


MICROCOPY RESOLUTION TEST CHART

# MODELING THE PERFORMANCE OF THE CONCERT MULTIPROCESSOR 

Randy Brent Osborne

May 1987


## REPORT DOCUMENTATION PAGE


16. SUPPLEMENTARY NOTATION

| 17 | COSATI CODES |  |  |
| :--- | :--- | :--- | :---: |
| FIELD |  | GROUP |  |
|  |  | SUB-GROUP |  |
|  |  |  |  |
|  |  |  |  |

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) modeling, multiprocessors, Markov chains, queueing theory, Markovian decision theory
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
i- The performance of the Concert Multiprocessor is investigated using probabilistic models. Analysis proceeds by decomposing Concert along its natural hierarchies into a Multibus subsystem and a Ringbus subsystem. Each subsystem is modeled in isolation ignoring the interactions between subsystems.

A series of Multibus models is developed based on a very simple processor model and some simplifying assumptions. These models are analyzed using Markov chains and queueing theory. Ways to relax some of the assumptions and treat more general processor models are discussed.

The Ringbus is a novel and previously unanalyzed interconnection scheme which is of independent interest. Analysis of the Ringbus subsystem concentrates on a general version of the Ringbus which lacks the topological constraints of the Ringbus actually employed in Concert. The determination of the optimum throughput of the Ringbus and associated optimum arbiter algorithm is formulated as a Markovain decision problem. This problem is

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
Qunclassifiediunlimited $\square$ same as rpt $\square$ otic users
22a NAME OF RESPONSIBLE INDIVIDUAL
Judy Litt!e, Publications Coordinator

| 21 ABSTRACT SECURITY CLASSIFICA Vnclassified |  |
| :---: | :---: |
| 226 TELEPHONE (Inclucte Ared Code) <br> (6]7) $253-587^{\circ}$. | 22C OFFICE SVMBADI |

$83 A P R$ edition may be used until exhausted
All other editions are obsolete
19. solved for various cases as the available computational resources allowed. Approximations, bounds, and a few general results are derived for more computationally intensive cases. The version of the Ringbus used in Concert is also analyzed for a simple case. Finally, the simplifying assumptions made in analyzing the Ringbus are considered.

The subsystem models can be integrated to produce an overall model by matching the first moments of the interactions between subsystems. This integration was performed for several cases. The results obtained via integration agreed well with those obtained via simulation.

Two sets of simulations are presented. The first set compares the performance of Ringbus architectures and arbiter algorithms in an environment close to that in the actual Concert system and presents results for some cases for which the Markovian decision theory problem is too computationally expensive to solve. The second set presents the expected performance of the actual Concert system for different parameter values.

| Aocession For |
| :--- |
| ATIS GRA\&I |
| DTIC TAB |
| Unannounced |
| Justifioation |
| By |
| Distribution/ |
| Availability Codes |
| Dist |
| Avail and/or |
| Speoial |

(c) Miassachusetts Institute of Technol:gy 1980




## Modeling the P'erformance of the Concert Multiprocessor

by<br>Randy Brent Osborne<br>Submitted to the Department of Electrical I:ngincering and Computer Science<br>on May 16. 1986 in partial fulfillment of the requirements for the Degree of Master of Science in<br>Alectricall tingineering :and Computer Science


#### Abstract

ABSTIRAC"

The performance of the Concert Multiphocessor is innestegated using probabilistic models. Analysis proceeds by decomposing Concent along its matural hicravchies into a Multibus subsystem and a Ringbus subsystem. lath subsystem is modeled in isolation ignoring the interactions between subsystems.

A series of Multibus models is developed based on a vory simple procesorr model and some simplifying assumptions. These models are amalyed wing Markor chans and queweing theory. Ways to relax some of the assumptions and treat more general procersor models are discussed.

The Ringbus is a novel and previously manalyzed interemmedion wheme which is of independem interest Analssis of the Ringhus whisytem concentates on a permal wersion of the Ringbus which lacks the topological comstraints of the Ringhus actuaily (mployed in Concert. The detemination of the optimum thronghput of the Ringhos amd asseriated optimum atrbiter algorillum is formulated as a Markovian decision problem. This powken is  bounds, and a few general results are derived for more computationally imtencibe cancs. The version of the Ringhus used in Concert is atso andyed for a simple cance Ifarlly, the simplifying assumptions made in andyriag the Ringhts are considered.

The subsystem models cam be imtegrated to prodace ant oreatl model by matching the first moments of the interactions between sabystems. His imegration was perlimed for several eases. The results obtained via integnotion ageed well will those ondined bat simulation.

Tivo sets of simblations are presented. The first set combaiges the pertornhere of some Ringhus architectures and arbiter algorithoms in ant ensumment chase thent in the wothot Conecre sy:tem and presents results for some cases for which the Mtakosi.m docheom theory problem is tow compuationally eapensive to solve. The second sei presems the expected performance of the athal Conceri system fore different parancter valtus.


Name ame tite of thesis supervisor:
Robert II. Halsitead, Ir.

Keywords and phrases:


To my parents
and Kathrin

## Acknowledyments

I wish to thank the following people:
Domenic Costanzino, for giving me his application for the FECS graduate program at MIT:

Robert I Nonaldson, for encouraging me to apply to MIT:
Lakshmi Das:ai, for convincing me (somewhat) that Cambridge wasn't the hole that I imagined:
Tom Sterling, for introducing me to the Real ?ïne Systems Grou! and Bert Habtead; and

Bert Ialstead, for allowing me to pursuc my interests.

## Table of Contents

## 1. Introduction

1.1 Introduction ..... 17
1.2 The Concert Melliprecessior ..... 20
1.2.1 Mullibus ..... 2.4
1.2 .2 RIB ..... 25
1.2.3 Kinghus: Arbiter ..... 27
1.3 Modeling I ketails ..... 30
1.3.1 Procensor Moded ..... 30
I.3.2 Mijor Assumplions ..... 34
1.3.3 Factors for Study ..... 34
13.4 Overall Performance Merric ..... 35
1.3.5 I Keonisosition and Inlegration ..... 35
I.4 Previous Work ..... 4)
1.5 Oncricu of thesis ..... 41
? Multibus Markls
2.1 Iatrodaction ..... 43
2.2 I Kelcrministic Model ..... 47
2.3 Prohabilistic Model Ciencoal Behaviour ..... 50
2.4 Ixponembial Distributed l'rocessing and Service Times - M/N/I/iN Model ..... 5.3
 ..... 56
 - M/I)/I/N Mokl ..... 61
2.5 .2 Comolncols ..... 6.5
 ..... 1.8
2.6.1 P'indar Iorm Solutions ..... 68
2.6.2 (i/A1////N Model ds a Qucucing Nelwork ..... 7.1
2.7 (icheral Processing and Neces IIme I maibulions - (i/(i/I//N ..... 75
2.7.1 Mean Waiting Time in Pl/PII/I//N Model ..... 75
2.8 Multibus Model with I ong Word Accesses ..... 86
2.8.1 Analysis of Model with I on: Word Accesses ..... 88
2.8.1.1 Asymptotic Rehaviour ..... 88
2.8.1.2 IXeterministic Rehaviour ..... 90
2.8.1.3 Product Form Solution ..... 94
2.8.1.4 Simulations ..... 98
2.9 Multibus Model with I.ong Word and Ringbus Accesses ..... 105
2.9.1 Analysis of Multibus Model with Iomg Word and Ringhos Accesses ..... $10 ?$
2.9.1.I Asymptotic Beh.aviour ..... 1117
2.9.1.2 Deterministic Behaviour ..... 108
2.9.1.3 Product Form Solution ..... 111
2.9.1.4 $\wedge$ Special Case ..... 11.3
29.2 The Single Prexessor Equivalent of the Multihus ..... 111
2.10) Extensions ..... 117
2.10.1 Non-identical processors ..... 117
2.10.2 More Complex Procesoor Models ..... 117
2.10 .3 Time bependent Behaviour ..... 123
2.10.4 18pendent Proxessers ..... 1.27
2.11 Comelusions ..... 130
2.12 Future Work Required ..... 1.31
3. The Rimghus Model
3.1 Introduction ..... 133
3.2 Ringhus Nodel Iommataion ..... 139
3.2.1 Markuvian I Ccision Formulation ..... 141
3.3 Optimal Abiter for low Slices and (itant Duration of One Round ..... 147
3.4 Optimal Athiter for liour Slices and Ciamt Duration (icaner than One Romed ..... 16.3
3.4.1 Detceministic (itant Duration of 2. 3, and 4 Rounds ..... 160
3.4.2 Deterministic (iramt I huration: The Cieneral Case ..... 169
34.2.1 Gencral Characteristics or Optinumin Ihroughput ..... (6)
3.4.2.2 Bennds on the Optimun Throughpur with I Eterministic (iamt I) tration ..... 170
 | Muration ..... 17.1
3.4.3 Geometric Gramt Duration ..... 175
3.4.4 Other Grant I huration Distributions ..... 177
3.5 Optimal Arbiter for Six Slices and Grant Duration of One Round ..... 178
3.5.1 Ben:nds on the Optimal Throughput ..... 188
3.5.1.1 Flow Model beound ..... 188
3.5.1.2 Crowshar Bound ..... 189
3.5.:.3 Number of S'sgments Bound ..... 192
3.5.1.4 Discussion ..... 194
3.6 Optimal Arbiter for tight Slices ..... 195
3.6.1 General Chatacteristics of the Optimum Throughput ..... 198
3.6.1.1 Stope for Very I ight Trathic ..... 198
3.6.I.2 Shate Along a Ray with Fixied Ratio of Nommull Probabilitics ..... (け)
3.0.1.3 Maximum P'oints ..... 199
3.0.1.4 Shape Nieng Crioss Scetions ..... 199
3.(o.2 Number of Segments Boond ..... 109
3.7 The Symmertic Ringous With More Than Iight Stices ..... 20?
3.7.1 Throughpu as a Function of the Number of Slices for Some Special Cane ..... 202
3.8 The Performance of the Concert Ringhus ..... 208
3.8.1 The Elliect of Asymmetrical Access l'alls ..... $2(1)$
3.8.2 The Iffect of the Rotating Prionty Abtitation Agorithm ..... 309
3.8.3 The Fifect of Asymmetrical Access Pinhs and the Retating ..... 2 is
Prionity Ahimation! Agemillom
3.9 The Ringhts in the Concert finviroamem ..... 219
3.9.1 The lamialem Model of the Ringhus ..... $2 ? 1$
3.10 Conclusions ..... $2 ? 7$
3.11 Suggentions fir Finture Work ..... 2.31
4. Fmerration and Simuiation
4.1 Introduction ..... 233
4.? Inkegration ..... 333
4.3 Simulation I: The Ringhas in the Concen linviromment ..... 2.47
4.4 Simulation II: The Actual Comert Symen ..... ? 14
5. Cimiclusions ..... $2(1)$
Appentix $A$ - Vienmemen Denails ..... 271
Appendix B-Proofs ..... 289
References ..... 305

## List of Figures

Figure 1.1: Top level view of Concert 20

- igure 1.2: An example of simultameons comnections on Ringhus 21

1:igure 1.3: The Concert Multiproccisor 23
Fت̈gure 1.4: Multihus arbitration signals 24
I-gure 1.5: RIB access paths 25
Figure 1.6: Access palls to neighbouring RIIB 26
Figure 1.7: I ogic diagram ol antbiter os
$\begin{array}{ll}1 \text { Hgure 1.8: Ringlous arbiter liming } & 20\end{array}$
Iigure 1.9: One cycle of a processor 3)
IFgure 1.10: Prowessor madel 3?
IFgure I.11: ^llernitc processor mendel 33
1:igute 1.12: Subsystem delinitions 36
1 -igure 1.13: Alssiract view of Concert 37
I:igne 1.14: Ikcompositien inlo maxdels is
1-̈gure 2.1: Pinile customer qucusing system 45
l:̈gure 2.2: Inelcrmimistic model or Multibus 49
Tigure 2.3: $1_{14} / I_{1,}$ vs. $N$ for general prohabilistic calse 53
Figure 2.4: Markov clain of $M / M / / 1 / / N$ moxdel 53
1Fgure 2.5: $M / M / 1 / N$ moxdel or Multibus 55
1Fgure 2.6: Comonic ladder artanement of shage: 57

Figure 2.8: Vanions $r$ suge liflanginu density finctions 67
Figure 2.9: Qucucing network lin (i/M/I//N moklel 73



1.gure 2.13: Banic Multhus modet \$6

Figure 2.14(a): Ixtended Multibus madel 86
$\begin{array}{ll}\text { Figure 2.14(i)): Class transition diagram of extended Multibus model } & 87\end{array}$

- Hg gure 2.15: Representative cascs of $\bar{i}_{w_{r}} / \bar{I}_{m}$ vs. $N$ in deterministic casc 92

1igure 2.16: Queueing network model of Multibus with long word akcesses Irowessing time: general, akcess time: exponential, $\gamma=.02$
ligure 2.1?: Qucueing network mekdel of Multibus with long word accesses Processing time: J:ramgian ( $\boldsymbol{F}_{3}$ ), access time: deterninistic, $\boldsymbol{\gamma}-.62$

Figure 2.18: Oucueing network moklel of Multibus with long word accesses Prosessing time: exponential, aceess time: deterministic. $\boldsymbol{\gamma}-.62$102
1:igure 2.19: Qucucing network medel of Multibus with hong word accesses Proxessing time: hyperexponential ( $/ /_{3}$ ), access time: deterministic, $\gamma$. 62 ..... 103
 ..... 105
1 -ipure 2.2(k): (lass transition diagram! ..... 1166
I igure 2.21: Represcolative caxss of $\ell_{n}, / I_{m}$ ws. $N$ in deteministic case ..... 109
Pigure 2.22: Qucueing network mokdel with processor activilies ..... 119

- Rgure 2.23: $\Lambda$ simple Petri net ..... 129
-igure 3.1: Acces paths of Concert Ringhus and Symmetric Ringhus ..... 136
Pigure 3.2: I ogic diagratm of Symmetric Ringhos arthiter ..... 1.38
ligure 3.3: :xamples of $r_{i}$ ..... 142
- igure 3.4: Recalional and llip symmetry ..... 147
1igure 3.5: Optimum average number of eramts per round for Svimenetric kinghos with fione slices and one round grame daration ..... 14)
-7gare 3.0: Some possible decisions in states 20, 34, and 40 ..... 150)
1 igare 3.7: I eftover sets assemiated with request subsets (a) and (b) for e.xth of the three states in ligure 3.6 ..... 151
-Tgure 3.8: Some porsible decisioms in state 38 ..... 152
I:igure 3.9: Optimum decision regoms lan states 20. 34, 38, and 40 ..... 153
IIgur 3.10: I eflover sets from request subsets (1) and (b) in stancs 20. 34. and 40 ..... 157
1Hgure 3.11: (Optimum decision regions for states 20, 34, and to ..... 159
Figure 3.12: Optimum decision region for state 20 ..... 100
I-igure 3.13: Average number of grants per round with four stices and one renend gram duration ..... 16.2
ligure 3.14: Average number of grants in progress per fonmd lior deterministic gram durations of 1, 2, 3, and 4 rounds for S 4 ..... 167
Pigure 3.15: Exponential approximation and actual vallues of optimum gain along some rays for $d=3$ and 4 and $S=4$
1-igure 3.16: Average number of grants in progress per round for valious geometrically distrihuted gramt durations ..... 176
Figure 3.17: Optimal throughput (average number of grants per round) for Ringbus with six slices and one round grant durations ..... 179
Vigure 3.18: An example of a request set for which the estimated optimal decision is to grant less dian the maximum number of requests ..... 180
Pigure 3.19: Optimal throughput, subjeet to the maximum reward constraint, with six slices and one round grant durations ..... 182
1-igure 3.20: Optimal throughput, subject to the maximum number of segments comstraim, with six slices and one round gram durations ..... 184
ligure 3.21: Some possible decisious ..... 186
Figure 3.22: Optimal throughput for crossibar and Ringbus. each with six slices and one round grant durations ..... 191
Figure 3.23: Optimal throughput of the number of segments model ..... 193
Figure 3.24: Optimal droughpue of Ringhus with eight slices and one round grant durations along axes of feasible probability region ..... 19
1.gume 3.25: $\Lambda$ crossbar cell ..... 205
Pigare 3.20: A comparison of optimum throughputs for fieur slices and one ronind grant durations with $p \ldots \quad p$ ..... 210
Pigure 3.27: A comparison of optimum throughpuls for four slices and one round gramt durations with $p 1.5 p 1$ ..... 211
Pigure 3.28: $\Lambda$ companison of optimum throughputs for four slices and one romed grant durations with $p, 10$ ..... 212
Pigure 3.29: Thromghot with rotating priority alporithom and ontimum throughpur, both with symmetrical access pathis. for four slices and one round gramt duratwon with $p: p 1$ ..... 21.3
Figure 3.30: Example of a disudsamtage of the rotating priority algorithm ..... 214
Figure 3.31: Stagered request prohabilities ..... 214
1:igure 3.32: A comparison of thoughputs for finur slices and one round grant duration with $p$ 1 1 ..... 216
Pigure 3.33: 1 comparison of thoughputs for four slices and one round grant duration with $p$ । $\quad p$ ..... 217
THgure 3.34: $\AA$ comparison of throushpusts for four stices and one round gram diation with $i^{\prime} \quad 1 \quad 1$ ..... ? 18
1-igure 3.35: Point of view of sughe processor equivalent ..... 221
PGure 3.3n: Point of view of Ring!hes ..... 222

Figure 3.37: Combined points of view of single processor equivalent and Ringbus 223

Figure 3.39: Signals when $\bar{T}_{p}^{\text {MBeqv }}=0 \quad 225$
Figure 4.1: 'Two situations leading to a null request 242
Figure A.1: Byte and word access 212
Figure A.2: L.ong word access 272
Figure A.3: Illustration of definitions • 274
Figure A.4: Multibus access time - other port unloaded 277
Figure A.5: Multibus access time - IIS13 port loaded 278
Pigure A.6: Multibus access time of slice global memory - Ringbus port loaded 278
Figure $\wedge .7:$ Typical Ringbus read access 279
Figure A.8: Typical Ringbus read access with $\boldsymbol{I}_{p}^{\text {MRcqu }}=0 \quad 281$
Figure A.9: Ringbus read access time distribution 284
Figure $\Lambda .10$ : Ringbus access time distribution $-t_{p}^{\text {MReqv }}$ large and other port koaded 286

## List of Tables

Table 3.1: States after symmetry extraction ..... 148
Table 3.2: Rewards and transition probabilities for decisions (a) and (b) in states 20,34 , and 40 ..... 157
Table 3.3: Results from number of segments model for eight slices ..... 200
Table 3.4: $t^{c w-c c w}$ for various values of $S$ ..... 204
Table 4.1: Integration example 1 ..... 240
Table 4.2: Integration example 2 ..... 243
Table 4.3: Integration example 3 ..... 244
Table 4.4: Integration example 4 ..... 245
Table 4.5: Ringbus destination probabilities ..... 248
Table 4.6: Ringbus sirinulation results ..... 251
Table 4.7: Percent increase in throughput for $\bar{i}_{p}=5.0 c$ relative to that for rotating priority arbiter algorithm with asymmetrical access paths ..... 260
Table 4.8: Saturation throughput for various algorituns and destination probabilities ..... 261
Table 4.9: Concert sitnulation results ..... 265
Table 4.10: Necessary condition for Ringbus saturation in the actual Concert system ..... 268

## Chapter 1

## Introduction

### 1.1 Introduction

The goal of the research reported in this thesis is to model the performance of the Concert Multiprocessor [ 12 2 in order to answer the following questions:

1. What is the performance of the system as designed and huilt with respect to some merrice?
2. Why is the performanee as it is? What factors influence the performance. what is the sensitivity of the performance to these factors, and what are the limitations of the system design?
3. How call the performance be improved and where should the design be medified to achieve this if!provement? What are the critical sections and bottenecks in the design?

An ansiver to the first question satisfies a natural curiosity: an answer to the second gives users ideas how to structure programs and applications to achieve the best possible performance of the Coneert system; and finally, an answer to the third indicates how to achieve better performance in future designs. Another outcome of the work described herein is that it provides a starting point for future modeling efforts. The experience and knowledge gained through this research can be used to guide the development and applicatiens of higher level and/or more complex models.

The performance metric used in this research is the throughput of the system. This metric is simple and yet represents the basic goal of multiprocessor systems. However, throughput is a rather crude inctric to use when comparing the pertormance of different systems because struetharal and organizational differences often callse the detinition of throughput to differ. Fortunately. Whe main use of throughout in thes thesis is to gatuge the change in performance due to variations in the patrameters of the system or due to small modifications of the system. 'Throughput is well suited for this kiad of study.

The system is modeled at the memory access level and thus throughput in this case is the average number of inemory accesses per unit time. Likh processor is assumed to spend most of its time accessing its assexiated kexai memory. (Otgatization of the system will be discussed in detail in the next chapter.) The processor moxel employed is the simpiest imaginable in such a case: the processor spends some time performing lexal processing after which it makes a non-local memory access (for which it may have to wait for bus mastership) and then resumes local processing. The operation of each processor is assumed to be independent of that of all other processors. The reasons for the memory access modeling level, the simple processor model, and the assumption of independent processors are the same: at this point in time not enough is known about the linguages, programming models, programs, and applications to obtain more detiailed models. Furthermore, the Concert system is designed to be a testbed for the eximination of many different muitiprocessor ideas. The common denominator of all Coneen applications is the system itself and that is where this research is fecused. The basic premise of this research is to start with some very simple models, develop them fully, evallate them, and then determine how the models can be imptoved. Complexity is always casy to add to moxdels, sometimes to the point that they becone unwietdy, but it is more diflicult to add complexity in such a way that keeps the models simple but accurate. Thus this thesis should be considered as the finst ster in an iterative cycle to obtain models incorporating additional features such as processon dependencies, language issucs, and programming models.

Because of the size and eomplexity of the Concert Multiprocessor, direct medeling of the system - even with the simple processor model - would be a forridable tast.. The approach tuken in the sequel is to decompose the system into subsystems aleng the lines of the system's natural hierarchics. lach subsystem is dnalyoded in detail and then all the subsystem models are integrated to determine the performance of the total system. Analytical models are used for each subsysiem. The functional equations associated with analytical models allow casy prediction and quick evaluation of the effect of various changes in the model parameters. In short. they allow a lot of ground to be covered in a structured manner and this makes them ideally suited to the first step of the iterative cycle described carlier.

Simulation is employed in this thesis in a few instances where the analytical models become intractable or ummanageable. However, the main use of simulation is to determine the accuracy of the integrated mexdels.

The research described hercin started when the author joined the Concert Project just after construction had begun. Thus this work in no way affected the design of the system as desclibed in the next chapter and in Anderson [A?]. The optimum time to begin modeling is during the design stage. Unfortunately only the most rudinentiry (and flawed ${ }^{\dagger}$ ) simulations were performed

[^0]at that tine. Although conducted after the design stage, this researeh is still extremely uselin in answering the three basic questions posed carlier.

This thesis is organized into four chapters and cach chapter is divided into sections. The next section in this first chapter deseribes the Concert Multiprocessor. The section after that presents mere details on the mokeling level and medeling strategy. The factors considered in this study and the assumptions made are discussed in detail. The final two sections in this chapter briefly discuss previous work in this area and preview the following chapters.
one queue was still monemply the simulation sill ran and still collected statistics with null requests (ie the ahsence of a request) genemied for each silice with an conloly efucue Thus the stasties were based by the stram of null requests when a gucue enptied.

### 1.2 The Concert Multiprocessor ${ }^{\dagger}$

Concert is a tightly-coupied, slared memory multiprocessor. It consists of multiple processors, each executing portions of code, communicating through shared memory to cooperate on the solution of a large tusk (or cusks). It is classified as a multiple instruction stream, multiple data stream (MIM1) computer [FI].

The Concert Multiprocessor consists of a hierarchy of time-shared (i.c. circuit-switched) buses. At the top level, eight slices are interconnected by bus segments as shown in ligure 1.1.


Figure 1.1: Top level view of Concert

Cireuitry within each slice comeets the two adjacent bus segments cither to different internal slice reseurces or to each oher so that all intemal slice resources are bypassed. $\Lambda \mathrm{n}$ electrical connection can be established from a resource within one slice - the source - to a resource within a different slice - the destination - by an appropriate connection of the bus seements within the source and destination slices and by joining the bus segments together in all slices between the source and destination. liakh bus segment is bidirectional, thus souree and destination slices may be connected by a path in either the clockwise or the counterclockwise directions. More than one sommedestination connection can be supported simultancously provided that 1) there is a contiguous connection of segments from cach source to its destination, and 2) cach bus segment and each slice resource is allecated to at most one souree-destination connection. Various simultaneous connections are depicted in Figure 1.2.

[^1]

Figure 1.2: An example of simultancous connections on Ringhus

Note that a maximum of eight simulaneous connections can be supported (e.g. if each slice and its immediate clockwise neighbour comprise a source-destination pair). Once a connection is established from source to destination, that connection is maintained and all the resources involved in that comnection remain allocated to only that conneetion untit the source slice no kenger reguires the connection. 1 central arbiter, shown in Figure I.I, controls the allucation and connection of the bus segments. The ring of bus segments shown in Figures 1.1 and 1.2 is cillied the Ringbus.
lath slice consists of up to cight processor-local memory pairs (one kecal memory blexk per processor is the usual, but not necessiry, configuration), a global memory hlock, a time-shared bus called the Multibus, and a Ringbus Interface Board (RIB). Fach processor communicates with its lecal memory over a dedicated bus called the high speed bus (IISIB). This bris is private to the processor and independent of the Multibus and other high speed buses. All the processors and menories (both local and global) are also conneeted to the Multibus. The Multibus, global memory (via a HSB3), and the Ringbus segments adjacent to that slice conneet to the RIB. Various access paths and circuitry inside the RIB (described in section 1.2.2) allow these items to be interconnected. The resources of a slice that are available for intersice communication can be divided into two mutually exclusive groups: souree resourecs and destination resourecs. The processors connected to the Multibus are the only source resources. The destination resources comsist of the global memory and some global registers (which are inside the RIB).

Only three types of communication, all originated by processors, can occur in the Concert Multiprucessor. ${ }^{\dagger} \wedge$ processor can communicate - i.c. access - its local memory via the HSil, the lecal memory of other processors on its slice and the global memory of its slice via the Multibus, and the global memory of other slices (and the global registers of its slice) via the Multibus and

[^2]Ringbus. We term these types of accesses IISB, Multibus, and Ringbus accesses respectively. Note that a processor can not communicate directly with other processors or the local memory of processors on oher stices: such communication must excur Urough the lexal or global memory. All bus transinctions in Concer are single memory transiactions - read, write, or read-medify-write. Successive accesses require establishment of direct bus connections from source processor to destimation memory for each aceess. Thus there is no store and forward mechanism or anything of this kind on the Ringbus or elsewhere.

The structure of a four slice version of the Concert Multiprucessor is illustrated in Figure 1.3. This figure shows all major interconnections within Concert and illustrates some representative accesses from each of the three types of accesses.


Figure 1.3: The Concert Multiprocessor (only four slices shown)

The Multibus (including high speed buses, processors and memories), RIB, and arbiter are now discussed in more detail.

## Introduction

### 1.2.1 Multibus

The Multibus is an II:I:l: 790 standard multi-master bes. An additional bus, which mans parallel to this 796 bus. is physically divided into shorter independent bus segments cach of which serves as the high speed bus for a proceswor. The processors and memorics are commercially available dual-ported boards (Microbar Inc. products I)13C68K and DI3R50 respectively) that each have one Multibus and one ISSl3 port. As described carlier the HSIB is private to a processor; thus there is only one processor per HSB. The processors are based on the Motorola MC68000 microprocessor.

When a menory access is initiated, a proxessor first attempts to access the desired location on the IISB. If this attempt is successful. the memory aceess proceeds. If it is not successful, the processor accesses the location via the Multibus. Thus a poocessor accesses its own local memory over its $H S B$ and the lecal memory of other processors or global memory over the Multibus. Accesses on the IISB take considerably less time then accesses on the Multibus due to the differences between lie IISII and Mullibus protecols.

Contention for the mastership of the Multibus is resolved by a round-robin arbitration unit. This unit takes a maximum of two Multibus clock cycles ( 10 MH Iz cleck) ats pictured in Figure 1.4.


ITigure 1.4: Multibus arbitration signals

One cycle is required to latch the request lines and another is required for the arbitration and propagation delay. This arbitration unit grants possession of the bus to a proxessor for omly as long as it takes to complete a single memory acecss, which cannote exceed 16 bits. The 68000 can perform byte ( 8 bit ), word ( 16 bit ), and long word ( 32 bit ) operations. Long word operations consist of two separate 16 bit accesses: thus a processor must gain control of the bus twice for a long word aecess. Otiner processors may seize the bus between these two accesses.

Contention also exists for local menories since a local memory can be addressed simultaneously over a processor's IISB and over dic Multibus. This contention is resolved by arbitration circuitry on the dual-ported mennory boards.

### 1.221113

When the RIB recognizes a memory access on the Multibus in the Ringbus address space (i.e. a Ringtus ancess), it decordes the destination slice from the address of the wress and sends a request to the Ringbus arbiter for a connection between the Multibus of the source slice and the destination slice. When the Ringhus arbiter grants the request, it directs some number of RIlis to form a path between the source and destination and then it lets the memory acceas at the source slice pruceed.

A diagram of the access paths within the RIIS is shown in Pigure 1.5. Arrows denote the directionality of the paths and lines perpendicular to a path denoce a switch which ciml be either open or closed.

I.igure 1.5: RIIB access paths

Notice that the Ringhus aceess paths are asymmetrical. Memory accesses enter the Ringhus on the segment to the chekwise direction of the source RIB and exi! via the Ringhus segment to the countercleckwise direction of the destination RIB. This causes die Ringhus to be bidsed toward memory accesses in the clenekwise direction arownd the Ringhes. As depicted in Figure 1.6. a memory access to a neighbouring RIB in the clockwise difection requires one Ringhus segment compared to three for the neighbouring slice in the the counter clockwise direction. (This last acess could also be made in the cleckwise direction. For a Ringbus with eight segments, this would require seven segments.)


Figure 1.6: Access paths to neighbouring RIB

The asymmetrical access paths clearly reduce the maximum number of accesses that can orcur simultaneously on the Ringbus if any of the accesses take place in the counter clockwise direction. The designers of the Concert system felt that the asymmetrical access paths would simplify the Ringbus arbiter (see sestion 5.2.2 in $\Lambda$ ndersion [ 12 2]).

The same dual-ported memory boards used for the lecal memories on the Multibus are used for the global memories. As indicated in 1 igures 1.3 and 1.5 , the Multibus port of the global menory connects directly to the to the Multibus of that slice. The IISis port of the global merrory connects to the Ringbus. As before arbitation circuity on the glotall memory board handics simultancous Multibus and Ringbus accesses to thin beard. iNote that all accesses to globat
memory require some portion of the Ringbus. except for aceesses to the global memory in the sime slice as the processor making the access.

There are also a small number of global registers located in the RIB (they are not shown on any of the Figures) for the purpose of various sundry activities such as reselting the slice, interrupting processors in the slice from a processor external to the slice, enforcing read and/or write protection on the slice's global memory, and some limited performance inonitoring. These registers are accessed in the same manner as the global memory except that a slice cannot access its global registers directly from the Multibus. All global register aceesses require the Ringbus.

### 1.2.3 Kinghus Arbiter

The arbiter uses a rotating priority scheme to ensure that all requests eventually get gramed. If tae slices are numbered consecutively from $0 t(\mathbb{S}-1$, where $S$ is the number of slices, then the priority of slice $i$ is pri $(i)$ ( $i-n)$ mod $S$ where $n$ is the current top priorily slice. 1 request is held at the tep priority until it is granted at which time $n$ is updated to the next slice in the countercluek wise direction that has a pending request. A number of algorithms may be used to grant any combination of lower priority requests that do not conflict with each other or with any grants (i.e. memory accesses) in prugress. The particular algorithm used in this case grants a request only if it does not con!liet with ally requests at higher priority levels or grants in progress. Oaly the direction requiring the sumallest number of Ringbus segments is considered for granting the requests. In the case of a tie in the number of segments required in clockwise and counterclockwise directorns. the clockwise direction is chosen.

The arbiter incorporates a clever design. The Ringbus seginents required for each request are determined from the destination of the request. Since requests are only granted in one direction as mentioned carlier, there is no ambiguity in determining which segments are required. Fach Ringbus segment is provisionally granted to a request. The request to which a particular segment is granted is determined by the priority of the requests. When a request has been granted all the segments that it requires, the request is granted.


SN $=$ Sequent needed
SG $\equiv$ Segment grat

Slice 1


Slice 8

Figure 1.7: I.ogic diagram of arbiter
$\Lambda$ kugic diagram of the arbiter is presented in ligure 1.7. The SN Rom determines the segments tequired for earlh request. Hach of the SG Roms. one for each segment, determines the request to which that segment is eranted. The SG Roms automatically gram a segment to all requests that do not require it. Thus the eight segment grant lines just need to be $\lambda$ NIDed to determine if the request has all the required segments. To prevent a "request" from being granted when there is in fact no request, the grant line is $\Lambda N I$ Ied with the request line. Some additional logic bypasses the SG Roms to prevent the intercomnection of the required segments from being changed while a grant using them is still in progress.


Figure 1.8: Ringbus arbiter timing

The arbitration time for this arbiter is between two and three arbiter clock cycles. is indicated in Figure 1.8, once the requests are latched into the arbiter, one cycle is required for the arbitration and another cycle is required to decode and latch the grant lines.

### 1.3 Modeling Details

### 1.3.1 Processor Model

We assume a simple probabilistic model for each prucessor based on accesses to non-local memory (i.c. those memory lucations which a processor can omly access via the Multibus). We partition the operation of a processor into three phases: 1) prucessing. 2) waiting. and 3) accessing. (We add a fourth phase later.) 'The processing phase corresponds to the interval between the completion of one memory access via the Multibus and the request for the next memory access via the Multibus. ( $\wedge$ processor must request the Multibus and be granted its use by the Multibus arbitration circuitioy before a memory access may proceed.) Only local (i.c. IIS[3) inemory accesses may eccur during this interval. We consider the instructions for each processor to be stored mainly in its lecal menory. Thus we regard the operation of a processor as consisting of periods of processing (hence the name processing phase), where the processor is accessing instructions and data stored entirely within its lexal memory, punctuated by accesses to global memory for datia and other instructions.

The waiting phase corresponds to the interval between the generation of a Multibus request and the initiation of the access corresponding to that request. A Multibus memory access from one processor may have to wait for the completion of other Multibus accesses before it can begin. The accessing phase corresponds to the interval during which a Multibus access is in pogress by that processor: it is the entire duration for which the processor maintains minterrupted mastership of the Multious. These three piabses correspond to the eperation of a precessor from the point of view of the Multibus.

The interval for which a processor is in the processing phase we call the processing time. denoted by $t_{p}$; the interval for which a processor is in the waiting phase we call the waiting time for a memory request, denoted by $I_{w}$ : and the interval for which a processor is in the accessing phase we call the access time, denoied by $t_{a}$. One cycle of a processor, consisting of these three times, is depicted in Figure 1.9.


Figure 1.9: One cycle of a processor

More precise defimitions of $t_{p}, t_{n}, t_{n}$ in terms of Multihus signals are given in section 2 of Appendix $\Lambda$. The watiting time, 4 , is defined so that it is alwalys ero when there is only one
processor on a Multibus. The delay of the Multibus arbitration circuitry is included in the access timc.

We consider $i_{p}$. $i_{w}$ and $t_{u}$ to be randon variables. $t_{p}$ and $t_{u}$ have given probability distributions which serve as inputs to the processor model. The probability distribution of $I_{w}$. which is determined by the contention for use of ule Multibus, is the output. Given that a processor gains mastership of the Multibus for a memory access, we assume that the access requires use of the Ringbus with probability $\psi$, in which caste we call it a Ringbus access, and that it requires use of only the Multibus with probability $1 \quad \psi$, in which case we call it a Multibus access. Given that a Ringbus aceess ceccurs, we assume that its destination is the global memory or a global register connected to Ringhus stice $i$ with probability $p_{i}^{R H} . i=-(S / 2-1), \cdots,-1,1,2, \cdots$, or $S / 2$. The number of slices is $S$ and $i$ denotes the position of a slice with respeet to the one from which the access originates. Negative numbers indiate the counterelockwise direction, positive numbers indicate the clockwise direction around the Ringbus relative to the slice originating the aceess. Thus $i=-2$ indicates the second slice aloug the Ringbus in the counterclockwise direction from the slice originating the access and $i=2$ indicates the second slice in the elexkwise direction. We call the set of $p_{i}^{R E}$ the Ringbus destination probabilities. Since in most applications, accesses to the global registers will be infrequent, we ignore accesses by a processor to the global registers in its own slice. We assume that all Ringhus accesses have the same access time distribution and that all Mattibus accesses inve the same aceess time distribution (which in gencral will difter from that for Ringbus accesecs). The Ringbus access time distribution is an equivalent model of the entire Ringbus from the perspeciive of the Mulibus (we talk about this more in section 1.2.5): it includes any waiting time imposed on a Ringbus access by the Ringbus arbiter.

We have just assumed hat all Multibus accesses have the same distribution. We now exannine this assumption in more detail. In the absence of traffic on the IISB ports of the global memory boards. all Multibus accesses would actually have the same access time distribution. However, since the boards are dual-ported, traffic on one port of a memory board affects traffic on the other port. Thus Multibus accesses may have different access time distributions depending on the memory board aceessed and the traffic intensity on the board's HSB port. There are two different cases to consider depending en the destination of a Multibus access.

Case 1: The destination is a local memory, in which case some processor connects to the HSB port of the memery board. In this case the Multibus access time can be greatly affected by the IISB traffic on the local memory board from the processor - compare figures $\Lambda .4$ and $\Lambda .5$ in Appendix $\wedge$.

Case 2: The destination is a global menory. In this case the HSB port may either be unconnected or cometed to the R1B3. A comparison of Figures $\Lambda .4$ and $\Lambda .6$ reveals that the access time is essentially the suine for these ewo choices of IISB comections.

We conclude that if the maigerity of Multibus accesses are to global memory, then the access time distribution is essentially the same for every aceess as we assumed earlier. Finally, we note that a comparison of ligures $\Lambda .9$ and $\Lambda .10$ in $\Lambda$ ppendix $\Lambda$ reveals that Ringbus access times are only slight!y affected by the traflic intensity on the Multibus port of a global memory board.

We assume that reads and writes have the same access time distribution. This assumption is supported by the results in section 3.3 of $\Lambda$ ppendix $\wedge$ : for Multibus accesses. the access time distribution for reads and writes differ insignificantly and for Ringhus accesses, the access time distribution for reads and writes differ significancly. We ignore read-modify-write accesses, since they usually excur infrequently compared to reads and writes. (The effect of read-modify-writes can be included by incorporating access times near that of read-modify-writes in the access time distribution for reads and writes.) We assume that byte and word accesse; have the same access time distribution. This assumption is again supported by the results in section 3.3 of $\Lambda$ ppendix $\Lambda$.

Just as the traflic intensity on the IISH port of a memory board affects the Multibus access time of that board. the tralfie intensity on the Multibus port of a memory board affects the IISB access time of that board. Since the processing time distribution implicilly includes the IISI3 access time of its associated lexal memory, the proxessing time distribution of a processor depends on the traffic intensity on the Mullibus port of its lecal inemory. However, since the proxessing time distribution is an exogenous input and possibly different for each processor fathough we assume it to be the same for each prexessor in Chapter 2 and 3). we can simply acemmodate any sulh dependencies by using an appropriate processing time distribution. In addition. the argument which we presented above for the access time distribution will work to sume extent for the processing time distribution (we can't be sure of the extent since we haven't made any measurements of the effect of Multibus port traffic on the processing time distribution).

The processor mesdel presented so far in illustrated in Pigure 1.10.


Pigure 1.10: Proxessor model

The one remaining embellishment of the jrocessor model concerns long word accesses. The access of a 32 bit long word involves tho conscemive word accesses on the 16 bit wide data paths of Concert. However, the two word accesses on the Multibus are not necessan ily consecutive since a processor dees not maintain mastership of the Multibus between them. After the first word access of a long word completes, a processor waits some amount of time, which we call the recovery time, before requesting the Multibus for the second word access of the long word. Other prucessors may seize the Multibus in this time and cause the second word access to wait even if the first word access did not wait. Since a long word access consists of word accesses, we can certainly incorporate long word accesses in the processor model as presented so far. However, this may not be a good model - especially if a processor generates a lot of long word accesses - since the processing times in such a model are not correlated with the tirst word aceess of a long words when in reality the processing times are strongly correlated with the first word access of long words.

We add a fourth phase - recovery - to our processor model to create an alternate model for long word accesses. In this model we assume given that a processor gains mastership of the Multibus for a memory access. the access represents the first word of a long word access with probability $\beta$ and a reguld byte or word access with probability $1-\beta$. Given that the access dees represent the first word of a long word access, the processor generates a request for the secend word of the long word after a recovery time demoted by $t_{r}$. This second word access has the same destination - Multibus or Ringhus slice $i$ - as the first word access. Again, we assume that $i_{r}$ is a random variable with some given probability distribution. 1 more precise definition of $\ell_{r}$ in terms of Multibus signals is given in section 2 of $\Lambda$ ppendix $\Lambda$. This alternate processor model is illustrated in Figure 1.11.


Figure 1.11: Alternate processor model

## Introduction

### 1.3.2 Major Assumptions

The major assumptions which we make throughout this thessis are:

1. The random variables $I_{p}$ and $t_{a}$ for each processer are stationary (i.ce their probability distributions are independent of time). We also assume that the probabilitics $\beta$. $\psi$, and $p_{i}^{R 1 \beta}$ for each proxessor are independent of time.
2. Concert is an ergodic system - i.c. long tern time averages converge to the values computed for stuchastic steady state.
3. Fach processor model is entirely independent of all other processor models and everything else. More precisely, all processing and access time random variables, $I_{p}$ and $I_{a}$, are stochastically independent of each other and everything else. Niso, all other probabilitics $\beta, \psi$, and $p_{i}^{R /}$ are stechastically independent of each other and everything else.
4. The overall noodel of Concert is in stochastic steady state.

The independence assumptions in 3 simpiify the models. Various dependencics of the random variables can be included in the models (as discussed in section 2.10.4) but doing so increases the number of states and complexity of the models. Furthermore it is not clear at the present time what the dependencies are and how significant they are. Certainly factors such as the programs run on the system, tic language in which the programs are expressed. and the distribution of the programs about the system influence the number and magnitude of the dependencies, but how does one intelligently express them in a inodel? Dealing with such questions and the various dependencies is beyond the scope of this thesis. Instead, we adopt a conservative approact: we assume that there are no dependencies and detrmine the performarice as predicted by these simple mexiels. Future research can be devored to developing more detailed models to incorporate additional factors. The performance predicted by the models with the independence assumptions can be used to bounds the performance predicted by the same models with dependencies. Thus the independence assumptions allow simple models that yield bounds on the performance of more complex models.

Ways to relax the assumptions in 1 and 3 are discussed in section 2.10 in relation to the Multibus model.

### 1.3.3 Factors for Study

The factors we study in this research are:

1. The processing time distribution.
2. The Multibus access time distribution. (The Ringbus acesss time distribution is an equivalent madel of the entire Ringbus from the perspective of a proeessor on a Multibus and thus it is dictated by the Ringhus. However, we do consider it as a factor for study in comjunction with
the Mullibus moxdel in section 2.9.)
3. The probability of a Ringbus access. $\psi$. and the Ringhos destimation probabilities $p_{i}^{\text {RH }}$. We also comsider the probability of a long word aceess $\beta$, when using our alternate precessor model.
4. The number of processors on a Multibus, i.c. in a slice.
5. The number of slices.
6. 'The Ringbus access paths.
7. The Ringbus arbitration algorithm.

### 1.3.4 Overall Performance Metric

We use throughput as the performance metric of the overall model. We regard the throughput of a processor as the number of Multibus and Ringbus accesses completed per unit time. Thus the throughput of a processor is equal to $\frac{1}{\bar{i}_{c y r}}$ where $\bar{i}_{\text {cye }}$ is the cycle time given by

$$
\bar{i}_{c a c}=\bar{i}_{p}+\bar{i}_{w_{1}}+\beta \bar{i}_{w_{2}}+(1+\beta)\left((1-\psi) \bar{i}_{a m b}+\psi \bar{i}_{a r b}\right) .
$$

$\bar{x}_{w,}$ denotes the mean waiting time per Multibus request for a byte, word, or first word af a long word access and $\bar{i}_{w_{2}}$ denotes the mean wailing time per Multibus request for the second werd of a long word access. $\bar{u}_{u m b}$ and $\overline{\bar{l}}_{\text {urb }}$ denote the mean access tine for Multibus and Ringhess accesses respectively. The total throughput is thus $\sum_{i \in P} \frac{1}{i_{c y c_{t}}}$ where $\bar{i}_{i \text { er }}$ is the mean cycle time for processor $i$ and $P$ is the set of all prucessors.

### 1.3.5 Decomposition and Integration

We divide the overall Concert system into a number of subsystems: one fur each Multibus and one for the Ringbus. Fach Multibus subsysten consists of all the precessors, lexal inemories. and global menorics connected to the Multibus. The Ringbus subsystem consists of the Ringbus arbiter and everything connected to the RIISs except for the Multibus. This definition of the subsystens is illustrated in Figure 1.12.


Figure 1.12: Subsystem definitions

Note that the global memory module connected to each RIB is included in the subsystem for the corresponding Multibus and in the subsystem for the Ringbus - we view it as being shared by the two subsystems. Thus there are two points of interaction between cach Multibus subsystem and the Ringbus subsystem: the Multibus comection to the Rlis and the global memory connected to the RBB. Howerer, the interaction through the ghibal memory connected to the RIB is especially weak. Measurements reported in sectioni 3.3 of , ippendix 1 reveal that the access time distribution tor accesses via one port of the global memory comected to the RIB is hardly affected by heavy loading on the other poit of the global memor's. (Compare ligures $\Lambda .4$ and $\Lambda .6$ and Figures $\Lambda .9$ and $\wedge .10$.) We ignore the interaction between Multibus and Ringbus subsystems through global memory in the rest of this thesis. The single remaining point of interaction between each Multibus subsystem and the Ringhus subsystem falls on a natural hierarchical boundary and thus represents a natural demarcation point between the subsystems.

Figure 1.13 gives an bstract view of the overall system.


Figure 1.13: $\Lambda$ bstract view of Concert

We can regard cach subsystem as a black box. Farch black box can be represented by an equivalent lumped model, just as a black box in an electrical circuit an be replaced by its Thevenin equivalent circuit. The Therenin equivalent model of the Multibus subsystem is a single processor model of the sort described in section 1.2.1. This single processor represents the characteristies of the Ringbus accesses firm the cotire Mukibus subsystem. I.et the interval between the completion of one access on the Multibus with a Ringbus destination and the start of the next access on the Mulibus will a Ringlas destination be callod the Ringbus spaking. Then the peecessing time distribution of the single processor equivalent of the Multibus is equal to the peobability distribution of the Ringbus spacing. We make no distinction between word and long word accesses for the Ringbus access spacing: thus we take $\boldsymbol{\beta}=0$ for the single processor. The probability of choosing Ringbus destination $i$ in the single processor model, which we denote by $p_{i}{ }^{\text {Mheqw }}$. is equal to the probability that a Ringbus access in the Multibus subsystem is for destination $i$. Finally, we have $\psi=1$ for the single processor equivalent. The access time distribution is given by the Ringbus model. The Thevenin efuivaleit model of the Ringbus subsystem is some access time distribution for each Multibus-R1B connection. This access :me distribution for a comnection is the distribution of the time from the eccurrence of a Ringbus request to completion of that Ringbus access for all Ringbus requests on thall connection.

We decompose the overall model of Concert into Multibus and Ringbus models. As shown in 1-igure 1.14. Thevenin equivalent medels are used to represent the wher models connected to a particular model.


Ringbus model

Figure 1.14: Decomposition into models

Given some Ringbus access distribution, the Multibus model can be analyzed. Likewise, given some processing time distribution and Ringbus destination probabilitics, Une Ringbus model can be analyed. However, the solutions of these decomposed models do not necessarily correspond to the solutions of the subsystems in the overall system since the models are dependent. The Ringbus access time distribution is given by the Ringbus model, which depends on the single processor model of the Multibus. The single processor model of the Multibus is given by the Multibus model, which depends on the Ringbus access time distribution. Integration is the process of solving the models such that all these dependencirs are satisficd. In a sense, integration amounts to matching the boundary conditions - i.e. interactions - between each pair of models to obtain a coherent overall model.

We perform the integration iteratively. First we assume some Multibus single prexessor
model and some Ringbus access lime distribution. 'Inen we solve the Multihus and Ringbus models to obtain a new Multibus single prexessor model and a new Ringhus access time distribution. We analyze the models again to obtain updated models and repeat umil the improvement on successive iterations is sufficiently small. We do not discuss the the existence and uniqueness issues associated with integration. It should be clear later that in our case integration leads to a unique solution.

We make a number of assumptions and approximations to simplify integrating the models:

1. We assume that the Multibus models are identical in every respect: each has the same number of processors and all the processors are identical.
2. We assume that the Ringbus model is symmetrical with respect to cach Multibus.

These two assumptions mean that only one Multibus model (and the Ringbus model) needs to be involved in the integration.
3. We approximate the processing time distribution of the single processor model of the Multibus by an exponential distribution.
4. We approximate the Ringbus access time distribution by an exponential distribution.

These two approximations case the analysis of the models. Since an exponential distribution is completely specified by its first moment, these two approximations also considerably ease the integration of the models, sime the integration now effectively redices to lirst mement matehing (i.c. we just have to determine the mean processing time of the single procesor mesiel of a Miottibus and the mean Ringbus iecess time).

Of course. Unese assumptions and approximations limit the applicability and accuracy of the integiation. 'The accuracy of the performance predictions obtained via integration of the models is assessed by comparison with simulations.

### 1.4 Previous Work

Single bus multiprocessors like the Multibus subsystem have been studied by many. The basic queucing system formulation of the Multibus moxtel in Chapter 2 has appeared and has been studied in many guises. It appeared as a machine repairman model as carly as 1935 [K.2]. With the advent of Kleinrock's popular volume [K3]. the $\mathrm{M} / \mathrm{M} / 1 / / \mathrm{N}$ model of the basic queueing system has become a classic. Jaiswals' [J1], or alternately Benson and Cox's [B2], solution of the $\mathrm{M} / \mathrm{I} / 1 / / \mathrm{N}$ model is also well known. The theory of product form queucing networks which we apply is well known, although we utilize Kelly's powerful and elegant quasi-reversibility approach [K1] to queucing networks rather than the more well known keal balance BCMP approach [B1].

We are not aware of other studies dealing with our particular extensions to the basic queueing system model of the Multibus. However. the extensions are simple and the results we obtain follow from straightiorward application of product form queucing network theory, so others may have derived similar results. The specific recursive solution technique we discuss for the $\mathrm{PH} / \mathrm{PH} / \mathrm{l} / / \mathrm{N}$ model is. to the best of our knowledge. new, although Her\%og. Wo o , and Chandy [ H 2 ] have already outlined the solution of general queueing systems by recursive methods.

The Ringbus subsystem, on the other hand, is a novel interconnection sclieme which, to the best of our knowledge, was not studied (or conceived) before Anderson [^2]. Auderson focused on the design of a workable Ringlous: he only performed the most rudimentary simulations (see feotnote in section 1.1). We study the optimum performance obtainable with a Ringbus. We fornulate the Ringbus arbitration problem as a Markovian decision problem and treat it by the well known techniques of Howard [114] and Odoni [O2].

The decomposition/integration approach to modeling Concert was inspired by Courtois [CS]. The techniques applied in this approach are standard.

### 1.5 Overview of Thesis

We study the Multibus medel in detail in Chapter 2 and lay the foundation in section 2.9 for later integration with the Ringbus model. In Chapter 3 we study the Ringbus model. We concentrate mainly on the optimum performance of the Ringbus and the arbitration algorithm which achicves this performance. In Chapter 4 we integrate the Multihus and Ringhus models and make a few performance predictions to demonstrate the integration technique. We compare these predictions to simulation results. In the remainder of Chapter 4, we present the results of computer simulations of the overall Concert model.

## Chapter 2

## Multibus Models

### 2.1 Introduction

In this chapter we study the Multibus subsystem in detail. We use the processor model described in section 1.3 to construct various increasingly complex models of the Multibus. We assume, as ineritioned in section 1.3.2, that all privessor medels are stationary and independent. To cate analysis, we assume in addition that all processor models are identical in every respect. The extension to non-idenical processorrs. discussed in section 2.10.1, is straightiorward but increases the complexity of the analysis without necessarily centributing much insight.

When all processors are identical, the mean cycle time of a processur, $\bar{t}_{\text {cer }}$, is the sane for every processor. (This fullows from symmetry arguments.) Thus the throughput of the Multibus is given by $\frac{N}{\bar{i}_{\text {cye }}}$ where $N$ is the number of processors and

$$
\bar{i}_{c y c}=\bar{i}_{p}+\bar{i}_{w_{1}}+\beta \bar{i}_{w_{2}}+(1+\beta)\left((1-\psi) \bar{i}_{a m b}+\psi \bar{i}_{a r b}\right)
$$

$\overline{7}_{w_{1}}$ denotes the mean waiting time per Multibus request for a byte, word. or first word of a long word access and $\bar{i}_{w_{2}}$ denotes the mean waiting time per Multibus request for the second word of a long word access. $\bar{i}_{a m b}$ and $\bar{l}_{a r b}$ denote the meall access time for Mulubus and Ringbus accesses respectively.

Since $\bar{i}_{w_{1}}$ and $\bar{i}_{w_{2}}$ are the only parancters which deternine the Urouginput of the Multibus which are not exisenous inputs to the Multibus model. the performance metric for the Multibus effectively reduces io the pair ( $\left(\bar{w}_{1}, \bar{l}_{w_{2}}\right)$. In this chapter we lake the performance metric to be the mean total waiting time per cycle defined by $\bar{i}_{w_{f}}=\bar{i}_{w_{1}}+\beta \bar{i}_{n_{2}}$. This gives a single quantity for the performance, as with throughput, and is more closidy related to the Multibus models than

Uroughput.
All the processors on a Multibus and the Multibus arbitration circuitry are synchronised by a master clock with a $100 n s e c$ period (one master clock per Multibus). Thus the Multibus subsystem inherently operates in diserete time. We model this discrete time operation with continuous time models to take advantage of the simple, powerful, and well developed modeling incthods available in continuous time, such as product form queucing networks. It is argued in the following paragraphs that there is not much loss of precision in this approach.

We are not interested in modeling the Multibus at the level of the Multibus clock. Such detail is unnecessiry for our purposes. Furthermore, any model based on the state of the Multibus at every rising edge of the Multibus clack would be unwieldy due to the large number of such states required. Rather, we are interested in modeling the Multibus at the event level. We detine an event to be a request for a Multibus access or the completion of a Multibus access. (We do nex consider the initiation of a Multibus access to be an event since cither it is equivalent to a request for a Multibus access if there are no other Multibus accesses pending or in progress or it is equivalent to the completion of a Multibus access if a Multibus is in progress. Similarly, we do not consider the initiation or completion of processing to be an event since they are equivalent respectively to the completion of a Multibus access and a request for a Multibus access). Becatuse the Multibus actually operate:; in discrete time synchronous with the rising cdper of die Multibus clock, the time between successive events is the some integer multape of 100 n sec and one or two or more events can occur simultancously. In modeling the Multibus in continuous time at the event level. we make the following two approximations.

1) We assume that the time between successive events can take on continuous values.
2) We assume that only one event can occur at a time.

The first approximation introduces a maximum error of $\pm 50 \mathrm{nsec}$ in interevent times. Since in the actual Multibus the processing time is at least 600 nsec and the arcess time is at least 1000 nsec (sec $\Lambda$ ppendix $\Lambda$ ), the loss of precision introduced by the first approximation is small. For the second approximation, we note that the probability of two or more events occurting in the same Multibus ciock period is small. Thus there will probably only be a very small loss of precision due to the second approximation. Therefore there should not be much loss of precision introduced by electing to model the Multibus in continuous time.

The Multibus subsystem can be modeled as a queucing system with a finite number of customers. Consider the case in which $\psi 0$ and $\beta-0$ - i.c. only Multibus acecsses and no explicit treatment of long word accesses - for each processor model. Denote the number of processors by $N$. We can represcat the operation of each processor by a customer which visits service centers (servers). Onec a customer arrives at a werver, it remains there for a period of time governed by
the service time probability distribution for that server. let there be $N$ servers, called processor servers since they represent the $N$ processors, each with an identical service time distribution equal to the processing time distribution. let uncre be one server. called a Multibus server since it represents Multibus accesses, with its service time distribution equal to the Multibus access time distribution. (Since all Multibus accesses have the same access time distribution, it is sufficient to have just one server to represent a Multibus access.) Finally, let there be no more than one customer in service at a server at any instant and let there be $N$ custumers.

Fach of the $N$ customers behaves as follows. $\Lambda$ customer visits a processor server and remains there for some proxessing time after which it joins a queue of other customers waiting to visit the Multibus server. When the customer eventually visits the Multibus server, it remains there for some access time and then it returns to the same processor server.

This processor-qucue-Multibus cycle of a custorner represents the processing-waitingaccessing cycle of the prucessor model (with $\psi=0$ and $\beta=0$ ). The finite customer queueing systenl is pictured in Figure 2.1 below. The circles eepresent servers.


Figure 2.1: Finite customer queucing system

To taithfully model the operation of the Multibus arbitation circuitry. the queucing discipline at the Multibus server should be round-robin. However, (o) calse analysis, we will assume that this queucing discipline is first-come-first-served ( $\mathrm{FCl} / \mathrm{S}$ ). Interestingly, there is no loss of precision with this assumption. Since the Multibus server is work-conserving (i.c. the server is always busy while there remains work for it to do) and since all customers are identical (i.e. sane processing and access time distribution for each customer), the mean waiting time per access on the Multibus, $\bar{i}_{w}{ }^{\dagger}$ is the same for boilh queueng disciplines [MI]. Of course, the waiting time distributions will


not necessarily be the same (intuitively, one expects the variance of the waiting time to be greater with the FCFS discipline than with the round-robin discipline). but this doesn't matter since our performance metric just depends on the mean waiting time, $\bar{i}_{w}$.

We call the finite customer queueing system. depicted in Figure 2.1, with a FCFS queucing discipline, the basic queucing model of the Multibus. In later sections we extend this basic queueing model, known as the machine repairmen model in the queucing theory literature, to accommodate $\psi \neq 0$ and $\beta \neq 0$. $\Lambda$ convenient notation to describe the basic queucing model is $S_{1} / S_{2} / 1 / / \mathrm{N}$. $S_{1}$ and $S_{2}$ represent symbols denoting, respectively, the processing and access time distributions. The 1 indicates a single server queue and N indicates the total number of customers. Some commonly used symbols are $M$ for memoryless (i.ce exponential), D) for deterministic, lir $^{\text {for } r \text { stage }}$ Filiangian, and G for general. Thus $M / M / 1 / / N$ denotes a basic queucing model with exponential processing and access times and $N$ processors.

A rather exhaustive analytical treatment of the basic queucing model with different processing and access time distributions is presented in section 2.2 through 2.7. Section 2.2 deals with deterministic processing and access times. Section 2.3 characterizes the general behaviour of $\bar{i}_{w}$ for probabilistic processing and access times. Sections $2.4,2.5$, and 2.6 develop results for the $\mathrm{M} / \mathrm{M} / 1 / / \mathrm{N}, \mathrm{M} / \mathrm{G} / 1 / / \mathrm{N}$, and G/M/1//N models respectively. Most of section 2.6 is devoted to describing the known results for a class of queneing networks with convenient product form solutions. These results are heavily utilized in sections 2.8 and 2.9 . Section 2.7 presents a recursive technique for handling general processing and access time probability distributions. This is believed to be the first demonstration of a reasonable solution method specifically for the $\mathrm{G} / \mathrm{G} / \mathrm{I} / / \mathrm{N}$ model.

Gencralizations of the basic queueing model to handle $\beta \neq 0$ and $\psi \neq 0$ are covered in sections 2.8 and 2.9. Scetion 2.8 treats the case with $\beta \neq 0$ and $\psi=0$ and section 2.9 treats the general case with $\beta \neq 0$ and $\psi \neq 0$. Section 2.9 discusses the decomposition of Concert into Multibus and Ringbus models and develops the hooks for the later integration of these two models. Specifically, the single processor equivalent of the Multibus is developed and relations yielding its parameters are derived.

Lastly, section 2.10 discusses the relaxation of the four major assumptions of 1) identical processors, 2) simple processor model. 3) stationary processor model, and 4) independent processors. The most important sections in Chapter 2 are 2.2. 2.3. 2.4. 2.8. and 2.9. Scetion 2.6 is also important, but only as a primer on product form solutions of qucucing networks for scctions 2.8 and 2.9 . Sections 2.5 and 2.7 are. in some sense, icing on the cake.

### 2.2 Deterministic Model

In this first model, both $f_{p}$ and $t_{a}$ are deterministic quantitics.
Initially the independent processors are unsyanemized. However. dac to the deteminism of $t_{p}$ and $t_{a}$, every time two or more memory requests occur at the sime time that the bus is currently in use. the presecssors originating those requests are synchronized with each oher and with the processor currently using the bus. The synchronization does not occur at the instant of conflict but rather at the instame the access in progress terminates and the request at the head of the FCF S queue waiting for the bus begins its access. At this instant, the two respective processors are synchronized so that the cyele of the one just beginning its access lags the ofter by exactly $1_{a}$. Similarly each processor which has a request in the queue is synchronized so as to lag exacely $t_{a}$ behind the processor of the previous access. Since $t_{p}$ is also deterministic and the same for every processor, ule synchronized processors will make their next requests at intervals of $\boldsymbol{t}_{a}$.

## Theorem 2.1

With independent identical processors with deterministic processing time $t_{p}$ and deterministic access time $t_{a}$ served by a single bus in ICCFS order, the waiting time per request after at most two cycles of every precessor is the same for every request. Moreover, after at most two cycles of every precessor the ICOS queve is either always empty or always nonempty at the instant a request arrives at the queue.

The proof of this Theorem is given in appendix 13.

By construction $t_{w}=0$ when $N$, the number of processors on the Multibus, is one. I et $N^{*}$ be defined as the saturation point: in the steady state for $N \leq N^{*}, I_{w}=0$ (corresponding to the queue always empty when a request arrives), and for $N>N^{*} . I_{w}>0$ (corresponding to the queue always nonempty when a request arrives). This saturation point is the maximum number of processors for given $t_{p}$ and $t_{a}$ that the bus can support in steady state and maintain $t_{w}=0$.

The maximun number of processors that the bus can handle with yero wait time foi: a request is one (for the bus in use) plus the maximuin mumber of additional processors that can be processing, but not waiting, while the one processor is currently using the bus. This maximum number of processors is given by $\left\lvert\, \begin{aligned} & \frac{t_{p}}{t_{a}} \\ & \frac{1}{a}\end{aligned} \dagger\right.$ Thus $N^{*}=\left|\begin{array}{l}\frac{p}{t_{a}} \\ \frac{1}{a}\end{array}\right|+1$.

For each processor added above $N^{*}$. all processers will share equally (anter initial transients

die ciut) the wait incurred by the addition of cach processor above the saturation point, if all processors are identical and bus arbitration is FCFS . To find $t_{w}$ for this casc, we may equate the arriva! rate of requests to the bus system to the service rate of requests at the bus system. We have then:

$$
\frac{N}{\left(I_{p}+I_{a}+I_{w}\right)}=\frac{1}{t_{a}}
$$

from which we obtain $I_{w}=N I_{a}-\left(I_{p}+t_{a}\right)$.
The wait per request normalized by the access time is

$$
\frac{t_{w}}{t_{a}}=N-\left(\frac{t_{p}}{t_{a}}+1\right)
$$

At his point (and in the sequel) it is more convenient to consider $N^{*}$ and $N$ as continuous rather than discrete quantities. The saturation point is thus redefined as $N^{*}=\frac{t_{p}}{t_{a}}+1$. Nlthough the discussion will consider $N$ and $N^{*}$ as continuous quantities, dhese quatities should be understond to be in fiact discrete whenever they are given a physical interpectation.

Substituting for $N^{*}$. we obiain $\frac{t_{w}}{t_{a}}=\left\{\begin{array}{l}0, \\ N-N^{*}, N \leq N^{*} \\ \hline\end{array}\right.$. which completely describes the behavior of $t_{w}$ in the steady state for the deterministic case (see ligure 2.2).


### 2.3 Prohahilistic Model-General Behaviour

We now consider $t_{p}$ and $t_{u}$ to be stationary randiom variables with given probability distributions. We assume that the randown vatiable $t_{f}$, for each processor and the random variables $I_{0}$ are independent of each other and all other randont variables as discused in section 2.1. We also make the reasonable assumption that the random variables $t_{p}$ and $t_{a}$ have finite means i.c. $t:\left[t_{p}\right]<\infty$ and $t:\left[t_{a}\right]<\infty$.

In addition to these assumptions and those in section 1.3.2 we make the following existence and ergodicity assumptions in this section.

## Pixistence and Frgodicity Assumptions

1. We assume that the incan waiting time per request, $\bar{i}_{w}$. exists. More precisely, we assume that a stationary probability distribution exists for $I_{w}$ (since $i_{w}$ is defined in terms of its probability distribution function). I.et the waiting time of the $n^{\text {th }}$ request to enter the quene be denoted by $f_{w_{n}}$ so that $\left\{t_{w_{n}}\right\}, n \geq 1$, is a sequence of the waiting times of successive requests. The assumption mealls that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(t_{w_{n}} \leq y^{\prime}\right)$ exists and cquals some function $W(y)$ where $\operatorname{Pr}\left(t_{w_{s}} \leq y\right)$ is the probability distribution of the waiting time of the $n^{\text {th }}$ request and $W^{\prime}\left(y^{\prime}\right)$ is the stationary probability distribution for $I_{w}$.
2. We assume that the waiting time process is ergodic so that ensemble averages equal (discrete) tinc averages i.c. we assume that $i_{w}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} t_{w_{i}}$.
3. We assume that the time averages necessiry for atly application of I ittle's I aw to the queucing system described in section 2.1 exist. Iitule's Iaw is the following statement:

Consider any system at which customers arrive, spend time in the system, and depart. I.et $N(1)$ be the number of arrivals at the system in the interval [0.1]. $l(t)$ be the number of eustomers in the system at time 1 . and $w_{k}$ be the time spent in the system by the $k^{\text {th }}$ customer to arrive. If the following limits exist and are finite

$$
\begin{aligned}
& \lambda=\lim _{t \rightarrow \infty} \frac{N(1)}{1}, \text { average arrivall rate } \\
& I=\lim _{t \rightarrow \infty} \frac{1}{1} \int_{0}^{1} I(s) d s, \text { avcrage number in system } \\
& W=\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{i=1}^{k} w_{i}, \text { average time in systcm }
\end{aligned}
$$

then $I .=: \lambda W[S ?]$.
These assumptions are necessary the ensure that the results dereloped in this section are stricily correct. All the following sections in this chapter deal with specific probability distributions
andfor specific sitmations for which these assumptions are valid in all cases: thus it is unnecessary to state them in the sequel. However, this section deals with unspecificd general distributions for which it is dificule to show that these assumptions are valid in all cases.

The purpose of the first assumption is straightorward $-\ddot{i}_{n}$ must exist before we can talk about it. The second disumption ensures that the average waiting time derived from an application of litules $I$ aw equals $t_{w}$. The thed assumption ensures that it is valid to apply litules law. Note that if the tiene arerages in this third assumption exist, then they must be finite since we are dealing with a closed queucing system. If one is willing to deal with a time average for the waiting time per request rather than an ensemble average (i.c. a mean), then only tite third assumption is necessary. We present and prove some conditions in Appendix $B$ for which the three assumptions are valid.

We now consider the general behaviour of the mean wating time per request. $\bar{I}_{\mathbf{w}}$, subject to the preceding assumplions. For a single processor we still have $\bar{i}_{w}-0$. We cain derive a general formula for $i_{11}$ with $N$ processors using lituc's 1 aw.

I et $\overline{\prime \prime}$ denote the mean number of requests queued for service and currently in service on the bus. let $\ddot{\eta}_{p}$ denote the mean number of processors which are processing (i.e. which do not have an ontstanding request). Iet $\rho$ denote the probability of the server ii.e. (We bus) being busy. Let $\lambda^{\circ \prime \prime}$ temote ine mean atriva! rate of requests to the bus. Sitice the system is cosed with a finite number of requests, $\lambda^{\prime \int f}$ is also the mean service rate of requests.

Then by litules law we have: $\vec{l}_{w} \cdots \frac{\bar{n}}{\lambda^{\circ j}}-\vec{l}_{a}$. Appiying littles 1 aw twice bore we have $\rho=-\lambda^{d / \bar{l}_{a}}$ and $\bar{n}_{p}=\lambda^{i \iint} \bar{i}_{p}$. Since $\bar{n}+i_{p}=N$ we thus have $\frac{\bar{i}_{w}}{\bar{l}_{a}} \cdots \cdots-\bar{n}_{p}-1$ and $\bar{i}_{p}=\rho \frac{\bar{l}_{p}}{\bar{l}_{a}}$. yiclding

$$
\frac{\bar{t}_{w}}{\ddot{t}_{a}} \frac{N}{\rho} \frac{\bar{t}_{f}}{\bar{t}_{a}}-1-\frac{N}{\rho}-N^{\bullet}
$$

where we now define $N^{*}=\frac{i_{p}}{t_{a}}+1$. This satne result can be obtuned by considering the throughput balance cquation $\frac{N}{i_{F}+i_{H}+i_{a}} \quad \frac{\rho}{i_{a}}$. It follows from the definition given above that $0 \leq \rho \leq 1$. and thus $\frac{\bar{t}_{w}}{\bar{t}_{a}} \geq N, N^{*}$. For the deterministic case with $N>N^{*}, \rho: 1$ and thus the lower bound for $\begin{aligned} & \vec{i}_{w} \\ & i_{a}\end{aligned}$ is adniesed by the detemmintic casc. Note that as $N \rightarrow \infty, \rho \rightarrow 1$. thus yichd-

and this lower bound is again achieved by une deterministic case. Therefore $\frac{\bar{l}_{w}}{\frac{\bar{l}_{a}}{}} \geq m a x\left(0, N \cdot N^{*}\right)$ where the kower hound is achieved by the deterministic case. We summarize this result as a lemma:

## Lemmar 2.1

The mean waiting time per request in the previously described queucing system model with stationary processing and access times with means $\bar{i}_{n}<\infty$ and $\bar{i}_{a}<\infty$ respectively and subject to the previous assumptions is bounded from below by the mean wait per request in the deterministic model with the same processing and access times $\bar{i}_{p}$ and $\bar{i}_{a}$ respectively.

## Proor:

Given in the above development.

We can also say that $\bar{w}(N+1)-\bar{w}(N) \geq 0$ (where we use the notation $\bar{w}(N)$ to indicate the mean waiting time $\bar{I}_{w}$ in an $N$ processor system). This follows since adding another processor cannot cause the mean waiting time to decrease. In addition, it seems intuitive that $\bar{w}(N+1)-\bar{w}(N) \leq \bar{l}_{a}$ : an arriving request in the $N+1$ processor system ought to see at worst one more request in the queue than it would in the corresponding $N$ processor system. The following theoren justifics this intuitive fecling.

## Theoren 2.2

Consider the queueing model described previously with stationary processing and access time distributions with means $\bar{i}_{p}<\infty$ and $\bar{i}_{a}<\infty$ respectively and subject to the previous assumptions. Then $\bar{w}(N+1)-\bar{w}(N) \leq \bar{I}_{a}$ where $\bar{w}(N)$ denotes the mean waiting time in a $N$ processor model.

## Proof:

Given in Appendix 13.

The foregoing allows us to conclude that the mean wait per request for any stationary processing and access time distributions has a curve of the gencral shape indicated below. The randomness introduced by the probability distributions rounds the "knee" of the curve.


Figure 2.3: $\bar{i}_{w} / \bar{I}_{u}$ vs. $N$ for general probabilistic case

The following sections consider the behaviour of $\bar{i}_{w}$ for specific probability dismibutions and for modifications to the basic queueing model.

### 2.4 Exponential Distribuid Processing and Service Tines - M/M/1//N Monel

The analysis of thas $M / M / 1 / i N$ model is staightforward. Following Kleinrax [K3], we define state $k$ to represent $k$ requests queued for service or in service $(0 \leq k \leq N)$ resulting in the (discrete state continuous time) biith-death Markov chain depieted in the state transition diagram below.


