

PARAMETRIC ANTENNA ANALYSIS SOFTWARE PACKAGE
Computer Program Documentation and User Manuals
Robert J. Hancock John R. Frickr

Vanderbilt University
1.

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss' Air Force Base, New York 13441

Best
 Available Copy

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-78-147, Vol II (of two) has been reviewed and is approved for publication.

APPROVED:

Donald a. Itildeluand

DONALD A. HILDEBRAND
Project Engineer

APPROVED:

JOSEPH L. RYERSON
Technical Director
Surveillance Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organzadion, please notify RADC (OC.DR) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
security classification of this page (when Data Entered)

[^0]UNCLASSIFIED
SECURITY CLASSIFICATION OF This PAGE (When Data Entered)

20 (Cont'd)

The software described provides a tool for accurate quantitative as well as qualitative aperture antenna andysis. Although intended primarily for far-field pattern analysis of large discrete planar arrays, the package can also be used to model reflector antenna systems and optical systems. Any aporture which can be adequately modeled by an array of up to 1000×1000 sample points can be treated via the software package.

The package has been designed to enable rapid parameter variations for various analytic purposes. Many commonly used factors, such as Taylor and Bayliss weighting functions; aperture shapes, such as rectangular, circular and elliptical, as well as randomizing and statistical weightings for either amplitude or phase characteristics are built into the program.

The report briefly reviews the theory involved, the parameters available, input and output requirements. Examples to illustrate usage are provided, as is a compiete User hianual for the sof tware package.

SECURITY CLASSIFICATION OF THIS PAGE(When Dail Entered)

PAGE

4 PAAS USER MANUALS 1
FFTZDK 5
FILMOD 7
PDFESTR 21
PLARY 25
PLTDVR 37
RNDERR 41
RTI4 47
TBLS 55
5 COMPUTER PROGRAM DOCUMENTATION 63
BESS 67
CHOP 71
CZFFT 75
EKPND 81
FFT2D 85
FFT2DK 97
FILMUD 101
CAM 109
PDFESTR 113
PLARY 119
PLOTD 137
PLTDUR 143
RNDERR 151
RRAND 157
RTI4 165
TBLS 175
WEICHT 185

LISTOFFIGURES

NUMBER TITLE PACE
FFT2D-1 Organization of input dats required 88 by llnear FFT algorithm
FFT2D-2 Organization of input data required 88 by 2-D FFT algorithm
FFT2D-3 Organization of input data with zero 90 blocks required by $2-\mathrm{D}$ FFT algorithm
FFT2D-4 Orgenization of input data showing 90 block measurements for the 2-D FFT algorithm
FFT2D-5 Far-field output deta from 2-D FFT 91
L I S T 0 F
TABLES
NUMBER TITLE PACE
1 Honeywell CCOS File Management Supervisor 2Status Codes
2 Examples of Relatlve Velue of Letters, 52 Numbers, and Symbols
RTI4-1 Examples of Relative Value of Letters, 167 Numbers, and Symbols

APPENDIK 4

PAAS USER MANUALS
\because
In this appendix the user menuals for the PAAS software are presented. The user manuals are arranged in alphabetical order and each is self contalned except for Teble 1. Table 1 is a list of Honeyvell GCOS file maragement supervisor status codes which are used to indicate errors in file handing to the user. Since disc illes (FRMFL's) are used by all PAAS software modules this table is printed one time here for reference by all the user manuals. All of the modules discussed herein except PLTDVR can be used via any remote terminal compatible with the RADC H6180 GCOS/TSS. The module PLTDVR is designed to transfer plots to the Ledicated User Interface Subsystem (DUIS).

All TSS flle references made hereln are to the user master catalog BECACDOi in the RADC H6180 CCOS system. In this documentation all RUN and OLD commands are shown assuming the user has previously accessed the named file or has a aopy of the file under his user master catalog. The procedure for accessing files that are stored under BECACDO1 is as follows:

From SYSTEM level enter YFORT and then enter the ACCESS subsystem by typing:

ACCE

The H5180 will reply:
Function?
Enter the following:
AF, BECACDO1/PLARY,R

HONEYWELL GCOS FILE MANAGEMENT SUPERVISOR STATUS CODES

Status codes:

4000	NO ERRORS
4001	NAKE NOT IN MASTER CATALDG
4002	I/O ERROR OH DEVICE XXX SA $=$ NNN......NNN
4003	PERMISSIONS DENIED
4004	FILE BUSY: TRY LiTER
4005	IITCORRECT CAT/EILE DESC?IPTION AT AMA......AAA
4006	LLINK SPACE EXHiNJミTED, DEVICE KXX
4007	UNDEFINED DEVICE YYY 2ZZzZZ
4010	LINK SPACE EXHAUSTED, DEVICE XXX
4011	NON-UNIGUE NAriE
4012	SIZE REQUESTED LS THA:
4013	SPACE REQUEST GR THAR: RLIONED
4014	PASSWORD REQUIRED AT AAM......AAA
	PASSWORD AAA......AAA AT AAA......AA. INCORRECT
4015	I-D-S FILE IN ABORT STRTUS
4016	FILE CANNOT BE ALIOCimed For TS USE
4017	SEEK ERROR ON DEVICE XXX SA = MKN......NNN
4020	FAILURE IT: NAME SCRS (İ:P.)
4021	UNDEFINED DEVICE (I:P.)
4022	DEVICE LINK TAELE CGKSSÜ\% ERROR
4023	INCONSISTENT FSW BLOCK COint
4024	INTERNAL LINK TABLE CiS:I ERROR
4025	REQUESTED ENTRE \because OI OSTIIRE
4026	NON-STRUCTURED EITE E:i $2 R Y$
402\%	FILE IN EFFECTIVE SmATUS
4030	ILLİGAL PACK TYPE
4031	ACCESS GREVIED TO I-D-S FILE
4033	CAT/EILE SECUPITY LOCKED
4034	ILLEGAL CHARACTER IS CAT/EILE NAME
4035	ILLEGAL CAT/EILE LIST REQUEST
4036	AFT IS FULL
4037	FILE ALREADY IN AFT
4040	MAYIMUH PAT SIZE EXCEEDED
4042	IIVALID EILL COUE OR PAE PTR
4043	INVALID CATALOG 3LOCK ñDDRESS
4041	PERMISSION DENIED - SSinRED FILE
4045	INVALID SPACE IDENTEEIER
4051	CHECKSUR ERROR - DEVICE XXY SA = NTN.......NNN
4052	DEVICE XXX PELERSED
WHERE:	XXX =DEVICE SAME (STI,DSI,...)
	RNN......NNN =OCTA L REPPESERTATIO:1 OE THE SEEK ADDRESS
	AAA......AAA $=12$ EED CHARACTERS OF THE CATALOG ELE: ENTT IN ERROR
	YYYY $\quad=T Y P E / O R / ~ N A M E ~$
	$222222 \quad$ DEVICE NA: ${ }^{2}$ E OR CLASS OF DEVICE

```
% %
The H6180 wlll reply:
```


Successful
 Function?

```
Type a carriage return and control will return to yFORT. In the above example the file named PLARY (shown underlined) was accessed. For any other flle just substitute the appropriate flle name.
```


I. PURPOSE

The progrem FFT2DK transforms an antenna aperture distribution into its equivalent far-field distribution. FFT2DK generates the far-field distribution via a two-dimensional Fast Fourier transform of the aperture lllumination function. The far-field is stored on a PRMFL designated by the user.
II. PERIPHERAL DEVICES REQUIRED

IUD	NAME	USE
01	Input PRMFL	Aperture Input
02	Output PRMFL	Far-field Output
03	Temporary disk file	Intermediate FFT Storage
05	Batch data deck	Program Input Data
06	Batch system output	Computer Output

III. OPERATINC PROCEDURE

1. Enter the TSS CARDIN system
2. The message

OLD OR NEH?
is printed on the operator's console:
3. Type:

OLD FFT2DX

The program FFT2DX will be loaded into the current file.
4. Co to line 1460 and change the PRMFL name that follous the characters
's:PRMFL: ©1,R/G,R,
to the appropriate PRMFL name which contains the input aperture which was created using PLARY, RNDERR or FILMOD.
5. Co to line 1470 and change the PRMFL name that follows the cheracters
'S:PRMFL:02,R/V,R.'
to the appropriate PRMFL name in which the far-field energy distribution is to be stored.
6. Go to line 1500 and change the value of the input parameters in the namelist FFT to correspond to the specific input aperture and desired far-field output.

N2 - The power of 2 which determines the number of points on the side for the 2-d transform

LRJ - The number of blocks in the x-direction of the input aperture

LRK - The number of blocks in the y-direction of the input aperture.
7. Go to line 1510 and change the values of the parameter in the namelist FILOUT to correspond to the desired blocks of the far-field output to be stored in the olitput PRLiFL.

LRJIN - The number of blocks to be skipped in the x-direction, starting on the left. before beginning to store the output.

LRJVID - The width in blocks of the jesired far-fleld output.

LRKIN - The numbe. of blocks to be skipped li. ? y-direction, starting at the top, tature beginning to store the output.

LKKKID - The height in blocks of the desired ier-field output.
t. Ar thas polat ine job definition flle ls complete alac the usur way SAVE, RESAVE and/or RUN the current file.
9. Type:

RUN
to run the prepared flle.
10. The message

SNUMB KKXKT
1.s printed, where XXXXT is the job identificetion number and is used to learn the status of the job at lister points in time.

IV. SUBPROGRAMS REQUIRED

FFT2D
V. RESTRICTIONS. REQUIREMENTS, AND MISC. DATA

1. Thls program must be executed urider Honeywell CCOS TSS CARDIN subsystems.
2. N2 must be in the range $4 \leq N 2 \leq 10$.
3. LRJ, LRK must be exactly the same value as was specifled in loading the aperture.
4. In plcking values for LRuIN, LRJYID, LRKIN, LRKWID remember that the size of the output PRMFL must be large enough to hold all of the specified output.
5. The input PRNFL and the output PRMFL must be in different files.

PROGRAM FILMOD

I. PURPOSE

The program FILMOD allows the user to medify a previously generated aperture that has been stored in a permanent disk file (PRMFL). This program allows the user to: (1) 11 st element values, (2) change element values (one by one), or (3) 'punch holes' with a radius and center both specified by the user. The modified aperture is then stored on a user designed PRMFL which may be the same as the input file.
II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	USE
01	Input PRMFL (Optional output PRMFL)	Aperture Input (Optional output)
02	Output PRMFL	Aperture Output
05	Time sharing terminal Keybosrd	User Input

III. OPERATING PROCEDURE

1. Enter TSS YFORT
2. Type

RUN FILMOD
3. The message

INPUT FILE NAME
is printed.
The user responds with the name of an existing PRMFL which contains the aperture to be modifled. The file name must be followed by a semicolon(;).
4. If the PRMFL name is not acceptable to the computer the message

UNSUCCESSFUL ATTACH ISTAT = K
$1 s$ printed, where K is the first status word returned by the File Management Supervisor (see the Time Sharing System Programmers Reference Manual, BR39, p.(3-39) or Table 1 herein) or will contain:
$1=$ file 15 currently open
2 = teletypewriter requested in batch mode (111egal)

3 - additionsl memory needed, request denied (time sharing user will be terminated)

4 = CATFIL all blanks
NOTE: See Honeywell series 600/6000 Fortran manual, BJ67, p.(6-35) - (6-36) for more detalls on the subroutine ATTACH.

After the message is printed the program returns to step 3.
5. If the PRMFL, name in step 3 is accepted the message

OUTPUT FILE NAME
is printed.
The user responds with the PRMFL name in which he wishes the output to be stored. The user may specify the input file and output flle as the same file if he wishes. The flle name must be followed by a semicolon(;). If the flle neme is not acceptable the program wll go through step 4 and return to step 5 so that the user may try another flle name. Otherwise the program will proceed to step 6.
6. $\because \because .4 .56$
: ḯ, LRK
$1 s$ printed.
LRJ - The width of the input aperture measured in blocks.

LRK - The helght of the input aperture measured in blocks.

NOTE: The numbers entered for LRJ, LRK must be exactly the same as the values specifled In the program PLARY which orlginally loaded the aperture flle.
7. The message

MODIFY OR HOLE? (O or 1)
is printed.

- O The program begins the question end answer sequence for modifying individual elements (Proceed to step 8).
$=1$ The program begins the question and answer sequence for meking holes in the aperture (Proceed to step 18).

8. The message

IBLK
is printed.
The user must respond with the lowest block number in which he wishes to make any modiflcations. Each subsequent request for IBLK must be answered with a larger number than the previous response.
9. The message

ANY ELEMENTS LISTED? (Y or N)
is printed.

- Y The user wishes to have the values of some of the elements in the speciried block llsted.
- N No elements are 11sted (Proceed to step 12).

10. The message

JSTRT, KSTRT, JSTP, KSTP
is printed.
JSTRT - The horizontal coordinate to begin the value listing.

KSTRT - The vertical coordinate to begin the value listing.

Example: (JSTRT, KSTRT) $=(1,1)$ if the user Wishes to begin in the upper left hand corner.

JSTP - The horizontal coordinate to end the value listing.

KSTP - The vertical coordinate to end the value 11sting.

Example: (JSTP, KSTP) = $(16,16)$ if the user wishes to end in the lower right hand corner.

NOTE: The user must give all coordinates starting from the upper left hand corner with (1, 1) going to the lower right hand corner with (16, 16). As an example, if the user wished to list the values of the whole block (256 values) he would type

1, 1, 16, 16
in response to the message.
The value listing is printed in two columns with the real part of the element value in the left column and the imaginary part in the right column. The values are double spaced with one element per line starting with the element (JSTRT, KSTRT) and proceeding to (JSTP, KSTRT). The next value will be (JSTRT, KSTRT +1) and so forth until (JSTP, KSTP) is reached.
11. The message

ANY ELEMENTS CHANCED? (Y or N)
$1 s$ printed.

- Y The user wishes to change some element
values.
(Proceed to step 12)
- N The user does not wish to change any element velue.
(Proceed to step 14)

12. The message

HOH MANY ELEMENTS CHANGED?
is printed.

The user responds with the number (up to 100) that he wishes to change in the specified block. If he wishes to change more than 100 the answer to step 14 must be Y. If the user responds with 0 the program will jump to step 15.
13. The message

IELJ, IELK, VREAL, VIMC

1 s printed.
IELJ - The horizontal coordinate of the element to be changed.

IELK - The vertical coordinate of the element to be changed.

NOTE: The coordinate locations are specifled according to the explanation given in step 10.

VREAL - The real part of the new element value.
VIMC - The lmaginary part of the new element value.

The above messege is repeated the number of times specifled 1 n step 12 for the number of elements to he changed.
14. The message

ANY MORE MODS OR LIST? (Y or N:
is printed.

- Y The user wishes to list or modify more elements.

Return to step 9.

- N The user is finished with this bloni.

The program proceeds to step 15.
15. The message

ANOTHER BLOCK? (Y or N)
is printed.

- Y The user wishes to list or modify the values of some elements in another block.

Return to step 8.

- N The user is finished listing or modifying values of the elements in the aperture.

Proceed to step 16.
16. The message

ANY HOLES? (Y or N)
is printed.

- Y The user wisines to make holes in the aperture.

Proceed to step 17.

- N The user is finlshed with the aperture changes.

Proceed to step 21.
17. The message

ICNTJ, ICNTK
is printed.
ICNTJ - The coordinate for the center of the hole in the horizontel directions.

ICNTK - The coordinate for the center of the hole in the vertical direction.

NOTE: Coordinates for the center of the holes are given with respect to the upper left corner element increasing to the right and down. The upper left corner element has the coordinates
(ICNTJ, ICNTK) $=(1,1)$
Example: If the center of the hole were to be in the lower left corner of a 64×64 element aperture the coordinates would be
(ICNTJ, ICNTK) $=(1,64)$
18. The message

XHOLE
is printed.
KHOLE - The radius of the hole to be "punched" in
the aperture.
19. The hole $1 s$ punched in the aperture and the following message is printed

ANOTHER HOLE? (Y OF N)

The user responds with either of the following:

- Y The user wishes to have another hole punched.

Return to step 17.
= N The user is finished punching holes in the specified aperture.
20. The message

ANY ELEMENTS CHANGED? (\mathcal{Y} or N)
is printed.

- Y The user vishes to list or modify some element values in the specified eperture.

Return to step 8.

- N The user is finished with the aperture chenges.

21. The message

ANOTHER OUTPUT CENERATED? (Y or N)
is printed.

- Y The user, washes to generate another output
aperture from the original input aperture.
Proceed to step 22.
$=N$ The user is finished with the original input flle.

Proceed to step 23.
22. The message

DETACH OUTPUT FILE ISTAT $=\mathrm{X}$
1s printed, where the detach is successful if $X=$ θ; otherwise $\mathrm{K}=1$.

Return to step 5.
23. The messege

ANOTHER FILE MODIFIED? (Y or N)
is printed.

- X The user wishes to begin the progrem agein with a new input file.

Return to step 3.

- N The user is finished with the program.

In bath cases the message
DETACH OUTPUT FILE ISTAT = K
DETACH INPUT FILE ISTAT $=\mathrm{X}$
is printed, where if the detach is successful $\mathrm{K}=$ 0 ; otherwise X - 1 .

IV. SUBPROCRAM REQUIRED

Nons
V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

1. If the input flle and the output flle are the same, then an affirmative answer in step 21 to the question

ANOTHER OUTPUT CENERATED?
causes the second generated output to be a modification of the first output. Thls is a result of the fact that the first modification $1 s$ uritten over the orlginal aperture.
2. If the response to the question

HOV MANY ELEMENTS CHANGED?
In step 1215 less than zero the prograw jumps to step 15. If the respense is greater than 100 the program will return to the beginning of step 12.
3. This progran can be executed only under Honeywell GCOS TSS YFORT subsystem.

PROGRAM PDFESTR

1. PURPOSE

The program PDFESTR generates a histogram of the radiating elements in a statlstically loaded aperture. The width of each annulus may be varled and the center of the annull may be specified.
II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	USE
01	User PRMFL	Input Aperture
05	Time sharing terminal keyboard	
06	Time sharing terminal printer	

III. OPERATING PROCEDURES

1. Enter TSS YFORT
2. Type:

RUN PDFESTR
3. The message

LRJ, LRK
is printed.
LRJ - Number of olocks in the x-direction
(horlzontally)

LRK - Number of blocks in the y-direction (vertically)
4. The message

OFSTJ, OFSTK
$1 s$ printed.
OFSTJ - Value added to the calculated center of the aperture to offset the origin horizontally.

OFSTK - Value added to the calculated center of the eperture to offset the orlgin vertically.
5. The message

INPUT FILE
is printed.
The user should respond with an existing PRMFL which contalns a statistically loaded aperture. Follow the entry with a semicolon(;).

Example:
-/SUBCATSPSHRD/FILENAMSPSWRD:
If the file name is improper thell the message
AITACH FAILED ISTAT $=\mathrm{X}$

1 s printed. Where X is the flrst status word returned by the File Manegenent Sueervisor (see the Time Shering System Fragramme:g Rufcrence

Manuel. BR39, p.(3-39) or Table I, hereln) or wll contaln:

1 - flle 15 currently open

2 - teletypewriter requested $1 n$ batch mode (11legal)

```
3 - additional memory needed, request denied (time sharing user will be terminated)
```

4 - CATFIL all blanks

NOTE: See Honeywell series 600/6000 Fortran manual, BJ67, p. (6-35) - p. (6-36) for more detells on the subroutine ATTACH.

If the flle name is unacceptable the program will return to the beginning of step 5. Otherwise. procesd to step 6.
6. The message

RINC, RLIM
15 printed.
RINC - The 1 ncremental radius or annuli width used in generating the histogram values.

RLIM - The maximum radius of interest.
7. The message

ICOM, NDPACK
is printed.

$$
\begin{aligned}
& \text { ICON - Mode Plag } \\
& \text { - -1 The program halts } \\
& \text { - O Histogram date is normelized to } \\
& \text { give a unity cummulative } \\
& \text { distribution } \\
& \text { - } 1 \text { Histogram data is converted to } \\
& \text { probability density estlmete data. } \\
& \text { The new data is divided by the } \\
& \text { product of the cell width and the } \\
& \text { total number of elements. } \\
& \text { - } 2 \text { Raw histogrem data. }
\end{aligned}
$$

NDPACK - The number of incremental radius histogram cells, RINC, combined to make each output histogram cell.
8. The program repeat: to step 7.
IV. SUEPROGRAMS REQUIRED

Nons
V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

1. This estimator can only be used on apertures that have been statistically losded.
2. The program TBLS can be used to compare the ristogram values of an aperture with simllar values calculated for the particuiar weighting function used to load the aperture. This comparison glves some degree of 'goodness' for the particular load.

PROCRAM PLARY

I PURPOSE
The program PLARY loads a PRMFL with a userspecified antenna aparture lllumination function.
II. PERIPHERAL DEVICES REQUIRED
LUD NAME USE
01 User PRMFL Aperture Output05 Time sharing terminal User Inputkeyboard
06 Time sharing terminal Computer Outputprinter
III. OPERATING PROCEDURES

1. Enter TSS YFORT
2. Type:
RUN PLARY
3. The message
OUTPUT FILE NAME
is printed.
The user should respond with an existing PRMFLname which is large enough to store the aperture.Follow the entry with a semicolon(;).
Example:
m/SUBCATSPSHRD/FILENAMSPSWRD;

If the file name is improper then the message
ATTACH FAILED ISTAT $=\mathrm{K}$
is printed, where K is the first status word returned by the File Management Supervisor (see the Tlme Sharing System Programmers Reference Manual, BR39, p.(3-39) or Table 1 here1n) or will contaln:

1 - file 1 s currently open
2 - teletypewriter requested in batch mode (111egal)

3 = additional memory needed, request denied (time sharing user will be terminated)

4 - CATFIL all blanks

NOTE: See Honeywell serles 600/6000 Fortran manual, BJ67, p.(6-35) - p.(6-36) for more detalls on the subroutine ATTACH.

If the file name is unacceptable the program will return to the beginning of step 3. Otherwise proceed to step 4.
4. The message

STATISTICAL TAPER?

is printed. The user responds either Y (yes) or N (no).

```
YES The user wlshes to load the grrey using a
    space tapered or 'thlnried' locjing
    technique. Proceed to step 5.
```

```
NO The user wishes to load the array using element to element amplitude tapering. Proceed to step 6.
```

5. The message

KKK, MADI, JRND
15 printed.
XKK - This value is the probability that an element will occur at the normallzed peak of the design welghting function. (Usually HKK = 1.0).

MAD1 - The starting address for selecting random numbers from the random number array (15MAD15120).

