

E

THESIS

> OPTIMIZATION OF A LOW $\triangle T$ RANKINE POWER SYSTEM
by
Raymond C. Schaubel
December 1980

Thesis Advisor:
R. H. Nunn

Approved for public release; distribution unlimited.

$$
\begin{array}{llll}
81 & 5 & 04 & 148
\end{array}
$$

Approved for public release; distribution unlimited.

1G. SUBPL CMEMTA累Y MOTES

OTEC
Rankine
COPES/CONMIN

The Ocean Thermal Energy Conversion (OTEC) uses the low thermal energy potential available from ocean temperature gradients. A method is presented to analyze such systems and, for this purpose, a comprehensive simulation is developed. The simulation includes parasitic power requirements, losses due to interconnecting lines, and heat exchanger pressure drops. Cost functions are included and numerical optimization is employed to obtain optimal designs based_unon minimum costs

BLOCK 20. ABSTRACT (Continued)

The analysis is converted to a computer code and coupled to the COPES/CONMIN optimization code to facilitate a fullyautomated design where the computer makes the design decisions and performance trade-off studies. The final product is an optimum power system module design for the designated net electrical output required and the specified system and design constraints.

Preliminary results are presented for a range of system power levels. Optimum designs are obtained and compared for systems in which either titanium or aluminum tubes are used in the heat exchangers.

Approved for public release; distribution unlimited.

Optimization of a Low ΔT Rankine Power System
by

Raymond C. Schaubel
Lieutenant Commander, United States Navy B.S., United States Naval Academy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL December 1980

Author

Approved by:

Co-Advisor

ABSTRACT

The Ocean Thermal Energy Conversion (OTEC) uses the low thermal energy potential available from ocean temperature gradients. A method is presented to analyze such systems and, for this purpose, a comprehensive simulation is developed. The simulation includes parasitic power requirements, losses due to interconnecting lines, and heat exchanger pressure drops. Cost functions are included and numerical optimization is employed to obtain optimal designs based upon minimum cost. The analysis is converted to a computer code and coupled to the COPES/CONMIN optimization code to facilitate a fullyautomated design where the computer makes the design decisions and performance trade-off studies. The final product is an optimum power system module design for the designated net electrical output required and the specified system and design constraints.

Preliminary results are presented for a range of system power levels. Optimum designs are obtained and compared for systems in which either titanium or aluminum tubes are used in the heat exchangers.

TABLE OF CONTENTS

I. INTRODUCTION 11
A. BACKGROUND- 11
B. OBJECTIVES- 13
C. OVERVIEW OF THE OTEC POWER SYSTEM ANALYSIS 14
II. POWER CYCLE DESCRIPTIONS 17
A. INTRODUCTION- 17
B. IDEAL OTEC RANKINE CYCLE- 17
C. ACTUAL OTEC RANKINE CYCLE 19
III. EVAPORATOR AND MOISTURE SEPARATOR 22
A. INTRODUCTION- 22
B. ANALYSIS OF THE EVAPORATOR AND MOISTURE SEPARATOR- 24
IV. PARASITIC LOSSES- 62
A. INTRODUCTION- 62
B. ANALYSIS OF PARASITIC LOSSES- 65
V. TURBINE AND ELECTRICAL POWER- 87
A. INTRODUCTION- 87
B. ANALYSIS OF THE TURBINE AND ELECTRICAL POWER REQUIREMENTS- 89
VI. CONDENSER 93
A. INTRODUCTION- 93
B. ANALYSIS OF THE CONDENSER 94
VII. NUMERICAL OPTIMIZATION 117
A. INTRODUCTION - 117
B. COPES/CONMIN - - 118
C. DESIGNATED DESIGN VARIABLES, CONSTRAINTS AND OBJECTIVE FUNCTION - - - . - - . . - - 122
VIII. CONCLUSIONS AND RECOMMENDATIONS - - 124
A. CONCLUSIONS - 124
B. RECOMMENDATIONS - - 126

TABLES - - - 128
APPENDIX A: SAMPLE INPUT DATA FOR OTEC ANALYSIS - - 150
APPENDIX B: SAMPLE OTEC ANALYSIS OPTIMIZATION

$$
\text { OUTPUT DATA } \ldots \ldots \ldots
$$

APPENDIX C: SAMPLE COPES OPTIMIZATION AND SENSITIVITY ANALYSIS DATA - - - . - - - 157

NOMENCLATURE AND OTEC ANALYSIS CODE - . . - - 160
LIST OF REFERENCES - - - 231
INITIAL DISTRIBUTION LIST - . - . . - . . - . . - . - 233

LIST OF FIGURES

1. Power System Sequential Analysis 16
2. Idealized OTEC Rankine Cycle 18
3. Actual OTEC Rankine Cycle- 20
4. OTEC Power System Comparison (Titanium TubedHeat Exchangers) - 1282. OTEC Power System Comparison (Aluminum TubedHeat Exchangers)-134
5. OTEC Heat Exchanger Comparisons (Titanium Tubed)- -140
6. OTEC Heat Exchanger Comparisons (Aluminum Tubed)- -145

A heat transfer surface area
A_{f} tube bundle frontal area
$A_{f f}$ free-flow area
C_{p} constant pressure specific heat
d diameter
$\dot{E} \quad$ power
f friction factor
F correction to LMTD
G mass velocity
9 acceleration of gravity
ge conversion factor $\left(32.2\left(b_{m} \cdot f t / i b_{f} \cdot \sec ^{2}\right)\right.$
h specific state point enthalpy
$\bar{h} \quad$ average heat transfer coefficient
$K \quad$ thermal conductivity
K_{m} mean salt water compressibility
$L \quad$ tube or pipe length
\dot{m} mass flow rate number
N_{t} number of heat exchange tubes
Re Reynolds number
$P \quad$ static pressure
\dot{Q} heat transfer rate
S specific state point entropy
T temperature
LMTD $\quad \log$ mean temperature difference

```
U overall heat transfer coefficient
v specific volume
V velocity
X quality of working fluid
Z elevation
\epsilon heat exchange effectiveness
% efficiency
D density
&< absolute or dynamic viscosity
```


I. INTRODUCTION

A. BACKGROUND

Ocean Thermal Energy Conversion (OTEC) is a concept using the low thermal energy potential available from the ocean temperature gradient that exists between warm surface ocean water and cold water in deep ocean regions.

The idea of converting the stored ocean energy to useful power originated with French physicist Jacques d'Arsonval in 1881 [Ref. l]. It was nearly a half-century later that the technical feasibility of ocean thermal energy conversion could be demonstrated. In 1926, George Claude used an open cycle power system to extract heat from surface water for indirect conversion of the thermal energy of a working fluid. Operating at a low pressure the working fluid was used to drive a turbine providing electrical power generation.

Though Claude's limited power system produced only
22 kilowatts of electricity while requiring approximately 80 kilowatts of power to drive its equipment, it stirred the scientific and research community to consider the attractiveness of ocean thermal energy conversion [Ref. 2].

Claude called for immediate action on his ocean thermal power system, because of the Federal Oil Conservation Board's dire predictions that the United States had only six years of oil production remaining. Obviously the dire predictions ascribed to by the Federal Oil Conservation Board did not
come true, but the oil crisis of that period heightened scientific interest in extracting energy from the ocean.

Now, 55 years later, the United States is faced with an energy crisis because of increasing industrial and social dependence on foreign petroleum. Dwindling supplies and erratic price hikes have rekindled interest in ocean thermal energy conversion, since it utilizes an inexhaustible supply of fuel.

Currently, the United States Department of Energy is attempting to develop the necessary technology and demonstrate the feasibility of large-scale OTEC power systems. However, there are major engineering development problems which must be solved before OTEC can be standardized and become a viable source of electrical power generation.

The single controlling factor which creates troublesome technical encounters is low thermal power system efficiency (one to four percent depending upon parasitic power requirements). Because the heat energy used by OTEC must be extracted from a small ocean temperature difference, extremely large volumes of surface water must pass through a proportionately sized evaporator to provide sufficient indirect heat energy to convert the working fluid into vapor to drive a turbinegenerator for electrical power generation. Concurrently, to convert the turbine exhaust to a saturated liquid, completing the closed cycle, a condenser having compatible heat absorption capacity must be employed.

Economic handling of the volume of fluids required for the heat absorption, expansion, and heat rejection phases of the cycle requires close scrutiny of evaporator, turbine, condenser, and pump design to minimize the parasitic losses with respect to the generated electrical output. Because of the low thermal efficiency, relative to nuclear or fossil fuel-fired power plants, the margins for design and operating error in OTEC plants will be narrow.

With the advent of high-speed computers, numerical methods for solving these complex engineering problems with multiple design variables and constraints are now possible. The case for utilizing an optimizing scheme for not just one system component, but rather the complete power generation cycle, can easily be made. In effect, it would serve as a systems analysis tool, to optimize component design and cost, relative to a specific electrical output or to enable comparison and evaluation of competing OTEC designs.

B. OBJECTIVES

The objectives of this work are to develop a computer code for the Ocean Thermal Energy Conversion (OTEC) power system and to couple the analysis to a numerical optimization code to provide an optimum system design capability, considering both performance and economics.

This would create an optimum modular design relative to a specified objective function for a desired net electrical output, such as a 25 MW (net) power system. Such a design
would permit construction of higher capacity power systems using the optimized modules as substations of the total power plant. Cost savings, improved plant performance, redundancy, and reliability could be the immediate beneficiaries of such a venture.

C. OVERVIEW OF THE OTEC POWER SYSTEM ANALYSIS

To analyze the closed-cycle OTEC power system, the fundamental relationships of heat transfer, fluid mechanics and thermodynamics are used to simulate a variety of system component designs, which form the basis of the power system algorithm. The scope of this analysis will be limited to the OTEC power system and sea water systems only. Mooring systems, power delivery, hull, and cold pipe design will not be addressed.

The performance analysis will be divided into four sequential sections as shown in Figure 1, and discussed in detail in subsequent chapters of this thesis.

Input parameters (design constants) for the power cycle analysis will include:
. Required net electrical output.
. Salt water inlet temperature to the evaporator and condenser.
. Length of hot and cold salt water pipes.
. Heat exchanger tubing material (aluminum or titanium).
. Heat exchanger tube orientation and profile.
. Pump mechanical and motor efficiencies.
. Turbine mechanical efficiency.
. Generator mechanical and electrical efficiency.
. Biofouling control factor.

- Piping absolute roughness.
- Projected annual inflation rate for aluminum heat exchanger retubing.

Figure 1. Power System Sequential Analysis

II. POWER CYCLE DESCRIPTIONS

A. I.VTRODUCTION

This chapter will provide a brief description of the OTEC power system. First, looking at the ideal Rankine cycle, the fundamental thermodynamic concepts will be enumerated. Then the deviations from the ideal cycle will be presented, creating the configuration assumed for the present cycle analysis which will be amplified in detail by follow-on chapters.

B. IDEAL OTEC RANKINE CYCLE

The closed-cycle OTEC concept is based upon a Rankine power cycle that is driven by the low thermal energy potential available from the ocean temperature gradient that exists between warm surface water and cold deep water in ocean regions. The power cycle consists of a working fluid circulation pump, evaporator (heat absorption), turbine (expansion), and condenser (heat rejection), as shown in Figure 2. The majority of current OTEC designs are based upon ammonia as the working fluid -- a design decision that is adopted for this analysis.

Figure 2 also illustrates an ideal OTEC Rankine cycle, plotted on temperature-entropy coordinates. In the ideal cycle, the low pressure working fluid (state point l) is isentropically pumped to the evaporator operating pressure (state point 2). The working fluid (ammonia) is then

Figure 2. Idealized OTEC Rankine Cycle
converted to a saturated vapor in the evaporator by indirect heat energy exchange from warm surface ocean water (state point 3). Mechanical power is generated by isentropic expansion of the saturated ammonia vapor through the turbine (state point 4).

After exiting the turbine, the wet, low-pressure vapor is converted to a saturated liquid in the condenser by indirect heat absorption from cold ocean water (state point 1), returning the cycle back to the working fluid circulation pump.

C. ACTUAL OTEC RANKINE CYCLE

In actuality there are numerous deviations from the ideal cycle which must be considered in this analysis. These are:
(1) Turbine, generator and pump efficiencies.
(2) Pressure drops in evaporator and condenser (tubeside and shellside).
(3) Pressure drop across moisture separator.
(4) Elevation change and frictional losses in piping: (a) re-flux pump piping, (b) piping from circulation pump to evaporator.
(5) Evaporator outlet quality (85 to 95%).
(6) Moisture separator autlet quality (99 to 99.5\%).

The deviations from the ideal Rankine cycle described above are depicted in the flow diagram and temperature-entropy plot of Figure 3. In the actual OTEC Rankine cycle, the low pressure working fluid (state point 1) is pumped up to the evaporator operating pressure by the ammonia circulation pump with an adiabatic efficiency (state point 2). The working

Figure 3. Actual OTEC Rankine Cycle
fluid (ammonia) is then converted to a wet vapor with an evaporator outlet quality ($85-95 \%$) acting under a shellside pressure drop (state point 3). Evaporator outlet vapor then passes through a moisture separator to improve vapor quality (99-99.5\%) creating a pressure drop (state point 4). Mechanical power is generated by the expansion of the moisture separator outlet vapor through the turbine with an adiabatic efficiency (state point 5). After exiting the turbine, the wet, low pressure vapor is converted to a saturated liquid in the condenser acting under a shellside pressure drop (state point l), returning the cycle to the working fluid circulation pump.

This figure forms the thermodynamic basis for the OTEC power system analysis which follows.

III. EVAPORATOR AND MOISTURE SEPARATOR

A. INTRODUCTION

Several heat exchanger concepts have been proposed for closed-cycle OTEC systems. Among these designs are:

- Conventional shell and tube heat exchanger.
- Plate type heat exchanger.

Within these basic concepts, variations in design have been proposed, including:
. Orientation of tubes (horizontal or vertical).
. Heat exchanger tube material (i.e., titanium, aluminum).
. Method of tube enhancement (i.e., fluted, porous coatings).
. Location of tube enhancement (i.e., internal and/ or external).
. Location of the vapor separator (i.e., internal or external).
. Location of the heat exchangers relative to the sea surface.
. Method of biofouling control.
The analysis to be presented for the evaporative heat exchanger will be based on the following design characteristics:
. Single-pass shell and tube heat exchanger.
. Internal vapor separator with a gravity drain to evaporator inlet.
. Horizontal orientation of tubes with an equilateral triangle or square tube profile.
. Smooth plain-tube configuration (no enhancements).
. Tube material (titanium or aluminum based on a 30-year life-cycle criterion).

- Biofouling control based upon an achievable fouling factor.
- Heat exchanger centerline located on sea surface.

As an overview of the evaporator-moisture separator analysis, the following major steps in the algorithm are listed in order of their execution (numbers in parentheses
refer to equations developed in the subsequent analysis):

- Specification of system constants (see I.C.).
. Initialization of design variables (D.V.).
.. Tube length.
.. SW velocity through hot pipe.
.. Inner diameter of hot pipe.
.. Tube outer diameter.
.. SW velocity through evaporator tubes.
.. Inner diameter of NH 3 piping.
.. Inner diameter of NH3 re-flux piping.
.. Tube profile pitch ratio.
. Salt water mass flow rate (1).
. Total number of tubes (2).
- Total heat transfer surface area (3).
- Assume an initial salt water bulk temperature (6), and ammonia heat transfer coefficient (9).
. Overall heat transfer coefficient (4).
. Number of transfer units (11).
. Heat exchanger effectiveness (13).
. Salt water outlet temperature (15).
- Revised bulk temperature (16); iterate with (6).
- Amount of heat absorption (17).
- Log mean temperature difference (18).
. Film temperature (19).
- Initial ammonia mass flow rate (21) without the effects of moisture separator.
- Initially assume state point 1 thermodynamic properties are ideal (21).
. Thermodynamic pump work (23).
- Tube profile, flow parameters across the tube bank (24, etc.).
- Tube sheet diameter (30).
- Evaporator shellside pressure drop for two phase flow (33).
. Moisture separator pressure drop (38).
. Properties at state points 3 and 4 (39-41).
- Revised ammonia mass flow rate and velocity (50) includes the effects of the moisture separator; iterate with (31).
- Revised ammonia heat transfer coefficient (5l, etc.); iterate with (9).
. Heat exchanger cost analysis.
In the following section, the basic steps summarized above will be described in detail.
B. ANALYSIS OF THE EVAPORATOR AND MOISTURE SEPARATOR

1. Salt Water Mass Flow rate, $\dot{m}_{s w}$

The salt water mass flow rate through the hot pipe must be equivalent to the flow rate through the evaporator (assuming no leakage)

$$
\dot{n}_{1} \text { (HOT PIPE) }=\operatorname{Min}_{2} \text { (EVAPORATOR) }
$$

and

$$
\begin{equation*}
\dot{m}=\rho_{\sin } A V \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
A= & \text { cross -sectional area of the hot pipe. } \\
V= & \text { salt water velocity through hot pipe. } \\
\rho_{S N}= & \text { density of salt water evaluated for an } \\
& \text { average hot pipe salt water temperature. }
\end{aligned}
$$

As previously stated, the diameter of the hot pipe and salt water velocity are among the initializing conditions of the optimization and will be treated as design variables.

2. Total Number of Evaporator Tubes, N_{t}
 Using equation (1), it follows that

$$
\begin{equation*}
\dot{m}_{1}=\rho_{\sin } \frac{\pi d i_{i}^{2}}{4} V_{t} N_{t} \tag{2}
\end{equation*}
$$

where $\rho_{s w}=$ salt water density evaluated at the average bulk temperature initially assumed as the hot pipe salt water temperature.
$d_{i}=$ tube inner diameter.
$\Lambda_{t}^{\prime}=$ the number of tubes required to maintain the mass flow rate for an average salt water velocity per tube.

The total number of tubes can be determined by solving Eq. (2) for N_{t}.

The diameter of the tube and average salt water velocity per tube are initialized for the analysis and will be treated as design variables by the otpimization code.
3. Total Evaporator Heat Transfer Surface Area (Outer), A_{t}

Having determined the number of evaporator tubes, the total heat transfer surface area can be determined using initializing values of outer tube diameter and tube length.

For tubes without extended surfaces

$$
\begin{equation*}
A_{t}=\pi d_{0} L_{t} N_{t} \tag{3}
\end{equation*}
$$

As previously, the outer tube diameter and tule length are initializing conditions and will be treated as design variables.
4. Overall Heat Transfer Coefficient,

The quantity " U " provides a measure of the total thermal resistance in the flow path, based on either inside or outside surface area.

This analysis will be based on the value of U for the outside surface area derived from Eq. (3).

Using a resistance analysis, assuming one dimensional (radial) heat flow,

the overall heat transfer coefficient may be expressed as

$$
\begin{equation*}
L_{0}=\frac{1}{\frac{A_{c}}{\gamma_{i} h_{w w} A_{i}}+\frac{A_{c}}{A_{i}} R_{+S W}+\frac{d_{0} \ln d_{0} / d_{i}}{2 K}+R_{f N_{3}}+\frac{1}{\eta_{0} h_{N H 3}}} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
h_{s w}= & \text { tubeside heat transfer coefficient. } \\
R_{f s w}= & \text { salt water fouling heat transfer resistance. } \\
K= & \text { thermal conductivity of the tube material. } \\
d_{0} d_{i}= & \text { outer and inner tube diameter. } \\
R_{f N_{3}}= & \text { ammonia fouling heat transfer resistance } \\
& \text { (assumed to be negligible). } \\
V_{Q_{0}} V_{i}= & \text { outer and inner total fin efficiency (for } \\
& \text { plain tube analysis, total fin efficiency } \\
& \text { equals l). } \\
A_{0}= & \text { total outer surface area (including fin } \\
& \text { and bare tube). }
\end{aligned}
$$

$$
\begin{aligned}
& A_{i}=\text { total inner surface area (including fin } \\
& \text { and bare tube). }{ }^{1} \\
& T_{i}=1-\frac{A_{f n}}{A_{i}}\left(1-\lambda_{i f i}\right) \\
& \gamma_{0}=1-\frac{A_{f n_{i}}}{A_{0}}\left(1-\gamma_{\left(f_{0}\right)}\right) \\
& \text { where } \quad A_{f:}=\text { total inner fin surface area. } \\
& A_{i}=\text { total inner surface area (including fin } \\
& \text { and bare tube). } \\
& A_{f n_{c}}=\text { total outer fin surface area. } \\
& A_{\nu}=\text { total outer surface area (including fin } \\
& \text { and bare tube). } \\
& \eta_{\psi_{i}}=\text { fin efficiency of single interanl fin. } \\
& 7_{i f o}=\text { fin efficiency of single external fin. } \\
& \text { a. Tubeside Reynolds Number, Pe, } \\
& \text { Since the heat transfer coefficient correlations } \\
& \text { for the evaporator and condenser are dependent on tubeside } \\
& \text { flow, Reynolds number must be calculated. } \\
& \text { The tube Reynolds number is defined as }
\end{aligned}
$$

$$
\begin{equation*}
R_{e_{i}}=\frac{\text { Ain } v_{s w d i}}{\text { Risw }} \tag{5}
\end{equation*}
$$

[^0]where $\mu_{i s w}=$ dynamic viscosity of salt water.
\[

$$
\begin{aligned}
\rho_{s w} & =\text { density of salt water. } \\
& \text { Initially, properties are evaluated for }
\end{aligned}
$$
\]

$$
\begin{equation*}
T_{\text {BuLK }}=T_{\text {sw }}(\text { INLET }) \tag{6}
\end{equation*}
$$

Reynolds numbers greater than 2300 will be indiafive of turbulent flow [Ref. 3]. Transition flow was considered laminar for numerical evaluation.
b. Salt Water Heat Transfer Coefficient, $h_{s w}$

The simple empirical relation proposed by Lieder and Tate [Ref. 3], expressed as

$$
\begin{equation*}
N_{u_{d}}=1 . G_{0}\left(P_{e_{d}} P_{r}\right)^{1 / 3}\left(\frac{d_{i}}{L_{t}}\right)^{1 / 3}\left(\frac{U_{i}}{\alpha_{i n}}\right)^{0.14} \tag{7}
\end{equation*}
$$

was used for laminar heat transfer in tubes as defined by Eq. (5).

Nusselt and Prandtl numbers, $N_{4, i}$ and P_{r}, are defined as

$$
\begin{aligned}
& N_{u_{1}}=\frac{h_{s w} d_{i}}{\dot{k}_{s w}} \\
& P_{i}=\frac{C_{s w} \mu_{s w}}{k_{s w}}
\end{aligned}
$$

where fisk, sow and ks.v (dynamic viscosity, specific heat, and thermal conductivity) of salt water are evaluated at salt water bulk temperature.

The effect of the viscosity ratio term in
Eq. (7)

$$
\left(\frac{\mu_{i}^{\prime}}{\mu_{i}}\right)^{0.14}
$$

where μ_{w} is salt water viscosity evaluated at tube wall temperature, is considered negligible and will hereafter be dropped from the expression of Eq. (7).

Relation (7) is based upon the following assumptions:
. fully developed flow in smooth tubes.
. fluid properties are evaluated at the bulk fluid temperature.
and is valid for the following condition

$$
\operatorname{Pre}_{e} \operatorname{Pr} \frac{d}{L}>10
$$

For fully developed turbulent flow in a tube as defined by Eq. (5), the Dittus-Boelter correlation [Ref. 3] expressed as

$$
\begin{equation*}
N_{u_{d}}=0.023 R_{e_{d}}{ }^{0.3} P_{r}^{0.4} \tag{8}
\end{equation*}
$$

was used. Nusselt and Prandtl numbers, Nidd and P_{r}, are previously defined by Eq. (9).

Relation (8) is based upon the following assump-
tions:
. fully developed flow in smooth tubes.
. fluid properties are evaluated at the bulk fluid temperature
and is valid for the following conditions:
. Prandtl numbers ranging from 0.6 to 100 .

- moderate temperature differences between the wall and fluid conditions.
c. Salt Water Fouling Heat Transfer Resistance In this document, it will be assumed that the fouling resistance coefficient for tubeside salt water can be maintained at .00025 (hr.ft ${ }^{2} \mathrm{~F}^{\prime} / \mathrm{BTL}$) using one of the following techniques:
. Chlorination.
. MAN Brush System.
- Amertap.
- Chemical cleaning

Pressure drops associated with cleaning techniques will not be considered in this analysis. Piping losses will be a function of tube length, inner diameter, salt water velocity and the absolute roughness of the tubing design material only.
d. Ammonia Shellside Heat Transfer Coefficient, $h_{N H}$ Initially, h_{N+g} will be assumed

$$
\begin{equation*}
h_{\mathrm{NH}_{3}}=1000\left(B T U / h r \cdot f t^{2} \cdot F^{\circ}\right) \tag{9}
\end{equation*}
$$

since its value cannot be directly calculated during this phase of the analysis.

