$A D-A 063124$ GAI CONSULTANTS INC MONROEVILLE PA F/6 13/2 NATIONAL DAM INSPECTION PROGRAM. LATROBE RESERVOIR NDI NUMBER P-EETC(U) JUN 78 B M MIHALCIN DACW31-78-C-0052
UNCLASSIFIED
NL

$=$		$\begin{gathered} \text { END } \\ \text { dant } \\ \text { ffution } \\ 3-79 \\ \text { Doc } \end{gathered}$

National Dam Inspecton Program

Latrobe Reservoir
Pennsylvania
Westmoreland County
Trout Run
16 May 1978 (visual inspection)

$$
\begin{aligned}
\text { Inspection Team - } & \text { GAI Consultants, Inc. } \\
& 570 \text { Beatty Road } \\
& \text { Monroeville, Pennsylvania } 15146
\end{aligned}
$$

Based on a visual inspection, past performance, and available engineering data, the dam and its appurtenances appear to be in very good condition. The structure was rebuilt in 1958 when the embankment was modified to increase the available storage. The initial embankment, which was constructed in 1920 now forms part of the upstream portion of the dam.

The project is capable of passing the PMF (recommended spillway design flood) without overtopping.

Runoff had become impounded on a bench at the midpoint of the structure because of poor drainage. It is recommended that the owner be required to provide positive drainage from all points on the bench so as to prevent the ponding of water on the downstream face.

It is also recommended that a formal warning system be developed in order to provide for the safe evacuation of downstream inhabitants, should the need arise.

The dam should also be inspected on a yearly basis by qualified personnel to ensure that conditions at the facility do not deteriorate.

GAI Consultants, Inc.
Approved:

Date: \qquad Date: $20 \mathrm{~J} / 78$

Overview Photograph of Latrobe Reservoir Taken from the Right Abutment.

TABLE OF CONTENTS

Page
SYNOPSIS i
OVERVIEW PHOTOGRAPH. iii
TABLE OF CONTENTS. iv
SECTION 1 - GENERAL INFORMATION. 1
1.0 Authority. 1
1.1 Purpose. 1
1.2 Description of Project 1
1.3 Pertinent Data 3
SECTION 2 - ENGINEERING DATA 6
2.1 Design 6
2.2 Construction Records 7
2.3 Operation. 7
2.4 Other Investigations 7
2.5 Evaluation 7
SECTION 3 - VISUAL INSPECTION. 8
3.1 Observations 8
3.2 Evaluation 9
SECTION 4 - OPERATIONAL PROCEDURES 10
4.1 Normal Operating Procedure 10
4.2 Maintenance of Dam 10
4.3 Maintenance of Operating Facilities 10
4.4 Warning Systems in Effect. 10
4.5 Evaluation 10
SECTION 5 - HYDROLOGIC/HYDRAULIC EVALUATION. 11
5.1 Design Data. 11
5.2 Experience Data. 11
5.3 Visual Observations 11
5.4 Overtopping Potential. 11
SECTION 6 - EVALUATION OF STRUCTURAL INTEGRITY 13
6.1 Visual Observations 13
6.2 Design and Construction Techniques 13
6.3 Past Performance 13
6.4 Seismic Stability 13
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES 14
7.1 Dam Assessment 14
7.2 Recommendations/Remedial Measures 14

APPENDIX A - CHECK LIST - ENGINEERING DATA
APPENDIX B - CHECK LIST - VISUAL INSPECTION
APPENDIX C - HYDRAULICS AND HYDROLOGY CALCULATIONS
APPENDIX D - PHOTOGRAPHS
APPENDIX E - GEOLOGY
APPENDIX F - FIGURES
APPENDIX G - REGIONAL VICINITY MAP

PHASE I INSPECTION REPORT
 NATIONAL DAM INSPECTION PROGRAM LATROBE RESERVOIR
 NDI\# PA-479, PENNDER\# 65-66

SECTION 1
GENERAL INFORMATION

1.0 Authority.

The Dam Inspection Act, Public Law 92-367 authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.

1.1 Purnosen

\longrightarrow The purpose is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