JRND - Random number generator initialization constant ($0 \leq$ IRND $\leq 2^{36}-1$).
6. The message

IAPTFL
15 printed.
The user responds with a number which determines the shape of the apertura.

- 1 circular
- 2 elliptical
- 3 rectangular

7. If IAPTFL $=1$, the message

XEDCE, XHOLE
15 printad.
REDCE = Outside radius of the aperture.
KHOLE = Radius of a hole centered in the aperture (For no hole, XHOLE $=0.0$).

Proceed to step 10.
8. If IAPTFL - 2, the message

NMAJOR, NMINOR, KHOLE
1s printed.
NMAJOR - Length of the seml-major elliptical axis.

NMINOR = Length of the seml-minor elllptical 8×15.

KHOLE = Radius of a hole centered at the intersection of the mejor and minor axes (For no hole, KHOLE $=0.0$).

Proceed to step 10.
9. If IAPTFL - 3, the message

NWIDTH, NHIGH
$1 s$ printed.
NHIDTH = Hidth oi the rectangular aperture.
NHICH - Helght of the reotengular aperture.
10. The message
IHTFLC
1s printed.
The user responds with a number which representsthe desired weighting function.

- O no veighting function
- 1 cosine to a power on a pedestal
- 2 Blackman weighting function
- 3 Kalser weighting function
- 4 triangular weighting function
- 5 Taylor weighting function
$=6$ Bessel weighting function
$=7$ cubic weighting function
$=8$ Bayllss weighting function

11. If IHTFLC $=0$, proceed to step 21.
12. If IAPTFL = 1, the message
UTRAD
15 printed.
The user responds with the desired radius of the weighting function.
Proceed to step 14.
13. If IAPTFL - 2, or IAPTFL $=3$, the message ZJRAD, 2KRAD is printed.ZJRAD - Half the span of the welghting functionin the x-direction.
ZKRAD - Half the span of the weighting functionin the y-direction.
NOTE: These refer to the elliptical and rectangular weighting functions which are products of the orthogonal weighting functions.
14. If INTFLG -1 , the message
UTPED, NUTPOU
is printed.
WTPED - The height of the pedest.el.
NHTPOH - The power of the cosine.
Proceed to step 21.
15. If IHTFLG $=2$, proceed to step 19.
16. If IWTFLC $=3$, the message
UKASIR
is printed.
WKASIR The Kaiser varlable for the trade-off between mainlobe width and sidelobe amplitude.
Proceed to step 21.
17. If IKTFLG $=4$, proceed to step 21.
18. If IHTFLG $=5$, the message
DB, NBAR
is printed.
$D B$ - Sidelobe $1 n d B$ with reference to the main lobe.
NBAR - Number of zeros used in approximating theDolph-Chebyschev weighting distritution.
Proceed to step 21.
19. If IWTFLG $=6$, the message
BESCAL, BESEDC
15 printed.
BESCAL - The maximum amplitude at the center of the eperture.
BESEDC - The scale factor used in calculating theargument for evaluating the Besselfunction for the actual radial locationon the eperture.
Proceed to step 21
20. If IHTFLG $=7$, the message
CUBK, KTRAD
is printed.

CUBK - The amplitude scaling constant.
WTRAD - The helf span of the welghting function.
21. The message

NBITS
is printed.
NBITS - The number of blts used to control the digltal phase shifters.
22. The message

ANY BEAM STEERING?
is printed.
The user responds with a $Y(y e s)$ or an $N(n o)$.
23. If the response $1 n$ step 22 is \searrow the message

DELPHJ, DELPHK
15 printed.
DELPHJ - The beam steering in degrees in the x-direction.

DELPHK - The beam steering in degrees in the y-direction.

If the response to step 22 is N procsed to step 24.
24. The message

QUADRATIC ERROR?
1s printed.

The user responds $Y(y e s)$ or $N(n o)$.
25. If the response to step 2415 Y , the message

PHERK, PHERY

1 s printed.

PHERX - The meximum phase error in degrees at the edge in the x-direction.

PHERY - The maximum phase error in degrees at the edge in the y-direction.

If the response to step 24 is N then proceed to step 26.
26. The message

BESSELL ERROR?
is printed.
The user responds $Y(y e s)$ or $N(n o)$.
27. If the response to 26 is Y, the message

BESERR, BSCAL
is printed.
BESERR - The maximum phase error in degrees at the center of the aperture.

BSCAL - The scaling factor used in calculating the argument for evaluating the Bessell function from the actuel radial location on the aperture.
28. The message

LRJ, LRK
is printed.
LRJ - The number of blocks in the x wilrection.
LRK - The number of blocks in the y-direction.
29. A message 15 now printed which shows the user what values he assigned to the program parameters and will be used in calculating the aperture lllumination pattern.
30. The message

DETACH ISTAT $=\mathrm{K}$
is printed after the aperture is loaded. $K=0$ If the detach was successful; otherwise it 151.
31. Program aperture terminate, and the user is returned to build mode under TSS YFORT. This is indicated by an asterisk (*).
IV. SUBPROGRAMS REQUIRED

EKPND
BESS
CAM
HEIGHT
V. RESTRICTIONS, REOUIREMENTS, AND MISC. DATA

1. If the weigiting function span 15 less than the aperture span then those elements outside the welghting function span ere set to zero.
2. The Kalser varlable, WKASIR, should be within the range
$2 \leq$ HKASIR ≤ 10
3. The number of zeros, NBAR, in the Taylor approximetion must be in the range
$3 \leq$ NBAR ≤ 20
4. LRJ and LRK must be even or the message LRJ,LRK will be retyped and the user must respond with two even numbers.
5. It should be noted that if the user has specified a rather complex aperture illumination pattern (Example: a large circular aperture (KEDCE = 40.0) with a Taylor distribution (NBAR = 20)) the time required to load may be quite long (perheps 5 minutes).
6. This program can be executed only under Honeywell GCOS TSS YFORT subsystem.

PROCRAM PLTDVR

I. PURPOSE

The program PLTDVR formats elthar an aperture lllumination or a far-f.eld energy distribution that $1 s$ stored in a permanent di k flle (PRMFL) for making pseudo-3d plots using the DUIS. The data $1 s$ formatted and transmitted to the DUIS for recording and subsequent production of $3 d$ plots.
II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	USE
01	Input PRMFL	Aperture or far-fiela input
05	Time sharing terminal keyboard	User Input
06	Time sharing terminal printer	Computer Output

III. OPERATING PROCEDURE

Load RJE program into BUIS and start program execution. See User's Manual on RJE-300 or RJE-1200.

1. Enter TSS YFORT
2. Type

RUN PLTDVR
3. The message

INPUT FILE NAME?
is printed. The user should respond with tioe

PAAS-UM-PLTDVR

1 MAY 78
name of an exlsting flle which contalns the data to be formatted and recorded. The flle name must be followed with a semicolon(;). If the user types STOP the program will terminate execution and the user is returned to build mode under TSS YFORT. This is indicated by an aster!sk(*).
4. If the file name 15 not acceptable the message UNSUCCESSFUL ATTACH ISTAT $=\mathrm{X}$
is printed, where X is the flrst status word returned by the File Manegement Supervisor (see the Time Sharing Systom Programmers Reference Manual. BR39, p.(3-39), or Table 1 hereln) or wlll contaln:

1 - flle is currently open
2 - teletypewriter requested in batch mode (lliegal)

3 - additional memory needed, request denied (thme sharing user will be terminated)

4 = CATFIL all blanks
5. If the file name in step 3 is accepted the message

JYID, JWIDSP, NBMAX
$1 s$ printad.
JWID - The width in blocks of the part of the array to be formatted and transiferred

JWIDSP - The width in blocks of the total input array

NBMAX - The logical record number of the last block to be transferred.

If JHIDSP is greater than 10 the value of JHIDSP is set to 10 and the following warning message 15 printed:

JHIDSP > 10...SET TO 10
If JKIDSP is greater than JHID, the value of JHIDSP is set to JHID and the following warning message 15 printed:

JWIDSP > JWID...SET JWIDSP=JVID
6. The message

Enter FIRST LREC, ISGN
is printed.
FIRST LREC - The logical record of the block in the upper left corner of the part of the array to be formatted and transferred. If the response 15 -1 the program trensfers to step 8.

ISGN - = O data is processed for magnitude plotting

- 1 real component is processed for bipolar plotting.

7. The data transmission to the DUIS row begins. When all of the requested data has been transmitted the Tektronix display will beep once and erase. The user should then press carriage jeturn and the following message is printed:
$T H=B$
where K is the maximum value of all the transmitted data. This value is used in scaling the plots produced using the DUIS subprogram H3DPL. The program now returns to step 6.
8. The message

DETACH ISTAT $=X$
15 printed, where $X=0$ if the detach is successful and $K=1$ otherwise. The program returns to step 3.

IV. SUBPROGRAMS REQUIRED

PLOTD
CHOP

V. RESTRICTIONS. REQUIREMENTS, AND MISC. DATA

1. This program can be executed only under Honeywell CCOS TSS YFORT subsystem.
2. The trensmission tlme for $\varepsilon 64 \times 64$ point plot $1 s$ about 10-15 minutes at 300 baud. This should be kept in mind if larger plo+s are to be attempted.
3. If the response to FIPST LREC $1 s$ greater than the response to NBMAK the program will repeat step 6.
4. The magnitude of the maln lobe determines the value of the least significant bit (LSB). If the ratio of malnlobe to sidelobe level exceeds the accuracy of the 12 bit word lengith, errors in magnitude representation result. The dynamic range of the 12 bit word is 72 dB ($6 \mathrm{~dB} / \mathrm{b} 1 \mathrm{t}$). Magnitude errors begin to appear if the sidelobes are more than 60 dB down.

PROCRAM RNDERR

I. PURPOSE

The RNDERR program modifies an antenna aperture distribution (resident in PRMFL) by adding a phase error distribution specifled by the user. The resulting aperture is stored in another PRMFL where it can be accessed for further processing.

II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	USE
01	User PRMFL	Input Aperture
02	User PRMFL	Qutput Aperture
05	TSS terminal keyboerd User Input	
06	TSS terminal printer Computer Output	

III. OPERATING PROCEDURE

1. Enter TSS YFORT
2. Type

RUN RNDERR
3. The message

NTYPE, MAD1, JRND, LRJ, LRK
is printed.
NTYPE - Determines the type of error distribution to be added to the apenture.

- 1 undform distribution
- 3 Gaussian distribution

MAD1 - The starting address for selecting random numbers from the randoll number array. ($1<1$ MAD $1 \leq 128$)

JRND - Random number generator initialization constant. (0<JRNDS2 ${ }^{36}$ - 1)

LRJ - The number of blocks in the x-direction of the input aperture.

LRK - The numbiar of blocks in the y-direction of the input aperture.
4. If NTYPE = 1, the message

UMEAN, UUEXT
1s printed.
UMEAN - Mean value of the uniform distribution in degrees.

UUEXT - Hidth of the uniform distribution in degrees.

Proceed to step 6.
5. If NTYPE = 3, the messige

XMEAN, SICMA
is printed.
MMEAN - Mean value of the Gaussian distribution in degrees.

SIGMA - Standard deviation of the Caussian

olstribution $1 n$ degrees.

6. The message

INPUT FILE NAME
is printed. The user should respond with an existing PRMFL name which has the input aperture stored in it followed by a semicolon(;). If the flle name is not acceptable the following message will be printed:

UNSUCCESSFUL ATTACH ISTAT - K
where K is the first status word returned by the File Management Supervisor (see the Time Sharing System Programmers Reference Manual, BR39, p.(3-39) or Table 1 hereln) or wlll contaln:

1 = flle 15 currently open

2 - teletypewriter requested 1 n batch mode (111egal)

3 - additional memory needed, request denied (time sharing user will be terminated)
$4=$ CATFIL all blanks

> NOTE: See Honeywell Series 600/6000 Fortran manuel, BJ67, p. $6-35)-(6-36)$, for more details on the subroutine ATTACH. If the input file name is unacceptable the program returns to the beglaning of step 6 . Otherwise, proseed to step 7 .
7. If the PRMFL name Input in step 6 is acceptable the message

QUTPUT FILE NAME
is printed. The user should respond with an existing PRMFL name in which the output aperture is to be stored, followed by a semicolon(;). If the PRMFL name is not acceptable the same procedure as described in step 6 applies here and the program will return to the beginning of step 7. Othervise, proceed to step 8.
8. The antenna aperture distribution is modified and stored in the specified output PRMFL.
9. When the processing is finished the message DETACH ISTAT - X
$1 s$ printed twice. The first time is for the input PRMFL and the second is for the output PRMFL. If $X=0$ then the detach $1 s$ successful, otherwise $\mathrm{K}=1$.
10. Program execution terminstes and the user is returned to build mode under TSS YFORT. This is indicated by an asterisk(*).
IV. SUBPROGRAMS REQUIRED

RRAND

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

> 1. If MAD1 1 s outside of the range $1<\operatorname{MADI} \leq 128$ the computer will print the message of step 3 agaln and the user must respond correctly.
2. Thls program can be executed only under Honeywell GCOS TSS YFORT subsystems.
3. The input PRMFL and the output PRMFL can be the same flle.

PROGRAM RTI4

I. PURPOSE

The program RTI4 is a subroutine which converts data amplitude to letters of the alphabet. The rosulting characters are organized into a matrix which is printed on a remote terminal. Range is usually shown vertically and cross range is displayed horlzontally with intensity displayed by the character placed in the cell, e.g. O represents 0 dB with respect to the reference, A represents -10 dB with respect to the reference, 2 represents -36 dB with respect to the reference. This subroutine processes the same type of data as PLTDVR but does so In a much mere compact form.

II. PERIPHERAL DEVICES REQUIRED

LUDNAMEUSE
01
Input PRMFL (permanent Aperturedlsk flle)far-field input05 Time sharing terminal User Inputkeybosrd06Time sharing terminalprinter
III. OPERATING PROCEDURE

1. Enter TSS XFORT
2. Type
RUN RTI4
3. The message

INPUT DESIRED FILE NAME

1 s printed.
The user should respond with the name of an existing PRMFL which contains the data to be displayed. The flle name must be folloved by a semicolon(;). If the user types STOP the program Jumps to step 9.
4. If the PRMFL name is not acceptable the following message is printed:

UNSUCCESSFUL ATTACH ISTAT = X
where X is the first status word returned by the File Management Supervisor (see the Time Sharing System Programmers Reference Manual, BR39, p.(3-39) or Table 1, herein) or will contaln:

1 = file is currently open
2 = teletypewriter requested in batch mode (11legal)

3 = additlonal memory needed, request denied (time sharing user will be term!nated)

4 = CATFIL all blanks

NOTE: See Honeywell Serles 600/6000 Fortran manual, BJ67, p.(6-35) - (6-36) for more details on the subroutine ATTACH. Aíter the messege s printed the program roturns to step 3 anc begins agaln.
5. If the PRMFL name in step 3 is accepted the message

FLOOR, YINC, JHID, NBHAK
is printed.
FLOOR - The reference in dB below which everything is represented in dashes (-) on the RTI plot. All the data with a greater value $1 s$ represented by a letter, number, or punctuation symbol and the value relative to the $F L O O R$ is calculated using YINC.

YINC - The increment in $d B$ between each successive letter, number, or symbol 15 determined by the value assigned to YINC. See Table 2.

JWID - The width in blocks across the whole side of the data array as determined by the parameter LRJUID in the program FFT2DK or LRJ in PLARY, RNDERR, or FILMOD.

NBMAX - The number of the last block to be displayed. The finel display will be 4 blocks wide and as long as the user chooses depending on the value of NBMAX.

NOTE: Two examples of the relative dB values for a specified FLOOR and YINC are shown in Table 2.
6. The message

Enter FIRST LREC, DISPLAY YIDTH
is printed. The user should respond with the number of the block that he wishes to be placed In the upper left hand corner of the RTI and the width of the RTI in samples. The maximum number of samples is 128. If the user types -1 then the program goes to step 8.
7. The computer now begins to transmit the RTI display to the DUIS or a time-sharing terminal printer and will continue until it reaches the specifled stopping block number, NBMAK.
8. The message

DETACH ISTAT = K
is printed where $X-D$ if the detach is successful and $X=1$ otherwise. Go to step 3.
9. An asterisk (*) is printed and the program 15 finlshed.
IV. SUBPROGRAMS REQUIRED

None
V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

1. This program can be executed only under Honeyvell CODS TSS YFORT subsystems.
2. If the response to

INPUT LREC DESIRED
is greater than NBMAX then the program will repeat step 6.
3. Any dB level below the value of FLOOR will be represented by a dash (-). Any dB level abova the value calculated for ' s ' wlll be represented by a ' s '.

TABLE 2
EXAMPLES OF RELATIVE VALUE OF LETTERS, NUMBERS, AND SYMBOLS
$F L O O R=-20.0$
YINC - 1.0
de Level

20.0	\mathbf{E}	30.0
19.0	-	29.5
18.0	$*$	29.0
17.0	+	28.5
16.0	0	28.0
15.0	1	27.5
14.0	2	27.0
13.0	3	26.5
12.0	4	26.0
11.0	5	25.5
10.0	6	25.0
9.0	7	24.3
8.0	8	24.0
7.0	9	23.5
6.0	A	23.0
5.0	B	22.5
4.0	C	22.0
3.0	D	21.5
2.0	E	21.0
1.0	F	20.5
0.0	C	20.0
-1.0	H	19.5
-2.0	I	19.0
-3.0	J	13.5
.4 .0	K	18.0
-5.0	L	17.5
-6.0	M	17.0
-7.0	N	16.5
-8.0	0	16.0
-9.0	P	15.5
-10.0	Q	15.0
-1.0	R	14.5
-12.0	S	14.0
-13.0	T	13.5
-14.0	U	13.0
-15.0	V	12.5
	52	

```
FLOOR = 10.0
    YINC = 0.5
```

OB Level

$$
\begin{array}{lll}
-16.0 & W & 12.0 \\
-17.0 & X & 11.5 \\
-18.0 & Y & 11.0 \\
-19.0 & Z & 10.5 \\
-20.0 & - & 10.0
\end{array}
$$

PROCRAM TBLS

I. PURPOSE

The program TBLS computes and tabulates sample values of selected weighting functions. The program also generates data which is used in checklng the probsbillty density function of space tapered arrays.

The program may be used in one of the following three modes:

1. TBLS generates the value of the weights for specific distribution width and weighting function type.
2. For the raylor and Bayliss functions, the following three modes are avallable (3):
(a) For a specific distribution width TBLS generates all the sample welghts for sidelobe levels from 20 to 90 dB in steps of 5 dB with \bar{n} ranging from 3 to 20.
(k) For a specific distribution width and $d B$ level. TBLS generates the sample wolghts with \bar{n} ranging from 3 to 20.
(c) For a specific distribution width, $d E$ level, and \bar{n}, TBLS generates the sample welghting function.

This program produces tables similar to Hansen's (1) but with more flexibillty, greater accuracy, and greater range in $d B$ and \bar{n}. Tables may be generated for the Bayllss gs well as the Taylor distribution.
3. For all of the ahove modes tbls generates data which 15 elther in the form $c i$ standard weights or 1 n a form which may be used to compare with

PAAS-UN-TBLS
6 APR 78
the data generated by PDFESTR to check the density function of space tapered arrays.
II. PERIPHERAL DEVICES REQUIRED
LUD NAME USE

05	TSS terminal keyboard User Input
06	TSS terminal printor Computer Output

III. OPERATING PROCEDURE

1. Enter TSS YFORT
2. Type

RUN TBLS
3. The message

PDFESTR DATA OR TABLES? (0 or 1)
is printed.

- O The user wishes to generate data that will be compatible with the data from PDFESTR.
- 1 Tre user wishes to generate tables of weighting function values.

4. The message

NTYPE
is prirted.
The user should respond with e number which determines the weighting function type.
= 1 cosine on a pedestal to a power
(Proceed to 5)
= 2 Blackman
(Proceed to 6)

- 3 Kaiser
(Proceed to 7)
= 4 Bartlett or trlangular
(Proceed to 6)
- 5 Taylor
(Proceed to 10)
- 6 Bessel
(Froceed to 8)
$=7$ Cubic
(Proceed to 9)
- 8 Bayliss
(Proceed to 10)

5. The message

UTPED, NHTPOH, IRAD, WTRAD
is printed.
WTPED - The heigint of the pedestal
NHTPOU - The power of the cosine function

PAAS-UM-TBLS
6 APR 78

IRAD - The radius (or half span of a linear array), in units of elements, of the array.

WTRAD - The radius (or half span of a linear array) of the weighting function.

NOTE: For all subsequent entries, IRAD and HTRAD have the same meaning as above.

Proceed to 15.
6. The message

IRAD, UTRAD
is printed.
Proceed to 15.
7. The message

HKASIR, IRAD, UTRAD
is printed.
WKASIR - The Kalser variable for the trade-off between main lobe width and sidelobe amplitude.

Proceed to 15.
8. The message

BESEDG, BESCAL, IRAD, HTRAD
is printed.
BESEDG - The scale factor used in calculating the argument used in evaluating the Bessel function from the astual radial location on the aperture.
BESCAL - The maximum amplitude at the center of the aperture.
Proceed to 15.
9. The message
CUBK, IRAD, HTRAD
is printed.
CUBK - The amplitude sceling constant
Proceed to 15.
10. The message
IRAD, UTRAD
is printed.

- 0 The user wishes to generate the complete setof tables for IRAD with NBAR and DB varled.
$3 \leq$ NBAR ≤ 20 (19 for the Bayllss)
and $20 \leq \mathrm{DB} \leq$ 80
in steps of 5 dB.
Proceed to 15.
- 1 The user wlshes to choose one dB level ofInterest. Proceed to 12.

12. The message

IDB
is printed. The user should respond with an integer value for the specifled dB level.
13. The message

ALL OR SINGLE NBAR? (0 or 1)
is printed.

- 0 The user wlshes to generate for the specified IRAD and dB level all possible NBAR distributions in the range
$3 \leq N B A R \leq 20$ (19 for the Bayliss)
Proceed to 15.
= 1 The user wishes to choose one NBAR of interest.

Proceed to 14.
14. The message

NBAR
is printed. The user should respond with an integer number for the specific value of NBAR desired. If NBAR is too small, as explained by Taylor (2) and Hansen (1), the message

INVALID VALUE FOR NBAR
is printed and the program repeats step 14.

15. The program now generates the appropriete distribution and prints the tables on the TSS terminal printing device. The program returns to step 4 when the requested distribution has been printed.

IV. SUBPROGRAMS REQUIRED

EAPND

BESS
GAM
WEICHT

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

1. The range of NBAR must be
$3 \leq N B A R \leq 20$
for the Taylor and
$3 \leq N B A R \leq 19$
for the Bayliss.

Reference.

