

MICROCOPY RESOLUTION TEST CHART

$>$ This report contains a description of conformal-mapping procedures that can be used to generate computational grids for turbomachinery flowfield calculations, and to determine the incompressible potential flow on such a grid. The mapping procedures represent an extension of the Ives transformation to blade rows having a high solidity. The flowfield solution takes advantage of the fact that one of the mapping steps takes the blade row into a unit circle; by writing down the classical source/sink/vortex solution in this circle, it is possible to find the incompressible potential flow in the original cascade. This solution is of interest in its own right, and provides a useful initial condition for iterative or time-marching calculational methods. Kew...

FOREWORD

This document contains a final report of research done on Contract No. F49620-83-C-0096, entitled "Research on Turbine Flowfield Analysis Methods". The initial effort was presented in an interim report (Ref. la), and a re:ent summary was given in Ref. ib. Technical effort was curtailed for a perir 1 of time when the Principal Investigator (Dr. W. J. Rae) became a member of the culty in the Department of Mechanical and Aerospace Engineering at the Stat liversity of New York at Buffalo. Arrangements were made to resume the effort $:$ he University on a subcontract basis and a no-cost time extension through e end of 1984 was granted to facilitate completion of the program. The progr. remained under the direction of Dr. Paul V. Marrone, Head, Physical Sciences Depa. :ment, Calspan ATC.

This document contains the completion of the work initiated in Ref. 1. The results presented make it possible to generate computational grids for cascades of high solidity, and to calculate the imcompressible potential flow on such a grid.

[^0]
table of Contents

Section Page
1 INTRODUCTION 1
2 CONFORMAL TRANSFORMATION METHODS 3
3 POTENTIAL FLOW FIELD 39
4 ORTHOGONAL GRIDS 44
5 METRIC EVALUATIONS 48
6 COMPUTER PROGRAM 49
7 CONCLUDING REMARKS 54
APPENDIX A: DETAILS OF THE FAST FOURIER A-1TRANSFORM PROCEDURES
APPENDIX B: COMPUTER PROGRAM LISTING B-1
APPENDIX C: DICTIONARY OF VARIABLES. C-1
APPDNEIX D: LISTING OF METRIC GENERATOR PROGRAM D-1
REFERENCES R-1

Section 1

INTRODUCTION

Some of the most important recent advances in computational fluid dynamics have been made possible by the use of algorithms which solve the equations of motion in boundary-conforming coordinates (see, for example, Refs. 2-4). Thus, the development of methods for carrying out these coordinate transformations has received considerable attention (for example, Ref. 5).
The field of turbomachinery flows has been the object of a major fraction of this attention, partly because the constraints imposed by internal flows make the application of certain contemporary algorithms more difficult than is the case for external flows. In particular, the presence of non-orthogonality or shearing in the computational grid tends to make the algorithms less stable, and the solutions are more sensitive to the methods used for treating, in the computational plane, the regions corresponding to trailing edges and the points at upstream and downstream infinity. References $6 \& 7$ are typical of one approach to the resolution of the latter class of problems. The net conclusion drawn from that work is that there is a need for improved grid-generation techniques for turbomahcinery, particularly with respect to the treatment of trailing-edge regions and to the achievement of orthogonal grids.

The grid-generation methods in use today can be grouped into three categories: those which apply algebraic shearing or stretching of the coordinates, those which are generated numerically by solving a Poisson equation, and those which are based on conformal mapping. The current research is concerned with an example from the third category, namely the transformation introduced by Ives and Liutermoza. ${ }^{9,9,10}$ Attempts to use this method, as reported in Ref. 7 encountered the problem of non-orthogonality, especially when applied to the high solidity blade rows typical of present designs (slant gap/chord ratios on the order of 0.7 or less). The primary goal of the present research was to extend the Ives-Liutermiza technique so as to apply to turbine blade rows of high solidity.

As the first step in achieving this goal, an Interim Report ${ }^{1}$ was prepared, documenting a number of improvements that had been made since issuance of Ref. 9. The version of the method presented in Ref. 1 also segregated the portions of the method in which the improvements, to achieve orthogonal grids at high solidity, were to be made.

The principal modification contained in the present report is the replacement of the Theodorsen-Garrick mapping (used as one of the steps in Refs. 1,8-10) with a derivative form, as suggested by Bauer et al (11). Use of this replacement makes it possible to handle blade rows of high solidity. In addition, a further step involving the Schwarz-Christoffel transformation can be used, to generate a fully orthogonal grid. These new developments are described in Section 2 (along with an updated version of Ref. 1 , and $8-10$, for completeness).

The potential flow through a cascade of blades can be written down algebraically, once the cascade has been mapped into a unit circle. This information has been added as Section 3, using one of the mapping steps in which the blade-surface image is mapped into a circle.

The final sections contain a description of the computer code and comments on its range of applicability.

Section 2

CONFORMAL TRANSFORMATION METHOD

The method of Ives \& Liutermoza consists of a sequence of transformations, which map a two-dimensional cascade into a rectangle. The notation and coordinate system used to define the cascade are shown in Fig. 1. The \boldsymbol{x}-coordinate is measured in the axial direction, and y is perpendicular to x.

The quantities s, n and the angle γ denote the "streamwise, normal" coordinates, in terms of which the blade profiles are sometimes defined. These reduce to the x, y set if H is taken as zero. The origins of both of these coordinate systems are arbitrary.

These coordinates define complex variables Z and $Z_{x y}$

$$
\begin{equation*}
z=s+i n, \quad z_{x}=x+i y \tag{2-1}
\end{equation*}
$$

The points $Z N$ and $Z T$ are taken anywhere near the centers of curvature of the leading and trailing edges, while ZLE and ZTE are points which divide the "pressure" side of the blade (i.e., its concave surface) from the "suction" side (its convex surface). These points can be chosen anywhere on the
leading- and trailing-edge contours; $Z T E$ is the point that will be connected to the "point" at downstream infinity by one of the grid lines, if that option is chosen (i.e., ISHEAR=1).

For the case of a sharp trailing edge ($I T E=0$), $2 T$ must equal $Z T E$, and for a sharp leading edge ($I L E=0$), ZN must equal ZLE . The included angle at a sharp trailing edge, τ, must be specified. This is illustrated in Fig. 2, for the cascade used in Ref, 7.

Figure 2. Blade Geometry of Ref. 7
This blade row uses the NACA $65(12) 10$ profile, has a slant-gap chord ratio $S G / C=1$, where $S G$ is the slant gap

$$
\begin{equation*}
S G=\sqrt{H^{2}+G^{2}} \tag{2-2}
\end{equation*}
$$

and a stagger angle γ of 28.4°. This geometry is used, below, to illustrate the steps in the Ives transformation. A comparable set of illustrations, for a cascade of turbine blades with rounded trailing edges, is given in Ref. 10.

Figure 2 shows the relation between the trailing-edge angle τ and an exponent Ex (which is used in one of the transformation steps described below). This relation applies only for a sharp trailing edge. For a rounded trailing edge, $E X$ is not related to the 180 -degree trailing-edge angle, but is chosen as a number in the range 0.2 to 0.4 , as described below.

The blade shape is input as two tables of coordinate pairs, one for the pressure surface, and one for the suction surface. These coordinates, plus the leading- and trailing-edge points ZLE and ZTE are then arranged in an array indexed by KJ , where $\mathrm{KJ}=1$ at the trailing edge, and where the numbering proceeds around the pressure side to the leading edge (KJLE), and then along the suction side to the trailing edge, where the point denoted by KJMX is a repeat of that denoted by $\mathrm{KJ}=1$. This notation is shown in Fig. 3.

Figure 3. Notation for Blade-Surface Coordinates

The quantities KJS and KJP need not be equal; they are limited to a maximum value of 80 by a dimension statement in the current version of the program.

The first step in the Ives transformation is

$$
\begin{equation*}
g(z)=\frac{\sin \left\{\pi \frac{z-z_{T}}{H+i G}\right\}}{\sin \left\{\pi \frac{z-z_{N}}{H+i G}\right\}} \equiv \frac{\sin \zeta_{1}}{\sin \zeta_{3}} \equiv \frac{\zeta_{2}}{\zeta_{4}} \tag{2-3}
\end{equation*}
$$

The fact that only differences of z-values are used is what accounts for the arbitrariness of the origin in Fig. 1. On the suction (S) and pressure (P) sides, the function $g(z)$ has the Fortran equivalents:

$$
g(z)=\left\{\begin{array}{l}
R D S(K) e^{i T H S(K)} \tag{2-4}\\
R D P(K) e^{i T H P(K)}
\end{array}\right.
$$

The arguments of the sine functions can be written in a simpler form, as follows:

$$
\begin{align*}
\zeta_{1,3} & =\pi \frac{\Delta z(H-i G)}{H^{2}+G^{2}} \\
& =\frac{\pi}{S G}\{\operatorname{Re} \Delta z \cdot \sin \gamma+\sin \Delta z \cdot \cos \gamma \\
& +i[\sin \Delta z \cdot \sin \gamma-\operatorname{Re} \Delta z \cdot \cos \gamma]\} \tag{2-5}
\end{align*}
$$

where ΔZ stands for $Z-Z_{T}$ or $Z-Z_{N}$ in the expressions for ζ_{1} and ζ_{3}, respectively. By noting that (see Fig. 4)

Figure 4. Coordinate Relations
it follows that

$$
\begin{align*}
\zeta_{1} & =\frac{\pi}{S G}\left\{\left(s-s_{T}\right) \sin \gamma+\left(n-n_{T}\right) \cos \gamma+i\left[\left(n-n_{T}\right) \sin \gamma-\left(s-s_{T}\right) \cos \gamma\right]\right\} \\
& =\frac{\pi}{S G}\left\{y-y_{T}-i\left(x-x_{T}\right)\right\} \tag{2-6}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\zeta_{3}=\frac{\pi}{S G}\left\{y-y_{N}-i\left(x-x_{N}\right)\right\} \tag{2-7}
\end{equation*}
$$

Thus the function g can be written as

$$
g=\frac{\sinh \left[\frac{\pi}{5 G}\left(Z_{X Y}-Z_{X Y Y}\right)\right]}{\sinh \left[\frac{\pi}{5 G}\left(Z_{X Y}-Z_{X Y N}\right)\right]}
$$

where

$$
Z_{X Y T, N}=x_{T, N}+i y_{T, N}
$$

The shape of the blade-surface image in the g-plane can best be illustrated by considering a cascade of airfoils consisting of flat plates with circular leading and trailing edges:

FIGURE 5 NOTATION FOR FLAT-PLATE CASCADE

For points Z_{x}, that lie on the circle at the trailing edge, the corresponding location in the g-plane, to first order in r_{T}, is

$$
g \approx \frac{\pi}{S G} \frac{r_{工}}{R} e^{i\left(\psi_{\tau}-\beta\right)}
$$

where

$$
\begin{gathered}
R^{2}=\sinh ^{2}\left(\frac{\pi c}{5 G} \cos \gamma\right) \cos ^{2}\left(\frac{\pi c}{5 G} \sin \gamma\right)+\cosh ^{2}\left(\frac{\pi C}{5 G} \cos \gamma\right) \sin ^{2}\left(\frac{\pi c}{5 G} \sin \gamma\right) \\
\beta=\tan ^{-1} \frac{\cosh \left(\frac{\pi c}{5 G} \cos \gamma\right) \sin \left(\frac{\pi c}{5 G} \sin \gamma\right)}{\sinh \left(\frac{\pi c}{5 G} \cos \gamma\right) \cos \left(\frac{\pi}{5 G} \sin \gamma\right)}
\end{gathered}
$$

The variation of β with γ and $S G / c$ is shown in Fig. 6. For points Z_{x}. that lie on the circle at the leading edge, the corresponding relation, to first order in r_{N}, is

$$
g \approx \frac{s G}{\pi} \frac{R}{r_{N}} e^{i\left(\pi+\beta-\psi_{N}\right)}
$$

Along the upper surface of the flat-plate portion of the airfoil, the coordinates in the physical plane have the values:

$$
z_{X Y}-z_{X Y T}=r e^{i(Y+\pi)} ; z_{X Y}-z_{X T N}=\sigma e^{i}
$$

where r r is measured from $Z_{X Y T}$ and σ from $Z_{X Y N}$, and

$$
r+r=c
$$

The resulting formula for g shows that at midchord (i.e., $r=\sigma=c / 2$), $g=-1$.

These general features of the g-plane are shown in Fig. 7, for a negative stagger angle. Note that a clockwise path around the airfoil, starting from the trailing edge, leads to a clockwise path around the small circle in the q-plane, followed by a transit to the large circle along one side of the flatplate image, and then a counter-clockwise path around the large circle, and back

figure $6 \beta, \gamma$ relation for flat-plate cascade

to the small circle along the other side of the flat-plate image. For blades of finite thickness, the flat-plate image becomes a pair of lines, which fair smoothly into the large and small circles.

In writing the polar angle of any point in the g-plane, care must be taken to retain continuity across the cut (along the negative real axis) that is used by the FORTRAN ATAN2 function. This is achieved by writing:

$$
\arg [g]=A T A N 2[\operatorname{IMAG}(g), \operatorname{REAL}(g)]+2 \pi \cdot B R
$$

where the 'branch number' $B R$ is set equal to zero at the trailing-edge point $K J=1$ (or $K J=2$ for a sharp trailing edge) if the value returned by ATAN2 at this point is positive (and $B R$ is set equal to -1 , if the value returned is negative), and where $B R$ is incremented/decremented each time the branch cut is crossed in the counterclockwise/clockwise direction. For a sharp leading edge, the increment occurring at the leading-edge point must be added specifically, since the radius of the large circle in the g - plane is infinite for this case.

The next step is the exponentiation, defined as:

$$
\begin{equation*}
\Omega=[g(z)]^{1 / K} ; K=2-\frac{\tau}{\pi}=E X I N V \equiv \frac{1}{E X} \tag{2-8}
\end{equation*}
$$

The result of this step is shown in Fig. 8, for the cascade depicted in Fig. 2. The value of $E X$ for a sharp trailing edge is fixed by the angle τ; for a round trailing edge, a value of $E x$ in the neighborhood of 0.2 to 0.5 will usually reduce the variation of any Ω so that the resulting curve in the Ω plane will have a polar radius that is a single-valued function of ary Ω near the trailing edge.

The next transformation is a bilinear one, whose purpose is to produce a curve in the ω-plane that can be mapped into a unit circle in a subsequent step:

$$
\begin{equation*}
c \frac{\omega-a}{\omega-b}=\Omega ; \omega=\frac{a-b \frac{\Omega}{c}}{1-\frac{\Omega}{c}} \tag{2-9}
\end{equation*}
$$

Figure 8 the mapping $\Omega(Z)$
where a, b, and C are complex constants. Three conditions must be assigned, in order to evaluate these constants: Ives suggests, for two of them, that the images of upstream and downstream infinity be mapped into $\omega= \pm 1$. As the third condition, he recommends that the centroid of the blade-surface image in the ω-plane be forced to be close to the origin. This condition was applied in Ref. 9; however, it has been found simpler to impose a condition on the ratio between the maximum and minimum radii in the $\boldsymbol{\omega}$-plane, as outlined below. The calculation of the centroidal location has been retained in the present code, for informational purposes. (Details on how this is calculated can be found in Ref. 9).

The locations of the images of upstream and downstream infinity in the g - and Ω-planes can be expressed as follows: in general,

$$
g\left(Z_{x,}\right)=\frac{\sin \left[\frac{\pi}{s \operatorname{sig}}\left(y-y_{r}\right)\right] \cosh \left[\frac{\pi}{s G}\left(x-x_{r}\right)\right]-i \cos \left[\frac{\pi}{s G}\left(y-y_{r}\right)\right] \sin \left[\frac{\pi}{s i g}\left(x-x_{r}\right)\right]}{\sin \left[\frac{\pi}{s_{9}}\left(y-y_{N}\right) \cosh \left[\frac{\pi}{s G}\left(x-x_{N}\right)\right]-i \cos \left[\frac{\pi}{s G}\left(y-y_{N}\right)\right] \sinh \left[\frac{\pi}{s G}\left(x-x_{N}\right)!\right.\right.}
$$

As $x \rightarrow-\infty$ at finite y (see line (1) of Fig. 9), the large-argument approximations to the hyperbolic functions give

$$
g(-\infty)=\exp \left\{\frac{\pi}{S G}\left(z_{T}-z_{N}\right)\right\}
$$

Similarly, as $x \rightarrow+\omega$ at finite y (see line (2) of Fig. 9), the corresponsing limit is

$$
g(+\infty)=\exp \left\{-\frac{\pi}{s G}\left(z_{r}-z_{N}\right)\right\}
$$

These are written as

$$
\begin{align*}
g(-\infty) & =e^{\ln \left(\zeta_{1}-\zeta_{3}\right)} e^{-i \operatorname{R} \zeta}, e^{x \cdot k} e^{i x_{A} \cdot k} \tag{2-10}\\
g(+\infty) & =e^{-x \cdot k} e^{-i x_{A} \cdot k} \tag{2-11}
\end{align*}
$$

where

$$
\begin{aligned}
& x \cdot K \equiv \ln \left(\zeta_{1}-\zeta_{3}\right)=\frac{\pi}{S G}\left\{\operatorname{Re}\left(Z_{T}-Z_{N}\right) \cos \gamma-\ln \left(Z_{T}-Z_{N}\right) \sin \gamma\right\} \\
& x_{A} \cdot K \equiv \operatorname{Re}\left(\zeta_{1}\right)=-\frac{\pi}{S G}\left\{\operatorname{Re}\left(Z_{T}-Z_{N}\right) \sin \gamma+\operatorname{dn}\left(Z_{T}-Z_{N}\right) \cos \gamma\right\}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\Omega^{-} \equiv[g(-\infty)]^{1 / k}=e^{x} e^{i x_{n}}, \Omega^{+} \equiv[g(+\infty)]^{1 / k}=e^{-x} e^{-i x_{A}} \tag{2-12}
\end{equation*}
$$

Note that

$$
\Omega^{+} \Omega^{-}=1
$$

The constants a and b can be expressed in terms of C by the two equations:

$$
\begin{aligned}
& c \frac{-1-a}{-1-b} \equiv \Omega^{-} \\
& c \frac{1-a}{1-b} \equiv \Omega^{+}
\end{aligned}
$$

The solution is:

$$
\begin{align*}
b & =\frac{-2 c+\Omega^{-}+\Omega^{+}}{\Omega^{+}-\Omega^{-}} ; \quad a=1-(1-b) \frac{\Omega^{+}}{c} \\
& =-E c+F ; \quad ; \quad=\frac{E}{c}-F \tag{2-13}
\end{align*}
$$

where E and F are known quantities:

$$
E \equiv \frac{2}{\Omega^{+}-\Omega^{-}} \quad, \quad F \equiv \frac{\Omega^{+}+\Omega^{-}}{\Omega^{+}-\Omega^{-}}
$$

In terms of the parameters E, F, and C, the transformation can be written $a s$

$$
\begin{align*}
& \omega=\frac{E-F_{c}+\left(E_{c}-F\right) \Omega}{c-\Omega} \tag{2-15}\\
& \Omega=\frac{(\omega+F) c-E}{\omega-F+E c} \tag{2-16}
\end{align*}
$$

The latter relations can be used in an iteration procedure to find a value of C that will minimize the ratio RMAX/RMIN, where RMAX and RMIN are the maximum and minimum values of $|\omega|$ over the set defined by KJ=1 to KJMX. The iteration process is as follows: on alternate iterations, values of C are chosen that will either reduce RMAX or increase RMIN. This is done by solving Equation 2-16 for C :

$$
\begin{equation*}
c=\frac{\Omega \omega+E-F \Omega}{\omega+F-E \Omega} \tag{2-17}
\end{equation*}
$$

On the first iteration, $c=1+i$ is used; the values of RMIN and the index $\mathrm{KJ}=\mathrm{K} . \mathrm{MN}$ at which it occurs are then found. Next, a new value of C is calculated, using Eq. 2-17, such that the new value of ω (KJMN) will equal 1.1 times the value just found. For this new mapping into the ω-plane, the value of rmax and the index $K J=K J M X X$ at which it occurs are found. For the third iteration, a value of C is used such as to generate a new value of ω (KJMXX) equal to 0.9 times the previous one. This alternating cycle is then continued until the ratio RMAX/RMIN is less than the tolerance RTOL. This tolerance is assigned a default value of 3.0 ; values up to 6.0 have been handled successfully by the subsequent steps in the transformation.

The iteration on C can be bypassed, if C is already known, by setting $I G O T=1$ and reading in the value of C. Figure 10 is the $\boldsymbol{\omega}$-plane for the cascade shown in Figure 2.

FIGURE 11 VARIATION OF θ vs. ϕ ON THE BLADE SURFACE

Next, the blade-surface image in the ω-plane is mapped into the unit circle in the ζ-plane with the trailing edge at $\zeta=1$ by either of two methods. The first is the Theodorsen-Garrick transformation:

$$
\begin{equation*}
\omega=\zeta \exp \left\{\sum_{j=0}^{N}\left(A_{j}+i B_{j}\right) \zeta^{j}\right\} \tag{2-18}
\end{equation*}
$$

To determine the coefficients, the values of ω and ζ on the blade surface are written as

$$
\begin{equation*}
\ddot{\omega}=r(\theta) e^{i \theta}, \zeta=1 e^{i \phi} \tag{2-19}
\end{equation*}
$$

Then the real and imaginary parts of the transformation are

$$
\begin{align*}
\ln r & =A_{0}+\sum_{j=1}^{N}\left[A_{j} \cos j \phi-B_{j} \sin j \phi\right] \tag{2-20}\\
\theta & =\phi+B_{0}+\sum_{j=1}^{N}\left[A_{j} \sin j \phi+B_{j} \cos j \phi\right] \tag{2-21}
\end{align*}
$$

FIGURE 12 INTRINSIC COORDINATES

The coefficients are then determined by the following iteration procedure: an equally-spaced array of values of ϕ is set up, and all the coefficients ar initially set equal to zero. Then the second equation gives $\theta=\phi$ as the first approximation for θ. For each of these values of θ, a corresponding value of $\ln r$ can be found, from a spline fit to the coordinates of the blade-surface image in the ω-plane. These known values of $\ln r$ are then used in the first of the equations above, to find the next approximation to the A_{j} and B_{j} coefficients. These coefficients can then be used to give the next approximation to $\theta(\phi)$, and the process is continued until convergence is reached, to some preassigned tolerance. Fast Fourier transform techtechniques ${ }^{12}$ can be used in the processes of evaluating the second equation, for known values of the coefficients, and of determining the coefficients from the first equation with known values of $\ln r$. These techniques were applied in the present calculations. The details are given. in Appendix A.

Sufficient conditions for convergence of this iteration process have been discussed by Warschawski. ${ }^{13}$ For the present case, these conditions are not met; in particular, it is required that the maximum and minimum values of $r(\theta)$ obey the relation:

$$
\sqrt{\frac{R M A X}{R M I N}}-1<0.295 \text { or } \frac{R M A X}{R M I N}<1.678
$$

This condition is seldom met in practice. It was found, however, that the iteration process would converge if.a relaxation parameter was used. i.e.,
12. Cooley, J.W., Lewis, P.A.W., and Welch, P.D., "The Fast Fourier Transform Algorithm: Programming Considerations in the Calculations of Sine, Cosine and Laplace Transforms', Journal of Sound and Vibration 12, (1970) pp. 315-337.
13. Warschawski, S.E., "On Theodorsen's Method of Conformal Mapping of Nearly Circular Regions", Quarterly of Applied Mathematics 3, (1945) pp. :2-28.
if a relaxation parameter was used, i.e., the values of θ called for by the second equation $\left[\right.$ called θ^{*}] were not used in the first equation, but were replaced by $\theta_{\text {new }}=0.1 \theta^{*}+0.9 \theta_{\text {old }}$. With this relaxation factor, the iterations were convergent: after 68 iterations, the maximum change in any of the values of θ was less than 10^{-2} radians. The variation of θ with ϕ is shown in Fig. 11. Calculations for other cases, not shown here, have required relaxation factors as low as 0.02 for convergnece. A recent review paper by Henrici (Reference 14) calls attention to the applicability of under-relaxation in this problem.