$$
A B S T R A C T
$$

a. Dam and Appurtenances. Latrobe Reservoir Dam (Trout Run Dam, as it is locally known), is an earthen embankment approximately 775 feet in length with a maximum height of 86 feet. A concrete chute spillway is located along the left end of the embankment. The spillway is a gravity type structure with an ogee-shaped crest and channel length of approximately 400 feet. A single 24 -inch cast iron supply line constitutes the outlet works. It originates and is gated at the reservoir tower and runs under the embankment exiting to the right of the downstream channel. At a point approximately 250 feet downstream a 24-inch blowoff is connected to the supply line. No walkway has been provided, thus the reservoir tower and equipment therein are accessible only by boat.
b. Location. Latrobe Reservoir is located approximately 4 miles southeast of Latrobe, Westmoreland County, pennsylvania. The reservoir dam is situated at the southern end of the reservoir approximately 5,000 feet from the confluence of Trout Run and Coalpit Run, near the intersection of U. S. Routes 30 and 259. The dam, reservoir, and watershed are contained within the Derry and Wilpen 7.5 minute quadrangles. The coordinates of the dam are $\mathrm{N} 40^{\circ} 16^{\prime} 28^{\prime \prime}$, W79${ }^{\circ}$, $16^{\prime} 17^{\prime \prime}$.
c. Size Classification. Intermediate (86 feet high, 3,650 acre-feet storage capacity at spillway crest).
d. Hazard Classification. High (see Section 3.1.c).
e. Ownership. Municipal Authority of the Borough of Latrobe.
f. Purpose of Dam. The dam serves as a storage reservoir for the water supply system of the Borough of Latrobe. Recreational use is prohibited.
g. Historical Data. The original facility was designed and constructed by J. G. White Engineering Corporation of New York, New York, and completed in 1920. Designed to serve as a storage reservoir for the water supply system of the Borough of Latrobe, it has been owned and operated since construction by the Municipal Authority of the Borough of Latrobe. The original dam was an earth embankment 51 feet high, 580 feet long, with a reservoir capacity of 360 million gallons and it was equipped with a concrete spillway having a capacity of 2,900 cfs.

Inspection reports compiled every two years by the Pennsylvania Water Commission indicated a plethora of minor problems at the original facility between 1920 and 1958.

As early as May 1920, seepage was detected at several locations along the downstream slope confirming the fears of inspecting engineers and causing much concern to the local citizenry. Although the Pennsylvania Water Commission was convinced at this time that the structure was unsafe, there was disagreement as to the nature of the leakage.

Nevertheless, in December 1920, it was recommended that the structure be strengthened by superimposing a drained earthfill upon the downstream part of the dam. Repairs were instituted the following year. Additional repairs to the spillway were made during the following years.

The firm of Gannett, Fleming, Corddry, and Carpenter, Inc., of Harrisburg, Pennsylvania, was retained in 1958 to prepare plans for upgrading the facility. Included in their design were an extensive grouting program; a plan to increase the dam height by 35 feet to elevation 1256; demolishing, removing, and replacing the old spillway; and modifying the control tower. Construction ensued and the old Latrobe Reservoir Dam currently forms the upstream toe of the "new" structure (see Figure 3 in Appendix E).

PennDER inspection reports compiled for the present facility in 1966 and again in 1971 indicate that the structure was in a good condition.

1.3 Pertinent Data.

a. Drainage Area. 5.66 square miles.
b. Discharge at Dam Site. According to Ed McClellam, Trout Run Dam superintendent for the past 30 years, discharge records are not kept at this facility. However, he recalls that the highest level, achieved during his years as superintendent, was approximately 3 feet at the spillway crest in June 1972.

The capacity of the outlet works at maximum pool level (elevation 1256) are as follows:

24-inch cast iron outlet pipe - 75 cfs.
Spillway - 8,400 cfs.
c. Elevation (feet above mean sea level). Top of Dam - 1256 .

Maximum Pool Design Surcharge - Not known.
Maximum Pool of Record - 1243 (verbal).
Normal Pool (spillway crest) - 1240.
Upstream Portal Invert Outlet Conduit - 1169.
Downstream Portal Invert Outlet Conduit - 1168.
Streambed at Center Line of Dam - 1168.
Maximum Tailwater - Not known.
d. Reservoir.
1256).

Length of Maximum Pool $\simeq 1.3$ miles (elevation
1240).

Length of Normal Pool - 1.2 miles (elevation
e. Storage (acre-feet).

Spillway Crest - 3650 .
Top of Dam - 6250 .
Design Surcharge - Not known.
f. Reservoir Surface (acres).

Top of Dam $\simeq 160$.
Maximum Pool - Maximum design pool not known.
Spillway Crest $\simeq 125$.
g. Dam.

Type - Rolled earthfill.
Length - 600 feet.
Height - 86 feet maximum.
Top Width - 20 feet.
$\begin{aligned} \text { Side Slopes - } & \text { Lower Downstream 3H:1V } \\ & \text { Upper Downstream 2.5H:1V } \\ & \text { Upstream } 2.5 \mathrm{H}: 1 \mathrm{~V}\end{aligned}$
zoning - Compacted impervious selected mixture of clay, sand, and gravel increasing in permeability toward outer slopes, with riprap on upstream face, and rock toe downstream. A sand and gravel filter blanket is provided within and beneath the embankment (see Figure 3).

Impervious Core - Not applicable.
Cutoff - A cutoff trench located at the downstream toe of the original embankment was carried an average depth of 15 feet below the toe for the entire length of the dam and into both abutments.

Grout Curtain - A grouting program was carried out as part of the latest construction in 1958. Grout holes (approximately 60 feet deep) were drilled along the embankment centerline and extend approximately 60 feet beyond the embankment--abutment contacts. The best record available on the grout program is contained in the construction progress reports that were compiled every two weeks during construction in 1959 by Gannett, Fleming, Corddry, and Carpenter, Inc.
h. Outlet Conduit.