1. Hansen, R.C., Tables of Taylor Distributions for Circular Aperture Antennas, IEEE Trans. Anten. Prop., AP-8, \#1, (1/60), pp. 23-26.
2. Taylor, T. T., 'Design of Circular Apertures for Narrow Beamwidth and Low Sidelobes,' The Bell System Technical Journel, Vol. 47, No. 5, (May-June 1968), pp. 623~651.

APPENDIX 5

COMPUTER PROGRAM DOCUMENTATION

In this appendix the computer program documentation (CPD) for the PAAS modules is presented. The CPD's are arranged in alphabetical order and each is self-contained. The subprograms BESS and GAM were obtained from RADSIM for use in PAAS. For the reader's convenience and completeness of this document these have been incorporated into this appendix.

Unless otherwise stated, all software documented herein $1 s$ stored under user master catalog 'BECACDO1' in the RADC HG180 GCOS system. The source code for all programs herein are stored in PRMFL's having the same name as the program, e.g. the source code of the program PLARY and all required subroutines is stored in a PRMFL having the name PLARY under user master catalog BECACDO1.

The documentation for each paAS program presented in this appendix is divided into six sections. The order and title of each section is as follows:

1. Purpose
2. Input Parameters
3. Restrictions, Requirements, Miscelleneous data
4. Subprograms Required
5. Theory of Operation
6. FORTRAN Listing

The content of each section is explalned in the following paragraphs.

1. Purpose

This section contains a brief description of the purpose of the software module.
2. Input Parameters

This section lists all of the input parameters for the particular software modula. Both required and optional input parameters are listed. Each parameter entry is broken into four groups of information and placed into columns for easy reference. The first column contains the parameter name as it appears in the softuare. The second column tells whether the parameter is required or optional. An R in the second column denotes a required parameter whlle an 0 denotes an optionsl parameter. The variable type, elther integer or floating point, is noted in the third column. An I cienotes and integer type while an F denotes a floating point variable. The fourth column contalns a brief description of the parameter and how $1 t$ is used $1 n$ the program.
3. Restrictions, Requirements, Miscellaneous Data

In this section special notes concerning the input parameters, use of the program, potential usage problems, etc. are discussed.
4. Subprogrems Required

In this section the subprograms required for the PAAS program are listed. Both subroutine and function subprograms are included.
5. Theory of Operation

In this section the theory behind the programming is discussed using the variable names and notation as they appaar in the program. This helps the user in understanding the operation of the program.
6. FORTRAN Source Code Listing

This section contains a listing of the FORTRAN source code.

The documentation for each PAAS subprogram presented in this appendix is divided into seven sections. The order and title of each section 15 as follows:

1. Purpose
2. Input Parameters
3. Calling Sequence
4. Restrictions, Requirements, Miscellaneous Data
5. Subprograms Required
6. Theory of Operation
7. FORTRAN Source Code Listing

These are the same as those that were previously described for the PAAS program CPD's except that the section entitled 'Calling Sequence' has been added. A description of that section follows:

3. Calling Sequence

This section presents an example of a typleal FORTRAN call for the module. For function subprograms the example celling sequence is shoun as an assign statement but of course the function reference can be embedded in a FORTRAN arithmetic statement.

FUNCTION BESS

1. MODULE IDENTIFICATIDN

Name	Classification Code	Reference Number
BESS	Subordinate	Not User Referenced

2. PURPOSE

This function is used to compute the value of a Bessel function.
3. INPUT PARAMETERS

Neme $0 / R$ Description
$0 \quad R \quad F \quad$ The order of the Bessel function
$2 \quad R \quad F \quad$ The argument of the Bessel function.
4. CALLINC SEQUENCE
$\operatorname{BS}=\operatorname{BESS}(0, Z)$

Where: 0,Z are the Input arguments
BS contains the computed value of the Besse: function
5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. This subprogram was obtalned from the Computer Program Documentation for AF Contract F30602-67-C-0074.
b. External References:
GAM
DABS
c. Referenced labeled common areas:
None

6. FORTRAN LISTING

C

c
FUNCTION BESS (O,Z)
DOUBLE PRECISION A1,A2,BS,ADD,GAM,C
C
IF (2.NE.0.0) CO TO 40
$\operatorname{IF}(0 . E Q .0 .0) \mathrm{BS}=1.0$
$\operatorname{IF}(0 . \mathrm{NE} .0 .0) \mathrm{BS}=0.0$
CO TO 100
40 SKALL=1.0E-8
IF(0)100,31,32
31 BS $=1.0$
AKV=0.0
A1-1.0
52 AKV $-A K V+1.0$
AI=A1*(-1.0)*(2/2.0)**2/(AKV*AKV)
BS $=B S+A 1$
IF(DABS(A1/ES)-SMALL)51,52,52
51 CO TO 100
$32 A=0$
$\mathrm{N}=0$
$13 \mathrm{IF}(\mathrm{A}-1.0) 10,12,12$
$12 A=A-1.0$
$\mathrm{N}=\mathrm{N}+1$
CO TD 13
10 ARC=A
$\mathrm{C}=\mathrm{CAM}$ (ARG)
A2=1.0
JF(N) $100.76,75$
75 DO $26 \mathrm{NV}=1, \mathrm{~N}$
$A J=N V-1$
IF (A2.CT.1.0E-38) CO TO 26
$B S=0.0$
CO TO 100
26 A2-A2*(Z/2.0)/(D-AJ)
76 A2-A2*(2/2.0)**ARG/G
BS=A2
AKV=0.0
A1=1.0

```
    21 AKV-AKV+1.0
        A1*A1*(-1.0)*(Z/2.0)**2/(AKV*(AKV+O))
        ADD~A1 *A2
        BS=ES+ADD
        IF(BS.FW.0.0) CO %O21
        TEST=DABS(ADD/BS)
        IF(TEST-SMALL)100,21,21
100 BESS=BS
        RETURN
        END
```


SUBROUTINE CHOP

1. PURPOSE

The purpose of this subroutine is to convert an integer number into two ASCII characters. The ASCII characters are packed, right-adjusted, into an output word.
2. INPUT PARAMETERS
Name \quad O/R Description

IDAT $\quad I \quad$ The integer word to be processed
IOUT $\quad I \quad$ The output word conteining two ASCII characters.
3. CALLING SEQUENCE

CALL CHOP(IDAT,IOUT)
4. RESTRICTIONS, REQUIREMENTS. MISCELLANEDUS DATA
8. The input word, IDAT, must be in the following range:
$-2^{11}<$ IDAT $<2^{11}-1$
5. SUBPROCRAMS REQUIRED

None
6. THEORY OF OPERATION

The input word, IDAT, contains at most 12 significant bits. The rightmost 12 bits are extracted from IDAT and separated into two 6 bit characters. II and I2. The characters II and I2 have values which range from to 63 and include the ASCII control
character region from 0 io 31 . In order to ensure that these charecters cannot have values in the control character region, the number 32 is addec to each. If this is not done, problems arlse with the H6180 TSS processing. These charasters are packed, right-adjusted, into the output word, IOUT, and control returns to the calling (sub)program.

7. FORTRAN LISTING

```
SUBROUTINE CHOP(IDAT,IOUT)
I{=FLD(24,6,IDAT)
I2=FLD(30,6,IDAT)
IOUT=0
FLD(18,9,IOUT)=I1+32
FLD(27,9,IOUT)=I2+32
RETURN
END
```


SUBROUTINE CZFFT

1. PURPOSE

This subroutine performs the inverse discrete Fourler transform of a sequence of lnput data samples. The mechanization is based on the Fast Fourier Transform (FFT) algorithm developed by Langdon and Sande from the approach of J. W. Tukey and J. Cooley. The subroutine described herein has been structured to facilitate the efficient computation of 2 -dimensional discrete inverse Fourier trensforms.

2. INPUT PARAMETERS

Name \quad IR Description

N2 \quad I Power of 2 which determines the total number of points (NTHPOY) transformed by the FFT

IOFST R I Offset of the first sample to be transformed from the front of the array S

IHOP R I Power of 2 which determines the spacing between the samples (NHOP) to be trensformed.
3. CALLING SEQUENCES

CALL CZFFT(S,N2,IOFST,IHOP)

Where: S is a complex array containing the date to be processed. The output samples are placed into the array S also.
4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. The maximum value of N 2 is 11 , which gives 2048 samples.
b. In order to minimize the CPU time requirements of this subroutine, a complex exponential look up teble 1 s used.
c. Source PRMFL:

BECAVUO1/SUPORTSJR/SCZFFT
d. Object PRMFL:

BECAVU01/SUPORTEJR/OCZFFT
5. SUBPROGRAMS REQUIRED

COS
SIN
6. THEORY OF OPERATION

Refer to RADSIM-CPD-2FFT.
7. FORTRAN LISTING

SUBROUTINE CZFFT(S,N2,IOFST,IHOP)
C
C $S \gg / S U P O R T / S C Z F F T$
C $0 \gg / S U P O R T / O C Z F F T$
C
DATA PI2/6.28318531/
DATA IFLAG/O/, NHOPO/-1/
COMPLEK S(1), C,C1,C2,C3,C4, $\operatorname{XEXP}(1536)$
REAL I,I1,I2,I3,I4,RK(2)
INTEGER PASS, SEQLOC, L(15)
EQUIVALENCE (J,JI), (PASS,J6),(NKTLTH,J7),
(LENGTH, J8), (SEQLOC, J9), (ISCALE, J10),

* (IARC, J11), (A1, J12), (RK(1),I4,C).
* (RK(2),R4)

EQUIVALENCE (L15,L(1)),(L14,L(2)),(L13,L(3)), (L12,L(4)),(L11,L(5)),(L10,L(6)).

* (L9,L(7)),(L8,L(8)),(L7,L(9)),
* (L6,L(10)),(L5,L(11)),(L4,L(12)),
* (L3,L(13)),(L2,L(14)),(L1,L(15))

NHOP -2 * * IHOP
IOFST1-IOFST+1
c
C IF IFLAGOD THEN LOAD THE COMPLEX
C EKPONENTIAL TABLE, XEXP
c
IF(IFLAC.EQ.1) CO TD 502
DARG=PI2/2048.0
ARG-0.0
DO $500 \mathrm{~J}=1,1536$
ARC=ARC+DARC
$\operatorname{KEKP}(J)=\operatorname{CMPLX}(\operatorname{COS}(A R G), S I N(A R G))$
500 CONTINUE
IFLAC=1
502 IF(NHOP.EQ.NHOPO) CO TO 503
DO $6 \mathrm{~J}=1,15$
L(J) =NHOP
6 IF (J.LE.N2) $L(J)=(2 * *(N 2+1-J)) * N H O P$
NTHPOK - $2 * *$ N2;NHOPO-NHOP

```
    N4POH = N2 /2
    503 NTTL=NTHPOK *NHOP
    IF(N4PON.EQ.0) CO TO 3
C
C PERFDRM RADIX 4 TRANSFORM
C
    DO 2 PASS=1,N4POH
    NKTLTH-2**( N2 -2*PASS)
    LENGTH=4 *NKTLTH
    IDEL=2048/LENGTH
    IADDH=NKTLTH*NHOP
    LENGTH-LENCTH *NHOP
    DO 2 J=1,NKTLTH
    IARC1=(J-1)*IDEL
    IARC2=IARC1+IARG1
    IARG3-IARC2+IARC1
    MLOC=IOFST1-LENGTH+(J-1)*NHOP
    DO 2 SEQLOC-LENGTH,NTTL,LENGTH
    J1 = SEQLOC+MLOC
    J2 - J1+IADDH
    J3 = `2+IADDH
    J4 - J3+IADDH
    C1mS(J1)+S(J3)
    C2-S(J1)-S(J3)
    C3=S(J2)+S(J4)
    C=S(J2)-S(J4)
    C4=CMPLK(-R4,I4)
    S(J1)=C1+C3
    IF(J.EQ.1) CO TO 1
    S(J3)=KEXP(IARG1)*(C2+C4)
    S(J2)=XEXP(IARG2)*(C1-C3)
    S(J4)=XEXP(IARC3)*(C2-C4)
    GO TO 2
1 S(JJ)=C2+C4
    S(J2)=C1-C3
    S(J4)=C2-C4
    2 CONTINUE
C
C PERFORM RADIK 2 TRANSFORM IF REQUIRED
C
    3 IF( N2 .EQ. 2*N4POW) CO TO 5
```

 NHOP2 = NHOP *2
 NSTOP=NTTL+IOFST
 DO 4 J=IOFST1,NSTOP,NHOP2
 C-S(J)+S(J+NHOP)
 S(J+NHOP)=S(J)-S(J+NHOP)
 S(J)=C
 CONTINUE
 C
C OUTPUT CURRENTLY IS ORGANIZED UITH
C BIT REVERSED ADDRESSING
C THIS SECTION PLACES OUTPUT IN THE
C CORRECT ORDER
C
IJ=1
J1-1
DO 7 J2=J1,L2.L1
00 7 J3-J2,L3,L2
DO 7 J4mJ3,L4,L3
DO 7 J5mJ4,L5,L4
DO 7 J6mJ5.L6,L5
DO 7 J7mJ6,L7,L6
DO 7 J8=J7,L8,L7
DO }7\mathrm{ J9mJ8,L3,L8
DO 7 J10-J9,L10,L9
DO 7 J11=J10,L11,L10
DO 7 J12-J11,L12,L11
DO 7 J13=J12,L13,L12
DO 7 J14 =J13,L14,L13
DO 7 JI-J14,L15,L14
IF(IJ.GE.JI) CO TO 7
KJ=IJ+IOFST
JK=JI+IOFST
C=S(KJ)
S(KJ)=S(JK)
S(JK)=C
7 IJ=IJ+NHOP
J1=NTTL/2+IOFST
J2=.J1+1
DO 14 J3-IOFST1,J1,NHOP
C=S(J3)
S(J3)-S(J2)

$S(J 2)=C$ J2=J2+NHOP
 14 CONTINUE
 RETURN
 END

FUNCTION EXPND

1. PURPOSE

The function EXPND 1 s used to compute the value of a Bessel function of the first kind and the zeroth order.

2. INPUT PARAMETERS

Name	O/R	T	Description
$\mathbf{X 2}$	R	F	Independent variable.

3. CALLING SEQUENCE

VAR-EKPND(K_{2})

Where: X2 is the Input argument
VAR contalns the computed value of the Bessel function
4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. The Bessel function expansion used herein wes obtcined from:

Rabiner, L. R., Cold, B., Theory and Application of Digitel Signal Processing, Englewood Cliffs, NJ: Prentice-Hall. Inc., 1975. pp. 88-105.
5. SUBPROGRAMS REQUIRED

None
6. THEORY OF OPERATION

EXPND evaluates the serles expansion of the Bessel
function of the first kind and order zero with an imaginary argument. The series is shown below (4.1).

$$
\operatorname{EXPND}(X 2)=1+{\left.\frac{(X 2}{2}\right)^{2}}_{2}+\frac{(X 2 / 2)^{4}}{(21)^{2}}+\frac{(X 2 / 2)^{6}}{(31)^{2}}+\frac{(X 2 / 2)^{8}}{(41)^{2}}+\ldots
$$

7. FORTRAN LISTINC

FUNCTION EKPND(X2)

KB2SQ-K2 *K2 * 0.25
SUM=1.0+KB2SQ
ADDON=KB2SQ
DO $110 \mathrm{Jm} 2,20$
AJ=FLOAT(J)
IF(ABS(ADDON).LT.ABS(SUM*1.0E-06)) CO TO 200 ADCON-ADDON *KB2SQ/(AJ*AJ)
110 SUM=SUM+ADDON
200 EXPND-SUM
RETURN
END

SUBROUTINE FFT2D

1. PURPOSE

This subroutine computes the two-dimensionel discrete Fourler transforill of a planar array of samples.

2. INPUT PARAMETERS

Name	ORR	I	Description
N2	\boldsymbol{R}	I	Tha power of 2 which defines the length of each side of the 2-D transform.
LRJ	R	I	The number of logical record blocks in the x-direction of the input file (horizontally).
LRK	R	I	The number of logical record blocks in the y-direction of the input file (vertically).
LRJIN	R	I	The number of blocks to be skipped in the x-direction. starting on the left, before storing the output.
LRJYID	\boldsymbol{R}	I	The width in blocks of the desired far-field output.
LRKIN	R	I	The number of blocks to be skipped in the y-direction. starting at the top, before storing the output.
LRKWID	R	I	The belght in blocks of the desired far-field output.

3. CALLING SEQUENCE

CALL FFT2D (N2,LRJ,LRK,S,LRSDJ,LRSDK,SL)
Where: N2 $=$ Power of 2 that determines the length of each side of the $2-D$ transform.

LRJ - The number of logical record blocks in the x-direction of the input file.

LRK = The number of logical record blocks in the y-direction of the input file.

S - A two-dimensional array used to store the blocks of the input file for processing.

LRSDJ = Object-time dimension constent for the x dimeision of the array S.

LRSDK - Object-time dimension constant for the y dimension of the array S.

SL - A one-dimensional array equivalenced to S, used for intermediate 2-D processing.
4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. Refsrence:

Hansen, R. C., Microwave Scanning Antennas, Vol. 2, New York: Academic Press, Inc., 1964.
5. SUBPROCRAMS REQUIRED

CZFFT

6. THEORY OF OPERATION

The relationship between a finite linear array of radiators and its corresponding far-field is given by the following equation

$$
\begin{equation*}
E(\theta)=\sum_{n=1}^{N} G(n) e^{j n k d} x \sin \theta \tag{A3.1}
\end{equation*}
$$

where $k=2 \pi / \lambda$ and d_{x} is the interelement spacing. $G(n)$ is the current gain of the $n^{t h}$ radiator. This equation assumes isotrophic radiators. Now by latting a new variable p be equal to the following:

$$
p=\operatorname{Nk~}_{x} \sin \theta
$$

the expression in Equation a3.1 becomes the following equation

$$
\hat{E}(p)=\sum_{n=1}^{N} Q(n) e^{J(P n / N)}
$$

which is in the form of the IDFT. This expression can be calculated using standard FFT techniques. The structure of the one dimensional FFT algorithm requires the input data to be in the order that is shoun in Figure FFT2D-1. If this reorgenization 15 not implemented the output data will have a 180° phase shift from one point to the next. This problem also arises when the 2D-FFT is performed. A shuffle of blocis of data rather than line segments must be done to prevent the problem from occurring. Figure FFT2D-2 illustrates the organization of the aperture shuffle.

Figure FFT2D-1: Organization of input data required by linear FFT algorithm.

Figure FFT2D-2: Organization of input data required by 2-D FFT algorithm.

In the case in which the entenna aperture has a smaller number of points than the desired far-fileld, there must be some 'zero' blocks or blocks loaded with zeros to pad the input aperture lnto the far-field point configuration. Figure FFT2D-3 1llustrates the padding with the zero blocks end the shuffle.

The input aperture field with dimensions LRJ \times LRK blocks is split into the four corners of the transform field. The transform field has $2^{\text {N2 }}$ points on a side. This 15 Lllustrated in Figure FFT2D-4.

Each row of this matrix is now transformed, one at a time, starting at the top. Since the middle ($2^{\text {N2/16 }} \mathbf{1}$-LRK rows are $z e r o$, the transform is equal to zero. Therefore, the program skips these rows and begins at the top of section B. This avolds a waste of computer time. Now that the first transform has been executed, if the whole far-field is required, the second transform, which is the columns of the intermediate result, must execute a complete $2^{\mathrm{N} 2} \times 2^{\mathrm{Na}}$ point transform. In most cases, however, the whole far-field 15 not required and only a small vertical section needs to be transformed. Flgure FFT2D-5 $1 s$ provided to lllustrate this situation. The transform fleld $152^{\mathrm{N} 2 / 16}$ blocks on a side. If the user only wishes to look at a section of blocks that have dimensions LRJWID x LRKWID, only a vertical stripe LRJWID wide needs to be transformed. Since the transform of the other columins of the matrix have no effect on the transform of the columns in the stripe, it would again be a waste of computer time. Only the double crosshatched area of Figure FFT2D-5 is stored in the output PRMFL. If two complete $2^{N 2} \times 2^{N 2}$ transforms were executed the total number of complex points processed would be $2^{\text {Nia*4 }}$. Using this scheme only (LRK*16)*(LRJKID*16)*2N2*2 complex points are processed. For the case of $N 2=8$, and LRK = LRJYID 4, oniy 6.25% of the total number of complex points are processed. ${ }^{\text {e, }}$

Figure FFT2D-3:- Drganization of input data with zero blocks required by 2-D FFT algorithm.

a) $\underset{\substack{\text { Orginal Antenna } \\ \text { Aperture }}}{\text { and }}$

b) Shuffled Antenna Aperture

Figure FFT2D-4: Organization of input data showing block measurements for the 2D-FFT algorithm.

