

I)I

FINAL REPORT

RESEARCH ON SECURE SYSTEMS AND AUTOMATIC PROGRAMMING

Period: March 1, 1973 to August 31, 1977

Co-Principal Investigators;

Saul Amarel
(201) 932-3546/2001

C. V. Srlnivasan
(201) 932-2019/2001

ARPA Order Number 2406
Program Code Number 3030

Grant Number DAHC1-73-G-6

0

Department of Computer Science
Rutgers, The State University
New Brunswick
New Jersey 08903 October 14, 1977

2 A

SOSAP-TR-37 /

January 1977

RELATIONS BETWEEN RECURSIVE DEFINITIONS AND THEIR EFFICIENT ALGORITHMS

M. C. Paull

°- " t

;JUN 2 4 1983

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant #DAHClS-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the

..official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

* "'"• • ,I>:. . . . ; . .

" "I-.

' ! f-

1. INTRODUCTION •

Typically there are significant differences between the formulation

of an algorithm and its ultimate implementation, For example the minimum

path between two nodes in a weighted di-graph can be found by enumerating

all paths between the two nodes and choosing the smallest. This approach

can easily be formulated as a recursively defined function, which may in

turn beimplemented in a standard way. This is significantly different

than Dykstra's algorithm, the favored shortest path implementation. On

the one side, close to the problem statement, then there is an initial,

.. simply formulated, but often inefficient algorithm. On the other side,

.. earer to the final implementation, is an efficient algorithm. The study

-of the connection between these two is the subject of this paper.

It will be assumed that the initial formulation of an algorithm is

* as a recursive definition and that this definition is in a standard form

Cto be given). The standard form was chosen because, firstly, it is one

Which, in our experience, has frequently arisen naturally as an initial

algorithm formulation. Secondly the chosen form lends itself nicely to an

overview of a variety of possible implementations of the algorithm thus

formulated. The recursive definition though sufficient to provide the value

of the function anywhere in its domain is non-deterministic as to which of
4

a variety of sequential implementations are to be used to determine that

value. The variety of implementations correspond to the various orders of

substitution which are equally valid in evaluating such a definition.

• -" Sam orders of evaluation

4I

'4* -2-

become possible only if the primitive functions which enter into the re-
cursive definition have appropriate properties. Different orders of

evaluation will result in different memory requirements, but will not cause

significant time differences in the resultant implementations. This

dependence of memory requirements on the order of evaluation is the main

subject of section 2 of this paper.

Implementation of the recursive definition generally requires the re-

petitive execution of similar operations, If it can be shown that some

pairs of these operations will yield the same or similar intermediate results

at different points in the computation--then only one such intermediate result

:- need be computed and remembered. It may then be accessed from memory when

needed again instead of being recomputed. This can happen many times in a

sufficiently systematic way so that a significant time saving can be realized..

The existence of this situation depends on properties of the primitive

functions which compose the recursive definition. In section 3 a significant

class of problems for which time efficient implementations are available is

* .considered.

. Related Work

The work reported here is in an area of study in which there have

been a number of significant publications. Strong. has identified a

class of recursive definitions for which memory efficient implementations
ES,61

(called 'flowcharts') are available. This class is defined in terms of a

-ecursive scheme whose constituent primitive functions are virtually un-

Srestricted. If the properties of these primitive functions are restricted

somewhat. a wider class of recursive definition forms will yield similar memory

"*i - * n m - m- I

* I

efficient implementations. Such restrictions are considered here because

they arise naturally in practice. So this aspect of the work can be

considered an extension of Strong's results.

Burstall and Darlington studied properties of recursive definitions

whose existence allows efficient implementation, with one objective be-

ing the incorporation of.a search for such properties in an optimizing

(2]
ncopiler. Later Burstall and Darlington extended this study to consideration

of transformations of recursive definitions which are likely to produce

3]
better implementations. The spirit of our work here is largely in tune

with that of these investigators with some significant differences in

ephasis and in the particular properties studied. Our emphasis has been

mainly on understanding the complete set of properties which allow the

" transformation from an initial recursive definition to the best algorithms

actually known and to the proof of this connection. Thus we tend to

consider relatively complex sets .of properties and transformations as

opposed to many simple properties and transformations. We also study

- mainly one form of first order recursive definitions, rather than the

•-.many forms they consider.

In a more general way this work is also related to work in Al and the design

of algorithms, to which specific reference will be given at the appropriate

" -point in the paper.

The remainder of this introduction is devoted'to a sketch of the

definitions and results to be detailed in the subsequent sections of

'the paper.

; * First-order means a definition in which the defined function symbol never
appears nested on the right.

* . _ __-~~-~-- - .!

- .- %. 2
4 4-

" "p/endix I contains a 3tmary of most of the notation used in the

paper. (This notation Is also defined on first use in the paper.)

* The Standard Form

This paper concerns the implementation of recursive definitions of a

f-unction f(X) in a class F in which every definition has the following

form: p
SI

f(X) - q(X) if T(X) (terminal condition
and values)

f(X) U w(f(o(X)), ... ,fOm(x) ()) if T"(X) Cbody)

initially XcDf .(domain of function f)

where the data structure XcDf, primitive functions wq,oico,m, and predicates

T in the definition collectively designated by the tuple <D,wq,O,m,T> must

be constrained so as to make I a terminating -definition.

A definition is terminating if for each dcD5 the sequence

* of expressions resulting from substitution for forms f(a) (where a is any

expression using I which starts with f(d), d e D., and next produces

,* .W(f(o (d)), ... , f(Od(d))), etc. has the properties:I f~om(d)
(1) It is always possible to evaluate T(a) and if T(a) is false

4 - ~It is always possible to evaluatc me(a), and oiCa) for l~cim(a)

S 4

* . • 'a

(2) Independent of the order of substitution for the different

appearances of the form f(a) after the same finite number of

such substitutions a 'terminal' expression will be obtained

In which, for every appearance f(Oa), is terminal (i.e. T(a) is

true) and q(a) can be evaluated.

(3) The function w is defined so as to make it possible to evalu-

ate the terminal expression in any order consistent with its

parentheses structure.

The tuples <D,wq,o,m,I> which satisfy the above constraint are

members of the set V. The set of definitions of form I which satisfy these

constraints constitute the recursive scheme F(V).

This form of definition often arises in practice as an initial solu-

tion to an algorithm design problem, particularly when the problem can be

viewed as requiring an enumeration or an enumeration followed by a selec-

tion (search). The examples of recursive definitions in F(V) given below

a"se from adopting such a point of view. Their structure can be

easily seen by evaluating them for some small initial values of their

arguments.

Examples:

Ex. 1.1 If f(X) is to be the set of all n bit binary numbers (let 1

be the set of positive integers), then:

4 X {c<a.n>ua a string of O's and 11s, n c N)

f(X) - f(an) ((a) If n 0 0

f(X) * f(a,n) fCp'Oh>.n-l) u f(o/7<l>.nml) if n > 0

_ where # is string catenation, andu set union.

X initially fc[A,n>IncN

Then ex. f(X,2) u f(<O>,1) u f(<l,,l) (f(.O,0) u f(<O,1>,0)) u f(cl>,l)

((<00>)u f(<O,I>,O)u f(<>,I) -etc.

-6- :

Ex. 1.2 If f(X) is the set of all permutations of the first n integers,

X t {cn,a>[incN, a is a string of positive integers)

f(M)- f(n.a) - (a) If n- 0

and if p = lal - the length of a then

f(X) f(n,a) = f(n-l,a[a on]) u... u f(n-1. a[a 4-n]) if n > 0

where a[ai+ n] is an inserting function; i.e.

if a = <al,...,a> then a[a. 4- n] is the result of inserting the

integer n after component a. in a or is <al 9 ... ,a 1 1 ,nai 1 , ... a>.

" is initially c (<n,A>lnlml

Then ex. f(2,,) = f(l,<2>) = f(0,<12>) u f(O,<21>) = (<12>] u f(0, 21>)

{<12>)u (<21>)

Ex. 1.3 f(Xj is the string of moves (each a pair of numbers <a,b>

meaning move a disc from pin a to pin b) necessary to optimally

solve the, now classical, Tower of Hanoi puzzle. To move n

discs initially on pin 1 to pin 2:

X C {<<xy,z>,n>l<x,y,z> is a permutation of <1,2,3>,n e M)

f(<<x,y,z>,n>) = <xy> if n=

f(<<x,y, z>,n>) - f(<<xz,Y>,n-l).(<<x,y,z>,l>)//

f(<<z,y,x>,n-1>) if n > 1

X is initially e (<<l,2,3>,n>ncN)

Algorithms to Implement Definitions in F(V) which are Efficient in Use of Memory

An 'algorithm scheme, defining a set of algorithms is defined in a manner

analogous to that used in defining a recursive scheme like F(V). In this paper

algorithm schemes generally will involve standard assignment and conditional

statements using the same unspecified set of data-structures D, primitive

functions w,q,Om and predicate T(designated by the tuple < D,wq,OmT>)

-7-

used in defining the recursive scheme F(V). If we constrain the selection

of tuples to be a member of a set V, the set of algorithms thus defined

is designated S(V) and a particular algorithm c S(V), corresponding to a

* tuple v c V is designated S(v). The recursive and algorithm scheme

" F(V) and S(V) are equivalent iff for each v e V, F(v) is equivalent to

S(v). A recursive function definition F(v) and an algorithm S(v) are

equivalent if with domain D in v, for every d e), the value- of. f(d) as

computed with recursive definition F(v) = value of the result of running

the algorithm S(v) with d c D as its initial value. It is easy to find a

number of algorithm schemes equivalent to F(V).1

A main purpose of this paper is to show that for a set

V' built from V by constraining the function w to be 'associative'

-2
and the set of functions 0 to have an 'inverse', there is an algorithm

scheme S(V') equivalent to F(V') which is .particularly efficient in its

use of.memory. The algorithm scheme available when these conditions are

satisfied is given in figure 2.2. The algorithm scheme S(V') is given

in terms of the data-structures, primitive functions and transformations

of these primitive functions (inverse of 0 for example) which are immediate-

ly available under the assumption of the existence of an 'inverse', that

appear in the equivalent recursive scheme F(V').

For many of the recursive definitions in the class F(V'), the equi-

valent member of the class S(V') - which can be obtained mechanically from

the recursive definition is the 'good' algorithm usually used to realize

that definition. Thus corresponding to example 1.1, the algorithm ob-

tained by instantiation of that particular D,w,,qfl,m and T in S(V')

_ Is one in which:

A Theorems 2.1 and 2.2

2 These terms are cfined in section 2. An inverse operation plays a similar
role in [6). Our 'inverse', however, is different, having bcen independently
developed [7,8] in combination with associativity to delineute another class
of definition with efficient implcmentations.

First a string of n O's is formed and outputted - being the first

blnary number produced,, then, because the rightmost symbol in the string

is a 0 it is changed to a 1 and the result outputted. In general, the

algorithm remembers the last binary number formed and outputted, say X.

The next binary number is formed by a scan of the bits of X starting w- -h

the rightmost bit, and changing them by the following scheme. Let b I

the bit under scrutiny - if b is a 0 it is changed to a 1 and the rest

is the next binary number to be outputted -if it is a 1 it is change

a 0, b becomes the bit in X one position to the right of the current b

and the scrutiny is repeated. When the leftmost bit of a number X be-

comes b and that bit = 1 then the process terminated. In summary this al-

gorithm for producing all n--bit binary numbers, consists -simply in 'adding

1' to produce successive members of the set. -It is the 'good' algorithm

for producing the set. It keeps in memory only the last number produced thus

using an amount of storage roughly equal to that required to hold the argu-

sent of f in its recursive definition. This is characteristic of all the

- .algorithms in S(V') in relation to the equivalent member of F(V') and is

the 'memory efficiency' mentioned.

in a similar way, the algorithm for example 1.2 obtained by instantia-

" -tion of the primitives that appear in the recursive definition in example

.2.2 produces one permutation at a time. A permutation is produced from the

previous permutation by interchange of adjacent terms. This again is the

'good' algorithm for generating permutations.

Creating an Inverse

In examples 1.1 and 1.2,. the given O-functions had an inverse - in

example 1.3 the 0-function as given, does not have an inverse and thus the

4

algorithm scheme S(V') is not available. However, as will be shown - when

in a recursiv.e definition, f C F(V), the 0-function does not have

an inverse - a simple transformation of f to an equivalent

definition, say f', involving an O-function having an inverse

can always be found in FCV'). Thus f' will have an equivalent in

S(V'). This new definition f' is equivalent to f in the sense that to

each argument d of f there is a 'simply' computed argument
d' of f'

such that f'(d') = f(d). Using this transformation, an equivalent defini-

tion to that of example 1.3 will be given subsequently, whose equivalent

algorithm in S(V')will produce the moves necessary to solve the Tower

of Hanoi problem - one at a time, the only temporary memory necessary

being that for a record of the previous move and its number.

Memory Efficiency
In the standard compiler implementation of a recursive definition

of the form of I that definition is taken to describe a procedure which

*'- calls itself. The procedure uses a stack to temporarily remembpr, amongst

other things the set of argument.-=the data structure)associated with the

M call. The size to which the stack grows varies and depnds on the depth

of the calls. In general) if the definition is non-linear,-i.e. has

ore than 1 call of the defined function on the right, then the arguments

of the w functions will have to be stacked also. When the memory eff-

icient algoithmto be described here js applicable then both of these

stacks can be eliminated, Instead only 1 copy of the argument of the call-

ing function will be saved. All other temporary memory uses in the

algor thin are comparable to those in the standard implementation. It

will be possible to eliminate the need for these stacks for any definition

of form I, provided, only, as we have said that the w function is

associative and the 0 functions have a uniform inverse.

Although the 'memory efficient' algorithms of S(V') are honestly

4.
So for the most part, the nature of the memory efficiency can be mis-

leading. The implementing algorithm available when w is 'associative'

and the 0-fuittion has an 'invorse' is efficient in the sense that the

4
memory required is usually of the order of the largest storage required

for the argument (also called a data structure) of f which arises

If f is evaluated by successive substitutions.

. Usually this largest data-structL-e for which memory need be provided
• Theorem 2.3.

' , • ,,. '

S.requires a small amount of memory relative to the total of all data-structures

produced during the implementation of t)e definition for a given

initial data-structure - ex. o'f'the order of a single member of a set

-when a set is being enumerated. Even when the 'inverse' does not exist

it can be incorporated as previously noted, leaving the 'memory

efficiency' notion still viable. However there is another way of obtaining

a 'memory efficient' equivalent algorithm which is deceiving.

This technique involves obtaining a technically correct equivalent

recursive definition of f, say f' having only one occurrence of f' on the

right, but in compensation involving much larger data structures X, and

complex function o! than the corresponding X and o. of f. That is, for each
I I

definition of form I there is an equivalent definition

of the form:

f'(X,) = q,(X,) if T(X')

II f'(X,) w(f'(o' CX'))) if

Initially, X' e D,

By equivalent, we mean that there is a 1-1 correspondence

g between D and Df, so that for each d e D:

f(d) -f'(g(d))[

" If f has an inverse then it can be realized in the same memory efficient

*s anner as other definitions in F(V') and if not it can easily be modified

O. as to have one while still keeping the result in the form

of II. Memory efficiency, however, means that the memory requirement

will not exceed the size of the largest data-structure which arises as an argu-

sent of f during evaluation of f'. But in this equivalent definition that

* Theorem 2. 1 and theorem 2. 2 give the two classical ways this is done,
called breadth-first and depth-first respectively.

data-structure is typically much larger (often exponentially) than that

which could arise in the original definition.

The term 'memory efficiency t as used here then requires caution

$n its application,

Time Efficient Implementations

As noted earlier the opportunity for time efficient implementations

of recursive definitions in FCV)(= F from here on) arises when repetitive use

•*. of the same operations are necessary in the evaluation of the function.

In the time efficient implementations the originally repeated operations are

done once - the result being remembered for later use. This is classically

called 'pruning' in the Artificial Intelligence literature. For some sub-

classes of F the nature of the repeated operations are sufficiently inde-

pendent of the particular initial data-structure so that one can design

a class of implementations guaranteed to be more efficient in all cases

than the standard implementation. An example of such a subclass is all

functions which are substitutionally solvable and are of the form given below.
Let a vector whose values are integers.,

V X 1 1X 2 .. X-# avctrwhs

" <CilC. a constant vector of integers - is vector subtraction.
1 2n

. f(m)-q() If V is any of a finite set of
integer vectors, say K

w..1,- ,.PrVzi

Initially V c a defined set of integer vectors, say L

A specific simplc mcmbcr of this subclass is the definition for the

I.

-12-

* - Fibonnacci series (is a one dimensional vector)

f(n) 1. -,or o

. f(n) - f(n-1) * f(n-2) if n 1

Initially n e H

-;: t

For any definition in this subclass in which V has m components it is

easy to see that the function can be implemented by-in nested DO-loops.

This implementation requires much less than the exponential time involved in a

straightforward implementation of the recursiye definition - which does

sot take advantage of repeated suboperations. Although detection of a

uember of this subclass is relatively easy, the detailed dependence of the

para eters of the nested DO implementation on the properties of w and the

and the sets K and L in this-subclass of definition is an interesting study.

This study however is not carried out here.

Another such subclass called the 'explicit history' class will be

considered here. The evaluation of members of this class will be shown

to be equivalent to solving a set of equations* analogous to sets of

linear equations. Consequently an algorithm analogous to Gaussian

elimination will be shown to be an available implementation of explicit

history definitions. This algorithm has polynomial complexity as opposed

to the exponential time required in a straightforward implementation of

the recursive definitions in this class.

* Theorem 3.1.

6

-13-

Equivalent Formulations of Recursive Definitions

To be in the class FCV) recursive definitions must be of form I.

Despite this constraint a function may have a number of different

definitions all in FCV). Some of these may have desireable properties

- absent in others. Transformations which can be used to obtain equivalent

- definitions in F(V) with desireable properties are developed in section 3

of this paper. Actually, example 1.1 gives a definition of the set of

all n-bit binary numbers which may not be entirely natural. One which

. may be considered is based on the fact that;

The set of all n-bit binary numbers = the set of all (n-l)-bit

binary numbers each with a 0 appended together (unioned) with the set of

all Cn-l)-bit binary numbers each with a 1 Appended.

W A formal statement of this definition is:

Ex. 1.s f(n) - if n .0

f(n) = (<o>j f(n-1))j (<I> Mfn-1))if n > 0

where if B is a set of strings and a a string ct'N = {a //bbcB)

Initially n c N

Then ex. f(2) --<o>\,l/ ezfz _<o ~> "
The e. (2)= o<)f (1) U cl1{ f(l) = o>? (o> ~ (o) u

-0>O1O>,Cl>Ju <l>0f(l) = {<oo> <o.l>)u

<I>. (1) = etc.

This definition, though still strictly in form I is not in F(V')

because w is not associative. Therefore the scheme SCV') is not directly

available for its realization. However, there are theorems* which will

,

•Theorm 3.2

* - -'

-14-

In this case give an equivalent definition in FCV') thus once again making

thm realization of S.(V') available.

In fact,.the definition of example 1.1 can be obtained by the application

of such theorems to example I.S. It is interesting to compare the above

interpretation of the definition in example 1.5 with one for the equivalent

definition in example 1.1 which was originally claimed to be natural.

Interpretation of Definition 1.1:

The set of all n+Iac-bit binary numbers which have a prefix a =

The set of all n+laI-bit binary numbers having a prefix a followed

by 0 together (unioned) with the set of all n+Iat-bit binary numbers

having a prefix a followed by 1.

%/."

2. MEMORY EFFICIENT IMPLEMENTATIONS

The first part of this section, thru page 29, is largely devoted

to material which is probably familiar. This is done inorder to develop the

definitions of a number of terms which are used later in this section. Altho

the concepts are familiar the terms we use may not always be so. Two well

known, 'classical' implementations of recursive definitions, both of which

use stacks are shown to valid in these preliminary pages. This is done

for comparison with the 'inverse' implementation, which uses no stacks,

and whose description and justification is the main objective of this

section. The 'classical implementations are described in a somewhat

unusual way, different than the flowchart form used for the 'inverse'

implementation. Their validity is established in this form which was

thought to be an excercise of sufficient inter est to justify inclusion

here since the form in which these implementations are given is generally

applicable. The inverse implementationfor example, could be given in

- .. . -

-1 . *this .form. In any case, the material in the preliminary pages can easily

be skipped and only referred to to pick up definitions of terms used later,

. ' without losing the main point of the paper.

a p
Definition of Standard Recursive Scheme F:

Consider the set F' of all functions f that can be defined as

follows:

Def. 2.1

f(X) = q(X) if TCX)

form fX) = w(f(o1CX)), ... , fCOm(X)CX))) if 'cx)

.initially X e Df

where the primitive functions and predicates which are used in the de-

finition are weakly constrained as to the nature and extent of their

domains and ranges. Df is the set of initial data-structures and may be

any set. Other sets must be included in some of the domains of some of

the primitive functions. These other sets are defined recursively, using

the primitive functions. First these sets are named and their relation to

the primitive functions given, then they are defined.

a is a function whose domain must include the set A and whose range is the

positive integers z 1. m(X) z 1 for all X c a

0 is a set of functions {0,O2, 0 ...

The domain of 0- must include the set a Af is the union of all the domains

of the functions in o. and is called the domain of the O-function,

The range of oI must include the set p ,

The union of the sets p of all the functions in 0 is the range

of the O-function and is called Pf%

T is a predicate whose domain includes Dfu Pf. Its range is

__ (true, false)

q is a function whose domain must include Qf. Its range may be j
any set, say wf,

- -16-

w Is a function whose range is called Wf and whose domain must include

Vgvwf.

The sets named above are defined as follows (the subscript f is

dropped where it is not essential):

£1 -(d d c D and T(d)); and for j 1

a (o CX)lX C a and i S< mCX) and TCoi1 ()))

A U*- 1 Ai

The set 6 of o. C Ois:

S i {XX c A and i S mCX)1

The range of 0 is:

P (.oXIIX e A and i mX))

The range pi of o C Ois:
*pt • {o.(X) Ix 61 i

The set of terminal data-structures Q is:

Q =P-A

The set N is defined as follows:

=, {W(Xl,...,Xn)IXi c whn - a positive integer Ml; for j > 1,

, .(w("."..Xn)1Xi C W kkj); n cl)

* V- Ulm~

If In addition to being a member of the set F', a recursive

definition is terminating . as defined below it is a member

of the set F. We need some preliminary definitions.

" If 4il, *.., 11 a I is a sequence of integers then ,1 ,.. (X)u

oI(X) is an abbreviation for oj .., (oi1(X)) ...); oA(X) X.
2 1

L~i .- 17-

A length 1 sequence of integers <il> is applicable to a data-

'structure X Af if i1 : m(X). A length n sequence of integers

... , in> is applicable to a data-structure X if <il, ... , In>

is applicable to X and <in> is applicable to o< 1 n

r(X) is the set of all integer sequences applicable to X e Af.

f is terminating iff Vd, d cD implies r(d)-is-finite.

Note that if T(X) is finite it cannot contain an infinite sequence,

because it always contains all prefixes of any sequence it contains.

This completes our definition of F. Next we give some simple

consequences of the definition which will be used later. First, the

substitutionally solvable property that d e D, T(d) is finite can be

extended to any X e Af. This is done in lemmas 2.1 and 2.2.

Simple Properties of f cF

Lemma 2.1: If f c F and X c A£ then ian integer sequence I e I(d)

and 3 a data-structure d e D such that o (d) f X.

Proof: If X C Af then obviously there exists some c Cat least 1)

such that X - A . The lemma is proven by induction on the sets

Assuming there is a length k-I sequence IT for each data-

structure Y c Ak-l and d c D such that o (d) = Y. Then it follows,Y

bO.definition of Ak that if X c k then X = oiY) for some i s m(Y),

and I a Ak -l . Thus X =oiColy(d)) = ocj>11iy(d). Since
Y

also D = A1 and oA(d) d for each d c D, the proof is complete.

Lemma 2.2: Iff £ F and X c A,, then I(X) is finite.

Proof: From the previous leuuna the data-structure X = I (d) for

some d c D and integer sequence I. Therefore 1(d) a the

* P as defined here is the same as F(V) as defined in the Introduction.

set consisting of I concatenated with each member of I(X).

- Thus if I(X) is not finite, 7(d) cannot be finite but this

contradicts the condition that f c F is substitutionally

solvable.

Another consequence of the definition of F is that the data-

structures in Af can be usefully ordered in another, almost reverse,

manmer than the ordering by membership in the subsets d . In most of

the subsequent inductive proofs, induction will be carried out on this

ordering.-

* Ordering the Data-Structures in A (Remoteness):

For any function f in F:

We say a data-structure X in Af u Qf is of remoteness 0 (or is

terminal) if X c Qf.

We say a data-structure X in Af u Q is of remoteness n if:

(1) 3i:i mm(X) and oi(X) is of remoteness n-l and

(2) Vi:im(X) implies oi(X) is of remoteness n-k and kkl.* I:

Lena 2.3: If f c F, then there is a function r with domain" A, u

such that if X C Af u Q then r.) = the remoteness of X.

Proof: For each X c Afu Qf let r(X) be the maximum of the length

of all the sequences in I(X). For each X c AfU Qf. X is of

* Alternately this can be phrased 'of remoteness < n'.

6.

[..

""* -19-

. remoteness r(X). This is shown by induction. If T(X) then

I(X) is empty and r(X) 0 0. Assume that if r(X) < n, X is

of remoteness r(X). Let r(X) = n, i.e.-there is a longest

sequence of length n, say I = <il, ... ,in in 1(X). Let

o 0(X) = Y. Then I' = <i ... ,in is in ICY). Furthermore,

no sequence applicable to Y is longer than 1' because other-

wise I could not have been a longest sequence in I(X). So

r(Y) n-l and Y is of remoteness r(Y) = n-l. Therefore,

since oi(X) = Y and for-all j il, j :m(), r(oM(X)) <n-l,
iJ

X is of remoteness r(X) = n by definition of remoteness.

Interpretation of the Recursive pefinitions in F

In the next paragraphs we briefly sketch some important well known

facts about the interpretation of 'a terminating recursive

definitions such as f c F.

A recursive definition f e F defines the function f on the domain

Df by giving a relation (in terms of the primitive function w) that f(d)

mnst satisfy with the same function f at some different argument value

Ramely with f(oi (d)) s for 1 i < m(d).. The same definition is

Applicable to define f(o i (d)) for each 1igig m(d),

Of f at still other arguments. This process of repeated redefinition of

f with different arguments will eventually end (because f C F is substi-

tUtionally solvable) with arguments X which are terminal, at which point

the definition of f gives a definite value - q(X) to be assigned to f(X).

VMas this process will close, and a definite value will be assigned to

.1(d), It can easily be shown that this is a unique value.

'A -20-

Tis process of re-definition can be formulate as a non-deterministic

procedure involving successive substitutions in an expression whose evalua-

tion will give the value of f(d) for d c Df.

Let E be an expression involving a composition of the w, and o. functions,1

a d € D, and occurrences of f(), f being the symbol for the defined function,
and a its argument. Let E1 = f(d) and in general to get EI+1 from Eido the

following:

Choose any occurrence of f(a) in El. Note that a itself will never

contain any occurrence of f, a will just involve a composition of w's,

0ils and d. Evaluate a, t.Lis can be done because it only involves

gtven primitive functions and a given data-structure d.

If the evaluated a is terminali.e. T(a) is true, then f(a) is

replaced by q(a) to obtain EI Thus the right side of the 1st

equation of the definition of f is substituted for f (a). If on the otherhand

?Ca) then the value of a is substituted for X on the right side

of the second equation in the definition of f, and then this entire

i i+l
tesulting right side is substituted for f(a) in E to produce E

Substitutions are continued until E contains no. occur -

rences of f. This must eventually occur because f is substitutionally

solvable. At this point in the evaluation Ei is the value of f(d).

The result of this non-deterministic procedure starting with f (d) may

be interpreted as the definition of f(d).

I-

This definition is non-deterministic because occurrence of f(a)

In E1 may be legitimatley chosen to be substituted for next, No order

ts prescribed,

mIl

U '-21-

Although the meaning of the recursive definition is tied to this non-

'-* deterministic unordered procedure, the conon connotation of 'recursive

implementation' involves a fixed ordering of the substitutions for

occurrences of f(a) in the successive expressions E.. This order

~ requires substitution always for the leftmost occurrence of f(c) in E1 .

This is the order implemented in virtually all compilers which accept

recursive definitions. It is sometimes called depth-first ordering. This

ordering amongst others will be investigated here. We call the depth-first

ordering the standard implementation--recognizing that strictly there is not

a single implementation entitled to be called the recursive implementation.

So given a recursive definition--and the order in uhich: the f(a)

* occurrences are to be substituted for--the basis of a deterministic imple-

mentation is established. This can be detailed in a flowchart and is one

*of the ways in which we will specify such an implementation.

'There is a subset of recursive definitions of f c F, however, in which

one need not specify the order explicitly, There can be no question of the

order of substitution for occurrences of f(a) when each expression Ei has

only one occurrence of f(a). This will occur for any definition of f C F

whose second equation has only one occurrence of f(a) on the right, Such

a unary recursive definition itself then is. a second way to specify an

Upl ementation,

An Implementation which can be specified in one of these forms can

also be specified in the other form.

In the subsequent sections both ways of specifying an implementation

are used*

,1

In the next section unary definitions are developed which represent

the classical depth-first and breadth-first implementations of functions

f t F. By showing the pquivalence of these unary definitions to f e F I

the validity of these implementations is est:.blished. C

Later another implementation for f F called an inverse implementation

Vill be described by a flowchart and will be proven to be valid. Tis inverse

pementatons,does not require a stack.

Classical Implementations:*

- Notation:

We-need'notation for operations which replace a component of a vector

with single or multiple components which are functions of the replaced

component.

Lot L be a vector (list); L = <i 1 ,
Let t. denote an individual member or sub sequence of L which has some

specified properties P.. The notation:

denotes the list obtained by replacing all iomponents of L which have 7

property Pi by X.. X. may be an individual component or a number of

components. For example, if P is the property of being an odd indexed

component of L and if n(= the number of components of L)is even then the

meaning of Lit 1 a] is given by:

Lit 1 a] = 1a,12,a,14,a, o.. ,l

The next two theorems will show that for each f £ P there are two

Mary definitions X. and FD both also members of F and both equivalent to

f, Since they are unary the implementation

Depth-first and Breadth-first algorithms are described in (4] as algorithms
for searching a state space. Such searches (and more) can usually be
modelled by a recursive definition of our standard form recursive definition
- with the nature of the transition from state to state given by the O-functions
and the nature of the search given by the w function.

for evaluating these definitions is deterministic (see pg 19). The

i algorithm FB is similar to the classical 'breadth-first' algorithm and

P rD is similar to the classical 'depth-first! algorithm.mD

Breadth-First Implementation

Lot f c F, thus

1 1) f(X) = q(X) if T(X)

2) f(X) = w(f(o X)), ..., f(om, CX))) if TCX)

3) initially X c D

To define the function FB which is equivalent to f we first need to de-

fine a number of new primitive functions and predicates in terms of the

primitive functions owqm and predicate T of f. For this the notation

just introduced is used.

L m< li, ..., In>, Z =<Zl, ... , z p> are both vectors. The components

of L are either brackets in the set

BRACK= {{')i'$I< .1, >I)

or members of A the domain of f, or. of Qf = the terminal data-structures

of f. (A. and Qf are assumed not to contain any of the brackets in BRACK.)

The components of Z are either members of BRACK or of wf 'the range of q,

or of if = the range of w.

ith X e Af t C Q, and ti C wfU Wf let:

0(L) n LIX 1- '('o1 X), ... , O(x)X),]

T (L) -true if every component of L is a member of BRACK or of Qf

_ QB(L) = L[t - q(t)]

MB(L) - 1

Z). .z.{'

N~ow we can define FB:

U ~

- -]

2) FB (L) = Y (FCBL))) if (eL) .. F
Now e cn deineFBO

3)tinitially L < X>, X e D

Theorem 2.1: For each fe F (as I above) there is a function F E F (as*B

II above) such that FBE X>) = <cf(X) > for all X C D.

Proof: The proof uses induction on the remoteness of the data-

structures Xe Af u Qf which, along with brackets, constitute

the significant components of the vector data-structures L e A
B

What we will show is first that for any L in A whose components

are all members of Qf, designated by t, or are in BRACK, that:

FB(L) = L~t *- f(t)J

This is true since if TBCL) is true then with t £

PiCtL) = Q(L) by II 1

L Id t q(t)] by definition of QB

aL t 4- fCt)] by I I

. Secondly we show inductively that if L contains component

of Af designated X then

00 F (L) LX fCX)I

Assume that as long as all components of L, other than those

in BRACK, are of remoteness. < n that statement (H) is true.

If T,(L) is not'true and all components of L other than those

in BRACK are of remoteness g n, n 2 0, and at least one such
.41

component is of remoteness n, then: (X is used to designate a

"ember of A, t a member of Qf)
f

.1'

,o.4

-2S-',4

FB(L).= WB(FB(OB(L))) by 11(1)

11 (L) W8CFCL[X 4- ''°,o(X), "'" "O(X)(X),I}]

- by the definition of 0.

FBCL) " WB(FB(L')) abbreviating the expression above with L'

* Clearly all components in L' are of remoteness < n and at least

oe has remoteness n-l.

So the inductive hypotheses may be used for all X e af in L'.fI

PJ(L) - W(CL,[X4- f(X)])

But L' = L(X .- M '0,olcX), ,;. , o cxjCX),,P,]

So L' [X f(X)J = L[X , (o1(X)), , , f (x)),
CM Com(X) #

So WBB(LI (X + f(X)J) L[X w(fCol(X)) , f(OmCx(X))))

by the definition of WB.

Thus:

FB(L) = L(X + f(X)j

Thus for L . cX>, X e D:

Fa(L) = x>X 4- f(X)J 3 <f(X)>

Dopth-First Implementation

TU depth-first function FD equivalent to f in I above is defined

as follows:

III 1) (FD(L~k) = QD(Lk) if TD(L)

2) PD(L,k) = F4OD(Lk)) if TD(L)

3) initially L = <X>, X e Df, kal (we say then <L,k> DD) Dp
where with Ik = the kth component of L the definition of ODTD and QD are:

1) OD(Lk) =<L[lk4- '{'O(Ik) ... , oM(ik)(Ik)')'] k> if Ik C Af

" . 2) * <L q(lk)Jk~ l, if 1k c Qf

.4 ' . 1k . 'I' and tI l0kn are all in W fU Wf

(and { ,t , tn, precedes 1 in L as iassulned)

0

-26-

(4) OD<L,k) = L,k+ k or if I k f U Wf

.D(Lk) -true if ILl -I and k =2.

QD(Lk) = 11

Theorem 2. 2 If f (of definition I above) e F, then F0 (of definition III

above) is also - F and for d c D, FD(<d>,l) = f(d).

Proof: Again the proof will be by induction on remoteness.

It viii be shown that if Ik is the kth component of

L and 1k £AfU Qf then:

(H) FD(L,k) = Fv(L[lk f(lk)I

This is certainly true if Ik is of remoteness 0, i.e. if-

Ike Q. because then:

FD(L,k) = FD(L[lk . q(lk)]; k+l) by definition of OD(2) and III 1

FD(L[Ik 4f (1k k+l) by definition of f, 1 1

- FD(L[1lk f(lk)],k) by definition of OD(4)

Assume (11) is true if 1k has remoteness < n k 0. Then if

is of remoteness n > 0, and is c Af, it follows from 0D(1) that

FD(Lk) = FD(L[lk 1 (0(1k) , o9 m1)(101'] k)
k

with oi(lk) for 1 : i g m(lk) each being of remoteness < n.

" '- " " - . " . " ,. - '- :- - - _ :

27.

Rewriting the above in expanded notation and indicating Ik(the

kth component of L)by underline:

F D(L,k)= FD 11< I, .lk-1 1 0 ,1 . (1 k) ' *.>a0/0L',k)

Then by definition 0 D (4):

FD(Lk) F D (<1 1 , ... 1 k-,, -. 1, o(1 0()

Since o1(1k) (a fU Qf and is of remoteness < n we have by (H),

and then by an application of 0 D(4) again:

FD(L,k) F I ... , ,' , , ..

iiOiRC 0k, ')'>//L1 ,k+2)
. . %Ck)

And since in fact for i = 1 to m(lk). oi(Ik) Af U Qf, and is.

of remoteness : n by repeated application of (H) and 0 (4):

FD(Lk) FD 11 lkl'(' f(ol(lk)). f(m(lk))P

'}' :,//L', k+m(ll+l)

And finally by OD(3):

PD(Lk) FDE< 11 . k.1' w(f((<I1 1)), ... , f(o(k) _0))>

IL' ,k)

Since f(1 k) w(fCol(lk)) ... ,f(o=1k) (lk)))

FD(L,k) - FD(< I, ., k.' f(1k) >/tlk)

And compacting the notation:

FD(Lk) FD(L Ilk f(lk)]k)

-28-

For L a <d>, k= 1:

-D(<d>,1) FDC<d> (de f(d)]1)

* FDCfCd) ,2> since f Cd) is c domain of w 00(4)

is applicable

F D(<f(d)>,2> <<f(d)>,2> is terminal so

" f(d')

Properties of f e F Sufficient for Memory Efficient Implementations

Another. implementation more efficient that the two classical ones is

available when the recursive definition f e F has some special properties.

These properties are now defined.

Associativity: Associativity has the usual meaning here. The function

w is associative if:

SW(ala ... , a) W(w(al,a2), a, .. , am) for m • 3

w = minimum, sum, catenation and union provide examples of w-functions

with this property. In each case one can compute w(a1 , ... , a M) as follows:

Xe-K

For i 1 to m

Y w(Xa i)X Y

End

thus requiring at any one time memory for at most 2 copies of the result

of w(a 1 , ..., aj), j : n. If w is the function minimum, this memory does not

4 increase on the number, but only on the value of its arguments, aj. If w is catena-

*tion, sum, or union the memory required will increase, albeit at different

rates, with the number of arguments. There is. however, a significant

,,29-

difference in use of the memory, between a computation of catenation and of

union. To obtain catenate (a,b), b needs only be attached at the end of

a. To obtain the union (a,b), a must be searched for an occurrence of a

member of b. If a represents the result of a previous computation then in

the union case it is necessary to re-access this memory whereas this is not

necessary in the catenation case. This is an important consideration be-

cause" memory that is not re-accessed can be located in areas of memory

(disc) which need not be easy to access (as is core). The temporary

memory requirements for the implementation of a function then do not depend

on the usual mathematical properties of that function only, but also de-

1
pend on the means available for accessing the memory. Nevertheless, for

compactness our results are given in terms of the usual mathematical

properties--so caution is needed in their interpretation.

Uniform Inverse:

Consider a set of functions H = (hl, ..- , hM). Let V. be the domain

over which h. is defined and let R. be the corresponding range of h..

Then we will say V= UM A. is the domain of H and R = uM R. is its range.
S-- ,. •

3L

The set of functions H is said to have a uniform inverse on the

domain p if:

(1) Every h1 H has an inverse and

(2) RARj= for every R. Rjin R.

If H has an uniform inverse then it is easy to see that the

_ following two'uniform inverse'functions on R exist for re R CR. iI

2. It is also true that there may be some advantage in time efficiency in
ono grouiping of the argtunents of w over another though both give the same
result when w is associative. An example of such a function is merge, i.e.
eCrge(a i. . l) 1in which ai are ech finite sorted sets of nuimbers.

- ..- •-30-

o .I.

- • .-

(1) H"4 (r)= d D such that Hi (d)=r

(2) iH(r)=1 the index of the range R. of which r is a member.

A recursive definition, fe F, has a uniform inverse if the set of

functions OjO in f has a uniform inverse.

For a given function set 0 it is possible that none, one, or two
-1*of. the pair H , IR exist. Despite the fact that the uniiForm inverse

" is a strong condition it does often occur. Furthermore when it

- doesn't, there is always a strongly equivalent definition which does

have a uniform inverse. This is shown after a short degression re-

quired to define strong equivalence.

Equivalence of Recursive Definitions:

Consider two definitions in F:

(1) f on domain D

f(X) - q(X) if T(X)

f(X) u w(f(o 1 (Xfl, ... , f(o* (X))) if T(X)

initially X d e D

(2) g on domain D'

-_ g(X') q'(x,) if TO (X,)

gX,) . w,(g(o1 (X,), ... , &(o;, (X)(x,))) if T,(x,)

Initially X' a d' C D'

If there is a 1-I correspondence between D and D' such that whenever

d ' D and d' c D are two corresponding data-structures f(d) = g~d')

then the two definitions are equivalent. The above correspondence may be

extended to one between af and A with 6 c f corresponding to 6' c A

by having oi(6) correspond to o(6') whenever 6 corresponds to 6' and

.* o (6) and o!(6') are both defined. This is called a structural corres-
.o-.

g gondence. If in addition to such a structural correspondence of A to

A the following conditions hold

(1) T(6) = T'(6')

(2) q(6) - q'(6') if T(6) (and T' (6'))

(3) m(6) = m'C6') if 7(6) (and T (' '))

(4) w=w'

then f and g are strongly equivalent. (Note that the structural corres-

pondence of Af to A need not be 1-1. It will not even necessarily be

.. defined on all members of A and A' unless the conditions (1) throughfg
.(4) are satisfied.)

Strong equivalence of two definitions implies that they not only give

the same results but also require the same number of substitutions in

their evaluation for corresponding initial arguments.

As an example of a strong equivalence, consider the two functions f and

geach in F:
S

(1) (f(X) - q(X) -if T(X)

jf(X) - w(f(o 1 CX)), ... , f(o3 cx) CX))) if CX)

nitially X = de D

(2) a) g(X.Y) = q(X) if T(X)

Jb) g(X,Y) w(g(o 1 (X),h 1 CY)), ... * gomcX) (X),hmcx)CY)) if fTX)

initially <XY> a <d,y.,? £ D' with d C D and Yd e aetY

(H- , ... , h14} is a set of primitive functions)

-32-

Lot data-structure d C D correspond to <d,y.> c D'. Extend this
d

correspondence to one between A and A by letting o CX) e Af correspond

to <o1 (X) hi(Y)> e A whenever Xe Af corresponds to <X,Y> e Ag and 'F(X)

and i:: m(X). For example if d C D and oi(d) is defined then it corres-

ponds to <o (d), h.()>c A.
1. id)e ag

For each member of A this correspondence defines a corresponding

member of A . This follows because every member in Af is either in D,
g f

for which the correspondence is given explicitly, or it = o (X) for

* Xe Af and oi is defined and T(X), in which case the correspondence to

a member of a is given since o:(X,Y)Os existence just depends on X, be-g 1.

cause m' (XY) = m(X), T' (X). = T(X).

Conditions (1) through (4) are obviously satisfied for this corres-

pondence in the above definitions. Furthermore, the function g(XY) is

independent of Y, its secord argument. This is shown inductively as

follows. Directly from the definition (2a) we see that g(XY) is inde-

pendent of Y when (X,Y) is of remoteness 0. Its being of remoteness 0

is also independent of Y. Referring to (2b). if it is assumed that each

tem g(oi(X)hiCY)) appearing on the right is independent of its second

argument then it follows certainly that gCX.Y) on the left of (2b) is

independent of Y. If the argument on the left side of (2b) is of remote-

ness n from terminal then all the arguments of terms on the right are of

remoteness < n from terminal. Thus the inductive argument is completed

concluding that g(XY) is independent of Y if X and thus if (XY) is of

remoteness 0,1,2, ... , n.

Thus definition (2) can be rewritten removing Y which with f replacing

Is the same as (1). Therefore

"9"

-' " .33 -

-3 o

Lemma 2.S g and f above are strongly equivalentLi_

Since the value of g(X,Y) is independent of Y it may seem silly to

ever construct such a definition with a 'redundant' Y, to replace f, or

alternatively that such a redundant Y would arise inadvertently in g to

* . be removed by replacement with the equivalent f. The following theorem,

however, demonstrates that such 'redundant' additions can be of consider-

able use.

* Theorem 2.3: For any recursive definitions f in F there is a strongly

'equivalent definition in F which has a uniform inverse.

Proof: If f already has a uniform inverse it serves as its own

Strongly equivalent definition. If not the following defi-

nition serves that purpose. Referring to Def. 2.1 for the

definition of f,,the following function g defined in terms

of the same sets, primitives and predicates is strongly

equivalent to f. (p ... pn> is a vector which

records indices, and d is-the initial data structure.)

*(p~d) - q() if T(X)

g(X.pd) = w(o,(X),cl1 //Pd). o.."a g(O ()cm(X)> Ap,d) if T(X)

initially <Xp,d> = <d, ,d> with d c D.

g is strongly equivalent to f by application of lemma 2.S

with Y of that lemma corresponding to (<p,d>l p a sequence of integers,

GdeD) and yd corresponding to <n,d> with deD. Furthermore g has a ufiiform i

inverse which is given by the following:

*

-34-

io(Xp,d) (

0. (XOpnd) < o pl (o(d))) (I A1],d>
2d -1

The 0 function is quite complex, requiring recreating a sequence of

data-structures starting with the initial data structure. In practice

one wants to construct a strongly equivalent definition which gives an

inverse but entails the creation of an 0 function which is simple.

Simplerhopefully,than that given in the above theorem. This can often be

done. If, for example,

Corollary 2.1: For a given recursive definition f c F there is no uni-

form inverse, but each function o. c 0 has an inverse = o., then the

definition for g given above with the third component d deleted from its

arguments will serve with the additional benefit that an alternative simpler

definition of o- (X,o) = <o x) (X),o [o-n]> can be used.

This corollary can be applied to the 'Tower of Hanoi' definition

ex,1.3, in that example, o c 0 has an inverse for i = 1 and 3 but does n

mot quite have an inverse when i = 2:

o(C<<x,y,z>,n>) = <<xz,y>,n+l>

02(Cxoy, z>,n) = ccX, y.Z>,A> where A cannot be determined from <xy,z>,n

03 (<x,y,z>,n) - <<zyz>,n+l>

So first we slightly modify the definition of f so there will be an

inverse for o2, Lemma 2.5 justifies this simple modification in-which a

component s is added to store the quantity A above when i = 2, and

otherwise to remain equal to 0.

6 _

a0

. -3S"

f'(cx~y~z>,n>s) - <x,>r nf u

f'(<<z~y,x>,n-1>,s) if n>1

initially (<<x,y,zn,>,S) zi(ccl,2,3>.,n>,O3, n C N

Now f is equivalent to f in 1.3 and o. has an inverse for i =1,2, or 3

These inverses are:

0(ccx,y,z>,n>,S) o <<x,z,y,,n~l>,0>

0-1(<xSy z>,n>,s) = Xyz*>O

0-1
03 (<<x,y,z>,n>,s) = <zyx,~>O

Corrollary 2 now applies to ft. Its application yields g below.

(Some unnecessary >Is and <'s have been dropped.)

*g(<x,y,z>,n,s,p) = cx,y> if n

g(cx#ysz>,n,sp) = g(cx.zsy>,n-l,s,cl>epy/ gC<X,y,z>,l,n,<2>//p)

//g(<Z,y,x,,n-l,s,<3>//P) if n > 1

initially -cx,y,z>,n,s,p> = ~l23>,n,O,X>>

-and the uniform inverse is given by

i(<Xy,z>,n,s,p) =P 10

o(c,,,),z>,n,s,p) = o-l(cx,y.z>,n,s).P[p~ 1 >
Pi

[-6

Implementation of f c F with Associativity and Uniform Inverse

We will first give a way of implementing any definition f in F which

has a uniform inverse and is otherwise unrestricted.! Then we will give

a way of implementing any f in F which has a uniform inverse and in which

w is associative. 2 This is done to contrast the means necessary for imple-

Mentation in these two cases. In both cases the implementation is

described by a flowchart containing, as usual, interconnected assign-

ments and decision statements. In both cases the expressions in the

assignment statements and decisions are compositions involving the

primitive functions and predicates w, oi £ 0, m, q and T and the inverses

0. io which enter the definition of f c F. In both cases, in addition

_- to the above functions from the definition of fthe repetoire of flow chart ex-

pression is completed by an add 1 function, a push and pop and an = predicate.

' In both cases there is a storage cell X which is assumed adequate to hold
any member in Afu Qfu D.

In the case that f has both a uniform inverse and an associative w

there is also a storage list V which can hold at most any two

members in Wf u wf* In the case that f only has a uniform inverse the list V

is still necessary but it cannot be bounded in size. It may be required to hold

any number of members in Wf u wf. The size actually used will be dependent on
~f

the specific function f e F realized as well as the initial data-structure.

In this case an auxiliary storage ARG is also used. It holds at most a

number of members in W u wj , = to the largest value in the

= _range of a.

1 See fig. 2.1

2. See fig. 2.2

-37o

Flowcharts 1 and 2 which follow describe a computation for each d e D.

It is necessary to give a concrete interpretation of the sense in which a

flowchart describes a computation. We imagine a traveler who starts by

entering block (0) of the flowchart. The traveler carries out the compu-

tation described in that block thendepending on the nature of the block,

proceeds to the appropriate next block. The traveler continues following

the block instructions and proceeding through the flowchart until FINI is

reached completing the voyage. The value found in V when the traveler has

completed the voyage is the value computed by the flowchart.

Flowcharts: notation and assumptions

In these flowcharts we will use the following notation. General:

(e is an expression)

X 4. - a the value of e is assigned to X

V P- e the value of e is pushed into list V

X POP V the top member of V is popped and assigned to X L

X P V[n] the top n members of V are popped and assigned to X

If V is a list = VlDV2..., vn then w(V) stands for the expression

V(VV 2 # ... ,V

I.

I

|
.

-38-

Primitives and their Compositions: (Some of the definitions are extended

to Qf to make the flowcharts work if the initial data-structure is terminal.)

Flow chart
Rotation Meaning

FIRST.KID(X) o(X) if X -C A

#KIDS(X) M(X) if X £ 1 if X £Qf

*. X TERMINAL? T(X) if X c AfU Qf

PARENT CX) =- . X 'x) if X C Af; X if X C Qf

SIB#(X) - io(X) if X C Af; 1 if X C Qf

NEXT.SIB(X) oSIB XSPARENT.(X)) if X. £ A

#SIBS(X) #KIDS(PARENT(X)) if X c Af; - 1 if X £ Qf

If w is associative we assume that there is a member in the range of

w such that w(XOw) = X for all X in the range of w. This definition is

used in the second flowchart following.

Znowchart I i

For f' c P and f has a uniformn inverse.4

V0

X. T-.ARUNIAL)-
Ye'

nop

nour 2.11

FI

- - -4U-

Flowchart 21

F4 or f c F and f hiaauniform Inverse and w is associative,

V0

T 7_

Figur 2.2T KDC

U (V

18#(X 43143(x)

-- X PRENTC) M ET. 45 B (A

-41-

When we say a flowchart implements or realizes an f e F we mean

that for each d e D the evaluation of the ftuction f(d) is = to the value

computed by the flowchart with traveler starting at block) and d in

the flowchart = to d in f(d).

We now present proofs that the given flowcharts, figures 2.1 and 2.2, do in

fact implement f c F under the appropriate constraints. The proofs are

very similar, both using induction on the remoteness of the data-structures

in A.

Theorem 2.4: If f £ F and f has an uniform inverse then it is implemented

by flowchart 1. (figure 2.1)

Proof: First we wish to show that if block Q of flowchart (1) is

entered by the traveler, with storage cell X containing

data structure A, and the list storage facility V containing

the sequence of elements a, then the traveler will eventually

arrive at block (Q with the value of f(A) in X, and with

a /Af (A)> in V.

This is done by induction on-the remoteness of A. 'It is

obvious that if the remoteness of A is I then with traveler

starting by entering block (of the flowchart with A in X

and a in V, the traveler will execute blocks ®, 0,)

then ® because o1 (A) must be of remoteness O, then C,

and if 1 u SIB#(A) 9 #SIBS(A) then (Dwill be next. After

(the cycle 0 O 0D 0 will be repeated. Alto-

gether, the cycle repeats #SIBS(A)=p times. Then the

traveler will proceed through (D f% and this time

-42-

continue with 0() to (.. Tracing the change in the content::

thof X and V during this journey;X contains O (A) after the it

cycle of 0QOQ Q® ; when the traveler reaches

X contains o (A), but after it contains A on arrival at
p

®. Simply tracing the blocks on travelers path shows that
V will contain al/<f(A)> when traveler enters . Assume

that if A is of remoteness < n, A is in X, a in V, and the

traveler starts by entering Q, the traveler will eventually
arrive at block with f(A) in X and a//<f(A)> in V.

Consider then that A is of remoteness n, A is in X; a in

* V, and the trave.ler enters 0 . Since X is not TErMINAL, the

traveler goes to @. As a result. the traveler enters 0
again with ol(Aj in X, and a still in V. Thus by the

inductive hypothesis, the traveler will eventually enter

with ol(A) in X and a//<f(A)> in V. Next since ol(A)

cannot = d or the uniform inverse would not exist, the

traveler will pass through ® back to. ®. Assumuing that

I a SIBF(X) * #SIBS(X) where X = ol(A), then the traveler

passes through ® to @ where X is made = to the.

NEXT.SIB(oI(A)) or o2 (A). When now the traveler re-enters

then X is o2 (A) and V is a//<f(ol(A))>. Again the

traveler passes through (and by the inductive hypotheses

eventually to @ with X containing o2 (A) and V now contain-

ing *//f(ol(A)),f(o 2 (A))>. This ,process continues until

if p-#SIBS(A) traveler arrives at (with X containing

o (A) and V containing:

6.43.

*I

G11Cf (0o (A)), f (o 2 (A))$.. fCO p. 1 (A))>•

Then by the inductive hypothesis the traveler eventually

arrives at ® with X containing o (A) and V containing:
p

kf~o CA)) , f~o2 CA)) , ... , (A))>

The traveler then passes through ® entering ®, and be-

cause SIB#(op(A)) = p = #SIBS(op(A)) the traveler will then

enter®, then) as a result of which V now contains:

a//Iw(f(oj(A)), ... fCop,(A)))> = r/<f (A)>

Then the traveler goes through @ finally arriving at

with V still containing a//<f(A)>

PARENT(o CA)) = A.

Thus the :First point to be made is proven.

Now let the traveler start by entering block , thus

setting V to A and X to d c D. The traveler then enters

and by the First point made above, the traveler will eventually

arrive at r with V = //<ff(d)> = f(d) and X = d. Then at

g the test will succeed leaving the traveler at FINI with

V = f(d).

The proof covers the case that d is of remoteness > 1.

For remoteness of d = 0, a direct trace of the flowchart will

-verify its adequacy.

Theorem 2.S: If f c F and f has a uniform inverse and w in the definition

of f is associative then f is imolemented by flowchart 2.

(figure 2;2)

II

.. ' --- 44- -

. 9A

* Proof: The proof is very similar to that of Theorem 2.2. The

* - difference is in the value that will be in V when the

traveler reaches ®.

First we need to show that if A of remoteness n, block

of flowchart 2 is entered with A in X and B in.V then r

eventually the traveler arrives at (with A still in

X and-with V cofttaining

w[....w[w[Bf(o (A))],fo (2CA))], ... , f(om (A))] =

by associativity

w[Bw[f(ol (A)), ... , f(om(A) (A)))] = w[Bf(A)]

Again we use induction. The case when A is of remoteness 1

is easily verifies by tracing the flowchart through the

sequence of blocks <D O (D @ 0 >m(A)-l times and

then through GDG0Q) G (D®*
lw

Assume First is correct if the remoteness of A is < n. Now

let A be of remoteness n; X is A,V is B and the traveler is Ik

at . The traveler goes to (where X becomes FIRST.KID(X) =

o(A) and the traveler returns to 0. Since o1 (A) is of

remoteness < n, the inductive hypothesis applies. Thus the I:.

traveler arrives at with X being o(A) and V - w[B,f(o(X))].

o (A) cannot be initial because of the' inverse so t e traveler

goes next to 0.if we assume now that
I a SIB#(X) * #SIBS(X) where X = o(A), the traveler wili pass

through Q and @ updating X to contain o2 (A) and then enter

6 . By inductive hypothesis again the traveler will eventually

arrive at ® with V containing:

vlw[s.f(o (A))],f(o2 (A))]

and X containing o2 (A). Assuming without loss in generality J

that p = m(A), the traveler will eventually arrive at

sI.
_-."i " , , . , .. . " _ • : . .:

-4S-

after p repeats of the journey from) to ® with V contain-

-" ing:

W(... w [w (B, f(o (A))],f oj(A))], f(o (A))] -
p

w[B,w[f(o (A)), ... , f(o (A))]]
p

by associativity and = w[B,f(A)] by definition of f(A).

X contains o p(A) at this time. So the traveler goes to 0
where the decision is yes; (3 is next with X becoming

its PARENT,i.e. PARENT(op(A)) = A. Thus the traveler

arrives at @ again with X containing A, V still containing

w[Bf(A)]. Thus the First result is proven. Now let the

traveler start by entering @ thus setting X to d and V

to B = w . Next the traveler enters (D with these values

in X and V and so by the First result the traveler will

eventually arrive at 0 with X containing d and V containing

w [Owf(d)] = f(d) by definition of

As before the proof is for d c D having remoteness > 1 and

is verified to include remoteness 0 by tracing flowchart 2

explicitly for this case,

The hecessity for a 'uniform inverse' as opposed to a simple inverse

in developing these theorems results from the fact that in the standard

gorm of recursive definition considered here the number of appearances of

the defined function symbol f is determined (=m(X)) by X the argument of f,

This dependence was incorporated so that many common problems could be

naturally expressed in that form.

We have not discussed the higher order recursive definitions having

* nesting on the right - largely because in our experience such definitions

*rarely occurred in practice. Suoh definitions are considered in [6]. The

techniques given in [Q in combination with those here can be used to extend

the above results to higher order recursivo definitions not covered in [6).

"46-

3. A CLASS OF FUNCTIONS IN F WITH TIME EFFICIENT IMPLEMENTATIONS

Types of Time Efficient Implementations--Patterned Comparability

In the Introduction the existence of a time-efficient implementation

of a function f£ F was traced to the fact that in the standard

evaluation of amongst the many sub-computations necessary, there are

pairs which are virtually identical. In the implementation then it be-

comes possible to use the remembered result of computing one member of

such a pair in computing the second member. Thus the time cost of reconvuta-

tion is minimized. Examples illustrating this general assertion are given below.

Consider a function f c F for which the following propefties hold.

(.1) There is a relation called dominance between some pairs of'members

* of Wf (a the range of w in the definition of f) such that:

* (2) Whenever two members of Wf with one dominating the other both appear

as arguments of a w function in a given order(s), then the dominated

argument may be removed--(the non-dominated one possibly requiring con-

current simple alteration) and the w function will still give the same result.

Properties C1) and C2) alone are sometimes sufficient to

* allow significant time saving as when w is a logical 'and' function

with the arguments 0 or 1. If any argument of w is known to be 0 then

the other arguments need not be computed. However. the existence of (1)

and .(2).is not always sufficient to guarantee a time-saving. But

if the following property also holds, time saving can be guaranteed:

(3) For a substantial set of pairs x and y such that x = o1 (d), and y = oj(d)where

and J are sequences applicable to the same initial data structure d, it is

simple to determine whether f(x) dominates f(y). (A pair of data structures

- x and y c for which such a determination is possible are called

comparable.)

4 o

- - . ; : i - . .-. -:_ *, • . '. . a **.". .. " . . .

0-47"

Consider the following example of the existence of all three of these above

properties. If w is a minimum, and Wf is the set of positive integers then

we can define x dominates y to mean that x is less than y and Cl) and (2)

viii be satisfied. This in itself is not enough to guarantee any time saving.

Lot a. and 0, be partial paths in an integer weighted digraph G and let

fC,,c(c))/f(8,d(O)) be the cost of a path from node A to node B in starting

with the partial path a/$ whose cost is itself c(a)/c(S). Then with the

current definition of dominance one can determine whether f(a,c(O)) dominates

f(B,c(O)) whenever a and 8 end on the same node. If they do, f(a,c(a))

dominates f(O,c(O)) if c() a c(O) otherwise f(gc(@)) dominates f(a,c(a)).

Thus (3) is satisfied and it is easy to see that dominated functions need

"not be computed.

In fact whenever the three properties above hold, time-savings are

possible. To see this requires a brief review of implementation techniques

for f c F. The standard depth first or breadth first implementations of a

recursive definition f e F is a simulation of the substitution process

described in Section 2. Initially the substitution starts with the 'evalua-

tion form' f(d), d c Df" If T(d) is not true this is replaced by the 'eval-

uation form' w(f(ol(d), ... , f(Om(d)(d))). Then substitution is made for

f (o(d)) for some 1s j m(d) is made to get a next 'evaluation form'.

The process continues with subsequent substitutions for occurrences of the

form f(a). Now. if the above three conditions hold one can include in the

evaluation an examination to determine whether two appearances of f, say

f() and f(S) appearing in a subexpression, like w(f(a), ... ,f(), ...),

-1

*i

= j- - - . - . . . - . - -e
i

-.. , •' • . : ° ,. i . - r V r . -w ,

-,s--
|-.8

of an evaluation form are comparable. If they are and if f(a) dominates

((0) then f() can be eliminated from the subexpression. An entire course

of substitutions is thus eliminated.

When the three conditions above hold, it is of advantage then to in-

corporate in the implementation a means for comparing pairs of data-structures

a, and 8 in Af. The details on how this is done will depend on the details

of the definition but two broad classes can be distinguished. For a defini-

tion £ e F in which comparable data-structures arise, the pattern and frequency

of their occurrences may be highly dependent on the initial data-structure,

or alternately their occurrences may follow a fixed, predictable pattern

* largely independent of the input. In the input dependent case a facility

for testing for comparability can be incorporated. It must be able to handle

Comparisons in a general way. Many partial results will have to be saved

for comparison, even though the benefit derived from the comparison may be

small. In the patterned or systematic case the implementing algorithm can

often be tailored to take advantage of this fixed pattern--avoiding the need

for a general comparison facility.

In this section, a significant subclass of functions in F which have
o".

a patterned structure of compaiable data-structures will be studied. This

subclass is called the 'explicit history' class. Corresponding to each

aember of this class is a set of equations whose solution is equivalent to

the evaluation of the corresponding function! If this set.- of equations

has the property of 'open-loop consistency' it can be solved by a process

similar to Gaussian Elimination. This in turn will immediately provide a

Problems whose solution can be obtained by effectively solving a set of
equations with 'linear' like properties form a significant class. Such
a class is carefully considered in (I]. Here we are interested in how
recursive definition formulations to these and even some 'non-linear'
problems are related to their set of equations formulation.

4r

. :

-49-

relatively efficient algorithm for implementation of such functions in F.

The definition of 'open-loop consistency', a property of equation sets,

will be developed first then that of the explicit history function, and then

in Theorem 3.1 their relation will be established,

Throughout the subsequent development we will make extensive use of

notation similar to that introduced in'section 2 for indicating replacements

of components of a vector. Here we will extend that notation to describe

replacement of a component of any exnression. So if e is an expression,

1 2 a variable which may appear in e and el, another expression then

e2" elj means the result of replacing each.occurrence of X2 in the ex-

pression e by the expression e1. The notation can be further extended to

cover sets of such substitutions;for example, e[Xk - ek;k £ N) is the

" result of substituting the expression eI for all occurrences of X1' e2

for all occurrences of X2, ... , and en for all occurrences of Xn in e.

Also the notation allows composition; so e[X2 + elCXi 4- 0) is the result

of first replacing each X in e by el and then every XI in the result by 0.

Note that the expression e X 4- e1 [X1 40 [1 I - 03 as well as the expression

.e[XI 0]1X2 * el[X1 03) gives the same result as that of the notation in

the previous sentence. Such reorderings yielding the same result will be

used in the proof of Theorem 3.1.

Open-Loop Consistency and Explicit History DefinitionsI

Equation Sets

Vn is a set of functions. If w C W then w is defined on 0 arguments,

1 argument, ... * n arguments. Each argument is drawn from a set S. F

e~o .. .Q, a

-SO- L

The range of each w is also S. S contains a 0 element with the pro-

perty that w(XI, ... ,XclXcXc+ln ... ,Xn) = w(XI, ... oXc.lXc~l, .. ,n)

if X = 0,

n (Wn) is a set of equations involving n functions from Wn (wi, D Won)

and the variables X ... ,Xn

E (VN) contains a subset called the basis subset.anU

The basis of En(Wn) = (x* = w.(X.l, ... ,X.)jj c N, Ji c N,
S w l 3M ik > iifi

In addition, E CWn) satisfies the closure conditions that:

Cl: If X. e is in E M) then so is X eXk OJfor any Xkin e.
3 nf n3X

* and:.
C2c If for any given jan k e N,X e and k e2 are each members

of E nthen so is X 3 l k

E n(C) consists only of those equations in the basis together with thosen a

contructable from C1 and C2.

From here. on we use En to stand for EnNn)-

Open-Loop Consistent Equation Sets

Let Q a X = ejj e N) be a set of equations in E.

Lt Q .. = Xj= ej1SJ I c-l) U CXC = ec[Xc 4J0 U [Xj e.Ic+l s j n)

If every solution to q is also a solution to c . then Q in En

Is open-loop consistent in X . If Q of En is open-loop consistent in all

variables Xc, c c N then Q is open-loop consistent in En If every subset

in E. of the form of q is open-loop consistent'* then En is open-loop consistent.

-' -- "

.- l. The significance of open-loop consistency follows from the following.

On the one haM,. if the basis set of E is:

{X- em i e N)

and En is open-loop consistent then a process anal'ogous to Gaussian Elimin-

ation will be adequate to solve the basis equations for D(iji e N). This

process is based on the alternate application of two operations applied to

a set of equations which is initially the ,asis of En , The first operation

Is used to remove the recursive appearance in an equation of the form

Xj -a e of any occurrence of X. in e. This is made possible if the set of

equations is Open-Loop Consistent, by setting all occurrences of X. in e.
3 3

to 0. (Open-loop consistency is a specialization of a considerably more

general property which would allow removal of such recursive appearances,

which we hope to develop at a future time.) This first operation is only

necessary if there is such a recursive appearance to be removed in one or

more equations of the set. The second operation uses an equation of the

form X - e! with X. appearrances removed from e! to
j 3 3 3

substitute for all appearrances of X. on the -ight of other equations in3
the set, thus eliminating all occurrences of X. on the right of all equations

i

in the set. The two operations can be repeated n times as needed to produce

a solution to the basis set from En. Note that every equation in the sets

that result from different steps in this process is in En so that the

en-loop consistency condition is always applicable. In any case this pro- t

coss provides a relatively efficient means of solving such a set of equations.

On the other hand the evaluation of an 'explicit history' recursive

* definition will be shown to be equivalent to the solution of a corresponding 1
' -1

I ° " "

.4 . -$2-

set of equations forming the basis of a set En if En is open-loop con-

sistent. Thus the relatively efficient solution will be applicable to

'expJicit history' definitions having this property.

Explicit History Recursive Definitions

The 'texplicit history' recursive definition will initially be given in

a form which allows the simple description of the corresponding set of equa-

tions. Later we will show other equivalent forms for such definitions.

Recalling that N = { 1,2, ... Uni let H be a vector all of whose

coMponents are in N, and no two of which are the same. H is the history

vector. H//c will be used as a shorthand for H//tc> = the concatenation

of <c> with vector H. If V is a vector, {V) is the set of components of

V. w. e Wna set of functions defined earlier. c c N c c if i >

An 'explicit history' recursive definition has the form:

(X 0 if c {(H)

def 3.1 1 W (XH/wc $//c) if c c N-{ H)
c c "

initially H = A, c c N

If f is an explicit history recursive definition then the correspond-

iug set of equations designated E (f) is built on the following basis:

def 3.1.1'{Xc =W X ... Xcm ec1C N)
CS

Relation of Open-loop Consistent Equation Sets and Explicit History Definitions

Theorem 3.1: If f is an explicit history recursive definition and E (n)

its corresponding equation set is open-loop consistent then

the set of values { Xlc e N) as determined by evaluating f,

will satisfy the basis of E (f) with X ='X for all c c N.
p1 C

Proof: A partly inductive argument will be used.

First we define two kinds of expressions Z!. and Y.

IfNr (a)=)

dD) Z. e. = the right side of the equation X. = e. in En

If j e a:

d') ZG y".3j =

If j e N-fa':

dl) Z w an expression giving X. as a composition of functions

in Vn in which only the variable Xk with k c [a) appear

d2) Y*_ L x k {a)]2 3 k

Z then gives X as an expression involving nc variables and thusgie 3ja

as a composition of functions from n with no arguments. w. 0

-mst be defined as a constant and so the expression Z. must be

evaluated as a constant. By definition of Y.:

Yi z~
Note that by definition when N-ta) = (j) the equation x = za is

in E., thus since En is open-loop consistent so is X. = Y!Cby d2 above).

(H) Assume that for a = any sequence of k 4 n integers taken from

N with no two equal and c £ N-Ca) that:

4 ~~~~X Z /<>*.[/<

are each true cquations in En

4.

-54.

Then for c e N:

X -e is in En by def 3.1.1

XC ecCX 4 Z9/:tjcN-(a/<c>)] is in E by definition of

E~and (H)

X- - e EX j ZMOW': :jcN-u(a/c>})rX c- 0) is in E because E is

open-loop consistent and, Z! is in En by (H).

XC = ecCXj Z EX0c>Ex * OJ:jcN- al/<c>Ij CX - 0] is in En byX1 Cc n

reordering and substitution.

E xc = 4-0 :jN- (4)] is in E by definition d')
. . j n 2n

by which Z. = 0 when j e (dl/<c>).

So if Za, j e N-(} is defined as:

Z"a8 x Uet .Z.ll [X>-+c 0]:jcN-{a*13jX 4 0)C C j 0
then X€ = Z is true and is in E for c z N-fal and by definition

C c
of Yc and d Xa =Y for c N- (a}. In fact we have that:

C 2 c c

C c
4-•Z:X O :kc~ca1) by d2

a . Za//C>Ex 0:jcN-)]JXk -- O:kc (a)]by reordering
Sec j -C k

Y* Ex 4X z a/l<C>[Xk O:kc (al/<c>)):jcN- (0}]

C 3 3

or since by d1 :

[X . y*l<C>:jcNj if c c N-a

These two relations give the recursive definition we seek.

The recursive definition, def 3.1, is not, as written, in the form

S--. required for a member of F. However, by simple transformations a definition

which is a member of F can be generated.

Let f(H,c) =X and make the subscript of w an argument of a modificd

w function.

f(H,c) =0 Ifc C Ii)

f lH,C) = wCc,f(H/Ic,c, ... ,fHflc,c)) if.c N N-(H}

in l H

Still one more small change is needed to create a definition in F. The

first argument c of w is not in the required form, It is put in the

correct form by adding another argument, s, which is either 0 or 1.

f(H,co) - 0 if c e H

fCHcs) = c Ifs 1 -.

def 3.1b f(Hcs) = w(f(H,cl),f(H//c,c,1 0), f (f//ccn,0))

if c C N-fH)

initially H = A, c C N9 s * 0

Theorem 3.1 is the Main Result of this section. Its application will

be illustrated by an example. In order, however, to make this result generally

applicable, it would be necessary to further elucidate two questions concerning

the Set of equations which correspond to a given 'explicit history' definition.

K

L

• ", . , -, in inn i I i ' ' • " - - , - . . . : . . .

-56-

The first of these is: do sets of equations which are open-loop consistent

arise with significant frequency in practice. The second question arises

after one has an open-loop consistent set at which-point one would like to

know if the solution is unique. This would guarantee that evaluation of

the recursive definition would give the same result as would any procedure

for solving the corresponding equation set. If the solution is not unique

it would be well to know to which solutions of the equation set, obtained

by what procedure, the evaluation of the corresponding recursive definition

(which is always unique) is equivalent. These two questions are not considered

further here. Now. however, we note some very special

cases in which the answers to these questions are evident.

We say En has no loop if the equations in the basis of n

have the property that ei contains no occurrence of any variable Xi-k, k 0.

If this is the case then it is easy to see that no equation in En can be

recursive - i.e. have the variable appearring on the left of the equation

also occur on the right. From this it follows directly that E n is open-

loop consistent. Furthermore, it is easy to show that in this case the

solutions are unique.

Lema 3,1: If the basis of E has no loops tht*' Pl jnien-4loop! consistent

and its solution is unique.

.Examples of Applications of Theorem 3.1

The maximum and minimum path problems, each defined on a directed

graph will be used to illustrate the application of Theorem 3.1,

[,'I.

-"7-
o

Ts following graph definition will be used:

G is a directed graph with a set of nodes N £1#2# ... ,n)

If C is a node in G then: =

C1 is the ith neighbor of c(the ith node reachable from c by

traversing a single directed branch

ct is the last neighbor of c

V(cl) is the weight of the branch from c to c1 . It is always > 0.

If X is a number then:

a.UXX 1 , .. X) * the maximum of Xi e N

X.Anl, X.. *X) u the minimum of 1j, i c N

Apath h =<hl, ... h.3, in G is a sequence of nodes in G such

that there is a branch -hihi> in G for each p-1 S i a 1. The

weight of path i is the sum of the weights of the branches

4. .1 f .

Interpret MAW(hc)* to be = the maximum weight loopless path starting

with the path h/<c> and ending on node t. Since continuation of such a

path must be by passage to some neighbor, c , of c which cannot be in h//<c>

if there are to be no loops we have:

Ex. 3.1 ?4AW(h,c) = 0 if c c Ch} i or c=t

?4AW(h,c) - maxOfCc)+W1AWCh//c.c 1), . V.. ,Ccm)+MAW(h//c,cm)

If c £ N-1h)

initially h A),c c N • the first node in path

and analogously for the minimum path we have if NIIWCh,c) is the minimum

weight of all paths starting with path k I//<c> and ending on node t. then its

"cursive definition can be given by the equations:

Strictly this s MAWt(h,c) since the path's end on t.

°I

ft 3.2 14IW(h,c) -0 if ec (h) or c = t

MW(h,c) - min(W(c)+MIW(hIc ,c 1), ... ,W(c)+MWCh//c ,c a))

if £~ N-fh)

initially h =),c e N

With w(c,X1, ... ,X) - max/min(W(c)+Xl, ... ,W(c)+XM), both examples

are in the form of definition. 3. la and thus are equivalent to the recursive

definition in theorem 3.1. Therefore, in both cases we may speak of the

corresponding set of equations def 3.1.1, Consider the equations in the basis

ofEf- (AW) corresponding to ex 3.1 first:

-x 3.11 X0 maxC Ccl)+Xc.,WCc 2) x , ... ••Wc)X -'~m tXc

where as noted c i is the i neighbor of node c in G. Now in general

because of the max function, En(MAW) with the above basis will -ot be

open-loop consistent. In fact if the basis of En(MAW) contains an equation

- in which the same variable appears on the right then En (MAW) is not open-

loop consistent because suppose cj - c,a 0 and:
1

(a) u€ - max (ac l + X I " s s ,a s a+X

then if E n AW) was open-loop consistent Xc would also satisfy:

(b) X a maxCac +X , ,,,a _.a *X . a c l + X c c+X
C 5 j- cj+ 1 a CM CA

but it is easy to see by substitution for Xc; Xc using Cb) in (a) that
c

this cannot be.

However, if the graph G does not have any loops, then E (MAW) is

open-loop consistent, since then the conditions of lemma 3.1 are met. So

if G is loopless, theorem 3.1 can be applied and solutions to the equations

of ex 3. LI will be equivalent to an evaluation of the recursive definition in

ex 3, The number of equations in ex 3,l I. is equal to the number of nodes in the

O. '.

oI.

:4".-59- U

graph G. No variable appears on both the left and right sides of an

equation and cannot do so as the result of any substitutions

because G has no loops. One of the equations in the set, say

X e, will have only a constant on its right side, i.e. en a . Thisa n n

constant may be substituted for 11 occurrences of X on the right of the

other equations. As a result, a second equation, say Xn I = e n 4Xn 4- an] = an_1

will have only a constant on its right. This process continues until all

resultant equations up to the one with the variable whose value is sought

thhave only a constant on their right, The i substitution involves sub-

stituting for at most i variables, I additions and taking the maximum over

I numbers, or the order of i steps, i ranges from 1 to the number of

equations at most. So after the equations are set up, the solution

.algorithm is has a complexity of the order of n2

In ex 3.2, the set of equations En(MIW)'is open-loop consistent.

This is easily seen for if cj = csa > 0 and:

(a) Xc minCai X(, , . ,ac +Xc,., ,aC+X c)
J I'

and consider:

(b) X¢ = min~ac +Xcl... (acj +XcjA .aa lXc. 1l a.. *ac+Xc)

substituting with (b) in the right of (a) we get:

2[= min~a cI X c, .V minCa CI +XC I a. ,C . X c.1 ,a c j +Xc C +

a X) ,a +X

which because of the properties of min:
X a min(a +X€ , ,a *Xa ,a +X a cm)Cj~ cIC -l Cj+l cjl+l* "", C

c ~ ~~ -I j, ~ +~ ,.D Ci

The same equation would result from substituting for Xc on the left of (a)

with the right of (b). Thus (b) satisfies (a)'verifying the claimed

4

IT -60-

open-loop consistency. Not only is E (MIW) open-loop consistent, but the,

basis of En (MIW) can be shown to have a unique solution.

Thus a substituional solution to this set of equations will give a

solution to the corresponding recursive definition. This solution has a

3.* time complexity 1 n , in part because after each substitution step the terms

can be gathered in this case so they will again be a simple-min of constants

Sed with variables, in the same form as the initial basis equations. Fur-

thermore in this case, again - primarily because of the properties of the

min function, the complexity of the gaussian elimination solution can be re-

duced to order n2 by adopting the appropriate order of substitution. The r

appropriate order is given by the following considerations.

First the X t equation will be:

X I 0 , because t is by definition-the last node on a path

The right side is a constant. So substitute throughout the other equations

right sides this constant value for Xt . In these other n-1 equations carry

out the + and min operations with the substituted value. That will leave

the right side of these equations again in the form of a min of terms. All

except one of these terms being a constant + 'ed with a variable. The

exceptional term being simply a constant. The variable Xt will not appear

an the right side of ahy equation. The key step now is to. examine the n-l

equations for the one whose constant term is the smallest,

Say this is:

Xl main(ei+ Xj1 o c + X dj)

where c and d are constants, Then that equation can be sjmplr replaced

by:

X ad
:... j nd

[.61-

That is, all the variables can be removed from the right side of this

equation. Roughly this is justified because, since d. is the smallest constant

in the set of equations and consideration of-the substitutional method of

solution indicates that no variable can ultimately be assigned a lower value.

Next in the n-2 equations (excepting the X and X equations which are solved)

d is substituted for all. appearances of X.. Terms are then gathered in the

'remaining n-2 equations. Again the one of those having the smallest constant

is chosen and all its variable terms removed, - and so forth thus providing

the solution for another variable. The process is repeated until the

variable whose value is sought becomes the one having the smallest constants

on the right, of all remaining unsolved equations, That is the value of

the.variable.

In this method of solution one is always substituting a constant thus

greatly reducing the effort necessary to simplify the right sides of

equations. It is essentially DykstraPs algorithm and its complexity of

2
order n.

Some Simple Equivalences

Throughout this paper we have presented recursive definitions purported

to be 'natural'.. In fact, however, for any given algorithm design problem

one may develop a number of recursive definitions each being equally en-

titled to being called natural. The differences in these equally natural

descriptions may range from very small details to deeper differences

representing radically different points of view. We have seen some small

adjustments of detail in getting -equivalent formulations of the recursive

definition of theorem 3.1. peeper differences are represented by the

-62-

alternate formulations for the recursive definition of the set of binary

numbers given in the introduction, The path examples of the previous pages

were designed to look natural - but also to fit the theorem formulation

m many other formulations - which did not quite fit the theorem formul-

ation could have been represented as natural. There is no deception here;

they are all natural. There are many equivalent ways of defining the same

function. A number of simple equivalences will now be developed which

account for some common alternatives. Possession of such equivalences allow

one to move easily from definition to definition. As we have seen, some

definitions are closer to good algorithms than others. Some definitions,

unary ones, can even be considered' as specifying algorithms. In fact,

all the theorems given thus far can be viewed as equivalences which allow

*one to move from an initial definition to a better one. The equivalences

given now differ only in being somewhat simpler than those developed pre-

viously, and seeming to.have more to do with initial formulation.

The equivalences to be given all involve trade-offs between

the complexity of the w and o-functions, or between the complexity within

the argument of the function being defined(say f) and the complexity outside

that argument. If the structure of the argument of f is considered the

. .data-structure, and the way in which f enters as an argument.Cof w) in the

recursive definition is called the control structure, then'these equivalences

give trade-offs between data and control structures.

The significance of the following two theorems can probably be better

appreciated if the example following the theorems are scanned before the

theorems and proofs are read.

*6t

6 .,

I I mI

.1"

-63-

" Theorem 3.2: If operations • and + have the properties:

.5. .P----!XZ " X2 -- X3) =-I " X2) - X3

n n.x(x) r (X . x)

and If:

agX) - q(X) if T(X)

initially X e D

adjo
* 42)1 ffqX) a y qCX) if T(X)

2- 2f (yX)= emC y t (X)9o CX)) if rCX)

Linitially X c D.

then for each X c A

f(yx) = y gCX)

Proof: We simply show that y' gCX) with gCX) as defined in d satisfies
)I

or makes true the relations of d2 when appropriately substituted

for f(yX) in d2.

Thus if X is of remoteness 0, d2 tdefines f&y,X) so that sub-

stituting:

y Z g(X) -y q(X)

y ' q(X) = y q(X) since gCX) - qCX) when X is of remote-

uess 0 by.d 1

For X having remoteness > 0, d2-2 defines f(. X). Substitute

y ' 9(X) for f(y * X) throughout that equation to determine if it

_ is thus satisfied, Note that if X C A then certainly oiCX)

is also a member of ,

- -

X) = 1 (Cy ti(X)) g(oi(X))]

* *(td)M g(o CX)))J by p1

-. ,1-'

my IcI Et Q ' g CooCX)] by VZ

S •x)= y gC) by d

A

Our first example of the application of theorem 3.2 requires some

definitions. Let B = (b1, ... ,b m} and A = [al, ... anl, both be sets

whose components are vectors:

BQA - (b/a,, ... bl/a%) U [b2, ,,,II ,b lA

With this definition of @the following property clearly holds for A,B

and C each sets of vectors:

P1 CQ®(B(A) =(C®DB))(A..

Also if u is the usual union operation then if each X. i c N, as well as

A is a set of vectors:

p2 X®(CXI U X2 U ... U X) CXQ)X 1) U (X()X 2) U ... V (X®Xn)

Now the set of all n bit binary numbers (vectors) = B(n) is the set of

%£ all n-1 bit binary numbers, Ben-l), with a 0 attached in front of each

member of the set, (40>})BCn-1), together with (u) B(n-1). with -a 1

attached in front of each member of the set, [4l>})®BCn-l).

More formally the definition is:

B(n) = [I) if n -0

c. () (-co>)(®scn-)) u (kl,;)j®Bcn-l)) if n 0

(initially n - the number of bits of the binary number

" - SIce(and U satisfy p1 and p2, it follows by theorem 3,2 that

.A

-65-

A

-'(y,n) given in the following definition is a member of Fand is related

to. the definition above in that B'Cy,n) yqB(n).

B(yn) y () y n 0

(2) jB'(y,n) =B9y(c40>n-l) U B'Cy(Z) (41>),n-1)) if n > 0

initially n = the number of bits of the binary number, y =

Note that (2) is essentially the definition given in the Introduction

for binary numbers (ex 1.1).

As a second example consider the application of this theorem to the previous

path examples. Thus equivalent to the definition of ex 3.1 we have by theorem

3.2 since max(corresponding to +) and +(corresponding to .) have the

appropriate properties the following function IAWtthe pair 4hc> corresponds

to XV l(c 1) corresponds to ti(X), ch//c c> corresponds to o.CX).):

"?AN'(y,h,c) y+0 Ifc c (hi or c =t

MAW'(y,h,c) = max(f(y+WCc) , h//c.c l) , .. , :f(y+W(cm) ,h//ccm))

if c C N-[h

inutially h = l,c c N,y = 0

The next equivalence allows the replacement of a vector in the data-

structure by an individual component at the expense of a more complex

control structure.

Definitions

a ts a sequence of symbols in the alphabet A'

If a c A. Ri(a) for i !_ m(a) is a sequence of symbols in a. There is

a subset of A, say A', such that for each a' £ 'A', m(a') -.1, and Rl(a') A A.

This is necessary if the definition of f in the following theorem is to be

legitimate.

I
I~I-

V.

- '- J-

-66-

Theorem 3.3: Given the binary operations • and + with the following properties:
:::: p (, (: x2 x • x x * (x2 . x

p:(1 2) 3 1 X2 x 3)

p2: (l I) Z z- r(x i •Z)

p3: 0. X X O X

and given the definition:

f (M) - 0 ifsua

dl f &I = _ a r.1) f c, 4 . Cal]) if aE initially a = <a> where a e A

then:

factl: f(a) = f(a) • f~ax) if j e N
1 :j j1~

and further given the definition:

g(a) =0 if a c A'

d2 g(a) =a12) ra) - g.. gR n.

4W ifa A'

initially a c A

then-

fact2: for each a e Al .f C<a> (l

Proof: First we show that:

f(s) a f (l " f(caj.l:n)

(H) Assume since a[a i . Ri(Ca,) is of lesser remoteness than a that

factl is true, i.e.:

f(aEai * Ri(al) 1) = f(Ri(a)) f(a2:n)

Thus;

f(a)) (ri Ca) (f (R a1) ,-Ca2:)))

il ((r(Cal) I fRi(Cal))) f(c2:n)) by p1

a (Ead11 r1 (a 1) ' fCRiCal))) ' f(a2:n) by p2

- f(a l) f(a z :n)

K * si J P * < iJ+l1 , i ,,, ,n; Si;i j i

"K" -67-

The basis for this induction is given next.

If a is of remoteness 1 thent a[a1 Ri(a)] must be of remoteness O,must =

Sol; f (a) EM ~mCL ~(1
66iu-)i (l f Ca*1tai4 Ri(a1))

, ,I rC a,) f Cw

S m r Ca) since f(l) = 0 by d1 and p3

Since aa 4- RCa,)] = A a must = <a'> with a' e A'

Therefore if a is of remoteness 1 then a. = (a"*, a - a',

a24n - A, and:

f Cal fC<a'>) = E(al' rCCal)

* Q~a riCal , f(C) by pl

f f(Ca >) f Ca2;n)

0111 Now assume that for lj 4m that:

f Cal = fCl..)) f fCaj+l.;n) this has already been shown

then" true whenj= 1

.nf(a 1) ")

j+1 j4'2;n

so:

f(a) f a1;J) (f(caj+l) f Cj+2n)) by assumption (HI)

CfC*I 14j) ' fCaj+l)) - fCaj+2]n)) by p2

•f ,a f(aj+2. by)-

*Ts completes the proof of facti. factl may be used to establish

fact2, By d if a i A':

f(a' (a r (~a) fC(R Ca))

U(ina)3)

• -v68.-

*•and if a c A':

.Jiote that these last two equations for f(a>) are -almost identical

:to the equations for g(a) in d2. A simple inductive argument

based on this near identity shows that:

* g(a)

X.xample of Application of Theorem 3.2

This example involves a problem which together with its 'good' solution

.is discussed in (3]. We will see how one could get from an initial formul-

,ation of a recursive solution to this problem to the 'good' algorithm of [

-via theorem 3,2. The problem involves the multiplication of a set of

:Jatrces; M1 x x .,. n. The dimensions of each matrix is given. The

tdimensions of Mi are (rI,c i). The number of inul.tiplications necessary to

-Uultiply M1 by M. is then r _ (c i = r) xcj. The multiplication

-M4 x M2 x f.. x Mn may be associated in any way to get the same answer; so

x M2) x M3 = M, x (M2 x M3) for example; but with differing numbers

* of multiplications required. . The problem is. to design an algorithm to find

e ssociation which will give the minimum number of multiplications. In

--fact, we will design an algorithm to -find that minimum number of multipli-

*-ations - -hich is the heart of - he-matter. The initial approach is to

--somehow enumerate all ways of associating M1 _x .. , x Mn -and the corresponding

-costs in number of multiplications and-then to choose the association giving

. 4 -4h. minimum of these. Different associations are equivalent to different

vays in which the expression M1 x ... x Mn can be parenthesized. The

2ast matrix multiplication in any such association must involve one of the

following alternatives:

.4

-.. ' " "
~
-
,

- ~ "~"-- z W. --.-..

-69-

with the result of 2 ... M) with a cost of
N1 rethult 1 .os o

x x (c = r2) x c + the cost (=) of doing (?IMI) + the cost

of doing (M2 x ... x Mn) or

The result of (M1 x 142) with the result of (M3 x .,. x Mn)

with a cost of r1 x Cc2 = r.) x cn + the cost of doing (M1 x M2)

+ the cost of doing CM3 x ... x.M) or ,.,

The result of M Ix ,, .x ?4nll with M. with a cost of

r I x (cnI arn) x cn +the cost of doing (M x ... x Mn)

the cost (=0) of doing CMnMn).

