

FINAL REPORT

ARD 17158,1-A-EL

Atmospheric Optical Communication Systems
U.S. Army Research Office

Contract DAAG 29-80-C-0010
covering the period
22 October 1979-21 January 1981

Submitted by
R. S. Kennedy

February 1981

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Research Laboratory of Electronics
Cambridge, Massachusetts 02139

ARO-17158.1-A-EL

Pages 2-45 thru 2-49, 2-67; 2-68,3-22 thru 3-24 were deleted because of security reasons per the author per ARO.

DTIC-DDA-2
12 May 81

16. CISTRIBUTION STATEMENT (OI this Report)

Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the sistract ontered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.
19. KEY WOROS (Continue on reverse side il necessary and tden:lity by block number)

Optical communication
Optical scattering
Atmospheric optics
Secure communications
20. ABSTRACT (Conifuca oil ravaren alde " noceseary and ldently by block numbor) The performance of off-axis optical communication receivers is considered. A statistical model of the photodetec tion process is presented and the influence of the received field statistics on the photodetection process is discussed. Upper andlower bounds on the probability of bit error for binary, one-shot, digital communication systems utilizing direct detection are developed. These bounds are based on the Bhattacharyya distance measure. A computen program is developed, which when interfaced with existing programs that model the propagation of optical radiation through the atmosphere, predicts the probability of bit error performance for off-axis optical communication systems.

Dear OFF-AXIS Program Users:
The OFF-AXIS program is a coded model of laser beam propagation through single scatter atmospheres. The program was developed at Hughes Aircraft for the National Security Agency. At MIT the program was modified and expanded to inciude performance analysis of off-axis digital communication receivers.

The performance analysis added at MIT takes the form of upper and lower bounds or the probability of bit error. These calculations occur in a Mode 6, parallel to Modes 1-5 in the terrestrial link analysis. The modifications to tine original program are mainly the inclusion of additional input parameters necessary for performance analysis and the transfer of control to the new Mode 6 . The major work of the study is contained in two subroutines, ERROR and APERTR.

Section I of this cocument contains the original program documentation written at Hughes. Modifications and additions made at MIT are ncted. Section II contains a sample run of the program. Section III is a listing of the modified program as run on MIT's Multics system. Changes from the original Hughes code are highlighted with comments.

Section IV is a user's manual for the subroutine ERROR. This is the subroutine that calculates the bounds on the probability of error. The background for these calculations is presented in my thesis, "Performance of Off-axis Optical Communication Receivers in Scattering

Atmospheres" (MIT MS thesis 1980).
Section V contains documentation for the subroutine APERTR. This subroutine calculates if there is enough aperature averaging to ignore the effects of turbulence induced fading in the clear atmosphere between the scattering volume and the off-axis receiver. Such fading would degrade the performance of an off-axis receiver.

If at a later date there are questions, feel free to contact me at my new location:

Bell Laboratories, Big WB
Crawford Corners Road
Holmdel, N.J. 07733
Sincerely,

William Jaeger

WJ: nl

Section I

Original Documentation

Though it does not effect program operation,
The noise (variance) of the output voricay due to dark current events is

$$
N_{d}=\frac{2 \eta \lambda}{h c} P_{d}(q G)^{2} F B R_{L}
$$

The dark power, p_{d}, is the average power that if applied to an ideal detector would give rise to the average ($D C$) dark current, i_{d}.

$$
i_{d}=\frac{n \lambda}{h c} p_{d}(q G) \quad \text { and } \quad p_{d}=\frac{i_{d} h c}{n \lambda(q G)}
$$

Thus the correct expression for N_{d} (equation 2-9) is

$$
N_{d}=2 i_{d} q G F B R_{L}
$$

and the correct expression of NEP (equation 2-12) is

$$
N E P=(h c / n \lambda q)\left[2 q i_{d} F+4 k T / G^{2} R_{L}\right]^{1 / 2}
$$

Due to fundamental differences in the underlying statistics, input noise parameters; the dark current, i_{d}, and the noise equivalent power due to thermal noise alone, $P_{\text {therm }}$

$$
\begin{aligned}
& P_{\text {therm }}=\frac{h c}{n \lambda(G q)}\left(\frac{4 k T}{R_{L}}\right)^{1 / 2} \\
& P_{\text {therm }}=\left[N E p^{2}-(h c / \lambda q)^{2}\left(2 q i_{d} F / G\right)\right]^{1 / 2}
\end{aligned}
$$

The noise equivalent power due to thermal noise is related to the spectral density of the thermal noise, $N_{0} / 2$,

$$
\begin{aligned}
& N_{0} / 2=2 \mathrm{kT} / \mathrm{R}_{\mathrm{L}} \\
& P_{\text {therm }}=\frac{\mathrm{hc}}{n \lambda G q}\left(2 \frac{\mathrm{~N}_{0}}{2}\right)^{1 / 2} \\
& \mathrm{~N}_{0} / 2=1 / 2\left(\frac{n \lambda G q}{h c} P_{\text {therm }}\right)^{2}
\end{aligned}
$$

$$
\frac{S}{N}=\frac{P^{2}}{(2 h c / n \lambda) F B\left(P_{s}+P_{b}+P_{d}\right)+(N E P)}{ }^{2} B
$$

where \dot{p}_{d} is again a fictitous power that gives rise to the dark current

$$
\mathbf{P}_{\mathrm{d}}=\frac{\mathrm{hci} \mathrm{~d}}{\eta \lambda q G}
$$

COMPUTER SOFTWARE FLOWCHART STANDARDS INTERCEPTIBILITY ANALYSIS PROGRAM ECKSTROM, LACM 2.0 CONTRACT NO. MDA904-77-C-0566

CDRL AOOÉ

UnCLASSIFIED

(U) Attempts at establishing realistic error bounds on the data reviewed were aggravated by the fact that there was in many instances inadequate data to establish a meaningful standard deviation. A sensitivity analysis has instead heen suggested wherein the computer program is used to establish the significance of extreme variations to parametric values in those cases where reasonable bounds are difficult to predict.

Section 2 - Data-Base Review and Model Formulation
 Subsection B-Scenario Characterization

1. CHARACTERIZING AN OPTICAL COMMUNICATIONS LINK

The ECKSTROM computer program has been designed to model the vulnerability of specific optical links. This discussion outlines those parameters which must be considered to describe the overall system and site to be modeled.
(e):. In order to establish the vulnerability of an open-beam, optical communic:tions link to detection. , the basic characteristics of the link design, c^{f} its geometry, and of its environment must be specified. These basic characteristics are illustrated in Figure 2-1 where a transmitter, receiver, and link surroundings are depicted in an arbitrary scenario.
(U) Basic transmitter parameters which must be specified are the operational optical wavelength λ, the peak optical output power P_{0} at the transmitter exit aperture, the diameter of the exit aperture D_{t}, the angular spread of the optical beam ϕ_{t}, and the modulation format employed. If the system is diffraction limited, the beamspread can be specified in terms of the wavelength and exit aperture diameter, but this is not usually the case. However, the diffraction limit does set a lower limit to beamwidth. Receiver parameters of interest include the entrance aperture diameter D_{r}, the detector field of view ϕ_{r}, and whether direct or heterodyne detection is emp: ioyed. These parameters, however, are of only secondary importance.

The system modulation format is quite significant wher considered. The optical source may be either continuous wave (CW) or pulsed, and either analog, pulse, or digital modulation may be used. Moreover, the carrier may be modulated in amplitude (or intensity), frequency, phase, or polarization, or one of a number of pulse modulation formats (such as pulse position modulation) may be employed. Pratt (2-1) considers an extensive list of possible modulation formats. (U) Because of the wide diversity of possible formats, we will initially restrict attention to three basic types. This number can be extended in the future as found necessary. The three types include CW intensity modulation, pulse-code intensity modulation, and CW frequency modulation (requiring heterodyne detection). Fr 2° both CW and pulse systems the link's information bandwidth B and the depth of mod'tation M must be specified, and for pulse systems the pulseduration T must be spec fled. (U) Two important aspects of a system not to be found on vendor data sheets are the optical quality of the transmitter optics and the reflection characteristics of the receiver. These factors are considered in detail in subsequent discussions of the link scattering and reflection models.
(C$)$ Geometrical aspects of the link include the range Z of the link and the respective heights above ground level of the transmitter and receiver, h_{t} and tr. The heights are significant because of the variation in atmospheric scattering and absorption coefficients with altitude and the variation of turbulence effects with altitude. Atmospheric turbulence causes spreading of the transmitted beam.

Site characteristics include local meteorological conditions and physical sharacteristics of the link environment. Weather condtions will effect changes in itmospheric scattering, absorption, and turbulent beam spreading. Temperature, elative humidity, atmospheric pressure, and visibility are weather condition descrif iors, but it has been found that such parameters are difficult to functionally relate to the significant effects. General meteorological descriptors as documented by the Air

Force Geophysics Laboratories (AFGL) have been found to be more appropriate. Important physical characteristics identified include the presence of window panes in front of either the transmitter or receiver, or both, the presence of trees or foliage along the beam path, and the nature and orientation of the backstop at the receiver. The backstop is a primary source of scattering, and window panes or foliage will act as secondary but perhaps significant sources of scatter. The ground itself may also be a significant source of reflection. (U) Models for each of these effects are considered in the scattering analyses to follow.

Figure 2-1. (U) A Depiction of the Basic Characteristics of an Open-Beam Optical Communications link (U)

Section 2 - Data-Base Review and Model Formulation
Subsection B - Scenario Characterization
\therefore This discussion provides a general overview of the basic parameters which must be specified in order to properly characterize a
er. A more extensive receiver investigation is presented in Section 5, including the fundamental consideration of detector sensitivity, not discussed here.

There are numerous tradeoffs necessary in determining an optimum receiver design. However, most of them are unimportant with regard to computer modeling except insofar as they may complicate the surveillance problem. For example, whether optical components are refractive or reflective is unimportant in this regard. For computer modeling, the receiver used for off-axis detection is therefore specified only in terms of its pertinent system design parameters and its geometrical relation with respect to the link. Significant parameters are diagrammed in Figure 2-2 assuming a simple refractive system.

The area A_{s} of the .. : aperture, assumed circular, must be specified. From the -. -int of view this area should be maximized, but it is limited by practical consideramons such as cost, weight, transportability, and

Another design parameter of importance is the system solid angular fleld of view Ω_{s}. Ω_{s} is given by

$$
\begin{equation*}
\Omega_{s}=a_{s} / f^{2} \tag{2-1}
\end{equation*}
$$

where a_{s} is the area of the system's optical detector, assumed rectangular, of linear dimensions $d_{s h}$ and $d_{s v}$, and f is the effective system focal length. The focal length is in turn related to the system aperture diameter D_{S} and focal ratio, or f-number (f\#), by

$$
\begin{equation*}
f=D_{s} f^{\#} \tag{2-2}
\end{equation*}
$$

Since there are practical limitations on the size of detectors and system f-numbers, it is best to specify a_{3} and f\#, and to then specify Ω_{S} in terms of them. Characteristic detector sizes are given in Section 5. A minimum f-number of unity is realistic, but values much lower than unity are very difficult to attain. Hence, from (2-2) and (2-3)

$$
\begin{equation*}
\Omega_{s}=a_{s} /\left(D_{s} \mathrm{f}^{*}\right)^{2} \tag{2-3}
\end{equation*}
$$

Use of (2-3) will avoid the user's specifying an unrealistic threat in the model. The
heterodyne-detection system. For a general discussion of optical heterodyne

Figure 2-2. (U) Basic Characreristics of an Opried Receiver (U)

[^0]($\because)$ Geometrical aspects of imporrance relating an optical link and 2 rearby
receiver are shown in Figure 2-3. The location of the of f-uris recure : is. specifled with respect to the Fansmitter and linic axis in iefzes oi z_{3} and x_{3}. Its location may altermarively be specified in terms of $\theta_{t}, \theta_{5} R_{t ;}$ or R_{p} defmed as shown. The ... receiver is always assumed to be pointed in a drection which intercepts the linic ards, the orientation being scecified by either θ_{1}, the angle of imer cept, or z_{i}. R_{1} is the cistance from the axial poive of inercept and the surveillance recuiver.
(v) The linear receiver field of view shown, 9 sin, is given by
\[

$$
\begin{equation*}
\varphi_{\sin }=d_{\sin ^{2}} / \Phi \tag{2-4}
\end{equation*}
$$

\]

This is the ileld of Fiew along the axis, usually horimontal (b). The inear field oi view perpeadicular to the livis aris is

$$
\begin{equation*}
\theta_{S V}=d_{S V} / L_{1} \tag{2-5}
\end{equation*}
$$

uscally vertacal (v). The feid of View $\phi_{\text {sh }}$, however, establishes what portion of the beam is umaier surveillance. By rotatirg the receiver, that is, varying
 ficiamtiy large, then all three sources of scatered motiation may simultaneousiy be monitored, a case whici car be amalyzed.
re) Because of the variation of acmosphersc eifects with alytude, the secenver's alturde is also inportait. Such 2 variation is allowed in the program, the geomeny oi which is described in Sectuon 3.
 to be collected, droperstor effects may lead to 1 ifaitations if message imercept is attempted. The ilspersion effects result because oi the relative stee of the seceiver fleld of view. For erampie, tro photens emitted stmultracorshy from the Eracmitticr may be scattered Erom the two Points it and B of Figure 3-3 into the Fs-
 aratill of the two photons. The Essponse of the seceiver will therafore be degraded. Prilses will be spread in trase and CW mochiated sources distortad. The amoumt of cistorthon is determined by coavolving the resulting point spread fromen with the acteal sighal. It is not ciear at what point the waveform is degraded beyond recognition, bit distorthon is cieariy more severe for widar-band signais. If is perticeinariy severy in the very wide-band, spact-to-grourd scenario, in which case the two points A and B may be very far apart. Vo provision is ande in the computer progran in bighlight this limitation, and the user purt conseauentis be aware that the lianita:Jon exises.

Figure 2-3 Basic Farnmeters Describing the Geomearial Interrehorionships Berween as Opciel Communiencions Link and a Reariver

URCLASSIFIED

Section 2 - Data-3ase Review and Mociel Fornulation
Subsection C - Modeling the Derection Process

i. SGYAL-TO-NOISE RATHO USNNG DIRECT DETECTHON

(C) A signal-to-moise selationsinip is developed in terens of ietection system NE?, with ratio ables to account for the effects of modulation
(N) Given an optical detector, its sensitivity must be establishod in tarms of the sigalal power arailable and the noise power present. This uscrssion outhres the equations and associated parameters being used for calculating the mito of signal plus noise to coise $((S-N) / N)$ for direct-detecrion receivers. The approach presented is in subscartial agreement with those of Anderson and MicMuray (2-3!, Pran [2-1], and Melchior, Fisher, and Armons [2-4].
(U) The signal power generated actoss a load resistor Ry at the ourpat oi an opicici detector subspstem due to incident optical power P is given by

$$
S=(G 7 q \lambda / \lambda c)^{2} P^{2} R_{I}
$$

where λ is the wavelength of the optical sigal, q is the electrovic charge, in is Praceic's constant, C is the speed of ligit, η is the quantm eificiency of the piotrodetector at the speciffed wavelengti, and G is its gain. The term in parenthesis is simply the detector responsiyity, usually given in wits of amperes per watt. The gain G is unity for macy piotodetecrors of interest, but it is included to account for the use of aralanciag phowdiodes or photoemdssive devices such as photomultipliers.
(U) The areragy colse power N associated with the photodetection process arises from four basic sources. That is,

$$
\begin{equation*}
N=N_{s}+N_{b}+N_{d}+N_{t} . \tag{2-7}
\end{equation*}
$$

where N_{S} and V_{b} are signai-generated and backryround-generated siot (or generaticarecombinaton) aoise componeats respectively, N_{f} is detector dardecurreut siot noise, and N_{t} is thermal noisa in the detector-preamplifer systez. We emphasize inclusion of preampilifer noise since in some instaces a detection systan may be preampifiernoisa ifrited, and coise caiculations must account for toinl system poise and aot only those sources axistorg trom the photodetactor itseif.
(V) The extatmilly inciaced soise componeats S_{s} and I_{b} are given by

$$
\begin{equation*}
N_{s, b}=\left(2 G^{2} \pi q^{2} \lambda / b c\right) P_{s, b}{ }^{F B R} R_{L} \tag{2-8}
\end{equation*}
$$

 power $P_{0} ;{ }_{F}$ is an escess solse facwor accoundng for moise foduced by the mechamism providing the grin G; and B is the electrical band width of the detection system. The background power P_{b} may arise Erom renlected or scattersed solar sadiation tron the terradn. sify, elouds, or other bacheround within the derecror Eeld of view, or it may arise trom blackedy cmissions of the 300 K srumundigs, depeading on the optical wavelength. The excess-noise facmor F is urity for piontodetectors rith urity gain.
(D) Intermal system noise due to dards crreat id is given by

$$
\begin{equation*}
N_{d}=2 Q_{d} G^{2} E 3 R_{2} \tag{2-9}
\end{equation*}
$$

Dards enrent is due to detector hiasing in some instaces, and in some instances it is cansed by thermal radiation inctient on the phowoderecror from detector enclosure suriaces (usually mimimized by cryogeaic cooling). Thermal (Johnson) poise is gaven by

$$
\begin{equation*}
N_{t}=4 \sqrt{13} \tag{2-10}
\end{equation*}
$$

where k is Boltrmann's constant and It the effective detection-system temperarrare.
(U) In lieu of specifying derection systam darix curent, load resistance, and effective temperatre (preamplifier and load temperanre may differ from derector temperature) it is more expedient to specify system interpal noise chargcteristics in terms oí noiseequivaleat power (NEP), a measuraile quantity Erequentiy specified by vendors winici lumps the coise characteristies of the detector-preamplifer combination into a single mumber. The NEP is the ortical power necessary to provide a sigral-to-iatermal-moise railo of umity cormalized to a 1 Ez bacdoldth. That is,

$$
\begin{equation*}
\frac{S}{N_{L R}}=1=\frac{(G \pi q \lambda / a c)^{2}(N E F)^{2} R_{I}}{2 q G_{d} G^{2} F R_{L}+41 r I} \tag{2-11}
\end{equation*}
$$

Soiving for NEP,

$$
\begin{equation*}
N E P=(\mathrm{hc} / \pi \lambda)\left[\operatorname{Iqi} F+4 k T / G^{2} B_{I}\right]^{1 / 2} \tag{2-12}
\end{equation*}
$$

(U) NEP as it is somethes specifled may also account for bacloground poise. Bowever, stace bacicyround noise at fisible and near-ininared wavelengths is a variable depending on Ielid of View, tue oi day, backround type, and other higity varying conditions, suci a parameter is impossible to geaerically specify. Consequedily, the NEP Falues used in evaluating a system should be syistem parameters, assumed measured with tie detector aperwre covered; that is, whthout baciorrounci. Such an assumption leads to no dienchity exceyt with regard to photocooductive detectors, whose searitivity is depencient tuon the bacieground level. Eowever, these detectors are only used at futhred wavelength where the highiy varying solar componeat is negilgible.

Another important aspect of the systam NEP of (2-12) is its dependeace on load resistunce, another variabie subject to design variations. Eowever, for the modes of inmrest conaderation on be cestedcred to two cases: for link detection the load will be laree, so that thermal moise is manll and daris crerrem domiontes; and for stgnai demodialation and message. . 1 small load is generaily fequired becanse of RC the - consmat liodtations or bunctwide, so that thermal moise will be dominant, usually requiring a derector with high gio G to overcome it. These ases correspond to the nariow-bard and widi-band cases respectively, discrassed in Section 3.
(-) UUstog (2-0) - (2-10) and (2-12), an overail signal-m-noise =itho (SNR) can be spectiled in the relatively simple form
(u)

$$
\begin{equation*}
\frac{S}{N}=\frac{p^{2}}{(2 h c / \pi \lambda) F B\left(P_{s}+P_{b}\right)-(N E P)^{2} B} \tag{2-18}
\end{equation*}
$$

Etom winich $(\mathrm{S}-\mathrm{N}) / \mathrm{N}$ can be specifled, i.e.,

$$
\begin{equation*}
\frac{S+N}{N}=\frac{S}{N}+1 \tag{2-14}
\end{equation*}
$$

- The speciflcation of the optical power P in (2-13) cepemis on whether limic detecHon or message is to be emonined. For linis detection of CW signals earrier-to-acise ratio is the sigal quandity of imerest, and P cormesponds to the average oprical power daring the period $1 / B$ regaraless ni the modslation trpe. Thus $p=P_{s}$, and a very
 techrically feasible, though sequiring aporpxinately 10 sec for integration. For puised systems P_{s} is given by the prodnct of the peak power and the palse dulty factor.

When mee is attempted, the bandiwidth most be widened, and tha type of moctulation and the depth of mociviation must be taiken into aceount. To accourt for these vasiables a modilation factor M is intoduced: leturg $P=M P_{s}$.

$$
\begin{equation*}
\frac{s}{N}=\frac{M^{2} P_{s}^{2}}{(2 b c / \pi \lambda) E 3\left(P_{s}+P_{b}\right)+(A E P)^{2} B} \tag{2-15}
\end{equation*}
$$

This is the general form used in the computer model for drection decection (t) Numezeal valnes for M are dependent on the specific modulation formats considered. They have not yet been detempired ior all cases or frerest. However, Section 5 discusses several cases assuming quantum-iimited detection periomancu (mplying ieterociyne detection, as discussed in the nent topic).

UNCLASSIFIED

Section 2 - Data-Base Keview and Model Formulation Subsection C-Modeling the Derection Process
2. SIGYAI-TO-NOTSE RATO USNYG EETERODENE DETECIION
(t) Eeterodyze derection of an opacal signal an provide quantum-limited sensitivity.
(II) Cohereat optical detection, or beterodyce detection, differs from direcr optical detection in that a coherent laser referance bean is provided at the receiver to illuminate the photodetector 3 siown in $\overline{\mathrm{I}}$ sgure 24 , so that sigeal frequency and phase information is retaized. Even if irequeacy or phase modulaion is ant employed, use oi a heterodyne recaiver can greatiy secice the effective system noise level.
(i) Consider a signal to be incicient on the derecror of power $P_{g}=\left\langle A_{3} A_{g}{ }^{2}\right\rangle$ where A_{3} is a coherent, complex waveiorngiven by

$$
\begin{equation*}
A_{s}=U \exp (j \omega t-j 0) \text {. } \tag{2-13}
\end{equation*}
$$

Erther the ware amplitude $广$ U, the opticai Erequency ω, or the pinase may be the tris Farying signal component depending on the nociniation forzat of the tranditter. The the average indicated for P_{s} is over an optical peziod which is short in comparison to the rectprocal of the signal bandwidth Bo. It a reference signal, or local oscillator signal, \mathcal{P}_{20} of complex amplizade

$$
\begin{equation*}
A_{0}=\Pi_{0} \exp \left(\| \omega_{0} t+1 \phi_{0}\right) \tag{2-17}
\end{equation*}
$$

where p_{20} - $\left\langle A_{0} A_{0}\right\rangle$ is mired with the signal beam so that the wavefrouts are parallel, the resultant detector exrreat is given oy

$$
\begin{align*}
& (\pi q \lambda / h c)\left\langle\left(\lambda_{0}+A_{s}\right)\left(A_{0}+A_{s}\right)\right\rangle= \\
& (\pi q \lambda / a c)\left[P_{20}{ }^{2}+P_{3}^{2}+2 \pi_{0}\left[\cos \left(\omega_{0} t-\omega t \div \phi_{0}-\phi\right)\right]\right. \tag{2-18}
\end{align*}
$$

 the srequancy $\Delta \omega=\omega_{0}-\omega$ is inserted bebiad the detector to memove the umodulated signal elemeats, the insinganeous stgnal cureat at the IF ortury will be

$$
\begin{equation*}
l_{s}=(\pi q \lambda / h c) 2 U_{0} \sigma \cos \left(\Delta \omega t+\theta-g_{0}\right) . \tag{2-19}
\end{equation*}
$$

The resulting [F stgal power is

$$
\begin{equation*}
S=\left\langle 1_{g}^{2}\right\rangle R_{L}=2(7 q \lambda / b c)^{2} P_{10^{2}} s^{R} I_{L} \tag{2-20}
\end{equation*}
$$

Where the the aversge is now over tee tr wave seriod.
(U) The ooise power is essentally the same as for dizect detection, escept that 3ddittonal sbot moise is geangated by the !ocal-oscillator signal. Iturs

UNCLASSIFIED

$$
\begin{equation*}
S=\left[\left(2 \pi q^{2} \lambda / h c\right)\left(P_{g}-P_{b} \div P_{20}\right) R_{I}+2 q d_{d} R_{L}-41 / 1\right] B_{I F}(2-21) \tag{U}
\end{equation*}
$$

where $B_{[5}$ is the IF bancwithe.
The Fatio of signal to noise in the Ir channel is theremiote

$$
\begin{align*}
& \left(\frac{S_{N}}{N T F}=\frac{2(\pi q \lambda / b c)^{2} P_{20} P_{s} B_{I}}{\left[\left(2 \pi q^{2} \lambda / h c\right)\left(D_{s}+P_{b}+P_{l 0}\right) R_{L}+2 q d_{d} R_{L}+4 k k_{L}\right] B_{[F}}\right. \\
& =\frac{\left(\square \lambda / \mathrm{bcB}_{T}\right) P_{s}}{1+P_{20} 0^{-1}\left[P_{s}+P_{b}+\left(\operatorname{cc} / \pi q^{2} \lambda\right)\left(\Phi_{d}+2 L I / E_{L}\right)\right]} \text {. } \tag{2-22}
\end{align*}
$$

As the local-oscillator power P_{20} is increased, the mise contraturtons in the second term of the demomisaror becomes megivgiole, and the SNB approaches the quantan limith,

$$
\begin{equation*}
\frac{S}{N E}=\frac{\pi \lambda}{n c B_{E}} P_{s} \tag{2-23}
\end{equation*}
$$

The NEP for this case can be determined by setting the IF SNR eçual to urity and solving for Ps.
(U) The ability to achieve suci quantom-lifiited sensitivity is possible only if the local-oscillator power rectrired does not eause derector dareage or monlinear operation. Such periormance has been demonstrated in practical wideband sytums operating at 10.6 mith less than 1 mW of local-oscinator power. Quadem-limited sensitivity is therefore practical and will be asswoed for the beterodyendetection case.
(U) A limitation on heterodyue applicability results from the aeed for piase-matching of the reference beam to that of the signal beare, as discussed in Sector 5. In practice matriting can be achieved oniy over a detector area on the order of 0.7 d winere

$$
\begin{equation*}
d=1.22 \lambda f / D_{s} \tag{2-24}
\end{equation*}
$$

is the diameter of the Airy disc for a system with effective entrance apermre diamerer
 tons leads to 2 SNR Fectuction of $I_{X}=0.7$, so that

$$
\begin{equation*}
\left(\frac{S_{N}}{[F}=I_{M} \frac{\pi \lambda}{D_{D F}} P_{s} .\right. \tag{2-25}
\end{equation*}
$$

Moreover, stoce the detector's Ield oi view is given by

$$
\begin{equation*}
\Omega_{s}=2_{s} / t^{2}, \tag{2-26}
\end{equation*}
$$

chen

$$
\begin{equation*}
\Omega_{3}=\left(\lambda / D_{5}\right)^{2} \tag{2-27}
\end{equation*}
$$

a suibsantil ifmitation on dececwor field of View.

UNCLASSIFIED

(d) A second detecton ts required to corryert the IF signal to a lasable video signal. The firmi video ourpur Shz deperds on the fope oi zodulation, the type oi second detection, and the magedtucie of the input Fr SNB. EOT demoduintion, the best video SNR can be obeained using Hear video detecifion, in which case, asswaing a reasonijy large IF SNR [2-1],

$$
\begin{equation*}
\frac{s}{N}=2\left(\frac{s}{N}\right) \tag{2-28}
\end{equation*}
$$

If the IF bendwidth is twice the iniormation bandwidth B_{0} (the optinum conditton) then

$$
\begin{equation*}
\frac{S}{N}=I_{M} \frac{\pi \lambda}{b c E_{0}} M^{2} P_{s} \tag{2-29}
\end{equation*}
$$

whers we have seimpodeced the modiation factor M to account for parious mocialatit an types. This form is asswed in the compurer zodel for ieterodye detection. (U) For detection only, square-law video detectun and Fideo fregration of a chopped optical input are appropriate when the E input $S N B$ is less than unity. This is the case for the Dlciee Fadiometer, whici is discussed in Section 5. Becanse of the manerous Fideo detection schemes possible, however, it is urealistic to consider all possible ases.

Fryure 2-t. A Typial Reciver Configuraion for Coherear Hererodyne Opcieal Derection. The oprieal derecror ares is limised so less than a diffracrion-limized spor size.

Secton 2 - Dara-Base Review and Model Formalation Subsecilon C - Modeling the Detection Process

3. BACXGROLAD NOISE

(T) A backryoumd model is developed which aceounts ior both solar and blackiody bacimeoud componems and is adaptabie to varying sivy conditions.
(V) Contibutions to detector backyiound moise arise primarily from two sources: scattered or rerlected solar Fadiation during dayligint hours, and earih biackbody radiation at all thenes. Estailisining blackbody backround Fadiation is generaily shaightforward, whereas soiar maiation is compicated by the selectrve absorpion eferects of the amosphere and oi renlecting surizces.
(U) Nampil radiation emitted Nom difinse bacic弓ound objects in thermal equilibrim at a temperfarse T is specifed in terges of the spectill zadiance N_{λ} of the source, where [2-5]

$$
\begin{equation*}
N_{\lambda}=\epsilon(\lambda)\left(2 h c^{2} / \lambda^{5}\right)[\operatorname{ex}(b c / \lambda \sqrt{ })-1]^{-1} \tag{2-30}
\end{equation*}
$$

$\epsilon(\lambda)$ is the specteal enoissivity of the source. if \in is mity for all wavelengtis, then the souree is termed a blackbody. A plot of N_{λ} versus wavelength is showa in Figure 2-5 for a 2930 K blacibociy. A comparison with measured values is made at the end of this discussion, showing that the values for V_{λ} given by Figure $2-0$ provide an accurate model for most natural sources. This is time because most materiais beve emissifities near urity in the infrared region wiere the blaclow radiance peaks, as indicated by the data of Table 2-1 [2-6].
(U) The resulting tackoswan power P3b incident on the seceiver photodetector di: to biacketody radiation is given by

$$
\begin{equation*}
F_{b b}=N_{\lambda} A_{b} Q_{b} \Delta i \tag{2-31}
\end{equation*}
$$

Whers A_{b} is the arez of the blackbody sowree at a Farge E_{y} subtencied by the survelllance receiver solid anguiar field oi fiew Ω_{g};

$$
\begin{equation*}
R_{0}=A_{3} / E_{0}^{2} \tag{2-32}
\end{equation*}
$$

which is the solid angis into which the source radiation must propagate to be seen by the detector, and $A \lambda$ is the optical glter bandwidtion ofe receiver. Sroce the blaci.. body source fills the seceiver feld of Jiew,
so that

$$
\begin{align*}
& A_{b}=E_{b}^{2} \Omega_{s} \tag{2-33}\\
& P_{b b}=N_{\lambda^{\prime}} A_{s} \Omega_{s} \Delta \lambda, \tag{2-34}
\end{align*}
$$

whench is inderpendent of source Finge.
The componeut of solar s3alation contubuming to bacignound zoise zust be 58 llected or scattared into the detector fleid oi fiew barming the milicely ciance that the sun is directly in che Ield oi Heri, 3 geometry to be aroided.

- be the side of a building, a bacissoop, or periaps namal ternain. If the receiver were directed elsewhere along the parh, it still mould probably intarcept the same features, or it migidr imercepr the sixy baciocround.
(V) Consider the case where the receiver field of riew intercepts a building, as shown in Flgare 2-6. The feld of view deñes the area A_{b} from wiaich solar radiation, assumed to emanate at an angie θ sol, is reilected. The total solar power incident an A_{8} in a wavelengrh range $\Delta \lambda$ is given by

$$
\begin{equation*}
P_{\text {imc }}=H_{\lambda} A_{b} \Delta_{\lambda} \operatorname{sic} \theta_{\text {sol }} \tag{2-35}
\end{equation*}
$$

winere E_{λ} is the spectenl inzadiance trom the sum.
(T) A pior of E_{λ} as a imexion oi wavelenghis inown in Figure 2-7 for the sum as zenith [2-7]. The solar spectrai iryadiance is closely approximated by a blacistociy source at $5900^{\circ} \mathrm{K}$. As seen in F'gure 2-7, however, armospheric attenuarion eifects funther reduce E_{λ}, and it is higily struczured tane to strong molecular absorption bands. Gast $[2-7]$ provides taioulated data for \bar{B}_{λ} at ses level assuming a solar zenith angie ${ }^{\theta}$ sol oi 60° (air mass 2) a nominal condition.
(U) The radiance $N_{s o l}$ within $\Delta \lambda$ from the area A_{b} due to the reflected sunligith, assuming a dfficsely reilecting suxace oi reilectance ρ, is given by

$$
\begin{equation*}
N_{\text {sol }}=\rho P_{\text {inc }} / \pi A_{b} \tag{2-36}
\end{equation*}
$$

so that the total solar power on the surveillance receiver is

$$
\begin{equation*}
P_{\text {sol }}=N_{\mathrm{sol}^{A}}{ }^{A} \Omega_{3} \tag{2-37}
\end{equation*}
$$

Combining (2-35) - (2-37),

$$
\begin{equation*}
P_{\text {sol }}=\rho \sin \theta_{\text {sol }} H_{\lambda} A_{s} \Omega_{s} \Delta \lambda / \pi . \tag{2-38}
\end{equation*}
$$

(J) With reference to Figures 2-5 and 2-7, the solar component is cleariy dominant in the visibie and near-infrared regions of the spectan, wiereas tise blackbody radiation dominates in the far-intared region. Some mensured vailes \{2-8\} are presented is Figures 2-8 througi 2-15, and comparisom with Figure 2-o shows consistently good aforement for the blacdebody component. It is differlt to compare the measured roilected solar commonents of these figures with theory becausa the measurements ars provided primarily in the region between 1.5 am and $3.0 \mu \mathrm{~m}$, wiere both material reflectaces and atmospheric absorptance are both higily varying with wavelength. Eowever, they are in ressonable asceement assuming a 59000 I blacibody model for the sum.
(V) Figure $2-15$ aiso indicates a comparnbie solar spectral raciance componemt from the siry to that from terrestaial sources, although 2 region around $10 \mu m$ can be signiflominy lower depending on temperamre and clond conditions [2-8, p. 99]. (V) The treal background power P_{0} is given by the sum of the biaciboody and solar components,

$$
\begin{equation*}
P_{b}=P_{b b}+P_{s o l} . \tag{2-39}
\end{equation*}
$$

whereas the blacicbody component is always presenir. A bacis-mund model should thersfore have provisions for specifying daydene or aiginime conditions. Moreover,

UNCLASSIFIED

(U) intermediate conditions such as an overcast siky may exist, but such a geaeralizaton requires that 3 liy madiance be considered rather than direct solar tradiance. This sequires an incograton over that portion of the sky irriiating A_{b}, a mether complex way to determine the rerlectad moiance. Eowever, litile adiotional acraracy an be gained by using sucion amproach. Table 2-2 [2-9] provides the relative magnitndes oi scene illnainance under diferent siry comditions. Scaling of E_{λ} by these factors siould be adecuate for a reasonable characterizarion of solar ncise under various intrimediaie conditions.

Figure 2.3. Spectal Radinace ior 2 2930K Blackbody

UNCLASSIFIED

TABLE 2-1. ((0) REFIECTANCE (ρ) AND ENTSSIVITY (ϵ) OF COMMON TERRANY FEATURES FOR VARIOCS INFRABED BANDS [2-6] (D)

	0.7-1.0	1.8-2.7 2 m	3-6 $\mu \mathrm{m}$	8-13 $\mu \mathrm{m}$
Green Mouncaia Laurel	. $\rho=0.44$	$\epsilon=0.84$	$\epsilon=0.90$	$c=0.92$
Young Willow Laaf (dry, top)	0.46	0.82	0.94	0.96
Holly Lear idry, iop)	0.44	0.72	0.90	0.90
Holly Lazf (dry, bottom)	0.42	0.64	0.86	0.94
	0.53	0.58	0.87	0.92
Gruen Lear Winter Coior - Oak Leaf (dry, top)	0.43	0.67	0.90	0.92
Green Conirerous Twigs (Jack Pine)	0.30	0.86	0.96	0.97
Grass - Meadow Fescue (dry)	0.41	0.62	0.82	0.88
Sand-Hainamanu Silt Loam - Hawaij	0.15	0.82	0.84	0.94
Sand-Barnes Fine Silt Loam-So. Dakota	0.21	0.58	0.78	0.93
Sand-Gooah Fine Silt Loant-Oregon	0.39	0.54	0.80	0.98
Sand - Vereiniging - Alrica	0.43	0.56	0.82	0.94
Sand-Maury Silt Loam - Tennesite	0.43	0.56	0.74	0.95
Sand - Dublin Clay Loam - California	0.42	0.54	0.88	0.97
Sand - Pullman Loam-New Mexicu	0.37	0.62	0.78	0.93
Sand - Grady Silt Loarn - Georgia	0.11	0.58	0.85	0.94
Sand - Colts Neck Loam-New Jersey	0.28	0.67	0.90	0.94
Sand-Mesila Negra-lower test site	0.38	0.70	0.75	0.92
Burk - Northern Red Oix	0.23	0.78	0.90	0.96
Barix - Northern Armerican Jacix Pise	0.18	0.69	0.88	0.9%
Bark - Colorado Sprucu	0.29	0.75	0.87	0.94

UNCLASSIFIED

Figure 2.6. Characesriscic Geomeary for Escholishing Solar Background Radiacion

LNCLASSIFIED

Figure 2-7. Solar Specrai Irradiance with Sun as Zeaich Shaded areas indicase absorprion at sea level, due to the acmospineric consinuens shown [2-7].

UNCLASSIFIED

Fiorer 2.8. Dayoine Speciral Radiance of Miscellancous
UNCLASSIFIED

UNCLASSIFIED

Abstract

Figure 2-11. Sp. : : at Radiance of Concreec, Sumaner Day. Overcast |2-8|

UNCLASSIFIED

Ifigure 2.12. Spectral Radiance of Damp Cuncrete [2.8]
UNCLASSIFIED

L:CCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

TABIE 2-2. APPROXMLIE NATYRA工 SCENE ILIUMDANCE EROM IEIE SKI GNDER VARIOCS CONDITIONS [2-9]

		lwenes/m2
	Direct sanilgit	$1-1.3 \times 10^{3}$
	Full dayitina*	$1-2 \times 10^{4}$
	Overcast day	10^{3}
	Ve=\% tarix day	10^{2}
	Triligint	10
	Deep twilligit	1
	Frill moon	10^{-1}
\%	Quartar moon	10^{-2}
	Staritght	10^{-3}
	Overcast staniligit	10-4

- Vot direct smivignt

Secton 2 - Dara-Base Review and Model E'ormulaton
Subsector D - Scaterior Mechanisms

1. OVERVDEW
(U) In this section ta major zecianisms ior scattering racinmon are modelec, and darat for detenaining their signiflcance is icemified and discussed.

The toral signal power P_{g} available to an oif-ads receiver atteraptury to radiation frow an optlical communicalions linis may aise from four major sources. They inciucle Eansmitter sicielobes, tansmitter wincow scater, atospiteric scatur, and backencrer :- . . . aloug the beam patin, inciuding the groum itself. Denotng the scattered power availabie

$$
\begin{equation*}
P_{s}=P_{5}-P_{3}-P_{5} \tag{2-40}
\end{equation*}
$$

Cther, less obvious sorrces may also be present, but they are diffinerit to model in general, and means for dealing with such exmacous sources mast be developed as they arise or are suspected. Some modeling tecimiques assuming virual sources ave discussed.

Geaerilly, all trye major maliation sources cannot be coilected simultaceorn ty because of the presumabiy limited Iield of Fiew of the receiver. A ges.eral model should terefore specify the source power available as a turction of receiver fleld of Niew 0 si and pointing circcuor. The three power sources have therefore been specified in trins of these parameters. To idedify the most extreme case, however, the total power avatlable from all three sources at a given point an be calculated by asswong the fleld of Fiew osh adequateiy wice to encompass the whole link.

UNCLASSIFIED

Section 2 - Dav-Base Review and Mociel Formulation Suibsection D - Scatiering Mecinamins

 and coitical wevelength for ciffricion beyond one degree.
(U) If a coineregt, umiforen plane wave is transuitted tirougi a transmiter apereure
 [2-10],

$$
I_{3}(\theta)=I_{3}(0)\left[2 \frac{J_{1}\left(\pi D_{t} \theta / \lambda\right)}{\pi D_{t} \theta / \lambda}\right]^{2},
$$

where J_{1} is the first-order Bassel functor A plot oi the Aify pattern is shown in Elgwe 2-i6. This dismantion also bolds if te apernere is a leas or parabolic mirror used to collimate a point source [2-11]. The Fadiant imensity on axis, $I_{s}(0)$, is ziven by [2-10, p. 389!

$$
\begin{equation*}
I_{s}(0)=\left(\pi D_{t}^{2} / 4 \lambda^{2}\right) P_{0}, \tag{2-42}
\end{equation*}
$$

based on the requiremeat that the total power P_{0} emitted from the t-ansmitter be conserved.
(1) The sidelobes of the Aivy pattarn sinown in Figury 2-16 ase noted to rapidly du crease in amplitude with increasing $x_{\text {, }}$ where $x=-D+0 / \lambda$. For the majority of cases of towerest we will be concersed only with large values of 5 For example, with $D_{t}=10^{-2} \mathrm{~m}, \lambda=10^{-6} \mathrm{~m}$, ten for $\theta>10, x>500$. A a asymptotic appraximation to $j_{1}(x)$ for large x is then usually reasomble. Frow Olver [2-12],

$$
\begin{equation*}
J_{1}(x)=(2 / \pi x)^{1 / 2} \cos (x-3 \pi / 4) \tag{2-43}
\end{equation*}
$$

for large x. Slece x is a mpidy varying faction of 9 , the simsoidal variatons will average out, so that we may roplace $\left[J_{I}(x)\right]^{2}$ by $\overline{\left[J_{1}(x)\right]^{2}}$, its average value, and

$$
\overline{\left[J_{1}(x)\right]^{2}}=1 / \pi x
$$

(2-44)
Combintag (2-41), (2-2), and (2-4)

$$
\begin{equation*}
I_{g}(\theta)=\frac{\lambda}{D_{t}} \frac{D_{0}}{(\pi \theta)^{3}} \tag{2-45}
\end{equation*}
$$

(U) The valicity of (2-45) for practical systems Tust be questioned since uniform plane waves are rarely acibieved in practuce, acd Farious apertare sbapes and obscuraHogs are ofter used. Also, sanssian mather than unform beam proflles and earanc.d Fither han poin sowrees are comenoniy encountered. Eowever, an anslysis of can-

LKELASSIFIED

(t) and cemand obscaratoas arie oniy experienced by near-in sidelobes. Encme sicelobes $\left(\theta>1^{0}\right)$ approaci the same asymprotic limit. A similar result occurs if extencied sources, either coberefr or incoieredt, are consiciered.
(1) The major shorrooming or $(2-45)$ is experdeaced wiee very long lisk paths are considered, such as for a sateilite-to-gromd linic, where values of θ less than one degree must ba amilyzed. The exact Aify solumon may thed be approgriave.
(T) Another minor problem with (2-45) is that it predicts sideloices at 90° from the apermare. This results becanse of the neglect of the so-called obliquthy factor [2-11] in the dertration of the Airy pattery. The rigorous equation from which ($2-41$ is desived contains a multiolicatrve factor $\cos \theta$, the obliquity factor, which is aegiected. Reinroducing it im 0 ($2-45$) in orvier to aroid the piaysically uncealizable condition of diffraction sidelobes 3290°,

$$
\begin{equation*}
I_{s}(\theta)=\frac{\lambda}{D_{t}} \frac{P_{0}}{(\pi \theta)^{3}} \cos \theta . \tag{2-46}
\end{equation*}
$$

Whereas the pariation is cleariy aegligible except at large angles, the resulting distribumon is more piavsible and intritively saristying.

Figure 2-16. The Airy Purtern, or Eraminoter Difinactioa Partern :er a Ciscalar Aperture. The aspmprotic average for linge x is shown dorted.

UNCLASSIFIED

Secrion 2 - Dan 3ase Review and Model Fontulation Subsection D - Scarterieg Mechamisms
3. IRANSMIIER SCATIER - PORI SCATIER

The complextry of port seatherier mecinanisms suggesi that an empirioni rather than an arifla cal approaci be ziken

Port scatter restlts from microscopic sunface tregulazitles, idf ootcal matertal tnperiections, and cust, moistare, and riner coutanianets on and within the ootical system. A semenil amontical approacin to estiblisining te amount of modiant imensity scanered from sysuems due to the various scatering sources is complicared by the fact that sempred maintion may then ce reciacted or renlected by the following outics. Thereiore, aot ouly does the diswibuinn oi scatreming centres inave to be specified, but also complex off-axis ray Eacing ㅍust be periorzed. Measured datu on many systems and option zarerials bave been compiled, however, and an empiri., al Father than analytical approaci appears to be zore nactable.

Begardiess of how the data are derived, the scatering protile will be expressr. 1 in terms of a normalized port scatering distribution functon $\sigma_{p}(\theta)$, defined sucin thr:

$$
\begin{equation*}
\sigma_{\mathrm{p}}(\theta)=I_{p}(\theta) / P_{0} \cos \theta \tag{2-47}
\end{equation*}
$$

where $I_{p}(\theta)$ is the measured radiant intensity scatered $3 x$ an angie θ frow the tans-
 Hons used by Micodemus" [2-14].

It is asswned iere that scattering is Izdially symanemeal, depending oniy on θ, which may sot always be 3 valid 3sswotion. Beal-world systems may also contio specrar componemes. Va-iations can be incinced as jecessary to represen specific cases by appropriately selectigy the forthon en $e^{(\theta)}$.

[^1]Section 2 - Data-Base Review and Model Formuiation Subsection D-Scatering Mechanisms
4. RRANSMLIER SCATVEZ - TOTAL POWER COLTECTABIE
.) The tral power available to a،
Erom then ensoriter is the sum if the atremated sideloce and port-scater componems scatrered within en receive: Eeid oi view.

The contributions trom sicelobes and wincow scatter comprise the total scatrared power avallabie tren the masmitter. In orcier to cerece it the receiver
 transition region and assume that the whole winciow either can or cannot be seen. With reference to Figure 2-17 we shall assume that it can be seen if and only if it_{t} - $0 \mathrm{sh} / 2$
 Pt inctidert on the detectron will de

$$
\begin{equation*}
P_{t}\left(\theta_{l}\right)=\left[I_{\mathbf{l}}\left(\theta_{1}\right) \div I_{\rho}\left(\theta_{1}\right)\right] \exp \left(-\alpha R_{t}\right) \Omega ' \tag{2-48}
\end{equation*}
$$

wine:e R_{t} is the range from te transmitter to the receiver,

$$
\begin{equation*}
\alpha=a_{2}+a_{s} \tag{2-49}
\end{equation*}
$$

 $\left(C_{a}\right)$ and scattering (a_{s}) by atmospineric constituers, and

$$
\begin{equation*}
\Omega_{s}=A_{s} / R_{t}^{2}, \tag{2-50}
\end{equation*}
$$

which derices that solld angular porinon of radiation scattered fom the manmitter Inco the
zeceiver. Combining ($2-46$)-(2-48) and ($2-50$)

$$
P_{t}\left(\theta_{i}\right)=\left\{\begin{array}{l}
P_{0}\left[\left(\lambda / D_{t}\right)\left(\pi \theta_{i}\right)^{-3} \div \sigma_{p}\left(\theta_{i}\right)\right] \cos \theta_{i} \exp \left(-Q_{t}\right) A_{s} / R_{t}^{2} \tag{2-31}\\
\quad \text { for } \theta_{t}-\rho_{s} / 2 \leq 9_{i} \leq \theta_{t} \div o_{s} / 2 \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

(V) We note that, in general, the net cinange d ? in ovical power dee to anospheric

$$
\begin{equation*}
d P=-a p d r . \tag{2-52}
\end{equation*}
$$

If α is consman over the path length of interest. in tiris case R_{t}, then the simpla exponemal form for texanction loss, as infrocuced in (2-48), holds. Eowever, if a is yot constant over the path lengh, ther we mint make the sepiacerment
(U)

$$
\begin{equation*}
\exp \left(-R_{t}\right) \rightarrow \exp \left[-\int_{0}^{R_{t}} d(=) \mathrm{d} \tau\right] \tag{2-53}
\end{equation*}
$$

(1)The extinction coerffiegt is in geveral a function of both the atnospineric state and the linis altitade. The change ($2-53$) must be invoised whenever the spatial vartation is sigrificant. The zost obvious case where the sidstithon will be needed is for the sacellite-to-gromd geomemy. All other parameters are depencieat only on the transmitter or ir receiver cinaracreristics or their relative positions and altitades.

tigure 2.17. (C) Geomery Necerengy for be wichion the , Eceiver's fieid of view. ';

Section 2-Data-3ase Review and Model Forenilation
Subsection D - Scateriog Mechavisms
5. TRANSMLITER SCATMER - VEASURENTEAT DATA
 angle, with variations cue to itifereaces in ciesig and degree of cleadigess. Imerpi-wall scatering inn resuit in smong speciar gifas.
(U) As noted. it is very diencult to develop a generalired analytical approacin for
 geometries and pkrocmons involved. Figurs 2-18 illurintes the complectry of such an approach Assuming, for exaple, a lishrimiting diode or laser diode as a source in a Jeiractive system, te faciation Iust be coilecied and iocused by a leas, and the scaurring proille will de depencient on we spaial pattera of ligin incident on the iens. The lens will scater ligh as both suriaces and foin buik imperfectons. Moreover, a口onnegifgiole amout of doubly sellected light will be refocmsed towards a short seco yd-
 z its incex of reiraction. Iigint may also be scatered off imermalls of the system. (T) A more sophistramed system migit use a coilimated laser and a beam expander, also shown in Fifrase 2-18 assuming rellective opics. Thougi suci a design aproaci is inarremin cleaner, structares suci as the weo recruized to hold the seconciary
 dfificylt to model predicurely.
(C) Several investrgations have examined the scaterien properines oi optical materials. Scheele [2-15] has periormed scatering dumibuton measurements on monercus thaspareat oprical materials (llats) useful at both visible and inrirated waveleaghs. A portion of his resuits witicin are representative are sinown in Fisures 2-19, 2-20, and 2-21 for various opticul materals at $0.633 \mu \mathrm{~m}, 1.06 \mu \mathrm{~m}$, and $10.6 \mu \mathrm{~m}$. Ee als : bas made messuremeots at 3.39μ. Ieinert and Inupeibery $\{2-16]$ have examiner. the scattering properiles of mirrors at visible wavelengths. Some of their results are also shown in Figine 2-19. A . \bar{y} =feort provices measured data ior 3 зermanilun anti-reflection conted optical liat inesdiated at 10.6μ, aiso shown in Fisme 2-21. Carmer and Ifncquist \{2-18] also made scattering mearurements ar 1. 06 in for rarious materials, anc their sesults fell within the exvelopes sinown in Flgure 2-20. They also varied the soruce polazization in their measurements and oiserved only minor varianions. For eaci oi the progmans cited, tie optical beang was incicent normal to the sample.
(1) All of these restits siow a bastc θ^{-2} angular cepeadence. Also, Schecle notes that scatering generaily decresses with increasing opical waveleagth, showimg approxmately a λ^{-2} waveleagth depercience. The boik scriveter propernes of a manparent zatarial can be ascervinad by comparing the scatrexing properties of the same marerial but differem thicicresses sich as those shown in Eigure 2-20 for RIRNV.
(C) Lainert and inupelberg also mace mesquremens on lenges at $0.633 \mu \mathrm{~m}$, the zesalts of which are siown in Figure 2-22. Again tere crites are roughiy proporional to $\theta-2$ witen double reflection is suppressed. The doubly reilected component tenis to facresse scattering ar larger amgies. It can be substamilly supressed usion and-
 ially ather cleariog [2-18].