When the solidity is high, the curve of θ vs ϕ becomes extremely steep; typical results, for a gap/chord ratio of 0.8 , are shown in Ref. 10. For such cases, a preferable approach is to use a derivative form of the transformation ${ }^{11}$:

$$
\frac{d \omega}{d \zeta}=\operatorname{e+p}\left\{\sum_{1=0}^{d} D_{1} \zeta^{j}\right\}
$$

To determine the coefficients, the ω-plane is expressed in terms of the intrinsic coordinates s and β, where s is arclength measured from the trailing edge, and β is the angle between the real axis and the tangent to the curve (see Fig. 12). The relations between the intrinsic coordinates and the polar angle ϕ in the
ζ-plane are:

$$
S=\int_{\omega_{T E}}^{\omega}|d \omega|=\int_{0}^{\phi}\left|\frac{d \omega}{d T}\right| d \phi
$$

since $|d F|=d \phi$ and

$$
\arg \frac{d \omega}{\alpha \zeta}=\arg d \omega-\arg d \zeta=\beta-(\phi+\pi / 2)
$$

If the Fourier coefficients are written as

$$
D_{f}=D R_{f}+i D I_{f}
$$

Then the basic equation can be split into its real and imaginary parts as:

[^1]\[

$$
\begin{aligned}
& \arg \frac{d}{d \zeta}=D I_{0}+\sum_{j=1}^{N}\left(D I_{j} \cos j \phi+D R_{j} \sin j \phi\right)
\end{aligned}
$$
\]

The coefficients D_{f} are then found by the following steps:

1. β and S are found from the numerical data that define the blade-surface image in the ω-plane
2. A first guess at $|d \dot{d} / d \zeta|$ is made, at equally spaced points on the unit circle in the ζ-plane.
3. The corresponding values of the arclength are found, from

$$
s=\frac{s_{\max }}{\int_{0}^{2 \pi}\left|\frac{d \omega}{d \xi}\right| d \phi} \cdot \int_{0}^{\phi}\left|\frac{d \omega}{d \tau}\right| d \phi
$$

4. A spline fit of the β, S data is used to evaluate, at the equi-spaced ϕ-values, the quantity:

$$
\arg \frac{d \omega}{d \zeta}=\beta-(\phi+\pi / 2)
$$

5. The Fast Fourier Transform is then used to find the coefficients which fit the data of step 4.
6. These coefficients are then used (again with the FFT) to evaluate the next approximation to $|d \omega| d \zeta \mid$, and steps 3 through 6 are repeated until convergence is achieved.

The details of this procedure are very similar to those involved in the Theodorsen-Garrick technique; the FFT steps described in Appendix A can be taken over, with only minor changes.

This procedure was found to converge in 15 iterations (to an arclength error less than .03) without relaxation. The resulting variations of 5 and β with ϕ are shown in Figure 13.

FIGURE 13 INTRINSIC COORDINATES FOR CASCADE OF FIG. 2

The next transformation is

$$
\begin{equation*}
\eta=\gamma \frac{\zeta-\alpha}{\zeta-\beta} \tag{2-22}
\end{equation*}
$$

where α, β, and γ are chosen so as to place the images of $z= \pm \infty$ at η $= \pm S$, while the blade surface continues to be the unit circle. These images are located, respectively, at $\omega= \pm 1$, and $\zeta=\zeta_{A}, \zeta_{B}$. Explicit formulas for α, β, and γ in terms of ζ_{A} and ζ_{B} are given by Ives ${ }^{8}$ as

$$
\begin{align*}
x & =\frac{2-\left|\zeta_{A}+\zeta_{B}\right|^{2}+2\left|\zeta_{A} \zeta_{B}\right|^{2}}{\left|\zeta_{A}-\zeta_{B}\right|^{2}} \\
S & =\min \left\{\sqrt{\left|x+\sqrt{x^{2}-1}\right|}, \sqrt{\left|x-\sqrt{x^{2}-1}\right|}\right\} \\
\alpha= & \frac{2 \zeta_{A} \zeta_{B}+\left[S^{2}\left(\zeta_{A}-\zeta_{B}\right)-\left(\zeta_{A}+\zeta_{B}\right)\right] / \zeta_{A}}{S^{2}\left(\zeta_{A}-\zeta_{B}\right)+\left(\zeta_{A}+\zeta_{B}\right)-2 / \zeta_{A}} \\
\beta= & \frac{2 \zeta_{A} \zeta_{B}-\alpha\left(\zeta_{A}+\zeta_{B}\right)}{\zeta_{A}+\zeta_{B}-2 \alpha} \\
\gamma= & S \frac{\zeta \zeta_{A}-\beta}{\zeta_{A}-\alpha} \tag{2-23}
\end{align*}
$$

Mokry (Reference 15) has pointed out that the formula for S^{\prime} can be simplified, as follows: define

$$
C \equiv \frac{\zeta_{A} \bar{\zeta}_{B}-1}{\zeta_{A}-\zeta_{B}}
$$

Then

$$
\begin{array}{ll}
S=|C|-\sqrt{|C|^{2}-1} & , \\
\alpha=\frac{C-S|C| \bar{\zeta}_{B}}{|C| \zeta_{B}-S C} \tag{2-24}\\
\alpha=\frac{\zeta_{B} C-S|C|}{C-S|C| \bar{\zeta}_{B}}, & \beta=\frac{|C|-S C \zeta_{B}}{|C| \bar{\zeta}_{B}-S C}
\end{array}
$$

The computer program described below does not use these simplifications.

Next, it is necessary to find ζ_{A} and ζ_{B}, given $\omega= \pm 1$. This was done by Newton-Raphson iteration:

$$
\zeta^{(n+1)}=\zeta^{(n)}-\frac{G(\zeta)}{\frac{\alpha G}{\alpha \zeta}}
$$

where for the Theodorsen-Garrick procedure

$$
\begin{aligned}
& G(\zeta)=\zeta \exp \left\{\sum_{j=0}^{N}\left(A_{j}+i B_{j}\right) \zeta^{j}\right\}-\omega \\
& \frac{d G}{d \zeta}=\frac{\omega}{\zeta}\left[1+\sum_{j=1}^{N} j\left(A_{j}+i B_{j}\right) \zeta^{j}\right]
\end{aligned}
$$

[^2]In order to find an initial guess for 5 , a preliminary calculation was made, for

$$
|\zeta|=0.49(.1) 0.99, \quad \arg \zeta=-60^{\circ}\left(10^{\circ}\right)+60^{\circ}
$$

From this set, the value of ζ which gave ω nearest to +1 was chosen as the initial guess. This set was then repeated with ζ replaced by $-\zeta$, to obtain the value of ζ that gave ω nearest to -1 . The locations of key points in the ζ and η planes are shown in Fig. 14.

When using the derivative form of the ω, ζ transformation, it is necessary to integrate the derivative $d w / d \zeta$; this was done using Simpson's Rule, starting at the trailing edge:

$$
\omega-\omega_{T E}=\int_{1}^{\zeta} \frac{d \omega}{d \zeta} d \zeta
$$

The equations used in this case for the Newton-Raphson procedure are

$$
\begin{aligned}
& G(\Gamma)=\omega_{T E}+\int_{1}^{\zeta} \frac{d \omega}{d \zeta} d \zeta-\omega \\
& \frac{d G}{d \zeta}=\frac{d \omega}{d T}=\exp \sum_{j=0}^{N} D_{j} \zeta^{\gamma} .
\end{aligned}
$$

When the values of ζ_{A} and ζ_{B} are known, the blade-surface-image points can be mapped from the ζ-plane to the η-plane. In both planes, these points are located on unit circles, so it is only necessary to interpolate in Fig. 12 to find the ζ-values for the points defining the blade surface. This is done with a cald to the spline-fit subroutine, and the values returned by it are replaced by linear interpolation in regions where the θ, ϕ curve is so steep that the spline fit returns non-monotonic vaiues.

The final transformation now uses an elliptic function to map the unit circle in the η-plane (with cuts along the real axis from $\pm S$ to the circle) into a rectangle:

$$
\begin{equation*}
\eta=s \operatorname{sn}(\tilde{\xi}, t) \tag{2-25}
\end{equation*}
$$

where the parameter k is given by

$$
\begin{equation*}
A=S^{2} \tag{2-26}
\end{equation*}
$$

Figure 14 The ζ and η Planes

The inverse of this transformation is

$$
\begin{equation*}
\tilde{\xi}=\int_{0}^{\eta / s} \frac{d t}{\sqrt{1-t^{2}}} \sqrt{1-k^{2} t^{2}} \tag{2-27}
\end{equation*}
$$

This latter transformation is used to find the images, in the $\tilde{\xi}$-plane, of the blade-surface points. This requires an expression for the real and imaginary parts of the incomplete elliptic integral of the first kind; convenient formulae for this purpose are given by Nielsen and Perkins ${ }^{16}$ who show that, if

$$
\begin{equation*}
\eta=S(\tau+i \delta) \tag{2-28}
\end{equation*}
$$

then

$$
\begin{equation*}
\tilde{\xi}=F(\sqrt{\lambda}, t)+i F\left(\sqrt{\sigma}, t^{\prime}\right) \tag{2-29}
\end{equation*}
$$

where

$$
\begin{equation*}
t^{\prime}=\sqrt{1-t^{2}}=\sqrt{1-5^{4}} \tag{2-30}
\end{equation*}
$$

[^3]and where F (...) denotes the incomplete elliptic integral of the first kind, with real arguments λ and σ given as functions of τ, δ and t :
\[

$$
\begin{align*}
\lambda= & {\left[1+\tau^{2}+\delta^{2}-\sqrt{\left(1-\tau^{2}\right)^{2}+\delta^{2}\left(\delta^{2}+2+2 \tau^{2}\right)}\right]\left[1+k^{2}\left(\tau^{2}+\delta^{2}\right)\right.} \\
& \left.-\sqrt{\left(1-k^{2} \tau^{2}\right)^{2}+t^{2} \delta^{2}\left(2+2 t^{2} \tau^{2}+t^{2} \delta^{2}\right)}\right] / 4 t^{2} \tau^{2} \\
\sigma= & {\left[\tau^{2}+\delta^{2}-\lambda\right] /\left[\tau^{2}+\delta^{2}-\lambda+1-\lambda k^{2}\left(\tau^{2}+\delta^{2}\right)\right] } \tag{2-31}
\end{align*}
$$
\]

These formulae are equivalent to those following Eqn. 115.01 of Byrd and Friedman; ${ }^{17}$ the formula for λ has been rearranged slightly from the form given by Nielsen and Perkins, to avoid the occurence of negative values under the square root sign, which can sometimes happen in the numerical evaluations when $\delta=0$. These formulas are correct along the branch cuts, where $\delta=0$ and $|\eta| / \mathcal{S}>1$.

Numerical evaluations of these elliptic integrals were done using twelve terms in the formulae of Luke: ${ }^{18}$

$$
\begin{align*}
F(y, t) & \equiv \int_{0}^{y} \frac{d t}{\sqrt{1-t^{2}}} \sqrt{1-t^{2} t^{2}}=\int_{0}^{\phi=\sin ^{-1} y} \frac{d \psi}{\sqrt{1-t^{2} \sin ^{2} \psi}} \\
& \approx F_{12}(\phi, t)=\frac{1}{25}\left[\phi+2 \sum_{m=1}^{12} \frac{\tan ^{-1}\left(\sigma_{m} \tan \phi\right)}{\sigma_{m}}\right] \tag{2-32}
\end{align*}
$$

17. Byrd, P.F., and Friedman, M.D., Handbook of Elliptic Integrals for Engineers and Physicists. Springer Verlag, Berlin (1954).
18. Luke, Y.L., "Approximations for Elliptic Integrals", Mathematics of Computation, 22 (1968) 627-634.
where

$$
\phi<\pi / 2, \sigma_{m}=\sqrt{1-t^{2} \sin ^{2} \theta_{m}}, \theta_{m}=m \pi / 25
$$

For the case where $\phi=\pi / 2$ (the complete integral) the approximate formula is

$$
\begin{equation*}
F_{12}\left(\frac{\pi}{2}, t\right)=\frac{\pi}{50}\left[1+2 \sum_{m=1}^{12} \frac{1}{\sigma_{m}}\right] \tag{2-33}
\end{equation*}
$$

The signs in the formulas above pertain to the first quadrant in the η-plane $(\tau \geqslant 0, \delta \geqslant 0)$, which maps into a rectangle in the first quadrant of the $\tilde{\xi}_{\text {-plane, with sides located on the lines }}$

$$
\begin{align*}
& \operatorname{Re}(\tilde{\xi})=K(t)=\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-S^{4} t^{2}}} \\
& \operatorname{lm}(\tilde{\xi})=\frac{1}{2} K^{\prime}(t)=\frac{1}{2} \int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-\left(1-S^{4}\right) t^{2}}} \tag{2-34}
\end{align*}
$$

The remaining three quadrants in the η-plane map into the remaining three quadrants in the $\tilde{\xi}$-plane, as described in Reference (19), p. 377; the cuts from $\pm S$ to the unit circle along the real axis become the left and right sides of the rectangle in the $\tilde{\xi}$-plane:

[^4]

Figure 15 The η and $\tilde{\boldsymbol{\xi}}$ Planes
Finally, the $\tilde{\xi}$ - plane is re-normalized, so as to lie between -1 and +1 on both axes:

$$
\begin{equation*}
z_{\text {MAPPED }}=\frac{\operatorname{Re}(\tilde{\xi})}{K(k)}+i \frac{d_{m}(\tilde{\xi})}{\frac{1}{2} K^{\prime}(k)} \tag{2-35}
\end{equation*}
$$

A grid is now to be set up in the $\tilde{\xi}$ plane, and mapped back to the Z - plane. This process is facilitated by first rearranging the quadrants in the $\tilde{\xi}$ - plane, by using the periodicity of the elliptic functions as follows: in the first and second quadrants, let $\hat{\xi}=\tilde{\zeta}$, and in the third and fourth let $\hat{\xi}=-(\tilde{\xi}+2 K(t))$ and use the relations (see for example, Eqs. 122.00 and 122.04 of Reference 17.

$$
\begin{equation*}
\operatorname{sn}(\tilde{\xi})=-\operatorname{sn}(\tilde{\xi}+2 k)=\operatorname{sn}[-(\tilde{\xi}+2 k)]=\operatorname{sn}[-k-(\tilde{\xi}+k)] \tag{2-36}
\end{equation*}
$$

The $\hat{\xi}$ plane then has the form:

Figure 16 The $\hat{\boldsymbol{\xi}}$ Plane

Two types of grid can be selected in the $\hat{\xi}$ plane: a rectangular one (if ISHEAR $=0$) or a sheared one (if ISHEAR=1). The latter is the default.

For the rectangular grid, equally spaced points are assigned, according to

$$
\begin{align*}
& \hat{\xi}_{R} \equiv R(\hat{\xi})=(K-1) \Delta \hat{\xi}_{\text {real }}, K=1,2, \ldots, K M X \tag{2-37}\\
& \hat{\xi}_{I} \equiv \operatorname{tm}(\hat{\xi})=\frac{i}{2} K^{\prime}(k)-(L-1) \Delta \hat{\xi}_{\text {image }}, \quad L=1,2, \ldots, L M X
\end{align*}
$$

where

$$
\begin{equation*}
\Delta \hat{\xi}_{\text {real }}=\frac{4 K(t)}{K M X-1} \quad, \quad \Delta \hat{\xi}_{\text {image }}=\frac{\frac{1}{2} K^{\prime}(k)}{L M X-1} \tag{2-38}
\end{equation*}
$$

Becuase the mapping is conformal, the images of these grid lines will intersect at right angles when mapped back to the physical plane.

The rectangular grid has the property that in general the trailing edge is not connected, by a grid line, to the point at downstream infinity. However, such a connection is a desirable feature in certain flowfield codes
(see Ref. 7, for example). To allow this feature, the ISHEAR=1 option establishes a sheared grid, consisting of the same $\operatorname{lm}(\hat{\xi})$ lines as above, but replacing the $R_{C}(\hat{\xi})$ lines by a set of parabolas which intersect the blade surface at 90 degrees, and are displaced from a base parabola that connects the trailing edge to the image of downstream infinity:

$$
\begin{align*}
\hat{\xi}_{I} & =\frac{1}{2} K^{\prime}(k)-(L-1) \Delta \hat{\xi}_{\text {mag }}, L=1,2, \ldots, L M X \\
\hat{\xi}_{R} & =\hat{\xi}_{R}(T E)+(K-1) \Delta \hat{\xi}_{\text {real }} \\
& +\left[\hat{\xi}_{I}-\frac{1}{2} K^{\prime}(k)\right]^{2}, K=1,2, \ldots, K M X \tag{2-39}
\end{align*}
$$

where

$$
\begin{equation*}
\text { canst }=\frac{-\left[K^{\prime}(k)\right]^{2}}{4\left[3 K(k)+\hat{\xi}_{R}(T E)\right]} ; \hat{\xi}_{R}(T E)=\operatorname{Re}\{\hat{\xi}[K J=1]\}_{2} \tag{2-40}
\end{equation*}
$$

Some points on these parabolas will lie outside the range

$$
-3 K(k) \leqslant \hat{\xi}_{R} \leqslant+K(k)
$$

When this occurs, equivalent points are found by adding or subtracting $4 K(k)$, the period of the elliptic sine. In addition, the base parabola is always joined to the lower-left corner of Fig. 15, by subtracting $4 K(k)$ from the real part of $\hat{\xi}_{T E}$, if the latter is greater than $-K(k)$.

An alternate method $0:$ joing the images of the trailing edge and downstream infinity, while retaining an orthogonal grid, is described in Section 4. It involves use of the Schwarz-Christoffel transformation.

This completes the definition of the grid in the $\hat{\xi}$-plane. Each of these grid points must now be mapped back to the physical plane. The first transformation is:

$$
\begin{equation*}
\eta=S \operatorname{sn}(\tilde{\xi} ; k)=S \operatorname{sn}(\xi ; k) \tag{2-41}
\end{equation*}
$$

The elliptic sine of a complex argument is expressed as (Ref. 11, Eq. 125.01)
$\operatorname{sn}(u+i v, k)$

$$
\begin{equation*}
=\frac{\operatorname{sn}(u, k) d n\left(v, k^{\prime}\right)+i c n(u, k) d n(u, k) \operatorname{sn}\left(v, k^{\prime}\right) \operatorname{cn}\left(v, k^{\prime}\right)}{1-\operatorname{sn}^{2}\left(v, k^{\prime}\right) d n^{2}(u, k)} \tag{2-42}
\end{equation*}
$$

The functions in this expression are evaluated by the Arithmetic-Geometric Mean method (see Ref. 20, p. 571):

Set

$$
a_{0}=1, b_{0}=t^{\prime}, c_{0}=t
$$

and then calculate

$$
\begin{align*}
& a_{n}=\frac{1}{2}\left(a_{n-1}+b_{n-1}\right), b_{n}=\sqrt{a_{n-1} b_{n-1}} \\
& c_{n}=\frac{1}{2}\left(a_{n-1}-b_{n-1}\right) \tag{2-43}
\end{align*}
$$

until $C_{n}=0$ to a prescribed tolerance (10^{-7} was used in the present case.) Then form

$$
\varphi_{N}=2^{N} \cdot a_{n} \cdot u
$$

and calculate $\varphi_{N-1}, \varphi_{N-2}, \ldots, \varphi_{0}$ from

$$
\begin{equation*}
\phi_{n-1}=\frac{1}{2}\left\{\phi_{n}+\arcsin \left(\frac{c_{n}}{a_{n}} \sin \theta_{n}\right)\right\} \tag{2-44}
\end{equation*}
$$

Then the desired results are given by
20. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series 55 (1964).

$$
\begin{align*}
& \operatorname{sn}(u, t)=\sin \varphi_{0}, \quad \operatorname{cn}(u, t)=\cos \varphi_{0}, \\
& \alpha_{n}(u, t)=\frac{\cos \varphi_{0}}{\cos \left(\varphi_{1}-\varphi_{0}\right)} \tag{2-45}
\end{align*}
$$

These values of η are then mapped back to the ζ - plane by

$$
\begin{equation*}
\zeta=\frac{\beta \eta-\alpha \gamma}{\eta-\gamma} \tag{2-46}
\end{equation*}
$$

and thence to the ω-plane by either

$$
\begin{equation*}
\omega=\zeta \exp \left[\sum_{j=0}^{N}\left(A_{j}+i B_{j}\right) \zeta^{j}\right] \tag{2-47}
\end{equation*}
$$

if the Theodorsen-Garrick transformation is benig used or by

$$
\omega=\omega_{\text {START }}+\int_{\zeta_{\text {START }}}^{\zeta} \frac{d \omega}{d \zeta} d \zeta
$$

if the derivative form of the ω, ζ transformation is being used. The values used for the starting point of this integration are as follows: at first, the equation is integrated from $\omega=-1$ to $\omega=+1,\left(\zeta=\zeta_{3}\right.$ to $\left.\zeta_{A}\right)$ so as to establish the periodic boundary. Then a series of integrations is done, at constant K, for ' L ranging from the blade surface to the periodic boundary (the values of
5 and ω on the blade-surface image were found earlier in the FFT procedure).
These integrations are overdetermined, in the sense that both end points are known, as well as the values of the derivatives in between. Moreover, the integrations used to establish the end points have been done by several techniques (among them, Simpson's rule and the fFT procedure). Thus the integrations from a given starting point do not always terminate at the desired end point; when this occurs, a small adjustment is made, in the values of the derivatives, so as to guarantee the proper end points.

Finally, the value of $Z_{x y}$ is found by inverting;

$$
g(z)=\Omega^{k^{\prime}}=\left(c \frac{\omega-2}{\omega-\dot{b}}\right)^{k}=\frac{\sinh \left[\frac{\pi}{5 G}\left(Z_{x y}-z_{x y r}\right)\right]}{\sinh \left[\frac{\pi}{5 G}\left(Z_{x y}-z_{x y N}\right)\right]}
$$

whose inverse is

$$
z_{x y}=\frac{s G}{2 \pi} \ln \frac{\exp \left(\frac{\pi}{s G} z_{x, T}\right)-g \exp \left(\frac{\pi}{s G} z_{x, N}\right)}{\exp \left(-\frac{\pi}{s G} z_{x, r}\right)-g \exp \left(-\frac{\pi}{s G} z_{x, N}\right)}
$$

The final result of this process is shown in Figure 17, for the cascade of Figure 2. This grid was found using the derivative form of the transformation; a comparable grid found with the Theodorsen-Garrick technique is shown in Ref. 7.

For higher solidities, the derivative form of the ω, ζ transformation can be used; Figure 18 shows the grid that results for a gap/chord ratio of 0.5. The grid points calculated for the region near the leading edge have been omitted from this figure, because they cannot be located with sufficient accuracy. The basic reason for this loss of accuracy can already be seen at a gap/chord ratio as high as 1.0 (see Fig. 13): the portion of the blade-surface image near the leading edge has a nearly vertical slope in this figure. Thus while the derivative form of the transformation does coverage for high solidities, the grid which it leads to suffers from a loss of accuracy near the leading edge.

This loss is aggravated, in the present case, by the adjustment of derivatives that is made, to enforce periodicity. Near the leading edge, the adjustments required become significant, and their cumulative effect is to produce a non-orthogonality at the blade surface. Further study is required, in order to minimize this problem of inaccuracy near the leading edge.

FIGURE 17 COORDINATE MAPPING SOLIDITY $=1$

figure 18 coordinate mapping high solidity case

$$
u-i v=\frac{d w}{d z_{x,}}=\frac{d w^{\prime}}{d \eta} \frac{d x}{d \zeta} \frac{d \zeta}{d \omega} \frac{d w}{d \Omega} \frac{d \Omega}{d z_{x \gamma}}
$$

As $Z_{x y} \rightarrow+\infty$, the image in the x-place is $\eta \rightarrow+S$; then:

$$
\frac{d w}{d x} \cong\left[-Q e^{i x}-i G\right] /(n-s)
$$

Thus

$$
\frac{d w^{\prime}}{\text { But }^{d Z r}}=-\frac{Q e^{i \alpha}+i G}{\eta-s} \frac{d \eta}{d Z_{x T}}=-\frac{Q e^{i \alpha}+i G}{\eta-s} \frac{d \eta}{d \zeta} \frac{d \zeta}{d \omega} \frac{d \omega}{d \Omega} \frac{d \Omega}{d Z_{x \gamma}}
$$

$$
\left.\left.\left.\left.\left.\left.{ }_{\text {Thus }}^{\eta-S}=\frac{d x}{d \zeta}\right)_{\zeta_{A}}\left(\zeta-\zeta_{A}\right)=\frac{d \eta}{d \zeta}\right)_{S_{A}} \frac{d \zeta}{d \omega}\right)_{+1}(\omega-1)=\frac{d \eta}{d \zeta}\right)_{S_{A}} \frac{d \zeta}{d \omega}\right)_{+1} \frac{d \omega}{d \Omega}\right)_{\Omega(+\infty)}(\Omega-\Omega(\infty))
$$

$$
(u-i v)_{+\infty}=-\left[Q e^{i \alpha}+i G\right] \frac{d \Omega}{d Z_{x y}} /[\Omega-\Omega(\infty)]
$$

By using the approximate form of the $\Omega, Z_{X Y}$ relation as $Z_{X Y} \rightarrow \infty$, it is possible to show that

$$
\frac{\alpha \Omega / d z_{X Y}}{\Omega-\Omega(\infty)}=-\frac{2 \pi}{S G}
$$

Thus

$$
(u-i v)_{+\infty}=\frac{Q \cdot 2 \pi}{S G}\left[e^{i \alpha}+i \frac{G}{Q}\right]
$$

A similar analysis shows that

$$
(u-i v)_{-\infty}=\frac{Q \cdot 2 \pi}{5 G}\left[e^{i \alpha}-i \frac{G}{Q}\right]
$$

To satisfy the continuity requirement that $u_{+\infty}=u_{-\infty}$ take $Q=u \cdot s G / 2 \pi$
Then:

$$
\begin{gathered}
u_{-\infty}=u_{+\infty}=U \cos \alpha \\
v_{-\infty}=+U[-\sin \alpha+G / Q] \quad v_{+\infty}=u[-\sin \alpha-G / Q] \\
\left(u^{2}+v^{2}\right)_{ \pm \infty}^{1 / 2}=u\left\{1+\frac{G^{2}}{Q^{2}} \pm 2 \frac{G}{Q} \sin \alpha\right\}^{1 / 2}
\end{gathered}
$$

These relations are shown in Figure 19; note that α is <0 for positive incidence.