If a il9 J1 >,<i2 ,J2>, ... ,ni and f (a) = the cost of doing

(Hi x ... x M.) + the cost o-idoing Ci2 x ... x t.) + +.. * the cost
I J2

: .. of doing CM. x ... x M then:

I On in

"f ul .u 0 if. 1f=f

fc fca~a I 4-A if aj A, i

f(ca) = MinCCr i x ci x Cn) + f(a [al 4- <il,il>,<i 1 +1,Jl >3 ,

(r x C 1 x c + f(a[a I <ilJl i ,Jl>igJ)

initially a=(<l,n>)

Let a <iJ>'in which ij £ N and j a i. If m(a) 1and R (a)

when i jand me(a) = j - i and Rk(a) = <i,i.k-l>,<i+k,j> When i i

then the above recursive definition can be rewritten:

f(a) 0 if u*

fCs) I T, CCri x c i A-1 x c) f (Oa 1C 1 RkCal)) if a # A

k-l to ma Il
": - ~ ~~nitially a" ,ln>'i

Means remove first component of a

-70-

Now this definition fits d1) of theoret 3.3 with being addition and E

being Min. These operations have the appropri'ate properties so applying

the theorem we get the following definition in which we have resubstituted

for RjCc I) being equivalent to the previous definition, with a <i,j>,

* i.J€ N and j > i.

g (a) =0 if i j

g(a)= (Cr. x c. x c.) + g(<i,i+k-l>) + g(<i+k,j>)
i to I m ql J if j > i

initially a = <,n>

If we replace g(<i,j>) by Xj and ri x Ci~k . x c by alJk in the

above definition then that definition amounts to a set of *n2 equations,

each equation being of the form!

=minCa jjI + X ii Xi+lj~laij2 + Xi+, ,

This set of equationslike that for maximum path in a graph with no loops,

forms the basis of a set En that is open-loop consistent. The reason

"is that no eauation in the equatinn set E will have the some

variable on both sides of the equation. This is because in the basis

euations when Xj appears on the left and Xkp appears on the right of

an equation j-i > k-p, and so the same variable cannot appear on the right

as on the left of any equation in En since this property will be preserved

even after substitution.

A process analogous to that.described for maximun path can be used.

The values of X j with i = j is known, By substituting these values, theii"
solution of all X with J-I - 1 can be found, In general Xij with j-i = k

4 dii k 1 3
- can be determined from the solutions for Xij, J1-i = k~l

t II:

Vntil Xln is found, This process has a complexity of n
5

*. Conclusions;

The study of the relati.on of recursive definitions to their 'good!

iMplementation is a place in which many important concepts and results,

developed in diverse regions of computer science, seem to come together.

One has here a natural way of classifying algorithms according to properties

of their recursive def'nitions which cuts across relatively superficial

classifications according to applications areas. The strong analogy between

recursive definitions and differential equations on the one hand and 'good

algorithms' and closed Cor otherwise good) solutions on the other hand,

supports the expectations that this study is a place to bring it all

together, . .-.--

.

I..

4"

I ~
4 . - - . ' - - . - - . . " " . ", . : - .- - - - - : . _ •

* References:

1 1. AhoiHopcroft, Ullman; The Design and Analysis of Computer Algorithms;

Addison-Wesley, 1975; pp 195,222

2. Darlington, J. and Burstall, R.M.; A System Which Automatically

Improves Programs; Proceedings Third International Joint Conference

on Artificial Intelligence; Stanford, California, 1973; pp 479-485
1W

3.. Darlington, J. and Burstall, R.M.; A Transformation System for

Developing Recursive Programs; JACM; January, 1976

4. Nillson, N.; Problem Solving Methods in Artificial Intelligence;

McGraw-Hill; 1971

.S Strong, H.R.; Translating Recursive Equations Into Flow Charts; Journal

of Computer System Sciences; 1971; pp 254-285

6, Strong, H,R, and Walker, S.A.; Characterization of.Flowchartable

R ecursions; Journal of Computer System Sciences; Vol 7. 14;

*August, 1973; pp 407,447

7. Paull, M.C.; Formulation and Manipulation of Enumeration Based Algorithms;

. 'Research Report SOSAP-TR-4; December, 1973

8. Paull, M.C.; Properties Which Allow Optimizing the Implementation of

Recursive Definitions and Notes on Searching for Some Such Properties;

* Research Report SOSAP-TM-S; September, 1974

-0o

* -. "... -i-."

!U-

Appendix I

Summary of Frequently used Notation

If P is a predicate the P means not P.

Nis the set of all positive integers = (1,2,)

N is the finite set of integers from 1 to n = {1,...,n)

If A and B are sets

Au B is set union

A A B is set intersection

X is the complement of A

A-B-.AA

1A1 = the number of elements in A

<aI, ... , an is an ordered set or vector with components

a: i c N and a represents the subvector caijai+l, ... a.>; ai:i ,a.>

If A and B are ordered sets - <a,, ..., a> and <b,, ... , bn> respectively

A// B <al, ... , a, bl, ., bn,

(A) is the set of all components in A

If E, x and y are each an expression, i.e. a string or ordered set of

symbols from a given alphabet, usually satisfying some constraints as to

form, then

E[x -y] is the expression that results when each occurrence of x is

replaced by y in E.

The notation is extended to allow the specification of a number of

replacements E[x y, Z + w] is the expression which results when

E each x is replaced by y and each Z by w in E.

"'I

I'-i " ~-i- -.. .. '

An entire set of replacements can also be specified, i.e. if E, xj and

y" for all i c N are expressions

E'[x + yiIi c NI is the expression that results when each occurrence

of xj is replaced by yi in E for all i £ N

The notation also composes to allow specification of multiple -re-

placements, i.e.

(E[x y]) [x i Ii e N] = E'[xi yiI ie N]

where '=E [x-(y].

The notation is also extended to specify replacement of 1 component of E.

Thus if E and x are expressions and i an integer

E[Ei + x]is the result of replacing the ith symbol in E by the

*W expression x

E [Ei: i k x] is the result of replacing the sub expression of the

ith thru i+kth symbols in E with x.

A further extension allows specifying the insertion of a string between

symbols

E[E+ 4- x] = E[E(i~l) x] is the result of inserting x between the

Ith and iWls symbol of E.

- .

I°

I

SOSAP-TR- 38

May'1977

MEMORY EFFICIENT IMPLEMENTATIONS OF RECURSIVE DEFINITIONS

M. C. Paull

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was supported by the Advanced Research Projects Agency
'of the Department of Defense under Grant #DAHiClS-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

1, IWRODUCTION r

- -

T lcally there are significant differences between the initial formulation
e

.f an algorithm and its ultimate implementation. For example the minimum

path between two nodes in a weighted di-graph can be found by enumerating

all paths between the two nodes and choosing the smallest. This approach

can easily be formulated as a recursively, defined function, which may in

turn be implemented in a standard way, This is significantly different

than Dykstra's algorithm, the favored shortest path implementation. Oh

the one side, close to the problem statement, then there is an initial,

SbTly formulated, but often inefficient algorithm. On the other side,

"Itearer to the final implementation, is an efficient algorithm. The study

of the connection between these two is the subjeci of this papet.

It will be assumed that the initial formulation of an algorithm is

as a recursive definition and that this definition is in a standard form

(I o be given). The standard form was chosen because,, firstly, it is-one

o Which, in our experience, has frequently arisen naturally as an initial

2agorithm formulation. Secondly the chosen form lends itself nicely to an

overview of a variety of possible implementations of the algorithm thus,U

- fformulated. The recursive definition though sufficient to provide the value

Of the function anywhere in its domain is non-deterministic as to which of

4 a varlety of sequential implementations are to be used to determine that

Value. The varf.ety of implementations correspond to the various orders of

substitution which are equally valid in evaluating such a definition.

_ Sme orders of evaluation

Q .1

* S

--. ..

become possible only if the primitive functions which enter into the re-

cursive definition have appropriate properties. Different orders of

evaluation will result in different memory requirements. but will not cause

:" significant time differences in the resultant implementations. This

dependence of memory requirements on the order of evaluation is the main

- . subject of this paper. __•

Related Work

The work reported here is in an area of study in which there have

. been a number of significant publications. Strong has identified a

class of recursive definitions for which memory efficient implementations

(called 'flowcharts') are available. This class is defined -in terms of a

eursive scheme whose constituent primitive functions are virtually un-

restricted. If the properties of these primitive functions are restricted

somewhat, a wider class of recursive definition fo ias will yield similar memory

* .,

* .U

efficient implementations. Such restrictions are considered here because

they arise naturally in practice. So this aspect of the work can be

Considered an extension of Strong's results.

-urstall and Darlington studied properties of recursive definitions

whose existence allows efficient implementation, with one objective be-

lag the incorporation of.a search for such properties in an optimizing
(2]

Compiler. Later urstall and Darlington extended this study to consideration -'

of transformations of recursive definitions which are likely to produce.

better implementations. The spirit of our work here is largely in tune

with that of these investigators with some significant differences in

- emphasis and in the particular properties studied. Our emphasis has been

mainly on understanding the complete set of properties which allow the

transformation from an initial recursive definition to the best algorithms

-. -_ actually known and to the proof of this connection. Thus we tend to

consider a few relatively complex sets of properties and transformations as

S opposed to many simple ones. We also study mainly one form of first

order1 recursive definitions, rather than the many forms they consider.

The remainder of this introduction is devoted to a sketch of the

definitions and results.to be detailed in the body of the paper.

1 Irst-order m n.af a definition in" which the defined function symbol never
appears nested on the right.

S -

-- -.. -- - - - - - -

, . / end.x T conta nl a jum'ary of most of the notation used in the

-/ paper. (This notation is also defined on first use in the paper.)

The Standard Form

This paper concerns the implementation of recursive definitions of a

fuction f(X) in a class F in which every definition has the following

f(X) a q(X) if T(X) (terminal condition
and values)

Sf(X) a w(f(ol(X)), ... Of(ocM (X)))if T(X) (body)

[initially XCDf . . (domain of function f)

where the data structure XeDf, primitive functions w,q,oicom, and predicates

T in the definition collectively designated by the tuple <D,w,q,O,m,T> must

be constrained so as to make I a termihating a definition.

A definition is terminating " : if for each dcDf the sequence

of expressions resulting from substitution for forms f(a) (where a is any*l
expression using I which starts with f(d), d c Df, and next produces

Cf.oCd)),... f(o,(d)(d))), etc. has the properties:

(1) It is always possible to evaluate T(a) and if T(a) is false
*&

it is always possible to evaluate mi(a), and oice) for l:iCM(M)

posil aI orl m

C2) Independent of the order of substitution for the different

-"appearances of the form f(a) after the same finite number of

such substitutions a 'terminal' expression will be obtained

In which, for every appearance f(a), a is terminal (i.e. T(a) is

.true) and q (Ca) can be evaluated.

C3) The function w is defined so as to make it possible to evalu-

ate the terminal expression in any order consistent with its

parentheses structure.

The tuples <D,w,q,O,m,I> which satisfy the above constraint are

mebers of the set V. The set of definitions of form I which satisfy these

constraints constitute the recursive scheme F(V).

This form of definition often arises in practice as an initial solu-

tion to an algorithm design problem, particularly when the problem can be

viewed as requiring an enumeration or an enumeration followed by a selec-

tion (search,. The examples of recursive definitions in F(V) given below

arose from adopting such a point of view. Their structure can be

easily seen by evaluating them for some small initial values of their

arguments..

Examples:

ix. 1.1 If f(X) is to be the set of all n bit binary numbers (let N

be the set of positive integers), then:

A c (<a.n> la a string of O's and l's, n c If)

f(X) f(Can) - (a) * if n 0

f(X) f f(an) fCq.0>,n-l) U f(cifclDn-l) if r

where // is string catenation, andu set union.

X initially c(4O,n>ncN.

* Then cx. f(A,2) a f(<0,,l) u f(,cl>,) * (f(<0,O,0) u f(<0,1l,0)) u f(<l),l)

a (10024 U. f C0,l)'.0)U fC(l.l) * etc.

.. ...2

.!-' •"' '" ' ,6-
p~ . 0 ,

Ex. 1.2 If f(X) is the set of all permutations of the first n integers,

X t (,n,a>lWIcM, a is a string of positive integers)

f(X) a f(na) = Ca) if(n) 0,
w: I,

- and ifp= lal -the length of s.then .

'-f(X) - f(nca) = f(n-lia[a +n])u... u f(n-l, a[aP+ n]) if n >0

where a[ai+- n] is an inserting function; i.e.

if a = <al,.., ,a?-then ai (a. n] is the result of inserting the

integer n after component Gi in a or is <a,,...,aitna i+1 1 ... so P >.

S*Is initially e (cn, A> In}

Then ex. f(2,A) f(l,<2>) = f(0,<12>) u fC0,<21>) ({<12>1 u f(o, 21>)

": • -{<12>u (<21>}

E Ix. 1.3 f(XJ is the string of moves (each a pair of numbers <a,b> .1

meaning move a disc from pin a to pin b) necessary to optimally

solve the, now classical, Tower of Hanoi puzzle. To move n

discs initially on pin I to pin 2:

Xe {C<<x,yz>,n>j<xy,z> is a permutation of <l,2,3>,n e N)

f(C<<x,y,z>,n>) = <x,y> if'n =

1 f(<<z.yx>,n-l>.) if > 1

X is initially e {<<1,2,3>,nnN)

Algorithms to Implement Definitions in F(V) which are Efficient in Use of Memory

An 'algorithm scheme' defining a set of algorithms is defined in a manner

r analogous to that used in defining a recursive scheme like F(V). In this paper L

algorithm schemes generally will involve standard assignment and conditional

Statements using the same unspecified set of data-structures D, primitive

.• uctions w,qOm and predicate TCdesignated by the tuple .<cDwqO,m'T>)

* -- '4. .- i

used in defining the recursive scheme F(V). If we constrain the selection

of tuples to be a member of a set V, the set of algorithms thus defined

is designated S(V) and a particular algorithm c S(V), corresponding to a

Utple v e V is designated S(v). The recursive and algorithm scheme

F(V) and S(V) are equivalent iff for each v e V, F(v) is equivalent to

S(v). A recursive function definition F(v) and an algorithm S(v) are

equivalent if with domain D in v, for every d c D,. the value of f(d) as

computed with recursive definition F(v) = value of the result of running

the algorithm S(v) with d e D as its initial value.

• :-. ". .- -. . ." ..

The main purpose of this paper is to show that for a set

Via built from V by constraining the function w to be *associative'

-2
and the set of functions 0 to have an '.inverse", there is an algorithm

scheme S(V') equivalent to F(V') which is particularly efficient in its
law

use of memory. The algorithm scheme available when these conditions are

satisfied is given in figure 2.2. The algorithm scheme S(V') is given

in terms of the data-structures, primitive functions and transformations

of these primitive functions (inverse of 0 for example) which are immediate-

ly available under the assumption of the existence of an 'inverse', that

appear in the equivalent recursive scheme F(V').

For many of the recursive definitions in the class F(V'), the equi-

valent member of the class S(V') - which can be obtained mechanically from

the recursive definition is the 'good' algorithm usually used to realize

that definition. Thus corresponding to example 1.1, the algorithm ob-

tained by instantiation of that particular Dw,qpl ,m and T in S(V9)

is one in which:

2 These terms are cbfined in section 2. An inverse operation plays a similar
role in [(6]. Our 'inverse', however, is different, having been independently
developed [7,83 in combination with associativity to deline ate another class
of definition with efficient implementations. The result is in Theorem 2.2.-

. ,r- - r -' - ' - - - . . .-' - .-' h. , - r,. . . -,,

. s

First a string of n 0's is formed and outputted - being the first

" binary number produced, then, because the rightmost symbol in the string

Is a 0 it is changed to a 1 and the result outputted. In general, the

algorithm remembers the last binary number formed and outputted, say X.

The next binary number is formed by a scan of the bits of X starting with

the rightmost bit, and changing them by the following scheme. Let b be

the bit under scrutiny - if b is a 0 it is changed to a 1 and the result

is the next binary number to be outputted -'if it is a I it is changed to

a 08 b becomes the bit in X one position to the right of the current b

and the scrutiny is repeated. When the leftmost bit of a number X be-

comes b and that bit = 1 then the process terminated. In stommary this al-

gorithm for producing all n-bit binary numbers, consists .-simply in 'adding

It to produce successive members of the set. It is the 'good' algorithm

for producing the set. It keeps in memory-only the last number produced thus

, "using an amount of storage roughly equal to that required to hold the argu-.

-: "eat of f in its recursive definition. This is characteristic of all the

algorithms in SCV') in relation to the equivalent member of F(V') and is

the 'memory efficiency' mentioned.

In a similar way, the algorithm for example 1.2 obtained by instantia-

. tion of the primitives that appear in the recursive definition in example

- 2.2 produces one permutation at a time. A permutation is produced from the

previous permutation by interchange of adjacent terms. This again is the

O lgood' algorithm for generating permutations.

'.- Creating an Inverse

In examples 1.1 and 1.2. the given 0-functions had an inverse - in

- example 1.3 tho 0-function as given does not have an inverse and thus the

lri
. . .i

Igorittim s-cremO'5kVj 1a o nowever, as wiii O sn - when

in a recursive definition, f C F(V)o the 0-function does not have

an-inverse - a simple transformation of f to an equivalent

definition, say f', Involving an 0-function having an inverse

can always be found in FCV'). Thus f' will have an equivalent in

$(V'). This new definition fV is equivalent to f in the sense that to

each argument d of f there is a 'simply' computed .argument d' of f'

such that f' (d,) = f(d), Using this transformation, an equivalent defini-

tion to that of example 1.3 will be given subsequently, whose equivalent

algorithm in S(V') will produce the moves necessary to solve the Tower

of Hanoi problem - one at a time, the only temporary memory necessary

being that for a record of the previous move and its number.

KeorjF ~f fI CI -Acy
In the standard copiler implementation of a recursive definition

of the form of Ithat definition is taken to describe a procedure which

calls itself. The procedure uses a stack to temporarily remember, amongst
other things the set of argument!the data structure)associated I th the
ce ll. The sie to which the stack grows varies ,and depends on the depth
of the calls. In general if the definition is non-linear,-i.e. has
ore than 1 call of the defined function on the right, then the arguments

of-the w functions will have to be stacked also. When the memory eff-

icient algoithmto be described here s applicable then both of these
stacks can be eliminated, Instead only 1 copy of the argument of the call-

, nUg function will be saved. All other temporary memory uses in the
* algor thi are comparable to those in the standard implementation. It

will be possible.o . eliminate the need for these stacks for any. definition
Of form I, provided, only, as we have said that the w function is
associative and the 0 functions have a uniform inverse. ,

Although the 'memory efficient' algorithms of S(V') are honestly

s0 for the most part, the nature of the memory efficiency can be mis-

. leading. The implementing algorithm available when w is 'associative'

and the O-funtion has an 'inverse' is efficient in the sense that the

•.Tmory required is usually of the order of the largest storage required

for the argument (also called a data structure) of f which arises

If f is evaluated by successive substitutions.
' Usually this largest data-structure for which Memory need be provided

5 Theorem 2. t

- -o* - . - - - . • .

* .* .e. . . . " • °

- requires a small amount of memory relative to the total of all data-structures

*.produced during the implementation of the definition for a given . H
Initial data-structure - ex. of the order of a single member of a set

when a set is being enumerated. Even when the 'inverse' does not exist -

It can be incorporated as previously noted, leaving the 'memory

efficiency' notion still viable. However there is another way of obtaining

e, memory efficient' equivalent algorithm which is deceiving.

This technique involves obtaining a technically correct.equivalent

recursive definition of f, say f' .having only one occurrence of f' on the

right, but in compensation involving much larger data structures X' and

coplex function o! than the corresponding X and o. of f. That is, for each

definition of form I there is an equivalent definition

of the form:

• f, (X,). q,(X') if T(X')

ir fI 'x') l w(f(o'(X'))) i t(X')

Initially, X1 £ Df

-by equivalent, we mean that there is a 1-1 correspondence

g between D and Dr, so that for each d e D:

f(d) V f' (g(d))
.1

If f" has an inverse then it can be realized in the same memory efficient

-uiner as other definitions in F(V') and if not it can easily be modified

#o. as to have one while still keeping the result in the form

of I. Memory efficiency, however, means that the memory requirement

will not exceed the size of the largest data-structure which arises as an argu-
sent Of f during evaluation of f'. But in this equivalent definition that

* 4 The two classical ways this can be done are by constructing a genernl
breadthfirst or depth.-flrst algorithm to implemnent tae recursive definition
of form I and then equivalently giving these as recursive definitions,

F1

* - - -.- . - * . -

all-"

* data-structure is typically much larger (often exponentially) than that

which could arise in the original definition. -

The term 'memory efficiency' as used here then requires caution

In Its application,

2. 4M0RY EFFICIENT IMPLEMENTATIONS

The first part of this section,. thru page I, is largely devoted

to material which is probably familiar. This is done inorder to develop the

definitions of a number of terms which are used later in this section. Altho

the concepts are familiar the terms we use may not always be so.

". In any case, the material inthcee preliminary pages can easily
;j be skipped and only referred to to pick up definitions of.. terms used later,

without losing the main point of the paper.

-
* I-

- - . * . - .

..- 12-

1 0Ai." ".. ..*.'. 2' ;, I

p.,. "9. ,• ,

Definition of'Standard Recursive Scheme F:

Consider the set F' of all functions f that can be defined as

follows:

Def. 2.1 f (x) - q(X) if T(X)

form f(iX) w(f(o 1 (X))* ... f(Ox(x)))) if T(X)

initially X c D .

where the primitive functions and predicates .which are used in the de-

finition are weakly constrained as to the nature and extent of their

domains and ranges. D f is the set of initial data-structures and may be

any set. Other sets must be included in some of the domains of some of

the primitive functions. These other sets are defined recursively, using

- the primitive functions. First these sets are named and their relation to

the primitive functions given, then .they are .defined.

a is a function whose domain must include the set Af and whose range is the

positive integers 2 1. m(X) 2 1 for all X c Af

0 Is a set of functions" (o1,o2, ..

The domain of jmust include the set a i t he unw4oj of all the domain

Of the function? in oj and is called the domain of the O-function.

The range of O, must include the set p, .

Th union of the sets p of all the functions in 0 is the range

d" . of the Ofunctionsand is called Pf.

- T Is a predicate whose domain includes Df u P.. Its range is

(true, false)

q IS & function whose domain must include Qf. Its range may be

my set, say wj.

," . ' " " - . . ""

W is a function whose range is called and whose domain must include
.-. Vg" f.-I ,a . f•

The sets named above are defined as follows (the subscript f is

dropped where it is not essential):

A I (did c D and T(d); and for j > I

A -. (oiCX)Ix c Aj 'l and i_ mCX)' and TCoiCX)))

. Ai

The set 6 of 0 Ois:

di W{X e A and i g m(X)).
The range of o is:

. -. X) ix A and i < CX)

The 2rangep of oi C 0 is:

- The set of terminal data-structures Q is:

Q -P-A:."

The set N is defined as follows:

W(01 0*.0X 9 Y,-,Xi C. Wfn - a positive integer 1); for j > 1,

* ' s(W(X- ..oX)IX le Wk,kU); ne ti)

410

If in addition to being a member of the set F', a recursive

•definition is terminating _ ' as defined below it is a member

of the set F. We need some preliminary definitions.

if 411 6681') " I is a sequence of integers then Ax)

o61M is an abbreviation for o inC.. o2 (oi OIX)) ...); o(X) = X.

U 2

. * - -..

o" A length I sequence of integers <i is applicable to a data-

-structure X c Ac if I .m(X). A length n sequence of integers

419 0...• in > is applicable to a data-structure X if <i1, ... , In>

U n-I"

-is applicable to X and <in> is applicable to o
n6

1(X) is the set of all integer sequences applicable to X e A£.

i _ (.s terminating 1ff Vd, d cD implies T(d)-is -finite.

Note that if I(X).is finite it cannot contain an infinite sequence,

because it always contains all prefixes of any sequence it contains.

This completes our definition of F! Next we give • some simple

-"consequences of the definition which will be used later. First, the

substitutionally solvable property that d c D, T(d)-is finite can be

extended to any X £ Af. This is done in lemmas 2.1 and 2.2.

Simple Properties of f eF

Lemm 2.1: If f c F and X e Af then an integer sequence I* I(d)

and3a data-structure d c D such that o (d) = X.

Proof: If X C Af then obviously there exists some c (at least 1)

such that X c AC. The lemna is proven by induction on the sets

-0e "Assuming there is a length k-1 sequence I. for each data-

1.-l
structure Y c A l and d c D such that o1 (d) * Y. Then it follows,

br. definition of a that if X e A then X oOC) for some i I r(Y),

and Y c A Thus X - o3(oy (d)) - o4 i (d). Since

1 40*/;
also D a A and o (d) = d for each d c D. the proof is complete.

Lemma 2.2: If f c F and X c A,, then I(X) is -finite.

PMof: From the previous lemma the data-structure X = o(d) for

* soe d c D and integer sequence I. Therefore I(d) ! the

•P as defined hero is the same as F(V) as defined in the Introduction.

-IS-

set consisting of I concatenated with each member of I(X).

Thus if I(X) is not finite, 7(d) cannot be finite but this

contradicts the condition that f c F is substitutionally

solvable.

Mother consequence of the definition of F is that the data-

structures in Af can be usefully ordered in another, almost reverse,

sanner than the ordering by membership in the subsets A. In most of

-- the subsequent inductive proofs, induction will be carried out on this

ordering..

Ordering the Data-Structures in A (Remoteness):

-For any function f in F:

We say a data-structure X in Af u Qf is of remoteness 0 (or is

terminal) if X c Qf.

We say a data-structure X in Af u Q£ is of remoteness n if:

() 3i:i s m(X) and o.(X) is of remoteness n-i and.

(2) Vi:igm(X) implies oi (X) is of remoteness n-k and k2l. 6

Lemma 2.3: If f c F, thbn there is a function r with domain Afu.f

such that if X Afu Qf then r(X) = the. remoteness of X.

4 Proof: For each X c £ u Qf let r(X) be the maximum of the length

oi all the sequences in I(X). For each X c AU QfD X is of

6 Alternately this can be phrased 'of remoteness< n'.

mlS

.-• , --
.

- -

rmoteness r(X). This is shown by induction. If T(X)•then
* I

T(X) is empty and r(X) = 0. Assume that if r(X) < n, X is

o • remoteness r(X). Let r(X) = n, i.e. there is a longest,

sequence of length n, say I < i,* in' in T(X). Let

- ". o(X)= Y. Then <i .1 2 , ... ,in is in I(Y). Furthermore.

no sequence applicable to Y is longer than I' because other-

vise I could not have been a longest sequence in I(X). So:

- r(Y) * n-I and Y is of remoteness r(Y) = n-l. Therefore,
since o(X) = Y and for all j 0 i1 , 3 sm(X). r(o.CX)) !C n-l,

X is of remoteness r(X) = n by definition of remoteness.

• o..-i
Properties of f c F Sufficient for Memory Eficient Implementations :

An efficient implementation becomes •

available when the recursive definition f e F has some special properties.

These properties are now defined.

Associativitv: Associativity has the usual meaning here. -The function

W is associative if: .

v(a1 a2 ... , aw) Ww(a1 ,a 2), a3, ... , a for m k 3

" = minimum, sum, catenation and union provide examples of w-functions

with this property. In each case one can compute w(al, ... , a as follows:

3 .

POr i I to m

'. (X.a)

ad

L . , .•.

.17-

thus requiring at any one time memory for at most 2 copies of the result

of w(a1 , ... , a.), j in . If w is the function minimum, this memory does not

Increase on the number, but only on the value of its arguments, a1 . If w is catena-

tion, sum, or union the memory required will increase, albeit at different

Tates, with the number of arguments. There is, however, a significant

difference in'use of the memory, between a computation of catenation and of

, union. To obtain catenate (a,b), b needs only be attached at the end of

a. To obtain the union (a,b), a must be'searched for an occurrence of a

m"ember of b. If a represents the result of a previous computation then in

the union case it is necessary to re-access this memoiy whereas this is not

necessary in the catenation case. This is an important consideration be-

cause" memory that is not re-accessed can be located in areas of memory

(disc) which need not be easy to access (as is core). The temporary

memory requirements for the iim ementation of a function then do not depend

on the usual mathematical properties of that function only, but also de-

pend on the means available for accessing the memory? Nevertheless, for

compactness our results are given in terms of the usual mathematical

properties--so caution is needed in their interpretation.

Uniform Inverse:

Consider a set of functions H -(his *.., h1M. Let V2 be the domain

- over which h. is defined and let Ri be the corresponding range of h.

Then we will say V- U11 VI is the domain of H andR= R R is its range.

The set of functions H is said to have a uni'form inverse on the domain

i It is also true that there may be some advantage in time efficiency in
ole grouping of the aruments of w over another though both give the same
result wie" w is associative. An example of such a function is merge, i.e.
e.-,c(a .. ,na) it Which arc cach finite sorted sets of numbers.

,- , % . 8" . * .

4.

domain p if:

(1) Every h!H has an inverse and

(2) RTRj. for every - t R in R.

If H has an uniform inverse then it is easy to see that the

following two'uniform inverse'functions on R exist for re R4 CR.

II

,:: 1) H" (r)- d D such that H1 Cd)=r

(2) iH(r)=I the index of the range R. of which r is a member.-

A recursive definition, fE F, has a uniform inverse if the set of

:i ctions OlEo in f has a uniform inverse.

Por a given function set 0 it is possible that none, one, or two

of the pair H Hl i exist. Despite the fact that the uniform inverse

Is a strong condition it does often occur. Furthermore when it

doesn't, there is always a strongly equivalent definition which does

have a uniform inverse. This is shown after a short degression re-

quized to define strong equivalence.

..

0e

- Equivalence of Recursive Definitions:

Consider two definitions in F:

.€) f on domain D

f(X) = q(X) if T(X)

fx) = wWfCo 1 (X)), f foM (X))) if T'X)

initially X = d CD

(2) g on domain D'

(g(X,) = q,(X,) if T' (X,)

&X). ,, g(gCo, (X).... g(o, X) (X'))) if IF* r)'''

nitially X1 d' e DI

If there is a 1-1 correspondence between D and D' such that whenever

d c D and d' e D are two corresponding data-structuresCf(d) = g(d')

then the two definitions are e quivalent. The above correspondence may be

extended to one between Af and A with 6 C Af corresponding to 61 C Ag.

by having o1 (6) correspond to oC') whenever 6 corresponds to 6' and

o,(6) and o!(6') are both defined. This is called a-structural corres-

gondence. If in addition to such a structural correspondence of Af to

A the following conditions hold

(1) T(6) - T'(8,)

(2) q(6) = q'(61) if T(6) (and V(6'))

(3) n(6) a' m(61) if T(6) (and T' (6 1))

(4) w a w'

then f and g are stronEl1y eq~uivalent.

* /
I° .

-I, " "
.':

.i: -. - .- . . 2

-20-

Strong equivalence of two definitions implies that they not only give

the same results but also require the same number of substitutions in

their evaluation for corresponding initial arguments. .

As an example of a strong equivalence, consider the two functions f and

S each in F:

(1) f(X) q q(X) If T (X)

f(X) = w(f(o (X)), ., f(o () if TCX)

Litially X de. D

(2)) g(XY) = q(X) if W(X)

ib) g(X,Y) - wCg(oz(X)h CY)), ... , g(o (CX),h (mCY))) if CX)

initially <X,Y> = <d,y) D' withdc DandYd Eoety4

(H - {hi1 ... , ht} is a set of primitive functions)

moo..._
* Let data-structure d £ D correspond to <d,y> C DI. Extend this

correspondence to one between A£ and A by letting oi(X) € Af correspond
g

to coi(X) hi(Y)> e A whenever X C A corresponds to <XY> c Ag and T(X)
gf

and i. Im(X). For example if d c D and oi(d) is defined then it corres-

ponds to <o A(d),h of > A d sp

For each member of a this correspondence defines a corresponding

member of A . This follows because every member in Af is either in D,

for which the correspondence is given explicitly, or it = o (X) for

fA and oi is defined and Tf(X), in which case the correspondence to

a member of A is given since o! (X,Y)'s existence just depends on X, be-

cause M'(X.Y) m m(X). T' (X) - T(X).

Conditions (1) through (4) are obviously satisfied for this corres-

. - . pondence in the above definitions. Furthermore, the function g(XY) is

*!

*-. -21-

"~*Independent of Y, its second argument. This is shown inductively as

follows. Directly from the definition (2a) we see that g(X,Y) is inde-

pendent of Y when (X,Y) is of remoteness 0. Its being of remoteness 0

Is also independent of Y. Referring to (2b), if it is assumed that each

term g(o (X),hipY)) appearing on the right is independent of its second

argument then it follows certainly that g(X,Y) on the left of (2b) is

Independent of Y. If the argument on the left side of (2b) is of remote-

mess n from terminal then all the arguments of terms on the right are of

* remoteness < n from terminal. Thus the inductive argument is completed

concluding that g(X,Y) is independent of Y if X and thus if (X,Y) is of

remoteness 0,1,2, ... , n.

Thus definition (2) can be rewritten removing Y which with f replacing

g is the same as (1). ThereforE:

Lemma 2.5 g and f above are strongly equivalent

Since the value of g(X,Y) is independent of Y it may seem silly to

ever construct such a definition, with a 'redundant' Y, to replace f, or

alternatively that such a redundant Y would arise inadvertently in g to

be removed by replacement with the equivalent f. The following theorem,

however, demonstrates that such 'redundant' additions can be of consider-

able use.

p,

S--22-

Theorem 2. : __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __•_ _ _ _ _ _ _ _

Theorem 2.1: For any recursive definitions f in F there is a strongly

.equivalent definition in F which has-a uniform inverse.,

Proof: If f already has a uniform inverse it serves as its own

itrongly equivalent definition. If not the following defi-

ition serves that purpose. Referring to Def. 2.1 for the

* '"definition of f,,the following function g defined in terms

of the same sets, primitives and predicates is strongly

* equivalent to f. (p <P, .. pe is a vector which

records indices, and d is the initial data structure.)

(X=d) q(X) if T(X)

g(X.pd) wCoCX),<l>//p,d), ..., gCo M'cu<,(X>/b,,!) if iCX)
9 . initially <X,p,d> =<d,;,d> with d e D.

g is strongly equivalent to f by application of lemma 2.S,

w with Y of that lemma corresponding to {<p,d>I p a sequence of integers,

deD},and Yd corresponding to <n,d> with deD. Furthermore g has a uniform

Inverse which is given by the following:

1 0 (X, ped) pIo (X. p .d) o P[
•..X d) = 0 -.- (no l (o (d))3, p[0 4-x],d>

2 U-1

II

-i , 1:
4 .••

• g .

S a I"I

i i i : -1

-23-

The 0 function is quite complex, requiring recreating a sequence of

data-structures starting with the initial data structure. In practice

one wants to construct a strongly equivalent definition which gives an,

inverse but entails the creation of an 0 function which is simple.

Simpler,hopefully,than that given in the above theorem. This can often be

done. If, for example,

Corollary 2.1: For a given recursive definition f c F there is no uni-
: -1

form inverse, but each function 0. c o has an inverse = o.i then the

definition for g given above with the third cormonent d deleted from its

arguments will serve with the additional benefit that an alternative simpler

definition of 0- (X.o) = <o (X) ,o -nl> can be used.
M0X '[1

This corollary can be applied to the 'Tower of Hanoi' definition

ex41.3. In, that examplep o. e 0 has an inverse for i I J and 3 but does n

"ot quite have an inverse when i .= 2:
* . * •-

o (<Cx,y,z>,n>) = <<x,z,y>,n+l>

o2l(<x,y,z>,n) = <<x,y,z>,A> whe e A cannot be determined from <xy,z5,n

05l(<x,y,z>,n) ="czyz>,nl°3

So first we slightly modify the definition of f so the.re will be an

inverse for o2 Lemma 2.S justifies this simple. modification in which a

component s is added to store the quantity A above when i = 2, and

otherwise to remain equal to 0.

. .°.

-24-

K :.: f(<<X,Y, Z ,na s) < x~ 0 r n I

* ~~f9(<<x~y,,z>,n>,s) *f'(<<x,z,y>,n-l>,s)/ 'cx*e1,n/

f'(<z~yxn-ls)if n > 1

initially (<4x,y,z>,n,>,s) =i(<<1,2,3>,n>,O)# nl c N

Nov f is equivalent to f in 1.3 andoi has an inverse for i =1,2, or 3.

These inverses are- '

0j1(ccxSYVz>.n>.s) - cxjz~y1,n.1,,O>p

.0-1
02 (<ccx,y,z>,n,,s) = cxSYSz>,s>,O>
-2L ~03 ("'x~yaz"OnJ~s) = <Zy,x>,n~l>,O>

Corrollary 2 now applies to ft. Its application yields g below.'

(Some unnecessary >Is and -c's have been dropped.)

g(<x,y.z'>,n,s,p) = <x.y> iif n=1
g(<x,y~z>,n,s,p) = g(<i,z,y>,n-l,s,<l~./PY/ g(<x,y,z>,,n,<2//i: n'

9initially 4cx~y,z>,n,s~p> =<2>n,,>

and the uniform inverse is given by

a-.
r i0(cx~yyZz,~sn.sp) = p1

PII

-25- K.
, .

I plementation of f e F with Associativity and Uniform Inverse

We will give a way of implementing any f in F which has a uniform - j

inverse and in which w is associative. The implementation is described by

a flowchart containing. as usual,interconnected assignments and-decision

statements. The expressions in the assignment statements and decisions

are compositions involving the primitive functions and predicates w, o; c 0

as q and T and the inverses 0 "1 i0 which enter the definition of f c F.

In addition to the above functions from the definition of f, the repetoire

of flowchart expression is completed by an add I function, a push and pop

and an = predicate, There is a storage cell X which is assumed adequate to

hold any member in au Qu Df. Although there is. such a push and pop,

the list on which they operate, V, can hold at most only 2 members in Wf . Wf.

The flowchart which follows describes a computation for each d e D.

It is necessary to give a concrete interpretation of the sense in which a

flowchart describes a computation. We imagine a traveler who starts by

entering block (0) of the flowchart. The traveler carries out the compu-

tation described in that block then depending on the nature of the block,

proceeds to the appropriate next block. The traveler continues, following

the block instructions and proceeding through the flowchart until FINI is

reached completing the voyage. The value found in V when the traveler has

completed the voyage is the value computed by the flowchart.

* *I -- i I l
I

I i

Qr

* _

•-26-

Flowchart : notation and assumptions

In the flowchart we will use the following notation. General:

(e Is an expression)

X .0- the value of e is assigned to X.

V P e the value of e is pushed into list V

X PO V the top member of V is popped and assigned to X
POP

" V[n] the top n members of V are popped and assigned to X

If V is a list- <v1VV, ... V 1 then w(V stands for the expression

vs).

Primitives and their Compositions: (Some of the definitions are extended

to Q£ to make the flowcharts work if the initial data-structure is terminal.)

Flow chart
Notation Meaning

FIRST.KID(X) 0 (X ' if A
#KIDS(X) (X) if X C f; I if XQf

1=TEUNAL? T(X) if X c Afu Q.

PARENT (X) - M CX)ifx cAf;-X-ifX Qf
SIB#(X) .i (X) if X. A; I if X Q-

NEXT.SIB(X) -X5PA=NT(X)) if X e a

#SIBS(X) # *KIDS(PARENT(X)) if X c Af; a 1 if X c Qf

If w is associative we assume that there is a member o in the range of

w such that w(X,Ow) X x for all X in the range of w.

wr

t.
* -.- -. .

Flowchart:-7

'pol" f c p and. f hao a uniform Inverse and w is associative,

0

IrI

P ARENT(X)
.

x Nt

Figure. 2. 1

b ." -28"-;

When we say a flowchart implements or realizes an f c F we mean

that for each d C D the evaluation of the function. f(d) is = to the value

computed by the flowchart with traveler starting at block ® and d in

the flowchart - to d in tCd).

We now present proofs that the given flowchart

Aoes implement f c F under the appropriate constraints. The proof

uses induction on the remoteness of the data-structures

in A£.

:,-f

Theorem 2.2: If f t F and f has a uniform inverse and w in the definition

of f. is associative then f is implemented by the flowchart of

(figure 2;1).

. Proof: First we need to show that if A of remoteness n, block Q of the

flowchart of figure 2.1 is entered with A in X and B in V then

eventually the traveler arrives at ® with A still in

X.and-with V containing

w[... w[w[B,f(o1 (A)) 1],f(o2(A))], ... , f(om(A) (A))] =

by associativity

..W1,w~fOl(A), ..., f(Om(A)=]] w[B,f.A)]

"We use induction. The case when A is of remotcncss I

:iS easily ver'fies by tracing the flowchart: through the

sequence of blocks <(O®OO® ® O(>m(A)-l times and

then through D OQ O"
4 ___

.0. o ,

-29-

Assume First is correct if the remoteness of A is n. Now

let A be of remoteness n; X is .A,V is B and the traveler is

at ®. The traveler goes to (Dwhere X becomes FIRST.KID(X) =

O(A) and the traveler returns to 0- Since o1 (A) is of

remoteness < n, the inductive hypothesis applies. Thus the

traveler arrives at @ with X being oI(A) and V = w[B,f(o1 (X))].

0 (A) cannot be initial because of the inverse so the traveler

* goes next to (. if we assume now that

1 = SIBIX) M #SIBS(X) where X = o (A), the traveler will pass

through (and Q updating X to contain o2 (A) and then enter

-- B -y inductive hypothesis again the traveler will eventually

* arrive at ® with V containing:

[w [B,f(o I (A))],f(o 2 (A))]

e nd X containing o (A). Assuming without loss in generality

that p - m(A), the traveler will eventually arrive at

after p repeats of the journey from (to 0 with V contain-

W[... w[w[B,f(o (A))Jf(o2(A))], ... f(o (A))] =

v[B,w[f(o (A)), ... , f(o (A))]]

by associativity and = w [B, f(A)] by definition of f(A).

X contains op(A) at this time. So the traveler goes to

where the decision is yes; (is next with X becoming

its PARENT,i.e. PARENT(o (A)) = A. Thus the traveler
p

arrives at ® again with X containing A, V still containing

=vB.f(A)]. Thus the First result is proven. Now let the

.- p 0

,.°

,,30-

- - .".. . - •. - -

. traveler start by entering ® thus setting X to d and V

to B = 0w . Next the traveler enters (0 with these values

In X and V and so by the First result the traveler will

Oventually arrive at 0 with X containing d and V containing

w[O ,f(d)] = f(d) by definition of
W

As before the proof is for d c D having remoteness a 1 and

is verified to include remoteness 0 by tracing the flowchart

explicitly for this case,

The necessity for a 'uniform inverse' as opposed to a simple inverse

in developing this theorem results from the fact that in the standard

to= of recursive definition considered here the number of appearances of

the defined function symbol f is determined C=m(X)) by X the argument of f,

This dependence was incorporated so that many common problems could bemow
naturally expressed in that form.

We have not discussed the higher order recursive definitions h.ving

nesting on the right - largely because in our experience such definitions

rarely occurred in practice. Suoh definitions are considered in [61. The

techniques given in [6) in combination with those here can be used to extend

the above results to higher order recursive definitions not covered in [6].

I ;

-II

I.

.

-31-

Application of Theorem 2.2

Before applying theorem 2.5, it will be useful to make some notes on

flowchart of figure 2.1.

Flowchart Notes:

1) In general, X has a number of components; these components will

be saved in identified storage locations.

In any assignment to X in the flowchart, only those locations

holding components which are changed need be assigned.

In any-decision on X in the flowchart, only those component

locations need be tested which are necessary to secure the

decision,

2]_Some of the functions in the boxes like NEXT*SIRBQQ in ® t

and the decision in are sufficiently complex compositions

- so that simplifications are often possible.

S.. 3]L The assignment in box © is made when data-structure X has the

property that SIB#CX) = #SIB(X),

4]. Conversely, the assignment in box ® is made when SIB#(X) / #SIB(X).

Beyond these generally applicable simplifications, others are applicable

When the primitive functions in the flowchart have special properties.

The following is important for our example.

If v is a union and each q(X) produced in will be different from

all others produced there, then boxes Q and G may be replaced by one

having the assignment OlrrPUT q(X), meaning place q(X) in the next
.= " location in an internal storage table or cxternal (paper) table.

o. .

• ..

-32-

Theorem 2.2 applies to many enumeration problems. It produces a

'good' algorithm from an easily justified recursive definition. For

example, the theorem applies to Ex 1,1, a recursive definition for enumerating

binary numbers. The definition in Ex 1.1 does have an inverse - namely:

if a =a>

(o'(ctn) = 4X

SiOCa,n) = ap.1

Using this inverse and the o,w,m,T of ex 1.1, we get the following flow-

chart expression definitions i

X - <an>

"!FRST.KIDC<a,n>) - (a//<O>,n+l>

#KIDSC<a,n>) * 2

<an>= TEPMINAL? n=O?

PARENT(<a,n>) a <a(X],n+l>
p

SIB# C<a,n>) = c 41
p

ISIBS(<a,n>) = 2

SIB#(<a,n>) = #SIBS(<a,n-)? = +p,1 = 2? referring to note 2 we

we can simplify in this case: a= 1

NEXT.SIBC<a,n>) = <a3ap J/f<l>,n> if ap = 0, which is all it

can equal so simplifying:

< a~a <1> 1,n>

also observe, referring to note I that n is not

changed.

The flowchart of figure 2 is obtained by inserting these definitions in that of

fixure 1 as modified according to note S which is valid in this case.

It is essentially the tadd-onel algorithms described in the introduction.

5 I

' ..

II

, . Similarly, theorem 2..5 can be applied to ex 2.11, the permutation

definition. This definition also has an inverse, namely:

,if a = ca, ,.. ,csp>, and x = the position (index) of the integer•

(n.1) within

.o' 1 (n,c) * <n~l,[i -,

least of the flowchart definitions result from straightforward substitution

of the inverse and the given primitive functions. For ex~uple:

SIBtCcn,a:,) a x

. J~SIB('n,a>) a #KIDS(PAPENT(n,a) = m(<n~lQca 4-]>

• x

* ia~WO
yIs

Ye

-34-

From which the.decision of box 4 :

• . . • (SlBO(,n,a>) = *SIBS(<n,a>)?) a (x * Ia?) which by the interpretation

of x is equivalent to:.

((ac * (n~l)?)
p

Also note that:

NXT. SIB C~n, c) =ox+C(nl,ca.ax A4-

(n,Ca[X])Ca 4- n+lj> which again, by the

interpretation of .x is:

•<n,L[axax 1X Xax]> representing an interchange

of the (n~l) component in

with its right neighbor

These definitions when put in figure 1 as follows produce an

algorithm which stores only one permutation. The next permutation is

always produced by interchanging components of the currently stored one.

*The resultant flowchart is:

II

. t i
Iou" a" c

"-fure no. ,

Yo

0-I

-35-

Note that this flowchart contains the assignment: of the 'position of (n+l)

in a' to the variable x implying a search for the integer (n+l) in a. A

modification in the argument of the recursive definition can be made which

will obviate this search. If we add to the argument a vector 8 giving the

position of (n~l) in a, the 'position of (n~l)' will be available. Thus

modifying Ex 1.2:

P .(<n,aj>IncN' a and B strings of positive integers)

&n• -.. >p I if n 0

f .<n, a' = n, n-jca 4- n l>/>l U U fCpn-l,a[* . ,-
>i n 0+ ,

if n > 0
. is initially c f<n, ,1A>ne N)

The modification still has an inverse and can be implemented by the

inclusion of a variable 0 and following the prescription of theorem 2.5 to

obtain the following assignments to that variable in figure 2.1.

in®

>//O in®

OC , - ALJ in ®

replace x by 01 inG)and after the assignment to a put:

0 oD +[BI S I I

This illustrates how with this approach one can modify an algorithm

focusing on the effect of a change in data-structure without ever having to

be enmeshed in the control structure of the algorithm.

The Search for the Inverse

We have been building a syster which exarines a recursive definition

-__for properties identified in this paper as sufficient to allow efficient

S.

, . 0

- ': -- " i ." . .7- =- •" . .- -- - 1. - .- - - - - - - -.... ,

-36-

implementation. An important part of this system is a program for determining
whether the given definition has a uniform inverse. For a recursive

definition of the standard form:

Let-the data-structure X be a vector with n components, i.e.

let X = x. ...

Let the primitive O-functions be:

Q1(X) - oCI,(= o(I, , ... ,x) - yl", .. " >
nn

Let o[J]CIX) be the jth component of o(I,X), thus:

Y,- oEIJCI~. ..)
;11

0 • r23cIxl ot.*
* set. A: Y2 =)o z , " "

° O n -I,,x . x
n

" It-is easy to see that the recursive definition has a uniform inverse

Iff there is a unique solution of set A, for I and each x as functions

of y1 through yn. If the solution for I is rCyl, ... ,yn) and for

xj atj(xla ... ,xn) , then the uniform i 0 and 0- functions in the uniform

inverse are given by:

ior l .,. Yn) - rCy1 , ... yn)

OTI (Y1 -'LDy) * tl(y1 , ', ,yn),t 2(yl, . ,Yn),
I~i. .,.tn(Yl1 , ... ,yn)

Currently we have implemented a %earch for a 'simple' uniform inverse.

This is described below.

The first step is to set up the equations of set A for a given recursive

' . "

~-37-

K..definition and then to try to obtain a solution by the following simple
procedure.

l.2Ist each equation in the set is tested to determine whether that
equation by itself can be inverted. Often the right hand side of the

equation will be only dependent on some of the variables x, ..

and I, and such an inversion will be possible. For example, sayy on the

left only depends on one.x on the right:
If y-=x + I then x 1, again assumingy

if y - O>//x then x yy 1 3AJ, also
If.. y /,

If /.x then xy ry1)

if if =

.>P if 1-- 2 then X y

T I If• 0

S '2 If y

2.1f there is no simple equation which can thus be inverted, then the
conclusion is that a 'simple' uniform inverse is not available. This does
not mean there is no uniform inverse, but since the computation of the

inverse when it exists will become part of the implementing flowchart -

there is some justification in limiting our search to uniform inverses which

are relatively simple to compute.

If one or more equations can be inverted, obtaining solutions for some

Xj 's and perhaps for I, the solutions are substituted for those x.'s and
perhaps I in the other unsolved equations and the procedure returns to step 1,

V -|

- [t-
o. 0 .

I. -

,4 -- 38-

applying it to the unsolved equations with their substitutions.

If finally all equations are solved, the tsimple' uniform inverse

has been obtained.

Simple as this procedure appears there is still considerable difficulty

in determining how and if a simple equation can be inverted when one is

dealing with relatively exotic functions such as concatenation, decision,

insertion, etc. which arise in actual recursive definitions. At this

stage even this simple step is handled heuristically for a limited number

of primitive functions with no guarantee that inverses will always be

produced when they exist.

"1

6 __

6:.

References:

1. Aho,Hopcroft, Ullman; The Design and Analysis of Computer Algorithms;

Addison-Wesley, 1975; pp 195,222

2. Darlington, J. and BUrstall, R.M.; A System Which Automatically

Improves Programs; Proceedings Third International Joint Conference

on Artificial Intelligence; Stanford, California, 1973; pp 479-48S

3,, Darlington, J. and Burstall, R.M.; A Transformation System for

Developing Recursive Programs; JACM; January, 1976

4. Nillson, N.; Problem Solving Methods in Artificial Intelligence;

McGraw-Hill; 1971

.$ Strong, H.R.; Translating Recursive Equations Into Flow Charts; Journal

of Computer System Sciences; 1971; pp 254-285

. 6 Strong, HR. and Walker, S.A.; Characterization of Flowchartable

.ecursions.; Journal of Computer System Sciences.; Vol 7. 14;

August, 1973; pp 407,447

7. Paull, M.C.; Formulation and Manipulation of Enumeration Based Algorithms;

Research Report SOSAP-TR-4; December, 1973

S. Paull, M.C.; Properties Which Allow Optimizing the Implementation of

Recursive Definitions and Notes on Searching for Some Such Properties;

.* Research Report SOSAP-Th-S; September, 1974

S. . . -: . . , . . , : . ;-. .

..- . *. , ,. . ' -.. --- -.. ; . . .' . -,:. -Wv- ..

Appendix I

Summary of Frequently used Notation

If P is a predicate the P means not P.

A is the set of all positive integers = 0,2,}

N is the finite set of integers from 1 to n =

If A and B are sets

Au B Is set union

A A B is set intersection

is the complement of A

A .B- A.A B

1A1 = the number of elements in A

<al, ... , an> is an ordered set or vector with components

a1 : i c N and aj j represents the subvector 4aiai+l, ... a>; a.

If A and B are ordered sets = <al, ..., an> and <bl, ... , bn> respectively

A// B = <al ... , a, bl, ... ,b

(A) is the set of all components in A

If E, x and y are each an expression, i.e. a string or ordered set of

symbols from a given alphabet, usually satisfying some constraints as to

form, then

E[x y] is the expression that results when each occurrence of x is

replaced by y in E.

The notation is extended to allow the specification of a number of

replacements E[x y, Z - w] is the expression which results when

_- each x is replaced by y and each Z by w in E.

".-I- i", . ."_ . . ' . - , , : . , " .. .

A SOSAP-TR- 39

June 1977

A PRINCIPLE USEFUL IN THE DESIGN OF MINIMUM PATH AND OTHER ALGORITHMS

M. C. Paull

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
Nov Brunswick, New Jersey

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant #DA1IC1S-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

* The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the

* official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

Abstract

Central to the development of synthesis procedures for "good"

algorithms, is the identification of principles with sufficient

generality to provide the design basis for a class of algorithms.

We need the simplest principles to cover the largest possible classes.

This requires the appropriate formulation of the class and the state-

ment of the principle in terms of that class. A principle which applies

to such a class is developed here. The class consists of algorithms

which solve sets of equations. It includes, for example, an algorithm

for the minimum path graph problem. The distinguishing properties

of this class are identified. The principle which underlies the

timewise efficient algorithmsof this class is given and justified.

The algorithm thus developed for the minimum path example is compared

, with well-known alternatives. Finally, the principle is applied

to another example: finding the minimum cost association of matrix

multiplication, and shown to provide an algorithm having advantages

over others previously described.

Key Words and Pharses: algorithm design, minimum path, complexity,

equation sets.

CR Categories: S.24, 5.25, 5.32, 5.42.

°* 1

'; A PRINCIPLE USEFUL IN THE DESIGN OF MINIMUM PATH AND OTHER ALGORITIVHS

Minimum Constant Principle

In this paper we consider a simple principle, called the Minimum

Constant Principle, which accounts for the exibtence of efficient

solutions in a certain class of equation sets. Problems such as

finding the minimum path in a graph, and the minimum cost order of

association in a matrix multiplication can each be formulated as a

member of this class.

The principle has an interesting relation to the minimum

coefficient principle which is the name we give to the principle used

-n Dykstra's minimum path algorithm.l When applied to the minimum path

problem, in fact, both yield virtually identical results. Their

usefulness in application to the minimal cost association of matrix

multiplication problem, however, is quite different.

Consider the variables X1 , ... ,Xn which are to take values in a

set D of positive numbers and which are related by the following set

of equations:

1) (x = rin(T.1, ... ,'Ip~l)j1- < 1 < n).

In which:

T 3Is a function whose arguments are some subset S

of the variables X1 through Xn and whose value is

always greater that that of any of those variables.

min(A,B) =. the smaller of A and B

I -

Such an equatio.n set is called minimum-monotonic.

The Minimum Constant Principle is easily derived

for such a set of equations.

Take the minimum of both sides of 1):
mln(X 1 , ... , n) :min(Tl1, .. Tjp, B I ,

T2 1, ... T2pB2

Tnl, . Trp,Bn)

Since min(X1 , ... ,X n) some X1 (1 < i < n) namely the

smallest, and since each Tij > than at least one X, (1 < i < n)

min(X1 , ... , 4 T1 for any 1 < ,j .n thus:

rin(T1 1 , ... B ,

"._- T21, - . , 2p, B2 ,

0

Tn, ,TnP, Bn) Tj for any 1 _i,j .n Therefore:

min(X1 , ... ,Xn) = min(B1, ... , Bn)

and if:

min(X 1 , ... ,Xn) B a

then:

Xaj Ba

and since:

Xa =min(Tal, ,T,B.)

so:

X B

40.

Therefore for a minimum-monotonic equation set, we have the

minimum constant principle:

4'heorem 1: If min(B1, ... 'Bn)j=a then X. = Ba

Algorithm Incorporating The Minimum Constant Principle

The principle established by this theorem can be made the basis

of an algorithm for solving a set of minimum monotonic equations.

The algorithm is an adaptation of Gaussian Elimination. At each

step a new set of equations is formed having one fewer equation than

at the previous step and involving one less variable. The choice of

the 'order of elimination is determined by the Minimum Constant

Principle. The step will be indicated by the count k and the

-* variables and constants as they appear in the equations formed in that

(Ic)
-.Step will be indexed by k. Thus Bi is the designation of the

constant term in the equation for X formed in step k. U(k) is the

set of variables which have been used - or eliminated in steps 1

through k, A(k) are those still active.

With k initially 1, U(O) = the empty set-and A(O) N [1,2,

],, the algorithm to solve for Xd is given as follows:

Minimun Constant Algorithm:

Loop: Find a mi (k-) ie A(k-1)
(k-i).

Say it = BI(k),i.e. the index of the minimum of

the constant terms is I(k).
Dk-Z

Record that XT(k) equals B(k)
XI~k) BI(k)

4 If I(k) = d, then XI(k) = Xd and the algorithm

1 This theorem will still hold if T.. is only required to be greater

than at least one variable of whia it is a function. However,
unlike the property given this property does not necessarily persist
when a constant replaces a variable in T... This persistence is
necessary for consistent use of the princlple in the Minimum Constant
Algorithm.

• y

* terminates; otherwise

Substitute 13 () for all occurrences of XIk in each(k-1)1
T3-)ith i C A(k)(which is = A(k-1)-(I(k))) and j<p.

k-1)

Replace the constant term B1 in each equation with

the minimum of that term with any new all constant

terms formed as a result of the substitution.
(kc)

The new constant is designated B)

The resulting equations, excluding that for XI(k),

form the k-th set.

Return to Loop.

If the equations are to be solved for all, rather than for just

one variable, the Loop can be continued n times, with a new variable

value determined each time through the Loop. The check for I(k) d

-can be eliminated.

It is easy to show; primarily because we are able always to

substitute a constant rather than an entire expression, involving

variables, in eliminating variables; that this is an o(n) algorithm.

Tn1s is so in solving in this way for any number of variables.

ADplication of Minimum Constant Principle to Minimum Path Problems

And Comparison With Alternative Algorithms

The problem of finding the minimum cost path between node 1 and

node n in a directed graph, G, with n nodes N (1,2, ... ,n) , and

* 4oitive non-zero branch costs , can be formulated as a problem of

t

-solving a set of equations. Let X1 be interpreted as the minimum cost

to reach node n from node i(thus Xn = 0). Let a% be the cost of the

branch from node I to node j, which is a given of the problem. If

there is no such branch then ala = 00. If a branch exists from i to

J, then j is an 'outward neighbor' of i, and i an 'inward neighbor' of

J. The following equation set then represents a legitimate set of

relations amongst the nodes of G.
PATH1: EXI min(aj.l+X1 , a ,an+Xn9 0o) 1 CN- in}

X 0Xn=

This expresses the fact that the cost of the minimum path from

' node i to node n is determined by finding the minimum cost from each

outward neighboring node of i adding the cost to reach that neighbor,

and then minimizing this sum over all neighbors.

There is also a dual formulation of the problem.

Let Y1 be interpreted as the minimum cost to reach node i from

node 1(thus Y1 0). Let a be as defined above.

PATHI': Y 0 =0

• {¥i = min(alY, "' anj+Yn,co)jiclN-El1D

This.expresses the fact that the cost of the minimum path to a

node i from node 1 is determined by finding for each fnward neighbor

of node i the minimum cost to reach it from node 1, adding the cost of

the branch from that neighbor to i, and then minimizing this sum over

all such neighbors.

. .

~~6

For a given graph problem the solution for Xt in the PATIi set of

equations should equal the solution for Y in the PATti1' formulation.

Either set of equations may be solved by the Minimum Constant

*2
Algorithm and is thus of o(n) complexity. (The application of this

. algorithm to PATH1' will be described in considerable detail shortly.)

A widely favored alternative for solving such minimum path

problems is Dykstra's Algorithm. When interpreted as a procedure on a

set of equations, a major source of the algorithms strength is seen to

come from the application of the 'Minimum Coefficient Principle'•

An interesting relation exists between the algorithms embedding

the Minimum Coefficient and Minimum Constant Principles when

respectively applied to a minimum path problem and its dual.

To establish this relation we first will translate Dykstra's

Algorithm as it is applied to the minimum path problem formulated. as a

set of equations. In particular, consider the PATHi equations.

In Dykstra's Algorithm one keeps a list of the current minimum

Cost to reach each node j from the starting node 1. In equation terms

one works with an equation for X, which is stepwise developed by

substitution for variables on its right. The cost to reach each node

(k)
from 1 is designated a 3 after the kth iteration of the algorithm.

(0)
Initially,. k 0 and a is the cost associated with the branch

(0)
<i,1>. [Thus a1 j ai3 in the set of equations formulation of the

problem.] Also there is the 3et Ak) of all nodes not yet solved.

- 0

Initially A(O) (2,... ,n) On the kth iteration one finds the

I.nimum of a IjcA(k-1 and determines the index of that term.

Call this index I(k). The set of active nodes or indices, A(k), can

now be updated. A(k) A(k-1) - I(k)J. Next if I(k) / the

destination node, n then for each'node j which is an outward neighbor

of I(k) and in A(k), the cost of branch <I(k),J> is added to the cost

(k+1) Note that aI(k)aof reaching I(k) from 1, a k) + tht a as

indicated is the coefficient of X on the right of the equation for

Xr(k) . For each j this sum is compared with the previous minimum

cost to reach node J , a , and the minimum of these two becomes the

current minimum:
(k min[,ak-1))+ ai k]

This is equivalent to duplicating the XI(k) term on the right of the

current X, equation and then in that duplicated term substituting for

"Uhe variable XI(k) on the right of the XI(k) equation and gathering

terms.

Now the k+lst iteration is undertaken

If I(k) = the destination node, n, the algorithm terminates with

the minimum cost of reaching n from the start node 1 (=X 1 in the
(k-1) .(k-1)

equation).being given by ajI(k) =ln

Summary:
a(0)
alj al = cost of branch from node i to node j

i(k) =mtntndex((a (-1

where minindex(CA1 , ... ,An)) smallest j

such that Aj = minimum(A1 , .. ,An)
• a(k) =mn(k-1) a(k-1)+a(k-1))

* ~ min(a~~ la +a1~~- 'z!az13 ' I(k) I(k),l

If I(k) n, answer a

II~k)

In this algorithm, the fact that one can always substitute for

the variable on the right of the current X1 equation which has the

amallest coefficient and thus arrive at the solution when X on the
n

right has the smallest coefficient is referred to as the M inimum

Coefficient Principle. This principle seems to require that the

equations be minimum monotonic as defined on page 1 and further that

the terms Ti in that definition be restricted to a single variable.

For comparison consider the application of the Minimum Constant

Algorithm to the minimum path problem. We will apply this algorithm

to the dual of the problem to which we applied Dykstra's Algorithm -

namely to its formulation in PATHI' . For comparison we will try to

develop this application of the algorithm in the same notation used

above for Dykstra Algorithm.

In order to show the relation of this algorithm to the previous

one the initial step has to be separated from the remainder of the

algorithm. B1 is the constant term in the i-th equation.

Initially B1 0 for 1 1; Bi =o for 2<i<n

So minindex(Bj iCNl) = 1.

¥1 = 0 .

The result of substituting 0 for Y, in the terms containingY in

the equation for Y1, 2 < i <n, is to make that term equal to

O+ai. = a 1 . This constant is minimized with' the existing constant

term, which is oo in each of these equations giving a new constant

term designated B(O)in the i-th equation.tem eigaedB1) :.l

+ + •

I; o

* '- -. %7-- - - -- - - ,' . ,. . ,]

'A After this step, which is not counted, the st of equations to be

solved for Yn then is:

(0;Y2 " min(a 2 +Y2 , 2 y,, &32 ,Y+ ,a2

2 = min(a23+ 2 , ... +Y

Yn= mn(a2n*¥2, "'" Ian4Ynain

Let A(O) 2, ... ,n), and O) also called in this case (0)
Le A'"CO) . a13 ,

= a, (as in the application of the Minimum Coefficient Principle).

Start with k 1.

On the k-th iteration the Minimum Constant Algorithm calls for

determining the minimum index of all the constant terms,i.e. of
(k-i) (k-1)= all icA(k-1) . Let that index I(k). Then, because of

.-theorem 1:

!! -k) (k-1) k-f)..;. Ilk) = BI(k-l)= aft(k)

A k) A(k-1) " I(k)

If I(k) / n, the destination node, then at the next part of the k-th

1iteration a(k) is substituted for each occurrence of YI(k) in all

equations for Y with jcA(k). The term involving YI(k) in the J-th

equation then becomes a(k1) a(k-1) The minimum of this and the(k-1)current constant term al (- in the j-th equation becomes the new

constant term,i.e.:

8 (k) (k) (k-i) (k-i) (k-)
k=a 13 = min1a ,aiI(k) I(k)-3

: ow the k+Ist iteration may be started.

6*

6

. . - - - "-- - I I
If 1(k) n, the destination node, then the 3lgorithm terminates

wihY (k-1) (k-i)_
ith af(k) : a the answer.

After the initial step? this algorithm may be summarized by the

same set of relations as given in the Summary -for Dykstra's

Algorithm. Therefore in application to the

problem of finding the cost of the minimum path in a positive weighted

di-graph, we have shown that the Minimum Constant Algorithm applied to

one formulation of the problem follows a virtually identical course to

* that of Dykstra's Algorithm applied to the dual of that formualtion.
V

These two minimum path algorithms may therefore be considered

really the same though the principles on which they are based differ

considerably.

So far we have considered only the cost of the minimum path and

ixaot the computation of the path itself. That computation for

Dykstra's algorithm is well known. For completeness we will briefly

sketch the analogous computation for the Minimum Constant Algorithm

based on its application to PATH1'.

The path can be computed by a kind of 'Hansel and Gretel'

principle. Whenever the constant term of an equation say the j-th is

changed during the k-th iteration this occurs because ai(k-) + a (k-)

(k-1)
(ai . When that happens the value of Y is, as far as is known up

to this iteration, directly dependent on YI(k) as it occurs on the

right side of the Y equation. A vector NXT with n entries may be

kept with NXT[j] set to I(k) to record each occurrence of the event

described in the previous sentence. When the computation of the cost

4f the minimum path, Yn, is completed the minimum path will be

* ruse,

"computable from this trail through the right side of the equations in

the NXT vector. That path is <1, ... ,NXT(k),k,

,XT(NXT(n)) ,NXT(n) ,n>.

Another Application of Minimal Constant Principle

The Minimum Constant Principle will now be applied to a problem
discussed in reference 1 as an illustration' of the 'dynamic

programming' approach to algorithm design. The problem is to develop

an algorithm for deciding which of the equivalent ways of associating

the multiplication of a set of n matrices will result in the fewest

number of multiplications of matrix components. For example, if M

and M3 are both 3 by 7 matrices and M2 a 7 by 3 matrix then the

multiplication Mi x 12 x HM can be performed in the order given by the

following association ((M1 x M2) x M3) with a cost of 3 x 7 x 3 63

component multiplications for (M 1 x M2) and then 3 x 3 x 7 63

component multiplications for multiplying the 3 x 3 result of (M 1 x

H2) with the 3 by 7 matrix H. Thus this association costs 126. On

the otherhand (Ml x (M2 x M)) costs 210 multiplications. These

calculations use the fact that the cost = the number of component

multiplications required to multiply the ra by p. matrix, M, and the

rb by cb matrix, Mb, :r& x (ca: r) xr

In general, we are confronted with the multiplication of n

matrices M1 x N2 x ... x Hn, with M3 having the dimensions r3 by c3 .

Let X (j i) be interpreted as the minimum cost, over all possible

* asociations, to multiply M x M x ... x M then the relations

between the X 1 for a given problem involving n matrices is:

r

. . - p II,,,

HATRIXI:

U~ If j I

= 0in(a if j > i
xi1 " i k X1, I+k + xi+k+1,

k=O to J-1-1

" where ak is the cost of multiplying the result of M1 x ... x M

by the result of M +k 1 x ... x M, =r. (et+k=-r+k+ 1 x c.

This relation represents the fact that the multiplication M x

Nj41 x 1I+2 x ... x Mi., x M, can be finally dbne with one of the

following associations:

M1 x (M 1 x M 2 x ... x M x)
(Mi x M+) x (MI+ x .. x M _ x M)

(Mi x Mi 1 x Mi+ 2 x ... x M x M)

"'.. The 'dynamic programming' solution of reference 1 to this problem

formulated as a procedure for solving the MATRIX equations is given as
follows.

0J
0J

The Xi'y are arranged according to the difference J-i ti For

& 0,o X =3 0. For =1, allX 's only depend on X I 's for which A

0, and may be solved immediately. In general all Xij with *d

depend only on Xij's with A < d, and thus may be solved when these are

known. Then the computation can be summarized:

On the d-th iteration for every X13 with n > J > i 1 1 and

J-i = d, compute X., Min(a j k + Xii~ k + Xi+k+l,j). The last

iteration is for d = n-1. X is the answer.

0In

.*

raL ti

This algorithm .involves computing the value of n-d variables Xij

with J-i = d. The computation of each variable X1 3 with J-i = d

requires taking a minimum of d terms. The computation time for each

term is independent of the number of matrices being multiplied. It

depends only on the size of the matrices. Let it K. Thus the

"§ maximum time is given by:

3K-E(n-d)-d which is o(n)

Note that when the computation is done this way the average time

= the maximum time.

The minimum cost can also be obtained by the application of the

Minimum Constant Principle to the set of equations - MATRIX. An

example will illustrate this approach and highlight its differences

from the previous approach. Consider the example of multiplying

-. atrices:

N1 x M2 x 3

with M1 and M3 being 3 by 7 matrices and M2 being a 7 by 3 matrix.

The equations for this case are:

13 n(a 3 0 + + X2,a 1 3 1 + X12 + X 3 ,o)

1=in(a 1 2 0 + X1 1 + X2 2 ,o0)

X 23 =min(a23 0 + X2 2 + X33 ,o)

X 0

x -0
X22=

X = 0
33-

where K1 is a q1 by c:, matrix and al~ 1 xc~

.4- . .. k X e

The minimum constant is 0. X1 l,X 2 , and X have this value.

11t42n 33
Substituting for X1 l first leaves the minimum constant = 0, with X

- : nd X still having this value. X and X are then similarly

substituted for after which the remaining equations will be:

X13 z min(a130+ X23,a131+ X12,o0)

X1 = rain(a2 O = 63

X23 = min(a23 0) = 147

The minimum constant now is 63 with X12 already having' that

value. Substituting for X12 next then leaves:

X13 =min(a130 + X2 3 ,a 1 3 1 + 63)

* min(aly0 + X23 ,42 + 63)

- min(a 1 3 0 + X2 3 ,126)

23 1117

The minimum constant now is 126. It is the constant term in the

equation so, by the minimum constant principle, X 126 and this
XJL:)13

13 the answer.

This answer was obtained without ever substituting for X2. In

the 'dynamic programming' algorithm this would have had to have been

done. On the otherhand, in this algorithm it is necessary to find the

minimum of all the constants, once for each of the substitution, and

to keep a record of some partially solved equations.

A matrix multiplication algorithm incorporating the Minimum

COnstant Principle simulating the above process will now be given.

'There is a matrix M. An entry matrix M(i,J,k) indicates the the

current state of X and X the two variables which appear
In"-3. the kc-th ten on herihtof19 1+k the to vraes whicape

-. I te kthte inonthe right of the Xi3 equation. The significance

Page 15

'of the entries in M(.i,jk) are given as follows:

M(i,jgk) 0 if neither X nor X191i+k klo

are known

z 1 If either X or X
ioi+k i+Ic+X-oj

are known

Whenever a value for some variable Xab becomes known, all lij

Xaabequations which have Xab on the right are effected. That effect is

recorded by updating the matrix M as follows:

H(a,j,a-b) := 1 for n > j 2_ b

M(i,b,a-i-1) := 1 for a > i > 1

If those entries were 0.

If an entry M(i,j,k) already 1 is to be updated, then Xi,i +

Xi~k+lj + aisk is computed using values stored in a second matrix

'ZON. This is easily done since CON[i,j) holds the current constant

term of the equation for Xij, and under the conditions stated, Xi,i+ k

and Xi+k+l, 3 must both be in CON. Furthermore, aijk depends only on

the given dimensions of the matrices involved. Next this quantity

CON(i,i+k) + CON(i+k+1,j) + aijk is compared with the current value of

CON(ij). The minimum becomes th- new value of CON(i,j),i~e.:

CON(i,j,k) := min(aij + CON(i,i+k) +
C8N(1+k+I,j),CON(i,j))"

In order to identify the constants over which the minimum is

still to be taken, all those entries in CON which are neither cO(their

initial value), nor have already served as a minimum constant are

linked together.

. - -

.. .- , •- -_ . - - . .- .1

The number of rows of the ith matrix to be multiplied is in R'[i

a , end the number of its columns in C[i].

Minimum Constant Algorithm for Minimum Cost of Associating Matrix

Multiplications:

Initialize:

M Z=O

CON=

while A,B 1 1,n

Find the minimum of all linked entries in

constant matrix CON.

Put these indices in A and B.

Remove CON[A,B] from the linked list.

for J B+1 to N

if M[A,J,B-AJ 1 then UPDATEtA,J,B-A]

else M[A,J,B-A] := 1

end

for I 1 to A-1

L M[I,B,A-I-1] 1 then UPDATE[I,B,K]

else M[I,B,K] := 1

end

end

procedure UPDATEEI,J,K]

CON[I,J] := mLnR[I]xC[I+K]xC[J]+CON[I,I+k]+

+CON[I+K+1,J],CON[I,JJ]

end

r

@

I

*[

Page 17

7'q We have not con'sidered the actual order of association which

tould achieve the minimum cost computed by the previous algorithm. A3

in the minimum path example, the actual association could be inferred

by using the Hansel and Gretel Principle. This would involve

incorporating into the algorithm the facility to record which term on

the right of each equation that used solved in finally solving for

XiJ. This information would be sufficient to reconstruct the optimal

association of the matrix

.It is easy to see that this algorithm, like the previous one, is

3o(n) for the maximum time despite requiring a minimum operation not

required there. Its advantage is in being able to produce a solution

in considerably less than that maximum time, as illustrated by the

example.

_ Though the above algorithm is of interest on its own, one of our

objectives is to compare it with one which embeds the minimum

coefficient principle. There is difficulty in doing so however. Each

term on the right of an equation can involve up to two variables.

Therefore after having identified the minimum coefficient it may not

be clear which of two variables is to be substituted for. Also -

after substitution and rearrangement of the right-side of an equation

Into a maximum of a set of terms, each being a sum of variables and a

constant- the same variable may appear in more than one term.

6 Furthermore, to show the relation of the Minimum Constant, and Minimum

Coefficient Principles in the case of the minimum path problem it was

necessary to consider dual formulations of that problem. Here it is

. not clear what a dual formulation would be.

Though it may still be possible to gen.,ralize the Minimum

O~efficient Principle so that it is applicable to thi3 problem, it

appears that any equivalence with the algorithm above thus established

must be of a substantially different character than that established

for the minimum path problem.

References:

1. Aho.flopcroft, Ullman; The Design and Analysis of Computer Algorithms;

Addison-Wesley. 1975: DD 195.222

I..-

rl

* SOSAP-TR-40

July 1977

-°.

THE MIN-MAX BRANCH IN A GRAPH--AN APPLICATION OF THE MINIMUM CONSTANT
PRINCIPLE

M. C. Paull

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was supported by the Advanced Research Projects *,Aency

of the Department of Defense under Grant #DAHCl5-73-G6 to the

Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the

author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

I -
*6l

"-THE MIN-MAX BRANCH IN A GRAPH - AN

APPLICATION OF THE MINIMUM CONSTANT PRINCIPLE

In a previous paper Ell we described a principle which formed

the basis of a 'good' algorithm for solving certain equation sets.

This is the Minimum Constant Principle. In this paper an extension of

that principle is given, and, as an example, applied to the problem of

finding the minimum of all branches which are themselves each maximum

on some path between two specified nodes in a given graph.

In general, the (extended) Minimum Constant Principle is

"applicable to the solution of equation sets forming a class we call

(extended) Minimum-Monotonic. Subsequently we drop 'extended' with

the understanding that all terms refer to their modified definitions

as given here.

A Minimum-Monotonic equation set has the form:

. X,= min(T o ... Tim BI)I iNI

where N l 12s ... nj, Y, ieN are variables; -B

iGN are constants; for each J, Tjj is a function of a

subset of the variables, X 1 , iEN. Over the entire

range of legitimate values of its variables the value

of Tij is > the value of any of its variables. (Our

earlier definition Ill was more restrictive having a >

in place of > above.)

113l refers to the i-th reference listed at the end of the paper.*6

Page 2

An algorithm will now be described which gives a solution to such

a set of equations. A solution is a set of values for the variable

XI, 1<i<n. When these values are substituted for the corresponding

variables in I and the result evaluated, equal values will appear on

the left and right of each equal sign. The solution produced by the

algorithm may not be the only one. Other sets of X, values will also

give equality in I. This solution will, however, be the maximum one.

In no other solution will any variable have a higher value than it has

in this one.

The algorithm will transform the set of equations, initially, in

Its O-th version in the form I, in a number of similar steps, through

a number of versions, until for all 1<i<n the equations.with X on the

left has only a constant on its right.

Algorithm1(Minimum Constant Algorithm)

0(1) = N = (1,2, .. ni

do for k = 1 to n

Find the minimum of all constant terms in the equations for X,

iEU(k).

Let I(k) be the index of this minimum constant term.

Let Xi(k)= B(k) replace the equation for X(k) in the k-th

version of the equation set.
(k-i)

Substitute Bi(k) for all occurrences of XI(k)on the right of
I(k)

equations in the (k-1)-st version of the equation set - gather

terMs on the right leaving one constant term designated B k) n

the right of each equation. These new equations together with

any k-1 equations unaffected by these changes become the k-th

• ' " ' . i. - ", * " .. - . - ' . . . -- , _ -. _

Page 3

equation set, with their constant terms designated B(k), leN.

Set U(k) to U(k)-l(k).

end

Note that in the final set of euqations:

(J) -Xi(+1) for l<J<n

This algorithm involves the following two operations of:

1) Substituting a constant into a term Tjj then evaluating

that term; then, if the evaluation gives a constant, taking

the minimun of that term and the existing constant term.

n-1
This must be done at most (n-J) = n(n-l)/2 times.

Assuming each part of this operation takes a constant time

independent of n, the cost of the worst case is proportional

- to this time;

2) Taking the minimum of n, then of n-1 constants, etc. These

require at most n-1, n-2, etc operations, costing at most a

total of n(n-1)/2 basic minimum operations.

2So the algorithm is o(n), which is good, particularly if, as claimed,

the values of Y computed by the algorithm do in fact satisfy the

given equation set. This remains to be verified. The given set of

equations may not even have a unique solution. Nevertheless, as will

OC-I)
be shown, assigning XI(k) the value BI(k) by the above algorithm will

always gives the maximum solution. Of all the values assigned to X
I

in all possible solutions, the value assigned by this algorithm will

be the largest.

- - -o

l ' ,Page 4

Theorem: Algorithml gives a maximal solution to the

equation set I.

Proof: The proof is by induction on the steps of Algorithml

Assume that if for each kEN, (k) substituted in all

equations of (I) for each occurrence on the right of X(k) and

evaluated-that then at least for i = 1,2, ... ,J-1, the

equations for .1) .(2) a (j-) will respectively have

(0) (1) (J-2)
(1)' ' "'" I(j_1) on the right, and that no other

solution could assign these variables greater values.

This is true for J-1 = 1 because the equation for X

from I is:

(1) xi(j) = min(T(,),' B z(m () 1

Assume substitution is made for each variable in each of the

terms T above. Since (I) is minimum monotonic each Tim)

< the value of every variable of which it is a function. Since.

(0)further B,(i) is the smallest constant term(by definition) and

the constant B term gives a lower bound on , no variable

value is less than Xv(ils = B,(1). Thus the right side of (1)

must evaluate to B(0)- Furthermore no larger value for XI(j)

could ever be assigned in any legitimate solution of*I since by
(0)

(x(1) Xi 1 (ir.

Now consider the general case. From (I) in its initial

form take the equation for XT(i

(2) XI(j): min(j(j) 1 , ... ,Tl(j)m ()

* . After substitution for X1 (1) j_(2), ,,, ,X(3 1) on the right

of an evaluation of this equation (2) becomes:

(("in(A- " .((1).)
Xo1 '2 *~j'

' . Page 5

where the terms 7 contains only variables selected from:k
P10I() YI(J+1), ' 'X1ln)1

Attention to the algorithm shows that this is the form of

the equation for Xi(j) in the (j-1)-st version of -the equation

set. It has already undergone substitution and evaluation on

Its right for X1 (1)' "',(J.

Further substitutions in the terms on the right of (2') for

(or)' r >0 , can only give values for these terms > to the

value Xj(j) by minimum monotonicity and the fact that X(Jtr) -

-X(j)for all r > 0. Thus upon substitution for all variables in

(2'):

"XT(j)= BI(j-.)

Furthermore, under the assumption that none.of i) BI(1)'

.X(j_-)= BI(j-l)could be any larger and since substituting

these in (2) gives (2') then X) can not be any larger than a
(i-i)

value satisfying (2'). But according to (2'), X(J% < lB(J)

(0-1)SO B() is the largest possible value of XI(j).

The Minimum-Constant Principle is the proposition that a minimum

monotonic equation set can be Solved by the above algorithm which

Involves using the miniimum of all constant terms for variables not

yet evaluated to make the next variable evaluation.

The algorithm embedding the Minimum Constant Principle is simple,

but deciding whether it is applicable is not always nearly so simple.

The remainder of the paper is devoted to an example of a problem to

Page 6

which the algorithm is applicable. The bulk of this remaining space

(. is needed to show that the Minimum Constant Principle is really

- applicable.

An Example of an Application of the Minimum Constant Principle

Beyond showing that a solution to a problem Must satisfy a set of

Minimum Monotonic equations, we need to show that the solution desired

Is in fact the maximum-solution before the Minimum Constant Algorithm

can be claimed to be applicable. If satisfying the equation set is

necessary to the solution and the equation set c~n be shown to have

only one solution then clearly that solution is the maximum and

seatisfaction of the set is sufficient. Thus the Maximum Constant

* algortihm is applicable. It was to such special cases that this

algorithm was earlier shown applicable [1]. Minimum path graph

* problems, and minimum cost association of matrix multiplication

problems provided examples there.

Consider now the problem of finding the min-max cost of paths

between two specified nodes in a digraph G. The min-max cost from

nodes I to j is the minimum cost of all maximal branches on paths' from

Knodes i to J. The maximal branch on a path from i to j is the one

~iwith the largest cost of all the branches on that path. This problem

K has found application in medical diagnosis programs. I learned of it

* through [2] and discussion with A. Walker.

Page 7

A necessary condition which must be satisfied by the min-max

costs from nodes i to j in a given digraph is that: (1) those min-max

costs must satisfy a certain -set of minimum monotonic equations.

However, in general, such an equation set will have many solutions.

For applicability, then, it also must be shown that: (2) the maximum

solution is the one sought. Both of these points will be

demonstrated.

Necessary Condition:

Corresponding to any digraph G with nodes 1 to n, there is a set

of n equations, E, in the variables X through X such that the cost

of the min-max branch from node i to node j in G when substituted for

J1 in E will satisfy E_.

Let G with nodes = (1,2, ... ,n = N be such a digraph.

Consider the quantity obtained by first finding the maximum cost

branch on each path from node i to node n, and then choosing the

minimum of these. Call this quantity X, or the min-max cost from i

to n. Let % be the cost of the branch from node i to node j if

there is such a branch. If not :0=. B = oo if i/ n. B O.
. 11n

(The original graph G may always be replaced by one having' a branch

between every pair of nodes; those branches not appearing in the

original being given an oo cost; all others having their original

costs.) Then the following set of relations in which

xry a maximum(X,Y), XLY : minimum(X,Y), must hold.

- . _ : (1 (1 L rx2)L ... L(c rxn)LB tieNl

A more detailed justification that this set E is necessary is now

S , .Page 8

given in which for all nodes i, p, is a path from node i to node n.

P is all such paths. For any two nodes i,k, pk i.s a path starting
I4

with branch <i,k> and going on to n. P is all such paths. i

designates the J-th outward neighbor of node i.

Proof of necessity of E:

A path from i to n must be composed of <i,i > followed by some

p for some neighbor of node i. Every such path p has a branch

of cost c on it. The min-max cost of all paths in P going

directly from i to i and then onto n, must then be > q .On the

otherhand, P_, including as it does the suffix P4is must have a

min-max cost X • Thus it follows that for each j the min-max of
di

Px . The min-max path cost P is the minimum of the
0 ji

S min-max branch cost on all paths p3 over all neighbors ii of i, and

is thus clearly given by the above equations, E.

Next, the fact that the desired solution to this.set of equations

is tne maximum one will be demonstrated. This is the part of the

demonstration which, though simple, is uncomfortably long.

Sufficient Condition:

If E is the set of equations constructed by the above

considerations from G, then the maximum solution of E for X is the

min-max cost from node i to node n in G.

This will be shown by considering two basic, transformations

- equally applicable to a min-max equation set E and its corresponding

graph G.

S .. Page 9

The first of these transformations, TI, involves removing one of

the variables appearing on the left of an equation in E from all its

right-side appearances in that equation. The corresponding graph

transformation involves the removal of a self-loop.

The second transformation T2 of an equation set E is obtained by

substitution for a variable appearance, say Xa, on the right of an an
Xa.

equation for say Xbwith the right side of the equation for , and

the gathering of terms so as to put the result back in the same form

as the original equation. (Xa Xb)

Assume that a transformation is applied to an equation set (and

corresponding graph) E(G) to obtain E'(G'). We will show that if that

transformation is T1 , then:

- (1) The min-max cost between any pair of nodes,! and

j in G and G' are the same.

(2a) Every solution of E' is also a solution of E.

(2b) Every solution of E is to every solution of E'.

If that transformation is T2 , then:

(1) The solutions of E' and E are identical. The min-max

path costs are identical in G and G'.

As long as only these transformations of E(G) to E'(G') are used

the maximum solution of E(G) will remain a solution of E'(G'). Thus

when a series of these transformations is shown to lead to an E(G)

with a unique solution, that solution is guaranteed to be a maximum

- solution.

60

Page 10

TI: Loop removal:

Transformation T, consists of removing a self-loop(a branch

from a node to itself).

First, (1) we will show that:

Lemma 1.1: Application of T1 to a graph G leaves

a resultant graph G' having all the

same min-max costs.

proof: Assume that G has a self-loop on node a. Let the

paths from i to j in G be partitioned into the sets and P2

so that P1 contains all those paths in which the self-loop

branch <a,a> appears at least once. Then the set of all paths

from i to j in G' is given by PI U P , in which PI is such that

for each path p1 in P there is a path pq in P1 which is like

P1 except that all branches <a,a> are removed. But all such

paths in P' are then paths in G in which no branch <a,a>

appears and thus are in P . So the set of all paths from i to
2

j in G'= P Now it will be shown that a min-max cost branch

of 0 from i to j must be in one of the paths of P From this
2

it follows that it will be the same min-max cost as that of G'.

To show that a min-max cost branch from i to j in G is on

a path in P2 we need some definitions. Let maxbc(p) be the

cost of the maximum cost branch on path p. If p1 and p2 are

paths we say plk p2 when P2 consists of a subset of the

* ' branches of p1. If P3 P2 then obviously

maxbc(p1) > maxbc(p). Clearly by detinition of P and P for

each path p e P1 there is a path p2" P2 with p > p2 then for
2 2 1 2

S•.Page 11

each value maxbc(pl) there is a path in P2 whose value

maxbc(2) < maxbc(pl) and consequently:

L mn(maxbc(p)) < min(maxbc(p))
pep2 PeP 2

or:

mtn(maxbc(p)) min(maxbc(p))
PeP UP2 PEP2K~ k1rU2 pe 2

Since min maxbc(p)) is the min-max cost from i to j in G,
Pe 2

that min-max cost involves only the paths in P as asserted.
2

So transformation T, loop removal, does not effect the min-max

cost from i to J. Next it is necessary to show (2a) that:

Lemma 1.2a: The set of equations, E', corresponding to G

will have solutions each of which will also satisfy E, the

set of equations corresponding to G.

proof: In equation terms the transformation T1 involves a change of a

recursive equation, i.e. one in which the same variable

appears on the left and right. Assume that the variable X is

involved in such a recursive equation and T is applied to that

Xa equation then, with A having an expression involving

minimums of maximums of constants and variables:

Xa (c rX)LO/xa = a

In E becomes:
9a

In E'. All other equations go into E' intact.

Page 12

Consider any soltion to E'. Let X have the value v(O

In this solution. When these values are substituted into an

expression)3 its value is designated vQ3). Let us see how

these values work in the E equations. For those equations

X e,, which go over unchanged into E', evaluation yields

X v(e) in both E' and E. For the X recursive equation of

E' and the corresponding equation of E however, X = v(p) and
a

X = (c Lv(X)FvCO)) are the respective evaluations. But
A aa a
v(X) v(,3) by definition since that is its value in E' so:

Xa (c rv(/A))Lv(e)

X = erv() if c > v(A)
aa aa

- v(,A); else

-. X =v(A)Lv(/A) if c < v('4)

a aa-

Thus any solution of E' is also a solution of E.

Next it is necessary to show that:

Lemma 1.2b: For any solution S of E which is not a solution of E',

there is another solution S' which satisfies both E and E'

in which each variable has at least as large a value as it

has in S.