UNCLASSIFIED

Figure 2-19. (U) Normatized Saxtering Distribucion Funecions for Various Oprieal Mareriais inmaingei Normaily at $0.633 \mu m$. Daca were obrained from Sciscie [:-15] and Leinert and Kluppeibers [2:16! (U)

UNCLASSIFIED

Figure 2-20. (U) Normalized Sextering Discribucion Funcrions for Opcied Macerinis of Various Thicksesces Iradiared Normally 221.06 (2-13], [2-18] (U)

LuULASSIFIED

Figure 2-21. (U) Normalized Scartering Distribucion Functions for Opaied Maserials of Various Thickess iradined Normally at 10.6 [2013], [2-17] (U)

UNCLASSIFIED

Figure 2-22 (U) Normalized Forward Sarrering Disuriourion for Various Lenses as 0.633 nm: (a) sligheiy dusty lans: (b) lens chenned with collodinm or ulersomic bach: (c) uiressomieally deaned lens with doubly rejected component suppressed:\{ (d) quart leas wich higiner surinee qualizy: (e) poiisined ($\lambda / 20$) Elas of Supresil I [2-16] (U)

Secian 2 - Data-Base Zev!ew and Mrodel Forenianon
Subsecion D - Scatrieg Mecionoisms
6. ATMOSPREEIC SCATHERMCE - TEEORETICAI MCDEING
 ical infeginon, but a ciosed-icran approximaton is isabie in the majority of cases oi imerest
 pieric seaterirg coeficiem as. When an opiccal berin passes trough a scosering mecila, the ret power scatered out of the beaco is provorincral to the incidiest power
 in is ziven by

$$
\begin{equation*}
d p_{s c}=\alpha_{s} P_{i} d \tag{2-54}
\end{equation*}
$$

 of off-ads angie. If a tom power Pscis scatrerec inve an arbitury volume element, and Isc(8) is the reroltery bution fucction is deaned as

$$
\begin{equation*}
F(\theta)=I_{s c}(\theta) / P_{s c} \tag{2-65}
\end{equation*}
$$

Moreover, since

$$
\begin{equation*}
\int_{4 \pi} S_{s c}(\theta) d \Omega=P_{s c} \tag{2-56}
\end{equation*}
$$

wiege the integration is over a sphere, it follows tinat

$$
\begin{equation*}
\int_{4_{n}} F(\theta) d \Omega=1 \tag{2-57}
\end{equation*}
$$

The scatbering discikution smetion used here is thereiore normalinec.
 oi mafition orignatiog jom the

$$
d \tau_{s c}\left(\theta_{i}^{\prime}\right)=\sum_{i}\left(R^{\prime}\right) \sum\left(\theta_{!}^{\prime}\right) \alpha_{s}\left(R^{\prime}\right) d z^{\prime}
$$

 키 ${ }^{\prime}$, and θI^{\prime} are dV is streat by

Figure 2-25. . . Generaized Geomeary Depicaing Variables winich Describe Amospheric Searaning. V is the volume of intersection of the beam. not necessarily assumed uniform, with the receiver field of view. The vectors (indicaced iny undedine) are noc necesprity in the plane of the diagram.
(C)

$$
\begin{equation*}
P_{i}\left(R^{\prime}\right)=I_{0}\left(\theta_{i}^{\prime}\right) \exp \left[-\int_{0}^{\left|B^{\prime}\right|} \operatorname{e(\Omega)} d R\right] d \Omega_{0}^{\prime} \tag{2-079}
\end{equation*}
$$

Nierv $\mathrm{d} \Omega^{\prime}=\mathrm{dx} \mathrm{C}^{\prime} /\left(\mathrm{R}^{\prime}\right)^{2}$. The atmospoisically scatered power incicient on the receiver derector from ivं is

Combiaing (2-58), (2-59), and (2-60) and integ-aning,
where V is the voiume oi intersection of the seceiver fleld of riew and the wransaitter beam.
, 4) Aside from secondary scathering effects, (2-61) is essemally eenct assuming $\mathrm{D}_{5} \mathrm{R}_{i}^{\prime} \ll \theta_{i}^{\prime}$ so that g_{i}^{\prime} can be considered constart over the receiver aper:rure, a condition which we assme is always met. For the general case, a solution Fequir =8 momerical integration. Such an approaci is necessary usually only for very loms liniks where the beam dameter can become quite large, or for vertacal linics where larye variations of α and αs with altitude are ererienced. Space-to-giound ifnics, for erample, fit both coniltions and must be solved menerically. Eowever, $(2-51)$ may be erpressed in closed form if severni stmplifing assmotions are made. These asswomions are applicaile to the large nalozity of ccuventional laser commonication Hnies, as illustivited in Fifgure 2-26.
(N) The Anst stmpifying comithon is that α and α_{g} be reasomably uriform over the region so that the exponendal exinction losses can be expressed in ciosed form. Secounly, if the beamspread and link range are suificiemily small, then $R^{\prime}=z^{\prime}$ and B^{\prime} : $=\mathrm{R}_{1}$ troughour dV'. Fimally, if the beam is ixiriy uniform and paryower thas the recetver's feld of view, then

$$
\begin{equation*}
\left.b_{0}\left(\phi_{!}^{\prime}\right) d V^{\prime} / R^{\prime}\right)^{2}=P_{0} d z_{!} \tag{2-62}
\end{equation*}
$$

Uising these there simplitying assumptions and the relatoasions

$$
\begin{equation*}
z_{1}=z_{s}-x_{s} / \tan \theta_{1} \tag{2-63}
\end{equation*}
$$

and

$$
\begin{equation*}
d z_{1}=x_{s} \csc ^{2} \theta_{i} d \theta_{1}=\lambda_{i} d \theta_{i} / \sin \theta_{i}, \tag{2-64}
\end{equation*}
$$

Figure 2.26.
Basic Geomery for Whici Equation 2-65 Holds Also required is that a and a_{3} be uniform chrougious the bean and senrrering rezions (U)
(U)

ח

$$
\begin{equation*}
p_{a}=\left(P_{o-1 s} \alpha_{s} / x_{3}\right) \int_{-\theta_{s} / 2}^{+\theta_{3} / 2} d \theta_{i} F\left(\theta_{i}\right) \exp \left[-\alpha_{2}\right] \exp \left[2 x_{s}\left(\cos \theta_{j}-1\right) / \sin \theta_{i}\right] . \tag{2-65}
\end{equation*}
$$

If the Feid of view ϕ_{s} is swefiemily swall that terns in the integ=aci oi (2-65), especially $F\left(\theta_{1}\right)$, does not rany appreciably, then

For larger felds of view, os may be subdriced ino eienens for which (2-56) bolds
 (I) Thabuleace eifecrs of tes amospinere have been considered and appear to be sigmificant only when piase coheryece is essemial the hecerodyne case) or ior the spacs-to-ground scenario. Typical beam spreacing iane to trivalence, even considering 3rounc-level patios in very minnlent condithons, is of the oreier of 100 mrad. Since typical beato spreads for sround liniks are $>10 \mathrm{mrac}$, the increase in spot size is insigmifort. Eowever, for saceilita-to-ground linies an increvental increase in beam spread may increase the centril midiation spot stre on the grourd by as much as a lifameter. Such cases must cleariy be considered.

UACLASSIFIED

Seceenon 2-Daz-J̄ase Review and Yociel Sormulatiod
Subsection D - Scatering Meninanisms

 giocal locale, with cinarging weatier, seasomi, aci ciumal comitions. Data collected by iFGi and NRI comprise the major source for anospicezic modeing.
(U) Atmospheric absorption and scatrering cinnscierisiccs are dependen on the inifricual molecular and aerosol constituents wici make the ateosphere. Absorptor is primarily associated with specifec molecular species, especially $\mathrm{E}_{2} \mathrm{O}$ and CO_{2}, and can be establisised in terns of ine Tibrational and rotational absorption-itae characte:istas of the specisic moiecules. Scatering is depencien on the monder density, sine cistribution, shape, and inder of reinaction oi the consthen molecylar and aerosol gardicles. ihese parmeters are not only differlt to messure, but they are also dighly parfable both spatially and temporaliy at a jtven locale, and differem locales will inte difforemt ciaracteristic amospineric proalles.
(U) The majorthy of atmospiestc cata for ECKSIPOM modeling bas been oimined Erom te Air Forse Geophysics Laboratories (AFGI, formeriy Air Eorce Cambridge Besearch Laboratories) atmospoeric dats compilation AFGi has had an enensive progran concerned with the opicni properines of tie amospiaere for over a decacie, and tey comene to compile cata from wich they bave establisined models for both low- and high-resolution atecospieric tansmitmee. Adaitional scoporive dam has

(V) Becuse of tie wide diversity of anospieres encountered giobaily, AFGI bas deñed five stadiard atmospieres as a represemmerve cross section [2-22]. These inciucie models reierred to as Trooical, Mildathace Summer and Winter, and Subartaic Sumer and Wiater. These modeis afe ceñed in terms of the atoospheric pressme and density, temperature, and ozone and water vapor concencrations 23 a fuction of altitmie. In addition, two aerosol models have been derined, refersed to as comerertal clear and comeremal inty, corfesponcing to visibilities of 23 lm and 5 ln respectrely. A total of ten models an thas be specified.
(U) Because of the exrensiveness and reacy availability of tese AFGI data on atmospieric models [2-29] - [2-29] nose oi it will be reprinted here. The data available covers most mominai comditions and consisus oi a compilarion oi absorpinon and scataring coaificients for each atmospineric nodel as a tunction or wavelengin and altitace. Most major laser lines are inciuded.
(V) in altrimate approach io detramining absospion and scatrering coeincieds is to calcalate them "esing either of two comycter models developed by AFGI. IOWIRANi
 such as light-amithing diodes and diode lasers. The most recent version, LOWIM_iV 3B, intociuces four anw aerosol modeis, the Martione, Urban, Rurai, and Iropostheric Kodels. This extends the Fodeling pariations possibie.
(J) LOW'PRAN, bowever, is inapproptate for charicreriming nariow-band laser sourees. A comparison of the spectali characteristic of a marrow-band (DF) laser source to that of the atmosphere is siown in I'IgTre 2-27 [2-27]. The LOWIRAN code does not provice the sequared.

U. UGLASSIFIED

 absorprion cisaracrerscics ior a parteralar laser life to the degree of resolntion desired [2-23], [2-29]. Inis code bas been mace possible becruse of an ecteasive compilation of obsozption lire speciza die to all major molecnlar amospheric constineme, including $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{CH}_{4}$, and O_{2}.
(I) Cagoing messuremems at hiI hsve componed with good agreement the gearral band structure predicted by the BuMRAY model. Measuremenes made at DF laser wavelengths ($3.6-4.1 \mu$) have shown excellent agreemeat $(2-30]$. Eowever, the EIIRAN code has been foumd to substarially over-predtct trassionsion in the region from $4.7 \mu \mathrm{~m}$ to $5.1 \mu \mathrm{~m}$ [2-3I]. In both regions the resclts have been found to be strongiy dependent on local water rapor pressure. Code updates at AFGI and zeasuremeats at NRI comerne, however, and difierences in the theorecical mociels and measured dath are rapidly converging. Moreover, exienstve adittonal daca will soon be availabie trom an AFGI atmospheric measuremeds program aling place in Europe in cooperation with NATO [2-32].

Figure 2-27. Comparison of the Amospheric Transmission Spectan and the DF Laser Eniesion Spectum. The transmiteance is moidly varying in che vieininy of che lacer line and requires a highresolution mode' in maineain acesracy [$5-27$].

UNCLASSIFIED

Secton 2-Dam-Ease Review and Model Formulaton
Subsecuion D - Scathering Mecionisms

3. ATMOSPEERIC SCAIMERIYG - DINTRTBUHON EUNCHON DALA

 ag-eement
(U) If the atmospicer= were composed only of molecales, wiose dimeters are mucio less than ootical wavelengths, approprate acproxinations would result in the Rayleighi scaitering theory, widin precicts an almost uiform scatrewig diswibuton Eowever, aerosol componers ci ite smospiners ars almost always the comioant scatmereng zecianism. Such aezosoi paricies trpically iave ciarexess of the orcier of the oprical
 Scatering iistribution function measuremenss bave not been as extersive as extinction measuremencs, and though predicmions based on the vie mocel are theoremically weilfounded, they are strongit deceadeat on the size dismizution of atmospineric consernents, 2 function which is Hfficult to zearars.
(i) The theory developed by Mie [2-33] jrovices an enct solution for the scattering. of a polarized plane wave from a single spiericil paricle of sinitiary size and inder of refraction, wicic may be complex the genernl teory socifies amolituce, pinase,
 to describe the scattering by an array of parjecles stmply by suamidy the seattering contribullons from each incivicical parincle in the array, and computer coces exist for perforping suci calculations. Such an approaci tacithy negiects the effects of muithie scattering, and inacruracies aiso arise ifom the deffruties in specifying the mmber and stre diftibution of the aerosol particle aryy and the effective inderes of neinactor of the parcicles. Such measurgments iave been made, iowever \{2-34\}, [2-35], and itsincurn models have been develoyed ior genersi use [2-22], [2-36], though Yella wotes that the models lead to discrepancies in amospine:1c water coment [2-35:. (V) Eulltick [2-37] and Tieila [2-35] bave joth zade extensive scatring pratie measurements in acinal atmospieres at ground level, and their rescits are geamrally consisterot with Ma calculations. Results finm Nelia's measorements are sinown in Fisures 2-29 and 2-29 for wavenging of 1.06μ and 10.6μ n respectiveiv. The craphs show the composite piots for manerous measuremeats.
(7) Nime of te eleven measured creves of Elgure 2-23 ieil in the cross-intabed region Curve it renlects concintions of vert low inmient (24:0) and exmemely good
 3 whes measwred. The curves of Figne 2-28 are consistert with lite calcalations made Hy McClateney et al [2-22] as shown in F'gase 2-30. A calciation at 1.06μ mould fall in between tha two curres showth. Morsover, cuasi-simultameous measwrements at gir deffereat laser wavelengtis between 0.47 jm and $1.06 \mu \mathrm{~m}$ bo Nella yielded scatteriog functions stwilar to Figure 2-23 and withon a iactor ai two oi exch other. (U) Fourteen differem mercmanents were used to Fake the composite cirve of
 recorded. It is shown dotted. The mator dirnecinon between these craves and those at shorter wavelangths lies in the less promomced Sorward scatering peak and the absence of 20 lecreased bucksontrer comporemt jeyord 120°, the so-called jiory. This is a zenoral behavior associatec with scitrering xien the paracie stres are less tha the wavelenging The ulthate iffit is the Rajiedin scatering eistributon jue to zoiecriar scnersiag, also sicown in F'sure 2-30.

O.CLASSIFIED

(C) Generally speaking, as parucie sizes increase, iorward and bacis scamerimy at a given wavelengith becomes more pronounced, and me discribumion is generally more stuchred. For exmple, zanoows resuit irom largemandicie scarrering [2-33].
(0) For ciesr wearber conditions scatering fuctions like those of Figures 3-23 and 2-29 cover the majority of cases encoumered. Because the scartering discriburtor fucmon is normalized, as incresse in forward scatering murt be compensared by a cecrease in baciescatrering. Scatering imensity is thereiore muci more sensitive to extinctoo coefficien than dismiburion function.
 fog model must accourt for multule scatherigy offects, wich inave aot been consiciered here. Eowever, Bulluch dic zake scamering disciburion measaremems in iog, winici extibit the pronounced forwarid and back scatrer characteristes noted. Yo measured scatrerig profles for min were found hough Gumprecith et al [2-38] provide calcriations for suct a case. Chu and Elogr [2-39] bave emmined =ain particle site chscibuthons and densitles.

Figure j-28. Composire oi Normatized Senctening Functions at 1.06 im Measured by Nella [2-33]

UNCLASSIFIED

Fisture 2-29. Composice Normalized Scartering Funcions $2510.6 \mu \mathrm{~m}$ Mensured by Neila [2.35]

L:CLASSIFIED

Figure 2-30. Normalized Sertering Discribucion Funcrions Culeuiaced Using Mie Theory for Aerosols wich $\lambda=0.4 \mu$ and $\lambda=2 \mu$. The Rayleigh molecular seantering disuribucion function whicin is independent of wavelengrh is also shown.

Section 2 - Data-base Review and Mociel Formulation

 Subsection D - Scatteries Mechanisms9. RECEIVER BACESCAITER - THEOREIICAI MODEINTG
 3nd difinse componeus, arisiny fiom backstop or bousing renlecuions, window renlecenon, and reilecions from the seceiver and its opdeal components.
(i) The basic approacin to modeling backscatered ractation is very similar to that used for modeling port scater except that we assume an angle of between the facomine berm and the gormal to the strecture housing or backestopping the receiver. The scenario wincin mast ze modeled is illustantin in Figure $2-31$.
($\%$) Consideration zurs be given to a tryical spot size of the received radiation. Commercial optical communication systems vaty signincarily in beamwidth and usenil Fange, buth of the manerous suci systems listed in Table 2-3, all apoegred to project a spot size in excess oi $10-\mathrm{m}$ diamers at their nominal operating ranges, in some cases sigmiflcantly larger. Consequemily, the rachated area depictad in Figure 2-31 will usually be much larger than a typical window. It is also asswed that, for a orin $\quad \cdots i$ =adation irom the main lobe will not be allowed to pass beaind te receiver in an umcourrilled manner.
(7) The major portion of bacisscater will therefore be that realected from the struc ture, or from a cackstop if the receiver is not enciosed. Typical structaral materiain will reflect somewhat difusely with a moderate spectar component With ξ the arg. -
 terms of Nicodemus' bidirectoral renlectance dismibuion function (BRE)*

$$
\begin{equation*}
\rho_{b}(\xi)=I_{b}(\xi) / D_{\text {inc }} \cos \xi \tag{2-67}
\end{equation*}
$$

where Ib(g) is the intensty of the backscatered radiation in the drection f cus to Pinc, the toal optcal power on the boilding. For completa generility it is necessary to constider incidemt and rellected Fays at angles th and $\frac{5}{\prime}$ wincin are non-copianar.

[^2]
Ui:ULASSIFIED

igure 2-31. The Backseacter Semario. The building or backstop will provide primarily diffuse -atiection, the window a specuiar ginn as $\theta^{\prime}=2, \psi$, and the receiver a setrorefected $O A$ camponse, all of which must be considered.
(C) Enpessing (2~07) in tariss of \exists^{\prime}, a variable angie zeierenced to the linis ads, instead of :

$$
\begin{equation*}
\rho_{b}=o_{b}\left(\theta^{\prime}, b\right)-I_{b}\left(\theta^{\prime}\right) / Q_{i n c} \cos \left(\theta^{\prime}-\dot{b}\right) . \tag{ו}
\end{equation*}
$$

With $P_{i n c}=P_{0}=(-\alpha Z)$ Eor 3 linis of leage Z,

$$
I_{b}\left(\rho^{\prime}\right)=\left\{\begin{array}{l}
p_{0} \rho_{b}\left(\theta^{\prime} x^{\prime}\right) \cos \left(\theta^{\prime}-b\right) \text { ex }(-\alpha Z) \text { for }\left|\theta^{\prime}-p\right|<90^{\circ} \tag{2-f9}\\
0 \quad \text { otherwise. }
\end{array}\right.
$$

(0) We have negiecred the minor सffereace is spot 3rea and reflectance ine to the presence of a wincow in (2-a7) since its area would troically be mucin smailez thas that of the spot. Specalariy rerlected compocents from the wimdow can be comsidered separately by incluing them in the function ρb. This componeat oi intensity siould generally be much swaller than that from the boilding since the reilecmace from giars is low compared to that from the strncure suriace, and tee inciciect power on the window is scaled by the ratio of the widiow area to the beam spot size; but its specolar nature requires that it be inclucied. The comenon use of the Dirac delta finctuon to describe specriar components would be incompaidble wth a comprier calcilation. We shall use instead a condmous model which is bighiy peaked in a direction $\theta^{\prime}=2 \mathrm{y}$ with 8^{\prime} in the same plase as η.
(V) Another specular compocent of interest is the so-called opticilly angenemed (O_{A}) retur from the receiver aperture itself. The imensity of this reilection must be sectarately characterized as

$$
I_{O_{A}}\left(\theta^{\prime}\right)=P_{i n c} \partial_{O A}\left(\theta^{\prime}\right) \cos \theta^{\prime} A_{I} / \pi\left(\phi_{t} / 2\right)^{2} Z
$$

where A_{5} is the receiver aperpore aras and $\delta 0 A$ is ceffined analogous to ob in (2-68). The $力$ - dependence is absemil for the OA retura since the seceiver apermire is necessarily pormal to the linis path. The smail value oi A- compared to the spor size, and the pargow, revoreriected enture of the OA beam incicare that this compoment will not be accessible to 2 receiver at an apprectable off-ads angie. If should. bowever, be considered as an adiftiomal sowroe which may be scattered trom the arnosphere.
(i) Analogoes to (2-0i) and with serimseace to Eigure 2-3 the total power scaterec fron the receiver (ow the receiver may be eqressed as

UNCLASSIFIED

Section 2 - Dara-Base Review and Model Formulation
Subsection D - Scatrerisy Mechanism

10. RECETVER 3ACKSCA M ER - YEASUREMCENT DATA

(\ddagger) A review of zelleceancs data for a variety oi waveiengins indicates that most meni-worid cases can be modeled by 3sswoing the comioinaion oi a simple lambernan diffuse elernem and a gaussian specular eleven.
(t) in specifying the reflection characteristics of a backstop material in terns of its bicirecional renlecmace distribution function (BRDF) ob, three different aspects must be considered: the w..velengri dependence of the material's reflectance, surface zouginmess characteristics of the material, and the 3RDF's dependence on the direction oi the incident: radiation.
(T) The wavelength dependence oi the reflectance depends on the detailed absorptionband structure of the material, and because of the wide variety oi materials which must be considered and the fact that most are chemically imomogeneous (e. g., concrete) 307 attempt at modeling their absorption-oagi properties is nareslistic. We therefore rely instead on measured reflectance iata.
(U) The complexity of the BRDF's dependence on suing roughness and incident beam direction is best illustrated by an example. Shown in Figure 2-32 is a series oi reilected-radiation profiles (isointeasity contours) for alumina pollsined with 600ziti silicon entice illuminated at various angles of a EeNe laser [2-40]. The profiles exibibit a proconnced bur rather broad specular peak, a smaller diffuse compomem, a moderate backscatter lobe, and an acomoious army or smaller lobes. Other materials will exhibit these same characteristics bit in rapid degrees.
(D) Modeling these geometric athibures oi a material to theoretically establish its reflection profile is reasonable for most homogeneous materials, and several models have been proposed. However, there is a wide disparity in the mane of the theoretical 3pproacies taken (though a carer comparison right show that the seemingly diverging approaches are in fact ideation). Shack and DeBell [2-11] and Shack and Earvey [2-42] use the techniques of linear systems theory to treat the reviecrion profile from a surface with a given statistical deign distribution and aurocovariance function as an angrylar spectrinn oi place waves. Fusing a :By optics model Trowbridge and Reit $[2-43]$:Feat the surince as an ensemble of radom oriented, Fandom y curved ruicroarsas and show that an optically smooth curved suriace oi revolution can be chosen which wis give the same distribution oi reflected light as the acetal surface. Savermann and Waterman $[2+4]$ do a Fourier decomposition of the surince and consider the renlectic. (diffracenou) properties of each simsoidally corrugated surface component separatais. and they in addition include the effects of simadowiog of the corrugated surface on nonzoranily incident rays, as illustrated in Flgare 2-32.
(D) All of these approaches assume siagie-पylued surface profiles and homogeneous material characteristics. Eowerer, disrsgarilag these minor limitations the difincuity with any of the approaches is that they all must evemunily mil on measured data, that is, the swrince roughness properties. Yeverneless, they do provide a rears for determinating selection profiles if surface roughness and material properties an be estmated reasombiy.
(L) Acmal 3RDF measured data are Hither scarce. The wide mage oi background materials which must be considered, and the inconsistency oi results for a given material (e.g., wood) leads experdenemplists to consider laboratory environments over which they have more carol there than reaj-worid environment. Natron matertis

USLLASSIFIED

Figure 2-33. (U) Locacion of the Shadow Region Accounced for in the Redection Model of Savermana and Wacerman [2-44] (U)

Figure 2-34. (U) Mean and Sandurd Deviacion Reslecance for Miscellaneous Leares [2-46j (U)

UNCLASSIFIED

Figure 2-35. (U) Typical Retiezeances of Vegeasion, Wood and Scraw [2-46] (U)

Firgue 2.36. (U) Typical Refiectances of Waser Surface, Snow, Dry Soil and Vegeanion [2-46] (U)

LXCLASSIFIED

Figure 2-37. (U) Specaral Retlectance of Six Termin Fearures in the $1.15 \mu \mathrm{~m}$ Region [2-6] (V)

UNCLASSIFIED

Figure 2.38. (U) Speeral Reflecence of (a) idenl masoury, No. 150 (red), (b) ideal masonry, :ö. 170 (green), exterior masomy paine (Ideal Chemial Producer Inc) [26] (U)

Figure 2-39. (U) Specmil Reflecance of Aspinitic Road Material. SC-4 (Sendard Oil Compast of Califormia) [2-6] (U)

MOLASSIFIED

baseline profile. It was sinown that ciassicai erzor amalysis rechotorues could mot be applied ar this poinc in tane, cie to the iacis oi an adequare amoum oi dath amd the completity of the problem. so the sensiturity malysis represents a reasonaiole means to quarese the efifects of possibie meerminty. A space-to-groum model was developed winch, althougi linited in opaioility, is an inoporant Erst step in developing a generalized model. Iastiy, a detailed solar bacioground model was inciuded wioi taices inm accoumt the line smincern of the solar spectarin and its modification by the amose poeric trancoission ciaraceerisuics.

In reviewing the capablitues oi the progran several improvemens wouid apear to be beiptol in fumre analyses. These include:

- Development of a performance evaluaton code to deterange the fmpact of secuntry measures on linis pexin mance.
- Deveiopment of an amospiezic prog-am inom existing codes to generme enioles of coejtifients for any wavelength and amospineric absorption line siape, and to aiso generate the scatterting distribution fmetion using a Mie colculation.
- Develownent of a separate, compreheasive space-to-ground model. The space-in-groumd case is a more complex prodiece to treat than 'marrowbeam' links.
- Enpansion of INACM 2.0 to allow more derailed modeling of scenario ciaracteristics. This will zequire a thorougin acalysis of data and will insely prociece a very large prognan, considezing the datu requiremems and preliminary schemes developed.
- Developmeat of a classiffcation systern for classifying linic type and scenario combination to prodnce 'miles of thme' in estmating liak sectutty. Tats would be accomplished by parameric amolysis using the progran.

TABIE 3-1. FEATURES OF TEE ECRETROM COMPCTER MODEI, LACM 2.0

Gene:3i Features	- Intractive - Mocinar - Flectile
Speciffc Fextries	- Psemio 3-D carred earth - Tmproved atmospheric model - Flecible port scatter modal - Fledible receiver/backrop zodel - Improved beamscater aigorthem - SNR or power compuntional expability - Detadled solar becigzorad model - Modes to stmplify zeamety - Coverur gemeration capability - Sensitivity amalysis - Space to ground capability

Section 3 - The Compurer irodei
Suisecton 3-Descípion ai Mathemarical Models

1. VAREOW-BEAM ANALTSTE GEOMETRY

(V) The malysis oi linic beam scater where the linis beam diameter is pegledile in
 considerations, with beam-shape power versus oin-ads eistmes) effects neglected.
(T) The marrow-beam link is a point-to-point link over a curred earth as preseated in Figuee 3-1. The altitucies above saa level can range upward from -1000 meters to
 is te linit range, II. The off 2×15 g receiver (SR) location is deflned in terzes of a cyincrical cooruinate systan, with the transmitter at the orroin and the linis beam
 by the coordinator 3FI (axis of symmery coorrinate), X (range orthogomi to axis of
 detces a korizontal half plane, = 190° tee opposita ialf plane, with 90° being the "pper vertical ialf plame of 3 horizontal link Note that the rachal distance X is parallei to 3 tangent of the earm's surnace at its intersecton with the linik beam for GAILTE $=00$ or 180°.)
(L) The concept of the intercept plane is very impornato to grasp in order to fully appreciate the deinntion and description in this repor, The intercept half-piane is deflned as that haif-plane wiose edige colcolces with the link aris and contains the SR. Thus thers is a balf-piane at $\gamma_{\text {int }}=00$ and $\gamma_{\text {int }}=1800$ witich may have dfferent incer cepthility prontles (i.e., they \#ay not be minticr images) in each half-plane.
(घ) Figure 3-2 shows the intercspt haif-piane geomery, inciuding the orientation of the SR in the plane. The SR is assumed to be looidng at a portion of the beam spectifed by TEETA, the oft-ads angie. Note that TEETA is not zecessarily the magie subtended by the 5 and link axes at the transmitter, bot the angle subtended at the scatering volume. In order to simplify acciminime the moun of geomety requirec of the user. severil modes were designed winich obtain a protile of de link scater using oniy orf 35 two geormetric pararierem ior te whole set. These are described in the tiser's Gure later in this sectorn.
(G) The computer model uses a curred earth, and the equalions for calculation oi ranges ami altitace of poines are curabersome. They are derived using the gromery in Fistre 3-3. Tising the law of cosines and solving for eaci of the required variaile leads to

$$
\begin{aligned}
& B P=\left[(B E+E)^{2}+E^{2}+2(R E-E T) B \cos (D P)\right]^{1 / 2}-R E \\
& D P=\cos ^{-1}\left\{\frac{\left(R S+E I^{2}-(R E T R)^{2}-R^{2}\right.}{2(R E+E T) R}\right\} \\
& B=\left[(R E+E P)^{2} \cos ^{2}(D P)-(B E \div E)^{2}+(R E+E P)^{2}\right]^{1 / 2} \\
& \text { - (RE+ET) cos (DF) }
\end{aligned}
$$

These expressicas are used in he rowines TSEALEI and SETVP. If the geometry specteled by the user is sucin that te botomad te tis beam muches the earm between the Fresmitar and receiver, a waning is arinfed out.

UNCLASSIFIED

Figure 3-1. Illustraion of Narrow-Beam Link Geomery. The incercept haif plane has the linik aris as its edge, and concains che $5 R$. At the intersection of the link aris and the TINT (GAMINT) refereace axis, the refereace

UNCLASSIFIED

Figure 3-2. tarerespr Half-Phane Geomecry. Noce thar this half-plane may be rocaced abour che linik axis. The sectering volume is defined by the SR field of view PHil and oriencacion THEIA.

UTCLLASSIFIED

Figure 3-3. Geomearieal Moded Used to Derive Earch Cur-- vacure Efiects.

Section 3 - The Compurer Model
Subsection 3 - Description oi Xathemarical Models
2. INTK TRANSHMIER
(L) A simple modal based on empicical data was deveicped to accoun for port scatter arc the eifecs of batiles.
(U)(D) The Haik tansmiter is a signifleat sourse oi off-ads matition. Due of differlecees in transmitter designs and quailty of optcs a variety of scattering prolles can be postulated for a linik tansmithar, presenting 2 problem in modeling the oif-ards scitter.
(C) The transminer model assumes a beam divergence angle PEIT (ϕ t), suppiled by the user. If the user-supplied ϕ, piolates the diffacenon limit, a waning is primtol Also required are the optical power out the lens FT, and the lens diaceeter DT. For cases invoiving booding, the hood diametar and length are recquired. The ofrics are asswed circular. Flgure 3 millustrates the link tiastaiter.
(v) Iens hooding is simmared by a simple model that asswaes a sood arixitarily larger than the beam diamerer, aegiects diffucton by the hood (wich is reasonabie winen the hood only toucies the sidelobes) and assumes a tratily absorbing beod intesior. Thins the scaterer at a given argle is recuced by the persentage of the aperzure that is hidden by the bood. Figure 3-4 illustrates the beinvior of this tunction for several different aperave size to bood dianeter ratios. The case of equal hood dizmeter and apenture size is the same as the optical tracsier funcion oi an ideal cirenlar aperone [3-1].
(J) The componemts of transmiter off-exis radiation can be separated itto a difinacted porcion (sidelobes) amd a prorion scatered fom tiee optical materials, wincis includes suriaces and bulk scattering of the lenses. At optcal waveiengths with typcal apermas the sidelobe strucare is extremely fane, so am expression for the sidelobe envelope as siown in Sectron 2 is used insteac:

$$
I_{s}(\theta)=\frac{\lambda}{D I} \quad \frac{D T}{(\pi \cdot)^{3}} \quad \cos \theta
$$

(U) The boik and swrice scatter is treated using a bidirecnomal scatering distivbution fonction ($B S D$), as is developed in the Iteritary and ilscussed in Section 2. Empirical relationships for the BSDF obrained trom experimentation with various optical flats and lenses sbow that the function is rourbly linear in log space. Figure 3-5 Hustantes a typical carre for 30 opecal ilat. As can be seen the slope is approximetely -2.0 , and the ralue at one degree is 2×10^{-3}. Also siown on the ispres is a system BSDF which, althoogh not representing a parncular system, is typion in form of the expertmental data available on existing tansmituars. As can be seen, the function is roughiy a straight lise, with the exception oi several 'gittehes' which could be due to internal rellections pecritar to a parinciar design. Thas, apart ذom the gitiches, the BSDF can be expressed as

$$
\operatorname{BSDF}(\theta)=A \theta^{B}
$$

where A is the value of the $3 S D F$ at one degree, θ the ori-acd angle in degrees, aci 3 the slope of the curre.
(7) The 'giltches' can be accounted for by using a fixed Falue for the BSDF at the gittch. Thom the user of the prognin zust deine (for each ziitch) the staring ancle,

ANLASSIFIED

Figure 3-4. Fracion of Exir Apctare Visiole as a Function of Normalized Off-Aris Angle θ / θ_{e} for Three Rarios of Hood to Opicie Diamerer. Past θ_{e} no senter from oprics is visibie

UNCLASSIFIED

 sample $3 S D F$ carve shown in the Igure is wint the prog-3n would use if the user specifled a glitin fomi 1.7 to 2.7 degrees with an amplitade or $2 x^{1} 0^{-1} 55^{-1}$. (J) IE the BSDF to a system is kown, ibe BSDF subroutine can be easily replacsi by a user-suppied function imerplating the experimental datan. Eowever, a good estimate of the fansmiter scatter can be ootained for Jany 3SDF carres using the brilt-in model

UCCLASSIFIED

Figure 3-5. BSDF Curves for an Opacal Flat and a Hypotherieal System, Showing de Compucer Modet's Approcimase Fit.

UNCLASSIFIED

Section 3 - The Compurer Model
Subsectin B - Eescripton of Mamemaical Models

3. IIVS RECEIVES AND BACKSIOP

 location in the main beam. A model is described Notici accoum for diferse and specular serlectons from the zeceiver/bacisstop combinantinn
(U) The link receiver is assumed to be collocated with a backestop (which ens be posiJoned in any orier:minon). Figure 3-6 illustries the arangement along with the angular convenforas used in the progran.
(T) The diameter oi the opics and hood diamerer and leaghe are inpurt the pro-g-3rn, and the scheme is icianical to that oi the thanmiter model, i. E., the scatter oif the receiver apermars is assmed to be jroporinooal to the visible area. The baciswo is asswed to be laze enougit to bloci the main bean, and may be orieated in elevation angie by specifying PSTEI (C, I) wioich is the elevation ozientanon of the normal selative to the ∞° or 180° intercept jiane. Azimuta oretation is accomplished by specification of PSAZ $\left({ }_{0}, Z\right)$, which is the angle of the projection of the normil oi the backstop onto the 0° (posieve yaz) or 190° (negative yaz) intercept piane with the link optical ads. Figure 3-7 illustites these angles, along with the specriaris seflected component's bay. For an arimitary orientanion of the baciestrop, the direction of the specular component is given by specifing wioh imercept plane it lies in. The intercept piace argle $\%_{i n t}$ is given by

$$
\gamma_{1 a t}=\tan ^{-1}\left\{\frac{\sin \phi_{E I}}{\sin _{A Z} \cdot \cos v_{E I}}\right\}
$$

The above ecoression will cot gre values Lum -180° to $+180^{\circ}$, but only trom -90° to -900, so the FORTRAN Ametion ATANY is used in the program to yield the correct hali-plame orientation. This angie is printed our for the user in the inout sumanty so
 'worst case'.
(4) Two expressions are used to model the drectonai raflection disterburon of the backstrp, as discrased in Section 2. The stomiest of these is a lamberdan rerlection model winich corresponds to a diffuse rellector, containing no specuiar componeat. The expression for the inciksop iissctioni renectance (SRDF) fb in tis sase is a constaii independent of angle given by

$$
\rho_{b}=\pi^{-1} \rho_{d}
$$

 cated model aflows a ganssian-sinped specolar component aiong with a difinse (lambertian) component. In his case the full wicth of the specsine compoanat at half =ationm o θ (BFWEMS) is inpus in degsees, aiong with the peais pabue of the specaiar and difise componeris. The expression for BRDF is ten

UCLASSIFIED

Figure 3-6. Illusuracion of Major Fearures of Baciessop/Receiver Geomery. The backerop is eilead up \therefore an angle $\psi E I$.

UNCLASSIFIED

(t) whers

(C) Thas the power at the SR due to the reflection is given by

whers
$P_{i n c}$ is the power iacideat on the backstop
I is the thansmitrance from the receiver to the SR
A_{5} is the 5R entracee apertare area
$\rho_{b}\left(\theta_{5}\right)$ is the $B R D F$ at the angie θ_{F}
θ_{p} is the off-azis angie from the receiver to the SR
B_{g} is the range from the recaiver to the SR.
(0) The reflection off the receiver optes uses an identical model to the specalar/ difanse combieation model of the backstop. Eowever, in this case the specular component is sarmow and the dffinse component is small. The smaller amount of power incidant on the optics (as compared to the bacirspop) and the fact that its rerlections are setrorellected primandly down the linis asds make the receiver optles scatiar much smaller than that oi the bacisump, so the program derarlits are set to ignose zeceive: scatter. Fowerer, the user bas the oution of ingradicieg the componems.

L.ULASSIFIED

Figure 3-7. Basic Geomery Reiacing Angie of Backrop Normal to Incoming Beam Angle. The vector representing ine specuiar rejection peak is in ine plane common to the bean axis and the backstop normal. In this ase iEI is negacive and $\psi A Z$ is posicive.

Secion 3-The Compurar Model
Subsectan 3 - Descripricn of Marhemonical Models
4. -すFF-AXV , RECEVVER AND BACXGROGND
(v) The off-axis e receiver model incindes specifications of derection type anc sensitu ity. The model is drenssed in ligint oi expressions used in the prog-3m and the baciryound model is described.
\therefore Ij The receiver (SR) is only characterized suffiently to obtain the desired output. For anmole, a power compurzion orly zequires the apermure area (ASB) and the Held of Fiew (FOV) in the intercept ialf place, as the backeground power is $10 t$ sequired, and the $\overline{\mathrm{O} O V}$ in the cross-beam irrection is assumed large exough to infercept the eare widith of the linis beam.
(U) In combrast, the expression for direct-desecion signal-bo-noise ratio, cierelopec in Secuon 2, is

wies

P_{S}	(PS)	- sigal power
M	(8)0)	= mocielation depth of sigral
B	(EWR)	= SR electical bandwidith
-193	(Payt	
E	(1)	
π	(EIA)	= quamblom eftocency of the derector
λ	(IT (1M)	= warelergth
b	(E)	- Placis's canstant
c	(C)	- speed of light
P_{b}	(28)	- beleground power

(C) Severni paramaters deserre special consideraton, in sarthenar the NEP and baciogromi power. The NEP is descerbed hera as the roise power "with the Lid or".
 device suca as a photomaltiplier tabe, but it does not inclade backgromad noise eifecs. The baciogrownd jower is calcnlated based on the maveimgn, and day/right and mereorological conditions bave a verf strong infuence on the SNR observed.
(I) The bacigroumd zodel rised in the progran is composed of an earth blacibody
 to sarThe solar beciegmound is a line zodel zicen from Gast [3-27. The program interpolates to get the solar Lradienes assuming an opticai air mass of 2, and the iacle inciucies

(J) In the case of hecerocyne cetecrion the sigeal-m-noise rato is given by

$$
\frac{S}{N}=I_{\Lambda} \frac{\pi \lambda}{2 c B} M^{2} P_{S}
$$

winere

$I_{\boldsymbol{M}}$	(3)	= local oscillator micing eiflciency
7	(ETA)	3 detector quantom effliency
λ	(ALAM)	= wavelength
3	(BWR)	= IR electrical bancowioti
4	(E)	= Plameir's constart
c	(C)	= speed oi light
\mathfrak{M}	(81)	= zoduiamon factor
P_{S}	(D)	= sigal power.

In general this expression oniy represents the IF SNR, thougi in some cases it may also represemt the video SMR. It siould therefore be used witio care, especially winen radiomeratc dececzion is being evalnated. The mixing efliciency, wich can bave a madimur vaine of 0.7, reny aiso be lower in a practical system. Moreover, coierence requiremens may be only pardally met in a madom geometry. The calculated beteroctyne SNR is thens felt to be of only marginal validity.

UNCLASSIFIED

Secrica 3 - The Computer Mociel
Subsecion 3 - Descrifcion oi Manhenatical Models
3. ATMCSPEEAIC MODELS
 Ite scatering and tansmission models are discrssed in this topic.
(J) Dquation 2-66, the expression derived for nospinericaily scatesed power in Secton 2 , is developed for rise to the compues rodel in an equivalem differental form as

$$
d F_{2}\left(\theta_{1}\right)=\frac{P_{0} A_{3} \alpha_{3} d \phi_{3} I_{I} I_{2} F\left(\theta_{i}\right)}{B_{1} \sin \theta_{i}}
$$

where

Po	(FP)	= Luik tomenit power
A_{s}	(ASE)	= 5R aperase area
a_{s}	(ALFSCI)	= amospieric scotwering coeflicieut
$\mathrm{d}_{\text {s }}$	(DPEI)	= elemeri of SR EOV along bearo
I_{1}	(II)	= to scatwatiog volume elenent
I_{2}	(12)	- atmospieric tamsmence trom scattering volume elemeat m SR
$\boldsymbol{F}\left(\theta_{i}\right)$	(FTEETA)	- amospieric scatering distibution fuction
E_{4}	(RS)	- range fiom scatesigg volure to SR
$\theta 1$	(TE5SA)	$=$ angle of intercept of C_{g} and the livis beam.

This expression is then merically integ-ated across the SR FOV in the progann. It can be sem that the atmospheric paramerers are criticai in the calculation oif anmosgieric scater.
(π) The transmittance irsm poid to point in the atmospinere is given by

$$
I=\exp \left[\int_{0}^{E} c(b) d z\right]
$$

wiers the integrition is car-ned out along the propagation parh, and
$B=$ lensth of propagacion jath
$\alpha($ ($)=$ altitude-ciepercient exticenon weif cient

The soutre used in the comucter progran zsen 2 3tepwise infegration orovide ailaltence emabilfty siven a simen α (1).

KCLASSIFIED

(U) The absorption and scartering of the anmospinere is che to the molecular and aerosol comstiments of the armospiere. The scartering properaes (coenficients) are dependent on particle size and waveiengh, but vary in a zelatively well-benaved zanzer with wavelength for a grven ser ci amospiaetc concitions. The molecular absarp5or however. has a very fine sfrucrure, due to its ceperdence on the qumam strucmere of the atoms and molecules in the atronpinere. The many lines winich make up the absorption specirwn vary in intensity (resonance strength) and widit, and are not predictable using simple theory. Instead, a line comolation competer progran (suci as FIIRRAN) zmst be used, pariculariy to the case of laser propagarion, where the linewidth is so naryow thar a decailed lonowiedge of the atmospieric structrye in the reigiboriood of the laser line is required. For this reason a ser of tables [3-3) is ased in the computer model, and for each wavelength option a subset oi Itre armospineste frees are availabie, eaci with the choice of clear or iazy condition. The tables from the reierence aiso contrite the althrode depencience of the parameters, giving the model an all-altitade modeling capaijity. Table 3-2 is a sample of such a taile. The compurer prognan has five built-in cioices of these tables at warelengis of . $5145, .6326, .860$, 1.06, and 10.591μ. The user also bas the option of inporing a table for an optional wavelengin and using it in the grogram. If such a tabie is not arailable, the user may select to use a fired-coeiscient system wiere the coeificients are sopplied by the user. This method has the advartage that experimemal results may be compared with the program when the coefficients were deternaned experimentally; but on the other band the fesaits are only good for year co-altutude geometries wiere varlation of amospheric propertiss over the altatere differences in the scenario are megitgible, since only one coefilicieat can be imput.
(U) The normalized scatterigg fuction is dependent on many atmospineric parameters, inclugitng telative hwidity and paricie size distribution. The compration of such a frection for a specifc set of conditions requires a Mie scartering calculation. After eamining the experimental and calculated carres available, two curverit approximations were chosen for the program. The frot of these, given in Figure 3-8, is shown superposed on measurnments Feporred ioy Neila [3-4] ior a wavelength of 1.06μ m. The seconc, it 10.6μ, a 10 pears in Figure $3-9$, where the data is taken from the same source. In the prograin the Eirst curve is used to aporoximate $F(\theta)$ for wavelengths smaller than 2μ and the $10.6 \mu \mathrm{~m}$ curverit is used for wavelenghs grearer than 2μ н. The normaiization of the enrves allows their use at any altmade with eraors onir in the particie size discibution.

UNCLASSIFED

TABLE 3-2. VALUES OF ATIENUATJON COEVFICIENT/KM AS A FUNCJION OF AITITUIDE

HOIL EA

$\stackrel{\circ}{\circ}$	

CLASSIFIED

Figure 3-8. Normized Acmospineric Serrering Discriburion Furnerion Used in LACM 20 ior Waveleagits greacer tixn 2 inn. The firted exrve is compared to courposice mesurement dara at $10.6 \mu \mathrm{~m}(3-4)$.

UNCLASSIFIED

Figure 3-9. Normalized Acmospheric Sarrering Discriourion Funcion Used in LaCM 2.0 fo. Wavelengris less chan 2μ. The fireed curve is compared to composire mengremene daea as 1.06 Hm [3-4].

UUU'ASSIFIED

Fi. se 3-12. The Kefracive Inciex Stricnure Function, Comparing the Compurer Fir to Theoretial mociels (3-0].

UNCLASSIFED

Section 3 - The Compurer Modei

1. COMPUIER PRCGRAM OV ERVDN

 aeed to iajoriously propare input data is adcition, de can moritor resuits and investigate is more detail those sescits that may lmerest inc. Ihus, i user may sit down at the terminal and in one session invesugate a link, EFst deterniming the cintilen parmenters and then investigatieg them in detail.
 the generai Ilow oi tie prognti. Appendir 3 contains fow diagrams ior eacin mocuic. The main toutite initally calls the interective inpur routre wicici prompts the user ict
 is programoned so that oniy the parmineters requined to do wat user wants ave asked for. For emmple, if the user requires a power computation, the routne will . not prompt bin for the baciground type, as it is not used. Adetitonaliy, deintilt values are provided and displayed to the user so ae can see what sort of input is expected or
 iapiag to go trough the whoie process, unless ie makes a ciange that requires =ore inputs than ine previously had specified.) Cnce te link parametezs and man type Iags iave been set, the computational rourbes are cilied and execute the swa. The user
 or ship the output if all be desires is a plor.
(I) As can be seen in the Bgare, two different inimopal computationol routnes are available, one for a soace-tr-3round scenarion cailed STOG add the other for anrourbeam maiysis, called SEITY becanse it sets up the mode geometries, winch will be.
 be ciesires to compure the racius of the tris beam at the grourc or desires to input it; if it is to be compured. subroudme SIBEAM is called to do the coraputation. The power at the off-acds seceiver is computed, amd printed in the case oi a yarrow-beam ifils. SETTP calls computanomai rovinea as zeeded to generate a SNR or jower proille of the link. Control then retorns to the main progran winezt te grapics contues are called, if aradable. Grapics are inghy instilation depenceut, ard are por recuired io tun the program. Taktas into accoure the installation's scuipment a user can wite a grapics ronder best stited to his use.
(T) Afler a Itan is complete, the user can run a sensitivity amalysis in widich be may vary the atmospieric, port scattar, aed reilectance jarameters to deternace how urcertainties in them Inay affect ifis concirnsions about 3 loic. The user can hen begin a uew Frin, or he may swop erection if he is done.