Using the thermal resistance expressed as

$$
R_{1}=\frac{d s}{\eta_{i} l_{\operatorname{sw}} d_{i}}
$$

$$
\begin{aligned}
& R_{2}=\frac{c_{0}}{i_{1} h_{1}+\omega_{0} \lambda_{0}} \\
& R_{3}=\frac{i_{0} i n_{n} i_{0} / d_{i}}{2 k} \\
& R_{5}=\frac{1}{i_{0} h_{N H_{3}}}
\end{aligned}
$$

an initial value for the overall heat transfer coefficient may be calculated.

$$
\begin{equation*}
L_{0}=\frac{1}{R_{1}+R_{2}+P_{13}+R_{15}} \tag{10}
\end{equation*}
$$

5. NTU-effectiveness Relations

The NTU-effectiveness relationships will be used to determine the evaporator outlet salt water temperature. Currently, all salt water properties have been based upon the initial assumption that

$$
T_{\text {BuLk }}=T_{H_{i}} \text { (SW inLet to Evap) }
$$

The expression for the number of transfer units (NTU) which is a measure of the size of the heat exchanger is given by

$$
N T U=U_{0} A_{t} / C_{i n, \prime \prime}
$$

where $C_{i n \prime n}$ is defined as capacity rate of the single phase flow in an evaporative or condensing two phase flow regime.

$$
\begin{equation*}
C_{\text {linin }}=\dot{m}_{s w} C_{P_{s w}} \tag{11}
\end{equation*}
$$

Evaporator effectiveness can then be expressed as

$$
\begin{equation*}
E=1-e^{(-N T U)} \tag{12}
\end{equation*}
$$

for two phase flow regardless of the flow geometry. Using the definition of effectiveness

$$
\begin{equation*}
\text { Effectiveness }=\frac{\text { actual heat transfer }}{\text { maximum possible heat transfer }} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\epsilon=\frac{\dot{Q}}{\dot{G}_{\text {max }}}=\frac{\Delta T_{\min }}{\Delta T_{\max }}=\frac{T_{H_{i}}-T_{H_{i}}}{T_{H_{i}}-T_{c_{i}}} \tag{14}
\end{equation*}
$$

The expression for $\Delta T_{\text {min }}$ represents the single phase (salt water) flow and $T_{c_{i}}$ represents ammonia inlet temperature to evaporator taken at state point 3λ.
6. Evaporator Salt Water Outlet Temperature and Bulk Temperature

Using the relationships of Eq. (12) and (14), the following expression may be formulated for salt water outlet temperature

$$
\begin{equation*}
T_{H_{0}}=T_{H_{i}}-\left(T_{H_{i}}-T_{c_{i}}\right)\left(1-e^{(-N T U)}\right) \tag{15}
\end{equation*}
$$

Concurrently, a revised evaporator average salt water temperature can be expressed as

$$
\begin{equation*}
T_{B \backslash L K}=\left(T_{H_{L}}+T_{H:}\right) / 2 \tag{16}
\end{equation*}
$$

Using the revised value for average salt water temperature, iterate with equation (1) until the revised and current values of bulk temperature satisfy a specified convergence criterion.
\therefore Amount of Heat Absorption, \dot{C}
Using the results of Eq. (16) and (12), the amount of heat absorption by the evaporator may be expressed as

$$
\begin{equation*}
\dot{C_{Y}}=\operatorname{Cinin}\left(T_{H_{i}}-T_{H_{0}}\right) \tag{17}
\end{equation*}
$$

8. Log Mean Temperature Difference, LMTD

The NTU-effectiveness method can be used to determine the mean effective temperature difference (LMTD) across the evaporator (heat exchanger).

Using Eq. (17) and the definition of

$$
\dot{Q}=U_{0} A_{t} F L M T D
$$

with

$$
\dot{Q}_{\text {infix }}=C_{\text {in, } 11} \Delta T_{\text {max }}
$$

the 10 g mean temperature difference across the evaporator may be expressed as

$$
\begin{equation*}
\text { LMITD }=\frac{C_{m, n}\left(1-e^{(-N T U)} X T_{H_{i}}-T_{c_{i}}\right)}{U_{0}^{i} A_{t} F} \tag{18}
\end{equation*}
$$

where $T_{C}=T_{N+3}$ evaluated at state point 3.
$F=$ correction factor on LMITD, equal to 1 for two phase flow.
9. Film Temperature for Property Evaluation, T_{f}

In order to evaluate the shellside ammonia heat
transfer coefficient, working fluid properties (i.e., viscosity, specific heat, etc.) must be evaluated at the film temperature to validate critical heat transfer expressions.

By modifying the expression in Eq. (10) multiplying by a single tube outer area, a value for single tube conductance can be expressed as

$$
U_{0} A=\frac{A}{R_{1}+R_{2}+R_{3}+R_{5}}
$$

Subsequently, the average amount of heat transferred per tube would equate to

$$
\dot{Q}=U_{1} A\left(T_{\text {BuLK }}-T_{3}\right)
$$

where $\quad T_{3}=T_{\text {NH }_{3}}$ evaluated at state point 3 .
Again using the resistance analysis in Section 3, shellside wall temperature may be derived from

$$
T_{W_{2}}=T_{B U L K}-\dot{Q}\left(\frac{R_{1}+R_{3}+R_{3}}{A}\right)
$$

Knowing shellside wall temperature and the free-stream temperature, film temperature can be derived from their arithmetic mean.

$$
\begin{equation*}
T_{t}=\frac{T_{\omega z}+T_{3}}{2} \tag{19}
\end{equation*}
$$

10. Ammonia Mass Flow Rate, $\dot{\operatorname{m}}_{N 43}$

According to first law of the rmodynamics for steady state, steady-flow conditions in the evaporator:

$$
\begin{equation*}
\dot{m}_{N+3} h_{2}+\dot{\varphi}=\dot{m}_{N+3} h_{3} \tag{20}
\end{equation*}
$$

from which the ammonia mass flow rate, $\dot{m}_{N_{3}}$, may be determined if the enthalpies at state points 2 and 3 are known.

Ii we initialize the lower and upper bounds of the analysis in terms of pressure P_{1} and P_{3}, respectively, and initially assume that a saturated vapor leaves the evaporator, the following relations may be expressed
$\left.\left.h_{1}=h_{t}\right)_{P_{1}} \quad T_{1}=T_{S A T}\right\rangle_{P_{1}}$
$\left.h_{3}=h_{9}\right)_{P_{3}} \quad T_{3}=\left(\begin{array}{rcr} & \rangle_{P_{3}}\end{array}\right.$
where

$$
\begin{aligned}
h_{1}= & \text { represents enthalpy at state point } 1 \text { at } \\
& \text { the suction inlet to the working fluid } \\
& \text { circulation pump. } \\
h_{3}= & \text { represents enthalpy at (ideal)/state point } 3 \\
& \text { as a saturated vapor. } \\
T_{1}, T_{3}= & \text { represent the respective saturation } \\
& \text { temperatures. } \\
\tau_{1}= & \text { represents the specific volume at state } \\
& \text { point } 1 .
\end{aligned}
$$

To summarize, the upper and lower pressure bounds of the system (P_{1} and P_{3}) will be initialized in the analysis and treated as design variables by the otpimization code. Temperature at state point \mathcal{J} is initially assumed to be a saturated vapor (ideal T_{3}); however, the working fluid is subject to a shellside pressure drop as it passes across the evaporator with an outlet quality of $90-95 \%$. Properties at state point 3 (actual) will be assessed in follow -on sections.

AMMONIA CIRE PUMP

$$
\begin{equation*}
\dot{m}_{\mathrm{NH}_{3}} h_{1}+\dot{l}_{\mathrm{CP}}=\dot{m}_{\mathrm{NH}_{3}} h_{2} \tag{22}
\end{equation*}
$$

Assuming steady state, steady-incompressible flow, the change in kinetic and potential energies, and heat losses are negligible for isentropic conditions, and the isentropic pump work can be expressed as

$$
\dot{V}_{c P_{5}}=i_{1}\left(P_{2}-P_{1}\right) \quad w_{i} h=r=P_{2}=P_{25}
$$

After the isentropic pump work is calculated, the actual (adiabatic) pump work may be determined using pump efficiency, r_{ρ}.

$$
\begin{equation*}
\dot{U}_{e_{p}}=\frac{\ddot{U}_{c p_{j}}}{\eta_{p}} \tag{23}
\end{equation*}
$$

Actual outlet enthalpy at state point 2 may be determined using the results of Eq. (23) with Eq. (22) knowing the enthalpy at state point 1 from Eq. (21).

Using the results of Eqs. (21) and (22), the mass flow rate in Eq. (20) may be calculated as the average shellside mass flow rate for the working fluid (ammonia).
11. Tube Profile, Flow across Tube Bank, and Tube Sheet Diameter

Since the heat-exchanger arrangements (evaporator and condenser) involve multiple rows of tubes, the geometric arrangement of the tube profiles is important in the determination of the heat transfer coefficient, the tube sheet diameter and the shell side pressure drop associated with two-phase flow (homogeneous model) [Ref. 4].

The following geometric arrangements are used:

IN-LINE

where $S_{n}=$ pitch ratio x outer tube diameter, equal to $S p$.
$P_{\text {fi }}=$ pitch ratio; the distance between tube centers with respect to outer tube diameter.
$A_{p}=$ tube profile area (centerline to centerline) per tube.

$$
\begin{align*}
& S_{n}=P_{1} d_{0} \tag{24}\\
& A_{p}=S_{i n}^{2} \tag{25}
\end{align*}
$$

$$
\text { Staggered } \quad S_{n}=2 P_{R} A_{0} \sin 30_{0}^{\circ} \cos 30^{\circ}
$$

Therefore, the tube profile area (centerline to centerline) per tube is equal to

$$
\begin{equation*}
A_{p}=\operatorname{Sn} ت_{i} \tag{28}
\end{equation*}
$$

The ratio of minimum flow area to the frontal area can be expressed as

$$
\begin{equation*}
\frac{A_{f f}}{A_{f}}=\frac{S_{i 1}-d_{0}}{S_{n}} \tag{29}
\end{equation*}
$$

Using the selected tube profile geometry, either inline or staggered, and knowing the required number of tubes by equation (2), the tube sheet diameter for heat exchanger design can be assessed as follows:

$$
\begin{equation*}
A_{5} A_{p}=\frac{\pi_{S O}}{4} \tag{30}
\end{equation*}
$$

where $T_{S D}=$ tube sheet diameter.
To estimate the shellside ammonia flow velocity the following control volume is introduced (ammonia circulation piping and the top portion of the evaporator).

If the mass flow rate remains unchanged across any boundary (continuity),

$$
\dot{m}_{2}=\dot{m}_{+}
$$

Furthermore, if we assume the evaporator has the means to evenly distribute liquid droplets across the top of the tube bundle (spray nozzles and baffling), the following expressions can be applied to estimate the mean droplet velocity approaching the bundle:

Let

$$
\left(A_{F}\right)_{L i G}=A_{F} \geqslant
$$

where $\mathfrak{\eta}=$ percent of tube frontal area which is occupied by droplets.

The mass flow rates are

$$
\dot{m}_{z}=\rho A_{p} V_{P}
$$

$$
\dot{m}_{t}=\rho\left(H_{G}\right)_{L G} V_{f}
$$

where $\quad A_{p}=$ ammonia pipe cross-sectional area.
$V_{p}=$ average ammonia velocity in the pipe.
Therefore

$$
V_{f}=\frac{A_{p}}{\left(A_{f}\right) i_{p}^{1}} V_{p}
$$

and since

$$
\eta_{1} \approx \frac{A_{p}}{A_{f}}
$$

it follows that the average velocity of ammonia through the circulation pipe is equivalent to the average velocity of ammonia at the tube frontal area boundary.

$$
\begin{equation*}
V_{p}=V_{f} \tag{31}
\end{equation*}
$$

Thus the assumption that $\ell_{=} A_{P} / A_{f}$ is equivalent to the assumption of constant liquid kinetic energy in the transition from the pipe exit to the bundle entrance. Considering the minimum free-flow area for shellside flow passage, Pf can be derived from Eqs. (29) and (30):

$$
\begin{align*}
A_{f} & =T_{s D} L_{t} \\
A_{f f} & =A_{f}\left(\frac{S_{11-d_{0}}}{S_{i n}}\right) \tag{32}
\end{align*}
$$

where $\dot{A}_{f}=$ represents the flow frontal area.
$L_{t}=$ tube length.

Using the calculated values of Eqs. (32) and (20), the mass velocity for the minimum free-flow area can be expressed

$$
G=\operatorname{in}_{\mathrm{NH}_{3}} / A_{f f}
$$

where $\dot{H V}_{\mathrm{NH}_{3}}$ represents the average ammonia mass flow rate.
12. Pressure Drop of Two-Phase Flow across a Bank of Tubes, ΔP

This portion of the analysis will use an anatical model for two-phase pressure drops applicable for a fog or spray flow pattern occurring at high void fractions -- the homogeneous model [Ref. 4].

The model asserts that if the pressure drop in the two-phase flow for a liquid-vapor mixture is relatively small compared to the absolute pressure, the flow is considered incompressible. Subsequently, the density of each phase is practically constant. During the process of phase change, the phase and velocity distributions are changed, and so is the momentum of the flow. Therefore, the pressure drop of a vertical two-phase flow consists of three components: friction loss, momentum change, and elevation pressure drop arising from the effects of the gravitational force field.

The local pressure gradient for a two-phase flow may be expressed as

$$
\begin{equation*}
\Delta P_{\text {TOT }}=\Delta P_{\text {FRICTICN }}+\Delta P_{\text {MOMENTUMI }}+\Delta P_{\text {ELEVATION }} \tag{33}
\end{equation*}
$$

For a given channel length, L_{C}, the pressure drop components can be represented by

$$
\begin{align*}
& \Delta P_{\text {FRICTION }}=\frac{f G^{2} \overline{2}}{D e 2 L_{C}} \tag{34}\\
& \Delta P_{\text {MOMENTUM }}=\frac{G^{2} \overline{2}}{g .} \\
& \Delta P_{\text {ELEVATION }}=\frac{9}{2 \cdot g=} L_{C}
\end{align*}
$$

and the total pressure drop, $\Delta P_{\text {EVA }}$, is given by the sum of these expressions
where $f=$ single-phase friction factor by Jakob expressed
in Eqs. (35) and (36).
$L_{c}=$ channel flow length, defined for horizontal tubed evaporators as $L_{C}=T_{S D}$ (tube sheet diameter).
$D_{e}=$ equivalent diameter of flow channel, defined by $\quad D_{e}=P_{P} C_{0}-c l_{0}$.
$\bar{\imath}=$ mean specific volume defined by

$$
\overline{v^{-}}=v_{f}\left[1+\frac{x}{v_{f}^{\prime}}\left(v_{f}-v_{f}\right)\right]
$$

where

$$
\begin{aligned}
& X=\text { quality of mixture (state point } 3 \text {). } \\
& V_{f}=\text { specific volume of liquid (state point } 1 \text {). } \\
& V_{y}=\text { specific volume of vapor (state point } 3 \text {). }
\end{aligned}
$$

The basic assumptions of the homogeneous model (fog flow model) [Ref. 4] are:
(1) equal linear velocities of vapor and liquid,
(2) thermodynamic equilibrium between the two phases, and
(3) a suitably defined single-phase friction factor is applicable to the two-phase flow.

Using assumption (3) and the correlations by Jakob [Ref. 3], a suitable single-phase friction factor can be calculated from previously defined tube profile relationships:
for staggered tube arrangements:

$$
\begin{equation*}
f=\left\{0.25+\frac{0.118}{\left[\left(S_{n}-i_{0}\right) / 10\right]^{1.28}}\right\} \operatorname{Re} e_{\text {max }}^{-0.16} \tag{35}
\end{equation*}
$$

and for in-line tube arrangements:

$$
\begin{equation*}
f=\left\{c .044+\frac{0.0 . S_{n} / d_{0}}{\left[\left(S_{n}-d_{0}\right) / i_{0}\right]^{0.43+1.13 i_{c} / 5 n}}\right\} \operatorname{Re}_{\text {indx }}{ }^{-0.15} \tag{36}
\end{equation*}
$$

where Reynolds number (max) is determined from the shellside ammonia flow and the nozzling effect of the tube geometry as expressed by

$$
V_{\max }=V_{f}\left(\frac{S_{n}}{S_{n}-d_{0}}\right)
$$

where $\quad V_{f}=$ the ammonia velocity at the tube frontal area boundary determined by equation (31).

Reynolds number for maximum shellside flow can be calculated using the following expression

$$
\begin{equation*}
R_{e_{\text {max }}}=\frac{\rho_{i}, V_{\text {max }} c_{0}^{\prime}}{\mu_{f}} \tag{37}
\end{equation*}
$$

Eq. (37) and tube profile data can then be used to evaluate the single-phase friction factor, required for Eq. (34). All other components of the total pressure drop Eq. (33) can be determined from previously calculated data. 13. Pressure Drop Across the Moisture Separator, $\Delta P_{\text {m sep }}$

This portion of the analysis will simulate the use of a cyclone separator to improve te evaporator outlet vapor quality. The flow pattern in a cyclone separator is complex and simplifying assumptions are inadequate to allow the calculation of the corresponding pressure drop, which can vary from 1 to 20 inlet velocity heads [Ref. 5]. Therefore, the worst case condition will be applied with an approximation for the fluid flow inlet area to the separator banks.

By approximating the inlet area as a fraction of the evaporator frontal area

$$
A_{\text {inlet }}=0.1 T_{S D} L_{t}
$$

the inlet fluid velocity can then be determined using the working fluid mass flow rate, Eq. (20).

$$
\dot{m}_{N H 3}=\rho A_{\text {INLET }} V
$$

where $\rho=$ density of ammonia at state point 3.

Therefore, if the pressure drop across the moisture separator is equal to 20 times the inlet velocity head,

$$
\begin{equation*}
\Delta P_{\text {n. SEP }}=20 \rho \frac{V^{2}}{2 g} \tag{38}
\end{equation*}
$$

14. Enthalpy at State Points 3 and 4

Since Eq. (33) represents the pressure drop across the evaporator shellside, the actual pressure at state point 3 or evaporator outlet may be determined from

$$
\begin{equation*}
P_{3}(N \geq W)=P_{3}-\Delta P_{E V A T} \tag{39}
\end{equation*}
$$

where P_{3} was previously described as the pressure for a saturated vapor.

Similarly the actual pressure at state point 4, the moisture separator outlet, may be expressed as

$$
\begin{equation*}
P_{4}=P_{3(N E N)}-\Delta P_{M . S E P} \tag{40}
\end{equation*}
$$

Operating under the dome of the Temperature-Entropy diagram, the following properties are defined

$$
\left.\begin{array}{ll}
h_{3 f}(\text { NEw }) & \left.=h_{f}\right\}_{P_{3}(N E w)} \tag{41}
\end{array} h_{4 f}=h_{f}\right\}_{P_{4}}
$$

The subscript ($N E V$) representing a revised property will hereafter be dropped from the expressions in Eq. (41).

Assuming an evaporator outlet quality of $90-95 \%$, and a moisture separator outlet quality of 99-99.5\%, enthalpies at state points 3 and 4 may be determined using the relationships of Eqs. (41)

$$
\begin{align*}
& h_{3}=h_{3 t}+x_{3}\left(h_{39}-h_{3 i}\right) \\
& h_{4}=h_{4}+x_{4}\left(h_{4 y}-h_{4 f}\right) \tag{42}
\end{align*}
$$

15. Revised Ammonia Mass Flow Rate and Velocity

Till now, we assumed that the shellside mass flow rate was given in accordance with the ideal system defined by Eq. (20) ; however, in actuality this is not the case.

The diagramatic representation that follows better illustrates the heat absorption phase of the OTEC power system and will provide the basis for the analysis and optimization.

Note, as in the previous control volume analysis, the following conditions are assumed.
. Steady state.
. Steady-incompressible flow.
. Change in potential and kinetic energies is negligible.

Analyzing the moisture separator as a separate control volume,

If we assume that there is no carry-over of vapor in the separator drain, then

$$
x_{3} i_{3}=x_{4} \dot{m}_{4}
$$

and

$$
\begin{equation*}
\dot{m}_{3}=\frac{x_{4}}{x_{3}} \dot{m}_{4} \tag{43}
\end{equation*}
$$

However, for reasons of flow continuity, the mass flow rate through the separator drain must be included in the control volume analysis; therefore

$$
\begin{equation*}
\dot{m}_{3}=\dot{m}_{4}+\dot{m}_{D E} \tag{44}
\end{equation*}
$$

Substituting Eq. (4j) into (ty and solving for in se, the following expression can be derived

$$
\operatorname{lin}_{0}=\left(\frac{x+}{x_{2}}-1\right), x+
$$

Looking at the evaporator as a separate control volume,

the energy balance is

Assuming the change in enthalpy across the reflux pump and the difference between the separator drain outlet and evaporator inlet are negligible, the energy balance becomes

$$
Q_{+}+m_{2} h_{2}+m_{D E} h_{0}=n_{3} i_{3}
$$


```
    assumed to be a saturated liquid.
    Orthermore, a mass balance of the araporator control
`olume can be expressed as
inz+rikin+iion=1iz3+inke
natre binc=1%的.
    ̇olving Eq. f( \゙vr the mass flow rate as stata
Ooint j and substituting into Eu. : In with Eq. (i5) vields
the tollowing expression
```



```
In addition, a mass aalance \thereforea: steadr-state, steady-flow
```



```
    NA+ = 12=
    Is:n; ius. &4 and tli. the revised mass flow
\becauseITO a: stare \ommt = may be detormined. concurrenily, the
```



```
iovmetr:ma` be besermined irom mits unvisod mass fom rata.
```


an acceptable convergence criterion is achieved provides the pressure drops across the evaporator and moisture separator, and the properties at state points 3 and 4 for a given film temperature. The result is more representative of the heat absorption phase in the OTEC power cycle than is the commonly used ideal analysis.

In addition, solving for the revised temperature at state point 3 ,

$$
\begin{equation*}
T_{3}=\left.T_{S A T}\right|_{P 3} \tag{50}
\end{equation*}
$$

and iterating through Eq. (18) revises the film temperature and subsequent working fluid properties.
16. Revised Shellside Ammonia Heat Transfer Coefficient

In the search for acceptable correlations to predict the average evaporative heat transfer coefficient, two analytical treatments were found that lent themselves to OTEC power system conditions.

The first of these correlations seeks to predict thin film evaporation heat transfer coefficient for horizontal tubes [Ref. 6]. Owens [Ref. 6] uses (1) the similarity between evaporation and condensation, (\because) the correlation forms of local evaporation heat transfer coefficients for water on a vertical tube developed by Chun and Seban, and (3) the dependence of heat transfer on the vertical spacing of the tubes as was experimentally demonstrated by Liu, to arrive at the following correlations for non-boiling thin film evaporation:
for laminar flow
for turbulent flow

$$
\begin{equation*}
I=0.155\left(\frac{H}{i_{0}}\right)^{0.1}\left(\frac{t_{f}}{y A_{f} k_{f}^{3}}\right)^{-1 / 3}\left(\frac{\sum_{p} \mu_{F}}{k_{F}}\right)^{0.5} \tag{32}
\end{equation*}
$$

where $\frac{H}{\text { to }}=$ vertical spacing with respect to tube outer diameter.
$\Gamma=$ tube flow rate per unit length.
The laminar-turbulent transition point is defined by the intersection of Eqs. (51) and (52)

$$
R_{e_{T R}}=10 Q_{C}\left(\frac{c_{P} i_{f}}{k_{f}}\right)^{-1.5}
$$

The pseudo-Reynolds number for horizontal vertical falling film evaporation is defined by Ref. 7.

$$
R e=\frac{4 \Gamma}{i_{f}}
$$

The second correlation combines boiling and evaporadion of liquid films on horizontal tubes, applicable for vertical banks of plain and enhanced tubes [Ref. 8].

The overall model for a single tube is expressed as

$$
\begin{equation*}
\bar{h}=h_{b}+h_{d} \frac{L d}{L}+h_{c}\left(1-\frac{L_{d}}{L}\right) \tag{53}
\end{equation*}
$$

where $h_{b}=$ Rohsenow pool boiling correlation over the entire tube length given by

$$
\begin{equation*}
h_{D}=\frac{\operatorname{ci}_{+} h_{+g}}{C_{S+} \sqrt[3]{\frac{g_{c} \sigma}{g p_{i}}}}\left(\frac{c_{p_{+}}}{h_{+g} P_{r}}\right) \Delta T^{2} \tag{54}
\end{equation*}
$$

with $C_{\text {sf }}=$ function of the fluid-surface combination. $\Delta T=$ wall temperature minus free stream saturation temperature.
$T_{f}=$ surface tension
$h_{d}=$ heat transfer coefficient in the developing region.

$$
\begin{gathered}
n_{d}=\frac{3}{8} c_{p} \frac{\Gamma}{L_{d}} \\
L_{d}=\frac{\Gamma^{4 / 3}}{4 \pi \rho \alpha}\left(\frac{3, i_{+}}{j_{1} F_{t}^{2}}\right)^{1 / 3}
\end{gathered}
$$

and $\dot{h}_{c}=$ fully developed heat transfer coefficient given for laminar flow by

$$
\begin{equation*}
i_{c}=0.321\left(\frac{2-2}{k^{3} v}\right)^{-1 / 3}\left(\frac{41}{4 f}\right)^{-0.22} \tag{55}
\end{equation*}
$$

and, for turbulent flow,

$$
\begin{equation*}
h_{c}=3.8 \times 10^{-3}\left(\frac{2^{-2}}{n^{3} j}\right)^{-1 / 3}\left(\frac{45}{1 /+}\right)^{0.4}\left(\frac{2}{x}\right)^{0.65} \tag{56}
\end{equation*}
$$

where $L=$ circumferential length of heated surface.

$$
\alpha=\text { thermal diffusivity. }
$$

$L_{d}=$ developing length around tube circumference.
$\Gamma=$ flow rate per unit axial length of tube.
To apply Eq. (51) for a vertical bank of tubes, L
is expressed as

$$
L=N_{t} \pi d_{0} / 2
$$

The laminar-turbulent transition point is defined by the intersection of Eq. (55) and (56)

$$
R_{e_{-R}}=5800\left(\frac{?}{x}\right)^{-1.06}
$$

As before, the pseudo-Reynolds number is defined by Ref. i

$$
\begin{equation*}
R_{e}=\frac{4 \Gamma}{\mu_{t}} \tag{57}
\end{equation*}
$$

After using Eq. (57) to establish which flow regime the system is operating in, the revised heat transfer coefficlient for non-boiling thin film evaporation or nucleate
boiling may be alculated and then iterated with the initial assumption for the shellside heat transfer coefficient, Eq. (9).

This will have a convergence effect on variables which are a function of the shellside heat transfer coefficient, moving them closer to actual OTEC system performance characteristics.