Proof: Assume that the I transformation from E to E' corresponds to

the removal of a self-loop on node a of the corresponding
. graph, i.e. recursion in the equation for X . Thus the

a

difference between E and E' is that the first has the equation

(0 _ whereas the second has X= p. For each of the
It a

"' " -- "-/ • "' ... "- " i '
: -.. . "

Page 13

other variables the same equation is in E and E'. Now let XI

have the value w(X) in a solution of E and an expression p in

the variables X have the value w(p). Inparticular:

X = (c Lw(X))Lw(A) = w(X)
AL a& aa

if o > w(X) then
&a a

X: - CLW(P) = w(X) - w()

if e < w(X) then
a- a

Xa= w(O)Lw(i4) w(Xa)

In general then in E:

(IV w(< W(P)

If these same values w(Xi) are substituted in E' for X we get:

(2) X = w(p) (note A does not contain X)
a a

A difference of solutions for X in E and E' only exists if the
a

< holds in (1). Assume that to be the case, i.e.

w(X) w(3)-e, 6>0, and consider the following iterative
a

process on the equation set E'. Substitute on the right of the

equation of E' for each X the value of w(X1), also designated
(0)

X ' and evaluate. The resultant value computed for each X

in E' is designated X 1 . Note that it follows from the above

discussion that X) X 0) for all 1<i<n. Generally designate
0J) 03-1)

by X the value of which results when 'X is

substituted on the right of the equations of E' and the

resultant expressions evaluated. Then it is easy to see that,

because of the properties of the minimum monotonic equations

each X >) X 1- . Because of the min-max nature of these

equations also the value that any particular variable can

assume in these evaluations is confined to a member of the set:

[w(XQ)iENIU(c 1 jieN,JeN U (13BifEN)

Page 14

This is so because the right side of these equations is always

the minimum of maximums of these values and .thus must equal one

of them. For some finite j then i will equal X for all

EN, since their values are chosen from a finite set while

always either increasing or remaining unchanged with an

()
increase in J. Clearly for this value of J, (X I iENJ is a

solution to E', and it is a solution in which"

S (0)= w(X1) by transitivety and thus is greater than

the solution to E.

This completes the demonstrations of the properties of T

Next consider transformation T . This transformation is first
2

defined precisely.

Consider a set of min-max equations E like those on page 7. The

equation for has the form:

x [c DL L[c rX]L ... L[nc FxL Ba ai 2 2 an nrn
Consider the substitution of the right-side of this equation for the

Xi appearance on the right of another euqation for say XD, b / a.

(I) X =[cblrXl]L ... L(car([caiFXiJL ... L[cnrxn]LB)]L...

... t[bn YhIB b(,,) L [Cbf)i]L
* ~ X (1' ~U.Ic c 1) X 1]L.

r...L cbL(ar can)) L bL(c Bb)]

Let E' be the same as E with the exception that the equation for

X is replaced by (1') above with its coefficients evaluated. Then

the substitution and evaluation which produced E' from E is

6

Page 15

. transformation .T

If the original set E corresponds to graph G the G' corresponding

to E' above, created by the transformation T2, is clearly G with the

cost of the branch from b to j changed to r3 L(cblcaj) if J / a, and

with the cost of the branch from b to a set to . The change from G

to G' is illustrated below.

~bl V. CbIL(Cr cal) '-

C 0b 60. C b a.
"b CnbLlCr-) a n

ic e claim now is that any solution of E is a solution of E' and

vice versa. Thus the min-max path cost in G and G' will be the same.

Lema 2.1: If E' results from E by transformation -T, then

E and E' have the same solutions.

Proof: E and E' differ only in their respective equation for Xb -

Suppose in a solution of E the value of is v(XI), 1<i<n.

Then for each equation except that for Xb these same values

will when substituted on the right in E' give the same result

. as in E for the corresponding equations. We can see by the

equality of (1) and (1') for all variable values, that

substituting v(X) for X. on the right will result in Xb in E'

being equivalent to the following (1) form equation:

SEc Lv(x)L ... LRCr(EJLrv(Xj)]L ..
O L~cnrv(Yn]LBa1L ... L Cc 1r v 0 j LB b

Page 16

Because the underlined subexpression is the right side of the

equation for Xa with v() substituted for all variables, its

value is v(X):
xb =Ccblrv(xl]L. L cre v(X)]L ... [rv(x fLBb

which has the same right side as Xb in E when evaluated. so

in E':

X = v(X)b b

On the other hand, suppose in a solution for E', X is given

the value w(X). Substituting these values on the right of

all equations in E except X will give the same values for all
b

variables in E except Xb. For Xb in E we have:

Xb =cbfW(yJL ... L[barw(X)]L ... bnfrw(X)]LBb

but in E', again because of equality of (1) and (1') and the

fact that (cbfw(Xl))L ... L(Canrw(Xn)LB), (the underlined

subexpression in the previous paragraph), is the evaluated

right-.side of X in E', Xb will have the same evaluated

right-side as given above for E. Thus w(Xb) will be the value

of Xb in E also.

We already know that amongst the solutions to E is the min-max

path costs for the corresponding graph G.

Consider now a series of applications of T and T2 starting with

an Initial graph G and corresponding equation set E. Let these yield:

E(G) E (G1) " E2(G2)-* ... "' (Gn)

. In which E(G 1 1 . E (GI+) indicates that T1 or T2 were used to get

E from E1 " Assume further that in E there are only constants on
011

Page 17
.j

the right of each equation, then:

Theorem 2: (1) evaluation of the right-sides of E. for X 's

give the min-max costs in G from node i to node n and (2)

the solutions in E will be maximum solutions of E.
n

Proof: (1) follows from the following inductive argument:

Assume that amongst the solutions to E are the min-max

path costs of G, and that the min-max cost of G, is equal'to"

the min-max cost of G. If , 1. is obtained by T2 from E, then

by lemma 2.1 it will have the same solutions as E and so will

also include the min-may costs of G and G+ 1 will have the same

min-max costs as G. If G + is obtained by T from GI then

since by lemma 1.1 G has the same min-max path costs as G,

it will have the same such costs as G.

(2) follows with a similar argument from the fact that

under transformation of E. to Ej. by T1, although solutions

may be lost they are all by (lemma 1.2b) smaller than the

remaining ones. And under T no solutions are lost as stated

by lemma 1.1. Therefore, when only one solution remains it

must be the maximum solution to E.

1

Now there are a number of orders in which the transformations

and can be applied to obtain the sequence of equation sets

3 , ... ,En with E having only constants on the right. We give
n n)

one such order of application which is analogous to the process used

In Gaussian Elimination.

'Page 18

Algorithm2

E 4- Equation Set

-J -

t<4-1

TI: if(in E the equation for Xi has Xi on the right, i.e. is

recursive) then (remove that recursion by applying T; i<- i+1)

if (j=n) then DONE

k <-I

"* T2: if (on the right of the equation for X ik,Xj appears inE)

then (use T2 to substitute with the right-side of

X equation on the right of the X +k equation thus

eliminating X from the right of X equation; i-i- i+1)

" if (j+k:n) then (J4-j+l; go to T1)

k<- k+1

go to T2

Each of the above steps can obviously be carried out. As a

result, variables are continually eliminated from the right of

successive equation sets in the sequence E = El, ... ,E In

going from E3 to E +1 variable X is eliminated from the equation for

itself by T1 if necessary, and then from the equations for
x l I ... oX by T This is done for j = 1 to n-1, finally

X~11 3 2' n n

leaving ih, the final equation set with no variables, only constants,

on the right of each equation.

a.

4 -Page 19

- The point of this entire development is that the maximal solution

to the equation set E corresponding to graph G~gives the min-max paths

from node i to node n in G. Therefore, Algorithml - incorporating the

minimum cost principle which is more efficient than Algorithm2 - can

be used to get the min-max path cost.

Final Note

The above properties of transformations T and T2 were shown to

be applicable to the min-max path set of equations. In fact, these

properties must apply to a large class of such equation sets,

including the min-max set as one member. Virtually any equation set

-.-has the properties requires of T The properties of T1 on the

otherhand will only be true for a constrained class of equation sets.

For this larger class of equation sets Algorithm2 would surely be

applicable to get the required maximal solution. Furthermore, if the

particular equation set satisfies the conditions for application of

the minimum constant principle also, then the more efficient

Algorithm1 would be applicable.

The class to which the desireable properties apply appears to

have considerable similarity with the closed semi-ring as defined in

section 5.6 of [3W. we are currently at work on its delineation.

-T.&--sformation T. maintains its properties for virtually any equation set.

T -'on the other hand will only maintain its properties under restrictive
- conditions.

i - I- "" - ' -F :- '... ,- .

Referencess

11) Paull, M.C.; A principle Useful In The. Design Of Minimum Path

And Other Algorithms; To be published.

12) Ng, Shueyt Walker, A.; Max-Min Chaining Of Weighted Assertions

Is Loop-Frees Internal Report CBM-TR-73; Dept. of Computer

Science, Rutgers - The State University of New Jersey, 1977

(33 Aho, A. V.; Hopcroft, J.E. Ullman, J.D.j The Design and

Analyses of Computer Algorithms; Addison Wesley, 1975.

• I°

i "

SOSAP-TR- 36

July 1977

APPROACHES TO AUTOMATIC PROGRAM GENERATION

S. V. Levy

Department of Computer ScienceN. Hill Center for the Mathematical Sciences
RButs Univrsit

Now Brunswick, New Jersey

4 This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant #DAI-C15-73-G6 to the

Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S.. Government.

APPROACHES TO AUTOMATIC PROGRAM GENERATION

The object of this research has been to gain insight

into the problem-solving process in general and the programming process

in particular. We chose, for our vehicle, a restricted class of

problems - the generation of programs for determining order character-

istics of a set of numbers (selection, sorting, etc.),

There are three levels of knowledge which we used in the

generation of 'good' programs; knowledge about progranming, knowledge

about sorting and comparing, and knowledge about numbers and their

ordering properties.

Our earliest work considered the general subject of generat-

ing algorithms for arranging numbers on the basis of numerical comparisons.

A specification of the desired arrangement of the data in

the output sequence serves as input. to the "automatic programmer" which

* "generates a program to rearrange the input data into that order. It is

necessary to specify a rule for manipulating the data, and a rule for

determining that the program has successfully completed its task. The

first rule, since it is almost completely concerned with order on the

data, is easy to specify - the second rule, the stopping condition,

turned out to be considerably more complex.

Rule 1 is, in essence, Compare two inputs; if they don't

satisfy the definition of the output condition, manipulate them so that

they do; if they do satisfy the definition, repeat the process with

another element. This rule is necessarily vague at this point. We shall

see, below, how it might actually be affected in practice.

Rule 2 is considerably more complex in its interpretation

and could easily produce substantial payoffs in the running time of the

programs produced by the system.

The simplest algorithms which we produce use o~ly the space

in which the inputs are presented (plus perhaps a fixed size work..

space, independent of the size of the input set). More sophisticated

algorithms, which are able to make use of the transitivity and other

-2.

properties of the order relation on real numbers seem in our experi-

once to make use of a space which is dependent on the size of the

input set. In order to derive these more sophisticated variants, it

is necessary that the automatic prograimmer include some type of theorem

generator. Some simple examples of output spec ifications and the pro-

grams we expect and hope to produce will make this last section more

clear.

Examples

Output specification 1: Ci) [Bi<, Bi+1].

where [B1] i-1.2,.., n is the output set

In this case, the program that would be produced is obvious -at least

as far as manipulating the data. The part of the program which generates

a stopping condition is less obvious. The algorithm consists of

comparing the first two inputs: if the larger is already on the right,

leave the elements in their present order and compare elements 2 and 3.

Continue this until all elements are compared, then go back and make

another pass through the input set. This is repeated until all the

inputs are placed in their correct position.

How can the program decide that all the data are ordered?

Several methods come to mind. Fortunately in this case the most obvious

method works - when the algorithm makes a complete pass through the input

data but performs no interchanges, the data is ordered. In order to know this

has occurred it is necessary for the algorithm to keep track of the number
of exchanges on each pass, or at least whether or not an exchange has

been made. Ani alternate stopping condition which results in a generally

poorer algorithm Cat least as measured by running time) makes use of
n(n-l)the fact that after---. comparisons every element will have been

compared to every other element, and if it can be shown that the

algorithm always moves in the correct direction, then it will always

be complete after that many comparisons.

L

aouTd zodorzd szr oz~ powegedoad

st indu-E p..oxpxo-i0A-sw-Zou IsoQITT oigi ssud Mova O0 0T04M u0TZDTS[

.z0 ZJos oqqnq sv QTqO*ZTuSo*.., ATTSVQ sr urwizoad spU~

*pua S !V dais xoiy

S 020~ t-N) N

I+d-d
!j xzoit;e ziql-Fxtm Zu zoj iIRI'in

0-d ! dais axog
:sdais luTMOTTO to; 042 0PuIT P~flom s'iostleJ

-moo jo zoqmu 042. o asn soauu lpr4Mq uo-r2T-puoo lutEddozs aivuxOZTiV 'i
C(d OTqRITA 011 ;0onTVA GqZ Aq poiu=rpirr sv) QOBTd o0lvz soSuv42.zoiuT on

'KpTM -r apum sr ssred. vT a 011ruT10 oi umzlozd otqj IAOTTT TTTM Sp.

0 oiol

Ord S
Pug

S 0-102 Td JI !V* dais zozgy

1-d '-C(+I)V=CI)g ozo;oq T dais iy
:sdals BurMOTTO; 042 ppv am mleagoad atpi QZQTdmoo oI,

puv sznduT iz 42 noxz42 sassvd pairedoxz aqii 501Puv4 qzTqm mez~oad 01a ;o

uioe~s oqz utF ind oi i*A eAv4 am--sznduT 042 4qflox42 ssvd OTBUTs T

.z0; viP OqZ soiVTndru ipW1 Rpoq a-qz Aiuo spnTOUT "o; os uiuzlozd 01Iqj

T 02 NOI ;I V

vi 0109

CI)V= CT'I)v
CT.I)v=(I)G f

CJ~v-CI)g z
T oZN

Z 002 Cr+I)V WIV I

T-I 0 4POS

um'S~Otd oqjL

- 4-

Output specification 2: (i) (j) (iS j-4B i! B)

In this case again the data manipulation part of the program

is obvious, but unless some cleverness is introduced into the termina-

tion decision, the algorithm produced will be very inefficient.

Essentially the algorithm takes 1 element at a time, compares it to all

the others, and places it between the set of elements greater than it

and the set smaller than it. This is clearly insertion, and on each

pass one element is put into its final place. Consequently the algorithm

terminates after N passes.

The Program

1. I=1 we place A(I) at each pass

K-1 It is placed in position K
J-1

2. If JOI goto 3 1:
JaJ+. 1i

If J1N goto S

3. If A(I)< A(J) goto 4
K=K+I

4. J=J+l

If J<N goto 2

S. B(K)-A(I)

-If 1- IN goto 1

End

In addition to the pregram generator which seems very straightforward

it-would be necessary to produce some sort of generator of stopping

conditions. This would seem to be a very complex part of the system.
It would be concerned with proving such properties of candidate pro-

Iams as they are moving in the correct direction (e.g., it is never

necessary to repeat an exchange of two data which are once exchanged by

the algorithm). This property together with a bund on the number of

-

SuTUos ,poa, 04 suap~zoru aSaq4 m04A BUTACM ueqj pui sinduc - .zoi SuqZ4;uos

-'re suzzi;.10 pool, Sura,1oaua3 io; anbiutpoz aATSJnZDI. V '(6961 'TTKfd 6CAVL)

uzqo2lv BuC.ios ITflid-4A0l eqj. apnpout s1002 3isuq ay. aixnpoooid uSTSOP

042 UT MO 2.19 tPT4m S1004 Tv-reds padoTOAQp aA14 Ptl suq2'4tiT Os0IZ 30

99SWP UTVZ403 30 USTSOP Q42 4T#4 au*otxdxa 30 leap 21zvo *AT4 (r

.nuiuru -.TU UI .J1A 0j QpVW Oq TI U93 suq1T10Zo 1 3Alzdvpi-uou oqz sce

uoirli-vduoo putea~vous ueoam;eq sj<;oaezz jo su*Tqoxd ou axv aeotuL -uoczvzudmo=

aqz uswoied oz peaztnb*a suoTutvsdoyuosTzvdwo3o .zoqunu 2114--eydotjs ST suvc

-021 rOs~qZ JO AITNtdwo~ 30 oaznsvsw jbqIL -'uor;PjpV uj sseazloid mwn O~iflTIAS-

*oz sn QrqVu.02 51- 05-o poureU-woTom- ATZ£T21WP13l sE awTI owes1 042 zu 2IIq.-

'suvzlozd.1101 30 uonTevz, a*4 ;noqv SuT42uos Sn 1102 0Z s Tnso 042 .10 p~m

3uTps8z;;uT uerqosd 042 *Uem 02 AzTxa1d0 uo-3:uTz~;ns 30 ST UrTMOP *Qu. (t

:suosvex Tv.IAOs 103: suq4rxoNT'

X01V1dM0: GAT~tdvpv-UolL 042 Apn-4s g0 U~uTffop mifo SI asoxp 9M

Mioyqoazd xvTn)-uvt QAT0S 0Z sulold go

uo-puzeueg aiq; uo xeaq oa strzaedo I-eicods Iflo uo Bu~q PTflo3 am 0.10MM

4nq 'sule~qozd TvUTST10 x111 JO Auiui :I.TM, Pv3; eq TTTp PITnom am 010MM

uTvuop p0oT1p01 ATISO~X2 V SvM PQPQou am l4m 1R Sn 0; ZVOT3POp0100

-mg0Tqoad SuttVTzoTa ul~ox l u~m alzo uorjua0221 o3T;n

4Tuiazd 1Ou PIEIom pue (SSa~zns 30 soozRop PQXTM Ax0A t[2Tm) S.Z~p.0xv01

aazo Aum Aq paTpnj S u~aq Ap10.zle SuO~qoxd Z1noT33TP 0Z X[1oM

944 J 3 t 00-4 IXGATp P~nom uiozsAs umoTq-TT1n3 S QI213 oI.ZuTAx;z

Aq Ivi~s oz zv4; polleas IT '501nzvo; OSotI; TT 01Tnbox peopuT Am

* - 10URU!1z0.1d 3T2Irmoznv MT13sf Ainzr Aure Zv1p. IVOT smogs; IT Miflno1I2

* I *m1142Tv1 PUo38s 4 UT palTfibox SUOS;.rdmoo

30 .zequnu orq; A~qvzQPTsuo3 avnpoz OZ 0Tqv aq PKnom IT UOiIVTG OUT

-zopio 042 30 AZIATITSu.1; 012 jnoqv aula ssooid BUT~rlI0UQS UrDs~oid

042 JT 'Qduir zod -u111oad oq2 ojUT p0oflpozzuT eq 02 saTzua~z~330

alq~ssod ZOA03STP 01 Q~qTssod eq 24S1U1 IT sazeqinu go sep..zadoid oqZ Inoqu

SuT'q40mos M0Uq IqMiti aoA0d 3010042z g0 zi0s 0305 izM 01042 SQPcaq-;I

u0pumixe 30 ;ooad puwe UO punq v 3PTAQ.%d MtOO sa0tU11p.104uT a~qTqsod

-6-

41gorithms for 2 *i inputs (i<<2 K) ; the Batcher odd-even merge (Batcher, 1968)

4tiategy; ahd the splitting strategy-which we describe below.

'These algorithms have as their basic operation a comparison between data

stored in two memory locations followed by the assignment of the smaller of

thb two inputs to one location and the larger to another. The algorithms are

called non-adaptive because the sequence of operations is totally independent

of the contents of the storage locations, but is completely determined at the

start of the algorithm. he algorithms can also be carried out by networks of

'comparators' (a comparator is a 2 input - 2 output computational device which

-operates on numbers as inputs and produces as outputs the minimum of the inputs

at one (designated) output and the maximum at the other output). The networks

are formed by connecting outputs of comparators to inputs of other comparators

in an obvious (loop-free) way.

* " There have been several studies of networks for sorting (Levy, Paull,1969;

Batcher, 1968; Van Voorhis, 1972; Knuth, 1973) which have appeared in

the literature--we shall ignore the general sorting problem here and instead

focus on the following problem:

The selection problem - to find the it h largest input
th(Note that when we look for the i -largest, we always assume that 1,:

If this is not the case, then-we would look for the (n-i) smallest.

The transformation between the algorithms is obvious.)

The goals of this research are to learn to -design programs, not

networks; and we do not treat this as a network design problem. We are

-interested in the question of how one goes from the specificatiov of a

problem to the specification of an algorithm -to solve that problem.

It should be obvious that non-adaptive algorithms (NAA - from here on),

*in general, prove to be less efficient -than unrestricted programs to compute

the same functions (i.e., the NAAs require a greater-number of comparisons).

To find either the largest or the smallest input (out of n) requires n-l com-

parisons in both the NAA and the program case. This is easily shown to be

optimal - and realizable. However, to find the 2n d element requires n+llognl,

comparisons in the unrestricted case and 2n-3 in the NAA case. The former is

optimal and depends on the algorithm4 locating the first element and

zouzdmoo aj~uc; v Aq uorxzado sTqi 3iusoad uvo om uoiazou lonuu

I MS

(Tmi XO1) Ul T11so* aus
sip*odzzTw A %xwsee.

issue's o~ put; sv putj esodo au q i ium da oz o uotzvYN d S42 q sup q u

ie'ia ssq s 'a IT V Pug !UGSt ~qms Pou ZSnq 'zSoTd O vq MON o0 A Ouue IOU ST

*GuT -u) r-IC u)(1 2S01 S1.UU1G5 1j 4M . r uo5i 02zt sqj1S G mou 04 *42DU ST IT1

02smoq puo ss q PT;o 05hC.3 XO1(2 U l SUGUGIS TS.1 s5112mo 01. *1OT P

snu LUNotJ (Ism 29) eqj Suomw Aluo zususT. puo~of sqz zo; ful-ol uZqz

aS

4z -xample of a minimal NAA to find the second Jargest of eight inputs is:

1) (LI , L2) Coup (LID L2
2) CL1, L3) Comp (L, 13)"". s) (Lis L3) - f YL, 4
3) (L1, L4) Coop (L1 , 1.4)

4) (L., L)1 Coop (L, L5)

5) (LL 16) Coup (LI, L 6)

6 1 ,1.7 Y Comp CL 17)

7) (LI, L8) Comp (1, L8) and the answer appears in location "L2

8) (L2 , L 3) 4- Cop (L2, L)

.9) (L 2 , 1) -' CouP (L 2 - Y4)

10) (L2 , L5) - Coap (L2 , L$)

-11) (L2 , L6) Coup '(L2 , L6)

12) (LL)4Cu j~'17

13) (L2 , L) CoP (1 2 , L)

This algorithm can also be represented by the following comparator network.

- .. 8

":?" " - -econd

I"e Levy-Paull algebra (Levy, Paul1, 1968) for soqrting algorithms consists

*. .4f two binary operators-(Minimum) and + (maximumn). The algebra is isomorphic

* to a Boolean algebra witiout .negation. Consequently, the set of finctions corn-

,puted by NAA's is isomorphic to the set of positive Boolean functions. As a

corollary, the functions computed by an NAA are completely determined by what

-they do on the input n-tuples of O's and I's. (This. tells us, for example,

that to test an NAA purported to sort n inputs, it is only -necessary to test

q JV) Uqe.) ozequcq

m szes 0^3 eqZ zzos (Z

.~q U qTq>

q3iO u sZts jo 6s:os r ozur sznduT ti Xseq; (V.:

sjzoqiunu uZ jo zes v ;o zno slaqumu zsaliT: u asj guiPUTS a.zo
au,zo2~v .uv ST BUTMOT10 TOaqa *mzoaqj aq2. jo souenbasuoz azutpoeuu tr us C

3 Qjzo0.OLL sis olzvl so oq z.ouueo-.

.WMuIU SILL q2u~~ Sir q .o V~ XewZ~qft UO SUTpusdap s, q -
pu su I T o s~q -(pus s,v x sv olxvlso q uv fq - T

s~tndu f T

T
si 4v744 s q rpuv s 1 U Ivjnbe xro uvqz tzeag.ST -r q + -9 (T:oz

T-4fT f T3.5 q V

usq~t 3-:r (s,q 4)!M POS.WW-

SV paapi A1zolsoouaq szduTUZ qz ivoan c > - q > Tq puv
Il '. Il > TV 0.124M q''.. eq# u'* i .. o 9sndur UZ 0A34 am osoddnS

-4OU 'uOZP~Ppl Aiurpxo st4sd.xzsqns qz)IM pasri usqm + ureze xl4 azou) mlozop

Butmollo OL() uo posvq sT 43TWTTds flIV Oft IPT4m O.Z~Put 3nfPOItUT OM

*(ssjqVTXVA ZOUKZSrP I jo'sinpoid aq2 fli

jo unO 9q3S 0) S vt iz) uOutaunk . 140uMiS Tj sqz st 2ndzno zs.Sgzut T *q. o.,
e utpuodss..uotiun UO!qU lv3)U4 umdqs OAu4 0A .xotilinj * ,4)~dx aq 41!.

* ~ ~ S S VTdti3)nduV Iu tc 3ou Pu, so 1. put q, jo i'j:t udi n o:

-10-

By our theoreuthe max of each of these-pairs is 2! C,,; therefore, the
set-of imax's is the n largest inputs.

-We shall make much use of this splitting operation in the work which

follows.

Another operation which we shall call upon frequentlyis the operation

-which makes an n-l sorter from an n-sorter, by 'peeling'. Given an n-sorter,

we can form an n-1 sorter by assigning one of our inputs to be the maximum

.1Input and eliminating all-the comparisons-through which it passes.
T7his operation is much easier to illustrate with a network than a program,

but the translation between the two representations is obvious..

* Exmple: To construct a 3-sorter from a 4-sorter

4 Sorter

"~assum a is the maximum input

*7he x's mark the comparisons which involve the maximum input, a. We can

* eliminate these comparisons from the 4-sort algorithm yielding the

lz~zOs-s I E.OJ 0O2

s~nduT C Aumv read *N

E 6405-9 1,.Tdo us 4zTm 2uwZ -'-

POZ.ZOSUT

;tndur T

192.ZO Sr

io-4.xos V lwElo

.zo uoss- up lns.

p ..

$ -TT-

-12-

1%e remaining 5-sorte.r is exactly the same as the five sorter designed by

insertion above. Given these constructions and any good general construc-
K

tion for building a 2 -sorter (e.g., the Batcher odd-even sort merge strategy

(Batcher, 1968)), we can now define a macro sort(K) which sorts K inputs.

Thus far we have defined two macros sort(K) and split(K) which takes

two K input sorted sequences as inputs and splits these sequences into

two sets - the K largest and the K smallest inputs.

-'We must also define a pair of macros max(n) and min(n) which find the

aximum and minimum of n inputs; and a merge macro (again we use, for

example, the Batcher merge (Batcher, 1968) which is currently the best merge

NAA known.

Our attention has been directed towards the problem of finding

the i largest input. We know that for the first or second (from

either end) n-l and 2n-3 comparisons, respectively are required. There

are no good bounds known for the other outputs. It was suspected

that an NAA to find the median would be as complex (require as many

comparisons) as an NAA to sort. We will show below that this is not _7

necessarily the case.

'2z1ur basic strategy will be to home in on the appropriate output by a

series of sorts, splits, merges, maxs and mins, eliminating inputs as possible can-

didates until we produce the final result.•

MThe cost of the sort and merge-macros grows faster than linearly with

the size of the input sets. Therefore, it would seem a reasonable tactic to

perform sorts and merges on as small sets as possible consistent with our

"problem. Thus, a 'divide and conquer' strategy is suggestbd for sorts and

merges. This advice suggests that we begin our .operation by dividing the in-

'put set into smaller groups and then sorting these groups. If we are looking
* thfor the i input, and we divide the input set into groups larger than i and

th .th* sort them, then any element beyond the i t of each group is beyond the i
-of the whole set and can be disregarded in the later stages' of the algorithm.

* On the other hand, if we divide the input set into sets smaller than, or equal

*

o3uy szlduT 91

G* 943*TATP UND SM j6Sd -sqjvd 1I£5Ass molloj 03ol sn piel **xApI £flo oj*f

(91rZ) purd :Z ofdbwx3

3£IOS 03 61 50183 Z! !SUOSTdUoo IT qT W43J031I 9144 JO 3S0D SIL

-Jos Utz Aoj p551% W~ Utz (t
aq p~flom .Tq loMol !3og xvw o5vzfI3 53 puT .rvq .zsddn aqj (VIV) ITyds (C.

W; ino~£sf 1,'Ij

* 42s -T* uvqj allew f 535 10 ur szj1155. s355 paz:s irnbe ojuT 2ujuonTITzwd

* £0430 Auv £fl03 j0 5395 o0M3 ozur Is5 543 suotatj3.d 35.113 W431£OSTI 9q1

*201fAP 10 zinoTo; U! s@aoipq: ma3 ar1 0.1043 pile auo aotwrs v ST *Tduvxs STUj

IS'#) puTidI0 '5E)o 1-,1 142T* 30 IsegXr %-inoal 4Pd 111.4d5X

34nd~lo 5v 310919T T

oqi soonpoid pup s~ndui C 501 IPTMM UoTJOUrg 043 ST WT') Puld :UO;2I2ON

:6AOqVlusATS a31AP9 4 iAddv Pp solduuxo aos It AooT 0M AMj
*5£os jo £td v £0 salleu JO Jzpd.

v Aq £S143;s pope~szd irqpqotd suim 31 uoqz '02.10w 8 431M 4STUT 0SM 11

s0IPTPUv olqtcsod jo 2as v? p£I~sTp 03 psn

suM 3flq '309 ajpao~£uf Us qz-Fn Sri 4J1 iptqm uotiriodg ue--ZTjds v uaoq 9"14

4 3511 do3s SU~p, oasjd o'i3 uaqi cr jo uTE r £0 zJos r qjrm 4sIUTU SM I
idzwl TlUtj r 10TGs.01 pasn sq zouu1o ZJ

* uoTZMUopU £SDP£0 s4C0£390D o£-"l'l 3jTfds 04 3 suiS lnd-Ino T 043 -sn -£03. spuT;

Ip14m szfld3% 43 J0 4DSqv.; ma'os uo o£lIUI 3.109 in oliOUI 1n asfl am .Zo--2uS

aTSW!S 1 43109 q34m 0AV~I ;1M 113'qM So.1oIU Aluo 043--01flh (ucui 2o) X= v

0511 £54IT TT4S OM 't1Rj2r10oT? 1 T043) sputj, e jo #1331 TBUTJ 042 UI

T UR44 .10310.1 szTgS

jo sles yunbs Aja~vmpro.zddv 03UT Ia9 3fldut 044 QP!Atp Pfloqs am 'almquol

-s3iep1puva *ljtiod Xuv aiutwtjo 2ouu%?z am uot '111.14. 1105 pUl i ozT9 '03.

-14-

1) two sets of eight or ""

-2) four sets of four or

3) -eight sets of two

In each case we'start out by sorting. In strategy 1, we eliminate the

six smallest inputs from each of the two sorted sets; in 'trategy 2, we

eliminate the two smallest inputs from each of the four sorted sets. In

strategy 3, we can eliminate nothing at this point. At the next point, for

:strategy 1, we can merge the two ordered two-sets and pick the third or

split them and take the min of the max set--both alternatives are of the same

cost. For strategy 2, we can merge each of the pairs of ordered two-sets
.which remain and then merge the two-smallest from each pair; or we can split

the pairs and sort the remaining four candidates. Either strategy is of the

same cost. Finally, in strategy 3 nothing can be discarded, so at this point

we introduce four pairwise splits which leaves us with eight unordered inputs.

Then we can apply the 3 in 8 algorithm (which appears in subsection 5. below).

The three strategies yield the following algorithms.

1) sort 8; sort 8; merge (2,2) -

or -sort 8; sort 8; split (2,2); min

2) sort 4; sort 4; sort 4; sort 4; merge (2,2); merge (2.2);.merge (2,2)

-or sort 4; sort 4; sort 4; sort 4; split (2,2);-split (2,2); sort 4

3) sort 2; sort 2; sort 2; sort-2; sort-2; sort 2;-sort 2; sort 2;split (1,2);

" o split (2,2); split (2,2);- plit {2,2); find (3,8). -

-where find (3,8) is find 3 in 8 and involves Tepeating

2he procedure with the -new .parameters.

Actually algorithm 1 is noticeably more complex than any of the others

.because of the difficulty of the 8-sorts which require a lot of computation.

At this point we should discuss the relation between splitting and

-merging. The split operation has the-obvious advantage that it allows us to

eliminate several candidate- answers in a single operation. However, it destroys

order information--the outputs are unordered sets--which may have to be re-

sorted in the later stages of the algorithm. It may, therefore, pay in some

tases to merge sorted sequences rather than to split and re-sort from scratch.

In both stiategies 1 and 2 above, it appeared to make no difference (from the

viewpoint of total number of comparisons) which strategy was adapted.

*(:nd~tno I, eq4 xoj 2uptoot uaw.) T uvqz reTivas sdnozZ Buuot

Aq pOuTIX Su~ijou sT aX£qz 'ssnoo jo 'pui !:ts -4ndu-t aqz 30 *zTs Sp PTA

'aTqTssod 6v ArTzMou sv 'p~noijs 41 -zqnos zndzno ap~ jo jaqwmu aq4 Aq mo[.q

papunoq si doizs zj; e*ux Bupxios £0; uosolp3 sdnoxS j0 *zjs aUj

! *Aow Bu;zz;Tds v Aq pap.sad aq IMT 3T £uo; eqz aq oz sT z; ;I (f.

.t)u , q £qpTs Tilm zuzl T uv Bupl uT dosTUT; .a

szndul 30 ioqvufl aip ZIA ATIOIUT1 uvip JS35U3 SAW0S1 (BUTZIOU £0) SurixOS ;o

kAzxotduzoo sup--*SzsT umpz Hius axe IpTqm sdnoxl z.zos oz atw £5 6-1 ;cj (T

:O*iAP8 SU1M0TT03 sip uo spuodep sanpazoid Su;pvjauaZ unpzxo2lu =V.<

M(v)1os !t'V)ZiTds !C't)vj~lds !Ct)zzos !(t)zzos !(t)zzos '(V)uoWs Mt £0

36 (t,'V)eS~ld !(V)s2£e. (,+£os !(V).Zxos !()os !(t)os !() zos Crf) .

1v.Xw (IDXN (~)~~ ()zs ICt"')ZIdS- !(t)u4zs !(t).ZJos (Z)

:*x1 esstq *suipT1A02TI *AfliU04t £1103 oz speal *£rnp0~0d TeasueZ sip vxH

C's)Pu~d CE

*(s)uvu !(s'V)ZTOS !Cs):I-os '1(S)Z£oS
55111£ IvaeueS £110 UiO£ 6101OJ 03 PIA SUOTizesdo-

30 aouanbas *lqvuosue£ ouo 4Clu0 ST *£Sip~ 9.xa0MM alduxa aepotmI ST STUL

C91'8) PUT9 Cr
W ~ u~w fCE'E)MuS. 'Ct)SOU; 'CtV)ZI0S ST unpcxol xnCo

*dnoxS SUIUTuUZS£ Gip 30 uTID 04Z OV4P ATIIuT3 pts 'dntoxz

,,s j0 sequeuz q1£no; aqz, Sujpxu~s~p SSaxip uo zcids Sm uoip '£fl03 30 sdnozl

oat oq Sip zipos Actzuz am~ eM '0£030£0L *S02TPUI sloTAqo II 0.1 £1103 ;0

*sdnozl--ozTs UT asx4ip suol -4v 30 sdnotg POSU OfM 9TAPI £xn0 NuTrmoUod

Cs9 0 PuTd (I

sojduwx3 TuuOTZTPPV

* ST

-16-

5) The number of strategies to be tried has to do with how i divides

the size of the input set.

It is not clear yet whether merging or splitting is the better strategy

(if indeed there is-a better strategy). It is hoped that.experimenting with

"-, computer generated algorithms for large numbers of inputs will provide some

Insight in that direction. This phase of the research has produced the fol-

-lowing strategy for generating 'good' selection algorithms.

*- A procedure for generating an algorithm to find the ith . out of n is '

(Note: that we assume i < ,--only the distance from 1 or n is significant

-and the results carry over to the other case by symmetry)

1) Partition the set into as equal as possible parts subject to the

--constraint that each part be ; i.

*'"'"2) For each of these partitionings, sort the partitioned elements,

i) try Aerging the sorted sets Cusing Btcher odd-evei merge)
.th

discarding (before merging) any elements beyond the i in each set.

* ii) Try splitting the sorted sets discarding (before splitting) any

elements beyond the ith in each set.

3) In the case that the strategy i has been adopted, continue to merge

discarding elements beyond the it in each set.

. 4) In the case that strategy ii -has been .adopted, repeat the procedure

.ft stop I for the resulting set.

S) Compare the complexity for ail he algorithms which are generated and
select the best ones.

This program generator has been programmed in ILISP and runs on the
4Rutgers 10--it is called NAA. How good is NAA? How good are the programs

it generates? It's pretty good, but not optimal, in fact it doesn't even

produce programs as good as a clever human programier. There are two

* reasons for this deficiency. First we don't in general know any regular

procedure for producing optimal sort macros. We don't want to tackle that

problem here and in our evaluation factor that part of the problem out by
substituting the best (smallest number of comparisons) know sorting NAA

into our evaluation procedure. However, NAA failed to produce best
algorithms for another reason--it lacked specific domain knowledge. A

~~ svn[IA OSOIP. 2080 tPTqM Svql1l2iOTv soonpold TVYN PUT SQSU [IGZAOS

-UMOU31 sml2OTv uOT23OTbs 4seq olpz sOQZO~ TVVN~ PSCZ1. OAhI4O SOS oi

TT .z09 'TVyq .zog AZTTeupdO MtOMS OZ. 4Tqe uoq z.ou oAUM am lqST1oqzT

*Z 2JXSSUtCg

V 'T Q2uTTT3

E UOU
V DlvuTmTu;Ix

v 410zS(

Z 1ZSSUI C

v eIUUSU (T

WE') Pu~d :Giduzwxg

SUOStZedUIoo Aur ax~flbQa !zou soop tpOTq jj3L.VNIWIljaaa UO1T.tdO

Jatj4fOU8 ST OQtQqL 'U JO ZSOZ U 4U SIZOA Z.I -SlsqMnU PSO.OS U O2.UT XsqmifU

U' S~.KSSUT 1PTMM,,CV) IMsNL, uOTEZUXdO M40u U SsOznbox StU~ -sesssezload

IP.ZUsS q1j SU Quo Paz.Tsp O1q2 aq 2.ou uso tp3qm sz.ndzno Aue BUTrZUTuITTO OmFZ U

3VUO uoS P0410 poqxo 02o'4uT szndulE 2UTUTUUOQ4 012S2.OSUT Uo~lZ PUS ' LUBOt

U~lI; IOTflMS X 4SOZZUT 012 zo; sznduT -4 S2.tos IPq UOpvauagUS ur1-4Txo2TI

04 lqzvoiddr ojUUXszEU 111 02u0 pSopoU ST 02PTMOD1 sTM2 'AT TVTlUSS3

4-Oz *pSLZ OA m SOS-U0 0!1 TTV UT UMOUI

Sufl21.OBTl zsaq 0112 aonpoxd 02 sxloqiuU 0112 2110(11 OSPOPIOnI TvuUO:TPPS OWDS

Sasni IzTm TVVN POT T,9 VYN ;O U01CS.IA POAC' hrT UU u!22ZZlm SAUMl 9M

-sesso.zSo.d U11ZIOSTI 0112 SvUOPOtzPTSUO

=01; S021PTPUMO .Tqrssod 64UUTMrTS 02 szoqlmu 0112 jo soT2.adozd .topio

0112 ;o 0IPSTMOWI ;o GSIUAPV SQjl2 PTTIom s111121.ONTT QS012 lUTZ'SOP uuq

-18-

In summary, we studied the automatic generation of programs for

-the solution of a particular class of problems. We succeeded in

.introducing enough expertise into the program generating procedure to

produce extremely Sood and possibly optimal programs for that class of

problems.

References

Batcher, K., Sorting Networks and Their Applications, AFIPS
Conference Proceedings, Vol. 32, pp. 307-314, Spring 1968

Levy, S., and Paull, M. C., An Algebra With An Application to
Sorting Algorithms, Proceedings of the Third Annual Princeton
Conference on Information Sciences and Systems. (1969)

Knuth., D., The Art of Computer Programming. Vol. 3.
Sorting and Searching, Addison-Wesley, New York (1973).

Van Voorhis, D., 71 Ph.D. Thesis
Stanford University, Stanford1 California (1977)

J_

4

Published in IEEE Transactions on Computers

J

ARCHITECTURE OF COHERENT INFORMATION SYSTEMS:
A GENERAL PROBLEM SOLVING SYSTEM

C.V. Srinivasan

Department of Computer Science
Rutgers University

New Brunswick, New Jersey

6!

-- ~ r

- 7

• 390 IEEE R. IKANSMA1'IONS ON C NHT' FUl' S'l:{, Vo[N, ('5, NO. 4, AVIHI 197t '.

The Architecture of Coherent Information System: A

General Problem Solving System
C-IrTOOI V. SRINIVASAN, MEMBER, IFFF

Abstract-This paper discusses the architecture of a metasys- stants, variables, predicate symbols, function symbols,
ten, which can be used to generate intelligent information sys- logical operators and quantifiers. The strictural
terns for different domains of discourse. It points out the kinds of knowledge specifies the structure of the roational sys-
knowledge accepted by the system, and the way the knowledge is knwled ifi the ns e olthe Ltial ss-
used to do nontrivial problem solving. The organization of the tern used in a domain. 2) Sense knowledge: Logical as-
s.stem makes it possible for it to function in the context of a sertions pertaining to the sense in which structures are
large and expanding data base. The metasystem provides a basis interpreted, and constraints on admissable structures
for the definition of the concept of machine understanding in beyond those specified in the syntax. 3) Transforma-
terms of the models that the machine can build in a domain, and tional knowledge: This pertains to the knowledge nec-
the way it can use the models. essary to transform given descriptions of specific objects

Index Terms-General problem solving (GPS), knowledge to new ones, according to specified criteria.
based systems, metadescription systems (MDS), model based Corresponding to these three levels of knowledge
reasoning. there is a hierarchy of problem solvers, checker-instan-

tiator, theorem prover (TP) and designer, in order of in-
I. INTRODUCTION creasing complexity. The checker-instantiator system

acts as a sophisticated data management system that
UR objective is to create a metasystem which can establishes, maintains and updates the data base of

be used to generate intelligent information sys- models of specific objects in a domain in a manner con-
tens in different domains of discourse. The metasysterm sistent with the structural and sense knowledge. Check-
is called the metadescription system (MDS). It has fa- er can answer questions pertaining to any of the specific
cilities to accept definitions of description schemas and models for which the information is either directly
descriptions themselves, of knowledge-about facts, stored in the data base, or is directly derivable by evalu-

objects, prcseand problem solving-in a domain.strdithdaabeoisiecldrvbebyvlu
processes, ating a given logical assertion in a given context. The

A domain might be a disease system, a piece of mathe- TP adds power to the checker in three ways. In certain
:":" 'matics, or computing systems themselves. The descrip-,tin cm p ng systems themselesTe doscip cases it helps reduce the search effort of checker by giv-
"-- Ition schemas and descriptions of knowledge in a domain ing it advice based on deduced consequences of sense

specialize the MDS to act as an intelligent information kn g were ase n wansequece of se -

systm fr te dmai. Fr a oman Af, he nfoma-knowledge; where feasible it can warn the checker of im-I system for the domain. For a domain M, the informa- possible situations in the generation and updating of, ~~tion system associated with it is called the coherent in-moesitcnaodtriegnratuhvlesfa-
models; it can also determine general truth values of as-

formation system (CIS) of M. sertions based on the structure and sense knowledge.
In our research we have two principal concerns. 1) The designer adds further power to the system by en-

How may one describe knowledge in a domain to a corn- abling the system to plan courses of actions using given
puter; what kinds of knowledge should a system have to
exhibit intelligent behaviour; what operational facilities con itive trafato n rles) i a aer

are eedd t accpt nd se sch nowedge 2)How consistent with the facts of a problem. This hierarchyahare needed to accept and use such knowledge? 2) How imposes a very useful classification of system facilities,I ~may the computer be made to use given knowledge au- adgvstesse osdrbefeiiiy
and gives the system a considerable flexibility.

tomatically to solve problems in the domain and answer The descriptive language of a domain is itself speci-questions?

The MI)S accepts and uses three kinds of knowledge. fied in terms of the model definitions in the dotmin.
T 1) r c c t- k nde pertiin o thewform e- Language analysis is thus looked .t as a model building:O ~1) Structural knowledge pertaining to the form antipoesdotipraty h oe eiiin na "

process. Most importantly, the model definitions in a
syntax of descriptions. Descriptions may, of course, be domain may include definitions of lrtl)lem solving
strings of words in some language. The MDS will trans- states (PSS), relevant to the domain. The PSS may pro-
late such descriptions to structures within a relational vide facilities to summarize the problem solving experi-
system. The relational system itself may consist of con- ence of the system. This summary may be u.ed to intel-

* Iligently guide the problem solver.
Manow.cript received February 15, 197:1. This work was supported This work on MDS and CJ systems may be thought of "

by the National Institutes of IHealth under Grant lt(R-643.
rhe author i; with the D)epnrtmet of Computer Science, Rutgers essentially as a further extension of tie trend started by

University, New Brunswick, NJ 08903. REF-ARi0 [1l, [21, QA4 [31, POPS [41, sTIIPS [5J, [C,,

" - -

Best
Available

Copy

392 IIE 'IIANA('IONh" ON COMr'IVIt5, AI'Hl. I!;lh

TABLE I At present we have no formal guidelines to make these
choices intelligently. The particular choices made in a

I. PIACI: (osintio of P .I osant) f. CI (lonain will have an effect on system efficiency.
(oio."-,io. .2) Instantiation of Templates: We shall call ail in.

. -.. 2. PIOPLE: (el'ments PERSON ,.ents ot) stance of a template as the model of the object instan.

3. VUIIL: (elements VEHICLE elem nts of) tiated. Thus, the model of RH1ANKI will be an instance

4. PERSON: (type PTYP type of) of i'LACE. Every triplet (x r Y) (where r is a relation
(occupant of PACELI ccupant. .symbol) appearing in the model x should be dimension.

S. PYTP: MISSIONARY. CANNIBAL ally consistent. That is, for some templates M and T,

6. PLACELI: (elements (PLACE, VEHICLE) elements of) where x is an instance of M and y is an instance of T, ei-
7. PLACEL: (elements PLACE elements of) ther (M r T) occurs in M, or (T i Af) occurs in T, where

8. VEHICLE: (pilots PEOPLE pilots of) P is the inverse of r. There are a few relation symbols
(position PLACE position of) which are system wide, like template of, name of, ele-
(tango to PLACEL destination of)
(capacity INTEGER capacity of) ments of, arguments of, etc., which can appear with all
(occupants PIEOPLE occupants of), CC4 instances in the data base, and need not be defined in

[CC1l (! occupants (PEOPLE X)(*! occupants X) the templates.
(((NUMBEROF CANNIBALR X))v The model of RBANKI will be a vector of five point-

((NIIIBEROF MISSIONARY X) is 0)))) ers, say (Pte, Pn, Peo, Po, Ppo) corresponding to the rela-
[CC2] (*' position of ((VEHICLE X)I(*! position of X) tions template of, name, elements of, occupants and

(K tango .) position of, respectively. Pte will point to a pair (Ptol,

(CC3] (! occupants of .#.is 1) Pie2), where Pito points to the PLACE template, and
[CC4] (* occupants.

9
. .capacity of !) Pte 2 to possibly local conditions (LC's) associated with

I__ RBANKI. P, will, of course, point to "RBANKI". Let r

be any one of the remaining relations: P, will point to a
quintuple of the form (#,PI,Pr2,p3,Pr4), called the

first construct the combined list of existing occupants descriptor unit of Pr (or r). The elements of the de-
of RBANK1 and y, and then verify the predicate. CC's of scriptor unit are the following.
this kind are called declarative CC's, as opposed to the
other kind, called imperative CC's, like, say (for a hypo- Descriptor Unitthetical template PERSONi) yPr 4 Pointer to y such that (RBANKI r y) is true,or pointer to list (y) such that (RBANK1 r z) is
[CS1] (*! sibling ((PERSON1 X)I(NOT (X is *!)) true for every z G y. We shall write this as

(x child of father of *))) (RBANKi r (y)).

[CS1] may be used to find the siblings of a PERSON1 in ,3 Pointer to list (') such that for every z y,term y ofbte child tofind ftheriblin of ea sol. i(NOT (RBANKi r z)) is true.
terms of the child of and father of relation symbols. p 2 To local conditions on values of (RBANK1 r).
The checker is used to evaluate CC's. We shall discuss Pr1 To transformation rules (TR's) local to
the evaluator in Section I-B. (RBANK1 r), called LTR's.

The significant points to be noted about CC's are the
following. # The number of elements in the list, set or trip-

1) The knowledge represented by the CC's is of a dif- let pointed to by/P 4.
ferent kind from the structural knowledge, specified by Every Pi will have an inverse, say PrJ, which will point
the templates. back to RBANKI; Pr4 is the same as PA4. The inverse of

2) Each CC is specifically associated with a particu- (Pt,,Pto2) will be (Ptol,Pto2, where Pto1 is the same as
lar relation symbol. A relation symbol, say "likes", Pi (i for instance); Pi will point to RBANKI from PLACE
might be quite different in the context (HUMAN likes template.
SOMETHING), from (CATTLE likes SOMETHING). A A pointer in a model can have one of four values: not
CC is invoked and interpreted only within the particu- stored (NS), not enough information (NEI), NIL, or an
lar local context of its anchor, within the overall struc- address (or value). Initially all pointers in a model are

ture of descriptions, set to NEI. A list, set or tuple will have NEI as an ele-
3) The logic of the CC's is highly dependent on the ment if it is incomplete. Templates thus specify the

structures specified by templates. Also, for a given sys- data structures of models in a domain. They provide the
tern of templates there may be more than one way of basic framework for the organization of domain depen-
choosing and anchoring the CC's. Further, for a given dent knowledge. They also play a major role in the spec-

, domain, there will undoubtedly be several ways of de- ification and use of problem solving programs in a do-
fining the templates and its associated CC's. These dif- main, as we shall see in Sections lI-B and II-C.
ferent definitions will correspond to different ways of There are about fifteen different kinds of templates
representing the knowledge in the domain. The MDS in the MDS. Variations in the structure of descriptions
provides facilities to experiment with different choices. may be specified by delining, what are called variable

-. ,7.

:" ~ 9. "T1II (I. IIAN:-;AI'I)NS ON,% COMI'4rIEI{S, APH1l. I'

'* TABLE II
Logic of ('hekcr

Literal x #X denotes the value of x.

II

TR()FR # R(x TP 0(x) rp0 NTP 4(x) TF t F P ? F

T x T T F T T T F

x F 1 F ? 7

Propositions: P, Q. Let X denote one of TR, FR, R, TP, FP, NTP, NFP. Then "

[x(P A Q) -%X (P VwIQ)JI is true.

Also "" and "v" are symmetric:

X,(P A Q) - X (Q A P); X (P V Q) I X QcV P).

The various functions are defined below for (P A Q).

r(P A q) (4p. 4 QJ

Mr, r) Cr, () (T. F) (?) ,I (F,F)

T. (tr,() ^ ,(Q)l F M I F F

FR T ? FR (Q) ? FR (Q) (FR t() FR #]

R T R(Q) F (R (P) R(q)j. F F

TP (TP (P) A TPM(Q)] TP,(P) TP,.p) ? F

FP T .P(Q) ? FP(Q (FP (P) A FP (Q)J

PP T RTP CQ) NTP (Q) [NTP (P) ANTrPFQ)] NTP (P) A NTP (Q)] NTP#(P) A TPrPcoJ]

NFP [NFP,(P) A NFP,(Q)I [NFP*(P) A NFP (Q)] NFP*(P) !NFP,(P) A NFP ()] NFP+(P) F

of objects with respect to the templates. The templates and choices in possible valuations of relation symbols.
for a domain describe the structure of the data base for Also, checker can handle only constants as possible val-
the domain. The checker uses this structure to guide the uations for relation symbols. When the number of alter-
instantiator to create and retrieve items in the data base natives is large or when loops occur in an updating
selectively. chain, the checker, if left to run will keep assigning new

The limitations of the checker arise in the automatic values to the relation symbols involved until a consis-
guidance it can provide in the updating process. The tent set of valuations is obtained, or until all known
checker has facilities to interpret individual CC's and to possibilities are exhausted. The only choices it can gen-
recognize the relation symbols whose value in the data erate are those that are already available in the data
base might be affected as a result of a change made at base, or those that may be obtained by evaluating spe-
one place in the data base. Checker keeps track of the cific consistency conditions in specific local contexts. It
relation symbol, by cataloging the relation symbols in does not have the capability to deduce logical conse-
terms of their appearances in the various CC's. In gen- quences and make use of them to find contradictions

0 eral, a change in the value of one relation symbol might where possible. To do this general theorem proving ca-
propagate through the data base to a series of other pability is necessary. The essential difference between
relation symbol values. As long as any given instance of the checker and a TP is the following. Whereas the
the value of a relation symbol does not repeat itself in checker can assign as values to relation symbols only
this series, checker will have no problems. It can execute specific constants in the data base, the TP can assign as
the series of necessary changes without ever having to values, variables with specified logical properties. The
go back to a value that it had previously changed within 7'7 can carry with it the logical properties assigned to
the sequence. variables and use them in making new assignments as it

Checker simply performs search in the data base, and goes along. Resolution based theorem proving systems
logical combinations of search. It has only simple facili- have this capability built into the unification algorithm
ties to keep track of alternate choices in search paths, (see Nilsson, 1971).

"-,
'

--- - - --- ,'------.--7

II I1 li pu % !- - . : . . ,- . . ,- _- ..
* .--- K7- 7 7.*

SIINIVASAN: ('(ItE:NT INI" IFMATION SYSTEM 395

In MDS the checker will invoke the TIP whenever it bind variables in a (dimension) statement. We shall as-
lees not find enough information in the data base to sume that the (proposition) in the COAl, clause is a]-

evaluate a CC at a particular anchor, or whenever the ways in disjunctive normal form. In the above case XLi
validity of an assertion is to he proven universally; not will be bound to (MI M2 M3 CI C2 C3). If the checker
merely with respect to the facts known about the specif- returns NEI, or a loop is encountered then the TP may
ic objects in the data base. The checker will call the TP be invoked to complete the bindings. Unless the IDB
also when it recognizes a loop in an updating chain, clause (see Table III for an explanation of the IDB,

The deduction process and the control structure of clause) is present the'TP will create new objects, if nec-
the TP in MDS is different from that of a resolution essary to complete the bindings.
based system (see [10]). b) Find Initial Conditions: This is done by checking

whether the GOAL is already satisfied in the data base 7
B. The Dynamic Aspects of Modeling: The for specific bindings of variables. In the case of our ex-
Transformation Rules and Their Interpretation ample, this will bring out the fact, "(RBANK1 occupants

1) The Primitives: There are about 20 primitives that (Ml M2 M3, C1 C2 C3)). This will cause the following
enable one to do programming in a backtracking envi- invocation pattern to be built:
ronment. The primitives are classified as shown in Fig.
1(a). The ECP's environmental control primitives ((PEOPLE (X2 - (MI M2 M3 Co C2 C3)))
EC1P's in Fig. 1(a) are used to establish a control envi- (PLACE (X2 - RBANK1)(X2 occupants Xl)
ronment (cenviron) within a scope. The execution of (X3--RBANK2)
functions within the scope are affected by it. See Table (bindings)

(GOAL (X3 occupants XM)) fn clause)
III for a description of the ECP's. The sequential con-
trol primitives (SCP's) like GO, COND, etc. There are Let b be the (bindings) and g the (proposition) of
seven active primitives, GOAL, APSERT, DELETE, the (fn clause). The canonical form of an invocation
CANDO, IFDON, TRY, and BIND. The execution se- pattern (also a (dimension) after binding the variables)
quences for the GOAL and other active commands are is
shown in Fig. 1(b) and (c). GOAL invokes appropriate ((bound quantifiers) (big, v-..v (bmgm)))
' finitions from data base, and does "means-end" anal- where each bi and gi is a conjunction of terms, possibly

1 s when necessary. ASSERT and DELETE issue I and D with OPNL, IFND, IDB or * clauses. Let D be an invo-
commands to the instantiator, when successful. All cation pattern and Di any (dimension) in the data base.
primitives, other than the control primitives, may have Di and D are said to match, (Di - D) if there exist
CANDO, IFDON, and TRY functions associated with bindings for the variables in Di such that for some bij in
them. A primitive can be executed only if its associated Di and bk in D (bij -- bk) and (gij -' gk), and in addi-
CANDO's are satisfied. If a primitive fails then one may tion bij is true in the data base. The bij will be the ini-
try its associated TRY functions. If a primitive is suc- tial conditions. The invocation process will retrieve all
ce.sful lhen its associated IFDON's should be executed. Di that match D.
Only if the IFDON's are also successfully completed may If no such functions, Di, are available then the de-
the primitive return success to its parent. Let us follow signer will force the GOAL by issuing the appropriate
the-operation with an example. ASSIfRT and DELETE commands. These will cause their

2) Interpretation of the Active Primitives: The syn- associated CANDO's to be executed. If the CANDO's suc-
tax of the various active primitives is shown in Table ceed then the corresponding I and D commands will be
IV. The designer is the interpreter for the primitives, tried. This will cause the associated CC's to be evalu-
Consider, for example, the (dimension) (see syntax of ated at the given bindings of the variables, say '. If the(dimension) in Table IV) of the GOAL function TR1 in CC's are not satisfied then the not true part. of 1P

Table V. (NTP) and true part (T'0) will be issued as subgoals.
. PFOPLE X) (PLACE P Q) (P occupants X) If the CANDO's are not satisfied then the goal will be
ax (LACEnPs) abandoned.

In general, both the binding and invocations pro-

(GOAL, (Q occupants X))) cesses will return more than one possible course of ac-

(fn-clause---- tion. In both these cases the problem solver needs to be
guided intelligently in making its choices. The DE-

The function call that will cause this TRI to be invoked SIGNER has some built-in facilities for intelligent se-
* is lection of choices from a set of alternatives. The prob-

" i1.1E X) (GOAL (IIlANK2 occupants X))) lem solving state (!SS))rovides this guidance. ''his is
- bindings) '--(fn-clause) - discussed in the next sect ion.

3) The ISS: The 'SS itself is defined by tenil)laits.
1.e us follow the interpretation of this function call, as The PS-s template is shown in Table VI. This table is

ecified in Fig. I(b). sell'-explanatory. Every time file designer invokes a
0t) Find Possible Bindings: The checker is used to function or executes at (fn.call) it will create an instance

, . " _ .. * of , , - ..

3911) I,:l: r4AN.A(', "ON.
,

ON vOt i 'lli E.'' . I)%til

*1'1 ,'11 RTOL

VRiMI I IVES PRIMII IVfS

tNVIRONPE4IAL S[QULNTIAL

"" CONTROL CONTROL

PRIMITIVES PRIMITIVES

La)

GOAL FUNCIION CALL

CREATE A PSS INSTANCE, PS . T) RECORD THE CALL AND ENTER ALL THE APPROPRIATE

INFORMATION IN PS$ LINKING IT TO OTHER PSS INSTANCES,

FIND ALL POSSIBLE VARIIBLE BINDINGS

ENTER BINDINGS IN PSS.%1
No - <ANY BINDINGS LEF'f>----No

Yes

CHOOSE THE NEXT ONE, USE PSS TO MAXE THE CHOICE. ENTER CHOICE IN PS.
ti FIND INITIAL MID TERMINAL CONDITIONS.

<IS GOAL ALREADY SATISFIED IN THE DATA BASE?'- YES----- SUCCESS

NOf

BUILD INVOCATION PATTERN, INVOKE ALL IMPLIED FUNCTIONS.
UPDATE PS.

<FIND AllY (MORE) FUNCTIONS? >-N

YE

CHOOSE NEXT FUNCTION USING PSS, - NY CANO'$?>

I No YEl

-XECUTE ALL CANDOb.-- fAILj

GENERATE SUB-GOALS GO INTOII
SUBGOAL SEARCH MODE O0 MEANS
END ANALYSIS. WIL

- " RETURN FAILURE RETURN SUCCESS EXECUTE FUNCTION
(UPDATE PSS) THE FLOW-CHART (61) IS USED

FOR THIS PURPOSE.

Fib)

. IPig. I. Clnaioificntion ot primitiveN and their execution Meqttences.

.,4INIVASAN: COHI.FNT' INFORMATION SYSTEM 397

ACTION FUNCTION CALL (NOT A GOAL FN.) CREATE A PSS INSTANCE, PSS, 10 RECORD THE CALL AND

ENTER ALL APPROPRIATE INFORMATION IN PSS, LINKING IT TO OTHER PSS INSTANCES.

- :4 . FIND ALL POSSIBLE VARIABLE BINDINGS
ENTER BINDINGS IN PSS.

Rb-- - <ANY BINDINGS LEFT?> -FAILURE

F YES

RETURN FAILURE
(UPDATE PSS)

CHOOSE A BINDING USING Pss. ENTER CHOICE IN PSS.

IF FUNCTION IS ASSERT OR DELETE THEN CHECK DATA BASE:
<IS STATEMENT ALREADY TRUE?>- No 1

YES No -<ANY CANDO's.

RETURN SUCCESS YESI
(UPDATE PSS) 41

<EXECUTE ALL CANDO>- FAIL->

SUCCESS

<.ANY FDON' s?>4rsuCESS<EXECUTE FUNCTION>

No YES FAILURE

<EXE E ALL IFDON FAIL- <ANY (MORE) TRY's?>- No-

SUCCESS]
-- <EXECUTE TRY>- FAIL

RETIURN SUCCESS

(UPDATE PSS.)

(C)

Fig. 1. Continuee.

of PSS corresponding to the function. The network of PART if the condition evaluated to FALSE, the RESIDUE

all such PSS instances is the problem solving protocol. if the condition evaluated to NEI. It will also have the
7 The CC's associated with the PSS template provide the outcome (fn state) of the PSS instance in which the con-

necessary guidance to DESIGNER. Of particular inter- dition was evaluated, and specific variable bindings if
est are the CC's associated with the bindings and alter- any in terms of the kinds and types of objects used. All
nates (see Table VI) relations. Let us call these [CCBI variable bindings in the CC summary of a PSS will be
and [CCFJ, respectively. These CC's will specify the specified in terms of the variables that appear in the
choices of current bindings and current function. Two bindings of the PSS. The concept will become clear in

important notions that make this possible are the no- the example considered below. rhe consistency condi-

tions of similarity of two PSS instances, and cc summa- tion [CCB] uses CC summaries.
ry of a PSS instance. The general rule is:pick for hindings the same kind

cc summary-[(CCS: A CCS is a record of evala- and type of objects that previously succeeded in similar
.-.. ns of CC's, branching conditions, CANI) conditions PSS instances; do not pick the kind and type of objects
" id binding conditions, made during the tenure of a that previously failed. Use cc summaries to check
PSS instance. For each sequence of conditions evalu- whether a chosen binding is likely to succeed. If no

ated, the CC summary will contain the TiUle IFSII)I,'s bindings could he picked by the above rules, then pick
of the conditions evaluated if the conlition evaluit(l t.o arbitrarily.
TIRUR, the FAISE RIEqlDIIIK, NOT TII, PAI'T and 'I'l1Kl, To define the not,,n of similarity of two PSS states

"~~~~~. ... •,,... _.-.-.....

S:i'Js I~I-I,:F IU,\N.SAINTITN. tIN sEIN I ' M. A''lII ;

TABLE IIl
The Cotrol Pritnitivcs

ECP; ENVIHONTENTAL (ONTROL PRIMITIVES SOP: SEoUENTIAL CONTROL PIIITIVE$

1. GO GO TO A LABEL.
1. SUPPRESS surPRESS EXECUTION OF SPECIFIED CL.ASS OF FUNCTIONS

WITHIN A SCOPE: Ex: (SUP CANDO) (BODY OF PROGRAM>). 2, BKIRK BACK TRACK tO A LABEL.

2. CONTEXT SETS THE CONTEXT IN WHICH THE PROBtEM SOLVING IS TO 3. COND LIKE LISP COIB. BACK TRACKING IS ALLOWED UNDER

TAKE PLACE. IT CAN BE A DOMAIN, A CLASS OF PROBLEMS. FAILURE.

OR THE VERSIONS OF TiE MJUELS IN Ti4E DATA BASE. THAT

ARE TO BE USED. EX: (CONTEXT VLASioN23). OR I. KILL Kill A FUNCTION AND FAKE IT TO SHOW SUCCESS ol

(COUITEXI 1973). FAILURE, AS SPECIFIED IN THE ARGUMENT.

3. UP Fixes THE DIRECTION OF SEARCH IN SEARCHES OVER SUB- 5. SUSPEND SUSPEND EXECUTION AND SAVE CURRENT STATE.

SETS OF A SET. THE SEARCH IS TO START WITH THE

SMALLEST SUBSET AND PROCEED UPWARDO. SIMILARLY, 6. ACTIVATE REACTIVATE A PREVIOUSLY SUSPENDED FUNCTION.

THERE IS ALSO A DOWN. EX: ((UP(SOKE PEOPLE X)
(X OCCUPANTSOF RBANKI)) 7. OPIIONAL FAILURE OF AN PTIO.IAL CLAUSE OR ACTION BILL NOT

NORMALLY CAUSE BACKTRACKING.

4. DISJUNCTION A DISJUNCTION OF GOALS IS TO HOLD. EX: (DSJN
(GOAL STMT>... (GOAL STIMT). 8. IFNEEDED BACK TRACKING CAN OCCUR ONLY IF THE IFNEEDED

CLAUSE OR ACTION ALSO PAILS

5. CONJUNCTION A CONJUNCTION OF GOALS IS TO HOLD. EX: (CNJNC

(GOAL STMST) ... (GOAL STMT) 1. 9. REPEAT REPEAT UNTIL THE CONDITION OF THE REPEAT IS
SATISFIED.

6. RELEASE RELEASE A PREVIOUSLY SUPPRESSED CLASS OF FUNCTIONS.

Ex: ((RLSE CANDO) <BooT OF PROGRAM) AN EXAMPLE- (OPNL(REPEAT < TERMINATION CONDITION) (SUP TRY)(...)

(., ..)(ASSERT...
7. lOB USE ONLY THE MODELS AVAILABLE IN TilE DATA BASE.

DO NOT CREATE ANY NEW OBJECTS TO SATISFY A BINDING THE REPEAT CLAUSE IS IN THE SCOPE OF OPNL. HENCE NO BACK TRACKING WILL

CONDITiONi. Ex: (IDB(BODY OF PROGRAM) I. OCCUR ON FAILURE. WITHi THE SCOPE OF REPEAT ALL EXECUTIONS OF TRY

FUNCTIONS ARE TO BE SUPPRESSED. ONE HAY ALSO THUS SELECTIVELY SUPPRESS

8. * DESIGNER CANNOT LEAVE A 'ED ITEM IN A CHANGED THE CANDO AND IFOOJ FUNCTIONS, OR ANY OF THE ECP*S THEMSCLVES, WITHN
STATE AT THE END OF A PROBLEM SOLVING SESSION. A SCOPE.

Ex: ((VEHICLE V))(V LOCATION NBANE2)...).

9. NBT lid BACK TRACKING ANYWHERE, THROUGHOUT THE SCOPE.
Ex: (NET <BODY OF PROGRAM) .

BLE IV
The Syntax 'ransformation Rules

(A) 6AL.IE: (C) CANDO IF E AN2 TRY RS.

FN EFN - (DIENSION) < BODY))
GFDEM IFCAII > -- CANDO IFD0'IE

GDIPENSION -- < (BINDINGS) (GEN-CLAUSE)<C <IFCANl RULE) <IFCA!|) <DIMENSION) < IFCAIBODY) >
SPN-CLAUSE - (GOAL (GPROPOSITION) > IT MEN ROLE> < B[N DI EN S IN) CL ABD

(DITEtlSIONT* -4 (BINDINS 4<FR CLAUSE)

GPROPOSITION - A COnjUNCTION OP RELATIONS OF THE FORM

-(X Nt Y) TN (x R Y), O R x xl x2...XN) < FNCLAUSE) - (<FN) (GPROPOSITION)

BINDINGS - - 4 PREDICATE) (fN) - GOAL l ASSERT I DELETE I FORCE
(OPTIONAL <PREDICATE)) <IFCAfbODY) 4 (IFCANSTArEENT)I(IFCANRoD) (IFCANSTATEMEN.T)

(IF?;EEDE (PREDICATE) (IFCAN
(1B <PREDICATE)) STATEMENT) - ((DIMENSION) (TRY-FN) I (BINDINGS)(TRY-FN) I.

(BRINDINGS) (BINDINGS) ; (TRY-FR) - (TRY <BINDINGS) (BODY>) (TRY(DITENSION) (BODY))

PROPOSITION - A PROPOSITIONAL EXPRESSION OF RELATIONS

WHICH MAY INCLUDE OPTIONAL, IFNEEDED. ErC.

CLAUSES. AND UP, DOWN MODIFIERS OF QUANTI- (D) FUIRCTIOX CALLS:
FIERS, OF THE FORMS (UP (SO x)),

(DOW4 (ALL x)) ETC. I
<FACALL> (TRY-PA1> (OPTIMOAL (BODY))l

(B) ASSERT.. .DFTE AN FORCE RULES (IFIIEEDED <BODY))I

(1DB <BooY))I

(ACTION RULES) (BINDINGS) (ACTIONI GPROPOSITION) (SUPPRESS (FN-CLAUSE) 41
(ACTION) - ASSERT IDELETE [FURCE, (SUSPEND (DIMENSION))I

(ACTIVATE (DIMENSION))I

'COD-STMT) I(GO (LABEL))I

(BKTRK (LABEL>) <BI I
ID-STMT)

(THIS IS LIKE SET IN LISP)!

(DIMENSION) I (PROC (BINDINGS) (BODY)

we need some additional concepts. Let h be an arbitrary (final state F k) (successor ilk) (predecessor Rk)
. PSS instance defined as follows: (conditions Ck).

,: (dimension Dk) (bindings Bk) (initial state Ik) Let vu = 1X ,X2 , ... , X I be the variables appearing

(alternates Ak) (fn state Sk)(cenvirons Ek) in the (dimension), DA. Let Dh itself be (QkPkFk)
(cc summary CCSk)(history Ilk) (type Tk) where Qk is the (quantifiers) of Dk, PA its (proposi-

.100 IFI'E TRIANSACIONS ON iiOlI I' I(S. AI'IIII. I976

H.j. Also, the type of K is equal to the type of J. [CCS2I:[K,, I(V position Q), (Q PI.AE)

2) they have the same control environment Ek (Ej; v., VI I I'), sTc'

:1) VK.NK satisfy one or more of the cc summaries in [C(. i I:[hi, I(Z occupants ofQ), (Q I'ILA('E),

J, for some binding ilk G Bk. Thus, Vj,N.1 satisfy one (z - (V occupants ?)) (V --- VEIIIC.I,'),TtI(']

or more cc summaries in K for some binding E/ .'. All these cc summaries would now e availal)le at I)ox 3
K is identical to . if DK = Dj, T'K Tj, EK = Ej, BK of Fig. 2, since P1lOC would have been still active during
Bj, at.: NK-' = Nj1 . the whole course of events.
To understand how these work let us consider the so- After this, PROC will be reinvoked because REPEAT

lution of the M&C problem. will have been still active. The new instances of PSS for

'I) M&C Problem Solution: The sequence of possible boxes 3 and 4 will be created. These will be similar to
function calls is shown in Fig. 2. Each box in Fig. 2 is]a- the previously created instances. The BOAT is now at
beled to indicate its correspondence to the functions in RBANK2. The CANDO clause, box 5, (statement TR2 in

TableK2 The TheD boxese are nubee I(stateghnt5.R2orn
Table V. The boxes are numbered 1 through 15. For a Table V) will now cause the BOAT to be brought back to
box with number i, let Ki denote its associated PSS in-

RBANKI with a pilot, who in this case will have been the
stance. missionary M1. This time when a new pair of PEOPLE

Suppose we are at the beginning, and are at box 3 in are picked from RBANKI, the system will already check
Fig. 1. Then the following sequence of actions might for the satisfaction of the successful path of CC execu-"
happen (follow arrows in order): tions, depicted by the summaries [CCS4'], [CCSI],

M2)) [CCS2], [CCSI"]. Picking another (M,C) will in this case

(Y- (M I M2)) -- enter box 4 fail; (C,c) will succeed in satisfying the cc summaries.

¢4 2 3_\3 Thus, with anticipation the system will pick the right
i(V occupants Y) enter box 5 candidates likely to lead to success. From here on the

D(P occupants Y) availability of the cc summaries, and the guidance pro-
vided by [CCB] will enable the system to always pick

The indicated I and D commands are returned by the the right candidates. The following solution will be ob-
ASSERT function, TRI.1 (see Table V). This will cause tained.
[CC4J and [cc1] to be evaluated, and the following cc
summaries to be returned to box 3 (since box 3 is still RBANK_ RBANK2
active)*:2 Step 1: (M1, M2, M3, C1, 0

[CCS4][K 4, i(V occupants Y), (v -- VEHICLE) C2, 03)
(M,M)), T, Fail] Step 2: (M2, M3, C2, C3) (Ml, C1)

[CCSII[K 4, D (P occupants Y), (P - PLACE) Step 3: (M1, M2, M3) (Cl, C2, C3)

(Y - (M,M)), F, Fail] Step 4: (Cl, M3) (M1, M2, C2, C3)

Here K 4 is the PSS instance at which the e% luation Step 5: (C1, M3, M1, 02) (M2, 03)
took place. The variable bindings are indicated only in Step 6: (c1, C2) (MI, M2, M3, C3)
terms of the kinds and types of objects used. r and F
are the CC evaluation outcomes, and Fail is the outcome Step 7: (Cl, C2, 03) (M1, M2, M3)
of K 4. Notice that moving these two cc summaries to K 3 Step 8: (C) (C2, C3, M1, M2, M3)
makes it still possible for K 3 to use these, because the
variables P and V have in K4 the same bindings as they Step 9: (Cl, C2) (C3, M1, M2, M3)

do in K 3 and none of the terms appearing in the CC's Step 10:0 (Ml, M2, M3, Cl,
have changed in value between K3 and K4. C2, C3).

The failure of K 4 brings us back to K 3. Now the
choice of next bindings to be tried will be guided by Step 5 in the above solution is caused by box 14 in
[CCBJ. Either a (M,C) or a (c,(,) will succeed. A more in- Fig. 2.
teresting case is the following. Now suppose that 5) Summary: Thus, the designer provides the high-
(MI,CI) are already on RBANK2. This would have level control structure necessary to pass on to the

caused the following series of succssful cc evaluations: checker the right CC's to he evaluated, and to the in-
stantiator, the right model changes to be done. The de-

[CCS4'1:[K'4, I(V occupants Y), (V -- VFIIICLE) signer programs themselves are independent of the de-
(Y - (M,C)) • '- suc] scriptive data structures used. Again the templates and

instantiator provide a desirable isolation. The PSS itself
[CCS1'j:fK 4,D(P1 occupants Y), (1 -- PL.ACE) may be changed for different domains of discourse, or

(V - (M,.)),'r,. C different problem types. In this sense, the templates

SWe shall use M ftr missionnriec ('for cannibals, Fail for fiiilure, land the rules of transformation, together with the PSS
for true, sIc: fior ses, and F for fals., specialize the MI)S to a given)roblem, or a given do-

I .. _

Si SIN] VASAN:.COII5BEN'T* INFORMAION SYSTEM 401

1.5 I. I M0 &A SYSTE'E USER

REPET 2.()

CONIIO E1:(OCCUPANTS Z)'
C ' [(SNT RE

15 ASSERT PROC 3.

IRI'3

ASSERT 4 LANGUAG RULES TRNSFORTION RULES

-RI-2

LAIGUAGE ASEYZER EESTANTEATOR THEOREM PROVE
It. CASIe CA 5.ON5.

TR3 7R2

DATA BASE
T2AI 3*1 ASSERT 6. C-YTr UF

TR2'I Fig. 3. Block diagram of MDS: - indicate pointers in data represen-
tations, -- indicate data and control flow paths, 0 denote data
items, and 0 denote processors.

14. TRY TRY 13. ASSERT 7.
II JA TR2'2

knowledge (CC's and TR's) in a domain D. The LIN-
T'3 8. GUIST, TEMPEST, and QUEST are, respectively, the

"-DITIOM: .subsystems that accept these definitions and create rep-
... resentations for them. The TEMPEST and QUEST are

9' now working systems. The checker and instantiator are
presently under construction.

Fig. 2. Graph of function calls in the solution of the M&C problem. The data in DL(D), T(D), and K(D) specialize the

MDS for the domain. The rest of the block diagram is
main of discourse. The problem solving control struc- self-explanatory.
tures are driven by the domain dependent data. The
checker, TP, designer, and instantiator are all part of
the MDS. I :. CONCLUDING REMARKS

Most importantly, there is a significant stratification We have iioduced the basic concepts of CI systems
of knowledge in a domain, as seen by the system. Do- and MDS. The CI systems provide a basis for the defi-
main dependent knowledge is made available to the sys- nition of the concept of machine understanding in terms
tem as templates, as CC's or as TR's. The PSS tern- of models that a machine is capable of building in a do-

.. plates play a particularly important role. Depending main, and the way the models are used. The under-
-2. upon how and where a given piece of domain dependent standing exhibited at the problem solving level of

knowledge is specified the system uses it differently. checker is relatively simple understanding. A deeper
";rhe relative isolation of the problem solving and level of understanding is exhibited in the kinds of prob-

model management programs from the descriptive data lems that the TP can solve (see 1101). At the level of de-
structures themselves, make the concept of MDS feasi- signer the level of understanding is very sophisticated.

- ble. The facility to arbitrarily specify descriptive data The system is able to plan and build procedures to solve
structures as well as nondeterministic programs makes problems.
the system highly flexible and powerful. The checker In this paper we have discussed only a part of the
and instantiator provide the basic foundation. These problem solving aspects of the system; the workings oftwo systems are small systems, and the programs here the checker and designer.
can be made very efficient. These features give promise We are proposing the use of DL(D), T(D), and K(D)
that the proposed system architecture could operate in to transfer domain dlendent descriptive knowledge to
the context of large data bases. By defining the tern- a computer. We have briefly indicated how such de-plates carefully the MDS system can be specialized to scriptive knowledge could be used to solve p)roblems in a
operate efficiently in a given domain. The structure of domainautomatically.
N.!N is described in the next section.M. .-. idc itenxThe specification of lI)(D), T(D). and K(D) in a do-

main will, of course, require a very good understanding
of the concepts and problems in a donain. There are

111. THE MI)S several domains where, at present., such understanding
The block diagram of MDS is shown in Fig. 3. In this is availihle. The M)DS provides a way of transfering this

figure DI1(D), T(D), and K(D) are, respectively, the understanding to a computer.
definitions of descriptive language, templates and There is much work to he done to make the MDS a

, , ,-:, .. -, . -. .. ., . .. -. • o.. -. , . " . - ,,. , .. . _ ,

402 IETI H IIANSACI'IONS ON I'oMi'IIlts, VOl.. ('.25, NO. 1, APItII. 1976

viable system. It is necessary to develop a working sys- 191 S. Amarel, "Oin representations of problens of reasoning about
actions," in Machine I1lot'li.I.N'o c* vt,l. :1 ,1). Michite, Il.d. Edin-

tern first. We are presently involved in this task. burgh, Scolland: Idinlurgh I niv. Press, 19;, pp. 1:1I 170.
1101 ". V. Srin ivasan, '"'heorem proving in the ne 4a description sys-

REE'FRENCES tent." Dcp. Comput. Sci., Iutgers Univ., New Brunswick, NJ,"" '" - '-I 'IIFERNCESRep. SOSAP-TiR-20.

[11 It. E. Fikes. "REF-ARF: A system for solving problems stated as
procedures." J. Artificial Intelligence, vol. 1. no. I, 1970.

121 ---- , "A heuristic program for solving problems stated as non-
deterministic procedures," Ph.D. dissertation,)ep. Comput.

- Sci., Carnegie-Mellon Iniv.. Pittsburgh, PA, 1968.
131 J. Derkson, ,J. F. Rulifson, and I. .. Waldinger, "The QA4 Ian.

guage applied to robot planning," in 1972 Fall Joint Compat.
('onf, AFIPS Conf. Proc., vol. 41. Montvale, NI: AFIPS Press,
1972, pt. 11, pp. 1181-1187.

141 G. D. Gibbons, "Reyond REF-ARF: Toward an intelligent pro- Chitoor V. Srinivasan (M'63) was born in
cessor for a nondeterministic programming language," Ph.D. dis- .. Cuddappah, India, on November 6, 1933. He
sertation, Dep. Comput. Sci., Carnegie- Mellon Univ., Pittsburgh, received the B.S. degree from Madras Univer-
PA, 1973. -adras, India, in 1953, the I.M.I.T. de-

[1. R. E. Fikes and N. J. Nilsson, "STRIPS: A new approach to the r sity, Madr nia, i19 the M Intte-

application of theorem proving to problem solving," J. Artificial gree in electronics from the Madras Institute

Intelligence, vol. 3, no. 1. pp. 27-68, 1972. of Technology, Madras, in 1956, and the M.S.

[61 R. E. Fikes, A. A. Hart, and N. J. Nilsson, "Learning and execut- fl and D.Eng.Sc. degrees in electrical engineering
ing generalized robot plans," J. Artificial Intelligence, vol. 3, pp. A from Columbia University, New York, NY,
251-288,1972. - both in 1963.

[71 C. Hewitt, "Description and theoretical analysis (using schema- From 1956 to 1959 he was at the Tata Insti-
ta) of PLANNER: A language for proving theorems and manipui tute of Fundamental Research, Bombay,
lating models in a robot," Ph.D. dissertation, Dep. Mathematics, India From 1962 to 1969 he was at the RCA Laboratories, Princeton,,
Mass. Inst. Technol., Cambridge, 1972. nJ

[81 A. Newell, J. D. Shaw, and H. A. Simon, "Report on a general NJ. Presently he is with the Department of Computer Science, Rut-

problem-solving program for a computer," in Proc. Int. Conf. In- gers Univcrsity, New Brunswick, NJ.
formation Processing, UNESCO, Paris, France, pp. 256-264; Dr. Srinivasan is a member of the Association for Computing Ma-

also, reprinted in Comput. Automation, July 1959. chinery.

PAS-Il: An Interactive Task-Free Version of an Automatic

Protocol Analysis System

DONALD. A. WATERMAN AND ALLEN NEWELL, FELLOW, IEEE

Abstract-PAS-lI, a computer program which represents a to the verbalizations of a subject solving some problem

generalized version or an automatic protocol system (PAS-i) is under .. istructions to think out loud. Protocol analysis
described. PAS-I is a task-free, interactive, modular data anal- designates the full range of activities engaged in by the

ysis system for inferring the information processes used by a
human from his verbal behavior while solving a problem. The psychologist when working with protocols: description
output of the program is a problem behavior graph: a descrip- of the subject's behavior according t an hypothesized
tion of the subject's changing knowledge state during problem model, induction of new rules, derivation of conse-
solving. As an example of system operation the PAS-I analysis quences from a model in the context of specific data,
of a short cryptarithmetic protocol is presented. and measurement of adequacy of a model. The initial

Index Terms-Cryptarithmetic, hypothesis formation, model focus of our work has been behavior description in
building, natural language processing, problem space, produc- terms of information processes, given an hypothesized
tion system, protocol analysis. general model (the so-called problem space in which the

I. INTRODUCTION subject operates).
The PAS-I system [14], [15] was our first attempt at

AUTOMATIC protocol analysis is a joint effort by automatic protocol analysis. This is a fully automatic,
. . man and machine to infer from the record of the noninteractive, specialized system designed to analyze

time course of a subject's behavior, the underlying in- cryptarithmetic protocols and produce as output a
formation processes. As developed [51, it usually refers problem behavior graph (P11) describing the subject's

Manuscript received February 15, 1973. This work was supported in search through a posited problem space he protocol
part by the National Institutes of Health under Gront MI I-07732 and analysis is represented as a sequence of processing
in part by the Advanced Research Project. Agency of the Office (if the stagts that eventually transform the raw protocol into a
SAecretary of Defense, which is nmonitored by the Air Force Office of pp
Sct.ntific Research, under Grant F4.1620.70-C-0107. problem behavior graph. At each stage rules are applied

I). A. Waterman is with the Rand Corporation, Santa Monica, VA. which effect a transformation of the data. The organiza-
A. Newell is with the Department of Computer Science, Carnegie.

Mellon University, Pittsburgh, PA. tion of PAS-I is shown in Fig. 1.

....

in~ ~r -- .7 7.- -.-

.4

PROGRAMMING OVER A KNOWLEDGE BASE: THE BASIS FOR AUTOMATIC PROGRAMING *

C.V. Srinivasan

Department of Computer Science, Hill Center
Rutgers University, New Brunswick, N..J.

08903

Abstract: This Daper introduces the notion of using a highly flexible
general problem solving system as the basis for developing domain denen-
dent automatic nrogramming systems, that can actively and intelligently
assist its users to formulate problems and develop programs in the domain.
The system is called the Meta Description System. It is being currently
implemented in LISP 1.6. The system accepts definitions of description
schemas for describing KNOWLEDGE in a domain, and uses these schemas to
specialize itself as an efficient problem solver in the domain. It also
has the capability to accept definitions of a language of discourse for
a domain and have the users communicate with it in the specified language.

1. Introduction

Our objective is to create an automatic programming (AP) system that can

actively and intelligently assist users to solve problems in a dcain. A domain

might be as complex as the design of a computing system, or it might he the

.-. diagnosis and treatment of a disease system; it might be a piece of mathematics

or psychology. Our mode of operation will be the following:

* Suppose one wanted to create an automatic programming system for a domain D.

Then one would first specify to our system some core knowledge in the domain D.

This would consist of schemas specifying how objects in the domain D are des-

cribed and their descriptions represented in the data base (these schemas are

called description schemas); descriptions of specific objects in the domain

satisfying the given schemas (we shall refer to these as instances (cr models)

of objects in the domain); rules specifying how given descriptions of objects

in a domain may be transformed to new ones satisfying given criteria; and pos-

sibly also strategies for problem solving in the domain D. These specifications

of knowledge in the domain will cause the system to create a data base, called

the Coherent Data Base for the domain D, CDB(D). The system will, of course,

assist the user in setting up the CDB(D), by looking for inconsistencies, see-

king out missing information, and where necessary itself supplying the missing

information. The CDB(D) constitutes a knowledge base over which all domain

dependent programming in the domain D will take place. As the system is used,

its knowledge base will continue to expand. The system itself will use this

knowledge base automatically, to intelligently assist its users to solve problems

in the domain D.

This work was supnorted by grant DAHCIS-73-G-6, from ARPA.

* 2

The system is called the meta-description system (MDS)*. It is a meta

system in the sense that it accepts definitions of description schemas (in

terms of devices called templates and sense definitions), for a domain D, and

uses these schemas to specialize itself in an active way to solve problems

efficiently in domain D. This specialization occurs in three ways:

i) In the data structures used to represent descriptions of (models

of) objects in domain D,

(ii) In the problems solving control structures used for the domain D,

and

(iii) In the way problem solving experiences in the domain are summarized

and later automatically used for self-improvement.

The architecture of the MDS allows for fundamental structural changes to

take place in the system, to efficiently utilize the available domain dependent

knowledge. The MDS is thus a general problem solving system that can specialize

itself to perform efficiently in a given domzin. At every point in its opera-

tion the MDS can automatically make full use of its knowledge base to actively

and intelligently assist its users. We shall refer to programming in the

context of the MDS as programming over a knowledge base.

There are several new concepts in the architecture of the MDS. Usually

general problem solving systems have a way of imposing their own will on

everything around them. They would demand that data be represented in certain

ways, they might demand that problems be stated only in certain ways, and they

often resist strongly interference with their problem solving procedures--do

not take to advice easily. The limitations caused by these were well recog-

nized early in the game. The trend towards the development of programming

languages like PLANNER [Hewitt (1972)] and CONNIVER [McDermott (1973)] was,

in fact, a response to overcome this limitation. These language systems do

not fix a priori any problem solving scheme. They let the designer specify

schemes and strategies for given domains. In doing this, however, they do

not provide any automatic and intelligent problem solving help to the users.

It is the programmers' responsibility to specify and develop all the problem

*Since 1971 August, our work on the MDS has been partially supported by a

grant from NIH, Grant No. RR643.

3

solving means within the confines of the given control structure of the

language system. Whereas, intelligent programming systems may be created by

using these languages, they do not by themselves provide f6r, what we call,

programming over a knowledge base.