Figure 2.4: Markov chain of $\mathrm{M} / \mathrm{M} / 1 / / \mathrm{N}$ model

The steady state probabilitics. $\pi_{k}$, satisfy the local balance equations $\pi_{k} \cdot p_{k, k+1}=\pi_{k+1} \cdot p_{k}+1, k, 0 \leq k<N$, where $p_{i, j}$ denotes the probability of going from state $i$ to $j$ in one transition. Prom the local balance equations we obtain:

$$
\begin{equation*}
\pi_{k}=\pi_{0} \frac{N!}{(N \cdots k)!}\left(\frac{\lambda}{\mu}\right)^{k} .1 \leq k \leq N \tag{2.1}
\end{equation*}
$$

The mean queue length is $n_{q}=\sum_{k=2}^{N}(k-1) \pi_{k}$ and the average arrival rate to the queue is $\lambda_{i f} f \sum_{k=0}^{N-1}(N-k) \pi_{k}$. By litule's Law. the mean queueing time (mean time wait in queue before being served) is $\bar{\lambda}_{w}=\frac{n_{q}}{\lambda_{c} f f}$. The normalized mean wait per request is thus

$$
\begin{equation*}
\frac{\bar{i}_{w}}{\bar{i}_{a}}=\bar{\mu}_{w}=\alpha \cdot \frac{\sum_{k=2}^{N} \frac{N!(k-1) \alpha^{-k}}{(N-k)!}}{\sum_{k=0}^{N-1} \frac{N!\alpha^{-k}}{(N-k-1)!}} \tag{2.2}
\end{equation*}
$$

where $\alpha=\frac{\mu}{\lambda}=\frac{\bar{i}_{p}}{\bar{i}_{a}}$.
Results for the case $\alpha=1.0,2.0,5.0$, and 10.0 are displayed in ligure 2.5.



### 2.5 Paponemtiol Bistributed Processing and General Service - M1/G/1//N Model

In this section we generalize the $\mathrm{M} / \mathrm{M} / \mathrm{I} / \mathrm{N}$ model of the previous section to include any stationary memory aceess (or servici) time distribution. With a general service distribution. the probability distribution of the remaining service time, given that there is a custemer in service, depencis on the time that the customer has already been in scrvice. In such a calse, the service time distribution is said to have memory. Since a state must include all history or must summarize all the history of the system relevant to predicting the future of the system, the state description of whatever system the server is in must include the expended service time (or alternately, the time remaining in the service of the customer), whenever a customer is in service.

For example, one state description of the $M / G / 1 / / N$ system is to let the states be ( $k, 1$ ) where $k$ requests are queued for service or in service and the request presently in service has been in service for time $1,1 \leq k \leq N, 1 \geq 0$; and ( 0 ) when no requests are queued for service or in serviec. The exponential distributien has the special property that the probability distribution of the time remainang is indeperident of the time expired so far. This memoryless property is the reason wily the service time completed so far is irrelevant for the $\mathrm{M} / \mathrm{M} / \mathrm{I} / / \mathrm{N}$ model (which is why the state in the previous section was sianply ( $k$ ). ( $0 \leq k \leq N$ ), and is the reason why the processing time completed sof far at cach processor is irrelevant for both the $\mathrm{M} / \mathrm{C} / \mathrm{I} / / \mathrm{N}$ and $\mathrm{M} / \mathrm{M} / 1 / / \mathrm{N}$ inodels.

The fat that time must be included in the state desceiption complicates the analysis of the M/G/1//N model. We must now deal with an uncountably infinite number of states ratioer than the !inite number of the $M / M / 1 / / N$ model. Three analytical inethods are common for finding the steady state distribution of the number of requests queted for service or in service, from which we can tinen find the mean waiting time per request.

## 1. Stages

In this method, the server is subdivided into a number of stages where eith stage has an exponential service distribution and only a single customer is allowed into the system of stages at a time (jusi as only a single customen is in the original server at a time). Considering the entry and exit points of the server to be special stages with acro serviee time, the next stage a customer cuters after kaving the present stage is governed by a probability distribution which may depend on the present stage. The mean service time in each stage may also depend on the stage. Cox [C4] has shown that it is possible to synthesiac any probability density which has a rational laplace transform by a system of stages as just described. ${ }^{\dagger}$ Cox has also shown that the system of stages in Pigure 2.6 is canonic in thit it captures the full generality of densities which can be synthesired by

[^3]the method of stages. In particular, fecdback and/or feedforward paths add no further generality. It is sometimes convenient to consider series-parallel or paralle-serics arrangements of the stages, rather tham the ladder arrangement in Figure 2.6.


Figure 2.6: Canonic ladder arrangement of stages

The advantage of the method of stages is that the state space is now finite, or at worst countably infinite. This arises becatuse cadt stage in the server is exponential and thus it suffices for the state to include just the stage in which the customer is, rather thath the time completed so far in the service.

The resulting state transition diagram will be similar to that in Figure 2.6 in the previous secr tion except that the the states are more conveniently arranged in a (wo dimensional manner and transitions are not limited to nearest tueighbours. The equilibrium equations relating the steady state probabilitics are easily obtained. Since these are lincar equations it is in principle straigheforward to find the steady state probabilities. Note these are the steady state unconditional probabilities: they must be summed over the appropriate states to obtain the steady state marginal probabilities such as the number of requests queued for service or in service.

The method of stages has three disadvantages. Firsh closed form results are difficult to obtain except in special cases due to the complexity of solving a large number of simultancous linear equations. Thus it is diflicult to deternine how the result varies as a function of the input parameters such as mean arrival and mean service times without recomputing the result for each set of parancters.

Second, the exponential parameter and next stage probability distribution must be found for each stage. preferably so as to minimize the number of stages required to represent a given probability distribution. This can be accomplished by matching either the poles and zeroes of the Laplace transform of the stage system with the poles and \%eroes of the laplace transform of the given probability density or by matching polynomial coeffecients of the two l.aplace transforms (beth amount to the same thing). In either case, the matching involves solving a set of nomlinear equations relating the stage parancters. The number of stages required is equal to the number of poles in the laplace transfom of the given probability density, assuming all pole-\%ero
cancellations have been removed. As might be imagined, certain interconnections of the stages make the solution of the simulameous cquations casier than others. While straightionward in principle, findug the stage parameters requires a substamiat amount of work in the general casc.

Third. only probability densities with rational Laplace transforms can te handed exaclly in a fimite number of stages. However, since any nonrational function can be approximated abbitrarily clowely by rational functions, we call in principle use the method of stages for any arbitrary (stationary) probability density. The problem in practice is how to best approximate a given distribution by one Uhat has rational transform.

## 2. Imbedded Markor (hain

In this method, the two dimensional state description ( $k, 1$ ) of the system is reduced to a one dimensional state description ( $k$ ) by leoking at the system only at select points in time. These points must be such that given the number in the system, ${ }^{*}(k)$, at one such point, and the inputs to the system, then at the next point in time we can calculate the number in the system. Thus these points must implicitly include the time that has been expended on the customer in service.

One set of such points is the serviee departure times - i.ce the time at which a customer completes service. At a departure instam, the expended service of the next eustomer is ero (and the residual service of the present customer is eero) and the tive to the next departure is given by the uricenditional service time distribution as long as at least one custoner is. keft in the sistem. If the system is empty, the time to the next departure instamt is given by the convolution of the arrival time distribution (which is exponential with parameter $N \lambda$ for the $M / G / / / / N$ casc) with the unconditional service time distribution. ${ }^{\dagger}$

The behavior of the systen at the imbedded points - the departure instants - can be deseribed by a Markov chain. I.et the state of the Markor chain be the number of customers in the system immediately after a departure. The transition probabilities can be determined from the arrival and service time distributions. The steady state solution of the Markor chatin gives the steady state probability of finding $k$ custonters in the original system at the departure instants, but not the correct steady stite probability at arbitrary times between departures. (It actually does give the correet results at all times if the costomer population $N$ is infinite and the arrival time distribution is expolential.) However, the mean waiting tine, as we are concerned with in this chapter, is sulficien: to determine the probability that the server is ide and this is easy to

[^4]$\dagger$ the probability distribution of the sum of two indepeadent randon variates is the couvolution of the two respective probability densities.
deermine. Thus the steady state selution of the one dimensional imbedded Markov chain at departure instints is sufficient to find the mean waiting time.

Other sets of points exist which may be used to derive atl imbedded Markov chain but they are not as convenient sitice the expended service of the next customer will not be rero (otherwise we have the same set of points as before). This necessitates handling the messy case when a cuswomer does not remain in serviec long enough to reach the imbedded point.
'The advantage of the imbedded Markov chain method is that general service time distributions may be handed explicitly and without solving for a myriad of parameters as in the shage method. The disidvantage is again that it is dificult to obtain closed form results. 'This is principally due to all the beokkeeping required to keep track of the number of "active" arrival generators in the finite population case. Such bookkecping is unnecessary in the infinite pupulation case and explicit results for the mean waitung time (depending only on the mean arrivall rate and the mean and variance of the service time!) and the waiting time distribution can be obtained.

## 3. Supplementary Variables

In this method the problem posed by the two dimensional diserete-cominuous state space (k.1) (for $k \neq 0$ ) is allacked directly by solving the related differential difference equations. Closed form results for arbitrary service tine densities can be obtained by this method. We give the main results below, from the derivatoen of Laiswal [JI]. I.et
$\rho$ be the server uilization i.c. the probability that the server is busy
$b$ be the mean busy period of the setver (the incan time interval between
the server being ide)
$\frac{1}{\lambda}$ be the mean of the exponential processing time
$t_{a}$ be the service time (i.c. access time) with density $f\left(t_{a}\right)$ and mean $\bar{i}_{a}$
Then

$$
\begin{equation*}
\bar{b}=\bar{i}_{a} \sum_{i=0}^{N-1}\binom{N-1}{i} \frac{1}{\varphi(i)} \tag{2.3}
\end{equation*}
$$

where $\varphi(m)= \begin{cases}\prod_{i=1}^{m} \frac{l^{*}(i \lambda)}{1-F^{*}(i \lambda)}, & m \neq 0 \\ 1, & m=0\end{cases}$
and $I^{\prime \prime}(s)=A E\left[e^{-s{ }_{a}}\right]=\int_{0}^{\infty} e^{-s f_{a}} f\left(I_{a}\right) d t_{a}$, the laplace tramsform of $f\left(I_{a}\right)$.

IVnally $\rho=\frac{\bar{b}}{\bar{b}+\frac{1}{N \lambda}}=\frac{1}{1+\frac{1}{N \lambda \bar{b}}}$.

By applying I.ittle's $\operatorname{law}$ twice we can deternine the mean waiting time (i.c. queucing time) per request, $\bar{i}_{w}$. 1 Irom I.tule's $l_{\text {aw }}$ we have $\rho=\lambda_{c f f} \bar{i}_{a}$ where $\lambda_{\text {eff }}:=\lambda \times$ average number processors running $-\lambda(N-I)$ and $I$. denotes the mean number of request in the FCFS queue or in scrvice. Thus $l=N-\frac{\rho}{\bar{i}_{a} \lambda}=N-\alpha \rho$ where $\alpha=\frac{\bar{i}_{p}}{\bar{i}_{a}}=\frac{1}{\bar{i}_{a} \lambda}$. Again from little's $I$ aw we have $i_{w}=\frac{1}{\lambda_{i} f f}-i_{a}$. Therefore

$$
\frac{i_{w}}{i_{a}}=\frac{\rho}{\rho}-1=\frac{N}{\rho}-a-1
$$

Substituting for $\rho$. we obtain

$$
\begin{equation*}
\frac{\bar{c}_{w}}{\bar{c}_{u}}=N-a-1+\frac{1}{\bar{b} \lambda}=N-N^{*}+\frac{a}{\bar{b}_{N}} \tag{2.4}
\end{equation*}
$$

where $\bar{b}_{N}=\frac{\bar{b}}{\bar{t}_{n}}$ (libe normali/ed mean busy period i.c. the average number of consecutive requests served without an intervening idle period).

Equation which should be familiar as just $\frac{\overline{\bar{T}}_{\boldsymbol{w}}}{\bar{i}_{a}}$ in the deterministic case for $N \geq N^{*}$ plus $\frac{\alpha}{\bar{b}_{N}}$.
Iquation 2.4 might lead one to comjecture that the maximum difference in mean waiting time per request between the $M / \mathrm{G} / \mathrm{I} / / \mathrm{N}$ and deterministic model (section 2.2) (xecurs at the knee $N-N^{*}$. The following lemma shows that this conjecture is indeed correct, in even a more general setting, provided $N^{*}$ is an integer. The treatnent must be more carefull for non-integer $N^{*}$ since the queueing sy:tem model allows only inceger $N$. The general idea, however, still holds when $N^{*}$ is nor-integer. (The graphs have been drawn as cominuous in $N$ to emphasioc the trends.)

## Lemma:

I.et $w(N)$ be the mean waiting time per request in a $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}$ queucing system with arbitrary processing and access time distributions with means $i_{p}$ and $\ddot{i}_{a}$ respectively. I.et $w_{D}(N)$ be the mean waiting time per request in a $1 / / 1) / 1 / / \mathrm{N}$ queueing systen with constant processing and access times $i_{p}$ and $\bar{i}_{a}$ respectively. Then the difference $w(N)-w_{l}(N)$ is maximum at cither $N=\left|N^{*}\right|$ or $N=\left|N^{*}\right|$ where $N^{*}=\alpha+1, \alpha=\frac{i_{p}}{i_{a}}$.

Proor:
Consider $1 \leq N \leq N^{*}$ :
From section $2.2 w_{n}(N) \cdots 0$ in this range. In addition $w(N / 1) \cdots(N) \geq 0$ for every $N \geq$ 1. i.c. $w(N)$ is nondecreasing in $N$. Thus $w(N) \cdots w_{D}(N)$ is maximum for $1 \leq N \leq N^{*}$ when $N$ is the largest integer less than or equal to $N^{*}$ - i.e. $N=\left|N^{*}\right|$.

Consider $N^{\circ} \leq N$ :
From section $2.2 w_{D}(N)=N \cdots N^{*}$ and $w_{D}(N+1) \cdots w_{D}(N)=\bar{i}_{a}$ in this range. In addition $w(N+1)-w(N) \leq \bar{i}$ a by Theorem 2.2. Let $N^{0}$ be the smallest integer greater than or equal to $N^{*}$ - i.c. $N^{o}=\left|N^{0}\right|$ and let $\left.w\left(N^{0}\right)-w^{\prime}\right)\left(N^{\prime \prime}\right)=\delta$. Then $w\left(N^{0}+1\right)-w_{D}\left(N^{0}+1\right) \leq w\left(N^{0}\right)-w_{D}\left(N^{0}\right)=\delta$. By induction on $n=0,1.2 \cdots$ we have $w\left(N^{0}+n\right)-w_{0}\left(N^{0}+n\right) \leq \delta$ for all $n \geq 0$. Thus $w(N) \cdots w_{D}(N)$ is maximum for $N^{*}<N$ when $N=\left|N^{*}\right|$.
Thercfore $w(N)-w_{p}(N)$ is maximum at cither $N=\left|N^{*}\right|$ or $N=\left|N^{*}\right|$.

## Remark:

If $N^{*}$ is noninteger these two points are distinct and the one at which the maximum occurs depends on $N^{*}--\left|N^{*}\right|$ and $w(N)$.

### 2.5.1 Fxponential Distributed Processing and Deterministic Service - M/IT/I//N Model

We now consider as a special case of the foregoing a model with deterministic (constant) menory access times. This special case is interesting for two reasons. The first reason is that memory accesses on the isolated Multibus directed to the global memory have a relatively constant duration. There is still randomness associated with the access time due to such factors as read-modify-write accesses (which have a significantly longer access time than nommal read and write accesses) and variations in the propagation delays of the logic circuitry and signal paths. If we consider read-modify-write accesses to be so infrequent that they can be ignored, we can get some idea of the Multibus access time distribution by referring to section 3 of $\wedge$ ppendix $\Lambda$. Roughly $\mathbf{9 0 \%}$ or more of the Multibus accesses to the global memory take 1.00 or $1.10 \mu \mathrm{sec}$. Thus a constant aceess time seems like a reasonable approximation in this casc. However, memory aceesses on the Multibus directed to local memory modules can vary over a much wider range (as indicated in Figure $\Lambda .5$ in $\Lambda p p e n d i x$ A) due to the liSis traffic on the other port of the accessed memory. Thus a constant access time dees not seem like a seasomable approximation in this case.

The secomd reason for considering the deterministic case is that the mean wait per request in the deterministic case provides a lower bound on the mean wait per request for all M/G/I//N medels with the same mean processing and access times. Thus athough the exact access time distribution may not be known (or may be too variable to be considered constant), we catn still bound the behavior of the mean waiting time.

## Theorem 2.3

Given that the mean processing and access times are the same in both the $\mathrm{M} / \mathrm{G} / 1 / / \mathrm{N}$ system and the M/1)/1//N system, the mean waiting time (queueing time) in the $\mathrm{M} / \mathrm{G} / 1 / / \mathrm{N}$ system is bounded from below by the mean waiting time in the $\mathrm{M} / \mathrm{I} / \mathrm{I} / / \mathrm{N}$ system.

## Proof:

Following Price [P3], and referring to the $\mathrm{M} / \mathrm{G} / \mathrm{I} / \mathrm{N}$ results presented carlier, we have:
$\bar{i}_{w}$ is strictly increasing in $I$.
$I$ is strictly decreising in $\rho$,
$\rho$ is striclly increasing in $\bar{b}$.
$\bar{b}$ is strictly decreasing in $\varphi(i)$, and
$\varphi(i)$ is strictly increasing in the function $r^{\prime \prime}(s)$.
Thus $\bar{t}_{w}$ is minimized when $\mathscr{F}^{\prime}(s)$ is minimized. Now from jensen's Inequality [P1 p.434] $l^{*}(s)=t:\left[e^{-s t_{a}}\right] \geq e^{-s t\left|t_{a}\right|}=e^{-s t_{a}}$, which is the transform of a deterministic function. Therefore a constant service time of duration $\bar{i}_{a}$ gives a lower bound on the mean waiting time among all distributions with the same mean $\overline{\boldsymbol{i}}_{\boldsymbol{a}}$.

All three methods mentioned carlicr for the $\mathrm{M} / \mathrm{G} / 1 / / \mathrm{N}$ model have been applied to the sollt:tion of the M/D/1//N model. Benson and Cox [132] used the method of stages. They obtained a closed form solution for a service distribution corsisting of a cascade of 1 exponential stages (called an $r$ stage Frlangian distribution and denoted by $l_{r}$ ) and then towk the limit as $r \rightarrow \infty$. Raskin [RI] employed an imbedded Markov chain. Jaiswall obtained the closed form solutions presented earlier using the technique of supplementary variables. In addition, Asheroft [^3] has derived a solution for the $\mathrm{M} / \mathrm{G} / \mathrm{l} / \mathrm{N}$ model starting with all expression for the mean busy periced.


The :ettall results for the mean waiting time per request in the $\mathrm{M} / \mathrm{I} / 1 / / \mathrm{N}$ modet are plotted in Irgure 2.7 for the same cases ats in the $\mathrm{M} / \mathrm{M} / \mathrm{I} / \mathrm{N}$ model. (The data for this Figure is laken from Asherolts paper.) For purposes of comparison, we carlice $\mathrm{M} / \mathrm{M} / \mathrm{I} / / \mathrm{N}$ results are alise plotted. Note that the $M / M / 1 / / N$ and $M / 1) / / / / N$ results are very similar except around the "knee" of the curves.

We also observe the following:
For a given $\alpha$, the difference in mean waiting time for the $M / M / 1 / / N$ and $M / I / I / / N$ mexdels first increases with $N$, and then decreases with $N$. Similarly, for a given $N$. the difference first increases with $\alpha$ and then decreases with $\alpha$. The maximum difference in the mean waiting titnes coccurs close to the "knec" at $N=N^{*}$ and increases with $N^{*}$ (in fact the maximum difference excurred at either $N \therefore\left|N^{*}\right|$ or $N=\left|N^{*}\right|, 1$ in the cases in which numerical results were computed).

The validity of these observations in the general calse may be ascertained by examining the difference

$$
\bar{w}(N)_{M / M / / / N}-\bar{w}(N)_{M / I M / / / N}=\alpha\left(\frac{1}{\bar{b}_{N_{M / M \Lambda / N}}}-\frac{1}{\bar{b}_{N_{M / D \Lambda / N N}}}\right)
$$

where
$\left.\bar{b}_{N}-1+\sum_{i=1}^{N-1}\left|\begin{array}{c}N-1 \\ i\end{array} \prod_{m=1}^{i}\right| \frac{1}{f^{*}(m \lambda)}-1 \right\rvert\,$. ( $\bar{b}_{N}$ is the nermalized mean busy period given by $\bar{b}_{N}=\frac{\bar{b}}{\bar{i}_{a}}-$ sec cquations 2.3 and 2.4.)

For exponential service: $r^{*}(m \lambda)=\frac{1}{\frac{m}{a}+1}$, unus $\bar{b}_{N_{M / M / V / N}}=1,\left.\sum_{i=1}^{N-1}\right|_{i} ^{N-1} \left\lvert\, \prod_{m=1}^{i} \frac{m}{a}\right.$. For deterministic service: $f^{*}(m \lambda)=e^{-m}$, thus $\frac{1}{f^{*}(m \lambda)}-1=e^{\alpha}-1=\frac{m}{\alpha}+g\left(\frac{m}{\alpha}\right)$, using the series expallsion of $e^{m}$ (i.c. $g\left(\frac{m}{\alpha}\right)=\sum_{n=2}^{\infty} \frac{1}{n!}\left|\frac{m!}{\alpha}\right|^{n}$ ), and therefore

Rather that examining the difference $W(N)_{M / M / I / N} \cdots(N)_{M / D / I / N} \equiv \Delta w^{\prime}(V)$ directly, it is casier to rewrite $\Delta \ddot{w}(N)$ as $\left|\begin{array}{l}\bar{w}(N)_{M / M \Lambda / / N} \\ w(N)_{M / B / I / N}\end{array}\right| \ddot{w}(N)_{M / M / 1 / N}$ and examine the ratio


For $N=1, \bar{b}_{N_{A / N / / / / N}}=\bar{b}_{N_{M / N / / / N}}=1$ and hence $r_{1 /}=1$. As $N \rightarrow \infty, \bar{b}_{N_{A / M / / / / N}}$ and
 which is clearly greater than 1 for $N>1$. Thus $\Delta \bar{w}(N)$ must increase and then later decrease with $N$.

For small values of $\alpha, \bar{b}_{N_{M / M A / / N}}$ and $\bar{b}_{N_{\text {M/DA//N }}}$ are large and hence $r_{w} \approx 1$. For large valucs
 ticular. ${\overline{b_{N}}}_{N_{M / 1 / 1 / / N}}>\bar{b}_{N_{M / N / / / / / N}}$ and thus $r_{w}>1$ for medium values of $\alpha$. Since $r_{w}$ is continuous in $\alpha$. this is enough to conclude that $\Delta \overline{\operatorname{v}}(N)$ increases with $\boldsymbol{\alpha}$ and later decreases with $\boldsymbol{\alpha}$ (although not necessarily monotonically).

### 2.5.2 Comments

It is difficult to say much more of interest about the $\mathrm{M} / \mathrm{G} / \mathrm{I} / / \mathrm{N}$ model without some knowledge of the access time distribution: indeced. the mean waiting tine per request is completely specified by the closed form expression given carlier once the distribution is known.

From section 3.3 of Appendix $\Lambda$ we see that all aceess times must he in tie range $1.02 \mu \mathrm{sec}$ (1) $1.82 \mu$ ise fallowing for best and wost cate propagation delays and tratice on the other memory port and assuming no read-modify-writes). One might conjecture thit becanse bis ancess time distribution is more "deterministic" than an exponential one with tie same mam (and certainly does not have the long tais or the expernential), the mean waiting time oughe (!) be bounded from above by that for an exponential distribution with the same titean. This is indeed the casc as the following argument shows.

Recall from equation 2.4 that the mean waiting time per request is given by $\frac{\bar{i}_{w}}{\bar{i}_{a}}=N-N^{*}+\frac{\alpha}{\bar{b}_{N}}$.

As discussed in the proof of Theorem 2.3. $\frac{t_{w}}{i_{a}}$ is strictly incrasing in $f^{\circ}(s)$. Thus to show $\bar{i}_{w M / M \cap / N} \geq \bar{i}_{*}$ it suffices to show that $F^{*}(i \lambda)_{M / M \cap / N} \geq I^{*}(i \lambda)$ for all $i$ and $\lambda \geq 0$.

## Theorem 2.4

I.et $V^{*}{ }_{a b}(s)$ denote the laplace transform of the probability density function $f_{a b}(x)$ with mean $\bar{x}$ where $f_{a b}(x) 0$ for $x \mathbb{C}[a, b]: 0<a$ and $b<2 a$. Let $\mathscr{r}^{*}(s)_{M / M / 1 / N}$ denote the Iaplace transform of the exponential density function with the same mean $\bar{x}$. Then $F^{*}(s)_{M / M \Lambda / I N} \geq F^{*} a b(s)$ for $s$ real and $s \geq 0$.

The proof of this theoren is given in Appendix B. For the case at hand $a=1.02$ and $b=1.82<2 a$, thus $\left.f^{\circ}(i \lambda)_{M / M / / / N} \geq F^{\circ} a b(i \lambda)\right)$ for cevery $i$ and $\lambda \geq 0$.

Theorems 2.3 and 2.4 imply that the mean waiting time for the $11 / G / 1 / / N$ model as presented in section 2.5 is bounded above and below by the $1 / / A I / 1 / / N$ and $1 / / D / 1 / / N$ montels respectively. with the semic mean processing and aceess times. Therefore a quick characterization of the mean waiting time of the $M /(i / 1 / / N$ model with any aceess time distribution (obeying the restrictions in Theorem 2.4) call be obtained from the $1 / / M \cap / / N$ and $M / 1$ ) $1 / / / N$ models. Furthermore, by anallogy with the Polliček-Khinchin formula for the mean waiting time in the $A / / G \cap$ queue ${ }^{\ddagger}$. one would expect the mean waiting time to vary approximately linearly with the square of the ceefficient of variation of the aceess tine distribution given by $C_{x}^{2}=\frac{\sigma_{x}^{2}}{\dot{x}^{2}}$. However, as Price [lי3] points out by means of example, this can be miskeading since the variance can be domiaded by a few long access times which have little effect on the mean waiting time.

A reasonable model for the aceess time distribution is an r stage Brlangian distribution. Figure 2.8 shows how the Eirlangian density function varies with $r$.
$\ddagger$ The $M /$ Gi 1 qucue is an open queuciap model (as opposed in the dosed models considered in this chapler)
with a Poisen arrival process and a general service process inderendent of the arroval process. The mean walling time in the queue is $\bar{I}_{w}=\frac{\rho \bar{x}\left(1+\left(c_{x}^{2}\right)\right.}{2(1-\rho)}$ where arrivals occur at rate $\lambda$. sersice has mean $\bar{x}$ and variance $\sigma_{x}^{2}$. and $\rho=\lambda \bar{x}, C_{x}^{2}=\frac{\sigma_{r}^{2}}{\bar{x}^{2}}$


Figure 2.8: Various r stange lirlangian density functions

For the $\mathrm{M} / \mathrm{I}_{\mathrm{r}} / 1 / / \mathrm{N}$ model it is casy to show that the mean waiting time per request is upper bounded by that for the $M / M / I / / N$. if the mean processing and access times are the same in each casc. As above, to show $\bar{i}_{\mathrm{w}_{\text {M/N/N/N }}} \geq \bar{i}_{\mathrm{w}_{M / R, N / N}}$ it suffices to show that $f^{*}(i \lambda)_{M / M N / N} \geq F^{*}(i \lambda)_{M / /:, N / N}$ for all $i$ and $\lambda \geq 0$.
$F^{*}(i \lambda)_{M / M \Lambda / / N}=\frac{\alpha}{i+a}$ and $\mathscr{F}^{*}(i \lambda)_{M / R, \Lambda / / N}=\left|\frac{r a}{i+r a}\right|^{r}$.
Since $\frac{\alpha}{i+\alpha}=\left|\frac{r \alpha}{i+r \alpha}\right|^{r}$ for $r=1$ and $\left|\frac{r \alpha}{i+r a}\right|^{r}$ is strictly decreasing in $r$. Whe exercise is completed. Note that in the limit as $r \rightarrow \infty$ the lirlangian distribution approaches a deterministic distribution. Thus $\bar{i}_{w_{M / M A / / N}} \geq \bar{i}_{w_{H / R, N / N N}} \geq \bar{i}_{w_{\text {N/IN///N }}}$.

### 2.6 General Processing and Fxpoanmial Aiceess Time Distributions -. (i/M/I//N Model

We now consider the eflect of the prowessing time distribution on the mean waiting time per request. For this section we keep the service time distribution exponential to farilitate companison with the earlier $\mathrm{M}^{\prime} \mathrm{M} / \mathrm{I} / / \mathrm{N}$ model and to determine the relative effeet of changes in processing and service time distributions with respect to the $\mathrm{M} / \mathrm{M} / \mathrm{I} / / \mathrm{N}$ model.

The G/M/l//N model could be solved using any of the three methods described in section 3. However they all become cmmbersome because whatever method is chosen must essentially be applied $N$ times since there are $N$ general distributions. The state description must, explicitly or implicitly, contain the processing time completed so far at each processor that is busy and the number of requests wationg for or in service. Thus there are anywhere from 0 to N continuous variables in the stale dexription. This keaves the imbedded Markow chain and supplementary bariable methods hepelessly complicated for reasomable values of $N$. Direet application of the method of stages is also very complicated. However, in the special catse of the $\mathrm{G} / \mathrm{M} / 1 / / \mathrm{N}$ model - due to the expomential ancess tifice distribution - the solution of the equilibrium cquations has a very simple form.

### 2.6.1 Iroduct Form Solations

In certain cater the steady-state probabilities for a system of iwo or more imereoneneded guence have the following form:

I ce the sector $x_{1}$ denote the state of queue $i$, and let $\pi_{x_{x}}$ demote the steady state probability of that state when queue $i$ is in isolation. Then the overall, or glabal, state of the system is given by $X\left(x_{1}, x_{2} \ldots, x_{n}\right)$. Demote the steady-state probability of global state $X$ by $\pi_{X}$. Then $\pi_{x}=c \prod_{1-1}^{n} \pi_{x_{1}}$ where $\mathcal{C}$ is a normalizing constant.

Any syntem in which the steady-state probabilities can be expressed in such a form is said to have a profuct firm solution. Product form solutions are extremely convenient in that one can
 probathities for eash queue in ishbution. In the following we summatice the main results known pertuining to product form whlutios:s in queweing networks as dexcribed by Kelly [KI).

Ite proncipal revult is the following:
Suppose there are 11 queues (the gucue is thenght of as a black box here and meludes the
 6 asume that no more that one cuntomer enters or leanes the quene at any point in time. Iet


queue $i$ at time $t$ be denoted by $x_{i}(t)$ and assume that the state information allows the number of customers of each class at the yueue to be determined. If each queue $i$ is quasi-reversible in isolation, then the equilibrium probability distribution has the product form given above.
$\wedge$ queue i is quasi-reversible if:

1) its state $x_{i}(1)$ is a stationary Markov process.
2) the arrival times of class $k$ customers, $k \in \mathcal{K}(i)$ after time $t$ are independent of $x_{i}(1)$ before or at 1 .
3) the departure times of class $k$ customers, $k \in K(i)$ after time 1 are independent of $x_{i}(1)$ at or after 1 , and
4) the mean rate of class $k$ arrivals and departures is equal for every $k \in K(i)$.

If a queue is quasi-reversible, then points 2 and 3 imply that the arrival and departure processes of class $k$ customers are independent Poisson prucesses.

Two types of queues are known to be quasi-reversible. In both types, the arrival process of class $k$ customers is Poissom with rate $\lambda(k)$. giving a total arrival rate of $\lambda=\sum_{k} \lambda(k)$. The first type is distinguished by exponemtially distributed service times with the same mean service for all classes of eustomers (although the mean may vary with the number of customers in the queuc). Kelly [KI] deseribes this type of queue as follows:

Assume we are dealing with queue $i$ and let $n_{i}$ be the total number of customers in the queue.
(i) Fach customer requires an amount of service which is a random variable exponentially distributed with mean $\mu$.
(ii) $\wedge$ lotal service effort is supplied at the rate $\varphi_{i}\left(n_{i}\right)$, where $\varphi_{i}\left(n_{i}\right)>0$ if $n_{i}>0$.
(iii) $\Lambda$ proportion $\gamma_{i}\left(l, n_{i}\right)$ of this effort is directed to the customer in position $l$. ( $\left.1 \leq I \leq n_{i}\right)$. When this customer completes service and leaves the queue, the costomers in positions $I+I . I+2, \ldots, n_{i}$ move to persitions $1,1+1, \ldots, n_{i}-1$ respectively.
(iv) $\wedge$ custoner arriving at queue $i$ moves into position $l\left(1 \leq l \leq n_{i}+1\right)$ will probability $\delta_{( }\left(l, n_{i+1}\right)$. Customers previously in positions $I . I+1 \ldots . . n_{i}$ move to positions $I+1 . I+2 \ldots . . n_{i}+1$ respectively.

The amount of seiviee a customer requires at quene $i$ is assumed to be independent of the amount of service the same customer requires in other queues and independent of the amount of service all other customers in queue $i$ reguire. For example, a FCF S queue with K classes of custoners, cach class with Poisson arrivals of rate $\lambda(k) . k \in K$ and the same exponentially distributed service for all constomers can be described by:

$$
\gamma(1, n) \cdot \begin{cases}1 . & 1:-1 \\ 0 . & 1 . \\ 2, \ldots . n\end{cases}
$$

$$
\begin{aligned}
& \delta(1, n)= \begin{cases}1, & 1=n+1 \\
0, & 1=1, \ldots, n\end{cases} \\
& \Phi(n)=1
\end{aligned}
$$

Quasi- reversible queues of the first type (also called generalized M/M/- queues), can be described by the state $x(1)=(n, c(1) \ldots . . . c(n))$ where $n$ is the number of customers in the queue and $c(l), l \leq l \leq n$, is the class of the customer in the $l^{\text {th }}$ pesition of the queue. The state $x(1)$ is a stationary Markov process with steady-state probability

$$
\pi_{x}=\kappa \prod_{j=1}^{n} \frac{\lambda(c(j))}{\mu \varphi(j)}
$$

where $\boldsymbol{\kappa}$ is a normalizing constant [K 1].
The steady-state probability of the non-Markovian state $x^{\prime}(1)(n(1), n(2) \ldots, n(K))$, where $n(k)$ is the number of customers of clatss $k$ in the queue. can be found by considering all porsibic ways of arranging $n$ customers in $k$ classes.

$$
\begin{align*}
& \pi_{x^{\prime}}=\kappa\left|\prod_{j=1}^{n} \frac{1}{\varphi(j)}\right| \frac{n(1)!n(2)!\cdots n(K)!}{n!} \rho_{1}^{n(1)} \rho_{2}^{n(2)} \cdots \rho_{k}{ }^{n(\kappa)}  \tag{2.5}\\
& \rho_{k}=\frac{\lambda(k)}{\mu}
\end{align*}
$$

Ifially, the steady-state probability of the non-Markovian state $x^{\prime \prime}(1)=(11)$, can be found by summing $\pi_{x^{\prime}}$, over all possible ways to arrange $n$ customers.

$$
\pi_{x^{\prime \prime}}=\kappa\left|\prod_{j=1}^{n}-\frac{1}{\Phi(j)}\right|_{n(1)+n(2)+\cdots+n(K)=n} \sum_{n(1)!}^{n(2)!\cdots n(K)!} \rho_{1}^{n(1)} \rho_{2}^{n(2)} \cdots \rho_{k} n(K) .
$$

(ivhere

$$
n(1) ; n(2)+\cdots, n\left(K^{\prime}\right)=n
$$

means

$$
\sum_{n(1)-0}^{n} \sum_{n(2) \cdots 0}^{n} \cdots \sum_{n(k)=0}^{n}
$$

such that $n(1)+n(2)+\cdots+n\left(K^{\prime}\right) \quad n$ at all times) yiclding

$$
\pi_{, 1 /} \cdot \kappa \rho^{n}\left|\prod_{j}^{\prime \prime} \frac{1}{q(j)}\right|, \quad \rho \cdot \sum_{k}^{\wedge} \frac{\lambda(k)}{\mu} .
$$

The second type of quasi-reversible queues is dexcribed by Kelly [K1] in a similar manner. The description is the sime as above except for:
(i) The service required by a customer is a randonn variable from an arbitrary distribution which may depend on the class of the customer.
(iv) Same as above except the symmetry condition $\delta\left(l, n_{i}+1\right)=\gamma\left(l, n_{i}+1\right)$ is imposed for every $l=1 . \ldots, n_{i}+1$.

Quelues of this second type are called symmetric queucs. For example, a server- shating queuc (essentially a round-robin queue with infinitesimal quantum size so all customers are effectively simultaneously in service) can be described by $\gamma(l, n)=\frac{1}{n}, l=1,2, \ldots, n ; n \geq 0$, and $\varphi(n)=1$. $\Lambda$ last come first served (I.CFS) queue with preemption can be described by $\gamma(1, n)-=1, l=n$, $n=1,2$...., and $\varphi(n)=1$ for $n \geq 0$. Finally, an inlinite server queue can be described by $\gamma(1, n)==n$. $n \geq 1$, and $\varphi(n)=\frac{1}{n}, l=1,2, \ldots, n ; n \geq 1$.

Note that a $\mathrm{FCl} \cdot \mathrm{S}$ queue is $n o t$ a symmetric queue. Therefore a FCl CS queue with anything other than the same exponentially distributed service for all customers (as described in the first type of quasi-reversible queues) dees not fit into the two types of quasi-reversible queues just described. Indeed, such FCHS quenc. are not quasi-reversible since the departure process at time 1 is not independent of the state $x(1)$ after 1 (i.c. given the state deseribing the costomers in the queuc and the service time expended on the customer presently in service, some information about the next departure time(s) can be ascertained). As a result, no product form solutions are known for such ICClS queues.

As for the generalized $\mathrm{M} / \mathrm{M} /$ - queus mentioned carlier, we can deseribe a symmetric quene by Markov process, find the resulting ste:ady-state probabilities, and then sum over various states to find the steady-state manginal probabilities. Skipping the intermediate steps (which follow directly from the steady-state probability distribution given in Kelly [K1]), we have for the nomMarkovian state $X(1) \cdots(n, c(l) \ldots, c(n))(n$ and $c(l)$ are as defined before) the steady state probability distribution

$$
\pi_{X}=\prod_{j=1}^{n} \frac{\lambda(c(j))}{\varphi(j)} l:[z(c(j))]
$$

where $l:[z(c(j))]$ is the incall service requirement of a class $c(j)$ customer.
For the non-Mirkevian states $x^{\prime}(1) \cdots\left(n(1) \ldots . . . n\left(K^{\prime}\right)\right)$ and $x^{\prime \prime}(1)$ ( $n$ ) we get the same results as before wilh $\rho_{i}$ and $\rho$ now as follows:

$$
\left.\rho_{k} \quad \lambda(k) \mid l:(k)\right] \quad \rho \sum_{k=1}^{K} \rho_{k}
$$

The only feature of networks of quasi-reversible queues that has not yet been discussed is the routing of customers within the network. The renting is formulated as follows: upon departing from a queue a customer of class $k$ joins class $/$ will probability $r_{k} / .^{\dagger}$ By adding a sufficient number of elasses, routing can include dependency on previously visited queues and classes as well as on the initial class. For example, a deterministic route can correspond to cach input class. In addition, routing can depend on quite detailed previous history (such as actual service times) provided that the next class depends only on the present class and that the queues remain quasireversible with respect to the classes.

The effective arrival rate of customers of class $k$ to the queucing network is $\lambda^{c f f}(k)=\lambda(k)+\sum_{l} \lambda^{r f f}(l) r_{l k}$. where $\lambda(k)$ is the arrival rate of class $k$ customers from a source external to the network (external arrivals are assumed to belong to a Poisson process). The steady-state probability distribution of each quasi-reversibie queue in isolation is computed assuming the the arrival process of each customer class is Poisson with rate given by the effective arrival rate of that class in the network. The overall steady-state probability distribution of the network is the product of the steady-state probability distribution of cach queue in isolation.

In the steady sute the various classes of enstomers in the network can either:

1. form closed loops with no arrivals or departures, or
2. form no loops.
(Closed loops with arrivals and no departures and closed loops with departures and no arrivais obvisusly cannol exist in steady-state.)

If all classes of customers form no loops, then the effective arrival rates are uniquely defined by $\lambda^{c f f}(k)=\lambda(k)+\sum_{l} \lambda^{e f f}(l) r_{l k}$. In this case the network is said to be open and the normalizing constant in the product form equation is $C^{\prime}=1$. If all classes form closed loops with no arrivals or departures then the effective arrival rates are given up 10 an multiplicative constant by $\lambda^{e f f}(k)-\sum_{l} \lambda^{e f f}(l) r_{k}$. In this case the network is said $\omega$ be closed and the normalizing constant is such that the sum of all probe:bilities is 1 . Otherwise the network is said to he mixed. In this case $\lambda^{e f f}(k)$ is uniquely determined for those classes that form now boops and determined up to a constant for thuse classes that form closed loxps.

We conclude this section on prodact form solutions by noting that the same results have

[^5]been reached by others, motably Baskell et al [13]], by chose examination of the global balance equations in the method of stages. Fior certain cases these global balance equations reduce to local balance equations for which it is casy to determine the equilibrium probability distribution. Kelly's treatment via the quasi-reversibility of the queues generalizes carlier work (distributions with nonrational Laplace transforms and any queue fitting the description given carlier for generalized $\mathrm{M} / \mathrm{M} /$ queues or symmetric queues can be treated) and unifies th through the concept of quasireversibility.

### 2.6.2 G/M/1//N Model as a Queucing Network

The G/M/1//N model can be considered as a closed queucing network with a $1: C l$ with an exponential service time distribution - same mean for all customers - and an infinite server as depicied below:


Figure 2.9: Qucucing network for G/M/I//N model

All customers are identical. J.ct all customers in the infinite server queue be class 1 with mean service time $\bar{i}_{p}$. I ct all customers in the fiCle queue be class 2 with mean service time $\bar{i}_{a}$. Thus $r_{12} r_{21}-1$ and $\lambda^{c / f}(1) \lambda^{c f f}(2)$. Fach quewe is quasi-reversible in isolation. Therefore from section 2.6 .1 we have for the intinite server queue with a state of $x_{1}-\left(n_{1}\right)$ :

$$
\pi_{x_{1}}=\kappa_{1} \frac{\rho_{1}{ }^{n_{1}}}{n_{1}!}, \quad \rho_{1}=\lambda^{c f f}(1) \bar{i}_{\rho}
$$

For die fres queve we have for a state of $x_{2}-\left(n_{2}\right)$ :

$$
\pi_{r_{2}} \quad \kappa_{2} \rho_{2}^{n_{2}}, \quad \rho_{2} \quad \lambda^{\cdot f f}(2)_{r} .
$$

Thus for the werall sere $X\left(x_{1}, x_{2}\right)$ ( $n_{1}, n$ ? : we have

$$
v_{x}=\kappa_{1} \kappa_{2} \frac{\left|\lambda^{e f f}(1) \bar{i}_{n}\right|^{n_{1}}}{n_{1}!}\left|\lambda^{e f f}(2) \bar{i}_{a}\right|^{n_{2}}
$$

Since $n_{1}+n_{2}=N$. the state reduces to $X=\left(n_{2}\right)$ and the steady-state probability distribution of $n_{2}$ customers in the FCFS queue is:

$$
\pi x=\kappa \frac{N!}{\left(N-n_{2}\right)!}\left(\frac{\bar{i}_{a}}{\bar{i}_{p}}\right)^{n_{2}}, 0 \leq n_{2} \leq N
$$

and $\kappa$ is a normalizing constant ( $\kappa=\frac{\kappa_{1} \kappa_{2}\left|\lambda e f s f_{p}\right|^{N}}{N!}$ ).
Aside from the change in notation, this equation is exactly the same as equation 2.1 in section 2.4 for the steady-state probability of $n_{2}$ customers in dic $M / \mathrm{M} / 1 / / \mathrm{N}$ system. Therefore both the $M / M / 1 / / N$ and $G / M / I / / N$ models have exactly the same incan waiting times per request if the inean processing and access times are the same respectively for each model. (The reader is thus referred to the graph for the $\mathrm{M} / \mathrm{M} / 1 / / \mathrm{N}$ case in licu of a graph here.) This is a surprising result considering that the processing time distribution is arbitrary. As we shall see in the next section, the key to this behavior is the exponential distibution of the service time at the FCl'S queue.

### 2.7 Ciencral Processing and Access Time Distributions - $\mathbf{G} / \mathbf{( i / 1 / / N}$

In this section we consider the full generality of the basie model stadied so far. Unfortumatly. the G/G/1//N model is difficult to solve cxactly. We no longer have the convenience of memoryless (i.c. exponential) processing times as in the M/G/I//N case or the luek to have a product form solution due to the exponential service time as in the $\mathrm{G} / \mathrm{M} / 1 / / \mathrm{N}$ ease. Imbedded Markov chains and supplementary variable methods are hopelessly complex. This leaves the method of stages, as complicated as it may be. Of course, as mentioned in section 2.5. explicit elosed form solutions cannot generally be obtained with the method of stiges. Simulation is also a possible allernative. However, simulation is not very useful to systematically determine the effect of various parameter changes, so we leave it as a last resort. Approximation, which does not suffer from this weakness, is perhaps the most attractive alternative in this case. Rather than pursue a lengthy investigation of approximation techniques for the G/G/I//N system, we refer the reader to Italachmi and Framta [III] and Whitt [W2].

One simple way to approximate the solution of the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}$ model is to replace the liCle queue by either a server-sharing queue or a I.CFS queue. Both of these queues are symmetric and the processors can be represented by an infinite server queue as in section 2.6.2. Therefore beth queues are quasi-reversible and a product form solution exists. In fact the analysis and solution is exatly the same as that in section 2.6.2! Thus this approximation gives no more information than that in section 2.4. (Actually it does: it demenstrate:, that under different serviee disciplines the G/G/I//N model has very :imple solutions.)

### 2.7.1 Me:n W:aiting Time in PII/PII/I//N Model

In this section we derive, using the method of stages, a solution for the mean waiting time per request in the G/G/l//N model. Our approach is to relate the solution of the G/G/I//N model to the solution of the $\mathrm{G} / \mathrm{G} / \mathrm{I} / /(\mathrm{N}-1)$ model (i.ce the sime model - same processing and access time distributions - just one less processor) and then find the solution by solving a smaller problem based on the solution of tine G/G/1//(N-I) model. This recursive appoach was mosivated by the proof of Theorem 2.2 in Appendix B. Herag. Woo, and chandy |ID2] hate outlined in general terms the solution of quencing problems by a recursive teehnique so the concept we apply is not new. However, we have not found any references in the literature concerning recursive techniques specifically applied to the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}$ system. Gencral motivation for mech of the content in this section, such as the block pattitioning of the generator matrix and the Pll distribution, is due to the work of Neuts [N1j.

Neuts has studied continuous tinic Markov prosesises with a countably infinite number of vates where the gencrater matix thas the follewing (eamonical) bleck matrix form:

[^6]\[

Q=\left|$$
\begin{array}{ccccc}
B_{0} & A_{0} & 0 & 0 & \cdot \\
B_{1} & A_{1} & A_{0} & 0 & \cdot \\
B_{2} & A_{2} & \lambda_{1} & A_{0} & \cdot \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}
$$\right|
\]

where all matrices are $m \times m$. Neuts $[\mathbb{N} 1]$ has shown the following result concerning such processcs:

If the matrix $Q$ is irreducible and positive recurrent (explained below), then the stationary probability vector $\underline{\pi}$ of $Q$ when partitioned to agree with the partitioning of $Q$ has the matrix-geometric form:

$$
\pi_{i}=\pi_{0} R^{i} \quad i>0
$$

where the matrix $R$ is the minimal nonnegative* solution of $\sum_{k=0}^{\infty} R^{k} \lambda_{k}=0$.
The matrix $Q$ is irreducible if the system has no independent subsysterns; that is, if all subsystems interact and are dependent. This ensures that the steady state solution (if it exists) is independent of the initial state. It is usually evident by inspection or construction that $Q$ is irreducible. Requiring that $Q$ be positive iecurrent is essentially just requiring that the process is stable (i.c. the sucue si\%e does not grow indefinitely) so that a steady state exists. We will not be concerned about positive recurrince here since our closed system $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}$ modei will have only a finite number of states and we will assume it to be irreducible: thus the corresponding matrix $Q$ will neces.arily be positive recurrent.

We will hypothesize that the steady state probability vector of the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}$ model (when represented by the method of stages) has a similar matrix-geometric form. Our G/G/1//N model will have only a finite number of states; thus our approach will be similar to but different thath that outined above for infinite dimensional systems. The key aspect of Neuts' resuit is the matrixgeometric form of the steady state probability vector.

In the following, we will use the phase distributom (denoted by PII) originated by Neuts [NI]. The Pll distribution is really just a convenient matrix formulation of the method of stages. (Indeed. some authors use "phase" instead of "stage".) This formulation provides a much needed
$q_{i i}=-\sum_{j \neq i} g_{i j} \wedge$ generator nastix $Q$ has the propery that $\underline{\underline{I}} \boldsymbol{Q}=0$ in the seady sate where $\underline{\pi}$ is the vector of scady sate probabilicies.

- Murimal in the sense thail $R \leq X$ (element-wisc) for any other solution $X \neq R$ of $\sum_{k=0}^{\infty} X^{k} A_{k}=0$.
strueture for the method of sages and unifies many widely disparate formuations of Eirlangian. serics/paratlel, and stage type distributions. Plf distributions ate, however, a subset of those obtained by Cox [C4] in that all the poles of the Iaplace transform of a Pll distribution ate real (as opposed to the complex poles allowed in Cox's formulation). This restriction to real poles allows PII distributions to be directly related to finite state Markov processes and ailows them to be realizable using only real aritlmetic.
$\Lambda$ continuous parameter Pll distribution $\mathcal{F}(\underline{x})$ on $[0, \infty)$ has the following formulation:

$$
\dot{Q}=\left|\begin{array}{cc}
T & T^{0} \\
0 & 0
\end{array}\right|
$$

where $T$ is a $m \times m$ nonsingular (i.e. invertible) matrix, $\underline{T}^{n}$ is a $m \times 1$ column vector, and $T \underline{\underline{\varepsilon}}+\underline{T}^{n}=0$ where $\underline{e}$ is an $m \times 1$ column vector of l's. The matrix $\dot{Q}$ represents the generator of a $m+1$ state Markov process. The transition between any state $i \in 1,2, \cdots, m$ and state $j \in$ $1,2, \cdots, m, j \neq i$, is governed by an exponential distribution with rate $T_{i j}$. Similarly, the transition between any state $i \in 1,2, \cdots, m$ and state $m+1$ is governed by an exponential distribution with rate $T_{i}^{0}\left(T_{i i}=-\left(T_{i}^{n}+\sum_{j \neq i} T_{i j}\right)\right.$. The states $1,2, \cdots, m$ are transient and state $m+1$ is absorbing. The initial probability vector is $\left(\underline{\alpha}, \alpha_{m}+1\right)$ where $\underline{\underline{\alpha}}$ is a $1 \times m$ row vector and $\alpha_{i}$ is the probability of starting in phase $i$. ( $\left.\underline{\alpha e}+\alpha_{m+1}=1.\right)$ the tandom variable x is defined as the time until absorption in the above Markov process. The distribution of x is $f(x)=1-\underline{\underline{\alpha}} \boldsymbol{e}^{T x}$ e, $x>0$. The pair $(\underline{\alpha}, T)$ is called the representation of $F(x)$ and the dimension of the square matrix $T$ is called the order of $F(x)$.

As an example, a dird order E:tangian distribution ( $E_{3}$ ) can be formulated as a PII distribution as follows:

Frlangian:


Fach stage has an exponential distribution with rate $\mu$

## Pll distribution:

$$
S=\left[\begin{array}{ccc}
-\mu & \mu & 0 \\
0 & --\mu & \mu \\
0 & 0 & -\mu
\end{array} \left\lvert\, \quad \underline{S}^{0}=\left[\begin{array} { l } 
{ 0 } \\
{ 0 } \\
{ \mu }
\end{array} \left|\quad \boldsymbol{x}=\left|\begin{array}{lll}
1 & 0 & 0
\end{array}\right|\right.\right.\right.\right.
$$

We now consider the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}$ mexiel where the processing time distribution is Pll with representation ( $\alpha, T$ ), order $m$, and $\alpha_{m+1}=0$ and the arcess time distribution is Pll with representation ( $\beta . S^{\prime}$ ). order $v$, and $\beta_{\nu+1}=0$. The states in the resulting $\mathrm{PH} / \mathrm{PII} / \mathrm{I} / / \mathrm{N}$ model can be described by:

$$
\left(n, s, t_{1} \ldots . t_{N}\right)
$$

where $n$ is the number of requests queucd for or in service. $0 \leq n \leq N$; $s$ is the current phase of the service (i.e. access time distriotion), $I \leq s \leq 1 ; t_{i}$ is the current phase of the processing at processor $i, 1 \leq f_{i} \leq m$; and $s$ and are simply onitued (or taken to be \%ero) when there is no request in service or when processor $i$ is idle, respectively.

This gives a total of $m^{N}, \sum_{j=0}^{N} v m^{j}$ states. Since all the processors are assumed to be identical, we can reduce the number of states by considering the state description:

$$
\left(n, s, p_{1}, p_{2} \ldots \ldots, p_{m}\right)
$$

where $p_{i}$ denotes the number of processors in which the processing is in phase $i, 1 \leq i \leq m$. $0 \leq n_{i} \leq N-n, \quad \sum_{i=1}^{m} p_{i} \cdots N \cdots n$, and $n$ and $s$ are as beforc. This gives a tonal of $\left.\left|\begin{array}{c}N+m-1 \\ m-1\end{array}\right|+\sum_{j=0}^{N} v \begin{gathered}1 \\ v-j+m \\ m-1\end{gathered} \right\rvert\,+v$ states.

As an example, consider the $l_{2} / l_{2} / 1 / / \mathrm{N}$ system with $N=3$. The state transition diagram for the system is given in Figure 2.10. The corresponding generator matrix, if the states are labeled in Iexicographical order (i.e. in order (0,0,0,3),(0,0,1,2),(0,0.2,1),(0,0,3,(0),(1,1,0,2).
 given in ligure 2.11. Notice the black tridiagonal form of $\Omega$. $\wedge$ process having a matrix $Q$ of this form is called a quasi-birth death (QBID) proxess. Figure 2.12 shows the generator matrix for the general casc of a PII/PII/I//N system with the processing timic distribution of order 2. We aceess time distribution of order 2 , and $N$. 3. Again, note the block tridiagonal form of $Q$


Figure 2.10: State transition diagram for $\mathscr{F}_{2} / I_{3} / 1 / / 3$ system

$$
\begin{array}{lll}
T=\left|\begin{array}{cc}
-\lambda & \lambda \\
0 & -\lambda
\end{array}\right| & \underline{T}^{0}=\left|\begin{array}{l}
0 \\
\lambda
\end{array}\right| & \left.\underline{\alpha}=\left\lvert\, \begin{array}{ll}
1 & 0
\end{array}\right.\right] \\
S=\left|\begin{array}{cc}
-\mu & \mu \\
0 & -\mu
\end{array}\right| & \underline{S}^{0}=\left|\begin{array}{l}
0 \\
\mu
\end{array}\right| & \left.\underline{B}=\left\lvert\, \begin{array}{ll}
1 & 0
\end{array}\right.\right]
\end{array}
$$

Figure 2.11: Generator matrix for $I_{2} / I_{2} / 2 / / / 3$ example

Figure 2.12: Gencrator malrix for $\mathrm{P}^{2} \mathrm{I}_{2} / \mathrm{P}^{\prime} \mathrm{I}_{2} / \mathrm{I} / / 3$ system

$$
\begin{aligned}
& T=\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{\dot{2}}
\end{array}\right] \quad \underline{T}^{0}=\left[\begin{array}{l}
T_{1}^{0} \\
T_{2}^{0}
\end{array}\right] \quad \underline{a}=\left|\begin{array}{ll}
\alpha_{1} & \alpha_{2}
\end{array}\right| \\
& \left.S=\left\lvert\, \begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right.\right] \quad \underline{S}^{0}=\left[\begin{array}{l}
S_{1}^{0} \\
S_{2}^{0}
\end{array}\right] \quad \beta=\left[\begin{array}{ll}
\beta_{1} & \beta_{2}
\end{array}\right]
\end{aligned}
$$

If we label the states in the same lexicugraphical order in the gencral case. then we obtain the generator:

$$
Q=\left|\begin{array}{ccccccc}
A_{0} & C_{0} & 0 & 0 & . & 0 & 0 \\
A_{1} & B_{1} & C_{1} & 0 & . & 0 & 0 \\
0 & A_{2} & B_{2} & C_{2} & . & 0 & 0 \\
0 & 0 & A_{3} & B_{3} & . & 0 & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & B_{N-1} & C_{N-1} \\
0 & 0 & 0 & 0 & . & A_{N} & B_{N}
\end{array}\right|
$$

where:
$B_{i}$ is a square matrix of dimension $v\left|\begin{array}{c}N-i+m-1 \\ m-1\end{array}\right|$ denoting the transition rates between states with $i$ requests in the queue:
$\Lambda_{i}$ is a $v\left|\begin{array}{c}N-i+m-1 \\ m-1\end{array}\right| \times_{r}(i)\left|\begin{array}{c}N-i+m \\ m-1\end{array}\right|$ matrix denoting uie transition rates from states with $i$ requests in the quene to states with $i-1$ requests in the queue (v(i)-1 if $i=1$ and $v$ otherwisc):
and. $C_{i}$ is a $\left.\| \begin{gathered}N-i+m \\ m-1\end{gathered}|\times N| \begin{array}{cc}N-i+m-2 \\ m-1\end{array} \right\rvert\,$ mattix demoting the wansition rates from states with $i$ requests in the quene to states with $i+1$ repuests in the queue.

More details about these matrices will be given later as necessiry. We partition the steady
 ing the partitioning of $Q$. The steady state equations are now:

$$
\begin{align*}
& \quad \underline{\pi}_{0} B_{0}+\underline{\underline{m}}_{1} A_{1}=0  \tag{2.6}\\
& \underline{\pi}_{i-1} C_{i-1}+\underline{\pi}_{i} B_{i}+\underline{\pi}_{i+1} A_{i+1}=0.0<i<N  \tag{2.7}\\
& \underline{\pi} N-1 C_{N-1}+\underline{\pi}_{N} B_{N}=0 \tag{2.8}
\end{align*}
$$

One waly to solve dicse equations is 10 adaph Nemsi matrixgennetric upprowh Since the matrices are now functions of 1 , comsider a rate matrix that is a functen of 1 I.e. $R(1)$. mad gucs
 the steady state cquations we ohtain:

$$
\begin{aligned}
& \pi_{N} \cdot\left(\left(C_{N-1}+R(V) R_{N}\right) 0\right. \\
& \pi_{1}, 1\left(C_{1}, 1+R(1) B_{1}+R(i) R(1+1), 1,1\right) 0,0<1<N \\
& \pi_{0}\left(B_{0}+R(1) A_{1}\right) 0
\end{aligned}
$$

If the appropriate inverses exist we have:

$$
\begin{aligned}
& R(N)=-\left(C_{N-1} B_{N}-1\right. \\
& R(i)=-C_{i}\left(B_{i}+R(i+1) A_{i+1}\right)^{-1}, \quad 0<i<N \\
& R(1)=-B_{0} A_{1}^{-1}
\end{aligned}
$$

^ solution technique by iterative substitution is now apparent. 'This particular matrix-product approach is again - to the best of our knowledge - new. However, it is a rather infeasible approach. The main difficulty is posed by finding the inverses of the various matrices. For large $N$ and even just small values of $m$ and $r$, the dimension of $B_{i}$ for small $i$ is very large, implying that large dimensional matrices must be inverted. Fïnding the inverses of lage matrices is computationally very ineflicient. Furthermore the inverse of a sparse matrix is usually quite dense. Therefore it is difficult to use any sparsity present in the $A_{1}, B_{i}$, and $C_{i}$ matrices to redure the computational requirements in any of the other matrix operations. The non-sparsity also implies large storage requirements. Aiother difficulty is posed by the varying dimensions of all the matrices involved: even $R(1)$ has a site that is a function of $i$. This makes any practical implementation difficult and complex since the xolution of cach $R(i)$ is essentially a pectial case. I Finally, a great deal of work is requred for the whlnien with if proxessors ( $N$ I matrix inverses and many matrix multipies and add) and a mul all be repeated of wa akn want the solution fire $N+1$ processors.

The key ada in this xector in the following smple observation.







$$
\begin{aligned}
& \text { pumisen wi have } \\
& \text { •1.": 19ヵ }
\end{aligned}
$$

$$
\begin{align*}
& \pi 0^{N} B_{0}+\pi N^{N} A_{1}=0  \tag{a}\\
& \pi n^{N}\left(C_{0}+\pi n^{N} B_{1}=\cdots\right)^{N} A_{2}=-C_{n}^{N-1} A_{2} \tag{b}
\end{align*}
$$

Assuming that $Q$ is irreducible (which we will assume in the rest of this section). equations $2.10($ a $)$ anc 2.10(b) represent $\left|\begin{array}{c}N+m-1 \\ m-1\end{array}\right|+\nu\left|\begin{array}{c}N+m-2 \\ m-1\end{array}\right|$ linearly independent equations in the same number of unknowns. If $Q$ is irreducible, all the rows of $Q$ are linearly independent, and thus $B_{0}^{-1}$ exists, yiclding

$$
\pi \pi_{0}^{N}=-\pi_{1}^{N} A_{1} B_{0}^{-1} \text { and } \pi N^{N}\left(B_{1}-A_{1} B_{0}^{-1} C_{0}\right)=-C_{\underline{\pi}} N^{-1} A_{2}
$$

Pinally $\left(B_{1}-A_{1} B_{0}^{-1}\left(C_{0}\right)^{-1}\right.$ also exists if $Q$ is irreducible, yielding

$$
\pi^{N}=-\left(\underline{\pi}_{1}^{N \cdot 1} A_{2}\left(B_{1}-A_{1} B_{0}^{-1} C_{0}\right)^{-1}\right.
$$

I.ct $\boldsymbol{\pi}_{i}^{N}$ denote the steady state probability of $i$ requests in the queuc. That is. $\boldsymbol{\pi}_{i}^{N}=\underline{\underline{\boldsymbol{m}}}_{i}{ }^{N} \cdot \underline{\underline{e}}$ where $\underline{\underline{e}}$ denotes a column vector of I's of appropriate dimension. Then the constant $C$ can be determined by the requirement that $\sum_{i=0}^{N} \pi_{i}^{N}=1$. Therefore we now have a recursive formulation for determining $\pi_{i}^{N}, 0 \leq i \leq N$, for any $N \geq 1$. The solution for $N=1$ can be found by solving $\pi 0_{0}^{1} B_{0}+\pi_{1}^{1} A_{1}=0$ and $\underline{\pi}_{0} C_{0}+\underline{\pi}_{1}^{\prime} B_{1}=0$ where $B_{0}$ is $m \times m, A_{1}$ is $m \times r, C_{0}$ is $v \times m$, and $B_{1}$ is $r P_{r}$. (Note that the dimensions of the matrices are functions of $N$.) If $Q$ is irreducible we have $\pi_{1}^{1} \cdots \pi_{0}^{1}\left(A_{1} \cdots A_{1} B_{0}^{-1}\left(\theta_{0}\right)^{-1}\right.$ where the inverses exist. In addition we have $\underline{\pi}_{1}^{1} \cdot \underline{+}+\pi_{0}^{1} \cdot \underline{e}=1$. yiciding $\underline{g}_{0}^{\prime}\left(1--\left(B_{1}-A_{1} B_{0}^{-1}\left(C_{0}\right)^{-1}\right) \underline{e}-1\right.$. This equation is casy to solve for reasonable values of $m$ and $r$.

The incan waiting time for any $N$ can be determined by applying I.itles law twice, as in section 2.3, w yield

$$
\begin{align*}
& \left(\sum_{1-1}^{N-1}(i+1) \pi_{i}^{N-1}+\pi_{1}^{N}\right.  \tag{2.11}\\
& \left(\sum_{i=1}^{N} \pi_{i}^{N} 1+N_{1}^{N}\right.
\end{align*}
$$







is denoted by $\left(n^{j}, J^{j} . p^{j} \ldots \ldots, p_{\text {in }}^{j}\right)$. Itement $(i, j)$ of $A_{0}$ is given by:
i) $i \neq j:\left(B_{0}\right)_{i j}=\left\{\begin{array}{c}p i T_{l k} \text { if } n^{i}=n^{j}=0, s^{i}=s^{j} \text {. and } I \text { and } k \text { are the unique values (if any) such that } \\ p_{q}^{i}=p_{q}^{j}, \text { for every } q \neq l, k, \text { and } p j^{j}=p^{j}-1 \geq 0, p_{k}^{j}=p k+1 \leq N \\ 0 \text { otherwise }\end{array}\right.$
ii) $i=j:\left(B_{0}\right)_{i n}=-\sum_{i \neq j}\left(B_{0}\right)_{i j}-\sum_{i \neq j}\left(C_{0}\right)_{i j}$

The $C_{0}$ matrix is in general not as sparse. Element $(i, j)$ of $C_{0}$ is given by:

$$
\left(C_{0}^{0}\right)_{i j}=\left\{\begin{array}{l}
p_{1}^{\mathrm{p}} \underline{l}_{1}^{0} \beta_{\mathrm{k}} \text { if } n^{\mathrm{i}}=0, \mathrm{n}^{\mathrm{j}}=1, \mathrm{~s}^{\mathrm{i}}=0, \mathrm{~s}^{\mathrm{j}}=\mathrm{k} \text {, and } 1 \text { is the unique value (if any) such that } \\
p_{q}^{i}=p_{q}^{j}, \text { for every } q \neq 1 \text { and } \mathrm{p}_{\mathrm{j}}^{\mathrm{j}}=\mathrm{p}_{\mathrm{l}}^{\mathrm{i}}-1 \geq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

The $B_{1}$ matrix is again very sparse. \&ilement $(i, j)$ of $B_{1}$ is given by:

$$
\text { i) } i \neq j:\left(B_{1}\right)_{i j}=\left\{\begin{array}{l}
p i T_{l k} \text { if } n^{i}=n^{j}=1, s^{i}=s^{j} \text {, and } l \text { and } k \text { are the unique values (if any) such that } \\
n_{q}^{i}=p_{q}^{j}, \text { for every } q \neq l, k, \text { and } p p^{j}=p i-1 \geq 0, p k=p_{k}^{j}+1 \leq N-1 \\
S_{l u} \text { if } n^{i}=n^{j}=1, s^{i}=1, s^{j}=u, p_{q}^{j}=p_{q}^{j} \\
0 \text { olherwise }
\end{array}\right.
$$

$$
i i) i=j:\left(B_{1}\right)_{i i}=-\sum_{i \neq j}\left(B_{1}\right)_{i j}-\sum_{i \neq j}\left(A_{1}\right)_{i j}-\sum_{i \neq j}\left(C_{1}\right)_{i j}
$$

where

$$
\left(C_{1}\right)_{i j}=\left\{\begin{array}{l}
p_{1}^{i} \underline{i}_{i}^{0} \text { if } n^{i}=1, n^{j}=2, s^{i}=s^{j} \text {. and } l \text { is the unique value (if any) such that } \\
p_{q}^{i}=p_{q}^{j}, \text { for every } q \neq 1 \text { and } p_{1}^{j}=p_{1}^{i}-1 \geq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

The $\Lambda_{1}$ matrix is given by:

$$
\left(\Lambda_{1}\right)_{i j}=\left\{\begin{array}{l}
\mathbf{S}_{1}^{0} \underline{\alpha} \text { ifn } i=1, n^{j}=0, s^{1}=1 . s^{j}=0 \text {, and lis the unique value (if any) such that } \\
p_{q}^{i}=p_{4}^{j} . \text { for every } q \neq k \text { and } p_{k}^{j}=p_{k}^{i}+1 \leq N \\
0 \text { otherwise }
\end{array}\right.
$$

The sparsity of all these matrices depends on the exact form of the phase distributions for the prosessing and access tines. In the special case of trlangian service. the matrix $A$ is very sparse. The matrices sull have linge dimensions for hass $V$ ' hut now we can efficiently employ the sparsity of the matrices to cedice bent the computational and storage requirements.

There are three drawbacks to the recursive approach described to determine the mean waiting time. First, as just mentioned. the matrices are still large for large $N$. Furthermore, the size of the inatrices is still a function of $N$. Second, one camot obtain the solution for $N$ processors without investing the work to determine tine solution for $1,2,3 \ldots \ldots$ and $N-1$ processors. Sometimes this is a convenient built-in advantage. For instance, in this thesis we have continually been interested in the solution for $1,2,3, \ldots, N$ processors so a recursive solution based on the solution for $N-1$ processors is not a hindrance. In fact, the recursive solution is very efficient in a case like this since no extra work is performed. Third, as with all recursive computational procedures, small numerical errors propagate very well throughout the chain of calculations.

As a final remark, the recursive method really amounts to solving cquations $2.6,2.7$, and 2.8 . It just hapiens that the intermediate results solve the same problen for smaller $N$.

### 2.8 Nullihus Model with Iong Word Accesses

We now extend the mestel of the isilated Multibus considered so far to include long word acesses, as dixused when the processor nowdel was introduced. I ong word acesses are modeled an follows: at the end of the processing time interval, :he processor decides with a probability $\beta$ that its memory access will be a long word access and with a probability 1 - $\beta$ that its memory access will be either a word or byte access. The probability $\beta$ is assumed identical for all processors and independent of the state of all other processirs and memory access. $\AA$ long word access aktually requires two successive word accesses on the Multibus. With the Multibus system employed in Concert. there is an interval of (00) to 700 nanoseconds between these two accesses during which the proxesorer releases comtrol of the bus to any pending requents. Becalase of the round-robin arburation on the Multibus. all the pending requests are served before the second aceess of the holig word ikcess. Therefore a bong, word access is essentially two independent
 is generated anci joins the end of the queue for Multibus service.


1'gure 2.13: Misicic Mulibus madel


Iigure 2.14(a): Extended Multibus model


Figure 2.14(h): Class transition diagram of extended Multibus model

The basic Multibus inedel. depicted in Figure 2.13 above, can be extended to include long word incesses. This extended Multibus model is depicted in ligure 2.14(ia). Note that the circle labeled "processing" denotes dill the processons which are processing and the circle latheled "recovery" denotes all the proxessors which are recovering: these circles do not denote individual processors. Figure 2.14(b) shows a class (ransition diagram of the model. The details of the noodel are as follows.

Iet the request for a byle, word or the first word of a long word access from any prexessor $i(1 \leq i \leq V)$ be noprewnted by a rustomen of class 1. Upon completion of this access. the class I customer hecomes cither a class 2 enstumer with probability $1 \quad \beta$ or a class 3 customer witi proh.tibily $\beta$. Class 2 customers repuenem fully completed memory ascesses - byte, word, and kong word (bohth word accesses) - and class 3 customers represent half completed leng word accessesonly the tirst word access completed. Upon recciving a class 2 customer, processor $i$ begins procesing and affer a time period $I_{p}$. governed by the processing time distribution, processor $i$ generates another request, represented as a class 1 customer. Upon recerving a class 3 customer, proecsorer $i$ waits a recovery time 1 , (a random variable given by a recovery time distribution) before gencrating a chass 4 customer, representing the request for the second word of a ling word akeess. Upon completion of this second word access (all word axcesses are gonerned by the same access tume distribution). the class 4 customer becomes a class 2 customer and returns to processor $i$. I:xactly $N$ customers are always somewhere in the closed beop of classes $1,2,3$, and 4.

Conceptually there is no differcuce between:
Methen I: the processor deciding when it generates a request that the request corresponds to al long word access, and

Method 2: the server deciding when it completes a word aceess that the access corresponds to a long word access (and hence requires a second word aceess). (This method is depicted
in ligure 2.14.)
In method 2 there is no need to distinguish between byte or word accesses and the first word of a long word access. Method 2 therefore requires one less elass per processor than method 1 .

The processing time random variabie, $t_{p}$, at each processor is assumed to be identically distributed for all prosessors and independent of all other random variables. The recovery time randem variable, $t_{r}$, at each processor is also assumed to be identically distributed for all processors and independent of all other random variables. Finally, the access time random variable, $\boldsymbol{t}_{a}$, for each byte or word access is assumed to be identically distributed for all such accesses, irrespective of class, and independent of all other random variables.