Figure FFT2D-5: Far-field output data from 2-D FFT
7. FORTRAN LISTINC

C
C
C
SUBROUTINE FFT2D(N2,LRJ,LRK,S,LRSDJ,LRSDK,S1) COMPLEK ALRZ(256),S(LRSDJ,' ${ }^{\text {MSDK), S1 (1) }}$
CALL PTIME(OTIME)
NAMELIST/FILOUT/LRJIN,LRJWID,LRKIN,LRKYID
READ (05, FILOUT)
URITE(O6,FILOUT)
LRSIDJ=LRSDJ/16
ICRNR=LRSIDJ *(LRKIN+LRKHID)
LRSTP=0
DO 100 I-1,256
$100 \mathrm{ALRZ}(\mathrm{I})=(0.0 .0 .0)$
LRNHR=0
LRIIN=(1+LRK)*LRJ/2
220 LRHKR=0
LR2-LRSTP+1
LRNMR1=0
JST=1
JSTP=16
CO TO 300
230 LRST=LRSTP+1
LRSTP=LRST+(LRSIDJ-LRJ)-1
DO 240 LR1=LRST,LRSTP
DO 235 K=1,16
DO 235 J=JST,JSTP
$235 S(J, K)=(0.0,0.0)$
LRMKR=LRMKR+1
JST=JSTP+1
240 JSTP=JST+15
250 LRIIN-LRR-LRJ/2
300 LRST-LRSTP+1
LRSTP=LRST+LRJ/2-1
LRR=LRIIN
DO 310 LR1-LRST, LRSTP
LRIIN-LRIIN+1

```
    READ(01`LRIIN)((S(J,K),J=JST,JSTP),K=1,16)
    LRMKR=LRMKR+1
    LRNMR1=LRNMR1+1
    LRNMR-LRNMR+1
    JST=JSTP+1
310 JSTP=JST+15
    IF(LRMKR.EQ.LRSIDJ) CO TO 400
    IF((LRSIDJ-LRJ`.NE.0) CO TO 230
    GO TO 250
400 IOFST=0
    IHOP=0
    DO 500 K=1,16
    CALL CZFFT(S,N2,IOFST,IHOP)
500 IOFST-IOFST+LRSDJ
    DO 510 JST-1,LRSDJ.16
    JSTP=JST+15
    URITE(03'LR2)((S(J,K),J=JST,JSTP),K=1,16)
    LR2-LR2+1
510 CONTINUE
    LRMKR=0
    LRIIN-LRIIN+LRJ
    LRHALF=(LRJ*LRK)/2
    IF(LRNMRI.EQ.LRHALF) GO TO 520
    JST=1
    JSTPm16
    CO TO 300
520 IF(LRNMR.EQ.(LRJ*LRK)) CO TO 800
    IF((LRSIDJ-LRK).EQ.0) CO TO 720
    LRST=L.RSTP+1
700 LRSTP=LRST+LRSIDJ-1
    DO 710 LR1=LRST,LRSTP
710 URITE(03'LR1) ALRZ
    LRZSTP=LRSIDJ*(LRSIDJ-LRK/2)
    IF(LKSTP.GE.LRZSTP) CO TO 720
    LRST=LRSTP+1
    CO TO 700
720 LRIIN-LRJ/2
    CO TO 220
800 LRTTL=0
    LR2RL=0
    LR2-LRJIN
```

810 KST=1
KSTP=256
LRMKR=0
LRHOP=0
LR22=LR2
LR2=LR2+1
830 READ(03'LR2+LRHOP)(SI(KLOC),KLOC=KST,KSTP)
LRMKR=LRMKR+1
LRHOP=LRHOP+LRSIDJ
KST-KSTP+1
KSTP=KST+255
IF(LRMKR.NE.LRSIDJ) CO TO 830
IOFST=0
IHOP=4
DO }840\textrm{K}=1.1
CALL CZFFT(S,N2,IOFST,IHOP)
840 IOFST=IOFST+1
LR2=LR22
KST=1
KSTP=256
LRMKR=0
LRHOP=0
LR2=LR2+1
LRBUMP=0
LR2RL=LR2RL+1
860 IF'(LR2+LRHOP.LT .(LRKIN *LRSIDJ).OR.
* (LR2+LRHOP).IT.ICRNR) CO TO }86
URITE(O2'(LR2RL+LRBUMP))(S1(KLDC).
* KLOC=KST,KSTP)
LRBUMP=LRBUMP+LRJWID
865 LRTTL=LRTTL+1
LRMKR=LRMKR+1
LRHOP=LRHOP+LRSIDJ
KST=KSTP+1
KSTP=KST+2E5
IF(LRMKR.NE.LRSIDJ) CO TO 860
IF(LRTTL.NE.(LRSIDJ*LRJHID)) CO TO }81
CALL PTIME(TIME)
TIME=(TIME-OTIME)*3600.0

```

\author{
WRITE(06,870) TIME \\ 870 FORMAT(' EKECUTION TIME = .,F10.4) \\ RETURN \\ END
}

\section*{PROGRAM FFT2DK}
1. PURPOSE

The program FFT2DK generates a far-field complex voltage pattern from an existing antenna aperture distribution which is stored in a PRMFL. FFT2DX maps the lllumination to the far-field using a two-dimensional Fourier transform. The far-field is stored on a PRMFL designated by the user.
2. INPUT PARAMETERS
\begin{tabular}{|c|c|c|c|}
\hline Name & \(0 / R\) & I & Description \\
\hline N2 & R & I & The power of 2 which defines the length of each side of the 2-D transform. \\
\hline LRJ & \(R\) & I & The number of logical record blocks in the x-direction of the input file (horizontally). \\
\hline LRK & \(R\) & I & The number of logical record blocks in the \(y\)-direction of the input file (vertically). \\
\hline LRJIN & R & I & The number of blocks to be skipped in the x-direction. starting on the left, before storing the output. \\
\hline LRJUID & R & I & The width in blocks of the deslrad far-fleld output. \\
\hline LRKIN & \(R\) & \(I\) & The number of blocks to be skipped in the y-direction, starting at the top, before storing the output. \\
\hline
\end{tabular}

The height in blocis of the desired far-field output.
3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. N2 must be in the range \(4 \leq N 2 \leq 10\)
b. LRJ,LRK must be even and exactly the same values as were specifled in loading the aperture distribution PRMFL.
4. SUBPROGRAMS REQUIRED

FFT2D
5. THEORY OF OPERATION

FFT2DX initializes the array dimensions required for the subroutine FFT2D.

\title{
PAAS-CPD-FFT2DX
}

16 JUN 77

\section*{6. FORTRAN LISTINC}

PARAMETER LENG-8192
COMMON S(LENG)
COMPLEK S,S1(1)
EQUIVALENCE (S1(1),S(1))
CALL RANSIZ (01,512)
CALL RANSIZ (02.512)
CALL RANSIZ \((03,512)\)
NAMELIST/FFT/N2,LRJ,LRK
\(\operatorname{READ}(05, F F T)\)
WRITE(06, FFT)
LRSDJ-2 **N2
LRSDK-LENGへRSDJ
IF(LRSDK.GT.LRSDJ) LRSDK=LRSDJ
CALL FFT2D(N2,LRJ,LRK,S,LRSDJ,LRSDK,S1)
CALL EKIT
STOP
END

\section*{1. PURPOSE}

This program modif!pe ovisting nporture current distributions that are stnind in a PRMFL. The program allows the user to list andior change individual element values. The program also allows the user to 'punch holes in the current distribution with specified radius and center. The modifled file may be elther written over the input. PKMFL or may be stored on another usar specifled PRMFL.

\section*{2. INPUT PARAMETERS}
\begin{tabular}{|c|c|c|c|}
\hline Name & \(0 / R\) & T & Description \\
\hline LRJ & \(R\) & I & Number of logical record blocks in the x-direction (horizontally). \\
\hline LRK & \(\boldsymbol{R}\) & I & Number of logical record blocks in the \(y\)-direction (vertically). \\
\hline IBLK & 0 & I & A pointer to indicate the logicsl record block to be modified. \\
\hline JSTRT & 0 & I & The horizontal coordinate to begin the element value ilsting. \\
\hline KSTRT & 0 & I & The vertical coordinate to begin the element value listing. \\
\hline JSTP & 0 & I & The horizontal coordinate to stop the element value listing. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline KSTP & 0 & I & The vertical coordinate to stop the element value listing. \\
\hline IELJ & 0 & I & The horizontal coordinate of the element to be changed. \\
\hline IELK & 0 & I & The vertical coordinate of the element to be changed. \\
\hline VREAL & 0 & F & The real part of the new element value. \\
\hline VIMC & 0 & F & The imaginary part of the now element value. \\
\hline ICNTJ & 0 & I & The horizontal coordinate for the center of the hole. \\
\hline ICNTK & 0 & \(I\) & The vertical coordinate for the center of the hole. \\
\hline KHOLE & 0 & F & The radius of the hole to be punched in the aperture illumination. \\
\hline
\end{tabular}

\section*{3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA}
a. The values of JSTRT,KSTRT, JSTP, KSTP,IELJ,IELK are all assigned with respect to the upper left corner of each block which has the coordinates (1,1).
b. The values of ICNTJ,ICNTK are assigned with respect to the upper left corner of the aperture field having the coordinates \((1,1)\).
4. SUBPROCRAMS REQUIRED

None

\section*{5. THEORY OF OPERATION}

In the section of the program that llsts or changes individual element values, the program reads the specifled block into an array \(A(J, K)\) that \(1 s\) complex and has dmensions (16,16). The index \(J\) increments the fastest. When a list is requested, the values of the elements start with the loration (JSTRT,KSTRT), (JSTRI+1,KSTRT),...,(JSTP,KSTRT), (JSTRT,KSTRT+1),.... (JSTP,KSTRT+1), ....(JSTP,KSTP), 1.e., from the upper left hand element down to the lower rlght hand element. This process is repeated for each block requested.

The element values of each block are changed according to the location and value glven by the equation:

\section*{A(IELJ,IELK)=CMPLK (VREAL,VIMG)}

This is repeated for the totel number of element changes requested and for each blnck requested.

Holes \(1 n\) the aperture 111 umanation are punched with a radius determined by KHOLE. The center of the hole is located at the aperture coordinate (ICNTJ,ICNTK). The values of ICNTJ and ICNTK are assigned with respect to the (1,1) element of logical record block number one having the aperture coordinates (1,1). The upper left element in the aperture field has the coordinates (1.1). The program sequeritially steps through the aperture blocks staring with block one and proceeding to block LRTTL (-LRJ*LRK). The distances from the elements 1 n each block to the element located at (ICNTJ,ICNTK) are celsulsted. A comparison of sach distance to the length XHOLE 15 made. If the distance 15 less than or equal to KHOLE, the element value \(1 s\) changed to \(\operatorname{CMPLK}(0.0,0.0)\). Othervise, the olement value is urichanged. In this way holes with radius XHOLE are made in the aperture current distribution.

\section*{6. FORTRAN LISTINE}
```

 COMPLEK A(16,16)
 CHARACTER FILIN*20,FILOUT*20.Y*1,X*1
 DATA IOK/0400000000000/,Y/'Y'/
 200 FORMAT(V)
200 WRITE(06.100) "INPUT FILE NAME"
READ 100.FILIN
LUDIN=01
CALL ATTACH(01,FILIN, 3,1,ISTAT,)
IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) CO TO 400
WRITE(06,300)ISTAT
300 FORMAT('UNSUCCESSFUL ATTACH ISTAT='.020)
CO TO 200
4 0 0 ~ C A L L ~ R A N S I Z (0 1 , 5 1 2) ~
URITE(06,100) 'OUTPUT FILE NAME'
READ 100,FILOUT
LUDOUT-02
IF(FILIN.NE.FILOUT) GO TO 450
LUDOUT=01
CC TO 500
450 CALL ATTACH(02,FILOUT,3,1,ISTAT,)
IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) CO TO 499
WRITE(06,300) ISTAT
CO TO 400
4 9 9 ~ C A L L ~ R A N S I Z (0 2 , 5 1 2) ~
500 VRITE(06.100) 'LRJ,LRK'
READ 100,LRJ,LRK
LRTTL=LRJ 2LRK
LRTTL1=LRTTL+1
URITE(06,100) "MODIFY OR HOLE? (0 OR 1)'
READ 100,MODFLC
ITMP=1
IF(MODFLG.EQ.1) CO TO 1000
600 HRITE(06.100) "IBLK'
READ 100.IBLK
IF(IBLK.EQ.ITMP) GO TO 650
IF(LUDIN.EQ.LUDOUT) CO TO 650
DO 620 IBK=ITMS,IBLK-1
READ(LUDIN'IBK)A

```
```

 URITE(LUDOUT'IBK)A
 6 2 0 ~ C O N T I N U E ~
650 ITMP=IBLK+1
READ(LUDIN'IBLK)A
700 VRITE(06,100) 'ANY ELEMENTS LISTED? (Y OR N)'
READ 100,K
IF(X.NE.Y) GO TO 750
HRITE(06,100) 'JSTRT,KSTRT,JSTP,KSTP"
READ 100, JETRT,KSTRT,JSTP,KSTP
WRITE(06,730)((A(J,K),J=JSTRT,JSTP),K=KSTRT,KSTP)
730 FORMAT((2E12.5)/)
WRITE(06,100) 'ANY ELEMENTS CHANGED? (Y OR N)'
READ 100,X
IF(X.NE.Y) CO TO 720
750 WRITE(06,100) "HOY MANY ELEMENTS CHANGED?'
READ 100,NELE
IF(NELE.LE.0) CO TO 770
IF(NELE.GT.100) CO TO 750
DO }760\mathrm{ Im1,NELE
VRITE(06,100) 'IELJ,IELK,VREAL,VIMC'
READ 100,IJ,IK,VREAL,VIMG
A(IJ,IK)=CMPLK(VREAL,VIMG)
760 CONTINUE
720 HRITE(06,100) 'ANY MORE MODS OR LISTT (Y OR N)'
READ 100, %
IF(K.EQ.Y) CO TO 700
770 WRITE(LUDOUT'IBLK)A
URITE(06,100) 'ANOTHER BLOCK? (Y OR N)'
READ 100. K
IF(K.EQ.Y) CO TO 600
IF(ITMP.EQ.LRTTL1) CO TO 900
IF(LUDIN.EQ.LUDOUT) CO TO 900
DO 800 IBK=ITMP,LRTTL
READ(LUDIN'IBK)A
HRITE(LUDOUT'IBK)A
800 CONTINUE
900 HRITE(06,100) 'ANY HOLES? (Y OR N)'
READ 100,K
IF(K.NE.Y) CO TO 1700
LUDIN-02
IF(FILIN.EQ.FILOUT) LUDIN-01

```
```

1000 WRITE(06,100) 'ICNTJ,ICNTK`
READ 100,ICNTJ,ICNTK
WRITE(06,100) 'KHOLE'
READ 100.MHOLE
K.3-0
J1=0
DO 1500 IBLK=1,LRTTL
READ(LUDIN'IBLK)A
DO 1400 KK-1,16
DO 1300 JJ=1,16
K=K1+KX
J=J1+JJ
XJD-ABS(ICNTJ-J) *ABS(ICNTJ-J)
KKD=ABS(ICNTK-K)*ABS(ICNTK-K)
DST-SQRT(KJD+XKD)
IF(DST.LE.KHOLE) A(JJ,KK)=(0.0.0.0)
1300 CONTINUE
1400 CONTINUE
URITE(LUDOUT'IBLK)A
IF(HOD(TLLK,LRJ).EQ.0) CO TO 1450
J1=J1+16
CO TO 1500
1450 K1=(IBLK/LRJ)*16
J1=0
1500 CONTINUE
URITE(06,100) 'ANOTHER HOLE? (Y OR N)'
READ 100.K
IF(K.NE.Y) CO TO 1600
LUDIN=02
IF(FILIN.EQ.FILOUT) LUDIN=01
GO TO 1000
1600 WRITE(06,100) 'ANY ELEMENT CHANGES? (Y OR N)'
READ 100.X
IF(K.NE.Y) CO TO }170
LUDIN-02
IF(FILIN.EQ.FILOUT) LUDIN-01
CO TO 600
1700 URITE(06,100) 'ANOTHER OUTPUT CENERATED? (Y OR N)'
READ 100.K
IF(K.NE.Y) CO TO 1800
WRITE(06,1750) ISTAT

```
```

1750 FORMAT('DETACH OUTPUT FILE ISTAT=',O20)
LUDIN=01
CO TO 400
1800 WRITE(06,100) 'ANOTHER FILE MODIFIED? (Y OR N)'
READ 100,X
READ(LUDIN'LRTTL)A
READ(LUDOUT'LRTTL)A
WRITE(06,1850) ISTAT
IF(LUDOUS.EQ.1) CO TO 1893
WRITE(06,1750) ISTAT
1850 FORMAT('DETACH INPUT FILE ISTAT=',O20)
1899 IF(X.EQ.Y) CO TO 200
1900 CONTINUE
STOP
END

```

\section*{DOUBLE PRECISION FUNCTION GAM}
1. MODULE IDENTIFICATION
\begin{tabular}{lll} 
Name & Classification Code \\
GAM & Rubordinaterence Number
\end{tabular}
2. PURPOSE

This function is used to compute the velue of the Gamma function.
3. INPUT PARAMETERS

Neme D T Description
X \(\quad\) R \(F \quad\) Argument of the Comma function.
4. CALLING SEQUENCE
\(G=\operatorname{CAM}(X)\)
```

Where: X is the Input argument
C contains the computed value of the Camme function.

```
5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. The argument, \(X\), must be within the following range: \(0 \leq X \leq 1.0\)
b. The maximum error in computing the Gamma function \(15 \pm 3.0 \times 10^{-7}\).
c. Reference: Handbook of Mathematical Functions by M. Abramovitz and I. A. Slegun, Dover, Inc., p. 257.
d. External References:

None
e. Referenced labeled common areas:

None
6. THEORY OF OPERATION

The polynomial expansion for the Camma function of \(x+1\) is given by the following expression:
\[
(x+1)=\sum_{m=0}^{8} b_{m} x^{m}+\varepsilon(x)
\]

Hhere: bo \(=1.0\)
\[
b_{1}=0.577131652
\]
\[
\mathrm{b}_{2}=0.388205851
\]
\[
b_{3}=-0.837058537
\]
\[
b_{4}=0.918206857
\]
\(b_{5}=-0.756704078\)
\(b_{6}=0.422159394\)
```

b
b
|E(x)|\leq3.0810-7

```

\section*{7. FORTRAN LISTING}

C

\author{
DOUBLE PRECISION FUNCTION CAM(X) DQUBLE PRECISION S,GAM \\ \(S=+0.35868343 \mathrm{E}-1\) \\ \(S=S * K-0.193527818\) \\ \(S=S * K+0.482199394\) \\ S-S*K-0.756704078 \\ \(S-S * X+0.918206857\) \\ S=S*K-0.897056937 \\ 3 \(\mathbf{~ S ~} \times \mathrm{K}+0.988205891\) \\ S-S *K \\ GAK=S \(\mathbf{* K + 1 . 0}\) \\ RETURA \\ END
}

\section*{PROGRAM PDFESTR}
1. PURPOSE

This program generates a histogram of the radiating glements in a statistically loaded aperture. The width of each railus cell may be varied and the origin of the radius is user specified.
2. INPUT PARAYETERS
\begin{tabular}{|c|c|c|c|}
\hline Neme & Q/A & I & Description \\
\hline \(\therefore\) Rat & 7 & I & Number of logicel record blocks in the x-direction (horizontally). \\
\hline \(\chi_{4}\) & \(\pi\) & \(\because\) & Number of logical record bloc:s in the \(y\)-direction (vertically). \\
\hline OFS\%: & R & 5 & \begin{tabular}{l}
Value added to the calculated middle of the horizontal \\
aperture field length tr give the offset origin.
\end{tabular} \\
\hline OFSTK & fi & F & Value added to the calculated middle of the vartical aperture field lengtr to give the offset origin. \\
\hline RINC & R & F & Incremental radius or radius cell width used to accumulate the histogram values. \\
\hline RLIM & R & F & The maximum radius value of interest. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ICON & R & I & \begin{tabular}{l}
Mode flag \\
－ 1 Program halts \\
－O Histogram is normallzed to a unit cumulative distribution． \\
－ 1 Histogram data 15 converted to probabillty density estimate data．The rav data is divided by the product of the cell width and the total number of elements． \\
\(=2\) Raw histograll data
\end{tabular} \\
\hline NDPACK & R & I & The number of incremental radius histogram cells．RINC，combined to make each output histogram cell． \\
\hline
\end{tabular}

3．RESTRICTIONS，REQUIREMENTS，MISCELLANEOUS DATA
Nane

4．SUBPROGRAMS REQUIRED
None

5．THEORY OF OPERATION
The program sequentially reads the logical record blocks into the array \(A(J, K)\) ，which has dimensions （16，16）and is complex．The program starts with block number one and cont，nues through block number LRTTL （＝LRJ＊LRK）．The elements of each block are then processed．If the element value is CMPLX（ \(0.0,0.0\) ）then the program proceeds to the next element．For non－zero element values the radius from the element to the origin is calculated．A counter in the appropriate radius cell of the array \(X F(I A D D)\) is s．acremented and the progrem proceeds to process the next element． After all of the elements in the aperture fleld have
been processed, the raw histograll 15 contalned in the array \(X F(1)\) with each cell corresponding to an annulus With radius \(R\) a I*RINC and width RINC. The program then combines the radius cells in groups and stores them in the array DATOT(J). NDPACK consecutiv's radius cells are put in each group, thus reducing the number of histogram cells by a factor of \(1 /\) NDPACK. The histogram data is then modified and dumped according to the value of ICON.

For ICON=0

\section*{DATOT(む)=DATOT(J)/CUM}
where CUM is the totel number of elements. Thas data is normalized to a unit cumulative distribution.

For ICON=1
DATOT ( \((3)=\) DATOT ( \((J) /(C U M * R I N C ~ * N D P A C K) ~\)
This data \(1 s\) converted to probability density estimate data.

For ICON=2
\[
\operatorname{DATOT}(\mathrm{J})=\operatorname{DATOT}(\mathrm{J})
\]

The raw histogram data 1 s outputted.
6. FORTRAN LISTINC
```

 COMPLEX A(16,16)
 CHARACTER FILIN*20
 DIMENSION KF(1000),DATOT(300)
 DATA IOK/0400000000000/
 HRITE(06,50) 'LRJ,LRK'
 50 FORMAT(V)
READ 50,LRJ,LRK
URITE(06,50) 'OFSTJ,OFSTK'
READ 50,OFSTJ,OFSTK
400 URITE(06,50) "INPUT FILE'
READ 50,FILIN
CALL ATTACH(01,FILIN,1,1,ISTAT,)
CALL RANSIZ(01,512)
IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) CO TO 300
WRITE(06,350) ISTAT
350 FORMAT(' UNSUCCESSFUL'ATTACH ISTAT=',020)
CO TO 400
300 XMIDJ=LRJ*16/2.0+0.5+OFSTJ
KMIDK=LRK*16/2.0+0.5+OFSTK
VRITE(06,50) 'RINC,RLIM'
READ 50,RINC,RLIM
NIMF=RLIM/RINC
DO 100 I=1,NIKF
KF(I)=0.0
100 CONTINUE
LRTTL=LRJ*LRK
J1=0
K1=0
DO 200 IBLK=1,LRTTL
READ(01'IBLK)A
DO 500 KK=1,16
K=KK+K1
DO 600 JJ=1,16
J=J1+JJ
IF(A(JJ,KK).EQ.(0.0.0.0)) CO TO 600
KJD=(KMIDJ-J)*(XMIDJ-J)
KKD=(KMIDK-K)*(KMIDK-K)
DV=SQRT(KJD+XKD)

```
```

 IADD=IFIX(DV/RINC)+1
 IF(IADD.CT.NIKF) IADD=NIKF
 MF(IADD)= KF (IADD)+1.0
 6 0 0 ~ C O N T I N U E ~
5 0 0 ~ C O N T I N U E ~
IF(MOD(IBLK,LRJ).EQ.0) CO TO 550
J1=J1+16
CO TO 200
550 K1-(IBLK/LRJ)*16
J1=0
200 CONTINUE
700 WRITE(06,50) 'ICON,NDPACK'

```