The general problem solvers in the MDS are very flexible and obliging

ones: They do not demand that data be represented one way or another, and

also more importantly they do not impose any a priori chosen search strategy

for problem solving. Representations for the descriptions (models) of objects

in a domain D, follow the dictates of the description schemas for the domain,

and not the dictates of the problem solvers. More importantly, the problem

solving protocols--summaries of the system's problem solving experiences--may

themselves be treated as objects in the domain D, with their own associated

description schemas. We shall refer to these as the problem solving schemas

for domain D, PiS(D). PSS(D) will again be specified in terms of devices

called templat(13 and sense definitions. For a domain D, its PSS(D) will

specify the problem solving control structures and search strategies. In-

stances of PSS(D) (models of problem solving experiences) may then be used by

the problem solvers in the same way as any other data in the Coherent Data

Base. The PSS(D) may be so defined that the problem solver improves itself

by using the models of prior experiences. How is this all done? The full

answer to this question is necessarily a complex one. We shall here illustrate

the operation of the MDS with a smail example, chosen from Balzer's paper

[Balzer (1973)]. WeLshall use this example to introduce the basic conventions

of the MDS, its operational characteristics, its' logical processes, and to

show how it does problem solving. Later, in section 3 we shall comment

further on the MDS and compare it with other works in Automatic Programming,

to place it in perspective with the other works.

We are at present in the early stages of implementation of MDS. We

expect to complete the implementation of all of its facilities in about two

years. The data base management part of the MDS is expected to be ready in

the Spring of 1974. The implementation, so far, has been in LISPl.6. We

expect to convert the existing system to INTER-LISP and continue further work

in a TENEX system.

"-- .- -. ..)*...., .. . - . - -" ' .

4-

2) An Example

2.1) Specification of the Description Schema

Briefly, the problem is the following:

"A PERSON is HAPPY if he/she has a COMPATIBLE MARRIAGE, or is RICH. A

MARRIAGE is COMPATIBLE if the COUPLE has a common hobby, and the wife is not

more than 5 YEARS older than the husband. A PERSON is RICH if he/she is worth

more than a million DOLLARS. Make JOHN happy."

The words in capitals in the above statement are the objects of the do-

main of this problem, which we shall now describe to our system. The under-

lined words will appear as relation names in our system. We begin by telling

the system how to describe PERSON, HAPPY, COMPATIBLE, MARRIAGE, RICH, COUPLE,

YEAR and DOLLAR. In effect we shall say that a PERSON is an individual (node,

in contrast to a list or tuple) with a name, who has an age, some hobbies,a

worth, some at-ribute, a sex, an emotion, a marriage, and may have a wife,

or a husband (spouse). The template for this is shown below. The flag RN

associated with the PERSON template indicates that a PERSON template

is a regular node, i.e. a node with a name. Thus, every instance of PERSON

will have a name in the CDB.

((PERSON RN)

(age (YEARS TI)) (Worth (DOLLARS TI))

(hobbies (HOBBIES $L)) (loves (PEOPLE $L))

(marriage (MARRIAGE $N)) (sex (SEX RN))

(attributes (ATBTL $L), SENSEl)

((spouse $) PERSON, SENSE2)

((wife $) PERSON, SENSE3)

((husband $) PERSON, SENSE4)

(emotion (EMOTION RN), SENSES))

Let us follow the other definitions in the PERSON template. PERSON calls

other templates like YEARS, MARRIAGE, etc. via relation names like age, hobbies,

etc. YEARS has been declared as a Termainal Integer (TI) template. Every in-

stance of YEARS is an integer with dimension YEARS. Similarly, DOLLARS is al-

so a terminal integer. Notice that in the CDB, two integers, say 8 YEARS and

1000 DOLLARS, will be recorded as objects with different dimensions. HOBBIES

is a dummy list ($L) template. Every instance of HOBBIES is a list (say, a

-* - . -' . " - ' - " - -.. . " - , . - .- - .i
"

. -. - ,. ' " . :

a list of ACTIVITIES), and not every instance of HOBBIES need have a name in

the CDB. MARRIAGE is, similarly, a dummy node ($N) template. Not every ins-

tance of MARRIAGE will have a name in the CDB. The attributes of a PERSON

should be an instance of (ATBTL $L), and so also, a PERSON's emotion should

be an instance of (EMOTION RN), and the sex of a PERSON is an instance of

(SEX RN). We shall choose not to associate any relation names with the

EMOTION and SEX templates. Since bth of these are regular templates, ins-

tances of these in the CDB will just be descriptive names like SAD, HAPPY,

and MALE, FEMALE etc.

The relations spouse, wife and husband are defined by the sense defi-

nitions SENSE2, SENSE3 and SENSE4. The $ flag associated with these relations

indicates that their values can always be computed from the sense definitions,

and thus Aeed not be stored in the CDB for any instance of PERSON. The EMO-

TION of a PERSON is defined by SENSES, but we require that its value be stored

" in the CDB for every PERSON. We shall later see how the sense definitions are

specified. Let us now complete the definitions of the other templates.

((MARRIAGE $N) (partners (COUPLE $L) SENSE6) (quality (MQUAL RN) SENSE7))
((COUPLE $L)(elem (2 PERSON))
((ATBTL $L)(elem (ATBT RN))
((HOBBIES $L)(elem (ACTIVITIES RN))
((PEOPLE $L)(elem PERSON))

COUPLE is constrained to be a list of exactly two PERSONs. HOBBIES

is a list of an arbitrary number of ACTIVITIES, where each ACTIVITIES is a

regular node. The alove templates define the description structure of objects

in the domain of our problem. Let us now create'some of the descriptive names.

In the commands below "IT" stands for "Instantiate Template", and "DR" stands

for "Delete Relation". In the CDB, "?" denotes an unknown. A "?" in a list

indicates that the list may contain additional elements. The following ins-

tantiations are now done:

IT(SEX MALE) IT(SEX FEMALE)

IT (EMOTION HAPPY) IT (EMOTION SAD) IT (EMOTION BLAX)

IT(ACTIVITIES GARDENING) IT(ACTIVITIES PROGRAMMING)

IT(ATBT RICH) IT(ATBT POOR) IT(ATBT ORDINARY) IT(ATBT THIEF)

IT(MQUAL COMPATIBLE) IT(MQUAL LOUSY)

For SEX the CDB will now have: (SEX instance (MALE FEMALE ?)),

.4

6

where "instance" is a system relation, and (MALE FEMALE ?) is a list. If SEX

is constrained to have only two instances, we may now indicate this by simply

removing the ? from the (MALE FEMALE ?) list. In the CDB, new elements may

be introduced in a list or a set only if the list or set contains a ?. So,

we may now issue DR(SEX instance ?). Just to see what happens, let us now

also instantiate a PERSON, called JOHN: IT(PERSON JOHN). This would, of course,

cause (PERSON instance (JOHN ?)) to be created in the CDB, and JOHN itself will

have fhe following structure associated with it.
PERSON: To representation of PERSON template.

instance/

instance o
SJHN: ?

age hobbies sex emotion
worth marriage

The model of JOHN is a tuple consisting of pointers, defining the various

relations associated with JOHN. The name of the model is JOHN, it is an

instanQe of PERSON, and it points to JOHN's age, worth, hobbies, etc. The

pointers appear in the model in the same order as their associated relations

appear in the template PERSON. Relation symbols in the template with $ flags

do not have associated pointers in the model. Initially all the unknown rela-

tion values are set to ?. We have now created JOHN about whom we know nothing,

except that JOHN is an instance of PERSON. In the CDB if (x r (Y1 Y2 "' Yn))

is true (i.e. the model of x points to the list (yl Y2 ... yn) for the rela-

tion symbol r) then it is interpreted as (x r yl)(x r y2)...(x r Yn). Thus
(JOHN attributes (RICH THIEF)) would mean (JOHN attributes RICH) and (JOHN

attributes THIEF) are both true. Also, for every (x r y) in the CDB, the CDB

will also contain (y r+ x), where r- is the inverse of r. That is, if the

model of x points to y for the relation symbol r, then the model of y will

point back to x for the relation symbol r+-. Let us now take a look at the

sense definitions. SENSE1 is given below. It is associated with (PERSON

attributes). In the definition of SENSE1 read *1 as the "current instance

of PERSON's", and read "(x is RICH)" as "(x EQ RICH)" ("is" has the status

of EQ in LISP). We shall also use "is" together with relation symbols to

improve readability wherever convenient.

7

SENSEl: (PERSON attributes)

((ATBT x) I((x is RICH) > (*! worth is. ' 1000000))
((x is POOR) <> (*! worth is.< 1000))
((x is ORDINARY) <=> \,(x is RICH) -(x is POOR))
((*1 attributes THIEF) => (x is THIEF)))

Here ((*! attributes THIEF) => (x is THIEF)) is interpreted as "If

THIEF is declared to be an attribute of *1 then (x is THIEF)." Thus, to set

up (JOHN attributes THIEF) someone should declare IR(JOIIN attributes THIEF),

where "IR" stands for "Instantiate Relation". Let us refer to this sense defi-

nition by SENSEI(*!, x) indicating that it has two arguments: One is the

current instance of PERSON at which it is being evaluated, and the other, x,

is the attribute for which it is desired to know whether (*! attribute x) is

true ot not. Every sense definition is thus a function of exactly two argu-

ments, one of which is always *1. *1 is called the anchor of a sense defi-

nition.

If SENSEl(*') is issued then the system -ill attempt to find all the

attributes of *! that satisfy SENSE1. If none could be found then it will
Wreturn ?. In the evaluation of SENSE1(*!), (*! attributes THIEF) will be true

if it is so indicated, already in the data base. In the evaluation of

SENSE(*',, x), (*I attributes THIEF) is true if x is bound to THIEF. Thus, in

the definition of SENSEI, (*f attributes THIEF) has a special status, since

the SENSE1 itself defines (*I attributes).

As the reader might have already guessed the sense definitions are evalu-

ated over a three valued logic system, T, ? and NIL; T dominates ?, and ?

dominates NIL. The other sense definitions are shown below:

SENSE2: (PERSON spouse): ((PERSON x) I v(*! is x)(*l marriage.partners x)).

This definition also says "the list of ALL PERSONs x such that ... "

but the MDS will interpret this as "THE PERSON x such that ... ", because the

template for PERSON says that the s of a PERSON is a PERSON and not a

list of PERSONs. The spouse of a PERSON is distinct from the PERSON and is

the PERSON's "marriage.partners". The "." here indicates concatenation of

relations. It corresponds to a relation path in the CDB.

SENSE3: (PERSON wife): ((PERSON x) I (x sex is FEMALE)(*! spouse x))

SENSE4: (PERSON husband): ((PERSON x) (x sex is MALE)(*! spouse x))

*

SENSES (PERSON emotion): ((EMOTION x) I
((x is HAPPY) > ((! attributes RICH) V (*! marriage.quality COMPATIBLE))
N(*! attributes THIEF))
((x is SAD) > (*! attributes POOR) V (*1 marriage.quality LOUSY))

((x is BLAH) e> nu(*! emotion IIAPPY)%(*l emotion SAD)))

SENSE6 (MARRIAGE partners): ((PERSON x y) I (x sex is MALE)(y sex is FEMALE)
(x loves y)(y loves x)
(*! marriage of x)(*! marriage of y))

Notice that in SENSE6 *! stands for "the current instance of MARRIAGE", and

marriage of is usea as the inverse of marriage. Notice also that the PERSON

template specifies that the marriage of a PERSON is unique, since MARRIAGE is

a node template. This precludes a PERSON from having more than one marriage.

SENSE7 (MARRIAGE quality): ((MQUAL x) I (SOME PERSON y)(SOME ACTIVITIES z)

((x is COMPATIBLE) <=> (y spouse.age. < (PLUS (y age) 5))(y hobbies z)
(y spouse.hobbies z))

((x is LOUSY) <=> '(*I quality COMPATIBLE)))

This completes the definition of the description schema for the domain of

our example. The system uses the sense definitions to keep track of the inter- A.

action; among the various relations. Thus, (PERSON sex) is used in the defini-

tion of (PERSON wife), (PERSON husband) and (MARRIAGE partners). The MDS will,

therefore, set up

DETL(PERSON sex) = ((PERSON wife) (PERSON husband) (MARRIAGE partners))

It does seem reasonable that a PERSON's sex should determine the PERSON's

wife, husband and MARRIAGE partners. The DETL's. associated with the various

(template, relation) pairs in our example are shown below:

DETL(PERSON age) = ((MARRIAGE quality))
DETL(PERSON worth) = ((PERSON attributes))
DETL(PERSON hobbies) = ((t.ARRIAGE quality))
DETL(PERSON loves) = ((MARRIAGE partners))
DETL(PERSON marriage) = ((MARRIAGE partners) (PERSON spouse) (PERSON emotion)

(MARRIAGE quality))
DETL(PERSON sex) = ((PERSON marriage) (PERSON wife) (PERSON husband))
DETL(PERSON attributes) = ((PERSON emotion))

DETL(PERSON spouse) = ((PERSON wife) (PERSON husband) (MARRIAGE quality))
DETL(PERSON emotion) = NIL.

Suppose we now wanted to say the following: "If you wanted to make a PERSON

RICH then make 1im rob a BANK for 1000000 dollars. Also, if you succeed in

doing this then make the PERSON a THIEF." Let us assume that the template

9

for BANK already exists, and also a function of two arguments, called ROBBANK

has been already defined. The above procedure may then be declared to the MDS

as a transformation rule , as follows:

TR1: ((PERSON x)(GOAL(x attributes RICH)) (((SOME BANK B)(ROBBANK x B)

(ASSERT(x worth is 1000000))(IFDON (ASSERT(x attributes THIEF))))).

The IFDON clause is activated only if both ROBBANK and ASSERT are successfully

completed. The entire function is said to be successful if the IFDON clause

completes successfully. Transformation rules like this operate in a back-

tracking environment. In response to (GOAL(JOHN attributes RICH)) the MDS will

invoke TR1, if JOHN is not already RICH in the CDB. Our objective is now to

make (GOAL(JOHN emotion HAPPY)). Before we see what might happen in response

to this command, let us first consider how the description schema so far given

is used by the NDS to establish and control the CDB for the domain, and how the

CDB is itself u., d for problem solving.

*: 2. The Data Management System and the Problem Solvers.

MDS has a hierarchy of three problem solvers: CHECKER-INSTANTIATOR (CHIN),

THEOREM PROVER (TMPR) and DESIGNER. The CHECKER evaluates sense definitions in

three valued logic system, and the INSTANTIATOR sets up, updates, deletes and

retrieves data in the CDB in accordance with the rules specified by the temp-

lates. These two together constitute the data management system of the MDS.

The CHECKER evaluates sense definitions always modulo the objects in the

CDB. Thus all the quantifiers in a sense definition become bounded quantifiers.

Since each sense definition has an anchor, *1, the CHECKER uses it to begin its

search over the data base. In fact the sense definitions may be written care-

fully to make this search efficient. There are basically two kinds of sense
definitions: imperative ones and declarative ones. Let STr(*!,x) be the

sense definition associated with template T and relation symbol r. Then

S T,r *,x) is imperative if (*1 r x) <=> ST,r (*!,x). Imperative S T,r's may be

used to find (xI(*! r x)) . If (*! r x) => S, (*!,x), then S' cannot be
T~r T,r

used to find {x! (*! r x)1. It can, however, be used to find a superset of the

relation r, or given a (*! r x) it can be used to find out whether it is TRUE,

? or NIL. To force the CHECKER to look for this declared x, we shall write

declarative definitions of this kind as: STr(*I,x) = (*! r(*I,x).

In this case ST(*i) is either ? or whatever is stored in the CDB.

T4

II

Besides returning the truth value of a S the CHECKER also will return
T,r

certain subexpressions of S T,r called residues. Let a be a particular anchor.

if Sr(a,x) = T, then the true residue of S,r(a ,x) is the part of ST,r (a,x)

that caused it to be true (the support of the condition). Similarly, if the

condition is ?, then the residue is the part of the condition that evaluated

to ?. And, if ST,r (a,x) is NIL then the false residue of ST,r(a,x) will be

the part of it that evaluated to NIL. Let us consider a small example.

Let P = (xi V x2)(xlV x3). Then for various valuations of X1 , x2 and

x, the various residues would be as shown below:

valuation €

xI x2 x3 *(P) TR (P) R (P) FR (P)

T T T T (xI v X 2)x 3 T T

T T ? ? ?x ?
T T NIL NIL NIL Ni (-X1 V £3)
T ? T T XlX3 T T
? ? T ? ? (xl v x2) ?
NIL? ? ? ? x2 ?
NIL NIL T NIL NIL NIL (x1 v x2)

These residues are used in various ways in problem solving. The residues

are used by the TMPR to construct new objects that satisfy given conditions.

Both the residues and false residues are together (called the Not True Part)

used by the DESIGNER for means-end analysis. All the residues are used by the

CHECKER to speed up the data base updating process: If (x r y) is to be

changed to (x r z) then the CHECKER will check all the residues associated

with every (Yi, ri) in the DETL(x,r). Only if the residue changes value

(i.e. a true residue or a residue evaluates to NIL, or a false residue

evaluates to T) should the CHECKER evaluate the parent sense definition. In a

* TR,(P) is the True residue of P for valuation * * and similarly we have

FR. (P) and R (P).

'4

problem solving process the residues are also used to sunwiarize the problem

solving experience: If an action succeeded, the associated true residues

will then explain the reasons for success, if it failed then the associated

false residues say why the failure occurred. Summaries of these residues may

then be used, with appropriate generalizations, for guiding'the problem solver

subsequently when "similar" problem solving situations arise. We shall briefly

see the use of residues in the discussion of our example in section 3.

The INSTANTIATOR will complete an IR(x r y) [Instantiate Relation] com-

mand only if no contradiction arises in SX z), and among all the condi

associated with the DETL(x,r). There is also an IRN(x r y) command, which

will set "(x r y) true in CDB, if possible. Corresponding to IR and IRN we

also have DR and DRN (D for Delete) and JR and JRN (J for Justify). Wherea

an IR command will not accept (x r y) if a contradiction arose in DETL(x,r),

JR (and similarly JRN) will attempt to modify the relations in DETL(x,r)

appropriately (if possible) and thus attempt to justify the given (x r y).

The sense definitions act as the gate keepers of the CDB, making sure

that nothing il.3gal happens. The CDB is thus always kept contradiction free.

. However, as discussed in Srinivasan 1973b, because of the three valued logical

system, there might exist hidden contradictions (contradictionswarising be-

cause or incomplete knowledge) in the CDB. An assertion in a domain is true,

if and only if models can be built in the CDB to satisfy the assertion.

This feature of the CDB is used by TMPR (as discussed in Srinivasan 1973b)

to find proofs of assertions in a domain. The TMPR provides the control struc-

ture to the CHIN system, to direct it appropriately, to build models to

satisfy an assertion, if such models are possible. If models do not exist

then it will discover a contradiction. In the model building process the

TJPR uses the residues generated by the CHIN system, to guide itself. The

theorem proving process in TMPR develops proofs by synthesis. It introduces

a new approach to theorem proving.

The DESIGNER is used to do means-end analysis, to invoke the appropriate

transformation rules, like (TR1), to reach a goal, and to interpret the trans-

formations. The DESIGNER may use the CHIN and TMPR systems to find (or build)

the appropriate objects in the CDB to accomplish a given task.

To do intelligent problem solving in a domain both the TMPR and DESIGNER

should be able to appropriately summarize a problem state, and their own

past experiences., and use these effectively to search the solution space (the

goal-subgoal tree) for a given problem. For a given domain, the description

2--

schemas for describing the states of the DLSIGNER and TI4PR may themselves be

again specified by templates and sense definitions. Let DS (Designer State)

and TPS (Theorem Prover State) be the templates with associated sense defi-

nitions, that specify the respective states of the problem solvers for a domain

D. Every time the DESIGNER invokes a function (note that the DESIGNER can

invoke the TMPR itself as a function) it will create a new instance of DS to

describe the problem state associated with the invoked function. The DS itself

might be as follows:

((DS $N)

(fn-called FND): Some unique way of identifying the called function

(initl-state ICOND, SENSEI) Some way of specifying the initial state

in CDB, and possibly other problem conditions that caused the invocation of

the function.

bindings BNDGS, SENSEB): The list of all possible bindings available in

the CDB for the arguments of the invoked function (actually its closure), for

the current invocation. In general, there might be more then one possible

binding. Let u!. assume that BNDGS also flags the currently chosen bindings.

SENSEB might specify how to choose the current binding.

(subgoals SUBGLS ,SENSEG): The list of DS-instances corresponding to

all available subgoals, if such subgoals exist SENSEG might specify how to

choose one from among the list.

(sensesummaries SSM, SENSES): Summaries (usually made out of the

*residues) of all sense definitions evaluated during the active tenure (i.e.

before the DS-instance is closed up as having been successful or a failure)

of the DS-instance. All these summaries will appear in terms of the variables

appearing in the invoked function. The template SSM might itself be domain

dependent. The sense definitions associated with the S&4 template might

provide ways of analyzing and summarizing all the residues obtained in a DS-

instance. One may include in these sense definitions, domain specific evalu-

ation functions, if any.

The sense summaries will generally fall into two classes: Those associated

with the successful completion of the invoked function (SUCSSM) and those

associated with its failure or suspension of the function (FAILSSM). Notice

that for each DS-instance, its associated sense summaries would specify the

special cases in which the invoked function either succeeded or failed. When

new invocations of the same (or similar, in a suitably defined sense, again

possibly specific to a given domain) functions occur, these special cases

might first be checked to avoid repeating errors, and to choose, if possible

the correct course. Conditions for examining such sense suimnaries might appear

in SENSEB and SENSEG given above. To facilitate such checking, DS may also

have,

(history DSL SENSEH): List of all other DS-instances of the same

(or similar) function. The reader should note that the instantiations of the

relations in a DS-instance will itself cause the associated sense definitions

to be invoked, and their evaluations will produce residues which might them-

selves cause an entirely new sub-problem solving activity to take place.

(final state FSTATE SENSEF): The changes performed in the CDB

during the tenure of the DS-instance.

(fn-state FNS SENSE?): The state in which the DS-instance was

finally closed: success, failure, or suspended.

(successor DS SENSFS)) successor DS-instance, if any.

The relations given above are typical of what one might want, in order to

meaningfully dertribe the state of the DESIGNER. The important concept to notice

is that differeit such DS templates might be defined for different domains.

The network of instantiations of the DS template, generated during the ccurse

Mi of a problem solving process, would constitute the problem solving protocol.

This protocol will not only contain a trace of changes done on the items in

CDB, but it also will document the reasons why certain courses of actions were

taken, and certain others abandoned. For each DS-instance, the program schema,

[CICOND) A (SUCSSM) - FSTATE] A

[(ICOND) A (FAILSSM)) ICOND].

in effect summarizes the effect of the DS-instance: For the given initial

state and conditions summarized in the SUCSSM, the DS-instance leads to the

indicated FSTATE (final-state), and for the same ICOND and FAILSSM the ICOND

is left unchanged. This program schema may now be used to translate a protocol

to a program. One would, of course, choose only the DS-instances appearing

in the successful execution path of the protocol. Each such program will

correspond to a special case of the invoked function.

The template for the theorem proving state may also be similarly used to guide the

theorem prover intelligently in a domain dependent way. It is worth mentioning

here certain important features:

In MDS the problem solvers, in fact, generate a description of what they do

as they solve a problem. In fact the problem solving process is itself simply
the process of describing what the MDS is doing. These descriptions are, how-

ever, generated in a highly domain dependent way. Again the notion of special-

ization comes in. Most importantly, summaries of the problem solving protocols
may be made in the form of canned progiams, with characteristic conditions for

their invocation. These canned programs may 'ter be called whenever appropriate.

In this sense the MDS can constantly learn an.. improve itself. Also, clearly,

it is being used to do automatic programming in a non-trivial way.

The operations of the TMPR and DUSIGNER are discussed in fair amount of

detail in Srinivasan 1973b and 1973a. Let us now get back to our example.

3. Making JOHN Happy

The DESIGNER receives the goal (GOAL(JOfHN emotion HAPPY)). First it

checks the CDB to see if JOHN is already HAPPY. Then it searches its repertoir

of transformation rules to see whether there exists a transformation to make

a PERSON happy, since JOHN is a PERSON. It does not find any. So it simply

issues JR(JOHN emotion HAPPY), (JR for Justify Relation), to the INSTANTIATJi4.

The INSTANTIATOR, of course, calls the CHECKER, which now evaluates

SPERSON, emotion (JOHN HAPPY),

which in our case is SENSES (see page 9). Since none of JOHN's properties

are known, the condition evaluates to ? , and the CHECKER returns to the -7.

INSTANTIATOR the following residue, (RI):

(RI). (PERSON JOHN)

((JOHN attributes RICH) v (JOHN marriage-quality COMPATIBLE))

-(JOHN attribute THIEF) -(JOHN attribute POOR)-(JOHN marriage.quality

LOUSY).

The INSTANTIATOR now passes this on to the TMPR, since it has the JR command.

It is now the TMPR's job to create new objects satisfying Rl. Let us sup-

pose it first sets up the goal

(GOAL(JOHN attributes RICH)).

When the DESIGNER gets this, it finds the transformation rule (TRl) (see page).

Now, if the bank robbery and the following ASSERT statements are both success-

fully completed in TRI, then JOHN will be RICH. However, now the IFDON statement

should also be executed. This makes JOHN a THIEF and hence, not HAPPY (this

violates RI). This approach should therefore be abondoned. During this

process all the sense summaries and problem conditions would have been recorded

in the various DS-instances created by the problem solvers.

15

Now, the next possibility is to get JOHN married, and make the marriage

compatible. So cxeate a MARRIAGE for JOHN. To complete this marriage, another

partner (a woman) has to be found according to SENSE6 (see page 8). The

woman has to love JOHN. Also, since the marriage quality hould be compatible,

the woman should not be more than 5 years older than John and also should share a

hobby with John (From SENSE7). What is the age of JOHN? What are his hobbies?

There are no sense definitions associated with a PERSON's age and hobby. So,

ask the user.

Now, if permitted, the TMPR can create a new FEMALE PERSON with the ap-

propriate properties (to love John, be not more than 5 years older than John,

and share a hobby with John),and marry John off in order to make him happy.

If the MDS is advised not to create women like that (this condition can be

imposed by advising the MDS that only the available resources in the CDB may

be used to solve the problem), then the system will now merely put John as

being happy, ane. associate with his happiness the residue (RI) as a condition.

Later, when moi . properties of John becomes available, the system will check

- -whether the conditions on John's happiness are being satisfied. (But, of

course, bachelor John could well land in a LOUSY marriage later on and loose

his ha piness!)

If the job had been successfully completed (by creating a woman), then

essentially, the program generated from the protocol would say,

Making a PERSON happy:

(PERSON propert.ies unknown)

" (ASK FOl PERSON's age)

(ASKFOR PERSON's hobby)

(CREATE PERSON's marraige, and make it compatible

by creating an appropriate partner for PERSON).

in somd suitable programming language (which could, of course, be the

_ command language of the INSTANTIATOR, together with some facility to invoke

them conditionally). In the execution of this program one may, if desired,

entirely suppress the CHECKER. Since, for the conditions satisfying the program,

it is known to succeed without creating any contradictions in the CDB. One

has to, of course, include within the program the steps for creating a woman

such that the marriage is compatible.

Briefly, this illustrates the essential concepts in MDS, the organization

*t '1

of the MDS and its operational features. The significant innovations are the

following:

(i) The concept of the description-schema, and a system organization where

every aspect of the system's functioning adapts itself to the description schemas.

One may think of these schemas as representation strategies for domain depen-

* dent knowledge and problem solving techfiiques. For a complex domain the crea-

tion of these schemas will itself be a formidable problem. The MDS can help

intelligently in this task.

(ii) The Coherent Data Base operates on a three-valued logical system. As

shown in Srinivasan, 1973b, it is this three-valued logic feature that makes

constructive proofs in a domain possible.

(iii) The problem solving process is itself viewed as a process of descri-

bing what the MDS is doing. From the description of the way a problem is solved

(the description has more information than a program trace) the MDS can generate

a program for sc .ving the problem.

There are several new concepts in the MDS organization. Logical conditions

(the sense definitions) are used in MDS as programs as well as data. (Generally,

in theorem proving systems logical conditions are used only as data.) The struc-

tural organization of descriptions themselves build into the system a lot of

logical constraints. The description structure of an object is used to classify

objects in a domain into objects of different kinds, like PERSON, MARRIAGE,

PEOPLE, etc., 3.n our example. This classification of objects in a domain into

objects of different kinds, later aids the system in summarizing its own prob-

lem solving experiences; it is thus capable of generalizing what happens to JOHN

as what might in general happen to a PERSON with certain properties.

The realization of the MDS as a working system will significantly advance

the art.of AI as well as the art of automatic programming. In the next section

we shall attempt to place the MDS work in perspective, within the spectrum of

automatic programming systems, as viewed from the point of view of a specific

classification schema.

4. MDS and automatic programming

Every AP system should, of course be capable of providing the elementary

clerical and syntactic help that one would expect of any good programming system.

In addition, we require that it understand in a well-defined sense, what a user

-

. is saying in a discourse with the system. It shnuld, for example, be able to

resolve ambiguities of specification to the extent possible; and it should be

able to identify the missing pieces of information in a given context of

discourse, and seek out to obtain them. Also, whenever necessary, it should

call on available canned programs, or generate by itself the necessary programs,

to solve the problems it encounters during the course of its interaction with

the user. Ideally, it should be able to improve itself by experience. The MDS

can satisfy all these requirements.

To do all this in a given domain, the AP system should not only have some

expectations on the nature of knowledge--facts, conjectures and procedures--in

the domain, but it should also be capable of automatically invoking the appro-

priate pieces of information within a given context, and use them correctly.

The kinds of problem solving facilities necessary to create such a system

. exist in systems like STRIPS, and the programming facilities necessary to create

such systems are available in CONNIVER and PIJANER like systems. STRIPS uses

a general theorem prover for problem solving and is thus restricted in its scope

" "of applications. There is no notion of domain specific specialization in

STRIPS., The CONNIVER and PLANNER like system enable one to create highly specia-

lized domain specific problem solvers. But the programmer has the responsibili-

ty to build all the problem solving systems. In D)S, we find a general problem

solving facility that can be specialized to specific domains. We have, truely,

the concept of programming over a knowledge base.

For our purposes here I shall classify the existing works in AP-systems

as shown below. I should hasten to point out that the classification given

here is not intended to be complete; on the contrary it is meant to reflect

one man's biased opinions. A survey of the AP-systems appears in Balzer [1972].

AP-EFFORTS:

CIA] Systems with general problem solving.

[IA1] Those dominated by the problem solver.

These have no capacity for domain specific specialization. Leading
example is STRIPS (Fikes 1972]. Some of the other examples appear
in Darlington [1973], Manna and Waldinger [1971], Luckham &
Buchanan [1973].

[IA2] tDS-Type: The general problem solver is driven by the represen-
tation strategies chosen for a domain. There is a strong sense of
domain specific specialization.

[1B] Programming Systems.

Leading examples are PLANNER [Hewitt 1972], CONNIVER [McDermott
1973]. Useful to creatc domain specific intelligent systems. But
do not have problem solving features to provide intelligent guide
for automatic programming.

[1C] Systems that include a lot of domain specific knowledge

[lCl] Made of a collection of canned programs which expertly encapsulate
domain specific knowledge.

[lClA] With an intelligent interface to cleverly select the appro-
priate functions in response to problem conditions.
EX: NONE.

[ICB] With no such intelligent interface. EX: MAXSYMA

[1C2] Made of special purpose synthesis routines that produce highly op-
timized code for given classes of problems in restricted domains.

EX: Wilkens [1973, included in the Appendix].

Guard, J, [1972].

[1C3] A set of programming conventions--as for example in structured
programming-- together with a well organized, automated clerical
systems to document programs and itde users in debugging.

EX: BLISS [Wulf 1973], Parnas [1971], Wirth [1973].
In our project the work of Welsch [1973 a b], falls in this

category.

[lD] Poving properties of Programs

[lDl] General Approach

EX: Jtaroshi,S., London, Lukham [1973], Stanford AI-Memo.

(1E] Programs to improve programs

[1E1] General Approach

Darlington & Burstal [1973].

[IE2] Restricted Approach

Marvin Paull's work in our project falls in this category.
Paull [1973].

In this schema we are placing the MDS in a class by itself. In our dis-

cussions of the MDS here we have ignored the problem of design of a language

of discourse for communicating with the MDS in a domain. We have, in fact,

identified a way of defining a language to the MDS in terms of a mapping from

the linguistic units in a language (lexical items and phrases) to items in

the description-schema of a domain. The language understanding process is

viewed as a process of translation from utterances in a language to models in

the CDB. This model building process may use the full problem solving power

4'9

of the MDS to effect the translation process. We shall report our findin.?. in

this area in subsequent reports.

We believe that the MS can bring the full powers of a general problem

solving system to the services of common computer users in different domains

of discourse, each communicating with the machine in a language appropriate

to the domaain.

Acknowledgement.

The discussions I had with Balzer were very useful in clarifying

many of the concepts presented here. It is a pleasure to acknowledge this

help.

'A 20

REFERENCES:

Balzer, R.M. (1972) "Automatic Propgramming" ISI Institute Memo, ITEM 1.

Balzer, R. M., et al., (1973) "Domain-Independent Automatic Programming,"
ISI-RR-73-14. USC/ISI, 4676 Admiralty Way, Marina Del Ray, Calif. 90291, USA.

Dahl, Dijkstra, Hoare, (1972) Structured Programming, Academic Press.

Darlington, F. and Burstal, R. M., (1973) '!A".y5-te aWhichL Automatically Improvcs
Programs," Proc. 3rd IJCAI Conf., pp. 479-485.

Fikes, R. E. and Nilsson, N. J., (1972) "STRIPS: A New Approach to the

Application of Theorem Proving to Problem Solving," J. Art. Intel. 3(l),

pp.. 27-68, April.

Guard, Jim, et al., (1972) "BASIS/APG Users Guide," An automatic Program

Generation System for Business Information Processing, Applied Logic

Corporation, Princeton, N. J. 08540

Hewit, Carl, (1972) "Description and Theoretical Analysis . . of PLANNER:

." Ph.D. dissertation, M.I.T. AI-TR-258.

Hoare, C. A. R., (1969) "An Axiomatic Basis for Computer Programming,"

Comm. ACM 12, pp. 576-580, 583.

Jtaroshi, S., London, Lukham, (1973) "Automatic Program Verification 1: A
Lbgical Basis and its Implementation," Stanford Art. Intel. Memo A.I.M.-200,
May.

Luckham, D. C. and Buchanan, J. R.,(1973) "AutQmatic Generation of Simple
Programs; a Logical Basis and Implementation," AI Project Report,
Stanford University.

Manna, Z.and Waldinger, R. J., (1971) "Toward kitomatic Program Synthesis,"
Comm. ACM 14, pp. 151-165,

McDermott, Drew V. and Sussman, G. J., (1973) Son of Conniver, The Conniver
reference manual, Version II.

Parnas, D. L., (1971) "A Technique for Software Module Specification with
Example ,"Carnegie Mellon University, March.

Paull, Marvin, (1973) "Procedures for Formulating and Improving Algorithms,"

Dept. of Comp. Sc. Tech. Report (December) Rutgers University, New Brunswick,
N.J. 08903

Srinivasan, C. V., (1973a) "The Architecture of Coherent Information System:
A General Problem Solving System," Proc. of 3rd IJCAI Conference, pp. 218-228.

Srinivasan, C. V., (1973b) "A New Approach to Theorem Proving: Proof by
Synthesis."t Dept. of Comp. Se. Tech. Report, RVCBM-DS-TR26, November.

. S

I" °

Welsch, L., (1973) "Correctness of Lock and Unlock Primitives in Hydra,"
Dept. of Comp. Sc. Technical Memo, Rutgers University, New Brunswick, N.J.
November.

Wilkens, E., (1973) "Ro-i7ation of Sequtntia c Mchines Using Random Access
of Memory: Part I," Dept. of Comp. Sc. Report, Rutgers University,
New Brunswick, N. J. 08903

Wirth, N., (1973) Systematic Programming: An Introduction, Prentice Hall, 1973.

Wulf, Cohen, Corwin, et al., (1973) "HYDRA: The Kernal of a Multiprocessor
Operating System," Carnegie-Mellon Computer Science Dept., June.

..

SOSAP-TM-10

December 1976

ThE BLIND HAND PROBLEM

T. Hsu

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
N4ew Brunswick, New Jersey

This research was partially supported by the Advanced Research
Projects Agency of the Department of Defense under Grant #DA}1C15-73-G6
to the Rutgers Project on Secure Systems and Automatic Programming

author and should not be interpreted as necessarily representing the

V official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

T 4. . PLI?!D : AND PIROPLF.M .*................. T. Psu . . . Dec. 1976 Pare 4

xl in state sl will be union of the thins oririnal at xl and thinrs

held by hand in state sl. ioreover, all the properties of the thins's

at xl after iction Ir.ot are the sa-e as that of thins unc!er union

oneration. (f is the function variable ra:rinr over nrorerties of

sets.)

In the above rule, lots things have been said: first, this rule

includes the set concept, e.q. the exoression thinrsat(xl,sl) ;,ill

return a set which contains all the thinrs at xl in state sl, it is

very convenient to have this kind of operator; A?STRIPS is weak in

this feature. secondly, it describes what is changed when action 'go'

is invoked. Finally, it says what is unchanqed.

t special feature of this problen is the 'nondeteri'inistic

feature'.. The action 'PICKUP' deals with randoi choice. it couses
'-7

some uncertainty of a plan ;.hich nakes the Droblen difficult.

The final plan that Carlinston -enerated is:

fro(there, oickuD(Uo(here, letco(so))))

This solution will not cuarantee to wor!' if initially the hlnd is

'here' and holds a thin7 which is not red. The correct -1ln should be

o(there, pickup(ro(here, letro(-o(there, sO)))))

This defect arises because there is no 'T' nredicnte in the

Darlington's system, hence it is needed to use 'no(here,s)' to vxnress

implicitly xhere the location of the hand is. Othervise this rne-ial

situation iay conflict with the rule on '-o', and the initial

condition which says that there are only red thinrs 'here'.

THE N.LIr'D .A2LD PI. .PLE1 . T. 11su . . . Dec. 1976 Pa-e '

III.APOUT APSTHIPS

(1).Introduction

In AfSTRIPS, an action is represented in the form of three lists

i.e. a precondition list, an addition list and a deletion list. Each

list contains a set of well-forni.d forrulas(vff) and each vff in tIe

precondition list has been assi-ned some criticality value by the

systeri, accordinr to the importance and the difficulty of the i:ff

comparin7 with some user predefined criticality value of so!7e atomic

vwffs. Usinq these lists, it avoids usinr the situation variable,

since it assuries that the truth values of only the assertions in the

add list and delete list will chan'ed. Vhen the system atte!ts to

build a plan, it will try to accomplish the wff wrhich has the hiThest

V7 criticality value first. The difficulty of satisfvin a -oal

increases with the criticality value. This biases the syste,- tovards

rejectin unfeasible plans, resultin in a s.aller plannin- srace and

hopefully a more efficient system. Also, to ;'aintain efficiency the

sistem tries to avoid usinr negated predicates. An examnle of this

occurs in the use of two predicates 'STATUS(x, CL@S:)' nnd

'STATUS(x,OPE!)' instead of 'STETUS(x, CLOS0)' and

' (STrus(x,CLe))'. To enable the nvste- to assign criticnlity

values pronerly to the wff, the rysten needs an extra ayiol, in t!v

world model:

(ALL x)STATUS(x, CLOSE) <=> N!OT (STATU:;(x, OPFi4))

(2). The modified version of the blind hand problem

THE FLIOD HARD PROVLEt T. Hsu ... Dec. 197f P"fe 6

The orit-inal blind hand problem ,ill be discussed in the section

3. The modified blind hand nroble" will be described in teris of the

reprerentation of A.STRIPS first. The only difference between there

two versionn is in the action 'pickup'. In the modified version,

instead of random pick-up, we could specify the thinr. te w-int to nic"

uP.

We shall first define the followinr predicates:

AT(x, y): True, if x is at place v; false, othervise.

HELD(x): True, if x is held by the hand; false, otherwise.

N1OTHELD: True, if the hand does not hold anythin7;
false, otherwise.

RED(x): True, if x is red; false, otherwise.

TYPE(x,y): True, if x has the type y; false, othervise.

For efficiency, we defined both PPLD(X) and ;'OTPFLD. T!-C extra

axio": (ALL x)FOT(FFLD(x)) <=> t'OTi ELD , is also defined for th'.e sa-ke

of conpleteness. The operators are defined as follows:

GOx): The hand "oss to place x.
Preconditions: AT(hand, ;1) ,TYPE(-1 ,PLACE) ,TYPE (x,PLACE)
add list: PT(hand,x)
delete list: AT(hand,t1)

t7OV(obj,x): rove OPJECT obj to PLPCE x.
Preconditions: .T(hand,$1),P.T(obj,,l),'.ELf (obj),TYPI .:1, LACr),

TYPE(x,PLACE),T1PE(ob,OPJECT),
add list:PT(hand,x),*AT(obj,x)
delete list:AT(hand, $I) ,AT(obJ , $1)

(where * dvnotes the predicate which is the main purpose for

applyint" this operator.)

* PICKIIP(x): The hand picks up the object x.

Preconditions: ?;OTiiELD,AT(hind,^1),AT(x,"1),TYP (x,OFJECT),

T. 1LI:;D EfAfD PPOPL T. I!su ... Dec. 1976 Fare 74m-

TYPE(tl ,PLACe;)

add list:FELD(x)

delete list: '!GTHELD

LETGO: Release anythinr held by the hand.

Preconditions: HEILD(1)
add list: N:OTHELD

Delete list: fiFLD($1)

For the initial conditions, we want to say that there are only

red thints at 'here'. In the second order loric, we could urite like:

FIOT[I!TERSECTIOT(anyof(thinsat(here,sO)),redthinrs)]=0

In APSTRIPS, since it does not include the set concept and set

-- operators, we may write some thing like:

(EXIST x)[TYPE(x,OJ CT) AND AT(x,here)] AND

[(FLL x)((TYPE(x,OFJECT) PFCD AT(x,here)) -> PED(x))]

There is still one problem Since the right part of the

conjunction is only true for the initial conditions, ve hiave to

introduce a time parameter. In Darlington's syste1, tiis tirre

information is embedded in the state variable. For simplicity, let's

just define the initial world model with all the instances which

satisfied the initial condition as follows:

TYPS(here,PLACE) AT(objl,1'ere)
TYePi(there, PLACE) AT('AfID, there)
TYRO(obJ1I,OrJ) i)(b I)

TYPE(oh.)2,OFJ) iE;Ln(ohj2)

-

qT'L: PLIND HPIND PRO LL[I: T. H su . . .Dec. 1976 P a-e 6

Fesides the lack of the set concept in APSTRIPS, it is uzuallv

also necessary to avoid disjunction and ne-ation in %iffs. The usc of

necation in tff would cause the system to check the entire deta b'ase

every tine, causinm a considerable vaste of time. lisinrY the

disjunction in w:ff will notentially cause backtracking, and it in not

clear yet how to assirn the criticalitv value to each precicnte and

how to proceed with the control flouis in the disjunctive for!:i.

The criticality value is assigned, first, to the predicates %vhich

can not be chanted by any operators. In our case, the predicates tuith

the hiqhest criticality would be TYPE and RED. Let then both have the

criticality value 6. Then, since accomplishin7 the predicate [[LO

reauires the truth value, true, for the predicate PT in its

precondition list; HELD is assigned a higher criticality value than

,AT. Let us assirn the value 4 for fELD and 2 for AT. Pecause ve have

the axiom:

(.LL x)FOT(HELD(x))<=>B1OTHELD

!NOTHULD and HELD will have the same criticality value,i.e. 4.

The rqoal of this problem is:

(EXIST x)[TYPE(x,OFJECT) AND AT(x,there) AUD RED(x)]

First, we instantiate a Skolei dumv variable,say v, to delete the

existential nuantifier, so we have

TYPE(v,OPJECT) AIN.D AT(v,there) AD RFD(v)

S

6

TljE PLIN!D IP.!rD POORLE1 T. IUnu . . . Dec. 1976 Pa 7 v 9

as the new -oal. Now ve are ,oin, to accoinlish the nes roil by

". bindinr v to some value. Ve will first try to acco-rlish the

oredicates which have the hi-hest criticality value, i.e. TYPi2 and

RED. Pence by knovinq obji is red, we bind v to objl i'-n-dir-telv.

Then, we try to accomplish AT(objl,there) which is not tru. in our

initial vorld model. The only operator to accomplish tui -oal 4-

M!OVE. 1e need to invoke iIOVE(objl,there) which has the precondition

list:

AT(hand,S1), tt(obj1 1), IIELD(objl), TYPEU-1,PLACE.),

TYPE(there,PLACE), TYPE(obj,OPJECT)

The predicates with the highest criticality value, C, are

TYPE($1,PLAC!]), TYPE(there,PLACE) and TYPE(objl,OPJECT). If ve hind

tl to 'here', then they are all satisfied in the space of criticality

value 6. rext, we try to accomplish the predicate rith the

criticality value 4, i.e. PTFLD(objl). tfter searchin. all the

operators, the only possible operator, PICKUP(objl), is invoI:ed. The

precondition of PICKUP is

NOTHELD,AT(hand,$1),AT(objI,$I),TYPE(obj1,OJECT)

where TYPi:(obj1,OEJECT) is satisfied already. $o we try to accorinlish

the predicate tOTFELD, which in turn will require onerator LY;C. 2v

bindin" T41 to obj2 in the precondition of LETGO, ve have co!-letcd the

space of criticality eaual to 4. For the space of criticality ecual

to 2, the followin- predicates which are left over fron the nrcviot'nlv

applied operators have to he ratisfied:

L

TrL PLIr4D HIAND PROPLCM T. lisu . . .iDec. l)76 Pa-e 1o

From operator PICKUP, we have: AT(hand,:'1),AT(ohj1,-1) Fro-, operator

VOVE., we have: AT(hand,here),AT(objl,here)

The easiest way to satisfy all of these is bindinr Al to "ier v", and

*invokinr the operator GO(here), which has the orecondition:

;: AT(hand, 1I) ,TYPF,($1I,PLACE) ,TYPE(here, PLAC?,)

This can be satisfied by substitutin7 t1 to "there". Then all tle

remaindina predicates can be satisfied automatically without invc!:in

any more operators. Therefore, te have built the followinr pl,.n :

LETGO, GO(here), PICKUP(objl), M:OVE(objl, there)

where the order of LETGO and GO(here) is not important.

In the above process for buildin7 plans in A STRIPS, we could see

so,.e interestin7 points:

1). Peinr quidinq by the criticality values of predicates, the svste,

bound x to obji i.nnediatelv and correctly in the first try. It vill

noA be mislead by the fact that obj2 is already at .lace "tiprv'", oven

though it satisfies a part of the -oal.

6

2). The frane problem occurs in the onerator GO. ,*hen the hand -oes

to x, we do not l:now whether the hand is holdint sorething, or not. If

the hand is holdinr nonethinr, then this thinr iust also chan,-e to the

new pl.ace. Hence an extra rule which interacts vith the action '0'

, 6

: THE PLI"'I ll/.I*D PROPL ' . .' T . [Lsu . . . ;ec . 1975 Pa , 11

is needed in the world model:

(ALL s) (ALL x)(ALL v) (VXIST z) llV:LD(x,s) .) .r(x,",) ->

AT(x ,z ,RESULT(GO(z ,s))) AUI'D P'T(r(x ,v, I SULT(G,(zs)))) J

where a situation variable s is attached to all the predicates and the

function 'RESULT' is used to man an action to a situation[reference

tEcCarthy and Cayes]. Using the situation variable increases the

complexity of the control process. It seems that a better aonroach is

to add a wff to the add list of the action GO as follows:

HELD(y) -> AT(y,x) AND NOT(AT(y, $1))

Then build a special control for it.

Ve also need an extra rule to tell the system that if sofrethinr is

beinT held by the hand, then this thin- is at the sae ol:ce as the

hand is, i.e.,

(PLL x)(ALL y)[(HELD(x) AN[D I T(hand, y)) -> AT(x,y)]

Fence, in the world model there are usually .nuite P few axio;s han~inr

around. Each tire when an action is done or so:ne predicates are bein"

updated, ve need to check through all of these axioms. P heavy rrice

is paid for this in loss of efficiency.

3). One rood point in delayin7 the substitution of the un'nown

variable is to avoid the hacktrackin-. In the above exa'nple, vntilE?

invokin, the operator PICKUP', we did not bind ,'l in the snaC)" c of

criticality 4, since ve did not have any information for blndinr at

THE i LI !D iPP.D PROPLF': T. P'su . . Dec. 1976 Par-: 12

that point. V;e wait until the space of criticality 2, where we have a

wood reason to bind ^1 to "here".

(3).The orizinal blind hand problen

Now, we consider the oririnal blind hand problem in vhich the

hand randomly picks up an object. Thus, it does not need an nr-u-ent

for PICKUP. The new PICKUP will look like:

PICKUP
?red: INOTi7-LD, (EXIST x)(AT(x,t1) & TYPE(x,OE'J7CT)), AT(hand, :1)
add: HELD(x) where x is one of objects at place $1.
del : .THEL D

An ad-hoc way to solve this problem is using the sai-e Dln w:e had

" in the modified version repeatly removing one object fro- "here" to

"there" until no objects at place "here". Since initially there is a

red object at place "here", therefore there is a red o:jcct at ol3ce

"there" in the final condition.

In order to solve it in a more forrnal way, we need to aid the net

concent and set operator in PPST1IPS and to tell the svste. sone

heuristics for ouidlnp the control flov.

First, ve want the system to know that the only va" to nunr- ntee

that the hand will always nick un a red thinr at ro-e olace is by

rakinr sure that there are only red thin,-s at that nlSC V. e could

write this as an extra axiom with a situation variable, s, 'nd

function, RESULT, as mentioned in the last section.

[

I4

Tilt LI [) .HHD PROFL T. 1Tsu ...Dec. 1976 Lat'e 13

(ALL s)(ALL n)(AT(hand,n,s) & (ALL x)[PT(x,n,s)->I :Ei(x,r)]) ->

* (ALL x)i ELD(x,RESULT(PICKUP(s))) -> fl(x, RESULT(PICU(n)))]]

The next thin' we wont the systerm to know is that one ,av to

ruarantee that there are always only red thinrs "here" is never let

the hand hold anythin when it -oes to "here". Since initially th,-re

are only red things "here". Thus we have another rule:

(ALL s)[FIOTHELD(s) ->

(ALL x)[AT(x,here,RESULT(GO(here,s))) -> ,Dx,[E ULT(GC(here,,)))]]

The control structure of these twto rules is suite cc'rlicated.

An easier way is to attach these kinds of strategy rules to the

related actions, e. .. PICKUP and GO, so that the situation variable

can be oritted. This can not be done in the current r-F!TIPS

representation scheme. Another difficulty is hot, to define the

properties of the ar7unent of FELLD, w-hich deals with the ran.or- choice

fromi a set, in the add list of action ?ICKUP.

The solution of the oriorinal blind hand rroblen, can be *enerated

in a way similar to the procedure in the last section. 7ecar.e of the

two extra stratey-v rules, the hand must be ennty befcre it roe.- to

"here". Since ve have a rule:

__ (ALL x)(ALL y)[(HFLD(x) & AT(hand,y)) -> AT(x,y)]

This i-,plies initially either the hand is not at olce 'here' or the

hand is holdinr a red ooject in order to satisfy the initial

condition. Therefore the hand does not have to -o to so,;iethere ,lse

to empty it. Thus, the plan we have will look like:

LFTGO, GO(here), PICKUP, MOVE(there)

6'

."..*.o.

Ti U FLIID t!A'1) PROPLF.; . T. .Hsu ...Dec. 1976 Pa-, 14

The PfSTIPS exaple in 3acerdoti's paper that describen how the

system can build a plan for a robot to push a box fro one roo'i to

another points out a few other weaknesses in the systen:

1). For one action 'GO' in the robot problem, it has three different

type 'GO'es, namely: r'o to object bx 'GOTOP(bx)', ro to door dx

'GOTO(dx)', and ro to coordinate location (x,y) 'COi'O(Y,v)'.

iforeover, it has an action in order to Po throu h the dcor 4x into

room rx called 'GOTHRUDR(dx,rx). All these 'GO'es chanre the location

of an object, but each nav cause some different sile effects: scie

will cause the object to be in a net room, some will cause the object

to be next to the another object, and some will result in a chan-e of

the location of an object. For a specific interested outcome, the

choice of an action is determined by the exnlicit reco-nition of the

kind of side effects that are desired. Similarly for the action nush,

they have push box bx to box by 'PUS HP(bx,by)', .ush b'c to c'oor dx

'?USHD(bx,dx)', push bx to coordinate location (xy) 'Pus L(bx,:,y)',

push bx throurgh door dx into room rx 'PUSP!T}PUDR(bx,dx,rY)'. This

kind of representation appears to be too heavily soecializec: to the

narticulqr, stylized example. It in not a scheme that one i-ht ,dqpt

in :eneral, for representation of actions.

2). It needs sore rules to enable the system to co-. lete1v ;cf i..e the

criticality value. Sometlmes such rules do not mri!e too 'iuch sen-e

for us: for example, it has

(MLL x)[PUSI'Ar[F(y) -> TYPE(x, OPJECT)]

SF

THE PLIrD HA:D PROBLEP: T. Hsu ... Dec. 1976 Pa-e 15

which seems quite hard to be defined completely by a user.

3). It has no inverse relation avaiable, hence when vc, delete

IIEXT(X,Y), we have also to delete NEYT(Y,X). It is very inconvenient

and the system needs the extra storage to record both nredicater

1NFXT(x,y) and 1:EXT(y,x).

4). For each action, before execution, it needs to do lots of tyne

checkin7 since usually the type predicate has the highest criticality

value. It spends quite a bit time on that.

IV. ,IDS

(1). The Do'.ain Definition of the Flind Hand Probler

In !DS, many of the above probleis are completely avoided. (In

this section, we assume that the reader has a basic knoi;led-e of !' S.)

The domain definition of the blind hand probler vill lool: am

Sfol los :

,-- (TDO: oPJt'CT (isat (PLACE PC) locationof CCl)
(color (COLC? R!!) colorof)
(heldby (FA N) PI;) holinr))

4 otice that the relation flar '[ItN', Heular Node, tells the .vnte a n
object can only be at one olice, only have one color and onlv be held
by one h-nd. Pere 'locationof' and 'hcld.y' are defined ar t nc names

of inverses of relations 'isat' and 'holdin' , respectively.

CCI-OPJECT-isat:

(CSCC: (CUOT," ((PLACE X)
(((ALL 1iA VD) NOT(H holding @) (C isat >)
OR

TH PLI'l) FIA!!D PROrL2\....................... T. Hsu ... Pec. 1976 Pare 16

((SO':E H D F)(i holdinr (:)(X locationof 1')))))
OPJECT isat)

CCl here is a consistency condition that specifies the condition which
an object will have to satisfy to be at a certain location. CCl Ir,
that if the object is not held by any hand, then the location of that
object could be any location asserted by the user or the r'te-. Jut,
if it is held by a hand, then the location of that object is the zsone
as the location of the hand.

(TM.:: IIAND (isat (PLACE RiN) locationof)
(holding (OEJECT RI) heldby CC2 TFR1))

CC2-RAf.D-hold inc :
(CSCC: (QUOTC ((OFJECT X) 1

(1 holdin- X)(X isat:locationof 2)))

1 'AV .D holdin 7)

T.? 1 -U .!!D-hold inT:
(OST: (QUOTE (((T ?) (DCOFD

(((SOliE OFJECT X) (x is CLDV L))

(IR (OLDVAL isat (, isat))))
(((SOI1,E OFJE CT X) (X is 1' TVAL))

(IR (IVEi'V-L isat: flag 1)))))))
HAID holding)

CC2 says that if a hand is holdinm an object, then the ooject and the
hand rust be at the same place. The anchored transfor-ation rule is
invok-ed only for ASSCRT or IR (Instantiate Relation) co:ands. if
(SS R:T (h holdin b)) is successful (i.e. h vns-.S si.-n e .m the
value of (h holding)), then the CC evaluation would rvezult in the
truth value T or ?. In this case, b would be the CEVVA.L of 'fi1, and
THi will execute (MR (FFVV.L isat:: fla 1)), i.e. set the "fl - of
relation 'isat' of the object b to '11 . 7.hen the 'fla- if 1 t-. value
of the relation is not stored in the rodel saoe, but i s coputed,
everytiie it is needed. If one asserted (.OT (h holdin- b)) i:hen h
was initially holdine b, the b vrould he the CLIVL of TI1, Fn1 in thiz
c case the ,"EliV.L %:ill be ?. Also, the CC2 v'ould have r :turnc.4 the
truth value ?. Thus, T1I? will execute (IP, (b isat (h iz'. t))) hich
%Fill reset the ,flnr of (b isat) bpecl to 0, and assi-n the 1-catinn of
thxe hand h, as the new location of b.

The inverse relations are defined autoiatically hv the svstC.-. Thus

we "et:

(TDI : (COLOR P;.) (colorof (OPJi.CTS 'L) color))

(TDIJ: (OFJECTS L) (ELDUi: OrJCcT))

-;, T -l u . e. 197 P ' 17

TlrE P I',n i~ti) A C L
Tlf~i LIL'Kr EttrA) PiICFLr~l . . Is . . . Dec. 1976 Pr.~ 17

(TDi: (PLACE H.I1) (Iocationof (OFJORF Ar'D : L) isat))

(TD : (OPJOR[!Ar'D SL) (E 1 ,t D1r OPJECT ITAVD))

tVotice that ianv objects ray have the name color, so the .ste

autonaticallv creates a net, template, caller' 'OPJI'CTS'1 , which in the

collection of 'OTJtCT's. For the similar rearon, 'OFJQg2!Ki' iz also

created. The names for these new templates are declared by the uzer.

The CC's and TR's in the above domain are used b,, !A.0z to

establish and maintain a consistent model soace for the domain. In

the case of the £LITND HAtND domain, such a model space uill contain

snecific instances of HAtIDs, PLACEs, OEJL'CTs and COLOPs, end relations

,-. that relate these instances as per constraints specified b., the

" template and consistency conditions. For a discussion of the vay '.DS

* uses the above CC's and TR to maintain consistency in the model soace

see Srinivasan [February 1976]. Ve shall discuss belov only the

asnects of !:DS onerations relevant to our exa.ple.

(2). Some comments on conventions in ?MCS

Let h be an instance of HIAI;D in the model space, n a PLACE', . an

OrJCCT and c a COLOR. Let us consider the constraint CC1-OFJ.CT-itat.

a.Th-rts constraint has the follovin7 form:

((PLACL X) P(C)),

where P(t-: X) is a predicate exnression with two free variables: L-and

X. X is called the set-variable, and C is called tihe anchor of the

CC. For an OPJECT, b, if one asserts, (b isat p), then NDS vouli nind

the anchor variable 6 to b -- the anchor variable is always bound to

T E PLI':;D HAIJD PROFLEt T. I'su . . .Dec. 1976 Pa s,' 1i

the current instance at which nn assertion is beinr mad? -- and the

ret variable X to p, and evaluate the predicate P(, X) in CC1. If the

Dredicate is satisfied then the assertion .ill be accepte-d.

Predicates li,,e P(.2 X) are evaluated in the hPDS model snace in

3-valued locic: True, Unknovn(?) and FIL. For exaiple, if the

set-variable X in P(' X) is unknown, then the truth value of '(, isat

X)' appearin7 in CC1 will be hypothesized to be unknoin in the

evaluation of CC1. In this case, if there is a HAiD, h, suc!h that h

is holdinp b, then durinal the evaluation nrocess of CC1, X will -et

bound to the location of h, as a result of the expression: '((SCiE

HAND MI(i holdinr, 0)(X locationof H))'. In this case the evaluation

" of CCl will return the location of h as its value. iso, in this

case, if one asserted that (b isat o) for a PLCF c, that is different

from p, then predicate in CCI, nainely '((LL IP:AID f ("OT([hol 1in

*2) (G isat X)) OR ((SO'iE A ID H) (F holdinr 0) (1 iccationof K))'

rill evaluate to VIL. If there is no F'AD holdinr h, t>en CC1 'ill

accept any assertion of t e form (b isat q) for any q. The reader iay

siiilarlv examine the interoretation of CC2-FAD-holdin. In -eneral,

if CC[X r] is the consistency condition associated with the relation r

of a template X, then in 1iDS CC[X r] is evaluated as a function of two

.0,&a ients: CC[X r] (2 Y), vhere is th anchor variable an,! Y i.s the

set variable. The evaluation of CC[X rl(2 Y) -ill return the b nd ins

for Y to-ether with the truth value of the predicate in CC[X r]. 7his

truth value ray, of course be, T(True), ?'Inknown) or .'i!U(l1e). In

"eneral, CC[X r] has the follo,1in interpretation:

(2 r Y) <-> CC[X r(! Y).

TEE PLI' I) iA;.D PROFLt i T. Esu ... Dec. 1976 Pa;:e 19

The ;:DS model space will not accept assertion that nroducc

contradictions in the CC's defined for a domain.

The transformation rules like the rule T1-f;Ai.;D-holdin, in the

PLIND HA!ND domain are used in .DS to Derform the side-effects that may

be caused as a result of acceptin, an assertion into the model Lnace.

The specific side effects nay of course depend on the truth vaue

oroduced by the CC evaluation, of the CC's associsted v'ith a

transforation rule. In the PLI:UD r-PD domain TR1-!FV7D-hol, in viii

be invoked by :-DS after CC2-EA1?D-holdin7 is evaluated. Oenendinr uion

the truth value returned by CC2-FA,'D-holdin the action prescribed in

the rule are executed, as discussed before.

After completin- the domain definition, the w will

autoratically build the DO"!-LISTs and DET-LISTs. Let CC[X r] be the

CC at (X r). Then the DON-LIST of (X r) is the list of all anchors (Y

m), such that (Y rn) occurs in CC[X r]. In other words, the evaluation

of the CC[X r] will call for the value of (y m) for sone or all

instances y of Y, in the rodel space. For every (Y n) that occurs in

the DON-LIST of (X r), the anchor (X r) itself will occur in the

DnT-LIST of (Y .n). This has the follwin interpretation:

-- Let y be any instance of Y, and let [x] be the eat of all

instances of X in a model s.ace. Then, every time the valve of (v ni)

is chant-ed, in order to maintain the consistency of the rodel roace,

it may be necessary to check the CC's at every (x r), for every x in

Lx). Of 'urse, for a particular v, only a subcet of [x] rlnv deend

on the value of (y m). To identify this subset, %e shall anzociate

with the DET-LISr entry (X r), a constraint of the form ((X x)

TH!F PL 'L Ai-:D PROFLR;1 .* T. Fsu . . .Dec . 1976 Pp.-o 20

X).Constraints of this IVind are cilled FILZ:'fls in t!DS. If a f'itIter

is availihle at (Y m) then, when (v ni) is asserted for a nprtictular

instance y of Y, the CC's at the anchors (x r) will be chec'",(d only

* for the objects x in ((X ~) P(O x)).

In the CLI;7D FAJD do!Iain, there are onlv two CC'S,

CC-OEJECT-is-at and CC2-HAV*D-holdinr'. So only (OUECT isat) anu-j (kpi;j3

holdinc'.) have the DOI-LISTs. F'or examnple, the G i- L13'.: of 0 L i,CT

* isat) is '((OBJECT isat) (HACD holdincq) (PLP.C _ -Iocatioriof)) '. The

DOV-LIST of (HP.UD1 holdinp:) is '((OEJ2CT isat) (P ;D h o id irni (L. C J7

*locationof))'. (PLACE locationof) occurs in the both DC"-LISTs of

(OFJECT isat) and (FA::D holdinff). Thus, the PoTLI~ f (PLPCE

locationof) will have both the anchors (FACD hollin-) and COP41'CT

isat), with associated filters. The DET-LIST and DOC-LIST Tenerated

Sby I-':Ds for the FLI',D I-A:D ciorain are showrn below!:

The DO:*-LIST of (OCJUCT isrt) is:
((iiA.D hold.Lnr) (UJLCT isat) (PUICE locationof))

The D.>2T-LIST of (01'JCCT isat) is:
At DE-anchor (EVMD holdinr):
(OUArD* Y) 1(,' isat:locationof Y)

Ine (0-ITof (U~Dhollinr) is:
((iPCr holdiinr,) (OCJ1_CTf isat) (rl'C locationof))

4 The DoP-LIST of CHAVD holdin.'1 is:
At DFT-anchor (041JUCT inat):
((OPJcT Y) : t" holdinp Y))

* ~ Do IMJ' -LIST for (PLACF locationo').

The DFT-LIST of (PLPCr' locationof) is:
1). AT DET-anchor (OPJECT isat):

TiT, PLV'D IFA.D PRCPLFEN. .*.................. T. Psu ... Dec. 1970 Vare 21

((OJr C Y) ((locationof:holdinrr Y)
Oln (f locationof Y)))

• 2). AT D_T-anchor (IACiD holding):
((IAND Y) I (k locationof Y))

[Al]:
No DO:'-LIST and DET-LIST for (COLOR colorof)

A5:

[o DOV-LIST and DET-LIST for (OPJECT color)

A6]

No DON:-LIST for (OPJECT heldv)

The BET-LIST of (OFJECT heldby) is:
At DET-anchor (FAFD holding):
((HACD Y) I(U heldby Y))

1o DON-LIST and DEL-LIST for (HAD isat)

It is instructive to examine the above DON-LISTs cnd DCF:-LISTs

with reference to what happens when a hand, h, ho!:'in n object b,

noves from one place to another: i.e. when one ,aks an assertion (h

isat q) for a place, q, when initially (h isat p) vas true. Th v

follovin . operations will result in MDS:

Thz syster.1 will focus attention on the relation (h innt), (0

locationof) and (n locationof). It vill delete h fro, t'e v.7l,, cf (t

locationof) and insert h in (n locaticrof), while at the .--n "' tine

substitutinr a for p in (h isat). This in effect is the nev !e-rired

confie-uration. (h isat) has no DrT-LIST. Povver, (PLACC laoationof)

has two DEXT-LIST entries: one is (OPJLiCT Isat) with the filter rhiown

in [A3] above; the other is (HAUD holdin!), also with an associated

w

THE PLI'flD IANID HOCLf' T. Hsu ... Dec. 1076 Pa e 2

filter. These DFT-LIST rill he activated when (o locatinnof) 3rd (v

locationof) are chanmed.

The DET-LIST entry, (OPJECT' isat) with its associaterd filter,

demands that when (p locationof) is ehan-ed, all the ohJects

satisfvin7 the condition:

((OPJECT Y) (m locationof:holdinr Y) OR (p locationof Y))

should now be examined, at (Y isat).

Thus, normally, when a hand, h, moves the location of the ohject

held bv the hand will ret examined and updated if necessary. Fovever,

in our model, for the object, say b, held by h, (b isat:'fla,) is '1'.

Thus, the location of b will alvays be computed using CC1-OEJ -C.-isat,

everytime it is needed. Therefore, there is really no need to e(:.qine

the location of an object held by h ,hen h is ioved. Fecornizin- thir

fact, one may now associate with the DET-LIST anchor (CUJt C? isat) 3t,

(PLACE locationof) an additional NULL filter, sayinc!:

(OFJ1CT X) HIL).

In this case, every tire (PLACE: locationof) is updated for en, lic,

p, no DET-LIST interactions will takc place vith (x isnt) for n,

object x. This is done in t.DS by set filter (CSFILT fl) cot:.- nd bvi.ov:

C.FILTER:[((OPJ CT X) !4IL)

(PLACE locationof) (OrZJECT isat)]

T HE PLI'I1) FA(r) PROrLT' T. ilsu . . . Dec. 1976 Pa:-e 23

Thus, as the hand, h, is ,oved the cyster. will und3te the locntion of

h, without having, to examine interactions with any of the location , of

objects in the model space. The frame interactions are identifie2l in

N!DS via the DET-LIST ,echanisms. This enables t: D to identify

inconsistencies, if any, in an updatinr process. The filter "-ech-,nisr

provides a way of controllinff the combinatorial explosion th'.t -n-a

result in veneral, in frame interactions of this kind. V'e hve in the

FLI!T D IA VD domain an extreme case of the use of filter, ;:here the

filter is set to VIL. In meneral, one may associate a variety of

filters to selectively control the frame interactions.

(3). The Solution of the Flind iEand Problem

In the statement and solution of the DLIIND I,.r:D proble'., ve till

see below how 'LDS uses the above domain definition. In :D$, to sclve

this problem it is not even necessary to define separate actior!, like

'GO', ','OVEI', 'PICKUP', etc. The folloinr7 sinrle transfor-ation rule

is enoui h :

(CTR!*D;': t"OVEOFJ(X Y Z)
([(OrJi'CT X)(PLAC ; Y 7) (X isat Y) (GOAL (X isat Z))]
[(31.*F I'A!:D F{) (ASSERT (11 holdin-)

(ASSERT (0: isat Z))
(ASS!ERT ('OT(0' holding X)))]))

here the first line defines the name and the 1r - -e.)ts) L t'li.s

transfor.ation rule, -,OVOiJ(X Y 7); the second line is cillev- the

'.-iiension' of the transformation rule thich state- hov the irr-::e'n ts

are bound and hat the coal is; the rent of the rule is the ',,o,ly,

which sates how the 'oal is accomplished. This rule will he invol'ed,

* -~ -

, T!VC FPLI1'D IiA:1L PROPLi T. kinu . . . Dec. 1970 Larre 24

whenever there is a need to chan'e the location of an object. The

al~orithn for chanrin! is simple: tet some hand to hold the object,

chanme the location of the hand, and let the hand stop holdin- the

object. All the necessary frame interactions that are needed to

maintain the consistency of the model space vhile executir'" those

actions are autonatically inferred fro- the domain definition.

The staterment of the problem would simply be:

((SO!E OPJECT 0) (0 color red) (GOAL (0 isat there)))

In response to this input, the DESIG17ER will first encuire the

MDS data base for the current value of each instance of OPJECT. If

the current condition satisfies the coal, then would return 'SUCCESS'

Let us assurie that initially the model space contains the folovin

objects and relations:

OEJ CTs: objl, obj2, ... , obj1O

PLAC;s: here, there
HF !;D: handl
COLOR: red
RIL PTIOP's: (here locationof (objil, obj2, ... , bjC))

(there locationof (obj7, obj3, ... , ohili))
((objl, obj2, ... , objG) color red)

Let the initial value of (liandl isat) is ?.

From the input 7oal state'ient, the syste-m first fines t nh rzet of

objects such that the color of each element is r!d. Then it clhcczs

the locition of each object in the set. If any one in that set in at

nlace 'there', as mentioned before 'SUCCESS' is returncd. Ct!irise

an 'invocation pattern' is Penerated. The 'invocation pittern' is

used by UPS to invo:e transformation rules that mi-ht be appropriate

so

• - - ' " " " ' " " " "- - - " - " ,---- " " . " . -" .-- '

TV,- FLIUD 1VIMD PROVLC!- T. Isu . .. Dec. 197, Pa-e 29

to reach the Poal. In our case, the iodel space does not satirfy the

Foal. AS a result of the initial examination of the rodel npac, the

systern would have identified the follovin! relevant bindin-s and

conditions:

(OEJECT 0): 0 <- (Or*.OF(ob1, obj2, ... , obj6))
(PLACI P): P <- here
Initial Condition: (here looationof (obji, obJ2, ... , obj6))
Goal Cond1ition: (PLACE 0): ¢, <- there; (C locationof C)

The 7enerated invocation pattern would be:

((OPJECT O)(PLACE P 0)(P locationof 0)(GOAL (0 locationof C)))

Usin7 this invocation pattern ':DS would invoke the tren.fcr- tion

rule, "OVEOPJ defined above. The bindings shown above rill he used in

the execution of the transformation rule, to bind the local vari7bles

of the rule. (OUEOF (obji, obj2, ... , obj6)) xill cause one of the

indicated objects to be bound to X. Let X <- obji be the initial

choice; Y <- here, and Z <- there. The predicate '(Ec'. !"2 !' in

the body of the rule will cause a hand fron the .odel space to be

selected. NJotice that there could be nore than onc han in the oe!

space. Then an arbitrary choice will be made. In our case, of

course, handl iill he chosen, resultinr in I. <- handl. Invin- ,4on.

0anf the bindin s, the actions: '(ASS T (h sn.! h li o.

(SS(RT (handl isat there)), (ASSi,:RT ('Oi(handl holdin- obji)))' vil!

he initiated in reouence. The assertion of '(handl hcllinr v',i)'

will cause CC2-A.V'C-holdln- to be evalu,:ted. fince, the lociti :, of

handl is un',not:n, CC2 will evaluate to ?, and the resitlue '(el.j1

isat:locationof handi)' will be returned. This vill cnuse the rvte'

to make the hypothesis '(here locationof handl)', and -lake the

' TI PLI'D ft A: PRO,'L -.N T. Psu . . . Dec. 1976 Pare 26

assertion. If initially, handl was 'there' then, of course, CC2 v ould

have evaluated to VIL with the false residue '(obJl irat:locationof

handl)'. In this case, if core hands are available in the system,

then the rsytem iill choose another hand. foever, irhile nhoosinr

another hand, h, it will aal-e sure that the false resilte '(ohjl

isat:locationof h)' is not ar-ain violated. Thus, the ysv.te- vould

have already learnt fron its first mistake and avoid the 'ista!:e in

subsecuent trials. If no other hand is available then the abeve false

residue .ay be used to set up a new sub~oal, naer (5GPL (here

locationof handl)). In our case, (handl holdin!r objil) .,ill succeed,

causin7 TlHI-HAED-holdin, to set (objil isat:tflaq 1), as disct'ssed

before.

It should also be noted that in the domain definition, '(A''D

holdinz OPJECT)' indicates that a 11uSD can hold only one O JLC'2. If

handl was already holdinr an object b, then the assertion (hano1d

holdinm obji) will cause the syster to re-iove b fro-n bei, - 'ell by

handl, and introduce ohj1 as the 'FVVA.L of (handl hollin-).

The remaiin assertion in t;OV1. OPJ vould nov fclloi' ard co-nIrte

the realization of our roal. The imnortant noint to note hre is

that, at the trne the problem is stated or at the ti', the

transformation rule is defined, it is not necessar. fcr a t,.-.r to be

aware of domain constraints and frame interactions.

(4) . Discussion

L -

Tp.E PLI;,D PA'D PROPLE" T. IUsu ...Dec. 1976 Pare 27

Pesides the soecial facilities for controlin7 the co'ibinitorial

* explosion of the frame nroblem mentioned above, the "D' hir other

distin-uished features as follos:

1). The set concept is automatically built into the fX). Cor,lis.

There are two layers in [DS for buildin7 a knovledre base: the first

one is the domain definition layer which defines the syntax and

constraints of a domain; the second layer is the instantiaticn lyer

which builds the model space by instantiatin- instances and relations.

Durin7 the instantiation, the system w;ill autoratically chec'- the

consistency of the new instance or relation accordimn to the

definition of the first layer, then accept it or reject it. !'c"ce,

- each instance is closely related with its defined tye, c.lled

S.- "template", in the first layer. In the 3-value , lo-ical svste.- of the

?IDS nodel space, both the positive and ne7ative valuvs of ele'entary

reletions may be stored. F ence, 1:PS can efficientlv evaluate

negations of predicates.

2). The inverse relation undatinc- process is built into the z' tc.

In 17eneril, if the relation (X r Y) is defined, then th, irverse

relation (Y rof X) is automatically defined by the zyste-'.

3). Similar to the idea of the criticality value in APS':,ZIPL, in "

one can define 'focus lists'. The focus list contains all the

innortant predicates which must be satisfied first v:hile rakin:- a net?

assertion. It helps the system find the correct order to nrocces the

control when lany predicates must be satisfied at the same tir(,e.

* - - -. -. --- . - - ..

TI'r: FL :i I|' :'D) ?ROPLF'E! T. Isu . . . Dec. 1976 P.a-e 28

4). There is no "state" variable or "tine" parameter in DZ or

AFSTRIPS. 'ence it is very difficult to describe a rule which depends

on time; like our initial condition, it is hard to say that

"initially, all the objects at 'here' are red".

5). Pecause of the imolementation of PO:-LIST and DET-LI3T, Plthoumh

the !DS is vritten in the first order logic, it reall" his some

features of the second order lomic. ;hen each particular predicate is

instantiated or undated, the systei will ro throu-h the related

DO!!-LIST and DET-LIST checking the consistency. L'otice that this

procedure which checks all the related predicates in the rodel snace,

in fact, is the same work ve described in the frame rule in the second

order lo-ic. In addition the "residue" concept in iVDS helps r.aintain

the systen efficiently. The residue is that subexpressior of the CC

which supplies the reason why the predicate evaluated to a narticular

truth value. Fence each time a predicate is updated, the value of

each residue which contains that predicate is exa'iined. If it 1'.cps

the same value, then it implies that the truth value of the rredlicate

to ,hich the residue belonas is also unchanfed. On the other han, if

the truth value of P residue is chanted, then re-evaluation cf the

relited CC is necessary. Another distiniuished feature of r,riduc is

the learnin'. canability in a proc'len -olvinm conte'-t. If a *i.-

had enerated 'true' for the truth vilue of the trne-r.: irr, t.1er

next time the same hindinq :ill be used. 7ut if a binHin- had

*enerated 'false' for the truth value of the Valse-residfie, thcr the

sa-e bindin- trill not be used nr.ai.. In this way, the -vSt:-" l(,nrns

how to bind thin!-s correctly and avoid the same wronr bindin- a,-nin

TfIt.' I'LI 1i' 11PPID PROPLf". T. PI u . .Dec. 1976 Pa)re 29

. accordin- to the previous evaluation of a residue.

6). Another rood feature is havin.- the model space of .DS ior,: on a

three valued loric. Hence tie can say that the truth v.31t(: of a

predicate is unknown, which is very useful in creatin- the -odel or

solvinf the problen. For exarinle, in the blind hand nroble-,, a lr.t of

missinr informations are involved, but the 1:DS can still nolve the

probleq according to the available inforuation. :'hen en un:novn

residue is returned, the system vill make the various necessari nror;er

assertions associated with that residue. Since nost AI nro ble--

solvinq systems only deal with two valued locic, when thc une-norn

predicate occurs, it will assume that the truth value of tnat

predicate is either true or false which may cause some inconsirtency

in the nodel later on. It is tedious to raintain such a system.

" Esoeoi~lly when a theorem, prover is used in the svstep, the s'"rte -av

derive unexpected wron7 results usin- this inconsistent data.

ACKt.O\L'7DGi ,t.i;TS

I wish to express my Lratitude to nrof. Chitoor V. Srinivmmn .-ho
a-T u'i1v exnlained the various features in 'DS to me and helne d e seolve

the blind hand nroblen in CDS". I:oreover, he carefully ren,! . reft
and corrected nany "-istakes in ,-v Fnmlish. I also wish to t!ar,: *,rof.
tNatesa S. Sridharan who su--ested ne to do this studv and -1,3, thc
valuable comments and criticisms. Finally, many thanks are iut' to my
mood friend, Frank U.airusik irho read the early draft carefully n,
thorou-hlv, pave re a mood deal of assistance in mv %:rittinr.

RP F E 7 C E

1).J.L.Dairlin-ton: "Deductive Plan Forration in 1*i,-her-order
Lorcl ", N:I 7, 1P73- nn.129-137

TUE PLI.;') VA!D PROPL-Er T. i1su . . .Dec. 1976 Pare 30

2).J.reCarthy & P.J. Hayes: "Some Philosophical Problen froi the
Standpoint of Artifial Intellirence",
11I 4, 1969.

3).E.D.Sacerdoti: "Planninr in a Hierarchv of Abstraction SPace",
PI 5, 1974, oc.115-135.

4).F.S.Sridharan: "The Architecture of Peliever: Part II. The Frarle
Problem", CPI-TR-47, DCS, Putmers Univ., 197'

5).C.V.Srinivasan: "The Architecture of Coherent Infor'lation
System: A General Problem Solvinr, System",
IEEE Transactions on Computers, vol. C-25,
no.4, 1976, on.390-402.

6).C.V.Srinivasan: "The tlodel Soace of the 'eta Description Svster",
SOSAP-TR-19, DCS, Rut, ers University,
February 1976.

wi

r,

I

SOSAP-TR-18

January 1976

INTRODUCTION TO THE META DESCRIPTION SYSTEM

C. V. Srinivasan

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

6 This research was partially supported by the Advanced Research

Projects Agency of the Department of Defense under Grant #DAHC1S-73-G6
to the Rutgers Project on Secure Systems and Automatic Programming

[iiThe views and conclusions contained in this document are those of theauthor and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S; Government.

K"

INTRODUCTION TO THE META DESCRIPTON SYSTEM.

by

C.V.Srinivasan.

KEY WORDS: KNOWLEDGE REPRESENTATION, PROLEM SOLVING,

DESCRIPTIVE SYSTEMS.

Abstract:

In this paper we introduce the basic concepts of a

knowledge based system called the Meta Description System

(MDS). In MDS one first defines the language to be used for

describing the knowledge in a domain, and the semantics of the

language. Based on this definition MDS builds for itself a

model space for the domain and uses the model space in a

variety of problem solving activities.

Page 2I

j
INTRODUCTON TO THE META DESCRIPTION SYSTEM (*I)

by

C.V.Srinivasan. (*2)

1. INTRODUCTION.

The "problem of representation" in AI systems arises

because of the ever present need to work with an incomplete
corpus of immediately accessible information. In small well

understood domains of reasonable complexity it is often

possible to arrive at a "good" decomposition of the domain of

knowledge into simpler parts for each one of which the

necessary information and its associated processing facilities

can be.appropriately packaged, with reasonable assurance that

all the components would interact harmoniously. As the

complexity of the domain increases it becomes necessary to

transfer some of the responsiblity for packaging knowledge to

the system itself. Here we face enormous difficulties. We do

not even have a commonly agreed upon view of what the issues

of the "problem of representation" are. .At one extreme we

have the view of procedural encapsulation of knowledge

(Winograd 1972, Hewitt 1973, Minsky 1975]. At the other

extreme we have the "purely declarative" approaches associated

.1

INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 3

with the use of general deductive systems, where there is only

a weak notion of packaging; the necessary information in a

context is available only implicitly. We also have now the

middle view: We need both procedural encapsulation and

declarative representations of knowledge; we should,

therefore, find ways for wiring in both in some common

framework of a problem solving control structure (Winograd

1975].

In the organization of these problem solving control

structures there are now a few organizatonal concepts that are

here to.stay. These should have a role to play in the

architecture of any intelligent system: One is the use of

amodel space" and model based reasoning, the other is the use

of some kind of general deductive facility, and the third is

procedural encapsulation. The current procedural/declarative

controversy seems to be centered mainly around how one might

wire in the necessary procedural knowledge and deductive

facilities in the model space for a domain of knowledge. We

believe that this is a non-issue. We would like: to present

* below a point of view where the issues of "problem of

representation" are presented as issues of communication among

Interacting processes. The basis for this shift of view is

briefly the following:

The control structures associated with the model space,

with the deductive mechanisms and with the procedure

r

INTRODUCTION TO MDS;..,By C.V.Srinivasan, Jan. 1976.Page
4

invocation and execution can all be made independent of domain

of knowledge. And, what is more, they can be made to

specialize themselves by sharing their experiences with a

given corpus of domain knowledge. This domain knowledge might

itself have been described in a language of the domain,

without reference to the control structures that use it. In

this context the effectiveness of the specialization will

depend crucially on the nature of the communication that can

take place among the interacting process. Our thesis is that

these interacting processes should have available to them the

full richness of the language of the domain to communicate

among themselves. The seeds of the communication problem will

then lie in the structure, brevity, effectiveness and focus

achieved in this communication. These would depend on the

primitives available in the language of the domain and the

concepts expressible in the language. The language of logic

is too general, cumbersome and non-domain-specifc to be useful

here. To view the problem in this manner it is essential that

-one be able to have a view of what the knowledge in a domain

is, independent of the model space and the control structures

that use it. The framework of the Meta Description System

4NDS) encourages the development of this view. The basic

outlines of this framework are introduced here. At the moment

we are still unable to offer a well reasoned approach that

would reduce the "problem of representation" to a viable

technical problem. But we believe we have some hopes of

6i
[I T'I

INTRODUCTION TO MDS:..,By C.V.Srinivasan, Jan. 1976.Page 5

achieving this end.

The central concept in the organization of the Meta

Description System (MDS) is this seperation that is achieved

between the structure and semantics of domain knowledge on the

one hand, and the control structures of the model space and

problem solvers on the other. In MDS one first specifies the

structure and semantics of the language of discourse for a

domain. This is the DOMAIN DEFINITION specified in the MDS

formalism. Based on the domain definition MDS builds a model

space [Srinivasan 1976a] for the domain. This model space is

used by a goal directed problem solver, called DESIGNER, as

well as a Theorem Prover. These problem solving control

* °structures have the ability to specialize themselves to

operate efficiently in the domain, by communicating with each

other in the language of the domain. The nature and

effectiveness of this communication will depend on the

-primitives available in the domain language. In the context

of MDS one may now experiment with alternate modes of

description and investigate their effects on .the problem

solving efficiency.

In this paper we shall introduce the descriptive

formalism of MDS in the context of a simple domain: The domain

of MAZE problems. We will discuss the solution of the maze

problem in the model space, and in the context of the

DESIGNER. In another paper (Srinivasan 1976b] we show how the

r

INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 6
.4

"1

*same problem is solved by the Theorem Prover in MDS, using the

very same definitions and the model space. We shall not

discuss here aspects of domain specific specialization. The

DESIGNER has a limited capacity to learn and generalize from

its interactions with the model space [Srinivasan 1973,

1975a].

2. NATURE OF KNOWLEDGE AND PROCESSORS IN MDS.

NDS accepts three kinds of knowledge --about facts,

objects, processes, and problem solving in a domain. The

first is the STRUCTURAL knowledge. This pertains to the forms

of descriptions of objects in the domain. The second is the

SENSE knowledge. This pertains to the semantics associated

with the structures. Sense knowledge is specified as

predicates in the context of set constructions. The third is

* the TRANSFORMATIONAL knowledge. This pertains to the

.- knowledge necessary to create new objects in the model space

of the domain, and specialized knowledge pertinent to the
/

updating processes in the model space. These rules are of two

types: Those that are directly accessed and executed by

CHECKER to effect well specified contingent changes in the

model space, and those that are invoked on the basis of a

pattern directed invocation.

The execution of all the processes is transparent to the

system, in the sense that the different components of the

I -.

• , , . . -: - .-.- -r - - -. - - " •.

-INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 7

system can pass information to each other about what they are

doing, unless one invokes specially built in opaque functions

to do specific tasks. The STRUCTURE and SENSE definitions are

used by the CHECKER-INSTANTIATOR system to create and maintain

a consistent model space. The transformation rules are used

by DESIGNER to plan and execute sequences of actions that

. modify the model space to reach desired objectives. The third

control structure is that of the Theorem Prover (Srinivasan

1976b]. The TP is used to aid the CHECKER-INSTANTIATOR, and

the DESIGNER. The fourth ccntrol structure is that of the

LINGUIST. This may be used to define special user languages

specific to a domain. The language understanding process is

viewed as one of generating the appropriate structures in the

model space in response to utterrances in the language. This

understanding process may implicitly invoke the full problem

solving power of the system. All these control structures are

domain independent. They specialize themselves to the domain

based on the domain information.

NDS is not yet fully operational. We expect. the; model

space management system [Srinivasan 1976b] to be working in a

few months.

6

I.

INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 8

3. THE FORMS OF DOMAIN DEFINITION. THE MAZE PROBLEM.

The first part of domain definition is to identify the

classes of objects in the domain. MAZE's have NODES, NODE,

PATH, MAZEPROBLEM, etc. The description structure for these

are specified first. This is shown in Table I. The

definition of MAZE says the following: A MAZE is a NODE (in

contrast to being a LIST, which is a collection of objects in

the domain). The $N flag associated with the MAZE specifies

this. The $ flag indicates that instances of MAZE need not be

named objects in the model space. (For a full discussion of

the various descriptive facilities in MDS see Srinivasan

1975). A MAZE has three descriptive relations associated with

it: They are "startingnodes", "exit", and "contains". The
starting node of a MAZE is an instance of NODES, which is a

collection of instances of NODE. The exit of a MAZE is a

NODE. This indicates that there is precisely one exit node,

since NODE is a $N class of object. The MAZE contains NODES

(a collection of nodes). The flags CCl, CC2 and CC3 indicate

that certain consistency conditions (sense definitions, we

shall use the two names interchangeably) are associated with

the respective relations. We shall investigate the forms of

these later. Similarly, we have the NODES, NODE, PATH, and

MAZEPROBLEM schemas. Schemas of this kind are called

TEMPLATES in MDS. The flag $L of NODES indicate that it is a

LIST template.

.4 INTRODUCTION TO MDS.. #By C.V.Srinivasan, Jan. 1976.Page 9 0

TABLE I: THE DEFINITION OF THE MAZE DOMAIN.

[(MAZE WN(startingnodes (NODES $L) startingnodesof CC1)
(exit (NODE $N) exitof CC2)
(containg (NODES $L) belongto CC3)].

CCl: [MAZE startingnodesJ.
(((NODE X)l(@ startingnode X)(X connectedfrom NIL)].

CC2: [MAZE exit).
((NODE X)I(@ exit X)X connectedto NIL).

CC3: [MAZE contains]
((NODE X)I(@ startingnode X) V (@ exit X) V

((SOME NODE Y) (@ contains Y)
(Y canreach X))].

((NODES $L)(elemdn (0 * NODE))
((connectedfrom V) (NODE $N) connectedto)
((belongto V) (MAZE $N) contains)).

[(NODE $N) (connectedto (NODES $L) connectedfron CC4)
((canreach MX (NODES $L) canbereachedfrom CC5)].

CC4: [NODE connectedtol.
[(NODE X)I@ connectedto X)(NOT(X is @))].

CC5: [NODE canreach].
qw,[(NODE WOI(connectedto X)].

