## IITTLE AMERICA Y MICRTCTIETEOROLOGY PRJGRLI

## data and analysis

by
Heinz H. Letteu
Sarah H. Wollaston
3


UBITED STATES ARMY
Natick labofalofle
Natich: Mascactas

CONTABUTION NO. 97
INSTITUTE OF POLAR STUDIES
Earth Sriences Division

## TECHNICAL REPOR"

67-46-ES
I.ITTLE AMERICA V MICROMETEOROLOGY PROGRAM DATA AND ANALYSIS

by<br>Heinz H. Lettau<br>University or Wisconsin Madison, Wisconsin

```
Sarah H. Wollaston Paul C. Dalrymple
Regional Environments Branch Earth Sciences Division
January 1967
```

Project Reference: IVフ25001A129
U.S. Army Materiel Command U.S. ARMY NATICK LABOFATORIES

Natick, Massachusetts

## FORETORD

During the International Geophysical Year (IGY), the Quartemaster Research and Engineering Center (now the U.S. Army Natick Laboracories) conducier the micrometeorological programs at Little America $V$ in 1957 and at the Soutn Pole in 1958. These programs vere part of the United Ststes Rational Comattee-IGY glaciology program. The obar rvations at the South Pole, made by Dr. Paul C. Dalrymple, vere publishec in 1961; their analybis was pubiished in 2963 . The present report anaiy:es his observ.iions at Littie America $V$, and the data are apperifed in the form of taj es of bourly rav date and means. The analysis tuss been directed towerd determining the energy exchanges at the anow-air interiace at ittile America $V$. The exchanges have been computed by a syatematic aralysis of all available Littie America $V$ micrometeorological data. Additional climatic analysis of a less spectalized character is included as background for the micrometeorological observations. Since the "ield pragram was discoatinued in 1957, this stady contains the analysis of the whole boaly of data obtained in the quartermaster aiciomteorological program et Little America V.

The study of the eavironment in the Antarctic at Little America $V$ and at the South Pole has provided vital date fad information on two contrasting climates irom the least-inown conifieri on earth. The knoviedge gained has been added to allied studies in mic:oneteorology which have been made at various alies in the ficthern Hemisphere. information obtained from such otisies can be appi.ed to otiaer pols: regions. Litile Aserica $V$ lies in the same latituie as Kurthem Greenland and the northem islends of the Canadian Archipelago. Little Americs $V$ was permape a better place than anwhere in tise Arctic to initlate such micrometeorologisal research, as it ia locate: as ane world's largest flostiag ice bkelf where local terrein featuret are simplified compared to arctic eites. Hovever, the strong mariaf-continenial effects complicated the anelysee anc indicated hov compiex natiure can be in a coastai polar environment. These studics iare provided eucn needed information on the lover layer of the atmospare, At the saske riac, they have made a substantial addition to basic research and constitute a valuable contribution by Departuent of Army scientistis to the woile scientific comminity.

The late Dr. Richard C. Hubley served as coordinator for the Little Ameriea micrometeomiogical pmgras and is responsible for draftias of the original program. Dr. Dcmald Portion, University of Michigan, served as consuitant. in 1958-9 and was responsible for the initial planning of the data reduction and smalysis prograu. Messis. Morton Ruinn, Vililam Weyant, Kirby Kanson, erió Edinn Flowerb oí ESSA and Dr. Herfried Icinkes, Univergity of Innsbruck: Abstria, all cooperated in making radiation and

Ailled climetic data aralleble for ihese analyses. The asis reduction probran was aponsored in part by a Kational Scleace founca:ion grant administered by The Ohio State University Research Foundailon. Miseea Dorothy Deskoches and Berbara O'Neill, Mrs. Joseph Kundin and mrs. Kenty Bullard reduced over half a mile of strip chart data onto usable punch cards so that Air. James J. Dilion, Management Division, could propram the cards through the Data Anelysis Offlce.
L. H. TRUEREOOD, Ph.D.

Chief
Earth Sciences Divasion

APPROVED:
DALE H. SIEJIMG, Ph.d.
Scientific Director
ii. M. MAFTZ

Briganter General, USÂ
Cummanding

## COMTENTS

Page
Symbols ..... vii1
ilst of Figures ..... x:
I.ist of Tables ..... xili
Abstrect ..... xiv

1. Introduction ..... 1
2. Climatic and Microcliratic Sumary ..... $\hat{2}$
2.1 General character of the area and of the ciimatic dati ..... 2
2.1.1 The Ross Ice Shelf ..... $\because$
2.1.2 The "kernlose" or "coreless" winter ..... 2
2.1.3 Monthly tempersture and wind speed at Little America V, 1957
2.2 General character of microclimetic date ..... $\geqslant$
2.2.1 Tempersture differences and their relation to ..... 9 wind speed and wind direction
2.2.2 Comparison of surface inversions at South Pole ..... 14 and Little America $V$
2.2.3 Occurrence of the minimum temperature at the 6 ..... 14 or 12 cm level, the "elevated minimum"
2.3 Wind and temperature (air und snow) profile data ..... 14 reduction
2.4 Conputation of richardson numbers ..... 16
2.4.1 Method of computation ..... 15
2.4.2 Correction of temperatures at 4 m level ..... 3

## CONTEFIS (Continued)

Page
3. Analysis of Profile Structure ..... 17
3.1 Grouping of profiles by stability, as measured by bial: ..... 17 alehardson number
3.1.1 Computation of buik Richardson numbers ..... 17
3.1.? Range of grouped twlk Richaròson numbers ..... 17
3.2 Relationship of wind proflle types to external ..... 18 parameters
3.2.1 Irregularity of wind profiles ..... 18
3.2.2 Classiaication of wind profiles into 4 types ..... 28
3.2.3 Wind profile types in relstion to wind direction ..... 18
3.2.4 Wind profile tijes in relation to cloudiness ..... 22
3.2.5 Wind proille types in relation to opaque cioudi- ..... 20 ness and wind direction
3.2.6 Wind profile types in relation to wind epeed ..... 22
3.2.7 Conclusion ..... 23
3.3 Sessonal variation of stability and veriation of ..... 2.3 external parameters with stakility
3.3.1 Comparison of average bulk stability at Little ..... 23 America V and the Suuti Pole
3.3.2 Montrly frequency of stability Prom data ..... 23
3.3.3 Monthily frequency of stability from USNB data ..... 23
3.3.4 Seasonal chenges towara lesa stable conditions ..... 24
3.3.5 Variation of wind speed, temperature and sky cover ..... 24 witi: stability
3.4 Vertical profile of Richardson number ..... 28

pice
3.5 Compatetion of wind profile curvature and zers dis- ..... 30 placenent parameter
3.6 Relationship of profile Cirvature (Deecor nuroers) to bulk stebil:ty (buik Richardson number) ara heicht
3.7 Interdependence between Deacon nur.bers and Richardson ..... 32 numbers
3.7.1 Nen-linear chante of Richardson number with height ..... 32
3.7.2 Thecrefical relationship between winc pririle ..... 32 Deacon number and Richardson number
3.7.3 Empiricel relationship betweer wind profile ..... 31 Deacon nur.ber and Richardson number
3.7.4 Relationship between temperature profile survature ..... 34 and wind profile curvature
3.7.5 Possible causes of unusual structure of the micro ..... 36 meteorolosical layer

1. Computation of Roughness Laneth ..... 37
4.1 Computation from wind profiles ..... 37
L. 2 Magnitude and variatior of roughness iength ..... 37
2. Calcuietion of Surface Stress, Eddy Heat Flux, and Momentum ..... 39 and Heat Transfer Coefficients
5.1 Surface stress ..... 39
5.2 Eddy heat fux ..... 40
5.3 Momentur transfer and heat transfer coefficients ..... 41
3. Heat Flux in the Snow ..... 42
6.1 Temperature observations and patterns ..... 42
5.1.1 Comparison of once-a-day and continuously ..... 42 recorded subsurface temperatiares
CONIEMIS (Continued)
Pace
6.1.2 Comparison of Littie America V, Maudheim and South Pole subsurface temperature extrenes
6.2 Anolysis of snow temperature variations ..... 43
6.2.1 Calculation of amplitudes and phase angles ofthe penetration of the heat wave
U.2.2 Cnlculation of thermal diffusivity and the ..... 46coefficient of beat conductivity
6.2.3 Calculation of daily values of the heat flux at ..... 47 2 m
0.2.4 Calculation of the heat flux at the surface ..... 48
4. Neasurement of Net Radiation ..... 50
$\therefore$ Surface Eneisy Buaget ..... 50
S.: Definîions, and energy budget equation ..... 50
E. $\hat{c}$ Computation of terms of the energy budget equation ..... 51
8.3 The seasonal course of surface stress ..... 51
3.4 Averege monthly heat budget constituents of the snow-air ..... 53 interface
8.5 Comparison of hoarfrost deposition at Little America V, ..... 53 Naudheim and the South Pole
5. Conclusions ..... 55
6. References ..... 57
Appendix A: Note on the Low-Level Anomaly in Vertical Temperature ..... 59Profiles under Conditions of Outgoing Radiation, byDr. H. H. Lettau
Appendix B: Data Presentation ..... 67
QUC Temperature Profile Data ..... 69
Wii Wind Profile Data ..... $2<1$

Section 2
$B=$ acceleration of gravity ( $982.3 \mathrm{~cm} / \mathrm{sec}^{2}$ )
$z=$ height (cm)
$\theta=$ potential temperature (deg) $\not \subset$ Kelvin
$T=$ temperature (deg)
$v=$ wind speed (cm/sec)
Section 3
$\mathbf{U}=$ wind speed (USWB observations)
$\mathbf{S}=$ dimensional $s$ iability coefficient ( ${ }^{\circ} \mathbf{F} / k t^{2}$ )
$3=$ Deacon number
$z_{0}=$ aerodynamic roughness length (cm)
$d$ = zero displacement (cm)
$D=$ zero displacement parameter $(\mathrm{cm})=d+z_{0}$
$r_{0}=$ surface stress (dynes $/ \mathrm{cm}^{2}$ )
$k=$ Kármán constant
Section 4
$a=$ profile contour number

## Section 5

$0=$ air density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$Q=$ eddy heat Inux ( $1 \mathrm{y} /$ time where $\mathrm{ly}=$ langley $=\mathrm{cal} / \mathrm{cm}^{2}$ )
$c_{p}=$ specific heat of dry air at constant pressure (cal g $g^{-1}$ deg $^{-1}$ )
The abbreviation "deg" stands for degree sentigrade while "Deg" is used for degrees of an arc.

## SMMBOLS (continued)

Section 5 (Continuid)
$K_{Q} \quad$ eddy diffusivity for heat $\left(\mathrm{cm}^{2} / \mathrm{sec}\right)$
$K_{M}=$ eddy diffusivity for horizcntal morentur. $\left(\mathrm{cm}^{2} / \mathrm{sec}\right)$
$r=K_{Q} / K_{M}$
1 = dimensionless momentim tronsfer soiifizient
$\phi=$ Gimensiouless heat transfer coefficient
Section 6
$S_{0}=$ vertical heat flux in the snow at the interface (ly/time)
(Note: Differs from usage in Section 3)
$n=$ frequency
$A=$ amplitude of the harmonic wave of temperature (deg) ${ }^{\dagger}$
$a=$ phase lag of the harmonic wave of temperature (Degt or radians)
(Note: Differs imu usage in Sectic.. 4)
$t=$ time
$K=$ thermal diffusivity of the snow $\left(\mathrm{cm}^{2} / \mathrm{sec}\right)$
$\lambda=$ heat conductivity (ly time ${ }^{-1} /$ deg $\mathrm{m}^{-1}$ )
(Note: Differs frcm usage in Section 5)
$\nu=$ snow density $\left(\mathrm{B} / \mathrm{cm}^{3}\right)$
C - heat capacity (cal deg ${ }^{-1} \mathrm{~cm}^{-3}$ )
$c_{i}=$ specific heet of ice (cal $g^{-1}$ deg $^{-1}$ )
$F=f l u x$ of heat (ly/time)
$T^{\prime}=$ vertical temperature gradient, i.e., partial differertiation of temperature with respect to depth

```
The abbreviation "deg" stands ior degree centigrate while "Deg" is
used for degrees of an arc.
```


## smmols (Continued)

## Section 7

## $R_{0}=$ net radiation at the interface ( $1 y /$ time)

Section 8
$E_{0}=f l u x$ of latent neat at the interface (ly/time)

## LIST OF FIGURES

Figure ..... Fage
Frortispiece Antarctica - Station Locacions ..... xv:
1

Monthiy mean temperatures: Ifttle America V, 1957 and ' 50 fror. USWB Local Climatological Sumarier, and averages for
 America" locetions, computed by Wexler [9].
Range o: monthiy tempereture extremes at Littie America V.
Monthly mean temperatures during the year 1957 for indicated coastal stations of the Antarctic Continent.
IIttle America V, 1957. Frequency distribution of average an vertical terpereture difference eetween 15 m and surface, April through August.
Little America V, 1957. Wind speed frequency and relation
to average verticbl temperature difference between 15 m and surface, April thrcugh August.
Littl $\leqslant$ America V, 1957. Averege vertical temperature differ- 13 ence between 15 im and surface ( $\mathrm{T}_{15}-\mathrm{T}_{0}$ ), April through August, in relation to wind direction and relative frequency of 16 standard wind directions.
Five sectors of wind direction used in wind profile distribution study at Littie Aserica V, 1957.
Stability coefficient, $S$, versus buik Richardson number, Ri',
for Little Americe V, 1957, compered with relationship estabiished between: and Ri' at, South Pole: 1958.
Little America V, 1957. Variation with Eulk stability, Ri', of: (a) inind speed at 2 m ; (b) Temperature of the 8 m surfece layer; (c) Sky cover.
Ifttle America V - Richardscn number, Ri, versus height, $z+D, \hat{c}^{\prime}$, for indicated buik Rishardson number, Ri'.
Little America V - Wind profile curvature, fy, versus heigint, 33 $z+D$, for indicated bulk Richardson number, Ri'.

## LIST OF FIGURES (Continued)

## Figure

## Fage

12 Wind profile curvature, $B_{v}$, versus Richardson number, R1. ..... 35
13 Little America V - Variation with bulk stability, Ri', ..... 30

of: (a) Surface strese, ${ }^{\circ}{ }_{0}$; (b) Eddy heat fiux, Qo; (c) Roughness length, $z_{0}$.
$i 4$ Littie America V - monthly mean subsurface temperatures. ..... $2:$
15 Litile America V - Tautochrones, 1957-58. ..... $\therefore$
16 Snow temperature - axplitude versus phase angle. ..... 42
17 Snow temperature - amplitude ard phase engle versus aepth. ..... $\because:$
18 Little America $V$, 1957: Annual variation of surface stress, ..... 52$r_{0}$, by 5-day periods, and by 30 day periods approximatingthe months of Nay through September.
19 Seasonal trends in energy buaget terms of the snow suriace ..... 52 㫙 Little Anerice V, 1957.
Nunber Fage
2.1.2.1 Monthly mean temperature at 7 cosstal stations of the ..... 8 Antarcti= Continent
2.1.3.1 Number of nows when ambient air temperaiure was detween ..... 10indicated limits anc relative frequency
2.1.3.2 Number of hours when wind speec̀ measured by Afrovane was ..... 11between incicated linits anì relative trequency
2.2.3.1 Monthly mean station temperature, number of days wit: ..... 1)temperature inversion, and number or cays es occurrenceof mean mini:aum at incicated levels, Soutn Foie, $\mathbf{1 9 5 8}$,and Little America V, 1957
3.2.3.1 Relative distribution of 5 seztors of winc nirection, ..... 20 and frequency of winc profile types for each wind direction sector
3.2̂.3.2 Comparison of reigtive frequency of wind profile types ..... 21 at Souzh Pole and Little America $V$
3.2.t.1 Nurber of hours wiih inciicated type of wind profile, in ..... 22 relation to wind speed at 8 a level
3.3.2́. 1 Nay - September, 1957. Number of cases with indicated ..... 24 bulk stability, Ri'
3.3.3.1 Frequency aistribution of hourly values of the aimensional ..... 26
stability coefficient, $S$, by months
2.2.1 Ranges of surface stress witn buik stability and values ..... 39 of the drag coefficient, Little America $V$ and the South Pole
5.2.1 Ranges of edcy heat flux with bulk stabiiity, iittle ..... 41 America $V$ and the South Pcle
c.2.1 Amplitudes and phase angles of the penetration of the ..... 46 heat wave at the various levels at ilttle America $v$
8.4.1 Energy fluxes at Little America V, 1957 ..... 53


#### Abstract

At Litile America $V$, the tempersture range $0:$ cach $^{2}$ of the 9 coldest months is large, as is the annual range. Minima are cor rolled by advection of cold air fror the interior and maxima by advection of waraer air fram the Ross Sea area. The win'er lacks a disifn:r temerature minimur, and mid-winter reversals of temperature trend iccur.

Micracteorologicai wind and temperature proizes in the lowet ór. $u^{\prime \prime}$ the atmosphere were recorded at Little Arerica $V$ in $i 557$, and hourly means of terperature for about 3,000 hours and wind speed ror etout 500 hours art published as Appendix B of this report. Procedures used tn anaiyze the $1 \geqslant 50$ micrometeorological deta from the Sc th Pole Station are followed in this analysis and resillts compared with the less comper reletionships at the South Fole.

The curvature characiensstics of wand and air temperature profiles (as measured by Deacon numbers) are analyzed in great detail, erpioying Richards on number computation (which taises into account wind shear as well as temperature lapse rete) to express stability ard its change vith height. The structure of the observed profiles is difficuit to interpret in detail. Attempts to do so, by considering such diverse factors as wind fetch, say cover, edvection or katabatic effects, were not entirely satisfactory. Statle conditions predominated, and cases of raxinum stability were more extreme than at the South Pole. The maximum inversion in "he lowest 3 ra amounted to $18.8 \mathrm{C}^{\circ}$. Variations of wind speed and temperatire with stability were similar to those at the Solth Pole, but solar rediation $f r a m$ sun and s:y can contribute to instability at Little America $V$, while overcasi akies indicate that instability at the South Pole can be caused by iong-wave radiation from the base of stratus cloud. The seasonal sinift toward less stable conditions, as well as the rise in termerature, was delajed until October.

Air temperature profile dats during winter frequentiy showed that the minimus tenpernture occurred at the 6 or 12 cm level, producing an "anomalous" profile. A study of this phenomenon, by Dr. He H. Lettau, is included as Appendix A.

Values of the roughness length were small and erratic. Wind profile structire also was distinctly iess regular than at the South Pole. In spite of this, Richarison numers changed quite aystematically with height below 4 m , suggesting a tendency for compensation. Conditions indicate that a comon surface layer for momentum and heat transfer, if it existed, was often so shallow that the levels of profile observations were above $i=$.

Eddy heat flux wes computed for the hours of profile data on the besis of a similarity assumption using both estimated surface stress (with


Kámán's constant equal to 0.428 , and Deacon-number-corrected wind shear) and vertical differences of termerature and wind speed in the lowest layers. To obtain representative climatological reans of eddy heat fiux, a statistical relationship was established betveen gua:tarm master observations (conceming profile structure versus bulk stabilitj) and regular synoptic or standard observations supplied by the $U, S$. Weather Bureau. It is shown thst it is permissible to exploy constant coefficients of transfer of momentum and heat at Little Americs $V$, since variation of indjvidual coefficients with stability was quite erratic because of the complicated profiie stmicture. Average eddy naat fiux varied from zero rear neutral stability to -0.0093 ly/min at extreme stability, and average surface stress Iram 1.6 dynes/cne to f.4. Averages for 5-day periods show peaks of surface stress accorpanyine the passage of $i=s$ pressure areas at this coestal station, in contrest with a lower average and sulaller range at the continentai Souti. Poie Stition.

The annual variation of reat flux at $2=$ depth was computed by Fourier analysis, using once-a-day subsurface terperature observationa by Chappeil. The surface heat flux was obtained by adding the heat exchange hetween 2 m and the surface, camputed by layer-by-layer integration of day-tomay temperature changes, to the ieat fiux at 2 m . The energy buifet at the snow-air interface is discussed. Complitations vere based on hourly values of net radiation suppiied by Hoinikes and heat fluxes into air and snow as described above. The latent heat fivx, obtained as a ramainder, indicates deposition in the 6 -month period in 1957 equivalent to condensation of about 40 mm of water, 2.2 times as much as that reported for Naudheim during sorrespondinz months in 1950 and 1951. Increased deposition in the milier winter months may be due to an accompanjing increase in available moisture.

## ANTARCTICA



Station Locatione

## 2. Introduction

The Quartermaster Corps Research and Development Command (currently the U. S. Arty Natici Lpboratoriss*) initiatel and raintatned the coilection of microceteorological dite at Little America V in 1957 is a part of the U.S.N.C.-IGY (U.S. Nationsl Comittee for the International Geophysical Year) Antarctic glaciologicel progras. The reduction of these data (at the Quartermaster Research and Engineering Center et Naticx) was supported partiy by National Science Foundation éents which were administered by the Ohio State University Research Foundation.

Data from a similar progran conducted by the Quartermaster Corps at the South Pole Station in 1958 heve been presented and analyzed in technical reports ES-2, "Souti Pole Minrometeorologi Proeram, Part I: Dota Presentation," and ES-7, "South Pole Kiermeteoroion' Proeam, Fert II: Data Analysis."

Technical Report ES-7, and the foliowine reponts heve been accepted for the first volume of Antarctic Neteoroiogy, a publ: astion of the American Geophysical Union for the Mationel Acadeny of Science:

A Regional Clinatolog of the Anterctic Patesu
A Case Study of Katabatic Flow on the fintarctic Placeau Surrounding the South Pole

For bibliographical detail see [1-4] of the list of references. In addition, the South Pole micraneteorological observations are discussed $\therefore$ relation to theoretical models in [5].

The objectives of the prosrams and plan of analysis were outlinea in the South Pole Data Analysis [2], and primarily were to determine the interrelationships between low-level wind ard temperacure profiles and the general meteorological and gleciclofical conditions of the energ. budgat at the interface, and to analyze temperatire profile da a to determine a climatology of the air temperature disteibution in the lowest 8 meters of the aimosphere, which incluies the enviromental layer for human surface activities.
*Abbreviation "QY" wiil be used since prograr wes conducted under the Quarterwaster Corps.

Study of the Little Anerica V microclimatic data (1957) has been sponsored by the U. S. Army Natick Laboratories and the results are being reported in this publication. A brief climatolocical summary (1957 and 1958) and comparison with the results obtained at earlier "Little America" sites and several other stations in the coastal region of the Antarctic continent, are inclided. A discussion of the "elevoted minimum" found in the inversional temperature profiles is discussed in Appendix A, and the micrometeorological data are presented in App ndix B.

## 2. Climatic and Microclimatic Summary

### 2.1 General charfeter of the area and of the climatic data

2.1.1 The Ross Ice Shelf. Little America V was located at $78^{\circ} 12^{\prime} \mathrm{S}$ and $162^{\circ} 11^{\prime} \mathrm{W}$ on the Ross Ice Shelf, 4 km south of Kainan Bay. The shelf is floating except for a few such places as Roosevelt Island (see Crary [6]); it has an area of approximately $525,000 \mathrm{~km}^{2}$ ( $203,000 \mathrm{sq}$. statute mi.), or about $4 \%$ of Antarctica; surface elevation ranges generally from about 25 to 110 m above sea level; ice thickness varies from about 22 to 771 m and is quite uniformaly between 350 and 450 m in the central and western parts of the Ross Ice Shelf. At the Iittle America $V$ location, SIPRE* (currently CRREL) found an ice thickness of 257 m (se) Crary [7, p 27]). Roosevelt Island [6], south of the station, has an area of 8720 km ( 3365 sq . statute mi .) with maximum elevation estimated to be 640 m . The ice is Mowing northward at a rate estimated at 0.2 to $1 . j$ $\mathrm{km} / \mathrm{yr}$ [6], or at Iittle America V obout $1 \mathrm{~m} /$ day [8]. The sun remained below the horizon fran late April until late August and was continuously above the horizon from late October to late February. Little Americe $V$ was operational during the IGY, but was closed in January 1959.

Monthly mean temperatures from February 1957 to October 1958, as reported in the U. S. Weatt.er Bureau's Local Clymatological Summaries fer Iittle America V, are illustrated in Figure 1. Also shown are the 6-y ar averages of monthly means (1911, 1929, 1934, 1940, 1956, 1957) for various "Little America" locations, on the Ross Ice Shelf, as computed by $H$. Wexler [9, Fig. 2, p. 579].
2.1.2 The "kernlose" or "coreless" winter. Monthly mean temperatures that show, when plotted, no central core of minimum temperatures have been found to be characteristic of polar latitudes. Such a "core ess" winter (with mid-winter reversals of the temperature trend) is evident at Little America V. In his study of observations from the French Antarctic

[^0]

Figure 1. Konthly mean temperatures: Little America V, 1957 and ' 58 fram USWB Local Climatological Surmaries, and averages for 6 years (1911, '29, '34, '40, '56, '57) for various "Little America" locations, computed by Wexler [9].
stations, Laroque [10] describes the characteristics of the polar winter as: a large temperature range, no important month-tomonth temperature variation, or a winter "lacking a center," and a brief spring and autum. He shows that the same characteristics aic illustrated by the course of solar radiation at high latitudes, and that the course of the monthly minimum temperature follows the course of the solar radiation very closely, particularly at the highest latitude, the South Pole Station. The monthly maxima, on the other hand, show the polar characteristics of insolation to only a slight degree. This suggests that the maximum temperatures are controlled primarily by advection, the warm air occasionally being carried even to the South Pole, if not at the surface, then aloft, where it later is brought dow by turbulence. Vowinckel [il] also relates the "flat temperature minimum" in winter and the rapid temperature rise in spring to the course of radiation.

Monthly extremes of te:uperature at Little America V, from February 1957 through October 1958, are plotted in Figure 2 in order to show the scasonal course of the maximum and minimum temperatures and the temperature range for each month. Both the South Pole [10] and Littlc America V (Fig. 2) have large ranges, those of the South Pole apparently due to latitude and those of Little America $V$ to its location on the Ross Sea, exposed to alternation of maritime and continental infiuences; both have the brief spring and autumn. The maximum temperature, February 1957 through October 1958, was $+2^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{F}\right)$, recorded in January 1958. The widest range between extremes, $52 \mathrm{C}^{\circ}$ ( $94 \mathrm{~F}^{\circ}$ ), occurred in May 1957. Winter minima were $-53^{\circ} \mathrm{C}\left(-63^{\circ} \mathrm{F}\right)$ in May 1957 and $-58^{\circ} \mathrm{C}\left(-73^{\circ} \mathrm{F}\right)$ In September 1958. It can be seen from Figure 2 that the monthly maxima as late in the autumn as May can be very close to the sea temperature.


Figure 2. Range of montily temperature extremes at Little America V.

It is estimated that Laroque's characteristice of the polar winter would be well illustrated by termperatures summarized for a number of years. There is, however, considerable variation in both monthly means and extremes from year to year, particularly in early winter. This is most apparent when comparing the monthly means in April in Figure 1 $\left(-33^{\circ} \mathrm{C}\right.$ in 1957, $-22^{\circ} \mathrm{C}$ in 1958), and the minima in May in Figure $2\left(-53^{\circ} \mathrm{C}\right.$ in 1957, $-30^{\circ} \mathrm{C}$ in 1958.

In Antarctica, stations at higher elevation are also, in general, et higher latitude. Increases of both elevation and latitude, along with permanent snow cover, result in decrease in the lag of the maximum. However, the month with highest mean marjmum shows no lag at Little America $V$, in snite of low elevation, although the lowest mean maximum tends to be retarded at both the South Pole and Little America V. This lag is greater at the coastal station, Littile America V, hecause winter temperature variations are very large and advection frequently results in maxima equal to the sea temperature in early winter.

The annual colurse of temperature is described by Wexler [9]: "As the sum sets, the temperature drops rapidly over the continent but less so over the surrounding oceans which are only partly ice-covered. The increasing meridional temperature gradient brings about the releace of baroclinic instability in the troposphere which initiates the formation of numerous intense cyclones. These cyclones move vast quantities of warm marine air southward, effectively 'ventilating' large portions of Antarctica above a thin surface layer of cold air and preventing a continous deciline in surface temperature. As winter proceeds, a tricier and wider ice pack extends hundreds of miles to the north of Antarctica and materially lowers the temperature of the southward-moving air masces, thus encouraginfs a second drop of temperature, near the surface and aloft, so that the lowest temperatures are usually found well after the winter solstice, even as late as September." It does appear, however, that the ice pack extends many hundreds of miles off shore at Little America $V$ by June, possibly as far as in September. This was true in other years (see Herdman [12]), but its location in June 1957 is not known. Nevertheless, the temperature in June 1957 rose to a maximum of $-4^{\circ} \mathrm{C}$ at Little America $\mathrm{V}_{\text {c }}$

The range of monthly mean temperature in 1957 was $31.2 \mathrm{C}^{\circ}$ (56.15*) from $-4.4^{\circ} \mathrm{C}\left(24.1^{\circ} \mathrm{F}\right)$ in December to $-35.6^{\circ} \mathrm{C}\left(-32.0^{\circ} \mathrm{F}\right)$ in July. The monthiy mean temperatures fell rapidly through April and then rose to the anomalous secondary maximum in June. However, in April and June of 1958 there were less pronounced interruptions of the seasonal cooling. While Jult was the coldest month in both years, temperatures did remain low in siugunt and September, i.e., for a certain period after reappearance of the aun.


- JOAN FEB MAR APQ NAY JUN JUL AUG SEP OCT NOV DEC

Figure 3. Monthly mean temperstur s during the year 1957 for indicated coastal stations of the Antarctic continent.

Apparently, in the year $135 \%$, cyclonic activity in the kuse Sea arei becare most effective in June, advectine warm a: ard raveing or holdine steady the monthiy rean temperature et Little facrica $V$, Hailett and McMirdo, while at d'Urvilie, Nirny and Wilkes, farther vect alone the cost, and Ellsworth, on the Neddell Sea, iemperatures continued ts fell in June. The coldest monthly mean temperature at wilyes oceurred in dune, at Little Anerica V, Nomurdo, Nimy and d'Umvile, in Jivy, and at Halictt and Eilsworin in fumust (spe frontispiece). (The course of temperature in 1957 at Hailey Bey enci Belgrano, accordinc ta Wexier [9, Fig. 5], was sirilar to that at nearty $\mathrm{F}^{\prime}$ sworth (F1E. Z), kut àthoueh observations from 1955 and 1950 show the "kernlose" winter ijpe $x^{2}$ th temperature reversais, the inimm occurred in September in 1255, in May in 1956, and in Augus in 1957 in that area.) Ellstorth shows, in 2557 , the lowest monthiy minimu ( $-30.9^{\circ} \mathrm{C}$ in August) of all the coastal stations cited in Figure 3. Aithough tempercture trends did not reverse in early winter at Ellesworth (in contrast to the stations in the foss Sea area), the annual mean was very closc to that at Littie America $V$, as might be expected from simiarities in latituce, elevation, and ice shelf exposure. In 2957, d'Urville was síghtly warmer than Mrmy in sumer (October inrouth March) and slightiy colder in winter (April throueir September).

The data used for the constriction oi Flgure 3 and for curves for Littie America $V$ in Figure 1 are smanized in Table 2.2.2.1.

In conclusion, the winter is "coreless" at both cosstal and inland stations of Antarctica. In adaition to one or more reversals of the seesonal trend of temperature, usually in early winter, there is considerebie month-to-month varistion. The primary control of the mininum terpesature is the annual course of solar radiation, while the winter maximum is controlied by advection. The "coreless" winter and, in particular, the reversals in the temperature course are jeast evident at those stations most subject to katebatic winds. While "coreless" winter and temperature reversals are evident at iniand stetions, they are more prom rounced at the coastal stations, particularly tiose on the Ross Sea. It is estimated frcm Figure $\hat{c}$ and observations for 1957 and 1958 ar Little Anerica $V$ thet, due so the reversals in the seasonai course of temperature, both the winter mean minimin and aboolute rinimus in a particular year mpy occur in any month fram April to September, aithe zn occurrence in April woila be most unlikeiy except at the highest latitude.

It is difficult to assess the effect of the extent of the ice pack on the seasonal course of temperatures at the coastel sistions since it may extend as far off sbore in the Ross Sea area in June as in September; however, the contrast in tenperature between the open water and air from interior Antarctice is undoubtediy an important factor in the cycionic activity which advects warm air over the Anvarctic continent, controllino the time of occurrence of tine annual minimur and influencing the mean monthiy temperature through the magnitude of the monthly mean maximu.
Table 2.1.2. 1 MONTHLY MEAN TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ ) AT SEVEN COASTAL . TSATIONS OF THE ANLAKCIC CONTINENT $\frac{1958}{\text { Litile }}$


| Hallett | McMurdo | Litile <br> Anerica V |
| :--- | :--- | :--- |
| -0.8 |  |  |
| -4.3 |  | -12.1 |
| -11.3 |  | -25.9 |
| -19.3 | -23.6 | -32.8 |
| -23.0 | -23.7 | -30.8 |
| -20.7 | -23.7 | -23.9 |
| -25.9 | -26.7 | -35.6 |
| -27.3 | -25.6 | -34.5 |
| -23.3 | -21.9 | -34.1 |
| -17.4 |  | -19.5 |
| -7.4 |  | -12.6 |
| -1.0 |  | -4.4 |



Wread to $0.5^{\circ} \mathrm{C}$ from graph in (9)
2.1.3 Monthly temperature and wind speed at Litilie Amer.ca $V$, 1957. The monthly mean wind speed varied frar 4.2 m/sec in Febmary to $7.9 \mathrm{~m} / \mathrm{sec}$ in October, with a maximur gust of $3 \mathfrak{i} \pi i \sec$ recorded in August. Frequency distributions of hourly temperatures and hourly wind speeds (USWB data) for 9 months (February whough Octater, 1957) are shown. in. Tatles 2.1.3.1 and 2.1.3.2.

### 2.2 General character of microcliratic aata

2.2.1 Temperature differences and their relation to wind speed and wind direction (USWB dsta). Temperature differences between 15 a ard the surface ( $T_{15}-T_{0}$ ), obtained fran USWB measurenents by electrical resistance thermometers called "thermohas" (Leeds and Northrup Company trade name), were tabuleted by Lioinkes* for the sunless ronths at Little Anerica V . The surface to 15 m inversion was $>2 \mathrm{c}^{\bullet}$, $50 \%$ of the time, $>7 \mathrm{c}^{\bullet}$, $18 \%$ of the time, $>21 \mathrm{c}^{*}, 10$ of the time, while lapse conditions (decrease of temperature with height) existed for low of the time. A frequency distribution, based on the number of hours of occurrence of vertical differences by $1 C^{c}$ class intervais, is shown in Figure 4.

Temperature differences between $J .5$ a and the surface, according to wind speed, and the irequency of wini speeds are show for the sunless period by the 2 curves in Figure 5. The figure illustrates the dependency of intensity of average temperature differences on wind speed. ( $T_{15}-T_{0}$ ) averages $5.6 \mathrm{C}^{*}$ with speeds less than 2 m, sec, decreases strongly as the speed increases from 2 to $9 \mathrm{~m} / \mathrm{sec}$, and fluctuates around $0.5 \mathrm{C}^{\circ}$ with speeds greater than $9 \mathrm{~m} / \mathrm{sec}$.

Temperature dipferences between 15 x and the surface, according to wind direction, were aiso tabulated by Hoinkes. Figure 6, based on this tabulation, shws the frequency of occurrence of the 16 standard wind directions and the mean intensity of surface inversions for the dirccions during the sunless months at Iittle Arerica $V$, The length of "'je radii is proportional to the average temperature difference ( $\mathrm{T}_{15}-\mathrm{T}_{0}$ ). The strongest inversions (longest radii) occurred with wind alrections frox. west through north to east. ficr which advection of relatively wam air from the Ross Sea is to be expected. Winds blen fras this 180-degree sector onily $25 \%$ of the time. NWN winds, though infrequent (1.9\%), were accomanied by the largest average temperature difference with height ( $T_{1-}-T_{0}=6.8 \mathrm{C}^{\circ}$ ). Air flow was Prax SE and SSE in $40 \%$ of all hours during the suniess winter ronths. With winds frow these directions, the terperature inversions between the surface and 15 m were usuaily very small, averagirg about $1 C^{\circ}$.

[^1]NUMEER OF HOURS WHEN AMRIENT AIR TEMPERATURE WAS BETWEEN INDICATED LIMI＇SS（ ${ }^{\circ} \mathrm{C}$ ）AND

| -45.5 to | -51.0 t．0 |
| :---: | :---: |
| -50.9 | -56.4 |




（I己） $8+1 /$
（T） 8
$-34.3 t 0$
-39.9
a


事き

은

$$
\begin{aligned}
& 18.9 \text { to } \\
& 21.9 \\
& \hline
\end{aligned}
$$

(1)

| 25.1 to |
| :--- |
| 28.1 |

$\begin{array}{ll}\cong & \Xi \\ 0 & 0\end{array}$
Table 2.1.3.2 NUMBER OF HOURS WHAN WIND SFEED MEASURED BY AEROVANE ( 30 foot lerel) WAS BETWERA INDICATED LIMITS (m/sec) AND REIAIIVE FREQUENCY (percent per month, in parentheses)
$\underset{\sim}{c}$
$\underset{\sim}{m}$
$m$
$\sim$
$\underset{\sim}{m}$
$\sim$
(ट) $兀 \tau$

Wind speed (m/sec) between:
6.5 to 9.6 to 12.7 to
$9.5 \quad 12.6$

| 15.8 to |
| :---: |
| 18.8 |

6 (1)
ले
N
10 (1)
*Calms are relatively frequent, since the Aerovane did not respond to
*Mumbers in brackets indicate number of missing observations

$$
3(0)
$$

$$
(0)
$$

こ
-
응
$\sim$
23 (3)
3
$\stackrel{3}{2}$
$\frac{4}{8}$
$\frac{4}{3}$


$S$

Figure 6. Little America V, 1957. Average vertical temperature difference between 15 m and surface ( $\mathrm{T}_{15}-\mathrm{T}_{0}$ ), April through Ausust, in relation to wind direction and relative frequency of 16 standard wind directions. (Temperature inversions from USWB data, tabulated by Hoinkes.)
2.2.2. Comparison of surface inversions at South Pole and Little America V (QM data). In addition to the continuous temperature profile observations made by the USWB with thermohms, detailed micrometeorologicel profile observations were obtained by the Quartermaster Comand, using fine-gauge copper-constantan thermocouples at 9 levels between the surface and 8 m . Similar equipment was employed in 1958 at the South Pole Station; reference is made to [1].

Surface inversions, as measured by this equipment, were generally larger at Little America $V$ than at the South Pole. In the seasonal course, the maximum 3 -minute temperature difference between 8 m and the surface ( $T_{8}-T_{0}$ ) occured at Little America $V$ approximately 6 weeks after final sunset, and amounted to $18.8 \mathrm{C}^{\circ}$; between 2 m and the surface $\left(\mathrm{T}_{2}-\mathrm{T}_{0}\right)$, the maximum was $15.0 \mathrm{C}^{\circ}$. Most of the extreme inversions occurred durine the period of dariness, but, occasionally, inversions of $10 \mathrm{C}^{\circ}$ between the surface and 8 m were experienced when the sun was above the horizon. The duration of individual periods with an inversion greater than $10 \mathrm{c}^{\circ}$ was usually several hours, although sometimes the inversion would persist for more than 24 hours. The vertical structure of the typical inversional stratification within the lowest 8 m at Little America $V$ was relatively uniform with temperature differences of at least $1 \mathrm{C}^{\circ}$ existing between all instrument levels. This was in contrast to the conditions at the South Pole where the major contribution to the total inversion was from Iayers above the one-meter level.
2.2.3 Occurrence of the minimm temperature at the 6 or 12 cm level, the 'elevated minimum" (QM da"ua). Also, in striking contrast to conditions at the South Pole, the minimum value of the vertical temperature profiles during the winter months at Little America $V$ frequently occurred at the 6 or 12 cm level rather than at the snow/air interface. Statistical results fram hourly temperature profile values for the two stations are summarized in Table 2.2.3.1. This interesting phenomenon of an "elevated minimum" in inversional temperature profiles has been observed at various micrameteorological field sites For an outilne of the previous history, and a smmary of possible theoretical explanations, see Appendix A.
2.3 Wind and temperature (air and snow) profile data reduction (QM data). At Litile America V, 1145 hourly wind prorlles (based on 5 ancmometer levels) were measured on 157 days, and air temperature profiles (based on 9 thermocouple levels between the surface and 8 m ) were recorded for approximately 3000 hours on 150 days. Snow temperature measurements at 4 depths, and a surface temperature value were also obtained. All temperatures have been transformed from millivolt-readings on $\operatorname{strip}$ charts to degrees $C$ on punch cards. The sampling rate was 18 per hour at each level. The data reduction was accomplished through an avtomatic read-out system especially designed for the project by Dillion and Arbarchuk [13]. Data reduction was reproducible to $\pm 0.1 \mathrm{C}$ for 99 per cent
MONIHLY MEAN STATION TEMPERATURE, $T_{m}$, NUMBER OF DAYS IITH TEMPERATURE INVERSION, H , AND NUMBER OF' DAYS OF OCCURRENCE OF MEAN MINIMMM AT INDICATED LEVELS, SOUIH POLE, 1958, AND LITHES AMEFICA V, 1957 (number of days of occurrence with sun above horizon is noted in parentheses)




of all cases. Tabulations of these data ( 105,080 IBM cards of Little America V profile data) were critically reviewed and edited, and sumary and mean cards were transcribed for each hour and day. Hourly averages of wind speed at 5 heights (geametrically spaced from 0.5 to 8.0 m ) were expressed in centimeters per second and were punched onto IEM cards (5l7 cards).

### 2.4 Computation of Richardson numbers

2.4.1 Method of computation. Richarison-number profiles were computed for all periods when both wind and temperature profiles were available, providing 580 profiles. Using wind and temperature measurements for the simultaneous observation periods at the conmon levels of $800,400,200,100$ and 50 cm , gradient Richardson numbers, Ri, at l:00, 200 and 100 cm were calculated from

$$
\begin{equation*}
R 1=g \Delta z \Delta \theta / T_{m}(\Delta V)^{2}, \tag{1}
\end{equation*}
$$

employing ror the delta's values from the three over-lapping quadruple heights ( 800 and 200,400 and 100,200 and 50 cm ),

```
where g = acceleration of gravity ( }982.3\textrm{cm}/\mp@subsup{\textrm{sec}}{}{2}\mathrm{ )
    \Deltaz = height difference (cm)
    \Delta0 = potential temperature difference (deg Kelvin)
    Tm}=\mathrm{ layer-mean temperature (deg Kelvin) obtained by
        averaging the temperatures at the 5 levels
    \DeltaV = wind speed difference (cm/sec)
```

2.4.2 Correction of temperatures at 4 m level. An inspection of the thermocouple data showed that temperatures appeared consistently too low at the 4 m level throughout the year in spite of the various interchanges of leads, etc., that were made fram time to time. It was concluded, therefore, that an unknown effect produced a systematic error. In order to obtain a correction term, the temperature and wind speed differences between 800 and 200 , and 200 and 50 cm were used to interpolate R1 at 200 cm ; this result was compared with R1 computed at 200 m , usirg the temperatures and wind speeds at 400 and 100 cm . The difference leetween the interpolated and computed Ri increased with stability in such a refrular fashion that the correction to the 4 m temperature at neutral stability could be devermined, by interpolation, as $+0.27^{\circ} \mathrm{C}$. The adjustment by $0.27^{\circ} \mathrm{C}$ of all 4 m temperature readings produced non-linear curves of R1 versus height at greater stability, which were similar to those found at the South Pole.
3. Analysis of Profile Structure

### 3.1 Grouping of profiles by stability, as measured by bulk Richardson number, R1

3.1.1 Computation of bulk Richardson numbers. Bulk Riehardson numbers, Ri', provide a measure of the general stability of the air layer under consideration. Values were obtained by suming the R1 values computed for 400 and 100 cm and dividing the result by the sum of the reights. Hourly profiles were arranged in order of Ri', and collected into lorun and 30 -run groups. The method is essentially the same as that used in the "South Pole Data Analysis" except that Ri' at Little America V vas obtained from Ri at 2 levels instead of 3 because of the systematic arro: of temperature measurement at 400 cm . Originally, the method was irtroduced by H. Lettau [14, Section 7.4, p. 328] in the micrometeorologjcal analysis of the O'Neill, Nebraska, data. In view of the existing near-to-linear shape of individual Ri-profiles, it is found that, to a fair approximation, $R 1=2 \cdot R 1$; specifically, $R I^{\prime}$ given in $10-3 / \mathrm{m}$ can conveniently be taken as $10^{-3} \mathrm{Ri}_{100} \mathrm{~cm}$ which sametimes has been used as a stability parameter.
3.1.2 Range of grouped bulk Richardson numbers. After avereging wind and temperature data, local Richardson numbers, R1, were computed for the group averages. A total of fifteen 30 -run averages were selected frm the 580 profiles available, by excluding approximately 60 which eppeared to have a low-level wind profile maximum and others where it appeared that spurious voltages had been generated in the thermocouple wires by high winds.

The group values of R1' ranged from -26 to +728 . As might be expected in view of higher sun angles, the number of groups with negative Ri' (lapse conditions) was large at Little America V, relative to the number at the South Pole, in spite of the fact that the micrometeorological progrom at the South Pole covered 10 months (from February to November, 1958), while that at Little America V covered only 7 months (from April to October, 1957). Stable conditions ( $R I^{\prime}$ positive) were in the majority, however, and cases of maximum stability were more extreme at Little America $V$ than at the Pole. The intense inversions at the lower levels, which contributed heavily to these high bulk-Richardson numbers, however, were proba'. $y$ due to physical conditions rare or not present at the Pole, namely $k$ Lewer, winds and warm air advection from open water, As at the Pole, cases of necative Ri', indicating lapse rate conditions, occurred most frequently during the polar day, but were occasionally observed during the period without sun.

### 3.2 Relatlonship of wind profile types to external parameters

3.2.1 Irregularity of wind profiles. The variation of the wind gradient with height in the lowest 8 m was dictinctly less systematic or regular at Little America $V$ than at the South Pole [2]. Consequently, efforts were made to relate the type of height distribution of the rind cradient to same external parameter. Since the nature and topograpiny of the snow surface showed distinct changes on the Ross Ice Shelf, it seemed that wind blowing over different types of terrain might result in variation of wind profile type with uind direction and fetch. Using a map of the vicinity of Little America $V$, a division into 5 sectors (see Fig. 7) was suggested by local particularities. Concerning descriptive classification of profile structure, the following method was adopted.
3.2.2 Classification oi wind profiles into 4 types. Wind profiles of the 450 grouped cases have been classified into 4 types: "expected," "inverted," "єxpected irregular," "inverted irregular."

In fully developed flow, not only the wind speed but the wind speed difference, $\Delta V$, between any pairs of geometrically spaced levels should increase with height when conditions are stable (Ri' positive); when conditione are unstable (Ri' negative), the ircrease of wind speed with height should occur with height-decreasing $\Delta V$. Such distributions of the 3 overlappins values of $\Lambda V$, available from the wind speed measurements at 5 levels, are classified es "expected."

If the stable case shows a decrease of $\Delta V$ with height, or the unstable an increase of $\Delta V$ with height, the wind profile is classified as "inverted."

If the type of profile is "expected," based on a higher $i V$ at $4:=$ than at 1 m , but the magnitude of $\Delta V$ at 2 m is not intermediate: between the two, the profile is classified as "expected irreguar."

Similarly, if the type of profile is "inverted," based on a lower $\Delta V$ at 4 m than at 1 m , but the marnitude of $\Delta V$ at 2 m is not intermediate between the two, the profile is classified as "inverted irregular."
3.2.3 Wind profile types in relation to wind direction. At the South Pole, more than $75 \%$ of the selected profiles were of the "expected" "jpe, while, at Little America $V$, it was possible to obtain only 7 such 30 run groups (i.e., 210 profiles out of 450 , or less than $50 \%$ ). Winds from each of the five sectors shown in Figure 7 were tallied according to the $H_{4}$ profile types, and the results are summarized in Table 3.2.3.1.

NOTE: Details of methods of analysis are idented in this report.


Figure 7. Five sectors of wind direction used in wind profile distribution atudy at Little America $V$, 1957.

Table 3.?.3.1 REIATLYE DISTRIFUIION (persent s ti:e) GF FIVE SECTORS OF HIND DIRECTIOM, AND FREGUENCY ( $\mathcal{D}$ ) OF WIND PROFIIE THPES FOR EACH WIND DIRECTION SECTOR

| Wind Direction Sector |  | Frequency (o oit tume) of ancicated profile type for each wind eirection sectrer |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - |  |  | Expected |  | Inverted |
| $\underline{L T M} 1 \pm 5$ | Frequency (f) | Experted | Irreguar | Inverued | Irremular |
| SERSE | 1 45.4 | Lic | 9 | 15 | 15 |
| S-WSN | 52.7 | 67 | 11. | 12 | 12 |
| W-Navi | 3.3 | 40 | 45 | 7 | 7 |
| $\mathrm{N}-\mathrm{NE}$ | 7.0 | 30 | 59 | 0 | 17 |
| ETE-ESE | 3.7 | 59 | i2 | \% | 23 |
| "Caim"* | 2.1 | 50 | 20 | c: | 0 |

*Wincic too veak to activate the Aerovene:
An additional type of winc profile structure was definned as "katibatic" and inclidied cases which showed either $\equiv$ wind speed raxinum below the 8 m level or a pronounced lowering of the rate of wind increase witi ketght under stable conditions. Sich cases had been exciuded irom the groupine of profiles into $30-\min$ groups and are not shom in taile 3.2.3.1; of profiles of this iype were availabie. In 9 csses, winds yere tuo weax to activate the ierovane while 35 cases showed light winds between SSE and EME. Six cases snowed stionger wincs fror. NNW and apperentiy were profiles that were not filly developed.

SE-SSE. The results show in Table 3.2.3.2 are not easy to interpret. A posstble explanation of the high frequency of the SE-SSE sector of wind disection is that the air tends to fliow through the slightiy iower region in the azimuth between Byrd Station and the South Pole. Wind direction suatistics for both stations ( $\mathrm{B}=\mathrm{d}$ and the Fole) indiante a tendency of air to drein into this $\dot{\text { iower area. Also, on the Ross Ice Shelf, some south }}$ winds may be ilverted iy Roosevelt Island, which iies due south of Little Amorica $V$, but at a distance of more than 40 im , with the highest elevation, 540 m , at about 100 m from the station.

S-iNN. The sertor from $S$ to WSW inciudes the resion rere the Ross Ice Shel stretches out for an average distance of approxirately 500 riles rith a: average slope of i in 10,000 near intile Amerise $V$. The rost significant intermption to this slope is Roo:evelt Island. Same details of the topograpiy near the station are shown by Crary [7, Fis. i and 2 , pp. 5 and 71. Beyond the relatively abrupt rise fror the ics shelf to the Plateai (Fig. ?), there is a graduai siops upward of about 1 in 500 to the highest iand of the plateau (elevation more than 4000 m ). Winds which apprasch the Littie America V station across the eentiy
sloping, quite uniform Ross Ice St.elf show the "erpected" profile trpe With relatively highest frequency, namely $67 \%$ of the time (see Tables 3.2.3.1 and 3.2.3.2), in spite of the fact that the camp was located in this wind sector in relation to the micrameteorological wind mast.

Table 3.2.3.2 COMPARISON OF RELAITVE FREQUENCY ( $p e r$ cent) OF WIRD PROFIEE TYPES AT SOUTH POLE (ail directionis) AND LitTILE AMERICA $V$ (S-HiSW)

|  | Expected | Expectad <br> Iriegular | Inverted <br> Inverted | Irregular |
| :--- | :---: | :---: | :---: | :---: | :---: |
| South Pole, all directions | 76 | 10 | 4 | 4 |
| Iittie Anerica V, S-WSW | 67 | 11 | 11 | 11 |

This table shows that, et Little America $V$, tre relative distribution of the profile toves with winds fram the S-WSW sector is closest to that foind at the Scuth ie, where the slope is gentie and quite uniform. There is indicaiion irom records for other years (see Vowinckel [11]) that winds Eroc this sector are normaily more prevalent than they were in 1957.

W-RIN In the sector from $W$ to NTW, wind Siows upsiope, and the fetch is across rough terrain close to the station, inciuding a 26 m deep depression called Crevasse Valley, and over a surface sonetimes composed of ice and sanetimes of water. These fetch conditions may explain the result, shown in Taule 3.2.3.1 that "expecter irregular" profiles are most frequent.

H-NE In the $N$-NE secto., the surface is aiso rough and winds cose fram the sea. The location of Little America $V$ relative to normal storm tracks is such tiast most of the rigrating disturbances are accompanied by strong $\mathbb{N}-\mathbb{N E}$ winds at the station. Table 3.2.3.1 shows for this sector the iowest frequency of "expected" profiles. WIthin this sector, NWE was the most frequent direction (see Fig. 6) and was also th azimuth of the strongest winds.

SE-SSE It is more difficult to account for the large number of "invertes" and "irregular" profiles fran the direction of maximum frequency, SE-SSE. $/$ isarently, the type of wind profile does not relate to wind direction alone.

ERE-ESE Figure 6 shows that winds fram ENE-ESE are rather infrequent (16.7\% OP ail days), in comparison with winds fram SE-SSE ( $38.5 \%$ of all days) but the isatabatic type occurs with both fetches. The more southerly the wind in these 2 sectors, the longer the fetch across the ice shelf.
3.2.1. Wind proize types in relation th cioudiness. Cloudiness was considered as a possible factor which could le related to the type of wind profile. The mean opaque ciounincss averaces 0.43 for hours of all profiles, .33 for hours with "expected' profiles and C. 53 for hours with "Inverted" and "Irrefuiar" proililes. This ras indicate thet the latter types occur with greater than averace cioudress. However, a frequency count shows that with 0.6 to 1.0 cioudiness, $5,5 \%$ of the profiles are of the "expected" rype, and with 0.0 to 0.5 sioudiness, $4 \times \%$ are of the "expected" type. Thus, the relationship is not statistically significert.
3.2.5 Wind profile types in relation to operiue sinudiness and wind direction. An atterpt to relete opeque cioudiness, wind direction, and type of wind profile indicates the foluowing:
(1) idsth fetches froc the S-isN sector and clear sities, profiles of the "expectec" type preaminate;
(2) With fetches frow the SE-SSE sector, profiles of the 'expected" type are most Ereguently aecompanied by ciear sfies;
(3) with overcast sxies, gny wind profile ype fa, occur with nearly equal frequency;
(4) winds from the azimuths most iskely to show katabatic inFluence are usually accompanded by overcasi sxies while profilies of the "inverted" type have various sky conditions, but not こiear skies.

Iten (4) is the most surprisine, since overcast skies are nomaliy not expected witi kstabatic whas.
3.2.6 Wind profile tipes in relation to wind speed. A tebulstion of type of wind profile as a function of wind speed at the 3 a level (see Table 3.2.6.1), illustrates that when $V_{8}$ exceeds a value of about $6 \mathrm{~m} / \mathrm{sec}$ the profiles of the "expected" type are definitely a rarity.

Table 3.2.6.1 LITILE AMERICA $V$. NUMBER OF HOURS WIIH IKDICATED MYPE OF WIND PROFILE, IN REISIION TC WITD SPEED (II/SeC) AT 8 M LEVEL

Type of Profile
Moner of hours at indicated wind speed, $V_{8}(\mathrm{~m} / \mathrm{sec})$
"Expected"
All other types

1-3
43
10
118
78

7-9
42
$7 ?$

29
8
45

Although we are obviously considering two closely related measuremcr.te, wind speed at 8 m , and the wind gradient below the $i$ level, it is sotuewhat surprising that the desree of regularity decreases with increasine wird sueed. The observed reiationship may provide sane insight regarcia.s the physicel mechanism involved, inesmuch as it can be interpreted ti indicate the role of advection processes due to horizontal nol-uniforci: of surface conditions.
3.2.7 Conclusion. Neither the fetch of the wind nor the sixy conditions afford a satisfactory correlation with type on wind profile at Little America V. Nor do advection, katabatic eftects, nor a cambination of the wo provide an explanation of the observed wind wro:iles. Some of the resetionships studied in the following sections tave been tested usita only the "expected" type of wind profile as weil as ali profiles.

### 3.3 Seasocal variction of stability and variation oi exte:nal

 paremeters with stability3.3.1 Camparison of average bul\% ctubijity at Littie Ailerice V and the Suuth Pole. If one wants to corpute monthiy zeans of bulinRichardson number, R1', fror hours when profiles were recreded et Litile America $V$, ine occasional extremely large R1' raises the everage so mar:edi: ihet is may become unrep:einiaive, In i..e atterpt to cttain a comperisor. "uth South Pole conditions (see Table 3.3.1 in the "Sou.th Fcie Deta Analysis" [2]) all profiles resulting in Ri' larger than icio unfts were conitted in the compitation of monthly means. At Littie America $V, R i$. nevertheless averages consistently higher than at the South Poie.

In a chart of monthly-mean Ri' for the South Pole Station, aerom logical data an the total height of the surface inversion and the total temperature difference had been included. Hovever, due to a more complex struiture of the lapse rete ove: the Ross Ice Shelis, ir is not possibie to obtsin a total thichness of the inversion layer for that area with sufficient reliability and accuracy fram the aerological soundings available. The main reason is that frequenily several inversions occur in the lowest 1000 m .
3.3.2 Monthiy frequency of stability from OM data. It apyeared that a frequency count of stability occurrence by montins, 96 measured by Ri' for the profile periods, might be more significant then the ave:age monthly Ri'; resilts for 5 months are sumarized in Table 3.3.2.1.
3.3.3 Monthly frequency of staicilsty from USWB date. In view of the fact that hours of micrometeoralogical profile data are rather uneverily distributed over the months (see Table 3.3.2.1), the regular hourly observations by USWB personnel at Little America $V$ for April through October 1957 were used to round off the M climatic statistics of stability. A dimersional stability coeificient, $S$, was computed for every hour of the month, which has the same definition as that used for the South Pole

Station, namely

$$
\begin{equation*}
S=\left(T_{10}-T_{2.5}\right) /\left(U_{10}\right)^{2} \tag{2}
\end{equation*}
$$

For convenience the USWIB data were used in units in which they were recorded: Temperature, $T$, is in ${ }^{\circ} \mathrm{F}$, and wind speed, $U$, in knots; instrument levels as indicated by the subscipts are height in meters. Thus, $S$, is expressed in ${ }^{\bullet} F / k t^{2}$.

Table 3.3.2.1 LITILE AMERICA V, MAY - SEPTEMBER, 195\% NUMBER OF CASES WITH INDICATED BULK STABILITY, RI' ( $10^{-3} / \mathrm{m}$ )

|  | May | June | Number July | Aug | Sep | May - Sep |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1' < 0 | 7 | 0 | 16 | 35 | 33 | 90 |
| O<R1'<19 | 26 | 9 | 44 | 47 | 24 | 153 |
| R1' $>19$ | 33 | 13 | 70 | 35 | 57 | 206 |
| Total | 66 | 22 | 130 | 117 | 114 | 449 |

An empirical relationship between R1' and $S$ had been derived ior grouped hours of simultaneous measurements by QM and USWB at the South Pole, and is illustrated by the solid line in Figure 8. Grouped data for Little America $v$ are plotted on the same graph. While the scatter is considerable at Little America $V$, due to the climatic complexities, the general relationship is similar to that at the South Pole. The frequency dietribution of class intervals of $S 18$ show in Table 3.3.3.1 by months.
3.3.4 Seasonal changes toward less stable conditions. At Little America, as at the Suuth Pole, the stability coefficient, S , was most frequently in the interval from 0 to $0.01\left({ }^{\circ} \mathrm{F} / \mathrm{kt}^{2}\right)$. A shift towar less stable intervals is evident in warmer months, particularly in those cold months which were, in 1957, warmer than normal, such as June (see FIg. 1). The shift with season toward less stable intervals does not appear in September, 1.e., following inmediately the return of the sun, but is delayed until October, as is the seasonal rise in temperature.
3.3.5 Variation of wind speed, temperature and sky cover with stabili1,y. Figure 9 illustrates the variation with bulk stability, Ri', or wind speed, temperature and sky cover at Little America V. These elements are taken, for the hours of detailed profile data, from the 2 m wind speed, the mean temperature of the 8 m mast-layer and from the USWB visual observations of sky conditions.


Figure 8. Stability coefficient, 8 (from USND data) veraue bulk Richarison number, Ri' (from QM data) for Little America V, 1957, comparod with relationship established between 3 and R1' at the south Pole, 1958.