Once the constants G and Q are established, the velocities at any point in the flow can be found, by using

$$
u-i v=\frac{d w}{d z_{X Y}}=\frac{d w}{d x} \frac{d x}{d T} \frac{d \zeta}{d w} \frac{d w}{d \Omega} \frac{d \Omega}{d Z_{X Y}}
$$

Each of the derivatives in this formula can be evaluated exactly. A typical result is the streamline pattern shown in Figure 20.

This solution is of value in its own right (especially since it is found from purely algebraic formulae), and can also be useful as a set of initial conditions for a time-marching or iterative solution of the flow pattern.

FIGURE 19 VELOCITY COMPONENTS
FAR UPSTREAM AND DOWNSTREAM OF CASCADE

Section 4
 ORTHOGONAL GRIDS

It was pointed out above that many current flowfield codes require a grid, in the computational plane, having the property that the images of the trailing edge and the point at downstream infinity lie at corners of the grid. This property is not realized by the Ives transformation; the point at downstream infinity occurs at a corner of the $\hat{\xi}$-plane, but the trailing edge does not. The sheared grid discussed in Section 2 is one way to achieve the desired property, but it has the disadvantage that the resulting grid is not orthogonal.

The Schwarz-Christoffel transformation can be used, in place of the shearing, to achieve an orthogonal grid. A number of recent publications (22-25) have discussed the use of this transformation; its great versatility offers several possible ways to use it, within the Ives Transformation. For example, it would be possible to replace the elliptic-integral step between the η and $\hat{\boldsymbol{\xi}}$ planes by a hyper-elliptic integral (which is a form of the Schwarz-Christoffel formula). However, a much more straightforward application has been made here, namely to map the parallelogram formed by joining the trailing-edge and downstream infinity points in the $\hat{\xi}$-plane into a rectangle. This step can be used on other grid generators having similar properties, such as that of Ref. 26, for example.

Figure 21 shows the parallelogram formed by joining the images of the trailing edge and the point at downstream infinity in the $\hat{\xi}$ plane:

FIGURE 21 Parallelogram in the $\hat{\boldsymbol{\xi}}$-plane

The particular values of the coordinates shown on this figure are those peculiar to the Ives transformation; the method applies to arbitrary locations.

This figure is mapped into the upper half of the t-plane by the Schwarz-Christoffel transformation:

$$
\frac{\alpha \hat{\xi}}{d t}=M\left(t-t_{A}\right)^{-\beta / \pi}\left(t-t_{B}\right)^{-1+\beta / \pi}\left(t-t_{c}\right)^{-\beta / \pi}\left(t-t_{B}\right)^{-1+\beta / \pi}
$$

where the parameters t_{A} through t_{D} are pure real:

The exponents in the above equation guarantee that an integration path along the real axis in the t-plane will produce a four-sided figure with the proper angles. The four parameters t_{A} through t_{D} and the complex constant M must be chosen so as to produce the desined parallelogram.

It turns out that only two parameters are needed: $\quad t_{A}$ can be set equal to $-t_{D}, \quad t_{B}$ to $-t_{C}$, and t_{C} can be set equal to 1.0 without loss of generality:

$$
\frac{d \hat{\xi}}{d t}=M\left(t+t_{D}\right)^{-\beta / \pi}(t+1)^{-1+\beta / \pi}(t-1)^{-\beta / \pi}\left(t-t_{D}\right)^{-1+\beta / \pi}
$$

This set of parameters produces a genuine parallelogram, ie., the lengths of opposite sides are equal. Thus, all that is needed is to select t_{0} so as to give the desired ratio of the adjacent sides, and then set the parameter M so as to give the proper absolute size.

Numerical integrations of this formula can be carried out using the method of Ref. 22; the integral over a distance Δt can be written as:

$$
\hat{\xi}_{m+1}-\hat{\xi}_{m}=\frac{M}{(\Delta t)^{3}} \prod_{i=1}^{4}\left\{\left.\frac{\left(t-t_{i}\right)^{P_{i}}}{P_{i}}\right|_{t_{m}} ^{t_{m+1}}\right\}
$$

where

$$
\Delta t=t_{m+1}-t_{m}
$$

and where t_{i} and P_{i} are the parameters:

$$
\begin{array}{ll}
P_{1}=P_{3}=1-\beta / \pi & ; P_{2}=P_{4}=\beta / \pi \\
t_{4}=-t_{1}=t_{7} ; & t_{3}=-t_{2}=1
\end{array}
$$

The length/width ratios of the parallelograms produced by typical cascades are generally 5.0 or larger. Numerical work using the formula above shows that such ratios require values of t_{D} that are only slightly larger than 1 :

$$
t_{D}=1+\epsilon
$$

Asymptotic formulas for the lengths of the slant side (called side 1) and the horizontal side (called side 2) of the parallelogram can be found by taking the limit as $\epsilon \rightarrow 0:$

$$
\left.\frac{1}{M} \Delta \hat{\xi}\right)_{\text {SIDE 1 }}=\int_{-1-\epsilon}^{-1}(t+1+\epsilon)^{-\beta / \pi}(t+1)^{-1+\beta / \pi}(t-1)^{-\beta / \pi}(t-1-\epsilon)^{-1+\beta / \pi} \alpha t
$$

The change of variable $t=-1-\epsilon \times$ leads to:

$$
\left.\frac{1}{M} \Delta \hat{\xi}\right)_{\text {S, DE } 1}=\frac{1}{2} e^{i \beta} \int_{0}^{1}(1-x)^{-\beta / \pi} x^{-1+\beta / \pi} F(x ; \epsilon) d x
$$

where

$$
\begin{aligned}
F & =\left(1+\frac{\epsilon x}{2}\right)^{-\beta / \pi}\left(1+\frac{\epsilon}{2}[x+1]\right)^{-1+\beta / \pi} \\
& =1-\frac{\epsilon}{2}\left(\frac{\beta}{\pi} x+\left[1-\frac{\beta}{\pi}\right](x+1)\right)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

The leading term can be expressed in terms of gamma functions; using the relations (Ref 27)

$$
\begin{aligned}
& \int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \\
& \Gamma(z+1)=z \Gamma(z) \\
& \Gamma(z) \Gamma(1-z)=\pi \csc (\pi z)
\end{aligned}
$$

leads to

$$
\left.\frac{1}{M} \Delta \hat{\xi}\right)_{\text {sloE } 1}=\frac{1}{2} e^{i \beta} \frac{\pi}{\sin \beta}[1+O(\epsilon)]
$$

To find the analogous result for side 2 :

$$
\left.\frac{1}{M} \Delta \hat{\xi}\right)_{\text {SIDE } 2}=\int_{-1}^{+1}(t+1+\epsilon)^{-\beta / \pi}(t+1)^{-1+\beta / \pi}(t-1)^{-\beta / \pi}(t-1-t)^{-1+\beta / \pi} d t
$$

Let

$$
\int_{-1}^{+1} \cdots=\int_{-1}^{0} \cdots+\int_{0}^{+1} \cdots
$$

In the first of these integrals, let $t+1=\epsilon x$, and in the second, let $t-1=-\epsilon y$; this leads to

$$
\begin{aligned}
\left.-\frac{2}{M} \Delta \hat{\xi}\right)_{\text {SIDE } 2} & =\int_{0}^{1 / \epsilon}(x+1)^{-\beta / \pi} x^{-1+\beta / \pi}[1+O(\epsilon)] d x \\
& +\int_{0}^{1 / \epsilon}(y+1)^{-1+\beta / \pi} y^{-\beta / \pi}[1+o(\epsilon)] d y
\end{aligned}
$$

The first of these integrals can be estimated by an integration by parts, while the second can be approximated, for $\epsilon=0$, as a Mellin transform; the leading term in each integral is $\ln \epsilon$, with the result:

$$
\left.\frac{1}{M} \Delta \hat{\xi}\right)_{\operatorname{SiDE} 2}=-\ln \left(\frac{1}{\epsilon}\right)+O(1)
$$

The practical application of these asymptotic formulas is to provide a first guess at ϵ for a given ratio of the length of the adjacent sides of the parallelogram. Values of ϵ on the order of 10^{-5} are needed, for side ratios of 5 or so; these small values required comparably small step sizes in the numerical evaluations, in order to preserve accuracy.

Once the parameters for mapping of the parallelogram are established, the next step is make the upper half of the t-plane into a rectangle; this is achieved by using the same values of ϵ and M, with $\beta / \pi=1 / 2$.

An orthogonal grid can then be set up in the rectangle plane, and mapped (numerically) to the t-plane. This grid can then be mapped, again numerically, from the t-plane to the parallelogram in the $\hat{\xi}$-plane, and then back to the physical plane, as explained in Section 2.

Section 5
 METRIC EVALUATIONS

The coordinate transformation enters the flowfield solution algorithm only in the metric derivatives. These can be evaluated by differencing the coordinates themselves, or in the case of a conformal transformation, by evaluating the analytic expressions for them. These analytic expressions are derived in Ref. 1 , and the code listed in that report contains the Fortran statements required to evaluate these expressions. However, as pointed out in Ref. 7 , the truncation error resulting from the use of analytic metrics in the finitedifference flowfield code is large enough to cause major instabilities in the solution algorithm. It is highly preferable to use metrics that are found by differencing the coordinates in the same manner as the flowfield variables are differenced. A program to achieve this, for the grid conventions used in Ref. 7, is given in Appendix D.

Section 6
 COMPUTER PROGRAM

A listing of the computer program is given in Appendix B, and a dictionary of variables is given in Appendix C. This section contains a general description of the program, plus some specific details.

In order to handle complex arithmetric, all variables beginning with the letter Z are declared to be complex by an implicit type specification at the beginning of the program.

The input is generally described by comment cards in the deck. Certain blade-shape parameters must be read in: EX, G, H, ZLE, ZTE, ZN, ZT. Also, if IGOT=1, $2 C$ must be read in. The blade shape itself is defined by pairs of coordinates in the $5, n$ plane - KJS on the suction side and KJP on the pressure side. In the version shown here, these were read in as a table in subroutine SHAPE.

The blade surface coordinates are numbered from 1 to KJMX; point number 1 is the trailing edge, 2 through KJLM are on the pressure side from trailing edge to leading edge, point KJLE is the leading-edge point (ZLE), KJLP through KJMXM are on the suction side from leading edge to trailing edge, and point KJMX repeats the trailing edge.

The complex sine functions are calculated next; then the iterations to determine the parameter C are done. The initial guess provided for C is
$Z C=1+i$. It may happen in some cases that a better guess is required: in particular, it is necessary that the value of C must lie outside the bladesurface curve in the Ω-plane. If it does not, then the interior of this curve in the Ω-plane is mapped to the exterior of the blade-surface image in the $\boldsymbol{\omega}$-plane. This fact can be seen from the discussion by Kober (Ref. 28 of the bilinear transformation applied to circles.

[^5]After the parameter C has been found, the transformation to the ζ plane is carried out, using the fast Fourier transfrorm procedure (see Appendix A). The actual calculations of the Fourier coefficients are done in subroutine FFT2, a proprietary program of International Mathematical and Statistical Libraries, Inc. (IMSL). This routine computes the fast Fourier transform of a complex vector of length equal to a power of two (here 2^{6}). The coefficients of the input vector are given in normal order by the array named as the first argument of the call; the coefficients of the output vector are overstored in this array, in reverse binary order. The subroutine SHUFL is then used to restore this output to the normal order. The coefficients in the series expression for ζ are determined iteratively in a relaxation process that is terminated when the maximum change in θ falls below the tolerance ANGERR, or when IMX iterations are done. If the derivative form of the transformation is being used, the maximum change in S is required to be less than ANGERR.

In doing these iterations, it is necessary to know values of $\ln r$ at given values of θ; these are found by a spline fit in subroutine CISPLN, which is a straightforward implementation of the formulas given by Ahlberg, et al. ${ }^{29}$ Similarlv. β at given values of s is found by a spline fit.

In certain cases (typically when RMAX/RMIN is large) the calculated variation of θ with ϕ may be non-monotonic; if this occurs, the calculation should be repeated, with a smaller relaxation factor. The progress of the ϕ / θ iterations is printed, showing at each iteration the largest change in θ and the number of reversals (i.e., the number of occurrences of non-monotonic variation). The iterations using the derivative form usually do not display a similar problem, and converge very quickly, with $O M=1$.

[^6]Next, the parameters ζ_{A} and ζ_{B} are found, starting with "best-guess" values calculated in the sectors described in Section 2. Once these are found, the mapping to the \cap-plane follows. The calculations that link the Ω-plane and the ζ-plane are done in subroutine OMETA, which sums the Theodorsen-Garrick series, using complex arithmetric. This subroutine has been modified slightly from that appearing in Ref. 9, as follows: the previous code evaluated sums of the form

$$
\begin{equation*}
Z \text { SUM }=\sum_{J P=1}^{65} Z C C(J P) \zeta^{J P-1} \tag{4-1}
\end{equation*}
$$

by a sequence of multiplications and additions:

$$
\begin{equation*}
Z \text { SUM }=Z \subset C(65) \zeta^{64}+Z \subset C(64) \zeta^{63}+\ldots+Z \subset c(1) \tag{4-2}
\end{equation*}
$$

The current version uses (Ref. 30, p. 28)

$$
\begin{equation*}
Z S \cup M=\langle\{Z \subset \subset(65) \zeta+Z \subset C(64)] \zeta+Z \subset c(63)\} \zeta+\cdots \tag{4-3}
\end{equation*}
$$

Finally, the blade-surface image is mapped into the $\hat{\xi}$ plane, using the elliptic-function formulas of Nielsen and Perkins ${ }^{16}$ and of Luke, ${ }^{18}$ as outlined in Section 2. This completes the mapping of the blade surface.

It is now possible to set up a grid in the $\hat{\boldsymbol{\xi}}$ - plane, and map it back into the physical plane. This involves straightforward evaluations of the transformation functions. The only complication is the need to evaulate the Jacobian elliptic sine (done in subroutine JCELFN).

[^7]\[

$$
\begin{aligned}
& \text { The calculation of the images of the grid points in the various } \\
& \therefore \quad \begin{array}{l}
\text { planes is bypassed for the points at upstream and downstream infinity, and at } \\
\text { the trailing edge. (The trailing-edge point will be a grid point if ISHEAR=1). } \\
\text { The } Z \text {-plane locations of upstream and downstream infinity are arbitrarily } \\
\text { assigned to finite locations given by linear extrapolation from the two adjacent } \\
\text { L -values. }
\end{array}
\end{aligned}
$$
\]

The point at upstream infinity will be a grid point only if KMX is odd; in this case $I O E=1$, and the image calculations are bypassed.

Adjustments to the grid-point image locations in the Z-plane are sometimes required for points on the periodic ouundary ($L=L M X$) for values of K near $1, \mathrm{KMX} / 2$, and KMX . At these points, the formula used in going from the Ω-plane to the z-plane sometimes cannot distinguish between points that are separated by $H+i G$. The problem ${ }^{\circ}$ can be seen best in the ω-plane. (The sketch below is for an even value of KMX; the same picture applies for an odd value):

Note that the same point in the ω-plane (and thus also in the Ω-plane) can map into either of two points in the Z-plane, which differ by $H+i G$. The selection is guided toward the correct value by starting on the blade ($L=1$) and working toward the periodic boundary ($L=L M X$), but it can happen that the wrong branch is chosen during the iterations. To avoid this, the imaginary parts of Z and $Z N$ are compared, for K values near the leading edge, and the imaginary parts of Z and $Z T$ are compared near the trailing edge, and the quantity $i \cdot S G$ is added or subtracted (depending on the value of K) where necessary.

Finally, the real and imaginary parts of Z are written to unit 7 (if PNCHZA=TRUE). These values can be used, in a separate program, to calculate the metrics of the transformation (see Appendix D).

Section 7 CONCLUDING REMARKS

The method described above is capable of generating grids, and the associated incompressible, inviscid flow-field, for blade rows with gap/chord ratios as low as 0.8 . Below that value, the Theodorsen-Garrick mapping may not converge. In such cases, a derivative form of the transformation usually will converge, but the grid that results may not be useful, in the region near the leading edge. Further development of this part of the technique is required.

As a separate mapping step, the Schwarz-Christoffel technique has been applied to the problem of generating orthogonal grids. Based on the analysis given above, several grid-generated techniques can now be generalized to give orthogonal grids.

APPENDIX A
 DETAILS OF THE FAST FOURIER TRANSFORM PROCEDURES

The details given in this Appendix apply specifically to the TheodorsenGarrick mapping; with obvious changes in notation, they also are valid for the derivative form of the transformation.

Equations 2-20 and 2-21 contain $2 N+2$ constants, which are evaluated as follows: first, they are satisfied at a discrete number of points, denoted by $\boldsymbol{\phi}_{\mathrm{K}}$:

$$
\begin{equation*}
\phi_{K}=\frac{2 \pi(K-1)}{2 N}, K=1,2, \ldots, 2 N \tag{A-1}
\end{equation*}
$$

where N was chosen to be 64 , in the present case. Thus:

$$
\begin{align*}
& \ln r_{K}=A_{0}+\sum_{j=1}^{N-1}\left(A_{j} \cos j \phi_{K}-B_{j} \sin j \phi_{K}\right)+(-1)^{K} A_{N} \tag{A-2}\\
& \theta_{K}-\phi_{K}=B_{0}+\sum_{j=1}^{N-1}\left(B_{j} \cos j \phi_{K}+A_{j} \sin j \phi_{K}\right)+(-1)^{K} B_{N} \tag{A-3}
\end{align*}
$$

Each right-hand side now contains $2 N$ coefficients. The correspondence between either of these and the Fast Fourier Transform (FFT) as presented in Ref. 12 is given by the next two equations: consider the expression

$$
\begin{equation*}
Y(4)=\sum_{n=0}^{2 N-1} c(n) W_{2 N}^{n j} ; j=0,1,2, \ldots, 2 N-1 ; W_{2 N}=e^{i \frac{2 \pi}{2 N}} \tag{A-4}
\end{equation*}
$$

where values $Y(\cdot)$ are real, and the $2 N$ values of $C(\cdot)$ are in general complex, but must satisfy the following redundancy condition, in order that the $y(\cdot)$ values be real:

$$
\begin{equation*}
c(n)=\tilde{c}(2 N-n), \quad n=1,2, \ldots, N-1 \tag{A-5}
\end{equation*}
$$

$C(0)$ and $C(N)$ pure real
where the tilde denotes the complex conjugate. When these conditions are met, Eq. A-4 can be written as

$$
\begin{array}{r}
Y(l)=C_{R}(0)+(-1)^{\ell} C_{R}(N)+2 \sum_{n=1}^{N-1}\left\{C_{R}(n) \cos \frac{n \ell \pi}{N}-C_{I}(n) \sin \frac{n \ell \pi}{N}\right\} \\
\ell=0,1, \ldots, 2 N-1 \tag{A-6}
\end{array}
$$

This form can now be used, in conjunction with Eq. 2-20 or 2-21, to facilitate application of the FFT to the complex form given in Eq. A-4.

In the case of Eq. A-2, values of the coefficients $A_{\text {。 }}$ through A_{N} and B, through B_{N-1} are found, from given values of $\ln r$. This is procedure 4 of Ref. 6, which takes the following steps:

1. Set $\left.\begin{array}{rl}X_{1}(k) & =Y(2 k)=(\ln r)_{2 k} \\ X_{2}(k) & =Y(2 k+1)=(\ln r)_{2 k+1}\end{array}\right\} k=0,1, \ldots, N-1$
2. Set $x(j)=x_{1}(j)+i x_{2}(j), j=0,1, \ldots, N-1$
3. Calculate the N-point Discrete Fourier Transform of

$$
\begin{align*}
A(n)=A_{1}(n)+i A_{2}(n) & =\frac{1}{N} \sum_{j=0}^{N-1} x(j) W_{N}^{-n j} ; n=0,1, \ldots, N-1 \tag{A-9}\\
W_{N} & =e^{i \frac{2 \pi}{N}}
\end{align*}
$$

4. By periodicity, set $A(N)=A(0)$
5. Apply Eq. 34 of Ref. 12 , in order to extract $\mathbb{A}_{1}(n)$ and $\mathbb{A}_{2}(n)$ from $A(n)$:

$$
\left.\begin{array}{l}
A_{1}(n)=\frac{1}{2}\{\tilde{A}(N-n)+A(n)\} \tag{A-10}\\
A_{2}(n)=\frac{i}{2}\{\tilde{A}(N-1)-A(n)\}
\end{array}\right\} n=0,1, \ldots, \frac{N}{2}
$$

Note that these expressions use $A_{(n)}$ for $n=0,1, . ., N$ to give $\mathbb{A}_{1}(n)$ and $\mathbb{A}_{2}(n)$ for $n=0,1, \ldots, N / 2$
6. These values of $A_{1}(n)$ and $A_{2}(n)$ then give $C(n)$ for the same range:

$$
\begin{equation*}
C(n)=\frac{1}{2}\left[A_{1}(n)+W_{2 N}^{-n} A_{2}(n)\right], \quad n=0,1, \ldots, N / 2 \tag{A-11}
\end{equation*}
$$

For the range of n from $\frac{N}{2}+1$ to $N-1$, use Eq. 36 of Ref. 12 , with n replaced by $N-n$ (and noting that $W_{2 N}^{-N}=-1$):

$$
\begin{align*}
c(n) & =\tilde{c}(2 N-n) \tag{A-12}\\
& =\frac{1}{2}\left\{A_{1}(N-n)+W_{2 N}^{n} A_{2}(N-n)\right\} \quad n=\frac{N}{2}+1, \frac{N}{2}+2, \ldots, N-1
\end{align*}
$$

This equation, applied for $n=\frac{N}{2}+1, \frac{N}{2}+2, \ldots, N-1$ uses \mathbb{A}_{1} and \boldsymbol{A}_{2} with index $\frac{N}{2}-1, \frac{N}{2}-2, \ldots, 1$ to get $c(n)$ for $n=\frac{N}{2}+1, \frac{N}{2}+2, \ldots, N-1$. The process is completed by setting

$$
\begin{equation*}
c(N)=\frac{1}{2}\left\{A_{1}(0)-A_{2}(0)\right\} \tag{A-13}
\end{equation*}
$$

7. The A_{j} and B_{j} coefficients are retrieved from:

$$
\begin{align*}
& A_{0}=\operatorname{Re}[c(0)], A_{N}=\operatorname{Re}[c(N)] \tag{A-14}\\
& A_{j}=2 \operatorname{Re}[c(j)], B_{j}=2 \operatorname{tm}[c(j)], j=1,2, \ldots, N-1
\end{align*}
$$

At this point, B_{0} and B_{N} are undetermined. Following Ives, B_{N} is set equal to zero, and B_{0} is chosen so as to place the trailing edge at $\phi=0$ (this latter selection of B_{0} is actually carried out in a subsequent step, noted below).

In the case of Eq. $A-3$, the $A ' s$ and B 's are considered known, and are used to evaluate θ_{k}. The coefficient B_{c} can be found from

$$
\begin{equation*}
\theta_{T E}=B_{0}+\sum_{j=1}^{N-1} B_{j} \quad\left(B_{N}=0\right) \tag{A-15}
\end{equation*}
$$

Actually, it is simpler to evaluate the right-hand side of

$$
\begin{equation*}
\theta_{k}-\phi_{k}-B_{0}=\sum_{j=1}^{N-1}\left(B_{j} \cos j \phi_{k}+A_{j} \sin j \phi_{k}\right), \quad t=0,1, \ldots, N-1 \tag{A-16}
\end{equation*}
$$

and then find B_{0} from

$$
\begin{equation*}
\left.B_{0}=\theta_{0}-R H S\right)_{k=0} \tag{A-17}
\end{equation*}
$$

The actual evaluation of the right-hand side takes the following steps (Procedure 5 of Ref. 12): by comparison of Eqs. A-3 and A-6:

1. Set $C(0)-0, C(N)=0$

$$
\begin{equation*}
C(n)=\frac{1}{2}\left[B_{n}-i A_{n}\right], n=1,2, \ldots, N-1 \tag{A-18}
\end{equation*}
$$

Note that the C 's determined here are different from those used in Procedure 4; the A_{j} and B_{j} values are the same, but their relation to C_{j} is different.
2. Values of C_{j} are then used to find $\mathscr{A}_{1}(n)$ and $\mathbb{A}_{2}(n)$: Equations 40 and 41 of Ref. 12 are rewritten, using

$$
c(n)=\tilde{c}(2 N-n)
$$

Replace n by $N+n$:

$$
c(N+n)=\tilde{c}(2 N-N-n)=\tilde{c}(N-n)
$$

Thus Eqs. 40 and 41 of Ref. 12 are

$$
\left.\begin{array}{l}
A_{1}(n)=c(n)+\tilde{c}(N-n) \tag{A-19}\\
A_{2}(n)=[c(n)-\tilde{c}(N-n)] W_{2 N}^{n}
\end{array}\right\} n=0,1, \ldots, N / 2
$$

These are all the values needed for A_{1} and A_{2}.
3. Find $A(n), n=0,1, \ldots, N-1$ from Eqs. 42 and 43 of Ref. 12:

$$
\left.\begin{array}{l}
A(n)=A_{1}(n)+i A_{2}(n) \tag{A-20}\\
A(N-n)=\tilde{A}_{1}(n)+i \tilde{A}_{2}(n)
\end{array}\right\} \quad n=0,1, \ldots, N / 2
$$

This gives, on the left-hand side, all values from $n=0$ to $n=N$.
4. Calculate

$$
\begin{equation*}
x(j)=\sum_{n=0}^{N-1} A(n) W_{N}^{n j}, \quad j=0,1, \ldots, N-1 \tag{A-21}
\end{equation*}
$$

5. Finally:

$$
\left.\begin{array}{l}
\theta_{2 k}-\phi_{2 k}-B_{0}=\operatorname{Re}[x(k)] \tag{A-22}\\
\theta_{2 k+1}-\phi_{2 k+1}-B_{0}=\operatorname{trm}[x(k)]
\end{array}\right\} k=0,1, \ldots, N-1
$$

The first of these equations, with $k=0$, is used to find B_{0}.

