

VULNERABILITY OF SURFACE EFFECT VEHICLES TO EXPLOSION GENERATED WATER WAVES

PREPARED FOR:
OFFICE OF NAVAL RESEARCH ARLINGTON, VIRGINIA

PREPARED BY:
S. WANG
R. WADE
W. TIER

CONTRACT NO. N-00014-76-C-0261
TETRA TECH CONTRACT NO. TC-645

DECEMBER 1977

segunetr glassification of this page (when dere Enterod)

6. PERFORMING ORG. FZPORT NUMEEA TC-645
7. AUTHOR(O)

> | S. \| Wang |
| :--- |
| R. /Wade |
| T. W. \|Wier |

9. PERFORMINT OWGXNTZATION NAME AND ADDRESS

AREA WORK UNTT NUMBERS
Tetra Tech, Inc.
630 N. Rosemead Boulevard
Pasadena, California 91107
Task No.
NR 089-114
11. CONTROLLING OFFICE NAME AND ADORESS

Office of Naval Research, Code 461FP
800 N. Quincy St.
Arlington, Va. 22217

16. DISTRIGUTION STATEMENT (OI ChLO RAPORI)

Approved for Public Release and Sale, Distribution Unlimited

20. ABSTRACT (Contimue on reverse tide If neceseary end tdentify by block mumber)
\rightarrow The objectives of the study are: to develop a mathematical model appropriate for analysis of the behavior of surface effect vehicles (SEV) in unusually large waves; and to subsequently apply this model to investigate the vulnerability of these vehicles to explosion generated wavesenvironments. The generation of surface waves due to an explosion is modeled mathematically as a function of the explosive yield, detonation depth and water depth. Further, the dynamic property of the propagated waves is treated to vary with the local, $44=3 / 4$ Csy 0102.014 .6601 :
water depth. The SEV dynamics are modeled mathematically by considering the vehicle as a rigid body having six degrees of freedom in space subject to an appropriate constraint derived from the cushion air dynamics as well as to the environmental excitations due to waves. Non-linear contributions including effects due to large motions, viscous flows, and control logics are considered and vehicle responses are solved numerically through time domain simulations. Analyses have been conducted using this analytical model to examine the potential threat of underwater explosions to a typical 2000-ton class SES, and the operational envelopes for such a vehicle in explosion generated wave environments heve been developed and discussed in this report.

SUMMARY

This report was prepared to fulfill the requirements under contract N00014-76-C-0261, supported by the Office of Naval Research, U. S. Navy. The objectives of the study were to develop a mathematical model appropriate for analysis of the behavior of surface effect vehicles (SEV) in unusually large waves and to subsequently apply this model to investigate the vulnerability of these vehicles to explosion generated wave environments.

The model was formulated in a very general structure applicable both to surface effect ships (SES) and to air cushion vehicles (ACV). Specific features of this model include heave alleviation ride control, thrust control, and various schemes for turning and maneuvering. The model provides time domain solutions of SEV in six degrees of freedom over any prescribed sea state, appropriate for both seakeeping and maneuvering analyses. Specifically worth mentioning is the fact that the model is efficient and can be quickly executed on high speed digital computers. Typically, a l00-second real-time simulation can be accomplished in 19 seconds of computer time on a CDC 7600 computer.

Another specific feature of the present model is its ability to simulate vehicle response to large excitations. This feature was specially incorporated for the purpose of analyzing vehicle behaviors in an explosion generated wave environment. Analyses of vessel response of a typical 2000-ton class SES to various initial conditions of explosion were conducted. Operational envelopes defining the required stand-off distance and vessel heading for safe maneuvers of this vehicle are also presented in this report. It must be noted that, in this study, the vehicle dimensions and characteristics were treated only in general terms in order to represent a typical SES. It should also be emphasized that only a number of vehicle speeds, control parameters, and weapon sizes have been
considered in this study. Therefore, further studies are warranted for more comprehensive parametric examinations as well as for investigations of a specific vehicle of interest. Nevertheless, the present mathematical model provides a valuable foundation for analyzing these problems.

In the following, several major findings from the present study are summarized:
o Dependirg on yield and craft heading, a critical standoff distance can be defined for a typical SES within which craft survival is questionable.
o Reaction time to a blast is critical. If sufficient time is available, outrunning the waves is possible. If sufficient reaction time does not exist, best option is to head into the waves and maintain a hovering mode.
o In relatively shallow water the critical parameter affect craft survival is wave height to water depth ratio rather than standoff distance as in the case of deep water.
o Heave compensation devices help provide substantial improvement to craft survival as evidenced by a limited number of cases investigated.

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 FORMULATION OF PROBLEM 7
2.1 Coordinate System 7
2. 2 Equations of Motion 9
3.0 FORCES AND MOMENTS - CRAFT DYNAMICS 12
3.1 Sidehull Forces 12
3.2 Cushion Pressure Forces 21
3.3 Seal Forces 25
3.4 Aerodynamic Forces 28
3.5 Propulsion and Thrust Control 28
3.6 Appendages 30
3.7 Motion Alleviation and Control 31
4.0 WAVE ENVIRONMENT AND WAVE FORCES 33
4.1 Wave Representation 33
4.2 Deep Water Wave Generation 33
4.3 Shallow Water Waves 37
4.4 Wave Forces 41
5.0 NUMERICAL PROCEDURES 43
5.1 Method of Solution 43
5.2 Computer Program. 44
6.0 SES RESPONSE IN WAVES 46
6.1 Craft Characteristics 46
6.2 Sinusoidal Wave Response 47
6.3 Solitary Wave Response 55
6.4 Deep Water Explosion Wave Response 64

TABLE OF CONTENTS (Con't)

7.0 VULNERABILITY ANALYSIS 71
7.1 Scope of the Study 71
7.2 Deep Water Hazard 72
7.3 Shallow Water Hazard 76
7.4 Effect of Heave Attenuation 80
7.5 Hovering Mode 82
7.6 Reaction Time and Optimum Maneuver. 85
8.0 CONCLUSIONS 87
9.0 REFERENCES 90
APPENDIX A. 92
APPENDIX B 96
APPENDIX C. 110
DISTRIBUTION LIST 176

1.0 INTRODUCTION

Currently, there is a concerted effort being made by the Navy and other Governmental agencies in exploring the feasibility of using alternate concepts to present day naval ship design for the Navy of the future. These investigations have led to the consideration of Air Cushion Vehicles (ACV) and Surface Effects Ships (SES) as viable candidates. These vehicles offer the potential for much greater versatility and higher operational speeds than hithertofore possible with conventional ship design. The ACV with its totally flexible skirt system presents an amphibious capability most attractive for coastal and nearshore operations, assault landing operations, and for arctic environmental use. The SES, on the otherhand, while not of an amphibious nature, provides an ocean going vehicle capable of very high speed performance in reasonable sea states and weather conditions.

Interest in these concepts has led the Navy into a development program in which two air cushion assault vehicles are presently being evaluated. Additionally, two l00-ton surface effect ships have been built and tested, under Navy contract, with sufficiently encouraging results that the Navy is currently conducting a detail design of a 3000-ton class SES. It is apparent from this activity that more than just casual interest is being given to these vehicles and indeed, dependent on the results of the above programs, they may prove to be the forerunners of a completely new class of fighting ship for the Navy of tomorrow.

The advent of the Surface Effect Vehicle as a serious contender for Naval applications has led to the need for an evaluation of the vulnerability of this type of craft under typical tactical situations. As presently envisaged the role these vehicles are to play in naval operations is one of antisubmarine warfare (ASW),
escort duties and near or offshore patrol and rescue, which operations require a dash or high speed capability coupled with maneuverability, a feature characteristic of air cushion vehicles (ACV) and surface effect ships (SES) alike.

Due to this mounting interest it is appropriate, at this time, to obtain an assessment of the vulnerability of such craft to possible threats. In identifying possible threat areas one outstanding possibility is that due to explosion generated waves. Past experience in this field, [1] and [2],has shown the great damage potential such a phenomenon can have on submarines and conventional ships. The effects on ACV's and SES are expected to be of greater significance since the unique features of these vehicles make them particularly susceptible to sudden and anomalous changes in sea surface topography, such as are known to be produced by nuclear detonations.

Past studies have been primarily concerned with the behavior of ships and submarines within the transient surf zone produced by high yield explosions at the continental margins (Van Dorn Effect). However, because of their dynamic response we expect that the damage potential on SES and ACV's cannot only be restricted to these conditions but must be extended to include the effects of small and moderate yield devices and operations in deep water. It is evident that even under these latter conditions waves can be produced that are capable of limiting the performance of these craft.

The radical differences between the design of these craft and those of present naval ships makes it impossible to extrapolate the results obtained in past studies to the present case. It is only by conducting an investigation, wherein the features of these vehicles are faithfully modeled, that the vulnerability of these craft can be determined.

In light of the above discussion, it is deemed imperative that such a study be conducted with the objective of defining the operational limits of ACV's and SES under explosion generated waves, and to ascertain, where possible, the survival potential of these vehicles when subjected to tactical situations of this nature.

The criteria used in defining the structural design and stability characteristics of SES are derived principally from the desired operational envelopes. The envelope defines the speed-wave height domain over which the craft will operate. Typically, such an envelope is shown in Figure 1.

Two factors which greatly affect the basic structural design of the SES are the highest wave environment to be encountered when operating on-cushion and the maximum impact loading to be seen by the hull during operation. The former factor is of prime importance in selecting the height of the flexible skirt system and thus impacts hull design. The latter determines plating thickness and consequently weight. From Figure lit will be seen that point A on the chart determines maximum wave height on cushion. The worst combination of sea state and speed will be determined by line $A B$ along which maximum impact loads are likely to occur. If such an operating envelope is determined without due consideration for potential threats as outlined above grave consequences can arise. It is easily conceivable that a wave environment outside the typical boundaries now being considered in the SES field can be generated by low to moderate yield devices. Such circumstances could cause structural and operational failures.

In addition to the above impacts the question of craft stability and survival are of equal importance. The response of an SES to a typical explosion generater? wave profile could lead to conditions of craft plow-in, pitch poling and capsizing. Such

Figure 1: Typical SES operational envelope.
extreme motions are indeed possible under certain conditions of speed, water depth and yield. This aspect of vulnerability is therefore of equal importance in analyzing SES operational characteristics.

The problem at hand can be divided into two basic sub tasks:
(a) The analytical description and modeling of explosion generated water waves, and
(b) The analytical treatment of the craft dynamics and motions when subjected to a disturbing functions as defined in (a) above.

Whereas previously conducted work by Tetra Tech, References 1 and 2, is directly applicable to the first of these areas, the second provides a new and added dimension due to the radical difference between $A C V$ and SES and conventional ships. Analytical modeling of SES motions and maneuvering however, have also been conducted by Tetra Tech[3] and has been used as a basis of departure for the present program.

The present report deals with the investigation of the response of a typical SES to an explosion wave environment. This study has been directed to the formulation and development of the analytical model describing the dynamics of a surface effect vehicle, the description of the explosion generated wave environment and the investigation of such a craft under various scenarios. Exercise of the program in this area has been concentrated on various parameters of the problem such as the effects of yield, standoff distance, water depth and tactical maneuvers to enhance survival.

In order to fully exercise the analytic program and ensure its validity several cases of sinusoidal waves and solitary waves were also run. These latter waves are representative of waves in the shallow water environment and consequently are worthy of investigation in their own right.

The work described in this report was conducted for the office of Naval Research under contract N00014-76-C-0261. This report, covers all work performed under this contract and is submitted in fulfillment of the requirements of the contract.

2.0 FORMULATION OF PROBLEM

2.1 Coordinate System

The motion of the craft is described in terms of the relationship between a body fixed reference frame and a coordinate system fixed in space. The initial coordinates (x_{0}, y_{0}, z_{0}) and the body coordinates (x, y, z) are both designated according to a right hand convention with z_{o} and z positive downward. The origin of the body frame is kept fixed at the center of gravity of the craft with the x-axis parallel to the baseline of the craft, positive forward, and y positive starboard. The two coordinate systems coincide initially at time zero. At time t, there are three linear displacements and three angular displacements to describe the six degrees of freedom craft motions.

As a body moves in a fluid domain, various forces and moments act on the body. For the convenience of analysis, the total force is resolved into three components along the body axes. Definitions and symbols of the six components of force/moment, displacement and velocity are given by Table 1 and illustrated in Figure 2.

Table 1 Definition of Force/Motion Variables

Motion	Force or Moment	Displacement	Velocity
Longitudinal	X	ξ	u
Lateral	Y	n	V
Vertical	Z	ζ	w
Roll	K	ϕ	p
Pitch	M	θ	q
Yaw	N	ψ	r

FIGURE 2-COORDINATE SYSTEM AND NOTATIONS

2.2 Equations of Motion

The equations of motion for a craft in six degrees of freedom can be written as:

$$
\begin{align*}
& \bar{m}(\dot{u}+q w-r v)=X \\
& \bar{m}(\dot{v}+r u-p w)=Y \\
& \bar{m}(\dot{w}+p v-q u)=Z \\
& I_{x} \dot{p}+\left(I_{z}-I_{y}\right) q r=K \tag{1}\\
& I_{y} \dot{q}+\left(I_{x}-I_{z}\right) r p=M \\
& I_{z} \dot{r}+\left(I_{Y}-I_{x}\right) p q=N
\end{align*}
$$

Where \bar{m} is the mass and I_{x}, I_{y} and I_{z} are the moments of inertia of the craft about the respective axes. Terms on the lefthand side represent the rigid body inertial reactions and the centrifugal effects acting at the origin with respect to the moving coordinate system. The terms on the righthand side refer to the total forces and moments applied to the craft, including the hydrodynamic effects arising from the overall motions of the craft as well as the results of propulsion, control and environmental forces which may affect the craft motions and maneuvers. In a functional form, these components can be expressed generally as:

$$
\left.\begin{array}{l}
x \tag{2}\\
Y \\
z \\
K \\
M \\
N
\end{array}\right\}=f\left(\dot{u}, \dot{v}, \dot{w}, \dot{p}, \dot{q}, \dot{x}, u, v, w, p, q, x, x_{0}, Y_{0}, z_{0}, \phi, \theta, \psi, \delta, \varepsilon\right)
$$

In the above equation, x_{0}, Y_{0}, and z_{0} are the position components or the linear displacements of the craft and ϕ, θ, and ψ are the angular displacements. The parameter δ represents a general description of the effect of various propulsion and control schemes, and the parameter ε represents the effect due to environmental disturbances such as waves. This functional form equation shows clearly the dependence of the external force and moment on the various variables. To reduce this functional relationship into a useful mathematical form, a maylor expansion is usually applied provided that the non-dimensional proportionality constants are known or determinable. By keeping a sufficient number of terms for each variable, forces and moments can be expressed in a desired order of these variables to account for non-linear effects.

The determination of the proportionality constants, or the hydrodynamic derivaties, by analytical methods is generally limited only to the linear terms. The non-linear coefficients are normally determined experimentally by means of captive model tests. In the present analysis external forces and moments are determined analytically on the basis of physical concepts. By this approach various non-linear features can be included without the backup of experimental information. The general representation of the total force (or moment) acting on an SES is assumed to be composed of various components as follows:

$$
\begin{aligned}
F_{i}= & F_{\text {sidewall } i}+F_{\text {cushion } i}+F_{\text {seals } i}+F_{\text {aerodynamic } i} \\
& +F_{\text {appendages } i}+F_{\text {propulsion } i}+F_{\text {control } i}+F_{\text {waves } i}
\end{aligned}
$$

where $i=1$ to 6 , represents a particular mode or direction of motion. The calculation of each of the component forces is discussed in the following sections.

3.0 FORCES AND MOMENTS - CRAFT DYNAMICS

3.1 Sidehull Forces

The calculation of the forces acting on the sidehulls assumes that each component of these forces falls into one of the two major catagories, namely viscous and non-viscous. The nonviscous portions are those directly related to the dynamic fluid pressure resulting from the sidehull motion. These forces are intimately associated with the energy exchanges between the fluid and the moving sidehull and can be deduced from the fundamental principles of classical mechanics. Consequently, all non-viscous terms, both linear and non-linear, can be analytically identified as functions of the body added inertia, provided that the nonviscous dissipative damping is negligible. The viscous portions are drags created through various origins. The term drag customarily refers to the total resistance of the craft in its axial direction, which consists of several components attributive to several different items, and will be considered in detail in a later section. In the present section, only contributions due to sidehulls are considered. These contributions are normally treated as dependent on the square of the velocity through proportional empirical constants. Some details for the calculation of both the viscous and non-viscous forces on the sidehull are given in the following:
(a) Hydrodynamic pressure on sidehull

Because of the narrow hull geometry, the calculation of the hydrodynamic forces on the sidehull can be performed according to the fundamental concept of slender body theory. For a slender body of constant speed U in an inviscid, incompressible fluid the linearized free surface condition is given by:

$$
\begin{equation*}
\mathrm{U}^{2} \Phi_{\mathrm{xx}}+\mathrm{g} \Phi_{z}=0 \tag{3}
\end{equation*}
$$

Where Φ is the velocity potential and g the gravitational constant. Since the sidehull immersion is normally small in comparison with the craft length, the above condition is more conveniently analyzed through its non-dimensional form as follows:

$$
\begin{equation*}
F^{2} \frac{d}{\mathrm{~L}} \Phi_{x^{\prime} x^{\prime}}+\Phi_{z^{\prime}}=0 \tag{4}
\end{equation*}
$$

Here F is the Froude number based on the craft speed and sidehull length; x^{\prime} is a non-dimensional axial coordinate referenced to the craft length L, and z^{\prime} is a non-dimensional vertical coordinate referenced to the craft immersion d. This normalization brings $\phi_{X^{\prime}} x^{\prime}$ and ϕ_{z}, to the same order of magnitude. The Froude number F is typically of the order of 1 or 2 for an SES. Since the immersion ratio d / L is small (of the order of 10^{-2} for a normal sidehull), the second term in the above equation is normally dominant. Consequently, the free surface condition can be approximated by

$$
\begin{equation*}
\phi_{z}=0 \tag{5}
\end{equation*}
$$

which is equivalent to the condition for a positive reflection in the free surface.

The expression of the boundary condition suggests that the problem can be treated as a body moving in an infinite medium, in which the dissipative damping is negligible and as shown by Lamb [4], the hydrodynamic effect is entirely determinable as a function of the added mass along the principal axes of the body. Following the procedure of classical mechanics, the effects of the hydrodynamic pressure on the craft can be easily obtained.

In the derivation of the force relations, the three dimensional sidehull is considered as a number of segments along the longitudinal axis. Each segment is considered individually as a two
dimensional problem; interferences between segments are ignored. Consequently, the relative fluid velocities at the center of a segment x are given by

$$
\begin{align*}
& u_{r}(x, t)=u \\
& v_{r}(x, t)=v+x r-f p \tag{6}\\
& w_{r}(x, t)=w-x q+h p
\end{align*}
$$

here

$$
u^{2}+v^{2}+w^{2}=u^{2}
$$

and U the resultant velocity of the craft. The variables h and f are the lateral and vertical moment arms about the craft center of gravity, respectively. The above relations are applicable to both the starborad and port sidehulls; a negative value of h should be used for the port sidehull.

We shall first consider the segment to be axially symmetric and having component added masses $m_{y y}$ and $m_{z z}$ along the craft lateral and vertical axes, respectively. For asymmetrical segments with respect to the axial axis, additional treatment will be considered later. The added mass component along the axial direction is ignored in the analysis according to the slender body approach; however, estimates of surge effect by a gross approximation of this component are included in the numerical model, as will be shown in Appendix A. Specifically, $m_{y y}$ and $m_{z z}$ are written as follows:

$$
\begin{align*}
& m_{Y Y}(x)=k_{Y Y} \cdot \frac{\pi}{2} d^{2}(x) \\
& m_{z Z}(x)=k_{z Z} \cdot \frac{\pi}{8} b^{2}(x) \tag{7}
\end{align*}
$$

where $k_{y y}$ and $k_{z z}$ are the added mass coefficients which are generally a function of geometry and frequency; $b(x)$ is the local beam of the segment at water line and $d(x)$ is the local draft.

The kinetic energy of a unit slice of fluid can be written as

$$
\begin{equation*}
T(x, t)=\frac{1}{2}\left(m_{Y y} v_{r}^{2}+m_{z z} w_{r}^{2}\right) \tag{8}
\end{equation*}
$$

The hydrodynamic forces and moments acting on a unit axial length are then given by:

$$
\begin{align*}
& \frac{d Y}{d x}=-\frac{d}{d t} \frac{\partial T}{\partial v}+p \frac{\partial T}{\partial w} \\
& \frac{d Z}{d x}=-\frac{d}{d t} \frac{\partial T}{\partial w}-p \frac{\partial T}{\partial v} \\
& \frac{d K}{d x}=h \frac{d Z}{d x}-f \frac{d Y}{d x} \tag{9}\\
& \frac{d M}{d x}=-\frac{d}{d t} \frac{\partial T}{\partial q}+u \frac{\partial T}{\partial w}+p \frac{\partial T}{\partial r}-r \frac{\partial T}{\partial p} \\
& \frac{d N}{d x}=-\frac{d}{d t} \frac{\partial T}{\partial r}-u \frac{\partial T}{\partial v}+q \frac{\partial T}{\partial p}-p \frac{\partial T}{\partial q}
\end{align*}
$$

The kinetic energy T at a fixed cross flow plane is a function of x and t. The total derivative $\frac{d}{d t}$ therefore must reflect the changing coordinate of the cross flow plane with time, thus

$$
\frac{d}{d t}=\frac{\partial}{\partial t}-u \frac{\partial}{\partial x}
$$

Substituting (8) into (9), carrying out the differentiation, and then integrating over the sidewall length, gives the total hydrodynamic forces and moments acting on the craft. These forces and moments include both the linear and non-linear hydrodynamic contributions. A detailed breakdown of these contributions is given in Appendix A.

It has been mentioned earlier that $m_{y y}$ and $m_{z z}$ are for axially symmetric sections. More often the sidewall sections are asymmetrical. This asymmetricity gives rise to cross coupling effects which are estimated as follows:

$$
\begin{align*}
& m_{y z}(x)=k_{y} \cdot m_{z z}(x) \tag{10}\\
& m_{z Y}(x)=k_{z} \cdot m_{y y}(x)
\end{align*}
$$

where $\mathrm{m}_{\mathrm{yz}}(\mathrm{x})$ represents the sectional added mass at station x , relating the fluid momentum in the lateral direction y to the local normal motion in the direction z. Similarly, $m_{z y}(x)$ can be interpreted as the added mass relating vertical fluid momentum to the local lateral motion. The coefficients k_{y} and k_{z} are estimated using:

$$
\begin{equation*}
K_{y}=\frac{1}{K_{z}}=\frac{N_{y}(x)}{N_{z}(x)} \tag{11}
\end{equation*}
$$

where $N_{y}(x)$ and $N_{z}(x)$ are average values of the horizontal and vertical unit normal components of the hull cross-section at station x. The average is taken with respect to the wetted length of the hull cross sectional area.

(b) Hydrostatic Forces and Moments

The hydrostatic force acting on the body is obtained by integrating the hydrostatic pressure over the entire wetted body surface and is numerically equal to $\rho g \Delta$, where ρ is the density of the fluid, g is the acceleration of gravity and Δ is the volume of the displaced fluid. Let the sectional area at station x be $s(x)$, which is a function of draft d defined as

$$
\begin{equation*}
d(x)=D(x)+\zeta-x \sin \theta+B \sin \phi \tag{12}
\end{equation*}
$$

where $D(x)$ is the initial draft at station x and B is the halfspacing of the sidehulls; ζ, θ and ϕ have been defined before as the instantaneous motion displacements of heave, pitch and roll, respectively. The total buoyancy force is then given by:

$$
\begin{equation*}
F_{\text {Buoy }}=\rho g \int s(x) d x \tag{13}
\end{equation*}
$$

where the integration is carried over the sidehull length from stern to bow. The force component along the body normal axis z is then given by:

$$
\begin{equation*}
z_{\text {Buoy }}=-\rho g \cos \theta \int s(x) d x \tag{14}
\end{equation*}
$$

and the component along the longitudinal axis is

$$
\begin{equation*}
X_{\text {Buoy }}=\rho g \sin \theta \int s(x) d x \tag{15}
\end{equation*}
$$

The hydrostatic restoring moments are

$$
\begin{align*}
& M_{\text {Buoy }}=\rho g \int s(x) x d x \quad \text { (pitch) } \tag{16}\\
& K_{\text {Buoy }}=-\rho g \int s(x) \cdot h(x) d x \text { (roll) } \tag{17}
\end{align*}
$$

where $h(x)$ is the buoyancy arm from the craft centerline. This quantity normally does not vary significantly over the sidehull length and approximately equals to the half-spacing B. Consequently, the righting moment can be approximated by

$$
\begin{equation*}
K_{s}=B \cdot z_{\text {Buoy }}=-\rho g B \int s(x) d x \tag{18}
\end{equation*}
$$

(c) Sidehull Drag

The axial drag on the sidehulls arise from two basic sources. Firstly, the frictional drag caused by the viscous effects of the fluid over the body, and secondly the base pressure drag which arises due to the wave separation aft the transom. In addition to these two basic sources, there exists expecially at high speed a significant spray drag. In this subsection, we shall limit our discussion only to these three components which relates with the sidehull geometry. Drag contributions related with other sources, including cushion pressure (wave), craft aerodynamics and cushion seals will be discussed separately later.

The sidehull viscous drag 12 primarily a function of the Reynolds number and surface finish of the body and is determined by:

$$
\begin{equation*}
D_{\text {Fric }}=\frac{1}{2} \rho u^{2} S_{w} C_{F} \tag{19}
\end{equation*}
$$

where S_{w} is the sidehull wetted surface. Assuming the surface finish smooth, the standard ITTC relationship is used to approximate the skin drag coefficient:

$$
\begin{equation*}
C_{F}=\frac{0.075}{\left(\log _{10} \mathrm{Rn}-2\right)^{2}} \tag{20}
\end{equation*}
$$

where

$$
\mathrm{Rn}=\frac{\mathrm{UL}}{v} \text {, the Reynolds number, }
$$

in which

$$
\begin{aligned}
& L=\text { sidehull length } \\
& v=\text { kinematic viscosity of fluid. }
\end{aligned}
$$

The pressure drag component is estimated by another drag coefficient given by the following expression [5]:

$$
\begin{equation*}
C_{B}=\frac{0.10}{\sqrt{C_{f B}}} \tag{21}
\end{equation*}
$$

and the base pressure drag is then calculated based upon the sidehull base area S_{B} as follows:

$$
\begin{equation*}
D_{\text {Base }}=\frac{1 / 2}{2} \rho u^{2} S_{B} C_{B} \tag{22}
\end{equation*}
$$

The coefficient $C_{f B}$ in Equation (21) is a base-area based skin drag coefficient defined as follows:

$$
\begin{equation*}
c_{f B}=c_{f} \frac{s_{w}}{s_{B}} \tag{23}
\end{equation*}
$$

At high speeds and/or at shallow immersions the likelehood of ventilation is almost certain. Under this condition, a base drag coefficient defined by the following is applied:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{B}}=\frac{2}{\mathrm{~F}_{\mathrm{d}}^{2}} \tag{24}
\end{equation*}
$$

Here, $\mathrm{F}_{\mathrm{d}}=$ Froude number based on transom immersion d . The transition from a wetted wake regime to a fully vented regime is a function of F_{d}. Empirically established relation shows that the base is fully vented when $\mathrm{F}_{\mathrm{d}} \geq 3.2$.

The spray drag is one of the most important parameters to affect the sidehull performance. Unfortunately very little information exists regarding this drag component. In an effort to provide some insight into this area, some experimental works [3] were done to ascertain the degree of spray generation by utilizing photographs to determine the added wetting caused by spray. On the assumption that the major contribution of spray to drag is due to frictional effects, this information is used to generate a spray drag coefficient. This latter assumption is supported by investigations performed on surface piercing stru气s in [6]. In keeping with the findings of [6], the spray drag component is cast in the form:

$$
\begin{equation*}
D_{\text {spray }}=f(q, c, t) \tag{25}
\end{equation*}
$$

where q is the dynamic pressure, c is the characteristic length from the point of generation of the spray to the maximum thickness point and t is the maximum thickness of the body.

Based on the results of [3] the following formula is used for estimating the spray drag caused by a typical SES sidehull configuration:

$$
\begin{equation*}
D_{\text {spray }}=0.75 C_{f} \text { qct } \tag{26}
\end{equation*}
$$

In this formula the value of t is taken to be the maximum thickness in the waterline plane and the friction coefficient C_{f} is evaluated at the appropriate Reynolds number. This result has shown excellent agreement with the test results [3].
(d) Viscous Cross-Flow Effect

In contrast to the hydrodynamic pressure forces presented in (a), this component arises from the real fluid effects on the sidehull. The contribution of this term to the overall force on the sidehull is small for small hull excursions but becomes dominant as the craft motions become large. In the present stucy, this force is calculated according to the following formula:

$$
\begin{equation*}
\text { Cross-flow forces }=\frac{1}{2} \rho C_{D} s\left|v_{r}\right| v_{r} \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{D}=\text { cross flow drag coefficient } \\
& S=\text { projected area of the sidehull } \\
& v_{r}=\text { relative flow velocity }
\end{aligned}
$$

The coefficient C_{D} is a function of the hull geometrical shape and the Reynolds number. It is usually obtained from experimental data by judicial interpretation of the results from tests done on idealized geometric shapes.

3.2 Cushion Pressure Forces

In addition to the forces imparted to the craft through the sidehulls, the cushion pressure supporting the craft has a significant effect on the craft dynamics. For the present investigation, since a general type of craft is being considered, the supporting air cushion is considered as basically a rectangular box bounded by the sidehulls and the forward and aft seals. The plenum is fed by a fan, or system of fans, with a specified fan characteristic. The basic equation governing the air flow into and out from the cushion is the conservation of mass which states that

$$
\begin{equation*}
\dot{m}=\rho\left(Q_{\text {in }}-Q_{\text {out }}\right) \tag{28}
\end{equation*}
$$

where $\dot{m}=$ rate of change of mass in the plenum

$$
\begin{aligned}
Q_{\text {in }} & =\text { total flow into the plenum } \\
Q_{\text {out }} & =\text { leakage flow out under the seals and sidehulls }
\end{aligned}
$$

The flow into the air plenum is governed by the lift fan characteristic Q_{f} which is a function of the cushion pressure p_{c} as follows:

$$
\begin{equation*}
Q_{i n}=Q_{f}=\alpha_{o}+\alpha_{1} p_{c}+\alpha_{2} p_{c}^{2} \tag{29}
\end{equation*}
$$

where $\alpha_{0}, \alpha_{1}, \alpha_{2}$ are proportional constants. The leakage flow is considered to be governed by an orifice type flow equation given by :

$$
\begin{equation*}
Q_{\text {out }}=C_{O} A_{L} \sqrt{\frac{\mathrm{P}_{c}-\mathrm{p}_{a}}{\rho}} \tag{30}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{o}=\text { discharge coefficient } \\
& \rho=\text { density } \\
& P_{a}=\text { atmospheric pressure } \\
& P_{C}=\text { cushion pressure } \\
& A_{L}=\text { leakage area }
\end{aligned}
$$

The leakage area in this equation is comprised of several components. These can be represented as

$$
\begin{equation*}
A_{L}=A_{0}+A_{S W}+A_{S} \tag{31}
\end{equation*}
$$

where
$A_{0}=$ equilibrium leakage flow area
$A_{s w}=$ leakage area under the sidehull
$A_{S}=$ leakage area under the seals

The equilibrium leakage area is that leakage required to maintain the craft at a given equilibrium condition when not disturbed by any waves. Under actual conditions this leakage area can be adjusted by changing the setting of the seals and determines the equilibrium immersion of the craft. The equilibrium state is obviously given by:

$$
\begin{equation*}
\left(p_{c}-p_{a}\right) A_{c}=w-F_{\text {Buoy }} \tag{32}
\end{equation*}
$$

where

$$
\mathrm{W} \quad=\text { craft weight }
$$

$$
F_{\text {Buoy }}=\text { buoyancy force }
$$

$$
A_{C}=\text { plenum area }
$$

The areas $A_{s w}$ and A_{s} are obtained at each instant in time by integrating the clearance of the sidehull and seals with respect to the local water elevation. The total leakage area A_{L} obviously changes as a function of time depending on the craft motions and the free surface elevation.

