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ABSTRACT

This paper derives an algorithm for use by an airborne
mid-air collision avoidance system to determine when an alarm
should be given in case a mid-air collision is imminent. The
algorithm 1s based on an extension of the standard modified tau
alarm criterion used in most collision avoidance system threat
logics.

The standard criterion uses only altitude and range data
and, as a result, will generate high alarm rates in heavy air
traffic. The criterion presented here makes use of bearing
data as well as altitude and range data and should, therefore,
provide lower alarm rates.
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I. INTRODUCTION

The objective of thls paper is to construct a new algo-
rithm for deciding when the danger of collision between two
aircraft is great enough to warrant an avoidance maneuver. In
making such a decision a collision avoidance system (CAS) in
one of the aircraft would measure the other's relative range,
altitude, and bearing* to which data it would then apply the
algorithm. If the result were consistent with the possibllity
of an imminent collision the CAS would generate an alarm to
alert the pilot.

The scope of the work reported here has been limited delib-
erately to the mathematical development and justification of
the collision threat algorithm. No attempt has been made to
assess its potential usefulness in practice, e.g., for reducing
the number of false alarms relative to the number generated by
other threat criteria which have been implemented or suggested.
Hopefully, this can be done in a future study.

ANTC-117 (Ref. 1), the document containing the CAS perform-
ance standards recommended by the Air Transport Assoclation,
specifies alarm criteria which do not involve bearing data.
These criteria are of two types: one 1s coiicerned entirely
with altitude and altitude rate while the other 1s concerned
entirely with range and range rate. The second 1s based on the
so called modified tau condition which, Ref. 2 has shown,

¥The relative range, altitude and bearing rates are also needed,
but these quantities can be calculated from measurements of
the corresponding static quantitles at two different times
separated by an accurately determined time interval.




provides the most efficient*® possible alarm criterion using
range and range rate data alone.

However, this result of Ref. 2 1s valid only when the
fixed parameters of the modified tau condition are properly
selected. Some IDA studies (Ref. 3 and Ref. 4) have applied
the analysis of Ref. 2 to show that the fixed parameters se-
lected for the alarm criteria specified in ANTC-117 have values
which will not guarantee an alarm for every possible threat.

In addition, the studies concluded that 1n high density traf-
fic such as projected by the FAA for the Los Angeles Basin in
1982 use of the modified tau condition, even with the less than
adequate ANTC-117 parameters, would result in an excessive
number of alarms, many of which would be unnecessary. More-
over, if the correct modified tau parameter values in accord-
ance with the theory of Ref. 2 were used the expected number of
alarms would be even greater.

A CAS can reduce the number of alarms 1t must give by re-
ducing its uncertainty 1n estimating the location and movement
of intruding aircraft. One way it can do this is to use more
information about the position and motion of each intruder,
e.g., by adding bearing and bearing rate to the data now re-
quired for the ANTC-117 threat determination logic. A CAS,
referred to as LCAS, recently proposed by George Litchford,
provides bearing data along with the usual range and altitude.

In principle, the new threat determination algorithm deri-
ved here makes the most efficient possible use of the range,

'gy "efficlient," as the term is used here, it is meant that an
alarm 1s given if and only if, in view of the data available
to the CAS, a collision 1s possible unless an avoldance maneu-
ver begins before the advent of the next measurement cycle,
which is sometimes referred to as an "epoch.”




altitude and bearing data assumed to be avallable.* Hopefully,
this will result in significantly fewer unnecessary alarms when
implemented by a CAS than would be the case 1f the modified tau
condition were used instead.

The data provided by LCAS are sufficient to locate and
track an intruding aircraft with a precision that is limited
only by measurement errors. However, the intruder, whose inten-
tions are assumed to be unknown, may deviate at any time from
linear flight, accelerating in the process, usually by turning,
as much as 1/2 g. The threat determination algorithm must
recognize a hazardous situation, allowing for measurement errors
and the possibility of such an unknown acceleration, in suffi-
cilent time to permit the successful completion of an avoidance
maneuver.

Thus, even when bearing data are available and the most
efficient possible threat analysis is used there will still
exist enough uncertainty concerning the intruder's flight path
to cause an alarm on some occasions when a collision would not
have occurred had the alarm been ignored. No attempt has been
made here to estimate how often thls will happen nor whether,
in fact, the lower alarm rate generated by the new algorithm
will not still be too high for satlsfactory CAS performance in
heavy traffic.

Section II discusses a mathematical condition for the oc-
currence of a mid-alr collision at a given instant of time when
the relative acceleration between the encountering aircraft is
bounded by a known constant. Section III establishes an effi-
cient alarm criterion based on that condition and an assumed

¥This is true if no measurement errors are assumed to exist.
When measurement errors are taken into account in Section V
it 1s expedient to sacrifice some efficiency in order to avold
mathematical complications; i.e., some alarms will be given
which theoretically might be avoided by more effective use of
the avallable data.




minimum escape time, 1.e., the time required for a CAS to gener-
ate the alarm and the aircraft to maneuver to safety.

A threat algorithm, which does not take into account
measurement errors, will be derived (with the aid of the appen-
dices) and presented in Section IV. 1In Section V, a revised

threat algorithm will be given that does include the effect of
measurement errors.




IT. CONDITION FOR A MID-AIR COLLISION

In CAS threat analyses (e.g., Ref. 2) it 1is customary to
base the concept of a hazard upon the possibility of a collision
between two ailrcraft assuming that both obey regulations which
limit an aircraft's speed and acceleration. The hazard may
exist if the colllsion can occur for an allowable relative
acceleration although, since it is assumed that at least one
pilot's intentions are unknown, the collision is not actually
predicted.