ULASSIFIED

Figure 3-13. Simplifed Flow Dingram of LiCM 2.0

Section 3 - The Computer Modei
Suisection C - Eseris Gucie m LAC3I 2.0 Computer Progan
2. ATPYI DESCRIPIION
(0) In this topic the inuts toncM 2.0 ass denned and the procecinse for using the interacEve routine is described.
(0) The ECISTIROM COmputer Model is ieterictive and ans 3 verf leable infot reume that is cesigned to allow an analyst to use the compruter without extensive pro-
 iffcarions will emjio: moning oi the program in a batci (bacloground) processing envirament, as described in Appendix 3.
(U) Figure 3-14 illustrates the invur procecive. The user calls the prognan, and the program begins executing. The flist parmerer ie is asised for is the linis wavelength. IVve choices are premet, and a sim choice allows any other wavelengit as a seiection. (The sample inprit the igure is sorewiat system deperdent. The question maris ander \#e prompt statememis SFstem gemerited, andi the BMM TSO system allows deinulting to the present value in core by simply putng in a comma.) The selection of 4 then sets the waveleagh to 1.06 inc. (Eowever, all inpurs except optical bandwidth are in Mrs urits). The stanciant prompr zessage has an imput code followed by the pariable name, descmipion, ard deiailt raiue. At set of parial prompt messazes
 of this ars described in Appendix B.
(U) The user is prompted for the atmospiceric model be wants. Ee bas two oplocs: to eater ins uwn aisorgion and scatering coefinciects (ISER), or to use the AEGI jata which provides an all-aitutace capability. If AEGI data is selected and the user has selected a aci-deiault wavelengh (1.e., OTERR) a complete set of data ior that wavelength will be expected by the program, and the user will be asked which woit the data will be read off of. This data is to be formatted in a 6X, 7E9. 2 format with two cards per row of data from the table of AFGI data, siown in Table 3-2. In the case that a deinulted wavelength is selected, the data is in core and the program proceeds to the next prompt messages, requester the atmospheric model tyee and visibility. Reference 3-3 contaios a detailed description of these models and siould be readily available to the user, so they will not be described firther.
(t) The vent inputs are more straightorward; the hansmitter optics Hiameter an: beamwidth are input. If the beamwidth is less that he difinction limit, a messagr:" with the diftraction limited beamwidth is printed and the beamolith is requested agin. which must be greater than the diffrcetion linited beampicth. The BSDF model (port
 cept, and 'giftehes' of the BSDF are Fearuested, as iescifibed in the previous suissection. (t) The nex gromp of induts spectify the bacissmp char3cteristics and orientation. The user can select either a lamiverian bactestop or one with a specular camponent. The defanit las a 3^{0} specular sompanemt, but the user sbovid hy to find wiat model best suits his beckstop. The lambertan model requizes a rerlectlon coenincieat, ami te specrilar model sequites the defise refiecton axi the specilar amplitude and width. The aext inputs, PSIAZ and PSRED. allow the bacirswo to be Ilted back and forth or up and down salative to the derialit position zormai to the link beam. The receiver
 3 specniar and difuse coreponarn.
(T) The power manmitred, PT, is sequired in wats, followed by the linik Fange and
 specified by the parameters X, RDP, and GaMDNT, as described in the geomeny descziption and illusmated in FIgare $3-1$.
(U) Two flags are set net, MCOMP, and MP. The JTogran can be instracted to compute the power, or sigeal-wo-noise =3io, and it can isolate the sources oi scatrered raciation to the amospinery, hansmitter, or receiver/backestop comination, or it can provide the total fram all sources. As descmibed later, the ofrout miojes will break these componeuts our so the user can see the stgandicance of eacio.
(i) The gext parameters describe the off-axs iseceiver, its detecHon characteristics, and select the bacis teristics but this is not yecommeaded in genemal. Two detection types are allowed. direct derection and beterodyae jetection. The SNA expressions for the dثerent detection types sequize difierent parameters, as sinomp in the previous subsection. The parameters common to both are the elecmoric bonciwidth of the SR (BW), the quampan einciency ETA, and the mociviation depth RM. In the case of illect detection a moise factor F is specinied, along with the system SEP, and the optical bandwidth BWOPT of the precierection bacleszound تilter. If heterodye detection is selected the miring eificiency EM is required. Note inat in the sampie input session in Figure 3-14 a wavelength of less than 2 was selected. So that the choice of Hrect detecent was assumed automatically.
(U) The area of the off-axns Feceiver, ASR, is required for all cases, as is the EOV in the intercept piane, PEI. For cases whers the bacirgromd power is compured 2 second impur PEIAZ is rectured. This is the FOV is the plane orimogoral to the intercept plane, imtersectiog the intercept plane along the SR oprical axis.
(U) The last fem iuputs are the bood leggthe of the tansmitmer and link receiver. If the lengths are greater than zero their diameters are also requested by the program, as ilhustrated for the receiver jood. The foal inpot we descibe here is the intercent plage orientation angle, GivinT. Figrae $3-1$ shows how this angle deflaes tine intercept inalf-giane.
(I) The last few impurs select the modes and their reiated parameters and will be discussed in derall in the nexr towic.
(ख) Flgure 3-15 is a listing of the inout swmant that the user can Fequest. The inpur sommary conenins the One paramerer appears wixici merits special atrantion, and thar is the angle of the intercept balf-piare comajoing the speciliarly reflected component of the bacistrop, described in dezill in Suisection 3. The rest of the summary is self esplamany. (v) The spacs-to-grocad inport is invoked by spectifing a tomsmiter aikmode of more than 100,000 meters. The SR ifsrance to the bean is required, and the user either can inpur the beam Fodius ind peak intensity at ground level, or have those parameters calculated. If they are to be calculared several other parameters are required. The
 quantines the stability of the tansmitter platiorm, as described in Subsection B. (v) Tabie 3-3 swonazzes the biemroty of the inputs and will be usetill to the user conerg a session in maling cinanges between
 or commenty that are not obvious.

UNCLASSIFIED

Figure Mit. Ulustract of interacive Session (1 of 3)

MCLASSIFIED

Fugre 3-i4. Husuraion c! inceractive Session (2 of 3)

UNCLASSIFIED

Figure 3-14. Hincracion of inserncerve Sestion (3 of 3)

LTCLASSIFIED

SCENAKIO UEOMETHY

LINK HANGE，M－ KC ALI．M \qquad JACKGHOUND TYUE－	$\begin{array}{r} \text { 5. COCET03 } \\ \text { 2. OCCE+01 } \\ \text { SUNY } \end{array}$	$\begin{array}{lll} I_{K} & A E I, M \\ S_{K} & A L I \end{array}$	$\begin{aligned} & 2.000 E-01 \\ & 1.000 E+01 \end{aligned}$
Linï paiknatious			
MAVELENCT．A，	$\begin{array}{r} 1.060 E 00 \\ 0.10000 \\ 0.01 \\ 0.10 \end{array}$	Th Poner．	1．OCOE + C0
HC A		IK APERTURE，M	0.10000
MC゙ 1 （XOL LENGTH，M－		OR HOUD LENGTS．M	0.0
nc rixJd Did．． 4		İ $\mathrm{H}(\mathrm{XID}$ DIA．，M	0.10
		IK צEAA NIDTA，iAd	1.0005004

SH ParidacTETS

$$
5.0 C O E-03
$$

APERTURE，SQ．M．－
LETEION TYPE，－
0.0500
5. OCCE-03 NEP．M／RT．HZZ．
EXCESS NOISE OIR

$$
5.000=-02
$$

$$
1.00
$$

$$
1.0 C O E+06
$$ QUAMJUM EFF．— 0.70

```
AOUE [Y酋
-
&人X, a=l゙ご
SH PLAIVE, UES -
2.500E+0.3
UUTPUT TYPE
S/N. Db
X,MELE:ZS -
1.0COE+0.3
```

ASMOSPHEKIC FAKAMEDERS

```
UATA SOUNCO゙: - AFOL
```


aSUR MOUEL TYPE NONLIIUEAKIT：ES	AVERAGE 0	3SUE SLOPE DS／DE 3SDF INTERCENT	$\begin{array}{r} -2.500 \\ 200.000 \end{array}$
BACKSTOH TYPE دACXミ็U AZ，jev	$\begin{array}{r} \text { LAMbE:TI }: A N \\ 0.0 \end{array}$	HEFEGTION CDEE－ SACXSTJP EL．DES	$\begin{gathered} 0.1500 \\ 0.0 \end{gathered}$
QA IYPE	UNKNOTN	UIFPUSE LEVEI－	0.0
SiEcollar max－	0.0		0.300

Figure 3－15．Sampic inpur Summary

$$
\begin{aligned}
& \text { LIVEAN FOV RAD - } \\
& \text { rov AcROSS इت̈An, R } \\
& \text { OHT JN. } \mathrm{HCRONS} \text { - } \\
& \text { rOD. UEVIT. - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [NTEHCEPI MOCE PARAMEIEZS }
\end{aligned}
$$

UNCLASSIFIED

TABLE 3-3. INPUT EMERABCET OF TSEABE ROUTME. EACE INPTI CODE EAS ONE OR MORE VARIABIES IT ACCESSES.

ETPUT EIERARCET

Code
1
28

2
3
31

4 32

44

Input Variables
Waveleggth
AE:Osphezics
Cptional - Infut absorption s scattering coeffilents

- Read in aew 1 FGI tables

Transmitter Cptucs
Tranmitter Eeanwidth
BSOF Modal

$$
\begin{aligned}
\text { Optlomal } & \text { BSDF Slope } \\
& \text { - BSDF Intercept } \\
& \text { - Gilteines }
\end{aligned}
$$

Ingk Recenver Optics
Baclastop Type

- Diftese Rerlectancs
- Specilar WIdth \& Miadrmm

Backertop Orieatation

- Andmuth
- Elevation

Ifak Transouit Power
Ific Eange
Tramsortter Altitorde
Linit Receiver Alteftado
Spaco-bomGround Flas
-II Spaco-to-Gromion

- Off-ixds Distance
- SR Elevation Angie
- Ground-Level iltetade
- Beam Compration Flag
- Jiter
- Irrbulence Flas
- Beam Radius
- Intensity os Axts

UNCLASSIFIED

UNCLASSIFIED

TABIE 3-3. NNPUT HIERARCYY OF TSEARE BOUTINE. EACE INPUT CODE EAS ONE OR MORE VARIABIES IT ACCESSES. (Contumed)

Iuput Code	Imput Vazables
25	Computation Flas (Power or Sma)
5	Source of Scatter Flag -For Shil Cases-
14	- Mociviation Depth
45	- Detection Type (Direct or Eeterodyue)
15	- Eetriodyre Mixing Esforemey
16	- Quantom Esflency
17	- Yoise Figure (Drect Detection)
18	- SR Bandwidta
19	
29	
30	- Baciground Type (Direct Detection)
7	- İnic Banciwidth
12°	SR Apermse
11	SR FOV (Ln Intercept Plane)
40	SR AZ FOV (Oat of Plane)
20	Transmitter Eood Length
42	Transontter Eood Diameter
21	Receiver Eood Length
43	Recelter Eood Diamerer
22	SR Althorde (Space-to-Ground Case)
41	Inercept Enif-Flame Orientation
28	Moda Type
	- RPX (Modes 1-3) - X (Modes 1-3) - Copmur Ierral

UNCLASSIFIED

Section 3 - The Compurer Model

Suisecton C - USAI's Guide to LACM 2.0 Compurer Proginn
3. DESCRIPTION OF MODES LND OUTPUT
(T) The intercept modes are designed to tres the prognan user fram seting up a signifcant amount of the geometry needed to do a calculation. Each mode goes through a sequence, moving or orienting the SR like a probe to produce 2 power or SNR profile of the linis.
 deftere the SR position in three-dmensional space, and two to deflne its orientation. $三$ In the geomerry ezmblished and discussed previcusiy, the $S R$ and its optical axds arof corined to the intercept half-plane and thus oniy three coordinates remain to be specified oucs the intercept half plane has been spectifed. The position of the SR in the intercept haif-plane can be specifled by its ofi-azis distance X and its dowarange tistance RPX. Note that RPX may be aegative (in the thansmitter's rear bemisphere) or positive, while X must always be positive. The flrst throe modes go through a ser of
 ards in the intercept balf-plane.
(t) In Mode 1 the SR position is Exed by the input values of 3 and njas. rise opecear axis of the SR is slewed from the tranmitur to the receiver, fincrementing the orientation angle θ by one degree near to the transmiter and receiver, and by mo morethan ten degrees in between, to field a total of about 37 points. As illustrated in Figure $3-16$, Mode 1 is tdeal for evaluation of the poim (RPX, S) as a potental $S R$ locatam. (V) Figure $3-17$ is a sample output table for a typical Mode 1 case. The sigral-to-: noise ratio in $d B$ is listed, along with the power contributed by each source considered. As would be expected, the transmitter is seen lirst, and whea θ is incremented it is $n 0$ longer in the $S R$ feld of Jew. When the receiver falls into the feld of view, the mode is complete. In Mode I the edge of the FOV is on the trasmitter to mazimize the atmospheric scatter fisible, and on the opposite edge for the receiver/bacikstop. When the data is plotted (Figne 3-18) the transmitter and receiver coutibution show up cieariy. It may seem odd that the recelver contriburion in this ease is almost eqionl to the transmitter contribution; however, the nansmitter scatter is very strong at small amgies while the backstop is a lambertan reflector, and at 22 degrees off normal the tramsmiterer scater has dropped down signifficatly, while the bacissrop bas wolly drovped by 79 from its madimum vaine.
(V) In Mode 2 the \mathbb{R} riews a fred point along the beam, and is incrementad to effectively move the 52 about the point with the center of the FOV orieated toward the" point. Note that asmospheric transmission losses are (for a narmow FOV) comstumt : for Mode 2, winie in the Mode -1 geometry the path length from transmitter to scattering volume to $\mathbb{S R}^{2}$ increases with increasing θ. Another geometric factor is that the scattaring roiume, deflined by the intersecton of the linik ands and $5 R$ FOV, is cianging with 9 , and is mindroized at 90 degrees. The output of Mode 2 will skow the scatering distribution functian $F(\theta)$ very strongly, multipiled by the geometric scaling of the scattaring volume. A sample ourpur raine has zot been included, as it is idouncal in form to the table for Mode 1. The data is plotesd in Figure 3-18 for comparison with Modes 1 and 3. In this sample case the esred joint is locazed baifway dow the link acts.
(V) Mode 2 has great utility in lcokeng ar the fore or receiver/backstop 3carter. 3y

LXCLASSIFIED

goes from 1 to 179 degrees, the trasmitter profle will have 10 manmitrer couribution for angies greater than 90 degrees, and the receiver will not have any trom 1 to 90 degrees, umiess the backstop is oriented away from the perpendicular to tace the imereept half-plane. It should also be noted that in Mode 2 the X and BPI inputs deñe the distace from the scatexing volume to SR and memsmitter to scattoterg voime respecaveiy father than the SR location.
 Eowever, the SR is moved aiong a parallel to the limis beam in the intercept haif-piane and thens at argies app roachdig 0 or 130 degrees the range from the 52 to the fred poins becomes large. This causes the intensity to drop down due to attenuation, as illustrated by the Mode 3 curve in Figure 3-19. One interesting fearure of this parteular sample curre is that it reaches a maxdron at about 10 degrees. It therefore predicss that minimizing the intercept angle does not necessarily maximize the availaile power if one is confined to a certain oiffatis distance. This resuits because of tradeoits between scattering disterburion $F(\theta)$, Fanarission, and transmitter scatter characteristics. (J) Modes 4 and 5 generste contours abour the linic ustag an iterattre method. In Mode 4, the $\mathbb{S R}^{2}$ is assumed to aiways looik at the transmitier and that porion of the beam immediately in froct of it, withtrin the TR FOV. As shown in Figire 3-19, beginning at an angle θ of one degree the 3 position is adjusted until a desized contorre level is found on the oif-axis ray. The SR coordinates ar that point are then stored, θ is incremented, and the nexi point is searched for. The increment used is smaller for the small angies, and gets lazer with a uminl it reaches 2 madrmum of 2.5°, so that the points are spaced more evenly in X and RPX.
(V) Mode 3 uses the same procedire as Mode 4 (Figure 3-19) but the contours zepresent the total collectble power at the SR from the enure linic, if a FOV excompassing the transmitter, receiver, and beam were used. It is recommended Mode 5 be used for power contours zather than SNR because the $S R$ FOV is used only as 2 probe, and the backy-omed noise will not be computed for the entire composite FOV, but only for the probe FOV. (The program will not compute SNR for Mode 3 but the user can remove the restriction in the tupur routine).
(V) Figare 3-21 compares plots for Modes 4 and 5 at the same conrour level. The Mode 5 jiots were 5 m with the baciestop and recelver at 3 and 10 km . (The ragged effect is due to the convergence critrifi, indicating bere that the power is changting slowly with distance because the $2 \mathrm{~m}_{0}$ convergence criterion is satisfled by many poins just off the actual curve). Note the receivar reilections at 3 and 10 km for the 5 spectre cases. Note also that the scales are pot idemical, i.e., the average (A) scale goes out to 500 meters, bur the dowarmge (RPRs) scale goes out to 12 lime. The ftrst point to the zigitr is at ore degree off the linic ads at the modeis are limited to one degree off the aris.

UNCLASSIFIED

Figwre 3-16. Geometry for Modes 1.3, as Jescibed in ihe Text Nore chas linis arasmitrer and seceirerfaciorop are aeared as points (i.en, rigneraing is aegleered).

VLASSIFIED

INEEACEPTISILITY HOCE

TnE゙ス，D 2.1 245E－0 $2.2 y 45 E+01$ 2． $3 y 45 E+01$
2．4945ジー0｜
$2.5445 \mathrm{C} \rightarrow 01$
$2.6945 E+01$
$2.7945 \mathrm{E}+01$
2． 8 Y 4 こE +01
$2.9945 \mathrm{E}+01$
3．0y．45E＋01
3．8202E＋01
$4.545 \mathrm{~S}^{2} \mathrm{E}+01$
5．2115Ẽー01
$5.9472 \equiv+01$
$0.7224 E \rightarrow 01$
$\%$ 4 486ETO
9．1／43E＋01
$0.9000 E+01$
－ $9.6257 E+01$
$1.0351 E+02$
1．1077E＋02
$1.1003 E+02$
1．2：2 2 SE＋02
1．34う4 -+02
1．3500 1.402
$1.4105 \mathrm{E}+02$
1．4005E－02
． $4405 \mathrm{E}+02$
1．5005E＋02
1．5105E－02
1．5205i゙＋02
1．3305E＋02
1．5405E＋02
$1.5505 E+02$
1．5005E－02
$1.57 \mathrm{C5} \mathrm{E}+02$
$1.5005 E-02$
s／iv，צ
$-2.0195 E+01$
$-4.9591 \equiv+01$
$-4.4351=+01$
$-5.0104 E+01$
$-5.0349 E-01$
－5．1．286E－01
－ 2.2315 E－01
$-5.3035 E+01$
$-5.3748 E+01$
$-5.4451 E-01$
$-5.9292 \dot{E}+01$
$-6.3650 E-01$
-6.7535 EーO
－7．0990E＋01
－7．4070E－01
$-7.6324 \mathrm{E}^{-01}$
$-7.9285 E-01$
$-3.1463 E+01$
－8． 3351 E＋01
$-5.4930 E+01$
$-3.6180 t+01$
$-0.7095 E+01$
$-3.7704 \bar{E}+01$
$-3.3083 E+01$
$-3.8375 \dot{+C 1}$
$-3.8825 E+C 1$
$-8.3921 E+01$
$-8.9029 \mathrm{E}+01$
－ $2.9152 \mathrm{E}+01$
$-3.5281 \equiv+01$
$-6.949 \mathrm{E}+01$
$-6.962 \mathrm{E}+01$
$-5.9833 E-01$
$-4.0065 \ddot{Z}+31$
$-9.0328 E+01$
$-9.0629 \mathrm{E}+01$
$-2.5275 \mathrm{E}+01$

PONER CONTRIEUTED BY EACH SOURCE，NATIS TRaNSiMITER
$2.8738=-10$
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.0
0.0
0.0
0.0
0.0
0.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
hecsiver
0.0
0.0
0.0
0.0

ATMOSPGESE
1．2459E－11
$1.1405=-11$
1．0449e－11
4．5821E－12
C． 7946 E－ 12
8.0791 ミ－12
7.42 83Eー 12
$0.8373 \mathrm{E}-12$
$0.2989 E-12$
$5.8087 E-12$
3．326ソEー12
2．014うEーi2
1．2880E－12
3．6531E－13
0.06 .76 E－13

4．4201 E－13
3．3296E－13
$2.5911 E-13$
$1.7384 E-13$
1．5055ミー13
1． $3549 E-13$
1．2631シー13
1．20．82E－13
． $1693 E-13$
1．11025－13
1．0930E－13
$1.0844 E=13$
1．0692E－13
$1.0522=-13$
1．0332E－13
$1.0121 E-13$
9．8857Eー14
$4.6253 E-14$
$9.3374 E-14$
9.0201 E－14

8．671うご14

Figure 3－17．Sampie Niode－1 Ourpur Tabie

UNCLASSIFIED

:...ULASSIFIED

Figure 3-19. Geamery for Modes + and 5

UNCLASSIFIED

Frgure 3-20. Sanpie Mose-j Ourpur Tabie

Figure 3-31. Contour Plocs for Mode 4 and 5. Noce chat seales of axes are different, distorting che concour simpe.

UNCLASSIFIED

Secton 3 - The Compurer Model
Sucsec=ion C - Tser's Guide to LiCM 2.0 Compurer Psogman
4. GRAPEICS C゙SAGE
(0) Computer zenerated grapaics are bighly device dependent, so the basic LaCMI 2.0 Com-
 be arailaile to the user sven wicen he has so pioteng devices.
(U) As can be seen by emmining the previous topics and the computer rans presented in Section 4 , stapioics are very usemi in presenting a larye amount of data in a meaningili manner. is jarticular, the contrur plots siould prove much mors usenil in practice than the min data points. For this Feason the Fain routine ealls subrourine GRAFIX after it foishes momputins a set oi points geaerated for the ciosea mode. The ETCGES IBM TSO (time shafing option) on widici this progen was developed did Eet have on-line (at the teminal) grapics, so the piot lle was generafed. srorec on cisc, and later ploted.
(U) Several options are possible in the selection oi a srapinics procedurs, and the most geaeral in orter of increasing remote-ternieni compledtr are:

- prater plot/store data
- prioter plot/store plot Illes
- or-sczeen graphics/azri copy

The first two options are possitilitites for ternanals that do oot provide griphics capability, suci as a simple teietgoe, witle the thixid option would require a much more advanced terminai.
(v) The frinter plot is a useril aid to the analyst because it provides cride on-thaspot graphics capability. The poor resolution limits its utility, as shown by the axample in Flgure 3-22, since derails ars easy to oveslook or may ant appear. Eowever, it is quick amd, in the case where the termoni printing speed is a0t too slow, is of use when other graphics are not readily available. The frist option is to use a printer plot, Write the outior on a flle, and either plot by hard or use aoother ploting program.
(J) The secomd option (ased at Eughes in develooing the program) is to generate a printer plot (if desired) and intracivply create tine plot ilie on disc. The Eughes system allows the user to creare a plot mane and piot one or more curres. The aciFantages to this are that he can select 'rics" bounds ior his plots, input talles, and preview the piots ria the printer plot to select the crurres ie wants ploted. .ffer te program is executed, the plots are routed to an or-ijne jiotter at an ourput center. Samples of these piots appear in this reportu As an exempie, Figure 3-22 is the proner plot generated before the Mode-1 curve of Elgure 3-13 was ploted out
(c) The on-scrisen graphics oution is of coarse the fost attractive to an analyst or programmer, but such terpoinals are still cosity and not readily arailable to many asery.
(U) Due to the widely raring types and capabilitles of systams in use in scifentec computing, Eughes ins ciosen to wite a soutine to suit its own system and let the IACM 2.0 aser white iris own. Eowever, the reer siould be reatioded that graphics are not essemtial to the operation oi the progrin and the call to GRAFIX can be deleted while the progran is being used, intil i suitaile grapinics package can be oitriaed or writen by the user.

MAGLASSIFIED

Figure 3-22. Princer Plot Outpur from Hughes LACM 2.0 Grapiais

UNCLASSIFIED

Secenor 3 - The Computer Model
Subsection C - User's Gutde to LaCM 20 Computer Progam.
5. PROGRAM LDMTATIONS

 llimitations are understood by the user.
(U) Due to the compiesity of IACMI 2.0 it is inpossible to foresee every situation that a user will wart io acaiyne, so the limitainons WLI be stated in the roost general iorm possibile. Most oi the limituinons restit directy tom the models used by the progrim. It is assumed that a usez/analyst will have a good worising understanding of the models as described in this report, so that iee can properis imput data and correcty laterpret the resrit. Eowever, the progzan stucture and operation is simple enough to be Fun by someone with a cursor' inowledge oi the models to check the prog-am to see that it executes properis on a given system.
(土) The previous lioitations of the LACM 1.0 miercep chillty program are largely soived in the present progina, as inustated in Table 3-3. The carrent limitations are of a more specific menre, as the basic mode! bas proven to periorm acequately under painological testry. (Pathological testan involves =anoing the prognam with extremes in data, for example, using a link mang oi one merer.) Tabie B-2 Appendix 3 contains comenexts about the input variziles, but tee restrictions are of a "common sense" troe, such as mating the masmitest iood dameter at least as larze as the optics it hoods. The limitaions described here summarize the limitations oi te modiels, and are preserted in Table 3-4. It sbould be moted that many of these ifmitations could be overcome to a sigmificant extert by =ore extensive modeling, as. suggested in the sumany to this sectron.

TABLE 3-3. (N) LACM 3.0 DTERCEPTIBTENTY RESTPICTIONS (U)

Previous [imitation	Presemt raprovemeat
- Flat Earth Model	Curred earru incinded
- Low atistede Atmosphere Models	More detailed models for all altumes
Flrst Order Beamscater Function	Irpanded. more deratied furction based on erperiment
ast Orier Geometry	Exact amatrical form
	Detarmined major sources of uncesporntr; provided means of sensitivity amalysis
quodremeat Sor Weather Data Set	Defaulted sets provided
- Untested Modal	Point comparison with experiment
- To Prodston for Trmersept S / N	Added \uparrow ¢

LLASSFIED

TABLE 3-4. (U) SUMOLABY LOMTATEONS AND ASSCINPTIONS OF TEE IACM 2.0 MODEL (

Modei	Limatailon/Assumption
Genersi	- SR orientation $\theta \geq 1^{\circ}$ - SR does aot have acress to main beam - Operator manipulation is required for scenario imerrction otuer than baciescop \& atmospineric variaifons
Transmitter	- Modeled as a point source - Sdelobes are smooried - Baflle assumed 100% absorpite - Axal scattering symmety assumed
Link Receiver/Backspop	- Modeled as a poins source - Eas only one specuiar component - Backstop always collocated on linik ands
Sigral-to-Noise Model	- Eeterodyne expression yields IF value - Does zot account for modulation type
Amospinezics	- Eorizontanly bomogeneous (no local Variations) - $F(\theta)$ is Etred - Sngie scattezing only - Amospiezic multipatin negiected - Data zhles required ior ouccoal wavelengins
Background	- Assumes fred solar geometry indepencient of SE oxieatation - Asswaes 20 dB clouciy day to sungy day difference
Space-tomground Case	- Verfical link assumed - Gaussian protile assmmed (a) sideloie swacture) - Power caicaiation only 4 Approzimare method

UNCLASSIFIED

REFERENCES

3-1 Joseph W. Coodman, Intochaction to Fourier Oodes, McGraw- ThII, New Forix, 1968.

3-2 P.Bn Gast, "Solar Electomagnetc Baciatan", Chapter 16, Fagibook of Geobirsics and Soace Envinoments, Seat. Valley, Ed. , McGraw-ifin, New Yoris, 1965.

3-3 R.A. KcClatahey, Bow. Fean, J. ‥A. SeToy, F.E. Volv, anci J.S. Ganing,
 Sesearig Iaborimies (AFGI) Repory No. AECRI-72-0497, i972 (U).

3-4 John Yella, "Vulnerability Study-Aerosol Scatering Measurements Task', Voime 1, Eughes Aircint Company Retort Vio. PiS-99 (DAPDA Order No. 2274) Marca, 1974 (V).

3-5 I. Y. Pecicham, "A Simolifed Equarion for Caiculating Far-Fieid Impersity",

3-6 It N. Pecknam and B. W. Davic. "A Slmplifed Propaganon Model for Laser System Stadies", Ai- Force Weapoas Laioraioty, Report No. AFWI-IR-72-90 (REV), April. 1973 (C).

WNULASSIFIED

APPENDIX B - LACM 2.0 FLOW DIAGRAMS, MODULE DESCRIPTIONS, AND JCL

The purpose of this appendix is to provide a programmer/analyst a starting point in modifying LACM 2.0. It contains descriptions of the source modules, a detailed listing of the program inputs, and module flow diagrams. The appendix begins with a brief discussion of the Job Control Language (JCL) used at Hughes.

JOB CONTROL LANGUAGE (JCL)

The JCL used at Hughes to run LACM 2.0 consists of TSO (Time Sharing Options) command procedures (CLISTS). The CLISTS used are listed in Figure B-1.

The first CLIST, named GETSET. CLISTS is used prior to running the program. Execution of GETSET allocates the datasets to be used in the program to the appropriate logical units. The user's terminal is represented by dataset (*) and is allocated to logical unit 5. Logical unit 5 is used to read the data, which the user must input from his keyboard (prompt messages are written on unit 6, but the TSO system automatically allocates the terminal to unit 6 so it doesn't appear in GETSET). If an end-of-file marker ($/ *$ on IBM system) is encountered on unit 5 , the next file on unit 5 will be read from in subsequent read instructions unless no other file numbers have been allocated. For example, the first read will be made on the first file of unit 5 , designated FT05F001. The first end-of-file marker read in from the terminal will cause it to branch if an END= (end-of-file mark) is encountered, and it will read next from file 2 of unit 5, FT05F002. However, the terminal is also allocated to this file so the user will not notice any difference; and all he has done is to make the program branch to a preset portion of code up to ten times; the eleventh file is not allocated. This is not a problem in actuality, since this feature is only used to switch prompt mode and should not be needed more than a few times in a session. The last instruction in the CLIST allocates a dataset named PLOT. DATA for plotter output. The raw plot data for the plotter generated in the plotting routines will be written on the dataset to be kept until plotted out using the CLIST named GETPLT.CLIST, also in the figuri:.

To compile the FORTRAN source and resolve external references, two CLISTs are used. The CIIST named FORTPL. CLIST compiles the graphics routines in data set GRAFIX. FORT and loads the object module into a data set named LINKEM.CLIST. The CLIST named LINISEM. CIIST compiles the rest of the source (located in data set ECK1. FORT), iniks it with the plotting routines, and resolves external references from the FORTLIB, SCIN. PGMLIB, and SCIN. SCILIB llbraries. The load module is placed in data set ECK. LOAD and a message is printed on the terminal telling the user the program may be executed by typing 'CALL ECK (MANN)'.

The libraries referenced contain the plotting routines and the interpolative routine used in subroutine BACK.

Usually the program is ready to execute, so the user only needs to execute the CLIST GETSET. CLIST and call the program without having to compile and linkedit, unless he has modified the source code. Note that if the user wants to write the

UNCLASSIFIED

F0@TPL.CLIST
 00010 FORT GRAFIX.FORT LOAD(GRAFIX.OBJ(MAINI) COMPILE GRAFIX

GETPLP.CLIST

Figure B-1. TSO Command Procedures Used to Run LACM 2.0 at Hughes. Each procedure is involved by typing "ex name" where name is the procedure to be involved.

CLESSIFIED

output on a unit other than unit i, he must have allocated the unit prior to running the " program, since the program will ask him for the logical unit number.

MODULE DESCRIPTIONS

The module descriptions that follow are not intended to fully describe the entire module in detail. The modules are commented and thus the source code contalins a great deal of information, so the material presented here describes the general features of the modules and explains unusual portions of code. Table B-1 presents a summary of the mochules, their function in the program, and flow diagrams for the modules appear in the following pages.

MAIN

This is the routine that directs the flow of the program, reading the input, calling the routines to compute the cutput and generate graphics. The first read statement reads a flag which is 1 for time-sharing. Tre write statement immediately proceding it prompts the interactive user to start by entering a 1 . Note that the interactive input routine TSHARE is called or the program skips to read the inputs in formatted form in the case of batch (background) processing. The rest of the program flow is straightforward, as illustrated in Figure B-2. Note that a few interactive write/read combinations are in the code but are skipped in the batch mode. In all cases the interactive user is prompted for his input.

BLOCK DATA

The input variables and constants are initialized (defaulted) in this portion of code. Most of the data is for the atmospheric model and consists of scattering and absorption coefficients for the aerosol and molecular atmospheric constituents.

Subroutine TSHARE

This subroutine, shown in Figure B-3, does the bulk of the interactive inputs. It promyt. the user for information, taking into account what choices he already has made about his system, scenario, or desired output. Two characteristics make this routine a bit unusual: they are tine availability of two levels of prompting, and the capability to input one or more variables after a run for the next run without going through the entire list.

The prompt level is controlled by a logical flag PROMPT which is true for full prompt and false for partal prompt. The full prompt message prints out the input code (if it exists for the input), the variable name, description, and default value if there is one. The partial proript mode only prints the input code and variable name. The prompt flag may be switchec by the user by typing in an end of file (/* on IBM). The READ statement has an end-cf-file check which branches to statement 650 where the prompt switch is negated (PROMPT $=$. NOT. PROMPT), the file is incremented, and the program resumes at the input code it was at when the end of file was encountered. Two methods are availabie in the program to accomplish this; the choice of methods is dependent on the installation the user has (See the JCL notes in this appendix). If the user can use a logical unit, with several files, as is done at Hughes, the :irst flle will be on logical unit 5 (variabie LUNIT) and is denoted FT05F001. When ar ind-of-flle on the terminal is encountered the system automatically will read off of i CO5F002 in subsequent read instructions. Thus FT05F001, FTKJF002, etc. are

UNCLASSIFIED

TABLE B-1 LACM 2.0 MODULE NAMES AND FUNCTIONAL DESCRIPTIONS

FUNCTIONAL DESCRIPTIONS
Module

MAIN
BLOCK DATA
TSHARE
SETUP
MODE5
COMTOT
BEAM
TRANS
FTHETA
DELPHI

ALFAEX
ALFAAB
ALFASC
TSCAT
BSDF
RSCAT
RHOBAK
RHOOA
BAFRAT
STON
BACK
GRAFIX
STOG
STBEAM
SIGMAT
QG10
CNSQ

Controls program flow; writes output
Initialization of default data values
Interactive inputs
Sets up mode geometry
Calculates total power at a point
Computes power or SNR for a single SR orientation
Computes atmospheric scatter into SR FOV
Computes transmission from point to point
Returns value for scattering distribution $F(\theta)$
Returns FOV integration stepsize required to maintain 1\% accuracy
Returns extinction coefflicient
Returns absorption coefficient
Returns scattering coefficient
Computes transmitter scatter power at SR
Returns value for BSDF of transmitter
Computes receiver/backstop scatter power at SR
Computes backstop directional reflectance
Computes receiver optics directional reflectance
Computes hood effectiveness
Computes SNR
Computes background power in SR
Produces graphics (user supplied)
Computes power for space-to-ground case
Computes space-to-ground link beam radius and onaxds irradiance
Computes atmospheric turbulence beamspread
Gaussian quadrature integrator
Returns atmospheric structure constant

MOLASSHITD

Figure B-2. Elow Diagram for LACM 2.0 MAIN
UXCLESSIFIED

UKCLASSIFIED

Figure B-3. Subroutine TSHARE. The major flow is shown, and the input list is described in the text.

UKLASSIFIED

allocated to the terminal and the end of file will simply cause branching to statement number 650 to reset the prompt flag. The alternative way is to start reading on unit N and increment the unit. For example, allocate logical unit 20 to the terminal, and an end of file will cause branching to statement number 650 where the logical unit would be incremented (LUNIT = 21). The variable MODESW controls which method is used, and the programmer should default the value in BLOCK DATA to 1 or 2 to select the desired method. Note that the program will assume input is coming from logical unit 5 and unless the proper files are allocated the prompt switching will not work. However, the program will work in the full prompt mode with no special preparation other than the usual allocation of unit 5 to the terminal.

The capability of selecting only those inputs that the user wants changed is accomplished by assigning an input code to each key variable. As shown in Figure $; B-4$, the transmitter hood length has an input code of 20. At the proper time the program will request the input code. In certain cases changing one parameter will affect others. In many of those cases the program will prompt the user for other variables. Referring to the figure, it can be seen that if the hood length is changed on a one-at-a time basis (i.e., the logical variable CHANGE is true) the program will also ask for the hood diameter before returning to ask for the next input code. If no other inputs are to be changed a response of zero will end the input session. Table B-2 lists the variables, their descriptions, input codes, and default values.

Subroutine SETUP

The geometry for each mode is set up and a sequence of data points is computed. A flow chart is shown in Figure B-5. The first computation performed checks to see if the bottom edge of the link beam hits the earth between the transmitter and receiver. If this is the case, a warning is printed. The program flow then goes to a portion of code for the mode selected. Flow charts for each mode are shown in Figures B-6 through B-10.

- In Mode 1 the SR location is fixed so that the SR altitude is computed before entering the loop. The initial SR orientation is set such that the edge of the SR FOV is on the transmitter. The orientation angle THETA is then incremented until the edge of the $S R F O V$ is on the receiver. The transmitter and receiver are treated as point sources, and placing them at the edge of the FOV enables maximum collection of atmospheric scatter at the same time. The power or SNR is returned from subroutine COMTOT and the oupput table is written on logical unit NOUT if NOUT is greater than zero. The values cf power or SNR and THETA are stored in the arrays XINT and YINT and the number of data points computed NP ls also kept.

Modes 2 and 3 are functionally very similar to Mode 1 except the SR position is changing, and the position va.iables X and RPX must be computed for each value of THETA. The SR altitude HS must also be recomputed at each location. Note that the smallest orientation angle THETA allowed is one degree. The call to subroutine COMTOT and output table WRITE statement are done in the same way as in Mode 1.

Modes 4 and 5 iterate to find contours about the link. The root finder in the program uses a secant method of approximation. A simple expression supplies the

UNCLASSIFIED

$\checkmark \stackrel{\text { N }}{\sim}$
↔ Input Scheme Discussed in Text.
C
URGSSIFIED
TABLE B-2.

	Variable	Description	Units	Defaults		Input Code, Commente
	Alamba	Opelonal Wavelength	Metes	-	1	Required when LAM $=6$
	ALFAB	Absorption Coeffrclent	1/Meter	5. E-5	28	For user ingut atmospherics, note unite
	ALFSCT	Bcattoring Coefflcient	1/Meter	S. E-3	28	For user input atmospherics, note units
	A.3n	SR Aperturc Area	Meter ${ }^{2}$. 05	12	Note unlte
	butff	Backstop Diffuse Reflect:nce	-	. 3	32	$0 \leq$ BDIFF <1
	BDLR	Dlameter of Recelver Hood	Meters	Dr	43	BDLR \geqslant DR
	BDRT	Dameter of Tranamitter :iood	Meters	DT	42	BDRT \geq DT
	BFWHMS	FWIMM of Backstop Specular	Degrees	3°	32	
	BLR	Receiver llood Length	Meters	0.	21	
\cdots	BLT	Transmitter flood Length	Meters	0.	20	
\%	RMAXS	Backston Specular Peak	-	0 .	32	0. for no apecular component
6	RW	Link Information Bandwidth	Hz	1.E6	7	
	BWR	SR Electrical Bandwidth	Hz	1. E6	18	
\cos	RWOPT	SH Optical Bandpasa	Micrometers	. 05	29	Nole units are micrometers
1	DCORA	Value of Contour (Array)	S/N dB/PWR, dBW	0/-80.	27	Modes 4 and 5 only
-	DEVAB	Frectional Abeorption Deviation	-	+. 1	-	
\square	Devsc	Fractional Scattering Deviation	-	+. 1	-	Use negative value to reduce scattering
-	DEVBR	Fractional BSDF Deviation	-	+. 1	-	
	DIFFOA	Dffruse Recelver Optice Rellectance	-	0	33	DIFFOA <1
	DR	Recelver Optles Diameter	Meters	. 1	4	
	DT	Transmitter Optice Diameter	Metere	. 1	2	
	EM	L.O. Mixing Efficienoy	-	. 7	15	Heterodyne detection
	ETA	Quantum Efficiency	-	. 7	16	$0<E T A<1$
	F	Excesa Nolse Factor	-	1	17	Unity for no oxcese nolse from gatn
	GAMINT	Intercept Plane Orientation	Degrees	0.	3	0 - horizontal; 90° vertical
	GAMPL(3)	Amplitude of BSDF Giltches	-	0.	31	Only for $0<$ NG ≤ 3 (see B8DF documentatioa)
	GEND(3)	Ending Point of BSDF Glitches	Degrees	0.	31	Oniy for $0<$ NO ≤ 3 (see BSDF documentation)
	GSTART (3)	Bepining Point of BSDF Giltches	Degrees	0.	31	Only for $0<N \mathrm{NG} \leq s$ (eee BSDF documentation)
	GL	Altitude of Ground Lovel	Meters	0.	39	Only for $0<N \mathrm{NG} \leq 3$ (seo BSDF documentation)
	A ${ }^{3}$	$\because \because$	$y \cdots$	*		T
	zu: -10!	$\therefore \therefore \quad \therefore$	-			-
$\underset{\infty}{\infty}$	\cdots, i \%					

UNCLASSIFIED

TABLE B-2. (cont)

Verisole	Descriplion	Unita	Defauls		Input Code, Commenta
HR	Lun RCVR Aldilude	Metirs	10.	10	
H8	Sin Altauch	Motera	10.	22	In narrouteam analyals GAmint, X, RPX define HS
HT	Tramealter Altunde	Motors	10.	9	
IA	Atmouphertes Fing	-	2	28	1-User'a Data 2 - AFGL Date
[BFlaA	Beam Computation Fleg	-	2	16	$\left\lvert\, \begin{aligned} & \text { 1-Calculate link beum parametera } \\ & \text { 2-Input beam parameters }\end{aligned}\right.$
IBSDF	880F Fias	-	1	31	1 - Defmult 2 - ueer BSDF
LER	Senodivity Analyals Frag	-	0	-	0-aklp gensitivity analy is
ierab	Stanativity Amalyola Flag	-	0		$\left\{\begin{array}{l}0-\text { akip sensitivity analy is } \\ 1-\text { do zonsitivity analy }\end{array}\right.$
terbr	Seaniturty Analyots Flag	-	0	-	1-do zonaitivity analyuia
IERSC	Senstivity Analyais Flag	-	0	-)
HEET	Detection Typo Flag	-	1	45	1- Direct 2 - Heterodyne (only for $\lambda>2 \mathrm{~N}$)
inpsum	unput Summary Flag	-	1	-	O-No 1-Yes
Herype	VO Flag	-	1	-	0 - Batch, 1 -Interactive
IRTYPE	ER Parametore Fiag	-	1	13	1 - Delault 2 - User input SR parameters
:stog	Epace co Ground Flas	-	0	34	0 - Narrowbeam 3 - Space to ground
Iw	Turtulence Flas	-	2	48	1-Mild 2 - Moderate 3-Severe
Lam	Wavelonyth Indax	-	1	1	$\begin{aligned} & 1-.5145,2-.6328,3-.85,4-1.06,5-10.591 \\ & 6-\text { Other } \end{aligned}$
mat	Atmoaphere Model	-	2	28	1 - Troplcal 2 - Midiatitude summer 3-Midiatitude Winter 4-Subarctic summer 5-Subarctic winter
BCOMP	Output Type	-	1	25	
mode	Geometry Fiag	-	4	26	See ducumentation of modee
MP	Scatter Sources Inoludad	-	1	5	1-All, 2 - Atmosphere, 3 - XMTR, 4 - RCVR
MVIS	viablity Flag	-	1	28	1-Clear, 2 - Hazy
NATPIL	Lostcal Ualt for AFGL Duta	-	-	28	Must be allocated prior to execution
nbak	Backetop Model Fiag	-	1	32	1-Defuult, 2 -User, 3-Lambertian
NFLG	Background Plag	-	1	30	1 -Sunny, 2 - Cloudy, 3 - Night time
NG	Number of Gututhes	-	0	31	BSDF Glluchea 0 - 3

UNULEXSJITACU
TABLE B-2. (cont)

Figure B-5. Subroutine SETUP. This routine generates the sequence of geometry for the five modes.

Figure B-6. Detail of Mode 1. Nude 1 scans the link from a fixed SR position.

UNCLASSIFIED

Figure B-7. Mode 2 Flow Detail. Mode 2 looks at a point from different angles from a fixed range.

WhLESSIFED

Figure B-8. Mode 3 Flow Detail. Mode 3 views the link from a fixed off-axis distance.

UNCLASSIFIED

Figure B-9. Mode 4 and 5 Flow. These modes generate contours.

MGCLSSIFIED

Figure B-10. Subroutine MODE 5. This routine calculates the total power at a point offaxis.

UNCLASSIFIED

initial guess of the root. Based on this guess, it will attempt to make better and better approximations of the root by the following formula:

$$
R S_{i+1}=R S_{i} f\left(R S_{i}\right)\left[\frac{R S_{i}-R S_{i-1}}{f\left(R S_{i}\right)-f\left(R S_{i-1}\right)}\right]
$$

where RS = radial distance to transmitter $f(R S)=P O W E R$ or S / N at RS

Iteration along radials from the transmitter was selected because other coordinates may have severe discontinuities and convergence may be impossible to attain. In Mode $4 \mathrm{f}(\mathrm{RS})$ is provided by a call to COMTOT which provides power or S / N from the transmitter and the portion of the beam in the SR FOV, while for Mode 5 the subroutine MODE5 is called, which returns power from the entire link. In the case a guess for RS is negative, the previous guess for $R S$ is divided in half and used instead. (Many contours are very rapidly varying functions of RS. To allow easier convergence the values are in dBW for power, $d B$ for SNR, which vary less rapidly since they are in log space.) If convergence is not attained in 20 tries, the program goes to the next point, and will print a message warning the user of the mumber of points that did not converge. A sample output in Section 3 illustrates this. (Figure 3-20).

Subroutine COMTOT

This routine, shown in Figure B-11, calls the routines that calculate the power at the SR from the transmitter, receiver, or atmosphere. It decides to call the routines based on the flag MP which is 1 for all sources of scatter to be included, 2 for atmospheric scatter only, 3 for transmitter scatter only, and 4 for receiver/backstop scatter only. In addition it calls STON to compute signal-to-noise ratio if MCOMP has been set to a value other than 1.

Subroutine BEAM

The power scattered off the atmosphere to the SR is calculated in this routine as shown in Figure B-12. If the SR FOV is large enough, it is broken up into a number of smaller segments and these are treated separately. The transmittance from transmitter to SR is computed only once if it will not vary more than 2.5% for any of the small elemental fields of view. Subroutine DELPHI computes the mumber of FOV steps needed to maintain accuracy in $F(\theta)$, as $F(\theta)$ (Atmospheric Scattering Distribution) varies rapidly in places and a large FOV would intercept a range of values that differed by more than 1%.

Subroutine TRANS

The transmittance from a point at an altitude K 1 to a point at an altitude H 2 at a range R is computed by this subroutine shown in Figure B-13. Function ALFAEX is used to get the extinction coefficient as a function of path altitude, as the integration

CHLASSIFED

Figure B-11. Subroutine COMTOT. This rout-ze computes power at 2 point for a fixed SR orientation.

UNCLASSIFIED

Figure B-12. Subroutine BEAM. This routine computes scattered power from the beam.

LRCaSSIFIED

F-oure B-13. Subroutine TRANS. This routine computes transmittance from point to point over a curved earth.

URCLESSIFIED

UNCLASSIFIED

is carried out along the propagation path. In the case the range is less than 200 meters or the atmospheric model is only good for ∞-altitude (i.e., fixed coefficients) the transmission is computed without integration.

Function FTHETA

The atmospheric scattering distribution function $F(\theta)$ is difficult to calculate efficiently, since it involves application of the Mie theory and iterative techniques are usually used. For this reason, two curves were selected to be used in the program and the curve fit expression are used instead. The FTHETA flow chart is shown in Figure B-14. Note that one is used for wavelengths less than $5 \mu \mathrm{~m}$ while the other for wavelengths greater than $5 \mu \mathrm{~m}$. It should also be noted that the form of these equations is of no physical significance, i.e., they were not derived, but curvefit by trial and error to fit experimental data.

Function DELPHI

This function, shown in Figure B-15, computes the number of elemental SR FOV needed to achieve a set accuracy. An approximate expression for $\partial F(\theta) / \partial \theta$ is used.