The user should be aware that the predictions for the OTEC power system using ammonia have been for the case where no boiling occurs in the film. This condition is dictated by industrial preference for plain tube heat exchangers to minimize fouling and the characteristic of ammonia to wet surfaces well, flooding out nucleation sites. A number of enhancement techniques have been developed to create nucleate boiling, including a variety of tube configurations and surface preparations; however, a preference for them has not materialized. The nucleate boiling development in Eq. (51) which would be indicative of tube enhancement is provided for information only and will not be included in the optimization or summary of conclusions.

Having described the methods used to predict the shellside heat transfer coefficient, we can complete this chapter of the OTEC power system analysis by constructing the heat exchanger cost analysis.
17. Evaporator Cost Analysis

At the request of $T R W$, Wyatt Industries, a large
exchanger fabricator, prepared cost estimates for three different sizes of vertically configured evaporators and condensers, based upon initial design specifications prepared
by TRIV. Based upon these estimates, TRW developed sets of equations that represent the costs of various heat exchanger component parts for shell diameters ranging from $10-35 \mathrm{ft}$ and 35-50 ft [Ref. 9].

The following are the TRW evaporator cost (\$) equations as a function of outer tube diameter (inch), total number of tubes and tube-sheet diameter (ft) for tube-sheet diameters of 10-35 ft.
. Drilling time/tube sheet thickness

$$
\begin{equation*}
t_{d}=0.66\left(t_{0}-0.5\right) \tag{58}
\end{equation*}
$$

. Thickness of the tube sheet

$$
\begin{equation*}
t_{T S}=0.56 T_{S 0}^{0.68} \tag{59}
\end{equation*}
$$

. Tube sheet labor cost

$$
\begin{equation*}
C_{T S L}=156695\left(N_{t} / 9630\right)\left(t_{d} / 0.66\right)\left(t_{T S} / 4\right) \tag{60}
\end{equation*}
$$

- Tube sheet material cost

$$
\begin{equation*}
C_{T S M}=189.456 T_{S D}^{2.3} \tag{61}
\end{equation*}
$$

. Tube installation cost

$$
\begin{equation*}
C_{T I}=34 N_{ \pm} d_{0}^{0} \tag{62}
\end{equation*}
$$

. Heat exchanger shell cost

$$
\begin{equation*}
C_{H X S}=177265\left(\frac{L_{t}+6}{31}\right)\left(T_{S D} / 18\right)^{2} \tag{63}
\end{equation*}
$$

. Ammonia distribution plate and battles cost

$$
\begin{equation*}
C_{D P B}=93365.75\left(N_{t} / 9630\right)\left(t_{d} / 0.66\right)\left(T_{S 0} / 18\right)^{2} \tag{64}
\end{equation*}
$$

. Bustle, flanges channels and flow plates cost

$$
\begin{equation*}
C_{B F C F}=308550\left(T_{S D} / 18\right)^{2} \tag{65}
\end{equation*}
$$

. Tube material cost

$$
\begin{equation*}
C_{T M}=\left(E_{1} L_{t}+E_{2}\right) N_{t} \frac{d_{0}}{1.5} \tag{66}
\end{equation*}
$$

where $E 1=$ curve fit of tube cost per foot.
$E 2=$ tube machining cost if required
. Heat exchanger head costs

$$
\begin{equation*}
C_{H \times H}=53240\left(T_{S D} / 18\right)^{3} \tag{67}
\end{equation*}
$$

. Water inlet, nozzles and supports cost

$$
\begin{equation*}
C_{W N S}=220310.75\left(T_{S D} / 18\right)^{2} \tag{68}
\end{equation*}
$$

- Tube welding costs (Titanium tubes)

$$
\begin{align*}
\text { for } N_{t} & \leq 36000 \\
C_{T \omega} & =14.73 N_{t}^{1.03}\left(d_{0} / 1.5\right)^{0.7} \tag{69}\\
\text { for } N_{t} & >36000 \\
C_{T \omega} & =0.8797 N_{t}^{1.3}\left(d_{0} / 1.5\right)^{0.7}
\end{align*}
$$

The sum of cost Eqs. (60) through (69) would equal the cost to fabricate one OTEC evaporator with a tube sheet diameter of 10-35 feet (all the preceding component costs have been adjusted for current pricing at a 10% annual rate of inflation).

If our analysis is based on a 30 -year life-cycle criterion, no adjustments are necessary to any component cost equation if titanium tubing is used due to its anticorrosive qualities; however, using aluminum tubing (i.e., A1-5052), the expense of retubing must be considered to meet the criterion of a lo-year life cycle for aluminum tubing. This implies Eq. (61) and (66) must be modified to reflect the costs of retubing at the 10 and 20 -year point in the cycle.
. Aluminum tube installation cost

$$
\begin{equation*}
C_{A T I}=C_{T I}\left[1+(1+i)^{10}+(1+i)^{20}\right] \tag{70}
\end{equation*}
$$

where $i=$ projected inflationary rate (input by customer)
. Aluminum tube material cost

$$
\begin{equation*}
C_{A T M}=C_{T M}\left[1+(1+i)^{10}+(1+i)^{20}\right] \tag{71}
\end{equation*}
$$

For tube sheet diameters of 35-50 ft the following cost relationships apply [Ref. 9]:
. Equations for drilling time/tube sheet thickness (58), thickness of tube sheet (59), and tube material costs remain unchanged.
. Tube sheet labor and material cost (titanium)

$$
\begin{align*}
& C_{T S L}=55.189 N_{t}^{0.141} T_{S D}^{0.68} t_{d} \tag{72}\\
& C_{T S M}=29.566 T_{S D}{ }^{2.014} t_{d} \tag{73}
\end{align*}
$$

. Tube sheet labor and material cost (aluminum)

$$
\begin{align*}
& C_{T S L}=73.181 N_{t}^{0.791} T_{S O}^{0.00} t_{d} \tag{74}\\
& C_{T S M}=354.3 T_{S D}{ }^{1.61} t_{T S} \tag{75}
\end{align*}
$$

- Tube installation costs

$$
\begin{equation*}
C_{T I}=36.542 \mathrm{~N}_{t} d_{0}^{0.7} \tag{76}
\end{equation*}
$$

. Heat exchanger shell cost

$$
\begin{equation*}
C_{H \times S}=12.544\left(L_{t}+6\right) T_{S O}{ }^{2.06} \tag{77}
\end{equation*}
$$

. Ammonia distribution plate and baffle costs

$$
\begin{equation*}
C_{D P B}=158.099 T_{S D}^{1.82}+72.419 N_{t}^{0.873} t_{d} \tag{78}
\end{equation*}
$$

. Bustle, flanges, channels, and flow plate costs

$$
\begin{equation*}
C_{B F C F}=472.977 T_{S D}^{2.12} \tag{79}
\end{equation*}
$$

. Heat exchanger head cost

$$
\begin{equation*}
C_{H \times H}=1725.31 T_{S O}^{1.45} \tag{80}
\end{equation*}
$$

. Water inlet, nozzles and support cost

$$
\begin{equation*}
C_{\text {WINS }}=7445.297 T_{S O}^{1.1} \tag{81}
\end{equation*}
$$

- Tube welding costs (titanium tubes)
for $N_{t} \leq 30 i C \sigma$

$$
\begin{equation*}
C_{T W}=14.73 N_{t}^{1.03}\left(\alpha_{0} / 1.5\right)^{c .7} \tag{82}
\end{equation*}
$$

for $N_{t}>36000^{\circ}$

$$
C_{T W}=0.8797 N_{i}^{1.03}\left(a_{0} / 1.5\right)^{0.7}
$$

As indicated previously, the cost to fabricate one OTEC evaporator with a tube sheet diameter 35 to 50 ft is equal to the sum of component costs Eqs. (72) through (83) (all the preceding component costs have been adjusted for current pricing at a 10% annual rate of inflation).

For an analysis based on a 30 -year system life-cycle criterion, the additional costs for aluminum retubing must be considered and Eqs. (70) and (־1) apply.
IV. PARASITIC LOSSES

A. INTRODUCTION

This chapter describes in detail the programming analysis for parasitic losses which include: (1) pumping and pipe requirements for both cold and hot salt water systems, (2) pumping and pipe requirements for the working fluid (ammonia) circulation and reflux systems, and (3) turbine generator losses due to inefficiencies. Hotel requirements have not been incorporated into the analysis, but could be included for the final design analysis.

Pumping power requirements will be determined through the use of the general energy equation between the inlet and outlet of the system control volume [Ref. 3].

$$
\int_{0}^{i} \frac{d P}{D}+\frac{V_{i}^{2}}{2}+g Z_{i}=\frac{V_{0}^{2}}{2}+g Z_{0}+\dot{W}_{s}+(\text { LOSSEs })_{i \rightarrow c}
$$

To determine the pumping power W_{S} the following effects will be evaluated:

1. Density head.
2. Friction losses.
. Intake piping.
. Heat exchanger tubing.
. Exit piping (if employed).
3. Thermodynamic pressure head.
4. Elevation head.
5. Minor losses.
. Intake piping inlet configuration (contraction).
. Intake piping screen (obstruction).

- Flow through valves, elbows, etc.
- Outlet piping (expansion).
- Inlet to heat exchanger tubing (contraction).
- Outlet from heat exchanger tubing (expansion).
. Outlet of exit piping (if employed).
In the above pump head evaluations, the following inputs are specified:
. Pipe lengths (hot, cold, ammonia circulation and re-flux piping).
. Inner pipe diameters (initialized and treated as a design variable by the optimization code).
- Absolute roughness corresponding to piping/tubing material (designer specified).
. Fluid velocity. (initialized and treated as a design variable by the optimization code).
. Pump mechanical and electrical efficiencies.
As an overview of the parasitic pump loss analysis, the following major steps in the algorithm are listed in order of their execution:
. Hot pipe salt water pump.
.. Inlet piping friction losses (86).
.. Minor piping losses due to inlet screen (87) and plenum design to evaporator core (88).
. Evaporator core minor losses (89, 90) and tubeside friction losses.
.. Total pressure losses (92) and pumping head (93).
.. Pumping power requirements (95).
.. Pump cost analysis (96).
. Cold pipe salt water pump.
.. Initialize cold pipe inner diameter and SW velocity (design variables).
.. Minor losses due to inlet ducting (97) and plenum design to condenser core (98).
.. Inlet piping friction losses (99).
.. Condenser core minor losses (100, 101) and tubeside friction losses (103).
.. Density head (104).
.. Total pressure losses (105).
.. Pumping power requirement (107).
.. Pump cost analysis (108).
. Ammonia circulation pump.
.. Piping friction (109) and minor losses due to valving/elbows (110).
.. Pressure drop across evaporator shellside (112).
.. Thermodynamic head (113).
.. Elevation head (114).
. Total pressure losses (115).
.. Pumping power requirement (116).
.. Pump cost analysis (118).
. Ammonia re-flux pump.
.. Piping friction (119) and minor losses due to valving/elbows (120).
.. Thermodynamic head due to pressure drop of saturated liquid ammonia across evaporator shellside (122).
.. Elevation head (123).
.. Total pressure losses (124).

```
    .. Pumpins :ower requirements !126i.
    .. Pump cost analysis (12`).
    Parasitic pump losses.
```

In the following section, the basic steps summarized above will be described in detail.

B. ANALYSIS OF PARASITIC LOSSES

1. Hot Pipe Salt Water Pump, Pap

The pressure losses due to piping friction and associated minor losses will be determined using the Darcy-Weisbach correlation [Ref. 10].

$$
\begin{equation*}
\Delta P=\sum_{i=1}^{n} \rho \frac{K_{i} V^{2}}{2 g_{i}} \tag{83}
\end{equation*}
$$

where K_{i} describes the resistance coefficient.

$$
V=\text { fluid velocity. }
$$

$$
\begin{equation*}
K_{i}=f \frac{L}{D} \tag{34}
\end{equation*}
$$

where $f=$ friction factor.
$\frac{L}{D}=$ equivalent length in pipe diameters.
In order to determine the friction factor, the pipe flow Reynolds number must be calculated.

$$
R_{e_{d}}=\frac{\rho_{\sin } V_{s n} d:}{\operatorname{li}_{s w}}
$$

where $3 w, l_{s_{w}}=$ properties of walt water at the hot pipe inlet temperature (assumed constant throughout the pipe).
$V_{s_{w}}, d_{i}=$ salt water velocity and inner pipe diameter (initialized and treated as design variables by the optimization code); velocity assumed constant over pipe length.

Pipe flow Reynolds number greater than 2300 will be considered turbulent.

```
for laminar flow
```

$$
\begin{equation*}
f=\frac{64}{R_{e} . t} \tag{85}
\end{equation*}
$$

for turbulent flow

$$
\begin{equation*}
f=\frac{1.325}{\left[\ln \left(E / 3.7 d_{i}+5.74 / R_{e_{d}} 0.4\right]^{2}\right.} \tag{86}
\end{equation*}
$$

where ϵ absolute roughness corresponding to piping material selected.

Eq. (86) yields a friction factor within one percent of the Colebrook equation and is valid for the following conditions [Ref. 9].

$$
\begin{gathered}
10^{-6} \leq \frac{E}{D} \leq 10^{-2} \\
5000 \leq R_{d d} \leq 10^{2}
\end{gathered}
$$

Considering the resistance coefficient for pipe minor losses
. Assume the inlet duct is the same size as the pipe inner diameter, but it is screened

$$
k=1.5
$$

- Assume piping enters evaporator through an area which is abruptly changed [Ref. 11]

$$
\begin{equation*}
K=\left[1-\left(d_{i} / T_{>0}\right)^{2}\right]^{2} \tag{38}
\end{equation*}
$$

where $\vec{i}_{\text {so }}=$ evaporator tube sheet diameter iassume tube sheet diameter is twice as large as the inner pipe diameter).

Summing the results of Eqs. (84), (9^{-}), and (SS) to determine the total resistance coefficient, the pressure losses due to piping can then be determined using Eq. (85).

If a variety of valves or fittings are to be included with Eq. (34), Ref. 11 provides a representative lısting of equivalent length-to-pipe-diameter values.

To analyze the pressure drop across the avaporator tubeside, we again use the Darcy-Weisbach correlation, but for different design assumptions.

- Assume inlets to evaporator tubing are well rounded [Ref. 11]

$$
\begin{equation*}
K=\therefore .5 \tag{89}
\end{equation*}
$$

. Assume outlets of evaporator tubing expand to an infinite reservoir [Ref. 10]

$$
\begin{equation*}
K=1.0 \tag{90}
\end{equation*}
$$

Using the Reynolds number in the previous chapter, Eq. (5), the corresponding friction factor Eq. (85) or (86), and resistance coefficient can be determined

$$
\begin{equation*}
K_{C O R E}=f \frac{L_{t}}{d_{i}} \tag{91}
\end{equation*}
$$

where $L_{t} d_{i}=$ evaporator tube length and inner tube diameter and are initialized and treated as design variables by the optimization code.

Summing the results of the resistance coefficient in Eqs. (89), (90) and (91), the pressure losses due to the evaporator design may be determined using the Darcy-Weisbach correlation Eq. (83).

The results of the piping losses and core design losses are equivalent to the hot pipe salt water pumping system requirements

$$
\begin{equation*}
\Delta P_{\text {PUMP }}=\Delta P_{\text {PILE SYSTEM }}+\Delta P_{E V A P ~ D E S I G N ~} \tag{92}
\end{equation*}
$$

converting to pumping head

$$
\begin{equation*}
H=\frac{g_{c}}{\rho_{i w} g} \Delta p_{\text {pump }} \tag{93}
\end{equation*}
$$

Pumping power in terms of horsepower can be determined using the following expression

$$
\begin{equation*}
P_{H P}=\frac{\dot{m}_{s w}}{v_{p}}\left(\frac{g H}{g c}\right) \tag{94}
\end{equation*}
$$

Where $\mathcal{M}_{1 p}=$ pump mechanical efficiency (designer input).
$\dot{m}_{s N}=$ salt water mass flow rate determined in previous chapter, Eq. (2).

To equate parasitic pump losses to power input,
Eq. (94) is converted to the motor load requirement in terms of megawatts electrical.

$$
\begin{equation*}
P_{H P}(M W)=\frac{P_{H P}}{\eta_{M}} \times C_{\text {CNVERSION FACTOR }} \tag{95}
\end{equation*}
$$

where $7_{M}=$ pump motor efficiency (designer input).
Because of the high salt water flow rates and relatively low pumping heads, good engineering design would dictate the use of axial flow (propeller) type pumps.

Using the algorithm developed by $\operatorname{TRW}[R e f .9]$ from data provided by Johnston Pump Co., and Process Equipment Co. (distributors of Ingersoll Rank and Johnston Pumps), the cost of salt water pumps can be expressed as

$$
\begin{equation*}
C_{p u m p}=\left[(D / 1000) 0.75^{\circ}+50\right] 1.21 \times 10^{3} \tag{96}
\end{equation*}
$$

where

$$
D=\frac{\pi d_{i}^{2}}{4} V_{s w}
$$

where $\quad d_{i}, V_{s w}=$ inner hot pipe diameter, salt water velocity (initialized for analysis and treated as design variables by the optimization code).

The above algorithm is valid for the following conditions

> - vertical, wet pit, propeller type pumps with cast iron steel columns with protective epoxy coating, stainless steel shaft and bronze impeller.
> - pump size from 155,000 through $750,000 \mathrm{GPM}$ with total dynamic heads of 8 through 12 feet.

Eq. (96) has been adjusted for current pricing at a 10% annual rate of inflation.
2. Cold Pipe Salt Water Pump. Pir

Using Reynolds number

$$
R_{e_{d}}=\frac{\rho_{s w} V_{s w} d_{i}}{\mu / s w}
$$

where $\rho_{s w}, \mu_{s_{w}}=$ properties of salt water at the cold pipe inlet temperature (assumed constant throughout the pipe).

$$
V_{s, v}, t_{i}=\text { salt water velocity and inner pipe diameter }
$$ (initialized and treated as design variable by the optimization code), velocity assumed constant over pipe length.

Pipe flow characteristics and friction factor can be identified. A pumping analysis will be developed for the cold pipe pump using the Darcy-Weisbach correlation, similar to the development in the preceding section.

Considering the resistance coefficient for minor pipe losses
. Assume the inlet duct is well rounded [Ref. 11].

$$
\begin{equation*}
K_{i N L E T}=0.5 \tag{97}
\end{equation*}
$$

. Assume piping enters condenser through an area which is abruptly changed [Ref. 10].

$$
\begin{equation*}
K_{\text {PLENUIM }}=\left[1+\left(d_{i} / T_{s O}\right)^{2}\right]^{2} \tag{98}
\end{equation*}
$$

where $T_{S D}=$ condenser tube sheet diameter (assume tube sheet diameter is twice as large as the inner pipe diameter).
. Assume one ninety-degree elbow is required in system [Ref. 11].

$$
\frac{L}{D}=30
$$

Summing the results of Eqs. (84), (97), and (98),
the total resistance coefficient can be expressed as

$$
\begin{equation*}
K=f\left(\frac{L_{P}}{d_{i}}+\frac{L}{D}\right)+K_{I N L E T}+K_{P_{L E N U I M}} \tag{99}
\end{equation*}
$$

where $L_{p}=$ length of cold pipe.
$d_{i}=$ inner diameter of cold pipe.
Pressure losses due to piping can then be determined using the Darcy-Weisbach, Eq. (83).

In analyzing the pressure drop across the condenser tubeside, the Darcy-Weisbach correlation is used again, but for different design assumptions.
. Assume inlets to evaporator tubing are well rounded.

$$
\begin{equation*}
K=0.5 \tag{100}
\end{equation*}
$$

- Assume outlet of condenser tubing expands to an infinite reservoir.

$$
\begin{equation*}
k=1.0 \tag{101}
\end{equation*}
$$

Defining Reynolds number for condenser tubeside flow, while assuming

$$
\begin{equation*}
T_{\text {BULK }}=T_{\text {COLD }} \text { (inLET) } \tag{102}
\end{equation*}
$$

$$
\operatorname{Re}_{d}=\frac{\rho_{s w} V_{s w} d_{i}}{\mu_{5 N}}
$$

where $\rho_{S_{w}}, K_{\text {sw }}=$ properties evaluated at condenser tubeside bulk temperature (initially assumed equal to cold pipe inlet temperature).
$V_{s w}, d_{i}=$ average salt water velocity through tubing, inner condenser tube diameter (both are initialized and treated as design variables by the optimization code). The corresponding friction factor, Eq. (85) or (86), and resistance coefficient can be determined

$$
\begin{equation*}
K_{\text {CORE }}=f \frac{L_{t}}{d_{i}} \tag{103}
\end{equation*}
$$

where L_{t}, d_{i}, the condenser tube length and inner tube diameter are initialized and treated as design variables by the optimization code.

Summing the results of the resistance coefficient in Eqs. (100), (101), and (103), the pressure losses due to the condenser design may be determined using the Darcy-Weisbach correlation, Eq. (83).

A complete analysis of cold pipe losses must also include the effect of density head and a corresponding increase in pumping power requirements.

For most engineering problems involving the flow of liquids through a pipe, where the temperature change in the pipe is small, the density of the fluid is considered to be a constant and the fluid is termed "incompressible." However, the flow problem in OTEC cold pipe systems is unique. We can continue to assume that there is negligible change in the fluid temperature, virtually unaffected by the ocean thermal gradients, because of the system's characteristic high mass
flow rates. However, the height of the water column (1500 to 3000 feet) inside the pipe requires the effect of fluid compressibility to be taken into consideration.

The effect of an increase in density with depth can be expressed by the integral

$$
\int_{i}^{e} \frac{a t p}{P g}
$$

with a density head defined as ${ }^{2}$

$$
H_{p}=Z_{2}-Z_{i}+\int_{i}^{2} \frac{d t}{\Delta g}
$$

Integrating the pressure-density variation, the density head reduces to [Ref. 12]

$$
H_{\rho}=z_{i}-z_{i}+\frac{1}{\rho_{i} g}\left(P_{e}-P_{i}\right)\left[1-\frac{K_{m}}{2}\left(P_{e}+P_{i}\right)\right]
$$

where $K_{m}=$ mean compressibility of walt water, $f(s a l i n i t y$,
temperature and pressure).
$\rho_{0}=$ reference density at which K_{m} is evaluated.
Considering pressure at any depth obtained from the integral,

$$
P=-g \int_{i}^{e} \rho(z) d z
$$

the density head can be rewritten as follows

$$
H_{\rho}=\left(z_{e}-z_{i}\right)-\frac{1}{\rho_{i}} \int_{z_{i}}^{z_{e}} \rho(z) d z\left\{1-\frac{K_{i n}}{i} \int_{0}^{z_{i}+z_{e}} \rho g a z\right\}
$$

[^1]Rigorous procedures for calculating the density profile which is a function of temperature, salinity and pressure may be found in Ref. 13; however, they will not be discussed in this document.

For the purposes of simplification, the following solution technique was developed:
(1) If the liquid in the pipe is taken to have a constant density with respect to pressure, the compressibility approaches zero; the density head can then be expressed as

$$
H_{\rho}=\left(z_{2}-z_{1}\right)-\frac{1}{\rho_{i}} \int_{z_{i}}^{z_{c}} \rho(z) d z
$$

(2) Converting the geometric term for elevation to an equivalent integral expression

$$
Z_{2}-z_{i}=\frac{1}{\rho_{i}} \int_{Z_{i}}^{z_{2}} \rho_{i} d z
$$

The reference density is taken to be the inlet value so that

$$
\rho_{1}=\rho_{0}
$$

and the density head can be rewritten as follows

$$
H_{\rho}=\frac{1}{\rho_{i}} \int_{z_{i}}^{z_{2}}\left(\rho_{i}-\rho(z)\right) d z
$$

(3) Assuming a linear distribution of density with depth, due to temperature variations, as illustrated below

the following linear expression for density with respect to depth may be formulated, where $Z_{2}=0$ for convenience.

$$
\rho_{i}-\rho=\left(\rho_{i}-\rho_{e}\right)\left(1-z / z_{i}\right)
$$

(4) Applying the equation developed in section 3 to the density head integral above and integrating over the range of values for sea water depth (z), the following equation is derived as a linear approximation to the density variation of sea water with respect to depth

$$
H_{p}=\left(\frac{\rho_{i}-\rho_{e}}{\rho_{i}}\right)\left(-\frac{Z_{i}}{2}\right)
$$

where

$$
\begin{aligned}
\mathcal{N}_{i}, \mathcal{\rho}_{e}= & \text { curve fit evaluations of density for } \\
& \text { specified depths of sea water. Data } \\
& \text { extracted from Ref. } 14 .
\end{aligned}
$$

The results of the piping losses, core design losses, and density head are equivalent to the cold pipe salt water pumping system requirements

$$
\begin{equation*}
\Delta P_{\text {pump }}=\Delta P_{\text {PIPE SYSTEM }}+\Delta P_{\text {GOND DESIGN }}+\Delta P_{\text {DENSITY }} \tag{105}
\end{equation*}
$$

Using Eq. (93), Eq. (105) can be converted to a pumping head. Similarly, pumping power in terms of horsepower can be determined using Eq. (44).

$$
P_{c p}=\frac{\dot{m}_{s w}}{2_{p}}\left(\frac{g H}{g c}\right)
$$

where

$$
\begin{equation*}
\dot{m}_{s i w}=\rho_{\sin }\left(\frac{\pi d_{i}}{4}\right)^{2} V_{s w} \tag{106}
\end{equation*}
$$

and

$$
\begin{aligned}
\rho_{s w}= & \text { density of salt water evaluated for a } \\
& \text { constant inlet temperature. }
\end{aligned}
$$

$V_{\text {swi }}, d_{i}=$ cold pipe salt water velocity, and inner diameter (initialized and treated as design variables by the optimization code). Note salt water velocity through cold pipe is considered to be constant.