```

 IF(ICOA.ER.-1) \O TO 1300
 KEND"`:YE/NDPACK
 JJ=-NUFACK
 CUK=0.0
 DO 1000 J=1,KEND
 DEN=0.0
 JJ=JJ+NDPACK
 DO 900 K=1,NDPACK
 DEN=DEN+XF(K+JJ)
 900 CONTINUE
CUM=CUM+DEN
DATOT(J)=DEN
1000 CONTINUE
IF(ICON.EQ.2) CO TO 1200
CUM=1.0/CUM
IF(ICON.EQ.1) CUM=CUM/(RINC*NDPACK)
DO 1100 K=1,KEND
DATOT(K)=DATOT(K)*CUM
1100 CONTINUE
1200 VRITE(06,1210)(DATOT(J),J=1,KEND)
1210 FORMAT(F12.5)
GO TO 700
1300 CALL DETACH(01,ISTAT,)
CALL EKIT
STOP
END

```

\section*{PROGRAM PLARY}

\section*{1. PURPOSE}

This program loads a PRMFL with a user specifled antenna aperture current distribution. The aperture parameters include size, shape, welghting, and several deterministic phase options, including beall ste日ring. Thinned or statistically loaded apertures may also be generated.
2. INPUT PARAMETERS
\begin{tabular}{|c|c|c|c|}
\hline Name & \(0 / R\) & \(\underline{T}\) & Description \\
\hline IAPTFL & R & I & Determine the shape of the aperture to be laaded. \\
\hline & & & \begin{tabular}{l}
- 1 Circular \\
- 2 Elliptlcal \\
- 3 Rectangular
\end{tabular} \\
\hline HEDGE & 0 & F & Radius of the circular aperture. \\
\hline KHOLE & 0 & F & Radius of the hole in a circular or elliptical aperture. \\
\hline NMAJUR & 0 & I & Length of semi-mejor elliptical axis. \\
\hline NMINOR & 0 & \(I\) & Length of semi-minor elliptical axis. \\
\hline NHIDTH & 0 & \(I\) & Width of rectangular aperture. \\
\hline NHICH & 0 & I & Height of rectangular aperture. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline IUTFLE & R & I & \begin{tabular}{l}
Determine the weighting \\
function used in loading the \\
aperture. \\
- Rectangular veighting \\
- 1 Cosine on a pedestal to a power \\
- 2 Blackman \\
- 3 Kalser \\
= 4 Bartlett or triangular \\
- 5 Taylor \\
- 6 Bessel \\
- 7 Cubic \\
- 8 Bayllss
\end{tabular} \\
\hline UTRAD & 0 & F & Radius of the specified weighting function for circular apertures. \\
\hline ZJRAD & 0 & F & Half the span of the veighting function in the \(x\)-direction for elliptical and rectangular apertures. \\
\hline 2KRAD & 0 & F & Half the span of the veighting function in the \(y\)-direction for elliptical and rectangular apertures. \\
\hline UTPED & 0 & \(F\) & The helght of the pedestal for cosine on a pedestal to a power weighting. \\
\hline NHTPOH & 0 & \(I\) & The power of the cosine function for a cosine on a pedestal to a power weighting. \\
\hline HKASIR & 0 & \(F\) & The Kalser variable for the trade-off between main lobe width and side lobe amplitude. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline BESCAL & 0 & F & The maximum weighting amplitude at the eenter or the aperture for the Bessel welghting. \\
\hline CUBK & 0 & F & The weighting amplitude scaling constant for the cubic walght. \\
\hline BESEDC & 0 & \(F\) & The radius scaling constant for the Bessel weighting. \\
\hline DB & 0 & F & The design side lobe amplitude 1 n dB for the Taylor or Bayliss welghting. \\
\hline NBAR & 0 & \(I\) & The number of zeros used to approximate the Dolph-Chebyschev weighting distribution in the Taylor or Bayllss weighting. \\
\hline DELPHJ & 0 & \(F\) & Beam steering in degreas in the x-direction. \\
\hline DELPHK & 0 & F & Beall steering in degrees in the \(y\)-direction. \\
\hline PHERX & 0 & \(F\) & Maximum quadratic phase error in degrees at the edge of the eperture in the x-direction. \\
\hline PHERY & 0 & \(F\) & Maximum quadratic phase error in degrees at the edge of the aperture in the \(y\)-direction. \\
\hline NBITS & \(R\) & I & Number of bits used to control the digital phase shifters. \\
\hline BESERR & 0 & F & The maximum Bessel phase error In degrees at the center of the aperture. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline BSCAL & 0 & \(F\) & The radius scallng constant for the Bessel phase error. \\
\hline LRJ & R & I & The number of logical record blocks in the \(x\)-direction. \\
\hline LRK & R & I & The number of logical resord blocks 1 ." the \(y\)-direction. \\
\hline KKK & 0 & F & The probabllity that an element is located at the peak. \\
\hline MADI & 0 & I & The starting address for selecting random numbers from the random number array. (1 s MAD1 s 128) \\
\hline JRND & 0 & \(I\) & The random number generator initialization constant. ( \(\theta<\) JRND \(<2^{36}-1\) ) \\
\hline
\end{tabular}
3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. The values for LRJ,LRK must be even.
b. Only circular arrays can be statistically loaded.
4. SUBPROGRAMS REQUIRED

EXPND
BESS
GAM
RRAND
HEIGHT
FXOPT

\section*{5. THEORY OF OPERATION}

The program PLARY loads the generated antenna aperture into a PRMFL. The eperture 15 divided into 'blocks' which are 16 elements on a side or a total of 256 elements per block. These blocks define the slze and dimension of the logical records used to write the aperture into the PRMFL. Thus, the number of blocks needed to load the aperture also corresponds to the total number of logical records required. The aperture fleld or the total number of elements avellable is defined by an even number of blocks arranged in columns (LRJ columns) and an even number of blocks in each column (LRK rows). Thus the total number of logical record blocks is LRJ*LRK.

The weights at the edge of a circular aperture are assigned values in a special vay to help smooth out the granularity caused by approximating a clrcular aperture with a grid of rectangularly spaced elements. A square with sides d/2, where \(d\) is the interelement spacing, is constructed centered at each element of the array. The distances from the corners of the square to the center of the aperture are calculated for each element. The number of corners contained by the specifled aperture determines the welght of the element. Each corner counts a weight of 0.25 . Therefore, if all four corners are located within the aperture distribution, then a value of 1.0 ls assigned. Similarly, if only three of the corners are within the aperture distribution the value is 0.75, etc. This also holds for the element values around the hole of the aperture distribution. If all four corners are contalned by the aperture hole, then the element value is 0.0. The number of corners contalned by a radiating part of the aperture determines the value of each element. This technique produces a smoother circular image

The method used to load the elliptical or the rectangular aperture is not quite so sophisticated. The rectangular aperture, since it is being loaded in a rectangular grid, is simply loaded based on whether the element is contalned or 1 s outside of the radiating portion of the aperture distribution. Those elements contalned inside the specified limits are assigned a value of 1.0. All othars are given a value of 0.0. The elliptical aperture is loaded with the same technique as the rectangular aperture. The value of each element is determined by the location of the element with respect to the el.liptical edge. If the element is inside the ellipse, the value is 1.0 . othervise it is 0.0. This technique produces a fairly granular edge. However, if the ellipse is large this effect is minimized.

The degree of phase accuracy in beam stearing is determined by the number of controlling bits. NBITS. The value of the least significant bit of the beam stearing phase shifter, KLSB, can be calculated as follows:
\[
\text { KLSB }=360.0 / 2^{\text {NBITS }} \text { degrees }
\]

The beam steering phase shift. PH , for element \(\mathrm{K}, \mathrm{J}\) is computed from the orthogonal steering angles, DELPHJ,DE:PHK, as follows
\[
\text { PH1 }=\text { DELPHK*(K-XMIDK) }+ \text { UELPHJ*(J-XMIDJ) }
\]
\(\mathrm{PH}=\mathrm{FLOAT}(\mathrm{IFIK}(\mathrm{AMOD}(\mathrm{PH} 1,360.0) / \mathrm{KLSB})) * \mathrm{KLSB} * D T R\)
Where: K,J The element location in the \(y\) and \(x\) coordinates respectively

XMIDK = The mifdie of the aperture in the \(y-s p a n\)

\section*{PAAS-CPD-PLARY 28 APR 78}

\section*{KMIDJ = The middle of the aperture in the \(x\)-span \\ DTR - Degrees to radius conversion constant.}

Given the maximum quadratic phase error at the \(x\) and \(y\) edge of the aperture. PHERK, PHERY, the element to element quadratic phase error is calculated using

PHERR - (YHUK*(K-XMIDK)**2+KMUJ*(J-KMIDJ)**2)*DTR
Where, for a circle

> YMUK - PHERY/(KEDGE)**2
> MHUJ - PHERK \(/\) (KEDCE \() * * 2\)
and the other parameters have the same meaning as above. For the ellipse, the values for KMUJ and YMUK are
```

YMUK = PHERY/(NMINOR)**2

```
XMUJ = PHERK/(NHAJOR)**2

For the rectangular aperture the values are
\[
\begin{aligned}
& \text { YMUK }=\text { PHERY } /(\text { NHICH } / 2) * * 2 \\
& \text { KMUJ }=\text { PHERK } /(\text { NHIDTH } / 2) * * 2
\end{aligned}
\]

The Bessel phase error \(1 s\) determined by first calculating the radis to each element, then scaling the radius by the constant BSCAL. The scaled radius. YRAD, is then used as the argument for evaluation of the Bessel function.

PHBSER - BESERR*BESS (0.0. KRAD)*DTR
\begin{tabular}{|c|c|c|}
\hline Where: & \(\operatorname{BESS}(0.0, \mathrm{KRAD})\) & \(=\) The Bessel function of the first kind and order zero, evaluated at XRAD \\
\hline & BESERR & - A magnitude scaling factor. determines the value of maximum error at the center of the aperture \\
\hline & DTR & - Degrees to radians conversion constant. \\
\hline
\end{tabular}

The total deterministic phase error at each element is the sum of the three independent phase contributions.

PHTTL = PH + PHERR + PHBSER

Where: PHTTL = The total phase error

PH - Beam steering and quantizistion phase error

PHERR - Quadratic phase error

PHBSER = Bessel phase error.
The value assigned to the element in the array \(A(J, K)\) 15
\(A(J, K)=A(J, K) * C H P L K(C O S(P H T T L), S I N(P H T T L))\)

\section*{C}

C 28 APR 78
C 1030
C
COMPLEK A(16,16)
COMMON IHTFLG, HTPED, NHTPOW, HKASIR, F (20), B(20),ANG, NBAR, BESCAL, CUBK1, PII2, BESS1, IAZ, KKK, WMAK, BESEDC
COMMON/BLKRND/MAD1, JRND, KMEAN, SIC2SQ, UL, UEKT DIMENSION U(20), \(2(20)\), BZERO1 (20)
DATA U/1.2196699,2.2331306,3.2383154,4.2410628,
8 5.2427643,6.2439216.7.2447598.8.2453948.
\& \(9.2458927,10.2462933,11.246624,12.246900\) 。
\& 13.247131.14.247334,15.247508.1..247663,
8 17.247796.18.247920.19.248027.20.248129/
DATA BZERO1/0.586067,1.6970509,2.7171939,3.726137.
\(\& \quad 4.7312271,5.7345205,6.7368281,7.7385356\).
\(8 \quad 8.7398505,9.7408945,10.7417435 .11 .7424475\).
8 12.7430408,13.7435477.14.7439856,25.7443579,
8 16.7447044.17.745003,18.7452697,19.7455093/
DATA IOK/0400000000000/
CHARACTER OUTFIL*20, \(X * 1, Y * 1, N * 1\)
DATA \(Y, N / Y^{\prime} \cdot{ }^{\prime} N^{\prime} /\)
CALL \(\operatorname{FKOPT}(68,1,1,0)\)
PI-3.1415926
「II2-2. \(0 /(\) PI *PI)
BESS1-1.0/BESS (0.0.0.0)
590 WRITE 06,140 ) 'OUTPUT FILE NAME'
READ 140, OUTFIL
CALL ATTACH(O1,OUTFIL, 3,1,ISTAT, )
IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) CO TO 141
URITE(06.145) ISTAT
145 FORMAT( \({ }^{\prime}\) ATTACH FAILED ISTAT - '.020)
CO TO 590
141 CALL RANSIZ(01,512)
NAMELIST/APETUR/IAPTFL, KEDCE, XHOLE, NMAJOR,
8 NMINOR, NHIDTH, NHICH WRITE(06,140) 'STATISTICAL TAPER?'
```

 READ 140.K
 IAZ-1
 IF(K.EQ.N) CO TO 600
 IAZ=0
 MRITE(06,140) 'YKK,MAD1,JRND'
 READ 140, KKK,MAD1,JRND
 600 VRITE(06,140) 'IAPTFL'
READ 140,IAPTFL
CO TO(610,620,630),IAPTFL
610 URITE(06,140) 'XEDGE, KHOLE"
READ 140. XEDGE,YHOLE
CO TO 640
620 NRITE(06,140) 'NMAJOR,NMINOR,XHOLE'
READ 140,NMAJOR,NMINOR, KHOLE
GO TO 640
630 WRITE(06,140) 'NWIDTH,NHICH"
READ 140,NYIDTH,NHICH
6 4 0 ~ C O N T I N U E ~
CO TO 670
660 URITE(06,140) 'INVALID IUTFLG"
NAMELIST/NAIT/IUTFLG,NTRAD,ZJRAD, ZKRAD,UTPED,
8
670 URITE(06,140) 'IVTFLG"
READ 140.IVTFLG
IF(IHTFLG.EQ.8.AND.IAPTFL.NE.1) CO TO 660
IF(IHTFLG.EQ.7.AND.IAPTFL.EQ.1) CO TO 660
IF(IYTFLG.EQ.0) CO TO 700
GO TO (810,830,830),IAPTFL
810 URITE(06,140) 'YTRAD'
READ 140,VTRAD
CO TO 800
830 URITE(06,140) 'ZJRAD,ZKRAD'
READ 140,ZJRAD,ZKRAD
UTRAD=AMAK1 (ZJRAD. ZKRAD)
800 CO TO (710,700,730,700,720,740,750,720),IKTFLC
710 URITE(06,140) 'VTPED,NHTFこW'
AEAD 140,YTPED,NWTPOW
CO TO 700
720 WRITE(06,140) 'DB,NBAR'
READ 140,DB,NBAR
NAMELIST/TAYL/DB,NBAR,SIC

```
```

 RAT=10.0**(DB/20.0)
 AA=ALOC(RAT+SQRT(RAT*RAT-1))/PI
 AASQ=AA *AA
 IF(IKTFLG.EQ.8) CO TO 760
 SIC=U(NBAR)/SQRT(AASQ+(NBAR-0.5)**2)
 SIGSQ-SIC*SIC
 DO 252 I=1,NBAR-1
 FNUM-1.0
 FDNM=1.0
 T~U(I)*U(I)
 HII=-0.5
 DO 254 II=1,NBAR-1
 KII-KII+1.0
 FNUK-FNUM*(1.0-T/(SIGSQ*(AASQ+(XII*KII))))
 IF(II.EQ.I) CO TO 254
 FDNM=FDNM*(1.0-T/(U(II)*U(II)))
 254 CONTINUE
ARC-PI*U(I)
F(I)=-BESS(0.0,ARC) =FNUM/FDNM
F(I)=F(I)/(BESS (0.0,ARC)**2)
252 CONTINUE
GO TO 700
730 WRITE(06,140) 'VKASIR'
READ 140,HKASIR
CO TO 700
740 URITE(06,140) 'BESCAL,BESEDG'
READ 140,BESCAL,BESEDC
CO TO 700
750 HRITE(06,140) 'CUBK'
READ 140,CUBK
KXmSQRT(YTRAD*UTRAD/3.0)
CUBK1=CUBK/ABS(KK*(KK-HTRAD)*(KK+HTRAD))
CO TO 700
760 Z(1)=0.9858302+0.0333885*DB+0.00014064*DB*DB
8
Z(1)=2(1)*Z(1)
C(2)=2.00337487+0.01141548*DB+0.0004159 *DB *DB
-0.00000373 *DB*DB*DB+0.00000001 *DB *DB *DB *DB
Z(2)=2(2)*2(2)
Z(3)=3.00636321+0.00683394*DB+0.00029281 *DB *DB
8
-0.00000161*DB*DB*DB

```
```

 2(3)=2(3)*2(3)
 Z(4)=4.00518423+0.00501795*DB+0.00021735*DB *DB
 -0.00000088 *DB *DB *DB
 Z(4)=Z(4)*Z(4)
 IF(NBAR.LE.4) CO TO 762
 DO }761\mathrm{ I-5,NBAR
 Z(I)=AASQ+I*I
 761 CONTINUE
762 SIG=BZERO1 (NBAR+1)/SQRT(Z (NBAR))
SICSQ=SIC *SIC
DO }765\mathrm{ I=1,NBAR
FNUM-1.0
T-BZERO1 (I) *BZERO1 (I)
FDNM=1.0-T/(BZEROI(1)*BZERO1(1))
IF(I.EQ.1) FDNH=1.0
DO 770 II=1,NBAR-1
FNUM-FNUM*(1.0-T/(SIGSQ*Z(II)))
IF(I-1.EQ.II) CO TO }77
FDNM=FDNM*(1.0-T/(BZERO1(II+1)*BZERO1(II+1)))
770 CONTINUE
B(I)=(2.0*T/BESS(1.0.BZERO1(I)*PI))*FNUM/FDNM
765 CONTINUE
P0=0.4797212+0.01455652*(DB)-0.00018739*(DB*DB)
\& +0.00000218*(DB*DB*DB)-0.00000001 *(DB *DB *DB *DB)
PO=PO *SIC
P0SQ=P0 *P0
PIPOSQ-POSQ*PI*PI
FNUM=1.0
FDNM-1.0-POSQ/(BZERO1(1)*BZERO1(1))
DO }772\mathrm{ I=1,NBAR-1
FNUM=FNUM*(1.0-POSQ/(SICSQ*Z(I)))
FDNMmFDNM*(1.0-pOSQ/(BZERO1(I+1)*BZERO1(I+1)))
772 COMMINUE
C=PIPOSQ-1.0
C-\Xi \#\&ESS(1.0.P0*PI)*FNUM/FDNM
C=1.0/C
DO 773 I=1,NBAR
B(I) =-B(I)*C
773 CONTINUE
700 URITE(06,140) 'NBITS'
NAMELIST/PHASE/DELPHJ,DELPHK, PHERK,PHERY,

```

NBITS, BESERR, BSCAL
READ 140.NBITS
HRITE \((06,140){ }^{\circ}\) ANY BEAM STEERING?'
READ 140. K
IF(K.EQ.N) CO TO 900
WRITE(06,140) 'DELPHJ,DELPHK"
READ 140, DELPHJ,DELPHK
900 WRITE (06,140) 'QUADRATIC ERROR? \({ }^{\circ}\)
READ 140.K
IF (K.EQ.N) CO TO 910
HRITE(06,140) 'PHERK, PHERY'
READ 140, PHERK, PHERY
910 HRITE(06,140) 'BESSEL ERROR?'
READ 140, X
IF(K.EQ.N) CO TO 134
YRITE(06,140) 'BESERR,BSCAL'
READ 140, BESERR,BSCAL
134 WRITE (06.135)
135 FORMAT('LRJ,LRK')
NAMELIST/BLOCK/LRJ,LRK
READ 140,LRJ,LRK
140 FORMAT(V)
IF (MOD(LRJ,2).NE.0.OR.MOD(LRK,2).NE.0) CO TO 134
WRITE(6, APETUR)
URITE( 6, HAIT)
YRITE(6,TAYL)
URITE( 6, PHASE)
URITE(6,BLOCK)
XEDCE \(2=\) KEDGE * \(X E D C E\)
KHOLE2 \(=\) KHOLE *KHOLE
NSIDEJ=LRJ*16
NSIDEK=LRK*16
NCENTJ=NSIDEJ \(/ 2+1\)
NCENTK=NSIDEK \(/ 2+1\)
NCNTIJ=NSIDEJ/2
NCNT1K=NSIDEK/2
KMIDK=NSIDEK \(/ 2+0.5\)
KMIDJ=NSIDEJ/2+0.5
LRTOTL=LRJ*LRK
DTR=0.017453
KLSB=360.0/2.0**NBITS
```

 DKLSB=1.0/KLSB
 XLSB=XLSB *DTR
 CO TO (10,20,30), IAPTFL
 10 YMUK=PHERY/XEDCEZ
KMUJ=PHERK/KEDGE2
CO TO 40
20 YMUK=PHERY/(FLOAT (NMINOR))**2
KMUJ=PHERK/(FLOAT (NMAJOR)) **2
CO TO 40
30 YMUK=PHERY/(FLOAT (NHICH)/2.0) **2
XMUJ=PHERY/(FLOAT(NHIDTH)/2.0)**2
40 CONTINUE
K1=0
J1=0
IF(IAZ.EQ.1) CO TO 680
HMAX=0.0
IAZ=1
DO 650 IRAD=1,IFIK(NTRAD+1)
RAD=FLOAT(IRAD-1)
CALL WEICKT(RAD,UTRAD,WFUNC)
YMAK-AMAKI (YMAX, YFUNC)
650 CONTINUE
IAZ=0
680 CONTINUE
NAMELIST/STAT/KKK, WMAK
HRITE(06,STAT)
DO 510 LR1=1,LRTOTL
DO 50 KK=1,16
K=K1+KK
DO 50 JJ=1,16
J=J1+JJJ
FH=DELPHK*(K-KMIDK) +DELPHJ *(J-KMIDJ)
PH=FLOAT(IFIX(AMOD(PH, 360.0)*DKLSB))*KLSB
PHERR=(YMUK*(K-XMIDK)**2+XMUJ*(J-XMIDJ)**2)*DTR
XJ=J-KMIDJ
KK=K-KMIDK
KRAD=SQRT(KJ *KJ+KK*KK)*BSCAL
PHBSER=BESERR*BESS(0.0.KRAD)*DTR
PH=PH+PHERR+PHBSER
A(JJ,KK)=CMPLK(COS(PH),SIN(PH))
50 CONTINUE

```
```