Table 3.3.3.1 FREQUENCY DISTRIBUIION OF HOURLY VALUES OF THE DIMENSSIONAL STABILITY COEFFICIENT, S (computed from USWB data), BY MONIHS AT LITTLLE AMRRICA V, 1957

| $\stackrel{S}{(9} / k{ }^{-}$ | Apr | May. | Jun | Jul | Aus | Sep | Oct | Aor - Oct |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| - . to -. 01 | 1 | 7 | 7 | 6 | 6 | 17 | 15 | 59 |
| -.01" 0 | 35 | 134 | 158 | 82 | 104 | 96 | 188 | 797 |
| $0^{\prime \prime} .01$ | 82 | 380 | 399 | 414 | 44.6 | 369 | 393 | 2483 |
| .01 " .08 | 25 | 43 | 38 | 58 | 46 | 66 | 29 | 305 |
| .02 " . 03 | 6 | 22 | 16 | 21 | 20 | 41 | 18 | 144 |
| .03 " .04 | 12 | 16 | 6 | 25 | 11 | 13 | 15 | 98 |
| . 04 " . 05 | 5 | 7 | 9 | 10 | 8 | 17 | 12 | 68 |
| .05 " . 06 | 8 | 12 | 7 | 10 | 10 | 11 | 6 | 64 |
| .06 " . 07 | 4 | 9 | 5 | 4 | 3 | 6 | 6 | 37 |
| .07 " . 08 | 1 | 1 | 5 | 6 | 3 | 3 | 6 | 25 |
| . 08 " .09 | 3 | 3 | 4 | 7 | 4 | 5 | 5 | 31 |
| . 09 " . 10 | 0 | 5 | 1 | 6 | 3 | 2 | 3 | 20 |
| . 10 " . 11 | 1 | 5 | 4 | 5 | 4 | 1 | 3 | 23 |
| . 11 " . 12 | 1 | 6 | 2 | 2 | 5 | 0 | 0 | 16 |
| . 12 " | 27 | 43 | 21 | 64 | 39 | 42 | 21 | 247 |
| Total | 201 | 693 | 682 | 720 | 712 | 689 | 720 | 4417 |

The wind and temperature dependencies on buik stability (R1') are similar to those for the South Pole, with highest speed and highest temperature for groups near neutral stability. However, sky cover with the unstable cases at Little America $V$ averages 7/10. At the South Pole the rare unstable cases are consistently accompanied hy overcast skies. This result is highly interesting. It can mean that at the South Pole the cause of occasionally occurring lapse conditions is long-wave radiation from the lower surface of a "warm" stratus cloud (i.e., warmer than the snow-surface), while at Ifttle America $V$ short-wave radiation from sun and sky can be at least a contributing factor. In view of the high albedo of the antarctic snow cover, this result appears to be understandable, and consistent with conditions of external nature.

Wind speed averages are lower for profiles of the "expected" type tran for all hours of profile data (Fig. 9). This is consistent with the evidence discussed in Section 3.2 that wind speed averages tend to be higher for the "irregular" types. Figure 9 also shows lower temperatures at extreme stability for the "expected" than for all ceses. There is little charge in wind speed, temperature or cloudiness at bulk atabilities beyond 70.


Figure 9. Iittie America V, 1957. Variation with bulk stability, Ri', of: (a) Wind speed at 2 m; (b) Temperature of the 8 m surface layer; (c) sha cover. Abscissa values increase in proportion to the square of distance from zero.

The extremely stable cabes clagsed as "Katabatic" are not included in Figure 9, since they were omitted in the grouping of profiles. However, those "irregular" and "inverted" cases that are included are responsible for higher temperatures when all cases are used than when only "expected" profiles are used.

It is likely that some of the profiles of the "inverted" type are in reality of the "katabatic" type with a wind maximum at fairly low levels but not below the 8 -meter level. The issue is somewht confused by the fact that, near neutral ctability, precise wind profile type classification is impeded by the limits of accuracy of the temperature measurements used in determining RI'. For example, a slight error in a temperature observation may resilt in a negative R1' when actually conditions were such that R1' should be positive; an observed increase of wind speed gradient ( $\Delta V$ ) with height at negative R1' was taken as an indicator that this profile must be classified as the "inverted" type. While, for consistency, the separation had to be based on a computeci value of R1' - 0 , there are many cases near $\mathrm{Ri}^{\prime}=0$ that could fail to the positive or negative side of Ri' with a relatively small change in only one leve of temperature observations. Since the over-all temperature gradient is small with winds from the SE-SSE sector (Fig. 6), the resulting nearneutral stability may account for many of the "inverted" and "irregular" cases of profile structure that occur with winds fran this sector (sec Table 3.2.3.1).

### 3.4 Vertical profile of Richardson number

The dependency of Richardison number, Ri, on the height for ififeen 30-run groups, is show in Figure 10. This plot embraces all 4 deseriptive types of wind profilec, and includes the correction to the 4 m temperatures discussed in Section 2.4.2. A systematic change of Ri with height in the lowest 4 m is evident, and for all groups, Ri can be assumed to go to zero 1f one approaches the surface. The over-all height gradient of R1 corresponds rather closely to the group values of 31 '. However, a comparison of Figure 10 witt: the corresponding graph for the South Pole datn [2, Fig. 5 ] sugeests that the Little America $V$ results show more of a systematic curvature in the vertical profiles of R1 for all stabilities.

In Sections 2.2 and 3.2 it was mentioned that at Little America $v$ the vertical gradients of individual microneteorological elements, including both temperature and wind speed, are of a more complicated structure than at the South Pole. Since the Ri-number computation involves a combination or temperature and wind gradients it is, in fact, surprising to no ${ }^{+}$e the degree of regularity evidenced in Figurc 10. More organization in the Ri-profile, than in the individual profiles of its constituents, could indicate an interecting tendency for campensation, and illustrate the phyoical significance of the Ri-number. Since the height-gradient of RI

can be expressed by the Deacon numbers of the wind and temperature profiles, more detnil will be presented after discussion of these numbers (see Section 3.7).
3.5 Computation of wind profile curvature nna zero displecement parameter

The Deacon number of the wind profile, $B_{Y}$, is a nunerical measure of profile curvature. For its definition, reference is made to H . Lettau [i4, Section 7.5, p. 340]. B was computed for the 30 -run groups of IIttlc Anerica $V$ profiles using overlapping differences in the following equation

$$
\begin{equation*}
B_{v}=(\Delta \log \Delta z-\Delta \log \Delta V) / \Delta \log (z+D) \tag{3}
\end{equation*}
$$

where $D=$ zero displacement parameter $=z_{0}+d$
with $z_{0}=$ roughness length
d = zero dispiacement
$\Delta z=$ height difference
$\Delta V=$ wind speed difference corresponding to $\wedge z$.
The zerc displacement, $d$, corrects for irregularities of the terrain in the direction from whicn the wind is blowing, and oiso movements o." snow at the site surrounding the miciometeorological mast installation, which produced uncertainty concerning the actual elevation of the anemometer array above the average or aerodjnamically effective ground surface. At the site, the arms of the anemoneter mast were adjusted periodica?ly when snow accumulation raised the height of the underlying surface.

In an adiahatic surface layer the Deacon number $B_{v}$ equals unity, and the zero displacement, $d$, can be determined with the aid of a leastsquare fit to the logarithmic wind law; reference is made to Robinson [15] who describes a program for automatic computation of the set of three parameters which are $D, z_{0}$, and the shearing velocity $\sqrt{r_{0} / 0}$ where $\tau_{0}$ is the surface stress. This method cannot be applied for diabatic conditions, since it is know that the logarithmic law holds true only in adiabatic surface layers.

A revised scheme for the computation of the zero displacement in diabatic surface layers was developed in the "South Pole Data Analysis" [2]. The same approach is used here.

The Deacon numbers for the group analysis were computed using adjacent as well as overlapping height interval.s, and assuming a equence of tentative $D$ valurs (1.e., first $D=0$, tinen $D=-5,-10$, -15 cm , then $\mathrm{D}=5,10,15 \mathrm{~cm}$, etc.). For each group, resulting $B_{v}$-values (at nominal heights of $100,141,200,283,400 \mathrm{~cm}$ ) were plotted against height in linear coordinates.


#### Abstract

A basic model aesumption is that the freacon number eces to unity if 2 approaches zero, for any diabotic state. The $D$ value which setisfied this model requirement and produced the ieast change of curvature with ieight in the computed $B_{v}$-profile was selected. In the process of determinine tinis $D$ value for individual profiles, the systematic change of the $\mathrm{B}_{\mathrm{y}}$-profile structure with bulk stability was also considered.


As a result of the trial-ard-error method, it was found that, indeed, in the lowest 1 to $2 \pi$ Iayer et Little America $v$ the obsolute velue, $\left|1-B_{v}\right|$, could io made in many cases to be proportional to the distance from the actual surface. This method of $D$ determinetion did not work es well, however, with the complicated wind profile3 at littie Americe $V$ as with the more ciear-cut South Pole data. In general, it was necessary to apply larger negative $D$ values (as Large as 25 cm ) at Little America $v$ than at the South Pole. This was in line with visual estimates at the two sites and observations thet small to microscale surface features showed greater amplitudes and more diversity of structure at little America $V$ than on the central Antarceic Plateau.
3.6 Relationship of profile curveture (Decon numbers) to bulk stability (bulik Richardson number) and height

The dependency of s-profile structure on bulik Riciordson number, RI', is show in Figure 11. In a neutral case ( $\mathrm{RI}^{\prime}=01$, $\mathrm{E}_{\mathrm{y}}$, shouid equal urity in the lowest atmosphere, provided that the wind prof ie is exectiy logaritrmic, and the proper zero displacement is know. For a giver bulk stability, the Deacon number departs from unity more at Little America $V$ tran at the South Yoie. The deperture is nevertheless smeil (see fig. 1i) and, as at the South Pole, for surface cooling (inversion conditions) Ry terds to be ssaller than unity and decreases generaliy with height. At Little America V, an S-shaped B-profile is btained for 'apse conditions (surface heating), reokably due to relatively strong wind speed increase close to the surface.

As stability increases, fo decreases with height more and more rapidly as long as $\mathrm{Ri}^{\prime}$ is not extremely large. As at the South Pole, when Ri' becores greater than approximately $C .05 / \mathrm{m}$, the decrease of $\mathrm{R}_{\mathrm{v}}$ is strong only in the lowest part of the 4 m layer under investigation. However, at Little America $V$ the decrease is generaliy weaicer and does not exceed 9 minimum value of $\sigma_{v}=0.675=5$ about 1.5 m , while at the South Poie, the corresponding mindmun was 0.25 . Above about 1.5 m the $\varepsilon_{v}$-profiles at Little America $V$ show much more irregularity than at the South Pole. A aystematic increase is lacking; tae curves tend to show only a lesser decrease with height than at lower stability. The most stable 30 -run eroup did not show any great decrease in $B_{v}$ with height, even in the lowest layers used, or when broken down into 3 separate 10 xun groups. It is possible that a pronounced minimum in $B_{v}$ occurred at a lower level than is measured here; the lowest reliatie $B_{v}$-value could be computed only at
about 1.5 m . A somewhet uncertain estimate ior the 1 .. level supports this coniecture. This nay indicate an extremely . 'ialiuk surface layer.

The change of potencial tenaperature gradient with height at Little America $V$ was so irrepular that it was not rossibic $t$, cstablish any sicnificant relntion between the curvature of the terperiture profile, $s_{n}$, and bulis stability, R1', i.e., between Deacon nuicer, $\therefore$ of the iemperathre prorile and bula Fichardson number, Ri'.

### 3.7 Interdependence between Deacon nuribers ind richordson numbers

3.7.1 Non-iinear chance of Richrirdson number with height. It wis rentioned in Sectior. 3.7 thet the verical proiles of the Richardson number (sce Fig. IC) ga"e relatively good evidence of systeratic chantes with bulk-stability of the croup means. In ract, ilis sumucture of the curves in rigure 10 suggests that $R I$ could be proportional to $z^{m}$, with a vilue of the exponent $m$ which seems to be larger ther unity, but not larger than 2. This regular pattern in R1 versus height nopeare interestins, in rice of the rather erratic behavior of the indi:idutl relationships (such as $\mathrm{f}_{\mathrm{y}}$ versus height, or ${ }^{3}{ }^{\mathrm{y}}$ versus R , or ${ }^{B_{\theta}}$ vercue Fi , etc.).

If $\mathrm{Ri}^{2} \mathrm{z}^{\mathrm{m}}$, it Sollows directly from the depining equation (1), upon locarithric differentiation of Ri with respect to height, that en exect equation is

$$
\begin{equation*}
\partial \log R i / a \log (z+D)=2 \beta_{v}-B_{\theta}=m \tag{4}
\end{equation*}
$$

For a constant value of $m$ it must be concluded fros equation (4) thet oniy for the special case of $m=1$ is it matheratically possible that ${ }^{6}$ a approaches unity if $\mathrm{E}_{\mathrm{v}}$ goes to unity.

While the micrometeorological conditions at the South Pole corresponded rather closely to the case of $\pi=1$ (as evidenced $t y$ the near-to-linear structure of the Ri versus $z$ curves of Fig. 5 in [ $\hat{c}]$ ), conditions at Little America $V$ are definitely of a dioferent nature, in that mis 1 , or, specifically, $x$ appears to be close to 2.
3.7.2 Theoretical relationship between wind proijile Deacon number and Richardson number. The relationship between wind profile Deacun number, $3_{V}$, and Richardson number is illustrated for Liitie America $V$ in Figure 12. In comparison with corresponding results reported in [2] for the South Pole, there is definitely more scattering of points at Little Ainerice V.

It was found in the analysis of the South Pole data [2] that the dependency of $B_{y}$ on Ri was reasonably well approximated (at least for small Ri) by a theoreticai relationship suggested by various authorities, iacluding Panofsicy et al [16; this relationship has been derived strictly

Figure 11. Little America V - Wind profile curvature, $B_{y}$, versus beight, $2+D$, for indicated
for surface-layer conditions, and is

$$
\begin{equation*}
6_{v} \ldots(1-18 \mathrm{R1}) /(1-13.5 \mathrm{R1}) \tag{5}
\end{equation*}
$$

Certain systematic deviations from the theoretical curve, et $R: \geq 0.04$, approximate'y, can readily be explained by the fact that for strong stability some of the upper anemometer levels used for the $f_{\text {-romputation must have been actually outside the surface }}$ layor, That is, increasing Ri', for a given or constant horizontel pressure sradient, is invariably accompanied by e decrease of both surfece stress ( $T_{0}$ ) and low-level wind speed $V(z)$; thus, the geostrophic departure of the surface wind must increase and, as a direct consequence of the equation of notion, the absolute value of $\partial \tau / \partial z$ increeses. The end result is that - $T / d(\partial t / \partial z)$, which wetermines the thickness of the surface layer, must decrease considerably with increasing stability. For conditions of strong stability, the surface iayer may thus be reduced to iess than 2 , or even 1 meter. For a detailed ciscussion of this, and the corresponding beharior of $5_{y}$ above the surface iayer of a barotropic and adiabstic boundary layer, reference is made to Lettau [17].

The theoretical reiaticnship (Eq. 5) is indicated for Ri $>0$, in the plot of $E_{v}$ versus Ri, Figure i2, as a dashed curve. Obviously, the lack of egreement (with actusl $?_{v}$ ) evidences the limitations of existing theories of diebatic profile structure.

### 3.7.3 Empiricai relationship between wind profile Deacon mim-

 ber and Fschards in nimber. Entered also on Figure lर is a strictiy empiricel relationship, Jerived by "curve-fitting," of the form$$
\begin{equation*}
u v=(1+14 R 1) /(1+42 \mathrm{ki}), \tag{6}
\end{equation*}
$$

which produces some degree of approximation to the lower limit of the wideiy scattered sbeervational - points, for Ri>0. In view of equation (4) and the m-vsiue on approximately 2, it would follow from either equation (5) o: (5) thrit $Z_{4}$ Eust be negative for even the smallest deviation of $B_{y}$ from unity, for $B_{v} \mathrm{el}$. This seems to be related to the anomaly of the low-icvel temperature profile, as represented by the frequently observed "eievated minimum" discussed in Section 2.2.3. Advection, lack of fully developed temperature profiles, or the tendency to catabatio motion, can be responsibie, to some degree, for the exceptional structure in surviture conditions at Little America V.
3.7.4 Felationship between temperature profile curvature and wind proille curveture. It must be concluded thet temperature piofile curvative, $\theta_{\theta}$, at Little Aberica $V$ is distinctly different from wind profile curvature, $\varepsilon_{v}$. Tris is inportant for heat flux computations using similarity principies. The inequality, $B_{V} \neq \beta_{A}$ will mean not only

that the coefficients of momentum and heat diffusivity ( $K_{M}$ and $K_{H}$ ) are different, but that the ratio $K_{N} / K_{H}$ must be a function of height for surface layer conditions. Furthermore, existing theoretical models of diabatic surface iajer structure have been derived almost exclusively by using the assumption that $\beta_{v}=\beta_{\theta}$. The above-discussed wide discrepancies between $B_{V}$ and $B_{A}$ must lead to the conclusion that a common surface layer for momentum and heat transfer did not exist at Little America $V$ or was so shallow that in nearly all cases the levels at, which micrometeorological data are available were above the surface layer.

### 3.7.5 Possible causes of unusual stimicture of the micro-mete-

 orological layer. One may think of several physinal causes for the unusual structure of the inicrameteorological leyer at Little America $V$. The first possible cause which cames to mind is the lacy of filly developed profiles. This would imply as the principal aunative factor a marled discontinuity of surface condtions at a line which must be intersected by the upwind fetch so that a process of advection begins there. Only if the site were compietely encircled by such a marked discontinuity of surface conditions (such as, for example, at the center of a round flat island in the ocean) would a pronounced correlation of advection effects with the azirruth of the air motion be expected. At Little America $V$, even though there exists a strong discontinuity in the environment of the station (namely, the boundary between ice and water) it is a more or less strajght line, and, in most months of the year, is quite far away. Moreover, the observed unusual features of micrameteorological profjrstructure are not at all convincingly related to air flow from the 1 ater, so that advection can be ruled out.The second possible cause couid be katabatic profile structure, or the combination of katabatic effects for ietches fros: one sector, with advection effects from another. It is physically aksolutely unlikely, however, that these two entirely different causes could produce similar effects on the microneteorological profile $= \pm$ ur.ture. Moreover, there is a rather wide sector at Little America V for which nei Gher of the two could be held responsible; with winds out. of this sector the profiles show a tendency to the same behavior as with fetches from the distant water, or from the also distant slopes tewards higher erounds.

The ruing out of advective and katabatic effects forces us to think of a third caucative factor, which rust also be related to local gemorphology but for which there is the requirement that it be rasically the same for all azianths from the station. This appeais to exciude practically every feature other than the ics shelf itself. In view of the thermal properies of ice flcating on water it could be suspected that same particularities of the surface heat budget may represent the cause for which we search. Normally, a strong intensity of sensible heat tiansfer between ground and air produces order in the temperature profiles. The lack of order could imply that this heat transfer is unusually small.

This could mean that ne. rediation is almost completely talanced by sub-surface heat flux and latent heat transfer. Such a tentative hypothesis can be tested only by local heat budget investigations. The question still remains why the sensible heat transfer car be small in an air layer which is :ar from beine isothermal. Moreover, it will be shown in Section 8 tha: the intensity of eddy heat flux is only between $1 / 2$ to $1 / 3$ that of not radiation, which is not a spectacular rati=.

## 4. Computation of Roughness Lergth

### 4.1 Computation from wind profiles

The conventional method of roughness length, $z_{0}$, deterination is based on the logarithric wind profile which will exist only in an adiabatic surface layer (see Letta: [14, p. 33j]). In view of the extreme rareness of these neutral conditions at Little America $V$, as well as at the South Pole, a new method of prcfile analysis was introduced winich permits computation of roughness length, $z_{0}$, from diabatic profiles (see Section 3.5). The assumption is made that ( $E_{v}-1$ ) varies in direct proportion to height, at least in the lowest layer. Then using the equation defining $B_{v}$, (Eq. 3) it follows upon integration that
$\log z_{0}=\log (z+D)-0.4343\left(a^{-1} e^{\left(1-B_{v}\right)}-\left(1-B_{v}\right)-0.25\left(1-B_{v}\right)^{2} \ldots\right)$
where comon logarithms are used and the profile contour number,a, is defined as $\Delta \log V / \Delta \log (z+D)$. Since $D$ was obtained independentiy (see Section 3.5), equation (7) can be solved for any level viere a and $B_{v}$ are known.

The mean $z_{0}$ was obtained fram all data levels, or, in the more stable cases, from at least the 3 lowest levels. Results are plotted against oulk stability, Ri' in Figure 13.

### 4.2 Magnitude and variation of roughness length

Even when only "expected" profiles were used, roughness length camputed according to the procedure used in the "South Pole Data Analysis" [2] was erratic, and, in general, tco small, baced upon comparative visual observation of the terrain at the 2 stations. The neutral stability $z_{0}$ value near 0.03 cm appeared reasonable, but was based on only one 10 -run group. For profiles with bulk stability Ri' between 6 and $7410 \mathrm{~m} / \mathrm{m}$, roughness length averaged near 0.01 cm but grew with stability. It tended to increase more rapidly towards extreme stability. This increase may be due to the fact that at Little America $V$ the values of $1-B_{v}$ did not vary in direct proportion to height.


FHgure 13. Little America V - Variation with bulik stability, Ri', of: (a) Surface stress, To: (b) Eddy hest flux, $Q_{0}$ : (c) Roughness length, $z_{0}$. Abscissa values increase in proportion to the square of distance from zero,
5. Calculation of Surface Stress, Eddy Heat Fiux, and Momentum and Heat Transfer Cuefficients

### 5.1 Surface stress

In orier to obtain the surface stress, it was necessary to calculate the friction velocity, $\sqrt{T_{0} / \rho}$, from the wind profiles. The grouped data were used, and a formula was employed which is valid for the same assumptions which underile equation (7), namely $\partial B_{v} / \partial z=$ cohstant, anci
$p_{v, 0} 1$

$$
\begin{equation*}
\sqrt{T_{0} / 0} \cdot 0.4343 \mathrm{ke}\left(R_{v}-1\right) \cdot \frac{C V}{\Delta \log (z+D)} \tag{R}
\end{equation*}
$$

where common logawiuhrs and a value of the Karman constant $k=C .428$ are used.

Surface stress, ${ }^{1} 0$, was deterrined by averacing vaiues of $\sqrt{r_{0} / 0}$ for the lower levels where the profile curvature foliowed as closeiy as possible the requirement that ( 1 - B) is directly proportional to height. Air density, $口$, was computed frow the USWB station data, using their 3-hourly observations of temperature, pressure and pressure tendency. For these lower levels, stress, $\tau$, is considered independent of height. A convenient drag coefficient (as defined by the dimensionless ratio ( $\sqrt{\tau_{0}} / V_{4}$ ) glso was calcuiated from the fricticin velocity obtained from the grouped wind profiles.

Ranges of the surface stress, $T_{0}$, with stability, and vaiues of the drag coefficient ac Lictle Anerica $V$ and the South Pole are shown in Table 5.1.1; variation of $T_{0}$, with stability, at Iittle America $V$, is illustrated in Figure 13.

Tabie 5.2.1 RAMGES OF SURFACE STRESS, ${ }^{\text {º }} 0$, WITH BULK STABDITY, RI', ANL VALUES OF THE DRAG COEFFICIENT, $\sqrt{\pi} / 5 / V_{4}$, LITVIE AMERICA V
AND THE SOUTH POLE

| Station | Type of Profile | No. of 30-run Groups | Range of Ri' | $\begin{gathered} \text { Rang' } \\ \text { of 'O } \\ \text { (Dynes } / \mathrm{cm}^{2} \text { ) } \end{gathered}$ | $\sqrt{10 / 0} / V_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Littile America V | ali | 12 | 728 to C | 0.4 to 1.6 | . 037 |
| Little America V | "expected" | 7 | 191 to -13* | 0.2 た $1.2 *$ | . 040 |
| South Poie | ali | 20 | 89 to 10 | c. 1 to 2.8 | . C 42 |

*A 10-run group at RI' $=-1$ shows $T_{0}=2.0$ (Fig. 13); also surface stress is relatively higher at all stabilities for "inverted" profiles.

The variation of surface stress with stability chows esme degree of parellelity with the variation of wind speed with stability show in Fifure 9 a (Section 3.3 .5 ). In comparison with the reletionship between R1' and $T_{0}$, and between $R 1$ ' and wind speed at the $\therefore$ r: level, at the South Pole, the Little America $V$ data indicate acain that is ecrtain stitility occurs at Little America $V$ with higher wind speed than at the South Pole, at ieast for $30<R 1^{\prime}<100$, in units $14103 / r$. The seasonal variation of surface stress will be corpared with that oi the terms in the energy budeet equation in Section $c^{2}$.

The drac coefficient is relatively independent 0 : bulk stahility in the range fram $\mathrm{RI}^{\prime}=\mathrm{C}$ to 720 .

### 5.2 Eddy neat fiux

Eddy heat flux, $Q_{0}$, was computed using a similariiy relation based on vertical differences of wind speet and potential terpisature fram all 5 heights, or in cases of extreme stability the lowest 4 or 3 heights,

$$
\begin{equation*}
\theta_{0}=-c_{p}^{Y} i^{\prime} \frac{\Delta \theta}{\Delta V}=-14.4 \quad Y T_{0} \frac{\hat{H}^{\theta}}{\Delta V} \tag{9}
\end{equation*}
$$

where $Q_{0}=$ eddy heat $\operatorname{Mux}(1 y / \min )$
${ }^{c_{p}}$ - specific heat of air $\left(\operatorname{cal} \mathrm{E}^{-1} \mathrm{deG}^{-1}\right)$
${ }_{r}=K_{Q} / K_{1 /}$
$\mathrm{K}_{\mathrm{Q}}=$ eddy diffusivity for heat
$K_{M}=$ eddy diffusivity for horizontal momentur:

SV and te have the same meaning as explained in Section 2.4 in connection with Equation (1). If the eddy diffusivities for heat and horizontai momentum are the same, $r=1$. The sign-convention is chosen so that heat flowing in the airection of increasing $z$-values (upwards) corresponds to positive $Q_{0}$ while the heat flux accompanying inversional termperature gradients is in the dowmard direction and, therefore, a negative $Q_{0}$.

Ranges of eddy heat flux, $Q_{0}$, with stability (assuming $r=1$ ) are shown, for Little America $V$ end the South Poie, in Tabie 5.2.i; variation of $Q_{c}$, with stability, at Little Anerica $V$, is illustrated in Figure 13.

Table 5.2.1 RANGES OF EDDY BFAT FLAX, $Q_{0}$, WITH BLLK STABTITTY, R1', LITTLE AMERICA $V$ ARD THE SOUTH PCLE

|  |  | No. of |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Type of | 30-7un | Renige | ru. |
| Station |  |  |  |  |


| Little America $V$ | all | 12 | 728 to 0 | - -. 0.033 to | approx. C. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Littie America V | "expected" | 7 | 191 to -13 | -C.C374 to | 0.0136 |
| Scuth Pale | 811 | 20 | 68*to -18 | -0.0239*to | +0.00, |

### 5.3 Momentum transfer and heat trpanfer coefficients

A reletionship $c=a$ de obtained, by the procedure used in the "South Pole Dats Analysis" [2], betweer: the stability coefficient, $S$, derived fram USWB data (see Section 3.3.3 and equation (2)), and momentum trans:e: and heat transfer coefficients, for the hours when temparatures at $z$ ieve". and sind speed at 1 level are available from both an and USWB otservations. The itag coeificient $\left(\sqrt{T} J_{0} / V_{4}\right)$, as was discussed in Section $2 . i$, varies iittle with change in bulk stability or wind speed.

A monentum transfer coeificient is defined as

$$
\begin{equation*}
{ }^{A_{W B}}=\frac{\gamma_{0}}{\sigma\left(U_{10}\right)^{\tau}} \tag{10}
\end{equation*}
$$

and a heat transfer coefficient is defined as

$$
\begin{equation*}
e_{W B}=\frac{-e_{0}}{c_{D} \circ\left(v_{10}\right)\left(T_{10}-T_{2.5}\right)} \tag{11}
\end{equation*}
$$

where ${ }^{T} 0$ and $Q_{0}$ are computed ircur the grouped profilies obtained fror $Q 4$ observations and the wind speed, $U$, and temperstures, $T$, at the helghis in meters shown in the subsi:ripts, are ottained from sycchronous USFB observations. These coefficiants were couputed for twelve 30 run groups for all typer of wind profilea, with the 3 untable 30 mu groups anitted because of the large variation in $T_{0}$ st the 5 leveis. The coefficients were computed aiso for seven 30 mm groupe of "expected" profiles, including 1 unstable group. When the results are plotted versue the stability
 Solith Pole, ever wice onig "expected" pruiiles a.c lisen. It raj dec.ded,
 pritheetac r.versere
a: $\because \quad \cdots\left(-\frac{c a n}{a k n o t}\right)$
b) $\cdot \mathrm{dB}-2 \cdot\left(\frac{\mathrm{~cm}}{\sec \mathrm{knot}}\right)^{2}$

These coefficients and ecuations (10) end (ij) will de weid in Section $シ$ to obtain railes of the edw heat flux ifro. in the energy inife
 r. it.e energy iudet eque:ion.
$\therefore$ Heai Fiux in the Sny
U.2 Tempreture observitions and patterrs
0.1.1 Comperisori of once-a-day and continuoisy recoried suiksurface terperaturee. The yerticai heat filux in the snor, $S_{0}$, is an irporiant corsitituent of the heit budget at the snow-ain interface. Discussion of this heat flux at Litille Anerica $V$ is inciuded in a renort by Crary [7, pp. 45-56j. Observations vere taken once a day at 6 iepths by Chappeii*. $\because O S:$ sf thefe temperatures vere measured with a "thermin string." In acidition, ine USWB recoraed thermotw measurements continuously at a subsurface levels, the surface, and 3 heizhts on the: $r$ jofoot microveteorolosical masi adjacent to the 30 foot Aerovane mast, $30 ゙$ to 350 feet NKI of the camp.

Figure 14 is a piot of the monthly mean terperatures at the various subsurface ievels froc Chappell's once-a-day observations; he reduced Bost of the readings io constant levels and Dr. Crar: exiended this reduction. The surface tesperatures show the abnormal warmin of the conta of June, and beiow-normi temperature of April, in i957, conditions iliustrated previously by Figures i to 3, in Secticn 2.2.

Monthly mean temperatures frow the U. S. Weather Bureau's continuousiy recording thernotms at 2 in above the surface, the surface, and $i$ and $2=$ depth were esmpared with those from Chappell's orice-a-day observations. With the exception of a colder September nean at the surface, and a warwer October mean at 1 m depth computed from the contimiously recorded terperatures, agreecent is close.
*Richara Chppell, Eagie Scout, Boy Scouts of Aberica, sponsored by Hationai Acederis of Sciences.
6.1.2 Comparison of Little America $V$, Maudheim and South Pole subsurface temperature, xtremes. The once-a-ciny observations, as sumarized by Crary [7] are plotited in the form of a tautochrone in Figure 15. It i.s interesting to compare this tautochrone with those for Maudheim and the South Pole Station [2, Figs. 21 and. 22, pp. 55 and 56]. The minimum temperature at about 1 m depth deviates from the average by approximately $8 \mathrm{C}^{\circ}$ for all three stations. The maximum at about 1 m depth deviates from the average by approximately $16 \mathrm{C}^{\bullet}$ at the South Pole Station (which is the coldest, highest latitude location), by $12 \mathrm{C}^{\bullet}$ at Little America V ( $78^{\circ} 10^{\prime} \mathrm{S}$ ) and by only $8 \mathrm{C}^{\circ}$ at Maudheim ( $71^{\circ} 03^{\prime} \mathrm{S}$ ). The minimm temperature just below the snow surface occurs in August at all 3 stations: In late August at the South Pole, where sunrise is after mid-September; near 1 August at Maudheim, even though sunrise is 27 July; and late in August at Little America V, where sunrise is 25 August. H. Wexler [S] refers to a delayed air temperature minimum at the coastal stations and attributes the lag to extension of the ice pack to hundreds of miles fram the coast in late winter, which cools air masses moving to the Antarctic continent from the north. This late minimum would be reflected in temperatures just below the surface, causing the minimum to occur later in relation $t$, sum.ise than et the South Pole.

### 6.2 Analysis of snow temperature variations

[Note: For the sake of consistency with previous work in the literature in the fields of surface layer turbulence as well as subsurface heat diffusion, it is unavoidable that certe in mathematical symbols (such as $\alpha, \lambda$, etc.) imust be used with a different meaning in this section than in Sections 4 and 5. See list of symbols and units in front pages of this report (after the Table of Contents). Natural logarithms are used and abbreviated by "ln."]
6.2.1 Calculation of amplitudes and phase anglas of the penetration of the seat wave. the oncea-day subsurface temperntures, summarized by months by Crary [7, p. 49], and plotted in Fitruye 14 of this report, were analysed by him. An Independent reanalysis of the same data used, in simpler form, the method used in the study of the South Pole observations.

Let $n=$ frequency of the annual cycle $=2 \pi / 365=$ $0.0172 \mathrm{rad} / \mathrm{day}=1.99 \times 10^{-7} \mathrm{rad} / \mathrm{sec}$. The first harmonic of the annual variation of temperature is described by:

$$
\begin{equation*}
T=T_{m}+A \cos (n t-\alpha) \tag{12}
\end{equation*}
$$

which yields for the vertical gradient of temperature,


Plgure i4. Littie America V - =onch v mean subsureace temperatures.


Figure 15. Little Aserica V - Tautuchroner. 19:7-50.

$$
\begin{equation*}
T^{\prime} \quad T_{I L}^{\prime}+A^{\prime} \cos \left(n t-a ;+A r \cos ^{\prime} \sin (n t-x),\right. \tag{iz}
\end{equation*}
$$

where subscript r．derotes the annuai mean

$$
\begin{aligned}
& A=\text { ampitude (def) } \\
& a=\text { phase angle } \\
& t=t i \text { e }
\end{aligned}
$$

and the orime indice：es differentietion with rerpest to depth．The use of the cosire function（rather thar the sine itnction）tooether with the minus sign of the phrie lag ta equation（i2）is cor Eonver．－ ience．This a－value zorresponds to the tive of on urrence ot the extrene phase，$s^{*}$ zero date pius a／n．This is the tire oininim vaiue，since ail emperatures ere negetive arci Funrier analysis is done withous cerry ne the zinus sign of terpertures．

Resuits of the rew analysis and Crary＇s crisirei onaiysis are show in Tabie ón．i．

Table ó．2．1 AIMLILDES AND PHASE ANGLES OP THE PEIEA：TATON OF TRE YEAT Wh：VE AT TAE VARIGUS LEVELS AT LIMDE AMERICA V，AS OETAIFILD EY 2 AYALYSES

| $\begin{aligned} & \text { Depth } \\ & \frac{(z)}{(z)} \end{aligned}$ | Auplitude （A） | $\ln A$ |  | zate of Mex． | Phase Argie（a） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Days | （Deg） | （PEat | ans） |
|  | （deg ${ }^{\text {（ }}$ |  |  |  |  |  |  |  |  |
|  | Crary liew | riary | Fers | Crary | $\mathrm{Cr}_{1} \mathrm{SY}$ | Hew | Cray | New |
| Sfe | 14．9 ik． 0 | 2.74 | 2.64 | 8 Jan | $\checkmark$ | $77^{\circ} 25^{\prime}$ | 0.00 | 0．こう |
| 0.5 | 12.211 .4 | 2.54 | 2.43 | is Jan | ここ | $57^{*} 50$ | 0.17 | 0.15 |
| 2．0 | $9.2 \quad 3.5$ | 2.22 | 2.14 | 28 Jan | 20 | $99^{\circ} 59^{\prime}$ | c． 34 | c． 3.34 |
| 2.0 | 5.85 .5 | 1．75 |  | 20 Feb | 43 | ：23 $3^{\circ} 41^{\prime}$ | 0.74 | c． 208 |
| 4.2 | 2.72 .7 | 2.00 | 0.99 | 28 Mar | 79 | $10^{\circ} 41^{\prime}$ | 1.35 | 1.593 |
| 8.0 | 0.60 .6 | －6． 51 | －0．55 | 30 Kay | 142 | $230^{\circ} 0^{\prime}$ | 2.45 | 1.80 c 3 |

In A is piotied versus a in Fifure 10．For the classicei case of a hesogeneous conductor，$d a=-d$（inA），whereupon

$$
\begin{equation*}
\Psi^{\prime}=T_{z}^{\prime}-A a^{\prime} \sqrt{2} \cos (n t-a+\cdot 5) \tag{14}
\end{equation*}
$$

where I ＇is the vartica：sempersire gradient．
6．2．2 Caicuiation of thermal diffisivity and the coefficient of heat conductivity．The penctration of the annual sycie of temperature was examined for horogenetty of heat conduction，in order to detertine thermal diffusivity，$K$ ，wheh san te calcuiated Ircre

$$
K-\frac{n}{p\left(a^{\prime}\right)^{2}}
$$

Ln $A$ and $\alpha$ (radians) are plotted against depth j : Figure 17 for both analyses, and linear relntionships appear to cxist, at least below i meter. This is a necessary and sufficient condition for honogeneity of heat conduction at and below this level.

Fron Figure 17

$$
-\left(\frac{\partial \ln A}{\partial z}\right)_{2 m} \approx \frac{1.92}{500 \mathrm{~cm}}=0.384 / m=\left(a^{\prime}\right)_{2 m}
$$

resulting when $a^{\prime}$ is substituted in equation (is), in $K_{2 m}=0.0068 \mathrm{~cm}^{2} / \mathrm{sec}$, which may be conpared with 0.0068 at Maudhein and 0.0047 at the South Pole [2]. It is assumed that this value of $K$ applies also to levels below 2 m .

The coefficient of heat conductivity of the nedium, $\lambda$, can be calculated from $\lambda=K C_{3}$ where the heat capacity $C$ a $n c_{j}$. With a snow density, D , of $0.40 \mathrm{~g} / \mathrm{cm}^{3}$ at 2 m , and $c_{1}=0.453 \mathrm{cal} / \mathrm{g} \mathrm{deg}$ (using the average 1 m , April-October, snow temperature of $-28.4^{\circ}$ ) it follows that $C=0.181 \mathrm{cal} / \mathrm{cm}^{3} \mathrm{deg}$. Then

$$
\lambda-0.00123 \frac{\mathrm{ly} / \mathrm{sec}}{\mathrm{deg} / \mathrm{cm}}=1.063 \frac{\mathrm{ly} / \mathrm{day}}{\mathrm{deg} / \mathrm{m}}
$$

a value intermediate between that at the South Pole and that at Maudheim.
6.2.3 Calculation of daily values of the heat flux at 2 m . It must be borne in mind that the thermal diffusion model used rests on the assumption of genuine heat conduction. That is to say, that at any time in the considered layer the flux of heat ( $F$; ly/time) should be directiy proportional to the vertical temperature gradient ( $T^{\prime}$ ):

$$
\begin{equation*}
F=-\lambda T^{\prime} \tag{16}
\end{equation*}
$$

Substituting in equation (12) for $A$ and a from table 6.2.1.1, using for $\Lambda$ the average of the values obtained by Crary and the re-analysis

$$
T_{2 m}=-23.3+5.65 \cos (n t-20 \mathrm{Feb} .)
$$

and in equation (14)

$$
T_{2 m}^{\prime}=-0.15-3.0 \gamma \cos (n t-6 \mathrm{Jan}), \mathrm{deg} / \mathrm{m}
$$



Pagure 16. Snov Texperature - Anplituie versus Phase Angle

Using a sign convention that heat flowing in the direction of increasing depth (i.e., downard, away from the surface) is denoted by a positive value, while negative denctes upward heat flux (towards the suriace), the daily values of heat flux at 2 m can be obtained as

$$
S_{2_{m}}=-\lambda I^{\prime}=1.063 \quad[0.15+3.07 \cos (n t-6 \mathrm{Jan})]
$$

Heglecting the very smill anoual mean heat flux term

$$
S_{\partial r:}=3.26 \cos (n t-6 \mathrm{Jan}), 2 y / \text { day }
$$

Daily values of $S_{2 \text { a }}$ were calculated for the period 25 April through c'o Octoker, 1957.


Pigure 17. Snow Temperature - Amplitude and Phase Angle versus Depth

### 6.2.4 Calculation of the heat flux at the surface. Running

 means of temperatures shova in [7, Append [x, Table 3] were used to integrate the heat flux between 2 meters and the surface. remperatures at 5 levele vere employed: the actual surface, the zero level (which had initially been the surface level but became gradually the season's snow accumulation), and the 3 levels at 55,78 , and 150 cm below the zero level. For each of these 5 leveln, temperature change from 2 days before to 2 days after each date was obtained. This was calculated for the upper 3 layers (between surface and the nominal 78 cm level) by averaging the 4-daj differences at the top and bottom of each sub-layer. The temperature change at 150 cm depth vas assumed as representative for the layer from 78 to 200 cm . Differences are smoll, in any case, at this depth.The heat flux contribution of each layer was obtained by multiplyine the temperature difference averaged over the 4 -day period ( $\Delta T / 4$ ) by the thickness of the layer $(\Delta z)$ and by the heat sapacity $C$, where $C$

 heat flux contributions :or the 4 layers シielded ia, $\because$ vaiues of the at Iux difference between $\hat{c} m$ and the surface, and juktrention if in.s suantity from the heat flux at 2 an (campited as dearritad bef ref) resulted in daily velues o: the heat flux et the sur:e:c, $S_{0}$, snoothec $\because \because \in$ a 5-day period, correspondine to a j-day running nean.

## T. Measuresent of Net Radiation

 Profossor Hoinces, University of Innsbruck; they were directiy measured by a net radioneter ranlfactured by Schuize, both ther.noniles of which were recorded separately. Details of his instmmentat: n ere described in 48 ! and in the references contained therean. Cai.bration teris after the instmmert was retumed from the Antarctic reveaned that the nolyetyiene used transmitted less long-wave radiation then enticipatec [ij], necessitating edjustinent of abutit $50 \%$ ir. the tenta:ive vacues guoved in [18].

Net radiation whs also measured by the $U$. $\therefore$, Weather Bureau usinf, $\varepsilon s$ at ine Sou'h Pole Station [2], a net exchange radioneter ranifactured bif picioan ant Wi.tley. The Schulze instrument eqploys a radiation dore that dies not require ventilation, whi.e the Beciran and Whitley inste.reris employ a heat ívor plate which wist be aspiratea. hourly va-ves efter i July $195^{\circ}$ had teen computed by the U. S. Weather pureau and rere available on Eicrofili.. Additional values for April through Jure $19: 7$ were computed, and the daily totais for April through Octoter $195 \%$ corpored with Dr. Hoinkes' revised vaiues. Comparison shows agreement within the iimits i-posed by dif:erences in instrmentation and some possible differences in exposure.

The jaily values of net radiation, revised by ir. Hoini.es, havc been employed to compute the daily heat budgets between 25 April and 20 October, since this is the period for which observations necessary for computinf, eddy heat flux and the subsiriace heat flux were available.

## - . Surface Enerzy Budget

### 8.1 Definitions, and energy budget equation

The equation of the energy budget at the snow-air interface will be cons dered in the fort

$$
\begin{equation*}
R_{0}=Q_{0}+S_{0}+E_{0} \tag{17}
\end{equation*}
$$

where $R_{0}=$ radiation baiance or net radiation at the interface
$Q_{0}=$ eddy neat filux at the interface (defineci an jerinins)
$S_{o}$ snow heat flux at the interface (defined an Stotion $e$ )
$E_{0}=$ latent heat ilux at the interface
12: Sour terrs are expressed in ly/tine, where iy - $1 \cdot n_{1}$ iey $n 1 / \mathrm{cm}^{2}$, and cal $=$ gram calorie, or small caiorie. Conzenieni wits are cither Iy'doy or ly/hour. The sicn-convention for the threc fluxes ( $\epsilon_{0}, S_{0}$, and $E_{0}$ ) is so the: transport aimy frum the interface hes the posi:1:e sipn. Net railation is defined as pasitive when fore reiiation enerrij is received than enitted from the interface. Thuc, a tositive $R_{0}$ indiraier an ersmy source at the interface (uswaily requern ine preserce of rolar radiation); a negative $R_{0}$ indicates an erercy s.ns at the inierfece a.d will require, for bolance, negative fluxes dirented twardr the surface.

### 3.2 Computation of terms of the energy budict erliai: on

Using the constant cienizicient of heat trancter sed e-ia+ion (il)
fror. Section 5.3, houriy vaices and 5-day runnin resar. of eici rest finx: to, were computed and listed by the Dete inalysis O $\because=\sim$ e. Soothed da.iy values of the heat filux at the surface, $S_{c}$, correspurin.ag to a 5-day man ning mean, were sbtainec by procedures described in Sertion e. 2 . The prosedure for obsaining daily values of net radiation. Ro, has beer dessriked in Section 7. Five-day runnine reans, corresponcinc to those of 20 and $S_{0}$, were obtained by the Lata Analysis Office. Tnece zeans of $Q_{0}, S_{0}$, and $R_{0}$ for 5-day periods vere used to obtain a li-a3y zean for iate April, 30 -day means for Nay through September, and a 2 mway mean for the first part of Getober.

When $R_{O}, Q_{0}$, and $S_{o}$ are $k n=m$, the latent heat $R w x, E_{C}$, is ortained with the aid of equation (17) as the remainder whisin aires the budget complete. For surface teiperature below freezing, e negative $E_{0}$ will indicate deposition (i.e., the vapor phase transforms direcily to solid ice, for example, as hoarfrost), and a positive $E_{0}$, subiination (i.e., the ice evaporates, without intermediate inquid phase). This ncmenclature concerning phase chanfes of $\mathrm{H}_{2} \mathrm{O}$ was suggested iy HacDonald [20, page 245].

### 6.3 The seascnal course of surface stress

The seasonal course of surface itress is of interest for cocparison with changes in the terms of the energy budget equation. lising the constant cofficicient of mozertwn transfer and equation (2C) irm Section 5.3, hourly velues and 5 -day running neans of suriace stress, io, were complitec and listed by the Data inalysis Office. The 5 -izy means are plntied in Figure 18 , and were combined to obtain means for longer periods corresponding to those calculated for the terms of the energy buaget ecuation (see Section 8.2). These means are shown by the heavy line in Figure ia,



F! -re 18. Ifttle America 1957: Annual variation of surface stress, To, by 5 -.day periods, ank oj 3C-day periods (heavy line) approximating the months of Kay through September. (Dashed line was used for averages of 10 days in Aprii and 20 lays in October.)

Pigure 19. Seasonal trends in enersy budget terms of the snow surface at Little America V, 1957. $R_{0}=Q_{0}+S_{0}+E_{0}$
and the periods of time correspond closely to monthly periods for May through September. Averages are higher than at the Scuth Pole Station [2, Fig. 32], as might le expected from the higher wind speeds at inttie America V. The high peaks, show in the 5-da;, eans and occurring at sily slightly irregular intervals, accompam the passage of low pressure arear at this coestal station. (In contrast, the continentai climsie at ths iouth Pole Station produces a maller range of $T_{0}$.) The longer $r$ riod averages coscure this short-period variability of surface stress an: produce a graph no more irreguler than that for the South fole.

```
    * 4 irmge monthl: seat budget constituents at the snow-air inter-
<
    #%
* re:`.- section, are plotted in Flgure 19, aid are listed in Table
0.4.:
```

 tis:

 data as $\bar{z}$ iblished by Crary [7], latent heat flux, $\Sigma_{0}=R_{0}-Q_{0}-\Sigma_{0}=$ remainder term.

| Month | $\mathrm{R}_{0}$ | $Q$ | $\mathrm{S}_{\mathrm{C}}$ | $E_{0}$ |
| :---: | :---: | :---: | :---: | :---: |
| April (beginning 23rdj | -25 | -9 | - 5 | -12 |
| Nay | -39 | -16 | - 0 | -17 |
| June | -32 | -12 | + 2 | -22 |
| Juiy | -35 | -27 | -14 | - 4 |
| August | -34 | -15 | $+3$ | -22 |
| September | -33 | -15 | - 3 | -15 |
| October (ending 19th) | -10 | -9 | + 7 | - 8 |

Faiole 8.4.1 may be compared with Tubles 8.1.1 and $\overline{0} .3 .1$ in [ 2 ] whicn show the same quantities for Hadheis end the South Pole. Note, however, that the observations are for different years, and even the 30 -day ever ages do not correspond exactly with calendar nonitis.
8.5 Comparison oi hoarfrost deposition bt Littie America V, Maudhein and the South Pole

On the average, deposition (negative values of $E_{0}$ ) occurred throughout the 6-wonth period at Little Auscics V; actixlly, however, longer periods of hoarfrost deposition were interrupted quite frequently by short periods of sublimation. Table 8.3.2 in [2] aisc inaicated that deposition was to be expected at Little America V, and in only sligitiy less quantity than indicated here, al though in larger amount ihan at kurineis, the other:
coastal station. The approximately 6-month mean of deposition can be converted to a mass flux density, or calimn of liquid water, per time, considering the latent heat of the vapor-to-ice phase equal to $667 \mathrm{cal} / \mathrm{g}$. Thus 15 ly/day, which equala $2700 \mathrm{ly} / 180$ days, corresponds to a water equivalent of $4.0 \mathrm{~g} / \mathrm{cm}^{2}$ or 40 mm of water for the approximately 6 -month period, which is 1.2 times as much as the 34 min of water at Maudheim during a period of corresponding duration. The annual water equivalent of the deposition at Maudheim was estimated to be 27 m and only the 3 coremonths of the Antarctic sumer showed positive $\mathrm{E}_{\mathrm{O}}$.

Hoarfrost was observed frequently on the anemometers at Little America $V$ in quantities within the linists of error of the deposition obtained as a remainder in equation ( $1 i \boldsymbol{i}$ ), but its Ecathery quality and the measured depth of deposition suggest the error to be on the side of less deposition than computed.

At the South Pole, without advection of additional mossture and with very cold winter temperatures, deposition was light and increased siightly with colder teluperature, even with the cases of calm winds omitted. At Little America V, on the other hand, deposition was griat in the warm month of June, and in general, was: not consistently .elated to temperature. It is likely that advection of moisture was a prim fy cause of increased deposition at Little America V. Northeasterly wi ds were frequent in June and winus from the direction of the sea were norr ally of higher velocity.

## 9. Conclusions

At Little America $V$ the $w a n t e r$ is "c reless" (with mid-winter reversais of the temperature trend) and the monthly terperature range is iarge. The ainima appear to be controlled by the annuai course of net radistion in the interior of the continent and occasional cold air advection, and the maxina by cyclonic activity which advects warmer air in the Ross Sea area. The temperature averages for Individual months vary considerebly from year to year, and the annual minimur may occur in any winter zonth. In 1957 stable conditions predominated in the air layer of micrometeorological profile meesurements and cases of raximum stability were more extreme than at the South Pole. The minims terperature durine winter frequently was recorded at the 5 or 12 ar. level, thus producine an "anomalous" profile structure.

The variation of the wind gradient with height fror the surface $t o$ 8 m is distinctiy less reguiar at Little Arerica $V$ nan $a t$ the Soliti Pole Station. Neither the fetch of the wind nor the siky conditions afford a satisfactory correlation with type of wind profile. Nor do advection, katabatic effects, ni: a cambination of the two provide en expianation of the observed uind and temperature profiles.

The shift toward less stable conditions, biong with the seasonal rise in temperature, was delayed until October. Highest wind speed and highest temperature, as at the South Pole, occurred near neutrai stability, but unstable conditions were accompanied by less cloudiness.

The Richardson number changes more systematically with height in the Iorest, 4 m than might be inferred from the compliceted structure of the wind and temperature profiles, which suggests an interesting tendercy for campensation. The systerauic increase of wind profile curvature with height, evident at the South Pole, is lacking above 1.5 m , which may indicate an extremely shellow surface layer at great stability. Conditions at Little America $V$ deronstrate the limitations oi existing theories oi diabatic profile structure.

Variation of surface stress shows same degree of perallelity with the variation of wind speed. High peaks of surface stress, shown in the 5-day averages, accompany the pessage of cyclonic depressions in the Ross Sea area. Drag coefficient, ising Karman's constant as 0.428 , averased 0.037 as compared with 0.042 at the South Pole.

The energy budget at the snow-air interface was considered with net radiation equal to the sum of the ediy heat flux, the heat flux in the snow, and the latent heat flux. The complicated profice structure leid to erratic variation of the coefficients of momentur and heat with stability; therefore, constant coefficients were useri to reiate the stability-grouped OM observations to the USWB standird observations and
obtain means of eddy heat flux for use in the energy equation. Once-sday subsurfece temperature observations by Chappeil yiedded releivye: small mean values of the heat flux in the snow. The latent hea: fiux, when treated as a remainder indicates deposition in the ioronih perior in 1957, equivalent to about 40 im of water, i. 2 times $5 s$ mucin as that at Muudheim during corresponding periods in i950 and 1,5 . Ircreased deposition in the milder winter months may be due to an accoupryire increase in available noisture.
 I: Dete Presentation," Earth Seiences Div, Tect, "at ES-R,

2. Dairymie, P. こ., E. h. Lettau, and S. H. Woilacton: "Eivis Poie Microseteonulogi Program, Port II: Den Areipisis, Eath
 June 1903, 34 p .
3. Delrympie, F. C.: "A Physichi Cinetiont if che Antariziz
 Acsd Sin, [perding pubiseation].
4. Lettiu, H. H.: "A Case Study of Katabeaic Fiow on ine frteran=
 Amer Geonys un, for lat Acsd Sai. ! perdire pubincutionl.
 Actial Observinons in Arctic Merreterotos, " Pirincatic. ar



 1951-1

 19?
 Measurerents at the Abandoned Livije haerice Stevion, iñaratiae. J Ceophys Res, $\operatorname{jin}(21)$, $5064-5$, nov ix?.
9. wexier, H.: "The 'Kemiose' \#inter in Antarctise," Geopasice 5 (3-4), 577-595, 2953.
10. Laroque, J.: "Carecteres Fláres de le Vaniaizon Anriueije de

ii. Vorinciel, E.: "Clisiate of the Antarctica Coast," Ch ō, Meteorciogy of the Ante.ctic, M. P. van Rooy, ed, Weereer Bur, int Transport, Pretoria, Un of S. Aifrier, 1957.
12. Herdman, H. F. P. "The Antarctic Pack Ice in Winter," J Gigciol, 2, 8i4-191, Apr 1953.

 ［perdine pubi．antion］．



25．Pobinson，S．R．：＂Compuian Wind Pacile Perome＂frs，＂i Atwospher：e Si－，19，189－1ごこ，Maricos．


i7，Letteu，i．H．：＂Wotes on Theareticel Moce＂s of Profise Sirne－ ture in the Diabatic Surface Leyer，＂Univ of wis，leaison，
 EふEと，Oct ：ごうズ．

2シ．Hoinires，H．C．：＂Stucies ir Giacial Neteonson at Litile Anerica V，Artaritica，＂Sympsium on Anterctic Giacioiogs，

iЭ．Boinkes，K．C．：＂Glacial Keteorolow．Research in Gecphysics， H．Odishow，ed，Vol 2，Soiid Earth and Interface Pneramene， Mass．Inst Tech Press，Cambridee，Mass．，pp．351－424，1964．

2こ．McDonaid，J．E．：＂＇Deposition＇－A Proposec Antonyw for ＇Suclization＇，＂J Meteorol，15，245－247，Apr 195天．

## APPENDIX A

## NOTE ON THE LOW-LEVFL ANOMALY IN VERTICAL 'TMPI:RATURE PROFILES UNDER CONDITIONS OF OUTGOING RADIATION

# NGTE ON THE IOH-LEVEL ANOWLY IN VERIICAL TEMEFATURE PROFLIFE UNDER CONDITIGNS OF OUTGOING RADIATICN 

by

H. H. Lettau<br>University of Wisconsin


#### Abstract

It has long been knom in micrameteuroiogy that, occasionaily, durine calm clear nights, the yertical profile of average air temperature can exhibit en anomalous siructure in thet the mininum temperature dies not occur at the earth/air interface but at some vertical distance aioft; usually frow a a "superadiabatic" lapse rate of iemperature of the order $00^{\circ}{ }^{\circ} \mathrm{C} / 土 0 \mathrm{~cm}$ in the iorest lajer of the noctural inversion. This anomaly appears to have been first described by Indian meteorolarists who observed it, durif: Eicrocteorolosical sudies, on fields and barr ground reaz pona, India; reference can be mde to L. A. Rambas and S. itmensthan (i932), K. R. Remanethan and L. A. Pamdas (1935), and L. A. R =das (2945), More than two decades ieter K. Paschice (1957) undertook a seri-es of very inter. esting field experiments aiso at Ponn, to clanify the physical and eeteoralogical conditions under which the anomaiy deveiops. Until that time it was not clear whether or not the phencrenon was of trivial nature; reference can be made to e discussion during the "Internationai Symosivm on Atrospheric " irioulence;" see H. H. Levtav (1950), Sec. 7.2.4. Reschke demonstrated cenrincingiy that more or less trivial causes, such as instrumental errors, or radiational ccoling of the air layer near the tops of iov vegetation, or suell-sceie advertion o: ai= which mad been cooled at reistively high rates over neighboring surfaces, or air drainage along sioping terrain can be miect out. Thet is, the phenorenon is readily observed over bare levei fround, even on top of a flat rese near poora. It is predictacle because it depends on intensity of overai air motion. Once established, it proved to be rewarkably persistert or stabie, in that it reproauced itieis within a short time after havine been thoroughly disturbed, or eliminated, by artisicial stirring of the ais by waviof of a lerge sheet of plywoat.


Otservational work in other cllmatic regions by H. Brawada and H . Finnke (1952), J. Laike (1756), R. Fleagle (1956), H. PiLilisk and H. Moldai: ( 1.960 ), and othe $-s$ isaves no reason for doubt that the pheromenon is real and cannot be explained by instrunental errors (i.e.. direct effects of rediation conbined with iack of ventilation of the tempereture sensors), or by unique and extraordinery local conditions at Poona, Iniia.

A variety of authors have attempted to arrive at a physical underetanding of the phenonenon and its causes. Almost exclusively, the theory was based on the properties of long-wave radiation fluxes in the lower atmosphere, and their divergence (or convergence) along the vertical, due to water vapor and temperatixe gradients. Subsequent vertical patterns of cooling (or heating) rates are assumed to transform an initially monotorically decreasing temperature profile into one which shows a minimum velue ajoft, or even an S-shape, or inver'ced S-shape. However, certain discrepancies betwaen the resuits of different theoretical modeis of radiation-filux divergence appear to exist; reference can be made to work by F. Moeller (1959) and (1900), K. Reschke (1957), G. N. Geevskaya, K. Y. Kondretjev, eid $\because \because$. E. Yakushevskaya (190́2), end others. An attempt to explén the possiti.: generation of s-shaped terperature profiles, independent of radiation divergerce, by means of differential reduction of eddy diafusivity in a growing inversion (due to the verticsi profile of the Richardison number, and subsequent local divergences of the eddy heat flux) was outlined by H. Lettau (1952), and later taken up by F. K. Devis (1957). In still another approach, Seemann and Loew (1944) suggested that heat of condensation released by dew formation could eccount for a relative waming $0^{*}$ the ground and thus expiain the temperature rinimum ajoft. This exrıanation can be rejacted at once for physical reasons; moreover, ?. K. Davis (1957) could show that the microneteorological ancmaly can appear before any dew deposition is evident.

Experimentaliy, an interesting relationship was discoverea by R. Luetzike (1966). The work of this autho sas deliberately devoted to a statistical analysis of the und-fependency of the low-level anomily of the nocturnel temperature profile, and the seasonal variation of its ireguency of occurence, durisg a full year of a special observationsi prom Bram at two micrometeorological sites in the North-central plains of Germazy. R. iuetzke provides an interesting illustration by mears of a photographis picture of a small tomato plant, after a late-spring night with such a temperature anomiy, with leaves unarmed near the ground and frozen at upper parts, even though the exposure of all leaves to outgoing radiation was about the same. He concludes that a profile type with miniman temperature near the $2 j-\mathrm{cm}$ level is most likely to occur when the over-all air motion is weak, and the heat flux fram the subscii is relatively large. i.e., relatively close to the surface ralue of net radiation. He quotes as supporting evidence the fact that during ciear nights with snow-cover on his site the minimum temperature alwaye occurred at the surface, even under conditions of complet? calm, while in otherwise similar nights without snow-cover the minimum occurred sone distance above the surface; this he attributes to the heat-insulating effect of the snow, waich is known to be a poor conductor and to reduce significantly heat ilux fram kelow. Over bare ground Luetzke observed a slight tendency for better development of the anomaly in the first part of the night, i.e., when the heat flux from the subsurface is relatively lerge.

Disregarding heat of condensation (or dew deposit) the heat budeet. equation of the earth/air interface is

$$
R_{0} \cdot S_{0}+Q_{0}
$$

where $R$ - net radiation, and $S$ and $Q$ are the fluxes of heat by conduction (or convection) in the suosirface medium and in the aif, respectively. The subscript "zero" refers to surface vaiues of the auantities. it nighttime $R_{0}$ is negative, and, not only the sum, $S_{0}+Q_{0}$, but both terms individually will be negative. Then the difference tetween a poorly and an efficiently conducting sub-surface medium is that the ratic $S_{0} / Q_{0}$ will be relatively small for the former, and relatively large for the latter. Luetzke's conclusion can be re-formulated by saying that the prerequisi* for anomalous temperature profile structure is a negative Qo value $c$. an intensity which is relatively smail in corparison to that of net radiation, or in cosperison to the values of both $S_{0}$ and $R_{0}$. However, ro neat budget estimates were provided by Lietzke ( $190^{\circ} 0$ ).