A CAS officially recognizes a hazardous situation requir-
ing an alarm when it determines that after its next observation
such a collislon could occur before the maximum estimated time
(at some confidence level) needed for maneuvering to safety has
elapsed. In this context "maneuvering to safety" means adopt-
ing a flight path (usually in a vertical plane) which guarantees
that the encountering alrcraft remain separated by at least
150 f£o.>»

Following Ref. 2, the condition for a collision can be
stated mathematically in terms of the 1nitial position vector
R of the intruder alrcraft relative to the CAS, the initial
relative velocity vector 3, and the relative acceleration vector
A(t). The acceleration A(t) can vary as a function of time t
but, by assumption, remains bounded in magnitude. The bound is
a predetermined ccnstant U; i.e.,

'Q(t)'sU

o~




for all t. The condition for collision before escape is pos-
sible 1s then

S
B_+tf3+f/ﬁ(r)drds=o (1)
o JO -

for some t in the interval
0 A < te’
where te is the estimated time required for escape. ¥
In Ref. 2 1t was shown that whenever there exists an

acceleration Q(t) bounded in magnitude by a constant U, i.e.,

A(t) = U,
for which the collision condition (1) holds, then there exists
a constant vector A also bounded in magnitude by U, i.e.,

J4l= v

such that (1) holds for some time t' in the interval
1
(2 L < te

with A(t) replaced by A; 1.e., (1) takes the form

-2

R L T T kel T (2)

Therefore, without loss of generallty (2), which is more expli-
cit than (1), can be used as the collision condition for CAS
threat analyses.

¥Not only the time required for any necessary avoidance maneu-
vers but also all delays such as those due to pilot and air-
craft reactions, as well as an allowance of one full epoch
for updating, are included in te.

6




ITI. THE CAS ALARM CRITERION

In order to specify a CAS alarm criterion suitable for
translation into an algorithm, following Ref. 2 an attempt can
be made to replace the vector collision condition (2) with a
scalar condition which does not contain the unknown equivalent
acceleration vector A. The new condition is¥*

o 2 y 2 :
R+t BRI < 378 £ W (3)

Indeed, it can be shown that if (3) holds there exists a

t in the interval
Uit < te
and a constant vector A, such that

=,

>

for which the collision condition (2) is satisfied, i.e., for

which
O
R+tTR+5 A=o. (4)

~ 2 ~

The proof 1s not difficult. Let b(t) be defined by

b(t) = %iUi -|g %% 3|2. (5)

¥is Ref. § has observed, a condition such as (3) 1s technically
not the most efficient one possible, since it does not include
the effect of 1limiting each aircraft's speed, although it may
be presumed that a maximum speed will be as well enforced as
the maximum acceleration which 1s taken into account. As
Ref. 4 has indicated, however, the inclusion of a speed limit
should not greatly reduce the number of expected alarms gener-
ated by an otherwlse efficient threat algorithm.




Ther. (3) 1is equivalent to
B(t,} 20, (6)

which, because b(t) is continuous, implies that there is a t,
with

OF st < tes
such that %
b(t) > O.
Then if A 1s given by
2 .
ﬂ*-%-?—(ﬁ‘ﬁfg)’

it follows from (5) that

o)< o
and, by substitution, that (4) is satisfied as stated. Thus,
if, for a given U and te’ for some pair of vectors R and 3 (3)
is satisfied, then a hazard as defined by (2) exists. However,
the converse 1s not necessarily true. That is, i1f condition
(2) holds, so that a hazard exists, it does not necessarily
follow that (3) holds. Therefore, if (3) were used alone as an

algorithm to determine the existence of a threat, in some cases
it woula fall to do so.

In order to simplify the condition and remedy this defect
Ref. 2 replaced (3) with the modified tau criterion

2

RoA Rt % 1/2 U te (7)

This condition involves the scalar range R, which is the magni-
tude of the relative position vector R, and the scalar range
rate ﬁ, which is the component of the relative velocity vector
B along R.

The modified tau condition (7) holds whenever (2) holds
and therefore always predicts a hazard when one exists. In
addition, Ref. 2 showed that when (7) is violated a hazard as
defined by (2) does not exict. A proof of this fact is also
sketched here in Appendix B.




However, a hazard does not necessarily exist when (7) is
satisfied. For thils reason that condition 1is expected to pre-
dict too many false threats in heavy traffic (cf. Ref. 3),
although Ref. 2 showed that (7) is the most efficient threat
determination criterion possible, given only a knowledge of
R and R.

If the complete vectors R and E are known it should be
possible to replace (7) with é more efficient algorithm. A
candidate for this role is (3); however, it has already been
observed that (3) by itself 1s not adequate because it fails
tc detect a threat in some cases. This defect can be remedied
by introducing some conditions to be used in addition to (3).
It is then possible to formulate a satisfactory algorithm which
detects all true and no false threats as they have been defined
here.

To this end it is useful to consider, first, a class of
cases for which a violation of (3) does imply that no hazard
exists. Ref. 2 proved that thils i1s always true for the modified
1 criterion (7) (cf. also Appendix B here), and that proof
depends on the fact that the equation

2

1/2Ut° - Rt = R =0

always has exactly one positive root. If the parameters which
determine the function b(t) defined by (5) are such that the
equation

b(t) =0 (8)

has exactly one positive root, the same conclusion would follow
for the criterion (3). That is, if a collision could occur at
a time T in the interval

02T ¢ tes

b(E) = 0,




then, because b(t) becomes arbitrarily large as t becomes large,
if b(t) cannot become zero again for t positive 1t follows that

b(te) >0
as required.

In summary, if (3) 1s satisfied, then an alarm should be

given, and 1f (7) 1s violated, 1.e., if

2
e ?

R + ﬁte a2 342 (9)

no alarm should be given. It remains to investigate what
happens when (3) is violated and (7) 1s satisfied, and the
answer depends upon the positive roots of equation (8).

In Appendix B, a condition which determines whether (8)
has exactly one positive root is derived. 1In the alternative
case, in which it has more than one positive root, special con-
ditions to determine whether one of those roots does, in fact,
lie between 0 and te are also derived. Together with (3) and
(9) these additional conditions comprise an algorithm which
satisfies the requirements of a CAS alarm criterion.

