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c.

ABSTRACT

This paper derives an algorithm for use by an airborne

mid—air collision avoidance system to determine when an alarm

should be given in case a mid—air collision is imminent . The

algorithm is based on an extension of the standard modified tau

alarm criterion used in most collision avoidance system threat

logic a.

The standard criterion uses only altitude and range data

and, as a result , will generate high alarm rates in heavy air

traffic . The criterion presented here makes use of bearing
data as well as altitude and range data and should , therefore ,
provide 1o~er alarm rates.
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I. INTRODUCT ION

The objective of this paper is to construct a new algo-

rithm for deciding when the danger of collision between two

aircraft is great enough to warrant an avoidance maneuver. In

making such a decision a collision avoidance system (CAS) in

one of the aircraft would measure the other ’s relative range,

altitude , and bearing’ to which data it would then apply the

algorithm . If the result were consistent with the possibility

of an imminent collision the CAS would generate an alarm to

alert the pilot.

The scope of the work reported here has been limited delib-
erately to the mathematical development and justification of

the collision threat algorithm . No attempt has been made to

assess its potential usefulness in practice , e.g., for reducing

the number of false alarms relative to the number generated by

other threat criteria which have been implemented or suggested .

Hopefully, this can be done in a future study.

ANTC—ll7 (Ref. 1), the document containing the CAS perform-

ance standards recommended by the Air Transport Association,

specifies alarm criteria which do not involve bearing data.

These criteria are of’ two types: one is concerned entirely

with altitude arid altitude rate while the other is concerned

entirely with range and range rate. The second is based on the

so called modified tau condition which , Ref. 2 has shown .,

‘The relative range, altitude and bearing rates are also needed ,
but these quantities can be calculated from measurements of
the corresponding static quantities at two different times
separated by an accurately determined time interval.



provides the most eff1cient~ possible alarm criterion using
range and range rate data alone .

However, this result of Ref. 2 is valid only when the
fixed parameters of the modified tau condition are properly
selected. Some IDA studies (Ref. 3 and Ref. ‘I) have applied
the analysis of Ref. 2 to show that the fixed parameters se-
lected for the alarm criteria specified in ANTC-1l7 have values
which will not guarantee an alarm for every possible threat .

• In addition , the studies concluded that in high density traf-
fic such as projected by the FAA for the Los Angeles Basin in
1982 use of the modified tau condition , even with the less than
adequate ANTC-l17 parameters, would result in an excessive
number of alarms, many of which would be unnecessary . More-
over, if’ the correct modified tau parameter values In accord-
ance with the theory of Ref. 2 were used the expected number of
alarms would be even greater.

A CAS can reduce the number of alarms it must give by re-
ducing its uncertainty in estimating the location and movement
of intruding aircraft . One way It can do this is to use more
information about the position and motion of each Intruder,
e.g., by adding bearing and bearing rate to the data now re-
quired for the ANTC—117 threat determination logic. A CAS ,
referred to as LCAS , recently proposed by George Litchford ,
provides bearing data along with the usual range and altitude.

In principle , the new threat determination algorithm den —
ved here makes the most efficient possible use of the range,

‘By “efficient ,” as the term is used here, it is meant that an
alarm is given if and only if, In view of the data available
to the CAS, a collision is possible unless an avoidance maneu-
ver begins before the advent of the next measurement cycle ,
which is sometimes referred to as an “epoch.”

2
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altitude and bearing data assumed to be available.~ Hopefully,
this will result in significantly fewer unnecessary alarms when
implemented by a CAS than would be the case if the modified tau
condition were used Instead .

The data provided by LCAS are sufficient to locate and
track an intruding aircraft with a precision that is limited
only by measurement errors . However, the intruder , whose Inten-
tions are assumed to be unknown, may deviate at any time from
linear flight , accelerating in the process , usually by turning,
as much as 1/2 g. The threat determination algorithm must
recognize a hazardous situation, allowing for measurement errors
and the possibility of such an unknown acceleration , in suffi-
cient time to permit the successful completion of an avoidance
maneuver.

Thus, even when bearing data are available and the most
efficient possible threat analysis is used there will still
exist enough uncertainty concerning the intruder ’s flight path
to cause an alarm on some occasions when a collision would not
have occurred had the alarm been ignored. No attempt has been
made here to estimate how often this will happen nor whether ,
in fact , the lower alarm rate generated by the new algorithm
will not still be too high for satisfactory CAS performance In
heavy traffic.

• Section II discusses a mathematical condition for the oc-
currence of a mid—air collision at a given instant of tine when

the relative acceleration between the encountering aircraft is
bounded by a known constant . Section III establishes an effi—

• d ent alarm criterion based on that condition and an assumed

‘This is true if no measurement errors are assumed to exist.
When measurement errors are taken into account in Section V
It is expedient to sacrifice some efficiency In order to avoid
mathematical complications ; i.e., some alarms will be given
which theoretically might be avoided by more effective use of
the available data.

3
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minimum escape t ime , i.e., the time required for a CAS to gener-
ate the alarm and the aircraft to maneuver to safety.

A threat algor ithm , which does no t take into accoun t

measur emen t errors , will be derived (with the aid of the appen—

C dices) and presented in Section IV. In Section V , a rev ised
threat algorithm will be given that does include the effect of

measurement errors.

5.
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II. CONDITION FOR A MID-AIR COLLISION

In CAS threa t analyses (e . g . ,  Ref. 2) it is customary to
base the concept of a hazard upon the possibility of a collision

between two aircraft assuming that both obey regulations which

limit an airc ra f t ’ s speed and accelerat ion. The hazar d may
exist If the collision can occur for an allowable relative

accelerat ion although , since It Is assumed that at least one
pilot’ s intentions are unknown , the collision Is not actually

predicted.

A CAS off ic ial ly recogn izes a hazar dous situat ion requir-
ing an alarm when It determ ines that af t er its nex t observa tion
su ch a collision could occur before the maximum est imated time
(at some confidence level) needed for maneuvering to safety  has
elapsed . In th is context  “maneuvering to saf ety ” means adopt-

ing a flight path (usually in a vertical plane) which guarantees

that the encountering aircraft remain separated by at least

150 f t .~
Following R e f .  2 , the condi t ion for a co l l i s ion  can be

stated mathemat ica l ly  in terms of the  in i t ia l  pos i t ion  vector
R of the intruder a i rc ra f t  relative to the CP~~ , the in i t ia l
rela tive veloc ity vector ~~~, and the relative acceleration vector

~ ( t ) .  The accelerat ion A ( t )  can vary as a func t ion  of t ime t
but , by assumption , remains bounded in magnitude . The bound is
a predetermined constant U; I.e.,

J A ( t ) k U

Cf. Ref. 1.