Type - 24-inch cast iron supply pipe serving the Borough of Latrobe has its inlet at reservoir intake tower. Approximately 250 feet downstream, the pipe is connected to a valved 24 -inch cast iron blow-off.

Closure - Sluice gates are controlled in the gate house.

Access - Intake tower accessible only by boat; inlet submerged.

Regulating Facilities - Can be regulated in the gate house and at gate valve 250 feet downstream.
i. Spillway.

Type - Concrete channel with ogee-crested weir.
Weir Length - 35 feet.
Channel Length $\simeq 400$ feet.
Crest Elevation - 1240.
Upstream Channel - Curved natural rockbed channel approximately 100 feec in length.

Downstream Channel - Approximate 15 percent slope at top that steepens as it reaches a stilling basin which is 42 feet wide, 60 feet long, and 6.5 feet deep.
j. Regulating Outlets. None in spillway. Low flow can be controlled through blow-off line.

SECTION 2
 ENGINEERING DATA

2.1 Design.

a. Design Data Availability and Sources.

1. Hydrology and Hydraulics. No design reports are available.
2. Embankment. A copy of the specifications used during the 1958 reconstruction of the structure and the design drawings are available from both the owner and Pennder files.
3. Appurtenant Structures. Same as 2 (above).
b. Design Features.
4. Embankment. Available contract documents and historical data indicate that the present Latrobe Reservoir Embankment was constructed of rolled earthfill. The original embankment which was constructed in 1920 was incorporated into the current structure and currently functions as a part of the upstream portion of the dam (see Figure 3). Contract documents indicate that a cutoff trench was excavated to rock and that a concrete cutoff wall and grout curtain were constructed beneath the present structure.

The upstream face of the dam is at a slope of 2.5 H to 1 V and is faced with 9 inches of gravel covered by a well graded durable sandstone riprap. The downstream face of the structure lies at a slope of 3 H to 1 V and is mantled with crown vetch. Near the midpoint of the downstream face, a 10 -foot wide berm was constructed to direct flow into lined diversion ditches on the embankment-natural slope interface. The dam is provided with a rock toe which drains a sand and gravel filter blanket contained within and beneath the embankment.

2. Appurtenant Structures.

a) Spillway. The primary discharge is a reinforced concrete ogee spillway located adjacent to the left abutment (see Photographs 2 and 6).

The ogee spillway foundation is keyed into rock on the left abutment and is shown on the attached Figure 4.
b) 24-Inch Supply Pipe. A 24-inch cast iron supply pipe, encased in concrete within the new structure, passes beneath the dam to a point a few hundred feet downstream. A valve box is located at this point which serves to utilize the supply line as a blow-off pipe enabling the water authority to discharge water into the downstream drainage system (see Photograph 5).
c) Gate House. The original gate house was modified in 1958 in order to raise the structure and permit the drawing of water through four gates located at different elevations within the reservoir. The gates discharge water directly into the 24 -inch supply line. Details of the modifications of the gate house are shown on Figure 5.

2.2 Construction Records.

Progress reports are available for both the original and the modified embankments. The latter reports were issued to PennDER and document the progress made on a monthly basis. These data are available in PennDER files.

2.3 Operational Records.

No operational records are available.

2.4 Other Investigations.

Several State inspection reports are available from PennDER files, however, the majority document problems and conditions at the original structure. Two post construction reports concerning the new structure are available from PennDER files and are dated 1964 and 1971.

2.5 Evaluation.

The information available is considered sufficient to make an accurate assessment of the structure.

SECTION 3
VISUAL INSPECTION

3.1 Observations.

a. General. The general appearance of the structure and the related appurtenances suggests that the dam was well engineered, is well maintained, and is in satisfactory condition.
b. Embankment. The upstream slope of the dam is mantled with a well graded, durable, sandstone which was apparently dumped in place. The downstream dam slope is thickly vegetated (crown vetch) and is provided with a system of concrete and/or stone-lined diversion ditches which discharge at the rock toe. No indications of seepage through the embankment slope were observed during the field investigation. There were no indications of lush vegetation on the downstream face nor did we note any flora which is selective for damp or swampy environs. Some water was noted seeping through the rock outcrop just above the bench level on the right abutment which discharges some flow into the diversion ditch. It is possible that the flow is not related to impoundment levels as other springs were noted through similar rock strata above the impoundment level on the left abutment.

C. . Appurtenant Structures.

1. Spillway. The spillway, spillway abutments, discharge channel, and plunge pool all appeared to be in excellent condition, except for some minor temperature and/or shrinkage cracking.
2. Gate House, Valves, and Supply Line. Access to the gate house is by boat, which was not available during our inspection, consequently, we were not able to assess condition of the mechanical systems within the gate house. According to a representative of the Water Authority the system is in good working order. The downstream gate valve which regulates flow from the supply line to a 24 -inch blowoff line was observed (see Photograph 5). The valve is located in a concrete pit approximately 250 feet downstream of the dam. The valve was greased and appeared in good order.
3. Reservoir Area. The slopes adjoining the reservoir were moderate to steep and densely wooded. No signs of slope distress were observed with the exception of a portion of a road fill on the northeast side of the reservoir (see Photograph 7). A portion of the raised
and/or relocated county road in this area has slumped into the reservoir. However, since the total slumped volume of fill at this point is small, this condition is not considered to be serious.
4. Downstream Channel. The area immediately downstream of the dam is characterized as a broad ($\simeq 600$ feet wide) thinly vegetated valley containing Trout Run. The stream passes beneath a two-lane bridge approximately 4,000 feet downstream of the dam before emptying into c'oalpit Run a first order tributary of Loyalhanna Creek.