Glven a knowledge of the vectors R and B and the fact that
the relative acceleration between the encountering alrcraft is
bounded by a specifled constant U, but ignoring any speed limit
and measurement errors, this algorithm provides the most effi-
cient alarm criterion possible. In the next section it is
given explicitly in terms of the slant range R from the CAS to
the intruder, the range rate ﬁ, the bearing rate 6, the relative
altitude z, and the altitude rate é, all of which are assumed
to be quantities known through measurement.

10




IV. THE THREAT ALGORITHM

The following paramete?s are assumed to be known through

measurement:
R, slant range;

, range rate;
¢, bearing;
¢, bearing rate;
z, relative altitude (altitude difference);
z, altitude range

These quantities are also defined in Appendix A in terms of

the coordinates of an intruder aircraft relative to a CAS locat-
ed at the origin of the appropriate coordinate system. In addi-
tion, it 1s assumed that there is a kncwn bound U on the magni-
tude of the relative acceleration between encountering aircraft
and a known time te, the escape time, required for an aircraft
to maneuver to safety after it receives an alarm.

A polynomial f(t) in the time variable t with coefficients
determined by the measured parameters and the quantities U and
te is defined by setting

2
b(t) = ¥ £(t),
so that, in accordance with (5), f(t) has the form
y 2
f(t) = ¢t = a2t + ay t - a,s 85,20, a,>0.

According to Appendix A,

(10)




*
b Fan Dan s i (Rz-éR)z]
a, = — |[R® + ¢ (R® - 2°) + 5———
2 U2 [ R2 - z2

In the absence of measurement errors the algorithm which
determines whether a hazard exists and therefore an alarm
should be given 1s derived in Appendix B. The algorithm is
defined by the following sequence of tests:

. 2
(1) R+ R b % 172 Ut ?

If no then no alarm;
if yes then (2). ;
(2) t, -8, t2 + 8, £ - a > o?
If yes then alarm;
if no then (3). |

(3) a; > o?

If no then no alarm;
if yes then (4).
(4) 82,3 > 27a.%2

If no then no alarm;

if yes then (5). i ;
(55 Be % xp Nt

If no then no alarm;

¥It will be observed that when the intruder is directly over-
head or directly below the CAS, i.e., when R = lz}, the param-
eter a, 1s either ambiguous or infinite. It may also be ex-
pected“"that a, will be very sensitive to error when R ~]z|.
Therefore, as a practical matter unless R differs from by
more than the maximum combined error of the measured parameters
R and z the usual modified tau criterion should be used instead
of the threat algorithm. This 1s, in fact, equivalent to let-
ting a, become infinite in the threat algorithm.

12




If no then no alarm;

1f yes then (7).
(7) 6t,° > a,?

If yes then alarm;
1f no* then (8).
3 *a
(8) Nte - 2a2 te + 81 < 09
If yes then alarm;
if no then no alarm.

Example 1.

As an example of how this algorithm would be applied, sup-
pose that the following CAS parameters are measured for an
intruder:

range R = 4000 ft,
range rate R = -590 ft/sec,
relative altitude z = 200 ft
relative altitude rate z = -1600 ft/min = -26.67 ft/sec
bearing rate ¢ = 1°/sec = 0.01745 rad/sec

If the maximum relative acceleration 1s assumed to be 1lg, then

U = 32.2 ft/sec”.

—
6té2 # a, because of steps (4) and (5).

*% 3

ute - 2a2te + 8 # 0 because of steps (6) and (7).

13




Then from (10) it is found that

& P 6.1726 x 10“ secu,

e 1.8209 x 10" seo3,
2

8

a, = 1361.7 sec

2

If it 1s assumed that the escape time te is 25 sec, then

at step (1) of the algorithm it is found that

R + Rt_ = -10750 ft < 10,062 = %Ute2.

Thus, an alarm would be glven by the modified tau criterion,
but for the threat algorithm of this section it would be neces-
sary at this point to consider step (2). Then it would oe
found that

y 2

by = aste

+ alte s -6.6938 x 10“ secu < 0.

Thus, it would be necessary to consider step (3):

a, = 1.8209 x 10" see3 > o,

1
which leads to step (4). It is found that

8a23 = 2.0199 x 1019 > 8.9523 x 109 = 27a12,
which leads to step (5). For that test

4 1 2

< 1.5452 x 10° = = 2,

Thus, it 1s necessary to go to step (6). For this purpose S,
must be calculated:

3 12a \f
s.,= [z |t - (1 - -—§9> = 0.19367

A, ® 6.1726 x 10

2

Then step (6) gives

a 3
1 = 0.36238 2 0.35828 = 28 - 4s “°,
5,32 e

14




Thus, according to the test at step (6) step (7) must be con-
sidered. At step (7) it 1s found that

6t.° = 3750 > 1361.7 = a,;
hence an alarm must be given.

This result can be verified by inspection of Fig. 1 which

shows the curve

4 2
fiit) = £° = 32t + alt - a.

It may be observed that f(t) vanishes at t = 6 sec and again
at a little more than 8 sec, both of which represent possible
collision times before te = 25 sec.

Example 2.

The purpose of this example 1s to see what happens 1if the
bearing rate 1is changed but all of the other parameters of ex-
ample 1 are retained. The modified tau criterion is unaffected
by such a change. However, if the bearing rate é is taken to
be 2°/sec (0.034907 rad/sec), then a, and a; remain the same
but now
2.

a., = 1418 sec

2

In this case it will be found that the threat algorithm indi-
cates "no alarm" at step (6).

Indeed, Fig. 1, which contains the curve for f(t) shows
that f(t) has a maximum at about 7 sec, is negative between
0 and 25 sec, and has positive curvature at 25 sec. Appendix
B demonstrates that these facts should account for the indi-
cated behavior of the threat algorithm. Since, as the curve
shows, f(t) does not vanish between 0 and 25 sec there is no
threat of collision before the escape time has elapsed.

Example 3.