### 2.8.1 Analysis of Model with Ioug Werd Accesses

### 2.8.1.1 Asymptotic Behaviour

For sufficiemly large $N$ the bes will constantly be in use, yielding a bus throughput of $\frac{1}{\bar{i}_{a}}$ whrd :acessess per unit time. Since each processor cyele (processing time plus word or long word memory aecess) requires an average of 1 , $\beta$ word accesses, we obtain the throughput balance cquation:

$$
\begin{equation*}
\frac{(1+\beta) N}{i_{a r}}=\frac{1}{i_{a}} \tag{2.12}
\end{equation*}
$$

where $i_{\text {ore }}$ is the average cycle time given by:

$$
\begin{equation*}
i_{c \mathrm{cq}}=i_{p}+i_{w_{1}}+i_{a}+\beta\left(i_{r}+\bar{i}_{w_{2}}+i_{a}\right) . \tag{2.13}
\end{equation*}
$$

$i_{w}$ is the average waiting time for a byte or word access or the first word access of a long word
and $\bar{i}_{n_{2}}$ is the averige waiting tiune for the second word access of a long word.
In general $i_{w_{1}} \neq i_{w_{2}}$ since the waiting time of the second word of a long word atcess is comerelated with the waiting time of the first word. For any particular long word access we have $I_{w_{2}}=\max \left(0 . \sum_{i=1}^{n_{m_{1}}+n_{\left(r_{0}+t_{1}\right)}}{ }_{n_{1}} \quad-\quad t_{r}\right)$ where
$n_{m_{1}}$ is the number of requeste joining the queue aiter a iequest (for the first word of a long word) during the waiting time $/ w_{i}$ of that request
$"_{(1,4}+1$, is the number of requests joining the queue during the aclual access time and
recovery time $\left(I_{a}+I_{r}\right)$ of the request (for the first word)
and $I_{11}$ denotes a perticular simple of the access time distribution.
$n_{w_{w_{1}}}+n_{\left(r_{a}+t_{r}\right)}$ is the total number of requests which arrive after the request for the first word but before the request for the second word of a long word access. The quantity $\mu_{t_{w_{1}}}$ is related to $t_{w_{1}}$ and thus $t_{w_{1}}$ and $t_{w_{2}}$ are correlated. In particular, $t_{w_{2}}=0$ only if all requests that arrived in $I_{w_{1}}+I_{a}+I_{r}$ are completely served in time $I_{r}$. Certainly, $I_{w_{2}}=0$ is in general more difficult to attain the larger $t_{w_{1}}$ is - i.c. $t_{w_{2}}=0$ is in general a stricter requirement thatn $t_{w_{1}}=0$. Thus we expeet $t_{w_{1}}$ and $t_{w_{2}}$ to have different probability distributions.

The mean total waiting time (or wasted time) per processor cycle is $\overrightarrow{\boldsymbol{t}}_{w_{r}}=\overline{\boldsymbol{I}}_{w_{1}}+\boldsymbol{\beta} \overline{\boldsymbol{t}}_{w_{2}}$. Manipulating the cquations 2.12 and 2.13 we have:

$$
\left.\bar{I}_{w_{r}}=(1+\beta) N \bar{I}_{a}-\bar{I}_{p}-\dot{( } 1+\beta\right) \bar{I}_{a}-\beta \bar{I}_{r}
$$

If we normalize $\bar{I}_{w_{r}}$ by the mean word access time $\bar{I}_{a}$, we have

$$
\begin{equation*}
\frac{\bar{i}_{w},}{i_{a}}=(1+\beta) N-\alpha-(1+\beta)-\beta \gamma \tag{2.14}
\end{equation*}
$$

where $\alpha=\frac{\bar{l}_{p}}{\bar{l}_{u}}$, as before, and $\gamma=\frac{\bar{l}_{r}}{\bar{l}_{a}}$. I:quation 2.14 describes a function of $N$ with an asymptotic slope of $1+\beta$ and a knee at $1+\frac{\alpha+\beta \gamma}{1+\beta}$. The effect of the long word accesses, whough the parameter $\beta$, is to increase the asymptotic slope compared with the case with only word accesses. The knec increases with $\beta$ if $\gamma>\alpha$ and decreases with $\beta$ if $\gamma<\alpha$.

Normalizing instead by the mean menory access time $\bar{I}_{m}=\bar{i}_{a}+\beta\left(\bar{l}_{r}+\bar{l}_{a}\right)$ yiclds:

$$
\begin{equation*}
\frac{\bar{l}_{w_{r}}}{\bar{l}_{m}}=\frac{N}{1+\frac{\beta \gamma}{1+\beta}}-\frac{\alpha}{(1+\beta)+\beta \gamma}-1 \tag{2.15}
\end{equation*}
$$

As a function of $N, \frac{\bar{i}_{w_{T}}}{\bar{i}_{m}}$ has an asymptotic slope of $\frac{1}{1+\frac{\beta \gamma}{1+\beta}}$, which is always less thant or equal to 1 , a. dd a knee again at $1+\frac{a+\beta y}{1+\beta}$.

### 2.8.1.2 Intorministic Behaviour

Consider now the catse when $I_{p}$. $I_{u}$, and $I_{r}$ are deterministic gumetics. The maximum memory access time is $2 t_{u}+t_{r}$. Regarding this as the access time and proceeding as in section 2.2 we obtain $\bar{i}_{w_{r}}=0$ for $N \leq\left|\begin{array}{c}I_{p} \\ 2 i_{a}+i_{r}\end{array}\right|+1$. In the actual Multibus $0<\bar{i}_{r}<\bar{i}_{a}$ (sec $\Lambda p p e n d i x \Lambda$ ). Iaking $0<I_{r}<I_{a}$ here. we find that queucing must (occur (i.c. $\bar{i}_{w_{r}}>0$ ) for $N>\left|\frac{I_{p}}{2 I_{a}+\cdots}\right|+1$ when $\beta>0$. The reason that $\bar{l}_{w_{r}}>0$ under these conditions is that no request can be completely served in the recovery time (since $t_{r}<t_{a}$ ). thus in order to maintain ${\overline{t_{w}}}=0$ only one request can be served in the entire $2 t_{a}+t_{r}$ interval. However, this is impossible for $N>\left|\begin{array}{c}t_{p} \\ 2 i_{a}+i_{r}\end{array}\right|+1$, hence some requests must occasionally wait. The case with $\beta=0$ reduces to that discussed in section 2.2 , for which no queveing occurs until $N>\left|\begin{array}{c}I_{p} \\ \hdashline t_{a}\end{array}\right|+1$.

In the actual Multibus $0<\bar{I}_{r} \leq \bar{I}_{p}$ (sec $\Lambda$ ppendix $\Lambda$ ), thus $0<I_{r} \leq I_{p}$. We can view the recovery time $I_{r}$ as a shortened processing time. Thus the processing time is $I_{p}$ with probability $1-\beta$ and $t_{r}$ with probability $\beta$ (with the restriction that one processing time of $t_{p}$ follows every processing time of $t_{r}$ ). When $N>\left|\frac{t_{n}}{I_{a}}\right|+1$ and $\beta=0$. we know from section 2.2 that the bus is always busy. The following theorem shows that the bus is in fact always busy wien $N>\left|\begin{array}{c}t_{p} \\ t_{a}\end{array}\right|+1$ regardless of the value of $\beta$.

## Theorem 2.5

Consider the Multibus model with long word accesses described in the beginning of section 2.8. If

1) $I_{p}$ and $I_{r}$ are deterministic variables such that $0<I_{r} \leq I_{p}$,
2) $t_{a}$ is a random variable with minimum value $t_{a_{\text {min }}} \geq I_{r}$.
3) $\quad N>\left|\frac{t_{p}}{t_{a_{m i n}}}\right|+1$, and
4) cach of the $N$ processors has completed at least two memory accesses - byte, word. or first or second word ascess of a long word then the fraction of time that the bus is busy, denoted by $\rho$, is 1 .

## Proof:

Suppose to the contrary that $\rho<1$. Then there must be at least one memory request such that the bus is idic immediately prior to that reques. Chense one such memery request. Denote the time at which that request occurs by $\tau$ and the processor from which it originated by $k$. There are two cases to consider.

Case 1: 1 t time $\tau$ processor $k$ just completed a processing time interval (of duration $t_{p}$ ).
lemmediately prior to time $\tau \cdots t_{\boldsymbol{p}}$, each of the $N \cdots 1$ processors other than processor $k$ cither must have a memory request pending (and waiting) or must be in the midst of a processing or a recovery period (since all processors have completed at least two memory accesses). Since $t_{r} \leq t_{p}$, all of these processons (if any) in the midst of a processing or recovery period must gencrate at least one memory request before time $\tau$. Theretore there must be al least $N-1$ memory requests pending or generated in the interval ( $\tau-I_{p}, \tau$. In order that the bus be ide immediately prior to time $\tau$, all of these memory requests must be completely served before time $\tau$. Since there are at least $N-1$ of these memory requests. we must at least have $(N \quad 1) 1_{a_{m}}<I_{p}$. Or, since $N$ is an integer, we must have $N \leq\left|\begin{array}{c}t_{p} \\ \hdashline l_{\text {min }}\end{array}\right|+1$.
(ase 2: ^( time r prowesor $k$ just completed a recovery time interval (of duration $I_{r}$ ) Since the bus is idide imenediately prior to tince $\tau$ and $t_{r} \leq \prime_{\text {man }}$, there cant be no memory requests pending or generated in the intertal $[\boldsymbol{\tau}-\boldsymbol{t}, \boldsymbol{\tau})$. Finthermore, now memory requests can be pending or gencrated in the interval ( $\left.\boldsymbol{r}-\boldsymbol{t}_{\boldsymbol{r}}-\boldsymbol{t}_{a_{\text {min }}}, \tau\right)$. otherwise the bus would not be ide immediately prior to time $\tau$. In order that there be no memory requests in the interval ( $\boldsymbol{r} \cdots \boldsymbol{t}_{r} \quad \boldsymbol{t}_{a_{\text {min }}}, \boldsymbol{r}$ ) all the other $N \quad 1$ processors must be processing during the interval ( $\left.\boldsymbol{\tau}-\boldsymbol{t}_{\boldsymbol{r}} \quad \operatorname{la}_{a_{\text {min }}} \boldsymbol{\tau}\right)$. Thus each of these $N$ I prevessors must begin processiang in the interval $\left\{\begin{array}{r} \\ t_{p}, \tau\end{array} i_{r} \quad t_{a_{m u n}}\right.$, implying that at k.ast $N$ 2 memory accesses secour in the interval $\left|\boldsymbol{r}-\boldsymbol{t}_{p}, \boldsymbol{\tau} \quad \boldsymbol{t}_{r} \quad \mathbf{I}_{\text {umon }}\right|$. Therefore at kast $N \quad 1$ memory aceesses occur in the interval $\left.\mid \boldsymbol{\tau}-\boldsymbol{I}_{p}, \tau\right)$, i.e. ( $\left.N \quad(1)\right)_{a_{\text {min }}}<t_{r}$. Or since $N$ is an integer. $N \leq\left|\begin{array}{c}t_{p} \\ t_{a_{\text {min }}}\end{array}\right|+1$.
From Case 1 and 2 we conclude that $N \leq\left|\begin{array}{c}I_{p} \\ A_{a n n}\end{array}\right|$, $i$ is a necesary condition in order that $\rho<1$. Since by hypothesis $N>\left|\begin{array}{c}t_{n} \\ a_{a_{\text {min }}}\end{array}\right|+1$, we must have $\rho$ I.

Our throughput balance cquation (equation 2.12) cam be written fir general $\rho$ as follows:

$$
\frac{(1+\beta) N}{i_{a c}} \ldots \frac{\rho}{i_{a}}
$$

We conclude from this that $\frac{i_{w_{T}}}{i_{m}}$ equals its asymptotic value for $N \geq\left|\frac{I_{n}}{i_{a}}\right|+1$ since $\rho=1$ for $N$ in this range.

Figure 2.15 illustrates representative cases of $\bar{I}_{m_{r}} / \bar{I}_{m}$ vs. $N$ in the deterministic calace.


Figuc 2.15(1): $\beta=0$
Knee: ar + 1 Asymptotic slope: 1


Figure 2.15(h): $\boldsymbol{\beta} 1$
Kince: $\underset{(2+y)}{a}, 1$ Asymptotic slope: $\frac{1}{1 .}$

1. $\begin{array}{r}\gamma \\ 2\end{array}$

 and $\gamma \quad I_{r}$, lior $\beta>0$ we have there calxs:
2. firr $N \leq\left|\begin{array}{c}I_{r} \\ 2 I_{a}+I_{r}\end{array}\right|, 1, I_{n}, 0$.
 asymptonic , alle (.ssuming $!_{1}>0$ ). and




Figure 2.15 (c): $0<\beta<1$

$$
\text { Knce: } \frac{\alpha+\beta \gamma}{1+\beta}+1 \text { Asymptotic slope: } \frac{-\frac{1}{1+\frac{\beta \gamma}{1+\beta}}}{1+}
$$

The curves in Figure 2.15 (c) are rounded in the knec area due to the randomness introduced by the probabilistic choice of word vs. long word aceess. Because of this rounding, the knee cannot always be interpeted as the maximum value of $N$ for which $t_{n_{r}}=0$ can be maintained.




## -

MICROCOPY RESOLUTION TEST CHART matiomal burean of stanoards. 1943-A
tionary processing, recovery, and access time probability distributions for all $N$ if $\beta-0$ or 1 and at least for $N \leq \frac{a}{2+\gamma}+1$ and $N \geq a+1$ if $0<\beta<1$.

### 2.8.1.3 Product Form Solution

The Multibus model with long word accesses that was presented carlicr has a product form solution if the access time is exponentially distributed. The processing and recovery time distributions may be completely arbitrary.
I.et the global state be $\underline{X}-(\underline{x} p, y)$ where $\underline{x} p$ represents the state of the processons (where class 1 customers originate) and $y^{\prime}$ represents the state of the $\mathrm{FCl} \cdot \mathrm{S}$ queue for Multibus service. The processors catn be considered as comprising an infinite server since there is always a free processor available for an arriving customer. Therefore the processors form a quasi-reversible queue (with respect to a Markovian state description). The exponentially distributed access time, independent of class, renders the $\mathrm{FCl} \cdot \mathrm{S}$ queue quasi-reversible (again with respect to a Markovian state description). The quasi-reversibility of all the queucs in isolation yields the product form:

$$
\pi x=x_{p} \cdot \pi_{y}
$$

l.et $x_{p}-\left(n_{P}, n_{R}\right)$ where $n_{p}$ is the number of customers in class 2 (i.c. processing) and $n_{R}$ is the number of custemers in class 3 (i.c. recovering).
I.et $\sum^{-}\left(\left\|_{A_{1}},\right\|_{A_{2}}\right)$ where $n_{A_{1}}$ is the number of customers in class I (i.c. byte or word or first access of long word) and $"_{1}$ is the nimber of customers in class 4 (i.c. second access of long word).
Let $\lambda_{j}{ }^{f f}$ represent the effective arrival rate of class $j$ customers; $j: 1, \ldots, 4$. Then from the results in section 2.6 .1 we have:

$$
\begin{aligned}
& \pi_{x_{p}}=\frac{\left(\lambda f^{f} f_{I_{p}}\right)^{n_{p}}}{n_{p}!} \cdot \frac{\left(\lambda \int^{f} \int_{I_{r}}\right)^{n_{R}}}{n_{R}!} \\
& \pi_{y}=\frac{\left(n_{A_{1}}+n_{A_{2}}\right)!\left(n_{A_{1}}+n_{A_{2}}\right)}{\left.n_{A_{1}}!n_{A_{2}}!\lambda_{r} f f\right|^{n_{1}}\left|\lambda_{4} f f\right|^{n_{A_{2}}}}
\end{aligned}
$$

Now $\lambda_{4}^{f f f}=\lambda^{f f f} \quad \beta \lambda_{i}{ }^{d f f}$ and $\lambda_{2}^{f f f}=(1-\beta) \lambda_{i}^{f f}+\lambda_{4}^{f f}=\lambda_{i}^{f f}$. Thus the steady state probability of the globat state $X=\left(n_{p}, n_{R}, n_{A_{1}}, n_{A_{2}}\right)$ is

$$
\begin{equation*}
\pi_{x}=\frac{\left|\lambda_{1} f f_{i_{1}}\right|^{N} a^{n_{P}}(\beta \gamma)^{n_{R}}\left(n_{A_{1}}+n_{A_{2}}\right)!\beta^{n_{A_{2}}}}{n_{p}!n_{R}!n_{A_{1}}!n_{A_{2}}!} \tag{2.16}
\end{equation*}
$$

Since $n_{p}+\left\|_{R}+\right\|_{1} \cdot H_{A_{2}}=N$. we can rewrite this as:

$$
\pi x=C\left|\begin{array}{cc}
N \\
n_{P} & n_{R} \\
n_{A_{1}} & n_{A_{2}}
\end{array}\right| \alpha^{n_{P}}\left(\beta_{\gamma}\right)^{n_{R_{1}}\left(n_{A_{1}}+n_{A_{2}}\right)!\beta^{n_{A_{2}}}} .
$$

for some normalizing constant $\left(C \cdot\left(C=\frac{\left|\lambda_{1}^{e f f} f_{u}\right|^{N}}{N!}\right)\right.$.
The mean number of requests for a byte, word, or the first word of a long word access in the $\mathrm{rCl} \cdot \mathrm{S}$ queuc is

$$
\overline{n_{A_{1}}}=\sum_{n_{A_{1}}=0}^{N} n_{A_{1}} \sum_{n_{p}=0}^{N} \sum_{n_{R}=0}^{N} \sum_{n_{A_{2}}=0}^{N} m_{X} \quad n_{p}+n_{R}+n_{A_{2}}=N-n_{A_{1}}
$$

Similatly, the mean number of requests for the second word of a long word in the $\mathrm{FCl} \cdot \mathrm{S}$ queue is:

$$
\overline{n_{A_{2}}}=\sum_{n_{A_{2}}=0}^{N} n_{A_{2}} \sum_{n_{p}=0}^{N} \sum_{n_{R}=0}^{N} \sum_{n_{A_{1}}=0}^{N} \pi x \quad n_{p}+n_{R}+n_{A_{1}}=N-n_{A_{2}}
$$

Clearly $\overline{n_{1}}=\overline{\Pi_{A_{2}}}$ when $\beta=1$ and $\overline{n_{A_{2}}}=0$ when $\beta=0$.
If we let the global scate be $X^{\prime}=\left(n_{A_{1}}, n_{A_{2}}\right)$ then

$$
\begin{aligned}
& r_{X^{\prime}} \div C\left(\sum_{n=0}^{N} \sum_{n_{R}=0}^{N} \frac{\left(N-n_{1}-n_{A_{2}}\right)!}{n_{p}!n_{R}!} \alpha^{n_{P}}(\beta \gamma)^{n_{R}} \left\lvert\, \frac{\left(n_{A_{1}}+n_{A_{2}}\right)!}{n_{A_{1}!}!n_{A_{2}}!} \frac{\beta^{n_{A_{2}}} N!}{\left(N-n_{A_{1}}-n_{A_{2}}\right)!}\right.\right. \\
& =C^{\prime}(\alpha+\beta \gamma)^{N-n_{A_{1}}-n_{A_{2}}} \frac{N!}{\left(N-n_{A_{1}}-n_{A_{2}}\right)!} \cdot \frac{\left(n_{A_{1}}+n_{A_{2}}\right)!}{n_{A_{1}}!n_{A_{2}}!} \beta^{n_{A_{2}}} \\
& =C \cdot \prime\left|n_{A_{1}} n_{A_{2}} N-n_{A_{1}}-n_{A_{2}}\right|\left|\frac{1}{\alpha+\beta \gamma}\right|^{n_{A_{1}}}\left|\frac{\beta}{\alpha+\beta \gamma}\right|^{n_{A_{2}}}\left(n_{A_{1}}+n_{A_{2}}\right)!
\end{aligned}
$$

'Ihus

$$
\left.\begin{aligned}
& \overline{n_{1}}=C^{\prime \prime} N!\sum_{n_{1}=0}^{N}-n_{A_{1}} \frac{1}{n_{1}!}\left|\frac{1}{\alpha+\beta \gamma}\right|^{n_{A_{1}}} \sum_{n_{A_{2}}=0}^{N-n_{A_{1}}} \frac{\left(n_{A_{1}}+n_{A}\right)!}{n_{A_{2}}!\left(N-n_{A_{1}}-n_{A_{2}}\right)!}\left|\frac{\beta}{\alpha+\beta \gamma}\right|^{n_{A_{2}}} \\
& \left.\overline{n_{A_{2}}}=C^{\prime \prime} N!\sum_{n_{A_{2}}=0}^{N} \frac{n_{A_{1}}}{n_{A_{2}}!} \right\rvert\,-\beta \\
& \alpha+\beta \gamma
\end{aligned}\right|^{n_{A_{2}}} \sum_{n_{A_{1}}=0}^{\sum_{A_{2}}} \frac{\left(n_{A_{1}}+n_{A_{2}}\right)!}{n_{A_{1}!}!\left(N-n_{A_{1}}-n_{A_{2}}\right)!}\left|\frac{1}{\alpha+\beta \gamma}\right|^{n_{A_{2}}} .
$$

Interchanging the order of summation for $"_{1,1}$ we have

$$
=\left(" N!\sum_{n_{A_{2}}=0}^{N-1}\left|\frac{\beta}{\alpha+\beta \gamma}\right|^{n_{A_{2}}} \sum_{n_{A_{1}}=1}^{N-n_{A_{2}}} \frac{\left(n_{A_{1}}+n_{A_{2}}\right)!}{\left(n_{A_{1}}-1\right)!n_{A_{2}}!\left(N-n_{A_{1}} \cdots n_{A_{2}}\right)!}\left|\frac{1}{\alpha+\beta \gamma}\right|^{n_{A_{1}}}\right.
$$

and

$$
\begin{aligned}
\overline{n_{A_{2}}} & =\left(\cdot { } ^ { \prime \prime } N ! \sum _ { n _ { A _ { 2 } } } ^ { N } \left(\left.\frac{\beta}{\alpha+\beta \gamma}\right|^{n_{A_{2}}} \sum_{n_{A_{1}}=0}^{N-n_{A_{2}}} \frac{\left(n_{A_{1}}+n_{A_{2}}\right)!}{n_{A_{1}}!\left(n_{A_{2}}-1\right)!\left(N-n_{A_{1}}-n_{A_{2}}\right)!}|\overline{\alpha+\beta \gamma}|^{n_{A_{1}}}\right.\right. \\
& =C^{\prime \prime} N!\beta \sum_{n_{A_{2}}}^{N}\left|\frac{\beta}{\alpha+\beta \gamma}\right|^{n_{A_{2}}-1} \sum_{n_{A_{1}}=0}^{N-n_{A_{2}}} \overline{n_{A_{1}}!\left(n_{A_{2}}-1\right)!\left(N-\left(n_{A_{1}}+1\right)-\left(n_{A_{2}}-1\right)\right)!}\left|-\frac{1}{\alpha+\beta \gamma}\right|^{n_{A_{1}}+1}
\end{aligned}
$$

By renaming $n_{A_{1}}$ and $n_{A_{2}}$ in the above expression for $\overline{n_{A_{2}}}$ we sec that $\overline{n_{A_{1}}}=\beta \overline{n_{A_{2}}}$ as one might have expected (naively) from the outset.

If we let $\underline{X}^{\prime \prime \prime}=\left(n_{p}, n_{R}, n_{s}\right)$ where $n_{s}$ is the total number of requests in the $\mathrm{FCl} \cdot \mathrm{S}$ queuc, then:

$$
\pi_{X}=C^{\prime \prime} \frac{\alpha^{n_{p}}}{n_{p}!} \frac{(\beta \gamma)^{n_{R}}}{n_{R}!}(1+\beta)^{n_{s}}=C^{I V}(1+\beta)^{n_{s}} \frac{\left(N-n_{s}\right)!}{n_{p}!n_{R}!} \alpha^{n_{P}}(\beta \gamma)^{n_{R}} \frac{N!}{\left(N-n_{s}\right)!}
$$

Finally, if we let $\underline{X}^{V}=\left(n_{s}\right)$, then

$$
\begin{aligned}
\pi_{X^{v}}= & C^{\cdot v}(\alpha+\beta \gamma)^{N} \frac{N!}{\left(N-n_{s}\right)!}\left|\frac{1+\beta}{\alpha+\beta \gamma}\right|^{n_{s}} \\
& =C^{V \prime} \frac{N!}{\left(N-n_{s}\right)!}\left|-\frac{1+\beta}{\alpha+\beta \gamma}\right|^{n_{s}}
\end{aligned}
$$

where

$$
C^{V I}=\left.\left.\left|\sum_{n_{s}=0}^{N} \frac{N!}{\left(N-n_{s}\right)!}\right| \frac{1+\beta}{a+\beta \gamma}\right|^{n_{s}}\right|^{-1}
$$

Note that this is exactly the same result we obtain in section 2.4 for the $\mathrm{M} / \mathrm{M} / \mathrm{I} / / \mathrm{N}$ model if we replace $\frac{\lambda}{\mu}$ by $\frac{1+\beta}{\alpha+\beta \gamma}=$ ratio of man service requirement per cycle to mean processor tione (processing plus recovery) per cycle.
'Ihe average number of requests in the queue is

$$
\pi_{s}=c^{\nu} \cdot \sum_{n_{s}=0}^{N} n_{s}\left|\frac{1+\beta}{\alpha+\beta \gamma}\right|^{n_{s}} \frac{N!}{\left(N-n_{s}\right)!}
$$

and $\overline{n_{s}}=\overline{n_{A_{1}}}+\overline{n_{A_{2}}}=(1+\beta) \overline{n_{1}}$.

By litlle's law: ${\overline{l_{1}}}_{1}=\frac{\overline{n_{1}}}{\lambda_{1} f \bar{f}} \cdots \bar{i}_{a}, \bar{l}_{w_{2}}=\frac{\overline{n_{A_{2}}}}{\lambda_{4} f f} \cdots \bar{l}_{a}$, and the mean waiting time for any access is
 where $\lambda_{l}^{e f f}=\lambda_{1}{ }^{f f}+\lambda 4^{f f}$. (In general $\left.\bar{i}_{w}=\frac{\bar{i}_{w_{1}}}{(1+\beta)}+\frac{\beta \bar{i}_{w_{2}}}{(1+\beta)}.\right)$

It is possible $\omega$ arrive at $\bar{\eta}_{w_{1}}=\bar{l}_{w_{2}}$ (and hence $\overline{n_{A_{1}}}=\beta \overline{\Lambda_{1}}$ ) via a simpler routc. $\Lambda$ closed network of quasi-reversible queues has the property that at the instant a customer arrives at a queue the probability distribution of all other customers is the siune as the equilibrium distribution obtained if they were the only customers in the network (Kelly [K1]). An arriving custemer eessentially "sees" the network as it would behave in equilibrium without itself. Therefore class 1 and class 4 customers arriving at the liCrS queue each "sec" the queue as it would behave in equilibriam with $N-1$ customers - each see the same distribution of customers. Beth classes of customens thus have the same waiting time distribution.

Denoting the probability that the leClS queue server (i.c. the Multibus) is busy by $\rho$, we have, again by little's I aw, $\rho \cdots \lambda_{f}^{f} \boldsymbol{I}_{a}$. The bus utilization $\rho$ is given by $\rho=1-C^{V I}$. Therefore

$$
\left.\frac{\bar{i}_{w_{1}}=\bar{l}_{w_{2}}=\bar{l}_{w}}{\bar{l}_{a}}=\frac{n_{s}}{\rho}-1=\left.\frac{C^{V^{\prime \prime}}}{\left(1-C^{v^{\prime}}\right)}\left|\sum_{n_{s}=1}^{N}: \frac{N!}{\left(N-n_{s}\right)!}\right| \frac{1+\beta}{\alpha+\beta \gamma}\right|^{n_{s}} \right\rvert\,-1
$$

This is the same result as obtained with the $M / M / I / / N$ mokiel when, as just noted above, we replace $\alpha=\frac{\mu}{\lambda}$ in the $M / M / 1 / / N$ model by $\frac{\alpha+\beta \gamma}{1+\beta}$. Therefore $\frac{\bar{i}_{w}}{\bar{i}_{a}}$ is asymptotic to $N-\frac{\alpha+\beta y}{1+\beta}-1$ for large $N$ (at least in the case when all processors are identical and all the queues are quasi-reversible in isolation). Since in this case we know that $\bar{i}_{w}=\bar{i}_{w_{1}}=\bar{i}_{w_{2}}$, it is casy to comfirm this asymptotic behaviour. Fiquating throughputs for large $N$ we have:

$$
\frac{(1+\beta) N}{\bar{i}_{p}+\bar{i}_{w_{1}}+\bar{i}_{a}+\beta\left(i_{r}+\bar{i}_{w_{2}}+\bar{i}_{a}\right)}=\frac{1}{\bar{i}_{a}}
$$

and thus $\frac{\bar{i}_{w}}{\bar{l}_{a}}=N-\frac{a+\beta \gamma}{1+\beta}$ … 1. for large $N$ as deduced by comparison with the result for the M/M/I//N model.
 Although $\bar{i}_{w}$, is more meaningful than $\bar{i}_{w}$ as an indication of throughput degradation, we chome
to give the results in terms of $\bar{i}_{n}$ for three reasons. Pirst. as just mentioned the two are trivially related by a multiplicative constant. Second. $\bar{i}_{w}$ or more specificaliy. $\bar{i}_{\boldsymbol{w}}$ unifies the results of the current model with the results of the carlier models and facilitates direct comparisons. Third, the asymptotic slope of $\overline{\boldsymbol{I}}_{w}$ is independent of all parameters exeept $N$. unlike the case with $\overline{\boldsymbol{\gamma}}_{w_{r}}$. Thus graphical results for $\bar{i}_{w}$ can be presented without the powsible cluter created by asymptotes interscecting.

Actual measurements (sec $\Lambda$ ppendix $\Lambda$ ) indicate that $\bar{I}_{a}=1.04 \mu \mathrm{sec}$ for reads and $1.06 \mu \mathrm{sec}$ for writes and that $\bar{i}_{r}=.65 \mu \mathrm{sec}$. Taking $\bar{i}_{a}=1.05 \mu \mathrm{sec}$ and $\bar{i}_{r}=.65 \mu \mathrm{sec}$ yields $\gamma=-62$. The minimum possible value for $t_{p}$ is .60 or $.70 \mu$ sec with almest cqual probability: thus $\alpha \geq .62$. Fig. ure 2.16 shows $\bar{i}_{w} / \bar{l}_{a}$ vs. $N$ for various combinations of $\alpha \geq .62$ and $0 \leq \beta \leq 1$ with $\gamma=.62$. Note that with $\beta=0$ the model reduces to the $\mathrm{G} / \mathrm{M} / \mathrm{l} / / \mathrm{N}$ model.

The mean waiting time per request is very sensitive to the value of $\beta$. Indeed, since $\frac{\partial}{\partial \beta}\left|\frac{\alpha+\beta \boldsymbol{\beta} \boldsymbol{\gamma}}{1+\beta}\right|=-\frac{\gamma-\alpha}{(1+\beta)^{2}}<0($ since $\alpha \geq \gamma)$. the knec of $\frac{\bar{i}_{w}}{\bar{i}_{a}}$ varies from $\frac{\alpha+.61}{2}+1$ to $\alpha+1$, which represents close to a $100 \%$ change in $\bar{i}_{w}$ (with respect to $\bar{i}_{w}$ for $\beta=1$ ) for large $\alpha$.

### 2.8.1.4 Simulations

In this section we explore the case when the arcess time is not crponentially diveributed and thas the solution does not (in general) have the convenient product form as in the previous section. As demonstrated in section 2.7.2 exact results could be obtained by the mechod of stages. However, this method requires substantial work and does not yield great insight. Approximate results could be obtained by a diffusion model as in Halachmi and Franta [III] or by the methods discussed and referenced by Whitt [W2]. While such approximate results can yicld a great deal of insight, they are more difficult to obtain in this case - due to the complexities added by long word accesses - Uhan in section 2.7 and they are, of course, just approximate.

In order to obtain a qualititive understanding of the effeet of different processing time distributions on the mean waiting time per request. we simulated the systen with different $\alpha$ and $\beta$ parameters for different prowessing time distributions. The access time distribution was kept deterministic throughout to approximate the actual Multibus access time distribution. Tie error in this approximation is presumably quite small since the variance of the actual access time is small (see section 3.3 in Appendix $\Lambda$ ). The results from all the previous mexdels kead us to conjecture that the mean waiting time for a given prokessing time distribution and a given mean access time is minimized by a deterministic access time. Thus the mean wating time with the actual atecess time diveributoon will likely only be greater. The recovery time distribution was also kept deterministic throughout.


Three different processing time distributions were considered: third order Firlangian (i.e. $f_{3}$ ). exponential, and third ader hyperexponential (with parameters $\alpha_{1}=.6 a_{2}-3 \alpha_{3}=.1$ and
 tributions is in Uncir cocflicient of variation defined as $C_{p_{p}}=\frac{\sigma_{p}}{i_{p}}$ The cocfficient of variation. $C_{t_{p}}$. is a measurement of the amount of variation or randomness about the mean normalized by the mean. The following table gives ( ${ }_{\prime}$, for the three distributions considered.

| Processing time distribution | Cocfficient of variation $C^{\prime}$ |
| :---: | :---: |
| I:rlangian ( $\mathrm{C}_{3}$ ) | $\frac{1}{\sqrt{3}} \approx .5773$ |
| Exporential | 1 |
| Slyperexponential ( $/ 1_{3}$. parameters as above) | $\sqrt{10.1} \approx 3.178$ |

The simulation results for $\alpha-1.0,5.0,10.0$ and $\beta-0, .5$, i.0 are presented in figures 2.17. 2.18 and 2.19. Note that the bertical axis is the mean watitine time per access for any access - i.e.
 where $i_{w_{i}}$ and $\bar{i}_{w_{2}}$ are the mean wating times for the firse and second word respectively. The difference $\bar{l}_{w_{2}} \bar{i}_{w_{1}}$ increased with $N$ asd approached a comstant as the mean waiting tine approached its asymptotic value (interestingly, $i_{w} \approx \frac{{\overline{I_{n}}}_{1}+\bar{l}_{w_{2}}}{2}$ ). These findings are consistent with Une discussion in section 2.8.1.1: the waiting time for the second word of a long word access is correlated with the waiting time of the first word of the same long word access.



$\Lambda$ carctul examination of tigures 2.17. 2.18. and 2.19 reveals thit for any given $\alpha$ and $\beta$ the curves differ mily in the knee area. In each case. the incan waiting time in the knee area in keat for the lirlangian distribution and greatest for the hyperexponential distibution. This finding in consistent with our findings with the previous models: the me.an waiting ime in the knee area generally increases as the "randomness" of the (processing and access) distributions increases. In each case however, the change in the mean waiting time due to the different processing time distributions is much less than the change due to different values of the parameter $\boldsymbol{\beta}$. For example. for $a=10.0$, the Firlangian curve is at most about 2 below the same curve for the exponential, and the hyperexponential curve is at most about .5 above the same curve for the exponential.

The difference in mean waiting times effected by exponential versus deterministic distributions for the access time can be ascertained by comparing figures 2.5 and 2.18. The difference in mean waiting times is greatest in the knee area of the curves and increases with $N$. as observed with the earlier models. For $\boldsymbol{\alpha}=10.0$, the difference is at most about .70. Changing $\beta$ from .5 to 1.0 results in a change of at most ahout 1.5 in the mean waiting time. Therefore, for the distributions considered, the mean waiting time is more sensitive to the value of $\beta$ than the form of the distribution. Indeed, the value of $\beta$ determines the asymptotic value of the mean waiting time and the location of the knee in the mean vaiting time curve. The processing and access time destributioms jlist determine the "sharpness" of the knee.

The abowe discussion suggests that it is best to situdy the factors influencing due parameter $\boldsymbol{\beta}$. while perhaps assuming anallytially tractable exponential distribucions for the processing and aceess times, before studying in detail the effect of differem distributions.

### 2.9 Whulimen Model wilh Jong Word and Ringbus Accesses



 of the wher is replaced by an eqursilent lumped inodel. In this sectoon we replace the Ringhus by Its equmaknt access tanc dseributum. In the sequel we will be interested in approximating the Ringhus access time destributoon by one with a small number of parancters (in particular a single parancten $x$ ) that we can casily wive for the interaction between the Multibus and Ringbus medels. For now we comside; the Ringbos acces, time distribution lo be gencral and unspecified.

We call extend the Multhous mindel with long word accesses that was developed in section 2.8 m melade Raghus acestes. We regated a Ringbus access ans acurring with probability $\psi$ and a Multibus access as accurming with probabilly $1 \quad \psi$ : ohlorwise the model remains as in section 2.8. Actually, any Ringhus acces begas as a Afultibus access. The Ringlous interface board (RIB) Selemmine which Multibus accoses are permitted to we the Ringhos based on the address at which the read and/ar write is to be perfermed. Recall from section 1.3 that we term a memory operation - read and/or write - that excurs in the Ringhus address space (i.c. requires the Kinghus) a Ringhus acess. Similaly. We call a memory operation: that accurs in the Mlultibeis address space (i.c. does pot reunire any porion of the Ringhus) a Multibus acecos. Thus a Ringhus uccess requires mastership of die Mfultibus, but tice detual access vecurs in the Ringbus address space.

The new model can be dexribed more precisely by introjucing classes of customers as in section 2.8. We now require a total of seven classes: the classes 1 through 4 are the same as in scection 2.8.


1-gure 22(4.1): Multhous model with Ringhus accosses


Figure 2.20(b): Class transition diagram

Figure $2.20(a)$ depicts the new model and Figure $2.20(b)$ shows a class transition diagram. As in Figure 2.14 in section 2.8, the circle in Jigure 2.20(a) labeled "processing" denotes all processors which are processing and the circles tabeled "recovery" denote the processors which are recovering. The details of the medel are as follows:
I.et the request for a byte. word, or the firsi word of a long word access from any processor be represented by a customer of class 1 for a Multibus access or by a customer of class 5 for a Ringbus access. After a class 1 customer completes its access, it becomes either a class 2 customer with probability $1-\beta$ or a class 3 customer with probability $\beta$, and returns to any free processor (all processors are considered identicall). Class 2 customers represent fully completed memory accesses - byte, word, and long word (both accesses) - and class 3 customers represent half completed long word Multibus accesses - only the first word completed. Upon receiving a class 3 customer, a processor waits a time $I_{r}$ given by the recovery time distribution before generating a elass 4 customer, representing the request for the second word of a long word Multibus access. Upon completion of this second word access, the class 4 customer becomes a class 2 customer and returns to any free processor.

With probability $1-\psi$ this request is for a Multibus access and is represented by a customer of class I; with probability $\psi$ this refuest is for Ringbus access and is represented by a customer of class 5 .
^fter a class 5 customer completes its access, it becomes either a class 2 customer with probability $1-\beta$ or a class 6 customer with probability $\beta$, and returns 10 any free procesmr. Class 6 customers represent half completed long word Ringhous accesss - only the first word completed. Upon receiving a class 6 customer, a processor waits a time $t_{r}$ given by the sulne recovely tine distribution as before and then generates a class 7 customer, representing the request for the second word of a long word Ringhus access. Finailly, upon completion of this second word access. the class 7 customer becomes a class 2 customer and returns to any free processor.

Customer classes 5. 6, and 7 are completely analogous to classes 1, 3, and 4 respectively. except that the former refer to Ringhus accesss and the latter to Multibus accesses. Exacely N customers are always somewhere in the elosed leop of elasses 1 through 7.

As in our previous model, the processing time distribution is identicall for all prexessors. and the recovery time distribution is the same for all processors. There are two separate access time distributions: one for Multibus accesess and one for Ringbus accesses. The Multibus access time distribution is the same for all byte and word (first or second word of long word) Multibus accesses and the Ringbus access time distribution is the same for all byte and word (first or sccond word of long word) Ringbus accesses. We denote the access time of a Multibus atcess by the random variable $t_{a m b}$, and the access time of a Ringbus access by the random variable $t_{\text {urb }}$. The ran-
 independent of all classes.

### 2.9.1 Analysis of Mallilus Model with L.ong Word and Ringhus Accesses

### 29.1.1 Asymptotic Behaviour

The Multibus throughput is now $\frac{\rho}{(1-\psi)_{a M B}^{-}+\psi_{a R A}^{-}}$where $\rho$ is the fraction of time (i.e. probability in steady state) that the Multibus is busy. The throughput balance equation is thus:

$$
\begin{equation*}
\frac{(1+\beta) N}{i_{c x}}=\frac{\rho}{i_{a}} \tag{2.17}
\end{equation*}
$$

where $\bar{i}_{a}$ is the average access tine given by $\bar{i}_{a}=\left(1-\psi \bar{i}_{a M A}+\psi \bar{i}_{a R B}\right.$ and $\bar{i}_{\text {ar }}$ is the average cycle time given by $\bar{i}_{c r e}=\bar{i}_{p}+\bar{i}_{w_{1}}+\bar{i}_{a}+\beta\left(\bar{i}_{r}+i_{w_{2}}+i_{a}\right)$

As in section 2.8. $\bar{i}_{w_{1}}$ is the average waiting time for a byte or word access or the first word access of a long word and $i_{w_{2}}$ is the average waiting time for tue second word access of a long word. Now however. $i_{n_{1}}$ and $i_{n_{2}}$ refer to Une ancrage waiting time of both Multihus and Ringbus accesses. It is certainly possible to partition $\bar{i}_{n_{1}}$ and $\bar{i}_{n_{2}}$ each into one component for Multihus
accesses and another for Ringhus accesses. but we chense to continue looking at the overall waiting time per reques. Note that in general. $i_{w_{1}} \neq \bar{i}_{w_{2}}$ as discussed for the casce in section 2.8.

The mean tolal waiting time (or wasted time) per processor cycle is $\bar{i}_{w_{r}}=\bar{i}_{\mathbf{w}_{1}}+\beta \ddot{i}_{w_{2}}$. Combining this equation with the equation for $\bar{I}_{\text {cre }}$ and equation 2.17 yields:

$$
\bar{i}_{w_{r}}=(1+\beta) \frac{N}{\rho} \bar{i}_{a}-\bar{i}_{p}-(1+\beta) \bar{t}_{a}-\beta \bar{i}_{r}
$$

As discussed in section 2.8, we choose $\omega$ normalize $\bar{i}_{w_{F}}$ by the mean memory access time $\bar{i}_{m}=\bar{i}_{a}+\beta\left(\bar{l}_{r}+\bar{i}_{a}\right)$ in order $\boldsymbol{u}$ retain our cartier interpretation of the knee. Thus

$$
\begin{equation*}
\frac{i_{m_{T}}}{i_{m}}=\frac{\frac{N}{\rho}}{1+\frac{\beta \gamma}{(1+\beta)(1+\psi(\zeta-1))}}-\frac{\alpha}{\beta \gamma+(1+\beta)(1+\psi(\zeta-1))}-1 \tag{2.18}
\end{equation*}
$$

where $a=\frac{i_{p}}{\bar{i}_{a M R}}, \gamma=\frac{\bar{i}_{r}}{i_{a M R}}$, and $\zeta=\frac{\bar{i}_{a R R}}{\bar{i}_{a M B}}$
$\Lambda_{s}$ a function of $N \cdot \frac{\bar{i}_{w_{I}}}{\bar{i}_{m}}$ has a knee at $\frac{a+\gamma \beta}{\left.(1+\beta)\left(1+\frac{\gamma \beta}{\psi(\zeta}-1\right)\right)}+1$ and an asymptotic slope of $\frac{1}{1+\frac{\beta \gamma}{}}$, which is always less that or equall to $1 . \Lambda s N \rightarrow \infty, \rho \rightarrow 1$, so $\frac{\bar{i}_{w_{T}}}{i_{m}}$ is asymptotic to cquation 2.18 with $\rho=1$.

### 2.9.1.2 Deterministic Behaviour

Consider now the case when $I_{p}, I_{r}, l_{\text {amb }}$, and $I_{\text {arb }}$ are deterministic quantitics. The maximum memory access time is $2 \imath_{\text {arb }}+i_{r}$ (assuming that $t_{a r b}>l_{a m b}$ ). Thus $\bar{i}_{w_{r}}=0$ for $N \leq\left|\frac{I_{p}}{2 l_{\text {arb }}+I_{r}}\right|+1=\left|\frac{a}{2 \zeta+\gamma}\right|+1 \equiv N_{l}^{*}$, where $N_{l}^{*}$ corresponds to the knee when $\beta=1$ and $\psi=1$. The following theorem shows that the bus is busy when $N \geq\left|\frac{m_{p}}{I_{a M B}}\right|+1=|\alpha|+1 \equiv N_{\mu}^{*}$ regardless of the value of $\beta$ and $\psi . N_{\mu}^{*}$ corresponds $t$ the knee when $\beta=0$ and $\psi=0$.

## Theorem 2.6

Consider the Multibus model with long word and Ringbus accesses described in the beginning of section 2.9. If $t_{p}$. $t_{a A R A, ~} I_{\text {UR }}$, and $t_{r}$ are deterministic variables such that $t_{r} \leq I_{p}$, $t_{r} \leq I_{u M B} \leq I_{a R B}, I_{r}>0$, and $N>\left|\frac{t_{p}}{t_{a M R}}\right|+1$ and if each of the $N$ processors has completed at least two memory accesses - byte, word, or first or second word access of a long word - then the fraction of time that the bus is busy, denoted by $\rho$, is 1 .

Proor:
Given by Theorem 2.5 with $I_{a_{\text {min }}}=I_{a M B}$.

From Theorem 2.6 we conclude that $\frac{\bar{i}_{w_{r}}}{\bar{i}_{m}}$ cquals its asymptotic valuc for $N \geq N_{\mu}^{*}$. For $N_{i}^{*}<N<N_{\mu}^{*}$ and $0<\beta<1$ and/or $0<\psi<1 . \frac{\bar{i}_{w_{T}}}{\bar{i}_{m}}$ is strictly positive, again by an argument similar to that in section 2.8.1.2.

The unree possible cases are depicted in Figure 2.21. As discussed in section 2.8.1.2. the curve in Figure 2.21 (c) is rounded in the knee area due to the randomness introduced by the probabilistic choice of Multibus versus Ringbus access and word versus long word access.

(a): $\boldsymbol{\beta}=0$ and $\psi=0$

Knec: $\alpha+1$ ^symptotic slope: 1


Figure 2.21: Representative cases of $\bar{i}_{w_{T}} / \bar{I}_{m}$ vs. $N$ in deterministic case

### 2.9.1.3 Product Form Solution

The FCl S queue for the Multibus is no lenger quasi-reversible in general, since the service time depends on the class of the customer: Ringhus ancesses may have a different service time distribution than Multibus accesses. Certainly, the ICISS queue remains quasi-reversible if $\psi=0$ and the Multibus access time distribution is exponential or if $\psi=1$ and the Ringbus access time distribution is exponential. The analysis in either of these two cases is the same as in section 2.8. However, we are interested in the gencral case when $0<\psi<1$. Since the I•CFS queue is not quasireversible for $0<\psi<1$ (unkess the Multibus and Ringbus access time distributions are identical). we cannot use the product form results in section 2.6.1 to give an exact result (no product form solutions are known for non-symmetric FCl S queues). We can however, find an exact product form solution for a slightly different model than the one in whicli we are interested.

Consider the model presented at the beginning of section 2.9 with general presessing. recovery and access time distributions. Obtain a new-model by replacing the $\mathrm{FCl} \cdot \mathrm{S}$ yueuc for the Mutibus by a server-sharing queuc. ( $\wedge$ server-sharing quetie is essentially a round-robin queue with infinitesimal quantum size so all queued customers are in service simultancously.) Since the scrver-sharing queue is quasi-reversible, this new model has an exact product form solution. We will now derive the exact solution for this new medel and use it to approxinate the solution of ouir original model with a $\mathrm{FCl} \cdot \mathrm{S}$ gucue.

Let the global state be $\underline{X}=(\underline{x} p, y)$ where $\underline{x} p$ represents the state of the processors and $y$ represents the state of the server-sharing queue for use of the Multibus. As in section 2.8.1.2. the processors can be considered as comprising an infinite server and thus they form a quasi-reversible queue (with respect to a Markovian state deseription). As mentioned earlier. the server-sharing queuc is also quasi-reversible (with respect to a Markovian state description). The quasireversibility of all the queues in isolation yields the product form:

$$
\pi_{x}=\pi_{x_{p}} \boldsymbol{\pi}_{y}
$$

L.ct $\underline{x} p=\left(n_{2} ; n_{3}, n_{6}\right)$ and $y=\left(n_{1}, n_{5} ; n_{4}, n_{7}\right)$ where $n_{i}$ is the number of customens in class $i$. I.et $\lambda_{i}{ }^{i f f}$ represent the effective arrival rate of class $i$ customers. Then from the results in section 2.6.1 we have:

$$
\begin{aligned}
& \pi_{x_{p}}=\frac{\left(\lambda_{2} f\left(f_{p}\right)^{n_{2}}\right.}{n_{2}!} \cdot \frac{\left(\lambda_{i} \cdot \int f_{l_{r}}\right)^{n_{3}}}{n_{3}!} \cdot \frac{\left(\lambda_{6} f f_{i_{r}}^{-}\right)^{n_{6}}}{n_{6}!} \\
& \pi_{y}=\frac{\left(n_{1}+n_{5}+n_{4}+n_{7}\right)!}{n_{1}!n_{1}!n_{4}!n_{7}!}\left(\lambda_{1} f f_{I_{a M B}^{-}}\right)^{n_{1}}\left(\lambda_{5}^{f f f}{ }_{I_{a R B}}^{-}\right)^{n_{5}}\left(\lambda_{4} f f_{I_{a N B}}^{-}\right)^{n_{4}}\left(\lambda_{7} \int f_{I_{u R B}}^{-}\right)^{n_{7}}
\end{aligned}
$$



Simplifying, we finally obtain:

$$
\begin{equation*}
-x=\frac{\left(a^{n_{r}}(\beta \gamma)^{n_{k}}\left(n_{A_{1}}+n_{A_{2}}\right)(1-\psi+\psi \zeta)^{\left(n_{A_{1}}+n_{A_{2}}\right)} \beta^{n_{A_{2}}}\right.}{n_{p}!n_{R}!n_{A_{1}!n_{A_{2}}!}} \tag{2.19}
\end{equation*}
$$

where $n_{p}=n_{2}, n_{R}=n_{3}+n_{G}, n_{A_{1}}=n_{1}+n_{5}$, and $n_{A_{2}}=n_{4}+n_{7}$. $\Lambda$ s before, $a=\frac{\bar{i}_{p}}{i_{a M B}}, \gamma=\frac{i_{r}}{i_{a M B}}$, and $\zeta=\frac{\overline{\bar{T}}_{\text {aRB }}}{\overline{\boldsymbol{T}}_{\text {aMA }}}$. Note that cquation 2.19 is exactly the same as equation 2.16 in section 2.8.1.3 except for the $(1-\psi+\psi \zeta)^{\left(n_{1}+n_{1}\right)}$ term. We can iunagine a similar term in cquation 2.16, i.e. $1^{\left(n_{1}+n_{1_{2}}\right)}$, and thus bexh have exictly the same form.

Using the results of section 2.8.1.3 we immediately have:

1) the steady-state prohability of at wial of $n_{s} .0<n_{s}<N$ requests in the queve is

$$
\operatorname{Prob}\left(n_{s} \text { in queuc }\right)=c^{\cdot v} \frac{N!}{\left(N-n_{s}\right)!}\left(\frac{(1+\beta)(1 \cdots \psi+\psi 5)}{a+\beta \gamma}\right)^{n_{s}}
$$

where (" is a normalizing constant
2) $\bar{i}_{w_{1}}=\bar{i}_{w_{2}}=\bar{i}_{w}$
3)

$$
\left.\frac{\ddot{i}_{w}}{\bar{i}_{n}}=\frac{c^{\nu}}{1-C^{*}}\left|\sum_{n_{s}=1}^{N} n_{s} \frac{N!}{\left(N-n_{s}\right)!}\right| \frac{(1+\beta)(1-\psi}{\alpha+\beta \gamma}+\psi \zeta\right)\left.\right|^{n^{n}} \mid
$$

where
$\overline{\boldsymbol{I}}_{a}=(1-\psi) \bar{I}_{a M B}+\psi \bar{I}_{a R B}$.
Points (1) and (3) are the same resuls as obtained with the M/M/I//N modet in section 2.4
 Therefore with a server-sharing queuc. $\frac{\bar{I}_{w}}{\bar{i}_{a}}$ is asymptotic to $N \cdots(\overline{1}+\beta)(\beta \gamma+\psi \zeta)$ for large $N$. I'oint (2) implics that $i_{w_{r}}=(1+\beta) \bar{i}_{n}$. Thus $\frac{i_{w_{r}}}{i_{m}}=\frac{(1+\boldsymbol{\beta})}{1+\beta+\frac{\beta \boldsymbol{\gamma}}{1+\psi(\zeta-1)}} \times \frac{i_{w}}{i_{a}}$.

To gauge the accuracy of the result for the server-sharing model as an approximation for the original model. consider the Multibus model with long word accesses in section 2.8. The product form solution of this model is exactly the sume for FCFS and server-sharing disciplines at the Multibus quene. However, the product form solution with the server-sharing discipline is more comprehensive: it is exact for gerieral distributions for the prosessing. reco:ery, and access times (i.c. it is not limited to an exponemial access, time distribution an with the I(TS discipline). Since
the product form solution is the satme for ICOS and server-sharing distiplines, the simulations reported in section 2.8.1.4 tnay be uxd to determine the accuracy of the solation for the eerversharing discipline in approximating the wolation for the ICIS dixipline. We reach the same conclusion as in section 2.8.1.4: the approximation is excellent except in the knec area and in general. $\vec{i}_{w_{1}} \neq \vec{i}_{w_{2}}$. In the knee area, $\bar{i}_{w}$ with the server-sharing discipline is too large for some processing time distributions (those with $C_{1}<1$ it seems) and $(0)$ small for other processing time distributions (those with ( $t_{s}>1$ it seems). Fixtrapolating. we expect roughly the same the accuracy of our server-sharing model in section 2.9.1.3 as an approximation for the original $\mathrm{ICl} \cdot \mathrm{S}$ model.

It is important to temper the previous sentence with the observation that we are basing our extrapolation to the case with general Ringhus access time distribution (of possibly large vatiance) on the simulations performed for deterministic access times. However. the accuracy of the serversharing model will likely remain very good except around the knec area where we expect the greatest inaceuracies to acerue. We have chosen not to perform any simulations to determine further the accuracy of our server-sharing model. The reasen is that, as in section 2.8.1.3, we expect the mean waiting time to be more sensitive to the values of the parameters, such an $\beta$ and $\psi$. than the exact form of the probability distributions. Therefore it seems best to study the factors influencing the parameters beliorn studying alse effect of the probability distributions.

### 2.9.1.4 A Special Case

In the special case when the processing time is exponentially distributed and there are no long word acesses (i.e. $\boldsymbol{\beta}-\mathbf{0}$ ) an exact result for the average waiting time per request can be obtained fiom the $1 / / G / 1 / / N$ resalts in section 2.5. Since there are no long word accesses, we can combine the Multibus access time and Ringbus access time distributions into one access distribution. Specifically, if the Multibus access time distribution is $\operatorname{Prob}\left(I_{a m b} \leq 1\right)=F_{\text {Gmb }}(1)$ and the Ringbus access time distribution is $\operatorname{Prob}\left(t_{a r b} \leq 1\right)-F_{a r b}(1)$, then the overall access time distribution is $I_{n}(1)-(1-\psi) F_{a m b}(1)+\psi F_{a r b}(1)$. The average waiting time $i_{n}$ can be determined by applying the formulac in section 2.5 with $f^{\circ}(s)=\int_{0}^{\infty} e^{-s x} d f_{i}(x)$.

### 2.9.2 The Single Processor Fquitalent of the Multibus

As discussed in section 1.2.4. we have decomposed the orerall model of Concert into Multibus and Ringbus models and when dealing with one of these models. we replace the other models by equivalent models. L!p to this point we have examined the Multibus modet: we have assumed some Ringhos access bine dreribution and determened the performatace of the Muitious


## Multibus.

The single processor equivakent of the Multibus is claracterized by a processing time distribution. Ringhus destination probabilities, and $\beta \cdot-(), \psi \cdot$ I (as dixcusised in section 1.2.4). The processing time distribution prescits the most difliculty - we must find the probability distribution of the Ringbus spacing. ${ }^{\dagger}$ The Ringhus destination probabilities are trivial to determine. Since we have assumed that all processors in the Multibus medel are identical. the Ringbus destination probabilities for the entire Multibus are the saune as that for one processor. Thus the Ringhus destination probabilities for the single processor equivalent, denoted by $p_{i}^{\text {Mhrav }}$, are given by $p_{1}{ }^{\text {MReyv }} \boldsymbol{p} \boldsymbol{p}_{i}$ for all $i$, where the Ringbus destination probabilites for each processor in the Multibus model are denoted by $\boldsymbol{p}_{i}$.

The Ringbus spacing probability distribution is very difficult to find in clesed form. Instcad. we cherese to approximnate the Ringhus spiaing distribution by another distribution with the same first moment. We could also use higher moments in the approximation of the Ringbus spacing distribution, thereby achieving greater accuracy. However, higher moments are progressively more difficult to obtain from the Multibus medel. We therefore choose to stick with our simple first moment approximation and evaluate the results before considering more complex and accurate approximations. Indeed. une results so obtained may be sufficiently accurate that more accurate approximations are unnecessary. To case analysis, we chense an exponential distribution, which is completcly parancterized by its first moment, to approximate the Ringbus spacing distribution. Recall from section 1.2.4 that the processing time probability diseribution of the single processor cquivalerit is equal to the Ringbus pataing probainility distribution. Thus we have just approximated the proxessing time distribution of the single processor equivalent by an exponential distribution. I.et the matan of this distribution be denoted by $i_{p}{ }^{\text {MRcuv }}$.

The Ringlous access time distribution is also) very difficult to find in closed form (as we shall see in Chapter 3). For the same reasons as above, we cherose to also approximate the Ringbus access time distribution by an exponential distribution. Since both the processing time distribution of the single processor cquivalent and the Ringbus access time distribution are thus completely specified by their respective first moments. imtegrating the Multibus and Ringbus models reduces to first moment matching, rather thatn the (considetably) more difficult task of matching continuous distributions.

We now determine the mean processing time of the single processor equivalent of the Multibus in terms of Multibus parameters. The mean time between initiation of Ringbus accesses is $\bar{i}_{\rho}{ }^{\text {MReqv }}+\bar{i}_{a R B}$. This mean lime is also given by $\frac{\bar{T}_{\text {ar }}}{(1+\beta) N \psi}$ where.

[^7]$\bar{i}_{c y c}=\bar{i}_{p}+\bar{i}_{w_{1}}+\bar{i}_{a}+\beta\left(\bar{i}_{r}+\bar{i}_{w_{1}}+\bar{i}_{u}\right)$ and $\bar{i}_{a} \because\left(1-\psi \bar{l}_{a A B A}+\bar{\psi}_{u R H}\right.$. Thus the mean processing time of the single processor equivalent is given by
\[

$$
\begin{equation*}
\bar{i}_{p}^{M B r q v}=\frac{\bar{i}_{c x}}{(1+\beta) N \psi}-t_{a R B} \tag{2.20}
\end{equation*}
$$

\]

To proceed further we require a relationship between $\bar{i}_{w_{r}}=\bar{i}_{w_{1}}+\beta \bar{i}_{w_{2}}$ and the Multibus parameters. We choose to use the exact results for the server-sharing queue model developed in section 2.9.1.3 to approximate the general case. There is, of course, some error involved with this approximation, but at least we have a convenient result expressing the relationship between $\bar{i}_{w_{T}}$ and the Multibus parameters. As discussed in section 2.9.1.3, the server-sharing queue model should give fairly accurate results for $\bar{i}_{w_{r}}$ except around the knee area. Substituting the equation for $\bar{i}_{\text {cy }}$ into cquation 2.20 we have:

$$
\bar{i}_{p}^{M B C q v}=\frac{\bar{i}_{p}+\beta \bar{i}_{r}}{(1+\beta) N \psi}+\frac{\bar{i}_{a}\left(\frac{\bar{i}_{w}}{\bar{i}_{a}}+1\right)}{N \psi}-\bar{i}_{a K B}=\bar{i}_{a M B A}\left|-\frac{(\alpha+\beta \gamma)}{(1+\beta) N \psi}+(1-\psi+\zeta \psi) \frac{\left(\frac{\bar{i}_{w}}{\bar{i}_{a}}+1\right)}{N \psi}-\zeta\right|
$$

where $\frac{\bar{i}_{w}}{\bar{i}_{a}}$ is the mean waiting time per request for the $M / M / 1 / / N$ model of section 2.4 (equations 2.1 and 2.2) with $\frac{\mu}{\lambda}=\frac{\alpha+\beta \gamma}{(1+\beta)(1-\psi+\psi 5)}$.

For small $N, \frac{\bar{i}_{w}}{\bar{i}_{a}} \approx 0$, and thus $\bar{i}_{p}^{M R c q \psi} \approx \bar{i}_{a M B}\left\{\frac{(\alpha+\beta \gamma)}{(1+\beta) N \psi}+\frac{1-\psi}{N \psi}-\zeta\left(1-\frac{1}{N}\right)\right\}$. Therefore $\bar{i}_{p}^{\text {MBeqv }}$ is approximately lincar in $\zeta$ for small $N$. For large $N, \frac{\bar{i}_{w}}{\bar{i}_{a}} \approx N-\frac{(\alpha+\beta \gamma)}{(1+\beta)(1-\psi+\psi \zeta)}-1$ and thus $\bar{i}_{p}{ }^{\text {M }{ }^{C q v}} \approx \bar{i}_{a M B} \frac{(1-\psi)}{\psi}$, a constant.

As we shall see in section 3.9.1, we need one more quantity from the single processor equivilent of the Multibus when we integrate the Multibus and Ringbus models. This quantity. which we denote by $P_{R B}$ is the probability that at the termination of a Ringbus access. the Multibus queue is nomempty and the request at the head of the queue is a Ringbus request. In other words.
$P_{R B}=\operatorname{Prob}($ a customer departing from the Multibus queue leaves a Ringbus request
at the head of the queue |the costomer departing is a Ringbus request)
the Multibus with a Ringhus desination and the sat of the next such access on the Multibus.

A closed network of quasi-reversible queues has the property that when a customer of a given class arrives at or departs frem a queue. the other customers in the system are distributed according to the steady-state probability distribution obtained if they were the only custemers in the system [Theorem 3.12 of Ref. KI]. Thus $P_{R B}$ in the server-sharing queue approximation of the general case is given by the steady-state probability of the customer in service - i.e. at the head of the queue - representing a Ringbus access in a $N-1$ processor system. ( $N$ is the number of processors in the original system.) We denote this probability by $\rho_{N_{B}-1}^{N}$. Let $\rho^{N-1}$ denote the steady-state probability of there being any customer in service in a $N-1$ processor system.
 2.9.1.3 we have

$$
\begin{aligned}
& \lambda_{k}^{f} f(N-1)=\lambda_{f}^{f f}(N-1)+\lambda f f(N-1) \\
& =\psi(1+\beta) \lambda_{2}^{\delta f(N-1)} \\
& \lambda \cdot f \delta f^{(N-1)}=\lambda f^{f f(N-1)}+\lambda f^{f f(N-1)}+\lambda \rho^{f f(N-1}+\lambda f f f(N-1) \\
& =(1+\beta) \lambda_{2}^{d f(N-1)}
\end{aligned}
$$

and

$$
{\overline{c_{a}}}=((1-\psi)+\zeta \psi) \bar{f}_{a, V B}
$$

Thus

$$
\rho_{R B}^{N-1}=\frac{\psi \bar{l}_{\alpha R n}}{\bar{l}_{a}} \rho^{N-1}=-\frac{\psi \zeta}{1-\psi+\zeta \psi} \rho^{N-1}
$$

We have already noted that the server-sharing queue model in section 2.9.1.3 has the same solution for $\bar{I}_{w} / \bar{I}_{a}$ as a $M / M / \mathrm{I} / / \mathrm{N}$ queue model with $\frac{\mu}{\lambda}=\frac{\alpha+\beta \boldsymbol{\gamma}}{(1+\beta)(1-\psi+\psi \zeta)}$. The same holds for the probability that the server is busy. That is. $\rho^{N-1}$ is the probability that the server is busy in a $M / M / I / / N-I$ system with $\frac{\mu}{\lambda}=\frac{\alpha+\beta \gamma}{(1+\beta)(1-\psi+\psi \zeta)}$. Finally. $P_{R H}=-\frac{\psi \zeta}{1 \cdots+\psi \zeta} \rho^{N-1}$.

## 2. 10 Exicusions

The Multibus models considered so far have feur main weaknesses:

1. All processors are identical.
2. The prexessor inodel is very simple, perhaps too simple.
3. The processor model is stationary, i.e. time independent.
4. All proxessors are independent.

We assumed points 1 through 4 in the previous sections to obtain simple and analytically tractuble models. In this section we consider extensions to relax each of these assumptions.

### 2.10.1 Non-identical processors

This case is straightorward to hande by simply adding more states to the Multibus model to represent the different combinations of non-identical processors. For example, we can change the state description of the $M / M / 1 / / N$ model in section 2.3 from ( $n$ ) where $n$ iepresents the number of requests waiting for or in service to ( $n, c_{1}, c_{2}, \cdots, c_{n}$ ) where $n$ is the same as before and $c_{i}$ represents the prucessor from which the $i^{\text {th }}$ request in the queue originated. In a sense, we now have $N$ classes of customers (for $N$ processors) where there is one elass per processor. Similarly, we can add classes to the Multibus model with Ringhus accesses in section 2.9 to distinguish the respective processurs at which requests originate. For example. we could cloosise the chasises $7(i-1)+1,7(i-1)+2, \cdots, 7(i-1)+7,1 \leq i \leq N$, where $i$ denotes the originating processor and $7(i-1)+1,7(i-1)+2, \cdots, 7(i-1)+7$ represent the 7 classes (as in section 2.9 ) assonciated with the originating processor $i$. $\Lambda$ product form solution, similar to that developed in section 2.9.1.2. canl be developed with respeet to these classes.

Since the processors are now non-identical, the mean waiting time per request. $i_{w}$, is not necessirily the same for the requests of all processors. This complicates the calculation of the throughput. It is probably best to consider the mean waiting time per request from processor $i$. for all $i$, rather than the mean waiting time for any request given by $\bar{i}_{w}$.

Note that while the case with non-identical processors is straightforward to handke we state space required and the complexity of the analysis increases without necessarily contributing much insight.

### 2.10.2 More Complex Processor Models

This case can again be handled by increasing the number of states representing the Multihus model. We assume in this subsection that the proceisurs are identical, independent, and stationary. I hese assumptions can be relaxed by the methods discussed in the preceding and succeeding subsections.

Within the assumptions stated alowe, we can make the processor model arbitrarily complex and. provided that we call filld a Markovian state description of the processor, we can augment the state of the Multihus moxdel with the state of eikh processor medel and in principle solve for the steady-state probability distribution. Once we know the steady-state probability distribution we can in priseiple determine any related performance measurement of interest. The difficulty, of course. is with the "in principle" part.

One quite general way to proceed is to approximate the entire Multibus model (including the processor medels) by a queucing network model with a product form solution. Onc advantage of this approach is that we can deal with the model at a more abstract level. The states need not be Markovian: it suffices that cekch queue is quasi-reversible in isolation with respect to some Markovian state description but we need not find or deal with such a description. 1 second advantage is that we call obtain analytical expressious for the steady-state distributions and hence for the performance measures of interest. 1 disidvantage is that inevitably some simplifying assumptions are involved. In sume cases the necessiry simplifying assumptions may obscure or eliminate the features of interest. In such cases one must resort to other melurds such as simulation. (There is a paucity of methods for dealing with large non-prodict form systems.)

A way to extend the proxessior model using a queucing network modet is to consider the processor operation as consisting of a set of activities, say $A_{1}, A_{2}, \cdots, A_{m}$. Onc activity might correspond to program exceetion in the proccisisers liscal memory, another might correspond to reading or writing global data, and yet another might corresponed to busy waiting on wome g!obal memory keation, and wo on. (Of cotme, with our independence as:minption. the period of time spent busy waiting must be independent of the operation of the other prexessors.) Assaciated with each activity is some interarrival time of requests for the Multibus, some interarrival time of requests for the Ringbus. a probability distribution for the time spent in that activity, and a probability distribution for the next activity (which may depend on the previous activities and the time in each). We can describe the overall Multibus moxtel by a queucing network by regarding the activities as queues (several qucues may be necessiry to describe eich activity) and the uperation of the processors as customers which move from queue to quetie. The customers can belong to classes which represent the previous quene(s) visited, the service tiane at a quene. and so on (provided each queue remains quasi-reversible with respect to the classes). Finally, the transition from one class to another can be governed by a probability distribution depending only on the present class.


Pruccisor 3

1igure 2.22: Qucueing network model with procession activitics
$\Lambda$ queueing network model for a three processor ssstem with thee activities each is depicted in Pigure 2.22.

If each queue is quasi-reversible in isolation, tuen the global state prohability has a product form solution. Sinee there is at most one customer per class (we assume that there is a total of one customer in all the classes associated with a single proxessor - more than one would correspond to a multi-tasking processor), the service time distribution at each queue except the FCl:S Multibus queue may be completely general. As discussed in sections 2.8 and 2.9 , the service time distribution at Une Multibus queue must either be exponential with the sime mean for alll costonners or the quele discipline must be server-sharing.

To illustrate the activity-based queucing network model more concretely, we consider the following general case.
I.ct there be $N$, not necessarily identical processors. I et the model for processor a comsist of $Q(i)$ queucs $Q^{i}{ }_{1} . Q^{i}{ }_{2}, \cdots, Q^{i}{ }^{\prime}(i)$ and the Multibus queue (which is common to all $N$ presessors models). I.et there be a finite set of customer clasises (' $(i)$ issociated with each proxesmer $i$. Fach customer class visits at least one queue. Upon departing from a queuc. a customer of $\mathrm{c}, \mathrm{as} \boldsymbol{k} k$ joins


I.et there be exactly one customer in the closed low of classes corresponding to each processor. Thus the service time distribution at each queue except the Multibus quene may be completely general. (In addition, any customer at a queue other than the Multibus quene must be receiving service.) We assume that the service time distribution at each queue is independent of customer class. (For non-Multibus queues we can simply add more queues and classes to circumvent this restriction.) We also assume cither that the Multibus queue discipline is FCFS and the service time distribution is exponential or that the Multibus queue discipline is server-sharing and the service time distribution is general.

By adding a sufficient number of queues and classes, the general case just described can hande or approximate a wide range of activities and processor models. As stated carlier in this section. the classes can represent quite detailed history, such as previous queues visited and the service times at those queues. Therefore one can even have an approximate distribution for the time spent in an activity by defining classes to represent the time elapsed in a certain activity. (This technique will be discussed in more detail in section 2.10.3.) By construction, each queue in the general case just described is quasi-reversible in isolation and thus the global state probability has a product form solution. We now investigate this solution.
I.et the global state be $\underline{X}=\left(\underline{x} r_{1}, \cdots, \underline{x} P_{N}, \underline{Y}\right)$ where $\underline{x} P_{1}$ represents the state of processor $i$ and $y$ represents the state of the Multibus queue. Then we have the product form solution:

$$
\pi_{\mathrm{x}}=\prod_{i=1}^{N} \pi_{x_{p_{i}}} \cdot \pi_{y} .
$$

l.et $X P_{i}=\left(q^{i}, \cdots, q^{i}{ }_{N}\right)$ where $q^{i}{ }_{j}$ denotes the state of queue $j$ for processor $i$ and let $q^{i}{ }_{j}=\left(n^{i}{ }_{j}(l), n^{i}{ }_{j}(k), \cdots\right)$ for each class $l, k, \cdots \in C(i)$ where $n^{i}{ }_{j}(k)$ denotes the number of customers in class $k$ at queue $j$. I.et $\lambda^{i}{ }_{j}$ denote the effective arrival rate of class $j$ customers for processor $i$. Conscrvation of flow yields

$$
\begin{equation*}
\lambda^{i}{ }_{j}-\sum_{k \in C(i)} \lambda^{i}{ }_{k} r^{i}{ }_{k j}, \quad j \in C(i) \tag{2.21}
\end{equation*}
$$

Then the steady-state probability of state $q^{i}{ }_{j}$ is

$$
\pi_{4^{\prime},}=C \dot{n}^{i}{ }_{j}!\prod_{k \in(\cdot(i)} \frac{\left|\rho^{i}{ }_{j k}\right|^{n^{i},(k)}}{n^{i}{ }_{j}(k)!}
$$

where $n^{i}{ }_{j}=\sum_{k \in(\cdot(i)} n^{i}{ }_{j}(k) . \rho^{i}{ }_{j k}=\bar{s}^{i}{ }_{j} \lambda^{i}{ }_{k}$, and $\bar{s}^{i}{ }_{j}$ is the mean service time at queue $j$ for processor $i$.