In this connection the meastrements of wicraceteorological temperature profiles during the antarcti= wintemight at the South Pole, in lofe and at Little America $V$, in i957, are interesti $f$. It was found that at Littie derica $\backslash$ the minimum temperature quite frequentiy occurred at the 5 cm level, while at the South Fole the minimur terperegire oscurred nearly always at height zero, for sthervise simile meteorological conditions of low wind speed and strong outeoing radiation. Similar equipment was used at both locations, which makes it safe to say that instrumentai errors cannot explain this anomaly.

The most striking difference between the two antarcic sites is in the physical structure of the snow. The thermal parameters (such as volum metric heat cepacity, and heat conductivity) appeer to be significantly lower on the central entarctic plateau than at stations near the coest. A canparison of average heat-budget constituents at the anterctic snow sus.ace was given by P. Dalrymple, H. Lettau, and S: Wollaston (1963). From Table 8.3.1 of their report and Table 8.3.1 of this report it follows, for example, that in 1958 at the South Pole during the montr of July (which shows negative averages of $S_{0}$ and $Q_{0}$ ), the ratio $S_{0}, Q_{0}$ is $3^{\prime} 50=0.0$, while, in 2957 at Little America $V$ during July, it is $14 / 17=0.82$, i.e., 14 times larger. Evidently, tosether with the above steterent concerning frequency of ociurrence, this supports Luetzke's conciusion on the importance of sub-surface heet flux for the development of anorsious terperature prosiles.

Furtherwore, it appears safe to say that the two sets of micraceteomosisical data from the antarctic region provide an argument against an explanation of the elevated mininum as beine caused by divergence of mdiation fluxes. In view of the very low temperature and extremely low 3 tioospheric moisture of the air in the antarctic winter night, any
divergence of ions-wäve radiation fluxps thet raj pussily exist must be, by several orders of magnitude, smaller than, for example, in the air at Poona, in the subtropical region. In spite of this, the anoraiy of the nocturnal temperature profile was of similar mendtude at Little America and Poona.

## References

Brawand, f., and H. Kohnke: "Microclimate ani" Nater Vapor Exchange at the Soil Surface," Proc, Soii Sci Soc fmerica, 10, No. 2, pp. 195-198, 1952.

Dalrymple, P. C., H. H. Lettau, and S. H. Wol.aston: "South Pole Micrometeorology Program, Part II: Date Anaiysis," Earth Sciences Div, Tech Rpt ESM, GM R\&E Center, Matioix, Mass.. June 1963.

Davis, F. K.: "Study of Tire-Height Variations of Microceteorological Factors during Rediation Fog," Drexel Inst Tecnnology, Lab Climatology, Publications in Climetolagy, $\underline{X}$ No. I, Centertion, N. J., 1957.
rneagle, R. G.: "The Terperature Distri'Jution near a Cold Surface," J Meteoral, 13, Ho. 2, 195́.

Gaevskaya, G. N., K. Y. Kondratjev, cnd K. E. Yakushevsixya: "Radiative Heet Fiux Divergence and Heat Regime in the Lovest Layer of the Atmosphere," Archiv Meteorol Geophys \& Bioklimatol, Ser B, 12, pp. 95-108, 1962.

Laike, J. V.: "The Temperature Profile aiove Bare Soil in Clear Nights," Quart J Roy Meteoral Soc, 82, Ko. 352, pp. 197-197, 1950.

Lettau, H. H.: "Anomalous Profile Curvature in the Surface and Boundary Layer," Section 1.3.4.5, and "Sumary of Discussion, Section 7.2.4, of International Symposium on Atmospheric Turbulence in the Boundary Layer, Geophysical Research Papers Bo. 19, Geophys Res Directorate, A. P. Cambridge Res Center, Cambridge, Niss., Dec 1952.

Luetzke, R.: "Unter welcien Bedirigungen hebt sich das naechtliche Temperatur-Minimum von der Bodenoberflaeche abi" Anger Meteorol (Beih, Z Meteorai), 4, pp. 1-10, 1900.

Moeller, P.: "Strahlungsvorgaenge in Bodennaehe," 2 Meteorol, 2, pp. 47-53, 1955.

Mceller, F.: "Ueber das Strahlungs Gleichgewicht in der Naehe der Erdcberflaeche," Meteorol Rundschau, 13, No. 5, 1960.

Nillisk, H., and H. Moldau: 'Night temperature Minimum above Natural Surfaces" [Translated title of Russian text]. Invest. Atroosph Phys, Tartu, 2, 1960.

Ramanathan, K. R., and L. A. Pamdes: "Derivation of Angstroem's Formula for Atmospheric Radiation and sane General Considerations regarding Nocturnal Cooling of Air Layers near the Ground, Proc, Ind Acad Sc1, 1, pp. 822-829, 1935.

Pamdas, L. A., and S. Atmrinathan: "The Vertical Distribution of Air Temperature rear the Ground during Nisht," Gerlands Beitr Geophys, 37, pp. 116-117, 1932.

Ramdas, L. A.: "The Climsie of the Air Layers near the Ground at Poons," Tech Mote No. 21, India Meteorol Dept, iy45.

Faschke, K.: "Ueber das naeahtliche Temperatur Minimun ueber nacktem Boden in Poona, India," Meteorol Rundschau, 10, pr. $1-11$, 1957.

Seerann, J. and K. Ioew: "Die Auswirkung der Taubildung auf den Temperatur Verlauf in der Bodenzahen Lufischicht," Meteorol 2, 61, pp. 158-161, 1944.

APPENDIX B
data presenvation

Key for Temperature Profile Pabies
Symbol

| + | 13 to 15 |
| :--- | :--- |
| $=$ | 10 to 12 |
| - | 7 to 9 |
| $\#$ | 4 to 6 |

Accompanying Wer.s Profile
No symbol is used for hours with 15 or more observations; hours with less tiun 4 observations are not shown.
little america v

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 38.3 | 38.3 | 38.1 | 37.8 | 38.2 | 38.0 | 37.9 | 37.9 | 38.0 | 36.4 |
| 01 | 38.1 | 38.2 | 38.0 | 37.7 | 37.9 | 37.7 | 37.6 | 37.5 | 37.3 | 34.2 |
| 02 | 37.4 | 37.4 | 37.2 | 37.0 | 37.3 | 37.2 | 37.1 | 37.0 | 36.2 | 32.5 |
| 03 | 35.6 | 35.6 | 35.2 | 35.2 | 35.5 | 35.4 | 35.3 | 35.1 | 33.5 | 30.7 |
| 04 | 35.8 | 35.7 | 35.6 | 35.4 | 35.9 | 35.8 | 35.9 | 36.1 | 36.6 | 36.6 |
| 05* | 34.7 | 31.7 | 34.1 | 34.3 | 34.7 | 34.5 | 34.6 | 34.7 | 35.1 | 34.9 |
| 06* | 33.3 | 33.3 | 33.0 | 33.0 | 33.1 | 33.0 | 33.0 | 33.1 | 33.5 | 33.5 |
| 07 | 33.1 | 33.0 | 32.4 | 32.5 | 32.9 | 32.8 | 32.9 | 33.2 | 33.6 | 33.6 |
| 08 | 34.0 | 33.9 | 32.9 | 33.3 | 33.6 | 33.6 | 33.6 | 33.7 | 34.1 | 34.2 |
| 09 | 34.0 ( | 33.94 | 32.94 | 33.8* | 34.1* | 34.1* | 34.\% | 34.34 | 34. \% | 34.74 |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  | * |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 | 33.84 | 31.9 | 36.8\% | 37.1* | 77.24 | 36.74 | 36.9* | 37.04 | 37.1* | 36.98 |
| 21 | 34.3+ | $31.9+$ | 37.2+ | 37.2+ | 37.3+ | 36.94 | 37.0+ | $37.1+$ | $37.3+$ | $37.1+$ |
| 22 ( 21.1 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number of Obs | 195 | 194 | 1.95 | 195 | 195 | 195 | 195 | 195 | 195 | 195 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 35.4 | 35.2 | 35.3 | 35.3 | 35.6 | 35.4 | 35.5 | 35.5 | 35.5 | 34.4 |

LITILE AMERIC. $v$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$
2 April 1957


| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfic | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 07 | 32.7+ | 30.54 | $30.1+$ | 29.9+ | 29.3+ | 28.2+ | 27.04 | 26.4+ | 25.8+ | $25.1+$ |
| 08 | 34.2 | 28.4- | 32.1 | 31.6 | 31.4 | 30.8 | 31.0 | 30.4 | 30.1 | 28.1 |
| 09 | 38.8 |  | 37.3 | 36.6 | 36.5 | 36.1 | 37.0 | 36.7 | 37.1 | 36.6 |
| 10 | 39.5 |  | 37.4 | 36.2 | 36.4 | 35.7 | 36.8 | 36.3 | 36.9 | 34.6 |
| 11 | 39.5= | 37.4- | 36.8= | 36.2- | 36.7= | 35.6= | 37.0* | 36.2 $=$ | 36.8= | 36.3= |
| 12 | 39.3 | 37.2 | 36.8 | 36.2 | 37.0 | 35.7 | 37.0 | 36.4 | 36.8 | 36.3 |
| 13 | 40.0 | 39.0 | 38.9 | 38.4 | 38.6 | 38.4 | 38.9 | 38.5 | 38.8 | 38.5 |
| 14 | 40.6 | 40.3 | 40.6 | 40.3 | 40.3 | 40.1 | 40.2 | 40.3 | 40.4 | 40.0 |
| 15 | 40.2 | 40.0 | 40.5 | 40.3 | 40.2 | 39.8 | 39.7 | 33.8 | 39.6 | 38.2 |
| 16 | 37.8 | 37.4 | 37.6 | 37.5 | 37.4 | 36.8 | 36.1 | 35.7 | 34.2 | 31.1 |
| 17 | 38.5 | 38.2 | 38.5 | 38.3 | 38.3 | 38.0 | 37.9 | 37.9 | 38.1 | 37.2 |
| 18 | 39.1 | -38.9 | 39.4 | 39.3 | 39.2 | 38.9 | 38.8 | 38.9 | 38.9 | 33.8 |
| 19 | 38.9 | 38.9 | 29. 2 | 39.1 | 39.2 | 39.0 | 39.0 | 39.1 | 39.6 | 39.4 |
| 20 | 37.8 | 37.8 | 38.0 | 38.0 | 38.2 | 38.0 | 30.0 | 38.3 | 38.6 | 38.6 |
| 21 | 35.7 | 35.8 | 35.9 | . 35.9 | 35.9 | 35.7 | 35.8 | 36.0 | 36.3 | 36.3 |
| 22 | 34.1 | 33.8 | 34.0 | 33.9 | 33.9 | 33.9 | 33.8 | 34.0 | 34.3 | 34.3 |
| 23 | 32.5 | 32.2 | 32.3 | 32.1 | 32.1 | 32.0 | 32.0 | 32.3 | 32.5 | 32.5 |
| Number of Obs | 298 | 251 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 |
| Datly |  |  |  |  |  |  |  |  |  |  |
| Mear | 37.6 | 36.8 | 36.9 | 36.6 | 36.6 | 36.2 | 36.4 | 36.2 | 36.3 | 35.2 |

LITTLE ARERICA V Hourly Mean Temperacure：（ $-{ }^{\circ} \mathrm{C}$ ）

| ¢ |  |  <br>  | $\stackrel{\square}{\sim}$ |
| :---: | :---: | :---: | :---: |
| $\stackrel{8}{8}$ |  <br>  | ローが○いざかのヘmm $\stackrel{\sim}{\sim} \infty \infty \infty \infty$ | $\stackrel{0}{m}$ |
| $\underset{\sim}{\mathrm{O}}$ |  <br>  |  <br>  | $\stackrel{c}{\mathrm{~m}}$ |
| $8$ |  <br>  | ーのベのNざNのホのーか <br>  | $\stackrel{\bigcirc}{\circ}$ |
| 앙 | かONさNONOO类 <br>  |  <br>  | $\stackrel{0}{\sim}$ |
| $\cdots$ |  | のルヴのがかんONさに <br>  | $\stackrel{\sim}{\mathrm{m}}$ |
| $\sim$ |  |  $\underset{\sim}{\infty} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$ | $\stackrel{\square}{\circ}$ |
| $\bigcirc$ | $\left\lvert\, \begin{aligned} & n 00 \sim N \sim N N a n \\ & \hdashline \dot{N} \dot{N} \dot{N} \dot{N} \dot{N} \dot{N} \dot{N} \end{aligned}\right.$ |  <br>  | $\stackrel{0}{\sim}$ |
| $\cdots$ |  <br>  |  <br>  | $\stackrel{\circ}{m}$ |
| ${\underset{\sim}{-1}}_{0}$ |  <br>  | moベへのさナーかつmn <br>  | $\stackrel{0}{\sim}$ |
|  | \％ |  | 号号 |


| ${ }^{c}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 21.7 | 20.5 | 21.2 | 20.4 | 20.4 | 20.2 | 19.9 | 20.1 | 20.2 | 20.2 |
| 01 | 21.7 | 20.4 | 21.1 | 20.3 | 20.1 | 19.8 | 19.8 | 19.8 | 2 c .0 | 20.0 |
| 02 | 22.8 | 20.7 | 21.4 | 2 C .6 | 20.6 | 20.4 | 20.0 | 20.4 | 21.4 | 20.4 |
| 03 | 23.3 | 21.4 | 21.7 | 21.2 | 21.0 | 20.8 | 20.6 | 20.0 | 2j. 9 | 20.9 |
| 04 | 24.0 | 24.2 | 23.7 | 24.0 | 24.3 | 24.2 | 24.3 | 24.5 | 24.7 | 24.8 |
| 05 | 24.8 | 26.0 | 25.8 | 26.1 | 26.4 | 26.3 | 26.4 | 26.5 | 26.9 | 27.1 |
| 06 | 25.4 | 25.9 | 26.1 | 26.1 | 26.2 | 26.2 | 26.0 | 26.4 | 26.5 | 26.6 |
| 07 | 25.9 | 26.1 | 26.1 | 26.2 | 26.2 | 26.1 | 26.2 | 26.4, | 26.1 | 26.7 |
| 08 | 26.0 | 26.2 | 26.6 | 26.5 | 26.5 | 26.4 | 26.5 | 26.5 | 26.8 | 26.9 |
| 09 | 26.0 | 26.2 | 26.5 | 26.3 | 26.4 | 26.3 | 26.3 | 26.5 | 2.6. 7 | 26.9 |
| 10 | 25.2 | 26.2 | 26.6 | 26.3 | 26.4 | 26.3 | 26.3 | 26.4 | 26.7 | 26.8 |
| 11 | 26.6 | 26.4 | 26.6 | 26.8 | 27.1 | 27.0 | 26.9 | 27.1 | 27.5 | 27.6 |
| 12 | 28.3 | 28.0 | 28.2 | 28.3 | 28.5 | 28.4 | 28.4 | 28.6 | 29.0 | 29.1 |
| 13 | 30.3= | 29.8= | 30.3* | 30.0= | 30.2- | 30.i= | 3.). $2=$ | 30.2= | 30.7= | 30.8 |
| 14 | 31.2 | 30.5 | 31.3 | 31.0 | 31.2 | 31.0 | 31.1 | 31.2 | 31.5 | 31.6 |
| 15 | 31.5 | 31.2 | 31.7 | 31.3 | 31.6 | 31.4 | 31.7 | 31.5 | 31.9 | 32.0 |
| 16 | 31.7 | 31.5 | 31.9 | 31.6 | 31.7 | 31.6 | 31.6 | 31.6 | 32.1 | 32.2 |
| 17 | 32.6 | 32.4 | 32.8 | 32.5 | 32.6 | 32.4 | 32.4 | 32.5 | 32.9 | 33.0 |
| 18 | 32.7 | - 32.4 | 32.9 | 32.5 | 32.6 | 32.3 | 32.3 | 32.4 | 32.9 | 32.9 |
| 1.9* | 32.1 | 31.8 | 32.3 | 31.8 | 31.9 | 31.6 | 31.6 | 31.6 | 32.1 | 32.1 |
| 20 | 31.2 | 30.8 | 31.3 | 30.9 | 30.9 | 30.6 | 30.6 | 30.6 | 31.0 | 31.0 |
| 21 | 31.2 | 30.8 | 31.2 | 30.9 | 30.8 | 30.5 | 30.5 | 30.5 | 30.9 | 30.9 |
| 22 | 31.7 | 31.3 | 31.6 | 31.2 | 31.2 | 30.8 | 30.8 | 30.7 | 31.0 | 30.9 |
| 23 | 32.2 | 31.8 | 32.1 | 31.8 | 31.8 | 31.5 | 31.4 | 31.4 | 31.7 | 31.7 |


| Number <br> of Obe | 440 | 440 | 440 | 440 | 440 | 440 | 440 | 440 | 440 | 440 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 27.9 | 27.6 | 27.9 | 27.6 | 27.7 | 27.5 | 27.5 | 27.6 | 27.9 | 28.0 |

h.ittle americ. $v$
Hourly Mean Teaperatures ( $-{ }^{-} \mathrm{C}$ )


| Number <br> of Obs <br> Daily | 427 | 427 | 427 | 427 | 427 | 427 | 427 | 427 | 427 | 426 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Yean | 38.8 | 38.4 | 38.7 | 38.5 | 38.5 | 38.3 | 38.2 | 38.2 | 38.5 | 30.3 |

ITTLLE AMERICA
Hourly Mean Temperatires

| $\mathrm{Hr}^{\mathrm{cm}}$ | sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 41.4 | 40.7 | 41.3 | 40.8 | 40.8 | 40.4 | 40.3 | 40.2 | 40.1 | 39.2 |
| 01 | 41.7 | 40.5 | 41.1 | 40.2 | 40.2 | 39.4 | 38.8 | 38.3 | 37.6 | 35.6 |
| 02 | 4 i .2 | 40.1 | 40.8 | 40.1 | 40.1 | 39.4 | 38.8 | 38.4 | 38.0 | 35.9 |
| 03 | 44.3 | 43.6 | 44.2 | 43.7 | 43.8 | 43.3 | 43.3 | 43.3 | 43.5 | 42.4 |
| 04 | 44.3 | 43.6 | 44.0 | 43.6 | 43.7 | 43.2 | 43.1 | 43.1 | 43.2 | 42.2 |
| 05 | 45.4 | $1 / 4.9$ | 45.3 | 45.0 | 45.0 | 44.7 | 44.7 | 44.8 | 45.1 | 45.1 |
| 06 | 46.1 | 45.6 | 46.1 | 45.7 | 45.7 | 45.4 | 45.4 | 45.5 | 45.8 | 43.9 |
| 07* | 46.1 | 45.7 | 46.0 | 45.8 | 45.9 | 45.4 | 45.4 | 45.5 | 45.9 | 45.9 |
| 08 | 44.9 | 44.8 | 4:.0 | 44.7 | 44.6 | 44.4 | 44.6 | 44.8 | 45.1 | 45.2 |
| 09 | 42.6 | 42.5 | 42.6 | 42.3 | 42.1 | 42.1 | 42.2 | 42.4 | 42.8 | 42.9 |
| 10 | 41.6 | 41.2 | 41.4 | 40.9 | 40.8 | 40.6 | 40.7 | 40.8 | 41.2 | 41.2 |
| 11* | 41.4 | 40.8 | 41.1 | 40.8 | 40.8 | 40.5 | 40.5 | 40.5 | 40.9 | 40.7 |
| 12** | 40.5 | 40.3 | 40.4 | 40.3 | 40.4 | 40.0 | 40.0 | 40.1 | 40.4 | 40.3 |
| 13 | 39.2 | 39.0 | 39.2 | 39.0 | 39.1 | 38.8 | 38.9 | 39.1 | 39.5 | 39.4 |
| 14 | 38.7 | 38.1 | 38.5 | 38.2 | 38.3 | 37.9 | 38.0 | 38.0 | 38.4 | 38.3 |
| 15 | 38.4 | 37.5 | 38.0 | 37.6 | 37.6 | 37.3 | 57.3 | 37.3 | 37.5 | 37.4 |
| 16 | 38.9 | 38.0 | 38.5 | 38.1 | 38.1 | 37.7 | 37.7 | 37.8 | 38.1 | 38.0 |
| 17 | 37.3 | 36.4 | 36.8 | 36.4 | 36.5 | 36.1 | 36.1 | 36.2 | 36.5 | 36.4 |
| 18 | 36.5 | - 35.7 | 36.1 | 35.8 | 35.9 | 35.6 | 35.0 | 35.7 | 36.1 | 35.1 |
| 19 | 36.0 | 35.4 | 35.7 | 35.4 | 35.5 | 35.2 | 35.2 | 35.4 | 35.8 | 35.8 |
| 20 | 35.8 | 34.6 | 35.1 | 34.8 | 34.9 | 34.5 | 34.5 | 34.6 | 34.9 | 35.0 |
| 21 | 35.8 | 35.6 | 35.6 | 35.1 | 35.3 | 35.0 | 35.0 | 35.1 | 35.5 | 35.5 |
| 22 | 35.1 | 34.6 | 34.7 | 34.3 | 34.4 | 34.0 | 34.0 | 34.2 | 34.5 | 34.6 |
| 23 | 33.8 | 33.0 | 33.5 | 33.2 | 33.2 | 33.0 | 33.0 | 33.1 | 33.4 | 33.5 |

[^2]LITTLE ANERICA $V$ Hovaly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 33.9 | 33.5 | 33.8 | 33.5 | 33.5 | 33.3 | 33.3 | 33.4 | 33.8 | 33.9 |
| 01 | 34.4 | 33.8 | 34.3 | 33.9 | 34.0 | 33.8 | 33.7 | 33.9 | 34.2 | 34.3 |
| C 1 | 33.8 | 33.3 | 33.7 | 33.4 | 33.4 | 33.2 | 33.2 | 33.3 | 33.7 | 33.7 |
| 07 | 32.9 | 32.4 | 32.8 | 32.4 | 32.4 | 32.2 | 32.1 | 32.3 | 32.6 | 32.6 |
| G | 33.7 | 33.1 | 33.4 | 33.2 | 33.2 | 33.0 | 32.9 | 33.0 | 33.3 | 33.4 |
| 05 | 34.5 | 33.9 | 34.3 | 34.0 | 34.1 | 34.0 | 33.8 | 34.0 | 34.3 | 34.4 |
| 06 | 36.0 | 35.7 | 35.9 | 35.5 | 35.6 | 35.4 | 35.4 | 35.5 | 35.8 | 35.9 |
| 97 | 37.3 | 36.7 | 37.2 | 36.9 | 37.0 | 36.9 | 36.8 | 37.0 | 37.3 | 37.3 |
| 08 | 38.3+ | $38.4+$ | $38.8+$ | 38.5 | 38.6+ | 38.4+ | 38.4+ | 38.5+ | 38.9+ | 38.9+ |
| 09 | 33.1* | 32.9* | 33. 5 | 33.04 | 33.1 \% | 33.04 | 32.9 f | 33.14 | 33.5 | 33.74 |
| 18* | 33.6 | 33.4 | 33.7 | 33.5 | 33.5 | 33.4 | 33.3 | 33.4 | 33.8 | 34.0 |
| 11 | 34.3 | 34.2 | 34.4 | 34.1 | 34.1 | 34.0 | 33.9 | 33.9 | 34.2 | 34.3 |
| 12 | 34.6 | 34.3 | 34.5 | 34.1 | 34.1 | 33.9 | 33.8 | 33.9 | 34.1 | 34.2 |
| 13 | 34.4 | 33.9 | 34.3 | 34.1 | 34.1 | 33.9 | 33.7 | 33.8 | 34.2 | 34.2 |
| 14* | 33.2 | 32.9 | 33.2 | 33.1 | 33.1 | 32.8 | 32.8 | 32.9 | 33.3 | 33.4 |
| 15 | 33.6 | 33.2 | 33.6 | 33.4 | 33.4 | 33.2 | 33.2 | 33.3 | 33.7 | 33.9 |
| 16 | 34.8 | 34.6 | 74.8 | 34.6 | 34.6 | 34.4 | 34.3 | 34.5 | 34.8 | 34.9 |
| 17 | 35.8 | 35.5 | 35.7 | 35.5 | 35.5 | 35.3 | 35.2 | 35.2 | 35.5 | 35.6 |
| 18 | 36.5 | . 36.3 | 36.4 | 36.3 | 36.2 | 36.0 | 35.9 | 35.9 | 36.3 | 36.4 |
| 19 | 37.2 | 36.9 | 37.2 | 37.0 | 370 | 36.8 | 36.7 | 36.7 | 37.1 | 37.2 |
| 20 | 38.1 | 37.8 | 38.0 | 37.9 | 37.8 | 37.7 | 37.5 | 37.6 | 37.9 | 38.1 |
| 21 | 39.0 | 38.9 | 39.0 | 29.0 | 38.9 | 38.8 | 38.7 | 38.7 | 39.1 | 39.4 |
| 22 | 39.4 | 39.2 | 39.4 | 39.3 | 39.3 | 39.2 | 39.) | 39.2 | 39.6 | 39.8 |
| 23 | 39.8 | 39.5 | 39.8 | 39.7 | 39.6 | 39.5 | 39.4 | 39.5 | 39.8 | 39.9 |
| Number of Obs | 427 | 427 | 427 | 427 | 427 | 42.7 | 427 | 427 | 427 | 427 |
| Daily <br> Mean | 35.6 | 35.? | 35.5 | 35.3 | 35.3 | 35.1 | 35.0 | 35.1 | 35.5 | 35.6 |


| ${ }^{\mathrm{cm}}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 41.2 | 40.8 | 41.1 | 40.9 | 40.9 | 40.6 | 40.6 | 40.5 | 40.8 | 40.8 |
| 01 | 42.2 | 41.8 | 42.1 | 41.8 | 41.8 | 41.5 | 41.4 | 43.3 | 41.5 | 41.1 |
| 02 | 42.5 | 42.0 | 42.4 | 42.0 | 42.0 | 41.5 | 41.4 | 41.3 | 41.3 | 40.3 |
| 03 | 43.0 | 42.4 | 42.8 | 42.3 | 42.3 | 41.6 | 41.4 | 41.2 | 41.1 | 40.4 |
| 04 | 43.9 | 43.3 | 43.7 | 43.1 | 42.9 | 42.1 | 41.6 | 41.3 | 41.1 | 40.4 |
| 05 | 44.0 | 43.5 | 43.8 | 43.4 | 43.2 | 42.6 | 42.2 | 41.9 | 41.9 | 41.0 |
| 06 | 44.2 | 43.7 | 43.9 | 43.6 | 43.6 | 43.2 | 43.0 | 43.0 | 43.2 | 42.7 |
| 07 | $44.3+$ | 44. $2+$ | $44.3+$ | $44.1+$ | $44.0+$ | $43.6+$ | 43.7+ | 43.4+ | 43.5* | 42.7+ |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 | 43.1 | 43.1 | 43.3 | 42.7 | 42.2 | 42.3 | 42.5 | 42.5 | 42.6 | 42.2 |
| 10 | 43.8 | 43.2 | 43.5 | 43.0 | 42.8 | 42.6 | 42.6 | 42.7 | 42.9 | 42.2 |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12* | 43.6 | 43.4 | 43.6 | 43.4 | 43.4 | 43.1 | 43.2 | 43.2 | 43.6 | 43.2 |
| 13 | 44.2 | 43.8 | 44.1 | 43.8 | 43.9 | 43.6 | 43.6 | 43.7 | 44.1 | 44.0 |
| 14 | 44.7+ | 44.3+ | 14.74 | $44.4+$ | $44.5+$ | 44.2+ | 44.2+ | 44.3+ | $44.7+$ | 14.7+ |
| 15 | 44.10 | 43.6* | 44.1. | 43.8* | 43.9. | 43.4= | 43.5 \% | 43.5* | 43.8. $=$ | 43.7- |
| 16 | 43.7 | 43.1 | 43.7 | 43.2 | 43.3 | 42.9 | 42.9 | 43.0 | 43.3 | 43.1 |
| 17 | $44.0-$ | 43.1- | 43.8 - | 43.3- | 43.3- | 42.9- | 43.0 - | 43.0 - | 43.3- | 43.1- |
| 18 | 43.6- | -42.9- | 43.4- | 42.9- | 43.0- | 42.6- | 42.6- | $42.7-$ | 43.1- | 42.9- |
| 19 | 41.0 | 40.7 | 41.2 | 40.9 | 41.0 | 40.7 | 40.8 | 40.9 | 41.3 | 41.4 |
| 20 | 38.4 | 37.8 | 38.4 | 38.0 | 38.1 | 37.8 | 37.8 | 37.9 | 38.3 | 38.3 |
| 21 | 36.5+ | $36.0+$ | 36.5 * | 36.2+ | 36.3+ | 36.1 + | 36.14 | 36.3+ | $367+$ | $36.8+$ |
| 22 | 35.9 | 35.5 | 35.9 | 35.6 | 35.7 | 35.5 | 35.5 | 35.7 | 36.0 | 36.2 |
| 23 | 35.2+ | $34.9+$ | 35.24 | 35.0+ | 35.04 | $34.8+$ | 34.9+ | $35.1+$ | 35.4+ | $35.5+$ |


| Number <br> Of Obs | 369 | $36 y$ | 369 | 369 | 369 | 369 | 369 | 369 | 369 | 369 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Dally <br> Mean | 42.1 | 41.7 | 42.1 | 41.7 | 41.7 | 41.3 | 41.3 | 42.3 | 42.3 | 42.2 |

LITILE AMERICA $V$
Houriy Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| $\mathrm{Hr} \mathrm{~cm}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 34.7 | 34.5 | 34.8 | 34.6 | 34.7 | 34.5 | 34.6 | 34.8 | 35.1 | 35.3 |
| 01 | 34.6= | 34.2= | 34.6= | 34.4= | 34.4. | 34.2* | 34.2= | 34.5= | 34.8= | 34.9 $=$ |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| $\bigcirc 8$ | 26.4 | 96.5 | 26.6 | 26.2 | 26.3 | 26.2 | 26.1 | 26.2 | 26.5 | 26.6 |
| 09 | 26.7 | 26.8 | 26.9 | 26.5 | 26.7 | 26.5 | 26.4 | 26.6 | 26.9 | 27.0 |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  | 13.9 | 13.8 | 13.5 | 13.3 | 13.2 | 13.4 | 13.4 |
| 12 | 13.6 |  |  | 13.0 | 12.8 | 12.5 | 21.4 | 12.4 | 12.6 | 12.6 |
| 13 | 13.0 |  |  | 12.3 | 12.3 | 12.2 | 11.9 | 12.0 | 12.2 | 12.3 |
| 14 | 12.0\% | 12.74 |  | 12.3\# | 12.3\% | 12.2\# | 11.80 | 11.9\% | 12.1* | 12.3 |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16* | 11.7= | 11.5- |  | 11.2m | 12.3- | 11.2* | 10.9m | $11.1=$ | 11.2= | $11.3=$ |
| 17* | 12.0 | 11.8 |  | 11.5 | 11.6 | 11.5 | 11.3 | 11.3 | 11.6 | 11.6 |
| 18 | 12.3 | 11.9 |  | 11.8 | 11.8 | 11.6 | 11.5 | 11.5 | 11.8 | 11.8 |
| 19 | 12.5 | 12.2 |  | 12.1 | 12.1 | 11.9 | 11.7 | 21.8 | 12.0 | 12.2 |
| 20 | 13.6 | 13.2 | 13.4. | 13.0 | 13.1 | 12.7 | 120 | 1.2 .7 | 12.9 | 13.1 |
| 21 | 13.3 | 13.2 | 13.0 | 12.9 | 12.8 | 12.5 | 12.4 | 12.4 | 12.6 | 12.8 |
| 22 | 13.5 | 13.6= | 13.5 $=$ | 13.1 | 12.9 | 12.7 | 12.5 | 17.6 | 12.8 | 12.9 |
| 23 | 13.1 | 13.2- | 13.0= | 12.7 | 12.7 | 12. ${ }^{\text {a }}$ | 12:2 | 12.4 | 12.6 | 12.7 |


| Number <br> of Obs | 253 | 198 | 121 | 269 | 270 | 270 | 270 | 270 | 270 | 270 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 17.6 | 18.5 | 22.8 | 17.0 | 17.0 | 16.8 | 16.6 | 16.7 | 16.9 | 17.0 |

LITILE AMERICA V
Hourly Man Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

|  | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 13.1 |  |  | 12.6 | 12.7 | 12.4 | 12.2 | 12.3 | 12.5 | 12.6 |
| 01 | 12.9 |  |  | 12.4 | 12.5 | 12.2 | 22.0 | 12.1 | 12.3 | 12.4 |
| 02 | 13.64 | 13.84 | 13.5* | 12.9+ | 13.0+ | 12.7+ | $12.6+$ | $12.7+$ | 12.8 + | 12.9+ |
| 03 | 14.3 | 13.9 | 13.9 | 13.9 | 13.7 | 13.4 | 13.2 | 13.3 | 13.5 | 13.6 |
| 04 | 14.3 | 14.0 | 13.9 | 13.7 | 13.7 | 1.3 .4 | 13.2 | 13.3 | 13.5 | 13.6 |
| 05 | 13.9 | 13.4 | 13.3 | 13.2 | 13.3 | 13.0 | 12.8 | 12.8 | 13.0 | 13.2 |
| 06 | 13.5 | 12.9 | 12.9 | 12.9 | 13.0 | 12.6 | 12.5 | 12.5 | 12.8 | 12.9 |
| 07 | 14.0 | 13.4 | 13.5 | 13.4 | 13.5 | 13.1 | 13.0 | 13.1 | 13.3 | 13.5 |
| 08 | 14.4 | 14.2 | 14.1 | 13.9 | 13.9 | 13.8 | 13.6 | 13.7 | 13.9 | 14.1 |
| 09 | 14.7 | 14.5 | 14.5 | 14.0 | 14.0 | 13.7 | 13.6 | 13.8 | 13.9 | 14.1 |
| 10 | 15.2 | 15.0 | 14.7 | 14.1 | 14.4 | 14.1 | 14.1 | 14.2 | 1.4 .4 | 14.5 |
| 11 | 15.8 | 15.2+ | 15.0+ | 14.5+ | 14.9+ | 15.2 | 15.3 | 15.6 | 15.8 | 14.93 |
| 12 | 20.9 |  |  |  |  | 23.3 | 23.5 | 23.9 | 24.4 |  |
| 13 | 22.2- |  | 26.1- |  | 26.7- | 26.5 | 26.7 | 26.8 | 27.3 | 28.3- |
| 14 |  |  |  |  | 27.9 | 27.7 | 27.8 | 28.0 | 28.4 | 29.4 |
| 15 |  |  |  | 28.54 | 28.5 | 28.3 | 38.5 | 28.7 | 29.1 | 29.8- |
| 16 | 29.7 | 29.6 | 30.6 | 29.6 | 29.7 | 29.5 | 29.6 | 29.7 | 30.1 |  |
| 17 | 30.1 | 30.1 | 30.4 | 30.1 | 30.1 | 29.9 | 29.9 | 29.9 | 30.3 |  |
| : 8 | 31.1 | . 31.0 | 31.2 | 30.8 | 30.9 | 30.4 | 30.4 | 30.2 | 30.5 |  |
| 19 | 31.7 | 31.5 | 31.8 | 31.5 | 31.6 | 31.0 | 30.9 | 30.9 | 31.2 |  |
| 20 | 32.8 | 32.8 | 32.8 | 32.5 | 32.5 | 31.8 | 31.6 | 31.4 | 31.3 | 32.2- |
| 21 | 35.1 | 35.0 | 35.9 | 34.4 | 34.5 | 33.2 | 32.5 | 31.9 | 31.9 | 33.5 |
| 22 | 33.9 | 34.2 | 34.9 | 34.2 | 34.2 | 33.3 | 32.8 | 32.1 | 31.5 | 32.7 |
| 23 | 30.5 | 30.3 | 30.5 | 30.4 | 30.5 | 30.3 | 30.2 | 30.4 | 30.6 | 31.4 |
| Nuaber of Obs | 387 | 313 | 324 | 365 | 404 | 433 | 432 | 433 | 433 | 296 |
| Deily Mean | 21.4 | 22.4 | 22.6 | 21.1 | 21.8 | 21.6 | 21.5 | 21.5 | 21.7 | 19.1 |

LITTLE ABERICA.
Hourly Meen Temperácures ( $-{ }^{\circ} \mathrm{C}$ )

| ${ }^{6 \times 4}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 2 CO | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 30.2 | 39.8 | 30.1 | 29.9 | 30.0 | 29.8 | 29.7 | 29.6 | 29.9 | $31.2+$ |
| 01 | 33.8 | 33.8 | 34.3 | 33.6 | 33.7 | 32.8 | 32.5 | 31.9 | 31.1 | 31.3 |
| 02 | 32.9 | 32.8 | 33.1 | 32.8 | 32.7 | 32.3 | 32.1 | 32.1 | $3 ? .2$ | 32.8 |
| 03 | 32.5 | 32.0 | 32.3 | 31.8 | 31.8 | 31.3 | 31.2 | 31.1 | 31.1 | 32.2 |
| 04 | 33.0 | 32.4 | 32.6 | 32.0 | 32.0 | 31.3 | 31.2 | 31.0 | 31.0 | $31.9+$ |
| 05 | 34.0 | 33.4 | 33.7 | 33.0 | 33.1 | 32.3 | 32.1 | 31.9 | 31.9 | 33.10 |
| 06 | 34.6 | 34.2 | 34.4 | 33.8 | 33.8 | 32.9 | 32.7 | 32.5 | 32.4 | 33.1 + |
| 07 | 34.0 | 33.4 | 33.6 | 32.9 | 32.8 | 32.2 | 32.0 | 31.8 | 31.8 | 32.4 |
| 08 | 33.2 | 32.7 | 33.0 | 31.9 | 31.8 | 31.3 | 31.0 | 30.9 | 30.8 | $31.5+$ |
| 09 |  |  |  | 31.1 | 31.0 | 30.7 | 30.6 | 30.5 | 30.3 |  |
| 10 |  |  |  | 31.9 | 31.9 | 31.6 | 31.5 | 31.4 | 31.3 |  |
| 11 | 32.6 | 31.9 | 31.8 | 31.5 | 31.5 | 31.0 | 30.8 | 30.6 | 30.6 |  |
| 12 | 29.7 | 28.7 | 28.9 | 28.6 | 28.4 | 28.2 | 28.1 | 28.0 | 28.2 |  |
| 13 | $29.6+$ | 29.4+ | $29.6+$ | $29.4+$ | 29.3+ | $29.3+$ | 29.0+ | $29.0+$ | 29.4+ |  |
| 14 | 29.9 | 29.6 | 29.9 | 29.6 | 29.6 | 29.4 | 29.3 | 29.2 | 29.6 |  |
| 15 | 29.3 | 28.7 | 28.9 | 28.7 | 28.7 | 28.5 | 28.4 | 28.3 | 28.7 |  |
| 16* | 28.4 | 28.1 | 28.2 | 28.1 | 28.0 | 27.7 | 27.7 | 27.5 | 28.1 | 28.4* |
| 17 | 28.0 | 27.7 | 27.7 | 27.7 | 27.7 | 27.4 | 27.2 | 27.3 | 27.7 |  |
| 18 | 28.9 | 28.8 | 29.0 | 28.8 | 28.9 | 28.8 | 28.7 | 28.7 | 29.2 |  |
| 19 | 29.1 | 29.0 | 29.3 | 29.1 | 29.1 | 29.0 | 28.9 | 29.0 | 29.4 |  |
| 20 | $28.6+$ | 28.5+ | $28.7+$ | $28.5+$ | 28.5+ | $28.3+$ | 28.34 | 28.4 + | $28.7+$ |  |
| 21 | 28.5 | 28.4 | 28.7 | 28.4 | 28.4 | 28.3 | 28.2 | 28.2 | 28.7 |  |
| ; | 30.4 | 30.3 | 30.2 | 30.2 | 30.4 | 30.3 | 30.2 | 30.3 | 30.3 |  |
| 23 | 30.0 | 30.0 | 30.2 | 30.0 | 30.0 | 29.9 | 29.8 | 29.9 | 30.3 |  |


| INumber <br> Of Ohe <br> Daily <br> Mean | 395 | 390 | 395 | 432 | 430 | 432 | 430 | 432 | 4,32 | 147 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LITTLE AMERIGA $V$
Hourly Mean Temperatures

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 30.3 | 30.0 | 30.3 | 29.7 | 29.7 | 29.4 | 29.3 | 29.4 | 29.7 |  |
| 01 | 31.1 | 31.1 | 31.0 | 30.9 | 30.9 | 30.5 | 30.3 | 304 | 30.5 |  |
| 02 | 31.6 | 31.7 | 31.8 | 31.7 | 31.7 | 31.5 | 31.4 | 31.4 | 31.6 |  |
| 03 | 34.6 | 35.1 | 34.8 | 34.7 | 34.9 | 34.3 | 34.2 | 34.2 | 34.4 |  |
| 04 | 34.9 | 35.5 | 35.5 | 35.4 | 35.5 | 34.9 | 34.9 | 34.8 | 34.9 |  |
| 05 | 34.7 | 34.9 | 34.9 | 34.3 | 34.4 | 33.5 | 33.1 | 32.6 | 32.4 |  |
| 06 | 33.4 | 33.6 | 33.8 | 33.6 | 33.7 | 33.4 | 33.4 | 33.4 | 33.7 |  |
| 07* | $34.8+$ | 35.5+ | 35.24 | $35.5+$ | 35.64 | 35.64 | $35.6+$ | $35.6+$ | $36.1+$ |  |
| 08 | 37.2 | 38.3 | 37 j | 38.0 | . 38.1 | 37.9 | 37.9 | 37.7 | 38.0 |  |
| 09 | 38.8- | 39.8= | 38.6\% | 38.6 | 38.4 | 37.7 | 37.5 | 37.1 | 37.1 |  |
| 10 |  |  |  | $34.8+$ | 34.3+ | $33.5+$ | $33.4+$ | $33.0+$ | $33.3+$ |  |
| 11 |  |  |  | 34.5 | 33.9 | 33.2 | 32.8 | 32.3 | 32.0 |  |
| 12 |  |  |  |  |  | 33.1 | 32.3 | 31.3 | 30.6 |  |
| 13 |  |  |  | 31.4- | $30.9-$ | 30.3 | 29.6 | 29.2 | 28.7 |  |
| 14 |  | 28.5 |  | 28.4 | 27.9 | 27.8 | 27.4 | 27.5 | 26.9m |  |
| 15 | 32.9* | 32.7 | 32.9 | 32.5 | 32.0 | 32.1 | 31.8 | 32.0 |  |  |
| 16 | 33.2 | 32.6 | 32.4 | 32.4 | 32.1 | 32.1 | 31.9 | 32.2 |  |  |
| 17 | 35.6 | 34.8 | 34.2 | 34.2 | 34.1 | 34.1 | 33.8 | 33.8 |  |  |
| 18 | 33.7 | 32.7 | 32.9 | 32.9 | 32.5 | 32.5 | 32.2 | 32.1 |  |  |
| 19 | 31.3 | 30.1 | 30.4 | 30.5 | 30.0 | 30.0 | 29.7 | 29.8 |  |  |
| 20 | 32.3 | 31.3 | 31.4 | 31.4 | 31.3 | 31.0 | 30.9 | 30.6 |  |  |
| 21 | 30.3 | 29.4 | 29.4 | 29.4 | 29.4 | 28.9 | 28.7 | 28.3 |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number of Obs | 291 | 317 | 296 | 368 | 369 | 393 | 394 | 395 | 262 |  |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 33.4 | 33.0 | 33.2 | 33.1 | 32.9 | 32.5 | 32.3 | 32.1 | 32.7 |  |

LITITE AHERICA V Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$


| Rumber <br> Of Ots <br> Dally | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | 31.5 | 30.7 | 31.0 | 30.9 | 30.5 | 30.3 | 30.2 | 30.0 | 30.0 | 29.0 |

LITTLE AMERICA $V$ Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| $\mathrm{Hr}_{\mathrm{r}}=\mathrm{m}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 24.4 | 23.6 | 23.7 | 23.6 | 23.5 | 23.4 | 23.3 | 23.3 | 23.5 | 23.5 |
| 01 | 24.4 | 23.5 | 23.7 | 23.6 | 23.4 | 23.3 | 23.2 | 23.2 | 23.5 | 23.4 |
| 02. | 24.5 | 23.6 | 23.8 | 23.7 | 23.6 | 23.5 | 23.4 | 23.4 | 23.7 | 23.6 |
| 03 | 24.4 | 23.6 | 23.8 | 23.7 | 23.6 | 23.6 | 23.5 | 23.5 | 23.7 | 23.6 |
| 04 | 24.5 | 23.8 | 24.0 | 23.9 | 23.7 | 23.6 | 23.4 | 23.5 | 23.8 | 23.8 |
| 05 | 24.7 | 24.0 | 24.1 | 24.1 | 23.9 | 23.9 | 23.7 | 23.8 | 24.1 | 24.1 |
| 06 | 24.8 | 24.1 | 24.3 | 24.3 | 24.0 | 24.0 | 23.9 | 24.3 | 24.2 | 24.2 |
| 07 | 24.7 | 23.9 | 24.2 | 24.1 | 23.9 | 23.8 | 23.8 | 23.8 | 24.1 | 23.9 |
| 08 | 24.3 | 23.4 | 23.6 | 23.5 | 23.3 | 23.2 | 23.2 | 23.2 | 23.5 | 23.4 |
| 09 | 23.7 | 22.4 | 22.6 | 23.5 | 22.4 | 22.2 | 22.2 | 22.2 | 2?.5 | 22.4 |
| 10 | 22.9 | 21.6 | 21.8 | 21.7 | 21.5 | 21.5 | 21.4 | 21.4 | 2.. 8 | 21.7 |
| 11 | 22.3 | 21.3 | 21.4 | 21.4 | 21.1 | 21.1 | 21.0 | 21.2 | 71.3 | 21.2 |
| 12 | 22.3 | 21.2 | 21.2 | 21.2 | 20.9 | 20.9 | 20.8 | 20.9 | 21.1 | 21.0 |
| 13 | 23.0 | 21.8 | 22.0 | 21.9 | 21.6 | 21.5 | 21.4 | 21.3 | 21.6 | 21.5 |
| 14* | 22.3 | 21.2 | 21.4 | 21.3 | 21.1 | 20.9 | 21.0 | 20.9 | 21.2 | 21.0 |
| 15 | 22.1 | 21.1 | 21.2 | 21.2 | 20.9 | 20.9 | 20.8 | 20.8 | 21.2 | 21.1 |
| 16 | 21.6= | 20.4= | 20.6 $=$ | 20.5= | 20.2= | 20.1. | 20.0 | 20.2* | 20.4* | 20.2 |
| 17 | 21.2 | 20.0 | 20.1 | 20.0 | 19.8 | 19.7 | 19.7 | 19.7 | 19.9 | 19.8 |
| 18 | 20.9 | 19.5 | 19.7 | 19.6 | 19.3 | 19.2 | 19.2 | 19.2 | 19.5 | 19.3 |
| 19 | 20.8 | 19.5 | 19.6 | 19.5 | 19.3 | 19.2 | 19.2 | 19.2 | 19.4 | 19.4 |
| 20 | 20.5 | 19.2 | 19.3 | 15.2 | 19.0 | 13.9 | 18.9 | 18.5 | 19.1 | 19.0 |
| 2.1 | 20.4 | 13.9 | 19.0 | 19.0 | 18.7 | 18.7 | 18.7 | 18.6 | 18.8 | 18.8 |
| 22 | 20.6 | 19.1 | 19.2 | 19.2 | 19.0 | 18.4 | 18.8 | 18.9 | 19.1 | 19.1 |
| 23 | 20.6 | 18.7 | 18.8 | 18.8 | 18.6 | 18.5 | 18.4 | 18.5 | 18.6 | 18.6 |
| Number <br> of Obs | 443 | 443 | 443 | 442 | 443 | 442 | 443 | 443 | 442 | 4:1 |
| Daily <br> Mean | 22.8 | 21.7 | 21.8 | 21.8 | 21.5 | 21.5 | 21.4 | 21.4 | 21.7 | 22.6 |

LITTLE AMERICA V Hourly Mean Temperatares

| \% |  <br>  | - |
| :---: | :---: | :---: |
| $\stackrel{8}{8}$ |  <br>  | 0 |
| - |  <br>  | - |
| $8$ |  <br>  | - |
| i |  <br>  | - |
| N |  <br>  | - |
| $\pm$ |  <br>  | \% |
| $\bigcirc$ |  <br>  | \% |
| m |  <br>  | ¢ |
| 岕 |  <br>  | \% |
|  |  | 荅 |

Hourly Nean Temperatures

| $\mathrm{Hr}{ }^{\text {cm }}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 28.5 | 27.9 | 28.0 | 27.6 | 26.6 | 25.6 | 24.6 | 23.9 | 23.2 | 21.8 |
| 01 | 29.4 | 28.4 | 28.6 | 28.6 | 27.8 | 26.5 | 25.7 | 25.1 | 24.5 | 23.1 |
| 02 | 29.5 | 29.1 | 29.2 | 29.1 | 28.6 | 28.5 | 27.7 | 27.7 | 27.6 | 26.9 |
| 03 | 29.8 | 29.7 | 29.9 | 29.7 | 29.4 | 29.1 | 28.6 | 28.2 | 27.9 | 26.7 |
| 04 | 30.9 | 30.6 | 30.8 | 30.6 | 30.1 | 29.5 | 28.3 | 28.2 | 27.4 | 26.7 |
| 05 | 32.84 | 32.5\# | 32.9\% | 32.6\% | 31.9月 | 30.74 | 30.0.\% | 29.2\% | 28.5年 | 28.5 |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 | 29.1 $=$ | 28.0= | 28.1 ${ }^{\text {e }}$ | 27.9. | 27.5* | 27.0. | 26.8= | 26.7- | 26.9* | 26.4 |
| 08 | 28.5 | 27.7 | 27.8 | 27.7 | 27.2 | 26.7 | 26.6 | 26.5 | 26.8 | 26.3 |
| 09 | 27.7+ | 27.2+ | $27.3+$ | 27.24 | 26.8+ | 26.5+ | $26.3+$ | $26.3+$ | $26.5+$ | 26.2 |
| 10 | 28.2 | 27.8 | 28.0 | 27.7 | 27.4 | 27.1 | 27.0 | 27.0 | 27.2 | 26.9 |
| 11 | 27.8 | 27.2 | 27.5 | 27.2 | 26.8 | 26.5 | 26.4 | 26.4 | 26.6 | 26.4 |
| 12 | 28.7 | 28.2 | 28.4 | 28.2 | 27.8 | 27.6 | 27.4 | 27.5 | 27.7 | 27.4 |
| 13 | 28.1 | 27.6 | 27.8 | 27.8 | 27.4 | 27.1 | 26.9 | 26.9 | 27.1 | 26.8 |
| 14 | 27.7 | 27.2 | 27.3 | 27.2 | 26.7 | 26.5 | 26.3 | 26.3 | 26.5 | 26.2 |
| 15 | 30.0 | 29.5 | 29.8 | 29.6 | 29.2 | 29.0 | 28.9 | 29.0 | 29.3 | 28.8 |
| 16* | 30.4 | 29.9 | 30.2 | 29.9 | 29.5 | 29.4 | 29.2 | 29.3 | 29.5 | 29.1 |
| 17 | 32.4 | 32.0 | 32.2 | 32.0 | 31.6 | 31.5 | 31.2 | 31.2 | 31.6 | 31.0 |
| 18 | 33.8 | 33.4 | 33.7 | 33.5 | 35.1 | 3:0 | 32.7 | 32.7 | 33.1 | 32:. |
| 19 | 35.1 | 34.7 | 34.9 | 34.3 | 34.4 | 34.1 | 33.9 | 33.8 | 34.2 | 33.5 |
| 20* | 36.0 | 3's. 8 | 36.0 | 35.9 | 35.7 | 3). | 3', 2 | 35.3 | 35.7 | 35.3 |
| 21 | 37.0 | 36.9 | 76., ${ }^{\text {a }}$ | 36.9 | 36.0 | 30.5 | 36.3 | 36.4 | 36.7 | 36.4 |
| 22 | 37.6 | 37.4 | 37.6 | 37.4 | 37.2 | 17.0 | 36.9 | 37.0 | 37.3 | 37.0 |
| 23 | 37.9 | 37.8 | 38.0 | 37.9 | 37.6 | 37.5 | 37.1 | 37.5 | 37.8 | 37.5 |


| Number <br> of Obs <br> Daily | 404 | 404 | 404 | 403 | 1.04 | 404 | 404 | 403 | 404 | 404 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | 31.2 | 30.8 | 31.0 | 30.3 | 30.4 | 30.0 | 29.7 | 29.6 | 29.7 | 29.1 |

LITTLE AMERICA V
Hourly Mean Temperature; ( $-{ }^{\circ} \mathrm{C}$ )

| Hr ${ }^{\text {cm }}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 38.1 | 38.1 | 38.3 | 38.2 | 38.0 | 38.0 | 37.9 | 37.9 | 38.2 | 38.1 |
| 01 | 38.4 | 35.3 | 38.6 | 38.5 | 38.3 | 38.2 | 38.1 | 38.1 | 38.5 | 38. 3 |
| 02 | 39.3 | 39.1 | 39.4 | ; 2 | 39.1 | 38.9 | 38.8 | 38.9 | 39.3 | 38.8 |
| 03 | 40.4 | 40.2 | 40.4 | 40.3 | 40.2 | 40.0 | 39.7 | 39.8 | 40.4 | 39.8 |
| 04 | 40.9 | 40.7 | 41.1 | 40.9 | 40.7 | 40.5 | 40.2 | 40.3 | 40.9 | 40.4 |
| 05 | 41.5 | 41.4 | 41.7 | 41.6 | 41.3 | 41.2 | 40.9 | 41.0 | 40.5 | 40.9 |
| 46 | 41.7 | 41.6 | 41.9 | 41.8 | 41.5 | 41.4 | 41.1 | 41.3 | 41.8 | 41.1 |
| 07 | 41.2 | 41.0 | 41.3 | 41.3 | 40.9 | 40.7 | 40.4 | 40.6 | 41.1 | $4 C .5$ |
| 08 | 40.9 | 40.7 | 41.0 | 40.9 | 40.5 | 40.4 | 40.3 | 40.5 | 40.8 | 40.3 |
| 09 | 40.5 | 40.3 | 40.6 | 40.5 | 40.3 | 40.1 | 39.8 | 40.0 | 40.3 | 40.0 |
| 10 | 40.3 | 40.0 | 40.3 | 40.2 | 39.9 | 39.7 | 39.6 | 39.5 | 39.8 | 39.6 |
| 11 | :0.3 | 39.9 | 40.2 | 40.1 | 39.8 | 39.7 | 39.4 | 39.4 | 39.7 | 39.5 |
| 12 | 405 | 40.2 | 40.5 | 40.3 | 40.0 | 39.9 | 39.8 | 39.7 | 40.0 | 39.7 |
| 13 | 40.6 | 40.3 | 40.5 | 40.3 | 40.2 | 40.0 | 39.7 | 39.7 | 40.2 | 39.8 |
| 14 | 40.2 | 39.9 | 40.2 | 40.0 | 39.8 | 39.6 | 39.3 | 39.3 | 39.1 | 39.3 |
| 15 | $40 . \mathrm{i}$ | 39.8 | 40.1 | 39.9 | 39.7 | 39.6 | 39.4 | 39.3 | 39.7 | 39.3 |
| 16 | 40.5 | 40.2 | 40.5 | 40.3 | 40.2 | 40.0 | 39.6 | 39.9 | 40.2 | 39.9 |
| 17 | $41) .5$ | 40.2 | 404 | 40.3 | 40.0 | 39.9 | 39.5 | 39.7 | 40.0 | 39.9 |
| 18 | 40.3 | 39.9 | 40.2 | 40.0 | 39.7 | 39.7 | 39.4 | 39.5 | 39.9 | 39.7 |
| 19 | 39.1 | 38.7 | 39.1 | 38.7 | 38.5 | 38.4 | 38.1 | 38.1 | 384 | 38.2 |
| 20 | 38.4 | 37.8 | 37.7 | 37.8 | 37.4 | $3 i .3$ | 37.1 | 37.1 | 37.1 | 37.0 |
| 21 | 38.1 | 37.4 | 37.8 | 37.5 | 37.2 | 37.0 | 36.8 | 36.1 | 37.0 | 36.8 |
| 22 | 39. | 38.7 | 38.9 | 38.6 | 38.5 | 38.3 | 38.1 | 38.1 | 38.3 | 38.1 |
| 23 | 40.9 | 40.7 | 40.8 | 40.7 | 40.6 | 40.4 | 40.2 | 40.1 | 40.4 | 40.0 |


| Number <br> Of Obs | 447 | 447 | 446 | 444 | 447 | 440 | 447 | 4.17 | 447 | 448 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily <br> Mean | 40.1 | 39.8 | 40.1 | 39.9 | 39.7 | 39.5 | 39.3 | 39.4 | 39.7 | 39.4 |



| Number <br> of Obs | 446 | 446 | 446 | 446 | 446 | 446 | 445 | 446 | 446 | 446 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily <br> Mean | 44.0 | 43.7 | 44.0 | 43.8 | 43.4 | 43.4 | 43.0 | 43.0 | 43.2 | 42.3 |

LITTLE AMERICA V
Hourly Mean Temperatures $\left({ }^{\circ}{ }^{\circ} \mathrm{C}\right)$

| cm | $\mathbf{S f c}$ | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 46.5 | 46.8 | 47.4 | 46.9 |
| 00 | 47.5 | 47.1 | 47.3 | 47.2 | 46.9 | 46.9 | 47.7 | 47.9 | 48.4 | 48.1 |
| 01 | 48.5 | 48.2 | 48.3 | 48.3 | 48.1 | 48.1 | 48.6 | 48.7 | 49.3 | 49.0 |
| 02 | 49.2 | 49.0 | 49.1 | 49.1 | 48.8 | 48.9 | 48.2 | 49.3 | 49.0 | 48.8 |
| 03 | 49.8 | 49.6 | 49.7 | 49.7 | 49.4 | 49.5 | 49.2 | 49.5 | 49.9 | 49.4 |
| 04 | 50.0 | 49.8 | 49.9 | 49.8 | 49.4 | 49.3 | 49.0 | 49.1 | 49.3 | 48.7 |
| 05 | 49.8 | 49.5 | 49.6 | 49.6 | 49.2 | 49.8 | 49.5 | 49.5 | 49.9 | 49.4 |
| 04 | 50.3 | 50.0 | 500 | 50.0 | 49.1 | 49.8 | 49.0 | 49.1 | 49.4 | 48.8 |
| 07 | 50.0 | 49.6 | 49.6 | 49.6 | 49.3 | 46.7 | 46.3 | 46.5 | 46.8 | 46.2 |
| 08* | 47.5 | 47.0 | 47 | 47.1 | 46.7 | 45.5 | 45.1 | 45.1 | 45.4 | 45.0 |
| 09 | 46.3 | 45.8 | 46.0 | 45.9 | 45.4 45.9 | 46.0 | 45.7 | 45.7 | 45.9 | 45.2 |
| 10 | 46.7 | 46.3 | 46.6 | 46.4 | 45.9 | 46.0 | 45.6 | 45.4 | 45.5 | 44.3 |
| 11 | 46.8 | 46.3 | 46.6 | 46.5 | 45.9 |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  | 46.5 | 46.3 | 46.1 | 45.9 | 46.2 | 46.6 | 46.1 |
| 15 | 47.0 | 46.4 |  | 46.5 . | 46.4. | 45.2m | 46.0. | 46.2 $=$ | 46.5 $=$ | 46.2 |
| 16 | 47.0= | 46.5 - | 46.8 " | 46.8 | 46.1 | 45.9 | 45.7 | 45.8 | 46.1 | 45.8 |
| 17 | 46.7 | 46.2 | 46.6 | 46.4 | 46.1 | 45.7 | 45.5 | 45.6 | 46.0 | 45.7 |
| 18 | 46.5 | 45.2 | 46.3 | 46.3 | 45.8 45.7 | 45.6 | 45.3 | 45.4 | 45.8 | 45.6 |
| 19 | 46.3 | 45.9 | 46.2 | 46.1 | 45.6 | 45.6 | 45.4 | 45.3 | 45.8 | 45.6 |
| 20 | 46.2 | 45.9 | 46.2 | 46.0 | 45.7 | 45.7 | 45.5 | 45.6 | 45.9 | 45.6 |
| 21 | 46.5 | 46.1 | 46.4 | 46.2 46.8 | 46.4 | 46.3 | 46.0 | 46.1 | 46.4 | 46.0 |
| 22 | 47.3 | 46.6 | 46.9 | 46.8 | 46.3 | 46.3 | 45.9 | 46.0 | 46.4 | 45.9 |
| 23 | 47.2 | 46.7 | 47.0 | 46.8 |  |  |  |  |  |  |
| Number <br> of Obs | 384 | 384 | 383 | 383 | 384 | 384 | 384 | 382 | 384 | 384 |
| Daily |  | 47 | 47.6 | 47.5 | 47.1 | 47.1 | 46.8 | 46.9 | 47.2 | 46.8 |