Functions ALFAEX, ALFASC, ALFAAB

These functions return the extinction, scattering, and absorption coefficients, respectively, as a function of altitude. ALFAEX does nothing more than add the absorption and scattering coefficients. ALFAAB and ALFASC, shown in Figures B-16 and $\mathrm{B}-17$ respectively, are identical in form and have two modes of operation. The first of these returns a fixed coefficient that has been input by the user. The second uses the tables of AFGL data. The index of the proper coefficient is calculated from the altitude and the coefficient is returned. (Note that the choice of wavelength, climatic model, and visibility have already been made and the arrays AS and AB were loaded from the master array AT with the coefficients for the selected combination of parameters.) In the case an altitude greater than 100 km is specified, the coefficient is zero, and in the case an altitude is negative the coefficient for sea level is returned so that contours may be generated for the case of slant path links where part of the contour is under the earth. A message is printed to inform the user of this occurrence.

Subroutine TSCAT

This routine uses a straightforward application of the models described in Section 2 and 3 to compute power scattered from the transmitter. A flow chart is shown in Figure B-18. Functions BAFRAT and BSDF are used to evaluate the bood effectiveness and help compute the lens scatter. The transmittance from the SR to the transmitter is computed differently for the space to ground case, as only the distance inside the earth's atmosphere will affect the transmittance.

C. URESIFIED

Figure B-14. Funcrion FTHETA This routine computes an approximate atmospheric scattering distribution function. L is a flag delineating wavelength regimes.

UNCLASSIFIED

Figure B-15. Function DELPHI. This routine calculates the maximum size of the elemental field of view to maintain 1 percent accuracy.

UUCLASSIFIED

Figure B-16. Function ALFAAB. This function returns the absorption coefficient as a function of altiruc using AFGL .ables.

UNCLASSIFIED

Figure B-17. Function ALFASC. This routine returns the scattering coefficient as a function of altitude.

UHCLASSIFIED

Figure B-18. Subroutine TSCAT. This routine computes total power at SR due to transmitter scatter.

UACLASSIFIED

Function BSDF

The bidirectional scattering distribution function (BSDF) is approximated by a straight line in log space and is computed in this function, shown in Figure B-19. After the straight line value is obtained the glitches are added in if applicable.

Subroutine RSCAT

The power reflected from the receiver/backstnp is computed in this routine using the equation presented in Section 3. The backstop is assumed to intercept the entire main lobe of the beam. A flow chart is shown in Figure B-20.

Functions RHOBAK and RHOOA

The directional reflectance of the backstop and receiver optics are computed in these routines using the diffuse and specular component models. Flow diagrams appear in Figure B-21 and B-22. The backstop can be oriented in an arbitrary manner and can have'a lambertian scattering profile, while the receiver optics are always assumed to be pointing at the link transmitter.

Function BAFRAT
Off-axis lens scatter may be blocked by using a hood. BAFRAT, shown in Figure B-23, calculates the effectiveness of such a hood assuming it is cylindrical and perfectly absorbing. The effectiveness of the baffle is the fraction of the area of the optics that can be seen at a given off-axis angle; so, for example, when this effectiveness is zero the baffle is blocking all transmitter off-axis radiation at that angle.

Subroutines STON and BACK

Subroutine STON, shown in Figure B-24, is a straightforward code of the signal-to-noise expressions discussed in Section 2. The SNR is returned in decibels. The background power PBACK is calculated in subroutine BACK of Figure B-25. Three choices are available, night, cloudy, or sunny. The earth background is computed using a blackbody curve, and the solar background is interpolated from tables. A multiplicative factor of .01 is used to obtain the cloudy day solar background from the sunny day figure. The solar background is broken into two tables of equally spaced points, one in the $U V$ and the other from the visible into the near- \mathbb{R}, and IF statements prevent their use out of the tables' ranges.

Subroutines STOG and STBEAM

The space-to-ground beam power calculation is done in subroutine STOG shown In Figure B-26, by breaking up the vertical beam into many vertical elements. Each vertical element is treated by using the narrowbeam analysis routine BEAM. The vertical elements are arranged in an evenly spaced grid with a row down the SR optical axis and rows to either side. The center row is accounted for first, and the outer rows are done by multiplying the result for one side by two. Eaç element is checked to see if it is within the azimuth FOV of the SR and within the $1 / \mathrm{e}^{2}$ power points of the beam before its power contribution is accounted for, and the power weighting statement function WEIGHT is used to model the gaussian power density profile. Subroutine STBEAM, presented in Figure B-27 is a straightforward application of the equations

UNCLASSIFIED

Figure B-19. Function BSDF. This routine returns the bidirectional scattering distribution function for the transmitter optics.

URCLASSIFIED

Figure B-20. Subroutine RSCAT. This subroutine returns the power at the SR that is scattered from the receiver and backstop.

UNCLASSIFIED

Figure B-21. Function RHOBAK. This function calculates the reflection of the backorop in the direction of the SR.

UNCLASSIFIED

Figure B-22. Function RHOOA. This function calculates the directional reflectance of the receiver optics for a given off-axis angle.

UNCLASSIFIED

Figure B-23. Function BAFRAT. This routine calculates the fractional area of the transmitter optics visible at an off-axis angle θ.

UNCLASSIFIED

Figure B-24. Subroutine STON. This routine calculates the SNR for either direct or heterodyne receivers.

UKLLASSIFIED

Figure B-25. Subroutine BACK. This routine computes the background noise power for a sunny day, loudy day or aighttime scenario.

UNCLASSIFIED

Figure B-26. Subroutine STOG. The space to ground case is set up in this routine, making use or the narrowbeam routine to compute the power.

URELASSIFIED

Figure B-27. Subroutine STBEAM. In the case the user prefers that the beam radius and intensity -n the ground be calculated, this roatine is called.

UNCLASSIFIED

for on-axis intensity and beam radius discussed in Section 2. STBEAM is called only if the user wants the beam radius and on-axis intensity calculated, for if he chooses he may input those parameters.

Turbulence Routines

The subroutines SIGMAT and QGIO of Figures B-28 and B-29 respectively and function CNSQ, shown in Figure B-30, are used to compute the half-angle beamspread of the space-to-ground link beam. SIGMAT provides the geometry needed to describe the path, calls QG10, which integrates CNSQ over the limits provided and the integration result is used to compute the beamspread. Function CNSQ returns the atmospheric structure constant $\mathrm{C}_{\mathrm{n}}{ }^{2}$ for a given altitude H . Subroutine QG10 is an integrator that uses a 10 -point guassian quadrature method.

UNC'ASSIFIED

Fis are B-28. Subroutine SIGMAT. This subroutine calculates the one-sigma jitter due to turbulence of the atmosphere.

UNCLASSIFIED

Figure B-29. Subroutine QG10. This is a ten-point gaussian quadrature integrator.

UXCLASSIFIED

rigure B-30. Function CNSQ. This returns the atmospheric structure constant at a given altitude \mathbf{H} for π. d, moderate, $\cdot \mathrm{r}$ strong turbulence.

Section II
Off-axis Sample Run


```
0
    irmat Fidu?
97
```



```
I
\begin{tabular}{|c|c|}
\hline ＊次 & －sumar \\
\hline
\end{tabular}
```


scemario ョeomitrs

1̇rik Ferzmoters

srチarョmet，ers

liresr fovv ran	8．0006－02
fov scros＝besmy r	1． 70 OE－02
\＃゙in	1． 00
mod．Jertin	1.00
Earmidition	1．0006＋06
すark eurrent．g 3 －－	L．OOOE－09
ort bwy micromis	$5.0005-02$
bit iritervel． 5 －-	1．OOOE－06

Format for input file：
file99

 formos．

5rbarcemt mode =armmoter

interceftinilitur morke 6
SF location:

0
Go wou warit sratiner rump 1 -upe $2-$-rm
1

1

$\dot{6}$

נincarertabitite more 1

tinetay	
$2.40936+01$	－1．6939E＋61
2． 5093 ETOt	$-2.64025+01$
$2.6093 E+01$	－2．7146E＋01
2．7093E＋O1	－2－ $26535+01$
$2.8093 E+01$	－2．6612E＋01
$2.7093 E+01$	$-2.9333 E+01$
$3.009 \mathrm{SE+01}$	－3．0045E＋01
$3.1 .093 E+01$	$\cdots 3.074 \mathrm{OE}+01$
3．2093E＋01	$\cdots 3+1.435+01$
3．3093E＋01	－3．－129E＋01
4．00－2E＋01	－3．0¢71E＋01
4． $700 \mathrm{OE}+1$	$\cdots 4.07635+01$
$5.4058 E+01$	－4．4．42E＋01
－．1047E＋O！	$-4.7691 E+01$
6． $8035 \mathrm{E}+0.1$	－6．06才9E＋01
7．5023E＋01	－5．32482＋01
8，2012E＋01	－5．5606E＋01
C． 9000 ETOt	－5．77006＋01
9．898emtot	－5．9526E＋01
1．0296Eros	－6，1．06SE＋01
1．099－E＋O2	－6．22996＋01
1．1695E＋O2	－6．3204E＋01
1．2394E＋0\％	－6－3057E＋01
1．3093E＋9\％	－6．4257601
1．3T92E＋0）	$-6.454 \mathrm{AE+0t}$
1．4491E＋02	\cdots－ $0.4907 E+01$
1．4691ETO2	$\cdots 6.4982 \mathrm{E}+0 \mathrm{t}$
1．4691ET02	－6．5067E＋01
1．4791E＋U2	$\cdots 6.62 E+01$
1． $4091 \mathrm{EtO2}$	－6．52TOE＋0］
1．4991E＋02	－क．530\％E＋ot
1．S091E＋0．	－6．553OE＋01
1．5191E＋02	－6． $6836 \mathrm{E}+01$
1．5．91E＋0．	－6．586at＋01
1．5391E＋02	\cdots－606．6\％01
2．5－9tE：9\％	－6．62\％ $6+01$
1－591E：O\％	－2．5－3，$-2+01$

＂
 $2.8788-10$ $0.0000 \mathrm{E}+0 \mathrm{O}$ $0.0000 E+00$ $0.0000 E+00$ $0.00006+00$ $0.0000 E+00$ $0.0000 \mathrm{E}+00$ $0.0000 \mathrm{E}+00$ 0. DOOOF＋00 $0.0000 \mathrm{~F}+00$ $0.0000 \mathrm{~F}+00$ $0.0000 \mathrm{E}+00$ 0.0000 EtOO 0．OOOOE＋BO $0.0000 \mathrm{~F}+50$ 0．©00のFt00 O．OOOOE＋00 0． $0000 \mathrm{E}+00$ $0.0000 \mathrm{E}+00$ $0.0000 \mathrm{~F}+00$ $0.0000 E+00$ －．OOOOF＋00 $0.0000 E+00$ $0.0000 \mathrm{E}+60$ 0.000 OEtOO $0.0000 \mathrm{E}+\mathrm{OO}$ $0.0000 \mathrm{~F}+00$ $0.0000 \mathrm{O}+00$ 0．OOOOEt．0 $0.0000 \mathrm{~F}+00$ $0.0000 E+00$ $0.0000 \mathrm{~F}+90$ $0.00 \mathrm{OOF+OO}$ 0.3000 Ftoo －OOOOFtoo $0.0000 \mathrm{E}+\mathrm{BO}$ O． $\mathrm{COOOE}+00$

rerenver a ．900ftan
0． $0000 \mathrm{~F}+00$
$0.0000 F+00$
O－ف000E＋CO
O．OOOOr＋00
O．0000E＋00
O． $0000 \mathrm{O}+90$
O．OOOOF＋OO
9．0000E＋00
O．0000E＋OO
O．OOOOF＋00
O，o000Ftom
$0.0000+00$
O．oonimton
－0000世＋00
O．OOOOEtO9
O．O000Ftoc
0．0000Ftog
O．OOOOF＋OO
O． $0.000 \mathrm{~F}+00$
O．OOOOF＋O＂
O．OOOOF＋OS
O．O000F－क0
O．0000F＋00
0．0000E＋00
O．OOMOFFtoo
0．Oi？OEP＋00
0．000Eton
0.0000 Fto
O．Onnobero
O．000）Eton
0．0000F＋00
0．0000Eton
O． 0 OOOF＋+ n
O．0000F＋bo
1．ज69\％F．．．10

1. 6 600F- ${ }^{\circ}$
1.5241F-1
1.2989E-10
1. 295jf-10
1.1817F-19
1.0ヶ76E-10
1.0020F-1.
. $2.202 \mathrm{~F}-11$
Q. 5 -298F-11
7. Qe2oF-11
A. 679.AF-11
2. $9172 \mathrm{E}-11$
1.91さのF-11
1. $313 \mathrm{BE}-11$
- 3787F-1"
$4.920 \pi F-1 \%$
5.9Q95E-1\%
+ $150 \% \mathrm{~F}-1 \%$
3. 343GF-1.
- $3174 E-1$
? AAA1E-1:
2.107AE-t
2.0428F-1:
. \quad-519F-1-
1. PQTGF-1"
1. 1 OSF- 1
. $99.76-1 \because$
. 777 3F- 1
. フラTOF-1
. 73 大展-1
1. ープリトー
- $6850 \mathrm{~F}-\mathrm{H}^{\circ}$
. 65 .49F- 1
, OTJE-1
: G\&A1F-1
, ※9.9F-1
. ACT1F-!

\because

ST0F

1ifik rarage on … - - - -

$$
\because \cdot 000 E+03
$$

$$
r \sigma \geq 1 t, \quad m \quad \cdots-m-\cdots \cdots-\cdots
$$

$$
2.000 F+01
$$

osetzrourn tume - -
sumine

I irit．Farametars
irm parametars
$1.960 E-0 A$
0.10000
0.01
0.10
 3r＝ $1 \% \pi$
－OOOF＋O： $2+05-6+6$
wavelsmatin m m--
re =\%erture. m - - -

1.OGOF+OO
re mertiure. mor

$0.100(0)$
re hood lemsting mi
t.r hoos luristho in
i) 00
re mood おie.y m - -

i). $1 i$
t. r beam widitinormar
1. 90いF-CiA

ニがにのゅ
जr Farameter:

	（）． 15500
	内1：
	1．0064＋00
	0．7
thermal erov rur	1．OCOF－1

intercemt mode masemetar＝

	1.
rF\％r meters	$2 \times 600+0$
Srroraey otas	9．00

nutiout tree－－－－－	$\cdots \mathrm{Fry}$－ir
－metuctor	
	3． 0

		vicindidta i．$=$	$n=-4$
Qomptic		गOO matars abtiturie	
	－．008E－04	abs ¢n¢fy tim－－－	
MEgf madel＊－x 		ロッカf	－2 ：\＃i＞
	O	G－rstintmometo－	
 			a． 1 min
	On 30		． 0
		の尤t！＂\＃	4．．\％at
	わ．ऐण		

Section III
Off-axis Program Listing

PROGRAM LISTING OF off-axis

```
    OFF-AXIS ANALYSIS PROGRAM
    D. JONES 714-871-3232 X 4579
    T. YUNGHANS X 4582
    HUGHES AIRCRAFT COMPANY
    FULLERTON, CA
    MODIFIED TO DO PROBABILITY OF BIT ERROR ANALYSIS
    BILL JAEGER
    MIT BLG. 36-477
    CAMBRIDGE, MA
    common/ flags /mode,mcomp,mp,lam,modesw,lunit,nout,istog,iotype,
    irtype,ihet,ibflag,iw
    common/rsct/oasmax,diffoa,oafwhm,bmaxs,bfwhms,bdiff(6),psiaz,psiel
    ,gams
    common/ atmos /alfa(5,2),alfsct,alfab,ia,ab(33),as(33),at(33,14,6)
    ,mat,mvis
    common/ tbsdf / ng,gstart(3),gend(3),gampl(3),ybsdf,sbsdf,nbak,noa
    ,ibsdf
    common/ tdata / blt,dt,ht,phit,pt,rb,grndi,bdrt,sigj,sigt
    common' rdata / blr,dr,hr,gl,bdlr
    common/ srdata / asr,hs,phi,phiaz,dphi
    common/ ldata / rl,alam,rpx,theta,x,angtr,angrec,gamint,bw
    * darki & ptherm replace pnep, add g *
    common/ sndata / bwr,eta,f,em,pb,ps,darki,ptherm, snpndb,sndb,xm,
    bwopt,nflg,g
    common/ stgout / nvel,svel,avel,ndown,neros,numtot,hvnear,
    hvfar,xdis,hdis,hdisdf,xclos,helos,helsdf,kount
    * srdark & srther replace srpnep *
    common/block1/xmod(6),gainsr(6),qe(6),fnoise(6),srbw(6),
& srdark(6),srther(6),alamda(6),obw(6),nhol(6)
    common /pitc / xint(200),yint(200),h(200),dcomp(2),np,note
c * dimension heady1 & heady2 (2by3) *
    common/ hrith / title(18),headx1(2,2),headx2(2,2),heady1(2,3),
& heady2(2,3),brhol(2),bakhol(2),oahol(2),mattyp(5,5),mvtyp(2,2),
& mathol(2),holdet(2),holiw(2,3)
    common/err/ier,ierab,iersc,ierbr, devab, devsc, devbr
    * add labeled common wavefm *
    common/ wavefm/npts,t,form0(1000),form1(1000), power0(1000),
    power!(1000)
    data onedeg,pi,r2d/.0174532925,3.141592654,57.29577951/
c INPUT DESCRIPTIONS
c THE MKS SYSTEM OF UNITS IS USED UNLESS OTHERNISE
c SPECIFIED
```

c
c

HS - ALTITUDE OF SR (M)
ASR - SR APERTURE AREA (M**2)
PHI - SR FIELD OF VIEW (ELEV) (RAD)
PHIAZ - SR FIELD OF VIEW (AZIIUTH) (RAD)
IRTYPE - SR CHARACTERISTICS (1-DEFAULT, 2-USER)
(VALUES BELOH DEFAULTED, ONLY NEEDED FOR S/N CASES)
XM - MODULATION DEPTH

```
c G - PREDETECTION GAIN IN SR
c ETA - QUATUM EFFICIENCY OF DETECTOR
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ETA - QUATUM EFFICIENCY OF DETECTOR
F - EXCESS NOISE FACTOR
BWR - BANDWIDTH OF SR, (HZ)
PTHERM - THERMAL NOISE EQV. POWER OF SR
DARKI - DARK CURRENT OF SR
BWOPT - SR OPTICAL BANDWIDTH (MICRONS)
NFLG - DAY/NIGHT FLAG (1-DAY, 2-NIGHT)
BW - LINK BANDWIDTH ( HZ )
```


INTERCEPT VARIABLES

```
MCOMP - COMPUTE (1-POWER, 2-S/N RATIO)
MP - CONTRIBUTION FLAG (1-ALL, 2-ATMOS, 3-TRANS, 4-RCVR)
MODE - SELECTS MODE OF OPERATION (1-5)
RPX - DISTANCE FROM XMTR TO BISECTOR (M)
X - DISTANCE ALONG BISECTOR TO BEAM (M)
DCOMP - VALUE OF CONTOUR (DBW OR DB S/N) (MODES 4 AND 5)
SPACE TO GROUND VARIABLES
ISTOG - SPACE TO GROUND FLAG ( \(0-\mathrm{NO}, 1\)-YES)
RB - RADIUS OF LINK BEAM (M)
THETA - ZENITH ANGLE OF SR (DEG)
GRNDI - EQUIVALENT POWER (WATTS/SQ. M)
GL - ALTITUDE OF GROUND LEVEL (M)
nout \(=1\)
inpsum=1
FIRST READ DETERMINES WHETHER THE SYSTEM IS INTERACTIVE OR IN THE BATCH MODE.
IOTYPE \(=0\) IS BATCH MODE
write \((6,300)\)
read (5,310) iotype
if (iotype.eq.0) go to 20
INTERACTIVE MODE
THE VALUE OF N TELLS TSHARE IF THIS IS THE FIRST CALL. IF TSHARE RETURNS \(N=10\), EXECUTION IS TERMINATED \(n=0\)
call tshare ( \(n\) )
if (n.eq.10) go to 280
go to 70
BATCH INPUTS
```

```
c * add batch input capabilities *
        call batch
c SET FALGS TO RETURN TO TSHARE FOR CHANGES
    n=1
    iotype=1
c
c
c
70 mfl=1
    if (mode.ge.4) mfl=2
c * Pr(e) heading for mode 6*
    if (mode.eq.6) mfl=3
    if (iotype.eq.0) go to }8
    write (6,380)
    read (lunit,1040) inpsum
    if (inpsum.eq.0) go to }17
c
80 write (6,480)
    if (istog.eq.1) write ( }6,930
    write (6,490)
    write (6,500) rl,ht
    write ( }6,510) hr,h
    theta=theta*r2d
    if (istog.eq.1) write (6,530) x,theta
    theta=theta/r2d
    if (istog.eq.1.and.ibflag.eq.2) write ( }6,540) gl,r
    if (istog.eq.1.and.ibflag.eq.1) write (6,550) gl
    nf1=2*nflg-1
    nf2=nf1+1
    if (mcomp.eq.2.and.inet.eq.1) write (6,520) nhol(nf1),nhol(nf2)
    write (6,560)
    if (istog.eq.0.or.ibflag.eq.1) write (6,570) alam,pt
    if (istog.eq.1.and.ibflag.eq.2) write (6,580) alam,grndi
    write (6,590) dr,dt
    write (6,600) blr,blt
    if (blr.ne.0..or.blt.ne.0.) write (6,610) bdlr,bdrt
    if (istog.eq.1.and.ibflag.eq.1) write (6,620) sigj,(holiw(i,iw),
    i=1,2)
    write (6,630) phit
c * add turbulence to narrow beam inputs *
    if (istog.eq.0) write (6,625) (holiw(i,iw),i=1,2)
    write (6,640)
    if (istog.eq.1) go to go
    write (6,650) phi,asr
    go to 100
    write (6,660) phi,phiaz,asr
100 if (mcomp.eq.2) write (6,670) phiaz,holdet(ihet)
c
    if (mcomp.eq.1) go to }11
c
```

```
    write (6,690) g,f
    write (6,695) xm
    write (6,700) bwr,eta
c
    darki & ptherm replace pnep *
        if (ihet.eq.1) write (6,681) darki,ptherm
        if (ihet.eq.1) write (6,680) bwopt
        if (ihet.eq.2) write (6,685) bwopt,em
c * add bit interval time
        if (mode.eq.6) write (6,686) t
c MODE PARAMETERS
110 if (istog.eq.1) go to 120
        write (6,720)
        write (6,730) mode, heady1(mcomp,mfl), heady2(mcomp,mf l)
    c * skip SR location if mode 6 *
        if (mode.eq.6) go to }11
        if (mode.lt.4) write (6,760) rpx,x
        if (mode.ge.4) write (6,770) dcomp(mcomp)
115 gams=0.
    cs=cos(psiel)*sin(psiaz)
    if (cs.ne.0.) gams=atan2(sin(psiel),cs)
    gamsd=gams*r2d
    gamd=gamint*r2d
    write (6,740) gamd,gamsd
    write (6,780)
    write (6,800) mathol(ia)
    if (ia.eq.2) go to }13
    write (6,810)
    write (6,790) alfsct,alfab
    go to }14
1.30 write (6,820) (mattyp(i,mat), i=1,5),(mvtyp(i,mvis),i=1,2)
    write (6,790) as(2),ab(2)
140 write (6,830)
    write (6,840) brhol(1),brhol(2),sbsdf
    write (6,850) ng,ybsdf
    if (ng.gt.0) write (6,860) (i,gstart(i),gend(i),gampl(i),i=1,ng)
c LAMBERTIAN MODEL
    if (nbak.1t.3) go to }15
    write (6,870) bdiff(lam)
    go to }16
150
    write (6,880) bakhol(1),bakhol(2),bdiff(lam)
    write (6,890) bmaxs,bfwhms
160 psiazd=psiaz*r2d
    psield=psiel*r2d
    write (6,750) psiazd,psield
    write (6,900) oahol(1),oahol(2),diffoa
    write (6,890) oasmax,oafwhm
    if (istog.eq.1) go to 260
c
c WRITE SENSITIVITY ANALYSIS SUMMARY IF DOING A SENSITIVITY
c ANALYSIS
```

* skip output heading if mode 6
if (mode.eq.6) go to 210
if (nout.ge.1) write (nout, 910) headx1(mcomp, mfl), headx2(mcomp, mfl), heady1(mcomp, mfl), heady2(mcomp, mf 1)
***** CALL THE COMPUTATIONAL ROUTINES
SETUP IS CALLED FOR NARRON BEAM ANALYSIS
call setup

WARNING MESSAGE FOR CONVERGENCE
if (note.ge.1) write (6,370) note
note=0
***** CALL GRAPHING ROUTINE *****
GRAFIX IS A SYSTEM-DEPENDENT GRAPHICS ROUTINE. IT MAY BE WRITTEN BY A USER TO PROVIDE INTERACTIVE GRAPHICS, OR WHATEVER HE HAS AT HIS DISPOSAL. THE HUGHES ROUTINE INCLUDES A PRINTER PLOT FOR USE ON TELETYPE TERMINALS.
call grafix
if (iotype.eq.0) go to 270
c
c SENSITIVITY ANALYSIS INPUTS
write $(6,410)$
read (lunit, 1040) ier if (ier.ne.0) go to 220

```
c
c NO SENSITIVITY ANALYSIS; SET FLAGS TO ZERO
    ier=0
    ierbr=0
    iersc=0
    ierab=0
    go to 270
c
c SENSITIVITY ANALYSIS INPUTS
c
c ABSORPTION DEV.
220 write (6,420)
read (lunit,1040) ierab
if (ierab.eq.0) go to 230
write (6,430)
read (lunit,1040) devab
c
c
230
    SCATTERING DEV.
    write (6,440)
    read (lunit,1040) iersc
    if (iersc.eq.0) go to 240
    write (6,430)
    read (lunit,1040) devsc
c
c BSDF DEV.
240 write ( }6,460
    read (lunit,1040) ierbr
    if (ierbr.eq.0) go to 250
    write (6,430)
    read (lunit,1040) devbr
c
250
c
c
c
26
c
c WRITE OUTPUT FOR SPACE TO GROUND CASE
write ( }6,9\hat{`}\cap
write (6,930)
if (ibflag.eq.1) write (6,940) sigj,grndi
write (6,950) rb,nvel,svel, svel,avel
ndy=2#ncros-1
ndown=ndown-1
write (6,960) kount, ndown,ndy,numtot
write (6,970) xdis,hdis,hdisdf
write (6,980) xclos,rilos,hclsdf
write (6,990) pastog,ptstog,prstog,comp
```

```
c
270 n=1+iotype
    go to (280,10), n
    if (nout.ne.6) close (nout)
    stop
c
c
290 format ("1")
300 format (9x,"off-axis analysis program -- ",/,
& 15x,"enter 1 for interactive input - O for batch input")
310 format (i1)
320 format (22x,18a4,//)
330 format (4x,18a4)
340 format (i4,6e10.4)
350 format (4x,6e10.4)
360 format (//,5x,"interceptibility mode n,12)
370 format ( }5x,n*\mathrm{ iteration did not converge at ",i3," points")
380 format (10x,"do you want an input summary? 0-no 1-yes")
390 format (//,10x,"do you want an output table? 0-no 1-yes")
400 format (10x,"which file? (must be allocated)")
410 format (//10x,"do you wish to do a sensitivity analysis? ",
& "0-no 1-yes")
420 format (/10x,"do you wish to vary the absorption coef? n,
& "O-no 1-yes")
430 format (/10x,"fractional change (eg . 1 for 10%)",/,15x,
& "default =.1")
440 format (/10x,"do you wish to vary the scattering coef? ",
& "0-no 1-yes")
460 format (/10x,"do you wish to vary the bsdf? 0-no 1-yes")
480 format (///,20x,n*** input summary m*n)
490 format (///5x,"scenario geometry"/)
500 format (6x,"link range, m ----", 2x,1pe10.3,5x,"tr alt, m -------",
& 2x,1pe10.3)
510 format (6x,"rc alt, m --n-----",2x,1pe10.3,5x,"sr alt,m -------",
& 2x,1pe10.3)
520 format (6x,"background type --",4x,2a4)
530 format ( }6x,"\mathrm{ "sr dist to beam,m-", 2x,1pe10.3,5x,"sr zenith ang, d-",
& 6x,0pf6.2)
540 format (6x,"ground alt, m-----",7x,f5.2,5x,"linkbeam rad. m--n,2x,
& 1pe10.3)
550 format (6x,"ground alt,m-\infty---",7x, f5.2)
560 format (/5x, "link parameters"/)
570 format ( }6x,"wavelength, m ----", 2x,1pe10.3,5x,"tr power, w -----","
& 2x,1pe10.3)
580 format (6x, "wavelength, m -m--", 2x,1pe10.3,5x,"eqv. irr., w/sq.m",
& 2x,1pe10.3)
590 format (6x, "rc aperture, m ---",4x,f8.5,5x,"tr aperture, m --",4x,
& f8.5)
600 format (6x,"rc hood length, m=",7x,f5.2,5x,"tr hood length, m",7x,
&
f5.2)
```

```
610 format ( \(6 x\), "rc hood dia., \(m--", 7 x, f 5.2,5 x, " t r\) hood dia., m - " \(7 x\),

\section*{800}
810 format ( \(6 x\), "results are valid only for cases with near \({ }^{n}\),
\(\&\) "coaltitude geometry")
820 format ( \(6 \mathrm{x}, 5 \mathrm{a} 4,15 \mathrm{x}\), "visibility is", \(9 \mathrm{x}, 2 \mathrm{a} 4, /, 17 \mathrm{x}\), "coefficients ",
\& "for 0 to 1000 meters altitude")
830 format (//,5x,"scattering data for transmitter, receiver, and n,
"backstop")
840 format (/,6x,"bsdf model type --",4x,2a4,5x,"bsdf slope db/dbn,
\& \(5 x, 17.3\) )
860
\&
```

```
format (6x,"re hood dia., m --",7x,f5.2,5x,"tr hood dia., m -",7x, f5.2)
```



``` 4x,2a4)
format (41x,"turbulence ------", 4x,2a4)
format (41x,"tr beam width, rad", \(2 \mathrm{x}, 1\) pe10.3)
format (/,5x,"sr parameters"/:
format ( \(6 x\), "linear fov, rad \(-7,2 x, 1\) pe10.3,5x, "aperture, sq.m. -7 , 6x,0pf6.4)
```



``` 2x,1pe10.3,/,6x, "aperture, sq.m ---", 6x,0pf6.4)
format ( \(6 x\), "fov across beam, \(r^{n}, 2 x, 1\) pe10.3,5x, "detection type, \(=\mathbf{n}\), 8x, a4)
format ( 6 x, "cpt bw, microns \(-\infty\) ", 2x,1pe10.3)
format ( \(6 x\), "dark current, a \(--n, 2 x, 1\) pe10.3,5x, "thermal eqv pwr - ", 2x,1pe10.3)
format ( \(6 x\), "opt bw, microns \(-\infty ", 2 x, 1 p e 10.3,5 x, " m i x i n g\) efficiency", 6x,0pf6.4)
format (6x,"bit interval, s --", 2x,1pe10.3)
```



``` 1pe10.3)
format ( \(6 x\), "mod. depth \(--\cdots-\cdots{ }^{\prime}, 7 x, 55.2\) )
format ( \(6 x\),"bandwidth, hz ----"; \(2 x, 1 p e 10.3,5 x\), "quantum eff. ----" , 7x,0pf5.2)
format (/,5x, "intercept mode parameters"/)
```



``` 2a4)
```



``` f7.2)
```



``` f7.2)
```



``` 2x,1pe10.3)
format ( 6 x, "iso-con value, \(\mathrm{db}-\mathrm{n}, 2 \mathrm{x}, 1 \mathrm{pe} 10.3\) )
format (/,5x, "atmospheric parameters"/)
```



``` 2x,1pe10.3)
format ( \(6 x\), "data source ---m--", \(8 \mathrm{x}, \mathrm{a4}\) )
format ( \(6 x\), "results are valid only for cases with near \({ }^{n}\),
"coaltitude geometry")
```

``` "for 0 to 1000 meters altitude")
format (//,5x,"scattering data for transmitter, receiver, and ", "backstop")
ormat (/,6x,"bsdf model type \(-=", 4 x, 2 a 4,5 x, " b s d f\) slope \(d b / d b n\), format ( \(6 x\), nonlinearities ---", \(11 x, 11,5 x, " b s d f\) intercept - ", 5x, f7.3)
860 format (11x, "from",5x, "to",7x,"level",3(/,6x,0pi3,0pf7.2,0pf8.2, 1pe12.4))
```

```
870 format (/,6x,"backstop type ----",2x,"lambertian",5x,
& "reflection coef -",5x,77.4)
880 format (/,6x,"backstop type ----",4x,2a4,5x,"diffuse level ---",
& 5x,57.3)
890 format (6x,"specular max --",5x,f7.3,5x,"specular width, d",5x,
& f7.3)
900 format (/,6x,"oa type ----------",4x,2a4,5x,"diffuse level ---",
&
910 format (//,40x, "power contributed by each source, watts",/,7x,2a4,
&
920
930
940
&
950
&
&
&
&
&
960 format (//5x,"no.of vert. elements subtended by rcvr----",i8,/8x,
&
&
&
970
&
&
980 format (//8x,"dist. to the closest element ----------",1pe10.3,/,
& 8x,"altitude of the closest element ------",1pe10.3,/8x,"alt. ",
&
990
&
&
&
&
1000
&
1010
1020
1030
1040
    end
c.
    block data
c
        common/ flags /mode,mcomp,mp,lam,modesw,lunit,nout,istog, iotype,
irtype,inet,ibflag,iw
        common/rsct/oasmax,diffoa,oafwhm,bmaxs,bfwhms,bdiff(6),psiaz,psiel
        ,gams
        common/atmos/ alfa(5,2),alfsct,alfab,ia,ab(33),as(33),at(33,14,6)
```

,mat, mvis
common/ tdata / blt,dt,ht,phit,pt,rb,grndi,bdrt,sigj,sigt
common/ rdata / blr,dr,hr,gl,bdir
common/ srdata / asr,hs,phi,phiaz,dphi
common/ ldata / rl,alam,rpx,theta, x,angtr,angrec,gamint,bw

* darki \& ptherm replace pnep, add g *
common/ sndata / bwr,eta,f,em,pb,ps,darki,ptherm, snpndb, sndb,xm,
bwopt, nflg,g
common/ tbsdf / ng,gstart(3),gend(3),gampl(3),ybsdf,sbsdf,nbak,noa
,ibsdf
common /pltc / xint(200),yint(200),h(200), dcomp(2), np, note
* srdark \& srther replace srpnep *
common/ blockl / xmod(6), gainsr(6), qe(6), fnoise(6), srbw(6), srdark(6), srther(6), alamda(6), obw (6), nhol(6)
* dimension heady1 \& heady2 (2by3)
common/ hrith / title(18), headx1(2,2), headx2(2,2), heady1 (2,3),
heady2(2,3), brhol(2), bakhol(2), oahol(2), mattyp(5,5), mutyp $(2,2)$, mathol(2), holdet(2), holiw (2,3)
common/err/ier, ierab,iersc, ierbr, devab, devsc, devbr
* add labeled common wavefm *
common/ wavefm /npts,t, form0(1000), form1(1000), power0(1000), power1(1000)
dimension at11(33),at12(33),at13(33), at14(33), at15(33), at16(33), at17(33), at18(33), at19(33), at10(33), at1a(33), at1b(33), at1c(33), at1d(33)
dimension at21(33), at22(33), at23(33), at24(33), at25(33), at26(33), at27(33), at28(33), at29(33), at20(33), at2a(33), at2b(33), at2c(33), at2d(33)
dimension at31(33), at32(33), at33(33), at34(33), at35(33), at36(33), at37(33), at38(33), at39(33), at30(33), at3a(33), at3b(33), at3c(33), at3d(33)
dimension at41(33), at42(33), at43(33), at44(33), at45(33), at46(33), at 47(33), at 48 (33), at 49(33), at 40(33), at4a(33), at 4 b (33), at 4 c (33), at4d(33)
dimension at51(33),at52(33),at53(33),at54(33), at55(33), at56(33), at57(33), at58(33), at59(33), at50(33), at5a(33), at5b (33), at5c(33), at5d (33)
dimension at61(33), at62(33), at63(33), at64(33), at65(33), at66(33), at67(33), at68(33), at69(33), at60(33), at6a(33), at6b(33), at6c(33), at6d(33)
equivalence (at $(1,1,1)$, at 11(1) $),(\operatorname{at}(1,2,1)$, at $12(1))$, (at(1,3,1), at13(1)),(at(1,4,1),at14(1)), (at $(1,5,1)$, at15(1)),$(\operatorname{at}(1,6,1)$, at 16(1)) , (at $(1,7,1), \operatorname{at17}(1)),(\operatorname{at}(1,8,1), \operatorname{at18(1))}$, (at $(1,9,1), \operatorname{at} 19(1)),(\operatorname{at}(1,10,1), \operatorname{at} 10(1))$, (at(1,11,1), at1a(1)),(at(1,12,1), at1b(1)), (at(1,13,1),at1c(1)),(at(1,14,1),at1d(1))
equivalence (at $(1,1,2), \operatorname{at21}(1)),(\operatorname{at}(1,2,2), \operatorname{at22}(1))$, $(\operatorname{at}(1,3,2), \operatorname{at23}(1)),(\operatorname{at}(1,4,2), \operatorname{at24}(1))$,
(at ($1,5,2), \operatorname{at25}(1)),(\operatorname{at}(1,6,2), \operatorname{at26(1))}$, (at $(1,7,2), \operatorname{at27}(1)),(a t(1,8,2), a t 28(1))$, (at $(1,9,2), \operatorname{at29}(1)),(\operatorname{at}(1,10,2), a t 20(1))$, (at $(1,11,2), \operatorname{at} 2 a(1)),(\operatorname{at}(1,12,2), \operatorname{at2b}(1))$, (at $(1,13,2), \operatorname{at2c}(1)),(\operatorname{at}(1,14,2), \operatorname{at2d}(1))$
equivalence (at $(1,1,3), \operatorname{at31}(1)),(\operatorname{at}(1,2,3), \operatorname{at32}(1))$, (at $(1,3,3)$, at 33(1)),$(\operatorname{at}(1,4,3), \operatorname{at34}(1))$, (at $(1,5,3)$, at35(1)) ,(at $(1,6,3), \operatorname{at36}(1))$, (at ($1,7,3$), at37(1)), (at (1, 8,3), at38(1)), (at $(1,9,3), \operatorname{at39}(1)),(\operatorname{at}(1,10,3), \operatorname{at30}(1))$, (at $(1,11,3), \operatorname{at} 3 a(1)),(\operatorname{at}(1,12,3), \operatorname{at} 3 b(1))$, (at $(1,13,3), \operatorname{at} 3 c(1)),(a t(1,14,3), \operatorname{at} 3 d(1))$
equivalence (at $(1,1,4)$, at $41(1)),(\operatorname{at}(1,2,4)$, at $42(1))$, (at $(1,3,4)$, at 43(1)), (at ($1,4,4)$, at 44(1)), (at $(1,5,4), \operatorname{at45}(1)),(\operatorname{at}(1,6,4), \operatorname{at} 46(1))$,
(at $(1,7,4), \operatorname{at47}(1)),(\operatorname{at}(1,8,4), \operatorname{at} 48(1))$,
(at(1,9,4), at49(1)),(at(1,10,4), at40(1)),
(at $(1,11,4), \operatorname{at} 4 a(1)),(a t(1,12,4), a t 4 b(1))$,
(at $(1,13,4), \operatorname{at} 4 c(1)),(\operatorname{at}(1,14,4), \operatorname{at4d}(1))$
equivalence (at $(1,1,5)$, at51(1)) , (at ($1,2,5$), at52(1)),
(at $(1,3,5), \operatorname{at53}(1)),(\operatorname{at}(1,4,5), \operatorname{at54}(1))$,
(at $(1,5,5), \operatorname{at55}(1)),(\operatorname{at}(1,6,5), \operatorname{at} 56(1))$,
(at $(1,7,5), \operatorname{at57}(1)),(\operatorname{at}(1,8,5), \operatorname{at58(1))}$,
(at $(1,9,5), \operatorname{at59}(1)),(\operatorname{at}(1,10,5), \operatorname{at50}(1))$,
(at $(1,11,5), \operatorname{at} 5 a(1)),(a t(1,12,5), a t 5 b(1))$,
(at $(1,13,5), \operatorname{at5c}(1)),(\operatorname{at}(1,14,5), \operatorname{at5d}(1))$
equivalence (at $(1,1,6), \operatorname{at61(1))},(\operatorname{at}(1,2,6), \operatorname{at62}(1))$,
(at $(1,3,6), \operatorname{at63}(1)),(\operatorname{at}(1,4,6), \operatorname{at64(1))}$,
(at $(1,5,6), \operatorname{at65}(1)),(\operatorname{at}(1,6,6), \operatorname{at} 66(1))$,
(at $(1,7,6), \operatorname{at67}(1)),(\operatorname{at}(1,8,6), \operatorname{at68(1))})$,
(at $(1,9,6), \operatorname{at69}(1)),(\operatorname{at}(1,10,6), \operatorname{at60}(1))$,
(at $(1,11,6)$, at6a(1)), (at $(1,12,6)$, at6b(1)),
(at $(1,13,6), \operatorname{at6c}(1)),(\operatorname{at}(1,14,6), \operatorname{at6d}(1))$

data mode, mcomp, mp, lam, modesw, lunit, nout, istog/4, 1, 1, 4, 1,5,1,0/
 * add $\operatorname{Pr}(e)$ heading for mode 6 *

data headx 1 , headx $2 /$ "thet", "thet", "x,men, "x,men, "a, d", "a, d",
"ters", "ters"/
data brhol, bakhol, oahol/" aven, "rage"," dif", "fusen, " unk", "nown"/
data mattyp/"trop", "ical"," $n, n \quad n, n \quad n$,
"midl", "atit", "ude ", "summ", "er ",
"midl", "atit", "ude ", "wint","er ",
"suba", "reti","c ","summ","er ",
"suban,"rcti","c n,"wint","er n/
data mutyp/"clea","r ","hazy"," n/
data mathol/"user","afgl"/
data holdet/" dir"," het"/
data holiw/" se","vere","mode","raten," ","mild"/
data blt,dbrt,dt,ht,pt/0.0,0.0,.1,10.,1.1
data blr,dblr,dr,hr/0.0,0.0,.1,10./
data asr,hs,phi,phiaz/.05,10.,.01,.01/
data alam,rl,rpx,x/1.0e-6,5000.,2500.,1000./
* add default values for darki \& ptherm*
data bwr, eta, f,em, pb, darki,ptherm, xm, bwopt, $\mathrm{g} / 0.0,0.0,0.0,0.7$,
$0.0,0.0,0.0,0.0,0.0,0.01$
data rb,grndi, gl, theta/200.,1.e-4,0.,.174533/
MODULATION DEPTH AND SR ELECTICAL BANDWIDTH
data xmod,bw/1.,1.,1.,1.,1.,1.,1.e6/
data gstart/0.,0.,0.1
data gend/0.,0.,0.1
data gampl/0.,0.,0.1
data bmaxs,bfwhms,bdiff,oasmax, diffoa,oafwhm/0.,3.,.3,.3,.3,.3,.1,
.3,0.,0.,.3/
data gainsr/1.,1.,1.,1.,1.,1./
data qe/.5,.5,.75,.5,.6,0.7/
data Inoise/1.,1.,1.,1.,1.,1./
data srbw/1.0e6,1.0e6,1.0e6,1.0e6,1.0e6,1.0e6/
 * add data for srdark \& srther *
data srdark/6*1.e-9/
data srther/8.e-15,8.e-15,5.e-15,7.e-15,5.e-17,1.e-12/
data alamda/.5145e-6,.6328e-6,.860e-6,1.06e-6,10.6e-6,0/
data obw/ .001,.001,.001,.001,.01,.05/
data alfa/5.e-5,5,e-5,5.e-5,5.e-5,5.e-5,5.e-5,5.e-5,5.e-5,5.e-5,
5.e-5/
data ng,ybsdf,sbsdf/0,200.,-2.5/
data nflg,irtype/1,2/
data nhol/" s", "unny"," ci","oudy"," n",night"/
data ibsdf,nbak, noa/1,1,1/
data gamint/0./
data note/0/
data ia,mat,mvis/1,2,1/
data dcomp/-80.,0.1
data phit/.0001/
data ier,ierab,iersc,ierbr/ $0,0,0,0 /$
data devab, devsc, devbr/.1,.1,.1/
data psiaz,psiel,gams/0.,0.,0./
data inet/o/
data ibflag,iw, sigj/1,2,5.e-6/
 * aadd data for labeled common wavefm *
data nots, t, form0, form1/101,1.e-6,51*1.0,949*0.0,50*0.0,51*1.0,
899*0.01

NOTE - UNITS ARE $1 / K A .$, BUT ARE CONVERTED TO $1 / M$ IN PROGRAM
WAVELENGTH IS . 5145 MICRONS
TROPICAL MOLECULAR ABSORPTION


```
data at14/
    1.50e-02, 1.43e-02, 1.29e-02, 1.16e-02, 1.05e-02, 9.51e-02,
    8.56e-02, 7.68e-02, 6.89e-02, 6.16e-03, 6.50e-03, 4.90e-03,
    4.36e-03, 3.85e-03, 3.34e-03, 2.85e-03, 2.42e-03, 2.07e-03,
    1.77e-03, 1.51e-03, 1.29e-03, 1.10e-03, 9.38e-04, 8.00e-04,
    6.82e-04, 5.83e-04, 3.91e-04, 1.80e-04, 8.59e-05, 4.22e-05,
    2.17e-05, 8.16e-06, 0.0 /
```

 MIDLATITUDE WINTER MOLECULAR ABSORPTION
 data at15/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
0.0	, 0.0	, 0.0	,			

MIDLATITUDE WINTER MOLECULAR SCATTERING

```
data at16/
    1.63e-02, 1.54e-02, 1.37e-02, 1.22e-02, 1.09e-02, 9.79e-03,
    8.75e-03, 7.80e-03, 6.93e-03, 6.14e-03, 5.42e-03, 4.72e-c3,
    4.05e-03, 3.47e-03, 2.98e-03, 2.55e-03, 2.19e-03, 1.88e-03,
    1.61e-03, 1.38e-03, 1.18e-03, 1.01e-03, 8.57e-04, 7.32e-04,
    6.26e-04, 5.34e-04, 3.56e-04, 1.60e-04, 7.20e-05, 3.35e-05,
    1.64e-05,6.01e-06,0.0 /
```

SUBARCTIC SUMMER MOLECULAR ABSORPTION
data at17/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

SUBARCTIC SUMMER MOLECULAR SCATTERING

```
data at18/
    1.53e-02, 1.46e-02, 1.32e-02, 1.19e-02, 1.06e-02, 9.55e-03,
    8.58e-03, 7.71e-03, 6.91e-03, 6.17e-03, 5.50e-03, 4.81e-03,
    4.13e-03, 3.55e-03, 3.05e-03, 2.62e-03, 2.25e-03, 1.94e-03,
    1.67e-03, 1.43e-03, 1.23e-03, 1.06e-03, 9.11e-04, 7.83e-04,
    6.72e-04, 5.75e-04, 3.89e-04, 1.82e-04, 8.64e-05, 4.26e-05,
    2.21e-05, 8.45e-06, 0.0 /
```

SUBARCTIC WINTER MOLECULAR ABSORPTION
data at19/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	,		

SUBARCTIC WINTER MOLECULAR SCATTERING

data at10/

$1.71 \mathrm{e}-02,1.60 \mathrm{e}-02,1.41 \mathrm{e}-02,1.25 \mathrm{e}-02,1.10 \mathrm{e}-02,9.86 \mathrm{e}-03$, $8.80 \mathrm{e}-03,7.83 \mathrm{e}-03,6.94 \mathrm{e}-03,6.09 \mathrm{e}-03,5.25 \mathrm{e}-03,4.49 \mathrm{e}-03$, $3.84 \mathrm{e}-03,3.28 \mathrm{e}-03,2.80 \mathrm{e}-03,2.40 \mathrm{e}-03,2.05 \mathrm{e}-03,1.76 \mathrm{e}-03$, $1.51 \mathrm{e}-03,1.29 \mathrm{e}-03,1.10 \mathrm{e}-03,9.44 \mathrm{e}-04,8.07 \mathrm{e}-04,6.90 \mathrm{e}-04$, $5.90 \mathrm{e}-04,5.04 \mathrm{e}-04,3.36 \mathrm{e}-04,1.49 \mathrm{e}-04,6.67 \mathrm{e}-05,3.06 \mathrm{e}-05$, $1.46 \mathrm{e}-05,5.15 \mathrm{e}-06,0.0$ /

AEROSOL ABSORPTION - CLEAR

```
data atic/
```

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	,		

AEROSOL SCATTERING - HAZY

```
data atid/
```

 8.20e-01, 4.96e-01, 1.81e-01, 6.63e-02, 2.42e-02, 8.84e-03,
 \(4.49 \mathrm{e}-03,3.64 e-03,3.56 \mathrm{e}-03,3.54 e-03,3.42 e-03,3.27 e-03\),
 \(3.24 \mathrm{e}-03,3.19 \mathrm{e}-03,3.04 \mathrm{e}-03,2.91 \mathrm{e}-03,2.75 \mathrm{e}-03,2.67 \mathrm{e}-03\),
 \(2.61 \mathrm{e}-03,2.36 \mathrm{e}-03,1.85 \mathrm{e}-03,1.35 \mathrm{e}-03,9.98 \mathrm{e}-04,7.58 \mathrm{e}-04\),
 \(5.90 \mathrm{e}-04,4.82 \mathrm{e}-04,2.43 \mathrm{e}-04,6.83 \mathrm{e}-05,1.80 \mathrm{e}-05,4.73 \mathrm{e}-06\),
 \(1.25 e-06,0.0 \quad 0.0\)