5



for all t. The condition for collision before escape is pos-
sible is then

R + t ~~~ +J~~fA ( i ) d t d s = o  (1)

~
‘or some t in the interval

O ~ t < t~~

where te Is the estimated time required for escape.’

In Ref. 2 It was shown that whenever there exists an

acceleration A Ct) bounded in magnitude by a constant U, I .e . ,

I~t k U,
for which the collision condition (1) holds , then there exists

a constant vector A also bounded in magnitude by U, i . e .,

U,

such that (1) holds for some time t’ in the interval

O � t ’  
~ 

t e
with A(t) replaced by A ; I.e., ( 1 ) takes the form

fl + t ’  ~ + l/2t~~ A = o. ( 2 )

Therefore , w I t h o u t  loss of generali ty ( 2 ) ,  whIch Is more expli-
c i t  than (1 ) ,  can be used as the col l is ion condit ion  for CAS
t hrea t  a n a l y s e s .

KNot only the time required for any necessary avoidance maneu-
vers but also all delays such as those due to pilot and air-
craft reactions , as well as an allowance of one fu ll epoc h
for updating, are included in te~

6



4

I I I .  THE CAS A LARM C R I T E R I O N

In order to spec i fy  a CAS alarm cr iter ion su ita ble for
t r ans la t ion  In to  an algori thm , fol lowing R e f .  2 an a t tempt  can
be made to replace the vector collision condi t ion ( 2 )  w i th  a
scalar condition which does not contain the unknown equivalent

ac ce leration vector ~. The new condition is~

+ t e ~~~ < 1/4 t~ U? ( 3 )

Indeed , it can be shown that  if’ (3) holds there ex i s t s  a
I in the interval

o � E < t
an d a cons tan t vec tor A , such that

kl~for which the collision condit ion ( 2 )  is sa t isf ied, i. e . ,  for
which