3.2 Evaluation.

As shown on the Regional Vicinity Map (Appendix G) approximately six (6) homes located along Trout Run just downstream of the dam would be inundated if the dam were to fail. Consequently, the hazard classification is high.

4.1 Normal Operational Procedure.

According to water company personnel, there are no established operational procedures at the facility. Excess inflow passes over the spillway and discharges into the Trout Run channel. The only other outlet serving the structure is a 24 -inch supply line which is used to convey water to the Borough of Latrobe. This outlet can be readily regulated to pass water through a 24 -inch blow-off pipe directly into the Trout Run channel.

4.2 Maintenance of Dam.

The dam crest is periodically mowed by water company personnel. The downstream slope is covered with crown vetch and is reportedly cleared of brush yearly.

4.3 Maintenance of Operating Facilities.

The water company superintendent stated that the valves are lubricated yearly and that the blow-off is opened every few years to insure that it is operating properly.

4.4 Warning Systems.

There are no formal warning systems in effect.

4.5 Evaluation.

The overall appearance of the structure suggests that it is well maintained.

SECTION 5
 HYDROLOGIC/HYDRAULIC EVALUATION

5.1 Design Data.

No hydrologic or hydraulic design data was available. This information was reportedly destroyed while in starage at Harrisburg, Pennsylvania, during the flood of June 1972.

5.2 Experience Data.

No data pertinent to spillway evaluation are available from past performance.

5.3 Visual Observations

The dam and its appurtenances appeared to be in very satisfactory condition.

5.4 Overtopping Potential and Spillway Adequacy.

The ratio "PMF Peak Flow/Drainage Area" was determined from an empirical curve supplied by the Corps of Engineers, Baltimore District. The curve used was the Ohio River Basin Curve (see calculations in Appendix C). Based on this curve and a drainage area of 5.66 square miles, Peak PMF Q/A $=$ $1,680 \mathrm{cfs} / \mathrm{sq}$. mi., and Peak PMF $Q=9,509$ cfs. The size category is "intermediate" and the hazard rating "high". Consequently, the SDF is the PMF ("Recommended Guidelines for the Inspection of Dam").

Calculations were performed to evaluate the overtopping potential using spillway and blow-off line capacities during the PMF.

Based on this curve, the inflow volume calculated for the design storm is equal to 16,112 acre-feet. This corresponds to an overconservative estimate of runoff and, as a consequence, an inflow volume based on 26 inches of runoff, that is 7,849 acre-feet, was used in subsequent calculations.

The spillway has a maximum discharge capacity equivalent to 8,400 cfs. This coupled with the maximum discharge capacity of the outlet works ($\because 75 \mathrm{cfs}$) yields a total maximum discharge capacity approximately equal to 8,475 cfs. A comparison of peak inflow to the maximum discharge shows that some storage volume is required.

Based on normal pool elevation 1240 and top of dam elevation 1256, the available storage is found to be 2,240 acre-feet which is greater than the volume of storage required of 863 acre-feet. Consequently, the embankment would not be overtopped during the PMF and the spillway capacity is considered adequate (see Appendix C).

SECTION 6
EVALUATION OF STRUCTURAL INTEGRITY

6.1 Visual Observations.

a. Embankment. Based on visual observations, the embankment appeared to be in excellent condition. Aside from a small amount of runoff, which was ponded on a bench at the downstream embankment midpoint, the drainage system seemed to be in good order.
b. Appurtenant Structures. Based on the visual inspection, the spillway structure appeared to be in excellent condition.

6.2 Design and Construction Techniques.

a. Embankment. Specifications and construction drawings indicate the the embankment is well engineered. Favorable embankment slopes, a substantial grouting program, a layered blanket drain, rock toe, and lined diversion ditches suggest adequate stability and safety features.
b. Appurtenant Structures. Specifications and construction drawings also indicate well designed outlet and discharge facilities. The spillway is keyed into rock, anchored, drained and of adequate capacity. The outlet pipe is encased in concrete through the new embankment and can be controlled from the upstream end.

6.3 Past Performance.

No formal records of past performance were available. The Agnes flood of 1972 which was reportedly passed with a 3-foot spillway level did no apparent damage.

6.4 Seismic Stability.

The dam is located in Seismic Zone No. 1 and is thus subject to minor earthquake induced forces. Since the embankment is broad-based, well drained, and constructed of residual soils it is believed that the static stability is sufficient to withstand minor earthquake induced dynamic forces. However, no calculations or investigations, etc., were performed to confirm this belief.

