	(2) 10'x 5'.1" RCB		48" RCP					
	SDE-DR			DIVIDIAL C. S.	00%		06/					
	3		TOTAL	G. 8.	0621		2/2					
	ORMATIO		E A	DECHARE	067/		0//					
			3	3215	0.53		0.0					
	FIE			*	188 1473		3					
	۲			4	98/		139					

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

		TENE		PERTMENT INFORMATION ON SIDE-	8	SDE-DRA	DRANAGE INVESTIGATION - LOUER	LoueR	SANTA ANA	RIVER	
1.18 OCCUMENTAL STATEM		ł		ĺ			KIGNT BANK	-			
1.12	_]			3	TOTAL		HDE-DRAMAGE REQUIREMENTS				
0.03 90 90 12 20° ELEP (FROR) 1987 10 10 EXIST PIPE NO EXISES. 1 10 10 12 14 ELP W/F.G. 35946 10 M EXIST PIPE NO EXISTS 119 10 10 12 14 ELP W/F.G. 35946 10 M EXIST PIPE 10 COLUM FRONCE 110 100 100 100 100 100 100 100 100 10		¥	3:26	DECHARE FEAK C.F.S.	0 CFS		DESCRIPTION	STATION	REPORTS		
0.83 90 90 22 50°ECP/Edist) 399.70 JOIN ERIES PIPE NO ERCESS 1 10 48° ECP (PROP) 48° ECP 148° ECP (PROP) 48° ECP 148° ECP (PROP) 48° ECP 148° ECP (PROP) 48° ECP 148° ECP (PROP) 48° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 148° ECP 68° ECP 158° ECP 68° ECP 158° ECP 68° ECP 168° ECP 68° ECP 168° ECP 68° ECP 68° ECP 168° ECP 68											
10 48° &CP (PROP) MSTAU ADDITIONAL ABOUTIONA	4.4	<u> </u>	0,03		90	22	30° DCP EXIST	240.70	JOIN EXIGT PIPE	NO ETTERS FLOWS	
019 180 (1) 14°RCP W/FG. 35946 (1011) EXIST PIPS NO EXCESS 019 180 (4) 200 RCP W/FG. 358140 (1011) EXIST PIPE (1012) FLOOD 410 200 60° RCP W/FG. 358140 (1011) EXIST PIPE (1012) FLOOD 61078 NS	١.					70	48" RCP (PROP)		JANOITICAR HATSNI		
0.39 580 (10 12) 24*RCP W FG. 359+65 101N EXIST FIPS NO EXIESSS 0.39 580 (FORCE M) FG. 358+60 101N EXIST 51PE 10001 F0000 470 100 60*RCP W FG. 358+60 101N EXIST 51PE 10001 65 MOLGGIED CLATE NO.									48 * RCF		
0.79 580 (1) 14 RCP W FG. 35945 (01.0 EXIST PIPS NO EXESSS 0.79 580 (4) 200 60* RCP W FG. 35946 (01.0 EXIST PIPE (01.0 Exests) 45 INDICATED (2000) 45 INDICATED (01.0 EXESS FLOW) 45 INDI											_
0.29 580 (10 12) 44 R.C. W. F.G. 35946 101N EXIST 8195 NO EXCESS 0.39 580 (40 100 60* R.C. W. F.G. 35846 101N EXIST 819E 1000 45 NOICGIEO 1010 45 NOICGIEO 1010 45 NOICGIEO 1010 1010 1010 1010 1010 1010 1010 10											-
1.14 580 (10 (1) 14" RCP W F.G. 35316 (01N EXIST PIPS NO EXCESS 1.14 580 (10 60" RCP W F.G. 35216 (01N EXIST SIPE LOCAL FLOOD 470 Loo 60" RCP W F.G. 35216 (01N EXIST SIPE LOCAL FLOOD CLOTE NO.	11										_
119 110 12 14 RCP W/FG. 35346 JOIN EXIST PIPE NO EXCESS 1179 180 470 100 60" RCP W/FG. 35746 JOIN EXIST PIPE LOCAL FLOOD (FX.CESS FLOOD) 75 MOICHTED OF MOICHTED	_										_
1.19 (10 (1) 24 RCP W/FG. 55346 101N EXIST PIPS NO EXCESS 1.19 (10 60" RCP W/FG. 55346 101N EXIST PIPE 1000 F4000 470 100 60" RCP W/FG. 55746 101N EXIST PIPE 1000 45 INDICATED OLOTES NO.											_
1.39 580 (10 (1) 44 RCP W FG. 35345 (010 EXIST PIPE NO EXCESS 1.39 580 (400 CO RCP W FG. 35546 (010 EXIST PIPE (000 F000 F0000 CO RCP W) FG. 35546 (010 EXIST PIPE (0000 F0000 F0000 CO RCP W) FG. 35546 (010 EXIST PIPE (0000 F000											
0.39 (30) (4) (4) (4) (4) (4) (4) (4) ("		4460.0.0				
470 100 KCP W/F.G. 357.40 JOIN EXIST PIPE LOCAL FLOODY (EXCESS FLOW) 45 INDICATED (CLATE NE					9	9)/	WKCP WEG.	222766	ŀ	C10555	
470 Lop 60" RCP 4/FG, 357.440 JOIN EXIST 8110E LOCAL FLOODI (EXCESS FLOW) 045 NOICGIED		• 5					,		- 1		
100 60" RCP W/F.G. 3874 JOIN EXIST PIPE 10001 F10001 (EXCESS FLOW) 05 NOICGTED		 ₹	14:0								
100 60" RCP W/F.G. 367.40 101N EXIST PIPE 10191 F10001 (EXCESS F100) 45 NOICGIED											
(EXCESS FLOW) 05 (NOICGTED)					470	200	604 RCP 11 FG	260.40	- 1	- 1	
101.975 NS					2				Ų		_
									1		
											_