 CO TO (100,300,400),IAPTFL
 100 DO 210 KK=1,16
K=K1+KK
KKSQ=(K-KMIDK)**2
DO 200 JJ=1,16
JmJ1+JJ
ANG=ATAN2((K-KMIDK),(J-KMIDJ))
KLSQ=XKSQ+(J-KMIDJ)**2
UIST=SQRT(XLSQ)
IF(IAZ.EQ.0) CO TO 205
CNR1=(J-NCENTJ)**2+(K-NCENTK)**2
CNR2=(J-NCNT1J)**2+(K-NCENTK)**2
CNR3-(J-NCENTJ)**2+(K-NCNT1K)**2
CNR4=(J-NCNT1J)**2+(K-NCNT1K)**2
ICNFL=0
IF(CNR1.GT. XEDGE2 .OR.CNR1.LT.XHOLE2) ICNFL=1
IF(CNR2.GT. XEDGE2 .OR.CNR2 .LT . KHOLE2) ICNFL=ICNFL+1
IF(CNR3.CT.XEDGE2 .OR .CNR3.LT.KHOLE2) ICNFL=ICNFL+1
IF(CNR4.GT.XEDCE2.OR.CNR4.LT.KHOLE2) ICNFL=ICNFL+1
IF(ICNFL.EQ.0) CD TO 205
CO TO(201,202,203,204),ICNFL
201 A(JJ,KK)=A(JJ,KK)*0.75
GO TO 205
202 A(JJ,KK)=A(JJ,KK)*0.5
GO TO 20S
203 A(JJ,KK)=A(JJ,KK)*0. 25
CO TO 205
204 A(JJ,KK)=(0.0.0.0)
205 IF(IHTFLG.EQ.0) CO TO 200
CALL VEIGHT(DIST, YTRAD,UFUNC)
IF(IYTFLG.NE.8) CO TO 211
A(JJ,KK)=A(JJ,KK)*CMPLK(0.0, VFUNC)
CO TO 200
211 A(JJ,KK)=A(JJ,KK)*VFUNC
200 CONTINUE
210 CONTINUE
CO TO 500
300 KMAJOR=NMAJOR*NMAJOR
KMINOR-NMINOR*NMINOR
DO 310 KK=1,16
K=K1+KK

```
    YKSQ=(K-XMIDK)**2
    DO 310 JJ=1,16
    J=J1+JJ
    KKSQ*(J-KMIDJ)**2
    KLSQ*KKSQ+YKSQ
    ELPSQ=YKSQ/XMINOR+KKSQ/HMAJOR
    IF(ELPSQ.CT.&.0.OR.KLSQ.LT.XHOLE2)
& A(JJ,KK)=(0.0.0.0)
310 CONTINUE
    IF(IWTFLG.EQ.0) CO TO 500
    SGN-1.0
    DO 320 KK=1.16
    K=K1+KK
    KKPT=ABS(K-KMIDK)
    IF(IHTFLG.NE.7) CO TO 315
    UFNK=1.0
    CO TO 317
315 CALL YEICHT(KKPT,ZKRAD,YFNK)
317 CONTINUE
    DO 330 JJ=1.16
    J=J1+JJ
    KJPT-ABS(J-KMIDJ)
    CALL WEIGHT(KJPT,ZJRAD,WFNJ)
    IF(IHTFLG.EQ.7.AND.J.LT.XMIDJ) SGN=-1.0
    A(JJ,KK)=A(JJ,KK) *WFNK*WFNJ *SGN
330 CONTINUE
320 CONTINUE
    CO TD 500
400 XHIDTH-NUIDTH/2
        XHIGH-NHICH/2
        DO 410 KK=1,16
        K=K1+KK
        YK=ABS(K-KMIDK)
        DO 410 JJ=1,16
        J=J1+JJ
        KK=ABS(J-KMIDJ)
        IF(YK.CT.KHIGH.OR.KK.GT.KYIDTH) A(JJ,KK)=(0.0.0.0)
4 1 0 ~ C O N T I N U E ~
    IF(INTFLG.EQ.0) CO TO 500
    SGN=1.0
    DO 420 KK=1,16
```

```
K=K1+KK
KKPT=ABS(K-KMIDK)
IF(IHTFLG.NE.7) GO TO 415
YFNK=1.0
CO TO 417
415 CALL WEIGHT(BKPT,ZKRAD,UFNK)
417 CONTINUE
    DO 430 JJ=1,16
    J=JI+JJ
    KJPT-ABS(J-XMIDJ)
    CALL HEIGHT(XJPT,ZJRAD,YFNJ)
    IF(IHTFLC.EQ.7.AND.J.LT.XMIDJ) SGN=-1.0
    A(JJ,KK)=A(JJ,KK) *HFNK*HFNJ*SGN
430 CONTINUE
4 2 0 ~ C O N T I N U E ~
500 HRJTE(01'LR1) A
    IF(MOD(LR1,LRJ).EQ.0) CO TO 505
    J1mJ1+16
    GO TO 510
505 K1=(LR1/LRJ)*16
    J1=0
510 CONTINUE
    CALL DETACH(O1,ISTAT, )
    WRITE(06,146) ISTAT
146 FORMAT('DETACH ISTAT=',020)
    CALL EXIT
    STOP
    END
```


SUBROUTINE PLOTD

1. PURPOSE

The purpose of this subroutine is to transmit a data array to the DUIS for subsaquent plotting. The data samples to be plotted must be equally speced. 1.e.. the independent varlable increment between samples must be a constant.
2. INPUT PARAMETERS

Name O/R I Description
DV \quad F The array containing the dependent varlable values to be plotted

NOUT $\quad I \quad$ The number of samples to be processed in the arrey, DV

OR \quad R The origin of the independent variable, l.e. the value of the independent variable that corresponds to the sample, DV(1)

DEL $\quad \boldsymbol{F} \quad$ The independent varieble increment between semples

TH $0 \quad F \quad$| Variable used to accumulate the |
| :--- |
| |
| |
| |
| maximum dependent variable |

3. CALLING SEQUENCE

CALL PLOTD(DV,NOUT, OR, DEL,TH)

PAAS-CPD-PLOTD 17 APR 78

4. RESTRICTIONS, REQUIREMENTS, MISCELLANEDUS DATA
a. This subroutine is structured to process only data which has a flxed independent variable increment between samples.
b. The output data from this subroutine has the standard DUIS plot data format.
c. The output data from this subroutine has an accuracy of 12 bits.
d. The varlable $T H$ can be used to accumulate the maximum modulus value over. a number of plots. This is mainly used in processing three-dimensionel plots.
5. SUBPROCRAMS REQUIRED

ALOC10 сноР

6. THEORY OF OPERATION

The first operation performed by this subroutine is to scan the input array, DV, to determine the largest. XMAK, and smallest, KMIN, dependent varlable values. The parameter $T H$ is then updated.

The dependent variable range KMAK-KMAK-KMIN is computed from the scanner output parameters. The mean of the dependent variable erray, BIAS, is then computed. Next, two integers, J anc K, are found such that the following condition is satisfied:
$(J-1) * 10^{K}<X \operatorname{MAR}<5 \times 10^{K}$

The LSB to be used in digitizing the data is then computed as follows:

KLSB-FLOAT (J*10K)/4000.0

?
PAAS-CPD-PLQTD
17 APR 78

Now all of the parameters necessary to characterize the plot data have been determined. Therefore, they are transmitted to the DUIS in the plot headerinecord. This record contains the following parameters:

Each plot point is converted to an integenanumber in the following menner:

$$
\begin{aligned}
& \text { PTL }=(D V(J) \text {-BIAS }) \text { OLSSB } \\
& \text { IDAT }=\operatorname{PTL}+S I G N(0.5, P T L U
\end{aligned}
$$

This integer number is converted to tuogASCII as k. charactars and packed into a plotudatarecordibyythe subroutine CHOP. Each time a record is:filiedr(33)plot points) it is transmitted to the DUIS.

When all of the plot points have been transmitted to the DUIS a plot terminator record is transmitted to 3 signify that the plotims complete: © Control:ssreturned to the calling (sub)program.

2cs and

$$
\begin{aligned}
& \text { Whachatyontin }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5\% \% } \% \\
& \text { act } \\
& \text { 部 } \\
& \text { Es: } \\
& \text { 5: } \\
& \operatorname{cs}
\end{aligned}
$$

7. FORTRAN LISTING

C
C 17 APR 78
C 1420
C
SUBROUTINE PLOTD(DV,NOUT,OR,DEL,TH)
DIMENSION DV(1),ILINE(35)
KMAXMDV(1)
KMIN-DV(1)
C
C SCAN DATA ARRAY TO FIND LARGEST (KHAX)
C AND SMALLEST (KMIN) VALUES
C
DO $100 \mathrm{~J}=1$, MOUT
KMAK-AMAKI (XHAX, DV(J))
KMIN=AKIHI (KHIN, DV(J))
100 CONTTMUE
C
C UPDATE TH
C
TH-AMAXI (ABS (KHAX), ABS (KMIH), TH)
c
C SECTION TO DETERMINE BIAS AND KLSB
C
XMAX $\mathrm{KM} A \mathrm{X}-\mathrm{XHI}$
IF (XMAX.LT.1.0E-10) KHAK-1.0E-10
BIAS -0.5 *XHAX+KMIM
PTL=ALOC10(XHAX)
ITEST=IFIX(PTL)
IF (PTL) 150,140.140
$140 \mathrm{X}=\mathrm{KMAK}(10.0 * * \operatorname{TEST})$
CO TO 160
150 K-KMAX*(10.0**(IABS(ITEST)+1))
$160 \mathrm{~N}=\mathrm{IFIK}(\mathrm{K}+0.98)$
IF(PTL) 123,124,124
123 KMAX-FLOAT(N)/(10.0**(IABS(ITEST)+1))
CO TO 125
124 KMAX - FLOAT (N) * (10.0**ITEST)
125 KLSB $-K M A K / 4000.0$

PAAS-CPD-PLOTD 17 APR 78

```
C
C TRANSMIT THE PLOT HEADER RECORD TO DUIS
C
    URITE(06,1000) NOUT,OR,DEL,BIAS,XLSB
    1000 FORMAT(4HzzK ,I6,4(',',1PEI2.5))
C
C SECTION TO CONVERT DATA TO 12 BIT FORM
C AND TRANSMIT TO DUIS
C
    IFLG=0
    J=1
    K=1
181 IF(J-NOUT) 200,200,201
200 PTL=(DV(J)-BIAS)/KLSB
        IDAT=PTL+SICN(0.5,PTL)
        CALL CHOP(IDAT,ILINE(K))
        IF(K-33) 220,222,222
    201 IFLG=1
    222 VRITE(06 1002)(ILINE(L),L=1,33)
1002 FORMAT('>z',33R2,'>2')
        K=1
        IF(IFLG) 180,180,500
    220 K=K+1
180 J=J+1
    CO TO 181
C
C PLOT TRANSHISSION IS COMPLETE.
C TRANSMIT THE TERMINATOR RECORD
C
500 VRITE(06,1003)
1003 FORMAT(` z2Z')
        RETURN
        END
```

PROGRAM PLTDVR

1. PURPOSE

The purpose of this subroutine is to process deta for transmission to the DUIS for subseqient use in preparing 3-dimeñsional plots. The types of data normally processed by this subroutine are antenna far field patterns and antenna aperture illumination distributions.
2. INPUT PARAMETERS

Name	O/R	\underline{T}	Description
AFILE	R	c	The name of the TSS PRMFL uhich the user wishes to process
JVID	R	I	The data array width in blocks. This parameter corresponds to LRJUID in the program FFT2DK or LRJ in the programs PLARY, RNDERR, or FILMOD.
JWIDSP	R	I	The width ir blocks of the vertical strip to be processed
NBMAX	R	I	The number of the last block to be processed
LREC	R	I	The number of the first record to be processed
ISGN	R	I	Data processing mode flag. - 0 modulus data is processed - 1 real component only 15 processed.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The maximum value of the parameter JSID 1510. This correspoids to a rou length of 160 samples. This limitation $1 s$ arbitr ny and was chosen to minimize the memory requared by this program.
b. It should be recognized that the run time of this program is directly proportioned to the number of plot points transmitted to the DUIS. The number of plot points is given by the following expression: NPTS - JSID*16 *MROWS

The time required to transmit each plot polnt is 16.67 ms at 1200 Baud and 66.67 ms at 300 Baud. For example, a 3-D display 4 blocks wide and 64 rows tall would require 68.27 seconds at 1200 Baud.
$4 * 16 * 64 * 16.67 \mathrm{~ms}=68.27$ seconds
At 300 Baud the time required is 4.55 minutes.
c. This program is designed to work only with the DUIS.
4. SUBPROCRAMS REQUIRED

ATTACH
RAMSIZ
PLOTD
DETACH
EXIT
5. THEORY OF OPERATION

After startup a message is printed to the user requesting the name of the TSS PRMFL that is to be processed. The user reply is tested to see if it is the word 'sTop'. If so, program execution is terminated. Otherwise, an attempt is made to access
the flle via the system subroutine, ATTACH. If the flle cannot be accessed the system error code 15 printed and the user is requested to try again.

Providing an input flle has been successfully attached, the following parameters are requested from the user:

JWID, JHIDSP,NBMAK

The parameter JWIDSP is tested to ensure that it does not exceed the smeller of JWID or 10 . The following parameters are then requested from the user:

LRECF, ISGN

The parameter LRECF 15 tested to see if it is zero or negative. If so, control is transferred to Statement \# 400 and the flle $1 s$ deaccessed via a call to the system subroutine DETACH. The program then returns to the procedure for accessing another flle (Statement \#110).

The JHIDSP blocks, starting with record number LREC, are loaded into the array $A(J, K)$. Next, the 16 rows of data are processed one row at a tlme for output to the DUIS via the subroutine PLOTD. If ISGN=1 then the real components of the data samples are placed in the array $D V$. If ISGN=0 then a bipolar modulus function is computed from the output date. The reason for computing a blpolar modulus is that in the DUIS the data to be plotted is normally interpolated to provide smoother curves. The interpolation functions cannot accurately process data thet possesses discontinuities which 15 the case for a true modulus function. The procedure used to convert the modulus is as follows. It has been noted that the modulus can become zero only if the real(x) and lmaginary(y) components are both zero slmultaneously. Also, it is known that beth x and y are continuous functions. Therefore, if both x and y reverse stgns between two sample polnts then the modulus must have gone through zero. Therefore, the
scheme used was to reverse the sign of the modulus function (IP) each time x and y reversed signs at the same time. After each bipolar modulus value has been computed it is placed in the array DV. When the array DV is full (JSTOP values) then the array is rpocessed and transmitted to the DUIS via the subroutine PLOTD.

After each sweep is transmitted the program walts for the DUIS to return a status number, ISTAT. If the DUIS replles with ISTATmi then the sweep must be retransmltted since a transmission error was detected. If the DUIS replies with ISTAT=0 then the sweep was recelved with no errors detected and the processing of the next sweep is begun.

When all 16 rous of data have been transmitted to the DUIS then another 16 rows are read $1 n$ and processed in the same manner as describiad above. If the end block NBMAX is reached then the program waits for the user to transmit a carriage return and then the program prints the maximum value of the data transmitted. Next, the TSS PRMFL is detached, control is transferred to Statement \# 110, and the user is asked for another flle name.
6. FORTRAN LISTINE

```
C
C 17 APR 78
1345
C
    DIMENSION DV(256)
    COMPLEK A(160,16)
    CHARACTER AFILE*20,STOP*4,DONE*4
    DATA IOK/O400000000000/,STOP/'STOP'/
    DATA DONE/0007040033014/
    100 FORMAT(V)
C
C REQUEST TSS FILE NAME FROM USER
C
    110 URITE(06,100) 'INPUT FILE NAME ?'
        READ 100,AFILE
        IF(AFILE.EQ.STOP) CO TO 600
        CALL ATTACH(01,AFILE,1,1,ISTAT, )
        IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) CO TO 70
        URITE(06,510) ISTAT
        CO TO 110
    70 CALL RANSIZ(01,512)
C
C REQUEST PARAMETERS FROM USER
C
    KRITE(06,100) 'Enter JYID,JH_DSP,NBMAK'
    READ 100,JHID,JWIDSP,NBMAX
    IF(JWIDSP.LE.10.AND.JHIDSP.LE.JYID) COTO 7E
        JWIDSP=10
        VRITE(06,100) 'JWIDSP > 10... SET TO 10'
        IF(JHIDSP.LE.JHID) COTO 75
        JHIDSP=JYID
        HRITE(06,100) 'JWIDSP > JWID... SET JHIDSP=JWID'
    75 WRITE(06,100) 'Enter FIRST LREC,ISGN'
        READ 100,LRECF,ISGN
        TH-0.0
C
C IF LRECF < 1 THEN TERMINATE PROCESSING THIS FILE
C
IF(LRECF.LE.0) CO TO 400
```


PAAS-CPD-PLTUUR

1 MAY 78

```
        JSTOPmJWIDSP*16
        NST=1
        NSTP=16
        CO TO 200
C
C SECTION TO READ IN A STRIP OF DATA
C
210 LRECF=LRECF+JVID
    IF(LRECF.GT.NBMAK) CO TO 85
200 LRIIN-LRECF
190 READ(01'LRIIN)((A(J,K),J=NST,NSTP),K=1,16)
    NST-NSTP+1
    NSTP=NSTP+16
    LR1IN-LRIIN+1
    IF(NSTP.LE.JSTOP) GO TO 190
C
C SECTION TO PROCESS A STRIP FOR OUTPUT
C
    NST=1
    NSTP=16
    DO 310 K=1,16
    IP-1
    DO 30b LL=1,JSTOP
    IF(ISGN.EQ.1) CO TO 770
    E=CABS(A(LL,K))
    K=REAL(A(LL,K))
    Y=AIMAG(A(LL,K))
    IF(LL.NE.1) CD TO 112
    KO-\
    YO-Y
112 P1=KO*K
    P2=YO*Y
    IF(E.LT.1.0E-30) CO TO 111
    IF(P1.LT.0.0.AND.P2.LT.0.0) IP=-IP
    KO=K
    YO-Y
111 DV(LL)=SICN(E,IP)
    GO TO 300
770 DV(LL)=REAL(A(LL,K))
300 CONTINUE
700 CALL PLOTD(DV,JSTOP,0.0,1.0,TH)
```

```
C
C WAIT FOR DUIS 'IO REPLY WITH STATUS CODE
C
    READ 100.ISTAT
    IF(ISTAT.EQ.1) CO TO 700
310 CONTINUE
CO TO 210
C
C ALL PLOT RECORDS IN THE FILE HAVE BEEN
C SUCCESSFULLY TRANSMITTED TO DUIS
C
85 MRITE(06,100) DONE
    READ 100,AFILE
    VRITE(06,100) "TH=',TH
    CO TO 75
400 CALL DETACH(01,ISTAT, )
    URITE(06,410) ISTAT
410 FORHAT('DETACH ISTAT=',020)
    CO TO 110
510 FORMAT('UNSUCCESSFUL ATTACH ISTAT=',020)
600 CALL EKIT
    STOP
    END
```


PROGRAM RNDERR

1. PURPOSE

This program adds random phase errors to the elements of an existing eperture distribution stored in a PRMFL. The resulting aperture may be stored on the input PRMFL or may be stored on another user specified PRMFL.
2. INPUT PARAMETERS

Name	O/R	T	Description
NTYPE	R	I	Determines the type of distribution.
			- 1 Uniform - 3 Caussian
MADI	\boldsymbol{R}	I	The starting address for selecting random numbers from the random number array. (1 s MAD1 ≤ 128)
JRND	R	I	Random number generator initiallzation constant. ($0 \leq$ JRND $\leq 2^{36}-1$)
LRJ	R	I	Number of logical record blocks in the x-direction (horizontally).
LRK	R	I	Number of logical record blocks in the y-direction (vertically).
UMEAN	0	F	Mean value of the uniform distribution in degrees. 151

UUEKT	0	F	Hidth of the uniform distribution in degrees.
KMEAN	0	F	Mean value of the Gaussian distribution in degrees.
SIGILA	0	F	Standard deviation of the Gaussian distribution in degrees.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. The value of MaDi must be in the range
$1 \leq \operatorname{MAD1} \leq 128$
b. The value of JRND must be in the range

$$
0<\text { JRND }<2^{36}-1
$$

4. SUBPROGRAMS REQUIRED

RRAND

FXOPT

5. THEORY OF OPERATION

The program steps sequentially through the LREND (-LRJ*LRK) Input logical record blocks starting with block number 1. For each element in a block, a random phase component is generated according to the equation

PHERR $=\operatorname{RRAND}(N T Y P E) * 0.017453$.

RRAND 15 the random number generator function and the constant 0.017453 is a degree-to-radian conversion factor. Hith the phase error expressed in radians a complex representation C is calculated as
$C=\operatorname{CHPLX}(C O S(P H E R R), S I N(P H E R R))$.

This number is then multiplied by the value of the antenne aperture element to be modified. The multiplication is defined by the equation

$$
A(I)=A(I) \times C .
$$

Note that this is a complex multiplication by a unit vector and that no change in energy is introduced as a result of the phase errors. This process is repeated for all of the elements in each block. As the elements are processed each block is written off to the appropriate PRMFL, elther the input PRMFL or another that is chosen by the user.