If instead of the bearing rate 6 changing, 1t 1s the range
which 1s changed to 3 nmi (18,240 ft) while the other parameters

15
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remain the same (e.g., ¢ stays lo/sec), the threat algorithm
indicates an alarm at step (2). That 1s, the coefficients
obtained from (10) are

1.2835 x 108 secu,

8,
a) = 8.3034 x 10“ sec3,
a = 1735.4 sec2,

so that
it Y st 4 - t 2 + £t - a =.9.8320 x 10“ >0
e e a? e a1 e e} i s
Example 4.

On the other hand, if the range R 1s increased to 4 nmi
(24,320 ft) with the other parameters left unchanged, then

.- 2.2818 x 106 secu,
. Qs ke O X 105 sec3,
a, = 2039.8 sec2,

and at step (4) it is found that

10

ea23 = 6.7897 x 1010 < 3.3093 x 10! = 27a12.

Thus, no alarm would be generated for the larger range. Fig. 2
shows the curves for f(t) corresponding to the 3 and 4 nmi
ranges. Nelther has a maximum (as expected, since both fail

the test at step (4)), the 3 nmi curve is zero at a time slightly
beyond 23 sec, indicating a collision threat before the escape
time of 25 sec, and the 4 nmi curve remains negative between 0
and 25 sec, indicating no threat.

17
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V. THREAT ALGORITHM WITH MEASUREMENT ERRORS

A. ERROR TOLERANCES AND PARAMETER UPPER AND LOWER BOUNDS

Each of the parameters measured by a CAS will have some
specified error tolerance, so that a single measurement will
actually define a range of possible values for a parameter
rather than a single value. Therefore, it 1s necessary to re-
place the algorithm given in Section IV by one which will
generate an alarm whenever a measurement and the error toler-
ances are consistent with any set of independent parameter
values that satisfy an alarm condition of the original algo-
rithm.

If the revised algorithm were, indeed, restricted to
indicating an alarm only in such a circumstance its efficiency
would remain unimpaired, although the number of alarms would
necessarily increase because of the contribution of measurement
error to the uncertainty in estimating an intruder's position
and movement. However, it wlll be found mathematically con-
venient to widen the effective tolerance ranges of certain
derived quantities, replacing their possible maximum and mini-
mum values with grosser estimates which are no more than upper
and lower bounds. This will reduce the algorithm's efficiency
somewhat, thereby increasing the number of alarms it will gene-
rate. The result 1s equlvalent to an increase in the error
sensitivity of the affected quantities.

In revising the threat algorithm of Section IV it will be
convenient to use the following notation. When the subscript
m is added to the symbol for a measured quantity the new sym-
bol will designate the quantity's minimum value as determined

19




o A~

by the specified error tolerance. Similarly, adding the sub-
script M will provide a symbol for the quantity's maximum.
Thus, for example, 1f a range measurement 1is RO and the error
tolerance is * €, so that the range R would be properly in-~
dicated by

then

and

where the usual convention that € is non negative has been
assumed.*

On the other hand, for symbols representing quantities
which are derived rather than measured directly, the addition
of the subscripts m and M will indicate, less precisely, Just
lower and upper bounds. These may or may not be the true mini-
ma and maxima implied by the given measurement error tolerances.

For example, the quantity a defined by (10) will lead
naturally to the definitions

2
& 2 MRm
om U2
and
2
A i MRM
oM U2 2

since R 1s non negative by virtue of its geometrical meaning.

However, for a defined by (10), it would be permissible, for

l’

¥The error € 1s a fixed bound on the deviation of R from Ro.

A statistical error fluctuation would be taken into account

by assigning some kind of confidence 1limit along with e, e.g.,
by stating that € bounds the error with 99% probability or
that € is a 30 bound on the error.

20




example, (although not recommended in this case) to define

a = 3
1m 8RM|RM|,

U2
which is a lower bound smaller than the minimum of a, whenever
< *
RM< 0.
A known physical or geometrical relationship may play a
role in determining the minimum or maximum value of a derived

quantity's tolerance interval. For example, the quantity p2
defined in terms of the relative range R and relative altitude

Z by
o2 e R2 & z2
E must always be positive, whatever the tolerance limits may be
on R and z separately. Thus, since p2 cannot be less than zero

it follows that

r L 2 2 *%
P = Bn - 12l (11)
s 1 5
2 2
Rm 2 |ZIM S
but
P 220 (12)
m
it
2 2
R - IzlM % 0.
i . 'in this case the true minimum value of ajg would be -8Rmf2M :
which is positive. s o

U

"Since 2z can be elther positive or negative |Z‘N$ is only equal

2 2
to zM2 if z, is positive; 1if z, 1s negative, |ZlM = 2y

21
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On the other hand, it 1is always understood that

2 2
pNI . RM A |z|m L (13)

B. AUXILIARY SUBALGORITHMS

Before attempting to revise the threat algorithm of Section
IV it will be found useful to formulate some auxiliary algo-
rithms which will help to simplify the description of the
necessary logic. These cover the arithmetical steps which are
implied when the subscripts m and M are added to some simple
algebralc expressions.

The addition of a subscript to an expression of the form
(u v) or [u + v| has the effect of operating on the expression
to produce an algebraic function of the quantities Ups uM’ Ho
and Vi Four such operations are possible: (u v)m, (u v)M,
lu + v]m, and |u + v[M. The results, which may be regarded as
algorithms for the calculation of the subscripted quantities,

are given in Tables 1, 2 and 3.