The pressure in the plenum is assumed to vary according to an adiabatic compression law, namely

$$
\begin{equation*}
p_{c} V^{\gamma}=\text { constant } \tag{33}
\end{equation*}
$$

where V is the plenum volume and $\gamma=1.4$, the adiabatic constant. By substituting $m=\rho V$, the mass conservation equation becomes:

$$
\begin{equation*}
\dot{\mathrm{V}}=Q_{\text {in }}-Q_{\text {out }} \tag{34}
\end{equation*}
$$

These equations together determine the cushion pressure and air flows into the plenum and consequently the resulting forces and moments on the craft can be calculated as follows:

$$
\begin{align*}
X_{\text {pres }} & =\left(p_{c}-p_{a}\right) A_{c} \tan \theta \\
Y_{\text {pres }} & =-\left(p_{c}-p_{a}\right) A_{c} \tan \phi \\
Z_{\text {pres }} & =-\left(p_{c}-p_{a}\right) A_{c} B_{p} \tag{35}\\
K_{\text {pres }} & =-Y_{\text {pres }}\left(\text { VCG }-\frac{L_{p}}{2} \tan \phi\right) \\
M_{\text {pres }} & =X_{\text {pres }}\left(\text { VCG }-\frac{L_{p}}{2} \tan \theta\right)
\end{align*}
$$

where VCG $=$ Vertical height of $C G$ above mean water level

$$
\begin{aligned}
B_{p} & =\text { Width of the plenum } \\
L_{p} & =\text { Length of the plenum } \\
\phi & =\text { Roll angle } \\
\theta & =\text { Pitch angle }
\end{aligned}
$$

In addition to the pressure forces, the cushion pressure acting on the free surface generates waves and causes a significant drag effect. The calculation of the wave resistance for a pressure patch is straight-forward. Following the method of Yim [7], the total wave resistance for a combination of a pressure planform and two sidehulls in a channel of width W can be written as follows:

$$
\begin{equation*}
X_{\text {wave }}=\sum_{m=0}^{\infty} \varepsilon_{m} \frac{1+\sqrt{1+\left(\frac{4 \pi m}{k_{o} W}\right)^{2}}}{\sqrt{1+\left(\frac{4 \pi m}{k_{0} W}\right)^{2}}}\left(P^{2}+\rho^{2}\right) \tag{36}
\end{equation*}
$$

where

$$
\begin{aligned}
& P+i Q=\frac{k_{o}^{2}}{4 \rho g W} \iint_{S} p_{C}(x, y) \exp \left[i k_{o} \lambda_{m} x+i 2 \pi y \frac{m}{\bar{N}}\right] d x d y \\
& +\frac{16 \pi^{2} \rho k_{o}}{W} \iint_{D} \sigma(x, z) \exp \left[k_{o} \lambda_{m}\left(\lambda_{m} z+i x\right)+i 2 \pi B \frac{m}{W}\right] d x d z \\
& \varepsilon_{m} \quad=\left\{\begin{array}{l}
1 \text { for } m=0 \\
2 \text { for } m \geq 1
\end{array}\right. \\
& p_{C}(x, y)=\text { pressure distribution on planform } s \\
& k_{o}=g / U^{2} \\
& \text { g } \quad=\text { gravitational acceleration } \\
& \text { U } \quad=\text { ship speed } \\
& \rho \quad=\text { density of water }
\end{aligned}
$$

$$
\begin{aligned}
& \text { B } \quad=\text { Half-spacing of sidehull } \\
& \lambda_{m}=\sqrt{\frac{1}{2}+\frac{1}{2}} \sqrt{1+\left(\frac{4 \pi m}{k_{0} W}\right)^{2}}
\end{aligned}
$$

Assuming that the pressure planform is rectangular and the sidehulls are of parabolic shape, the above integrals can be evaluated easily and the result is given by:

$$
\begin{align*}
& X_{\text {wave }}=\frac{1}{2}^{\rho} U^{2} L_{p}{ }^{2} \sum_{m=0}^{\infty} \varepsilon_{m} \frac{1+\sqrt{1+\left(\frac{4 \pi m}{k_{o}^{W}}\right)^{2}}}{\sqrt{1+\left(\frac{4 \pi m}{k_{o} W}\right)^{2}}} \\
& \cdot\left\{\frac{8 b}{L} \frac{1}{k_{1} \sqrt{k_{o} W}} \cos \left(2 \pi \frac{B_{p}}{L_{p}} \frac{m}{W_{1}}\right) \cdot \frac{1-e^{-\lambda_{m} k_{o} H}}{\lambda_{m}^{2}}\right. \\
& \cdot\left[\frac{1}{b_{m}} \cos \left(k_{1} \lambda_{m}\right)-\frac{\sin \left(k_{1} \lambda_{m}\right)}{k_{1} \lambda_{m}^{2}}\right]-2 \frac{L_{p}}{B_{p}} \sqrt{\frac{k_{1}}{W_{1}}} \\
& \left.\cdot\left(\frac{\bar{W}}{\rho g L_{p}{ }^{3}}\right) \sin \left(k_{1} \lambda_{m}\right) \sin \left(2 \pi \frac{B_{p}}{T_{p}} \frac{m}{W_{1}}\right) / \frac{\pi m}{W_{1}}\right\} \tag{37}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{k}_{1}=\mathrm{k}_{0} L_{p} / 2 \\
& \mathrm{w}_{1}=\mathrm{w} / \mathrm{L}_{\mathrm{p}} / 2 \\
& \overline{\mathrm{~W}}=\text { total weight of the craft }=p_{C} B_{p} L_{p} \\
& \mathrm{~B}_{\mathrm{p}}=\text { plenum width } \\
& \mathrm{L}_{\mathrm{p}}=\text { plenum length } \\
& \mathrm{b}=\text { sidehull width } \\
& \mathrm{H}=\text { sidehull draft. }
\end{aligned}
$$

The above equation is derived for the case of a finite channel width w. Numerical results show that when $w>10 L_{p}$ the above relation asymptotically applies to the case of unrestricted waters.

3.3 Seal Forces

In the present study a very simplified seal configuration has been adopted. The purpose of this simplification is to avoid too many details which would reflect a given design rather than a general craft.

These seals are assumed to be of the flexible fabric type, such as a bag and finger design, which when immersed in the water simply deflect and lie on the water surface. Hence, they do not contribute any forces or moments to the craft except for their axial drag and the forces and moments arising due to the shift of the center of air pressure in the plenum caused by the changing imprint length on the water. Referring to Figure 3, which shows the deflection of a simple bow seal, the following equations are derived:

$$
\begin{align*}
& z_{\text {seal }}=-\left(p_{c}-p_{a}\right) l_{w} B_{p} \tag{38}\\
& M_{\text {seal }}=z_{\text {seal }} l_{s}
\end{align*}
$$

where

$$
\begin{aligned}
& 1_{w}=1_{s} \frac{\tan \theta}{\sin \theta_{B}} \\
& 1_{s}=\text { distance of seal tip to C.G. } \\
& \theta_{B}=\text { sheer angle of seal } \\
& \theta=\text { trim of craft }
\end{aligned}
$$

the axial drag due to the bow seal is:

$$
\begin{equation*}
x_{\text {seal }}=C_{f} \frac{\rho}{2} u^{2} l_{w} B_{p} \tag{39}
\end{equation*}
$$

here C_{f} is the friction coefficient, derived from the Reynolds number as follows:

$$
\begin{equation*}
c_{f}=\frac{0.044}{R_{n}^{1 / 6}} \tag{40}
\end{equation*}
$$

and R_{n} is the Reynolds number based on the seal wetted length l_{w}. Similarily, the force and moment due to the deflection of the stern seal can be calculated.

3.4 Aerodynamic Forces

The aerodynamic forces and moments acting on the craft have been simplified and are represented by an overall drag coefficient based on the frontal area of the craft. This drag coefficient has been selected to correspond to test results on typical SES configurations. The force is simply:

$$
\begin{equation*}
x_{\text {aero }}=C_{D} \frac{1}{2} \rho U^{2} A_{f} \tag{41}
\end{equation*}
$$

where A_{f} is the frontal area of the craft.
No aerodynamic lift or moments have been used in the present study and no wind conditions are considered. Consequently, only an axial aerodynamic force is included in the present study.

3.5 Propulsion and Thrust Control

Various methods of propelling and control for SES exist. Current emphasis for SES propulsion is a waterjet. This device allows for thrust vectoring or differential thrust for maneuver and turning. Although only straight line operation is considered in the present study, a typical propulsion and control scheme is included in the numerical code. Some details for the calculation of these forces are given in the following.
(a) Propulsion

The present scheme assumes that four waterjet nozzles are used for propulsion and control. These four nozzles are distributed athwart the transom so as to deliver thrust for propulsion as well as to provide turning moment for maneuvering. In the present study the engine thrust of the following form is used for the numerical modeling

$$
\begin{equation*}
T_{g}=A_{1} U^{2}+A_{2} U+A_{3} \tag{42}
\end{equation*}
$$

Here T_{g} represent the gross thrust and U is the craft speed; A_{1}, A_{2} and A_{3} are the proportional constants. Similarly, the total momentum drag of the waterjet system is approximated by a linear function of U and given by

$$
\begin{equation*}
D_{m}=B_{1} U+B_{2} \tag{43}
\end{equation*}
$$

where B_{1} and B_{2} are constants.

(b) Thrust Control

The basic control scheme considered here is thrust vectoring by which the side thrust and turning moment are generated through deflecting the nozzles as well as varying the power level on different nozzles. A special case of this scheme is known as differential thrust, in which the turning moment is generated by increasing the power on one jet and decreasing it on the other without deflecting the nozzle direction.

Let δ be the horizontal deflection angle of the jet nozzle, positive toward portside and α be the vertical tilt angle, positive upward, then the force and moment contributions for a craft with a trim angle θ are given by:

$$
\begin{align*}
& x_{\delta}=\sum_{i=1}^{4}\left[T_{g i} \cos \delta_{i} \cos \left(\alpha_{i}-\theta\right)-D_{m i}\right] \\
& y_{\delta}=\sum_{i=1}^{4} T_{g i} \sin \delta_{i} \cos \left(\alpha_{i}-\theta\right) \\
& K_{\delta}=\sum_{i=1}^{4} T_{g i}\left[\sin \left(\alpha_{i}-\theta\right) y_{i}-\sin \delta_{i} \cos \left(\alpha_{i}-\theta\right) z_{i}\right] \tag{44}
\end{align*}
$$

$$
N_{\delta}=\sum_{i=1}^{4}\left[T_{g i} \cos \left(\alpha_{i}-\theta\right)\left(y_{i} \cos \delta_{i}-x_{i} \sin \delta_{i}\right)-D_{m i} y_{i}\right]
$$

in which x_{i}, y_{i} and z_{i} are the coordinates of the centerline location of the ith nozzle, $T_{g i}$ is the gross thrust at the same nozzle and D_{mi} the corresponding momentum drag of the waterjet inlet. The turning forces and moments are assumed to be confined in a horizontal plane, so that no heave and pitch effects are developed from the maneuver.

3.6 Appendages

Usually, especially in the case of an SES, directional stabilizers or fins are fitted in order to ensure directional stability. In the present study a nominal configuration of fins has been assumed. Standard representations of these appendages are included in the analysis to account for drag and lift forces.

These fins are considered as base vented parabolic sections designed to produce the required lateral stiffness to the craft to ensure stability. Two items attributing to the total drag of these fins, namely pressure drag and frictional drag, are considered. Since the quality of these surfaces has to be kept smooth and constantly clean to ensure cavitation free operation, it is assumed that for all intents and purposes the surface is close to be hydrodynamically smooth and consequently the frictional drag is computed on this basis. The total drag of the stabilizer surface can be written as:

$$
\begin{equation*}
x_{f i n}=\frac{1}{2} \rho U^{2} A\left[C_{d}+2 C_{f}\right] \tag{45}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\text { fin surface area } \\
& C_{d}=\text { pressure drag coefficient } \\
& C_{f}=\text { frictional drag coefficient }
\end{aligned}
$$

For a base venting parabolic section we have

$$
\begin{equation*}
c_{d}=\frac{\pi}{8}\left(\frac{t}{c}\right)^{2} \tag{46}
\end{equation*}
$$

where $\frac{t}{c}$ is the thickness-chord ratio, and, for a smooth surface the frictional coefficient can again be approximated by the formula:

$$
\begin{equation*}
c_{f}=0.044 / R_{n}^{1 / 6} \tag{47}
\end{equation*}
$$

here R_{n} is the Reynolds number based on the mean chord.
The lift force from the fin is calculated using the following classical lift equation.

$$
\begin{equation*}
Y_{f i n}=\frac{1 / 2}{2} \rho U^{2} A_{L} \tag{48}
\end{equation*}
$$

where

$$
\begin{aligned}
C_{L} & =2 \pi \frac{A R}{A R+3} \\
A R & =\text { aspect ratio of the fin. } \\
3.7 & \text { Motion Alleviation and Control }
\end{aligned}
$$

It is essential for the proper operation of SES to maintain the cushion bubble through a series of blowers or fans. A proper control of the fan rpm to vary the plenum pressure may not only alleviate the craft motion but also maintain the craft's forward speed. In this present study, a simplified but representative control scheme is included in the analysis so that a gross effect of the control device to the craft response can be identified.

Heave acceleration is coupled directly to the fluctuations of cushion pressure. When an SES running over a wave crest, the resultant displacement of the water surface compresses the cushion air and creates an upward force or acceleration. Conversely when the SES
passes over a wave trough, the expansion of the air volume bring the craft downward until it is again supported by the proper pressure. The basic concept of the present scheme is to regulate the pressure of the cushion plenum so as to compensate the force excited by the environment and keep the craft in a nominal elevation. A fundamental method to control the air pressure is by means of regulating the cushion venting or the equilibrium leakage. For instance, when the plenum air is compressed the vent can be opened more, and conversely when the plenum pressure is dropping, the area of the opening should be reduced or entirely closed. Let $A_{h a}$ be the area of the vent. In general the regulation of this area can be expressed by:

$$
\begin{equation*}
A_{\text {ha }}=f\left(p_{c}, \dot{p}_{c}, \zeta, \dot{\zeta}, \ddot{\zeta}\right) \tag{49}
\end{equation*}
$$

The above equation simply indicates that the area of the vent is to be controlled not only by the cushion pressure and its rate of changes but also the craft heave motion and its derivatives. A proper design of the control constants for each of this variable is required in order to maintain the craft elevation and the riding comfort. Since the design optimization of these control constants is out of the scope of the present study, a simplified but representative scheme as follows, depending upon only \dot{p}_{c} and $\ddot{\zeta}_{\text {, }}$ is considered in the analysis.

$$
\begin{equation*}
A_{\text {ha }}=c_{1} \ddot{\zeta}+c_{2} \dot{p}_{c} \tag{50}
\end{equation*}
$$

where c_{1} and c_{2} are the control constants. In addition to the two control constants, an upper and lower limits of the total opening area of the vent are possibly assigned in the computer model.

4.0 WAVE ENVIRONMENT AND WAVE FORCES

4.1 Wave Representation

The computation of explosion generated waves can be divided into three parts; they are the modeling of the source condition, the calculation of propagation and transformation of waves over a given bottom topography, and the determination of breaking inception and wave run-up according to some acceptable criteria. The last two parts would involve tedious bookkeeping of propagation history from point to point, should the bottom topography be irregular. Since the study emphasizes specifically the mathematical modeling of the craft, the details of the boitom irregularities are not considered. In the analysis, the continental shelf is assumed to be two-dimensional and have a constant mild slope, consequently, the wave environment can simply be classified into two characteristically different groups; deep water and shallow water waves.

4.2 Deep Water Wave Generation

The deep water waves theoretically can be represented by sinusoids of various frequencies. While the craft responses in sinusoidal waves are to provide a general indication of the craft characteristics as a function of wave period, they provide little information as to how the craft responds when it is sufficiently close to the source region, as the wave amplitudes are normally very large such that the linear superposition technique is not valid and applicable. The present model is capable of simulating either a sinusoidal wave system or an idealized explosion-generated wave system at a given stand-off distance from the source at any time after detonation. Since the sinusoidal wave form is simpler and well-known, only modeling of the explosion-generated waves is discussed in the following.

The problem concerning waves generated by an arbitrary but localized disturbance on a free surface has been investigated by Kajiura [8]. In analyzing the explosion-generated waves, the initial disturbance is assumed as a parabolic crater-like shape with radial symmetry such that:

$$
\begin{align*}
\bar{n}_{0}(r) & =\eta_{0}\left[2\left(r / R_{0}\right)^{2}-1\right] & & \text { for } r<R_{0} \tag{51}\\
& =0 & & \text { for } r>R_{0}
\end{align*}
$$

where $\quad \eta_{0}=$ crater height

$$
\begin{aligned}
& \mathrm{R}_{0}=\text { crater radius } \\
& r=\text { radial distance }
\end{aligned}
$$

The waves resulting from this disturbance at a distance r from the center have been given by Le Mehaute [9] as

$$
\begin{equation*}
\bar{n}(r, t)=\frac{\sigma_{0} R_{0}}{r}\left[-\frac{V / k}{d^{V} / d k}\right] J_{3}\left(k R_{0}\right) \cos (k r-\omega t) \tag{52}
\end{equation*}
$$

where $k=$ wave number, determinable from the relationship between the group velocity V and the arrival time t, such that
$V(k)=\frac{1}{2} \frac{\omega}{k}\left(1+\frac{2 k d}{\sinh 2 k d}\right)=\frac{r}{t}$
$\omega=\sqrt{g k \tanh k d}$
$\mathrm{d}=$ water depth
$J_{3}=$ Bessel function of the lst kind of order 3.

The above equation shows that the traveling wave train possesses a series of amplitude peaks primarily governed by the modulating Bessel function J_{3}. The problem that remains is to relate the
crater dimension n_{0} and R_{o} to the yield of a given explosion so that prediction of waves at a given location r and time t can be made.

It is noted that both n_{0} and R_{o} are not easily measurable. What one can measure are the wave height and period at a large distance from the source disturbance. It is in fact more convenient to measure the peak amplitude $\eta_{\text {max }}$ in the first wave envelope at a given range r, and the corresponding wave number $k_{\max }$ can be evaluated by knowing the arrival time t from the above equations. Analytically, one can show that, for a particular source disturbance $\bar{n}_{0}(x)$, the amplitude of the maximum wave $\eta_{\max }$ is inversely proportional to r, and the corresponding wave number $k_{\max }$ depends only on the crater radius R_{0}. For an explosion in sufficiently deep water, the relationship between $k_{\text {max }}$ and R_{o} can be determined from the first stationary value of J_{3} as:

$$
\begin{equation*}
k_{\max } R_{0}=4.2 \tag{53}
\end{equation*}
$$

Once the measurement of $k_{\text {max }}$ is obtained, the crater radius can be readily estimated. From equation (52), one also finds:

$$
\begin{equation*}
r_{0} R_{0}=1.63 n_{\max } r \tag{54}
\end{equation*}
$$

when $k=k_{\text {max }}$. Consequently, the crater height can also be estimated from the measurement of wave height at a distance r.

Empirical correlations of measurements of $\eta_{\max }$ with the explosion yield W and the detonation depth Z show that there is a certain trend between the parameter $n_{\max } \mathrm{r} / \mathrm{w}^{0.54}$ and the parameter $\mathrm{z} / \mathrm{w}^{0.3}$ (W in lbs of TNT equivalent); this is best presented graphically by plotting the experimental data points as shown in Figure 4. It is noted that there are two peaks appearing in the former parameter over a range of the latter. One of these peaks occurs

at $Z / W^{0.3}=-0.05$ and is commonly termed as the upper critical depth. Detonation at this depth is seen to produce the highest responses. The other peak occurs at $Z / W^{0.3}=-2.7$ and is usually called as the lower critical depth.

As discussed before, the parameter $k_{\max }$ can be determined by measuring the arrival time of the first wave at a given distance. By analyzing the wave profiles obtained from the measurements, empirical relationships between the parameter $k_{\text {max }}$ and the yield wight W have also been established through experiments of small chemical charges in deep water [9]:

$$
\begin{align*}
\mathrm{k}_{\max } & =0.44 \mathrm{w}^{-0.3} \text { for } 0>\mathrm{z} / \mathrm{w}^{0.3}>-0.25 \tag{55}\\
& =0.39 \mathrm{~W}^{-0.3} \quad-0.25>\mathrm{z} / \mathrm{w}^{0.3}>-7.5
\end{align*}
$$

Using these empirical relations together with the measured results as shown in Figure 4, the source parameters n_{0} and R_{0} can be determined for any yield at any water depth and detonation depth. Consequently, the wave history at any point r and time t can be calculated according to Eq. (52).

4.3 Shallow Water Waves

Two types of waves should be considered with regard to shallow water wave generation: (1) waves produced in deep water as a result of an offshore explosion which transform their height, shape and internal characteristics through the process of shoaling, refraction and reflection when they propagate shoreward into shallower water; (2) waves directly generated by explosions in shallow water on the continental shelf. As far as the wave characteristics are concerned, these waves can be considered identical and treated in a similar manner. Before entering into the discussion of how to model these
waves mathematically, however, correlations of yield with wave generation in shallow water are briefly outlined below.

The method of correlation between wave heights and yields discussed in the previous section is limited to deep water wave generation such that $d>6 W^{0.3}$. For explosions in water of depth such that $1<d / w^{0.3}<6$, Le Mehaute [9] proposed a simple interpolation rule to fit the experimental data as follows:

$$
\begin{equation*}
\bar{n}=\bar{n}_{\text {deep }}\left[\frac{1}{2}+\frac{1}{10}\left(d / w^{0} \cdot 3-1\right)\right] \tag{56}
\end{equation*}
$$

This shows that the generation efficiency is reduced by half when the parameter $d / w^{0.3}$ approaches unity. In the case of very shallow water where $d / w^{0.3} \ll 1$, the linear model is no longer valid and different correlations must be used. Unfortunately, there are very few data collected from shallow water explosions. Among the available data as listed in Table 2, only the WES test data [10] provide a systematic information of charge weight and water depth.

By means of small-scale charges (0.5 - 2048 lbs.) the wES program was designed to estimate wave effects from a 20 KT explosion in water of 30 to 200 feet deep. The charge position varied from beneath the bottom to above the free surface. The results showed that variations of z / d from -1.0 to 0 had little effect on wave height. In contrast to deep water explosions, the most significant parameter for wave generation in shallow water is water depth, instead of charge position.

The other significant feature is that the dispersion law is different for waves propagating in deep and shallow water. In deep water, wave height varies inversely with radial distance r as a combined result of frequency and radial dispersions. In extremely shallow water, however, the large leading wave is expected to behave like a solitary wave and its height should vary inversely as $r^{2 / 3}$ instead of r. In moderately shallow water, the relation below should hold
TABLE 2
EXPERIMENTAL DATA

	Baker ${ }^{[11]}$	MONO LAKE ${ }^{[12]}$	MONO LAKE [${ }^{\text {[12] }}$	wes ${ }^{[10]}$
Explosives	nuclear	TNT	TNT	TNT
Charge weicht w (lba)	4. 6×10^{7}	9. 2×10^{3}	9. 2×10^{3}	0.5-2048
WATER DEPTH d (ft)	180	14	10	0.07-7.43
$\begin{aligned} & \text { DETONATION } \\ & \text { DEPTH } \end{aligned}$	90	10	10	
$\frac{d}{w^{1 / 3}}$	0.5	0.67	0.47	0. 088 - 0. 585

$\begin{array}{ll}{[10]} & \text { WES (1955) } \\ {[11]} & \text { Giasatone. S. (1962) } \\ {[12]} & \text { Garcia, W. J. }\end{array}$

$$
\begin{equation*}
\bar{n} r^{\beta}=\text { constant } \quad 2 / 3 \leq \beta(d) \leq 1 \tag{57}
\end{equation*}
$$

By correlating the WES test data, the following empirical formula have been derived

$$
\begin{equation*}
\frac{n_{\max } r^{\beta}}{\mathrm{w}^{\beta / 3}+0.25}=1.44\left(\mathrm{~d} / \mathrm{w}^{1 / 3}\right)^{0.93} \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=0.83\left(\mathrm{~d} / \mathrm{w}^{1 / 3}\right)^{0.07} \tag{59}
\end{equation*}
$$

It is noted that the power B varies as a function of the depth parameter $d / W^{1 / 3}$; for the very shallow case, β approaches $2 / 3$ as a limit. While the derivation of the above relationship has assumed that reasonable extrapolation of the WES data is valid, it must be noted that the correlation is based upon the experimental data covering $d / W^{1 / 3}$ only up to 0.585 . There is no indication that it will approach the empirical relation (56) as d increases.

Equation (58) provides an empirical relationship for predicting the maximum wave height at any distance r from a shallow water explosion. After the wave height is determined for a given explosion, the important procedure required for numerical simulation is a mathematical representation of the wave history as a function of time. As mentioned earlier, disregarding whether the waves are generated in shallow water or are propagated into shallow water from offshore, their internal characteristics can be regarded the same if both of their height and period are identical.

The most important parameter which affects these waves in this case is the local water depth. As is well known, when waves propagate into shallower water, their crests become more peaked through shoaling. When the local depth d becomes so shallow that the wave height $h \simeq 0.67 \mathrm{~d}$ to 0.78 d , waves start to break. Analytical and experimental studies of wave propagation and transformation have been discussed in detail by Le Mehaute et al. [13]. Their
analyses show that, among many existing wave theories, the cnoidal wave theory is good for describing the transition from deep water waves to shallow water waves but the solitary wave theory best describes the long, shallow water waves including the spilling type breakers. In the present study, the solitary wave form is used for numerical modeling of the long period waves on the continental shelf. After the wave height and period is determined according to the yield weight, the mathematical representation of waves in water of depth d is given by

$$
\begin{equation*}
\bar{n}(r, t)=h \operatorname{sech}^{2} \alpha(r-c t) \tag{60}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{h}=\text { wave height } \\
& \alpha=\sqrt{3 h / 4 \mathrm{~d}^{3}} \\
& c=\sqrt{g d}(1+h / 2 d), \text { the wave celerity }
\end{aligned}
$$

4.4 Wave Forces

Equations (52) and (60) give the mathematical forms of the deep water explosion generated waves and the corresponding shallow water representation as a function of location r and time t. In terms of ship coordinates, the wave elevation at (x, y, z) is given by

$$
\begin{align*}
& \text { (a) } \quad \text { explosion generated waves } \\
& \bar{n}(x, y, z, t)=\frac{n_{0} R_{o}}{x_{0}}\left[-\frac{v / k}{d v / d k}\right] J_{3}\left(k R_{0}\right) \cos k\left(x_{0}+x^{\prime}\right)-n_{1} \tag{61}\\
& \text { (b) solitary wave } \\
& \bar{n}(x, y, z, t)=h \operatorname{sech}^{2} \alpha x^{\prime}-\eta_{1}
\end{align*}
$$

where

$$
\begin{aligned}
& x_{0}=\text { distance of craft center from the burst } \\
& x^{\prime}=(x \cos \theta+z \sin \theta) \cos \psi+y \sin \psi+(U-c) t \\
& { }^{n_{1}}=x \sin \theta-\zeta-y \tan \phi \\
& U=\text { ship speed } \\
& c=\text { wave celerity }
\end{aligned}
$$

ζ, ϕ, θ and ψ have been defined in Table 1

From these equations, the wave elevation at any location of the craft can be determined. The calculation of the wave forces and moments follows the same technique of slender body theory applied previously to obtain the sidehull forces and moments. In this manner, the wave forces acting on each sidehull segment are first determined. In the derivation of these wave forces, the validity of the Froude-Kriloff hypothesis is assumed. Under this assumption the pressure in the wave system is not affected by the presence of the body. This assumption is justified in the present analysis, as the wave systems which we are presently dealing with are very long period waves, in which the static behavior or the pressure effect is dominant over all the dynamic influences. After the wave force on each sidehull segment is determined, the total forces and moments are obtained by integration over the entire craft length.

5.1 Method of Solution

Summarizing the forces and moments derived in the previous sections into the equations of motion (Eq. 1) provides the complete information of this dynamic system. The six equations describe the force and moment balances along the body coordinates and form a set of first order differential equations with six independent variables u, v, w, p, q and r. In order to find the trajectory and orientation of the craft with respect to the inertial frame, six more first order differential equations are needed to perform the kinematic transformation; they are

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{0} \\
\dot{y}_{0} \\
\dot{z}_{0}
\end{array}\right]=\left[\begin{array}{rrr}
\cos \theta \cos \psi & \sin \theta \sin \phi \cos \psi & \sin \theta \cos \phi \cos \psi \\
& -\cos \phi \sin \psi & +\sin \phi \sin \psi \\
\cos \theta \sin \psi & \sin \theta \sin \phi \sin \psi & \sin \theta \cos \phi \sin \psi \\
& +\cos \phi \cos \psi & -\sin \phi \cos \psi \\
-\sin \theta & \cos \theta \sin \phi & \cos \theta \cos \phi
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right] } \\
& \tag{63}\\
& p=\dot{\phi}-\dot{\psi} \sin \theta \\
& q=\dot{\theta} \cos \phi+\dot{\psi} \cos \theta \sin \phi \\
& r=\dot{\psi} \cos \theta \cos \phi-\dot{\theta} \sin \phi
\end{align*}
$$

where x_{0}, y_{o} and z_{0} represent the craft c.g. location with respect to the inertial frame; all other variables have been defined in Table l. In summary, there are 12 variables and 12 equations. In addition, the cushion volume is controlled by the equation of state and the fan flow which are independent from all the motion variables. Including the cushion volume Equation 34, there are altogether 13 equations and 13 unknown variables. These 13 first order equations have been programmed in a numerical code solving simultaneously through time-wise integration. The solution of this model provides time history of the craft trajectory and orientations for any given wave environment.

5.2 Computer Program

The computer program developed to integrate the equations of motions under the influence of the forces and moments inputed to the craft by the wave environments described previously is now briefly discussed.

Initiation of the computation is made by entering into the program the initial conditions of the craft such as altitude, speed and craft weight. Overall craft dimensions and the geometry of the sidehulls and seals are also required. With the above information the submerged geometry of the sidehulls and seals are calculated and the forces and moments from all sources described in Sections 3 and 4 are calculated. The initial values of all the variables are then used as starting values at time $t=0$, to initiate integration of the equations of motion.

An overview flow chart illustrating the general operations performed in the computer is shown in Figure 5. The input/out format is given as Appendix B and the complete program listing is included as Appendix C.

A fourth order Runge-Kutta scheme is used for the integration. Through numerical exercises, this method has shown to be extremely efficient. The time step used in calculation varies depending upon the input exciting wave form and frequency. Normally for a sinusoidal wave run, the time step is selected equal to $1 / 16$ the encounter period. For long period solitary waves or explosion waves, 1/64$1 / 128$ of the encounter period has been shown to be appropriate. In general, the time steps used for most of the calculations are between 0.1 - 0.2 second or on the order of 0.05 in terms of nondimensional time. Typically, for a l00-second real time simulation, a CP time of 19 second is required using a CDC 7600 computer.

Figure 5 Flow Chart of Computer Code.

6.0 SES RESPONSE IN WAVES

6.1 Craft Characteristics

The computer program has been exercised under various wave conditions and craft headings to investigate the response of a typical SES. Several assumptions are made regarding the craft size and dimensions. In order to make the results relevant to current interests, an SES having characteristics similar to the 2000 ton class was chosen. Some of the salient features of this craft are listed below:

| Craft Weight | $=2000$ tons |
| :--- | :--- | ---: |
| Cushion Length | $=240$ feet |
| Cushion Width | $=88$ feet |
| Center of Gravity location | $=130$ feet forward of transom |
| | 24 feet above keel |

Engine Thrust Characteristics:
Gross thrust in lbs:

$$
\mathrm{T}_{\mathrm{g}}=16.1 \mathrm{U}^{2}-190 \mathrm{U}+528,000-(1-\alpha) \times 4 \times 10^{5}
$$

Momentum drag in lbs:

$$
D_{m}=3900 U-1400(1-\alpha) U
$$

Here $\alpha=$ power percentage level and $U=$ craft speed in knots
Lift Fan Characteristics:

$\qquad Q_{\mathrm{f}}=75,497-121$	$\left(\mathrm{p}_{\mathrm{c}}-\mathrm{p}_{\mathrm{a}}\right) \mathrm{cfs}$
Bow Seal Angle	$=30$ degrees
Stern Seal Angle	$=60$ degrees
Initial Air Leakage Area	$=49 \mathrm{ft}^{2}$

The definitions of inputs to the computer program and a sample input case are shown in Appendix B. This input provides further information, including details of the sidehull shapes chosen. This shape is representative of typical sidehull designs for SES.

6.2 Sinusoidal Wave Response

In order to exercise the program and obtain a reference base of craft response, a series of runs is conducted using a sinusoidal wave excitation. This wave is chosen to correspond to the significant wave height and period of a Sea State 3,

$$
\begin{aligned}
\text { Wave Height } & =5 \text { feet } \\
\text { Period } & =6 \text { seconds }
\end{aligned}
$$

Figures 6 through 9 illustrate the results of these runs for the craft at a maximum speed of 80 knots and heading angles of 0°, $45^{\circ}, 135^{\circ}$ and 180°, respectively. The heading is defined as the angle of the course of the craft relative to the direction of wave propagation. A 0° heading indicates that waves move in the same direction as the craft and normally it is termed as following seas. A 90° beam-sea indicates that waves propagate from port to starboard and 180° heading refers to head seas. In these figures the cushion pressure and wave profile are shown in the upper figure; the pitch and yaw in the middle and the heave and roll responses in the lower diagram. The curves are shown as a function of a nondimensional time, T. The required conversion factor to real time is given in each caption. The craft immersion at the center of gravity is 2.0 feet at an initial trim of 1.0 degree.

The initial conditions for all these runs are set correspondingly to those for operating in calm water. In order to obtain a smooth transition from calm water to the desired wave height, the excitational wave train is modulated by an exponential function as follows:

$$
f=1-e^{-\alpha t}
$$

where t is time and α is a positive constant. This constant is selected such that the resulting wave would reach its steady sinusoidal behavior in about three cycles.

A summary of these results are given in Table 3. Two values are given for the motion response; they are the maximum excursion and the peak to peak value. A positive maximum excursion of heave indicates an increased immersion in waves, and similarly a negative maximum excursion of pitch indicates that the bow trims downward in these waves.

As seen from these results, the craft is generally well behaved in this sea state. A relatively larger response in heave and pitch occurs in head and following seas as expected. Particularly of interest is that fairly large oscillations in cushion pressure occur in head seas. Comparison of Fiqure 6 and 9 specifically illustrates that the cushion pressure is certainly more responsive to head seas than to following seas. The cases with quarterina seas, Fiqures 7 and 8, show roll and yaw.responses. The maximum roll amplitude is less than 1 degree in this sea state. The small yaw angles in these two cases simply indicate that the craft would be slightly off the course due to the uneven pressure on the craft caused by oblique waves.