PAAS-CPD-RNDERR

1 MAY 78

```
    IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) GO TO 600
    WRITE(06,550) ISTAT
    CO TO 580
600 LREND=LRJ *LRK
    DO 700 LRIN=1,LREND
    READ(01'LRIN) A
    DO 650 I=1,256
    PHERR=RRAND(NTYPE)*0.017453
    C=CMPLK(COS(PHERR),SIN(PHERR))
650 A(I)=A(I) *C
    WRITE(LROUT'LRIN) A
700 CONTINUE
800 CALL DETACH(01,ISTAT, )
    WRITE(06,750) ISTAT
    CALL DETACH(O2.ISTAT, )
    WRITE(06.750) ISTAT
750 FORMAT('DETACH ISTAT='.020)
    CALL EKIT
    STOP
    END
```


FUNCTION RRAND

1. PUSPPOSE

This function generates random numbers for use in various subprograms of PAAS. Samples from the uniform. Gaussian, and Rayleigh distributions cen be generated. This function is based on the function RRAND used in RADSIM.
2. INPUT PARAMETERS (Common Area BLKRND)

Name	O/R	T	Description
MADI	R	I	Random Number Table pointer
JRND	8	I	Random integer from previous execution of RRAND
MHEAN	\boldsymbol{R}	F	Maan value of the Gaussian distribution
SIC2SQ	R	F	An intermediste parameter used in computing Gaussian and Rayleigh distributions
UL	R	F	An intermediate parameter used in determining the uniform distribution mean value
UEXT	R	F	An intermediate parameter used in determining the uniform distribution width

3. CALLING SEQUENCE:

$V A R=$ RRAND (NTYPE)
NTYPE $\quad I \quad$ Control integer which specifies the type of distribution to be generated.

$$
\begin{aligned}
\text { NTYPE } & =1 \text { Uniform distribution } \\
& \text { (floating point output) } \\
& =2 \text { Rayleigh } \\
& =3 \text { Gaussian }
\end{aligned}
$$

VAR contains the random sample generated by the function from the XTYPE probability distribution.
4. RESTRICTIONS, REQUIREMENTS, KISCELLANEOUS DATA
a. Before anj call can be made to the function RRAND the labeled common area must be loeded as follows:

MAD1 Any integer on the interval: $0 \leq$ MADI ≤ 127
JRND Any integer on the interval: \leq JRND $\leq 2^{38}$
KMEAM Mean value of Gaussian distribution
SIC2SQ = - 2.0 *SICMA *SIGMA
Where: SIGMA is the standard deviation of the Gaussian or Rayleigh oistribution

UL - UMEAN - 0.5 * UEXI
Where: UMEAN is the mean value of the uniform distribution

UEXT is the width of the uniform distribution

UEXT $=$ UEXT $/ 2^{35}$
b. For convenience and to minimize program steps, the array IRAND was equivalenced to the arrays NRNDI and NRND2, but alsplaced by one location. This structure allows an address of zero to be used. 1.8., an address of zero will access IRAND (0), which overlays NRND(1). If this were not done, a test would have to be performed on MAD1 to ensure that an eddress of zero did not occur.
c. The distribution transformations used herein are documented in the following reference:

Robert E. Machol (ed.), System Engineering Handbaok. McGraw-Hill. N.Y., 1965, pp. 40-28. 40-29.
d. Referenced labeled common areas:

BLKRND

e. Source PRMFL:

PLARY
5. SUBPROCRAMS REQUIRED

FLD
FLOAT
SQRT
6. THEORY OF OPERATION

For each call to the function RRAND a number KRND 15 selected from the random number table, IRAND. The address of the number selected from the table is MADI, a random number. The numbar KRND is added to the product of JRND and IMULT and stored in IRND. The variable JRND is the random number which was generated by the previous execution of the function alld IMULT $1 s$
a multiplier chosen because it results in good bit sorambling. The multiplication of JRND by IMULT causes the bits of JRND to be scrambled. This scrambled word is then added to KRND, just retrieved from the table to form the new random number. IRND. The sign bit of IRND is set to zero to ensure a positive number. The random number IRND just generated is an integer having a uniform distribution from 0 to $2^{35}-1$. IRND is placed In the random number table location previously occupied by the KRND. In this manner the random number table is updated by generating new random numbers and inserting them into the table. From the random number IRND, 7 blts are selected to determine the new address MaDi to be used in the next cell to the function. The 7mblt address field allows the eddresses to range from 0 to 127. Once the random numier is generated JRND is set equal to IRND for use in the subsequent executions of the function. In order to convert this number to a floating point number, r, having a uniform distribution from 0 to 1.0 , the following conversion is used:
$r=F L O A T($ IRND $) / 2^{35}$
From this uniform distribution other probability distributions can be generated by using transformations which map a uniform distribution into the desired distribution. The following is a list of the transformations used in this function:
a. Uniform distribution

$$
\begin{array}{ll}
p(x)=1 /(b-a) & \quad(a \leq x \leq b) \\
x_{n}=(b-a) r_{n}+a &
\end{array}
$$

b. Raylaigh distribution

$$
\begin{aligned}
& p(x)=\left(x / \sigma^{2}\right) \exp \left(-x^{2} / 2 \sigma^{2}\right) \quad .(x \geq 0) \\
& x_{n}=-2 \sigma^{2} \ln r_{n}
\end{aligned}
$$

c. Gaussian distribution

$$
\begin{aligned}
& p(x)=(1 / 2 \pi \sigma) \exp \left[(x-\mu)^{2} / 2 \sigma^{2}\right] \quad,(-\infty<x<\infty) \\
& x_{n}=2 \sigma^{2} \ln r_{n} * \operatorname{Cos} 2 \pi r_{n+1} \\
& y_{n}=2 \sigma^{2} \ln r_{n} * \operatorname{Sin} 2 \pi r_{n+1}
\end{aligned}
$$

PAAS-CPD-RRAND 16 JUN 77

7. FORTRAN LISTINC:

C
C \mathbf{C} **************************************
C
FUNCTION RRAND(NTYPE)
COMMON/BLKRND/MAD1, JRND, KMEAN,SIC2SQ, UL, UEXT
DIMENSION IRAND(128),NRND1(65),NRND2(64)
DATA NRND1/15134181937,27509664464,30323512272, 14051007893,16402190290,26306990212,11260717646. 16801629773,11849273156,19404991345,06977712830, 02883434137,33025570091,11012391522,13411365861. 31267410086,13462139250,26463885902,24219774296, 11557820695,30512809719,12630506319,17722780814, 04722597022,16900280091,16243824041,16388044606, 26212698408,13570004754,11188309528,29134237821, 13164942096,29908968258,03564986686,24513426529. 25262307992,16416251777,32749370939,21116178576, 19395173043,20743061171,21319359579,19074491967, 19244390324,08846123356,27142309994,15825276338, 16410917813,23416520791,28825638452,10800745445, 01702686304,17006458873,16841482774,26473264721, 17160292337,29260744156,8883554486,3669953728, 16068801392,5883873859,14824731880,18081451748, 8160418880,30068227383/
DATA NRND2/12068158044,06847664659,15416782660. 25052201840,13988647055,01734737408.07289355507, 28120785669,32320902560,19471392797.07683759917. 24386072834,29317493972,07114843643,16232718423. 29170604246,26866574818,20335880812,14861357546, 25072568248,31374670078,13676667951,30463132192, 20172084006,16184261842,14974210467,10283018420, 18310257399,18938188207,01286074697.19662214195, 01577045480,16742867695,11686848767,18174114680, 30892487160,30892487160,28360949700,33368415709, 17235921632,25322444850,30007056175,13488881553, 30224148581,07655423387,32626402591,13101024674, 30533512969,07218771539,00229536870,29198604401, 33122308420,29107616508,16534467415,3669736170, 3491463822,5804776974,30256545186,10832795361,

```
& 18174114680,10556707007,10140208896,9779017119,
& 19382343178/
    DATA IMULT/1220703125/,IMAK/4294967296/
    DATA N2P16/65536/.CI/2.5103830E-11/
    EQUIVALENCE (IRAND(1),NRND1(2)),(IRAND(65),NRND2(1))
10 KRND=IRAND(MAD1)
    IRND=KRND+JRND*IMULT
    IRND=FLD(1,35,IRND)
    IRAMD(MAD1)=IRND
    MADI=FLD(15,7,IRND)
    CO TO (200,300,400),NTYPE
200 RRAND=FLOAT (IRND) *UEKT+ULL
    JRND=IRND
    RETURN
300 RRAND=SQRT(SIG2SQ*ALOG(FLOAT(IRND)*CI))
    JRND=IRND
    RETURE
400 I1=FLD(1,17,KRND)-N2P16
    I_2-FLD(18,17,KRND)-N2P16
    IS=I1*I1+I2 *I2
    IF(IS.LT.IMAK) CO TO 20
    JRND-IRND
    CO TO 10
20 S=1.0/FLOAT(IS)
    VCOS=S *FLOAT(I1 *I1-I2 *I2)
    VSINE=S*2.0*FLOAT(I1*I2)
    DUM=SQRT(SIC2SQ*ALOG(FLOAT(JRND)*CI))
    RRAND=DUM*VCOS+XMEAN
    DUM=DUM *VSINE+KMEAN
    JRND=IRND
    RETURN
    END
```


1. PURPOSE

The purpose of this subroutine 1 s to produce a compact representation of three-dimensional date, e.g. antenna far fleld pattern, antenna aperture illumination distributions, and radar ambiguity diagrams. The procedure used hereln ls to represent the modulus of each sample with an alphanumeric character.
2. INPUT PARAMETERS

Name	$\underline{O / R}$	T	Description
AFILE	8	C	The name of the TSS PRMFL which the user wishes to process
FLOOR	R	F	The reference in $d B$ below which everything is represented by dashes(-) on the RTI plot
YINC	R	F	The increment in $d B$ between asch successive alphanumerlc symbol. See Table RTI4-1.
JVID	R	I	The data array width in blocks. This parameter corresponds to LRJUID in the program FFT2DX or LRJ in the programs PLARY, RNDERR, or FILMOD.
NBMAX	R	I	The number of the last block to be displayed
LREC	R	I	The number of the first record to be processed

IHD \quad I The width of the output character matrix.
3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. The maximum value of the parameter IHD 1s 128. In addition, the value of IVD should be less then or equal to JYID*16.
b. Two examples of the relative dB values for specifled values of FLOOR and YINC are shown in Table RTI4-1.
4. SUBPROGRAMS REQUIRED

FPARAM
ATTACH
RANSIZ
DETACH

PAAS-CPD-RTIA
1 MAY 78

TABLE RTI4-1
EXAMPLES OF RELATIVE VALUE OF LETTERS, NUMBERS, AND SYMBOLS

FLOOR $=-20.0$
YINC $=\quad 1.0$

	18.0	*	29.0
	17.0	+	28.5
	16.0	0	28.0
	15.0	1	27.5
	14.0	2	27.0
	13.0	3	26.5
	12.0	4	26.0
	11.0	5	25.5
	10.0	6	25.0
	9.0	7	24.5
	8.0	8	24.0
	7.0	9	23.5
	6.0	A	23.0
	5.0	B	22.5
	4.0	C	22.0
	3.0	D	21.5
	2.0	E	21.0
	1.0	F	20.5
	0.0	c	20.0
	-1.0	H	19.5
	-2.0	I	19.0
	-3.0	J	18.5
dB level	-4.0	K	18.0
	-5.0	1	17.5
	-6.0	M	17.0
	-7.0	N	16.5
	-8.0	0	16.0
	-9.0	P	15.5
	-10.0	Q	15.0
	-11.0	R	14.5
	-12.0	S	14.0
	-13.0	T	13.5
	-14.0	U	13.0
	-15.0	V	12.5

$$
\begin{array}{lll}
-16.0 & \text { K } & 12.0 \\
-17.0 & X & 11.5 \\
-18.0 & Y & 11.0 \\
-19.0 & Z & 10.5 \\
-20.0 & - & 10.0
\end{array}
$$

5. THEORY OF OPERATION

After startup a message is printed to the user requesting the name of the TSS PRMFL that is to be processed. The user reply is tested to see if it is the word 'STOP'. If so, program execution is terminated. Otherwise, an attempt 15 made to access the file vie the system subroutine, ATTACH. If the flle cannot be accessed the system error code is printed and the user is requested to try again.

Assuming the user has successfully accessed a flle, the program then requests the following parameters:

FLOOR, YINC, JYID, NBMAX
Then the following parameters are requested:
LREC, IHD
The parameter LREC is tested to see if it is zero or negative. If so, the file is deaccessed via a call to the system subroutine DETACH. The program then returns to the procedure for accessing another flle (Statement * 99). The parameter IVD $1 s$ tested to ensure that its value is in the range from 1 to 128 . The number of blocks (NREC) required for the specifled displey width (IVD) is computed and compared to JWID. If NREC $>$ JWID then NREC is set equal to JYID and IWD is set equal to NREC*16. In other words, IHD is made as large as possible for the set of dete to be processed.

The NREC blocks starting with LREC are read in and processed in the following manner. The modulus of each complex valued sample is computed and converted to $d B$. Then the dB value (KM) is mapped to an integer number (IADD) on the interval from 1 to 41 by the following procedure:

IADD-IFIK ((KM-FLOOR)/YINC+0.5) +1

IF (IADD.GT.40) IADD-41
IF (IADD.LT.1) IADD-1

The integer numbers 41 and 1 correspond to and respectively, and represent velues either too large or too small to be displayed for the set of parameters, FLOOR and YINC, specifled by the user. The integer numbers are used to 'pull' the corresponding character ASCII code from the character table, CTABL. These characters are then stored in the output character matrix. KRTI.

Once the NREC blocks have been processed, the character matrix is transmitted to the user. This character matrix conteins 16 rows of data. The above procedure is repeated until the record number NBMAX is encountered. Control then returns to the statement (\# 75) requesting the first logical record to be processed.

6. FORTRAN LISTING

```
C
C 26 APR 78 0845
C
    COMPLEX TEMP(16,16)
    DIMENSION KRTI(32,16),CTABL(41)
    DATA CTABL/0137,0132,0131,0130,0127,0126,0125,
& 0124,0123,0122,0121,0120,0117,0116,0115,0114,0113,
& 0112,0111,0110,0107,0106,0105,0104,0103,0102,0101,
& 071,070,067,066,065,064,063,062,061,060,053.
& 052,056,044/
    CHARACTER AFILE*20,STOP*4
    DATA IOK/0400000000000/.STOP/'STOP'/
C
C REQUEST TSS FILE NAME FROM USER
C
    CALL FPARAM(1,130)
    99 URITE(06,105)
105 FORMAT('INPUT DESIRED FILE NAME')
    READ(05,50) AFILE
30 FORMAT(A20)
    IF(AFILE.EQ.STOP) COTO 310
    CALL ATTAC&(01,AFILE,1,1,ISTAT, )
    IF(ISTAT.EQ.IOK.OR.ISTAT.「Q.0) CO TO 101
    URITE(06,410) ISTAT
    CO TO 99
C
C REQUEST PARAMETERS FROM USER
C
    101 URITE(06,100)
    100 FORMAT('FLOOR,YINC,JHID,NBMAX')
        READ 115,FLOOR,YINC,JYID,NBMAK
        CALL RANSIZ(01,512)
    75 VRITE(06,110)
    110 FORMAT('Enter FIRST LREC, DISPLAY YIDTH')
        READ 115,LREC.IHD
    115 FORMAT(V)
C
```

```
C IF LREC < 1 THEN TERNINATE PROCESSING THIS FILE
C
        IF(LREC.LE.0) CO TO }70
        IF(IHD.LE.128.AND.IWD.GT.0) COTO }15
        IWD=128
        VRITE(06,115) 'NISPLAY UIDTH TOO BIG. SET TO 128'
    150 NREC=(IUD+15)/16
        IF(NREC.LE.JWID) COTO 160
        NREC=JYID
        IHD-NREC*16
        WRITE(06,115) 'DISPLAY WIDTH > AVAIL DATA..."
        * ' CHANGED TO: IWD-JWID*16'
C
C BECIN PROCESSING FOR A STRIP
C
    160 IWD4=IVD/4
        LREND=LREC+NREC-1
        IF(LREND.GT.NBMAK) GOTO 75
        NST=-1
        DO 800 IREAD-LREC.LREND
        READ(01'IREAD) TEMP
C
C PROCEDURE TO PROCESS ONE BLOCK OF DATA
C
    DO 200 J=1,16
    IBIT=MOD(J-1,4)*9
    IWORD=1+(NST+J)/4
    DO 300 IR=1,16
    KM=CABS(TEMP(J,IR))
    IF(KM.LT.1.0E-10) CO TO 120
    KM=20.0*ALOG10(KM)
    CO TO 121
120 KM=-100.0
121 IADD=IFIK((YM-FLOOR)/YINC+0.5)+1
    IF(IADD.GT.40) IADD=41
    IF(IADD.LT.1) IADD=1
    FLD(IBIT,9,XRTI(IHORD,IR))=CTABL(IADD)
300 CONTINUE
200 CONTINUE
    NST=NST+16
800 CONTINUE
```

C
C SECTION TO TRANSMIT OUTPUT TO USER
C
DO 450 IR=1,16
URITE(6,1000)(YRTI(J,IR).J=1,IWD4)
1000 FORMAT(1H ,32A4)
4 5 0 ~ C O N T I N U E ~
LREC-LREC+JHID
COTO 160
C
C - DISCONNECT FROM USER TSS FILE
C
700 CALL DETACH(01,ISTAT,)
500 YRITE(06,510) ISTAT
CO TO 99
4 1 0 ~ F O R M A T (' U N S U C L E S S F U L ~ A T T A C H ' , ' ~ I S T A T ~ = ~ ' . 0 2 0) ~
510 FORMAT(' DETACH ISTAT = ',020)
310 CALL EKIT
STOP
END

```

\section*{PROGRAM TBLS}

\section*{1. PURPOSE}

The program TBLS computes and tabuiates the sampled values of selected weighting functions. The program also generates data which are used in checking probabllity density functions of space tapered arrays estimated by program PDFESTR.

\section*{2. INPUT PARAMETERS}
Name D I Description

NTYPE \(\quad I \quad\) Determines the veighting function tabulated.
\(=1\) Cosine on a pedestal to a
power
\(=2\) Blackman
\(=3\) Kaiser
\(=4\) Bartlett or triangular
\(=5\) Taylor
\(=6\) Bessel
\(=7\) Cublc
\(=8\) Bayliss

WTPED \(0 \quad F \quad\) The height of the pedestal for cosine on a pedestal to a power weighting.

NHTPOH 0 I The pover of the cosine function for cosine on a pedestal to a power weighting.

IRAD \(\quad \mathrm{I}\) The radius (or half span of a linear array), in units of elements of the array.
\begin{tabular}{|c|c|c|c|}
\hline VTRAD & R & \(F\) & The radius (or half span of a linear array) of the velghting function. \\
\hline HKASIR & 0 & F & The Kalser varlable for the trade-off between main lobe width and side lobe amplitude. \\
\hline BESEDG & 0 & F & The radius scaling constant for the Bessel weightlig. \\
\hline BESCAL & 0 & F & The maximum welght amplitude for the Bessel weight. This corresponds to a radius of \(z e r o\) \\
\hline CUBK & 0 & \(F\) & The weighting amplitude scaling constant for the cubic veight. \\
\hline IDB & 0 & \(I\) & The design side lobe amplitude in dB for the Taylor or Bayliss welghting. \\
\hline NBAR & 0 & \(I\) & The number of \(2 e r o s\) used to approximsto the Dolph-Chebyschev weighting distribution in the Taylor or Bayliss weighting. \\
\hline
\end{tabular}
3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. The range of NBAR must be
\[
3 \leq \operatorname{NBAR} \leq 20
\]
for the Taylor weighting.
b. The range of NBAR must be
\(3 \leq \operatorname{NBAR} \leq 19\)
for the Bayliss weighting.

\title{
PAAS-CPD-TBLS
} 16 JUN 77
4. SUBPROGRAMS REQUIRED

EXPND
BESS
GAM
VEICHT
5. THEORY OF OPERATION

This program \(1 s\) a driver for the subroutine WEIGHT. A loop is set up that starts at zero and goes to IRAD in steps of one. In each pass of the loop a cell to YEIGHT is made and a value of the selected weighting function \(1 s\) returned for the particular radius cell. The values are stored and printed on the time-sharing terminal in a tabular foshion.

\section*{6. FORTRAN LISTING}

COMMON NTYPE, YTPED, WYTPOU, WKASIR, \(F(20), B(20), A N G\). NEAR, BESCAL, CUBK1, PII2, BESSI, IAZ, XKK, WHAX, BESEDC
INTECER DB
DIMENSION U(20), OUT(205),SICG(5),IX(20),BZERO1(20)
DIMENSION \(2(20)\)
DATA U/1.2196699,2.2331306,3.2383154.4.2410628,
\(8 \quad 5.2427643,6.2439216,7.2447598,8.2453948\),
\& \(9.2458927,10.2462933,11.246624,12.246900\),
8 13.247131,14.247334,15.247508,16.247663,
8 17.247796,18.247920,19.248027,20.248125/
DATA BZERO1/0.586067.1.6970509.2.7171939,3.726137,
\(\therefore\) 4.7312271,5.7345205,6.7368281,7.7385355.
8 8.7398505,9.7408945,10.7417435,11.7424475,
\(8 \quad 12.7430408,13.7435477,14.7435856,15.7443679\),
8 16.7447044.17.745003.18.7452657.19.7495093/
URITE(06.50) 'PDFESTR DATA OR TABLES? (0 OR 1)'
READ 50,IAZ1
IAZ=:
ANC=0.0
PI=3.1415926
PII2=2.0/(PI*PI)
BESS1=1.0/BESS (0.0.0.0)
1850 VRITE 06,50 ) 'NTYPE'
READ 50,NTYPE
IF (NTYPE.EQ.-1) CO TO 1830
CO TO (1100,1200,1300,1200,1500,1360,1370,1500), NTYPE
1100 WRITE (06,50) "HTPED,NHTPOW,IRAD, UTRAD"
READ 50, WTPED, NKTPOK, IRAD, WTRAD
CO TO 1600
1200 URITE (06,50) "IRAD,HTRAD"
READ 50,IRAD, WTRAD
CO TO 1600
1309 URITE (06,50) "HKASIR,IRAD,YTRAD'
READ 50,HKASIR,IRAD, VTRAD
CO TO 1600
1360 VRITE (06,50) 'BESEDG, BESCAL,IRAD, UTRAD'

READ 50, BESEDC, BESCAL,IRAD,HTRAD
CO I'O 1600
1370 WRITE (06,50) 'CUBK,IRAD,WTRAD'
READ 50, CUBK,IRAD, VTRAD
KK=SQRT (HTRAD*HTRAD/3.0)
CUBK1=CUBK/ABS (KK*(KK-YTRAD)*(KK+YTRAD))
CO TO 1600
\(1500 \operatorname{HRITE}(06,50)\) 'IRAD,WTRAD'
READ 50,IRAD, YTRAD
HRITE(06.50) 'ALL OR SINGLE DB LEVEL? (0 OR 1)'
READ 50,IA
IF (IA.EQ. 0 ) 60 TO 60
\(\operatorname{HRITE}(06,50)\) "IDB"
READ 50.IDB
IDBI=IDB
IDB2=IDB1-1
IDB3-1
URITE(06.50) 'ALL OR SINGLE NBAR? (0 OR 1)'
READ 50,IAX
IF (IAK.EQ.0) CO TO 70
\(410 \operatorname{WRITE}(06,50){ }^{\circ} \mathrm{NBAR}^{\prime}\)
READ 50.INBAR
IBAR1=INBAR
IBAR2-IBAR1-1
CO TO 80
60 IDB1=20
IDB2 \(=80\)
IDB3-5
70 IBAR1=3
IBAR2 \(=20\)
86 CONTINUE
50 FORMAT (V)
DO \(20 I=1,20\)
IR(I) \(=I\)
20 CONTINUE
\(I 1=I R A D+1\)
DO 300 III=IDB1,IDB2,IDB3
DB=FLOAT(III)
IOUT=1
SIC1-1
\(K A=10.0 \times *(I I I / 20.0)\)
```