SECTION 7
ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety. The visual inspection and operational history of the dam since its reconstruction in 1958 indicate that the structure is in very good condition. Review of available engineering data indicate that the structure and its appurtenances were designed and constructed in accordance with accepted engineering practice. The only deficiency noted at the time of inspection was that runoff had become impounded on the downstream face of the dam because of poor drainage on the bench located about midway between the toe and dam crest. A design deficiency (in retrospect) is the lack of instrumentation (settlement monitors, piezometers, etc.) that would have been prudent during the time of initial fillup.

The hydraulic and hydrologic procedures adopted for our analysis indicate that the spillway will pass and/or contain the PMF.
b. Adequacy of Information. Although most of the files pertaining to the design of this dam were lost during the flood of June 1972, contract specifications and drawings were available for review. These are considered sufficient to make a reasonable assessment of the adequacy of the facility.
c. Urgency. It is suggested that the remedial measures listed below be implemented as soon as practical.
d. Necessity for Additional Investigations. Because of the good overall appearance of the structure, additional investigations are not deemed necessary at this time.

7.2 Recommendations/Remedial Measures.

a. It is recommended that remedial measures be implemented to provide positive drainage on the bench so as to prevent runoff from accumulating on the downstream dam face.
b. It is recommended that a formal warning system be implemented to protect the inhabitants residing on the floodplain immediately downstream of the dam.
c. It is recommended that the dam be inspected on a yearly basis to check for changed conditions.

APPENDIX A

CHECK LIST - ENGINEERING DATA

CHECK LIST	
ENGINEERING DATA	NAME OF DAM Latrobe Reservoir - Locally
dnown as "Trout Run Reservoi,	
DESIGN,CONSTRUCTION, OPERATJON PHASE I	

REMARKS

HLUC ONIYGGNISNG PHASE I
ITEM REMARKS
AS-BUILT DRAWINGS

Available from owner as well as PennDER files - These drawings only cover the reconstruction
which took place in 1958 .

REGIONAL VICINITY MAP
See Section F of the report. and pennien.
TYPICAL SECTIONS OF DAM
Drawing 7 - Typical Sections and Details
OUTLETS - PLAN Drawing 11 - Tower and Conduit Details, Supply Line Blow-off.

- discharge ratings None
Rainfall records from 1956 to present along with reservoir levels from 1909 to present are available at Latrobe Reservoir pump house.

Note: Many of the reports and much of the data for this project were destroyed by che flood to Gannett, Fleming, ng ,

REMARKS

OPERATING EQUIPMENT
Drawings 9, 10, and 11 - Tower and Conduit Details.
Manufacturer's Shop Drawings - Not available.

CHECK LIST ID \# | NDI\# PA-479 |
| :---: |
| PEnnDER\# 65-66 |

HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: 5.66 square miles.
ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 1240.
ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): 1256.
ELEVATION MAXIMUM DESIGN POOL: Not known.
ELEVATION TOP DAM: 1256.

SPILLWAY DATA:

a. Crest Elevation 1240 .
b. Type Concrete ogee.
c. Weir Length 35
d. Channel Length $\simeq 400$ feet.
e. Location Spillover Left abutment.
f. Number and Type of Gates None.

OUTLET WORKS:

a. Type One 24-inch supply pipe with 24-inch blow-off.
b. Location see below.
c. Entrance Inverts elevation 1169 - Located beneath tower.
d. Exit Inverts elevation 1168 - Located approx. 250 feet downstream.
e. Emergency Draindown Facilities 24-inch blow-off.

HYDROMLTEOROLOGICAL GAGES:
a. Type Raingage, staff gage.
b. Location Latrobe Pump Station, Latrobe Reservoir Tower.
c. Records Rainfall post 1956; water level post 1090; located at pump house.
MAXIMUM NON-DAMAGING DISCHARGE: Not known.

APPENDIX B
CHECK LIST - VISUAL INSPECTION
CHECK LIST VISUAL INSPECTION PHASE 1

品
关
O
总

Sheet 1 REMARKS OR RECOMMENDATIONS

[^0]EMBANKMENT ID \# Pa-479 SheET 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS

EMERGENCY GATE Inaccessible to inspection crew.
OUTLET WORKS ID \# Pa-479 SHEET 3
OBSERVATIONS REMARKS OR RECOMMENDATIONS
0

SHEET 6

| VISUAL EXAMINATION OF | OBSERVATIONS | REMARKS OR RECOMMENDATIONS |
| :--- | :--- | :--- | :--- |
| SLOPES | | |
| | Gentle to moderate. Mostly wooded around reservoir. Steep (l:l) slope on | |
| | relocated road embankment(probably rockfill from adjacent cut). Small slide | |

REMARKS OR RECOMMENDATIONS
around reservoir. Steep (1:1) slope on
ockfill from adjacent cut).
ID \# Pa-479

APPENDIX C
HYDRAULICS AND HYDROLOGY
suaver DAM SAEETY Inspection - LATROBE RESFRVOIR.
KHK DATE 5/17/78 PROJ.No. 78-501-479

CHKD. BY $D: 13$ dATE 5-22-78 SHEET NO. \qquad 1 of \qquad
 CONSULTANTS, INC. Environmental Specialists