It should be noted that no heave alleviation is considered in all these runs presented above. In order to illustrate the effect of heave alleviation control, a duplicate run for the head sea case was conducted. In this run control constants $C_{1}=-1.34 \mathrm{ft} \mathrm{sec}{ }^{2}$ and $C_{2}=0$ are included in the control logic as given in Eq. (50). The results of this run are shown in Figure 10. In comparing with Figure 9, it shows that both the cushion pressure oscillation and the heave excursion are substantially reduced. The improvement of craft behavior through a heave alleviation control seems clearly demonstrated in this example. Again it should be mentioned that the control parameters included in this example are for illustration purpose only, as no optimization analysis of these constants has been conducted.
ε әтqеш
SES Response to Sinusoidal Waves

Heading	Heave (ft)	Pitch (deg)	Roll (deg)	Control c_{1}	Constants c_{2}	Reference Figure No.
0°	$1.67 / 1.08$	$-0.19 / 0.19$	0	0	0	6
45°	$1.82 / 0.69$	$-0.46 / 0.18$	$0.77 / 1.38$	0	0	7
135°	$1.17 / 0.51$	$-0.17 / 0.15$	$0.20 / 0.24$	0	0	8
180°	$1.50 / 1.00$	$-0.08 / 0.14$	0	0	0	9
180°	$1.16 / 0.55$	$-0.09 / 0.09$	0	-1.34	0	10

Responses are given as maximum excursion/peak-to-peak excursion

:..................................:
Figure 10 Craft Response with Heave Alleviation Control in Sinusoidal
speed $=80$ knots, craft heading $=180 \mathrm{deg}$, heave control
constant $c_{1}=-1.34 \mathrm{ft} \mathrm{sec}{ }^{2}, t / T=0.70 \mathrm{sec}$

6.3 Solitary Wave Response

As discussed in section 5 , the waves caused by deep water explosion when propagated into shallow water can be represented by solitary waves. In this regard, a series of runs to investigate the craft response to a solitary wave at various headings has been conducted. Furthermore, the effect of varying water depth and wave height is examined. For these runs the initial trim and center of gravity immersion are the same as before taken to be 1 degree and 2 feet, respectively. Figures 11 through 17 show the results of these runs for a craft speed of 50 knots, except one run in a near hovering mode (acutal speed is 5 knots). The maximum craft excursions are summarized and shown in Table 4.

The hovering condition is shown in Figure ll. In this run, the water depth is taken as 60 feet with a wave period of 15 seconds and wave height of 6 feet. With these conditions the ratio of wave length to cushion length is 2.88. Behavior of the craft is quite acceptable with the maximum pitch and heave excursions shown in Table 4.

The effects of varying heading angle for the conditions described in the above case are shown in Figures 12,13 and 14. As seen from these figures, the pitch excursions increase as the heading varies from a beam sea condition to a head sea. Attendant with this change in heading, the roll and yaw decreases. In the case of 90° heading or beam seas the roll motion is excited at a natural period of about 4.7 seconds. It is apparent from these curves that the craft will survive this wave environment without undue difficulty.

Figures 15, 16 and 17 illustrate the behavior of the craft under different combinations of wave height, water depth and wave period for a head sea, i.e., heading of 180°. In the first two cases,
Table 4
SES Response to Solitary Waves

		F	$\stackrel{\sim}{\sim}$	$\stackrel{m}{7}$	$\underset{\sim}{7}$	$\stackrel{\sim}{\sim}$		$\stackrel{\square}{\square}$	$\stackrel{\text { F }}{ }$
		∞ ¢ i	'	,	$\stackrel{\infty}{\infty}$	ก๊		$\stackrel{7}{\sim}$	$\stackrel{\sim}{n}$
		-	-		-			-	\bigcirc
	$$	\bigcirc	-	$\stackrel{\square}{7}$	\bigcirc	\bigcirc		-	\bigcirc
		$\xrightarrow{-1}$	-	$\stackrel{\uparrow}{\square}$	¢̣	¢		กٌ	$\stackrel{\infty}{\sim}$
		$\stackrel{\bigcirc}{+}$	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\text { ¢ }}$	$\underset{~ N}{\underset{i}{i}}$	$\underset{1}{\infty}$		$\stackrel{\square}{\square}$	$\stackrel{\circ}{\stackrel{8}{8}}$
		\bigcirc	in	in	i	in		\%	in
宕		\bigcirc	8	$\stackrel{n}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$		$\stackrel{\circ}{\sim}$	$\stackrel{8}{\sim}$
		\bullet				\bigcirc		n	$\stackrel{n}{6}$
		$\stackrel{\sim}{\sim}$				¢		\%	$\stackrel{\sim}{\sim}$
		\bigcirc				8		\%	¢

:
 0
\vdots
\vdots
n
n

:

as shown in Figures 15 and 16 , craft response is reasonable although some relatively large heave and pitch excursions occur in the 10 foot wave condition.

The normal reaction of the craft on encountering the wave front is to increase its trim with a simultaneous increase in immersion. This behavior is to be anticipated since the craft is impacting the wave. In accordance with the larger trim angle, the cushion pressure decreases due to increase leakage. After the wave crest has passed, trim decreases and leakage closes and cushion pressure returns to normal. The craft continues its pitch oscillations at its own natural period (~ 4.3 second) and consequently the immersion remains deeper than the nominal. In Figure 17 it is apparent that large excursions in pitch and heave are occurring and furthermore these motions are diverging. This particular run condition is taken at a ratio of wave length to cushion length of 2.15, which is very close to the wave pumping condition of 2 . Therefore it is expected that severe conditions will arise. As seen in Table 4, the maximum heave and pitch are larger in relation to the wave amplitude than in all other cases. It is apparent that under this condition the craft is not likely to survive without evasive action.

6.4 Deep Water Explosion Wave Response

Samples of calculated results presented in this section are for a deep water explosion wave environment generated by an explosion yield of 1 kiloton. A device having this yield and exploding at the upper critical depth would cause a disturbance having a crater radius of 835 ft . and crater height of 49 ft . It is assumed that the stand-off distance of the craft from the center of the blast is 7500 ft . The initial significant wave disturbances would take about 80 seconds to reach to the craft at this stand-off position. Allowing the craft to have 80 seconds reaction time to initiate its action, some calculated results are shown in Figures 19 とhrough 21.

Figure 21 Craft Response to Explosion Waves in Deep Water yield $=1 \mathrm{KT}$, stand-off distance $=7500 \mathrm{ft}$, craft speed $=50 \mathrm{knots}$, craft heading $=135^{\circ}, \frac{\mathrm{t}}{\mathrm{T}}=6.76$
sec, $\mathrm{T}=80 \mathrm{sec}$ $\mathrm{sec}, \mathrm{T}_{\mathrm{o}}=80 \mathrm{sec}$

From Figure 18 it is seen that at this distance from the blast, the maximum wave height encountered is approximately 7 feet. The graph shows the arrival of the first wave group and the subsequent response of the craft. The results are for the craft in hovering mode, head into the waves. As seen all the variables are within normal excursions with a maximum pitch of -1.55° and heave of 2.85 ft . The wave envelope shown in this figure is typical of the explosion generated wave envelopes.

Should a blast occur off the beam of the craft when operatina at 50 knots the results indicate that the craft will probably not survive the waves. As seen in Figure 19 large excursions in roll and heave are experienced. The maximum excursion in these variables are 8.98° and 4.85 ft , respectively. The maximum pitch angle experienced is -1.52° which is nominal. The larger negative yaw excursion indicates that the craft tends to alter its course and turn its bow into the wave front. It is apparent from this response that the craft is quite vulnerable to beam explosions.

Should the craft be operating at 50 knots and an explosion occur the question arises as to what evasive action it should take. As a preliminary maneuver it has been assumed that a reaction time of 80 seconds is required for the craft to either alter its course to another heading or head up into the blast and kill its engines. We have seen that in this latter mode it can survive the present explosion. The question arises as to whether an alternative course heading is preferable. To investigate this possibility, two headings of 45° and 135° are investigated.

Figure 20 shows the response of the craft to the waves environment on a heading of 45° assuming such a heading is achieved 80 seconds after the blast. As is seen little if any motion occurs to the craft since the craft is heading away from the wave front and is apparently in small, long period waves ahead of the
main group of waves. Provided sufficient clear sea is available the craft could outrun the wave until the waves had decayed sufficiently to allow a change in heading. The same conclusion can be applied for a 0° heading or the following wave case.

Should the craft head into the blast on a 135° course, an unlikely situation unless it was already on this course when the blast occurred, the response is shown in Figure 21. Here it will be seen that the motions are diverging and indeed, based on the present analysis, the craft will not survive. As will be seen the run was actually terminated before the motions become excessive.

It is apparent from this sample survey that dependent on the location of the blast relative to the craft and the available response time, several possible scenarios exist for evasive action subsequent to a blast. It is also clear that relatively moderate yields can cause an SES considerable difficulty if cognizance of the seriousness of the situation is not realized.

7.0 VULNERABILITY ANALYSIS

7.1 Scope of the Study

In the present study, we limitour analysis to a 2000-ton class SES, the characteristics of which have been defined in Section 6.1. Although the most current trend of the U. S. Navy interest is a 3000 -ton craft, there should be little significant difference in performance between these two ships, as their forms and sizes are not drastically different. The design speed of a 2000-ton craft is taken to be 80 knots. Because of the speed-drag characteristics of this kind of vehicle, the cruising speed is around 50 knots. This speed occurs at an optimum on-cushion drag condition and yield the least lift-drag ratio for the craft. In this analysis, therefore we conduct all the exercises at the one craft speed of 50 knots. since the SES has another unique mode of operation - the hovering mode, several runs at this condition are conducted for comparison purposes.

The major parameters to be varied in this analysis are the yield, stand-off distance and heading. The effects of these parameters in both deep and shallow water environments are considered. In summary, the ranges for each variable investigated are given in Table 5.

Table 5. Range of Investigation

Craft Size	
Speed	2000 ton Cruising (50 knots) and hovering (0 knots)
Yield Range Heading $0.5-2.0 \mathrm{~K}$-tons	
Stand-off	$0^{\circ}-180^{\circ}$
Water Depth	$7,500-20,000 \mathrm{ft}$
	Deep ocean and shallow shelf with 0.01 slope.

7.2 Deep Water Hazard

In order to investigate the craft behavior in wave environments of various yield explosions, the wave history as function of position and time corresponding to each yield device must first be determined. As discussed in Section 4.2, the wave history for an explosion is controlled by two parameters, the crater radius and the crater height, which are in turn controlled by the charge depth. It is known that better generation efficiency occurs when the charge is placed at the upper rritical depth. As shown in Figure 4, at this depth the maximum wave parameter $\eta_{\max } r / w^{0.54}$ may reach as high as 18. Nevertheless, the measurements are very much scattered, especially at this charge depth. In the present analysis, taking a conservation estimate, we assume $n_{\max } r / w^{0.54}$ to be 10 , which corresponds to an average value for a charge at the upper critical depth. This, together with the empirical relation $k_{\text {max }}=0.29 \mathrm{w}^{-0.3}(\mathrm{Eq} .55)$ determines the crater radius and height. The results for four different yield explosions are calculated and given in Table 6. With the crater radius and height known, the wave history as a function of position and time can be readily claculated according to Eg. 52.

Table 6. Crater Dimensions

Yield Weight W	Crater Radius R_{o}	Crater Height n_{o}
KT	ft	ft
0.5	680	41
1.0	835	49
1.5	945	54
2.0	1025	58

Four stand-off distances are considered, they are 7,500', 10,000', 15,000' and 20,000'. The heights of the maximum wave in the leading wave envelope at these distances are calculated and given in Table 7. The period and the phase velocity of this maximum wave for each yield weight are also determined and included in this table.

The craft responses at the four stand-off positions have been calculated for each explosion considered. The craft headings are varied from 0° to 180°, which are representative for all possible encounter directions for a craft having a transverse symmetry. These exercises have been performed for the purpose to identify that stand-off position for a particular craft heading at which the craft would marginally survive the explosion. A sufficient number of computer runs have been performed to complete the exercise. From the results of these computer runs, operational envelopes to define the region for safe maneuvers are obtained and shown in Figure 22. The craft is defined unsafe in a given operating condition if its motions, especially pitch and roll, diverge to cause large cushion leakage. These envelopes are plotted with the craft headings as a parameter. For a given heading, an envelope defines the limit of safe stand-off distances as a function of the explosive yield. The operating area under each curve provides a means of identifying the degree of safety for the particular heading. Alternatively, these curves can be used to determine a safe heading to take for a known yield explosion w at a known standoff distance x. For instance, a craft would operate safely at any heading if the environmental coordinates (x, w) fall under the $\pm 180^{\circ}$ envelope. On the other hand, if the explosive yield is so large or the stand-off distance is so close to the blast that the coordinates (x, w) are just under the $\pm 90^{\circ}$ curve, the craft may only operate safely with its absolute heading angle less than 90°, beyond which the craft becomes vulnerable.

Table 7. Wave Characteristics at Various Stand-off Distances

Yield Weight	Stand-off Distance	Height of Max. wave	Period of Max. wave	Celerity of Max. wave
K-ton 0.5	$f t$ 7,500 10,000 15,000 20,000	$\begin{gathered} f t \\ 4.64 \\ 3.47 \\ 2.32 \\ 1.74 \end{gathered}$	$\begin{aligned} & \sec \\ & 14.11 \end{aligned}$	$\begin{array}{r} \mathrm{ft} / \mathrm{sec} \\ 72.29 \end{array}$
1.0	$\begin{array}{r} 7,500 \\ 10,000 \\ 15,000 \\ 20,000 \end{array}$	$\begin{aligned} & 6.73 \\ & 5.05 \\ & 3.37 \\ & 2.53 \end{aligned}$	15.61	80.02
1.5	$\begin{array}{r} 7,500 \\ 10,000 \\ 15,000 \\ 20,000 \end{array}$	$\begin{aligned} & 8.38 \\ & 6.30 \\ & 4.19 \\ & 3.15 \end{aligned}$	16.60	85.06
2.0	$\begin{array}{r} 7,500 \\ 10,000 \\ 15,000 \\ 20,000 \end{array}$	$\begin{aligned} & 9.80 \\ & 7.34 \\ & 4.90 \\ & 3.67 \end{aligned}$	17.29	88.63

FIGURE 22 - OPERATION ENVELOPE AS A FUNCTION
OF CRAFT HEADINGS

The results show also that the craft is not too sensitive to the size of explosion within the range of yields considered in the present analysis, but is very much affected by the craft heading and the stand-off distance. For instance, the figure shows that at a stand-off distance of $20,000 \mathrm{ft}$ the craft may head in any direction without difficulties at a cruising speed of 50 knots, regardless of whether the explosion is due to a 0.5 kilo-ton or a 2.0 kilo-ton device. Similarly, when the stand-off distance is $7,500 \mathrm{ft}$, the craft can only head away from the explosion or run out from the waves in order to survive. In other words, the craft should avoid any heading greater than 90° (port or starboard), no matter whether it is a 0.5 kilo-ton or a 2.0 kilo-ton explosion. As defined previously, a craft heading between 0 and $\pm 90^{\circ}$ corresponds to following and stern waves and a heading between $\pm 90^{\circ}$ and $\pm 180^{\circ}$ corresponds to bow and head waves. It is unlikely in any event that a craft would deliberately head into the direction of an explosion (between $\pm 90^{\circ}$ and $\pm 180^{\circ}$), unless it had been already on that course and could not alter it before the wave arrives. Should there be sufficient time available, however, Figure 22 definitely provides a useful guidance for a proper response under any given set of prevailing circumstances defined.

7.3 Shallow Water Hazard

As discussed in section 4.3 , shallow water waves can be generated by explosions in two ways, (1) produced by explosions in deep water and transmitted into the shallow water shelf, and (2) produced by explosions over the shallow water region of the continental shelf. Since the yield size in this study is limited to 2.0 k -ton, the waves generated by a device of this size in deep water region would not produce significant effects on the shallow water region close to the shore as a result of spreading and dispersion across the long distance over the continental shelf. Therefore, only the second case is considered here.

For the purpose of calculating the shallow water hazard, an idealized ocean bottom topography is assumed here. The width of a typical continental shelf is in the order of 100 nautical miles with a slope of 0.01 , and the water depth at the edge of the continental slope is therefore about $6,000 \mathrm{ft}$. It is known that shallow water explosions are not as efficient as a deep water explosion. Hence, the present analysis is centered only on the largestyield, i.e. a 2.0 k -ton device. Explosions at two water depths, 100 ft and 50 ft , are considered. With the idealized continental shelf assumed above, the charge location for a 100 ft deep water explosion is approximately $10,000 \mathrm{ft}$ from the shoreline and that for a 50 ft deep water $5,000 \mathrm{ft}$. Assuming that the effects of dispersion and refraction are negligible and considering simply that these waves are two-dimensional and farallel with the shoreline, the procedures presented in Section 4.3 can be used to calculate the characteristics of waves generated in shallow water of constant depth. When these waves propagate toward the shoreline to even shallower water, however, a correction to the wave height due to shoaling must be taken into account. If H_{o} is the height of the waves in deep water, through shoaling the height in shallow water of a depth h would be

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{o}\left[\tanh \mathrm{kh}\left(1+\frac{2 \mathrm{kh}}{\sinh 2 \mathrm{kh}}\right)\right]^{-\frac{1}{2}} \tag{64}
\end{equation*}
$$

where k is the wave number which has been defined in Section 4.2. The ratio of H / H_{o} is called the shoaling factor. Given in Table 8 are the wave heights calculated at various stand-off distances from the explosion detonated at two charge positions on the continental shelf. As mentioned in the foregoing, the wave generation efficiency in shallow water is not as good as in deep water; however, because of the bottom slope, the wave heights at comparable stand-off distances are considerable higher due to the shallow water shoaling effect as shown in Table 8.
Table 8. Shallow Water Waves at Various

| $\begin{array}{c}\text { Water Depth } \\ \text { at } \\ \text { Charge Location }\end{array}$ | $\begin{array}{c}\text { Craft Location } \\ \text { From Burst }\end{array}$ | | | $\begin{array}{c}\text { Local } \\ \text { From Shore }\end{array}$ | Water Depth |
| :---: | :---: | :---: | :---: | :---: | :---: | Wave Height \(\left.\begin{array}{c}Wave Height/

Water Depth\end{array}\right\}\)

As discussed in Section 5, when waves are high in relatively shallow water, they can be depicted as solitary waves. The primary parameter controlling the solitary wave form is the wave height/ water depth ratio. Waves become very peaked when this ratio is large and when this ratio reaches a value of about 0.7 , the waves start to break and form a series of breakers, as is commonly seen at a beach. Consequently, the important parameter with regard to the craft dynamics in this case is also the wave height/water depth ratio rather than the wave height itself. A series of computer runs to analyze the craft motions was performed for each case listed in Table 8. Again, a craft cruising speed of 50 knots is assumed. Craft headings are varied from 0° to 180° in the computer runs in order to identify the sensitivity of this parameter to the craft survivability. As expected, for the cases of lower wave height/ water depth ratio (0.14 and 0.15 in Table 8), the calculated results show the craft is safe to run in any direction with no catastrophic results. When the wave height/water depth ratio reaches 0.3 , however, the operation headings are limited only to stern and following waves, or 0 to $\pm 90^{\circ}$. The strategy here is essentially to outrun the waves by heading away from the blast. An additional feasible operation for survival in these cases is to head into the waves (180° heading) in a hovering mode. This mode of operation is especially useful when the craft is very close to the shore with little room for maneuvering or alternatively when no time is available for any other action.

The above discussion has assumed that the craft is caught between the explosion and the shore. On the other hand, if the craft happens to be seaward of the explosion, the threat becomes much less. First of all, the wave would be much smaller in deeper water for the same stand-off distance, and secondly, the craft has ample room to run from the waves toward the ocean. Interesting to note is that as contrast to the deep water explosion case, the stand-off distance is not the primary controlling factor for the craft safety in the
shallow water case. As shown in Table 8, the waves present no threat when the craft is $2,500 \mathrm{ft}$ away in water of 75 ft deep, but the craft becomes vulnerable at $7,500 \mathrm{ft}$ stand-off only because the water there is shallower (25 ft) and the wave height/ water depth ratio becomes large.

7.4 Effect of Heave Attenuation

In the previous sections, the safe operational envelope for an SES craft in both deep and shallow water explosion environment has been discussed. It is noted that all the computations presented in the previous sections do not include any control for heave attenuation. Whereas it is not the intention of the present effort to design an optimum control system for the craft, some calculations including a simple control logic have been exercised so as to demonstrate that the operational envelope defined previously can be improved through heave alleviation control.

Figure 22 has indicated that, without heave alleviation control, the craft could not survive a 1 k -ton explosion on the beam at a stand-off distance of $7,500 \mathrm{ft}$. Computations have been performed for the same case to include a simple control logic described by Eq. 50 with the control constants assigned as $C_{1}=-1.34 \mathrm{ft} \mathrm{sec}{ }^{2}$ and $C_{2}=0$. The results are plotted and shown in Figure 23. As seen, the calculation shows that the craft would now remain safe in this wave environment. This exercise demonstrates the importance of heave control devices in SES dynamics. Since no optimization of the control constants has been performed for the craft, no attempt to improve the operational envelope through heave alleviation controls has been conducted. The control system design is considered beyond the scope of the present study. Suffice it to say that such a system improves performance and greatly enhances craft maneuverability.

7.5 Hovering Mode

The operational envelope defined in the previous sections can be used as a guide for the execution of proper maneuvers in cases where the craft is caught in an explosion generated wave environment. As will be discussed later, one of the prime parameters of concern is the reaction time between blast occurrence and initiation of a maneuver. In the case where there is no sufficient time available for a ship commander to change his course into a safe heading, he must immediately take an alternate measure to minimize the threat so as to keep his craft afloat. The methodology of minimizing the potential thrcat is to set the craft into a passive mode at a condition of maximum stability. This can be achieved by slowing down the craft speed into a hovering mode while altering its heading either into or away from the waves (180° or 0°) so as to minimize its lateral motions, because most seagoing vessels including the SES have a better stability longitudinally. In the event that the craft can change its course away from the waves in time, it should always try to outrun the waves at all available speed. The conditions considered here, however, refer to the case where the craft may possibly alter its heading to 0° or 180° whichever is more easily achievable, but have no sufficient time to react otherwise.

As shown in the operational envelope presented in Figure 22, the present craft would not survive at a $7,500 \mathrm{ft}$ stand-off distance to any explosion, should it happen to run into the direction of waves. As has been presented in Section 6.3, Figure 18, however, the craft is well behaved in a hovering mode at this stand-off distance under a 1 k-ton explosion. Similarly, the responses of the craft in a hovering mode to 1.5 and 2.0 kilo-ton explosions are shown in Figures 24 and 25. These figures show that the craft again behaves very well although the yields are considerably larger. These examples would therefore indicate that in many cases a reasonable tactics for an SES under certain conditions is to head into

or away from the blast in a hovering mode. This tactic obviously presumes that such a hovering mode is feasible from a normal operational standpoint.

7.6 Reaction Time and Optimum Maneuver

The celerity of the maximum wave in the leading wave group of an explosion generated wave train can be estimated based upon the empirical formula given in Section 4.2 , and the calculated results of the wave celerity for 0.5 to 2.0 kilo ton yield explosions have been given in Table 7. Based upon these estimates, the arrival time of the maximum wave in the leading wave group at any distance away from the center of blast can be straightforwardly determined. In general, however, several initial disturbances, although of smaller amplitude, arrive much earlier than the maximum wave. A rough estimate indicates that the approximate arrival times of the leading disturbances are $80,120,180$, and 240 seconds, respectively for stand-off distances of $7,500,10,000,15,000$ and $20,000 \mathrm{ft}$, within the yield weight range considered in the present analysis.

These arrival times provide a good guidance as to how quickly a craft should react in order to avoid undesirable consequences. From the discussion in the previous section it is also clear that the craft should avoid head or bow waves at a stand-off distance of less than $7,500 \mathrm{ft}$. If we define this as a critical stand-off distance, then the critical reaction time is about 80 seconds. In other words, the craft must react within a period of 80 seconds to adjust to a favorable course in the event it is within the critical stand-off distance of $7,500 \mathrm{ft}$.

The cruising speed considered here is 50 knots, or $84.45 \mathrm{ft} / \mathrm{sec}$, which is slightly higher than the celerity of the maximum wave from a 0.5 k -ton or 1.0 k -tonyield explosion but slightly lower than that from 1.5 k -ton and 2.0 k -tonyield explosions. Within
the range of the yields considered, the best course for action for the craft is to take a 0° heading, as it can almost always outrun the waves resulted from explosions of these magnitudes. In addition, even if the craft is caught by the waves at a later time, the stand-off distance has increased and consequently the waves have necessarily reduced. If the craft is in an undesirable course at the time of attack, the commander must take the proper action within the allowable reaction time, which, of course, will vary depending upon the stand-off distance. The proper action implied here is to change its course into a heading within the operation envelope as defined in Figure 22. Should there be no sufficient time for reaction, the best choice then would be to bring the craft into a hovering mode and head into or away from the waves (180° or 0°).

8.0 CONCLUSIONS

Analytical findings derived from modeling the response of a typical SES to an explosion-generated wave environment have been presented. Based upon these results, analyses to illustrate the potential vulnerability of such a vehicle to explosion-generated waves have been obtained and operation envelopes with respect to this wave environment has been developed. The operational envelopes developed provide information to identify the required stand-off distances and necessary craft headings under which survivability in explosions of a charge weight ranging from 0.5 to 2.0 kilo-ton can be assured. The results indicate that the waves generated by these explosions present no threat to the craft when its standoff distance is larger than $20,000 \mathrm{ft}$. However, if the stand-off distance is no more than $7,500 \mathrm{ft}$ the craft can only survive at headings between 0° and $\pm 90^{\circ}$ (following or stern waves).

The operational envelopes are developed based upon a craft cruising speed of 50 knots. It has been shown that all the evasive actions suggested by the resulting diagram depend very much upon the available reaction time. A critical reaction time has been established for the yield range considered. For a typical 2,000 ton class SES, this critical reaction time is 80 seconds. In otherwords, the craft must be able to adjust to a favorable operating condition within 80 seconds after blast in order to escape the hazard at a critical stand-off distance, defined as 7,500 ft.

Assuming there is sufficient time for the craft to maneuver before the leading waves reach it, the most favorable course should always be a 0° heading or away from the blast, provided that there is no obstruction in that direction. The primary reason for this maneuver is that in this direction the craft may easily outrun the waves with its 50 knots crusing speed; secondly, even if the craft should be caught by waves at a later time, the waves
will be much less severe at this greater stand-off distance due to the dispersion and spreading effects. Should the craft have insufficient time to adjust to a favorable evasive heading, the best strategy for survival is to head the craft into the waves and maintain a hovering mode.

When explosions occur in shallow water over the continental shelf, the waves generated are different from that generated by deep water explosions in form as well as in characteristics. In this analysis, these waves are represented by solitary waves, the characteristics of which vary with the height of the waves as well as the depth of the water. Using this wave representation, the craft behavior in shallow water explosion has been calculated and analyzed. In contrast to the craft behavior in deep water explosions, the results show that the craft safety does not heavily depend upon the stand-off distance. Within the yield range considered, the wave height/water depth ratio instead has been found to be the major parameter affecting the craft behavior in shallow water explosion waves.

A limited number of computer runs to investigate the effect of heave alleviation control on the craft dynamics has been conducted. With a simple control logic the model has shown that the craft may reduce motions and in many cases may even assure survival under a hazardous situation which may otherwise prove fatal.

The above summarizes the results obtained in the present study. It should be noted that in the present analysis, the craft dimensions and characteristics have been treated oniy in general terms in order to represent a typical SES and accordingly the results presented herein must be regarded in this light. It is nevertheless worth mentioning that the model developed here includes complete details to ensure that the information on evasive procedures for other craft can be generated should the specifics
for that vehicle be defined. In particular, the model has capability to simulate non-linear motions of SES in six degrees of freedom in various wave environments, including deep water regular waves (sinusoidal waves) shallow water waves (solitary waves) and irregular wave trains (e.g. explosion generated waves). Specific features include heave alleviation control, thrust control, and various schemes for turning and maneuvers. Most importantly, the model is efficient for time domain solution and the program has been shown to be exceedingly fast on high speed computers. Typically a 100 second real time simulation can be obtained in 19 seconds of computer time on a CDC 7600 computer.

1. LeMehaute, B., Hwang, L., Divoky, D., and Butler, H. L., "Explosion-generated Wave Environment in Shallow Water," Tetra Tech Report TC-116, 1967.
2. Wang, S., "Ship Behavior in Explosion-generated Wave Environment," Tetra Tech Report TC-130D, 1970.

Yang, I-M, "Theoretical and Experimental Study of Submarine Dynamics With Applications to Explosion Generated Waves," Tetra Tech Report TC-181, 1971

Wang, S., Hwang, L., and Webb. L., "Study of Ship Vulnerability to Large Waves Raised by Nuclear Explosion," Tetra Tech Report TC-213, 1972.
3. Wade, R. B., and Wang, S., "Some Aspects of Sidehull Hydrodynamics and Maneuvering in the Design of Surface Effect Ships," llth Symposium of Naval Hydrodynamics, 1976.
4. Lamb, H., "Hydrodynamics," Sixth Edition, nover, New York, 1932.
5. Hoerner, S. F., Fluid Dynamic Drag, published by the author, 1965.
6. Chapman, R. B., "Spray Drag of Surface-piercing Struts," NUC TP251, 1971.
7. Yim, B., "On the Wave Resistance of Surface Effect Ships," J. Ship Res., Vol. 15, No. 1, March 1971.
8. Kajiura, K., "The Leading Waves of Tsunami," Bulletin of the Earthquake Research Institute, Vol. 41.
9. LeMehaute, B., "Theory of Explosion-generated Water Waves," Advances in Hydroscience, Vol. 7, Academic Press, New York, 1971.
10. Waterways Experiment Station, "Effects of Explosions in Shallow Water," Technical Memorandum No. 2-406, 1955.
11. Glasstone, S., "The Effects of Nuclear Weapons," U.S. Atomic Energy Commission, 1962.
12. Garcia, W. J., "Water Waves Produced by Cratering Explosions in Shallow Water," Lawrence Radiation Laboratory, University of California, Livermore, California, 1970.
13. LeMehaute, B., Divoky, D. and Lin, A., "Shallow Water Waves: A Comparison of Theories and Experiments," llth Conference of Coastal Engineering, 1968.

APPENDIX A

HYDRODYNAMIC COEFFICIENTS OF SIDEHULL

The hydrodynamic forces and moments include both linear and nonlinear contributions. The linear terms are those in the equations of motion identifiable by the first order coefficients. The nonlinear terms in a hydrodynamic inviscid flow are the second order terms in the equations of motion, arising from fluid inertia couplings. The linear coefficients are usually classified into three general categories: static (or resistance), rotary and acceleration. The static force coefficients are the rates of change of any force or moment coefficient with respect to the linear velocity components; the rotary force coefficients are the rates of change with respect to the angular velocity components; and the acceleration or virtual inertia coefficients are those with respect to either the linear or angular acceleration components. These coefficients are linear with respect to the appropriate variables within limited ranges.

The fundamental dependence of any particular force or moment on the complete dynamical history of a body can be written as

$$
F=f[u, v, w, p, q, r, \dot{u}, \dot{v}, \dot{w}, \dot{p}, \dot{q}, \dot{r}]
$$

In a general expansion, there are altogether 72 first order derivatives or coefficients and 18 second order derivatives. Among these 90 derivatives, some of them are zero if the body has a plane of symmetry. In addition, based upon the slender body approach applied in the analysis, there should be no first order dynamic forces in the axial direction, nor should there be first order terms depending upon the dynamic variables along the longitudinal axis. In order to provide a simple approximate of the body surge effect, however, a gross estimate of the added inertia
in the axial direction is included in the present analysis; let this total added mass for surge be \bar{m}_{1}. The two-dimensional section added masses are defined by m_{2}, m_{3} and m_{4} for motions of sway, heave and roll, respectively. In comparing with the symbols defined for single sidehull in Eq. (7) in the text, the following identities are noted

$$
\begin{aligned}
& m_{2}(x)=2 m_{y Y}(x) \\
& m_{3}(x)=2 m_{z Z}(x) \\
& m_{4}(x)=m_{2}(x) f^{2}(x)+m_{3}(x) h^{2}(x)
\end{aligned}
$$

where $\quad f(x)=$ vertical moment arm of the lateral hydrodynamic inertia force
$h(x)=$ horizontal moment arm of the vertical hydrodynamic inertia force.

Not including the effects due to the asymmetry of the sidehull geometry itself, the non-zero hydrodynamic derivatives are listed in Table A-1. This table is arranged with the dependent variables (force and moment) in rows and the independent variables (velocity and acceleration components) in columns, and the derivatives can be read correspondingly. These derivatives are dimensional. In order to non-dimensionalize these derivatives a reference length and speed equal to the sidehull waterline length L and ship speed U are taken and the system of normalization recommended by ITTC has been adopted in the numerical model.
Table A-la Summary of Hydrodynamic Derivatives

$\stackrel{ }{4}$						
0						
a					$\begin{aligned} & \dot{N}^{a} \\ & 1 \\ & x^{0} \end{aligned}$	$\begin{aligned} & \dot{x}_{\underline{+}} \\ & x^{4} \end{aligned}$
3				$N^{Q_{1}}$		
>						
. 4						$\underbrace{\substack{x \\ v_{0}^{x} \\ \underbrace{\prime}_{N} \\ E}}_{1}$
- 6					$\underbrace{\substack{x \\ v_{x}^{0} \\ x_{m} \\ E}}_{1}$	
$\cdot 2$					\dot{x}^{σ}	** ${ }^{*}$
$\cdot 3$			$\underbrace{\substack{\text { E } \\ E_{m}^{m}}}_{1}$	$\stackrel{*}{*}^{\text {a }}$	\dot{N}^{*}	
$\cdot>$		$\underbrace{\stackrel{\text { E }}{\sim}}_{1}$		\dot{x}^{a}		\dot{x}^{4}
$\cdot 3$	1臬					
	*	>	N	\star	:	z

*Torm Disappears for Single Hull vessels.
Table A-1b Summary of Hydrodynamic Derivatives

	$\dot{1}^{4}$				${ }^{*} \dot{\chi}^{4}$	
प					$\dot{\Sigma}^{*}$	
앙	$\dot{N}^{\text {Or }}$					${ }^{*} \dot{x}^{\text {T}}$
	* ${ }^{\text {cin }}$		\dot{x}^{4}	* $\stackrel{*}{*}^{\circ}$	- ${ }_{\text {+ }}^{\text {¢ }}$	
8	\dot{N}°	$\dot{\sim}_{1}{ }^{\text {® }}$		${ }^{*} \dot{\chi}^{\text {² }}$		
0		* ${ }_{\text {® }}$	* $\dot{\lambda}^{\text {a }}$		* $\dot{\underline{Y}}^{4}$	${ }^{*} \dot{\chi}^{\sigma}$
3				$\stackrel{4}{8}^{8}$	${ }^{*} \dot{N}^{2}$	
9	\dot{N}^{3}					* $\dot{1}^{\text {a }}$
\bigcirc		$i_{i}{ }^{3}$		* \dot{i}^{2}		\dot{N}^{σ}
4	$\dot{i}^{\text {b }}$				* \dot{x}°	
8						\dot{i}^{\sim}
\$			\dot{x}^{7}	${ }^{*} \dot{N}^{4}$	i^{4}	
3				\dot{N}^{3} + $\dot{+}$ i		
	\times	入	N	\star	Σ	z

*Term Disappears for Single Hull Vessels.