r2
R + E R + ~~- A = o .  ( 4 )
-~ 2

The proof Is not d i f f i c u l t . Let b ( t )  be def ined  by

b ( t )  = _

~~~~

- —k + ~ r
‘As Ref. ‘~ has observed , a condit ion such as (3 )  is technically
not the most efficient one possible , since It does not inclu de
the effect of limiting each aircraft ’s speed , althou gh It may
be presumed that a maximum speed will be as well enforced as
the  maximum accelerat ion which is taken into account . As
Ref. 14 has indicated , however, the inclusion of a speed limit
should not greatly reduce the number of expected alarms gener-
ated by an otherwise efficient threat algorithm .

7
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Ther. ( 3) is equivalent  to

b (t e ) > O~ (6 )

which , because b ( t )  is cont inuous , implies that  there is a
with

0 ~ < t~~
such that

b ( t )  > 0.

Then if A is given by
A = — -a--— (R + ~-~

it fol lows from ( 5 )  that

I~I < u
and , by subst i t ut ion , th at ( 4 )  is sat isf ied as stated . Thus ,
i f , for a given U and te~ for some pair of vec tors and ~ ( 3 )
iS sa t is f ied, then a hazard as defined by ( 2 )  exis ts .  However ,
the converse is not necessarily t rue.  That Is , if condition
( 2) holds, so that a hazard exists , it does not necessarily
follow that (3) holds. Therefore, If (3) were used alone as an

algori thm to determine the existence of a threat , In some cases
it would fa i l  to do so.

In order to simplify the condition and remedy this defect

Ref. 2 replaced ( 3 )  wIth the modified tau criterion

R + 
~ 

te < 1/2 U t~ . (7)

This condition involves the scalar range R, which is the magni-

tude of the relative position vector ~~~, and t he scalar range
rate ~~~, which is the component of the relative velocity vector

~ along ~ .

The modified tau condition (7) holds whenever (2) holds

and therefore always predicts a hazard when one exists. In
addition , Ref. 2 showed that when ( 7 )  is violated a hazard as
def ined by ( 2 )  does not exi t. A proof of’ this fact is also

sketched here in Appendix B.

8



4 However , a hazard does not necessari ly exist  when ( 7 )  Is
satisfied. For this reason that condition Is expected to pre-

dict too many false threats in heavy traffic (cf. Ref. 3 ) ,
a l though R e f .  2 showed that  ( 7 )  is the most e f f i c i e n t  threat
de te rmina t ion  cr i ter ion possible , given only a knowledge of
F and ~.

If the complete vectors R and ~ are known it should be
possible to replace (7) wIth a more efficient algorithm . A

candida te  for this  role is ( 3 ) ;  however , it has already been
observed that  ( 3 )  by i t se l f  is not adequate because it fa i ls
to de tec t  a threat  in some cases. This defect  can be remedied
by in t roduc ing  some conditions to be used in addition to ( 3 ) .
It is then possible to formulate a sa t i s fac to ry  algori thm which
de tec t s  all  t rue  and no false threats  as they have been defined
here .

To this end it Is useful to consider , first , a class of
cases for which a violation of ( 3)  does Imply that  no hazard
exists. Ref. 2 proved that this is always true for the modified

t criterion (7) (cf. also Appendix B here), and that proof

depends on the fact  t hat the equat ion

l/2Ut2 — ~t — R = 0

always has exactly one positive root . If the parameters which

determine the function b(t) defined by (5) are such that the

equat ion

b ( t )  = 0 ( 8 )

has exactly one positive root , the same conclus ion wou ld fol low
for the cr iter ion ( 3 ) .  That is, if a col lision cou ld occur at
a time t in the interval

0 � < t~ ,

i.e.,
b (~~) — 0,

9
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t hen , because b(t) becomes arbitrarily large as t becomes large,

if b ( t )  cannot become zero again for t pos i t ive  it follows that

b(te) > 0

as required .

In summary, if (3) Is satisfied , t hen an alarm should be
given , and if ( 7 )  is violated , i. e . ,  if

R + ~t � 1/2 Ut~ , ( 9 )

no alarm should be given . It remains to Investigate what

happens when ( 3 )  is violated and ( 7 )  is satisfied , and the

answer depends upon the positive roots of equation (8).

In Appendix B, a condition which determines whether (8)

has exactly one positive root Is derived. In the alternative

case , in which it has more than one positive root , spec ial con-
ditions to determine whether one of those roots does , in fact ,
lie between 0 and te are also derived . Together with (3) and

(9) these additional conditions comprise an algorithm which

satisfies the requirements of a CAS alarm criterion .

Given a knowledge of the vectors ~ and ñ and the fact that
the relative acceleration between the encountering aircraft is

boun ded by a spec if ied constant U , but ignoring any speed limit
and measur ement errors , this algorithm provides the most effi-
cient alarm criterion possible . In the next section it is

given explicitly in terms of the slant range R from the CAS to

the Intruder , the range rate R, the bearing rate 3, the relative

altitude z, and the altitude rate ~~, all of which are assumed

to be quantities known through measurement .

I
10



IV. THE THREAT ALGORITHM

The fol lowing parameters are assumed to be known through
measurement :

R, slant range;

range rate;

4, , bearing;
3, bearing rate;
z, relative altitude (altitude difference);

~~ , alt itude range

These quantities are also defined in Appendix A in terms of

the coordinates of an intruder aircraft relative to a CAS locat-

ed at the origin of the appropriate coordinate system . In addi-

tion , it Is assumed that there is a known bound U on the magni-

tude of the relative acceleration between encountering aircraft
and a known t ime t e~ the escape t ime , required for an aircraf t
to maneuver to safety after it receives an alarm .

A polynomial f’(t) in the time variable t with coefficients

determined by the measured parameters and the quantities U and

te is defined by setting 2
b ( t )  = 

~~
- f ( t ) ,

so that , in accordance with (5), f ( t )  has the form

f ( t )  t 14 — a2t
2 + a1 t — a0, a2�o, a0>o.

According to Appendix A ,
14R2a0 - - — ~-.-- ,
U ( 10)

a1 - - 8Rñ

U

11



a2 
= ~~ + 3

2 (B2 — z2) + 
(~ z~~ R ) 2]

In the absence of measurement errors the algorithm which

determines whether a hazard exists and therefore an alarm

should be given is derived in Appendix B. The algorithm is

defined by the following sequence of tests:

( 1) B + 
~~ 

te < 1/2 Ut~ ?

If no then no alarm;

If ~~~ then (2).
(2) t~ — a2 t~ + a1 te — a > o?

If yes then alarm;

if no then (3).
( 3 )  a

1 > 0?

If no then no alarm;

if ~~~ then ( 4 ) .
( 14 )  8a2

3 > 27a1
2?

If no then no alarm;

If ~~~ then (5).
(~~) a L a  2 9

o 12 2

If no then no alarm;

‘It will be observed that when the Intruder is directly over-
head or directly below the CAS, I . e . ,  when B - I Z ~ , the param-
eter a2 Is either ambiguous or InfInite. It may also be ~x—pecte d tha t a2 will be very sensitive to error when R — tzJ
Therefore, as a practical matter unless R differs from lzr by
more than the max imum combined error of’ the measured parameters
R and z the usual modified tau criterion should be used instead
of the threat algorithm . This is, in fact , equivalent to let-
ting a2 become infinite In the threat algorithm .

12



if y~~ then ( 6 ) .  12a ½1
(6 )  for 

~ O ~~~~~ — (1 — 
a2

2) j

a1 � 2 s  — 4~~~ ?o 0
a 3/2
2

If no then no alarm;

if y~~ then (7).
( 7 )  6t~

2 
> a2?

If yes then alarm;

if no~ then (8).
(8)  14t e

3 — 2a2 te + 81 < 0?”

If y~~ then alarm;
if no then no alarm .

Exam pl e 1.

As an example of how this algorithm would be applied , sup-
pose that the following CAS parameters are measured for an

Intruder:

range B 14000 f t ,
range rate R - -590 ft/see,

relative altitude z • 200 ft

relative altitude rate — —1600 ft/mm = —26.67 ft/sec

bearing rate 3 = 1°/sec — 0.017145 rad/sec
If the maximum relative acceleration Is assumed to be lg, then

U — 32.2 ft/sec2.

6t e ~ a2 because of’ steps (14) and ( 5 ) .
“14t 3 

— 2a~t + a1 ~ 0 because of steps ( 6 )  and ( 7 ) .

13



Then from (10) it Is found that

a0 
= 6.1726 x l0~ sec 14 ,

a1 1.8209 x ~~~ see 3,

a2 1361.7 sec2.

If it is assumed that the escape t ime te is 25 see , then
at step ( 1 ) of the algorithm it is foun d that

R + 
~
te 

= —10750 ft < 10,062 = ½t1te
2

Thus , an alarm would be given by the modified tau criterion,
but for the threat algorithm of this section it would be neces-

sary at this point to consider step (2). Then it would ce

found that

t,
14 

— a~t~~ + alte 
— a0 

= —6.6938 x 10~ sec 4 < 0.

Thus , it would be necessary to consider step ( 3 ) :

a1 
— 1.8209 x l0~ sec 3 > o,

which leads to step (14). It Is found that

8a2
3 

— 2.0199 x 1010 > 8.9523 x 10~ — 27a1
2,

which leads to step (5). For that test

= 6.1726 x 1O~ < 1.5452 x l0~ ~~ - a~
2 .

Thus, it Is necessary to go to step (6). For this purpose
must be calculated: s—

i~ a

~o
’
~/~ [i 

— (1 — 
a22 ) j  ~ 0.19367

Then step ( 6 )  gIves

a1 — 0 .362 3 8 � 0.35828 = 28 — 14~ 
3 .

a 3”2
2

l~4

(



Thus , according to the test at step ( 6 )  step ( 7 )  must be con-

sidered. At step ( 7 )  it Is found that

6t 2 = 3750 > 1361.7 = a2;
hence an alarm must be given .

This result can be verified by inspection of Fig. 1 whIch

shows the curve

f ( t )  = t4 — a~t~ + a1t — a0.

It may be observed that f(t) vanishes at t = 6 sec and again

at a little more than 8 sec , both of which represent possible

co llision t imes before t e = 25 sec .

Exam ple 2.

The purpose of this example is to see what happens If the

bearing rate is changed but all of the other parameters of ex-

ample 1 are retained. The modified tau criterion is unaffected

by such a change . However, if the bearing rate ~ is taken to
be 2°/sec (0.0314907 rad/sec), then a0 and a1 remain the same
but now

a2 
— 11418 sec2.

In this case it will be found that the threat algorithm indi-

ca tes “no alarm ” at step (6).

Indeed , Fig. 1, whIch contains the curve for f(t) shows

that f(t) has a maximum at about 7 sec , is negative between
0 and 25 see, and has positive curvature at 25 sec. Appendix

B demonstrates that these facts should account for the indi-

cated behavior of the threat algorithm . Since, as the curve

shows , f(t) does not vanish between 0 and 25 sec there is no
threat of collision before the escape time has elapsed.

Example 3.

If’ instead of’ the bearing rate 3 changing, it is the range
which Is changed to 3 nmi (18,2140 ft) while the other parameters

15
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remain the same (e.g., 3 stays 1°/ se e ) ,  the threat algorithm

indicates an alarm at step (2). That is, the coeff icients
obtained from (10) are

a0 
= 1.2835 x 108 sec 4,

8.30314 x ~~~ see 3 ,

a2 = 1735 . 14 see2,

so that

f(te
) = t 14 

— a2te
2 

+ 81t — a0 = 9 . 8 3 20 x > o.

Exam Dle 4.

On the other hand , if the range F is increased to 4 nmi
(214 ,320 ft) with the other parameters left unchanged , then

a0 = 2.2818 x io6 sec4,

81 = 1.1071 x 10~ see 3,

a2 = 2039.8 see2,

and at step (4) it Is found that

8a2
3 = 6 .7 897 x 1010 

< 3.3093 x loll = 2781
2.

Thus , no alarm would be generated for the larger range . Fig. 2

shows the curves for f( t ) corresponding to the 3 and 14 nmi
ranges. Neither has a maximum (as expected , since both fail
the test at step (14)), the 3 nmi curve Is zero at a time slightly
beyond 23 see , In dicat ing a coll ision threa t before the escape
time of 25 see , and the 4 nmi curve remains negative between 0
and 25 see , indicating no threat .

17
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V.  T H REAT ALGORITHM WITH MEASUREMENT ERRORS

A.  ERROR TOLERANCES AND PARAMETER UPPER AND LOWER BOUNDS

Each of the parameters measured by a CAS will have some

specified error tolerance , so that a single measurement will

actually define a range of possible values for a parameter

rather than a single value. Therefore , it is necessary to re—

r~lace the algorithm given in Section IV by one which will
k~er~erate an alarm whenever a measurement and the error toler-
ar~ces are consistent with any set of independent parameter

values that satisfy an alarm condition of the original algo—
r~ thr~.

If the revised algorithm were , indeed , restr icte d to
indicating an alarm only in such a circumstance its efficiency

wou d rema in un impaired , although the number of alarms would
necessarily increase because of the contribution of measurement

error to the uncertainty in estimating an intruder ’s position

and movement . However , It will be found mathematically con-

venient to widen the effective tolerance ranges of certain

derived quantities , replacing their possible maximum and mini—

m u m valu es wit h gros ser est imates which are no more than uppe r
and lower bounds. This will reduce the algorithm ’s efficiency

somewha t, thereby increasing the number of alarms it will gene-
rate. The result is equivalent to an increase in the error
s e n s i t i v i t y  of the a f f ec t ed  quan t i t i e s .

In revising the threat algorithm of Section IV It will be

convenient to use the following notation . When the subscript

m is added to the symbol for a measured quantity the new sym-

bol will designate the quantity ’s min imum value as determined

19



by the specif’~ed error tolerance. Similarly , adding the sub-

script M will provide a symbol for the quantity ’s maximum .

Thus, for example , if a range measurement is and the error
tclerance ~~~~

- ± C , so that the range F would be properly in-

dicated by

F = F0 ± c ,

then

F R - cm o
and

RM = F0 + £

where the usual cor:ventlon that c is non negative has been

assumed.’

On the other hand , for symbols representing quantities

which are derived rather than measured directly, the addition

of the subscripts m and N will indicate , less precisely, just

lower and upper bounds. These may or may not be the true mini-

ma and maxima implied by the given measurement error tolerances.

For exomp le , the quantity a0 defined by (10) wIll lead

naturally to t h e  definitions

2
a = 

m
om

and
2

a = N
oN

since F Is non nega t ive  by v i r t u e  of I ts  geometr ical  meaning .
However , for a1, deflred by (10), it would be permissible , for

‘The error c is a fixed bound on the deviation of R from F0.
A statistical error fluctuation would be taken Into account
by assigning some kind of confidence limit along with c , e . g . ,
by stating that c bounds the error with 99% p r o b a b i l i t y  or
that c is a 3a bound on the error.

20
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I

example , (although not recommended in this case) to define

a = -8 R~~ RM~
U2

which Is a lower bound smaller than the rn~ r~ rn urn of a, whenever

O~~

A known physical or geometrical relationship may play a

role In determining the mlrdmur or maximum value of a derived

quantity ’s toleran ce In te rva l . For example , the quantity p2

defined ~~ terms of the relative range F and relative altitude

z by
1

= —

must always be positive , whatever the tolerance limits may be

on F and z separately. Thus , since p2 cannot be less than zero
it f~ llows that

2 2 2 **p = R  — zm m N ( 11 )

If
2R - Z I

M � 0

but
= 0 (12)

4 if
2F - � O~

thi s case the true minimum value of a 1 would be _8RmRM
which is positive .

“Since z can be e ither  posi t ive  or negat ive f z I M
2 is only equal

S 2 2
to ~~2 ~ Is positive ; if Z

M 
Is negative , l~1M 

Z m

21
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On the other hand , It  is always unders tood  tha t

p~ = - I~~I m
2 ( 13 )

B. A U X I L I A R Y  S IJBALG ORITHMS
I

F~e f : r e attempting to revise the threat algorithm of Section
IV I’. will he found useful to formulate some auxiliary algo-
rIthm s which wIll help to simplify the description of the

necessary logic. These cover the arithmetical steps which are

~r lied when the  subsc r ip t s  m and N are added to some simple
algebraic express ions .

She addition of a subscript to an expression of the form

(u v) or lu + v ( has the effect of operating on the expression

tc produce an algebraic function of the quantities Um~ 
uM V

m~
and ~~ Four suc h operat ion s are poss ib le :  (u v ) m~ 

(~
H + V I m~ 

and lu + V I M . The results , which may be regarded as
algorithms for the calculation of the subscripted quantities ,

are given in Tables 1, 2 and 3.

It should be emphasized here that  these results  can be
relied upon to provide ac tua l  maxima and minima , in general ,
only when u and v are independent . If u and v are dependent

i n e f f i c i e n t  bounds may be given Instead , e . g . ,  in the case
(u2) which can be calculated from Table 2 by setting u = v.m
When u < 0 < u , Table 2 gIves a lower bound for (u~ ) below
the t rue minimum , which is mm (u rn , U

N 
).

TABLE 1. Suba lgorithm for IU + V I m 
and  I U + V I M

if < 0 If U
m
+V

m 
> 0 If Um +V m�O~

UM +V M

l u + V i m 
_ ( U

M
+ V M ) U rn + V

m 
0

+ 
~‘M 

_ ( U
m 

+ v )  U M 
+ V M max [_ (um+v m )~

( u M+v M)]

22



4 TABLE 2. Suba lgorithm for (uv) m

if V
M 

< 0 if V
m 

> 0 if V m � 0 ~ 
VM

If U M < 0 U M V M U rn V M U rn V M

i f  U rn > 0 U M V m U rn V m ti M V

if U m�O~
U M U p1 V rn U rn V

M m l n (U rn V M S U M V
m )

TABLE 3. SUba lgori thm for (UV) M

if < 0 _1f V > 0 
- 

if V
m 

� 0 � V M
if U M < 0 U rn V

m U M V m U rn V m

I f  U rn > 0 U rn V M U M V M UM VM
i f  ~~~~~~~ U rn V

m U M V M max (U rn V , U
M V M)

In addition to the algorithms defined by the tables ,
formulas for the expressions 