In order to apply these formulas, it is necessary to have a relation

j	$J P$	B_{j}	$B(J P)$
0	1	B_{0}	$B(1)$
2	2	B_{1}	$B(2)$
$N-1$	N	B_{2}	$B(3)$
N	$N+1$	B_{N-1}	$B(N)$
		B_{N}	$B(N+1)$

In addition, care must be taken with the argument $N-n$; for example, Eqs. are written as
$\left.\begin{array}{l}Z A 1(N P)=Z C C(N P)+\widetilde{Z C C}(N+Z-N P) \\ Z A Z(N P)=[Z C C(N P)-\widetilde{Z C C}(N+Z-N P)] W_{2 N}^{n}\end{array}\right\} \quad N P=1,2, \ldots, \frac{N}{2}+1$
It can be verified that the quantity $N+2$ - NP in the arguments above preserves the correct ordering - for example when $N=64$, and $n=0, \tilde{c}(N-n)=\tilde{c}(64)$ This would be stored in $\operatorname{ZCC}(64+2-1)=\operatorname{ZCC}(65)$.

Appendix B
COMPUTER PROGRAM LISTING

```
            OROGRAM RAVES(INPUT, QUTPUT,GRID,TAPES=INPUT,TAPEG=OUTPUT,
* TAPE7=GRID)
```

```
PROGRAM RAVES: THE IVES-LIUTERMOZA CONFORMAL TRANSFQRMATIEN FER
```

TURBGMACHINERY CASCADES (AIAA JOURNAL, UCL. 5.1977, PP 547-652)
DOC:MENTATION IS GIUEN IN:
N. J. RAE, A COMPUTER PROGRAM FOR THE IUES TRANSFORMATICN
IN TURBOMACHINERY CASCADES, CALSPAN CORPORATION REPORT E275-A-3,
NOVEMEER 1980
W.J. RAE, MODIFICATIONS OF THE IVES - LIUTERMOZA CDNFORMAL-
MAPPING PROCEDURE FOR TUREOMACHINERY CASCADEG. ASME PAPER
83-GT-1:G, MARCH 1983
N. J. RAE, REUISED COMPUTER PROGRAM FOR EUALUETING THE IUES
TRAVSFORMATION IN TURBOMACHINERY CASCADES, EALSPAN EOPQRRS-IDN
REPORT 7177-A-1, JULY 1983
N. J. RAE AND P.U.MARRONE, RESEARCH IN TLRBINE FLEAFIESD
ANALYSIS METHODS, CALSPAN CORPORATION FEPORT 7:フフーAー3.
JANLAPY 1985
EMP!ICIT REAL (A-H,O-Y), COMPLEX(Z)
LDGICAL PNCHZA
COMMON/TGINTG/N,NP1,NP2,N2,NB2,NB2P1,IP,IPMX,ITP,IWM,IMX,KIMX
COMMON/TGCMPX/ZI, ZWZN, ZI, ZNN, ZA, ZCC, ZA1, ZAZ
CIMMON/TGDBLE/PBN, OM, CMM, ANGERR, A, B, E,F,THT, THI,X,Y, BETA,S, DT,DI
E:MENSION 2S(80),2P(80), ZOMS (80), ZOMP (80)
DIMENSION RDS(80), RDP (80), THS (80), THP (80)
DIMENSION RDSX(80), RDPXi80), THSX(80:, THPX(80)
D:MENSION X(1G0),Y(iG0),E(1G0),F(1G0), THT(1G0),
* EETA (:G0), S(160)
D:MENSICN PHI(:30), A(G5),B(E5), ICC(G5),DR(E5),DI(G5),
* ZA(165), ZA1(165), ZA2(165),
* ZㄷE(165), ZFF(1G5), ZSOMEA(1G5),
* ZXI(10,40), ZEETA(10,40), ZETA(10,40), ZOMA (0, 40),
* ZFNL $(10,40)$, ZKY(10,40), ZVEL (10,40), ZFNP(10, 40),
*
INK (7)
DIMENSION ITP(100), ID(36)
DIMENSION XX(50,20),YY(50,20)
DG $10 \quad 1=1,7$
$: 0 I \operatorname{lin}(I)=0$
NAMELIST/INPUTS/ ANGERR,EX,G,H,IGOT,ILE,ITE,KMX,ALP,
* IMX, LMX, CM, PNEHZA, RTOL, ZC, ZIE, ZN, ZT, ITE,
I PMK, ISHEAR,KJS,KJO,ICIRE, MS
\leftarrow
C --- SET NAMELIST DEFGULT UALUES

$[$	
0	
\%-	
L	
	ZCIRC=:
F.	ANGERR $=0.024$
	$A L P=0$.
5	IGOT=0
F	ILE $=1$
	ITE=0
\cdots	$K M X=40$
	$L M X=10$
	$K J S=20$
\because	$K J P=20$
	$I M X=400$
\because	ISUEAR = 1
	IPMX = :
	$N S=40$
	PNCHEA = . FALSE.
	$\mathrm{ROOL}=3 .$
	OM = \quad.

C NOTE: EX, G, H, ZC, ZLE, ZN, ZT, ZTE HAUE NO DEFGULT YAMUE ($2 C$ IS NQT NEEDED IF IGQT=0)

READ (5,103)(ID(I),I=1,36)
:03 FORMAT (19A4)

$$
P I=4.0 \quad * \operatorname{ATAN}(1.0)
$$

$T P I=2.0$ PI
$\mathrm{P} 32=\mathrm{PI} / 2$.
$2 P I=$ CMPLX(PI,0.0)
$Z!=\operatorname{EMPLX}(1.0,0.0)$
$Z E R D=\operatorname{CMPLX}(0.0,0.0)$
EMGA $=$ CMPLX $(+1.0,0.0)$
ZMGB $=$ CMPLX $(-1.0,0.0)$
$Z \cdot P S=\operatorname{CMPL} X(0 ., 1 . E-08)$
ZUG = CMPLK(1.E10,1.E10)

C IMX IS THE MAKIMUM NUMBER OF ITERAT:ONS ALLDNED EER THE DA:/THETA(IE)

- ITERATICNS

C IPMK.NE. C CAN RE USED TO DISPLAY THE YALUES OF THETA/S JURIME THE
C PHI/THETA(/S) ITERATIONS, AT THE ITERATION NUMPERS READ INTO THE
[ITP ARRAY BELON.
C STHEAR = O GIUES AN ORTHOGONAL GRID. THE LINES K=1 AND K=KMX, AHTCL
-
C
READ PNCHZA=T IF (ZA(L),L=1,LMK) IS TC RE PUNCHED FOR ALL UA:UES
QF K, QTHERNISE READ PNCHZA=F
IGOT $=1$ IF THE YALUE OF $2 C$ IS KNOWN. CTHERWISE, IGJT $=0$.
KMY AND LMK ARE THE GRID SIZES IN THE FINAL TRANSFGRMED PIANE.
KJS AND KJP ARE THE NUMBERS OF POINTS ON THE SUCTIEN GND PRESSURE SIDES AT WHIEH PAIRS GF ELADE CODRDINATES WILE BE INPUT.
ILE $=0$ OR 1 FER A SHARP OR ROUNDED LEADING EDGE, RESPEGTIUELY
ITE $=0$ DR 1 FOR A SHARP OR ROUNDED TRAILING EDGE, RESOECTIVE:Y.
FOR A SHARP LEADING EDGE (ILE=O) ZN MUST EQUAL ZLE
FOR A SHARP TRAILING EDGE (ITE=O) ZT MUST EQUAL ZTE START AT THE TRAILING EDGE, DO NOT GO TO DOWNSTREAM INFINITY. ISHEAR $=:$ SHEARS THE GRID UNIFORMLY; IN THIS CASE, THE $K=1$ AAD KMK LINES DO GO TO DOWNSTREAM INFINITY.

```
OM IS A RELAXATION FACTOR USED IN THE PH:/THETA MAPPINE:
    - For IEIRC = O, USE O.i, or a SMALLER UALUE iF THE A AND g
        ITERATIONS FAIL TO CONUERGE
    - FOR ICIRC = 1, OM = 1.0 SHOULD BE SATISFACTORY.
        ANGERR IS T:HE ANGULAR(IN RADIANS)(/ARC EENGTH) TOLERANCE
        FOR THE OHIITHETA(/5) TRANSFORMATION.
        A REASONABLE UALUE IS .01
        RTUL IS THE TOLERANCE FOR THE MAX/MIN RADIUS RATIC IN THE
        OMEGA PLANE
        ALP IS THE ANGLE GF INCIDENCE, IN DEGREES iNEGATIVEj, IM
        THE ETA-PLANE.
        ICIRC = O FOR THE THEQDORSEN-GAFRICK TECHNIQUE
        ICIRC = I FOR THE BALUER ET AL TECHNIQUE
        NS IS THE NUMBEF OF STEPS TO BE USED IN THE SIMPSON'S-RULE
        INTEGRATION OF D(SMALL OMEGA)/D(ZETA) WHEN ICIRC = 1.
    --- READ NAMELIST INPUT DATA
    READ(E.INPUTS)
    ITP(1) = 999
    IF(IPMX.NE.1) READ(5,102)(ITP(IP),IP=1,IPMX)
    :O2 FORMAT(2OI4)
    IP=i
```

 \(K M K H=(K M X+1) / 2\)
 \(K M X L=K M X H\)
 IF (MOD (KMX,2), NE. O) WMXL=KMXH-1
 IOE \(=\) WOD (KMX,2)
 KIUNT \(=0\)
 \(20310 k=1,50\)
 Dr: \(311 \mathrm{~L}=1,20\)
 \(X X(K, L)=0\).
 \(Y Y(K, L)=0\).
 311 CONTINUE
 \(3: 0\) CONTINUE
 INPUT UARIABLES EX, G. H, ZLE, ZN, ZT, ZTE,
 THE FORTRAN STATEMENTS IN SLQROUTINE SHAPE,
 AND THE UARIABLES LISTED IN COMMON BLOCK GEOM (IF GNE IS BEING USED)
 ARE ALL SPECIFIC TO THE BLADE SHAPE BEING USED.
 CALCULATION OF THE BLADE SHAPE
 \(D=\) CABS (2TE-ZLE)
 CALL SHAPE(D,H,G,EK,ZP,ZS,KJS,KJP)
 \(5 G=\) SQRT (\(H * H+G * G\))
 \(Z D A=\) CMPLX(G/SG,-H/SG)
 ZGAMMA=CDNJG(ZDA)
 \(A_{-} P=A L P \neq T P I / 360\).
 ZALP \(=\) CMPLX(COS(ALP),SIN(ALP))
 ZAM \(=\) CONJG(ZALP)
 ZAP \(=\) ZALP
 K?ITE (6,207)
 207 FORMAT(1H1

WRITE(G,206)(ID(I),I=1,36)
206 FORMAT(30K,18A4)
KRITE (E,240) D,H,G,EX,5
240 FORMAT(//10X,'BLADE-GEOMETRY PARAMETERS ARE:',
$\Rightarrow \quad / 15 X, A B S(Z T E-Z L E)=1$,
F10.5, $H=1, F 10.5, \quad G=1, F 10.5, \quad E X=1 ;$
F10.5,' SLANT GAP $=$ 'F10.5,1/)
W?ITE(E,INPUTS)
$K J L E=K J P+2$
$K J M X=K J L E+K J S+1$
MRITE(E,205)
209 FORMAT (8 X , 'BLADE COORDINATES:',

* //9X,'SUCTION SIDE',/3X,'KJ', $\left.7 \mathrm{X},{ }^{\prime} \mathrm{S}^{\prime}, 13 \mathrm{X},{ }^{\prime} \mathrm{N}^{\prime}, 13 \mathrm{~K},{ }^{\prime} \mathrm{K}{ }^{\prime}, 13 \mathrm{~K}, \mathrm{Y}^{\prime}, 1\right)$

ZZXY $=$ ZGAMMA*ZLE
híiTTE(6,270) KJLE, ZLE, ZZXY
270 FORMAT(I5,:P4E:4.5)
DO G4 K $=1, K J S$
$K J=K J L E+K$
$Z Z X Y=$ ZGAMMA*ZS (K)
WIITE(G,270) KJ, ZS(K), ZZXY
64 CONTINUE
ZZKY = ZGAMMA*ZTE
WRITE (G,270) KJMX,ZTE, ZZXY
NEITE(G,271)
271 FORMAT (//8K,'PRESSURE SIDE',/3X,'KJ',7K,'S',13X,'N',

* 13X,'X',13X,'Y',1)

ZEXY = ZGAMMA*ZIE
WRITE(G,270) KJLE,ZLE, ZZXY
DE E:K = $1, K J P$
$K J=K J L E-K$
$Z Z X Y=Z G A M M A * Z P(K)$
WRITE(G,270) KJ,ZP(K), ZZXY
GI CONTINUE
KJ = 1
$Z Z X Y=$ ZGAMMA*ZTE
WRITE(G,270) KJ,ZTE,ZZXY
C

```
ZDN = CMPLX(H,G)
ZZ = (ZT-ZN)/ZDN
CHI = PI*EX*(G*REAL(ZT-ZN)-H*AIMAG(ZT-ZN))/(SG*SG)
KA = PI*EX*(H*REAL(ZT-ZN)+G*AIMAG(ZT-ZN))/(SG*SG)
R = EXP(-CHI)
ZPLUS = CMPLX(R*COS(XA),-R*SIN(XA))
R = 1.0/R
ZMINUS= CMPLX(R*COS(XA),R*SIN(XA))
DO 20 K=1,KJS
ZGT=(ZS(K)-ZT)/ZDN
ZETA1S = ZPI*ZZT
ZETA2S = CSIN(ZETA1S)
Z.ZN=(ZS(K)-ZN)/ZDN
ZETAOS = ZPI*ZZN
ZETA4S = CSIN(IETA3S)
ZFS = 2ETA2S/ZETA4S
```

```
        RDS(K) = CARS(ZFS)
```

 RDS(K) = CARS(ZFS)
 THS(K)= ATAN2(AIMAG(ZFS),REAL(ZFS))
 THS(K)= ATAN2(AIMAG(ZFS),REAL(ZFS))
 2O CONTINUE
 2O CONTINUE
 DC 24 K = 1,KJP
 DC 24 K = 1,KJP
 ZZT=(ZP(K)-ZT)/ZDN
 ZZT=(ZP(K)-ZT)/ZDN
 ZRTAIP = ZDI*ZZT
 ZRTAIP = ZDI*ZZT
 ZETAZ? = CSIN(2ETAIP)
 ZETAZ? = CSIN(2ETAIP)
 ZZN = (ZP(K)-ZN)/ZDN
 ZZN = (ZP(K)-ZN)/ZDN
 Z:TA3P = ZPI*ZZN
 Z:TA3P = ZPI*ZZN
 ZETA4P = CSIN(ZETA3P)
 ZETA4P = CSIN(ZETA3P)
 ZFP = ZETAZP/ZETA4P
 ZFP = ZETAZP/ZETA4P
 RDP(K) = CABS(ZFP)
 RDP(K) = CABS(ZFP)
 THP(K)= ATANZ(AIMAG(ZFP),REAL(ZFP))
 THP(K)= ATANZ(AIMAG(ZFP),REAL(ZFP))
 24 CONTINUE
 24 CONTINUE
 C NOW ADD THE LEADING- AND TRAILING-EDGE POINTSr AND STORE THE G(Z)
C NOW ADD THE LEADING- AND TRAILING-EDGE POINTSr AND STORE THE G(Z)
C ARRAY AS E(KJ)*EXP(I*THT(KJ)),WHERE KJ=1,KJMX AS YOU GO FRCM TE AROUND
C ARRAY AS E(KJ)*EXP(I*THT(KJ)),WHERE KJ=1,KJMX AS YOU GO FRCM TE AROUND
C THE PRESSURE SIDE TO THE LE (KJ=KJLE) AND THEN ALUNG THE SUCTICN SIDE
C THE PRESSURE SIDE TO THE LE (KJ=KJLE) AND THEN ALUNG THE SUCTICN SIDE
C BACK TC THE TE AGAIN (KJ=KJMX).
C BACK TC THE TE AGAIN (KJ=KJMX).
IF(ITE.EQ.1) GO TO 13
IF(ITE.EQ.1) GO TO 13
E(1)=0.0
E(1)=0.0
THT(1)=0.0
THT(1)=0.0
GO TO 14
GO TO 14
13 ZETAZ=CSIN(ZPI*(ZTE-ZT)/ZDN)
13 ZETAZ=CSIN(ZPI*(ZTE-ZT)/ZDN)
ZETA4=CSIN(ZPI*(ZTE-ZN)/ZDN)
ZETA4=CSIN(ZPI*(ZTE-ZN)/ZDN)
ZFP=\ETAZ/ZETA4
ZFP=\ETAZ/ZETA4
E(1)=CABS(ZFP)
E(1)=CABS(ZFP)
THT(1)=ATAN2(AIMAG(ZFP),REAL(ZFP))
THT(1)=ATAN2(AIMAG(ZFP),REAL(ZFP))
14 IF(ILE.EQ.i) GO TO 15
14 IF(ILE.EQ.i) GO TO 15
E(KJLE) = 1.0E+0g
E(KJLE) = 1.0E+0g
THT(KJLE) = 0.5*(THP(1)+THS(1))
THT(KJLE) = 0.5*(THP(1)+THS(1))
GG TO 16
GG TO 16
15 ZETA2=CSIN(ZPI*(ZLE-ZT)/ZDN)
15 ZETA2=CSIN(ZPI*(ZLE-ZT)/ZDN)
ZETA4=CSIN(ZPI*(ZLE-ZN)/ZDN)
ZETA4=CSIN(ZPI*(ZLE-ZN)/ZDN)
Z@P=2ETA2/ZETA4
Z@P=2ETA2/ZETA4
E(KJLE) = CABS(ZFP)
E(KJLE) = CABS(ZFP)
THT(KJLE) = ATAN2(AIMAG(IFP),REAL(ZFP))
THT(KJLE) = ATAN2(AIMAG(IFP),REAL(ZFP))
16 DO 17 K = 1.KJP
16 DO 17 K = 1.KJP
KJ = KJLE - K
KJ = KJLE - K
E(KJ)=RDP(K)
E(KJ)=RDP(K)
THT(KJ)=THP(K)
THT(KJ)=THP(K)
17 CONTINUE
17 CONTINUE
DD 18 K = 1,KJS
DD 18 K = 1,KJS
KJ = KJLE + K
KJ = KJLE + K
E(KJ)=RDS(K)
E(KJ)=RDS(K)
18 THT(KJ)=THS(K)
18 THT(KJ)=THS(K)
E(KJMX) = E(1)
E(KJMX) = E(1)
THT(KJMX) = THT(1)
THT(KJMX) = THT(1)
C
C
C NOW ADJUST THE BRANCHES OF G(Z) SO AS TO BE CONTINUOUS ACROSS
C NOW ADJUST THE BRANCHES OF G(Z) SO AS TO BE CONTINUOUS ACROSS
C THE CUT (ALONG THE NEGATIVE rEAL AXIS) OF THE ATANZ FUNCTION.
C THE CUT (ALONG THE NEGATIVE rEAL AXIS) OF THE ATANZ FUNCTION.
C
C
251 BR=0.0
251 BR=0.0
KA=2
KA=2
KE = KJLE + 1

```
    KE = KJLE + 1
```

$$
\begin{aligned}
& \text { IF (CHG.LT. }-P I) \quad B R=B R+1.0 \\
& 321 \quad T H T(K J)=T H T(K J)+B R * T P I
\end{aligned}
$$

$$
\text { IF (ILE.EQ.1) GO TO } 326
$$

$$
E_{i R}=B R+1
$$

$$
P O=T H T(K B)
$$

$$
T H T(K B)=T H T(K B)+B R * T P I
$$

$$
K B=K B+1
$$

$$
326 \mathrm{DO} 327 \mathrm{KJ}=K B, K J M X
$$

$C H G=T H T(K J)-P O$
$P O=T H T(K J)$
IF (ABS (CHG).LE.PI) GO TO 327
$I F(C H G . G T . P I) B R=B R-1$.
$\operatorname{IF}(C H G . L T .-P I) B R=B R+1$.
327 THT (KJ) $=$ THT (KJ) $+B R * T P I$
D] $323 \mathrm{~K}=1, \mathrm{KJP}$
THP $\mathrm{P}(\mathrm{K})=$ THT (KJLE-K)
323 CONTINUE
Du $322 \mathrm{~K}=\mathrm{i}, \mathrm{KJS}$
THS (K) $=$ THT (KJLE+K)
322 CONTINUE
C

```
    DG 25 n = 1,kjS
```

 DG 25 n = 1,kjS
 ARS = EX*THS(K)
 ARS = EX*THS(K)
 RS = RDS(K)**EX
 RS = RDS(K)**EX
 RDSX(K) = RS
 RDSX(K) = RS
 THSX(K) = ARS
 THSX(K) = ARS
 25 CONTINUE
 25 CONTINUE
 DO 26 K = 1,KJP
 DO 26 K = 1,KJP
 ARP = EX*THP(K)
 ARP = EX*THP(K)
 RP=RDP(K)**EX
 RP=RDP(K)**EX
 RDPX(K) = RP
 RDPX(K) = RP
 THPX(K) = ARP
 THPX(K) = ARP
 2G CONTINUE
 2G CONTINUE
 W'RITE(G,241)
 W'RITE(G,241)
 241 FORMAT(//1OX,'BLADE-SURFACE IMAGES IN THE G - PLANE (RATIO OF',
241 FORMAT(//1OX,'BLADE-SURFACE IMAGES IN THE G - PLANE (RATIO OF',
* 'SINES) AND CAP OMEGA PLANE(G**I/KAPPA) ,AND',
* 'SINES) AND CAP OMEGA PLANE(G**I/KAPPA) ,AND',
* // 9%,' RADII AND ANGLES USED IN SELECTING THE PROPER',
* // 9%,' RADII AND ANGLES USED IN SELECTING THE PROPER',
* ' bRANCHES OF THE RATIO OF SINE FUNCTIONS ARE:',
* ' bRANCHES OF THE RATIO OF SINE FUNCTIONS ARE:',
* //3X,'KJ',15X,'G',25K,'EAP DMEGA',13X,'徭',1:K,'THETA',
* //3X,'KJ',15X,'G',25K,'EAP DMEGA',13X,'徭',1:K,'THETA',
* SX,'R**EX',7X,'THETA*EX',)
* SX,'R**EX',7X,'THETA*EX',)
XS=E(1)*COS(THT(1))
XS=E(1)*COS(THT(1))
YS=E(1)*SIN(THT(1))
YS=E(1)*SIN(THT(1))
RDTX = E(i)**EX
RDTX = E(i)**EX
THTX = EX*THT(1)
THTX = EX*THT(1)
US = RDTK*COS(THTX)
US = RDTK*COS(THTX)
US = RDTX*SIN(THTX)

```
    US = RDTX*SIN(THTX)
```

M:RITE(G,325) KS,YS,US,US,E{1),THT(1),RDTK,T:HTX
232 FORMAT(I5,1PBE14.5)
Э94 FGRMAT(' LE ',IPGEi4.5;
325 FORMAT(' TE ',IPGE14.5)
KJLM = KJLE - I
DO G5 KJ = 2,KJLM
K=KJLE - KJ
XO = RDP(K)*COS(THP(K))
YP = RDP(K)*SIN(THP(K))
UP= RDPX(K)*COS(THPX(K))
り口= RDPX(K)*SIN(THPX(K))
K'RITE(G,232)KJ,XP,YP,UP,UP,RDP(K),THP(K),RDPX(K),THPK(K;
E: CONTINUE
KS = E(KJLE)*COS(THT(KJLE))
YG = E(KJLE)*SIN(THT(KJLE))
RDLX = E(KJLE)**EX
THLX = EX*THT(KJLE)
US = RDLX*COS(THLX)
US = RDLX*SIN(THLX)
NRITE(G,324)KS,YS,US,US,E(KJLE),THT(KJLE),RDLX,THi_X
KJMXM = KJMX - 1
KULP = KJLE + 1
DO 3: KJ = KJLP,KJMXM
q = Kj - KJLE
XS = RDS(K)*COS(THS(K))
YS = RDS(K)*SIN(THS(K))
US = RDSK(K)*COS(THSK(K))
US = RDSX(K)*SIN(THSK(K))
@FITE(G,232) KJ,XS,YG.US.US,RDS(K),THS(K),RDSK(K),THSX(K)
S: CONTINLE
XJ = E(KJMX)*COS(THT(KJMN))
YP = E(KJMX)*SIN(THT(KJMX))
RDTX = E(KJMX)**EX
THTX = EX*THT(KJMX)
UF = RDTX*COS(THTX)
Y? = RDTX*SIN(THTX)
M'RITE(G, 325)KP,YP,UP,UP,E(KJMK),THT(KJMX),RDTX,THTX
मこITE(6,242)ZPLUS,ZMINUS
242 FORMAT(//10X,'POINTS AT INFINITY ARE LDCATED IN THE CAP OMEGA',
* ' PLANE AT:',
* //15X,'PLUS:',1PZE:5.4,' MINUS:',2E15.4.//1
C
C DETERMINATION OF ZL SUCH AS TO MINIMIZE THE RATIO RMAXIFMIN IN THE
E
L.C. DMEGA PLANE

```
```