Latrobe Reservoir nds*PA 479

Dam statistics
MAXIMUM HEIGHT OF DAM $=86 \mathrm{Ft}$.
Drainage area (planimeters)) 5.50 sa.miles u.s.c.s map.
DRAINAGE AREA (from REF 2) $=5.66$ SQ. MILES

Storage capacity
a NORMAL POOL

$$
=3650 \text { Acre - feEt }
$$ (RE FR:)

size Classification.

$$
\left.\begin{array}{rl}
\text { DAM SIZE }=\text { INTERMEDIATE. } \quad & (\text { SEE TABLE } 1) \\
\text { REF. } 1
\end{array}\right)
$$

SPILLWAY DESIGN FLOW (SDF)

$$
\text { Hazard Rating }=\text { High }
$$

Possible loss of hire is greaterttan 3
RefeRences:
1: "RECOMMENDED GUIDELINES FOR SAFETY inspection of DAms" by DEPT. OF ARMY - OFFICE OF CHIEF ENGINER-APPENDIX D.
2: Location \& drainage area, Reservoir map drawing no 2788 SHEET 2 By GANNETS FLEminG CORDQRY \& CARPENTER ING 6/i2/1958 Dam Safety Inspection -Latrobe Reservoir

KHZ
\qquad
\qquad Chko. by DLB DATE $\frac{5-22-18}{}$ sheer no. 2 of 11 date $5 / 17 / 78$ PRos. no. 78-501-479 \qquad CONSULTANTS, INC. Engineers - Geologists - Planners Environmental Specialists

REQUIRED SD $=$ PIAF
(SEE Table 3, REF 1)
USE MF FOR SDF

$$
\begin{aligned}
& \text { DRAINAGE AREA }=5.66 \text { SQ. MILES (SheET 1) } \\
& \text { MF (PEAK FLOW)/AREA }=1680 \text { (SHEET } 10 \text { OF //) } \\
& \text { MF }=1680 \times 5.66=9509 \text { CFS. } \\
& \text { PDF }=9509 \text { CPS. }
\end{aligned}
$$

DEVELOP INFLOW HyDROGRAPH
Maximum Inflow $=9509$ CF. S
TO TL TIME OF FLOW $=41$ HRS. (FROM SHEET II OF II)

THIS PAGE IS BEST QUALITY PRACTICABLE

BY \qquad
$7-5-78$

PROJ.NO. \qquad 78-501-479 CHKD.BY JPN
\qquad DATE \qquad

SHEET NO. \qquad 3 of \qquad
\square
CONSULTANTS, INC.
Engineers - Geologists - Planners Environmental Specialists

Volume of Inflow hydrograph

$$
\begin{aligned}
V & =1 / 2\left(Q_{\text {Imax }}\right)\left(T_{I M E}\right) \\
& =1 / 2(9509 \mathrm{CFS})(41 \mathrm{HFS})(3600 \mathrm{SEC} / \mathrm{HR})(1 \text { ACRE } / 43,560 \mathrm{FT}) \\
& =16,110 \text { ACRE }- \text { FEET }
\end{aligned}
$$

Determine the average rainfall in inches required to produce THE VOLUME ABOVE

$$
\frac{(16,110 \text { AC -FT })}{(5.66 \text { SQ.MI. })}(1 \text { SQ.MI./640ACRES })(12 \mathrm{IN} / F T) \quad=53.4 \mathrm{INCHES}
$$

VOLUMES PRODUCED BY RAINFALLS IN EXCESS OF 26 incHes ARE TO BE RECALCULATED USING 26 INCHES AS AN UPPER ROUND
$(26$ INCHES $)(5.66 \mathrm{SQ} . \mathrm{Mi})(640$ ACRES $/ 5 Q . \mathrm{Mi})(\mathrm{IFT} / 12 . N)=7849 \mathrm{AC} \cdot \mathrm{FT}$ Volume of Inflow (Recalculated)

$$
=7849 \mathrm{AC}-\mathrm{FT}
$$

Note: Qimax Remains constant
STORM DURATION DECREASES IN ACCORDANCE WITH THE DECREASE IN INFLOW VOLUME

$$
\begin{array}{r}
\text { STORM DURATION }=(7849 \mathrm{AC} \cdot \mathrm{FT})(2)(43,560 \mathrm{FT} / \mathrm{AC}) /(3600 \mathrm{SEC} / \mathrm{HR})(9509 \mathrm{CFS})= \\
=20 \mathrm{HRS}
\end{array}
$$

subject DaM Safety Inspection - Latrobe Reservoir

$$
B Y
$$

\qquad KHZ date \qquad $5 / 17 / 78$ PROJ. no. 78-501-479 \square CONSULTANTS, INC. chkd.by DLE DATE 5-22-78