It should be emphasized here that these results can be
relied upon to provide actual maxima and minima, in general,
only when u and v are independent. If u and v are dependent
inefficient bounds may be given instead, e.g., in the case
(u2)m which can be calculated from Table 2 by settin% u = v.
When u, < 0= 7 Table 2 gives a lower bound for (u“)m below

M? g
’ M .

the true minimum, which is min (um

TABLE 1. Subalgorithm for |u+v|m and |u+v|M

if uM+vM <0 Ty um+vm >0 if um+vm50suM+vM
lu + vlm “(uy + vy) b v 0
lu + v|M -(um + vm) uy *+ vy max [—(um+vm),(uM+vM)]
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TABLE 2. Subalgorithm for (uv)m
if vy < 0 if ey if Vp < 0 < VM
if uy < 0 Uy vy Un Yy Un Yy
if up > 0 Uy Vi L Uy Vo
if u_<O<u U,, V u_ v
m M M 'm m ‘M min (um Vi Uy vm)
TABLE 3. Subalgorithm for (uv)M
if vy < 0 if Ve if Ve 0 < VM
if Uy < 0 o Uy Vo Un Vi
15 up > 0 Up VM Uy vy Uy ¥y
if umSOSUM S Uy Vy max (um Vo Uy Vi)
In addition to the algorithms defined by the tables,
formulas for the expressions (%)m and (%)M, where u and v are
both non negative, are needed. These are
4y =Im (14)
* ni VM
and
u
(E) = ._M. 5
v’'M Vm (15)

Most of the subscripting required for the revised threat

algorithm can be accomplished by repeated applications of the
subalgorithms defined by Tables 1, 2, and 3, the formulas (14)
and (15), and the trivial relations

+
(u v)m . U

(u + v)M = Uy + Ve
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It should be observed, however, that this procedure is not
uniquely defined for a given expression and, therefore, may lead
to different results, depending upon the grouping of terms and
the order in which the subscripting is done.

If at each application of a subalgorithm in this procedure
u and v are independent, the true minimum or maximum of the
original expression will be obtained. If, however, at some
step u and v are dependent the final result may only be a bound,
i.e., a quantity which 1s smaller than the true minimum or
larger than the true maximum. As an example, consider the cal-
culation of (x2 + x)M, where

X = -2, Xy = 0

If the calculation 1s done as follows:

2

(x +X)M=(x2)M+xM=u+o=u,

the result is not a true maximum but an upper bound. In fact,
it is easy to see that the true maximum occurs when x = X, * =2
and that its value 1is 2.

The calculation can also be done by first setting

(x2

+ X))y = (x(x + 1))y,
next identifying
(S R S8 SR G

and finally using Table 3. It will be found, first, that in
this case

0, - -2, uy = 0

and

Vo ® -1, Vg = 2 I8
Table 3 applied to (uv)M will then give the true maximum 2 as
the result.
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The calculation of the extrema aom? aoM’ alm’ alM’ aZm’
a,y corresponding to the coefficients given by (10) could be
accomplished by repeated applications of the subalgorithms but
with some unnecessary loss of efficiency. Instead, it is pre-

ferable to use

= YR e a = 4R 2 (16)

for abm and abM‘ Tables 2 and 3 can be used to calculate alm
and aM without loss of efficilency, however.

For asm and a5 accepting some loss of efficiency is
probably worthwhile for the sake of mathematical simplicity in
the calculations. A reasonable form of 82 for the calculation

is
g (IR 1812 02 ¢ L2,
U2 2
)
so that
% e 2 o 2 2 . . 2
Bt ﬂg |R|m el Py T lﬂE:%BLn ] (17)
Uu- L oM
and 5
- . 2 . 2 2 . . 2
aom 5-2— IRIn" + loly" oy +J-TRZ_ZHM]. (18)
Wil p
m

In (17) and (18), the second and third terms can be calculated
from Tables 1, 2, and 3 with the aid of (11), (12), and (13)

for calculating °m2 and °M2‘

Expressions for the extrema s and SoM of the quantity

om
8 which was defined in step (6) of the original threat algo-
rithm of Section IV, can be obtained by inspection. For this

purpose 1t should be recalled that a, and a, are both non neg-

ative. Although some loss of efficilency occurs because a, and
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32 are dependent, reasonable expressions are
= 12a . \%
SoM ‘/% [1 - (1 - gM) ] (19)
a
2m
=a/l 12a 3
8 ‘/E [l -~ (1 - om) ] (20)

am

and

It will be seen later that the values of Som and 8 oM given by
(19) and (20) are guaranteed to be real because the revised
threat algorithm would otherwise have terminated at step (5)
before a need for these quantitlies could have arisen.

Algorithms are also needed for the extrema f(te)m, f(te)M,
f'(te)m, and f"(te)M of the polynomials f(te) and f'(te) which
appear in steps (2) and (8) of the threat algorithm of Section
IV. The original polynomials were defined by

(it ) = te“ - aztez ot el (21) ‘
and
e - ute3 ~ 2a,t, + a,. (22)
For f'(te) it is probably advisable to accept
PRt ), = Ut 0 - 2egt, + 8, (23)
and
V(L Yy ® 5.0 - 20, b, ¥ Ay (24)

However, somewhat more efficient bounds can be obtained for
f(te) by first expressing it in the form, using (10),

y .2
f(t,) = a - GE IR + teRI 5 (25)
where 4 . Rz-2R|° Jt 2 26
b teu -4 [|¢|2 02 4 le zR] ] A (26)
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Then

and

¥ hFss g2 |ﬁz-én|”2
e k- F |¢IM pM +
5 Pm
P . . 2
Nk bt 2. R Rz-2ZR|
i Gg |¢|m P ¥ m

e (27)

t (28)

wherein further subscripting can be carried out with the aid of

the previously derived subalgorithms.

The subalgorithms can be

applied along with (27) and (28) to (25) in order to calculate

f‘(te)m and f(te)M.

C. THE REVISED THREAT ALGORITHM

In order to obtain the revised threat algorithm it is only

necessary to strengthen the lnequallity condition for no alarm

or weaken the condition for an alarm at each step of the threat

algorithm in Section III by applying the appropriate extremum

operations.

this a completely mechanical procedure.

The result is:

if yes then (2).

1f no than (3).

if yes then (4).

. 1
(1) Rm + Rmte < 7 U te

If no then no alarm;

(2) f(te)M > 0°?

If yes then alarm;

(3) ajy > 0?

If no then no alarm;

3 2
(4) Bayy > 27ayp,

27
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The subalgorithms derived in Section VB now make




If no then no alarm;

if yes then (5).

i 2
(5) &m * I3 a'21"1 ?