((PATH $N)(startingnode (NODE $N) startingnodeof)
(tail (PATH $N) tailof CC6)
((endingnode $) (NODE SN) endingnodeof CC?)].

CC6: (PATH tail].
[(PATH P)I(@ tail P)

((P is NIL) V
((SOME NODE N)
(P startingnode N)
(@ startingnode:is:connectedto N))].

CC?: (PATH endingnode].
((NODE X)I((@ tail NIL)<->(@ startingnode X))

((ALL PATH P)
(@ tail P)->(P endingnode X)J.

INTRODUCTION TO HDS...,By C.V.Srinivasan, Jan. 1976.Page 10

* Every instance of NODES is a collection of the form (nl n2

nk) where each n is an instance of NODE. This is indicated by

- the form "(elemdn .(0 * NODE))" in the definiton of the NODES.

-- 0, * indicates that the lower bound on the-number of elements

in any instance of NODES is 0, and the upper bound is

" unlimited. Thus, for an instance of MAZE, say *m, its

startingnodes might be (nl n2 ... nj). This will appear in

the model space of MDS as an assertion of the form (m

" startingnodes (nl n2 ... nj)). In the model space this is

" interpreted as: (m startingnode nl), (m startingnode n2),

and (m startingnode nj) [we shall use singular and plural

forms of relations interchangeably as is convenient].

For every relation used in a template, the template also

specifies its inverse relation. Thus, the inverse of

"contains" is "belongsto", and the inverse of "exit" is

"exitof": For a MAZE m, if (m exit n) is true for a node, n,

then (n exitof m) is also true in the model space, and vice

versa.

Each consistency condition is of the form

((<template> X)I (P @ X))

where (P @ X) is called the "predicate* of the CC, X is called

the "set variable" of the CC and @ is called the "current

Instance" of the CC. It is the instance, at which the CC is

being evaluated in the model space. The CC may be read

uniformly as: "The collection of all instances, X, of

r.

INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 11

(template> such that (P @ X) is true." Thus, CCl says that the

startilagnodes of a MAZE is the collection of all NODEs such

that, if X is given as the startingnode, ("(@ startingnode X)"

appearing in CC1 is to be read in this manner), then (X

connectedfrom NIL) is true. We shall explain this convention

further below. (X connectedfrom NIL) means that there is no

node from which X is connectedto (connectedto and

connectedfrom are inverses of each other). If the necessary

and sufficent conditions are known for the defintion of a

relation, then the predicate of the CC, (P @ X), will be such

that, for a relation, r, at which the CC is defined,

(@ r y)<->(P @ y).

However, if only the necessary condition is known for a

relation to be true, then one would have a predicate, Q, such

that,

(@ r y)->(Q @ y)

In this case we modify the predicate of the CC as shown in

below:

(@ r y)<->(6 r y)(Q @ y).

Thus, for ALL CC's the if and only if condition is true.

All quantifications appearing in CC's will range only

over specified classes of objects in the domain. Thus, we

write in CC7 ((ALL PATH P)(@ tail P)-> (P endingnode X)), to

Indicate ((ALL P)(P instanceof PATH)& (@ tail P)-> (P

endingnode X)). Generally, between adjacent predicates of the

form (x r y)(p rl q) implicit * is assumed. In general, ((ALL

'.

INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 12

X x)P(x)) is interpreted as ((ALL x)(x instanceof X)-> P(x)).

Similarly, ((SOME X x)P(x)) is interpreted as ((SOME X x)(x

instanceof x)&P(x)). CC6 thus says that for a given PATH, P,

P can be the tail of a PATH if P is NIL or for some NODE, N,

it is true that (P startingnode N) and @ startingnode is

.connectedto N. The phrase (@ tail P)" indicates that P

should be specified by an external agent. (P is NIL) is -

interpreted as "P is identically equal to NIL." CC3 defines

the nodes contained by a MAZE inductively in terms of the

startingnodes of a MAZE. The flag $X is associated with the

relation *canreach" in the NODE template. By convention, X

here indicates that the relation is transitive; the $

indicates that the value of this relation is never stored in

the model space. Every time it is called for it is computed

using the CC, CC5. CC5 specifies that the instance of NODES

reached by a NODE is precisely the same as the NODES to which

it is connectedto. However, since canreach has been declared

-to be transitive the model space will return always the

.transitive closure of the relation. Notice that a PATH has

been defined to be anything starting with a node,:containing a

tail which is itself a PATH. The endingnode of a PATH is not

stored in the model space. CC7 specifies that the ending node

Is the same as the starting node iff the tail of the PATH is

NIL, else the endingnode is the same as the endingnode of the

tail.

Ii

INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 13

Even though the value returned by the CC's (Sense

definitions) is always viewed as collections, the model space

would give the returned value the proper interpretation based

on the template definition associated with the CC. Thus, in

case of the the endingnode of a PATH, from the template

definition it is known that the ending has got to be an unique

NODE.

The template for MAZEPROBLEM is defined in Table II.

TABLE II: THE MAZEPROBLEM.

[(MAZEPROBLEM $N)(startingnode (NODE $N) startingnodeof CC8)
(solution (MAZEPROBLEM SN) solutionof CC9

TR9)
(maze (MAZE $N) mazeof)).

CC8:[MAZEPROBLEM startingnode]
[(NODE X)I(@ startingnode X)

(@ maze:contains X)].
CC9: [MAZEPROBLEM solution)
((MAZEPROBLEM MP) I ((@ startingnode:is:exitof:mazeof @)

(MP is NIL) V
((SOME NODE N)
(N canreach:exitof:mazeof: @)
(@ startingnode:is:connectedto N)
(HP startingnode N)).

TR9: [MAZEPROBLEM solution]
[(IFUNKNOWN (((SOME NODE n)

(@ startingnode:is:connectedto: n)
(n canreach:exitof:mazeof @))
(BIND MP (CREATE MAZEPROBLEM

(startingnode n)
(maze (@ maze))))

(ASSERT (@ solution MP))
(ASSERT (MP solution].

The MDS model space works in three valued logic, T, ?

(unknown), and NIL, T >? >NIL. The CHECKER is used to

evaluate CC's in the model space. CHECKER has no authority to

INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 14

change the model space while evaluating the CC's. It can only

poll and check, giving the proper interpretation for the

quantifiers. In the case of the solution of the MAZEPROBLEM

we have both a CC and a TR (transformation rule). TR9 will be

invoked by the CHECKER of the model space if CC9 evaluated to

UNKNOWN. This would be the case if no appropriate instances

of MAZEPROBLEM are available in the model space. By

convention TR9 will have three arguments available to it: The

current instance, @, at which the associated CC was evaluated;

the set variable, MP, of the CC; and the so called RESIDUES,

if any (see Srinivasan 1976a for a definition of residues).

Residues are predicates describing the. reasons for the

success, failure or the unknown value of the associated CC.

They will always be sub-expressions of the CC, with specific

bindings for the bound variables of the CC. TR9 looks for

some node, n, such that @ startingnode is connected to n, and

n canreach the exit of the maze of the given mazeproblem. If

it succeeds, then it creates a new instance of MAZEPROBLEM and

assigns this as the solution of @. It then goes ahead and

further asserts that the solution of the new mazeproblen

should now be found. In this manner, if a MAZEPROBLEM is

started off with a startingnode, and an assertion is made to

find its solution, the CHECKER control structure can by itself

find the solution.

Another approach for solving a maze would be by the use

of the DESIGNER. The DESIGNER transformation rule for solving

i -6 ; _ - - - - i , . . •-

4 INTRODUCTION TO MDS:..,By C.V.Srinivasan, Jan. 1976.Page 15

a maze is shown Table III. The above rule will be invoked if

one makes the assertion, for some known node, n, in the maze

currently in the model space,

((SOME PATH P)(P startingnode n)(GOAL (P endingnode e)].

TABLE III: THE SOLVEMAZE RULE.

SOLVEMAZE[m n e].

(((MAZE n)(NODE n e)(m contains n)(m exit e)
(SOME PATH P)
(GOAL (P startingnode n)(P endingnode e)))

This is the Header for the Rule. The rule is invoked by
pattern matching with this header.

(BIND P (CREATE PATH (startngnode n)))
(DCOND ((n is e)(ASSERT (P tail NIL)))

((n canreach e)
((SOME NODE D) (n connectedto D)

(D canreach e)
(ASSERT (P tail (SOLVEMAZE m D el.

4. CONCLUDING REMARKS.

The basic elements of the descriptive formalism of MDS

vere introduced here in the context of a very simple example.

A detailed discussion of the language of Transformation. Rules

and the DESIGNER processes appears elsewhere [Srinivasan

1975a]. An interesting aspect of the organization of the MDS

model space [Srinivasan 1976a1 is that the same model space is

used by a variety of problem solving control structures:

DESIGNER and the Theorem Prover [Sridivasan 1976b]. This is

made possible because of the way the problem solving control

structures communicate with the model space [Srinivasan

r

INTRODUCTION TO MDS...,By C.V.Srinivasan, Jan. 1976.Page 16

-* 1976a].

5. ACKNOWLEDGEMENTS.

During the course of the development of the concepts in
MDS I have had several discussion with many of my colleagues.
Discussions with Dr. Bertram Bruce, and Dr. Robert Balzer
were particularly valuable. Prof. Sridharan participated in
my class on Knowledge Based systems. Explaining the modeling
concepts of MDS to Prof. Sridharan and describing parts of
BELIEVER (a psychological modelling system) in the MDS
formalism had been a particularly valuable experience. My
students John Ng, Joel Irwin and Tau Hsu are all involved in
the implementation of MDS. I am thankful to Prof. Adrian
Walker, Ng and Hsu for carefully reading through this
manuscript and for constructive suggestions for revisions.

6. REFERENCES:

Hewitt, C, Bishop et al:[1973]: An universal modular ACTOR
formalism for artificial intellgence. Proc. of
IJCAI3, 1973, 235-245.

Minsky, M:[1975]: A framework for representing knowledge. In
Winston, P. (Ed), The psychology of computer

"vision. New York. McGraw'Hill
Winograd, T:[1972]: Understanding natural language, New York,

Academic Press.
Winograd, T:[1975]: Frame representations and the

declarative/procedural controversy, in
Representation and Understanding, Bobrow&Collins
(Ed), Academic Press.

Srinivasan, C.V. [1973]: "The Architecture of Coherent
Information Systems: A general Problem Solving
System", in 3IJCAI, Stanford 1973. A revised
version of this paper appears in IEEE Transactions
on Computers, Special issue on Artificial
Intelligence, April 1976.
11975a]: The Meta Description System, RUCBM-TR-50,
Department of Computer Science.
[1975b]: A formalism to define the structure of
knowledge, RUCBM-TR-51, Department of Computer
Science, Rutgers University, New Brunswick, N.J.
11976a]: "The model space of the meta descriptio
system",Department of Computer Science Report,
SOSAP-TR-19, Rutgers University.
11976b]: "Theorem Proving in the meta description
system", Department of Computer Science technical
report, SOSAP-TR-20, Rutgers University.

Irwin* J. &...:[1975b): The description of CASNET in RDS.,
RUCBM-TR-49, Department of Computer Science.

SOSAP-TR-20

January 1976

-oC.

° -..

THEOREM PROVING IN THE META DESCRIPTION SYSTEM

C. V. Srinivasan

t.1

:jil

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, N~ew Jersey

This research was partially supported by the Advanced Research
Projects Agency of the Department of Defense under Grant #DA1JCIS-73-.G6

*.

* to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the *
official policcies. either expressed or implied, of the Advancea

* Research Projects Agency or the U. S..Government.

THEOREM PROVING IN THE META DESCRIPTION SYSTEM.

by

C.V.Srinivasan.

KEY WORDS: THEOREM PROVING, MODEL SPACE, GENTZEN's
SYSTEM.

Abstract:

In this paper we introduce a way of using the natural

deduction system of Gentzen to do theorem proving in the

context of a model space. The Theorem Prover actively uses

the model space to test and generate hypothesis and guide

itself. The model space itself is defined in the context of

the descriptive formalism of the Meta Description System.

0

* *:

-- *. - ,,- ~-. -- --P a g e 2

THEOREM PROVING IN THE META DESCRIPTION SYSTEM. (*l)

by

C.V.Srinivasan (*2.,

1. INTRODUCTION.

The purpose of this paper is to introduce the basic

concepts used in'the organization of the Theorem Prover (TP)

in the Meta Description System (MDS) [Srinivasan 1973,

" 1975a,b, 1976a,b]. We follow essentially Beth's Semantic

Tableaux [Beth 1959] approach. The TP seeks to construct a

counter example, and in doing this it makes use of the model

space of MDS, not only to test and generate hypotheses, but

also to keep track of the various cases encountered in the

theorem proving process and to actually build the

representations for the counterexample or solutions, as the

case may be. Our emphasis in this paper is on the kinds of

interaction and communication that take place between the

theorem proving control structure and the model space of MDS.

We shall attempt to exhibit this interaction in the context of

a simple example: the solution of maze problems.' We assume

that the reader is familiar with the concepts and organization

*1. This work was supported by grants from both the National
Institute of Health (grant number RR-643), and the Advanced
Research Projects Agency (Grant number DAHCIS-73-G6), of the
Government of the United States of America.
*2 Department of Computer Scence, Hill Center, Rutgers
University, New Brunswick, N.J. 08903.

.L

THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 3
4n

of the model space in MDS [Srinivasan 1976b]. We shall also

assume that the reader is familiar with the Gentzen's [Kanger

1963]system of logic and its use in Beth's _Semantic Tableaux

approach to Theorem Proving. For the definition of the

problem domain we shall use the MAZE DEFINITION introduced in

[Srinivasan 1976a]. In [Srinivasan 1976c] we shall discuss

possible application of the MDS theorem prover, to prove

Cantor's theorem in Set Theory.

We believe, the most significant aspect of the TP

organization introduced here is the seperation that is

achieved between the model space for a domain and its

associated control structures, and the control structure of

the Theorem Prover itself. The two control structures

communicate with each other in the language defined for the

domain, within the descriptive formalism of MDS.

The rules that govern the operation of the Theorem Prover

are summarized in Tables IIa-c. The interpretation of these

*rules in the context of the TP control structure is described

-in Table V. The application of these rules will becomq clear

In the discussion of the example.

2. BASIC DEFINITIONS AND CONVENTIONS.

The basic assumptions and conventions of the formalism of

SEQUENTS and the concept of a Theorem Proving State, TP-State,

are explained in Table I. The TP rules, shown in Tables

-.. . ..- - - -

THWHEM PROVING IN MDS..C.V•Srinivasan, Jan. 1976.Page 4 .

IIa-c, specify transformations on the sequents. Each rule of

"* transformation has two partsp one above the line and the other

" below the line. The rule specifies that-in any TP-state, a

* sequent with the form shown below the line may be replaced by

sequent(s) of the form shown above the line.

TABLE I: THE SEQUENTS AND THE THEOREM PROVING STATE.

SEQUENTS: Each sequent is a string of the form

(P1) (P2)...(Pk) => (Qi) (Q2)...(Qm),

where P, Q are arbitrary predicates (in mini-scope
form). The string (Pl)(P2)...(Pk), may be
interpreted as a conjunction of the predicates,
(PI), (P2), ... and (Pk). The string
(Q1)(Q2)...(Qm), may be interpreted as a
disjunction of the predicates, (Qi), (Q2),
and (Qm). We shall use the symbol, S, to denote
arbitrary, possibly null, sequences of predicates
of this form. Thus, the general form of sequent
is: "S1 => S2.

THEOREM PROVING STATE: The TP-STATE is a set of
sequents. We shall use ";" to seperate the
members of this set, and typically represent a
TP-state by a string of the form:
SEQl;SEQ2;...;SEQk, where each *SEQ" is a sequent.
The TP-state => S" asserts that S is a theorem.
The TP-state "S => asserts that -S (the negation
of S) is a theorem.

There are three kinds of rules: PROPOSITIONAL rules,

SUBSTITUTION rules, and QUANTIFIER rules. The propositional

rules are derived from tautologies. Each rule has a label of

the form '(-> c)"# or 0(c associated with it.. It is

convenient to think of a rule (0> c), as a rule for the

elimination of the symbol, c, (which could be a connective, or

a quantifier symbol) from the right hand side of a sequent.

THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page -5

Similarly, a rule of the form (c =)) is used to eliminate, c,

from the left hand side of a sequent. The order of

application of these rules is shown ib Table III. The

SUBSTITUTION rules and the QUANTIFIER rules shown here are

" slightly different from the ususal ones (See Kanger 1963). In

the case of a substitution, the predicate (x=y) is not

maintained in the sequents of the TP-State, after the

substitution [See Table IIb]. In the case of the quantified

expressions, the expressions themselves are not maintained in

the sequents of the TP-state after substituting for the bound

variables by their respective Eigen Variables (or Eigen Terms)

[See Table IIc]. These differences from the usual forms of

these rules arise because of the way the rules are used, in

the context of the MDS model space. The equality predicate

-gets incorporated into the model space and thus need not be

* maintained in the TP-state. In the case of the quantified

. expressions, the expressions themselves are always available

in the model space, and are accessed when needed. Thus, they

need not be maintained in the TP-state. At any instance the

TP-state represents only a partial state of the theorem
I

proving process. The total state of the process:will include

both the TP-state and the state of the entire model space.

The ever present model space is always, implicitly on the left

hand side of every sequent in the TP-state. These

considerations will become clear in the discussion of the

example. Fr.
i8

I'

THEOREM PROVING. IN tDS ... C.V.Srinivasan, Jan. 1976.Page 6

TABLE UI: RULES OF TRANSFORMATION OF SEQUENTS.

(a). PROPOSITIONAL RULES:

Cm)):Si -> S2(P)S3 S1 (n) iOS2 S> 3
---------------------------------- --------

Sl(-PIS2 >S3 Si -> S2(-Q)S3

(a)&): Si - S2(Qi)S3;Sl >S2(Q2)S3

Si -> S2((Ql)&(Q2))S3

(V i):S1(P1)S2 => S3;Si(P2)S2 -> S3

* S1((Pl)V(P2))S2 => S3

S1 -> S2((Q1)->(Q2))53

(-> n)):(P2)Si => 52;Sl -> (P1)52

((P1)->(P2))SI => S2

(<. a> 3Si(P1) (P2)S2 => S3;Si52 -> (P1) (P2)S3
--

Sl((Pi)<->(P2))S2 => S3

I. C> <)):SICQi) => S2(Q2)S3;Si(Q2) => S2(Ql)S3

Si => S2((Q1)<-)(Q2))S3

(b). SUBSTITUTION RULES.

(a)):S1(x:yJS2[x:yJ -> S3[x:y]

Sl(x-y)52 -> S3

The notation "S[x:y]" is to be read as: "All occurrences of x
in S are substituted by y." We have the axiom, "=> .Sl(x=x)S2".
We also have the variant of the above (= =) rule, where
"(y-x)* occurs in the sequent below the line, instead of
O(x-yP*, shown above.

(C). QUANTIFIER RULES.

rNOTE: ((SOME Ti x)P(x)) *is logically equivalent to
((THERE-EXISTS x) (TI instance x)&P(x)). Similarly, ((ALL TI
;)P(x)), or simply, ((Ti x)P(x)) is logically equivalent to
((ALL x)(Ti instance x)-)P(x)).

L.9

THEOREM PROVING IN MDS...C.V.Srinivasan.,.Jan. 1976.Page 7 ..

Existential Generalization..

(a-> SM Si -> s2(0rx:-])s3-
------------- -----------------.S- ->- S2 (SOME Ti ')Q(x)-S3

Universal Generalization.- - - -

(ALL->): Sl(P[x:z])S2) S3

-S1T((ALL Ti x)P(x))S2 -> S3

* The variable, z, should be a NEW variable, not used earlier in
the TP-process. We shall call it EIGEN TERM of type Ti. Its
potential val-ues range over all the instances of Ti and eigen
variables of type Tl-V- In-effe-t,-7zhas the status of a LISP
unbound variable whose potential range of values are known.
If (zl z2 ... zk) are the potential values of z, then make
note that z - (ONEOF (zl z2 ... zk)).

Existential Instantiation.

(SOME ->): SI(P[x:q])S2 >3 -

SI((SOME TI x)P(x))S2-> S3

Universal Instantiation.

C-> ALL): Si -> S2(Q[x:q])S3

- -- - 81 -) S2((ALL Ti x)Q(x))S3

Here q is a new instance of Ti. We shall call it an EIGEN
VARIABLE of type T1. ...q can be potentially equal to any one of
the Eigen Terms of type Ti or eigen variables of type T1
created in the TP-process, prior to the creation of q.

3. "RHE CONTROL STRUCTURE. - - 'I-
- --- - _ - -- -. . _-. . .-.. . .

The control structure for the theorem prover, is shown in

Table III. This table is best understood in the context of

the example discussed in the next section. The significant

" aspects of the table are discussed below.

S. All the applicable propositional, equality and quantifier

1.

THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 8

rules are applied first. As a result of this process the

bequents in the TP-state might have several occurrences of

elementary predicates of the form (x r y) (*3). In each

predicate of the form (x r y), x and y might be either eigen

variables (i.e. constants in the model space), or eigen terms

(variables in the model space with possibly specified. ranges

of potential values). These elementary predicates are

asserted into the model space, using the THASSERT function, as

described in step 2 of Table III.

In each THASSERT the model space will be used to actively

seek for possible assignments of values for the eigen terms,

that result in a contradiction. We have two kinds of

* contradiction: The WEAK contradiction is a contradiction with

respect to the model space. In this case a predicate in the

THASSERT could not be accepted by the model space for any of

the possible assignments of values to its eigen terms. The

STRONG contradictions is the usual concept of contradicton

used in theorem proving: There are predicates, (x r y) and -(u

r v) in a THASSERT, and value assignments, say p for x.and u,

and q for y and v. If such valuations exist. then the THASSERT

will find them. In each THASSERT we first look for strong

contradictions. If no strong contradictions exist then we

*3 We shall talk about only binary predicates in this paper.
In MDS there are facilities available to consider n-ary
predicates for any n> 0. Also, one may have function symbols
occurring in the first order expressions. Examples of
theorems with function symbols in them are discussed in
(Srinivasan 1976c].

4 - THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 9 ..

* ." look for weak contradictions. We shall say that a TP-state

iontradicts -the mddei space if theie--is a strong or weak

eontradiction-in--every -sequent -of- the TP-state for some

possible, but common choice of-values (i~e. the same eigen

t6em occurring in-tio-differen- se4uents'should have the smife

value chosen for it in both sequentsi),-for the eigen terms in

the TP-state. Notice that the contradiction is defined with

HiCc-t°to-the-model space. We-aremaking the assumption here

* that our domain definitions are such that if there is a

contradiction with respect to the model space then in the

TP-process it will eventually show up as a strong

* contradiction -- i.e. the model space is complete and

consistent. A basis for this assumption is the residue

theorem, mentioned below. If there are inconsistencies in the

domain definition then it is impossible to predict what might

happen. The collection of THASSERTs is used to find

valuations for the eigen terms in the TP-state, that will

produce a contradiction with the model space in every sequent

in the TP-state, _if such a contradiction is possible.
- . --. - . . _ _ - "----- ... - - -. t -

- - Vr each eigen term its possible range of values will be

seperated into two parts: Those that:--: not produce' a

contradiction in any of-the THASSERTs, and those that :produce

a contradiction in at least one THASSERT. If no contradiction

is encountered for any of the possible assignments of values

fo6 th eigen terms in a THASSRT, then-the appropriate

IKNowN residue.(See Srinivasan 1976bY'is "feturned to the

*!

THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 10

TP-state, if one existed. The unknown residue is substituted

for the predicate associated with it, in the appropriate

sequents as explained in Table III.

For a predicate. (P), with or without quantifiers, the

unknown residue exists only if (P) has truth value, ?

(UNKNOWN), for the given valuations of the terms in the

predicate. The residue then is the part of the predicate (P)

that are UNKNOWN in the model space. One may view these as

the conditions under which a given assertion to the model

space can become true. In building models using the residues

we make use of the RESIDUE THEOREM discussed in [Srinivasan

1976b]: Let V be the valuation of the terms in (P), and let

R(V](P) be the residue of (P) for the valuation V. Let PV be

-the predicate P with the known valuations in V kept fixed.

Then the residue theorem says that R[V] (P) <-> (PV). That is

any model that is valid for R[VJ(P) is valid also for (P).

Thus, any model that contradicts R[V] (P) would also contradict

p L
6o

o6

1 ! " "" " " I I . t " "

THEOREM PROVING. IN MDS...C.V.Srinivasan, Jan. 1976.Page 11

TABLE III: CONTROL STRUCTURE FOR THE THEOREM PROVER.

Steps 1 through 4 constitute a STAGE in the TP-Process. Each
stage begins with a TP-state and ends with (possibly) a new
TP-state.

1. First apply ALL applicable propositional rules, equality rules
and quantifier rules. For each new Eigen. Term, z, keep note
of the possible range of values that the eigen term can have.
The ONEOF function is used for this purpose. For each
application of an Instantiation rule do (CREATE TI v) --Tl
here is the type of v--if the model space permits the creation
of new instances of T1. The symbol v is a new symbol not used
previously in the TP-process. If the creation of new
instances is prohibited in the model space, then create a new
elgen variable say v, and set

v - (ONEOF <the instances of TI in the model space.
These instances are not to include any of

the previously generated eigen variables
in the TP process.>).

Please note that v is still treated here as an eigen variable,
and NOT as an eigen term. The ONEOF function is used only for
existential instantiations. If v is the result of an
universal instantiation then mark v by the label ALL, else
mark it by the label SOME.

2. For each sequent in the TP-state do the following: Let pl,
p2,..., pn be all the predicates of the form (x r y) on the
left hand side of a sequent in the TP-state, and let ql, q2,
.o, sqm be the similar predicates on the right hand side ofthe same sequent. Do

A: [THASSERT pl p2 ... pn "ql -q2 ... qm].

* This might cause these elementary predicates to be moved into
the model space. Let Al, A2, ... , Ak be all the assertions
made to the model space, in this manner. Let P1, P2, ... , Pk
be the strings of all the predicates, respectively in Al, A2,
.o., Ak. Let SEQi, SEQ2. ... , SEQk be respectively the
sequents with which the assertions are associated. A
THASSERT, Ai, is used to update the model space only if it
does not contradict any of the HYPOTHESIS (see (c) below)
generated by the TP-process. If a THASSERT does ?t.t cause a

* contradiction in the model space, but contradicts a
hypothesis, then we shall not update the model space. The
asociated sequent will be left in the TP-state unchanged.

One of the following three can now happen for each such
THASSERT, Ai:

(a) All the predicates in Pi are accepted by the model
space. Some of them are unconditionally accepted by the model

I I J

THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 12

space. In this case delete the accepted elementary predicates
in Pi from the sequent SEQi. If as a result of this, SEQi,
becomes NULL (both its left and right sides become empty),
then undo the THASSERT, Ai. The predicates in Pi are now
candidates for a new HYPOTHESIS. Some of the predicates are
accepted by the model space conditionally. An UNKNOWN-residue
(See Srinivasan 1976b for the definition of residues) is
returned for each such conditionally accepted predicate. In
this case, substitute each such predicate in SEQi by its
associated residue.

(b) One or more of the predicates is NOT accepted by the
model space. In this case simply delete the sequent from the
TP-state and make note that a contradiction has occurred.
Keep note of the assignments of values to the eigen terms that
caused the contradiction.

(c) After doing all the THASSERTs and the associated
updates to the sequents, see whether there are any NULL
sequents in the TP-state. If SEQi,SEQj,...,SEQt are all NULL
then delete them from the TP-state, and generate the following
hypothesis:

HYP: "(Pi V Pj V ... V Pt),

where Pi, PJ, ..., Pt are respectively the predicates
appearing in the assertions Ai, Aj, ... , At, associated with
the sequents SEQi, SEQj, ..., SEQt.

3. If the TP-state is empty, and if a contradiction has occurred
then the theorem is proven. The solution may now be extracted
from the model in the model space. The solution is found by
assigning the proper values for the eigen terms. We shall not
discuss here the soluion extraction process.

If no contradiction has occurred then GO AND CONSULT USER
about what to do next. We shall discuss some of the
strategies appropriate for this situation in an ensuing paper
(Srinivasan 1976c].

4. If the TP-state is not empty then go to step 1.

0

4" THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 13

When a predicate is asserted into the model space it

initiates a rather complex process. First the constraints

associated with the predicate and the constraints in all -its

dependent predicates are evaluated. If there are also

TRANSFORMATION RULES (See Srinivasan 1976b, 1975b) associated

with any of the relations asserted into the model space they

will also get evaluated and all the appropriate "side effects"

will be taken care of. In the case of an assertion (x r y),

where both x and y are eigen variables (i.e. x and y are

constants already in the model space), this assertion may

actually cause the models in the model space to change. The

appropriate residues will then be returned to the TP-state.

In the case of eigen terms, we shall associate with each eigen

term its range of possible values: Those leading to a

contradiction as well as those that do not lead to a

contradiction at a given stage of the TP-process. For an

eigen term, y, of type, say Y, we will maintain as possible

values only the instances of Y. We shall write this as:
t

y- ONEOF[(yl y2 ... yn; z1 z2 ...zm)], where the z's cause

contradiction. We shall use the notation (x r) to.denote the

collection of all y such that (x r y) is trUe in the model

space and at times write y - (ONEOF(x r)) to indicate that the

possible values of y are precisely those that satisfy .(x r).

The assertions into the model space perform four

functions: (a) Recognize contradictions, if any, (b) delimit

the scopes of the relevant eigen terms if possible,

THiOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 14 . I
(c) generate HYPOTHESIS to guide the TP in its operations (we

shall discuss this in greater detail in section 5), and

(d) return to the TP-state additional .:onstraints relevant to

the proof of thd assertion in the form of UNKNOWN

residues--logical expressions whose truth values could not be

as yet determined in the model space, because the needed

information is not yet available. With these preliminary

comments we may now consider the solution of the maze problem.

4. THE MAZE PROBLEM.

To understand the definitions given in Table IV please

see [Srinivasan 1976a]. To follow the discussion below it is

essential that the reader understand Table IV and the concept

V of residues [Srinivasan 1976b]. Let us assume that an

instance of MAZE has 'een already ceated in the model space

and the connectivity of all its nodes have been specified; no

new nodes might be created in the model space. For some

particular node, n, of this maze we wish to prove the

*assertion [all of Table V. We shall comment on the proof

shown in Table V in the next section. This table is'mostly

self explanatory.

4

6

!r

- ' - ! " | ' l'i I I
!

: : • " ', '"

THEOREM PROVING.IN MDS ... C.V.Srinivasan, Jan. 1976.Page 15

TABLE IV: THE DEFINITION OF THE MAZE DOMAIN.

((MAZE $N) (startingnodes (NODES $L) startingnodesof CCl)
(exit (NODE $N) exitof CC2)
(contains .(NODES $L) belongto CC3)].

CC1: [MAZE startingnodesJ.
(((NODE X) I(@ star tingnode X) (X connected from NIL)]J.

CC2: [MAZE exit].
((NODE WOI(exit X)(X connectedto NIL)].

CC3: [MAZE contains]
[(NODE X)I(@ startingnode X) V (@ exit X) V

((SOME NODE Y) (@ contains Y)
(Y canreach X)).-

((NODES $L)(elemdn (0 *NODE))
((connectedfron V) (NODE $N) connectedto)
((belongto V) (MAZE $N) contains)].

[(NODE $N)(connectedto (NODES $L) connectedfrom CC4)
((canreach $X) (NODES WL canbereachedfroi CC5)].

CC4: [NODE connectedtoJ.
((NODE X)I@ connectedto X)(NOT(X is)]

CC5: [NODE canreach].
[(NODE X)I(@ connectedto X)]. I

[(PATH $N)(startingnode (NODE $N) startingnodeof)
(tail (PATH $N) tailof CC6)
((endingnode $) (NODE $N) endingnodeof CC)).

CC6: [PATH tail].
((PATH P)I(@ tail P)

((P is NIL) V
((SOME NODE N)
(P startingnode N)
(@ startingnode:is:connectedto N))].

CC7: (PATH endingnode].
[(NODE X)I((@ tail NIL)<->(@ startingnode X))

((ALL PATH P)
(tail P)->(P endingnode X)J.

THEOREM PROVING IN tDS..*COV.Srinivasan, Jan. '1976.Page 16

TABLE V: STATEMENT AND SOLUTION OF THE MAZE PROBLEM.

* The nodes n and e below are assumed to be constants, already
in the model space..

*(all. =>((SOM4E PATH P)
(P startingnode n)->
(P endingnode e))

Apply (=> SOME) rule. No prior instanc e of -PATH exists.
Hence, do (CREATE PATH p) and do (P:pj for the right hand side
of the sequent.

* a2J. =>((p startingnode n)->
(p endingnode e))

By (n >

[a3J. .(p startingnode n) =>(p endingnode e).

[THASSERT (p startingnode n)-(p endingnode e)).

(a41. ->[Residue of (p endingnode e)].
which is

in>((p tail NIL)<->
(p startingnode e))

a ((ALL PATH P)

By an (=> ->),(p tail P)->(P endingnode e].

[a5J. (p tail NIL) -n>(p startingnode e);
(p startingnode e) ->(p tail NIL);

->)((ALL PATH P)
(p tail P)->(P endingnode e));

By (=>) ALL), (CREATE PATH p1), and do [P:pl] for the last
sequent above, and do (-> ->) to get

(p tail p1) ->)(pl end ingnode e) .

(THASSERT (p tail NIL) -(p startingnode e)],
[THASSERT -(p tail NIL)(p startingnode e)],
I THASSERT (p tail pl)-(pl endingnode e)].

*If n - e. *-hen the earlier assertion (p startingnode n) will
4 contradict with -(p startingnode e). In the second THASSERT,
* O(p tail NIL) will contradict with (p tail NIL) of the first J

THASSERT. Similarly, (p tail p1) of the third THASSERT also
will contradict (p tail NIL). This will terminate the proof.

*If n is not equal to e, then the first.THASSERT will generate
* the following hypothesis (since sequent becomes NULL as a

i'esult of the THASSERTs):

THEOREM PROVING. IN MDS...C.V.Srinivasan, Jan. 1976.Page 17.

4I

HYPI: -((p tail NIL)'(p startingnode e)) . ."..

Notice that the above hypothesis is a special case of -the
conditon CC6, associated with [PATH tail]. The TP-process has
now discovered a property of the domain as -a result of its
interactions with the model space. It should be mentioned
that one should be extremely lucky to discover properties in
this manner! The ability to discover properties like this is
dependent on the kinds of domain descriptions that have been
given to the system. The second THASSERT will produce a
contradiction in the model space, since (p startingnode n) is
already true in the model space. The last THASSERT will
produce,

[aS]. [Residue of (p tail pl)]=>
[Residue of-(p1 endingnode e)].

which is
((SOME NODE N)

S- (pl startingnode N)(n connectedto N))
• ...- >(((pl tail NIL)<->

(pl startingnode e))&
, ((ALL PATH P) ...

(pl tail P)->(P endingnode e].

Notice that the phrase "(p startingnode:is:connectedto N)"
occurs in CC6 from which the-'residue on the left hand side
above was obtained. However,- (p startingnode) --is already
known to be n in the model space as a result of the assertion
in. [a3]. Thus, (p startingnode) gets substituted by n in the
residue. We now do (SOME =>), _(=> &, (=> ALL) and (=> ->).
Since the creation of new nodes has been blocked, it is now
not possible to CREATE a new node for (SOME =>) rule
application. Therefore, an eigenvariable, vl,_is created and
set equal to,

--- (ONEOF -<the. nodes ih the model space>).

A value for this v1 has to be found -from the model space.
Notice, however, that v1 does not have the status of an.eigen
term, in the TP process. That is, in the THASSERT process vl
cannot be set equal to another eigen variable. Now, (CREATE
PATH p2) and do [P:p2]. - Then--doing all the propositional
rules, we get:

. 9j2..(p1 startingnode.vl)(n.connectedto vl)(pl tail NIL)
->(pl startingnode e);

(pi startingnode vl)(n connectedto vl) -- :z. - -

(pl startingnode e)
n>(pl tail NIL); -

(pl startingnode vl)(n connectedto vl)(pl tail p2)
.>(p2 endingnode e).

-- | .J .j

. THEOREM PROVING IN MDS...C.V.Srinivasan, Jan;-1976.Page -18 ..

This leads ,-

(THASSERT (pl startingnode vl)(n connectedto vl)(pl tail NIL)
"(pl startingnode e)],

ITHASSERT (pl startingnode vl)(n connectedto vl)
-pl startingnode e)-(pl tail NIL)],

* .ITHASSERT-(pl startingnode vl) (n connectedto vl) (pl tail p2)
-. (p2 endingnode e)].

The assertion of (n connectedto vl) would limit the scope of
possible values of vl to those nodes that are known to be
connected to n, in the model space. If vl contains e, then vi
can be assigned the value e, and this would -produce a
contradiction in the first THASSERT. Maintaining the same
assignment for vl would also produce contradictions in the
second and third THASSERTs above. In the case of the second
ASSERT "(pl tail NIL) will not be accepted, since as a result
of the first assertion we now would have (pl tail NIL) in the
model space. Similarly, in the case of the third ASSERT (pl
tail p2) will not be accepted. This will thus terminate the
proof. The PATH p in the model space is the solution.

If vi does not contain e, then the first THASSERT will cause a
NULL sequent. Its predicates will become candidates for a new
-hypothesis. The second THASSERT will cause a contradiction,
-since (pl startingnode e) cannot be accepted. It would
violate CC6. In the third ASSERT we will have,

i[al0J. (Residue of (pl tail p2)]
.. .-- -->[Residue of (p2 endingnode e)].

which would exactly be the same as [a8] with the
-substitutions: of p2 for pl and pl for p, and the process [a81
through [alO] will be repeated. This will iterate untill a
path is reached whose starting node could be e. In the case
we would have in the model space the following:

:(- startingnode n) (pl startingnode vl) (p2 startingnode v2)
see -(pi startingnode vi) (p(i+l) startingnode e),

f6r some integer i. Also we would have,

vI - (ONEOF (n connectedto); ...),

v2 - (ONEOF (v2 connectedto); .,

* O vi- (ONEOF (v(i-1) connectedto); ...).

The paths that are solutions to the problem may now be
extracted from this.

.

THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 19

5. DISCUSSION OF THE PROOF. " ...

7In this proof we have assumed the simplest situation. We

. already knew the -full description... of.. the -maze. If the

description of the maze were not-ivailable then the above

proof might not have terminated. The theorem prover does not

have the ability to recognize that some information is missing

and could be acquired by consulting with an outside agent.

The process will not terminate also in cases were there is no

path- and there is a loop in which the search is trapped. We

could have defined the domain differently to take care of the

loop problem: One would introduce a new relation in PATH which

identifies all the nodes in the path prior* to a given PATH

location, and insist that .the startingnode of a tail should

never be one of the nodes already appearing in the prefix of a

path. There are facilities in the MDS model space also to

indicate situations in the description of an object where a

missing piece of information has td be- obtained from an

outside agent. In the case of a maze one might, for example,

specify that the. connecting nodeslof agiVen node has to be

obtained from an agent. So also , one might specify that the

starting node of a PATH should be obtained from outside

0 consultation. In general, for every relation in the various

schemas shown in Table IV, if the relation does not have a

constraint associated with it, then one might say that to

acquire that piece of information onehas to consult with an

outside agent. This can be done in MDS by associating flags

-. - a ,

THEOREM PROVING IN MDS... C.V.Srinivasan, Jan. 1976.Page .20 .

with the relations [See Irwin, J.&Srinivasan 1975].

The organization described here does not provide a good

search strategy to. look for the right kinds of bindings for

Ithdeigen'term. i -general the problem of estimating the

-possible bindings and choosing the right ones is an unsolvable

problem. Usually one just carries along all the available

values- and does not make any commitment until a contradiction

is identified. In the procedure described above we do make

commitments on the choice of values based on what the model

s apace accepts. At times this leads to NULL sequents in the

TP-state. In the example discussed above we had a lucky set

of circumstances: We encountered the hypothesis before we made

any commitments on the choice of values for any of the eigen

* -terms; In general;whenasequent becomes NULL one is in a

situation where one might have to do some back-tracking, and

Undo some of the changes previously made in the model space.

An important property of Gentzen's system is, it can run in

iilther direction; there is no information loss. This is not

true for the RESOLUTION approach. When a sequent becomes NULL

one should-back track-to the previous TP-state and. undo any

changes that might have been made in the model space by the

TRASSERT associated with with the sequent corresponding to the

NULL sequent. Thismight-cause one to reevaluate the previous

TP-state all over again, and change many of the bindings

chosen for the eigen terms. We shall not discuss here the

organization of the model space and the TP-state that make

THEOREM PROVING'IN MDSo...C.V.Srinivasan, Jan. 1976.Page 21

such back tracking feasible. Again, if the domain

descriptions are right, hopefully, such back tracking would be

avoided.

If the TP-state becomes null and no contradiction had

been obtained, and possibly also some hypothesis are

available, then in certain cases it might still be possible to

continue with the proof procedure if the right kinds of new

instances of the necessary objects are created in the model

space. This might be done by consulting with a user. Also,

in these situations, at times, the system can use the so

called *model completion" criteria to continue with the proof.

The concept of model completion is discussed in detail in

Srinivasan [1976c]. The objective in model completion is to

create new objects in the model space necessary to complete

all the missing (unknown) information in the model.

The thrust of this work has been so far not in the

identification of good search strategies, but in creating a TP

control structure that can interact with a model space which

has itself been defined in a context totally independent of

the TP process. Also, it seems the TP can explain its

operations to a user in a natural way.

o The procedure presented here is bound to be incomplete,

. because of the weak requirement for contradiction: The notion

of contradiction is dependent on the model space. However, if

the domain description is right then we can prove interesting

o1

THEOREM PROVING IN MDS...C.V.Srinivasan, Jan. 1976.Page 22

theorems. We do not use theorem, prav ng.as the. principal mode

pf problem solving in MDS. Our objective had been to fulfill

an aesthetic theory: If one could describe knowledge to a

computer-and have the-computer understand the knowledge then

m ne should-be able to use the knowledge not only in- highly

ipeclaliztid ways but also -in -the- context of a--general

deductive system. *The TP is expected to be used in MDS to

guide construction of -instances of schemas, and to resolve

unanticipated conflicts in the updating of the model space.

Our ideas on the use of TP in these areas are at the moment

still in the developing phase. The central problem is one of

- using the TP in reasonably efficient ways to help in the

:- updating process.

-We expect to have the MDS model space management system

working in a few months. The TP is not yet implemented. We

are still t-the stage of exploration.

*- --- ACKNOWLEDGEMENTS: .- - - "

-= During the early -stages of development of. the ideas
presented here, in the spring of 75, when we were still
learning about Gentzen's system and Beth's Semantic Tableaux I
had the benefit of many discussions with Jared Darlington.
These discussions were extremely valuable in crystallizing
many of my ideas. The discussions I had with my student, Tau
Hsu were very useful for identifying the deficiencies in the
TP process and correcting some errors.

5. REFERENCES:

BSeDth, E.W[19591 The foundations of Mathematics,. North Holland
- publshing company, Amsterdam.

Kanger, Stig [1963): A simplified proof method for elementary
logic, In Computer Programming and Formal systems,

°.

THEOREM PROVING IN MDS...C.V;Srinivasan, Jan. 1976.Page 23
I.

Beth* E.W[19591 The foundations of Mathematics, North Holland

publshing company, Amsterdam.
Kanger, Stig [1963): A simplified proof method for elementary

logic, In Computer Programming and Formal systems,
Braffort&Hirschberg (Eds), North Holland Publishng
Company, Amsterdam.

Srinivasan, C.V. ,(1973]: "The Archtecture of Coherent
Information Systems: A general. Problem Solving
System", in 3IJCAI, Stanford 1973. A revised
version of this paper appears in IEEE Transactions
on Computers, Special issue on Artificial
Intelligence, April 1966.
(1975a]: A formalism to define the structure of[
knowledge, RUCBM-TR-51, Department of Computer
Science, Rutgers University, New Brunswick, N.J.
[1975b): The meta Description System, RUCBM-TR-50,
Department of Computer Science.
(1976a]: "Introducton to the meta description
system". Department of Computer Science Technical
Report, SOSAO-TR-18, Rutgers University. [1976b]:
"The model space of the meta descriptio system",
Department of Computer Science Technical Report,
SOSAP-TR-19, Rutgers University.
[1976c]: "The Proof of Cantor's Theorem in MDS", in
preparation.

Irwin, J.&...:[1975]: The description of CASNET in MDS.,
RUCBM-TR-49, Department of Computer Science.

t .

II

0 -

...6II _ IIlD. ..

V .,. . . .

%777

RUCBM-TR-49

August 1976

DESCRIPTION OF CASNET IN MDS

J. Irwin and C. V. Srinivasan

Department of Computer Science
Hill Center for the Mathematical Sciences

Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was partially supported by the Advanced Research

Projects Agency of the Department of Defense under Grant #DAHClS-73-G6to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the

6I author and should not be interpreted as necessarily representing the

-- official policies, either expressed or implied, of the Advanced
* Research Projects Agency or the U. S. Government.

-0 ."4.'

JESZHILiTION OF CASNET IN MDSoJUNE 1975..

TABLE OF CCNTEN S

1, In troduction,

2, Basic concepts: CASNET and the METHODOLOGY of
description in NDS.

3. The DESC2IPTION STRUCTURE of CASNET.

4. Templates and their instantiations.
4,1: Types of templates and examples of their use

in CASNET.
4,2: The relation flags and their use.
4.3: The CONSISTENCY CCNDITIONS.

4.3.1: The form of CC's.
4.3,2: The interpretation cf CC's,

5. The MODEL DF.FINITICN and LHODEL INSTANTIATION processes,
5.1: The Definition of CAUSALMODLL.
5.2: MODEL INSTANTIATION process.

5,2.1: The Record Keeping Prcrc s,
5.2.2: The test selection and application.

0. Concluding Remarks.

7. Acknowledgements.

dEFERENCES

APPENDIX I: CASNET DEFINITION,

6

4) S ;RPTION OF CASiE'r IN tibS..JUNE 1975.. Page .3

causalnetdtettn) will produce in MEUS t he de f Liit ioni o f th'.a

%.AUSALt4ETDEFN of GLAUCOMIA

In tile CASNET system one aty a aiso defin e

co r reoponuL' nce s between the we ights 01. t iu ui v~s stat'-.,

Aid the testable symlptoms of a a i~ea.j prjct-.s Th s

c~rrespondiences are th-!n used to coa.itruct d causal n-t

adscription of d disease process from the set oi chserved

symptoms of an aftlicted patient. IL~ the DS rormiism we

sail indicatte this feature by definingy thle rva.-on torms:

(CAUSALMODEL testdesns TESTDESNS),
(TEST DESNS testdesnsoi CAUSALMCDEL) , aria
(TESrnS1Is el- ments TESTDESJ).

uz:r e 1-SS-TDiES'S has been defined to a c u ll-c t io n o f

* LSTDESNs, an arbitrary number c± trier* Each 17S3DSN

itself will specify one test and thea iiterpretdtiuns for it.

r=esults, namely, the correspondences b~etwcen thr tast

reasults and the weights of the disease states. A

Z:AUSALMODEL may have a collection ot such TESTDESNS3

associated with it. Again, if the CAUSA1A'01"Ei. zi 3LTY 4

r 7 were available to MIJS, the phrase (GLAUCOMIA testdiesns) would

rafer to the collection ot all tests uefiueu for the

;L~AUCOM1A causal model,

Thco cnll.oction of confirmei states6 ii, ta occau sal n t

C r i;L ti Ct i U t ' -Red SQ d IIiCt.L L-j A kj1 V -'!I Pitt -fl t'

*tijether with fteir associatui catisal c~~, dit- uspd in

Cii SN F" tu dxtc-rmine the dispase diaynosiz dial Ipo.;.;ihy 11:.-o

uj,C4!eTION OF CASNET IN MD!;,.JUNE 1975.. Page 4

tue necessdry theripyo The a;sociations Lj*etweeii tite causal

* .ilet descriptions of a disease pruce~s 4 nu the disease

diLagnosis and th* rapy are specizied in CA SN ET by

(L AUSA L MO DEL classifications) . In the MDS aescription of

ASN-T we shall introduce the relaticnal torms:

(CAUSAL'CJDEL classitications CLPA;6LENS),
(CLASSLEFNS classificationsoi CAUSiAL1110CELj , ana
(CLASSDEFNS eleatents CLASSDE.--N)

itere again, a CAUSAL!!ODEL may have a coill:ction of

;iASSDEFNs associated with it. Eacu CLASSDEFN will

introduce a rule of classification associated with a given

a.isease domain.

The disease states, the causal linys, their

a.4sociations with aisease symptoms, anu tae corr-..pon-iences

i,-tween an instance of a causal net ana the diaqnosis and

Laerapy of the disease reprosentcd by the caiusal ,et, would

dll depend, of course, on the nature or the aisfease being

zodelled. in the conception of the CASNET system there are

taius two phases cf operaticn: The iiLst is the domain

def inition pha se. In this phase the CAIISALMODEL for a

disease domain would be defined. The second phase is the

dumain execution phase. In this phase, the CAUSALMODE1

* dfinition would be UGsed to qenerat? 11 Causal net

t ...B(1 i pt j'1 n or an1 i :ist-VInC If thl di s2dJ ill 11 -1ftl iC+:-d

.I ti' nt. *in the- ia:plemon t.t' VtcS ioln t , i; n o. ho %t-vor

*.Aiitrl trace Besidos definiliq th-? CA~,iJ,Luf,. toi: a dit;p;ez

lunarla user I.S rt- 11i r d t o .also vizit a to d (Cm in

0

J

4I

)&iwRt OTI1I0 OF CAS'IET IN MS..JUNE 1975.. Paqe 5

i ,ecific proqrdms in order to be able to upply the defined

J USALMODEL to (Jenqrate causal net descriptious of instances

J1 the disease. These domain specific prograwis may vary

didely from one disease domain to another. T ui,, in the

ise of the CASNET defined for GLhUCOIA the disease is

j-tfined only for one eye. Special routines had to be

wcitten to consider the disedse afzliction for both eyes

6imultaneously. The versi)n described neze is close to (*)

tae implemented version, described in Weiss [1974] (see

section 6 for a discussion of what has been left out).

In the M3S description the domain definition procesE

Vauld manit'tst itself in the follcwing manner: One would

t.rst create the causal model definition for a disease

ni ain by creating an instance of the object, called

;aUSALMCDEL. If the disease domain is, fouL example,

GLAUCOMA, then cne may name this in.stance ot CAUSALIODEL, by

the name GLAUCOMA. The causal model, GLAUCOMA, would have

associated with it, its own specific instances of

CAUSALNYTDEFN, TESTDESNS, and CLASSDEFNS. Let (GLAUCOMA

causalnetdefn) be called, GCASNET. Similarly, let (GLAUCOMA

testdesns) be (qtl qt2 ... qt), collectively referred to

ny GTESTS, and (GLAUCOMA classifications) bu GCLASSES (qcl

+;2 es. qc). The domain definition tor 6LiUL.CIA will thus

-o 1 s.t o< I cASN r', STESIS aInd t;CIAJSE£. iy applyinq thr,

* It 3hould be pcinted out that it woul, b. relatively ' .sy
to mudity th' D!D; description of the CASNI, qivonI her', to
dutomdticllly tdx. care of diseasP mI aif ctatu:i iH n m.:)."
t,an one or(Jln ct an atflicted orqainism.

S!

A ;jZ11iTrON OF CASNiET 1., MDS,.JUNE 1'475.. Page 6

,,;ASIE'r, GTE!;TS and GCLASSES to pirticular instances of t h-

i L A(JC0:1A disease i n given patients, one may now create

descriptions of the diseas* prccesti iii the patients

I.Qncerned. we shdll reteQr to thr-sc diL;,jasi descriptions as

LiiSEAS2'1E3N S. To take care of the q ensitc-i.ic n ot thcesp

JISEASEE31.'S we shall i nt rod uce tuhe tcllowiriq -Iidditionaal

relations to0 the CAUSALMODE1,

(CAUSALMODEL diseasedesais LISEASEDESNS),
* (DISEASEDLSNS causalmodel CAUSALMOD EL) , and

(DISEASEDESIS elements DISEASi!DESN).

Naw, every CAUSALMODEL may have a ccllection ot DISEASEDES~Is

* i.sociatea with it, The definition ct DISrLAi'DESN will

eC.iZy nLow the (CAUSALi(JDEL causa lnetdto.4n), (CA USALY'ODEL

t stdesns) an~d (CAUSALMODEL cldssifications) would te used

t i create instances of DISEASEDESN.

In this preamble we have already introduced the central

properties of the CASNET system and the torus their

descriptions will take in MDSe The objects like

7AUSALIIODEL, CAUSALIN ETDEF N, TESTDESNS, etc.,* that were

introduced above, are called TEMPLATEse The CAUSALIIODEL

r. m pl a te has f cur rela tions def ined f or it: causalnetdlef n

tjstdeslS, classifications and diseased,2sti5. As with thc

: AUSALM1CDEL the structure and~ compcnentii of a± tAUSALNFETD2FN

will je spci r i.~i by thet tem plaite o E C AU6,1L NETP EFN.

611fluildr considL-rations hold for the ottieL: Loiatijn~i defino ,I

Lir thr? CA1J.ALM0D-;-L*

DUiSeTION OF CASNET IN MDS.oJIJNE 1975.. Page 7

The formal definition of the CATSALMODEL template will

appear in m DS as shown below JThe prefix "TDiN:"--Template

Di-tinitioN-- in the description belcw is the K1DS command

taat is used to define terplates):

[TIN: CAUSALMODEL
(causalnetdefn (IT CAUSALNEIDEIN)
causalnetdefnof)
(testdesns TESTDESNS testdesnsof)
(classifications CLASSDEFNS classificationsof)
(diseasedesns DISEASEDESNS causalmodel)].

[TDN: TESTDESNS (ELEt TESTDESN)]
[TDN: CLASSDEFNS (ELEM CLASSDEFN)].

dere "(IT CAUSALNETDEFN)" specifies that for each

-AUSALMODEL a new instance of CAUSALN'ETDEFN ought to be

czeated. "IT" is the Instantiate Template coamand of the

L idS system. The wcrd "E.LE1" is used to denote "elements".

ia .IDS, the templates with ELEM relation are used to define

cllections of objects. We shall refer to a template with

Z. Eli relation as a LIST TEMPLATE. Thus, TESTDESNS and

Z.ASSDEFNS above are list templates. A template like,

"AUSALMODEL (that does not contain the ELEM relation) is

cillad a NOUE TErPLATE. Instances of NODE templates are

iidividual objects, where as the instances of LIST templates

iiLe collections. we shall later see the use of flags with

timplates and relations to classify temiplates and identify

v Li-itions in their int*.rpratatiuns. Ine tompiates given

LAove sp|'cify th., i)'-SCiIPTION S"RUCTURL of tue objects the y

et ine. In the description structure of CA1SALMODE'L,

b AUSALMODFL causainctdefn) is said to U , a DIe' R 1SNALLY

O1

q Ji . ±dTION OF CAS'ET I4 MDS..JUNE 1975.. Page 9

CON SISTENT relaticnal form. The template called by

(CAUSALMODEL causalnetaefn) is CAUSALNETDEFN. In the case

UL (CAUSALMODEL testdesns) the called template is TESTDESNS,

waich is a collection of TESTDESN. In situations like this,

we shall say that both TESTDESNS and TESTDS3N are the called

templates of the anchor. We shall reier to dimensionally

cansistent relational forms like (CALSALMODEL causalnetdefn)

a the ANCHORs of CASNET. The description oi an instance of

2;USAL'OD7L will be said to be complete only when all its

rour anchors have oeen instantiated. Generally speaking,

tae instantiation of an anchor might call for an instance of

LAie template called by tne anchor. Thius, the instantiation

ot (CAUSALMCDEL causalnetdein) might call tor an instance of

ZAUSALNETDEFN. It is, of course, jousible that not any

iustance or CAUSALE'IDEFN would be satisiactory. To take

care of situations like this, one may associate with the

anchor (CAUSALMODEL causalnetdefn) a CONSTRAINT. For an

Lnstance of CAUSALMODEL, say X, an instance of

.AUSALNETDEFN, say Y, would be accepted as the

c&usalnctdetnof X, only if Y satisfied the constraint ot the

anchor ICAUSALr1ODEL causalhietdefn). One mdy think of the

zinstraint associated with an anchor as detininq the

;emantics of the relation in the anchor. Tnese constraints

41e spaciftu in ;iDS in first order logic. e shall refer

to these constraints variously as CON S''ENLY CONDITIONS

*(CC's), or SENSE DEFINITIONS. We shall later discuss in

jore detail th., torms and interpretations of the~t? anchored

11.

J,".i&dTIO'N OF CASNET IN MDS..J[JNE 1S75., Page 9

.. unstra ints.

Thus, TEMPLATEs and their dSSOCidtCu anchored

ZuNSTRATNTs are used in MDS to describe thu oujects in a

uomain. The description of the CASNET doDIdinl in MDS will

uonsist of a whole lot of diff ernt tewpldtes (lie,

'.USALMCLEL, CAUSALNETDEFN, TESTDESNS, IESIDESN, CLASSDEFNS,

Z.AASSDZFN, STATEDESNS, CAUSEDESNS, STRAT~uIES, LIKELIHOCD,

etc.) , and constraints associated with theiL various

ai1 chars. These templates and ccnstraints are shown in

tipendix A. Descriptions of this kind becowe inreresting if

t;,e system could use the templates ana constraints

aitomatically to create valid instances o the objects so

.escribed. 2hus, from the template tor CAUSALAODEL and ill

its component te mplates (and compcnents tnere of), we would

iKe to be able to create a complete instance of

XAUSALMCDEL. In this instantiaticn pcocess the system

.inould produce wherever possible the necessary instances of

needed objects automatically, and where ippropriate it

sould acquire the necessary descriptions o neeuo.d objects

L. om the user (thu model builder), If the only infcrmation

dvailable consisted of templitis and constraillts, then this

kind of instantiation proces; is in g enetal very ditficult

t.) Jo No (ift icient) qon,'ral methods xxiit cr constraint

s ti tact icn problems of this type. In M Di automatic

insitantiations ot templates and anchcrs dLC IAdde possible by

p;ovidifq addit ionil irifCLati*11 to the -. ysLen in the torm

1) I conitrol pr o c-J u ro.; ca 11 rw i T JAI S Vo & %MAl £0r N CLI H(T.E.. R s

6.RieTIOtN OF CASt|ET IN MDS..JUNE 1)75.. Page 10

•-j shall later discuss the forms ana interpretations of

i2R's. At this point it suffices tc mention that the forms

at both the CC's and TR2s are such that the processors in

MDS can not only evaluate them, but also understand what

tuey do. Thus, if a CONSTRAI'1H at an anchur is not

satisfied ty a given object, then IDS would Know the reason,

waLy. It may use this reason for the failure, to search ior

a more suitable candidate. If a transtoz-dtin rule is

livoked to construct a new object or complete an updating

pzocess, the &DS can generate from the ti-atnsiormation rule a

aescription of what it expects to accomplish ty the

application of the rule, and how the rule goes about its

process. These two features of IDS are the most significant

anes that enable. it to act as a general problem solving

system that can do non trivial problem solving tasks, by

wakinq use of th3 domain KNOWLEDGE that has Deen described

tj it. we May now briefly summarize the concepts introduced

so far as follows:

The concept of TEMPLATEs and the process of their

iastant'.tion are central to the operation or IDS. Each

AoMILATE in a dcmain is associated with a CLASS oA objects

ia tne domain . Thus, in CASNET there is a class of objects,

;allPd TESTD.SNs. A T'.PLATE is cxpecteu to contain in it

11l the specitications necessary to crecate instuicts)t th.?

z~ass of objects that it defines. Instauces or TESTDESN

*ill 1ie descriptions of tests that frAy le upplied for a

,lven disease dcmain. Thus, in GT?,S1S (tests ror GtAUCOMA)

*

•J6,- ;HPTION OF CASNET IN MDS*.JUNE 1975., Page 11

= gtl qt2 *.. qtN), each qt will ba an instance of

-6STDESN, and will describe a particular TEST that might be

applied to diaqnose GLAUCCMA.

The information prcvidcd by a template aaay have three

pa r ts to it: The STRUCTURAL INFCrMATICN, specifying what

oojects in the aomain may relate to what cther objects and

;Jy what relation; SENS]. INFO RMATION (tne CONSISTENCY

;JNDITIONS) specifying ccnstraints onl anctiors; and

ia.ANSFOR 1AOIO RULES specifying the procedures to be used to

ci eate instances (or updates of instances) or templates and

a.ichors satisfying all the specified constraints. Thus, the

A'USALMODEL template, together with all the other templates

taat it calls (and others that the called templates

r- u emsel ves (recursive ly) call) , would contain the

-,aformation necessary to create instances of CAUSALMODELs.

J.i ti. descripticiis aiove we have siown only the

6decifications of the structural components ot CAUSALMODEL.

Au example of anchor definiticn in a template, with

indications of associated CC and TR, occurs in (STATEDESN

,resence) (See Appendix A):

(pres-nce (PR;SENCE TA) presenceof CCLJ Ti,2),

-, this detinition TA is a tlaq associated with tito PrESF 'CE

t,-mplate, that declares P1BESENCE to Le a "Tertinal Atcm"

Le M pl, te: Eveary inz,:tance of 2?ESECE should ue a terminal

atom. For our puv oses we shall just cruate two instances

at PRESENCE, ono called CCNFIRMEDC anid the othv. r called

* JE.12VTI1N OF LASNET I' l MUS..JUNE 1975.. Page 12

-NIED o Thus, one may say that for an instance of

S-ATEDESN, called say S, the value cf (S presercu) can be

either CONFIRMhD or DENIED () 2oth CONFIRMED and DFNIED

a&e, of course, atoms (in the LISP sense). The labels CC13

id TR2 respectively refer to the CCNSTRAI1T and £P anchored

:t (STATEDESN presence). The CC ana TR titemselves are

defined sejerately, by using the QSCC: (Set CC, thF prefix

indicates that this command is part of the knowledge

acquisition system of MDS, called QUEsT), and QSTR: (Set

i) commands, as snown in Appendex A. CC13 specifies that

tue presence of a state should be CONFIRAED if its status

exceeds a certain threshold, it should be D1NIED, if the

status is less than the threshold. in te ue,.inning the

presence of a state might have the value UNKNOWN (denoted by

., in MDS). If the status of the state changes during the

course of an experiment, then its presence will be

automatically set in accordance with CC13. iiowever, in

certain situations a contradiction miqnt arise: Suppose the

presense of the state was to begin with CCNFIRMED, and later

This is riot, however, strictly true. because of a
cinve|tion i n MDS (to te explained lateL), tte Cc13 applifs
to an instance of an instance of STATEDSN. Al, instance of
Ji'ATEDESN would itsplt be a template. 1his is in dicatcd by
tnte ti.tiq "MN" C11t0 Ncde) dssociitEd with STAiLDESN template
(.ee A.p nu ix A). This flag indicates that -very instance

. SrA;TFJ c[;hould be itself a NODE rE;,'LAr.. To create d
61 j lcl I-or a d i.,,se domain, D, one Iaby ' ri te seve r -
iiistiacps Oi 3IATEDESN. Tnose would t ne i be t e dis; v!;
zat .2 templates tor the domain, D. instancus of thes.;

U sA.as. stat2 t-h, plrttes will occur in the causal n ot
auscription or a pirticular occurrence ot t6,2 aisease, D, in
a pati!Tit. CC13 wotild thon apply to ttte :tates occurrin; in

A& e c.s3,11 11, t descripticin of this pacticuiai patient's
U 1

aLZaiTION OF CAS'IET II MJS,,JUNE 1975.. Page 13

aurinq the course of a dialnostic experiment the status of

tte state chanqed as a result of new evidence, and went

Delow the threshold. This would then cause, a

-JNTRADICTION, in MDS. The new situation contradicts the

axisting situaticn. To r:solve such a constrauiction, the

iHR2 associated with the anchor will ue invoxed. We shall

L• ter discuss the opeLations perfcried by £2. One may

aotice that tne CASNET description nas only about six

transformation rules in all. Also,. each TP,-rule is small,

ZLad is intenued to do specific re mediai tasks in well

zonstrained situations. The major repcsitory of CASNET

K:owledge resides in TZMPLATEs and SE.1JS3 LEEINITIO'Is. The

general problem solving processors built into MDS enable MDS

t, accept descriptions of this kind and use thea for domain

execution, via the instantiation process. The facilities in

aj S are quite general; they are not necessaLiiy restricted

to the kinds of tasks encountered in CASNEI. At the moment

* are usin4 !MDS also to describe the bELIEVEi system of

Schmidt and Sridharan r Sridhran 1975]. MDS is a META syste3m

ia' the sense that it can accept descripticns oz KNO4LEDGE in

• .i.y domain and specializ- itself to act ,:ificiezitly in tha

jo mcin. A fairly detailed exicsiticn ot tue various

zicjliti s in MOS is available in [Srlraivasadi 1475a]. A

Lj I-M] Ie:cription of the T!MFLATF d.Linitio:L ;ystvm, anml

tIa'e various types of 'rAIPLATFs thdt o10 may u S, are

j discussed in Srinivasan 1975b].

Xdj..:.,itTION OF CASNET IN MDS..JUNE 1975.. Page 14

After introducing the description structures of the

Lujects in CASNET (i.e. the structure ot all the template

ii CASNET) we shall Driefly discuss the forms and uses of

various types of templates, the way relation flags are use]

1 M !DS to specify variations in the inter pretation of

anchors, and the forms and interpretations of CC's and TR's

ia CASNET. These will enable the reader to follow the

ormal description in Appendix A more closely. We shall

follow this with detailed explanaticns of selected portions

jL CASNET, with illustrations of their use.

It should be pcinted out that tue MDS system as

a.. scribed here is not yet fully operational. Only the

uUMAIN DEFINITION part of MDS and a small part of the DCiiAIN

iECUTION system (the system that interprets templates,

izistantiates them and evaluates the CC's ana TR's) are not

ojerational. The development is nct yet at a stag-e where it

cdn execute the CASNET description, presented here. The

purpose of this report is to introduce the MDS facilities to

ijivestigators in the area of medical modeilinq, in the

.aut4ors Re-source.

3.0: The DESCI,EIPTION STRUCTUFE of CAJ'AET.

We have alreauy discussed the structuLal description of

-AUSALMODEL shown in tiqure 1, belcw. In this se-ction, wo

s lall presLent th- structures of ttie cor mpoll 1ts of

J:t.; i'1,TION OF CASNET IN ?DS..JIJNE 1975.. Paq 15

:A USALMODEL, that a e used in CASI F' description. The

structures presenteu here are intended to convey a genoral

understanding tor what a CASNET is. These structures have

,een taken directly from the templatcs ac-ieied Ior CASNET.

£,ke branches in the diagrams jelcw are laueiled with the

relation names used in the templates, and hdve indications

taere cn, for the CC's and TR's associ-,tea withn the various

Lelations. The two letter labeIs within [..] appearinq as

suffixes of template names, indicate the types of the

vespective templates. These are explaiied in qreater detail

section 4. Fcr the moment the reader shculu keep in mind

Lile foilcwing:

IN: Every instance is itself a eODE tetiatc.
? PN: NODE template. Every instance snould nave a name.
SN: NOD- template. Names octicnal or instances.
$L: LIST teaplate. Names optional Lor ihstances.
TI: Every instance is an INTEGE2.
T#: Every instance is a NU4EE-1.
TA: Every instance is a LISP ATOi.
TS: Every instance is a STRINlG.

2,ne structural view presented here is pLecisely the view

dvailable to the system from the templates.

In the t mplates shown in Appendix A, the re-dtions at

te vaiious anchorls have at times certain tlags associated

W't}1 t[em. These fligs are aot showu in tue structures

;,1 ow11 in thi t; . ct4 on. in d iscus i1ig i ntormally th?

kA teripLt-t,,tiOu.t of the structure.:;, we snail soneti :,-s Lvof r

to the flags associated with th relatioi. in A pp:lndix A. A

,,ctailed discuo.;ion ot the use of reltion Lltqs appears in

z,,.clI.on 4. 2.

u,;iZ.).L.rrION OF CASNET IN IIDS..JUNLk 1975.. Page 16

CAUSALIIODELrRN1,q

1--causalnctdefn---.,CASALNEIDkF hf$N
I--testdesns --->i L3trENS(,5LI
I--cla ;sifications->CLASSDEFNS[L L1
j--dis-aasedesns----.',DlS3EASE L NS4]

FIGURE 1: The structure of CAUSALMOCE.L.

The structure of CAUSALNE'rDEFN is shown in Figure 2.

lastances of CAUSALNETDEFN need not hdve niames associated

iith theur (it is a .04 template). It has se veni components.

zitice that one of its components is tne CAUSALMODEL. Thus,

Lor eaich CAUSALMODEL there is $eXactlY onL- LAUSALN TDEFN id

ror each CAUSALNETDEFN there is exactly one CAUSALMiODEL.

The common thresho ld defines the t rash old tnat is

Common to all instances of STATEDESN. Tuis common threshold

* will be assumed to be the threshcld cz a <bTATE> (an

instance of STATEDESN) , unless a saperate tiiresiold had been

Idaclared for the state, This condition is sp.-cified by

% x67F which is the ccnstraint a~scciatea with the anchor,

(6TATEDESN threshold), appearing in figure 2.

uEk'%.XULTION 9F cA3mETr IN MDiS..JL)Ni 1975.. Paye 17

CAUSALN FTDZFN(IN1

I-statdesns ----- >STA1EDLSN~f .z'I
I--cused~n -~C~tEDLS3[L 1- -eictmnts

I I
I CAUSEDESN[LIN 1

I STATSDESN[FiN1(------ tat --
I PiacEfr# j-CC19,trarsiJ~tiorlproL-j

l--startingstates,CC1 ---- >sTAi~LESNS[J.
I--term inalstates,CC2 ---- SATLUL!;N-s .6L I
j--interiorstutes,CC2---->STATEESNSf ZL 1
I--designatedstates,CC4-->STATDESNS[L]

elemuent s

STA TED;--S Nf [IN

I-startinqweiqhit,CC7-->PFOb T# J

1-causes,CC10 ----------)CAUSELESN3[$ L I
I -threShtOld, Cco7 -------- ±i1ESHiOLDf TI I
1-::tatus--------------- >STATUSf T.]
I-conflict ------------ >CONFLIC-Tf Ti)
j-presenco-,CC13,Ti%2--->PBs.-'CL[TA
I-lirielihood ---------- > LIKEL IHGO DI$N)

I -totalinversew-tiqht,C:C57. Tfib--kRB($
PilODS I-proLability,CC53-------------- >PRCEf r#i

I-for war dweight, CC54,TR ------ [-(#)
elements I-totalweight,CCr 55, Th4--------->i?RO?[T4

I 1~-inverseweight,CZ)1J,Ta5-------?>..ONDE.tCB[$N]

<STATE><--CC 9 3, c~use;t at(_%----
<S'IAlE.'--CC90,0eriectstatm ---I
PrO03tT#I(<--Cc5u pro Ld!;ility ---I

CONDPIRO3[$.I)(-C~ 3~tL ------

FIGURE. 2; Structur- oi. CAUSAL4lErU,..:'1. < S AT L> is ain
ins~tanice oil bTA'rE:D'SN,

jLiI5a.L 0T) OF CASNEr IN MUS..JUNE 1975.. Page 18

Principally, each CAUSALNErDZFN contaius d collection

STATED2SNs, and CAUSEVESNs. Each CAUSELESN has a state, and a

tAdnsiticn probability. Each C.USEDESN, x, is in fact, the

aescription of a link of the form shown below:

....(x transitionprob)--- >(x state).

When an instance of CAUSALNETEEFN is created, the system

will prompt the user for supplying its statedesns. The need

Eir this prompting is indicated hy associating the Frompt

1ag,', with the statedesns relation (we shall discuss the

v .rious relation flaqs and their uses in section 4.2). The

st.rtingstates, teru.inalstates, etc., ot a CAUSALNEIDEFN are

dfine. oy CC1, CC2, etc. Once the stateaesns are defined,

then the system will automatically tiiid and assign the

starting, terminal anu interior states or the CAUSALNETDEFN

using the constraint definitions 'C1, CC2 and CC3

respectively, if and when they are needed. Similarly, it will

use CC8, anchored at (SI.TZDESN causedesiks), to find the cause

aascriptions froom the definitions of the state descriptions.

be ue constraint CC4, for designatedstates, is such that the

system can use it only to check whether a qiven .5'.ATE> is an

apprapriate candidate for being a designatcdstate: if no

candidite state is qiven then CC4 cannot, by itself, find the

A ppropriate carididates (these features aro discussed Un

4neater detail in .;ectio L4, 3) To fina the desiqnatedstates

:)I a CAUSALNETrDFN, the system will therefore prompt the model

u ild r.

40•

v i e TION OF CASNET IN MDS..JUNE 1975.. Page 19

Each STATEDESN has eiqht ccIapcnents. OL each instance

OL STATELESN, called say <STATE>, each of these eight

components will be instantiated. The relations,

Jta rtinz q e iqht, causes, and threshold have prompt flags

a .sociated with them. Therefore, for an instance of

3>XATEDESV1, MDS will prompt the user" tor ttie values of these

i>elations, which should be respectively, instances of NU4IBER,

.AUSEDESNS, and INFEGER. The descendents or a STATEDESN is an

istance of SIPAVEDESNS. This will be computed by CC8 from the

.afiniticns of the "causes" of the STATEDFSN.

The relations, status, presence, conflict and likelihood

)r a STAIEDESN, have the flag "C" (fcr CONriiT) associated

with the@. Because of this flag, the calleu teapiaited of the

Sanchors containing these zelaticns are treated as constants.

jUus, in an instance, STATE., of STATEiSN, (STATE> status)

will also be the STATUS template, the same template, called by

(STATEDESN status). Similarly, we will nave (<SThTE> presence

?R[ESENICE), (,.TATE> conflict CONFLICT) and (.STATz> likelihood

6iKELIHOOD).

<STATE> itself will be a template, since SIATEDESN is a

, teMFlate. In a further instantiation ot <STATE>, the

iiichLos of sSTATE.> that can be ag ain instantiated will be

t.o'S., whos.e called objects i ue tewplates. In the ca;o ot

- 'TAT E > the r e la t i cI|S, ,,st,i L t i n g wt- iq h t" ",'cA uses" anI d

"thr'.:shod", will call respect iv3ly, d number (instancr, of

J)OB), an instance of CAtJSEFISNS (whica wili Lu i collection)

.,.

J&.fRI4'TrIN OF CASNET IN MDS..JUNS 1975,. Page 20

And an inte ger (instance of TIIRESHOLD) These called objects

dre not templates. Therefore, in d furtier instance of

<S TATE>, say x, these relations cannot be aqain instantiated,

in situations like this, for an instance of STATEDESN, like

-,TATE>, the values of the relaticns (<STATE;, startingwei:;ht),

(<STATE> causes) , and (<STATE> threshold) will have the

zillowing significance:

For all instances, x, of <STATE>, (x startingweight), (x
causes) and (x threshold) will be the saute as (<STATE>
startingwe iqnt), (<STATE> causes) and (<STATE>
threshol) , respectively.

ThUs, if <STATEl> and <STATE2> are two instances of

srATEDESI, these two may have, for example, different

srartinqweiqhts. However, all instances of <STATEl> will have

cae same startingweiqt as <STATEl> itself, and similarly with

..iTATE2>. Now, for both <STATE1> and -STATE2D, it will be

tzue that (<STATEl> status is STATUS) ana (<STATE2> status is

SZATUS) "STATUS" here is a template. Therefore, instances

aJ <STATEl> will have as their status, instances of STATUS.

Taus, different instances of <STATE1> may have different

szatusea. In fact, for instances of a <STATE> the only

i.statiated relations will be: status, presence, conflict and

ikelihood. Different instances of a <STATS> may vary in the

v~lues tho- h:ive ,tor these relations.

The remaininq structures, the structures of LIKELIHOOD

.tud CONDPROB, shown in Figure 2, are self explanatory. We

sthall have more to sdy about the interpretation of these

jr.iliTTON OF CAS IET 1N MD)SoeJUNE 1975.. Faqe 21

jLructures later ill this reporte Twe' structures for

TZ'STDI2SN'3, CLAS.SDEM'S and i)ISEASECES3N dare sho.wni in tigure 3, 4

iad 5 respectively. The reader is inviteu to scan through

ctiese befcre proceeding with the rest or tae paper.

for an instance of TESTDESN, say <T1E2.?, tuie anchors for

t ae relaticn names, summaryquestion, repeatability, cost,

cinfidence, neqativedeterminacy, ccuniter, erzect4i, nexttist,

L rsttest, neqativeriexttest, and testt yp-. would all be

1.1stantiated to constants (iton's that are not temnplates, or

4tews which are teMpiateS but %hich are to Le tiedted as

T3STDESisr .sL1

I-strateqies-->ST TEGIESr $L]--eieiits-->S ATGYf R4
I
I INFL UE1CEEVRN]<--in'flue aces--

e .lue nt E

TEST DES N(MN

1-coinponcnts,CC21------------ >TESTLESNSiSLJ
I-summaryquestion,CC23 ------->QUES!I UN[TS
j-repedtability,CC24--------)>YESNO(TAI
1-cost,CC23------------------ >COSTr[TE]
1-confidence,CC26------------>CC NFIDE NC.:E TI]
1-neqativedeterininacy,CC27-->YES'IC(TAI
1-counter,CC28--------------- >CCUNTEi4 TI]
J-eff'-cts,CC29--------------- >EIFECTSI 4L] --- eleanents
j-firsttest,CC3O------------- >TESTrvT3Nj NiN] I
J-next test, CC 31---------NSD~t V.1 Et2 T[N]

1-testtype,C'C2O-------------- >TESTTY~zf TAj j -now-->HOW(TAJ
1-costratio,CC3.3 ------------ >COSTEAT.Of I j-f fect el

j-t Etresu t,C,34,,1 ------- >Y ES. [TI ~ tt
* j-aphicaion---------------- >AEFPLILC4XICf $: I I

SIA A-rJ .EN[M i

j-can dida testates, CCU--->-STA'fI*'>

-n c. xtc ho ico,CCU --------- ,T-
1-applicationof,CCCtS----- >T)

U';5-'LTION OF CASNET IN MDS..IUNE 1975.. Page 22

FIGURE 3: The structure of TESTDESNS. <TEST> is an
instance of ThSTDESN.

zunstants)o Thus, when a <TEST> is in.stdatiated, as part of

tae process of building a DISEASEDESN, only the anchors,

(<TEST> costratio) , (<TEST> apFlica tion) and (<TEST>

t.stresult) will be instantiated. In the process of

Lastantiating the testresult the appropriate question for the

test will be asked by a funticn, called ASKQUESTION. The

riesult of the test will then interact with the affected

states, and cause a whole chain of caanyes to take place in

tae current model of the disease, consistent with the

samantics of the pertinent CC's. These ch.±ziqes will be

uompletely guided by the CC's involved, with the TR's

Providing some of the crucial ccntrol structures. We shall

examine this process more carefully in section 5.

,.ASSDEF4S[$L]--element--->CLASSDEFN[$N I

I-classtype,CC15-->CLASS4AME[TA]
1-firstentry ------- 'NTRYDEFN[SN]

STATEDESN(N]<---CC7O,-*ntrystate-I
STATEDES4S[SiL]<--CC17,u-scenu nts-I

COMMENfS[$L <---------- comments- I
E NTRYDEF N[$ N]<------ -nxten try-
ENTRYDEFN[SN]<-CC18,lowelentries- I

Ile ZJ 14|ENT 5f SL]-eleinen ts- ->COMMENT[$N]

I -d iaqncsi-->SiTA £E I~ThT[2 S]

I-therapy----..S.TAIAENt[TS.

FIGURE 4: The structure of CLASSDEFNS.

IL-

-4Jjr' IINOF CAS4ET IN tADS..JUNE 1975,. Pa-lo 23

Zach CLASSDEFX4 ha!3 a classtype, which is a CLASSNAME, and

an EPNrRYDEFX, which is its firstentry. Thc: system will promipt

i*,jr both of these wiien a CLASSDEFN is instantiated. Each

_dtiA"YDEFN ha.3 an entrystate, I collcct ion of descendents

(dhich would be trie eintrystates of the 1owerntries of the

iT Y DE FN. The comments associated wA-ti au ENTRYBEFN would

sdecify the diagnosis and thqrapy Lor tue Hntry. The

nextqntry of an ENTRYDEFN is aqain anl ZNTiYDFFN. The

i,)werentries are the collection *of ENiiYLFNs, under the

closure of t h nextentry relationship (1)w eren tries is a

tianaitive ralationship), It is also reflexive. Hence an

Zj*TPYD~rFN is by definition, its own lowereiitry.

DISEASEDESN[ZN1(<--- elc-ments---DISEASEDE-'NS[$L.1

-causaimcdA --------------- CAUSA LICD1Eij i
h-date---------------------- >(DATE) j--sex-->SEX('A]

-di~as~o--------------->pEPZSON[R~N]--->I -yea r->YEARS[TI
j -diacjr.osis-/thterapy ,CC37--..COMM-lZNIS[$LJ
I -topleveltest------------------------------ >TUPLEVEL'IEST[SN]
i -causalnet---------------- >CAIJSALNLT[$N I

TFSTDESNS($L](,-CC39,currk±nttnsts-I
(TEST> s<-CC1O3, selocteutests-

TOPLEV_1LTE5*I(-cC 10 t,sceuluents-I
TOPL-"VELTE3T<-CC1O2,diicetors-I

I -causalnc tot ------------ >D1SEASED1Li4 £i4
I-states,CC4()------------><STArE>s
I I-CaUs es, CC41------------- ><C AUSE> s
I -tests,CC10 - -- -- - - - - - - ->. 1
I - sta rtinq t t;, CC42---><T ATF>s
I - tr a Litd t=., CC43 ---- ,S 1A ZEN;s

* I-~path ways---------PA r HAY[$ 1

(S f AT2 ..- com pon c-n ts ,CC49 ----- I
< 11ATH I 1A Y><-- next Id th wd y, CCt ----

J* .L6idTION OF CASNET IN MDS•.JUNE 1975.. Page 24

FIGURE 5: The structure of DISEASEL;ESN.

Each EISEASEDESN has a CAUSALMOEEL. It is made on the

izdicated dte, supplied by the (DATE) function. The

description is the diseaseof a PEPSON, ana nas a causalnet

a.sociatrid with it. The ccnstructicn of the DIS ASEDESN will

begin with the TOPLEVEL'EST, which would from then on continue

tac testing process via its own nexttest, which is again an

iiistance of TOPLEVLLTEST. Each time the currenttests of a

PLZE VLTEST is instantiated, -a collection oif possible

currenttests will get selected. Frcm among these the

".electedtest" of the TCPLEVELTEST will be chOsen. If there

is only one currenttest, then obviously tiis will get chosen

as the selectedtest. If mcre than one currenttest exist then

tre system will prompt the user for advice about which, among

L &e equally feasible collection of currenttests, should be

tplied in the existing context. The selecteea test (or tests)

wll get instantiated, and as a result will get applied. The

Lpplication of these <TLST>s will cause the appropriate

c4ianges in the CAUSALNET of the LISEASEDESN. This process

will continue till the nexttest is NIL. At this point the

diaqnosis/tht rapy will be instantiateu. The associated

;JMENTS may be printed out.

An instance of CAUSALNEI will have to beyin with, t

Cmplett set of instances of the <S7AT2>s ena <CAUSE>s of the

Associatea CAUSALNETDEFN. The startinqstate4, terminalstates,

etc. of this instance of CAUSALMT will be determined during

•

'1

Sui3jtijlIO4 OF CASNET IN I DS..JUNE 1975.. Page 25

tae course of test applications, by the CC's, CC41, CC43 and

.344. The mlstdLtinqstates ot d CAUSALN.T is tn- collection

it starting states from which the largest numbe(L of CONFIRMED

states in the causalnet are reachable. The PATHWAYs of a

CiUSALNET will Le the causal chains in the tiet which have all

tueir states CCNFIRMED, and for which, none or the ancestors

z- their states are DENIED, These PATHWAYS are used to

produce the diagnosis/therapy.

This completes the structural description of the CASNET.

To understand the details of the structural description as

specified by the templates in Appendix A, it is necessary to

low the significance of the various template and relation

Ulags, and al.,o the use of the so callea function template.

To understand the way these temlates are used anu interpreted

it is necessary to xnov: the meaning and interpretaticns of the

;C's and T2's associated with the various ancnors. These are

a.l described in the next section.

4,0: Templates and their instantiations.

4. 1: Types of templates and exawpLes c;- thir uw;

in CASNET.

'y i. nsta ntiat.Lnq a T :1PLAT' i ML,, '.. :irts ,l,

i ins.t ince of ta e ob ject sp'?cific t y t 14 tempiat.p a t

completo instantiation cf a te(-mlate wouid caJ for the

1. stdntiation ot all its anchors. ThLue are various typ-s

ui templates in MDS. We have already seeni the ai,;tinction

Stt ween the NODE tEmp] ate and ti1! LI 31 template.

.4

OdtZIi'TI')N OF CASNET IN MDS..JUNE 1975.. Page 26

"AUSALNOCEL is a NODE template, wtereas TESTDESNS is a LIST

template. For convenience we shall require that ev.ry

i nstance of CAUSALMODEL should have a NAME. This is

iadicated by the flag "RN" (Regular Node) associated with

tue CAUSALMODEL template. If the naming ol instances of a

template is to be left optional, then the fld4 "N" would be

Associated with a NODE template. Thus, CAUSALNETDEFN is a

$N (Dummy Node) template. Nct every instance of

ZAUSALNETDEFN need have a name. An unnawed instance of

AUSALNETDEFN may be accessed cnly via the CAUSALMODEL to

waich it is related to. For examplc-, the CAUSALNETDEFN for

iLAUCOMA Cdn be accessed only by the phrase (GLAUCOMA

ciusalnetdefni), if the instance of the CAUSALNETDk1FN itself

was unnamed. Similarly, we may have also REGULAi? LIST (RL)

;i d DOUMMY LIST ($L) templates. We shall indicate the type

3t a template by the tlag associated with it.

We saw several examples of TERMINAL templates in

section 3. Templates like, THRESHOLD (Terminal Integer),

P-OB (Terminal Number), STATUS (Terminal Integer), PRESENCE

iferminal Atom) , STATEMENT (Terminal String) , etc. , are all

ir.EMINAt templates. Instances of TESMINAL templates in MDS

wouId be the primitive data tyFes of tht systeu. In MDS,

"iLMFLATE itself is one cf its primitive data types. It is

tu, only 6nstintitblp data type. Thus, we can have TERMIIT.

i zPLATE templates, whose instances are themselves required

tu be templates. One may think of a TERMINAL TEMPLATE as

iecifyirj the schema tor defining a template.

I!

.j6ZeiTlON 01 CASNET IN MDS..JUNE 1975.. Page 27

We ha ve eticouIie Led sev ral TERMHAL rLMPLATEs, the

templates STATEDESN, CAUSLIDESN, iSTDESN, etc. are special

$±bes of TEPMINAL rEMPLATES. They are all TERMINAL NODE

t..mplates. Instances of these are requireu to be themselves

NiJE TEMPLATES. They coulu be either .'-GULAt NUDE or DUMMY

NiDE templates. Thus, in G7.AUCOMA, the instance of

ILSTDESNS, which is a collection of instances of iSTDESN,

STES-TS = qtl, gt2,o..,gtN) ,

aich gt %ould itself be a NODE template. It would define a

pirticular test applicable to GLAUCOMA. Instances of gt

uuiqht be used tor tae diaqncsis of particular occurrences of

rie disease. In the mocel establisnhMet process, the

various terminal templates (like, TESTDESN, CAUSEDESN,

SiATEDESN, etc.) are used to create descriptions of <TEST.?s,

<,:.AUSAL-LINK>s, <STATE>s, etc., that pertain to a given

disease domain. Since these descriptions are themselves

templates, they may further be instantiated to generate

DISEASEDESNs for particular occurrences of the disease.

The few other templates of interest to us in this paper

are the UNIVERSAL TEMPLATE, **, and FUNCTION TEMPLATEs.

Anything can be instance of a UNIVERSAL teuiplate. 1hus, a

-.1 USALMOCEL, CAUSALNiTDEFN, STATEDESN, etc., clay all be

viLwked as Lpiniq instancol- of **, We shlidl se uses of ** in

ZdSNET d.scription. A function template is used to detine

.unctions about which MDS would know some properties. The

pLncipal properties ct a functicn define.d in a function

J zi PT UN OF CASNET IN MDS..JU NE 1975.. Page 28

template are: What the arquments cf a function cdn te, what

its result is and how the arguments and the result relate.

2.e process of instantiation of a function tempite is the

a ve as the evaluation of the function fcr qiven arguments.

2ae result of the instantiation would be ther result rpturned

Dy the function. As an example of a function template

consider,

[TDN: ADD (FNDEF UM3ER NU2ER NUMBER],

wuich is the definition of the function template, called

A.D. It has two arguments, both of which are NUAiBERs, and

uas a result which is also a NUMBER. The last item in the

r'.ADEF of a function template is always the definition of the

rasult of the function. In the case of ADD no constraints

nave been defined relating t', result ot the function to its

azquments. Tais relaticnship will he estadlisied by the

procedure for ADD associated with the ADD function. In this

;ase MDS itself would not know anything about this

procedure. We have another exarple of a tunction template

iii SUM defined below:

[TDN: SUM (FNDEF (LISTDT CC99) (** CC6O))].