WAVELENGTH IS . 6328 MICRONS
TROPICAL MOLECULAR ABSORPTION
data at21/

| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |

$$
0.0 \quad 0.0 \quad, 0.0
$$

TROPICAL MOLECULAR SCATTERING

```
data at22/
    6.31e-03, 6.03e-03, 5.48e-03, 4.97e-03, 4.49e-03, 4.07e-03,
    3.68e-03, 3.31e-03, 2.99e-03, 2.67e-03, 2.39e-03, 2.13e-03,
    1.89e-03, 1.67e-03, 1.48e-03, 1.30e-03, 1.13e-03, 9.76e-04,
    8.20e-04, 6.77e-04, 5.62e-04, 4.68e-04, 3.91e-04, 3.29e-04,
    2.79e-04, 2.37e-04, 1.58e-04, 7.22e-05, 3.43e-05, 1.68e-05,
    3.57e-06, 3.20e-06, 0.0 /
```

MIDLATITUDE SUMMER MOLECULAR ABSORPTION
data at23/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

MIDLATITUDE SUMMER MOLECULAR SCATTERING

data at24/

$6.44 \mathrm{e}-03,6.13 \mathrm{e}-03,5.54 \mathrm{e}-03,5.01 \mathrm{e}-03,4.53 \mathrm{e}-03,4.09 \mathrm{e}-03$, $3.68 \mathrm{e}-03,3.31 \mathrm{e}-03,2.96 \mathrm{e}-03,2.66 \mathrm{e}-03,2.37 \mathrm{e}-03,2.11 \mathrm{e}-03$, $1.87 \mathrm{e}-03,1.66 \mathrm{e}-03,1.44 \mathrm{e}-03,1.23 \mathrm{e}-03,1.04 \mathrm{e}-03,8.92 \mathrm{e}-04$, $7.63 \mathrm{e}-04,6.51 \mathrm{e}-04,5.55 \mathrm{e}-04,4.73 \mathrm{e}-04,4.03 \mathrm{e}-04,3.44 \mathrm{e}-04$, $2.93 \mathrm{e}-04,2.51 \mathrm{e}-04,1.68 \mathrm{e}-04,7.76 \mathrm{e}-05,3.69 \mathrm{e}-05,1.82 \mathrm{e}-05$, 9.31e-06, 3.51e-06, 0.0 /

MIDLATITUDE WINTER MOLECULAR ABSORPTION
data at25/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

MIDLATITUDE WINTER MOLECULAR SCATTERING

data at26/

$6.79 \mathrm{e}-03,6.62 \mathrm{e}-03,5.91 \mathrm{e}-03,5.26 \mathrm{e}-03,4.70 \mathrm{e}-03,4.21 \mathrm{e}-03$, $3.76 \mathrm{e}-03,3.35 \mathrm{e}-03,2.98 \mathrm{e}-03,2.64 \mathrm{e}-03,2.33 \mathrm{e}-03,2.03 \mathrm{e}-03$, $1.74 \mathrm{e}-03,1.49 \mathrm{e}-03,1.28 \mathrm{e}-03,1.10 \mathrm{e}-03,9.41 \mathrm{e}-04,8.07 \mathrm{e}-04$, $6.91 e-04,5.91 e-04,5.06 e-04,4.32 e-04,3.69 e-04,3.15 e-04$, $2.69 \mathrm{e}-04,2.30 \mathrm{e}-04,1.53 \mathrm{e}-04,6.90 \mathrm{e}-05,3.10 \mathrm{e}-05,1.44 \mathrm{e}-05$,

```
7.06e-06, 2.59e-06,0.0
SUBARCTIC SUMMER MOLECULAR ABSORPTION
\begin{tabular}{rlllllll} 
data at27/ & & & & \\
0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 \\
0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 \\
0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 \\
0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 \\
0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 &, 0.0 & , \\
0.0 &, 0.0 &, 0.0 &, & &
\end{tabular}
```

SUBARCTIC SUMMER MOLECULAR SCATTERING
data at28/
$6.58 e-03,6.26 e-03,5.66 e-03,5.10 e-03,4.58 e-03,4.11 e-03$, $3.69 \mathrm{e}-03,3.32 \mathrm{e}-03,2.97 \mathrm{e}-03,2.66 \mathrm{e}-03,2.36 \mathrm{e}-03,2.07 \mathrm{e}-03$, $1.78 \mathrm{e}-03,1.53 \mathrm{e}-03,1.31 \mathrm{e}-03,1.13 \mathrm{e}-03,9.68 \mathrm{e}-04,8.34 \mathrm{e}-04$, $7.17 \mathrm{e}-04,6.17 \mathrm{e}-04,5.30 \mathrm{e}-04,4.55 \mathrm{e}-04,3.92 \mathrm{e}-04,3.37 \mathrm{e}-04$, $2.89 \mathrm{e}-04,2.48 \mathrm{e}-04,1.67 \mathrm{e}-04,7.83 \mathrm{e}-05,3.72 \mathrm{e}-05,1.83 \mathrm{e}-05$, $9.51 \mathrm{e}-06,3.64 \mathrm{e}-06,0.0$ /

SUBARCTIC WINTER MOLECULAR ABSORPTION
data at29/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	,			

SUBARCTIC WINTER MOLECULAR SCATTERING

```
data at20/
```

 \(7.37 e-03,6.88 e-03,6.04 e-03,5.36 e-03,4.75 e-03,4.24 e-03\),
 \(3.79 \mathrm{e}-03,3.37 \mathrm{e}-03,2.99 \mathrm{e}-03,2.62 \mathrm{e}-03,2.26 \mathrm{e}-03,1.93 \mathrm{e}-03\),
 1.65e-03, 1.41e-03, 1.21e-03, 1.03e-03, 8.82e-04, 7.56e-04,
 \(6.47 \mathrm{e}-04,5.54 \mathrm{e}-04,4.75 \mathrm{e}-04,4.06 \mathrm{e}-04,3.47 \mathrm{e}-04,2.97 \mathrm{e}-04\),
 \(2.54 e-04,2.17 e-04,1.44 e-04,6.39 e-05,2.87 e-05,1.32 e-05\),
 \(6.27 e-06,2.22 e-06,0.0\) /
 AEROSOL ABSORPTION - CLEAR

```
data at2a/
    3.14e-03, 2.09e-03, 9.09e-04, 3.87e-04, 1.82e-04, 1.15e-04,
    8.39e-05, 6.78e-05, 6.65e-05, 6.61e-05, 6.39e-05, 6.11e-05,
    6.06e-05, 5.97e-05, 5.67e-05, 5.44e-05, 5.14e-05, 4.99e-05,
    4.88e-05, 4.40e-05, 3.46e-05, 2.52e-05, 1.87e-05, 1.42e-05,
    1.10e-05, 9.00e-06, 4.53e-06, 1.28e-06, 0.0, 0.0,
```

```
    0.0 , 0.0 , 0.0 /
    AEROSOL SCATTERING - CLEAR
```

data at2b/
$1.36 e-01,9.03 e-02,3.93 e-02,1.67 e-02,7.89 e-03,4.98 e-03$,
$3.63 \mathrm{e}-03,2.94 \mathrm{e}-03,2.88 \mathrm{e}-03,2.86 \mathrm{e}-03,2.77 \mathrm{e}-03,2.64 \mathrm{e}-03$,
$2.62 e-03,2.58 \mathrm{e}-03,2.45 \mathrm{e}-03,2.35 \mathrm{e}-03,2.23 \mathrm{e}-03,2.16 \mathrm{e}-03$,
2.11e-03, $1.91 \mathrm{e}-03,1.50 \mathrm{e}-03,1.09 \mathrm{e}-03,8.07 \mathrm{e}-04,6.13 \mathrm{e}-04$,
$4.77 \mathrm{e}-04,3.90 \mathrm{e}-04,1.96 \mathrm{e}-04,5.52 \mathrm{e}-05,1.45 \mathrm{e}-05,3.83 \mathrm{e}-06$,
1.01e-06, 0.0 , 0.0 /
AEROSOL ABSORPTION - HAZY
data at2c/
$1.53 e-02,9.26 e-03,3.39 e-03,1.24 e-03,4.52 e-04,1.65 \mathrm{e}-04$,
8.39e-05, 6.79e-05, 6.65e-05, 6.61e-05, 6.39e-05, 6.11e-05,
$6.06 \mathrm{e}-05,5.97 \mathrm{e}-05,5.67 \mathrm{e}-05,5.44 \mathrm{e}-05,5.14 \mathrm{e}-05,4.99 \mathrm{e}-05$,
$4.88 \mathrm{e}-05,4.40 \mathrm{e}-05,3.46 \mathrm{e}-05,2.52 \mathrm{e}-05,1.87 \mathrm{e}-05,1.42 \mathrm{e}-05$,
$1.10 \mathrm{e}-05,9.00 \mathrm{e}-06,4.53 \mathrm{e}-06,1.28 \mathrm{e}-06,0.0,0.0$,
$0.0 \quad 0.0 \quad 0.0 \quad /$
AEROSOL SCATTERING - HAZY
data at2d/
$6.63 \mathrm{e}-01,4.01 \mathrm{e}-01,1.47 \mathrm{e}-01,5.36 \mathrm{e}-02,1.96 \mathrm{e}-02,7.14 \mathrm{e}-03$,
$3.63 \mathrm{e}-03,2.94 \mathrm{e}-03,2.88 \mathrm{e}-03,2.86 \mathrm{e}-03,2.77 \mathrm{e}-03,2.64 \mathrm{e}-03$,
2.62e-03, 2.58e-03, 2.45e-03, 2.35e-03, 2.23e-03, 2.16e-03,
2.11e-03, 1.91e-03, 1.50e-03, 1.09e-03, 8.07e-04, 6.13e-04,
$4.77 \mathrm{e}-04,3.90 \mathrm{e}-04,1.96 \mathrm{e}-04,5.52 \mathrm{e}-05,1.45 \mathrm{e}-05,3.83 \mathrm{e}-06$,
$1.01 \mathrm{e}-06,0.0 \quad, 0.0$

WAVELENGTH IS . 860 MICRONS
TROPICAL MOLECULAR ABSORPTION
data at31/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

TROPICAL MOLECULAR SCATTERING
data at32/
$1.89 \mathrm{e}-03,1.81 \mathrm{e}-03,1.64 \mathrm{e}-03,1.49 \mathrm{e}-03,1.34 \mathrm{e}-03,1.22 \mathrm{e}-03$, $1.10 e-03,9.92 e-04,8.94 e-04,8.00 e-04,7.16 e-04,6.38 e-04$,

```
5.67e-04, 5.01e-04, 4.43e-04, 3.89e-04, 3.39e-04, 2.92e-04,
2.45e-04, 2.03e-04, 1.68e-04, 1.40e-04, 1.17e-04, 9.84e-05,
8.35e-05, 7.09e-05, 4.73e-05, 2.16e-05, 1.03e-05, 5.04e-06,
2.56e-06, 0.0 , 0.0 /
```

MIDLATITUDE SUMMER MOLECULAR ABSORPTION
data at33/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

MIDLATITUDE SUMMER MOLECULAR SCATTERING
data at34/
1.93e-03, 1.84e-03, 1.66e-03, 1.60e-03, 1.36e-03, 1.22e-03, $1.10 \mathrm{e}-03,9.90 \mathrm{e}-04,8.87 \mathrm{e}-04,7.96 \mathrm{e}-04,7.11 \mathrm{e}-04,6.32 \mathrm{e}-04$, $5.60 \mathrm{e}-04,4.95 \mathrm{e}-04,4.30 \mathrm{e}-04,3.67 \mathrm{e}-04,3.12 \mathrm{e}-04,2.67 \mathrm{e}-04$, $2.28 e-04,1.95 e-04,1.66 e-04,1.42 e-04,1.21 e-04,1.03 e-04$, $8.78 \mathrm{e}-05,7.50 \mathrm{e}-05,5.64 \mathrm{e}-05,2.32 e-05,1.11 e-05,5.44 \mathrm{e}-06$, $2.79 \mathrm{e}-06,1.05 \mathrm{e}-06,0.0$ /

MIDLATITUDE WINTER MOLECULAR ABSORPTION
data at35/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	,		

MIDLATITUDE WINTER MOLECULAR SCATTERING

data at36/

2.09e-03, 1.98e-03, 1.77e-03, 1.58e-03, 1.41e-03, 1.26e-03, $1.13 \mathrm{e}-03,1.00 \mathrm{e}-03,8.92 \mathrm{e}-04,7.90 \mathrm{e}-04,6.98 \mathrm{e}-04,6.08 \mathrm{e}-04$, $5.22 e-04,4.47 e-04,3.84 e-04,3.29 e-04,2.82 e-04,2.42 e-04$, $2.07 \mathrm{e}-04,1.77 \mathrm{e}-04,1.52 \mathrm{e}-04,1.29 \mathrm{e}-04,1.10 \mathrm{e}-04,9.43 \mathrm{e}-05$, $8.06 e-05,6.88 e-05,4.59 e-05,2.07 e-06,9.27 e-06,4.31 e-06$, 2.12e-06, 0.0 , 0.0 /

SUBARCTIC SUMMER MOLECULAR ABSORPTION
data at37/

$\&$	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
$\&$	0.0	, 0.0	, 0.0	0.0	0.0	0.0

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | |
| 0.0 | 0.0 | , 0.0 | | | |

SUBARCTIC SUMMER MOLECULAR SCATTERING

data at38/

$1.97 \mathrm{e}-03,1.87 \mathrm{e}-03,1.69 \mathrm{e}-03,1.53 \mathrm{e}-03,1.37 \mathrm{e}-03,1.23 \mathrm{e}-03$, $1.11 \mathrm{e}-03,9.93 \mathrm{e}-04,8.90 \mathrm{e}-04,7.95 \mathrm{e}-04,7.08 \mathrm{e}-04,6.19 \mathrm{e}-04$, $5.32 \mathrm{e}-04,4.57 \mathrm{e}-04,3.93 e-04,3.37 e-04,2.90 e-04,2.50 e-04$, $2.15 \mathrm{e}-04,1.85 \mathrm{e}-04,1.59 \mathrm{e}-04,1.36 \mathrm{e}-04,1.17 \mathrm{e}-04,1.01 \mathrm{e}-04$, $8.66 \mathrm{e}-05,7.41 \mathrm{e}-05,5.01 \mathrm{e}-05,2.35 \mathrm{e}-05,1.11 \mathrm{e}-05,5.48 \mathrm{e}-06$, $2.85 \mathrm{e}-06,1.09 \mathrm{e}-06,0.0$ /
SUBARCTIC WINTER MOLECULAR ABSORPTION
data at39/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

SUBARCTIC WINTER MOLECULAR SCATTERING

data at30/

$2.21 \mathrm{e}-03,2.06 \mathrm{e}-03,1.81 \mathrm{e}-04,1.60 \mathrm{e}-04,1.42 \mathrm{e}-04,1.27 \mathrm{e}-04$, $1.13 \mathrm{e}-04,1.01 \mathrm{e}-04,8.94 \mathrm{e}-04,7.84 e-04,6.76 e-04,5.78 \mathrm{e}-04$, $4.94 \mathrm{e}-04,4.22 \mathrm{e}-04,3.61 \mathrm{e}-04,3.08 \mathrm{e}-04,2.64 \mathrm{e}-04,2.26 \mathrm{e}-04$, $1.94 e-04,1.66 e-04,1.42 e-04,1.22 e-04,1.04 e-04,8.89 \mathrm{e}-05$, $7.60 \mathrm{e}-05,6.49 \mathrm{e}-05,4.31 \mathrm{e}-05,1.91 \mathrm{e}-05,8.60 \mathrm{e}-06,3.94 e-06$, $1.88 \mathrm{e}-06,0.0 \quad 0.0$ /
AEROSOL ABSORPTION - CLEAR
data at3al
$1.52 e-02,1.01 \mathrm{e}-02,4.41 \mathrm{e}-03,1.88 \mathrm{e}-03,8.84 \mathrm{e}-04,5.58 \mathrm{e}-04$, $4.07 \mathrm{e}-04,3.29 \mathrm{e}-04,3.22 e-04,3.20 \mathrm{e}-04,3.10 \mathrm{e}-04,2.96 e-04$, $2.94 \mathrm{e}-04,2.89 \mathrm{e}-04,2.75 \mathrm{e}-04,2.64 \mathrm{e}-04,2.49 \mathrm{e}-04,2.42 \mathrm{e}-04$, $2.36 e-04,2.13 e-04,1.68 e-04,1.22 e-04,9.04 e-05,6.86 e-05$, $5.34 \mathrm{e}-05,4.36 \mathrm{e}-05,2.20 \mathrm{e}-05,6.19 \mathrm{e}-06,1.63 \mathrm{e}-06,0.0$
0.0 , 0.0 , 0.0 /
AEROSOL SCATTERING - CLEAR
data at3b/
$9.03 \mathrm{e}-02,5.90-02,2.61 \mathrm{e}-02,1.11 \mathrm{e}-02,5.24 \mathrm{e}-03,3.30 \mathrm{e}-03$, 2.41e-03, 1.9n. $03,1.91 \mathrm{e}-03,1.90 \mathrm{e}-03,1.83 \mathrm{e}-03,1.75 \mathrm{e}-03$,

```
1.74e-03, 1.71e-03, 1.63e-03, 1.56e-03, 1.48e-03, 1.43e-03,
1.40e-03, 1.26e-03, 9.94e-04, 7.25e-04, 5.36e-04, 4.06e-04,
3.16e-04, 2.59e-04, 1.30e-04, 3.67e-05, 9.65e-06, 2.54e-06,
0.0 , 0.0 , 0.0 /
AEROSOL ABSORPTION - HAZY
```

data at3c/
$7.43 e-02,4.49 e-02,1.64 e-03,6.00 e-03,2.19 e-03,8.00 e-04$,
$4.07 \mathrm{e}-04,3.29 \mathrm{e}-04,3.22 \mathrm{e}-04,3.20 \mathrm{e}-04,3.10 \mathrm{e}-04,2.96 \mathrm{e}-04$,
$2.94 e-04,2.89 e-04,2.75 e-04,2.64 e-04,2.49 e-04,2.42 e-04$,
$2.36 e-04,2.13 e-04,1.68 e-04,1.22 e-04,9.04 e-05,6.86 e-05$,
$5.34 \mathrm{e}-05,4.36 \mathrm{e}-05,2.20 \mathrm{e}-05,6.19 \mathrm{e}-06,1.63 \mathrm{e}-06,0.0$,
$0.0,0.0 \quad 0.0$,
AEROSOL SCATTERING - HAZY
data at3d/
4.40e-01, 2.66e-01, 9.72e-02, 3.56e-02, 1.30e-02, 4.74e-03,
2.41e-03, 1.95e-03, 1.91e-03, 1.90e-03, 1.83e-03, 1.75e-03,
$1.74 \mathrm{e}-03,1.71 \mathrm{e}-03,1.63 \mathrm{e}-03,1.56 \mathrm{e}-03,1.48 \mathrm{e}-03,1.43 \mathrm{e}-03$,
$1.40 \mathrm{e}-03,1.26 \mathrm{e}-03,9.94 \mathrm{e}-04,7.25 \mathrm{e}-04,5.36 \mathrm{e}-04,4.06 \mathrm{e}-04$,
$3.16 e-04,2.59 e-04,1.30 e-04,3.67 e-05,9.65 e-06,2.54 e-06$,
$0.0 \quad 0.0 \quad 0.0$

WAVELENGTH IS 1.06 MICRONS
TROPICAL MOLECULAR ABSORPTION
data at41/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

TROPICAL MOLECULAR SCATTERING

data at42/

```
    8.04e-04, 7.68e-04, 6.99e-04, 6.33e-04, 5.72e-04, 5.19e-04,
    4.69e-04, 4.22e-04, 3.80e-04, 3.41e-04, 3.04e-04, 2.72e-04,
    2.41e-04, 2.13e-04, 1.88e-04, 1.66e-04, 1.44e-04, 1.24e-04,
    1.05e-04, 8.63e-05, 7.16e-05, 5.96e-05, 4.98e-05, 4.19e-05,
    3.55e-05, 3.02e-05, 2.01e-05, 9.20e-06, 4.37e-06, 2.15e-06,
    1.09e-06,0.0 ,0.0 /
```

 MIDLATITUDE SUMMER MOLECULAR ABSORPTION

data at43/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	0.0
0.0	, 0.0	, 0.0			

MIDLATITUDE SUMMER MOLECULAR SCATTERING

data at44/
8.20e-04, 7.81e-04, 7.06e-04, 5.38e-04, 5.77e-04, 5.21e-04, $4.69 \mathrm{e}-04,4.21 \mathrm{e}-04,3.78 \mathrm{e}-04,3.38 \mathrm{e}-04,3.02 e-04,2.69 e-04$, $2.39 \mathrm{e}-04,2.11 \mathrm{e}-04,1.83 \mathrm{e}-04,1.56 e-04,1.33 \mathrm{e}-04,1.14 \mathrm{e}-04$, $9.72 \mathrm{e}-05,8.29 \mathrm{e}-05,7.07 \mathrm{e}-05,6.02 \mathrm{e}-05,5.14 \mathrm{e}-05,4.38 \mathrm{e}-05$, $3.74 \mathrm{e}-05,3.19 \mathrm{e}-05,2.15 \mathrm{e}-05,9.89 \mathrm{e}-06,4.71 \mathrm{e}-06,2.31 \mathrm{e}-06$, $1.19 \mathrm{e}-06,0.0$, 0.0 /

MIDLATITUDE WINTER MOLECULAR ABSORPTION
data at45/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	0.0
0.0	, 0.0	, 0.0	,		

MIDLATITUDE WINTER MOLECULAR SCATTERING

data at46/
$8.91 \mathrm{e}-04,8.43 \mathrm{e}-04,7.52 \mathrm{e}-04,6.70 \mathrm{e}-04,5.99 \mathrm{e}-04,5.37 \mathrm{e}-04$, $4.80 \mathrm{e}-04,4.27 \mathrm{e}-04,3.80 \mathrm{e}-04,3.36 e-04,2.97 \mathrm{e}-04,2.59 \mathrm{e}-04$, $2.22 \mathrm{e}-04,1.90 \mathrm{e}-04,1.63 \mathrm{e}-04,1.40 \mathrm{e}-04,1.20 \mathrm{e}-04,1.03 \mathrm{e}-04$, $8.80 \mathrm{e}-05,7.53 \mathrm{e}-05,6.45 \mathrm{e}-05,5.51 \mathrm{e}-05,4.70 \mathrm{e}-05,4.01 \mathrm{e}-05$, $3.43 \mathrm{e}-05,2.83 \mathrm{e}-05,1.95 \mathrm{e}-05,8.79 \mathrm{e}-06,3.95 \mathrm{e}-06,1.83 \mathrm{e}-06$, 0.0 , 0.0 , 0.0 /

SUBARCTIC SUMMER MOLECULAR ABSORPTION
data at47/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

SUBARCTIC SUMMER MOLECULAR SCATTERING

```
data at48/
    8.38e-04, 7.98e-04, 7.21e-04, 6.50e-04, 5.84e-04, 5.24e-04,
        4.71e-04, 4.23e-04, 3.79e-04, 3.38e-04, 3.01e-04, 2.64e-04,
        2.26e-04, 1.95e-04, 1.67e-04, 1.44e-04, 1.23e-04, 1.06e-04,
        9.14e-05,7.86e-05,6.75e-05, 5.80e-05, 4.99e-05, 4.29e-05,
        3.69e-05, 3.15e-05, 2.13e-05, 9.98e-06, 4.73e-06, 2.33e-06,
        1.21e-06,0.0 , 0.0 /
```

 SUBARCTIC WINTER MOLECULAR ABSORPTION
 data at49/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | | | |

SUBARCTIC WINTER MOLECULAR SCATTERING

```
data at40/
```

 \(9.39 e-04,8.77 e-04,7.70 e-04,6.82 e-04,6.06 e-04,5.40 e-04\),
 \(4.82 e-04,4.29 e-04,3.81 e-04,3.34 e-04,2.88 e-04,2.46 e-04\),
 \(2.10 \mathrm{e}-04,1.80 \mathrm{e}-04,1.54 \mathrm{e}-04,1.31 \mathrm{e}-05,1.12 \mathrm{e}-05,9.63 \mathrm{e}-05\),
 \(8.25 e-05,7.06 e-05,6.06 e-05,5.17 e-05,4.42 e-05,3.78 e-05\),
 \(3.23 e-05,2.76 e-05,1.84 e-05,8.14 e-06,3.66 e-06,1.68 e-06\),
 \(0.0 \quad, 0.0 \quad, 0.0\)
 AEROSOL ABSORPTION - CLEAR
 data at4a/
1.98e-02, 1.31e-02, 5.71e-03, 2.43e-03, 1.15e-03, 7.23e-04,
$5.27 \mathrm{e}-04,4.27 \mathrm{e}-04,4.18 \mathrm{e}-04,4.15 \mathrm{e}-04,4.01 \mathrm{e}-04,3.84 \mathrm{e}-04$,
$3.81 e-04,3.75 e-04,3.56 e-04,3.42 e-04,3.23 e-04,3.13 e-04$,
$3.06 \mathrm{e}-04,2.77 \mathrm{e}-04,2.18 \mathrm{e}-04,1.59 \mathrm{e}-04,1.17 \mathrm{e}-04,8.89 \mathrm{e}-04$,
$6.93 \mathrm{e}-05,5.66 \mathrm{e}-05,2.85 \mathrm{e}-05,8.02 \mathrm{e}-06,2.11 \mathrm{e}-06,0.0$
$0.0,0.0,0.0$;
AEROSOL SCATTERING - CLEAR
data at4b/
$6.79 e-02,4.50 e-02,1.96 e-02,8.36 e-03,3.94 e-03,2.49 e-03$,
$1.81 e-03,1.47 \mathrm{e}-03,1.44 \mathrm{e}-03,1.43 \mathrm{e}-03,1.38 \mathrm{e}-03,1.32 \mathrm{e}-03$,
$1.31 \mathrm{e}-03,1.29 \mathrm{e}-03,1.22 \mathrm{e}-03,1.18 \mathrm{e}-03,1.11 \mathrm{e}-03,1.08 \mathrm{e}-03$,
$1.05 \mathrm{e}-03,9.51 \mathrm{e}-04,7.48 \mathrm{e}-04,5.45 \mathrm{e}-04,4.03 \mathrm{e}-04,3.06 \mathrm{e}-04$,
$2.38 \mathrm{e}-04,1.94 \mathrm{e}-04,9.79 \mathrm{e}-05,2.76 \mathrm{e}-05,7.28 \mathrm{e}-06,1.91 \mathrm{e}-06$,
$0.0,0.0 \quad 0.0$
AEROSOL ABSORPTION - HAZY

```
data at4c/
    9.63e-02, 5.82e-02, 2.13e-02, 7.78e-03, 2.84e-03, 1.04e-03,
    5.27e-04, 4.27e-04, 4.18e-04, 4.15e-04, 4.01e-04, 3.84e-04,
    3.81e-04, 3.75e-04, 3.56e-04, 3.42e-04, 3.23e-04, 3.13e-04,
    3.06e-04, 2.77e-04, 2.18e-04, 1.59e-04, 1.17e-04, 8.89e-04,
    6.93e-05, 5.66e-05, 2.85e-05, 8.02e-06, 2.11e-06, 0.0,
    0.0 , 0.0 , 0.0 /
    AEROSOL SCATTERING - HAZY
data at4d/
    3.31e-01, 2.00e-01, 7.31e-02, 2.67e-02, 9.76e-03, 3.56e-03,
    1.81e-03, 1.47e-03, 1.44e-03, 1.43e-03, 1.38e-03, 1.32e-03,
    1.31e-03, 1.29e-03, 1.22e-03, 1.18e-03, 1.11e-03, 1.08e-03,
    1.05e-03, 9.51e-04, 7.48e-04, 5.45e-04, 4.03e-04, 3.06e-04,
    2.38e-04, 1.94e-04, 9.79e-05, 2.76e-05, 7.26e-06, 1.91e-06,
    0.0 , 0.0 , 0.0 /
```


WAVELENGTH IS 10.591 MICRONS
TROPICAL MOLECULAR ABSORPTION

data at51/

$5.79 \mathrm{e}-01,5.17 \mathrm{e}-01,2.85 \mathrm{e}-01,1.81 e-01,9.62 e-02,6.29 e-02$, $5.02 \mathrm{e}-02,3.99 \mathrm{e}-02,3.20 \mathrm{e}-02,2.63 \mathrm{e}-02,2.07 \mathrm{e}-02,1.65 \mathrm{e}-02$, $1.29 \mathrm{e}-02,1.04 \mathrm{e}-02,7.38 \mathrm{e}-03,5.85 \mathrm{e}-03,4.33 \mathrm{e}-03,3.32 e-03$, $3.56 \mathrm{e}-03,4.35 \mathrm{e}-03,5.19 \mathrm{e}-03,6.27 \mathrm{e}-03,7.47 \mathrm{e}-03,8.35 \mathrm{e}-03$, $9.04 \mathrm{e}-03,9.91 \mathrm{e}-03,1.20 \mathrm{e}-02,1.19 \mathrm{e}-02,1.10 \mathrm{e}-02,8.86 \mathrm{e}-03$, $6.04 \mathrm{e}-03,9.01 \mathrm{e}-04,1.54 \mathrm{e}-05 /$

TROPICAL MOLECULAR SCATTERING
data at52/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

MIDLATITUDE SUMMER MOLECULAR ABSORPTION

```
data at53/
    3.58e-01, 3.26e-01, 1.88e-01, 1.15e-01, 7.58e-02, 5.54e-02,
    4.47e-02, 3.76e-02, 3.02e-02, 2.38e-02, 1.95e-02, 1.57e-02,
    1.24e-02, 9.53e-03, 8.34e-03, 8.70e-03, 8.49e-03, 8.36e-03,
    8.47e-03, 8.56e-03, 8.93e-03, 9.19e-03, 9.72e-03, 1.01e-02,
    1.11e-02, 1.11e-02, 1.33e-02, 1.32e-02, 1.27e-02, 1.06e-02,
    7.52e-03, 1.08e-03, 1.74e-05/
```


MIDLATITUDE SUMMER MOLECULAR SCATTERING

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	1		

MIDLATITUDE WINTER MOLECULAR ABSORPTION

```
data at55/
    7.94e-02, 7.31e-02, 5.89e-02, 4.91e-02, 4.04e-02, 3.24e-02,
    2.62e-02, 2.15e-02, 1.73e-02, 1.40e-02, 1.08e-02, 9.81e-03,
    9.48e-03, 9.36e-03, 9.34e-03, 9.00e-03, 8.75e-03, 8.57e-03,
    8.56e-03, 8.25e-03, 8.01e-03, 8.19e-03, 8.19e-03, 8.16e-03,
    8.11e-03, 8.38e-03, 8.09e-03, 6.85e-03, 6.71e-03, 6.02e-03,
    4.40e-03, 2.74e-04, 1.58e-04/
```

MIDLATITUDE WINTER MOLECULAR SCATTERING
data at56/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

SUBARCTIC SUMMER MOLECULAR ABSORPTION

data at57/

2.01e-01, 1.82e-01, 1.14e-01, 8.15e-02, 6.09e-02, 4.66e-02, $3.74 \mathrm{e}-02,2.86 \mathrm{e}-02,2.28 \mathrm{e}-02,1.79 \mathrm{e}-02,1.38 \mathrm{e}-02,1.20 \mathrm{e}-02$, $1.23 e-02,1.18 e-02,1.23 e-02,1.22 e-02,1.17 e-02,1.22 e-02$, $1.20 e-02,1.20 e-02,1.22 e-02,1.19 e-02,1.21 e-02,1.21 e-02$, $1.20 e-02,1.27 e-02,1.45 e-02,2.01 e-02,1.40 e-02,1.19 e-02$, 8.19e-03, 1.10e-03, 1.76e-05/

SUBARCTIC SUMMER MOLECULAR SCATTERING
data at58/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
0.0	, 0.0	, 0.0	,			

c

SUBARCTIC WINTER MOLECULAR ABSORPTION

data at59/

$4.12 e-02,4.15 e-02,4.00 e-02,3.52 e-02,3.05 e-02,2.45 e-02$,
$1.93 e-02,1.51 e-02,1.17 e-02,9.59 e-73,8.93 e-03,8.92 e-03$, 8.91e-03, 8.73e-03, 9.11e-03, 8.89e-03, 8.77e-03, 8.56e-03,
8.32e-03, 8.21e-03, 7.88e-03, 7.78e-03, 7.52e-03, 7.21e-03, $7.33 e-03,6.84 e-03,7.24 e-03,5.78 e-03,5.10 e-03,4.10 e-03$, 3.08e~03, 7.76e-04, 1.79e-05/

SUBARCTIC WINTER MOLECULAR SCATTERING
data at50/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	,		

AEROSOL ABSORPTION - CLEAR

data at5a/

$5.48 \mathrm{e}-03,3.64 \mathrm{e}-03,1.58 \mathrm{e}-03,6.75 \mathrm{e}-04,3.18 \mathrm{e}-04,2.01 \mathrm{e}-04$, $1.46 \mathrm{e}-04,1.18 \mathrm{e}-04,1.16 \mathrm{e}-04,1.15 \mathrm{e}-04,1.11 \mathrm{e}-04,1.06 \mathrm{e}-04$, $1.06 \mathrm{e}-04,1.04 \mathrm{e}-04,9.89 \mathrm{e}-05,9.49 \mathrm{e}-05,8.97 \mathrm{e}-05,8.69 \mathrm{e}-05$, $8.50 e-05,7.68 e-05,6.04 e-05,4.40 e-05,3.25 e-05,2.47 e-05$, $1.92 e-05,1.57 e-05,7.90 e-06,2.23 e-06,0.0,0.0$, $0.0 \quad 0.0 \quad, 0.0$ /

- aEROSOL SCATTERING - CLEAR
data at5b/

,	3.09e-03, 1.34e-03,	5.73e-04, 2.70e-04, 1.70e-04,
$1.24 e-04$,	1.00e-04, 9.83e-05,	9.77e-05, 9.45e-05, 9.04e-05,
8.96e-05,	8.83e-05, 8.39e-05,	8.05e-05, 7.61e-05, $7.38 \mathrm{e}-05$,
7.21e-05,	6.51e-05, 5.12e-05,	3.74e-05, 2.76e-05, 2.09e-05,
$1.63 \mathrm{e}-05$,	1.33e-05, 6.71e-06,	1.89e-06, 0.0 , 0.0
0.0	0.0 , 0.0	

AEROSOL ABSORPTION - HAZY

data at5c/

$2.67 e-02,1.61 e-02,5.90 e-03,2.16 e-03,7.88 e-04,2.88 e-04$, $1.46 \mathrm{e}-04,1.18 \mathrm{e}-04,1.16 \mathrm{e}-04,1.15 \mathrm{e}-04,1.11 \mathrm{e}-04,1.06 \mathrm{e}-04$, $1.06 \mathrm{e}-04,1.04 \mathrm{e}-04,9.89 \mathrm{e}-05,9.49 \mathrm{e}-05,8.97 \mathrm{e}-05,8.69 \mathrm{e}-05$, $8.50 \mathrm{e}-05,7.68 \mathrm{e}-05,6.04 \mathrm{e}-05,4.40 \mathrm{e}-05,3.25 \mathrm{e}-05,2.47 \mathrm{e}-05$, $\begin{array}{lll}1.92 e-05,1.57 e-05,7.90 e-06,2.23 e-06,0.0, & 0.0 \\ 0.0 & 0.0 & 0.0\end{array}$,

```
AEROSOL SCATTERING - HAZY
```

data at5d/
$2.27 e-02,1.37 e-02,5.01 e-03,1.83 e-03,6.68 e-04,2.44 e-04$,
$1.24 \mathrm{e}-04,1.00 \mathrm{e}-04,9.83 \mathrm{e}-05,9.77 \mathrm{e}-05,9.45 \mathrm{e}-05,9.04 \mathrm{e}-05$,
$8.96 \mathrm{e}-05,8.83 \mathrm{e}-05,8.39 \mathrm{e}-05,8.05 \mathrm{e}-05,7.61 \mathrm{e}-05,7.38 \mathrm{e}-05$,
$7.21 \mathrm{e}-05,6.51 \mathrm{e}-05,5.12 e-05,3.74 \mathrm{e}-05,2.76 \mathrm{e}-05,2.09 \mathrm{e}-05$,
$1.63 \mathrm{e}-05,1.33 \mathrm{e}-05,6.71 \mathrm{e}-06,1.89 \mathrm{e}-06,0.0$, 0.0 ,
$0.0 \quad 0.0 \quad 0.0$

OPTIONAL STORAGE FOR INPUT DATA
TROPICAL MOLECULAR ABSORPTION
data at61/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	,		

TROPICAL MOLECULAR SCATTERING
data at62/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	0.0
0.0	, 0.0	, 0.0	0.0	, 0.0	0.0
0.0	, 0.0	, 0.0	,		

MIDLATITUDE SUMMER MOLECULAR ABSORPTION
data at63/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , |

MIDLATITUDE SUMMER MOLECULAR SCATTERING
data at64/

| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |,

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	0.0	
0.0	, 0.0	, 0.0			

MIDLATITUDE WINTER MOLECULAR ABSORPTION
data at65/

0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	- 0.0	, 0.0
0.0	, 0.0	, 0.0	, 0.0	- 0.0	, 0.0
0.0	, 0.0	0.0	, 0.0	, 0.0	, 0.0
0.0	0.0	0.0	1		

MIDLATITUDE WINTER MOLECULAR SCATTERING
data at66/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

SUBARCTIC SUMMER MOLECULAR ABSORPTION
data at67/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

SUBARCTIC SUMMER MOLECULAR SCATTERING
data at68/

| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| 0.0 | , 0.0 | , 0.0 | , | | |

SUBARCTIC WINTER MOLECULAR ABSORPTION
data at69/

| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |
| $\&$ | 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 | , 0.0 |

\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
8	0.0	, 0.0	, 0.0	/			
c							
c	SUBARCTIC WINTER MOLECULAR SCATTERING						
c	data at60/						
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
8	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
8	0.0	- 0.0	, 0.0	, 0.0	, 0.0	- 0.0	,
8	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	, 0.0	/			
c	AEROSOL ABSORPTION - CLEAR						
c							
c							
	data at6a/						
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	
\&	0.0	, 0.0	, 0.0	, 0.0	- 0.0	, 0.0	,
8	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
8	0.0	, 0.0	, 0.0	1			
c							
c	AEROSCL SCATTERING - Clear						
c							
	data at6b/						
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
$\&$	0.0	, 0.0	- 0.0	- 0.0	, 0.0	, 0.0	,
8	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	1 0.0	, 0.0	, 0.0	, 0.0	,
8	0.0	, 0.0	- 0.0	, 0.0	, 0.0	, 0.0	,
8	0.0	, 0.0	, 0.0	1			
c							
c	AEROSOL ABSORPTION - HAZY						
c							
	data at6c/						
\&	0.0	, 0.0	- 0.0	, 0.0	, 0.0	: 0.0	,
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
$\&$	0.0	, 0.0	, 0.0	, 0.0	- 0.0	, 0.0	
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
8	0.0	, 0.0	, 0.0	1			
c							
c	AEROSOL SCATTERING - HAZY						
c							
	data at6d/						
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	- 0.0	, 0.0	, 0.0	, 0.0	,
\&	0.0	, 0.0	, 0.0	, 0.0	, 0.0	, 0.0	,

SWITCH FLAG -- DEPENDS ON FILE STRUCTURE =MODESW LOGICAL UNIT NUMBER FOR TERMINAL INPUT =LUNIT
IF FIRST CALL GO DIRECTLY TO INPUT LIST
if (nstop.eq.0) go to 10
nst $0 p=1$
IF LAST CALL TO TSHARE, TERMINATE RUNS
write $(6,1220)$
read (lunit, 1890 ,end=650) nstop
if (nstop.eq.1) go to 680
nst 0 = $=10$

```
```

 go to 700
 O
c WAVELENGTH, LAM AND ALAMDA
c ATMOSPHERIC COEFFICIENTS
30
write (6,1300)
read (lunit,1890,end=650) natfil
if (natfil.le.0) go to 10
read (natfil, 1210) ((at(i, j,6), j=1,14),i=1,33)
AFGL OPTIONS FOR ATMOSPHERIC MODEL AND VISIBIIITY
c
5 0
write (6,1280) mat
read (lunit,1890,end=650) mat
write (6,1290) mvis
read (lunit,1890,end=650) mvis
LOAD THE ABSORPTION AND SCATTERING ARRAYS AB AND AS
mat1=2*mat-1
mat2=mat1+1

```
```

 mvis1=10+2*mvis-1
 mvis2=mvis1+1
 do 60 j=1,33
 ab(j)=(at(j, mat1, lam)+at(j, Ivis1, lam))*1.e-3
 as(j)=(at(j,mat2,1am)+at(j, Ivis2,1am))*1.e-3
 if (change) go to 670
 TRANSMITTER OPTICS DIAMETER, DT
 nim=2
 if (.not.prompt) write (6,770) nim
 if (prompt) write (6,1330) nim,dt
 read (lunit,1890,end=650) dt
 if (change) go to }67
 TRANSMITTER BEAMWIDTH, PHIT
 nim=3
 if (.not.prompt) write (6,780) nim
 if (prompt) write (6,1340) nim,phit
 read (lunit,1890,end=650) phit
 CHECK TO SEE IF DIFFRACTION LIMIT IS EXCEEDED
 diffl=1.22*alamda(lam)/dt
 if (phit.gt.diffl) go to 100
 write (6,1270) diffl
 go to }9
 if (change) go to 670
 c
 c BSDF PARAMETERS
 110 nim=31
 if (prompt) write (6,1350) nim,ibsdf
 read (lunit,1890,end=650) ibsdf
 if (ibsdf.eq.1) go to 130
 write (}6,1360\mathrm{) ybsdf
 read (lunit,1890,end=650) ybsdf
 write (6,1370) sbsdf
 read (lunit,1890,end=650) sbsdf
 write (6,1380) ng
 read (lunit,1890,end=650) ng
 if (ng.eq.0) go to }13
 do 120 i=1,ng
 write (6,1390) i,gstart(i),i,gend(i),i,gampl(i)
 read (lunit,1890,end=650) gstart(i),gend(i),gampl(i)
 continue
 if (change) go to 670
 c
 c LINK RECEIVER OPTICS DIAMETER, DR
 140 nim=4
 if (.not.prompt) write (6,790) nim
 if (prompt) write (6,1400) nim,dr
 read (lunit,1890,end=650) dr
 if (change) go to 670
    ```
```

c
c BACKSTOP PARAMETERS
150 nim=32
write (6,1430) nim,nbak
read (lunit,1890,end=650) nbak
if (nbak.eq.1) go to }17
if (nbak.eq.2) go to }16
write (6,1450)
read (lunit,1890,end=650) bdiff(lam)
bmaxs=bdiff(lam)
go to }17
write (6,1440) bmaxs,bfwhms,bdiff(lam)
read (lunit,1890,end=650) bmaxs,bfwhms,bdiff(lam)
if (change) go to 670
c
c ORIENTATION OF BACKSTOP
180 nim=44
psiaz=psiaz*r2d
if (.not.prompt) write (6;800) nim
if (prompt) write (6,1410) nim,psiaz
read (lunit,1890,end=650) psiaz
psiaz=psiaz/r2d
c
psiel=psiel*r2d
if (.not.prompt) write (6,810)
if (prompt) write (6,1420) psiel
read (lunit,1890,end=650) psiel
psiel=psiel/r2d
if (change) go to 670
c
c RECEIVER OPTICS REFLECTION PARAMETERS
190 nim=33
if (prompt) write (6,1460) nim,noa
read (lunit,1890,end=650) noa
if (noa.eq.1) go to 200
write (6,1470) oasmax,0afwhm,diffoa
read (lunit,1890,end=650) oasmax,oafwhm,diffoa
if (change) go to 670
c
c LINK TRANSMIT POWER (OUT OF OPTICS), PT
210 nim=6
if (.not.prompt) write (6,020) nim
if (prompt) write (}6,1480) nim,p
read (lunit,1890,end=650) pt
if (change) go to }67
c
c LINK RANGE, RL
220 nim=8
if (.not.pronpt) write (6,840) nim
if (prompt) write (6,1500) nim,r!