~~~~ 
and 

~~~~ 
where u and v are

both non negative , are needed . These are

= Urn (114 )

and

~~ 
M .

v M  Vm ( 15)

Most of the subscripting required for the revised threat

al gor ithm can be accom plished by repeated ap plicat ions of the
subalgorithms defined by Tables 1, 2, an d 3, the formulas ( 14)
and (15), and the trivial relations

(u + v )  - urn + V
m S

(u + V)
M 

— U
M 
+ VM.

23



It should be observed , however, that this procedure Is not

uniquely defined for a given expression and , therefore , may lead
to different results , depending upon the grouping of’ term3 and

the order in which the subscripting is done .

If at each application of a subalgorithm In this procedure

u and v are In dependen t , the true minimum or max imum of the
original expression will be obtained. If, however , at some
step u and v are dependent the final result may only be a bound ,
i . e . ,  a quantity which is smaller than the true minimum or
larger than the true maximum . As an example , cons ider the ca l-
culation of (X2 + x) M, where

x = —2 , x = 0m M

If the calculation Is done as follows :

(x 2 + x ) M = ( x )
M + xM = 14 + 0 = 14 ,

the result Is not a true maximum but an upper bound . In fact ,

it is easy to see that the true maximum occurs when x = Xm 
= —2

and that its value is 2.

The calculation can also be done by first setting

(x 2 + x) M = (x(x +

next identifying

u x , v x + l ,

and finally using Table 3. It will be found , f irst , that in
this case

Urn = —2, uM 
= 0

and
V - -1, VM 

- 1.

Table 3 applied to (uv)M will then give the true maximum 2 as

the result .

214
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The calculation of the extrema aom , aOM, aim, ~)J4~ 
a2m ,

a2M corresponding to the coefficients given by (10) could be
accomplished by repeated applications of the subalgorithms but
with some unnecessary loss of efficiency. Instead , it is pre-
fera b le to use -

a 14fl 2 a ( 16)
om m ‘ oM M

U2 U2

for a and a . Tables 2 and 3 can be used to calculate a.,om oM
and alM withou t loss of eff iciency,  however .

For a2m and a2M, accepting some loss of efficiency is
probably worthwhile for the sake of mathematical simplicity in

the calculations. A reasonable form of a2 for the calcula tion
Is 

= + I~ I
2 ~2 + l~ z~~~l 2],

so tha t

a
2 

= !~. [I~~I m
2 

+ h~’I m
2 2 

+ L~~~~1~I m2] ( 17)

and

a2M = 

~ [InI M
2 + h3IM2 ~M + Z11~~M ] .  (18)

U

In (17) and (18), the second and third terms can be calculated

from Tables 1, 2, and 3 with the aid of (11), (12), and ( 13)
for calculat ing and

Expressions for the extrema 5om and 8oM of the quant ity
which was defined in step (6) of the original threat algo-

rithm of Section IV , can be obtained by inspection . For this

purpose It should be recalled that a0 and a2 are both non neg—
ative . Although some loss of efficiency occurs because a0 and

25



4 
a2 are dependent , reasonable expressions are

5o M % I~. [i — 

(i 

— 

~::~M)½] 
( 19)

and _____________________

~om~i~~ 
[1 - 
(
1 - 

~::~m)½1 ( 20)

• It will be seen later that the values of Sorn and 5oM given by
(19) and (20) are guaranteed to be real because the revised

threat algorithm would otherwise have terminated at step (5)

before a need for these quantities could have arisen .

I Algorithms are also needed for the extrema f’(te)m~ 
f ( t e)M)

f’(te)m~ 
and f’(te)M of the polynomials f’(te) and f’(te) which

appear In steps (2) and (8) of the threat algorithm of Section

IV. The original polynomials were defined by
t f ( t e ) = t — + a

lte 
— a (21)

and

c f ’ ( te) — 14t 3 
— 2a2te + a1. (2 2)

For f ’ ( te) It is probably advisable to accept

f’(te)m — 14t
e

3 — 2a2Mte + aim 
( 23)

* and

f’(te)M 
— 14t

e
3 

— 2a2mte + aiM. (214 )

However , somewhat more efficient bounds can be obtained for
* f ( t e) by first expressing It In the form, using (10),

f(t e) — a — 