If no then no alarm;
if yes then (6).
3
(6) &,y = B8 = N85 1
a3/2
m
If no then no alarm;

if yes then (7).

2
(7) 6te > azm?

If yes then alarm;
1f no then (8).

'
(8) r (te)m < 02
If yes then alarm;
if no then no alarm.

For an example to 1llustrate the use of the revised threat
algorithm, the following error tolerances will be assumed:

+

range (R)

range rate (R)
altitude (2)
altitude rate (Zz)
bearing rate (é)

200 £,

50 ft/sec (about t 30kn),
200 £t

56.6 ft/sec

5°/sec.

+ H#

+

Then, for measured parameters having the values

R = 12160 ft (2 nmi),
R = -590 ft/sec,

= 200 ft,

-26.67 ft/sec,
16°/sec,

R xy N* N
n n
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the extrema which must be used in the threat algorithm will

be given by
Rm = 11,960 ft, RM = 12,360 ft,
ﬁm = -640 ft/sec, ﬁM = ~-540 ft/sec,
z, = 0 ft, Zy = 4oo ft,
ém = -83.3 ft/sec, éM = 29.9 ft/sec,
ém = 11%sec, 6M = 21%sec.

Using the methods described in this section for calculat-
ing the derived parameter extrema, it will be found that

R 1.4288x10° r¢,2 oy- = 1.5277x108 £t,2
I 5.51814x105 sece agy = 5.8937x105 secu,
ay, = 4.9831x10" sec3 e > 6.1035x10" sec3,
Hou 2.14“2x10u sec? asy = 8.0782)(1014 sec2,
s, = 9-1970x1073, s, = 3.5873x107°

f‘(te)M = 1.2313x107secu, f"(te)m = -3.9268x1065ec3.

The threat algorithm applied to these quantities then leads to
the conclusion at step (8), that an alarm should be generated.

If the measured bearing rate $ is increased to 17°/sec, SO
that
ém = 12%/sec and &M = 22°/sec,

while the other measured parameters are left unchanged, then

2
the derived parameters p “, Py“s 8,5 8gys 81pe 8Nd 83y nepagy

unchanged but new values for aoms a2M’ Som? and S,M are obtained.

o)
These are given by

= 2.5304x10 " sec? = 8.8502x10 sec?,

aom s 8oM

Bom ™ 8.3946x1073, Som 3.0381x107°

29




On applying the threat algorithm to the new values of the de-
rived parameter extrema it will be found that "no alarm" is in-
dicated at step (6).
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APPENDIX A
COEFFICIENTS IN THE THREAT ALGORITHM

The condition (3) of Secfion II is the basis for the
hazard alarm algorithm given in Section IV. That algorithm
operates on the coefficients ags al, and a2 of a polynomial
f(t) derived from (3), which, in turn, depends upon the com-
ponents of the range vector R between the CAS and an intruder

aircraft and upon the time derivatlive R of R. The components

of these vectors depend upon a set of quantities measured by
the CAS:

R, the range between the CAS and the intruder,

ﬁ, the range rate,

¢, the bearing of the intruder

¢, the bearing rate,

z, the difference in altitude between the intruder
and the CAS,

z, the relative altitude rate.
in terms of the

Expressions for the coefficients a al,and a

s
measured quantities will be deriveg in' this agpendix.

It will be convenient to use a right-handed spherical
coordinate system centered at the CAS. The polar axis is
perpendicular to the ground. The polar angle 6 1is zero along
the axls 1n the upward direction and increases downward to
1ts extreme value of 180° along the axis toward the ground.

The azimuth angle ¢ measures the absolute bearing of the intruder

and 1s therefore zero at some predetermined geographical

direction, e.g., magnetic north. Looking down, a horizontal vector

which emanates from the CAS and rotates counterclockwise will
have an azimuth ¢ that increases as 1t rotates. The radial
coordinate R 1s the intruder range. A corresponding vector
coordinate system 1s based upon a set of three orthogonal unit

A-2




ool

vectors ge, a¢, and ar pointing in the direction of increasing
gs ¢, ana R,

Condition (3) of Section II depends upon the vectors R
and ﬁ. The vector R 1is given by

R =R ap (A-1)

in terms of the spherical coordinate system. The vector R is
given by

2 3p- (A-2)

[3w o L3
U
:j-
D
+
o)

The unit vector &, changes direction from point to point and

R
therefore, because of aircraft motion, 1t does not remain
constant in time. For this reason, as indicated in (A-2), 1its

time derivative is not zero in general.

2R
For the purpose of calculating éR it 1is helpful to use
a Cartesian coordinate system, for which the unit orthogonal
basis vectors gx, gy, and gz are constant throughout space
and, thus, do not change in time. A right-handed Cartesian
coordinate system for this purpose may be defined by letting
the unit vector &, point in the direction 6 = o, the unit
vector 3 point in the direction ¢ = o in the plane 6 = 900,
and the unit vector gy point 1in the direction ¢ = 900 in the
plane 6 = 900. The coordinate systems are illustrated in

Fig. A-1l.

The relationship between the basis vectors of the
spherical coordinate system and those of the Cartesian coordinate
system is given by the following equations:




CAS

e GROUND
8-30-76-5

FIGURE A-1. CAS - Intruder Coordinate Systems For Range
Vector
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dp = (cos ¢ sin 6) g  + (sin ¢ sin 6) 5, (cos 6) a, ,

8, - (~sin ¢)a  + (cos ¢)gy . (A-3)

8y ™ (cos ¢ cos e)§x + (sin ¢ cos e)gy - (sin e)gz N

and

., - (=sin ¢)§¢ + (cos ¢ cos 9):11e + (cos ¢ sin e)gR .
(A-4)

Sl (cos ¢)§¢ + (sin ¢ cos 6)536 + (sin ¢ sin 9)@,R e

a, = (-sin 8)ag + (cos 0) ap .