M=1

```
M=1
ZE=(ZMGA-ZMGB)/(ZPLUS-ZMINUS)
ZE=(ZMGA-ZMGB)/(ZPLUS-ZMINUS)
Z- = (ZMGA*ZMINUS-ZMGS*ZPLUS)/(ZPLUS-ZMINUS)
Z- = (ZMGA*ZMINUS-ZMGS*ZPLUS)/(ZPLUS-ZMINUS)
ZG = (ZMGA*ZPLUS-ZMGB*ZMINUS)/(ZPLUE-ZMINUS)
ZG = (ZMGA*ZPLUS-ZMGB*ZMINUS)/(ZPLUE-ZMINUS)
MPITE(G,G01)
MPITE(G,G01)
GOI FORMAT('IITEF',IIX,'ZD',22X,'ZE',22K,'ZC',18X,'ZQMSTR',IGX,'ZNTRD'
    1/I3X,'RMIN',8X,'RMAX',7X,'RATIO'/' (ZA(KJ),KJ=1,KJMX)')
250 ITER=1
    RATIO=0.0
    IF(IGOT.EQ.1) GO TO GO
    FOR A FIRST GUESS, USE ZC=(-5.0,+1.0)
```

$$
2!R=(2 A(K J-1)+2 A(K J)) / 3.0
$$

ZNTRD $=$ ZNTRD＋ZBR＊DAREA
$R \triangle B S=C A B S(Z A(K J))$
IC（RABS．GE．RMIN）GD TO 79
R．YIN＝RABS
$Z M I N=Z A(K J)$
$K J M N=K J$
GOTO 78
79 IF（RABS．LE．RMAX）GO TO 78
RNAX＝RABS
ZMAX $=$ ZA $(K J)$
$K J M K X=K J$
78 AREA＝AREA＋DAREA
RATIO＝RMAX／RMIN
ZNTRD $=$ ZNTRD／AREA
ZOMSTR＝ZC＊（ZNTRD－ZD）／（ZNTRD－ZB）
KRITE（G，EO2）ITER，ZD，ZE，ZC，ZOMSTR，ZNTRD，FMIN，RMAK，RATIO，
1 （ZA（KJ），KJ＝1，KJMX）
GO2 FORMAT（／I5，1P10E12．4／E：7．4．2E12．4／（10513．5））
IF（RATID．LT．RTOL）GO TO E3
IE（IGOT．EQ．1）GO TD G3
I $E R=I T E R+1$
IF（ITER．LE．30）GOTO G2
－\because ITE（5，204）
204 FDRMAT（／／／1OX，＇TCLERANCE SPECIFIED FOR RMAX／RMIN NQT MET IN＇．
＊＇ 30 ITERATIONS＇）
50 P
E2 CONTINUE
IF（M．EQ．2）GD TO GE
$p_{i}=2$
2DS＝さ．1＊2MIN
$K J=K J M N$
67 RD＝E（KJ）\＃\＃EX
$T H=E X * T H T(K J)$
ZOM $=$ CMPLX（RD＊COS（TH），RD＊SIN（TH））
ZC＝（ZDM＊（ZDS－ZG）+ ZE）／（ZDS $+Z F-Z E *$ ZOM）
GOTO GO
EG $M=1$
ZDS $=0.9 * 2 M A X$
$K J=K J M X X$
GO TO G7
63 IGOT＝ 1
WRITE（B，208）ZD，ZB，ZC，ZNTRD，ZOMSTR
2い日 FCRMAT（／／10X，＇CONSTANTS FOR MAPPING FROM＇，
＊＇CAP GMEGA－PLANE TO SMALL GMEGA－PLANE ARE＇，

＊ 1 P2E20．5，／／20K，＇ZNTRD $=1,1$ P2E20．5．／20K，＇ZOMSTR＝＇，1P2E20．5）
SET UP THE ARRAYS OF THETA AND LN（R）
DO 41 KJ $=$ i，KJMXM
$X(K J)=\operatorname{ATAN2}(A I M A G(Z A(K J)), \operatorname{REAL}(Z A(K J)))$
$41 Y(K J)=$ CABS（ZA（KJ））
$X(K J M K)=X(1)+T P I$
$Y(K J M X)=Y(1)$

```
NON ADJUST THE ARGLmENTS OF THE THETA ARRAY, SC AS TO be continucus
```

E ACRUSS THE BRANCH CUT (ALONG THE NEGATIUE REAL AXIS) GF THE
C ATANZ FUNCTION. THIS ADJUSTMENT ASSUMES THAT THE CONTOUR IS
© TRAVERSED IN A COLUNTERCLOCKWISE IIRECTION.

$$
8 R=0.0
$$

$$
P O=N(1)
$$

KOUNT $=0$
DO $4: 0 \mathrm{KJ}=2, \mathrm{KJMXM}$
CHG $=X(K J)-P D$
IF (CHG.GT.O.) GO TO 409
IF (CHG.LT.-PI) GO TO 408
KEUNT $=$ KOUNT +1
GO TO 409
$408 B R=B R+1$.
409 CONTINUE
$P O=X(K J)$
$X(K J)=X(K J)+8 R * T P I$
410 CONTINUE
IF (KOUNT.GT.O) WRITE (G, 407) KOUNT
407 FDRMAT'//5X,'WARNING: THERE ARE', I3,' NEGATIUE INCREMENTS',

* 'IN THE ANGULAR UALUES OF SMALL OMEGA ON THE BLADE SURF́AEE',
* //10K, 'CHECK WHETHER THE ZS AND ZP ARRAYS ARE INTERCHAGGED'.
* /'10X, OR WHETHER R US. THETA IS MULTIPLE-VALUED, IN IHICH',
* ' CASE:', //10X,' - IF THE CPTION ICIRC $=0$ IS BEING USEI,',
* ' THE NEGATIUE INCREMENTS MUST BE REMOUED.', //İX, 'TRY A',
* ' smaller yalue of reol.',
* //10 ${ }^{\prime}$, - IF ICIRC $=1$, NEGATIUE INCREMENTS ARE ALEONED;',
* ' HOWEVER, IF THE PHI/S ITERATIONS FAIL TO CONVERGE',//IZX,

C

```
    RMIN = 10.0
    R:MAX = 0.0
    DO 49 K = 1,KJMX
    IF(Y(K).LT.RMIN) RMIN = Y(K)
    49 IF(Y(K).GT.RMAX) RMAX = Y(K)
    WARSCH = SQRT(RMAX/RMIN) - 1.0
    IF(WARSCH.LT.0.3) OM = 1.0
    WRITE(G,202)
    DO 43 KJ = 1,KJMX
    43Y(KJ) = ALOG(Y(KJ))
    MAPPING:
```

```
ZI= CMPLX(0.0.1.0)
```

ZI= CMPLX(0.0.1.0)
N}=6
N}=6
N2=2*N
N2=2*N
NP1 = N + 1
NP1 = N + 1
NP2 = N+2

```
NP2 = N+2
```

 ZSOMGA(KJ) \(=\operatorname{CMPLX}(Y(K J) * \operatorname{COS}(X(K J)), Y(K J) * S I N(X(K J)))\)
 ZSOMGA NOW CONTAINS KJMK UALUES OF SMALL GMEGA ON THE BLADES
 USE FFT TO FIND THE FOURIER COEFFICIENTS IN THE SMALL-DMEGA/ZETA
    ```
            PGN = PI/FLOAT(N)
            N:32 = N/2
            NB2P1 = NB2 + 1
            ZNN = CMPLX(FLOAT(N),0.0)
            ZWZN = CMPLX(COS(PBN),SIN(PBN))
            OMM = 1.O - OM
            DC 298 II=1.160
            BETA(II)=0.
            S(II)=0.
    298 CONTINUE
    FOR ICIRC = 1, SET UP THE CONSTANTS FOR THE LN(R), THETA SFLIME FIT
            IF(ICIRC.EQ.O) CALL CISPLN(Y,X,E,F,KiMX,1,128,1)
        THIS SECTION (ENTERED WHEN ICIRC=1) COMPUTES THE BETA AND S
        COORDINATES, AND SET UP THE CONSTANTS FOR THE BETA AND S SPLINE
        FIT
            IF (IEIRC.NE.1) GO TO 297
            ZA1(1) = CMPLX(0.,0.)
            DJ 289 KJ = 2,KJMX
    289 ZA1(KJ) = ZA1(KJ-1) + ABS(ZSOMGA(KJ)-ZSOMGA(KJ-1))
            CALL ZISPLN(ZSOMGA,ZA1, DEE,ZFF,KJMK,1,12日,1)
            [ALL ZISPLN(ZSOMGA,ZA1,ZEE,ZFF,KJMX,4,128,1;
            D] 290 kJ = 1,KJMX
            BETA(KJ) = REAL(IEE(KJ))
    2G0 S(KJ) = REAL(ZFF(KJ))
    295 CALL CISPLN(BETA,S,E,F,KJMX,1,128,2)
    297 CONTINUE
C
            WRITE(6,243)
    243 FORMAT(3X, 'BLADE-SURFACE IMAGE IN THE SMALL-UMEGA PLANE:',
        * /3X,'KJ',GX,'REAL',10K,'IMAG',12X,'R', SX,'THETA',
        * 14X,'S',14X,'8ETA',/)
            Du 51 KJ = 1,KJMX
            W'PITE(E,295) KJ,ZA(KJ),EXP(Y(KJ)),X(KJ),S(KJ),BETA(KJ)
    299 FORMAT(I5,:PGE14.5)
    51 CONTINUE
[.
C
C
    IF(ICIRC.EQ.O) CALL THDGRK
    IF(ICIRC.EQ.1) CALL BAUGRK(RMAX,RMIN)
    FIND ZETAA AND ZETAB
```

 ZABST = ZMGA
 ZSBST \(=\) ZMGB
 RABST \(=1.0\)
 RBEST \(=1.0\)
 DRR \(=0.1\)
 DTH \(=10.0 * P I / 180.0\)
 THA \(=-9.0 * D T H\)
 DO 21 I \(=1,9\)
 \(R=.19+\) DRR*FLOAT (I-1)
    ```
    D] 22 J = 1,19
    TH = DTH*FLOAT (j-i) + THA
    ZTAGS = CMPLX(R*COS(TH),R*SIN(TH))
    IF (ICIRC.EQ.O)
    * CALL CMETA(A,B,ZMG,ZTAGS,ZTANSR,G5,1.0E-00,I)
    IF(ICIRC.EQ.1)
    #EALL OMDZETA(ZOMTE,Z1,DR,DI,ZMG,ZTAGS,ZTANSR,G5,1.OE-00,1,20)
    RA = CABS(ZMG-ZMGA)
    IF(RA.GT.RABST) GO TO 23
    RABST = RA
    ZABST = ZTAGS
2.7 ZTAGS = -ZTAGS
    IF (ICIRC.EQ.O)
    * CALL OMETA(A,B,ZMG,ZTAGS,ZTANSR,E5,1.OE-00,1)
    IF(ICIRC.EQ.1)
    *CALL OMDZETA(ZOMTE,Z1,DR,DI,ZMG,ZTAGS,ZTANSR,G5,1.OE-00,1,20)
    R3 = CABS(ZMG-ZMGB)
    IF(RB.GT.RESST) GO TO 22
    RBBST = RB
    ZBRST = ZTAGS
22 CONTINUE
21 CONTINUE
    ZTAGS = ZABST
    N=O
    IF (ICIRC.EQ.0)
    * CALL OMETA(A,B,ZMGA,ZTAGS, ZTANSR,G5,1.0E-05,M)
    IF(ICIRC.EQ.i)
    *EALL OMDEETA(ZOMTE,Z1,DR,DI,ZMGA,ZTAGS,ZTANSR,G5,1.OE-OS,M,2O)
    IF(M.NE.5) CO T0 260
    HTRITE(G,2G1) ZTAGS,RABST
2G1 FORMAT(//5X,'OMETA FAILED TO CONUERGE FOR ZETA A:',
    * /10X,'ZTAGS = ',1P2E.3.5,' RABST =',E13.5)
        S%OP
250 CONTINUE
        ZETAA = ZTANSR
        ZTAGS = ZBBST
        M = 0
        IF (ICIRC.EQ.O)
    * CALL OMETA(A,B,ZMGB,ZTAGS,ZTANSR,G5,1.OE-05,M)
        IF(ICIRC.EQ.1)
        *CALL OMDZETA(ZOMTE,Z1,DR,DI,ZMGB,ZTAGS,ZTANSR,G5,1.OE-6S,M,2O)
        IF(M.NE.5) GO TO 262
        GITE(G,263) ZTAGS,RBBST
2G3 FDRMAT(//5X,'OMETA FAILED TO CONUERGE FOR ZETA E:',
    * /10X,'ZTAGS = ',1P2E13.5,' RPBST =',E13.5)
        5:DP
2G2 CONTINUE
    ZETAB = ZTANSR
AP = CABS(ZETAA + ZETAB)
    AM = CABS(ZETAA - ZETAB)
    AB = CABS(ZETAA*ZETAE)
```

$C H Y=(2.0-A P * A P+2.0 * A B * A B) / A M / A M$
RT = SQRT (CHY*CHY-1.O)
$C A=S Q R T(A B S(C H Y+R T))$
$C B=\operatorname{SQRT}(A B S(E H Y-R T))$
$5 S=A M I N J(C A, C B)$
$Z A L=(2.0 * Z E T A A * Z E T A B+(5 S * S S *(Z E T A A-Z E T A B)-Z E T A A-Z E T A B)$

* $\operatorname{CONJG}(Z E T A A)) /(S 5 * S S *(Z E T A A-Z E T A B)+Z E T A A+Z E T A B-2.0 /$
* CJNJG(ZETAA))
$23 T=(2.0 * Z E T A A * Z E T A B-Z A L *(Z E T A A+Z E T A B)) /(Z E T A A+Z E T A B-2.0$ *ZAL)
$Z G M=5 S *(Z E T A A-Z B T i /(Z E T A A-Z A L)$
C
415 WRITE(G,245) ZABST
245 FORMAT(//10X,'BEST GUESS FQR ZETA A IS ZABST $=1,1 P 2 E 12.3$)
WRITE(G,24G) ZBBST
246 FORMAT(//10X,'BEST GUESS FOR ZETA B IS ZBBST = , 1P2EI2.3;
KRITE(G,215) ZETAA,ZETAB
215 FORMAT(// 5X,'ZETAA $=$ ',1P2E13.5.' ZETAB $=$, 2E:3.5)
WनITE(6,216) ZAL, ZBT, ZGM, SS
216 FORMAT(// 5X,'ALPHA $=1,1$ P2E11.3,' BETA $=1,2 E: 1.3$. * ' GAMMA = ',2E11.3,' $5=$, 2E11.3)
$E(129)=E(1)+T P I$
CALL EISPLN(PHI,E,THT,F,129,1,1,2)
CALL CISPLN(PHI,E,X,F,125,2,KJMX,2)
GOTO 212
2:1 CONTINUE
$E(129)=5(K J M X)$
CAL
CALL CISPLN(PHI,E,S,F,129,2,KJMX,2)
2:2 CUNTINUE
W.PITE (6,217)
21.7 FORMAT(//IOX, 'MAPPING FROM SMALL OMEGA - PLANE TO ZETA - PLANE:',
* // 3K,'KJ',11K,'SMALL DMEGA',23K,'ZETA',//)

DO $54 \mathrm{~K}=1, \mathrm{KJMX}$
$R=E X P(Y(K))$
$Z X=\operatorname{CMPLX}(R * \operatorname{COS}(X(K)), R * S I N(X(K)))$
$Z \cup G=\operatorname{CMPLX}(\operatorname{COS}(F(K)), S I N(F(K)))$
IF (K.EQ.I.OR.K.EQ.KJMX) ZYG = ZI
ZCC (K) = ZYCi
54 WRITE (6,218) K, ZK,ZYG
2:8 FORMAT(I5,1P4E15.5)
zCC NJW CONTAINS zETA DN THE BLADE SURFACES
WRITE (G,202)
C NUW do the mapping From the eta - plane to the ksi tilde - plane,
c WHERE ETA/S = SN(KSI TILDE)

```
        AR = SS*SS
        AKQ = AK#AK
        AKP = SQRT(1.O-AKQ)
        AKM = AKP*AKP
        CALL ELLPT(PQ2,AK,RL,1)
        TBK = 2.O*RL
        CTR = -RL
        CAPK = RL
        CALL ELLPT:PI,AKP,RL,1)
        CAPKPM = RL
        WRITE(G,222) AK,CAPK,AKP,CAPKPM
222 FORMAT(//1OX, 'COMPLETE ELLIPTIC INTEGRALS OF K AND K PRIME',
                    ARE AS FOLLOWS:',
    * //10K,'K(',F10.G,') = ',F10.G,5K,'K(',F:0.G,') = ,,=10.5:
    DO 55 I = 1,KJMX
    ZA(I)= ZGM*(ZCC(I)-ZAL)/(ZCC(I)-ZBT)
C
    ZA(I) NOW HOLDS ETA
    ZTD = 2A(I)/5S
    TAU = REAL(ZTD)
    DLT = AIMAG(ZTD)
    TSQ = TAU*TAU
    DSG = DLT#DIT
    AZT = 1.O + AKQ*(TSQ + DSQ)
    F* = SQRT((1.0-AKQ*TSQ)*(1.O-AKQ*TSQ) + AKQ*DSQ*:2.0*
        * (1.0+AKQ*TSQ)
        +AKQ*DSQ))
    BRQ = 1.0 + TSE + DSQ
    BRT = SQRT((1.0-TSQ)*(1.0-TSQ) + DSQ*(DSQ+2.0+2.0*TSZ))
    A-M = (BRQ-BRT)*(ART-RT)/4.0/AKQ/TSQ
    SGA = (TSQ + DSQ -ALM)
    SGA = SGA/(SGA+1.0-ALM*AKQ*(TSG+DSQ))
    IF(TAU.EQ.O.O) GO TO 403
    RTALM = SQRT(ALM)*TAU/ABS(TAU)
    Grj TO 404
    40J RTALM =0.0
    4O4 SGN = 1.0
    IF(DLT.LT.0.0) SGIN = -1.0
    RTSGA = SGN*SGRT(SGA)
    RTALM = ASIN(RTALM)
    RTSGA = ASIN(RTSGA)
    CALL ELLPT(.PTALM,AK,RL,0)
    CALL ELLPT(RTSGA,AKO,AG,O)
    I:(AG.GE.0.0) GO TO 57
    A:=-AG
    RL =-RL - TBK
    57 ZA1(I) = CMPLN(R\,AG)
    5j CONTINUE
I
C ZA:(I) NOW HOLDS KSI HAT
C
    WRITE(G,219)
219 FORMAT(////10X,'MAPPING FROM THE ETA - PLANE TO THE KS: :HAT - ',
    *'PLANE',
    * /// 3K,'KJ',15K,'ETA',25K,'KSI HAT',//)
```

```
        DO 5G K = 1,KJMX
```

 DO 5G K = 1,KJMX
 KRITE(E,218) K,ZA(K),ZA1(K)
 KRITE(E,218) K,ZA(K),ZA1(K)
 So CONTINUE
 So CONTINUE
 C
NOW SET LPP A GRID IN THE KSI-HAT PLANE, AND MAP IT BACK
NOW SET LPP A GRID IN THE KSI-HAT PLANE, AND MAP IT BACK
TO THE Z - PLANE:
TO THE Z - PLANE:
ZA2(1)= 2TE
ZA2(KJMX) = ZTE
ZAZ(KJLEE)= ZLE
DG 91 KJ = 2,KJLM
K = KJLE - KJ
S12 2AZ(KJ)= ZP(K)
DO 92 K = 1.KJS
KJ = KJLE + K
92 ZA2(KJ)= 2S(K)
THE zAZ ARRAY NOW HOLDS THE BLADE-SURFACE COORDINATES, IN THE ORDER:
KJ = 1: TE
KJ = 2,N゙JLM: PRESSURE SIDE, FROM TE TO :E
KU = KJLE: LE
KJ = KJLF,KJMXM: SUCTION SIDE, FROM LE TO TE
KJ = KJMX: TE AGAIN
KMKM1 = KMX - I
LMXM1 = LMX - 1
HCPKPM = CAPKPM/2.0
TWOCPK = 2.O*CAPK
THCPK = 3.O*CAPK
FEPK = 4.0*CAPK
ZAG = ZAL*ZGM
ENINU = 1.O/EX
SHXTE = REAL(ZA1(1))
IF(SHXTE.GT.CTR) SHXTE = SHXTE-FCPK
S:+K = -CAPKPM*CAPKPM/4.0/(THCPK +SHXTE)
SHKINU = 1.O/SHK
IF(ISHEAR.EQ.0) SHKINU = 0.0
DSHX = 2.O/FLOAT(KMXM1)
DSHY = 1.0/FLOAT(LMXM1)
Z[G= ZI*SG
ZXYN = ZGAMMA*ZN
ZKYT = ZGAMMA*ZT
ZEN = CEXP(PI*ZXYN/SG)
ZET = CEMP(PI*ZXYT/SG)
ZHNI = 1./ZEN
ZETI = 1./2ET
SGP = SG/TPI
S: = 0.5*SG
ZEETE = ZA(1)
ZLA = 1. + SS*ZEETE
Z.B = 1. - SS*ZEETE
ZLC = ZEETE + 5S
ZLD = ZEETE - SS
ZDQ = ZAM*(1./2LA + 1./2LB)*SS + ZAP*(1./2LC - 1./ZLD)
ZDG = ZI*(SS*(1./ZLA - 1./ZLB) - 1./ZLC - 1./ILD)

```
```

 Q = SG/TPI
 GG = -Q*ZDQ/2DG
 ZROOT = 4.*AN゙*(ZAM+AK*ZAP)*(ZAP+AK*ZAM)
 ZRODT = ZROOT-GG*GG*ANM*AKM/Q/Q
 ROOT = REAL(ZROOT)
 ROOT = SQRT(ROOT)
 ZSPB = (AKM*ZI*GG/Q - ROOT)/(2.*SS*(ZAM+AK*ZAP))
 ALPO = ALP*180./PI
 GQ = GG/Q
 WILP = SQRT(1.+GQ*GQ-2.*GQ*SIN(ALP))
 WDN = SQRT(1.+GQ*GQ+2.*GQ*SIN(ALP))
 UUP = COS(ALP)/WUP
 UDN = UUP
 YDN = -(SIN(ALP)+GQ)/WUP
 VUP = -(SIN(ALP)-GQ)/WUP
 W.? = WDN/WUP
 EETA1 = ATAN(UUP/UUP)*180./PI
 BETA2 = ATAN(UDN/UDN)*180./PI
 LRITE(G,22G) ALPO,G,GG,ZSPE,ULP,UUP,BETA1,UDN,UDN,BETAZ,WR
 Z2G FORMAT(%/10X,'CUNSTANTS FER INCOMPRESSIBLE-FLDW SOLUTION ARE',
 * //:OK,'ANGLE OF ATTACK IN THE ETA - PLANE =',F10,5,
 * //10X,'Q = ',F10.5,' GG = ',F10.5,' ETAISTSG.PT.' = ',
 * 2F10.5,//5X,'INLET U/WO,Y/WO,BETAI =',3FIO.5,
 * //5X,'OUTLET U/WO,U/WO,BETAZ,W/WO =', 4F10.5.//%
 i= i
 L = 1
 WRITE(G,202)
 W:RITE(E,205)
 2O5 FORMAT(/5X,'MAPPING OF A GRID IN THE KSI-HAT PLANE',
 * /5X,'AND INCOMPRESSIBLE-FLDW SOLUTION IN THE X,Y PLANE',
 * //3X,'K L', 8X,'KSI HAT',
 15K,'ETA',1GX,'ZETA', 13X,'SMALL OMEGA',
 10K,'Z MAPPED',14K,'ZXY',
 /13X,'U/WO',GX,'V/WO',7X,'PHI',7K,'PSI',//)
 C
CALL ZISPLN(ZSOMGA,ZCC,ZEE,ZFF,KJMK,1,129,1)
C
K - LOOP STARTS HERE
760 CONTINUE
SHX = -1.0+DSHX*FLGAT(K-1)
C
C L - LOOP STARTS HERE
70 CONTINUE
SHY=DSHY*FLDAT (L-1)
XIM=HCPKPM*(1.0-SHY)
XIR = (XIM-HCPKPM)*2
XIR = SHKTE+ TVNCPK*(1.O+SHX) +XIR*SHKINU
ZXI(L,K) = CMPLX(XIR,XIM)

```
```