```

```

 read (lunit,1890,end=650) rl
 if (change) go to 670
 c
c LINK TRANSMITTER ALTITUDE, HT
230
nim=9
if (.not.prompt) write (6,850) nim
if (prompt) write (6,1510) nim,ht
read (lunit,1890, end=650) ht
if (change) go to 670
c
c LINK RECEIVER ALTITUDE, HR
240 nim=10
if (.not.prompt) write (6,860) nim
if (prompt) write (6,1520) nim,hr
read (lunit,1890, end=650) hr
if (change) go to 670
SPACE TO GROUND FLAG
nim=34
if (.not.change) go to 260
c IF SWITCH TO STOG THEN MUST REDO REST OF INPUTS
change=.not.change
write (6,1260)
go to }1
if(ht.lt.hatm) go to 275
if (.not.prompt) write (6,870) nim
if (prompt) write (6,1530) nim,istog
read (lunit,1890,end=650) istog
c
c
c
c * jump to get turbulence for narrow beam anal ysis
275 if (istog.eq.0) go to 320
mcomp=1
c
c
270
PERPENDICULAR DISTANCE TO CENTER OF BEAM
nim=35
if (.not.prompt) write (6,880) nim
if (prompt) write (6,1540) nim,x
read (lunit,1890,end=650) x
if (change) go to 670
c
c
280
ELEvATION ANGLE OF SR
nim=36
if (.not.prompt) write (}6,890\mathrm{) nim
theta=theta*r2d
if (prompt) write (6,1550) nim,theta
read (lunit,1890,end=650) theta
theta=theta/r2d
if (change) go to 670

```
\(c\)
ALTITUDE AT GROUND LEVEL
nim=39
if (.not.prompt) write \((6,950)\) nim
if (prompt) write \((6,1610)\) nim,gl
read (lunit,1890,end=650) gl
if (change) go to 670

\section*{c}
c
flag for stog inputs, ibflag
nim=46
if (.not.prompt) write ( 6,900 ) nim
if (prompt) write \((6,1560)\) nim,ibflag read (lunit, 1890, end \(=650\) ) ibflag if (ibflag.eq.2) go to 330
total JItTER, SIGJ
nim \(=47\)
if (.not.prompt) write \((6,910)\) nim
if (prompt) write ( 6,1570 ) nim, sigj
read (lunit, 1890 ,end=650) sigj
c
c
TURBULENCE FLAG, IW
nim=48
if (.not.prompt). write \((6,920)\) nim
if (prompt) write \((6,1580)\) nim,iw
read (lunit, 1890 ,end=650) iw if (change) go to 670
c * jump out if narrow beam analysis * if (istog.eq. 0 ) go to 350
go to 490
c
c radios of link beam
nim=37
if (.not.prompt) write ( 6,930 ) nim
if (prompt) write \((6,1590)\) nim,rb
read (lunit, 1890 ,end=650) rb

\section*{c}
c EQUIVALENT POWER PER SQ.M
nime38
if (.not.prompt) write \((6,940)\) nim
if (prompt) write \((6,1600)\) nim, grndi read (lunit, 1890 ,end=650) grndi if (change) go to 670
go to 490
COMPUTATION FLAG, MCOMP
MCOMP=1 COMPUTE POWER RECEIVED MCOMP 2 COMPUTE S/N
```

350 nim=25
if (.not.prompt) write (6,980) nim
if (prompt) write (6,1640) nim,mcomp
read (lunit,1890,end=650) mcomp
if (change) change=.not.change
IF POWER IS THE DESIRED OUTPUT THE DETECTOR PARAMETERS ARE SKIPPED
MP = 1 ALL SOURCES INCLUDED
2 ATMOSPHERIC CONTRIBUTION ONLY
3 TRANSMITTER CONTRIBUTION ONLY
4 RECEIVER AND BACKSTOP CONTRIBUTION
nim=5
if (.not.prompt) write (6,990) nim
if (prompt) write (6,1650) nim,mp
read (lunit,1890,end=650) mp
if (change) go to 670
if (mcomp.eq.1) go to 490
c
370
c
c
c
xm=xmod (lam)
g=gainsr(lam)
eta=qe(lam)
f=fnoise(lam)
bwr=srbw(lam)
c * set wavelength default values for darki \& ptherm
darki=srdark(lam)
ptherm=srther(lam)
bwopt=obw(lam)
if (irtype.ne.1) go to 380
if (change) go to 670
go to 470
INPUT USER SUPPLIED PARAMETERS
MODULATION DEPTH, XM
nim=14
ir (.not.prompt) write (6,1000) nim
if (prompt) write (6,1670) nim,xm
read (lunit,1890,end=650) xm
if (change) go to 670

```
```

c
c DETECTION TYPE,IHET
390
4 0 0
c
c
c
4 1 0
nim=15
if(ihet.eq.1) go to 415
if (.not.prompt) write (6,1020) nim
if (prompt) write (}6,1690) nim,e
read (lunit,1890,end=650) em
if (change) go to 670
QUANTUM EFFICIENCY, ETA
nim=16
if (.not.prompt) write (6,1030) nim
if (prompt) write (6,1700) nim,eta
read (lunit,1890,end=650) eta
if (change) go to }67
c
c * add detector gain *
DETECTOR GAIN
435 nim=52
if (ihet.eq.2) go to 440
if (.not.prompt) write (6,1035) nim
if (prompt) write (}6,1705\mathrm{) nim,g
read (lunit,1890,end=650) g
if (change) go to 670
c
c NOISE ASSOCIATED WITH GAIN, F
430 nim=17
if (.not.prompt) write (6,1040) nim
if (prompt) write (6,1710) nim,f
read (lunit,1890,end=650) f
if (change) go to }67
c
c SR BANDWIDTH, BWR
440 nim=18
if (.not.prompt) write (6,1050) nim
if (prompt) write (6,1720) nim,bwr
read (lunit,1890,end=650) bwr
if (change) go to 670
c
c due to fundamental difference in resulting noise statistics

```
c Iumped noise parameter pnep must be separated into darki \& ptherm *
c THERMAL NOISE PONER, PTHERM, \& DARK CURRENT, DARKI
450 nim=19
c
    if(ihet.eq.2) go to 451
    if (.not.prompt) write ( 6,1060 ) nim
    if (prompt) write \((6,1730)\) nim, ptherm
    read (Lunit, 1890 ,end=650) ptherm
    if (.not.prompt) write \((6,1065)\) nim
    if (prompt) write ( 6,1735 ) nim,darki
    read (lunit,1890,end=650) darki
    451
    if (change) go to 670
c
c SR OPTICAL BANDWIDTH
460 nim=29
    if (.not.prompt) write \((6,1070)\) nim
    if (prompt) write \((6,1740)\) nim, bwopt
    read (lunit, 1890 , end \(=650\) ) bwopt
    if (change) go to 670
c
c DAY/NIGHT SWITCH FOR BACKGROUND NOISE COMPUTATION
470
    nim=30
c
    if(inet.eq.2) go to 471
    if (.not.prompt) write \((6,1080)\) nim
    if (prompt) write ( 6,1750 ) nim,nflg
    read (lunit, 1890 , end \(=650\) ) nflg
    471 if (change) go to 670
c
c
c LINK INFORMATION BANDWIDTH, BW
\(480 \quad\) nim \(=7\)
    if (.not.prompt) write \((6,830) \mathrm{nim}\)
    if (prompt) write \((6,1490)\) nim,bw
    read (iunit, 1890 , end \(=650\) ) bw
    if (change) go to 670
c
c SR APERTURE AREA
490 nim=12
    if (.not.prompt) write \((6,970)\) nim
    if (prompt) write \((6,1630)\) nim,asr
    read (lunit, 1890 , end \(=650\) ) asr
    if (change) go to 670
c
c SR LINEAL FIELD OF VIEW, PHI
500 nim=11
    if (.not.prompt) write ( 6,960 ) nim
    if (prompt) write \((6,1620)\) nim,phi
    read (Iunit, 1890 , end \(=650\) ) phi
    if (change) go to 670
```

c
c SR LINEAL FIELD OF VIEN (AZIMUTH), PHIAZ
510 if (mcomp.ne.2.and.istog.eq.0) go to 520
nim=40
if (.not.prompt) write (6,1090) nim
if (prompt) write (6,1760) nim,phiaz
read (lunit,1890,end=650) phiaz
if (change) go to 670
c
c TRANSMITTER HOOD LENGTH, BLT
520 nim=20
if (.not.prompt) write (6,1100) nim
if (prompt) write (}6,1770\mathrm{) nim,blt
read (lunit,1890,end=650) sit
c
c TRANSMITTER HOOD DIAMETER, BDRT
530 nim=42
c SET DEFAULT VALUE = TO OPTICS DIAMETEK
bdrt=dt
if (blt.eq.0.) go to 540
if (.not.prompt) write (}6,1110\mathrm{) nim
if (prompt) write (6,1780) nim,bdrt
read (lunit,1890,end=650) bdrt
if (change) go to }67
c
c RECEIVER HOOD LENGTH, BLR
nim=21
if (.not.prompt) write (}6,1130)\textrm{nim
if (prompt) write (}6,1790\mathrm{) nim,blr
read (lunit,1890,end=650) blr
c
c RECEIVER HOOD DIAMETER, BDLR
550 nim=43
c SET DEFAULT VALUE = TO OPTICS DIAMETER
bdlr=dr
if (blr.eq.c.) go to 560
if (.not.prompt) write (}6,1120) ni
if (prompt) write (}6,1800\mathrm{) nim,bdlr
read (lunit,1890,end=650) bdir
if (change) go to }67
c
c SR ALTITUDE, HS
560 nim=22
if (istog.eq.0) go to 570
if (.not.prompt) write (}6,1140) ni
if (prompt) write (}6,1810) nim,h
read (lunit,1890,end=650) hs
if (change) go to 670
c
c ANGLE OF INTERCEPT PLANE, GAMINT

```
```

580 nim=41
if (istog.eq.1) go to 590
if (.not.prompt) write (6,1160) nim
gamd=gamint*r2d
if (prompt) write (6,1830) nim,gamd
read (lunit,1890,end=650) gamd
gamint=gamd/r2d
if (change) go to 670
590
c
c INTERCEPT MODE, MODE
600 if (istog.eq.1) go to 660
nim=26
if (.not.prompt) write (6,1150) nim
if (prompt) write (6,1820) nim,mode
read (5,1890,end=650) mode
c Pr(e) analysis not valid for heterodyne case*
c PR(E) ANALYSIS NOT VALID FOR HETERODYNE RCVR
if (mode.eq.6.and.inet.eq.2) go to 605
c add additional branching for mode 6*
if (mode.eq.6) go to 610
if (mode.ge.4.and.mode.1t.7) go to 630
if (mode.ne.7) go to 610
write (6,1870)
write (6,1880)
go to 600
c
c GO BACK TO ALLOW FOR CHANGE OF DECTECTION TYPE
605 write (6,1868)
go to 390
c
610 if (change) change=.not.change
c
c * add branching for mode 6*
620 if (mode.gt.3.and.mode.ne.6) go to 630
nim=23
If (.not.prompt) write (6,1170) nim
if (prompt) write (6,1840) nim,rpx
read (lunit,1890,end=650) rpx
if (change) go to 670
c
c \# add branching for mode 6 *
630 if (mode.gt.3.and.mode.ne.6) go to 640
nim=24
if (.not.prompt) write (}6,1180)\textrm{nim
if (prompt) write (}6,1850\mathrm{) nim,x
read (Iunit,1890,end=650) x
if (change) go to 670
c
c \# inputs for Pr(e0 analysis - theta,t, npts,form0,form1
635 if (mode.ne.6) go to 660

```
```

c HAVE SR PARAMETERS NEEDED FOR MODE }6\mathrm{ BEEN INPUT?
if (mcomp.eq.2) go to 636
mcomp=2
change=.not.change
go to 350
c
6 3 6
c BIT INTERVAL TIME, T
637 nim=50
if (.not.prompt) write (6,891) nim
if (prompt) write (6,1866) nim,t
read (lunit,1890,end=650) t
if (change) go to 670
c
6 3
640 if (mode.1t.4) go to }66
nim=27
if (.not.prompt) write (6,1190)
if (prompt) write (6,1860) nim,dcomp(mcomp)
read (lunit,1890,end=650) dcomp(mcomp)
if (change) go to }67
go to 660
PROMPT SWITCH
TWO SCHEMES ARE POSSIBLE, ONE USING SEVERAL FILES
ON THE SAME LOGICAL UNIT, THE OTHER USING INCREMENTING
LOGICAL UNIT NUMBERS. IN EACH CASE SEVERAL FILES MUST BE
ALLOCATED TO THE TERMINAL SINCE EACH TIME THE PROMPT SWITCH
IS USED THE CURRENT TERMINAL INPUT FILE IS TERMINATED.
c
650 prompt=.not.prompt

```
```

 if (modesw.eq.2) lunit=lunit+1
 go to 690
 c
 60
 c
 670
 c
write (6,710)
go to 680
write $(6,720)$
read (lunit,1890) nim
if (nim.eq.0) go to 680
go to 690
change $=$.false.
write $(6,730)$
read (lunit,1890) ic
if (ic.eq.3) go to 10
if (ic.eq.2) go to 700
change=.true.
write $(6,740)$
read (lunit,1890) nim

- add input code branch points *
go to (10,80,90,140,360,210,480,220,230,240,500,490,370,380,410,42 $0,430,440,450,520,540,560,620,630,350,600,640,30,460,470,110,150,1$
$90,250,270,280,330,340,290,510,580,530,550,180,390,300,310$,
$320,635,637,638,435)$, nim
return
FORMAT STATEMENTS FOR PARTIAL PROMPT MODE
format (//,10x, "end of inputs")
format (10x, "next input? if none, enter 0 ")
format (10x,"do you wish to change anything? 1-yes 2-no 3-all")
format (10x, "which input? enter input code.")
format ($3 x, 13,4 x$, lamda ${ }^{2}, 2 x, 13$)
format ($3 x, 13,4 x, n i a \quad n, 2 x, 13$)
format ($3 x, i 3,4 x, n d t \quad n, 2 x, 17.3$)
format ($3 x, 13,4 x$, "phit \quad,2x,1pe11.3)
format ($3 x, 13,4 x, n d r \quad n, 2 x, 77.3$)
format ($3 x, 13,4 x$, "psiaz $n, 2 x, 77.3$)
format ($10 x,{ }^{n}$ psiel $n, 2 x, 77.3$)
format ($3 x, 13,4 x$, "pt \quad, 2x,1pe11.3)
format ($3 x, 13,4 x$, n bw $\quad n, 2 x, 1$ pe11.3)
format ($3 x, 13,4 x,{ }^{n} r 1 \quad n, 2 x, 1$ pe11.3)
format ($3 x, 13,4 x$, "ht \quad, $2 x, 1$ pe11.3)
format ($3 x, 13,4 x, n \mathrm{hr} \quad n, 2 x, 1$ pe11.3)
format ($3 x, 13,4 x$, "istog $n, 2 x, 13$)
format ($3 x, 13,4 x,{ }^{n} x \quad n, 2 x, 1$ pe11.3)
format ($3 x, 13,4 x$, "theta $n, 2 x, 1$ pe11.3)
format ($3 x, 13,4 x, n^{n} \quad n, 2 x, 1$ pe11.3)
format ($3 x, 13,4 x$, nnpts $n, 2 x, 13$)

| 893 | format ($10 \mathrm{x}, \mathrm{n}$ space waveform") |
| :---: | :---: |
| 894 | format ($10 x$, "mark waveform") |
| 900 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{Mibflag}, 2 \mathrm{l}, \mathrm{i} 3$) |
| 910 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{nsigj} \mathrm{n}, 2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 920 | format ($3 x, 13,4 x$, "iw \quad n, $2 \mathrm{x}, \mathrm{i} 3$) |
| 930 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{nrb}$ ",2x,1pe11.3) |
| 940 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{Mgrndi} \mathrm{n}, 2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 950 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{ml}$ (\quad, 2x,1pe11.3) |
| 960 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{mphi} \quad \mathrm{n}, 2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 970 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{masr}$ n, $2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 980 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{mmcomp}$ ", 2x,i3) |
| 990 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{mpp} \quad \mathrm{m}, 2 \mathrm{x}, 13$) |
| 1000 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{m}$ ¢m ", $2 \mathrm{x}, \mathrm{f7} .3$) |
| 1010 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{"ihet} \mathrm{",2x,13)}$ |
| 1020 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{mem} \pi, 2 \mathrm{~m}, 17.3$) |
| 1030 | format ($3 \mathrm{x}, 13,4 \mathrm{l}$, "eta $\mathrm{m}, 2 \mathrm{l}, 77.3$) |
| 1035 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{mg} \quad \mathrm{m}, 2 \mathrm{~m}, 57.3$) |
| 1040 | |
| 1050 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{Tbwr}$ ",2x,1pe11.3) |
| 1060 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{"p}$ therm", $2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 1065 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{Mdarki} \mathrm{n}, 2 \mathrm{x,1pe11.3)}$ |
| 1070 | format ($3 \mathrm{x}, \mathrm{i} 3,4 \mathrm{x}, \mathrm{mbopt} \mathrm{n}, 2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 1080 | format ($3 x, 13,4 x$, nite ${ }^{\text {n }}$, $2 \mathrm{x}, 13$) |
| 1090 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{Mphiaz}$ n, $2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 1100 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{nblt} \mathrm{n}, 2 \mathrm{x}, \mathrm{f7} .3$) |
| 1110 | format ($3 \mathrm{x}, 13,4 \mathrm{x}$, "bdrt \quad ", $2 \mathrm{x}, 57.3$) |
| 1120 | format ($3 \mathrm{x}, 13,4 \mathrm{x}$, "bdir \quad \%, $2 \mathrm{x}, \mathrm{f7} .3$) |
| 1130 | format (3x,i3,4x, "blr n, $2 \mathrm{x}, 57.3$) |
| 1140 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{nhs} \quad \mathrm{n}, 2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 1150 | format ($3 x, 13,4 x,{ }^{\text {mode }}$ ", $2 \mathrm{x}, 13$) |
| 1160 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{ng}$ gmint", $2 \mathrm{x}, 13$) |
| 1170 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{Trpx} \quad \mathrm{r}, 2 \mathrm{x}, 1 \mathrm{pe} 11.3$) |
| 1180 | |
| 1190 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{ndcomp}{ }^{\text {r }}$, $2 \mathrm{x}, 13$) |
| 1200 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{Mirtype}{ }^{\text {n }}$, $2 \mathrm{x}, 13$) |
| 1210 | format (6x,7(1pe9.2)) |
| 1220 | format (10x, "do you want another run? 1-yes 2-no") |
| c | |
| c | FORMAT STATEMENTS FOR FULL PROMPT MODE |
| c | |
| 1230 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{llam}-$ wavelength index \quad, 2 la , |
| 8 | 13,/10x,"(1-.5145 2-.6328 3-.85 4-1.06 5-10.591 6-other)") |
| 1240 | format (10x, "enter wavelength in meters") |
| 1250 | format (3x,13,4x,"ia -- atmospherics (1-user 2-afgl) ",2x,i3) |
| 1260 | format (10x, "if changing to or from space to ground analysis, ", |
| 8 | "must input all values") |
| 1270 | format (10x, "diffraction limit is ", 1pe11.3," radians") |
| 1280 | format (10x, "mat - atmospheric model n,2x,i3,/, |
| \& | 20x,"1 - tropical", /,20x, "2 - midlatitude summer", /,20x, |
| \& | "3 - midlatitude winter",/,20x, 44 - subarctic summer", /,20x, |

| $\&$ | "5 - subarctic winter") |
| :---: | :---: |
| 1290 | format (10x, mbis -- visibility (1-clear 2-hazy) n,2x,i3) |
| 1300 | format (10x, "which input file? must be allocated (eg.4)n,/,10x, |
| \& | "0 - skip back to top of inputs") |
| 1310 | format (10x, "alfsct -- atmospheric scattering coef, $1 / \mathrm{m}^{n}, 2 \mathrm{x}$, |
| | 1pe11.3) |
| 1320 | format (10x, "alfab -- atmospheric absorption coef, $1 / \mathrm{m}$ ", 2 x , |
| \& | 1pe11.3) |
| 1330 | format ($3 \mathrm{x}, \mathrm{i3}, 4 \mathrm{x}, \mathrm{Mdt}$-- transmitter optics dizmeter, m $\quad \mathrm{m}, 2 \mathrm{x}$, |
| \& | f7.3) |
| 1340 | format (3x,i3,4x, "phit -- transmitter beamwidth, radians ", 2 x , |
| \& | 1pe11.3) |
| 1350 | format (3x,i3,4x, "ibsdf -- bsdf (1-default, 2-user) ",2x, |
| \& | i3) |
| 1360 | |
| 8 | 1pe11.3) |
| 1370 | format (10x, "sbsdf -- bsdf slope (log-log) n,2x, |
| \& | 1pe11.3) |
| 1380 | format (10x, "ng -- number of glitches (0-3) n, 2x,i3) |
| 1390 | |
| \& | "(degrees)",4x,0pf7.2,/,15x, "gend(",i1,") - end of glitch ", |
| \& | |
| \& | 11x,1pe12.4) |
| 1400 | format ($3 \mathrm{x}, \mathrm{i} 3,4 \mathrm{x}, \mathrm{m} \mathrm{r}$ (-- link receiver optics diameter, $\mathrm{m}^{\prime \prime}, 2 \mathrm{x}$, |
| \& | 17.3) |
| 1410 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{"psiaz} \mathrm{--} \mathrm{az} .\mathrm{orientation} \mathrm{of} \mathrm{backstop} \mathrm{(deg)} \mathrm{"}$, |
| \& | 2x,f7.3,1,21x, 0 - normal to beam") |
| 1420 | format (10x, "psiel -- el. orientation of backstop (deg) ", ?x, |
| \& | f7.3,/,21x," 0 - normal to beam") |
| 1430 | format ($3 \mathrm{x}, \mathrm{i} 3,4 \mathrm{x}, \mathrm{n}$ nbak -- backstop (1-default, 2-user, ", |
| \& | "3-lambertian) ",2x,i3) |
| 1440 | format (10x, "enter -- bmaxs, bfwhms, bdiff |
| $\&$ | 2x,f8.4) |
| 1450 | format (10x, "bdiff -- diffuse reflectance (0 to 1) n,2x,/, |
| $\&$ | 20x, "(lambertian model, eg. .1)",f7.3) |
| 1460 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{n}$ noa $\quad-\mathrm{revr}$ scatter (1-default, 2-user)",2x, |
| \& | i3) |
| 1470 | format (10x, "enter -- oasmax, oafwhm, diffoa "/21x,f8.4,2x |
| 8 | 2x,f8.4) |
| 1480 | format ($3 \mathrm{x}, 13,4 \mathrm{x}, \mathrm{n}$ pt \quad - transmit power, watts ${ }^{\text {a }}$, 2x, |
| \& | 1pe11.3) |
| 1490 | |
| \& | 1pe11.3) |
| 1500 | format ($3 \mathrm{x}, 13,4 \mathrm{x}$,rl - -- link range, meters $\quad \mathrm{n}, 2 \mathrm{x}$, |
| \& | 1pe11.3) |
| 1510 | format ($3 \mathrm{x}, \mathrm{i} 3,4 \mathrm{x}, \mathrm{nht}$-- altitude of transmitter, meters ", 2 x , |
| \& | 1pe11.3) |
| 1520 | format ($3 \mathrm{x}, \mathrm{i} 3,4 \mathrm{x}, \mathrm{hr}$ - \quad - altitude of link receiver, m ", m , |
| \& | 1pe11.3) |
| 1530 | format ($3 \mathrm{x}, \mathrm{i} 3.4 \mathrm{x}, \mathrm{Mistog}-$ space to ground (0-no, 1-yes) $\quad \mathrm{l}, 2 \mathrm{l}$, |

```
&
i3)
1540 format ( }3x,13,4x,"x - sr distance. to beam center, m n, 2x
& 1pe11.3)
1550 format (3x,i3,4x,"theta -- zenith angle of sr, deg ",2x,
& 1pe11.3)
1560 format ( }3x,13,4x,"ibflag -- inputs using turbulence 1-yes 2-no"
& 2x,i3)
1570 format ( 3x,i3,4x,"sigj -- total jitter, rad ",2x,
& 1pe11.3)
1580 format (3x,i3,4x,"iw -- turbulence n,2x,
& 13,/,21x,"1-severe 2-moderate 3-mild")
1590 format ( }3x,i3,4x,\mp@subsup{}{}{\prime}rb -- radius of link beam, m ",2x
& 1pe11.3)
1600 format (3x,i3,4x,"grndi -. equivalent irradiance, watts/sq.m", 2x,
& 1pe11.3)
1610 format ( 3x,i3,4x,"gl -- altitude at ground level,m ",2x,
& 1pe11.3)
1620 format ( }3\textrm{x},13,4\textrm{x},\mathrm{ "phi -- sr field of view, radians n,2x,
& 1pe11.3)
1630 format ( }3x,i3,4x,"asr -- area of sr aperture, sq. meters ", 2x
& 1pe11.3)
1640 format (3x,i3,4x,"mcomp -- compute 1-power 2-s/n ratio ",2x,
& i3)
1650 format (3x,i3,4x,"mp -- source? 1-sum, 2-atm, 3-tr, 4-rc",2x,
& i3)
1660 format (3x,13,4x, "irtype -- sr type (1-default, 2-user input)n,1x,
& i3)
1670 format ( }3x,i3,4x,"xm -- modulation depth n,2x
f7.3)
1680 format ( 3x,i3,4x,"ihet -- detection type n,2x,
& 13,/,21x,"1 - direct 2 - heterodyne")
1690 format (3x,i3,4x,"em -- mixing efficiency ",2x,
& 1pe11.3)
1700 format ( }3x,i3,4x,"eta -- quantum efficiency of detector ",2x
& f7.3)
& format ( }3\textrm{x},13,4x,"g -- predetection gain ",2x
& f7.3)
1710 format ( }3x,13,4x,"f -- excess noise factor n, 2x
& 1pe11.3)
1720 format (3x,i3,4x, "bwr -- bandwidth of sr, hz n,2x,
& 1pe11.3)
1730 format ( 3x,i3,4x, "ptherm -- thermal noise eqv. power of sr, w",1x,
& 1pe11.3)
1735 format ( }3x,i3,4x,"idark -- dark current of sr ",2x
& ipe11.3)
1740 format (3x,i3,4x,"bwopt -- sr optical bandwidth, microns n,2x,
& 1pe11.3)
1750 format ( 3x,i3,4x,"nflg -- 1-sunny 2-cloudy 3-nighttime n,2x,
& 13)
1760 format (3x,i3,4x,"phiaz -- sr field of view (azimuth), rad n, 2x,
```

```
&
```

```
SCENARIO DIAGRAM
<-- RPX -->
T) ---------------------+----------( R
A /
                    / THETA
            /
/
X /
! /
I/
V/
SR)
RV - DIST. FROM XMTR TO BEAM(+)
RS - DIST. FROM SR TO BEAM(+)
RT - DIST. FROM XMTR TO SR
RL - DIST. FROM XMTR TO RCVR
HS - ALTITUDE OF SR
PHI - FOV (ELEV) OF SR IN RAD
THETA - ANGIE BETNEEN SR OPTICAL AXIS AND LINK BEAM SEGMENT
TO THE LINK RECEIVER
RPX - DIST. FROM XMTR TO INTERSECTION OF ORTHOGONAL RAY
FROM SR
X - DIST. ALONG ORTHOGONAL RAY TO BEAM
ANGTR - THETA TO XNTR
ANGREC - THETA TO RECEIVER
DP - LINK PATH ZENITH ANGLE
ANGTOT - TOTAL ANGLE SUBTENDED BY LINK AT SR
COMP - CONTRIBUTION FROM LINK BEAM (POWER OR S/N)
TD - THETA IN DEGREES
NRET - SET TO 1 IF COMP=O TO AVOID LOG(0)
DANG - INCREMENT OF THETA
ANGMAX - MAXIMJM THETA
GAMINT - ANGLE OF INTERCEPT PLANE
GAMP - ZENITH ANGLE FROM TR TO SR
COMPB4 - LAST VALUE OF COMP
RSB4 - LAST VALUE OF RS
DCOMP - DESIRED CONVERGENCE VALUE OF COMP
SLOPE - SLOPE BETWEEN LAST TWO POINTS
RSNEW - ESTIMATED VALUE FOR RS
H - NO. OF ITERATIONS NEEDED TO CONVERGE (ARRAY)
XINT - X ARRAY FOR STORING OUTPUT
YINT - Y ARRAY FOR STORING OUTPUT
```

 common/ flags /mode,mcomp,mp,lam,modesw,lunit,nout,istog,iotype,
 irtype,ihet,ibflag,iw
 common/ tdata / blt,dt,ht,phit,pt,rb,grndi,bdrt,sigj,sigt
 common/ rdata / blr,dr,hr,gl,bdlr
 common/ srdata / asr,hs,phi,phiaz,dphi
 common/ ldata / rl,alam,rpx,theta,x,angtr,angrec,gamint,bw
 double precision re,reht,rehr,gamp,disc
 data re/6.31131d6/
 data onedeg,pi,r2d/.0174532925,3.141592654,57.29577951/
 data blank,star/" ",n*"/
 c BLANK OUT CONVERGENCE WARNING SYMBOL ARRAY
do 10 i=1,100
10 h(i)=blank
c
nret=0
np=0
rehr=re+hr
reht =re+ht
ANGTR - THETA TO TRANSMITTER
c ANGREC - THETA TO RECEIVER
c LINK PATH ZENITH ANGLE DP
dp=dacos((rehr**2-reht**2-rl**2)/(2.*reht*rl))
c USE ATAN2 TO GET ANGLES IN THE RIGHT QUADRANT
angtr=atan2(x,rpx)
angrec=atan2(x,(rpx-rl))
c
c CHECK TO SEE IF BOTTOM OF BEAM HITS A CURVED EARTH
xi=dp+phit
disc=re**2-ireht*sin(xi))**2
c
c IF DISC IS NEGATIVE NO REAL ROOT EXISTS
if (disc.le.0.) go to 20
c
c CALCULATE RANGE TO GROUND, RG
rg=-reht*cos(xi)-dsqrt(disc)
c
if(rg.gt.0..and.rg.lt.rl) write (6,210) rg

```
```

* add mode 6 *
go to (30,50,80,130,130,125), mode
MODE=1 FIX X, RPX, AND VARY THETA TO SCAN LINK WITH A FIXED
SURVEILLANCE RECEIVER LOCATION
ANGTOT IS THE TOTAL ANGLE SUBTENDED BY THE LINK AT THE
SURVEILLANCE RECEIVER
angtot=angrec-angtr-phi
rt=sqrt(rpx**2+x**2)
gamp=acos((rpx*}\operatorname{cos(dp)+\mp@subsup{x}{}{*}}\operatorname{sin}(gamint)*sin(dp))/rt
hs=dsqrt(reht**2+rt**2+2.*rt*reht*dcos(gamp))-re
dang=(angtot-20.*onedeg)/16.
if (dang.lt.onedeg) dang=onedeg
START FROM TRANSMITTER TOWARD RECEIVER
theta=angtr+phi/2.
do 40 i=1,50
call comtot (comp,nret)
td=theta*r2d
c WRITE THE OUTPUT
if (nout.ge.1) write (nout,190) td,comp,prtr,prec,pa
c
c STORE THE RESULTS
xint(i)=td
yint(i)=comp
delta=onedeg
PICK DELTA OF ONE DEGREE NEAR THE TRANSMITTER \& RECEIVER
if (1.gt.9.and.i.lt.26) delta=dang
theta=theta+delta
if (theta.gt.(angrec-phi/2.)) go to 180
continue
MODE=2 FIX RS, RV, VARY THETA TO OBSERVE ONE POINT ALONG THE
LINK AXIS FROM DIFFERENT ASPECT ANGLES. NOTE THAT
THE SCATTERING VOLUME CHANGES WITH ANGLE.
theta=onedeg
STORE RPX AND X TEMPORARILY IN RPX1 AND X1
rpx1=rpx
x1=x

```
```

 rs=x
 c MAXIMUM THETA
angmax=pi-onedeg
THETA INCREMENT
dang=(pi-phi-22*onedeg)/16.

```

COMPUTE SR POSITION COORDINATES X,RPX
\(x=r{ }^{*} \sin (\) theta)
\(r p x=r s^{*} \cos (\) theta \()+r p x 1\)
rt=sqrt (rpx** \(2+x\) **2)
angtr \(=\) atan2 ( \(x, r p x\) )
angrec=atan2 ( \(x,(r p x-r l))\)
\(\operatorname{gamp}=a \cos \left(\left(r p x^{*} \cos (d p)+x^{*} \sin (g a m i n t) * \sin (d p)\right) / r t\right)\)
hs=dsqrt (reht**2+rt**2+2.*rt*reht*dcos(gampj)-re
call comtot (comp,nret)
WRITE OUTPUT
td=theta*r2d
if (nout.ge.1) write (nout,190) td, comp,prtr,prec,pa
STORE THE'TA, COMP
xint(i) \(=\) td
yint (i) \(=\) comp
THETA INCREMENT IS ONE DEGREE NEAR XMTR AND RCVR delta=onedeg

SAME COMMENT APPLIES AS IN MODE \(\uparrow\)
if (i.gt.9.and.i.1t.26) delta=dang
theta=theta+delta
if (theta.gt.angmax) go to 70
continue
\(\mathrm{x}=\mathrm{x} 1\)
rpx=rpx1
go to 180

MODE=3 FIX X, VARY THETA AND RPX TO OBSERVE BEAM FROM DIFFERENT POINTS ALONG A LINE PARALLEL TO THE LINK OPTICAL AXIS.
NOTE THAT AS THETA IS NEAR ZERO OR PI, THE RANGE TO
THE SR BECOMES VERY LARGE.
c
80 theta=onedeg+phi/2.
rpx1=rpx
c COMPUTE INCREMENT OF THETA
dang=(pi-phi-22*onedeg)/16.
```

c
c
c
c AVOID DIVIDE CHECR IN COMPUTING RPX
if (abs(theta-pi/2.).lt.onedeg) go to 90
rpx=x/tan(theta)+rpx1
go to }10
rpx=rpx1
rs=sqrt(rpx1**2+x**2)
100
c
rt=sqrt(rpx**2+x**2)
angtr=atan2(x,rpx)
angrec=atan2(x,(rpx-rl))
gamp=acos((rpx*cos(dp)+x*sin(gamint)*\operatorname{sin}(dp))/rt)
hs=dsqrt(reht**2+rt**2+2.*rt*dcos(gamp)) -re
call comtot (comp,nret)
c
c WRITE OUTPUT
td=theta*r2d
if (nout.ge.1) write (nout,190) td,comp,prtr,prec,pa
c
c
c
xint(i)=td
yint(i)=comp
c INCREMENT BY ONE DEGREE
delta=onedeg
if (i.gt.9.and.i.1t.26) delta=dang
theta=theta+delta
if (theta.gt.3.1241) go to 120
110 continue
120 rpx=rpx1
go to }18
c
c add mode 6 *
c
c
125
MODE=6 PROBABILITY OF BIT ERROR
rt=sqrt(rpx **2+x**2)
angtr=atan2(x,rpx)
angrec=atan2(x,(rpx-rl))
gamp=acos((rpx*cos(dp)+x*sin(gamint)*sin(dp))/rt)
hs=dsqrt(reht**2+rt**2+2."rt*dcos(gamp))-re
write (nout,230) rpx,x,theta
c CALCULATE SIGNAL POWER
call comtot(comp,nret)
do }126 1=1,npt
power0(i) =ps*form0(i)
power1(1)=ps*form1(1)

```
        tdang=2.96*onedeg
        angtr=-onedeg
        kk=0
    do 170 i=1,124
c
135
c
c COMPUTE THETA INCREMENT TO SPACE DATA POINTS APPROPRIATELY IN X,
c RPX COORDINATES
    dang=.03158826*(angtr)**.71533599
    if (angtr.gt.1.56) dang=tdang
c
c
c
c
c
c
c COMPUTE SR LOCATION COORDINATES X,RPX
x=rs"sin(angtr)
rpx=rs*cos(angtr)
angrec=atan2(x,(rpx-rl))
gamp=dp-acos(sqrt(rpx**2+(x*sin}(gamint))**2)/rs
hs=dsqrt(reht**2+rs**2+2.#rs*reht*dcos(gamp))-re
c
c COMPUTE INITIAL VALUE FOR ITERATION
theta=angtr+phi/2.
```

```
    if (mode.eq.4) call comtot (compb4,nret)
    if (mode.eq.5) call mode5 (compb4,nret)
c ALLOW NLOOP TRIES FOR CONVERGENCE
nloop=20
do 140 ii=1,nloop
x=rs"sin(angtr)
rpx=rs*cos(angtr)
angrec=atan2(x,(rpx-rl))
gamp=acos((rpx*cos(dp)+x*sin(gamint)*sin(dp))/rs)
hs=dsqrt(reht**2+rs*# 2+2.*rs*reht*dcos(gamp))-re
theta=angtr +phi/2.
if (mode.eq.4) call comtot (comp,nret)
if (mode.eq.5) call mode5 (comp,nret)
if (abs(comp-dcomp(mcomp)).1t..2) go to 150
slope=(rs-rsb4)/(comp-compb4)
rsnew=(rs-(comp-dcomp(mcomp))*slope)
c SET TO ONE HALF PREVIOUS GUESS IF THE GUESS IS NEGATIVE
if (rsnew.le.0.) rsnew=rs/2.
rsb4=rs
rs=rsnew
compb4=comp
continue
DID NOT CONVERGE IN NLOOP TRIES
c SET FLAG FOR CONVERGENCE WARNING
note=note+1
go to }16
c CHECK FOR SLOPE AT ROOT
C
150 if (slope.gt.0.) go to }13
160 xint(i)=rpx
    yint(i)=x
    h(i)=ii
    if (nout.ge.1.and.mode.eq.4) write (nout,200) x,rpx,h(i),prtr,prec
    ,pa
    if (nout.ge.1.and.mode.eq.5) write (nout,200) x,rpx,h(i),prt,pre,p
& at
    if(hs.1t.0) kk=1
```

```
170 continue
    if(kk.eq.1) write (6,220)
c
    np=1
    return
c
    subroutine mode5 (comp,nret)
INTEGRATES TO FIND TOTAL POWER AVA工ABLE FROM LINK AT A POINT
DEFINED BY X,RPX
```

ANGTOT - TOTAL ANGLE SUBTENDED BY LINK
NTHETA - NUMBER OF STEPS OF INTEGRATION
DTHETA - INCREMENT OF THETA
ANGTR - THETA TO XMTR
COMP - POWER OR S/N CONTRIBUTION FROM LINK
SUM - SUM OF COMP CONTRIBUTIONS FROM EACH THETA
NRET - FLAG TO INDICATE THAT COMP=0
common / ldata / rl,alam,rpx,theta, x, angtr, angrec, gamint,bw
common / srdata / asr,hs,phi,phiaz,dphi
common/parts/pa,prtr,prec,pat,prt,pre
COMPUTE TOTAL ANGLE SUBTENDED AT SR
angtot $=$ angrec-angtr
COMPUTE NUMBER OF STEPS USED IN INTEGRATION
nthe tas amax1 ((angtot/3.4+1.),2.)
ntheta=ntheta*2+1
dtheta=angtot/ntheta
USE SIMPSON*S RULE FOR INTEGRATION
NTHETA MUST BE ODD
c
sum=0. theta=angtr
COMPUTE BEAM POWER ONLY; ADD XMTR AND RCVR LATER $m p=2$
do $10 n=1$, ntheta
COMPUTE POWER
call comtot (comp,nret)
NORMALIZE CONTRIBUTION TO 1/RAD
comp=pa/phi
coef $=2^{*}(2-\bmod (n, 2))$
if (n.eq.1.or.n.eq.ntheta) coef=1.
sum= comp ${ }^{*}$ coef+sum
theta=theta+dtheta
continue
sum=dtheta/3. *sum
pat=sum
FINAL INTEGRAL VALUE IS RETURNED AS COMP TO FIND ISO-CONTOUR USING MODE 4 ITERATION ALGORITHM

TRANSMITTER CONTRIBUTION
$m p=3$
theta=angtr
call comtot (comp,nret)
sum= sum+prtr
prt=prtr
RECEIVER CONTRIBUTION
$m p=4$
theta=angrec
call comtot (comp, nret)
sum= sum+prec
pre=prec
$\mathrm{mp}=1$
if (sum.eq.0) go to 20
nret=0
CONVERT TO DB
comp=10 a $\log 10$ (sum)
go to 30
NRET IS FLAG FOR NO POWER
nret=1

```
c
    common/ flags / mode,mcomp,mp,lam,modesw,lunit,nout,istog,iotype,
    irtype,ihet,ibflag,iw
    common/ Idata / rl,alam,rpx,theta,x,angtr,angrec,gamint,bw
    common/ srdata / asr,hs,phi,phiaz,dphi
    common/parts/pa,prtr,prec,pat,prt,pre
* darki & ptherm replace pnep add g *
    common/ sndata / bwr,eta,f,em,pb,ps,darki,ptherm,snpndb,sndb,xm,
    bwopt,nflg,g
    data epsi/1.e-4/
    phio2=phi/2.
    thtmax=theta+phio2+epsi
    thtmin=theta-phio2-epsi
    pr=0.
    pa=0.
    prtr=0.
    prec=0.
        MP -- COMPUTE FLAG USED TO DETERMINE WHICH SOURCES TO INCLUDE
        1 -- SUM OF ALL SURCES
        2 -- ATMOSPHERIC CONTRIBUTION ONLY
        3-- TRANSMITTER CONTRIBUTION ONLY
        4 -- RECEIVER CONTRIBUTION ONLY
        1f (mp.gt.2) go to 10
        call beam (pa)
        pr=pa+pr
        if (mp.eq.2.or.mp.eq.4) go to 20
```

```
c
c
c
        ps=pr
    call ston
    comp=sndb
    go to 50
    POWER WAS ZERO; SET FLAG AND RETURN
40 nret=1
if (angtr.ge.thtmin. and.angtr.le.thtmax) call tscat (prtr) pr \(=\mathrm{pr}+\mathrm{pr} \mathrm{tr}\)
if (mp.eq.2.or.mp.eq.3) go to 30
CHECK TO SEE IF RECEIVER IS IN FOV, IF SO, CALL RSCAT
if (thtmax.ge.angrec.and.thtmin.le.angrec) call rscat (prec)
pr=pr+prec
if (pr.le.0) go to 40
comp \(=10 .{ }^{*} \operatorname{alog} 10(\mathrm{pr})\)
if (mcomp.eq.1) go to 50
COMPUTE S/N IF DESIRED
\(\mathrm{ps}=\mathrm{pr}\)
call ston
comp=sndb
go to 50
POWER WAS ZERO; SET FLAG AND RETURN
nret=1
comp \(=-200\).
return
end
subroutine stog (comp,ptstog,prstog, pastog,nret)
COMPUTES POWER FOR THE CASE OF A VERTICAL SPACE-TO-GROUND LINK.
** SEE DOCUMENTATION FOR LIMITATIONS ***
WARNING: THE EFFORT EXPENDED ON THIS PORTION OF THE PROGRAM WAS MINIMAL COMPARED TO THE NARROWBEAM PORTIONS, SO THAT
THE RESULTS OF SPACE TO GROUND CASES SHOULD BE
CAREFULLY SCRUTINIZED.
VARIABLES (UNITS ARE MKS SYSTEM)
NVEL - NO. OF VERT ELEMENTS IN BEAM
AVEL - AREA OF A VERT. ELEMENT
SVEL - WIDTH OF A VERT. ELEMENT
NDOWN - NO. OF VERT. ELEMENTS IN X-DIR.
NCROS - NO. OF VERT . ELEMENTS FROM CENTER IN Y-DIR.
XB - \(\quad \mathrm{COORDINATE}\) IN LINK BEAM CENTERED COORDINATES
YB - Y CORRDINATE IN LINK BEAM CENTERED COORDINATES
common/ flags / mode,mcomp,mp,lam,modesw,lunit,nout,istog, iotype,
irtype, ihet,ibflag,iw
common/ tdata / blt,dt,ht,phit,pt,rb,grndi,bdrt,sigj,sigt
common/ rdata / blr,dr,hr,gl,bdlr
common/ srdata / asr,hs,phi,phiaz,dphi
common/ Idata / rl,alam,rpx,theta, \(x\),angtr,angrec, gamint,bw common/ stgout / nvel, svel, avel, ndown, ncros, numtot,hvnear, hv far, xdis, hdis, hdisdf, xclos, helos, helsdf,kount
data epsi/1.e-4/
RB IS 1/E**2 POINT OF BEAM. WEIGHT(A) IS THE POWER DISTRIBUTION OFF THE AXIS OF THE BEAM. A GAUSSIAN PROFILE IS ASSUMED.
weight \((a)=\exp (-2 . *(a / r b) * 2)\)
STORE X
kount=0
\(x\) tem \(p=x\)
```

```
    rltemp=rl
    hstemp=hs
    httemp=ht
    ptemp=pt
    thtemp=theta
    CHECK TO SEE IF THETA<PHI/2
    if (theta.lt.phi/2.) theta=phi/2. + epsi
COMPUTE GRNDI AND RB IF IBFIAG=1
if (ibflag.eq.2) go to 10
call stbeam (rbeam,grndir)
rb=rbeam
grndi=grndir
COMPUTE TANGENT OF AZ FOV HALF-ANGLE-TP2
tp2=tan(phiaz/2.)
NUMBER OF VERTICAL ELEMENTS IN LINK BEAM
nvel=100
AREA OF VERTICAL ELEMENT
avel=4.*rb*xtemp*tp2/nvel
```

do $50 \mathrm{ny}=1$, neros
do $30 \mathrm{nx}=1$, ndown

POSITION IN LINK BEAM CENTER COORDINATES

```
xb=(nx-ndown/2)*svel
yb=(ny-1)*svel
rvel=sqrt(xb**2+yb**2)
TEST IF THE ELEMENT IS INSIDE THE 1/E**2 PTS.
if (rvel.gt.rb) go to }3
```

COMPUTE SR FOV BOUNDS FOK TEST
$x=\operatorname{sqrt}((x t e n p-x b) * * 2+y b * 2)$
test $p=\operatorname{atan}(y b / x) * 2$.
if (testp.gt.phiaz) go to 40
VERTICAL ELEMENT IS IN FOV, SO COMPUTE POWER
hef $f=h s+x / \tan ($ theta-phi/2.)
rl=heff-hr
call trans (hr, heff,rl,tb)
CALCULATE PONER OF EFFECTIVE SOURCE
pt=grndi*weight(rvel)*avel/tb
ht=heff
rpx=heff-hs
CALCULATE ANGTR AND ANGREC FOR BEAM, ANGTR IS ANGLE TO
EFFECTIVE SOURCE
angtr=theta-phi/2.
$\operatorname{angrec}=3.14159-a \tan (x / h s)$
CALL BEAM FOR POWER CONTRIBUTION OF VERTICAL ELEMENT
call beam (comp)
sump $=$ sump + comp*factor
kount=kount+factor
COMPUTE TOTAL NUMBER OF INCREMENTAL VOLUMES
numtot=kount*phi/dphi
CALCULATE PARAMETERS TO MOST DISTANT ELEMENT
if (nx.ne.1.or.ny.ne.1) go to 20
$x d i s=x / \sin (t h e t a)$
hdis=heff
hdisdf $=$ hvnear-hvfar

```
c CALCULATE PARAMETERS TO CLOSEST ELEMENT
20 if (nx.ne.(ndown-2).or.ny.ne.1) go to 30
    xclos=x/sin(theta)
    hclos=heff
    hclsdf=hvnear-hvfar
c
30 continue
40 fact or=2.
50 continue
    pastog=sump
c
    x=xtemp
    rl=rltemp
    hs=hstemp
    ht=ht temp
    pt=ptemp
    theta= thtemp
    TRANSMITTER CONTRIBUTION
    INITIALIZE PARAMETERS FOR CALL TO TSCAT
    ptstog=0.
    angtr=atan2(x,rl-hs)
    CALL TSCAT IF TRANSMITTER IS IN FOV
        if (theta.ge.angtr-phi/2.and.theta.le.angtr+phi/2.)
        call tscat (ptsitog)
        RECEIVER CONTRIBUTION
        INITIALIZE PARAMETERS FOR CALL TO RSCAT
        prstog=0.
        if (gl.eq.hs) go to 60
        angrec=atan2(x,gl-hs) :
        go to 70
        angrec=1.570796
        CALL RSCAT IF RECEIVER IS IN FOV
        if (theta.ge.angrec-phi/2.and.theta.le.angtr+phi/2.)
        call rscat (prstog)
        SUM FOR TOTAL PONER
        comp=prstog+ptstog+pastog
```

c
c.
return
end
subroutine stbeam (rbeam,grndir)
THIS SUBROUTINE CALCULATES THE RADIUS OF THE BEAM AT THE GROUND AND THE PEAK INTENSITY.
common/tdata/blt, dt, ht, phit, pt, rb,grndi,bdrt, sigj, sigt common/ldata/rl, alam, rpx, theta, x, angtr, angrec, gamint, bw common/rdata/blr,dr,hr,gl,bdlr
data onedeg, pi,r2d/.0174532925,3.141592654,57.29577951/
CALCULATE TURBULENCE OF ATMOSPHERE
call sigmat (ht,hr, rl, alam,gl,sigt)
CALCULATE RADIUS OF BEAM
$r 2=4 . * r l * 2 *(($ phit $/ 2) * * 2+.s i g j * * 2+s i g t * * 2)$
rbeam=sqrt(r2)
call trans (gl, 100000.,100000.-g1,tstog)
CALCULATE EQUIVALENT IRRADIANCE
grndir $=.865^{*} \mathrm{pt} *$ tstog. $\left(.4325^{*} \mathrm{pi} *=2\right)$
return
end
subroutine sigmat (ht,hr, rl,alam,gl,sigt) external cnsq
common/flags/mode, mcomp, mp, lam, modesw, lunit, nout,istog, iotype,
irtype,ihet,ibrlag,iw
data hatm/100000./
THIS ROUTINE COMPUTES THE HALF ANGLE BEAMSPREAD(SIGT)
DUE TO TURBULENCE. IW IS A TURBULENCE PARAMETERUSED AS FOLLOWS:
1 -- SEVERE TURBULENCE
2 - NOMINAL TURBULENCE
3 -- MILD TURBULENCE
FOR REFERENCE SEE *A SIMPLIFIED PROPAGATION MODEL FOR LASER
SYSTEM STUDIES*. AFWL-TR-72-95(REV), APRIL 1973
USE NSTEP NUMBER OF STEPS TO INTEGRATE ALONG PATH LENGTH
nstep $=50$
sig=0.
deltaz=(hatm-gl)/nstep
MODIFIED FOR VERTICAL USE
sinphi=-1.
do $10 \mathrm{j}=1$, nstep
$a j=j$
WEIGHT CLOSEST PORTIONS TO APERTURE HIGHEST
rnaj=1.-aj*deltaz/rl
$z=$ deltaz* $j+(r l-$ hatm $)$
z1=deltaz* $(j-1)+($ rl-hatm $)$
KL AND HU ARE THE HEIGHT ABOVE TERRAIN AT THE BEGINNING AND
END OF EACH INCREMENT ALONG THE PROPAGATION PATH.
$\mathrm{hl}=2$ * $\operatorname{sinphi}+$ ht
$h u=z^{1}$ sinph $i+h t$
call qg 10 ($\mathrm{hl}-\mathrm{gl}, \mathrm{hu}-\mathrm{gl}, \mathrm{cnsq}$, deltaz,y)
sig=rnaj**1.666*y+sig
continue
sigt $=(((2.06 / a l a m) * * 333) *$ sig $) * * .6$
return
end
subroutine $q g 10$ (bl,bu,fct, deltaz,y)
SUBROUTINE QG10 COMPUTES INTEGRALS OF THE FORM
(FCT(X), SUMMED OVER X FROM BL TO BU)
USAGE
CALL QG1O(BL, BU,FCT,DELTAZ,Y)
PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT
DESCRIPTION OF PARAMETERS
BL - THE LOWER BOUND OF THE INTERVAL
BU - THE UPPER BOUND OF THE INTERVAL
FCT - THE NAME OF AN EXTERNAL FUNCTION SUBPROGRAM USED
Y - THE RESULTING INTEGRAL VALUE
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
THE EXTERNAL FUNCTION SUBPROGRAM FCT(X) MUST BE FURNISHED
BY THE USER.
METHOD
THE EVALUATION IS DONE BY 10-POINT GAUSS QUADRATURE
FORMULA WHICH INTEGRATES POLYNOMIALS UP TO DEGREE 19
EXACTLY

FOR REFERENCE SEE
V.1.KRYLOV, APPROXIMATE CALCULATION OF INTEGRALS
c.
if ((bu.eq.bl)) go to 10
go to 20
$y=$ fct (bl)*deltaz
return
$a=.5^{*}(b u+b l)$
$b=b u-b l$
$c=.4869533^{*} \mathrm{~b}$
$y=.03333567 *(f c t(a+c)+f c t(a-c))$
$c=.4325317^{*}$ b
$y=y+.07472567^{\prime \prime}(f c t(a+c)+f c t(a-c))$
$\mathrm{c}=.339704$ 8* $^{*} \mathrm{~b}$
$y=y+.1095432 *(f c t(a+c)+f c t(a-c))$
$\mathrm{c}=.2166977^{*} \mathrm{~b}$
$y=y+.1346334 *(f c t(a+c)+f c t(a-c))$
$c=.07443717^{*} b$
$y=\operatorname{deltaz} \#(y+.1477621(f c t(a+c)+f c t(a-c)))$
return
end
function cnsq (h)
c BAD WEATHER CONDITIONS
cnsq=2.85e-13
return
c
c NOMINAL WEATHER CONDITIONS
cnsq=1.e-13
return
c°
GOOD WEATHER CONDITIONS
cnsq=8.5e-15
return

c

c BAD WEATHER CONDITIONS
50 if (h.gt. 100.0) go to 70
if (h.gt. 10.0) go to 60