LITTLE ANERICA $V$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right) ~$

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 47.5 | 47.0 | 47.3 | 47.1 | 46.6 | 46.6 | 46.3 | 46.3 | 46.6 | 46.2 |
| 01 | 47.8 | 47.3 | 47.6 | 47.3 | 46.9 | 46.9 | 46.5 | 46.6 | 47.0 | 46.6 |
| 02 | 48.3 | 47.7 | 48.1 | 47.9 | 47.4 | 47.4 | 47.1 | 47.2 | 47.5 | 46.9 |
| 03 | 48.5 | 48.0 | 48.2 | 48.0 | 47.7 | 47.6 | 47.3 | 47.4 | 47.8 | 47.0 |
| 04 | 48.7 | 48.2 | 48.5 | 48.3 | 47.9 | 47.8 | 47.4 | 47.5 | 47.9 | 47.2 |
| 05 | 48.5 | 48.1 | 48.4 | 48.2 | 47.7 | 47.7 | 47.4 | 47.5 | 47.9 47.8 | 47.2 |
| 06 | 48.6 | 48.3 | 48.5 | 48.4 | 47.9 | 47.9 | 47.5 | 47.5 | 47.8 | 47.4 |
| 0\%* | 48.3 | 48.1 | 48.4 | 48.2 | 47.9 | 47.8 | 47.4 | 47.5 | 47.6 | 46.6 |
| 08 | 48.4 | 48.2 | 48.3 | 48.1 | 47.8 | 47.6 | 47.4 | 47.4 | 47.6 | 46.6 |
| 09 | 48.5 | 48.5 | 48.5 | 48.2 | 48.1 | 47.8 | 47.7 | 47.7 | - |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |


LITTLE MERICA $V$
Hourly Mean Tempratures

| Hr | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 21.3 | 21.0 | 21.1 | 20.8 | 20.5 | 20.1 | 19.7 | 19.7 | 19.6 | 19.7 |
| 01 | 20.5 | 20.0 | 20.1 | 19.8 | 19.6 | 19.5 | 19.3 | 19.3 | 19.2 | 19.1 |
| 02 | 20.8 | 20.3 | 20.4 | 20.1 | 19.9 | 19.7 | 19.4 | 19.1 | 18.8 | 18.9 |
| 03 | 20.44 | 14.84 | $20.1{ }^{4}$ | 19.84 | 19.5* | $19.4+$ | 14. ${ }^{1+}$ | 14.? | 19.1* | 19.04 |
| 04 | 20.6 | 20.2 | $\because 4$ | 202 | 19.9 | 19.8 | 14.7 | 19.8 | 19.9 | 19.9 |
| 05 | 21.7 | 21.6 | 21.8 | 21, 1 | 21.4 | 21.3 | 21 : | 21.3 | 21.4 | 21.3 |
| 06 | 22.7 | 22.8 | 23.0 | 22.8 | 22.6 | 22.5 | 22.4 | 22.5 | 22.6 | 22.5 |
| 07 | $2 i 4.6$ | 25.0 | 23.1 | 24.8 | 2'. ${ }^{\prime}$ | 24. 3 | 21.9 | 33.7 | 234 | 23., |
| 08 | 271 | 27.7 | 28.0 | 27.0 | 26.2 | 256 | 25.0 | 24.4 | 23.8 | 24.1 |
| 09 | 30.2 | 31.4 | 31.5 | 30.1 | 27.8\% | 27.9 | 26.8 | 25.5 | 24.0 | 24.5 |
| 10 | 30.6 | 31.4 | 31.4 | 30.0 |  | 20.4 | 25.4 | 25. 3 | 2, 3 | 25.1 |
| 11 | 26.1 | 2b, 3 | 26.5 | 26.1 | 25.8 | 25.4 | 24.9 | 24.8 | 24.4 | 24.1 |
| 12 | 24.7 | 24.8 | 25.1 | 24.9 | 24.1 | 24.5 | 24.2 | 24.5 | 24.1 | 23.9 |
| 13 | 23.7 | 23.6 | 23.8 | 23.5 | 23.4 | 23.2 | 23.2 | 23.4 | 23.3 | 233 |
| 14 | 23.7 | 23.7 | 24.0 | 23.7 | 23.5 | 23.4 | 23.4 | 23.6 | 23.6 | 23.5 |
| 15 | 23.3 | 23.2 | 23.4 | 23.1 | 23.0 | 23. 8 | 22.8 | 23.0 | 23.0 | 23.0 |
| 16 | 22.6 | 22.5 | 22.8 | 22.5 | 2.2 .4 | 22.2 | 22.2 | 22.4 | 22.4 | 22.4 |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 | 24.8= | 25.0. | 2.3.3* | 25.1* | 24.9. | 24.8* | 2i4.9 $=$ | 25.2- | 25.0\% | 25.1 $=$ |
| 21 | 25.0 | 25.3 | 25.6 | 25.4 | 23.2 | 25.1 | \% 0 | 25.4 | 25. | 25.3 |
| 22. | 25.7 | 26.0 | 2 \%. 3 | 26.1 | 26.0 | 25. | 25.9 | 26.) | 26.2 | 26.2 |
| 23 | 26.4 | 26.8 | 27.1 | 26.9 | 26.7 | 26.6 | 26.7 | 27.0 | 26.9 | 27.1 |
| Number of Ohs | 372 | 372 | 372 | 372 | 339 | 372 | 372 | 371 | 372 | 372 |
| Datly Menn | 24.2 | 24.3 | 24.5 | 24.1 | 23.2 | 23.4 | 23.2 | 23.1 | 23.0 | 23.0 |


|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 26.5+ | 26.9+ | 27.24 | 26.9+ | $26.8+$ | 26.7+ | 26.7+ | 26.9+ | 26.9+ | 26.9+ |
| 01 | 26.7+ | 27.0+ | 27.4+ | $27.2+$ | 27.1+ | 26.8+ | 26.8 + | 27.3+ | $27.4+$ | 27.4+ |
| 22 | 27.1 | 27.6 | 27.5 | 27.3 | 27.2 | 27.0 | 27.1 | 27.3 | 27.3 | 27.5 |
| 03 | 27.7 | 27.7 | 28.1 | 27.9 | 27.8 | 27.5 | 27.3 | 27.5 | 27.5 | 27.5 |
| 04 | 28.0 | 27.9 | 28.4 | 28.2 | 28.0 | 27.7 | 27.7 | 27.9 | 27.5 | 27.3 |
| 05 | 27.7 | 27.7 | 28.2 | 27.9 | 27.8 | 27.5 | 27.6 | 27.8 | 27.6 | 27.4 |
| 06 | 27.5 | 27.9 | 27.9 | 27.6 | 27.5 | 27.2 | 27.2 | 27.5 | 27.5 | 27.5 |
| 07 | 27.4 | 27.6 | 27.8 | 27.5 | 27.1 | 27.0 | 26.9 | 27.5 | 27.4 | 27.4 |
| 08 | 27.5 | 27.3 | 27.8 | 27.4 | 27.3 | 27.1 | 27.3 | 27.5 | 27.2 | 27.4 |
| 09 | 28.0 | 27.8 | 28.2 | 28.0 | 27.9 | 27.6 | 27.7 | 27.9 | 27.7 | 27.8 |
| 10 | 28.2 | 28.0 | ? 8.6 | 28.4 | 28.2 | 28.0 | 27.9 | 28.0 | 28.0 | 27.9 |
| 11 | 29.2 | 28.9 | 29.4 | 29.1 | 28.8 | 28.5 | 28.7 | 28.7 | 28.4 | 28.1 |
| 12 | 31.1 | 30.8 | 31.3 | 30.9 | 30.2= | 30.5 | 30.5 | 30.5 | 30.1 | 29.5 |
| 13 | 26.2 | 26.3 | 26.5 | 26.3 |  | 25.9 | 25.8 | 26.0 | 25.9 | 25.7 |
| 14 | 25.4 | 25.7 | 25.9 | 25.6 | 25.6+ | 25.4 | 25.4 | 2.5 .5 | 26.3 | 25.4 |
| 15 | 24.3 | 24.3 | 24.7 | 24.5 | 24.3 | 24.0 | 24.0 | 24.3 | 74.3 | 24.0 |
| 16 | 23.7 | 23.7 | 24.1 | 23.9 | 23.7 | 23.4 | 23.3 | 23.7 | 23.7 | 23.3 |
| 17 | 23.2 | 23.3 | 23.6 | 23.5 | 23.2 | 23.0 | 23.0 | 23.2 | 23.3 | 23.1 |
| 18 | 23.5 | 23.5 | 23.8 | 23.6 | 23.4 | 23.2 | 23.1 | 23.3 | 23.4 | 23.2 |
| 19 | 23.3 | 23.3 | 23.6 | 23.4 | 23.2 | 23.0 | 23.0 | 23.1 | 23.2 | 23.1 |
| 20 | 22.9 | 22.9 | 23.1 | 23.0 | 22.7 | 22.4 | 22.5 | 22.7 | 22.9 | 22.8 |
| 21 | 22.6 | 22.6 | 22.7 | 22.6 | 22.4 | 22.1 | 22.2 | 22.3 | 22.4 | 22.3 |
| 22* | 22.6 | 22.7 | 22.9 | 22.7 | 22.5 | 22.1 | 22.3 | 22.4 | 22.5 | 22.3 |
| 23* | 22.4 | 22.5 | 22.6 | 22.5 | 22.3 | 22.0 | 22.1 | 22.2 | 22.3 | 22.2 |


| Number <br> Of Obs <br> Daily | 444 | 444 | 441 | 442 | 413 | 444 | 442 | 443 | 444 | 439 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean | 25.9 | 26.0 | 26.3 | 26.1 | 25.8 | 25.6 | 25.6 | 25.8 | 25.8 | 25.7 |

LITTLE NERICA $V$
Hourly Mean Temperatures (- ${ }^{\circ} \mathrm{C}$ )

| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 22.7 | 23.1 | 23.4 | 23.2 | 23.0 | 22.8 | 22.8 | 23.0 | 23.1 | 22.9 |
| 01 | 23.4 | 23.7 | 24.1 | 23.9 | 23.7 | 23.5 | 23.4 | 23.6 | 23.7 | 23.7 |
| 02 | 23.6 | 23.8 | 24.2 | 24.0 | 23.8 | 23.6 | 23.6 | 23.9 | 24.0 | 23.9 |
| 03 | 24.7 | 25.2 | 25.4 | 25.3 | 25.3 | 25.2 | 25.3 | 26.1 | 25.6 | 25.6 |
| 04 | 26.0 | 26.6 | 26.8 | 26.7 | 26.6 | 26.5 | 26.3 | 26.5 | 26.7 | 26.6 |
| 05 | 27.3 | 27.7 | 28.0 | 27.8 | 27.7 | 27.5 | 27.3 | 27.4 | 27.5 | 27.5 |
| 06 | 28.2 | 29.0 | 29.3 | 29.1 | 28.9 | 28.7 | 34.2 | 28.8 | 28.9 | 29.3 |
| 07 | 29.4** | 29.6* | 30.0= | 29.8= | 29.6= | 29.3= | 29.4= | 29.3= | 29.5. | 29.4. |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 25* | 34.1- | 34.1- | 34.4- | 33.9- | 33.9- | 33.8- | 33.7- | 33.7- | 34.0 - | 33.6 |
| 16* | 35.0 | 35.0 | 35.4 | 35.1 | 35.0 | 34.7 | 34.7 | 34.8 | 35.2 | 34.8 |
| 17* | 36.2 | 36.3 | 36.5 | 36.3 | 36.1 | 36.1 | 36.0 | 36.0 | 36.3 | 36.2 |
| 18 | 37.0 | 36.9 | 37.0 | 368 | 36.6 | 36.4 | 36.4 | 36.4 | 36.7 | 36.6 |
| 19 | 36.5* | 37.4 | 37.6 | 37.5 | 37.2 | 36.9 | 37.0 | 36.9 | 37.4 | 37.5 |
| 20 | 40.0 | 38.1 | 38.3 | 38.0 | 37.8 | 37.7 | 37.6 | 37.5 | 38.0 | 38.0 |
| 21* | 40.2 | 38.7 | 38.8 | 38.5 | 38.4 | 38.2 | 38.1 | 38.1 | 38.5 | 38.2 |
| 22 | 40.5 | 38.9 | 39.1 | 38.9 | 38.7 | 38.4 | 38.4 | 38.3 | 38.9 | 38.5 |
| 23 | 41.9 | 39.8 | 39.9 | 39.7 | 39.5 | 39.5 | 39.2 | 39.1 | 39.8 | 39.7 |

[^3]20 May 195
Little america $V$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

|  | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 42.2 | 40.2 | 40.3 | 40.2 | 40.0 | 39.8 | 39.6 | 39.6 | 40.2 | 39.9 |
| 01 | 40.3 | 40.4 | 40.5 | 40.3 | 40.1 | 40.1 | 40.0 | 39.9 | 40.5 | 40.2 |
| 02 | 40.4 | 40.7 | 41.1 | 40.8 | 40.7 | 40.6 | 40.7 | 40.5 | 40.9 | 40.7 |
| 03 | 41.1 | 41.4 | 41.5 | 41.4 | 41.3 | 41.2 | 41.2 | 41.1 | 41.4 | 41.3 |
| 04 | 41.7 | 42.1 | 42.4 | 42.2 | 42.0 | 42.0 | 41.8 | 41.7 | 42.2 | 42.0 |
| 05 | 41.4 | 41.8 | 41.9 | 41.8 | 41.5 | 41.4 | 41.4 | 41.2 | 41.8 | 41.5 |
| 06 | 41.6 | 42.0 | 42.1 | 42.0 | 41.8 | 41.7 | 41.5 | 41.4 | 41.9 | 41.6 |
| 07 | 41.4 | 41.8 | 41.9 | 41.7 | 41.5 | 41.5 | 41.3 | 41.3 | 41.9 |  |
| 08* | 40.1 | 40.4 | 40.7 | 40.4 | 40.3 | 40.1 | 40.0 | 40.1 | 40.5 |  |
| 09 | 40.2 | 40.5 | 40.6 | 40.6 | 40.3 | 40.3 | 39.9 | 40.0 | 40.5 | 40.3 |
| 10 | 40.0 | 40.1 | 40.2 | 40.2 | 39.9 | 39.7 | 39.4 | 39.5 | 39.7 | 39.6 |
| 11* | 40.2 | 40.4 | 40.4 | 40.3 | 39.9 | 39.9 | 39.5 | 39.7 | 39.8 | 39.6 |
| 12* | 40.3 | 40.6 | 40.5 | 40.5 | 40.2 | 40.1 | 39.7 | 39.6 | 40.0 | 39.7 |
| 13* | 39.1 | 39.2 | 39.1 | 38.9 | 38.7 | 38.6 | 38.4 | 38.3 | 38.4 | 38.0 |
| 14 | 38.3 | 38.4 | 38.4 | 38.1 | 37.9 | 37.7 | 37.5 | 37.4 | 37.7 | 27.3 |
| 15 | 38.3 | 38.3 | 38.4 | 38.1 | 37.7 | 37.7 | 37.3 | 37.3 | 37.5 | 37.1 |
| 16* | 38.8 | 38.9 | 38.9 | 38.7 | 38.3 | 38.2 | 38.0 | 38.0 | 38.1 | 37.8 |
| 11 | 38.9 | 39.0 | 39.0 | 38.9 | 38.4 | 38.2 | 37.9 | 38.0 | 38.2 | 37.8 |
| -8* | 39.8 | 40.0 | 40.0 | 39.9 | 39.4 | 39.3 | 39.1 | 39.0 | 34.0 | 33.5 |
| 19 | 39.6 | 39.7 | 39.8 | 39.7 | 39.4 | 39.2 | 39.0 | 39.8 | 39.0 | 37.9 |
| 20 | 39.9 | 40.1 | 40.1 | 39.8 | 39.5 | 39.4 | 39.2 | 39.1 | 39.3 | 3.? 3 |
| 21 | 38.9 | 39.1 | 39.1 | 38.9 | 38.5 | 38.4 | 38.2 | 38.0 | 38.5 | 37.9 |
| 22 | 39.0 | 39.2 | 39.2 | 39.1 | 38.7 | 38.6 | 38.3 | 38.1 | 38.7 | 38.1 |
| 23 | 39.5 | 39.7 | 39.7 | 39.5 | 39.1 | 39.0 | 38.9 | 38.0 | 39.1 | 38.6 |
| Number of Obs | 450 | 450 | 448 | 448 | 450 | 447 | 450 | 450 | 449 | 413 |
| Daily <br> Mean | 40.1 | 40.2 | 40.2 | 40.1 | 39.8 | 39.7 | 39.5 | 39.4 | 39.8 | 39.3 |

LITILE AMERICA $V$
Hourly Mean Temperatures ( - " C )

| Hr | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 39.2 | 39.4 | 39.3 | 39.1 | 38.7 | 38.5 | 38.4 | 38.1 | 38.7 | 37.9 |
| 01 | 37.5 | 37.5 | 37.6 | 37.5 | 37.1 | 37.1 | 36.9 | 36.7 | 3\%.2 | 36.8 |
| 02 | 37.5 | 37.6 | 38.0 | 37.8 | 37.6 | 37.5 | 37.5 | 37.4 | 38.0 | 37.6 |
| 03 | 39.2 | 39.5 | 39.7 | 39.6 | 39.3 | 39.3 | 39.2 | 39.0 | 38.7 | 39.3 |
| 04 | 41.1 | 41.3 | 41.6 | 41.4 | 41.2 | 40.9 | 41.0 | 41.0 | 41.2 | 40.8 |
| 05 | 42.4 | 42.7 | 43.1 | 42.8 | 42.5 | 42.4 | 42.2 | 42.2 | 42.6 |  |
| 06 | 42.4 | 42.5 | 42.9 | 42.6 | 42.2 | 42.0 | 41.9 | 41.8 | 42.0 |  |
| 07 | 41.3 | 41.6 | 41.7 | 41.5 | 41.0 | 40.9 | 40.7 | 40.8 | 40.9 |  |
| 08 | 41.6 | 41.9 | 42.0 | 41.8 | 41.4 | 41.3 | 41.1 | 41.0 | 41.5 |  |
| 09 | 42.1 | 42.4 | 42.4 | 42.3 | 41.8 | 41.8 | 41.4 | 41.5 | 41.9 |  |
| 10 | 42.1 | 42.5 | 42.8 | 42.4 | 42.0 | 41.8 | 41.7 | 41.7 | 42.0 |  |
| 11 | 42.4 | 42.6 | 42.7 | 42.5 | 42.0 | 41.9 | 41.8 | 41.8 | 41.9 |  |
| 12 | 41.9 | 42.1 | 42.3 | 42.1 | 41.5 | 41.4 | 41.3 | 414 | 41.5 |  |
| 13 | 42.3 | 42.6 | 42.6 | 42.2 | 42.0 | 41.8 | 41.6 | 41.5 | 41.8 |  |
| 14* | 42.8 | 43.0 | 43.1 | 42.7 | 42.2 | 42.1 | 41.8 | 41.8 | 42.2 |  |
| 15* | 42.2 | 42.4 | 42.5 | 42.2 | 42.0 | 41.7 | 41.5 | 41.4 | 41.6 |  |
| 16* | 41.7 | 42.0 | 42.1 | 41.9 | 41.5 | 41.3 | 41.1 | 41.1 | 41.3 |  |
| 17* | 41.8 | 42.0 | 42.1 | 41.9 | 41.5 | 41.3 | 41.1 | 41.0 | 41.3 |  |
| 18* | 42.3 | 42.7 | 42.7 | 42.6 | 42.3 | 42.1 | 41.8 | 41.7 | 42.1 |  |
| 19 ( 19 20. |  |  |  |  |  |  |  |  |  |  |
| 20 | 38.5 | 38.5 | 38.6 | 38.2 | 37.9 | 37.8 | 37.7 | 37.8 | 37.7 |  |
| 21 | 38.8 | 39.1 | 38.9 | 38.7 | 38.2 | 38.3 | 38.1 | 37.9 | 38.1 |  |
| 22 | 39.9 | 40.2 | 40.2 | 40.0 | 39.7 | 39.5 | 39.2 | 38.8 | 39.6 |  |
| 2.3 | 41.0 | 41.2 | 41.4 | 41.0 | 40.6 | 40.5 | 40.1 | 39.9 | 40.4 |  |


| Number <br> of Obs <br> Daily | 430 | 427 | 427 | 428 | 430 | 426 | 430 | 430 | 4.28 | 96 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | 41.0 | 41.2 | 41.3 | 41.1 | 40.7 | 40.6 | 40.4 | 40.3 | 40.7 | 38.6 |

LITTLE AMERICA saminexadual upaw
23 May 1957

| ${ }^{\text {cm }}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 41.0 | 41.1 | 41.1 | 40.9 | 40.4 | 40.2 | 39.7 | 39.3 | 39.5 |  |
| 01 | 39.9 | 4C. 2 | 39.6 | 39.4 | 38.8 | 38.6 | 38.0 | 37.5 | 36.8 |  |
| 02 | 40.1 | 40.7 | 39.6 | 39.1 | 38.2 | 37.6 | 36.1 | 34.5 | 32.6 |  |
| 03 | 36.0 | 36.3 | 35.9 | 35.6 | 35.1 | 34.5 | 34.0 | 33.0 | 31.7 |  |
| 04 | 35.8 | 35.7 | 35.4 | 35.2 | 34.4 | 33.8 | 33.7 | 33.3 | 33.0 |  |
| 05 | 37.9 | 37.0 | 36.6 | 35.7 | 34.4 | 33.7 | 33.2 | 32.3 | 32.0 |  |
| 06 | 37.4 | 37.7 | 37.4 | 37.0 | 35.9 | 34.5 | 33.3 | 32.4 | 31.9 |  |
| 07 | 35.9 | 35.5 | 35.0 | 34.7 | 34.1 | 33.7 | 33.0 | 32.2 | 31.4 |  |
| 08 | 36.5 | 36.3 | 36.1 | 35.8 | 35.3 | 34.5 | 33.5 | 32.7 | 33.0 |  |
| 09* | 37.0 | 37.3 | 37.4 | 37.2 | 36.8 | 36.5 | 36.2 | 36.1 | 36.0 |  |
| 10* | 38.7 | 38.9 | 39.0 | 38.7 | 38.1 | 37.9 | 37.9 | 37.6 | 375 |  |
| 11* | 41.5 | 42.1 | 42.0 | 41.7 | 41.2 | 41.0 | 40.8 | 40.7 | 40.8 |  |
| 12* | 42.8 | 43.3 | 42.9 | 42.6 | 41.8 | 41.7 | 41.4 | 41.1 | 41.0 |  |
| 13* | 42.5 | 42.8 | 42.9 | 42.7 | 42.2 | 42.1 | 41.6 | 41.8 | 42.1 |  |
| 14 | 44.8 | 45.3 | 45.4 | 45.2 | 44.8 | 44.7 | 44.6 | 44.5 | 45.0 |  |
| 15 | 45.6 | 45.9 | 46.3 | 46.0 | 45.6 | 45.4 | 44.9+ | 45.2 | 45.54 |  |
| 16 | 45.7 | 46.0 | 46.4 | 46.1 | 45.8 | 45.7 | 45.3 | 45.5 | 45.9 |  |
| 17 | 47.4 | 47.8 | 48.3 | 48.1 | 47.8 | 47.6 | 47.5 | 47.4 | 47.9 |  |
| 18 | 49.0 | 49.3 | 49.7 | 49.6 | 49.4 | 49.2 | 48.8 | 48.7 | 49.1 |  |
| 19 | 49.4 | 49.6 | 50.1 | 49.9 | 49.7 | 49.5 | 49.2 | 49.3 | 49.5 |  |
| 20 | 49.6 | 49.9 | 50.3 | 49.9 | 50.0 | 49.8 | 49.5 | 49.5 | 50.1 |  |
| 21 | 50.3 | 50.4 | 50.7 | 50.6 | 50.4 | 50.3 | 50.3 | 50.2 | 50.3 |  |
| 22 | 51.0 | 51.2 | 51.4 | 51.3 | 51.1 | 51.1 | 50.9 | 50.9 | 51.0 |  |
| 23 | 51.0 | 51.3 | 51.5 | 51.5 | 51.3 | 51.2 | 50.9 | 50.8 | 51.2 |  |


| Number <br> of Obs | 448 | 445 | 447 | 444 | 447 | 444 | 444 | 443 | 444 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily <br> Mean | 42.8 | 43.0 | 43.0 | 42.7 | 42.2 | 41.9 | 41.4 | 41.1 | 41.0 |

LITTLE AMERICA V
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$
24 May 1957

|  | Sfc | 3 | 6 | 12 | 25 | 50 | ${ }^{1} 00$ | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 51.3 | 51.5 | 51.9 | 51.8 | 51.6 | 51.6 | 51.1 | 51.1 | 51.6 |  |
| 01 | 51.4 | 51.8 | 52.2 | 52.0 | 52.0 | 51.8 | 51.3 | 51.3 | 51.7 |  |
| 02 | 51.8 | 52.0 | 52.3 | 52.1 | 52.0 | 51.8 | J1.7 | 51.6 | 52.0 |  |
| 03 | 51.2 | 51.5 | 51.9 | 51.7 | 51.5 | 51.4 | S1.0 | 51.1 | 5:. 2 |  |
| 04 | 50.5 | 50.9 | 51.1 | 51.0 | 50.7 | 50.6 | 50.0 | 50.0 | 50.4 |  |
| 05 | 50.9 | 51.1 | 51.3 | 51.2 | 51.1 | 50.9 | 50.7 | 50.6 | 50.4 |  |
| 06 | 51.3 | 51.6 | 52.1 | 51.9 | 51.5 | 51.2 | 50.6 | 50.6 | 5C. 3 |  |
| 07 | 52.2 | 52.4 | 52.5 | 52.4 | 52.1 | 52.0 | 51.8 | 51.5 | 51.5 |  |
| 08 | 53.4 | 53.5 | 53.8 | 53.5 | 53.4 | 53.0 | 52.9 | 52.4 | 53.5 |  |
| 09* | 53.7 | 53.9 | 54.6 | 54.5 | 54.4 | 54.3 | 54.2 | 54.1 | 54.2 |  |
| 10* | 51.5- | 51.7- | 52.0- | 51.8- | 51.8- | 51.5- | 51.4- | 51.5- | 51.9- |  |
| 11* | 51.8 | 52.0 | 52.2 | 52.1 | 52.0 | 51.8 | 51.7 | 51.7 | 52.2 |  |
| 12* | 52.11 | 52.5 | 52.8 | 52.6 | 52.3 | 52.4 | 52.2 | 52.3 | 52.7 |  |
| 13 | 52.5 | 52.8 | 53.1 | 52.9 | 52.8 | 52.5 | 52.5 | 52.5 | 53.0 |  |
| 14 | 52.6 | 52.9 | 53.2 | 52.9 | 52.9 | 52.7 | 52.6 | 52.6 | 53.1 |  |
| 15* | 53.1 | 53.3 | 53.6 | 53.4 | 53.3 | 53.2 | 53.0 | 53.1 | 53.6 |  |
| 16* | 53.4 | 52.5 | 52.9 | 52.7 | 52.6 | 52.3 | 52.2 | 52.3 | 52.7 |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 | $52.5+$ | 52.74 | 53.1+ | 52.74 | 52.74 | $52.5+$ | 52.44 | 52.54 | 52.94 | 52.5 |
| 19 | 53.0 | 53.2 | 53.5 | 53.1 | 53.1 | 52.8 | 52.7 | 52.9 | 53.2 | 52.9 |
| 20 | 53.5 | 53.7 | 54.0 | 53.6 | 53.7 | 53.4 | 53.3 | 53.3 | 53.9 | 53.3 |
| 21 | 52.3 | 52.4 | 52.6 | 52.3 | 52.2 | 51.9 | 51.8 | 51.8 | 52.2 | 51.7 |
| 22 | 52.1 | 52.3 | 52.5 | 52.3 | 52.1 | 52.0 | 52.8 | 51.9 | 52.3 | 51.9 |
| 23 | 51.4 | 51.6 | 51.8 | 51.6 | 51.4 | 51.2 | 51.1 | 51.2 | 51.5 | 51.2 |


| Muraber <br> of Obs <br> Daily <br> Mean | 414 | 413 | 414 | 413 | 411 | 414 | 412 | 414 | 414 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LITTLE AMERIC^ $V$
Hourly Mean Temperatures; (
25 May 1957

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 50.8 | 51.0 | 51.2 | 50.9 | 50.8 | 50.6 | 50.4 | 50.5 | 50.9 | 50.5 |
| 01 | 50.9 | 51.1 | 51.3 | 51.1 | 50.9 | 50.7 | 50.6 | 50.7 | 51.1 | 50.6 |
| 02 | 50.9 | 51.0 | 51.3 | 51.0 | 50.8 | 50.5 | 50.4 | 50.5 | 50.9 | 50.3 |
| 03 | 50.5 | 50.5 | 50.8 | 50.6 | 57.3 | 50.1 | 50.0 | 50.1 | 50.5 | 50.2 |
| 04 | 50.94 | 51.0+ | 51.2+ | $51.0+$ | 50.84* | $50.5+$ | 50.4* | 50.64 | 50.3+ | 40.64 |
| 05 | 50.2 | 50.2 | 50.5 | 50.2 | 50.0 | 49.8 | 49.7 | 49.8 | 49.5 | 44.8 |
| 06 | 50.2 | 50.2 | 50.5 | 50.3 | 50.1 | 49.6 | 49.5 | 49.8 | 50.0 | 49.8 |
| 07 | 50.2 | 50.3 | 50.6 | 50.3 | 50.1 | 49.9 | 49.8 | 49.9 | 50.2 | 49.8 |
| 08* | 50.5 | 50.6 | 50.9 | 50.5 | 50.4 | 50.2 | 50.1 | 50.1 | 50.5 | 49.5 |
| 09* | 53.5 | 50.5 | 50.9 | 50.6 | 50.4 | 50.1 | 50.0 | 50.0 | 50.5 | 50.2 |
| 10* | 49.8 | 49.8 | 50.0 | 49.9 | 49.5 | 49.3 | 49.1 | 43 | 49.6 | 48.8 |
| 11 | 49.9 | 49.9 | 50.2 | 49.9 | 49.6 | 49.3 | 49.2 | 49.2 | 49.5 | 48.4 |
| 12 | 50.2 | 50.1 | 50.4 | 50.2 | 50.0 | 49.7 | 49.5 | 49.4 | 49.6 | 48.4 |
| 13 | 50.1 | 50.1 | 50.4 | 50.1 | 49.9 | 49.6 | 49.5 | 49.5 | 50.0 | 49.4 |
| 14 | 51.2 | 51.3 | 51.6 | 51.4 | 51.3 | 51.1 | 51.0 | 51.0 | 51.5 | 51.2 |
| 15 | 52.0 | 52.1 | 52.5 | 52.1 | 51.9 | 51.7 | 51.6 | 51.7 | 52.1 | 51.7 |
| 16 | 52.6 | 52.6 | 53.0 | 52.6 | 52.4 | 52.3 | 52.1 | 52.2 | 52.5 | 52.0 |
| 17 | 52.4 | 52.4 | 52.8 | 52.5 | 52.3 | 52.1 | 52.0 | 52.1 | 52.4 | 51.5 |
| 18 | 52.4 | 52.4 | 52.7 | 52.5 | ;2.2 | 52.0 | 51.9 | 52.0 | 52.3 | 51.9 |
| 19 | 51.7 | 51.7 | 52.1 | 51.9 | 51.5 | 51.4 | '1.2 | 51.2 | 51.7 | 51.1 |
| 20 | 51.1 | 51.1 | 51.4 | 51.0 | 50.6 | 50.6 | 50.4 | 50. | 50.8 | 50.1 |
| 21 | 49.4 | 49.3 | 49.5 | 49.2 | 48.9 | 48.7 | 48.5 | 48.6 | 48.8 | 48.2 |
| 22 | 48.8 | 48.8 | 49.1 | 43.8 | 48.5 | 48.3 | 48.2 | 48.1 | 48.4 | 48.0 |
| 23 | 49.2 | 49.3 | 49.7 | 4y.4 | 49.2 | 49.1 | 48.8 | 48.6 | 49.0 | 48.7 |
| Number of Obs | 438 | 437 | 438 | 437 | 438 | 432 | 436 | 438 | 436 | 437 |
| Dally <br> Mean | 50.7 | 50.7 | 51.0 | 50.8 | 50.5 | 50.3 | 50.2 | 50.2 | 50.6 | 50.1 |

LITTI, E AMERICA V
Hourly Mean Temperatures

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 49.4 | 49.4 | 49.8 | 49.6 | 49.3 | 49.1 | 49.0 | 49.0 | 49.4 | 48.9 |
| 01 | 48.7 | 49.7 | 49.0 | 48.8 | 48.4 | 48.4 | 48.2 | 48.2 | 48.6 | 48.0 |
| 02 | 48.0 | 47.8 | 48.1 | 47.7 | 47.6 | 47.4 | 47.3 | 47.4 | 47.7 | 47.1 |
| 03 | 47.6 | 47.6 | 47.9 | 47.6 | 47.3 | 47.1 | 47.0 | 47.1 | 47.2 | 46.2 |
| 04 | 47.7 | 47.7 | 48.0 | 47.7 | 47.5 | 47.3 | 47.2 | 47.3 | 47.6 | 47.1 |
| 05 | 48.6 | 48.6 | 49.1 | 48.8 | 48.6 | 48.3 | 183 | 48.1 | 48.7 | 48.3 |
| 06 | 48.8 | 48.8 | 49.1 | 48.9 | 48.7 | 48.5 | 48.3 | 48.4 | 48.6 | 47.8 |
| 07 | 49.1. | 49.2- | 49.5* | 49.20 | 49.20 | 49.0. | 48.36 | 48.9. | 49.3= | 48.7 $=$ |
| 08 | 48.9 | 48.9 | 49.2 | 48.8 | 48.6 | 48.4 | 48.3 | 48.3 | 48.3 | 46.4 |
| 09 | 49.0 | 49.0 | 49.2 | 49.0 | 48.6 | 1.8 .5 | 48.3 | 48.3 | 48.0 | 44.8 |
| 10 | 49.2 | 49.2 | 49.5 | 49.3 | 49.0 | 48.8 | 48.6 | 48.4 | 47.8 | 42.4 |
| 11 | 47.4 | 47.2 | 47.0 | 46.7 | 46.2 | 45.7 | 45.0 | 44.2 | 41.2 | 36.7 |
| 12 | 46.1 | 45.7 | 45.5 | 45.2 | 44.7 | 44.3 | 43.8 | 43.5 | 42.8 | 40.2 |
| 13* | 45.6 | 45.4 | 45.3 | 45.2 | 44.7 | 44.5 | 44.1 | 43.9 | 43.8 | 42.4 |
| 14 | 44.2 | 43.7 | 43.6 | 43.3 | 42.9 | 42.5 | 42.1 | 41.8 | 41.6 | 39.7 |
| 1.5* | 44.4 | 44.2 | 44.4 | 44.1 | 43.7 | 43.5 | 43.4 | 43.4 | 43.6 | 42.8 |
| 16* | 44.5 | 44.3 | 44.4 | 44.1 | 43.8 | 43.6 | 43.4 | 43.3 | 43.5 | 42.3 |
| 17* | 43.2 | 43.0 | 43.1 | 42.8 | 42.4 | 42.2 | 41.9 | 41.7 | 41.8 | 39.8 |
| 18 | 40.6 | 40.1 | 40.0 | 39.6 | 39.1 | 38.7 | 33.2 | 38.1 | 37.8 | 35.4 |
| 19 | 43.0 | 42.9 | 43.2 | 42.9 | 42.7 | 42.4 | 42.3 | 42.6 | '1.6 | 37.3 |
| 20 | 41.8 | 41.5 | 41.5 | 41.1 | 40.7 | 40.\% | 40. 2 | 39.7 | 39.1 | 35.7 |
| 21 | 40.8 | 40.1 | 40.4 | 40.0 | 39.3 | 39.0 | 38.5 | $33 . \mathrm{C}$ | 36.9 | 31.7 |
| 22 | 40.0 | 39.6 | 39.6 | 39.1 | 38.7 | 38.4 | 37.8 | 37.3 | 36.6 | 34.0 |
| 23 | 38.0 | 37.3 | 37.0 | 36.6 | 36.1 | 35.7 | 35.0 | 34.5 | 33.4 | 30.9 |
| Number of Cbs | 445 | 438 | 445 | 444 | 444 | 443 | 444 | 440 | 444 | 445 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 45.5 | 45.4 | $45:$ | 45.2 | 44.9 | 44.3 | 44.3 | 44.1 | 43.9 | 41.8 |

l.ITTLE AMERICA V
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$
27 May 1957

| $\mathrm{Hr}{ }^{\mathrm{cm}}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 37.8 | 37.3 | 37.2 | 36.9 | 36.6 | 36.2 | 36.0 | 35.9 | 35.6 | 33.8 |
| 01 | 37.2 | 36.7 | 36.6 | 36.4 | 35.9 | 35.6 | 35.3 | 35.3 | 35.0 | 33.6 |
| 02 | 37.8 | 37.5 | 37.5 | 37.2 | 36.9 | 36.6 | 36.3 | 36.3 | 36.2 | 34.5 |
| 03 | 37.2 | 36.3 | 36.7 | 36.4 | 36.1 | 35.6 | 35.2 | 35.1 | 3'. 8 | 33.7 |
| 04 | 37.? | 36.3 | 36.6 | 36.4 | 36.0 | 35.6 | 15.4 | 35.3 | 34.9 | 33.4 |
| 05 | 38.3 | 33.0 | 3:.0 | 37.6 | 37.3 | 36.8 | 35.3 | 36.0 | 35.5 | 34.3 |
| 06 | 38.9 | 38.6 | 38.5 | 36.2 | 37.7 | 37.5 | 37.2 | 37.11 | 36.9 | 36.0 |
| 07 | 38.7 | 38.4 | 38.4 | 38.1 | 37.8 | 37.5 | 37.2 | 37.1 | 37.0 | 30.1 |
| 08 | 39.2 | 38.9 | 39.1 | 38.3 | 38.5 | 38.2 | 38.0 | 38.0 | 38.0 | 37.0 |
| 09* | 38.9+ | ? 8.9 = | $38.9+$ | 38.6+ | 38.4+ | $38.0+$ | 37.9 $=$ | $37.8+$ | $37.9+$ | $37.5+$ |
| 10* | 41.1 | 41.2 | 41.5 | 41.3 | 41.0 | 40.9 | 40.8 | 40.7 | 41.2 | 40.7 |
| 11 | 42.3 | 42.3 | 42.1 | 42.6 | 42." | 42.4 | 42.1 | 42.2 | 42.5 | 41.9 |
| 12 | $42.1+$ | 42.2+ | 42.8+ | 42.64 | $42.2+$ | $42.2+$ | $42.0+$ | $42.0+$ | $42.1+$ | 41.4 |
| 13 | 42.8 | 42.7 | 43.0 | 42.8 | 42.7 | 42.4 | 42.4 | 42.3 | 42.7 | 42.4 |
| 14 | 43.5 | 43.3 | 43.9 | 43.6 | 43.3 | 43.2 | 43.1 | 43.2 | 43.6 | 43.2 |
| 15* | 43.9 | 44.0 | 44.3 | 44.0 | 43.7 | 43.7 | 43.4 | 43.7 | 43.8 | 43.5 |
| 16* | $43.0+$ | $43.0+$ | $43.5+$ | 43.34 | $43.1+$ | $42.9+$ | $4.2 .9+$ | $42.9+$ | $42.8+$ | $42.7+$ |
| 17 | 42.6 | 42.5 | 43.1 | 43.0 | 42.8 | 42.7 | 42.5 | 42.5 | 42.9 | 42.4 |
| 18 | 43.9 | 43.8 | 44.3 | 44.3 | 44.3 | $44_{4} .2$ | 43.8 | 43.8 | 44.2 | 44.1 |
| 19 | 44.8 + | $449+$ | 4.5.1+ | 45.1+ | $45.0+$ | $44.9+$ | $44.8+$ | $44.9+$ | $45.1+$ | 44.9 |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Nuraber |  |  |  |  |  |  |  |  |  |  |
| of Obs | 350 | 347 | 350 | 347 | 349 | 349 | 349 | 348 | 349 | 349 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 40.5 | 40.3 | 40.5 | 40.3 | 40.0 | 39.7 | 39.5 | 39.5 | 39.5 | 38.7 |

LITTLE AKIERICA V
Hourly Mean Temperaturey ( $-{ }^{\circ} \mathrm{C}$ )

| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 | 47.6- | 47.6- | 47.5- | 47.4- | 47.4- | 47.3- | 47.1- | 6.7.1- | 47.2- | 46.9 - |
| 04 | 47.2 | 47.1 | 47.1 | 47.1 | 46.9 | 46.8 | 46.6 | 46.5 | 46.8 | 46.5 |
| 05 | 47.2 | 41.2 | 47.4 | 47.3 | 47.1 | 47.0 | 46.9 | 46.7 | 4.7 .0 | 47.0 |
| 06 | 47.8 | 47.8 | 48.1 | 47.9 | 47.7 | 47.4 | 47.2 | 47.2 | 47.3 | 4?.1 |
| 07 | 48.0 | 48.0 | 47.9 | 47.9 | 47.7 | 47.7 | 47.4 | 47.5 | 47.9 | 47.6 |
| 08 | 50.4+ | 50.3+ | 50.6+ | 50.64 | 50.2+ | 50.1+ | 49.34 | 49.9+ | 50.3+ | 49.8 |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |


| Number <br> of Obs <br> Daily | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean | 48.0 | 47.9 | 48.0 | 48.0 | 47.7 | 47.6 | 47.3 | 47.4 | 47.7 | 47.4 |


LITMEE AMERIC. $V$
Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )
30 May 1957

| $\mathrm{Hr}^{\mathrm{cm}}$ | :jfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U0 | 44.1 | 43.9 | 44.5 | 43.8 | 43.8 | 43.5 | 43.5 | 43.6 | 43.9 | 43.5 |
| 01 | 44.0 | 44.2 | 44.4 | 43.9 | 43.8 | 43.6 | 43.5 | 43.6 | 43.9 | 43.5 |
| 02 | 44.0 | 44.1 | 44.4 | 44.0 | 43.8 | 43.6 | 43.6 | 43.7 | 44.0 | 43.6 |
| 03 | 44.9 | 44.9 | 45.4 | 44.5 | 44.8 | 44.0 | 44.5 | . 44.7 | 45.1 | 44.8 |
| 04 | 45.5 | 4.5 .6 | 46.0 | 15.6 | 45.4 | 45., | 45.1 | 45.3 | 45.6 | 45.3 |
| 05 | 45.3 | 45.3 | 45.7 | 45.2 | 45.0 | 44.8 | 14.7 | 44.7 | 44.9 | 44.3 |
| 06 | 43.4 | 43.2 | 43.4 | 42.8 | 42.5 | 42.2 | 41.9 | 41.8 | 41.7 | 39.7 |
| 07 | 43.8 | 43.7 | 44.0 | 43.5 | 43.2 | 42.9 | 42.6 | 42.4 | 42.0 | 35.5 |
| 08 | 43.5 | 43.4 | 43.7 | 43.2 | 43.0 | 42.7 | 42.5 | 42.4 | 42.3 | 41.2 |
| 09 | 44.3 | 44.4 | 44.8 | 44.4 | 44.0 | 43.9 | 43.7 | 43.6 | 43.7 | 43.2 |
| 10 | 45.4 | 45.4 | 45.8 | 45.4 | 45.2 | 45.0 | 44.7 | 44.8 | 44.9 | 44.3 |
| 11* | 45.9 | 42.0 | 46.4 | 46.1 | 45.9 | 45.7 | 45.6 | 45.7 | 46.1 | 45.6 |
| 12 | 46.8 | 46.9 | 47.3 | 47.0 | 46.9 | 46.7 | 46.6 | 46.8 | 47.1 | 46.7 |
| 13 | 47.4 | 4.7 .5 | 47.9 | 47.6 | 47.5 | 47.3 | 47.3 | 47.4 | 47.8 | 47.5 |
| 14 | 47.7 | 47.8 | 48.2 | 47.8 | 47.7 | 47.5 | 47.4 | 47.5 | 47.9 | 47.4 |
| 15 | 47.7 | 47.8 | 48.2 | 4\%.8 | 47.7 | 47.5 | 47.4 | 47.5 | 47.9 | 47.6 |
| 16 | 48.2 | 48.3 | 48.7 | 48.4 | 48.2 | 48.0 | 48.0 | 48.1 | 48.5 | 48.1 |
| 17 | 48.1 | 43.3 | 48.6 | 18.3 | 48.2 | 48.0 | 47.9 | 40.0 | 43.5 | 48.0 |
| 12** | 48.5 | 4 4. 6 | 49.1 | 48.8 | 48.6 | 48.4 | 433.4 | 48.5 | 49.0 | 48.5 |
| 19 | 48.9 | 19.0 | 49.2 | 49.1 | 49.0 | 43.7 | 48.7 | 48.8 | 49.2 | 48.9 |
| 20 | 49.1 | 49.3 | 45.7 | 49.3 | 49.2 | 49.0 | 43.4 | 49.0 | 40.) | 49.1 |
| 21* | 49.3 | 49.4 | 49.8 | 49.4 | 49.2 | 4\%.0 | 48.9 | 49.0 | 44.3 | 48.9 |
| 22* | 49.2 | 49.3 | 49.5 | 49.4 | 49.3 | 49.0 | 38.4 | 38.9 | 49.2 | 48.4 |
| 23 | $4!9$ | 49.3 | 49.7 | 49.3 | 49.2 | 48.9 | 48.9 | 49.0 | 49.3 | 48.8 |
| Number of Obs | 4,52 | 450 | 451 | 452 | 451 | 452 | 450 | 452 | 451 | 4.52 |
| Dally <br> Mean | 46.4 | 46.5 | 46.9 | 46.5 | 46.3 | 46.1 | 46.0 | 45.0 | 46.3 | 45.7 |

LITTLE AMERICA V
Hourly Hean Temperatures (- ${ }^{\circ} \mathrm{C}$ )
31 May 1957

|  | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 49.6 | 49.7 | 30.2 | 49.8 | 49.7 | 49.4 | 43.3 | 49.5 | 49.9 | 49.4 |
| 01 | 49.7 | 498 | 50.3 | 49.7 | 49.7 | 49.5 | 49.4 | 49.5 | 49.9 | 49.1 |
| 02 | 49.7 | 49.9 | 50.3 | 49.9 | 49.8 | 49.6 | 49.5 | 49.6 | 50.0 | 49.3 |
| 03 | 49.9 | 50.1 | 50.5 | 50.1 | 50.0 | 49.8 | 49.7 | 49.9 | 50.2 | 49.8 |
| 04 | 50.0 | 50.1 | 50.5 | 50.2 | 50.1 | 49.8 | 49.8 | 49.9 | 50.2 | 49.4 |
| 05 | 50.1 | 50.2 | 50.7 | 50.3 | 50.2 | 50.1 | 50.0 | 50.1 | 50.4 | 49.1 |
| 06 | 50.3 | 50.4 | 50.9 | 50.5 | 50.4 | 50.2 | 50.2 | 50.3 | 50.6 | 47.7 |
| 07 | 50.0 | 50.1 | 50.4 | 50.1 | 50.0 | 49.7 | 49.6 | 49.7 | 49.6 | 41.9 |
| 08 | 49.8 | 49.9 | 50.3 | 49.8 | 49.8 | 49.5 | 49.4 | 49.4 | 48.4 | 38.9 |
| 09 | 47.3 | 47.4 | 47.6 | 47.4 | 47.2 | 47.1 | 47.0 | 47.1 | 47.0 | 38.8 |
| 10* | 47.2 | 47.2 | 47.4 | 47.1 | 46.9 | 46.7 | 46.6 | 46.5 | 46.2 | 38.4 |
| 11 | 48.0 | 48.0 | 48.3 | 47.9 | 47.7 | 47.4 | 47.3 | 47.3 | 47.2 | 42.6 |
| 12 | 48.0 | 48.1 | 48.3 | 47.9 | 47.7 | 47.4 | 47.2 | 47.1 | 46.7 | 42.6 |
| 13* | 47.2 | 47.2 | 47.4 | 46.9 | 46.7 | 46.4 | 46.2 | 45.9 | 45.4 | 40.6 |
| 14 | 45.4 | 45.4 | 45.5 | 45.0 | 44.8 | 44.5 | 44.3 | 44.1 | 43.3 | 38.4 |
| 15 | 45.7 | 45.7 | 45.8 | 45.6 | 45.2 | 45.0 | 44.8 | 44.6 | 44.0 | 39.1 |
| 16 | 45.4 | 45.4 | 45.5 | 45.1 | 44.8 | 44.5 | 44.4 | 44.2 | 43.8 | 40.9 |
| 17 | 45.2 | 45.2 | 45.3 | . 44.9 | 44.6 | 44.4 | 44.0 | 43.9 | 43.5 | 40.2 |
| 18* | 45.5 | 45.4 | 45.5 | 43.2 | 44.8 | 44.6 | 44.3 | 44.1 | 43.6 | 39.9 |
| 19 | 4.5 .6 | 45.6 | 45.8 | 45.3 | 44.9 | 44.7 | 44.6 | 44.5 | 43.9 | 39.6 |
| 20 | 45.6 | 45.6 | 45.8 | 45.3 | 45.0 | 44.8 | 44.6 | 44.4 | 44.0 | 39.9 |
| 21 | 45.1 | 45.0 | 45.1 | 44.7 | 44.4 | 44.1 | 43.9 | 43.8 | 43.3 | 40.3 |
| 22 | 43.1. | 43.10 | 43.2- | 42.9 ${ }^{\text {- }}$ | 42.4. | 42.2= | 42.1. | 41.9- | 41.7. | 19.7 |
| 23 | 42.5 | 42.4 | 42.5 | 42.1 | 41.8 | 41.6 | 41.4 | 41.4 | 41.2 | 39.6 |
| Number of Obs | 142 | 441 | 441 | 442 | 440 | 441 | 440 | 4.42 | 442 | 440 |
| Daily <br> Mean | 47.4 | 47.4 | 47.7 | 47.3 | 47.1 | 46.9 | 46.7 | 46.7 | 46.5 | 42.8 |


|  |  |  | LItILE AMERICA V <br> Hourly Mean Temperatures (-'C) 1 June 1957 |  |  |  |  | 200 | 400 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 |  |  | 800 |
| 00 | 41.7 | 41.7 | 41.8 | 41.3 | 41.0 | 40.7 | 40.6 | 40.8 | 40.4 | 39.0 |
| 01 | 42.2 | 42.1 | 42.3 | 41.9 | 41.6 | 41.4 | 41.2 | 41.2 | 41.1 | 39.7 |
| 02 | $43.4+$ | 43.44 | 43.88 | 43.44 | $43.1+$ | $43.0+$ | 42.94 | $43.0+$ | 43.1+ | 42.4* |
| 03 | 43.8 | 43.9 | 44.2 | 43.9 | 43.6 | 43.4 | 43.3 | 43.4 | 43.7 | 43.3 |
| 04 | 43.7 | 43.7 | 44.15 | 43.6 | 43.4 | 43.2 | 43.1 | 43.2 | 43.4 | 43.0 |
| 05 | 4 4.9 | 13.0 | 43.2 | 42.8 | 42.6 | 42.1 | 42.3 | 42.3 | 42.5 | 42.0 |
| 06 | 42.0 | 42.0 | 42.3 | 41.8 | 41.5 | 11.3 | 41.2 | 41.2 | 41.3 | 40.9 |
| 07 | 40.9 | 40.9 | 41.1 | 40.6 | 40.2 | 40.0 | 39.9 | 39.9 | 40.0 | 39.4 |
| 08 | 41.24 | 41.3+ | $41.5+$ | $41.2+$ | $40.9+$ | $40.6+$ | $40.7+$ | $40.8+$ | $40.9+$ | 40.34 |
| 09 | 41.5 | 41.5 | 41.7 | 41.4 | 41.1 | 40.9 | 40.9 | 41.1 | 41.2 | 40.7 |
| 10* | 41.1 | 41.1 | 41.4 | 41.1 | 40.8 | 40.5 | 40.6 | 40.6 | 40.8 | 40.3 |
| 11* | 40.7 | 40.7 | 41.0 | 40.7 | 40.4 | 40.2 | 40.3 | 40.4 | 40.7 | 40.2 |
| 12* | 39.9 | 39.9 | 40.2 | 39.9 | 39.6 | 39.5 | 39.5 | 39.6 | 39.8 | 39.5 |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 | 38.3 | 38.2 | 38.6 | 38.3 | 38.1 | 37.8 | 37.9 | 38.1 | 38, 3 | 38.1 |
| 16 | 37.5 | 37.5 | 38.0 | 37.5 | 37.4 | 36.4 | 37.0 | 37.3 | 37.4 | 37.2 |
| 17 | 37.7 | 37.8 | 38.2 | 37.9 | 17.7 | 37.2 | 37.5 | 37.7 | 37.9 | 37.3 |
| 18 | 37.3 | 37.5 | J7.7 | 37.5 | 37.? | 36.9 | 3i 1 | 37.2 | 37.5 | 31.? |
| 19 | 37.7 | 37.7+ | 31.9 | 37.0 | 37.4 | 31.1 | 37.2 | 37.3 | 37.7 | 37.; |
| 20 | 38.0 | $3 \% .0$ | 33.3 | 37.9 | 37.7 | 31.5 | 37.; | 37.7 | 37.9 | 37.5 |
| 21 | 37.9 | 38.0 | 38.2 | 38.0 | 37.5 | 37. 3 | 37.5 | 37.5 | 37.9 | 37.7 |
| 22 | 37.3 | 37.4 | 37.7 | 37.5 | 36.9 | 36.8 | 36.9 | 36.9 | 37.3 | 37.2 |
| נ | 35.6 | 35.7 | 36.0 | 35.8 | 35.3 | 35.2 | 35.7 | 35.3 | 35.6 | 35.4 |
| lumber |  |  |  |  |  |  |  |  |  |  |
| of Dbs | 407 | 401 | 407 | 407 | 407 | 405 | '05 | 405 | 407 | 401 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 40.0 | 40.1 | 40.3 | 40.0 | 39.7 | 39.5 | 39.5 | 39.6 | 39.8 | 39.3 |

LITTLE AMERICA $V$
Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| cm | Sfe | 3 | 6 | 12 | 2.5 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 34.9 | 34.9 | 35.2 | 34.9 | 34.5 | 34.3 | 34.4 | 34.4 | 34.8 | $34.7+$ |
| 01 | 35.3 | 35.3 | 35.7 | 35.4 | 34.9 | 34.8 | 34.9 | 35.1 | 35.5 |  |
| 02 | 36.5 | 36.6 | 36.9 | 36.5 | 36.3 | 36.2 | 36.2 | 36.5 | 36.7 |  |
| 03 | 36.8 | 36.9 | 37.0 | 36.8 | 36.4 | 36.1 | 36.2 | 36.4 | 36.5 |  |
| 04 | 37.0 | 37.1 | 37.2 | 37.0 | 36.6 | 36.4 | 36.2 | 36.3 | 36.6 |  |
| 05 | 36.8 | 36.8 | 36.9 | 36.8 | 36.4 | 36.1 | 36.1 | 36.1 | 36.3 |  |
| 06 | 37.1 | 37.4 | 37.4 | 37.2 | 36.9 | 36.8 | 35.6 | 36.8 | 37.1 |  |
| 07 | 37.9 | 38.0 | 38.2 | 38.0 | 37.7 | 37.5 | 37.4 | 37.5 | 37.9 |  |
| 08 | 39.1 | 39.2 | 39.7 | 39.4 | 39.1 | 38.9 | 38.8 | 39.0 | 39.4 | 39.0= |
| 09 | 38.7 | 38.9 | 39.4 | 39.2 | 39.1 | 38.7 | 38.9 | 38.8 | 39.0 | 38.4 |
| 10 | 37.4 | 37.6 | 37.9 | 37.8 | 37.7 | 37.3 | 37.7 | 37.7 | 38.0 | 37.8- |
| 11 | 37.3 | 37.5 | 37.8 | 37.7 | 37.9 | 37.4 | 37.8 | 37.6 | 38.1 |  |
| 12* | 36.9 | 37.0 | 37.4 | 37.3 | 37.4 | 37.0 | 3. 2 | 37.3 | 37.6 |  |
| 13* | 36.7 | 36.8 | 36.9 | 36.8 | 37.0 | 36.4 | 36.9 | 36.7 | 36.9 | 36.7 |
| 14 | 35.6 | 35.9 | 35.8 | 35.9 | 35.6 | 35.3 | 35.1 | 35.6 | 36.1 |  |
| 15 | 34.2 | 34.3 | 34.5 | 34.5 | 34.7 | 34.7 | 35.0 | 34.8 | 35.1 |  |
| 16 | 34.5 | 34.5 | 34.5 | 34.5 | 34.5 | 34.3 | 34.9 | 34.7 | 34.9 |  |
| 17 | 33.8 | 33.9 | 34.1 | 34.1 | 33.8 | 33.8 | 34.0 | 34.0 | 34.4 |  |
| 18 | 33.7 | 33.9 | 33.9 | 33.8 | 33.5 | 33.5 | 34.0 | 34.0 | 34.0 |  |
| 19 | 34.6 | 33.8 | 336 | 33.5 | 33.3 | 33.3 | 33.3 | 33.4 | 33.6 | 33.5 - |
| 20 | 35.1 | 34.4 | 34.0 | 33.4 | 33.7 | 33.7 | 33.9 | 34.3 | 34.2 | 33.9 |
| 21 | 34.7+ | $34.3+$ | $33.7+$ | $33.7+$ | 33.64 | 33.64 | 33.7+ | 33.7+ | $34.1+$ | 34.24 |
| 22 | 34.0 | 33.8 | 33.6 | 33.6 | 33.6 | 33.5 | 33.7 | 33.6 | 34.0 | 34.1 |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number of Obs | 427 | 420 | 426 | 418 | 426 | 424 | 426 | 423 | 425 | 132 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

LITTLE AMERICA $V$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 39.2 | 39.0 | 39.0 | 38.9 | 38.3 | 37.7 | 37.8 | 37.7 | 37.6 | 36.9 |
| 01 | 40.3 | 40.2 | 39.8 | 39.7 | 39.0 | 38.3 | 38.5 | 38.3 | 38.1 | 36.9 |
| 02 | 40.7 | 40.3 | 39.8 | 39.5 | 38.9 | 38.5 | 38.4 | 38.5 | 38.2 | 37.4 |
| 03 | 41.2 | 41.1 | 40.6 | 40.3 | 39.6 | 39.0 | 39.2 | 39.0 | 38.9 | 38. ${ }^{2}$ |
| 04 | 44.5 | 42.3 | 42.1 | 41.8 | 41.3 | 40.5 | 40.3 | 10.2 | 40.4 | 40.3 |
| 05 | 44.3 | 44.1 | 43.7 | 43.5 | 42.8 | 42.4 | 41.9 | 41.4 | 41.3 | 41.0 |
| 06 | 45.0 | 44.8 | 44.5 | 44.0 | 43.2 | 42.0 | 41.1 | 41.0 | 41.0 | 39.7 |
| 07 | 46.0 | 46.1 | 45.9 | 45.8 | 45.1 | 44.2 | 43.8 | 42.9 | 41.0 | 38.8 |
| 08 | 46.3 | 46.2 | 43.8 | 45.5 | 44.9 | 43.6 | 42.0 | 41.0 | 39.9 | 37.7 |
| 09 | 43.4 | 43.3 | 43.1 | 42.7 | 42.0 | 40.5 | 40.1 | 38.6 | 37.0 | 33.7 |
| 10 | 42.7 | 42.7 | 42.8 | 42.5 | 41.3 | 39.9 | 38.3 | 36.2 | 33.8 | 30.8 |
| 11 | 45.6 | 45.6 | 45.4 | 45.3 | 44.2 | 42.3 | 40.9 | 36.9 | 35.5 | 32.6 |
| 12 | 46.0 | 45.0 | 45.6 | 45.4 | 43.9 | 41.4 | 40.1 | 36.7 | 34.7 | $\therefore 1.7$ |
| 13 | 45.9 | 45.9 | 45.5 | 45.4 | 42.9 | 40.7 | 37.5 | 34.1 | 33.2 | 31.0 |
| 14 | 46.0 | 46.0 | 45.0 | 45.3 | 43.4 | 40.6 | 31.0 | 33.4 | 33.2 | 31.4 |
| 15 | 43.0= | 42.8= | 42.2. | 42.3- | 40.6- | 39.3- | 38.1. | 34.4= | 31.5= | 28.97 |
| 16 | 43.4 | 42.7 | 41.8 | 41.7 | 40.0 | 38.0 | 36.4 | 32.6 | 28.4 | 26.6 |
| 17* | 42.5 | 42.2 | 40.5 | 40.7 | 39.6 | 37.8 | 36.9 | 34.7 | 31.7 | 29.1 |
| 18 | 43.5 | 43.4 | 43.0 | 43.0 | 42.4 | 41.6 | 40.1 | 38.3 | 35.5 | 31.8 |
| 19 | 44.6 | 44.5 | 43.6 | 43.4 | 42.1 | 39.5 | 36.9 | 34.0 | 32.5 | 30.7 |
| 20 | 44.3 | 44.2 | 44.0 | 43.7 | 42.4 | 41.5 | 40.3 | 39.4 | 39.3 | 38.1 |
| 21 | 43.9 | 43.7 | 43.7 | 43.5 | 42.7 | 42.2 | 41.5 | 41.1 | 40.5 | 39.7 |
| 22 | 44.9 | 44.9 | 45.2 | 45.0 | 44.3 | 43.9 | 43.4 | 43.2 | 42.7 | 42.1 |
| 23 | 46.2 | 45.1 | 46.0 | 45.8 | 45.2 | 44.6 | 43.7 | 42.9 | 42.7 | 41.3 |
| Rumber of Obs: | 41.2 | 442 | 442 | 441 | 442 | 442 | 442 | 442 | 442 | $4 \therefore$ ? |
| Daily <br> Mean | 43.8 | 43.7 | 43,3 | 43.1 | 42.1 | 40.8 | 39.8 | 38.2 | 37.1 | $3:$ |