1967 AN IN 1977 147

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

					RIGHT BOW			
Ц	200	EA	TOTAL		BDE-DRAMAGE REQUIREMENTS			
	32 18	PECK C.C.S.	O. C.E.	DADAL G.S.	DESCRIPTION	STATION	PENAMIS	DEPOSITION OF EXCESS FLOW
148			25	36	03 /n dod 42	108-110	JOIN FIST FIPE	WO EXCESS FLOW
			•		1818/1		HAIN E	NO THE
3					FROM EDISON YORD		SUMP	14
to	0.4	720 <						FLOW WILL ASE DIVER
								THO TO TRUBBLE CHANNEL
			746	745	West 62 1/2 00 1/8 - (8)	150210	Join Frist PIDE	NO FREEST FLOWS
							0	
					3 PUMPS X 150,000		(4001710NAL 2-36"	
					GOM ED)		WH BE INSTALLED	
145 12	0.78	1240	1240	12.40	14) - 42° RCP	501/6	JOIN GRIST PIPE	NO GACESS FLOW
	_		_		FARCED MAINS	L.	0	
					130		G.	
					STATION		1	O3
					18 PUMPS X 150,000		177.	
					(49 405)			

THE PL IN 18

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

						LEET BANK	1		Y NOW
		SUBAREA		TOTAL		SIDE-DRAINAGE REQUIREMENTS			
멸	N N	\$1 ZE	DISCHANGE PEAK C.F.S.	0 53 85	DRĀIN CAPACITY CF8	DESCRIPTION	STATION	REMARKS	BORDONTON OF EXCESS FLOW
140				581	14.	d00 118t	06+491	DRAIN TO PROPOSED	NO EXCESS FLOW
147				02/	*	42" RCP	95+281	DRAIN TO PROPOSED HOLDING POND	NO EXCESS FLOW
148	" 673	4.0	630	00/		49" RCP	55+72/	BRAIN TO PROPOSED HOLDING PONO	NO EXCESS FLOW
641				8	1/4	36" RCP	166749	DRAIN TO PROFOSED HOLDING PONO	NO EXCESS FLOW
150				8	*	30° RCP	19480	BRAIN TO PROPOSED HOLDING POND	NO EXCESS FLOW
*	20,00	DRAINED SURFACE		Ŵ	/b ,	9 15 A. PROK, 1.5' LOWER THEN GREENV LLE - BANNING CHANNEL.	SER 1 CHAN	100 785 &	WATER HOLDING POND.

TABLE 2 SPF LOCAL STORM PEAK DISCHARGES

37				B FLOW		38.3			T			Row									
FAGE 37 OF	RIVER			ENCENTER OF ENCESS FLOW		NO GREGIS FLOW						NO EXCESS									
	SANTA ANA	•		Tirons		CONFLUANCE SIRVE	WITH GREENVIEW-	BANNING CHANNEL				GREEN VIEW-BRINK	;	STRUCTURE							
	Lower			STATION		06+251						. 85104	•								
1	DRAMAGE INVESTIGATION - Z	LEFT BANK	BDE-DRAMME REGUNEMENTS	DESCAIPTION		TRAP. CHANNEL						GREENVEN-BANNA	CHANNEL INTO	SANTA AND RIVER	AT HAMILTON AV.		-				
				C.S.		3000							9800								
	8		TOTAL	o Cf. S		3000						,	9200								
	PERTINENT INFORMATION ON SIDE-		77	SECUMENTS OF SECUMENTS		3000						;	9500								
				32 18		GV4 2.57						•	10.5								
	MINE			*	,	6V4	_						152 615	614	30%	1	215				
	2			1		19/							797								