```
    cnsq=2.9e-13*h##(-.6993)
    return
6 0
70
80 if (h.gt.1.5e4) go to 90
    cnsq=2.0e-16
    return
c
c NOMINAL WEATHER CONDITIONS
90 cnsq=2.0e-16
    if (h.le.11600..or.h.ge.12400.) cnsq=1e-13*h**(-1.07535)
    return
c GOOD WEATHER CONDITIONS
100 if (h.gt.2.5e3) go to 120
    if (h.gt.20.0) go to }11
    cnsq=8.586e-15*h**(-0.4444)
    return
c
110 cnsq=1.51e-13*h*(-1.396)
    return
c
120 if (h.gt.1.5e4) go to 90
    cnsq=3.0e-18
    return
    end
    subroutine beam (pa)
c BEAM COMPUTES THE POWER FROM THE LINK BEAM DUE TO ATMOSPHERIC
c SCATTERING
c
= RL
    LINK RANGE
    RS RANGE FROM SCATTERING VOLUME TO S
    RV RANGE FROM XMTR TO SCATTERING VOLUME
        HT XMTR HEIGHT
        HR RCVR HEIGHT
        HS SURVEILLANGE RCVR HEIGHT
        HV SCATTERING VOLUME HEIGHT
        THETA SCATTERING ANGLE (OFF-AXIS ANGLE)
        PHI TOTAL FOV
        DPHI INCREMENTAL FOV
```

NRET FLAG TO INDICATE THAT COMP=0
common/flags/mode, mcomp, mp, lam, modesw, Iunit, nout, istog, iotype, irtype, ihet,ibflag,iw common/ tdata / blt,dt,ht,phit,pt,rb,grndi,bdrt,sigj,sigt
common/ rdata / blr,dr,hr,gl,bdlr
common/ srdata / asr,hs,phi,phiaz,dphi
common/ ldata / rl,alam,rpx, theta, x,angtr,angrec, gamint,bw

* darki \& ptherm replace pnep add g *
common/ sndata / bwr, eta,f,em, pb,ps, darki,ptherm, snpndb, sndb, xm,
bwopt, nflg,g
common/ stgout / nvel,svel, avel, ndown, neros, numtot, hvnear, hvfar, xdis, hdis, hdisdf,xclos,helos,helsdf,kount double precision re,reht,rehr
data re/6.31131d6/
data epsi/1.e-6/
$\mathrm{pa}=0$.
phio2=phi/2.
reht $=\mathrm{re}+\mathrm{ht}$
rehr=re+hr
CALCULATE RVNEAR,RVFAR
rvnear $=r p x-x / \tan ($ theta-phio2)
rvfar=rpx-x/tan(theta+phio2)
RSNEAR, RSEAR ARE RANGES TO RVNEAR, RVFAR FROM SR
rsnear=x/sin(theta-phio2)
rsfar=x/sin(theta+phio2)
CALCULATE ALTITJDES, HVNEAR, HVFAR
hvnear=dsqrt (reht**2+(dble(rvnear))**2+dble(rvnear)*(rehr**2-reht*
*2-(dble(ri))**2)/dble(rl))-re
hvfar=dsqrt (reht**2+(dble(rvfar))**2+dble(rvfar)*(rehr**2-reht**2-(dble(rl))**2)/dble(rl))-re.

CALCULATE T1,T2 TO SEE IF PATH DIFFERENCE IN TRANSMITTANCE IS IMPORTANT
call trans (ht,hvnear, rvnear, t1n)
call trans (hvnear,hs,rsnear,t2n)
call trans (ht,hvfar, rvfar,t1f)
call trans (hvfar,hs,rsfar,t2f)
COMPARE TRANSMITTANCE VARIATION DUE TO SCATTERING VOLUME PATH DIFFERENCE : $\quad \mathrm{TN}=\mathrm{NEAR}$ PATH TRANSMITTANCE

```
c
c
    tn=t1n*t2n
    tf=t1f*t2f
    tp=(tn+tf)/2.
    hv=(hvnear+hvfar)/2.
    tps=tp*al fase(hv)
    itflag=1
c CHECK FOR TRANSMITTANCE DIFFERENCE
    if (abs(1.-tn/tp).lt..025) itflag=0
    ITFLAG=0 MEANS TRANSMITTANCE NEED NOT BE COMPUTED FOR EVERY DPHI
    COMPUTE DPHI TO ACHIEVE DESIRED ACCURACY OUT OF FTHETA
    call delphi (theta,phi,dphi)
    NDPHI = NUMBER OF ELEMENTAL FOV. ROUND DOWN
    ndphi=phi/dphi
    dphi=phi/ndphi
    LOOP TO COMPUTE ELEMENTAL CONTRIBUTIONS FROM DPHI ELEMENTS
    do 20 i=1,ndphi
    theta1=theta-phio2+dphi*(i-.5)
    CHECK TO SEE IF PAST LINK RECEIVER
        if (thetal.gt.angrec) go to 30
        rs1=x/sin(theta1)
    if (itflag.eq.0) go to 10
    COMPUTE TRANSMITTANCE IF REQUIRED FOR EACH DPHI
    COMPUTE RANGE TO ELEMENTAL VOLUME
    rv1=rpx-x/tan(theta1)
c COMPUTE ALTITUDE OF ELEMENTAL VOLUME
    hv1=dsqrt(reht**2+(dble(rv1))**2+dble(rv1)*(rehr**2-reht**2-
    (dble(rl))**2)/dble(rl))-re
    call trans (ht,hv1,rv1,t1)
    call trans (hv1,hs,rs1,t2)
    tps=t1"t2*alfasc(hv1)
    continue
c
c
c
c
```

$T F=F A R$ PATH TRANSMITTANCE

```
tn=t1n*t2n
tf=t1f*t2f
\(t p=(t n+t f) / 2\).
\(h v=(h v n e a r+h v f a r) / 2\).
tps=tp*alfasc(hv)
itflag=1
if (abs(1.-tn/tp).1t..025) itflag=0
ITFLAG \(=0\) MEANS TRANSMITTANCE NEED NOT BE COMPUTED FOR EVERY DPHI
COMPUTE DPHI TO ACHIEVE DESIRED ACCURACY OUT OF ETHETA
call delphi (theta,phi,dphi)
NDPHI = NUMBER OF ELEMENTAL FOV. ROUND DOWN
ndphi=phi/dphi
dphi=phi/ndphi
LOOP TO COMPUTE ELEMENTAL CONTRIBUTIONS FROM DPHI ELEMENTS
do 20 i=1,ndphi
theta1 = theta-phio2+dphi*(i-.5)
CHECK TO SEE IF PAST LINK RECEIVER
if (thetal.gt.angrec) go to 30
rsi=x/sin(theta1)
COMPUTE TRANSMITTANCE IF REQUIRED FOR EACH DPHI
COMPUTE RANGE TO ELEMENTAL VOLUME
rv1=rpx-x/tan(theta1)
hv1 =dsqrt (reht**2+(dble(rv1))**2+dble(rv1)*(rehr**2-reht**2-
(dble(rl))**2)/dble(rl))-re
call trans (ht, hv \(1, r v 1, t 1\) )
tps=t1*t2*alfasc (hv1)
continue
COMPUTE THE SUM FOR POWER CALCULATION
\(f\) th=fthrta(thetal)
pa=tps×fth/sin(thetal)/rsi+pa
```

```
        c COMPUTE POWER AT SR FROM BEAM SCATTER
30 pa=pa*pt*asr*dphi
    return
    end
c.
    subroutine trans (h1,h2,r,t)
c
c
c
c
c
c
c
c
c
c
```

continue

```
    THIS ROUTINE CALCULATES THE TRANSMITTANCE DUE TO ATMOSPHERIC
    EFFECTS BY INTEGRATING ALONG THE BEAMPATH
        R RANGE
        H1 ALTITUDE OF ONE ENDPOINT OF BEAM PATH
        H2 ALTITUDE OF OPPOSITE ENDPOINT
        T TRANSMITTANCE
        NSTEP NUMBER OF INTEGRATION STEPS
        RE EARTH RADIUS, M
        ALFAEX(H) EXTERNAL FUNCTION WHICH RETURNS EXTINCTION
        COEFFICIENT FOR ALTITUDE H.
        common/atmos/ alfa(5,2),alfsct,alfab,ia,ab(33),as(33),at(33,14,6)
        ,mat,mvis
        double precision reh2s,reh1,reh1s,re,dcosp,zd2
        data re/6.31131d6/
    COMPUTE NUMBER OF STEPS ALONG PATH
    nstep=1+r/500.
    nstep=max0(nstep,60)
    COMPUTE COSINE OF ZENITH ANGLE
    if (r.1t.200..or.ia.eq.1) go to 20
    reh1=re+h1
    reh2s=(re+h2)#*2
    reh1s=reh1**2
    dcosp=(reh2s-reh1s-(dble(r))**2)/(2*reh1*dble(r))
    SET UP FOR INTEGRATION LOOP
    STEPSIZE ALONG PATH IS DZ
    dz=r/nstep
    HU,HL ARE UPPER AND LOWER INTEGRATION BOUNDS
    hu=h1
```

```
c
c INTEGRATE BY SUMMING
    do 10 k=1,nstep
    z=dz*}
    zd2=dble(z**2)
    hl=hu
    hu=dsqrt(reh1s+zd2+2*z*rehq*dcosp)-re
    AVERAGE EXT INCTION
    alf=.5*(alfaex(hl)+alfaex(hu))
    ALFL IS INTEGRATION RESULT - EXTINCTION * RANGE
    alfl=alfl+alf#dz
    continue
    COMPUTE TRANSMITTANCE
    t=exp(-alfl)
    return
    RANGE IS LESS THAN 200 METERS OR CO-ALTITUDE CASE
    t=exp(-alfaex(hl)*r)
    return
    end
    function ftheta(theta)
c THIS ROUTINE CALCULATES THE SCATTERING COEFFICIENT AS A FUNCTION
c
            return
            end
c.
```

c THIS ROUTINE CALCULATES THE DPHI REQUIRED TO MINIMIZE THE
c
thtner=theta-phi/2.
thtfar=theta+phi/2.
dphil=dphix(acc,thtner)
dphi2=dphix(acc,thtfar)
FIND OUT WHICH ANGLE IS. SMALLER AND SET EQUAL TO DPHI
dphi=amin1(dphi1,dphi2,phi,onedeg)
return
end
c.
function al faex(h)
al faex $=$ al faab $(h)+a l$ fasc (h)
return
end
function alfaab(h) ERROR IN CALCULATING FTHETA.
data onedeg/.017/
STATEMENT FUNCTION TO COMPUTE DPHI
dphix(ac, thet) =abs(ac*sqrt(2.*(thet-2.)**2+1.)/(.08*10.**(sqrt(2.*
$($ thet-2.)**2+1.) $) *($ thet-2.)))
GIVE ACCURACY VALUE
acc=. 01
CALCULATE THE ELEMENTAL FOV AT THE EDGES OF THE WHOLE FOV
thtner=theta-phi/2.
thtfar=theta+phi/2.
dphil=dphix(acc,thtner)
dphi2=dphix(acc,thtfar)
FIND OUT WHICH ANGLE IS SMALLER AND SET EQUAL TO DPHI
return
end
c.
function al faex(h)
alfaex=al faab(h) +alfasc (h)
end
function alfaab(h)
THIS ROUTINE COMPUTES THE ATMOSPHERIC ABSORPTION COEFFICIENT
common/atmos/alfa(5,2), alfsct, alfab,ia, $a b(33)$, as (33), at $(33,14,6)$
, mat, mvis
common/err/ier, ierab, iersc, ierbr, devab, devsc, devbr
CHECK TO SEE IF USER HAS SPECIFIED THE AFGL MODEL
if (ia.eq.2) go to 10
alfaab=alfab*(1.+devab)**ierab
go to 80
if (h.gt.25000.) go to 20
$i=h / 1000 .+2$.
go to 60
if (h.gt.50000.) go to 30 $i=h / 5000+22$.

```
    go to 60
c
30 if (h.gt.70000.) go to 40
    i=32
    go to 60
c
40 if (h.gt.100000.) go to 50
    i=33
    go to 60
c
50 alfaab=0.
    go to }8
c
60 if (i.gt.0) go to 70
c USE COEF. AT GROUND LEVEL IF BELOW GROUND ALTITUDE
    i=1
c
70 alfaab=ab(i)
    alfaab=alfaab*(1.+devab)**ierab
    return
    end
c.
c
c THIS ROUTINE COMPUTES THE ATMOSPHERIC SCATTERING COEFFICIENT
c
    common/atmos/alfa(5,2), alfsct,alfab,ia,ab(33),as(33),at(33,14,6)
& ,mat,mvis
    common/err/ier,ierab,iersc,ierbr,devab,devsc,devbr
c
c
c
1f (ia.eq.2) go to 10
    alfasc=alfsct*(1.+devsc)**iersc
go to 80
c
10 if (h.gt.25000.) go to 20
    i=h/1000.+2.
go to 60
c
20 if (h.gt.50000.) go to 30
    i=h/5000+22.
go to 60
c
30 if (h.gt.70000.) go to 40
1:32
go to 60
c
40 if (h.gt.100000.) go to 50
```

```
    i=33
    go to 60
c
50 alfasc=0.
    go to 80
c
6 0
c USE COEF. AT GROUND LEVEL IF BELO'N GROUND ALTITUDE
    i=1
c
70
80
c
c.
c
c
c
c
c
c
```

pi=3.1415927

```
pi=3.1415927
pts=0.
psl=0.
prtr=0.
bafeff=0.
ang=angtr
if (ang.gt.1.57) go to 30
```

c
c
c
c
c
c COMPOTE DISTANCE TO TRANSMITTER
rs=sqrt (x**2+rpx**2)
COMPUTE TRANSMITTANCE
if (istog.eq.0) go to 10
SPACE TO GROUND EXCEPTION
call trans (hatm,hs,hatm-hs,t)
go to 20
c
10
c
c COMPUTE TOTAL POWER DUE TO WINDOW SCATTER
20
c
c
c CALCULATE SIDELOBE LEVEL FOR XMTR
xj=8.*alam*pt*cos(ang)/(97.40909*dt*ang**3)
c
c
c COMPUTE TOTAL POWER FOR WINDOW SCATTERING AND SIDELOBE LEVEL
prtr=pts+psl
return
end
c.
function bsdf(ang)
THIS ROUTINE CALCULATES THE SCATTERING OFF OF THE TRANSMITTER
OPTICS. THEORY PREDICTS A LOG-LOG LINEAR CURVE WITH A SLOPE OF
-2.0. THE USER CAN SELECT ANY SLOPE HE WISHES. GROSS ANOMALIES
MAY BE ACCOUNTED FOR BY USING NG *GIITCHES* OF AMPLITUDE
GAMPL(NG), FROM THETA=GSTART(NG) DEGREES TO THETA= GEND(NG)
DEGREES.
YBSDF - Y-INTERCEPT OF BSDF (AT 1 DEGREE)
SBSDF - LOG-LOG SLOPE OF BSDF
GSTRA - START OF DISCONTINUITY (GLITCH)
GENRA - END OF DISCONTINUITY (GLITCH)
GANPL - AMPLITUDE OF DISCONTINUITY IN SPECIFIED RANGE

```
common/ tbsdf / ng,gstart(3),gend(3),gampl(3),ybsdf,sbsdf,nbak, noa ,ibsdf common/err/ier, ierab, iersc, ierbr, devab, devsc, devbr

do \(10 \quad \mathrm{i}=1\), ng
gstra=gstart(i)/57.2958
genra=gend(i)/57.2958
if (ang.ge.gstra.and.ang.le.genra) bsdf=gampl(i)
continue
ADD ERROR ANALYSIS DEVIATION
bsdf=bsdf*(1.+devbr)**ierbr
return
end
subroutine rscat (prec)
RSCAT COMPUTES THE CONTRIBUTIONS FROM REFLECTIONS OFF THE BACKSTOP AND RECEIVER

DR - DIAMETER OF RCVR OPTICS
ASR - AREA OF SR OPTICS
PHIT - XMTR BEAMWIDTH
TL - TRANSMITTANCE BETWEEN XMTR AND RCVR
TS - TRANSMITTANCE BETWEEN RCVR AND SR
PBACKS - POWER REFLECTEDFROM BACKSTOP
POA - POWER REFLECTED FROM RECEIVER OPTICS
BAFEFF - FACTOR REPRESENTING EFFECTIVENESS OF EAFFLE
BAFRAT - FUNCTION TO CALCULATE BAFEFF
common/ flags /mode,mcomp,mp,lam,modesw,lunit,nout,istog,iotype, irtype, ihet,ibflag,iw
common/ tdata / blt,dt,ht,phit,pt,rb,grndi,bdrt,sigj,sigt
common/ rdata / blr,dr,hr,gl,bdlr
common/ srdata / asr,hs,phi,phiaz,dphi
common/ ldata / rl,alam,rpx, theta, \(x\),angtr,angrec, gamint,bw
data pi / 3.1415927 /
data hatm/100000./
thetap=pi-angrec
r backs=0.
\(p o a=0\).
bafeff=0.

CALCULATE EFFECTIVENESS OF BAFFLE
bafeff=bafrat(bdlr, dr,thetap,blr)
if (istog.eq.0) go to 10
SPACE TO GROUND EXCEPTION
call trans (hatm, hr, hatm-hr, tI)
go to 20
call trans (ht,hr,rl,tI) rs=sqrt ( (rl-rpx)**2+x**2)
call trans (hr,hs,rs,ts)
COMPUTE POWER AT RECEIVER prec=pt*tl

COMPUTE POWER REFLECTED FROM BACKSTOP - ASSUMES BACKSTOP IS AT LEAST AS LARGE AS THE BEAM DIAMETER
pbacks=prec*ts*rhobak(thetap)*asr/(rs)**2
COMPUTE POWER REFLECTED FROM RECEIVER
if (thetap.gt. 1.57 ) go to 30
poa=prec*ts*asr*(dr/(rs*rl*phit))**2*bafeff*rhooa(thetap)
SUM CONTRIBUTIONS
prec=pbacks+poa
return
end
function rhobak(thetap)

\section*{RHOBAK COMPUTES REFLECTANCE OF BACKSTOP}

BMAXS - MAXIMUM OF SPECULAR COMPONENT
BFWHMS - FULL WIDTH AT HALF-MAXIMUM OF SPECULAR COMPONENT
PSIEFF - ANGLE BETWEEN NORMAL OF BACKSTOP AND LINK OPT. AXIS
THETS - ANGLE BETWEEN SPECULAR COMPONENT AND SR OPT. AXIS RHOBAR - REFLECTANCE OF BACKSTOP
common/rsct/oasmax, diffoa, oafwhm, bmaxs, bfwhms, bdiff(6), psiaz, psiel , gams
common/ flags /mode,mcomp,mp,lam,modesw,lunit,nout,istog,iotype,
irtype, ihet,ibflag, iw
common/ Idata / rl, alam, rpx, theta, \(x\), angtr,angrec,gamint, bw COMPUTE BACKSTOP ORIENTATION FACTORS
rhobak=0.
\(\operatorname{cs} 1=x *(\sin (p s i a z) * \cos (g a m i n t)+\sin (p s i e l) * \sin (g a m i n t))+(r l-r p x) * \cos\) (psiel)*cos(psiaz)

ANGLE BETWEEN BACKSTOP NORMAL AND SR
psieff \(=\operatorname{acos}(\operatorname{cs} 1 / \operatorname{sqrt}(x * * 2+(r 1-r p x) * * 2))\)
CHECK TO SEE IF SR IS BEHIND BACKSTOP
if (psieff.gt.1.57) go to 10
cs2=2.*asin((sin(psiaz))**2+(sin(psiel))**2)
thets \(=\operatorname{acos}((x * \sin (c s 2)+(r l-r p x) * \cos (c s 2)) / \operatorname{sqrt}(x * * 2+(r l-r p x) * * 2))\)
backst=bmaxs*exp (-2.773*(thets/bfwhms)**2)
ADD DIFFUSE AND SPECULAR COMPONENTS
rhobak \(=(\) bdiff \((\operatorname{lam}) / 3.14159+\) backst \() * \cos (\) psieff \()\)
return
end
function rhooa(thetap)
RHOOA COMPUTES THE DIRECTIONAL REFLECTANCE OF THE RECEIVER NORMALIZED TO 1 WATT/SR. A SPECULAR COMPONENT IS DEFINED BY A GAUSSIAN, AND A DIFFUSE COMPONENT IS A CONSTANT REFLECTION COEF

OASMAX - MAXIMJM OF SPEGULAR COMPONENT
OAFWHM - FULL WIDTH AT HALF MAXIMUM OF SPECULAR COMPONENT
DIFFOA - DIFFUSE REFLECTANCE
RHOOA - REFLECTANCE OF RECEIVER OPTICS
common/rsct/oasmax, diffoa, oaffwm,bmaxs,bfwhms,bdiff(6),psiaz,psiel , gams
common/ ldata / rl,alam,rpx,theta, \(x\),angtr,angrec,gamint,bw
data onedeg, pi,r2d/.0174532925,3.141592654,57.29577951/
thetap=pi-angrec
SPECULAR COMPONENT
oa=(oasmax-diffoa)*exp(-2.773*(thetap/oafwhm)*2)
ADD DIFFUSE COMPONENT
        rhooa=(diffoa/pi+oa)*cos(thetap)
    return
    end
c.
    function bafrat(d1,d2,theta,bl)
c
c THIS FUNCTION CALCULATES THE EFFECTIVENESS OF THE RECEIVER
c
c
    AND TRANSMITTER HOODS. D1 MUST BE \(>=D 2\).
    If (bl.le.0.) go to 20
    pi=3.1415927
    \(r 1=d 1 / 2\).
    r2=d2/2.
c
c
c
c
    if (thetap.ge.1.57) thetap=pi-theta
    C2 IS THE PERP. DISTANCE BETWEEN THE CENTER OF THE CIRCLES
    c2=tan(thetap)*b1
    if (c2.ge. (r1+r2)) go to 10
    if (c2.le.(r1-r2)) go to 20
c
c
c
    X AND Y ARE COORDINANTS OF INTERSECTION OF THE TWO CIRCLES
    \(x=(r 1 * * 2-r 2 * * 2+c 2 * * 2) /(2 . * c 2)\)
    \(y=\operatorname{sqrt}(r 1 * * 2-x * * 2)\)
    thetal \(=\operatorname{atan} 2(y, x)\)
    theta2=atan2 \((y,(c 2-x))\)
c
c
c
    SOLVE FOR OVERLAPPING AREA OF CIRCLES
    areas \(r\) 1**2*thetal \(-x * y+r 2 * * 2 *\) theta2 \(-(c 2-x) * y\).
    bafrat=area/(pi*r2**2)
    go to 30
    c
    10 bafrat=0.
    go to 30
c
20 bafrat=1.
30 return
    end
c.
        subroutine ston
c
c INPUTS
```

 XM = MODULATION INDEX =1
 ETA = QUANTUM EFFICIENCY
 ALAM = WAVELENGTH
 F = NOISE ASSOCIATED WITH GAIN
 BWR = RECEIVER BANDWIDTH
 PTHERM= THERMAL NOISE EQV POWER
 DARKI= DARK CURRENT
 G = PREDETECTION GAIN
 PS = SIGNAL POWER
 PB = BACKGROUND (ROUTINE)
 OUTPUTS
 SN= SIGNAL TO NOISE,DB
 ROUTINES CALLED - BACK COMPUTES BACKGROUND SIGNAL POWER
 common/ flags /mode,mcomp,mp,lam,modesw,lunit,nout,istog,iotype,
 irtype,ihet,ibflag,iw
 common/ tdata / blt,dt,ht,phit,pt,rb,grndi,bdrt,sigj,sigt
 common/ rdata / blr,dr,hr,gl,bdlr
 common/ srdata / asr,hs,phi,phiaz,dphi
 common/ Idata / rl,alam,rpx,theta,x,angtr,angrec,gamint,bw
 * darki & ptherm replace pnep add g*
 common/ sndata / bwr,eta,f,em,pb,ps,darki,ptherm,snpndb, sndb,xm,
 bwopt,nflg,g
 data hc/1.986305188e-25/
 if (inet.eq.1) go to 10
 HETERODYNE S/N EXPRESSION
 WARNING : THE VALIDITY OF THIS EXPRESSION WAS UNDER
 QUESTION AT TIME OF WRITING(SEE DOCUMENTATION)
 sn=em*eta*alam*xm**2*ps/(bwr*hc)
 go to 20
 * modify s/n expression to account for separation of
 dark current and thermal noise *
 DIRECT DETECTION S/N
 xn1=xm**2*ps**2
 xn2=2.*hc/(eta*alam)*f
 EQV. POWER THAT GIVES RISE TO DARK CURRENT
 pd=hc/(eta*alam*1.6e-19*g)*darki
 call back
 sn=xn1/((xn2*(ps+pb+pd)+ptherm**2)*bwr)
 sndb=10.*alog10(sn)
 return
 end
    ```
c.
subroutine back

\section*{THIS SUBROUTINE CALCULATES THE BACKGROUND POWER}
```

EMM - EMMISTIVITY OF SOURCE
OMGREC - SOLID ANGLE FOV OF RECEIVER
NFLG - DAY/NIGHT FLAG (1 IF NIGHT)
RHO - REFLECTANCE OF SURFACE
BWOPT - OPTICAL BANDWIDTH, MICRONS
OMGSUM - SOLID ANGLE SUBTENDED BY SUN(SR)
PSOLAR - BACKGROUND POWER FROM RADIATION OF SUN
PBLK - BACKGROUND POWER FROM BLACKBODY RADIATION OF EARTH
PBACK - TOTAL BACKGROUND POWER

```
- darki \& ptherm replace pnep add \(g\) *
common/sndata/bwr,eta, f,em,pb,ps, darki, ptherm, snpndb, sndb, xm,
bwopt, nflg,g
common/srdata/ asr,hs,phi,phiaz,dphi
common/ldata/rl, alam, rpx, theta, \(x\), angtr, angrec, gamint, bw
data rho/3./,emm/1./,temblk/293./
data cfudge/.01/
dimension solvir(183), soluv(20)
THE DATA IN ARRAYS SOLVIR AND SOLUV ARE HLAMDA IN UNITS
OF WATTS PER SQUARE METER PER MICRON AND ARE FROM
THE HANDBOOK OF GEOPHYSICS AND SPACE ENVIRONMENTS
FOR AN AIR MASS OF 2.
data solvir/
54.0, 101., 151., 188., 233., 279., 336., 379., 470., 672.,
733., 787., 911.,1006.,1080.,1138.,1183.,1210.,1215.,1206.,
1199.,1188., 1198., 1 190., 1182.,1178.,1168., \(1161 ., 1167 ., 1168 .\),
1165.,1176.,1175.,1173.,1166.,1160.,1149., 978.,1108.,1070.,
832., 965.,1041., 867., 566., 968., 907., 923., 857., 698.
801., 863., 858., 839., 813., 798., 614., 517., 480., 375.,
258., 169., 278., 487., 584., 633., 645., 643., 630., 620.,
610., 601., 592., 551., 526., 519., 512., 514., 252., \(126 .\),
69.9, 98.3, 164., 216., 271., 328., 346., 344., 373., 402.,
431., 420., 387., 328., 311., 381., 382., 346., 264., 208.,
168., 115., 58.1, 18.1, .660, 0.00, 0.00, 0.00, 0.00, 1.91,
\(3.72,7.53,13.7,23.8,30.5,45.1,83.7,128 ., 157 ., 187 .\),
209., 217., 226., 221., 217., 213., 209., 205., 202., 198.,
194., 189., 184., 173., 163., 159., 145., 139., 132., 124.,
115., 105., \(97.1,80.2,58.9,38.8,18.4,5.70, .920,0.00\),
\(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00, .705\),
\(2.34,3.68,5.30,17.7,31.7,37.7,22.6,1.58,2.66,19.5\),
\(47.6,55.4,54.7,38.3,56.2,77.0,88.0,86.8,85.0,84.4\),
83.2, 20.7, 0.00/
data soluv/
. 177, . 342, . \(647,1.16,1.91,2.89,4.15,6.11,8.38,11.0\),
```

13.9, 17.2, 21.0, 25.4, 30.0, 34.8, 39.8, 44.9, 49.5, 54.0/
PLANCK*S EQUATION FOR SPECTRAL DISTRIBUTION c1(alamda, temp) =emm*1.19096e-22/(alamda**5* (exp(1.43879e-2/(alamda *(temp))-1.))
SOLVE FOR HLAM USING INTERPOLATION ROUTINES
hlam=0.
pblk=0.
psolar=0.
CALCULATE RECEIVER*S SOLID ANGLE FOV, STER omgrec=phi*phiaz
CHECK TO SEE IF DAY OR NIGHT if (nflg.eq.3) go to 40
if (alam.ge.3.01e-7.and.alam.lt.3.20e-7) go to 10
if (alam.ge.3.20e-7.and.alam.1t.2.14e-6) go to 20
go to 30
hlam=odife(alam, soluv, .001e-6,.301e-6,20)
go to 30
hlam=odilie(alam, solvir, . $01 e-6, .32 e-6,183$)
COMPUTE CONTRIBUTION FROM SOLAR RADIATION
psolar=rho*bwopt*asr*omgrec*hlam/(3.14159*2)
CLOUDY DAY FUDGE FACTOR
if (nflg.eq.2) psolar=psolar*cfudge
COMPUTE CONTRIBUTION FROM BLACKBODY RADIATION OF EARTH if (alam.gt.1.5e-6) pblk=asr*omgrec*bwopt"ci(alam,temblk)
SUM CONTRIBUTIONS
$\mathrm{pb}=\mathrm{psolar}+\mathrm{pblk}$
return
end
function odlie($x 0, f, d x, x s, n)$
one-dimensional linear interpolation routine for equally-spaced data
$x 0=$ value for which $f(x 0)$ is desired

```
```

c
c
c
c
c
$f=a r r a y$ containing values of dependent variable $\mathrm{dx}=$ increment for independent variable xs=starting value of independent variable $n=$ number of points in f
dimension $f(n)$
$q=(x 0-x s) / d x+1.0$
$\mathrm{k}=\operatorname{int}(\mathrm{q})$
if (k.It.1) $i=1$
if (k.gt.n-1) $i=n-1$
if (k.ge.1.and.k.le.n-1) $i=k$
odlie $=(f(i)+(f(i+1)-f(i)) *(q-i))$
return
end

```
c.
c add subroutine batch
subroutine batch
READS INPUTS FROM A USER SPECIFIED FILE, N, IN NAMELIST FORMAT. THE NAMELIST NAME IS INPUT.
common / flags / mode,mcomp,mp,lam,modesw,lunit,nout,istcg,iotype, irtype, ihet,ibflag,iw
common / block1 / xmod(6),gainsr(6), qe(6), fnoise(6), srbw(6), srdark(6),srther(6),
alamda (6), obw(6), nhol(6)
common / tdata / blt,dt,ht,phit,pt,rb,grndi,bdrt,sigj, sigt
common / rdata / blr,dr, hr,gl,bdlr
common / srdata / asr,hs,phi,phiaz,dphi
common / idata / rl,alam,rpx, theta, x, angtr,angrec, gamint,bw
common / sndata / bwr,eta,f,em,pb,ps,darki,ptherm,snpndb,sn db,x], bwopt, nflg,g common / atmos / alfa(5,2), al fsct, al fab, ia, \(a b(33), \operatorname{as}(33)\), at \((33,14,6)\), mat,mvis
common / tbsdf / ng,gstart(3),gend(3),gampl(3),ybsdf,sbsdf,nbak, noa, ibsdf
common / rsct / oasmax, diffoa,oafwhm,bmaxs,bfwhms,diff(6),psiaz, psiel,gams
common / pltc / xint(200),yint(200),h(200), contr(2), np, note
common / wavefm /npts,t,form0(1000), form1(1000), power0(1000),
power1(1000)
data dcomp, r2d /0.0,57.295779/
namelist /input / lam, alamda,ia, alfsct, alfab, at,mat, mvis, \(a b, a s\), dt, phit, ibsdf,ybsdf,sbsdf,ng,gstart,gend, gampl, dr, nbak, bmaxs, bfwhms, bdiff,psiaz,psiel, noa, oasmax, oafwhm, diffoa, pt, rl, ht, hr, istog, \(x\), theta,gl,ibflag,sigj,iw,rd,grndi,mcomp,mp,irtype, xm, ihet,em,eta,f, bwr, darki, ptherm, bwopt, nflg,bw, asr, phi, phiaz, blt,bdrt,blr,bdlr, hs, gamint, mode, rpx, dcomp, \(t\), npts, form0, formi, \(g\)
READ INPUTS
write \((6,200)\)
```

200 format(/,10x,"input file?")
read(5,100) n
format(v)
read(n,1nput)
close (n)
c SELECT WAVELENGTH
if (lam.ne.6.and.lam.ne.0) alam=alamda(lam)
c LOAD THE ABSORPTION AND SCATTERING ARRAYS AB AND AS
mat1=2*mat-1
mat2=mat1+1
mvis1=10+2*mvis-1
mvis2=mvis1+1
do 10 j=1,33
ab (j) =(at((j,mat1, lam) +at(j, mvis1, lam))*1.0e-3
as(j)=(at(j,mat2,1am)+at(j,mvis2,1am))*1.0e-3
c CHECK FOR DIFFRACTION LIMIT
diffl=1.22*alam/dt
if (phit.lt.diffl) go to 20
c CHECK FOR HETERODYNE RCVR IN MODE }
if (mode.eq.6.and.ihet.eq.2) go to 30
c CHECK NPTS ODD
if (npts.eq.2*(npts/2)) go to 40
c CONVERT TO RADIANS
psiaz=psiaz/r2d
psiel=psiel/r2d
theta=theta/r2d
gamint=gamint/r2d
c SET DEFAULT VALUES
if (bdiff.gt.0.0) diff(lam)=bdiff
if (nbak.eq.3) bmaxs=bdiff
if (istog.eq.1) mcomp=1
if (xm.eq.0.0) xm=xmod(lam)
if (inet.eq.0) ihet=1
if (eta.eq.0.0) eta=qe(lam)
if (f.eq.0.0) f=fnoise(lam)
if (bwr.eq.0.0) bwr=srbw(lam)
if (darki.eq.0.0) darki=srdark(lam)
if (ptherm.eq.0.0) ptherm=srther(lam)
if (g.eq.0.0) g=gainsr (lam).
if (bwopt.eq.0.0) bwopt=obw(lam)
if (bdrt.eq.0.0) bdrt=dt
if (bdlr.eq.0.0) bdlr=dr
if (dcomp.ne.0.and.mode.eq.4) contr(1)=dcomp
if (dcomp.ne.0.and.mode.eq.5) contr(2)=dcomp
return
c
20 write(6,210) phit,diffl
210 format(/,10x,"transmitter beamwidth, ",1pe11.3,
\& "radians, is less than diffraction limit, ",1pe11.3," radians")
stop

```
```

c
30
220
write(6,220)
format(/,10x,"Pr(e) analysis not valid for heterodyne receivers")
stop
c
4 0
write(6,230)
230
format(/,10x,"npts must be odd")
stop
end

```

\section*{Section IV}

Probability of Error Subroutine

PROBABILITY OF ERROR SUBROUTINE

The subroutine ERROR is a FORTRAN program to calculate upper and lower bounds on the probability of bit error for any direct detection optical communication receiver for which the power waveform incident on the detector may be considered non-stochastic. The probability of error bounds are implemented by means of the Bhattacharyya distance measure.

The performance bounds are based on the received power waveforms given mark and space. Thus, the lower bound is the absolute best performance one might possibly achieve given the received signal set. The upper bound is the worst one will do assuming the receiver implements the optimal decison rule on the detector output.

The inputs are passed to the program in labeled common. The sampled received power waveform given mark and the received waveform given space as well as the number of sample points and the bit duration appear in the common WAVEFM. The number of samplepoints must be odd. The pertinent receiver parameters are passed in the common RCVR. Or it may be more convenient to insert the common blocks from the main program that contain the necessary information. The labeled common INTER passes data to the external Bhattacharyya distance functions.

The program returns as arguments the uDDer and lower bounds on the probability of bit error and a flag indicating whether the
performance is (1) shot noise limited, (2) therma? noise limited, or (3) a combination of shot and thermal noise. If the receiver noise is a combination of shot and thermal or excess noise, both the performance assuming a Poisson model and the performance assuming a Gaussian model are returned for user comparison.

The Bhattacharyya distance integrals are evaluated using Simpson's rule for integration. To the extent that the sample points adequately represent the waveform in a piece-wise sense, Simpson's rule is accurate enough.

The OFF-AXIS program sudplies the dark current, \(i_{D}\), and the themal noise equivilent power, \(P_{\text {therm }}\), rather than the dark power, \(P_{D}\), and the spectral density of the thermal noise, \(N_{n} / 2\). To avoid unnecessary computations the subroutine as it appears in my thesis was modified slightly. The reiationship between the paramicters is
\[
P_{D}=i_{D} / \alpha e G \quad H_{0} / 2=1 / 2\left(e \in \alpha F_{\text {therm }}\right)^{2}
\]

The modification is straightforward substitation and cancetation of terms.

Following is a flow chart and listing of the subroutine ERROR.

\footnotetext{
Program listing of subroutine ERROR
}

\section*{SUBROUTINE ERROR}




Flow chart of subroutine ERROR

INTERNAL VARIABLES:
b
- BHATTACHARAYYA DISTANCE
pnoise - EFFECTIVE NOISE POWER (W)
pave - AVERAGE RECEIVED POWER
alpha - OPTICAL PONER TO AVERAGE PHOTON COUNTS
eg - PHOTON COUNTS TO CURRENT
common / wavefm / npts,t,form0(1000), form1 (1000) , pso (1000) , ps \(1(1000)\) common / ldata / rl, alam, rpx, theta, \(x\), angtr, angrec, gamint, bw
common / sndata / bwr,eta,f,em,pback,ps,darki, ptherm, snpndb, sndb, xm, bwopt, nflg, g common / inter / pnoise, alpha,eg, fnoise
external func 1 , funce, func 3 real lobnd1, lobnd2
alpha=eta*alam/(2.998e8*6.626e-34) eg=g*1.6e-19 fnoise=f
pnoise=pback+darki/(alpha*eg)
calculate average power pave=0.0
do \(10 i=1\), npts
pave=pave+psO(i) +ps1(i)
continue
pave=0.5*pave/npts+pnoise
THERMAL NOISE LIMITED?
if (alpha*0.5*ptherm**2.gt.10.0*f*pave)
go to 40
EXCESS NOISE?
if (f.gt.1.0) go to 20
SHOT NOISE LIMITED?
if (pave.gt.10.0*alpha*0.5*ptherm**2)
go to 30
nflag=3
pnoise=pnoise+alpha*0.5*ptherm**2/f \(b=0.5^{*} f^{*} \operatorname{simp}(f u n c 1)\)
upbnd \(1=0.5^{*} \exp (-b)\)
lobnd \(1=0.25 * \exp (-2.0 * \mathrm{~b})\)
\(\mathrm{b}=0.5\) * \(\operatorname{simp(func3)}\)
upbnd2 \(=0.5^{*} \exp (-b)\)
lobnd \(2=0.25^{*} \exp (-2.0 * \mathrm{~b})\)
return
nflag=1
\(b=0.5^{*} \operatorname{simp}\) (func 1)
upbnd \(1=0.5^{*} \exp (-b)\)
lobnd \(1=0.25 * \exp (-2.0 * b)\)
return
nflag \(=2\)
\(b=0.25^{*} \operatorname{simp}(\) func 2)/ptherm**2
upbnd2 \(=0.5^{*} \exp (-b)\)
lobnd \(2=0.25 * \exp (-2.0 * b)\)
return
end
```

c.
cFUNCTION FUNC
common / wavefm / npts,t,form0(1000),
form1(1000),ps0(1000),ps1(1000)
double precision sum
sum=0.0
do 10 i=1,npts-2,2
term=func(i)+4*func(i+1)+func(i+2)
sum=sum+term
continue
simp=t*sum/(3*(npts-1))
return
end
c.
function func(i)
c
common / inter / pn,a,e,f
c
c POISSON PROCESS
entry func1(i)
func=a*(sqrt(p1(i)+pn)-sqrt(pO(i)+pn))**2
return
c GAUSSIAN PROCESS
entry func2(i)
func=(p1(i)-p0(i))**2
return
c GAUSSIAN PROCESS - TIME VARYING VARIANCE
entry func3(i)
func=a*(p1(i)-po(i))**2/
\& (2.0*f*(p1(i)+p0(i)+2.0*pn))+
\& alog((p1(i)+pO(i)+2.0*pn)/
\& (2.0*sqrt((p1(i)+pn)*(p0(i)+pn))))
return
end

```

\section*{Section V}

Aperture Averaging Check Routine

\section*{APERTURE AVERAGING CHECK SUBROUTINE}

The subroutine APERTR is a FORTRAN subprogram to calculate if there is enough aperture averaging to ignore the effects of atmospheric turbulence in the clear atmosphere between the scattering volume and the off-axis receiver.

As shown in Figure 1, the scattering volume may be viewed as an extended incoherent source localized to a plane parallel to the receiver aperture. This effective transmitter aperture is located a distance \(L\) from the receiver. If we assume that the scattering volume fills the receiver field of view, the area of the effective transmitter aperture may be calculated from the rectangular field of view of the receiver
\[
\begin{equation*}
A_{t}=2 L \sin (\phi / 2) \cdot 2 L \sin \left(\phi_{\mathrm{p}} / 2\right) \tag{1}
\end{equation*}
\]
where \(\phi\) is the receiver field of view in the intercept plane and \(\phi_{p}\) is the field of view perpendicular to the plane.

The effective transmitter aperture may be thought of as a collection of coherence cells, from each of which the light will arrive at the receiver with statistically independent fading. The area of each coherence cell is \(\pi \rho_{0}^{2 / 4}\) where \(\rho_{0}\) is the coherence distance. If the effective transmitter contains many, one hundred or more, coherence cells the random fading will be 'averaged out' over the statistically independent channels. For receivers collecting power from a scattering volume, the field of view will most likely be large enough that this condition is met.


For paths with uniform turbulence
\[
\begin{equation*}
\rho_{0}=\left[1.09(2 \pi / \lambda)^{2} C n^{2} L\right]^{-3 / 5} \tag{2}
\end{equation*}
\]
where \(\lambda\) is the wavelength and \(C_{n}{ }^{2}\) the atmospheric structure constant. The program selects from three values of \(\mathrm{Cn}^{2}\), corresponding to mild, moderate or severe turbulence.

If the above condition is not met, the program assumes that the off-axis receiver is narrowing in on a signal from a reflecting surface. The effective path length is now the total path from the transmitter to the reflecting surface to the receiver.
\[
\begin{equation*}
L=[r p x-x / \tan (\theta)]+x / \sin (\theta) \tag{3}
\end{equation*}
\]

In a similar manner the receiver aperture can be broken up into coherence cells each of area \(\pi \rho_{0}^{2 / 4}\). The coherence distance, \(\rho_{0}\), is calculated as zoove using the value of \(L\) calculated in Eq.(3). Again, if there are one hundred or more coherence cells in the receiver aperture, each experiencing random fading, the effects of fading will be averaged out.

If neither of the above conditions is met, the program prints out a warning that performance may be degraded due to turbulence induced fading.

Following is a listing of the subroutine APERTR.

Program Listing of Subroutine APERTR
\begin{tabular}{|c|c|}
\hline & subroutine apertr \\
\hline \multicolumn{2}{|l|}{c} \\
\hline c & CALCULATES IF THERE IS ENOUGH APERTURE \\
\hline c & AVERAGING TO IGNORE THE EFFECTS OF \\
\hline \(c\) & FADING DUE TO TURBULENCE \\
\hline \multicolumn{2}{|l|}{c} \\
\hline c & VARIABLES: \\
\hline c & iw - TURBULENCE FLAG \\
\hline c & 1-SEVERE 2-MODERATE 3-WEAK \\
\hline c & cnsq - ATMOSPHERIC STRUCTURE \\
\hline \(c\) & CONSTANT ( \(\mathrm{M}^{*}{ }^{*} 2 / 3\) ) \\
\hline \(c\) & arho - TURBULENCE COHERENCE \\
\hline c & CELL AREA (M**2) \\
\hline \(c\) & \(x\) - PERPENDICULAR DISTANCE \\
\hline c & SR TO BEAM (M) \\
\hline \(c\) & rpx - DISTANCE TRANSMITTER TO SR \\
\hline \(c\) & OPTICAL AXIS (M) \\
\hline \(c\) & theta - ANGLE LINK AXIS TO SR \\
\hline c & OPTICAL AXIS (RAD) \\
\hline c & phi - SR FOV IN INTERCEPT \\
\hline c & PLANE (RAD) \\
\hline c & phiaz - SR FOV OUT OF PLANE (RAD) \\
\hline c & 1 - EFFECTIVE PATH LENGTH (M) \\
\hline c & asr - SR APERTURE AREA ( \(\mathrm{M}^{*} * 2\) ) \\
\hline c & atr - SCATTERING VOLUME EFFECTIVE \\
\hline c & APERTURE AREA ( \(\mathrm{M}^{*}{ }^{*} 2\) ) \\
\hline c & alam - WAVELENGTH (M) \\
\hline \multicolumn{2}{|l|}{C} \\
\hline & common / flags / mode,mcomp,mp,lam,modesw, \\
\hline \& & lunit, nout, istog, iotype, irtype, ihet,ibflag, \\
\hline \& & iw \\
\hline & common / ldata / rl, alam, rpx,theta, \({ }^{\text {c }}\) \\
\hline \multirow[t]{4}{*}{\&} & angtr, angrec,gamint,bw \\
\hline & common / srdata / asr,hs,phi, phiaz,dphi \\
\hline & dimension cnsq(3) \\
\hline & data cnsq/2.85e-13,1.0e-13,8.5e-15/ \\
\hline \multirow[t]{5}{*}{c} & \\
\hline & \(l=x / \sin (\) theta) \\
\hline & atr \(=4.0\) (1)*2*tan \((0.5 * p h i) * \tan (0.5 * p h i a z)\) \\
\hline & arho=pi*(43.03*cnsq(iw)*1/alam**2)**-0.6/4 \\
\hline & if (atr.gt.100*arho) return \\
\hline \multicolumn{2}{|l|}{c} \\
\hline & write (6,200) \\
\hline 200 & format (6x, "program assumes SR is ", \\
\hline \multirow[t]{4}{*}{\&} & "narrowing in on a reflecting target",/) \\
\hline & \(1=r p x-x / \tan (\) thet \(a)+x / \sin (t h e t a)\) \\
\hline & arho \(=\) pi* (43.03*cnsq(iw)*l/alam**2)**-0.6/4 \\
\hline & if (asr.gt.100*arho) return \\
\hline
\end{tabular}
    temp=100*arho
    write (6,210) temp
210 format (6x,"performance may be degraded by",
&
& "SR aperture for complete averaging is ",
& lpe11.3," meters**2",/)
    return
    end
```


PERFORMANCE OF
 OFF-AXIS OPTICAL COMMUNICATION RECEIVERS

in scattering atmospheres
BY
WILLIAM PAUL JAEGER
B.S., University of Wisconsin - Parkside

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1980

Signature of Author \qquad
Department of Electrical Engineering and Computer Science, July 30, 1980

Certified by

Accepted by \qquad
Chairman
Departmental Committee on Theses

PERFORMANCE OF
 OFF-AXIS OPTICAL COMMUNICATION RECEIVERS IN SCATTERING ATMOSPHERES

by

WILLIAM PAUL JAEGER

Submitted to the Department of Electrical Engineering and Computer Science on July 30, 1980 in partial fulfillment of the requirements for the degree of Master of Science.

ABSTRACT

The performance of off-axis optical communication receivers is considered. A statistical model of the photodetection process is presented and the influence of the received field statistics on the photodetection process is discussed. Upper and lower bounds on the probability of bit error for binary, one-shot, digital communication systems utilizing direct detection are developed. These bounds are based on the Bhattacharyya distance measure. A computer program is developed, which when interfaced with existing programs that model the propagation of optical radiation through the atmosphere, predicts the probability of bit error performance for off-axis optical communication systems.

Thesis Supervisor: Robert S. Kennedy
Title: Professor of Electrical Engineering

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Dr. Robert S. Kennedy, for his insight and guidance during this work. His knowledge and experience proved an invaluable resource to me. I would also like to thank Mr. Warren Ross. Our discussions, both technical and otherwise, helped me get through this maze that is M.I.T.

This work was supported by the National Security Agency under Research Countract DAAG-29-90-C-0010.

TABLE OF CONTENTS

Page
ABSTRACT 2
ACKNOWLEDGEMENTS 3
TABLE OF CONTENTS 4
LIST OF FIGURES 5
GLOSSARY 6
CHAPTER 1. INTRODUCTION 8
CHAPTER 2. PROBLEM FORMULATION. 13
CHAPTER 3. THE BHATTACHARYYA DISTANCE 26
CHAPTER 4. SUMMARY 38
REFERENCES 50

LIST OF FIGURES

FIGURE Page
1 Typical Off-axis Communication Geometries 9
2 Off-axis Communication System Block Diagram 11
3 Receiver Noise Generation Mechanisms 15
4 Scattering Volume Viewed as Effective Source. 23

GLOSSARY

a	- Proportionality constant, $n P(t) / h \nu$.
B	- Bhattacharyya distance
B_{0}	- Bandwidth of optical filter
$C_{n}{ }^{2}$	- Atmospheric structure constant
F	- Excess noise factor
G	- Mean detector gain
n	- Detector quantum efficiency
h	- Planck's constant
$h(t)$	- Impulse response of the post-detection electronics
I	- Identity matrix
L	- Optical path length
$L(\underline{x})$	- Likelihood ratio
$\lambda(t)$	- Rate function of an Inhomogeneous Poisson process
Λ	- Covariance matrix of a Gaussian random vector
m	- Mean of a Gaussian random process or variable
ν	- Nominal optical frequency
N	- Number of samples of a random process
N_{B}	- Power density of background noise
$N_{0} / 2$	- Bilateral spectral density of thermal noise
$N(t)$	- Poisson process
$P_{S}(t)$	- Received signal power waveform
P_{S}	- Average received signal power
P_{B}	- Collected background power
P_{D}	- Equivalent power that gives rise to the dark current

P_{N}	- Effective noise power
$\operatorname{Pr}(e)$	- Probability of bit error
$P_{\underline{x}_{1}}(\underline{x} \mid H)$	- Probability distribution of \underline{x} conditiored on hypothesis H
ρ_{0}	- Atmospheric coherence distance
σ^{2}	- Variance of a Gaussian random process or variable
T	- Bit duration time
τ_{i}	- Event times of carrier generation
Ω_{2}	- Field of view
Ω_{d}	- Diffraction limited field of view
W	- Bandwidth of post-detection processing
x	- A random process or variable
y	- A random process of variable

CHAPTER ONE

INTRODUCTION

In recent years there has been a tremendous interest and growth in communication systems utilizing light transmitted over optical fibers. Opitcal fibers provide a more benign propagation medium than is available in the open atmosphere. The atmospheric channel suffers from scattering due to suspended particles, random refractive index fluctuations and limitations due to bad weather. However, the increasing congestion of the electro-magnetic spectrum has increased interest in the use of optical frequencies for situations in which mobility, geographical constraints or the desire to broadcast to a number of users precludes the use of cabled connections.