If we let $q^{i}{ }_{j}-n^{-\left(n^{i}\right)}$ we have

$$
\pi_{4^{\prime},}=\frac{\left(\left|\rho_{j}\right|^{n^{i}},\right.}{n_{j}^{i}!}
$$

where $\rho^{\prime}{ }_{j}=\sum_{k \in C^{(i, j)}} \rho^{i}{ }_{j k}$ and $C^{\prime}(i, j)$ is the set of classes arriving at queue $j$ for processor $i$. Thus the steady-state probability of state $\underset{x}{ } p_{1}$ is

$$
\nabla_{x_{p_{i}}}=C^{\prime} \prod_{j=1}^{\infty} \frac{\left(\rho^{\prime}\right)^{n^{\prime}},}{n_{j}^{\prime}!}
$$

L.et $n^{\prime}=-\sum_{j=1}^{Q(1)} n^{\prime} j$. Then if we let $\underline{x} f_{1}=\left(n^{i}\right)$ we have (since $n^{i}=0$ or 1$)$

$$
\nabla_{x_{p_{1}}}=c^{\prime}\left|p^{1}\right|^{n^{\prime}}
$$

where $\rho^{i}=\sum_{j=1}^{O(i)} \rho_{j}{ }_{j}=\sum_{j=1}^{\varrho(j)}\left|\bar{s}^{i}{ }_{j} \sum_{k \in C^{\prime}(i, j)} \lambda^{\prime}{ }_{k}\right|$.
I.et the state of the Multibus queue be represented by $y^{\prime}=\left(m_{1}, \cdots, m_{N}\right)$ where $m_{i}$ denotes the number of requests in the queue from prexessor $i$. Nute that $m_{1}+n^{i}-1$. Denue the effective arrival rate of customers at die Multiinus queue from processor $i$ by $\lambda^{\prime}$,an i.c. $\lambda^{\prime}{ }_{M B}=\sum_{k \in C(1, M B)} \lambda^{\prime}{ }_{\kappa}$ where $C^{\prime}(i, 1 / B)$ is the set of all clasises arriving at the Multibus from processur $i$. Then

$$
\pi_{y}=m!\left|i_{a}\right|^{m} \prod_{i=1}^{N} \frac{\left|\lambda_{M B}^{i}\right|^{m_{i}}}{m_{i}!}, \quad m=\sum_{i=1}^{N}, m_{i}
$$

Thercfure if the global state is $X=\left(n^{1}, \cdots, n^{N}, m_{1}, \cdots, m_{N}\right)$ we have

$$
\begin{align*}
\pi \mathrm{x} & =C^{\prime \prime \prime} m!\left|\bar{i}_{1}\right|^{m} \prod_{i=1}^{N} \frac{\left|\rho^{i}\right|^{1 \cdots m_{1}}\left|\lambda^{i} s / n\right|^{m_{1}}}{m_{1}!} \\
& =C^{\prime \prime \prime \prime}\left|m_{1} m_{2} \cdots m_{N}\right| \prod_{i=1}^{N}\left|\sum_{j=1}^{C(i)} \tau^{i}{ }_{j} \frac{\sum_{k \in\left(C^{\prime}(i, j)\right.} \lambda_{k}^{i}}{\lambda^{i}, M B}\right|^{-m_{1}} \tag{2.22}
\end{align*}
$$

 $i$ of the effective arrival rate at quewe $j$ th the effective arrival rate at the Multinus quene.

The meian waiting time per refuest from processor $i, \bar{i}_{w_{i}}$ and the mean waiting time per request for imy request, $\bar{i}_{n}$, call be derived from equation 2.22.

We note the following two points about cquation 2.22:
I. liquation 2.22 is dependent on the details of the model for processor $i$ only through the quantities $s^{i}{ }_{j}$ and $\frac{\sum_{k \in(i, j)} \lambda^{i}{ }_{k}}{\lambda^{i}{ }_{M A B}}$ (for $(j=1, \cdots, Q(i))$. The former quantity is given and the latter can be computed on solving the conservation flow equations 2.21 (within some arbitrary constant). Thus the overall solution for $\ddot{i}_{w}$ or $\bar{i}_{w}$ effectively reduces to solving a set of linear equations (equation 2.21) for each of the $N$ processors. Since solving large sets of such equations is relatively easy, the main dilliculty with applying queucing networks to model complex processor behaviour is specifying the desired behaviour in terms of queues. service time distributions, and routing probabilities.
2. Consider the model in section 2.4 with exponential processing and aceess time distributions with non-identical processors. If we let the global state be $\underline{X}_{\text {exp }}=\left(m_{1}, \cdots, m_{N}\right)$ where $m_{i}$ is the number ( $\mathbf{0}$ or 1 ) of requests from processor : in the Multibus queue, then the steadystace probability of $\mathbf{X}_{\mathrm{crp}}$ is

$$
\pi_{\mathrm{x}_{\mathrm{Etp}}}=\left.C^{v}\left|\begin{array}{c}
m  \tag{2.23}\\
m \\
\cdots
\end{array}\right| \prod_{2}^{N} \cdots m_{N}\left|\begin{array}{l}
\bar{i}_{i=1}
\end{array}\right| \frac{\bar{i}_{1}}{\bar{i}_{a}}\right|^{-m_{1}}
$$

where $\bar{i}_{p_{1}}$ is the mean processing time of processor $i$. (l:quation 2.23 follows from cyuation 2.5 in section 2.6.) Equations 2.22 and 2.23 are identical if $\bar{i}_{p_{1}}$ is replaced by
 expressed as a queucing network model as described in the general case presented carlier, tas the same solution for $\ddot{i}_{w}$ and $\ddot{i}_{11}$ as the simple exponential processing and access time model (with appropriate $i_{p_{1}}{ }^{\text {eff }}$ )! It is lascinating that the single parancter $\bar{i}_{p_{1}}{ }^{\text {e }}$ f suffices in the solution of an (almost) arbitrarily complex model. Of course. the underlying reason for this result is the exponential access time or server-sharing discipline of the Multihus queue.

A possibility to circumvent the difficulty mentioned in point 1 is now apparent. Simulate or actually run a single processor with the desired complex behaviour on a system with exponentially distributed access tunes (perhaps simulthoil is best to achieve such access times). Measure the steady-state probability distribution and solve for the $i_{n_{1}}$ (ff which yields this simne probability
distribution with exponentially distributed processing time. Onee the value of $\bar{i}_{p_{t}}$ ofs has been determined in such a manner for cach different processor, $\bar{i}_{w_{t}}$ and $\bar{i}_{w}$ cam be computed from equation 2.23. This indirect approach for determining $\overline{\bar{w}}_{w_{i}}$ and $\bar{i}_{w}$ may be cheaper for a large number of processors $N$ than the obvious allernative of simulating the entire system since $N$ simulation runs of a single processor may be cheaper than one simulation run of $N$ processors (for the same degree of accuracy).

Fquation 2.22 is a fine result if the performance measures of interest involve just the status of the Mullibus queue and do not involve the status of any processors. If the measures of interest involve both the Multibus and the processors, then we cannot simplify the solution of the queueing network medel to such a degrec. This unfortunately means that the state space may remain large. Pinding the solution of queucing networks with a large number of stites is computationally expensive. I:Mficient techniques: for handling such cases have been developed by Buzen [B3], Chandy, Herzog, and Woo [C2]. Reiser and Kobayashi [R2]. Reiser and Sauer [R3], Chandy and Satuer [C3], L.am [1.1], and Iam and I.ien [1.2]. However, even these eechniques require a lot of work when the state space is as enormous as it might easily get with complex models.

Another approach when the queueing network remains large after simplification or when product form queueing network models are not applicable, is to decompose the overall model into more manageable submodels, each of which can be studied and solved independently, and integrate the submodel results to obtain an overall solution. Fxeept in special circurnstances. such a procedure yields only approximate results and thus several iterations of decomposition and integration may be required to obtain results of sufficient accuracy.

### 2.10.3 Time Dependent Behaviour

This subsection is directed chiefly towards time dependent behaviour of the processing time distribution. We regard the access time distribution as mainly fixed by the hardware and thus time invariant. However, the probabilities of the different type of accesses - word vs. long word and Multibus vs. Ringbus - may well be time dependent. If these probabilities are time dependent they can be treated in the same manner as the processing time distribution.

We limit our discussion to proeessor behaviours that can be reasonably well approximated as time independent - i.c. stationary - on a finite number of nonyero time intervals. The idea is to represent each stationary interval of this piece-wise stationary approximation of the processor behaviour by a stationary' submodel. The overall processor model then consists of a finite set of such submodels, with exactly one such submodel in effect at each point in time: the duration each submodel remains in effect; and some strategy to choose the next submodel when the time allotted to the present submodel is expended. Liach stationary submodel call be arbitarily complex -
such as those models discussed in sections 2.10 .1 and 2.10 .2 - as long as it is stationary and incependent of all other submodels.

We distingutsh two casce: based on the time reyuired for a submodel to approak:h steady-state (i.c. for the transients to die out) relative to the duration of the submodel.

Case 1: For every submodel, the time required to approach steady-state is small relative to the duration of the submodel. (We will not discuss what is "short" cnough.) In this case it may be reasonable to approximate the behaviour of each submodel over its entire duration by its steady-state behaviour. The behaviour of the overall model can then be approximated as a piece-wise function of the steady-state behatviour on each submodel interval. In this case it is probably best to represent any performance measure of interest for the overall model by a vector of such performance measures with each element of the vector corresponding to a different submodel. Knowledge of the duration of each submodel and the strategy for choosing submodels allows the avecage of any performance measuie to be determined from its performance measure "vector" on all the submodels. Note, however, that such an average performance may not be too meaningful; at the least, it must be carefilly interpreted. Note also that the steady-state behaviour of the other submodels can be determined simply by assuming it is the only submedel. Thus this case has the important attribute that the overall model can be decomposed into a nitumber of smatler and independent submodels.

Case 2: For at icast one submodel. the time required to approach steady-state is not sull relative to the duration of the submodel. This case is more difficult since the dynamics of the overatl model preclude its treatment as independent submodels. (There are certainly situations in which some but not all of the submodels can be treated as independent and approximated by their steady-state behaviour over their entire duration. Perhaps such hybrid situations should be called Case 3.) To hande Case 2 we need to incorporate in the state description somehow the expended time (or remaining time) in the diration of the submodel in effect and the submodel (and perhaps some past history of submodel choices too). Of course we call specify a Markov process which incorporates this additional information but we again return to the more abstract quencing network models. In fact we return to the activity based queucing network model discussed in the previous subsection.

We consider each submodel to be an activity with some probability distribution, $l_{d}(1)$, for the time in that activity and some probability distribution for the next activity to enter given the

[^8]current activity. (Ihis tatier probability can ise generalized to depend on past activities.) We represent the set of activitues as a queucing network model as follows.
I.et there be one queue per activity. The service time at this queue has the sume (stationary) distribution as the processing time of that activity. (We consider a situation in which the processing time distribution of the overall model is not stationary. We do not consider any other complications here on the basic queucing model discussed in section 2.1.) I.et the classes associated with the queue represent the total amount of processing time clapsed so far while in that activity. Specifically, let there be classes

1. $c^{\prime}(i, n \Delta t)$ representing a request for the Multibus from activity $i$ where the cumulative processing time while in activity $i$ is $I \in[n \Delta t,(n+1) \Delta t)$, and
2. $c^{2}(i, n \Delta t)$ representing a request returning from Multibus service to activity $i$ with cumulative processing time while in activity $i$ of $t \in[n \Delta t(n+1) \Delta t)$. (We quantioe time so we caln deal with discrete probabilities for the time being. We have chosen quanta of uniform size for simplicity in the presentation.)

The routing probabilitics at queue $i$ (i.c. the queue associated with activity $i$ ) are:

$$
p\left(c^{2}(i, n \Delta t) ; c^{1}(j, m \Delta t)\right)=\left\{\begin{array}{l}
\int_{(m-n) \Delta t) \Delta t}^{(m-n t} f_{p_{t}}(\cdot) d s . \text { if } m>n \text { and } j=i \\
0, \quad \text { otherwise }
\end{array}\right.
$$

where $f_{p_{1}}(1)$ is the probability density function ( $\mathrm{p} d$ ) of the processing time at queue $i$. The routing probabilities at the Multibus queue are:

$$
p\left(c^{\prime}(i, n \Delta t) ; c^{2}(j, l)\right)= \begin{cases}e^{i}(n \Delta t) \cdot p_{i j} & \text { if } t=0 \text { and } j \neq i \\ 1-e^{i}(n \Delta t) & \text { if } t=n \Delta t \text { and } j=i \\ 0 & \text { olherwise }\end{cases}
$$

$p_{i j}$ is the probability that the next activity is $j$ given that the current activity is $i\left(\sum_{j \neq i} p_{i j}=1\right)$. $c^{\prime}(n \Delta t)$ is the probability that activity $i$ ends in $\left.\mid n \Delta t,(n+1) \Delta t\right)$ given that the sum of the processing times incurred while in this activity is $\geq n \Delta$, i.c.

$$
e^{i}(n \Delta t)=\left\{\begin{array}{l}
\int_{n \Delta t} \int_{d_{i}}(s) d s\left(n \Delta t \leq d_{i} \leq(n+1) \Delta I \mid d_{i} \geq n \Delta t\right)=-\int_{n \Delta t}^{\infty} f_{d_{i}}(s) d s \\
1 . \\
\operatorname{Prob}\left(d_{i}<n \Delta t\right)=1
\end{array} \quad \operatorname{Prob}\left(d_{i}<n \Delta t\right)<1\right.
$$

where $f_{d_{1}}(1)$ is the pdf of the duration in activity $i$.
We now have a queucing network model of the form discussed in the previous subsection. From cquation 2.23 we know that the steady-state probability distribution of customers in the Multibus queue (from which we can determine $\bar{i}_{w}$ and $\bar{i}_{w}$ ) depends on the mean processing time while in each accivity and the ratio of the effective arrival rate at each quene to the effective arrival rate at the Multibus.

Uenote the effective arrival rate of class $c^{\prime}(i, n \Delta I)$ customers by $\lambda\left(c^{\prime}(i, n \Delta t)\right)$. Then the ratio $\frac{\sum_{k \in C^{(i, j)}} \lambda^{i}{ }_{k}}{\lambda^{i}{ }_{M B}}$ of cquation 2.22 is given by

$$
\begin{equation*}
\frac{\sum_{n=0}^{\infty} \lambda\left(c^{2}(i, n \Delta t)\right)}{\sum_{i n} \sum_{n=0}^{\infty} \lambda\left(c^{1}(i, n \Delta t)\right)} \tag{2.24}
\end{equation*}
$$

The conscrvation of flow equations are

$$
\lambda\left(c^{2}(i, n \Delta t)\right)=\left(1-e^{i}(n \Delta t)\right) \lambda\left(c^{1}(i, n \Delta t)\right)+\sum_{j \neq i} p_{j i} e^{j}(n \Delta t) \lambda\left(c^{l}(j, n \Delta t)\right)
$$

and

$$
\lambda\left(c^{l}(i, m \Delta t)\right)=\sum_{n=0}^{m-1} \int_{(m-n-1) \Delta t}^{(m-n) \Delta t} f_{p_{t}}(s) d s \lambda\left(c^{2}(i, n \Delta t)\right) .
$$

Manipulating these equations we have

$$
\begin{equation*}
\sum_{m=0}^{\infty} \lambda\left(c^{1}(i, m \Delta t)\right)=\sum_{m=0}^{\infty} \lambda\left(c^{2}(i, m \Delta t)\right) \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(c^{\prime}(i, m \Delta t)\right)=\sum_{n=0}^{m-1} \int_{(m-n-1) \Delta t}^{(m-n) \Delta t} f_{p_{1}}(s) d s\left(l-c^{i}(m \Delta t) \lambda \lambda\left(c^{\prime}(j . m \Delta t)\right)+\sum_{j \neq i} p_{j 1} c^{\prime}(n \Delta t) \lambda\left(c^{\prime}(j, n \Delta t)\right)\right. \tag{2.26}
\end{equation*}
$$

The ratio in equation 2.24 is determined by the solution of equation 2.26 and the identity 2.25. The system of linear equations 2.26 can be solved for $\lambda\left(c^{1}(i, n \Delta t)\right.$ ) within an arbitrary constant. Therefore, as in the previous subsection, the overall sollution for $\bar{i}_{w_{t}}$ and $\bar{i}_{w}$ effectively reduces to solving a set of linear equations for cach of the $N$ processors.

It is highly desirable to keep the number of time quanta fairly small sol that the number of equations $t$ solve in 2.26 is not enormous. The degree of inaccuracy introduced in the solution by the quantization can be estimated by comparing the solution with that obtained with a larger number of quanta.

Finally, this treatment of nonstationary processor behaviour can be extended, along the lines of the previous subsection, to deal with more complex processor behaviour.

### 2.10.4 Dependent Processors

By dependent processors we mean that for at least one pronessor $i$ tiere exists some time 1 such that the operation of tioe proecssor is not statistically independent of the operation of processor $j$ for all $j \neq i$ and for all time $s<1$. 'io model dependent processors, the state of a processor inust be allowed to depend on the state of ohler processors. This dependency unfortunately precludes the use of queucing network inodels with product form solutions as we have pursued to this point in this thesis. The reasoning is as follows.

In a qucueing network model, the state of a processor is given by the concatenation of the states of all queues representing that processor. Alternatively, we can view the state of a prixesssor as given by the class in which the one customer is in. (There can only be one customer per processor since we are modeling the Multibus at the memory access level and processors are single tasking - i.c. a processor is idle while it has a Multibus memory aceess pending or in progress.) Thus if the states of two processors are dependent. then some of the respective classes of the proecssors are dependent - i.e. the present class, of the customer for one processor may determine the present or future class of the customer for another processor. But a product form solution is not guaranteed if the class of one customer depends on the class of another since the routing of customers is now effectively dependent on the state of the queueing network. (Walrand's proof [WI]

[^9]of the product form for networks of quasi-reversible queues requires that the routing be independent of everything elise.) For two processors we catn attempt to circumvent the difliculty impased by dependent classes by introducing "superclasses" to represent all possible pairs ( $\left.C_{i}, C_{j}\right)$ where $C_{i}$ denotes a customer class for prucessor $i$. (linis can be generalized for more than two processors.) A change in class at processor $i$ then forces a change in the superelass which also forces a change in class at process $j$. $\Lambda$ product form solution can be developed with respect to the superclasses. However, a customer in a superclass can only have one service time distribution at each queue. Yet a customer in a superclass represents two customers of classes $C_{i}$ and $C_{j}$ respectively from different processors with possibly vastly different service times at queucs. Therefore a queucing network model with superclasses is not representative of the original queucing network model unless the elasses $C_{i}$ and $C_{j}$ corresponding to each superclass have the sime service time distribution at each queue for the two different processors. And if this is the case, the processors are not dependent. Thus we cannot guarantee that a queucing network model for dependent processors possesses a product form solution and represents the operation of the processors.

The above reasoning implies that we cannot model synchronization and mutual exclusion. two principal forms of dependency between processors, with queueing networks and expect product form solutions. In addition, it is well known [SI] that prothet form solutions cannot be expected for queucing network models involving multiple resource posscession. Multiple resource possession cecurs when a custorner at one queace requires simultaneous service at several quenes. thus "possessing" the service resources of those querues. An example of multiple resource possession in Concert is a Ringhus memory access. Such an access requires the simultaneous possession of the Multibus and Ringbus. Thus a product form solution cannot be expected if we model Concert as a queueing network model with a queue for the Multibus and a queue for the Ringbus. This is one reason why we have chosen to decompose Concert into separate Multibus and Ringbus models and regarded Ringbus memory accesses as just requiring a different service time at the Multibus queue.

All the dependencies mentioned above can be handied with sufficiently detailed Markov chain models. However such models suffer from a relatively low level of abstraction: the structure of the model is often obscured and one's energy misdirected by the details of Markov state definitions and transitions. Stochastic Petri Nets (SPNs) [M2] allow mode'ing at a higher level of abstraction than with Markov chains and can easily handle the sort of dependencies mentioned above. 1 SPN model is less complex, easicr to construct, and has a greater likelihood of being correct than an equivalent Markov chain model.

A Petri Net is a set $P$ of places, a set $T$ of transitions, a set $\alpha$ of directed arcs from places to transitions, a set $\beta$ of directed dics from tramsitions to places, and some initial placement of tokens in places (called a marking). Ares incident on a given tramsition are called input ares and the phaces
from which these ares emanate are called input places for that transition. Ares emanating from a given transition are called output ares and une places at which these ares terminate are called output places for that transition. 1 transition is enatbed when there is at least one token in each of its input places. After a transition is enabled, it fires immediately, removing one token from each of its input places and adding one token to each of its output places. ('lhere can be more than one token at a place.) $\wedge$ simple Petri Net is illustrated in Figure 2.23. The circles represent places, the bars represent transitions, and the dots represent tokens. Sce Peterson [P2] for an extensive discussion of Petri Nets and their properties.


Figure 2.23: $\AA$ simple Petri net
$\Lambda$ Stochastic Petri Net (SPN) is a Petri Net with the following modification. Associated with each transition is a randon variable which specifies the interval, called the firing time, between the enabling of that transition and its firing (given that the transition is still enabled at that time). At the instant at which a transition fires - and not before - one token is removed from each of its input places and one token is added to each of its output places. Thus the firing of one transition may cause the disabling of another transition. The probability distribution of the liring time is given and possibly different for each transition. (Petri Nets can also be made stochastic by incorporating probabilistic service times at cach place.) With appropriate probability distributions for the transitions $T_{1}, T_{2}, T_{3}$, and $T_{4}$, Figure 2.23 represents a SPN model of a two processor Multibus system. ( $T_{1}$ represents the proxesising time of processor $1, T_{2}$ represents the aceess time of processor $2, T_{4}$ represents the processing time of processor 2 , and $T_{3}$ represents the access time of processor 2.) More compiex SPN models of processors can be developed casily. Performance incasurcs, similar to those derived with our oticer inodeling techniques. can be derived from a SPN. Molloy [M2] has shown that SPNs with exponential firing time distributions are isomorphic to one dimensional Markov chains and thus the performance measures of interest for such SPNs can be determined by their equivalent Markov chains. However, with Molloy's technique relatively sinall SPNs result in large Markov chains. Such state space explosion makes Molloy's technique unattractive for determining the performance measures of larger SPNs. Wiley [W3] has developed techniques that are more efficient and more gencral.

### 2.11 Conclusions

1. The general hehaviour of the mean waiting time per request is similar to that depicted in ligure 2.3: the position of the knee and the asjniptotic slope depend on $\ddot{z}_{j}$, the mean processing time: $\bar{t}_{a M B}$. the mean Multibus access ume; $\bar{i}_{r}$. the mean recovery time: $\bar{I}_{a R B}$, the mean Ringbus access time: $\beta$, the probability of a long word access: and $\psi$. Whe probability of a Ringbus access. The exact shape of the waiting time per request versus number of processors curve depends on the probability distributions for the proeessing, recovery, and access times. Generally, the more "deterministic" these distributions are - i.e. the smaller the variance of the associated random variables - the shallower the knee is. In fact, the mean waiting time per request with deterministic processing, recovery, and access times provides a lower bound on the mean waiting time per request.
2. The mean waiting time per request can be more sensitive to the parameters $\beta$ and $\psi$ than to the probability distributions for the processing, recovery, and access times. In the cases that we simulated (in section 2.8.1.4), we found that the mean waiting time with various probability distributions was fairly close to that obtained with exponential probability distributions. This suggests that future effort be spent determining appropriate values or ranges of values for the parameters $\beta$ and $\psi$ and assessing the adequacy of our simple processor inodel.
3. The assumptions of identical processons and a simple processor model can be removed. as discussed in section 2.10, by expanding our basic queucing network approach. The assumption of time independent behaviour can also be removed, provided the time dependent behaviour can be reasonabiy approximated by time picce-wise independent behaviour, by expanding the queneing network approach. This approach is trivial in the special case when the overall model can be decomposed into independent submodels for each time scale. Otherwise. this approach is very complicated and probably unreasonably difficult for all but simple models. The assumption of independent processors is the most difficult to remove. In fict, it camot be removed by any expansion of our quelueing network approach (unless one is willing to sarrifice tractability and consider networks without a product form solution). As discussed in section 2.10.4, the behaviour of the Multibus with dependent processors can be modeled with low level Markov chain models, or more preferably, by higher level models such as Stochastic Perri Nets.
4. The performance of the Mullibus can be improved by the following:
i) reduce the frequency of long word and Ringbus accesses. Ringbus accesses are especially decrimental to performance because of their extrenely long duration, during which all Multibus traffic is blocked. In the actual Concert system, the minimum duration of a Ringbus access is $2.00 \mu$ sec and the maximum duration is $7 \times(10 \times 0.200) \mu$ sec) (the maximun duration for which the reguired segments can be allowated to other requests) $+2.70 \mu \mathrm{sec}=$ $16.70 \mu \mathrm{sec}$ (arsunning no test and set instructiens). Most Ringbus accesses will have a
duration somewhere between these two extremes, depending on the processing time, $\beta$, and $\psi$.

I wo ways to avoid blocking Multibus traffic when a Ringbus access oceurs are to:
a) replace the Multibus by two or more parallel buses, or perhaps just add a private bus for Ringbus accesses, and
b) divide the memory transaction protocol into a memory operation component and an acknowledgment component that occur at separate times between which control of the Multibus may be relinquished to other memory transactions.

Both of these options are cosily, although (a) is probably less cosily.
ii) decrease the overhead time on non-local memory accesses. Fach non-local memory access experiences 100 to 200 nsec of delay due to the Multibus arbiter and substantial delays in asserting the BRL:Q* (Multibus request) signal upon detecting a non-local incmory access and in asserting the address and control signals once the BPRN* (Multibus grant) signal is asserted.
iii) reduce the Ringhus access time.

### 2.12 Future Work Required

1. Evaluate the single processor equivalent model and the Multibus models. Derive appropriate valucs for the processor model parameters from real programs and compare the performance predicted by lic Multibus nodels with the actual performance.

Ali [ 1 ] has performed some work in this direction. He found excellent agreement between predicted and actual performance of the simple Multibus (no long word or Ringbus accesses) for some artificial programs cmulating the simple processor model. For the "real" programs which Ali considered, he found time dependent behaviour to be very important, suggesting that stationary models are inadequate.
2. Improve the processor and Multibus models and develop new oncs.

The existing medels can be improved to some degree as discussed in section 2.10. However, a better direction in which to proweed is to develop higher level models, such as Stochastic Petri net models. Time and proxessor dependencies are casier to model at higher levels.

## Chapter 3

## The Ringbus Model

### 3.1 Introduction

In this chaper we study the Ringbus subsystem. As discussed in section 1.3.5. we replace each Multibus by a single processor equivalent model. We assume that each Multibus, and thus each single processor equivalent model, is identical in all respects. We also assume that the Ringbus is symmetrical will respect to each Multibus. We make these assumptions so that we can use the abundani symunctry that they imply to simplify considerably the analysis of the Ringlous and the integration of the Mutsibus and Ringbus models. The treatuent in this chapter call be extended casily formally (although not so casily practically) to deal with situations in which these assumptions are not valid. We assume an exponential distribution for the processing time distribution of each single processor equivalent. The reason for this is again to case analysis. We make no assumptions at this point about the access time distribution: indeed, this distribution is one of the factors for study in this chapter.

The fexus of this chapter is the optimum performance of the Ringbus. There are three reasoms for this emphasis on the optimun performance. First, the Ringbus is a novel interconnection scheme which has not been studied previously (as far as we know). Thus, knowing the optimum performance of the Ringbus satisfies a natural curiosity. Sceond. Whe theoreticall maximum improvement in performance of any particular Ringbus design (including the design utilied in Concert) can be deternined from the optimum performance of the Ringbus. This theoretical performance improvement is useful in evaluating Ringbus designs. Third, knowledge of the optimum performance of the Ringbus allows the Ringbus whe compared with other intercomection schernes in terms of the optimum performance. Since the Ringhus is a norel interconnection, the optinum perfornathe of the Ringhos is important in establishing the merit of Renghus-like sellemes with ether interemnertion :chemes.

To avoid getting overwhelmed by deails or trapped by the small and relatively unimportant differences between various Ringbus designs, we take an abstract view of the Ringbus. This abstract view is as follows. The Ringhes and Ringhus arbiter eperate synchronously with an artbiter clock of period $c$. Requests for the interconnection of source and destination slices arrive from the Multibuses (or in this case the single equivalent processor models of the Multibus) asynchronously with respect to the arbiter clock. On each rising clock edge, the arbiter examines all pending requests and then instantancously decides which requests should be granted and how the requests should be granted. This decision is implenented immediately so that there is zero delay from the rising edge of the atbiter clock to the time that a segment allocated to a reguest is used. Once gramted. a request lasts exactly some integral number of arbiter cleck periods. We assume, without loss of generality, that the duration of a gramt (which is what we call a granted request) is encoded in its request rather than determined by the number of clock periods before the request is removed (as it is in the Concert system). ${ }^{\dagger}$ Requests remain pending until they are eventually granted. The Ringbus itself we consider to be just a ring of bus segments under the control of a central arbiter.

The abstract view of the Ringbus given above is really a set of simplifying assumptions. We list the most important of these acsumptions helow.

1) We ignore the delay; of the RIIB circuitry, including the delay to mitigate melastability when latching the asynchronous, request signals from the Pultibus.
2) We assume zero arbitration time and zero delay in comnceting the bus segments of the Ringbus.
3) We assume grant durations of an integral number of arbiter clock periods.
4) We assume that the minimum time between the termination of a grant of some slice and the next nomnull request from that slice is \%ero.

In addition, we assume there are no global register accesses.
We term the abstract view of the Ringbus summarized by the above assumptions the isoiated Ringbus model. In section 3.9 we discuss the differences between the environment of the isolated Ringbus model (ereated by these assumptions) and the eavironment of the Ringbus in the actual Concert system. We also consider the effects these differences have on the performanere of the Ringbus. The Multibus-Ringbus interaction, which is simplificd by assumptions 1 and 4 above, is

[^10]discussed in detail in section 3.9.1 and in section 3.3.2 of Appendix $\wedge$ for the actual Conecrt system. The Multibus Ringbu: interiction is complicated, detailed, and very dependent on the implementations. This is the reason that we simplified the interaction in our abstract view.

We interpret the Ringbus in a broad sense. We define the Ringbus to be a ring of independent bus segments in which adjacent bus segments may be connected to form longer buses. Associated with each bus segment interconnection point is a slice which is connected to the segenents via an access path. All Ringbus accesses originate and terminate at slices. The interconnection of the bus segments occurs in real time under the control of a central arbiter in response to requests originating from slices for paths to other slices. We assume that the arbiter operates in discrete time (although it need not in all cases).

Different Ringbus designs are distinguished by 1) the number of bus segments (which is equal to the number of silices). 2) the access paths between the slices and bus segments, and 3) the arbitration algorithon. In this chapter we only consider Ringbus designs with an even number of slices. In addition, we only consider two different types of access paths: asymmetrical and symmetrical. The Ringbus design utilized in Concert has asymmetrical access paths (as discussed in section 1.2.2.) [Sec also lïgure 3.1.] Hercafter we call this particular Ringbus design - minus the arbitration algorthm - the Asymmetric Ringbus. These asynmetrical access paths impose unneces'sary performance limitation. As discussed in section 1.2.2. countercheck wise accesses on the Asymmetric Ringbus require two segments in addition to the segments between the sumese and destination slices. Symmetrical acess paths remove this performance limitation. A Symmerric Ringhus is a Asymmetric Ringbus with symmetrical access paths instead of asymmetrical acces paths. Figure 3.1 illustrates the access paths of the Asymmetric Ringbus and the Symmetric Ringbus. We define the Concert Ringlous to be the Ringbus and arbitration algorithm actually used in the Concert system. That is, the Concert Ringbus is a Asymmetric Ringbus with a rotating priority arbitration algorithm ${ }^{\dagger}$ (as discussed in section 1.2.3).

[^11]

Asymmetrical access paths


Symmetrical access paths

Figure 3.1: Access paths of Asymmetric Ringbus and Symmetric Ringbus

As sated carlier, our chief interest is the optimum performance of the Ringbus. Since the Symmetric Ringhus is a superser of the Asymuntric Ringbus, the optimum performance of the Symmetric Ringlous is gicater than or equal to that of the Asymmetric Ringbus. For this reason. we concentate on the optimum perfomance of the Symmetric Ringhus in this chapter. The Symmetric Ringbus is also easier to malyac siace it bas more symmetry. In the course of determining the optimum performance we also determine the optimat abbitration algorithm, which is of interest in designing gookl sub-optimal algorithms.

We briefly consider the optimun perfiormance of the Asymmetric Ringbus for a small number of slices. In addition, we determine the performance of the Concert Ringbus and the performance of the Syinmetric Ringbus with the rotating priority arbitration algorithm. A trivial medification to the arbiter in the actual Concert system (which we call the Concert Ringbus arbiter) allows this algorithm to operate with symmetrical aceess paths. (The additional complexity and circuitry required in the RII might not be judged as trivial.) The problem from the point of view of the arbiter with symmetrical access paths is that conflicts may now oceur at the request destination as well as at the Ringbus segments. Thus the arbiter must arbitrate the destinations as well as the Ringbus segments.

To include this featlore, the arbiter just needs to arbitrate for cact Ringbus resouree - segment or destination - in the same namer in which the arbitration proceeded for the segments in the Concert Ringhus aibiter (see section 1.2 .3 ). The first siep is to determine all the Ringbus resources required for eath request. As in the Concert Ringhus abiter, requests would be granted
only in the direction requiring the smallest number of segments, with ties being broken in preference of the clockwise direction. Finally, a request would be granted when it has been granted all the resources that it requires.

A logic diagram for this new arbiter is shown in Figure 3.2. The part count has doubled because we now have double the number of Ringbus resources to arbitrate. However, the size of the parts required is the same. The number of parts is proportional to the number of resources and the size of the parts is exponential to the number of sources.

This new arbiter design, which evidently was overlewiked during the design of the Coneert system, would result in superior or equivalent performance in all cascs. (It certainly cannot result in inferior performance since its functionality is a superset of the other's.)

In section 3.2 we formulate the Ringbus as a discrete time probabilistic model. 'Tiune is quantized into discrete intervals. called rounds, which are equal to and synchronous with the arbiter clock period. The performance metric of the Ringbus model is the throughput in terms of the average number of grants completed per round. The optimum performance of the Ringbus model is formulated as a Markovian decision problem.

In sections 3.3 and 3.4 we investigate the optimal arbiter for a Ringbus of four slices. Section 3.3 covers grant durations of one round and section 3.4 covers grant durations greater than one round for two special cases. These special cases are deterministic grant duations: and geometrically distributed grant durations.

In section 3.5 we investigate the optimal arbiter for a Ringbus of six slices and develop a number of bounds on the optimum throughput.

Sections 3.6 and 3.7 consider the Ringbus with cight and more slices. Since the computational requirements for these cases exceeds the available resources, we just discuss the general characteristics of the optimum throughput in section 3.6 and the optimum throughput for some special cases in section 3.7.

In section 3.8, we compare the performanee of the optimum arbiter algorithoms and the rotating priority arbiter algorithm for the Concert and Symmetric Ringbuses.

Finally, in section 3.9 we discuss some of the differences between our abstract Ringbus model and the Ringbus utilized in Concert. We corisider the effect that these differences have on performance. The last part of this section develops the heoks for the integration of the isolated Ringbus model with the Multibus model.


Slice 8

Figure 3.2: Logic diagram of Symmetric Ringbus arbiter

### 3.2 Ringhus Model Formulation

from the single processor equivalent model of the Multibus, we know that if a Ringbus access excurs in some round then with probability $p_{i}^{\text {AHEeq }}$ its destination is $i$ slices around the Ringbus from the source slice $(i=-(S / 2-1), \cdots,-1,1,2, \cdots, S / 2)$. Negative values of $i$ indicate the counterclockwise direction around the Ringbus and positive values indicate the cleckwise direction. Note that this probability distribution of requests is independent of the source slice. This is a consequence of our assumption that all Multibus models, and hence all the single processor equivalent model of the Multibus, are identical. Since we assumed an exponential distribution for the processing time distribution of the single processor equivalent model of the Multibus, the probability that the next request at a slice arrives in the $i^{\text {th }}$ round alter the end of the previous grant at that slice is a constant independent of $i$. In other words. the number of rounds between the end of a grant and the next request at that sanne slice (i.e. the discretiod prexessing time of the single equivalent processor model) is a geometric random variable. Because of the memeryless property of a geometric random variable, we call exclude from the state description any information on the number of rounds waited so far for a request to arrive at a slice. Thus the assumption of an exponential distribution for the processing time of the single proecssor equivalent model simplifies not oily the integration of Ue Multibus and Ringbus inodels but also the atalysis of the Ringbus model.

In each round the arbiter must decide which subset of the current requests to grant based on past and present information only. The arbiter is chus a causal, discrete time decision maker. Decisions are subject to the following constraints:

1. Nll segments required by a request must be connected as required before or at the same time that the request is granted.
2. Fach segment is used for no more than one grant in a round.
3. All segments required by a gramt remain connected and allocated for the exclusive use of that grant for the entire duration of the grant.
4. Every pending request eventually gets granted i.e. each request has a bounded waiting time. (Ihis requires a bounded Ringbus access time. In the Concert system each Ringbus access represents a single memory transaction - read, write, or read-modify-write - and the duration of each such transaction is bounded by the Ringbus timeout period. ${ }^{\dagger}$ )

Without loss of generality, we consider the eigments referred to in Constraint 1 to be connected at the time that a request is granted. This is in fact how the Ringbus operates in Concert.

[^12]We inake the following three simplifications in our formulation of the Ringhos model:

1. We exclude from the state description any information on the duration that a request waits before being gramted. 'This waiting time information is irrelevant when
i) in modeling the performance of the only non-optimal arbiter algorithm considered in this chapter - the rotating priority arbiter algorithm. and
ii) determining the optimum performance of the Ringbus without Constraint 4.

The watiting time information is irrelevant in case i) because the rotating priority algorithm does not utilize this information. We have not presented sufficient mathinery at this point to show that the request waiting time information is irrelevant in case ii). In fict, we we have not even completed the formulation of the Ringbus inodel. Therefore we relegate a precise statement and pronf of the irrelevance of this history information, which we call theorem 3.1, to Appendix 13 and encourage the reader to examine this theorem after completing subsection 3.2.1.
2. We ignore Constraint 4 when pursuing the optimum performance of the Ringbus. Our reasons are as follows. lizist, by ignoring Constraint 4, request waiting time information may be excluded foom the state description (as justified by Theorem 3.1 ), thus permitling the analysis to be greatly simplified. Sccond, ignoring Constraint 4 removes the effect of Ute maximum permissible wating time on the the eptimum performance so that the optimun pertomance oblained is the imberent optimum perfiormance of the Ringbus architecture. If the maximum permissible waiting time is sufficiently large. Constraint 4 has negligible effect. If it is sufficiently small (such as equal to its minimum value of $(S-1) /$ ) where $S$ is the number of slices and $D$ is the maximum duration of an access), Constaint 4 has an enormous effect on the performance. In fact, with a maximum permissible waiting time of $(S-1) /$ ). the arbiter algorithm must impose some sort of strict priority ordering on requests. Third, any arbiter algorithm can casily be modified to ensure bounded waiting times. Such a modification may, of course, result in a degradation of performance dependent on the maximum permissible waiting time.

Note that assuming a large enough maximum permissible waiting time is essentially equivalent to ignoring Constraint 4. We prefer to think of ignoring Constraint 4 as assuming such a large enough maximum waiting time.
3. We limit the duration of a grant to have one of the following two simple forms:
i) a constant duration of $d$ rounds where $d--1,2,3$ or 4 .
ii) a geometric probability distribution i.e. the duration is $d$ rounds where $d$ is a random varialle with a (memoryless) gennetric distribution.

### 3.2.1 Markovian Iecision Formulation

Let the state of the Ringbus (ignoring request waiting times as discussed previously) at the beginaing of each round loe deseribed by

$$
\left(r_{1}, d_{1}: r_{2}, d_{2} ; \cdots: r_{1}, d_{i} ; \cdots ; r_{S}, d_{S}\right)
$$

where $r_{i}$ denotes the destination of the request at slice $i$ and $d_{i}$ indicates the duration for which Uhe request hats been granted so far.

We express the destination of a request as the number of slices the destination slice is around the Ringbus relative to the source slice. We use positive numbers to indicate the clockwise direction from the source and negative numbers to indicate the countercleckwise direction from the source. Thus $r_{i}=2$ indicates a request to the slice two slices along the Ringbus in the cleckwise direction from the source slice, and $r_{i}=-2$ indicates a request to the slice two slices along the Ringbus in the counterclockwise direction from the source slice.

We do not use $r_{i}=0$ to indicate a request from slice $i$ to slice $i$. We assumed carlier that there are no global register accesses, henee such requests do not occur. Instead, we use $r_{i}=0$ to indicate that slice $i$ is not requesting a Ringhus destination. We call this absence of a request a null request. The arbiter treats a null request just like a genuine request exeept that I) a mull request is always granted immediately when it occurs (since there are no resourees whe granted for a null request) and 2) a null request always has a duration of only one round. Any two consecutive genuine requests at a slice are separated by some number (possibly eero) of mill requests proportional to the processing tine between those genuine requests.

A request from slice $i$ is pending (i.c. net yet granted) if and only if $d_{1} \ldots$ ). The duration $d_{i}$ is increased by one for each round that the request remains granted. We express the destination of any pending request in terms of the smallest number of slices - either clockwise or countecelockwise direction - the destination slies is relative to the source slice. $\Lambda$ tie in ule number of slices in each direction is broken in faveur of the clackwise direction. Thus for any pending request if the source slice is $i$ and the destination slice is $j \neq i$, then

$$
r_{i}=\left\{\begin{array}{lr}
x . & x \leq S / 2 \\
x-S, & S / 2<x
\end{array}\right.
$$

where $x=(j-i)$ mod $S$.
A request may be granted in cither clexkwise or countercleckwise direction. We express the destination of a request onee the request is granted in terms of the direction in which the request was granted. Thus if a requesi is granted from slice ito slice $j \neq i$.

$$
r_{i}=- \begin{cases}x & \text { if gramted in clockwise direction } \\ x-\therefore . & \text { if gramted in counterclexkwise direction }\end{cases}
$$

where $x-(j-i)$ moxd $S$.
Therefore once a request is granted, we use $r_{i}$ to indicate which segments hate been allocated to that request. For the Symmetrical Ringbus, the mapping from $r_{i}$ to the segments is especially casy: $\left|r_{i}\right|$ indicates the number of segments allucated beginning from slice $i$ and the sign of $r_{i}$ indicates the direction around the Ringbus in which these segments are allocated. For the Asymmetric Ringbus, the mapping is the same except that two additional segments are required for requests granted in the countercleckwise direction: the segment most immediately clockwise of the source slice and the segment most inmediately counterclockwise of the destination slice $i$. (Thus there is only one direction to grant requests from a slice to its immediate clockwise neighbeur i.c. from silice $i$ to slice ( $i$ mext $S$ ) +1 .)

An example of the definition of $r_{i}$ is illustrated in Figure 3.3.


Figure 3.3: Examples of $r_{i}$

In some cases the state description simplifies. If all grants have a constant duration of one round, then all the $d_{i}$ can be eliminated from the state description since a new request - either genuinc or mull - always replaces a request once it has been granted. If all grants of gemuine requests have a duration with a geometric distribution, then we only need a binary variable for $d_{i}$. As before. $d_{1}$ indicates a pending request. $d_{j}-1$ indicates that a request has been granted for one or more rounds. The exact duration of the grant in this case is irrelo ant since ite ecomerric distribution of the duration is memoryless (i.e. independent of how long the request has been granted
so far).
When a grant at a slice terminates (after one round for a mull request and one or more rounds for a nomnull request), a new request arrives at that slice at the beginning of the following round. We denote by $p_{i}$ the probability that a new request is for a destination $i$ slices along the Ringbus from the source slice, $i=-(S / 2-1), \cdots,-1,1,2, \cdots, S / 2$. As before, negative values of $i$ indicate the counterclockwise direction around the Ringbus from the source and positive values of $i$ indicate the elockwise direction. We denote by $\rho_{0}$ the probability that a new request is a null request. Thus $p_{i}=\frac{p_{i}^{M / e q v}}{1-p_{0}}$ for $i \neq 0$.

Given some current state. the next state of the Ringbus depends on the present state, the decisions made in the present state. and the new requests that arrive in the present round. The states of the Ringbus thus comprise a discrete time Markov chain. The state transition probabilities depend on the state and the decision made in that state. Note that going from the present state to the next state has two parts - a deterministic part and a random part. The deterministic part is determined by the decision in the present state: any requests ungranted in the present state or corresponding to grants still in progress in the present state must appear in the next state. The random part is determined by the new requests which arrive to replace the grants which terminated in the present state.

For convenience, we number the states with consecontive integers varting from 1 and we number the possible decisions in each state with consecutive integers starting from 1 . We denote the one step probabitity from state $i$ to state $j$ by $p_{i j}^{d}$ where $d$ indicates the decision made in state $i$. Denote the decision made in stite $i$ by $d(i)$ and let D$)=[d(1), d(2), d(3), \cdots]$. We call the decision vector 1) a policy: it specifies the decision made in each state, and thus completely specifics the operation of the arbiter. We consider only stationary policies, i.e. policies which are independent of time. In addition, we comsider only policies in which there is at least one new gramt or grant in progress in each state except for the state with $r_{i}=0$ for all $i$. ( $\Lambda$ new grant is a grant which has a duration of aero so far: it has been granted for the first time in that state. 1 gramt in progress is a grant which has a duration so far of one or more rounds; it has been granted for the first time in some previous state.) We assume that $p_{i}$ is nowzero for all $i=-(S / 2-1), \cdots-1,0.1, \cdots . S / 2$. The above restriction on admissible policies and this assumption of nonyero probabilitics ensurcs the following:

1) All states in the Markov chain communicate - i.e. the $n$ step transition probability from state $i$ to state $j$ is nonecro for all $i$ and $j$ and some $n \geq 1$. The Markov chain thus forms a single closed class.
2) The Markov chain is periodic.

These two conditions ensure that the finite Markor chain has a stationary steady-state ('Iheorem 2 p. 29 of Kleinock [K3]). Denote the steady-state probibilty of being in state $i$ under policy 1) by $\pi_{i}^{1 "}$. The $\pi_{i}^{11}$ are given by

$$
\begin{equation*}
\pi_{i}^{\prime \prime}=\sum_{j} \pi_{j}^{\prime \prime} p_{j i}^{d(i)} \quad \text { and } \quad \sum_{i} \pi_{i}^{\prime \prime}=1 \tag{3.1}
\end{equation*}
$$

We call the number of new grants in state $i$ under decision $d(i)$, the reward, which we denote by $\varphi_{i}^{d(i)}$. The average number of new grants per round under policy $I$ is

$$
\begin{equation*}
g^{\prime \prime}-\sum_{i} q_{i}^{d(i)} \pi_{i}^{\prime \prime} \tag{3.2}
\end{equation*}
$$

where 1$)=[d(1), d(2), \cdots]$ The average number of new grants per round is the throughput of the Ringbus. Our objective is to lind the maximum throughput, $g^{\text {opt }}$, and the corresponding policy 1 . subject to given constraints on the decisions and for given probabilities.

The constraints on the decisions fall into three classes which we term logical, topological, and theoretical. The logical constrailts, which we discussed at the beginning of section 3.2, impose certain basic conditions on the Ringhus segments independent of the arbiter algorithm and Ringbus design. The topologeal constaints impose the mapping from a request to the segments required for that request. Different Ringhes : :nokegies, and in particular differest access paths, can be expressed in terms of different iequest io segment mappings. The Asymmetric Ringbus and the Symmetric Ringbus differ only in Uleir biapping of comnacrelockwise requests to segments: the Asymmetric Ringlous requires two more segments than the Symmetric Ringbus. The theoretial constraints ensure suooth application of the Markovian decision formulation. The limitation to stationary policies is of no concern since any real arbiter implementation would likely operate independent of time anyway. Likewise. the limitation to policies with at least one grant in every state (except for the state with $r_{i}=0$ for all $i$ ) is of no concern since any optimal arbiter would obviously have at least one grant per round wherever possible. Without this limitition. the Markovian decision problem might have multiple chains and transient states, wiich complicate the analysis.

The optimal throughput and corresponding policy of the Markovian decision medel of the Ringbus can be solved using Howards policy-iteration method [H4]. We develop some preliminar') results following Howard [144]. For future use and then we present Howard's algorithm.

Suppose we ran our Marko: chain model of the Ringhos with rewards for $n$ rounds under some policy D. I.ct $V_{i}^{\prime \prime}(n)$ denote the total expected reward (i.c. (otal number of new grants) accumulated over the $n$ rounds that we start in state $1 . V_{1}^{\prime \prime}(n)$, iney; the recurrence relation:

$$
\begin{equation*}
V_{1}^{\prime \prime}(n) \cdot \mu_{i}^{(1 i)}, \sum_{j} \mu_{1}^{(1 / i)} l_{1}^{\prime \prime}(n-1) \cdot \mid(1 \cdot n \geq 1 \tag{3.3}
\end{equation*}
$$

where $I$ is the set of all states. Iloward has shown that $V_{i}^{\prime \prime}(n)$ has the asymptotic form

$$
\begin{equation*}
v_{i}^{\prime \prime}(n)=n g^{1 \prime}+v_{i}^{n} \text {, as } n \rightarrow \infty \tag{3.4}
\end{equation*}
$$

$v_{i}^{\prime \prime}$ represents the value of starting in state $i: v_{i}^{\prime \prime}-v_{j}^{\prime \prime}, i \neq j$, is the difference in the long run expected reward due to starting in state $i$ rather than state $j$. Substituting equation 3.4 into equation 3.3, we oblain

$$
\begin{equation*}
\left.g^{(1)}+v_{i}^{(D)}=q_{i}^{d(i)}+\sum_{j} p_{i j}^{d(i)} v_{j}\right) . \tag{3.5}
\end{equation*}
$$

If there are $N$ states, equation 3.5 represents $N$ simultaneous equations in $N+1$ unknowns. We rectify this situation by subtracting $v_{1}^{\prime \prime}$ from both sides of cquation 3.5 and regarding $g^{\prime \prime}$ and the $v_{i}^{(1)}-v_{1}^{\prime \prime}$ as the unknowns:

$$
\begin{equation*}
g^{\prime \prime}+\left(v_{i}^{(1)}-v_{i}^{\prime \prime}\right)=q_{i}^{d(i)}+\sum_{j} p_{i j}^{d(i)}\left(v_{j}^{\prime}-v_{i}^{P}\right) . \tag{3.6}
\end{equation*}
$$

We call these $v_{i}^{\prime \prime}-v_{1}^{\prime \prime}$ the relative valucs. We can solve equation 3.6 for $g^{\prime \prime}$ and the relative values. Note that we now have an equivalent form for $g^{10}$ :

$$
\begin{equation*}
g^{(1)}=q_{1}^{d(1)}+\sum_{j} p_{j}^{d(1)}\left(v_{j}^{1)}-v_{1}^{(1)}\right) \tag{3.7}
\end{equation*}
$$

Howard's policy iteretion algorithin is the following:

1) Start with some policy 1 .
2) Value Determination: Use the $p_{i j}^{d(i)}$ and $q_{i}^{d(i)}$ for a given policy I) to solve

$$
\begin{equation*}
g^{(1)}+\left(v_{i}^{\mathrm{D}}-v_{1}^{\mathrm{D}}\right)=q_{i}^{d(i)}+\sum_{i} p_{i j}^{d(i)}\left(v_{j}^{(1)}-v_{1}^{\mathrm{D}}\right) \tag{3.8}
\end{equation*}
$$

for $g^{11}$ and the relative values $v_{i}^{11}-v_{1}^{1 P}$.
3) Policy Improvement: For each state $i$, use the relative values $v_{1}^{(0)}-v_{1}^{\text {D }}$ from the previous policy and determine the value or values of $k$ which satisfy:

$$
\begin{equation*}
\max _{k}\left(q_{i}^{k}+\sum_{j} p_{i j}^{k}\left(v_{j}^{p}-v_{i}^{p}\right)\right) \tag{3.9}
\end{equation*}
$$

If a unique value of $k$ satisfics, ecpuation 3.9 then set $d^{*}(i)=k$. If two or more values of $k$ satisfy equation 3.9 then ciduer one sueh :alue of $k$ is $d(i)$ or no such value of $k$ is $d(i)$. In the former case, set $d^{\prime \prime}(i)-d(i)$ and in the latter case set $d^{\prime}(i)$ equal $t o$ dn arbitarily chosen value of $k$ satisfying equation 3.9. The new decision in state $i$ is $d^{*}(i)$.
4) If policy $1^{\circ}$ is the same as policy 1 ) (i.e. if $d^{\circ}(i) \cdots(i)$ for all $i$ ), then step: $I^{\circ}$ is the eptimal policy and $g^{\prime \prime \prime}$ is the optimal average eward per round If polie: $N^{\circ}$ is not the sume on policy
1). then set 1 ) $=-10^{*}$ and go to 2 .

With precise aridunctic, $g^{\prime \prime}$ increases monotomically on cakh iteration and llowards algoridhm terminates in a finite number of iterations [114]. However. Iruncation errors can cause indefinite cycling of the algorithm in a machine implementation.

### 3.3 Optimal Arbiter for Four Silices and Grant Duration of One Round

In this section we investigate the optimat arbiter for the Symmetrical Ringlous with four slices and a gramt durnion of one round. In his case the state description is

$$
\left(r_{1}, r_{2}, r_{3}, r_{4}\right)
$$

where $r_{i}=-1,0,1$, or $2 ; i=1,2,3,4$. We assume that the request probathilities are symmetrical with respect to the direction around the Ringbus, i.e. $p_{1}=\boldsymbol{p}_{-1}$. There are 256 states in this state description. However, this number can be reduced by laking advantage of the abundant symmetry present. There are two types of symmetry present, which we term rotational and flip. These symmetry types are most conveniently viewed geometrically. Imagine the Ringhus represented by four nedes (each represcoting a slice) connected by ares (each representing a bus segment) wh form a planar diamond shape which has three axes of symmetry: one perpendicular to the plane and two in the plane of the diamond. Rotational symmetry refers to the symmetry about the axis perpendicular to the plane of the Ringbus. Flip symmetry refers to the symmetry about ene of the axes in the plane of the Ringbus. Because of the rotatomal symenetry it does not manter which axis in the plane is chosen for the flip symmetry axis. An example of each symmetry type is illustrated in ligure 3.4.


Figure 3.4: Rotational and Ilip symmetry

Since the request probabilities are identical for cach slice and symmetrical with respect to the direction around the Ringbus, by employing both cotational and flip symmetry all cight states $( \pm 1.0,0,0),(0, \pm 1,0,0),(0,0, \pm 1,0)$. ( $0,0,0, \pm 1$ ) can be seen to be cquivalem to ( $1,0,0,0)$. Thus we can replace these eght states by a single cquivalent sute ( $1.0,0,0$ ). By extracting , watablable

with the number of original states which reduced to cach equivalent state.

| Slate Number | Iquivalent State | Reduction liactor |
| :---: | :---: | :---: |
| 1 | 0000 | 1 |
| 2 | $-1000$ | 8 |
| 3 | 2000 | 4 |
| 4 | -1-100 | 8 |
| 5 | -10-10 | 4 |
| 6 | $-1010$ | 4 |
| 7 | -1020 | 8 |
| 8 | $-1100$ | 4 |
| 9 | -1200 | 8 |
| 10 | 1.100 | 4 |
| 11 | 1200 | 8 |
| 12 | 2200 | 4 |
| 13 | 2020 | 2 |
| 14 | -1-1-10 | 8 |
| 15 | -1-110 | 8 |
| 16 | -1-120 | 8 |
| 17 | -11-10 | 8 |
| 18 | -1 $2-10$ | 8 |
| 19 | $-1120$ | 8 |
| 20 | -1210 | 4 |
| 21 | -1220 | 8 |
| 22 | 1-1-10 | 8 |
| 23 | 1120 | 8 |
| 24 | 1210 | 4 |
| 25 | $1-120$ | 8 |
| 26 | 1220 | 8 |
| 27 | 2-120 | 8 |
| 28 | 2220 | 4 |
| 29 | -1-1-1-1 | 2 |
| 30 | -1-1-11 | 8 |
| 31 | -1-1-12 | 8 |
| 32 | $\begin{array}{lllll}-1 & 1 & 1\end{array}$ | 4 |
| 33 | -1-1 12 | 8 |
| 34 | -1-121 | 8 |
| 35 | -1-122 | 8 |
| 36 | 1 1 1 | 2 |
| 37 | $\begin{array}{lllll}-1 & 1 & 2\end{array}$ | 8 |
| 38 | -1 122 | 4 |
| 39 | -12-12 | 4 |
| 40 | -12 12 | 4 |
| 41 | -1221 | 4 |
| 42 | -1222 | 8 |
| 43 | 2222 | 1 |

Table 3.1: States $\wedge$ fter Symmetry Fixtraction

The optimal arbiter problem can be expressed as a Markovian decision problem based on these 43 states. We mumber the states as indicated in lable 3.1 and solve this problem using Howard's algorithm [114]. Vigure 3.5 siows the gain (i.e. the mean number of grants per round) for various values of $p_{1}$ and $p_{2}\left(p_{0}=1 \cdot 2 p_{1}-p_{2}\right)$.


Figure 3.5: Optımum average number of grants per round for Symmetric Ringbus with four slices and wne round grant duration
 fillowing (wo steps:

1. Comsider mily the sequest subnets for cikh state that have the geatest number of requests. This amounts to maximising the immediate reward in eich state.
2. Decide which of the request subsets with maximum immediate reward to grant. ('his is trivial if there is only une such subset.)

For all states except 20, 34, 38, and 40, and regardless of the probabilities $p_{1}$ and $p_{2}$, the request subset chosen in step 2 of the decision rule is the one that has the most requests of the longest length - i.c. of length 2 (where we define length to be the number of segments required).

Fin thates 20. 34, 38. and 41, the request suhet chosen in step 2 of the decision rule depends on the probathbities $p_{1}$ and $p_{2}$. States 20. 34. and 40 each have (wo request subsets with maximum immedine rexall as shown in Ule diagrans in fïgure $\mathbf{3 . 6}$.


State 20


(a)
,
-

Wixnnum rewird regucen subsets

(a)

(b)

SIalc $M$


State 40
-igure 3.6: Some possible decisions in states 20, 34, and 40

Two sets are associated with each possible decision in a state: a grant set and a leftover set. I:or a particular state and a particular decision, the grant set consists of all the requests that are granted and null request for each of the ungranted requests. The leflover set consists of all the requests not granted and null requests for each of the granted requests. Lior example, if request subsel (a) is granted in state 20 (see ligure 3.6) then the gram set is ( $0,0,1,0$ ) and the leftover set is $(0,2,0$. 1): if request subset (b) is granted, the grant set is ( $0,2,0,0$ ) and the leftover set is ( $0.0,1$, - I). We can wrice $R:\left(i_{d}+I_{d}\right.$ where $R . G_{d}$, and $I_{d}$ denoie the request, grant, and leftover sets respectively, + detotes element-wise add:tion, and the subseript $d$ indicates that this decomposition of $R$ defends on the decision.

The lefover sets associated with request subsets (a) and (b) in Figure 3.6 are the same for each of the states 20,34 , and 40 (using rotational symmetry for state 34 ). Thus the decisions in Wese three states amount to the same decision: should the leftover set be (a) or (b)? (Sce ligure 3.7.)


1 eftever sel from
requen subsel (a)


I eftover set from request subsel (b)

Pigure :.7: I.cfower sets associated with request subsets
(a) and (b) for exth of the three states in ligure 3.6

Of course the decisions in many other groups of states other than 20, 34, and 40 are related through their leflover states. The Markovian decision problen can in fact be formulated in terms of leforer sets rather request ses. Assuming that at least one request is granted in every request sel. the number of states required can be redued by this alternate formulation. However, the transition probabilities are inore diflicult to determine and the problem structure is kess intuitive in this alternate formulation.

State 38 also has two request subsets with maximum immediate reward. These two request subsets and their associated leftover sets are shown in Figure 3.8.


Figure 3.8: Some possible decisions in state 38

Notice the subtle difference between leftover states (a) and (b) in Figure 3.8.
The regions over which reciuest subsets (a) and (b) of Figures 3.6 and 3.8 comprise optimal decisions are shown in Figure 3.9.

Figure 3.9: Optimum decision regions for states $20,34,38$, and 40

States 20, 34, and 40:


State 38:
$\square$ Request subset (a)

Request subset (b) otherwise

Fo the righe of the line delincating request subset (a) and (b) for states 20,34 , and 40 , step 2 of the decision rule is the same as that mentioned carlier for all the other states: grant the request subset that has the most requests of lengeth 2. In other words, leftover set (b) (of ligure 3.7) is a better chones than leftover set (a) for $p_{1}$ and $p_{2}$ to the right of the line in Figure 3.9 .

We now investigate the regions over which request subsets (a) and (b) for states 20.34 , and 40 are optimal (assuming optimal decisions in all other states). Of course the exiact regions over which each of diese request subsets is optimal can be computed by applying Howard's policy iteration algorithm. However, the policy iteration yields the optimal decision for only a single point and thus the extent of the regions must be determined by the behaviour at many sannple points. This is, in fact, the manner in which the regions shown in Figure 3.9 were established. An analytical form for the boundaries of the regions would be much more useful, but such a form seems intractatle. Instead, we consider an approximation.

The basic idea is to approximate the relative value (i.c. $v_{i}^{\prime \prime} v_{\|}^{\prime \prime}$ ) of a state $;$ by the immediate reward, $y_{i}^{d(i)}$, in that state. First we number the states as listed in Table 3.1. Since there are no genuine requests in state 1 , the only possible decision is to grant all the null requests. The immediate reward. $q_{1}$, is thus $/$ ero. 'The transition probability, $p_{i j}$, is simply the probability of the requests arriving that constitute state $j$. For example, if the transition probability fiom state 1 to symmetry state $19(\cdots 1,1,2,0)$ is $p_{1,19}=8 p_{0} p_{1}^{2} p 2$. (Ihere are 8 ways 0 go from state 1 whe symmetry state ( $-1,1,2,0$ ) this is the reduction number listed in (able 3.1).

Fyuation 3.7 thas reduces to

$$
\begin{equation*}
g^{\prime \prime}=\sum_{j} p_{j}\left(v_{j}^{()}-v_{1}^{\prime \prime}\right) \tag{3.10}
\end{equation*}
$$

(We drop the superseript $d(1)$ on $p_{1 j}$ since there is only one possible decision in state l.) Substituting equation 3.10 into equation 3.6 yields:

$$
\begin{equation*}
v_{1}^{(1)}-v_{1}^{()}=u_{i}^{d(i)}+\sum_{j}\left(p_{i j}^{d(i)}-p_{i j}\right)\left(v_{j}^{(1)}-v_{1}^{(1)}\right) . \tag{3.11}
\end{equation*}
$$

Now consider $V_{i}^{\prime \prime}(11)$ and the recurrence reliation expressed by equation 3.3. I et $v_{1}^{\prime \prime}(0) 0$ for all $i$. The difference $V_{i}^{\prime \prime}(11) \cdots v_{1}^{\prime \prime}(11)$ is

$$
\begin{align*}
& -q_{1}^{d(1)}+\sum_{l}\left(p_{1 /}^{d(1)}-p_{1}\right) q_{j}^{d(1)}+\sum_{j} \sum_{k}\left(p_{1 j}^{d(i)} p_{1}\right) p_{j k}^{d(1)} q_{k}^{d(k)}+\cdots \\
& \sum_{l} \sum_{k} \cdots \sum_{s}\left(p_{11}^{\prime(f)} \cdot p_{1}\right) p_{k}^{d(1)} \cdots p_{r s}^{d(r)} q_{k}^{d(s)} \tag{3.12}
\end{align*}
$$

$$
=u_{i}^{d(i)}, \sum_{m=0}^{n-2} \sum_{j} \sum_{k}\left(p_{i j}^{d(i)}-p_{i j}\right) \varphi_{j k}(m)^{l)} \not \|_{k}^{d(k)}
$$

where $\varphi_{j k}(m)^{\prime \prime}$ is the $m$ sep transition probability from state $j$ w statc $k: \varphi_{j k}^{P}(0)=\left\{\begin{array}{ll}1, & j=k \\ 0, & j \neq k\end{array}\right.$. $\boldsymbol{\varphi}_{j k}^{\prime \prime}(m+1)=\sum_{l} p_{j l}^{d(j)} \boldsymbol{\varphi}_{l /}^{\prime \prime}(m) . \wedge s n \rightarrow \infty, v_{i}^{\prime \prime}(n)-V_{1}^{\prime \prime}(n) \rightarrow v_{i}^{(1)}-v_{l}^{\text {D }}$ by cquation 3.4 and thus

$$
\begin{equation*}
v_{i}^{\prime \prime}-v_{1}^{\prime \prime}=q_{i}^{d(i)}+\sum_{m=0}^{\infty} \sum_{j}\left(p_{i j}^{d(i)}-p_{i j}\right) \sum_{k} p_{j k}(m)^{(1)} \varphi_{k}^{d(k)} \tag{3.13}
\end{equation*}
$$

We now have two allernate formulations for the relative values $v_{t}{ }^{\prime \prime} \ldots v_{1}^{\prime \prime}$ : equation (3.11) and equation (3.13). Equation 3.11 provides a way to calculate the relative values and equation 3.13 allows an interpretation of the relative values. We see fiom equation 3.13 that $v_{i}{ }^{1 \prime} \ldots p_{1}^{1 "}$ is the infinite sum of probabilistically weighted rewards. Rewritten as

$$
\begin{equation*}
v_{i}^{\prime \prime}-v_{1}^{\prime \prime}=q_{l}^{d(i)} 0+\sum_{m=0}^{\infty} \sum_{j} \sum_{k} v_{i j}^{d(i)} \varphi_{j k}(m)^{(1)} \varphi_{k}^{d(k)}-\sum_{m=0}^{\infty} \sum_{j} \sum_{k} p_{1,} \varphi_{j k}(m)^{\prime \prime} \varphi_{k}^{d(k)} \tag{3.14}
\end{equation*}
$$

our carlier interpretation of $v_{i}^{(1)}-r_{i}^{1 /}$ as the difference in the average total reward starting in state $i$ relative to stating in state 1 is obvious. (Equation 3.14 can be genetalized for $v_{i}^{10}{ }^{--} v_{j}^{12}$.)

I:quation 3.13 suggests that $v_{i}^{1 "}-v_{1}^{1 "}$ can be computed $t 0$ abitrary accuracy simply by summing enough of the terms on the right hand side. One way to approximate $v_{i}^{",} \|_{1}^{\prime \prime}$, which we now pursue, is by the first term of its infinite series expansion, i.e. $v_{i}^{10} p_{1}^{1)} \approx \psi_{1}^{d(1)}$. This approximation has the merit of aroiding any computation with the tamsition probabilities. Of course some accuracy is lost in this simple approximation. Hewever this merit is very importimt when the number of sates is so large that it is a great deal of work to compute all the transition probabilities. (Such is the case for six and eight slices as discussed in the sequel.)

In some cases the approximation ${v_{i}}^{\prime \prime} \ldots v_{1}^{\prime \prime} \approx q_{i}^{d(i)}$ is exact. Consider those states $i$ in which all the requests can be granted simultaneously without conflict. We call the request sets of such states immediately grantabie and we denote the set of such states by $/ G$. If the decision. d(i), in some state $i \in \mathbb{I} ;$ is sath that atl the requests are granted, then the keftover set for state $i$ is the same as the Ieftover set for state I. Now if two states $k$ and / have the sume Ieftover set, then $p_{k}^{d(k)}=p_{l}^{(t)}$ for all $j$ since the next state is entirely determined by the leftover set and the probability distribution of new request arrivals which is the same for both states. Thus if $d(i)$ is such that all requests are granted, then $p_{1 j}^{d(t)} p_{1}$, for all $j$. I:quation 3.11 then implies that $v_{i}^{(1)}-v_{1}^{(I)}-\boldsymbol{q}_{i}^{(i)}$.

This previous result can re peneralized. Consider any wo states $i$ and $i$ with decisiom d(i) and dij) such that both states have the sathe keforer set. Then dith fith for dit $k$ and
$v_{i}{ }^{11} \quad{ }_{j}{ }^{10} \cdot q_{i}^{d i)} q_{j}^{d(j)}$. This result follows from the obvions generalization of equation 3.11 to

$$
v_{i}^{(1)}-v_{j}^{(1)}=u_{1}^{d(i)} q_{l}^{d(j)}+\sum_{k}\left(p_{k}^{\prime(i)}-p_{j k}^{d(i)}\left(v_{k}^{(1)}-v_{j}^{1)}\right) .\right.
$$

The determination of all the relative vallues $v_{i}^{\prime \prime} \ldots v^{\prime \prime}$, and hence solving for $g^{\prime \prime}$. thus amounts to determining the difference in relative values of states with different leftover sets. This is consistent with our earlier observation that the Markovian decision problem can be expressed in terms of leftover sets rather than request sets.

Since the relative value in state $i, v_{i}^{\prime \prime}-v_{1}^{\prime \prime}$, represents the difference in the average total reward starting in state $i$ relative to that starting in state 1, (which has only null requests), it seems intuitive that $v_{i}{ }^{\text {D }}-v_{1}^{\text {P }}$ should never excecd the number of genuine, i.e. mon-mull, requests in that state which we denote by $n_{i}$. We found that indeed $v_{i}^{\prime \prime} \quad v_{i}^{\prime \prime} \leq n_{i}$ fior all states $i$ for every case we investigated for four (and six) stices. We were unable to establish if this inequality is true in gencral.

We now return to our approximation $v_{i}^{D}-v_{i}^{P} \approx q_{i}^{d(i)}$ and I: dedermination of an approximate analyticat expression for the regions corresponding to request subsets (a) and (b) in states 20. 34, and 40 in the four slice, single round gramt diration Symmetric Ringbus. Request subsets (a) and (b) each gramt the maximum number of requests possible in each of the states 20,34 , and 40. Thus the choice of request subset (a) or (b) in these three states does not depend on the imenediate reward: it depends only on the leflover sets. For a given policy I). request subset (a) results in an improvement in the throughput if

$$
\sum_{j} p_{i j}^{(a)}\left(v_{j}^{(1)}-v_{1}^{(P)}\right)>\sum_{j} p_{i j}^{(b)}\left(v_{j}^{(1)}-v_{1}^{(1)}\right)
$$

and request subset (b) results in an improvement if

$$
\sum_{j} p_{i j}^{(a)}\left(v_{j}^{\mathrm{D}}-v_{1}^{(\mathrm{D}}\right)<\sum_{j} p_{i j}^{(b)}\left(v_{j}^{\mathrm{D}}-v_{1}^{\mathrm{p}}\right)
$$

where $i=20.34$, or 40 and we have cancelled the immediate rewards from both sides of the inequalities. Approximating $v_{j}^{\prime \prime}-v v^{\prime \prime}$ by $q_{j}^{d(j)}$, we have:

$$
\Delta \equiv \sum_{j}\left(p_{i j}^{(n)}-p_{i j}^{(b)}\right) q_{j}^{d(j)}
$$

If $\Delta>0$ then request subset (a) is best and if $\Delta<0$ then request subset (b) is best. Since we already know that the optimal policy consists of granting the maximum number of requests in each state. $q_{j}^{d(j)}$ is equal to the maximum number of simultaneously grantable requests in state $j$. The leftover sets from request subsete (.1) and (b) are shown below.