41 In this case th3 arquirent of SUM is an instance or LISTDT (a

.LST Jatd type--LISP LIST-- to be contrasted with a LIST

te!mplatb) , that iatisfiis the ccnstraint C2'J9. This

constraint specifies that the elemerits of the LISTDT should

.s. be instances or either INTEGER, or NUMbER, or a template

ur;i.ieILTION OF CASNET IN MDS..JUNE 1975.. Page 29

wLaose template tlaqj is TI or T#. The result cal* bk- anything

Iinstance of **) that satisfies the con6traint CC60. CC60

apecifies thit trie result is a NUIbE , INTEGER, or an

iistance of a TI or Tv template dependinq on the :!lements of

tue LISIDT argument. If there exists a TI or TO t-mplate X,

such that all the elements of LISTDT are instances of X,

taen the result is also an instance of X. It tfoere exists

aa instance ot NUMBER in the LISTDT then the result is a

i,a.ber. Otherwise, the result is an INTEGER. MDS has more

information about SUM than it has about ADD. One may use

theSe function templates in the definitions of CC'S and

's ani may also use them as the called templates in

i.chors. The function IT (Instantiate Template) is often

used as the called template in CASNET description. Thus, in

taue SIATEDESN template (see Appendix A) , the called template

for (SIATEDESN likelihood) is (IT LIKELIHOOD) * This

iauicates that for an instance cf STATEDESN called, say

6fATE1, (STAT21 likelihood) should be a new instance of the

LIKELIHOOD template created by (IT LIKELIHOOD) , The

function template, IT itself has the definition:

[TDN: IT (FNDEF (TEMPLATE TEMPLATES)(NAME N4AMES)

JHDNH MDNHS))].

ine first argument (arql) of IT can be either a 'I'LMPLATE or

i.. Y:FLATES (collection of TEMPLATEs) . Ie second one cane

o-:, simildrly a NAIE or a colloction o0 NA. is. VThe result

i t a datta type called MDN H (Model ,efinition fleadcr, a

itont Jr) , or collction of M DNII 's. LveLy instance of a

)L.i;hieTION OF CAS!IET IN MDSooJUNE 1975.. Page 30

t mFldte in MDS will hdve a model definition header

dasociated with it. The instantiated model will have the

aame given by the NAME argument. Ir no NAM1E is given, or

tue name NIL is given, then the instantidted model will have

rn name.

When using a function template as the called template

une can use a CC to bind the argument tor tne particular

function call of the function. Thus, the called template

fir the anchor (APPLICAIIGN nextdhoice) in Appendix A, his

&)een defined to be (IT J? CC64)). The arguinent (? CC64)

S to be read as "anything that satisties CC61", where the

zinstraint CC64 actually specifies the a.yorithm for the

selecticn of the test for the nextchoice in a diagnosis

tjocess6

The various types of templates introduced so far are

summarized in Figure 6 below (not all the types ot templates

Availdble in MDS are shown here).

J._i ITLQ' OF CASNET I. MD5*..JUNE 1975.. Pa';e 31

TEMPLATE

I
..------t

I I l
II I I

AODE LIST F[UNCT IC N PIMlIVE-DATATYPE
II I [I G L : 1 , NU BER,
S R STRI iGG,I ZPLA TE ,

I 1 NODE,LIST,etc..

----- -- variations--------
I I I I I 1 I
i I I I I I I

-i'G±.AR DUIMMY RESULAR DUMMY REGJLAR DUMY TP-4MINAL
RL $L RF $F T1,i 4,TS, T , F,etc.

FIGURE: 6. The types of templates.

LIST templates have a special interpretation in MDS.
ro the CA USALM O) EL, GIAUCCMA, as we nave seen before we
ave (GLAUCO'A testaesns) = (gtl gt2 ... qtL*) We shall
s±y that (GLAUCCMA testdesns (gtl yt2 ... qtN)) is true in
tue data base of MUS. The relaticn (GLAUCOMA testdesns (qtl
4r2 ... gtN)) is interpreted in MDS as siqnifying that all
t.,2 relaticns (GLAUCCIMA testdesn gtl), OGLAUCOMIA testdesn
4t2), .. and (GLAUCOMA testdesn gtN) are true. fWe shall
iiterchangeably use thv singular and plural rorms of a
relation, as in "testdesns" and "testdesn", above1. Thus,
Ly convention, relaticns normally distribute over
coIiic t i Cn.

49.2: Tue relation flags and tne.r u.,

In each aichor of ta fo:w (X r) , we r . i

a d r is a relation nam1, , one may as.oC~it. z, i c: -
r, indicate a variety of vaLdtiCnS on the ite- t)f1 UL
tile relation, r, in the anchor. Only soie u. tIosc ire
aiscussed below, ?or a more complete descriptija of the
i'elatioi flaqs and their uses the reader is Leferrcl to
-rinivisan 1975b].

[FItq !]: The £ROMPTING fla,; (I)•

A fli often uje. in the- C AS.-4 ET uscriptiun is the
C. M ?11iNG flq, !. For example, we have iii the CAUSALrODZ1

4t mplate, the relation ,leinition,

((trtdesns !) (TESTDESN iL) testaeinsof)

j -w-- Ap.ndix A 1. ehQ excilamation , is i hre associated
Id .t 1 t h' r, i tiowi "t;t .sflS". I il. s ha tht- followinq

JiS a£PTION OF CASNET IN MDS..JUNE 1975.. Page 32

sxgnificance:

When an instance of CAUSALMODEL is created the system
would attempt to instantiate every anchor in the
CAUSALMODEL templdte that has tue promtinq flag
associated with it. If a consistency conditicn (CC),
or a transtormation rule (TR), is associated with the
anchor, and if it were possible to find the called

object of the anchor by evaluatingi the CC and/or TR,
then th2 system would find (or creat) the appropriate
called object and instantiate the ancior. It no CC or
TR is available, oz it an appropriate called object for
the anchor cannot be found by evaluating tue CC or TR,
then the system would prompt the user tor supplying the
appropriate called onjcct for instantiating the anchor.

laus, in the case of the (CAUSULIIODEL te;tuesis), since

tuere is no CC or TR associated with it, tre system %ould

prompt the user to supply the a ppropriate iuLstance of

2"STDESNS to be incorporated in the instance of the anchor,

(CAUSALMODEL testd:sns) As the reader may aotice, the same

promptinq convention holds also for tue relations

"causalnetuefn" and l.cldssificaticns", in tie CA|SALMUDEL

remplate. The use of this promptinq flaq enables one to

cAeate a complete CAUSAIMCDEL for a disease domaiu by just

ijsuing the command:

[IT CAUSALIAODEL DISEASE-SAtr].

iXe presence or the Frompting flag at the various anchors in

ti~e templates describinq CASMET would thea initiate a whole

series ct en'juirie .s to the model builaer to c%)wplete the

jiist inti-tion of the CAUSALMODEL, and tije nl taiices of the

The us.- of the PiROMPTING ilag convention was suggsted byK J*S. Srifdhdxi tit.

4 J&E,£TION OF CASMET IN MDS..JUNE 1975.. Paqe 33

t,3mplates called by CAUSALMCDEL. 7 nus, tne promptinq for

i ue anchor (CAUSALtIODEL causalnetdefii) would necessitate the

iListdntiation of CAUSALNETDEEM, which would then initiate

further promptinqs to get its own instantiation completed.

£Aese prompting will propogate in "depth f irst" manner

turouqn the network of templates becjinnuLng at the

,i]SALMODEL. An example of the model uuiLuing procesS using

'10S is discussed in secticn 5.1.

[Flaq D 1: DEPTH Flag.

Normally, when an anchor is instdntiated, like for
example the anchor (LIKELIHCCr, invcrsewei4nt), for an
instance x, of LIKELIHOOD, it wcuid call for an
appropriate instance of the called tempiate ot the
anchor to be supplied. In our case .,ere, an instance
of CCNDPROB. Let y be the instance of CORDPROB

* assigned to (x inverseweight), it is, of course,
possible that the instance y of CONUPROb, might itself
be not ccmpletely instantiated--i.e. some of the
relations in CONDPROB might not nave oeen instantiated
for y. If the anchor (LIKELIHOOD inverseweight) had,
however, the D flag (indeed, it does) , then the system
would automatically attempt to complete the instance y
for all the relations defined in CoNDPROB. This
process of completing the instances would uroceed to
arbitrary depth, until terminal objects (primitive data
types) are reached.

In the case of CCNDPFOB (see figure 2 in section 3) the

iuchor (CCNDPROB nextprob) calls again CONOPilOB. 7hus, in

tais case the D flag would cause a whole series of instances

JI CONDPROB to be created, until the proc6s is terminated

11'Y t4,e CC, CC92, asso ciat ed with (COiML)hWi2 nf'xtprob)

Uless the D flaqg is catiavilly used one cdii, l.t iito locps.

(Flaq V]: The VARIAILE relation fl.,.

4 eihlteTION Of LASNET IN MDS..JUNE 1975,. Page 34

An example of this flag occurs in the anchor
(TESTDLSN confidence), The V flag indicates that the
relation "confidence" is a variable relation in the
TESTDESN template: Not every instance of IESTDESN
would have the "confidence" rplation detined for it.
The CC at the anchor (TESTDESN confidence), CC26, would
specify the conditions under which an instance of
TESTDESN would have the "ccnfidence" relation defined
for it.

[Flag $]: The DUMMY Flag.

An example of this occurs at the anchor (TESTDESN
costratio). The $ flag associated with this flag
indicates that the instances of this ancnor are not
stored in the data base. Every tize the costratio of
an instance of TESTDESN i -e required it would be
computed by the system using the CC, CC33, associated
with the anchor (TESTDESN costratio).

[Flag C]: The CONSTANT Flag (*).

Normally, if the called template of an anchor (X
r), is Y, then in all instance, x, of X, (x r) will have
as value, an instance, y, of Y. However, if the anchor
(X r) has the constant flag, C, associated with it,
then in the instance x, the value ct (x r) would be
simply Y. An example of this cccurs dt the anchor
(SLATEDESN status). The called template tor this is
STATUS. For an instance, <STATE>, of STATEDESN,
(<STATE> status) will also be STATUS. Because of the C
flag one level of instantiaticn is sKipped. Also, the
CC and TR associated with (STATEDESN status) will be
moved to the level of <STATE>. Thus, the definition of
(<STATE> status) would appear as:

(status (STAIUS TI) statusof CC11),

where CC11 is the CC associdteu with (STATEDESN
status).

[Fldg >1: The INDIRFCT Flag.

The indirect fldq is ued only in TERMIN AL
T iPLAEj. Anl example ot this tiaq occurs in the
STATEDhSN template in Appendix A, at tiie anchor
(STATEDZSN likelihood). The det inition of this
relation occurs in the STATEDESN tomlut-%? ., tollows:

0 Th, use o: CONSANT Ilaq was suqgested Ly Joel irwin.

-r

ui.JRIPTIOI OF CASNET IN MD3*eJUNE 1975.. Paqe 35

((likeliaocd C>1) (IT LIKELIiiCOC HIL) lKeiihoodof)

For an instance cf srATADESN, s4y 52A 1 E , (STvEl
likelihood) will be also (IT LIKIELIHOOD) (IT is tne
Instantiate Te!mplate command). This is because of the
C tlaq (see [Flaq C] convention auove). Ti.,± tf>" laq
indicates that the flag immediately Lollowitq it -;houtl,
be attached to the instantiated ancLior. 11 .us, in .ur
ctso. (STATE1 likelihood) will acquire t-e tiaq !, cr in
other words the lieklyhood relation ueffiihition in the
STATE1 template will look like:

((likelihood) (IT LIKBLIHOCD NIL) ii~elihoodof).

This would imply that, when 3iAT71 itself is
fnstantiated, a prompting woulu occur for the anchor
(STATE1 likelihccd).

SFlag X]: hi.e TRANSITIVIIY f-

This flaq is used to indicate that the cc-iaticn at
an anchor is transitive. An exaiiple of tnis occurs at
(STTEDZSN d:scenuents). The ZC at tnis azchor, C',
specifies that the descendents oz a zTAIELEil, STAT,1
are precisely the states tnat are cuuseoy STATEI.
However, since the descendents relaticn is transitive,
everytime (STATEl uescendents) is asKC-e tue system will
return the transitive closure of what is stored in the
ddta base.

[Flag H1: The REFLEXIVE Flag.

This specifies that the relation at an anchor is
reflexive. An example of this occurs at the anchor
(ENTRYDEFN lowerentries). For evcry iLnstance, , of

ENTRYDEFN, (E lowerentries E) is true.

This completes the discussion of ali the relation flags

u- u.ed in CASNET description.

4.t3: The CCNSISTENCY CCNCITI.Mi.
6.3.1:Th form of CC's.

6:

)t.J'L.LeTION OF CASNET IN MDS,,JUNE 1975.. Page 36

As we hdve seen befcre, every dnchor may have a

6uNSTRAINT (CC) dnd a TRANSFORMATION RULE (TR) associated

with it. Ccnversely, it is true that every CC hai an unique

" anchor asscciated with it. This is not, Uowtver, true for

., - £'s. There can be so called "floatinq TR's" which are not

attached to any anchor. Floating TR's have not been used in

tUe CASNET descripticn. The CC's are stated ds expressions

aefining sets (collections of objects). Let (X r) be an

arbitrary anchor. Let Y be the called template of (X r),

lnen the CC at (X r), CC[x r], will have the form:

(4Y y) I (y) .

* xais is to be read as: "The collection oi all instances, y,

if the template, Y, such that the PREDICAIE, P(i y) is

satisfied". Here, the distinguished symbcl, w, refers to

tue CURRENT INSTANCE of the template, X, tne template of the

;achor of the CC. The CC is evaluated at wi. The predicate

in a CC will always have two FREE VARIABLES. We shall refer

to as the ANCHOR VARIABLE (or simply the ANCHOR) of the

J, and y as the SET VARIABLE of the CC. The predicate

itself is a first order expression using tunction symbols,

relative quantifiers, and logical connectives. We shall

orfer to the predicate P(d y) as the SET PREDICATE of the

Let us consider a simple example.

Consider the dnchor (CAUSALNETDEkN Ltdrtinqstates).

rhis anchor calls the template STAT rrLSNS. Thus, for

iLAUCO3A, the stdrtinyztates of its CAUSALr1ETULFN, will be a

uz1iaTION OF CASNLI' IN MDS..JUNE 1975.. Page 37

-ll instance of SrATEDESNS, i.e. a collection ot instances

or STATEDESN. The CONSTRAINT, CC1, is associated with this

*izchor. CC1 states,

[(SIATEDESN S) I (d statedesn S)(S causedby NIL)]o

.:l specifies that

"The startinqstates ot a CAUSALNETDL.FN is the
collection of all instances o± SIATIDESN, S, such that
S is a statedesnoi the CAUSALNETDZkU (i.e. S is A
state in the CAUSALNETDEFN)^, and there are no cther
states that cause S."

I before, we shall use the name GCASA1iT for the

cusalnetdefnof GLAUCOMA. Then, CC1 wili De evaluated at

(.CASNET startinqstates), and the ANCHOR VAIAME, , of CCl

will be bound to GCASNET. In CC1 the predicate P(d S) is

"(a statedesn S)(S causedby NIL)". There is an implicit

Logical AND between the two relations in P(d). (*) In

tais CC there are no quantifiers. We shall later see

examples of CC's that use quantitiers, in tfte context of

instantiation of an anchor, its associated CC has the

rollowiny interpretation:

THE IFF INTEERPRETATION OF A CC:

Let (X r) be an anchor, and let Y be the callfd
templdte of (X r). Lut the CC at (X r) ie CC(X r I.
1.et P (u W) b th, 5T PRIEDICATE or CLj X 1. Thcn, for
an instaiuce, y or. Y, it is true? that,

* te shill generally omit the lcyicaI A ii siyn, 6, tetween
velati)nal predicates occurrinig in a CC. Th,, loqjical symbol;
oil(- caI U-30 in a CC aCe: V (Oil) IA o) , (NOT), ->
6MPI, 111S) (IFF)

Uditi£lTION OF CASNET IN MDS.oJUNE 1975.. Page 38

ruus, for (GLAUCOMA startinqstates), a canuidate state, say

s, can be the startinq state of GCASNET, if and only if, it

ii a state of GCASNET, i.e. (GCASNET stdtedesn s) is true,

and no other state causes s, ioe. (s causedby NIL) is also

true:

(GCASNET startingstate s) <-> (GCASNET statedesn s)
(s causeduy NIL).

la qeneral, the relational predicates used in the SET

Pi EEICATE will be the dimensicnally ccnsistent relations

defined for the dcmain under considaration. These will be

typically of the form (x r y), where x and y refer to

iastances of templates of the domain, or of the form (x

01:r2:..:rn y), where rl:r2:...rn is a RELATICH PATH

(RELPATH). The relation path above has the fcllcwing

1 aiterpretation: Starting from x, if one travesed in the

aata base the relation path rl:r2:...rn, in ALL POSSIBLE

NAYS, then for EVERY SUCH traversal, y will be among the

aouects in the data base reached frcm x via the relation

path, if (x rl:r2:..:rn y) is true. Relation predicates of

tne form (x r y) may have one of three possible truth values

in tne MDS data base: TRUE (T), FALSE (NIL) or UNKNCWN (?).

in the case of Ix rl:r2:...:rn y) its truta value will be ?,

if y was not among the objects reached from x via the

kelation path, for some traversal of the path, and the

collection of objocts so reached, say (yl y2 ...), had ?

incitti-A in it. The tLuth v.iue will be NtL ii u. ithL y

nor I were it:icluded in (yl y2 ...). The SET P£F.[)iCATES ot

0

u ;i5 fTION OF CASNET IN NDS..JUNE 1975.. Page 39

u.,'s are evaluated in three valued loqic, wnere T dominates

?, ? dominates NIL, and 92 = ? (i.e. (I V ?) = T, I? V

NiL) = ?). While writing CC's, one may where convenient

olit one or more relations from a relaticn path of the form

L1:r2:...:rn. The system will find the shortest relation

pAth that is dimensionally consisterit for tre qiven (x

rl:r2:...rn y). Thus, for the CASNET dowain, as described

trere, the form (s causedby NIL) is not dimensionally

-dunsistent, since the "causedby" relation is not uefined for

..ATEDESN and s is an instance of STATLD.LSN. In CASNET, for

S&ATEDESN, only (STATEDESN causes CAUSELLStUS) , (CAUSED£SN

3rate STATEDLSN) , and (CAUSEDESN causedby STA.EDFSfl) 're

i.mensicnally consistent. Thus, cnly a CAUSEDESN may have

tue relation "causedby" associated uith it. -n the case of

(s causedby NIL) the system will, therefore, aut3matically

interpret it as (s stateof:causedby NIL). Hier-, (s stateof)

will be a collection of CAUSEDESNs. For all the CAUSEDESNs

In (s stateof) the (causedby NIL) suftix should hold true.

Let us now consider an exarple of CC that uses

L:uantiiiers. In the domain of CASN11 taere are not mtrny

11 ~cSo i si o pie ont?, CC9 2, Uccurs at 1L I ancaor

ikONDPRCB nextprob). This says,

[.

Jc'it-TION OF CASNET IN MDS.,JUNE 1975.. PagpO

r (CONDPROB x) I ((SOME S) causestat :descendent S)
(S presence CCNFIRmED)
(NOT((SOME Q)

(causestate: descendent 0)
(Q desccndent S)
(presence DLIED)))

((CCNDPROB C)
(d causestate:causestateof C)
(NOT(C eftectstate S))))]

rue template for CONDPROB specifies that (CONDPROL nextprob)

is (IT CCNDPROB NIL), i.e. a new instance of CONDPROB.

Since CONDPF.O1Q is a NODE template and (CONDPR5O nextproh (IT

;UNDPROE)) is dimensicnally consistent, the system would

Kiiao that tor any given instance of CONDPYOB, say p1, (p1

nextprob) should be a unique instance of another CONDPROB,

say p2 , provided, of course, CC92 is true. Thus, when (p1

n%-tprob) is instantiated, the system would automatically

gznerate the new instance p2, and check whether the SET

PnEDICATE of Cc92 is satisfied for the free variaLles (pl

p2). The anchor here is, of course, pl, and p2 is the set

variable. Let us first examine the context of this CC.

As the reader may notice in figure 2, CONDPFOE is

called by the anchor (LIKELIHOOD inverseweigut), where

iKELIHOOD itself is called by SrATEDESN. Thus cur a state,

say xyz, its likelihood will be an instance of LIKELIHOOD,

say h, and the inverseweiqht of h will Le pi. This is shown

DV the diagram below:

K . 9.

Best
Available

Copy

J4i.ildTION OF CASNET IN MDSo.JUNE 1975.. Pago- 42

In general the quantified exFretssious in SET PHErICATES

ua ve the following forms and interpretations. The

quantified expression

((SOMl .TEIPLATE X)Q(X))

is interpreted as

((THEREEXISTS X) ((<TEMFLATE> instance X) & Q(X))),

waere Q(X) is any arbitrary predicate expression. The form

((SO!IE X)Q(X)) is interpreted as ((SOMIE * X) Q(X))o The

form

((<TEMPLATE> X)Q(X))

is interpreted as

((ALL X)(<TEMPLATE> instance X) -Q i(X))).

Tue form ((X)Q(X)) is interpreted as W((* K)U (X))• Thus,

quantifications are always relative to the instances of a

template.

4.3.2: The interpretaticn of CC's.

ie have already seen the 1FF interpretation of i CC.

£aere is also an 1F interpretaticn. It ii possible in many

iituiticns tiiat one wishes to specify i ZET P EDI-ATE of the

Lorm Q (i s) , such that, for an anchor JX r) , itt associated

:'j r], an instauc a x of X, and instance y ot the called

tamp-ate Y of (X r), it is true that,

6-

"1W

a jClTION OF CAStNEV IN MDS..JUNE 1975s. Page 44

"If S is decldred to he the dosiqnatedstate of a
CAUSALNETDEF4 then (a statedesn 5) and (NOT(@
startinqstate 5)) should be true."

ir no desiqnatedstate is declared then the evdluation of CC4

will return the value .

In MDS the commands used to instantLate a relation are

tne IR and ASSERT commands. (Fcr the purposeis of this

report the reader may think of them as syisony.ns.) (IR (x r

V)) would attempt to assign y as the value of (x r). (IR (x

L4) would attempt to first find t.e appropriate y (or

zullection of y's) such that (x r y) is true, and assign

tais ne-wly round value as the value ef (z r). Clearly, a

prerequisite for being able to find the values y, for a

4;ven (x r) is that the CC associated with the anchor (X r)

O an IFF CC, or there be present a TR taat finds the

;ippropriate y. Thus, at the end of defining all the states

af a CAUSALNUEDEFN, like GCASNET, and all the causal links,

one may merely issue the ccmmand (IR (GCASNET

startingstates)) to find and set all the starting states of

.;C ASNET.

The command (IR (x r y)) will succead only if CC[X rl(x
y) does not evaluate to NIL, and at ALL the other
anchors (z rl), the following iG tiuc: If (z rl)
depended on the value of (x r), (*) tnen CC[Z rl](z)
(*) also does not evduate to NIL. Wtiie -valuatin.

CC[Z rl J(z) the value of (x r) will be Iaypothesized to

* (Z cl) is . id to depend cn (x r) if (x r) occurs in the SET
s2,iZD1CATE of crz rl). That is th'f the truth value ef the set
predictt in Cc[Z ri j depends on the value of (x r).

* Notice that in the oviluation cf C[Z i] only th- anchor
A. b.iiq hou!)d te z. Th set variabl.? iL niot 1)inq bound. In
EL&LS C,1S- tho Vi111'12; o (4 1I) *OXiltiilj i,, tiQ dat. LaSe will
U* u±sed .Is bil.Jiji jsJ t o thj, Lt Vtijab lj.

J",'XIUTION OF CA3NET IN MDS..JUt)E 1975.. Page 46

vISEASFUESN. In the context of interactions with a user, MDS

cdn unravel the sequential processes, implicit in the

uiscriptions, that are appropriate for the context, and

execute them in the proper manner. In tnis section we shall

kilustrate some of the kinds of ineractioins that can take

place, and discuss the processes that are triqgerred by them.

iue commands used in the interactions (the IT--Instantiate

Template--, IR--Instantiate Relaticon-- ana ASS3ERI) , and the

:ontrol structures involved in tire execution ct the commands

ire general control structures, that are part of the MDS

system itself. In the cotext of the KNC4LEDGE about CASNET,

described to lMDS, the particular manisfestations described

ijelow take place. The sequential processds intiated by the

commands depend upon the KNOWLEDGE described to MDS. In the

context of KNOWLEDGE for a different domain, the sequential

processes will be quite different. In this sense MDS is a

Mr1.TA SYSTEM. Its operation depends upon the KNCWLEDGE

described to it. As part of its instantiation process it can,

ii necessary invoke its general proulem solving machinery.

£iis machinery contains both a THEOREM PhUOVE, and a GOAL

.h IENTED PFOBLE-. SOLVER (called CESIGNER), thrat can plan and

execute actions. It is this feature, that maxes MDS a very

powerful system. The qeneral problem ;olv iiiq facilities

e:aable MDS to UNDEPSTAND the descripticns given ti it

(uopetully in a way anloqous to the way, that au intelliqent

auman being would understand). A fairly detailed discussion

Jr the operation of MDS Ippears in (Srinivasan 1975a].

-

J6c.,.dLYTION OF CASNET IN IDS...]UNE 1975.. Page 48

JIT CAUSALM1ODEL MINIGLAUCCMA]
-MINIGLAUCCMA causalnetdafn:stateaeins...

(Increase.d-intraccular-pressuLe
Cupping-of-optic-disc; nerve-daniaqe
Loss-of-visicn)-

-Incrc-ased-intraccular-pressure startinyweiyht*..o0,2
Go* causesooea CAusEESN

causes:state... Cupping-of-ot.c-disc;...
causes:transiticflprou*,*O*u
threshold... ?

-Cupping-of-optic-disc ;nerve-damaye
star tingweight... ?
causes,..a CAUS1EDESM
causes:t... Loss-of-visioni
causes: tralisitionprob-O. 8
threshold...?

Loss-of-vision causes... NIL

threshold...?
MIIIGLA'JCCIIA coinmonthreshoJld...4

- (Increased-intraccular-pressu-e threshold 4)
(Cuppinq-of-optic-disc ;nerve-damage threshold 4)
(Loss-of-vision threshcld 4)

FIGURE 7: A part of the CAUSALIEODEL acquision proce~is.

Because of the prompt flags associated with

"causalnetdefn", "testdesns",, and l'classitications" these

rjlations will be instantiated in the order they appear in the

template. The instantiation of (t1INIGLkU%-OUMA causalnetdefn)

will cause a new instance of CA0SALtiETD)EFN to bt: croatod and

j ~ Sijned -S the causa lnetdef not r*IN IGLAUCCMA. In

ZaUSALN EThEP4 the ralat ions, 1"statdezs11;, 11c du ed zi s 11 anld

"cmio hrsol"have prompt flays, h~*- eain willno

*uj instantiated in the crder shown. This wil. (4encrate thle

re q lit

uts..i, TION OF CAS4ET IN MDS..JUNE 1975.. Page 50

.--

1,&us, the instanitiation of (MINIGLAUCOMA cumLsontaxr-snold) will

cause the system to evaluate the CC67 dt tie "threshold" of

every instance of STATEDESN so far created. This evaluation

will now cause the thresholds for all the turee instances,

saown in figure 7, to be inferred as being 4. Tne result of

this process is printed out to the model builder, as shown in

tae figure.

In this manner, guided by the prompting flags,

strategically placed at the various anchors, the ciusalnetdefn

process will ultimately acquire the model for MINIGLAJCCMA,.

!t the end of this model definition process, the model builder

ay, if necessary, delete any of the definitions, and add new

ones. Thus, if a new STATE is to be added to the

(i INIGLAUCOMA causalnetdefn:statedesns) one may simply issue

tile command (ASSERT (MI NIGLAUCCMA causalnetdefi: statedesn

xyz)) where xyz is the new STATE to be added. This will now

iitiate once again the appropriate interactive session. At

iihy point one may stop the model building process, and start

It later. Also, it is not essestial that the facts of the

m odel should be presented in the oruer impled by the

collection of prompting flags in CASNET description. They may

bQ supplied in any order. The system will, at each state,

verify that the facts supplied do uot violate any of the

constriints. MDS uses the descripticns to iek at each point

tile appropriate new information necessdry to complete the

model building process. It at any ticie th specifications

vAolat'i any of the constraints, it wouli supply thr user the

ji-idl VTION OF CAS'1ET IN IDS..JJUNE 1975.. Page 52

[This is done Decause, "causdlmodel" has been
declarel to be the name of ta"- :nverse of
"diseasede~ns", in the CAtSALMODEL template.]

_(MINIGLAUCC1A diseasedesn:date 10-12-75)

_MINIGLAUCCMA diseasedesn:diseaseof..,PERSON John

[This would cause either a new i'i.iOL, John, to be
created, or pick out the John ttat already might
exist in the data base. If a positively new John
PERSON is needed, then one might say, ior example,
NEW PERSON John. In this case tae following addi-
tional promptings will cccur to complete the des-
cription of John.]

-John sex... MALE
-John age...68

ii.tice that the (DISEASEDESN date) did not get prompted.

because the (DATE) function supplied the uate. This fact is

one of the items displayed in the beginning. [Ine date shown

is probably the date at which the dDS implementation would

nave progressed enough to execute the CASNET uescribed here!]

"a a result of this kind of record keeping, one may at a later

iccassion refer to the diseasedesn of a patient, as follows:

[(UISEASEDESN x) I (John disease x)(x date 10-11-76)
(x causalmodel MINIGLAUCOMA)].

copefully no more than one DISEASECESN woula sitisfy this

request! (One may for example, choose to uistinguish between

DiSEASEDESNs for pE.ople with same name, uieated on the sime

ute, for the sane disease, by assigri ni 14Aes to the

Jscriptions.]

5.2.2: The Test selecticn and Application
Processes.

(a]. The Test Selection Proc%.6.

6.

06 £IPTInl OF CA'3JFT IN MI)S..JUNE 1975.. Page 54

Tn ,s instances of <S7ATEs and <CAUSE.?s will now torm the

sKEleton of the new diseasedesn to bE cLedted for the new

patient. In each <STATE> and <CAUSE>, ayain the relations

with prompting flags will get instantidteU in the appropriate

manner. Once this is done MDS will move or; to the next anchor

with prompt flag in DISEASEDESN, namely (DISEASEDESN

to ple ve Itest). A new instance of TOPLLVEL IEST will be

cceated, and since the relation "topleveltest" in DISEASEDESN

has the D flag, the system will ncx proceed to complete all

tae relations in the new intance of TOPLEVLLTEST. (Let us

anote the new instance of TOPLEVELTEST by tltestl.) This will

rasult in the followinq.

TOPLEVELTEST has five relations: "currenttests",

"nexttest", "selectedtests", "descendents" and "acestors".

Ifue currenttests will get instantiated first. This will cause

Lts associated CC, CC39, to be executed. CC39 is shown figure

8. It may be paraphrased as follows:

The tests to be applied in a given situation of the model
instantiation process are selected trom the currgnttests
of the current TCPLEVELTEST. The curLenttest, M, should
not be one of the already selected tests, aou, in addition
several other conditiins are requiLed to De satisfied.
Let us follow the conditions specitied in fig Ire 8.

The following objects in the neighborhood of tltestl are
first picked out:

MIN IGLhU, _OM A- -- test de :,n-->N

causalmodel

GNET--toplevettest-->t itest 1

The vdriable X in the CC will be bouau to iINIGLAI[COMA,

-0 -: . . -- " " - " 5 . ..

J;3ja.±LpTION OF CASNET IN MDS..JUNE 1975.. Page 55

the variable CN to GNET, dnd N to (MINIGLAUCOM A
testdesns).

There are two cases to consider: Orne is (ancestor
NIL), (this is tne case for tltestl. The other is (d
ancestor NIL). Tihis case will apply zor the descendents
of tltestl. In the case of tltestl, t, WIPEOUT test of
the MINIGLAUCOMA will be chosen. 1LE WI±'EOU1 test will
be such that it is not the nexttest o. aLny othfir tc-st,
and dlso, it is not the ncxtnegtivetest of any other
test. Once this selection is made, it will be
knstantiated as the currenttests oi titestl.

It a WIPEOUT test, Q, had just previously been
chosen and applied, then we will be in the case -(w
ancestor NIL). In this case the currezittests will be (Q
rl-xttest) if (Q testresult is YES) , else it (Q testresult
is NO) then the currenttests will be (Q
negativenexttest), it such nexttests exist.

~o-

I-

* •

)*;a31k~TON OF CASNET IN 1MDS,,JUNE 1975.. Page 56

(TESTDESN M)
((TOPLEVELTEST W) ((@ ancestor W) ->

((THE CAALMODEL X) (THlE TESTEESNS N)
V - (THE CAUSALNET CN)

((SOME TESTDESN Y)
((j) ancestor Y) V (cl is Y))
(Y topleveltestof CN) (CN causaimoa X))

(M t ?std- snoi X) (X testdesns N)
r (d) ancestor NIL)

(M testtype WIPEOUT) (M npxttestoi NIL)
(M neqgativenexttestof NIL)

V
-i(a ancestor NIL)
[((THE ** Q) (d rnexttestof Q) (Q testtype WIPECUT)

((Q testresult YES) (Q nexttest N)
V (Q testresult NO) (~neqativtpexttest N))

V
((THE STRAT: GY s) (N stratL-gy s)

(s influences TESIS)
F(s is IINOST) (M elemot (SIN N cost))
V

(s is MAXWEIGHTMIICCST)
(Mi affectedstate

(SM'A X ((*Z)
(Z iinstanceot :ii nstanceof

STAIXEDESN)
(CN state Z)
((SMIN N cost) af iectecistate- Z))

liaelihocd:probability))
V
(p is ?IAXWEIGHTCCSTRATIC)
(M1 elemof (SMAX N costratia))

(s is MAXWEIGHT)
(M~ affectedstate

(SMAX (CN states)
likelihocd:proLaLbility))

"jiinstarice" stdnds fcr "immediate instance".
1iitance" is a transitive relation, "1iinstanice" iz not.

FIGUIEE R: THE CC for the selectiun ot "curreiittests".

* Z3XPTION OF CASNET IN r DS..JUNE 1975.. Page 57

If all tne WIPE:OUT test had bet.h coplletily applied,
we Will still bJ in tle case - (L ancestoL NIL). In this
case the selection of currenttests ue pends on the
stLat,-qy u:;ed Lor MINIGLAUCCMA. 'i'ne strategy will he, of
course, the strategyof N, the testdesnsof MINIGLAUZOMiA.
If the strateqy influences TEST5, (hizre "TL'iTS" will be
an instance of the INFLUENCE template), then therp are
four cases to be considered dependin upon whctheL the
strateqy, s, is MINCOST, -iAAW21lGHT11NZOST,
MAXWEIGIhTCOSTRATIO, or MAXWEIGHT.

The wcrds "SMIIN", and "S:IAX" in tne CC in fiqurF 3, r fer

LU function templates that have been declar- d to the domain.

2ae d-efinitions o these function templates appear as follows:

rTDN: SMIN (FNDEF LISTDT (RELPATH CCSb))]

[TrN: SMAX (ENDEF LISTDT (RELPAT11 CC591) 1.

r.,e constraints CC58 and CC59 specify that tne iELATH saould

0e such that for all X in the first aLgument (arq1) of the

-function (notice that the first argument is a LISTDT) the

iR;.LPATH (Relation Pah) should be dimensionally consistent

wAth X. Also, (X <RELPATiI>:*) should be anl IN11GER or NIJMBER

(p). The SMIN and SMAX functions pick out all the X's (there

can be more than one), in the argl cf the functiois, for which

, , i>) has L-; tiveiy the MIN and MAX values, among

tue objects in arql.

The relation paths chosen in figure 8, for the
various strategies and associated applications of SMIN
and SMAX functions are: "cost" Lor IINCOST, test:; of

The reldtion "4" L'eI1OV. th*. diwensioui at a tiumber. For
Xdafpl e , the din-2n:iion at (John qt_) woui. u*, YEARS, :eciuse

t age oi a PERSON has been defi med to ut, YLA.iz. i1,)wo ver,
tue dimension of (John aqco:#) will - lust NUNIMBR. In tho
Udse ot colluctions, the 4 relation .:i u:.ie to ,.'ter to the
cirdinality oi the coJle,:tion.

L)E ;;.UIPTIOV OF CASNET IN IDS,..JUNL 1975.. Page 58

lowest cost (Ire chosen, "Like lih ocd probaiijlit y'jn the
cIAse of MAXWEIG HiTMINCCST; from tne set of tests with
minimum cost, i test is picked such tnat one of its
affected states has a weight greater thQiL any other state
atfected by the other tests. I, the case of
MAXWEIGHTCOSTRATIO, dll tests with the maximum
"costratiol, are chcsen. and, in the case or 11AXWEIGHT,
all tests whose affectedstates hdve the iaximum
iikelihood:proba ility are chcsen. In a.i t:ese cases,
it is required that the chosen SihATEGY should influence
TESTS

tit should be noted that the selection criteria specified
here are all fixed for the CASNET syst,-z at the time of
definition of the CASNET system itseli.)

After instantiating the currenttests, the system would

move to the instantiation of the next dnchor in TOPLEVELTEST,

n ,mely, tue anchor with the relation, "selecredtests". The

selectedtests will be the currenttest, ii the currenttest is

uiique, else the user will be prompted for the caoice of one

oi more of the currenttests. The selection or the tests is

controlled by CC103,

CC103: CC[TOPLEVELIEST selectedtests].

[(** X) I ((a currenttests:# 1) (6 currenttest X) V
(D selectedtests X) (J currentt.:st X))]

Notice that one of the disjurcts in the abovi CC wculd pick

the selectedtests, if the number of currenttests is 1, (

c ur.ntte.;rs:# 1). If not, the phrase, "(v seiectudtests X)"

ill dicatcs that the select ed test suould ui specified by an

eAterna l source. Jhen (TOPLEV ELIE'ST ilecteld test s) is

iiistantiated every selected test will be instantiated. This

will cause th selected test to be applie-a. ac shall ,1iscu;s

V

.-
'7

j icIL'TION OF CASNET IN MD5..JUNE 1975.. Fa';e? 59

the test Ipplication process in section 5.2.21D].

After the application of the selectedtests, the

"i2xttest" of the TOPLEVELTEST gill Le instaitiated. This

w-ll again be an instance of TOPLLVELTE3l. Sihice, the

relation "tople'veltest" in DISEASEDh3N has thE D flag

c±.isociated with it, this rew instance of 1OPLi'.ViLI'ST dill new

Luve to be again completely instantiated. Thus, the whole

process will iterate, until it is te rini ated by the

"currenttests" becoming NIL, for some TOPLEVELTEST in thp

sequence. When this happens, the nexttest alsc will become

% IL, as indicated by CC5.

The next relaticn of DISEASEDESN to be promptel is

"aiagnosis/therapy". T~ie instantiation or this anchor is

ountrolled by CC37. This is used to pick out the appropriate

:J:.N, rS ieV i d ing on the PATHWAYS in the CAUSAL NET, and the

CLASSDEFNS for MINIGLAUCCMA. We shall discuss this part of

tue model instantiation process in section 5.2.2tc].

[b], The Test Application Process.

As mentioned before, in section 3 each <TEST> has only

tLLree relations, ,,ccstratio,, "testresult" ana "application",

that are inst ,ntiable. Tne remaininq relations in rFSrDESN

'e ill i t s3anti it (to constants. W1191. t'ie solo0cted tests

*de instantiated, tho system will be stiil under the control

.i: the D fIa,] of th' d ncior (DIS EASIDESN toj,4vveit cst) This

)E!S.I:iTI)N OF CASNET iN MDS..JUNE 1975.. Page 60

will cause all the above three relations in each <TEST> to be

iastantiated. The tirst one will be "tistresult". This is

controlled by CC34 and TRi. CC34 is shown Delow,

((YESNO Y) I[(b testresult Y) (Y amcng (YES NO ?? NA))
(a testtype:among (SQ GFOUP WIPEOUT))
((SOME ** X) (J cocipcnentof X)

[(X testtype WIPEOUT) ->
(CX tesrtesult NO) (Y is NA) V (Y is ?)))

V
((X testtype MC) ->

((SOME U) (X compcnent U) -(U is d)
((U testresult ??) (Y it ??) V

(U testresult YES) (V is NO)))])

Normally, the testresult should be supplied by an

external scurce. In certain cases, as in tue case of earlier

applications of WIPEOUT and MC (multiple choice) tests, (M)

tue result may be determined by earlier test results. In

tnese cases, if a value f,,r Y is supplied from an outside

sjurce, it should be consistent with tue conditions specified.

Lat tl be the current test. By an analysis of the various

Z;.'s in CASNET JMDS would perform this analysis) it may be

Uoticed that the following series of interactions would take

place whenever the testresult of a test, like t1, is changed:

* The results for combination tests aRdy diSo be siur ila rly
L,&(fln care of. weiss, [u iss 1974] hdcs uerined combination
tests as a seperatf? category of tests. Thise test:; ire

Lntended to take caLe it certain .ilnds of intoractions ainonq
test results, In the MDS context, the dezinition of
combination tests is the same as the definition of new
consistency conditions, pertaining to the way that test
* ic sul ts atfOct states. For this cea jon, we have not
Considered colbination tosts is a seperato cdtoiqory of tests
Lii the description prt sentid here.

*]

u &iZRLTION OF CA.3NET IN MU5SJjUNE 1975.o Page 61

(tl testresult) affects, (X status) for all states X,
,uch that (tl dtfectedstate is A), W , sudil write this

. as,

rTESTDESN testresult] interactictis:
[(X status) ; ((STATEI)ESN X) (t attLectedstate X))].

The anchor sy~abol, J, here actually reters to a ITESTDZSN
iinstance:iinstance) , This is becduse, one level of
instantiation was sfipped oy the use of ti, C flag.

Similarly, the tollowing cther interdctions may be
identified:

[STATEDESN status] interacticns:
[(a) presence)],

[STATEDESN presence) interactions:
[(X forwardweight);

((LIKELIHOOD X) [
(d; stateof:causes:state:likelihocd X))]

F (x totalweiqht);
((LIKELIHOOD X) I
(D causes:stite:likelihocd X))]

[(X inverseweiqht) ;
((LIKELIHOOD X) I (6) likeliuood X))]

[(X effectstate) ; ((CCNDPROB X) I
(6) ancestor:causestateot X)]

[(X nextprob) (CONDPROB X) I
(a ancestor:causestateof X)]

9 . etc.

.,, .,:i' .:iVg C:i ' iiVIy T,(.1 Fil1Usti t iroi. |I, t rc, v...j o]., i it. rict ions

'y I J? 2I TW(2 *2r.) . i, q IIKvL1iHOOD

Lotdlweiqht], etc., on yet other anchors in the *system. For

our purposes here it suffices to note that a whole series of

iuteractions and sidE effects may propogate through the

.isteal, every time the testresult ot a test i6 clangd. M DS

ii m.de aware of this via the definition oL the vdiiouS C'se

eir every anchor, MDS will build the intercactiui.-i list ot th.,

'7

-. TION OF CASNET IN MDS,,JUNE 1975.. Page 62

rrm shcwn above. These ineracticns list will be used to

=aeck consistency in every updating process. Everytime an

aachor is changed, iDS can access and check all the other

x,,chors in the system that are affected by it. A change will

be accepted only if it does not produce a contrauiction in any

3i the affected anchors. If a contradiction is produced, or

ia general, if MDS is not able to find the value for an

iachor, it will consult the TR associated with the anchor.

L.t us consid,-r a part of the updating process associated with

tue testresult. The transformation rule TR1 is associated

with (TESTDESN testresult) [actually this is associated with

(5STD3SN iiustance: testresult) because of the use of the C

lag). This transformation rule is shown below:

al: TRrTESTDESN testresult]
(DCOND
((d testresult ?)

(ASSERT
(4 testresult

(ASiQUESTION (a) summaryquestion)))))
[ON-CONTRADICTION

(((X) (a affectedstate X)
(NOT ((EXISTING (X status)) = (NEW (X status)))))
(NBT
(DCOND

(((ADD (EXISTING (X status))
(NEW (X status)))

#:= 0)
(SOME STATUS S)
(BIND S (EXISTItG (X status)))
(ASSERT (X conflict:4:#of 3))
(A S S TLiiT (X status:* 1)))

(((ABS (N1EW (X status))) >
(ABS (EXISTIN1 (X status))))

(ASSiwr (X status (NEw (x status))))
(DCO';D

(((ABS (X status:#)) >
(AS (X conflict:#)))
(NOT (X conflict :# 0)))

(ASSERT (X conflict:# 0)])I

J,;:.i!iTIUN OF CASNET IN MDS,,JUNE I.75so Page 63

x'e. function AbS in the rule above is the Absolute Value

zunction. DCOND is the conditicral statement (DSSIGNER COND).

it, is similar to tnt LISP CCN!J statement. The EXISTING vdlues

u;ed in the rule are the values that are currently prssent in

tue model space of CASNET. The NEW values, are the values

that we wish to change to. "N BT" indicates that

djBACKTRACKING is to take place while executiny the portion

dithin its scope. In general, transformation rules in 4DS are

executed in a backtracking environment. The ibove

rransformatiori rule may be paraphrased as follows:

If the testresult is UNKNOWN then asx the sumcaryquestion
of the test, and assert the answer is tla- test result.

If a contradiction is obtained in assertinq a testresult
the do the follcwing: For all states X, that are the
affectedstates of the test, if the EXISTING status of thp

0 state is not the same as the NEW status, tuen

If the sum of the NEW and EXISTING status is 0, assert
that the conflict cf X is equal to the EXISTING status of
X, and set the status of X to 0.

if the absolute value of the status ot X, is qreater
than the absolute value of the EXISTING status, then set
the status of X to the new status.

Tf the absolut- value' of the NE stdtUs oE X i a
, ." V).'. " " LI P .- 1 ,U. .]lt. V , '2 CI. 1 it h i ' cf X, ;li'J

the ccnziict is not 3, then set tite conilict to 0,

The presence of a state depends on its status. The

caanges in the status brought about by TR1 miqht contradict

.Lth the existing pres nce of a state. In t/lis case, th' 2i

a.sociat-d with (STATEDESN presence) will qet invoke] for

c. kinq care of the contradictions. This TAi is iinwn blow.

*1

ut4iTION CF CASNET IN MDS..JUNE 1975., Page 64

TR2: TR[STATEDESN presence].
(NBT

(DCOND
(-((EXISTING(a presence)) is (NEW(& presence)))

(ASSERT(a presence (NEW(a presence))))))
((** S) (@ causes:state S)

(ASSERT (S forwardweight)))
(ECOND

((NEW (d presence CONFIRIED))
((** Q) (a causedby:state Q)

(ASSERT (Q inversewei-ht))))
(T

((** R) (causes:state R)
(ASSERT (P totalweight)))

(ASSERT (inverseweight)))))

it not only fixes the new presence of a state but also issues

commands to recompute for all states, Q, that causes d, their

respective inverseweights (*), if the new vdlue of presence is

-UNFIRNED. Other similar commands issued by TR2 may be

followed by the reader.

The computation of candidatestates and candidatetests are

controlled by CC5O and CC51. Here again strategies are used,

ds specified, at the time of model definition. The reader is

,iavited to peruse these constraints, shown in Appendix A.

As mentioned before, the test application process will

zuntinue until the next TOPLEVELTEST becomes NIL. At this

point the causal net would reflect the full ccnsequences of

a l the test, as absorbed by the descriptions ot the |modeling

As La roJdcr may notice, the "inversreweiqht"1 is not defined directly
LOC :;A4tc. It is defined only tor (state likelihoo4). rhus, whe~n (Q
i ,veiaV waL, it) is asserted (as in Td2) , for a state Q, the system will
i&LtOprjt it as (Q likelihccd:inverseweiq tt). This kind of
iaLCCrapLrt.taLuoi i: possible only when there is a unique way of executinq

* tic A~jS 4d i.

.4

A u&iCiTION OF CASNET IN .103,,JUNE 1975,, Page b5

meheine. The next pendiiig relaticn will be tae next relation

" ii DISEASEDESN with the prompting flag. This would be

(,)IS"ASEDESN diagnosis/therapy). We shall discusses the

processes involved in the instantitation of this relation in

tne next subsection.

[c]. The generation of diagnosisj did tanerapy.

The process of diagnosis and therapy in CASNET is based

DU three notions; the notion of tne type of the

:lassification table, the notion or most likely

6tartingstates, and the notion of admissible pathways from a

aost likely starting state, At the time of model definition

)ne may specify the classificaticn table type to be SPECIFIC

?-c GENEPAL, by instantiating the classtype relation of the

'LASSDESN template, If the type is SPECIFIC then only the

ZONFIRMED states will be looked at, when tne algorithm of

aiaqnosis and therapy proceeds. If the typ-, is GENERAL, then

ail andenied states will be looked at.

The diagnosis/therapy is under the control of the CC,

-37, at the anchor (DISEASEDESN diagnosis/therapy). We shall

oriefly discuss this CC. The CC itself is shown below:

3Z37: CCr DISEASEDESN diagnosis/therapy]:
"(COMMENT C)I ((CLASSrESN E) (THE ENTrtYDEFN F)

(E firstentry:lowerentry F)
(F entry rtate: iinstd:ace: presence CONFIRMED)
iNor((5SOE ENTRYDEFN G)

(F CItrst, tty:lowb- . &tz-y ' ')

(G en ti yitate: iinst ance:
..- ptv-.:u: : ,Cu tN I .P.ME':t))

((E cl Is;typo SPECIFIC) NhIi hIN H)

6i

)J6.6IPTION OF CASNET IN MDLSeoJUNE 1975,. Page 66

(E firstentry:lowerentry H)
(H entrystate:descendent:eittrystateof F)
(H entrystate:iinstane:Fresience CONFIRMED))

V
((E classtype GENEBAL)(ENTRYDEFN I)
(E firstqntry:lowerentry 1)
(I descendent:entrystate F)
(I descendent:entrystate F)
(NOT

(I entrystate:iinstance: presenice DENIED))
((SOME PATHWAY P) (ENIBYDEFN J)
(E firsteiitry:lowerentry J){J lowerentry F)
(J entrystate:ccmpcnentcf P))

(F comments:is C)]

The process of diagncsis/therapy is viewed in CASNET as

one of extraction of an entry (an instance of ENTRYDEFN) which

is a component of a classification table, a CLASSDEFN. Each

Z.ASSDEFN has a CLASSNAME (like SPECIFIC, GENERAL etc.). and a

"1irstentry", which is an ENTRYDEFN. An ENTLYDEEN itself has

aa "entrystate", "descendents", "ccmme]its", "nextentry", and

tue so called "lowerentries". The lower-entries of aa

rTFYD!FN is the closure of its "nextentry" relation. The

descendents of an ENTRYDEFN is the collection of all the

STATEDESNs of its lowerentries.

CC37 selects the "deepest" entry in the classification

table in tLe follcwinq sense: The entrystate of the entry

must be CONFIRMED; the entrystates associated with the

ijwerentries must all he not CCNFIEMED; it the CLASSDEFN is

ui type SPECIFlC, then all the entrystates or hiciher entries

Aust be not DENIED; and fiaally, all the -MntLystates of oach

jr the entries, including the deepest entry must all be

components of some given admissible PATHWAY.

.6

o..V

a.Atk 'I9U OF CASNET IN MDS..JUNE 1975.. Page 67

The notion of admissible PATHWAY dependis un the most

likely starting states, fmlstartingstatesof CAUSALNEI). These

states are computed by the functicn MLSTARTINGSTATES in the

aJscription shown here. This function cl1 serv.s ds an

.iternative to implementing the algorithdis as part of

corsistency conditions. Wherever eHffcien Jy considerations

to,- important, then the necessary alqoLitnis may be dirictly

iaipl-imented as functions in MD . These tunctions may be

called at the appropriate places in the instantiation process.

Function implemented in this manner will always "EXECUTE

iLIND". : rS will nct be able tc mcnitor the function while it

is executing. In the case of the description pre-sented here,

rcke algorithm tor the most likely statrtinq states, is thus

ait anywhere descriLed. The algoritnm oiy ae paraphrased as

A.llows:

A starting state is chosen which has moLe confirmed
descendents without intervening denied descendents than
any other starting state. if one staLting state can
explain all the confirmed states (,.hat is all the
confirmed states are its descendents) then it Ly itself
is the complete set. If there exists a tie between
starting states, then the one with the gretest starting
weight is chosen. If no single startii q state can
explain all the confirmed states, then considering the
remaining starting states and the confirmed states not
yet explained, the process is repeated until either no
confirmed states remain which are not explained, or some
confirmed states have no explainable starting states.
The set ot states that explain the greatest number of
confirmed states, then beccie the most lixely startinq

4 A state, S, lies on an adiniissible p, tti way 1rom a ,ost

i& PlY startin4 state, SS, if it is a aescendent of SS, if

t. krv oxi.t n) int *L V-Iii q d-': ied stit.:A i [ut1w.: i 3 and SS, Ind

)6jidTI)N OF CAS'IET IN MDS..JUNE 1975.. Paqe 68

Lz S has a confirmid descendent with no iatervening denied

descendents. The PATHWAY template incorporates this notion,

via the CC's, CC48, CC49 and CCbb, anchored at the relations,

.2tartinystates, components and nextpathway, respectively. We

saall ncw leave it to the reader to verify that tiLe CC's shown

ia Appendix A, do indeed perform as described above. This

c.)mpletes our discussioni ot the descriptaoii ot CaiSNET in MDS.

ie have touched upon the essestial aspects of CASNET and

guided the reader through their desciiptions in MDS. The

c,_ader should be able to follcw the rest without much

aitficulty.

J6 i..L'TIOII OF CASSET rIN MDSo.JUNL 1975.. Paqe 69

6.0 Concluding Remarks.

The CASNET description given here is based on the

uiscussion presented in [Weiss 1974). Siiice tLuen, thni CA3NET

has underqone various modifications. rhe descriptive

iormalis m presenteu here would make it %ea.sy to modify or

extend the system. In any such updating process the .DS

itself may be consulted about any of twe- existinq parts of

ciSNET. It can answer questions atiout the CASN-T, questions

prtaining to the various structures, or questions pertaining

to the details of the test application and model Lnstantiation

pLocesses. Thus, the description cf CASNET in MDS caii be used

aLso as a documentation of what CASNET is. This has important

consequences. This, can ior example, make it possible to use

CAjSNET in a teaching or testing mcde. A CAUSALMODEL defined

III MDS may be used to teach about the disease process, or to

check the answers provided by people who are oeing tested on

their knowledge of the disease.

~ij j.' s . :vito t; :l - i. o~ 1. L.u ... ~ ~ iil G t

directly to the description of CASNET as presei.ted to MDS, MDS

can also answer questions whose answers woula have to be

isferred from the descriptions of a domain. The Theorem

* -over in MUS may be used for this purp(;e. Thus, one obtains

i'.!xibility, ciL-tity o: expreissici) inu v-e- tiJ.ity. II the

e ly staqes ot MDS development we anticipate the pay a hleavy

pV: ice in officielcy. We bcliev , effici-et im~iopentttioy of

r,L; Wotild E Uo. U;ib]C, attLr some x[.E'LieIjce iu qatiined with all

U iIitlTIOA OF CAJiNET IN MD...JUNE 1975.. Page 70

initial working version.

Not all the conceFts in CASNET have beun captured by the

aascription shown here. The concepts of counter and

combination tests have not been described. The interpretation

01 unknown responses (??), is left vague. Tais has been left

vague also in the CASNET system of Kulikowsxy and Weiss.

Saould the unkncwn responses be ccnsidered as testresults by

Luemselves, or should the tests involved Le just set aside for

ouing repeated at a later stage? The diseasedomain model

saown here never uses the repeatability relation defined for

TL; STDESN. But for these minor omissions the descriptionCASNET

presented here captures the rest of the syst=rm. To illustrate

tae ease with which modifications and/or additions to CASNET

can be made the description of an exteaed concept of

tceatment is shown below, The system is moditied to pick out

tue treatment that maximizes some cost criteria.

A new template for TREATMENT is added:
[TDN: (TREATMENT SN)

(priority (PRIORITY TI) priorityof)
(status (STATUS TI) statusof CC80)
(treatment (STATEMI1NT TS) statementof)).

CC80 will Le identical to CC11, the CC associated with
(STATED2SN status) . Two changes in the existing template
structure~s are necessary:

(a). In EFFECT template,

WEFECT affectedstate STATEDhSN)

will become

(EFFECT affectedstate STATIDESN/TREATMENT)

[STATEDZSN/TRiEATMENT implies "UN 0o F TArFDESN or
TRE ATi ENT" 1 A nd,

I

ez) itIi'TIOR OF CASNET IN MDS..JUNE 1975.. Page 71

(COMMENT therapy STATEMENT)

will become

(COMMENT therapy TREATMENT).

The CC37 at the ancnor (DISEASEDESN diagnosis/therapy)
will have to be chanp-.d as fcllcws:

"(F comments:is C)" will become

"(C treatmentof (SMAX ((TREATZENT R) l

(TREATMENT S)
((1 is S) V
(R. status: >=: Ltatusof S)))

priority)) "

The transformation rule TRI need not be changed. The
above changes will cause a treatment with maximum
priority to be chosen.

It should be noted that if cne were to desiqi CASNET in

"llS it is most likely that one %ould not have iml-ementd it

ds shown here. We have here deliberately restricted ourselves

t3 the description cf Weiss's system. Ti~e reasoning power of

AUS is not used very much in the process ot model

instantiation. The fcrmalism is used here primarily for the

aescription of an existing program. In our use of MDS as a

d-sJqn toc] f1 r ti,.! Fi.L!IVE system we begin to see the

useful)3Ii. r-f ism to express complex structures and

tneir implied use in a variety of problem solving processes.

This is discussed in [Sridharan 1975 a,b].

At the moment it is not clear to us, WiLtht-RL the power

,.Id ;.dcilities availabl in MDS adr, n-o, drd for the

1 .1ltds of problems encount(-ed in medici i ouel inq. This

ruport shoula contribute to the makinq uf thut d&:cision.

UL5;iTION OF CASNET IN MDS..JUNE 1975.. Page 72

7, 0: ACKNOWLEDGEMENTS:

We wish to thank Shalom Weiss and Casimir Kulikcwski for

taier help in explaining to Joel the various aspects of the

;SNET implemntaticn. Many of these aspects could not have

aeen otherwise obtained without going through the laborious

process of reading the prcgrams.

REFERENCES:

[eiss 19741
.=iss, Shalom. "A System for Model Based, Coutputer Aided
i.Laqnosis and Therapy", , Ph.D. Dissertatioln, Department
oL computer Science, Rutgers University, N.J.
[Sridharan 19752
Siidharan, N.S "The Architecture ct BELILVEB-Part I",
Department of Computer Science, RUCBM-TR46, Rutgei~s University.

[Srinivasan, 1975]
Siinivasan, C.V...."The Meta Description System." RUCBM-TR50,
Srinivasan, C.V....."A formalism to define the structure of
Knowledge.
Szinivasan, C.V....."The use of Gentzen's system of lcgic for
rneorea Proving in iDS. " In preparation.

"Srinivasan 19731
Srinivasan, C.V,....."The ARchitecture oi Coherent Information
System.s" Proceelings of the 3rd International Joint Conference
oi Artificial Intelligence, Aug. 1973.

I

APPENDIX I,

CASNET DEFINITICN

(D N: (CAIJSALN~ODEL 11N)
(diseast~desns (DISFASZDESN~S $L) cauzaliaod'zi)
((testlesns !) ('LES'TDESNiS SL) testde~sut)
((causailnetdefa !) (IT CA TJSALNETDEIN)

causaln et d efnoi)
((classifications !) (CLASSDEFNS $L)

classificationsci))

(i'DN: (DISEASEDESNS $L)
(ET EMDI'I (0 * DISEASEDESN))
(cd u saIm odel1 (CAUSALMODEL FN) usaeers
((diteasaof V) (PEOPLE SL) disease))

Ii:DN: (TESTDZSNS -DL)

(ELErDN~ (0 * TESTDESN))U (ftestdesnsof V) (STlO0b $1) testdesns)
((strateqlies V) (STRATrEGIES $L) strate(liesof)
((summharyquestion V) (ST1006 IL)

summaryquestionot)
((counter V) (CCUNTEIRS $L) counterci)
((effects V) (EFFECTS $L) eftectsol)
Uicurrenttestsof V) (TOPLEVEL.TESTS $L)

currenttests)
((couponenteof V) (TESTDESNS $L) compone.nts))

4TDN: (CAUSALNETDEFN $N)
(causedesns (CAUSEDESNS SL) causedesnsot CC71)
(startiziqstates (STATEDESNS $L) stdrtinqstatesof

CC1)
(interiorstates (STATEDESNS $L) interior satesof

CC3)
* (desiqnateclstates (STA'rEDESNS $L)

desiqnated.3t.tesof CCLI)
((stat-;!d:sns !) (SrATiUJESNS $1) stitetde~snsof)

CC2)
((coouiionthralshold !) (TIHRES11CLD T,4)

* comm unt hres hoId ctj

~7 1-. W~ IS A 1N ET DE F M-c a usidisn s
(,jiCC:

SDEFINITION IN LIDS Page 1,2

(Q UOTE
f(CAUS-DESN C) I (STATEDESN S) (w statedesnsS5)
(S causes:elem C))

CAUSALNETDEFN causedesns)

r ;.l-CAJSALNETDEEN-startinqstates
5 5CC:

(Q UOT E
((STATED7-SN S) I ~statedesls 6)
(S causesot NIL))

CAUSALNETD-,FN startingstates)

..Z:3-.AUSALNEIDEFN-interiorstates
(4SCC:lt (Q UOT E

((STATEDESN S) I ~statpdesns 5) -

(c) startinqtstates S) -, (.1~ term indIstate5 S)))
CAUSALNETDEFN interiorstates)

;Z-.A'JALNEDEFN-desiqnatedlstates

(QUOTE
((STA-TED:-SN S) I (d~ statedesns S)
(S designatedstatesof d) -

CAUSALNErDEFN designatedstates)

C4-CatU SALN ETDEFN-terulinalstates

(Q UOTE
((STATEDESN S) I (b) statedesn 5)

(S causesof NIL)))
CAUSALNETDEFN terulinaistates)

(L D N (CLASSDEFNS $L)K (EL ELDN (0 *CLASSDEFN))

((classificationsof V) (STiCOb $L)
ClaSS if ica t ions)

((classtype V) (ST1)OO $L) classtyj - of))

(.e r : (PEOPLE~ $L)
-4 (E LEMD 4 (0 *PERSON))

(DN: (VISEAj!7DESN $N)
(ditie (DATE) dateof)
((toplrvjtest ! D) (IT TOPLEVELTEST)

topleveltestoi)
(causalmodel (CAUSALIIUDEL RN) uiseas-edesus)

;L&11DEFINITLION iN lIDS Page 1. 3

((d ise so of ! D) (PERSON RN) IiSedSC)
((diajnosis/therapy !) (COIrMENT3 ;L)

diaynosis/ttuerdpyux CC37)
((causalnet !) (IT CAUSALNET) cdUSdinetut))

.:j 7-D.SEA SEDFJ -diaqnosis/therapy
bS CL:

(QUOTE
((COLNMENT C)

((CLASSDEFN E) (TE ENTFYLEFN i)
(E firstentry:lcw - Lentries F)
(F entrystate:iinstance: presence COiNFI -,'ED)

((SOME ENTEYDEFN G)
(E firstentry:lowerentries G)
(F
entrystate:descenderts:eleo:enitryztitteof
G)
(G entrystate:iinstance:presence
CONFIRZIED))

fUE classtype SPECIFIC) (ENTRYC; Fii h)
(~fiL'stentry:lowerentries 3)

(H
entrystate:ciescendents:ele~en-rtryst.-iteof~l
F)
(di entrystate:iinstance:pres-nice
CONFIRMED))

((E classtype GENERAL) (ENIRYDEk'U :1)
(E firstentry:lowerentries 1)
(I d scendenis: e lem:en trystatteof: elem F)

(I entrystate:iinstance: presence DLVIED))
((SOME PAIHWAY 2) (ENTRYDE~t. J)
(E firstentry:lowerentries J)
(J lowerentries F)
(31 3ntrystate:componentsof P))

k .cmelmnts:is-C))))))

('TDN: (ST 10 06 L)
(ELEMDNS (0 *CAUSALIIODEL) (0 *QUESTION)))

(r.: (STRATZGIE3 $L)
(21,1- i (0) 'i :E A'r E,3Y)

(r:~d:(COUfir ;'S $L)
(E'L NI (0) COIJNTT-fl?))

Z.iLT DEFINITION IN MDS Paye 1,4

4ELEMDN (0 *EIFECT)) -
((effectsof V) (TESTDESNS $L) eftects)
((how V) (ST1005 $L) reisontcr))

Ji ON: (TOPLEVELTESTS $I)
(EIM (0 * TOPLEVELTEST)))

(TON: (TESTD:Si N MN)
((repeatability !V) (YflSNO TA) repeatabilitycf

CC 24)
((cost !V) (COST T#) costof CC25)
((confidence !V) (CONFIDENCE TI) COr~fidenceof

CC26)
i(firsttest !>CV) (TESTDESN fIN) iirstestcf CC30)
((nexttest !>CV) (TE-STDESN MN) previoustest CC31)
i(negativenexttest !>CV) (TESTDESN MINi)

negativen.3xttestcof CC32)
((testtype !) (TESTTYPE RN) testtyi.-ot CC2CJ)
((testresult C>!) (YESNO TA) testresuitof CC34I

TR 1)
((costratio $>C) (COJSTiRATIO 'I#) cositratioof CC33)
((previoustest V) (T-HS7DESNS IL) rexttest)
((firstestof V) (TZ'STD3--NS $1.) firsttest)
((strategies V) (STRATEGIES $1.) strateqiesot)
((negativenexttestof V) (TESTDESNS $L)

negativenextte st)
((components !) JTESTDESNS SL) componert-sof CC21)
((sumparyquestion !V) (QUESTICN TS)

suinmaryquestio1LOf CC23)
((negativedeterminancy !) (YESNO TA)

negativedete rmiikancyof
CC 27)

((counter !V) (CCUNTER TI) couriterot CC2'G8)
i(effects !V) (EFFECIS $1.) cffectsoi CCi"9)
((application C>!) (IT APPLICATION)

applicaticncf))

Z2-TLSTDESN-epeatability
(4SCC:

(Q UOTE
((YESNO Y) j(a) repeatability Y)

S((Y is YES) V (Y is NO))
((,j testtypo' WIPEOUJT) -; (Y is NO))
(- (W testtype 11C))

(Y iz NIu) -> (.j iinstarice:#= 1)))
TZ"STDLSN,, repedtability)

(q5SCC:
(QUOTE

((COST C)
((j cost C) (,b(tosttype WIrUjT))
((o ti2sttyp6 SQ) -

Z'&jNLr2 DEFINITION IN LIDS Page 1.5

((SOME IESTDE:-,N MI) (M~ cosnpolients:seim a,)
(M testtype MC)))))

V
(((a) testtype COIMBINATICN) V

(4 counter COUNTR))
(C is 0)))

TES-rDESN cost)

S CC:
(UQI E

((CO)IFICENCE C) I(a) confidence C)
((,, testtype- SQ) V (d~ testtype C;0O1INiATICN) V

(iD testtype COUNTER) V (~testtype GR OUJ))
TESTDZS4 confidence)

(jCC:
(QUOTE

((TESTD.SSN x) I(a) firsttest x)
(@ testtype CCLLECTION)))

TESTDESN firsttest)

.;jl1-TZ5TDESN~-nxttest.K ~(v 5CC:QUE
((TZSTDESN x) I(W nexttest A)

((i3 testtyp-3 W'IPEOUJT)
((x testtype WIPEOUT) V (x is IL)

V (d) coinpoientof: testtypa. COLLEC:TIU)))
IESTDESN nexttest)

~3-Tr&STUES-neativenexttest
(jj S CC:

(Q UOT E
((TES T:N x) I ~negativenexttest x)
(wv es'type WIPEOUT)
((x testtype WIPEOUT) V (x is NIL))))

TESTDESN neqativenexttest)

Z - iiS TDE SN - testt ypeI
(Q 5CC:

_ (QUOTE
((TESTTYPE x)

6 ~(((u)i comaponents NIL) (d~ ccuiltoL %IL)
(x is .3()

((w sunmaryques.tion NIL) (wi tiz..stte..t NIL)
(x is. NC))
-'(a) surrnaryqueation NIL))
(it compocnents NIL))

U'(.j cost NIL) (x is GLIOUP)) V

(J'(firstttjt NIL) (x is CLCLLECLIG14))
(PU colintf-r0A:= 0) (x is CudiN~iTJO1N))

.;a&jN~f DEFINITIO1N IN MUS Page 1,6

(dcounter:#:> 0) (x is COUNTER)))))
TESIDESN testtype)

:;3'4-TDESN-testresult
S 5cc:

CQOT E
((YESNO Y)

(testresult Y) (Y elemof (YES NO ?? NA))
(,0 testtype:elemof (SQ GROUP WIPEOUT))
(SOME ** X) (d cornponentsof X)
(((X testtype- WIPEOUT) -> (X testresult NO)

JY is NA) V (Y is?)
V
L(X testtype MC) ->

((SOME TEST EESN U) (X CoLpoleltS: eleu U)
(U is a))
(((Ui testresult ??) 'fY is ??)) V
((U testresult YES) (Y is 110)))))))))

TESTDESN testresult)

ZZ33-1 STDESN-costratio
h%2SCC:

(QUOTE
((COSTiATIC C)

(C is
(SIIAX

((COSTRATIO D) M*)
(m iinstanceof:iinstancecf STAIEDESN)
() effects:affectedstate M)
(D is
(DIVIDE (@ cost :#)

NIL))))
TESTDESN costratio)

-~~ 2221-IL.STDESN-components
(vSCC:

(QUOTE
((TESTDESN 11 () components:eleu M)

((testtype SQ) V (t) testtype CUKLo&INATICN) V
(d) counter COUNTER)))

((a) tejsttype M-) -> (Ml testtype SQ)
(.11 cost NIL))

*0 ((4 te.sttype GROUP) ->
((t*,4ttype SQ) V (ml teSttype tMc)))

((a) tosttyp "CLLLCTION) -
(('tfattype MC) V (Ml testtypa GR~OUP~)
(M'(npxtte ;t NIL)))

((t) testtype WIPEOUT) -
* ((Ml to.Gttype SQ) V (Cl te'sttype MC) W'

(hi testtype GR~OUP)))
(-it t-,'sttype WIPECUr) -

((Tusrul'st; N) (N component:t:eem Mi)
((M is 9) V (~4 t.2stAtyp~a WIL'%OUT))f)

;&Saei DEFINITION IN MDS Paqe 1.7

TErSTDLSN componkents)

.24- ,.STDE SN-s uimtr yqu'--stioD
(SCC:

(UOT E
((QUESTION Q) I (@) summaryuestion Q)

((w testtype SQ) V (d) teSttYpe GROUP) V
fib testtype WUPEOUT))))

TESTDESN summaryquestion)

-C; 7- C. STDSN-neqativedeterininancy
jg.JSCC:

(QUOTE
((YE'SNO Y) I (a) neqativedeteriinancy Y)

(itesttype SQ) V (d) testtype COMBINAMIN) V
(tb testtype COUNTER) V (FL testtype GROUP))

((Y is YES) V (Y is NO))'))
EESTDESN negativedeterminancy)

Z* Zd-T± S TD ES N-c o urt er
(J 5CC:

(COUNTER C) I(w counter C)
(testtype CCMBIIATICN) V

(a) counter COUNTER))))
TESIDESN counter)

Z29IiSTDES-effects
(A~SCC:

(Q UOT F
((EFFECT E) I(it effects E)

((~J testtype SQ) V (it testtype CGidINKTION) V
(@) counter COUNTER))))

TESIDESN effects)

* Zal-TESTrESN-testrpsult

(PCZ)N D

(ASKQUESTIOH
(W) suwnaryjuestion)))))

(ON-CONT BAUICT ION
((X) (c) affct-dstitie X)

((EXISrTNG (X status))

* (NBT
(LDCOND

(AD D (EXIST ING; (X St3 tUS))
(NEW IX statu.))

#: 0)
(SOVi! STAIJ! S)

Z.iNr.A DEFINITIUN IN MDS Page 1.8

(BIND S
(EXISTING (X status)))
(ASSERTI

(X cozitilict:#:*of 5))
(ASSERT (X status: # 0))
(ABS (NEW (X status)) >
(ABS

(EXISTING (X status))))
(ASSERT

(X status

(DCOND
((ABS (X status:#*)) >

(AS(X conflict:#0)))

(ASS EiiT
(X

coniflict:# 0)))))))))
TESTDESN testresult)

(D N (CAUSEDESIIS $L)
(ELEIMDN1 (0 * CAUSELESN))
f(causodesnsof V) (STi0ll $L) causedesns)
((causesof V) (STATEDESNS $I.) causes))

(DN: (STATEDESNS $I)
(ELEIDN (0 * STATEDESN))
g(startingstatesof*V) (CAUSALNETDLFNS $L)

startingstates)
((ztatedesnsof V) (CAUSALNETDEFNS iL) statedesns)
((interiorstatesof V) (CAUSALNETDLEN3 $L)

interiorstates)
((designiatedstatasof V) (CAUSALN.TLbEfS 61.)

desi gna tedztates)
((teriinaistatesof V) (CAUSALNETDLEN!Z 4L)

termirialstates)
((descondentso± V) (ST1012 $L) deacenidents))

(J:DN: (THELSHOLD T#)
((thLofsholdof V) (STATIFDESNS $L) thr-'iasold)
((cowronthr, shcldof V) (CA USALNLTDI-:FNS $L)

commwon thre.aiold))

(DN: (ST1000 $L)
(ELEMDNS (0 *ENTRYDEFN) (0 *CLASSNAME)

(0 *LIKELYHOOD)))

(,,DN: (CLASSI)EFN $N)
J(CLL3tentry I)(o2rYDEFN SN) tirstentryot)

U&, .--'FINIT1ON IN MD3 Faye 1.9

((classtype 1)(CLASSNAME PN) cla~iitypeof CC15))

Th-~~SSDEF -i:::ty:: C) I(ib classtype C)

(C elemof (SPECIFIC GENEEBAL))))
CLASSDEFN classtype)

(iiDf: (APPLICATION $N)
((candidatt'-states !V) **candidatestatesof CC50)
((candidatetests !V) *'cartd idate teLtsof CC51)
((nextchoice !) (IT I? C052)) rextchciceot4

nextapplicationct))

:.:)J-AePLICATION-candidatestates
(JS CC:

(QUCOTE
((* S) I

((d) testtype GaQUP)
IS iinstanceot:iinstancecf SIAI.ED.ESN)
(THE STRATEG3Y X)
(-, applicationof:e-lemof:s-trateyies:ee X)
(X influences STIATES)
(((X is GLOBAL) I-, IS presence LNIiLD))) V

(((X is LIKELYIIYPOTHESIS) V
(X is POTEtITIALliYPCTHESIS))

(SOME ** C)
(0 ii nstanc2of: jinstanceof STATE'DESN)
(C) presence CONFIRMFC) (S desca3ndents C)

I(SOME P)
(P iinstanceot :iinstanceuf STAT EDESK)
(P presence DENIED) IS desceiaents P)
(P descendents 0)))

((X is LIKELYHYPOTHESIS) -
IS

V* statesof:mlstartinqstates:rsu4:desceidents:eem 5)))))))

K APPLICATIO4 cdrndidatestates)

(U)l Components x) (x tostr*!6ult ?)(SL 112 I3)
(bII i n.stdncreo t:iii i-4t ti flCoi .3'1ATiLJES N)

(x contide-nc'.:#:>:vof (APS3 (it L.tat.)

Z&diDEFINITION I MDS Fae1.10

C-,APPLICATION candidatetests)

-'Z2lLPLICATION-nextchoice-argdn(1>IT

QUOT E
((TESTDESN MI)j
(((d) testtype GROUP) (THE STRATEGY S)

(d) strateyies:elem S) (S influences TESTS)(THE ** N) (@ candidatetests N)(((S is ?INCOST) (H4 elemof (SKIN N cost))) V

(SM AX

(X atfectedstateoi (SMIN N cost)))
likelinood:probabilityf)

V
((S is MdAXWEIG,3HTCCSTERATIO)
(M elemof (SIMAX N4 ccstratiof)

((S is MAXWEIGHT)
(M effects:affectedstate
(SLIAX (d) carididatestate)

(w te-sttype COLLECTICN4)
(LI iinstanceof:iinstanceof TESTDES N)
(M testresult ?) (a) components di)
((((SOME1 ** X)

(x iinstanceof:iinst-anceof TESTDESN)
(d) comp~onents x) (x nexttest il)

('(x testresult ?)
V (ad firsttest MI))

V (ft is NIL)))

(p~ to-sttype MC)

APPLIATIO is NIL)))))

APPLICAION notchoice iirqdn 1%

bX~PLICA TIONnex tappicdticti-.arydn< 1>IT
S CC:

((*TT)
((Li candidatete.its:#:< 2) (TT is NIL)) V
(TT is iPPL1CJVr1C11))

APPLICATIO4 vioxtapplication ar~jdn 1)

A.

..AjN.lA DEFINITION IN MDS P-aqe I. 11

(CLDN: (PEI.SON RN)

(aqeo (AS KYEA.RS) aqeof) (sex (ASKS:;X) ,txo:J))

L DN: (TCLL~lLLTE3'l £N)
(d;~~co~~. T'n 7V .&; (2~L L 'I H ST N$~i at . t. CC 1' 1)

(Cu I-,-,,It test S E D.- 1) i I) uiL Ie ttc -. , ;ci

((1-.~ -V C' I) (,3) (?2) S21oltCt ea ttzo f)
(~x> t.) T U? Cc,)) pre-vioustc-st))

".3 CC (QITS T VEITPEST Y.) (di nexttpst X)))
TOPIEV:'-rr d,. cerd-iiz)

ZZ1 2-COPLEVELTET-'lc'5:-tor
(.2 CC:

(QUO T
((T-)PLEV-LTSlI X)

(a) topieveltestot NIL) ->(X. is NIL)))
TOPLEVELTES an~cestor)

j) 39-1'jPLEVELTEST-curreiittests
J(j SCC:

(UOT E
((TESTDESN M)I
i(TOPtEVIELTEST W~)

(ancestor W) ->~(W selectedtosts 11))
((THE CAUSALIIODEL X) (THE TLSIDESAS N)

(THE CA(JSALVET CN)
((SOMIE TOPIEVELTEST Y)

((~-iic~storY) V (p is Y))
(Y toplevelt.sto f :ciu s a In --t C!')
(C !4 o . 1 Ji., X

(((b) ancestor NIL) (K testtypc W 12 -'0Ui
(Mi previoustest NIL)
(MI neqativenexttestof NIL))

V
(ai a~ncestor NIL))

(Qttsttype WIpr. Ui,,
(Qtej.trostit YE:;) (r) uvxttt.--t M1) V
(tvstrosult NO)

l(TIUi srPATEGY 5) (N strdte.Lt±:; S)

(((S is MINCOST)

UitlI N (('Ii .;'fDL :;N NN) I CNN e i-tmot N))
cost)))

~ia.L. DEFINITION IN M1DS Paye 1,12

((S is IAXWEIGHTMINCOST)
([affectcdstate
(S MAX

((*Z)
(Z iinstanceof:iinstanceof
ST AT -ES '4
(CN states Z)
((SHIN

((TESTDESN NM)
(14M elemof N))

cost)
affectedstate Z))

like lihoci :probability)))
v
((S is ?AXWEIGHTCOSIATIQ)
(M eleincf

(SMAX ((TESTDESN NQ) I (NQ2 eieuiof N))
cost ratio)))

V
((S is MA; WLIGHT)
(M affectedstate
(SMAX

((STATVEDESNi ST) I
(ST elemof:statesoz C14))

TOPLEVELTEST currenttests)

C1.-IOPLEVELIEST-selectedtests-argdn<1.)IT
(QSCC:

(QU~OTE
((* X) I
((c) currenttests:# 1) (a currenttests:elem X)

V (i~ selectedtests X)
(~currenttests:elem X))))

TOPLEVELTEST selecltedtests argdn 1)

.Z5-1h' LEVELT IST-nd-xttest-arqdn(1>IT

(QUOTE
((*TT) I ((ai currenttests NIL) (TT is NIL)) V

(TPA is TOPLEVELTEST)))
TOPLEVELTEST nexttest arqdn 1)

DSON (C3MKE6wTS $L)
(ELEID!4 (0 * CCMMENT))
((diagnosis/therapyof V) (DISEASEUEL;NS SL)

diagnosis/therapy)
* ((commontsof V) (ETriYDEFNS SL) coinuteentii))

(iLDN: (CAUSALNET .94)
(causalnotof (DISEASLUELSN $N) CdUS11Zal.~t)
(startinqstatei * stiartingotaticuot CC42)

DEFINITION IN MUS Page 1.13

(pathwaiys (IT PATHWAY) patbwa ~sof)
((caus;- s !) (IT (?CC41)) causesot)
W:t3rminalstates **terminilstatesoi CC43)
(interiorstates **interiorstatctsor CC414)
(MlStdrtinqstates ([lLSTARTlNGSTA1TES (? CCL45))

mlstartinqsta tesof)

X'4z-.:..USlLNI-startingstates

GQ UO F
((* S) I
((S iinistanceot:startinystatesoL:.3iew a,) V
((SOIE x)

(x iinstanceof:iinstanceof STAT.L02SN)
(6 startingstate x) (x cau ;s: stat-- S)
(x status EENIED) h(S status JLEIL1D))))

CAUSALNET startiiqstates)

"Z41-.>:iJSALNT-causes-arqdn<1>IT
(,j S CC:

(COT E
((iPiLATES X)

causalnetof:causalmodel :causainetdefir: ca'izcdesns X

o CAUSALNET causes argdn 1)

.. ,43- ;,USALN iEI-teL-minalstatEs

(QUOTE
((*S)

CAUSALNET terminalzt~ate:-)

(QUOTE
((* S) I

CAUSALNEI interiorstates)

-. * 3-,i USALN FT- iilst i rt inLista tes- arqdn<l1>MLSTAV['11NGSiTATL.S
(QtL)T ((CAUSALtj-l C) I((b is L:))) c;,ujALti-,

CbtiDEFINITION IN MOS Page le114

(Q UOTE X

)J))

CAUSALNET states arqdn 1)

(rDN: (QUESTION TS)
((sumuaryjluestionof V) (TESTDESNS $L)

sumularyquestion))

(iTDN (STRATEGY RN)
(influe nct- (t:.-FL1EN'CE R";) influencesof)
(fintunnc. ?dayct V) ('1303 $L) ifhLiuence:-.,H))

*(.fDN: (COUNTER TI)
f(counterof V) (IESTDESNS SL) counter))

(I~DN: (ST1005 $LI
(ELEMDNS (0 *ENTRYDEFN) (0 *STATEDESN)

(0 * HOW)))

tiXDN: (EFFECT $N1)
((how !) (HOW IA) reasonfor CC3b)
((affectedstate !) (STATEDESN yIN)

aft ectedstateof))

..,3o-i.dFECT- how
(' SCC:

(QUOTE
(HO0W H) o (~hw El)
((H is CONFIR~MED) V (H is DENIED))))

*EFFECT how)

*0 (A-flN: (YESNO TA)
((repe~tdbiiityof V) (TESTLESNS $L) rep(±atdbility)

((neqidtiveu. t'errinancyut V) (TESiDi: NS $L)
negativeuteL-inIncy))

(.VDW: (COST T#)
((custot V) (TESIDESNS $L) cost)

j-DW: (CONFIDENCE '[7)

ZkjNC DEFINITION IN ?jDS Page 1*.15

((confidancw--of V) (EESTDESNS $L) coniiutnco))

(.e DN: ('IESTTYPE RN)

((testtypeof V) '(TESIDIESNS SL) testtype))

(2LDN: (COSTRATIO T#)
((costratioo~i V) (T:-STDESN3 31) cj.strat:oc))

(ELEMDNS (0 *CAUSALNETDEFN) (0 * lT&N~A Y)))

(TDN: (CAUSEDESN MN)
((state !) (STATEDESN MNI) stateof)
iftransitionprob !) (P1108 T#) traiiiitionprobof

CC 19)
((causesof V) (STATEDESNS $I) causes))

",19- :AUSELEN-transitionprob
Cj SCC:

(QUOTE
((P1108 P)
(-4 (,1 stdte: term inalstatpsoi caus,;de ns 1)

(P #.=0) (P *=)
V (P OM))

CAUSEDESN transitionprob)

(.CDN: (CAUJSALNETDEFNS $L)
(ELE?!DN (0 4'CAU.SAI.NETDEFN)))

DifN: (ST1O12 tl,)
:.S' A;w~ N<) (0 * ENTBRY DEFN)))

(AiDN: (S T AT1 r£j) N :IVJ)
((conflict C) (CCNFLICT TI) contlictoi)
((presence C) (PRESENC!r TA) preseniceof CC1J TR2)
((likelihood C>!) (IT LIKELYVIC0V) IiKeIinoodcf)
'(afiectedstaiteo± V) (EFFECTS $L) dtiectedstate)
tientrystateouf V) (S11002 $1) entiystate)
((s' ,ateof V) (CAU~iEDESNS $L) stat,2)

CC7)
((doscondents X) (STATEDESNS $L) ati.,cendentsof

CC8)
((causes !) (CAUS-,D" '!NS SL) ciujv.,of CC 10)
((th hzihuld !) (lIIE:SiOLDr)t ud C)
((status C) (S1i'A'IUS ri) statuso L Ccii))

ZA~fDEFINITION IN LIDS Page 1.16

(. CC:
(Q UOTE

((PRESENCE P)
((a status:#:>=:*of:thresholdoi a,) -

(P is CONFIRMIED))
((@ status:#:=< (M INUS (~tireshold:#))) -

(P is DENIED))))
STATEDESN presence)

ZZ7-Sl'ATEDESN-startinqweight
(V'SCC:

(QUOTE
((PROB P)

(((,D startinqstatesof:stateuesns W) V
((b designatedstate-sct:statedesns a.))