~~~ 
IF + teRl~~ (25)

where 
— — ~~ [Ifl

2 ~2 + I~~z~~~R I 2]t e
2 ( 2 6 )

26
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Then

am 
= - ~~~ ~~~~~~ + Inz~~RI M2] te (27 )

and

aM 
— te

4 
— ~~~ [I31 m

2pm
2 
+ 1~ ;~~1~I m2] t

2 (28)

wherein further subscripting can be carried out with the aid of’

the previously derived subalgorithms . The subalgorithm s can be
applied along with (27) and (28) to (25) in order to calculate
f(te) and f(te)M~

C. THE R E V I S E D  THREAT ALGORITHM

In order to obtain the revised threat algorithm it Is only
necessary to strengthen the Inequality condition for no alarm
or weaken the condition for an alarm at each step of the threat

• algorithm In Section III by applying the appropriate extremum

operations. The subalgorithms derived in Section VB now make
this a completely mechanical procedure .

The result is:
I

( 1) R + 
~m

te < U

If no then no alarm;
if ~~~ then (2).

I
(2) f(te)M > 0?

If ~~~ then alarm;
if no than (3).

(3) a]J4 > 0?

If no then no alarm;
If ~~~ then (LI).

2• ( 1 4 )  8a 2M > 27a 1m?