Iefiover sel from request subsict (a)


Ieflover sel from request subsel (b)

Figure 3.10: Leftover sets from request subsets (a) and (b) in states 20. 34, and 40

Table 3.2 lists the possible next states (without symmetry removed), the immediate reward in each suite, and the tramsition probability.

| 1.eftover Set (a) |  |  | Ieftover Sce (b) |  |
| :---: | :---: | :---: | :---: | :---: |
| Next SLate | Immediate Reward | Transition Probability | Next State | Immediate Reward |
| -1, 2,-1,-1 | 3 | $p_{1}^{2}$ | -1.-1, 1.-1 | 3 |
| -1.2.-1.0 | 2 | $p_{01}{ }^{1}$ | -1,-1, 1, 0 | 2 |
| -1.2.1.1 | 2 | $p_{1}^{2}$ | -1.-1. 1. 1 | 2 |
| -1. 2,-1, 2 | 2 | $p_{1} p_{2}$ | $-1,-1,1.2$ | 3 |
| -1, 2, 0.-1 | 2 | $p_{3} p_{1}$ | -1.0.1,-1 | 2 |
| -1.2.0.0 | 1 | $p_{0}^{2}$ | -1,0.1.0 | 1 |
| -1, 2, , , , 1 | 2 | $p_{0} \prime_{1}$ | -1, 0, 1, 1 | 2 |
| -1, 2, 0, 2 | 2 | $p_{0} P_{2}$ | -1.0.1.2 | 2 |
| -1, 2, 1.-1 | 2 | $p_{1}^{2}$ | -1,1, 1,-1 | 2 |
| -1, 2, 1, 0 | 1 | $p_{0} p_{1}$ | -1.1.1.0 | 2 |
| -1, 2, 1,1 | 2 | $p_{1}^{2}$ | -1.1.1.1 | 3 |
| -1.2.1.2 | 2 | $p_{1} p_{2}$ | -1.1.1.2 | 3 |
| -1, 2, 2, -1 | 3 | $p_{1} p_{2}$ | -1. 2, 1,-1 | 2 |
| -1, 2, 2, 0 | 2 | $\mathrm{PO}_{0} \mathrm{P}_{2}$ | -1.2.1.0 | 1 |
| -1.2.2.1 | 2 | $p_{1} p_{2}$ | -1.2.1.1 | 2 |
| -1, 2, 2, 2 | 2 | $p_{2}^{2}$ | -1, 2, 1, 2 | 2 |

Table 3.2: Rewards and Transition Probabilities for Decisions (a) and (b) in States 20, 34, and 40

After some algebra we obtain

$$
\Delta \because p_{0} p_{2}-p_{0} p_{1}-p_{1} p_{2}-p_{1}^{2}
$$

which can be further simplified to

$$
\Delta=p_{1}^{2}-p_{1}-2 p_{1} p_{2}+p_{2}-p_{2}^{2} .
$$

The boundary between the regions for request subsets (a) and (b) is given approximately by $\boldsymbol{\Delta}=\mathbf{0}$. This approximate boundary is surprisingly close to the exact boundary between the regions as shown in Figure 3.11.

We are not so fortunate with the boundary between the regions in which request subsets (a) and (b) in state 38 (sec Figure 3.8) are optimal respectively. An anailysis similar to that just completed for states 20, 34, and 40 and again with $v_{i}^{\prime \prime}-1 /{ }^{1 \prime}$ approximated by $y_{i}^{(t i)}$ for all $i$ yields $\Delta \quad p_{1}\left(p_{1} \quad p_{2}\right)$. Thas tie boundary between the regions for request subsets (a) and (b) in state 38 is approximated by $\boldsymbol{p}_{1}-p_{2}$. This approximate boundary and the exact beundary are shown in Vigure 3.12. The large discrepancy in these boundaries indicates that $v_{i}^{\prime \prime} v_{1}^{\prime \prime} \approx q_{i}^{d(i)}$ is not a very gooed approxination in this case. This is to be expected since the difference between leftover sets (a) and (b) is very subtle (see ligure 3.8). We expect the average reward per round to be ahmost the same for request subsets (a) and (b) over much of the $p_{1}-p_{2}$ probabitity space. Of course, greater e:curacy in estimating the boundary can be achieved by using more terms of equation 3.13 in the approxinatiens of $v_{i}^{\prime \prime}-v_{1}^{\prime \prime}$.


Figure 3.11: Optimum decision regions for states 20, 34, and 40

Approximate boundary

Exact boundary


We investigated the approximation $v_{i}^{\prime \prime}-v_{l}^{\prime \prime} \approx_{u_{i}^{d(i)}}$ in two instances. In the first instance we approximated the test quantity (equation 3.9 ) in step 3 of lloward's policy iceration algoridum by

$$
\begin{equation*}
\max _{k}\left(q_{i}^{k}+p_{i l}^{d(i)} u_{i}^{k}+\sum_{j \neq i} p_{i j}^{d(i)} u_{j}^{1,2 \mathrm{ax}}\right) \tag{3.15}
\end{equation*}
$$

where $q_{j}^{\text {max }}$ is the maximum number of grants poessible in state $j$. We found that the decision $k$ yielded by this approzimate test quantity reliably predicts the optimum decision in state $i$ in most cases. (The main exception wats in state 38 .) In the second instance we approximated $\mathfrak{g}^{\text {opt }}$ by $g^{, s t}=\sum_{j} p_{1 j} \varphi_{j}^{\text {max }}$. This approximation corresponds to granting the maximum number of iequests in every state and ignoring the lefower requests. The compartson of the calculated values ef $g^{\text {apt }}$ and $g^{\text {sst }}$ shown in Figure 3.13 for various probabilities revcals that $g^{\text {ss }}$ is a good approximation to $g^{\text {opt }}$. In every canc investigated we found $0 \leq x^{\text {opt }} g^{\text {st }} \leq 0.22$. Figure 3.13 also shows the optimum average number of gramts per round for a crossbar interconnection of foner slices. This crossbar interconnction is similar to the Ringhos interconnection except for fewer constraints on which request subsets may be granted. In fact, the mily constraints on the request subsets are destination constraints: no (wo requests that have the same destimation call be granted simultaneonisly. Since a crossbar has fewer constraints than a Ringbus, its performance will al:wys be superior 0 o that of a Rugbus (provided everything except for the intercomectioms is the same).


## 


 tuons. The bask shate dexprption is

$$
\left(r_{1} \cdot d_{1}: l_{1} \cdot d_{3}: r_{1} . d_{3} \cdot r_{4}\left(d_{4}\right)\right.
$$
















gr.inted





1:44 1
H.
$\because$.14.

- 14
- $1 .$.







2. Wetermine $V_{i}^{\prime}(11+1)$ for all $i$ from:

$$
\begin{equation*}
\left.v_{1}(n+1) \operatorname{minc}_{k} u_{i}^{k}, \sum_{j} p_{i}^{k} v_{1}(n)\right) \tag{3.16}
\end{equation*}
$$

The policy in romend $n \cdot 1$ is $1(n+1)|d(1), d(2), \cdots|$ where $d(i)$ is cqual to the decision $k$ which in.ximioses the right hand side of equation 3.16 for state $i$.
3. Increment n. go to step 2.

The real power of value iteration is due to die wi-called Odoni bounds fo? which give upper and tower honads on the optimal average reward per round These limits improve on cath itera-
 $\delta,(11) \quad 1,(11) \quad 1,(111) .1(11)$ min $\delta_{1}(11)$. and $1 /(11)$ max $\delta_{( }(11)$. Niter the $n^{\text {th }}$ iteration of vep 2 we h.ove

$$
1(11 \cdot 1) \leq x^{o n \prime} \leq 1 /(11+1) .
$$





















(rather than just the number of new grants in that round). ${ }^{\dagger}$ Thus $g$ is better thought of as the average number of grants in progeres per round. Of course, if all grants have the sime duration of one round, then ${ }^{\circ}$ is also the throughput. We define the throughput as the aterage number of new grants per round and denote it by 1 . for a general grant duration distribution with mean d rounds, the throughput and average number of grants in progress per round are related by $i \cdot g / d$. The throughput of the Ringhus is also given by the number of slices divided by the mean eycle time per slice. This yields the throughput balance equation

$$
\begin{equation*}
\frac{S}{P_{0}}+\dot{w_{R K}+d}=t=g / \bar{d} \tag{3.17}
\end{equation*}
$$

where $P_{0}$ is the mean presessing time per slice ( $\mu_{0}$ is the probability of a null request), $w_{k R}$ is the mean waiting time per request, $d$ is the mean gramt duration, and $S$ is the number of slices.

### 3.4.1 Deterministic Girant Duration of 2. 3. and 4 Rounds

Using value iteration and Odoni's bounds, as described carlier, we obtained estimates of the (ptimal anerage mumber of gramis in progress (trin bally related to the houghput) and estimates of the optimal policy for the Symmetric Ringhos with dedermmistic grant durations of 2. 3, and 4 rounds. ligure 3.14 shows the optimal werage number of satats in progese for thex three ciax and for grame duratoms of one round. as inveragated earlier, for selected probabitions. All wese
 estimates for which a tolerance of $\pm$. WUS wis mot achieved after 100 iteratoms. The inaximum error in these estimates, as detemined by the bounds $/(100)$ and $I^{\prime}(100)$. is $\pm .0175$.

[^13]

Note that the oplimal averise mumber of grants in progress (which we will cill simply $\mathrm{g}_{\mathrm{i}}$ in


 intuitive enese. When po is lages, monnill requests are rate and accur with alment cyual likelihexd
 (1) $k$. When $f_{0}$ in small. the Ringhas is nearly willoned with monmill requevs every rimind and









 live (lass othe vithe

$$
11011011011010010
$$



$$
11: 11011|1| 1 \mid 1011
$$

The less than the miximum reward tendency is most pronounced for heavy loading－i．e．small $p_{0}$ －and large d．For ligh hading－i．e．large por the estimated optimnal decision in every sate grants the m．ximum reward．

All explanation for the observed tendencies is that there is a tradeoff hetween the int sediate contribution to throughput ohtained by granting a request and the possibic future Jegradation to throughput catused by the constraints imposed on future grants by franting a request．For a grant duration of d rounds．ally request granted imposes constraints on which requests may be granted in the d 1 rounds afler it is lirst granted．For light loading it is unlikely dhat a mommull request will arrive within d romads of gramting a request and this the future degradation callised by glant－
 hence the condency towards gromting the maximum reward for light hading．For heary hading．it

















シールッ
in $\begin{gathered}\partial a^{a p t} \\ \partial\left(1 p_{0}\right)\end{gathered}$ and $\frac{\partial^{2}, a^{\text {apt }}}{\partial\left(1-p_{0}\right)^{2}}$. need now be.
fior any particular policy (i.e. set of decisioms in each state), all the derivatives of I with rewpeet to the probibilitics will he continuous. However, the ophinum policy can sary with die probabilitics. Thus the optimum throughput over any portion of the feasible probability region is. in general, a piecewisc combination of the throughput of the optimum policy in each subregion. The derivatives of $f^{\prime \prime \prime \prime}$ witli respect to the probabilities will not, in general, be continumus at the bemadaries of the subregions. fiortumately. Whe number of discomtinuities along athy ray is finite
$\partial 1^{a p r}$ since there is only a limite number of different policies. Strictly speaking. $\partial\left(1 \quad p_{0}\right)$ is not deffined at such a dixcomiminity. but it may be defined to have the value of one of the pelicies at the point
 .t the end meints).
 at the houndaries of the subregens corresponding to different polkies. (Recall wath the entmum

 d!" ${ }^{\text {"Pr }}$ $0\left(1 p_{11}\right)$







## 3.2:2 Rounds on the Optimum throughpur nilh Ihelcrminiatic Gerime therations

 E.




[^14]optimal throughput with $d>1$ can be no more than the optimal throughput with $d$. This follows since for a fixed set of probabilities the optimal throughput cannot increase as d increases. 'Thus
$$
\|_{p}^{d>1} \leq\left.\right|_{p} ^{d-1} \quad \text { or } \quad g_{p}^{d>1} \leq d_{f}^{d=1} .
$$

For $d>1$ it is possible to grant at least the same average number of grants per round as for we same set of probabilities for $d: 1$. The argument is as follows. Restrict the instants at which all new requests - even mill requests - for $d>1$ can be granted to the begimning of every $d^{\text {th }}$ round in synchrony with some cleck of period $d$ rounds. (Note that null requests have a grant duration of one found and nomull requests have a grant duration of ${ }^{\prime}$ rownds. Restricting the grimling of null reguests to every $d$ romeds synchronous with the clock af period $d$ atificially kengethens the gratlt duration of a bull request (o) drounds.) At the "arbitration instant" at the begmoning of each successine interval of $d$ rounds (synchronous with the clock of period $d$ ). grant the request subset corresponding to the optimal decision for that request set with d 1 and the same set of probabililies. The result is all arbitation algorithon for $: 1>I$ which is exactly the sume as the aptimat abitration algorithm with $d$. the same set of probabilities. and a athiter cleck periend of $d$. Ihat is. by

1) reaticting the insants at which new requests - even null requests - can be granted wevery d binends sy indionous with some clexk of period $d$, and
2) using thin clack of period id as the arbiter clack.
the arbier.ation prob!em redaces to that for d: Thus

$$
g_{j}^{d} \quad \leq g_{p}^{d>1} \text { or } \frac{1}{d} \frac{d}{f} \leq 1_{f}^{d>1} .
$$

We call an abbier algorithm that operates in accordance with point 1 above an interal algo-












Therefore

$$
g_{p^{-}}^{d-1} \leq g_{\vec{p}}^{d>i} \text { or } \frac{1}{d} \|_{\tilde{p}^{\prime}}^{d-1} \leq\left.\right|_{f} ^{d>1}
$$

where $p_{0}^{\prime}=\left(p_{0}\right)^{d}$ and $p_{i}^{\prime}=\frac{p_{i}\left(1-\left(p_{0}\right)^{d}\right)}{\left(1-p_{0}\right)}, 1 \leq i \leq S \Omega$.
This lower bound is easily seen to be tighter than the previous one since $\frac{\partial g^{d-1}}{\partial\left(1-p_{0}\right)} \geq 0$ for every $p_{0}$ along any ray in the feasible probability region.

The complete bounds on the optimal throughput for a deterministic grant duration $d>1$ rounds are:

$$
\begin{aligned}
& g_{p}^{d-1} \leq x_{p}^{d} \leq x_{p}^{d}>1 \leq d_{p}^{d}=1 \\
& \text { or } \quad d_{d}^{\prime} d_{p}^{d} \leq d_{d}^{d} d^{d} \leq\left.\right|_{p} ^{d>1} \leq l_{p}^{d=1}
\end{aligned}
$$

where $p_{0}^{\prime}-\left(p_{0}\right)^{d}$ and $p_{1}^{\prime}=\frac{p_{1}\left(1-\left(p_{0}\right)^{d}\right)}{\left(1-p_{0}\right)} \cdot 1 \leq i \leq i / \Omega$. Note that these bounds ate expressed complately in terms of the entimal unroughput for $d 1$ which is a much simpler problem than for $d>1$.
$y_{1}{ }^{\prime}>1$ and $\left.\right|_{p} ^{d>1}$ approach then respective upper bounds as $p_{0} \rightarrow 1$. This can be shown as forhews. We have



简 ${ }^{1}$ with a for light bedeng


to prove this conjecture.
3.4.2.3 Approdimating the Optimal Throughput with Deterministic Grant Buration

If $d$, the grant duration, is large, the number of states required to calculate $g_{p}^{d>1}$ is very large, making its calculation difficult. $\Lambda$ more allactive approach for $1 . \mathrm{rge} d$ is to , ipproximate $g_{j}^{d>1}$. In this subsection we present a simple approximation to $g_{p}^{d>1}$ unng $s_{p}^{d=1}$ and the value of d. Since $\frac{d}{p}>1$ is trivially related to $g_{p}^{d}>1$, this approximation also arplice (athough indiecely) to ${ }_{\vec{p}}^{d>}$.

The ratio $\frac{g_{d}^{d}>1}{8_{p}^{d}}$ in has the following propertics along a ray:

1) It is a contimuous function of 1 po.
2) $\lim _{v_{0} \rightarrow 1} g_{p_{p}^{d}}^{d>1} g_{p}^{d}-1$
3) $\lim ^{\partial}\left\{x_{p}^{d}>1 / R_{p}^{d} 1\right\}$
4) $\lim _{p_{0} \rightarrow 1} \partial\left(1 \quad p_{0}\right) \quad d(d, 1)$










$r \quad \cdots \operatorname{maj} 1$

$$
\frac{8 d_{i=4}^{d x}}{g_{f}^{d=1}}-1
$$




$$
\therefore+\cdots+\cdots, \ldots+i
$$


 rath
W. du ner know wh.ll performance to eapect of the epproximation in cquation 3.18 for
號
 r:









 , - .




1 prowom






## Namion Mext




### 3.4.4 Othea firant Ihuration IDistributions

We cannot say much about the effect of other grant duration distributions without further study. However, we can give the following gencralities about the optimum thronghput with any grant duration distribution:

1) Nong any ray for which the nonnull probabilities have some fixed ratio, $t^{\text {oft }}$ is momotonic in 1 - $p_{0}$ everywhere along the ray and convex down in $1 p_{0}$ within any subregion (i.c. within any region in which one particular policy is optimal) along the ray. The argument to support these two conclusions is the same as that given in section 3.4.2.1.
2) If $t_{\bar{p}}^{d}$ denotes the optumal throughput with some grame duration distribution with mean $\bar{d}$ and some request porbabilities $p_{0}, p_{1}, \cdots, p_{S} \Omega$ denoted by $\vec{p}$ and if $t_{p}^{d=1}$ denotes the optimal throughput with a deterministic grant duration of one round and the same request probabilities denoted by $\vec{p}$, then

$$
\frac{d}{p} \leq \frac{d}{d}=1
$$






 , " $\times 1 \times \prime \prime$.

There are far too many state $(: 0$ determine and analye the uptimal decision regions as we did for four slices in section 3.3. Furthermore the decisions determined by the value iteration do not necessarily comprise an optimal polic; - they only comprise an cstimate of the optimal policy ${ }^{\ddagger}$ - so it is best not to examine then too closely. Thus we will only dixass the main trends in the decisions. We will also dixcuss the performance of wome rule of thomb policies.
f inf and VA.Y are trademarks of the Digital liquipment Copporation




Figure 3.17: Optimal throughput (average number of grants per round) for Ringbus with six slices and one round grant durations

The mest interesting trend in the decisions is that, unlike the case for fimer slices, it wot always best to grant the request subiet with the maximum number of requent (ice reward). I-ar
 decision is to grame some request subse having liss than the maximum reward. Ihe mumber of states with such estimated optimal decisions is small for polarge (i.c. light tralfic) and increases rapidly as $p_{0}$ decreases (i.c. as traffic increases). The mose rapid increase of the number of these states as $p_{0}$ decreases oceurs for probabilities in the $p_{2}-p_{3}$ plane - i.c. for $p_{1} 0$.

One state in which we found the estimated aptimal decision to grant less than! the maximum reward is $(-2,3,-1,1,1,1)$. The subset with maximun reward is ( $0,0,1,1,1,1$. Ilow. ever, for every set of probabil.aes we comsidered. the estimated optimal decision is to grant the subset ( $0,3,0,0,1,1$. The request set and these two subsets are petured in the diagraths in lig. ure 3.18 .


Request sel


Maximum reward subsel

leftover


I-stimated ophimal decision


Ieftover

Figure 3.18: An example of a request set for which the estimated optimal decision is to grant less than the inaximum mumber of requests

Note that the requests of length 2 and 3 conflict. I:vidently this conflict reduces the value of the Ieftover of the maxionum reward subset compared to the value of the leftover of the estimated optimal decision to a degree that cannot be overcome by the larger reward. An additional factor is that both requests in the Ieftover of the maximum reward subset are long requests. In heavy traffic long requests "cost" more than shont requests to grant since they involve blocking a request from each of the one or two slices along the route which the long request is granted. 'This factor



 decinon in lo grant kew than the maxillinin icward is
(2.1.1.2.1.1).



## ( I. I. . I. I. I. 3).


 able.




 $\pm$ (K)S) of the Ringhus with this combant for selected probatbilitics. The amomt by which this throughiput is less tham that without the maximum reward constratnt for a paticular set of probar bilities is indicated (to within 3 decimal places) by the quantity in the brackets. ${ }^{\dagger}$

For most of the sets of probabilities investigated, and especially for light trafic (i.e. po large). the optimal throughput of the Ringbus is not significantly affected by the maximum reward constraint. The most significant reduction calused by this constraint ecours mostly on the face pr 0 and near the face $p_{0}-1$ for $p_{1}$ large. Another waty to describe this region is that $p_{0}$ is rather small, $p_{1}$ is large, and $p_{2}$ is very small. In other words, tratio is fairly heavy and there is mainly short and long requests. Of the probability sets considered, the largest reduction in throughput at least 057 - (xcurred at $p_{1}-4 . p_{2}$ - 0 , and $p_{3} .2$. The fact that the maximum reward strategy is not optimal in this region with heavy traftic and mainly short and long requests is cany to see.

[^15]

Figure 3.19: Optimal throughput, subject to the maximum reward constraint, with six slices and one round grant durations










 requess.





 bie for that sate. In computang the nember of segonents a regues subse requites, we we the number of segments that ckin reguest would tegure if it were granted in the shortest direction around ta Ringbus. Ihus the number of segments that a request subset utilies is equal to the sum of the request Iengeths for those reguests granted. I igure 3.20 shows the optimal thoughput (to within $\pm .\left(\begin{array}{l}\text { O }\end{array}\right.$ ) of the Ringhus with the maximum number of segments constratint for various probabilitics. As for ligate 3.19. the amount that this throughput is less than the unconstrained optimal throughput (displayea in ligure 3.17) for a particular set of probabilities is indicated (to within 3 decimal points) by the quantity in the brackets. ${ }^{\dagger}$

[^16]

Figure 3.20: Optimal throughput, subject to the maximum number of segments constraint, with six slices and one round grant durations

Por all the exts of probabilities investigated. the maximum number of wements comstraint
 Ihis is the same region (he:ry iralfic, mainly sort and long requests) for which ine maximm
 number of segments constatht never calused as large a reduction in throughput as the maximum reward consiraint. In fikt. the reduction in throughpat with the maximun number af segenents consta, int provides an eflicicont compromise between the conflicting desires (o) gramt the maximum number of requests in a state and minimien the waiting time of hong requests.

One might comjecture that the optimal policy grants the request subset in eath state with either the maximum reward or the maximum momber of segments. However. this conjecture seems to be false in general. It is indeed true that for most states and for most probabilities, the estmathed optimal decisions correspond to either the maximmon reward or the maximmm momber of segments (or both) request subsets. As $p_{0}$ decreases and $p_{3}$ increases. the number of states in which the estimated optimal decision comesponds to neither maximnm reward or maximum number of segments increases. but it never exceeds about $\%$ states. Fiwo typical states in which the estimated optimum decision is oflen neither the maximum reward nor maximum namber of segments subsets are ( $-2,2,3,-1,2,-1$ ) and $(-2,3,-1,1,1 .-1)$. For the former state, the request subsecs ( $0,0,3,-1,0,-1$ ) and ( $0,2,0,-1,0,1)$ ahicve the maximum reward and the request subset (0, 0, 3, - I, 0. - 1) miquely achieves the maximum number of segments. for the
 reward and the request subset ( 0, 3.-I. 1. 0.0) uniquely achieves the maximum number of segments. However, the estimated optimum decision in these two states is often ( $-2,0,0,0,2,0$ ) and $(0,3,0,0,1,0)$ respectively. figure 3.21 depicts diagrans of dacse various posibible derisions in the two states.


1 eflovers

Figure 3.21: Sume ponsible decisions




 more requests in the fisllowing round. (if connes, the relatase values i, $1 /$ il Ilaw.ind polky
 give the exact degree to which one request whace is preferable ower another



 In cach state grant some request subset that:

1. utilies the maximum number of segments.
2. has the maximum mumber of requests subject to I. and
3. has the maximum number of the longest requests subject 101 and 2 (i.e. a request subset witl requests of kength : , 2, and 3 is preferable wone with request of konth 2, 2, and 2).
 while deeping the reward latge. Constrame 3 ensures that lone requests are granted before worter anes (for subsets inceting constraints 1 and 2 ).

We invertigated this rule of thumb policy by determining the estimated optimal throughput subject to these three constraints for the 91 sets of probabilities with $p_{1}, p_{2}$, and $p_{3}$ sume integral multiple of .l. (We used these sume sets of probabilities whenever we calculated the throughput for any variation of the Ringbus model with six slices). For every set of probabilities considered, the estimated optimal throughput with these constraints was close (within $=-.009$ ) to the estimated optimal throughput with just the maximum number of segments coustraint. louthermore, in the vast majority of states there is oniy one request subset that meets constraints 1, 2, and 3. Thus, these constaints function well in reducing the number of possible decisions in cach state without affecting the throughput by much. Quite a fow states remain, however, for which there is still more than one request subset mecting the three constraints. An examination of these states revealed that for most states these remaining subsets are cither related by symmetry or nearly identical. We believe that the throughput would remain essentially the same if for each state, the request subset is selected arbitranily from those meeting all three constraints. For that matter, we suspect that the throughput would remain approximately the same if for each state ihe request subset is selected athitraty frem all those meeting the maximum number of segments constrant.

### 15.1 Mounds an the Cpatioual Ihrowghpul

 Rumbon Cincats are:

2) all Vkes have identeal request probabilitien and geometrically distributed precersing tumes (as assumed in wethon 3.1). and
3) the duration of all gramts is a sungle round.

All of the bounds can tee extended to deal remove these restrictions. However, all these extensoms (except from a symmetre to a nom-symmetric Ringhus), complicate the calculatoon of the bounds and this makes the bounds less alttractive.

### 3.5.1.1 Fion Model Bound

Benote the rate at which requesss - null and nonnull - arrive at the Ringhon (in number of requests per romend) from slice $;$ by $\lambda_{i}$. Because of our symmetry assumptions, $\lambda_{i}$ is the sane for all slices, thus we simoly demote the rate by $\lambda$. The rate at which momull requests arrive at the Ringbus from a slice is $\left(1-p_{0}\right) \lambda$. Therefore the throughput of the Ringbus is $S\left(1-p_{0}\right) \lambda$ where $S$ is the number of slices.

We nuw consider the rate at which requests are granted from a slice for various dentinaiomens. This rate may be likened to a llow: nonnull requests fow into the Ringbus from ene slice at the rate ( 1 - $\left.p_{0}\right) \lambda$. The flow from a slice to a destination $i$ segnents away is $p_{i} \lambda^{\dagger}$. $W$ cassume that all reguests of lengeth $0<i<S / 2$ are granted in the shortest direction and that requests of Ienglh $S / 2$ are granted in the clockwise direction. Thus this flow divides in accordance with the cleckwise or counterclockwise position of the destination relative to the source.

The cotal clockwise flow over a particular segment is $\left(1-p_{0}\right) \lambda \sum_{i=1}^{S / 2} \frac{i p_{i}}{\left(1-p_{0}\right)}-\lambda \sum_{i=1}^{S / 2} i p_{i}$. Similarly the total counterclockwise flow over a particular segment is $\left(1-p_{0}\right) \lambda \sum_{i=1}^{s / 2} \frac{i p_{i}}{\left(1-p_{0}\right)}=\lambda \sum_{i=1}^{s / 2} i p_{i}$. Thus the total flow over a particular segment is

$$
\left(1-p_{0}\right) \lambda\left|\sum_{i=1}^{S / 2-1} \frac{2 i p_{i}}{\left(1-p_{0}\right)}+\frac{s / 2 p_{S / 2}}{\left(1-p_{0}\right)}\right|=\left(1-p_{0}\right) \lambda \bar{l}
$$

where $\bar{I}$ is the average kength of a request (in terms of the number of hops or segments required) $\dagger$ The probability that a request is for a devination $i$ segmems away from the whuce, even that the reques is

given that the request is momull. By symmetry arguments, the flow is identical on all segments.
The total fow on any segmemt must not exceed 1 (i.c. one gram per round). Thus (1 $\left.p_{0}\right) \lambda \leq 1$ and therefore

$$
t^{o p t} \leq \frac{S}{T}
$$

This bound is best for heavy traffic - i.e. $p_{0} \approx 0$ - but even then it is not that gexed.
The throughput of the Ringhus can be written as

$$
t=\frac{S}{\frac{p_{0}}{1-p_{0}}+w+1}
$$

where $\underset{1-p_{0}}{\rho_{0}}$ is the average processing time (in rounds) and $\bar{w}$ is the average waiting time of a request (again in rounds). Since $w \geq 0$, we have

$$
1 \leq s\left(1-p_{0}\right)
$$

siedtiug a tighter hound for light raiflic. i.e. $p_{0} \approx 1$. Thus

$$
\begin{equation*}
t^{n t} \leq s \min \left|\frac{1}{7} \cdot\left(1-p_{0}\right)\right| \tag{1.19}
\end{equation*}
$$

The effects of seganent andor destination conflicts must be inchaded to get more uschul bomats.

### 3.5.1. 2 Crosshar Bound

An alternative way to obtain an upper bound on the throughput of the Ringhus in w....

 tions. and ignoring request writing times, the state dexaptom of outh . 1 matiol

$$
\left(r_{1}, r_{3} \cdots r_{1}\right)
$$











MICROCOPY RESOLUTION TEST CHART
Le_mationla burenu of Stamonios-igeg-A
can be only destination conflicts, this simpler model can be viewed as $S \times . S$ nondiagonal crossbar interconnection. (Nondiagonal means that there are no crosspoim switches along the major diagonal.) This crossbar model has the same state description as the Ringbus model discussed in the beginning of section 3.5. The only difference between the two models is in the constraints. The Ringbus model has segment and destination requirements for each request and the crossbar model has only destination requirements. Thus the crosisbar model has fewer constraints on which requests may be granted simultincously i.c. it has more immediately grantable request sets and fewer request conflicts.

Therefore merely by changing what constitutes a grantable request subset (a request subset in which all requests are grantable), the same computer progrann can be used to determine the optimal Uroughput for both the Ringhus and crosibar mondels. Pigure 3.22 shows the optimal throughput for selected probabilities for the Ringbus and crossbar.

The optimal throughput of the Ringbus is close to that for the crossbar when $p_{0}$ is large (i.e. light loading) and when $p_{1}$ is large. For mest other probability sets, and especially for large $p_{3}$. the throughpur of tie crossbar exceeds that of the Ringbus by a great deal. This is to be expected since the crosisbar does not have any of the segment connlicts which comprise the majority of the conflicts in the Ringbus.

The chief value of the crossbar bound is to allow a comparison between the performance of the Ringbus interconnection scheme and that of a crossbar interconnection, which has the best performance adievable. ${ }^{\dagger}$ The crosshar bound is, of course, a beound on the optimal throughput of the Ringbus, but it is as difficult to compute as the optimal throughput or the Ringbus itself (sinee both the Ringbus and crossbar models have the same large state space).
$\dagger$ Where the incerconnection musi be circull-wwitched with $S$ sources and $S$ destinations.


### 3.5.1.3 Number of Segments Bound

Another simple model of the Ringbus is to consider only the segments required by each requesi and ignore the destination of each request. This model captures the essence of the Ringbus betuer than the crosibar model but it still hats the soune large state space and thus is useless for obtaining a practical bound. In order to reduce the size of the state space we consider an even simpler model of the Ringbus. Now we consider only the number of segments required by each request and ignore the particular segments and destination required by each request. For $S$ slices, single round grant durations. and ignoring request waiting times. the state deseription of this model reduces to

$$
\left(m_{\left.0, m_{1}, m_{2}, \cdots, m_{S / 2}\right)}\right)
$$

where $m_{0}$ is the number of null requests, $m_{i}$, for $1 \leq i \leq S / 2$, is the number of requests requiring $i$ segments, $0 \leq m_{i} \leq S$, for $0 \leq i \leq S / 2$, and $\sum_{i=0}^{S / 2} m_{i}-S$. The only constraint on granting requests is that the total number of segments required by the requests not exceed the number of segments $S$. Thus a state is immediately grantable if $\sum_{i=1}^{.52} i m_{i} \leq S$. The total number of states is

$$
\left|\begin{array}{c}
1+S / 2+S-1 \\
S
\end{array}\right|-|S+S / 2|
$$

For $S=6$ this moxiel has 84 stutes as compared to the 4003 states of the original Ringbus model (after symmetry is removed).

Figure 3.23 shows the optinial throughput of this model, which we call lic number of segments model, and the uptimal throughput of the Ringbus for various request plubabilities. The number of segments moxiel yields an excellent upper bound on the optimal throughput for light traffic (i.e. $p_{0}$ large) and for $p_{3} \geq .8$. The quality of the bound degrades as $p_{2}$ and especially as $p_{1}$ increases. This performance is to be expected since the number of seginents model ignores destination conflicts and the particular segments required by each request. These two factors dominate the performance of the Ringbus for heavy traffic and short request kengths. The bound is worst for $p_{1}=.5, p_{2}=p_{3}=0$. At this poi:t, the number of segments mendel gives a bound of 6.0 on the optimal throughput. whereas the optimal throughput of the Ringbus at this point is 4.22 (grants per round).


1-igure 3.23: Optimal throughput of the number of segments model

An examination of the estimated optimal decisions in each state of the number of segments model revealed the same general trend as those in the Ringbus model: request subsets with long requests (i.e. requests requiring many segments) were increasingly favoured over ones with only shorter requests, as the traffic increased (i.c. as $\boldsymbol{p}_{0} \rightarrow 0$ ). This trend was most pronounced when $\rho_{1}$ was large, $p_{2}=0$ and $p_{3}$ small.

We computed the optimal throughput of the number of segments model subject th the two different constraints investigated earlier for the Ringbus model: the maximum reward and maximum number of segments constraints. Our findings again parallel that discussed carlier for the Ringbus model. The optimal throughput with the maximum number of segments constraint was indistinguishable (within the $\pm .005$ tolerance range on the optimum from the value iteration algorithm) from the unconstrained optimal throughput. The optimal throughput with the maximum reward constaint was less than the unconstrained optimal throughput in about the same region for which the optimal throughput of the Ringbus model with the maximum reward constraint was less than the unconstrained optimal throughput of the Ringbus model. (See Figure 3.19 for this latter region.)

### 3.5.1.4 Discussion

There is usually a tradeoff between the tightness of a bound and the case of its calculation. Tight bounds tend to be complex and difficult to calculate while hoose bounds tend to be simple and casy to calculate. Unfortunaely, the Ringbus model is very complex as cevidenced by its large number of states. This suggests that any really tight bounds on the tiroughput of the Ringhus in all cases will also be very complex and difficult to calculate.

The bounds we investigated are examples of the spectrum of the tradeoff between tightness of a bound and its case of calculation. The average number of segments bound is simple but not very accurate. The crossbar bound is extremely difficult to calculate (as difficult as the optimum Ringbus throughput itself). The main purpose of the crossbar bound is to provide the performance of the best possible interconnection network for comparison with the performance of the Ringbus. The number of segments bound is the best of the three different bounds investigated. exeept when $p_{1}$ is large. in which case it is the worst bound.

The number of segments bound has a further significant advantage over the other bounds: it yields some idea of the optimal decisions in the Ringbus model.

### 3.6 Optimal Arhiter for Right Slises

In this case the state description with gramt durations of one round is

$$
\left(r_{1}, r_{2}, r_{3} \ldots, r_{g}\right)
$$

where $r_{i}=-3,-2,-1,0,1,2,3$. or 4 as discussed in section 3.2. This yiclds $8^{8}=16,777,216$ states. By utilizing rotationall and flip symmetry in the state description, the number of states can be reduced by a factor of less than $16^{\dagger}$, which still yields over 1.000 .000 states. Needless to sily. this huge number of states makes the pursuit of the optimum throughput and corresponding optimum policy very difficult for general request probabilities. Based on our experience with the value iteration algoridhm for determining the optimum throughput with six slices, we concluded that such an algorithm would be impractical for eight slices with the computational resources available to us. The optimum throughput can still be determined rather easily for some special cases with a small number of states.

One special case that we investigated is the optimum throughput along the axes of the feasible probability region (i.c. only one request probability non\%ero). Pigure 3.24 shows the optimum Uroughput along each axis of the feasible probability region. Another special case is the optimum Uroughpet on a face of the feasible probability region (i.e. with only two request probabilities nomero). We did not investigate this case.

Bounds and approximations are the only practical methods to obtain some idea of the optimum ihroughput for general request probabilitics. However, some idea of the general chanacteristics of the throughput is also useful. We discuss such characteristies in section 3.6.l. Any of the bounds discussed in section 3.5.1 can be applied, althotgh the Markovian decision formulation bounds and the crossbar bound are not very practical due to their large computational requirements. We examine the number of segments bound in section 3.6.2. One simple approximation is to replace all nonnull requests by requests of a single length closest to the mean request length (given that a nonnull request cecurs) $\bar{l}=\frac{2 p_{1}+4 p_{2}+6 p_{3}+4 p_{4}}{\left(1-p_{0}\right)}$. Nnother approximation is $\prime^{o p^{\prime}} \approx \sum_{j} p_{1} q_{j}^{\text {max }}$. We expect this to be an excellent approximbation again but it is rather diflicult to calculate. The difficulty is in determining $q_{j}^{\text {max }}$ in cach of the $8^{8}$ states: $p_{1 j}$ is trivial to determinc.

[^17]

Figure 3.24: Optimal throughput of Ringhus with cight slices and




### 3.6.1 General Characteristics of the Optimum Throughput

 this section we consider the general shape of this function.

### 3.6.1.1 Slope for Very Light Traffic

From equation 3.10 we have $1^{o p t} \approx \sum_{k} p_{1 k}\left(v_{k}^{o p t}-p_{1}^{o p t}\right)$. For very light traffic, i.c. $p_{0} \approx 1$, $v_{k}^{o n t}-v_{1}^{o p t} \approx n_{k}$ where $n_{k}$ is the number of nonnull requests in state $k$. This cain be seen from equation 3.13:

$$
v_{k}^{q p t}-v_{p}^{q p t}=q_{k}^{q p t}+\sum_{m=0}^{\infty} \sum_{j}\left(p k j-p_{j}\right) \sum_{l} \varphi^{u p t}(m) q l^{p p t} .
$$

For $p_{0} \approx 1 . p_{k j}^{\text {pp }} \approx\left\{\begin{array}{ll}1 & \text { if } j \text { is a keftover of state } k \\ 0 & \text { otherwise }\end{array}\right.$ and $p_{1 j} \approx\left\{\begin{array}{ll}1 & j=1 \\ 0 & j \neq 1\end{array}\right.$ (where state 1 is the state with all null requests). Of course $\varphi_{i}^{\text {opt }}=0$. Thus

$$
v_{k}^{o p t}-v_{l}^{q p t} \approx \varphi_{k}^{o p t}+q l^{o p t}+q_{m}^{o p t}+\cdots=\|_{k}
$$

where state $l$ is the leftover of state $k$. state $m$ is the leftover of state $l$, ste. until the leftover is state 1 with all null requests. Therefore for $p_{0} \approx 1$ we have

$$
t^{o p t} \approx \sum_{k} p_{1 k} n_{k}
$$

Now if $p_{i}=\delta$ for some $1 \leq i<S / 2$ where $\delta$ is very small and positive and $p_{j}=0$ for all $j \neq 0$ and $j \neq i$, then

$$
p_{1 k}=\left|\begin{array}{c}
S \\
n_{k}
\end{array}\right|(2 \delta)^{n_{k}}(1-2 \delta)^{S-n_{k}}
$$

Therefore $1^{o p t} \approx 2.5 \delta$ and thus $\frac{\partial 1^{o p t}}{\partial p_{i}} \approx 2.5$. Taking the limit as $\delta \rightarrow 0$, we have $\left.\frac{\partial t^{o p t}}{\partial p_{i}}\right|_{\rho_{0}=1}=2.5$ for $1 \leq i \leq S / 2$.

If $p_{S / 2}=\delta$ where $\delta$ is very small and positive and $p_{j}=0$ for all $j \neq 0$ and $j \neq i$, then

$$
p_{1 k}==\left(\left.\begin{array}{c}
S \\
n_{k}
\end{array} \right\rvert\, \delta^{n_{k}(1-\delta)}{ }^{S-n_{k}}\right.
$$

Therefore $t^{\text {opt }} \approx S \delta(1-\delta)^{S-1} \approx S \delta$ and thus $\frac{\partial 1^{\text {opt }}}{\partial p_{S / 2}} \approx S$. Taking the limit as $\delta \rightarrow 0$, we have $\left.\frac{\partial I_{o p t}^{o p t}}{\partial p_{S / 2}}\right|_{p_{0}=1}=S$.

Note that these slopes are reflected in the drawings in ligure $\mathbf{3 . 2 4}$.

### 3.6.1.2 Shape Along a Ray with lixed Ratio of Nonnull Probabilities

For any arbitrary value of $S$ the characteristics of the shape along a ray are similar to those discussed in section 3.4.1.2 for four slices.

### 3.6.1.3 Maximum Points

At any point in the feasible probability region, the throughput increases if $p_{1}$ increases by some positive amount $\boldsymbol{\delta}$. (This may require that the probability of other request lengths decrease.) Thus there are no maxima in the interior of the feasible probability region; the maximum must occur on the boundary. Obviously, the unique maximum occurs at $\rho_{1}=.5$ and the unique minimum uccurs at $p_{0}=1.0$.

### 3.6.1.4 Shape Along Cross Sections

The uroughput increases monotonically along any cross section parallel to the $p_{1}$ axis since $\frac{\partial t}{\partial p_{1}}>0$. ( $t$ is the throughput.) Nlong other cross sections. such as parallel to the $p_{4}$ axis, the threughput maty both increase and decrease. (For example, in Figure 3.17 the throughput decreases as $p_{3}$ increases for $p_{1}=.2$ and $p_{2}=.1$.)

### 3.6.2 Number of Scgments Round

To obtain some idea of the optimum throughput of the Ringbus model with $S=8$ and grant durations of one round for general request probabilities, we calculated the optimun throughput of the number of segments model for $S=8$ with selected request probabilitics. Table 3.3 lists the results, which we obtained via valuc iteration, to within $\pm .005$ of optimum. For comparison. Table 3.3 also lists the optinnum throughput of the Ringbus model for the request probabilities in Table 3.3 for which it is known. These request prokabilitics (for which $t^{\text {opt }}$ is known) all correspond to points along the axes of the feasible probability region. Note that $1^{\text {mumber of segments }}$ is a poor bound for $\boldsymbol{r}^{\text {opt }}$ for large $p_{1}$, as observed for $S=6$ in section 3.5.1.4. Otherwise, we expect that $t^{\text {number of segments }}$ is a reasonable bound for $t^{n p r}$, as observed for $S=6$.

| Request Probabilities |  |  |  | Number of Scentents Model | Ringhus Model |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{1}$ | $p_{2}$ | $p_{3}$ | $p_{4}$ | $t^{\text {number © }}$ agmenns: | $1^{\text {apt }}$ |
| 0.2 | 0.0 | 0.0 | 0.0 | 3.20 | 2.96 |
| 0.4 | 0.0 | 0.0 | 0.0 | 6.40 | 4.94 |
| 0.5 | 0.0 | 0.0 | 0.0 | 8.00 | 5.63 |
| 0.0 | 0.2 | 0.0 | 0.0 | 3.09 | 2.43 |
| 0.2 | 0.2 | 0.0 | 0.0 | 5.23 | ? |
| 0.0 | 0.4 | 0.0 | 0.0 | 3.99 | 3.10 |
| 0.0 | 0.5 | 0.0 | 0.0 | 4.00 | 3.22 |
| 0.0 | 0.0 | 0.2 | 0.0 | 1.99 | 1.96 |
| 0.2 | 0.0 | 0.2 | 0.0 | 3.86 | ? |
| 0.0 | 0.0 | 0.4 | 0.0 | 2.00 | 2.00 |
| 0.0 | 0.0 | 0.5 | 0.0 | 2.00 | 2.00 |
| 0.0 | 0.0 | 0.0 | 0.2 | 1.51 | 1.32 |
| 0.2 | 0.0 | 0.0 | 0.2 | 3.75 | ? |
| 0.4 | 0.0 | 0.0 | 0.2 | 4.99 | ? |
| 0.0 | 0.2 | 0.0 | 0.2 | 3.00 | ? |
| 0.2 | 0.2 | 0.0 | 0.2 | 4.00 | ? |
| 0.0 | 0.0 | 0.2 | 0.2 | 2.00 | ? |
| 0.2 | 0.0 | 0.2 | 0.2 | 3.29 | ? |
| 0.0 | 0.2 | 0.2 | 0.2 | 2.86 | ? |
| 0.0 | 0.0 | 0.4 | 0.2 | 2.00 | ? |
| 0.0 | 0.0 | 0.0 | 0.4 | 1.99 | 1.90 |
| 0.2 | 0.0 | $0.1)$ | 0.4 | 3.20 | ? |
| 0.0 | 0.2 | 0.0 | 0.4 | 2.67 | ? |
| 0.0 | 0.0 | 0.2 | 0.4 | 2.00 | ? |
| 0.0 | 0.0 | 0.0 | 0.6 | 2.00 | 2.00 |
| 0.2 | 0.0 | 0.0 | 0.6 | 2.85 | ? |
| 0.0 | 0.2 | 0.0 | 0.6 | 2.50 | ? |
| 0.0 | 0.0 | 0.2 | 0.6 | 2.00 | ? |
| 0.0 | 0.0 | 0.0 | 1.0 | 2.00 | 2.00 |

Tabie 3.3: Results from number of segments model for eight slices

An examination of the estimated optinal decision in cadth state of the number of segments model revealed that the number of states with non-maximum reward decisions increased as the request probabilitics became dominated by short (i.e. length 1) and long (i.c. length 3 and 4) requests. Otherwise the number of shates with less than the maximum reward was quite small. In fact. as long as $p_{1}$ and $p_{3}$ were both small. the estimated optimal decision in each state almost always gave the maximum reward. The optimal thromehput of the number of segments medel with a maximum reward constraint was very close to the unconstrained optimal throughput except when there were mosely short and long requests. Of the request probabilities listed in lable 3.3. the deeradation caused by the maximum reward constraint was greatest ( 0.40 ) for $p_{1}=.4, p_{2} \ldots 0$,
$p_{3}-0$, and $p_{4}-2$ ). On the other hand. the optimum throughput of the number of segments moxdel with a maximum number of segnients constraint was indistinguishable from the uncon-
 except for $p_{1}=.4, p_{2}=0, p_{3}=0$, and $p_{4}-.2$. This comes as no surprise since the estimated optimal decision in each state in the unconstrained case almost always utilized the maximum number of segments.

These observations suggest that the trends in the optimal decisions for the Ringbus medel for $S=6$. discussed in section 3.5, continue for $S=8$. In particular, these observations suggest that the maximum reward constraint has even a greater effect on the optimum throughput of the Ringbus for $S=8$ than for $S=6$, reflecting the sharper contrast between short and long request for $S=8$.

### 3.7 The Symmetric Ringhus With More Than Right Slices

Any pursuit of the optimum throughput and/or optimum policy for more than eight slices and gencral request probabilities seems hopeless. As the number of slieses increases nuch past eight, there even begin to be too many states to compute the optinum throughput on the faces and along the axes representing requests of length less than $S / 2$. (The number of states along Uhese axes is $3^{5}$ where $S$ is the number of slices. Only $2^{S}$ states are required to compute the optimum along the axis representing requests of lenght $S / 2$. This number can be reduced further as we discuss in seetion 3.7.1.) Of course, the general characteristics of the throughput as discussed in seetion 3.6.I remain the same for more than eight slices. In addition, the bounds discussed previously, particularly the number of segments bound, cam still be effectively applied (although the number of states increases rapidly above eight slices for the number of segments bound).

### 3.7.1 Throughput as al Function of the Number of Slices for Some Special Cases

Two special cascs for which it is casy to determine the optimum throughput of the Ringhus ior a large number of slices are
(i) at an extreme point of the feasible probability region i.c. at a point where $p_{i}=5$ and $p_{j}=0$ for $j \neq i$ for some $0<i<i / 5 / 2$, and
(ii) along the axis corresponding to requests of length $S / 2$ i.e. $f=0$ for $i=1,2, \cdots, S / 2-1$. Using rotational and lip symmetry, the $2^{S}$ states in case (i) can be reduced by a significant fraction.

Onc extreme point of particular interest in case (i) is $p_{1}=.5$. where the maximun throughput eccurs. We call casily obtain bounds on this maximum throughput for a large number of slices as follows.
I.et the number of requests in a round in the clockwise direction be denoted by $n_{c w}$ and the number of requests in a round in the counterelockwise direction be denoted by $n_{\text {cew }}$ ( $\left.n_{\text {cw }}+n_{\text {cew }}-S\right)$. Since all the requests are nomnall and of lenght one. we can grant at keast $\max \left(n_{c w} \cdot n_{c \text { cw }}\right)$ requests in a round. Imaginc an arbiter which operates by granting exactly $\max \left(n_{c w} \cdot n_{c e w}\right)$ requests in every round. Since an optimal arbiter can grant at least this number of requests in every romad, the th:oughput of the Ringbus with this clockwise-counterclockwise arbiter (which we term the ew-cew arbiter) thus gives a lower bound on the optimum throughput of the Ringbus for $p_{1}=5$.

An obvious state description of the Ringhus with the ew-cew arbiter is

$$
\left(n_{c w}, n_{c c w}\right)
$$

However, we can reduce the number of states by uilizing the symmetry between the clockwise
and counterelockwise requests. Thus we consider instead the state description

$$
(m, n)
$$

where $m \because \max \left(n_{c w}, n_{c-w}\right)(i . c . m \geq S / 2)$ and $m+n=-S$. It is convenient to number the states with $n, n=0,1,2, \cdots, S / 2$. The reward in each state is $m$. The one step (ransition probability from state ( $m, n$ ) to state ( $m^{\prime}, n^{\prime}$ ) is given by

$$
n_{n, n^{\prime}}=\left\{\begin{array}{l}
\left.\left|\frac{1}{2}\right|^{S-n}\left|\begin{array}{l}
S-n \\
n^{\prime}-n
\end{array}\right|+\left|\begin{array}{l}
S-n \\
n^{\prime}
\end{array}\right| \right\rvert\,, n^{\prime}<S / 2 \\
\left|\frac{1}{2}\right|^{S-n}\left|\begin{array}{l}
S-n \\
S<2
\end{array}\right|, n^{\prime}=S / 2
\end{array}\right.
$$

where

$$
\left|\begin{array}{l}
a \\
b
\end{array}\right|=\left\lvert\, \begin{array}{ll}
-\frac{a!}{b!(a-b)!} \quad \text { if } a \text { and } b \text { are integers and } b=0,1, \ldots, a \\
0, & \text { otherwise }
\end{array}\right.
$$

This cxpression fur $p_{n, n}$ may be understood as follows. The reward in stite ( $11 . n$ ) is $S-n$ : hence the next state has $S-n$ new requests. There are two ways for this next state to be ( $m I^{\prime}, n^{\prime}$ ) if $n^{\prime}<S / 2$ :

1) $n^{\prime} \cdots n$ (where $n^{\prime}>n$ ) of the $S-n$ new requests are in the same direction as the $n$ old requests inherited from state ( $m, n$ ) and the state is not "nipped" (i.c. $S-n^{\prime} \geq n^{\prime}$ ).
2) $n^{\prime}$ of the $S-n$ new requests are in the opposite direction as the $n$ old requests inherited from state ( $m, n$ ) and the state is "flipped" (i.c. $n^{\prime}<S-n^{\prime}$ ).

There is only one way for the next state to be $m^{\prime}, n^{\prime}$ if $n^{\prime}=S / 2$ sinec the state is never "flipped" in this casce.

The throughput of the Ringbus with the $\mathrm{cw}-\mathrm{ccw}$ arbiter is given by

$$
c^{c w-c w}=\sum_{n=0}^{2} \pi_{n}(S-n)
$$

where $\pi_{n}$ is the stcady statce probability of being in state $n$. The $\pi_{n}$ satisfy $\pi_{n}=\sum_{n^{\prime}=0}^{S 2} \pi_{n} \cdot p_{n}: n$. $n=0.1 .2 \ldots . . S / 2$ and $\sum_{n^{\prime}=0}^{S} \pi_{n^{\prime}}=1$.

We computed $t^{\text {cw }}$ - ew for various values of $S:$ the results are listed in Tabie 3.4 along with the optimuin throughput of the Ringhus for 4, 6, and 8 slices. Note that the lower bound given by
$\boldsymbol{f}^{\text {cw }}$-cew is cqual to the optimum throughput for 4 slices. The lower bound is progressively less tight for 6 and 8 slices. We expect that this trend comtinues as the number of slices increases further. $\Lambda s, S \rightarrow \infty$, an average of $2 / 3$ of the reguests are granted ${ }^{\dagger}$, hence $\frac{t^{c w-c c w}}{S} \rightarrow \frac{2}{3}$ as the figures indicate in 'lable 3.4.

| $S$ | $\iota^{c w}-c e w$ | $t^{\text {opt }}$ | $\frac{c^{c w}-c \mathrm{cw}}{S}$ | $\frac{s^{\text {opm }}}{S}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 2.83 | 2.833 | 0.708 | 0.708 |
| 6 | 4.154 | 4.23 | 0.692 | 0.705 |
| 8 | 5.473 | 5.63 | 0.684 | 0.704 |
| 10 | 6.792 | $?$ | 0.679 | $?$ |
| 12 | 8.112 | $?$ | 0.676 | $?$ |
| 14 | 9.433 | $?$ | 0.674 | $?$ |
| 16 | 10.755 | $?$ | 0.672 | $?$ |
| 18 | 12.078 | $?$ | 0.671 | $?$ |
| 20 | 13.403 | $?$ | 0.670 | $?$ |
| 22 | 14.729 | $?$ | 0.669 | $?$ |
| 24 | 16.055 | $?$ | 0.669 | $?$ |
| 26 | 17.382 | $?$ | 0.669 | $?$ |
| 28 | 18.709 | $?$ | 0.668 | $?$ |
| 30 | 20.038 | $?$ | 0.668 | $?$ |
| 32 | 21.367 |  | $?$ | 0.668 |

Table 3.4: $1^{c w-c c w}$ for various values of $S$

We can obtain an upper bound en the optimum throughput of the Ririgbus for $p_{1}=.5$ and $S$ even by considering only destination cenflicts. Number the slices from 1 to $S$ in the clockwise direction around the Ringbus. Odd numbered slices only request even numbered slices and even numbered stices only request odd numbered slices. Thus, ignoring the segment conflicts, the Ringbus is equivalent for $p_{1}=.5$ to two $. S / 2 \times S / 2$ crossbars - one connecting odd sources to even destinations and the other connecting even sources to odd destinations. Hach of these crossbars consist of $S / 4$ cells as depicted in Figure 3.25 .

+ lor large $S$, if $m$ requessts are granted in the curfent round, then the average number of requests granted in the next round. $\mathrm{m}^{\prime}$. is the number of teftovers from the current mund plus half of the new iequests that arrive in the next round i.e. $m^{\prime}=(S-m)+\frac{m^{\prime}}{2}$. In stade sate $m^{\prime}=-m$. hence $m=\frac{2}{3} S$


Figure 3.25: $\wedge$ crussbar cell

Suppose we ignore the interactions between cells. (The cells interact via conflicts at the destinations in common with adjacent cellis.) bach cell is thus independent of all the others. Under this condition, it is casy to establish that the throughput of a cell is $\boldsymbol{I}_{\text {cell }}=\frac{7}{4}$. The totil number of cells is $S / 2$, hence

$$
t^{o p t} \leq \frac{S}{2} \frac{7}{4}=\frac{7}{8} S
$$

Considering that this is also a bound on the throughiput of a crossbar with $p_{1} \ldots .5$ and $S$ slices, this is a peor upper bound for the Ringbus. Examining Table 3.4, it appears that $\frac{\text { opr }^{\text {opt }}}{5}$ decreases montotonically with $S$. This keads us to make the following conjecture.

## Conjecture

I.et $\overbrace{}^{\text {gpt }}$ denote the optimum throughput of a $S$ slice Ringbus with request probabilities $p_{i} S$. $i=-(S / 2-1), \cdots, S / 2$ if $S$ is cven, and $i=-(S-1) / 2, \cdots,(S-1) / 2$ if $S$ is ondd. I.ct $t^{o p t}+1$ denote the optimum throughput of a $S+1$ slice Ringbus with request probabilities

$$
p_{i}^{S+1}=\left\{\begin{array}{l}
p_{i}^{S},|i|=0,1,2, \cdots, S / 2-1 \text { if } S \text { is even } \\
p_{S / 2}, \quad i= \pm S / 2 \\
0, \quad i=S / 2+1
\end{array}\right.
$$

and

$$
p_{i}^{S+1}= \begin{cases}p_{i}^{S}, & |i|=0,1,2, \cdots,(S-1) / 2, \quad \text { if } S \text { is odd } \\ 0, & \text { otherwisc. }\end{cases}
$$


$\left.19 p_{+n} \leq\left|\frac{S+n}{S}\right| \right\rvert\, g p t$.

Unfortunately, this conjecture seems difficult to prove. If it is true, then a much better bound on the optimum throughput of the Ringbus for $p_{1}=.5$ is

$$
t_{4+n}^{o p t} \leq\left.\left|\frac{4+n}{4}\right|\right|_{4} ^{o p t}=\left|1+\frac{n}{4}\right| 2.833
$$

for $n=1,2,3, \cdots$. For large $S$ the conjecture leads to


It is not easy to obtain good lower boundx as...twe other extreme points $p_{i}=.5$ (i夫.S/2) since the possibility of requests in the same direction conflicting introduces additional complexity. One way to obtain a lower bound on the optimum throughput for $p_{i}=.5,0<i<S / 2$, is to construct a Ringbus in which all requests are of length 1 by delecting the $i-1$ slices between every $i^{\text {th }}$ slice. Or course, this is only successful (although it can be modificed) if $\frac{S}{i}$ is an integer. As an example, consider $S=8$ and $p_{2}-5$. After deleting.,.-.-y second slice, we obtain a 4 slice Ringbus with afl requests of length I. The chroughput for such a Ringbus is 2.833, hence a lower bound on the Uroughput of the cight slice Ringbuc. with $p_{2}=.5$ is 2.833 . The exact throughput in this case is 3.22 (sec Yigure 3.24).

For wime extreme points $t^{\text {opt }}-2$. This is obviously truc, for example, for $p_{S / 2}=1$. It is also true for $p_{i}-.5$ when $\left|\frac{S}{i}\right|=2$ ( $S$ cren).

The optimum thronghput along the $S / 2$ axis is casy to calculate for large $S$ since the number of states can be greatly reduced from the $2^{S}$ mentioned carlier. If the only nonnull requests are of length $S / 2$, it suffices for a state description to merely describe the number of pairs of slices with zero, one, and (wo nomnull requests, where two slices $180^{\circ}$ apart on the Ringious comprise a pair. 'Thus the state description is

$$
\left(n_{0}, n_{1}, n_{2}\right)
$$

where $n_{i}, i=0,1$, or 2 is the number of pairs with $i$ nomull requests and $\sum_{i=0}^{2} n_{i}=S / 2$ (S even). The intal number of statces is $\left|\begin{array}{c}S / 2+2 \\ S / 2\end{array}\right|=\frac{(S / 2+2)(S / 2+1)}{2}$.

A lower bound on the optimum throughput along the $S / 2$ axis can be obtained easily by ignoring leftover requests. ©ertainly.
$\prime^{\text {onf }} \geq 2 \cdot P^{\text {rob (at least }} 1$ pair has $\mathbf{2}$ requests) +
1-Prob(at least 1 pair has I request and no pair has 2 requests)
$1^{o n \prime} \geq 2 \cdot \operatorname{Prob}$ (at least 1 pair has 2 requests) +
1 - Prob(at least 1 pair has 2 requests) - Prob(no pair has any requests)
Now Prob(at least 1 pair has 2 requests) $=1-\operatorname{Prob}$ (no pair has 2 requests) $=1-\left(1-p_{s / 2}\right)^{s / 2}$ and $\operatorname{Prob}($ no pair has any requests $)=\left(\left(1-p_{s / 2}\right)^{2}\right)^{s / 2}$, thus

$$
1^{o p 1} \geq 2-\left(1-p_{S / 2} 2^{5 / 2}-\left(1-p_{S / 2}\right)^{S}\right.
$$

The throughput as a function of $S$ gives some idea of the scalability of the Ringbus. The throughput varies with the traffic, as reflected by the values of the $p_{i}$. This latter factor affeets the throughput the most: with $p_{0}=0$, the throughput can vary from 2 to somewhere between $\frac{2}{3} S$ and $\frac{7}{8} S$. The sensitivity of the throughput to the distribution of request lengths is perhaps best illustrated by the bound $t \leq \frac{S}{l}$ from section 3.5.1.1.

### 3.8 The Performance of the C'oncert Ringbus

In this section we investigate the performance of the Concert Ringbus and compare its performance with that of the Synmerric Ringbus. (We. of course, have to specify some arthitation wheme for the Symmetric Ringbus. We do this shortly.) The Concert Ringhus has asymmetrical access paths, and a rotating priority arbitration algorithm. as discussed in section 3.1. The investigation and comparison consist of three parts:

1) We determine the effect of the asymmetrical access patlis by comparing the optimum throughput with asymmetrical iccess paths (i.e. the Asymmetrical Ringhus) to the optimum throughput with symmetrical iscess paths (i.c. the Symmetrical Ringhus).
2) We determine the effect of the rotating priority arbitration algoridam by comparing the throughput with this algorithom for the Symmetric Kinghus with the optimum throughnut for the Symmetrical Ringbus.
3) We determine the effect of both the asymmetrical access paths and the rotating priority arbitration algorithm (i.ce the Concert Ringbus) by comparing the throughput with these to the optimun throughput with symmetrical access paths.

We consider only four slice Ringbuses. There are, unfortunately, tex) many states to consider Markov chain medels for six or more slices. The state description with the asymmetrical access paths in part 1 remaius

$$
\left(r_{1}, r_{2}, \cdots, r_{s}\right)
$$

where $r_{1} \cdots(S / 2 \cdots 1), \cdots,-1,0,1, \cdots, S / 2$. but flip symmetry can no longer be utilized to reduce the number of states beialuse a request in the countercleckwise direction requires more segments than a request of a similar number of hops in the clockwise direction. Thus, for $S=4$ the number of states is 70 , an increase of about $86 \%$ above the 43 states for the Symmetric Ringbus. $\Lambda$ similar increase for $S=6$ would put the number of states at about 7400. This number may not seem all that unreasonable. However, we felt it was not worth pursuing part Ifor $S 6$ if we could not also purste parts 2 and $;$ for $S$ 6. The state description with rotating priority is

$$
\left(r_{1}, r_{2} \cdots, r_{s}, r^{\prime}\right)
$$

where $i_{1}(p+k)$ med $S$ is the priority of tie request at slice $i$ and $r_{t}$ is the sunce as before. For S 4. the number of states for symmetrical access paths is 129 and the number of states for isymmetreal access paths is 214 . Similar increases for $S$ : 6 would put the number of states dbove 10.000. which we consider to be teo many states.

We conld have pursued parsh ? and 3 for harger values of $S$ sin simulatum. In fict. we did


Chapter 4 are for the entire Concert model, not just the Ringbus as is our focus here. For example, ute simulations reported in Chapter 4 assume grant durations of nine rounds and arbitration times of two rounds: we assume single round grant durations and instintoneous arbitration here. P'at I camon be carried out via simulation since optimization is impractical via simulation.

### 3.8.1 The liffect of Asymuretrical Access Paths

One fictor complicating the comparison of the optimum throughput with asymmetrical access paths with the optimum throughput with symmetrical access paths is that users may adapt their programs to suit the topology. As a result, requests may be biased in fivour of the clockwise direction in the former case and unbiased in direction in the latter case. To avoid biasing the comparison, we present the results for various asymmetrically weighted and symmetrically weighted request probabilities for both asymmetrical and symmetrical access paths.

Figures 3.26, 3.27, and 3.28 show the optimum throughput with asymmetrical and symmetrical access paths for $p_{-1}=p_{1}, p_{-1}=5 p_{1}$, and $p \ldots-1=0$ respectively. ( $p$. 1 is the probability of a request of one hop in the counterclexkwise direction.) Note that the optimum throughput with asymmetrical and symmetrical access paths is identical for $p_{-:}=\mathbf{0}$ : hence only one set of points is shown in Figure 3.28. As expected, the difference in the optimum throughputs for asymunctrical ard symmetrical aceess paths increases as $p_{-1}$ decreases.

### 3.8.2 The Fifect of lis Rotating Priority Arhitration Algorithm

IFigure 3.29 shows the optimum throughput of the Syminetric Ringbus and the throughput of the Symmetric Ringbus with the rotating priority arbitration algorithm used in the Concert Ringhus. For very light tralfic, the throughput with rotating priority is close to the optimum. lior all other traffic, the throughput with rotating priority quickly deteriorates with respect to the optinum. The maximun throughput, at $p_{1}=.5$, with rotating priority is .42 less than the optimum throughput. For $p_{2}=1$ the deterioration is especially severe. Iiven theugh two requests can be granted without comflicting, the rotating priority algorithm only grants one request. The reason for this stupidity is that slices are assigned consecutively decreasing priorities in the clockwise direction from the highest priority slice. Since no request can be granted which may conflict with one at a higher priority, a long request currently blecked by a request granted by a higher priority slice can nevertheless prevent an otherwise grantable request from being granted due to a conflict with the higher priority long request. An example of such a situation is shown in figure $\mathbf{3 . 3 0}$.






Figure 3.30: I:xample of a disidvantage of the rotating priority algoritlom

Slice l's request. which may be granted because it has the highest priority, conflicts with the lower priority slice 2's request, hence slice 2's request cannot be gramted. Ilowever, slice 2's request conficts with the lower priority slice 3's request and thus slice 3's request camnot be granted either, even though it is otherwise grantable. An obviousi fix to the problem is $t 0$ stagger the slice priorities as shown in ligure 3.31 .


Pigure 3.31: Staggered request probabilities

The consecutive assignment of slice priorities around the Ringbus will also obviously lead to throughput degradation for a larger number of slices, such as $S$ - 8 . and for cases in which checkwise requests of greater than one hop predominate. The prierities cam be stagered in a mamer similar to that in Figure 3.31 to reduce this degradation. Interestingly, it is casy to modify the Concert Ringbus to effect such a change to the assignment of the slice priorities. A new arbiter priority ROM (a $2 K \times 8 \mathrm{ROM}$ ) is all that is required.
$\Lambda$ different, hut still simple, improsement to the throughput of the Symmetric Ringhus with the rotating priority algorithm is to change the direction of the rotation. When the priorities are updited in the Coneert Ringhus athiter, the higher priowity is asigined to the next slice with a pending request in the coumerclex! wiese direction from the corrent highest priority slice. Clowkwise
rotation of the priority yields better throughput (assuming the slices are assigned consecutively decreasing priorities in tive clockwise direction from the highest priority slice). The maximum improvement in throughput by reversing the priority rotation from countereleckwise to clockwise is . 10. which is attained at $p_{1}=$. S. As betore, a new arbiter priority ROM is all that is required $t o$ implement clockwise priority rotation.

### 3.8.3 The Eiffeet of Asymmetrical Access Paths and the Rotating Priority Arbitration Algorithm

Figures 3.32, 3.33, and 3.34 show the throughput with asymmetrical access paths and the rotating priority algorithon. the optimum throughput with asymmetrical access paths, and the optimum throughput with symmetrical access paths for $p_{\ldots 1}=p_{1}, p_{\ldots 1}=.5 p_{1}$, and $p_{-1}=0$ respectively. As in liggure 3.29. the rotating priority algorithm imposes a degradation in throughput (as compared with the optimum throughput with asymmetrical access paths) that increases as $p_{1}$ or $p_{2}$ or both increase. For $p_{1}-p_{-1}=.5$, the degradation is .30 or $16 \%$. Again, the degradation is especially severe for $p_{2}=1.0$.

The throughput degradation is mostly attrihutable to the rotating priority atgorithm if $p_{2}$ is large and is mostly attributable to the asymmetrical access paths if $p_{1}$ and $p_{-1}$ are both large and if the request probabilities are the same with symmetrical and asy:nmetrical access paths. (This comparison can be misteading since the request probabilities would probably have a sirong chockwise bias in direction in any Ringhas with asymmetrical atcess paths and would pobbably be relatively unbiased in any Ringhus with symmetrical access paths. See the paragraph at the beginning of section 3.8.1.) The ihroughput degradation attributahle te the asymmetrical access paths diminishes as $\rho_{-1} \rightarrow 0$ if the request probabilities are the same with symmetrical and asymmetrical access paths. (The same parenthetical note applies to this statement too.)

We expect all the trends observable in Figures 3.32.3.33. and 3.34 to be accentuated with larger values of $S$.


Figure 3.33: A comparison of throughputs for four slices and one round grant duration with $p_{-1}=.5 p_{1}$


$$
\begin{aligned}
& \text { Figure 3.34: A comparison of throughputs for four slices and } \\
& \text { one round grant duration with } p_{-1}=0
\end{aligned}
$$

### 3.9 The Ringhus in the Concert Environment

So far in this chapier we have considered the Ringbus model in isolation. Now we consider some of the difference: between this artificial environment and the Concert enviromment. We discuss the efferts that these differences have on the operation and pertomance of the Ringlous. In section 3.9.1 we discuss tine details of the Muitibus-Ringbus connection and develon the heoks for the integration of the Ringlous model with the Multibus models in Chapter 4.

The major differences between the artificial enviroument of the isolated Ringbus and the Concert environment are:

1) the duration of the grants.
2) the arbitration time,
3) the drud time hetween successive Ringbus requests, and
4) global register accesses.

The duration of a grant is the total duration for which Ringbus segments are allocated to a request. As reported in section 3.3 .2 of $\Lambda$ ppendix $\Lambda$, uhis duration is 9 or 10 arbiter clock cycles i.c. 9 or 10 rounds - for reads and write accesses when the arbiter clock period is 200 nscc . Other than for a genmetricalily distributed grant duration with a mean of 10 rounds. we did not investigate the isolared Riagbus model for such bag grant durations. Furthermore, this case with a mean grant duration of 10 reunds applied for $S=4$ and symmetric access paths. Thus grant duratiens in the Concert enviromment are much longer than we considered for the isolated Ringbus model except in one special case.

As discussed in section 3.4, we expect that the effect of the long gramt durations on the optinum performance of the Ringbus can be estimated fairly well from the optemum unoughput with a deterministic grant duration of one round and equation 3.18. It should be possible to estimate the efliect of long gramt durations on the throughput for arbitration algorithms other than the optimum. by similar means. We expect then that the performance of the Ringbus is initially quite sensitive to the duration of grants and decreases rapidly as the duration of grants increases.

The arbitration time (or nore precisely, the arbitration delay) can be divided into two components. At some point during the arbitration time the arbiter decides (or can be regarded as deciding) whether or not to grant a request. The rest of the time is a delay gathering request information before the decision and a delay commonicating and implementing the decision. Thus the arbitration time may be treated by assuming instantancous arbitration time and adding the appropriate grant implementation delay to the request interarrival time and the appropriate grant implenentation delay to the grath diration. Increasing the reynest interarrial time (i.c. increasing $p_{0}$ ) and increasing the flant duratom decrease, the throughput. The exact effect of adding these delays depends on the magnitudes of the delays and the parameter values for the requests and
grant durations. The arbitration delay in Concert is two rounds - one round of request gathering delay and one round of grant implementation delay. Fior light to medium loading the resultant additional ellesk cyc!e of request interarival time will catuse litle change in $p_{0}$ and hence will have litule effect on performance. Iikewise, the effect of the addiuional clock cycle of grant duration will be small since grant durations are already quite long in Coneert.

The dead time between successive Ringbus requests is the minimum time between the end of a Ringbus grant and the next nonnull request generated from the same slice. In our isolated Ringbus model we assumed a dead time of zero. Hlowever, in Concert there is a dead time of 2 or 3 tounds. (The dead time corresponds to the minimum value of $t_{p}^{\text {RReqv }}$ which is reported in section 3.3.2 of $\Lambda$ ppendix $\Lambda$. We define $t_{p}^{\text {R Requ }}$ and discuss the decails of the Multibus-Ringbus interaction in section 3.9.1.) Since the dead time is relatively small compared to the total duration of a gramt, we do not expect the dead time to have a large direct effect on the performance of the Ringbus as compared to that predicted by our isolated Ringbus models. Of course, there will be an indirect effect since the dead time portion of the processing time is not well approximated by the geometric distribution which we assume for the processing time in our isolated Ringbus models. The consequence of the dead time is that the mean processing time must be at least 2 or 3 reunds, and thus $p_{0} \geq \frac{2}{3}$. This corresponds to light traffic in our isolated Ringbus models.

We have already discussed global register accesses. Aecesses to global registers on a slice different from the slice originating the access call be treated as special global memory requests. Accesses to global registers on the same slice originating the access camot be treated in this manner. Instead, we simply ignore such accesses. We expect global register accesses to be infrequent in normal operation, so the effect of ignoring such accesses in our isolated Ringbus models to be minimal in most cases.

Note that there is additional information available in the Concert environment which could conceivably allow the Ringbus arbiter to achicve better performance. In Concert. Whe only information available to the Ringbus arbiter is the type of request or grant present at cach slice. The arbiter is able to infer from this infornation the duration that the request has been pending or that the gramt has been in progress at each slice. Other information available in the Concert environment, but not available to the arbiter, is the number and type (i.c. Multibus or Ringbus) of requests in cach Multibus queue and the waiting time so far of each request.

Since all other Multibus activity is blocked during the entire duration of a Ringbus access even during the period which the access waits for use of the Ringbus - the arbiter could conccivably give priority to Ringhus accesses blexking a large number of Multibus accesses and thereby improve the overall throughput of Concert.