Pumping power can then be expressed in terms of megawatts electrical

$$
\begin{equation*}
P_{C P(M W)}=\frac{P_{C P}}{\eta_{M}} \times \text { CONVERSION FACTOR } \tag{107}
\end{equation*}
$$

where $\eta_{\mu}=$ pump motor efficiency (designer input).
Using the same arguments for the selection of an axial flow (impeller type) pump, as used for the hot pipe salt water pump, the pump cost algorithm developed by TRW can be applied to the cold pipe salt water pump assuming
the required conditions are validated.

$$
\begin{equation*}
C_{\text {puinp }}=[(5 / 1000) c .15+50] 1.21 \times 10^{3} \tag{108}
\end{equation*}
$$

Equation (108) has been adjusted for current pricing at a 10% annual rate of inflation.
3. Ammonia Circulation Pump. Perre

The function of the ammonia circulation pump is to circulate and lift saturated liquid ammonia from the condenser hot well at state point 1 and increase its pressure to exceed the operating conditions in the evaporator at state point 2.

In order to evaluate these characteristics, the following pumping elements will be included in the analysis: . Piping losses (friction and minor).
. Heat exchanger shellside pressure drop.
. Thermodynamic pressure head.
. Elevation head.
As in the preceding analysis, Reynolds number is used to determine pipe flow characteristics

$$
R_{e_{d}}=\frac{D V d_{i}}{\ell l}
$$

where $\mathcal{N}, \mu=$ saturated liquid properties of ammonia for the temperature at state point 1 (assume any temperature increase from pump work is negligible).
$c_{i}=$ inner pipe diameter (initialized and treated as a design variable by the optimization code).

$$
\begin{aligned}
V= & \text { ammonia flow velocity determined from the pre- } \\
& \text { ceding chapter, Eq. (} 50 \text {). }
\end{aligned}
$$

The ammonia pipe friction factor can then be deter. mined from Eqs. (85) or (86), and the piping friction resistance coefficient can be expressed as

$$
\begin{equation*}
k=F \frac{L}{d} \tag{109}
\end{equation*}
$$

where $L=$ ammonia circulation pipe length (designer input). Considering the resistance coefficient for minor pipe losses, assume there are four ninety-degree elbows in the system

$$
\begin{equation*}
K=4 \frac{L}{D} \tag{110}
\end{equation*}
$$

where $\frac{L}{D}=$ equivalent length in pipe diameters for a standard elbow [Ref. 11].

Summing the results of Eqs. (109) and (110), piping losses (friction and minor) can be determined using the DarcyWeisbach equation (83).

$$
\begin{equation*}
\Delta P_{P_{I P E}}=p\left[f \frac{L}{d_{i}}+4 \frac{L}{D}\right] \frac{V^{2}}{2 g_{c}} \tag{111}
\end{equation*}
$$

The heat exchanger shellside pressure drop is also iacluded in the pumping head requirement because it serves as a resistance to flow.

Pressure drop across the evaporator shellside was determined using the two-phase flow model (homogeneous) expressed by Eq. (33)

$$
\begin{equation*}
\Delta P_{\text {EVAP }}=\Delta P_{\text {FRICTION }}+\Delta P_{\text {MOMENTUM }}+\Delta P_{\text {ELEVATICN }} \tag{112}
\end{equation*}
$$

Since the pump is required to lift the working fluid to a higher elevation and increase its operating pressure, the following elements must be included in the analysis:
. Thermodynamic head

$$
\begin{equation*}
\text { where } \quad \Delta P_{\text {THERNIO }}=P_{2}-P_{1} \tag{113}
\end{equation*}
$$

represents the difference in thermodynamic operating pressure between state point 2 and state point 1.
. Elevation head

$$
\begin{equation*}
\text { where } \quad \Delta P_{\text {ELEVATICN }}=Z_{2}-Z_{1} \tag{114}
\end{equation*}
$$

$Z_{1}=$ datum.
$Z_{2}=$ elevation of the evaporator inlet above datum (taken to be equal to evaporator tube sheet diameter plus 25).
represents the lift head required to move the working fluid to a higher elevation.

The results of piping losses (111), evaporator pressure drop (112), the thermodynamic head (113) and elevation head (114) are equivalent to the ammonia circulation pump system requireements.

$$
\begin{equation*}
\Delta P_{\text {PUMP }}=\Delta P_{\text {PIPE }}+\Delta P_{\text {EVAP }}+\Delta P_{\text {THERMC }}+\Delta P_{\text {ELEVATICN }} \tag{115}
\end{equation*}
$$

Using Eq. (93) with ammonia properties, Eq. (115) can be converted to pumping head and finally expressed as pumping power (horsepower).

$$
\begin{equation*}
P_{C I R C}=\frac{\dot{m}_{N H 3}}{r_{p}}\left(\frac{g H}{g_{C}}\right) \tag{116}
\end{equation*}
$$

where

$$
\dot{m}_{\mathrm{NH} 3}=\text { mass flow rate of ammonia determined by }
$$

Eq. (20) of the previous chapter.

$$
\eta_{p}=\text { pump mechanical efficiency (designer input). }
$$

Pumping power can then be expressed in terms of megawatts electrical

$$
\begin{equation*}
P_{\text {CIRC }(M W)}=\frac{P_{\text {CIRC }}}{Y_{M}^{\prime}} \times \text { CONVERSION FACTCR } \tag{117}
\end{equation*}
$$

where $\mathcal{Z}_{M}=$ pump motor efficiency (designer input).
Because of high pumping head and noderate flow rates, good engineering design would dictate the use of a single suction centrifugal flow type pump.

Using the algorithm developed by Westinghouse Electric Co. [Ref. 15] from data provided by Bingham Pump Division, ?ortland, Oregon, the cost of the ammonia circulation pump can be expressed as

$$
\begin{equation*}
C_{\text {purnp}}=\left(\frac{\dot{m}_{N N_{3}} 2_{+}}{80100}\right)^{0.64} 1.21 \times 10^{5} \tag{118}
\end{equation*}
$$

where $\dot{m}_{N+3}=$ mass flow rate of ammonia ($10 \mathrm{~m} / \mathrm{hr}$)
$\tau_{f}=$ specific volume of saturated liquid ammonia at state point $1\left(F t^{3} / 10, n\right)$

Eq. (118) has been adjusted for current pricing at a 10°; annual rate of inflation.
+. Ammonia Re-flux Pump, $P_{\text {re-flux }}$
The function of the re-flux pump is to recycle ammonia droplets which are not evaporated in the heat absorption process. Saturated liquid at approximately the heat exchanger's operating pressure is lifted from the evaporator d^{r} ain to the ammonia feed inlet, for redistribution as droplets across the evaporator tube bundle. (Drainage mass flow rate is assumed to be equal to 30% of the evaporator inlet feed mass flow rate.)

In order to evaluate these characteristics, the Eollowing pump elements will be analy=ed: . Piping losses (friction and minor).
. Thermodynamic pressure head.
. Elevation head.
As in the preceding analysis, Reynolds number is used to determine pipe flow characteristics

$$
R_{e_{d}}=\frac{\rho V d_{i}}{\mu}
$$

where $\rho, \mu=$ saturated liquid properties of ammonia for the average pressure across the evaporator.
$d_{i}=$ inner pipe diameter (initialized and treated as a design variable by the optimization code).
$V=$ ammonia flow velocity determined from the evaporator drainage mass flow rate assumed equal to 30% of the evaporator inlet feed mass flow rate (assume velocity constant throughout the pipe).

The re-flux pipe friction factor can be determined from Eqs. (85) or (86), and the piping resistance coefficient can be expressed as

$$
\begin{equation*}
K=f \frac{L}{d i} \tag{119}
\end{equation*}
$$

where $L=$ ammonia re-flux pipe length (designer input).
Once again, considering the resistance coefficient for minor pipe losses assume there are four ninety-degree elbows in the system

$$
\begin{equation*}
K=4 \frac{L}{D} \tag{120}
\end{equation*}
$$

where $\frac{L}{D}=$ equivalent length in pipe diameters from a standard elbow.

Summing the results of Eqs. (119) and (120), piping losses (friction and minor) can be determined using the Darcy-Weisbach, equation (83)

$$
\begin{equation*}
\Delta P_{P_{1} P E}=\rho\left[f \frac{L}{d_{i}}+4 \frac{L}{D}\right] \frac{V^{2}}{2 g_{i}} \tag{121}
\end{equation*}
$$

In order to determine the thermodynamic pressure head, the pressure drop across the evaporator for the saturated ammonia liquid must be analyzed. Since the saturated vapor and liquid are in thermodynamic equilibrium, the results of Eq. (112) apply. Therefore

$$
\Delta P_{L G}=P_{3}-P_{2}
$$

Therefore, the thermodynamic pressure head is equal to the pressure drop across the evaporator for the saturated ammonia liquid.

$$
\begin{equation*}
\Delta P_{\text {THERMO }}=\Delta P_{L I Q} \tag{122}
\end{equation*}
$$

Finally, the elevation head is equal to the elevation of the evaporator feed inlet with respect to datum, the drain outlet.

Therefore,

$$
\begin{equation*}
\Delta P_{E L E V}=Z_{2}-Z_{1} \tag{123}
\end{equation*}
$$

where
$Z_{1}=$ datum, drain outlet.
$Z_{2}=$ elevation of the evaporator inlet above datum
(taken to be equal to the evaporator tube sheet diameter plus 10).

The results of piping losses (121), the thermodynamic pressure head (122), and elevation head (123) are equivalent to the ammonia re-flux pump system requirements.

$$
\begin{equation*}
\Delta P_{\text {Pump }}=\Delta P_{\text {PIPE }}+\Delta P_{\text {ELEVATION }}+\Delta P_{\text {THERMO }} \tag{124}
\end{equation*}
$$

As before, using Eq. (93), Eq. (124) can be converted to a pump head and finally expressed in terms of pumping power (horsepower).

$$
\begin{equation*}
P_{R E-F W X}=\frac{\dot{m}_{R}}{\eta_{1 P}}\left(\frac{g H}{g c}\right) \tag{125}
\end{equation*}
$$

where $\dot{m}_{R}=$ drainage mass flow rate.
$n_{l p}=$ pump mechanical efficiency (designer input).
Pumping power can be expressed in terms of megawatts
electrical

$$
\begin{equation*}
P_{\text {RE-FLUX }}^{(M W)} \text { }=\frac{P_{R E-F \omega x}}{r_{1 M}} \times \text { CONVERSION FACTCR } \tag{126}
\end{equation*}
$$

where $r_{(M}=$ pump motor efficiency (designer input).
Using the same arguments for the selection of a centrifugal pump, the pump cost algorithm developed by Westinghouse can also be applied to the ammonia re-flux pump.

$$
\begin{equation*}
C_{\text {pump }}=\left(\frac{\dot{m}_{R} \tau_{f}}{80100}\right)^{0.64} 1.21 \times 10^{5} \tag{127}
\end{equation*}
$$

where $\dot{m}_{R}=$ mass flow rate of evaporator drainage ammonia ($1 b_{m} / \mathrm{hr}$)

$$
\begin{aligned}
V_{+}^{\prime}= & \text { specific volume evaluated at the average } \\
& \text { evaporator pressure }\left(\mathrm{ft}^{3} / \mathrm{b}_{\mathrm{m}}\right)
\end{aligned}
$$

Eq. (127) has been adjusted for current pricing at a 10% annual rate of inflation.
5. Parasitic Pump Losses

Parasitic pump losses is the summation of electrical auxiliary pumping requirements (hotel and maintenance loads not included) determined by Eqs. (95), (107), and (126).

$$
\begin{equation*}
P_{\text {LOSS }}=P_{H P}+P_{C P}+P_{C I R C}+P_{\text {RE-FLUX }} \tag{128}
\end{equation*}
$$

V. TURBINE AND ELECTRICAL POWER

A. INTRODUCTION

The turbine generator is one of the critical elements of the OTEC power system. Its energy conversion efficiency and efficiency of design have a major effect on the overall system performance. To illustrate this point, Ref. 16 reported that a three-point change in turbine efficiency from 85 to 88% results in a 3.6% increase in gross power, and a 5% increase in net power developed.

This chapter will describe the analysis to evaluate the expansion turbine thermodynamic properties and generator output. The use of these properties will determine the internal turbine efficiency and outlet quality subject to design and thermodynamic constraints. The relationship between the condenser operating pressure (design variable) and the turbine outlet quality will be used to initialize the heat rejection characteristics of the condenser.

General literature on turbomachinery designed for OTEC closed cycle systems indicates that a turbine having the following characteristics
. Double flow, axial inflow,
. Four stages of expansion,
. Operating at 1800 RPM,
provides the optimum aerodynamic design [Ref. 16]. However, it is not the intent of this thesis to analyze the geometry
and performance parameters of the turbine. Turbine geometry such as

- Specific speed and specific diameter,
. Wheel diameter,
- Rotational speed,
. Blade height,
- Blade stresses,
should be treated as a separate systems problem using optimization to improve state-of-the-art design.

Parasitic losses due to the following generator turbine inefficiencies will be evaluated in this section.
. Generator mechanical and electrical.
. Turbine mechanical.
As an overview of the turbine-generator analysis, the following major steps of the algorithm are listed in order of their execution:

- Gross electrical output with no parasitic losses (129).
. Enthalpy at state point 5 (130).
. Turbine outlet quality (131).
. Entropy at state point from a specified outlet quality (132).
. Quality and enthalpy at state point $5 s(133,134)$.
. Internal (adiabatic) turbine efficiency (135).
. Turbine cost analysis (137).
. Generator cost analysis (138).
In the following section, the basic steps summarized above will be described in detail.
B. ANALYSIS OF THE TURBINE AND ELECTRICAL POWER REQUIREMENTS

1. Gross Electrical Output and Inefficiency Losses

If the net electrical output required is indicated by (in terms of megawatts), the gross electrical load at the turbine shaft can be expressed as

$$
\begin{equation*}
\dot{E}_{G}=\frac{\dot{E}}{\eta_{T M} \eta_{\text {GEN }}}+P_{\text {LOSS }} \tag{129}
\end{equation*}
$$

where $P_{\text {LoSS }}=$ parasitic pump losses determined by Eq. (128).

$$
\begin{aligned}
\eta_{1 T M}= & \text { turbine mechanical efficiency (designer } \\
& \text { input). } \\
\eta_{\Lambda_{G E N}=}= & \text { generator mechanical and electrical } \\
& \text { efficiency (designer input). }
\end{aligned}
$$

The loss of electrical output due to generator-
turbine inefficiencies is equal to

$$
\dot{E}_{\text {LOSS }}=\dot{E}\left(\frac{1}{\eta_{\text {TM }} \eta_{\text {GEN }}!}\right)
$$

2. Turbine Efficiency

The power developed across the turbine is

$$
\dot{E}_{9}=\dot{m}\left(h_{5}-h_{4}\right)
$$

where

$$
\begin{aligned}
& \dot{m}=\text { mass flow rate of ammonia given by Eq. (48). } \\
& h_{4}=\text { enthalpy at state point } 4, \text { Eq. (42). }
\end{aligned}
$$

From this, the enthalpy at state point 5 can be calculated.
If we initialize the operating pressure of the condenser in terms of P_{5}, the following relations may be expressed

$$
\begin{equation*}
h_{5} g=(19)_{p_{5}} \quad\left(15+=h+I_{p_{5}}\right. \tag{150}
\end{equation*}
$$

Therefore, it follows that the turbine outlet quality, $X 5$, can be determined from

$$
\begin{equation*}
h_{5}=h_{5} 5+\times 5\left(h_{5} g-h_{5} f\right) \tag{131}
\end{equation*}
$$

Having established the moisture separator outlet pressure and temperature, Eqs. (40) and (41), the entropy at state point 4 can be determined for a known separator outlet quality (designer input) using the following relations

$$
\begin{align*}
& \left.\left.S_{4 f}=S_{f}\right)_{T_{4}} \quad S_{4 g}=S_{g}\right)_{T_{4}} \\
& S_{4}=S_{4 f}+\times 4\left(S_{4 g}-S_{4 f}\right) \tag{132}
\end{align*}
$$

For isentropic turbine work,

$$
\begin{equation*}
S_{4}=S_{5 S} \tag{133}
\end{equation*}
$$

the quality at state point 5 s may be determined using the following relations

$$
\begin{align*}
& \left.\left.S_{5 g}=S_{g}\right]_{T 5} \quad S_{5 f}=S_{f}\right)_{T 5} \\
& S_{55}=S_{5 f}+\times 55\left(S_{5 g}-S_{5 f}\right) \tag{134}
\end{align*}
$$

Having determined the quality at state point 5 s , the enthalpy can now be determined.

$$
\begin{equation*}
h_{55}=h_{55}+x_{5} 5\left(h_{59}-h_{55}\right) \tag{135}
\end{equation*}
$$

Using the results of Eqs. (+1), (130), and (132), the internal turbine efficiency (adiabatic) can be determined, expressed by

$$
\begin{equation*}
\eta_{T}=\frac{h .4-h_{5}}{h_{4}-h 55} \tag{136}
\end{equation*}
$$

To ensure a realistic selection of internal efficiency, the following constraints are attached to the optimization code

- $h_{5}<h_{5}$
- $\times 55<\times 5$

$$
\eta_{r} \leq 90 \%
$$

3. Turbine Cost Analysis

The ammonia turbine cost is based on an algorithm developed by Westinghouse to estimate manufacturing costs [Ref. 15].

$$
\begin{equation*}
C_{T U R B}=2.42 \times 10^{6}\left(0.375+\dot{E}_{C} / 136000 N_{f}\right) F_{f} \tag{137}
\end{equation*}
$$

$$
\text { where } \quad \begin{aligned}
\dot{E}_{G}= & \text { gross electrical output in } \mathrm{KW} . \\
\dot{N}_{f}^{\prime}= & 2 \text { (for a double flow turbine). } \\
\mathrm{F}_{f}= & \text { flow price factor (1.0 for single-flow, } 1 .+47 \\
& \text { for double-flow). }
\end{aligned}
$$

The above algorithm is valid for the following conditions:
. Double flow, axial inflow.
. Multi-stage.
. Operating at 1800 RPM.
The generator cost will be based on an algorithm developed by TRW from data provided by selected manufacturers,

$$
\begin{equation*}
C_{G E N}=\left(0.023 \dot{E}_{G}+0.3\right) 1.21 \times 10^{\circ} \tag{138}
\end{equation*}
$$

and is valid for the following conditions
. 1800 RPM rotor speed.

- power factor 0.8.

Eqs. (157) and (158) have been adjusted for current pricing at a 10% annual rate of inflation.
II. CONDENSER

. I. ITRODUCTION

As indicated in the introduction to Chapter III, several heat exchanger concepts have been proposed for the closedcycle OTEC system, with variations in their design.

The analysis to be presented for the condensing heat exchanger will be based upon the following design characteristics:
. Single-pass shell and tube heat exchanger.
. Horizontal/vertical orientation of tubes with an equilateral triangle or square tube profile.
. Smooth plain-tube configuration (no enhancements).

- Tube material (titanium or aluminum based on a 30-year life-cycle criterion).
- Biofouling control based upon an achievable fouling factor.
. Heat exchanger centerline located on sea surface.
As an overview of the condenser analysis, the following major steps in the algorithm are listed in order of their execution:
. Initialization of design variables (DV).
.. Tube length.
.. SW velocity through condenser tubes.
. Outer tube diameter.
.. Tube profile pitch ratio.
. Amount of heat rejection (139).
. Tubeside bulk temperature (142).
. Total number of tubes (143).
. Log mean temperature difference (144).
. Conductance (140).
. Number of transfer units (145).
. Heat exchanger effectiveness (147).
- Initially assume a value for ammonia heat transfer coefficient (151).
. Single tube conductance (148).
. Average heat rejection per tube (152).
- Film temperature (153).
. Revised ammonia heat transfer coefficient (15t, etc.); iterate with (151).
. Tube profile, flow parameters across the tube bank (158, etc.).
. Tube sheet diameter (163).
. Condenser shellside pressure drop for two-phase flow (166).
- Revised properties at state point 1 (l71, 172); iterate with (21).
. Overall heat transfer coefficient (173).
. Total heat transfer surface area (174).
. Revised condenser tube length (175).
. Heat exchanger cost analysis.
In the following section, the basic steps summarized above will be described in detail.
B. ANALYSIS OF THE CONDENSER

1. Amount of Heat Rejection, $\dot{\hat{Q}}$

Using the calculated value for enthalpy at state point 5, equation (131) from the previous chapter, the ideal
values at state point $1, E q .(21)$, and the steady-state mass flow rate of ammonia, Eq. (48), the amount of heat rejected by the condenser can be expressed as

$$
\begin{equation*}
\hat{\varphi}_{y}=\dot{r i n}_{N+3}\left(h_{5}-n_{1}\right) \tag{159}
\end{equation*}
$$

2. Tubeside Bulk Temperature

As in condenser tubeside Reynolds number, salt water properties will be evaluated at bulk temperature, initially assumed equal to the cold pipe inlet temperature.
Using this premise, the ondenser salt water capacity rate can be evaluated

$$
\begin{equation*}
\hat{C}_{1, n}=\dot{r}_{-1} C_{p o w} \tag{1+0}
\end{equation*}
$$

where $C_{Y_{s w}}^{\prime}=$ specific heat of salt water initially evaluated at the cold pipe inlet temperature.
$\dot{B} \dot{H}_{p}=$ mass flow rate of sali watar through the cold pipe previously evaluxteu by Eq. (10").

Using the results of $295 .(139)$ and (140), and the known cold pipe inlet temperature, the condenser salt water outlet temperature may be evaluated from the basic expression

$$
\begin{equation*}
\therefore=C_{i n \prime \prime}\left(T_{0}-T_{i}\right) \tag{1+1}
\end{equation*}
$$

where $T_{0}, T_{C}=$ condenser salt water outlet and inlet temperatures, respectively.

Having determined the condenser salt water outlet temperature, the revised bulk temperature $=a n$ be expressed as

$$
\begin{equation*}
T_{B}=\frac{T_{c_{c}}+T_{c_{i}}}{2} \tag{142}
\end{equation*}
$$

Using the revised condenser bulk temperature and iterating with Eq. (102) corrects the operating temperature for salt water properties which are essential to the analysis.
3. Total Number of Condenser Tubes, N_{t}

Since the mass flow rate of salt water through the cold pipe is equivalent to the mass flow rate through the condenser, according to the law of continuity,

$$
\dot{m}_{C p}=\dot{m}_{C O N D}
$$

it follows that the number of condenser tubes for a specified tube diameter, can be evaluated using the following expression:

$$
\begin{equation*}
\dot{m}=\rho_{s w} \frac{\pi d_{i}^{2}}{4} V_{t} N_{t} \tag{143}
\end{equation*}
$$

where $\quad \rho_{s w}=$ average salt water density evaluated at bulk temperature.
$d_{i}=$ inner tube diameter (initialized and treated as a design variable by the optimization code).
$V_{t}=$ average salt water velocity through the condenser (initialized and treated as a design variable by the optimization code).
4. Log Mean Temperature Difference, LMTD

Using the result of Eq. (141), the known pipe salt water inlet temperature, and the inlet temperature of ammonia evaluated at state point 5 , the LM TD of the condenser may be expressed as

$$
\begin{equation*}
\text { LMTD }=\frac{T_{C_{0}}-T_{C_{i}}}{\ln \left(\frac{T_{5}-T_{c_{i}}}{T_{5}-T_{c_{0}}}\right)} \tag{144}
\end{equation*}
$$

5. NTU-Effectiveness Relations

The number of transfer units which is a measure of the condenser size can be determined from the basic expression

$$
\begin{equation*}
N T U=\frac{U_{0} A_{0}}{C_{m i n}} \tag{145}
\end{equation*}
$$

where the conductance ($U_{0} A_{0}$) of the heat exchanger is a function of the heat absorbed and the LMTD.

$$
\begin{equation*}
\dot{Q}=\left(U_{0} A_{0}\right) L M T D \tag{146}
\end{equation*}
$$

The condenser effectiveness can then be expressed as

$$
\begin{equation*}
\epsilon=1-e^{(-N T U)} \tag{147}
\end{equation*}
$$

for a two -phase flow, regardless of the flow geometry.

6. Single-Tube Conductance, U. $_{\text {A }}$.

Using the resistance analysis derived in Chapter III, Section 4 for an initialized tube length

$$
L=L_{i}
$$

the heat exchanger conductance for a single tube can be expressed as

$$
\begin{equation*}
U_{0} A_{0}=\frac{1}{\frac{1}{\sum_{i i} h_{S W} A_{i}}+\frac{1}{A_{i}} R_{f S w}+\frac{\ln d_{0} / d i}{2 \pi k L}+\frac{1}{A_{c}} R_{f_{N H_{3}}}+\frac{1}{\eta_{0}^{1} h_{N+3} A_{0}}} \tag{148}
\end{equation*}
$$

where $\quad h_{\text {Sw }}=$ tubeside heat transfer coefficient.

$$
\begin{aligned}
R_{f s w}= & \text { salt water fouling heat transfer resistance. } \\
K= & \text { thermal conductivity of the tube material. } \\
A_{0}, A_{i}= & \text { total outer and inner tube surface areas } \\
& \text { (including fin and bare tube); tube length } \\
& \text { is initialized and treated as a design } \\
& \text { variable by the optimization code). } \\
R_{T N_{H}=}= & \text { ammonia fouling heat transfer resistance } \\
Y_{10}, Y_{i}= & \text { outer and inner total fin efficiency }
\end{aligned}
$$

a. Tubeside Reynolds Number

Since the salt water heat transfer correlation is dependent on tubeside flow, Reynolds number must be evaluated

$$
R_{e_{d}}=\frac{\rho_{s w} V_{s w} d_{i}}{\mu_{i s w}}
$$

where $\beta_{s w}, \mu_{s_{w}}=$ salt water density and viscosity are evaluated for the fluid's bulk temperature.
$d_{i}, V_{s_{N}}=$ inner diameter and average salt water tube velocity.