(P #:>= 0) (F #:(< 1))
V (P #:= 0M)))

* STATEDESN startirqweight)

:Zb-arATEDESN-descen dents
(,SCC: (QUCTE ((SrATE]LESN S) J(I causes:state S)))

STATEDESN descendents)

.-.1J-SiATEDESN-causes -

jSCC:
(QUOTE

((CAUSEDESN C) I ~causes C)
(C causedesnsof:statedesns d)))

STATEDESN causes)

bZ7-.SA~TEDESN-thrashold
(.SCC:

(QUOTE
((THRESHOLD T)

(threshold T) V
(~statedesnso:coir-mcnthreshold T))))

STATEDESN threshold)

;Z1 I-STAvEDvSN-status

(QUOTE
I((STATUS S) I(SOMIE 14)
((SMAX

((*N)
(N iinstanceof:iinstainceoL i,:.STDL"SN)
((b aftected~tatcci:el --DcL:vi.,ctsof N)
(N testtype SO)

((N testreasult YES) V
((N testresult NC)
(N neqativedetermindncy Y~ES))))

cost)
edcm MI)

(((LM noJlativedet.rmina1ncy YESi)

ZAS6LA DEFINITION IN MDS Page 1.17

V (S #:=:#of:costof M)f
- STATLDESN status)

* J'Ri-.4,TEDESN-presence
(S IR:

(1) UOTE
(NB T

(DCOND

((EXISTING (~presence)) is
(NEW ((prePse nce))

(ASSERT
(a) presence

(NEW (, presence))))))
((*S) (W causes:state S)

(ASSER~T (S forwardweiglit))
(DC OND

((NEW (d presence CON FIRMED))
((**a) (causedby:state Q)

(ASSERT (Q inverseweight))))
(T

((*R) (@J causes:state P)
(ASSERT (R totalweiqht))),

(ASSERT (a) inverseweiyht))))))
STATEDESN presencel)

(TDN: (ENTRYDEFN SN)
((descendents $)(STATEDESNIS $L) descenaentsof

CC 17)
((commumints !)(COMMLENTS $1.) ccmmentsot)
((nextentry !) (ENTRYDEFN $N) nexteritryof)
((firstentryof V) (CLASSDEFUS $1L) firstentry)
((nextentryof V) (ST1000 $L) nextentry)
((lowerdntries SXR) (ENTRYLEFN $N) lowerentriesof

CC 18)
((loverentriesof V) (ENTRYDEFNS $L) lowerentries)
f(entrystate !) (STATEDESN MIN) entrystateof CC7O))

:Zl7-1--'iTRYDEI&N-dpscendents
(.j SCC:

(Q UOTE
(3TA TEDES N S)

6 (a) lowerentries: entrystate S)))
* EH'BYDE?4 desce ndents)

,! ;C'Z: (Q)UOT: ((ENT"YD'F N E) (,jti ~x tti t ry L))
ENTRYDEPN lorwontries)

-71-NTHYDEFN-unrtrysta1to

(VUOTE
((5SrATEVE:;N S)I

ZkfZ DEFINITION 114 MDS Page 1.18

((a) nextentryof:entrystate R) -

AR descendents:eleu S)))))
EN7RYDEF1 entrystate)

(ThNW: (CLASSNAt!E RN)
((classtypeof V) (CLASSDEFNS $L) cJlasstype))

(.DN: (LIKELYHOOD $N)
(probability (PROB T#) protabilityof CC53)
(forwardweight (FRCB TO) firwardweigyhto: CC54 TR3)
(totaiweight (PROB T#) tota1weiqkatot CC55 I114)
((inverseweight D) (IT CCNDPIBCB) inversewi--ightof

CC91 TR5)
(totalinverseweiqht (PROBS A~L)

totalinverseweightof CC57 Txb))

.; 5a-.LIKELYiiOOD-probability

(QUOTE
((PROB P)
(P #:is
(MIN 1

(M~AX (d) forwardveight:#)

LIKELYHOOD probability)

Z54- L.1KELYH CCD-f or ward weight
Sj CC:

(Q UOTE
((PROB P) I(THE **X)

(X iinstanceof:iinstanceo-f STATEDESN)
(x likelihood a))
(P
(ADD (X startingweight:#)
(SUMl

((PECfl) (THE ** Y)
(Y iin~atanceof:iinstaiceci CAUSEDESN)
(Y state: causes: state X)
(Y state:presence ?
(Q is

(PRODUCT
a (Y

state:like1ihood:torwcrdwe.iqht: #)

(S lm
(i'O!3 Q) I (THE ** Y)
(Y iinstanceof:iinstanceut CAUSLLIESN)

* (Y state:cduses:state X)
(Y State:pres*once CCNFIRlED)
(Q transitionprobot Y)))))))

LIKELYHOOD forvardweiqhlt)

Z 55-j...L ELYiOOD-tot alweiq ft

Z&N~i~DEFINIT10N IN IM0S P~aqe 1.19

(V S CC:j
(Q UOT E

((PROB P) I(THE **X)
(X iinstanceof:iinstancoaf STATIEDESN)
(X likelihood 6))
(P-

(ADD (X startinqweight:#)
(S U l

((PR013 Q) I (THE ** Y)
(Y iinstanceot:iinsta~ceu. CAUSEDLESN)
(Y statc: causes: state~ X)

(- Y state:presence DEN ILD))
(Qis
(PRODUCT

(Y
state: likeJlihoodzfoxwaruweight: #)

LIKELYHOOD totaiweight)

;1-..1 KLYHiOOD-inverseweight
LQ.9CC:

(QUOTE
((CONVPROB C)

((J) likealihccdot:presence DiLNIED)
(C is NIL))))

LIKELYbOOD invt-rseweiqht)

..25I-1 .IKELYIIOOD-totalinverseweight
AQSCC:

(Q UOTE
((PROlI P)

(P is
(SIIAX

((PFOB P) I(CONDFBOB C)
(C causestate:likelihu)cd 1
(C probability P))

NIL))))
LIKELYHOOD totalinverseweight)

£A~3-LjiKELYHOCD-forwardweight
4OSTR:

(Q UOTE
(N DT

* ((**5) (@ causes:state S) (S presence 7)
(ASSERT (S foL'wardweight)))

(tICONI)
(-' (W pi. s.-zice DENT LD))

* (FORCE (a proIm bi 1 it y)))
LIKLtLYOOD fur ward weiq lit)

(QUnTL

A DEFINI1TION 1% MDS Page 1.20

(NL3T (ASSERT (d) invpersoweiqht))
(DCOND

((.b presence CONFISIED)
((*S) (a) causedby:state S)

(ASSERT (S inverseweiyht)))))))
LIKELYHOOD totaiweight)

rd 5- . KElYIIOCD-in verseweight
(.j S T?~

(QUOTE
(NBT

S(*) (.3 causedby:state3 S)
(ASSERT (S in versewe ightf)

(ASSERT ((b totalinverseweightf))
LIKELYHOOD inverseweight)

* iib-LI.KELYHOOD-totainverseweight
(4STR: (QUOTE (4LET (FORCE (a probaiiity)))) LIKELYBOOD

total inver sawe iqht)

(IDN: (ENITRYDEENS $L)
(ELEIIDR (0O ENTRYDEEN)))

(T D N (COM1EN $2)
((Qiiii~si !)(STA2E"!?2i'~ TS) diciqro:,i-;,)

((t 11(: 1P y Aj (hT..NTS) therapyot))

(1DN: (PATHWAY SN)
(components **ccmpoiientsof CC49)
(startinqstate ** startingstateof CC48)
(nextpathway (IT (?CC66)) nextpathwayot))

ZZ4&4-' THWAY-components
(,j SCC:

(QUOTE
S(*) I (S iinstanceof:iinstdnceof STATEDESM)

(i) startingstate.-descendent S)

((SOMIE ** x)
(x iinstaiiceof:iistanceox. STATEDESN)
(& startinqstate:dtzscendent xc)

*(x pr-;:sence DE~NIED) (x dosc 2ndent :S)))
((*U) (U iinstdzuceof:iinstance-ut STATEiDESN)

(J startijiqstate:i-sc c le n t U)
(U d-a':cenkdent S) (U presenct. CUNFIEk~)

* .PATHWAY camponents)

;Z"d-t'TllWAY-startiny.state
(.j SCC:

(QUOTE
(*1S) I (S iinstanceof:iint~ince2of STATIEDESN)

...- *--S)

ZA~i.,C DEFII4ITION ru MDS Fay e 1.21

((PATHWuAY P) (P startingstate S) -

P(i is P)))
PATHWAY stdrtinq±state)

Z.6o-L) ATiWAY-ne-xtpathway-arqdn<1)IT

IQUtOTE
((TEMPLATE P)

(((*S) (z) pathwaysof:mlstartinqstates S) -

(P is NLJ)
V (P is PATHWAY))))

PAHWAY nextpathway argdn 1)

(2DN: (INFLUENCE RN)
(influencedby (STRATEGY RN) influenceabyof)
((influencesof V) (STRATEGIES $.) intluences))

(.eDN: (ST1003 $L)
- -(ELLMDINS (0 *INFLUENCE) (0 *LIKZI.Yi0OD)))

('DN: (HOW TA)
((reason for V) (EFFECTS $L) how))

(XDN: (PROB T#)
((totaiweightof V) (ST1000 $L) totalweiqht)
((forwardweightof V) (ST1000 $L) zcrwardweight)
((transitionprobot V) (CAUSEDESNS $L)

transit ionprob)
(i'startingveightcf V) (STATEDESNS $1L)

startingjweiqht)
(U.Probabilitycf V) (ST1001 L)probability))

(TDN: (CONFLICT TI)
((conflictof V) (STATEDESNS $L) conflict))

(fDN: (PRESENCE TA)
((presenceof V) ISTATEDESNS $L) presence))

(I'i)N: (ST1002 $;L)
(FLEM1DNS (0 *LIKELYIIOOD) (0 *ENTihY1iFN)))

(TON: (STATUS~ TT)
((statusof V) (SrATEDESNS $L) status))

(i~flN: (CO NDP.ROP $N)

~&ULVDEFINITION IN MUS Page 1,22

(causes3tate **causestateof CC93)
(effectstate **eftectstdteot CC90)
(nextprob (IT CCN4DPBOB) nextprobof CC92).
iprobabjility (PROB T*) probabilityoi CC5b))

9 J- k.U ND P 0E -c au es t at
JQSCC:

(QUOTE
((* S) I

(((@(inverseweightof NIL))
(~inverseweightof:likelihoouuf 5))

V (@ neXtpLobo:causestate S))))
CONEPROB causestate)

ZZ90- .UNDFO-ef fectstate

(Q UOT E
((S) I(rh causestate:descenuents:eem S)

(S presence CCN;;IfiC)

((SC.1 *

(a) causestate:descendents:eler Q)
(descendents 5 (Q presence DENIED)))

((CONDPROI3 C)
((C causestate: ausestateof 6)

(C effectstate S))
->(C is 0f)))

CONrflOB effectstate)

Z:92-,.UNDPB-nextprob
("dS CC:

(QUOTE
((CO14DPROB C?) I(a nextprob CP) (SOME S*)

(~causestate:descendents:elem S)
(S presence CCNFIEMED)

((SOME *0

(a causestate:descendents:elem Q)
(Q dosceuidents S) (0 presence L;ENIED)))

(CONDPROB C) (W) causes tat e: causestat eoi C)
((C effectstate S))))

* .CONDPFOB nextprob)

* ~ Zij-.:XJNPROE-probeiility
SSC;'*

(0 UOTh
((P30 P) i (rah * X)

(X iinst.irceof:iinstancect S.UATL.L)ESN)
(efiectstate X)

* (P
(DIVIDL

(PRODUCT (w) cdusvstatt tut a lweo liht:*

F(Eq C a Y) I(*Z

(Z .il~~t~ .o - .. - . --- o

;AiN1e DEFINITION IN MDS Faq e 1.23

CA USEDE 5N)
(bi) causestate:causes Z)

causestate :descturieritso stateot g

Z)
(((W causestate:stateot Z)

(Y transiticnpruor 4
V
((THE CCNDPFOE C)

(C causestate:6tateot Z)
(C effectstate X)
(Y is
(PPODUCT (Z tLansitiollpiub:#)

(C probability:i))))
(X totalweight:#)))))

CONDPEOB probability)

JIDN: (PROBS $L)
(ELEIIDN (0 *PROE))
((totalinverseweightof V) (IIKELYtiCODS $1)

total inverse wiiq ht))

tTDN: (ST1009 SL)
(E LFMD N S (0 C CA US AL NET) (0 A APP L 1C A.D0N))

IDN: (APPLICATIONS $L)
(ELEIDW (0 *APPLICATIO)))

(TDN: (CONDPROBS $L)
(ELEIIDN (0 *CONDPBOB)))

('IfDN: (STATEMIENT TS))

L.ALN: (ST1Q0l SL)
(ELEtIDNS (0 *CONDPBCB) (0 *LIKELIHOOD)))

1rDY: (IIKEIYHOODS $L)
(ELEIIDN (0 * LIKELIHOOD)))

jj'DN: (CL!SSIAMES SL)
(iZLLADN4 (0 *CLASSNAM'E))

4 . I)N: (PATHWAYS $L)
(ELELION (0 *PATH1WAY))

(DN: (CA USA LM OD!LS $L)

~auDEFINITION IN LIDS Page 1.24

(ELELIDN (0 *CAUSALNODEL)))

42DN:(CAUSALVETS $1)
(EL EM DN (0 *CA USA LN ET))

(TDN: (MIINUS $F)
(FNDEF TLJPLE (FLOATP FIXP) NIL)

((FLOATP FIXP) NIL))

~TDN: (AS KQUESTION F

(ENDEF TUPLE ((QUESTION) NI 1) ((YESNO) NIL))

(TDN: (SkMIN $F)
(FNDEF TUPLE ((LISIP) NIL) (.(RELPATEH) CC58)

(*)CClblf))

,~.5d..IN <2>

(QUOTE
J(RELPATH R.) I (W arg12 R) JX) (jw arql1:elem X)

SK1IN arqdn 2)

&..SCC: (QUOTE ((*A) I(A elem:e1.emof:arciloi ~f)SMIN
argdn 3)

J.CDN: (SNAX $F)
(FiDEF TUPLE ((LIS'.P) NIL) ((BELPATH) CC59)

(*)Ccl60)))

(QJSCC:
(QUOTE

((IHFLPAT! R) I(d arg2 R) (X) (d irql:elem X)
(DIMiNCK X R)))

SMAX ar,.jdn 2)

(SCVC: (UO TE ((4A A e 1 t, mee otIar 1 oi Wf) SM A X
cirgqn 3)

t DN: (SUM $F)
4 (ENDEF TrIPLE ((LISTP) NIL) (*)CCbO)))

(UOTEf
((D) I(,b aiq2 D) (THE TI x)

j: DE F INI TIO0N I N M DS Paqe 1.25

((X) (a) arql:eleI X) (X iinstaiiceof x))
- (1) iinstariceof x)))

SUM! arqdn 2)

(iDN: (A31KSEX $F)
(FNDEF TUPLE ((GENDER) NIL) (sexol (PEOPLE $1) sex))

(T BN: (ASKYEAIRS SF)
(FNDEF TUIE ((YEABS) NIL))
(aqeof (PEOPLE $L) age))

(IDN: (rATE $F)
(FNDEF TUPLE ((SIRINGP) NIL))
((dateof V) (DISLASEDESNS $L) date))

(.9 DN: (M'L STAR TINGSTA TES $F)
(ENDEF TUPLE ((CAUSALNET) NIL) (*)CC47))
((mistartingstatesof V) (ST1CC9 $L)

1-NA.STAR TIN GSATES<2>~
~SCC:

(QUOTE
((*S)

(S iinstanceot:iinsta~ceci STA.i-EDESiN)))
MLSTART114GSTATES arqdn 2)

(TDN: (ADD $F)
(ENDEF TUPLE ((FIXI FLOAT?) NIL)
((FIX? FLOAT?) NIL) ((FIX? FLOATP) NI1L)
((FIXP FLOATP) NIL)))

jT DN: (PROEUCT SF)
(FNDEF TUPLE ((FIXP FLOATP) NIL)

((FIX? FLOATP) NIL) ((FIXP FLOAT?) NIL))).

A: 4DN: (DIVIDE $F)
(ENIJEF TUPLE ((FLOAT? FIXP) NIL)

((FLOATi' FIX?) NIL) ((FLOATP FIXP) NILz.)))

* (FNDLF T(WLE ((FLOATP) NIL) ((F.LU±?') NIL)))

- - DN: (MIN $F)
(FNDiEF TIJPL-i- ((FIXP FlJArP) NIL) i

((1I,' mlOA £) NI1L) ((t'Xr FLkCArL' Nil.)

, 3N L DEFINITION IN MDS Paqe I.2u

(T DN: (MAX SF)
(FNDEF TUPLE ((f'IXP FLOATP) NIL)

((FIXP FLOATP) NIL) ((FIXP FLOATP) NIL)))

irDN: (YEARS TI))
t2DN: (G1NER FN))

Ji

, - .. .

SOSAP-TR-30

February 1977

HEREDITARY -LOCK RESOLUTION: A RESOLUTION REFINEMENT COMBINING A
STRONG MODEL STRATEGY WITH LOCK RESOLUTION

D. M. Sandford

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

e This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant #DAHC15S4S-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced

* Research Projects Agency or the U. S. Government.

CONTENTS

Acknowledgments .. v

*Chapter 1

1.0 Orientation.. 1

1.1 Conventions and Abbreviations 2

1.2 Lock Resolution .. 5

*1.3 The Model Strategy and Semantic Resolution7

1.~4 The Intersection of Lock Resolution

and The Model Strategy 8

1.5 A Completeness Proof of The Model Strategy

Using Lock Resolution

Chapter 2

-2.0 Models and Resolution Searches11

- 2.1 Models for Use with Semantic Strategies:

A Specific Example11

2.2 The Connection Between A-Models and Herbrand

Interpretations ..17

2.3 A Defect in The Model Strategy24

Chapter 3

3.0 Hereditary-Lock Resolution 26

3.1 HL-Resolution: An Informal Description 26

3.2 An HL-Resolution Example 38

3.3 Some Comments Concerning HL-Resolution Searches and

Other Resolution Searches 47

3.4 Definition of the Basic HL-Resolution Refinement

Strategy .. 53

3.5 Soundness and Completeness of HL-Resolution 63

3.6 Evaluation of the HL-Resolution Strategy 85

3.7 Extensions of the HL-Resolution Strategy 88

Chapter 4

4.0 Summary .. 93

REFERENCES ... 94

APPENDIX............ ... 96

INDEX ... 106

TABLE OF ABBREVIATIONS .. 108

iv

ACKNOWLEDGMENTS

I would like to extend sincere appreciation and thanks to

Professor C. V. Srinivasan, who provided the initial impetus and

continued encouragement for the writing of this report, and to

Professor A. Yasuhara, who has read and offered much needed

suggestions for improvement in the presentation of this material.

0

I It

1.0 Page 1

1.0 Orientation

This report assumes the reader is familiar with the techniques

of resolution theorem proving (Robinson, 1965) for the first order

* predicate calculus. This background information is most easily

obtained by reading Chapters 6, 7 and 8 of Nilsson, and Chapters 1

* through 6 of Chang and Lee, (Nilsson, 1971) (Chang and Lee, 1973).

- The terminology used in this report is consistent with these two

references except where explicitly defined differently.

Chapter 1 of this report sets the context in which to

understand the results and viewpoints stated in Chapters 2 and 3.

* Chapter 2 develops the notion of a model in a somewhat more general

* framework than is typically done in resolution theorem proving.

Q~ Chapter 3 states and explains the main result of this report, and

this result can be understood independently of the particular views

* on models stated in Chapter 2.

The main result of this report is that the syntactic.

* resolution strategy known as Lock Resolution, and the semantic

resolution strategy known as The Model Strategy can be combined

* into a single sound and complete resolution refinement strategy.

*This refinement is called Hereditary-Lock Resolution

(HL-Resolution). Although this strategy is a very strong

refinement strategy in its present form, it is felt that its

primary value lies in future extensions of the method based upon

information available in HL-Resolutlon searches. Such information
is usually not available under other resolution strategies.

4*

1.1 Page 2

1.1 Conventions and Abbreviations

1. A resolution step will refer typically to the resolution

of just two parent clauses. This corresponds to binary

resolution (Chang and Lee, 1973). Factoring will sometimes be

considered as implicit factoring, and other times as explicit

factoring. Clauses will sometimes be considered as sets of

literals, and are written with the literals separated by

commas, and with a semicolon to indicate the end of the

clause. The same notation will also be used when it is

necessary to consider clauses differently (e.g. as lists),

and in those contexts where it is not explicitly stated how to

consider the clauses, the reader is free to make his own

choice.

2. An unsatisfiable set of clauses, S, is said to be

minimally unsatisfiable iff every proper subset of S is

satisfiable.

3. In Chapter 2 the word model is used to signify a set of

Herbrand interpretations. If this set contains only a single

Herbrand interpretation then it corresponds exactly to what is

called a model in the resolution theorem proving literature.

Chapters 1 and 3 are best understood by using the word model

to signify a single Herbrand interpretation.

II

1.1 Page3

lp

14. The phrase "trivial model" will he used loosely to

describe a Herbrand interpretation which assigns a truth value

to literals based on the literal letter (i.e. the predicate

letter plus the negation sign if present) , and based on none

or relatively few of the terms that appear in that literal.

Thus the models for hyperresolution are classed as trivial

models.

5. The arrow "1=>" is used to indicate correspondence between

constructs in two different languages, with the item on the

left being interpreted as the item on the right.

6. The phrase "singly connected" is used in the sense of (Wos

et al-, 1967).

7. The phrase "normal resolution" is used to indicate

unrestricted (i.e. unrefined) resolution in those contexts

where it would otherwise be unclear (and be of concern) as to

which strategy is being referred to. Similarly for "normal

clause" and "normal literal". Likewise a phrase such as

"normal lock literals" is used to denote the usual literals

used in Lock Resolution.

1.1 Page 4

8. The following abbreviations and notational conventions

will be used:

CNF Conjunctive Normal Form

.FA. The quantifier "for all"

HI Herbrand interpretation

HLR Hereditary-Lock Resolution

LC (LM) Language of the

clauses (of the model)

LIP Local Interaction Problem

LR Lock Resolution

M Model (usually meaning a

collection of Herbrand

interpretations), or a model

evaluation function

SC Sentential Calculus

SR Semantic Resolution

.TE. The quantifier "there exists"

TMS The Model Strategy

TSP Term Substitution Problem

BOX The empty list (or set)

of literals

- subtraction or set difference

negation sign

The above listing is reproduced as the last page of this report.

Page 5

1.2 Lock Resolution

Lock Resolution (Change and Lee, 1973) (Boyer, 1971) is a

purely syntactic refinement strategy for unrestricted resolution,

in which literals in the input set are assigned integer lock

numbers in any arbitrary way. The refinement is to allow two

clauses to resolve only on literals, in each clause, which are of

the lowest lock number to appear in that clause. The lock number

of a literal in a resolvent is the same as the lock number of its

parent literal. When factoring, the literal eliminated is the one

with the higher lock number. Lock Resolution (LR) is a complete

Srefinement of unrestricted resolution.

An example of an unsatisfiable sentential calculus (SC) clause

set with the literal lock numbers written as the second component

- of an ordered couple, and the sentential letter as the first

component, is:

1. <A,1>,<B,2>;

2. <C,3>,<@A,4>;
3. <@B,5>,<D,8>; i

4. <@C,6>;

5. <@D,7>,<@A,8>; -

6. <@D,8>,<A,9>;

I

1.2 Page 6

The complete search space under LR for this clause set is

(where we write ixj=k to mean that clauses numbered i and j resolve

to give the clause numbered by k):

2x4= 7. <@A,4>;

Ix7= 8. <B,2>;

3x8= 9. <D,8>;

5x9=10. <@A,8>;

6x9=11. <A,9>;

l0xi= a duplicate of clause 8.

11x7=12. *BOX*;

Lock Resolution is quite efficient when applied to (exactly or

nearly) minimally unsatisfiable SC clause sets. This is a result

of purely syntactic properties of the reductio ad absurdum approach

in CNF. LR is also a strong restriction when applied to first

order clause sets because it is almost singly connected. This

report does not concern itself with an investigation of the

underlying properties of LR, but merely uses the strategy as a

basis for constructing a new refinement called HL-Resolution.

1.3 Page 7

1.3 The Model Strategy and Semantic Resolution

Semantic Resolution (Slagle, 1967) and The Model Strategy

(Luckham, 1968) are very closely related. Semantic Resolution (SR)

involves some predicate letter ordering, and describes its basi

resolution step in terms of clashes, and The Model Strategy (TM!

does not. When dealing with resolution search procedures that ar

(or almost are) singly connected there seems to be littl

difference between expressing the procedure in terms of clashes as

opposed to binary resolutions. The choice in this report is binary

resolution. This choice then focuses on the literal ordering in SR

as the distinguishing difference between SR and TMS, and SR can be

considered a refinement of TMS. The resolution strategy we develop

in this report adds a literal ordering to TMS which is somewhat

more restrictive than the ordering in SR.

TMS requires that there be a Herbrand interpretation (HI), M,

which can be used to evaluate the truth value of clauses. M is

called a model. In TMS a clause is true iff every ground instance

of the clause is true in M, and a clause is false iff it is not

true. TMS is a refinement of unrestricted resolution which does

not allow resolution between two clauses that are both true in M.

Notice that M can be any HI, and that no HI can satisfy a set of

clauses from which *BOX* can be produced by using unrestricted

resolution.

.4

1.4 Page 8

1.4 The Intersection of Lock Resolution and The Model Strategy

Lock Resolution and TMS cannot both be applied and preserve

completeness. To see this consider the unsatisfiable example

clause set of section 1.2. If we choose the Herbrand

interpretation, M = (@A,B,@C,@D) as the model, we see that no

resolutions can be performed which satisfy both TMS and LR

refinements (according to the given lock numbering). In general it

is possible to choose, for unsatisfiable sentential clause sets,

the model and the lock numbering so as to preserve completeness.

However the resulting search is not actually an improvement over

what could be done with LR alone. In the case of a first order

unsatisfiable set of non-ground clauses the situation is more

complex, and the main result of this report concerns itself with

exactly this situation.

I

Ij

.4i

1.5 Page 9

1.5 A Completeness Proof of The Model Strategy

Using Lock Resolution

Here we use LR to prove that TMS is a complete strategy. The

purpose of this is to orient the reader toward thinking about a

simple connection between LR and TMS for ground level clause sets.

The basic HL-Resolution strategy, to be presented later, is

primarily just an elaboration of this simple connection so as to

make it applicable to non-ground level clause sets.

Let S be an unsatisfiable set of general clauses. Then by

Herbrand's theorem there exists a finite set of ground clauses, SG,

which is a set of ground instances of clauses from S (some clauses

in S possibly being grounded in several ways) which is truth

functionally unsatisfiable. Let M be any HI for S. Then M is a HI

for SG also. Let there be LT instances of ground literals in SG

that are true in M, and LF false in M. Let the L = LT + LF ground

literals of SG be lock numbered from 1 to L with integers, and with

the true literals being numbered from 1 to LT, and the false

literals from LT + 1 to L, with each integer used exactly once.

Then any lock ground refutation, R', of SG with this lock

numbering is also a ground refutation under TMS with model M. Now

we consider R' as a refutation in unrestricted resolution, i.e. we

ignore the lock numbers, and we see that R' can be lifted in an

obvious way to correspond to a general level refutation, R, of S.

This R will also be a refutation of S satisfying TMS with model M.

Thus, since LR is complete for an arbitrary assignment of lock

numbers, we have shown that TMS is complete for an arbitrary HI, M.

1.5 Page 10

Notice that it may be impossible to assign lock numbers to the

general level literals of S so as to make R also a LR refutation.

This occurs because a single general level clause in S may

represent several distinct ground instances in SG. It may be the

case that the assignment of lock numbers to these several ground

instances must be made in a manner inconsistent with a single

linearly ordered sequences of literals of the general level clause.

The ability to prove the completeness of TMS so easily using

LR leads to two immediate considerations:

1. they are probably closely related;

2. LR seems to be at least as strong a refinement as TMS.

Both of these statements are quite true for a minimally

unsatisfiable SC problem, which is exactly what the unsatisfiable

ground set (SG, above) refutation problem is. When dealing with

general clauses with infinite Herbrand universes however, a major

(in fact generally the major) problem is in generating the proper

type and degree of instantiation of the general clauses so as to

cover some unsatisfiable Herbrand ground set. In this task LR,

which is a purely syntactic strategy which does not directly take

into account any of the arguments of a literal, loses much of its

advantage relative to TMS.

After explaining some aspects of some models that could be

implemented, a refinement strategy will be developed that combines

LR and a stronger form of TMS.

a'

2.0-2.1 Page 11

2.0 Models and Resolution Searches

This chapter develops a particular point of view about what

constitutes a model to be used in a resolution theorem proving

search. This view holds that a model may be specified through a

combination of declarative and procedural information, and that the

* declarative information need not be fully determined at the time

* that the resolution search begins. This material is presented in

sections 2.1 and 2.2 in the form of examples, but no attempt is

made to give a formal statement of the concepts involved. The

* intention is to develop a concept of a model which will be

compatible with such strategies as TMS and SR.

Section 2.3 indicates a difficulty in the relationship between

Va model and the resolution search process (in this case TMS) that

uses the model, and is the immediate motivation for Chapter 3,

which presents the HL-Resolution strategy.

2.1 Models for Use With Semantic Strategies: A Specific Example

TMS requires that clauses be evaluated according to some

*model, M. The model will be some HI for the clause set under

consideration. If for every ground instance of a clause at least

* one literal of the clause is true in M, then the clause is true in

M. As far as TMS is concerned, it is not necessary to identify

which ground literals are true, and which false, nor to identify

which ground instances of a clause are true or false. Thus it

doesn't matter what method of clause evaluation is used, Just so

2.1 Page 12

long as the classification of clauses is the same as would result

from using some fixed HI.

Two extreme examples of models that have been used or

-suggested for semantic resolution strategies are the trivial models

and the ground case models.

The trivial models evaluate the truth of a literal based upon

the literal being classed in one of a few simplistically

recognizable categories. The most extreme case of this is to

assume only two categories, e.g. positive and negative instances

of a given predicate letter. Such are the models implicit in P1

(and also NI) (Nilsson, 1971) resolution and positive (negative)

hyperresolution. Trivial models typically require only a small

amount of computational effort in their truth evaluations of

clauses.

At the other extreme are the ground case models, which are

based on a complete finite list of all the ground instances for

each predicate letter which are true, and, usually, a complete list

of function values for each ground instance of each function

letter. Clearly such an approach requires the use of small domains

of individuals. Even with rather small domains, however, the

computational effort to evaluate clauses can easily become quite

large (Henschen, 1975).

There are intermediate types of models. These models may

contairl some explicit information in ground instance form, and

evaluate the truth of literals and clauses, which have ground

2.1 Page 13

instances not explicitly listed, by some algorithm. In these cases

it is the combination of the explicit ground cases plus the

algorithm which constitutes the model. Such models will be called

algorithmic based models, or A-models.

An example of an A-model will be given for the satisfiable

clause set (which we call GAX for Group AXioms).

1. P(x,y,*(x,y)); closure

2. P(1,x,x); left identity

3. P(x,l,x); right identity

4. P(x,I(x),1); right inverse

5. P(I(x),x,1); left inverse
_ "6. @P(x,y,z),@P(z,u,v),@P(y,u,w),P(x,w,v); associativity

7. @P(x,y,z),@P(x,w,v),@P(y,u,w),P(z,u,v); associativity

This clause set could be part of an unsatisfiable clause set

containing the negation of a theorem about groups. In that case

the interpretation intended in formulating the problem would be:

P(x,y,z) => x and y combined under the group operation

yields result z.

*(x,y) => the result of the group operation on x and y.

1 => the group operation identity element.

I(x) => the inverse of x for the group operation.

2.1 Page 14

A possible A-model for GAX could be constructed by use of the

sentential calculus (SC) with the following interpretation of the

elements of the language of GAX:

P(x,y,z) => the statement: (x and y) iff z

*(x,y) => the expression: x and y

1 => the sentential letter: 1

I(x) => the sentential letter: 1

In order to be more definite about this for the purposes of

this example, we will assume that the model manipulations

themselves will be done in CNF format. Then the A-model will be a

set of sentential clauses, which contain the ground case

information, plus the algorithm. The algorithm contains the

translation information for translating clauses into the SC, and a

decision procedure for the SC.

The algorithm must translate constructs in the clause set

language, LC, into constructs of the model language, LM, in such a

way that a truth decision can be made. The following is the way

this is done for the specific model we are constructing.

P(x,y,z) => the clause set: @x,@y,z;

@z,x;

@P(x,y,z) => the clause set: @x,@y,@z;

XZ;

y,z;

• " p.. . : " - ' ' = " " " " "

.1 Page 15

*(x,y) => the expression: x and y

1 :> the sentential letter: 1

I(x) :> the sentential letter: 1

We assume (arbitrarily for the purpose of this example) the

truth of the literal "1", and include it in the model as a clause

"1; ", thereby establishing the only piece of ground case

information. In order to evaluate a clause in the model, e.g. the

clause GAX.2,

GAX.2 P(1,x,x);

we see if the negation of this clause, when translated into the

language of the model, is consistent with the ground case clause

"1;". If it is consistent, then the negation of this clause has an

instance which is true in the model, and therefore the clause

(unnegated) has an instance which is false in the model, and the

model evaluation is false. On the other hand if the negation is

inconsistent, then the model evaluation for the clause is true.

Thus, the negation of GAX.2, namely

@(.FA.x P(1,x,x))

becomes

.TE.x @P(1,x,x)

-"7

2.1 Page 16

and then translates into the SC clause set:

;< ground case information

esc clauses

1,x;x} < - associated with

x x. .TE.x @P(1,x,x)

This is an inconsistent SC clause set, and so the clause GAX.2

is evaluated as true in this model. This model will evaluate

clauses 1,2,3,6 and 7 of GAX as true, and clauses 4 and 5 as false.

Thus, e.g., clause GAX.4 is translated as

@(.FA.x P(x,I(x),b)

which becomes

TE.x @P(x,I(x),l)

which becomes

1;

@x ,@1I

x, 1;

1,1;

which is consistent, giving an evaluation of false for GAX.4 in the

model. Notice that the variables, which are now existentially

quantified in LM, do not have the quantifier explicitly written in

4 LM. Since the quantifiers have the entire set of sentential

clauses in LM as their scope this causes no problems.

K2.1 -2.2 Page 17

* -- This report treats A-models in an informal fashion since their

complete characterization has not yet been accomplished. Because

*of this several extremely important details concerning the

relationship between A-models and the clause sets they are modeling

will be ignored in this report.

There are many other SC models that could be developed for GAX

by changing the ground case information and by changing the

* translation mapping from LC to LM. There are also many other types

* of models than just the SC models, and the next section will

mention some of them.

2.2 The Connection Between A-Models and Herbrand Interpretations

The preceeding section illustrated some features of a specific

A-model. Some features of A-models in general are:I

1. The model performs its evaluation based on its algorithm

(including the translation from LC to LM), the ground case

information (in LM), and the set of literals being evaluated

(in LC).

2. The computation is finite, and is comprised of testing the

consistency of a set of statements in LM. This requires that

*the model be a system with a well defined notion of

consistency, and that there be a decision procedure which is

efficient enough to make it practical in a resolution search

4 process.

2.2 Page 18

3. It is possible to modify the model by changing either the

ground case information or the algorithm.

4. Universally quantified variables (in LC) from the clause to

be evaluated are all changed to existential constructs (in LM).

Note that there are no existential quantifiers in LC.

5. The process of negating a clause to be evaluated eliminates

the "OR-ing" and replaces it with an "AND-ing". Thus a clause

of k literals in LC translates to a set of k or more statements

in LM.

Notice that items 4 and 5 above, along with the fact that we

are translating and testing individually only one clause at a time

from a clause set in CNF strongly structures the task we ask the

A-model to accomplish. In particular we do not need to have the

notion of universally quantified variables, in LM, whose scope of

quantification would be restricted to the statements in LM coming

from the clause we are evaluating.

The question arises as to just what HI is actually the one

corresponding to the evaluations performed by a particular A-model.

The answer is that in general A-models will be using a set of

HIr's to evaluate clauses. A clause is evaluated to true iff it is

true in each HI in the set. As an example of this consider the

following SC A-model for the equality predicate with the

translation:

2.2 Page 19

=(x,y) => the clause set: @xy;

@y,x;

@=(x,y) => the clause set: xy;

@x ,@y;

a => the sentential letter: a

b => the sentential letter: b

and assume no ground case information.

If we evaluate the unit clause =(a,b);, the clause set in LM

is:

a,b;

@a,@b;

which is consistent, so that the clause =(a,b); is false.

Then, evaluating the clause @=(a,b);, which translates to

@a,b;

we also have a consistent clause set, thus yielding false for

@:(a,b);.

Clearly this A-model is not evaluating clauses correctly

according to any HI. What is actually happening is that the

evaluation is according to some class, M, of HI's. In some of

- these =(a,b); is false, so that it is evaluated false. In the

rest of M, @(a,b); is false, so that it too is evaluated to

false.

2.? Page 20

(The thing that can be done in cases like this (i.e. when the

A-model is using a class of HI's) is to ensure that every clause

that is evaluiated is uniformly true or uniformly false over the

class, M, of HI's being used. When encountering a clause not

uniform in truth in M, then M must be replaced by an MI c M, Such

* that the clause is uniform in M'. M' would then be used until it

-became necessary to choose an M" 1 H'. Thus successive clauise

*evaluations would cause modifications of the ground case

information, or the algorithmic parts of the model, or both.

* Notice that once a clause is evaluated, its truth evaluation is not

* affected by future changes in the model, since it was uniformly

* true or false when evaluated, and the only model changes permitted

* . are those that replace the model class with a subclass of itself.

- For simplicity, and definiteness, we assume that the only way

-to modify a model, i.e. restrict M, is to add ground case

information so as to make a clause that is not uniform in M become

uniformly true in M' c M. The way to do this is:

1. If the clause evaluates to true in M, no modification is

performed since it must be uniformly true in M.

2. If the clause evaluates to false in M, but is not uniform

in M (see below), then we try to find various items of ground

information, G1, G2,. . ,such that:

* a) The current ground information is consistent with the

expression G1 and G2 and . ..

b) The clause evaluates to true when evaluated Iby the model

using the combined old ground case information plus G1, G2,

2.2 Page 21

If a and b above are both satisfied, then the new model is the

same as the old one but with the ground case information augmented

by G1, G2, ... We do not elaborate here how to find a suitable

set of ground facts, but mention that sometimes there will exist no

such set of ground facts. In this case the model is left

unmodified, and the clause is evaluated as false in M. Such a

default assignment of false to a clause causes no problems (beyond

a decrease in search efficiency) for the types of refinement

strategies discussed in this report (i.e. TMS, SR and HLR).

A simple example of this model updating process is the

equality example, above, where now, when the =(a,b); evaluation

comes out false, we augment the ground (in this instance empty)

02 information set with the information in the clause, namely

@a,b;

@b,a;

The ground information set is still consistent, so this is

acceptable. The clause =(a,b); would now evaluate true.

Now the clause @=(a,b); translates to

@a,b; ground information

@b,a; "

@a,b; from the clause @=(a,b)

@b,a; " " "

and this is a consistent set, so that @=(a,b); evaluates to false.

*2.2 Page 22

We are left with the problem of determining, when a clause

*evaluates to false i n My if it is uniformly false. A clause is

* uniformly false in M if the set of statements in LM representing

* the negation of the clause are not only consistent, but are in fact

consistent in all interpretations which satisfy the ground case

information and the information implicit in the algorithm for

testing consistency. As an example consider the evaluation of

clause GAX.L4 as done in section 2.1 .The SC clause set obtained

there was consistent, and thus GAX.~4 was evaluated to false.

However, that SC clause set is a true set of statements only when

*the sentential letter "x" is assumed false. If "x" is assumed

*true, then the SC clause set is untrue. Thus GAX.4 is not

* uniformly false in this model. Furthermore there is no ground case

* information that can be added to this model which will make GAX.~4

uniformly true. We note here that this does not seem to be an

unresolvable difficulty with A-models. We do not develop potential

solutions to this difficulty in this report.

The above explanation is in no way yet sufficiently formalized

so that it is possible to prove that it is a consistent way of

viewing A-models. Such a formalization has not yet been attempted.

However, this type of orientation toward A-models does seem to have

some utility, since there are other types of A-models which use

K different internal languages and different processing algorithms,
but are still quite analogous (with respect to the topics of this

section) to the SC A-models. One of these models is the

*simultaneous linear equation model (SLE). This model translates

literals into equations involving the arguments of the literal.

2.2 Page 23

- ~ Thus a clause would be translated into a set of simultaneous

linear equations, and the processing algorithm is a decision

procedure testing the set for consistency. To see that the SLE

model acts as a theorem proving system analogous to the SC model,

one need merely consider a set of equations to be a set of unit

clauses, each using the two place equality predicate (negated for

inequalities), with terms built out of constant symbols,

existentially quantified variables, and function symbols

corresponding to the usual arithmetic operations. In addition

there would be other clauses expressing the rules of algebraic

manipulations. In an actual implementation it would probably not

be efficient to do consistency checking in the SLE model as a

. theorem proving search, but it is reasonable to consider it that

0 way conceptually. Section 3.2 of this report is an example of an

HLR search using a SLE model.

Other possible A-models are the decidable parts of Euclidean

geometry or of real analysis. Our viewpoint of models is not meant

to be restricted to what are typically thought of as mathematical

models. The discussion of models will however be limited to the SC

and SLE models in this report, since these two models will be

familiar to the reader, and are quite sufficient for illustrative

purposes.

We leave now the discussion of A-models. In the remainder of

this report the word "model" may be thought of as signifying a

single HI.

2.3 Page 24

2.3 A Defect in The Model Strategy

TMS evaluates the truth values of clauses when they are

generated, giving them a single truth value for all of the

remainder of the search. But often a clause that has been

determined to be false and gets resolved with a true clause,

actually doesn't qualify as a false clause because the unification

operation on the false clause eliminates all of its false

instances. An example of this is the false clause

P(x,1,y),<(x,y);

f

and the true clause

@P(a, 1 ,b);

where the model is taken to be

P(x,y,z) => x times y is z

<(x,y) => x is less than y

a => 10

b => 20

1 => identity element for multiplication

and the domain of individuals is that of the postive integers.

62

*I

2.3 Page 25

The resolvent of these two clauses is

<(a,b):

which is true in the above model.

The problem is not that the resolvent is true. There is no

way in TMS to maintain completeness if true resolvents are

forbidden. Rather, the problem is that the resolvent has a literal

in it which came from the false parent, but which now has no false

instances. It is clear (refer to section 1.5 for the proof of TMS

using LR) by looking at the ground case proof that must exist, that

such an occurrence of loss of false instances can be forbidden in a

TMS search without a loss of completeness. Further reflection on

the form of the clauses and the resolutions which appear in the

ground proof trees involved in the proof of TMS leads to a complete

refinement strategy for unrestricted resolution which combines LR

and semantic considerations stronger than TMS. The next chapter is

a presentation of such a strategy.

-?i

:II

3.0 - 3.1 Page 26

- 3.0 lHereditary-Lock Resolution

This chapter presents the main result of this report. This

result is the development of a sound and complete refinement

strategy for resolution, called Hereditary-Lock Resolution

(HL-Resolution, or HLR). This strategy combines a semantic

refinement (TMS) and a syntactic refinement (LR) in such a manner

that the refinement restricts the way that a clause may be used

based upon the way that clause was generated in the search.

Sections 3.1, 3.2 and 3.3 are an informal introduction to the

strategy, including a hand worked example. Section 3.4 is a formal

definition of the HLR refinement. Section 3.5 is the statement and

proof of the soundness and completeness theorem for HL-Resolution.

Sections 3.6 and 3.7 give some perspectives on the utility of the

strategy and indicate some areas that require further

investigation.

3.1 HL-Resolution: An Informal Description

This section states what HL-Resolution is in an informal

manner. The purpose here is neither to give an exact formal

definition nor to consider implementation details but rather to

give the reader an idea of the overall structure of the strategy.

Let M be a Herbrand interpretation and L a set of literals. A

grounding substitution for L is a substitution which when applied

to every literal in L converts the literal to a ground instance. M

3.1 Page 27

is said to satisfy a set of literals, L, iff for all grounding

substitutions, SIGMA, there exists a k such that k E L(SIGMA) and k

is true in M. If 1. is a clause and M satisfies L (i.e. L viewed

as a set of literals), then we say that L is true in M.

An HL-clause, C, is an ordered pair, C = <SD(C),FSL(C)>, with

each element being a set of HL-literals. SD(C) is called the set

of standard literals of C, and FSL(C) is called the (set of) false

substitution literals of C.

The standard literals correspond to the usual literals in a

clause in normal resolution. The FSL literals constitute a

restriction on the ground instances which a clause represents. An

HL-clause represents all ground instances of its standard literals

C in which the grounding substitution, THETA, is a grounding

substitution for both the standard and FSL literal sets, and such

that for every literal, L, in the FSL set, L(THETA) is not true in

M.
I

Let C be an HL-clause. Let RHO be the set union over all

variables appearing anywhere in C and all literals appearing

anywhere in C. Let MU be the set of variables appearing in the

standard literals of C. We execute iteratively the following two

steps until no further change occurs to MU:

1. Move all literals in RHO containing a variable in MU into

MU.

2. Move all variables in RHO which are contained in a literal

in MU into MU.

3.1 Page 28

We define a variable or literal to be influential in C iff it

is in MU. If L is a literal in the FSL set of the clause C, and if

L is not influential in C, then L may be deleted from the FSL of C.

Let L be a literal, then by @L is meant the same literal but

with the opposite sign, i.e. @L contains a negation sign iff L

does not contain a negation sign.

Every standard literal has associated with it two numbers.

One is called the true lock number, and the other is called the

*false lock number. It is through the use of these lock numbers

that HL-Resolution incorporates LR as part of its refinement. To

understand why each literal must have more than one lock number

refer back to section 1.5, where TMS was proved complete by an

argument based on LR. There it is seen that in the ground case it

is necessary to have all the lock numbers of true literals smaller

than all the lock numbers of false literals, in order to make the

* LR search automatically satisfy TMS restriction of having a false

parent in every resolution step. When searching at the general

* level,- then, it is necessary to have a mechanism which can

accomplish the same effect as assigning small lock numbers to true

literals and large lock numbers to false literals. The problem at

the general level is that a given clause may really need to be used
0

to represent several distinct ground instances, and the truth value

of any particular general level literal might be different in the

different ground instances. HL-Resolution searches are concerned

with keeping track of the use of clauses with respect to which

* ground instances are the ones intended to be represented by the

3.1 Page 29

. clause. This information is implicitly held, in the FSL of the

clause, at the level of specifying a set of literals that must be

false. Completeness of the HL-search is maintained through the use

of the double lock numbers on literals, the true (false) lock

number being used if a literal is supposed to stand for true

(false) instances of itself. Exactly how this is accomplished

should be apparent later when some examples are given. Most of the

complications arise, in explaining the HL-Resolution method, in

treating standard literals for which the FSL does not contain

enough information to restrict them to necessarily true or

necessarily false instances.

The input clauses for HL-Resolution are similar to input

clauses in normal resolution, except that:

1. each clause has an FSL part, and it is empty;

2. true and false lock numbers, all distinct, have been

assigned to all the literals (and all of the true lock numbers

are smaller than all of the false lock numbers).

Each input clause, and during the search every clause

generated, is evaluated according to M, and marked "T" if it only

has true ground instances, "F" if it only has false ground

instances, or "T/F" if it has both true and false ground instances.

Note that this evaluation is relative to the FSL restriction, i.e.

we only consider grounding substitutions that make every FSL

literal false. Section 3.2 contains an example of how a HL-clause

can be evaluated relative to its FSL restrictions. We may view the

search process as a breadth first binary resolution search

3.1 Page 30

(factoring will be discussed later) with several refinements and

one extension.

The extension is that there is an asymmetry in the role played

*by the two parents in a resolution step. Thus given two clauses,

C1 and 02, we consider two distinct resolution possibilities, and

* express this as resolving C1 against 02, and C2 against C1. This

* leads to the first refinement condition which is that for C1 to

resolve against 02, it must be the case that C1 is false in M.

* Thus C1 may be either "IF" or "IT/F"I in its evaluation according to

M. Furthermore, after choosing the two literals on which to unify

* in the resolution of C1 against C2, C1 must still be false after

the most general unifier (mgu) is applied to 01. Note that the mgu

is also applied to the FSL literals. The purpose of this is simply

* to make sure that a false clause in a resolution actually

* contributes to the resolvent produced at least one of its false

instances.

It is not the case however, that the search would be complete

if false clauses were allowed to contribute none of their trueI

*instances to the search space. Thus if C1 and 02 are both "IT/F"I in

M, then we would try to resolve C1 against 02, producing the

resolvent R, making sure C1 can pass on only false literal .

-instances to R. In this case 02 acts as a true clause since at the

* very least, the literal of 02 resolved on is representing true

*ground instances. We then try the other possibility, namely

resolving 02 against C1, producing R', in which we make sure t1s

literals in R' received from 02 have false ground instances, and

3.1 Page 31

here C1 acts as the true clause.

Thus our first refinement condition states that if C1 and C2

are both "T" we do not resolve them together at all. If one has

true instances and the other has false instances (but not both are

"T/F"), then we try to resolve the false one against the true one.

If both C1 and C2 are "T/FI, then we resolve C1 against C2 and also

C2 against C1. In each case the resolution of C against D is

blocked if, after unification, C has no false instances left. This

first refinement is clearly just a strengthening of TMS, and is

sensitive to the structure of the model which is used for the truth

evaluations of the clauses.

Now we consider the second refinement, which is syntactic inU
nature and is an elaboration of the Lock Resolution strategy.

When we resolve C1 against C2, we know that C1 must stand only

for those ground instances in which every one of its literals is

false. What we then do is say that the literal in C1 on which we

are allowed to resolve is constrained to be a literal of lowest

false lock number in C1. We also see that after unification, the

corresponding literal on which C2 is being resolved must be true

for all the ground instances that C2 represents in this resolution

step. From this we can require that every literal in C2 with a

smaller true lock number than the literal in C2 on which we

resolve, must represent ground instances which are false. Thus we

see rather stringent conditions being statable about what must hold

before a resolvent can be produced. The single most important

feature of HL-Resolution search organization is the movement of

3.1 Page 32

these conditions in a simple form into the FSL portion of the

resolvent being produced. This is how we organize the individual

resolution steps so that we can keep track of what is going on with

respect to the allowed substitution instances for the literals in

the resolvent produced.

As an example of how this is done in a typical resolution

step, consider the two HL-clauses, C1 and C2, where C1 has at least

some false instances, and C2 has at least some true instances, and

we wish to resolve C1 against C2. We write the HL-clauses as a set

of standard literals, terminated by a semicolon, and followed by

the set of FSL literals. Each standard literal is written as an

ordered triple, in which the first component is the true lock

number, the third is the false lock number, and the second

component is a normal literal.

Thus we have

C1 <1,A(x),50>, <9,B(f(y)),61>, <2,G(c),57>; FSL (Ll,L2)

C2 :<10,@A(u),46>, <15,E(u,f(u)),41>, <17,@A(g(v)),38>;

FSL = (L3,L4)

where LI, L2, L3 and L4 represent some literals that have been put

into the FSL's due to previous resolution steps in the derivation

trees for C1 and C2. We assume that these literals are not the

same as any of the standard literals of C1 and C2 for the purposes

of this example.

It

3.1 Page 33

• i- Now to resolve C1 against C2, C1 must stand for ground

instances in which every one of its literals is false, and it will

be allowed to resolve only on its literal of lowest false lock

number, which in this case is its first literal. We first try to

resolve on C2 on the literal of lowest true lock number, again in

this case its first literal. There is a mgu for these two

literals, nu =(x/u), and we form the resolvent RI:

RI <15,E(x,f(x)),41>,<17,@A(g(v)),38>,<9,B(f(y)),61>,<2,G(c),57>;

FSL = (L1(nu),L2(nu),L3(nu),L4(nu),A(x),B(f(y)),G(c))

Notice that the FSL set consists of everything we know must be

false, namely those things already in the FSL's of C1 and C2, plus

p all of the literals from the false parent, C1.

There is another resolvent that can be produced from CI

against C2, by using the third literal in C2. Thus we produce R2,

using the mgu mu (g(v)/x):

R2 <10,@A(u),46>, <15,E(u,f(u)),41>, <9,B(f(y)),61>,<2,G(c),57>;

FSL (L1(mu),L2(mu),L3(mu),L4(mu),

A(g(v)),B(f(y)),G(c),@A(u),E(u,f(u)))

Here we notice that since the first and second literals of the

true clause, C2, had lower true lock numbers than the true literal

selected for resolution from C2, namely the third literal of C2,

those first two literals of C2 must represent false ground

instances. This is why they appear in the FSL of R2.

3.1 Page 34

Thus we see a strong interaction between the Lock Resolution

literal ordering and the allowed substitution instances that a

resolvent can have. This interaction is mediated through the

action of the model. This brings us to the last refinement

condition for HL-Resolution steps, namely that the set of ground

instances that a clause stands for must be non-empty. In the case

of RI and R2 above, we would actually have to check within the

model, M, to see if the FSL's had any substitution instances that

simultaneously makes all of the FSL literals false ground literals.

This is simply done by considering the FSL literals as if they were

the literals of an ordinary clause (i.e. "OR-ed" together), and

submitting them to the model for evaluation just like a normal

clause would be evaluated. If the model returns the answer

"false", then the FSL set has a falsifying substitution, and the

corresponding clause exists. If the answer is "true", then the

clause has no allowed instances and can be deleted.

We make the following comments in general on the HL-Resolution

search, as it has been presented up to this point:

1. When the parent clauses have non-empty FSL's then the mgu

is applied to both FSL's and all their literals go into the

FSL of the resolvent, along with any other new literals from:

a) all the standard literals of the false parent,

including the literal resolved upon;

b) any literals among the standard literals of the true

parent which have true lock numbers lower than the true

lock number of the literal resolved upon in the true

parent.

3.1 Page 35 *
2. There is usually only one possible literal for resolutionj

in the false parent.

3. Often there will be several literals to resolve upon in

the true parent.

'4. The input clauses start out with no literals in their FSL

lists.

5. As clauses deeper in the search are formed, the FSL's tend

to grow and become more restrictive.

6. Some resolvents are blocked due to having empty sets of

ground instances.

7. Literals which contain only ground terms can be eliminated

from an FSL if they are false; if they are true then the

whole clause can be eliminated.

8. If a literal is no longer influential in a clause, then it

may be deleted from the FSL if it has false instances; if it

has only true instances, then the clause is deleted.

Factoring in HLR is somewhat different than in unrestricted

*resolution. For simplicity in explanation we will treat factoring

as explicit factoring. We approach the factoring issue by first

* stating that any factoring can be thought of as a sequence of

elementary factoring steps, where an elementary factoring step is

* defined to be a factoring of a clause where the set of literals on

which we factor contains just two literals. We also note that in

HLR, as in other binary resolution refinement strategies, it is

* only necessary to produce factors which unify literals with the

literal which will be next resolved away in a resolution step.

Thus in HLR we identify the next literal to be resolved on, and

3.1 Page 36

perform elementary factoring steps, yielding a set of factors.

These factors, and any further factors produced from them by

elementary factoring steps on the same literal, constitute the set

of factors of a clause that must be produced in HLR. We do not

here give a full description of the factoring process, but offer

the fullowing example to illustrate the nature of the

considerations that go into the factoring step. Suppose we wish to

factor the clause C:

C <1,A(x),50>, <2,A(f(y)),49>, <11,B(a),41>; FSL = ()

which can be syntactically factored on the second components of its

first and second literals by using the mgu f(y)/x. As in LR, we

delete the literal with the higher lock number, i.e. we "factor

low". The problem is that the first two literals of C have no

unique low number, since we do not know whether to use the true or

false lock numbers of these literals. Therefore we tentatively

produce the following two elementary factors of C:

F1 <1,A(f(y)),50>, <11,B(a),41>; FSL (@A(f(y)))

F2 = <2,A(f(y)),49>, <11,B(a),41>; FSL (A(f(y)))

We see that F1 stands for ground instances in which A(f(y)) is

true, and F2 for ground instances in which A(f(y)) is false. Now,

having done this, we can see that F2 is not a legitimate elementary

factor, The reason is that since A(f(y)) is false in F2, the first

literal in F2 must use its false lock number. But then the second

literal of F2 will be the one resolved away next. This meanz we

have factored C on a literal other than the one to be next resolved

3.1 Page 37 -

away, and this is unnecessary in HLR. Thus the only factor of C is

- Fl. Notice that it is necessary to check the FSL of F1 according

• .to the model to see that it is indeed possible to have @A(f(y))

- evaluate false. If the model says that @A(f(y)) is true, then F1

will be deleted also.

Our explanation of HL-Resolution thus far has been informal in

nature, but has covered enough of the relevant features of the

strategy so that we are now in a position to see and understand an

actual example of an HL-search space. This is done in the next

section.

K..

.4-

3.2 Page 38

3.2 An HL-Resolution Example

This section works through an example theorem taken from Chang

and Lee, p. 302, (Chang and Lee, 1973) and is stated as:

"If S is a nonempty subset of a group such that if x, y belong

to S then x * INVERSE(y) belongs to S, then S contains INVERSE(x)

whenever it contains x."

In order to have a search space of manageable size, for a hand

worked example, we leave out the associativity axioms for the

group. The true and false lock numbers are shown by writing

literals as ordered triples, with the first component being the

true lock number. We also write after each clause, "T", "F" or

"T/F" to indicate the following.

1. "T" if the clause has only true instances.

2. "F" if the clause has only false instances.

3. "T/F" if the clause has both true and false instances.

The model scheme, M, used for these truth evaluations for this

example will be that of simultaneous linear equations (SLE),

including inequalities. The following correspondence holds between

the language of the clause set, LC, and the language of the model,

LSLE:

P(x,y,z) => x+y-z=O

I(x) :> -x

1 > 0

SB :> B

S(x) :> x > B

- - -. z--.s- .-w - ,.

3.2 Page 39

where the constant B in LC is a Skolem function of no arguments

introduced by negating the theorem and transforming to CNF, and the

unary function I(x) is an abbreviation for INVERSEx).

The domain of individuals for M will be taken as real numbers,

and the symbols in LSLE have their usual meaning in real analysis.

There is one piece of ground case information in M, which is that

B > 0. We will not discuss how this model was obtained here.

The clauses for this theorem are:

1. <10,P(1,x,x),1000>; FSL = () T

2. <9,P(x,1,x),900>; FSL = () T

3. <8,P(x,I(x),1),800>; FSL C) T

* 4. <7,P(I(x),x,1),700>; FSL = () T

5. <6,S(B),600>; FSL = () T

6. <5,@S(I(B)),500>; FSL C) T

S7. <4,@S(x),IOO>,<3,@S(y),2OO>,<I,@P(x,I(y),z),300>,<2,S(z),400>;

FSL =) T/F

We will perform a breadth first search using HL-Resolution

with the SLE model given above, and the indicated lock numbering.

No factoring will be performed in order to keep this example as

simple as possible. The notation for following the search is that

n Tn x m Tm = r

means that clause number n, used for its Tn (i.e. true or false)

instances resolves with clause number m using its Tm instances,

resulting in the resolvent numbered r

3.2 Page 40

There is only one clause that can be produced at level 1.

This is because there exists only one clause with false instances

(clause 7), and we must resolve it on its lowest false lock

numbered literal, and there is only one other literal in the clause

set at this time that can possibly unify with it (the literal in

clause 5). Thus we produce the only clause at level 1, namely

5TxTF =8. <3,@s(y),200>, <1,@P(B,I(y),z),300>, <2,S(z),400>;

FSL (@S(y),@P(B,I(y),z),S(z)) F

Notice that @S(B) is not included in the FSL of clause 8 since

it is a ground literal and is false in M. Also notice that clause

* 8 has only false instances in M, as will always be the case in

HL-Resolution when one of the parents is a true unit clause.

At level 2 of the search there are two resolvents produced.

5Tx8F = 9. <1,@P(B,I(B),z),300>, <2,S(z),400>;

FSL = (@P(B,I(B),z),S(z)) F

7Tx8F 10. <4,@S(x),100>, <3,@S(y'),200>, <1,@P(x,I(y'),y),300>,

<1,@P(B,I(y),z),300>, <2,S(z),400>;

FSL = (@S(y),@P(B,I(y),z),S(z),@P(x,I(y'),y)) T/F

Now we start producing the clauses at level 3.

3Tx9F 11. <2,S(0),400>; FSL () F

We notice that 5Tx1OF produces no resolvents since the only

allowed unification according to the lock numbering, namely letting

x in clause 10 unify to B, results in a resolvent whose FSL set

-..W

3.2 Page 41

.... becomes

FSL =(@S(B),@S(y'),@P(B,I(y'),y),@P(B,I(y),z),S(z),@S(y))

* and the model M cannot make all of these literals false at the same

time, i.e. the resolvent would not represent any ground instances.

It turns out that we have completed level 3 already, since no

more pairs of clauses, both at level 2 or below, can resolve. Thus

level 3 consists of clause 11. We now start producing level 4.

7Tx11F 12. <4,@S(x),F00>, <1,@P(x,I(1),z),300>, <2,S(z),400>;

FSL = (@P x,I(1),z),S(z)) T

" 7Tx11F 13. <3,@S(y),200>, <1,@P(1,I(y),z),300>, <2,S(z),400>;

FSL :(@P(1,I(y),z),S(z),@S(y)) F

-. 10Tx11F : 14. <4,@S(x),I00>, <1,@P(x,I(1),y),300>,

<1,@P(B,I(y),z),300>, <2,S(z),400>;

FSL = (@S(y),@P(B,I(y),z),S(z),@P(x,I(1),y)) F

1OTx11F 15. <3,@S(y'),200>, <1,@P(1,I(y'),y),300>,

<1,@P(B,I(y),z),300>, <2,S(z),400>;

FSL :(@S(y),@P(B,I(y),z),S(z),@P(1,I(y'),y)) T/F

This concludes level 4 of the search.

Notice that both clauses 14 and 15 contain the literal @S(y)

in their FSL sets, and this literal came from the FSL set of clause

10. This literal is one of the reasons why clause 14 only has

false instances. Without that literal clause 14 would be classed

"T/F". It is worthwhile here to interrupt the search briefly to

i ,*

3.2 Page 42

show what the model evaluation is like for clause 14, for our

chosen model M.

We write the FSL and standard literals, each negated, in the

language of the model, for clause 14. This gives 8 conditions, one

for each literal.

1. x > B

2. x-O:y

3. B-y=z

4. z < B

5. y > B

6. B-y=z

7. z < B

8. x-Oy

This is a consistent set of conditions, so M returns false as

its evaluation. In order to show that there are no true instances

requires more work however. We see that the 2nd, 3rd and 4th

standard literals of clause 14 can never be true, since they are

represented in the FSL set. But we are not sure about the first

literal. To make a decision we translate the negations of the FSL

literals and the first literal (directly) into the language of the

model. This gives

1. x < B from @S(x)

2. y > B from @S(y)

3. B-y=z from @P(B,I(y),z)

3.2 Page 43

4. z < B from S(z)

5. x-O=y from @P(x,I(1),y)

. where the first condition is the direct translation of the first

literal in clause 14, and the rest are translations of the

negations of the clause 14 FSL literals, as shown on the right. We

see that the 5th condition says x=y, and this causes the first two

conditions to be contradictory. From this we conclude that the set

of substitutions that make all of the FSL literals simultaneously

false are disjoint from the set of substitutions that make @S(x)

true. Therefore the set of ground instances which clause 14 stands

for all have their first literal (i.e. @S(x), grounded) false. We

already knew that the other literals must be false since they were

* exactly represented in the FSL of clause 14. Thus clause 14

represents only false ground instances.

The above explanation of how the SLE model works is on an

intuitive level. For automatic theorem proving this model must be

implemented as a decision procedure for the class of expressions we

are interested in. As an example of such a decision procedure see

Cooper (Cooper, 1972). A somewhat different procedure for the SLE

model is currently being implemented for experimental purposes, but

it is not yet certain if it is actually a decision procedure.

We now pick up the search process again at the point we left

off, starting level 5.

11Fx12T 16. <1,@P(1,I(1),z),300>, <2,S(z),400>; A

FSL (@P(1,I(1),z),S(z)) F

S

3.2 Page 44

5Tx13F = 17. <1,@P(1,I(B),z),300>, <2,S(z),400>;

FSL (@P(1,I(B),z),S(z)) F

7Tx13F = 18.

In order to keep this example as clean as possible we will not

write out the forms of the clauses, unless they are involved in the

proof, or are of other interest, from this point onward.

5Tx14F 19.

7Tx14F 20.

11Fx15T = 21.

5Tx15F = 22.

7Tx15F = 23.

This concludes level 5, and we start level 6. C.

1Tx16F = 24.

At this point, clauses 3T and 18F resolve to give

<2,S(1),400>; FSL = C) F

which is a duplicate of clause 10. In general it could be

difficult to make decisions about subsumption possibilities or to

determine if two clauses which differ only in their FSL sets are

equivalent, without incurring a high computational load. We would

expect however, that a reasonable implementation of HL-Resolution

would detect the identity of this 3Tx18F resolvent and clause 11.

Thus we do the same in this example here, and delete this clause.

The next clause to be produced is

d .1

4]

3.2 Page 45

1Tx17F 25. <2,S(I(B)),400>; FSL () F

Clause 25 is a unit, and we assume that there is a one step

unit look-ahead in the search process. Thus, since clause 25

resolves with clause 6

6Tx25F 26. *BOX*; FSL () F

we have found a proof. The FSL is an important part of the HL-null

clause. If a null clause is formed during an HL-Resolution search

but the FSL requirement has no ground instances for which the

clause stands, then a proof has not been found of the required form

for HL-Resolution.

It should be emphasized that the 26 clauses (7 input and 19

generated) constitute the complete breadth first search space

(without factoring) of HL-Resolution for this problem. The null

clause appeared at level 7, and this was detected when the second

clause at level 6 was generated (i.e. clause 25).

This same clause set was also submitted to a breadth first

normal resolution theorem prover, and a proof was obtained after

reaching a search space size of 165 clauses. The theorem prover

used the one step look ahead for generated units, and a special

type of factoring which produces fewer factored clauses than the

usual factoring. The null clause was obtained at level 4, and this

*was seen after generating one clause at level 3, by the look ahead

for units. The total number of clauses at the end of level 2 was

163 clauses. Thus the search was growing rapidly in the number of

|I

3.2 Page 46

clauses per level already at level 2. An estimate of the number of j
-W

clauses contained in level 3 is 1300 clauses.

The search was also tried by the same theorem prover but

without any factoring at all. This time the proof was obtained

after generating 224 clauses. Again, a unit look ahead found the

proof at level 4 before level 3 was finished. This time 148

clauses were produced at level 3 before the look ahead discovered

the proof.

It is seen that the HL-Resolution search generates far fewer

clauses at any given level. However the null clause was 3 levels

deeper in HL-Resolution than in unrestricted resolution. To make a

more valid comparison between HL-Resolution and unrestricted

breadth first, with factoring (BF-FAC) and without (BF), we compare

the number of clauses generated at the time a proof was detected,

and the number of clauses contained in the search space at the

level two levels before the proof level.

type of number of clauses number of clauses

resolution at proof time level of proof 2 levels before

the proof level

HLR 26 7 8(level 5)

BF-FAC 165 4 147(level 2)

BF 224 4 63(level 2)

We see that HL-Resolution decreased the number of clauses by

about a factor of eight, for this particular problem.

E"

3.3 Page 4 7

3.3 Some Comments Concerning HL-Resolution Searches

and Other Resolution Searches

Resolution developed rapidly as a theorem proving method

through the development of a large number of strategies. Most of

these strategies were syntactically oriented, as was the basic

resolution procedure. The outstanding feature of these strategies

was their lack of uniformity in application effect. Any given

strategy might help the search tremendously on one specific

problem, and help very little, or become even detrimental when used

on a slightly different problem. Clearly these strategies were not

sufficiently sensitive to what was happening in the search space.

The two fundamental problems with resolution methods in

general are:

1. the lack of any effective techniques addressing themselves

to the Term Substitution Problem (TSP);

2. the restriction to local interaction in the search space

(LIP, for Local Interaction Problem).

The term substitution problem refers to the fact that in first

order logic (and therefore in first order resolution) the

semidecidability (as opposed to deciability) has its origin in the

inability to detect the non-existence of a grounding substitution

which makes a set of clauses an unsatisfiable set of ground

clauses. This means that the real procedural search, i.e., the

• part of the search that cannot both be bounded in the amount of

work performed and still maintain completeness of the search, is

U L " " . . : . . _

3.3 Page 48

the search over the Herbrand universe.

Most resolution strategies have no adequate method for

directly handling the TSP. In fact, they hide the problem by

prescribing the use of the most general unifier. This mgu is

automatically called forth, as a result of which clauses, and which

literals within these clauses, are chosen by the search strategies.

These strategies are typically insensitive to the TSP, and when

they are sensitive to it, they seem to be sensitive to the wrong

aspect of it. An example of a strategy which is insensitive to the

TSP is LR. Strategies which prevent the formation of clauses which

exceed a given bound on the depth of function nesting are an

example of strategies that are sensitive to the wrong aspect of the

TSP. A fundamental shortcoming of the use of the mgu in resolution

steps is that unification is essentially a two literal process,

while the resolution step involves all of the literals in the

parent clauses.

Even when the proper terms appear in a resolution search, the

sentential connections necessary are only found after, usually,

many additional clauses with new irrelevant, or redundant, terms

are generated. Thus resolution tends to be term intensive (and

indiscriminately so) rather than truth table intensive.

0i

We identify, then, two deficiencies in the way resolution

handles the TSP. The first is the promiscuous generation of

substitution instances, and the second is the lack of address in

following the sentential consequences of terms shortly after their

formation. These two problems are very closely connected, but not

0]

F 7 .--.-- -

3.3 Page 49

inseparably so. We will return to these two aspects of the TSP

after a brief discussion of the local interaction problem.

The local interaction problem (LIP) is, for large theorem

proving problems, the single most important factor causing

resolution search spaces to grow as fast as they do. There are two

recognizable aspects to this problem. The first is the pure

syntactic redundancy of a sentential nature which occurs whenever

the search procedure fails to have the property called singly

connectedness (Wos et al., 1967). Singly connectedness is almost

achieved by Lock Resolution and this aspect of the LIP can be

considered reasonably well handled by resolution strategies that

include LR within themselves.

i The second aspect of the LIP is the lack of adequate

communication of partial search results from one part of the search

space to other parts. Typically, when a resolvent is produced, the

only influence it has is through subsumption of or by other

clauses, or through direct resolution with other clauses. Both of

these modes of interaction, but particularly resolutions, become

impractical in a search which is combinatorially growing What is

needed is some form of interaction that uses information in a

clause, immediately upon the generation of the clause, to simplify

the rest of the search space. This interaction could be semantic,

syntactic, or both.

HL-Resolution does something about both the TSP and the LIP

which most other resolution strategies do not. It avoids producing

new term substitutions at the high rate that other strategies do.

3.3 Page 50

Looking back at the hand worked example of section 3.2, we see that

HL-Resolution produced no new terms at all of higher function

nesting depth than that which existed in the input set. This is in

distinction to the unrestricted breadth first resolution searches

with which it was compared, which by level 2 had already introduced

a term with 2 additional levels of function nesting. To whatever

degree HLR retards the introduction of new term classes in the

search it must be instead concentrating effort in the direction of

exploring the sentential connections of term classes already in the

search space. This is true in a weak sense only, however. The

problem here is that we really need to achieve a much stronger

characterization (and concomitant ability to control) the ground

instances that a general level clause represents. At present HLR

controls the allowed ground instances according to a truth

characterization evaluated by a model. There is reason to believe

that HLR can be extended (semantically and syntactically) so as to

exert even more control over the form of the search, and it is

expected that such extensions will specifically help with the TSP.

The whole issue of proper term substitution is a delicate one since

semidecidability of the first order logic limits what can be done,

but yet it is clear that current methods are not yet optimal within

this limit.

The LIP is handled in a partial manner by HL-Resolution as

formulated. An HL-clause carries with itself, implicitly in the

information in the FSL set, a notion of where it came from.

Remember that the model, M, is used in a manner similar to the way

it would be used in TMS. However, TMS is quite sloppy with respect

3.3 Page 51

to just what instances of a clause are the relevant ones in a

resolution step. This gives rise in TMS to a search space which at

the general level may locally make sense, but globally is

inconsistent with the central idea behind TMS. In particular it is

possible, using TMS and a model, M, to find a refutation for a set

of clauses such that

1. The general level proof tree satisfies The Model Strategy

as formulated in Luckham (Luckham, 1968), using M.

2. There does not exist any grounding substitution of the

proof tree such that the ground level tree formed satisfies

The Model Strategy using M.

In HL-Resolution it is the FSL set, in conjunction with the

model that prevents such a situation from occurring (in fact, the

lock numbers are also involved in this issue, but only

accidentally, i.e. TMS could have this defect corrected without

the utilization of lock numbers). Thus HL-Resolution introduces a

strong global constraint on the nature of the underlying ground

proof trees that it is searching over at the general level. This

is accomplished by including in the FSL set the information which

is relevant concerning how that clause was derived. An additional

effect of doing this is that it helps reduce the number of term

instances that can be formed.

Unfortunately, the real issue in the LIP, that of relating

information in one part of the search rapidly and effectively to

the rest of the search has not been handled very well at all.

There is some weak immediate information transfer in the sense that

3.3 Page 52

a resolvent, when generated, may result in a change in the model,

which then affects all future model evaluations. As in the case of

the TSP, there are indications here also that HL-Resolution can be

extended so as to handle the LIP more effectively.

This section has forced a somewhat unnatural conceptual

distinction between the TSP and the LIP. They are both really

reflections of a single underlying difficulty in resolution theorem

proving, which is that there is strong context dependency in the

structure of a resolution search space which is not being

adequately handlea. HL-Resolution is an initial attempt, through

the use of FSL's which are evaluated by a model, to increase the

context size, or scope, of the basis on which refinement strategy

decisions are made.

'0

0i-

-. -

3.4 Page 53

3.4 Definition of the Basic HL-Resolution Refinement Strategy

This section defines the basic HL-Resolution refinement

strategy in a precise fashion, and is not oriented toward an

implementation viewpoint and description. Notice that in this

section in order to make things precise, we modify the notion of

HLR clauses and clause sets. Input clause sets are transformed

into primitive representation HL-clause sets. Doing this clarifies

both the formal definition of the HLR refinement and the proof of

its completeness. The refinement strategy that results is referred

to as the basic HLR strategy. This strategy is defined in this

section in terms of primitive representation clauses. It is

important to distinguish between the phrases "basic HLR strategy",

p and "primitive representation clauses". The former is a refinement

strategy, while the latter refers to a notational scheme in which

this section presents the basic HLR strategy. Later in this report

(near the end of section 3.5) we indicate how the notions of HLR

stated here relate to the description of HLR given in sections 3.1

and 3.2.

An example of many of the definitions used in this and the

next section are to be found in the Appendix.

The usual notions of resolution are assumed familiar (e.g.

treating clauses as sets (and as lists) of literals, most general

unifier (mgu), and the notions of Herbrand universe and base). We

extend these notions in an obvious way implicitly in this section

(e.g. the mgu of two HL-literals is the mgu of their second

components). We define a Herbrand interpretation to be a set of

3.4 Page 54

ground literals such that every literal is either an element of the

Herbrand base or the negation of an element of the llerbrand base,

and every element of the Herbrand base appears in the

interpretation exactly once, either directly or with a negation

sign. If a literal is an element of a given Herbrand

interpretation then it is said to be true in that interpretation.

Otherwise it is said to be false in that interpretation.

HL-Literal

An HL-literal is a 3-tuple whose first and third components

are integers. The second component is a normal literal. We refer

to the assignment of integer values to the first and third

components of HL-literals as a lock numbering. Any lock numbering

of a set of HL-literals in which all the first component values are

smaller than all of the third component values is called a

HL-proper lock numbering. If all of the integers used in a

HL-proper lock numbering are distinct, the numbering is referred to

as unambiguous. We refer to an HL-literal as just a literal, and

specifically use the word "normal" when referring to normal

literals. The first component of a literal is called the true lock

number, and the third component is called the false lock number.

The selector functions for true and false lock numbers are t and f,

respectively. For all definitions which define new clauses in

terms of old clauses (e.g. resolving two clauses, or factoring a

clause) we assume that the old clauses have been replaced by copies

of themselves in which new unique variable names have been

substituted.

3.4 Page 55

A literal is a ground literal if no variable appears within

it. We define the truth value of a ground literal with respect to

a Herbrand interpretation, M, to be the same as the truth value of

its second component.

HL-Clause, Standard Literals, False Substitution Literals

An HL-clause, C, is an ordered pair of sets of literals. The

first set is denoted by SD(C) and elements of SD(C) are called

standard literals of C. The second set is denoted FSL(C) and

elements of FSL(C) are called False Substitution Literals of C. We

q* write

C <SD(C),FSL(C)>

as an obvious identity. Both standard literals and FSL literals

are HL-literals. This report makes no specific use of the lock

numbers of the FSL literals.

A grounding substitution, G, for a literal L, is any

substitution such that L(G) is a ground literal. A grounding

substitution, G, for a set of literals, S, is any substitution that

qualifies as a grounding substitution for each element of S. A

grounding substitution, G, for an HL-clause, C, is any substitution

that qualifies as a grounding substitution for SD(C) and for

FSL(C). If G is a grounding substitution for the HL-clause, C,

then C(G) is a ground HL-clause.

3.4 Page 56

In what follows M will designate an arbitrary but fixed

Herbrand interpretation. We define an evaluation function, also

denoted M, for the Herbrand interpretation M, such that if L is a

set of literals

T if for all grounding substitutions, THETA, of L,

M(L) at least one literal of L(THETA) is true in M.

F, otherwise

If L happens to be the set of normal literals of a normal

clause, then the above definition of M is usually what is meant by

a truth evaluation of a clause in resolution strategies (e.g. in

TMS).

Feasible Clauses

A HL-clause, C, is said to be feasible (with respect to M),

iff M(FSL(C)) = F. A HL-clause is infeasible iff it is not

feasible.

HL-Null Clause

An HL-null clause is any feasible HL-clause, C, such that

SD(C) is empty.

-6 --

3.4 Page 57

Exact Primitive Representation

For a given HL-clause, C, we say that the HL-clause k is an

exact primitive representation (with respect to M) of C iff:

1. SD(k) SD(C)

2. .FA. 1: 1 E FSL(C) ---> 1E FSL(k)

3. .FA. 1: 1 E SD(k) ---> [1 E FSL(k) OR

@1 c FSL(k)]

4. .FA. 1: 1 E FSL(k) ---> [@i c SD(C) OR

(1 e SD(C) V FSL(C))]

5. k is feasible

An exact primitive representation is an HL-clause. An HL-clause,

k, that fails to satisfy condition 4, but satisfies the other

conditions is called an inexact primitive representation of C.

When it is immaterial as to whether a primitive representation is

exact or inexact, it will be called just a primitive

representation. Notice that if k is a primitive representation of

C, then k is an exact primitive representation of k.

Exact Primitive Representation Set

The exact primitive representation set (with respect to M) of

C, is defined to be the set of all exact primitive representations

of C.

3.4 Page 58

M-Evaluations of HL-Clauses

We now extend the domain of the model evaluation function, M,

previously defined on sets of lite-als, to include also feasible

HL-clauses, as follows.

Let C be a feasible HL-clause, and let G(x,y) be the relation

which is true when x is a grounding substitution for the

HL-clause y. Then

T if .FA. THETA: [G(THETA,C)

and M(FSL(C)(THETA)) = F]

--- > [M(SD(C)(THETA)) TI

M(C) F if .FA. THETA: [G(THETA,C)

and M(FSL(C)(THETA)) F]

--- > [M(SD(C)(THETA)) F]

T/F otherwise

The above definition is for HL-clauses in general. Notice that if

the clause C is a ground clause (i.e. SD(C) and FSL(C) are ground

sets of literals), or if C is a primitive representation clause,

then M(C) will never be "T/F".

Selected True Literal

Let k be a primitive representation of C, then for each

literal 1 such that

1. 1 E SD(k)
2. @1 E FSL(k)

3.4 Page 59

3. .FA. m: [m E SD(k) AND

@m E FSL(k)] --- > t(l) < t(m)

we say that 1 is a selected true literal of k.

Selected False Literal

If k is a primitive representation of C, and

.FA. m: m E SD(k) --- > c E FSL(k)

then for each literal 1 such that

1. 1 E SD(k)

2. .FA. m: m E SD(k) --- > f(l) < f(m)

q we say that 1 is a selected false literal of k.

Selected Literal

Let k be a primitive representation HL-clause. If M(k) T

then a selected literal of k is any selected true literal of k. If

M(k) F then a selected literal of k is any selected false literal

of k.

Selected Factor

Let k be a primitive representation HL-clause with a selected

* literal L whose second component is L'. If there exists a set of

i* one or more literals Li, L2, . . . , each distinct from L and

each in SD(k), and with second components Li', L2'

respectively, such that OMEGA is the mgu of the set of literals

*'

3.4 Page 60

L', LI', L2', then the clause

F <(SD(k) - Li - L2 .), FSL(k)>(OMEGA)

is a selected factor of k on selected literal L iff F is feasible.

OMEGA is called the factoring unifier. A reduced selected factor,

RF, of k on selected literal L is any selected factor of k on

selected literal L such that there is no literal in SD(RF) whose

second component is identical'to the second component of L(OMEGA),

except L(OMEGA) itself, where OMEGA is the factoring unifier.

All selected factoring is assumed to be reduced, and will be

referred to simply as selected factoring. Notice that, aside from

the literals factored out, the factoring unifier may also cause two

or more standard literals to have identical second components, but

with none of them equal to the second component of the selected

literal on which factoring is being performed. These other

literals are all retained in the factored clause.

Let C be a primitive representation clause, and L a selected

literal of C. If there is no other literal in SD(C) with a second

component identical to the second component of L, then C is said to

be a (reduced) selected factor of itself on selected literal L.

Primitive Representation Binary Resolvent

Let C and D be two primitive representation clauses. Let LC

4be a selected false literal of C, and LD a selected true literal of

D, such that LC and @LD are unifiable with mgu THETA. Then the

*clause R is a primitive representation binary resolvent (on

0

3.4 Page 61

literals LC and LD, and with respect to model M) of C against D

iff:

1. SD(R) : ((SD(C)-LC) V (SD(D)-LD))(THETA)

2. FSL(R) = (FSL(C) U FSL(D))(THETA)

3. R is feasible in M.

C is called the false parent of R, and D is called the true parent

of R.

Basic Primitive Representation Deduction

We define a basic primitive representation deduction (with

respect to M) of R from S to be a finite binary rooted tree with:

1. all of its leaves being primitive representation clauses

in S;

2. each internal node a primitive representation binary

resolvent of selected factors of the two nodes above it, with

the condition that the two literals resolved upon in the

resolution are the selected literals actually used as the

literals on which the selected factoring occurred;

3. R at the root.

A basic primitive representation deduction from S of an HL-null

clause is called a basic primitive representation refutation of S.

3.4 Page 62

HL-Associated Input Set

Let S' be a set of HL-clauses, and S a set of normal clauses.

Then S' is called the HL-associated input set (with lock numbering

LN) for S iff:

1. LN is a HL-proper lock numbering of S';

2. there is a 1-1 mapping, C, from S to S', and a 1-1 mapping

L, from normal literals of S to literals of S' such that for

all x E S and for all k we have:

a) L(k) E SD(C(x)) iff k E x

b) k E x --- > k equals the second component of L(k);

3. for all u, u S' --- > FSL(u) is empty.

Exact Primitive Representation HL-Associated Input Set

The exact primitive representation HL-associated input set of

S is a set, HLS, of exact primitive representation clauses formed

by replacing each clause, C, in the HL-associated input set for S

by the exact primitive representation set of C. In HLS there will

in general be many pairs of clauses that share the qame lock

numbers. If the literals in clauses in HLS have their lock numbers

re-assigned so that HLS has an unambiguous HL-proper lock

numbering, then we say that HLS has been disambiguated.

This completes the set of definitions needed for the basic HLR

strategy expressed in primitive representation form. The next

section states and proves the soundness and completeness theorem

for this strategy.

3.5 Page 63

- ..

3.5 Soundness and Completeness of HL-Resolution

This section first states a soundness and completeness theorem

for basic primitive representation HL-Resolution, and then gives a

proof of this theorem. Finally it is indicated how the basic

primitive representation results are related to the basic

non-primitive representation HL-Resolution. Refer to the Appendix

for an example of some of the notions used in this section.

THEOREM

(Soundness and Completeness of Primitive Representation Deduction)

Let S be a set of normal clauses, and let M be an arbitrarily

chosen Herbrand interpretation in the language of S. Let HLS be

the exact primitive representation HL-associated input set (with

IlL-proper lock numbering LN) of S, with respect to M. Then S is

unsatisfiable iff there exists a basic primitive representation

refutation (with respect to M) of HLS.

3.5 Page 611

PROOF

By normal resolution will be meant unrestricted binary

resolution with implicit factoring. Normal resolution is known to

* be sound and complete.

soundness

It is to be shown that if S is satisfiable, then there exists

no basic primitive representation refutation of HLS. The proof is

by contradiction. We assume both the satisfiability of S and the

existence of a basic primitive representation refutation of HLS,

which we denote by R-HLS. We form the tree R' from the tree R-HLS

by replacing each clause in R-HLS by the set (actually list) of

second components of its standard literals. By looking at the

definitions of basic HLR at the primitive representation level, it

should be clear that the new tree, R', is in fact a normal

resolution refutation of S. But normal resolution is sound, so

that we have the contradiction. Thus basic primitive

representation resolution is sound.

completeness

For ease of reference the characteristics of the clause sets

and other items involved in the completeness proof are listed here.

S is a set of normal general level clauses which is

unsatisfiable.

3.5 Page 65

SG is a set of normal ground clauses which are ground

instances of clauses in S, and is minimally

I< unsatisfiable.

GR(S,SG) is a list of sets of substitutions which, when

applied to S yields SG.

HLS is a set of general level exact primitive

representation clauses, which is the exact primitive

representation HL-associated input set of S (with

respect to model M, and with HL-proper lock

numbering LN). We assume for now that HLS is not

ambiguously numbered. Later this requirement is

dropped.

HLSG is a set of ground exact primitive representation

clauses formed by applying GR(S,SG) to HLS.

SGL is a set of ground lock normal clauses identical to

SG except that lock numbers have been added to the

literals in SGL in a specific way relative to the

structure of HLSG.

MLR is a Modified form of Lock Resolution.

R-SGL is a refutation of SGL according to MLR.

R-HLSG is a ground basic primitive repi esentation

refutation of HLSG.

R-HLS is a general level basic primitive representation

refutation of HLS.

3. 5 P;iwo 60

The completeness proof requires that we establish the

existence of a basic primitive representation refutation of HLS

based upon the unsatisfiability of S, and that this be done for an

arbitrary Herbrand interpretation, M, as the model, and for an

arbitrary HL-proper lock numbering, LN, of HLS. The notion of

satisfiability of HLS is neither defined nor used in this proof.

Let S, HLS, LN and M be as stated in the hypothesis of the

theorem. For the completeness proof we further assume that S is

unsatisfiable. We will consider S to be a non-ground set of

clauses and state the proof for that situation. If S is a ground

set of clauses then a large part of the proof given here is

superfluous, and the reader should be able to identify which parts

are relevant to treating the ground case. The following is an .

outline of the proof steps.

1. Preliminary definitions and lemma statements.

2. Herbrand's theorem applied to S yields a ground set SG,

which is minimally unsatisfiable.

3. A set of ground clauses, HLSG, each of which is a

strict grounding of a clause in HLS, is defined and related to

clauses in SG. A lock numbered set of clauses, SGL, is formed

from SG.

4. A Modified form of Lock Resolution (MLR) is defined and

applied to SGL to yield a refutation of SGL, called R-SGL.

R-SGL is then transformed into a basic primitive

representation refutation of HLSG, called R-HLSG.

" ' -- "
' - - -.T

3.5 Page 67

5. The Lifting Lemma is used to transform R-HLSG into a

general level refutation, R-HLS, of HLS which is a basic

primitive representation refutation of HLS.

6. The Lifting Lemma is proved.

In the completeness proof it is best to think of clauses as

"bags" or "heaps" of literals, as opposed to ordinary sets of

literals.

Step 1.

The following lemma will be used in step 6 in the proof of

Lemma IV.

LEMMA I

Let L be a set of literals

AlA2, . . . Am,Bl,B2, . . . Bn

and SIGMA a grounding substitution for L such that

Al(SIGMA) A2(SIGMA) . . . Am(SIGMA)

If LAMBDA is the mgu of the set of literals AI,A2, . . Am,

then there exists a substitution, RHO, such that SIGMA

(LAMBDA)(RHO).

We do not prove this lemma.

6t

3.5 Page 68

Strict Grounding

Let U be a primitive representation clause and V a ground

primitive representation clause. Then V is a strict grounding of U

under substitution RHO, relative to the Herbrand interpretation M,

iff all of the following conditions are met:

1. V is feasible with respect to M.

2. There exists a total 1-1 mapping, g, from SD(U) onto

SD(V) such that for all k E SD(U) it is the case that g(k) is

identical to k(RHO) in all three components.

3. There exists a total 1-1 mapping, h, from FSL(U) onto

FSL(V) such that for all k E FSL(U) it is the case that h(k)

is identical to k(RHO) in all three components.

If a literal of U and a literal of V map to each other under f

or g, then those two literals are said to be naturally associated

(by g or by h).

LEMMA II

Let x be a strict grounding of the primitive representation

clause X under substitution TAU. If x' is a selected true (false)

literal of x, then for every literal X' in X such that X'(TAU) = x'

(i.e. equality for all three components), it is the case that X'

is a selected true (false) literal of X. Furthermore there will

exist at least one X' in X such that X'(TAU) x'.

3.5 Page 69

PROOF OF LEMMA II

Case 1: x' is a selected true literal in x.

The proof is by contradiction, where we assume x' is a

selected true literal of x and that there exists some X' in X such

that X'(TAU) x', and X' is not a true selected literal of X. If

x' is a selected true literal in x, then @x' is an element of the

FSL of x, and by the definition of a strict grounding there exists

at least one literal @X'' in the FSL of X such that @X''(TAU)

@X', and at least one standard literal X'' such that X''(TAU) = x',

where equality between literals here means that they are identical

in all three components. Let X' be any specific literal in X such

that X'(TAU) = x'. By the definition of a strict grounding, x must

be feasible. This means that @X' e FSL(X). Assume now that X' is

not a selected true literal of X. By the definition of a selected

true literal the only way that X' can fail to be a selected true

literal of X is if there exists a standard literal L in X such that

@L is in the FSL of X, and the true lock number of L is less than

the true lock number of X'. But if this were the case, then there

would exist a standard literal, L(TAU), and an FSL literal,

PL(TAU), both in x, and the true lock number of L(TAU) would be

less than the true lock number of x'. But then x' could not be a

selected literal of x. Therefore we have the contradiction, and X'

must be a selected literal of X.

Case 2: x' is a selected false literal in x.

Similar to case 1.

p,.

3.5 Page 70

Immediate Primitive Representation Deduction

Let w, u and v be primitive representation clauses. An

immediate primitive representation deduction of w from u and v is a

basic primitive representation deduction tree with u and v as

leaves, and w at the root, and containing no other clauses. If

there is an immediate primitive representation deduction of w from

u and v, then w is said to be immediately deducible from u and v.

Ground Normal Lock Image

Let x be a ground clause that consists of a set of ground

normal literals with lock numbers, i.e. each literal is an ordered

pair in which the first component is a normal ground literal, and

the second component is a number. Let X be a ground primitive

representation clause. Then x is a ground normal lock image of X

iff there exists a function, g (not necessarily unique), which is a

1-1 total mapping from standard literals of X onto literals of x

such that the following holds:

1. L E SD(X) and L E FSL(X)

.... > g(L) = <second component of L, f(L)>

2. L SD(X) and @L E FSL(X)

....> g(L) = <second component of L, t(L)>

where t and f are the selector functions for the true and false

lock numbers of HL-literals. The function g is called the ground

normal lock function.

,'. --. -*

3.5 Page 71

The next lemma uses the MLR, which is defined in step 4 of the

completeness proof.

LEMMA III

Let X and Y be ground primitive representation clauses, and x,

y be ground normal lock images of X and Y respectively. If there

exists a clause z, which is a resolvent of x and y according to

MLR, then there exists an immediate primitive representation

deduction of a clause, Z, from X and Y, such that z is a ground

normal lock image of Z.

PROOF OF LEMMA III

We do not give a detailed proof here, but just indicate how to

proceed.