Finatly. note that although the arbiter clock period does affeet the performance of the

Ringbus, the effect is not as large as one may expect. The reason is that a considerable fraction of the duration of a Ringbus gramt is approximately constant independent of the arbiter clock peried.

### 3.9.1 The tiquivalent Model of the Ringhus

As discussed in section 1.3.5, the Ringbus can be replaced by an equivalent model for each slice-Ringbus connection. The equivalent model for each slice-Ringbus connection is the Ringbus access time distribution as seen by that slice. In determining these equivalent models of the Ringbus, we assume that each slice has been replaced by its single processor cquivalent with some processing time distribution, with mean $\bar{i}_{p}^{\text {MReqv }}$, and some Ringhus destination probabilities $p_{i}^{\text {M Beqr }}, i=-(S / 2-1), \cdots,-1,1,2, \cdots$, or $S / 2 .(S$ is the number of slices.) We assume that all of the single processor equivalent models are identical and that the Ringbus is symmetric with respect to each slice. Under these latter two assumptions, the equivalent medels of the Ringhus are identical for each slice-Ringbus connection and thus the Ringhous is completely characterized by one equivalent model. As noted in section 1.3.5, this means that only one Multibus-Ringbus connection need be considered during integration.

The single processor equivalent of the Multibus and the Ringbus cach perecive a Ringbus access cycle in a different way. lirom the point of view of the single processor equivalent. a Ringbus access cyele consists of a processing time, denoted by $t_{p}^{\text {MRcqv }}$. and an access time. demoted by $t_{\text {aRIR }} t_{u R R}$ includes the waiting time, if any, of the Ringbus request generated by the access. The probability distribution of $i_{p}^{\text {M/ }}$ ear incorporates the Maltibus waiting time. Figure 3.35 depicts the point of view of the single processor equivalent.

-igure 3.35: Point of view of single processor equivalent

Prom the point of view of the Ringhus, a Ringbus access cycle consists of a processing time. a waiting time, and a grant duration, all defined relative to the arbiter cleck. We define the grant duration as the total duration for which Ringbus segments are allocated to the Ringbus request generated by the access; we denote the grant duration by $d$. We define the processing time as the interval beiween the termination of a gaint and the commencement of the following grant in the absence of contention int the Ringhus. We denote this interval by $t_{p}^{R B u y y}$ to indicate the prexessing tine as seen by the Ringhus. IFinally, we define the waiting time to be the duration that a grame is
delayed due to Ringbus contention; we denote it by $w_{R R}$. We measure $I_{R}^{R R e q N}$. wRA, and $d$ synchonous to the rising edges of the arbiter clack. Figure 3.36 depicts the proint of view of the Ringbus.


Pigure 3.36: Point of view of Ringbus

We now combine the points of view of the single processor equivalent of the Multibus and the point of view of the Ringbus. Central to this combination are the facts that 1) the Multibus operates asynchronously with respect to the Ringbus arbiter and 2) the arbitration for the Ringbus takes some nonzero time. We define tarel: as the time required to synchronize a Multibus request for a Ringbus access with the arbiter clack. More precisely, iforch is tise interval between the arrival of a request at the Ringbus abiter and the next rising edge of the albiter cilock. We define 'arb as the arbitation delay of the Kinghus arbiter. (farb is some integral multiple of the arbiter clock period.) In addition, we define $t_{\text {sua, }}$ as the interval between the initiation of a Ringbus access on the Multibus and the arrival of the corresponding Ringbus request at the Ringbus arbiter. Pstart reflects the time that a processor iakes to put valid signals on the Multibus once it has seized control of the Multibus and the time that the RIB takes to decode these signals. (We consider an access on the Multibus to initiate when a proxessor seizes controt of the Multibus and to terminate when the processor releases control of the Multibus. See section 2 of Appendix 1 for details.) Through various quirks in the timing of Multibus and Ringbus signals, the termination of an access and the disassertion of the Ringhas request at the Ringhos arbiter excor at approximately the same time. (See section 3.3 .2 of Appendix A. ) We assume this to be the case here and thus we do not introduce a corresponding "tems".

The combined points of view of the single processor equivalent and the Ringhus are pietured in ligure 3.37 along with the quantitios just derined.

[^18]

Figure 3.37: Combined points of view of single processor equivalent and Ringbus

Note that the access time of the single processor equivalent and the duration for which segments are allecated in the Ringhus - i.e. the grant duration - are out of phase. Of course, the actual period for which the data transfer cocurs is the same for the single processor equivalent and the Ringbus. We denote this time by $t_{\text {trans. }}$. The arbitation delay skews the total time allocated to the access in the respective worlds of the single processor equivalent and the Ringbus.

Taking means, we have $i_{p}^{M R c y v}+i_{a R H}=i_{p}^{R B c q^{2} v}+\bar{w}_{R B}+\dot{d}$ and thas
 time when there is no contention on the Ringbus i.c. when $w_{R B}=0$. Note that


The inputs to the equivalent model of the Ringbus are the probability distribution of $t_{p}^{18 R e q v}$ and the Ringbus destination probabilities $p_{i}^{M / B e q y}$. The output is the probability distribution of $t_{a K R}$. The inputs to the actual Ringbus model are the probability distribution of $t_{p}^{\text {RReqv }}$ and the Ringbus destination probabilities, $p_{i}^{\text {MRequ }}$. The output of the actual Ringbus model is the
 where $c$ is the arbiter clock period and the superscrpt prev denotes the quantities from the previous Ringbus access. If $I_{p}^{M B e q v}+I_{\text {sturf }}<d^{\text {prev }}-1$ froves, then a new kingbus request arrives at the Ringbus arbiter ibetore the grant of the previous request has been disiserted this prev,ous grant must be disisectied before the new request can be arecped by the arbiter, hence the new eram follows the old by the arbution tine and one cil-
throughput, or alternatively, $w_{R B}$. The iwo are related by

$$
\bar{i}_{p}^{R} \frac{S}{\bar{B}_{\text {cqu }}+\bar{w}_{R A}+\bar{d}}=\frac{g}{\bar{d}}
$$

where $g$ is the average number of new or continuing grants per clock period (i.c. round). Now to siy anything more about the relation between $i_{p}^{\text {RReqv }}, p_{i}^{\text {MReqv }}$, and $\vec{w}_{R B}$ we need to consider a specific Ringbus model. We, of course, assume the Ringbus model discussed in this chapter. Specifically, we do dic following:

1) We approximate tue probability distribution of $t_{p}^{R R e q v}$ by a discrete geometric distribution with the same mean. 'I hus $p_{0}$ in our Ringbus model can be compuled from the relation $\frac{p_{0}}{1-p_{0}}=\frac{i_{p}^{R B r a v}}{c}$ where $c$ is the arbiter clock period.
2) We set $p_{i}-p_{i}^{\text {MReqv }}, i=-(S / 2 \cdots 1), \cdots,-1,1, \cdots$, or $S / 2$ for the other Ringbus request probabilitics.
3) We set the grant duration cqual to $\bar{d}$. We could just as casily allow geometric or arbitrary discrete probability distributions for the gramt distribution provided that the Ringhus medel allowed such distributions. We assume a deterninistic grant duration for simplicity and because observed grant durations in Concert are very nearly deterministic for reads and writes. (See section 3.3.2 of $\lambda$ ppendix $\Lambda$.)
The Ringbus model can now ine solved for $g$ and $\bar{w}_{R B}$ computed from

$$
\frac{S}{\frac{p_{0}}{1-p_{0}}+\bar{w}_{R B}+\bar{d}}=\frac{g}{\tilde{d}} .
$$

Finally, we can obtain $\bar{u}_{\text {aRB }}$.
Note that because of our approximation of the distribution of,$_{p}^{R B c y v}$ by a discrete geometric distribution, we only need $\dddot{i}_{p}^{R 13 e q v}$, as an input to the Ringbus model. Recall that
 Ringbus model and $i_{\text {sartr }}, t_{\text {urb }}, t_{\text {rrans }}$, and $\bar{d}$ are constants that can be determined by empirical observations. Such observations atre reported in Section 3.3 of $\Lambda$ ppendix $\Lambda$. $i_{\text {lath }}$, however, actually depends on $\bar{i}_{p}^{-M B e l v}$. $\bar{I}_{\text {trans }}, \bar{d}$, and $\bar{T}_{\text {arb }}$. We define $t_{a k}{ }^{\text {n/fiterexk }}$ as the interval from the completion of a Ringbus access (from the poime of view of the single processor equivalent) to the next rising edge of the arbiter clock. Theis $t_{\text {and }}^{\text {infeclock }}=d-t_{\text {arb }}{ }^{-t_{\text {rrans }}}$.

For $i_{p}^{-1 / k r e q v}$ large. $A_{a R}^{\text {endfollork }}$ is irrelevant and since the Multibus medel (and the single prexessor cquin :tent model) is asynchromous with eespect to the arbiter clexk. we have $\bar{T}_{\text {luch }}$. Sc. This sitmatiom is depicted in Prigure 3.38.


Figure 3.38: Signals when ${\underset{r}{p}}^{-M / R e q v}$ large
 model (and the single processor equivalent model) may generate a request at any lime after the completion of a Ringbus access, but the arbiter cannot aceept and act on the request until at least the next rising edge of the arbiter clock after the previous access. (Of course, acceptance of the request must also wait until after the previous gram. See section 3.3.2 of Appendex $\wedge$ for details. In the figures we assume $t_{\text {arb }}=0$ for clarity of presentation, so the grant terminates at the next
 that can occur with many processors on a Multibus all accessing the Ringhos, we have $\bar{t}_{\text {latch }}=\bar{I}_{a R B}^{\text {anderk }}$. Thus $\bar{l}_{\text {lath }}$ can vary frem 0 to $c$ (ignoring setup ind hold times on the arbiter input devices). Figure 3.39 depicts an exanple with $t_{\text {lute }}=.9 \mathrm{c}$.


Scgments still granted to access 1

Figure 3.j9: Signals when ${\underset{p}{-3 / R c q v}=0}^{2}$

An approximate relatien for $l_{\text {lut }}$ is

Therefore $t_{\text {anch }} \approx .5 c\left(1-P_{R B}\right)+P_{K B} \bar{I}_{a R B}^{\text {entociock }}=.5 c+P_{R B}\left(\bar{d}-\bar{I}_{\text {rans }}-\bar{I}_{\text {arb }}-.5 c\right)$ where $P_{R B}$ is the probability that a Ringbus access is followed immediately by a Ringbus request. In oticr words, $P_{R B}$ is the probability that the Mullibus queue is nonempty at the termination of the present access and that the next request in the Multibus queue is for the Ringbus given that the present access is a Ringbus access. $P_{R / B}$ can be determined from the Multibus model: it is another output of the single processor cquivalent model of the Multibus.

In sumınary, we have three inputs to the Ringbus equivalent model from the single processor cquivalent model: $\bar{i}_{p}^{M B c q v}, p_{i}^{M R c q v}$ (for $i=-(S / 2-1), \cdots,-1,1, \cdots$, or $S / 2$ ), and $P_{R B}$. In addition, we have four other inputs to the Ringbus equivalent model: $\bar{i}_{\text {start }}, \overline{\bar{T}}_{\text {arb }}, \bar{i}_{\text {rrans }}$, and $\bar{d}$. Note that only means are required for the inputs (except for $p_{i}^{M B c q v}$ and $P_{R H}$ ) to the Riugbus equivalent model. Formally, the output of the Ringhus equivalent model is the probability distribution of $t_{\text {aRK }}$. However, in section 2.9 .2 we assumed an exponential probability distribution for $I_{u R B}$ in the single processor equivalent model, which is completely characterized by $\ddot{I}_{a R B}$. Thus we only require $\bar{i}_{a R B}$ as an output of the Ringbus equivalent model.

### 3.10 Conclusions

Conclusions 1 to 5 pertain to the definition of the Ringbus given in section 3.1 and the various assumptions that we made. These assumptions are listed Ielow:

1) even number of slices
2) no propagation delays or metastability settling delays
3) memoryless i.e. geometric - probability distribution for nonnull request arrivals
4) symmetric request probabilitics
5) no glubal registers
6) all slices identical in all respects
7) all probability distributions stationary and all processes in steady-state
8) no bound on request waiting time
9) deterministic or geometrically distributed grant durations of an integral number of arbiter clock periods
10) instantancous arbitration time (i.c. no arbitration time)
11) no start up time, no end time, and no dead time
1. For six or more stices. the optimum performance of the Ringbus is difficult to determine and analyze - because of the large number of states - even with all the simplifying assumptions.
2. The optimal arbiter algorithm depends strongly on the request probabilities; no one arbiter algorithm is best. In addition, the optimum performance of the Ringbus depends very strongly on the request probabilities. The maximum throughput for requests of length one is between $\frac{2}{3} S$ and $\frac{7}{8} S$ (where $S$ is the number of slices) and the maximum throughput for requests of length $S / 2$ is 2 . $\Lambda$ first order approximation of the dependence of the optimum throughput on the request probabilities is given by $\frac{S}{\bar{l}}$ where $\bar{l}$ is the average request length:

$$
I=\sum_{i=1}^{S / 2-1} \frac{2 i p_{i}}{\left(1-p_{0}\right)}+\frac{S / 2 p_{S / 2}}{\left(1-p_{0}\right)}
$$

(Note that $\frac{S}{\mathscr{I}}$ is part of the upper hound on $x^{\text {opt }}$ developed in section 3.5.1.1.)
3. For four slices the optimal arbiter algorithm always gramts the maximum number of requess possible in every state, independent of the request prohabilities. For six or more slices. Uhe optimal arbiter algorithm does not always gratht the maximum number of requests possible in every state. However, for six slices the optimal throughput is not degraded significantly for light to medium loading by restricting the algorithm to gram the maximum number of requests in every state. for heavy loading with mainly very short and very long requests, the optimal throughput is significantly degraded with this maximum request restriction. We expect that this degradation increases with the number of slices.
For six slices, the optimal arbiter algorithm does not always gramt the request set utilizing the maximum number of segments possible in every state either, although the maximum number of segments decision seemed favoured in those states in which the maximum number of requests decision was not favoured. For all request probabilities, the optimal throughput subject to the maximum number of segments in every state is always greater than or equal to the sptimal throughput subject to the maximum number of requests restriction in every state. We expect that this result also holds for more than six slices.
A reasonable sub-optimal arbiter algorithm for six slices is the following:
In each stalte select a request subset to grant by chowising arbitrarily from all the request subsets in a state that:

1. utilize the maximun number of segments
2. have the maximum number oi requests subject to 1 , and
3. have the maximum number of longest requests subject to 1 and 2.

We expect that this algoritum is also a reasonable sub-optimal arbiter algorithm for more than six slices.
4. For deterministic grant durations of $d>1$ rounds. the optimal arbiter algorithm tends to grant requests immediately for very light loading ( $\rho_{0} \approx 1$ ) and tends to delay and align requests so that they can be granted at intervalis of $d$ rounds for very heavy loading ( $p_{0} \approx 0$ ). In fact. for $p_{0}=0$ the optimal arbiter algoridum is the uptimal interval algorithm - i.e. the optimal algorithm subject to the restriction that requests can only be gramted at intervals of $d$ rounds. The optimal interval algorithm is the sime as the optimal algorithon for $d=-1$ and the equivalent request probabilities. The optimal algorithen in between the extremes $p_{0} \approx 1$ and $p_{0} \approx 0$ is a complex function of the request probabilitics and grant duration $d$. I r four slices, the optimum throughput can be estimated fairly closely by the exponential approximation of equation 3.19, which depends only on the aptimaun throughivut for $d$. We expect that equation 3.19 also yields a reamante .pponximation to the optimum
throughput for more than four slices.
5. The performance of the Concert Ringbus can be improved by making the access paths symmetrical and by modifying the arthiter algorithm. Results for four slices suggest that when counterclockwise requests predominate, the greatest improvement in performance is achieved by making the access paths symenetrical, and wher long requests predominate, the greatest improvement in performance is achicved by modifying the arbiter algoridun.

The performance advantage of symmetrical access paths over asymmetrical access paths is dificult to quantify since users may adapt their behaviour to suit the topology, and thus the request probabilities may change with the topology.
Symmetrical access paths require three additional set of drivers per slice (see figure 3.1) ${ }^{\dagger}$ and a more complex arbiter since arbitration must also be performed for request destinations (unlike with asymmetrical access paths). As discussed in section 3.1. Whe Concert Ringhus arbiter is casily modified to perform this arbitration for destinations but the number of parts required doubles.

It must be cautioned that modifying the arbiter algorithm may not improve the performance to the degree suggested by the results in this chapter since we have ignored two impontant issues. These are 1) the realizability of the optimum arbiter algorithom in a reasonable amount of hardware and 2) the arbitration time required by a realization. The arbitration time obviously degrades performance and if sufficiently large, it may negate any possible gain in performance. We have also ignored the practical requirement for a bounded request waiting time. However, provided that the maximum permissible waiting time may be sufficiently large. the degradation that this requirement imposes is minimal.

The performance of the Concert Ringbus arbiter can be improved by cither of two trivial changes (or possibly both) to the arbiter priority ROM. Results for four slices indicate these changes yield only minor improvements in performance. However, the magnitude of these improvenents should increase with the number of slices.
6. Since a crossbar interconncetion has the best performance achievable (where the interconnection must be circuit-switched with $S$ sources and $S$ destinations) and is popular and well known, it is interesting to compare the Ringbus and a crossbar interconncetion. We make such a comparison on the next page, dividing the comparison into the following three arcas: performance, hardware costs, and arbitration costs.

[^19]
## Performance

The optimal throughput of the Ringhus is close to that for a crossbar when either the loading is light or short requests predominate (or both). Otherwise, the optimal throughput of the Ringbus is significantly less than that of a crossbar. This degradation in throughput relative to that of a crossbar is especially severe in heavy loading when long requests predominatc.

## Hardware Costs

To connect $S$ sources to $S$ destinations, the crossbar interconnection requires $S^{2}$ drivers whereas the Symmetric Ringbus requires 6.5 drivers and the Concert Ringbus requires 3.5 drivers. The Ringbus also requires more hardware for arbitration than a crossbar does, but the difference is difficult to quantify.

## Arbitration Costs

Arbitration for the Ringbus must be centralized whereas arbitration for a crossbar may be distributed amongst the destinations. Consequently, an arbiter for the Ringbus - especially an optimal arbiter - can be much more complex than an arbiter for a crossbar.

Any final conclusion in comparing the Ringbus and crossbar interconnections (or any other interconnection) depends on the number of siices, the expected operating point (i.c. the request probabilities), and the relative importance of performance versus cost. Certainly, the Ringbus seems well suited for predominantly short requests and unattractive for predominantly long requests.
7. The scalability of the Ringbus past eight or so slices is doubtful because of the complexitics of the centralized arbitration and control.

### 3.11 Suggestions for Future Work

The following suggestions are listed in order of perecived importance.

1. Explore the performance, hardware cost/arbitiation time, and maximum waiting time tradeoffs of various algorithms and implementations in an attempt to identify an ideal arbitration algorithm and implementation. At least investigate various implementations for optimal or nearoptimal arbitration algorithms (such as the algorithme mentioned in conclusion 3 of section 3.10).
2. Remove as many of the eleven assumptions listed in section 3.10 as possible. The most important assumption to remove is that of zero dead time. In the Concert Ringbus arbiter, as in any other arbiter implementation ${ }^{\dagger}$, there must be at least one round between successive nonnull requests in order to identify new requests. Other factors, such as the minimum processing time of processors and the Ringbus arbitration time (since a new request cannot be granted until after the grant from the previous request, delayed by the arbitration time. terminates) contribute to a nonzero dead time in practice. We feel that a nonzero dead time is an important addition to make to improve the accuracy of our Ringbus model, especially in heavy loading.

Removal of assumptious 3 and 9 to consider arbitrary nonnull request interarrival time and grant duration probability distributions, would be ideal. Such a generalization of our Ringbus model would not only lead to more accurate modeling of request arrivals and grant durations, but also allow the removal of other assimptions. As discussed in section 3.9, a nonzero arbitration time can be treated by asstming instaritancous arbitration and suitably appetioning the arbitration time between request interarrival time and grant duration. Any start lp time, end time, or propagation delays can be treated by a similar apportioning between request inlerarival time and grant duration. Unfortunately, arbitrary request interarrival and grant duration probability distributions would seen to make the Ringbus unreasonably difficult to analyze. Hence any practical generalization in this direction is likely to be just an extension of our treatment by special cases.

It would be worthwhile to consider more slices in the Ringbus model but the large number of states required makes an exact analysis difficult and costly.

Conceptually, there is no difficulty in removing assumptions 1.4 .5 , and 6 (sec list of assumptions in section 3.10). However, there is the practical difliculty that the analysis becomes complicated. This is especially true for the iemoval of assumptions 4 and 6 since the symmetry that we exploited so heavily and successfualy to case the analysis will not exist. It would probably be best to have a specific siluation in miaki before parsuing the removal of any of the assumptions 1, 4, 5, and 6.

[^20]3. Investigate the degree to which the performance of the Ringbus may be improved by making additional information - such as the number and type of requests in each Multibus queue and the waiting time so far of each request - available to the Ringbus arbiter.
4. Consider other metrics for the performance of the Ringbus such as minimizing the maximum waiting time of requests.
5. Fstablish the validity of the conjecture in section 3.4.2.2 that when $p_{0}=0 g_{p}^{d>1}=g_{\vec{p}}^{d}=1$, i.e. when $p_{0}=0$ the optimal average number of grants per round with deterministic grant durations of $d$ rounds equals the optimal average number of grants per round with grant durations of 1 round, assuming the nonnull request probabilities are the same in each case.

## Chapter 4

## Integration and Simulation

### 4.1 Introduction

In this chapter we consider the integration of the Multibus submodel, discussed in Chapter 2. and the Ringbus submodel, discussed in Chapter 3. We describe the results of the integration for a few example cases and compare these results to those obtained via simulation of the overall Concert model. In the rest of the chapter we present and discess the reswles of two different sets of simalations of the overall Concen medel with eight slices. The purpose of the first set is to assess the perforinance of the Ringbus vith different access paths and arbiter algorithms and to eimpare this performance with that of other interconnection architectures in an environment close to that in the actual Concert system. Such a comparison would be too computationally expensive to perform by solving the associated Markovian decision probiems. The purpose of the second set is to determine the expected performance of the actual Concert system for various parameter values. The variables considered in these simulations are the number of processors in a slice, the mean processing time, and the request destination probabilities.

### 4.2 Integration

Summarizing the results of sections 2.9.2 and 3.9.1 we have:

## a) The Single Processor Equivalent Model

Input: $\bar{t}_{a \kappa^{\prime \prime}}$ (the mean Ringbus access time)
Fxogenous Inputs: $N$ (the number of processors on a Multibus). $I_{p}$ (the mean processing (ime). $\bar{l}_{r}$ (the mean recovery time), $\bar{I}_{\text {al/ }}$ (the mean Multibus aceess time), $p_{t}^{R A}$ (the Ringhus destination probabilities). $\beta$ (the probability of a long word acesss) and $\psi$ (the probability of a Ringbus access).

Outputs: $\bar{i}_{p}^{\text {MBeqv }}, p_{i}^{\text {MReqv }}$ (the mean processing time and destination probabilities, respectively, of the single proxessor equivalent moxdel of the Multibus), $I_{R K}$ (the conditional probability utat given a Ringbus access, that access is immediately followed by anouler Ringbus access)

Computation: $p_{i}^{M R C 4 v}=p_{i}^{R A}$ for $i=-(S / 2-1), \cdots,-1,1, \cdots$, or $S / 2$

$$
\bar{i}_{p}^{M A c q v}=\frac{\bar{i}_{p}+\beta \bar{i}_{r}}{(1+\beta) N \psi}+\left((1-\psi) \bar{i}_{a M B}+\psi \bar{i}_{a R B}\right)-\frac{\left(\bar{l}_{w} / \bar{l}_{a}+1\right)}{N \psi}-\bar{i}_{a K B}
$$

where

$$
\frac{\bar{i}_{k}}{\bar{i}_{k}}=\frac{\mu}{\lambda} \frac{\left.\left.\sum_{k=2}^{N} \frac{N!(k-1)}{(N-k)!} \right\rvert\, \underset{\lambda}{\lambda}\right)^{-k}}{\left.\left.\sum_{k=0}^{N-1} \frac{N!}{(N-k-1)!} \right\rvert\, \frac{\mu}{\lambda}\right)^{-k}}
$$

$\frac{\mu}{\lambda}=\frac{\bar{i}_{p}+\beta \bar{i}_{r}}{\bar{i}_{a}}$, and $\bar{i}_{a}=\left(1+\beta \times(1-\psi) \bar{i}_{a M B}+\psi \bar{i}_{a R B}\right)$.

$$
P_{R H}=\frac{\psi \zeta}{1-\psi+\psi \zeta} \rho^{N-1}
$$


b) The Ringhus liquivalent Model

Inputs: $i_{p}^{\text {M/Reqv }}, p_{i}^{\text {M Acqv }}, P_{R A}$
Exogenous Inputs: S (the number of slices). İsart (the mean start up overhead). $\bar{i}_{\text {urb }}$ (the mean Ringbus arbitration time). $\ddot{i}_{\text {fruns }}$ (the mean Ringhus data transfer time). $\dot{d}$ (the mean duration for which Ringbus segments are allocated to a request and related to Itmons by $d=I_{a r b}+\left|\frac{I_{\text {Imnss }}}{c}\right|(\cdot), c$ (the Ringbus arbiter cleck period), type of Ringbus access paths. and the Ringbus arbitration algorithm.

## Output: $\bar{I}_{a R R}$



$$
\bar{i}_{\text {tatch }}-.5 c+P_{R R}\left(\bar{d}-\bar{i}_{\text {trrans }}-\bar{i}_{a r b}-.5 c\right)
$$

$\ddot{w}_{R B}$ is determined from

$$
\frac{s}{\frac{p_{0}}{1-p_{0}}+\ddot{w}_{R}+\ddot{d}}-\frac{g}{\ddot{d}} .
$$

g. the average number of new or continuing grants per round, is found by solving the Ringbus model with parameters $p_{i}=\frac{p_{i}^{\text {AReqv }}}{1-p_{0}}$ and $p_{0}$ where

$$
\frac{c \cdot p_{0}}{1-p_{0}}=\bar{i}_{p}^{M B c q v}+\bar{T}_{a R B}^{(n o r m)}-\bar{d} .
$$

This is an approximation - see the footnote in section 2.9.2. Assuming all the quantitics are


For a given set of exogenous inputs in (a) and (b), integration consists of matching the input in (a) with the output in (b) and matching the outputs in (a) with the inputs in (b). This can be done iteratively. as outlined in the following steps. The subscripts $k$ on $\bar{i}_{a R B}$. $i_{p}^{\text {M/Acq' }}$, and $p_{1}^{1 / 4 c / r}$ denote suceessive estimates of the true values of these respective quantities.

1) $k+0$. Assume some initial value for $\bar{u}_{a R n}$ : denote it by $\left(\bar{t}_{a R B}\right)$.
2) Using $\left(\bar{I}_{a K B}\right)_{k}$, determine $\left(i_{p}^{A R R e r f}\right)_{k}$ and $\left(\rho_{i}^{M / B c / V}\right)_{k}$ for the single processor modet of the Multibus.

3) $k+k+1$. If the estimates of $\ddot{Z}_{\text {aRk }}, \bar{T}_{p}^{M B e q v}$, and $p_{i}^{M B r q v}$ are satisfictory, stop. Ouherwise go to step 2.
 then estimating $\vec{a}_{a R B}$. Note that since we employ various approximations in obtaining the equivalent models of the Multibus and the Ringbus (principally approximating the interaction between the two models by first monents), the final estimates for $\bar{i}_{\alpha R / \beta}$ and $i_{p}^{\text {Mheqw }}$, will not necessarily equal their true vallucs. We did not investigate the convergence properties of the above iterative procedure. However, we sund that the estimates converged rapidly whenever we used it.

There are two cases for which the Multibus and Ringhos models cam be integrated withoit resorting to itcration:

## Case 1: Yery light Ringhous traffic

This casce can arise in (wo ways:
i) $\frac{\bar{i}_{p}+\beta \bar{i}_{r}}{N}$ large, $\psi$ irrelevant, or
ii) $\psi$ small (i.c. $\psi \approx 0$ ), $\frac{\bar{p}_{p}+\beta \bar{r}_{r}}{N}$ irrelevant.

The first way corresponds to very light utilization of the Multibus., which leads to very liglt utilization of the Ringbus regardess of $\psi$. The second way corresponds to very minor coupling between the Multibus and Ringbus, which leads to very light utilization of the Ringhus regardless of the utilization of the Multibus. Of course, very light Ringbus traffic can be achieved both ways simultancously. Ilowever, in our treatment below we choose to consider each way ats a distinct subcise.
Case 1(i): $\frac{\bar{i}_{p}+\beta i_{r}}{N}$ large, $\psi$ irrelevant For $\frac{\bar{i}_{\rho}+\beta \bar{i}_{r}}{N}$ sufficiently large, we have $\bar{i}_{w} \approx 0, \rho^{N-1} \approx 0$ (and hence $i_{\text {hat }} \approx .5 c$ ). $\bar{i}_{p}^{-\lambda / B_{c} y^{\prime}} \approx \frac{\bar{i}_{p}+\beta \bar{i}_{r}}{(1+\beta) N \psi}, \ddot{w}_{R} ; \approx 0$, and
 ties of interest can be found without resorting to iteration.
Case 1(ii): $\psi$ small (i.c. $\psi \approx 0$ ) and $\frac{\bar{i}_{p}+\beta \overline{\boldsymbol{r}}_{r}}{N}$ irrelevant
In this case $\bar{i}_{p}^{M R e q v}$ is very large. $P_{R B} \approx 0$ (and hence $\bar{i}_{\text {lach }} \approx .5 c$ ). $\bar{w}_{R B} \approx 0$, and $\bar{i}_{a R B} \approx \bar{i}_{U R B}^{(\text {nom })} \approx \bar{i}_{\text {sart }}+.5 c+\bar{i}_{\ldots, i}+\bar{i}_{\text {trmns }}$. $\bar{i}_{w}$ may be computed by taking $\bar{i}_{a} \approx(1+\beta){\overline{I_{a N B}}}$. Note that it is the possibly large value of $\bar{i}_{w}$ that differentiates this subcase from the previous one.

## Case 2: Very heavy Ringhus tralfic

This case arises when both $\frac{\bar{i}_{p}+\beta \bar{i}_{r}}{N}$ is small and $\psi$ is large (i.e. $\psi \approx 1$ ). For $\frac{\bar{j}_{p}+\beta \bar{i}_{r}}{N}$ sufficiently small, the Multibus is siturated (i.c. $N \gg N^{*}$ where $N^{*}$ is the sitturation point of the Multihus) and hence $\bar{i}_{w} \approx\left(N-N^{*}\right) i_{a}$. yiclding $\bar{i}_{p}^{M R c q v} \approx \ddot{i}_{a M B} \frac{1-\psi}{\psi}$ as in scction 2.9.2. In addition $\rho^{N \cdots 1} \approx 1$ and thus $P_{R B} \approx \frac{\psi \zeta}{\psi+\psi \zeta}$. With $\psi \approx 1$. ill $l^{1 / \operatorname{Ravp} \approx 0}$ and $P_{R A} \approx 1$. hence $i_{\text {luck }} \approx i-i_{\text {arb }}-\bar{i}_{\text {truns }}$. Therefore $i_{p}^{R R e y v}$ is a constant.

Assuming $d$, Iart, and $I_{\text {truns }}$ are deterministic random variables

$$
\bar{i}_{p}^{R R c u v} \cdot\left\{\begin{array}{l}
0+\bar{i}_{\text {surt }}+\bar{i}_{\text {luth }}+\bar{i}_{\text {arb }}+\bar{i}_{\text {rmans }}-\bar{d}-\bar{i}_{\text {start }}, \quad \text { if } \bar{i}_{\text {surt }} \geq \bar{d}_{\bar{d}} \bar{i}_{\text {uans }} \\
\bar{i}_{\text {arb }}+c, \quad \text { otherwisc. }
\end{array}\right.
$$

Once $p_{0}$ and the corresponding $g$ are determined, $\bar{w}_{R H}$ is given by

$$
\frac{S}{i_{p}^{R \bar{B}} \bar{q} v v+\tilde{w}_{R H}+\bar{d}}=\frac{g}{\bar{d}}
$$

 $Z_{a k B}$ and all the oiher quantitics of interest call be found without resorting to iteration.
Note that for small enough $\frac{\bar{I}_{p}+\beta \bar{I}_{r}}{N}$ and $\psi$ close enough to $1 . \overline{\bar{l}}_{p}^{\text {AR } \beta \text { cqv }} \approx 0$ regardless of the various probability distributions in the Multibus and Ringhus models. In this case the probability distribution of $t_{p}^{M / \beta e q v}$ is given very acetirately by $i_{p}^{\text {M/Refv }}$. ( $1 t$ in fact becomes exact for $\psi-1$ as $\frac{\bar{i}_{p}+\beta \bar{\iota}_{r}}{N} \rightarrow 0$ since $t_{p}^{A R R\left(\psi^{v}\right.} \rightarrow(0$.$) Hence our first moment$ approximation of the Mullibus to Ringhus interaction is very accurate for $\frac{\bar{i}_{p}+\beta \bar{i}_{r}}{N}$ small and $\psi \approx 1$.

We now consider some example cases. In each case we delcemine $\boldsymbol{t}_{\boldsymbol{p}}^{\text {Whe }}$, and $\bar{i}_{w}$ for the Multibus model and $\vec{i}_{a R B}$ and $\dot{v}_{R B}$ for the Ringbus model.

All the simulations reported in this section and in this chapter are simulations of the overall Concert model. As discussed in section 1.3.5, this overall model is comprised of a model for each Multibus and a model for the Ringbus. As a model for cach Multibus we choose the Multibus model with long word and Ringbus accesses discussed in section 2.9. As a model for the Ringbus, we choose the basic model discussed in section 3.1. This model depends, of course, on the particular abitration algorithm and access paths desired. In simuating the overall Concert model, we simulate each Multibus model, the Ringhus model, and the interaction between Multibus models and the Ringhos model. Since our Multibus models are continuous time models, we simulate them in continuous time and since our Ringhus models are discrete time models, we simulate them in discrete time. We simulate the Multibus models as operating asynchronously with respect to the Ringbus model: thus our simulations include the effect of synchomizing the Multibus signals with the Ringbus abber clock. The parameters of our simulations are as follows:

Multibus moxdel:

- the number of processurs on a Multibus, $N$.
- the processing time disisibution, with mean $\bar{i}_{p}$.
- the recovery time distribution, with mean $\bar{i}_{r}$.
- the Multitus akcess time distribution, with mean $\vec{I}_{a M A}$.
- the probability of a long word access, $\beta$.
- the probability of a Ringbus access. $\psi$.
- the Ringbus destination probabilitics, $p_{i}^{R A}$.

Ringbus model:

- the number of slices, $S$.
- the arbiter algorillm.
- the Ringbus access paths.
- the arbiter cleck peried, $c$.
- the start up overhead. $\bar{I}_{\text {starr }}$. (Taken as a constant.)
- the Ringlons arbitration time, tarb . (Taken as a constant and an integral multiple of $c$.)
- The probability distribitieas of the Ringbus data transfer times, witli mean $t_{\text {trums }}$. (Note that the duration. $d$ for which segments ate allocated to a Ringhus request is related to $I_{\text {trans }}$ by $d=t_{\text {urb }}+\left\lceil\left.\frac{I_{\text {rums }}}{c} \right\rvert\, c\right.$.)

Other:

- the block si\%e, B. Bach simulation was run until processor 1 on Multibus 1 (this numbering is arbitrary) completed $30+B$ processor cycles (i.c. processing time, waiting, access time for word or long word). To remove the effect of transients, statistic gathering did not begin until processor I on Multibus 1 completed 30 accesses.
- the number of block repectitions, $R$. The statistics reported are based on $R$ repetitions of each simulation.

We remind the reader of our basic assumptions, which apply to our simulations as well:

- We assume that all the random variables $I_{p}, I_{r}$. Iame , aid $I_{\text {trans }}$ and all the prohahilitics $\beta$. \%. and $p_{1}^{R A}$ are multally independent and stationary.
- We assume each Multibus model has the exactly Une same parameters, so all Multibus models are identical in every respect.
- We assume that the Ringbus inodel is completely symmetric with respeet to each Multibus interconnection.

In all our simulations we assume in addition that:

1) the processing time is exponentially distributed.
2) the recovery time is deterministic, and
3) The Multibus access time is deterninistic.

We caution that the following examples were chosen for purposes of illustration. They do tuot represent the actual Concert system and they do not represent an in-depth study or analysis of integration. In each case we assume that the Ringbus arbiter hals rero arbitration time (i.c. $t_{1, ~ r e ~}^{\prime}-0$ ) and that there are no long word accesses (i.e. $\beta=0$, and hence we take $\bar{t}_{r}=0$ and $\gamma=0$ ). In addition, we take $\bar{t}_{\text {strrt }}=0$ and $\bar{i}_{a M A}=1.0 \mathrm{C}$.

Example t: $\bar{i}_{p}=1.0 c, S=4$, deterministic grant duration of one round i.c. $\bar{d}=\cdots$, eptimat arbiter for deterministic grant duration of one round, symmetrical access paths, $p_{-1}^{R A}-p_{1}^{R /}=.4$, and $p_{2}^{R /}=$.2.

Table 4.1 presents the integration and simulation results for various values of $N, \psi$, and $\bar{i}_{\text {trans }}$ (which is a determimistic value here).


Table 4.1: $\bar{I}_{p}=1.0 c, S=4$, deterministic grant duration of one round i.c. $\bar{d}-c$, optimal arbiter for deterministic grant duration of one round, symmetrical access paths, $p_{-1}^{R H}=p_{1}^{R B}=.4$, and $p_{2}^{R B}=.2$.

In general, the integration and simulation results agree rather closely. The results are clesest for light Ringbus loading ( $N=1, \psi \cdots .5$ ) and very heavy Ringbus loading ( $N=4$ and $6, \psi=1.0$ ). This is to be expected since

1) the analytical formulac describing the Multibus model are the most accurate for general
$\dagger \overline{\boldsymbol{t}}_{a R H}$ was not one of the statistios gathered by the simulations. In each row corresponding to a simulation in this tabic and in the other tables, $\bar{I}_{\text {aRB }}$ was computed fron. the relation $\bar{t}_{a R B}=\bar{l}_{\text {start }}+\bar{l}_{\text {latch }}+\bar{w}_{R / B}+\bar{l}_{\text {trans }}$ where $\bar{l}_{\text {start }}=0$.
prohability distributions for $N \ll N^{*}$ and $N \gg N^{*}$ where $N^{*}$ is the Multibus satturation point. and
2) the first moment approximation of the Multibus-Ringbus interaction is fairly accurate for light Ringbus loading (and $N=1$ ) and heavy Ringbus loading (and $N \gg N^{*}$ ). In the first casce, since Ringbus traffic is light, $\bar{w}_{R B} \approx 0$ and $\bar{i}_{\text {latch }} \approx .5 c$. Thus $\bar{i}_{a R B} \approx \bar{i}_{\text {surt }}+.5 c+\bar{i}_{\text {urb }}+\bar{t}_{\text {trans }}$. Since $N=1$, the Multibus queue (in the Multibus model) is quasi-reversible regardless of the Multibus and Ringbus access time distributions and thus the analytical formulae of the Multibus are exact with only the inean Ringbus access time. $\bar{I}_{a R B}$. In the second case, both the Multibus and Ringhus are saturated. In saturation only the means of the various quantities are required to determine $\bar{I}_{w}, \bar{w}_{R B}$, and $\bar{I}_{a R B}$.
Note that light Ringbus loading and very heavy Ringhus loading are two cases - as discussed earlier - for which integration can be performed without iteration.

The results for various values of $\bar{i}_{\text {trans }}$ (for $N=1$ and 2 ) are presented in Table 4.1 to determine the effect of $\bar{i}_{\text {trans }}$ on the accuracy of the integration results. In atl of the Ringhms models that we investigated in detail in Chapter 3 (i.e. the models in section 3.3. 3.4. 3.5. and 3.8) - including the optintal arbiter with a deterministic grant duration of one round, as in Example 1-we assumed that the probability, $p_{0}$, of a null Ringbus request was independent of all oher equests on the Ringbus. However, the probalility of a null request at the Ringlous in our Concert model can depend on the previous requests at the Ringbus. The reason is as follows.

First we introduce some termiaology. We tern a request latehed by the Ringbus arbiter a latehed Ringtas request or a I RB request for short. In addition, we call the arrivai of a nomnull Ringbus request from a Mulibus an arrival event. Now, if the previous I.R13 request at a slice is a null request then the next I.RB request at that slice will also be a null request if there is no arrival event at that slice in the arbiter clock period following the latehing of the previous nu!l request. On the other hand. if the previous I.RB request at a slice is a nommell request, then the next I.RB request at that slice will be a null request if there is no arrival event at that slice in the interval between the termination of the Ringbus aceess (the data transfer, not the interval for which segments are allocated) of the previous I.RB request and the next latching instant. These two situations are depicted in Figure 4.10. (Remember that $\bar{i}_{\text {surr }}=0$ and $\bar{i}_{\text {arb }}=0$ here.)


Figure 4.1: Two situations leading to a null request

Thus a mull Ringbus request follows a null Ringbus request if no Ringbus request arrives from the Multibus in an interval $c$ and a mull Ringbus sequest follows a nomull Ringbus request if no Ringlous request arrives from the Multibus in an interval $d \cdot t_{\text {truns }}<6$. Note that if $t_{\text {trans }}=d$. then a mull Ringbus request must follow every nomnull Ringbus request. To avoid this - since the Ringbus model in this example (and all the other examples) does mo! meorporate a null request ailer every nemmall request - we take $t_{\text {trans }}=d-c$ for sone conseant $c .0<c<c$ in all the cases in this section.

If $N=1$, then with our assumption of exponential precessing time, the probahility of a null I.RB request following a nuil IRB request is proportional to $c$ and the probability of a null I.RB request following a nommell I RB is proportional to $d T_{\text {fruns }}$. (lrrans and $d$ are deterministic in this example.) By taking $i_{\text {trans }}$ very small (.01c), we minimi/e the dependency of the probability of a null L.RB request on the previous I.RB request at the same slice. By taking $\bar{i}_{\text {trans }}$ large (.98c) we inciease this dependency.

If $N$ is large and $\psi$ large so that the Multibus quene is nearly always momempty with Ringhes requests, then $i_{p}^{\text {A/Req' }} \approx 0$ and the likelihood of a monnull Ringhus request arriving in $c$ or d. $I_{\text {rrams }}$ is about the same (ais long as $d>I_{\text {rrums }}$ ). Thus the interval $d$ $I_{\text {Iruns }}$ hats smatle efleet on the prob, bility of a null I RB request for large $N$ and $\psi \approx 1.0$.

Thus we expect the probability of a null IRB request to depend quite heavily on $d$ - $t_{\text {tans }}$ for light Ringbus traffic and diminish as the Ringbus traffic increases. As we stated carlier, Une Ringbus nocedel used in the bitegration docs not incorporate the dependency of mull request probabilities on $d$ trans. It might he expected that the integration results bubuld be most aciarate when $d-1_{\text {rrems }}$ is adijusted to reduce this dependency. Indeed, this does seem to be the case for $N: I$ and $\psi$ 1.0: the integration and smulation results for $i_{\text {trams }}$. Ote ate closer than these for
$\bar{t}_{\text {trans }}=.98 \mathrm{c}$ ．For other values of $N$ and $\psi$ there secres to be no cunclusive link．In fact，for $N=4$ and 6 ，the value of $i_{\text {trums }}$ seemed to make no difference（as long as $d \cdots t_{\text {trans }}<c$ ），as expected． （ llence only the results for $i_{\text {truas }}=.98$ e are shown in Table 4．1．）

Fxample 2： $\bar{i}_{p}=1.0 c, S=4$ ，deterministic grant duration of one round i．c． $\bar{d}=c$ ，rotating priority with counterclock wise rotation，asymmetrical access paths，$p_{-1}^{R /}=p_{1}^{R A}=.25$ ，and $p_{2}^{R A}=.5$ ．

The integration and simulation results are contained in Table 4．2．Again the results agree rather closely and again the results are closest for light and very heavy Ringbus loading．

| $N$ | $\psi$ | itrans $/ \mathrm{c}$ |  | $\left[i_{0}^{\text {M }}\right.$ Beq／$\left./ c\right]$ | $i_{w} / c$ | Itach／c | Cokblc | $\overline{W_{R H} / C}$ | $\underline{ }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Integration | 3.00 | 0.0 |  | 0.88 | 0.37 | 1.03 |
| 1 | 0.5 | 0.01 | Simulation | $2.98 \pm .70$ | 0.0 | $0.54 \pm .04$ | 0.91 | $0.36 \pm .12$ | $1.03 \pm .17$ |
| 1 | 0.5 | 0.98 | Integration | 3.00 | 0.0 | 0.50 | 1.76 | 0.28 | 0.84 |
| 1 | 0.5 | 0.8 | Simulation | $2.84 \pm .37$ | 0.0 | $0.54 \pm .02$ | 1.77 | $0.25 \pm .13$ | $0.86 \pm .06$ |
| 1 | 10 | 0.01 | Integrati | 1.00 | 0.0 | 0.50 | 1.48 | 0.97 | 1.61 |
| 1 |  | 0.01 | Simulation | $0.97 \pm .12$ | 0.0 | $0.58 \pm .02$ | 1.56 | 0．97．t．14 | ． $57 \pm .03$ |
| 1 | 1.0 | 0.98 | Integration |  | 0.0 | 0.50 | 1.82 |  | 1.42 |
| 1 | 1.0 | 0.9 | Simulation | 0．99土．04 | 0.0 | $0.57 \pm .01$ | 1.96 | $0.41 \pm .19)$ | $1.35 \pm .04$ |
| 2 | 0.5 |  | Integration | 1.47 |  | 0.6 .3 | 1.29 | 0.65 | 1.45 |
| 2 | 0.5 | 0.01 | Simulation | $1.37 \pm .08$ | $0.56 \pm .0 .4$ | $10.81 \pm .04$ | 1.42 | $0.60 \pm .07$ | $1.43 \pm .04$ |
| 2 | 0.5 | 0.98 | Integration | 1.42 | 0.82 | 0.36 | 1.81 | 0.47 | 1.24 |
|  |  |  | Simulation | $1.31 \pm .28$ | $0.69 \pm .08$ | $0.27 \pm .02$ | 1.80 | 0．55土．14 | $1.29 \pm .10$ |
| 2 | 1.0 | 0.01 | Integration | 0.15 | 1.56 | 0.84 | 2.26 | 1.41 | 1.66 |
| 2 | 1.0 | 0.01 | Simulation | $0.08 \pm .03$ | $1.52 \pm .14$ | 0．94土．02 | 2.32 | $1 . .37 \pm .08$ | $1.66 \pm .05$ |
| 2 | 1.0 | 0.98 | integration | 0.15 | 1.59 | 0.17 | 2.29 | 1.14 | 1.64 |
| 2 | 1.0 | 0.98 | Simulation | $0.08 \pm .02$ | $1.54 \pm .03$ | $0.12 \pm .02$ | 2.37 | $1.27 \pm .09$ | $1.63 \pm .05$ |
| 4 | 0.5 | 0.98 | Integration | 1.02 | 3.08 | 0.27 | 1.67 | 0.42 | 1.49 |
|  |  |  | Simulation | $0.98 \pm .01$ | $3.15 \pm .20$ | $0.03 \pm .01$ | 1.75 | $0.74 \pm .14$ | $1.46 \pm .07$ |
| 4 | 1.0 | 0.98 | Integration | 0.00 | 6.23 | 0.03 | 2.41 | 1.40 | 1.66 |
|  |  |  | Simulation | $0.00 \pm .016$ | 6．14土．19 | $0.02 \pm .01$ | 2.39 | $1.39 \pm .06$ | $1.67 \pm .05$ |

Table 4．2： $\bar{i}_{p}=1.0 c, S=-4$ ．deterministic grant duration of one round i．c． $\bar{d}-c$ ．rotating priority with counterclock wise rotation，asymmetrical access paths，$p_{-1}^{R A}=p_{1}^{R B}=.25$ ，and $p_{2}^{R B}=.5$ ．

Fxample 3： $\bar{i}_{p}=1.0 c, S \quad$ ．geometrically distributed grant duration with mean $\ddot{d} 4 c$ ，optimal arbiter for geometric duration with mean id－4c．symmetrical aceess paths，$p^{R / R} p_{1}^{R R}=4$ ，and $p_{2}^{R R}=.2$ ．

The integration and simulation results are shown in Table 4．3．In obtaining these results we took $t_{\text {trans }}=d-.02$ ，hence $\bar{I}_{\text {lace }}=.02 c$ for heavy Ringbus loading．Note that once again the integration and simulation results agree rather closely．

| $N$ | $\psi$ | $i_{p}^{-1 / R e q v} / c \mid$ | $\bar{i}_{w} / \mathrm{C}$ | Thati $/ \mathrm{c}$ | $\bar{T}_{\text {aRB }} / c$ | $\bar{w}_{R} / 1 / c$ | $g$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | Integration 3.00 | 0.0 | 0.50 | 6.58 | 2.10 | 1.67 |
| 1 | 0.5 | Simulation？ $295 \pm .40$ | 0.0 | $0.51 \pm .03$ | 6.50 | $2.01 \pm .35$ | $1.66 \pm .09$ |
| I | 10 | Integration 1.00 | 0.0 | 0.50 | 7.21 | 2.73 | 1.95 |
| 1 | 1.0 | Simulation 1．00） 10 | 0.0 | $0.57 \pm .06$ | 7.20 | $2.65 \pm .44$ | $1.92 \pm .04$ |
| 2 | 0.5 | Integration 1.20 | 3.20 | 0.31 | 7.01 | 2.72 | 1.95 |
| 2 | 0.5 | Simulation｜1．18土．12 | $3.22 \pm .26$ | 0.27 | 7.06 | $2.81 \pm .53$ | 1．94土．14 |
| 2 | 10 | Integration 0．06 | 6.43 | 0.08 | 7.31 | 3.26 | 2.17 |
|  |  | Simulation0．03土．01 | $6.28 \pm .78$ | $0.07 \pm .01$ | 7.30 | $3.25 \pm .57$ | $2.16 \pm .12$ |
| 4 | 05 | Integratiosi 1.00 | 11.12 | 0.26 | 7.08 | 2.84 | 1.98 |
|  |  | Simulation 1．03．土．08 | $10.80 \pm .74$ | $0.20 \pm .01$ | 7.11 | $2.93 \pm .33$ | $2.02 \pm .09$ |
| 4 | 1.0 | integration 0.00 | 20.92 | 0.02 | 7.31 | 3.31 | 2.19 |
|  |  | Simulatomp（a） $00 \pm .01$ | $20.99 \pm .82$ | 0．02土．01 | 7.36 | $3.36 \pm .12$ | $2.17 \pm .03$ |

Table 4．3： $\bar{p}_{p}=1.0 c, S=4$ ，geometrically distributed grant duration with mean $\bar{d}=-4 c$ ，optimal arbiter for geometric duration with mean $\bar{d}=4 c$ ，symmetrical access paths，$p^{R B}=p_{1}^{R H}=4$ ，and $p_{2}^{R /}=.2$ ．

Example 4：$S=-4$ ．deterministic gram duration of one round i．e．$d=c$ ，optimal arbiter for deter－ ministic grant duration of one round，symmetrical access paths，$p, 1=p_{1} .4, p_{2}=2$ ，and $t_{\text {rrums }}=.98$ c（i．e．$t_{\text {truns }}$ deterministic）．

This example is the same as I：xample 1 except for the value of $\bar{i}_{p}$ ．The object of this example is to examine the accuracy of the integration results when the Multibus is operating in the knee region i．c．for $N \approx N^{*}$ ．We have already seen in the previous examples and have dixussed that the integration results are the most accurate for light Ringbus loading and very heavy Ringbus load－ ing．

We attempted to keep $\frac{\ddot{i}_{p}+\beta \bar{i}_{r}}{i_{a}}\left(\overline{I_{a}} \quad(1+\beta)(1-\psi) \overline{I_{a H i}}+\psi \bar{i}_{a k / i}\right)$ ipproximately cqual to 5.
(This corresponds to $\alpha \approx 5$ in the $\mathrm{M} / \mathrm{M} / 1 / / \mathrm{N}$ model discussed in section 2.4.) For this value of $\frac{\bar{i}_{p}+\beta \bar{i}_{r}}{\overline{l_{a}}}, N^{*}$ is approximately 6; thus we consider $N=2,4,6$, and 8 . For $\psi-.5$, we took $\ddot{i}_{p}=6.0 c$ and for $\psi=1.0$ we took $\bar{i}_{1} ;=7.5 c$. (Recall that $\bar{I}_{a M B}=0$ and $\beta-0$.) The corresponding integration and simulation results are shown in Table 4.4.

| $N$ | $\psi$ | $\overline{T_{\text {rruis }} / c}$ |  | $\bar{p}_{p}^{\text {M }}$ BCq/ $/ c$ | $\bar{I}_{w} / c$ | İlutich/c | $\overline{C o}^{\prime}$ | $\bar{w}^{\text {Wr }}$ / $/ C$ | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.5 | 0.98 | Integration Simulation | $\begin{array}{r} 6.05 \\ 5.81 \pm .48 \end{array}$ | $\begin{array}{r} 0.26 \\ 0.13 \pm .01 \end{array}$ | $\begin{array}{r} 0.46 \\ 0.46 \pm .46 \end{array}$ | $\begin{aligned} & 1.50 \\ & 1.50 \end{aligned}$ | $\begin{array}{r} 0.06 \\ 0.06 \pm .01 \end{array}$ | $\begin{array}{r} 0.53 \\ 0.55 \pm .55 \end{array}$ |
| 4 | 0.5 | 0.98 | Integration Simulation | $\begin{array}{r} 2.58 \\ 2.42 \pm .07 \end{array}$ | $\begin{array}{r} 0.79 \\ 0.52 \pm .02 \end{array}$ | $\begin{array}{r} 0.39 \\ 0.33 \pm .01 \end{array}$ | $\begin{aligned} & 1.42 \\ & 1.43 \end{aligned}$ | $\begin{array}{r} 0.06 \\ 0.12 \pm .01 \end{array}$ | $\begin{array}{r} 1.00 \\ 1.04 \pm .02 \end{array}$ |
| 6 | 0.5 | 0.98 | Integration Simulation | $\begin{array}{r} 1.54 \\ 1.45 \pm .03 \end{array}$ | $\begin{array}{r} 1.85 \\ 1.23 \pm .02 \end{array}$ | $\begin{array}{r} 0.33 \\ 0.19 \pm .01 \end{array}$ | $\begin{aligned} & 1.49 \\ & 1.36 \end{aligned}$ | $\begin{array}{r} 0.19 \\ 0.19 \pm .01 \end{array}$ | $\begin{array}{r} 1.32 \\ 1.42 \pm .02 \end{array}$ |
| 8 | 0.5 | 0.98 | Integration Simulation | $\begin{array}{r} 1.16 \\ 1.10 \pm .02 \\ \hline \end{array}$ | $\left\|\begin{array}{r} 3.41 \\ 2.44 \pm .06 \end{array}\right\|$ | $\begin{array}{r} 0.29 \\ 0.08 \pm .01 \end{array}$ | $\begin{aligned} & 1.51 \\ & 1.31 \end{aligned}$ | $\begin{array}{r} 0.24 \\ 0.25 \pm .01 \end{array}$ | $\begin{array}{r} 1.50 \\ 1.66 \pm .01 \end{array}$ |
| 2 | 1.0 | 0.98 | Integration Simulation | $\begin{array}{r} 3.12 \\ 3.08 \pm .13 \end{array}$ | $\left\lvert\, \begin{array}{r} 0.26 \\ 0.15 \pm .02 \end{array}\right.$ | $\begin{array}{r} 0.42 \\ 0.43 \pm .01 \end{array}$ | $\begin{aligned} & 1.54 \\ & 1.51 \end{aligned}$ | $\left.\begin{array}{r} 0.14 \\ 0.10 \pm .02 \end{array} \right\rvert\,$ | $\begin{array}{r} 0.86 \\ 0.87 \pm .02 \end{array}$ |
| 4 | 1.0 | 0.98 | Integration Simulation | $1 \begin{array}{r} 1.00 \\ 0.91 \pm .04 \end{array}$ | $\left\lvert\, \begin{array}{r} 0.96 \\ 0.65 土 .03 \end{array}\right.$ | $\begin{array}{r} 0.28 \\ 0.27 \pm .01 \end{array}$ | $\begin{aligned} & 1.49 \\ & 1.50 \end{aligned}$ | $\begin{array}{r} 0.2 .3 \\ 0.25 \pm .01 \end{array}$ | $\begin{array}{r} 1.61 \\ 1.66 \pm .03 \end{array}$ |
| 6 | 1.0 | 0.98 | Integrition Simulation | $\begin{array}{r} 0.35 \\ 0.27 \pm .01 \end{array}$ | $\begin{array}{r} 2.19 \\ 1.75 \pm .06 \\ \hline \end{array}$ | 0.15 <br> $0.14 \pm .0!$ | $\begin{aligned} & 1.52 \\ & 1.53 \end{aligned}$ | $\begin{array}{r} 0.39 \\ 0.41 \pm .01 \end{array}$ | $\begin{array}{r} 7.14 \\ 2.23 \pm .01 \end{array}$ |
| 8 | 1.0 | 0.98 | Integration Simulation | $\begin{array}{r} 0.11 \\ 0.06 \pm .01 \end{array}$ | $\begin{array}{r} 4.04 \mid \\ 3.63 \pm .06, \end{array}$ | $\begin{array}{r} 0.188 \\ 0.06 \pm .111 \end{array}$ | $\begin{aligned} & 1.53 \\ & 1.53 \end{aligned}$ | $\left\|\begin{array}{r} 0.47 \\ 0.49 \pm .01 \end{array}\right\|$ | $\begin{array}{r} 2.45 \\ 2.53 \pm .02 \end{array}$ |

Table 4.4: $S=4$, deterninistic grant duration of one round i.c. $d=c$, optimal arbiter for deterministic grant duration of one round, symmetrical access paths, $p_{-1}=p_{1}-\cdots, p_{2}=-2$, and $t_{\text {trans }}=.98 c$ (i.e. $I_{\text {trans }}$ deterninistic).

In every case listed in Table 4.4, $\bar{i}_{w}^{\text {imncration }}>\bar{i} \bar{i}_{w}^{\text {simulntion }}$. (The superscripts denote how the quantitics were obtained.) This is not surprising. especially for $\psi=.5$ since the access times have a large deterministic component. We have already seen in Chapter 2 that the Multibus model with a server-sharing queuc overestimates $\bar{i}_{w}$ if the access time distributions are deterministic. Here, the Multibus access time distribution is entirely deterministic and the Ringbus access time has a large deterministic component: the Ringlous access time is at least $\bar{I}_{\text {rrms }}$, where $t_{\text {irans }}$ is determinittic.

In addition. $\vec{i}_{p}^{\text {MRequ intcgration }}>i_{p}^{\text {MBcqu simulation }}$ and $g^{\text {integration }}<g^{\text {wimulution }}$ in cuery case listed. These are obviously related. A larger value of inheip implies a smaller value of $p_{0}$ and hence a smaller value of $g$. Also, $i_{p}^{\text {Mhequ integrifion }}$ is related to $\bar{f}_{4}{ }^{\text {intamatun }}$. If $t_{w}{ }^{\text {entegratum }}$ is larger

Whan it should be, then $\bar{i}_{p}^{\text {MBequintreration }}$ is likely to be larger than it should be. In addition, it is likely dhat the probability distribution of $i_{p}^{\text {RReqy }}$ is skewed more towards sherter times than that predicted by our geometric approximation of it. This would cause the Ringbus to be more heavily loaded in actuality - i.e. in the simulation - Uhan predicted by integration; hence the actual throughput of the Ringbus would be greater than predicted by integration. Since the probability distribution of $i_{p}^{\text {Rlieqy }}$ would be more skewed towards shorter times for larger $N$, this effect might explain why the difference $g^{\text {vimulation }}-g^{\text {integration }}$ increases with $N$.

## Discussion

The results predicted by integration of the Multibus and Ringbus models agree fairly closely with simulation results of the overall Concert model for the four examples considered. We observed that the integration results were most accurate for light Ringbus loading ( $N \ll N^{*}$, small $\psi$ ) and very heavy Ringbus loading ( $N \gg N^{*}, \psi \approx 1$ ). This is in fact a gencral result for integration, as we discussed carlier, and can be justified analytically. We performed the integration for several wher examples with $S=4$ and observed the same general trends as in the four examples reported. We did not perform any integration for $S>4$, for which we expect the same general trends.

The accuracy of the integration results in the knee areas (i.e. for $N \approx N^{*}$ ) will depend strongly on tie various probability distributions, as we saw with the Multibus models in Chapter 2. $\Lambda$ great deal of further work is requined to clarify and characterize the accuracy of our integration technique in the knee area.

Certainly, our four examples demonstrate that our integration technique works and that it is a viable appriach if accuracy is not paramount. If greater accuracy is desired from the integration, then the interactions between the Multibus and Ringbus models will have to be approximated by more than just first moments. However, uis will be difficult, and probably infeasible, in most cases when dealing with analytical models for the Multibus and Ringbus.

### 4.3 Simulation I: The Ringhas in the Concert Finvironment

In this section we present and disciss the results of a series of simulations to assess the performance of the Ringhus - with cight slices - in the Concert ensironnent.

We have already discussed our simulation model and its parameters in conjunction with the simulations reported in section 4.2. To recap, our simulation medel is the overall Concert model comprised of a Mullibus mode! (one for each Multibus) and a Ringbus model. We assume the Multibus model with long word and Ringhus accesses, discussed in section 2.9, for the Multibus. The Ringhus model depends on the arbitration algorithm and the Ringbus access paths. Once again, our standing assumptions are:

- each Multibus model has exactly the same parameters so all Multibus models are identical in every icspect
- all the random variables $t_{p}, t_{r}, t_{\text {an }} \beta$, and $t_{\text {trans }}$ and all the probabilitics $\beta, \psi$, and $p_{i}^{R /}$ are mutually independent and stationary
- the Ringbus model is completely symmetic with respect to adh Multibus intercomection.

The simulations include the Mulibus-Pingbus interaction. In particular, the simulation model faithfully incorporates the fact that a request from a Meltibus camoo be latehed by the Ringbus arbiter mill the grant from the previous request from that Multibus has terminated as is the case in the actual Concert system.

In these simulations we assume in addition to the previous assumptions that:

1) the processing time is exponentially distributed
2.) Where are no long word aceesses i.e. $\beta=0$ (hence the recovery time distribution is irreleant)
2) there are only Ringbus accesses i.c. $\psi=1$ (hence the Multibus access time distribution is irrelevant)
3) the start up time is \%ero i.c. Istart $^{0} 0$
4) the Ringhus data transfer time $\boldsymbol{I}_{\text {trams }}$ is deterministic and hence the dumation $d$ for which seg-
 assumed in section 4.2 that $t_{\text {arb }}$ is a determisistic integral multiple of $c$.)

The restrictions of $\beta \cdot 0$ and $\psi=1$ may secm restrictise, but we make them because of space and time constraints. To some degree, the effect of $\psi$ can be determined by varying $i_{p}$ with $\psi$ held constant at 1.0. We make dic assumption of $\psi$ I in particular becaluse we are chicfly interested in the performance of the Ringbus.


The parameters in the simulations are as follows:

1) The number of processors on a Multibus, $N$. We take $N=1,2$, and 4.
2) The mean processing time. $i_{p}$. We take $i_{p}-5.0 c$, 10.0 c . 20.0c, 50.0 c . and sumetimes $\mathbf{i 0 0 . 0 c}$ and 200.0 c .
3) The Ringbus destination probabilities, $p_{i}^{R R}$. We consider three different sets of Ringbus destination probabilities: asymmetrical, symmetrical, and uniform, as listed in Table 4.5.

| Distribution | $p_{1}^{R / 3}$ | $p_{2}^{R / 1 / 4}$ | $p_{3}{ }^{1 / 2}$ | $p_{4}^{\bar{R}}$ | $p^{R} \overline{1}$ | 2 | $p^{2 / 7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Asymmetrical | . 4324 | . 2162 | . 1081 | . 0541 | . 0270 | . 0541 | . 1081 |
| Symmetrical | . 2759 | . 1379 | . 0690 | . 0345 | . 0690 | . 1379 | . 2759 |
| Uniform | .1429 | .1429 | . 1429 | . 1429 | . 1429 | . 1429 | . 1429 |

Table 4.5: Ringbus destination probabilities

Both the asymmetrical and symmetrial Ringhus destination probability distributions are negative binary exponential distributions where the exponent is the smallest number of segments required to conneet the source and destination. That is, for both the asymmetrical and symmetrical distributions. $p_{1}^{R /}=\left(2^{-\operatorname{seg}(i)}\right.$ where $\operatorname{seg}(i)$ is the smathest number of segments required to connect the source stice to the destination slice i slices away from the source slice and ( is a normalizing constame. (Recall that the sign of $i$ denotes the diwection around the Ringbes). For the asymmetrical distibution, seg(i) is compued assuming asymmetrical Ringbus aceess paths and for the symmetrical disaribution, seg $(i)$ is computed assuming symmerrical Ringbus atcess paths. For example, the minimum nomber of segments required to cominect a slice to its neighbouring slice in the clockwise direction is one for both the asymmetrical and symmetrical access paths. Thus $p_{1}^{R B(a s y m)}=\left({ }^{\text {assm }} 2^{-1}\right.$ and
 connect a slice to its neighbouring slice in the counterclockwise direction is thace for asymmetrical access paths and one for symmetrical access paths. Thus $p^{R / 1 /(a s s m)}$ (asum $2^{-3}$ and $p_{-1}^{R \beta(9 m)}=\left(\operatorname{cym}_{2}\right)$.

The asymmerrical and symmetrical aceess paths are intended to reflect the different distribution of accesses that would be plansible with the respective asymmetrical and symmetrical access paths if the accesses exhibited lowality. The uniform distribution is intended to reflect the distribution of accesses if the accesses exhibited no particular locality.
4) The Ringhus arbiter algorithm. We consider five different arbiter algorithms:
i) The rotating priority (with counterchekwise priarity rotation) algorithon discussed in Chapter 3 and section 1.2.3. This is the algorithm employed in the athal Concert system.
ii) The greedy algorithm. This algorithm pursucs a maximum reward strategy - in every arbiter clock cycle it grants the maximum number of requests that it can. Ties between request sets with the same reward are broken in favour of the request set with the greatest number of the largest requests. Any ties remaining atter thes point are broken arbitrarily.
iii) The two phase greedy itterval algorithm. 'This algorithm is best described by first considering a single phase greedy interval algorithm. Such an algorithm alternates between an idle interval and a grant interval. No nomnull requests are granted during the ide interval. The id!e interval terminates when the first nonnull request arrives at the Ringbus arbiter, if there currently are no pending nomnull requests latehed by the arbiter, or it terminates $l_{\text {arb }}+\boldsymbol{c}$ after the end of the previous grant interval, if there is at least one nomnull Ringhus request ungranted from the previous gramt interval. This minimum idle interval of $t_{\text {arb }}+c$ corresponds to the minimum time between the termination of a Ringbus gramt and the initiation of the next Ringbus grant from the same slice.

As the name implics. nomnull requests are granted only during the grant interval which extends from the termitation of the ide interval until the Ringbus access corresponding to cach gramed request has completed. The actual arbitration - i.c. deciding which request set to grant - is done baly at the begiming of a grant interval. The same greedy algorithon discussed in 4 (ii) performs the arbitation at this point. All grants remain in eflect unehanged ustil their respective Ringlus accesses terminate.

Thus the daration of a grimt interval is determined by the longest access time of those requests granted. This could be a problem if there was a high variability in the Ringbus data transfer time, $t_{\text {tronss }}$. However, we assume that $t_{\text {truns }}$ is deterministic (see 6)). This, of course, ignores read-modify-write accesses, for which $t_{\text {truns }}$ would be mueh greater than for reads or writes. The arbiter algorithm can be modified to deal with such accesses. One such way is to terminate a gramt interval when all non-read-modify-write accesses terminate and allow gramts corresponding to read-modify-write accesses to carry on into the next graint interval.

Now a two phase gredy interval algorithm consists of one single phase greedy interval algorithm. which we call the primary phase, and a second single phase greedy interval algorithon. delayed by $I_{\text {arb }}+\mathrm{c}$ with respect to the primary phase. We call this second phase the secondary phase.

The single phase greedy interval algorithm was motivated by the finding in section 3.4 that in heas' taiflic the optimal arbiter aberithm for fome slices and deteministic grant durations of $d$ romends tends to align the requests so that they are granted at intervals
of d rounds. Thus we expected the single phase greedy interval algorithon to yield good performance in heavy thalfic. We found however, that it actually yielded performance that was ustally worse that the ronting priority algorthom (with symmetrical access paths). Presumably, this was due to the ade interval of duration larb ic during which no request are granted. We added the secondary phase in ant attempt to improve the uilization of the Ringbus segments and hence improve the throughput.
iv) The crosisbar algorithm. With this algorithm the Ringhus is transformed into a crosshar interconnection.
v) The commonbus algorithm. With this algorithm the Ringhus is transfomed into a single time-shared common bus.
5) The Ringhos access paths. For the rotating priority abbiter algorithm. we consider beth asymmetrical and symmetrical access paths. For the greedy and the greedy interval algeathms we comsider only symmetrical access paths. The issuc of asymmetrical or symmetrical access paths is irrelevant for the crossbatr and commonbus algorithms.
6) The Ringbus data tramsfer time, $I_{\text {truns }}$. In all cases we take $t_{\text {irans }} 76$, as at rough approximation of the catse in the actual Concert system (when c-200nsec - see section 3.3 .2 of Appen(lix $\wedge$ ).
(Nole: liere is no point lo hiking trans ${ }^{-6} 6.8$ here as we would have done in section 4.2 . The reason is that no new requests can be lathed by the Ringhus arbiter until $\geq$ fab after the Ringhus access - i.c. dita transfer - has terminated [since the grant corresponding to this atecess continues for $t_{\text {arb }}$ past the termination of the access]. Sittec $t_{\text {arb }} \geq$ e here [see below]. the minimum interval between the termination of all aceess and the latehing of the next request from the same Multibus is always $\geq c$. For $I_{\text {trans }}=7 c$ this interval is $I_{\text {ab }}$, and for $t_{\text {rans }}-6.98 c$ this interval is $t_{a b}+.02 c$. The difference between the probability of a request arriving from a Multibus in an interval of $l_{\text {arb }}$ and an interval of $t_{a r b}+.02 c$ is negligible.)

The Ringhus arbitation delay. Iarb. We take tarb - 20 as in the actual Concert system for the rotating priority, grecdy, and greedy interval algorithoms. (flence d-9e for these three algorithms.) for the crosshat and commonbus algorithms, we take tarb $=$ e to reflect the greater simplicity inherent in the arbiter algorithom in these cases. (Ilence $d=80$ for these two algorithms.)
8) The block size $B$ and the ren size $\dot{\kappa}$. lı all cases we took $B=100$ and $R=10$.