C
E BYPASS IMAGE CALCULATIONS FOR POINTS THAT FALL ON THE IMAGES OF
C PLUS OR MINUS INFINITY OR THE T.E.
C
IF(ISHEAR.EQ.O) GO TO 84
IF(L.EQ.1.AND.K.EQ.1) TO TO 73
IF(L.EQ.1.AND.K.EQ.KMX) GO TC 73
84 CONTINUE
IF(L.EQ.EMX.AND.K.EQ.I) GO TO 74
IF(L.EQ.LMX.AND.K.EQ.KMX) GO TO 74
IF(IDE.EQ.O) GO TO BO
IF(L.EQ.LMX.AND.K.EQ.KMXH) GD TO 81
GO TO 80
E
C
73 ZEETA(L,K) = ZEETE
ZETA(L,K)=(ZBT*ZEETA(L,K)-ZAG)/(ZEETA(L,K)-ZGM)
ZOMA(L,K) = ZOMTE
ZFNL(L,K) = CMPIX(SHK,SHY)
ZNY(L,K) = ZTE*ZGAMMA
ZVEL(L,K)= ZEG
ZFNP(L,H)= ZBG
GOTO 710
74 ZEETA(L,K) = EMPLX(S5,0.0)
ZETA(L,K) = ZETAA
ZUMA(L,K) = ZMLIA
ZFNL(L,K) = CMPLX(SHX,SHY)
ZUEL(L,K)= CMPLX(UDN,UDN)
ZFNP(L,K)= ZBG
GO TO 710
8: ZEETA(L,K) = LMPLX(-SS,0.0)
ZTTA(L,K) = ZETAE
ZOMA(L,K) = ZMGIB
ZFNL(L,K) = CMPLX(SHX,SHY)
ZUEL(L,K) = CMPLX(UUP,UUP)
ZFNP(L,K)= ZBG
GO TO 710
C
C
aO CONTINUE
CALL JCELFN(XIR,XIM,AKQ,AKM, RLS,AGS,1)
ZEETA(L,K) $=$ SS*CMPLX(RLS,AGS)
IF(L.NE.LMX) GO TO $8 G$
$I F(K . L E . K M K H)$ ZEETA $(L, K)=2 E E T A(L, K)-2 E P S$
$I=(K . G T . K M X H)$ ZEETA $(L, K)=Z E E T A(L, K)+2 E P S$
ES
CONTINUE
ZETA $(L, K)=(Z Q T * Z E E T A(L, K)-Z A G) /(Z E E T A(L, K)-Z G M)$
IF(L.NE.1) GO TO E2
$Z E E(1)=$ ZETA(L,K)
CALL ZISPIN(ZSOMGA, ZCC, ZEE, ZFF,KJMX,2,1,1)
ZOMA(L,K) $=\operatorname{ZFF}(1)$

```

\section*{E2 IF（ICIRC．EQ．O）}
＊EALL OMETA（A，B，ZUMA（L，K），ZETA（L，K），ZTANSR，G5，1．0E－00，1；
710 CONTINUE
\(L=L+1\)
IE（L．LE．LMX）GO TO 770
\(K=K+1\)
\(L=1\)
IF（K．LE．KMX）GO TO 760
IF（ICIRC．EQ．O）GO TO 763
AT THIS PQINT，GRID CALEULATIONS IN THE ZXI，ZEETA，AND ZETA PEANEG ARE COMPLETE，FOR ALL \(L\) AND K，AND IF ICIRC \(=0\) ，THE SMALL－OMEGA－ PLANE GRID HAS ALSU BEEN FOUND．THE FULLOWING CALL CALCLLATES THE SMALL－GMEGA GRID FOR THE CASE ICIRC \(=1\) ：

CALL DMZTDR（DR，DI，ZETAB，ZETA，ZOMA，KMX，LMX，IOE）
763 CONTINUE
\(K=1\)
\(L=1\)
\(7 G 1\) CONTINUE

IF（L．EQ．A．AND．K．EQ．I）GO TO 711
IF（ \(L . E Q .1 . A N D . K\) ．\(E Q . K M X)\) GO TO 711
IF（！．EX．i．M, AND．K．EX．I）GO TO 712
IF（L．EQ．LMX．AND．K．EQ．KMX）GO TO 712
iF（IOE．EU．O）GU TO 7G2
IF（L．EG．LMK．AND．K．EU．KMXH）GO TO 712
\(7 E 2\) CONTIINUE
ZOOM＝ZC＊（ZOMA（L，K）－ZD）／（ZOMA（L，K）－2B）
RAD＝CABS（ZBOM）
\(A R G=A T A N 2(A I M A G(Z B O M), R E A L(Z B O M))\)
RADC \(=\) RAD\＃＊EXINU
ARGO＝EXINU＊ARG
ZBOMK \(=\) CMPLX（RADD＊COS（ARGO），RADO＊SIN（ARGO））
NOW FIND ZXY，GIUEN ZEOMK
ZXY（L，K）＝SGP\＃CLOG（（ZET－ZBOMK＊ZEN）／（ZETI－ZEGMK\＃ZENI）
IF（L．NE．1）GO TO 93
\(I=((A I M A G(Z X Y(L, K))-Y Y(K-1, L)) . L T,-S Z) \quad 2 X Y(L, K)=2 X Y(\ldots, K:+Z: G\)
\(I F((A I M A G(Z X Y(L, K))-Y Y(K-1, L)) . G T . S Z) Z X Y(L, K)=Z X O L, K ;-Z こ G\)
［O TO 90
93 CONTINUE
\(\operatorname{IF}((A I M A G(Z X Y(L, K))-Y Y(K, L-i)), L T .-S Z) Z X Y(L, K)=Z X Y G L K:+Z I G\)
IF（ \((A \mathrm{M} M \mathrm{AG}(Z X Y(L, K))-Y Y(K, L-1))\) ．GT．SZ）\(Z X Y(L, K)=Z K Y(L, K)-Z 丁 G\)
5O CONTINUE
72 CONTINUE
```

 ZFNL(L,K) = CMPLX(SHX,SHY)
 ZLA = 1. + SS*ZEETA(L,K)
 ZSB = 1. - SS*ZEETA(L,K)
 ZC = LEETA(L,K) + SS
 ZLD = ZEETA(L,K) - SS
    ```
```

 ZWE = Q*(SS*(1./2LA+1./ZLB)*ZAM+ZAP*(I./ZLC-1./ZLD))
    ```
    ZhE = ZWE ZI*GG*(SE*(1./ZLA-1./ZLB)-1./ZLC-1./ZLD)
    ZLA \(=\operatorname{CLGG}(2 L A)\)
    ZLB \(=\operatorname{CLOG}(Z \operatorname{LB})\)
    zLC = CLCg(zLC)
    ZLD \(=C L O G(Z!D)\)
    \(x_{-C}=\operatorname{REAL}(2 L E)\)
    XLD \(=\) PEAL(ZLD)
    YLC = AIMAG(ZLC)
    \(Y L D=A I M A G(Z L D)\)
    IF(YLC.LT.O.) YLC = YLC + TPI
    IF (YLD.LT.O.) YLD \(=\) YLD + TPI
    ZLC = EMPLX(XLC.YLC)
    \(2 \cdot D=C M P L X(X L D, Y L D)\)
    \(Z=N P(L, K)=Q *(Z A M *(Z L A-Z L B)+Z A P *(Z L C-Z L D))\)
    \(\operatorname{ZFNP}(L, K)=\operatorname{ZFNP}(L, K)+Z I * G G *(Z L A+Z L B-Z L C-Z L D)\)
```

SALCULATE THE UELOCity
ZDF = 2DA
ZDC = ZETA(L,K) - ZRT
ZUC = ZGM*(ZAL-ZST)/ZDC/ZDC
Z|R = 2DR*ZDC
It (ICIRC.EQ.O)

* CALL OMETA(A,B,ZOMA(L,K),ZETA(i,K),ZTANSF,GE,I.,2;
\#%(ICIFC.EQ.1)
*EALL OMDZETA(ZOMTE,Z1,DR,DI,ZOMA(L,K),こETA(L,K),ZTANSR,E5,1,,2,20;
ZOR = ZDR/ZTANSR
ZDE = ZUMA(L,K) - ZB
ZDE = ZC*(ZD-ZB)/ZDE/ZDE
ZD.% = ZDF/ZDE
Z = ZKY(L,N)/IGAMMA
ZcT = (Z-ZT)/ZDN
ZZN=(Z-ZN)/ZDN
ZT2 = CSIN(ZPI*ZZT)
Z:4 = CSIN(ZPI\#ZZN)
Z:L = CSIN(ZPI*(ZZN-ZZT))
ZD:= = IPI*ZPDM*EK*ZT1/ZDN/ZTZ/ZT4
ZDR = 2DR*2DF
ZVEL(L,K) = CONJG(Z泣EZDR)/WUP
GO TO 711

```
\(C\)
\(C\)
\(C\)
\(712 Z \times Y(L, K)=2.0 * 2 A(\operatorname{LiMX}-1)-2 A(L M X-2)\)
7.1 WRITE(5,224) K,L,ZKI(L,K), ZEETA(L,K), ZETA(L,K), ZOMA(L,K),
    * ZFNL (L,K), ZXY(L,K)

225 FORMAT(8X,12F10.5)
    \(\Sigma E(L)=Z X Y(L, K)\)
    \(X X(K, L)=\operatorname{REAL}(Z K Y(L, K))\)
    \(\because \because(K, L)=A I M A G(Z X Y(L, K))\)
    7: CONTiAUE
        \(L=L+1\)
    If (L.LE.L.MX) GO TO 7EI
```

 M:RITE(G,202)
 IF(PNCHZA) WRITE(7,210) (ZA(L):L=1,LMX)
 K=k + I
 L=1
 IF(K.LE.KMX) GO TO 7G1
 70 CONTINUE
STOP
100 FORMAT(8F10.4)
202 FDRMAT(///)
210 FORMAT(1P4E20.13)
2%4 FORMAT(2I4,12F10.5)
END

```

SUBROUTINE EISPLN(Y,X,E,F,NP,IRTN,NRTN,NFD)
```

THIS SUBROUTINE FITS A CUBIL SPLINE TO A FUNCTION Y(X), DEFINED GY
NP PAIRS OF POINTS. THE SECOND DERIVATIVE OF THE FLNSTION
IS PERIODIC. IF NPD = 1, THE FUNCTION ITSELF IS ALSO
PERIOEIC, WHILE IF NPD = 2, THE FUNCTION INCREASES BY 2.*PI
EvERY PERIGD, IN WHICH LASE THE IATA PASSED TO THIS
SUEROLTINE SHDULD HAVE THE PROPERTY THAT Y(NP) = Y(1) + 2.\&PI;
THE SURROUTINE AILL THEN SET:
Y(NP+1)=Y(2) + (NPD-1)*2.*PI, ANDD
X(NP+1) = X(NP) + X)Z) - X(1)
GOLUTIONS FOLLQM PAGES g - i5 OF
THE THEORY OF SPLINES AND THEIF APPLICATIUNS, BY J. H. AHLBERG,
E. N. NIISON, AND J. L. WALSH, ACADEMIC PRESS, 19G7
NOTE THAT Y,X,E,AND F ARE, RESPECTIVELY, ORDINATE, AESEISSA,ABSEISSA,
AND ORDINATE.
IMPLICIT REAL(A-H,O-Y),COMPLEX(Z)
DIMENSION Y(1G0), K(1G0),E(1G0),F(1G0),BDA(SGO),EM(1E0),H(1EO)
DINENSION S(1G0),T(1G0),U(1GO),D(160)
D~TA TPI/G.2831853071795/
THIS SECTIGN (ENTERED WHEN IRTN = 1) USES THE NP PAIRS DF INPUT
COURDINATES X AND Y TD FIND THE COEFFICIENTS OF THE SPLINE FIT.
THESE COEFFICIENTS - HERE CALLED EM(RJ) - ARE THE SEEOND DERIVATIUES
OF THE FUNCTIUN.
IF(IRTN.EQ.2) GU TO 2O
NPM = NP - 1
N=NP + 1
DO 1 KJ = 2,NP
1H(KJ)= K(Kい)-K(KJ-1)
H(N)=H(2)
DO 2 KJ = 2,NP
2 BDA(Kj)=H(KJ+1)/(H(KJ)+H(KJ +1))

```
```

 E(1) = 0.0
 Fi!: = 0.0
 S(I) = 1.0
 D! 3 KJ = 2,NPM
 EV = 2.0 + (i.j - BDA(Kj))*E(Kj-1)
 E(KJ) = -3DA(KJ)/DN
 Ei{Jj =
 * G.O*((Y(Kj+1)-Y(KJ))/H(KJ+1)
 * - (Y(KJ)-Y(KJ-1))/H(KJ))/(H(KJ)+H(KJ+1))
 E:KJ) = -(土.0-8DA(KJ))*S(KJ-i)/DN
 a=iKJ)=(D(KJ)-(1.0-BDA(Kj);\#F(KJ-1))/DN
Y(N) = Y(2)
IF(NPD.EQ.Z) Y(N) = Y(N) + TPI
D(NP) = E.U*((Y(N)-Y(NP))/H(2)
* - (Y(NP)-Y(NPM))/H(NP))/(H(NP)+H(2))
NGMM = NP - 2
T(NP) = 1.0
U(NP) = 0.0
DOGII = 1,NPMM
K! = NP - I
T(KJ) = E(KJ)*T(KJJ+1) + S(KJ)
U(KJ)=E(KJ)*V(KJ+1) + F(KJ)
G cOnTiNUE
EN(NP) = (D(NP)-BDA(NP)*U(2)-(1.0-BDA(NP))*U(NPN))/
* (BDA(NP)*T(2)+(1.O-BDA(NP))*T(NPM) + 2.0)
D: 4 I = 1.NPM
K: = NP - I
4 EM(KJ) = E(KJ)*EM(KJ+1) + F(KJ) + S(KJ)*EM(NP)
EIE = ABS(X(NP)-X(1))/10.0
RSTURN
THIS SECTION (ENTERED WHEN IFTN = 2) RETURNS NRTN INTERPULATED
vALUES OF THE GRDINATE F AT ASSIGNED vALUES GF THE AESCISSA E.
20 kJ = 2
DO 21 J = 1,NRTN
F= = E(J)
24 IF(A.LE.X(KJ)) GO TO 23
K.: = Kj + 1
ZC(KJ.LE.NP) GO TO 24
DF = A - X(NP)
IF(DF.GT.SIZE) WRITE(G,200) J,E(J),NP,X(NP)
200 FORMAT(//10X,'WARNING - ENTRY IN CISPLN EXCEEDS END QF BASE ',
'ARRAY',/5X,'E(',I3,') = ',1PEIG.8,' EXCEEDS X(,,I3,') = ',
E1G.8)
D:=A - K(1)
IF(DF.LT.(-SIIE)) WRITE(G,201)J,E(J),K(1)
2O1 FORMAT(//10%,'WAFNING - ENTRY IN CISPLN IS LESS THAN THE FIRST',
* ' BASE POINT',
* /5X,'E(',I3,') = ',IPE1G.8,' IG LESS THAN X(1) = ',EIG.G)
KJ = NP
23 DKA = X(KJ) - A
DNB = A - X(KJ-1)
CHA = DKA*DKA*DKA
CBB = DKB*DKB*DKR
F(j) = (EM(KJ-1)*CBA+EM(KJ)*CBE)/E.0/H(KJ)
* + DXA*(Y(KJ-1)-EM(KJ-1)*H(KJ)*H(KJ)/G.O)/H(KJ)
* + DXE*(Y(KJ)-EM(KJ)*H(KJ)*H(KJ)/E.O)/H(KJ)
21 CONTINLUE
RETURN
END

```
L.
SUBRQLTINE ELLPT（AR，AK，ANS，KOMP）
IMPIICIT FEAL（A－H，D－Y），COMPLEX（Z）
DIVENSION SQ（12）
DATA K／1／
DATA Pi／3．1415926535897／

``` WITH ARGLMENT AR（AN ANGLE IN PADIANS），AND PAİAMETER AK（B TEAL （ NUMBER）．
C．THIS EUALUATION USES EG．（14）OF：Y．L．LUKE，＇APPROXIMATIONE
C FOR ELLIPTIC INTEGRALS＇，MATH．COMP．，UOL． 22 （UULY igs8），PF ラ27－
C 534，WITH N＝ 12 ．
C KOMP＝O．1 FOR THE INCOMPLETE，COMPLETE INTEGRAL，RESPECTIVELY．
IF（K．GT．I）GO TO 11
\(k=2\)
TNP \(=25.0\)
DO \(10 \mathrm{M}=1,12\)
\(T H M=P I * F L O A T(M) / T N P\)
\(S=S I N(T H M)\)
10 ST（M）\(=5 * 5\)
1i \(A K K=A K \# A K\)
\(5^{\circ}=0.0\)
FF（KEMP．EQ．1）GO TO 40
\(\because \mathrm{A}=\operatorname{TAN}\left(\mathrm{A}_{\mathrm{i}}\right)\)
D． \(20 M=1,12\)
\(S: \operatorname{SQRT}(1.0-A K\{\operatorname{SQ}(M))\)
\(T=A T A N(S G * T N)\)
EO \(5 M=5 M-T / 5 G\)
\(A N S=(A R+2.0 \# S M) / T N P\)
RETURN
\(40 \mathrm{DO} 41 \mathrm{M}=1.12\)
SG＝SQRT（1．0－AKK＊SQ（M））
\(42 S M=5 M+1.0 / 5 G\)
\(A_{A}=P=P I *(1.0+2.0 * 5 M) / 2.0 / T N P\)
RETURN
END
SURROUTINE JCELFN（RL，AG，AKQ，AKM，RLS，AGS，M）
```

C
WHEN M．EG． 2 ，THE GUANTITIES RETUFNED ARE THE REAL AND IMAGINARY PARTS OF THE PRODUCT CN（．．）＊DN（．．），WHICH IS THE DERIVATIVE DF THE SN：．．）

```
```

WHEN M.EG.1,

```
WHEN M.EG.1,
TH:S SUBROITINE RETURNS THE jACOBIAN ELLIPTIC SINE
TH:S SUBROITINE RETURNS THE jACOBIAN ELLIPTIC SINE
OF A COMPLEK ARGUMENT:
OF A COMPLEK ARGUMENT:
 FLS + I*AGS = SN(FLL + I*AG,K)
 FLS + I*AGS = SN(FLL + I*AG,K)
USING THE ARITHMETIC - UEOMETRIC MEAN FORMULA ISEE P. STI. HANDROUK
USING THE ARITHMETIC - UEOMETRIC MEAN FORMULA ISEE P. STI. HANDROUK
OF MATHEMATICAL FUNCTIGNS, ED. BY M. AERAMOWITZ AND I. A. STEGUN,
OF MATHEMATICAL FUNCTIGNS, ED. BY M. AERAMOWITZ AND I. A. STEGUN,
U.S. SATIONAL BLIREAU CF STANDARDS, APPLIED MATHEMATICS SEFIES, S5,
U.S. SATIONAL BLIREAU CF STANDARDS, APPLIED MATHEMATICS SEFIES, S5,
ULNE {GG4) AND THE ADDITIUN FORMULA FOR THE SN (SEE EUUATION :2S.O:
ULNE {GG4) AND THE ADDITIUN FORMULA FOR THE SN (SEE EUUATION :2S.O:
P. 24, DF HANDEOOK GF ELLIPTIC INTEGRALS FOR ENGINEEİS AND
P. 24, DF HANDEOOK GF ELLIPTIC INTEGRALS FOR ENGINEEİS AND
PHYSICISTS, EY P. F. BYRD AND M. D. FRIEDMAN, SPRINGEF VERLAG, :S54:.
PHYSICISTS, EY P. F. BYRD AND M. D. FRIEDMAN, SPRINGEF VERLAG, :S54:.
AKQ = K**こ, AMM = 1. - K**2
```

AKQ = K**こ, AMM = 1. - K**2

```
```

    IMPL_EIT REAL(A-H,O-Y),COMPLEX(Z)
    Di MENSION A(20),B(20),C(20),PH(20)
    K = 1
    A(I) = 1.0
    B(I) = SQRT(AKM)
    C(1) = SQRT(AKQ)
    500GI = 2,20
    A(I)=(A(I-1)+B(I-1))/2.0
    B(I) =SQRT(A(I-I)*B(I-1))
    C(I)=(A(I-1)-B(I-1))/2.0
    IF(ABS(C(I)).LT.1.OE-OS) GOTO 7
    G CONTINUE
    KIPITEIG,200) RL,AG
    200 FURMAT(///10X,'JCELFN FAILED TO CONUERGE FOR Z = ',IPZEI5.4)
S:0P
7NM=I-1
N=I
IF(K.EQ.2) GO TO 20
PH(N)=A(N)*RL*2**NM
15 DO 11 L = 1,NM
J=N-L
:IPH(J)=(PH(J+1)+ASIN(C(J+1)*SIN(PH(J+1))/A(j+1jjj/2.0
I־(K.EQ,2) GO TO 40
5.{ = SIN(PH(1))
CNK = COS(PH(1))
DNK = CNK/COS(PH(2)-PH(1))
* = 2
TMP = B(1)
P(1) = C(1)
C(1) = TMMP
0% T0 5
20 PH(N)=A(N)*AG*2**NM
G\# TO 15
40 SNP = SIN(PH(I))
CNP = CDS(PH(1))
DNP = CNP/COS(PH(2)-PH(1))
DNM = 1.0 - SNP*SNP*DNK*DNK
IF(M.EQ.2) GO TO 50
FiLS = SNK*DNP/DNM
AES = CNK*DNK*SNP*CNP/DNM
RETURN
50 RLA = CNK*CNP
AGA = SNK*DNK*SNP*DNP
R!B = DNK*CNP*DNP
A:B = AKQ*SNK*CNK*SNP
RLS = (RLA*RLE-AGA*AGB)/DNM/DNM
ACS = (-RLA*AGB-RLB*AGA)/DNM/DNM
R2 URN
Eか!