Reynolds numbers greater than 2300 will be indicative of turbulent flow [Ref. 3].
b. Salt Water Heat Transfer Coefficient, $h_{\text {sw }}$

Once again the empirical relationship proposed by Sieder and Tate [Ref. 3] will be used for laminar heat transfer in tubes and as defined by

$$
N u_{d}=1.86\left(R_{e_{d}} P_{r}\right)^{1 / 3}\left(\frac{d_{i}}{L}\right)^{1 / 3}\left(\frac{\mu}{\mu_{w}}\right)^{0.14}
$$

Nusselt and Prandtl numbers are defined as

$$
\begin{align*}
& N u_{d}=\frac{h_{s w} d_{i}}{k s w} \tag{149}\\
& P_{r}=\frac{c_{p_{s w}} \mu_{s w}}{k s w}
\end{align*}
$$

where dynamic viscosity, specific heat, and thermal conducetivity of salt water are evaluated at the salt water bulk temperature.

The effect of the viscosity ratio in the Sieder-Tate equation is considered negligible, and will hereafter be dropped from the expression. The assumptions and validity condition associated with the Sieder-Tate equation were stated in Chapter III, Section 4, and will not be repeated here.

For fully developed turbulent flow, again the Dittus=Boelter correlation [Ref. 3] was used.

$$
N_{u_{d}}=0.023 \operatorname{Re}_{d}{ }^{0.8} P_{r}^{0.3}
$$

Nusselt and Prandtl numbers are previously defined by Eqs. (149) and (150). Assumptions and conditions for validity were stated in Chapter III, Section 4.
c. Salt Water Fouling Heat Transfer Resistance As indicated previously, it will be assumed that the folding resistance for tubeside salt water can be maintained at . 00025 (hr .ft. $\mathrm{F} / \mathrm{BTU}$)
d. Ammonia Shellside Heat Transfer Coefficient, $h_{N_{3}}$ Initially, $h_{N H_{3}}$ will be assumed

$$
\begin{equation*}
h_{\mathrm{NH}_{3}}=1000\left(B T u / \mathrm{hr} \cdot f \mathrm{t}^{2} \cdot \mathrm{~F}\right) \tag{151}
\end{equation*}
$$

since its value cannot be directly calculated during this phase of the analysis.

Using the following single-tube thermal
resistance

$$
\begin{aligned}
& R_{1}=\frac{1}{\eta_{i} h_{\text {sw }} \pi d_{i} L} \\
& R_{2}=\frac{1}{\eta_{i} h_{\text {sw }} \pi_{d_{i} L}} \\
& R_{3}=\frac{\ln d_{0} / d_{i}}{2 \pi K L} \\
& R_{5}=\frac{1}{\eta_{0} h_{N H_{3}} \pi d_{0} L}
\end{aligned}
$$

an initial value for single tube conductance (outer tube surface) may be calculated

$$
U_{0} A_{0}=\frac{1}{R_{1}+R_{2}+R_{3}+R_{5}}
$$

7. Film Temperature for Property Evaluation, T_{f}

In order to evaluate the shellside ammonia heat transfer coefficient, working fluid properties must be evaluated at the film temperature.

This can be accomplished by using the results of the single tube conductance, the tube side bulk temperature and the working fluid saturation temperature, expressed in the following equation for single tube heat transfer rate (average).

$$
\begin{equation*}
\dot{Q}=U_{0} A_{0}\left(T_{5}-T_{B U L K}\right) \tag{152}
\end{equation*}
$$

Again using the resistance analysis as in Chapter III, the shellside wall temperature may be expressed as

$$
T_{W_{2}}=T_{B u L K}+\dot{Q}\left(R_{1}+R_{2}+R_{3}\right)
$$

Knowing the shellside wall temperature and the freestream temperature, the film temperature can be derived from their arithmetic mean

$$
\begin{equation*}
T_{f}=\frac{T_{W_{2}}+T_{5}}{2} \tag{153}
\end{equation*}
$$

For purposes of this calculation, saturated temperacure conditions at state point 5 are taken to represent
free-stream conditions, when in fact the two-phase process will experience a pressure drop and a corresponding drop in temperature.
8. Revised Shellside Ammonia Heat Transfer Coefficient,
$h_{\text {Nax }}$
This analysis will include correlations for both horizontal and vertical heat exchangers.

In the horizontal-tubed condenser, Nusselt's correlation was used as a predictor [Refs. 7 and 17], for laminar flow

$$
\begin{equation*}
\bar{h}=0.95\left(\frac{k_{f}^{3} \rho_{f}^{2} g L}{, 1_{f} w}\right)^{1 / 3} \tag{154}
\end{equation*}
$$

where
$\omega=$ estimate of ammonia mass flow rate across each tube.
$K_{f}, \rho_{f} \mu_{f}=$ properties evaluated at film temperature. $L=$ tube length (initialized and treated as a design variable by the optimization code).

This correlation is probably conservative, since it does not consider turbulence due to high vapor velocity or splashing of condensate [Ref. 7].

For turbulent flow, Nusselt's correlation is increased by 10% as recommended by Jakob [Ref. 17]

$$
\begin{equation*}
\bar{h}=1.045\left(\frac{K_{f}^{3} \rho_{+} g L}{\mu_{f} W}\right)^{1 / 3} \tag{155}
\end{equation*}
$$

The laminar-turbulent transition point is defined by a Reynolds number of 2100 , where the pseudo-Reynolds number for film-type condensation on horizontal tubes is defined as [Ref. 7]

$$
R_{e}=\frac{2 \Gamma}{\mu_{f}}
$$

where $\Gamma=$ mass flow rate of condensate per tube over its length.

In the vertical tubed condenser, both Nusselt's and Kirkbride's correlations were used as predictors [Ref. 7].

For laminar flow, Nusselt's correlation is increased by a factor of 1.28 as recommended by McAdam [Ref. 7]:

$$
\begin{equation*}
\Gamma_{1}=1.28\left[1.47\left(\frac{\mu_{f}}{K_{f}^{3} \rho_{f}^{2} g}\right)^{-1 / 3}\left(\frac{4 \Gamma}{11_{t}}\right)^{-1 / 3}\right] \tag{156}
\end{equation*}
$$

where $\Gamma=$ mass flow rate of condensate per tube over its diameter.

For turbulent flow, Kirkbride's correlation is applied

$$
\begin{equation*}
\bar{h}=0.0077\left(\frac{\mu_{f}^{2}}{K_{f}^{3} P_{f}^{2} g}\right)^{-1 / 3}\left(\frac{4 T}{\mu / f}\right)^{0.4} \tag{157}
\end{equation*}
$$

The laminar-turbulent transition point is defined by a Reynolds number of 1800, where the pseudo-Reynolds number for film-type condensation on vertical tubes is defined as [Ref. 7]

$$
\operatorname{Re}=\frac{4 \Gamma}{\mu_{t}}
$$

After using the pseudo-Reynolds number to establish the flow in which regime the system is operating, the revised heat transfer coefficient for film-type condensation may be calculated and then iterated with the initial assumption for the shellside heat transfer coefficient, Eq. (151). Once again this will have a convergence effect on variables in which the shellside heat transfer coefficient is a function, moving closer to actual OTEC system operating point characteristics.
9. Tube Profile, Flow across Tube Bank, and Tube Sheet Diameter

Since the condenser tube bundle involves multiple rows of tubes, the geometry of the tube profile arrangement is important to determine the shellside heat transfer coefficient, the tube sheet diameter and the shellside pressure drop associated with the "homogenous" two-phase flow model [Ref. 4].

Using the same arrangements shown in Chapter III, Section 2,

IN-LINE

$$
\begin{align*}
& S_{n}=P_{R} d_{0} \tag{158}\\
& A_{p}=S_{n}{ }^{2} \tag{159}
\end{align*}
$$

where $S_{n}=$ pitch ratio x outer tube diameter.
$P_{R}=$ pitch ratio (initialized and treated as a design variable for the optimization code).
$A_{p}=$ tube profile area per tube
staggered
where.

$$
\begin{align*}
& S_{n}=2 P_{R} d_{0} \sin 30^{\circ} \tag{160}\\
& S_{p}=P_{R} d_{0} \cos 30^{\circ} \tag{161}\\
& A_{p}=S_{n} S_{p} \tag{162}
\end{align*}
$$

the ratio of minimum flow area to the frontal area can be expressed as

$$
\begin{equation*}
\frac{A_{f+}}{A_{f}}=\frac{S_{n-d}}{S_{n}} \tag{163}
\end{equation*}
$$

Using the selected tube profile geometry and knowing the number of condenser tubes by Eq. (143), the tube sheet diameter for the condenser design can be evaluated from the following expression

$$
\begin{equation*}
N_{t} A_{p}=\frac{\pi T_{s D}^{2}}{4} \tag{164}
\end{equation*}
$$

where $T_{S D}=$ Tube sheet diameter.
To analyze the shellside ammonia flow velocity, the following control volume is introduced (turbine generator discharge and top portion of the condenser).

Since the mass flow rate remains unchanged across any boundary

$$
\dot{m}_{5}=\dot{m}_{f}
$$

Furthermore, if we assume the condenser has the capability to evenly distribute vapor across the tube bundle (distribution baffles), the following development applies to the vapor coverage:

Let

$$
\left(A_{f}\right)_{V A P}=A_{f} \eta
$$

where $\eta_{l}=$ percent of tube frontal area which is covered by vapor.

$$
\begin{aligned}
& \dot{m}_{5}=\rho_{5} A_{5} V_{5} \\
& \dot{m}_{f}=\rho_{f} A_{f} V_{f} r_{l}
\end{aligned}
$$

where $A_{5}=$ condenser inlet cross-sectional area.
$V_{5}=$ turbine discharge ammonia velocity.
Therefore

$$
V_{F}=\frac{\rho_{5} A_{5}}{\rho_{f} A_{f} \eta} V_{5}
$$

If $r_{1}=\rho_{s} A_{5} / A_{f} \rho_{f}$, it follows that the turbine discharge velocity is equal to the average velocity of ammonia at the tube frontal area boundary. A determination of the distribution fraction \mathcal{Y} requires a detailed knowledge of the design of the turbine/condenser interface. In the absence of this information it is assumed that

$$
V_{+}=V_{5}
$$

A similar argument could be presented for a vertical tubed condenser where turbine discharge is admitted to a distribution ring that bands the condenser tube bank.

Exhaust vapor would travel radially through the tube bundle and then collect at the bottom after vertical filmcondensation.

Again, in the absence of a detailed design, it is assumed that

$$
V_{S I D E}=V_{5}
$$

Considering the minimum free-flow area for a horizontal tubed condenser, $A_{i f}$ can be derived using Eq. (163) and the projected frontal area.

$$
\begin{gather*}
A_{f}=T_{S D} L_{t} \\
A_{f f}=A_{f}\left(\frac{S_{n-d_{0}}}{S n}\right) \tag{165}
\end{gather*}
$$

where
$A_{f}=$ the flow frontal area.
$L_{t}=$ tube length.
For vertical condensers

$$
A_{f}=\pi T_{S D} \times \text { Frontal lengith of vapor inlet flow }
$$

Using the previously calculated value of the ammonia flow rate and Eq. (165), mass velocity for the minimum free flow area can be expressed as

$$
\begin{equation*}
G=\frac{\dot{m}_{4}}{A_{f f}} \tag{166}
\end{equation*}
$$

10. Pressure Drop of Two-Phase Flow across a Bank of Tubes, ΔP

The pressure drop in the two-phase flow condensing heat exchanger will be determined using the homogeneous model introduced in Chapter III. The model will consist of three components -- friction loss, momentum change, and elevation pressure drop arising from the effects of gravity.

The local pressure drop for a two-phase flow may be expressed as

$$
\begin{equation*}
\Delta P_{\text {CON }}=\Delta P_{\text {FRICTION }}+\Delta P_{\text {MOMENTUM }}+\Delta P_{\text {ELEVATION }} \tag{167}
\end{equation*}
$$

For a given channel length, L_{c}, the pressure drop components can be expressed by

$$
\begin{align*}
& \Delta P_{\text {FRICTION }}=\frac{f G^{2} \bar{v}}{D e 2 g_{c}} L_{c} \tag{168}\\
& \Delta P_{\text {MOMENTUM }}=\frac{G^{2} \bar{v}}{g_{c}} \tag{169}\\
& \Delta P_{\text {ELEVATION }}=\frac{g}{\bar{v} g_{c}} L_{c} \tag{170}
\end{align*}
$$

where $f=$ single phase friction factor by Jacob expressed in Eq. (35) or (36).
$G=$ mass flow velocity determined from Eq. (166).
$L_{C}=$ channel flow length, defined for horizontal
tubed condensers as $L_{C}=T_{S D}$ (tube sheet
diameter) and for vertical tubed condensers
as $L_{c}=L_{t}$ (tube length).
$D_{e}=$ equivalent diameter of flow channel, defined by $D_{e}=P_{R} d_{0}-d_{0}$
$\bar{\sim}=$ mean specific volume defined by

$$
\overline{v^{\prime}}=v_{f}\left[1+\frac{x}{v_{f}}\left(v_{g}-v_{f}\right)\right]
$$

where
$X=$ quality of mixture (state point 5).
$\tau_{f}=$ specific volume of liquid (state point 1)
$\chi_{j}=$ specific volume of vapor (state point 5).
All components of the pressure drop model Eqs. (168, 169, and 170) can be determined using the preceding information.
11. Revised Properties at State Point 1

Since Eq. (167) represents the pressure drop across the condenser shellside, the actual pressure at state point 1 or condenser outlet may be determined from

$$
\begin{equation*}
P_{1}(\text { NEW })=P_{1}-\Delta P_{\text {COND }} \tag{171}
\end{equation*}
$$

where P_{1} is previously described as the condenser operating pressure for the ideal cycle.

Operating on the saturated liquid line on the Temperature-Entropy diagram, the following properties are defined:

$$
\begin{equation*}
\left.\left.h_{1}(N E V V)=h_{f}\right\rangle_{P_{1(N E W)}} \quad T_{1(N E W)}=T_{S A T}\right\rangle_{P_{1}(\text { NEW }} \tag{172}
\end{equation*}
$$

The subscript (New) representing a revised property will hereafter be dropped from the expression in Eq. (172).

Until now, we assumed the condenser outlet temperature and pressure were designed to operate as an ideal system, without a pressure drop. Therefore, using the revised temperature at state point 1 and iterating over the range from Eq. (21) until an acceptable convergence criterion is achieved, all the preceding variables as function of Ti
will be reevaluated to complete the closed-100p cycle of the simulated OTEC power system.

12. Overall Heat Transfer Coefficient, L_{0}

The quantity " U " represents a measure of the total thermal resistances in the flow path. Therefore, using the tube conductance expressed in Eq. (148) which is divided by the outer heat transfer surface area of a single tube, the overall heat transfer coefficient for the condenser can be determined.

The thermal resistances are now expressed as

$$
\begin{aligned}
& R_{1}=\frac{d_{0}}{\eta_{i} h_{5 w} d_{i}} \\
& R_{2}=\frac{d_{0}}{\eta_{i} h_{\text {fiN }} d_{i}} \\
& R_{3}=\frac{d_{0} \ln d_{0} / d_{i}}{2 K} \\
& R_{5}=\frac{1}{\eta_{0} h_{N H_{3}}}
\end{aligned}
$$

and the overall heat transfer coefficient for the condenser may be calculated using

$$
\begin{equation*}
U_{0}=\frac{1}{R_{1}+R_{2}+R_{3}+R_{5}} \tag{173}
\end{equation*}
$$

13. Total Condenser Heat Transfer Surface Area, A_{t}

Having determined the corrected number of condenser transfer units (145), salt water capacity rate (140) and overall heat transfer rate (173), the total condenser heat transfer area can be calculated from the NTU expression

$$
\begin{equation*}
N T U=\frac{U_{0} A_{t}}{C_{\min }} \tag{174}
\end{equation*}
$$

14. Revised Condenser Tube Length

Using the total heat transfer surface area calculated from Eq. (174) and the total number of condenser tubes (143), the revised condenser tube length can be determined from the basic expression

$$
\begin{equation*}
A_{t}=N_{t} \Pi d_{0} L_{t}(R E v / S E D) \tag{175}
\end{equation*}
$$

At this time, it is necessary ot iterate the condenser design until the two values (initial and revised) of the tube length converge. This iteration may be accomplished by the COPES routine if the following constraint is defined

$$
L_{\text {DIFF }}=L_{t}(\text { REVISED })-L_{t}\left(\text { INITIAL }^{2}\right)
$$

Minimization of this difference will cause continual adjustment of the required tube length, already treated as a design variable by the optimization code.

15. Condenser Heat Exchanger Cost Analysis

As indicated in Chapter III, TRW developed sets of equations to represent the costs of various heat exchanger component parts for shall diameters ranging from 10-35 feet and 35-50 feet [Ref. 9].

The following are the TRW component cost equations for the condensing heat exchanger. Prior equation reference numbers will be substituted where equalities exist with the evaporative heat exchanger component cost expressions.
for tube sheet diameter 10-35 feet

- Drilling time/tube sheet thickness.
. Thickness of the tube sheet.
. Tube sheet labor cost.
. Tube sheet material cost.
- Tube sheet material cost.
. Tube installation cost.
. Heat exchanger drill cost.
- Ammonia distribution plate and baffles cost.

$$
\begin{equation*}
C_{D P B}=4.539 \times 10^{-2} t_{a} N_{t} T_{S O}^{2.6} \tag{176}
\end{equation*}
$$

- Bustle, flanges, channels and flow plate cost.

$$
\begin{equation*}
C_{B F C F}=1185.286 T_{S D}^{2.0} \tag{177}
\end{equation*}
$$

. Tube material cost.

$$
\begin{equation*}
C_{T M}=\left(C_{1} L_{t}+C_{2}\right) N_{t} d_{t} / 1.5 \tag{178}
\end{equation*}
$$

where $C_{1}=$ curve fit of tube material cost per foot.

Cシ = tube machining cost if required.
. Heat exchanger header cost.
. Water inlet, nozzles and support cost.

$$
\begin{equation*}
C_{\text {WINS }}=10106.475 \mathrm{~T}_{\text {SO }} \tag{179}
\end{equation*}
$$

. Tube welding costs (Titanium tubes).
The sum of the preceding costs would equal the cost to fabricate one OTEC condenser with a tube sheet diameter of 10-35 feet (all the preceding component costs have been adjusted for current pricing at a 10% annual rate of inflation).

If our analysis is based on a 30 -year life-cycle criterion, no adjustments are necessary to any component cost equation if titanium tubing is selected. However, using A1 5052-0, the expense of retubing must be considered to meet the 30 -year life-cycle criterion, as in the cast of the evaporation. For convenience, and possible subsequent modification, these considerations are repeated here.

Based upon the utility of Al 5052-0, two complete condenser retubings will be required to meet the basic 30 -year criterion. This implies Eqs. (62) and (178) must be modified to reflect the costs of retubing at the 10 and 20 year point in the cycle.

Aluminum tube installation cost.

$$
\begin{equation*}
C_{A T I}=C_{T I}\left[1+(1+i)^{10}+(1+i)^{20}\right] \tag{180}
\end{equation*}
$$

where $i=$ projected annual inflationary
rate (input by customer).
. Aluminum tube material cost.

$$
\begin{equation*}
C_{A T M}=C_{T M}\left[1+(1+i)^{10}+(1+i)^{20}\right] \tag{181}
\end{equation*}
$$

for tube sheet diameter 35-50 feet.
. Drilling time/tube sheet thickness
. Thickness of the tube sheet.
. Tube sheet labor and material costs (titanium).
. Tube sheet labor and material costs (aluminum).
. Tube installation cost.
. Tube material cost.
. Heat exchanger shell cost.
. Ammonia distribution plate and baffles cost.

$$
\begin{equation*}
C_{D P B}=9.825 N_{t}^{0.479} t_{d} \tag{182}
\end{equation*}
$$

- Bustle, flanges, channels and flow plate.

$$
\begin{equation*}
C_{B F C F}=382.824 T_{S D}^{2.184} \tag{183}
\end{equation*}
$$

. Heat exchange head cost.

$$
\begin{equation*}
C_{H \times H}=939.62 T_{S D}^{1.43} \tag{184}
\end{equation*}
$$

. Water inlet, nozzles, and supporters cost.

$$
\begin{equation*}
C_{\text {WINS }}=7453.6 T_{S D}^{1.056} \tag{185}
\end{equation*}
$$

. Tube welding cost (titanium tubes).
As indicated previously, the cost to fabricate one OTEC condenser with a tube sheet diameter of 35 to 50 feet is equal to the sum of component costs (note, all the preceding component costs have been adjusted for current pricing at a 10% annual inflation rate).

For an analysis based on a 30 -year life-cycle criterion, the additional costs for replacing aluminum tubing must be considered and Eqs. (180) and (181) apply.

VII. NUMERICAL OPTIMIZATION

A. INTRODUCTION

Nearly all design processes attempt the minimization or maximization of some parameter or design objective. For the design to be acceptable, it must satisfy a set of constraints which impose limits or bounds on design parameters.

For the stated problem a computer program can be written to perform the basic analysis of the proposed design. If any parameters fall outside the prescribed bounds, the design engineer changes the parameters and re-runs the program. In effect, the computer code provides the analysis with the engineering making the actual design decisions.

A logical extension to the computer-aided approach is a fully automated design, where the computer also makes the actual design decisions and performs trade-off studies. The COPES program provides this automated design and trade-off capability by the use of the optimization program COPES/CONMIN [Ref. 18]. COPES is an acronym for Control Program for Engineering Synthesis, and CONMIN is an acronym for CONstrained function MINimization. Subsequently, a FORTRAN analysis program simulating a closed-cycle OTEC power system can be coupled to the COPES program for automated design, using some basic programming guidelines [Ref. 18].

B. COPES/CONMIN

There are many numerical optimization schemes available to the engineer. Methods employed by these schemes fall into four basic categories: random search, sequential unconstrained minimization, optimality criteria, and direct constrained optimization. The optimization program, selected for automated design analysis of the simulated OTEC power system, is based upon direct constrained optimization.

Before any discussion of the optimization technique, basic definitions are summarized for convenient reference [Ref. 19]:

- Design variables - those parameters which the optimization program is permitted to change in order to improve the program.
- Objective function - the parameter which is to be minimized or maximized during the optimization process.
. Inequality constraint - one-sided conditions which must be satisfied for an acceptable design.
. Equality constraint - condition which must be equaled for the design to be acceptable.
. Side constraints - upper and lower bounds in a design variable.

Assuming that the FORTRAN analysis program has been developed and a particular objective function has been selected, the general optimization problem can be stated as [Ref. 20]:

Find the vector of design variables, \bar{X}, to
Minimize $\quad F(\bar{X})$
Subject to the constraints:

$$
\begin{array}{cl}
G_{j}(\bar{x}) \leqslant 0 & j=1, \mathrm{NCCN} \\
H_{j}(\bar{x})=0 & j=1, N E Q \\
V L B_{i} \leq \bar{X}_{i} \leq V U B_{i} & i=1, N D V \tag{189}
\end{array}
$$

where

$$
\begin{aligned}
& \text { where } \begin{aligned}
\bar{X}= & \text { the vector containing the set of independent } \\
& \text { design variables. } \\
F(\bar{x})= & \text { the objective function to be minimized. } \\
G_{j}(\bar{x})= & \text { inequality constraint (NCON is the number } \\
& \text { of such constraints). } \\
H_{j}(\bar{x})= & \text { equality constraint (NEQ is the number } \\
& \text { of such constraints). } \\
V L B_{i} / V U B_{i}= & \text { lower and upper bounds, respectively, } \\
& \text { on the design variables. }
\end{aligned} \\
& \text { If all inequalities of Eqs. (187) and (189) are satisfied, } \\
& \text { satisfied, the design is infeasible. If the objective function }
\end{aligned}
$$

is a minimum and the design is feasible, it is said to be the optimal design.

In order to start the optimization algorithm, the initial set of design variables, \bar{X}, must be specified. It is desirable, but not essential, that the initial design variables provide a feasible solution. The optimization algorithm will then proceed in an iterative fashion using the following relationship

$$
\bar{x}^{q+1}=\bar{x}^{q}+\alpha * \overline{5}^{q}
$$

where

$$
\begin{aligned}
q= & \text { the iteration number. } \\
\propto= & \text { scalar quantity which defines the move in the } \\
& \text { search direction. } \\
\bar{s}= & \text { vector search direction which will reduce } \\
& \text { the objective function (useable direction) } \\
& \text { without violating constraints (feasible } \\
& \text { direction). }
\end{aligned}
$$

To solve this problem, the optimization program COPES/CONMIN is used [Ref. 18]. CONMIN uses the FletcherReeves algorithm for locally unconstrained problems [Ref. 20] and Zoutendijk's method of feasible directions (modified to improve efficiency and reliability and to deal with designs which do not initially satisfy all the constraints) for locally constrained problems [Ref. 21].

However, CONMIN does not handle equality constraints directly, but rather by means of penalty parameters. To achieve this, the objective function is augmented as follows
[Ref. 19]:

$$
\begin{equation*}
F^{\prime}(\bar{x})=F(\bar{x})-K \sum_{j=1}^{N \bar{E} Q} H_{j} \tag{190}
\end{equation*}
$$

and the equality condition of Eq. (188) is treated as an inequality constraint

$$
H_{j}(\bar{x}) \leqslant 0 \quad j=1, N E Q
$$

The penalty function approach effectively satisfies the equality constraint while maintaining the rapid convergence characteristics of the CONMIN program.

The numerical optimization problems of equations (186) through (190) are very general, allowing for any number of design variables and constraints. In assessing the value of optimization, the automated design provides a very attractive approach to numerical optimization; however, there are both advantages and limitations to these techniques [Ref. 20].