The following tables comain the sibibiaton montes. The statistics reperted are the mean processor cycle time. fack (the reciprocil of the throughpat of the precessor). The Multibus watiting
time per access，$\overline{\boldsymbol{T}}_{\mathrm{n}}$ ，the Ringbus waiting time per Ringhus aceess， $\bar{w}_{R B}$ ，and the mean number of Ringbus grimts in progress per arbiter clock period．g．$\Lambda$ grant is considered in progress for the total time that at least ome Ringbus segnent is allowated to the arant．Since segments remain alto－ cated to a grant for a period $t_{a r b}$ after the termination of the Ringhus data transfer time，a grant is in progress for a total time of $I_{\text {trans }}+I_{\text {arb }}$ ，which equals $9{ }^{\circ}$ ．for the rotating priority，greedy，and greedy interval algorithms and 8 e for the crossbar and common bus interconncetions．The $\pm$ fig－ ures assoxiated with each statistic indicate the corresponding $95 \%$ confidence intervalls．

| Destination Probs：asymmetrical $\quad N=1$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arbiter Algorithm | Rotating | Rotating | Greedy | Interval | Cross | Common |
| Access Piuths | Asym． | Sym． | Sym． | Sym． | har | Bus |
| $i p-5.0 c$ | $29.7 \pm 2.1$ | $28.3 \pm 1.4$ | $23.75 \pm$（6） | $24.81 \pm .56$ | $16.13 \pm .37$ | $04.05 \pm .03$ |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $14.5 \pm 2.1$ | $13.1 \pm 1.1$ | $8.59 \pm .80$ | $9.64 \pm .48$ | $2.27 \pm .19$ | $50.02 \pm .33$ |
|  | $2.42 \pm .17$ | $2.55 \pm .13$ | $3.03 \pm .09$ | $2.90 \pm .07$ | $3.98 \pm .09$ | ．9992土．0015 |
| $t_{p}=10.0{ }_{c}$ | $30.7 \pm 1.6$ | $29.6 \pm 1.1$ | $20.21 \pm .88$ | $28.15 \pm .55$ | $20.53 \pm .94$ | （4．09 ${ }^{\text {a }}$ ． 11 |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $10.8 \pm 1.7$ | $9.57 \pm 1.19$ | 6．32土．76 | 8．28．上．27 | $1.67 \pm .30$ | $45.10 \pm .57$ |
|  | 2．35：上． 12 | $2.43 \pm .09$ | $2.75 \pm .09$ | $2.56 \pm .05$ | $3.13 \pm .14$ | ．998土：002 |
| $i_{p}-20.0 c$ | $36.5 \pm 1.9$ | $35.1 \pm 1.2$ | $33.9 \pm 1.6$ | $36.42 \pm$ \％ 8 | $29.9+1.3$ | 0．4．17：． 16 |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $6.18+89$ | $5.33 \pm .75$ | 3．93土．76 | 6.81 上．41 | 1．001．t． 18 | $34.8 .3 \pm .58$ |
|  | ！．97土． 11 | $2.05 \pm .07$ | $2.22 \pm 10$ | $1.98 \pm 04$ | $2.15 \pm .09$ | ．997土．002 |
|  | $61.1 \pm 3.3$ | $62.3 \pm 4.8$ | 61．4．4．1 | $64.59 \pm 3.4$ | $58.6 \pm 2.7$ | 70．9上2．8 |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $2.19 \pm .49$ | $1.86 \pm .22$ | 1．51． 1.35 | 4．10土． 34 | ． $44 \pm .10$ | 11．6土1．7 |
|  | $1.18 \pm .06$ | $1.16 \pm .09$ | $1.17 \pm .08$ | $1.12 \pm .06$ | $1.09 \pm .05 \dagger$ | ． $90 \pm .04$ |

Table 4．6（a）：Ringbus simulation icsults
 average number of prams per robud to which one on mete wemem are allocated，not the areape mumber of




| Arbiter Mlgorithm Access Paths | Rotating | Renouing | Greedy | Interval | Cross－ | Common |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A ym ． | Sym． | Sym． | Sym． | bar | Bus |
| $\mathrm{tavir}^{\text {／c }}$ | $38.5 \pm 1.4$ | $29.6 \pm 1.4$ | $23.80 \pm .40$ | 25．38土．64 | $16.35 \pm .10$ | $64.05 \pm .03$ |
| $i_{p}=5.0 c$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $23.2 \pm 1.6$ | $14.5 \pm 1.5$ | $8.67 \pm .33$ | $10.22 \pm .58$ | $2.54 \pm .26$ | $50.02 \pm .33$ |
|  | $1.87 \pm .17$ | $2.43 \pm .11$ | $3.03 \pm .05$ | $2.84 \pm .07$ | $3.92 \pm 10$ | ．9992土．0005 |
| $I_{p}=10.0 \mathrm{c}$ | 39．14土． 74 | ． $30.6 \pm 1.2$ | $26.75 \pm .43$ | $28.76 \pm .58$ | 20．6．3土．64 | $64.09 \pm .11$ |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $19.3 \pm 1.1$ | 10．55土．95 | $6.90 \pm .66$ | $8.73 \pm .50$ | $1.81 \pm .26$ | $45.10 \pm .57$ |
|  | $1.84 \pm .03$ | $2.36 \pm .10$ | $2.19 \pm .04$ | $2.50 \pm .05$ | $3.11 \pm .10$ | ． $998 \pm .002$ |
| $i_{r}$ 20．0c ${ }_{\text {wh }}{ }_{\text {w }}$ | $41.9 \pm 2.5$ | $36.15 \pm .70$ | $34.4 \pm 2.2$ | $37.2 \pm 1.3$ | 30．17士．71 | $64.17 \pm .16$ |
|  | 0.0 | 0.0 | 0.0 | 00 | 0.0 | 0.0 |
|  | $12.4 \pm 2.1$ | $6.38 \pm .79$ | $4.20 \pm .72$ | $7.05 \pm .48$ | $1.07 \pm .23$ | $34.83 \pm .58$ |
|  | 1．72土．10 | $1.98 \pm .14$ | $2.10 \pm .13$ | $1.94 \pm .07$ | $2.12 \pm .05$ | ． $997 \pm .002$ |
| $i_{p}=50.0 c$ | $6.3 .7 \pm 4.7$ | $62.9 \pm 3.9$ | $62.3 \pm 3.1$ | $65.0 \pm 3.2$ | $59.8 \pm 3.5$ | $70.9 \pm 2.8$ |
|  | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $4.04 \pm .99$ | $2.19 \pm .47$ | $1.59 \pm .24$ | $4.58 \pm .41$ | ．46土． 11 | $11.6 \pm 1.7$ |
|  | $1.13 \pm .08$ | 1．15上． 07 | $1.16 \pm .06$ | $1.11 \pm .05$ | $1.07 \pm .06$ | ． $90 \pm .04$ |

Trable 4．0（b）：Ringbus simulation results

| Destination Prohs：uniform |  |  | $N-1$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arbiter Algorithm | Rotating | Rotating | Grecdy | Interval | Cross－ | Common |
| Access Paths | Asym． | Sym． | Sym． | Svin． | bar | Bus |
| $i_{p}=5.0 c$ | $47.9 \pm 1.9$ | $42.9 \pm 2.1$ | $29.18 \pm .86$ | $29.26 \pm .53$ | $10.69 \pm .39$ | $64.05 \pm .03$ |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $32.5 \pm 2.1$ | $27.6 \pm 2.1$ | 13．95土．78 | $14.01 \pm .54$ | $2.89 \pm .35$ | $50.02 \pm .33$ |
|  | $1.50 \pm .16$ | $1.68 \pm .08$ | $2.47 \pm .07$ | $2.46 \pm .04$ | $3.84 \pm .199$ | ． $9992 \pm .0005$ |
| $\bar{i}_{p}=10.0 c$ | $48.3 \pm 1.9$ | $42.7 \pm 2.1$ | $31.19 \pm .71$ | $31.81 \pm .49$ | $20.77 \pm .62$ | $64.09 \pm .11$ |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $28.2 \pm 2.2$ | $22.7 \pm 2.1$ | $11.31 \pm .64$ | $11.89 \pm .70$ | $1.92 \pm .31$ | $45.10 \pm .57$ |
|  | $1.49 \pm .06$ | $1.69 \pm .08$ | $2.31 \pm .05$ | $2.26 \pm .04$ | $3.109 \pm .09$ | ． $998 \pm .002$ |
| $\bar{i}_{p}-20.0 c$ | $49.0 \pm 1.4$ | $43.8 \pm 2.5$ | $37.4 \pm 1.6$ | $39.3 \pm 1.1$ | $29.5 \pm 1.1$ | $64.17 \pm .16$ |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $19.2 \pm 2.2$ | $13.8 \pm 3.1$ | $7.31 \pm .63$ | $9.23 \pm .36$ | $1.25 \pm .28$ | 34．8．3土．58 |
|  | $1.47 \pm .04$ | $1.64 \pm .09)$ | 1．92土．08 | $1.83 \pm .05$ | $2.17 \pm .08$ | ． $997 \pm .002$ |
|  | 65．9土2．6 | $65.4 \pm 5.4$ | $62.6 \pm 3.4$ | $65.7 \pm 3.8$ | $59.9 \pm 3.3$ | $70.9 \pm 2.8$ |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | $6.46 \pm .90$ | $4.55 \pm 1.22$ | 2．96土．64 | $5.29 \pm .47$ | ． $51 \pm .18$ | $11.6 \pm 1.7$ |
|  | $1.09 \pm .14$ | $1.10 \pm .09$ | 1．15土． $1 \mathrm{~K}_{6}$ | $1.10 \pm .06$ | $1.107 \pm .06$ | ． $90 \pm .04$ |

Table 4．o（c）：Ringbus simulation results

| Destinutien Probs：asymmetrical |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aibiter Algorithm | Rotating | Rotationg | Grcedy | Interval | Cioss： | Commmon |
| Access Paths | Asym． | Sym． | Syın． | Sym． | bar | Bus |
| $\dddot{i}_{p}=5.0 c$ | $60.2 \pm 2.2$ | $55.8 \pm 2.7$ | $44.1 \pm 1.4$ | $47.4 \pm 1.0$ | 26．79．． 45 | $127.80 \pm .17$ |
|  | $25.1 \pm 1.2$ | $22.9 \pm 1.4$ | 17．09土．76 | 18．70土．58 | $8.55 \pm .34$ | $58.71 \pm .30$ |
|  | $18.1 \pm 1.1$ | $15.8 \pm 1.4$ | $9.96 \pm .69$ | $11.66 \pm .52$ | 3．23土．20 | $53.84 \pm .02$ |
|  | $2.39 \pm .09$ | $2.58 \pm .13$ | $3.26 \pm .10$ | $3.03 \pm .07$ | $4.77 \pm .08$ | ． $9998 \pm .0002$ |
| $i_{p}=10.0 c$ | $59.3 \pm 2.8$ | $55.9 \pm 2.1$ | $44.79 \pm .97$ | $47.46 \pm .48$ | $28.29 \pm .47$ | $127.77 \pm .18$ |
|  | $20.1 \pm 1.5$ | $18.42 \pm .87$ | $13.21 \pm .48$ | $14.17 \pm .38$ | $5.58 \pm .20$ | $53.71 \pm .51$ |
|  | $17.3 \pm 1.4$ | $15.5 \pm 1.0$ | $9.80 \pm .52$ | $11.24 \pm .25$ | $2.90 \pm .18$ | $53.80 \pm .174$ |
|  | $2.42 \pm .11$ | $2.57 \pm .09$ | $3.21 \pm .07$ | $3.03 \pm .03$ | $4.52 \pm .08$ | ． $9996 \pm .0003$ |
| $I_{p}=20.0 \mathrm{c}$ | $58.9 \pm 2.0$ | $56.0 \pm 2.2$ | $47.5 \pm 1.0$ | 50．18土．82 | $34.3 \pm 1.1$ | 127．78土． 30 |
|  | $12.5 \pm 1.0$ | $11.2 \pm 1.0$ | $7.76 \pm .69$ | $8.70 \pm .34$ | $2.93 \pm .20$ | $44.14 \pm .57$ |
|  | $14.8 \pm 1.1$ | $13.2 \pm 1.2$ | $8.32 \pm .36$ | $10.08 \pm .30$ | $2.19 \pm .23$ | $53.40 \pm .13$ |
|  | $2.44 \pm .08$ | $2.57 \pm .10$ | $3.0 .3 \pm .07$ | $2.86 \pm .105$ | $3.72 \pm .12$ | ． $9094 \pm .0006$ |
| $i p$ Siloc | $71.4 \pm 2.9$ | $70.2 \pm 2.2$ | $66.5 \pm 2.2$ | $70.8 \pm 1.7$ | $61.7 \pm 1.9$ | $128.15 \pm .34$ |
|  | $3.10 \pm .51$ | $2.89 \pm .59$ | $2.12 \pm .43$ | $3.01 \pm .42$ | ．93土．15 | $22.1 \pm 1.4$ |
|  | $6.86 \pm 1.0$ | $6.04 \pm 1.08$ | $4.12 \pm .44$ | $7.26 \pm .26$ | $.99 \pm .17$ | $45.78 \pm 1.04$ |
|  | $2.01 \pm .08$ | $2.05 \pm .07$ | $2.16 \pm .07$ | $2.03 \pm .05$ | $2.07 \pm .06$ | $.998 \pm .1002$ |
| $\begin{array}{rr}i_{p}=100.0 c & \bar{i}^{\prime}{ }^{\prime} \\ & \bar{v}_{K H} \\ g\end{array}$ | $114.9 \pm 5.3$ | $114.6 \pm 6.2$ | $112.0 \pm 5.6$ | $117.4 \pm 5.3$ | $110.5 \pm 3.3$ | $13.3 .3+1.8$ |
|  | ．84．．．17 | ． $78 \pm .17$ | ．75土．12 | $1.14 \pm .24$ | $.43 \pm .0 \%$ | $4.16 \pm 1.3$ |
|  | 2．74：E．46 | $2.25 \pm .37$ | $1.82 \pm .98$ | $4.83 \pm .39$ | ． $49 \pm .08$ | $19.4 \pm 2.8$ |
|  | $1.25 \pm .06$ | $1.25 \pm .0 \%$ | 1．28土：163 | $1.22 \pm .05$ | $1.16 \pm .04$ | ．058土．013 |

Fable 4．otd）：Ring＇ous simulation iesults

| Destination Probs：symmerric |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arbiter Algorithon | Rooating | Rotating | Grecdy | Interval | Crosis－ | Common |
| Access Paths | Asym． | Sym． | Sym． | Sym． | bar | B11） |
| $i_{p}=5.0 \mathrm{c}$ | $77.3 \pm 3.9$ | $56.6 \pm 1.7$ | $45.26 \pm .67$ | $47.92 \pm .90$ | $27.36 \pm .42$ | $127.80 \pm .17$ |
|  | $33.6 \pm 1.8$ | $23.3 \pm .84$ | 17．72土．43 | 18．97土．61 | $8.82 \pm .27$ | $58.71 \pm .30$ |
|  | $20.6 \pm 1.9$ | $16.26 \pm \pm .83$ | $10.56 \pm .32$ | 11．93土．46 | $3.51 \pm .25$ | $53.84 \pm .02$ |
|  | 1．86土．（0） | $2.54 \pm .17$ | $3.18 \pm .05$ | $3.00 \pm .06$ | $4.67 \pm .08$ | ．9998 $\pm .00002$ |
| $i_{p}=10.0 c$ | $76.4 \pm 3.5$ | $56.9 \pm 1.1$ | 45．27土．92 | 48．48土． 75 | $28.82 \pm .54$ | $127.77 \pm .18$ |
|  | $28.3 \pm 1.7$ | 18．97 $\pm .68$ | $13.32 \pm .60$ | $14.91 \pm .51$ | $5.79 \pm .38$ | $53.71 \pm .51$ |
|  | $26.0 \pm 1.8$ | $16.04 \pm .71$ | $110.06 \pm .42$ | 11．79 $\pm .35$ | $3.21 \pm .33$ | $53.80 \pm .04$ |
|  | $1.88 \pm .09$ | $2.53 \pm .05$ | $3.18 \pm .06$ | 2．96土．04 | 4．43土．（1） | ． $9996 \pm .0003$ |
| $i_{p}=20.0 \mathrm{c}$ | $78.0 \pm 3.2$ | $58.7 \pm 2.3$ | $48.30 \pm .54$ | $51.51 \pm .57$ | $34.53 \pm .74$ | $127.78 \pm .30$ |
|  | $21.1 \pm 1.6$ | $12.4 \pm 1.4$ | $8.02 \pm .41$ | $9.23 \pm .56$ | $2.97 \pm .33$ | ＋4．04士．59 |
|  | $25.4 \pm 1.7$ | $14.8 \pm 1.4$ | $8.84 \pm .19$ | $10.74 \pm .40$ | $2.31 \pm .23$$3.70 \pm .08$ | $53.40 \pm .13$ |
|  | $1.84 \pm .07$ | $2.45 \pm .10$ | $2.98 \pm .03$ | $2.79 \pm .0 .3$ |  | ．9904土．0006 |
| $i_{p}=50.0 c$ | $82.3 \pm 1.8$ | $71.2 \pm 1.3$ | $67.2 \pm 1.7$ | $71.7 \pm 1.3$ | $61.4 \pm 1.8$ | 128.0 |
|  | $6.19 \pm .82$ | $3.11 \pm .52$ | $2.29 \pm .36$ | $3.18 \pm .19$ | $9.93 \pm .08$ | $22.1 \pm 1.4$ |
|  | $14.6 \pm 1.0$ | $6.89 \pm .74$ | $4.52 \pm .51$ | $7.76 \pm .44$ | $1.03 \pm .11$ | $45.78 \pm 1.04$ |
|  | $1.75 \pm .04$ | $2.02 \pm .04$ | $2.14 \pm .05$ | $2.00 \pm .04$ | $2.188 \pm .06$ | ．998． |
| $\overline{i s}_{p}=10060$ | $117.0 \pm 4.9$ | $114.2 \pm 2.6$ | $112.6 \pm 3.6$ | $116.4 \pm 4.2$ | $110.8 \pm 5.8$ | $\begin{gathered} 133.3 \pm 1.8 \\ 4.16 \pm 1.3 \\ 19.4 \pm 2.8 \\ .958 \pm .013 \end{gathered}$ |
|  | $1.17 \pm .26$ | ．81士．12 |  | $1.17 \pm .18$ | ． 42 上． 07 |  |
|  | $4.70 \pm$ | $2.76 \pm .45$ | 1．91土．08 | $5.08 \pm .33$ | ． $52 \pm .10$ |  |
|  | $1.23 \pm .15$ | $1.26 \pm .03$ | $1.28 \pm .04$ | $1.23 \pm .04$ | 1.15 上．06 |  |

Table 4．6（c）：Ringbus simulation results

| Arbiler Algorilhm Acoess faths | Ronationg | Runating | Girecdy | Interval | Cruss | Common |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Asjum． | Sym． | Sym． | Sym． | bar | Bus |
| $i_{p}=5.0 \mathrm{c}$ | $\% .5 \pm 2.8$ | $35.2 \pm 2.4$ | $50.1 \pm 1.2$ | $57.1 \pm 1.0$ | 28．01． | $127.81 \pm .17$ |
|  | $43.2 \pm 1.4$ | $37.5 \pm 1.3$ | 23．03土．78 | 23．48土．54 | $9.18 \pm .34$ | $58.71 \pm .30$ |
|  | $36.2 \pm 1.4$ | $30.6 \pm 1.2$ | $15.99 \pm .61$ | 16．46土．47 | $3.84 \pm .32$ | 53．84士．02 |
|  | 1．49土．04 | $1.69 \pm .05$ | $2.56 \pm .05$ | $2.52 \pm .05$ | $4.57 \pm .11$ | ．9998土．00022 |
| $i_{p} \quad 10.0 c$ | $97.2 \pm 3.7$ | $84.8 \pm 3.3$ | $56.48 \pm .8 .3$ | $57.47 \pm .85$ | $29.35 \pm .70$ | $127.77 \pm .18$ |
|  | $38.6 \pm 1.9$ | $32.4 \pm 2.1$ | $18.79 \pm .60$ | $19.13 \pm .92$ | 6．13土．42 | $53.71 \pm .51$ |
|  | $30.5 \pm 1.9$ | $30.2 \pm 1.8$ | 15．76土．47 | $16.32 \pm .44$ | $3.54 \pm .30$ | $53.80 \pm .04$ |
|  | $1.48 \pm .0{ }_{6}$ | $1.70 \pm .07$ | $2.54 \pm .14$ | $2.50 \pm .0 .3$ | $4.36 \pm .10$ | ． $9996 \pm .0003$ |
| $10.20 .0 c^{\prime}$ | 97．5 $\pm 2.1$ | $84.6 \pm 3.4$ | $57.82 \pm .85$ | $58.61 \pm .63$ | $35.1 \pm 1.1$ | $127.78 \pm .30$ |
|  | $29.8 \pm 1.4$ | $24.1 \pm 1.5$ | 12．37土．70 | $12.53 \pm .68$ | $3.14 \pm .35$ | $44.04 \pm .59$ |
|  | $35.6 \pm 1.3$ | $28.9 \pm 1.9$ | $14.11 \pm .46$ | 14．61土．44 | $2.58 \pm .30$ | $53.40 \pm .13$ |
|  | $1.47 \pm .03$ | $1.70 \pm .07$ | $2.49 \pm .04$ | $2.45 \pm .03$ | $3.64 \pm .11$ | ． $9994 \pm .0006$ |
| m－50．0c | $97.7 \pm 2.5$ | $80.9 \pm 2.5$ | $73.0 \pm 1.3$ | $74.8 \pm 1.2$ | （10．7 102.1 | 128．05土． 34 |
|  | $11.4 \pm 1.7$ | $7.92 \pm .85$ | $3.68 \pm .54$ | $4.13 \pm .47$ | 1．01 1.14 | $22.1 \pm 1.4$ |
|  | $25.2 \pm 2.4$ | $17.9 \pm 2.0$ | $8.15 \pm .57$ | $9.96 \pm .22$ | $1.19 \pm .14$ | $45.78 \pm 1.04$ |
|  | $1.47 \pm .04$ | $1.65 \pm .05$ | $1.97 \pm .03$ | $1.92 \pm .03$ | $2.11 \pm .07$ | ． $998 \pm .002$ |
| $\overline{i n},=100.00 \quad i_{i \prime}$ | $121.3 \pm 5.3$ | $118.1 \pm 4.6$ | $114.2 \pm 3.3$ | $118.7 \pm 5.2$ | $109.7 \pm 5.5$ | $133.3 \pm 1.8$ |
|  | $1.83 \pm .49$ | $1.38 \pm .24$ | 1．001． 25 | $1.45 \pm .30$ | ． $42 \pm .08$ | $4.16 \pm 1.3$ |
|  | $8.0 \pm 1.5$ | $5.71 \pm .61$ | $3.57 \pm .23$ | 0．25 $\pm .38$ | ． $57 \pm .13$ | $19.4 \pm 2.8$ |
|  | $1.19 \pm .05$ | 1．22土．05 | $1.26 \pm .04$ | $1.21 \pm .06$ | $1.17 \pm .06$ | ． $9 \leq 8 \pm .013$ |

Table 4．6（f）：Ringhus simutation results

| Destination Probs：atsymmetrical $\quad$ N 4 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arbiter Agorillim | Rotating | Rotating | Grecdy | linterval | Cross－ | Common |
| 人ucess Peths | Noym． | Sym． | Sym． | Sym． | har | Bus， |
| taychio | 110.453 .1 | $112.1 \pm 2.3$ | $88.4 \pm 1.4$ | $94.1 \pm 1.0$ | $53.34 \pm .77$ | $255.11 \pm .30$ |
| $\bar{i}_{p}=5.0 c$ | $83.5 \pm 2.3$ | $78.7 \pm 1.8$ | $61.1 \pm 1.1$ | $65.24 \pm .80$ | $34.82 \pm .56$ | 185．58土．25 |
|  | $17.65 \pm .77$ | $16.09 \pm .61$ | 10．14土．．15 | 11．56土．25 | $3.36 \pm .19$ | $53.93 \pm .01$ |
|  | $2.43 \pm .06$ | $2.56 \pm .05$ | $3.25 \pm .05$ | $3.05 \pm .03$ | $4.78 \pm .07$ | ． $9999 \pm .0001$ |
| $i_{p}=10.0 \mathrm{c}$ | $117.9 \pm 4.1$ | $111.2 \pm 3.9$ | $88.0 \pm 1.6$ | $93.7 \pm 1.5$ | $53.21 \pm .05$ | $254.99 \pm .42$ |
|  | $78.1 \pm 3.1$ | $72.9 \pm 3.0$ | $55.7 \pm 1.3$ | $60.0 \pm 1.1$ | $29.73 \pm .60$ | $180.45 \pm .53$ |
|  | $17.6 \pm 1.0$ | $15.9 \pm 1.0$ | $10.04 \pm .39$ | $11.49 \pm .37$ | $3.32 \pm .16$ | $53.92 \pm .01$ |
|  | $2.43 \pm .08$ | $2.58 \pm .09$ | $3.26 \pm .16$ | $3.06 \pm .05$ | $4.79 \pm .16$ | ． $9998 \pm .00012$ |
| ip 20．0c | $118.2 \pm 4.6$ | $111.1 \pm 2.9$ | $88.5 \pm 1.7$ | $94.0 \pm 1.2$ | $53.78 \pm .86$ | $254.95 \pm .45$ |
|  | $68.4 \pm 3.5$ | $62.8 \pm 2.3$ | $46.1 \pm 1.5$ | $50.13 \pm .86$ | $20.28 \pm .88$ | 170．27上．69 |
|  | $17.6 \pm 1.2$ | 15．78土．71 | $10.11 \pm .43$ | $11.52 \pm .29$ | $3.24 \pm .20$ | $53.90 \pm .02$ |
|  | $2.43 \pm .10$ | $2.58 \pm .07$ | $3.24 \pm .06$ | $3.05 \pm .04$ | $4.74 \pm .17$ | ． $9998 \pm .0002$ |
| $i_{\text {m }}-50.0 c$ | $118.7 \pm 3.5$ | $112.2 \pm 3.1$ | $92.33 \pm .68$ | $98.0 \pm 1.4$ | $67.9 \pm 1.2$ | 255．03 $\pm .22$ |
|  | $39.9 \pm 2.2$ | $35.3 \pm 2.9$ | $21.7 \pm 1.1$ | $25.00 \pm .85$ | $6.33 \pm$（10） | $140.1 \pm 2.2$ |
|  | $16.55 \pm .82$ | 14．73土．98 | $8.90 \pm .31$ | $10.77 \pm .32$ | 226 上． 18 | $53.83 \pm .05$ |
|  | $2.42 \pm .07$ | $2.56 \pm .07$ | $3.11 \pm .02$ | $2.93 \pm .04$ | $3.76 \pm .07$ | $.9994 \pm .00104$ |
| $i_{p} \cdot 10000 c$ | $131.7 \pm 2.6$ | $127.9 \pm 2.3$ | $122.1 \pm 2.9$ | $127.5 \pm 2.9$ | $112.5 \pm 2.5$ | $255.3 \pm .71$ |
|  | $10.3 \pm 2.0$ | $8.51 \pm 1.2$ | $5.55 \pm .77$ | $8.06 \pm .94$ | $1.86 . \pm .20$ | $91.6 \pm 3.6$ |
|  | $9.39 \pm 1.33$ | $7.77 \pm .99$ | $4.94 \pm .37$ | $8.2 .4 \pm .25$ | $109 \pm .15$ | $52.56 \pm .39$ |
|  | $2.18 \pm .05$ | 2.24 t． 14 | $2.35 \pm .1 k_{2}$ | $2.25 \pm .05$ | $\therefore 27 \pm 105$ | ．998土．601 |
| $\bar{i}_{p}=200.0 \mathrm{c} \quad \ddot{w}_{R / \prime}$ | $214.5 \pm 7.6$ | 214．8－1：2 | $214.2 \pm 8.7$ | $218.6 \pm 4.7$ | $216.9 \pm 0.2$ | $259.0 \pm 2.7$ |
|  | $1.70 \pm .21$ | $1.32+\ldots 7$ | $1.37 \pm .19$ | $2.32 \pm .30$ | $72+.07$ | $17.7 \pm 1.2$ |
|  | $2.99 \pm .42$ | $2.611 \pm .45$ | $1.95 \pm .22$ | $5.29 \pm .31$ | ． $51 . \pm .04$ | $30.1 \pm 3.0$ |
|  | 1．34．土．05 | $1.34 \pm .05$ | 1．．14土．05 | $1.31 \pm .103$ | $1.21 \pm .05$ | ． $985 \pm .0110$ |

Table 4．o（g）：Ringbus simulation results

| Destimation Probs：symmetrical |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arbiter Algorithm | Rutating | Rotating | Greedy | Interval | $\begin{aligned} & \text { Cross- } \\ & \text { bar } \end{aligned}$ | Common |
| Access l＇ills | Asym | Sym． | Sym |  |  | Bus |
| $\bar{i}_{p}=5.0 \mathrm{c}$ | $154.1 \pm 2.9$ | $113.8 \pm 3.5$ | $89.8 \pm 1.2$ | $95.8 \pm 1.1$ | $54.19 \pm .58$ | $255.11 \pm .30$ |
|  | $110.1 \pm 2.2$ | $80.1 \pm 2.6$ | $62.02 \pm .84$ | $66.58 \pm .84$ | $35.44 \pm .45$ | $185.58 \pm .25$ |
|  | $26.63 \pm .71$ | $16.52 \pm .85$ | $10.48 \pm .28$ | $12.00 \pm .28$ | $3.57 \pm .14$ | 53．93土．01 |
|  | $1.86 \pm .03$ | $2.52 \pm .07$ | $3.20 \pm .04$ | $3.00 \pm .04$ | $4.71 \pm .05$ | ． $9999 \pm .0001$ |
| $t_{p}=10.0 c$ | $152.9 \pm 5$. | $114.3 \pm 3$ | $89.6 \pm 1.0$ | $95.9 \pm 1.3$ | $54.3 \pm 1.2$ | ＋ 42 |
|  | $104.1 \pm 3.7$ | $75.3 \pm 2.6$ | $56.9 \pm .68$ | $61.6 \pm 1.2$ | 30．52土．78 | $180.45 \pm .53$ |
|  | $26.3 \pm 1.3$ | $16.65 \pm .84$ | 10．43土．26 | 12．02土．31 | $3.61 \pm .29$ | $53.92 \pm .0$ |
|  | $1.88 \pm .06$ | $2.51 \pm .08$ | $3.20 \pm$ ． 14 | $2.99 \pm .04$ | $4.69 \pm .10$ | ．9998土．0002 |
| $i_{P} 20.0 c$ | $154.2 \pm 4.4$ | $114.9 \pm 2.6$ | $89.9 \pm 1.3$ | $96.24 \pm .99$ | $54.99 \pm .64$ | $254.95 \pm .45$ |
|  | $95.1 \pm 3.3$ | $65.7 \pm 2.1$ | $47.05 \pm .72$ | $51.66 \pm .78$ | $21.06 \pm .81$ | $170.27 \pm .69$ |
|  | $26.6 \pm \pm .1$ | $16.77 \pm .64$ | $10.49 \pm .33$ | 12．08土． 24 | $3.54 \pm .18$ | $53.90 \pm .02$ |
|  | $1.86 \pm .05$ | $2.50 \pm .105$ | $3.19 \pm .05$ | $2.98 \pm .03$ | $4.64 \pm .06$ | ．9998土．0002 |
| $i_{p}-50.0 c$ | $154.3 \pm 3.4$ | $116.0 \pm 4.5$ | $94.0 \pm 1.2$ | $99.9 \pm 1.3$ | $68.5 \pm 1.1$ | $255.03 \pm .22$ |
|  | $65.3 \pm 2.5$ | $37.7 \pm 3.5$ | $22.5 \pm 1.1$ | $26.8 \pm 1.3$ | $6.44 \pm .54$ | $140.3 \pm 2.2$ |
|  | $26.1 \pm .91$ | $15.8 \pm 1.3$ | $9.44 \pm .27$ | $11.44 \pm .28$ | $2.44 \pm .16$ | $53.83 \pm .05$ |
|  | $1.86 \pm .04$ | $2.47 \pm$ ．09 | $3.05 \pm .04$ | 2．87土．04 | $3.73 \pm .06$ | ．9994土．0004 |
| $i_{p}=100.0 \mathrm{c}$ | $157.9 \pm 2.7$ | $130.2 \pm$ | $123.3 \pm 2.9$ | $128.4+2.8$ | $112.6 \pm 2.5$ | 255．3土． 71 |
|  | $25.4 \pm 3.4$ | $9.95 \pm 1.7$ | $6.13 \pm .72$ | $8.53 \pm .65$ | 1．98土．18 | $91.6 \pm 3.6$ |
|  | $20.4 \pm i .2$ | $9.30 \pm 1.2$ | $5.58 \pm .53$ | 8．67．t． 19 | $1.19 \pm .09$ | 52．55土． 19 |
|  | $1.82 \pm .03$ | $2.20 \pm .05$ | $2.33 \pm .06$ | $2.23 \pm .05$ | $2.27 \pm .05$ | ． $989 \pm .(0) 1$ |
| $\bar{i}_{p}-2100.0 c$ | $219.2 \pm 5.5$ | $215.3 \pm 7.8$ | $215.7 \pm 9.0$ | $218.6 \pm 7.3$ | $211.4 \pm 6.3$ | $259.0 \pm 2.7$ |
|  | 2.84 上．70 | $1.62 \pm .30$ | $1.37 \pm .24$ | $2.35 \pm .27$ | ．71 $\pm .08$ | $17.7 \pm 3.2$ |
|  | $5.95 \pm .83$ | $3.00 \pm .30$ | $2.11 \pm .20$ | $5.56 \pm .27$ | ． $55 \pm .07$ | $30.1 \pm 3.0$ |
| $g$ | $1.31 \pm .03$ | $1.33 \pm .05$ | $1.33 \pm .06$ | $1.31 \pm .04$ | $1.21 \pm .04$ | ． $985 \pm .010$ |

Table 4．（h）：Ringhus simulation results

| Inestination Probs：uniform |  | $N-4$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arbiter Algorithm | Rotating | Rotating | Grecdy | Interval | Cross－ | Common |
| Access Paths | Asym． | Sym． | Sym． | Sym． | bar | Bus |
| $\bar{t}_{p}=5.0 \mathrm{c}$ | $193.5 \pm 4.1$ | $170.3 \pm 2.8$ | $111.9 \pm 1.5$ | $114.20 \pm .95$ | $55.6 \pm 1.1$ | $255.11 \pm .30$ |
|  | $139.5 \pm 3.0$ | $122.3 \pm 2.2$ | $78.5 \pm 1.1$ | $80.26 \pm .64$ | $36.53 \pm .74$ | 185．58土． 25 |
|  | $36.5 \pm 1.0$ | $30.68 \pm .69$ | 16．02土．39 | $16.61 \pm .21$ | $3.93 \pm .26$ | $53.93 \pm .01$ |
|  | $1.48 \pm .03$ | $1.68 \pm .03$ | $2.57 \pm .04$ | $2.51 \pm .02$ | $4.59 \pm .09$ | ．9999土．（0001 |
| $\overrightarrow{i s}_{p}=10.0 \mathrm{c}$ | $193.7 \pm 3.3$ | $170.0 \pm 4.7$ | $112.2 \pm 1.1$ | $114.0 \pm 1.2$ | $55.7 \pm .99$ | $254.99 \pm .42$ |
|  | $134.8 \pm 2.5$ | $116.9 \pm 3.5$ | $73.66 \pm .94$ | $75.05 \pm .91$ | $31.6 \pm 1.0$ | 180．45土．53 |
|  | $36.57 \pm .82$ | $30.6 \pm 1.1$ | $16.10 \pm .24$ | $16.57 \pm .28$ | $3.94 \pm .25$ | $53.92 \pm .01$ |
|  | $1.48 \pm .02$ | $1.69 \pm .04$ | $2.56 \pm .02$ | $2.52 \pm .02$ | $4.58 \pm .08$ | ． $9998 \pm .0002$ |
| $i_{p}=20.0 \mathrm{c}$ | $193.6 \pm 2.3$ | $171.4 \pm 3.1$ | $112.1 \pm 1.5$ | $114.1 \pm 1.0$ | $56.28 \pm .80$ | $254.95 \pm .45$ |
|  | $124.4 \pm 2.0$ | $108.0 \pm 2.4$ | $63.5 \pm .81$ | $65.2 \pm 1.2$ | $22.0 \pm 1.0$ | $170.27 \pm .69$ |
|  | $36.48 \pm .61$ | $31.0 \pm .74$ | $16.06 \pm .35$ | $16.51 \pm \pm .23$ | $3.89 \pm .20$ | $53.90 \pm .02$ |
|  | $1.48 \pm .02$ | $1.67 \pm .03$ | $2.56 \pm .03$ | $2.51 \pm .02$ | 4．5．3土．06， | ． $9998 . \pm .0002$ |
| $\bar{i}_{p}=50.0 \mathrm{c}$ | $193.5 \pm 4.1$ | $172.1 \pm 3.9$ | $113.9 \pm 1.4$ | $115.9 \pm 1.7$ | $69.3 \pm 1.6$ | $255.03 \pm .22$ |
|  | $94.3 \pm 4.4$ | $78.7 \pm 3.3$ | $36.6 \pm 1.8$ | $37.8 \pm 1.8$ | $6.62 \pm .60$ | $140.3 \pm 2.2$ |
|  | $36.3 \pm 1.1$ | $30.8 \pm 1.1$ | $15.22 \pm .48$ | $15.79 \pm .47$ | $2.58 \pm .24$ | 53．8．3土．05 |
|  | $1.48 \pm .03$ | $1.67 \pm .04$ | $2.58 \pm .03$ | $2.47 \pm .03$ | $3.68 \pm .09$ | ． $9994 \pm .0004$ |
| $\bar{i}_{r}-100.0 c$ | $193.0 \pm 4.9$ | $171.2 \pm 6.4$ | $132.3 \pm 1.8$ | $135.8 . \pm 2.2$ | 113．3土2．9 | $255.3 \pm .71$ |
|  | $48.4 \pm 4.0$ | $34.7 \pm 4.4$ | $10.94 \pm 1.3$ | $12.67 \pm .99$ | $2.03 \pm .13$ | $91.6 \pm 3.6$ |
|  | $32.2 \pm 1.6$ | $25.2 \pm 1.9$ | $10.02 \pm .42$ | $11.65 \pm .27$ | 1．32土．16 | $52.56 \pm .39$ |
|  | $1.49 \pm .04$ | $1.68 \pm .06$ | $2.17 \pm .03$ | $2.11 \pm .104$ | ？26is：06 | ．998土．101 |
| $\bar{i}_{p}=200.0 c \quad \bar{w}_{n}$ | $228.0 \pm 5.1$ | $220.8 \pm 6.8$ | $216.1 \pm 5.8$ | $291.3 \pm 5.6$ | $210.0 \pm 11.3$ | $259.0 \pm 2.7$ |
|  | $5.15 \pm 1.5$ | $3.43 \pm .66$ | 2．05 $\pm .39$ | $2.94 \pm .40$ | ．73土．13 | $17.7 \pm 3.2$ |
|  | $10.7 \pm 1.7$ | $7.00 \pm .82$ | $3.93 \pm .47$ | $6.52 \pm .23$ | ． $60 \pm .07$ | $30.1 \pm 3.0$ |
|  | $1.26 \pm .03$ | $1.30 \pm .04$ | $1.33 \pm .04$ | $1.30 \pm .03$ | $1.21 \pm .06$ | ． $985 \pm .010$ |

Table 4．6（i）：Ringbus simulation results

The results in Tables 4．6（a）through（i）indicate little variation in the performance with dif－ ferent access paths and arbiter algorithms for light loading，as one would expect，and large varia－ tion in the performance for heavy loading．These variations in perfomance for heary loading are illustrated in the following table of the throughput with $\bar{i}_{p}-5.0 \mathrm{c}$ relative to that with rotating priority and asymmetrical access paths．

| I cest. Probs. |  | Arbiter algorithon (Sym. access paths) |  |  | Crossbar |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rotating | Interval | Greedy |  |
| $N=1$ | Asym. | 5\% | 17\% | 20\% | 46\% |
|  | Sym. | 23 | 34 | 38 | 58 |
|  | Uni. | 10 | 39 | 39 | 65 |
| $N=2$ | Asym. | 7 | 21 | 27 | 56 |
|  | Sym. | 27 | 38 | 41 | 65 |
|  | Uni. | 12 | 41 | 42 | 71 |
| $N=4$ | Asym. | 5 | 21 | 25 | 55 |
|  | Sym. | 26 | 38 | 42 | 65 |
|  | Uni. | 12 | 41 | 42 | 71 |

Table 4.7: Percent increase in throughput for $\bar{i}_{p}=5.0 \mathrm{c}$ relative to that for rotating priority arbiter algorithri with asymmetrical access paths

The figures in Table 4.7 indicate that the Ringbus throughput can be increased 20 to $40 \%$ in heavy leading relative to the throughput with the rotating priority arbiter algorithm and asymmetricall access paths. In other words. the throughput of the actual Concet system call be improved in lie.uvy loading by at least 20 to $40 \%$ by using a better arbiter algorithm and symmetrical access path. bij comparing the improvement in throughput with rotating priority and symmetrical access patis with the improvenent in throughput with the interval or greedy algorithun (buth of which yed aiowt the sime performance) and symmetricdiaceess paths, we call see that the change from asymmetrical to symmetrical access paths accounts for $1 / 5$ to $l / 4$ of the improvement with asymmetrical destination prob,bilities, about $1 / 4$ of the improvement with uniform destination probabilities. and over $1 / 2$ of the improwernent with symmetrical destination probabilities. Interestingly. the improvenent in throughput with the interval and greedy algorithms (with symmetrical access paths) renamed about the same for both uniform and symmetrical destination probabilities, indicating that the improvement in throughput eontributed by these algorithmes also changes with the destination probabilities but in an opnosite onanner to that contributed by the symmetrical aceess paths.

For general destination probabilities we cannoe draw too many conclusions from table 4.7 besides that the throughput can be improued by at least 20 (1) $40 \%$ and that both the degree of improvement and the relative contribution of the abbiter algorithm and symmetrical access paths depend strongly on the destination probabilities. Table 4.7 does give some idea though - which of course must be balaneed with the costs - of the relative advantage of different arbiter algorithms and iscess paths.

Another way to chormereize and compare the performance of the various arbiter algorithms
is by their satturation throughput i.e. the maximum throughput achicvable. This is a particularly useful and convenient way to characterize the performance because the sattuation point depends only on the arbiter alporithon and the destination probabilities. Table 4.8 lists the satturation throughput $g^{v e r t}$ (in mean number of grants in progress per arbiter clock periond ${ }^{\dagger}$ ) with the various arbiter algorithms and access paths considered in this section.

| Algorithm | Access Path | Destination Probs. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Asym. | Sym. | Uni. |
| Commonbus | n/a | 1.0 | 1.0 | 1.0 |
| Rotating | Asym. | 2.4 | 1.9 | 1.5 |
| Retating | Sym. | 2.5 | 2.5 | 1.7 |
| Interval | Sym. | 3.1 | 3.0 | 2.5 |
| Greedy | Sym. | 3.3 | 3.2 | 2.6 |
| Crossbar | $n / a$ | 4.8 | 4.7 | 4.6 |

Table 4.8: Saturation throughput for various algorithms and destimation probabilitics

Table 4.8 shews clearly the relative ordering in terms of throughput in saturation of the various arbiter algoritims and aceses paths comsidered. Note that lable 4.8 also shows clearly that the saturation throughput decreases as the destination probabilities change from asymmetrical to symmetrical to uniform.

In all the simulations the greedy arbiter algorithm yielded better performance - although not by much - than the two phase interval algorithm. This was a slightly surprising result considering that, extrapolating from our finding with four slices and $\mu_{0}=0$ in section 3.4 , one would expect an interval algorithm to be optimal for heavy traffic. On closer examination this result is not so surprising. Presumably, the result is a consequence of the nomero arbitration time. As alrcady mentioned. the single phase interval algorithm yielded peor performance due to the ide interval during which no requests are granted. The two phase interval algorithm is a simple atteapt to utilize the Ringbus during the idfe period, but it has the consequence of calusing additional request coiflicts because one phase follows the other by less than the duration of the grants. Ideally one would like the phases to be nonovertapping but this has the drawback of imposing a minimum wait of one phase (the duration of a grant) until the next request can be granted at a slice after the previous grant at that slice terminates. Thus there seems to be no way to avoid some sort of performance penalty due to the nomero arbitration time when implementing an interval-type

[^21] cated to the grant.
algorithm. This suggests that it is important to include the effect of nowzero arbitration time when trying to determine an optimum arbiter algorithon for the actual Concert system.

The interval algorithm suffers from anoher disadvantage: in light traffic the synchronization of the requests with the phases adds to the total wailing time of a request. In some cases with light loading, the Uroughput with the two phase interval algorithm is actually less than that of the rotating priority algorithm with symmetrical access palhs. This suggests the obvious: for best performance the arbiter should be able to change algorithms to adapt to changing load conditions.

The overall throughput of the Concert system is $\frac{N S}{i_{\text {cycle }}}$ where $\bar{t}_{\text {cyele }}$ is the mean cycle time of a single processor. (Recall that $\bar{i}_{\text {cycle }}=\bar{i}_{p}+\beta \bar{i}_{r}+\bar{i}_{w_{r},}+(1+\beta)\left((1-\psi) \bar{i}_{a M B}+\psi \bar{i}_{a K B}\right)$ ) $\Lambda \mathrm{s}$ a function of $\bar{i}_{p}$, the overall throughput is maximum at $\bar{i}_{p}-0$, monotonically decreases as $i_{p}$ decreases, and is asymptotic to a curve in the family $\frac{1}{i_{p}}$. Because of the nonlinear asymptote of the overall throughput it is more convenient to deal with the mean cycle time, for which an equivalene statement is: As a function of $\bar{i}_{p}, \bar{i}_{c y c}$ is minimum at $\bar{i}_{p}=0$. monotonically increases as $\bar{i}_{p}$ increases. and is asymptotic to $\bar{I}_{\text {cyd }}=\bar{t}_{p}+\beta \bar{l}_{r}+(1+\beta)(1-\psi) \bar{f}_{a N B B}+\psi \bar{t}_{a R K / 3}^{(\text {morm })}$. This leads to the following simple first order approximation of the overall throughput as a function of $\bar{T}_{p}$ :
$\bar{i}_{\text {checle }}^{\text {min }}$ is the value of $\bar{i}_{\text {cecic }}$ when $\bar{i}_{p}=0$ (and all other parameters fixed). Equation 4.1 is a convenient approximation since it depends only on one parameter, $t_{\text {ecelk }}^{\min }$, aside from the fixed input parameters. Furthermore. $\overline{\bar{c}}_{\text {cyc }}^{\min }$ can be related to the Ringbus througliput when $\bar{i}_{p}=0$ - which we denote by $g^{t_{p}}=0$ - as follows.

First, when $\bar{t}_{p}=0$ a request from a processor must wait for the requests of cach of the other $N-1$ processors to complete before it must proceed. Ilence

$$
\left.\bar{i}_{c y c}^{\min }=\beta \bar{i}_{r}+N(1+\beta)(1-\psi) \bar{I}_{a M B}+\psi \bar{i}_{a R B}\right)
$$

Sccond, recall that $\bar{i}_{u R R}=\bar{w}_{R B}+\bar{d}$, and thus

$$
\frac{g^{i_{p}}=0}{\bar{d}}=\frac{S}{-\frac{C p_{0}}{1-p_{0}}+\bar{w}_{R R}+\bar{d}}=\frac{S}{-\frac{p_{0}}{1-p_{0}}+\bar{i}_{A R B}}
$$

(Note that $\bar{f}_{a K B}$ is not the same as $\bar{i}_{a k i \prime}^{(n a r n)}$ since $\bar{i}_{a R B}$ is a function of the Ringbus loiding.)
'Third, the mean spacing between the termination of one Ringbus request and the arrival of
the next Ringbus request at the same slice, $\frac{c p_{0}}{1-p_{0}}$ is cqual to $\frac{(1-\psi)}{\psi} \bar{i}_{\text {ali/s }}$. Therefore $\frac{g^{t_{p}=0}}{\bar{d}}=\frac{S}{\frac{(1-\psi)}{\psi} \bar{i}_{a M B}+\bar{i}_{a R B}}=\frac{S \psi}{(1-\psi) \bar{I}_{a M B}+\psi \bar{i}_{a R B}}$ from whicti it follows that

$$
\begin{equation*}
\bar{i}_{c y c d i}^{\text {nin }}=\beta \bar{t}_{r}+\frac{(1+\beta) \psi N S \bar{d}}{g^{t_{p}=0}} \tag{4.2}
\end{equation*}
$$

(provided that $g^{i_{p}=0} \neq 0$ ).
If the Ringbus throughput is saturated when $\bar{i}_{p}=0$ (note that it need not be saturated for small enough $\psi$ ). then $g^{t_{p}=0}=g^{\text {sat }}$ and

$$
\begin{equation*}
\bar{i}_{i y \mathrm{cte}}^{\min }=\beta \bar{l}_{r}+\frac{(1+\beta) \psi N S \bar{d}}{g^{s a f}} \tag{4.3}
\end{equation*}
$$

Note that while $g^{i_{p}=0}$ may depend on $\beta$ and $\psi .8^{\text {sat }}$ does not. Hence equation 4.3 allows the determination of $\bar{c}_{c}$ min an as a function of $\beta, \psi$, and $N$ provided that the Ringbus remains saturated for $\bar{i}_{p}=0$.

Note that equations 4.1 and 4.2 also allow the results obtained in this section for $\beta=0$ and $\psi=1$ to be extrapolated for other values of $\beta$ and $\psi$.

### 4.4 Simulation II: The Actual Concert System

In this section we present the results of a scries of simulations of the actual Concert system. as implemented, in order to give some idea of the performance of this system and inow it varies under the influence of various parameters. The simulation model and the manner in which the simulations were performed is the sanne as for the simulations in section 4.2 and 4.3. All the assumptions and parameters are the same as those listed in section 4.3 except for the following:

Ringhus arbittation algorithm: rotating priority (counterclockwise priority rotation) as in Concert Access paths: asymmetrical as in Concert
Ringbus destination probabilities: asymmetrical (as listed in Table 4.5). We take these probabilities as asymmetric:al to show the Ringbus (with asymmetrical access paths) in its best light and to correspond to the expected asymmetrical bias in the request probabilities. We expect that most applications will be structured to take advantage of the more favourable clockwise direction for accesses, implying an asymmetrical bias in the request probabilitics.

Ringbus access probability: We take $\psi-$ - $2 ., 4,6$, and .8 to illustrate a range of operating conditions. Note that the performance with $\psi=0$ (no Ringbus accesses) is given by the isolated Ringbus model of :ction 2.9 and the performance with $\psi=1$ (only Ringhus acesses) is given by the results in sertion 4.3.

Arbiter cluck period: c-: 200nsec.
Miltibus access time distribution: We assume a deterministic access time with diration $1.10 \mu \mathrm{sec}$ $=5.5 \mathrm{C}$. (We arrived at this duration by assuming that all the Multibus accesses of a slice are directed towards the slice giohal memory and that the Ringbus port of this global memory is lightly loaded. In the actual Concert system. the mean Multibus access time of slice global inemory is about $1.10 \mu$ sec when the Ringhus port is heavily loaded and about $1.05 \mu$ see when the Ringbus is lightly loaded. (See section 3.3 of $\Lambda$ ppendix $\lambda$.) Thus our assumed $1.10 \mu$ sec duration is slightly pessimistic for most cases.)

As before. we assume the start up time is \%ero i.c. $\bar{i}_{\text {surf }}=0$, there are no long word aceesses i.c. $\boldsymbol{\beta}=\mathbf{0}$. Whe Ringbus data transfer time is deterministic with duration d 7c, and the Ringlous arbitration tinne is deterministic with duration $f_{\text {arb }}=2 c$.

The simulation results ate listed in Tables 4.9(a). (b), and (c).

| $N=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | . 2 | $\begin{gathered} .4 \\ 14.52 \pm .64 \\ 0.0 \\ 5.73 \pm 1.26 \\ 1.94 \pm .09 \end{gathered}$ | . 6 | $\frac{.8}{24.3+1.6}$ |
| $\ddot{i}_{p}=5.0 c$ | $\begin{gathered} \bar{i}_{\text {wde }} / c \\ \bar{I}_{w} / c \\ \bar{w}_{R H} H / c \\ g \end{gathered}$ | $\begin{gathered} 11.88 \pm .47 \\ 0.0 \\ 2.50 \pm 1.3 \\ 1.22 \pm .15 \end{gathered}$ |  | $\begin{gathered} 19.35 \pm .98 \\ 0.0 \\ 9.84 \pm 1.40 \\ 2.28 \pm .12 \end{gathered}$ |  |
|  |  |  |  |  | $\begin{array}{r} 24.3 \pm 1.6 \\ 0.0 \\ 12.4 \pm 1.8 \\ 2.39 \pm .12 \end{array}$ |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\bar{t}_{p}=10.0 c$ | $\begin{gathered} \bar{i}_{c y z} / c / c \\ i_{w} / c \\ \bar{w}_{R B} / c \\ g \end{gathered}$ | $\begin{array}{r} 17.0 \pm 1.4 \\ 0.0 \\ 1.49 \pm .88 \\ .83 \pm .17 \end{array}$ | $\begin{gathered} 18.82 \pm .88 \\ 0.0 \\ 3.71 \pm 1.03 \\ 1.52 \pm .14 \end{gathered}$ | $\begin{gathered} 22.06 \pm .61 \\ 0.0 \\ 6.26 \pm .94 \\ 1.98 \pm .11 \end{gathered}$ | $\begin{array}{r} 26.2 \pm 1.2 \\ 0.0 \\ 8.55 \pm 1.0 \\ 2.22 \pm .09 \end{array}$ |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $i_{p}=20.0 c$ | $\begin{gathered} \bar{i}_{c} \overline{\bar{i}_{W} / l / c} \\ \bar{w}_{R B B} / c \\ g \end{gathered}$ | $\begin{gathered} 26.5 \pm 1.2 \\ 0.0 \\ .84 \pm .56 \\ .56 \pm .06 \end{gathered}$ | $\begin{gathered} 27.83 \pm .89 \\ 0.0 \\ 1.80 \pm .63 \\ 1.03 \pm .00 \end{gathered}$ | $\begin{array}{r} 30.1 \pm 1.4 \\ 0.0 \\ 3.03 \pm .79 \\ 1.44 \pm .07 \end{array}$ | $\begin{array}{r} 32.9 \pm 1.0 \\ 0.0 \\ 4.56 \pm 1.4 \\ 1.76 \pm .07 \end{array}$ |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\bar{i}_{p}=50.0 c$ | $\begin{gathered} \bar{i}_{\text {evgle }} / c \\ \bar{i}_{W} / c \\ \boldsymbol{w}_{R B} / c \\ g \end{gathered}$ | $\begin{array}{r} 56.3 \pm 4.6 \\ 0.0 \\ .30 \pm .20 \\ .24 \pm .03 \end{array}$ | $\begin{gathered} 58.8 \pm 3.2 \\ 0.0 \\ .73 \pm .48 \\ .48 \pm .05 \end{gathered}$ | $\begin{array}{r} 59.2 \pm 4.0 \\ 0.0 \\ 1.12 \pm .22 \\ .74 \pm .06 \end{array}$ | $\begin{array}{r} 61.4 \pm 3.1 \\ 0.0 \\ 1.62 \pm .24 \\ .94 \pm .05 \end{array}$ |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\bar{T}_{p}=100.0 c$ | $\begin{gathered} \bar{i}_{\text {cyclu }} / c \\ \bar{h}_{1} / c \\ \bar{w}_{R B} / c \\ g \end{gathered}$ | $\begin{array}{r} 105.5 \pm 10.7 \\ 0.0 \\ .16 \pm .15 \\ .14 \pm .02 \end{array}$ | $\begin{array}{r} 109.5 \pm 8.3 \\ 0.0 \\ .28 \pm .10 \\ .26 \pm .0 .1 \end{array}$ | $\begin{array}{r} 111.0 \pm 7.3 \\ 0.0 \\ .52 \pm .22 \\ .39 \pm .04 \end{array}$ | $\begin{array}{r} 110.1 \pm 8.0 \\ 0.0 \\ .74 \pm .22 \\ .53 上 .05 \end{array}$ |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Table 4.9(a): Concert simulation results

| $N=2$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ． 2 | ． 4 | 6 | ． 8 |
| $\bar{i}_{p}=5.0 c$ | $i_{\text {cute }} / \mathbf{c}$ | $16.33 \pm .97$ | $24.0 \pm 22$ | $35.3 \pm 1.8$ | 482 2．4．1 |
|  | $i_{W} / \mathrm{C}$ | $3.78 \pm .40$ | $7.74 \pm 1.13$ | $12.98 \pm .90$ | $19.2 \pm 2.1$ |
|  | $\mathrm{H}_{\text {RH }} / \mathrm{C}$ | $4.66 \pm 1.16$ | $10.4 \pm 2.4$ | $14.0 \pm 1.6$ | $16.8 \pm 1.8$ |
|  | $g$ | $1.79 \pm .09$ | $2.32 \pm .16$ | $2.45 \pm .16$ | $2.39 \pm .14$ |
| $\bar{i}_{p}=10.0 c$ | $\bar{i}_{\text {cyile }} / \mathrm{c}$ | $19.69 \pm .54$ | $25.8 \pm 1.4$ | $36.2 \pm 1.7$ | $47.8 \pm 3.8$ |
|  | $i_{w} / c$ | $2.27 \pm .22$ | $4.94 \pm .68$ | $9.65 \pm .67$ | $14.9 \pm 1.8$ |
|  | $\dot{w}_{\text {R }} / \mathrm{c}$ | $3.50 \pm .92$ | $8.09 \pm 1.56$ | $12.9 \pm 1.1$ | $15.6 \pm 2.4$ |
|  | $g$ | $1.47 \pm .11$ | $2.20 \pm .10$ | $2.37 \pm .11$ | $2.42 \pm .20$ |
| $\bar{i}_{p}=20.0 c$ | $\bar{i}_{\text {cuede }} / \mathrm{c}$ | $27.99 \pm .78$ | $32.2 \pm 1.2$ | $39.1 \pm 2.0$ | $49.1 \pm 1.4$ |
|  | $i_{w} / C$ | $1.18 \pm .09$ | $2.34 \pm .26$ | $4.85 \pm 1.13$ | $8.78 \pm .6$（1） |
|  |  | $1.88 \pm .44$ | $4.95 \pm 1.19$ | $8.80 \pm 1.48$ | $12.7 \pm 1.0$ |
|  | $\underline{\prime}$ | $1.03 \pm .07$ | $1.77 \pm .06$ | $2.19 \pm .18$ | $2.35 \pm .07$ |
| $\bar{i}_{p}=50.0 c$ | $\mathrm{i}_{\mathrm{ca}} / \mathrm{c} / \mathrm{c}$ | $57.9 \pm 2.5$ | $58.5 \pm 2.8$ | $61.5 \pm 30$ | $65.8 \pm 2.1$ |
|  | $i_{\mathrm{w}} / \mathrm{c}$ | ． $42 \pm .05$ | ． $69 \pm .09$ | $1.15 \pm .16$ | $1.97 \pm .44$ |
|  | $\mathrm{w}_{R B} / C$ | ． $88 \pm .27$ | $1.60 \pm .27$ | $3.11 \pm .66$ | $4.93 \pm .97$ |
|  | $g$ | ． $50 \pm .07$ | ． $98 \pm .06$ | $1.40 \pm .07$ | $1.74 \pm .05$ |
| $\bar{i}_{p}-100.0 c$ | $\bar{i}_{\text {cex }} / \mathrm{c} / \mathrm{c}$ | $107.3 \pm 5.8$ | $1082 \pm 5.2$ | $109.6 \pm 5.7$ | $111.6 \pm .6 .1$ |
|  | $i_{w} / c$ | ． $22 \pm .05$ | ． $31 \pm .07$ | ． $44 \pm .10$ | ． $61 \pm .10$ |
|  | $\bar{w}_{R H} /$ | ． $33 \pm .17$ | ． $84 \pm .31$ | $1.29 \pm .17$ | 1．96．1．21 |
|  | ${ }^{\prime}$ | ． $28 \pm .03$ | ．53上． 04 | ．79：$\pm .06$ | $1.03 \pm .05$ |
| $\overline{i s}_{p}=200.0 \mathrm{c}$ | Tock／c | $210.9: 29.8$ | $208.1 \pm 10.2$ | $210.4 \pm 16.0$ | $210.2 \pm 4.5$ |
|  | $i_{n} / c$ | $.10 \pm .03$ | ． $15 \pm .07$ | ．20）$\pm .04$ | ． 23 上．166 |
|  | ing ${ }^{\prime}$ | ．9）$\pm .07$ | ． $39 \pm .14$ | ． $0.4 \pm .22$ | ．86土．13 |
|  | ${ }^{\prime}$ | ． $14 \pm .01$ | ． $28 \pm .02$ | ． $41 \pm .14$ | ．55土．01 |

Table 4．$\%$（b）：Concert simuladion results

| $N=4$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ． 2 | ． 4 | ． 6 | ． 8 |
| $\bar{i}_{p}=5.0 c$ | $i_{\text {crele }} / \mathrm{c}$ | $30.50 \pm .94$ | $49.4 \pm 2.9$ | $73.1 \pm 2.5$ | $95.6 \pm 1.8$ |
|  | $i_{\text {m }} / 1 /$ | $17.67 \pm .63$ | $31.8 \pm 2.2$ | $49.5 \pm 1.9$ | $66.3 \pm 1.2$ |
|  | $\bar{w}_{R B} / C$ | $5.65 \pm .90$ | 11．75土．95 | $15.49 \pm .95$ | $16.94 \pm .58$ |
|  | $g$ | 1．88土．06 | $2.34 \pm .07$ | $2.38 \pm .08$ | $2.40 \pm .05$ |
| $\bar{i}_{p}=10.0 c$ | $\bar{T}_{\text {cycele }} / \mathrm{c}$ | $30.7 \pm 1.2$ | $49.2 \pm 3.1$ | $71.7 \pm 4.5$ | $94.7 \pm 3.3$ |
|  | $\bar{i}_{w} / c$ | $12.92 \pm .75$ | $26.7 \pm 2.4$ | $43.5 \pm 3.5$ | $60.6 \pm 2.4$ |
|  | $\bar{w}_{R H} / C$ | $5.26 \pm .99$ | $11.5 \pm 1.5$ | $15.0 \pm 1.3$ | $16.64 \pm .93$ |
|  | ${ }^{\text {g }}$ | 1．89土．05 | $2.35 \pm .09$ | $2.40 \pm .08$ | $2.43 \pm .08$ |
| $\bar{i}_{p}=20.0 \mathrm{c}$ | $\bar{i}_{\text {cyele }} / \mathrm{c}$ | $34.3 \pm 1.1$ | $49.7 \pm 2.4$ | $71.5 \pm 3.9$ | $95.3 \pm 3.4$ |
|  | $i_{w} / c$ | $6.76 \pm .74$ | $17.5 \pm 1.6$ | $33.5 \pm 3.0$ | $51.3 \pm 3.1$ |
|  | $\bar{w}_{R B} / C$ | $4.16 \pm .85$ | $10.3 \pm 1.0$ | $14.5 \pm 1.2$ | $16.73 \pm .93$ |
|  | $g$ | $1.68 \pm .07$ | $2.32 \pm .07$ | $2.41 \pm .08$ | $2.41 \pm .07$ |
| $\bar{i}_{p}=50.0 \mathrm{c}$ | $\bar{i}_{\text {cercle }} / \mathrm{c}$ | $59.3 \pm 1.9$ | $64.5 \pm 2.4$ | $77.3 \pm 2.1$ | $97.1 \pm 3.7$ |
|  | $i_{w} / c$ | $1.94 \pm .24$ | $4.73 \pm .41$ | $12.3 \pm 1.0$ | $25.2 \pm 2.9$ |
|  | $\bar{w}_{R} / 1 / c$ | $1.85 \pm .40$ | $5.00 \pm .64$ | $9.86 \pm .97$ | $14.2 \pm 1.2$ |
|  | $g$ | ． $97 \pm .08$ | $1.79 \pm .06$ | $2.23 \pm .05$ | $2.36 \pm .06$ |
| $\bar{i}_{p}=100.0 c$ | $\bar{i}_{\text {cycte }} / \mathrm{c}$ | $107.7 \pm 5.0$ | $110.9 \pm 2.5$ | $112.6 \pm 3.5$ | $119.9 \pm 4.4$ |
|  | $i_{W} / c$ | ．80土．11 | $1.34 \pm .15$ | $2.59 \pm .32$ | $5.32 \pm .98$ |
|  | $\bar{w}_{R} / 2 / C$ | ． $80 \pm .16$ | $1.90 \pm .37$ | $3.75 \pm .37$ | $6.33 \pm .79$ |
|  | $g$ | ．54：士．113 | $1.03 \pm .03$ | $1.53 \pm .05$ | $1.91 \pm .06$ |
| $\bar{i}_{p}=200.0 c$ | igrede | 207.656 .3 | 208．1 $\pm 5$ | $217.0 \pm 9.2$ | $212.0 \pm 9.4$ |
|  | $i_{n} / \dot{C}$ | ． 34 －5． 07 | ． $52 \pm .08$ | ．78土．13 | $1.18 \pm .14$ |
|  | $\bar{W}_{R H}{ }^{\prime} \mathrm{C}$ | ． $36 \pm .14$ | ．84土．21 | 1．43－土． 26 | $2.03 \pm .20$ |
|  | 8 | ． $27 \pm .03$ | ． $55 \pm .03$ | ．82土． 04 | $1.08 \pm .05$ |
| $\bar{T}_{p}=500.0 \mathrm{c}$ | $\bar{i}_{\text {ciex }} / e^{\prime} / \mathrm{c}$ | $507.7 \pm 13.5$ | $511.9 \pm 18.5$ | $509.9 \pm 15.6$ | $511.7 \pm 26.2$ |
|  | $l_{w} / c$ | ． $13 \pm .04$ | ．18土． 04 | ． $22 \pm .03$ | ． $28 \pm .04$ |
|  | $\bar{w}_{R B} / C$ | ． $15 \pm .06$ | ． $28 \pm .04$ | ． $47 \pm .06$ | ． $64 \pm .08$ |
|  | 8 | ． $11 \pm .01$ | ． $22 \pm .01$ | ． $34 \pm .01$ | ． $45 \pm .02$ |

Table 4．9（c）：Concert simulation results

1：xamining lables $4.9(\mathrm{a})$ ，（b），and（c）we can see that the mean fotal waiting time（or wasted tine）per cycle－given by $\bar{i}_{w}+\psi \bar{t}_{u M B}$－can be quite large．This waiting time is largest．naturally． for a given set of parameters when the overall throughput．and the Ringbus throughput in particu－ lar，is saturated．We can derive a necessary condition for the saturation of the Ringbus throughput as follows．

First，the overall tiroughput must be above the＂knee point＂．Referring to the approxima－ tion in equation 4．1，the overall throughput is above the knee point when

$$
\begin{equation*}
\bar{i}_{p}+\left((1-\psi) \bar{i}_{a M B}+\psi \bar{l}_{a R B}^{-(n o m)}\right)<\bar{i}_{c c k}^{\min l e}=\frac{\psi N S \bar{d}}{g_{p}^{\prime}=0} \tag{4.4}
\end{equation*}
$$

(Recall that $\overline{\boldsymbol{t}}_{a y d e}-\bar{t}_{p}+\bar{i}_{w_{r}}+\left((1-\psi) \bar{t}_{a M B}+\psi \bar{I}_{a R B}\right)$ and $\overline{\bar{l}}_{a R B} \geq \bar{i}_{a R R}^{(\text {norm })}$.) Second, $g^{t_{f}=0}$ must cqual $g^{s n t}$. Therefore a necessary condition for the situration of the Ringbus is

$$
\begin{equation*}
\bar{i}_{p}+\left((1-\psi) \overline{\mathrm{I}}_{a M B}+\psi \bar{i}_{a R B}^{(\text {nom })}\right)<\frac{\psi N S \bar{d}}{g^{s a t}} \tag{4.5}
\end{equation*}
$$

or on rearranging

$$
\begin{equation*}
\bar{i}_{p}+\bar{i}_{a M B}<\psi\left(\frac{N S \bar{d}}{g^{s a i}}+\bar{i}_{a M A}-\bar{i}_{a R B}^{(n o m)}\right) \tag{4.6}
\end{equation*}
$$

In Table 4.10 we list this incquality for various values of $N$ and destination probabilities in the actual Concert system (i.e. 8 slices, rotating priority algorithm, and asymmetrical access paths) with $\beta=0$. Note that $\bar{d}=9 c, \bar{I}_{a M B}=5.5 c$, and $\bar{i}_{a R I}^{(n o m)}=10.5 c$ (from $\Lambda p p e n d i x \Lambda$ ) independent of the destination probabilitics.

| Destination Probs. | $N$ | $g^{\text {.at }}$ | Necessary condition for saturation |
| :---: | :---: | :---: | :---: |
| $\lambda$ syimmetrical | 1 | $\sim 2.4$ | $\frac{\bar{I}_{p}}{c}+5.5<25 \psi$ |
|  | 2 | $\sim 2.4$ | $\frac{\bar{l}_{p}}{c}+5.5<55 \psi$ |
|  | 4 | $\sim 2.4$ | $\frac{\bar{i}_{p}}{c}+5.5<115 \psi$ |
| Symmetrical | 1 | $\sim 1.9$ | $\frac{\overline{\bar{p}}_{p}}{c}+5.5<33 \psi$ |
|  | 2 | $\sim 1.9$ | $\frac{t_{p}}{c}+5.5<71 \psi$ |
|  | 4 | $\sim 1.9$ | $\frac{t_{p}}{c}+5.5<146 \psi$ |
| Uniform | 1 | $\sim 1.5$ | $\frac{\bar{i}_{p}}{c}+5.5<43 \psi$ |
|  | 24 | $\sim 1.5$ | $\frac{\bar{i}_{p}}{c}+5.5<91 \psi$ |
|  |  | $\sim 1.5$ | $\frac{p_{p}}{c}+5.5<187 \psi$ |

Table 4.10: Necessary conditions for Ringbus saturation in the actual Concert system

Operation in the siturated region of throughput is undesirable because of the associated large waiting times. Incquality 4.6 provides a means to adjust parameters to powibly avoid operation in this region.

## Chapter 5

## Conclusions

Since conclusions specific to the Multibus and Ringbus have already been presented, this chapter covers the general conclusions that can be diawn from the rescarch in this tome.

We can now address the three questions raised in the Introduction.

## W"nat is the performance of the Concert Multiprocessor?

We can still not answer this question directly because the performance depends on the models employed (which may be dictated by the application plograns) and the model parameters (which certainly depend on the application programs). Ilowever, we have developed techniques to determine the periomance. Assumning the simple processor model presented in Chapler 1, we have shown how to determine analytically the performance, using throughput as the metric, for any Concert-like system. 'This analytical approach involves decomposing the overall system into Multibus and Ringbus subsystems, which may be modeled in isolation using the models formulated in Chapter 2 and 3, and then integrating these models, using the procedure in section 4.22, to determine the throughput. Ihe integration procedure is in fact an approximation based on matehing the first mements of the interations between the Multibus and Ringbus inodels. More aceurate results than this prexedure yields can be obtained via simulation. Simulation is also the preferred incthod to inc!ude features which are diflicult or cambersome to handle in the analytical models and to allow sizes - such ais eight slices - that are too complex for the analytical approach.

The performance of the actual Concent system with eight slices has been established for some different parameter sets by the simmlation results presented in section 4.4.

Why is the performance as is is? What factors influence the performance?
The performance of Comecre as modeled in this thesis, depends critically on the parameten
of the simple processor model. The performance is especially sensitive to the mean prosessing time, $\bar{i}_{p}$, and the probability of a Ringbus access, $\psi$.

The effect of different Ringbus architectures and different Ringbus abiter algorithens on the performance is small except when the Ringbus is heavily loaded, in which case these factors can be significant.

How can the performance be improved?
There are two orthogonal ways in which the performance can be improved:

1) change the physical structure, or
2) change the input parameters i.e. change the characteristics of the application programs.

The more obvious changes in physical structure have already been discussed in the conclusions of Chapter 2 and 3. An important part of the work in this thesis has been establishing the ultimate performance that can be attained with Ringbus-like sehemes.

The desirable changes in the input parameters are again rather obvious: lecalize the processing as much as possible. However, the work in this thesis enables the quantifiation of the performance improvenent resulting from any change in the input parameters. Such quantification is important: it series as a directional derivatioe in the performance-ation space.

One activity is still required to complete the first cycle in the iterative process oi performance modeling: a comparison of the predicted perlormance, based on tie simple peocessor with parameters obtained from actual programs, with the actual performance obtained with the sime programs. The purpose of such a comparison is to establish where the processor model and other models need the noost improvenent and perhaps how to improve them. Certainly, the processor model needs $t 0$ be more specific and more oriented to the application program. As discussed in Chapter 2. higher level models should be comsidered in future cyeles of the medeling effort.

## Appendix A

## Measurement Details

This appendix describes how actual measurements of processiag. recovery, access, and waiting times were obtained. These terms are defitied in section 2 (as well as in the main text) for convenience. Mcasured aceess times under difierent conditions are given in section 4.

## 1. Background

Three typer of Multibus and Ringlous accesses may accur: byte (8 bils), wed (16 bils), and long word ( 32 bits). A word aceess consists of (wo simultaneous byte accesses (a high byie and a low byte). Consequenty, byte and word acesses are intistinguishable to an obster of tie Mat-

 Ringhus (sec Andersom [A? fon details). In particular, a byte and a word have the same access time distribution. ${ }^{\dagger} \Lambda$ long word access consists of (wo consecutive word accesses (since the Multibus and Ringhus are 16 bits wide).

Timing diagrams for the three types of accesses are given in ligeres 1.1 and A.2. The diagrams depiet the essential features of the Multibus operation from the point of view of the processor migimating the access. The relative duration and tming of the signols shown is only apmoximate. $B R E Q^{*}$ and $B P R N^{*}$ icfer to the $\sin$ mibins request and grant sighats fon the originating processor: $A / R D C^{*}$ and $A / H^{*} F^{*}$ reter to !he Multibus read and write signals respectively: and XACK* icfer to the Muttous acknouk keder signal.