LITTLE AMERICA V
Hourly Mean Temperatures ( $\left.-{ }^{\circ} \mathrm{C}\right)$
5 June 1957

| Hr | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 47.1 | 47.0 | 47.1 | 46.8 | 46.3 | 45.5 | 43.9 | 42.6 | 42.6 | 41.8 |
| 01 | 45.4 | 45.1 | 45.1 | 44.6 | 44.1 | 43.6 | 43.1 | 42.9 | 42.8 | 42.1 |
| 02 | 44.3 | 44.0 | 44.3 | 43.8 | 43.5 | 43.3 | 43.2 | 43.1 | 43.3 | 42.5 |
| 03 | 44.8 | 44.9 | 45.2 | 44.9 | 44.7 | 44.4 | 44.1 | 43.9 | 43.5 | 42.6 |
| 64 | 44.4 | 44.5 | 44.6 | 44.4 | 44.1 | 43.8 | 43.4 | 42.9 | 42.3 | 40.8 |
| 05 | 41.4 | 41.4 | 41.1 | 41.1 | 40.7 | 40.6 | 40.5 | 40.4 | 40.4 | 39.2 |
| 06 | 41.3 | 41.1 | 41.3 | 41.0 | 40.? | 40.5 | ¢0.3 | 40.3 | 40.7 | 40.2 |
| 07 | 41.5 | $\pm 1.5$ | 41.9 | 41.6 | 41.6 | 41.2 | 41.2 | 41.3 | 41.7 | 41.3 |
| 08 | 41.0 | 41.1 | 41.6 | 41.3 | 41.2 | 41.1 | 41.3 | 41.3 | 41.7 | 41.3 |
| 09 | 40.7 | 40.9 | 41.3 | 41.1 | 41.2 | 40.9 | 41.2 | 41.4 | 41.8 | 41.4 |
| 10 | 40.2 | 40.4 | 41.0 | 40.7 | 40.7 | 40.5 | 40.7 | 41.0 | 41.3 | 41.0 |
| 11 | 40.4 | 40.5 | 40.9 | 40.7 | 40.7 | 40.5 | 40.7 | 40.9 | 41.3 | 40.9 |
| 12 | 40.1 | 40.2 | 40.7 | 40.4 | 40.4 | 40.2 | 40.4 | 40.7 | 40.9 | 40.6 |
| 13 | 39.6 | 39.7 | 40.1 | 39.8 | 39.8 | 39.5 | 39.7 | 39.9 | 40.2 | 39.8 |
| 14 | 39.3 | 39.4 | 39.8 | 39.4 | 35.4 | 39.2 | 39.3 | 39.4 | 39.8 | 39.5 |
| 15 | 38.8 | 38.9 | 39.3 | 39.1 | 35.9 | 38.5 | 38.8 | 39.0 | 39.4 | 38.8 |
| 16 | 38.4 | 38.4 | 38.9 | 38.6 | 38.5 | 38.2 | 38.4 | 38.5 | 38.8 | 38.2 |
| 17 | 37.8 | 37.9 | 38.3 | 38.1 | 37.9 | 37.6 | 37.8 | 37.9 | 38.3 | 37.8 |
| 18 | 36.8 | 36.8 | 37.2 | 37.1 | 36.8 | 36.5 | 36.7 | 36.8 | 37.1 | 36.6 |
| 19 | 35.6 | 35.7 | 36.1 | 35.9 | 35.7 | 35.5 | 35.6 | 35.7 | 36.1 | 35.8 |
| 20 | 35.3 | 35.4 | 35.7 | 35.3 | 35.2 | 35.0 | 35.1 | 35.2 | 35.6 | 35.4 |
| 21 | 34.8 | 34.9 | 35.2 | 35.0 | 34.8 | 34.7 | 34.8 | 34.9 | 35.3 | 35.2 |
| 22 | 34.5 | 34.5 | 34.8 | 34.7 | 34.5 | 34.4 | 34.5 | 34.6 | 35.1 | 35.1 |
| 23 | 34.1 | 34.1 | 34.4 | 34.2 | 34.1 | 33.9 | 34.1 | 34.2 | 34.6 | 34.7 |


| Number <br> Of Obs <br> Dally | 451 | 448 | 451 | 450 | 451 | 449 | 451 | 449 | 451 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LITILE AMERICA V Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ ) 6 June 1957

| $\mathrm{Hr}^{\mathrm{Cm}}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 34.0 | 34.0 | 34.3 | 34.1 | 33.9 | 33.9 | 33.9 | 34.0 | 34.4 | 34.4 |
| 01 | 33.3 | 33.3 | 33.7 | 33.5 | 33.3 | 33.1 | 33.2 | 33.3 | 33.8 | 33.8 |
| 02 | 32.8 | 32.8 | 33.2 | 32.9 | 32.7 | 32.7 | 32.7 | 32.8 | 33.3 | 33.2 |
| 03 | 32.7 | 32.7 | 33.0 | 32.8 | 32.7 | 32.5 | 32.6 | 32.7 | 33.2 | 33.2 |
| 04 | 32.8 | 32.7 | 33.1 | 32.9 | 32.7 | 32.6 | 32.7 | 32.7 | 33.3 | 33.3 |
| 05 | 32.9 | 32.5 | 32.7 | 32.5 | 32.3 | 32.2 | 32.2 | 32.4 | 32.8 | 32.9 |
| 06 | 31.6 | 31.6 | 31.9 | 31.7 | 31.4 | 31.3 | 31.4 | 31.5 | 31.3 | 32.0 |
| 07 | 29.8 | 29.7 | 30.0 | 29.7 | 29.4 | 29.3 | 29.3 | 29.4 | 29.8 | 29.6 |
| 08 | 28.2 | 28.1 | 28.4 | 28.1 | 28.c | 27.7 | 27.8 | 27.7 | 28.1 | 27.5 |
| 09 | 27.0 | 26.9 | 27.0 | 26.8 | 26.6 | 26.4 | 26.4 | 26.4 | 26.7 | 26.0 |
| 10 | 24.2 | 23.8 | 24.0 | 23.5 | 23.2 | ¿2.9 | 22.7 | 22.7 | 22.7 | 21.8 |
| 11 | 22.6 | 21.4 | 21.6 | 21.1 | 20.6 | 20.2 | 20.3 | 20.3 | 20.4 | 19.6 |
| 12 | 22.1 | 21.5 | 21.8 | 21.2 | 20.7 | 20.4 | 20.3 | 20.9 | 20.4 | 19.6 |
| 13 | 18.0- | 17.9- | 18.3- | 17.9- | 17.5- | 17.2- | 17.4- | 17.3- | 17.5- | 16.9- |
| 14 | 20.2 | 19.9 | 20.0 | 19.4 | 18.9 | 18.7 | 18.7 | 18.6 | 18.7 | 18.1 |
| 15 | 21.3 | 20.9 | 21.0 | 20.6 | 20.1 | 19.8 | 19.8 | 19.8 | 19.9 | 19.2 |
| 16 | 22.9 | 22.8 | 23.0 | 22.5 | 22.1 | 21. 8 | 21.7 | 21.7 | 21.8 | 21.2 |
| 17 | 24.3 | 24.2 | 24.6 | 23.9 | 23.7 | 23.3 | 23.3 | 23.1 | 23.3 | 2.2 .5 |
| 18 | 25.0 | 25.0 | 25.3 | 24.7 | 24.4 | 24.1 | 24.1 | 24.0 | 24.4 | 23.6 |
| 19 | 25.9 | 25.8 | 26.0 | 25.5 | 25.1 | 24.8 | 24.7 | 24.6 | 24.8 | 24.2 |
| 20 | 25.4 | 25.4 | 25.6 | 25.1 | 24.8 | 24.6 | 24.5 | 24.5 | 24.5 | 23.8 |
| 21 | 26.f. | 26.6 | 26.8 | 26.4 | 25.9 | 25.6 | 25.4 | 25.3 | 25.2 | 24.5 |
| 22 | 28.4 | 28.3 | 28.4 | 28.1 | 27.6 | 27.1 | 26.9 | 26.5 | 26.3 | 25.9 |
| 23 | 28.8 | 28.7 | 28.9 | 28.5 | 28.1 | 27.8 | 27.7 | 27.4 | 974 | 27.0 |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | $4 \div 3$ | 438 | 438 | 437 | 438 | 440 | 439 | 431 | 438 | 439 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 27.3 | 27.1 | 27.4 | 27.0 | 26.7 | 26.5 | 25.4 | 26.4 | 26.7 | 26.2 |

LITTLE AMERICA
Hourly Mean Temperatures

| 8 |  |
| :---: | :---: |
| 8 |  <br>  |
| © |  N் |
| $8$ |  |
| 앙 |  |
| 式 |  <br>  |
| $\sim$ |  <br>  |
| $\bigcirc$ | のかんOごさONONJONMNスさんのか <br>  |
| $\cdots$ |  |
| 岕 |  <br>  |


| Number <br> of Obs | 392 | 370 | 388 | 380 | 390 | 384 | 390 | 389 | 39. | 389 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dally <br> Mean | $39 . i$ | 39.0 | 39.3 | 38.3 | 37.2 | 36.0 | 35.1 | 33.7 | 32.8 | 31.7 |

LITRLE MMERICA $V$

| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfe | 3 | 6 | 12 | 2.5 | 50 | 100 | ? 00 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10: | 35.7 | 35.0 | 35.2 | 34.4 | 33.6 | 32.6 | 32.0 | 31.0 | 30.8 | 29.6 |
| 11 | 36.4 | 36.2 | 36.5 | 36.2 | 35.9 | 35.5 | 35.0 | 34.0 | 32.4 | 30.6 |
| 12 | 36.1 | 35.8 | 36.1 | 35.7 | 35.5 | 35.3 | 35.2 | 35.0 | 34.9 | 32.4 |
| 13 | 34.4 | 33.9 | 34.3 | 33.7 | 33.7 | 33.4 | 33.3 | 33.4 | 33.3 | 32.3 |
| 14 | 33.6 | 33.2 | 33.5 | 33.1 | 32.9 | 32.8 | 32.7 | 32.7 | 32.8 | 32.0 |
| 15 | 32.9 | 32.4 | 32.6 | 32.2 | 370 | 31.8 | 31.7 | 31.7 | 31.9 | 31.4 |
| 16 | 34.4 | 33.7 | 33.9 | 33.5 | 33.3 | 33.0 | 22.9 | 32.7 | 32.8 | 32.2 |
| 1 1: | 33.5 | 32.9 | 33.2 | 32.8 | 32.5 | 32.3 | 32.2 | 32.2 | 32.4 | 31.9 |
| 18 | 32.4 | 32.9 | 33.2 | 32.9 | 32.7 | 32.6 | 32.5 | 32.3 | 32.8 | 32.4 |
| 19 | 33.2 | 33.2 | 33.4 | 33.1 | 33.0 | 32.9 | 32.9 | 32.9 | 33.3 | 33.0 |
| 20 | 33.4 | 33.4 | 33.7 | 33.4 | 33.3 | 33.2 | 33.1 | 33.2 | 33.6 | 33.4 |
| 21 | 33.0 | 32.9 | 33.2 | 32.9 | 32.8 | 32.7 | 32.7 | 32.8 | 33.1 | 32.6 |
| 22 | 32.3 | 32.3 | ? | 32.3 | 32.2 | 32.1 | 32.1 | 32.2 | 32.6 | 32.4 |
| 23 | 31.6 | 31.7 | 3.. ${ }^{\text {c }}$ | 31.6 | 31.5 | 31.4 | 31.4 | 31.5 | 31.9 | 31.7 |
| Number <br> of Obs | 261 | 255 | 261 | 257 | 261 | 254 | 259 | 257 | 258 | 256 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 33.8 | 33.5 | 33.8 | 33.4 | 33.2 | 33.0 | 32.8 | ' 7 | 32.8 | 32.0 |

LITTLE AMERICA $V$
Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| Hr | Efc | 3 | 6 | 12 | 23 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{00}$ | 31.2 | 31.2 | 31.5 | 31.3 | 31.1 | 31.0 | 31.0 | 31.1 | 31.5 | 31.2 |
| 01 | 30.9 | 31.0 | 31.3 | 31.0 | 30.9 | 30.8 | 30.9 | 30.9 | 31.3 | 31.1 |
| 02 | 30.8 | 30.9 | 31.0 | 31.1 | 30.9 | 308 | 30.8 | 30.9 | 31.3 | 31.1 |
| 03 | 30.9 | 30.9 | 31.1 | 31.0 | 30.8 | 30.7 | 30:7 | 30.8 | 31.3 | 31.0 |
| 04 | 30.2 | 30.2 | 30.4 | 30.3 | 30.0 | 29.9 | 30.0 | 30.0 | 30.4 | 30.2 |
| 05 | 29.9 | 29.5 | 29.8 | 29.5 | 29.4 | 29.4 | 29.3 | 29.4 | 29.8 | 29.5 |
| 06 | 30.5 | 30.1 | 29.8 | 29.5 | 29.4 | 29.3 | 29.3 | 29.4 | 29.8 | 29.6 |
| 07 | 30.9 | 30.5 | 30.2 | 29.9 | 29.8 | 29.7 | 29.7 | 29.8 | 30.1 | 29.9 |
| 08 | 31.0 | 30.6 | 30.3 | 30.0 | 29.8 | 29.7 | 29.7 | 29.8 | 30.1 | 2.9 .9 |
| 09 | 31.1 | 30.6 | 30.3 | 29.9 | 29.8 | 29.7 | 29.7 | 29.! | 30.1 | 29.9 |
| 10 | 31.1 | 30.6 | 30.4 | 3 n .2 | 30.0 | 30.0 | 29.9 | 30.0 | 30.4 | 30.2 |
| 11 | 31.1 | 30.5 | 30.5 | - . 2 | 30.0 | 30.0 | 30.0 | 30.1 | 30.5 | 30.3 |
| 12 | 31.1 | 30.7 | 30.4 | 30.2 | 30.0 | 29.9 | 29.9 | 30.0 | 30.3 | 30.1 |
| 13 | 31.0 | 30.5 | 30.2 | 29.7 | 29.6 | 29.4 | 29.4 | 29.5 | 29.8 | 29.5 |
| 14 | 31.1 | 31.1 | 31.0 | 30.6 | 30.4 | 30.0 | 29.7 | 29.6 | 29.6 | 29.3 |
| 15 | 31.6 | 32.6 | 31.9 | 30.9 | 30.7 | 30.3 | 29.9 | 29.7 | 29.6 | 29.0 |
| 16 | 32.0 | 32.4 | 31.6 | 30.7 | 30.5 | 30.2 | 30.1 | 29.9 | 29.9 | 29.3 |
| 17 | 32.3 | 32.9 | 32.6 | 31.7 | 31.4 | 31.0 | 30.9 | 30.6 | 30.6 | 30.0 |
| 18 | 32.4 | 32.8 | 32.3 | 31.2 | 30.9 | 30.6 | 30.4 | 30.3 | 30.3 | 29.9 |
| 19 | 32.3 | 32.9 | 32.9 | 32.3 | 32.0 | 31.7 | 31.5 | 31.4 | 31.4 | 30.8 |
| 20 | 32.7 | 34.0 | 34.4 | 33.6 | 33.4 | 13.0 | 32.7 | 32.5 | 32.4 | 31.6 |
| 21 | 33.2 | 34.2 | 33.3 | 32.4 | 32.2 | 31.8 | 31.6 | 31.5 | 31.3 | 30.6 |
| 22 | 32.8 | 32.5 | 31.9 | 31.1 | 30.7 | 30.5 | 30.4 | 30.2 | 30.3 | 29.7 |
| 23 | 32.8 | 33.9 | 33.8 | 33.1 | 32.8 | 32.5 | 32.1 | 31.8 | 31.6 | 30.4 |
| Number of Obs | 445 | 439 | 444 | 437 | 4.43 | 438 | i4i | 437 | 441 | 444 |
| Dally Meari | 31.4 | 31.5 | 31.4 | 30.9 | 52? | 30.5 | 30.4 | 30.4 | 30.6 | 30.2 |

LITTIE ANERE:

|  | LITTIE AKERG: ; <br> Hourly Mean Temperaturas ( ${ }^{\circ} \mathrm{C}$ ) 10 June 1957 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sfc | 3 | 6 | : | 25 | 50 | 100 | 200 | ¢00 | 800 |
| 00 | 33.4 | 35.1 | 36.4 | 35.1 | 34.6 | 34.4 | 34.0 | 33.4 | 32.8 | 31.4 |
| 01 | 33.9 | 35.0 | 34.8 | 34.2 | 33.5 | 33.6 | 33.4 | 33.3 | 33.3 | 32.4 |
| 02 | 33.7 | 33.9 | 34.0 | 33.9 | 33.7 | 33.5 | 32.6 | 33.6 | 34.0 | 33.2 |
| 03 | 33.4 | 33.2 | 33.0 | 32.7 | 32.6 | 32.4 | 32.4 | 32.5 | 32.8 | 32.4 |
| 04 | 33.2 | 33.1 | 33.7 | 33.7 | 33.6 | 33.5 | 33.5 | 33.6 | 34.1 | 33.8 |
| 05 | 33.1 | 33.0 | 33.3 | 33.4 | 33.4 | 33.4 | 33.4 | 33.5 | 33.0 | 33.6 |
| 06 | 33.0 | 33.0 | 33.3 | 33.3 | 33.2 | 33.2 | 33.2 | 33.3 | 13.7 | 33.5 |
| 07 | 32.9 | 32.9 | 33.0 | 32.9 | 32.9 | 32.8 | 32.8 | 32.9 | 33.2 | 33.1 |
| 08 | 32.9 | 32.8 | 33.0 | 32.8 | 32.7 | 32.6 | 32.6 | 33.0 | 33.1 | 32.8 |
| 09 | 33.0 | 33.0 | 33.9 | 33.7 | 33.7 | 33.7 | 33.7 | 33.8 | 34.2 | 34.0 |
| 10 |  |  | 34.6 | 34.3 | 34.2 | 34.1 | 34.1 | 34.2 | 34.6 | 34.4 |
| 11 |  |  | 36.3 | 35.8 | 35.6 | 35.4 | 35.3 | 35.3 | 35.7 | 35.4 |
| 12 |  |  | 39.1 | 38.7 | 38.3 | 38.1 | 38.0 | 38.0 | 38.3 | 37.8 |
| $\div 3$ |  |  | +1.9 | 41.4 | 41.1 | 40.8 | 40.7 | 40.5 | 40.7 | 39.8 |
| 14 |  |  | 42.7 | 42.0 | 41.6 | 41.4 | 41.1 | 40.8 | 40.9 | 40.0 |
| 15 |  |  | 42.0 | 41.5 | 41.1 | 40.8 | 406 | 40.4 | 40.5 | 39.5 |
| 16 | 43.0- | 43.3- | 43.5 | 42.9 | 42.8 | 42.6 | 42.5 | 42.4 | 42.6 | 41.8 |
| 17 | 43.2 | 43.5 | 44.2 | 43.9 | 43.8 | 43.6 | 43.3 | 43.1 | 43.5 | 42.9 |
| 1.8 | 43.7 | 4:.9 | 44.6 | 44.2 | 44.1 | 43.8 | 43.7 | 43.4 | 43.8 | 43.3 |
| 19 | 44.3 | 44.6 | 45.0 | 44.7 | 44.6 | 44.5 | 44.3 | 44.2 | 44.7 | 44.1 |
| 20 | 45.0 | 45.5 | 45.9 | 45.0 | 45.5 | 45.3 | 45.2 | 45.3 | 45.6 | 45.0 |
| 21 | 45.4 | 45.8 | 46.1 | 45.8 | 45.6 | 45.5 | 45.4 | 45). 3 | 45.8 | 4). 1 |
| 22 | 44.1 | 44.4 | 44.7 | 46.4 | 44.2 | 44.1 | 43.9 | 43.7 | 44.3 | 43.9 |
| 23 | 44.3 | 44.7 | 45.0 | 44.7 | 44.5 | 44.3 | 44.3 | 44.3 | 44.6 | 43.9 |


| Number <br> of Ot, | 325 | 321 | 446 | 445 | 446 | 445 | 440 | 444 | 442 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 4444

LItTLE AMERICA V
Hourly Mcan Temperatures (- ${ }^{\circ} \mathrm{c}$ )

| $\mathrm{cr}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 4.6 | 45.0 | 45.3 | 45.0 | 44.8 | 44.7 | 44.6 | 44.6 | 44.9 | 44.3 |
| 01 | 45.7 | 46.3 | 45.6 | 46.3 | 46.1 | 46.0 | 45.9 | 46.0 | 46.5 | 46.1 |
| 02 | 46.2 | 46.7 | 47.6 | 46.8 | 46.6 | 46.5 | 16.4 | 46.5 | 47.0 | 46.5 |
| 03 | 45.9 | 46.3 | 46.7 | 46.4 | 46.2 | 46.1 | 45.9 | 40.0 | 46.5 | 46.0 |
| 04 | 44.6 | 44.8 | 45.1 | 44.7 | 44.5 | 44.4 | 44.3 | 44.3 | 44.6 | 43.9 |
| 05 | 42.0 | 42.0 | 42.3 | 41.9 | 41.7 | 41.5 | 41.5 | 41.4 | 41.7 | 41.1 |
| 03 | 40.4 | 40.5 | 40.7 | 40.4 | 40.2 | 40.0 | 399 | 39.9 | 40.2 | 39.6 |
| 07 | 344 | 39.4 | 39.7 | 39.3 | 39.1 | 38.9 | 38.8 | 38.3 | 39.0 | 38.6 |
| 08 | 38.7 | 38.7 | 39.0 | 38.6 | 33.4 | 38.2 | 38.2 | 38.2 | 38.5 | 38.0 |
| $\bigcirc$ | 38.1 | 38.1 | 38.4 | 38.1 | 37.9 | 37.7 | 37.6 | 37.6 | 38.0 | 37.6 |
| 10* | 37.9 | 37.8 | 38.2 | 37.8 | 37.5 | 37.4 | 37.3 | 37.4 | 37.7 | 37.3 |
| 11* | 37.1 | 37.3 | 37.6 | 37.3 | 37.2 | 37.1 | 37.6 | 37.1 | 37.4 | 36.9 |
| 12 | 36.9 | 37.1 | 37.4 | 3 3 .2 | 37.0 | 36.8 | 36.8 | 37.0 | 37.2 | 36.8 |
| 13 | 37.7 | 37.8 | 38.2 | 37.9 | 37.7 | 37.5 | 37.5 | 37.6 | 37.9 | 37.5 |
| 16 | 37.6 | 37.7 | 38.0 | 37.8 | 37.7 | 37.5 | 37.5 | 37.6 | 37.9 | 37.6 |
| 15 | 36.7 | 37.1 | 37.4 | 37.2 | 37.0 | 37.0 | 36.9 | 37.2 | 37.5 | 37.1 |
| 16* | 36.3 | 36.7 | 37.1 | 36.8 | 36.7 | 36.6 | 36.5 | 36.8 | 37.2 | 36.8 |
| 17* | 36.0 | 36.4 | 36.7 | 36.5 | 36.5 | 36.3 | 36.4 | 36.5 | 37.0 | 36.6 |
| 18 | 36.3 | 36.6 | 37.1 | 36.8 | 36.7 | 36.7 | 36.7 | 26.9 | 37.3 | 37.0 |
| 19 | 36.5 | 30.9 | 37.2 | 37.0 | 36.9 | 36.8 | 36.8 + | 37.0 | 37.4+ | 37.1 |
| 20 | 36.1 | 36.3 | 36.6 | 36.4 | 36.3 | 36.2 | 36.3 | 36.t, | 37.0 | 36.6 |
| 3 | 36.1 | 16.4 | 36.7 | 36.6 | 36.4 | 36.3 | 36.4 | 36.5 | 37.0 | 36.7 |
| 22 | 35.8 | 36.1 | 36.4 | 36.2 | 36.1 | 36.0 | 36.0 | 36.2 | 36.7 | 36.4 |
| 23 | 35.3 | 35.6 | 35.9 | 35.7 | 35.6 | 535 | 35.6 | 35.7 | 36.2 | 35.9 |


| Nunber <br> Of Obs | 4.50 | $44 y$ | 448 | 448 | 449 | 448 | 448 | 447 | 441 | 448 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dally <br> Mean | 39.1 | 39.3 | 39.6 | 39.4 | 39.2 | 39.1 | 39.0 | 39.2 | 39.5 | 39.1 |

L. ittle: ambeica $V$
Hourls Mean 2emperatures (- ${ }^{\circ} \mathrm{C}$ )

| $\mathrm{cm}^{\mathrm{cm}}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 35.1 | 35.3 | 35.6 | 35.4 | 35.3 | 35.2 | 35.3 | 35.4 | 35.9 | 35.5 |
| 01 | 32.0 | 35.2 | 35.5 | 35.3 | 35. 2 | 35.1 | 35.1 | 35.3 | 33.7 | 3.5 .4 |
| 02 | 34.8 | 34.9 | 35.2 | 35.0 | 34.9 | 34.8 | 34.3 | 35.0 | 35.4 | 35.0 |
| 03 | 34.1 | 34.2 | 34.6 | 34.4 | 34.2 | 34.1 | 34.1 | 34.3 | 34.7 | 34.4 |
| 34 | 33.7 | 33.9 | 34.2 | 34.0 | 33.8 | 33.7 | 31.8 | 33.9 | 34.2 | 3.4 .0 |
| us | 33.\% | 33.3+ | $33.7+$ | 33.4+ | 33.3+ | $33.2+$ | $33.9+$ | 33.3+ | 33.74 | 33.44 |
| Oó | $32.9+$ | $33.0+$ | 33.3+ | $33.1+$ | $32.9+$ | 32.8 + | 32.94 | $33.0+$ | 33.44 | $33.1+$ |
| 07 | 32.5 | 32.6 | 32.9 | 32.7 | 32.6 | 32.5 | 32.5 | 32.6 | 33.0 | 32.8 |
| 08 | 31.2= | 31.1= | 31.4 ${ }^{\text {\% }}$ | 31.2m | 31.0\% | 30.9 = | 30.9 $=$ | 31.1. | $31.4=$ | 31.1. |
| 09 | 30.0 | 29.5 | 29.8 | 29.6 | 29.4 | 29.2 | 29.2 | 293 | 29.7 | 29.3 |
| 10* | 2.9 .1 | 28.2 | 28.5 | 28.2 | 28.0 | 27.8 | 27.8 | 27.9 | 28.2 | 27.5 |
| 11** | 27.9 | 25.5 | 25.6 | 25.4 | 25.3 | 23.0 | 25.0 | 25.0 | 24.9 | 23.6 |
| 12* | 26.1 | 21.0 | 21.4 | 20.8 | 20.5 | 20.3 | 20.0 | 19.9 | 20.3 | 19.5 |
| 13 | 24.2 | 21.6 | 21.7 | 21.5 | 21.2 | 21.4 | 21.4 | 21.4 | 21.7 | 20.5 |
| 14 | 21.2 | 18.8 | 19.2 | 18.8 | 18.5 | 18.3 | 18.2 | 18.3 | 18.4 | 17.8 |
| 15 | 20.5 | 18.2 | 18.6 | 18.3 | 17.9 | 17.7 | 17.7 | 17.7 | 18.0 | 17.3 |
| 16 | 23.2 | 18.8 | 18.9 | 18.5 | 18.2 | 18.0 | 18.0 | 18.0 | 18.2 | 17.4 |
| $\because 7$ | 22.2 | 19.4 | 19.6 | 19.2 | 18.8 | 18.6 | 18.6 | 18.6 | 18.8 | 18.1 |
| 13 | 21.2 | 19.8 | 20.2 | 19.7 | 19.3 | 19.1 | 19.1 | 19.0 | 19.2 | 18.3 |
| 19 | 22.2 | 20.6 | 21.4 | 20.5 | 20.0 | 19.8 | 19.8 | 19.7 | 19.9 | 19.1 |
| 20 | 21.4- | 20.5 \% | $20.8+$ | 20.2 | 19.9 | 19.7 | 19.7 | 19.6 | 19.9 | 19.0 |
| 21 |  |  | $19.7 \%$ | 19.4 | 19.0 | 18.8 | 18.8 | 19.8 | 19.1 | 13.3 |
| 22 | 1\%.30 | 1: '1+ | 18.7 | 18.5 | 18.1 | 18.0 | 17.9 | 18.0 | 18.2 | 17.4 |
| 23 | 19.5 | 18.4 | 13.7 | 18.3 | 17.9 | 17.7 | 17.8 | 17.7 | 179 | 17.3 |


| Number <br> of Obs | 394 | 403 | 414 | 429 | 430 | 430 | 429 | 430 | 430 | 429 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daliy <br> Meen | $2 y .5$ | 20.0 | 26.2 | 25.6 | 25.3 | 25.2 | 25.2 | 25.2 | 25.3 | 24.9 |

Hourly Mean Temperature:


| of Obs | 183 | 285 | 284 | 285 | 285 | 285 | 285 | 285 | 285 | 283 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 17.2 | 16.5 | 16.8 | 16.4 | 16.1 | 16.C | 16.1 | 15.9 | 16.4 | 25.2 |

LITTIE MMERICA V

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| ns |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 | 18.89 | 18.4 | 18.84 | 18.38 | 13.0\% | 17.913 | 18.1非 | 18.80 | 18.37 | 17.5 |
| 23 | 18.5 | 18.0 | 18.3 | 17.8 | 17.7 | 17.5 | 17.5 | 17.9 | 17.6 | 17.0 |
| Number |  |  |  |  |  |  |  |  |  |  |
| If Obs | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 18.5 | 18.1 | 18.4 | 18.0 | 17.7 | 17.6 | 17.6 | 18.0 | 17.7 | 17.1 |

LITILE ANERICAV Hourly Mean Temperacures ( $-{ }^{\circ} \mathrm{C}$ )

| $\mathrm{Hr}{ }^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 17.3 | 16.9 | 17.3 | 16.9 | 16.5 | 16.4 | 16.5 | 1:.0 | 16.5 | 15.9 |
| 01 | 17.90 | 17.5* | 17.7= | 17.2= | $16.7=$ | 16.6* | 16.6" | 16.8 m |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 | 17.9 | 17.7 | 18.2 | 17.7 | 17.3 | 17.3 | 17.3 | 17.1 | 17.6 | 16.64 |
| 04 | 18.5 | 18.5 | 19.0 | 18.6 | 18.2 | 18.2 | 18.2 | 18.3 | 18.6 | 17.7 |
| 05 | 18.9 | 19.2 | 19.7 | 19.2 | 19.0 | 19.0 | 19.1 | 19.1 | 19.5 | $18.7+$ |
| 06 | 18.6 | 18.5 | 19.0 | 18.5 | 18.2 | 18.1 | 18.2 | 18.4 | 18.5 |  |
| 07 | 18.7 | 18.4 | 18.7 | 18.3 | 17.9 | 17.9 | 18.1 | 18.2 | 18.3 | 17.84 |
| 08 | $17.5+$ | 17.4+ | $17.8+$ | $17.4+$ | 17.14 | 17.1+ | $17.3+$ | $17.5+$ | 17.64 | 17.24 |
| 09 | 16.3 | 16.0 | 16.3 | 16.0 | 15.7 | 15.0 | 15.7 | 15.8 | 15.9 | 15.7 |
| 10 | 16.0 | 15.8 | 15.9 | 15.8 | 15.5 | 15.3 | 15.3 | 15.8 | 15.8 | 15.0 |
| 11 | 17.3 | 17.1 | 17.1 | 16.9 | 16.6 | 16.4 | 16.4 | 16.7 | 16.8 | 25.9 |
| 12 | 19.1 | 19.4 | 1.9 .3 | 19.0 | 18.6 | 18.6 | 18.4 | 18.6 | 18.6 | 17.5 |
| 13 | 21.2 | 21.7 | 21.7 | 21.6 | 21.4 | 21.2 | 21.2 | 21.4 | 21.3 | 20.4 |
| 14 | 22.4 | 23. | 23.1 | 22.7 | 22.7 | 22.2 | 22.1 | 22.1 | 22.1 | 20.9 |
| 15 | 22.7 | 23.0 | 23.1 | 23.0 | 22.7 | 22.7 | 22.5 | 22.8 | 22.4 | 21.6 |
| 16 | 23.1 | 23.6 | 23.7 | 23.6 | 23.9 | 23.4 | 23.4 | 23.7 | $23.6+$ | 22.9 |
| 17 | 22.3 | 22.6 | 23.0 | 23.0 | 23.0 | 22.3 | 22.9 | 23.3 | 23.3 | 22.8 |
| 18 | 22.3 | 22.5 | 22.9+ | 2. 0 | 23.0 | 23.0 | 23.5* | 23.4 | 23.5 $=$ | 22.9 |
| 19 | 22.5 | 22.8 | 23.6 | 23.3 | 23.3 | 23.3 | 23.3+ | 23.7 | 23.6 | 23.3 |
| 20 | 22.1 | 23.0 | 23.4 | 23.4 | 23.4 | 23.3 | 23.4 | 23.5 | 23.5 ${ }^{\text {+ }}$ | 23.3 |
| 21 | 23.5 | 23.6 | 24.0 | 24.0 | 24.0+ | 24.0 | 24.0+ | 24.3 | 24.2 | 23.8 |
| 22 | 24.7 | 25.6 | 26.0 | 25.9 | 2.5 .9 | 25.7 | $25.5+$ | 26.3 | 26.4 | 25.9 |
| 23 | 287 | 29.5 | 29.9 | 29.8 | 29.7 | 29.6 | 29.7 | 29.8 | 29.8 | 29.3 |


| Hurader <br> of Cbs | 420 | 413 | 409 | 411 | 407 | 408 | 397 | 412 | 381 | 348 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily <br> Mean | 20.5 | 20.6 | 20.9 | 20.7 | 20.5 | 20.4 | 20.3 | 20.6 | 20.6 | 20.5 |

LITTLE AMERICA V
Hourly Mean Temperatures (- ${ }^{\circ} \mathrm{C}$ )
23 June 1957

| cm | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 29.8 | 30.2 | 30.5 | 30.5 | 30.3 | 30.2 | 30.1 | 30.6 | 30.4 | 29.8 |
| 01 | 30.0 | 30.3 | $30.9+$ | 30.5 | 30.3 | 30.2 | 30.1 | 30.7 | 30.64 | 29.9 |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 | 32.0+ | $32.0+$ | 32.6+ | 32.3= | 32.1- | 32.0. | 32.1. | $32.2+$ | 32.2* | $31.6+$ |
| 04 | 32.9 | 33.0 | 33.4+ | $33.3+$ | $33.1+$ | $33.0+$ | 33.0 | $33.0+$ | 33.94 | 32.5 |
| 05 | 33.3 | 33.5 | $314.0+$ | 33.8 | 33.7 | 33.5 | 33.5 | 33.6 | $33.5+$ | 33.0 |
| 06 | 34.2- | 34.5- | 34.8 - | 34.8- | 34.6- | 34.6- | 34.5- | 34.6- | 35.0- | 33.9- |
| 07 | 35.2= | 35.6= | 35.9- | 35.9 = | 35.6= | $35.5=$ | 35.4- | 35.5= | 35.9** | 34.8* |
| 08 | 35.8- | 36.3- | 36.4- | 36.5- | 35.3- | 36.3- | 36.1- | 36.1- | 36.6- | 35.5- |
| 09 | 35.3 | 35.5 | 35.5 | 35.6 | 35.6 | 35.4 | 35.3 | 35.4 | 35.6 | 34.7 |
| 10 | 34.5 | 34.4 | 34.8 | 34.7 | 34.6 | 34.6 | 34.6 | 34.6 | 34.6 | 33.9 |
| 11 | 34.7 | 34.7 | 35.0 | 35.0 | 35.0 | 34.9 | 34.9 | 34.9 | 34.9 | 34.3 |
| 12 | 35.0 | 35.4 | 35.8 | 35.5 | 35.5 | 35.3 | 35.3 | 35.3 | 35.4 | 34.8 |
| 13 | 34.3 | 34.6 | 35.0 | 34.8 | 34.8 | 34.6 | 34.6 | 34.8 | 34.6 | 24.4 |
| 14 | 326 | 32.7 | 32.9 | 33.0 | 33.1 | 32.9 | 32.9 | 33.1 | 333 | 32.8 |
| 15 | 30.7 | 30.6 | 30.7 | 30.7 | 30.7 | 30.7 | 30.7 | 31.0 | 31.0 | 30.6 |
| 16 | 25.6 | 28.9 | 29.1 | 28.9 | 28.7 | 28.4 | 28.4 | 28.6 | 28.5 | 27.0 |
| 17 | 28.2 | 26.9 | 27.1 | 26.9 | 26.6 | 26.3 | 26.3 | 26.2 | 25.9 | 24.2 |
| 18 | 24.8 | 23.6 | 23.8 | 23.5 | 23.2 | 22.9 | 22.3 | 23.0 | 22.4 | 20.9 |
| 19 | 22.6 | 21.7 | 21.9 | 21.8 | 21.8 | 21.4 | 21.4 | 21.7 | 21.7 | 20.7 |
| 20 | 23.3 | 23.1 | 23.4 | 23.4 | 23.3 | 23.3 | 23.3 | 23.6 | 23.6 | 23.2 |
| 21 | 24.2 | 24.6 | 24.8 | 24.8 | 24.8 | 24.7 | 24.7 | 25.0 | 25.0 | 24.8 |
| 22 | 25.0 | 25.3 | 25.4 | 25.7 | 25.7 | 25.7 | 25.7 | 26.1 | 26.0 | 26.1 |
| 23 | 34.5 | 34.5 | 34.6 | 34.7 | 34.7 | 34.7 | 34.7 | 34.9 | 34.9 | 24.4 |
| Number <br> of Obs | 387 | 386 | 376 | 384 | 376 | 383 | 380 | 386 | 375 | 396 |
| Datiy <br> Mean | 30.2 | 30. 2 | 30.3 | 30.4 | 30.2 | 30.1 | 30.0 | 30.3 | 30.1 | 29.6 |

LITTLE AMERICA $V$
Hourly Mean Temperatures



Hourly Mean fimern

| $\mathrm{Hr} \mathrm{cm}^{\text {m }}$ | Sfc | 3 | 6 | 12 | 25 | $\because$ | 100 | 200 | 400 | 830 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 | 36.1\% | 36.4= | 36.5 $=$ | 36.1 $=$ | 35.5 | 35.6= | 35.00 | 34.3m | 32.1* | 31.12 |
| 12 | 37.0 | 37.5 | 37.4 | 37.0 | 36.8 | 36.4 | 35.6 | 34.7 | 33.1 | 31.7 |
| 13 | 39.0 | 39.5 | 39.4 | 38.9 | 38.8 | 38.4 | 37.5 | 36.8 | 35.5 | 33.4 |
| 14 | 38.8 | 39.2 | 39.1 | 38.8 | 38.6 | 38.3 | 37.7 | 37.1 | 35.4 | 32.2 |
| 15 | 38.5 | 38.8 | 38.8 | 38.4 | 37.9 | 37.8 | 37.2 | 36.7 | 35.2 | 32.0 |
| 16 | 38.5 | 38.8 | 38.8 | 38.3 | 38.2 | 37.9 | 37.2 | 36.7 | 35.4 | 32.8 |
| 17* | 38.2 | 38.4 | 38.4 | 38.1 | 38.0 | 37.7 | 37.2 | 36.9 | 36.0 | 34.2 |
| 18* | 36.8 | 37.0 | 37.2 | $3 i .8$ | 36.8 | 36.4 | 30.0 | 35.6 | 34.4 | 32.2 |
| 19* | 35.0 | 35.2 | 35.1 | 34.8 | 34.6 | 34.4 | 34.2 | 33.9 | 33.6 | 32.2 |
| 20* | 34. 3 | 34.6 | 34.5 | 34.1 | 33.9 | 33.7 | 33.5 | 33.3 | 33.0 | 31.6 |
| 21 | 34.1 | 34.3 | 34.2 | 33.9 | 33.8 | 33.6 | 33.4 | 33.3 | 33.4 | 32.7 |
| 22 | 34.5 | 34.6 | 34.7 | 34.6 | 34.5 | 34.3 | 34.3 | 34.5 | 34.6 | 33.9 |
| 23 | 34.3 | 34.5 | 34.5 | 34.5 | 34.5 | 34.3 | 34.? | 34.5 | 34.7 | 34.0 |
| Number <br> of Obs | 236 | 235 | 223 | 235 | 230 | 235 | 235 | 236 | 235 | 236 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 36.6 | 36.8 | 36.8 | 36.5 | 36.3 | 36.1 | 35.6 | 35.3 | 34.4 | 32.7 |

LITTLE AMERICA V
Hourly liean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| $\mathrm{Hr} \mathrm{~cm}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | :00 | 200 | 1,00 | §00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 34.5 | 34.7 | 34.8 | 34.8 | 34.7 | 34.5 | 34.; | 34.6 | 34.9 | 34.5 |
| 01 | 34.6 | 34.8 | 35.0 | 34.9 | 34.7 | 34.6 | 34.5 | 34.6 | 34.8 | 34.2 |
| 02 | 36.1 | 36.3 | 36.6 | 36.3 | 36.2 | 38.0 | 32.8 | 35.8 | 35.7 | 33.2 |
| ט) | 39.1 | 39.5 | 40.0 | 39 ¢ | $\cdots$ | 3. 4 | 39.1 | 38.9 | 38.3 | 34.5 |
| 134 | 40.? | 46.7 | 41.7 |  |  | J. 5 | 40.0 | 39.5 | 37.5 | 34.0 |
| OS | \%0.7 | 42.1 | - | $\cdots$ | , | 40.5 | 40.1 | 39.6 | 33.2 | 34.5 |
| O6 | 4, \% S | 40.9 | $\cdots$ | 4 | 40.7 | $\therefore 0.3$ | 39.9 | 39.5 | 37.8 | 34.8 |
| 07 | 39.4 | 39.7 | 39.9 | 39.6 | 30.6 | 39.4 | 39.3 | 39.3 | 38.8 | 35.1 |
| 08 | 37.9 | 38.1 | 38.2 | 38.1 | 38.0 | 37.8 | 37.7 | 37.7 | 37.5 | 34.8 |
| 09* | 39.8 | 40.1 | 40.4 | 40.1 | 40.0 | 39.7 | 39.1 | 38.0 | 36.3 | 34.2 |
| 10* | 40.9 | 41.0 | 43.1 | 40.7 | 40.3 | 39.3 | 37.8 | 35.6 | 35.5 | 34.7 |
| 11* | 40.5 | 40.5 | 40.5 | 39.9 | 39.3 | 37.9 | 36.7 | 35.9 | 35.9 | 34.6 |
| 12* | 40.4 | 40.5 | 40.2 | 39.7 | 39.3 | 38.5 | 37.6 | 36.3 | 36.0 | 34.6 |
| 13 | 41.1 | 41.3 | 41.1 | 40.7 | 40.3 | 39.8 | 39.3 | 38.5 | 38.3 | 36.6 |
| 14* | 40.6 | 40.8 | 40.6 | 40.3 | 40.1 | 39.8 | 39.5 | 39.2 | 39.3 | 37.7 |
| 15* | 40.7 | 40.9 | 40.9 | 40.8 | 40.6 | 40.4 | 40.4 | 40.5 | 40.6 | 39.5 |
| 16 | 41.4 | 41.6 | 41.7 | 41.5 | 41.4 | 41.2 | 41.2 | 41.2 | 41.4 | 40.7 |
| 17 | 43.3 | 43.6 | 43.7 | 43.6 | 43.5 | 43.3 | 43.2 | 43.2 | 43.4 | 42.6 |
| 18 | 43.7 | 44.1 | 44.0 | 43.8 | 43.7 | 43.5 | 43.3 | 43.4 | 43.7 | 42.6 |
| 19 | 44.9 | 45. ? | 45.3 | 45.1 | 45.1 | 45.0 | 44.8 | 45.0 | 45:3 | 44.5 |
| 20 | 45.3 | 45.6 | 45.7 | 45.6 | 45.5 | 45.3 | 45.2 | 45.3 | 45.6 | 44.5 |
| 21 | 46.0 | 40.4 | 46.7 | 46.8 | 46.8 | 46.5 | 46.5 | 46.8 | 47.2 | 46.7 |
| 22 | 46.7 | 47.2 | 47.4 | 47.5 | 47.5 | 47.3 | 47.2 | 47.3 | 47.8 | 47.3 |
| 23 | 47.4. | 48. $\mathrm{r}_{\text {- }}$ | 48.2- | 48.1. | 48.1* | 48.0 | 47.7= | 47.8= | 48.10 | 1.7.9 $=$ |


| Nurber <br> of Obs | 441 | 440 | 441 | 439 | 439 | 440 | 440 | 440 | 441 | 441 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily <br> Mean | 41.0 | 41.2 | 41.4 | 41.1 | 41.0 | 40.7 | 40.3 | 40.0 | 39.8 | 38.1 |

little america $V$
Hourly Mean Temperatures

| cm | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | $50.8+$ | 51,34 | $51.5+$ | 51.34 | 51.34 | 51.1+ | $31.0+$ | 51.24 | $51.7+$ | $51.3+$ |
| 01 | 51.6 | 52.0 | 52.2 | 52.2 | 52.1 | 51.9 | 51.8 | 52.1 | 52.5 | 52.0 |
| 02 | 51.9 | 52.5 | 52.7 | 52.6 | 52.6 | 52.4 | 52.3 | 52.5 | 52.9 | 52.4 |
| 03 | 52.5 | 53.0 | 53.2 | 53.2 | 53.2 | 53.0 | 52.9 | 53.1 | 53.6 | 53.1 |
| 04 | 52.9 | 53.4 | 53.6 | 53.6 | 53.6 | 53.4 | 53.4 | 53.5 | 53.9 | 53.5 |
| 05 | 53.2 | 53.6 | 53.9 | 53.8 | 53.8 | 53.6 | 53.5 | 53.6 | 54.0 | 53.4 |
| 06 | 53.3 | 53.5 | 53.7 | 53.6 | 53.6 | 53.4 | 53.3 | 53.4 | 53.8 | 52.9 |
| 07 | 53.1 | 53.5 | 53.6 | 53.5 | 53.4 | 53.3 | 53.1 | 53.2 | 53.5 | 52.9 |
| 08 | 33.0 | 53.3 | 53.5 | 53.3 | 53.3 | 53.1 | 53.1 | 53.1 | 53.5 | 52.7 |
| 09* | 52.9 | 53.1 | 53.2 | 53.1 | 53.1 | 52.8 | 52.7 | 52.7 | $\bigcirc 3.0$ | 52.3 |
| 10* | 52.6 | 52.7 | 52.8 | 52.7 | 52.5 | 52.3 | 52.2 | 52.0 | 52.4 | 51.5 |
| 11* | 53.2 | 53.3 | 53.6 | 53.5 | 53.4 | 53.2 | 53.1 | 53.1 | 53.3 | 52.4 |
| 12* | 53.4 | 53.7 | 54.0 | 53.8 | 53.7 | 53.5 | 53.4 | 53.2 | 53.4 | 52.5 |
| 13 | 52.8+ | $53.2+$ | $53.4+$ | 53.3+ | 53.24 | 52.9+ | 52.9+ | 52.8+ | 52.84 | 52.04 |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 | 52.5 | 53.0 | 53.3 | 53.1 | 52.9 | 52.8 | 52.6 | 52.7 | 53.0 | 52.5 |
| 16 | 53.1 | 53.6 | 53.8 | 53.5 | 53.3 | 53.3 | 53.2 | 53.3 | 53.7 | 53.1 |
| 17 | 53.2 | 53.6 | 53.8 | 53.5 | 53.2 | 53.3 | 53.2 | 53.3 | 53.7 | 53.1 |
| 18 | 52.9 | 53.2 | 53.5 | 53.1 | 52.9 | 52.8 | 52.7 | 52.9 | 53.2 | 52.7 |
| 19 | 52.9 | 53.1 | 53.4 | 53.0 | 52.9 | 52.7 | 52.7 | 52.9 | 53.1 | 52.7 |
| 20 | 52.8 | 53.0 | 53.3 | 52.9 | 52.8 | 52.8 | 52.6 | 57.6 | 53.0 | 52.3 |
| 21 | 52.9 | 53.0 | 53.3 | 53.0 | 53.0 | 52.8 | 52.6 | 52.7 | 53.0 | 52.2 |
| 22 | 52.9 | 53.1 | 53.4 | 53.1 | 53.0 | 53.0 | 52.7 | 52.8 | 53.0 | 52.2 |
| 23 | 52.9 | 53.0 | 53.4 | 53.0 | 52.9 | 52.9 | 52.6 | 52.7 | 52.8 | 51.9 |

[^4]LITTLE AMERICA V
Hourly Mesn Tempe atures（ $-{ }^{\circ} \mathrm{C}$ ）

| 응 |  <br>  | $\stackrel{\infty}{ \pm}$ |
| :---: | :---: | :---: |
| O |  <br>  | $\stackrel{\infty}{ \pm}$ |
| $\underset{\sim}{\mathcal{N}}$ |  <br>  | $\stackrel{\infty}{ \pm}$ |
| $8$ |  <br>  | $\stackrel{\infty}{*}$ |
| 0 | ～かOOTOQEmomNNEENOONOMO』 <br>  | き |
| $\stackrel{\sim}{\sim}$ |  <br>  | $\underset{\sim}{\infty}$ |
| $\stackrel{\sim}{\sim}$ |  <br>  | $\stackrel{\infty}{\sim}$ |
| 0 |  <br>  | $\stackrel{7}{5}$ |
| $m$ |  <br>  | $\underset{-7}{*}$ |
| 岃 |  <br>  | $\stackrel{\infty}{ \pm}$ |
| $E$ |  | \％ |

LITTLE: MMERIC: $V$ Hourly Mean Temperatures ( ${ }^{\circ} \mathrm{C}$ )

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 44.3 | 44.5 | 44.7 | 44.5 | 44.4 | 44.3 | 44.2 | 44.3 | 44.8 | 44.5 |
| 01 | 44.3 | 44.3 | 44.7 | 44.4 | 44.3 | 44.1 | 44.1 | 44.3 | 44.6 | 44.3 |
| 02 | 43.7 | 43.7 | 44.1 | 43.7 | 43.6 | 43.4 | 43.4 | 43.5 | 43.9 | 43.6 |
| 03 | 42.9 | 43.0 | 43.3 | 43.0 | 42.8 | 42.7 | 42.7 | 42.8 | 43.1 | 42.8 |
| 04 | 42.6 | 42.7 | 42.9 | 42.8 | 42.6 | 42.5 | 42.5 | 42.7 | 43.0 | 42.7 |
| 05 | 42.8 | 42.8 | 43.1 | 43.0 | 42.9 | 42.9 | 42.9 | 43.1 | 43.5 | 43.2 |
| 06 | 42.7 | 42.8 | 13.0 | 43.0 | 42.9 | 42.8 | 42.9 | 43.0 | 43.4 | 43.1 |
| 07 | 42.0- | 42.0- | 42.2- | 42.1- | 42.1 - | 42.0 - | 42.0 - | 42.2- | $42.6-$ | 42.4 |
| 08 | 41.2 | 41.2 | 41.4 | 41.4 | 41.2 | 41.2 | 41.3 | 41.4 | 41.8 | 2,1.6 |
| 09 | 41.2 | 41.2 | 41.5 | 41.3 | 41.2 | 41.2 | 41.4 | 41.4 | 41.7 | 41.5 |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 | 40.2+ | 40.14 | $40.7+$ | $40.4+$ | 40.3+ | $40.3+$ | 40.3* | 40.44 | $40.8+$ | 40.54 |
| 19 | 40.1 | 40.2 | 40.6 | 40.2 | 40.1 | 40.0 | 40.1 | 40.2 | 40.6 | 40.2 |
| 20 | 41.0 | 41.1 | 41.4 | 41.2 | 41.0 | 41.0 | 41.0 | 41.1 | 41.5 | 41.2 |
| 21* | 41.5 | 41.7 | 42.0 | 41.1 | 42.6 | 41.6 | 41.6 | 41.7 | 42.1 | 41.3 |
| 22 | 42.1 | 42.2 | 42.6 | 42.3 | 42.2 | 42.2 | 42.2 | 42.3 | 42.7 | 1.2 .4 |
| 23 | 43.1 | 43.2 | 43.7 | 43.3 | 43.1 | 43.1 | 43.1 | 43.1 | -3.5 | 43.2 |
| Number of Obs | 281 | 281 | 281 | 281 | 281 | 2.81 | 281 | 281 | 291 | 281 |
| Daily <br> Mean | 42.3 | 42.4 | 42.7 | 42.4 | 42.3 | 42.2 | 42.3 | 42.4 | 42.8 | 42.5 |

l.1TTLE AMERICA $V$
Heurly Mean Tenperiture: ( ${ }^{\circ} \mathrm{C}$ )
9 July 1907

|  | Sfe | 3 | 6 | 12 | 2' | 50 | 100 | 200 | 4.00 | ${ }^{\circ} \mathrm{O}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 436 | 43.6 | 4.4 .2 | 43.7 | 43.5 | 43.5 | 43.5 | 43.5 | 43.9 | 435 |
| 01 | 43.8 | 43.9 | 44.3 | 43.9 | 43.7 | 43.7 | 43.7 | 43.7 | $\therefore 8.4$ | . 3 \% |
| 03 | 44.4 | 44.3 | 44.9 | 4.4 .4 | 44.3 | 44.2 | 4.4.3 | 44.3 | 4, 4.6 | $\therefore i 6$. |
| 03 | 15.0 | 45.0 | 45.6 | 45.1 | 45.0 | 44.9 | 4.4 .8 | 44.9 | 45. 3 | 4,4.9 |
| 04 | 45.2 | 43.3 | 45.8 | 45.3 | 45.2 | 45.1 | (4.0 | 45.1 | 45.5 | 95.1 |
| 05 | 45.2 | 43.7 | 45.7 | 45.3 | 45.1 | 45.0 | 44.9 | 45.0 | $45:$ | 45.6 |
| 06 | 45.2 | 45.3 | 45.7 | 45.2 | 45.1 | 45.0 | 44.9 | 45.0 | 45.3 | 4.4 |
| 07 | 45.3 | 45.4 | 45.9 | 45.4 | 45.2 | 65. 1 | 45.0 | 45.0 | 4.5. 4 | 44.9 |
| 08 | 45.5 | 45.5 | 46.0 | 45.4 | 45.2 | 35.0 | 15.1 | 45.1 | 4, i | :5. |
| 09 | 45.6 | 45.6 | 46.1 | 45.5 | 4). 3 | 45.2 | 4.5.3 | 45.2 | (i) : | is 1 |
| 10* | 45.7 | 45.7 | 46.3 | 45.7 | 45.4 | 45.4 | 45.1 | 45.3 | $\therefore 3.6$ | A. 2 |
| 11 | 45.7 | 45.9 | 46.3 | 45.8 | 45.6 | 45.6 | (4). 7 | 45.6 | \% 0 | $\therefore \%$ |
| 12 | 46.0 | 46.0 | 46.5 | 46.1 | 45.8 | 勺. 8 | (4).3 | 45.8 | 419. | $\because 6$ |
| 13 | 46.3 | 46.4 | 46.1 | 46.5 | $4{ }^{3} .2$ | 46.2 | 46.3 | 46.3 | \%ib | +6. |
| 14* | 46.8 | 46.8 | 47.5 | 46.9 | 46.7 | 40.6 | 46.6 | 46.6 | $\therefore 7.1$ | 46.4 |
| 15 | 1.1 .1 | 47.1 | 47.8 | 47.1 | 46.5 | 410 | 46.9 | 46.9 | 473 | 46.6 |
| 16 | 47.4 | 47.5 | 48.0 | 47.5 | 47.2 | $4 i .2$ | 47.2 | $4 \%$ ? | \$7.6 | 46.8 |
| 17* | 47.8 | 47.8 | 48.5 | 47.8 | 47.6 | 47.6 | 47.6 | 37.7 | 17.'9 | $\therefore 7.4$ |
| 18 | 47.9 | 48.0 | 48.7 | 47.9 | 47.8 | 47.7 | $\therefore 1.7$ | $\therefore 7.7$ | 49.1 | 41.6 |
| 19 | 47.9 | 47.9 | 48.4 | 47.8 | 47.6 | 41.) | 47.6 | 61.6 | -1.0 | 17. |
| 20 | 47.5 | 47.5 | 47.9 | 47.4 | 473 | 4.7.: | ¢1. 1 | .17.1 | : 7 | $\therefore$ io. ${ }^{\text {c }}$ |
| 21 | 47.2 | 47.2 | 47.6 | 47.0 | 16.8 | 46.1 | 46.1 | $\therefore 6.6$ | . 6.8 | 46.0 |
| 22 | 47.1 | 47.0 | 47.6 | 46.9 | 46.6 | 46.9 | 46.'1 | 45. ${ }^{\text {a }}$ | 46.3 | 16.1 |
| 23 | 46.8 | 46.8 | 47.3 | 46.7 | 46.5 | 46.4 | 46.4 | 46.3 | 46.6 | 26.0 |

[^5]LITTLE AMERICA V
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

| Hr | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 46.9 | 47.0 | 47.5 | 46.9 | 46.6 | 46.5 | 46.5 | 46.5 | 46.8 | 46.2 |
| 01 | 47.1 | 47.1 | 47.6 | 46.9 | 46.8 | 46.6 | 46.6 | 46.6 | 46.8 | 40.2 |
| 02 | 47.6 | 47.6 | 47.9 | 47.4 | 47.3 | 47.1 | 47.1 | 47.0 | 47.4 | 46.9 |
| 03 | 48.0 | 48.0 | 48.5 | 47.9 | 47.8 | 47.5 | 47.6 | 47.6 | 48.0 | 47.4 |
| 04 | 48.6 | 48.6 | 49.0 | 48.6 | 48.4 | 48.2 | 48.2 | 48.1 | 48.6 | 47.9 |
| 05 | 48.5 | 48.6 | 48.9 | 48.6 | 48.3 | 48.1 | 48.0 | 48.1 | 48.6 | 48.1 |
| 06 | 48.7 | 48.7 | 49.1 | 48.5 | 48.5 | 48.3 | 48.3 | 48.3 | 48.7 | 48.2 |
| 07 | 48.7 | 48.7 | 49.0 | 48.7 | 48.5 | 48.4 | 48.3 | 48.4 | 48.8 | 48.2 |
| 08 | 48.8 | 48.8 | 49.2 | 48.8 | 48.7 | 48.5 | 48.5 | 48.5 | 48.9 | 48.2 |
| 09* | 48.5 | 48.5 | 49.0 | 48.4 | 48.3 | 48.2 | 48.2 | 48.1 | 48.5 | 48.0 |
| 10 | 48.5 | 48.6 | 49.1 | 48.6 | 48.3 | 48.2 | 48.2 | 48.1 | 48.6 | 47.9 |
| 11* | 48.4 | 48.4 | 48.9 | 48.3 | 48.1 | 48.0 | 47.9 | 47.9 | 48.2 | 47.5 |
| 12* | 48.1 | 48.2 | 48.6 | 48.0 | 47.8 | 47.6 | 47.5 | 47.5 | 47.9 | 47.1 |
| 13* | 47.3 | 47.4 | 47.6 | 47.2 | 47.0 | 46.8 | 46.6 | 46.8 | 47.0 | 46.3 |
| 14* | 47.2 | 47.3 | 47.6 | 47.2 | 46.8 | 46.8 | 46.6 | 46.6 | 46.9 | 45.9 |
| 15 | 46.9 | 46.9 | 47.3 | 46.7 | 46.5 | 46.3 | 46.1 | 46.1 | 46.3 | 45.1 |
| 16* | 46.8 | 46.9 | 47.2 | 46.7 | 46.4 | 46.1 | 46.0 | 45.9 | 46.1 | 45.1 |
| 17 | 47.7 | 47.7 | 48.3 | 47.7 | 47.4 | 47.3 | 47.1 | 47.1 | 47.4 | 46.5 |
| 18 | 48.8 | 48.9 | 49.5 | 48.8 | 48.6 | 48.4 | 46.4 | 48.2 | 48.6 | 47.7 |
| 19 | 49.3 | 49.3 | 49.9 | 49.2 | 49.0 | 48.7 | . 48.8 | 48.7 | 49.1 | 48.2 |
| 20 | 50.2 | 50.2 | 50.8 | 50.2 | 50.1 | 49.8 | 49.8 | 49.8 | 40.1 | 49.3 |
| 21* | 51.3 | 51.5 | 52.2 | 51.4 | 51.3 | 51.0 | 51.0 | 50.9 | 51.5 | 50.3 |
| 22 | 51.3 | 51.3 | 51.9 | 51.3 | 51.1 | 50.9 | 50.8 | 50.7 | 51.2 | 50.0 |
| 23 | 51.9 | 52.1 | 52.7 | 52.1 | 52.0 | 51.8 | 51.7 | 51.5 | 52.1 | 50.8 |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 449 | 449 | 449 | 449 | 448 | 448 | 448 | 448 | 448 | 448 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 48.5 | 48.6 | 49.0 | 48.5 | 48.3 | 48.1 | 48.1 | 48.0 | 48.4 | 47.6 |