Advantages:
. Reduction in design time.
. Systematic design procedure.
. Applicable to a wide variety of design variables and constraints.
. Virtually always yields some design improvement.
. Not biased by engineering experience.
. Requires a minimal amount of man-machine interface. Limitations:

- Computer times may increase dramatically as the number of design variables increases. A practical limit imposed by the current state of the art for most problems is 30 design variables.
. Optimization techniques have no stored experience to draw upon; the validity of the result is limited to the validity of the analysis program.
- The results of the optimization are as correct as the analysis program is theoretically precise.
- Optimization algorithms used here cannot deal with discontinuous functions.
- The optimization program will not always obtain a global design optimum and may require restarting from several different points to acquire reasonable assurance of obtaining the global optimum.
- The analysis program must be properly structured to couple with the COPES/CONMIN optimization code.
C. DESIGNATED DESIGN VARIABLES, CONSTRAINTS AND OBJECTIVE FUNCTION

To assist in the interpretation of the enclosed OTEC power system FORTRAN analysis, the following summary identifies the design variables, constraint functions and objective function used in the analysis and subsequently operated upon by the COPES/CONMIN optimization code. These parameters are all contained in a labeled COMMON block in the computer code, referred to here as "GLOBAL COMMON." Specific GLOBAL COMMON location numbers and upper/lower bounds for operating parameters summarized below can be located in Appendix C.

Design Variables

- Inner cold pipe diameter
- Inner hot pipe diameter
- Inner ammonia circ pipe diameter
. Inner ammonia re-flux pipe diameter
. Evaporator operating pressure
- Condenser operating pressure
- Outer condenser tube diameter
. Outer evaporator tube diameter
- Evaporator tube length
. Condenser tube length
- Condenser tube salt water velocity
. Cold pipe salt water velocity
. Evaporator tube salt water velocity
. Hot pipe salt water velocity
. Evaporator tube profile pitch ratio
- Condenser tube profile pitch ratio

Constraint Functions
. Operating system pressure ratio
. Upper temperature bound of ammonia
. Lower temperature bound of ammonia
. Satisfactory enthalpy at state point 5
. Satisfactory quality at state point 5
. Satisfactory condenser tube length
. Internal turbine efficiency
. Evaporator tube sheet diameter
. Condenser tube sheet diameter

Objective Function
. Cost of major power system components

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. The use of an analysis code for OTEC power systems coupled to COPES/CONMIN optimization code provides a powerful tool to design an optimum power system for the desired net electrical output, measured against the objective function. Such a design could permit construction of higher capacity systems using the optimized modules as substations of the total power plant.
2. The analysis code coupled to COPES/CONMIN provides an excellent vehicle to evaluate proposed designs relative to a true optimum. Tables 1 through 4 illustrate the result of preliminary calculations using the analysis code with an objective function to minimize system cost. From these, the following conclusions can be drawn concerning horizontally oriented aluminum (Al-5052) and titanium-tubed heat exchanger power systems:
a. The cost/KW output is nearly constant over the range of optimum designs for both titanium and aluminum tube heat exchangers.
b. During testing for feasible plant designs in increments of 5 MW (net) electrical output, it was observed that a higher megawatt output plant could be achieved with titanium-tubed heat exchangers than for aluminum (A1-5052). For titanium-tubed heat exchangers, a 25 MW (net) power
system is a feasible design; however, aluminum-tubed systems could not provide a feasible design for the same output. Titanium tubed plants failed to produce a feasible design for a 30 MW (net) output power system. In both cases of infeasible design, the constraint which was consistently violated was turbine internal efficiency, set at 90% for current state-of-the-art design.
c. The energy conversion and efficiency of design of a turbine-generator has a major effect on the overall system performance as indicated in paragraph b above.
d. The cost/KW output for titanium-tubed heat exchangers is one third the cost/KW output for aluminum-tubed heat exchangers using a 30 -year life-cycle criterion, with a 10% annual inflation rate and retubing at 10 and 20 year marks with AL-5052 tubing.
e. Aluminum-tubed heat exchangers have larger tube bundle volumes, with volumetric differences between aluminum and titanium varying from 26.1 to 11.8% for evaporators and 23.2 to 7.4% for condensers over the range of net power levels considered. In both cases volumetric differences diminish as the system's net electrical output increases to 20 megawatts.
f. COPES/CONMIN has provided optimum designs for each incremental output power level. By manipulating the specified design variables, subject to imposed constraints, COPES/CONMIN has created designs whose geometry and operating
parameters cannot be scaled on the basis of net power output (10 MW). Therefore, designs for component geometry at increasing power levels based upon such simplistic scaling criteria will not achieve an optimum design with respect to the cost objective function.

B. RECOMMENDATIONS

1. Evaluate additional objective functions including:
a. Minimize heat exchanger volumes.
b. Minimize parasitic power losses.
c. Maximize thermodynamic efficiency.
d. Maximize net electrical output.
2. Perform a sensitivity analysis on power system design variables to evaluate their influence on component and system performance. This allows the designer to prioritize system components which can provide improvement in the objective function for a corresponding improvement in component design.
3. Considerable uncertainties are associated with the expressions used to estimate component performances (two-phase pressure drops, film coefficients, etc.). The code should be tested to determine the sensitivity of system design to these uncertainties.
4. Expand the code to include the use of enhanced heat transfer techniques and evaluate the influence of increased piping friction factors on pumping power requirements.
5. Evaluate proposed OTEC designs using proposed system parameter inputs, comparing both the basic analysis and the optimization output.
6. Select other analytical expressions for heat transfer coefficients to validate the performance and output of the existing code.
7. Evaluate the effect of a smaller thermal difference seen by the power system and its influence on a feasible design for a specific net electrical output.
8. Evaluate the cost aspects of using variable-pitch pumps versus fixed-blade for a variable thermal gradient environment.
9. Evaluate and verify the influence of incremental improvements (percent) in turbine internal/adiabatic efficiency with respect to gross and net electrical outputs and compare with the results reported in Ref. 16.
TABLE 1: OTEC Power System Comparisons (Titanium Tubed Heat Exchangers)

 n
0
0
∞
∞
EVAPORATOR

$$
\text { SW FLOW }\left(L_{m} / H R\right)
$$

$$
\left.H R \cdot F^{2} \cdot F\right)
$$

HT SURFACE (FT^{2})
TUBE WALL THICK (IN) PITCH RATIO TUBE ILENGTII (F'T)
TUBE SHEET DIA (FT)
TO'T NR OF TUBES

$$
\begin{gathered}
10 \mathrm{MW} \\
1.44 \mathrm{E} \emptyset 9
\end{gathered}
$$

$$
2.27 \mathrm{E} \emptyset 8
$$

$$
129
$$

$$
623.19
$$

$$
387,598
$$

$$
0.947
$$

$$
0.025
$$

$$
\begin{aligned}
& 1.4 \\
& 43.66
\end{aligned}
$$

$$
\begin{aligned}
& 21.96 \\
& 35,806
\end{aligned}
$$

$$
15 \mathrm{MW}
$$

$$
2.01 \mathrm{E} 99
$$

$$
3.34 \mathrm{E} \emptyset 8
$$

$$
3.78 \mathrm{E} \emptyset 6
$$

$$
130.0
$$

$$
612.97
$$

$$
572,405
$$

$$
0.952
$$

$$
0.025
$$

TUBE PROFILE - STAGGERED EQUILATERAL TRIANGLF

$$
\begin{aligned}
& 1.4 \\
& 42.18 \\
& 27.21 \\
& 54,449
\end{aligned}
$$

 20 MW
$2.80 \mathrm{E} \varnothing 9$ 4.14 E ह8 $5.29 \mathrm{E} \emptyset 6$ 127.7601.47

$$
743,093
$$

$$
0.945
$$

$$
0.025
$$

$$
\begin{aligned}
& 1.47 \\
& 42.27 \\
& 32.45
\end{aligned}
$$

$$
71,034
$$

25 MW
3.46 E 99
$4.86 \mathrm{E} \emptyset 8$
$6.53 \mathrm{E} \emptyset 6$
$6.53 \mathrm{E} \emptyset 6$

$$
9 \emptyset 马 \varepsilon L^{\circ} Z
$$

$$
\text { /ПLG) } \pm \exists O D \text { LH T^O }
$$

$$
\left(8 H /^{\mathrm{w}} \mathrm{gT}\right) \operatorname{MOTA}^{\varepsilon_{H N}}
$$

$$
\text { (yH/nLg) gyosgv } \mathrm{LH}
$$

TABLE 1. OTEC Power System Comparisons (Continued)

$$
\begin{aligned}
& 20 \mathrm{MW} \\
& 2.71 \mathrm{E} \emptyset 9 \\
& 4.72 \mathrm{E} \emptyset 8 \\
& 5.29 \mathrm{E} 96 \\
& 87.46 \\
& 438.4 \\
& 1,168,239 \\
& 0.957 \\
& 0.025 \\
& 1.48 \\
& 58.32 \\
& 35.16 \\
& 79,956
\end{aligned}
$$

$$
\begin{aligned}
& \text { TABLE 1: OTEC Power System Comparisons (Continued) } \\
& 10 \mathrm{MW} \\
& \text { SW HOT PIPE (300 FT LENGTII) } \\
& \text { INNER DIA (FT) } \\
& \begin{array}{ll}
\text { SW VEL (FT/SEC) } & 4.26 \\
\text { PRESS DROP }\left(\mathrm{LB}_{\mathrm{f}} / \mathrm{IN}^{2}\right) & 0.280
\end{array} \\
& \text { SW COLD PIPE (} 3000 \text { FT LENGTH) } \\
& \begin{array}{l}
16.1 \\
4.94 \\
0.49
\end{array}
\end{aligned}
$$

				\cdots		∞		
		N		\cdots	\sim	$\dot{0}$?
3		n	M	-	\sim	∞	\cdots	\pm
Σ	$\stackrel{\sim}{\sim}$	\bigcirc	O	\cdots	\bigcirc	$\stackrel{ }{ }$	∞	$\stackrel{\sim}{+}$
\sim	0	M	-	\cdots	$\underset{\sim}{\sim}$	N	\pm	\bigcirc

TABII: 1: OTEC Power System Comparisons (Continued)

$$
\begin{aligned}
& \text { TABLE 1: OTEC POWER } \\
& \text { COMPONIENT COSTS (\$) } \\
& \text { I:VAPORATOR } \\
& \text { CONIENSER } \\
& \text { CEN-TURBINE } \\
& \text { GIENERATOR } \\
& \text { EVAP SW PUMP } \\
& \text { COND SW PUMP } \\
& \text { NH } 3 \text { CIRC PUMP } \\
& \text { NH } 3 \text { RLE-FLUX PUMP } \\
& \text { OPTIMUM COST (\$) } \\
& \text { COST/KW (NET) OUTPUT }
\end{aligned}
$$

TABLE 1: OTLC Power System Comparisons

$$
\begin{aligned}
& 10 \mathrm{MW} \\
& 5.134,322 .
\end{aligned}
$$

$$
1,495,085
$$

$$
\begin{aligned}
& 756,287 \\
& 463,736 \\
& 470,714 \\
& 110,849
\end{aligned}
$$

$$
\frac{52,190}{14,383,650}
$$

$$
1438.36
$$

(Continued)

$$
15 \mathrm{MW}
$$

$$
8,223,672
$$

$$
8,667,154
$$

$$
1,578,776
$$

$$
\begin{aligned}
& 937,205 \\
& 653,333
\end{aligned}
$$

$$
\begin{array}{r}
20 \mathrm{MW} \\
11,501,680 . \\
13,011,939 . \\
1,606,011 . \\
1,125,782 . \\
794,355 . \\
895,505 . \\
169,303 . \\
79,701 . \\
29,164,560 . \\
1458.23
\end{array}
$$

$$
\begin{array}{lll}
\dot{N} & \infty & \dot{N} \\
M & \infty & \infty \\
N & \infty \\
M & N & \dot{n} \\
\hat{0} & \hat{c} & \cdots
\end{array}
$$

$$
\begin{array}{r}
136,825 \\
64,449 \\
20,849,216
\end{array}
$$

$$
1389.95
$$

$$
\begin{aligned}
& 859^{\circ} 256^{\circ} 5 \\
& \cdot 2 Z \varepsilon^{\prime} \downarrow \mathcal{5} 5
\end{aligned}
$$

TABLE 2: OTEC Power System Comparisons (Aluminum Tubed Heat Exchanger)
줄
n
INFEASIBLE DESIGN
 25 MW
$1.97 \mathrm{ED9}$ $3.42 \mathrm{E} \varnothing_{8}$ 3.72 Еø6 131.98 643.2
610,261
1.046

0.065 tube profile - staggered equilateral triangie $1.4 \quad 1.46$ | N | m |
| :--- | :--- |
| \dot{J} | |
| N | | 25,669 52,512 10 MW

$3.51 \mathrm{ED9}$ $2.53 \mathrm{ED8}$ $2.861: 106$ 129.57 646.7 391,370 1.221 0.065 1.4
$\begin{array}{ll}\text { TUBE Lengti (FT) } & 47.68 \\ \text { TUbe Sheet dia (FT) } & 23.97 \\ \text { TOT NR OF TUbes } & 25,669\end{array}$

INFEASIBLE DESIGN

(Continued)
15 MW
20.25
4.63
0.326

17.93
5.23
0.504

$$
\begin{gathered}
2.0 \\
15.94
\end{gathered}
$$

suosṭaduó wofsks xәmod OGLO

$$
: Z \text { TTG甘L }
$$

INFEASIBLE DESIGN

PUMP SYSTEMS	10 MW	15 MW	20 MW
EVAP SW PUMP (EFFICIENCY 85 PCT)			
HEAD (FT)	10.42	10.27	10.06
CAPACITY (GAL/MIN)	494,239	669,211	760,748
(COND SW PUMP (EFFICIENCY 85 PCT)			
HEAD (FT)	21.32	20.80	21.05
CAPACITY (GAL/MIN)	474,918	592,656	851,978
NH_{3} CIRC PUMP (EFFICIENCY 75 PCT)			
HL:AD (FT)	203.5	218.32	216.63
CAPACITY (GAL/MIN)	9144.3	11,895.6	16,911.6
NH_{3} RE-FLUX PUMP (EFFICIENCY 75 PCT)			
HEAD (FT)	34.33	41.27	45.66
CAPACITY (GAI./MIN)	2818.4	3669.9	5210.5

\sum ~ INFEASIBLE DESIGN
TABLE 2: OTEC Power System Comparisons (Continued) TABLE 2: OTEC Power System Comparisons
LPFICIENCY OF OPERATION 10 MW
TURBINE-GENERATOR (TURB MECII 99.8 PCT, $\begin{array}{ll}\text { TURB INTERNAL (PCT) } & 83.37 \\ \text { OUTLET QUALITY (PCT) } & 97.06\end{array}$
$\begin{array}{lc}\text { YOWER REQUIREMENTS (MEGAWATTS) } \\ \text { TURB EFFIC LOSSES } & 0.373 \\ \text { EVAP SW PUMP } & 1.191 \\ \text { COND SW PUMP } & 2.351 \\ \mathrm{NH}_{3} \text { CIRC PUMP } & 0.299 \\ \mathrm{NH}_{3} \text { RE-FLUX PUMP } & 0.015 \\ \text { TURB-GEN GROSS } & 14.229\end{array}$
(Continued)
$\begin{array}{ll}\therefore & \vec{M} \\ \stackrel{\sim}{N} & \cdots\end{array}$
PCT PARASITIC POWER
THERMO CYCLE EFFIC (PCT)
25 MW
INFEASIBLE DESIGN

25 MW
$3.46 \mathrm{E} \emptyset 9$
$4.86 \mathrm{E} \emptyset 8$
80.0
72.56
$6.53 \mathrm{E} \emptyset 6$
127.1
69.27
69.19
92
0.174
0.929
0.025
42.56
20 MW
$2.80 \mathrm{E} \emptyset 9$
$4.14 \mathrm{E} \emptyset 8$
80.0
72.92
$5.29 \mathrm{E} \emptyset 6$
127.72
69.54
69.47
92
0.165
0.945
0.025
42.27
(Titanium Tubed)
n
0
0
n
0
0
0
0
0
0
TABLE 3: Heat Exchanger

	各	$\begin{aligned} & \infty \\ & \otimes i+i \end{aligned}$			$\begin{aligned} & 0 \\ & i=2 \end{aligned}$								
졸	-		\bigcirc	N	∞	\cdots	\cdots	\cdots		No	N	$\stackrel{\sim}{\sim}$	\cdots
	\bigcirc	m	O	\cdots	\sim	\bigcirc	-	.		\square	a	0	\cdots
\sim	N	\cdots	∞	~	M	$\stackrel{M}{\sim}$	\bigcirc	$\stackrel{\circ}{2}$	Ñ	$\stackrel{\circ}{0}$	-	0	$\stackrel{\sim}{\square}$

$$
\begin{aligned}
& 10 \mathrm{MW} \\
& 1.44 \mathrm{E} \emptyset 9 \\
& 2.27 \mathrm{E} \emptyset 8 \\
& 80.0 \\
& 73.36 \\
& 2.73 \mathrm{E} \emptyset 6 \\
& 129.0 \\
& 70.11 \\
& 70.06 \\
& 92 \\
& 0.105 \\
& 0.947 \\
& 0.025 \\
& 43.66
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lcc}
\text { TABLE } 3: \text { Heat Exchanger Comparisons } & \text { (Cont inued) } \\
\text { EVAPORATOR } & 10 \mathrm{MW} & 15 \mathrm{MW} \\
\text { TUBE PROFILE - STAGGERED } & \text { EQUILATERAL TRIANGLE } \\
\text { PITCI RATIO } & 1.4 & 1.4 \\
\text { ENHANCEMENT - PLAIN TUBE } & & \\
\text { SW VEL (FT/SEC) } & 6.3 & 6.03 \\
\text { T WALL (DEG F) } & 71.09 & 71.47 \\
\text { FILM TEMP (DEG F) } & 70.57 & 0.952 \\
\text { DELTA T BOILING (DEG F) } & 1.027 & 5.76 \\
\text { LMTD } & 6.00 & 0.667 \\
\text { EFFECTIVENESS } & 0.671 & 1.098 \\
\text { NTU } & 1.112 & \\
\text { OVL HT COEF (BTU/ } & & 623.19
\end{array}
\end{aligned}
$$

 $\begin{array}{llll}N & 0 & & 0 \\ 0 & \infty & n & 0 \\ 0 & 0 & 0 & 0 \\ \sim & 0 & 0 & 0\end{array}$ $3.46 \mathrm{E} \emptyset 9$
4.86 E 98 20 MW
4415.43
4040.26

3.824 | n | N | ∞ | ∞ |
| :--- | :--- | :--- | :--- |
| | | 0 | 0 |
| \cdots | | 0 | 0 |

.

$$
\begin{aligned}
& L 90^{\circ} t \\
& \Delta \cdot 880 t \\
& \angle \cdot \nabla 0 b t \\
& M W S I
\end{aligned}
$$

$$
\text { (pənu! } \ddagger \text { uoo })
$$

$$
\begin{aligned}
& 129.94 \\
& 70.33 \\
& 99.5 \\
& 0.416
\end{aligned}
$$

is

$\frac{3}{2}$
~ INFEASIBLE DESIGN
20 MW
$2.80 \mathrm{E} \emptyset 9$
$3.89 \mathrm{E} \emptyset 8$
80.0
72.47
$5.29 \mathrm{E} \emptyset 6$
128.01
69.67
69.61
92.0
0.136
0.982
0.065
Tubed)

TABLE 4: Heat Exchanger Comparisons
10 MW
1.51 E 99
$2.53 \mathrm{Eด8}$
∞
$\stackrel{\infty}{i}$
\sim
\sim
\sim 80.0
73.74
2.86 EØ6 2.86 E 96 129.57
70.35
70.32
92.0
0.070
$\begin{array}{ll}\vec{\sim} & 0 \\ \stackrel{0}{\sim} \\ \underset{\sim}{\sim} & 0\end{array}$
ABLE 4: Heat Exchanger
EVAPORATOR
HT ABSORB (BTU/HR)
SW FLOW (LB $/ \mathrm{mR}$)
SW TEMP IN (DEG F)
SW TEMP OUT (DEG F)
NH_{3} FLOW (LB $/ \mathrm{HR}$)
$\mathrm{NH}_{3} \mathrm{FLOW}\left(\mathrm{LB}_{\mathrm{m}} / \mathrm{HR}\right)$ OPER PRESS ($\left.\mathrm{LB}_{f} / \mathrm{IN}^{2}\right)$ SAT TEMP (DEG F)
OUTLET TEMP (DEG F) OUTLET QUALITY (PCT) NH_{3} PRESS DROP ($\mathrm{LB}_{\mathrm{f}} / \mathrm{IN}^{2}$)
TUBE CHARACTERISTICS
OUTER DIA (IN)
WALL THICK (IN)

$$
\begin{aligned}
& 25 \text { MW } \\
& \text { ! NFEASIBLE DESIG. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TABLE 4: Heat Exchanger Comparisons (Continued) } \\
& \text { ABLL: 4: } 10 \mathrm{MW} \\
& \text { EVAPORATOR } \\
& 47.68 \quad 42.42 \\
& \begin{array}{cc}
\text { STAGGERED EQUILATERAL TRIANGLE } \\
1.4 & 1.46 \\
\text { PLAIN TUBE }
\end{array} \\
& \text { PITCH RATIO } \\
& \text { ENIIANCEMENT } \\
& \begin{array}{l}
6.2 \\
72.25
\end{array} \\
& \begin{array}{c}
\infty \\
\underset{\sim}{\infty} \\
\underset{\sim}{-}
\end{array} \\
& \begin{array}{l}
\infty \\
\infty \\
\infty \\
0
\end{array} \\
& 5.03 \\
& \begin{array}{l}
\stackrel{2}{3} \\
= \\
=
\end{array} \\
& \stackrel{2}{-} \\
& \begin{array}{l}
643.2 \\
1052.5
\end{array}
\end{aligned}
$$

$\frac{3}{2}$
\sim
mfeasible desicio

$$
\begin{aligned}
& 1.891009
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\vec{x} \underset{\sim}{2}-\vec{n} \\
\vec{y}-\vec{y}
\end{array} \\
& \begin{array}{c}
15 \mathrm{Mm} \\
35113.1 \\
13.312 .9 \\
11197.4 \\
4.2!
\end{array} \\
& 4 . \\
& 1.47189
\end{aligned}
$$

3
$\stackrel{3}{2}$

TABLE 4: Heat Exchanger Comparisons (Continued)

rube characteristics

$$
\begin{aligned}
& 90^{\circ} \angle S \\
& S 90^{\circ} 0 \\
& 260^{\circ} 1
\end{aligned}
$$

GTONvial

$$
\begin{aligned}
& \text { 콘 INFEASIBLE DESIGN } \\
& \stackrel{\sim}{\sim}
\end{aligned}
$$

SAMPLE INPUT DATA FOR OTEC ANALYSIS evaporatcr～huriluntal

TUBE O．C．
2．030（14）
TUBE LENGTH
Sid tube vel
oper pressure
$+0.0 J 0(F T)$
$6.000(F T / S)$
［3J．000（LBF／IN2）
tUBE MATERIAL－TITAVI JM
THERMAL CUND（K）Y．5jO（BT＇J／HK．FT．F）
 PITCH RATIO l．ju
enhancement－plaliv tuje
CONDENSER－HUKI LSNTAL
tube 0．0．
L．0．JO（IV）
$30.500(\mathrm{FT})$
TUBE LENuTH
$0.000(F T / S)$
$09.000(L B F / I N 2)$
UPER PRESSURE
tube material－Titain um
THERMAL CCND（K）Э．jOU（BTU／HR．FT．F）
TUBE PROFILE－STAなOERED EマJI－LATERAL PITCH RATiJ
1.50
enhaincemevt－plaliv tube
SALT WATER hot pipe
PIPE I．D．

$$
19.3 .30(F T)
$$

3 UJ．000（FT）
$4.5 \mathrm{JO}(\mathrm{FT} / \mathrm{S})$
Sid PIPE VEL
$30.000(0 E \mathrm{~F}$ F）
35．U／UJU
5.333(4)

- $1 .++\mathrm{U}(1)$
1.372(.1/5)
26.007(UEJ C)

SW SALINITY

```
25.400(4.4)
```

17.221(M)
$1.923(4 / 5)$
$0.01+(4 P 1)$
16.502(w/M.C)

25．4 JJ（．4．1）
12．1ま2（4）
1．32 3 （in／5）
0.37 （MPA）
$10.5021 \mathrm{~N} / 4.61$
（n／M．C）
salt water cold pipe

PIPE I．D．	13．60U（FT）	$5.774(1)$
Pipe lenoth	$3000.000(F T)$	i 14．0．0）（：4）
SW PIpe VEl	5．500（FT／S）	1．073（4／5）
SW InLET TEAP	4．0．0コ（JEJ F）	＋．＋＋4（DEG C）
SW SALINITY	3う．נ／J00	

```
    AM,1ONIA CISC PIPE
\begin{tabular}{lrr} 
PIPE I．O． & \(2.000(F \mathrm{~F})\) & \(0.610(\mathrm{M})\) \\
PIPE LENGTH & \(25) .000(F T)\) & \(45.720(\mathrm{Al}\)
\end{tabular}
    AMMONIA RE-FLUX PIPE
PIPE I．D． \(2.000(F T) \quad 0.51 \cup(M)\)
PIPE LENGTH 50.UCJ(FT)
15.2%0(M)
    PUAP AND GEN-TURB PERFIJRIANCE
        EVAP SW PUMP
        EFFICIENCY YEC:H 95.UO(PCT) VこTこ2 J&.J)\PCTI
        COND Sn Ruitp
        EFFICIENGY MECH 3う.VO(PCT) 1כTJR 98.OJ(PCT)
        \triangleMMONIA CIRC PUIAP
        EFFICIEVGY MEUH 75.JU(PCT) 10TOR Э8.JJ(PCT).
GEIT-TURB EFFICIENGIEJ
        GẼN MECHEELECT ЭO.SU(PCT)
        TJRS MECH Y\ni.BO(PCT)
    POWER REGUIREMENTS
        iNET POWER JUTPJT 15.JJJ(Yn)
```