SHEET NO. \qquad 4 of \qquad

Spillway capacity

SPILLWAY CREST ELEVATION $=1240 \mathrm{FT}$. REF 2
head above Spillway crest $=16 \mathrm{FT}$

$$
\begin{aligned}
& Q=C L H_{t}^{3 / 2} \cdots(E Q \cdot 21-121, \text { REF } 3 \text {) } \\
& H_{t}=16 \mathrm{FT} \quad \text { (NEGLECTING VELOCITY HEAD) }=H_{B} \\
& L=35 . \mathrm{FT} .
\end{aligned}
$$

REF 3: "Standard hand blok for civil engineers's by MErritt.
subject DAM Safety Inspection Latrobe Resfriveir

$$
\text { KHK date 5/17/78 proa no. } 78-501-479
$$

chko.by ID LB date sor-zz-78 sheena. 5 of - 11
FRom FiG. 21-67 REF. 3

$$
\begin{aligned}
& P / H_{D}=\frac{5}{16}=.3125 \\
& \therefore C=3.75 \\
& Q=3.75 \times 35 \times(16)^{3 / 2}=8400 \text { CHS }
\end{aligned}
$$

CONSIDER DISCHARGE THROUGH $24^{\prime \prime}$ blow off PIPE

invert elevation 1167.0 (Drawing h-4499-1 By J.G. white Eneimetima Copopanion)
LENGTH OF PIPE $=765$ ft (DRAWING 2788 SHEETs REF 2)
HEAD OVER INVERT $=1240-1167=73 \mathrm{FT}$.
USE BERNOULLI's Equation.

$$
z_{1}+\frac{p_{1}}{w}+\frac{V_{1}^{2}}{2 g}=z_{2}+\frac{P_{2}}{w}+\frac{V_{2}^{2}}{29}+h_{f} \cdots \underset{R \in F 3}{ } \cdots Q_{21-12}
$$

where
z_{1} : helant of Inlet above datum $=0$
$z_{2}=$ Helah Of OUTLET, $=0$
$P_{1} / w=$ PRESSURE HEAD AT INLET. $=72.0$ FT.
subject Dam Safety Inspection - Latrobe Reservoir
\qquad
KHZ
date $5 / 18 / 78$
PRoc. .o. 78-501-479
 CONSULTANTS, INC.
CHKD.BY $\because C E$
DATE 5-22-78
SHEET NO. 6 \qquad Engineers - Geologists - Planners Environmental Specialists

$$
\begin{aligned}
& P_{2} / \omega=\text { Pressure head at outlet }=0 \\
& V_{1}=V_{\text {vELOCITY }} \text { at inLET }=0 \\
& V_{2}=\text { Velocity at outlet. =? SOLVE FOR. } \\
& h_{f}=\text { HEAD LOSSES DUE TO FRICTION } \\
& h_{f}=\frac{L V^{2}}{2 g D} \quad D_{A R C Y}-\text { WEISBACH FORMULA EQ-21-30 }
\end{aligned}
$$

WHERE $L=$ LENGTH OF PIPE $=765$ FT (SAEET 5)
$V=$ VELOCITY $=$ SOLVE FOR
$D=$ DIAMETER OF PIPE $=2.0 \mathrm{FT}$
$g=32.2 \mathrm{FT} / \mathrm{SEC} \mathrm{C}^{2}$
$f=.017$ For $f=.00085\binom{$ CAST IRON PIPE }{ TABLE $21-3}:$ TABLE $21-3$
REF 3

$$
\begin{gathered}
f / D=.00042 \\
\text { RAYNOLDS NUMBER }=3.5 \times 10^{7}
\end{gathered}
$$

Entrance Losses $=h_{e}=K_{E} \frac{V^{2}}{2 g}$ EQ. (21-42) REF 3

$$
\begin{aligned}
K_{E} & =\text { COEFFICIENT OF ENTRANCE LOSSES } \\
& =.50 \text { TABLE } 21 \rightarrow 7 \text { REF } 3
\end{aligned}
$$

Solve Bernoulli.s Equation.

$$
0+72+0=0+0+\frac{v_{2}{ }^{2}}{2(32.2)}+\frac{0017(765) v_{2}{ }^{2}}{2(32.2)(2)}+\frac{50 v_{2}{ }^{2}}{2(32.2}
$$

\qquad DaM Safety Inspection - Latrobe Reservoir Br \qquad KHZ date $5 / 18 / 78$ PRos. No. 78-501-479 \square CONSULTANTS, INC. CHKD.BY $T \angle B$ DATE $5-22-78$ SHEET NO. \qquad 7 \qquad Environmental Specialists

$$
\begin{aligned}
72 & =0.016 v_{2}^{2}+0.101 v_{2}^{2}+.008 v_{2}^{2} \\
V & =24.0 \mathrm{FT} / \mathrm{SEC} .
\end{aligned}
$$

$$
Q=\frac{\pi}{4}\left(D^{2}\right) \times V=75.40 \mathrm{cFS} .
$$

Maximum Discharge $T_{\text {through spillway }}=8400$ cps

$$
\begin{aligned}
\text { Maximum discharce } \because \quad \text { PIPE } & =75 . \mathrm{CFS} . \\
\text { TOTAL OUTFLOW } & =8475 \mathrm{cFS}
\end{aligned}
$$

Note: It is assumed the blow-ofe will be opened prior to WHEN MAXIMUM SPILLWAY DISCHARGE OCCURS AND WILL REMAIN OPENED DURING THE ENTIRE DISCHARGE PERIOD

$$
\text { MAXIMUM INFLOW (} 9509 \mathrm{CFS} \text {) }>\text { MAXIMUM OUTFLOW (} 8475 \mathrm{CFS} \text {) }
$$

subject Dam Safety Inspection

CONSULTANTS, INC.