APPENDIX B

COMPUTER INPUT/OUTPUT FORMAT

Computer Input and Output Format

Input Format:

Card 1: Format (20A4)

1) TITLE - Heading card.

Card 2: Format (F10.0, 14I5)

1) DT - Number of intervals per wave period.
2) NSTEP - Number of integration steps.
3) NPRNT - Plot every NPRNT point.
4) IP - Debug flag for component forces and moments, printed in main program.
If $I P=0$, debug not printed.
If IP $\neq 0$, debug is printed.
5) IFIN - Flag on inclusion of stabilizer.

If $\operatorname{IFIN}=0$, do not include stabilizer.
If $\operatorname{IFIN} \neq 0$, include stabilizer.
6) IPLOT - Flag on plotting.

If IPLOT $=0$, call PLOTT.
If IPLOT $=1$, call PLOTXY.
If IPLOT $=2$, call PLOTT AND PLOTXY.
If IPLOT > 2, do not plot.
7) IPT - Number of points to plot for PLOTT.
8) NJET - Number of jets for thrust vector control.
9) INT - Flag for printing cumulative integrals and geometrical variables.
If INT $=0$, do not print.
If INT $\neq 0$, print.
10) IBUG - Flag on debug for subroutine BUOY. If IBUG $=0$, do not print debug.
If IBUG $\neq 0$, print debug.
11) IW - Flag on wave type.

If $I W=1$, sinusoidal wave.
If $I W=2$, solitary wave
If $I W=3$, explosion wave
12) IPR - Flag on debug for subroutine VLDOT.

If $I P R=0$, do not print debug.
If $I P R=0$, print debug.
13) ICO - Flag for generating new derivatives when draft changes by more than ICO feet.

If $I C O=0$, do not change derivatives.
If $I C O>0$, ICO equals the change in draft required update derivatives.

Card 3: Format (8F10.0)

1) THT - Initial pitch angle of craft (deg).
2) PHI - Initial roll angle of craft (deg).
3) PSI - Initial yaw angle of craft (deg).
4) Z - Heave $($ set $=0$)
5) Cl - Control constant Eq. (50).
6) C 2 - Control constant Eq. (50).
7) CVENT - Minimum percentage of vent area to be closed; (l-CVENT) representing the upper limit of vent area.
8) DVENT - Lower limit of vent area in percent of total vent area.

Card 4: Format (8F10.0)

1) $A A$ - Distance from transom to C.G. (ft).
2) $B B$ - Half spacing of side walls (ft).
3) CC - Side wall immersion at C.G. (ft).
4) DD - Distance from keel of craft to C.G. (ft).
5) AM - Craft weight (tons).
6) DXDU - Added mass coefficient of side wall in axial flow.
7) AIX - Moment of inertia of craft about the x-axis (ton-ft-sec ${ }^{2}$).
8) AIZ - Moment of inertia of craft about the z-axis (ton-ft-sec ${ }^{2}$).
9) AIY - Moment of inertia of craft about the y-axis (ton-ft-sec ${ }^{2}$).

Card 5: Format (8F10.0)

1) WL - Reference length of craft (ft).
2) SP - Approaching speed (knots).
3) RHO - Density of water (lb. $\sec ^{2} / f t^{4}$).
4) ANU - Kinematic viscosity of water ($\mathrm{ft} \mathrm{t}^{2} / \mathrm{sec}$).
5) CDLL - Drag coefficient, lateral force, lateral motion.
6) CDNN - Drag coefficient, normal force, normal motion.

Card 6: Format (8Flo.0)

1) OMEGA - Dihedral angle of stabilizer (deg).
2) $C R$ - Chord length of stabilizer at root (ft).
3) $\mathbf{C T}$ - Chord length of stabilizer at tip (ft).
4) S - Stabilizer span (ft).

Card 7: Format (8F10.0

1) CCO - Side wall immersion at C.G. before turning (ft).
2) THTO - Pitch angle before turning (deg).
3) SPTURN - Assigned speed at turn if different from SP (knots).
4) DFTH - Control for differential thrust (set $=0$).

Card 8: Format (8F10.0)

1) XARM - Longitudinal distance of water jet nozzle location from craft C.G. (ft).
2) ZARM - Vertical distance of water jet nozzle location below craft C.G. (ft).
3) BACE - Vertical location of the stabilizer attachment below the keel line ($f t$).

Card 9: Format (8F10.0)

1) YARM(I) - Transverse location of Ith water jet nozzle from craft centerline (ft) NJET values. Positive starboard side.

Card 10: Format (8F10.0)

1) DELJET(I) - Deflection angle of nozzle I (deg). NJET values. Positive toward port side.

Card 11: Format (8F10.0)

1) RMCP(I) - Engine power level delivered to nozzle I. NJET values.

Card 12: Format (8F10.0)

1) ALPHA(I) - Vertical tilt angle of nozzle I (deg). NJET values. Positive upward.

Card 13: Format (8F10.0)

1) DWET - Height from keel to wet deck (ft).
2) WAMP - Wave amplitude (ft).
3) WPER - Wave period (sec).
4) BETA - Heading angle (deg) BETA $=0^{\circ}$, following or overtaking waves. $B E T A=180^{\circ}$, head waves.
5) WDEP - Water depth (ft).
6) XO - Distance from center of explosion to craft (ft).
7) RO - Crater radius (ft).
8) ETAO - Crater heíght (ft).
9) TO - Reference time with respect to time of detonation (sec).

Card 14: Format (8Fl0.0)

1) CDIS - Discharge coefficient.
2) RHOWA - Density of air (lb $\sec ^{2} / f t$).
3) ATM - Atmospheric pressure (psf).
4) PHIO Coefficients for least square fit of fan
5) PHIl characteristic curve.
6) THTB - Bow seal angle (deg).
7) THTS - Stern seal angle (deg).

Card 15: Format (16I5)

1) NST - Number of sections along craft from transom to bow.

Card 16: Format (8F10.0)

1) BUBL - Air cushion bubble length (ft).
2) BUBB - Air cushion bubble width (ft).
3) WALB - Maximum width of side wall (ft).
4) DEPTH - Depth of craft (ft).

Card 17: Format (8F10.0)

1) SLBOW - Length of planing boy seal (ft).
2) SLSTRN - Length of planing stern seal (ft).

Card 18: Format (8F10.0)

1) DRISE(I) - Dead rise angle at station I (deg). NST values. $I=1$ at transom, $I=N S T$ at bow.

Card 19: Format (8Fl0.0)

1) ENTRCE (I) - Average entrance angle at station I (deg). NST values.

Card 20: Format (8F10.0)

1) CHINE (I) - Height of chine above keel line at station I (ft).

Card 21: Format (8F10.0)

1) NSW(I) - Number of water lines used for defining offsets at station I.

Card 22: Format (8Fl0.0)

1) XSW(I) - Distance from transom to station I (ft). NST values.

Card 23: Format (8F10.0)

1) HSW (I) - Height of bottom profile above keel line at station I (ft). If profile below keel line HSW (I) is negative.

Card Group 24: Format (8Fl0.0)

1) Dl (I, J) - Height of Jth waterline above keel at Ith station (ft). NSW(I) values of Dl for each I. All values are positive. Dl $(I, l)=0.0$. Refer to Figure A.l.
Dl is input as follows: Card 1 - Dl (1,I), Dl $(1,2), \ldots \operatorname{Dl}(1, \operatorname{NSW}(1))$. Card 2 - Dl $(2,1), \operatorname{Dl}(2,2), \ldots \operatorname{Dl}(2, \operatorname{NSW}(2))$. Card NST - Dl(NST, 1), Dl (NST, 2),... Dl (NST, NSW (NST)).

Card Group 25: Format (8F10.0)

1) Wl(I,J) - Horizontal offset of the starboard wall, right side of vertical reference plane, at Ith station an Jth waterline (ft). NSW (I) values for Wl for each I. All values are positive. Wl (I, J) input similarly to Dl(I,J). Refer to Figure B.l.

Card Group 26: Format (8F10.0)

1) W2(I,J) - Horizontal offset of the port wall, left side of vertical reference plane, at Ith station and Jth waterline (ft). NSW(I) values of W2 for each I. All values are positive. W2 (I,J) input similarly to Dl(I,J). Refer to Figure B.l.

Figure B-1: D1, W1, W2 for Cross Section I.

Definition of Output

1. Input data are reproduced as they appear on data cards, with the exception of D1, W1, W2 which are not printed in the order they are read.
2. Any input data that are converted in the program are printed in new units.
1) $S P(f t / s e c)$.
2) $A M$ (non-dimensional).
3) AIX (non-dimensional).
4) AIY (non-dimensional).
5) AIZ (non-dimensional)
6) FROUDE (non-dimensional) - Froude number
3. Craft attitude
1) Draft (ft).
2) Trim (deg).
4. Non-dimensional derivatives printed.
5. Stabilizer coefficients.
6. Coefficients for ship plus stabilizer.
7. Stability criterion for ship only.
8. Stability criterion for ship plus stabilizer.
9. Cente: of pressure of sidewall.
10. Non-dimensional cumulative integrals.

DI $\quad-\int_{p i s s} D \mathrm{dF}$
DFI - $\int_{\text {p\&:s }} D F d F$
DF2I - $\int_{\mathrm{p} \& \mathrm{~s}} D F^{2} \mathrm{dF}$
DE3 $-\int_{\text {pi\&S }} D F^{3} d F$
$D C I-\int_{p \& s} L C d F$

LC2I $-\int_{\text {p\&s }} D C^{2} \mathrm{~d} F$
$D O 3 I-\int_{p \& s} D C^{3} d F$
DCFI - $\int_{\mathrm{P} \& \mathrm{~s}} \mathrm{DCF} \mathrm{dF}$
$D C F 2 I-\int_{\text {P\&S }} D C F^{2} d F$
$D C 2 F I-\int_{p \& s} D C^{2} F d F$
$B 3 B L-B B^{3} \int_{\mathrm{F} \& \mathrm{~S}} \mathrm{BdF}$
where
p\&s - Integration limits over boilh port and starboard sidewalls.
D - Draft at successive stations.
F - Distance irom C. G. to successive stations.
C - Vertical moment arm, at successive stations, for submerged portions of craft (ft).
D - Beam at successive stations.
BH - Half spacing of side walls.
11. Non-dimensional Geometrical Variables as Function of Roll.

GI(I) - Integral of girder. SI(I) - Integral of cross sectional area. Sl(I) - Cross sectional area at transom. TDRAF (I) - Draft at transom.
12. Craft characteristics.
13. Wave characteristics.
14. Table of output plus units:

1) T - Time (sec).
2) U - Craft speed (knots).
3) BETA - Sideslip angle (deg).
4) W - Heave rate ($\mathrm{ft} / \mathrm{sec}$).
5) $\begin{aligned} & \mathrm{X} \\ & \mathrm{Y} \\ & \text { Location of craft (craft lengths). }\end{aligned}$
6) Z - Heave ($f t$).
7) PHI - Roil angie (deg).
8) THETA - Pitch angle (deg).
9) PSI - Yaw angle (deg).
10) PC - Cushion pressure, (psf).
11) $Q F$ - Fan flow ($\mathrm{ft}^{3} / \mathrm{sec}$).
12) DPDT - Rate of pressure variation (psf/sec)
13) DVDT - Rate of cushion volume variation ($\mathrm{ft}^{3} / \mathrm{sec}$).
14) WD - Heave acceleration (G's).
15) WH - Wave elevation at C.G. of craft (ft).
16) VOL - Cushion volume (ft ${ }^{3}$).
17) Al - Vent area (ft ${ }^{2}$).
15. Legend for computer plots:
1) HEAVE - Heave ($f t$).
2) ROLL - Roll angle (deg).
3) Pitch -Pitch angle (deg).
4) YAW - Yaw angle (deg).
5) WAV HGT - Wave elevation at C.G. of craft (ft).
6) PRESS/100 - Cushion pressure divided by 100 (psf).

TEST SIOEWALL - EXPLOSICiV VAVE
ST, OOSTEF, AFRVT, IF, IF LA, IPLCT,IPT, NJET,INT,IEUG,I.,IFK.ICC
$1<8.00 \quad 25 \quad 4 \quad 0 \quad 1 \quad 0 \quad 25 \quad 4 \quad c \quad c \quad 3 \quad c \quad 1$
THT,FHI,FSI,Z,C1,C2,CVENT, OVENT
$0.60 \quad 0.00 \quad 0.00 \quad 1.34 \quad 0.00 \quad$ C.CC 0.00

AA,EE,CC,DD,AM, OXOU,AIX,AIZ,AIY

-L.SF, RHC, hiNU, CULL, CD:N
$237.500 \quad 1.990 .000012817$ 1.300 1.0 OO
SMEGA,CK,CT,S
$30.00 \quad 10.00 \quad 5.00 \quad 10.00$
CCC.THTi FSPTUAK:OFTH

$$
2.00 \quad 1.00
$$

$52.00 \quad 0.00$
KAEM.ZARK.?ACE
$130.06 \quad 4.00 \quad 0.00$
YAKM(1)
$\begin{array}{llll}\text { EL. } 50 ~-50.00 ~ & 30.00 \quad-38.00\end{array}$
DELJET(I)
0.0000000

RMCF(I)
$1.00 \quad 1.00 \quad 1.00 \quad 1.00$

J.ET, AMMFADRER, EETA,HDEF, XO,RO,ETAU,TO

COIS, RHO日K,ATM,OHIO,FHII.THTB,THTS
$.70 \quad$ ÚC $23782117.0075497 .05-121.25 \quad 30.00 \quad 60.00$
IST
12
-UBL, BUSE,AALE,CEFTM
$240.00 \quad 88.00 \quad 30.00$
SLEJLQSLSTKN 20.00
20.00

JRISE(I)

45.00

と5.00
ENTRCEII
$0.00 \quad C .00$
1.50
c. 50

EHINE(I)
$5.00 \quad 5.00$
6.00

NS:
44
x 5
200.00
25.00
225.00

0.00 0.10

0.00
237.50
75.00
$125 . \mathrm{Cl}$
$100.0 n$

$$
250.00
$$

79.00
78.00
78.0 C
60.00
49.00
44
4.00
43.00
5.00
$=$
0.0
$0.00 \quad 0.00 \quad 0.000$
.00
=. 00
5.0
$.0 C$
5.00
5.CC
S. 10

1	01	0.000	5.000	10.000	20.000
	$d 1$	7.000	7.500	8.000	8.000
	- 2	0.000	0.000	0.000	0.000
2	D1	0.000	5.000	10.000	20.000
	± 1	7.000	7.500	8.000	8.000
	W2	0.000	0.000	C.OCO	0.000
3	01	0.000	5.000	10.000	20.000
	21	7.000	7.500	8.000	8.000
	. 2	0.000	0.000	0.060	C.OOC

	$\begin{aligned} & 01 \\ & .1 \\ & .1 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 6.500 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 5.000 \\ & 7.500 \\ & 0.000 \end{aligned}$	$\begin{array}{r} 10.000 \\ 8.000 \\ 0.000 \end{array}$	$\begin{array}{r} 20.000 \\ 8.000 \\ 0.000 \end{array}$
5	01	0.000	5.000	10.000	20.000
	11	4.000	7.000	8.000	$? .000$
	- 2	0.000	0.000	0.000	0.000
6	01	0.000	5.000	10.000	20.000
	41	2.000	6.500	8.000	8.000
	- 2	0.000	0.000	0.000	$0 . C O C$
7	01	0.000	5.000	10.500	20.000
	$\checkmark 1$. 700	E.000	8.000	$8.00{ }^{0}$
	62	0.000	c.000	0.000	0.000
8	01	0.000	5.000	13.500	20.000
	-1	0.000	5.500	8.006	8.000
	- 2	0.000	0.000	0.050	0.000
9	D1	0.000	5.000	20.000	
	-1	0.000	5.000	8.000	
	- 2	0.000	0.000	C.eco	
10	01	0.000	6.000	20.000	
	-1	0.000	4.000	5.500	
	- 2	0.000	0.000	0.000	
11	41	0.000	9.000	20.000	
	-1	0.000	2.200	5.000	
	- 2	0.000	C. 000	0.000	
12	01	0.000			
	11	0.000			
	- 2	0.000			

CCNVERTED LNPUT

SP,AM,AIX,AIY,AIZ,FRCUDE 64.45 . $61045 E-61$. $1939 E-C 3$. 4 E7E-C3 -8949E-C3 .9EE7

THIS PAGE IS BEST QUALITY PRACTICABI EROM COPY FURNISHED TO DDC
DRAFT $=2.00 \quad$ TRIM $=1.00$

STAAILYTY CRITERTON RUR SHTQ ONLY＝．697JE－05

د̇E C	－Jt	0．DFI	－UFこI	DF3 1	OCI	OC：I	UC3t	CCFI	OLt 21	UC2F1	bsit
，	7.	0.	0.	0.	6.	0.	0.	0.	\checkmark ．	0.	0.
2	． 180 cos	－．89ゴ心03	．4．49E－03	－．229t－03	－166C－1）	． 15 5E－14	．142E－15	－． $0.24 \mathrm{c}=04$	． $415 t=14$	－． $702 \mathrm{t}=05$	． $209 \mathrm{~V}-34$
3	－3．4に－02	－．15こ5－）？	． $70112-03$	－．3）！t－13	－31らぐーへろ	－ 293 L －－ 4	－＜ 72 F－35	－14trus	$.649 E=04$	．．131i－u4	．410t－us
4	－Нトにーいこ	－1935－0？	－321r－03	－．j6号－1）	． 448 C－．．）	． 41 Pと $=$ П4	． $3902-95$	． $179 r-05$	． $163 \mathrm{c}=04$	－．1016－04	．OLUF－04
૬	－00こく－02	－． 215 －0？	．Hoúc－n3	－．3775－リ3	－Joae－nj	－勺28E゙标		－．20tr－us	．SuJE－04	－．181と－04	． $197 \mathrm{~F}=04$
6	－inaE゙り心	－．ここうに－9を	－ 4 7¢゙っ－03	－．378L－U8	－06ze－ii	－\rightarrow Cl？ $\mathrm{C}=04$	－5autoris，	－cjar－us	． $815 \mathrm{c}=04$	－．19aE－u4	－ 9 SuE－2．
7	．747Eーn2	－．ここic－u？	． 8771003	－．うごst－j3	． $7+2 \mathrm{C}-0.5$	． 049 COR	．659t－015	－．こうut～us	－Jloc－ua	$\ldots 112 t-04$	． $102 \mathrm{E}=0$ j
n		－21jc－02	－त9， $6-03$	－．376t－03	－コ）jc－0う	． 154 CH	$.717 \mathrm{t}-15$	．．14ciojs	－bこoc－14	． 10 ¢ 1004	－1リ7Eーいら
9	－ $095 i=02$	－．2ujev？	． 914.0303	－．うこ（Cく－） 3	． $8475-15$		－isol－cis	． 1 188E－0j	． $852+$－14	． 17 172－04	－116t－js
17	－ 920 －u2	－194c－0？	． 9418.03	－．ういくた－け3		－Aut 004	－7n3r－ut	－．10Ut－03	－yフul－04	－．10it－04	－112t．－．） 3
11	－ 925 －02	－175c－u？	． 7591.05	－． 3710.013	－$\because 10 \mathrm{c}-05$	－ 3 ！E．－14	．Trje－us	． 17 Art－03	．38at－0a	－．1ヵ4c－0a	－112t－9j
$1 . ?$	－926i－u2	－1925－0？	． $9535-03$	－．35らL－03	－ $578 \mathrm{~L}-03$	－6）${ }^{\text {c．2 }}$－－ 4	． 79 Lit－0＇s	．．171r－0j	．－WIE＝い4	－．10．c－u4	－112t－けs

GEUMETAICAL VANTAMLCS				
HiJLl UE（）	Gt	51	S 1	IDRAF
25100	－42こごー01	－ $3502 \mathrm{E}-13$	． 7502 CH －03	
1.30	－いい」う－01	．2udnt－） 3	．0970600s	
－100	－S3：42－01		－よaらリじい？	． $1797 \mathrm{E}=61$
－İvu	－？2ucot	－1565－3s	． $4.3094 \mathrm{C}=33$	．13：ع－1）1
－${ }^{\text {a }}$－ 0	$.1750 t-01$	． 810 － 0 － 4	． 2018 CN	$.10<7(-1) 1$

\qquad

PROGRAM SLSWAVEIINPUT, OUTPUT,TAPE5=INFUT,TAPEG=CUTPUT,TAPE1
*TAPE2)
OIMENSION Y(13), YP(13)
DIMENSION PHID(700), XP(700);YYP(700) THTO(700), ZP(700)
*, FSID(700), HAV(70U), PCP(700)

- DEFTH,SFRAYL

CUMMON /E/ P, G, R, X,YY, Z, U, V, K, PLII,THT,FSI
CONML: /OERV/ XULELU, SPAGY, DOAGN, OFTH,IFIN,CCX.
CUMMON /FLO./ FCOOF,QO.VDOTF,AOF
CGMMON /IT./ AA,AIX,AIZ, AK,EE,CE,CF, DTR, CXDU,FO,G, VET, NVAL,
*PI, RHO, SK, UC, WL, XLG,XFG,CDLL,CDNA,FRCUCE,CC,DD, ARU, ELCD,CLD

CCHOU: /THRST/ TrIGH.TLCb
CUMFO: /TVCC/ XAGM,?ARU, EACE,YAFM(4), DFLJET(4), KFFCF(4),NJET
*, ALFHA(4)

COEMC: /AYEYE/ AI,C1,C2,A1,A2,OFOT,CVENT,DVENT
CALL INPUT
CALL INFT
INITIALIZATION

```
T=0.0
SHIPDG=0.
TOTLEG=0.
ivE=13
Y(1)=U
Y(2)=V
Y(3)=W
Y(4) =P
Y(5)=0
V(6)=R
Y(7) =X
Y(8)=YY
Y(Y) =Z
Y(10)=FHI
Y(11) =THT
Y(12) =PSI
CALCULATE &EIGHT OF CRAFT AT INITIAL TFIM AITH NC IAVE
INMGT=0
CALL SEANAV (WX@&Y&&Z&aK,VN&&N&VGL,AC&Y,T)
Y(13)=VOL/WL**3
ELCYA!O=-WZ
WMC=M
WOC=. 
FE=\SigmaUCYAN*DEM
PC=(NESG:HT-FE)/AC +ATM
```

\qquad

PCGAGE =FC-ATM

$A G=(F H i C+P H I I * F C G A G E) /(C O I S * S G R T(2 . *(F C G A G E) / R H O W A))$
$A 1=D V E!T * A Q$
$A 2=2 * * A C *(1 .-$ CVENT)
VCLDOT $=0$ 。
INGGT=1
INOX=0
AI=Au*(1.-CVENT)
CALL RUNGS(T, DT,NE,Y,YP,INDX)
$K N T=1$
$T P=T * L / S P$
$U P=U * S P / 1=669$
VF =-ATAN(V/U)/OTR
$\triangle P=\otimes * S F$
$W D=Y P(3)=S P *=2 / V L / G$
$X P(K N T)=X$
$Y Y P(K N T)=Y Y$
$2 P(K N T)=2 * d L$
PHID(KNT) $=P H I / D T R$
$T H T U(K i v T)=T H T / D T R$
PSID(KNT)=PSI/DTR
$P C P($ Kiv $T)=P C-A T M$
$\forall A V(K N T)=0$ 。
VOOTP=0.
$D P D T=0$.
CALCULATE AND PRINT CRAFT AND WAVE CHAFACTERISTICS
$P A M=A M * G / 2240 * *(0.5 * R H O * W L * * 3)$
PEG=2•*BB
FTHTO = THTC/DTR
$P S P=S P / 1.689$
PBETA = BETA/DTR
CRAFTL=xSh(ivST) *WL
-PITE(6,3(G) PAM, CRAFTL,PBB,PTHTC,CC,PSF
IF(1w-LT.3) dRITE(6,301) FBETA,WANP,WFEPQWLG,CEL,CAY

PKINT QUTFUT KEADINGS
WRITE (6.220)
WRITE(6.222)
IF(IP.NE.0) dKITE(6,221)

*-TLUW,TCTLDG,WAVEOG•AERODG,SFRYDG,SEALDG, SKINDG,FINDG

INTEGRATICN EY RUNGS

INTRY=0
CCX=CC
LO $21=1$, NSTEP
IF(INTRY.EU.1.AND. ICC.I.E.O) CALL SECDER
INTKY=0
CALL RUNGS(T, DT,NE,Y,YP,INDX)
$U=Y(1)$
$v=r(2)$
$m=Y(3)$
$P=V(4)$
\qquad
$G=Y(5)$
$R=Y(6)$
$X=Y(7)$
$Y Y=Y(8)$
$Z=Y(9)$
$F H I=Y(10)$
$T H T=Y(11)$
$P S I=Y(12)$
$K N T=K i d T+1$
$T P=T *-L / S P$
UP $=\mathrm{U} *$ Sr/1.689
$V P=-A T A \cap(V / U) / O T R$
$\forall F=W * S P$
$-D=Y \mathrm{~F}(3) * S P * * 2$ /WLíG
$X P(K N T)=X$
YYP(KNT) $=Y Y$
2P(KNT) $=2 * W L$
PHIL(KNT) $=$ PHI/DTR
THTO(KNT) $=$ THT/DTR
PSIO(K:NT) $=$ FSI/DTR
$P C P(K \| T)=P C-A T M$
GENERATE WAVE FORM FOR PLOTTII.G
$\times C O=Y C J=Z C O=0$.
CALL SHAVE (XCO,YCO,ZCO,Y,T,ETA)
WAV(KNT) $=E T A$
PRINT KESLLTS
WRITE $(6,200)$ TF,UF,VP,WP,XP(K,T), YYF(KI,T), ZF (KNT), OHID(KN:T)
*THTO(KNT), PSID(KNT), PCP (KNT) , $O F, O P \cap T, V D R T F \bullet H D \bullet \forall A V(K N T), A C P, A I$ IF (IP.NE•O) WRITE(G,2OB) SX, SY,SK,SN, XUUELU,DFAGY,DRAGF, THIGH
*, ILCW, TCTLDG,WAVEDG,AERCDG,SFRYOG,SEALDG,SKINDG•FINDG
TEST TU SEE IF DERIVATIVES NEED TO BE CHANGED
IF(ICO.EG.O) GO TO 2
$2 T E S T=2 F(K N T)+H A V(K N T)$
$Z T S T=A B S(Z T C S T+C C-C C X)$
IF(ZTSTALT•ICO) GO TO 2
INTRY=1
CCX=CC + ZTEST
2 CONTINUE
SELECT EVERY NPRNT POINT FOR PLOTTING AND FLOT
$I N P=0$
OO 843 I JK $=1, K N T$,NPRNT
INP $=1 N P+1$
$2 P(I N F)=2 P(I J K)$
PHID(INP) $=P H I D(I J K)$
ThTO(INP) $=$ THTD(IJK)
PSID(INF) $=P S I D(I J K)$
UAV(INP) $=$ VAV(IJK)
643 PCP(INP) $=\operatorname{PCP}(I J K) / 100$.
IPT $=I N P$
IF(IPLCT.GT.2) CALL EXIT
IF(IFLOT•EG•O) CALL PLOTT(ZP, THTC,UAV,PHID,PSTD,PCP,IPT,NC,NG)
IF(IPLOT-EQ.1) CALL PLOTXY(XP,YYO,KNT)
IF(IPLOT•EO.2) CALL PLCTT(ZP, THTD, \&AV,FHID,PSID,PCP,IFT,NC,NG)

```
C
C
    fukmats
    200 FGRMAT(6F7.2,4F7.2,F6.0,3F8.0, PF7.2,F9.0,F5.0)
    20% FORMAT(BX, 9E11.3)
```



```
        &4X,SHPHI., 2X, SHTHETA, 4X, 3HFSI, 4X, 2HFC, EX, 2HCFF, 4X, 4HDFCT, 4X,4HCVVOT.
        - 5x, 2H~D, Sx, 2HWH,EX, ?HVSL, 4X, 2HAI)
    -221 FUKMAT(17x,2HSX,9x,SHSY,9x,2HSK,9x, 2HSN, 5X,FHYLDELU,6Y,5HDRAGY,
```



```
        *GHAEROOG, 5Y,GHSPRYDG, FX,FHSEALDG,5X,EHSKI:C(, &X, SHFITNDG)
```



```
    * 7HPSF/SLC, &X,7HFT3/SEC,4x,3H.G ,5x,2MFT, 6x,3HFT`.3x,3HFT2/)
    300 FORMATIIN1,2IHCRAFT CHARACTEFISTICS/EX,7H.EIGHT=,FG.O.5H TCLSS/
    -5X.13HCFAFT LEL,GTH= FG.1.4H F'./5X,14HCUSHION HIDTH=,FF.1,4H FT.
    */5X,13HINITIAL TFIM=,F6.C.5n [F'./5V,14HINITIAL DRムCT=,F7.3,4H FT.
    */5x,14HLIAITIAL SPEED=,F5.0,FH K*OTSI
    301 FOFMATC//21H WAVE CHAKACTEFISTICS/5%, RH:HEAGIN:O=,F5.O.5H DEG.I
```



```
    */5X,7HLENGTH=,FG.1.4H FT./5x, SHCELESITY=,FE.1,7H FT/SEC
    * (Ex.órinAv i.C.=&F7.4)
```



```
    */5x.もんL:CLF=,FG.1,4H FT./5Y,?HCO=,F7.1.4HFFT.
    * /5x,5HFTL_=,FE.1,4r FT./EX, 3rX_=,FF.1,4H FT.
    */5x,3+iC=,F6.1.5H SEC.)
        STEF
        ENO
```

```
SUBROUTINE INPT
OIMENSION TITLE(20)
COMMCN /ABC/ DFAFT(25%,HEIGHT,BUBB,BUPL,WALE,SLBOW,SLSTRN.THETA.
-CEPTH.SPRAYL
    COMMON /B/ P,GQR,X,YY,Z,U,V,W,PHI,THT,FSI
    COMMON /CDE/ DRISE(23),ENTRCE(23),CHIPE(23),HSPRAY(23)
    COKMON /DERV/ XUDELU,DKAGY,DEAGN,DFTH,IFIN,CCX
    COMMON /FCOEF/ FYNCL,FINYV,FINYR,FINKV,FINKR,FINNV,FINNR
    COMMON /FOYL/ C,ALFA,GAMA,XF
    COMMON /GEOMM/NSW(25),W1(25,25),H2(25,25),01(25,25)
    COMMON /IN/ AA,AIX,AIZ,AH,EB,CB,CF,DTR,OXDU,FO,G,NST,HVAL.
*PI,RHC,SP,UO,HL,XLG,XFG,CDLL,CDNN,FROUCE,CC,OD,ANU,ALOD,CLD
*,NG,NG,SPTURN,IFLOT,IFT,AIY,CCO,TITO
    CCMMCN /IT.DER/ CR.CT,S.OMEGA
    COMMOK /NDD/ DYF,OYG,DYR,DYV,DY-.DYOP,SYOR,DYDR,DYDV,DYDV,
* OZF,DZC,OZR,OZV.OZK.OZOF.こTOG,DZDR,DZOV.DZCK.
* DKP,DKG.DKR,DKV,OKH.DKDP,DKDG.DKDR.CKDV,DKCW.
* DMP,DMD,DMR,OMV,DMH,DMDF,CMDO,OMDR,DNDV,OKOW.
* DNP,DNG,ONR,DNV,DNH,DNCP,DNDQ,DNDR,DNCV,DNDH
CGMMON /PGES/ CDIS,KHOWA,PHIC,PHII,ATK,PMAX,AC,DEH,IFD
COMMCN /PGNT/ DT,NSTEP,NPRNT,IP
COMYON /FSEAL/ THTB,THTS
COMMON /SES/ HSW(25),OEL1,DEL2,N1,N2
CCMMON /TEMP/ SX,SY.SK.SN
CONMON /TVCC/ XARM,ZARM,BACE,YARM(4),DELJET(4),RMCF(4),NJET
*,ALPHA(4)
    COMMON NU/ GI(25).SI(25),S1(25),FHO(25),TOFAF(25)
    COMMON /WAV/ DWETQWAMP,WPER,CEL,CAY,IPUGQF(25), RETA,IW,WDEP,OFFSET
*HLG,ICE,XC,RO,ETAC,TO
COMMON/X/ ISECT(252.OI(25),OFI(25),DF2:(25),DF31(25),DCI(25).
*DC2I(25),DC3I(25),DCFI(25),DCF2I(25),DC2FI(25),E3EI(25), XSE(25)
COMMON /AYEYE/ AI,C1,C2,A1,AZ,DFOT,CVE:T,DVENT
dEFINITION OF INPUT fLAGS
DT=NUMuER OF INTERVALS PER VAVE PERIOD
NSTEP=NO. CF TIME STEFS TO EXECUTE
NPRNT=PLOT EVERY NFRNT POINT
IP-----------DEBUG FLAG FOR COMPONENT FORCES AND MOMENTS
                    SX,SY,SN, XUDELU,DRAGY,DPAEN,THIGH,TLOW,VAVEDG,
                    AERCDG,SPRYUG,SEALDG,SKINDGOFINDG
                    IF IP=0, DONT FRINT
                    IF IP.NE.O, FRINT
IFIA---------FLAG CN INCLUSION OF STAQILIZER
                    IFIN=C,DONT INCLUDE STABILIZER
                    IFIN.NE.O, INCLUOE STABILIIER
IPLGT--------FLAG ON PLOTTING
    IF IPLOT =0, PLOT PLOTT
    IF IPLOT =1 PLCT PLOTXY
    IF IPLUT =2 FLOT FLGTT ANO PLOTXY
    IF IFLGT GT 2 DONT PLOT
IPT-------NUMBER OF STEPS TO PLOT FLCTT
NJET--------NUMEER OF JETS FOR THRUST VECTOR CONTPOL
INT--N-------PKINT FLAG FDR CUMULATIVE INTEGRALS AND GEORETKICAL VARIABLES
    IF INT=O, OONT PRINT
    IF INT.NE.O, PRINT
IBUG---------FLAG ON DEBUG FOR SUBROUTINE EUOY
    IF IBUG=O, DO NOT PRINT
    IF IBUG.INE.O.PRINT
IW-----------FLAG FOR WAVE TYPE
```