```
 SUBRQUTINE OMETA(A,B,ZMGA,ZTAGS,ZTANSR,N,EPS,M)
 ZM-LICIT REAL(A-H,O-Y), COMPLEX(Z)
 DIMENSION A(G5),B(G5),ZC(G5)
IF M.EEV.O,
THIS SLBROUTINE USES NENTON - RAPHSON TO FIND ZETA(DMEGA): ZMSA IS A
KNOWN UALUE UF GMEGA, ZTAGS IS THE IN:TIAL GLESS AT ZETA, ZTANSR IS
THE SOLUTION, AND EPS IS THE TOLERANCE ON THE ANSNETV.
M IS RESET TO 5 AS AN ERROR RETURN IF THESE ITERATIONS
DO NOT CONVERGE.
IF M.EQ.:., THIS SUBROUTINE RETURNS THE UALUE OF UMEGA IIN ZMGA;
FOR A GIUEN UALUE OF ZETA (IN ZTAGG).
IF M.E\.2, THE QUANTITY RETURNED (IN ZTANSR) IS D DMEGA/D ZETA, FOR
GIUEN UALUES OF OMEGA (IN ZMGA) AND ZETA (IN ZTAGS)
 Z1 = CMPLX(1.0,0.0)
 ZETA = ZTAGS
 NM=N-1
 IT = 1
 5 CONTINUE
 ZSMA = CMPLK(A(N),B(N))
 I=(M.EQ.1) GO TD 22
 ZSME = 2SMA*FLOAT (NM)
 IF(M.EG.2) GO TO 40
 D) 10 J = 1,NM
 ZSMA = ZETA*ZSMA + CMPLX(A(N-J),B(N-j))
 ZG,1B=EETA*2SME + CMPLX(A(N-J),E(N-J))*FLUAT(NM-j)
10 CONTINUE
 ZEXP = CEXP(ZSMA)
 ZG = ZETA*ZEXP - ZMGA
 ZHG = ZEXP*(Z! + ZSME)
 ZFTOLD = ZETA
 ZETA = 2ETOLD - 2G/2DG
 IF([ARS(IETA-ZETOLD).LT.EPS) GO TO 20
 IT = IT + I
 I=(CABS(ZETA).GT.1.0) ZETA = 0.9 *2ETA/CABS(ZETA)
 IF(IT.LE.50) GO TO 5
 M=5
 FETURN
20) ZTANSR = ZETA
 RETURN
2% DO 2: J = 1,NM
 ZSMA = ZETA*ZSMA + CMPLK(A(N-J),B(N-J))
\because: CCNTINUE
 ZEXP = CEXP(ZSMA)
 ZMGA = ZETA*ZEXP
 RETURN
40 DO 41 J = 1,NM
4: ZSMB = ZETA*ZSMB + CMPLK(A(N-J),B(N-j))*FLOAT(NM-j)
 Z:ANSF = ZMGA*(Z1+ZSINB)/ZTAGS
 R:ETURN
 END
```

```
F
8
E
F
F
 SUBROUTINE SHAPE(C,H,G,EX,ZP,ZS,KJS,KJP)
 IMOLICIT REAL(A-H,D-Y),COMPLEX(Z)
 DIMENSION ZS(BO),ZP(80)
 DM 1OK = 1,KJS
 10 READ(5.100) 25(K)
 DI 20 K = 1,KJP
 20 READ(5.100) ZP(K)
 100 FORMAT (8F10.0)
 RETURN
 END
 SUBROUTINE SHUFL(N,ZA,ZCC)
 THIS SUBROUTINE TAKES THE N COMPLEX UALUES IN ARRAY ZA, WHICH WERE
 COMPUTED AND STORED IN REVERSE BINARY ORDER RY FFT AND "SHUFFLES"
 THEM INTO PROPER ORDER USING ARRAY ZCC FOR INTERMEDIATE STOFAGE.
 N IS ASSUMED TO HAUE THE FORM 2**M.
 IMPLICIT REAL(A-H,D-Y), CDMPLEX(Z)
 DIMENSIDN ZA(GS),ZCC(G5),IAL(G),KR(G4)
 D^TA KALL/O/
 DETA IAL/G*O/
 IF (KALL.EQ.1) GD TO 10
 KA_L = 1
 D: 341 jo=1,N
 J = JP - 1
 IAL (G) = J/32
 J=J - 32*IAL(G)
 IAL(5) = J/15
 J= J-1G*IAL(5)
 IA_(4) = J/B
 J=j-8*IAL(4)
 IAL(3) = J/4
 J=J-4*IAL(3)
 IAL(2) = J/2
 J=J - 2*IAL(2)
 IAL(!) = J
341 KR(JP) =
 * 32*IAL(1)+IG*IAL(2)+8*IAL(3)+4*IAL(4)+2*IAL(5)+IAL(E)
 1: DO 342 J = 1,N
342 ZCC(J) = ZA(KR(J)+1)
 DC1 360 JP = I,N
ZGO ZA(JP)= ZCC(JP)
 Fi:TURN
 END
```


## SUBROUTINE THDGRK

```
THIS SUBRQUTINE MAPS AN QUAL TO A UNIT CIRCLE, USING A VARIANT OF THE THEODORSEN-GARRICK TRANGFORMATION AND FAST FUURIER TRANSFORN: TECHNiQUES. (SEE REFERENCES AT EEGINNING OF MAIN PROGRAM).
```

```
 IMPLICIT REAL(A-H,D-Y),COMPLEX(Z)
```

    IMPLICIT REAL(A-H,D-Y),COMPLEX(Z)
    COMMON/TGINTG/N,NPI,NP2,N2,NBZ,NB2P1,IP,IPMX,ITP,IWK,IMX,KJMX
    COMMON/TGINTG/N,NPI,NP2,N2,NBZ,NB2P1,IP,IPMX,ITP,IWK,IMX,KJMX
    COMMON/TGCMPX/Z1,ZW2N,ZI,ZNN,ZA,ZCC,ZA1,ZAZ
    COMMON/TGCMPX/Z1,ZW2N,ZI,ZNN,ZA,ZCC,ZA1,ZAZ
    COMMON/TGDELE/PBN,OM,OMM,ANGERR,A,B,E,F,THT,PHI,X,Y,BETA,S,DR,DI
    COMMON/TGDELE/PBN,OM,OMM,ANGERR,A,B,E,F,THT,PHI,X,Y,BETA,S,DR,DI
    DTMENSION X(1G0),Y(1GO),E(1G0),F(1G0),THT(1GO),
    DTMENSION X(1G0),Y(1GO),E(1G0),F(1G0),THT(1GO),
    * 3ETA(160),S(160)
* 3ETA(160),S(160)
DIMENSION PHI(130),A(G5),B(G5),ZCC(G5),DR(G5),DI(G5),
DIMENSION PHI(130),A(G5),B(G5),ZCC(G5),DR(G5),DI(G5),
    * ZA(165),ZAi(165),ZA2(165),
    * ZA(165),ZAi(165),ZA2(165),
IWK(7)
IWK(7)
DTMENSION ITP(100)
DTMENSION ITP(100)
C
301 DO 300 I = 1,N2
300 PHI(I)=PBN*FLOAT(I-1)
C
DO i0 I= i,65
ZCC(I) = 0.
A(I) = 0.
B(I) = O.
10 CONTINUE
[0) 11 I= 1,1G0
1!E(I)=0.
L
WRITE(G,401)
1493?
WRITE(G,401)
4O1 FORMAT(//1OK,'PROGRESS UF PHI / THETA ITERATIONS IS AS FOL:ONS:'/'
1 3X,'IT',4X,'DEMX',4X,'ND. OF THETA FEVERSALS')
C
i}\overline{i}=
C
FIRST GUESS IS THETA - THETA(TRAILING EDGE) = PHI
DO 315 K = 1,N2
3:5E(K)=K(1)+PHI(K)
305 DEMX = 0.0
C
C USE AJ AND BJ TO GET NEKT APPROKTMATION TO THETA
ZCC(1) = CMPLX(0.0,0.0)
DO 302 JP = 2,N
302 2CC(JP) = CMPLK(R.(JP)/2.0,-A(JP)/2.0)
ZC(NPI) = CMPLK(0.0,0.0)
Zw = Z1/ZW2N
DO 303 NP = 1,NB2P1
ZG1(NP)= ZCC(NP) + CONJG(ZCC(NPZ-NP))
ZW = ZW*ZW2N

```
```

    303 ZA2(NP) = ZW*(ZCC(NP)-CONJG(ZCC(NP2-NP)))
    ```
 303 ZA2(NP) = ZW*(ZCC(NP)-CONJG(ZCC(NP2-NP)))
 DD 304 NP = 1,NB2P1
 304ZA(NP)=ZA1(NP) + Zi*ZAZ(NP)
 DC 309 NP = 2,NB2
 SOG ZA(NP2-NP)=
 * CONJG(ZA1(NP)) + ZI*CONJG(ZA2(NP))
 CALLL FFT(ZA,G,IWK)
 CH゙LL SHUFL(N,ZA,ZCC)
 B(1) = X(1) - PHI(1) - REAL(ZA(1))
 Du, 30G K = 1.G4
 TMPP=E(2*K-1)
 E:2*K-1)=REAL(2A(K)) + PHI(2*K-1) + B(1)
 THT(2*K-1)=E(2*K-1)
 DEM = ABS(TMP-E(2*K-1))
 IF(DEM.GT.DEMX) DEMX = DEM
 E(2*K-i) = OM*E (2*K-1) + CMM*TMP
 TMP=E(2*K)
 E(2*K) = AIMAG(2A(K)) + PHI(2*K) + B(1)
 THT(2*K) = E(2*K)
 D=M = AES(TMP-E(Z*K))
 IS(DEM.GT.DEMN) DEMX = DEM
 E: 2*K)= OM*E(2*K) + OMM*TMP
 3@G CONTINUE
 IF(IT.NE.ITP(IP)) GO TO 84O
 IP=IP + I
 NiPITE(G,841) IT
 Q4! FORMAT(/3X,
 * 'THETA BEFORE AND AFTER RELAKATION AT IT = ', IA)
 K:ITE(G, 日32)(THT(I),I=1,128)
 K!ITE(G,832)(E(I):I=1,128)
 E32 FURMAT(1PIOE13.5)
 8.O CONTINUE
 IF(IT.GE.ITP(IPMX)) STOP
C
C NOW USE THESE THETAS TO GET THE NEXT APPROKIMATIGN TO LN F(K)
 CALL CISPLN(Y,X,E,F,KJMX,2,128,1)
C NOM FIND THE AJ AND BJ CGEFFICIENTS CORRESPONDING TO THE LN R(A: DATA
C
 DO 310 JP = 1,N
310 ZA(JP) = CMPLX(F(Z*JP-1),F(2*JP))
 DO 307 NP = 1,N
307 ZA(NP) = CONJG1(2A(NP))
 COLL FFT(ZA,G,INK)
 DO 308 JP = 1,N
30日 ZA(JP) = CONJG(ZA(JP))/INN
 CA,L SHUFL(N,ZA,ZCC)
 ZA(G5) = ZA(1)
 DO 311 NF = 1,NE2P1
 ZA1(NP) = (CONJG(ZA(NP2-NP)) + ZA(NP))/2.0
3:1 ZAZ(NP) = ZI*(CONJG(ZA(NPZ-NP)) - ZA(NPj)/2.0
 ZWi}= ZWZ
 DO 312 NP = 1,NB2P1
 ZW = ZW/ZW2N
```



```
 DIMENSION PHI(130),A(G5),B(G5),ZCC(G5),DR(G5),DI(GE),
 * ZA(1E5), בAi(165),ZAZ(165), IWK(7)
 D MENSION ITP(100)
C
 DO a !=1,NZ+1
 8 PHI(I)=PRN*FLOAT(I-1)
[
 DO G I=1,NPI
 2CE(I)=CMPLK(0..0.)
 D`(I)=0.
 DS(I)=0.
 g CONTINUE
 DO 10 I=1,160
 10 E(I)=0.
 IT=O
C
C FIRST GUESS IS ABS(DOMEGA/DEETA) = (RMIN+RMAN:/2.
 RAU=(RMAX+RMIN)/2.
 DO 11 J=1,N2+1
 11 F(J)=RAV
 HBN=PBN/2.
 MPITE(G,40i)
 40. EORMAT(//IOX,'PROGRESS OF PHI/S ITERATIUNS IS AS FOLLOMS:'//
 & 3X,'IT',4X,'DSMK',GX,'NO. OF ARG(DOMEGA/DEETA) REVERSAGS':
 g99 EONTINUE
 i : = i T+i
 IF (IT.LE.EMX) GO TO 801
 AOTTE(E,800)
 GMO FDRMAT://5%,'ITERATIONS FOR DI AND DR DID NOT CONUERGE';
 S?0P
 EOI CONTINUE
 DSin}<=0
C
C USE ADS(DOMEGA/DZETA) TO APPROXIMATE THE NEXT 5
 E(1)=0.
 D: 12 I=2,N2+1
 THT(I)=E(I)
 E(I)=E(I-1)+HPBN*(F(I)+F(I-1))
 I\because 13 I=2,N2+1
 E(i)=S(KJMX)*E(I)/E(N2+1)
 DS=ADS(THT(I)-E(I))
 I= (DS.LE.DSMX) ED TO 15
 E:\MAK=E(I)
 DSMK=DS
 I KMAK=I
15 CONTINUE
 TMP=THT(I)
 THT(I)=E(I)
 E:I:=OM*E(I)+OMM*TMP
13 CONTINUE
 IF (IT.NE.ITP(IP)) GO TO 840
 T!:T(1)=E(1)
 IU= iP+1
```

```
 WRITE(G,841) IT
 841 FORMAT(13X,'S BEFORE AND AFTER RELAKATIEN AT IT = ', \4)
 WRITE(G,832) (THT(I),I=1,N2+1)
 N:ITE(G.832) (EiI),I=`,N2+1)
 E\2 FORMAT(1P:OE13.5)
 E40 CONTINUE
 IF (IT.GE.ITP(IPMX)) STOP
C
 CHEDK FGR CONUERGENCE
 IF (IT.EQ.I) DSMX=1.
 NRU=0
 DO 800 Li=2,N2
 B0G IF (E(LL).LE.E(LL-1)) NRU=NRU+1
 WT:TE(G,400) IT,DSMX,NRV
 &OO FORMAT(I5,IPE12.3,I日)
 IF (DSMK.LT.ANGERR) GO TO SOO
 CALL EISPLN(BETA,S,5,THT,KJMK,2,128,:1)
C CALCGOTING THE ARG(DOMEGA/DEETA)
PES=HPQ&*FLDAT(N)
DC i4 i=1,N2
 14 THT(I)=THT(I)-PHI(I)-PES
I
C NCN FIND TLE FIJ AND DR: COEFEICIENTS CORRESPONDINE TE T-E
C ARG(DGNEGA/DIETA) DATA
DO E#0 JP=1,N
3:0 ZA(jP)=CMPLX(THT(2*JP-1),THT(2*JP))
 DO 307 NP=1,N
307 ZA(NP)=CONJG(ZA(NP))
 C& L FFT(ZA,G,IWK)
 DO 308 JP=1,N
308 2A(JP)=CONJG(ZA(JP))/ZNN
 CA L SHLFL(N,ZA,ZCC)
 Z心!NP1)=2A(1)
 DO 31:NP=1,NP2P1
 ZA!(NP)=(CONJG(ZA(NP2-NP))+ZA(NP))/2.
B. ZA2(NP)=ZI*(CONJG(ZA(NP2-NP))-ZA(NP))/2.
 Zn=2N2N
 DO 312 NP=:,NB2P:
 ZN=こN/ZW2N
312 2CC(NP)=(ZA1(NP)+ZA2(NP)*ZN)/2.
 Zいーご%ZW
 T. F:3 I=2.NES
 ZN二2利#ZW2N
 NP=NB2+i
 ZBB=(IA1(NP2-NP)+ZAZ(NPI-NP)*ZW)/Z.
3:3 ZCC(NP)=CONJG(ZBB)
 Z. (,)=REAL(ICC(1))
 ZCC(NP:)=.5*CONJG{2A1(1)-ZAZ(1))
 D:(NP1)=REAL(ZCC(NP1))
 Lr: 3:4 NP=2,N
 D*(NP)=2.4REAL(ZCC (NP))
#4 DR(NP)=-2.*GIMAE(ZCC(NP))
```




MICROCOPY RESOLUTION TEST CHART

C
c NO'N USE DIJ AND DRJ TO GET THE NEXT APPROXIMATION OF
ARS(DOMEGA/DEETA)
DODZTO=ALOG(E(2)/PGN)
Z1.C(1)= CMPLX(0.,0.)
Dr 302 JP=2,N
302 ZCC(JP)=CMPLX(DR(JP)/2.,DI(JP)/2.)
ZCC(NP1)=CMPLY(O.,0.)
ZN=21/ZW2N
DO 303 NP=1,NB2P1
ZH1(NP)=2CC(NP)+CONJG(ZCC(NP2-NP))
Zu=ここN*ごN2N
303 2A2(NP)=こW*(ZCC(NP)-CONJG(ZCC(NP2-NP)))
DO 304 NP=1,NB2P1
304 ZA(NP)=ZA1(NP)+ZI*ZA2(NP)
DC 309 NP=2,NB2
\XinG2A(NP2-NP)=CONJG(ZA1(NP))+ZI*CONJG(ZA2(NP))
CALL FFT(ZA,G,IWK)
CALL SHUFL(N,ZA,ZCC)
DN(:)=DEEZTO-REAL(ZA(1))
D] 20 K=1,N
F(\Omega*K-1)=EXP(DR(1)+REAL(ZA(K)))
:(2*K)=EXP(DR(1)+AIMAG(ZA(K)))
Z: CONTINUE
F:N2+:)=F(:)
G% TO 599
C
700 WRITE(E,203) IT,OM,DSMX
ZG =ORMAT(//1OX,'DI AND DF ITERATIONS CONUERGED AT IT= ;,IJ,
USING CM = 'FG.3,', MAXIMUM ARC LENGTH EFROR =',
* IPE12.3)
CA_L CISPLN(BETA,S,E,THT,KJMX,2,128,1)
N::TE(E,220)
220 FORMAT(//4X,'K',11X,'S',19X,'BETA',15K,'PبI',//)
D: G9 K=1,N2
GG WRITE(G,22:) K,E(K),THT(K),PHI(K)
22: FORMAT(I5,1P3E20.6)
C
RETURN
END
SURROUTINE SIMPSON(ZO,ZN,A,R,M,N,ZI)
INPLICIT FEAL(A-H,O-Y), COMPLEX(Z)
E`MENSION A(ES),B(GS)
IF (ZO.NE.IN) GO TO IL
ZI=0.
RETURN
:: CONTINUE
ZM=EMPLX(2.*FLDAT(M;,0.)
ZH}=(2N-2O)/Z
Nim=N-1
ZSZO=CMPLX(A(N),B(N))
ZSZN=CMPLX(A(N),B(N))

```
 DG: 10 J=1,NM
 ZSZ0=ZSZO*ZO+CMPLK(A(N-J),B(N-J))
10 ZSZN=ZSZN*ZN+CMPLX(A(N-J),B(N-J))
 Z!0=CEXP(ZSZO)+CEXP(ZSZN)
 Z:1=CMPLX(0.,0.)
 Z:2=CMPLX(0.,0.)
 MM=2*M-1
 DO 20 I=1,MM
 ZZ=ZO+CMPLX(FLOAT(I),O.)*ZH
 ZSIZ=CMPIX(A(N),B(N))
 DO 30 J=1,NM
30 2SZZ=ZSZZ*ZZ+CMPLX(A(N-J),R(N-J))
 IF (MOD(I,2).NE.O) GO TO 31
 Z:2=212+CEXP(2SZZ)
 G0 TO 32
3: 2I1=ZI1+CEXP(2SZZ)
3? CONTINUE
2O CONTINUE
 Z!=ZH*(こIO+2.*ZI2+4.*ZI1)/3.
 RETURN
 END
```

SURRCUTINE OMDZETA（ZOMST，ZTSTRT，A，B，IMGA，ZTAGS，ZTANSR，N，EPS，M，AS）
OMETA FER ICIRC = O, NAMELY:

- ecr m not equal to i gr z, it returns zeta (in ztansp) fuf e
EIUEN UALUE OF SMALL OMEGA (IN ZMGA), USING NENTON-RAPHSON
- Feir m = 1, it RETURNS SMALL OMEGA (IN zMGA) FOR A GIVEN VAi_UE
LF IETA (IN ZTAGS)
- FCR M = こ, IT RETURNS D(SMALL OMEGA)/D(ZETA) (IN ZTANSR) FOR
GIUEN UALUES GF ZETA IIN ZTAGS).
THE INTEGRATIONS DF D(SMALL DMEGA)/D(ZETA) ARE DINE IN SUBREUTINE
SIMPSON.
IOMST IS THE UALUE OF SMALL OMEGA AT THE START OF THE INTEGRATIUN.
ZTSTRT IS THE UALUE OF ZETA AT THE START OF THE INTEGRATIDN.
NS IS THE NUMBER OF STEPS TO BE USED BY SUEROUTINE SIMPSON.
$N$ IS THE NUMEER OF A AND B COEFFICIENTS.
IMPLICIT REAL (A-H, $\mathrm{O}-\mathrm{Y})$, COMPLEX(Z)
DIMENSION A(G5),B(G5)
$z=$ CMPL K (1.,0.)
$2 \vdash T A=\angle T A G S$
$N M=N-1$
$I T=1$
5 CONTINUE
ZSMA $=$ CMPLK $(A(N), B(N))$
IF (M.EQ.1) GO TO 22
IF (M.EQ.2) GO TO 40
CALL SIMPSON(ZTSTRT, ZETA,A,B,NS,N,ZSM)
ZLi $=25 M+2 C M S T-2 M G A$
DC: $10 \mathrm{~J}=1$, NM
$102 S M A=Z S M A * Z E T A+C M P L X(A(N-J), B(N-J))$
己V $\mathrm{I}_{2}=\operatorname{CEXP}(Z S M A)$
EETCLD＝ZETA
ZETA＝2ETOLD－2G／2DG
IF（CABS（ZETA－ZETOLD）．LT．EPS）GO TO 20
$I T=I T+1$
IF（CABS（ZETA）．GT．1．）ZETA＝．S＊ZETA／CABS（ZETA）
if（IT．LE．100）GO TO 5
$\mathrm{r}_{\mathrm{i}}-5$
NETURN
20 ZTANSī̆＝2ETA
RETURN
22 CALL SIMPSON（ZTSTRT，ZETA，A，B，NS，N，ZMGA）
ZMGA＝ZMGA + ZOMST
RETURN
40 DO $41 \mathrm{~J}=1$ ，NM
$4125 M A=25 M A * Z E T A+C M P L X(A(N-J), B(N-J))$ Z：ANSR＝CEXP（ZSMA） RETURN
EVD
SUBROUTINE ZISPLN（Y，$X, E, F, N P, I R T N, N R T N, N P D)$


## THIS IS A COMPLEX－UALUED UERSIDN OF CISPLN．

THIS SUBROUTINE FITS A CUBIC SPLINE TD A FUN
NP PAIFS DF PEINTS．THE SECOND DERTUATEUE OFTIUN Y（X），DEFINES BY
IS PERTODIC，WTTH PERTOD
ITSELF IS ALSE PEPIODED－IF NPD＝1，THE FUNETこON
OY 2．\＆PT GUERY PERIUDIC，WHILE IF NPD $=2$ ，THE FUNCTICN ENCREASES PAGES 9－15 OF
ThE THEDRY OF SPLINES AND THEIR APPLICATIONS，EY J．H．AHIBERG， E．A．NILSON，AND J．L．WALSH，ACADEMIC PRESS．i 967
NOTE THAT Y，X，E，AND F ARE，RESPECTIUELY，ORDINATE，ABSCISSA，ARSEISSA， AND ORDINATE．

```
 IMPIICIT COMPLEX(A-H,O-Z)
 REAL SIIE,DF,DYDK,DA,DB,DC,DL
 DIMENSION Y(1GO),X(1G0),E(1G0),F(1GO),BDA(IGO),EM(1G0),H(1G0)
 DIMENSION S(1G0),T(1GO),U(1GO),D(1GO)
 TPI = CMPI-X(B.*ATAN(1.),0.)
 THIS SEETION (ENTERED WHEN IRTN = 1) USES THE NP PAIRS OF INPUT
 COORDINATES X AND Y TO FIND THE COEFFICIENTS OF THE SPLTNE FIT.
 THESE COEFEICIENTS - HERE CALLED EM(KJ) - ARE THE SECOND DERIUATIVES
 OF THE FUNCTIUN.
```

    \(N P M=N P-i\)
    \(\therefore=N P+1\)
    IF(IRTN.EQ.2) GO TO 20
    IF(IRTN.EQ.3) GO TO 30
    IF(IRTN.EQ.4) GO TO 40
    ```
 DO i KJ = 2,NP
 1H(kj) = X(kj) - X(kj-1)
 H(N)=H(2)
 DO 2 KJ = 2,NP
2 BEA(KJ)=H(Kj+1)/(H(KJ)+H(KJ+1)j
 E(1) = CMPLK(0.,0.)
 F(1) = EMPLX(0.,0.)
 S(1) = CMPLX(1.,0.)
 DU 3 kJ = 2,NPM
 DV = 2.0 + (I.0 - BDA(KJ))*E(KJ-1)
 E(KJ)= -3DA(KJ)/DN
 D(贝J) =
 * G.0.U*((Y(RJ+I)-Y(KJ))/H(KJ+1)
 * - (Y(KJ)-Y(KJ-1))/H(KJ))/(H(KJ)+H(KJ+1))
 S(KJ) = - (1.0-BDA(KJ))*S(KJ-1)/DN
3F(KJ)=(D(KJ)-(I.0-BDA(KJ))*F(KJ-1))/DN
 Y(N) = Y(Z)
 IF(NPD.EQ.2) Y(N) = Y(N) + TPI
 D(NP) = G.O*((Y(N)-Y(NP);/H(2)
 * - (Y(NP)-Y(NPM))/H(NP):/(H(NP)+H(\Sigma))
 NMM = NP - 2
 T(NP) = CMPLX(1.,0.)
 U(NP) = CMPLN(O.,O.:
 D:T GI = :NPMM
 KJ = NP - I
 T(nJ) = E(kj)*T(KJ +1) + S(&J)
 U(KJ) = E(KJ)*U(KJ+1) + F(KJ)
E EGNTINUE
 E\therefore(NP) = (D(NP)-EDA(NP)*U(2)-(1.0-RDA(NP;)*W(NOM))/
 * (BDA(NP)*T(2)+(i.O-BDA(NP))#T(NPM) + 2.0)
 DG 4 I = I,NPM
 KJ = NP - I
4 EM(KJ) = E(KJ)*EM(KJ+1) + F(KJ) + S(KJ)*EM(NP)
 SIZE = ARS(X(NP)-X(1))/10.0
 RETURN
C THIS SECTION (ENTERED WHEN IRTN = 2) RETURNS NRTN INTERPOLATED
C. yALUES OF THE ORDINATE F AT ASSIGNED UALUES OF THE ABSCISSA E.
```

```
20 kJ = 2
```

20 kJ = 2
DO 21 J = 1.NRTN
DO 21 J = 1.NRTN
A = E(J)
A = E(J)
24 DA = REAL(A) - REAL (X(KJ))
D_ = AIMAG(A) - AIMAG(X(KJ))
DA = DA*DA + DL*DL
IZG=REAL(A) - REAL(X(kJ-1))
DL = AIMAG(A) - AIMAG(X(KJ-1))
DF = DB*DB + DL*DL
DL. = REAL (K(KJ)) - REAL (X(KJ-1))
DL = AIMAG(X(KJ)) - AIMAG(X(KJ-1))
DC= DC*DC + DL*DL
IF:DA.LE.DC.AND.DS.LE.DC) GO TO 23
KJ=KJ + 1
IF(KJ.LE.NP ) GO TO 24
DF = ABS(A - X(NP))

```
\(\stackrel{C}{C}\)
C.
```

        IF(DF.ETT.SIZE) WRITE(G,200) J,E(J),NP,X(NP)
        200 FORMAT(//10%,'WARNING - ENTRY IN EISPLN EXEEEDS END OF BASE ',
        * 'ARRAY',/5K,'E(',I3,') = ',1P2E15.8.' EXCEEDS X(',IE,'' = ',
        * 2E1G.8)
        DF=ABS(A - X(I))
        IF(DF.LT.(-SIZE;) WRITE(G,201)J,E(J),X(1)
    20: FORMAT(//IOX,'WARNING - ENTRY IN CISPLN IS LESS THAN THT ERST',
    * ' EASE POINT',
    * /5K,'E(',I3,') = ',1P2EIG.8,' IS LESS THAN X(i)= '1G.E;
    KJ = NP
    23 DKA = X(KJ) - A
DKB=A - X(KJ-1)
DPA = DKA*DKA*DKA
CBB = DXB*DXB*DXB
F(J) = (EM(KJ-1)*CBA+EM(KJ)*CRB)/G.O/H(KJ)
* + DXA*(Y(KJ-1)-EM(KJ-1)*H(KJ)*H(KJ)/G.0)/H(KJ)
* + DXB*(Y(KJ)-EM(KJ)*H(KJ)*H(KJ)/G.0)/H(KJ)
2: CONTINUE
RETURN
C
THIS SECTION (ENTERED WHEN IRTN=3) CONUERTS THE NP PATRS
GF INPUT COERDINATES X AND Y TO INTRINSIC CUORDINATES
BETA AND S, WHICH ARE STORED AS:
RETA = REAL(E), S = REAL(F)
VOTE THAT THE SECEND DERIUATIUES EE THIS SFLINE FIT ENERE
ESTABLISHED IN A PREVIDUS CALL, IN WHICH THE FUNCTION SMALL GMESG
WAS PASSED IN Y, AND THE APPRCXIMATE ARCLENGTH IN X
30 E(1)=-H(2)*(EM(1)+EM(2)/2.)/3.+(Y(2)-Y(1))/H(2)
Di. 31 KJ=2,NP
31D(KJ)=H(KJ)*(EM(KJ-1)/2.+EM(KJ))/3.+(Y(KJ)-Y(KJ-1))/H(KJ)
DC 32 KJ=1,NP
DL = ATAN2(AIMAG(D(KJ)),REAL(D(KJ)))
E(KJ) = CMPLX(DL,0.)
32 IF (REAL(E(KJ)).LT.O.) E(KJ) = E(KJ)+TPI
DO, 322 KK=2,NP
IF((REAL(E(KK))-REAL(E (KK-1))).LT.(-3.141592G5))E(KK)=E(KK)+TPI
322 CUNTINUE
E(NP) = E(1) + TPI
F(1) = CMDLX(0.,0.)
DYDX = AIMAG(D(1))/REAL(D(1))
DCDTK = SQRT(1.+DYDK*DYDK)*ABS(FEAL(D(1)))
DC 33 Kj=2,NP
DSDTO=ESDTK
DYDX = AIMAG(D(KJ))/REAL(D(KJ))
:9ミ2?