27
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If no then no alarm;

If ~~~ then ( 5 ) .

(5)  a ~ ~~ a
2~ ~

If no then no alarm;

if ~~~ then (6).

( 6 )  alM � 2
~~om — 14S~~4 

?

a312$ m

If no then no alarm;

if ~~~ then (7).

( 7 )  6t~~

If yes then alarm;

if no then (8).

(8 )  f ’( t  ) < 0?e m

If yes then alarm;

If’ no then no alarm.

For an example to Illustrate the use of the revised threat

algorithm, the following error tolerances will be assumed :

range (F) ± 200 ft,
range rate (~~) ± 50 ft/sec (about ± 3Okn),

altitude (z) ± 200 f t ,
altitude rate ( z )  ± 56.6 ft/sec
bearing rate ( ‘i ) ± 5°/sec.

Then, for measured parameters having the values
5 R — 12160 ft (2 nml),

— —590 ft/see ,
z — 200 ft ,

— —26.67 ft/see ,
S • 0$ .16 /sec ,

28
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the extrema which must be used in the threat algorithm will

be given by

Fm 
= 11,960 ft , FM 

= 12,360 ft,

= —6~40 ft/see , RM — —5140 ft/sec ,
I

Zm = O f t
~ ZM LIOO ft,

= —83.3 ft/sec , Z
N 

= 29. 9 ft/see ,

• 
~m 

= 11°/sec , 
~
‘M 

= 21°/sec.

Us ing the met hods descr ibed in this sec tion for calculat-
ing the derived parameter extrema , it will be found that

I 
~m
2 

= 1.14288xl08 ft,2 
~M
2 

= l.5277x108 f t ,2

aom = 5.5l8Llx105 sec~ aOM = 5.8937x105 see 14,

alm = 14.9831xl014 sec~ aiM = 6.l035x104 see3,

• a2~ 
= 2.lLILI2xlO4 sec~ a2M = 8.0782xl014 sec 2,

8om = 9.l970x10 3, 50M = 3.5873x10 ”2

f(te)M 
= 1.23l3xlO 7sec 14, f’ (te)m = —3 .9268xl06sec~ .

• The threat algorithm applied to these quantities then leads to

the conclus ion at step (8), that an alarm should be generated .

If’ the measured bearing rate ~ is Increased to 17
0/sec , so

that
• 

~m 
= 120/sec and 

~M 
= 22°/see ,

while the other measured parameters are left unchanged , then

the derived parameters 
~m ’ ~M ’  aom~ 

aOM, alm a and alM remain
unchanged but new values for a2m , a2M 5om ’ and 50M are obtained.
These are given by

a2m — 2.53Ol4xlO LIsec2, a2M — 8.8502x104sec2,

• 
5om = 8.39146x10 3, 5oM — 3.0381xl0t2

29
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On applying the threat algorIthm to the new values of the de-
rived parameter extrema it will be found that “no alarm” is in-
dicated at step (6).

- t
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A P P E N D I X  A

C O E F F I C I E N T S  I N  THE T H R E A T  A L G O R I T H M

The condition (3) of Sec~;ion II Is the basis for the

hazard alarm algorithm ~iven In Section IV. That algorithm

operates on the coefficients a0, a1, an d a2 of a polynomial
f(t) derived from (3), which , in turn , depends upon the corn—

5 
ponents of the range vector ~ between the CAS and an intruder

aircraft and upon the tIme derivative ~ of ~. The components

of these vectors depend upon a set of quantities measured by

t he CAS :

H , the range between the CAS and the Intruder ,

R , the range ra te ,
4 ,  the bearing of the In t ruder

~~ , the bearIng ra te ,

z, the difference in altitude between the intruder

and the CAS ,

~~ , the relative altitude rate.

Expressions for the c o e f f i c i e n t s  a0 , a1, and a2 in terms of the
measured q u a n t i t i e s  w i l l  be derived in th i s  appendix .

It will be convenient to use a right—handed spherical

coordinate system cen te red  at the CAS . The polar  axis is
pe rpend icu la r  to the g round .  The polar angle 0 is zero along

the ~ixIs in the upward direction and increases downward to

its extreme value of 1800 along the axis toward the ground .
The azimuth angle 4 measures the absolute bearing of the intruder

and Is there fore zero at some predetermined geographical
direction , e.g., magnetic north. Looking down , a hor izontal vec tor
which emanates from the CAS and rotates counterclockwise will

have an azimuth 4 that increases as It rotates. The radial

coordinate F Is the Intruder range . A corresponding vector

coordinate system Is based upon a set of three orthogonal unit

A— 2
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vectors a0, ~~~~~, arid ~~ pointing in the direction of increasing

0 , 4, and F.

Con’IItIon (3) of Lection II depends upon the vectors ~
and ~ . The vector ~ is RIven by

R = F a~ ( A — i )

In terms of the spherical coordinate system. The vector R is

given by

R 
~~~~ ~ ~R 

(A— 2)

The unit vector aR changes direction from point to point and

therefore , because of aircraft motion , it does not remain

constant In time . For this reason , as indicated In (A—2), its

t ime derivative is not zero in general .

For the purpose of calculating ~~~, it is help ful to use

a Cartesian coordinate system , ~or whIch the  unit  or thogonal
basis vectors 

~~ 
and are constant throughout space

and , t hus , do not change in time . A right—handed Cartesian

coordinate system for this purpose may be defined by letting

the unit vector a point in the direction 0 = o, the unit

vector  a~ point in the direction 4 = o in the plane 0 = 90°,

and the unit vector ~ point In the directIon 4 = 90 in the
S 0plane 0 = 90 . The coordinate systems are illustrated in

Fig. A— i .

The relationship be~ ween the basis vectors of 4he

spherical coordinate system and those of the Cartesian coordinate

s y s t e m  ~s gIven by the following equations :

II
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= (cos 4 sin 8) + (s in  4 sin 0) + (cos 0)

a
4 

= (—sin 4)a + (cos $)a , (A—3)

= (cos  
~ cos 0)a + (sin ~ cos 0 ) a ~, — (s in O )a

~
a r~ d

(—s in 4)~~ + (cos 4 cos 0)a0 + (cos 4 sin O ) a R
(A_L I)

(cos $)a
4 

+ (sin 4 cos 0)a 0 + ( s in  4 sIn

= (—sin 0)a~ + (cos 0) 
~R

It follows from (A—3) and (A—LI) that

= (—~ sin 4 sin 0 + 0 cos 4 cos

+ (3 cos 4 sIn 8 + 8 sIn 4 cos 0)5

— (0 sin 0)a = (3 sin 0)~~ +

Then , wIth the aid of this result , (A—2) can be written

= a + (R 4 sin 8)a + Re a0r 4

Actually, while 4, $, R, an d R are assume d to be measured
quantIties , 0 and ê are not measured directly . However, z

and z are , and 0 and 8 can be expressed In terms of z, ~~ , F ,
and FL The pertinent relationship is given by

Z F cos 0 , (A—6)

from which  it fol lows that

A— 5



cos 0 = ~~

and

12  2
sin 8 ~R —z (A—7)

Then , from ( A 6 ) ,

t 
~~~~~~cos 0 — R Ô sin O ,

and , from (A7)

e = ~~4 .
If these relations are substituted into (A—5) the result will be
an expression for ~