IF IW=2, SOLITAPY WAVE
IF ldis. EXPLESION Hiave
IPR--n-------FLAG ON DEBUG FOR SUEROUTINE PRESS IF IFR=O.DO NOT PRINT IF IFR.NE.O日PRIAT
ICO---------FLAG FOR GEMERATING NEH CERIVATIVES UHEN DPAFT Changes more than ico ffet
IF ICO=0. DONT CHANGE DEPIVATIVES
IF ICO.NE.O, CHANGE IN DRAFT PEQUIRED TO CHANGE CERIVATIVES

READ AND URITE INPUT
READ(5,103) (TITLE(I), I $=1,20$)
READ(5,101) DT,NSTEF,NPRNT,IF,IFIN,IPLOT,IPT,NJET,INT,IRUG,IE,IPR
-.ICO
READ(5,100) THT,PHI,PSI,Z,C1,C2,CVENT,DVENT
READ(5,100) AA,BB,CC,OD,AM,DXDU,AIX,AIZ,AIY
READ(So100) WL,SP,RHO,ANU,CDLL,CDNN
READ(5,100) OMEGA,CK,CT,S
READ(5,100) CCO,THTU,SPTURN, DFTH
READ(5,100) XARM,ZARM,BACE
READ (5,100)(YARM(I),I=1,NJET)
REAU (5,100) (DELJET(I),I=10NJET)
READ (5,100) (RMCP(1),I=1,NJET)
$\operatorname{READ}(5,100)$ (ALPHA(I), $1=1$, NJET)
WKITE(6.200)
URITE(6,201) (TITLE(I),I=1,20)
WKITE (6,202)DT,NSTEF,NPPNT,IF,IFIN,TPLCT,IPT,NJET,INT,IRUG,IEOIPR

- IICO

WRITE(6,203) THT,PHI,PSI,2,C1,C2,CVENT,DVENT
URITE(6,204)AA,BE,CC,DD,AM,DXDU,AIX,AIZ,AIY
URITE (6,205):L,SF,RHO,ANU,CDLL,CDNN
-KITE(G,207) OMEGA,CR,CT,S
WFITE(6,208) CCC,THTO,SPTURN, DFTH
-KITE(6.210) XARM.ZARM,BACE
WRITE(6,211)
WRITE(6,100) (YARM(1),I=1,NJET)
-RITE(6.212)
URITE (6,100) (LELUET(I),I=1,NJET)
URITE(t.213)
URITE(6,100) (RMCP(I),I $=1$, NJET)

- RLTE(6.214)

WRITE(6,100) (ALPHA(I),I=1,NJET)
READ AND bRITE INFUT FOR WAVE
READ(5,100) DLET,WAMP,WPER,EETA,WDEP,XC,RC,ETAO,TO
-RITE(6.241) DWET, WAMP,WFER,GETA,WDEP, XO,PP,ETAO,TO
read ain write input for pressure
READ (5,100) CDIS,RHOWA,ATM,FHIO, PHII, TRTE, TKTS
URITE(6,242)COIS,RHOUdA,ATM,PRIO, PH11, THTB,THTS
READ AND URITE INPUT FOR SPRAY
READ(5.102) NST
READ(5,100) SUBL, BUBE,WALB,DEPTH

PEAD（5． 100 ）SLGOW，SLSTKN
READ（ל，1GC）（DKISEII），I＝1，NST）
REAU（5，100）（ENTKC［（I）$I=1,1 . S T)$
REhD（U，100）（CnINE（I），I＝1，NST）

REAJ（5，100）（XSW（I），$I=1, N S T)$
RLAD（S， 100 ）（HSN（1），I＝1，NST）
$00511=1$ คNST
tvVS＝Nick（I）
51 REAJ（S， 100 ）（DI（I，J），J＝1，NVS）C
DO52 $1=1, N S T$
MUS $=N \operatorname{Sin}(1)$
52 RLAL（5，100）（WI（1，J）っJ＝1，NVS）
JUS3 $i=1$ •NST
NVS $=N S=(1)$
53 READ（5，100）（WZ（I，J），J＝1，NVS）
－F．iTE（6．215）NST
－RITE（6．216）EUEL，BUEE，TALE，DEPTH

－HITE（6．218）
WhITE（ $5,1(0)(D R I S F(I), I=1, N S T)$
nK！TE（o，219）
－S．TE（6， 100 ）（EATFCE（I），I＝1，VST）
－hite（b，2z0）
WEITE（G．1CO）（CHANE（I），I＝1，NST）
－h．ITE（E．221）

dRiTE（6．222）

nE1TE（E．223）
©FITE（6．10C）（HSin（I）．I＝1，NST）
$00541=1$ ，1．S T
VVS＝NS．（1）
$\because K I T E(6 \cdot 224)(I \cdot(D 1(I \bullet J), J=1, N V S))$
WFITE（6，225）（A1（I，j），J＝1，NVS）
＊RITE（6．226）（h2（I，J）．J＝1．i．VS）
54 chi．til．ue
constants
i．$C=20$
$N G=6$
$G=32 \cdot 2$
PI＝3．1415927
DTP＝F1／180．
$P=u=K=V=\omega=X=Y Y=0$ ．
U0＝1。
$u=u U$
CCIVVEKT TG RADIANS
THT＝Tht＊DTk
Pri＝pni－DTK
PSI＝FSI＊DTK
GMEGA＝U゙EGA＊DTF
ThtG＝ThTi－utR
－ETん＝EETA＊OTR
inte＝TnTib＊OTR
THTS＝INTS＊OTR
\qquad

```
C
    SP=SP*1.687
    SPTURN=SPTURN*1.689
    FKUUDE=SF/SQRT (G*WL)
    WEIGHT=AM*224O.
    OENOM=0.5*RHO*WL**5
    AIX=AIX*2240./DENOM
    AIY=AIY*2240.1DENOM
    AIZ=AI 2*2240./ OENOM
    AM=(WEIGHT/G)/(O.5*RHO*WL**3)
    Z=2/*L
    XLG=AA/HL
    XFG=1.-XLG
    XARM=XARM/WL
    ZARM=ZARM/WL
    DO 20 I=1,NJET
    20 YARM(I)=YARM(I)/WL
        OO 21 I=1,NST
        F(I) = XSw(I)-AA
    21 XSW(1)=XSN(I)/WL
        URITE(6,227) SP,AM,AIX,AIY,AIZ,FROUDE
C
C
    CALCULATE CAY,CEL,F,OFFSET FOR SUBROUTINE SVAVE
        CON1=4**PI**2/G
        CON2=0.5*G/P1
        GO TO (41.42.43).IV
    41 CAY=CON1/WPER**2
        CEL=CON2*HPER
        WLG=CEL*WPER
        GC TO 44
42 CAY =0.866*SGRT(NAMP/HDEP)/VDEF
        CEL=0.5*SGRT(G*LDOEP)*(2.*WAMP/WDEP)
        ULG=CEL*UPER
        OFFSET=0.5*WLG
        GO TO 44
    4 CAY=CON1/900.
        CEL=CON2*30.
        WLG=CEL*30.
44 CONTINUE
C
C
    Calculate TIME INCREMENT
    DT=(HLG/ABS(CEL-SP*COS(BETA)))/DT
    DT=OT*SP/WL
のロの
    CALCULATE N1,N2,DEL1,DEL2
    NSTI =NST-1
    DO 5 I=2,NSTI
    ISAVE=1
    DEL1=XSM(1)-XSW(I-1)
    DEL1=DEL1*WL
    DEL2=XSin(I*1)-XSW(I)
    DEL2=DEL2**L
    1F(ABS(1.-DEL2/DEL1).GT.0.1) GO TO 6
5 \text { CONTINUE}
6 N1=ISAVE
    N2=NST-ISAVE+1
```

```
C
C CALCULATE AC,DEF FOR PRESSURE
AC=<0**G*\timesSW(N1)*WL
DEM=0*5*RHO*dL**2*SP**2
C
CALCULATE FO AT CG
UO 3 I=<涼ST
F01=AES(AA-XSW(I-1)*UL)
FC<=AES(AA-XSN(I)*ML)
1F(FO2.LT -FC1) KFO=1
3 CCisTINUE
C
C
CALCULATE NON DIMENSIOHAL DEDIVATIVES
    IPOER=0
    THTCPR=THTO/DTK
    WKITE(G.2OS) CCO,THTOPR
    CALL ULPIAA,BE,CCU,DD,THTO,FHI,NIST,N1,*2,DLL1,DEL2,HE*,\SW,XSK,
```



```
    CALL GEC\AA,EE,CCC.CD,AL, ivST,THT',KFO,F(%)
    GO TU 1002
    ENTEMY SECEER
    IF(INT.EG.O) IFJEP=1
```



```
*D1,*i"*2,KHO.WL)
    CALL GEU(AA,EB,CCX,DO,ALPNET.THTUQKES.FC)
C
c CALCULATE SPFAYL
C
10C2N11=N1+1
            DU14 I=1,NST
            ISAV=1-1
            IFIENTFCL(I).NE.O.O) GO TO 15
    14 CGirTI..UL
    15 SPKAYL = (XS* (N111)-XSON(ISAV)) * LL
C
C CALCULATE ANC FPINT FIN CCEFFICIENTS,SHIP FLUS FIN COEFFICIENTS,
C
ANO PGINT NON UIMENSIOIAL DEPIVATIVES
SX=SY=SK= SN=0.
SX=SY=SK=SN=0.
,SK,SN,CR,CT,S,CNEGA)
CALL FINESY,SY
SFYV=OYV*FINYV
SFYK=DYA*FINYR
SFKV=CKV+FINKV
SFKK=OKR &FINKR
SFNV=D.,V+F:SNV
SE:NK=ONK+FINNR
SC=5YV*DNE-(CYf-&*)*0NV
SCF=SFYV*SFNF-(S+YF-AV) *SFINV
IF(IPEEF-NE.O) PETUFN
IF(IHEERNGE.0) ,NITE(E.209) (CX,THTCFR
MkITE(6,22E)
NE11E(6.229) OYO,OYG,OYK,OYV,OYG,CYCF,DYCO.CYOR,OYOV,DYCh,
```



```
*FITE(6.233)
```

```
            WKITE(6,234) FINYV,FIHYF,FINKV,FIHKKR,FIGNV,FINNR
            WRITE(6,235)
            #KITE(E,2 36) SFYV,SFYK,SFKV,SFKR, SFNV,SFNR
            *FITE(c.237) SC
            #शITE(6.238) SCF
C
C
    URITE CUMLLATIVE INTEGRALS
        GRITE(6.231) FO
        \alphaFITE(6.232)
        WFITE(6,233) (&,DI(I), EFI(I),OF2I(I),DF₹I(I),CCI(I),CC2I(I).
```



```
    C
C
    CCNVERT TC DEGREES AND FRINT GECMETRICAL VARIAELES
    ulS3 1=196
    32 PHC(1)= FHC(I)/OTR
        winite (6,239)
        -FITE(G.240) (FHO(I),GI(I),SI(I),SI(I),TDRAF(I),I=1,b)
c
c
    CCIVVERT TO RAOIANS
        ご63 i=1,5
        03 PHu(1)=FHC(1)*[Tf
c
C
10C FGKMAT(FF10.2)
101 FOFNAT(F1G.0.14IS)
10% FUKNAT(1615)
CC3 FCENAT(20A4)
200 FOHVAT(1H1,10HINPUT DATA /1)
201 F(RMAT(1).2044)
202 ECHNATL IY,57HCT,NSTEF,NPRNT,IP,IFIH,IFLOT,IFT,RJET,IWT,IEUGQIN,I
    *Fh.ico/F10.2.121E)
203 FERHAT(1X,32HTHT,FHI,FSI,2,C1,C:,CVE!T,DVEKT /EF10.2)
204 FOFNATC 1X,3IHLA,EE,CC,DD,AN,OXCU,AIX,AIZ,AIYI
    *4F10.3,F10.1,F16.3.zF1O.1)
205 FCKNATI 1X,23HML,O゙QZHC,AI,U,CDIL,CONN/3F10.3,F12.O.2F10.3)
207 FOA゙HAT(1A,13HENEGA,CR,CT,S (EF1O.2)
208 FOKFAT( 1x,2OHCCO.THIO,SFTUQ:QOETH /&F1O.2)
\angleCGFCHNAT(1H1,GHLKAFT=,FG.2,1CX,5HTRIN=,FG.2)
21L FOKNAT( 1X,14HXACT:ZARNOSACF /EF1O.2)
211 FCFNIAT( IX,RHYARM(I) )
21< FGKNIATG 1X,9HEELJFT(I))
213 FÖFKT( 1x.7HPNCP(i) )
214 FOREMT( 1x,10HALFHA(I) )
clb FUFVAT(Ix, 3niNST IIE)
21\epsilon FGMYAY(1X, 2OHEUEL,FULE,HALE,CEETH/とF1O.2)
```



```
21% FOR*GT(1X0HNDFISE(1))
21G FCNNAT(IX.9nENTRCE(i) )
2LC FON**AT(1x.&RCHIU(11))
221 F(GMAT (1x, 2HNSin)
C<Z FGNNAT(1XOJHXS*)
C23 FOFNAT(1X,3HHSL)
```



```
225 FCFNAT(7x.2nm1, 2x.ft11.?/(111x,0F11.?))
```



```
227 FEFNATG/////1X,16HCCNVERTED INFUT /1X.24HSP,AN,AIX,AIY,AIZ,FRCUUE
```

\qquad

- 16612.41

228 FQRMATC//11X,27HNON DIMENSIONAL DERIVATIVES $/ 1$
229 FOKMATS $1 X, 44 H D Y F, O Y Q$, DYP, DYV 0 DYW, DYDP, DYDC, OYOR, DYDV, OYDV/1 OE12.4/

- $1 \times, 44 H D 2 P, D Z Q, D Z R, D Z V, D Z W, O Z D P, O 7 O Q, D Z D R, D Z D V, D Z D U / 1 n E 12.41$

- $1 \times, 44 \mathrm{HDMP}, D M Q, D M R, O M V, D M E, D M D F, O M D Q, C M D R, D M D V, D M D W 110 E 12.41$
* $1 \times, 44$ HDNP, ONG,DNR,ONV,DNH,ONDP, CHOK, DNDR,DNDV,DNDE/10E12.4)

231 FOKMAT $1 X, 4$ OHCENTER OF PRESSURE AT CEATER CF GFAVITY= F FIO.2)
232 FORMATS $11 X, 3 H S E C, 9 X, 2 H D I \bullet \& X, 3 H D F I, 7 X, 4 H C F 2 I, 7 X, 4 H D F 3 I$.

* $8 \mathrm{X}, 3 \mathrm{HDCI}, 7 \mathrm{X}, 4 \mathrm{HDC} 2 \mathrm{I}, 7 \mathrm{X}, 4 \mathrm{HDC} 3 \mathrm{I}, 7 \mathrm{X}, 4 \mathrm{HDCFI}, 6 \mathrm{X}, 5 \mathrm{HDCF} 2 \mathrm{I}, 6 \mathrm{X}, 5 \mathrm{HDC} 2 \mathrm{I}$ 。
- $7 \mathrm{X}, 4 \mathrm{HB} 3 \mathrm{BI})$

233 FORMAT(15.11E11.3)
234 FORMATC/IX,23HSTAEILITER COEFFICIENTS

- 17H FINYV=\&E13.4/7H FINYR=, E13.4/7H FINKV=, E13.4/
*7H FINKR=9E13.4/7H FINNV=9E13.4/7H FIN: $\mathrm{R}=9 \mathrm{E}$ (3.4)
235 FORMATI $1,1 X, 33 H S H I P$ PLUS STABILIZER COEFFICIENTS ,
236 FCRMAT $6 H$ SFYV =, E13.4/6H SFYR=,E13.4/ GH SFKV=, E13.4/

237 FORMAT (1X, 34HSTABILITY CRITERION FOR SHIF ONLY=, E12.4)
238 FORMATE $1 X, 38 H S T A B I L I T Y$ CRITERION FCR SHIF PLUS FIN $=$, E12.4)

- $10 \mathrm{X}, 2 \mathrm{HGI}, 10 \mathrm{X}, 2 \mathrm{HSI}, 10 \mathrm{X}, 2 \mathrm{HS}, 7 \mathrm{~F}, 5 \mathrm{H}$ TDRAF)

240 FOKMAT(1X,F10.3,4G12.4)
241 FOKMAT ($1 X, 38$ HDWET, HAMF, WPER, BETA, WOEF - XO, RO, ETAO, TO/GF10.2)
242 FORMATIIX,34HCDIS,RHOWA,ATM, PHIC,FHII,THTE, THTS/FR,2,F10.6,6F8,2) RETURN END
\qquad

```
    SUBROUTINE DERIVE(T,N,Y,YP)
    REAL KC,MC,NC
    OIMENSION A(6,5),8(5),A1(4,3),B1(3),Y(13),YP(23)
    COMMON /ABC/ DRAFT(25),WEIGHT,DUMMIE(5),THETA
    COMMON /B/ P,QQK,X,YY,Z,U, V, H, PHI&THT,FSI
    COMMON /DERV/ XUDELU,DKAGY,DRAGN,DFTH,IFIN,CCX
    COMMON /FLOW/ PC,GF,GO,VOOTP,AOP
    COMMON /IN/ AA,AIX,AIZ,AM,bB,CB,CF,DTR,DXDU,FO,G,NST,NVAL,
    *PI&KHO,SP,UO,HL,XLG&XFG,CDLL,CDNN,FRCUDE,CC,DD&ANU,ALOD,CLD
    *,NG;NG,SPTURN,IFLOT,IPT,AIY
    COMMON /INDER/ CR,CT&S,OMEGA
    COMMON /NDD/ DYF,OYQ,OYR,DYV,DYW,DYDP,DYDO,OYOR,DYOV,DYDN,
    *
    *
    DKP,DKQ,DKRODKV DKK,DKDP,DKDO,DKCR,DKDV,DKDH.
    * OMP,OMG,DMR,DNV,DMH,DRLP,DMDG.OMLR,DMDV,DMOY,
    * DNF,ONQ,DNR,DNV,DNH,DYDP,DNDC,DNDR,DNDV,DNDK
    COMMON /PRES/ CDISPRHOWA,PHIO,PHII,ATK,PMAX,AC,OEM
    COMMON /PSEAL/ THTB,THTS
    COHMON /TEMP/SX,SY,SK,SN,WAVEDG,AEDCDG,SPRYDG,SEALDG,
    *SKINDG,FINDG,SHIIPDG,TOTLDG
    CGMMON /WAV/ DAET, \AMP,WPER,CEL,CAY,IBUG,F(25), PETA
    COMMON /AYEYE/ AI,C1,C2,A11,AI2,DPOT,CVENT,DVENT
    the component forces and moments generated by each
    SUBROUTINE ARE INDICATED BELOW
    ORAG - CRCSS FLOU DRAG
    AUXILY - hYDROSTATIC EFFECTS DUE TO ROLL aND theif INfLUENCE ON ORAG
    FIN - STAEILIZERS
    THRUST - ThRUST
    linvel - linear velocity
    INERTIA - INERTIA
    SEAGAV - HAVES
    DRAGV - VERTICAL DRAG
fress - CUSHION PRESSURE
SEALFM - BOH AND STERN SEALS
SZ=SM=TZ=TM=0.
OXPHIF=DYPHIF=DZPHIF=CMPHIF=DRAGZ=DRAGK=O.
U=Y(1)
v=r(2)
W=Y(3)
P=r(4)
Q=r(5)
R=Y(6)
x=Y(7)
YY=Y(8)
z=r(s)
PHI=r(10)
THT=Y(11)
PSI= Y(12)
genERATE forces and moments
ARWALL=2**CC/UL
ECOEF=0.9
CDI=2**(0.5*OYV*V*U)**2/(PI*ARUALL*ECOEF)*BL/CC
CALL DRAG(DRAGY,DRAGK,DRAGR,P,R&V)
IF(T.EQ.O.) CALL AUXILY(PHI,UQXUDELU,ONPHIF,DKPHIF)
IF(IFIN.NE.O) CALL FINISX,SY,SK.SN,CR,CT,S&OMEGA)
```

CALL THRUST(U,THT,DFTH,TX,TY,TK,TN,SHIPOG•TOTLDG)
C SET THRUST EQUAL TG SHIP DRAG AT $T=0$ -
IF(T.EO.O) TXO=SHIPDG-SX
$T \mathrm{X}=\mathrm{T} \times 0$
DRAGX=XUDELU-SHIPDG
CALL SEAWAV(WX,WY,HZOWK,UMOWN,VOL,AO,Y,T)
CALL OKAGVCDZ2, DM2, DK2,F,W, e, 21
CALL DRAGV(D23.DM3,DK3,F, $\mathrm{H}, \mathrm{O}, \mathrm{3}$)
$02=022+023$
$D M=D H_{2}+D M_{3}$
$D K=D K 2+D K 3$
CALL PRESS(T,Y,VOL,XC,YC.ZC.KC,MC,NC)
CALL VLDOT(T,AC,VOLDOT)
CALL LINVEL(FXLV,FYLV,FZLV,FKLV,FMLV,FMLV)
CALL INERTIA (FXIC,FYIC,FFIC,FKIC,FMIC,FNIC)
CALL SEALFTI(SLZ,SLK,SLM, Y, T)
$W z=\omega z+S L z$
UK= $\begin{aligned} & \text { K } \\ & \text { +SLK }\end{aligned}$
$U M=W M+S L M$
COSTH=CCS(THT)
SINTH=SIN(THT)
$X \Perp G T=$ WEIGHT*SINTH/DEM
ZWGT=WEIGHT*COSTH/DEM
c
C
C
CALCULATE UDOT, VDOT,HDOT•PDCT,GDOT,RDOT
$Y P(1)=U D U T, Y P(2)=V D U T, Y P(3)=\Psi D O T, Y P(4)=P D O T, Y P(5)=Q C O T, Y P(6)=R D O T$
$A(1,1)=A M-D Y D V$
$A(1,2)=-D Y D W$
$A(1,3)=-$ DYDP
$A(1,4)=-D Y D Q$
$A(1,5)=-D Y D R$
$A(2,1)=-D 2 D V$
$A(2,2)=A H-D 2 D H$
$A(2,3)=-D 2 D P$
$A(2,4)=-D 2 D Q$
$A(2,5)=-D Z D R$
$A(3,1)=-D K D V$
$A(3,2)=-$ OKDV
$A(3,3)=A I X-D K D P$
$A(3,4)=-D K D Q$
$A(3,5)=-0 K D R$
$A(4,1)=-$ OMDV
$A(4,2)=-$ DMDU
$A(4,3)=-$ DMDP
$A(4,4)=A I Y-D M D Q$
$A(4,5)=-$ DMDR
$A(5,1)=-$ DNDV
$A(5,2)=-$ DND
$A(5,3)=-D N D P$
$A(5,4)=-$ DNDO
$A(5,5)=A 12-D N D R$
$B(1)=F Y, B(2)=F Z, 8(3)=F K, B(4)=F M, B(5)=F N$
$F X=-A M+(Q * W-R * V)+F X L V+S X+F X I C * T X+D R A G X+D X F H I F-C D I * W X-X W G T * X C$
$B(1)=-A K *(R * U-P * W)+F Y L V+S Y+F Y I C+T Y+D K A G Y \& D Y P H I F+W Y+Y C$
$B(2)=-A M *(P * V-G * U)+F Z L V+S Z+F Z I C+T Z+D F A G Z+D Z P H I F+W Z+Z * G T+2 C+D Z$
$B(3)=-(A I Z-A I Y) * G * R+F K L V+S K+F K I C+T K+D K A G K+D K P H I F+W K+K C+D K$
$B(4)=-(A I X-A I Z) * R * F+F M L V+S M+F M I C+T M+D R A G M+D M F H I F+W M+K C+D M$

Ihis page is best quaility practicable FBOM COPY FURNISHIED TO DDC
$B(5)=-(A I Y-A I X) * P * Q+F N L V+S N+F N I C * T N+O R A G N+D N P H I F+U N+N C$

NEG=5

CALL COMB (A,NEG,6,B,1,NER,DET)
$Y P(1)=F X /(A M-D X D U)$
$Y P(2)=8(1)$
$Y P(3)=8(2)$
$Y P(4)=B(3)$
$Y P(5)=8(4)$
$Y P(6)=B(5)$

CALCULATE XDOT,YDOT,ZDOT
$Y P(7)=X D C T, Y P(8)=Y D C T, Y P(9)=2 D 0 T$
COSPHI $=$ COS(PHI)
SINPHI =SIN(PHI)
COSPSI = CUS(PSI)
SINPSI=SIN(PSI)
YP(7) $=U * C O S T H * C C S P S I * V *(S I N T H * S I A P H I * C O S P S I-C O S P H I * S I N P S I) *$
W(SINTH*COSPHI*COSPSI*SINPHI*SINPSI)
YP(8) $=U * C O S T H * S I N F S I * V *(S \perp N T H * S I N P H I * S I N P S I * C O S F H I * C O S P S I) *$

* W * (SINTH*COSPHI*SINPSI-SINPHI*COSPSI)

YP (9) $=-U * S I N T H * V * C C S T H * S I N F H I * E$ COSTH*COSPHI
CALCULATE PHIDOT,THTDOT,PSIDOT
$Y P(10)=P H I D O T, Y P(11)=T H T O O T, Y P(12)=P S I D O T$

A1(1.1) $=1$.
A1(1.2) $=0$.
A1 $(1,3)=-$ SINTH
A1 $(2,1)=0$.
A1 $(2,2)=C O S P H I$
A1 $(2,3)=\operatorname{COST} H * S I N P H I$
A1 $(3,1)=0$.
A1 $(3,2)=-S I N P H I$
A1 $(3,3)=\operatorname{COSTH}$ COSPHI
B1(1) $=P$
$B 1(2)=0$
$B 1(3)=R$
NEQ=3
CALL COMB(A1, NEQ,4, B1,1, NER, DET)
$Y P(10)=81(1)$
$Y P(11)=81(2)$
$Y P(12)=E 1(3)$
YP(13) $=$ VGLDOT/(UL**2*SP)
GAM $=1.4$
$D P D T=-G A M * F C / V O L * V O L D O T$
$A I=A 1 * C 1 * Y P(3) * S P * 2 / W L * C 2 * D P D T$
IF(AIOGT-AI2) AI=AI2
IF(A1•LE•AII) AI=AII
RETURN
END
\qquad

```
    SUBROUTINE SEAWAV(WX,HY,GZQUK,WM,UN,VOL&AO,Y,T)
    REAL MUK,HUM,HUN
    DIMENSION Y(13)
    COMMO: /IN/ AA,AIX,AIZ,AM,BB,CB,CF,OTR,DXDU,FO,GONST,NVAL,
    *PI,RHO,SH,UO,WL,XLG,XFG,CDLL,CDNN,FROUDE,CC,OD,ANU,ALOD,CLD
    *,NC,NG,SPTURN,IPLCT,IPT,AIY
    COMMON /SES/ HSW(25),DEL1,DEL2,N1,N2
    COMMON /HFOR/ FUX(25),FHY(25),FHZ(25),MHK(25),MHM(25),MGN(25).
*AREA(25),FLEAK(25)
    COMMON /HGT/ BUOYAN,INHGT,WMO,WXO
    COMMON /BSLEAK/ bLEAK.SLEAK
    DO 1 I=1,NST
    1 CALL BUOY(I,Y,T)
    INTEGRATE FOR WAVE FORCES AND MOMENTS
    CALL SIMPSN(NST,N1,DEL1,DEL2,FiX,HX)
    CALL SIMPSN(NST,N1,OEL1,DEL2,FWY,WY)
    CALL SIMFSN(NST,N1,DEL1,DEL2,FH2,*2)
    CALL SIMPSN(NST,N1,DEL1,DEL2,M女K_WK)
    CALL SIMPSNCNST,N1,DEL1,DEL2,MHM,UM?
    CALL SIMFSN(NST,N1,DEL1,DEL2,MHN,UN)
    DEMF=C.5*RHO*LL**2*SP**2
    DEMM=DEMF*WL
    WX=WX/DEMF
    UY=UY/DEMF
    *2=Wz/DEMF
    UK=WK/DEMF/WL
    UR=UM/DEMF/WL
    LN=WN/DEMF/HL
    CALL SIMPSN(N1,N1,DELI,DEL1,AREA,VOL)
    CALL SIMPSN(N1,N1,OEL1,DEL1,FLEAK,AO)
    BLEAK=FLEAK (N1)*0.5
    SLEAK=FLEAK(1)*0.5
    IF(IN-GT-EQ.O) GO TO 2
    Hx=wx-:*O
    UH=WM-UMO
    2 CONTINUE
    RETURN
    END
```

\qquad

SUBROUTINE SWAVE(XC,YC,ZC,Y,T,ETA,AYETA,AZETA) DIMENSION Y(13)
COMMON IIN/ AA,AIX,AIZ,AM,BB,CB,CF,OTR,OXDU,FO,G,NST,NVAL,
*PI,RHO,SP, UO, WL, XLG, XFG,CDLL,CDNN,FROUDE, CC, DO, ANU, ALOD,CLD *,NC,NG,SPTURN,IPLOT,IPT,AIY
COMMON IWAV/ DHET,HAMP, HPER,CEL,CAY,IBUG•F(25), EETA,IW, OEP , OFFSET

- HLG,ICO,XO,RO,ETAO,TO

COMMON /GGT/ GUOYANDINEGT,UMOOHXO
$\operatorname{SINH}(u)=(E X P(u)-\operatorname{EXP}(-U)) / 2$ 。
$\operatorname{SECH}(A K G)=2.1(E X P(A R G)+E X P(-A R G))$
DATA COO.CO1,CO2,CO3,CO4/11.53924656.-52.76716255.107.1876292.
*-100.9056818.35.23071874/
HEAVE $=Y(9) * W L$
PHI $=\mathrm{Y}(10)$
THT $=\mathrm{Y}(111)$
$P S I=Y(12)$
SET HEAVE,PHI,THT,PSI = O TO CALCULATE WAVE FGRM FOR PLOTTING
TEST $=\mathrm{XC}+\mathrm{YC}+2 \mathrm{C}$
IF(TEST•EG•O•) HEAVE $=P H I=T H T=P S I=0$.
PSC=BETA-PSI
$\operatorname{COST}=\operatorname{COS}(T H T)$
$T W=T *-L / S P$
$U T=(Y(7) * \operatorname{COS}(B E T A)+Y(8) * S I N(B E T A)) * W L$
ARG1 $=X C * T A N(T H T)-H E A V E / C O S T-Y C * T A N(P H I) / C O S T$
ARG2 $=(X C * C U S T * 2 C * S I N(T H T)) * \operatorname{COS}(P S O)+Y C * S I N(P S O)$
AYETA $=A$ 2ETA $=0$.
GO TO $(1,2,3), I H$
c
c
sinusoidal vave
1 CT=CEL*TH
$C O F=1 .-E X P(-T / 3$.
$A B P W=\triangle A M F * C O F$
ETA $=-A M P E * S I N(C A Y *(A R G 2+U T-C T)) / C O S T-A R G 1$
AYETA $=-A M P * * G * C A Y * S I N(F S O) * C C S(C A Y *(A R G 2+U T-C T))$
ALETA $=A M P Y * G * C A Y * S I N(C A Y *(A R G 2 * U T-C T))$
RETURN
C
c
c
c
solitary mave
$2 A_{1}=C A Y *(X C-O F F S E T)$
ETA $=$ WAMP * SECH(A1)**2
IF (IN-GT-EG.0) RETURN
CT=CEL*TH
$I=A B S(U T-C T) / H L G$
$A 1=C A Y *(A R G 2 * U T-C T+O F F S E T+1 * H L G)$
$E T A=\forall A M P * S E C H(A 1) * * 2 / C O S T-A R G 1$
RETURN
C
C
EXPLOSION WAVE
$3 E T A=0$.
IF(INNGT.EA.O) RETURN
$H=$ WOEP
$T W=T W+T O$
$R=U T+\times 0$
$R F=K / T * / S Q R T(G * h)$
IF(RF.GE..3) GO TO 4
$x=1 . /(4 * * R F * 2)$