[^22]

IFigure $\Lambda$.l(a): Byte and word aceess - read cyele


Figure A.1(b): Byte and word access - write cycle


Pigure $\wedge .2(a):$ Iong word access - read cycle


Pigure $1.2(b):$ I ong word access - write cycle

Note from Figures $\Lambda .2(a)$ and $\Lambda .2(b)$ that control of the Multibus (and hence of the Ringbus) is relinquished betiveen the suceessive word access of a long word access.

## 2. Deffinitions

Ail the following quantities are defined with respect to the rising edges of $18 C^{\prime} / K^{*}$ (the Multihus elock signal). I.et the Multibus request and grant signatls for processor $i$ be denoted by $B R I Q_{i}{ }^{*}$ and $B P^{\prime} R N_{i}{ }^{*}$ respectively.

The processing time, denoted by $t_{p}$. for some processor $i$ is the interval between the first rising edge of $B C^{\prime} I K^{*}$ alter $B R I^{\prime} Q_{i}{ }^{*}$ goes high at the end of an access to the first rising edge of $B C^{\prime} I K^{*}$ after $B R E: Q_{i}{ }^{*}$ next goes low. In the case of a long word aceess, the end of the second word aceess is intermeted as the end of the !ong word aceess. Thus the interval between the two successive word accesses of a long word is got called a processing time.

The access time, denoted by $a_{\text {a }}$, for the aceess of some processor $i$ is the interval between the first rising edge before $B I^{\prime} R N_{i}^{*}$ goes low to the firsi rising edge of $B C / K^{*}$ after BRFQ ${ }_{i}{ }^{*}$ goes high.

The recovery time, denoted by $t_{r}$, for the long word aceess of some processor $i$ is the interval between the lirst rising edge of $B C \cdot K^{*}$ after $B R E Q_{1}{ }^{*}$ goes high at the end of the first word aceess to the first rising c.lge of $B C / K^{*}$ :after $B R E Q_{i}^{*}$ gees low for the second word of the leng werd access.

The waiting time. denoted by $t_{w}$. for any request for use of the Multions by precessor $i$ is the interval betwen the lirst rising edge of $B C^{\prime} / K^{*}$ after $\left.B R E Q\right)^{*}$ gocs low to the first tising edge of $B C \cdot K^{*}$ before $B P R N_{i}^{*}$ gow low. In the absence of any other tatific on the Multibus, there is always exactly one rising edge of $B C I K^{*}$ after $B R I: Q_{i}{ }^{*}$ goes low and before $B P R N_{i}{ }^{*}$ goes low. yiciding $\boldsymbol{t}_{\mathbf{w}}=0$.

The above definitions were chosen so as to meet the following two constraints: 1) the access time must include the total time that Multibus resourees are allowated to a patticular processor. and 2) the waiting time must be ero for a single processor on a Mu:tibus. The time that Multibus resources are alloketled to a processor is determined by the Multibus arbiter which is a smatl finite state machine clocked on the rising edge of $B C^{\circ} / K^{*}$. We chose to regard the allexation of Multibus resontes to be decided on the rising edge of $B C^{\prime} / K^{*}$. This view is not unique: we conuld have just as well chosen the Mullibus resources to be atlowered on the edges of BPR R $V^{*}$. However. our choice has there advantages: 1) the allecation instants are casily demateated by $\operatorname{BC} / \mathrm{R}^{*}$. 2) the waiting time can be defined so that it is casily dembatiated by $R\left(/ R^{*}\right.$ (su it is ciay to


. keess lime includes the delaiv of the Multihus arhiter. This must be the case if we are to meet our


Ihe previous delinition: ate depicted in figure A. 3.


Figure $\wedge .3:$ : Illustration of definitions

The meatimements presented in section 4 indicate that there is little difference in acecss times for reads and writes; thes thr $M R 1)\left({ }^{*}\right.$ and $A 1 I^{\prime \prime} 7^{*}$ lines are omilted from figure $\Lambda .3$.

## 3. Time Measurements

Nll the measurements reported in this section were taken with a digital logic analyaer with 10 nsec clock resolution ${ }^{\dagger}$ according to the definitions given in section 2 . The measurements were performed on three slices of the Coneert system connected by the Ringhus with a Ringbus arbiter
 and 1 )BR50 models respecively with all options set as listed in Appendix C. All the measurements were repeated for several diferent processom-memory pairs on different slices. No noticeable diflerences in the measurements for the different repetitions were observed, thus we present the following measurements as if only one set of measurements were taken for each case.

### 3.1 Minimum Processing Time

I:xecuting the assembly language program
koop: bra loop
(corresponding to the single insiruction word 60fe) from a nen-lecal memory gives the smatlest possible processing time. The processing time in this case is the time it takes to decode the instruction word 60fe and initiate the fetch for the next instruction. The minimum observed processing time in this case was 600 nsec: the processing times varied almost uniformly from 600 nsec to 900 nsec (in 100 nsec steps since the time is measured with respect to $B\left(1 . K^{*}\right.$ rising edges).

To determine the smallest possible processing time for a program executing out of local memory we ran the following assembly language program:
loop: movb a4(II', as(ii)
movb a4(III, a5(i)

## bral loop

The movb a4(If, a5(I) instruction reads the byte at the address stored in address register a 4 and writes the byte at the address stored in address register as. We stored the loop containing the movb instructions in a processor's local HSB memory, instatlexi nom-lecal addresses in address registers at and as, and measured the minimumptocessing time of the movb) instruction. There are actually two different processing times assiociated with the movb a4dias(i) instruction: the interval between completion of the byte read and initiation of the byte write within one movb a4(a) a5(al instruction and also the interval between the completion of the byte write of one movb as(a), at (a) instruction and the initiation of the byte read of the following movh at( $r$, as(t) instruction. The intra-instruction processing time (i.ce the former of the two processing times just mentioned) was 600 nsec about half the time and 700 nsec the other half. The inter-instruction processing time (i.c. the latter of the tivo processing times) taried from 1.20 to $1.40 \mu \mathrm{sec}$.

We also considered the minimum processing time of a program executing out of non-local memory subject th the restriction of one non-local memory access per instruction. To determine this minimum. we ran the following assembly language program:
loop: movb d7, a5(t)
movb di. at(11)

## bral locop

The n:ovb di, as(1) instruction writes the byte in data register $d 7$ to the address contained in address register a5. We stored the loop containing the movb instructions in a processors local HSIS memory, installed a non-local address in address register as, and measured the processing time of the movb instruction. This processing time consists of the time to fetch the single word morb instruction. decode it, and initiate the byte write on the Multibus. The processing time of
 tion corresponding to a byte read, and also measured $1.50 \mu$ sec.

### 3.2 Recovery lime

Ithe distribution of recovery time between the successive word accesses of a fong word access was the same for reads and writes: approximately half of the time the recovery time was 600 nsec and the other half of the time it wat; 700 nsec, yielding a mean of 650 nsec.

### 3.3 Access Time

Since all the memory boards are dat ported we have to consider the effect of traffic on one port of a memory board on the aceess time via the ofter fort. In all cases we found no difference in the aceess time distibutions for bytes and words and in the access time distributions for the two words of a long word access.

### 3.3.1 Multibus Access Time

### 3.3.1.1 Multibus Access Time with Other Memory Port Unloaded

In this case the access time distribution was approximately the same for reads and writes, with a minimum access time of $1.00 \mu$ sec and a maximum of $1.30 \mu \mathrm{sec}$. The actual observed distributions are given in ligure $\Lambda .4$ below.


Figure $\Lambda .4($ (i): Multibus read access time - other port unloaded


1-igure $\wedge .4(b)$ : Multibus write aceess time - other port unloaded

### 3.3.1.2 Multibus Access Time with Ohter Memory Port Loaded

We considured two situations: 1) accessing the lecall memory of another processor via the Multibus while that processor is loading the USB port of the memory, and 2) aceessing the global memory of a slice via the Multibus while other processors access it via the Ringbus.

1) Accessing the local memory of another precessor:
'Ne loaded the lISB port of the local memory by having the associated processor exceute loop: bra loop
out of the local memory. We observed no noticcable difference between the access time distribution for reads and writes via tie Mintibus. As indicated in Figure 1.5 , the access times varied from $1.00 \mu$ sec to $1.80 \mu \mathrm{sec}$.


Figure ^.5: Multibus access time - IISB port loaded
2) Accessing the global memory of the slice:

We loaded the Ringbus port of the slice global memery with 3 processors on another slice and 2 processors on yet another slice all executing
loop: bra loop
out of the first slice's global memory (i.e. over the Ringhus). Figure $\lambda .6$ shows the resultitig access time distribution for Multibus accesses to the stice alobal memory'. We observed no noticcable difference in the distribution between reads; and writes.


Figure ^.6: Multibus access time of slice global memory - Ringbus port loaded

### 3.3.2 Ringhus .Iccess Time

Figure $\Lambda .7$ depicts a Ringhtis read access (byte or word) combining the points of view of the originating processor and the Ringlous, for a single processor in a slice.


Figure A.7: 'Typical Riugbus read access
$\mathrm{RI}: \mathrm{Q}^{*}$ is the Ringbus request signal for the slice; it indicates that the RII3 has detected an access that requires the Ringbus. FNM* (short for enable Multibus) is the Ringbus grant signal for the slice: it indicates that the Ringbus request hats been allowated the necessary Ringbus segments. I.CI.K is the Ringbus arbiter clock signal. The Multibus and the Ringbus operate asynchronously with respect to each other, thus BCI.K* and I.CI.K are not synchronized. Since R1:Q* is generated from Multibus signals, it is not synchronous with I.CI.K. On the other hand, I:NM* is generated by the arbiter so it is synchronous with I.CI.K.

We define a number of quantitics with respect to the diagram in l"gure 1.7 as follows:
$t_{a}$ is the Ringhus access time (as defined carlier)
 Ringbus request. We discuss shertly what nermal means in this context.
$I_{\text {lacel }}$ is the intervai between the gencration of a Ringhus request and the atbiter latehing in on a rising I.CI.K edge.

Istart is the overhead assoneiated with the sart of a Ringhus access. It is the interval from the
initiation of the access ${ }^{\dagger}$ to the latehing of the Ringbus request by the arbiter.
tarb is the arbilration delay.
Irruns is the data transfer time. It is the interval from the end of the arbitration delay to the termination of the access. ${ }^{\dagger}$ Note that in actuality, data transfers on the Ringbus occur in the interval between the end of the arbitration delay and the falling edge of $\mathrm{X} \wedge \mathrm{CK}{ }^{*}$. Thus $t_{\text {truns }}$ shoukd be interpreted as the total interval in which a data transfer could occur, not as the interval in which it does actually occur.

Finally, $d$ is the total duration for which segments are allocated to a Ringhus request.

The observed means of these quantities with one processor in a slice are as follows:
$\bar{t}_{a}=2.17 \mu \sec$ (We present a histogram of the access time in section 3.3.2.1.)
$i_{\left(\begin{array}{l}\text { (nom) }\end{array}\right.}^{\text {RPRNGuREO }}=230 \mathrm{nscc}$
t/atch $=150$ nsce
$\bar{t}_{\text {slart }}=\mathbf{3 8 0} \mathbf{n s e c}$
$t_{\text {trans }}=1.38 \mu \mathrm{sec}$
$\bar{d}=9.1$ arbiter clock periods i.e. $1.82 \mu$ sec. (lhe arbiter clock period wals 200 nsec for all the measurements reported in this Appendix. as nentioned carlier.) d was cither 9 or 10 arbiter clock periods.

Since the Multibus signals are asynchronous with respect to the arbiter clock, one would expect lauch to be half an arbiter clock period, i.c. 100 nsec. In actual fatet it is a little more than this (as can be seen above) due to the delay contributed by a preliminary sampling stage incorporated in the arbiter to inhibit metastability in the final sampling of $\mathrm{RE}_{\mathrm{E}} \mathrm{Q}^{*}$. ( $t_{\text {late }}$ is incasured with respect to this final sampling.)

The start overhead. Istart, and the access time. $I_{a}$, vary with the spacing between the termination and initiation of successive Ringbus accesses generated by the slice in which the processor is located. (Of course. $t_{a}$ also varies with the rate and type of Ringbus accesses generated by other slices.) In section 2.9 .2 we detined this spacing to be the processing time of the single processor
 ure $\Lambda .7$ for a Ringbus read access with $t_{p}^{M R c q v}=0$. (Ihis was achieved with only two processors on a slice, each exccuting

## loop: bra loop

$\dagger$ by initiation and termination of the access we mean the first rising edge of IKCI K* before IBPRN* goes low and the first rising edge of BCI, K* before BPRN zoes high respectisely, as cefined in section 2 of this Appendix.
out of the global memory lexated in some other slice.)


Figure $\Lambda .8:$ Typical Ringbus read access with $।_{p}^{\text {MAeqv }}=0$

The reason that $t_{\text {start }}$ and $t_{a}$ vary with $t_{p}^{1 / R e q v}$ is that the I NM* signal remains active for a period after the termination of a Ringbus access. If $I_{p}^{\text {MAcev }}$ is small enough, as in Figure $\wedge .8$, the ENM* signal remains active past the initiation of the next Ringbus access and causes a deliay in the assertion of the REQ* signall (since the RI:Q* signal for the present accesses cannot be asserted until the l:NM* signal for the previous access has been disisserted). We define ( $\begin{aligned} & \text { norm } \\ & \text { norm }\end{aligned}$ $R 1: Q^{*}$ is not delayed by the $\mathrm{FNM}^{*}$ from the previous cycle. Thus
 nation of the previous access is $t_{s f a n}^{p r e v}+t_{a r b}^{p r y}+d^{p r e v}-t_{a}^{p r e v}=d^{p r e v}-t_{r a n s}^{p r e v}$, where the superscript $p^{p r e v}$ denotes the quanti: $y$ in the previous access. Thus

If $I_{d / t a y}>0$ then, ignoring a small propagation delay. RE: $Q^{*}$ is asserted at the same time that IUNM* from the previous access is disasserted. Thus $I_{\text {start }}$ cquals $\boldsymbol{I}^{R P R N i o R I: Q}$ plas one arbiter period. 'Therefore
where $\boldsymbol{l}_{\text {latch }}$ is the latch time when $l_{\text {delay }}=0$. Pinally $\boldsymbol{t}_{a}=I_{\text {start }}+\boldsymbol{l}_{\text {arb }}+l_{\text {trans }}$. Measurements revealed that the distribution of $t_{\text {trans }}$ is approximately the same (fairly uniform over the interval $1.30 \mathrm{to} 1.45 \mu \mathrm{sec}$ ) regardless of $t_{p}^{M \operatorname{Reqv}}$ (although its mean is slightly different for reads and writes). Thus $t_{\text {star }}$ is the sole contributor to the change in $t_{a}$ as $t_{p}^{\text {MBeqv }}$ varics. Thus
or simply

$$
t_{a}=\left\{\begin{array}{l}
t_{a}^{(n o m)} \text { if } t_{\text {delay }}=0 \\
t_{a}^{(n o r m)}-t_{\text {lacch }}+t_{\text {delay }}+200 n \text { sec } \text { if } t_{\text {delay }}>0
\end{array}\right.
$$

where $I_{a}^{(n o m)}$ is the accesis time if $I_{\text {delay }}=\mathbf{0}$.
In section 3.9 we defined the spating between the completion of a Ringbus grant and the initiation of the next Ringhus grant from the same slice, excluding the waiting time of the Ringbus requests, to be the Ringbus equivalent processing time which we denoted by $t_{p}^{R B e q v}$.

If $t_{\text {delay }}=0, t_{p}^{\text {RBeqr }}$ is $t_{p}^{\text {M/Rrqv }}$ plus $t_{\text {start }}$ and $t_{\text {arb }}$ and less the duration for which $I: N M^{*}$ remains active past the termimation of the previous access. If $t_{d e l a y}>0, I_{p}^{R B e q v}$ is threc arbiter clock periods, i.c.

Note that if $I_{d c h y}=0$, then $I_{s t a r t}^{p r c v}+t_{a r b}+d^{p r e v}+I_{a}^{p r i v} \leq I_{p}^{M R e q v}+I_{(n o r m)}^{P 1 P R N R E Q}$ and $I_{\text {start }}=I_{\text {(nonn }}^{\text {RPRNIORI: } Q}+I_{\text {latch }}^{\text {n. }}$, yiclding

$$
i_{p}^{R B e q^{\prime}} \geq\left\{\begin{array}{l}
l_{\text {arch }}+l_{\text {arb }} \text { if } I_{d e l a y}=0 \\
600 n s e c \text { if } t_{\text {delay }}>0 .
\end{array}\right.
$$

Now $t_{\text {latch }} \geq 0$ and $t_{\text {arb }}=2$ arbiter clock periods, thus $I_{p}^{\text {RR }}{ }^{R} \geq 2$ or 3 arbiter clock periods.
The observed means of the quantities in Figure $\Lambda .8$ (read accesses with $I_{p}^{\text {MPReqv }}=0$ ) are
$\bar{i}_{a}=2.47 \mu \mathrm{sec}$
$\bar{t}_{\text {start }}=690 \mathrm{nsec}$
$\iota_{\text {tmns }}=1.38 \mu \mathrm{scc}$
$\overline{\mathrm{d}}=9$ arbiter clock periods i.c. $1.80 \mu \mathrm{sec}$ (the duration was consistently 9 cleck periods.)
The situation just discussed for Ringbus read aceesses is similar for Ringhous write aceesses.
The observed means for write accesses are summarized in Table A.1.

|  | $\mathrm{f}_{p}^{\text {M }{ }^{\text {ceqv }} \text { large }}$ | $t_{p}^{\text {M Meqv }}=0$ |
| :---: | :---: | :---: |
| $\bar{i}_{0}$ | $2.13 \mu \mathrm{scc}$ | $2.58 \mu \mathrm{sec}$ |
| $\begin{aligned} & i_{\text {(nom }}^{\text {BiPNIORR:Q }} \end{aligned}$ | 230 nsec | n/a |
| $\bar{i}_{\text {start }}$ | 380 nscc | 830 nscc |
| $\bar{i}_{\text {mans }}$ | $1.35 \mu \mathrm{scc}$ | $1.35 \mu \mathrm{sec}$ |
| $\bar{d}$ | $9.6 \times 200 \mathrm{nscc}$ | $9.5 \times 200 \mathrm{nscc}$ |

Table 1.1
 satme for reads and writes while $\bar{t}_{a}$ is slightely less for writes than for reads. Second, for $t_{p}^{\text {A/Brav }}=0$, both $\bar{i}_{\text {seare }}$ and $\bar{i}_{a}$ are larger for successive write accesses than for successive read accesses. This is due to the fact that $1: N N^{*}$ remains active for a longer incerval after the temination of a write acecess than after the temination of a read access. Thus the acecss time of a read or write deicuds on the type of access preceding it. We only mestigated cases with reads preceding reads and writes preceding writes. Third, $\bar{d}$ is sligitly greater for write accesses than for read accesses for both large $t_{\rho}^{\text {MBect }}$ and $t_{p}^{\text {MBecN }}=0$.

### 3.3.2.1 Ringhus Access Time with other Memory Port Unloaded

The observed access time distribution for this case for reads and writes and for large $t_{i}$ Arkequ and $t_{p}^{\text {Al Beqv }}=0$ are given in Figure $\Lambda .9$.




IFigure $\Lambda .9$ (b): Ringbus write access time distribution $-I_{p}^{\text {M Reqv }}$ large


I-igure $\wedge . \mathcal{X}$ ): : Zinghus read access time distribution $-t_{p}^{\text {MReqv }}=0$


Figure $\lambda . \%(\mathrm{~d})$ : Ringbus write acceess time distribution $-t_{p}^{\text {MBeqv }}=0$

Note that $\boldsymbol{I}_{f}^{M B e q y}$ does not have much effect on the distributions except for a herizontal shift reflecting the larger mean. The horizontal shift is indicative of the duration for which ENM* remains active past the termination of the previous access. As mentioned earlicr, this duration, and hence the mean, depends on the type of accesis preceding the observed aciess. It seems that most of the randomness in the Ringhous access tiree. as least for reads preceded by reads and writes preceded by writes, is due to the random arrivals of the REQ* sighal with respect to the arbiter clock.

### 3.3.2.2 Ringhus Aecess Time with Other Memory Port Loaded

We loaded the Multibus port of a slice global memory with four processors executing loop: bra loop
out of the slice global memory on the Multibus. We observed the access times for accesses to that same globall memory over the Ringbus from another slice. No significant difference was observed in the access time distribution for reads and writc; for large $t_{p}^{1 / 1 / r u y}$. Our observations for large $t_{p}^{\text {N/Hely }}$ are summarized in Figure $\Lambda .10$.



MICROCOPY RESOLUTION TEST CHAR1


1:igure A .10 : Ringhus access time distribution - $1_{p}^{\text {MBeqv large and other port loaded }}$

Nor $t_{p}^{\text {MReqv }}=\mathbf{0}$, the access time distributions are similar, except for a horizontal shin. Note that for small enough $t_{p}^{\text {NBryty }}$, the distribution, Urough the mean, dees vary between the type of access ubserved and the type of access preceding it.

### 3.4 Access Times: Gencral Observations

- The access time distributhon is approximately the sime for Multibus read and write accesses.
- The mean Multibus aceess time varies from $1.05 \mu \mathrm{sec}$ to about $1.2 \mu \mathrm{sec}$ depending on the loading en the other memery port.
- The access time distribution for Ringbus accesses depends on four factors:

1) the type of access.
2) the type of the preceding access.
3) the value of $I_{p}^{M R e q v}$, and
4) the loading on the other port of the access's memory.

The second factor is only relevant when $r_{p}^{\text {atReny }}$ is small.

- The mean Ringbus access time varies from about $2.13 \mu \mathrm{sec}$ to athout $2.58 \mu \mathrm{sec}$ depending on the above four factors.
- The tail of the access time distribution increases as the loading on the other port of the accessed memory increases.
- Reads and writes have a Riugbus grant duration (i.c. duration for which segments are allocated) of 9 or 10 arbiter cleck periods.
- $\quad t_{\rho}^{\text {MReqv }}$ cannot be less than 2 or 3 arbiter cleck periods.


### 3.5 Read-Modify-Write Access 'Time

$\Lambda$ test and set instruction has an access time of about $2.60 \mu$ sec to $2.70 \mu \mathrm{sec}$ on the Multibus and in access time of about $4.30 \mu \mathrm{sec}$ on the Ringhus. (These fieures are with the other memory port unloaded in each case). We did net determine distributions for these two cases. For a Ringbus access, the segments are allucated to the access for about 19 arbiter clock periods.

## Appendix B

In this appendix we present the proosf for the various 1 emmas and Theorems which would have hindered the flow of presentation if they had been included in the main text.

## Theorem 2.1

With independent identical processors with deterministic processing time $t_{p}$ and deterministic access time $I_{a}$ served by a single bus in IVCl:S order, the waiting time per request after at most two cycles of every processor is the sime for every request. Moreover, after at most two cycles of every processor the FCFS queue is cidher always emply or alvalys nonempty at the itistant a request arrives at the queue.

## Proor:

Let there be $N$ processors denoted by $0,1,2,3, \cdots, N \cdots 1$. Iet $f_{i}(11)$ denote the time at which processor $i$ makes its $n^{\text {th }}$ request for the bus (i.e. the instant that processor is $n^{\text {th }}$ request arrives at the end of the queuc). I.ct $w_{i}(n)$ denote the waiting time of processor $i$ 's $n^{\text {th }}$ request. To simplify the presentation we choose to interpret $f_{i}(n)$
 $i<0$ or $i \geq N$. We then have

$$
\begin{equation*}
l_{i}(n+1)=l_{i}(n)+w_{i}(n)+l_{11}+l_{p} \tag{2.1.1}
\end{equation*}
$$

Without loss of gencrality start counting the requests made by each processor at the first instint at which all $N$ processors have made at least one request for the bus and Iet the initial condition be

$$
1(1) \leq 1_{1}(1) \leq 1_{2}(1) \leq \cdots \leq I_{N-1}(1)
$$

with ties being broken by the FCFS service discipline in favor of the smallest numbered processor.

I et the interval between the requests of processor $i$ and proceswor ( $i, 1$ ) mond $N$ be denoled by $\Delta t,(11)$ where

$$
\Delta t_{i}(n): t_{i+1}(n) \quad t_{i}(11)
$$

where again we interpret $\Delta t_{1}(11)$ as $\Delta I_{1}$ mod $N(11+|i / N|)$. From equation 2.1.1 we have

$$
\begin{equation*}
\Delta t_{i}(n+1)-\Delta t_{i}(n)+w_{i+1}(n)-w_{i}(n) . \tag{2.1.2}
\end{equation*}
$$

Because of the deterministic processing and access times. requests remainl in their initial ordering for all $n \geq 1$; thus the $\mathrm{ICl} \cdot \mathrm{S}$ queuc enforces

$$
\begin{equation*}
w_{i+1}(11) \cdot \max \left(0, w_{i}(n)+l_{a} \cdots \Delta t_{i}(n)\right) . \tag{2.1.3}
\end{equation*}
$$

With equations 2.1.2 and 2.1.3 we ohtain

$$
\Delta l_{i}(n+1)=\left\{\begin{array}{lll}
l_{a} & \text { if } & w_{1}+1(n)>0 \\
w_{i}(n)+\Delta l_{1}(n) & \text { if } & w_{i}, l(n)=0
\end{array}\right.
$$

But if $w_{i+1}(n)=0$, then $-w_{i}(n)+\Delta l_{i}(n) \geq I_{i}$. This $\Delta l_{i}(n / 1) \geq I_{a}$. or more specifically

$$
\begin{equation*}
\Delta l_{i}(n) \geq l_{a}, \quad i \geq 0, \quad n \geq 2 \tag{2.1.4}
\end{equation*}
$$

i.c. atter the first cycle of every processor, the arrival of successive requests must cocur at intervals of at least the access time $a_{a}$. İpuations 2.1.3 and 2.1.4 imply that $w_{i+1}(n) \leq w_{i}(n)$ for $n \geq 2$, with cquality if and only if $w_{i}(n)=0$ or $\Delta t_{i}(n)=t_{a}$ for $n \geq 2$ (or both).

Therefore if $n_{i}(n)=0$ for any $i \geq 0$ and any $n \geq 2$. then $w_{i}(n)=0$ for every $i \geq 0$ and every $n$ past that point, and if $w_{i}(n)>0$ then $\Delta t_{1-1}(n+1)=1$, , implying that $w_{i}(11+1): w_{i-1}(n+1)$.
Now cilher $w_{i}(2)=0$ for some $i \geq 0$, in which case $w_{i}(11)=0$ for all $i \geq 0$ and $n \geq 3$, or $w_{i}(2)>0$ for all $i \geq 0$, in which calc $\Delta t_{i-1}(3) \cdot l_{1}$ and $w_{i}(3)=w_{i}-f^{(3)}$ for all $i \geq 0$ which in curn implies that $\Delta t_{i}(11): l_{10}$ and $w_{i}(11)=w_{N}$ (2) (by equations 2.1.2 and 2.1.3 respectively) for all $i \geq 0$ and $n \geq 3$. Therefore $w_{i}(n)-$ ( for all $i \geq 0$ and $n \geq 3$ where C -0 or $C>0$.

Thus the waiting time per request is the same for every request for $11 \geq 3$. Moreover. the waiting time per request for $n \geq 3$ is cither always gero or always strictly pessitive. implying that the ICiSS quete is cither always empty or always nonempty respectively at the instant a request arrives at the quene.

## Fixistence and Frgodicity Assumptions of Section 2.3

1. We assume that a stanonary probability disurbution exi:ts for $I_{n}$.
2. We assume that the walling time process is ergodic.
3. We assume that the time averages necessary for amy application of $I$ ittle's $I$ aw to the queueing system described in section 2.1 exist.

## Some Comditions Guammecing the Validity of these Assumptions

We first describe the basic $\mathrm{G} / \mathrm{G} / \mathrm{I} / / \mathrm{N}$ queucing systens as a Markov process and then consider some conditions on this Markov process to show the validity of the above aissumptions. We assume throughout that:

1) the proxessing time, $t_{p}$, at cach processor is a ramdon variable with a stationary distribution and $l:\left|t_{p}\right|<\infty$
2) the access time, $I_{a}$. is a randon varialbe with a stationary distribution and $f:\left|I_{a}\right|<\infty$
3) the processing time random variables (one for each processor) and the access time ramdom variable are mutually independent.

that a request enters the yueue (i.c. the time that a processot makes a request) relative to the time at which the request presently in service begat its service. I ci the clements of $\vec{u}_{n}$ be ordered so that $q_{1} \leq q_{2} \leq \cdots \leq q_{N} \ldots$. Consider the vector $\vec{x}_{n}-\left|\begin{array}{l}n_{n} \\ \overrightarrow{4}_{n}\end{array}\right|$ where $n_{n}$ is the watiting time of the $n^{\text {th }}$ request to arive at the quene. We then have $\vec{x}_{n}+1^{-} f\left(\vec{x}_{n} \cdot I_{I_{n}} \cdot I_{p_{n}}\right)$ where $I_{\prime_{n}}$ is the service time (access time) of the $n^{\text {th }}$ request to arrive at the queuc. $p_{n}$ is the probessing time of the $n^{\text {th }}$ request, and $f(\cdot)$ is a deterministic operation on its arguments defined as below.

The aperation $f(\cdot)$ :

1. Insert $t_{a_{n}}+f_{p_{n}}$ in tive ordered list defined by $\vec{t}_{1}$ so that the elements remain in mondecreasing order with respect to the element indices. The list now contains $N$ elements $y^{\prime} 1 . \varphi^{\prime} 2, \cdots, \varphi^{\prime} N$ obeying $q^{\prime}, \leq y^{\prime}: \leq \cdots \leq q^{\prime} N$. The insented request represents the time at which the next request from the procesor whes request is premely in service again enters the quene, relatise to the time at which in presolt requet hesan service.
2. $w_{n+1} \max \left(0, w_{n}+l_{a_{n}}-y^{\prime}\right)$, the waiting time of the next request to arrive at the gucue.
3. Subtract $q^{\prime}$, from all $N$ entrics in the ordered list $q^{\prime} 1 . q^{\prime} 2 . \cdots . \varphi^{\prime} N$. Discard the acro value i.e. $4(n+1)_{1}-4^{\prime}, 1-\varphi^{\prime} 1.1 \leq i \leq N \cdot 1$ where $4(n+1)$ is the $i^{\text {th }}$ clement of $\vec{T}_{n}+1$. This subtraction updates the request arrival times relative to the time at which the next - i.c. Whe $n+1^{\text {th }}$ request began service.

The sequence $\left\{\vec{x}_{n}\right\}, n \geq 1$, with some initial probability distribution $\operatorname{Pr}\left(\vec{x}_{0} \leq \vec{y}^{\dagger}\right)^{\dagger}$ describes a discrete time continuous state Markor process with stationary transition probabilities (since $f(\cdot)$ is deterministic and $t_{a_{n}}$ and $f_{p_{n}}$ are stationary random variables).
let $f^{(v)}(\vec{x}, A)$ denote the $v$ step transition probabilities i.c. $p^{(v)}(\vec{x}, A)=\operatorname{Pr}\left(\vec{x}\right.$ in sel $A \subset R^{N}$ after $v$ transitions). If we define $p^{(1)}(\vec{x}, A) p(\vec{x}, A)$ and $p(A) \quad \operatorname{Pr}\left(\vec{x}_{0} \in A\right)$ then we have $p^{(v+l)}(\vec{x}, A)-\int_{R^{N}} p^{(v)}(\vec{\eta}, A) p(\vec{x}, d \vec{\eta})$ for $v \geq 1$ and

$$
\operatorname{Pr}\left(\vec{x}_{n} \in A\right)- \begin{cases}p(A) . & n=1 \\ \int_{R^{N}} p^{(n-1)}(\vec{\eta}, A) p(d \vec{\eta}), & n>1\end{cases}
$$

If $\operatorname{Pr}\left(\vec{x}_{n} \in A\right)$ is independent of $n$ then the process de:cribed by $\left\{\vec{x}_{n}\right\}$ is strictly sationary and $p(\cdot)$ is called a stationatiy probability distribution.

We deline the sequence $\left\{\vec{x}_{n}\right\}$ to be periodic with period 11 if $\vec{x}_{n}=\vec{x}_{n}, y$ fier $n \geq m$ for some integer $m>0$ and some $M<\infty$.

We are now prepared to consider some conditions guaratitecing the validity of the lixistence and Firgodicity Assumptions.

Case $0: I_{w_{n}} 0$ for cuery $n \geq \prime \prime$ for some $m>0$. In this trivial case $\lim _{n \rightarrow \infty} \operatorname{Pr}^{\prime}\left(I_{n_{n}} \leq y\right)$ certainly
 $I_{w}$ is crgodic. The application of litte's $I$ aw in this case is just an academic exercise since the majority of uscful information has already been comeyed by the fact that $t_{w_{n}} 0$ for $n \geq m$. We note that if $t_{w_{n}} 0$ for $n \geq m$. then the $N$ processor system is really $N$ independent subsystems.
$\dagger$ llere $\vec{x} \leq \vec{y}$ neans less than or equal dement-wise.

Since each of these simple subsystems is closed. the time averages must be finite. Furdermore, due to the extremely simple structure and the stationarity of the probability distributions, the time averages cammen fail to exist due to perioxicities. Theefore, we time aterages for each subsystem must exist. And since all the subsystems are independent, we cenclude that the time averages for the entire system must exist.

We assume in the following that we do not have $t_{w_{n}}=0$ for cuery $n \geq m$ for some $m>0$.
(ase 1: The Markov process $\left\{\vec{X}_{n}\right\}$ satisfics Hypothesis I) of I Xoob [p. 192 of Ref. I)I| which roughly stated is the following:

## Ilypothesis 1)

There is a probability assignment of sets $A \subset R^{N}$. an integer $v \geq 1$, and a positive $e$, such that $p^{(r)}(\vec{X}, A) \leq 1-\varepsilon$ if $\operatorname{Pr}(A) \leq \varepsilon$.
(A more precise statement in terms of Borel sets and measures is given by Dooh). This hypothesis basically says that if $\operatorname{Pr}(1)$ is small then $p^{(v)}(\vec{X}, A)$ is uniformly hounded away from 1 . In particular this means that $\left\{\vec{R}_{n}\right\}$ cannot be periodic since then $p^{(x)}\left(\vec{x}_{n}, \vec{x}_{m}\right)-1$ for all $\nu \geq 1$ and $m>n$. If a density function $p_{0}(\vec{x}, \vec{\eta})$ exists (i.c. $r_{0}(\vec{x}, \vec{i}) \geq 0$. $\int_{R^{N}} p_{1}(\vec{x}, \vec{i})(\vec{y} \|=1$, and $\left.p(\vec{x}, A)=\int_{A} p_{0}(\vec{x}, \vec{\eta}) d \vec{\eta}\right)$ and is bounded, then Hypothesis ! is sitistied [Ref. II, p.193]. This condition is somewhat stronger than Hypothesis D) and excludes impulses in $p_{0}(\vec{x} \cdot \vec{\eta})$ (i.c. discontinuities in $p(\vec{x}, A)$ ). Hypothesis 1 ) does not exclude discomtinuities in $p(\vec{x}, A)$ as long as $p(\vec{x}, A)<1$ for all $\vec{x}$, and all $A$ for which $\operatorname{Pr}(A)$ is smatl.

Now since we cecasionally have $I_{w_{n}}$ for $n \geq m$ for some $m$ (by assumption), all $N$ subsystems must communicate. hence $\left\{\vec{x}_{n}\right\}$ consists of a single communicating chass (or ergodic set, as Dexib calls it). Dexob's Theorem 5.7 [Ref. DI, p. 214 then asserts thit under llypothesis 1) there exists a unique stationary probability distribution for $\vec{x}_{n}$ independent of $\vec{x}_{0}$. This implics that a stationary probabitity distribution exists for $t_{w}$ i.c. $\lim _{n \rightarrow \infty} i r\left(t_{n_{n}} \leq y\right)$ exists. Furthermore. 12kb's Theorem 2.1 [Ref. 1)1, p.465] (see also Theorem 6.1 and its proof on p.219) anserts that $i_{w} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} I_{i}$.

All the time arerages necessary for any application of I itters law to the queucing system described by the Markor process $\left\{\vec{x}_{n}\right\}$ call be derived from this Markor process. Any !articuhar time average of interest cen be expresed an the time acrage of same randem batiable which is a deterministic function of $x_{n}, t_{n_{n}}$, and $t_{p_{n}}$. for example, if $a_{n}$ epresents the
interval between the arrival of une $n^{\text {th }}$ and the $n+1^{\text {th }}$ request to be served in the $\mathrm{G} / \mathrm{G} / \mathrm{I} / / \mathrm{N}$ system. then the time average reciprocal of the arrival $\mathrm{r}:($ (if it exists) is $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i}$ where $a_{n}=\min \left(a_{n}, a_{n}+t_{n}\right)$. As another example, if $i_{n}$ epresents the number of requests in the $G / G / 1 / / N$ yuene waiting for service when the $n^{\prime \prime \prime}$ begins service. then the time average queue length (if it exists) is $\lim _{n \rightarrow \infty} l_{n} \sum_{i=1}^{n} n_{1} t_{a}$ where $n_{n}$ is computed in a straightforward mamner from ${\overrightarrow{a_{n}}}_{n}$. Since the Markov process $\left\{\vec{x}_{n}\right\}$ has a unique stationary probability distribution and $I_{a}$ and $I_{p}$ have stationary probability distrihutions, any random variable which is a deterministic function of these quantities will also have a stationary probability distribution. Deob's theorem 2.1 [Ref I)I, p. 465 ] then implies that the time average of such a random variable exists (since it must equal its mean, which exists since a stationary probability distribution exists).

Case 2: The Markor process $\left\{\vec{X}_{n}\right\}$ is periodic.

## l.emma B. 1

The Markov process $\left\{\bar{x}_{،,}\right\}$ is periedic if and only if $t_{a_{n}}$ and $t_{p_{n}}$ are deterministic random variables - i.e. constants for all $n \geq 0$.

## Proof:

The "if" part: If $t_{U_{n}}$ and $t_{P_{n}}$ are deterministic random variables, then by Theorem $2.1 t_{w_{n}}$ is a constant for $n \geq 3 N$ where $N$ is the number of processors. Now $t_{w_{n}}$, $t_{l_{n}}$, and $t_{p_{n}}$ constints for $n \geq 3 N$ implics that $\left\{\vec{x}_{n}\right\}$ is periodic with period at most $N$.

The "only if" part: Suppose that $\left\{\vec{x}_{n}\right\}$ was periodic and $t_{u_{n}}$ and $t_{p_{n}}$ were not both deterministic random :ariables. Consider some state $\vec{x}_{n}$ of the periodic portion of the sequence $\left\{\vec{x}_{n}\right\}$. Then the next state depends on $t_{a_{n}}$ and $t_{p_{n}}$. But because $\left\{\vec{x}_{n}\right\}$ is periodic. this next state, $\vec{x}_{n+1}$, is already known with probability 1 . Since $t_{a_{n}}$ and $t_{p_{n}}$ are not both deterministic random variables (and since both are stationary random variables), there is some positive probability of the sum $I_{u_{n}}+I_{r_{n}}$ being such that some dement in the ordered list obtained via the $f(\cdot)$ operition is

[^23]different from that in the known next stite. This comradiets the hypothesis that $\left\{\vec{x}_{n}\right\}$ is periosdic.

## Corollary 13.1

If the Markov process $\left\{\vec{X}_{n}\right\}$ is periodic. then

1. $I_{w_{n}}$ is a constant for $n \geq m$ for $m>0$ large enough and thus $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(I_{w_{n}} \leq y\right)$ exists i.c. a stationary probability distribution exists for $I_{m_{n}}$.
2. $\tilde{I}_{w}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=m}^{m+n} t_{w_{i}}$
3. We time averages necessary for any application of litules 1 aw to the queucing system described by $\left\{\vec{x}_{n}\right\}$ exist.

## Proor:

Points 1 and 2 follow immediately from I.cmma 13.1 and Theorem 2.1. Since the Markoy process $\left\{\vec{x}_{n}\right\}$ is periodic, any time average derived from $\left\{\vec{x}_{n}\right\}$ is equal to the same average over one period of $\left\{\vec{X}_{n}\right\}$. Since by hypothesis the peried of $\left\{\vec{x}_{n}\right\}$ is finite, all possible averages derived from $\left\{\vec{x}_{n}\right\}$ must exist and hence all possible time averages derived from $\left\{\vec{x}_{n}\right\}$ minst also exist. Point 3 now follows since the set of time averages necessary for any application of Littles Law to the queucing system described by $\left\{\bar{X}_{: 3}\right\}$ is a subset of all possible time averages derived from $\left\{\vec{x}_{n}\right\}$.

## Remark:

The above three cases are not necessiarily exhaustive.

## 'Iheorem 2.2

Comsider the quewing model dexribed in section 2.1 with stathmary processing and access time distributions with means $t_{p}<\infty$ and $t_{a}<\infty$ respectively and subjen to the assumptions in section 2.3. Then $\boldsymbol{w}(N+1) \quad w\left(N^{\prime}\right) \leq 1 /$ where $w(N)$ denotes the mean waiting time in a $N$ processor mexicl.

## I'roor:

The $N$ processor model is a $\mathrm{G} / \mathrm{G} / \mathrm{I} / / \mathrm{N}$ queucing system as described in section 2.I. Iet the processing and access time distributions of this $\mathrm{G} / \mathrm{C} / \mathrm{I} / / \mathrm{N}$ system be denoied by $l_{f_{p}}(x)$ and $l_{f_{u}}(x)$ lespectively. The $N+1$ processor model is a $G / G / 1 / / N+1$ yucueing system with the sime processing and access time distributions - $f_{f_{p}}(x)$ and $f_{t_{u}}(x)$ respectively as for the $G / G / 1 / / N$ sysiem. In the remainder of the prosef the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}$ system and the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}+1$ system are referred to as the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N} / \mathrm{P}$ system and the $G / G / 1 / / N+1 / P$ system respectively to emphasiac the special relationship between the two systems. The additional $P$ denotes "pair".
I.et the state of the $G / G / I / / N$ system at time / be deseribed by:

$$
\mathrm{X}(1, N) \cdots\left(n, x, p_{p_{1}}, p_{p_{2}} \ldots, l_{p_{N}}\right)
$$

where $N$ denotes the number of processors, "indicate, the number of requests queued for service and presently in service, $x$ is the residual access time, and $p_{i}$, $1 \leq i \leq i V$, is the residua! processing time at processor $i$.

It is not necessary to include $t_{p_{t}}$ in the state description when precessor $i$ is not processing - i.c. when processor $i$ is watiting for a request to complete: inded. $t_{p_{1}}$ has no meaning in this case. However, we chorse to include $f_{f_{1}}$ in the state for this type of situation for notational convenience (i.c. so we can always write $\mathbf{X}(1$, . $)$ ) in the same way independent of which processors are processing). To ensure that $r_{f_{1}}$ is always well defined. we ket $t_{p_{1}}=0$ when processor $i$ is not processing. The amalogeris situation (eccurs with $x$ when there are no outstanding requests. In the following we refer to the $N$-tuple $t_{p_{1}} t_{p_{2}} \cdots, t_{p_{N}}$ by the vector $\vec{i}_{p}$.

Sirrilany, let the state of the (i/c/1//N $+1 / 1$ system at time 1 be described by $X(1, N+1)=\left(n, x, m_{1}, \cdots, m_{p_{v}}, t_{p_{v+i}}\right)$. The interpretation of cach quantity in this tate dexeription is the sume in fior the G/G/1/N/P system.

The proof is based on an argument that the behaviour of a G/G/I//N/I' system with $n$ requests queued for and in service and the behaviour of a $\mathrm{F}, \mathrm{C} / \mathrm{I} / / / \mathrm{N}+1 / \mathrm{P}$ system $n+1$ requests queued for and in service are probabilistically identical. The detiils of the argument are as follows.
Consider a state $X(I, N)=\left(n, x, \overrightarrow{I_{p}}\right)$. For some $t^{\prime}$ and $n \geq 1$. there exists a state $\mathrm{X}\left(\imath^{\prime}, N+1\right)=\left(n+1, x^{\prime}, \vec{l}_{p}^{\prime}\right)$ where $x^{\prime}=x$ and $\vec{p}_{p}^{\prime}=\left(\vec{l}_{p}, t_{p_{N}, 1}\right), t_{p_{N+1}}=0$. since the $G / G / 1 i / N+1$ processor system is identical to the $G / G / 1 / / N$ system aside from an extra processor. In fact, for each $n \geq 1$ and for each sate $X(1, N) \cdot\left(n, x, \overrightarrow{\rho_{f}}\right)$, where exists a corresponding state $X\left(I^{\prime}, N+1\right)=\left(n+1, x^{\prime}, \vec{P}_{p}^{\prime}\right)$ for some $i^{\prime}$ with $x^{\prime}=r$ and $\overrightarrow{r_{p}}=\left(\vec{l}_{p}, t_{p_{N+1}}\right) \cdot t_{p_{N+1}}=0$.
The stite $\mathrm{X}\left(I^{\prime}, N+1\right)\left(n+1, x,\left(\vec{p}_{p}, 0\right)\right)$ differs from the state $\mathrm{X}(1, N)\left(n, x, \overrightarrow{p_{p}}\right)$ (aside from the possible difference in times $I$ and $\prime^{\prime}$ ) only in that there is one more request in the queve. But for $n \geq 1$, this additionall request in the queue cannot be receiving service (without loss of gencrality we can consider the alditional request to be the last request in the quene). Fiurthermore, the processing times at each processor and the access time of each request are independent of each other and everything else in the system including the additional request in the queue. Therefore, for $n \geq 1$, the system operation cannen depend on the fact that there is all additional request in the quene. Thus, for $n \geq 1$, the probahilistic bellaviour in states $X(1, N) \div\left(n, x, \overrightarrow{p_{p}}\right)$ and $\mathbf{X}\left(\iota^{\prime}, N+1\right)=\left(n, 1, x,\left(\overrightarrow{l_{n}}, 0\right)\right)$ must be identical. Since given any state $\mathrm{X}(1, N)=\left(n, x, \overrightarrow{p_{p}}\right)$ with $n \geq 1$, there exists some state $X\left(\iota^{\prime}, N+1\right)=\left(n+I \cdot x,\left(\overrightarrow{l_{p}}, 0\right)\right)$ and since these two states must have the same probabilistic behaviour, the $G / G / 1 / / N / P$ and the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}+1 / \mathrm{P}$ systems have the same probabilistic behaviour. as long as $n \geq \mathrm{I}$. In particular, if one request in the queue of the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}+1 / \mathrm{P}$ system was hidden from view, an observer would be unable to distinguish the G/G/I//N/P queucing system from the $\mathrm{G} / \mathrm{G} / 1 / / \mathrm{N}+1 / \mathrm{P}$ system so long as $n \geq 1$.
We now introduce some notation. I.ct $\pi_{i}^{N}$ denote the fraction of time that the G/G/l//N/P system has $i$ requests in the queue and in service. let $\|_{4}^{N}$ denote the time average of the number of requests quetued for but not in service in the $G / G / 1 / i N / P$ sysem. Finnally, Iet $\rho^{N}$ denote the fraction of time that the server is busy. We have

$$
\pi_{i}^{N} \sum_{i=2}^{N}(i-1) \pi_{i}^{N} \quad \rho^{N}=\sum_{i=1}^{N} \pi_{i}^{N}
$$

 icm.

## lemma 1.2

$$
\pi_{i+1}^{N+1}=C \pi_{i}^{N} \text { for } i \geq 1
$$

## Proof:

As argued carlier, the G/G/1//N/P system with $i$ requests in the queue is probabilistically identical to the $G / G / 1 / N+1 / P$ system with $i+1$ requests in the queue and in service if $i \geq 1$. It follows that $\pi_{i+1}^{N+1}=C \cdot \pi_{i}^{N}$ for some constant $C$.

Procecding with the proof of 'Theorem 2.2, there are two cases to consider.
Casc 1: $\bar{w}(N)=0$

## Iemmal 13.3

$$
\text { If } \ddot{w}(N)=0 \text { then } \pi_{i}^{N+1}=0 \text { for } i>2 .
$$

## Proof:

If $\bar{w}(N)=0$, then $\pi_{i}^{N}=0$ for $i>1$. It follows from I.cmunai 13.2 that $\pi_{i}^{N+1}-0$ for $i>2$.

Thus in casc $1 \bar{n}_{4}^{N+1}-\pi_{2}^{N+1}=\rho^{N+1}-\pi_{1}^{N+1} \leq \rho^{N+1}$. IFrom I.ttle's I.dw we have $\bar{w}(N+1)=\frac{\bar{n}_{\eta}^{N+1} \bar{i}_{a}}{\rho^{N+1}} \leq i_{a}$. Therefore $\bar{w}(N+1) \cdots \bar{w}(N) \leq \bar{i}_{a}$.
Case 2: $\bar{w}(N)>0$
If $\bar{w}(N)>0$, then $\pi_{i}^{N}>0$ for some $i>1$. By I.ittle's Law we have $\bar{w}(N)=\frac{\bar{n}_{4}^{N} \bar{i}_{n}}{\rho^{N}}$ and $\bar{\omega}(N+1)=\frac{\overline{\boldsymbol{n}}_{a}^{N+1} \overline{\boldsymbol{i}}_{a}}{\rho^{N+1}}$.

$$
\pi_{q}^{N+1}=\sum_{i=2}^{N+1}(i-1) \pi_{i}^{N+1}=\sum_{i=2}^{N}(i-1) \pi_{i+1}^{N+1}+\sum_{i=1}^{N} \pi_{i+1}^{N+1}
$$

and $\rho^{N+1}=\pi_{i}^{N+1}+\sum_{i=2}^{N+1} \pi_{i}^{N+1}$. Combining these two relations with Lemma B.2 yiclds:

$$
\bar{n}_{q}^{N+!}=\left(\bar{n}_{q}^{N}+\rho^{N+1}-\pi_{i}^{N+1}\right.
$$

Therefore

$$
\bar{w}(N+1) \cdots n^{\prime}(N)=i_{a}\left|\begin{array}{l}
\frac{n_{q}^{N+1}}{\rho^{N}+1}-\frac{n_{1}^{N}}{\rho^{N}}\left|=i_{a}\right| 1, \frac{n_{q}^{N}\left(C \rho^{N}-\rho^{N+1}\right)}{\rho^{N+1} \rho^{N}}-\pi_{1}^{N+1} \\
\rho^{N+1}
\end{array}\right|
$$

Applying I cmma B.2 again yiclds $\rho^{N+1}=\pi_{1}^{N+1}+C \sum_{i=1}^{N} \pi_{i}^{N}=\pi_{i}^{N+1}+C \cdot \rho^{N}$. Thus finally,

$$
\bar{w}(N+1) \cdots \bar{w}(N)=\bar{I}_{a}\left\{1-\frac{\bar{n}_{4}^{N} \pi 1^{N+1}}{\rho^{N}+1_{\rho}^{N}}-\frac{\tilde{N}_{1}^{N+1}}{\rho^{N}+1}\right\} \leq \bar{i}_{a}
$$

## 'Theorem 2.4

Let $f^{*}{ }_{a b}(s)$ denote the laplace transform of the probability density function $f_{a b}(x)$
 denote the laplice transfurm of the exponential density function with the same mean $\bar{x}$. Then $F^{*}(s)_{M / M \cap / / N} \geq r^{*} a b(s)$ for $s$ real and $s \geq 0$.

## Proof

We are to show that $f^{*}(s)_{M / M / N / N}=\frac{1}{s \bar{x}+1} \geq f_{a b}^{*}(s)=\int_{a}^{b} e^{-s x} f_{a b}(x) d x$ for $s$ rcal and $s \geq 0$ where $\bar{x}=\int_{a}^{b} x f_{a b}(x) d x$. This is equivalent to showing that $\varepsilon \leq 1$ where $\varepsilon=(1+s \bar{x}) \int_{a}^{b} e^{-s x} f_{a b}(x) d x$. We note that $\varepsilon$ and all its derivatives with respect to $s$ exist and are continuous inis. In addition we note that $\varepsilon=1$ at $s=0$. It thus suffices to show that $\frac{\partial e}{\partial s} \leq 0$ for $s \geq 0$.

$$
\begin{aligned}
& \frac{\partial e}{\dot{c} s}=\ddot{x} \int_{a}^{b} e^{-s x} f_{a b}(x) d x-(1+s \bar{x}) \int_{a}^{b} x e^{-s x} f_{a b}(x) d x \\
& \left.\frac{\partial e}{\partial s}\right|_{s=0}=0 \\
& \frac{\partial^{2} e}{\partial s^{2}}=-2 \bar{x} \int_{a}^{b} x e^{-s x} f_{a b}(x) d x+(1+s \bar{x}) \int_{a}^{b} x^{2} e^{-s x} f_{a b}(x) d x
\end{aligned}
$$

Now $\frac{\partial^{2} e}{\partial s^{2}} \leq(-2 \bar{x}+(1+s \bar{x}) b) \int_{a}^{b} x e^{-s x} f_{a b}(x) d x$. Since $\int_{a}^{b} x e^{-s x} f_{a b}(x) d x>0$ and $-2 \bar{x}+(1+s \bar{x}) b<0$ for $s$ real and $s<\frac{2 \bar{x}-b}{b \bar{x}}$. we must have
$\frac{\partial^{2} e}{\partial s^{2}}<0$ for $0 \leq s \leq \frac{2 \bar{x}-b}{b \bar{x}}$,
implying that $\frac{\partial \varepsilon}{\partial s} \leq 0$ for $0 \leq s \leq \frac{2 \bar{x}-b}{b \bar{x}}$.
Furthermorc. $\frac{\partial e}{\partial s} \leq(\bar{x}-(1+s \bar{x}) a) \int_{a}^{b} e^{-s x} f_{a b}(x) d x$.
Since $\int_{a}^{b} e^{-s x} f_{a b}(x) d x>0$ for $s$ real and $\bar{x} \cdots(1+s \bar{x}) a<0$ for $s>\frac{\bar{x}-a}{a \bar{x}}$.
we must have $\frac{\partial \varepsilon}{\partial s}<0$ for $s>\frac{\bar{x}-a}{a \bar{x}}$.
But $0<b<2 a$ implics $\bar{x} b-a b<2 a \bar{x}-a b$ which implics $\frac{\bar{x}-a}{a \bar{x}}<\frac{2 \bar{x}-b}{b \bar{x}}$.
Therefore $\frac{\partial e}{\partial s} \leq 0$ for $s \geq 0$.

## 'Iheorem 3.1

## Preamble:

Consider the following two state descriptions of a Ringbus with $S$ slices, request probabilities $p_{i}, i=-(S / 2-1), \cdots,-1,0,1, \cdots, S / 2$, and subject to the assumptions in chapter 3:

State description $1:\left(r_{1}, d_{1} ; r_{2}, d_{2} ; \cdots ; r_{s}, d_{s}\right)$
State description B: $\left(r_{1}, w_{1}, d_{1}: r_{2}, w_{2}, d_{2} ; \cdots ; r_{s}, w_{s}, d_{S}\right)$
$r_{i}$ and $d_{i}$ denote the request at slice $i$ and the duration of the grant at slice $i$, as discussed in section 3.2.1. $w_{i}$ denotes the interval for which the request at slice $i$ has waited so far without being granted. We adopt the convention that $w_{i}=0$ whenever $d_{i} \neq 0$. The arbitration problem relative to state description $\Lambda$ is to find a policy $\mathrm{I}_{\boldsymbol{A}}$ which maximies the throughput $g^{(1)}$ given by

$$
g^{D_{1}}=\sum_{(r d)} q_{(r d)^{d}}^{\left(n^{d}\right.} \pi_{(r d)}^{D_{1}}
$$

where
(r.d) denotes a particular state (using vector notation).
$d(\underline{r}, \underline{d})$ is the decision in state $(r . \underline{d})$.
$q_{(r, d)}^{d(r)}$ is the reward in state $(r, d)$ under decision $d(r, \underline{d})$.
$p_{\left.(r, d), r^{\prime}, d^{\prime}\right)}^{d}$ is the one step transition probabiliy from state $(r, \underline{d})$ to state $\left(r^{\prime}, d^{\prime}\right)$ under decision $d(r . d)$, and
$\boldsymbol{\pi}_{(r, d)}^{D_{1}}$ is the steady-state probability of being in state $(r, \underline{d})$ under policy $\left.i\right)_{A}$.

The arbitration problem relative to state description $B$ is to find a policy $D_{A}$ which maximizes the throughput $\boldsymbol{g}^{17 n}$ given by

$$
g^{1 D_{A}}=\sum_{(r, w, d)} q_{(r, w, d)}^{d(r, w) d} \pi_{(r, w, d)}^{D_{n}}
$$

where
(r,w,d) denotes a particular state (using vector notation).
$d(r, \underline{w}, \underline{d})$ is the decision in state $(r, \underline{w}, \underline{d})$.
$q_{(r, w, d)}^{d(r, w)}$ is the reward in state $(r, \underline{w}, \underline{d})$ under decision $d(r, \underline{w}, \underline{d})$,
$p_{(r, w, d)}^{d\left(r, r^{\prime}, w^{\prime}, d^{\prime}\right)}$ is the one step transition probability from state ( $\left.r, \underline{w}, \underline{d}\right)$ to state ( $\left.r^{\prime}, w^{\prime}, d^{\prime}\right)$ under decision $d(r, \underline{w}, \underline{d})$, and
$\pi_{(r, w, d)} \mathbf{H}_{H}$ is the steady-state probability of being in state $(\underline{r}, \underline{w}, \underline{d})$ under policy $\mathbf{D}_{B}$.

Note that if $\left(r^{\prime}, \underline{n^{\prime}}, \underline{d}\right)$ is the immediate successor of some state ( $\left.r . \underline{w}, \mathbf{d}\right)$ dien $w^{\prime}, ~ .0$ if request
 is granted and $w^{\prime}, \neq 0$ or o) request $r_{i}$ is not granted and $w^{\prime}{ }_{i} \neq w_{i}+1$. This call be expressed more
 $i=-(S / 2-1), \cdots,-1,0,1, \cdots, S / 2$ either $w_{i}^{\prime}=0$ if request $r_{i}$ is granted or $w_{i}^{\prime}-w_{i}+1$ if request $r_{i}$ is not granted.

## Statenent:

I.et 1 ) $\mathcal{A}^{\circ}$ be any optimum policy for the arbitration problem relative to state description $\boldsymbol{\Lambda}$. Then, if there is no upper bound constraint on the waiting times $x_{i}$, an optimum stationally policy (1) ${ }_{\beta}{ }^{\prime \prime}$ for the arbitration problem relative to state description $B$ is the following policy $\mathrm{D}_{\beta}^{*}$ :

Cheose $d^{0}(\underline{r}, \underline{n}, \underline{d})$ in each state $(\underline{w}, \underline{w}, \underline{d})$ such that $d^{d}\left(\underline{r}, \underline{n^{\prime}}, \underline{d}\right)=d^{o p t}(r, d)$ for all $w$. Conscquently

and
 optimum throughput.

## Proof:

For the arbitration problem ielative to state description $\Lambda$. Iet $\begin{gathered}\text { vap } \\ \text { (r, }\end{gathered}$ ) denote the walue of
 Then from equation 3.6 we have

For the arbitration problem relative to state description B. Iet $V_{(r, w . d)}(11)$ denote the uptimal expected total reward accumulated over $/$ rounds if the process started in state ( $1 . \boldsymbol{n}$, d! with terminal reward $V_{(r, w, d}(0)$. Then from equation 3.16 we have

Substituting in for $\left.p_{(r, w, d)}^{d^{*}\left(r, f^{d}\right)}, w^{\prime} d^{\prime}\right)$ and $\varphi_{\left(r, w, d^{d^{0}}(r,)^{d)}\right)}$ we have

$$
\begin{aligned}
& V_{(r, w, d)}(n+1)=\max \left[q_{(r, d)^{d}\left(r d^{d}\right)}+\sum_{\left.\left(r^{\prime}, w^{\prime} \cdot d^{\prime}\right) \in W(r, w, d)\right)} p^{d^{p+0}\left(r^{d}\right),(r)} d^{\prime}\right) V_{\left(r^{\prime}, w^{\prime}, d^{\prime}\right)}(n) . \\
& \left.\left.\max _{d(r, \underline{w}, \underline{d}) \neq d^{*}(r, \underline{w}, \underline{d})} \varphi_{\left.(r, w, w)^{d}\right)}^{d(r} \sum_{\left(r^{\prime}, w^{\prime}, d^{\prime}\right)} p_{(r, w, w d)}^{d\left(r \cdot r^{\prime}, w^{\prime}, d^{\prime}\right)} V_{\left(r^{\prime}, w^{\prime}, d^{\prime}\right)}(n)\right)\right]
\end{aligned}
$$

Let the terminal rewards be $V_{(r, w, A)}(0)=\nu(r, d)-v_{1}^{109}$ for every $(r, w, \underline{d})$. Then

Now every decision $d(r, \underline{w}, d)$ in state ( $r, w, d)$ is the same as some decision $d(r, d)$ in state ( $r, d)$.
 every state ( $\underline{r}, \underline{w}, \underline{d}$ ). Since $1_{A}^{o p r}$ is an uptimal policy.
for every $d(r . d)$ and thus




Thercfore $g^{10 g \mathrm{~g}}=g^{109 \mathrm{~g}}$.

## References

[^1] Ali. S.V., "Performance Modeling of the Concert Multibus". S13 Thesis, Dept. of Elec. Eng. and Comp. Science. MIT, 1985
[^2] Anderson. T.I.., "Ihe Design of a Multiprocessor IDevelopment System". Report \# TR-279. I aboratory for Computer Science, MIIT, 1982
[ 13$]$ Asherof. H.. "The Productivity of Several Machines Under the Care of One Operator", J. Roy. Stat. Soc.. Scrics 13. Vol. 12. 1950. p.145-151
[BI] Baskett, P., Chandy. K.M., Munt\%, R.R., and Palacios, F.G.. "Open, closed. and Mixed Networks of Queucs with Different Classes of Customers". JAC'MI, Vol. 22. No. 2. April 1975, p. 248-260
[B2] Benson, F'.. and Cox. D.R.. "The Productivity of Machines Requiring Atention at Random Intervals", J. Ruy. Slat. Sioc., Scrics 13, Vol. 131, 1951, p. 65-82
[i33] Ruzen. J.l'. "Computational Algorithnas for Closed Queucing Networks with Iixponential Servers", Comm. 1CM. Vol. 16. 1973. p. 527-531
[C1] Carroll et al, "Solutions of M/G/1//N-type Loops with Extensions to M/G/I and GI/M/1 Qucucs". Opcrations Research, Vol. 30, No. 3, p. 490
[C2] Chandy, K.M., Herrog. U., and W(o), I.S., "Parametric Analysis of Qucucing Networks". IBM J. Res and Develop. Vol. 19, Jan. 1975. p. 43-49
[C3] Chandy, K.M. and Saucr, C.H., "Computational NIgorithms for Product Form Qucucing Networks", Comm, ACMI, Vol. 23, 1980, p. 573-583
[C4] Cox, I.R.. " $\Lambda$ Use of Complex Probabilities in the Theory of Stechastic Processes". Proc. Camuridge lhil. Soc., Vol. 51, p. 313
[C5] Courtois. P.J.. Decompusiability: Queucing and Computer System Applications, Academic Press, 1977
[ID] INowb, B.L.. Stochastic Processes. Wiley, 1953
[F1] Flynn, M.J.. "Verv High Speed Computing Systems". Proc. H:lil: Vol. 54. Nu. 12. December 1906, p. 1901-1909
[III] Halachmi, II. and Iranti, W.R., " $\wedge$ Closed. Cyclic. Two Stage Multiprugrammed System Model and Its bifïusion Approximation Solation". Iechnical Report \$74-18. Computer.

Infounation, and Control Sciences, University of Minnesota. July 1974
[H12] Heraog. U.. Woo, I.., and Chandy, K.M.. "Solution of Qucucing Problems by a Recursive Technique", IBM J. Res. Deveiop., Vol. 19, No. 3, May 1975, p. 295-300
[H3] Hikicbrand, F.B., Methods of Applied Mathematics. Prentice-Hall, 1965
[H4] Howard. R.. Dynamic Programming and Markov Processes. MrT Press, 1960
[J1] Jaiswal, N.K., Priority Qucues, Academic Press, 1968
[K1] Kelly, F.P., Reversibility and Stochastic Networks. Wiley, 1979
[K2] Khintchine, A.J., Matematiceski Sbornick, T40, 2, 1936
[K3] Kleinrock, 1.., Qucueing Systems Volume I: 'Theory. Wiley, 1975
[I.1] Lam. S.S., "Dynamic Scaling and Growth Behavior of Qucucing Network Normalization Constants", JACM, Vol. 29, 1982, p. 492-513.
[L.2] Lari, S.S., and Lien, Y.L.. " 1 Tree Convolution Algorithm for the Solutions of Queucing Networks", Comm. 1 CM, Vol. 26, 1983, p. 203-215,
[MI] Merchant, S.S., "The Design and Performance Analysis of an Arbiter for a Multiprocessor Shared-Memory System", Report \#LIIDS-TH-1396, Lahoratory for Information and Decision Systems, MITT, 1984
[M2] Mulloy. M., "On the !utegration of I hlay and Throughput Measutes in Distributed Processing Miodels". Ph.D. dissertation, Dept. of Computer Science, UCI.A. 1981. Available as :cpors HCSI)-810921.
[Ni] Ncuts. M.F., Matrix-Geometric Solutions in Stuchastic Models - An Algorithmic $\operatorname{Approach}$, John Hopkins University Press. Baltimore, 1981
[O1] Odoni, $\Lambda$., "Alternative Schemes for Investigating Markov Decision Processes". 'Technica! Report 28. Operations Rescarch Center, MIT, 1967
[O2] Odoni, A., "On Finding the Maximal Gain for Markov Decision Processes", Operations Research. Vol. 17, No. 5, 1969
[Pl] Parzen. E.,. Modern Probability Theory, Wilcy, 1960
[P2] Petcrson, J.L., Petri Net Theory and the Modeling of Systens, Prentice-Hall, 1981
[P3] Price, T.G., "A Note on the liffect of the Central Procesisor Scrvice Time Distribution in Processor Utilization in Multiprogramıned Computer Systems", JACM. Vol. 23, No. 2, Aprit 1976. p. 342-346
[P4] "Proposed Microcomputer System 79, Bus Standard". I.E.E:E. Computer Magazine. Oct. 1980, p. 39-105
[RI] Raskin. 1... "Performance I:xaluation of Multide Processor Sysiems". Ph.D. dissertation,

Dept. of E:lectrical Eugineering, Carnegic-Mcllon University
[R2] Reiser, M. and Kobayashi, H.. "Queueing Networks with Multiple Closed Chains: Theory and Computational Mgorithms", /BM/ J. Res: and Develop., Vol. 19, 1975, p. 283-294
[R3] Reiscr, M. and Sauer, C.H., "Queucing Network Models: Methods of Solution and Their Program Implementation", in Current Trends in Prograinming Mellodology, Volume III: Sonware Modeling and Its Impact on Performance, Chandy, K.M. and Yeh, R.T. editors, Prentice-Hall, 1978, p.l1.5-167
[SI] Saucr, C.H. and Chandy, K.M.. Computer Systems Perfonmance Modeling. Prentice-Hall, 1981
[S2] Stidham Jr., Shaler, " $\Lambda$ L.ast Word on $1 .=\lambda W$ ", Operations Research, Vol. 22, p. 417-421, 1974
[W1] Walrand, J., " $\Lambda$ Probabilistic Ionk at Networks of Quasi-Reversible Qucucs", IELE: Transactions on Infornaation Theory. Vol. 29, No. 6. November 1983
[W2] Whith Ward. "Open and Closed Models for Networks of Qucues", ATitT Bell Laboratories Technical Journal, Vol. 63, No. 9, Nov. 1984
[W3] Wiley. R.P., "Performance Analysis of Stochastic limed Petri Nets", Ph.D. dissertation, Dept. of Elcc. Eng. and Comp. Science, MIT, 1935
Director2 CopiesInformation Processing Techniques OfficeDefense Advanced Research Projects Agency1400 Wilson BoulevardArlinọton, VA 22209
Office of Naval Research 2 Copies
800 North Quincy Street
Arlincton, VA 22217Attn: Dr. R. Grafton, Code 433
Director, Code 2627 ..... 6 Copies
Naval Research LaboratoryWashineton, DC 20375
Defense Technical Information Center ..... 12 Copies
Cameron Station
Alexandria, va 22314
Naticnal Science Foundation 2 Copies
Office oi Computina Activities
1800 G. Street, i.K.
hastineton, DC 20550
Att:: Frograr Director
Dr. E.B. Royce, Code 38
Head, Research Department
Naval heapons CenterChina Lake, CA o 3555
Dr. G. Hopper, USNR
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

1 Copy

$$
\begin{aligned}
& E N D \\
& 9-87 \\
& D T I C
\end{aligned}
$$


[^0]:    $\dagger$ In his simulation of the Ringhus arbiter. Anderven cteated a guence of regnests for each slien (delined in sec-
    

[^1]:    ${ }^{\dagger}$ Only the details of the design which are fell to be relevaint to the modeling effort in the sequel are discussed here. See Anderson [A2] for nore complete information.

[^2]:    $\dagger$ Commumication can ako be originated by onter polemtial Multibus masters.such as 1/O devices. However. these ofher guxemtal mavers osembilly tehare like processons.

[^3]:    $\dagger$ If complea values are permitted for the eqponconial parmolers (Recall that an exponential distritution is fully characteried by a single parameter condit wo the cecouseal of the mean)

[^4]:    * By system we mean in this case the ICIS yueue and its server.

[^5]:    $\dagger$ Departures from the networt: can be handed by defining a certain class for departed cunterion llowever. il is traditional in avoid defining a ciplicit class for departures. resultine in $\sum_{k} r_{k}<1$ if clise $k$ cusiomion aan leave the network

[^6]:    
    

[^7]:    $\dagger$ In secion 1.24 we difined the Ringhers yaring to be ane merval betwect the complidion of one access on

[^8]:    * It will almost certainly tuin ont that it is too dilticult to treat such Markor procesives analyically execent in trivial cases.

[^9]:    ${ }^{\dagger}$ Upon lakithg the limit $\Delta t \rightarrow \mathbf{0}$ cquation 2.26 becomes a set of Volterra integral equations of the seennd kind (IIJ].

[^10]:    $\dagger$ Since there bay be cero bume between the termination of a giant and the neve nombll request from a slice in our abstrict Rmgbus, the arbiter camot unambuously differentiale between a cominuing giant and a new nommall requen of the same type of the dumation of a reguest is detemmed by the interval until the reguest is removed In the (oneent system there is at leas one clock pertod of dead time between successive nombll requests from the same stice io preven this , mbiguity.

[^11]:    † Anderson [ $A$ ] ] actually calls this arburation derorithm a rotalung piority. full arburation arhatration ales athm to distinguish it from others he considered during the denget of oucert We will call it wmpty a rotating promty arbilraiion algorithm.

[^12]:    t If the addressed menory location at the thatimation Kla does not respond with an achiowledement within a
    

[^13]:    
    
    
    
     wered finter will onir defintion

[^14]:    

[^15]:    $\dagger$ The quamity in the brackels is actually $I .-U^{\text {max }}$ where $U^{\text {mix }}$ is the upper bound of the optimat throughpul with the maximum reward constaint and / whe hower bound on the oplomat throughput without this constraint. Thus the actuat difference in throughputs exceeds that indicaled Nothong in macaled made the brackets if $l,<U^{\text {miax }}$

[^16]:    
    
    
    
    
    
    
     grants the manmum reward subed in ciery vate (of course. exactly at the peom $p_{1}-S_{2}, p_{2}=p_{3}-0$ all sates have all cequeste of the sime leath)
    $\dagger$ The quantios in the brackeis is actually $I$. $U^{\text {max }}$. where $U^{\text {mais }}$ is the uper bumd on the optimal
    
     brackels if $I .<U^{\text {minix }}$

[^17]:    $\dagger$ At best. In states - corresponding to 8 rotations and? flips - can be refuced to one state this reduction fac-
    

[^18]:    
    
    

[^19]:    $\dagger$ One sel of drivers is required for each unidirectional switch and wo sets are requred for each bidirectiona! swilch.

[^20]:    $\dagger$ In making this statement, we asunte :hat the only mforn:tion avaitable to the arbiter from a slice is whether
     arbiter in Concent

[^21]:    $\dagger$ As before, a grant is considered to be in preqress for the total time that at least one Ringbus ecgment is allo-

[^22]:    
    
     londed

[^23]:    -Note that these lime averages ase differetil frem bun cquivalent to thene in the stament of ithes Iaw in section 2.3 if they evist.