Consider inflow relative to coth outflow and storage
Using short cut method as recommended by NAD

$$
P=\frac{\text { MAXIMUM TOTAL DISCHARGE }}{\text { PMF PEAK INFLOW }}=\frac{8475}{9509} \quad \begin{aligned}
& \text { (SHEET 7) } \\
& (\text { SHEET } 2)
\end{aligned}
$$

$$
P=0.89
$$

THIS PAGE IS BEST QUALITY PRACTICABLE
from copy furnished to die

$$
(1-P)=\frac{\text { REquIRED RESELVOIR STORAGE }}{\text { VOLUME OF INFLOW HYDROGRAPH }}=0.11
$$

VOLUME OF INFLOW HYDROGRAPH $=7849 \mathrm{AC}$-FT (SHEET 3)
$\therefore \quad(16112 A C-F T)(0.11)=863$ ACRE-FT

Required Reservoir Storage $=863$ acre-ft

Compute Storage Available

* Reservoir surface Area at el $1240 \simeq 120$ acres RESERVIR SURFACE AREA AT EL $1252 \approx 160$ ACRES
* notes: areas have been planimetered from drwg*2 by GANNET, FLEMING, CORDORY \& CARPENTER

CONSULTANTS, INC.

Available Freeboard $(1256-1240)=16 \mathrm{Ft}$

$$
\text { Storage Available } \simeq\left[\frac{(160+120) \text { hires }}{2}\right] \quad(16 F T)=2240 \mathrm{AC}-\mathrm{FT}
$$

Storage Available > Storage Required

$$
2240 \mathrm{AC-FT}>863 \mathrm{AC}-\mathrm{FT}
$$

Conclusion: Latrobe Pieservoir will be able to CONTAIN AND OR PASS THE MF PEAK INFLOW WITHOUT OVERTOPPING

APPENDIX D
PHOTOGRAPHS

PHOTOGRAPH 1 View looking across the crest of the Latrobe Reservoir embankment taken from the right abutment. The spillway is located in the background. A field team member is shown near the center of the embankment as scale.

PHOTOGRAPH 2 View taken from a few hundred feet downstream of the Latrobe Reservoir embankment showing the spillway on the right and the rock toe near the center of the photograph.

PHOTOGRAPH 3 View looking downstream from the crest of the Latrobe Reservoir embankment.

PHOTOGRAPH 4 View of the upstream face of the Latrobe Reservoir embankment. The gate house can be seen near the right center of the photograph.

PHOTOGRAPH 5 View of the valve on the 24-inch blow-off pipe located approximately 250 feet downstream of the center of the embankment.

PHOTOGRAPH 6 View of the spillway at the Latrobe Reservoir. Note the riprap in the channel just downstream of the spillway.

PHOTOGRAPH 7 View of the upstream portion of the Latrobe Reservoir near the northeast end. A portion of a road passing around the reservoir has slumped into the reservoir as shown on the photograph. Roadway is not pictured.

PHOTOGRAPH 8 View of a two-lane bridge located approximately one-half mile downstream of the embankment. It represents the first restriction downstream.

APPENDIX E
GEOLOGY

The Latrobe Reservoir Dam is located approximately midway between the Chestnut Ridge Anticline and Ligonier Syncline in the Pennsylvanian age sedimentary rocks of the Conemaugh Formation. The unit is best characterized as a cyclic sequence of shales, siltstones, and sandstones containing a few limestone beds and coal seams. These strata dip to the southwest at about 5° in the area of the Latrobe Reservoir.

APPENDIX \mathbf{F}
FIGURES

APPENDIX F - FIGURES

Figure	Description/Title
1	Location, Drainage Area, Reservoir Maps
2	General Plan of Embankment
3	Embankment Section and Details
4	Grouting and Drainage Details
5	Extension of Existing Tower I
6	Tower and Conduit Details, Supply Line Blow-off

THIS PAGE IS BEST G

THIS PAGE IS BEST QUALITY PRACTICABLS

THIS PAGE IS BEST QUAUITY PRACTICABLE

THIS PAGE IS IBEST QUALITY PRACTICABLE HENOM COPY FUYNISHED TO DDC
4.115 $\%$ \qquad

G \& OF CUT-OFF TRENCH

nenuen

Z.L

THIS PAGE IS BE ST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDS

FIGURE 5
2

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE. FROM COPY FURNISHED TO DDC

ELC NALL OKTAL

APPENDIX G

REGIONAL VICINITY MAP

[^0]: RIPRAP FAIFURES
 Rup None observed
 Well-graded, durable riprap; 2 to 3 ft. maximum particle size.