APPENDIX B

SAMPLE OTEC ANALYSIS OPTIMIZATION OUTPUT DATA


```
    .tT SURFACE 572+Jう.JU(FTこ) 53178.121421
    TUJE SHEET UIA 27.213(FT)
        3.2i4(.1)
    TUT NR OF TJJES 5*449.
    SW PRESS JRGP 4.DOL(LBF/IN2) 23.JJj(KPN)
MOISTURE SEPARATOR-INSIDE EVAP SHELL
    OPER PRESSURE 129.935(LBF/IN2) 395.372(KPA)
    OUTLET TEMP 70.333(DES F) 21.296(JEG CI
    QUTLET WUALITY F%.5O(PCT)
    NH3 PRESS DRGP J.&ló(LBF/IVZ) 2.30J(KPA)
COVDENSER - HORILUNTAL
    HT REJECT 17354723%6.O(3TJ/HR)
    SW FLOW 33+871552.J(L34/HR) L51394 363.)(KG/4R)
    SW TEMP IN 40.0JO(DES F) 4.+++(JEU CI
    SN TEMP DUT *6.055(0EG F)
    NH3 FLCW 37397J8.O(LIY/HR)
    OPER PREJJURE O3.L5I(LBF/IN2)
    COND SAT TEMP + ..3SI(DEG F)
    OUTLET TEMP 4`.238(DEG F)
    NH3 PRESS DROP 0.206(LBF/IN2) 1.+23(KPA)
    TUBE CHARACTERISTIC゙S
\begin{tabular}{lrr} 
OUTTER DIA & \(3.972(I V)\) & \(2+.003(1.1)\) \\
NALL THICK & \(3.025(I N)\) & \(3.042(1.1)\) \\
LENGTH & \(27.416(\) FT） & \(17.503(: 1)\)
\end{tabular}
    MATERIAL - TITA,VIJA
    tube profile - staúvered equi-lateral
        PITCH RATIG 1.40
    enHANCEMENT - plald TUBE
    SN VELOC[TY 6.017(FT/S) L.034(4/S)
T WALL(SHELLSIDE) 4d.331(DEG F)
    0.073(DEG C)
FILM TEMP 4d.785(OEG F) F.jLj(JEG C)
UELTA T CQND J.907(OEJ F) U.504(JEG C)
L.M.T.D. 5.6४3(DEG F) 3.157(DES C)
GOND EFFECTIVENESS 0.055
NR OF TRANSFER JNITS
1.06j
```

```
\begin{tabular}{|c|c|c|}
\hline CVL HT CuEF &  & \(2537.13(w / 12 . C)\) \\
\hline hi matexi & 7J+.35(3TU/HR.FT2.F) & 3439.4 ( (4/12.C) \\
\hline H(FOULING) & 3792.J0 (3TJ/HR.FT2.F) & 21531.73(N/12.C) \\
\hline H( \(A E T A L)\) & +393.63(3TU/HR.FT2.F) & 2+947. >01 w/w2 \\
\hline H( AMMCNI \(A\) ) & ju53.05 (3TJ/HR.FT2.F) & 17367.03(w/12.C) \\
\hline HT SURFACE & 76219). 25 (FT2) & \(75809.69(121\) \\
\hline TUBE SHEET DIA & 27.194(FT) & \(9.289(1)\) \\
\hline
\end{tabular}
TOT NR OF TUBES 52179.
SW PRESS JROP 3.636(LBF/IN2) 33.301(KPA)
```

SALT WATER HOT PIPE

PIPE I.D.	$20.077(F T)$	$0.12 j(4)$
PIPE LENGTH	$300.000(F T)$	$31.443(4)$
SWPIPE VEL	$4.537(F T / S)$	$1.401(4 / \Sigma)$

SWFLOn $334081230.0(L B 4 / H R) \quad 151535904.2(K G / H R)$
SWINLET TEMP \quad OO.0JO(JES F) $5.067(J E G ~ C) ~$
SW SALINITY 35. J/000
SW PRESS DROP J.322(LBF/IN2) 2.217(KPA)
SALT WATER COLJ PIPE

PIPE I.D.	$13.622(F T)$	3.370(1)
PIPE LENGTH	$3000.000(F T)$	214. +00141
SW PIPE VEL	$5.334(\mathrm{FT} / \mathrm{S})$	(.62) (4/5)
Sin floh	$334071552 . J(L y 1 / H R)$	15133+303.J(xi/4R)
Sin INLET TEAP	+0.000(JEJ F)	+.t4+1JE; C)
SW SALINITY	35. Ј/טט	
SW PRESS DROP	$0.508(L B F / I N 2)$	3.JU1(KPA)

AMMONIA CIRC PIPE

PIPE I.D.	$2.001(F T)$	$0.010(M)$
PIPE LENGTH	150.0 CO(FT)	$45.72 J(1)$
NH3 FLOW	$3788708.0(L B Y / H R)$	$1713519 . J(N G / H R)$
NH3 PRESS DROP	$15.033(L B F / I N 2)$	LJ3.05U(KPA)

AMMONIA RE-FLUX CIRC PIPE

PIPE 1.D.	$2.000(\mathrm{FT})$	0.61)(1)
PIPE LENGTH	50.0 CO(FT)	15.24) 4 (
NH3 FLCM	$1136612.0(L B 4 / H R)$	$51555 j .3(\kappa \dot{J} / H R 1$
NH3 PRESS JROP	$3.874(L B F / I N 2)$	68.)79(KPA)

```
PuMP A.dD Ge:H-TURJ PE,NF,RMA.NGE
    Evap Sin puyp
        HEAO PKES; B.B#B(FT)
        3.317(.4)
        CAPACITY Sכد2SY.o(JAL/HL:.) 2&T2JO7.JILIT/4IW
        EFFICIEVCY MECH 3).OU(NCT) YJTJR 98.JJ(PCT)
    COND 5W RUMP
        HEAO PRESS
                            20.753(FT)
        7.227(.4)
            CAPACITY O5<l19.2(GAL/MIN)
            EFFICIENCY MECH 3ว.JO(PCT) 10TJR 98.J)(PET)
        AMMONIA EIRC PUMP
            HEAD PRESS 2iL.327(FT)
            CAPACITY LZL)I.I(うNL/1IN)
            EFFICIENCY MECT Tj.JO(PCT)
        AMMONIA RE-FLJX PUMP
            HEAD PRESS
            33.016(FT)
            CAPACITY 3T3Z.4(JAL/MIN)
            EFFICIENGY 1ECH 75.JJ(PCTI
        jEN-TURB EFFICIENCIES
            GEN MEGHGELECT 36.0J(PCT)
            TURB MECH Э9.3J(PST)
            TURB INTERNAL 39.d3(PCT)
        TURB OUTLET QUALITY 36.17(PCT)
PUNER REJUIREMENTS
    TURB-GEN GNOSS 27603.313(HP)
            EFFIC[ENGY L.JSSES
    EVAP SW PU4P 190+.851(HP)
    CUND SW PU:4P 4127.313(HP)
    NH3 CIRC PUMP 541.714(HP)
    NH3 RE-FLUX PUIAP 2%.OY7(HP)
            NET PJWER DUTPJT
        20.033(1.N1
        0.5j7(4w)
        1.+70(MW)
        3.1+3(MW)
        0.412(4N)
        0.022(4N)
                                    ----n----
                            25.0J0(4W)
```

PERCEVT PARASITIC PONER
ThE MJOYNAMIG CyClé efficiency
$24.53(P C T)$
$2.05(P C T)$

```
CuST UF CC.1PC.veivTS
    EVAPCRATOR
    CONDENSER
    GEN-TUKBINE
    GENERATOR
    EVAP SW PUMP
    CONO SH PUAAP
    NH3 CIRC PJMP
    NH3 RE-FLUX PUMP
        CPTIMUM COST
CJST PER NET KN UJTPUT
```


CUST UF CC.1PC.VEINTS

EVAPCRATOR
CONDENSER
GEN-TUKBINE
GENERATOR
EVAP SW PUMP
COND SH PUiAP
NH3 CIRC PJMP
NH3 RE-FLUX PUMP

CPTIMUM GOST
CJST PER NET Kn UJTPUT

```
\[
\begin{array}{r}
3223672.3)(D O L L A R S) \\
3067154.33(J O L L H R S) \\
1578776.30(D O L L A R S) \\
737205.06(D O L L A K S) \\
653332.74(0 O L L A R S) \\
552298.06(0 O L L A R S) \\
136824.9410 O L L A R S) \\
04443.34(J O L L A R S) \\
\hline 209+4210.0)(\text { JOLLARS) } \\
1339.95(J O L L A R S)
\end{array}
\]
```


APPENDIX C

SAMPLE COPES OPTIMIzATION AND SENSITIVITY ANALYSIS DATA

SBLUCK A TTITLE 「ARJI
CCEAY THERMAL ENERUY CONVERSIJY IOTECI PJAER SYSTEA \＄日LUCK 3 （PRUGZAM CONTRUL PARAGETERS）
，10．16

SBLJCK J IFLOATIVG PRT UPT PREJ PARIMETERSI
J．J J． 3

$1 . J .1 .0+20 \quad$ L． $0+20$
1．J．L．0 1.00 L． $1.0+20$
$1 . j, 1.0+20 \quad 1.0+20$
$\begin{array}{rr}8.3 .1+3.0 & 1.3+20 \\ 85.3 & 140.0\end{array}$
85．1．．1＋8．J
148.0

0．5．2．5
J．$う$
2.5

0．5．2．
$10.0 .1 . j+2_{3}^{5}$
2.5
$1.3+20$
$10.0 .1 .0+20$
$1.3+23$
2．J．1U． い．

1ن．O
2．3．1J．J
$\begin{array}{ll}2.0 .10 .3 .0 & 10.0 \\ 2.0 .10 .0 & 10.0\end{array}$
2．3．10．0
10.0
$1 . \rightarrow 3.0$
3.0
1.4 .3 .0
1.4

SBLUCK
1．1．1．0

2.2 .1 .0	1	1	1.3
3.3 .1 .0	2	2	1.3
4.4 .1 .0	3	3	1.3
5.3 .1 .0	4	4	1.3

0,0,1.0

0	3	1.)
7.7 .1 .07	7	1.J
8,8,1.0		
5, \#, 1.0 3	6	1.j
,9,1.0 9	0	1.J
10.10 .1 .0		
12,12.1. ${ }^{1}$	Lu	1.0
12.12.11	11	1.0
12.12.1.0 12	12	1.J
13,13,1.j		
$14,14,1.13$	13	1.5
14,14,1. 14	14	1.J
15,15,1.0	15	1.)
$16.16 .1 . J$		

${ }_{5}^{5 B L U C K}$ H (iVR JF COŃSTRAINEJ PáNAMETERSI
\$BLJCK I (CONSTRAINT I DENT AVO BOUNOSI
L..J.J. 3: 17,0.0
0.0
3.
0.0

13,2 3

1. $0+23$
0.3
21.23
$0.0 .0 .1 .0_{0}^{21} 0+20,3.00_{0.0}^{23}$
24

1.3+21 0.0
25.26
3). 0.0
10.0.0.,$i_{i j}^{25} 0+20.0 .0^{20}$

53L OCK
27,0
27,0

, 11, 12,13,14,15,16, $\begin{array}{cc}1,2,3,4,5,6,7,3,9,10,11,12, ~ \\ 2, \\ 9 & 10 \\ 17 & 18\end{array}$

U. U
C.1, J. $0,1_{0}^{10} 0+20,0.0^{20}$

1.

6

6.5

33.
7.0

8,j
.75
1....5,. $75_{10}^{3}, 1 \ldots 1.25 \cdot 1_{5}^{5}$
.75
9,6
$40 ., 30.45^{75}, 40 ., 45 \cdot 6$
35.

10,

53.
53.
00.
65.

11,6
7.,5.06.il?.,8.,9. 5
5.
12.0
5.
7.

$$
3 .
$$

จ.
$4 ., 2.03 .12,14.5 .16 .6$ 6
13.0
3.

14.6
6.

15,5
$1.0 .1 .41_{1.6^{15}}^{15,1.0,1.7_{1}^{5}, 1.8}$
1.5
1.0
1.7
1.3
$1.0,1.4,1_{1.6}^{16}, 1.6,1.7_{1}^{6}, 1.3$
ENO

THESIS PRESENTATION：MODEL ANALYSIS OF THE CLOSED－CYCLE
CCEAN YHERMAN ENERGY CONE ERSION YOTEC PGWER SYSTEM になの

OOOOOODOOOOOCQOOOEO Lnthmonnont -wow un=
 onownos~mwonmminoen

0000000000000000070000000000

 a 2 a 2 a a a a a a a a a a a a a a a a a

00

 ơNO

-000000000 Nythovinnardin NaCounghan
 300000응ㅇ

000000000090000000000000000000000000000000000000

 aqa a

00

RAVITY DRAIN（BTU／LBM）」「ミaコイにのく

2．FI
FT2．Fi
 ーーNル \＆

 ๙のび
 za
 1 山己心
 01

OO

[^2]
Abstract

00 そそええ

롤

PUMP（HP）

 2
 Uール

 U

[^3]000000000000000000 Numuncomn－ino
 Ninin0009inNminomnthot 090990909099090990 ana ana anana ana ana

00000000000000000000000000000

 O9990900909090900090000000000

[^4]000

 000009000000000900000000900900000000000000009090

900000000080000000000000000000000000000000000000

OOCOOOOOOOOOOOOOOOOOOSOOOCOOCOOOOOOOOOCOOOOOOOO

OOCOOOOOOOOOOOO ammmiomindinn MoOMNROnnninninoón

C
C
TYPEE=1: HORIZONTAL EVAPORATOR OWENS CORRELATION
TYPE HORIZONTAL EVAPORATOR NON-BOILING CORRELATION

vue wex wew wex
NET OUTPUT POWER REQUIRED（MW） ELECT＝30．
INPJT DATA SI UNIT CONVERSION aQ之之11 muwns பIーニルulocix 2 TLHPC $=.3048 *$ KHP $=.3048^{*}$ TLNH3P

 －ー－ー．－ーMNNN

0

 NNTNTNNNNNNNNNNNIVNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

C
C
C
C
C
C

INITIALLY ASSUME AN EVAP TUBE LENGTH(FT)
ASSUME A HT COEF FOR EVAP SHELLSIDE

HUT PIPE SW MASS FLOW RATE(LBM/HR)

ROSWHP $=$ RHOSW (THIE)
FIOHP $=3600 . \neq$ ROSWHP \&

AP

RHOSWE = RHOSW(TBLKE TKSWE =TKSW (TBLKE)

260

TNET $=4 . * F L O H P /(3600 . * R H O S W E * P I E * T D I E C * * 2 * V S W E)$

C TOTAL NUMBER OF EVAP TUBES
 un

TUBE SHEET DIAMETER(FT)

TUBE PRDFILE - STAGGERED $0 \angle 20109$
 $=2 * E H T$
$=2-$ EBASE-TDOE
$E C=S P E / 12$. 40* $4 \div 0$

TUBE PROF

 TUBE PROFILE - IN-LINE EPLONG = EPR *TDOE PLONG*EPLAT $280 \quad \begin{array}{ll}\text { SPEC=SPE/12. } \\ & \text { CONTINUE } \\ & \text { EAREA=ETAREA*TNET }\end{array}$

옹
Nuve
TSDE $=((4 . * E A R E A / P I E / \neq * 0.5) / 12$.
C TOTAL HT AREA OF EVAPIFT2 OR M2)

C THTAE=TNET*PIE*TDOEC*TLE	
C_{C}^{C} CMIN FOR EVAP (BTU/HR.F OR W/C)	
$\text { CMINE }=\text { F LOHP*CPSWE }$	
C_{C}^{C} OVERALL HT COEF (BTU/HR.FT2.F OR W/M2.CI	
TBLKER $=$ TBLKE+459.69	
C REYNOLDS NUMBER FOR EVAP TUBESIDE	
VISSWE = VISSW(TBLKE) RNSWE $=3600 . * R H O S W E * V S W E * T D I E C / V I S S W E$	
C Prandil number for evap tubesidee	
PNSWE = C P SWE \# VIS SWE/TKSWE	
HT COEF FOR EVAP TUBESIDE	
IF (RNSWE.GT.2300.) GO TO 290	
LAMINAR FLOW USING SIEDER-TATE CORRELATION	
C 290	HTSWE = 2.86*TKSWE*(RNSWE*PNSWE)**.3333*(TDIEC/TLE)**. $3333 / T D I E C$ GO IO 300 CONTINUE
TURBULENT FLOW USING DITUS-BOELTER GORRELATION (INITIALLY ASSUME TBLKE=THIE)	
HTSHE =.023*TKSWE*RNSWE**.8*PNSWE**.4/TDIEC 300 CONTINUE	
THERMAL RESISTANCE FOR SW(HR.FT2.F/BTU)	
TRIE = TDOEC / (EFFIE*HTSWE*TDIEC)	
THERMAL RESISTANCE FOR SW FOULINGIHR.FT2.F/BTUI	
HTFSWE = 1. 1 SWFC TR2E=TDOEC/(EFFIE*HTFSWE*TDIEC)	
C C C	THERMAL RESISTANCE FOR WALL THICKNESS(HR.FT2.F/BTU)

TR3E=TOQEC*ALOG(TDOE/TDIEI/(2.*TKW)
THERMAL RES ISTANCE FOR NH3 FOULINGIHR.FT2.F/BTU)
CONSIDERED NEGLIGIBLE
THERMAL RESISTANCE FOR NH3
EFFOE=1 i (EFFOE*HTNH3E)
TRSE=1.
PSEUDO HT COEF FOR SWIBTU/HR.FT2.: OR W/M2.C)
HSWE=1./TRIE
PSEUDO HT COEF FOR SW FOULINGIBTU/HR.FTZ.F OR W/M2.C)
HFSWE=1./TR2E
PSEUDO HT COEF FOR WALL THICKIBTU/HR.FT2.F OR W/M2.CI HWE = 1./TR3E
PSEUDO HT COEF FOR AMMONIAIBTU/HR.FT2.F OR W/M2.CI HNH3E=1./TR5E QVERALL HT COEF CALCULATION-OUTTER
SURFACE BTU/HR.FT2.F OR W/M2.CI $U E=1 . /(T R 1 E+T R 2 E+T R 3 E+T R 5 E \|$
NUMBER OF TRANSFER UNITS FOR EVAPINTUI ENTU=UE*THTAE/CMINE
EVAP EFFECTIVENESS(EPSILON) EPSE=1.-EXP(-ENTU)
EVAP SW OUTLET TEMPIF
THOE=THIE-(THIE-T3A)*(1.-EXP(-ENTU))
REVISED SW AVG BULK TEMP(F)
RTBLKE=(THOE+THIE)/2.

FILM TEMP FOR PROPERTY EVALUATION
INITIALLY ASSUME T3(IDEAL)=T3(ACTUAL)
THERMAL RESISTANCES FOR SINGLE TUBE CONDUCTANCE(UA)

$A O=P I E * T D O E C \neq T L E$

THERMAL RESISTANCE SW(HR.F/BTU)

$C T R L E=T R \perp E / A O$

THERMAL RESISTANCE SW FOULING(HR.F/BTUI

CTR2E=TR2E/AO

THERMAL RESISTANCE WALL THICKNESS(HR.F/BTU)
CTR $3 E=T R 3 E / A O$
THERMAL RESISTANCE FOR NH3 FOULING(HR.F/BTU)
NEGLIGIBLE
THERMAL RESISTANCE WALL THICKNESS(HR.F/BTU)
CTR3E=TR3E/AO
THERMAL RESISTANCE FOR NH3 FOULING(HR.F/BTU)
NEGLIGIBLE NEGLIGIBLE

THERMAL RESISTANCE NH3(HR.F/BTU) CTR5E=TR5E/AO

HEAT TRANSFEREO PER TUBE(BTU/HR)

HEAT TRANSEREO PER TUBEIBTUNHR J QET=ITBLKE-T3I/CCTRIE+CTR2E+CTRZEHCTRSEI
SHELLSIDE WALL TEMPERATUREIF)
$E T W 2=T B L K E-Q E T *(C T R 1 E+C T R 2 E+C T R 3 E)$

TUBESIDE WALL TEMPERATURE(F)
 EVAP FILM TEMP CALCULATION(F) $E F T=(E T W 2+T 3) / 2$. delta T TEMPERATURE(F) DELTAE =ETW2-T3
AMOUNT OF HEAT ADOITION(BTU/AR OR W)
QE=CMINE*(THIE-THOE)
LOG MEAN TEMPERATJRE DIFFERENCE OF EVAP(F OR C)
INITALLY ASSUME T3 (IDEAL)=T3(ACTUAL)
ELMTD=(1.-EXPI-ENTU))*CMINE*(THIE-T3)/(UE*THTAE)
ISENTROPIC NH3 PUMP WORK(BTU/LBM)
INITIALLY ASSUME PIIIDEAL)=PIIACTUAL) VF $1=1.1$ RFNH $3(T 1)$

ETHI=TBLKE-QET*(CTRIEHCTR2E
EVAP FILM TEMP CALCULATTONCFI
EFT=IETWZ+T3I/2
DELTAE=ETW2-T3

[^5]

 NNNNNMmmmimmmmmotro 0

$350 \quad$ CONTINUE
350 טی טu

VNH3E = VNH3ER

PNH3E=CPNH3E*VSNH3E/TKNH3E

WE=FLONH3/TNET
RNH3EH=4.*WE/(TLE\#VSNH3E)

> IF (RNH3EH.GT.TRNEI) GO TO 370

LAMINAR FLOW USING OWENS CORRELATION

 GONTINUE

ưu
HNH3FR= 185*(SPEC/TDOEC)**。1*(VSNH3E**2/(3600.**2*G*RONH3E**2*TKNH
TURBULENT FLOW USING OWENS CORRELATION

1RNH3EV**(-.22)*(1.-TLD/TLFD) LAMINAR FLOW CALCULATIONS HNH3ER $=$ HIT OR +HIFDR GOTO ${ }^{2} 20$ TURBULENT FLOW USING LORENZ ANO VUNG CORRELATIONS CONVECTION IN OEVELTPING REGION HTDR=3. *CPNH3E*WEA/TLFD CONVECTION IN FULLY DEVELOPED REGION
HTFOK=3.8E-03*(VSNH3E**2/(3600.**2*RONH3E**2*TKNH3E**3*G1)**(-. 333
13) TURBULENT FLOW CALCULATION HNH3ER=HTDR +HTFDR
GOTO 320
CONIINU
®̊
8
HORIZONTAL BOILING USING LORENZ AND YUNG COKRELATIONS TRANSITION REYNOLDS NUMBER FOR CORRELATIONS TRNE $3=5800 . *(C P N H 3 E * V$ SNH3E/TXNH3E)**(-1.06) REYNOLDS NUMBER(PSEUDO-VERTICAL)
 LAMINAR FLOW JSING LORENZ AND YUNG CORRELATIONS CONVECTION IN DEVELOPING REGION HTOR=3. *CPNH3E*WEA/TLFD CONVEGTIUN IN FULLY OEVELOPED REGION

BOILING USING LORENL ANO YUIVG CORRELATION

C
－OOOFNMTUON

（Ed
（Ed）$\lrcorner H=3 \varepsilon H N\lrcorner H$

LAMINAR FLOW CORRELATION
LAMINAR FLOW CORRELATION
HNH3ER＝HTB＋HTOR＋HTFDR
GOTO 420
CONTINUE
TURBULENT FLOW USING LORENZ AND YUNG CORRELATIONS
CONVECYION IN DEVELOPING REGION
HTDR＝3．＊CPNH3E＊WEA／TLFD
NOIJヨy 0ヨd07ヨヘヨロ A77n」 NI NOI 1JJANOつ
HTFDR $=3.8 E-03 *(V S N H 3 E * * 2 /(3600 . * * 2 * R O N H 3 E * * 2 * T K N H 3 E * * 3 * G 1) * *(-* 333$
$23) * R N H 3 E V * * .4 * P N H 3 E * * .65$
BOILING USING LDRENZ AND VUNG CORRELATION

$H G N H 3 E=H G\{P 31$

TENS＝1． $6038998 E-03$
$C S F=0154$
$H T B=V S N H 3 E *(H G N H 3 E$

TURBULENT FLOA CALCULATIONS
HNH3ER＝HTB＋HTDR＋HTFDR
CONTINUE
FOR SAT HTNH3E

TEST wu fuvunu wu us

HTNH3E = HNH3ER
KEVISED EVAP HEAT TRANSFER AREA(FT2) THTAER = ENTU*CMINE/UE THTAER=ENTU*CMINE/UE
REVISED EVAP TUBE LENGTH(F
TLER = THTAER / (PIE*TOOEC*TNET)
IEST FOR SAT TUBE LENGTH
CSI CF EVAPORATOR UNITI 1
EVAPORATOR TUBE SHEET DIAMETER(10-35)FT
DRILLING TIME/TUBE SHELL THICK(MIN/IN) DTE $=0.66$ (TDOE-. 5) THICKNESS OF TUBE SHEET(IN) TTSE $=0.56 *$ TSDE $* * 0.68$
TUBE SHEET LABOR COSTI\$1 TUBE SHEET MATERIAL COST(\$)
CTSME = $189.486 *$ TSOE**2.3
IF ITMATL.EQ.1.I GO TO
TUBE MATERIAL COST(\$)
CTME = (E1*TLE\&E2) *TNET* (TDOE/L.5)
TUBE INSTALLATION COST(\$)
CTIE $=34 *$ TNET*TDOE** 0.7
GOTO 450
CONTINUE
TUBF MATERIAL COSTITI

9

AD-A098 567 NAVAL POSTGRADUATE SCHOOL MONTEREY CA

OPTIMIZATION OF A LOW DELTA T RANKINE POWER SYSTEM. (U) DEC 80 R C SCHAUBEL
UNCLASSIFIED

TUBE INSTALLATION COST(\$)