ـ

60 TO 5
4 KF $2=\mathrm{KF}$＊RF
RF $3=\mathrm{KF} 2$＊RF
RF4＝反F3：2F
$\left.X=C D 4 * R F 4+C_{3} * R F 3+C O 2 * R F 2+C C_{1} * R F+C i\right)$
5 CAY $=X / H$
OMEGA＝CAY＊SGRT（G＊TARAH（x）／CAY）
CEL＝OPFEGA／CAY
CT＝CEL＊TW
HKごことが x
SHK2＝SINH（hk2）
AKG G HK $2 /$ SHK 2
AKG $3=10+$ ARG
AKG．4＝－AFG3／（AKG＊（1．－HK2／TARH（HK2））＋C．5＊AFG＊＊＊2－ARE3）
RCK $=C A Y * R C$
CALL OESSEL（3，KOK，bJ3）

c
c SET arge tu calculate wave fopr for＝lettiag
IF（TEST．EA．C．）ARS $5=C A Y *(X E-C T+U T)$

peturn
E． 12

```
    SUBROUTINE BUOY(I,Y,T)
C . DEFINITION OF PARAMETERS
    REAL MWK,MHM&MUN
    DIMENSION JTRAN(4),SGN(4),DINT(4),Y(13)
    DIMENSION DFT(25,4),BEAM(25,4),AWY(4),AUZ(4)
    COMMON /BEEM2| EEM2(25), BEM3(25),ARMS.ARMP
    COMMON /GEOMM/ NSW(25),W1(25,25),W2(25,25),O1(25,25)
    COMMON /IN& AA,AIX,AIZ,AM,BE,CB,CF,DTF,DXDU,FO,G,NST&NVAL&
    *PI&RHO,SP&UO,WL&XLG&XFG&COLL ,CDNN&FOCUDE,CC,DD,ANU,ALOD,CLD
    *&NC,NG,SPTURN, IPLOT,IPT,AIY,CCO,THTO
    COMMON /SES/ HSH(25)
    COMMON /WAV/ DLETOWAMP,LEPER,CEL,CAY,IEUG,F (25)
    COMMON /JFOR/FWX(25),FWY(25),FWZ(25), MLK(25), M&M(25),MWN(25),
    *AREA(25),FLEAK(25)
    DATA SGM/-1.,1.,-1.01.1
    IF(1.EG.1.AND.IEUG.NE.O) URITE(6,202) AA,BE,CC,DD,Y(1),Y(7),Y(9)
    *Y(10),Y(11),Y(12)
202 FORMATY AA,BE,CC,DO,U,SURGE,HEAVE,PHI,THT,PSI*/10G12.4)
    FWX(I)=F&Y(I)=FWZ(I)=MWK(I)=M&M(I)=NWN(I)=0.
    AREA(I)= EEM2(I)=BEM3(I)=0.
    JJ=NSH(I)
    IF(JJ.EG.1) RETURN
    RHOG=RHO*G
    DO 1 K=2.3
    JTRAN(K)=0
    DFT(I,K)=BEAM(I,K)=0.
    DO 2 J=2.JJ
    C1TGP=D1(IOJ)
    D16CT=01(IqJ-1)
    N1TCP=W1(I&J)
    *T=88
    IF(K.GT.2) WT=-&T
    Z=DD-HSW(I)-DITOP
    HGT=CC-D1TOP-HSW(I)-F(i)*TAN(THTC)
    CALL S|AVE(F(I),HT,Z,Y,T,ETA,AYETA,AZETA)
    AUY(K)=AYETA
    A:2(K)=AZETA
    HCHK=HGT+ETA
    IF(HCHK.GE.O.) GO TO 2
    DFT(I,K) = OITOP +HCHK
    BEAM(I*K)=W1TOP
    JTRAN(K)=J
    DINT(K)=DFT(I,K)-D1BOT
    IF(DINT(K)OGT.O.)GO TO 1
    JTRAN(K)=1
    GO TO 1
    2 CONTINUE
    JTRAN(K)=JJ
    DFT(I,K) =01TOP
    BEAM(I,K)=N1TOP
    DINT(K)=01TOP-DIBOT
1 CONTINUE
    BEM2(I)=8EAM(I*2)
    BEM3(I) = BEAM(I&3)
    IF(DFT(I,2)\bulletLT,O, DFT(I ,2) =0.
    IF(DFT(I,3)&LT*O.) DFT(I , 3)=0.
    AREAS =0.5*LFT (I, 2)*(BEAM(1,2)*W1(I,1))
    AREAP=0.5*OFT(1,3)*(EEAM(I,3)*&1(I,1))
    ARMS = BE * 0. 25*(BEAM(I*2) + |I(I*1))
    ARMP = -(BB*O*25*(BEAM(I,3)*W1(I,1)))
```

\qquad

```
A2S=OD-HSL(I)-DFT(1,2)/2.
AZP=DD-HSW(1)-DFT(I,3)/2.
DINT(1)=DINT(2)
DINT(4)=DINT(3)
CALL VOLUME(I ,EB,JTRAN,DINT,OLET,FLK,AR)
AREA(I)=AR
FLEAK(I)=FLK
RN=Y(1)*SP*WL/ANU
AFG=(ALOG10(RN)-2.)**2
CF=0.075/ARG+.0004
DPO=CC-F(1)*TAN(THTO)
AWYS=A=Y(2)*EXP(-CAY*DFT(I,2)/20)
AHZS=AdZ(2)*EXP(-CAY*DFT(I,2)/20)
AUYP=A&Y(3)*EXP(-CAY DFT(I,3)/2.)
ANZP=A&Z(3)*EXP(-CAY=DFT(I,3)/20)
AKZS=AKZP=1.
IF(AREAS.NE.0.) AKZS=AREAS/EEM2(1)/DFT(102)
IF(AREAP NNE.O.) AKZP=AREAP/BEM3(I)/DFT(I,3)
AKYS=2.4*AKZS+0.4
AKYP=2.4*AKZP+0.4
AMYS =AKYS*DFT(I,2)**2
AMZS=AKZS*BEM2(I)**2
AMYP=AKYP*DFT(1,3)**2
AMZP =AKZP*BEM3(I)**2
FYS=RHO * (AREAS + AMYS) *AWYS
FYP=RHO * (ARE AP + AMYF) * AUYP
FZS=-RHOG*AREAS+RHO*(AREAS*AMZS)*AHZS
FZP=-RHCG*AREAP +RHO*(AREAP +AMZP)*AHZP
FXS=-CF*(CFT(I,2)-DPG)*RHO*(SP*Y(1))**2
FXP=-CF*(DFT(I;3)-DPO)*RHO*(SP*Y(1)) **2
FWX(I)=FXS+FXP
:WY(I)=FYS+FYP
FWZ(I)=FZS+FZP
MWK(I) =-FYS*AZS-FYP*AZP*FZS*ARMS*FZP*ARMP
IF(ABS(M.K(I)),LT.1.E-6) MWK(I)=0.
MWM(I)=-(FZS+FZP)*F(I)
M*N(I)=(FYS*FYP)*F(I)-(FXS*ARMS*FXP*ARMP)
MUN(I)=0.
RETURN
END
```

\qquad

SUBKOUTINE VOLUME(I,BB,JTRAN,DINT,DWET,FLEAK,AREA)

c SUBKOUTINE TO CALCULATE AREA EETUEEN CALM HATER SURFACE
C AND HET DECK AND LEAKAGE FOR CROSS SETION I
DIMENSION JTRAN(4) DDINT(4)
COMMON /GEOMM/ NSW(25),V1(25,25), H2(25,25),01(25,25)
FLEAK $=0$.
C STAREOARD SIDEWALL
OS=OINT (2)
JS=UTRAN(2)
IF(us.EG.1) GO TO 1
JS $1=\mathrm{JS}-1$
HGTS=D』ET-D1(1,US1)-DS
60 TO 2
1 HGTS=DUET-DS
FLEAK $=-$ DS
PORT SIDEGALL
2 DP=DINT(3)
JP=JTRAN(3)
IF(JF-EG.1) 60 TO 3
$J P_{1}=J H^{-1}$
HGTP=OWET-D1(I,UP1)-DP
60 TO 4
3 HGTP=D $\dot{W} E T-D P$
FLEAK=FLEAK-DP
4 AREA $=83 *(H G T P+H G T S)$ RETURA
END
vv

SUBROUTINE PRESS(T, Y,VOL\& $X C, Y C, Z C, K C, M C \geqslant N C)$

REAL KC ,NCONC
DIMENSION Y(I3)
COMMON/ABC/ DRAFT(25),WEIGHT
COMMON /BSLEAK/ BLEAK,SLEAK
COMMON /FLOU/ PC,GF,QO, VDCTP,AOP
COMMOH IIN/ AA,AIX,AIZ,AM,BE,CB,CF,OTR, DXDU,FC,GONST,NVAL,
-PI, RHO,SP, UO, WL, XLG, XFG,COLL, CDNN,FFOUDE, CC, DD, ANU, ALOD, CLD COMMON IFRES CDIS,RHO甘A,PHIC,PHII,ATM, PMAX,AC, DEM, IFR
COMMON /HGT/ BUGYAN,INWGT,GMO, WXO
GAM=1.4
HEV $=Y(9)$
$P H I=Y(10)$
$\mathrm{TH} T=\mathrm{Y}(11)$
VOLC=Y(13)*UL**3
$A C P=V O L$
$1 P C=P C * V O L C *$ GAM/VOL**GAM
$Y(13)=V O L / W L * 3$
IF (PC.LT•ATM) FC=ATM
10 PDIF $=P C-A T M$
ZARM $=D \mathrm{CO}-\mathrm{CC}-\mathrm{HEV} * \mathrm{WL}$
$A N=A C * T H T$
BTAN=WL*TAN(THT)
BTEL=BTAN-BLEAK
IF (THT-LY•O•) BTBL=BTAN+SLEAK
IF(BTBL.6E.18.) BTBL=18.
IF(UTBL. LT•-18.) BTBL=-18.
IF(BLEAK.GT•O.) ZARM=DD-0.5*BTBL
IF(SLEAK.GT.0.) ZARM=DD*0.5*BTBL
IF ((SLEAK + SLEAK) ©NE•O•) AN=2•*BB*BTBL
$X C=\quad A N * F D I F / D E M$
$Y C=-P h I * A C * P D I F / D E H$
$Z C=-A C * P D I F / D E M$
$K C=-Y C * Z A R M / V L$
$M C=X C * 2 A R M / H L$
$N C=0$.
RETURN
END

```
        SUBROUTINE VLDOT(T,AO,VOLDOT)
        COMMON /AYEYE/ AI.Cl,C2
        COMMON /BSLEAK/ BLEAK,SLEAK
        COMMON /FLOY/ PC,GF,OO,VDOTP,AOP
    COMMON /IN/ AA,AIX,AIZ,AH,BB
    COMHON /PRES/ CDIS,RHOWA,PHIO,PHII,ATM,PMAX,AC,DEM,IPR
    COMMON /PVO/ PVOL
    PMAX=ATM-PHIO/PHII
    1 ASE=2**EB*(BLEAK+SLEAK)
    AT=AI+AO+ASB
    PDIF=PC-ATM
    IF(PDIF.GT.O.) GO TO 20
    QF=FHIO
    QL=AT*CDIS*SQRT(2.*ABS(PDIF)/RHOLA)
    (0)AO*CDIS*SGRT(2**ABS(PDIF)/RHO*A)
    IF(IHR.NE.0) W'KITE(6,202) T,PC
202 FORMATEIX,*PC LESS THAN ATMOSPHERIC PRESSURE*.
    *5X॰*T=*,F10.2,5X,*PC=*,F10.2)
        GO TO 2
    20 IF(PC.LT.PMAX) GO TO 3
        AF=49.
        GF=-COIS*AF*SGRT(ABS(P C-PMAX)/RHOWA)
        GL=-AT*CDIS*SORT(2.*FDIF/RHOWA)
        QO=-AO*CDIS*SGRT(2**PDIF/RHOWA)
        IF(IPK.NE.0) 'RITE(6.203) T,PC
203 FORMAT(1X**PC GREATER THAN PMAX*.5X,*T=*,F10.2.5X&*PC=**F10.2)
        GO TO 2
    3OF =PHIU+PHII*(PC-ATK)
        OL =-AT*COIS*SGRT(2.*(PC -ATM)/RHOVA)
        QO =-AO*CDIS*SGRT(2**(PC -ATM)/RHOUA)
    2 VOLOCT=GF+GL
        VOOTP=VOLDOT
        RETURN
        END
```

$v v$
SUBROUTINE INERTIA(FXIC,FYIC,FZIC,FMIC,FNIC,FKIC)
COMMON /NDD/ DYP, DYQ, OYR, DYV,DYE,DYCP, CYOO, CYDR, DYDV,OYDE DZP, DZQ, DZR, DZV, DZW, DZDP, CZZD, OZDR,DZDV,DZDV. DKP, DKG, $O K R, D K V, D K H, D K D P, D K D G, ~ C K D R, O K D V, O K D H, ~$ OMP, $O M Q, ~ O M R, O K V, O M H, ~ D M D P, ~ D M O Q, O M D R, D M D V, D K O E$, DNP, DNG, DNR, DNV, ONW, DNDP, DNDQ, DNDR, DNDV, ONOK
$F \times I C=-D Y D V * R * V-D Y D P * R * P-D Y D R * R * R * D Y D W * \forall * Q * D Z D Q * Q * Q * D Z D P * P * Q$
FYIC $=-D Z D N * Y * P-D Z D Q * P * Q-D Z O F * P * P$
$F Z I C=G Y D V * V * P+C Y D R * P * R * D Y D P * P * P$
$F M I C=-D Y O R * P * V * O Y D P * R * V *(D K O P-O N O R) * P * R * D N D P *(R * R-P * P)$

- $+D Z D P * L * F+D M D P * Q * R$
$F N I C=-D Z D F * H * Q+O Z D Q * A * P *(D M O G-D K D P) * P * G * D K D Q *(P * P-Q * Q)$
- -DYOP=V*C-DNDP= $Q * R$
$F K I C=(D Z D=-D Y D) * V * W-(D Y D R+D M D W) * R * V+(D Z O D+D N D V) * V * Q$
$*+(D N D R-D M D G) * R * G-D Y D P * P * H * D Z D P * V * P-D M D P * R * P+D N D P * Q * P$ RETURN END

IHIS PAGE IS BEST QUALITY PRACTICABIR IEROM COPY FURNISHED TO DDC
 \qquad

```
SUEROUTINE LINVEL(FXLV,FYLV,FZLV,FKLV,FMLV,FNLV)
COMMON /B/ P,G,F,X,Y,Z,U,V,L,FHI,THT,PSI
COMMOL /NDD/ DYF,OYG,DYR,OYV,OYW,DYOP,OYOG,CYDR,DYDV,DYDW,
    OZP,DZO,OZO,DZV,OZW,OZCP,DZCG,DZDR,OZDV,OZDW,
    DKP,OKU,OKK,OKV,DKW,OKDP,OKOC,OKDR,OKDV,OKDW,
*
*
*
    OMF,OMO,OMR,DMV,OMW,DMDF,OMGG,OMOR,OMDV,OMON,
*
    ONF, ONQ,ONR,ONV,ONG,DNDP,ONDO,CHOR,ONDV,ONDU
```

FXLV=0.
$F Y L V=(O Y V * V * O Y W * S * O Y F * P * D Y G * G+D Y R * R) * U$
$F Z L V=(D Z V=V+D Z W * W+D Z F * P+D Z W * O+D Z R * R) * U$ $F K L V=(D K V * V+D K W *=+D K P * P * D K Q * G+D K R * R) * U$ $F M L V=(D M V * V+D M L * *+D M P * P * D M Q * G+D M R * R) * U$ $F N L V=(D N V * V+D N W * W+D N P * P+D N G * O+D N R * R) * U$ RETURN
END
\qquad

SUBROUTINE SEALFM(SLZ,SLK,SLM, Y, T)
SUBROUTINE TO CALCULATE FORCE ANU MOMENT ON BOY AND STERN SEALS DIMENSION Y(13)
COMMON /IN/ AA,AIX,AIZ,AM,BB,CB,CF,OTR,OXOU,FO,G,NST,NVAL,
$\because P I, R H C, S P, V O, W L \bullet X L G, X F G, C D L L, C D T N, F R O U C E, C C, D D, A N U, A L O D, C L D$
*, NO,NG,SPTURN,IPLCT,IPT,AIY
COMMON /PSEAL/ THTB,THTS
COMMON /WAV/ DWET, WAMP, NPER,CEL,CAY,IBUG,F(25), BETA
COMMON /PRES/ COIS,RHOWA,PHIO,PHII,ATR,PMAX,AC,DEM
COMMON /FLON/ PC,GF,QO,VDOTP,AOP
PCGAGE=FC-ATM
NI=11
TESTB=AMIN1(BETA/CTR+00001.180.)
IF(BETA.ELGO..OR .TESTB.EQ.180.) $N I=1$
DELSL=2.*EB/NI
CON $=$ DELSL*PCGAGE
2SL=DD-CC
BOU SEAL
BSLM=BSLK=0.
$X S L=X F G * W L$
YSL $=-(B \mathrm{~B}+0.5 * \mathrm{DELSL})$
DO $1 \mathrm{I}=1$, NI
$Y S L=Y S L+D E L S L$
CALL SWAVE (XSL,YSL, ZSL,Y,T,ETASL, CUMX, CUMY)
DEP $=E T A S L$
IF(DEP.LE.O.) 60 TO 1
HID=DEF/TAN(THTA)
DELZ $=-$ CON*iID
XSLA $=\mathrm{XSL}+\mathrm{K1D} 12$.
BSLM=BSLM-DELZ*xSLA
BSLK=BSLK+DELZ*YSL
1 CONTINUE
STERN SEAL
SSLM $=$ SSLK $=0$ -
$\times S L=-x L 6 * W L$
YSL $=-(96+0.5 * D E L S L)$
DO $21=1, \mathrm{Nl}$
YSL $=\mathrm{YSL}+D E L S L$
CALL StAVE(XSL,YSL,ZSL•Y,T,ETASL oDUMX, DUMY)
DEP $=E T A S L$
IF(DEP.LE.O.) GO TO 2
WIO=OEP/TAN(THTS)
DELZ=CON*WID
XSLA=XSL+WID/2.
SSLM=SSLM-DELZ*XSLA
SSLK=SSLK+DELZ*YSL
2 continue
SLZ=0.
SLM $=$ BSLM + SSLM
SLK $=$ BSLK + SSLK
SLZ=SLZ/DEM
SLM $=$ SLM/DEM/WL
SLK=SLK/DEM/WL
RETURN
END
vv
\qquad

```
    SUBROUTINE FIN(SX,SY,SK,SN,CRっCT,S^OMEGA)
    COMMON /ALL/ AR,CBAR,COSO,NE,SINO^U2
    COMMON /B/ P,Q&R\bulletX,YY,Z,U,V,WっPHI*THT
    COMMON /FCOEF/ FYNCL,FINYV,FINYF\varthetaFINKV,FINKR`FINNV`FINNR
    COMMON /FINVOR/ A`BEP,DELI`TCBAR`XFN, COP
    COMMON /IN/ AA,AIX,AIZ,AM,EE,CB,DUMMY,DTR,DXCU,FO,G,NST,NVAL,
*PI,RHO,SH,UO,UL,XLG&XFG,CDLL,CDNN,FROUDE,CC,DD,ANU,ALOD,CLD
*,NC0NG,SPTURN,IPLOT,IPT,AIY,CCO,THTO
    COMMON /LIFT/ETA(3O),CLIFT,GAMMA,VLAM
    COMMON /TVCC/ XARM,ZARM&BACE
    U2=U**2
    IF(SX.NE.O.O) GO TO 5
    NE=11
    CLIFT=0.2*PI
    SINU=SIN(OMEGA)
    COSO=COS(OMEGA)
    TCBAR=0.1
    CBAF=(CF+CT)/2
    A=CBAR*S
    AR=S**2/A
    XLAM=CT/CR
    GAMNA=ATAN(0.75*CR*(1*-XLAM)/S)
    BBP=BB-S*SINO/2.
    DOP=DD*S*COSO/2.*BACE
    XFN=-{XLG-CBAR/(2-*WL)}
    DEL=S/(NE-1)
    OELI=1./(NE-1)
    ETA(1)=0.0
    00 4 I=2,NE
4 [ T A ( 1 ) = E T A ( I - 1 ) + D E L
    VOKX=VORY=VORK=VORN=O.
    CALL FINCOF(CR,CT&S,OMEGA)
    5 IF(THTO.GE.O.O) GO TO 10
    BETA =-(V*xFG*R)/U
    CALL VORTEX(VOKX,VORY,VORK,VORN,BETA ,CR,CT,S,OMEGA)
10 FSETA=-(V+XFN*F)* COSO/U
    RN=U*CBAR/ANU*SP
    CF=0.044/(RN**0.1666)
    CD=0.125*PI *TCBAR**2
    DRAG=(CD*2**CF*(FYNCL*FBETA)**2/(PI*AR))*A/VL**2*U2
    FINX=-2.*DRAG
    SX=FINX +VORX
    SY=(FINYV*V*FINYR*R)*U*VORY
    SK=(FINKV*V*FINKR*R)*U*VORK
    SN=(FINNV*V*FINNK*R)*U*VORN
    RETURN
    END
```

v

SUBROUTINE FINCOF(CROCTOSOOMEGA) COMMON /ALL/ AR, CBAR, COSOONE OSINO

COMMON /FINVOR/ A,BBP.DELI,TCBAR OXFN, DDP
COMMON IIN/ AA,AIX,AIZ,AM,BE,CB,CF,DTR,DXDU,FO,G,NST,NVAL. *PI,RHO,SF•UO•HL
IVOR=0
CALL LIFTC(O.,CL,CL,CR,CT,S,UMEGA,IVOR)
FYNCL=CL
FBC=COSO/VO
FINLV=CL*A/WL**2*UO**2*FBC
FINLR $=$ FINLV *XFN
SFV $=F I N L V=\cos 0$
SFR=FINLR*COSO
VFV $=F I N L V$-SINO
VFR=FINLR-SINO
FINYV $=-2 \cdot *$ SFV
FIWYR $=-2 \cdot *$ SFR
FINKV $=-2 \cdot * V F V * G B P / W L+2 \cdot * S F V * D D P / W L$
FINKR $=-20 * V F R * B B P / d L+2 *$ SFR*ODP/WL

FINNR $=F I N Y$ * $X F N$
RETURN
END

giis page is best quality pracilcabin TROM COPY FURNISHED TO DDC
 \qquad

```
    SUEROUTINE LIFTC(BETA,CL,CLR,CR,CT,S,OMEGA,IVOR)
    DIMENSION CLC(30),CLCP(30)
    COMMON /ALL/ AP.,CBAR,COSC.NE OSINO.U2
    COMMCN /B/ P,O,K, X,YY,Z,U,V,OUM,PHI,THT,PSI
    COMMON /FII.VOK/ A,BEP,DELI,TCBAR,XFN,OOP
    COMMON /LIFT/ ETA(3O),CLIFT,GAMMA,XLAM
    COMMON /INS AA,AIX,AIT,AM,EB,CE,CF,DTR,DXDU,FO,G,NST,NVAL.
    *PI,RHO,SP,UO,WL,XLG&XFG,COLL,CONN,FROUDE,CC
    W=WP=0.
    ALFHA=ALPHAR=1.
    CCH=(1.-XLAM)/S
    CON1=2**FI*AR/(2**AR)
    CON2=4.*(1.-COS(GAMMA))
    P14=4.1PI
    S2=3*S
    00 40 L=1.NE
    IF(IVOR.EQ.O) GC TO 20
    IF(EETA.LO.O.0) 60 TO 19
C
    calculate sidewall parameters
    SINT=SIN(THT)
    OT=CC+AA*SINT
    DF=CC-(\forallL-AA)*SINT
    D=DF
    IF(DT.GE.0.0) GO TO 10
    D=-WL*SINT
    OT=0.0
    10 02=D**2
    CALCULATE LIFT ON SIOEWALL
    XLIFT=CLIFT*U2*D2*BETA
    c
    CaLCULATE VORTEX STRENGTH aND PGSITION
    SINE=SIN(ATAN(BETA))
    H=0.25*PI*D
    GRK=xLIFT/(U*H)
    Y1=SINB*WL
    Y2=ETA(L)*SINO
    Y=Y1+Y2
    YP=Y1-Y2
    C1=ETA(L)*COSO
    C2=H-C1-DT
    C 3 = H+C1+DT
    R1=SGRT(C2**2*Y**2)
    R1P=S*RT(C2**2*YP**2)
    Q1=GRK/(2.*PI*R1)
    G1P=GRK/(2**PI*RIP)
    IF(Y.EG.0.0) XMU1=PI*0.5
    IF(Y.EG.O.O) GO TO 22
    XMU1=ATAN(AES(C2/Y))
    22 H1=G1*SIN(XMU1-OMEGA)
        IF(YP.EG.0.0) XMUI=PI*0.5
        IF(YP.EG00.0) GO TO 23
        XMU1=ATAM(ABS(CZ/YP))
    23*1P=G1P*SIN(XMU1-OMEGA)
C
    SIOE*ASH CALCULATION FOR IMAGE VORTEX
```


IHIS PAGE IS BEST QUALITY PRACTICABTE

 FRROM COPY FURNISHED TO DDC \qquadc
R2=SURT(C3**2*Y**2)
R2P $=$ SGRT(C3**2*YF**2)
$0_{2}=G R K /(20 * P I * R 2)$
© $2 \mathrm{~F}=\mathrm{GRK} /(20 * P I * R 2 P)$
IF (Y-EQ.0.0) XMU2 $=$ PI*0.5
IF(Y.EQ.0.0) 60 TO 11
$X H U 2=A T A N(A B S(C 3 / Y))$
11 ل $2=62 * S 1 /(X \operatorname{AHU} 2+O M E G A)$
IF (YP.EG.0.0) XMUZ $=$ PI $* 0.5$
IF (YP.EL.O.O) GO TO 12
XHUZ $=A T A N(A B S(C 3 / Y P))$
$12-2 F=62 P * S I N(X M U 2 * U M E G A)$
$\mathrm{H}=\mathrm{a}=1+\mathrm{H} 2$
$W P=1 P+H_{2} P$
19 ALPHA $=-W P / U$
ALPHAR $=-$ WIU $)$
CALCULATE FORCE ON FINS
20 CETA=CR-CR*ETA(L)*CON
CLGR $=$ CON1*ALPHAR
CLO $=$ CON 1 *ALPHA
CCN $3=0.5 *(C E T A / C B A R+P 14 * S G R T(1 .-E T A(L) * * 2 / S 2)-(1 *-E T A(L) / S) * C O N 2)$
CLCK(L) $=$ CON $3 *$ CLOR
$\mathrm{CLC}(\mathrm{L})=\mathrm{CON} 3 * \mathrm{CLO}$
40 CCNTINUE
CALL SIMPSN(NE, NE, DELI, DELI,CLC,CL)
CALL SIMPSN(NE,NE,DELI.DELI,CLCR,CLR)
RETURN
END
vV
\qquad

SUBROUTINE AUXILY(PHI,U,XUDELU, ONPHIF,OKPHIF)
CORMON /IN/ AA,AIX,AIZ,AK, BS,CB, DUMMY,DTP,CXOU,FO,GONST,NVAL.
*PI, RHO, SP, UO,WL, XLG, XFG,CDLL,CDMA,FRCUCE, CC, DD,ANU
COMMON JU/ GI(25),S1(25),S1(25),PHO(25), TCRAF(25)
COMMON /WALL/ VULO.ORAGO.DELDRG
$Y 0(X 0, X 1, \times 2, Y 1, Y 2)=Y 1+(X 0-X 1) *(Y 2-Y 1) /(X 2-X 1)$
$\operatorname{CQ}(D T R A)=2 . /(S P / S Q R T(G * D T R A)) *=2$
NVAL $=5$
IF(U.NE.1) GO TO 10
KO $=$ NVAL/2 $2+1$
vo 1 -
CON=SP*WL/ANU
RN=UO*CCN
$A R G=(4 L O G 10(R N)-2) * *$.
CFO $=0.075 / A R G+0.0004$
$\mathrm{RN}=\mathrm{U} * \mathrm{CON}$
$A R G=(A L O G 10(R N)-2) * *$.
$C F=6.075 / A R G+.0004$
S.AO $=G I(K C)$

SBAC=S1(KO)
$V O L O=S I$ (KO)
TURAFO=TDRAF (KO) *WL
CBO $=0.0$
IF(SBAO.LE.0.0) GO TO 9
CFB $=$ CFO ${ }^{\text {SWAO/SBAO }}$
CBO=0.029/SQRT(CFB)
CFR=CG(TDFAFO)
IF(CFR•LT.CBO) CBO=CFR
9 DRAGO $=(C F O * S W A O+C B O * S B A O) * U C * 2$
10 DO $1 \quad I=2$, NVAL
$\mathrm{K}=\mathrm{I}$
IF(PHI.GE.PHO(I).AND.PHI.LT.PHO(I-1)) GO TC 2
1 continue
2 SWAK=YO(PHI,PHO(K),FHO(K-1),GI(K),GI(K-1))
$S B A R=Y O\left(P H I, P H O(K)\right.$, PHC $\left.(k-1), \Sigma_{1}(k),<1(k-1)\right)$
VOLR $=$ YO(PHI, PHO (K), PHC (K-1),SI(K), SI(K-1))
TUKAFK $=$ YO(PHI, PHO(K), PHO $(K-1)$, TORAF (K), TORAF (K-1)) * HL
CBR $=0.0$
IF SOAR.LE.O.0) GO TO 12
CFE=CF *S:AR/SBAK
$C E R=0.029 / S \in R T(C F B)$
CFK=CG(TDRAFR)
IF(CFR.LT.CBR) CBR=CFR
PHIM $=-$ PHI
$11003 \mathrm{I}=2, \mathrm{NVAL}$
$K=1$
IF(PHIM.GE.PHO(I).AND.PHIM.LT•PHC(I-1)) GC TO 4
3 CORTINUE
4 SWAL $=$ YO(PHIM,PHC (K), PHC(K-1),GI(K), GI(K-1))
SEAL $=$ YO(PHIM, PHC(K), PHO $(k-1)$, $S 1(k), S 1(k-1))$
VOLL $=$ YO(PHIM, PHC(K), PHO(K-1), SI(K), SI(K-1))
TOKAFL=YO(PHIM, PHC(K), PHO(K-1), TOKAF(K), TDRAF(K-1)) \& WL
$C B L=0.0$
IF(SBAL.LE.O.O) GO TO 12
CFSF CFF - SWAL/SBAL
CEL= ©.029/SQRT(CFB)
CFR=C@(TDRAFL)
1F(CFR.LT.CEL) CBL=CFR
12 CCNTINUE
$\mathrm{U} 2=\mathrm{U} * \mathrm{U}$

```
    SUEROUTINE THRUST(U,THT, DFTH,TX,TY,TK,TN,SHIPDG,TOTLDG)
    DIMENSION DELJ(4),DP(4),TJET(4)
    COMMON /IN/ AA,AIX,AIT,AM, ER,CB,CF,DTR,DXDU,FO,GONST,NVAL.
*PI, RHO,SF,UO,WL &LG&XFG,COLL,CONN,FRGUDE,CC,DD,ANU,ALOD,CLD
*,NC&NG&SPTURN&IPLOT,IPT,AIY,CCO&THTC
    COMMON /THRST/ THIGH.TLOW
    COMMON /TVCC/ XARM,ZARM,BACE,YARM(4), DELJET(4),FMCP(4),NJET
    **ALPHA(4)
    OELT(XX) =XX
    DELH(YY) =0.01334*YY**2*0. 2667*AES(YY)
    FMIP(SS)=16.6*(SS/1.689)**2-190**(SS/1.689)*528000.
    DGMOM(WW)=W&/1.0685*(3900.-350**(4*-TCON4))
    RMIP(SS) = 2.4*(SS/1*68与)**2-10**(SS/1*689)*82000.
    TCGN3=0.
    TCON4=RMCP(1) &RMCP (2) &RMCP (3) &RMCP (4)
    IF(U.NE.1-) 60 TO 1
    CALL RESOLU(SP,CCO,THTO,SHIPDG,TOTLDG)
    THME AN = TOTLDG
    IF(CC,NE.CCO) CALL RESOLD(SP,CC,THT,DUMMY,DUMMY)
    V=SP
    THMIP=FMIP(V)
    COFF=* 5*RHO*WL**2*SP**2
    CCNST1=100000./COFF
    CONST2 =60000./COFF
    THMIPO=THMIP/COFE
    THMARG=TCCN3/COFF
    THCONT=THMIPO-THMARG
    THMCP = THCONT
    THREVS=RMIP(V)/CCFF
    THTUKA=THMEAN
    IF(SPTURN.EQ.SP) GO TO 3
    CALL RESCLD(SPTURN,CC,THT,OUMMY,THTURN)
    THMIPO=FMIP(SPTURN)/COFF
    THCONT = THMIPO-THMARG
    3 IF(THTURIN.GT.THCONT) THTURN=THCONT
    IIFF=THCONT-THTURN
    THRGD=THMCP -DIFF
    DO 4 1=1,MJET
    DELJ(I)=OELT(DELJET(I))*DTR
    DF(I)=DELH(DELJET(I))
    IF(AES(DLLJET(I)).EG.90.) DP(I)=0.
    IF(DELJET(I).EG.180.) DP(I)=0.
4 CONTINUE
    GG TO 5
1 CONTINUE
    V=U*SP
    CALL RESOLD(V,CC,THT,SHIPDG,TOTLDG)
    THMIP=FMIP(V)
    THMIPO=THMIP/COFF
    ThCONT = THMIPO-THHARG
    THRGD=THCCNT-DIFF
    THKEVS=RHIP(V)/COFF
5 \text { CONTINUE}
    IF(DFTH.NE.O) GO TO 26
    DO 25 I=I*NJET
    ANJET =NJET
    TJET(i)=THCONT/ANJET
    TJET(I)=TJET(I)-(1&-RMCP(I)) * CONST1
    IF(DELJET(I) &E.180.) TJET(I)=THREVS-(1.-PMCP(I))*CONST2
    IF(ABS(DELJET(I)).EG.90.) TJET(I)=THPEVS-(1.-RMCP(I))*CONST2
```

\qquad

TJET(I) = TJET(I)*(1.-DP(I)/100.)
25 CONTINUE
GO 1010
26 CONTINUE
PAIR=NJET/2.
THI GH=(THMIPO-CGMOM(V)/COFF)/NJET
RGD $=$ THRGD/PAIR
IF(THIGH.GE.RQD) THIGH=RQD
TLOW = RGD-THIGH
NJT $=$ NJET-1
DO $40 \quad 1=1$.NJT. 2
TJET(I) $=$ THI GH
40 TJET(I + 1) = TLOW
IF (DFTH.GT.O) GO TO 10
DO $50 \mathrm{I}=1$, NJT. 2
TJET(1) =TLOW
$50 \mathrm{TJET}(\mathrm{I}+1)=\mathrm{THIGH}$
10 TX=0
$T Y=$
$T K=0.0$
$T N=0$ 。
DO $30 \mathrm{I}=1$, NJET
T1=TJET(I)
DELI=DELJ(I)
ALF $1=A L P H A(I) * D T R$
$T X=T X+T 1 * \operatorname{COS}(A L F 1) * \operatorname{COS}(D E L 1)$
$T Y=T Y+T 1 * \operatorname{COS}(A L F 1) * S I N(D E L 1)$
$T K=T K+T 1 * S I N(A L F 1) * Y A R M(I)$
$T N=T N-T 1 * \operatorname{COS}(A L F 1) * \operatorname{COS}(D E L 1) *$ YARM(I)
30 CONTINUE
IF(DFTH.EG•C.) TX=TX-DGMOM(V)/COFF
$T K=T K-T Y * Z A R M$
$T N=T K-T Y * X A R M$
RETUKN
END
vv