LITILE ANERICA V
Hourly llean Temperature'; ( ${ }^{\circ} \mathrm{C}$ )

| $\mathrm{Hr}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 52.8 | 52.9 | 53.6 | 53.0 | 53.0 | 52.7 | 52.6 | 52.6 | 53.2 | 52.1 |
| 01 | 53.5 | 53.6 | 54.2 | 53.8 | 53.7 | 53.6 | 53.4 | 53.5 | 54.1 | 53.3 |
| 02 | 53.8 | 54.0 | 54.7 | 54.1 | 54.1 | 53.8 | 53.7 | 53.8 | 54.4 | 53.6 |
| 03 | 54.1 | 54.2 | 54.8 | 54.4 | 54.2 | 54.0 | 53.9 | 54.1 | 54.7 | 53.7 |
| 04 | 54.1 | 54.4 | 55.1 | 54.5 | 54.5 | 54.2 | 54.1 | 54.3 | 54.9 | 53.8 |
| 05 | 54.3 | 54.4 | 55.1 | 54.6 | 54.5 | 54.3 | 54.2 | 54.3 | 54.8 | 52.9 |
| 06 | 54.1 | 54.3 | 55.0 | 54.4 | 54.4 | 54.2 | 54.0 | 54.0 | 54.2 | -9.6 |
| 07 | 54.0 | 54.1 | 54.9 | 54.3 | 54.1 | 53.8 | 53.7 | 3 3.5 | 53.1 | 45.8 |
| 08 | 53.8 | 54.0 | 54.6 | 54.1 | 53.9 | 53.7 | 53.6 | 53.5 | 53.0 | 46.2 |
| 09 | 53.6 | 53.7 | 54.3 | 53.7 | 53.6 | 53.4 | 53.1 | 52.7 | 51.3 | 44.8 |
| 10* | 53.0 | 53.1 | 53.6 | 53.1 | 52.9 | 52.6 | 52.6 | 52.0 | 49.9 | 43.8 |
| 11* | 52.8 | 52.9 | 53.4 | 52.8 | 52.8 | 52.6 | 52.2 | 52.0 | 50.5 | $4 i .5$ |
| 12 | 52.5 | 52.7 | 53.2 | 52.5 | 52.4 | 52.1 | 51.8 | 51.6 | 49.8 | 43.0 |
| 13 | 52.5 | 52.7 | 53.0 | 52.5 | 52.3 | 52.0 | 51.7 | 51.2 | 48.7 | 42.6 |
| 14* | 52.3 | 52.4 | 52.9 | 52.2 | 52.0 | 51.6 | 51.1 | 50.2 | 47.9 | 42.1 |
| 15* | 52.0 | 52.1 | 52.8 | 51.9 | 51.7 | 51.4 | 50.8 | 50.0 | 47.7 | 41.0 |
| 16* | 52.0 | 52.0 | 52.6 | 51.9 | 51.6 | 51.3 | 50.9 | 50.3 | 48.7 | 42.2 |
| 17 | 51.2 | 51.3 | 52.9 | 51.0 | 50.7 | 50.4 | 50.0 | 49.1 | 47.4 | 40.8 |
| 18 | 50.7 | 50.7 | 51.4 | 50.4 | 50.2 | 49.3 | 49.5 | 48.7 | 46.3 | 39.7 |
| 19 | 50.5 | 50.6 | 50.9 | 50.1 | 49.9 | 49.3 | 48.7 | 46.8 | 43.9 | 38.5 |
| 20 | 50.2 | 50.1 | 50.7 | 49.9 | 49.7 | 49.2 | 48.8 | 48.3 | 40.6 | 39.8 |
| 21 | 49.3 | 49.2 | 49.7 | 48.7 | 48.7 | 48.1 | 48.0 | 47.4 | $\ddagger 6.1$ | 39.5 |
| 22 | 49.0 | 48.9 | 49.3 | 48.5 | 43.4 | 48.0 | 47.8 | 47.4 | 46.8 | 40.7 |
| 23 | 48.3 | 48.1 | 43.6 | 47.7 | 47.5 | 46.9 | $\therefore 6.6$ | 45.7 | 43.9 | 37.4 |
| Number of Obs | 448 | 448 | 448 | 448 | 448 | 447 | 448 | 447 | 448 | 448 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 52.3 | 52.4 | 52.9 | 52.2 | 52.1 | 51.8 | 51.5 | 51.1 | 50.1 | 45.1 |



| LITTLE AMERICA $v$ Hourly Mean Temperature, ( $\left.-{ }^{0} \mathrm{C}\right)$ $1 J$ July 1957 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Hr}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21* | $30 \quad 3$ | 30.5 | 30.i | 30.5 | 30.3 | 30. | 30.2 | 30.4 | 30.5 | 30.1 |
| 22 | 30.1 | 30.3 | 30.5 | 30.2 | 30.0 | 29.4 | 29.9 | 30.1 | 30.2 | 29.8 |
| 23 | 29.7 | 29.8 | 30.0 | 29.7 | 29.5 | 29.4 | 29.4 | 29.6 | 29.7 | 29.3 |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 30.0 | 30.2 | 30.4 | 30.1 | 29.9 | 29.8 | 29.8 | 30.0 | 30.1 | 29.7 |

Llithee amekica V
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

| $\mathrm{cm}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 29.4 | 29.6 | 29.9 | 29.6 | 29.4 | 29.3 | 29.4 | 29.5 | 29.7 | 29.4 |
| 01 | 29.2 | 29.3 | 29.6 | 29.3 | 29.1 | 29.0 | 29.1 | 29.2 | 29.3 | 29.0 |
| 02 | 28.4 | 28.5 | 28.9 | 28.6 | 28.4 | 28.3 | 28.4 | 28.6 | 28.7 | 28.4 |
| 03 | 29.7 | 29.9 | 30.3 | 30.1 | 29.9 | 29.0 | 30.0 | 30.2 | 30.4 | 30.1 |
| 04 | 30.3 | 30.5 | 30.8 | 30.6 | 30.4 | 30.4 | 30.4 | 30.6 | 30.9 | 30.4 |
| 35 | 29.6 | 29.8 | 30.1 | 22.3 | 29.6 | 29.4 | 29.5 | 29.6 | 29.9 | 29.5 |
| 06 | 29.0 | 29.1 | 29.5 | 29.2 | 29.0 | 28.9 | 28.9 | 29.1 | 29.4 | 29.0 |
| 07 | 29.4 | 29.6 | 29.8 | 29.5 | 29.3 | 29.3 | 29.3 | 29.6 | 30.0 |  |
| 08 | 28.6 | 28.6 | 28.8 | 28.4 | 28.2 | 28.1 | 28.2 | 28.4 | 23.3 |  |
| 9 | 27.9 | 27.9 | 27.6 | 27.5 | 27.3 | 27.2 | 27.2 | 27.4 | 27.6 |  |
| 10 | 27.4 | 27.5 | 27.8 | 27.5 | 27.3 | 27. 2 | 27.3 | 27.5 | 27.9 |  |
| 11 | 28.3 | 28.5 | 28.8 | 28.6 | 28.4 | 28.3 | 28.4 | 28.6 | 29.0 |  |
| 12* | 28.9 | 29.1 | 29.4 | 29.2 | 29.0 | 29.0 | 29.1 | 25.4 | 29.7 | 29.3 |
| 13 | 29.4 | 29.5 | $3) .0$ | 29.8 | 29.6 | 29.5 | 29.6 | 29.5 | 30.3 | 29.7 |
| 14 | 29.7 | 29.9 | 30.3 | 30.1 | 29.9 | 29.8 | 29.9 | 30.1 | 30.5 | 29.9 |
| 15* | 29.6 | 29.8 | 30.2 | 30.0 | 29.8 | 29.7 | 29.3 | 30.0 | 30.4 | 30.0 |
| 16 | 29.8 | 30.0 | 30.4 | 30.2 | 30.0 | 30.0 | 30.1 | 30.3 | 30.7 | 30.3 |
| 17 | 30.3 | 31.0 | 31.4 | 31.1 | 31.0 | 30.9 | 31.0 | 31.2 | 31.6 | 31.1 |
| 18* | 31.6 | 31.8 | 32.2 | 32.0 | 31.0 | 31.8 | 31.8 | 32.0 | 32.3 | 31.9 |
| 19* | 31.0 | 31.2 | 31. | 31.4 | 31.3 | 31.3 | 31.3 | 31.6 | 32.0 | 31.6 |
| 20* | 30.8 | 30.9 | 31.1 | 31.0 | 31.0 | 308 | 30.3 | 31.1 | 31 \% | 31.1 |
| 71 | 30.5 | 30.6 | 30.8 | 30.7 | 30.6 | 30.1 | 30. 2 | 30.6 | 30.8 | 30.6 |
| 22* | 30.6 | 30.7 | 31.1 | 30.9 | 30.8 | 30.8 | 30.9 | 31.0 | 31.3 | 31.0 |
| 23 | 30.2 | 30.4 | 30.7 | 30.5 | 30.4 | 30.3 | 30.4 | 30.6 | 30.9 | 30.8 |
| Number of Obs | 444 | 444 | 444 | 444 | 444. | 444 | 444, | 444 | 4.44 | 353 |
| Daily Mean | 29.6 | 29.7 | 30.0 | 29.8 | 29.6 | 20.6 | 29.6 | 29.8 | 30.1 | 30.1 |

I. ITTLE ME! XCA $V$
(3n-) ;axns did"ul uraw Kynon

| c | Stc | 3 | 6 | 12 | 25 | נ | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 29.6 | 29.1 | 30.0 | 29.9 | 29.8 | 29.8 | 29.9 | 30.1 | 30.4 | 30.2 |
| 01 | 29.5 | 29.6 | 29.9 | 29.1 | 29. | 29.5 | 29.5 | 29.7 | 30.0 | 29.7 |
| 02 | 29.2 | 29.3 | 29.6 | 29.4 | 29.2 | 29.2 | 29.2 | 29.4 | 29.6 | 29.4 |
| 03 | 29.1 | 29.1 | 29.4 | 29.1 | 29.0 | 28.9 | 29.0 | 29.1 | 29.3 | 29.1 |
| 04 | 29.1 | 29.2 | \%99. | 29.2 | 29.1 | 29.0 | 29.1 | 29.2 | 29.5 | 29.2 |
| 05 | 28.9 | 29.0 | 29.3 | 29.1 | 28.4 | 28.8 | 23.8 | 29.0 | 29.2 | 28.9 |
| 06 | 27.8 | 28.0 | 28.2 | 28.1 | 27.. | 27.3 | 27.9 | 28.0 | 28.2 | 27.9 |
| 07 | 248 | 24.7 | 24.8 | 24.3 | 24.1 | 24.0 | 23.9 | 23.9 | 23.7 | 23.3 |
| v9 | 21.1 | 20.9 | 21.2 | 20.6 | 20.5 | 20.3 | 20.3 | 20.2 | 20.2 | 26.0 |
| 09 | 20.6 | 20.6 | 20.8 | 20.4 | 20.2 | 20.2 | 20.1 | 20.2 | 20.2 | 18.5 |
| 10 | 21.3 | 21.2 | 21.4 | 21.1 | 20.9 | 21.0 | 20.9 | 21.0 | 21.0 | 20.64 |
| 11 | 21.6 | 21.5 | 21.8 | 21.5 | 21.4 | 21.4 | 21.3 | 21.4 | 21.5 | 21.2 |
| 12 | 21.6 | 21.6 | 21.8 | 21.5 | 21.3 | 21.3 | 21.3 | 21.3 | 21.4 | 21.2 |
| 13 | 21.7 | 21.7 | 21.9 | 21.6 | 21.4 | 21.5 | 21.4 | 21.4 | 21.5 | 22.4 |
| 14 | 22.3 | 22.2 | 22.3 | 22.2 | 22.0 | 22.1 | 22.0 | 22.0 | 22.1 | 22.1 |
| 15* | 22.8 | 22.7 | 23.0 | 22.6 | 22. | 22.5 | 22.4 | 22.4 | 22.4 | 22.4 |
| 1'0* | 23.1 | 23.1 | 23.3 | 23.0 | 22.8 | 22.9 | 22.r | 22.7 | 22.8 | 22.7 |
| 17* | 23.1 | 23.2 | 23.3 | 23.0 | 22.8 | 22.8 | 22.8 | 22.7 | 22.8 | 22.7 |
| 18* | 23.6 | 23.6 | 23.8 | 23.5 | 23.3 | 23.3 | 23.3 | 23.2 | 23.2 | 23.0 |
| 29* | 24.3 | 24.4 | 24.6 | 24.3 | 24.2 | 24.2 | 24, 3 | 24.2 | 24.2 | 23.9 |
| 20* | 24.5 | 24.6 | 24.8 | 24.5 | 24.4 | 24.3 | 24.4 | 24.3 | 24.4 | 23.9 |
| 21 | 24.7 | 24.8 | 25.0 | 24.7 | 24.5 | 24.3 | 24.6 | 24.) | 24.6 | 24.3 |
| 22 | 24.6 | 24.7 | 24.9 | 24.7 | 24.) | 24.4 | 24.5 | 24.5 | 24.5 | 24.3 |
| 23 | 24.8 | 24.8 | 25.1 | 24.7 | 24.7 | 24.7 | 24.7 | 24.6 | 24.8 | 24.6 |


| Number <br> of Obs <br> Daily | 448 | 448 | 448 | 448 | 448 | 448 | 448 | 448 | 448 | 433 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | 24.7 | 24.8 | 25.0 | 24.7 | 24.5 | 24.5 | 24.5 | 24.5 | 24.7 | 24.5 |

LITTLE AMERICA V

| 8 |  <br>  |
| :---: | :---: |
| 8 |  <br>  |
| 우N |  <br>  |
| o |  <br>  |
| 은 |  <br>  |
| $\stackrel{\sim}{n}$ |  <br>  |
| $\cdots$ |  <br>  |
| $\checkmark$ |  <br>  |
| $m$ |  <br>  |
| $\stackrel{u}{4}$ |  <br>  |
|  |  |

[^6]16 July 1957
LITTLE AMERICA
Hourly Mean Temperatures

| $\mathrm{Hr}^{\mathrm{cma}}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 40.1 | 40.8 | 40.8 | 40.4 | 40.5 | 40.1 | 40.0 | 40.2 | 40.2 | 39.8 |
| 01 | 39.4 | 40.0 | 40.0 | 39.5 | 39.4 | 39.2 | 39.1 | 39.2 | 39.3 | 38.9 |
| 02 | 40.2 | 40.7 | 40.7 | 40.4 | 40.3 | 40.1 | 40.0 | 40.1 | 40.3 | 39.9 |
| 03 | 40.9 | 41.2 | 41.1 | 40.5 | 40.3 | 40.2 | 40.0 | 40.2 | 40.4 | 40.1 |
| 04 | 41.1 | 41.4 | 41.5 | 40.7 | 40.6 | 40.3 | 40.0 | 40.1 | 40.2 | 39.6 |
| 05 | 4.3 .4 | 42.9 | 43.2 | 42.6 | 42.4 | 42.0 | 41.5 | 40.9 | 40.1 | 39.0 |
| 06 | 42.1 | 42.6 | 42.7 | 42.1 | 41.8 | 41.3 | 40.4 | 38.9 | 37.4 | 35.6 |
| 07 | 41.4 | 41.9 | 41.8 | 39.7 | 39.0 | 37.6 | 35.2 | 35.5 | 35.0 | 33.7 |
| 08 | 38.3 | 38.4 | 38.4 | 36.9 | 36.2 | 35.2 | 34.5 | 33.9 | 33.8 | 32.4 |
| 09 | 37.9 | 37.4 | 37.7 | 36.1 | 35.6 | 35.1 | 34.6 | 34.2 | 33.7 | 31.3 |
| 10* | 36.3 | 35.7 | 36.0 | 34.6 | 34.1 | 33.6 | 33.2 | 328 | 32.2 | 30.1 |
| 11* | 34.5 | 33.8 | 34.2 | 33.0 | 32.6 | 32.1 | 31.8 | 31.3 | 30.8 | 29.5 |
| 12* | 33.5 | 32.8 | 33.2 | 32.0 | 31.7 | 31.3 | 31.1 | 30.7 | 30.3 | 29.1 |
| 13* | 32.5 | 31.9 | 32.3 | 31.2 | 30.8 | 30.5 | 30.2 | 30.1 | 29.7 | 28.6 |
| 14* | 32.5 | 31.9 | 32.5 | 31.3 | 30.9 | 30.5 | 30.3 | 29.9 | 29.6 | 28.1 |
| 15 | 31.8 | 31.1 | 31.6 | 30.5 | 30.2 | 29.8 | 29.5 | 29.2 | 28.8 | 27.5 |
| 16 | 28.7 | :8.1 | 28.5 | 27.7 | 27.5 | 27.1 | 27.1 | 26.9 | 26.8 | 26.1 |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |


| Number <br> of Obs | 318 | 318 | 318 | 318 | 318 | 318 | 318 | 318 | 318 | 318 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Da11y <br> Mean | 37.3 | 37.2 | 37.4 | 36.4 | 36.1 | 35.7 | 35.3 | 35.0 | 34.6 | 33.5 |


|  | Sfc | 3 | $\checkmark$ | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 | 33.3 | 33.3 | 33.6 | 33.2 | 32.9 | 32.8 | 32.7 | 32.8 | 33.0 | 32.2 |
| 03 | 36.1 | 36.0 | 36.3 | 35.9 | 35.7 | 35.5 | 35.3 | 35.5 | 35.5 | 34.7 |
| 04 | 37.2 | 27.0 | 37.2 | 36.8 | 36.5 | 36.4 | 36.1 | 36.3 | 36.2 | 35.1 |
| 05 | 36.6 | 36.4 | 36.6 | 36.1 | 35.9 | 35.7 | 35.6 | 35.7 | 35.6 | 34.5 |
| 06 | 37.6 | 37.4 | 37.6 | 37.1 | 36.9 | 36.7 | 36.5 | 36.8 | 367 | 35.9 |
| 07 | 37.7 | 37.4 | 37.7 | 37.1 | 37.0 | 36.8 | 36.6 | 36.9 | 36.9 | 36.1 |
| 08 | 37.3 | 36.9 | 37.1 | 36.6 | 36.3 | 36.1 | 36.0 | 36.2 | 36. | 35.5 |
| 09 | 36.8 | 36.3 | 36.6 | 35.9 | 35.8 | 35.6 | 35.4 | 35.7 | 35.7 | 35.0 |
| 10 | 34.6 | 34.0 | 34.2 | 33.5 | 33.2 | 33.0 | 33.0 | 33.1 | 331 | 32.3 |
| 11 | 35.9 | 35.4 | 35.7 | 35.0 | 34.8 | 34.6 | 34.4 | 34.7 | 34.7 | 33.8 |
| 12 | 36.4 | 36.1 | 36.3 | 35.9 | 35.5 | 35.4 | 35.2 | 35.6 | 35.5 | 34.8 |
| 13 | 36.0 | 35.7 | 35.7 | 35.4 | 35.2 | 35.0 | 34.9 | 35.1 | 35.1 | 34.5 |
| 14* | 36.4 | 36.: | 36.2 | 35.8 | 35.6 | 35.4 | 35.4 | 35.5 | 35.7 | 35.1 |
| 15* | 38.0 | 37.9 | 37.9 | 37.7 | 37.6 | 37.4 | 37.3 | 37.6 | 37.7 | 37.1 |
| 16* | 38.4 | 38.3 | 38.3 | 37.9 | 37.8 | 37.6 | 37.5 | 37.7 | 37.8 | 37.2 |
| 17* | 38.2 | 38.0 | 38.0 | 37.8 | 37.7 | 37.4 | 37.3 | 37.6 | 37.6 | 37.0 |
| 14 | 39.5 | 39.4 | 39.5 | 39.2 | 39.0 | 38.9 | 38.8 | 39.0 | 39.0 | 38.4 |
| 19 | 39.7 | 39.5 | 39.5 | 39.2 | 39.1 | 38.9 | 38.7 | 39.0 | 39.1 | 38.4 |
| 20 | 40.0 | 39.9 | 39.8 | 39.6 | 39.5 | 39.3 | 39.1 | 39.4 | 39.5 | 38.8 |
| 21 | 40.1 | 40.1 | 40.3 | 40.0 | 39.9 | 39.7 | 39.7 | 39.8 | 39.8 | 39.4 |
| 22 | 40.3 | 40.6 | 40.8 | 40.5 | 40.4 | 40.2 | 40.1 | 40.3 | 40.4 | 40.0 |
| 23 | 40.9 | 41.1 | 41.3 | 41.0 | 40.7 | 40.6 | 40.4 | 40.6 | 40.9 | 40.3 |
| Number of Obs | 411 | 411 | 411 | 411 | 411 | 411 | 411 | 411 | 411 | 411 |
| Dally <br> Mean | 37.6 | 37.4 | 37.6 | 37.2 | 37.0 | 36.8 | 36.7 | 36.9 | 36.9 | 36.2 |

LITTLE AMERICA $V$
（ $0_{0}-$ ）：amjriadural．unaw אinnoh

| O | \|runoo | $\stackrel{\sim}{-}$ |
| :---: | :---: | :---: |
| 8 |  | $\xrightarrow{\text { ® }}$ |
| $8$ |  <br>  | $\stackrel{\sim}{3}$ |
| $8$ |  | $\underset{\sim}{2}$ |
| 은 |  | \％ิ |
| $\sim$ |  <br>  | $\stackrel{0}{3}$ |
| $\stackrel{\sim}{\sim}$ |  <br>  | べ |
| $\bigcirc$ |  <br>  | $\underset{\sim}{7}$ |
| $m$ |  <br>  | ¢ |
| 岃 |  | $\stackrel{\mathrm{F}}{ }$ |
|  |  |  |

LIttle america $V$
Hourly Mean Temperatures $\left(-^{\circ} \mathrm{C}\right)$
20 July 1957

| ${ }^{\text {cm }}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 41.4 | 41.4 | 41.6 | 41.3 | 41.1 | 40.9 | 40.8 | 41.0 | 41.4 | 40.7 |
| 01 | 41.5 | 41.5 | 41.6 | 41.3 | 41.2 | 41.0 | 40.9 | 41.1 | 41.4 | 40.7 |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11. |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 | 40.1 | 40.1 | 40.0 | 39.9 | 39.8 | 39.6 | 39.5 | 39.7 | 39.8 | 39.5 |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 | 41.2 | 41.3 | 41.5 | 41.4 | 41.3 | 41.2 | 41.1 | 41.2 | 41.4 | 41.1 |
| 16 | 42.3 | 42.5 | 42.6 | 42.6 | 42.5 | 42.4 | 42.3 | +2.3 | 42.6 | 42.3 |
| 17 | 43.3 | 43.4 | 43.6 | 43.4 | 43.4 | 43.3 | 43.2 | 43.3 | 43.7 | 4.3 .3 |
| 18 | 44.3 | 44.5 | 44.7 | 44.6 | 44.5 | 4.4.\% | 44.4 | 44.5 | $\therefore 4.8$ | 14.5 |
| 19 | 45.0 | 45.3 | 45.5 | 45.4 | 45.3 | 45.2 | 45.2 | 45.2 | 45.6 | 45.3 |
| 20 | 45.0 | 45.3 | 45.5 | 45.4 | 45.4 | 45.3 | 45.3 | 45.4 | 45.8 | 45.5 |
| 21 | 43.9 | 44.3 | 44.6 | 44.5 | 44.5 | 44.4 | 44.4 | 44.6 | 45.0 | 44.8 |
| 22 | 44.0 | 44.2 | 44.4 | 44.3 | 44.3 | 44.2 | 44.2 | 44.3 | 44.6 | 44.3 |
| 23 | 44.1 | 44.3 | 44.5 | 44.4 | 44.3 | 44.2 | 44.2 | 44.3 | 44.5 | 44.3 |


| Number <br> of Obs <br> Datly | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean | 43.0 | 43.2 | 43.4 | 43.2 | 43.1 | 43.0 | 43.0 | 43.1 | 43.4 | 43.0 |

Hourly Mean Temperatures

| $\mathrm{Hr}{ }^{\text {c }}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 43.7 | 44.0 | 44.2 | 44.2 | 44.1 | 14.0 | 43.9 | 44.1 | 44.4 | 44.1 |
| 01 | 42.3 | 42.4 | 42.6 | 42.5 | 42.3 | 42.3 | 42.3 | 42.4 | 42.8 | 42.4 |
| 02 | 40.8 | 41.0 | 41.3 | 41.1 | 41.0 | 40.9 | 40.9 | 41.1 | 11.5 | 41.2 |
| 03 | 40.0 | 40.1 | 40.4 | 40.2 | 40.1 | 40.0 | 40.0 | 40.2 | 40.5 | 40.1 |
| 04 | 37.0 | 37.1 | 31.4 | 37.2 | 37.0 | 36.9 | 37.0 | 37.2 | 37.5 | 37.1 |
| $0{ }^{0}$ | 35.1 | 35.1 | 35.4 | 35.2 | 35.0 | 35.0 | 35.0 | 35.2 | 35.2 | 35.1 |
| 06 | 33.0 | 32.9 | 33.1 | 32.9 | 32.7 | 32.6 | 32.7 | 32.7 | 33.0 | 32.6 |
| 07 | 31.0 | 30.0 | 31.2 | 30.8 | 30.6 | 30.5 | 30.6 | 30.6 | 30.8 | 30.4 |
| 08 | 29.4 | 29.2 | 29.5 | 29.3 | 29.0 | 28.9 | 29.0 | 29.0 | 29.1 | 28.9 |
| 09 | 29.3 | 29.2 | 29.5 | 29.2 | 29.0 | 28.8 | 28.9 | 29.0 | 29.2 | 29.9 |
| 10 | 28.2 | 28.0 | 28.3 | 28.0 | 27.8 | 21.6 | 27.7 | 27.7 | 27.9 | 27.5 |
| 11 | 27.1 | 26.9 | 27.2 | 26.9 | 26.6 | 26.4 | 26.6 | 26.6 | 26.6 | 26.3 |
| 12* | 24.7* | 24.4* | 24.7\% | 24.0* | 23.74 | 23.50 | 23.74 | 23.54 | 23.4 | 23.04 |
| 13 | 23.8 | 23.5 | 23.3 | 23.1 | 22.3 | 22.7 | 22.7 | 22.4 | 22.2 | 21.6 |
| 14 | 22.0 | 21.7 | 21.7 | 20.9 | 20.j | 20.3 | 20.2 | 19.7 | 19.3 | 13.8 |
| 15* | 21.9 | 21.8 | 21.6 | 21.3 | 20.9 | 20.7 | 20.8 | 20.3 | 20.0 | 19.4 |
| 16* | 25.3 | 25.2 | 25.0 | 24.6 | 24.2 | 23.7 | 23.6 | 22.7 | 21.8 | 20.8 |
| 17 | 27.2 | 27.0 | 27.1 | 26.3 | 26.0 | 25.6 | 25.3 | 24.3 | 232 | 21.7 |
| 18* | 27.5 | 27.2 | 27.4 | 26.7 | 26.3 | 25.9 | 25.8 | 25.0 | 23.6 | 21.0 |
| 19* | 24.6 | 24.4 | 24.4 | 23.5 | 23.1 | 23.0 | 22.4 | $2 \therefore 5$ | 21.9 | 21.0 |
| 20 | 21.6 | 21.4 | 21.7 | 20.9 | 20.6 | 20.4 | 20.4 | 20.1 | 20.0 | 19.5 |
| 21 | 23.5 | 23.3 | 23.2 | 23.0 | 22.5 | 22.3 | 22. | 21.9 | 21.7 | 21.1 |
| 22 | 26.1 | 25.9 | 25.8 | 25.3 | 24.9 | 24.6 | 34.) | 24.0 | 23.6 | 22.8 |
| 23 | 23.1 | 22.8 | 2.2.8 | 22.4 | 22.2 | 22.0 | 22.1 | 21.8 | 21.8 | 21.4 |


| Nulnber <br> Of Obs <br> Dally <br> Mean | 432 | 432 | 432 | 432 | 432 | 439 | 432 | 432 | 432 | 432 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LITTLE AMERICA V
Hourly Mean Temperature: $\left({ }^{\circ} \mathrm{C}\right.$

| $\mathrm{cm}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 100 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 22.8 | 22.4 | 22.8 | 22.1 | 21.9 | 21.3 | 21.8 | 21.7 | 21.5 | 21.1 |
| 01 | 27. | 27.4 | 27.6 | 26.9 | 26.6 | 26.4 | 26.4 | 25.9 | 25.5 | 24.0 |
| 02 | 26.3 | 26.2 | 26.6 | 26.0 | 25.8 | 25.7 | 25.8 | 25.7 | 25.5 | 24.5 |
| 03 | 25.3 | 25.0 | 25.6 | 25.0 | 24.8 | 24.7 | 24.8 | 24.8 | 24.8 | 24.4 |
| 04 | 25. 3 | 25.7 | 26.3 | 25.9 | 25.6 | 25.6 | 25.7 | 25.7 | 25.9 | 25.6 |
| US | 26.4 | 26.5 | 21.0 | 26.5 | 26.3 | 26. 2 | 26.3 | 26.3 | 26.5 | 26.2 |
| 06 | $2 \cdot 5$ | 25.5 | 25.9 | 25.3 | 25.1 | 25.0 | 25.1 | 25.0 | 25.1 | 24.7 |
| 07 | 24.8 | 25.7 | 25.1 | 24.6 | 24.3 | 24.2 | 24.4 | 24.3 | 24.3 | 24.0 |
| 08 | 23.9 | 23.7 | 24.2 | 23.7 | 23.4 | 23.3 | 23.6 | 23.4 | 23.3 | 23.0 |
| 09 | 23.6 | 23.5 | 24.0 | 23.5 | 23.3 | 23.1 | 23.3 | 23.2 | 23.2 | 23.0 |
| 10 | 21.9 | 21.8 | 22.3 | 21.8 | 21.5 | 21.4 | 21.6 | 21.5 | 21.4 | 21.2 |
| 11 | 20.1 | 20.1 | 20.5 | 19.9 | 19.6 | 19.5 | 19.8 | 19.5 | 19.5 | 19.2 |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 | 18.0= | 17.9= | 17.9= | 17.8= | 17.7= | 17.6= | 17.7= | 17.6= | 17.6= | 17.5 m |
| 15 | 18.2 | 18.1 | 37.4 | 18.0 | 17.8 | 17.7 | 18.1 | 17.8 | 17.8 | 17.7 |
| 16 | 18.1 | 18.0 | 18.1 | 17.8 | 17.8 | 17.6 | 17.9 | 17.7 | 17.7 | 17.7 |
| 17 | 18.6 | 18.5 | 18.6 | 18.4 | 18.3 | 18.2 | 18.6 | 18.3 | 18.3 | 18.3 |
| 19* | 18.7 | 18.6 | 13.9 | 18.6 | 18.4 | 18.3 | 18.5 | 18.4 | 18.5 | 18.4 |
| 19 | 18.7 | 18.4 | 18.6 | 18.4 | 18.3 | 18.2 | 18.6 | 18.3 | 18.1 | 18.1 |
| 20 | 18.5 | 18.3 | 18.5 | 18.2 | 18.0 | 17.9 | 18.1 | 18.1 | 18.0 | 17.9 |
| 21 | 18.5 | 18.3 | 18.4 | 18.2 | 18.1 | 17.9 | 18.3 | 18.1 | 18.1 | 18.0 |
| 22 | 18.6 | 18.4 | 18.6 | 18.3 | 18.2 | 18.1 | 18.6 | 18.2 | 18.1 | 18.3 |
| 23 | 18.7 | 18.7 | 18.8 | 18.6 | 18.5 | 18.5 | 18.8 | 18.6 | 18.5 | 18.5 |


| Number <br> Of Obs | 407 | 407 | 407 | 407 | 407 | 407 | 406 | 407 | 407 | 406 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dally <br> Mean | 21.8 | 21.7 | 22.9 | 21.6 | 21.4 | 21.3 | 21.5 | 21.3 | 21.3 | 21.1 |


| － |  | $\stackrel{\sim}{*}$ |
| :---: | :---: | :---: |
| ？ |  <br>  | ¢ |
| B |  | $\stackrel{9}{5}$ |
| 3 |  <br>  | 2 |
| 2 |  <br>  | $\stackrel{9}{*}$ |
| $\because$ |  <br>  | ミ |
| $\geq$ |  <br>  | $\stackrel{\sim}{*}$ |
| $\bigcirc$ |  べ $\dot{\sim}$ | $\stackrel{9}{*}$ |
| $m$ |  <br>  | $\stackrel{8}{7}$ |
|  |  <br>  | $\stackrel{9}{9}$ |
|  |  |  |


| Hr | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 29.4 | 29.9 | 30.4 | 30.2 | 30.2 | 30.1 | 30.1 | 30.2 | 30.4 | 30.4 |
| 01 | 31.0 | 31.3 | 31.7 | 31.5 | 31.4 | 31.3 | 31.4 | 31.4 | 31.6 | 31.4 |
| 02 | 28.6 | 28.7 | 28.9 | 29.5 | 28.2 | 28.1 | 28.1 | 28.1 | 28.0 | 27.6 |
| 03 | 25.7 | 25.6 | 25.7 | 25.2 | 25.1 | 25.0 | 25.1 | 25.0 | 24.8 | 24.7 |
| 04 | 25.5 | 25.7 | 25.7 | 25.1 | 25.0 | 24.9 | 24.9 | 24.8 | 24.8 | 24.5 |
| 05 | 27.7 | 27.9 | 27.9 | 27.4 | 27.2 | 2i.0 | 27.0 | 26.8 | 26.6 | 26.1 |
| 06 | 29.7 | 30.1 | 30.2 | 29.6 | 29.3 | 29.2 | 29.1 | 29.0 | 28.8 | 28.3 |
| 07 | 27.4 | 21.4 | 27.7 | 27.1 | 27.0 | 26.9 | 27.0 | 26.9 | 26.8 | 26.6 |
| 08 | 25.4 | 25.4 | 25.7 | 25.3 | 25.2 | 25.1 | 25.3 | 25.3 | 25.2 | 25.0 |
| 09 | 23.6 | 23.6 | 23.9 | 23.5 | 23.4 | 23.2 | 23.4 | 23.4 | 23.3 | 23.1 |
| 10 | 22.5 | 22.4 | 22.6 | 22.3 | 22.2 | 22.1 | 22.2 | 22.2 | 22.1 | 21.9+ |
| 11 | 22.3 | 22.4 | 21.7 | 21.7 | 21.7 | 21.7 | 21.3 | 21.7 | 21.8 |  |
| 12 | 21.8 | 22.0 | 21.6 | 21.5 | 21.4 | 21.3 | 21.3 | 21.5 | 21.4 |  |
| 13 | 19.1 | 19.6 | 19.5 | 18.9 | 18.7 | 18.6 | 19.0 | 18.7 | 18.5 | 18.4 |
| 14* | 16.9 | 17.0 | 16.7 | 16.5 | 16.5 | 16.4 | 16.7 | 16.6 | 16.4 | 16.9* |
| 15* | 17.0 | 17.2 | 16.5 | 16.5 | 16.6 | 16.6 | 16.5 | 16.7 | 16.6 | 16.64 |
| 16* | 17.6 | 17.5 | 17.2 | 17.2 | 17.2 | 17.2 | 17.4 | 17.4 | 17.2 | 17.1- |
| 17 | 18.0 | 17.9 | 17.5 | 17.2 | 17.2 | 17.2 | 17.3 | 17.5 | 17.4 |  |
| 18 | 18.5 | 18.3 | 17.5 | 17.6 | 17.7 | 1.7 .7 | 17.9 | 18.1 | 17.9 |  |
| 19 | 18.8 | 18.8 | 18.5 | 18.5 | 18.5 | 18.5 | 18.6 | 18.8 | 18.6 | 18.7 ${ }^{\text {\% }}$ |
| 20 | 19.2 | 19.5 | 19.1 | 19.0 | 18.9 | 18.9 | 19.1 | 19.2 | 18.9 | 18.8 |
| 21 | 19.0 | 19.1 | 18.7 | 18.7 | 18.7 | 18.7 | 18.8 | 19.0 | 18.7 | $18.7+$ |
| 22 | 19.2 | 19.1 | 18.7 | 18.8 | 18.8 | 18.8 | 19.0 | 19.1 | 18.8 | 18.8 |
| 23 | 19.8 | 19.8 | 19.6 | 19.6 | 19.6 | 19.5 | 19.6 | 19.8 | 19.5 | 19.3 |

[^7]LITTLL MMERICA $V$
Hourly Mean Temperatures ( $\left.-{ }^{\circ} \mathrm{C}\right)$

| ${ }^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 20.4 | 20.4 | 20.3 | 20.1 | 20.0 | 20.0 | 19.9 | 19.8 | 19.5 | 19.3 |
| 01 | 20.1 | 20.0 | 20.0 | 19.1 | 19.7 | 19.7 | 19.8 | 19.6 | 19.4 | 19.1 |
| 02 | 20.7 | 20.5 | 20.6 | 20.4 | 20.3 | 20.3 | 20.5 | 20.1 | 19.9 | 19.4 |
| 03 | 20.7 | 20.4 | 20.7 | 20.3 | 20.2 | 20.1 | 20.3 | 20.0 | 19.7 | 19.3 |
| 04 | 20.7 | 20.6 | 20.8 | 20.4 | 20.3 | 20.2 | 20.3 | 20.0 | 19.6 | 19.6 |
| 05 | $\therefore 1.8$ | 21.9 | 22.2 | 21.9 | 21.7 | 21.7 | 21. | 21.6 | 21.2 | 20.3 |
| 06 | 22.0 | 22.0 | 22.3 | 22.0 | 21.9 | 21.8 | 21.9 | 21.9 | 21.4 | 20.4 |
| 07 | 22.3 | 22.2 | 22.6 | 22.2 | 22.0 | 21.8 | 21.8 | 21.1 | 20.3 | 19.0 |
| 08 | 22.1 | 21.9 | 22.2 | 21.8 | 21.5 | 21. 2 | 21.1 | 20.5 | 20.1 | 19.5 |
| 09 | 21.6 | 21.5 | 21.9 | 21.5 | 21.3 | 21.3 | 21.4 | 21.1 | 20.8 | 19.8 |
| 10 | 22.0 | 22.1 | 22.5 | 22.1 | 21.9 | 21.8 | 22.0 | 21.8 | 21.4 | 20.3 |
| 11 | 24.5 | 24.9 | 25.3 | 25.1 | 24.9 | 24.9 | 25.1 | 25.1 | 25.2 | 24.8 |
| 12 | 28.1 | 28.5 | 28.9 | 28.7 | 28.5 | 28.4 | 28.5 | 28.6 | 28.6 | 28.2 |
| 13 | 30.1 | 30.5 | 30.8 | 30.6 | 10.5 | 30.3 | 30.3 | 30.4 | 30.3 | 297 |
| 14 | 29.2 | 29.7 | 30.; | 30.0 | 29.9 | 30.0 | 30.1 | 30.3 | 30.4 | 30.0 |
| 15 | 28.3 | 28.8 | 29.2 | 29.2 | 29.2 | 29.1 | 29.3 | 29.4 | 29.5 | 29.3 |
| 16* | 27.3 | 27.8 | 25.2 | 28.2 | 28.1 | 28.1 | 28.2 | 28.4. | 28.5 | 28.4 |
| 17 | 26.4 | 26.7 | 27.1 | 27.0 | 27.0 | 27.0 | 27.1 | 27.2 | 27.1 |  |
| 18 | 25.1 | 2.5 .2 | 25.6 | 25.4 | 25.2 | 25.2 | 25.3 | 25.3 | 25.2 | 24.6 |
| 19 | 24.2 | 24.2 | 24.4.6 | 24.4 | 24.3 | 24.2 | 24.3 | 24.3 | 24.1 | 23.8 |
| 20 | 2.4 .2 | 24.3 | 24.7 | 24.5 | 24.4 | 2:.4 | 24.5 | 24.4 | 24.4 | 24.2 |
| 21 | 25.6 | 25.8 | 26.2 | 26.0 | 25.8 | 25.6 | 23.4 | 25.0 | 24.6 | 24. 2 |
| 22 | 27.7 | 28.2 | 28.7 | 28.5 | 28.4 | 28.3 | 28.3 | 28.2 | 28.1 | 27.9 |
| 23 | 30.2 | 30.9 | 31.5 | 31.5 | 31.5 | 31.5 | 31.6 | 31.8 | 21.8 | 3 i .7 |

[^8]Hourly Nean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$
2'J July 1957
LITTLE AMERICA V Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$
26 July 1957

|  | Sfc | 3 | $\checkmark$ | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 33.1 | 34.1 | 34.3 | 34.2 | 34.2 | 34.2 | 34.1 | 34.0 | 34.0 | 33.7 |
| 01 | 31.8 | 32.9 | 33.1 | 32.6 | 32.5 | 32.4 | 32.1 | 32.0 | 31.9 | 31.7 |
| 02 | 34.1 | 34.9 | 35.2 | 34.8 | 34.8 | 34.7 | 34.5 | 34.5 | 34.5 | 3 h .2 |
| 03 | 36.04 | 36.8+ | $37.1+$ | $36.8+$ | 36.7+ | 36.7+ | $35.5+$ | 36.7+ | 36.7+ | $36.4+$ |
| 04 | 37.5 | 38.5 | 38.7 | 38.4 | 38.4 | 38.3 | 38.2 | 38.2 | 38.2 | 37.9 |
| 05 | 38.3 | 39.3 | 39.5 | 39.2 | 39.1 | 39.1 | 38.9 | 39.0 | 39.0 | 38.7 |
| 06 | 38.7 | 39.7 | 40.0 | 39.6 | 39.5 | 39.5 | 39.2 | 39.3 | 39.4 | 39.2 |
| 07 | 38.7 | 39.6 | 39.3 | 39.4 | 39.3 | 39.2 | 38.9 | 39.0 | 38.9 | 38.6 |
| 08 | 38.7 | 39.8 | 39.8 | 39.3 | 39.3 | 39.1 | 38.9 | 38.9 | 38.7 | 38.1 |
| 09 | 39.2 | 39.9 | 40.2 | 40.0 | 39.9 | 39.8 | 39.7 | 39.8 | 39.8 | 39.7 |
| 10 | 41.6 | 42.4 | 42.8 | 42.7 | 42.7 | 42.7 | 42.6 | 42.6 | 42.8 | 42.7 |
| 11 | 42.1 | 43.2 | 43.4 | 43.3 | 43.3 | 43.3 | 43.1 | 43.1 | 43.1 | 43.0 |
| 12 | 42.4 | 43.4 | 43.8 | 43.5 | 43.6 | 43.5 | 43.3 | 43.4 | 43.4 | 43.4 |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 | 43.4 | 44.0 | 44.5 | 44.4 | 44.1 | 44.2 | 44.1 | 44.2 | 44.2 | 44.0 |
| 17 | 44.5 | 45.1 | 45.5 | 43.5 | 45.0 | 45.1 | 45.1 | $45: 3$ | 45.4 | 45.4 |
| 18 | 45.0 | 45.7 | 46.1 | 46.1 | 45.9 | 45.9 | 45.9 | 45.9 | 46.0 | 45.9 |
| 19 | 44.3 | 44.8 | 45.1 | 45.1 | 45.0 | 45.0 | 44.9 | 44.9 | 44.9 | 44.5 |
| 20 | 44.6 | 45.2 | 45.4 | 45.4 | 45.3 | 45.3 | 45.1 | 45.2 | 45.2 | 44.8 |
| 21 | 44.9 | 45.4 | 45.6 | 45.6 | 45.5 | 45.5 | 45.4 | 45.4 | 45.4 | 44.6 |
| 22 | 44.4 | 44.9 | 45.1 | 45.0 | 44.8 | 44.8 | 44.6 | 44.7 | 44.6 | 43.7 |
| 23 | 44.5 | 45.0 | 45.2 | 45.1 | 44.8 | 44.7 | 44.6 | 44.6 | 44.; | 43.4 |
| Number of Obs | 388 | 389 | 389 | 389 | 389 | 389 | 389 | 389 | 389 | 389 |
| Dally <br> Mean | 40.4 | 41.2 | 41.5 | 41.3 | 41.2 | 41.1 | 41.0 | 41.0 | 41.0 | 40.7 |



| $\mathrm{Hr} \mathrm{Cl}^{\mathrm{CH}}$ | －fc | 3 | 6 | 12 | 2） | ， 0 | 100 | ：00 | i．u0 | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 14.3 | 44.9 | 45.1 | 4， 3 | $44: 9$ | 44.3 | $4{ }^{\prime} 1.6$ | 4． 5 | 1\％． 3 | 43.1 |
| 01 | 15.1 | 45．8 | 46.0 | 45.9 | 15．7 | 45．5 | $4{ }^{15} 3$ | 4） 5 | \％ 5.3 | $4 \% .3$ |
| 02 | $\because 2$ | 4．3 | 16．0 | け．9 | is． 7 | a．6 | is． 3 | 0.3 | ．5． 2 | 44.4 |
| 13 | 43．： | 14.3 | i4．7 | 44.4 | 4．4．2 | 9， 1 | 44.0 | 4：．0） | 43.9 | ＋13．4 |
| 1\％ | $4 \% .1$ | 44.6 | as． | 4．9 | 44.7 | 14.0 | A． 3 | \％$\because$ | ． 4.2 | 43.7 |
| （ ${ }^{\prime}$ | 13.6 | $\because 2$ | －．．． | is． 3 | 4.1 | Pi．l | \％3．9 | 13．9 | 1.3 ． | 43.1 |
| 10 | －2．9 | 13．0 | 43.8 | ：3．0 | ¢3．a | 43：2 | i3， 0 | 13.0 | ＋ 3.0 | 4.2 .6 |
| 11 | $\because 9$ | 43.5 | $13:$ | 43．6） | 4 3．．．4 | ＂3．： | is． | ＇3．？ | 43．2 | 42.9 |
| 03 | 43.6 | 44.1 | 14．3 | 44.3 | $\therefore 6.0$ | 14.0 | 43.8 | 43.8 | 43.8 | －3．3 |
| 09 | 43.5 | 44.3 | 4， 4 | 14． 1 | 43.8 | 43.7 | 43.4 | 43.3 | 43.1 | ＋2．0 |
| 10 | 43.5 | 14.3 | 44.6 | 4， 4.1 | 43.1 | 43.5 | 43.7 | 43.1 | 42.9 | $\bigcirc 1.9$ |
| 11 | 4， 2 | 46.4 | 46.5 | 16.1 | 15.3 | 44.6 | 43.9 | 43.6 | 43.2 | 42.3 |
| 12 | 450 | 46.2 | 46.4 | 40.1 | 行． | 44．5 | 4.3 .3 | 12.6 | 41.2 | 19.7 |
| 13 | ＇4．8 | 46.0 | 16.1 | 45.3 | 44．3 | 43.5 | 42.0 | ¢0．6 | 39.6 | 39.2 |
| 14 | 45.1 | 46.3 | 46.5 | is． 5 | 44.1 | 42.9 | 40.3 | 39.9 | 39.3 | 30.2 |
| $1)$ | 43.9 | $\therefore 4.9$ | $\therefore 0$ | 14．0 | 42.4 | 41．1 | 39.6 | 38.8 | 35.4 | 37.7 |
| 16＊ | 11.1 | 42.1 | 12． 1 | 41.0 | 40.5 | 10.1 | 39.5 | 39.1 | 38.1 | 36.1 |
| 17＊ | 41.9 | 42.2 | i2． | 41.4 | 10．＇3 | 39．） | 36.7 | ，8．2 | 37.0 | 36.2 |
| $18{ }^{14}$ | 12.7 | $\therefore 3.3$ | 43．3 | 42．0 | 411 | 39 | 供． | \％7．3 | 36.2 | 3：4．． |
| 19 | 13．6 | 14．3 |  | 43.6 | ＋2． | $\because 1.3$ | 39.9 | 39．？ | 33.7 | 370 |
| 20 | 4.4 .6 | 4 4 | $\because 6$ | $\because: 2$ | 42.1 | 39.6 | 3：．5 | 37.9 | 379 | 3 L .3 |
| $? 1$ | 43.5 | $\because 3$ | 4．4．1 | 42.8 | 39.9 | 32.6 | ；7．1 | is．i | 3：．7 | 3． 3.3 |
| 2？ | （13．3 | 44.7 | 4.4 .9 | 13.0 | 40．1 | 37．3 | 35.3 | 33.7 | 3.6 3.3 | 31.9 |
| 23 | 10．5 | 41.5 | 41.5 | 39.2 | 36.3 | 34.7 | 33．＇ | 33.1 | 32.9 | 32.1 |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 148 | 448 | $4 \times 8$ | 44.9 | $\therefore 48$ | 148 | 40 | 440 | ヶ\％ | 446 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 43.7 | 44.5 | 4\％．6 | 43.9 | i3．0 | 4.2 .2 | 41.4 | 41.9 | 40.1 | 39.6 |


| cm | Sfe | 3 | 8 | 12 | 25 | 50 | 100 | 200 | 4')0 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 40.3 | 41.5 | 41.8 | 39.1 | 37.3 | 35.5 | 34.0 | 33.0 | 32.7 | 31.9 |
| 01 | 39.8 | 41.0 | 41.2 | 39.0 | 36.8 | 34.9 | 33.6 | 32.7 | 32.6 | 31.8 |
| 02 | 39.4 | 40.8 | 40.0 | 38.8 | 36.6 | 34.8 | 33.7 | 32.9 | 32.9 | 32.2 |
| 03 | 40.6 | i1. 2 | 41.1 | 38.7 | 37.1 | 35.4 | 33.9 | 32.9 | 32.8 | 32.1 |
| 04 | 42.5 | 41.9 | 41.8 | 39.3 | 37.1 | 35.4 | ? 3 | 33.1 | 33.3 | 32.6 |
| 05 | 43.2 | 41.6 | 41.5 | 39.2 | 36.4 | 35.0 | 34.3 | 32.9 | 33.2 | 32.4 |
| 06 | 43.2 | 42.1 | 42.0 | 39.3 | 36.4 | 34.7 | 34.1 | 32.6 | 32.8 | 32.2 |
| 07 | 43.8 | 43.0 | 42.7 | 40.6 | 38.1 | 36.5 | 35.6 | 33.7 | 33.6 | 32.9 |
| 08 | 42.5 | 42.4 | 42.6 | 40.4 | 38.6 | 37.2 | 35.5 | 33.8 | 33.8 | 33.0 |
| 09 | 42.2 | 42.0 | 42.2 | 40.2 | 38.3 | 36.8 | 35.5 | 34.1 | 33.8 | 33.1 |
| 10 | 42.5 | 41.8 | 41.9 | 40.5 | 38.8 | 37.3 | 36.4 | 34.9 | 34.3 | 33.6 |
| ${ }^{1} 1$ | 42.5 | 41.5 | 41.2 | 39.8 | 38.5 | 37.8 | 37.4 | 36.2 | 35.9 | 35.0 |
| 12 | 43.4 | 43.6 | 43.9 | 43.0 | 12.0 | 41.1 | 40.4 | 39.2 | 37.9 | 36.6 |
| 13 | 45.2 | 45.8 | 46.3 | 46.2 | 45.6 | 44.9 | 63.4 | 40.4 | 38.3 | 37.1 |
| 14 | 41.4 | 40.8 | 40.7 | 39.8 | 38.9 | 38.2 | 36.8 | 35.3 | 34.6 | 33.8 |
| 15 | 38.5+ | $37.3+$ | 37.4+ | 36.4+ | $35.5+$ | $35.0+$ | $34.8+$ | $34.2+$ | $33.8+$ | 33.1) |
| 16 | 36.2 | 35.0 | 35.1 | 34.3 | 33.5 | 330 | 32.7 | 32.2 | 31.6 | 30.7 |
| 1.7 | 36.3 | 34.9 | 34.7 | 33.6 | 32.8 | 32.4 | 32.2 | 32.0 | 21.6 | 31.1 |
| 18 | 33.1 | 32.1 | 32.1 | 31.6 | 30.8 | 30.8 | 30.7 | 30.6 | 30.3 | 29.9 |
| 19 | 32.3 | 31.2 | 31.2 | 30.9 | 30.5 | 30.3 | 30.2 | 30.2 | 29.9 | 29.4 |
| 20 | 32.4 | 31.0 | 31.0 | 30.8 | j0.5 | 30.2 | 30.1 | 9.9 9 | 29.6 | 29.2 |
| 21 | 33.5 | 32.9 | 33.3 | 33.2 | 33.0 | 32.9 | 32.8 | 32.8 | 32.5 | 31.1 |
| 22 | 34.7 | 34.9 | 35.5 | 35.5 | 35.5 | 35.5 | 35. 5 | 35.6 | 35.6 | 34.8 |
| 23 | 34.8 | 34.9 | 35.5 | 35.4 | 35.4 | 35.4 | 35.4 | 35.5 | 35.7 | 35. 7 |
| Number <br> of Obs | 443 | 443 | 443 | 443 | 443 | 14,3 | 143 | 413 | 443 | 442 |
| Daily Mean | 39.3 | 39.0 | 39.1 | 37.7 | 30.4 | 35.5 | 34.7 | 33.8 | 33.5 | 32.7 |



| -r | Sitc | 3 | 6 | 12 | 2', | 30 | 100 | 200 | 160 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 34.3 | 33.9 | 34.2 | 34.1 | 34.0 | 13.9 | j3.9 | 34.0 | 34.0 | 33.3 |
| 01 | 34.0 | 33.0 | 33.2 | 33.0 | 32.9 | 32.8 | 32.8 | 32.8 | 12.8 | 32.6 |
| 02 | 34. 1 | 32.5 | 32.6 | 32.5 | 32.4 | 32.2 | 32. 2 | 32.2 | 32.3 | 32.2 |
| 03 | 34.6 | 13.4 | 33.7 | 33.1 | 33.1 | 32.9 | 32.8 | 32.4 | 32.3 | 32.5 |
| 04 | 15. | 35.1 | 36.1 | 16.0 | 35.1 | 35.5 | 3) . | 35.4 | 3). 3 | 35.0 |
| 0 ') | 儿. ${ }^{\text {a }}$ | 35.? | 367 | 36.6 | 36.) | 36.) | 36. | 36.5 | 36.7 | 36.6 |
| 06 | 16.5 | 37.2 | 57.: | 37.7 | 37.0 | 37.6 | 37.6 | 31.7 | 37.7 | 37.8 |
| 07 | 37.3 | 38.3 | 38.7 | 38.7 | 33.6 | 38.5 | 38.5 | 38.6 | 38.7 | 38.6 |
| 08* | 36.1 | 37.1 | ל 37 | 37. | 37.5 | 37.5 | 37.4 | 17.5 | 37.7 | 37.6 |
| 09* | 36.3 | 36.5 | 36.9 | 36.9 | 36.9 | 36.9 | 36.8 | 37.0 | 37.1 | 37.0 |
| 10 | 36.3 | 36.3 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.7 | 36.7 |
| 11 | 35.7 | 35.7 | 36.0 | 36.0 | 36.0 | 36.0 | 36.0 | 36.0 | 36.2 | 36.2 |
| 12 | 35.7 | 35.7 | 35.8 | 35.8 | 35.8 | 35.8 | 35.8 | 35.8 | 35.9 | 35.9 |
| 13 | 35.3 | 35.3 | 35.4 | 35.5 | 35.4 | 35.4 | 35.4 | 25.4 | 35.5 | 35.5 |
| 14* | 35.1 | 35.1 | 35.3 | 35.3 | 35.3 | 35.3 | 35.3 | 35.4 | 35.4 | 35.14 |
| 15* | 35.2 | 35.2 | 35.4 | 35.4 | 35.4 | 35.4 | 35.4 | 35.4 | 35.4 | 35.5 |
| 16* | 35.9 | 36.0 | 36.3 | 36.4 | 36.3 | 36.3 | 16.3 | 36.3 | 36.4 | 36.4 |
| 17 | 36.2 | 36.8 | 37.2 | 37.2 | 37.2 | 37.2 | 37.2 | 37.2 | 37.2 | 31.2 |
| 18 | 35.5 | 3. 6 | 35.9 | 35.9 | 35.9 | 35.9 | 35.9 | 35.9 | 36.0 | 36.0 |
| 19 | 35.5 | 35. 5 | 35.7 | 35.8 | 35.8 | 35.8 | 35.8 | 35.9 | 36.1 | 36.2 |
| 20 | 35.1 | 35.1 | 35.4 | 35.4 | 35.' | 35.5 | 35.5 | 35.6 | 35.6 | 35.7 |
| 21 | 34.4 | 34.4 | 34.6 | 34.6 | 34.6 | 34.6 | 34.0 | 34.7 | 34.8 | 34.8 |
| 22 | 33.7 | 33.7 | 34.0 | 34.0 | 34.0 | 34.0 | 14.0 | 31.6 | 34.1 | 34.2 |
| 23 | 33.3 | 33.8 | 34.1 | 34.2 | 34.2 | 34.2 | 34.1 | 34.1 | 34.3 | 34.3 |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Olu | 444 | 444 | 443 | 443 | 1444 | 441 | 4644 | 442 | 1644 | 4.42 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 35.4 | 35.3 | 35.6 | 35.6 | 35.5 | 35.5 | 35.5 | 35.4 | 35.6 | 35.6 |

LITTLE AMERICA V Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| ${ }^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 33.9 | 33.9 | 34.1 | 34.2 | 34.2 | 34.1 | 34.1 | 34.2 | 34.2 | 34.3 |
| 01 | 34.3 | 34.4 | 34.6 | 34.5 | 34.5 | 34.4 | 34.3 | 34.3 | 34.4 | 34.3 |
| 02 | 35.5 | 35.8 | 36.2 | 36.1 | 36.0 | 35.9 | 35.8 | 35.7 | 35.7 | 35.5 |
| 03 | 35.1 | 35.1 | 35.3 | 35.3 | 35.1 | 35.2 | 35.7 | 35.1 | 35.2 | 35.1 |
| 04 | 35.4 | 35.6 | 35.8 | 35.3 | 35.8 | 35.7 | 35.7 | 35.6 | 35.6 | 35.5 |
| 05 | 35.5 | 15.9 | 38.5 | 36.5 | 36.4 | 36.4 | 36.4 | 36.4 | 36.6 | 36.6 |
| 06 | 35.3 | 35.9 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.7 | 36.8 | 36.9 |
| 07 | 36.2 | 37.2 | 37.7 | 37.7 | 37.6 | 37.6 | 37.6 | 37.6 | 37.8 | 37.8 |
| 08 | 37.9 | 38.3 | 38.7 | 38.8 | 38.8 | 38.7 | 38.7 | 38.7 | 38.8 | 38.7 |
| 09* | 39.5 | 40.0 | 40.5 | 40.6 | 40.6 | 40.6 | 40.6 | 40.6 | 40.8 | 40.7 |
| 10* | 41.7 | 42.4 | 42.8 | 42.7 | 42.9 | 42.8 | 42.8 | 42.8 | 42.9 | 42.9 |
| 11* | 42.3 | 43.1 | 43.5 | 43.5 | 43.5 | 43.5 | 43.5 | 43.5 | 43.6 | 43.5 |
| 12* | 42,7 | 44.3 | 44.7 | 44.7 | 44.7 | 4.4 .7 | 44.7 | 44.7 | 44.8 | 44.8 |
| 13* | 44.3 | 45.4 | 45.7 | 45.7 | 45.8 | 45.7 | 45.7 | 45.8 | 46.0 | 45.9 |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 | 45.34 | 46.0* | 46.50 | 46.47 | 46.30 | 46.30 | 46.30 | 46.61 \# | 46.94 | 46.6 |
| 16 | 44.3 | 45.3 | 45.7 | 45.7 | 45.6 | 45.6 | 45.6 | 45.6 | 45.8 | 45.8 |
| 17 | 43.9 | 45.6 | 46.9 | 46.0 | 46.0 | 46.0 | 45.9 | 46.0 | $\therefore 6.2$ | 46.1 |
| 18 | 44.5 | 45.6 | 45.1 | 46.1 | 46.1 | 46.1 | 46.1 | $\therefore 6.2$ | 46.4 | 46.4 |
| 19 | 45.9 | 46.4 | 46.8 | 46.8 | 46.8 | 46.8 | \%6.7 | 46.8 | 47.1 | 47.1 |
| 20 | 46.4 | 46.9 | 47.2 | 47.2 | 47.2 | 47.2 | 47.2 | 47.2 | 47.5 | 47.5 |
| 21 | 46.5 | 47.1 | 47.4 | 47.4 | 47.4 | 47.4 | 47.4 | 47.5 | 47.7 | 47.6 |
| 22 | $46.6+$ | 47.2+ | $47.5+$ | $47.5+$ | 47.14+ | 47.4+ | 47.4+ | $47.5+$ | 47.74 | $47.6+$ |
| 23 | 46.2 | 46.7 | 46.9 | 46.9 | 46.9 | 46.8 | 46.8 | 46.9 | 47.1 | 47.1 |
| Number of Obs | 409 | 406 | 409 | 407 | 409 | 407 | 409 | 409 | 409 | 409 |
| Daily <br> Mean | 40.6 | 41.3 | 41.6 | 41.7 | 41.6 | 41.6 | 41.6 | 41.6 | 41.3 | 41.7 |