It follows from (A-3) and (A-4) that

ap = (-¢ sin ¢ sin 6 + 6 cos ¢ cos e)gx

+ (¢ cos ¢ sin 8 + 8 sin ¢ cos e)gy

- (8 sin e)gz = (¢ sin 6)g¢ + 6~ae ¥

Then, with the aid of this result, (A-2) can be written

R=Ra,+ (R ¢ sin e)z3¢+Re &g (A-5)
Actually, while ¢, ¢, R, and R are assumed to be measured
quantities, 6 and 6 are not measured directly. However, z
and z are, and 6 and 6 can be expressed in terms of z, é, R,
and R. The pertinent relationship is given by

Z = R cos 6 , (A-6)

from which it follows that




cos 6 =

oo I3}

and

R =2

sin 6 = (A-7)

Then, from (A6),
z =R cos 8 - R§ sin g5

and, from (A7)

If these relations are substituted into (A-5) the result will be
an expression for B /-

R =R g+ (dWR%-2%)g, +(-Bzzzh) 4 (A-8)

R ~e’
R —z2
in terms of measured quantities alone.

The condition (3) of Section II expanded in terms of
vector dot products 1is

\ uled
R® + 2(B * Ij)te + |B|2t§ < —h—i : (A-9)

This inequality can be written in the form
f(te) >0 4

where




el = £ - t° + a,t - a

et 1 0

with

42
b ]
U2

8(R-R)

o
-
L}
|
c’\i

4|R|°
2 Ul

o
]

With the aid of (A-1) and (A-8), remembering that the basis
vectors have unit magnitude and are mutually orthogonal, the
coefficients of f(t) can then be written in terms of the measured
quantities alone:

BEY
e} U2
8RR
a L B e 3 (A-lo)
1 e
o = 182032 (R2.g2) + (RE-RE)°
2 GE . R2-z
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APPENDIX B

NECESSARY CONDITION FOR A COLLISION THREAT

A. SUFFICIENT CONDITIONS FOR A THREAT AND FOR NO THREAT

Relation (3) of Section III is a sufficient condition,
depending on range, altitude, and bearing data, for a colli-
sion threat. The condition 1is also equivalent to

) (te) > 0,
where f(t) is the biquadratic polynomial

R e (B-1)

defined in Section IV. The coefficients ao, al, and a, are
given in terms of the measured data by (10) of Section IV or
(A-10) of Appendix A. From their definitions it is clear that

a >
5 20 and a, Oy

while a1 can be positive, negative, or zero.

On the other hand, according to Ref. 2, if the modified
tau condition (7) is violated, i.e., if

. 1
R+R’cez§Ute2, (B-2)

no threat exists. Thils can be seen from the argument of
Section III applied to a function b(t) which is redefined for
this purpose by

2

b(t)*%—Ut - Rt = R,

The result then follows from the fact, remarked in Section III,
that the equation

2

b(t)-%—Ut -Rt -R=o0

B=2




always has exactly one positive root. This 1s because the
quadratic polynomial b(t) is negative at t = o and increases
without 1limit as either t or -t becomes large. Since, accord-
ing to (B-2), b(te) is negative the positive root must occur
at a time later than te.

The question now left to be answered in this appendix is
what happens when neither (3) nor (B-2) are satisfied. That
is, what can be concluded about the existence of a threat if

f(te) £ 0% (B-3)

B. CRITICAL POINTS AND ROOTS
It was shown 1in Section III that when the equation
£(t) = o (B-4)

has only one positive root and the condition (B-3) is satisfied,
no collision can occur at a time earlier than te. Thus, in
order to determine whether an alarm should be given when (B-3)
is satisfied, a first step might be to find out if (B-4) has
more than one positive root. If not, the question will be
answered in the negative; otherwise, it will be necessary to
determine whether one or more of the roots occur for values of

t between 0O and te.

Since f(t) is negative at t = 0 and becomes arbitrarily
large as either t or -t becomes large, (B-4) has at least one
positive and one negative root. It may, of course, have as
many as four distinct real roots.

It also follows that f(t) must have at least one minimum.
This corresponds to the fact that the derivative f'(t), being a
cubic polynomial, must vanish for at least one real value of t.

If f'(t) vanishes for only one real value to of t then
the minimum of f(t) must occur at to and there can be no other;
nor, for that matter, can f(t) have a maximum in such a case.
Furthermore, (B-4) will then have Jjust the one positive and the
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one negative root. This situatlion 1s 1llustrated in Fig. 3 in
which the minima of both curves occur at negative values of t.

On the other hand, if f'(t) vanishes at three distinct
values of t, f(t) will have two minima separated by a maximum.
This relationship is topologically clear; it can also be veri-
fied by considering the sign changes of the second derivative
£"{t).

From (B-1),

(L) = 12t° - 2a,. (B-5)

Thus f"(t) vanishes at two values t, of t given by

g, - x‘/a? , (B-6)
z 6——

These are the inflection points of f(t) and are evidently

located symmetrically about zero.

It can be seen by inspection of (B-5) that the slope
f"(t) of f'(t), where from (B-1)

£1(t) = 483 - 20, & + g, (B-17)

1s negative for t between t_ and t, and 1is positive for all
other values. Moreover, f'(t), itself, has a maximum at t_

and a minimum at t,. Thus, i1f f'(t) vanishes at three points,
one lies to the left of t_ and must correspond to a minimum of
f(t), one lies between t_ and t, and must correspond to a maxi-
mum of f(t), and the third lies to the right of t, and must
correspond to another minimum of f(t).

Since

£%(0) = a,

it is also clear that if ay is negative, the maximum of f(t)
lies between t_ and 0, because f'(t) will change sign between
these two values of t. Similarly, if a, is positive, the

B-4




maximum of f(t) lies between 0 and t+. This situation is
illustrated in Figs. 1 and 2.

Since f(0) 1s negative, 1t then follows that for a, nega-
tive, (B-4) can only have one positive root. For a; equal to
zero the maximum of f(t) will be at zero and will therefore be
negative. Thus, f(t) can have more than one positive root only
2 0 i a, is positive. It follows that when (B-3) 1s satisfied a
hazard condition can only exist when

a1 > 0.