THIS PAGE IS BEST QUALITY PRACTICABIE FROM COPY FURNISHED TO DDC
 \qquad

SUBKOUTIGF RESCLDEV，CEFT，TKIN：！OOG．TOTLOF．）
COMMLN／ALC／LKAFT（：5），WEJGHT，SOFUELQALF，SLEOK，SLSTFR．，THETA， ＊ULFTH•SFRAYL

＊FIのtricostoUo－WL
Curívi．IHSEAL／TRTE，THTS

－EKI！．DSのFII．しG
CGMーご，／aALL／VULO．OKAGEOCELUKG
トのこたんの
IF（V．NE．SF）GO TL 10
bUL＝OUUF／cUEL
HCL＝OKFT／EUSL
$10 \mathrm{C}=\mathrm{VCL:} \mathrm{*FG*G/} \mathrm{\Delta EIGHT*2**WL**3}$
$F=V /$ SGKT（5＊EUもL）

CALL af VE（EnL，HRL，C，F，：AVET）

LALL A［KCC．L．DEFTH，VEE，AALH，DRFT，V，AET（DG）
CALL SPRGY（V，SFRAYL，SPRYYEG）

FKEL＝し．
SKII．Sうこ－＊UFAGE＊DF．C
F！inús＝Sx＊FKEし

RETUK：
END

IHIS PAGE IS BEST QUALITY PRACTICABTR

 IRROM COPY FURNISHED TO DDC```
 SUBROUTINE VORTEX\SX,SY,SK,SN&BETA,CR,CT•S॰OMEGA)
 COMMCN/ALL/AR,CBAF,COSU,NE,SINO,U2
 COMMON /FINVOR/ A,GEP,UELI,TCEAR,XFN,DOP
 COMMON /IN/ AA,AIX,AIZ,AM,BE,CB,CF,DTR,CXDU,FO,G,NST,NVAL,
-PI, kHC,SP,VO.HL
 IVOR=1
 CALL LIFTC(BETA,CL,CLR,CR,CT,S,UMEGA,IVOR)
 CON1=A/HL**2*UZ
 CON2=PI*AR*CON1
 FINLR=CLK*CON1
 FINL=CL*CCN1
 ORAGR=CLR**2/CON2
 DRAG=CL**2/CON2
 SFR=FINLR*COSO
 SF=FINL*COSO
 SX=-(DKAG+DRAGR)
 VFR=FINLR.SINO
 VF=-FINL*SINO
 SY=SF+SFR
 SN=SY*XFN*(ORAGR-DKAG)*EBP/HL
 SK=(VFR-VF)*BEF/WL-SY*DOP/WL
 RETURN
 END
```

THIS PAGE IS BEST QUALITY PRACTICABLT IRROM COPY FURNLISHED TO DDC $\qquad$
SUBROUTINE AEROISLFT,DEPTH,B,E1,DRFT,V,AERCDG)
$A N U=1.56 E-04$
$R O=0.00238$
RENOLD $=V$ *SLFT/ANU
$C F=0.455 /$ AL OG $10($ RENOLD $) * 2.58$
$C O N=D E P T H-D R F T$
AREA $=S L F T *(B * B 1 * 2 * * C O N)$
FKONT $=C O N *(B * B 1 * 2 \bullet)$
PRE $=0.5 * R C * V * * 2$
FRITOG $=$ PKE*O. $6 * F R O N T$
FRITOG $=P K E * 0 * 6 * F R O N T$
SKINDG
FRE
SKINDG $=F R E * C F * A P E A$
$A E R O D G=F R N T D G * S K I N O G$
RETURN
END
$\qquad$

## SUBKOUTINE WAVE(BOL,HOL,C•F,TOTAL)

PI $=3.14159$
$u=10$ -
$\mathrm{H}=20$ * V
TOTAL $=$ WAVEDG $=0$.
DIFF $=E P S L=1$.
GAMA=1.-C
B1OL $=$ C/(4.0/3.*HOL)
$A K 1=0.5 / F * * 2$
F2 $=\mathrm{F} * \mathrm{~F}$
BOL2=2•*BOL
$* 1 P I=W 1 / P I$
CON1 $=40 * \mathrm{PI} * 52 / \mathrm{H}$
CON2 $=2$ **PI*BOL/ $\mathrm{H}_{1}$
CON5 2 2•*AK1*HOL
CONG=8.*B1OL/(AK1*SORT(H/F2))
CONT=2./BGL*SORT(AK1/H1)*GAMA
DO $10 \quad M=1,20$
$A M=M-1$
ALFA $=$ CON1*AM
BETA $=C O N 2 * A M$
$\operatorname{CON} 3=\operatorname{SURT}(1++A L F A * 2)$
FAC=(1.+CON3)/CON3
SE=SGRT(0.5*0.5*CON3)
SB2 $=\mathrm{SB}$. SB
COI.4 $=A K 1$ *SB
SIGMA $=\operatorname{COS}(C O N 4) / S B-S I N(C O N 4) /(C O N 4 * S B)$
DELTA = CON5: SE2
$A=\operatorname{CONG*CCS}(B E T A)=(1 .-E X P(-D E L T A))=S I G M A / S B 2$
IF(AM) 5,6,5
5 PSI=WIPI*SIN(BETA)/AM
60 TO 7
6 PSI= BOL 2
$78=\operatorname{CONT*SIN(CON4)*PSI}$
GAVEDG=(A-b)*2*FAC*F2*EPSL*WAVEDG
EPSL=2.
If(TOTAL.EQ.0.) GC TO 8
DIFF=AOS((HAVEDG-TOTAL)/TOTAL)
8 TOTAL=WAVEDG
IF(DIFF.LE.0.001) GO TO 99
10 CONTINUE
99 RETURN
END
$v v$
$\qquad$

SUEKOUTINE SPRAY(V.SPRAYL,SPRYDG)
COMMON /ABC/ DRAFT(25)
COMMON /CDE/ DRISE(23),ENTRCE(23),CHINE(23),HSPKAY(23)
COMMON /IN/ AA,AIX,AIZ,AM,BE,CB,CF,OTR,OXDU,FO,G,NST,NVAL,

- PI, RHO,SP, UO, WL, XLG,XFG,CDLL,CDNN,FRCUCE,CC,DD, ANU

COMMON /SES/ HSt(25),DEL1,DEL2,N1,N2
FAC $=3.14159 / 180$.
$C O N=0.5 * V * V / G$
$0010 \quad 1=10$ tist
$10 \operatorname{HSPRAY}(1)=0$.
DC $30 \quad I=1$ oins $T$
ANG=SIIN(DRISE(1)*FAC)*SIN(ENTRCF(I)*FAC)
HSPKAY(I) =CON-ANGFANG
CHK = CHINE (I)-DKAFT(I)
IF (CHK.LT.O.0) CHK $=0.0$
IF (HSPRAY(I). $G$ (.CHK) HSPRAY(I) $=$ CHK
30 CCNTINUE
CALL SIMPSN(ADT,N1, DEL 1, OEL 2,HSFRAY,AREA)
$\mathrm{M}=\mathrm{N} 1+1$

RENOLO $=$ V-SPRAYL/ANU
CF $=0.075 /(A L O G 10(R E N C L O)-2) * 2 * 0.00 ̃$.
PRE $=0.5 *$ RnO $0 U * U$
SPKYDG $=$ FRE*AREA*2**CF
RETURN
END

```
SUEROUTIGE SEALIG,V,SLBOW,SLSTPN,THTG,THTS,SEALDGS)
CCMMON /aEC/ DEAFT(EES
CURNO: /1:% AA,AIX,GIZ,AK,DF,CE.7Z,QTK.DXCL,FC,E,O:ST,AVAL,
```



```
 COMMON /SES/ HS-(?5),SEL1,JEL?,Y1
 f:3=N1+1
 REOL=0.
 PKE=U.5*RHO*V*V
 HKEE=FKE*:
 Va:U=v/aNu
 SLL=ONAFT(:3)/SIN(THTO)
 IF(SL1.GE.ELOOW)SL1=SLEOQ
 HCMSL=SLI*COS(THTAS
 IFIESASL-LF.O.) GO lG 1n
 REN:CLD = bC.SL*VANU
 CF=0.C44/1FLNCLD**(1.16.))
 feca=rhis*3OUSL*CF
10 CCSTlidue
 KこThiv=0.
 SLz=inhFT(1)/SIH.(tr.tS)
 1H(SLz0.0EOSLSTKi.) SL&=SLSTFi,
 STF:%SL=SL?*COS(THTS)
```



```
 FE:ULこ=STH.SL*VA*:U
 CF=い.C44/C-EN/LCO*(1./5.))
```



```
2& SE:LUJ=E&G *qSTKN
 retuk:
 E:i
```

$\qquad$

```
 SUBROUTINE DKAG(OY,DK,DN,F,R,V)
 COMMON /IN/ AA,AIX,AIZ,AM,BB,CB,CF,DTR,DXDU,FO,G,NST,NVAL,
 -PI,RHO,SP,UO,WL&XLG,XFG,CDLL,CDNN
 COMMON/X/ ISECT(25),DI(25),DFI(25),DF2I(25),OF3I(25),DCI(2E),
 *DC2I(25),DC3I(25),DCFI(25),DCF2I(25), こC2FI(25), E36I(25), \SF(25)
 COMMON /2/ AR,ARL,ARL2,ARL3,APF,APF2,ARF3,ARFL,ARFL2,ARF2L,E3B
 P2=r*P
 R2=K*R
 v2=V*V
 RP2=R*F*2.
 VP2=V*P*2.
 VR2=V*R*2.
 VC=V-FO*P/HL
 GOUE=SIGM(1.0,VO)
 IF(R.EG.O.)GO TO 7
 xO=-VO/R
7 continue
 AREA=DI(NST)
 AREAL=OFI(NST)
 AKEAL2=DF2I(NST)
 AREAL3=DF3I(NST)
 AREAF=DCI(NST)
 AREAF2=DC2I(NST)
 AKEAF 3=DC3I(NST)
 AREAFL=DCFI(NST)
 AFL2=DCF2I(NST)
 AF2L=DC2FI(NST)
 DY =-CDLL*IV2*AREA R2*AREAL2*P2*AREAF 2*VR2*AREAL-RP 2*AREAFL-
 *VP2*AREAF)
 DN=-CDLL*SV2*AREAL*R2*AFEAL3*P2*AF2L*VF2*APEAL2-RP2*AFL2-
 *VF2*areafl)
 OK=CDLL*(V2*AREAF*K2*AFL2*P2*AREAF 3*V年*AREAFL-RP2*AF2L-
 *VP2*AREAF 2)
 OKV =-CDNA*G3BI(NST)*P*ABS(P)
 IF(R-EG.O.)GO TO 2
 IF(XO+XLG) 2,2,1
IF(XO-XFG) 3.2.2
3 CALL GEOR(XO)
 AY=-CDLL*(V2*AK+R2*ARL2*F2*ARF2*VF2*AFL-RP2*ADFL-VF2*ARF)
 AIN=-CDLL*(V2*ARL*R2*ARL 3*P 2*ARF2L*VR 2*APL2-FP2*ARFL2-VF2*ARFL)
 AK=COLL*(V2*ARF*K2*ARFL2*P2*ARF 3*VR2*AFFL-RF2*ARF 2L-VP 2*ARF 2)
 ONEP=SIGN(1.0,-X0)
 DY=(DY-AY*2.)*ONEP
 OK=(OK-AK*20) # ONEP
 DN=(ON-AN*20)*ONEP
2 DY=DY*ONE*2.
 DK=2.*DK=ONE *DKV
 DN=DN*ONE*2.
 RETURN
 END
```


## IHIS PAGE IS BEST QUALITY PRACTICABLB FROM COPY FURINLSHED TO DDC

SUBROUTINE GEOM(XO)COMMON /INS AA,AIX,AIZ,AM,EE,CB,CF,DTR,OXDU,FO.G.NST,NVAL,
*PI, KHO,SP, YO, $\mathrm{AL}, \times L G, X F G, C D L L, C U N N$
COMMON/X/ LSECT(25), OI (25), DFI(25), DF2I(2b), DF 3I(25), DCI(25),
-UC2I(25), CC3I(25),OCFI(25),DCF21(25),OC2FI(25), E3B1(25), XSW(25)
COMMON /2/ AR,ARL,ARL2,ARL3,ARF,ARF2,ARFF3,ARFL,ARFL2,AFF2L, B3E
$Y_{0}\left(x 0, x_{1}, x_{2}, Y_{1}, Y_{2}\right)=y_{1}+\left(x_{0}-x_{1}\right)+\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
$\times 0=X 0 * A A / W L$
DO $11=20$ NS $T$
$K=1$
IF(XO.GE.XSH(I-1).AND.XO.LTOXSU(I)) 60 TO 2
1 CONTINUE
$2 \mathrm{~K}_{1}=\mathrm{K}-1$
$x_{1}=x_{1}$ in $^{(k 1)}$
$x_{2}=x S W(K)$
$A R=Y O(X O, X 1, \times 2, D I(K 1), O I(K))$
ARL $=Y O(\times 0, \times 1, \times 2, D F I(K 1), O F I(K))$
ARL $2=Y O(X 0, X 1, X 2, D F 2 I(K 1), D F 2 I(K))$
ARL $3=Y 0(x C, x 1, X<, D F 3 I(K 1), O F 3 I(K))$
ARF $=Y O(\times 0, \times 1, \times 2, D C I(K 1), D C I(K))$
ARF $2=Y C(x 0, \times 1, \times 2, D C 2 I(K 1), O C 2 I(K))$
ARF $3=Y O(x 0, \times 1, \times 2, O C 31(k 1), O C 3 I(k))$
ARFL $=\mathrm{YO}(\times 0, \times 1, \times 2$, OCFI(K1),OCFI(K))
ARFL2 $=$ YO(X0, X1, 22, DCF2I(K1), OCF2I(K))
ARF2L $=$ YO( $\times 0, \times 1, \times 2,0 C 2 F I(K 1), 0 C 2 F I(K))$

RETURN
END

IEIS PAGE IS BEST QUAWIN $\qquad$ TIEIS PAGE IS
IROM COPY FURNISHED TO DDC

SUQROUTINE DRAGV(CZ,OR,OK,F,W,O,K)
COMMON / OLEM/ E[AM(25) DEELAMI(25) oGEAMFI(25), BEANF2I(25)

- , 日EAMF3I(25)

COMMON /BEEM2/ BEM2(25), BEM3(25),ARMS,ARMP
COMMON /IN/ AA,AIX,AIZ,AM,BB,CG,CF,OTK,DXDU,FO,G,NST,NVAL.
*PI, $R H O, S P, V O, V L, X L G, X F G, C D L L, C D N N$
COMMON /X/ CUMMY(300),XSU(25)
CGMMON /Z1/ BR•ERL,BRL29BRL3
DIMENSION F(25)
TRAP(H.Y1*Y2) $=0.5 * \mathrm{H} *(\mathrm{Y} 1+\mathrm{Y} 2)$
DO 3 I=1,NST
BEAM(1)=6EM2(1)
If(K.EG.3) BEAM(I)=BEM3(I)
3 CONTINUE

- $2=6 *$ ト
$02=6 * 0$
HO2 $=W * G * 2$ -
ONE $=$ SIGN(1.0.W)
1F(6.EG.0.) GO TO 17
$\times 0=4 / 6$
17 CONTINUE
$\operatorname{BEAMI}(1)=\operatorname{BEAMFI}(1)=\operatorname{BEAMF} 2 I(1)=\operatorname{BEAPF} I(1)=0$.
$00141=2, N S T$
$\mathrm{H}=\mathrm{XSW}(\mathrm{I})-\mathrm{XSU}(\mathrm{I}-1)$
$H=h=W L$
$B F I=B E A M(1) * F(I)$
EFII=BEAKI(I-1)*F(I-1)
$B F 21=B F I * F(I)$
BF2II=BFII*F(I-1)
BF31=BF2I*F(1)
BF311=8F211*F(I-1)
B1=TRAP(H,BLAM(I),BEAM(I-1))
$B 2=T K A P(H, B F I, B F I 1)$
$B 3=\operatorname{TKAP}(H, 8 F 2 I 9 E F 211)$
$84=\operatorname{TRAP}(H, B F 3 I, 6 F 3 I 1)$
BEAMI(1) $=6 E A M I(I-1)+B 1 / W L * * 2$
BEAMFI(I)=E[AMFI(1-1)*B2/WL**3
gEaMF2I(I)=8EAMF2I(I-1)*B3/UL**4
BEAMF3I(I)=BEAME $31(I-1)+B 4 / H L * * 5$
14 CONTINUE
AREA $=$ bEAMI(NST)
AREAL $=$ BEANFI(NST)
AREAL2=BEAMF2I(NST)
AREAL 3 = GEAMF 3 (NST)
$D 2=-$ CDNN* (-2*AREA+G2*AREAL2-WO2*AREAL)
OM $=$ CDNN*(*2*AREAL*G2*AREAL3-*Q2*AREAL2)
IF(G.EG.O.) GO TO 12
IF(x0+XLG) $12,12,11$
11 IF (XO-XFG) $13,12,12$
13 CALL GEOMV(XO)
$B 2=-C D N N *(* 2 * B R+G 2 * B R L 2-W G 2 * B R L)$
$B M=-C D N N *(W 2 * B R L * Q 2 * B R L 3-W Q 2 * B R L 2)$
ONEP $=$ SIGN(1..,-XO)
$02=(02-E 2 * 2\}=.0 \mathrm{~N}[\mathrm{P}$
DM $=\left(D K_{1}-5 N * 2\right) * O N E P$
$12 \mathrm{DZ}=\mathrm{OZ}$ *ONE
DM $=$ DM*ONE
$\Delta R M=A R N S$
IF(K.EG.3) ARM =ARMP
$D K=D Z * A R M$

THIS PAGE IS BEST QUALITY PRACTICABLZ KBOM COPY FURINISHED TO DDC

## RETURN

END

## 2ais PAGE IS BEST QUAZIW PRACSICABT: TFROM COPY FURNISHED TO DDC

SUBROUTINE GEOMV(XOB)

## VERTICAL DRAG

COMMON /BEEM) BEAM(25), BEAMI(25),BEAMFI(25),BEAMF2I(25)

- DBEAMF3I(25)

COMMON /IN/ AA,AIX,AIT,AM,GB,CB,CF,DTR,DXDU,FO,G,NST,NVAL,
-PI, $\mathrm{FHO}, S \mathrm{SF}, \mathrm{UO}, \mathrm{HL}, \mathrm{XLG}, \mathrm{XFG}, \mathrm{CDLL}, \mathrm{CDNN}$
COMMON $1 x /$ DUMMY(300), XSU(25)
COMMGN /21/ BR•BKL•BRL?,BRL3
$Y 0\left(x 0, x_{1}, X_{2}, Y 1, Y 2\right)=Y 1+\left(x 0-x_{1}\right) *(Y 2-Y 1) /\left(x_{2}-x_{1}\right)$
$X O B=X O B+A A / W L$
$0011=2$ onst
$K=1$
IF(XOB.GE.XSU(I-1).AND. XOB.LT.XSH(I)) 60 TO 2
1 CONTINUE
$2 \mathrm{k} 1=\mathrm{K}-1$
$x_{1}=x S=\left(K_{1}\right)$
$\times 2=x S W(k)$
GR=YO(XOE,X1,X2, GEAMI(K1), BEAMI(K)) BKL=YO(XOE, X1, X2, BEAMFI(K1). $5 E A M F I(K))$
BRL2 $=$ YU ( $x$ OB, $\times 1, \times 2$, BEAMF2I(K1), BEAMF2I(K)) BRL3 $=$ YO (XUB, X1, X2, EEAMF3I(K1), BEAMF3I(K)) RETURN
ENO

THIS PAGE IS BEST QUALITY PRACTICABIE FRROM COPY FURNISHED IO DDC $\qquad$

SUOKOUTINE DER(AA,BB,CC,DD,THT,PHI,NST,N1,N2,DEL1,DEL2, $4 S W, N S W$.
*XSWDD1, W1-02,RHO日WL)

DIMENSION D(25), F(25)
DIME NSICN E(25), S(25), CSZ(25), SHAYC(25), HEAVC(25)
DIMENSION D1(25.25), H1(25,25), W2(25,25)
DO $1 M=1$, N:ST
$F(M)=X S L^{\prime}(M) * V L-A A$
$D(M)=C C-H S H(M) \quad-T H T * F(M)$
$\operatorname{IF}(O(M)-L T \cdot O \cdot) \quad O(M)=C$.
1 CALL SECT(M,D,D1,NSE,W10t2,E,S,CSZ,DD)
COMPUTE DEKivatives WIth respect to f FORM INTEGRALS
INTEGRATE AXIALLY
CALL INTEG(B,D,F,S,CSZ,N1,N2,DEL1,DEL2,NET,SWAYC,HEAVC) CALL NUNDIM(BB, RHO•WL,B,D,F,CSZ,SWAYC,HEAVC)
RETURN
END

```
 SUEROUTINE SECT(I,D,DI,NSW,#1,H2,B,C,CSZ,DD)
 DIMENSION E(25),S(25),CS2(25),D1(25,25),W1(25,25),W2(25,25)
 DIMENSION D(1),NSH(1)
 FLINER(X,X2,X1,Y2,Y1)=Y1+(X-X1)*(Y2-Y1)/(x2-X1)
 B(I)=S(I)=CSZ(I)=TENP1=0.
 DRAFT=D(I)
 JJ=NSW(1)
 KL1 =0
 DO 1 J=2,JJ
 RD2=D1(I,J)
 RD1=D1(1,J-1)
 RW12=m1(1,d)
 R*11==1(I;N-1)
 RW22= &2(IOJ)
 R421=山2(I,N-1)
 IF(DRAFT.LE.O.0) GO TO 4
 IF(DRAFT.GE.DI(I.J)) GO TO 2
 RU12=FLINEk(DRAFT,PD2,RD1,Ri'12,RH11)
 RH22=FLIMER(DRAFT,RD2,RD1,RW22,RW21)
 KL1=1
 RO2=DRAFT
 C
 c
 CALCULATE AREA,GIRDER,AND BEAM
 2 DELD=RD2-RD1
 H1D=RN12-R"11
 *2D=R-22-R|21
 DELS=0.5*DELD*(RW12*RW11+RW22*RW21)
 B(i)=R*12+R|22
 S(I)=S(I)+DELS
 GJM1=R.11+RU21
C
C
 CALCULATE CENTROID FOR AREA ABOUT Y-AXIS
 T02=D(I)-RD2
 SMOM=(TD2*0.5*OELD)*EJMI*DELD*
 *(TO2*DELD/3.)*0.5*DELD*(W1D*W2D)
 TEMP1=TEMP1 SMOM
 IF(KLI.EG.1) 60 T O 3
 continue
 CSZ(I)=IEMP1/S(I)+DD-D(1)
 4 RETURN
 END
vv
```


## THIS PAGE IS BEST QUAIITY PRACTIOABLE HROM COPY FURNISHED TO DDC

```
 SUBROUTINE INTEG(B,D,F,S,CSZ,N1,N2,DEL1,DEL2,NST,SUAYC,HEAVC)
 DIMENSION SUAYC(25),HEAVC(25),日2(25), E2F(25), E2F2(2E), B2CS2(25)*
 *B2FCS2(25),82NDF(25), B2FDDF(25),D2(25),D2F(25),D2F2(25).
 *D2CS2(25),D2CSZ2(25),D2DDF(25),D2FCSZ(25).DCS7DF(25), D2FODF(25)
 * D2CZDF (25)
 COMMON /INTEGL/ B2I.E2FI.E2F2I.E2CSZI*EFCSZI.E2ODFI,BFDCFI.
 O2I,D2FI,L2CSZI,DCS22I,O2DDFI,DFCSZI,DFDDFI,D2F2I,DCZDFI
 DIMENSION B(1),D(1),F(1),S(1),CS2(1)
 COMPUTE DEKIVATIVES UF D AND CSZ WITH RESPECT TO F
 N11=N1-1
 OCSZOF(1)=(CSZ(2)-CSZ(1))/DEL1
 DCSZDF(N1)=(CSZ(N1)-CSZ(N11))/DELI
 DO 1 I =2.N11
 1 DCSZDF(I)=0.5*(CS2(I*1)-CSZ(I-1))/OEL1
 N21=N1+1
 N22=NST-1
 DCSZDF(NST)=(CSZ(NST)-CSZ(N22))/DEL2
 DO 2 I=N21,N22
 2 DCSZDF(I)=0.5*(CSZ(I+1)-CSZ(I-1))/DEL2
 COMFUTE AND STORE VARIABLES FOR AXIAL INTEGRATION.
 DO 3 I=1,NST
 IF(B(I).EQ.O.O.OK.D(I).EG.O.O) HEAVCII)=1.O
 IF(B(I).EG.O.O.OR.O(I).EQ.O.O) GO TO 4
 HEAVC(I)=S(I)/E(I)/D(I)
 4 S&AYC(I) =2.4*H(AVC(I)+0.4
 b2(I)=B(I)*B(I)*HEAVC(I)
 B2F(I)=B2(I)*F(I)
 E2F2(I)=82F(I)*F(I)
 B2CSZ(I)=52(I)*CSZ(I)
 B2FCSZ(I)=E2F(I)*CSZ(I)
 &20CF(1)=82(I)*OCS2OF(I)
 B2FDDF(I)=B2DDF(I)*F(I)
 C2(I)=D(I)*D(I)*SWAYC(I)
 D2F(I)=02(I)*F(I)
 D<F2(I)=D2F(I)*F(I)
 D2CS2(1)=D2(1)*CS2(1)
 D2CSZ2(I)=D2CS2(I)*CS2(I)
 D2DDF(I)=D2(I)*DCS2DF(I)
 D2FCSZ(I)=D2F(I)*CSZ(I)
 D2FUDF(I)=D2DDF(I)*F(I)
3 D2CZDF(I)=D2(I)*CSZ(I)*DCSZOF(I)
C
C
COMFUTE AND STORE VARIABLES FOR AXIAL INTEGRATION．
DU \(3 I=1, N S T\)
IF（B（I）．EQ．O．O．OK．D（I）．EG．O．0）HEAVC（I）＝1．0
HEAVC（I）\(=\mathrm{S}(\mathrm{I}) / \mathrm{B}(\mathrm{I}) / \mathrm{D}(\mathrm{I})\)
4 SaAYC（I）\(=2.4 * H(A V C(I)+0.4\)
女2（I）＝B（I）＊B（I）＊HEAVC（I）
\(B 2 F(I)=B 2(I) * F(I)\)
（1）\(=82 \mathrm{~F}(1) * F(1)\)
B2CSZ（I）＝52（I）＊CSZ（I）
B2FCSZ（I）＝E2F（I）＊CSZ（I）
e20cF（1）
\(\mathrm{B} 2 F D D F(I)=B 2 D D F(I) * F(I)\)
\(C 2(I)=0(I) * D(I) * S W A Y C(I)\)
D2F（I）\(=02(I) * F(I)\)
LZF2（I）\(=02 F(I) * F(I)\)
か2CS2（1） 0211 （1）
（CS22（I）＝D2CS2（I）＊CS2（I）
D2DDF（I）\(=02(1) * D C S 2 D F(I)\)
D2FUDF（I）＝D2DDF（I）＊F（I）
3 D2CZDF（I）\(=\) D2（I）＊CSZ（I）＊DCS2DF（I）
PERFCRM AXIAL INTEGRATION
CALL SIMPSN（NST，N1，0EL1，OEL2，B2，B2I）
CALL SIMPSN（NST，N1，CEL1，DEL2，B2F，B2FI）
CALL SIMPSiN（NST，N1，CEL1，DEL2，02F2062F21）
CALL SIMFSiviNST•N1•DEL1，DEL2•E2CSZ，82CSZI）
CALL SIMPSN（NST，NI，OELI，DEL2，E2FCSZ•BFCSZI）
CALL SIMFS：（NST•N1，CEL1，DEL2，E2DDF，B2DCFI）
CALL SIMPSN（NST，A1，LEL1，DEL2，E2FDDF，BFDDFI）
CALL SIMF SN（NST，iv1，DEL1，DEL2，D2，D21）
CALL SIMPSH（NST．N1，DELI，OEL2．D2F，D2FI）
CALL SIMPSN（NST，N1，DEL1，DEL2，02CS2，02CSZ1）
CALL SIMFSN（NST，N1，DEL1，DEL2，O2CS22，OCS221）
CALL SIMFSN（NST，N1，OEL1，CEL2，02DDF，D2DDFI）
```


# CALL SIMPSN(NST•N1,DEL1,DEL2.D2FCSZ.DFCSZI) 

CALL SIMPSSNSNT,N1, DEL1, DEL2,D2FDOF,DFDDFI)
CALL SIMPSN(NST,N1,DEL1,DEL2,D2F2,L2F21)
CALL SIMPSN(NST, M1,DEL1,DEL2.D2CZDF,DCZCF1)
RETURN
END

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC $\qquad$

SUBRCUTINE GEO(AA,BE,CC,DD,WL,NST,THT,KFO,FO)
DIMENSICN E(25),CSZ(25),F(25),G(25), S(25), DF(25),DF2(25), DF 3(25), -DCSZ(25), DCSZ2(25), DCS23(25), DCS2F(25), DCS2F2(25), DCSZ2F(25) - O(25)

COMMON /ABC/ ORAFT(25)
COMMCN /GEOMH/NSW(25),W1 (25,25), © $2(25,25)$, O1 (25,25)
COMMUN /SES/ HSW(25), DEL1,DEL2,N1,N2
COMMON /U/ GI(25),SI(25),S1(25),PHO(25), TOKAF(25)
CCMMOH/X/ ISECT(25), DI(25), DFI(25), DF2I(25), DF 3I(25), OCI(25), -DC2I(25), DC 3I (25), DCFI (25), DCF2I(25), DC2FI(25), B3EI(25), XSL'(25)

STATEMENT FUNCTION FUR TRAPEZOIDAL INTEGRATION
$\operatorname{TRAP}\left(H_{*} Y 1 * Y 2\right)=0.5 * H *(Y 1+Y 2)$

STATEMENT FUNCTION FOR LINEAR INTERPOLATION
$\operatorname{STATE}\left(X, X_{2}, X_{1}, Y 2, Y 1\right)=Y_{1}+(X-X 1) *\left(Y_{2}-Y_{1}\right) /\left(X_{2}-X 1\right)$
CONSTANTS

- L2 = WL* HL
$U L 3=W L 2 *$ * $L$
$W L 4=W L 3 * W L$
$W L 5=W L 4 *$ w
OTR=3.1415927/180.
PHIZ $=2 \cdot * 0 T R$
DO $999 \mathrm{~K}=1,5$
PHI $=F H I Z-(K-1) * D T R$
PHO(K) =PHI
CALCULATE DRAFT AND CC
DO 9 M=1,NST
$F(M)=X S W(M)=W L-A A$
$D(M)=C C-H S *(M) \quad-T H T * F: M) * B B * P H I$
IF(D(M).LE•O•O) D(M) $=0.0$
$\operatorname{IF}(K, E Q \cdot 3)$ DRAFT(M)=D(M)
LF(K.EQ.3) CCO=CC
CALCULATE GIRDER AND CROSS SECTIONAL AREA
$I=M$
ORFT $=O(M)$
$G(I)=W 1(I, 1)+W 2(I, 1)$
B(I) $=\operatorname{CSZ}(I)=\operatorname{DF}(I)=\operatorname{DF} 2(I)=\operatorname{DF} 3(I)=\operatorname{DCSZ}(I)=\operatorname{DCSZ2(I)=\operatorname {CSS}2(I)=}$

JJ=NSW(I)
KL: $=0$
DO $8 \quad J=2, J J$
RD2 $=01$ (I $\cdot d)$
RD1 $=01(I, J-1)$
R:12=』1(10」)
$R W 11=w 1(I, J-1)$
$R W 22=W 2(I ; J)$
RW21=. $2(1, J-1)$
IF(DRFT •LE•O.0) GO TO 9
IF(DRFT -GE•DI(I,J)) GO TO 7
RW12=STATE(DRFT ,RD2,RD1,RW12•RW11)
KH22=STATE(DKFT ,RD2,RD1,RH22,RW21)
$K L 1=1$

THIS PAGE IS BEST QUALITTY PRACTICABḰTE FROM COPY FURNLSHED TO DDC $\qquad$

RD2 $=0$ RF $T$
7 DELD=RD2-RD1
DELD2=DELD*DELD
\#10=R-12-RV11
$\forall 2 D=k \times 22-R 421$

DELG1 $=$ SGRT(*10* 10 10 DEL(02)
DELG $2=$ SGRT ( $~+2 D * W 2 D * D E L D 2)$
DELG=DELG1*OELG2
b(1)=Rは12+RW22
BJM1 $=\mathrm{K} d 11+$ R W2 1
TD2=0(1)-RD2
SMOM $=(T D 2+0 * 5 * E E L D) * B J M 1 * D E L D+(T D 2 * D E L D / 3 *) * O \bullet S * D E L D *(W 1 D+K 2 D)$
TEMP1 $=T E M P_{1}+S M O M$
$S(I)=S(I)+D E L S$
$G(1)=G(1)+D E L G$
CSZ(I)=TEMP1/S(I) -DD-D(I)
IF(KLI-EGO1) GO TO 12
8 CONTINUE
12 IF(K.NE.3) GO TO 9
$D F(1)=D(1) \cdot F(I)$
DF2(I) $=0 F(I) * F(I)$
DF3(I) $=$ DF $2(1) * F(1)$
PARM=CSZ(I)
DCSZ(1) $=D(1) * P A R M$
DCSz2(1) =DCSZ(I)*PARM
DCSz3(I) $=$ OCS22(I) + FARM
DCS2F(I)=D(I)*F(1)*PARM
DCSZF2(I) $=\operatorname{DCSZF}(1) * F(1)$
DCS22F(I) $=$ DCSZF(1) *PARM
9 CONTINUE
integrates for wetted surface area and displacement
CALL SIMFSH(NST,N1,CEL1,DEL2,S,SI(K))
CALL SIFIPSN(AST,M1,DELI,DEL2,GOGI(K))
SI(k) $=$ SI(k)/WL 3
GI(k) $=G I(k) / W L 2$
S1(K) $=\mathrm{S}(1) / \mathrm{NL} 2$
TDRAF $(K)=D(1) / 6 L$
IF(K.NE.3) GO TO 999
DI(1)=DFI(1)=DF2I(1)=DF31(1)=DCI(1)=DC2I(1)=DC3I(1)=DCFI(1)=
*DCF $2 I(1)=D C 2 F I(1)=B 3 B I(1)=0$ -
FO $=$ CSZ(KFO)
DO 1 1=2,NST
$H=\left(x S_{i}(I)-x S i d(I-1)\right) * V L$
A1=TRAP(H.D(1),D(1-1))
$A 2=\operatorname{TRAP}(H, D F(1), D F(1-1))$
A $3=$ TRAP (HOLF2(1), DF2(1-1))
$A_{4}=$ TRAP(H,DF3(1), DF $\left.3(1-1)\right)$
A $5=$ TRAF (H, B(1), $8(1-1))$
AG=TRAF(H.OCS22(1), DCS22(I-1))
A $7=$ TFAP (H.OCSZ(1), DCSZ(I-1))
$A B=$ TRAP (H.OCSZF (I), OCS2F(I-1))
A9:TRAF(H,DCS2F2(I), DCS2F2(1-1))
A10 10 TRAP(H.DCS23(I).DCS23(1-1))
A11=TRAP(H,OCS22F(1),DCS22F(1-1))
CI(I) $=D I(I-1)+A 1 / W L 2$
OFI(i) $=$ DFi(1-1) $+A_{2} / \boxed{L} 3$
DF $2 \mathrm{I}(1)=\mathrm{DF} 2 \mathrm{I}(\mathrm{I}-1)+A 3$ KLA

DF3I(I) = DF 3I (I-1)*AA/WL5
DCI(1) $=D C I(I-1)+A 7 / W L S$
$D C 2 I(I)=D C 2 I(I-1)+A 6 / H L 4$ DC3I(I) $=$ DC3I (I -1$)+A 10 /$ HL5 DCFI(I) =UCFI(I-1) +A IWLA OCF2I(I) =CCF2I(I-1)+A9/WL5 DC2FI(I) $=$ DC $2 F I(I-1)+A 11 / H L 5$ E3BI(I) $=63$ SI $(I-1)+E B * 3 * A 5 / W L 5$ 1 CONTINUE
999 CONTINUE
RETURN
END
vv

## THIS PAGE IS BEST QUAIITY PRACIICABLE FRRM COPY FURNISHED TO DDC <br> $\qquad$