LITTLE ARERICA V
Hourl; Mean Te,nperatime., (-"C)

| cm | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 45.7 | 46.3 | 46.5 | 16.4 | 46.4 | 46.3 | 46.2 | 46.2 | 46.4 | 16.3 |
| 01 | 47.2 | 47.7 | 47.8 | 47.8 | 47.7 | 47.7 | 47.7 | 47.8 | 47.9 | 47.3 |
| 02 | 46.5 | 47.0 | 47.2 | 47.3 | 47.3 | 47.3 | 47.2 | 47.3 | 47.4 | 47.4 |
| 03 | 47.2 | 47.8 | 48.1 | 48.0 | 48.0 | 48.0 | 47.9 | 47.9 | 48.1 | 18.2 |
| 04 | 48.8 | 49.3 | 49.7 | 49.7 | 49.6 | 49.6 | 1.9 .6 | 49.7 | 49.9 | 49.8 |
| 0 O, | 49.0 | 49.6 | 49.9 | 50.0 | 50.0 | so.u | 50.0 | 50.2 | 50.5 | 50.4 |
| 06 | 48.3 | 49.0 | 49.3 | 49.2 | 49.2 | 49.2 | 49.2 | 49.2 | 49.5 | 49.4 |
| 07 | 48.0 | 48.5 | 48.8 | 48.7 | 48.7 | 48.6 | 468 | 48.6 | 48.9 | 48.9 |
| 08 | 48.1 | 48.7 | 48.9 | 18.8 | 48.7 | 48.7 | 48.6 | $\therefore 8.6$ | 48.8 | 48.7 |
| 09 | 48.8 | 49.4 | 49.6 | 49.2 | 49.2 | 49.0 | 48.7 | 48.7 | 48.8 | 48.5 |
| 10 | 49.6 | 50.1 | 50.4 | 50.1 | 49.8 | 49.6 | 49.2 | 49.1 | 49.1 | 48.9 |
| 11* | 50.2 | 50.7 | 50.9 | 50.6 | 50.4 | 50.1 | 49.7 | 49.5 | 49.5 | 48.8 |
| 12* | ${ }^{5} 1.1$ | 51.3 | 51.8 | 51.6 | 51.4 | 51.1 | 49.9 | 48.6 | 47.5 | 47.2 |
| 13* | 31.1 | 51.3 | 51.6 | 51.4 | 51.0 | 50.1 | 48.3 | 44.9 | 43.2 | 43.1 |
| 14* | 49.6 | 50.0 | 50.1 | 49.9 | 49.6 | 49.3 | 48.5 | 47.4 | 44.7 | 42.1 |
| 15* | 49.0 | 49.2 | 49.3 | 49.1 | 43.9 | 48.6 | 48.1 | 47.7 | 45.5 | 41.5 |
| 16* | 4.2. 2 | 47.1 | 47.7 | 47.6 | 47.5 | 47.3 | 47.3 | 47.2 | 41.0 | 44.2 |
| 17* | 43. 3 | 45.4 | 45.7 | 45.5 | 45.4 | 45.2 | 45.2 | 45.2 | 45.2 | 44.6 |
| 18 | 43.9 | 43.5 | 43.5 | 43.5 | 43.3 | 43.1 | 43.1 | 43.0 | 13.0 | 12.8 |
| 19 | 43.2 | 42.7 | 42.8 | 42.6 | 42.5 | 42.3 | 42.2 | 42.2 | 42.3 | 42.2 |
| 20 | 42.2 | 41.7 | 41.3 | 41.1 | 41.6 | 41.5 | 41.4 | 41.4 | 41.6 | 4. ${ }^{\text {2 }}$ |
| 21 | 42.4 | 42.) | 42.7 | 42.1 | 42.7 | 42.1 | 42.6 | 42.6 | '2.9 | $42 . y$ |
| 22 | 42.2* | 42.2* | 42.4= | 42.41 | $42.4=$ | 42.30 | 42.0 m | $\therefore 2.3-$ | $42.5-$ | 42.:'7 |
| 23 | 43.3 | 44.2 | 44.5 | 44.5 | 44.5 | 44.5 | 4/4.) | 44.6 | $4: .8$ | 44.8 |


| Number <br> of Olis | 440 | 440 | 440 | 440 | 440 | 440 | 439 | 440 | 440 | 439 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily | 47.1 | 4.4 | 47.6 | 47.5 | 47.4 | 47.3 | 47.0 | 46.7 | 46.5 | 4.6 .0 |


| $\mathrm{cm}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 43.2 | 43.5 | 43.7 | 43.8 | 43.8 | 43.8 | 43.8 | 43.8 | 44.0 | 44.0 |
| 01 | 43.1 | 43.2 | 43.3 | 43.3 | 43.4 | 43.4 | 43.3 | 43.5 | 43.6 | 43.4 |
| 02 | 42.3 | 42.3 | 42.1 | 42.2 | 42.3 | 42.2 | 42.2 | 42.3 | 42.4 | 42.2 |
| 03 | 41.1 | 41.1 | 40.8 | 40.9 | 41.0 | 41.0 | 40.9 | 41.1 | 41.1 | 40.7 |
| 04 | 40.7 | 40.6 | 40.3 | 40.6 | 40.6 | 40.6 | 40.5 | 40.9 | 40.8 | 40.5 |
| 05 | 40.9 | 40.8 | 40.3 | 40.4 | 40.5 | 40.4 | 40.3 | 40.5 | 40.6 |  |
| 06 | 40.1 | 40.1 | 39.9 | 39.9 | 39.8 | 39.7 | 39.7 | 39.8 | 40.0 |  |
| 07 | 41.1 | 41.1 | 40.8 | 40.9 | 40.9 | 40.9 | 40.8 | 41.0 | 41.3 |  |
| 08 | 41.3 | 41.3 | 40.8 | 40.9 | 40.9 | 40.9 | 40.8 | 41.1 | 41.3 |  |
| 09 | 40.5 | 40.4 | 40.1 | 40.0 | 40.0 | 39.9 | 39.9 | 39.9 | 40.0 |  |
| 10 | 39.8 | 39.5 | 39.3 | 392 | 39.1 | 39.0 | 38.8 | 38.9 | 39.4 |  |
| 11 | 38.2 | 38.1 | 38.0 | 37.9 | 37.8 | 37.7 | 37.6 | 37.7 | 38.1 |  |
| 12 | 37.2 | 37.1 | 37.1 | 37.0 | 36.8 | 36.7 | 36.5 | 36.7 | 37.1 | 36.84 |
| 13 | 36.4 | 36.2 | 36.0 | 35.8 | 35.7 | 35.6 | 35.4 | 35.6 | 36.2 |  |
| 14* | 35.7 | 35.3 | 35.2 | 35.0 | 34.9 | 34.8 | 34.5 | 34.8 | 35.3 |  |
| 15* | 35.2 | 35.0 | 35.0 | 34.7 | 34.6 | 34.5 | 34.3 | 34.5 | 35.3 |  |
| 16* | 36.1 | 36.0 | 36.1 | 36.0 | 36.0 | 35.9 | 35.8 | 35.9 | 30.2 | $365-$ |
| 17* | 36.6 | 36.6 | 36.8 | 36.7 | 36.6 | 36.5 | 36.4 | 36.5 | 36.8 | 36.6 |
| 18* | 37.7 | 37.0 | 38.1 | 38.0 | 37.9 | 37.9 | 37.8 | 37.9 | 38 | 38.0 |
| 19 | 40.2 | 41.0 | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 | 41.4 | 41.7 | 41.7 |
| 20 | 41.8 | 42.6 | 43.0 | 43.0 | 42.9 | 42.9 | 42.9 | 42.9 | 43.2 | 43.2 |
| 21 | 43.0 | 44.2 | 445 | 44.5 | 44.5 | 44.4 | 4.4 .4 | 44.5 | 44.9 | 44.9 |
| 22 | 43.8 | 44.9 | 45.2 | 45.2 | 45.2 | 45.2 | 45.1 | 45.2 | 45.8 | $45.5+$ |
| 23 | 44.2 | 45.0 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.3 | 45.9 | 45.6 |
| Number of Obs | 450 | 450 | 450 | 449 | 450 | 450 | 448 | 450 | 448 | 216 |
| Daily <br> Mean | 40.0 | 40.1 | 40.1 | 40.1 | 40.1 | 40.0 | 39.9 | 40.1 | 40.1 | 41.6 |

LITTLH. WMERIC』V
Hourly Mean Teajerature: (-'c)

| $\mathrm{Hr}^{\mathrm{cin}}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 101 | 200 | $\therefore 00$ | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 44.5 | 45.1 | 45.5 | 43.5 | 4). | 43. 5 | 43.4 | 43.5 | 45.9 | 43.8 |
| 01 | 44.0 | 459 | 45.9 | 43.8 | 45.8 | 43.8 | 45.7 | 45.9 | 46.2 | 46.1 |
| 02 | $4 \div 6$ | 45.5 | 45.9 | 45.8 | 45.8 | $4{ }^{\text {¢ }}$. 6 ¢ | 45.7 | 45.8 | 46.2 | 40.1 |
| 03 | 4..2 | 43. 1 | 45.4 | 43.4 | 45.3 | 45.3 | 45.3 | 45.4 | 45.8 | 45.7 |
| 04 |  | 45.0 | 43. 3 | 45.3 | 4:5. 3 | 45.1 | 45. | 45.3 | 45.7 | 43.6 |
| O | 43.3 | 3.17 | 45.1 | 4.5 .1 | 45.0 | 45.0 | 45.0 | 4.2 | 45.5 | 45.3 |
| 06 | 43.7 | 4.4.0 | 4,4.\% | 4.4 .4 | 44.3 | 44.2 | 44.2 | 44.4 | 44.7 | 44.6 |
| 07 | 42.1 | 42.1 | 42.1 | 41.7 | 41.6 | +1.2 | .11.1 | 41.0 | 4.1.2 | 40.6 |
| 03 | 38.9 | 37.5 | 37.5 | 36.6 | 36.3 | 36.1 | 36.0 | 35.9 | 36.0 | 35.5 |
| 09 | 39.0 | 38.4 | 38.5 | 37.9 | 37.6 | 37.5 | 37.3 | 37.3 | 37.4 | 37.2 |
| 10 | 38.0 | 37.1 | 37.6 | 36.9 | 36.4 | 36:1 | 35.9 | 35.7 | 35.6 | 35.0 |
| 11* | 36.8 | 36.6 | 36.3 | 35.7 | 35.3 | 35.0 | 34.6 | 34.2 | 34.1 | 33.5 |
| 17* | 37.2 | 36.3 | 35.9 | 35.2 | 34.7 | 34.3 | 34.0 | 33.7 | 33.4 | 32.4 |
| 13* | 36.1 | 34.5 | 34.5 | 33.9 | 33.4 | 33.1 | 32.8 | 32.6 | 32.4 | 31.7 |
| 14 | 36.4 | 35.0 | 35.0 | 34.5 | 34.1 | 33.7 | 33.4 | 33.2 | 33.0 | 32.2 |
| 15 | 36.7 | 35.4 | 35.3 | 34.8 | 34.4 | 34.0 | 33.7 | 33.5 | 33.3 | 32.2 |
| 10* | 39.2 | 37.9 | 37.7 | 37.2 | 36.6 | 36.1 | 35.3 | 34.8 | 34.4 | 32.7 |
| 17 | 40.6 | 39.3 | 39.1 | 38.1 | 37.4 | 36.7 | 35. 9 | 35.2 | 35.0 | 33.6 |
| 18 | 40.4 | 38.3 | 37.9 | 37.2 | 36.4 | 35. 6 | 34.9 | 34.4 | 34.4 | 33.7 |
| 19 | 41.0 | 39.5 | 39.0 | 33.1 | 37.2 | 36.? | 35.' | 34.7 | 34.7 | 33.9 |
| 20 | 42.0 | 10.4 | 4.2 | 39.4 | 33.3 | 3.3 .2 | 37.1 | 35.6 | 35.0 | 34.0 |
| 21 | 44.0 | 43.? | 43.1 | 42.5 | 41.5 | 40.6 | 33.9 | 36.3 | 35.2 | 33.9 |
| 22 | 46.3 | 46.3 | 46.5 | 46.3 | 46.0 | 45.7 | 45.0 | 43.8 | 38.4 | 3.1.9 |
| 23 | 47.1 | 47.2 | 47.5 | 47.4 | 47.2 | 46.9 | \% | 45.6 | 43.0 | 40.3 |


| Nunber <br> of Ol | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 449 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dally |  |  |  |  |  |  |  |  |  |  |

LITTLE AMERICA $V$
Hourly Mean Temperature: $\left(-{ }^{\circ} \mathrm{C}\right)$
3 August 1957

| $\mathrm{crm}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 47.9 | 48.0 | 48.3 | 48.2 | 48.1 | 47.9 | 47.7 | 47.5 | 47.2 | 43.1 |
| 01 | 48.1 | 48.3 | 48.4 | 48.3 | 48.1 | 47.9 | 47.7 | 47.5 | 47.3 | 45.0 |
| 02 | 49.0 | 49.2 | 49.5 | 49.4 | 49.3 | 49.2 | 49.1 | 49.0 | 49.2 | 48.4 |
| 03 | 48.9 | 49.0 | 49.2 | 49.0 | 48.8 | 48.7 | 48.4 | 48.4 | 48.4 | 47.4 |
| 04 | 48.2 | 48.0 | 48.1 | 47.8 | 47.5 | 47.4 | 47.2 | 47.2 | 47.2 | 46.2 |
| 05 | 47.5 | 47.5 | 47.5 | 47.3 | 47.2 | 47.1 | 46.9 | 46.8 | 46.9 | 46.1 |
| 06 | 45.6 | 45.3 | 45.4 | 45.0 | 44.8 | 44.6 | 44.5 | 44.4 | 44.4 | 43.9 |
| 07 | 42.0 | 41.8 | 41.9 | 41.6 | 41.4 | 41.3 | 41.2 | 41.2 | 41.3 | 41.2 |
| 08 | 41.1 | 40.7 | 40.7 | 40.4 | 40.2 | 40.0 | 39.9 | 40.0 | 40.2 | 39.8 |
| 09 | 39.5 | 39.2 | 39.2 | 38.9 | 38.8 | 38.5 | 38.6 | 38.5 | 38.7 | 38.4 |
| 10 | 37.9 | 37.6 | 37.7 | 37.4 | 37.3 | 37.1 | 37.0 | 37.1 | 37.3 | 37.1 |
| 11 | 37.2 | 37.0 | 37.1 | 36.9 | 36.7 | 36.7 | 36.6 | 36.6 | 36.8 | 36.7 |
| 12 | 36.3 | 35.9 | 35.9 | 35.8 | 35.6 | 35.4 | 35.4 | 35.4 | 35.6 | 35.5 |
| 13 | 35.5 | 35.2 | 35.2 | 35.1 | 34.9 | 34.8 | 34.8 | 34.7 | 34.9 | 34.8 |
| 14 | 35.5 | 34.8 | 34.8 | 34.7 | 34.5 | 34.3 | 34.3 | 34.3 | 34.4 | 34.2 |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 1617 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 18 | 35.7\% | 35.60 | 35.78 | 35.5\# | 35.40 | 35.34 | 35.30 | 35.34 | 35.44 | 35.3 |
| 19 | 37.0 | 37.0 | 37.1 | 36.7 | 36.6 | 36.5 | 36.3 | 36.4 | 36.5 | 36.2 |
| 20 | 40.2 | 40.3 | 40.5 | 40.4 | 40.1 | 10.0 | 39.9 | 39.8 | 39.8 | 39.4 |
| 21 | 42.8 | 42.8 | 43.0 | 42.8 | 42.7 | 42.6 | 42.5 | 42.4 | 42.4 | 42.0 |
| 22 | 43.5 | 43.5 | 43.5 | 43.4 | +3.3 | 43.2 | 43.0 | 43.0 | 43.0 | 42.6 |
| 23 | 44.0 | 44.0 | 44.2 | 44.1 | 44.0 | 44.0 | 43.8 | 43.8 | 43.9 | 43.4 |


| Number <br> Of Obs | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |$\quad 380$

LITTLE AMERICA $V$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$
4 August 1957

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 44.7 | 44.7 | 44.9 | 44.8 | 44.7 | 44.6 | 44.5 | 44.5 | 44.5 | 44.1 |
| 01 | 45.2 | 45.2 | 45.4 | 45.2 | 45.1 | 45.0 | 44.8 | 44.8 | 44.7 | 44.1 |
| 02 | 44.7 | 44.8 | 45.0 | 44.9 | 44.7 | 44.6 | 44.5 | 44.5 | 44.6 | 44.0 |
| 03 | 44.1 | 44.1 | 44.3 | 44.1 | 43.9 | 43.7 | 43.6 | 43.6 | 43.8 | 43.4 |
| 04 | 44.3 | 44.3 | 44.4 | 44.1 | 43.9 | 43.7 | 43.6 | 43.6 | 43.7 | 43.2 |
| 05 | 43.8 | 43.7 | 43.9 | 43.6 | 43.4 | 43.2 | 43.0 | 43.0 | 43.0 | 42.2 |
| 06 | 43.2 | 43.0 | 43.1 | 42.7 | 42.5 | 42.2 | 42.1 | 42.1 | 42.2 | 41.4 |
| 07 | 42.2 | 42.0 | 42.1 | 41.9 | 41.7 | 41.5 | 41.5 | 41.5 | 41.6 | 41.3 |
| 08 | 40.6 | 40.5 | 40.6 | 40.4 | 40.2 | 40.1 | 40.0 | 40.0 | 40.3 | 40.0 |
| 09 | 39.9 | 39.4 | 39.4 | 39.0 | 38.8 | 38.7 | 38.5 | 38.0 | 38.8 | 38.4 |
| 10 | 41.3 | 41.0 | 41.1 | 40.8 | 40.6 | 40.5 | 40.3 | 40.3 | 40.5 | 40.1 |
| 11 | 42.0 | 41.8 | 41.9 | 41.4 | 41.2 | 41.0 | 40.9 | 40.9 | 41.0 | 40.3 |
| 12 | 41.2 | 40.9 | 41.0 | 40.6 | 40.4 | 40.2 | 40.1 | 40.1 | 39.9 | 38.7 |
| 13 | 41.2 | 41.2 | 41.4 | 41.2 | 410 | 40.9 | 40.8 | 40.9 | 41.1 | 40.8 |
| 14 | 40.2 | 40.0 | 40.1 | 39.8 | 39.6 | 39.4 | 39.3 | 39.4 | 39.7 | 39.5 |
| 15 | 39.3 | 38.9 | 39.1 | 38.8 | 38.6 | 38.5 | 38.4 | 38.5 | 38.8 | 38.6 |
| 16 | 37.1 | 36.3 | 36.4 | 36.1 | 35.9 | 35.8 | 35.8 | 35.9 | 36.1 | 35.9 |
| 17 | 36.1 | 35.8 | 35.9 | 35.8 | 35.5 | 35.4 | 35.4 | 35.6 | 35.9 | 35.6 |
| 18 | 35.9 | 35.7 | 35.9 | 35.7 | 35.4 | 35.4 | 35.4 | 35.5 | 35.9 | 35.6 |
| 19 | 34.8 | 34.7 | 34.7 | 34.7 | 34.6 | 34.5 | 34.4 | 34.5 | 34.8 | 34.7 |
| 20 | 35.7 | 35.5 | 35.6 | 35.5 | 35.3 | 35.2 | 35.2 | 35.4 | 35.7 | 35.5 |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 | 34.6 | 34.4 | 34.6 | 34.5 | 34.3 | 34.3 | 34.3 | 34.4 | 34.7 | 34.5 |
| 23 | 34.0 | 33.9 | 34.0 | 33.9 | 33.9 | 33.8 | 33.8 | 34.0 | 34.1 | 34.0 |

[^9]LITTIE AMERICA $V$
Hourly Mean Temperatures

| $\mathrm{Hr}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 33.8 | 33.5 | 33.6 | 33.5 | 33.4 | 33.4 | 33.4 | 33.5 | 33.6 | 33.6 |
| 01 | 32.6 | 30.8 | 30.9 | 30.5 | 30.2 | 30.1 | 30.0 | 30.0 | 30.0 | 29.8 |
| 02 | 31.3 | 29.3 | 29.3 | 28.9 | 28.7 | 28.5 | 28.5 | 28.5 | 28.2 | 28.4 |
| 03 | 29.0 | 28.5 | 28.6 | 28.4 | 28.1 | 28.0 | 28.0 | 28.0 | 28.1 | 27.9 |
| 04 | 28.7 | 28.2 | 28.3 | 28.1 | 27.9 | 27.8 | 27.7 | 27.7 | 27.7 | 27.5 |
| 05 | 27.6 | 27.1 | 27.2 | 26.9 | 26.7 | 26.5 | 26.4 | 26.5 | 26.5 | 26.3 |
| 06 | 28.4 | 27.1 | 26.2 | 26.2 | 25.8 | 25.7 | 25.4 | 25.7 | 25.8 |  |
| 07 | 27.9 | 27.5 | 27.2 | 27.1 | 26.8 | 26.8 | 26.5 | 26.7 | 26.8 |  |
| 08 | 28.8 | 28.5 | 28.4 | 28.1 | 27.9 | 27.8 | 27.7 | 27.8 | 27.8 |  |
| 09 | 29.5 | 29.2 | 29.1 | 28.8 | 28.6 | 28.4 | 283 | 28.3 | 28.4 | 27.7 |
| 10 | 29.7 | 29.2 | 28.6 | 28.6 | 28.4 | 28.3 | 27.9 | 28.2 | 28.3 |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 206 | 120 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 29.7 | 29.0 | 28.9 | 28.6 | 28.1 | 28.3 | 28.2 | 28.3 | 28.3 | 28.9 |

LITTLE ARERICA $v$
Hourly Mean Temperatures


|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 46.6 | 46.6 | 46.7 | 46.6 | 46.3 | 46.3 | 46.2 | 46.1 | 46.2 | 45.6 |
| 01 | 47.4 | 47.4 | 47.6 | 47.5 | 47.2 | 47.2 | 47.1 | 47.1 | 47.1 | 46.7 |
| 02 | 47.6 | 47.6 | 47.7 | 47.6 | 47.3 | 47.3 | 47.2 | 47.2 | 47.3 | 46.9 |
| 33 | 47.5 | 47.7 | 47.9 | 47.8 | 47.5 | 47.5 | 47.3 | 47.3 | 47.4 | 47.1 |
| 04 | 47.2 | 47.3 | 47.4 | 47.3 | 47.1 | 47.1 | 46.9 | 46.9 | 47.0 | 46.5 |
| 05 | 46.4 | 46.4 | 46.6 | 46.5 | 46.2 | 46.2 | 46.1 | 46.1 | 46.2 | 45.7 |
| 06 | 45.3 | 45.4 | 45.7 | 45.6 | 45.2 | 45.3 | 45.2 | 45.2 | 45.4 | 45.0 |
| 07 | 45.4 | 45.5 | 45.7 | 45.6 | 45.4 | 45.4 | 45.3 | 45.3 | 45.5 | 45.1 |
| 08 | 44.8 | 44.9 | 45.2 | 45.0 | 44.8 | 44.7 | 44.7 | 44.7 | 44.9 | 44.6 |
| 09 | 43.6 | 43.6 | 43.8 | 43.7 | 43.5 | 43.3 | 43.2 | 43.2 | 43.2 | 42.7 |
| 10 | 43.0 | 43.0 | 43.1 | 43.0 | 42.9 | 42.8 | 42.7 | 42.7 | 42.7 | 42.1 |
| 11 | 42.9 | 42.9 | 43.1 | 43.0 | 42.8 | 42.7 | 42.6 | 42.6 | 42.7 | 42.4 |
| 12 | 41.9 | 41.7 | 41.7 | 41.5 | 41.4 | 41.2 | 41.1 | 41.1 | 41.1 | 40.8 |
| 13 | 39.3 | 39.1 | 39.1 | 38.9 | 38.8 | 38.7 | 38.6 | 38.6 | 38.7 | 38.4 |
| 14 | 38.6 | 38.3 | 38.3 | 38.2 | 38.0 | 37.8 | 37.7 | 37.7 | 37.8 | 37.6 |
| 15 | 35.2 | 35.0 | 35.0 | 34.9 | 34.7 | 34.6 | 34.5 | 34.5 | 34.7 | 34.4 |
| 16 | 33.6 | 32.7 | 32.8 | 32.7 | 32.5 | 32.4 | 32.3 | 32.3 | 32.5 | 32.3 |
| 17 | 31.6 | 31.4 | 31.5 | 31.3 | 31.1 | 31.0 | 30.9 | 30.9 | 31.1 | 30.9 |
| 18 | 29.8 | 29.3 | 29.4 | 29.3 | 29.0 | 29.1 | 29.0 | 29.0 | 29.1 | 28.9 |
| 19 | 28.0 | 27.7 | 27.8 | 27.7 | 27.5 | 27.6 | 27.6 | 21.5 | 27.6 | 27.4 |
| 20 | 27.8 | 27.3 | 27.4 | 27.3 | 27.1 | 27.2 | 27.2 | 27.2 | 27.3 | 27.2 |
| 21 | 28.6 | 28.1 | 28.2 | 28.1 | 28.0 | 28.1 | 28.2 | 28.2 | 28.2 | 28.2 |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |


| Number <br> OF Obs | 413 | 413 | 413 | 413 | 413 | 413 | 413 | 413 | 413 | 412 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily |  |  |  |  |  |  |  |  |  |  |

Hourly Mean Temperatures

| $\mathrm{Hr}$ | Sfc | 3 | 6 | 12 | 2', | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 | 38.3 | 38.4 | 38.7 | 38.5 | 38.j | 38.3 | 38.2 | 38.4 | 38.6 | 38.3 |
| 17 | 38.1 | 38.2 | 38.4 | 38.3 | 38.2 | 38.1 | 38.1 | 38.1 | 38.2 | 38.1 |
| 18 | 38.4 | 38.4, | 38.7 | 38.5 | 38.4 | 38.4 | 38.3 | 38.3 | 38.4 | 38.4 |
| 19 | 37.7 | 37.9 | 38.1 | 38.0 | 37.9 | 37.8 | 37.7 | 37.8 | 38.0 | 37.9 |
| 20 | 37.0 | 37.0 | 37.2 | 37.1 | 37.0 | 36.9 | 36.8 | 36.9 | 37.1 | 37.0 |
| 21 | 35.6 | 35.6 | 35.7 | 35.7 | 35.6 | 35.5 | 35.4 | 35.6 | 35.8 | 35.7 |
| 22 | 34.9 | 34.9 | 35.0 | 34.9 | 34.8 | 34.8 | 34.6 | 34.7 | 35.0 | 34.9 |
| 23 | 34.1 | 34.0 | 34.1 | 34.0 | 33.9 | 33.8 | 33.8 | 339 | 34.1 | 34.0 |
| Number of Obs | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 36.7 | 36.7 | 36.9 | 36.8 | 36.? | 36.6 | 36.6 | 36.7 | 36.9 | 36.7 |

LITTLE AMERICA V

LItTLE AMERICA $V$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

| :1r | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 40.3 | 40.4 | 40.7 | 40.4 | 40.2 | 40.1 | 39.9 | 39.9 | 40.0 | 39.1 |
| 01 | 41.1 | 41.2 | 41.4 | 41.3 | 41.1 | 40.9 | 40.8 | 40.9 | 41.1 | 40.4 |
| 02 | 40.9 | 41.1 | 41.3 | 41.1 | 40.8 | 40.7 | 40.5 | 40.5 | 40.5 | 39.1 |
| 03 | 40.5 | 40.5 | 40.6 | 40.2 | 39.9 | 39.6 | 39.2 | 39.1 | 38.9 | 375 |
| 04 | 39.5 | 39.4 | 39.5 | 39.2 | 38.9 | 38.7 | 38.5 | 38.5 | 38.5 | 38.1 |
| 05 | 41.4 | 41.6 | 42.0 | 41.8 | 41.7 | 41.6 | 41.6 | 41.7 | 42.0 | 41.4 |
| 06 | 41.5 | 41.9 | 42.2 | 42.1 | 42.0 | 41.9 | 41.9 | 42.0 | 42.4 | 42.1 |
| 07 | 41.2 | 41.5 | 41.8 | 41.7 | 41.6 | 41.5 | 41.5 | 41.6 | 42.0 | 42.3 |
| 08 | 41.1 | 41.3 | 41.4 | 41.3 | 41.3 | 41.2 | 41.2 | 41.2 | 41.5 | 41.4 |
| 09 | 41.0 | 41.2 | 41.5 | 41.3 | 41.1 | 41.0 | 40.9 | 41.0 | 41.4 | 412 |
| 10 | 40.6 | 40.7 | 41.0 | 40.7 | 40.5 | 40.3 | 40.3 | 40.3 | 40.7 | 40.5 |
| 11 | 41.4 | 41.5 | 41.8 | 41.7 | 41.6 | 41.4 | 41.3 | 41.4 | 41.7 | 41.6 |
| 12 | 41.0 | 41.2 | 41.5 | 41.4 | 41.2 | 41.4 | 41.1 | 41.1 | 41.4 | 41.3 |
| 13 | 41.0 | 41.2 | 41.5 | 41.2 | 41.1 | 40.9 | 40.9 | 40.9 | 41.3 | 41.0 |
| 14 | 42.3 | 42.5 | 42.8 | 42.6 | 42.4 | 42.3 | 42.3 | 42.3 | 42.7 | 42.5 |
| 15 | 43.0 | 43.3 | 43.6 | 43.5 | 43.4 | 43.2 | 43.2 | 43.3 | 43.6 | 43.5 |
| 16* | 42.9 | 43.2 | 43.4 | 43.2 | 43.0 | 42.8 | 42.8 | 42.9 | 43.1 | 43.0 |
| 17* | 43.0 | 43.1 | 43.5 | $\therefore 3.2$ | 43.2 | 42.9 | 42.8 | 42.9 | 43.2 | 42.9 |
| 18* | 44.4 | 44.7 | 45.0 | 44.8 | 44.7 | 44.6 | 44.5 | 44.6 | 45.0 | 44.8 |
| 19* | 45.3 | 45.6 | 45.9 | 45.7 | 45.6 | 45.4 | 45.3 | 45.3 | 45.5 | 45.0 |
| 20 | 45.9 | 46.2 | 46.4 | 46.2 | 46.1 | 45.9 | 45.7 | 45.7 | 45.6 | 43.6 |
| 21 | 46.0 | 46.2 | 46.4 | 46.2 | 46.0 | 45.8 | 45.5 | 45.4 | 44.7 | 42.0 |
| 22 | 45.9 | 46.0 | 46.1 | 45.9 | 45.7 | 45.4 | 45.0 | $4 / 4.6$ | 43.5 | 40.9 |
| 23 | 46.1 | 46.3 | 46.4 | 46.3 | 46.0 | 45.7 | 45.4 | 45.0 | 44.5 | 41.6 |


| Number <br> Of Obs | 452 | 452 | 452 | 452 | 452 | 452 | 451 | 452 | 452 | 452 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 42.4 | 42.6 | 42.8 | 42.6 | 42.5 | 42.3 | 42.2 | 42.2 | 42.3 | 41.5 |

LITTLE AMERICA V
Hourly Mean Temperature; (- ${ }^{\circ}$ (:)

| Hr | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 46.0 | 46.0 | 46.1 | 45.8 | 45.4 | 45.1 |  |  |  |  |
| 01 | 46.3 | 46.4 | 46.6 | 46.3 | 46.0 | 45.7 | 44.9 45.3 | 44.8 | 44.5 | 42.0 |
| 02 | 46.2 | 45.5 | 46.8 | 46.5 | 46.0 46.3 | 45.7 | 45.3 | 45.0 43.5 | 44.2 | 40.5 |
| 03 | 45.7 | 45.9 | 46.2 | 45.8 | 45.6 | 46.0 | 44.9 | 43.5 | 44.7 | 41.8 |
| 04 | 45.0 | 45.2 | 45.4 | 45.2 | 45.0 | 44.9 | 44.7 | 44.6 | 43.7 | 41.2 |
| 05 | 44.8 | 45.0 | 45.2 | 44.9 | 44.8 | 44.6 | 44.4 | 44.5 | 44.4 | 41.6 |
| 06 | 43.6 | 43.8 | 44.1 | 43.9 | 43.8 | 43.7 | 43.6 | 43.7 | 43.9 | 41.8 43.1 |
| 07 | 43.1 | 43.4 | 43.7 | 43.6 | 43.5 | 43.4 | 43.3 | 43.6 | 43.8 | 43.4 |
| 08 | 42.7 | 42.9 | 43.1 | 43.0 | 42.9 | 42.8 | 42.8 | 42.9 | 43.2 | 43.4 43.0 |
| 09 10 | 41.5 40.5 | 41.7 40.6 | 41.8 | 41.7 | 41.5 | 41.5 | 41.5 | 41.6 | 41.9 | 41.1 |
| 11 | 40.3 | 40.3 | 40.9 | 40.7 | 40.6 40.3 | 40.5 | 40.6 | 40.7 | 41.1 | 40.9 |
| 12 | 39.8 | 39.8 | 40.0 | 39.8 | 39.6 | 30.2 | 40.3 29.5 | 40.4 | 40.8 | 40.7 |
| 13* | 39.6 | 39.5 | 39.7 | 39.4 | 39.2 | 39.0 | 39.5 39.0 | 39.7 | 39.9 | 39.8 |
| 14 | 39.7 | 39.6 | 39.8 | 39.5 | 39.4 | 39.1 | 39.0 39.1 | 39.1 | 39.4 | 39.0 |
| 15* | 39.4 | 39.3 | 39.4 | 39.2 | 39.0 | 38.8 | 3 C .8 | 39.2 | 39.5 | 39.0 |
| 16* | 38.9 | 38.8 | 38.8 | 38.7 | 38.5 | 38.3 | 38.3 | 38.9 | 39.1 | 38.9 |
| 17 | 38.8 | 38.7 | 38.8 | 38.6 | 38.4 | 38.3 | 38.3 | 38.4 | 38.6 | 38.3 |
| 18 | 38.4 | 38.1 | 38.2 | 38.0 | 37.8 | 37.7 | 37.7 | 38.3 | 38.5 | 38.1 |
| 19* | 35.0 | 34.7 | 34.8 | 34.7 | 34.6 | 34.4 | 37.7 | 37.7 | 37.9 | 37.3 |
| 20* | 33.4 | 33.2 | 33.4 | 33.3 | 33.2 | 33.0 | 33.1 | 34.6 | 34.7 | 34.8 |
| 21 | 33.2+ | $32.9+$ | $33.1+$ | $33.0+$ | $32.8+$ | $32.7+$ |  | 33.2 | 33.4 | 33.4 |
| 22 | 32.1 | 32.0 | 32.0 | 31.9 | 31.8 | 32.7 31.7 | $32.8+$ 31.7 | 33.0- | $33.2+$ | $33.2+$ |
| 23 | 31.6 | 31.5 | 31.5 | 31.5 | 31.3 | 31.3 | 31.3 |  | 32.1 | 32.1 |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 442 | 442 | 442 | 44. | 442 | 442 | 442 | 44 | 442 |  |
| Daily |  |  |  |  |  |  |  |  |  | 442 |
| Mean | 40.3 | 40.3 | 40.5 | 40.3 | 40.1 | 40.0 | 39.9 | 40.0 | 40.0 | 39 |

LittLe AMERICA $V$
Hourly Mean Temperatures (- ${ }^{\circ} \mathrm{C}$ )

|  | $5 . \mathrm{c}$ | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 31.5 | 31.4 | 31.5 | 31.5 | 31.4 | 31.2 | 31.3 | 31.4 | 31.6 | 31.6 |
| 01 | 31.3 | 31.2 | 31.3 | 31.2 | 31.1 | 31.0 | 31.0 | 31.1 | 31.3 | 31.3 |
| 02 | 33.6 | 33.4 | 33.5 | 33.3 | 33.1 | 33.0 | 33.0 | 33.1 | 33.3 | 33.1 |
| 03 | 34.8 | 34.5 | 34.6 | 34.4 | 34.1 | 34.0 | 33.9 | 34.0 | 34.2 | 34.0 |
| 04 | 35.9 | 35.7 | 35.8 | 35.6 | 35.4 | 35.2 | 35.2 | 35.2 | 35.3 | 35.1 |
| 05 | 35.9 | 35.5 | 35.6 | 35.3 | 35.0 | 34.9 | 34.8 | 34.8 | 34.9 | 34.7 |
| 06 | 35.9 | 35.5 | 35.5 | 35.3 | 35.0 | 34.9 | 34.8 | 34.8 | 34.9 | 34.6 |
| 07 | 35.7 | 34.9 | 35.0 | 34.7 | 34.4 | 34.2 | 34.2 | 34.2 | 34.2 | 33.8 |
| 08 | 35.4 | 34.5 | 34.5 | 34.2 | 34.0 | 33.8 | 33.7 | 33.7 | 33.7 | 33.3 |
| 09 | 35.0 | 34.0 | 34.1 | 33.8 | 33.5 | 33.4 | 33.2 | 33.1 | 33.1 | 33.7 |
| 10* | 34.8 | 34.4 | 34.5 | 34.1 | 33.9 | 33.8 | 33.7 | 33.7 | 33.8 | 33.4 |
| 11* | 35.3 | 34.9 | 35.1 | 34.7 | 34.5 | 34.4 | 34.3 | 34.3 | 34.4 | 34.1 |
| 12* | 34.4 | 34.1 | 34.2 | 33.9 | 33.7 | 33.5 | 33.4 | 33.5 | 33.6 | 33.3 |
| 13 | 33.5 | 33.3 | 33.5 | 33.1 | 32.8 | 32.7 | 32.7 | 32.8 | 32.9 | 32.6 |
| 14 | 32.5 | 32.3 | 32.5 | 32.1 | 31.8 | 31.7 | 31.8 | 31.9 | 32.0 | 31.7 |
| 15 | 33.4 | 33.2 | 33.4 | 33.0 | 32.8 | 32.7 | 32.7 | 32.8 | 32.9 | 32.7 |
| 16* | 32.3 | 32.0 | 32.2 | 31.8 | 31.6 | 31.4 | 31.6 | 31.6 | 31.7 | 31.4 |
| 17* | 31.5 | 31.2 | 31.4 | 31.1 | 30.9 | 30.8 | 30.8 | 31.0 | 31.1 | 30.9 |
| 18 | 31.2 | 30.9 | 31.1 | 30.8 | 30.6 | 30.5 | 30.5 | 30.6 | 30.7 | 30.5 |
| 19 | 30.1 | 29.6 | 29.9 | 29.5 | 29.3 | 29.1 | 29.2 | 29.3 | 29.5 | 29.2 |
| 20 | 29.3 | 28.8 | 29.1 | 28.8 | 28.6 | 28.4 | 28.4 | 28.6 | 28.7 | 28.3 |
| 21 | 30.2 | 29.7 | 29.9 | 29.5 | 29.3 | 29.9 | 29.2 | 29.2 | 29.4 | 29.1 |
| 22 | 30.0 | 29.4 | 29.6 | 29.2 | 29.0 | 28.9 | 28.8 | 28.8 | 28.9 | 28.5 |
| 23 | 31.0 | 30.5 | 30.7 | 30.3 | 30.1 | 29.9 | 29.9 | 29.9 | 29.9 | 29.6 |
| Number <br> of Obs | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 | 449 |
| Daily <br> Mean | 33.1 | 32.7 | 32.8 | 32.5 | 32.3 | 32.2 | 32.2 | 32.2 | 32.3 | 32.1 |

LITTLE AMERICA $V$

| $\mathrm{Hr}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 32.4 | 32.0 | 32.0 | 31.8 | 31.6 | 31.5 | 31.4 | 31.4 | 31.5 | 31.1 |
| 01 | 32.6 | 32.2 | 32.2 | 31.9 | 31.7 | 31.6 | 31.5 | 31.5 | 31.6 | 31.4 |
| 02 | 33.1 | 32.9 | 33.0 | 32.7 | 32.6 | 32.5 | 32.4 | 32.4 | 32.6 | 32.4 |
| 03 | 34.8 | 34.9 | 35.1 | 35.1 | 35.0 | 34.9 | 34.8 | 34.8 | 35.0 | 34.8 |
| 04 | 35.2 | 35.4 | 35.6 | 35.6 | 35.6 | 35.5 | 35.5 | 35.5 | 35.8 | 35.6 |
| 05 | 34.2 | 34.2 | 34.4 | 34.3 | 34.3 | 34.2 | 34.1 | 34.1 | 34.2 | 34.1 |
| 06 | 33.4 | 33.3 | 33.5 | 33.4 | 33.4 | 33.3 | 33.3 | 33.3 | 33.6 | 33.5 |
| 07 | 33.4 33.4 | 33.4 | 33.5 | 33.5 | 33.4 | 33.3 | 33.3 | 33.3 | 33.6 | 33.5 |
| 08 | 33.4 | 33.3 | 33.5 | 33.4 | 33.3 | 33.2 | 33.1 | 33.2 | 33.4 | 33.4 |
| 09 | 34.0 | 33.9 | 34.0 | 33.9 | 33.7 | 33.6 | 33.5 | 33.5 | 33.6 | 33.5 |
| 10 | 33.6 | 33.5 | 33.6 | 33.4 | 33.3 | 33.2 | 33.2 | 33.1 | 33.3 | 33.2 |
| 11** | 33.9 | 33.8 | 33.8 | 33.7 | 33.6 | 33.5 | 33.4 | 33.4 | 33.5 | 33.5 |
| 12* | 34.1 | 34.1 | 34.3 | 34.2 | 34.1 | 34.0 | 33.9 | 34.0 | 34.1 | 34.0 |
| 13* | 34.6 | 34.6 | 34.7 | 34.6 | 34.5 | 34.4 | 34.3 | 34.3 | 34.4 | 34.3 |
| 14* | 34.4 | 34.4 | 34.4 | 34.3 | 34.2 | 34.1 | 34.0 | 34.1 | 34.1 | 34.0 |
| 15* | 34.0 | 33.8 | 33.8 | 33.7 | 33.5 | 33.3 | 33.2 | 33.3 | 33.2 | 33.1 |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 | 31.6 | 31.9 | 32.2 | 31.9 | 31.8 | 31.7 | 31.7 | 31.9 | 32.1 | 31.9 |
| Number of Obs | 313 | 313 | 313 | 313 | 313 | 313 | 313 | 313 | 313 | 313 |
| Dasly |  |  |  |  |  |  |  |  |  |  |
| Mean | 33.7 | 33.6 | 33.8 | 33.6 | 33.5 | 33.4 | 33.4 | 33.4 | 33.5 | 33.4 |

LITtLE America V
Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| Hr | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 32.0 | 32.0 | 32.3 | 32.1 | 3). 0 | 32.0 | 32.0 | 32.0 | 32.3 | 32.2 |
| 01 | 31.4 | 31.3 | 31.4 | 31.3 | 31.2 | 31.0 | 31.1 | 31.1 | 31.3 | 31.3 |
| 02 | 31.2 | 31.2 | 31.3 | 31.2 | 31.1 | 31.1 | 31.0 | 31.1 | 31.3 | 31.3 |
| 03 | 31.4 | 31.4 | 31.5 | 31.3 | 31.2 | 31.1 | 31.1 | 31.2 | 31.4 | 31.4 |
| 04 | 32.1 | 32.0 | 32.2 | 32.1 | 31.9 | 31.9 | 31.8 | 31.9 | 32.2 | 32.0 |
| 05 | 32.2 | 32.1 | 32.2 | 32.1 | 31.9 | 31.9 | 31.8 | 31.9 | 32.1 | 31.9 |
| 06 | 32.5 | 32.3 | 32.4 | 32.2 | 32.1 | 31.9 | 31.9 | 32.0 | 32.2 | 31.8 |
| 07 | 33.2 | 33.2 | 33.4 | 33.4 | 33.2 | 33.1 | 33.0 | 33.6 | 33.3 | 33.0 |
| 08 | 33.8 | 33.8 | 34.1 | 33.9 | 33.8 | 33.7 | 33.6 | 33.7 | 33.9 | 33.8 |
| 09* | 33.7 | 33.7 | 33.8 | 33.7 | 33.6 | 33.5 | 33.4 | 33.4 | 33.6 | 33.4 |
| 10* | 33.8 | 33.8 | 33.9 | 33.8 | 33.7 | 33.6 | 33.4 | 33.5 | 33.6 | 33.3 |
| 11* | 33.6 | 33.7 | 33.8 | 33.7 | 33.6 | 33.5 | 33.4 | 33.5 | 33.6 | 33.3 |
| 12* | 33.7 | 33.8 | 33.9 | 33.8 | 33.6 | 33.5 | 33.4 | 33.4 | 33.6 | 33.3 |
| 13* | 34.0 | 34.1 | 34.2 | 34.1 | 33.9 | 33.9 | 33.8 | 33.8 | 33.9 | 33.8 |
| 14 | 33.1 | 33.2 | 33.3 | 33.2 | 33.1 | 33.0 | 33.0 | 33.1 | 33.4 | 33.3 |
| 15 | 31.8 | 32.0 | 32.2 | 32.1 | 31.9 | 31.9 | 31.9 | 32.0 | 32.2 | 32.2 |
| 16 | 31.8 | 31.8 | 31.9 | 31.9 | 31.7 | 31.6 | 31.6 | 31.7 | 31.9 | 31.7 |
| 17 | 33.0 | 32.9 | 33.0 | 32.9 | 32.7 | 32.6 | 32.5 | 32.5 | 32.7 | 32.4 |
| 18 | 33.4 | 33.3 | 33.5 | 33.4 | 33.2 | 33.0 | 33.0 | 33.0 | 33.1 | 32.9 |
| 19 | 33.0 | 32.9 | 33.0 | 32.9 | 32.8 | 32.7 | 32.6 | 32.7 | 32.8 | 32.5 |
| 20 | 32.6 | 32.5 | 32.5 | 32.4 | 32.3 | 32.1 | 32.1 | 32.2 | 32.3 | 32.1 |
| 21 | 31.9 | 31.7 | 31.7 | 31.6 | 31.4 | 31.3 | 31.3 | 31.3 | 31.4 | 31.3 |
| 22 | 32.1 | 31.9 | 32.0 | 31.9 | 31.7 | 31.6 | 31.6 | 31.6 | 31.8 | 31.6 |
| 23 | 32.5 | 32.4 | 32.4 | 32.3 | 32.1 | 31.9 | 31.9 | 31.9 | 32.0 | 31.9 |
| Number of Obs | 452 | 451 | 452 | 452 | 452 | 452 | 452 | 452 | 452 | 452 |
| Daily <br> Mean |  |  |  |  |  |  |  |  |  |  |
|  | 32.7 | 32.6 | 32.8 | 32.6 | 32.5 | 32.4 | 32.3 | 32.4 | 32.6 | 32.4 |



| Number <br> Of Obs | 285 | 408 | 444 | 444 | 445 | 446 | 438 | 446 | 445 | 444 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DaIly <br> Mean | 29.9 | 28.4 | 28.1 | 27.9 | 27.8 | 27.6 | 27.6 | 27.7 | 27.8 | 27.6 |


| Hr | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 28.8 | 27.9 | 27.3 | 26.7 | 26.4 | 26.2 | 26.1 | 26.0 | 25.9 | 25.2 |
| 01 | 29.1 | 27.9 | 27.5 | 27.1 | 26.8 | 26.6 | 26.5 | 26.5 | 26.3 | 25.3 |
| 02 | 29.4 | 29.1 | 28.7 | 28.2 | 27.9 | 27.6 | 27.5 | 27.4 | 27.2 | 26.2 |
| 03 | 29.5 | 28.6 | 28.3 | 27.8 | 27.5 | 27.3 | 27.3 | 27.3 | 27.0 | 26.7 |
| 04 | 29.5 | 28.4 | 28.3 | 28.0 | 27.7 | 27.5 | 27.5 | 27.5 | 27.5 | 27.1 |
| 05 | 29.4 | 28.9 | 29.0 | 28.7 | 28.4 | 28.3 | 28.3 | 28.3 | 28.4 | 28.1 |
| 06 | 30.1 | 30.7 | 30.8 | 30.5 | 30.3 | 30.2 | 30.1 | 30.2 | 30.2 | 29.8 |
| 07 | 30.0 | 30.2 | 30.4 | 30.3 | 30.2 | 30.1 | 30.1 | 30.2 | 30.5 | 30.3 |
| 08 | 30.5 | 31.7 | 32.0 | 31.8 | 31.6 | 31.5 | 31.5 | 31.7 | 31.9 | 31.7 |
| 09 | 31.4 | 32.1 | 32.4 | 32.2 | 32.0 | 31.8 | 31.8 | 31.8 | 32.0 | 31.8 |
| 10* | 30.1 | 30.2 | 30.4 | 30.2 | 30.0 | 30.0 | 30.0 | 30.1 | 30.3 | 30.2 |
| 11* | 29.6- | 29.7- | 29.8- | 29.8- | 29.5- | 29.4- | 29.5- | 29.5- | 29.9- | 29.9- |
| 12* | 29.4 | 29.1 | 29.7 | 29.5 | 29.5 | 29.4 | 29.4 | 29.5 | 29.7 | 29.6 |
| 13 | 32.0 | 32.3 | 32.5 | 32.4 | 32.2 | 32.1 | 32.1 | 32.2 | 32.4 | 32.2 |
| 14 | 33.7 | 33.9 | 34.0 | 33.9 | 33.7 | 33.5 | 33.4 | 33.5 | 33.7 | 33.4 |
| 15* | 33.4 | 33.7 | 33.8 | 33.6 | 33.4 | 33.3 | 33.2 | 33.3 | 33.6 | 33.2 |
| 16* | 34.1 | 34.6 | 34.8 | 34.6 | 34.4 | 34.3 | 34.2 | 34.3 | 34.6 | 34.2 |
| 17 | 35.6 | 35.9 | 36.1 | 35.9 | 35.7 | 35.6 | 35.5 | 35.6 | 35.8 | 35.5 |
| 18 | 35.1 | 36.6 | 36.7 | 36.5 | 36.2 | 36.1 | 35.9 | 36.0 | 36.3 | 35.9 |
| 19 | 35.0 | 36.8 | 36.9 | 36.7 | 36.6 | 36.4 | 36.3 | 36.5 | 36.7 | 36.2 |
| 20 | 36.7 | 36.9 | 37.2 | 37.2 | 36.9 | 36.9 | 36.8 | 36.9 | 37.1 | 36,8 |
| 21 | 37.0 | 37.2 | 37.4 | 37.4 | 37.2 | 37.2 | 37.1 | 37.1 | 37.3 | 37.1 |
| 22 | 37.3 | 37.4 | 37.6 | 37.5 | 37.3 | 37.2 | 37.1 | 37.1 | 37.3 | 37.1 |
| 23 | 37.6 | 37.7 | 37.9 | 37.8 | 37.6 | 37.5 | 37.4 | $3 i .5$ | 37.7 | 37.3 |


| Humber <br> of Ob | 439 | 439 | 439 | 439 | 439 | 438 | 439 | 438 | 439 | 438 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Datiy <br> Mean | 32.3 | 32.5 | 32.5 | 32.3 | 32.1 | 32.0 | 31.9 | 32.0 | 32.1 | 32.7 |

L.ITTLE AMERICA V Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

|  | Stc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 37.8 | 38.0 | 38.2 | 38.1 | 37.9 | 37.8 | 37.7 | 37.8 | 38.1 | 37.8 |
| 01 | 38.1 | 38.3 | 38.5 | 38.4 | 38.3 | 38.2 | 38.0 | 38.1 | 38.3 | 38.0 |
| 02 | 38.4 | 38.5 | 38.6 | 38.5 | 38.4 | 38.3 | 38.2 | 38.2 | 38.4 | 38.2 |
| 03 | 38.3 | 38.4 | 38.6 | 38.5 | 38.4 | 38.3 | 38.2 | 38.2 | 38.4 | 38.2 |
| 04 | 38.5 | 37.9 | 38.8 | 38.7 | 38.6 | 38.6 | 38.5 | 38.5 | 38.7 | 38.5 |
| 05 | 38.6 | 38.6 | 38.8 | 38.8 | 38.6 | 38.5 | 38.4 | 38.5 | 38.6 | 39.4 |
| 06 | 38.4 | 38.5 | 38.7 | 38.6 | 38.4 | 38.4 | 38.3 | 38.4 | 38.5 | 38.3 |
| 07 | 38.6 | 37.8 | 38.9 | 38.7 | 38.6 | 38.5 | 38.4 | 38.4 | 38.7 | 38.4 |
| 08 | 38.9 | 39.0 | 39.2 | 39.0 | 38.8 | 38.7 | 38.7 | 38.7 | 39.0 | 38.6 |
| Oy | 38.6 | 38.7 | 38.9 | 38.7 | 38.5 | 38.5 | 38.4 | 38.5 | 38.6 | 38.3 |
| 10* | 36.7 | 36.9 | 37.0 | 36.9 | 36.7 | 36.7 | 36.6 | 36.7 | 37.0 | 36.9 |
| 11* | 35.0 | 35.1 | 35.3 | 35.2 | 35.1 | 35.1 | 35.0 | 35.1 | 35.4 | 35.4 |
| 12* | 34.8 | 34.9 | 35.1 | 35.0 | 34.9 | 34.9 | 34.9 | 35.0 | 35.2 | 35.2 |
| 13* | 34.5 | 34.6 | 34.7 | 34.6 | 34.5 | 34.5 | 34.4 | 34.6 | 34.9 | 34.8 |
| 14 | 36.1 | 36.2 | 36.3 | 36.2 | 36.1 | 36.0 | 36.0 | 16.0 | 36.2 | 36.1 |
| 15 | 37.5 | 37.6 | 37.8 | 37.8 | 37.6 | 37.4 | 37.4 | 37.5 | 37.7 | 37.5 |
| 16 | 38.5 | 38.6 | 38.8 | 38.7 | 38.6 | 38.5 | 38.4 | 38.5 | 38.7 | 38.4 |
| 17 | 39.6 | 39.6 | 39.8 | 39.7 | 39.5 | 39.4 | 39.3 | 39.4 | 39.7 | 39.3 |
| 18 | 39.3 | 39.5 | 39.7 | 39.5 | 39.4 | 39.4 | 39.3 | 39.3 | 39.6 | 39.4 |
| 19 | 39.3 | 39.4 | 39.5 | 39.4 | 39.2 | 39.1 | 39.0 | 39.0 | 39.2 | 38.8 |
| 20 | 39.6 | 39.7 | 39.9 | 39.7 | 34.5 | 39.5 | 39.4 | 35.4 | 39.6 | 39.1 |
| 21 | 40.3 | 40.4 | 40.7 | 40.5 | 40.4 | 40.3 | 40.2 | 40.2 | 40.5 | 40.1 |
| 22 | 41.5 | 41.6 | 41.8 | 41.7 | 41.6 | 41.5 | 41.3 | 41.4 | 41.7 | 41.3 |
| 23 |  |  |  |  |  |  |  |  |  |  |


| Number <br> of Obs | 429 | 427 | 429 | 429 | 429 | 429 | 430 | 428 | 430 | 429 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 38.1 | 38.2 | 38.4 | 38.3 | 38.1 | 38.1 | 38.0 | 38.0 | 38.3 | 38.0 |

LITtLE AMERICA $V$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$


| Number <br> of Obs | 447 | 447 | 446 | 444 | 446 | 447 | 447 | 447 | 446 | 447 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Da11y |  |  |  |  |  |  |  |  |  |  |
| Mean | 46.2 | 46.2 | 46.4 | 46.1 | 46.0 | 45.8 | 45.6 | 45.4 | 45.5 | 45.0 |

LITTLE AMERICA $V$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

| 8 |  <br>  |
| :---: | :---: |
| O |  <br>  |
| $\stackrel{8}{\mathrm{~N}}$ |  <br>  |
| $8$ |  <br>  |
| 0 |  <br>  |
| $\cdots$ |  <br>  |
| $\underset{\sim}{\sim}$ |  <br>  |
| $\bigcirc$ |  <br>  |
| $m$ |  <br>  |
| 山 心 | 我守 |
| ＋ |  |


| Hunber <br> Of Obs <br> Da：1y | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | 42.5 | 42.1 | 42.1 | 41.7 | 41.4 | 41.6 | 40.6 | 40.2 | 39.9 | 38.7 |

LITTLE AMER ZCA $V$
Hourly Mean Temperatuacs

| $\bigcirc$ |  <br>  | g |
| :---: | :---: | :---: |
| $\stackrel{8}{8}$ |  $\dot{m} \dot{\sim}$ | $\stackrel{9}{\text { ¢ }}$ |
| - |  <br>  | $\stackrel{\text { a }}{\text { ¢ }}$ |
| 8 |  $\dot{\sim} \dot{\sim} \dot{\sim} \dot{m} \dot{m} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$ | $\stackrel{9}{\text { g }}$ |
| - | m | -9 |
| ~ |  <br>  | Nà |
| $\sim$ |  <br>  | $\stackrel{\text { a }}{\text { ¢ }}$ |
| $\bigcirc$ |  <br>  | - |
| $m$ |  <br>  |  |
| 出 |  <br>  | ¢ |
|  |  |  |

LITTLE AMERICA V
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

| 8 |  |
| :---: | :---: |
| -8 |  <br>  |
| $\stackrel{8}{8}$ |  <br>  |
| 응 |  <br>  |
| i |  <br>  |
| S |  <br>  |
| $\stackrel{\sim}{\sim}$ |  <br>  |
| $\bigcirc$ |  N |
| $m$ |  <br>  |
| ${ }_{\text {c }}^{\substack{\text { c }}}$ |  <br>  |
|  |  |


| Number <br> of Obs | 423 | 423 | 423 | 423 | 414 | 423 | 423 | 422 | 423 | 192 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 28.0 | 27.7 | 27.8 | 27.4 | 27.4 | 27.2 | 27.2 | 27.2 | 27.4 | 25.6 |

LITTLE AMERICA $V$
Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| 髙 |  <br>  |
| :---: | :---: |
| O |  <br>  |
| O |  <br>  |
| $8$ |  <br>  |
| \% |  <br>  |
| $\sim$ |  <br>  |
| $\cdots$ |  <br>  |
| $\bigcirc$ |  <br>  |
| $m$ |  <br>  |
| $\underset{\sim}{4}$ |  <br>  |
|  |  |


| Number <br> of Obs <br> Dally | 440 | 445 | 446 | 446 | 446 | 446 | 445 | 446 | 446 | 445 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | 34.5 | 34.5 | 34.6 | 34.2 | 33.8 | 33.5 | 33.2 | 32.8 | 32.3 | 31.4 |



| Number <br> of CUs | 446 | 446 | 446 | 446 | 446 | 446 | 446 | 446 | 440 | 446 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 40.6 | 40.7 | 40.9 | 40.8 | 40.6 | 40.5 | 40.5 | 40.5 | 40.6 | 40.4 |

Little america $v$

| $8$ |  |
| :---: | :---: |
| O |  |
| 우N |  <br>  |
| 응 |  <br>  |
| 안 |  <br>  |
| へ |  |
| $\stackrel{\sim}{\sim}$ |  <br>  |
| $\bigcirc$ |  <br>  |
| $m$ |  <br>  |
| $\underset{\sim}{4}$ |  <br>  |
|  |  |


| Number <br> Of Obs | 445 | 445 | 445 | 445 | 445 | 445 | 445 | 445 | 445 | 443 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily |  |  |  |  |  |  |  |  |  |  |