 A=ALOC (KA+SQRT(KA*KA-1))/PI
 AASQ=A.*A
 IT=0
 IT1=0
 NSGFL=0
 DO 200 NBAR=IBAR1,IBAR2
 IF(NBAR.EQ.20.AND.NTYPE.EQ.8) CO TO 200
 IF(NTYPE.EQ.8) CO TO 1900
 IF(NSGFL.NE.0) CO TO 30
 SICP1=U(NBAR+1)/SQRT(AASQ+(NBAR+0.5)**2)
 30 SIGC(SIG1)=U(NBAR)/SQRT(AASQ+(NBAR-0.5)**2)
 SCmSIGC(SIC1)
 SGSQ-SG*SC
 IF(SG.LE.SIGP1.AND.IAK.EQ.1) CO TO 400
 IF(SG.LE.SIGP1) CO TO 200
 NSGFL=1
 SICP1=0.0
 DO 252 I=1,NBAR-1
 FNUM=1.0
 FDNM=1.0
 T=U(I)*U(I)
 KII=-0.5
 DO 254 II=1,NBAR-1
 XII=XII+1.0
 FNUM=FNUM*(1.0-T/(SGSQ*(AASQ+(KII*KII))))
 IF(II.EQ.I) GO TO 254
 FDNM-FDNM*(1.0-T/(U(II)*U(II)))
 254 CONTINUE
 ARC=PI*U(I)
 F(I)=-BESS (0.0,ARC) *FNUM/FDNM
 F(I)=F(I)/(BESS(0.0,ARG)**2)
 2.52 CONTINUE
 CD TO 1910
 1900 Z(1)=0.9858302+0.0333885*DB+0.00014064*DB*DB
 \&
-0.0000019 *DB*DB*DB+0.00000001 *DB *DB *DB *DB
Z(1)=Z(1)*Z(1)
Z(2)=2.00337487+0.01141548*DB+0.0004159*DB*DB
-0.00000373 *DB *DB *DB+0.00000001 *DB *DB *DB *DB
Z(2)=Z(2)*Z(2)
Z(3)=3.00636321+0.00683394 *DB+0.00029281 *DB *DB
-0.00000161 *DB*DB*DB

```

Z(3) \(=2(3) * 2(3)\)
\(Z(4)=4.00518423+0.00501795\) *DB+0.00021735 *DB *DB -0.00000088 *DB*DB*DB
\(Z(4)=Z(4) * Z(4)\)
DO 761 I-5, NBAR+1
\(Z(I)=A A S Q+I * I\)
761 CONTINUE
IF(NSGFL.NE. ©) CO TO 1930
SIGP1=BZERO1 (NBAR+2)/SQRT(Z(NBAR+1))
1930 SIGC(SIG1)-BZERO1 (NBAR+1)/SQRT(Z(NBAR))
SG=SICG(SIG1)
SCSQ-SC*SG
IF(SC.LE.SIGP1.AND.IAK.EQ.1) CO TO 400
IF(SC.LE.SICP1) CO TO 200
NSGFL-1
SICP1-0.0
DO 1940 I-1,NBAR
FNUM=1.0
T-BZERO1 (I)*BZERO1 (I)
FDNM=1.0-T/(BZERO1(1)*BZERO1 (1))
IF(I.EQ.1) FDNM=1.0
DO 1950 II=1,NBAR-1
FNUM - FNUM *(1.0-T/(SGSQ*Z(II)))
IF (I-1.EQ.II) CO TO 1930
FDNM \(\sim\) FDNM * (1.0-T/(BZERO1 (II+1) *BZERO1 (II+1)))
1950 CONTINUE
\(B(I)=(2.0 * T / B E S S(1.0, B Z E R O 1(I) * P I)) * F N U M / F D N M\)
1940 CONTINUE
\(\mathrm{P} 0=0.4797212+0.01456692 *(\mathrm{DB})-0.00018735 *(\mathrm{DB} * \mathrm{DB})\)
\(8+\quad+0.00000218 *(D B * D B * D B)-0.00000001 *(D B * D B * D B * D B)\)
PO=PO *SC
P0SQ=P0*P0
PIPOSQ=POSQ*PI *PI
FNUM=1.0
FDNM=1.0-POSQ/(BZERO1 (1)*BZERO1 (1))
DO 772 I=1,NBAR-1
FNUM-FNLM*(1.0-POSQ/(SCSQ*Z(I)))
FDNM=FDNM*(1.0-POSQ/(BZERO1 (I+1)*BZERO1 (I+1)))
772 CONTINUE
C=PIPOSQ-1.0
\(C=C * \operatorname{BESS}(1.0, P O * P I)\) *FNUM/FDNM
```

 C-1.0/C
 DD }773\mathrm{ I=1,NBAR
 B(I) =-B(I) *C
 773 CONTINUE
 1910 SIG1=SIG1+1
 IF(IAZ1.EQ.1) CO TO 55
 WMAK=0.0
 DO 51 I=1,IRAD+1
 RAD-FLOAT(I-1)
 CALL WEICHT(RAD,VTRAD,VFUNC)
 WMAK-AMAKI (WMAK,NFUNC)
 51 CONTINUE
 55 IT=IT+1
 DO 100 K=1,IRAD+1
 RAD-FLOAT(K-1)-0.5*(IAZ1-1)
 CALL HEICHT(RAD,VTRAD,VFUNC)
 IF(IAZ1 .EQ.0) WFUNC-WFUNC *2 .0 *PI *RAD/WHAX
 OUT(IOUT)=WFUNC
 IOUT=IOUT+I
 IF(IAK.EQ.1.AND.K.EQ.IRAD+1) CO TO 500
 IF(NTYPE.NE.8) CO TO 56
 IF((MOD(IT,5).EQ.0.OR.NBAR.EQ.19).AND.K.EQ.IRAD+1)
 & GO TO 120
 GO TO 100
 56 IF((MOD(IT,5).EQ.0.OR.NBAR.EQ.20).AND.K.EQ.IRAD+1)
 \& GO TO 120
CO TO 100
500 WRITE(06,995) III,A
URITE(06,997) NBAR
997 FORMAT(" NBAR=",4X,I2,//)
VRITE(06,996) SICG(1)
996 FORMAT(' SIGMA=',/,3K,F12.10.//)
DO 975 LL=1,IRAD+1
975 URITE(06,994) LL-1,OUT(LL)
994 FORMAT(I3,F12.10)
CO TO 100
120 IT1=ITI+1
IF(IT1.GT.1) CO TO 130
WRITE(06,995) III,A
995 FORMAT(//, 'DB=',I2,//'A=',F12.10,//)
130 URITE(06,998)(IK(I),I=NBAR-IT+1,NBAR)

```
```

998 FORMAT('NBAR=',4X,I2,4(10X,I2))
URITE(06,1998)
HRITE(06,993)(SIGG(JJ),JJ=1,IT)
993 FORMAT('SIGMA='./.3X,5(F12.10))
WRITE(06,1998)
1998 FORMAT(/)
ITT=5
IF(NTYPE.NE.8) CO TD 57
IF(NBAR.EQ.19.AND.IT.NE.5) ITT~MOD(IT,5)
CO TO 58
57 IF(NBAR.EQ.20.AND.IT.NE.5) ITT=MOD(IT,5)
58 DO 75 LL=1,IRAD+1
75 HRITE(06,999) LL-1,(OUT(LL+I-I1),I=II,I1 *ITT,II)
999 FORMAT(I3,5(F12.10))
WRITE(06,1999)
1999 FORMAT(//)
IOUT=1
IT=0
SIG1-1
100 CONTINUE
200 CONTINUE
300 CONTINUE
GO TO 420
400 WRITE(06,50) 'INVALID VALUE FOR NBAR'
CO TO 410
1600 WMAX=1.0
IF(NTYPE.EQ.6) UMAX-BESCAL
IF(NTYPE.EQ.7) HMAK=CUBK
DO 1700 K=1,IRAD+1
RAD=FLOAT(K-1)-0.5*(IAZ1-1)
CALL HEICHT(RAD,HTRAD,WFUNC)
IF(IAZ1.EQ.0) WFUNC=HFUNC*2.0*PI *RAD/WMAX
OUT(K)=WFUNC
1700 CONTINUE
WRITE(06,1705) NTYPE
1705 FORMAT(//,' NTYPE=',I3,//)
CO TO (1710,1800,1730,1800,1830,1740,1750),NTYPE
1710 WRITE (06,1715) WTPED,NHTPOW
1715 FORMAT(' UTPED=',F12.5,' NKTPOH=',I3,//)
CO TO 1800
1730 URITE(06,1735) WKASIR

```
```

1735 FORMAT(' HKASIR=',F12.5.//)
CO TO 1800
1740 WRITE(06,1745) BESCAL,BESEDG
1745 FORMAT(' BESCAL=',F12.5.' BESEDG=',F12.5.//)
CO TO 1800
1750 WRITE(06,1755) CUBK
1755 FORMAT(' CUBK=',F12.5.//)
1800 DO 1820 LL=1,IRAD+1
WRITE(06,1810) LL-1,OUT(LL)
1810 FORMAT(I3,F12.5)
1820 CONTINUE
4 2 0 ~ C O N T I N U E ~
GO TO 1850
1830 CALL EKIT
STOP
END

```

\section*{SUBROUTINE WEICHT}

\section*{1. PURPOSE}

This program 1 s used to compute the values of various weighting functions. The weighting functions include the cosine on a pedestal to a power, Blackman. Kalser, Bartlett or trlangular. Taylor, cublc, and Bayllss.
2. INPUT PARAMETERS
\begin{tabular}{|c|c|c|c|}
\hline Name & O/R & I & Description \\
\hline RAD & 8 & \(F\) & Independent varlable for the weighting function evaluation. \\
\hline UTRAD & \(R\) & \(F\) & Redius of the specifled weighting function. (For a linear array, UTRAD is the half span of the weighting function). \\
\hline IAZ & \(R\) & \(I\) & Flag that determines whether the subroutine generates amplitude or statistical weighting data. \\
\hline & & & - O Statistical velghting specified by the probability density function defined by the chosen weighting function. \\
\hline & & & - 1 Normal amplitude waighting. \\
\hline
\end{tabular}
IVTFLC. \(\quad\)\begin{tabular}{rl}
\(I \quad\)\begin{tabular}{l} 
Datermines the welghting \\
function evaluated.
\end{tabular} \\
& \(=1\) Cosine on a pedestal to a \\
& \(=2\) Bower
\end{tabular}

For IUTFLG = 1
\begin{tabular}{|c|c|c|c|}
\hline UTPED & 0 & \(F\) & Height of the pedestal for cosine on a pedestal to a power weighting. \\
\hline NUTPOW & 0 & I & Power of the cosine for cosine on a pedestal to a power veighting. \\
\hline
\end{tabular}

For IUTFLE - 3

WKASIR
Kalser variable for the trade-off between main lobe width and side lobe amplitude.

For IHTFLG \(=5\)
\begin{tabular}{|c|c|c|c|}
\hline F(20) & 0 & \(F\) & A set of constants used in evaluating the Taylor weighting (See Section 4). \\
\hline DB & 0 & F & The design side lobe emplitude in \(d B\) for the Taylor welghting. \\
\hline NBAR & 0 & I & Number of zeros used to epproach the ldeal pattern function for the Taylor veighting.
\[
186
\] \\
\hline
\end{tabular}
\begin{tabular}{llll} 
PII2 & 0 & \(F\) & \(A\) constant, PII2 \(=2.0 / \pi^{2}\). \\
BESS1 & 0 & \(F\) & \(A\) constant, BESS1 \(=1.0 / J_{0}(0.0)\).
\end{tabular}

\section*{For IHTFLG = 6}
\begin{tabular}{llll} 
BESCAL & 0 & \(F \quad\)\begin{tabular}{l} 
Maximum weighting ampliture for \\
the Bessel weighting (at RAD \\
\(0.0)\).
\end{tabular} \\
BESEDC & \(0 \quad F \quad\)\begin{tabular}{l} 
Radius scaling constant for the \\
Bessel weighting.
\end{tabular}
\end{tabular}

For IUTFLG -7
CUBK \(\quad \mathbf{F}\) Amplitude scaling constant for the cubic weight.

For IHTFLG \(=8\)
\begin{tabular}{|c|c|c|c|}
\hline B(20) & 0 & \(F\) & A set of constants used in evaluating the Bayliss weighting (See Section 4). \\
\hline ANC & 0 & \(F\) & Azimuth angle independent varlable for evaluation of the Bayliss weighting. \\
\hline DB & 0 & F & The design side lobe design amplitude in dB for the Bayllss velghting. \\
\hline NBAR & 0 & I & Number of zeros used to approximate the ldeal pattern friction for the Bayliss weighting. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline HKK & 0 & F & A thinning factor used in the statistical loading. Equals the probability of an element occurring at the normalized peak of the chosen weighting function. \\
\hline WMAX & 0 & F & Peak of the chosen welghting function used for velght normalization in statistical loading. \\
\hline MAD1 & 0 & I & Starting address for selecting random numbers from the random number array in the call to Function RRaND (5)
\[
(1 \leq \operatorname{MADI} \leq 128)
\] \\
\hline JRND & 0 & \(I\) & Random number generator initialization constant used in the call to Function RRAND ( \(0<\) JRND \(\leq 2^{36}-1\) ). \\
\hline UL & 0 & \(F\) & Constant used in Function RRAND to set up unlform random number distribution (UL \(=0.0\) ). \\
\hline UEKT & 0 & F & \begin{tabular}{l}
Constant used if Function RRAND \(t=35 t\) up uniform random number distribution \\
(UEXT = 2.910383046E-11).
\end{tabular} \\
\hline
\end{tabular}

\section*{PAAS-CPD-HEICHT}

16 JUN 77

\section*{3. CALLING SEQUENCE}

CALL WEIGHT (RAD,YTRAD,WFUNC)
Where: RAD - Independent variable for the weighting funcilon evaluation.

YTRAD = Radius (half span) of the weighting function.

WFUNC - Returns the value of the weighting function evalusted at RAD.
4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA
a. Two common statements are required for the subroutine VEICHT. These contain the input variables to the subroutine. The statements must be in the form shown

COHMON IWTFLC, WTPED,NUTPOW,WKASIR,F(20),B(20), ANC, NBAR, BESCAL, CUBK, PII2, BESS1, IAZ, XKK, YMAK, BESEDC

The labeled common block, BLKRND, is used in the call to the Function RRAND.

All the varlable names are the same as those described above in Section 2.
b. The constants, \(F(20)\), are used in evaluating the Taylor welghting function. To decrease execution time the constants should be calculated once in the calling program for each weighting design and the values stored in the array \(F(20)\). The equations for these constants are the following:


Where: \(A=\frac{\cosh ^{-1} \eta}{\pi}\)
\(\eta=10.0^{\mathrm{DE} / 20}\)
\(\sigma=\mu_{\text {MAR }} /\left(A^{2}+\left(\text { NBAR-1 }^{2} / 2\right)^{2}\right)^{1 / 2}\)
\(\mu_{n}\) The zeros of the Bessel function
\[
J_{1}\left(\pi \mu_{n}\right)=0, n=1,2, \ldots
\]
c. The constants, \(B(20)\), are used in evaluating the Bayliss weighting function. To decrease execution time the constants should be calculated once in the calling program for each weighting design and the values stored in the array \(B(20)\). The equations for the constants are given below.
\[
B(m)=\frac{-j{ }^{C 2 \mu_{m}}}{\frac{J_{1}\left(\mu_{m} \pi\right)}{}} \frac{\prod_{n=1}^{\text {MBAR-1 }}\left\{1-\left(\frac{\mu_{m}}{\sigma z_{n}}\right)^{2}\right\}}{\prod_{\substack{k=0 \\ k \neq n}}^{\text {MBAR-1 }}\left\{1-\left(\frac{\mu_{m}}{\mu_{k}}\right)^{2}\right\}}
\]
\(=0\)
,m=NBAR,NBAR+1...

Where: \(\mu_{m}=\) The zeros of the Bessel function
\[
J_{1}\left(\mu_{m} \pi\right)=0, m=0,1, \ldots
\]
\[
\begin{aligned}
& z_{n}= \begin{cases}0 & , n=0 \\
\pm \xi_{n} & , n=1,2,3,4 \\
\pm\left(A^{2}+n^{2}\right)^{\frac{1}{2}} & , n=5,6, \ldots\end{cases} \\
& \xi_{1}=0.9858302+0.0333885 \cdot D B+0.000140 \cdot D B^{2} \\
& -0.0000019 \cdot \mathrm{DB}^{3}+0.00000001 \cdot 08^{4} \\
& \xi_{2}=2.00337487+0.1141548 \cdot \mathrm{DB}+0.0004159 \cdot \mathrm{DB}^{2} \\
& -0.00000373 \cdot \mathrm{DB}^{3}+0.00000001 \cdot \mathrm{DB}^{4} \\
& \varepsilon_{3}=3.00636321+0.00683394 \cdot \mathrm{DB}+0.00029281 \cdot \mathrm{DB}^{2} \\
& -0.00000161 \cdot 0 B^{3} \\
& \xi_{4}=4.00518423+0.00501795 \cdot \mathrm{DB}+0.0021735 \cdot \mathrm{DB}^{2} \\
& -0.00000088 \cdot \mathrm{DB}^{3} \\
& A=\frac{\cosh ^{-1} \pi}{\pi} \\
& \eta=10.0^{\mathrm{DB} / 20} \\
& \sigma=\frac{\mu_{n B A R}}{z_{n B A R}}
\end{aligned}
\]
\[
P_{0}=0.4797212+0.1456692 \cdot D B-0.0018739 \cdot \mathrm{DB}^{2}
\]
\[
+0.00000218 \cdot \mathrm{DB}^{3}-0.00000001 \cdot \mathrm{DB}^{4}
\]

The normalization coinstant, \(C\), 1 s selected such that the weighting function will produce a peak of unit helght in che far-field.

> d. The value of CuBk must be normalized to the peak of the cublc weighting. The equation for thls is shown below.

\section*{CUBK=CUBK/ABS (KK*(KX. YTRAD) *(KK+UTRAD))}

Where: \(\mathrm{XX}=(\text { (YTRAD })^{2} /(3.0)\)
e. References:

Taylor, T. T., 'Design of Circular Apertures for Narrow Beamwidth and Low Sidelobes.' IRE Trans, on Antennes and Propagation, Vol. AP-8, pp. 17-22, (1/60).

Hansen, R. C.. 'Tables of Taylor Distributions for Circular Aperture Antennas," IRE Trens. on Antennes and Propagation, Vol. AP-8, pp. 23-26, (1/60).
Bayliss, E. T.. "Design of Monopulse Antenna
Difference Patterns with Low Sidelobes, Bell
Sys. Tesh. Journel. Vol. 47, pp. 623-650,
\((5 / 68)\).

Oppenheim, A.V., Schafer, R.W., Digital Signel Processing, Englewood Cliffs, NJ, Prentice-Hall, Inc., 1975, pp. 243-244.

\section*{PAAS-CPD-HETCHT}

\section*{5. SUBPROGRAMS REQUIRED}

RRAND

\section*{EXPND}

BESS
GAM
6. THEORY OF OPERATION

The cosine on a pedestal to a pover, Blackman, Kalser, and Bartlett weighting are described in Oppenhell and Schafer (4.e). Detalls of the Ta:..or weighting function may be soen in the articles by Taylor and Hansen (4.e). Details of the Bayllss weighting function may be seen \(1 n\) the article by Bayliss (4.e). The value of the weighting function. GFUNC, for a cosine on a pedestal to a power is described \(1 n\) the equation below.

WFUNC-KTPED+(1-KTPED)*(COS (RAD*PI/NTRAD*2)))**NHTPOW
For the Blackmen vindow the equation is given below.
WFUNC-0.42-0.5*COS (ARC) \(+0.08 * \operatorname{COS}(A R G+A R C)\)
Where: \(\quad A R G=((R A D / W T R A D)+1) * P I\)
The equation for the Kalser window is given below.
WFUNC=EXPND(CONK*SQRT (SQN-RAD*RAD)) *DENOK
```

Where: DENOM = 1.0/EKPND(NKASIR)
CONK - HKASIR/FTRAD
SQN = HTRAD*HTRAD

```

The equation for the triangular waighting is given below.

\author{
WFUNC=1 - RAD/WTRAD
}

The equation for the Bessel weighting is given below. WFUNC=BESCAL*J。(RAD*BESEDG)

The equation for the cuble veighting is given below. UFUNC~CUBK*RAD*(RAD - YTRAD)*(RAD+UTRAD)
7. FORTRAN LISTINC
```

C
C ***
C
SUBROUTINE YEIGHT(RAD,YTRAD,VFUNC)
COMMON IKTFLG, HTPED,NHTPOW,HKASIR,F(20),B(20), ANC,
NBAR, BESCAL,CUBK, PII2,BESS1,IAZ, KKK, YMAK,
BESEDG
COMMON/BLKRND/MAD1,JRND,XMEAN,SIC2SQ,UL,UEXT
DIMENSION U(20),BZERO1(20)
DATA U/1.2196699,2.2331306,3.2383154,4.2410628.
\& 5.2427643,6.2439216,7.2447598,8.2453948.
\& 9.2458927.10.2462933,11.246624,12.246900,
8 13.247131,14.247334,15.247508,16.247663.
\& 17.247796,18.247920,19.248027,20.248125/
DATA BZERO1/0.586067,1.6970509,2.7171939,3.726137,
\& 4.7312271,5.7345205,6.7368281,7.7385356.
\& 8.7398505,9.7408945,10.7417435,11.7424475.
8 12.7430408,13.7435477,14.7439856,15.7443679,
\& 16.7447044,17.745003.18.7452697,19.7455053/
UL=0.0
UEKT-2.910383046E-11
IF(RAD.LE.YTRAD) CO TO 280
UFUNC=0.0
CO TO 200
280 PI=3.1415926
CON-PI/(HTRAD*2)
CO TO(210,220,230,240,250,260,270,281),IHTFLG
210 TEKP=1.0-YTPED
WFUNC-NTPED+TEMP *COS (RAD*CON) **NYTPON
CO TO 200
220 ARC=(RAD+UTRAD)*2 *CON
WFUNC=0.42-0.5*COS (ARG)+0.08*COS (ARC+ARC)
GO TO 200
230 DENOK=1.0/EKPND(HKASIR)
CONK=WKASIRNTRAD
SQN=HTRAD*HTRAD
HFUNC=EKPND(CONK*SQRT (SQN-RAD*RAD))*DENOM
GO TO 200

```
```

240 WFUNC=1.0-RADNTRAD
CO TO 200
250 P-PI*RAD/HTRAD
CSTRT=0.0
DC 256 Im1,NBAR-1
CSTRT=CSTRT+(BESS(0.0.U(I)*P)*F(I))
256 CONTINUE
UFUNC=PII2*(BESSI+CSTRT)
CO TO 200
260 RAD=RAD*BESEDC
UFUNC=BESS(0.0,RAD)*BESCAL
CO TO 200
270 K=CUBK*RAD
WFUNC=K*(RAD+HTRAD)*(RAD-WTRAD)
CO TO 200
281 P=PI*RAD/WTRED
GSTRT=0.0
DO 285 I=1,NBAR
GSTRT-GSTRT+(-B(I-1)*BESS(1.0,BZERO1(I-1)*P))
285 CONTINUE
HFUNC=COS(ANG)*GSTRT
200 IF(IAZ.EQ.1) CO TO 300
WFUNC-KKK*YFUNC/WMAX
UTMP=SIGN(1.0,WFUNC)
RRND=RRAND(1)
IF(RRND.GT.ABS(YFUNC)) HTMP=0.0
UFUNC-YTMP
300 RETURN
END

```

```


[^0]: DD form 1473 edition of inov 65 is obsolete