= R + (3 z2)a
4 

+ 

(

~~~~~
F) ~~~ 

(A—8)

in terms of measured quantities alone .

The condition (3) of Sect ion II expanded in terms of
vector dot products Is

U2t
11

+ 2(~ R ) t  + I~ I 2t 2 < . (A—9)

This inequality can be written in the form

f( t ) > °

where

A—6



4
f ( t )  = t 14 — a2t

2 + a
1
t — a0

w ith

a0 
-

U

8(R~~)
a = —

U

a = 
LI f t~

2

2 U2

With the aid of (A—i) and (A—8), remembering that the basis

vec tors have un it magn itude and are mutua lly orthogonal , the
coefficients of f(t) can then be written in terms of the measured

quan t i t i e s  alone :

4R 2
a - —p-

U

a1 — 
8 

, (A—b )
U

a2 
= ~ [n2+32cR 2_z2) + (Rz R~~)

2]

t 1.

S
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A P P E N D I X  B

NECE SSARY CONDIT IO N F OR A C O L L I S I O N  T HREAT

A. SUFFICIENT CONDITI ONS FOR A THREAT AND FOR NO THREAT

• Relation ( 3 )  of Section III is a su f f i c ien t  condit ion ,
depending on range , alt itu de, and bearing data , for a co lli-
sion threat . The condition is also equivalent to

f ( t e) >

where f(t) Is the biquadratic polynomial

f(t) = t14 
— a2 t2 + a1 t — a (P—i)

defined in SectIon IV. The coefficients a0 , a1, and a2 are
given in terms of the measured data by (10) of Section IV or
(A—b ) of Appendix A. From their definitions it is clear that

a2 � o an d a0 > o,

while a1 can be positive , negat ive , or zero.

On the other hand , according to Ref. 2, if the modIfied
tau conditIon (7) is violated , i.e., if

R + 
~ 

t
e ~ ~~ t

2 , (B—2)

no threat exists. This can be seen from the argument of

Section III applied to a function b(t) which is redefined for
this purpose by

b ( t )  = 
~~
. Ut 2 — ~t — R.

The result then follows from the fact , remarked in Section III,
that the equa tion

b ( t )  
~~
. Ut 2 — ~t — F = o

B— 2



always has exactly one positive root. This is because the

~uadrat1c polynomial b(t) Is negative at t = o and increases

without limit as either t or —t becomes large . Since , accor d-
ing to (B—2), b(te) is negative the positive root must occur
:jt a time later than t .

The question now left to be answered in this appendix is

what happens when neither (3) nor (B—2) are satisfied . That

Is , what can be conclu ded about the ex istence of a t hreat If

f(t ) ‘ 0? (B—3 )

B. CRITICAL POINTS AND ROOTS

It was shown in Section III that when the equation

f(t) = o (B—LI)

has only one positive root and the condition (B—3 ) is satisfied ,

no col li sion can occur at a time ear lier than t . Thus ine
order to determine whether an alarm should be given when (B-3)
is satisfied , a first step might be to find out if (5_14 ) has
more than one positive root. If not , the question will be

answered in the negative ; otherwise , it. will be necesFary to

determ ine whe ther one or more of the root s occur for values of
t between 0 and t .

Since f(t) is negative at t = 0 and becomes arbitrarily

large as either t or —t becomes large , (B—Li) has at least one

positive and one negative root . It may , of course , have as

many as four  d i s t i n c t  real roots .

It also fo llows tha t f ( t ) mus t have at least one minimum .
This corresponds to the fact that the derivative f’(t), being a

cu bic polynomial , must vanish for at least one real value of t.

If f’(t) vanishes for only one real value to of t then
the minimum of f(t) must occur at to and there can be no other;

nor , for that matter , can f(t) have a maximum in such a case.
Fur thermore , (B—LI) will then have just the one positive and the

B- 3

Id -



one negative root . This situation is illustrated in Fig. 3 in
which the minima of both curves occur at negative values of t.

On the other hand , if f’(t) vanishes at three distinct

values of t , f(t) will have two minima separated by a maximum .

ThIs relationship is topologically clear; it can also be veri-

fied by considering the sign changes of the second derivative
f”(t).

From (B—l),

f” (t) = l2t2 — 2 a2 (B—5)

Thus f” (t) vanishes at two values t~ of t given by

= ~~/a~ . (B-6)

These are the inflection points of f(t) and are evidently

located symmetrically about zero .

It can be seen by Inspection of (B—5) that the slope

f”(t) of f’(t), where from (B—i)

f’(t) = Lit 3 — 2a2 t + a1, (B—7)

Is negative for t between t_ and t~ and is positive for all
other values. Moreover , f ’ ( t ) ,  Itself, has a maximum at t

and a minimum at t~~. Thus , if f’(t) vanishes at three points ,
one lies to the left  of t_ and mus t correspond to a minimum of

• f ( t ) ,  one lies between t_ and t.~. and must corre spon d to a max i-
mum of f(t), and the third lies to the right of t~ an d must
correspond to another minimum of f(t).

Since

f ’ ( O )  = a 1

it is also clear that if a1 is negative , the max imum of f ( t )
lies between t and 0, because f’ (t) will change sign between

these two values of t. Similarly, if a1 is positive , the

B~LI
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maximum of f(t) lies between 0 and t~~. This situation is
illustrated in FIgs. 1 and 2.

Since f( 0) Is negat ive , it then follows that for a1 nega-
tive , (P-LI) can only have one positive root . For a1 equa l to
zero the max imum of f(t) will be at zero and will therefore be

negat ive. Thus , f ( t ) can have more t han one posi tive root onl y
if a1 is positive . It follows that when (B—3) is satisfied a

hazar d condi t ion can on ly ex ist when

a1 > 0.

This condi t ion is equivalent  to requir ing a negative value for
f( , which would imply that the intruder is approaching.

C. THE CUBIC D I S C R I M I N A N T

Since f(t) cannot vanish at more than two points If It has

just one minimum and lacks a maximum , a necessary con dition
that (B—Li) have more than one positive root is that f’(t) vanish

at more than one rea l value of t . In fact , the condition may
be state d mor e res trict ively:  the equa tion

f ’ ( t )  = 0 (B — 8 )

must have three distinct real roots. This follows from the

observation that a multiple root of (B—8) must occur at an

inflec tion point of f ( t ) ,  and at such a point f ( t )  will be
stationary but will have neither a maximum nor a minimum .

The condition that f’(t) have three real roots could be

obtained from the well known cubic discriminant (cf. Ref. B—b ,

p. 432). However , it may be Instructive to derive it here

directly in terms of the coefficients In f(t).

It has been observed that f’(t) has two critical points

t~~, given by (B—6). It is easily verified that t corresponds

to a maximum of f(t) and t~ to a minimum . Thus, f’(t) always

has one max imum and one minimum . Clearly, then , f’(t) will
have three distinct real roots If and only If it is positive

at t and negatIve at t~~.
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By substituting from (B—6) into (B— fl  it will be found
that

~ 3/2
f’(t ) a2 + a1 (a maximum )3Vr

and
—Lia

f ’ ( t
+
) = ___

~

— + a1 (a minimum).3~~~
—

From these expressions It can easily be verified that when

a1 
< 0

the minimum of f ’ ( t )  is pos i t ive  if and only if

27a1
2 > 8a2

3. (B—9)

It can also be verified that when

a1 > 0

the maximum of f’(t) is negative If and only if (B—9) holds.

Conv ersely , f’(t) will have a negative minimum and a positive
maximum if and only if

8a2
3 > 27a1

2. (P— iD)

Since f’(t) can vanish at three distinct valueF of’ only

when its minimum Is negative and Its maxi rum Is pc’si~~ ve (B—lO)

Is a necessary and sufficient condition that (B—8) have three

distinct roots. As remarked earlier , this is also a n€~ essar y

condition that (B~ Ll) have more than one positive r

D. NECESSARY CONDIT ION FOR A HAZARD

While (B— b )  is a necessary condition that (B—LI) have

more than one positive root , It is not sufficient . Moreover ,

assuming that (B—b ) Is satisfied , not cnly must additional

conditions be met before It can be concluded that more than

B— 6
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one positive root of (B—Li) exists , but even when that I’~ict is
established the possibility of a collision before  the tir* t

e
will still remain open. In order to assert that such a colli-

sion Is possible , so that a CAS alarm shoul d occur , at least
one of the positive roots of (B—LI) must be known to lie between

0 and t .

Before proceeding with a more deta iled analysis of the
biquadratic polynomial f(t) it will be convenient to change
variables In ord’~r to reduce the number of its coefficients
from three to two . This purpose is achieved by substituting

t = s

into f(t) and dividing the result by a~ . It may be observed

that when (3—10) Is satisfied as assumed a2 cannot be zero ;
therefore , this division is possible . The resulting polynomial

g(s) will have the form

g ( s )  = ~L4 
— + a

1s — a = 0, (B—il)

where
A a

= A = o
1 