Off-axis Optical Communication

This study will concentrate on systems that rely on the atmospheric scattering to establish over-the-horizon communications or non-line-ofsight broadcast capabilities. A number of authors have considered such systems [1-4]. Typical geometries for off-axis communication systems are shown in Figure 1. The complex geometry of the off-axis link atmospheric scattering dictates that the propagation of radiation from transmitter to receiver will usually be modeled in a computer program. In this paper a computer code to analyze the performance of off-axis communication receivers will be developed. This code will interface with existing propagation programs. Analog communication will be discussed briefly, but the major emphasis will be on analyzing the performance of digital

OVER - THE - HORIZON

NON - LINE - OF - SIGHT BROADCAST

Figure 1 Typical Off-axis Communication geometries
systems.
A block diagram of an off-axis optical communication system is shown in Figure 2. The information is used to modulate an optical source. The transmitter antenna couples the source power into the atmospheric channel. Optical antennas are basically telescopes. Similarly, the receiver antenna couples the atmospheric channel to the receiver detector. The characteristics of the optical antennas, particularly the transmitter beam divergence and receiver field of view, will greatly influence the nature of the atmospheric propagation by determining the size of the scattering volume.

The receiver predetection processing may include an optical filter to limit the out-of-band background radiation or optical processing to separate different polarization or frequency components of the received field into different detectors. (Heterodyne receivers, the predetection mixing of the received field with a local oscillator laser, will not be considered for reasons discussed in Chapter Two.) The detector converts the optical signals into electrical signals. Finally, the post-detection processing demodulates or decodes the electrical signal to extract the desired information.

The off-axis optical receiver problem can be separated into a propagation problem and a performance problem. The dividing line will be the detector surface. The optical power incident on the receiver detector will be a function of the receiver collecting optics area and field of view, as well as the transmitter power, beam divergence, modula-

Figure 2 Off-axis Optical Communication System
tion, the link geometry and the atmospheric scattering. In general, this waveform will suffer both attenuation and time dispersion during propagation. Receiver performance will be limited by the optical power waveform incident on the detector, the collected background radiation and the receiver parameters that specify the quantity and nature of the detector noise. Optical receivers exhibit fundamentally different noise character from radio receivers due to quantum effects. Quantum effects are important at optical frequencies because the photon energy greatly exceeds the thermal agitation.

Preview

The formulation of the performance analysis problem will be developed in Chapter Two. A statistical model of the detection process will be presented and assumptions about the nature of the signal incident on the detector will be explored. In Chapter Three a bound on the performance of digital receivers based on the Bhattacharyya distance will be developed. It will be shown that the bound provided by the Bhattacharyya distance is a general, yet relatively simple to calculate, bound that is amenable to computer implementation. The algorithm for such a computer implementation will be outlined. A FORTRAN computer routine based on the results of Chapter Three appears in the Appendix.

CHAPTER TWO

PROBLEM FORMULATION

In this chapter the background and restrictions of the problem formulation will be developed. These can be roughly divided into two areas: the detector noise model and assumptions about the interface between the propagation and performance analysis.

Detector Noise Mechanisms

All current devices for converting optical signals into electric signals involve energy measurement. A quantum of optical energy, the photon, is absorbed and a charge carrier generated. Thus, photodetectors respond only to the power, or intensity, of the optical signal rather than to the electromagnetic field itself. The power is proportional to the rate of photo-absorption.

The principle detectors for use in optical communication receivers are photomultiplier tubes, semiconductor photodiodes and aidilanche photodiodes. While there are important physical differences between these devices, it is possible to develop a single statistical model which can, by appropriate selection of parameters, describe the behavior of any of the above detectors. The output current of the photodetector may be modeled as

$$
i(t)=\left[\sum_{i} e g_{i} \delta\left(t-\tau_{i}\right)+i_{T}(t)\right] * h(t)
$$

where τ_{i} are the event times of carrier generation, e the charge on the electron, g_{i} the detector gain for each כhoton detection, i_{T} a noise
current of thermal origin and $h(t)$ the impulse response of the postdetection amplifier or load resistor network. It is assumed that the impulse response of the detector is faster than that of the following electronics. A block diagram of a photodetector is shown in Figure 3.

The generation of carriers can be modeled as a Conditional Inhomogeneous Poisson process, $N(i)$, with rate parameter proportional to the instantaneous signal plus background power incident or the detector, $P_{S}(t)$ and P_{B} respectively. The proportionality constant α is $n / h \nu$, where $h \nu$ is the photon energy at optical frequency v and η is the quantum efficiency of the detector -- essentially the probability a photon will generate a carrier. The discrete nature of carrier generation gives rise to shot noise in low light levels. Additional shot noise results from spontaneously generated charge carriers referred to as the dark current. These emissions occur at random with average rate αP_{D}, where P_{D} is a fictitious power called the dark power. Though they arise from physically different sources, it is convenient to lump P_{B} and P_{D} together into an equivalent noise power, P_{N}.

In photomultipliers and avalanche photodiodes, the charge carriers generated by photo-absorption undergo a current multiplication within the device. The initial charge carriers are accelerated by an electric field creating additional carriers as they collide with the photodetector material. These new carriers in turn create more carriers in a similar fashion. The gain for each carrier created by photo-absorption is random. These random gains may be modeled as independent, identically distributed random variables of mean value G and second moment G^{2+x}.
Figure 3 Optical Peceiver Iloise Generation Mechanisms

The quantity G^{X} is referred to as the excess noise factor, F. The value of x is dependent on the particular device. For photomultipliers the value of x is small and the gain may be considered constant. The excess noise in avalanche photodiodes is significant enough that it must be modeled. In contrast to photomultipliers and avalanche photodiodes, photodiodes have unity gain.

To these current pulses is added a thermal noise $i_{T}(t)$. This current is a wide-band noise associated with any internal detector resistance, the load resistor, or the front-end noise of any following electronics. It is reasonably modelled as a white Gaussian random process with zero mean and bilateral spectral density, $N_{0} / 2$, of $2 k T_{k} / R_{e}$. Here k is Boltzmann's constant, T_{k} the absolute temperature and R_{e} the effective load resistance. The thermal noise will be especially significant for detectors that do not have internal gain.

One may define a signal-to-noise ratio, SNR, as the squared average expected value of the signal component of $i(t)$ divided by the variance of $i(t)$. It can be shown [5] that

$$
S N R=\frac{E\left[i(t)_{\text {sig }}\right]^{2}}{\operatorname{VAR}[i(t)]}=\frac{\left(\alpha P_{S}\right)^{2}}{\left[F \alpha\left(P_{S}+P_{N}\right)+N_{0} / 2(e G)^{2}\right] 2 W}
$$

where W is the bandwidth of the following electronics. The first term of the denominator is the variance due to shot noise while the second term is due to the thermal noise. Notice that if the gain is large and constant the effects of thermal noise can be neglected. This is the
shot noise limit. However, if gain fluctuations exist, F will be a function of G. Thus, some optimal mean gain value will exist which maximizes the signal-to-noise ratio by balancing the shot noise variance and the thermal noise variance. Without internal gain or cryogenic cooling the thermal noise will usually swamp out the shot noise. This is the thermal noise limit. The choice of photodetector -photomultiplier, photodiode or avalanche photodiode -- will often depend on what type is available at the optical frequency at which one is working.

Photodetector Output Statistics

While signal-to-noise ratio expressions are appropriate for analyzing the performance of analog communication systems, the performance analysis for digital communication receivers requires a more complete knowledge of the detector output statistics. The digital receiver will apply a decision rule to the received signal to determine which of a finite number of signals, or characters, was most likely sent. The performance measure of interest is the probability of making an error in decoding. Determining the probability of error, $\operatorname{Pr}(e)$, requires knowledge of the probability distribution of the detector output given one knows which character was sent.

If there is no excess noise and the average shot noise variance, $\alpha\left(P_{S}+P_{N}\right)$, greatly exceeds (by a factor of ten or more) the thermal noise variance, $N_{0} / 2(e G)^{2}$, the Poisson counting statistics will dominate. The detector output current pulses can be modeled as a Conditional Inhomoge-
neous Poisson process with rate parameter $\alpha\left[P_{S}(t)+P_{N}\right]$.
If the thermal noise variance greatly exceeds (again by a factor of ten) the average shot and excess noise variance, $\alpha F\left(P_{S}+P_{N}\right)$, the Gaussian statistics of the thermal noise will dominate. The detector output current may then be modeled as a Gaussian random process with mean value eGa[$\left.P_{S}(t)+P_{N}\right]$ and variance $N_{0} / 2$.

If the receiver noise is a combination of shot and thermal noise, finding the underlying statistics of the detector output becomes quite complicated, if not intractable. The approach used in this study has been to model the shot noise as a Gaussian process of the same variance and then alternatively to model the thermal noise as a Poisson process, again on a second moment basis. If the performance predicted by both analyses are numerically close, it can reasonably be assumed that the true performance is also numerically close. There are no guarantees on how close however!

Finding the underlying statistics for the compound Poisson process resulting from random gain fluctuations is a more tractable problem [6]. However, receivers with gain fluctuations will most likely utilize an optimal mean gain to maximize the signal-to-noise ratio by balancing the shot and therma? noise variance terms. Thus, the approach used here is to again model the shot and excess noise as a Gaussian process and then the thermal and excess noise as a Poisson process to achieve a 'handle' on the performance.

Deterministic Power Assumption

The preceding discussion has assumed that the optical power incident on the detector is known. In reality the power waveform will be the output of a random atmospheric channel and thus a stochastic process. It will be shown in this section that for most off-axis optical communication systems the receiver statistics will behave as if the detector were illuminated by a deterministic signal equal to the mean value of the stochastic power waveform actually illuminating it.

The signal from an off-axis scatter channel can be thought of as a distributed incoherent source, much the same way as background light is modeled. The off-axis receiver will, within constraints, open the field of view to take in as much of the extended source as possible.

It is possible to think of the receiver as the sum of an array of diffraction limited field of view receivers, arranged to make up the entire field of view. Due to the short wavelength of optical frequencies, even modest fields of view will contain on the order of 10^{6} to 10^{8} diffraction limited fields of view. Each diffraction limited field of view is looking at a different part of the scattering atmosphere and the stochastic intensity fields incident on each can be assumed to be statistically independent.

If the extended source approximately fills the receiver field of view, to first approximation, the total average received signal power may be thought of as equally divided among the diffraction limited fields of view. (If the extended signal source does not fill the field of
view, the field of view could be made smaller thereby decreasing the collected background at no loss of signal.) Because of the large number of diffraction limited fields of view, the signal plus background power per diffraction limited field of view will be small. In fact, for most off-axis receivers an average of less than one photon count will be generated per diffraction limited field of view over the counting interval of the receiver. Kennedy has called channels which satisfy this supposition weakly coherent quantum channels [7].

The representation theorem for doubly stochastic Poisson processes (that is a Poisson process in which the rate parameter is also stochastic) states that the statistics of a doubly stochastic Poisson process will behave as a conditional Poisson process with rate parameter equal to the minimum mean square error estimate of the stochastic rate parameter [8]. The minimum mean square estimate is based on all previous events and any conditioning. If the probability of getting one or more counts or events is small, the minimum mean square estimate is simply the expected value of the rate parameter given any conditioning. Since each of the diffraction limited fields of view is independent, the output of the entire detector is a Poisson process with rate parameter equal to the sum of the individual rate parameters. Thus, to the extent that the off-axis scattering channel is weakly coherent, performance analysis will require only the expected value of the received power waveform from the propagation analysis.

To see that this is all reasonable, consider a not atypical off-axis receiver with 10 cm diameter optics, 5° circular field of
view (about 90 mR), and optical filter bandwidth of $10^{-3} \mu\left(B_{0}\right)$, a counting interval of $1 \mu \mathrm{sec}$, and operating at a wavelength of 1 micron. The diffraction limited field of view is

$$
\Omega_{\mathrm{d}}=\frac{\lambda^{2}}{\pi \mathrm{~d}^{2} / 4}=10^{-10} \mathrm{SR}
$$

While the total field of view is

$$
\Omega=\pi(.09)^{2}=.02 \mathrm{SR}
$$

or about 10^{8} diffraction limited fields of view. The background power per diffraction limited field of view is $N_{B} B_{0}$ where N_{B} is the power density of the background noise. Since N_{B} is typically on the order of $10^{-25} \mathrm{~W} \mu$ for atmospheric operation [9], the average number of background counts per diffraction limited field of view over the counting internal $\left(\alpha N_{B} B_{O} T\right)$ is on the order of 10^{-12}. Thus, this receiver can operate with about 10^{8} signal photon counts and still be in the low photon coherence regime. For this receiver this corresponds to about 10μ watts of signal power!

Fading Due to Turbulence

If the atmospheric scattering is primarily single scatter or the off-axis receiver is not immersed in the scattering medium, one must also consider the effects of atmospheric turbulence in the clear atmosphere between the scattering volume and the receiver. Atmospheric turbulence refers to the slight atmospheric refractive index fluctuations due to uneven heating. Such refractive index fluctuations act
as a random lens. When random lensing results in destructive interference in the receiver aperture, the random signal losses are known as fading.

As shown in Figure 4, the scattering volume can be viewed as a distributed incoherent source localized to a plane parallel to the receiver aperture. This effective transmitter is located a distance L from the receiver. Light emitted from points in this plane separated by a distance greater than the transmitter coherence distance, f_{0}°, will pass through substantially different atmosphere and arrive at the receiver with statistically independent random fading. One may thus define a transmitter coherence cell with area $\left(\rho_{0}^{-}\right)^{2} / 4$. As long as the effective transmitter contains many (one hundred or more) coherence cells, the effects of fading will tend to 'average out' over the statistically independent channels.

In a similar manner, light arriving at points in the receiver aperture separated by greater than the receiver coherence distance, ρ_{0}, will have statistically independent fading. Thus, if there are many receiver coherence cells each of area $\left(\rho_{o}\right)^{2} / 4$ in the receiver aperture, the effects of fading will again be averaged out.

For a path with uniform turbulence

$$
\rho_{0}^{\prime}=\rho_{0}=\left[1.09(2 \pi / \lambda)^{2} C n^{2} L\right]^{-3 / 5}
$$

where Cn^{2} is the atmospheric structure constant [10].
In addition to either of the above effects, the receiver field of view must be large enough to compensate for random angle of arrival

Figure 4 Scattering Volume Viewed as Effective Source
variations caused by turbulence. Typically the angular spectrum of turbulence is on the order of tenths of milliradians so this condition will always be met for a receiver in a scattering environment.

Again assuming that the scattering volume approximately fills the receiver field of view, the area of the effective transmitter may be calculated from the receiver field of view and the distance to the scattering volume. As ρ_{0} is typically on the order of centimeters to meters, the complete transmitter aperture averaging condition will almost always be met.

Heterodyne Receivers

Transmitter aperture averaging to ignore the effects of turbulence relies on the receiver having a large field of view and the weakly coherent channel assumption implies that a diffraction limited field of view will not collect much power. Yet, heterodyne receivers are restricted to extracting information from a diffraction limited field of view by local oscillator laser mixing requirements. Heterodyne reception thus seems impractical for off-axis receivers.

One could consider an array of heterodyne receivers each with diffraction limited field of view arranged to make up a large field of view. This has the added complication of deciding how to optimally combine and process the individual detector outputs which is essentially decided for us in a direct detection receiver. Seeking to avoid this added complication as well as considering the practical difficulties of building such an array, (on the order of 10^{6} diffraction limited
fields of view), this study was limited to direct detection receivers.
Having laid the groundwork for communication in off-axis scattering channels, the next chapter will turn toward quantifying the off-axis receiver performance for digital signaling.

CHAPTER THREE

THE BHATTACHARYYA DISTANCE

The digital communication receiver will implement a decision rule on the detector output to determine which of a finite number of waveforms was most likely sent. In the real world there is always a probability that the signal will be so noisy that the receiver will make a mistake in decoding. The probability of error, $\operatorname{Pr}(e)$, may be obtained by integrating the probability distribution of the received signal, given one knows what was sent, over the region on the 'wrong' side of the decision rule. In general exact expressions for $\operatorname{Pr}(\mathrm{e})$ are difficult to obtain. Often it will be necessary to settle for bounds on the probability of error. In this chapter the bound provided by the Bhattacharyya distance will be explored. Binary one-shot communication will be considered. The waveform for a single bit (binary one or zero) is sent and the receiver makes a decision on a bit-by-bit basis.

Bound Provided by the Bhattacharyaa Distance
The Bhattacharyya distance is defined:

$$
\begin{equation*}
B=-\ln \int_{-\infty}^{\infty} \sqrt{\underline{p}_{\underline{x}} \mid H_{0}}\left(x \mid H_{0}\right) \underline{p}_{\underline{x} \mid H_{1}}\left(x \mid H_{1}\right) d \underline{x} \tag{3.1}
\end{equation*}
$$

The underbar denotes a vector and $p_{x \mid H_{i}}\left(\underline{x} \mid H_{i}\right)$ is the probability distribution of the vector \underline{x} conditioned on hypothes is H_{i}.

Kailath [11] has shown that for equally likely hypotheses the

Bhattacharyya distance may be used to provide upper and lower bounds on the probability of error (independent of the underlying statistics).

$$
\begin{equation*}
\frac{1}{4} e^{-2 B} \leq \operatorname{Pr}(e) \leq \frac{1}{2} e^{-B} \tag{3.2}
\end{equation*}
$$

Notice that the bound provided by the Bhattacharyya distance does not involve the decision rule. Implicit in Kailath's derivation is the use of a decision rule that minimizes the probability of error. Thus, the bound based on the Bhattacharyya distance provides a bench mark performance based on the shape and amplitude of the received signal. The lower bound is the absolute best performance one might achieve given the received power signal set. The upper bound is the worst one can do assuming the receiver opiimally processes the detector output.

The bound provided by the Bhattacharyya distance is closely related to the Chernoff bound and the Maximum Aposteriori decision rule (MAP rule). The MAP rule is the minimum probability of error rule. It can be shown that the Chernoff bound is the exponentially tightest bound on the probability of error [12]. For equally likely hypotheses the MAP rule reduces to the Maximum Likelihood decision rule. The likelihood ratio

$$
\begin{equation*}
L(\underline{x})=\frac{p_{\underline{x} \mid H_{1}}\left(\underline{x} \mid H_{1}\right)}{p_{\underline{x} \mid H_{0}}\left(\underline{x} \mid H_{0}\right)} \tag{3.3}
\end{equation*}
$$

is evaluated at the received value of \underline{x}. If $L(\underline{x})$ is greater than one, decide one was sent; if $L(\underline{x})$ is less than one, decide zero was sent.

Let $\underline{y}=\ln L(\underline{x})$. Assuming that both types of errors occur with equal probability, the probability of error is the probability $\underset{y}{ }$ is greater than $\underline{\underline{O}}$ given one knows zerowas sent. The Chernoff bound on this probability is given by

$$
\begin{equation*}
\operatorname{Pr}(e)=\operatorname{Pr}\left(\underline{y}>0 \mid H_{0}\right) \leq \frac{1}{2} E\left[e^{s y} / H_{0}\right] \tag{3.4}
\end{equation*}
$$

There is an optimal value of s for which the bound is minimized, though the bound is valid for non-optimal values of s.

An alternative form of the Bhattacharyya distance is

$$
\begin{equation*}
B=-\ln \int_{-\infty}^{\infty} \sqrt{P_{\underline{x} \mid H_{0}}\left(\underline{x} \mid H_{0}\right) P_{\underline{x} \mid H_{1}}\left(\underline{x} \mid H_{1}\right)} d \underline{x}=-\ln E\left[L(\underline{x})^{1 / 2} \mid H_{0}\right] \tag{3.5}
\end{equation*}
$$

The upper bound provided by the Bhattacharyya distance may be written

$$
\begin{equation*}
\frac{1}{2} e^{-B}=\frac{1}{2} E\left[L(\underline{x}) \mid H_{0}\right]=\frac{1}{2}\left[e^{1 / 2 \ln L(\underline{x})} \mid H_{0}\right] \tag{3.6}
\end{equation*}
$$

Thus, the upper bound provided by the Bhattacharyya distance is the Chernoff bound for the MAP decision rule evaluated at the possibly suboptimal value of $s=1 / 2$.

The Chernoff bound provides a tighter upper bound on the probability of error than that provided by the Bhattacharyya distance. However, the general and simple nature of the bound provided by the Bhattacharyya distance (no need to explicitly find the decision rule or optimize on s) as well as the fact that it provides a lower bound make the Bhattacharyya distance measure attractive for bench mark analysis.

In the remainder of this chapter the Bhattacharyya distance for the cases of Poisson processes, Gaussian processes, and Gaussian processes with time varying variance will be developed. The latter will be important when modeling the time varying shot noise as a Gaussian process. It will be shown how the Bhattacharyya distance results may be applied to a computer algorithm to calculate the probability of bit error rate for optical communication systems. Finally, the Bhattacharyya distance for twin channel processes will be developed. Such receivers might be used in frequency shift keying systems, polarization modulation systams or any system where predetection processing separates the received field between two detectors.

Inhomogeneous Poisson Processes
For a Poisson process the probability distribution for the unordered event times on an interval T is

$$
\begin{equation*}
\rho_{\tau_{1}} \cdots{ }_{\tau_{N}}, N \left\lvert\, H\left(\tau_{1} \cdots \tau_{N}, N \mid H\right)=\sum_{n=0}^{\infty} \frac{1}{n!} \prod_{j=\tau}^{n} \lambda_{i}\left(\tau_{j}\right) \operatorname{Exp}\left[-\int_{0}^{\top} \lambda_{i}(t) d t\right] \delta(N-n)\right. \tag{3.7}
\end{equation*}
$$

where $\lambda_{i}(t)$ is the rate function under the hypothes is that i is sent.
The Bhattacharyya distance between two Poisson processes may be found by substituting in the definition for the Bhattacharyya distance [Eq.(3.1)].

$$
\begin{align*}
& B=-\ell n \int_{-\infty}^{\infty} \int_{0}^{T} \cdots \int_{0}^{T} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{j=1}^{n} \lambda_{0}\left(\tau_{j}\right) \operatorname{Exp}\left[-\int_{0}^{T} \lambda_{0}(t) d t\right] \delta(N-n) . \\
& \left.\sum_{m=0}^{\infty} \frac{1}{m!} \prod_{j=1}^{m} \lambda_{1}\left(\tau_{j}\right) \operatorname{Exp}\left[-\int_{0}^{T} \lambda_{j}(t) d t\right] \delta(N-n)\right|^{1 / 2} d \tau_{1} \ldots d \tau_{N} d N \\
& =\frac{1}{2}\left[\int_{0}^{T} \lambda_{0}(t) d t+\int_{0}^{T} \lambda_{1}(t) d t\right]-\ell n \sum_{n=0}^{\infty} \frac{1}{n!} \\
& \int_{0}^{T} \ldots \int_{0}^{T} \prod_{j=1}^{n}\left[\lambda_{0}\left(\tau_{j}\right) \lambda_{1}\left(\tau_{i}\right)\right]^{1 / 2} d \tau_{p} \ldots d \tau_{N} \\
& =\frac{1}{2} \int_{0}^{T}\left[\lambda_{0}(t)+\lambda_{1}(t)\right] d t-\ell n \sum_{n=0}^{\infty} \frac{1}{n!}\left[\int_{0}^{T} \sqrt{\lambda_{0}(t) \lambda_{1}(t)} d t\right]^{n} \\
& =\frac{1}{2} \int_{0}^{T}\left[\lambda_{0}(t)+\lambda_{1}(t)\right] d t-\ell n \operatorname{Exp}\left[\int_{0}^{T} \sqrt{\lambda_{0}(t) \lambda_{1}(t)} d t\right] \\
& =\frac{1}{2} \int_{0}^{T}\left[\lambda_{0}(t)-2 \sqrt{\lambda_{0}(t) \lambda_{1}(t)}+\lambda_{1}(t)\right] d t \\
& B=\frac{1}{2} \int_{0}^{T}\left[\sqrt{\lambda_{0}(t)}-\sqrt{\lambda_{1}(t)}\right]^{2} d t \tag{3.8}
\end{align*}
$$

Gaussian Random Processes

The concept of the Bhattacharyya distance may be extended to continuous time processes, of duration T, by considering - ector of time samples of the process and then taking the limit as the number of samples approaches infinity. Defining \underline{x} as a vector of lime samples of the process $x(t)$.

$$
\underline{x}=\left[\begin{array}{c}
x\left(t_{1}\right) \\
\vdots \\
x\left(t_{N}\right)
\end{array}\right] \text { and } \begin{array}{cc}
x\left(t_{j}\right)=\frac{1}{\dot{\delta}} f_{(j-1) \delta}^{j \delta} x(t) d t \\
\delta=T / N
\end{array}
$$

The probability density for multivar te Gaussian random variable is

$$
\begin{equation*}
\underline{p}_{\underline{x} \mid H_{i}}\left(\underline{x} \mid H_{i}\right)=\frac{\operatorname{Exp}\left[-\left(\underline{x}-m_{i}\right)^{T-1}\left(\underline{x}-m_{i}\right) / 2\right]}{(2 \pi)^{N / 2} \operatorname{det}^{1 / 2}\left(\Lambda_{i}\right)} \tag{3.9}
\end{equation*}
$$

where Λ_{i} is the covariance matrix of \underline{x} under hypothesis i and \underline{m}_{i} is the mean of \underline{x} under hypothesis i. Notice that

$$
E\left[\underline{x} \mid H_{i}\right]=\left[\begin{array}{c}
m_{i}\left(t_{i}\right) \\
\vdots \\
m_{i}\left(t_{N}\right)
\end{array}\right] \quad m_{i}\left(t_{j}\right)=\frac{1}{\delta} \int_{(j-1) \delta}^{j \delta} m_{i}(t) d t
$$

where $m_{\mathfrak{j}}(t)$ is the mean of the process under hypothesis i.
The Bhattacharyya distance between two continuous time Gaussian processes is then

$$
\begin{aligned}
B=-\ln \lim _{N \rightarrow \infty} \int_{-\infty}^{\infty}[& \frac{\operatorname{Exp}\left[-\left(\underline{x}-\underline{m}_{0}\right)^{\top} \Lambda_{0}^{-1}\left(\underline{x}-m_{0}\right) / 2\right]}{(2 \pi)^{N / 2} \operatorname{det} t^{1 / 2}\left(\Lambda_{0}\right)} \cdot \\
& \left.\frac{\operatorname{Exp}\left[-\left(\underline{x}-m_{7}\right)^{\top} \Lambda_{1}^{-1}\left(\underline{x}-\underline{m}_{7}\right) / 2\right]}{(2 \pi)^{N / 2} \operatorname{det}^{1 / 2}\left(\Lambda_{1}\right)}\right]^{1 / 2} d \underline{x}
\end{aligned}
$$

$$
\begin{aligned}
&=-2 n \lim _{N \rightarrow \infty} \int_{\infty}^{\infty} \frac{\operatorname{Exp}\left[-\left(\underline{x}-m_{0}\right)^{\top} \Lambda_{0}^{-1}\left(\underline{x}-m_{0}\right) / 4\right]}{(2 \pi)^{N / 2} \operatorname{det}^{1 / 4}\left(\Lambda_{0}\right)} \\
& \frac{\operatorname{Exp}\left[-\left(\underline{x}-m_{7}\right)^{T}-1\right.}{\left.\Lambda_{\eta}\left(\underline{x}-\underline{m}_{7}\right) / 4\right]} \\
& \operatorname{det}^{1 / 4}\left(\Lambda_{p}\right) d x
\end{aligned}
$$

This may be rewitten as the convolution of Gaussian distributions

$$
\begin{align*}
& =-\ln \lim _{N \rightarrow \infty} \frac{(2 \pi)^{N} 2^{N} \operatorname{det}^{1 / 2}\left(\Lambda_{0}\right) \operatorname{det}^{1 / 2}\left(\Lambda_{1}\right)}{(2 \pi)^{N / 2} \operatorname{det}^{1 / 4}\left(\Lambda_{0}\right) \operatorname{det}^{1 / 4}\left(\Lambda_{1}\right)} . \\
& \int_{-\infty}^{\infty} \frac{\operatorname{Exp}\left[-\left(\underline{x}-\underline{m}_{0}\right)^{T}\left(2 \Lambda_{0}\right)^{-1}\left(\underline{x}-m_{0}\right) / 2\right] \operatorname{Exp}\left[-\left(\underline{x}-\underline{m}_{1}\right)^{T}\left(2 \Lambda_{1}\right)^{-1}\left(\underline{x}-\underline{m}_{7}\right) / 2\right]}{(2 \pi)^{N / 2} \operatorname{det}^{1 / 2}\left(2 \Lambda_{0}\right)(2 \pi)^{N / 2} \operatorname{det}^{1 / 2}\left(2 \Lambda_{1}\right)} d \underline{x} \tag{3.10}\\
& B=-\ln \lim _{N \rightarrow \infty} \frac{2^{N / 2} \operatorname{det}^{1 / 4}\left(\Lambda_{0}\right) \operatorname{det}^{1 / 4}\left(\Lambda_{1}\right)}{\operatorname{det}^{1 / 2}\left(\Lambda_{0}+\Lambda_{1}\right)}: \\
& \operatorname{Exp}\left[-\left(\underline{m}_{0}-\underline{m}_{7}\right)^{T}\left(\Lambda_{0}+\Lambda_{1}\right)^{-1}\left(\underline{m}_{0}-m_{1}\right) / 4\right]
\end{align*}
$$

If the time samples are statistically independent (white) and of uniform variance $\Lambda_{0}=\Lambda_{T}=\sigma^{2} I$, where I is the identity matrix. Eq.(3.9) may be simplified as follows:

$$
\begin{align*}
& B=-\ell n \lim _{N \rightarrow \infty} \frac{2^{N / 2} \operatorname{det}^{1 / 2}\left(\sigma^{2} I\right)}{2^{N / 2} \operatorname{det}^{1 / 2}\left(\sigma^{2} I\right)} \operatorname{Exp}\left[-\sum_{j=1}^{N}\left[m_{0}\left(t_{j}\right)-m_{p}\left(t_{j}\right)\right]^{2} / 8 \sigma^{2}\right] \\
& B=\frac{1}{8 \sigma^{2}} \int_{0}^{T}\left[m_{0}(t)-m_{p}(t)\right]^{2} d t
\end{align*}
$$

Gaussian Processes with Time Varying Variance

Consider now a Gaussian process that is still white but with a variance that changes from time sample to time sample and under the hypothesis. That is

$$
\Lambda_{i}=\left[\begin{array}{ccc}
\sigma_{i}^{2}\left(t_{1}\right) & 0 \\
& \cdot & \\
0 & \sigma_{i}^{2}\left(t_{N}\right)
\end{array}\right] \quad \sigma_{i}^{2}\left(t_{i}\right)=\frac{1}{\delta} \int_{(j-1) \delta_{i}^{j \delta}}^{\sigma_{i}^{2}(t) d t}
$$

The Bhattacharyya distance expression may be found by substituting in Eq.(3.9)

$$
\begin{align*}
& B=-l n \lim _{N \rightarrow \infty}\left[\frac{2_{j=1}^{N} \sigma_{0}^{N}\left(t_{j}\right) \underset{j=1}{N} \sigma_{1}\left(t_{q}\right)}{\prod_{j=1}^{N}\left[\sigma_{0}^{2}\left(t_{j}\right)+\sigma_{1}^{2}\left(t_{j}\right)\right]}\right]^{1 / 2} \\
& \operatorname{Exp}\left[-\sum_{j=1}^{N} \frac{\left[m_{0}\left(t_{j}\right)-m_{j}\left(t_{j}\right)\right]^{2}}{4\left[\sigma_{0}^{2}\left(t_{j}\right)+\sigma_{j}^{2}\left(t_{j}\right)\right]}\right] \\
& =\frac{1}{2} \lim _{N \rightarrow \infty} \sum_{j=1}^{N}\left[\frac{\left[m_{0}\left(t_{j}\right)-m_{1}\left(t_{j}\right)\right]^{2}}{2\left[\left(\sigma_{0}^{2}\left(t_{j}\right)+\sigma_{1}^{2}\left(t_{j}\right)\right]\right.}+\ln \left[\frac{\sigma_{0}^{2}\left(t_{j}\right)+\sigma_{1}{ }^{2}\left(t_{j}\right)}{2 \sigma_{0}\left(t_{j}\right) \sigma_{1}\left(t_{j}\right)}\right]\right] \\
& B=\frac{1}{2} \int_{0}^{T}\left[\frac{\left[m_{0}(t)-m_{p}(t)\right]^{2}}{2\left[\sigma_{0}^{2}(t)+\sigma_{p}^{2}(t)\right]}+\ln \left[\frac{\sigma_{0}^{2}(t)+\sigma_{1}^{2}(t)}{2 \sigma_{0}^{2}(t) \sigma_{1}(t)}\right]\right] d t \tag{3.12}
\end{align*}
$$

Application to Optical Communication

The application to optical communication is now clear. The
detector output for direct detection optical receivers in which shot noise dominates is modeled as an Inhomogeneous Poisson process with rate function $\lambda_{i}(t)=\alpha\left(P_{S i}(t)+P_{N}\right)$ given i was sent. The received signal power waveform given i was sent is $P_{S i}(t)$. Substituting in Eq.(3.7) to evaluate the Bhattacharyya distance

$$
\begin{equation*}
B=\frac{1}{2} \int_{0}^{T} \alpha\left(\sqrt{P_{S O}(t)+P_{N}}-\sqrt{P_{S 1}(t)+P_{N}}\right)^{2} d t \tag{3.13}
\end{equation*}
$$

The detector output of thermal nois: limited receivers is modeled as a Gaussian random process with mean $m_{j}(t)=e G a\left[P_{S i}(t)+P_{N}\right]$ and variance $N_{0} / 2$. The Bhattacharyya distance is evaluated using Eq. (3.10).

$$
\begin{equation*}
B=\frac{(e G a)^{2}}{8 N_{0} / 2} \int_{0}^{T}\left[P_{S O}(t)-P_{S T}(t)\right]^{2} d t \tag{3.14}
\end{equation*}
$$

If the receiver noise is a combination of shot, thermal or excess noise the detector output will be modeled as a Poisson process, then as a Gaussian process and the performance compared.

Modeling the excess noise and thermal noise as multiplicative and additive increases, respectively, in the variance of the Poisson process, the rate function is

$$
\begin{equation*}
\lambda_{i}(t)=F_{\alpha}\left(P_{S i}(t)+P_{N}\right)+\frac{N_{0} / 2}{(e G)^{2}} \tag{3.15}
\end{equation*}
$$

Notice that the thermal noise must be divided by the square of the multiplicative gain to refer it back to the shot noise generation.

Defining

$$
\begin{equation*}
\hat{P}_{N}=P_{N}+\frac{N_{0} / 2}{F_{\alpha}(e G)^{2}} \tag{3.16}
\end{equation*}
$$

The rate function may be rewritten

$$
\begin{equation*}
\lambda_{i}(t)=F \alpha\left[P_{S i}(t)+\hat{P}_{N}\right] \tag{3.17}
\end{equation*}
$$

and the estimate of the Bhattacharyya distance evaluated using Eq.(3.7).

$$
\begin{equation*}
B=\frac{F}{2} \int_{0}^{T} \alpha\left(\sqrt{P_{S o}(t)+\hat{P}_{N}}-\sqrt{P_{S 1}(t)+\hat{P}_{N}}\right)^{2} d t \tag{3.18}
\end{equation*}
$$

Modeling the shot and excess noise as an increase in the variance of the thermal Gaussian process

$$
\begin{align*}
& m_{i}(t)=e G \alpha\left(P_{S i}(t)+P_{N}\right) \tag{3.19}\\
& \sigma_{i}^{2}(t)=F(e G)_{a}^{2}\left(P_{S i}(t)+P_{N}\right)+N_{0} / 2
\end{align*}
$$

Again defining $\hat{\mathrm{P}}_{\mathrm{N}}$ as in Eq.(3.15)

$$
\begin{equation*}
\sigma_{i}^{2}(t)=F(e G)^{2} \alpha\left(P_{S i}(t)+\hat{P}_{N}\right) \tag{3.20}
\end{equation*}
$$

The Bhattacharyya distance is approximated using Eq.(3.11), the Bhattacharyya distance for Gaussian processes with time varying variance.

$$
\begin{equation*}
B=\frac{1}{2} \int_{0}^{T}\left[\frac{a\left[P_{S 0}(t)-P_{S 1}(t)\right]^{2}}{2 F\left[P_{S 0}(t)+P_{S 1}(t)+2 \hat{P}_{N}\right]}+l n\left[\frac{P_{S 0}(t)+P_{S 1}(t)+2 \hat{P}_{N}}{2 V\left(P_{S 0}(t)+\hat{P}_{N}\right]\left[P_{S 1}(t)+\hat{P}_{N}\right]}\right]\right] d t \tag{3.21}
\end{equation*}
$$

Once the Bhattacharyya distance between the received signal given one was sent and the signal given zero was sent has been calculated, the performance may be evaluated using the bounds provided by Eq.(3.2).

The received power waveforms given mark and space will usually be supplied by a propagation computer program as sampled waveforms. It is natural then to evaluate the integrals involving the received power in Eqs. (3.12), (3.13), (3.17), and (3.20) using a numerical integration technique. Since the received waveforms will usually be supplied as sample points rather than functional representations, one is limited to numerical integration techniques such as Simpson's rule or the trapazoid rule. The Appendix describes a FORTRAN computer program subroutine that calculates bounds on the probability of bit error based on the Bhattacharyya distance measure.

Twin Channel Receivers

Finally consider an optical communication receiver that employs two detectors, each monitoring a different frequency, polarization or spatial component of the received signal. Such a receiver will have two random processes available to it in making a decision. The processes, $x(t)$ and $y(t)$, will be statistically independent since the noise mechanisms between the detectors can be assumed to be independent.

$$
\begin{equation*}
P_{\underline{x}, \underline{y} \mid H_{i}}\left(\underline{x}, \underline{y} \mid H_{i}\right)=p_{\underline{x} \mid H_{i}}\left(\underline{x} \mid H_{i}\right) p_{\underline{y} \mid H_{i}}\left(\underline{y} \mid H_{i}\right) \tag{3.22}
\end{equation*}
$$

The Bhattacharyya distance is then

$$
\begin{align*}
& B=-\ell n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{P_{\underline{x}, \underline{y} \mid H_{0}}\left(\underline{x}, \underline{y} \mid H_{0}\right) P_{\underline{x}, \underline{y} \mid H_{1}}\left(\underline{x}, \underline{y} \mid H_{1}\right)} d \underline{x} d \underline{y} \\
& =-\ln \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\mathcal{P}_{\underline{x} \mid H_{0}}\left(\underline{x} \mid H_{0}\right) P_{\underline{y} \mid H_{0}}\left(\underline{y} \mid H_{0}\right) .\right. \\
& \left.p_{\underline{x} \mid H_{1}}\left(\underline{x} \mid H_{1}\right) p_{\underline{y} \mid H_{1}}\left(\underline{y} \mid H_{1}\right)\right]^{1 / 2} d \underline{x d y} \\
& B=-\ell n \int_{-\infty}^{\infty} \sqrt{p_{\underline{x}}\left|H_{0}\left(\underline{x} \mid H_{0}\right) \underline{p}_{\underline{x}}\right| H_{1}\left(\underline{x} \mid H_{1}\right)} d \underline{x}+ \tag{3.23}\\
& -\ln \int_{-\infty}^{\infty} \sqrt{P_{\underline{y}} \mid H_{0}}\left(\underline{y} \mid H_{0}\right) P_{\underline{y} / H_{1}}\left(\underline{y} \mid H_{1}\right) d y
\end{align*}
$$

Each term of the above expression may be evaluated using the single channel results. One is even able to consider the case where one detector is shot noise limited and the other thermal noise limited. The performance analysis for twin channel receivers will require four waveforms -- the power waveforms incident on each detector under both hypotheses of what was sent.

CHAPTER FOUR

SUMMARY

The bound on the probability of error provided by the Bhattacharyya distance is a general, yet relatively simple to evaluate, measure of the performance of optical communication systems. The Bhattacharyya distance is applicable to any intensity modulated digital signaling format: On-off, pulse position modulation or phase or frequency shifting of a sinusoidal intensity subcarrier. To the extent that the propagation analysis models the distortion of the waveforms during propagation, the Bhattacharyya distance measure will reflect performance degradation due to this. However, it should be noted that as developed here the Bhattacharyya distance is only applicable to the one shot communication problem. Thus, if the time dispersion becomes significant enough that intersymbol interference results, the Bhattacharyya distance will not account for the performance degradation.

The bench mark type performance measure that the bound provided by the Bhattacharyya distance supp?ies is appropriate for interfacing with a propagation analysis. By calculating upper and lower bounds on the probability of error assuming optimal processing, the Bhattacharyya distance provides a quick check on the performance that could be achieved as the receiver location, link geometry or atmospheric scattering parameters are changed. The receiver parameters are not that crictical, and will often be used to specify the general type of receiver one wishes to consider.

Finally, though the Bhattacharyya distance results for twin channel receivers were not explicitly implemented in computer code, at such time as propagation programs that adequately model the propagation of the various polarization or frequency components of the field become available, the extension of the computer code to twin channel receivers is straightforward.

APPENDIX

PROBABILITY OF ERROR SUBROUTINE

The subroutine ERROR is a FORTRAN program to calculate upper and lower bounds on the probability of bit error for any direct detection optical communication receiver for which the power waveform incident on the detector may be considered non-stochastic. The probability of error bounds are implemented by means of the Bhattacharyya distance measure.

The performance bounds are based on the received power waveforms given mark and space. Thus, the lower bound is the absolute best performance one might possibly achieve given the received signal set. The upper bound is the worst one will do assuming the receiver implements the optimal decison rule on the detector output.

The inputs are passed to the program in labeled common. The sampled received power waveform given mark and the received waveform given space as well as the number of sample points and the bit duration appear in the common WAVEFM. The number of samplepoints must be odd. The pertinent receiver parameters are passed in the common RCVR. Or it may be more convenient to insert the common blocks from the main program that contain the necessary information. The labeled common INTER passes data to the external Bhattacharyya distance functions.

The program returns as arguments the upper and lower bourids on the probability of bit error and a flag indicating whether the
performance is (1) shot noise limited, (2) thermal noise limited, or (3) a combination of stot and thermal noise. If the receiver noise is a combination of shot and thermal or excess noise, both the performance assuming a Poisson model and the performance assuming a Gaussian model are returned for user comparison.

The Bhattacharyya distance integrals are evaluated using Simpson's rule for integration. To the extent that the sample points adequately represent the waveform in a piece-wise sense, Simpson's rule is accurate enough.

Following is a flow chart and program listing of the subroutine ERROR.

Flow chart of subroutine ERROR

SUBROUTINE ERROR

45

Program listing of subroutine ERROR
c.
subroutine error(nflag,lobnd1, upbnd1, lobnd2, upbnd2)

CALCULATE PROBABILITY OF BIT ERROR

INPUTS:
pSO(i) - SAMPLED RCVD SIGNAL POWER
psi(i) - SAMPLED RCVD SIGNAL POWER WAVEFORM GIVEN MARK (W)
npts - NUMBER OF SAMPLED WAVEFORM POINTS. NPTS MUST BE ODD.
t - BIT TIME INTERVAL (S)
eta - DETECTCR QUANTUM EFFICIENCY
g - DETECTOR GAIN
f - EXCESS NOISE
lambda - OPTICAL WAVELENGTH (M)
enzero - BILATERAL SPECTRAL DENSITY OF THERMAL NOISE (J)
pback - BACKGROUND POWER (W)
pdark - EQV POWER THAT GIVES RISE TO DARK CURRENT (W)

RETURN:
upbnd 1 - SHOT NOISE LIMITED UPPER BOUND ON PROBABILITY OF ERROR
lobnd 1 - SHOT NOISE LIMITED LOWER BOUND ON PROBABILITY OF ERROR
upbnd2 - THERMAL NOISE LIMITED UPPER BOUND ON PROBABILITY OF ERROR
lobnd 2 - THERMAL NOISE LIMITED LOWER BOUND ON PROBABILITY OF ERROR
nflag - PERFORMANCE FLAG
1 - SHOT NOISE LIMITED
2 - THERMAL NOISE LIMITED
3 - COMBINATION OF SHOT AND THERMAL OR EXCESS NOISE

INTERNAL VARIABLES:
b - BHATTACHARAYYA DISTANCE
pnoise - EFFECTIVE NOISE POWER (W)
pave - AVERAGE RECEIVED POWER (W)
alpha - OPTICAL POWER TO AVERAGE PHOTON COUNTS
eg - PHOTON COUNTS TO CURRENT
common / wavefm / npts,t,ps0(1000),ps1(1000)
common / rcur / eta,g,f,enzero,pback,pdark,
lambda
common / inter / pnoise,alpha,eg,fnoise
continue
pave=0.5*pave/npts+pnoise
if (enzero/eg**2.gt.10.0*f*alpha*pave)
go to 40
EXCESS NOISE?
if (f.gt.1.0) go to 20
SHOT NOISE LIMITED?
if (alpha*pave.gt. 10.0*enzero/eg**2)
go to 30
c
20
nflag=3
pnoise=pnoise+enzero/(alpha*eg**2*f)
$\mathrm{b}=0.5^{*} \mathrm{f}$ *imp(func 1)
upbnd $1=0.5^{*} \exp (-b)$
lobnd $1=0.25^{*} \exp (-2.0 * b)$
$\mathrm{b}=0.5$ * $\operatorname{simp}($ func 3)
upbnd $2=1$). $5^{*} \exp (-b)$
lobnd2 $=0.25^{*} \exp \left(-2.0^{*} b\right)$
return
c
30
nflag= 1
$\mathrm{b}=0.5^{*} \operatorname{simp}$ (func 1)
upbnd $1=0.5 * \exp (-b)$
lobnd $1=0.25^{*} \exp \left(-2.0^{*} \mathrm{~b}\right)$
return
c
40 nflag=2
$\mathrm{b}=0.125$ (alpha*eg)**2*simp(func2)/enzero
upbnd $2=0.5^{*} \exp (-b)$
lobnd $2=0.25^{*} \exp \left(-2.0^{*} \mathrm{~b}\right)$
return
end
c.
c
c SIMPSONS RULE INTEGRATION OF
c
c
c POISSON PROCESS
entry func $1(i)$
func $=a^{*}(\operatorname{sqrt}(p 1(i)+p n)-s q r t(p 0(i)+p n)) * * 2$ return
C
c GAUSSIAN PROCESS entry func $2(i)$ func $=(\mathrm{p} 1(\mathrm{i})-\mathrm{p} 0(\mathrm{i})) * * 2$
return
c GAUSSIAN PROCESS - TIME VARYING VARIANCE entry func 3(i)
func $=a *(p 1(i)-p 0(i)) * * 2 /$
(2.0 . $\left.\mathrm{f}^{*}\left(\mathrm{p} 1(\mathrm{i})+\mathrm{p} 0(\mathrm{i})+2.0^{*} \mathrm{pn}\right)\right)+$
$\& \quad a \log \left(\left(\mathrm{p} 1(\mathrm{i})+\mathrm{po}(\mathrm{i})+2.0^{*} \mathrm{pn}\right) /\right.$
\& (2.0*sqrt((p1(i)+pn)*(p0(i)+pn))))
return
end

REFERENCES

1. M. King and S. Kainer, "Some Parameters of a Lasertype Beyond-thehorizon Communication Link," Proceedings IEEE, Vol. 53, No. 2, February 1965, pp. 137-141.
2. G. T. Ruck, "Feasibility of Non-line-of-sight Laser Communications," Battelle Memorial Institute, Report BAT-171-4, December 15, 1964.
3. E. S. Fishburne, M. E. Neer, and G. Sandri, "Voice Communication Via Scattered Ultraviolet Radiation," Aeronautical Research Associates of Princeton, Report No. 274, March 1976.
4. W. S. Ross, "An Investigation of Atmospheric Optical Scattered Non-1ine-of-sight Communication Links." Final Report US ARO contract DAAG29-77-c-0048, September 26, 1978.
5. R. M. Gagliardi and S. Karp, Optical Conmunication. New York: John Wiley and Sons, 1976.
6. S. D. Personik, "Statistics of a General Class of Avalanche Detectors with Application to Optical Communication," Beil System Technical Journal, Vol. 50, No. 10, December 1971, pp. 3075-3094.
7. R. S. Kennedy, "Communication through Optical Scattering Channels: An Introduction," Proc IEEE, VoI. 58, No. 10, October 1970, pp. 1651-1665.

8, 1. Rubin, "Regular Point Processes and Their Detection," IEEE Transactions on Information Theory, Vol. 18, No. 5, September 1972, pp. 547-557.
9. N. S. Kopeika and J. Bordogna, "Background Noise in Optical Communication Systems," Proc. IEEE, Vol. 58, No. 10, October 1970, pp. 1571-1577.
10. J. H. Shapiro, "Imaging and Optical Communication Through Atmospheric Turbulence," in Laser Beam Propagation Through the Atmosphere. Berlin: Springer-Verlag, 1978.
11. T. Kailath, "The Divergence and Bhattacharyya Distance Measures in Signal Selection," IEEE Transactions on Conmunication Technology, Vol. 15, No. 1, February 1967, pp. 52-60.
12. J. Wozencraft and I. Jacobs, Principles of Commication Engineering. New York: John Wiley and Sons, 1965.

[^0]: Sector 2 - Dara-Base Review and Mociel Formularion
 Subsection B - Sconario Characterizandon

[^1]: for characurtiong port scaser. The purpose of inciuching the inctor cos is is clearer in the contert of sumpe rellestors, 25 ilscussed ahead, in wheh. anse a rellectance

[^2]: (V) Xuch of the data arailable and presented in the foilowing discussion is express od in teras of the drectonal rerlectivity $F_{0}(\xi)$, winere

 $$
 F_{b}(\xi)=\sigma_{b}(\xi) \cos \xi=I_{b}(\xi) / P_{\text {lac }} .
 $$

 We prafor BRDF and use thenera becanse, as mentonod earilior, it is a constant incependert of scattering angie for a perfecty diffuse rellector and consequenty converdeat for programming.