First we realize that some specific model, M, must exist, in

order for X and Y to be well defined. This is because a primitive

representation clause is by definition a feasible clause, and so is

defined relative to some model. Also we can assume a ground normal

lock function, GI, exists (not necessarily unique) which associates

literals from X to x, according to the definition of a ground

normal lock image. Similarly for a G2 associating literals from Y

to y. Then, for the z which exists by the lemma hypothesis, we can

construct a set of HL-literals (using GI and G2) to represent the

standard literals of clause Z. An FSL set for the clause Z is

simply the union of the FSL sets of X and Y. Now it is necessary

to show that this constructed Z actually can be at the root of an

3.5 Page 72

immediate primitive representation deduction with X and Y as

leaves. This requires checking the definitions of MLR and HLR and

seeing that everything done to construct z from ground normal

locked literals in x and y according to MLR, is also allowed in HLR

to produce Z from the corresponding ground HL-literals in X and Y.

Specifically the factoring of MLR corresponds to the reduced

selected factoring of HLR on ground clauses. Also, every selected

literal in x under MLR is mapped to a selected literal of X in HLR

by the function GI. Similarly for G2 (if we were doing this in

detail this would require a lemma statement similar to Lemma II).

Finally the constructed Z must be feasible since it has an FSL

which is just the union of FSL sets which consist of only ground

literals, and which came from clauses that were feasible.

LEMMA IV

(ground to general level lifting lemma)

Let X,Y,x,y,z be primitive representation clauses, in which X

and Y have their variables standardized apart, and with x a strict

grounding of X under substitution TAU, and y a strict grounding of

Y under substitution NU. If it is the case that there exists an

immediate primitive representation deduction of z from x and y,

then there exists an immediate primitive representation deduction

of a clause Z, from X and Y, such that z is a strict grounding of

z.

PROOF OF LEMMA IV (see step 6)

3.5 Page 73

Step 2.

S is an unsatisfiable set of normal clauses, and we assume

that the clauses in S have their variables standardized apart.

Consider S as ordered so that we may speak of the k-th clause in S.

By Herbrand's theorem (Chang and Lee, 1973) there exists a set

of ground clauses, SG, each of which is an instance of a clause in

S, and SG is minimally unsatisfiable (in particular SG does not

contain two clauses which are identical). The substitutions which

convert S to SG are denoted by GR(S,SG). GR(S,SG) is a list of

sets of substitutions, such that the k-th element of GR(S,SG) is a

set of j(k) distinct substitutions to be applied to the k-th clause

in S, generating j(k) distinct ground instances of that clause in

? SG. We do not delete duplicate literals in any clause in SG. A

clause x in S is said to be naturally associated with a clause y in

SG iff x is the k-th clause in S, for some k, and x(TAU) y for

some TAU in the k-th element of GR(S,SG). The symmetric relation

"naturally associated" defines a function which is many-one from SG

into S, and is total on SG. If x in S and x' in SG are naturally

associated, we define an extension of the naturally associated

relation to include a natural association of literals L in x and L'

in x' in the obvious way. The natural association of literals in x

and x' defines a total 1-1 mapping from x onto x'.

Notice that Herbrand's theorem does not imply a unique SG. We

choose any minimally unsatisfiable one for the completeness proof.

Having S and a specific SG still does not necessarily give a unique

GR(S,SG). We are free to choose any specific GR(S,SG) for the

All

3.5 Page 74

completeness proof. Having SG and GR(S,SG) specific allows a

unique relation of naturally associated to be defined on pairs of - p

clauses, one in S and one in SG. However the naturally associated

relation on pairs of literals is still not unique, and we are free

to choose any specific one.

* Step 3.

We are now going to define a set, HLSG, which is a set of

ground exact primitive representation clauses. Each clause in HLSG

will be a strict grounding of some clause in HLS.

Assume that the k-th element of GR(S,SG) is non-empty. Let c

be the k-th clause in S, and EPRS(c) the set of exact primitive

representations in HLS for the normal clause c in S. Notice that

this is actually a two stage connection. First there is a unique

clause, c', in the HL-associated input set of S, which is the

non-primitive representation HL-clause corresponding to c. Then

EPRS(c) is the exact primitive representation set of c'. Any

element of EPRS(c) is said to correspond to c. Assume each exact

primitive representation clause in EPRS(c) uses the same variable

names as are used in c. Let RHO be an element of the k-th list

element of GR(S,SG). Then applying RHO to each member of EPRS(c)
:4

will result in precisely one feasible ground clause, which we

denote by apply(RHO, EPRS(c)). The clause apply(RHO, EPRS(c)) will

be considered as a strict grounding, i.e. no deletion of identical

literals will be done.

3.5 Page 75

The set HLSG is the set of ground exact primitive

representation clauses which are generated by applying all

substitutions contained in all of the elements of GR(S,SG) to the

appropriate clauses in HLS. Each clause in HLSG is ground, is an

exact primitive representation clause, and is a strict grounding of

a clause in HLS.

Again we extend the naturally associated relation, this time

to relate normal clauses (and normal literals) in SG to clauses

(and standard literals) in HLSG. We relate the clause x in SG to

the clause y in HLSG iff there exists clauses u, v and substitution

OMEGA with the following properties:

- 1. there exists a k such that u is the k-th clause of S, OMEGA

is an element of the k-th element of GR(S,SG), and u(OMEGA) = x.

2. v is an exact primitive representation clause in HLS which

corresponds to u, and v(OMEGA) y.

The pairing of clauses between SG and HLSG is unique (if a specific

choice has been made for GR(S,SG)). This pairing of clauses by the

naturally associated relation constitutes a 1-1 total function

between SG and HLSG.

The naturally associated relation between literals in clauses

" which are naturally associated is defined in the obvious way by

* "noting that a clause in SG is identical to the set (actually "bag")

*. of second components of the standard literals of '' clause with

- which it is naturally associated in HLSG. Thus for x in SG, and y

3.5 Page 76

in HLSG, if x and y are naturally associated then there will exist

a total 1-1 mapping of literals from x to literals of y. The

pairing of literals between SG and HLSG is not unique. We

arbitrarily choose any one of them for the completeness proof. We

note here that this lack of a unique extension of the naturally

associated relation on literals is not essential, and that by

keeping careful track of the identity (or source) of literals in S,

SG, HLS, and IILSG, we could have arrived at this point in the proof

with a unique pairing of literals. This was deemed an unnecessary

complication since the completeness proof does not require it.

Now we define SGL to be a copy of SG in which each literal, L,

of SGL, is assigned a lock number in the following way.

If L' is the literal in HLSG which is naturally associated

with L, we assign to L the true lock number of L' if L' is true

in M, else we assign the false lock number of L' to L.

In the above the relation naturally associated on clauses and

literals of SGL to clauses and literals of HLSG has been assumed to

be defined in the obvious way.

Each clause in SGL is a ground normal lock image of the clause

in HLSG with which it is naturally associated.

Step 4.

We define MLR to be a Modified Lock Resolution refinement

strategy for ground sets of arbitrarily lock numbered normal

clauses. MLR is similar to ordinary Lock Resolution except with

3.5 Page 77

respect to factoring. No explicit factoring is allowed, which

means at the ground level that the input set of clauses does not

have duplicate literals removed, and when resolvents are formed

there will be no merging of duplicate literals in the resolvent.

There is, however, mandatory implicit factoring of the following

form. When resolving clause Ci on literal LI with clause C2 on

literal L2, all literals, Li', in CI which are identical (except

possibly for lock number) to Li are implicitly factored away.

Similarly for all literals L2' in C2 identical to L2. MLR is a

complete ground refinement strategy. This can be proved easily in

several ways, one of which is the same as is used to prove LR

complete (Chang and Lee, 1973). Thus there will exist a MLR

refutation, R-SGL, of SGL.

Now we transform the refutation tree R-SGL by replacing the

ground normal lock clause at each node by a ground primitive

representation clause in the following way. If the node is a leaf,

and x E SGL is the clause there, then replace it by the naturally

associated exact primitive representation clause of x which is in

HLSG. For each internal node, k, of R-SGL which has not had its

clause replaced, but whose parents have had their clauses replaced,

we apply Lemma III, which asserts the existence of a primitive

representation clause which is immediately deducible form the new

clauses at the parents of k. Furthermore this deduced clause has

the original clause at node k as a ground normal lock image, and

thus it becomes the new clause at node k. We continue this process

of clause replacement, by virtue of Lemma III, in a breadth first

manner, i.e. first all level 1 nodes are replaced, then all level

3.5 Page 78

2 nodes, etc., until the root is finally replaced. At this point

we recognize that at the root of the transformed tree must be a

ground HL-null clause, since the new clause at the root has a

ground normal lock image which has no literals.

Thus we have shown the existence of a basic primitive

representation refutation of the ground set HLSG, and we call this

refutation R-HLSG.

Step 5.

Now we transform R-HLSG into a general level refutation of

*.HLS, called R-HLS. This is done one level at a time by first

replacing each leaf clause, x, of R-HLSG by the clause y in HLS

such that x is a strict grounding of y. We remember that HLSG was

construced as a set of strict groundings of HLS, so such a y will

exist, and will in fact be unique. Now, by a process completely

analogous to the transformation, in the previous step, of R-SGL

into R-HLSG, we apply Lemma IV repeatedly to transform R-HLSG into

R-HLS. The new clause, x, that replaces the old root clause, y,

must be an HL-null clause, since y had no standard literals and y

is a strict grounding of x. The resulting new tree is a general

level basic primitive representation refutation of HLS.

Thus we have shown the existence of a basic primitive

representation refutation of HLS based on the unsatisfiability of

the set S. The proof of completeness now just requires the proof

of Lemma IV, the Lifting Lemma.

3.5 Page 79

) -.. Step 6.

We repeat the statement of Lemma IV here.

LEMMA IV: Let X,Y,x,y,z be primitive representation clauses,

in which X and Y have their variables standardized apart, and with

x a strict grounding of X under substitution TAU, and y a strict

grounding of Y under substitution NU. If it is the case that there

exists an immediate primitive representation deduction of z from x

and y, then there exists an immediate primitive representation

deduction of a clause Z, from X and Y, such that z is a strict

grounding of Z.

PROOF OF LEMMA IV

We will need ma'nly to concentrate on the standard literals of

clauses.

Let

x = xl,x2, . . xn; FSL =

y = yl,y2, . . . ym; FSL =

z zl,z2, . . . zk; FSL

By the hypotheses of the lemma, x and y resolve to produce z.

Without loss of generality we assume that x is the fals cl, use and

y the true clause, and that x1 and yl are the selected li*, , -i

used in the resolution of x against y to yield z. Thus xl

where the negation sign is taken to be an operator ,at

,syntactically "inverts" the negation status of a literal. LeL Fx

pq

3.5 Page 80

be the set of literals in x that have the same second components as

x1, including xl itself. Let Fy be the similar set relative to

literal yl for clause y Then the immediate primitive

representation deduction of z from x and y must produce a z with

the following structure:

SD : (SD(x) Fx) V (SD(y) - Fy)

FSL(z) FSL(x)%J FSL(y)

The clause z is of necessity feasible since x and y were feasible

ground clauses. By the lemma hypothesis x is a strict grounding of

X (under TAU) and y is a strict grounding of Y (under NU). This

allows us to assume the existence of a (not necessarily unique)

naturally associated relation between literals of X and x, and also

between literals of Y and y. This relation is defined by the

functions g and h which must exist for the definition of a strict

grounding to apply. The functions g and h, and therefore this

definition of the naturally associated relation are not necessarily

unique. Let X1 be the literal in X naturally associated with xl in

x, and FX the set of literals of X whose naturally associated

literals in x are in Fx. Similarly for Y1 and FY. Let

X = Xl,X2. . . . Xn; FSL =

Y = Yl,YI Ym; FSL =

have their literals written in the same order as the naturally

associated literals in their strict groundings, X(TAU) and Y(NU),

respectively. Now, knowing that xl = @yl we can assert that there

exists a unifier of the set FX LiFY (ignoring negation signs). By

0

3.5 Page 81

the Lemma hypothesis X and Y have their variables standardized

apart. Thus we can assert by Lemma I for any mgu, OMEGA, of the

set FX IJFY (ignoring negation signs), there exists a substitution

SIGMA such that for 1 < i < n and 1 < j < m

Xi(OMEGA)(SIGMA) xi

Yj(OMEGA)(SIGMA) = yj

By Lemma II we can assert that X1 is a selected false literal

of X, and Y1 is a selected true literal of Y. This means that the

clause

X' ((SD(X) - FX)(JXI) (OMEGA); FSL --- (OMEGA)

is a reduced selected factor of X, and is feasible. Similarly for

a Y'. Therefore there will exist a primitive representation binary

resolvent, Z, of X' and Y' on selected literals X1(OMEGA) and

Y1(OMEGA), in X' and Y' respectively. This constitutes an

immediate primitive representation deduction of Z, from X and Y, on

selected literals X1 and Y1, respectively. Specifically Z is

U defined by

SD(Z) (SD(X) - FX)(OMEGA) L (SD(Y) - FY)(OMEGA)

FSL(Z) FSL(X)(OMEGA) g. FSL(Y)(OMEGA)

/,.. -

U.

3.5 Page 82

* .From the construction of Z it should be realized that

SD(Z)(SIGMA) SD(z)

and

FSL(Z)(SIGMA) FSL(z)

Furthermore the clause Z is feasible since z is feasible. Thus

there is an immediate primitive representation deduction of Z from

X and Y, such that z is a strict grounding of Z. This proves the

Lifting Lemma.

The above completeness proof shows the existence of a basic

primitive representation refutation of HLS based on the

unsatisfiablility of S. It was assumed in the statement of the

soundness and completeness theorem that HLS had been disambiguated.

The proof of completeness itself is a valid argument independently

of whether HLS is disambiguated or not. A stronger refinement

results if HLS is disambiguated. However, in order to relate the

basic primitive representation HLR to the basic non-primitive

representation HLR, HLS should be left ambiguous. This

relationship involves the notion of a non-primitive representation

* clause "standing for", or containing within itself several distinct

primitive representation clauses. Such a relationship is analogous

to the relationship of a general level clause to the ground

instances it represents or contains. In order to support the

completeness of HLR it the non-primitive representation level, we

would need to use something of the form:

. .. .* . - -. . * .. - - - . - - - . - -- - , - - -.- - C -

3.5 Page 83

LEMMA V: (primitive representation to non-primitive

representation "lifting" lemma)

Let u, v be primitive representations, respectively, of

HL-clauses U and V. If there is an immediate primitive

representation deduction of w from u and v, then there is an

immediate HL-deduction of a clause W from U and V such that w is a

primitive representation of W.

Such a lemma statement requires that "immediate HL-deduction"

be defined. This requires producing, at the non-primitive

representation level, a complete set of definitions of

HL-Resolution, much as has been done in section 3.4 for primitive

q7 representations.

We will not actually carry out this program of development

here for the following reasons:

1. We are not dwelling on implementation issues in this

report, and even if we were it is not clear that the

prescription in sections 3.1 and 3.2 are the best "lifted"

versions of the basic primitive representation strategy stated

here.

2. HL-Resolution is being stressed as a theoretical

refinement strategy in this report, and in this vein the

primitive representation viewpoint lays bare more of the

structure of the strategy, and is thus the level at which the

strategy should be studied.

3.5 Page 84

3. Further refinements and extensions of HLR will undoubtably

best be initially phrased at the primitive representation

level, and only later, if at all, "lifted" above the primitive

representation level. There iL also a strong possibility that

. future extensions of HLR might be best expressed in primitive

representations even in an implementation.

The basic issue with respect to implementation of HLR is that,

on a per clause basis, primitive representations require more

storage. In addition, in the early part of the search, there will

be many more clauses than if a non-primitive representation form is

used. On the other hand, because of the ability to disambiguate

the lock numbering at the primitive representation level, we see

that, as formulated in this report, the primitive representation

level is essentially a stronger statement of the basic HLR

strategy. What one would wish to have is some form of dynamic

assignment of lock numbers at the non-primitive representation

level so as to achieve the same (or perhaps even stronger) degree

of singly connectedness as is available at the primitive

representation level.

3.6 Page 85

3.6 Evaluation of the HL-Resolution Strategy

The HLR strategy as stated in this report is a semantically

oriented resolution strategy which attempts to achieve search

efficiency by extending the notion of a clause to include

information about the derivation history of the clause. This

information then restricts the way in which the clause may further

be used, so as to constrain the search at the general level to

correspond only to ground refutations of a very restricted form.

This ground refutation is exactly a lock refutation on the ground

set, with a lock numbering meeting some additional conditions

relative to a chosen Herbrand interpretation. HLR is more faithful

to its ground form in the sense that an HL-refutation found at the

general level will always correspond (in a strong sense) to some

HL-refutation of some unsatisfiable ground set. This is not the

case in SR (or in LI-clash resolution, (Slagle,. 1972)), nor is it

the case in TMS.

HL-Resolution was seen to help alleviate both the term

substitution problem and the local interaction problem, but still

was not an adequate treatment of these problems. There are

indications that much more can be done in HLR to neutralize these

two sources of search combinatorics

Judging the relative merits of various resolution strategies

is often very difficult to do with any certainty. This is

particularly the case when the basic HL-Resolution strategy is

involved because of two factors:

3.6 Page 86

1. There is no full implementation of the basic HL-refinement

yet available.

2. There are two additional degrees of freedom in an

HL-search, namely the choice of model, and the particular

assignment of lock numbers.

Within the limitations imposed by these two factors the

following items, at least, can be safely stated.

1. For a sentential clause set HLR automatically becomes

normal Lock Resolution, which is among the more efficient of

the known resolution refinement strategies, particularly for

(near or exactly) minimally unsatisfiable sets.

2. When the model is chosen to be all negative literals, HLR

specializes to a refinement of PI deduction. Thus, in the

worst case of a completely trivial model, HLR can be assumed at

least superior to P1 deduction (or to P1 deduction under some

renaming).

3. On simple problems the search seems to grow at about the

same rate as for SL-resolution (Kowalski and Kuehner, 1971).

There are reasons to believe that HLR will gain a relative

advantage over SL-resolution both as the clause sets become

more complex (but near minimally unsatisfiable), and as clause

sets become cluttered with irrelevant clauses. These reasons

have to do with the (intuitively) expected characteristics of

FSL's of clauses generated at the deeper levels of search. As

with most questions of resolution search efficiency, these

characteristics seem quite resistant to theoretical analysis.

3.6 Page 87

We mention here that there are some immediate surface

analogies between SL-resolution (similar also to Model Elimination

(Loveland, 1968, 1972)) and HLR. These become apparent if

connections are made between FSL literals and framed literals, and

ordered clauses and lock numbered ordered literals 'n an HL-clause.

There are some similarities, but the differences are basic enough

to raise the question as to whether HLR could be advantageously

extended by incorporating some analogue of the A- and B-literal

concepts of SL-resolution.

4. The HLR refinement, while performing about as well as the

best general purpose complete resolution strategies available

on simple problems and expected to increase in relative

advantage on harder problems, is still quite inadequate when

compared with what it would seem possible to do on theorem

proving tasks.

5. Th! real worth of the HL-Resolution refinement lies in what

seem to be realizable extensions of the method. Some of these

are given in the next section.

4 3.7

3.7 Page 88

3.7 Extensions of the HL-Resolution Strategy

This section enumerates some of the specific directions in

which it is thought that the HL-Resolution strategy should be

extended.

1. HL-Resolution could produce in its search a clause in which

two standard literals have the same lock numbers. It would

seem that completeness can be maintained if separate new lock

numbers are then assigned (either true or false lock numbers,

whichever is involved in the collision). It remains to be seen

if such a collision signals any identifiable situation which

would add new restrictions to the search process. It would be

interesting to try to develop LR into an even more restrictive

strategy, and then combine that strategy with TMS to obtain a

stronger form of HLR. Peterson (Peterson, 1976) has shown how

LR can be used to extend strategies which are complete for Horn

sets to strategies which are complete in general. The main

result, called LNL-T resolution, is a lock resolution strategy

which is not directly compatable with HLR, but it would seem

that there would be similar strategies that would be

compatable.

2. In SL-resolution framed literals act as a derivation tree

history marker in the ordered clause in which they occur. This

information signals the specific points in the search where the

search deviates from input resolution constraints. If a

similar (i.e. input) type of refinement could be grafted into

the HLR structure the expected result would be a further

6 7 . < < ' .. . - i - . _ • - . .. , , . , . . . :, . _ : . , . .

3.7 Page 89

increase in search efficiency.

3. Subsumption has not been considered yet in HLR. The

obvious thing to try to do is to develop some criteria for

semantic subsumption through the use of the model. This seems

difficult to do if it is required that completeness be

maintained.

4. The presentation of the basic HLR strategy was independent

of what Herbrand interpretation is used as the model, M. Thus

HLR is sound and complete independent of the choice of M.

However, it is assumed that part of the TSP will depend upon

the choice of the model. There are numerous questions

concerning the relationship in HLR of a specific M to a

specific set of clauses. If we assume M is a model scheme, and

thus has parameters which must be specified before the search

begins, then we want to know what parameter choices are best.

At present very little is known about how to compare the worth

of two model schemes before the search begins.

5. The ultimate sensitivity of HLR to the exact choice of

model is not yet known. If the nature of the model proves to

be crucial in search efficiency for difficult problems, as it

would seem reasonable to assume will be the case, then it

becomes important to develop methods that will facilitate the

process of bringing the proper model to bear upon a search

effort. Such methods might include a library of established

model schemes and procedures for deciding which model to use on

6 a given problem. These procedures might even be re-invoked

after some partial search has been done and a new model

3.7 Page 90

selection made on the basis of the partial search results.

6. It would be highly effective if a way were found to combine

several models into a new model having more desirable features

than any of its constituent pieces. This seems rather

difficult to do at the present time. Henschen discusses how to

combine several Herbrand interpretations into a new

interpretation for the case of Horn sets and has developed a

semantic refinement strategy for Horn sets (Henschen, 1975).

It remains to be seen if A-models can be combined in an

analogous manner and the results extended to non-Horn cases.

7. HLR is sound and complete with an arbitrary Herbrand

interpretation as the model, M. There are procedures that are

simple extensions to the basic HLR strategy which may or may

not affect soundness and completeness, depending upon the -

particular clause sets they are applied to. It is important to

characterize in which situations this occurs. One of these

procedures we call evaluating out a predicate letter (a simple

extension of "elimination by evaluating predicates", (Nilsson,

1971, p.218)). Evaluating out a given literal in a clause

involves simply removing the literal from the standard literals

of a clause and adding it to the FSL set, and then keeping the

transformed clause iff it is feasible in M (the original clause

is deleted). Evaluating out a predicate letter involves

evaluating out every standard literal in a clause set using

that predicate letter. Evaluating out a predicate letter is

not a soundness preserving operation, in general. What happens

is that the meaning of unsatisfiability is modified from

3.7 Page 91

"unsatisfiable means false in every interpretation" to

"unsatifiable means false according to M". If M is a model

. scheme then it contains many individual interpretations, and

unsatifiable will mean false over all of the individual

interpretations in M. In particular we notice that the

modified notion of unsatisfiability pertains only to the

predicate letter(s) actually evaluated out. We see here what

is the strongest single extension available in the

HL-Resolution structure, namely the ability to set a context,

through the use of the model, for theorem proving. The process

of evaluating out predicate letters brings model based

information into the declaritive clause set structure in a

complexity reducing manner (by removing standard literals and

turning them into FSL liter .), rather than by complexity

increasing mechanisms (such as adding new declarative

information in the form of additional clauses). The process of

evaluating out literals needs to be better understood.

8. The LIP needs much further work. The obvious choice for a

carrier of global information in the HLR search, the model, is

not yet adequately transmitting information of sufficient

strength. There are several possible ways to attack the LIP.

All seem to require large amounts of additional computer

resource on a per clause generated basis, and thus would only

be applicable for problems with large search spaces. As an

example of such an attack on one aspect of the LIP, consider

the following. Let S be an unsatisfiable set of general level

clauses, and C a clause in S. We say that the clause x

3.7 Page 92

properly subsumes the clause y iff x subsumes y and y does not

subsume x. Then in searching for a proof one need never

consider C to represent gro)und instances which are properly

subsumed by any other clause in S. In HLR all of the literals

of C survive (as either standard or FSL literals) in clauses

derived from C. As clauses derived from C which are deeper in

the search are produced, it may be possible to detect at some

point that a resolvent is in fact using only ground instances

of C which can be subsumed by some other input clause (or

clauses). If such a situation occurs, then the resolvent may

be deleted. Such a deletion strategy is a complete refinement

of HLR. There are also some variants of this strategy which

are not known to be complete (nor known to be incomplete)

refinements of HLR. An important point to be emphasized here

is that the above example is totally syntactic in its

orientation (assuming tha- subsumption is defined

syntactically). One is led to wonder if tnere are analogous

semantic refinements.

4.0 Page 93

4.0 Summary

A new resolution strategy, called HL-Resolution, has been

presented as a sound and complete refinement strategy combining

Lock Resolution and The Model Strategy. HL-Resolution combines

both semantic and syntactic refinement criteria, and in particular

tries to achieve an increase in the globality (or context) of the

individual resolution steps (through the use of FSL sets). A

simple example was given using HLR indicating that it was an

efficient strategy. The basic HLR strategy was judged comparable

to such strategies as SL-resolution for simple problems, but would

be expected to have a relative advantage on more complex problems.

The primary utility of HLR is that it offers a suggestive framework

for the development of further strategies, particularly through the

use of models.

The models useful in HL-Resolution were described as model

schemes which initially are specified at a certain level of

generality, and become more specified as the resolution search

proceeds. This is done in a way which allows a deferment of the

decision as to exactly what Herbrand interpretation the model

represents until more information is available from the search

process.

Considerably more work remains to be done both in formalizing

the results already obtained concerning models, and in extending

the basic HL-Resolution strategy.

references Page 94

REFERENCES

1. Boyer, R., Locking: A Restriction of Resolution, Ph. D.

Thesis, University Microfilms International, Ann Arbor,

Michigan, 1971.

2. Chang, C. L. and Lee, R. T. C., Symbolic Logic and

Mechanical Theorem Proving, Academic Press, New York, 1973.

3. Cooper, D. C., "Theorem Proving in Arithmetic without

Multiplication", in Machine Intelligence 7, (eds. Meltzer, B.

and Michie, D.), Edinburgh University Press, Edinburgh, 1972,

pp. 91-99.

4. Henschen, L. J., "Semantic Resolution for Horn Sets",

Advance Papers of the Fourth International Joint Conference on

Artificial Intelligence, vol. 1, 1975, pp. 46-52.

5. Kowalski, R. and Kuehner, D., "Linear Resolution with

Selection Function", Artificial Intelligence, 2, 1971,

pp. 227-260.

6. Loveland, D. W., "Mechanical Theorem-Proving by Model

Elimination", J. ACM, 15, 2, 1968, pp. 236-251.

7. Loveland, D. W., "A Unifying View of Some Linear Herbrand

Procedures', J. ACM, 19, 2, 1972, pp. 366-384.

8. Luckham, D. "Refinement Theorems in Resolution Theory",

Proc. IRIA Symp. Automatic Demonstration, Versailles, France,

1968, Springer-Verlag, New York, 1970, pp. 163-190.

references Page 95

9. Moore, R. C., Reasoning From Incomplete Knowledge in a

Procedural Deduction System, AI-TR-347, Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, 1975.

10. Nilsson, N. J., Problem Solving Methods in Artificial

Intelligence, McGraw-Hill, New York, 1971.

11. Peterson, G. E., "Theorem Proving with Lemmas", J. ACM,

23, 4, 1976, pp. 573-581.

12. Robinson, J. A., "A Machine-Oriented Logic Based on the

Resolution Principle", J. ACM, 12, 1, 1965, pp. 23-41.

13. Slagle, J. R., "Automatic Theorem Proving With Renamable

and Semantic Resolution", J. ACM, 14, 4, 1967, pp. 687-697.

14. Slagle, J. R., "Automatic Theorem Proving with Built-in

Theories Including Equality, Partial Ordering, and Sets", J.

ACM, 19, 1, 1972, pp. 120-135.

15. Wos, L., Robinson, G. A., Carson, D. F. and Shall3, L.,

"The Concept of Demodulation in Theorem Proving", J. ACM, 14,

4, 1967, pp. 698-709.

4p

appendix Page 96

APPENDIX

To help the reader check on his understanding of the

definitions used in sections 3.4 and 3.5, an example is given here.

The problem statement describes the following world, and is taken

with minor changes from Moore (Moore, 1975).

Three blocks, BI, B2, and B3 are stacked with Bi on the

top and B3 on the bottom and B2 in the middle. Bi is blue in

color, and 83 is green. It is not known if B2 is blue or

green, but it is one or the other.

The problem task is to show that in this world there are two

blocks, one on the other, and the upper one is blue and the lower

one is green. The set of clauses this translates into will be

called "Colored Blocks". Colored Blocks is the initial clause set,

S.

S: Colored Blocks

SI. ON(B1,B2);

S2. ON(B2,B3);

S3. COLOR(B1,blue);

S4. COLOR(B3,green);

S5. COLOR(B2,blue), COLOR(B2,green);

S6. @ON(x,y),@COLOR(x,blue),@COLOR(y,green);

appendix Page 97

The predicate and constant names are self explanatory.

Clause S6 is the denial of the existence of the situation that we

are going to show actually does hold, while the first 5 clauses are

just the facts we do know to be true.

We pick some arbitrary HL-proper lock numbering for the

HL-associated input set of Colored Blocks.

HL-associated Input Set of Colored Blocks

1. <1,ON(B1,B2),100>; FSL []

2. <2,ON(B2,B3),200>; FSL =

3. <3,COLOR(B1,blue),300>; FSL :[

4. <4,COLOR(B3,green),400>; FSL []

5. <5,COLOR(B2,blue),500>, <6,COLOR(B2,green),600>; FSL []

6. <7,@ON(x,y),700>, <8,@COLOR(x,blue),800>,

<9,@COLOR(y,green),900>; FSL []

Now, in order to form the exact primitive representation

HL-associated input set for Colored Blocks, it is necessary to have

*. a particular model specified. We pick as the domain of the model

the set of real numbers, and use only the usual equality relation

within this model. We pick some specific individual real numbers

to represent the constants in LC. Specifically we have the

following correspondence from LC to LM.

appendix Page 98

ON =>

COLOR =>

B1 => 1

B2 => 2

B3 => 3

blue => 1

green => 3

This gives us the following exact primitive representation

HL-associated input set for Colored Blocks, with respect to M.

Exact Primitive Representation

HL-Associated Input Set for Colored Blocks

Here we underline the active lock number for each literal, and

also underline the second component of any selected literals in

each clause. The particular lock numbering we have chosen gives

just one selected literal per clause. For ease in reading, the

lock numbers are omitted for the FSL literals.

1. <1,ON(B1,B2),100>; FSL = [ON(Bl,B2)] F

2. <2,ON(B2,B3),200>; FSL = [ON(B2,B3)] F

3. <3,COLOR(B,blue),300>; FSL = [@COLOR(BI,blue)] T

4. <4,COLOR(B3,green),400>; FSL = [@COLOR(B3,green)] T

5. <5,COLOR(B2,blue),500>, <6,COLOR(B2,green),600>;

FSL [COLOR(B2,blue),COLOR(B2,green)] F

.

appendix Page 99

6.1. <7,OON(x,y),7OQ>, (8,@COLOR(x,blue),800>,

<9,@3COLOR(y,green) ,900>;

FSL = ON(x,y),COLQR(x,blue),COLOR(y,green)] T

6.2. <7,@ON(x,y),7OO>, <8,@COLOR(x,blue),8OQ>,

<9,@COLOR(y,green) ,900>;

FSL (ON(x,y),@COLOR(x,blue),@COLOR(y,green)] T

6.3. (7,@ON(x,y),7OO>, <8,@CQLOR~x,blue),800>,

(9,@COLOR~y,green) ,900>;

FSL [@ON(x,y),COLQR(x,blue),@COLQR~y,green)I T

6.4. <7,@ON(x,y),700>, (8,@COLOR(x,blue),800>,

<9,OCQLOR(y,green) ,900>;

FSL [QN(x,y),COLQR(x,blue),@COLQR~y,green)I T

6.5. <7,@QN(x,y),7OO>, (8,@COLOR(x,blue),800>,

<9,@COLQR(y,green) ,900>;

FSL [@ON~x,y),@CQLOR~x,blue),COLOR(y,green)] T

6.6. <7,@QN(x,y),7OO>, (8,@COLOR(x,blue),8QO>,

<9,@COLQR(y,green) ,900>;

FSL [QN(x,y),@COLQR(x,blue),COLOR(y,green)I T

6.7. <7,@ON(x,y) ,700>, <8,@COLOR~x,blue) ,800>,

<9,@COLOR(y,green) ,900>;

*FSL [@ON~x,y),COLOR(x.,blue),COLOR(y,green)] T

appendix Page 100

We disambiguate the numbering to give us the unambiguously

HL-proper lock numbered exact primitive representation

HL-associated input set for Colored Blocks. This corresponds to

* HLS of the completeness theorem in section 3.5.

HLS: Exact Primitive Representation

HL-Associated Input Set of Colored Blocks (disambiguated)

HLS1. <1,ON(B1,B2),100>; FSL [ON(B1,B2)] F

HLS2. <2,ON(B2,B3),200>; FSL [ON(B?,B3)] F

HLS3. <3,COLOR(B1,blue),300>; FSL =[@C0L0R(Bl,blue)] T

HLSL4. (L,COLOR(B3,green),400>; FSL [@COL0R(B3,green)] T

HLS5. <5,COLOR(B2,blue),500>, <6,COLOR(B2,green),600>;

FSL =[GOLOR(B2,blue),COLOR(B2,green)] F

HLS6.1. (7,@ON(x,y),7OQ>, (8,@COLOR(x,blue),80O>,

<9,@COLOR(y,green) ,900>;

FSL =[ON(x,y),COLOR(x,blue),COLOR(y,green)] T

HLS6.2. (10,@ON(x,y) ,70f), <11,@COLOR(x,blue),7O2>,

<12,@COLQR(y,green) ,703>;

FSL [0N(x,y),@COL0R(x,blue),OCOL0R(y,green)I T

HLS6.3. <13,@0N(x,y),7L4>, <14,@COLOR(x,blue),705>,

<15,@COL0R(y,green) ,706>;

FSL [@0N(x,y),COL0R(x,blue),@C0L0R(y,green)] T

* HLS6.14. <16,@0N(x,y) ,707>, <17,@COLOR(x,blue) ,708>,

(18,@COLOR(y,green) ,709>;

FSL [0N(x,y),COL0R(x,blue),@C0LOR(y,green)I T

appendix Page 101

(21 ,eC0L0R(y,green),712>;

FSL [e0N~x,y),eC0LOR(x,blue),C0L0R(y,green)I T

HLS6.6. <22,eON(x,y) ,713>, <23,@CQLQR(x,blue) ,714I>,

<24,@COLOR~y,green),715>;

FSL = [N(x,y),@COLOR(x,blue),COL0R(y,green)I T

HLS6.7. <25,@ON(x,y) ,716>, <26,@COLOR(x,blue) ,717>,

<27,@COLOR(y,green),718>;

FSL [@0N(x,y),C0L0Rrx blue),COLOR~y,green)] T

SG for Colored Blocks

Using Colored Blocks as S, we have an SG in which clauses1

through 5 are just as they are in Colored Blocks, and clause 6 of

Colored Blocks yields two ground instances.

SG1. ON(B1,B2);

SG2. QN(B2,B3);

SG3. COLOR(B1,blue);

SG4. COLOR(B3,green);

SG5. CQLOR(B2,blue), COLOR(B2,green);

SG6. @ON(B1,fi2),@COLOR(B1,blue),@C0LORCB2,green);

SG7. @ON(B2,B3) ,@COLOR(B2,blue) ,@COLOR(B3,green);

appendix Page 102

GR(S,SG) for Colored Blocks

A GR(S,SG) that connects this S and SG is:

GR(S,SG) [(null),(null),(null),(null),(null),

((B1/x,B2/y),(B2/x,B3/y))]

which is a list of 6 elements. The first 5 elements are identical,

and consiit each of a single substitution which we call null. Null

causes no substitutions to occur on the corresponding clause but

does cause one copy of that clause to be in SG. The sixth element

of GR(S,SG) consists of two distinct substitutions, generating the

two ground instances (clauses SG6 and SG7) in SG that correspond to

clause S6 of Colored Blocks.

°y

HLSG for Colored Blocks

The set HLSG for Colored Blocks has its first 5 clauses the

same as the first 5 clauses in HLS, which is the exact primitive

representation HL-associated input set for Colored Blocks

(disambiguated). The reason is that the first 5 elements of

GR(S,SG) each consists of just one substitution, namely the null

substitution. Clauses 6 and 7 of HLSG result from applying each of

the elements of the sixth component of GR(S,SG) to each clause

among HLS6.1 through HLS6.7. This gives one feasible ground clause

from HLS6.6, which becomes clause 6 of HLSG, and one feasible
gwground clause from clause HLS6.*4, which becomes clause 7 of HLSG.

appendix Page 103

1. (1,ON(B1,B2),'100>; FSL = ON(Bl,B2)] F

2. <2,ON(B2,B3),200>; FSL [ONCB2,B3)] F

3. (3,COLOR(Bl,blue),300>; FSL =[@COLOR(Bl,blue)] T

4I. <L,COLOR(B3,green),400>; FSL =[@C0LOR(B3,green)] T

5. (5,COLOR(B2,blue),500>, (6,COLOR(B2,green),600>;

FSL [CQLOR(B2,blue),COLOR(B2,green)] F

6. (22,@ON(Bl,B2),713>, (23.@COLORCB1,blue),714>,

(24,@COLORCB2,grein) ,715>;

FSL [0N(B1,B2),OCOLOR(Bl,blue),COL0R(B2,green)J

7. <l6,@ON(B2,B3),707>, <17,@COLOR(B2,blue),708>,

<18,@C0L0R(B3,green) ,709>;

FSL (ON(B2,B3),COLORB2,blue),@CQLOR(B3,green)] T

SGL for Colored Blocks

Finally this yields an SGL for Colored Blocks as follows:

1. <ON(B1,B2),100);

2. (ON(B2,B3),200);

*3. <COLOR(B1,blue),3>;

* 4. (COLOR(B3,green),4>;

*5. (COLOR(B2,blue),500>, <COLOR(B2,green),600>;

* 6. (@0N(Bl,B2),22>, (eCOLOR(B1,blue),714>, (eCOLOR(B2,green),24>;

*7. <@QN(B2,B3),16>, (QCOLOR(B2,blue),17>, <@C0L0R(B3,green),709>;

appendix Page 10J4

R-SG.L for Colored Blocks

6xl=8. <@GOLOR(B1,blue),714>, (eCOLOR(B2,green),24>;

7x2=9. (@GOLOR(B2,blue),17>, <@COLOR(B3,green),7O9>;

9x5=10. <COLOR(B2,green),600>, <@COLOR(B3,green),709>;

10x8=11. <@COLOR(B3,green),709>, (@COLOR(Bl,blue),71I>;

11x4I=12. <@C0LOR(B1,blue),714>;

12x3=13. *BOX*;

R-HLSG for Colored Blocks

Here the FSL literals will be written with all three

components to make it easier to see where they came from.

6xl=8. (23,@COLOR(BI ,blue) ,71I4>, (24,@COLOR(B2,green) ,715>;

FSL [<22,ON(B1,B2),713>, (23,@COLOR(Bl,blue),714>,

(24,COLOR(B2,green),715>, (1,ON(Bl,B2),100>] T

7x2=9. (17,@COLOR(B2,blue),7O8>, (18,@COLOR(B3,green),709>;

FSL [<16,ON(B2,B3),707>, (17,COLOR(B2,blue),708>,

(18,@COLOR(B3,green),7O9>, <2,ON(B2,B3),200>] T

9x5=10. <6,COLOR(B2,green),600>, (18,eCOLOR(B3,green),7O9>;

FSL = II16,ON(B2,B3),707>, <17,COLOR(B2,blue),708>,

(18,@COLOR(B3,green),709>, (2,ON(B2,B3),200>,

<5,COLOR(B2,blue) ,500>, <6,COLOR(B2,green) ,600>J F

appendix Page 105

10x8=11. (18,@LO(3gen,0> <23,@COLOR(B1,blue),714>;

FSL =[<16,ON(B2,B3) ,707>, (17,COLOR(B2,blue) ,708>,

<18,RCOLOR(R3,green) ,709>, <2,ON(B2,83),200>,

<5,COLOR(B2,blue),500>, (6,COLOR(B2,green),600),

<22,ON(B1,B2),713>, <23,@COLOR(B1,blue),714>,

(24,COLOR(B2,green) ,715>, (1 ,ON(BI ,B2) ,100>] F

1 1x14=12. (23,qC0L0R(81 ,blue) ,714>;

FSL [(16,ON(B2,B3) ,707>, (17,COLOR(B2,blue) ,708>,

(l8,@C0LOR(B3,green),709>, (2,ON(B2,B3),200>,

(5,COLOR(B2,blue),500>, <6,COLQR(B2,green),600>,

(22,ON(B1,B2),713>, <23,@C0L0R(B1,blue),714>,

(24,COL0R(B2,green),715>, (1,ON(B1,B2),100>

<4,@COLOR(B3,green),l00>] F

12x3=13. *BOX*;

FSL [K16,ON(B2,B3) ,707>, (17,COLOR(B2,blue) ,708>,

(18,@COLOR(B3,green),709>, (2,ON(B2,B3),200>,

<5,COLOR(B2,blue),500>, (6,COLOR(B2,green),600>,

<24,COLOR(B2,green) ,715>, (1 ,ON(B1 ,B2) ,100>,

(LI,CLR(B3,green),400>, (3,@C0LOR(B1,blue),300>]

* R-HLS for Colored Blocks

The refutation for HLS is identical (in this particular

* example) to R-HLSG except that clause 6 of HLSG is replaced by

clause HLS6.6, and clause 7 of HLSG is replaced by clause HLS6.'4.

index Pag;e 106

-' ,INDEX

Items in this index are only those which are defined in the
text, and the page references are only to the definitions. For

* -abbreviations not listed here see the table following this index.

=> 3
Against (resolving against) 30
Algorithmic based models (A-models) 13
Ambiguous lock numbering (see disambiguated and unambiguous)

Basic HL-Resolution strategy 53
Basic primitive representation deduction 61
Basic primitive representation refutation 61

Disambiguated 62

Elementary factoring step 35
Evaluating out (a predicate letter) 90
Evaluation function (for a Herbrand interpretation) 56, 58
Exact primitive representation 57
Exact primitive representation HL-associated input set 62
Exact primitive representation set 57

f (selector function) 54
F 29, 38
Factoring unifier 60
False lock number 28, 32, 54

- False parent 61
False substitution literals 27, 55
Feasible clause 56
FSL 27, 55

Ground case model 12
Ground HL-clause 55
Ground literal 55
Ground literal truth value 55
Ground normal lock function 70
Ground normal lock image 70
Grounding substitution (for a literal) 55
Grounding substitution (for a set of literals) 26, 55
Grounding substitution (for an HL-clause) 550
Herbrand interpretation 53
HL-associated input set 62
HL-clause 27, 55
HL-literal 54
HL-null clause 56
HL-proper lock numbering 54

Immediate primitive representation deduction 70
Immediately deducible 70
Inexact primitive representation 57
Infeasible 56

index Page 107

Influential variable 28
Influential literal 28

Lemma I 67
Lemma II 68
Lemma III 71
Lemma IV 72
Lemma V 83
Lock numbering 54
Lock Resolution 5
Local interaction problem 49
LSLE 38

M (as a function) 56, 58
MLR (Modified Lock Resolution) 76
Minimally unsatisfiable 2
Model evaluation function 56, 58
Modified lock resolution 76

Naturally associated 68, 73-76, 80
Negation (of a literal) 28
Normal resolution 3

Primitive representation 57
Primitive representation binary resolvent 60

Reduced selected factor 60
Resolution step 2

Satisfy (a set of literals) 26
SD 27, 55
Selected factor 59, 60
Selected false literal 59
Selected literal 59
Selected true literal 58
Simultaneous linear equation (SLE) model 22
Singly connected 3
Standard literals 27, 55
Strict grounding 68

t (selector function) 54
T 29, 38
T/F 29, 38
The Model Strategy 7
Theorem (soundness and completeness of HLR) 63
Term substitution problem 47ff.
Trivial model 3, 12
True clause 27
True lock number 28, 32, 54
True parent 61

Unambiguous (lock numbering) 54

table Page 108

TABLE OF ABBREVIATIONS

CNF Conjunctive Normal Form

.FA. The quantifier "for all"

HI Herbrand interpretation

HLR Hereditary-Lock Resolution

LC (LM) Language of the

clauses (of the model)

LIP Local Interaction Problem

LR Lock Resolution

M Model (usually meaning a

collection of Herbrand

interpretations), or a model

evaluation function

SC Sentential Calculus

SR Semantic Resolution

.TE. The quantifier "there exists"

TMS The Model Strategy

TSP Term Substitution Problem

BOX The empty list (or set)

of literals

subtraction or set difference

@ negation sign

SOSAP-TR-32

June 1977

FORMAL SPECIFICATIONS OF MODELS FOR SEMANTIC THEOREM PROVING STRATEGIES

D. M. Sandford

Department of Computer Science

Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

-0

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant #DAlIC15-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of theauthor and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S.. Government.

ACKNOWLEDGMENTS

I would like to thank Professor A. Yasuhara for a careful

proofreading and suggestions on improving the clarity of

presentation.

This work was supported in part by the Advanced Research

Projects Agency of the Office of the Secretary of Defense under

grant DAHCIS-73-G6.

6._

-6

6'

CONTE TS

- Chapter 1

1.0 Introduction 1

1.1 Models in General !

1.2 MDS ... 5

1.3 .1odel Schemes Instead of Models 5

p

Chapter 2

2.0 Introduction 7

2.1 General Definitions and Nomenclature 3

2.2 Basic Model Scheme Nomenclature 14

2.3 Basic .Model Scheme Results 22

2.4 Basic Model Scheme Specification 25

2.5 A Sound and Complete Refinement

Using incomplete Model Schemes 23

2.6 4A\rn Example of a Basic Modeling Structure 31

Chapter 3

3.0 Discussion ... 3"

*REF E F IC E3...40

T. 3LE OF ABBREVIATICNS 42

IILI

1.0 Introduction

This report is a companion report to SOSAP-TR-30 (Sandford,

1977, hereafter TR-30), and is a more formal treatment of material

*introduced informally in Chapter 2 of TR-30. This reoort is

theoretically oriented, and constitutes the initial presentation of

material which will be explored in greater depth in a thesis by the

author (forthcoming in 1978).

1.1 Models in General

There is considerable interest in, and belief in the utility

of, using models to incorporate semantic information into the

processing repertoire of sophisticated problem solving systems.

M1odels seem to be important in controlling search space size when

*the search space is syntactically defined. One of the most

- important situations of this type is in theorem proving in a

specific domain of discourse using a general purpose theorem

prover. in such a situation it is hoped that the model will supply

the needed search guidance to make the general purpose inference

rules efficient in the specific domain of application. An examrle

* of such a specific domain is that of program verification. In this

* specific case the theorem proving problems which are generated as -

subproblems are in general well beyond the ability of currently

* available syntactically oriented theorem provers. One approach to

solving this difficulty is to employ semantic information to guile

the theorem proving search by using models. In order to do this

one must be able both to specify and manipulate models, and be able

S . Page 2

to relate the model effectively to the syntactic search. TP.-3 was

principally concerned with presenting a new resolution refinment

strategy which uses model based information in it's search. This

report is concerned primarily with a paradigm for firstly,

specifying models, and secondly, (at an abstract level) utilizing

models so that their semantic information is available to o odel

based guidance mechanism. This material is presented in terms of a

first order resolution refutation situation (Robinson, 1965), but

the framework seems to be general enough so as to have apolication

, in search space situations which are phrased in other notations.

The principal result obtained in this research and oresented

here is that sound and complete syntactic resolution theorem

oroving search procedures can be guided by models which are

themselves incomplete, just so long as the models are internally

consistent.

A model is not a well defined notion unless we .lso consider

what it is a model -- f. The notion of model we wish to emohasize is

that a model is a structure that abstracts the relevmnt structure

of what it models, and organizes that abstracted relevant structure

in a manner that allows efficient problem solving on the

abstraction (i.e. efficiency in the model, not necessarily

afficiency in the original structure).

;hen considering problem solving activity as an automated

process there is a constant source of difficulty which ap ears clue

to the present state of development of the field of artificial

intellig~nce. This difficulty is that, while we wish to have

A

U 1.1 Page 3

information processing performed which is of a given level of

. complexity when understood semantically, we are forced to find 0

fully declarative syntactic representations of these tasks in order

to express them to a computer. This mapping to syntactic

representations is currently unavoidable, but what one hopes is

avoidable is the concurrent loss of semantic information which

accompanies this translation as accomplished by current

representation techniques. t

Model use (for the purposes of this report) is an approach

which tries to obtain heuristic efficiency in a search process by

making the declarative syntactic search process be guided by

semantic information. Thus the efficiency of a search process is a

function of the model, but the legitimacy of the resulting search

is totally a function of the syntax of the search space language

and the syntactic rules of manipulation, and is thus not affected

by the semantic content of the model.

There are several different ways in which models may be

related to the declarative information processing t?sk. One of

these is in top down or hypothesis oriented use of the model to

govern how the search space is explored. In this approach the task

to be accomplished is performed first in the model, and then the

model solution is projected onto the syntactic search space to sep

if the model solution is feasible syntactically. Thus th.

syntactic search space is expanded only under the guidance of ?

relatively complete solution scheme proposed by the molel. A

converse way to use models is in a bottom up syntactic data driven

4~1

I .1 Pe)o

manner, such as HL-Resolution (Sandford, 1977). in this approach

the syntactic search space is the initiator of processing and

individual syntactic search possibilities are locally evaluated as

to their worth by the model. while ultimately sophisticated

systems will probably use both too down and bottom up approaches,

7s well as other modes of model utilization, the top down manner

seems to be the most important for complex information tasks in

which there is a strong model available.

In this report material is presented which comes closest to

adequately establishing an abstract paradigm of model use in bottom

up resolution refutation procedures. The top down use of models

does not require abandoning the structures contained herein, but

does require a considerably more extensive development than has

been accomplished at this time.

ri4

"4!

I!

I!

11.2 Page 5

1.2 MOS

The Meta Description System (MDS) (Srinivasan, 1976) is a

- system which was developed ab initio with a very general and strong

* capacity to accept and use information in a manner which is

* semantically oriented, and in fact constitutes a modeling facility

of considerable power. In MDS there is also the general capacity

for theorem proving (and there is no specific commitment to the

* exact choice of inference system employed) . mIS is in a reverse

* position to most other general purpose artificial intelligence

systems in the sense that its modeling capability is much stronger

* with respect to its formal theorem proving capability than is

* usual. In particular resolution theorem proving programs are

*virtually without exception extremely weak in modeling capability.

This report presents a bottom up view of the relationship

between a formal theorem proving domain and a model for that

domain, which is applicable to both MOS end to semantically

oriented2 resolution refutation procedures. In particular if the

*theorem proving component of "IDS is taken to be a resolution

refutation theorem prover, then this report can be viewed as

*specifying the formal characteristics the modeling components of

* MDS must have to ensure refutation completeness of the theorem

-rovi ng component.

1 !.3 P

1.3 'Iodel Schemes Instead of ",Io-els

One of the difficulties in utilizing models for efficient

information processing is the difficulty in finding a good model,

and then specifying the model in a manner in which it can actually

be used by an automated reasoning system. This report finesses

these, and other problems, by taking a theoretical view of models

which, while not dealing with the problem of model finding or with

pragmatic computation of model use directly, does frame things in a

manner which makes these problems pragmatically approachable.

The fundamental notion is that a model is actually a model
o. scheme. A modal scheme is a class of intarpretations which is

reoresented by a set of logical statements. 2y doing this the

following happens:

1 1. By using a class, we obtain partial freedom from

introducing a semantic bias in the model when the available

semantic information is insufficient to choose a uniaue

interoretation;

2. By representing the class by a set of logical statements

we have a natural way of exoressing models which are to be

utilized to guide a theorem proving search (since much of the

attendant techniques, and not unimportantly viewpoints, are

already available).

Thapter 2 presents these notions is greater detail.

2.0 Page 7

2.0 Introduction

This chapter develops the formal paradigm of the use of model

schemes in resolution refutation procedures. This chapter will

also appear in a forthcoming (1978) thesis by the author.

The basic structure as presented in the remainder of this

chanter is centered around the situation where L is a first order

language in which a set, S, of clauses is expressed, and it is

necessary to find a refutation of S. The language L' would then be

a language for a model scheme, and a set of first order formula,

- F13F, would be a scheme defining set of statements written in the

language L'. The syntactic search space is generated in the

language L according to a semantic resolution refinement (e.g.

HL-Rezolution), and during the expansion of the search space the

Model scheme is called upon to perform truth evaluations of various

sets of literals. The actual content of the search space is a

function of what the truth evaluations actually are, which in turn

are a function of the actual model scheme used. The method used

for making truth evaluations, and the properties of the entire

theorem proving system are presented at an abstract level in the

following sections.

2.1 P.ege

2.1 General Definitions and 'omencl_=ture

The notion of a first order language will be taken as

primitive here, and is to be the standard notion of a first order

language found in logic texts (e.g. Uleene, 1967)). This reoort

is concerned more with the semantics of languages than with the

exact syntactical structure of languages. in later sections some

attention is paid to syntax in the context of the relationship

between languages. most of the time, when it is necessary to

consider syntax, we will assume that (sets of) well formed formulas

(wff's) have been put into conjunctive normal form, as is usual in

resolution. The definitions of terms, atoms and literils are all

standarl (Nilsson, 1971) (Chang and Lee, 1973). Unless otherwise

stated all languages considered are first order languages.

If L is a first order language, then we enote the "erbran

universe of L, which is the set of all terms of L, by HU(L), an ,e

denote the atom set of L, also called the Herbrand base of L, by

H3(L) . 3B(L) is the (usually infinite) set of all possible groun

3to.s.

A Merbrand interpretation (HI) for the language L is a set of

ground literals such that every element of H3(L) appears, either

- negated or unnegated in the interpretation, and no element of H3(L)

anoears both negated and unnegated in the interp.retation. The set

of all possible iHerbrand interpretations of the lpnguage L is

written as H(L).

4

4~

2.1 Page 9

If k is a literal of L, then by 3k is meant the same literal

but with its negation status inverted, i.e. k has a negation sign

on it iff @k does not have a negation sign on it.

A literal (wff, clause, etc.) is said to be ground if it

contains no variable symbols within it. If x is a literal (wff,

clause, etc.) and TAU is a substitution, then TAU is said to be a

grounding substitution for x iff x(TAU) is ground.

Evaluation Function

A clause is often considered as a set of literals for the

purpose of deciding the truth value of the clause in some given

interpretation. Let h be some HI for the language L. If K is a

2 set of ground literals of L, then K is said to be false in h iff

K t h is empty. Otherwise K is true in h. We write h(K) to

designate the truth value of the set of ground literals, K, i.e.

we assume that there is a function, h, which maps sets of ground

literals to their truth value in tho interpretation h.

;e extend the function h to apply to general level !itorais

(i.e. litarals in which free variables occur) as follows. Let K

be a set of literals in the language L, and h some "I for L, then

* false iff there exists a grounding substitution,

TAU, for K such that (K(TU)) h is empty.

h(K) =

true otherwise.

0

A 2.1 Pag ,.

-Ie call h the evaluation function for the internretation h.

This definition of the evaluation function is consistent with

the view of a set of literals being a formula which is a

disjunction of the literals in the set and with the variable

symbols being universally quantified, with the scone of

quantification being the entire set of literals. Therefore we see

that the set of literals to be evaluated is being treated as if it

was a clause. Thus this definition of the evaluation function is

the usual one used in resolution strategies. The reason that

evaluation functions are not specifically defined to have cl?.uses

as the domain of definition is that there are resolution strategies

which utilize evaluations of sets of literils, as we have defined

them, but for which the sets of literals do not corresnond to -ny

cla:uses of the search soace.

Th? odelStrateqy

Te T 'ocel Strategy (T:'S) (Luckham, 196S) is a sound an

zomolete refinement of unrestricted binary resolution. In T

clauses are considered as sets of literels and some arbitrarily
chosen but fixed HI, h, is used for truth evaluations. Two cluses

are allowed to resolve together iff they could be resolved together

41 in unrestricted resolution and at least one of the clauses hms the

truth evaluation "false" in h.

2.1 Page 11

Hereditary-Lock Resolution

l Hereditary-Lock Resolution (HL-Resolution, or HLR)

(Sandford, 1977) is a sound and complete refinement of unrestricted

resolution which combines both the Lock Pesolution (Royer, 1971)

and TMS refinements. HLR is a~refinement whose semantic component,

like that of TnIS, is confined to being a function solely of the

truth evaluations of sets of literals with respect to some

arbitrarily chosen but fixed HI. Thus TI.IS and HLR are Cuite f

similar with respect to their interfacing with the process of truth

evaluations by some interpretation.

Semantic Resolution

Semantic Resolution (SR) (Slagle, 1967) is a sound end

complete refinement of resolution which is clash oriented, and

includes some literal ordering. The SR refinement, like TI!S and

HLR, has a semantic component which is solely a function of the

truth evaluations of sets of literals.

Semantic Strategies and Functions

.,2 call TIS, HLR, and SR, literal set semantic refinements. A

literal set semantic refinement is a refinement in which the

semantic (or model, or interpretation) based component of tie

refinement is only a function of the truth evaluations of sets of

literals according to some function whose values are "true" or

I 4
- "false". This function is called the semantic function of the

*strategy. We define a semantic function for the language L to be

rI

. 2.1 Pnje 12

*i any total function on sets of literals from L into {true,falsel.

T43, HLR and SR are all sound refinements, indecendently of what

semantic function is used. These three strategies are each

complete for the class of clause sets in the language L if the

semantic function is taken to be the evaluation function for some

HI , h, such that h o H(L).

False Permissive Semantic Functions

Let s and s' be two semantic functions for the language L, an

let K range over sets of literals from L. Then s' is said to be

false permissive with respect to s iff

.F . K: (s(K) = false) --- > s'(K) = false

s, ,' is sai7'" to be properly false permissive with resnect to s

iff

TE.K: s(K) = true and s'(K) = false and s' is false

permissive with respect to s.

Clearly the relation of false permissive is trpnsitive, -s is

the relation of properly false permissive.

Sound Semcntic Functions

A semantic function, s, for the language L is saij to be soun4

iff there exists a h oE H(L) such that s is false nermissive with

respect to h. It is the case that if s' is false nernissiv- with

respect to s, and s is sound, then s' is also sound•..

*j

2.1 Page 13

False Permissive Complete Refinements

A literal set semantic refinement is said to be false

* permissive complete iff it is refutation complete over the class of

clause sets of the language L for every sound semantic function for
- L.

TS, HLR and SR are all false permissive complete. We 6o not

prove this in this report. The proof of this is trivial provided

that deletion strategies (Chang and Lee, 1973) ('ilsson, 1971) are

not used. The completeness of HLR using both deletion strategies

and false permissive semantic functions will be dealt with in

future work. The completeness of TMS and SR with deletion

U strategies and false permissive semantic functions is an issu3 that

has not been explored.

4!

4i

4I

2.2 Page 14

2.2 Basic ,,o"el Scheme Nomenclature

First Order Languages

A first order language will be socified by an ordered oair,

the first element of which is the set of predicate symbols, and the

second element of which is the set of function symbols of the

language. Thus the language L has a description which we write as

DESC(L) = <PRED(L),FUN(L)>

where PED and FUN are the functions which map languages to their

sets of predicate and function symbols, resoectively. We only

consider languages, L, where PRED(L) is non-empty. Each oredicate

and function symbol has associated with it a finite non-negative

integer, called its arity. We only consider languages, L, such

that FUN(L) contains at least one function symbol of arity zero,

and for which PRED(L) and FUN(L) are both finite sets. Function

symbols of arity zero 3re called constants. A function (predicate)

symbol of irity k is also celled a k-place function (pr2dicate).

We assume the existence of 3n infinite set of variable

symbols, and all languages share this same set of varimble symbols

implicitly. Also implicitly contained in ?very language

descriptior are the usual logical symbols for negation,

quantification, "implies", "and", "or", and any others that are

desired and can be defined in terms of those just exe!icitly

mentioned. The definitions of terms, atoms, lit rls .nd well

formed formulas are all standard. All unbound variable symbols Pre

to be understood as universally quantified, e>:cept .Phere explicitly

2.2 Page 15

noted differently. When writing formulas the letters

xyzpuvwlqrstxlyl, . .,x2,y2,

will be variable symbols.

most of the time we will consider expressions of theorem t

proving problems to have been already converted to conjunctive

normal form as is usual in resolution.

Language Amicability

Let L and L' be two first order languages. Then L' is said to

be amicable to L iff, for all k, if there exists a k-place

predicate symbol in PRED(L) then there exists at least one k-Place

predicate symbol in PRED(L'), and if there exists a k-place

function symbol in FUN(L) then there exists at least one k-place

function symbol in FUN(L').

Translation Functions

A symbol translation function from L to L', usually denote by

"SYMT", is any function which for all k, is a total function on the

set of predicate (function) symbols of L of arity k into the set of

predicate (function) symbols of L' of arity k. There can be a

symbol translation function from L to L' iff L' is amicable to L.

Notice that SYMT need not be a 1-1 mapping and that it need not be

onto. We define SYMT(ALPHA) = ALPHA when ALP!!- is any variable

7. symbol, or the negation sign.

*2.2 Palje 16

In the obvious way, SYMT induces a term translation function

* (TTF) , and a literal translation function (LT.F) . A TTF applied to

a list of terms has as its value the list of terms obtained by

applying TTF to each individual term in the list. Similarly for

ELrF applied to a set of literals.

As an exampl3, if the SY'T from L to L' is given by

SY1TT(f) = g

SYMT(h) = g

SY*IT(P) =Q

SYMT(a) =b

then the set of literals

translates under the induced LTF to

ie further extend LTF to apply to substitutions of L, suc- t1ht if

RHO is a substitution of L, then

LTF(R,3) = TF(t)/v: t/v is .n element of RI,

0

where v is a variable symbol and t is a termq from HUML). Thus LTF

* maozs a substitution of L to a substitution of L'.

0.-

2.2 Page 17

The Language L\L'

Assume L' is amicable to L and some SYMT has been chosen. Let

the subset of PRED(L') which is actually in the range of GY'IT from

L to L', be denoted by L\PRED(L'). Similarly for a L\FUN(L').

Then there is a first order language whose descriotion is

<L\PRED(L'), L\FUN(L')>.

".e denote this language by L\L', where the dependence on a soecific

SYIT is not explicitly noted, but is assumed to be known from the

narticular context in which L\L' is being used.

The :-aooinq of Interpretations

Let L' be amicable to L, and let SYMT be some specific symbol

translation function. This induces term and literal translation

functions TTF and LTF, and a language L\L'.

LT'F was defined so as to map sets of literals from L to sets

of literals from L', but clearly every set of literals in the rance

of LTF is also a set of literals in the language L\L'. A similar

remark holds for LTF applied to substitutions.

Let K be a set of literals from L. Then LTF(K) is called the

homomorphic image of K, or just the image of K.

Let h be a HI of L. If the image of h is a 7?T of L\L', th!-

this image is called a condensate of h. In those situations wh-re

SYNIT is not a 1-i mapping there will exist ! 1I for L whosp in no

is not a HI of L\L', and therefore whose image is not a con n .

'- . - -"a .3

Reduct and Exnansion Relationshios p

Let L' be amicable to L, and let SYMT be a symbol translation

function from L to L'. Then, in general, for each HI, h, of L\L',

there will be more than one HI, h', of L' , such that h5 h'

(remember that the predicate and function symbols of L\L' are a

subset of those in L').

Let h be a HI of L\L'. The set

{h': hCh' and h' C H(L')}

is called the expansion cluster of h. For each h' in the expansion

cluster of h, h' is called an expansion of h, and h is called a

£\L' reduct of h', or just a reduct of h'. (1

:.odel Schemes

A model scheme for a language L is any non-empty subset Cf

H(L) Notationally, a model scheme for a language L will usually

be written as MISL.

Evaluations Over Model schemes

Let K be a set of literals in the language L, and let ,SL be a

odel scheme for L. Then we define a model sc'eme evaluation

function, also denoted 'ISL, for the model scheme "ISL:

2.2 Page 19

"Fe iff .TE.h: hog MSL and h(K) =false

R 'SL(K) = .

[" otherwise .

The model scheme evaluation of K over MSL is the value of MSL(. p.

Associated Semantic Function

Let M be a model scheme for the language L, and let K range

over sets of literals of L. Then the function s defined by

false iff K is "F" over M

S =

true iff K is "T" over .

* is called the associated semantic function for M.

Let ?I and :I' be two model schemes for the same language. We

say that 'I is (properly) false permissive with respect to '' iff

the associated semantic function for MA. is (properly) false

permissive with respect to the associated semantic function for -1'.

Induced Mo-el Schemes

Let L' be amicable to L, and SY'MT be a symbol translation

function from L to L'. Then for every model scheme, M.!SL', of L',

there is an induced (or corresponding) model scheme, M! L\L', of

L\L', lefined by

S'ISL\L' = {m: m is the L\L' reduct of some m' in MSL'}

2.2 Page 20

Thus every model scheme in L' induces a unique model scheme in

L\L'.

Let MSL\L' be any model scheme of the language L\L'. Then

there is an induced model scheme, ISL, of the language L, defined

by

MSL = {m: LTF(m) E ISL\L'}

Equivalently we can say that 'SL is the subset of H(L) whose

elements have condensates which are elements of MISL\L'.

Thus every model scheme of L\L' induces a unique model scheme

of L (with respect to a given SYM!T). As a result of this, every

model scheme of L' induces a unique model scheme of L. .'otice that .

it is possible, in general, for two distinct model schemes in L' to

induce the same model scheme in L\L', ond therefore the same model

scheme in L. W;e refer to the collection of L, L', L\L', SYIT, etc.

as a model structure or model system.

*' odel Scheme False Permissiveness

Let L' be a language amicable to the language L, and let SY':

be a symbol translation function from L to L' which induces the

literal translation function LTF. Let M be a model scheme for L

an- -' a model scheme for L'. Then '1' is false nermissive ,ith

resnect to :! iff for all sets of literals, (, of L,

M(')= "F" ---- > :' (LTF()) "F",

and '.' is properly false permissive with respect to ' iff it is

2.2 Page 21

false permissive with respect to M and there exists a set of

literals, K, of L, such that

M(K) = "T" AND 1, ' (LTF(K)) = "F".

If it happens that M is the induced model scheme corresponding

to "' then we say that the model structure is properly or

improperly false permissive according to whether M'I is properly or

improperly false permissive with respect to :.1.

*,2

6-

2.3 Page 22

2.3 Basic Model Scheme Results

Lemma I

Let L' be amicable to L, and SY'!T a symbol translation

function from L to L', and let MSL' be any model scheme for L'.

Further let MSL be the model scheme in L induced by MSL', ani l'tt C

be a set of literals in the language L. Then for all grounding

substitutions, SIGMA, such that C(SIGMA) is false in some h M .SL,

there exists at least one h' 4 MSL' such that LTF(C($IGA)) is

false in h'.

proof: 3y the definition of how MSL is induce, by a "SL\L', which

is in turn induced by the "!SL' of the lemma hypothesis, it is the

case that h 4E MSL must be such that there exists an x 6 MSL\L' such

that LTF(h) = x. By the definition of a literal translation

function from L to L', it is the case that if C(SIG,) n h is

....pty, so is

LTF(C(SIGMA)) A LTF(h) LTF(C(SIG*.!A)) x.

S23ut x must be the reduct of at least one interpratntion in ".C3L'.

Let h' be any interpretation which is both in -SL' an,4 in the

exoansion cluster of x. This h' is an exonnsion cf x. Therefore

LTF(C(SI'.A)) will also be false in h'.

*. °.

'1 2.3 Page 23

Lemma II

Let L, L', SYMT, MSL, "ISL' and C be the same as in the

hypothesis of Lemma I. Then if the MSL model scheme evaluation of

*-i C is "F", then the MSL' model scheme evaluation of LTF(C) is "F"

. roof: If C is "F" over MSL, then there must exist a grounding

- substitution, SIGMA, of C, and a HI, h, in IISL such that C($!7:'A)

is false in h. By Lemma I there is then some h' C 'ISL' such that p

* LTF(C(SIGMA)) is false in h'. But by the definition of a literal

*. translation function, it is the case that

LTF(C(SIGMA)) = (LTF(C)) (LTF(SIG'A)).

Thus there is a substitution, LTF(SIGMA), in the language L', n-"

an interpretation, h' 6 'EL', such that (LF(C)) (LTF(9I'IA.)) is

- false in h'. Therefore LTF(C) is "F" over M'-SL'.

Lemma III

Let L, L', SY1T, ASL' and .ISL be the se7 as in the hypothesis

of Lemma I. Let C be a ground set of literals in L whose model

scheme evaluation is "T" over MSL. Then the model scheme

evaluation of LTF(C) over '.SL' is also "T".

proof: Let h' be an arbitrary HI in MSL'. Then there exists a h''

in MSL\L' which is the reduct of h', and an h in M:SL such that h''

is the condensate of h. By hypothesis C11 h is non-empty.

Therefore LTF(C)fl h'' is non-empty. Therefore LTF(C)II h, is

non-empty. Thus LTF(C) is true in _avery h' in MSL' and

consequently LTF(C) is "T" over !ISL'.41

2.3 ?age 24

At this point in the development one would like to have a

*- result that shows that for any non-ground level set of literls, C,

such that C evaluates to "T" over MISL, that LTF(C) evaluates to "T"

over NSL'. However, such is not the case for the situations we are

talking about in this reoort. In section 2.6 an example is given

that illustrates this point.

40

Si"

S.o..

2.4 Page 25

2.4 Basic Model Scheme Soecification

We now show how to specify model schemes and obtain modlel

scheme evaluations in the language L'.

Satisfying Interpretation Set

Let L' be amicable to L, and let SYMT be a symbol translation

function from L to L'. Let MSF be a set of first order well formed

formula in the language L'. Let MSF be satisfiable. Then there

exists a non-empty subset of H(L') which consists of exactly those

interpretations which satisfy MSF. We call this set the satisfying

interpretation set of '1SF, and denote it by SIS(MISF). Py the

definition of a model scheme, SIS(MSF) is a model scheme of L'.

* e wish to be able to perform model scheme evaluations of sets

of literals over the model scheme SIS("SF).

Theorem I

If K is a set of literals, K = {kl,k2, . . . kn}, in the

language L', and MSF is a set of satisfiable formula in L', then

the model scheme evaluation of K is "F" over SIS(MSF) iff the set

of statements

[MSF] U [gx]

is a satisfiable set of statements. (N.B. The meaning of "'"

applied to a set of literals is that all variables are changed from

universal to existential quantification an i the negation status of

2.4 Pag e 26

each literal in the set is inverted, and the resulting literals are

to be treated as a conjunction.)

oroof:

(=>) Assume K is "F" over SIS(MSF) . Then there exists in

interpretation, h', in SIS(ISF), and a substitution, RHO, such that

{ (kI(RHO)) ,(k2(RHO)) (n(O) }

are all false ground literals in h'. But then the set of litcr ls

@(k1I(RH,:O)) Q(k2 (RHO)), I . (kn (RHC))

is a set of ground literals all of which are true in h'. Thus the

set of literals 2(K(RHC)) is true in h', and therefore the st of
literals !K is true in h'. Since MSF is true in h' by the

definition of h' as an element of SIS(SF), {MSF} U {'?} is true in

h', and is therefore satisfiable.

(=) Assume {ISFI U {!' is satisfiable. Then there exists a HI,

Ih, ' ,hich is an element of IS(.MSF) , and for which there exists a

substitution, RHO, such that

(-I (RFC)) , (k2 (RH"")).. (<n (RHO))

is a set of literals all of which are true in h. Thus tha set of

liter als

K(RHO) {kl(RHO),k2(RH), . . . kn(RHC)}
0w

is a set such that every literal in it is false in h. Thus t-ere

exists . substitution, RHO, and a nI, h, such that "(PH) is false

in h. Thus the model evaluation of ; over the mo~el sche

IS('!SF), which contains h, is "F".

" ,

-j

2.4 Page 27

At this point we have connected the notion of model scheme

evaluation to the notion of satisfiability of the negation of the

set of literals being evaluated and the set of formula specifying

the model scheme, all in the language L'. Thus the odel scheme

evaluations can be computed by any decision roecedure for

satisfiability testing. For ease of reference we call the model

scheme evaluation in L' of a set of literals over the SI3(*I SF)

scheme as either the MSF evaluation or the L' evaluation.

Ce ending upon the particular language, L', and the oarticular

set of scheme defining statements MSF, there may o may not exist a

decision procedure for satisfiability testing for the class of sets

of literals we are interested in evaluating. The class of sets of

-iterals that we will want to evaluate is itself eoenrlent u on the

, language L, the chosen SY'IT, the set of input statements in L, :n'

the particular strategy being employed for theorem oroving in L.

Thus it would seem in general, to be difficult, if not actually

imossible to ensure that some arbitrarily established model scheme

would be tractable. While this is true, it causes consiarzbly

less difficulty than one would at first think. 7 hy this is e

case is the main result of this report, and we now continue

directly to the development of that result.

.

2.5 Page 28

2.5 A 3ound and Complete Refinement Using Incomplete ":oal ch-2rns

Theorem I!

Let L be a first order language and MSL be any model scheme

for L. Let R be a false permissive complete resolution strategy,

with semantic function h defined by:

for all sets X of literals in L,

false iff K is "F" over the model scheme 17$L.

h(K) = '

true iff K is "T" over the model scheme :.ISL.

(i.e. h is the associated semantic function for 'SL). Then R ,.ill

be a complete refinement strategy when using this h :s its semantic

function.

oroof: Since R is false oermissive complete, one needl merely show

that h as defired above, is a sound semantic function. This can be

done by showing that h is false permissive with respect to some

1h' F (L), as follows. Let h' be any fixed element of **SL. Then

for .ny set of literals, K, if h' (K) is fIlse, then SL(T) = "F" ,

and by the definition of h given in the theorem, h('.) is false.

Thus h is false permissive with respect to the HI h'. Thus h is a

sound semantic function.

',;e arc now ready for the main theorem of this report.

2.5 Pago 29

Theorem III

Let R be a false permissive complete resolution refinement for

the language L. Let L' be any language amicable to L, and LTF a

literal translation function from L to L'. Let R' be 3 sounc

refutation procedure for the language L', which is not necessarily

complete, and which always terminates in a finite amount of time

when evaluating a set of statements (reporting only refutation

success or failure). Let MSF be any set of satisfiable stitoments

in the language L'. Let s be a semantic function defined for sets

of literals of L by:

false iff R' (2(LTF(')) i (FSF) = failure

s~) =

true iff R' (2(LTF(K) V 3SF) = success

Then R will be a complete strategy when using s as its semantic

function.

proof: It is only necessary to show that s is a sound semantic

function. First we notice that M!SF induces a model scheme,

*!SL' = SIS(CIF) , of L', and a corresponding model scheme, 'C-L, of

L. Consider the semantic function h, as defined in the -revious

theorem. It was shown to be sound. Consiler the semantic function

S*, defined on sets of litorals, K, of L, by:

,'4*

.4

2.5 Page 30

false iff LTF(K) is "F" over 'ISL'

true iff LTF(X) is "T" over MSL'

By Lemma II we can assert that s* is false permissive with respect

to h. But by Theorem I and the soundness of R', it is the case

that s is false permissive with respect to s*. Therefore s is

false permissive with respect to h. But h is a sound semantic

function. Thus s is a sound semantic function.

Theorem III is a crude but interesting result. what we have

achieved is the establishment of a structure which allows a

complete theorem proving search process to be guided by an

interoretation environment which is itself incomplete. The

completeness of the theorem Proving process rests only on the

sound3ness of the interpretation process. If the semantic strategy

used is T4, HLR, or SR, then the theorem proving process is also

soundl.

2.6 Page 31

2.6 An Example of a Basic Modeling Structure

Our example uses a language of the clauses, L, and a language

of the model, L', which are both such that they each have only a

finite number of distinct HI's.

We consider a language L which has one two place predicate

symbol and two constants:

DESC(L) =

Thus the Herbrand universe of L (HU(L)) is just the set consisting

of the two constants. The Herbrand base of L (HB(L)) is:

HB(L) = {=(cl,cl),=(cl,c2),=(c2,cl),=(c2,c2)1

- Thus there are 16 possible Herbrand interpretations for L.

v4e will set up a model in the language L' such that the

inducee model scheme in L, MSL, will be the singleton set

consisting of the following interpretation:

h = {(cl,cl) ,=(c2,c2) ,@=(cl,c2) ,@=(c2,cl) }

Thus we will h..ve MSL = [h.

We choose L' to be specified by:

DESC(L') - <{R(-,-)},{kl,k2,k3}>.

The set HU(L') has the three constants as its only members and the

set H3(L') has 9 ground atoms in it. Therefore there are 512

possible HI's for L'.

4.

2.6 Page 32

We choose the following set of clauses as the clefining set,

MSF, of clauses for the model scheme, MSL':

1. @R(kl,k2);

~2. 3R(kl,k3) ;

3. @R(k2,k3);

4. R(x,x);

5. @R(x,y) ,R(y,x);

6. @R(x,y) ,QR(y, z) ,R(x, z);

7. R(x,kl),R(x,k2),F(x,k3);

'lhat we have done here by using clauses 4, 5 and 6, is to allow

only interpretations for L' which treat R as an equiva.!enc3

ralation over the elements of HU(L'). Then clauses 1, 2 and 3,

3.llow only interpretations for which kl, k2, and k3 are all

inecuiv.lent. Finally cluse 7 restricts the i!lowed

interpretntions to those in which every HU element is equiv !ent to

on2 of kl, k2 or k3. There is exactly one HI for L' which

satisfies '!SF. ;Y.e call this interpretation h':

= {R(kl,kl),R(k2,k2),R(k3,k3),@P.(kl,k2),

!R(kl,'rk3) 9.R(K2,k!) ,QR 2,k,3) , R (k ,kl1) , P (k 3, k2)

Thus ,we have the following:

* ISL' = SIS(USF) = {h'}

The function SYT is chosen to be:

*1 SY'IT = (<cl,kl>,<c2,k2>,<=,P>}

Th -U, H3, etc., for the linguage L\L' are -Ii ilentical to the

2.6 Page 3 3

ones for L except that k1 replaces cl, k2 reolaces c2, and P

-,. reolaces "-". Thus, for example, 'ISL\L' would be the singleton set

{h*}, where

h* {R(kl,kl),R(k2,k2),2R(kl,k2),@R(k2,kl)}

The reader should be able to verify that MSF is satisfied only by

h' in H(L'), and that h* is the reduct of h', and that h* is the

condensate of h. Thus h and h' are corresponding interpretations,

and given that MSL' = {h'} it is the case that '.SL = th}.

* WYe now exhibit some clause evaluations. Where it is otherwise

unclear, sets of literals that form a clause are underlined. First

consider the clause C, in the language L, where

C - =(x,cl),-(x,c2);

It is the case that h(C) = true, and thus :ISL(C) = "T". A1so it is

the case that h*(LTF(C)) = h*({R(x,kl),R(x,k2)1) = true. . us

-ISL\L' (LTF(C)) = "T"

On the other hand

h' (LTF(C)) = h' ({R(x,kl) P.(x,k2) }) = false

since the substitution TAU = {k3/x} is such that

h' ((LTF(C)) (TAU)) - h' ({R(k3,kl) ,P(k3,k2) 1) = f:ise.

Thus HISL'(LTF(C)) - "F". We see that the model scheme, "-3L', even

though it consists of just one HI, is still properly fe" se

permissive with respect to MSL.

0<

0,

2.6 Page 14

An example of a clause that is "T" over both '1SL and :3L is

the clause D:

D = =(x,cl),=(x,c2),=(y,cl),=(y,c2),=(x,y);

It should be clear that MSL(D) = "T" since every grounding

substitution for D in the language L must substitute either c! or

c2 for x, and thus either the first or second literal of D will be

true in h. To show that MSL'(LTF(D)) = h,. t i.e. that

h' (LTF(C)) = true, we show that Q(LTF(D))U *.ISF is unsatisfiable,

as follows.

We have as the clause set 7 clauses from ",SF, listed abov3,

and:. 5 more clauses, numbered 3 through 12 which are from (LTF(D)):

3. 2P(a,kl);

9. IR (a, k2);

10. 9R(b,kl) ;

11. 2R(b,k2) ;

"12 . '-RP (a ,b) ;

Th, constants a and b are zero place Skolem functions introduced by

the Process of negating the set of translated literals. The reader

should keep in mind that this set of 12 clauses is not in the

-*. language L', since L' does not contain either a or b. H!owever this

set of 12 clauses is unsatisfiable iff 2(LTF(D)) U "SF is

uns,-tisfiable.

- -- -i --. - i. --o ,--. '. . -.- ~

2.6 Pge 35

A refutation of this set of 12 clauses is:

7x8 13. Rla,k2) ,R(a,k3) ;

9x13 = 14. R(a,k3);

7x10 = 15. R(b,k2),R(b,k3);

lIxl5 = 16. P(b,k3); .

5x16 = 17. R(k3,b);

5x14 = 13. @R(k3,z),R(a,z);

17x13 = 19. R(a,b);

12x19 = 20. *BOX*;

Thus 2(LTF(D)) U !SF is unsatisfiable, and it is the case that

'*SL' (LTF()) ="Mi

In example of a clause which it "F" over both 'ISL .icq M.SL' is

P clause E:

E = ?=(×,y],=(x,cl),=(Y,cl);

which is false in h (the falsifying substitution is {c2/x,c2/y},

Bn.I kISL'(LTrF(E)) - ZISL'({@R(x,y),R(x,kl),R(y,kl)}) = "F" since the

set of clauses

{ {R(c,d)},{qR(c,kl) },Vr(d,kl) U "'SF

is satisfiable (where c and d are again new $kolem constants

*" introducel by negating LTF(E)).

"IS

3.0 Page 36

3.0 Discussion

Chapter 2 has presented an abstract structured situation in

which a sound and complete theorem proving search can be guided in

a bottom up fashion by a sound but incomplete model.

The incompleteness of the model has two distinct sources. Cne

is simply that we wish to be unbiased in those situations where the

oavailable information is insufficient to specify a single

interpretation. This is a pragmatic choice which leads naturally

to the notion of a model scheme as a set of interpretations each of

which satisfies a common set of conditions (the available model

specification as a set of scheme defining statements, Ml, in the

model language L'). The second source of model incompleteness is

related to the question of efficiency and practicality of

performing model evaluations. We are willing to permit an increase

in the degree of false .ermissiveness in the model evaluations to

obtain a reduction in the average amount of effort e.x.n_,, .,de in

performing model evaluations. In those cases where there exists no

I.ecision procedure for the model evaluations this increasee false

permissiveness is mandatory. In other cases it is merely

tr*radeoff designed to reduce total theorem proving effort. This

traeoff ariss because, for the false permissive comrlete

strategies, as the model evaluation effort is reducel by allowing

an increase in the degree of false permissiveness of the semntic

function, the syntactic search soace contains an increasing number

of clauses at each level. A theoretical analysis of this tradeoff

seems well beyond current capabilities, and an understanding of t'he

* L*

3.0 Page 37

dynamics of this situation will have to be sought in empiric:l

investigations. For a discussion of model incomplateness and the

difficulties it causes in problem solving searches expressed in the

PLANNeER formalism see 'Moore (Moore, 1975). These difficulties do

not arise in the context of the theorem proving formalism usini

false permissive complete semantic refinements.

In the example given in section 2.6 we saw a modeling

structure which was demonstratably false permissive for clause C in

the sense that 'ISL(C) = "T" while MSL'(LTF(C)) = "F". This fls

permissiveness is not a result of indefiniteness as to which

interpretation is to be used, since the model schemes MSL .and I"SL'

each consisted of just one interpretation. Neither was it - result

of incompleteness of the satisfiability testing inside the model

T scheme :SL'. Its origin is the fact that L' is language which

* has more extensive Herbrand universe than does L. As a result,

when using the particular SYMT of the example, r statement with

universclly quantified variables may be true in L, but it7

translated form in L' is not necessarily true in the !arger

" lerbrand universe of L'. This is a soecific case of i more general

c phenomenon of model structures as presentel in this report. This

phenomenon is that the model scheme in L' can reoresent an

manipulate individuals, functions, and predicates which are

* inexpressible in the language L. It is this increased capacity of

the model to represent information that gives rise to the exoension

clusters. We can think of the model as dealing only with an

abstraction of the original problem, but dealing with that

abstraction in a coruext which brings in constructs which are

I]

3.0 Page 38

unobservable in the original problem structure. The purpose of

including these unobservable constructs is to give the model

sufficient structure so that it may be efficiently manipulated in

performing evaluations. We avoid speculation here on the ultimate

role and utility of unobservables in the type of modeling

situations we are concerned with in this report.

W now discuss some issues concerning the oractical

a*olication of the structures presented in this report. It should

already be clear that the efficiency of the model evaluation

process is of importance. Model schemes have been abstractly

described as sets of formula, MSF, in L'. In the tyoical situation

the structure of these formula will be such that it will be

prohibitive to perform model evaluations in L' as a theorem proving

type computation using MSF. Thus one criteria in establishing a

model scheme is to make sure that there will exist a practical

evaluation mechanism. This is a largely uninvestig=ted area at

cresent, but some of the possibilities are clear. _n_ possibility

is that MSF constitutes a decidable theory in L', and there is an

efficient decision zrocedure known. 'n example of this is the

theory of simultaneous linear equations o.ver real variables. This

model is illustratel in an examole problem in TR-30. This moel

*has also been programmed and empirical results h .ve been obtained

using it with HL-Resolution. Cocoer has oresented a specific

decision procedure (Cooper, 1972) for this model.

:71

3.0 Page 39

Another possibility is that no efficient decision procedure is

known for the model scheme SIS(ISF). This may be because 'ISF is n

undecidable theory, or is decidable but is inherently complex, or

we may just be ignorant of any existing decision procedure. In

* this case we could try pure theorem proving procedures on .!SF with

some cutoff on the effort expended. This would introduce some

additional incompleteness (and thus increase the degree of false

permissiveness in the associated semantic function of SIS(MSF)) but

it would be an acceptable way to proceed in some circumstances.

Alternatively one might try to model the set of statements "Sr'

itself by another model structure. Notice that such a second level

of modeling is not just an iteration or recursion type of

relationship of the first level of modeling. The first level model

- must be sound, but can be incomplete. The second level model ner-3

neither be sound nor complete, just so long as its answers ere

checked by the first level model. At present no work has been -one

in exploring the use of multiple levels of models.

The overall generality of the paradigm is high; the model

language, L', can be any first order language, and the moel scheme

can be defined by any set of satisfiable formula of L'. The '!DS
moaeling capability is, however, more than general enough to be

well matched to this paradigm for models.

I-

4,

references Page 40

REFERE NCES

1. Boyer, R., Locking: A Restriction of Resolution, Ph. D.

Thesis, University Microfilms International, Ann Arbor,

Michigan, 1971.

2. Chang, C. L. and Lee, R. T. C., Symbolic Logic an,

Mechanical Theorem Proving, Academic Press, New York, 1973.

3. Cooper, D. C., "Theorem Proving in Arithmetic without

Multiplication", in Machine Intelligence 7, (eds. '!eltzer, 3.

and Michie, D.), Edinburgh University Press, Edinburgh, 1972,

pp. 91-99.

4. Kleene, Stephen Cole, Mathematical Logic, John WTiLey &

Sons, Inc., New York, 1967.

5. Luckham, D. "Refinement Theorems in Resolution Theory"

?roc. IRIA Svmo. Automatic Demonstration, Versailles, France,

1966, Springer-Verlag, New York, 1970, pp. 163-190.

6. Moore, R. C., Reasoning From Incomolete Knowlejg- in a

Procedural Deduction System, %I-TR-347, Artificial Intelligence

Laboratory, !assachusetts Institute of Technology, 1975.

* 7. Nilsson, N. J., Problem Solving Methods in Artific il

Intelligence, KcGraw-Hill, New.z York, 1971.

. Robinson, J. , "A Machine-Oriented Logic Sased cr the

Resolution Principle", J. ACM, 12, 1, 1965, po. 23-41.

6 |:

• references P 4ge 1!

9. Sandford, D. I., Hereditary-Lock Resoluticn: I. Resolution

Refinement Combining a tron "odel 3trategy with Lock

Resolution, ARP\ SOSAP-TR-30, Rutgers University, 1977.

10. Slagle, J. P., "Automatic Theorem Proving i th FenamabJ:

and Semantic Resolution", J. ACM, 14, 4, 1957, pp. 637-697.

11. Srinivasan, C. V., Theorem Proving in the '!eta Descri tion

System, ARPA SOSAP-TP-20, Rutgers University, 1976.

61

tabl Page 42

TABLE OF A:23REVIATIONS

.FA. The quantifier "for all"

H(L) Set of all HI's for the language L

HB(L) Herbrand base for the language L

HI Herbrand interpretation

HLR Hereditary-Lock Resolution

HU(L) Herbrand universe for

the language L

LTF Literal translation function

"!SL (I'3L',TiSL\L') Model scIeme in the 13nguagp L

(in the languages L', L\L')

SR Semantic Fesolution

SYMT Symbol translation function

.TE. The quantifier "there exists"

The .Iodel Strategy

TTF Term translation function

•*3OX* The empty list (or set)

of literals

negation sign

a:

"I t