This condition 1is equivalent to requiring a negative value for
ﬁ, which would imply that the intruder 1s approaching.

C. THE CUBIC DISCRIMINANT

Since f(t) cannot vanish at more than two points if it has
Just one minimum and lacks a maximum, a necessary condition
that (B-4) have more than one positive root is that f'(t) vanish
at more than one real value of t. 1In fact, the condition may
be stated more restrictively: the equation

£'(t) =0 (B-8)

must have three distinct real roots. This follows from the
observation that a multiple root of (B-8) must occur at an
inflection point of f(t), and at such a point f(t) will be
stationary but will have neither a maximum nor a minimum.

The condition that f'(t) have three real roots could be
obtained from the well known cubic discriminant (cf. Ref. B-1,
p. 432). However, it may be instructive to derive it here
directly in terms of the coefficients in f(t).

It has been observed that f'(t) has two critical points
t,, glven by (B=6). It is easily verified that t_ corresponds
t; a maximum of f(t) and t+ to a minimum. Thus, f'(t) always
has one maximum and one minimum. Clearly, then, f'(t) will
have three distinct real roots if and only if it 1s positilve
at t_ and negative at t+.
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By substituting from (B-6) into (B-7) it will be found

that
ba 3/2
f'(t_) = 2 + ay (a maximum)
36
and Ll 3/2

f'(t+) = " a; (a minimum).

ER VA

From these expressions 1t can easily be verified that when

8, < 0

the minimum of f'(t) 1s positive if and only if

27a12 > 8a23. (B-9)

It can also be verified that when

a, > 0

the maximum of f'(t) 1s negative i1f and only if (B-9) holds.
Conversely, f'(t) will have a negative minimum and a positive
maximum 1f and only if

3 2
8a2 > 27al . (B-10)

Since f'(t) can vanish at three distinct values of t only
when its minimum is negative and its maximum is positive (B-10)
is a necessary and sufficient condition that (B-8) have three
distinct roots. As remarked earlier, this is also a neczessary
condition that (B-4) have more than one positive root.

D. NECESSARY CONDITION FOR A HAZARD

While (B-10) 1s a necessary condition that (B-4) have
more than one positive root, 1t 1s not sufficient. Moreover,
assuming that (B-10) 1is satisfied, not cnly must additional
conditions be met before it can be concluded that more than
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one positive root of (B-4) exists, but even when that fact is
established the possibility of a collision before the time te
will still remain open. In order to assert that such a colli-
sion 1s possible, so that a CAS alarm should occur, at least
one of the positive roots of (B-4) must be known to lie between
0 and te.

Before proceeding with a more detailed analysis of the
bilquadratic polynomial f(t) it will be convenient to change
variables in order to reduce the number of its coefficients
from three to two. This purpose 1is achieved by substituting

into f(t) and dividing the result by as. It may be observed

that when (B-10) is satisfied as assumed a, cannot be zero;
therefore, this division is possible. The resulting polynomial
g(s) will have the form

4 2 I
g(s) =8 s~ 0, (B-11)
where
A1=a1 Ao=ao
2123:2 X a,

In terms of the new coefficients (B-10) can be expressed in the
form

2 8
o Bl | Fl

or

A< %_ﬁ ~ 0.5443, (B-12)

Since g(s) 1is negative at s=o and becomes arbitrarily large
for large s, i1f the equation
g(s) = o

has more than one positive root, g(s) must have a maximum at
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some positive value Sy of s. The maximum occurs when the
second derivative g"(s) is negative, i.e., when

128" ~ 2 <0,

or
i
0 € By & m== (B-13)
|, g e
Also, of course,

g'(sM) = HSMB el A B

M = (s e,

5

AL = 25y - Usy’. (B-14)

From (B-11) and (B-12) it follows that a positive maximum can
occur only 1if A1 satisfies

0 < A < gALQ ; (B-15)

a condition already partly known from (B-12).

Even when g(s) has a maximum and Sy is positive, (B-11)
will have more %than one positive root if and only if g(sM) is
non negative. After substituting for Al from (B-14) into g(sM)
this condition becomes

g(sy) = -3sM“ + sM2 -A %0,

or

A Eny” wmm = sy, (B-16)

For the whole possible range of values for Sy given by
(B-13) the function h(sy) has a positive derivative and there-
fore is always increasing. Thus if (B-16) 1is satisfied for any
sy 1t must also be satisfied whenvﬁg- is substituted for sM;

38y
1 - gy 2
AO<6-§E b i (B=1T7)
Let So be the smallest positive root of the equation
= 2 u -
Ao h(so) By 3so : (B-18)
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s, =.‘/l - ‘/1—12AO ’ (B-19)

6

which must be real because of (B-17). Since h(s) is increas-
ing over the range of s, values (B-16) will be satisfied if
and only if

s s SM’

1.8., 4f and only AF

3 G
250 - Hso 3 ZSM - UsM = Al‘

Therefore, g(s) has more than one positive root if and only if

A, = 25, - uso3, (B-20)

where S, is given by (B-19).

When (B-20) is satisfied the maximum of g(s) is either
positive or zero. 1In the first case (B-11l) has three positive
roots and in the second case (B-11l) has two positive roots,
the smaller of which occurs at sy Where the maximum also occurs.

If te is less than the first positive root of (B-4) no
alarm should occur. In this case, since f(0) is negative and
the maximum of f(t) occurs after the first root of (B-4), the
slope of f(t) at te 18 posgitive; 1.e.,

3
' = u - + -

In addition, since the maximum of f(t) occurs before the posi-
tive inflection point the second derivative of f(t) does not
change sign between zero and the maximum and therefore would
have to be negative at te; i€,

2 _ 2a. < 0. (B-22)

" -
= (te) 12te 5

When (B-4) has more than one positive root, i.e., (B-11l) has
more than one positive root and either of the conditions (B-21)
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or (B-22) are violated, (B-4) will have a root between zero

and te and therefore an alarm should occur.
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