```
 \(D Y D X=A I M A G(D(K J)) / R E A L(D(K J))\)
 \(D S D T K=S G R T(1 .+D Y D X * D Y D K) * A B S(R E A L(D(K J)))\)
 \(D L=A B S(X(K J)-X(K J-i))\)
3: \(F(K J)=F(K J-1)+D L *(D S D T O+D S D T K) / 2\).
 R:IURN
```

C THIS SECTION (ENTERED WHEN IRTN = 4) CUNUERTS THE NP PAIRS
C OF INPUT CODRDINATES X AND Y TO INTRINSIC EUORDINATES
C gETA AND S, WHICH ARE STORED AS:
BETA = FEAL(E), S = REAL(F)
40 CONTINUE
DO 41 KJ = 2,NP
41H(KJ)= X(KJ) - X(KJ-1)
H(N)=H(2)
DO 42 KJ = 2,NP
42 BDA(KJ) = H(KJ+1)/(H(KJ)+H(KJ+1))
E(1) = CMPLX(0.,0.)
F(1) = CMPLX(0.,0.)
S(:) = EMPLK(1.,0.)
DO 43 KJ = こ,NPM
D^ = 2. + EDA(KJ)*E(KJ-1)
E(KJ) = (BDA(KJ) - EMPLX(1..D.):/DN
DiKJ) = 3.*(BDA(KJ)*(Y(KJ)-Y(KJ-1))/H(KJ)

```

```

    S(KJ)= - BDA(KJ)*S(KJ-1)/DN
    43F(KJ)=(D(KJ)-EDA(KJ)*F(KJ-1))/DN
    Y ( N ) = Y ( 2 )
    IF(NPD.EQ.Z:Y(N) = Y(N) + YPI
    D(NP) = 3.*(BDA(NP)*(Y(NP)-Y(NPM));H:\P)
    * + (CMPLX(1..O.)-SZA(NP))*(Y(2)-Y(NP))/C(2))
    NPMM = NP-2
    T(NP) = CMPLX(1.,0.)
    U(NP)= EMPLK(0.,0.)
    DO 4GI = 1,NPMM
    K: = NP - I
    T(KJ) = E(KJ)*T(KJ+1) + S(KJ)
    U(KJ) = E(KJ)*U(KJ+1) + F(KJ)
    45 CONTINUE
EMiNP)=(D(NP)+(BDA(NP)-CMPLX(1.,O.))*U(2)-BDA(NP)
* *U(NPM))/((CMPLX(1.,0.)-RDA(NP))*T(2)+BDA(NP)*T(NPM)
* + CMPLX(2.,0.))
DO 44 I = 1,NPM
KJ=NP - I
41EM(KJ)=E(KJ)*EM(KJ+1) + F(KJ) + S(KJ)*EM(NP)
SIZE = ABS(K(NP)-K(1))/10.
L.j 47 KJ = i,NP
47 D(KJ) = EM(KJ)
DU 48 KS = 1,NP
D- = ATAN2(AIMAG(D(KJ)),REAL(D(KJ)))
E:KJ) = EMPLX(DL,O.)
48 IF(REAL(E(KJ)).LT.0.) E(KJ) = E(KJ) + TPI
DJ 422 KK = 2,NP
IF((REAL(E(KK))-REAL(E(KK-1))).LT.-3.14159265)E(KK)=E(KK)-MT
422 CONTENLE
E(NP) = E(1) + TPI
F(1) = CMPLK(0.,0.)

```
```

        D`DX = AIMAG(D(1))/REAL(Di:))
        DSDTK = SGRT(I.+DYDX*DYDX)*ABS(REAL(D(1)))
        DO 433 KJ = 2,NP
        DSDTO = DSDTK
        D`DK = AIMAG(D(KJ))/REAL(D(Kj))
        DSDTK = SQRT(1.+DYDX*DYDX)*ABS(REAL(D(KJ)))
        I: = Q已S(X(KJ)-X(KJ-1))
    433 F(Kı) = F(KJ-1) + DL*(DSDTO+DSDTK)/2.
FETURN
END

```
 SUBROUTINE DMZTDR(DR,DI,ZETAB,ZTA,ZOMA,KMX,LMX,IDE)
 INPLICIT REAL (A-H, D-Y), COMPLEX(Z)
C
C THIS SUBKGUTINE INTEGRATES D(SMALL OMEGA)/D(ZETA) BY THE
[TRAPEZGIDAL RULE TO FIND THE GRID IN THE SMALL-ENEGA PLANE.
C IT \(\because A K E S\) SOME SMALL ADJUSTMENTS IN THE UALUES OF THE
- DERIUATIUES, SO AS TO MAKE THE RESULTS PERIUDIC.
 DIMENSION ZTA(10,40), 2DU(10,40),2STR(10), ZOMA: 10,40)
 I: MENSIUN ER(65), DE(65)
 \(Z:=\operatorname{CMPLX}(1 ., 0\).
 DO \(10 K=1, K M X\)
 \(0020 L=1, L M X\)
 ZTAGS \(=\) ZTA \((L, K)\)
 CALL OMDEETA(Z:, こi,DR,DI, こi, ZTAGS,ZTANSR, G5,i.,2,1)
 \(Z i V(L, K)=Z T A N S R\)
 20 CONTINUE
 10 CONTINUE
 \(K M X H=(K M X+1) / 2\)
 \(K M=K M X H-1\)
 \(K M X P=K M X+1\)
 \(K P=K M X H+1\)
C
 INTEGRATE FIRST ALONG THE PERIODIC BOUNDARY:
 KASE \(=1\)
 27 IF(IOE.EQ.1) GO TO 1 :
 IF IUE EQLALS O/1, SMALL OMEGA \(=-1\). IS NOT/IS A Givid POTNT
 CALL OMD工ETA(21, Z1,DR,DI,Z1,ZETAB, 工TANSR, 65,1.,2,1)
 IF:KASE.EQ. 2; ZTANSR = ZR\#ZTANSR

 * - 工ETAB)
 [1: 1012
1: ZUMA (LMK,KMKH) \(=-21\)
12 CCNTINUE
 DD \(25 \mathrm{~J}=1, K M\)
 \(K=K M X H-J\)
```

25 ZOMA(LMM,K) = ZOMA(LMX,K+1)+0.5*(ZDU(LMX,K)+ZDU(LMMX,K+1))
* *(ZTA(i_MK,K)-2TA(LMX,K+1))
IF(KASE.EQ.2) GO TO 28
Z:N = 2.*Z1/(ZOMA(LMK,i)+Zi)
[0] 2G K = 1,KM>H
2E 2DU(LMX,K) = 2R*2DU(LMX,K)
KASE = 2
Gi: TO 27
z\& CONTINUE
DO 29 I = 1.KMKH
29 ZOMA(LMK,KMXP-I) = ZGMA(LMX,I)

```
[
NUW INTEGRATE FRGM THE BLADE SURFACE TD THE PERIODIC BULNEARY:
 DO \(40 \mathrm{~K}=1\), KMX
 \(\operatorname{ZSTR}(1)=\operatorname{ZOMA}(1, K)\)
 DO \(41 \mathrm{~L}=2\),LMX
4. \(\operatorname{ZSTR}(L)=25 T R(L-1)+0.5 *(2 D U(L, K)+2 D U(L-1, K)) *\)
 * (こTA(L,K)-ZTA(L-1,K))
 ZR = (ZUMA(LMX,K) - ZOMA(I,K))/(ZSTR(LMX) - ZDMA(1,B))
 DO 42 L \(=1, \operatorname{LMX}\)

 DO \(43 \mathrm{~L}=2, \mathrm{LMX}\)

 * (ZTA \((1, K)-こ T A(L-1, k))\)
 CCNTINUE
 FETURN
 END
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
Appendix C \\
DICTIONARY OF VARIABLES
\end{tabular}} & \\
\hline FORTRAN SYMBOL & ALGEBRAIC EQUIVALENT & definition, use, COMMENTS & \(\xrightarrow{+8}\) \\
\hline \(A(J), B(J)\) & \(A_{j}, B_{j}\) & Eq. 2-20, 2-21 & Pr \\
\hline AK & \(k=S^{2}\) & Eq. 2-23 & \\
\hline AKP & \(t^{\prime}=\sqrt{1-t^{2}}\) & Eq. 2-30 & 0 \\
\hline AKQ & \(k^{2}\) & - & \\
\hline ALM & \(\lambda\) & Eq. 2-31 & \(\cdots\) \\
\hline CAPK & \(K(\bar{t})\) & Eq. 2-34 & \(\bigcirc\) \\
\hline CAPKPM & \(K^{\prime}\left(k^{\prime}\right)\) & Eq. 2-34 & \(\bigcirc\) \\
\hline DLT & \(\delta\) & Eq. 2-28 & - \\
\hline DXIM, DXIR & \(\operatorname{Re}(\Delta \hat{\xi}), d_{m}(\Delta \hat{\xi})\) & Eq. 2-38, 4-4 & + \\
\hline EX & \(1 /\left(2-\frac{\tau}{\pi}\right)\) & See Figure 2 & \\
\hline Exinv & \(2-\frac{\tau}{\pi}\) & - & \\
\hline G, H & G, H & See Figure 1 & \\
\hline HCPKPM & \(\frac{1}{2} K^{\prime}\left(k^{\prime}\right)\) & - & \(\because\) \\
\hline OM & - & Relaxation factor used in \(\phi, \theta\) mapping & \\
\hline PBN & \[
\frac{\pi}{N}
\] & - & \\
\hline PHI & \(\phi\) & - & \\
\hline SGA & \(\sigma\) & Eq. 2-31 & \\
\hline SS & 5 & Eqs. 2-23 & \\
\hline TAU & \(\tau\) & Eq. 2-28 & \\
\hline & C-1 & & \(\because \because\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FORTRAN SYMBOL & ALGEBRAIC EQUIVALENT & DEFINITION, USE, COMMENTS \\
\hline TPI & \(2 \pi\) & - \\
\hline XIR, XIM & \(\operatorname{Re}(\hat{\xi}), \operatorname{dm}(\hat{\xi})\) & - \\
\hline ZA(N) & \(A(n)\) & Eq. A-9; used elsewhere for temporary storage \\
\hline 2B & \(b\) & Eq. 2-9 \\
\hline zC & \(c\) & Eq. 2-9 \\
\hline 2D & \(a\) & Eq. 2-9 \\
\hline 21 & \(\sqrt{-1}\) & - \\
\hline ZN, ZT, ZLE, ZTE & \(\mathcal{Z}_{N}, \mathcal{Z}_{T}\) & See Figure 1 \\
\hline ZAL, ZBT, ZGM & \(\alpha, \beta, \gamma\) & Eq. 2-22 \\
\hline \[
\underset{\operatorname{ZCC}(N)}{\mathrm{ZAI}(N),}
\] & \[
\begin{gathered}
A_{1}(n), A_{2}(n), \\
C(n)
\end{gathered}
\] & See, for example, Eq. A-9. Also used for temporary storage \\
\hline ZBOM & \(\Omega\) & - \\
\hline ZBOMK & \(\Omega^{K}\) & \\
\hline zeETA & \(\eta\) & - \\
\hline ZETA & \(\zeta\) & - \\
\hline ZNTRD & & centroid of the \(\boldsymbol{\omega}\)-plane \\
\hline ZфMSTR & & \(\Omega\) - plane image of 2 NTRO \\
\hline ZOMS (K), ZOMP(K) & \(\omega_{s}, \omega_{p}\) & - \\
\hline zPLuS, zMINUS & \(\Omega^{+}, \Omega^{-}\) & Eq. 1-6 \\
\hline 2XI & \[
\hat{\xi}
\] & - \\
\hline ZXY & & \(x+i y\) \\
\hline & C-2 & \\
\hline
\end{tabular}

\section*{Appendix D}

LISTING OF METRIC GENERATOR PROGRAM

\(L K=K M X * L M X\)
(
TDELXI =4DO/DFLOAT(KM)

DO \(520 \mathrm{~K}=1, K M Y\)
(MX=(K-1) LMX
\(L K=K M 1 L M X+L\)
\(L P!=I K+1\)
M1=LK-1
\(K P 1=L K+L M X\)

IF (K.EQ.1) GO TO 501
FF(K.EQ.KMX) GO TO 501
IF (L.EQ.LMX) GO TO 505
C
C
C
\(0 \times D \times I=(Q(K P 1,5)-Q(K M 1,5)) / T D E L X I\) OYOXI \(=(Q(K P 1,6)-Q(K M 1,6)) / T D E L X I\) OXDZT \(=(Q(L P 1,5)-Q(L M 1,5)) / T D E L Z T\) DYOZT=(Q:LPI, 6)-Q(LM1,6))/TDELZT GO TO 503

ISN 0047

ISN 0051
ISN 0052
ISN 0053
ISN 0054
ISN 005 O ISN 0057

1SN 0053
ISN 0059
ISN 0060
ISN 0061
ISN 0062

ISN 0064
ISN 0066
1S:1 0067
ISH 0068
Hinch

\(L K 2=L M X+L\)

DXDXI=(Q(LK2,5)-Q(LKKM,5))/TDELXI DYDYI=(Q(LK2,6)-Q(LKKM, 6\()) / T D E L X I\)
 GO 70509
```

C
*)
K3=1
DXDZT=(-300*O(LKL,5)+400*Q(LK2,5)-Q(LKK,5))/TDELZT
OYDET=(-3DO*O(LK1,6)+400*Q(L`2,6)-O(LK3.6))/TDELZT
DO=5G
IF(K.GT.KMXH) DQ=-SG

```
```


# ISN 0072

ISN 0080
ISN 0087
ISN 0088

```
```

    DYDZT=(0iLKS,6)+DQ-Q(LKB,6))/TDELZT
    ```
 DYDZT=(0iLKS,6)+DQ-Q(LKB,6))/TDELZT
 C
 C
 505 DXDNI=(Q(KP1,5)-Q(KMI,5))/TOELXI
 505 DXDNI=(Q(KP1,5)-Q(KMI,5))/TOELXI
 DYDXI=(Q(KP1,6)-Q(KM1,6))/TDELXI
 DYDXI=(Q(KP1,6)-Q(KM1,6))/TDELXI
 C
 C
 509 RDM:=(DXDXI*DYDZT-DXDZT*DYDXI)
 509 RDM:=(DXDXI*DYDZT-DXDZT*DYDXI)
 C C STORE OERIVATIVES IN THE ORDER DKSI/DX,OKSI/DY,DETA/DX,DETA/DY
 C C STORE OERIVATIVES IN THE ORDER DKSI/DX,OKSI/DY,DETA/DX,DETA/DY
 Q(L`.1)=DYOZT/RDM1
 Q(L`.1)=DYOZT/RDM1
 Q(LK,2)=-DXDZT/RDM1
 Q(LK,2)=-DXDZT/RDM1
 Q(LK,3)=-DYOXI/RDM1
 Q(LK,3)=-DYOXI/RDM1
 Q(LK,3)=-DYOXI/RDM1
 Q(LK,3)=-DYOXI/RDM1
 510 CONTINUE
 510 CONTINUE
 520 CONTINUE
 520 CONTINUE
 C
 C
```

    OYG OXDKI=(Q(KP:,5)-Q(KMI,6))/TDELXI
    ```
 OYG OXDKI=(Q(KP:,5)-Q(KMI,6))/TDELXI
 STORE DERIVATIVES ON TAPE 1
 STORE DERIVATIVES ON TAPE 1
 LKMX=LMX*KMX
 LKMX=LMX*KMX
 WRITE(1) KMX,LMX,LKMX,((Q(I,J),I=1,LKMX),J=1,4)
 WRITE(1) KMX,LMX,LKMX,((Q(I,J),I=1,LKMX),J=1,4)
 STOP
 STOP
 END
```

        END
    ```

\section*{REFERENCES}
1. Rae, W.J., "Revised Computer Program for Evaluating the Ives Transformation in Turbomachinery Cascades" AFOSR TR-83-1284 (July 1983).
2. Viviand, H., "Formes Conservatives des Equations de la Dynamique des Gaz" La Recherche Aerospatiale (1974) No. 1, Jan.-Feb. pp. 65-66.
3. Beam, R.M. and Warming, R.F., "An Implicit Finite - Difference Algorithm for Hyperbolic Systems in Conservation-Law Form" J. Comp. Phys. 22, (1976) 87-110.
4. Briley, W.R. and McDonald, H., "Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method" J. Comp. Phys. 24 (1977) 372-392.
5. Thompson, J.F., ed., Numerical Grid Generation, Elsevier Science Publishing Co., New York (1982).
6. Dulikravich, D.S., "Numerical Calculation of Inviscid, Potential Transonic Flows through Rotors and Fans" Ph.D. Thesis, Cornell University (Jan. 1979).
7. Nenni, J.P. and Rae, W.J., "Experience with the Development of an Euler Code for Rotor Rows" ASME Paper 83-GT-36 (Mar. 1983).
8. Ives, D.C. and Liutermoza, J.F., "Analysis of Transonic Cascade Flow Using Conformal Mapping and Relaxation Techniques" AIAA Journal 15 (1977) 647-652.
9. Rae, W.J., "A Computer Program for the Ives Transformation in Turbomachinery Cascades" AFOSR TR-81-0154 (Nov. 1980).
10. Rae, W.J., "Modification of the Ives-Liutermoza Conformal-Mapping Procedure for Turbomachinery Cascades" ASME J. Eng. GT Power 106 (Apr. 1984) 445-448.
11. Bauer, F., et al., "Supercritical Wing Sections II" Vol. 108 of Lecture Notes in Economics and Mathematical Systems, Springer Verlag, New York (1975).
12. Cooley, J.W., Lewis, P.A.W., and Welch, P.D., "The Fast Fourier Transform Algorithm: Programmimg Considerations in the Calculations of Sine, Cosine and Laplace Transforms", Journal of Sound and Vibration 12, (1970) pp. 315-337.
13. Warschawski, S.E., "On Theodorsen's Method of Conformal Mapping of Nearly Circular Regions", Quarterly of Applied Mathematics 3, (1945) pp. 12-28.
14. Henrici, P., "Fast Fourier Methods in Computational Complex Analysis", SIAM Review 21, (1979) pp. 481-527.
\begin{tabular}{|c|c|c|}
\hline \[
E
\] & & \\
\hline \[
F
\] & 15. & Mokry, M., "Comment on Analysis of Transonic Cascade Flow Using Conformal Mapping and Relaxation Techniques", AIAA Journal 16, No. 1, (January 1978) p. 96. \\
\hline \[
E
\] & 16. & Nielsen, J.N. and Perkins, E.W., "Charts for the Conical Part of the Downwash Field of Swept Wings at Supersonic Speeds", NACA Technical Note 1780, (December 1948), Appendix C. \\
\hline & 17. & Byrd, P.F., and Friedman, M.D., Handbook of Elliptic Integrals for Engineers and Physicists. Springer Verlag, Berlin (1954). \\
\hline & 18. & Luke, Y.L., "Approximations for Elliptic Integrals", Mathematics of Computation, 22 (1968) 627-634. \\
\hline & 19. & Erdelyi, A., et al. Higher Transcendental Functions, Volume 2, p. 377, McGray-Hill Book Company, New York (1953). \\
\hline \[
0
\] & 20. & Abramowitz, M. and Stegun, I.S., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series 55 (1964). \\
\hline \[
\because
\] & 21. & Oates, G.C., "Cascade Flows" Chapter 12 of The Aerothermodynamics of Aircraft Gas Turbine Engines, G.C. Oates, ed., AFAPL-TR-78-52, (July 1978). \\
\hline & 22. & Davis, R.T., "Numerical Methods for Coordinate Generation Based on Schwarz-Christoffel Transformations" AIAA Paper 79-1463 (July 1979). \\
\hline \[
\because
\] & 23. & W. Squire, "Computer Implementation of the Schwarz-Christoffel Transformation: Journal of the Franklin Institute, 299 No. 5 (May 1975) \\
\hline & 24. & 0. L. Anderson et al. "Solution of Viscous Internal Flows on Curvilinear Grids Generated by the Schwarz-Christoffel Transformation" pp. 507-524 of Ref. 5 \\
\hline & 25. & K. P. Sridhar \& R. T. Davis, "A Schwarz-Christoffel Method for Generating Internal Flow Grids" AIAA Paper, A82-29005 (1982) \\
\hline & 26. & \begin{tabular}{l}
C. Farrell \& J. J. Adamczyk, "Full Potential Solution of Transonic Quasi-Three-Dimensional Flow Through a Cascade Using Artificial Compressibility" \\
ASME J. Eng. Power 104 \\
(1982) 143-153
\end{tabular} \\
\hline \(\because\) & 27. & Erdelyi, A., et al. Higher Transcendental Functions Vol. 1, Chapter 2, McGraw-Hill Book Company, New York (1953) \\
\hline \(\because\) & 28. & Kober, H., Dictionary of Conformal Transformations, Dover Publications New York (1957) \\
\hline \[
\dot{F}
\] & 29. & Ahlberg, J.H., Nilson, E.N., and Walsh, J.L. The Theory of Splines and Their Applications Academic Press, New York (1967) \\
\hline \(\because\) & 30. & Hartree, D.R. Numerical Analysis, 2nd Edition, Oxford, Clarnedon (Press (1958) \\
\hline
\end{tabular}
```


[^0]:    la. Rae, W.J., "Revised Computer Program for Evaluating the Ives Transformation in Turbomachinery Cascades" Calspan Report No. 7177-A-1 (AFOSR Report No. TR-83-1284) July 1983
    lb. Rae, W.J. (State University of New York at Buffalo) and Marrone, P.V. "Research on Turbine Flowfield Analysis Methods" Calspan Report No. 7177-A-2 April 1984

[^1]:    14. Henrici, P., "Fast Fourier Methods in Computational Complex Analysis", SIAM Review Ll, (1979) pp. 481-527.
[^2]:    15. Mokry, M., "Comment on Analysis of Transonic Cascade Flow Using Conformal Mapping and Relaxation Techniques', AIAA Journal 16, No. 1, (January 1978) p. 96.
[^3]:    16. Nielsen, J.N. and Perkins, E.W., "Charts for the Conical Part of the Downwash Field of Swept Wings at Supersonic Speeds", NACA Technical Note 1780, (December 1948), Appendix C.
[^4]:    19. Erdelyi, A., et a1. Higher Transcendental Functions, Volume 2, p. 377, McGraw-Hill Book Company, New York (1953).
[^5]:    28. Kober, H., Dictionary of Conformal Transformations, Dover Publications, New York (1957).
[^6]:    29. Ahlberg, J.H., Nilson, E.N., and Walsh, J.L., The Theory of Splines and Their Applications Academic Press, New York (1967).
[^7]:    30. Hartree, D.R., Numerical Analysis, 2nd Edition, Oxford, Clarendon Press (1958).