```
SUBROUTINE NONDIK(EB, RHO.\forallL,B,D,F,CSZ.TEMPA,TEMFK)
REAL K1P,K1Q,KIH,KIOP,K1OG,K1DH,YIP,M1Q,MIW , YIOF.
 M1DQ,MIDW.
 K2P,K2O,K2W,K2DP,K2DQ,K2OW,N2P,N2O,N2W,N2DP,
 N2DQ,N2DW.
```



```
 N3LR,NODV.
 K4P,K4R,K4V,K4OP,K4DR,K4CV,K.4P,M4R ,M4V ,M,4DF,
 M4DK, MADV.
 L2 OL3 OL4 -L5
 DIMENSIGN B(1),D(1),F(1),CSZ(1),TEMPA(1),TEMFR(1)
 COMMON /INTEGL/ B2I,E2FI,E2F2I\bulletE2CSZI*BFCSTI,E2DDFI,EFDCFI*
*D2I,D2FI,C2CSZI,DCSZ2I,C2ODFI,DFCSZI,OFDCFI,D2F2I,DCZDFI
 COMMON /NOD/ DYP,OYG,DYR,OYV,OY#,OYOP,OYCGQSYOR,GYOV,OYON,
*
*
*
PI=3.1415927
 AKY=0.
 AKZ=0.
H=0.25*PI *RHO
 C1=H
 C2 = C1*AKY
 C3=H
 C4=C3*AK2
 L2= 0.5*RHO*WL**2
 L3=L2*WL
 L4=L3*WL
 L5=L4*HL
 21DH= - B2I*C1
 Z1DF=86*21DW
 21G=(B(1)**2*F(1))*C1*TEMPR(1)
 21DQ= B2FI*CI
 21W=-B(1)**2*C1*TEMPR(1)
 21P = BG*21W
 M10W= B2FI*C1
M1DP= BE*M1DW
 M1G =(-B(1)**2*F(1)**2*TEMPK(1)-82FI)*C1
M1DG= - 82F2I*C1
M1N = (B(1)**2*F(1)*TEMPR(1)*B2I)*C1
M1P = BB*M1H
K1DU=BB*210W
K1DP= BB*210P
K10 = BB*210
K1DG= BB +21DQ
K1H=BB*21W
K1P = BB*21P
Y2DW=-B2I*C2
Y2DP= BB*Y2DW
Y2Q = (B(1)**2*F(1))*C2*TEMPR(1)
Y2DG=E2FI*C2
Y2W=-E(1)**2*C2*TEMPR(1)
Y2P=BB*Y2W
N2DW= - B2FI*C2
N2DP= BB*N2DU
N2G = (B(1)**2*F(1)**2*TEMPK(1)* P2F1)*C2
N2DG= E2F2I*C2
N2W = (-B(1)**2*F(1)*TEMPR(1)-32I)*C2
N2P}=\textrm{BB}*N2
```

```
K2OU= B2CSZI*C2
K2DP= BB*K2DV
K20 = (-B(1)**2*F(1)*CSZ(1)*TEMRR(1)-BFDDFI)*C2
K2DG= - BFCS2I*C2
K2W = (B(1)**2*CSZ(1)*TEMPR(1)*B2ODFI)*C2
K2P}=\textrm{BB*K2H
Y30V= - 02I*C3
Y3R=(-D(1)**2*F(1))*C3*TEMPA(1)
Y3DR=-D2FI*C3
Y3DP= D2CSZI*C3
Y3V = -D(1)**2*C3*TEMPA(1)
Y3P = (D(1)**2*CS2(1)*TEMPA11) %*C3
N3DV= -D2FI*C3
N3R=(-D(1)**2*F(1)**2*TEMPA(1)-D2FI)*C3
N3DK= -D2F2I*C3
N3DF= DFCSZI*C3
N3V = (-D(1)**2*F(1)*TEMPA(1)-D2I)*C3
N3P=(D(1)**2*F(1)*CSZ(1)*TEMFA(1)*D2CS2I)*C3
K3DV = D2CS2I*C3
K3P. = (C11)**2*F(1)*CSZ(1)*TEMPA(1)*DFDCFI)*C3
K30K= DFCSZI*C3
K3DP= -DCSZ2I*C3
K3V = (D(1)**2*CS2(1)*TEMPA(1)*D2DDFI)*C3
K3F=(-D(1)**2*CSZ(1)**2*TEMPA(1)- DCZDFI)*C3
240V = -02I*C4
Z4R=(-D(1)**2*F(1))*C4*TEMPA(1)
24DR= -D2FI*C4
24DP= D2CSZI*C4
24V=-C(1)**2*C4*TEMPA(1)
Z4P=(O(1)**2*CSZ(1)*TEMPA(1)*O2ODFI)*C4
M4DV = D2FI*C4
M4R=(D(1)**2*F(1)**2*TEMPA(1)*D2FI)*C4
M4Dh= D2F21*C4
M4DP = - DFCSZI*C4
M4V = (0(1)**2*F(1)*TENPA(1)*D2I)*C4
M4P=(-D(1)**2*CSZ(1)*F(1)*TENPA(1)-D2CSZI-DFDDFI)*C4
K4UV = BE*24OV
K4R = BB*24R
K4DK= BB* 24DR
K4DP=BB*24DP
K4V = BB*24V
K4P = BB*24P
DYP = (Y2P+Y3P)/LS
DYQ = Y2Q/L3
DYR = Y3R/L3
DYV = Y3V/L2
DYU = Y2W/L2
DYDP = (Y2DP+Y3OP)/L4
DYDQ = Y2DQ/L4
DYOR = Y3DR/L4
DYOV = Y3DV/L3
DYDL = Y2DU/L3
DZP = (Z1P*24P)/L3
DZQ = 21Q/L3
DZR = 24R/L3
OZV = 24V/L2
DZH = 21W/L2
OZOP= (21OP +24DP)/L4
D2DQ = 210Q/L4
DZDR = 240R/L4
```

THIS PAGE IS BEST QUALITY PRACTICABIE FROM COPY FURNISHED TO DDC

```
DZDV = Z4OV/L3
DZOL = 21DW/LS
DKP = (K1P*K2P*K3P*K4P)/L4
DKQ = (K1O+K26)/L4
OKR = (K3R+K4R)/LA
OKV=(K3V+K4V)/L3
DKH = (K1U+K2W)/L3
DKDP =(K1DP +K2DF +K3DP +K4DP)/L5
OKDG =(K1DO+K2DG)/L5
OKOR = (K3DR+K4DR)/L5
DKOV = (K3DV+K4DV)/L4
DKOU = (K1DU*K2OW)/L4
DMP = (M1P+M4P)/L4
DMO = M1Q/L4
DMKE = M4K/L4
DMV = M4V/L3
DMW = M1H/L3
DMDP = (M1DP M 4DP)/L5
OMDQ = M1DQ/L5
DMDR = M4DR/L5
DMDV = M4DV/L4
OMDV = MIDW/L4
ONP = (N2P +N3P)/L4
DNQ = N2Q/L4
DNR = N3R/L4
DNV = N3V/L3
DNH = N2H/L3
DNDP= (N2UP+N3DP)/L5
DNDG = N2DQ/L5
DNDF = N3DR/L5
DNDV = N3DV/L4
ONDH = N2OW/14
COEFFICIENTS FOR THO HULLS
DYH = DYG=DKH=DKG=DNa = ONG=OYDK=DYDG=DKDW=DKDG=DNDE=DNDG=O .
DYV=2.*DYV
DYP=2.*Y3F/L3
DYR=2.*DYR
DZW=2.*DZW
DZP=24P/L3
DZQ=2.*DZO
DKV=2**K3V/L3
DKP=2**(K1P +K3P)/L4
DKK=2.*K3K/L4
DMH=2.*DMH
DNP =M4P/L4
DMQ=2.*DMO
DNV=2.*DNV
DNP=2**N3P/L4
DNR=2.*DNR
OYDV=2**DYDV
OYDP=2**Y3DP/L4
DYDR=2.*DYDR
OZOW=2.*O2OU
OZDP=24DP/L4
DZDQ=2.*DZDO
OKDV=2**K3DV/L4
DKDP =2.*(K1DP +K 3DP)/L5
DKDR=2**K3DR/L5
```

DMDY $=2$ • ${ }^{\text {DMD }}$ $D M D P=M 4 O P / L 5$ DMDQ $=2 \cdot \bullet$ DMDQ ONDV $=2 . *$ DNDV ONOP $=2 \cdot *$ N3DP/L5 DNOK $=2 \cdot *$ DNDR

C DZP,OZR,OZV,OZOP,OZOR, OZOV,OMP, DWR,DMV, DMDP,DMOR,OMOV APE ODD FUNCTIONS RETURN
END

## mais pace is best quarity pmacioulim HIOM COPY FURNISHED TO DDC <br> $\qquad$

SUBROUTINE RUNGS (X,HONOYOYPRIME OINDEX)
DIMENSION Y(13), YPKIME(13), Z(13), Dil(13), W2(13), W3(13), F4(13) CRUNGS - KUNGE-KUTTA SOLUTION OF SET OF FIRST ORDER O.D.E. FORTKAN 99 c dimensions must be set for each program
$c \quad x$ INDEPENDENT VARIABLE
h incremient delta $x$, may be changed in value $N$ number of eguations
$Y$ DEPENOENT VARIABLE BLOCK ONE. DIMENSIONAL APRAY
YPRIME DERIVATIVE BLOCK ONE DIMENSIIONAL APRAY
the pkogrammer must supfly initial .Values of r(i) to ren)
INDEX IS A VARIAELE WHICH SHGULD BE SET TO ZERC BEFORE EACH
INITIAL ENTRY TC THE SUORCUTINE, IEE., TO SOLVE A DIFFEFENT
SET OF EGUATIONS OR TO START UITH NEH INITIAL CONDITIONS.
the progkammer nust write a subroutine called derive uhich com-
putes the derivatives and stcres them
THE AKGUMENT LIST IS SUBROUTINE DERIVE(X,N,Y,YPRIME)
IF (INDEX) 5,5,1
$10021=1, N$
H1(1) =H*YPRIME(1)
2 2(I) $=\mathrm{r}(\mathrm{I})+(\mathrm{HI}(1) * .5)$
$A=X+H / 2$.
CALL DERIVE(A,Noz,YPRIME)
DC 3 I $=1$. H .
H2(I) = H - YPRTME(I)
3 2(I) $=\mathrm{Y}(1)+.5 * \mathrm{H}_{2}(\mathrm{I})$
$A=X+H / 2$.
CALL DERIVE(A,NoZ,YFRIME)
CO $41=1, \mathrm{~N}$
y $3(1)=H$ *PRIME(I)
4 2(1) $=\mathrm{Y}(1)+\mathrm{W} 3(1)$
$A=X+H$
CALL DERIVE (A,N,Z,YPRIME)
QO 7 1=10N
H4(I) $=\mathrm{H} *$ YPRIME(I)

$x=x+h$
CALL DERIVE ( $X, N, Y, Y P R I M E)$
GO TO 6
5 CALL DERIVE (X,N,Y,YPRIME)
INDE $X=1$
6 RETURN
END

THIS PAGE IS BEST QUALITY PRACTICABLE FHOM COPY FURNLSHEED TO DD,C $\qquad$

```
SUBROUTINE BESSEL(IO&X,V)
DIMENSION T(1000)
TH=1./12.
TH=1.13.
OR=10
M=3.*3**X**TH*9**X**TH+AMAXI(OR*X)
IF(NOD(M,2).NE.0) M=M+1
M1=M-1
M2=M-2
T(M)=0
T(M1)=1.
z=2.1x
J=M2+1
Mx=M2/2
SNORM=0.
DO 1 I =1,MX
J=J-1
T(J)=J*2*T(J+1)-T(J+2)
J=J-1
- T(u)=v*2*T(J+1)-T(J+2)
1 SNGRM=SNORM+T(J)
SNOKM=2.*SNORM-T(1)
V=T(IO+1)/SNORM
RETURN
END
```

$\qquad$
SUBROUTINE COMB(A,N,ND,R,M,NERR,D)
C SOLUTION OF SIMULT.EO. FORMING KUTTA COND. DIMENSION A(1), B(1)
EQUIVALENCE (I,FI), (K,FK) $D=N E R R=1$
10 DO $90 \quad I=1 . N$
alumax = ali)
1 IMAX $=1$
IF(N.EG.1)GO TO 30
DO $25 \mathrm{~J}=2 . \mathrm{N}$
IJ $=1+(\mathrm{J}-1) * \mathrm{NO}$
IF(ABS(A(IJ))-ABS(AIJMAX))25,25,20
20 AIJMAX $=A(I J)$
IJMAX $=1 J$
25 CONTINUE
IF (AIJMAX) 30.999,30
$300035 \mathrm{~J}=1, \mathrm{~N}$
$1 \mathrm{~J}=1+(\mathrm{J}-1) \approx$ ND
35 A(IJ) = A(IJ)/AIJMAX
$D=D$ * AIJMAX
DO $40 \quad \mathrm{~J}=1, \mathrm{M}$
IJ $=1+(\mathrm{J}-1) * \mathrm{ND}$
$40 \mathrm{~B}(1 \mathrm{~J})=\mathrm{B}(\mathrm{IJ}) / \operatorname{AIJMAX}$
DO $70 \mathrm{~K}=1 \mathrm{oN}$
IF (K-1) $50,70,50$
50 KJMAX $=$ IJMAX $+(K-I)$ ARAT $=-A(K J M A X)$
$K J=K$
IJ $=1$
DO $60 \quad J=1, N$
IF (ACIJ)) 55,58,55
$55 A(K J)=A F A T * A(I J)+A(K J)$
$58 \mathrm{KJ}=\mathrm{KJ}$ * ND
60 IJ = IJ * ND
A(KJmax) $=0.0$
$\mathrm{KJ}=\mathrm{K}$
IJ $=I$
$0069 \mathrm{~J}=1, \mathrm{M}$
1F(b) (IJ)) 65,68,65
$65 B(K J)=A R A T * B(I J)+B(K J)$
$68 \mathrm{KJ}=\mathrm{KJ}$ • ND
69 IJ = IJ + ND
70 CONTINUE
KJ = IJHAX - I*1
$90 A(K J)=F 1$
$00100 \quad 1=1, N$
$k=1$
93 I1 $=\mathrm{K} * \mathrm{ND}-\mathrm{ND}+1$
$F K=A(11)$
If ( $K-1$ ) $93.100,95$
95 1」 $=1$
$\mathrm{IK}=\mathrm{K}$
DO $99 \mathrm{~J}=1, \mathrm{M}$
$A(2)=B(I J)$
$B(I J)=B(I K)$
$B(I K)=A(2)$
IJ = IJ •ND
99 IK = IK * ND
100 CONTINUE NERR $=0$

PHIS PAGE IS BEST QUALITY PRACTICABLS EBROM COPY FURNISHED TO DDC

999 RETURN
END

## SUGROUTINE SIMPSN(NP,NB,D1,D2,Y,A)

SUGROUTINE TO IT.TEGRATE BY SIMPSON RULE FOR EVEN NUFEEP CF IACREMENTSOR EY TRAPEZOIDAL RULE IF THE NUMBER OF INCREMENTS IS ODD
THIS ROUTINE WILL INTEGRATE FOR ONE OR THO STEP SIZES
IF ONLY ONE STEP SIZE,SET NP =NB AND DI=02.
NP - TCTAL NUMEER OF POINTS TO GE INTEGRATED
NE - INDEX DIVILING THO STEP SIZES
D1 - STEP SIZE FROM INDEX 1 TO NB
D2 - STEP SIZE FKOM INDEX NB TO NPa - INTEGRAL OF Y
OIMENSIO ..... (1), D(2)
$A=0$.
$D(1)=01$
(2) $=$
IF $=1$
$I L=N N=N B$
$005 \mathrm{~J}=1,2$
IFINN.EQ. 1 ..... $60 \quad 106$
IFI=1F+1
ILI=1L-1
IF(MCD(NN\&2).NE.1) GO TO 2
SIMPSUM IMTEGRATION
IL2=IL1-2
A2 $=0$ -
$4=Y(I L 1)$
IF THE ARRAY HAS ONLY 3 POINTS, $A=H *(Y(1)+4 * Y(2)+Y(3)) / 3$IF(NN.EG.3) GO TO 7
DO 1 I=IF1,IL2,2
$A 4=A 4+Y(1)$
$A 2=A 2+Y(I+1)$
$A 1=U(j) *(Y(I F)+Y(I L)+2 * * A 2+4 * * A 4) / 3$.
GO TU 4
TRAPEZOIDAL INTEGRATION
$2 A 1=0.5 *(Y(I F)+Y(I L))$
IF THE ARRAY HAS ONLY 2 POINTS, $A=H *(Y(1)+Y(2)) / 2$.
IF(NN.EQ.2) GO TO 8
DO 3 I=IF1.ILI
$3 A 1=A 1+Y(I)$
B $A I=C(J) * A 1$
-IF=NB
IL:NP
$\mathrm{NN}=\mathrm{NP}-\mathrm{NB}+1$
$5 A=A+A 1$
6 CONTINUE
RETURN
END
$\qquad$
SUEROUTINE SCALE(NRNG
FIND MAXIFUM VALUE OF aRRAY AI
YMAX=A1(1)
c DETERMINE aXIS SCALE
DO $11=2$, $M P$
1 YMAX=AMAXI(YMAX,ABS(A1(I)))
DO $2 I=1$, NRNG
ISAVE=I
IF(YMAX.LE.A(I)) GO TO 3
2 continue
$I U P=Y M A X$
RNG $=1 U P$
RNGM $=-$ RNG
RETURN
3 RNG=A(ISAVE)
RNGM=-RNG
return
END
vv

## THIS PAGE IS BEST QUALITY PRACTICABH RZOM COPY FURNISHED TO DDC <br> $\qquad$ ,

```
 SUEROUTIME FLOYTYA1,AZ,FZZA4&A5,AG&NP,NC,NG)
 REAL NUM(10:
 DIMENSION A1(1),A2(1),A3(1),A4(1),A5(1),AE(1)
 DIMENSION IZCR((E), FA\CE({),A;132),STAR(6),DRNG(8),RANGM(6)
 DATA 12EKC/21,66,111+21,66,111/
 DATA RRAG/ 1&*&+1*,20+4*+20*,20=940.1
 DATA STAK/1H**2H**1H* + 1HO, 2H0& 2HO/
 DATA BLANK/IH
 DATA DASH/1H-/
 DATA EYE /1HI/
 DATA PLUS /1H+1
 DATA TEE/IHT/
 DATA NUM/1HO,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8́,1H9/
 SF(G)=IZ*G*SCL
C
O!
 INITIMLI2E
 NG=6
 NRNG=8
 NCT=131
 NX=10
 kx=10
C
C
 CALL SCALE(NRNG,RRNG,NP,A1,RANGE(1),RANGM(1))
 CALL SCALE(NRNG,RRNG,NP,A2,RANGE(2),RANGM(2))
 CALL SCALE(NRNG,RRNG,NP,A3,RANGE(3),RANGM(3))
 CALL SCALE(NRNG,RRNG,NP,A4,PRAINGE(4),RANGM(4))
 CALL SCALE(NRNG,RRNG,NF,A5,RANGE(5),RANGM(5))
 CALL SCA:E(NRNG,RRNG,NP,AG,RANGE (G),RANGM(E))
 PRINT Y-AXIS
WRITE(6,200) PANGM(1), RANGE(1), RANGM(2), RA:.GE(2), RANGM(3),PANGE
 14X,F4.1,4X,F5.1.1CX,11HWGVE HGT. =,11X,F4.1)
 GRITE(6,201) RANGM(4), RANGE(4), PANGM(5),RA'GE(5),FANGM(6),RANGE(6)
```



```
 *F4.1,4X,F5.1,10X,11HPRESS/100=0,11X,F4.11)
C
C
 PKEPARE PLOTTING ARRAY
 0O 1 I=1,NP
 OO2K=1,NCT
 2 A(K)=BLANK
 DO 3 J=1,NG
 IZ=IZERO(J)
 RNG=KANGE(J)
 SCL=NC/RNG
 IF(I.NE.1) GO TO 5
 IHI=12*NC
 ILO=12-NC
 KNT =10
 DO }6\mathrm{ K=ILC,IHI
 A(K)=PLUS
 IF(KNT.NE&NX) GO TO 6
 A(K)=EYE
 KNT=0
 KNT=KNT +1
```

WHIS PAGE IS BEST QUALITY PRACTIGABLE
WROM COPY FURNISHED TO DDC

```
 5 GO TO (7,8,9,10,11,14),J
 7 A(Iz)=PLUS
 IC=SF(A1(1))
 GO TO }1
 8 A(Iz)=PLUS
 IC=SF(A2(1))
 GO T0 12
 9 A(IZ)=PLUS
 IC=SF(A3(1))
 GO TO 12
10 IC=SF(A4(I))
 G0 TO }1
11 IC=SF(A5(I))
 GO TO 12
14 IC=SF(AG(I))
12 A(IC)=STAR(J)
 3 CONTINUE
 IF(KXONE.NX) GO TO 13
 121=12ERO(1)
 IZ2=1ZERO(2)
 I23=I2ERO(3)
 A(I21)=A(122) =A(123)=DASH
 IF(I.EG.1) GO TO 16
 k1=(I-1)/10+.1
 k2=k1+1
 If(kl.GE.10) GO ro 17
 A(IZ1+1)=A(I22+1)=A(IZ3-1)=NUM(K2)
 GO TO 16
17 12=MOD(K1,10)
 I1=(k1-12)/10+1
 12=12+1
 A(IZ1+1)=A(IZ2+1)=A(IZ3-2)=NUM(I1)
 A(I21+2)=A(I22+2)=A(IZ3-1)=NUM(12)
1 6 ~ K X = 0
13 Kx=kx+1
 WRITE(6,202) (A(K),K=1,NCT)
202 FORMAT(1X,131A1)
 1 CONTINUE
 DO 15 I=1,NCT
 15 A(I)=BLANK
 IZ1=IZERO(1)
 12c=12ERO(2)
 123=12ERO(3)
 A(IZ1)=A(122)=A(IZ3)=TEE
 WRITE(6.202) (A(K),K=1,NCT)
 RETURN
 END

THIS PAGE IS BEST QUALITY PRACTICABIR ZROM COPY FURNLSHED TO DDC \(\qquad\)

SUBROUTINE PLOTXY(XP,YYP,NP)
OIMENSION A(91), RRANGE(4),AX(10), XP(1),YYP(1),IP(500)
oata blank /iH /
DATA EYE/2HI/
OATA DASH /IH-/
DATA PLUS /1H*/
DATA STAR/1H*1
DATA RANGE /4.05.010.1
DATA AX/1HO,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9/
SCALE
KXAXIS \(=0\)
YMAX=ABS(YYP(1))
DO \(111=20 \mathrm{NP}\)
NPSAV \(=1\)
1F(XP(I). LT.O.0.OR.ABS(YYP(I)).6T.80.) GO TO 18
11 YMAX=AMAXI(YMAX,ABS(YYP(I)))
18 NP=NPSAV
\(\mathrm{YHI}=80\).
C
c
c
ORDER \(X\)
DO \(11=1, N P\)
KNT \(=1\)
DG \(2 \mathrm{~J}=1, \mathrm{NP}\)
IF(I.EQ.J) GO TO 2
IF(XP(I)-GT-XP(J)) KNT=KNT+1
2 coftinue
\(I P(I)=K N T\)
1 continue
INITIALI2E
\(12=81\)
IF(YYP(NP).LT.0.0) 12=11
KSAVE=0
LINE=1
\(\mathrm{NC}=80\)
NL=91
SCL \(=\mathrm{NC} / \mathrm{YHI}\)
LY=10
\(K Y=L Y\)
LX=10
\(K X=L X\)
IF(YYP(NP).GE.0.0) WRITE(6,201)
201 FOKMATIIH1,56X,7HY VS. X/
* \(20 \mathrm{X}, 3 \mathrm{H}+80,17 \mathrm{X}, 3 \mathrm{H}+60,17 \mathrm{X}, 3 \mathrm{H}+40,17 \mathrm{X}, 3 \mathrm{H}+20,19 \mathrm{X}, 1 \mathrm{HO} / \mathrm{l}\)

IF(YYP(NH) OLT.D.0) WRITE(6,202)
202 FORNAT(1til, \(56 \mathrm{x}, 7 \mathrm{HY}\) VS. X/
- \(30 \mathrm{X}, 1 \mathrm{HO}, 16 \mathrm{X}, 3 \mathrm{H}-2 \mathrm{O}, 17 \mathrm{X}, 3 \mathrm{H}-40,17 \mathrm{X}, 3 \mathrm{H}-60,17 \mathrm{X}, 3 \mathrm{H}-801 \mathrm{I}\)

C
C
C
PREPARE PLOTTING ARRAY
\(003 \mathrm{~K}=\mathrm{I}, \mathrm{NL}\)
\(A(K)=P L U S\)
IF(KYoNEeLY) 60 TO 14
\(A(K)=E Y E\)
\(K Y=0\)
\(14 K Y=K Y+1\)

IBIS PAGE IS BEST QUALITY PRACTICABíN TSOM COPX FURNISHED TO DDC

3 CONTINUE \(0091=1\), NP
A(12) \(=\) PLUS
\(004 \mathrm{~J}=1\), NP
4 IF(IP(J).EO.I) \(10=J\)
IY=12-SCL=YYP(IO)
I \(x=1\) *(x+(IU)*SCL*5.110.)*2.
IF(KSAVE.EG.O) 60 TO 5
IF (IX.NE.KSAVE) GO TO 7
5 IF(IX.GT-LINE) 60 TO 7
\(A(I Y)=S T A R\)
KSAVE=LINE
IF(l.EG.NP) GO TO 7
60 to 9
7 IF (KX.NE•LX) GO TO 10 KXAXIS \(=K X A X I S+1\)
IFIKXAXISEEG.1) GO TO 17
IF(YYP(NP).LT.D.0) SO TO 15
I \(201 \mathrm{NE}=12+1\)
12160 \(=12+2\)
60 TC 16
15 IZONE=12-2
\(12 T .0=12-1\)
16 a(IZONE \()=A \times(K \times A X I S)\)
\(A(I 2 T W 0)=A X(1)\)
17 A(I2) \(=D A S H\) \(\mathrm{K} \mathrm{x}=0\)
\(10 \mathrm{kx}=\mathrm{kx} x+1\)
IF(A(IZ).NE.DASH.AND.A(IZ), NE.STAR) A(IZ)=PLUS WKITE(6.200) (A1IJ),IJ=1pNL)
200 FORMAT(20X991A1)
IF(I.EQ.NP.AND.LINE.EQ.IX) CALL EXIT
DO \(8 \mathrm{~K}=1, \mathrm{NL}\)
\(8 \mathrm{~A}(\mathrm{~K})=\mathrm{BLANK}\) LINE=LINE+1
GO TO 5
9 continue
RETURN

Commandant of the Marine Corps Department of the Navy
Attn: MC-OTON
Washington, D. C. 20380
Chief of Naval Material
Attn: Code 031
Washington, D. C. 20360
Naval Sea Systems Command
Surface Effect Ship Pisjec
Attn: PMS 304-z
PMS 304-z1
PMS 304-40
P. O. Box 34401

Bethesda, Maryland 20034
David Taylor Naval Ship Research and Development Center
Attn: Code 1630
Bethesda, Maryland
Commander
Naval Sea Systems Command
Attn: NSEA-032
Pipject (PMS 304)
Attn: PMS 304

1
1

Washington, D. C. 20360
Commander
Naval Facilities Ehgineering Command
Attn: Code 032
Washington, D. C. 20390
Commander
U. S. Naval Sufface Weapons Center White Oak
Attn: Nucleat Program Office
Silver Spring, Maryland 20910
Commanding Officer and Director
U. S. Naval Civil Engineering Laboratory
Port Hueneme, California 93041
Commanding Officer and Director
Naval Ship Research and Development Center
Attn: Code 700
Washington, D. C. 20007
Assistant to the Secretary of
 Defense (Atomic Energy)
Washington, D. C. 20301
Office of the Joint Chiefs of
 Staff
Attn: J-3, Strat Ops I
 \(J-5\), OP \& PD 1
 \(J-5\), SP \& PD 1
 J-5, R\& DD
 1
Washington, D. C. 20301
Director
Defense Intelligence Agency
Attn: DIAAP-1K2
1
Washington, D. C. 20301
Director, Defense Nuclear Agency
Washington, D. C. 20305
Commander
Field Commander DNA, Sandia Base
Albuquerque, New Mexico 87115
Chief of Research and Developmen
Department of the Army
Attn: Nuclear, Chemical \& Biological l
 Division
Washington, D. C. 20315
Director
U. S. Army Engineer
Waterways Experiment Station
1
Attn: Mr. J. Strange
Vigksburg, Mississippi 39180
Chief of Naval Operations
Attn: NOP-00
 NOP-090 1
 NOP-096 1
 NOP-098 1
 NOP-961D3 1
 NOP-983 1
 NOP-03 1
 NOP-32 1
 NOP-35 1
 NOP-373 1
 NOP-06
1
1
Department of the Navy
Office of Naval Research
Attn: Code 4651
Code 438 1
Code 480 2
800 N. Quincy St.
Arlington, Virginia 22217
Administrative Contracting Officer
DCAS-MA
Attn: Mr. James Chapman 1
3452 East Foothill Boulevard
Pasadena, California 91107
Office of Naval Research Branch Office,Pasadena
1030 East Green Street
Pasadena, California
Director
U. S. Naval Research Laboretory
Attn: Library, Code 2627 6
Technical Information Division 6
Washington, D, C. 20390
Defense Documentation Center
Building 5
Cameron Station
Attn: Code S4703112
Alexandria, Virginia 22314
Department of Defense
Director of Defense Research and1
Engineering
Washington, D. C. 20301
Director
Defense Advanced Research Projects Agency
Attn: STO2
1400 Wilson Boulevard
Arlington, Virginia 22209
Director
Weapons Systems Evaluation Group400 Army-Navy Drive1
Arlington, Virginia 22202

Commanding Officer and Director
U. S. Naval Scientific and Technical Intelligence Center
4301 Suitland Road
Washington, D. C. 20390
Commanding Officer
Naval Ocean Systems Center
San Diego, California 92152
University of California
Lawrence Radiation Laboratory
Attn: Technical Information Division
P. O. Box 808

Livermore, California 94551
Los Alamos Scientific Lbboratory
Attn: Report Librarian
P. O. Box 1663

Los Alamos, New Mexico

The RAND Corporation
1700 Main Street
Santa Monica, California 90406
General Electric Company
TEMPO Center for Advanced Studies Attn: DASIAC
816 State Street
Santa Barbara, California 93102
URS Research Company
Attn: Mr. Kenneth Kaplan 1
155 Bovet Road
San Mateo, California 94402
Tetra Tech, Inc.
Attn: Dr. B. LeMehaute
630 North Rosemead Boulevard
Pasadena, California 91107
Underwater Systems, Inc.
Attn: Dr. M. Weinstein```