 WATER INLET,NOZZLES AND SUPPORTS COST(\$1
 TUBE WELDING COST(\$)

?
ư tund unu unu unu und u

> EVAPORATOR TUBE SHEET DIAMETER(35-50IFT
DRILLING TIME/TUBE SHELL THICK(MIN/INI
DTE=0.66*(TOOE-.5)
THICKNESS OF TUBE SHEETIINI
> ORATOR TUBE SHEET DIAMETER(35-50IFT
DRILLING TIMEITUBE SHELL THICK(MIN/IN)
DTE $=0.66 *(T O O E-.5)$
THICKNESS OF TUBE SHEETIINI
> ORATOR TUBE SHEET DIAMETER(35-50IFT
DRILLING TIMEITUBE SHELL THICK(MIN/INI
DTE $=0.66 *(T O O E-.5)$
THICKNESS OF TUBE SHEETIINI
> ORATOR TUBE SHEET DIAMETER(35-50IFT
DRILLING TIMEITUBE SHELL THICK(MIN/INI
DTE $=0.66 *(T O O E-.5)$
THICKNESS OF TUBE SHEETIINI
> CEVAP=(CTSLE+CTSME+CTME+CTIE+CHSE+CBFCFE+CHE+CWINSE+CTWE+CDPBE)

> 480
> Powers wes

TTSE=0.56*TSDE**0.68

CTME = (E1*TLE*E2) *TNET*(TDOE/1.5) TUBE INSTALLATION COST(\$)

TUBE MATERIAL CDST(\$)
CTME=(E1*TLE+C2) *TNET*(TDOE/L.5) *(1.+(1.+AINT/100.) **10+(1.+AINT/L TUBE INSTALLATION COST(\$)
CTIE=36.542*TNET*TDOE**0.7*(1.+(1.+AINT/100.1**10+11.+AINT/100.) ** CONTINUE
HEAT EXCH SHELL COST(\$)
CHSE $=12.544 *(T L E+6.1$ \# TSDE $\ddagger * 2.06$
NH3 DIST PLATE AND BAFFLES COSTI\$
CDPBE $=158.099 * T S D E * * 1.82+72.419 * T N E T * * 0.873 * D T E$ BUSTLE, FLANGE,CHANNELS AND FLOW PLATE COSTS (\$1 CBFCFE=472.977*TSDE**2.12
HEAT EXCH HEAD COST(\$)
凹us $\begin{array}{ll}0 & 0 \\ 0 & \text { n un uus }\end{array}$
응 nues wo
O
N Hes
wos
Me
ω
 00

on
8
CONAP $\mathcal{C N T S L E + C T S M E + C T M E * C T I E + C H S E + C D P B E + C B F C F E + C H E + C W I N S E + C T W E I ~}$
$C H E=1725.31$ *TSDE**1.45

0
4
nuxucxucusucuse

EVAPORATOR SALT WATER PUMP OR HOT PIPE PUMP
DELTA P EVAP SH PUMP
ROSHHP=RHOSWIHIE

טیט

DELJA P SW HOT PIPE USING DARCEY-WEISBACH CORRELATION (LBF/IN2)

REYNOLDS NUMBER FOR HOT PIPE FLOW RNSWHP= 3600 . FR OS WHP FVSWHP *D IHP / VISWHP FRICTION FACTOR FOR LAMINAR FLOW IF IRNSWHP. GT. 2300.1 GO 10560
FFHP=64 /RNSWHP
GO TO 570
wruw ues

 $000 \rightarrow 10101$

CONTINUE

DELTA P PIPE LOSS CALCULATION(LBF/INZIDELTA P EVAPORATORIASSUME NO OUTLET PIPING) USING DARCEY-
WEISBACH CDRRELATION(LBF/INZ)MINOR ENTRY \& EXIT LOSSES (ASSUME KI = OS WELL ROUNDED
TUBE ENTRANCEAND KE =I EXPANSION TO AN INFINITE
RESEVOIRIILBFIINZI
RKEINE= (RKI +RKE) *RHOSWE*VSWE**2/(2.*GC*144.)
DELTA P EVAPORATOR COREILBF/IN2IREYNOLDS NUMBER FOR EVAPIDETERMINED IN EVAP SECTIONI
FRICTION FACTOR LAMINAR FLOWFRICTION FACHOR LAMINAR FLOW
IFEERNSWEGT.2300.1 GO TO 580

$$
\begin{aligned}
& \text { GOETO } 590 \\
& \text { CONTINUE }
\end{aligned}
$$

 OOOOO HNA

9NIS（1NOIMSI＝（NIIMSI＇2A＝1A 3WnSSVI3dId 0705 MS d V17ヨ0
ve

$$
\begin{aligned}
& \text { 凹u 凹ue }
\end{aligned}
$$

DARCEY-WEISBACH CORRELATION(LBF/IN2) REYNOLDS NUMBER FOR COLD PIPE FLOW RNSWCP=3600.*ROSWCP*VSWCP*DICP/VISWCP FRICTION FACTIR LAMINAR FLOW LF (RNSHCP GT 2300.1 GO TO 600
FFCPZ64 GO TO 610
CONTINUE
 WHERE AREA IS ABRUPTLY CHANGED TO 2 TIMES PIPE
DIAMETERI ILBFIINZI
 DELTA P CONDENSERIASSUME NO OUTLET PIPINGI USING
DARCEV-WEISBACH CORRELATIONULBFIIN2I INITIALLY ASSUME TBLK=TSHIINI
TBLKC=TCIC
©
ツus
wes
Wus
wousu

 UNNNNNNNNNNNMNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNN

 NNNNNNNNTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

-

$\stackrel{0}{0}$
0
$\stackrel{\circ}{\infty}$
owes
C DELTA P CORE EVAPORATOR
DPCORE=DSEVAP $\uparrow D S D E M$
$\underset{C}{C}$ DELTA P DUE TO PIPING ELEVATION(LBF/IN2I

DELTA P PIPE LOSS CALCULATIONCLBF/IN2I DPIPN=DPNH3 +DPELEV

DELTA P THERMODYNAMICALLY(LBF/IN2)
DPTHER=PEVAP-PCDND DPMPN=DPNH3 +DPCORE+DP ELEV +DPTHER
DPMPNC $=144$. *DPMPN *GC /RONH3P*G)
(dH)dWIN JYIJ EHN YヨMOd \supseteq

C POWER NH3 GIRC PUYP MOINR(MW)
EMNH3C $=$ EMNH $3 / 100{ }^{\circ}$ EMNH3C
C DISCHARGE RATE NH3 CIRC PUMP(FT3/SEC OR GAL/MINI

QNPMP $=P$ IE*DINH3**2*VNH3P/4.
QNPMPC $=$ QNPMP*60.*GAL
C COST OF NH3 CIRC PUMP (SI VF1 $=1 . /$ RFNH3(T1
CNH3P $=1$ FLONH3*VF1/80100.1**0.64*1.21E+05 EVAPORATOR RE-FLUX PUMP
ASSUME RE-FLUX MASS FLOW RATE=0.3 3 FLONH3
vexues

TAVGE = SAT
RONH3R=RFNH3 TAVGE)
$V S N H R P=V S N H 3$ (TAVGE)
REYNOLOS NO FOR NH3 RE-FLUX PIPE FLOW

NH3 FLDW VELOCITY(FT/SEC)

FAONHR $=0.3 *$ FL DNH3

VNH3RP=4.*FLDNHR 13600.*RONH3R*PIE*DINH3R**2)

RNH3RP $=3600$. *RONH3R*VNH3RP*OINH3R/VSNHRP

 FRICTION FACTOR LAMINAR FLOWIF IRNH3RP, GT.2300.1 GO TO 690
FNH3RP $=64 . /$ RNH3RP
GO TD 700
690 GONTINUE
700 FNH3RP=1.325/(ALOGIENH3P/(3.7*DINH3R)*5.74/RNH3RP**0.9) \|**2

PIPE FRICTION LOSSESILBF/IN2I

RKNHRP=FNH3RP*(TLNHRP/DINH3R*4**ELBOW)
DPNHRP = RKNHRP*RONH3R*VNH3RP**2/(2.*GC*144.1
DELTA P DUE TO PIPING ELEVATIONILBF/IN2)
OPELER=RONH3R*G* (E2R-EZ1)/(GC*144.)

ues uxue
DELTA P PIPE LOSSES(LBF/IN2I DPIPNR=DPNHRP+DPELER

> DELTA P NH3 RE-FLUX THERMODYNAMICALLY(LBF/IN2)

צuvuuuvu NET ELECTRICAL OUTPUT DESIREDIELECT-
PROVIDEDIN INITIAL PARAMETERSI MW)
ELECTRICAL LOADING AS EFFECTED BY EFFICIENCY(MW)
EEPC=EEP/IOO.
ETRPCEERPIOO.
WELECT=ELECT/IEPC*ETRPCI
WELOSS=WELECT-ELECT
GROSS ELECT LOADING INCL PARASITIC LOSSESIMWI
WELECG=WELECT+PARAL
POWER GENERATOR-TJRBINE(HP)
PWRTR=I 34L. *WELECG
TURBINE EFFICIENCY REQUIREMENTIPCTI

CONSTRAINT FOR A SAT QUALITY AT STATE PT 5S

以 以ue 以ex

AMOUNT OF HEAT REJECTIONIBTU／HR OR MWI
$O C=F 1 O N H 3 *(H 5-H 1)$

C CMIN FOR CONDENSERIBTU／HR FFI
以us
$\underset{C}{C}$ TOTAL NUMBER OF CONDENSER TUBES
C COND SW OUTLET TEMPIF OR CI
$T C D C=T C I C+Q C / C M I N C$
TNCT＝4＊＊FLOCP／（3600．＊RHOSWC＊PIE＊TDICC＊＊2＊VSWC）
ω

$$
\begin{aligned}
& \text { TUBE SHEET DIAMETER(FT) } \\
& \text { TUBE PRDFILE - STAGGERED }
\end{aligned}
$$

ツưu
C LOG MEAN TEMP DIFFERENCE OF CONDENSER(F OR C)
CLMTD=((T1-TCOC)-(T)-TCIC))/ALOG(IT1-TCOC)/(T1-TCIC))
C LOG MEAN TEMP DIFFERENCE OF CONDENSER(F OR C)
CLMTD=((TI-TCOC)-(TI-TCIC))/ALOG(IT1-TCOC)/(T1-TCIC))
C LOG MEAN TEMP DIFFERENCE OF CONDENSER(F OR C)
CLMTD=((T1-TCOC)-(T)-TCIC))/ALOG(IT1-TCOC)/(T1-TCIC))

> COND SW AVG BULK TEMP(F)
> uns

RTBLKC= \quad TCOC+TCIC)/2.
C TEST FOR SAT TBLKC

C TEST FOR SAT TBLKC

730

 vuルununumunuminvino 00000000000000000000000000000000

CNTU=UAC/CMINC
HTNH3

$$
E P S C=1 \cdot-E X P\{-C N T U)
$$

INITIALLY ASSUME A TLC
wes wexus

HTNH3C= 1000. CONTINUE

OVERALL HEAT TRANSFER COEFFICIENTIBTU/HR.FT2.F DR W/M2I

-ucse
REYNOLDS NUMBER FOR COND TUBESIDE
PROPERTIES EYAL AT TBULKI

RNSWC $=3600$. *RHJSHR *V SWC *TDICC /VIS SWC
PRANDTL NUMBER FOR COND TUBESIDE
CPSWC =CPSW TELKC
TKSWC $=$ TKSW TBLKC
ONSHC $=C$ PSWC

ONSWC $=$ CPSWC \#VISSHC/TKSWC

HEAT TRANSFER COEF FOR COND SW TUBESIDE
(BTU/HR FFTZ OF OF W/MZI
IF (RNSWC.GT.2300.1 GO TO 750 LAMINAR FLOW USING SEIDER-TATE CORRELATIONI ASSUME
VISCOSITYITBULKI=VISCOSITYITHALLI凹uை wux uuv

 00

u

R
 FLOW USING NUSSELT CORR MOD BY MC ADAMS
VERTICAL TYPE CONDENSER

IF IRNH3CV.GT. 1800.1 GO TO 790

LAMINAR FLON USING NUSSELT CORR MOO BY MCADAMS
HNH3CR=CORRF*1.47*(VSNH3C**2113600.**2*TKNH3C**3*RONH3C**2*G1)**1-

TURBULENT FLOW USING KIRKBRIDE CORRELAIION GO TO 800
CONTINUE
VERTICAL
IF IRNH3C
LAMINAR F CORRF $=1.2$
HNH3CR $=2$
${ }^{\infty}$ مuw w
3
3
062
gO~NMTH OR

《田

CONTHBCVE* 4
TEST FOR SAT HTNMBC
800
©)
 －NN

CAFF＝CAF＊（ SNC－TOOC）SNNC）
CGF＝FLONH3（3600．＊CAFF）

vunes
$\mathrm{EDC}=(\mathrm{CPR} * \mathrm{TDOC}-\mathrm{TDOCl} / 12$ ．
－2
nox＋0 －

 ab －$-\cos ^{2}$
 Moưoniz
 صンフォUU

[^6]

 $\infty \infty \infty$

THERMAL RESISTANCE FOR WALL THICKNESSIHR.FT2.F/BTUJ TR3C=CAO*CTR3C THERMAL RESISTANCEGFOR NH3 FOULING(HR.FT2.F/BTU)
(CONSIDERED NEGLIGIBLES THERMAL RESISTANCE FOR NH3(HR.FT2.F/BTUI TR5C=CAO*CTR5E

QYERALL HEAT TRANSFER CQEF U - OUTSIDEIBTU/HR OFTZ OF

$U C=1 . /(T R 1 C+T R 2 C+T R 3 C+T R 5 C)$
PSEUDO HT COEF FOR SW (BTU/HR.FTI.F OR W/M2.CI HSWC=1./TR1C
PSEUDO HT COEF FOR HFSWC=1./TR2C HWC = $1 . /$ TR 3C
PSEUDO HT COEF FOR NH3IBTU/HR.FT2.F OR W/M2.CI HNH3C=1./TR5C
TOTAL CONDENSER HEAT TRANSFER AREA(FT2 OR M2I THTAC=CNTU*CMINC /UC
C REVISED CONDENSER TUBE LENGTH(FT)
TLCR=THTAC/(PIE*TDOCC*TNCT)
CONSTRAINT FOR A SAT TUBE LENGTH

DTLC=TLC-TLCR

C IF ITSDC.GT. 35.1 GO TO 910
 - MANMN $\infty \infty \infty \infty \infty \infty \infty$

CONDENSER TUBE SHEET DIAMETER(LO-35IFT DRILLING IIME/TUBE SHELL THICK(MIN/IN) DTC=0.66*(TDOC-. 5) thickness of tube sheetiln TTSC $=0.56 * T S D C * * 0.68$
tUBE SHEET LABGR COSTSISI
CTSLC=156695.*(TNCT/9630.)*(DTC/0.66)*(TTSC/4.0) TUBE SHEET MATERIAL COST(S)
CTSMC=189.486*TSOC**2:3 ${ }^{3}$
TUBE MATERIAL COST(S)
CTMC=(C1*TLC+C2)*TNCT*(TDOC/1.5) TUBE INSTALLATION COSTI $\$ 1$ CTIC=34.*TNCT*TDOC**0.7
GOTOB80
CONTINUE
CTMC $=(C 1 * T L C+C 2) * T N C T *(T D O C / 1.5) *(1 .+(1 .+A I N T / 100) * * 10+.(1 .+A I N T / 1$
00.$) * * 20)$
TUBE MATERIAL COST(S)

[^7]
4 vue vuv uxu

$\begin{array}{ll}0 & 8 \\ 0 & 8 \\ \infty & 0\end{array}$

GO TA 980
CONTINUE
CONDENSER TUBE SHEET DIAMETERI35-50IFT

CONTINUE
COOND
CO
CTSLC

 THERMODYNAMIC CYCLE EFFICIENCY(PCT)

WNET=WELECG-PARAL
QN=QE/ $3412.2 E+03)$
$T C E=(W N E T / Q I N) \$ 100$.

 NNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

[^8]
 NNNONNNN

$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & n & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$
1070
1080

 NN NN

 NNNNNNNMNNNNNNNNNTNNNNNNNNNNNNNNNNNNNNNNNNNMMMMM

		U	Uu 뜬	U		$\underset{\sim}{U}$	Uي		
$\underset{\sim}{\text { ¢ }}$		mamy	$\underset{I}{\underline{\alpha}} \underset{\underline{\alpha}}{\underline{\alpha}}$	UN	U!	Yum	불a		93
\square	unuus a	エでで	マでで	Ia	Fa	［Qエ	zaI		山 ш
W－	an玉OU -			Qu	0	－2て	aのシ		」
小 0	以undm a	－640	ロトムの	0	QO	OOZ	OOE		$\underline{3}$
4 －	$\square-1540$	－－		－0山	－				2 ${ }^{\text {a }}$
Q I	－man u		mas					a	
		－	エエで	Q2	0	－			U
いでm		2こロー	220m	ェロu	さロu	픙	an	$a \times 5 a$	
IOQ	a			ロய口	Qua	a 20	Q×0		エ以T
4rua	ローフルトอロ	セトムロ	ートルO	ロロル	ロロய	Oロu	ロロய	山山шх	030

000000000000000060009000000000200000000008000000
 NNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMMMMMM

 ninnininiriono

 UNNN

RETURN
END
SALT SNOT WATER OENSITY FIDEPTHI (LBM/FT3)
FUNCTION RHOSHO 27
RHOSHO $64.184049+9.8878 E-05 * 2$
RETURN
END
SALT HATER SPECIFIC HEATIBTU/LBM.F)
 FUNCTION VISSW (T)
VISSW $8,806895-198$

SND WATER THERMAL CONDUCTIVITYIBTU/HR.FT.FI
FUNCTION TKSH (T)

RETURN
END
AMMONIA
END
AMMONIA SAT TEMP (F)
FUNCTION TSAT (P)
FUNCTION TSAT P P
TSAT $=28.505313+1.2445557 * P-.0049090885 * P * * 2 * .000009203093 * P * * 3$
RETURN
END
ENTHALPY OF SAT AMMONIA VAPORIBTU/LBMI
FUNCTION HG (P)
HG*603. $588134.3893361 * P-.002002459 * P * * 2+4.01727 E-06 * P * * 3$
ETURN
ENTHALPY OF SAT AMMONIA LIQUIDIBTU/LBMI
 ${ }^{2}$

EMD
U
Uソ \qquad \boldsymbol{u}
U
U
0

つ>>>NNNNNN
CTIONAEC
$=2.157473-50.2$ 를 COND ALUMINUM TUBE COST/FT - LINDE-PRDMOTER(\$/FT) UNCTION
$C C=1.7$ 4《๔4

LIST OF REFERENCES

1. Office of Technological Assessment, Renewable Ocean Energy Sources, Part 1 OTEC, p. 7, May 1978.
2. Claude, Georges, "Power from Tropical Sea," Mechanical Engineering, v. 52, No. 12, Dec. 1930.
3. Holman, J. P., Heat Transfer, 4th ed., p. 204-223, McGraw-Hill, 1976.
4. Tong, L. S., Boiling Heat Transfer and Two-Phase Flow, p. 76-79, Wiley, 1965 .
5. Perry, J. H., and others, Chemical Engineers' Handbook, th ed., p. 18-82, 83, McGraw Hill, 1969.
6. Owens, W. L., "Correlation of Thin Film Evaporation Heat Transfer Coefficients for Horizontal Tubes," Proceedings of the Fifth Ocean Thermal Energy Conversion Conference, Vol 6 of 8, Miami Beach, Florida (Febrliary 20-22, 1978).
7. McAdams, W. H., Heat Transmission, 3rd ed., p. 325-343, McGraw-Hill, 1954.
8. Lorenz, J. J. and Yung, D., "Combined Boiling and Evaporation of Liquid Films on Horizontal Tubes," Proceedings of the Fifth Ocean Thermal Energy Conversion Conference, Vol 6 of 8, Miami Beach, Florida (February 20-22, 1978).
9. TRW Contract No. EG-77-C-05-15:0, OTEC Power Sustem Development Utilizing Advanced, High-Performance Heat Transfer Techniques, V. 2, p, 1 1-36, 30 Jan 78.
10. Streeter, V. L, and Wylie, E. B., Fluid Mechanics, ith ed., p. 235-239, McGraw-Hill, 1979.
11. Baumeister, T., and others, Marks' Standard Handbook for Mechanical Engineers, 8th ed., p. 3-57, 58, McGraw Fill, 1978.
12. Metrek Division of the Mitre Corporation Contract No. ET-78-C-01-2854, OTEC Power System Performance Model, by H . Abelson, P. 74-81, August 1978.
13. Neuman, G. and Pierson, W. J., Jr., Principles of Physical Oceanography, Prentice-Hall, 1966.
14. Sverdrup, H. V., Johnson, M. W., and Fleming, R. H., The Oceans Their Physics, Chemistry, and General Biclogy, p. 1053, Prentice-Ha11, 1949.
15. Westinghouse Electric Co. Contract No. EG-77-C-03-1569, Ocean Thermal Energy Conversion Power System, Phase 1: Preliminary Design, p. 9-9, 4 Dec 1978 .
16. Kostors, C. H. and Vincent, S. P., "Performance Optimization of an OTEC Turbine," Proceedings of the Sixth Ocean Thermal Energy Conversion Conference, Vol 1 of 2, Washington, D.C. (June 19-22, 1979).
17. Olsen, H. L., and others, "Preliminary Considerations for the Selection of a Working Medium for the Solar Sea Power Plant," Proceedings, Solar Sea Power Plant Conference and Workshop, June 27-28, 1973.
18. Vanderplats, G. N., COPES - A User's Manual prepared for a graduate course on "Automated Design Optimization" presented at the Naval Postgraduate School, Monterey, Calif., March-May 1977.
19. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design, Class notes for a graduate course on "Automated Design Optimization" presented at the Naval Postgraduate School, Monterey, Calif., May 1978.
20. Vanderplaats, G. N., "The Computer for Design and Optimization," Computing in Applied Mechanics, AMD-Vol. 18, ASME Winter Annual Meeting, New York, Dec. 1976.
21. Vanderplaats, G. N., Method of Feasible Directions, Class notes for a graduate course on "Automated Design Optimization," presented at the Naval Postgraduate School, Monterey, Calif., July 1978.

No. Copies

1. Defense Technical Information Center 2
Cameron Station Alexandria, Virginia 22314
2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940
3. Department Chairman, Code 69 1
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940
4. Assoc. Professor R. H. Nunn, Code 69 Nn
Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940
5. Asst. Professor G. H. Vanderplaats, Code 69 Me 1
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93940
6. LCDR Raymond C. Schaubel 1
14673 Charter Oak Boulevard Salinas, California 93907
7. Dr. Uarvey Abelson 1
Argonne National Laboratory Washington Office

Suite 185

400 N. Capitol Street, N.W.

Washington, DC 20001
8. Mr. Gene Barsness 1
OTEC Project Manager
Westinghouse Electric Co.
Lester Branch
Box 9175
Philadelphia, PA 19113
9. Dr. James W. Connell 1Director, Thermal SciencesEnergy Systems Division
Alfa-Laval Thermal, Inc.
South Deerfield, MA 01373
10. Mr. Bruce E. Dawson 1
Foster Wheeler Energy Corp. 110 South Orange Ave. Livingston, NJ 07039
11. Dr. Jeff Horowitz 1
Dept. of Energy
Chicago Operations Office Argonne National Laboratory 9700 South Cass Ave. Argonne, IL 60439
12. Mr. John Michel 1
P.O. Box Y
Bldg. 9204-1
Oak Ridge National Laboratory Oak Ridge, Tennessee 37830
13. Mr. Charles Rabidart 1
Lockheed Missiles and Space Company 57-02 150 1
P.O. Box 504
Sunnyvale, CA 94088
14. Mr. Dan Rossard 1
Westinghouse Electric Corp.
Lester Branch
Box 9175
Philadelphia, PA 19113
15. Mr. J. M. Shoji 1
oTEC Project Engineer Rocketdyne, Dept. 545-113 6633 Canoga Avenue
Canoga Park, CA 91304
16. Dr. J. E. Snyder 亡
OTEC Project Manager
TRW Defense and Space Systems Group
Mail Station 81/1538
One Space Park
Redondo Beach, CA 90278
17. Dr. Jerry Taborek I
Heat Transfer Research, Inc.

1000 South Fremont Ave.

Alhambra, CA 91802
No. Copies
18. Mr. Lloyd Trimble 1OTEC Power System DevelopmentProject ManagerLockheed Missiles and Space Company57-02 150 1P.O. Box 504Sunnyvale, CA 94088

[^0]: ${ }^{1}$ Note that this analysis will hereafter consider smooth plain tube configurations only.

[^1]: ${ }^{2}$ Note that Z is measured as positive upward so that ocean depth values $\left(Z_{e}, Z_{1}\right)$ are negative and ($\left.Z_{e}-Z_{i}\right)$ is a positive quantity.

[^2]:

[^3]:

[^4]:

[^5]:

 INITIALIZE NH3 MASS FLOW RATE(LbM/HRI
 טی

[^6]: ）

[^7]: CTIC=34**TNCT*TOOC**0.7*(1.+(1.+AINT/100.1**10+(1.+AINT/100.)**20)
 TUBE INSTALLATION COST(\$) \qquad HEAT EXCH SHELL COST(\$)

 CHSC=177265.*(TLC+6.)/31.*(TSOC/18.) **2
 CHSC $=177265 . *(T L C+6) / .31 . *(T S O C / 18) * *$.2
 NH3 DIST PLATE AND BAFFLES COST(\$)
 CDPBC=1.539E-02*DTC*TNCT*TSDC**2 BUSTLE,FLANGES,CHANNELS AND FLOW
 $\stackrel{\circ}{\infty}$

[^8]:

 Q ₹ Zolo
 -
 *

 유M…0.0.