~~~~~~~ 
0 ~~~~~~~~~

-~~~ a2 2

In terms of the new coefficients (B—b ) can be expressed in the

form
2 8A1 ~~~~~~~~~~~~~~

or 

0.5443. (3-12)

Since g(s) is negative at s=o and become s arbitrarily large

for lar ge s, if the equation

g( s )  o

has more than one positive root , g(s) must have a maximum at

B-?
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some positive value of s. The maximum occurs when the

second derivative g”(s) Is negative , i.e., when

l2sN
2 

— 2 < 0,

or 

~ < SM . (3—13)

Also , of course ,

g ’( s~ ) = 

~~M
3 

— 2
~M 

+ A1 
= 0; i.e.,

A 1 
= 2

~M 
— LISM

3. (B_ iLl )

From (B—li) and (3—12) it follows that a positive maximum can

occur only if A1 sat isf ies

0 < A1 
< ~~ 1__6 , (B—15)

a con dit ion already partl y known from (B-b2). -

Even when g(s) has a maximum and SM is positive , (B—l i)

will have more than one posit ive roo t If and on ly if g (s~ ) is
non negative . After substituting for A 1 from (3—14) Into

this condition becomes
Li 2g(s~ ) = —3 sM + SM — A0 � 0,

or

A0 
� 5M ‘3

~M 
= h (sM ). (3—16)

For the whole possible range of values for SM given by

(3—13) the function h(sM) has a positive derivative and there-

fore is always Increasing. Thus if (B—l6) is satisfied for any

8M it must also be satisfied when JT is substituted for s
M

A0 
< ~~ — •

~ij
= 

~~~~~~ 
. (3—17)

Let s~ be the smallest positive root of the equation

A0 
= h ( s0) s0

2 
— 3sf; (3—18)
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.e., 

so 
= ~~~~~~~~~ —i2A 0 , (3—19)

which must be real because of (3—17). Since h(s) is Increas—
Ir~g over the range of values (3—16) will be satisfied If

and only If

S0 ~

i.e., if and only If

2s
~ 

— ~4~~ 3 
~ 

— LISN
3 = A ,.

herefore , g(s) has more than one positive i-cot if and only if

A 1 � 2s~ 
— (B—20)

where s0 is given by (B—19 ).

When (3—20) is satisfied the maximum of g(s) is either

positive or zero. In the first case (B—il) has three positive

roots and in the second case (B—li) has two positive roots,

the smaller of which occurs at where the maximum also occurs .

If te is less than the first positive root of (B—Li) no

alarm should occur. In this case , since f(0) Is ‘-tegative and

the maximum of f(t) occurs after the first root of (B—LI), the

slope of f(t) at te is positive ; i.e.,

f’(t ) = LIte
3 

— 2a
2
te + a

1 
> 0. (3—21)

In addition , since the maximum of f(t) occurs before the posi—

tlve inflection point the second derivative of f(t) does not

change ~1 gn between zero and the maximum and therefore would

have to be negative at te; i.e.,

f”(t ) = 12t 2 
— 2a2 

< 0. (3—22)

When (B—LI) has more than one positive root , I.e., (B—li) has

more than one positive root and either of the conditions (B—2l)
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or (3—22) are violated , (B—LI ) will have a root between zero
and t and therefore an alarm should occur.
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