Houriy Kean Temperature

|  | Sic | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 48.0 | 48.1 | 48.3 | 48.2 | 47.9 | 47.9 | 47.8 | 47.8 | 48.0 | 47.8 |
| 0: | 48.1 | 48.2 | 48.4 | 48.3 | 48.1 | 48.1 | 47.9 | 47.9 | 48.1 | 48.0 |
| 02 | 48.4 | 48.5 | 48.8 | 48.6 | 48.4 | 48.4 | 48.2 | 48.2 | 48.4 | 48.2 |
| 03 | 48.7 | 48.8 | 48.9 | 48.8 | 48.7 | 48.7 | 48.6 | 43.5 | 48.7 | 48.5 |
| 04 | 48.6 | 48.8 | 49.0 | 48.9 | 48.8 | 48.7 | 48.6 | 48.6 | 48.8 | 48.6 |
| 05 | 48.8 | 48.9 | 49.1 | 49.0 | 48.9 | 48.8 | 48.7 | 48.7 | 48.8 | 48.6 |
| 06 | 48.8 | 48.9 | 49.1 | 49.0 | 48.8 | 48.7 | 48.6 | 48.6 | 48.8 | 48.5 |
| 07 | 483 | 48.4 | 48.6 | 48.5 | 48.4 | 48.3 | 48.2 | 48.2 | 48.3 | 48.1 |
| 08 | 47.7 | 47.7 | 47.9 | 47.8 | 47.7 | 47.6 | 47.5 | 47.4 | 47.5 | 47.5 |
| 09 | 47.2 | 47.2 | 47.3 | 47.2 | 47.1 | 46.9 | 46.7 | 46.8 | 47.0 | 46.8 |
| 10 | 47.1 | 47.1 | 47.2 | 47.1 | 46.9 | 46.6 | 46.5 | 46.6 | 45.8 | 46.5 |
| 11 | 47.3 | 47.3 | 47.4 | 47.4 | 47.2 | 47.0 | 47.0 | 47.0 | 47.1 | 47.0 |
| 12 | 47.1 | 47.1 | 47.3 | 47.2 | 47.0 | 46.8 | 46.7 | 46.7 | 46.9 | 46.8 |
| $\begin{aligned} & 13 \\ & 14 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 15* | 46.7 | 46.6 | 46.7 | 46.4 | 46.3 | 46.0 | 46.0 | 46.0 | 46.1 | 45.8 |
| 16 | 45.8 | 45.6 | 45.7 | 45.4 | 45.3 | 45.1 | 45.0 | 44.9 | 45.0 | 44.7 |
| 17 | 45.2 | 45.0 | 43.0 | 44.7 | 44.6 | 44.4 | 44.3 | 44.3 | 44.4 | 44.1 |
| 18 | 45.4 | 45.3 | 45.3 | 45.1 | 44.9 | 44.7 | 44.6 | 44.6 | 44.7 | 44.5 |
| 19 | 44.1 | 44.9 | 44.0 | 43.8 | 43.6 | 43.4 | 43.4 | 43.4 | 43.5 | 43.4 |
| 20 | 39.8 | 39.5 | 39.5 | 39.2 | 39.0 | 38,8 | 38.8 | 38.8 | 39.0 | 38.1 |
| 21* | 38.1 | 37.6 | 37.7 | 37.5 | 37.2 | 37.0 | 37.0 | 36.9 | 37.2 | 37.1 |
| 22* | 37.0 | 36.4 | 36.6 | 36.3 | 36.0 | 35.7 | 35.7 | 35.7 | 36.1 | 35.9 |
| 23* | 37.8 | 36.8 | 36.8 | 36.2 | 35.8 | 35.7 | 35.7 | 35.7 | $36.0+$ |  |
| Number of Obs | 410 | 410 | 410 | 410 | 410 | 410 | 410 | 410 | 405 | 389 |
| Dally Mean | 45.6 | 45.5 | 45.7 | 45.5 | 45.3 | 45.2 | 45.1 | 45.1 | 45.4 | 45.5 |





| Nunber <br> Of Obs <br> Daily | 47 | 139 | 147 | 165 | 166 | 166 | 156 | 166 | 166 | 159 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean | 29.4 | 26.4 | 26.3 | 26.2 | 25.9 | 25.8 | 25.8 | 25.8 | 25.9 | 26.0 |

LITTLE AMERICA V
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  | 26.34 | $26.9+$ | 26.5 | 26.3 | 26.2 | 26.2 | 26.1 | 24.9 |
| 01 |  |  | 25.a | 24.5 | 24.3 | 24.2 | 24.3 | 24.3 | 34.4 | 23.8 |
| 02 |  |  | 23.3 | 22.7 | 22.2 | 22.1 | 22.1 | 22.1 | 22.2 | 22.2 |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Mumber |  |  |  |  |  |  |  |  |  |  |
| of Obs |  |  | 44 | 52 | 57 | 57 | 57 | 57 | 57 | 57 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean |  |  | 24.5 | 24.5 | 24.3 | 24.2 | 24.2 | 24.2 | 24.2 | 23.6 |


30 Auguat 1957

LItTLE AMTRICA $V$ Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| $\nu$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 32.8 | 32.9 | 33.0 | 32.9 | 32.9 | 32.9 | 32.8 | 32.9 | 33.1 | 33.0 |
| 01 | 34.9 | 35.0 | 35.0 | 35.0 | 34.9 | 34.8 | 34.7 | 34.7 | 34.8 | 34.7 |
| 02 | 37.2 | 37.5 | 37.6 | 37.6 | 37.6 | 37.5 | 37.4 | 37.4 | 37.4 | 37.5 |
| 03 | 37.4 | 38.1 | 38.3 | 38.3 | 38.2 | 38.1 | 38.1 | 38.1 | 38.3 | 38.4 |
| 04 | 35.5 | 35.9 | 36.1 | 36.1 | 36.0 | 36.0 | 35.9 | 36.0 | 36.3 | 36.3 |
| 05 | 34.1 | 33.9 | 34.0 | 33.9 | 33.8 | 33.8 | 33.7 | 33.7 | 33.9 | 33.9 |
| 06 | 33.4 | 33.3 | 33.4 | 33.3 | 33.2 | 33.2 | 33.1 | 33.2 | 33.3 | 33.4 |
| 07 | 32.3 | 31.9 | 32.0 | 31.8 | 31.6 | 31.5 | 31.5 | 31.5 | 31.8 | 31.7 |
| 08 | 31.7 | 31.5 | 31.5 | 31.2 | 31.1 | 31.1 | 31.1 | 31.1 | 31.3 | 31.3 |
| 09 | 31.7 | 31.3 | 31.3 | 31.0 | 31.0 | 30.9 | 30.9 | 30.9 | 31.1 | 31.1 |
| 10 | 31.5 | 31.3 | 31.4 | 31.0 | 310 | 31.1 | 31.1 | 31.1 | 31.4 | 31.5 |
| 11 | 31.7 | 31.7 | 30.7 | 31.5 | 31.4 | 31.4 | 31.4 | 31.0 | 31.7 | 30.9 |
| 12 | 33.0 | 33.9 | 34.2 | 33.8 | 33.9 | 33.9 | 34.0 | 34.1 | 34.4 | 34.4 |
| 13 | 35.1 | 36.4 | 36.5 | 36.5 | 36.5 | 30.4 | 36.3 | 36.3 | 35.5 | 36.6 |
| 14 | 36.1 | 31.2 | 37.4 | 37.4 | 37.3 | 37.3 | 37.2 | 37.2 | 37.3 | 37.3 |
| 15 | 37.0 | 38.1 | 38.2 | 38.3 | 38.2 | 38.1 | 38.0 | 38.0 | 38.1 | 38.1 |
| 16 | 37.4 | 38.4 | 38.6 | 38.6 | 38.5 | 38.4 | 38.4 | 38.3 | 38.5 | 38.4 |
| 17 | 38.0 | 39.0 | 39.1 | 39.3 | 39.1 | 39.0 | 38.9 | 38.9 | 39.1 | 39.0 |
| 18 | 37.7 | 38.4 | 38.6 | 38.6 | 38.4 | 38.4 | 38.4 | 38.4 | 38.5 | 38.5 |
| 19 | 38.6 | 39.6 | 39.7 | 39.8 | 39.7 | 39.5 | 39.5 | 39.4 | 39.6 | 39.6 |
| 20 | 38.6 | 39.2 | 39.3 | 39.4 | 39.3 | 39.2 | 39.2 | 39.1 | 39.2 | 39.2 |
| 21 | 37.6 | 37.8 | 38.0 | 38.0 | 37.9 | 37.9 | 37.9 | 37.9 | 38.0 | 38.0 |
| 22 | 37.2 | 37.2 | 37.3 | 37.3 | 37.3 | 37.2 | 37.2 | 37.2 | 37.3 | 37.4 |
| 23 | 36.3 | 36.3 | 36.3 | 36.3 | 36.3 | 36.2 | 36.1 | 36.1 | 36.2 | 36.2 |

$$
\begin{array}{lllllllllll}
\begin{array}{l}
\text { Number } \\
\text { of Ob: }
\end{array} & 446 & 446 & 446 & 446 & 446 & 446 & 446 & 443 & 445 & 445 \\
\text { Daily }
\end{array}
$$

LITIL ${ }^{5}$ AMRRICA $V$
hourly 2 Suptember 1957

|  | Sfc | 3 | ó | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 36.7 | 36.7 | 16.8 | 36.8 | 36.8 | 36.7 | 36.7 | 36.7 | 36.7 | 36.7 |
| 01 | 37.7 | 37.8 | 37.8 | 37.9 | 37.6 | 37.5 | 37.4 | 37.4 | 37.5 | 37.5 |
| 02 | 38.1 | 38.2 | 38.2 | 38.2 | 37.9 | 37.8 | 37.7 | 37.7 | 37.8 | 37.7 |
| 03 | 38.3 | 38.3 | 38.3 | 38.3 | 38.0 | 37.8 | 37.7 | 37.7 | 37.8 | 37.4 |
| 04 | 38.0 | 37.6 | 17.4 | 37.4 | 36.9 | 36.6 | 36.5 | 36.5 | 36.5 | 3.8 |
| 05 | 38.8 | 39.0 | 39.1 | 39.1 | 39.0 | 38.8 | 38.7 | 38.7 | 38.8 | 38.7 |
| 06 | 39.7 | 40.3 | 40.5 | 40.4 | 404 | 40.4 | 40.4 | 40.4 | 40.5 | 40.5 |
| 07 | 40.5 | 41.4 | 41.6 | 41.6 | 41.5 | 41.4 | 41.4 | 41.4 | 41.5 | 41.5 |
| 08 | 40.5 | 40.9 | 41.2 | 40.9 | 40.9 | 40.9 | 40.9 | 40.9 | 41.1 | 41.1 |
| 09 | 41.1 | 41.8 | 4.2.1 | 41.2 | 41.6 | 41.6 | 41.6 | 41.8 | 42.0 | 42.0 |
| 10 | 42.1 | 42.7 | 43.1 | 42.1 | 42.4 | 42.5 | 42.5 | 42.6 | 43.0 | 42.9 |
| 11 | 42.5 | 43.3 | 43.6 | 42.3 | 42.9 | 42.9 | 43.0 | 43.1 | 43.4 | 43.1 |
| 12 | 42.9 | 43.9 | 44.0 | 43.6 | 43.6 | 437 | 43.6 | 43.7 | 43.9 | 43.9 |
| 13 | 43.1 | 43.8 | 43.9 | 43.8 | 43.3 | 43.7 | 43.6 | 43.6 | 43.1 | 43.5 |
| 14 | 43.7 | 44.5 | 44.6 | 44.5 | 44.5 | 44.3 | 44.3 | 44.4 | 44.5 | 44.6 |
| 15* | 43.5 | 43.8 | 43.8 | 44.1 | 43.6 | 43.3 | 43.2 | 43.2 | 43.4 | 43.3 |
| 16* | 42.0 | 41.8 | 41.7 | 41.6 | 41.1 | 40.9 | 40.7 | 40.7 | 40.8 | 40.7 |
| 17 | 41.9 | 41.8 | 41.8 | 41.7 | 41.4 | 41.2 | 41.0 | 41.0 | 41.2 | 41.2 |
| 18 | 41.8 | 41.8 | 41.9 | 41.8 | 41.5 | 41.3 | 41.2 | 41.2 | 41.4 | 41.4 |
| 19 | 41.9 | 41.9 | 41.9 | 41.9 | 41.7 | 41.5 | 41.4 | 41.4 | 41.6 | 41.6 |
| 20 | 422 | 42.3 | 42.3 | 42.3 | 42.1 | 42.1 | 42.0 | 42.0 | 42.1 | 42.1 |
| 21 | 42.0 | 42.1 | 42.1 | 42.1 | 419 | 41.9 | 41.8 | 41.8 | 41.9 | 41.9 |
| 22 | 41.7 | 41.3 | 41.7 | 41.7 | $41 . j$ | 41.3 | 41.2 | 41.2 | 41.2 | 41.3 |
| 23 | 42.0 | 42.0 | 42.1 | 42.1 | 42.0 | 41.9 | 41.7 | 41.7 | 41.8 | 41.8 |
| Number <br> of Obs | 448 | 448 | 447 | 447 | 448 | 448 | 448 | 448 | 448 | 448 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 40.9 | 41.2 | 41.3 | 41.1 | 41.0 | 40.9 | 40.8 | 46.9 | 41.0 | 40.9 |


|  | Sfe | 3 | 8 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 422 | 42.3 | 42.4 | 42.4 | 42.2 | 42.2 | 42.0 | 42.0 | 42.1 | 42.2 |
| 71 | 42.3 | 42.5 | 42.6 | 42.6 | 42.5 | 42.4 | 42.3 | 42.3 | 42.4 | 42.5 |
| 02 | 42.8 | 43.2 | 43.3 | 43.3 | 43.2 | 43.1 | 43.1 | 43.1 | 43.2 | 43.3 |
| 03 | 43.4 | 43.7 | 43.9 | 43.9 | 43.8 | 43.7 | 43.6 | 43.6 | 43.7 | 43.8 |
| 04 | 43.9 | 44.2 | 44.3 | 44.3 | 44.2 | 44.2 | 44.1 | 44.1 | 44.2 | 44.3 |
| 05 | 44.2 | 44.3 | 44.4, | 44.4 | 44.3 | 44.2 | 44.2 | 44.2 | 44.2 | 44.3 |
| 06 | 44.0 | 44.0 | 44.1 | 44.2 | 43.9 | 43.9 | 438 | 43.8 | 43.9 | 43.9 |
| 07 | 43.9 | 44.0 | 44.1 | 44.1 | 44.0 | 43.9 | 43.8 | 43.8 | 43.8 | 43.8 |
| 08 | . 4.2 | 44.3 | 44.4 | 44.1 | 43.9 | 43.9 | 43.9 | 43.9 | 44.1 | 43.9 |
| 09 | $4, .4$ | 43.4 | 43.4 | 43.0 | 42.6 | 42.6 | 42.7 | 42.7 | 43.0 | 42.4 |
| 10 | 42.3 | 42.6 | 42.8 | 42.5 | 41.9 | 41.9 | 42.0 | 42.0 | 42.2 | 4:.1 |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 | 42.3 | 41.9 | 41.8 | 41.3 | 41.1 | 41.0 | 41.0 | 40.9 | 41.2 | 40.7 |
| 14 | 42.2 | $\therefore 1.6$ | 41.6 | 41.2 | $\therefore 0.8$ | 40.6 | 40.5 | 40.5 | 40.6 | 40.1 |
| 15* | 44.2 | 44.2 | 44.2 | 43.9 | 43.7 | 41.5 | 43.4 | 43.3 | 43.4 | 42.6 |
| 16* | 45.0 | 45.1 | 45.2 | 45.1 | 44.9 | 44.7 | 44.6 | 44.6 | 44.7 | 44.3 |
| 17* | 45.6 | 45.6 | 45.7 | 45.6 | 45.3 | 45.1 | 45.0 | 45.0 | 45.1 | 44.6 |
| 18 | 46.7 | 47.4 | 47.4 | 47.4 | 47.3 | 47.2 | 47.1 | 47.0 | 47.0 | 46.2 |
| 19 | 47.0 | 41.2 | 47.3 | 47.3 | 47.2 | 47.1 | 46.9 | 46.9 | 47.1 | 16.8 |
| 20 | 47.3 | 47.9 | 48.0 | 48.0 | 47.9 | 47.8 | 47.7 | 47.7 | 47.9 | 47.8 |
| 21 | 47.2 | 47.7 | 4.7 .9 | 47.9 | 47.8 | 47.7 | 47.6 | 47.6 | 47.8 | 47.7 |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Ot \% | 372 | 372 | 372 | 372 | 372 | $3 / 2$ | 372 | 372 | 372 | 372 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 44.2 | 44.4 | 44.4 | 44.3 | 44.1 | 44.0 | 44.0 | 43.9 | 44.1 | 438 |




Litme AMERICA V
Hourly Mean Temperatures

| tir ${ }^{\mathrm{cm}}$ | Ssc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 0 : |  |  |  |  |  |  |  |  |  |  |
| 94 |  |  |  |  |  |  |  |  |  |  |
| $0{ }^{2}$ |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| $0 \%$ |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 1: |  |  |  |  |  |  |  |  |  |  |
| 15* | 29.3+ | $29.7+$ | 30.04 | $29.7+$ | $29.5+$ | 29.44 | 29.64 | 29.8+ | $30.0+$ | 29.8 |
| 16* | 29,80 | $30.0+$ | $30.3+$ | 30.1+ | $29.8+$ | $29.8+$ | $29.8+$ | 30.04 | $30.2+$ | 30.04 |
| 17* | 30.9 | 30.8 | 31.2 | 31.0 | 30.8 | 30.7 | 30.7 | 30.9 | 31.1 | 30.8 |
| 18 | 32.2 | 32.4 | 32.7 | 32.5 | 32.3 | 32.2 | 32.0 | 3). 2 | 32.4 | 31.8 |
| 19 | 33.1 | 33.0 | 33.2 | 33.0 | 32.8 | 32.6 | 32.5 | 32.6 | 32.7 | 32.0 |
| 20 | 34.2 | 34.2 | 34.5 | 34.2 | 34.0 | 33.9 | 33.7 | 33.8 | 33.9 | 33.0 |
| 21 | 34.8 | 34.6 | 34.8 | 34.5 | 34.4 | 34.2 | 34.0 | 34.1 | 34.1 | 32.1 |
| 22 | 34.6 | 54.2 | 34.4 | 34.1 | 33.9 | 33.7 | 33.6 | 33.7 | 31.8 | 32.2 |
| 23 | 34.9 | 34.8 | 35.0 | 34.7 | 34.5 | 34.4 | 34.3 | 34.4 | 34.6 | 33.2 |

LITTLE AMERICA $V$

| He ${ }^{\text {cm }}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 34.5 | 34.2 | 34.4 | 34.1 | 34.0 | 33.7 | 33.7 | 33.8 | 34.0 | 32.7 |
| 01 | 34.7 | 34.3 | 34.5 | 34.2 | 34.0 | 33.9 | 33.5 | 33.9 | 34.1 | 32.9 |
| 02 | 35.4 | 33.3 | 35.5 | 35.2 | 35.0 | 34.8 | 34.8 | 34.9 | 35.0 | 34.1 |
| 03 | 35.8 | 35.6 | $33_{5} .8$ | 35.5 | 35.2 | 35.1 | 35.0 | 351 | 35.3 | 34.3 |
| 04 | 30.3 | 36.1 | 36.3 | 36.0 | 35.8 | 35.6 | 35.5 | 35.6 | 35.8 | 34.8 |
| O' | 36.9 | 36.1 | 36.9 | 36.6 | 36.4 | 36.2 | 36.1 | 36. 3 | 36.4 | 35.6 |
| 90 | 37.4 | 37.3 | 37.5 | 37.2 | 36.9 | 36.8 | 36.7 | 36.7 | 36.8 | 36.1 |
| 37 | 37.8 | 378 | 38.1 | 37.7 | 37.5 | 37.3 | 37.2 | 37.3 | 37.4 | 36.5 |
| OS | 38.2 | 38.2 | 38.8 | 38.2 | 37.9 | 37.1 | 37.7 | 37.9 | 37.9 | 37 i) |
| 09 | 38.3 | 37.3 | 38.3 | 37.3 | 37.0 | 36.8 | 36.9 | 37.0 | J7. 2 | 36.4 |
| 10 | 38.0 | 36.3 | 37.5 | 36.3 | 36.0 | 35.9 | 35.8 | 36.1 | 36.3 | 35.5 |
| 11 | 37.6 | 35.7 | 37.1 | 35.6 | 35.4 | 35.3 | 35.2 | 35.4 | 35.5 | 34.7 |
| 12 | 3. 4 | 3a. 0 | 37.2 | 35.9 | 35.8 | 35.7 | 356 | 35.6 | 35.7 | 34.9 |
| 13* | 10.0 | 37. | 33.0 | 37.4 | 37.2 | 37.0 | 37.0 | 31.0 | 36.9 | 35. 7 |
| 14 | 39.8 | 38.8 | 39.0 | 38.6 | 38.5 | 38.3 | 38.1 | 38.2 | 38.2 | 36.5 |
| 15* | 39.3 | 39.9 | 40.1 | 39.8 | 39.7 | 39.5 | 39.5 | 39.6 | 39.7 | 38.6 |
| 16* | 40.0 | 40.3 | 40.5 | 40.2 | 40.1 | 40.0 | 39.9 | 40.0 | 40.1 | 391 |
| 1/* | 40.4 | 40.7 | 41.0 | 40.6 | 40.5 | $4 \mathrm{C}$. | 40.2 | 40.1 | 40.5 | 39.7 |
| 19 | 41.2 | 42.1 | 42.3 | 42.1 | 41.9 | 41.8 | 41.7 | 41.1 | 41.5 | 3t. 8 |
| 18 | 41.10 | 41.9 | 42.0 | 41.9 | 41.7 | 41.6 | 41.4 | 41.4 | 41.3 | 40.3 |
| 20 | 41.6 | 42.0 | 42.2 | 42.0 | 41.8 | 41.7 | 41.5 | 41.5 | 41.7 | 40.6 |
| 21 | 42.0 | 42.5 | $42 . i$ | 42.5 | 42.4 | 42.3 | 42.0 | 47.0 | 42.0 | is . 2 |
| 22 | $4 ?$ | 42.; | 42.9 | 42.7 | 42.4 | 42.3 | 42.0 | 42.1 | 42.1 | 40.4 |
| 23 | 43.0 | 43.4 | 43.7 | 43.4 | 43.2 | 43.0 | 42.9 | 42.8 | 42.7 | 40.3 |


| Number of Obs | 446 | 416 | 446 | 446 | 446 | 446 | 446 | 446 | 1.46 | 6.46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 38.6 | 38.2 | 38.8 | 38.4 | 38.2 | 38.0 | 37.9 | 38.0 | 38.1 | 37.0 |

LITTLE AMERICA V Mean Temperatures

| Hr | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 43.1 | 432 | 43.4 | 43.1 | 43.0 | 42.8 | 42.6 | 42.6 | 42.6 | 40.5 |
| 01 | 43.0 | 43.0 | 43.2 | 42.9 | 42.7 | 42.5 | 42.4 | 42.5 | 42.5 | 41.7 |
| 02 | 43.: | 43.3 | 43.5 | 43.3 | 43.1 | 42.9 | 42.8 | 42.8 | 43.0 | 42.5 |
| 03 | 43.5 | 43.9 | 44.1 | 43.8 | 43.7 | 43.5 | 43.4 | 43.5 | 43.6 | 43.0 |
| 04 | 43.6 | 43.9 | 44.1 | 43.8 | 43.7 | 43.5 | 43.4 | 43.5 | 43.6 | 43.1 |
| 05 | 43.6 | 43.9 | 44.0 | 43.7 | 43.6 | 43.4 | 43.3 | 43.3 | 43.4 | 42.8 |
| 06 | 43.8 | 43.8 | 44.1 | 43.7 | 43.3 | 43.0 | 43.0 | 43.2 | 43.2 | 42.2 |
| 07 | 43.6 | 428 | 44.0 | 42.8 | 42.0 | 41.9 | 42.0 | 42.2 | 41.8 | 41.1 |
| 08 | 43.1 | 40.8 | 43.9 | 40.9 | 40.6 | 40.2 | 40.5 | 40.4 | 40.2 | 39.6 |
| 09 | 43.4 | 40.1 | '2.9 | 40.3 | 39.8 | 39.7 | 39.8 | 39.8 | 39.5 | 37.5 |
| 10 | 43.4 | 39.0 | 41.9 | 39.0 | 38.5 | 38.5 | 38.4 | 38.3 | 3\%.5 | 33.8 |
| 11 | 42.7 | 38.6 | 42.5 | 38.7 | 38.6 | 38.4 | 38.5 | 38.4 | 38.0 | 35.5 |
| 12 | 42.2 | 39.2 | 42.5 | 39.3 | 39.2 | 38.9 | 38.8 | 38.7 | 38.7 | 36.8 |
| 13 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 15 | 39.6 | 37.8 | 37.9 | 37.1 | 36.6 | 35.8 | 35.1 | 34.8 | 34.5 | 32.8 |
| 16 | 37.3 | 35.5 | 35.5 | 34.7 | 34.3 | 23.6 | 33.3 | 33.1 | 32.7 | 31.5 |
| 17 | 36.0 | 34.0 | 34.2 | 33.5 | 33.1 | i2.5 | 32.2 | 31.6 | 30.9 | 28.7 |
| 18 | 38.6 | 37.3 | 37.6 | 36.6 | 15.8 | 34.5 | 33.4 | 32.6 | 31.7 | 29.9 |
| 19 | 39.3 | 38.1 | 38.1 | 37.4 | 36.4 | 34.5 | 32.9 | 31.8 | 31.0 | 27.7 |
| 20 | 38.2 | 37.4 | 36.8 | 36.7 | 36.0 | 34.9 | 33.0 | 29.5 | 28.4 | 25.5 |
| 21 | 33.9 | 33.0 | 32.8 | 32.3 | 32.0 | 31.7 | 31.7 | 31.2 | 29.9 | 27.j |
| 22 | 32.1 | 31.1 | 30.9 | 30.4 | 30.0 | 29.9 | 29.9 | 29.3 | 27.1 | 24.8 |
| 23 | 31.1 | 29.9 | 29.7 | 29.3 | 28.9 | 28.5 | 283 | 27.1 | 24.6 | 22.6 |
| Number |  |  |  |  |  |  |  |  |  |  |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 40.4 | 39.1 | 40.0 | 38.8 | 38.5 | 38.0 | 37.7 | 37.3 | 36.8 | 35.1 |

LITT゙E AMERICAV
Hou:ly Mean Temperatures

| $\mathrm{Hr}^{\mathrm{cin}}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 30.2 | 28.1 | 27.9 | 27.3 | 26.9 | 26.3 | 25.8 | 24.8 | 23.8 | 22.8 |
| 01 | 29.2 | 27.5 | 27.7 | 27.3 | 26.9 | 26.7 | 26.6 | 26.5 | 26.5 | 25.9 |
| 02 | 28.5 | 27.6 | 27.1 | 27.3 | 27.1 | 26.8 | 26.9 | 26.9 | 26.9 | 26.7 |
| 03 | 28.7 | 27.9 | 28.0 | 27.7 | 27.5 | 27.2 | 27.3 | 27.3 | 27.4 | 27.2 |
| 04 | 29.3 | 28.5 | 28.7 | 28.4 | 28.2 | 28.1 | 28.1 | 28.2 | 28.4 | 28.2 |
| 05 | 29.5 | 28.7 | 28.9 | 28.7 | 28.4 | 28.3 | 28.3 | 28.4 | 28.6 | 28.4 |
| 06 | 29.7 | 29.2 | 29.3 | 29.1 | 28.7 | 28.7 | 28,8 | 28.9 | 29.1 | 29.0 |
| 07 | 29.7 | 29.3 | 29.4 | 29.3 | 29.1 | 28.9 | 29.0 | 29.1 | 29.3 | 29.3 |
| 08 | 29.8 | 29.8 | 29.9 | 29.8 | 29.6 | '29. | 29.6 | 29.6 | 29.9 | 29.9 |
| 09 | 29.8 | 29.8 | 30.0 | 29.9 | 29.8 | 29.6 | 29.7 | 29.8 | 30.0 | 30.0 |
| 10 | 29.8 | 29.8 | 30.0 | 29.8 | 29.7 | 29.5 | 29.6 | 29.6 | 29.9 | 29.) |
| 11 | 29.7 | 29.6 | 29.9 | 29.7 | 29.0 | 29.4 | 29.5 | 29.5 | 29.8 | 29.9 |
| 12 | 29.9 | 29.9 | 30.1 | 30.0 | 29.9 | 29.8 | 29.9 | 29.9 | 30.2 | 30.2 |
| 13 | 29.9 | 29.9 | 30. ${ }^{\text {i }}$ | 30.0 | 29.8 | 29.7 | 29.8 | 29.8 | 30.1 | 30.0 |
| 14 | 30.0 | 29.7 | 29.9 | 29.5 | 29.4 | 29.3 | 29.4 | 29.4 | 29.7 | 29.5 |
| 15 | 30.1 | 29.8 | 300 | 29.8 | 29.6 | 29.5 | 29.6 | 29.6 | 29.9 | 28.2 |
| 16* | 30.1 | 29.4 | 29.6 | 29.3 | 29.0 | 28.9 | 28.9 | 29.0 | $\angle 8.9$ | 28.1 |
| 17* | 29.9 | 29.2 | 29.4 | 29.1 | 28.8 | 28.7 | 28.7 | 28.8 | 29.0 | 28.3 |
| 18* | 29.4 | 284 | 28.5 | 28.3 | 28.0 | 27.9 | 27.9 | 28.0 | 28.0 | 27.0 |
| 19* | 28.6 | 27.4 | 27.5 | 27.3 | 27.0 | 26.9 | 26.9 | 27.1 | 27.2 | 26.4 |
| 20* | 28.1 | 27.3 | 27.3 | 27.1 | 26.8 | 26.7 | 26.7 | 26.8 | 27.0 | 26.0 |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |


| Number <br> of Obs | 393 | 393 | 393 | 393 | 393 | 393 | 393 | 393 | 393 | 393 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Datly <br> Mean | 29.5 | 28.9 | 29.0 | 28.8 | 28.6 | 28.4 | 28.4 | 28.4 | 29.5 | 28.1 |


|  | LITHE AMERICA $v$ <br> Hourl; Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ ) <br> 12 September 1957 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 803 |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17* | 29.9 | 29.9 | 311.1 | 29.7 | 25.7 | 29.5 | 29.6 | 29.7 | 29.9 |  |
| 18* | 30.0 | 30.1 | 30.3 | 30.0 | 29.9 | 29.8 | 29.9 | 29.9 | 30.2 | 30.2 |
| 19* | 30.3 | 30.6 | 30.8 | 30.6 | 30.4 | 30.3 | 30.4 | 30.5 | 30.8 | 30.6 |
| 20 | 31.9 | 32.5 | 32.7 | 32.5 | 32.3 | 32.1 | 32.1 | 32.2 | 32.4 | 32.1 |
| 21 | 34.2 | 32.4 | 35.6 | 35.3 | 35.1 | 34.9 | 34.9 | 34.9 | 35.1 | 34.8 |
| 22 | 35.4 | 36.9 | 37.1 | 36.9 | 36.7 | 36.6 | 35.5 | 36.6 | 36.8 | 36.5 |
| 23 | $36.8+$ | 38.5+ | $38.8+$ | $38.5+$ | 38,3+ | $38.2+$ | 38.1+ | $38.2+$ | $38.5+$ | 38.04 |


| Mumber <br> ot Obs | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Datly <br> Mean | 32.6 | 33.3 | 33.5 | 33.2 | 33.1 | 33.0 | 32.9 | 33.0 | 33.3 | 330 |

LITTLE AMERICA V
Hourly Mean Temperatures
13 September 1957

| cm | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 38.0 | 39.6 | 39.8 | 39.5 | 39.3 | 39.2 | 39.0 | 33.2 | 39.5 | 38.4 |
| 01 | 38.4 | 39.5 | 39.7 | 39.4 | 39.1 | 39.0 | 38.9 | 37.0 | 39.3 | 38.3 |
| 02 | 38.8 | 39.8 | 40.0 | 39.7 | 39.5 | 39.3 | 39.2 | 39.3 | 39.6 | 38.6 |
| 03 | 39.4 | 40.1 | 43.4 | 40.0 | 39.8 | 39.7 | 39.5 | 39.7 | 39.9 | 38.8 |
| 04 | 39.4 | 39.7 | 39.9 | 39.5 | 39.4 | 39.1 | 39.9 | 39.0 | 39.1 | 37.8 |
| 05 | 40.0 | 41.0 | 41.2 | 40.9 | 40.7 | 40.6 | 40.4 | 40.6 | 40.7 | 39.4 |
| 06 | 40.6 | 41.7 | 41.8 | 41.5 | 41.2 | 41.2 | 41.1 | 41.2 | 41.4 | 39.13 |
| 07 | 41.0 | 41.7 | 42.1 | 41.7 | 41.4 | 41.6 | 41.3 | 41.6 | 41.8 | 4. $\therefore$ |
| 08 | 41.2 | 41.6 | 41.5 | 41.5 | 41.4 | 41.7 | 41.3 | 41.1 | 41.7 | 41.8 |
| 09 | 41.2 | 40.6 | 40.5 | 40.5 | 40.3 | 40.7 | 40.3 | 40.6 | 40.7 | 39 ) |
| 10 | 40.7 | 39.1 | 38.9 | 38.8 | 38.6 | 39.0 | 38.8 | 38.8 | 39.5 |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15* | 42.9 | 43.3 | 43.4 | 43.0 | 42.7 | 42.5 | 42.3 | 42.1 | 41.8 | 40.5 |
| 16* | 43.4 | 44.0 | 44.1 | 43.9 | 43.7 | 43.6 | 43.5 | 43.4 | 43.3 | 42.2 |
| 17 | 44.0 | 44.8 | 45.0 | 44.8 | 44.6 | 44.5 | 44.4 | 44.3 | 44.3 | 43.1 |
| 18 | 44.4 | 45.0 | 45.1 | 44.9 | 44.8 | 44.6 | 44.5 | 44.5 | 44.5 | 43.15 |
| 19 | 45.0 | 46.0 | 46.1 | 46.0 | 45.9 | 45.8 | 45.1 | 45.7 | 45.9 | 45 ' |
| 20* | 45.3 | 46.2 | 46.2 | 46.1 | 46.0 | 45.8 | 45.8 | 45.8 | 45.9 | 44.3 |
| 21* | 45.5 | 46.2 | 46.4 | 46.2 | 46.1 | 45.9 | 45.9 | 45.9 | 46.0 | 45.2 |
| 22* | 45.6 | 46.3 | 46.4 | 46.5 | 46.2 | 46.0 | 46.0 | 46.0 | 43.1 | 45.3 |
| 23 | 45.5 | 46.1 | 46.2 | 46.0 | 45.9 | 45.8 | 45.7 | 45.7 | 45.8 | 45.3 |


| Number <br> of Obs | 371 | 371 | 370 | 370 | 371 | 371 | 371 | 371 | 371 | 371 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily | 42.0 | 42.6 | 42.7 | 42.5 | 42.3 | 42.3 | 42.2 | 42.2 | 42.3 | 41.3 |

litile america $y$

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 45.5 | 46.0 | 46.1 | 45.9 | 45.9 | 45.7 | 45.6 | 45.8 | 45.7 | 45.2 |
| 01 | 45.5 | 46.1 | $46 . ?$ | 46.1 | 46.0 | 45.9 | 45.8 | 45.8 | 45.8 | 45.0 |
| 02 | 45.6 | 46.1 | 46.2 | 46.0 | 46.0 | 45.8 | 45.7 | 45.7 | 45.8 | 45.2 |
| 03 | 45.1 | 45.3 | 45.4 | 45.1 | 45.0 | 44.9 | 44.7 | 44.: | 44.8 | 44.3 |
| 04 | 44.8 | 44.8 | 44.9 | 44.6 | 44.5 | 44.3 | 44.2 | 44.2 | 44.3 | 43.7 |
| 05 | 44.7 | 44.7 | 44.8 | 44.5 | 44.3 | 44.1 | 44.0 | 44.0 | 44.1 | 43.6 |
| 06 | 44.3 | 44.0 | 44.0 | 43.8 | 43.6 | 43.4 | 43.2 | 43.3 | 43.4 | 43.0 |
| 07 | 43.8 | 43.5 | 43.7 | 43.3 | 43.1 | 43.0 | 42.7 | 42.8 | 43.1 | 42.6 |
| 08 | 43.2 | 42.6 | 42.4 | 42.1 | 42.9 | 42.0 | 41.8 | 41.8 | 42.3 | 41.6 |
| 09 | 43.2 | 41.5 | 41.2 | 40.8 | 40.8 | 40.8 | 40.8 | 40.7 | 41.1. | 39.8 |
| 10 | 42.2* | 39.21 | 39.01 | 38.6 ¢ | 38.64 | 38.5 ${ }^{\text {f }}$ | 38.34 | 38.2 ${ }^{\text {f }}$ | 38.5 | 37.24 |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 | 34.400 | 33.1* | 33.5* | 33.1= | 32.9 $=$ | 32.8= | 32.9 $=$ | 33.1 $=$ | 33.4* | 33.0 |
| 15* | 33.3 | 31.8 | 32.1 | 31.7 | 31.5 | 31.3 | 31.5 | 31.7 | 31.9 | 31.3 |
| 16* | 32.1 | 30.0 | 30.2 | 29.8 | 2.9 .6 | 29.1 | 29.5 | 29 J | 29.7 | 28.9 |
| 17 | 31.3 | 29.2 | 29.3 | 28.9 | 28.1 | 28.5 | 28.6 | 28.6 | 28.8 | 28.0 |
| 18* | 30.6 | 28.2 | 28.2 | 27.9 | 27.7 | 27.4 | 27.4 | 27.4 | 27.4 | 26.0 |
| 19 | 30.1 | 27.5 | 27.5 | 21.2 | 26.8 | 26.6 | 26.4 | 26.3 | 25.6 | 22.1 |
| 20 | 28.2 | 23.9 | 23.9 | 23.3 | 22.8 | 22.3 | 21.8 | 21.6 | 21.2 | 1) 6 |
| 21 | 24.8 | 21.4 | 21.5 | 21.1 | 20.7 | 20.2 | 19.9 | 19.9 | 19.9 | 20.0 |
| 22 | 23.7 | 20.9 | 21.0 | 20.7 | 20.3 | 19.9 | 19.8 | 19.8 | 19.9 | 20.7 |
| 23 | 23.8 | 21.1 | 21.2 | 20.9 | 20.5 | 20.1 | 19.9 | 20.0 | 20.0 | 21.0 |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 370 | 370 | 370 | 369 | 370 | 370 | 370 | 370 | 370 | 370 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 37.0 | 35.7 | 35.7 | 35.4 | 35.2 | 35.0 | 34.9 | 34.9 | 35.0 | 34.2 |


|  | Sts | 3 | 6 | 12 | 25 | 50 | , | 80 | $46^{\circ}$ | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 23.2 | 20.9 | 21.0 | 20.7 | 20.3 | 20.1 | 18.9 | . ${ }^{2}$ | \%0 | 20.4 |
| 01 | 22.9 | 21.3 | 21.5 | 21.1 | 20.8 | 20.6 | 20.4 | \% 2 | 20.6 | 20.5 |
| 02 | 24.0 | 21.9 | 22.1 | 21.8 | 21.5 | 21.2 | 21.0 | .1.1 | 21.2 | 20.5 |
| 03 | 24.5 | 22.8 | 22.8 | 22.5 | 22.2 | 21.9 | $\therefore 1.8$ | 21.8 | 21.9 | 21.3 |
| 04 | 25.0 | 23.4 | 23.3 | 23.0 | 22.7 | 22.3 | 22.4 | 22.4 | 22.1 | 2 i .8 |
| 05 | 24.5 | 22.8 | 22.9 | 22.6 | 22.3 | 22.0 | $\bigcirc$ ?. 0 | 2 2.0 | 22.1 | 21.6 |
| 06 | 24.3 | 23.3 | 23.4 | 23.0 | 22.8 | 22.5 | 2.5 | $\because 2.6$ | 23.7 | 22.3 |
| 07 | 26.1 | 25.2 | 25.0 | 24.6 | 24.5 | 24.3 | $\therefore 3$ | 24.3 | 2.5 | 23.4 |
| 08 | 28.0 | 26.9 | 26.4 | 36.0 | 25.9 | 25.9 | , 3.6 | 25.7 | 25.7 | 25, 1 |
| 09 | 28.0 | 26.4 | 26.1 | $\bigcirc 5.8$ | 25.6 | 25.4 | 25.2 | 25.2 | 25.8 | 24.0 |
| 10 | 25.7 | 24.9 | 25.0 | 24.6 | 24.4 | 24.1 | 24.1 | 24.1 | 24.2 | 23.9 |
| 11 | 24.9 | 24.0 | 24.3 | 23.9 | 23.6 | 23.4 | 23.5 | 23.5 | 23.6 | 23.6 |
| 12 | 26.3 | 25.5 | 25.9 | 25.5 | 25.3 | 25.2 | 25.3 | 25.3 | 25.5 | 25.3 |
| 13 | 26.9 | 25.9 | 26.2 | 25.8 | 25.6 | 25.5 | 25.6 | 25.6 | 25.8 | 25.6 |
| 14 | 27.1 | 26.1 | 26.2 | 25.9 | 25.7 | 25.6 | 25.6 | 25.7 | 25.8 | 25.6 |
| 15 | 27.1 | 26.2 | 26.1 | 25.9 | 25.7 | 25.6 | 25.5 | 25.6 | 25.7 | 25.4 |
| 16 | 27.2 | 26.1 | 26.1 | 25.9 | 25.7 | 25.6 | 25.6 | 25.6 | 25.7 | 25.5 |
| 17 | 27.2 | 26.3 | 26.3 | 26.0 | 25.7 | 25.7 | 25.7 | 25.7 | 25.7 | 25.6 |
| 18 | 26.9 | 25.2 | 25.1 | 24.6 | 24.3 | 24.1 | 24.1 | 24.1 | 24.2 | 23.7 |
| 19 | 26.9 | 25.3 | 25.0 | 24.8 | 24.5 | 24.3 | 24.3 | 24.3 | 24.3 | 23.9 |
| 20 | 26.8 | 24.8 | 24.4 | 24.0 | 23.7 | 23.5 | 23.5 | 23.5 | 23.4 | 23.1 |
| 21 | 26.6 | 24.5 | 24.1 | 23.7 | 23.4 | 23.3 | 23.2 | 23.2 | 23.1 | 22.8 |
| 22 | 26.0 | 24.7 | 44.6 | 24.3 | 24.0 | 23.8 | 23.8 | 23.9 | 23.8 | 22.8 |
| 23 | 26.1 | 24.9 | 24.8 | 24.6 | 24.2 | 24.2 | 24.2 | 24.2 | 242 | 22.4 |
| Number of Obs | 1447 | 447 | 447 | . 447 | 447 | 446 | 447 | 447 | 447 | 447 |
| Dally <br> Mean | 25.9 | 24.6 | 24.5 | 24.2 | 23.9 | 23.8 | 23.7 | 23.7 | 23.8 | 23.4 |

Hourly Mean Temperature

| $\mathrm{Hr}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 26.5 | 24.8 | 24.7 | 24.5 | 24.2 | 24.0 | 24.0 | 24.1 | 24.1 | $2 \times 2$ |
| 01 | 26.6 | 24.9 | 24.8 | 24.6 | 24.3 | 24.2 | 24.2 | 24.3 | 24.3 | 22,9 |
| 02 | 26.8 | 25.4 | 25.4 | 25.- | 25.0 | 24.9 | 24.9 | 25.1 | 25.1 | 23.9 |
| 03 | 24.9 | 23.5 | 25.5 | L, . | 25.1 | 25.0 | 25.0 | 25.1 | 25.2 | 24.1 |
| 04 | 271 | 25.7 | 25.5 | 25.2 | 25.0 | 24.9 | 25.0 | 25.: | 25.1 | 24.0 |
| 05 | 27.1 | 25.7 | 25.4 | 25.1 | 24.9 | 24.7 | 24.0 | 24.9 | 25.0 | 23.8 |
| 06 | 27.2 | 25.2 | 25.2 | 24.6 | 34; | " | ? | 3.6 | 24.7 | 23.6 |
| 07 | 27.1 | 25.5 | 23.5 | (2) : |  |  | S. | 25.1 | 25.2 | 24.2 |
| 03 | 27.4 | 27.4 | 2r. 7 | 27.8 |  | . | 27.0 | 27.0 | 27.0 | 25.6 |
| 08 | 27.6 | 26.4 | 26.2 | 25.9 | 25.9 | 2.9.9 | 25.5 | 26.1 | 26.3 | 25.2 |
| 10 | 27.9 | 27. 7 | 27.8 | 27.8 | 27.8 | 27.8 | 28.1 | 28.0 | 28.3 | 27.5 |
| 11 | 30.5 | 28.9 | 29.4 | 29.7 | 29,9 | 29.9 | 30.1 | 30.0 | 30.2 | 29.2 |
| 12* | 32.2 | 32.0 | 31.3 | 31. | 31.5 | 31.4 | 31.5 | 31.4 | 31.6 | 31.0 |
| 13* | 33.6 | 33.5 | 33.5 | 33.0 | 33.1 | 33.0 | 13.1 | 33.0 | 33.2 | 32.4 |
| 14 | 35.2 | 35.5 | 35.6 | 35." | 35.5 | 35.4 | 35.3 | 35.2 | 35.4 | 34.1 |
| 15 | 36.1 | 36.2 | 36.5 | 36.4 | 36.3 | 36.2 | 36.1 | 36.2 | 36.1 | 35.5 |
| 16 | 36.9 | 37.C | 37.3 | 37.1 | 37.0 | 36.8 | 36.7 | 36.8 | 36.8 | 35.5 |
| 17 | 37.2 | 37.2 | 37.6 | 37.4 | 37.2 | 37.1 | 36.8 | 37.0 | 37.1 | 34.9 |
| 18 | 37.0 | 37.5 | 37.9 | 37.6 | 37.4 | 37.3 | 37.1 | 37.2 | 37.3 | 35.7 |
| 19 | 37.3 | 37.9 | 38.5 | 38.2 | 38.0 | 37.8 | 37.6 | 37.7 | 37.7 | 36.7 |
| 20 | 37.9 | 38.5 | 38.9 | 38.6 | 38.5 | 38.4 | 38.2 | 38.4 | 38.5 | 38.8 |
| 21 | 38.6 | 38.9 | 39.3 | 39.0 | 39.0 | 38.8 | 38.6 | 38.7 | 38.8 | 39.2 |
| 22 | 39.0 | 39.1 | 39.8 | 39.5 | 39.4 | 39.2 | 39.0 | 39.1 | 39.2 | 38.7 |
| 23 |  |  |  |  |  |  |  |  |  |  |


| Numbar <br> Of Obs <br> Dally | 429 | 428 | 429 | 429 | 428 | 429 | 428 | 429 | 429 | 429 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | 31.7 | 31.1 | 31.3 | 31.0 | 31.0 | 30.8 | 30.8 | 30.9 | 31.0 | 30.0 |

LITTLE AMERICA V

| $\mathrm{Hr}{ }^{\mathrm{cm}}$ | Sfic | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10* | 40.0+ | $37.4+$ | 37.8+ | $37.7+$ | 37.8+ | 37.6 6 | $37.7+$ | $37.5+$ | $37.9+$ | $36.7+$ |
| 11* | 40.4 | 39.9 | 39.5 | 38.1 | 38.4 | 38.3 | 38.1 | 38.1 | 38.3 | 38.2 |
| 12* | 41.4+ | 40.7+ | 40.44 | 39.7+ | 39.6+ | 39.64 | 39.54 | $39.5+$ | $39.5 *$ | $39.4+$ |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 | 43.4- | 42.8- | 43.0- | 42.5- | 42.6- | 42.4- | 42.2- | 42.8- | 42.6- | $42.0-$ |
| 15 | 43.6 | 43.8 | 43.8 | 43.2 | 43.3 | 43.2 | 43.0 | 43.0 | 43.3 | 42.5 |
| 16* | 44.3 | 44.6 | 44.8 | 44.8 | 44.8 | 44.6 | 44.5 | 44.5 | 44.8 | 44.4 |
| 17* | 44.8 | 45.0 | 45.3 | 45.2 | 45.3 | 45.0 | 44.9 | 45.0 | 45.2 | 44.8 |
| 18 | 43.1 | 43.0 | 43.0 | 42.9 | 42.7 | 42.5 | 42.3 | 42.4 | 4.2 .6 | 42.0 |
| 19 | 42.2 | 42.2 | 42.4 | 42.3 | 42.2 | 42.1 | 42.1 | 42.2 | 42.2 | 42.0 |
| 20 | 42.1 | 42.3 | 42.5 | 42.5 | 42.6 | 42.5 | 42.5 | 42.8 | 42.8 | 42.7 |
| 21 | 41.7 | 41.8 | 42.3 | 42.1 | 42.1 | 42.0 | 41.9 | 42.2 | 42.2 | 41.8 |
| 22 | 41.3 | 41.4 | 41.9 | 41.8 | 41.8 | 41.7 | 41.6 | 41.8 | 41.8 | 41.5 |
| 23 | 40.6 | 4 C .7 | 41.2 | 41.1 | 41.1 | 41.0 | 40.9 | 41.2 | 41.2 | 40.9 |
| Number of Obs | 221 | 221 | 221 | 221 | 220 | 221 | 221 | 221 | 221 | 221 |
| Datly |  |  |  |  |  |  |  |  |  |  |
| Mean | 42.2 | 42.1 | 42.2 | 41.9 | 42.0 | 41.8 | 41.7 | 41.9 | 42.0 | 41.6 |

LItTLE AMERICA V
Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

|  | sf. | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 40.5 | 40.5 | 41.0 | 40.8 | 40.8 | 40.6 | 40.5 | 40.9 | 40.9 | 407 |
| 01 | 40.2 | 40.2 | 41.1 | 40.6 | 40.5 | 40.3 | 40.2 | ¢0.5 | 40.7 | 40.3 |
| 02 | 19.2 | 39.0 | 39.4 | 39.0 | 38.9 | 38.8 | 38.7 | 39.0 | 39.1 | 38.7 |
| 03 | 38.5 | 38.3 | 38.3 | 38.2 | 38.1 | 31.9 | 37.9 | 38.2 | 38.3 | 37.9 |
| 04 | 38.5 | 38.4 | 38.4 | 38.3 | 30.3 | 38.2 | 38.1 | 38.4 | 38.5 | 38.2 |
| 05 | 38.7 | 38.8 | 39.0 | 38.9 | 38.9 | 38.8 | 38.7 | 38.9 | 39.1 | 38.6 |
| 06 | 38.2 | 37.9 | 38.0 | 37.9 | 37.8 | 37.7 | 37.6 | 37.7 | 37.6 | 35.5 |
| 07 | 38.2 | 57.1 | 37.2 | 3.9 | 37.0 | 36.8 | 36.6 | 36.6 | 36.2 | 34.3 |
| 08 | 38.0 | 37.7 | 37.5 | 36.7 | 36.8 | 36.9 | 36.7 | 37.0 | 37.0 | 35.4 |
| 09 | $37.8+$ | 37.0+ | $36.4+$ | 35.8+ | $35.6+$ | $35.8+$ | $35.5+$ | $35.8+$ | $36.1+$ | 34.2 |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 | 32.9 | 30.5 | 30.2 | 29.9 | 29.8 | 29.0 | 28.5 | 28.2 | 27.7 | 25.3 |
| 20 | 32.8 | 30.6 | 30.2 | 29.7 | 29.4 | 28.6 | 28.1 | 27.3 | 27.3 | 25.8 |
| 21 | 31.5 | 29.2 | 29.1 | 28.8 | 28.5 | 28.0 | 27.7 | 27.4 | 26.9 | 25.3 |
| 22 | 31.4 | 29.4 | 29.2 | 28.8 | 28.4 | 27.9 | 27.4 | 27.1 | 26.7 | 25.4 |
| 23 | 31.8 | 29.9 | 29.6 | 29.1 | 28.5 | 28.0 | 27.4 | 27.0 | 26.7 | 25.5 |


| Number <br> Of Obs | 274 | 274 | 272 | 274 | 274 | 274 | 274 | 274 | 273 | 274 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dally <br> Maan | 36.5 | 35,7 | 35.6 | 35.3 | 35.1 | 34.9 | 34.6 | 34.7 | 34.5 | 33.5 |

LITTLE AMERIC. $V$


| Number <br> of Obs <br> Daily <br> Magn | 4446 | 446 | 444 | 446 | 443 | 446 | 442 | $44:$ | 444 | 446 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LITTLE AMERICA $v$
$\left(-{ }^{\circ} \mathrm{c}\right)$
Howry Menn Temperature::
20 September 1957

| $\mathrm{Hr}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 160 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 32.9 | 32.0 | 32.0 | 31.7 | 31.5 | 31.4 | 31.3 | 31.5 | 31.5 | 31.2 |
| 01 | 30.2 | 23.9 | 28.7 | 28.5 | 28.3 | 28.1 | 28.1 | 28.3 | 28.2 | 27.8 |
| 02 | 29.3 | 28.3 | 28.2 | 27.9 | 27.7 | 27.6 | 27.6 | 27.6 | 21.6 | 274 |
| 03 | 28.7 | 27.4 | 27.2 | 27.1 | 26.8 | 26.7 | 26.6 | 26.6 | 285 | 26.2 |
| 04 | 28.0 | 26.7 | 26.6 | 26.4 | 25.1 | 25.9 | 25.8 | 25.8 | 25.? | 25.6 |
| 05 | 27.4 | 25.9 | 25.9 | 25.7 | 25.4 | 25.2 | 25.1 | 25.1 | 250 | 24.8 |
| 06 | 26.8 | 25.6 | 25.5 | 25.2 | 25.0 | 24.9 | 24.8 | 24.8 | 24.8 | 24.4 |
| 07 | 26.6 | 25.6 | 25.6 | 25.3 | 25.1 | 25.0 | 23.0 | 25.0 | 25.0 | 24.9 |
| 08 | 26.7 | 26.1 | 25.7 | 25.6 | 25.5 | 25.5 | 25.4 | 25.4 | 25.4 | 25.3 |
| 09 | 27.3 | 26.9 | 26.2 | 26.2 | 26.2 | 26.1 | 26.0 | 26.0 | 26.0 | 25.0 |
| 10* | 26.7 | 26.4 | 26.0 | 26.0 | 25.8 | 25.7 | 25.6 | 2.5 .5 | 25.5 | 25.2 |
| 11* | 26.7 | 26.5 | 26.C | 25.9 | 25.8 | 25.7 | 25.7 | 23.6 | 25.6 | 25.3 |
| 12 | 27.6 | 27. 3 | 26.7 | 26.7 | 26.6 | 26.5 | 26.4 | 26.4 | 26.4 | 28.8 |
| 13 | 28.2 | 27.7 | 27.7 | 27.3 | 27.2 | 27.0 | 26.9 | 26.9 | 26.9 | $\therefore$ |
| 14 | 28.5 | 28.1 | 27.9 | 27.6 | 21.3 | 21.1 | 27.1 | 27.1 | 2.1 .1 | 27.1 |
| 15 | 29.3 | 28.7 | 28.8 | 28.5 | 28.3 | 28.1 | 28.1 | 28.1 | 28.1 | 2 A |
| 16 | 30.6 | 30.6 | 31.0 | 30.5 | 30.5 | 30.4 | 30.3 | 30.3 | 30.3 | 30.0 |
| 17 | 31.7 | 31.7 | 31.6 | 31.3 | 31.3 | 31.2 | 31.2 | 31.2 | 11.2 | 30.7 |
| 18 | 33.2 | 33.3 | 33.5 | 33.6 | 33.6 | 33.6 | 33.6 | 33.6 | 33.6 | 33. |
| 19 | 33.4 | 33.5 | 33.7 | 33.8 | 33.7 | 33.6 | 33.6 | 33.6 | 33.6 | 33.3 |
| 20 | 3. 3.0 | 34.0 | 34.1 | 34.1 | 34.0 | 33.8 | 33.6 | 33.5 | 33.3 | 31.9 |
| 21 | 34.5 |  | 34.5 | 34.4 | 34.4 | 34.2 | 34.1 | 34.1 | 33.9 | 13.0 |
| 22 | 35.1 | 35.6 | 35.8 | 35.6 | 35.5 | 35.3 | 34.3 | 34. 7 | 34.2 | 31.8 |
| 23 | 36.9 | 36.5 | 36.6 | 36.3 | 36.0 | 35.4 | 3.45 | 34.0 | 33.0 | 31.4 |
| Number of Obs | 446 | 464 | 446 | 443 | 446 | 445 | 446 | $4 \times 15$ | 446 | 445 |
| Delly <br> Mean | 30.0 | 24.5 | 29.4 | 2.9 .2 | 19.1 | 28.9 | 28.9 | 28.8 | 26.7 | 282 |

LITTLE ARERICA $V$
Hourly Hean Tempesatures

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | Ano |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 37.5 | 37.2 | 37.3 | 36.9 | 35.5 | 35.5 | 34.1 | 33.6 | 33.0 | 32.0 |
| 01 | 37.8 | 37.1 | 37.0 | 36.8 | 36.3 | 35.3 | 13.8 | 33.1 | 32.1 | 31.1 |
| 02 | 38.1 | 37.6 | 37 | 37.0 | 36.6 | 35.2 | . 64.1 | 33.4 | 12.9 | 32.0 |
| 03 | 38.6 | 38.7 | 汹.U | 37.7 | 37.3 | 36.0 | 34.8 | 34.5 | 33.7 | 322 |
| 04 | 39.0 | 88.3 | 18.2 | 37.7 | 36.9 | 35.1 | 3).9 | 33.7 | 33.6 | 325 |
| 05 | 38.0 | 37.2 | 37.0 | 36.5 | 35.9 | 34.2 | 33.9 | 33.3 | 13.0 | 320 |
| O6 | 37.5 | 37.4 | 36.8 | 36.7 | 36.5 | 36.1 | 35.2 | 34,3 | 33.3 | 311 |
| 07 | 37.1 | 36.6 | 35.6 | 35.2 | 35.3 | 35.2 | 35.0 | 35.0 | 35.0 | 34.5 |
| 08 | 36.1 | 36.0 | 35.2 | 34.9 | 34.9 | 34.9 | 34.9 | 350 | 35.0 | 14. |
| 09 | 34.7 | 34.5 | 34.0 | 13.8 | 13.9 | 33.9 | 34.0 | 1/4.1 | 34. | 14.0 |
| 10 | 34.6 | 34.4 | 33.7 | 33.6 | 33.9 | 34.0 | 34.0 | 34.1 | [4. | 36 |
| 11 | 34.7 | 34.6 | 34.2 | 34.3 | 34.3 | 34.4 | 34.4 | 34.5 | 3.0 | 14.1 |
| 12 | 34.9 | 35.7 | 35.3 | 33.9 | 34.1 | 34.3 | 34.0 | 34.4 | 351 | 13.5 |
| 13 | 35.8 | 36.3 | 36., | 34.7 | 34.8 | 34.5 | 34.5 | ${ }^{4} 4.6$ | 34.1 | 32.9 |
| 14 | 36.2 | 36.0 | 36.4 | 34.6 | 34.6 | 34.4 | 34.2 | 36.2 | 34.4 | 33.2 |
| 1) | 38.0 | 37.8 | 37.7 | 37.1 | 36.9 | 36.7 | 36.6 | 16.5 | 366 | 3 ? |
| 16 | 38.7 | 38.5 | 38.5 | 38.1 | 37.9 | 37.8 | 37.5 | 37.7 | 3 ! 8 | 37.5 |
| 17 | 40.5 | 40.4 | 40.3 | 40.2 | 40.1 | 40.0 | 39.9 | 39.5 | 43.2 | 39.9 |
| 18 | 41.6 | 41.6 | 41.6 | 41.6 | 41.5 | 41.4 | 41.2 | 41.1 | 415 | 40.1 |
| 19 | 41.7 | 41.7 | 41.8 | 41.6 | 41.5 | 41.4 | 41.3 | 41.3 | 41.5 | 41.2 |
| 20 | 41.6 | 41.6 | 41.9 | 41.6 | 41.i, | 41.3 | 41.2 | 41.2 | 41 - | 41.0 |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 391 | 391 | 391 | 391 | 391 | 391 | $3 \times 1$ | 191 | 391 | 391 |
| Dacly |  |  |  |  |  |  |  |  |  |  |
| Mean | 37.7 | 37.6 | 37,4 | 36.9 | 36.7 | 36.3 | 35.8 | 35.7 | 35.7 | 34.8 |


LTTTLE PMERLCA V

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 40.4 | 40.5 | 40.8 | 40.5 | 70.3 | 40.2 | 40.0 | 40.0 | 40.1 | 397 |
| 01 | 40.4 | 40.4 | 40.6 | 40.5 | 40.2 | 40.0 | 39.8 | 39.8 | 39.8 | 38.7 |
| 02 | 39.2 | 38.9 | 38.8 | 38.4 | 38.2 | 37.9 | 37.7 | 37.5 | 37.1 | 35.4 |
| 03 | 39.5 | 39.4 | 39.3 | 39.1 | 38.8 | 3.6 | 38.3 | 38.2 | 38.0 | 36.3 |
| 04 | 39.1 | 38.8 | 38.7 | 38.5 | 38.2 | 37.9 | 37.6 | 37.4 | 36.8 | 34.7 |
| 05 | 39.2 | 39.1 | 38.7 | 38.? | 38.6 | 38.5 | 38.4 | 38.4 | 38.7 | 36.9 |
| 06 | 38.9 | 38.5 | 38.3 | 38.2 | 38.1 | 38.1 | 38.0 | 37.7 | 37.6 | 35.3 |
| 07 | 38.7 | 38.4 | 37.9 | 37.7 | 37.8 | 37.8 | 37.8 | 37.7 | 37.8 | $37 . n$ |
| 08 | 37.1 | 36.8 | 36.7 | 36.3 | 36.2 | 36.0 | 36.0 | 35.4 | 35.5 | 30.1 |
| 09 | 36.9 | 36.5 | 36.1 | 35.6 | 35.4 | 35.1 | 35.1 | 34.3 | 34.4 | 30.1 |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12* | 38.3- | 36.4 m | 35.7 - | 34.8= | 34.4= | 34.30 | 34.4. | 34. $3=$ | 34.8m | 3.3.4* |
| 13 | 38.5 | 36.7 | 361 | 35.1 | 34.8 | 34.7 | 34.6 | 34.4 | 33.7 | 27.9 |
| 14* | 38.5 | 37.8 | 37.1 | 36.2 | 36.2 | 36.1 | 35.8 | 35.7 | 34.5 | 27.7 |
| 15* | 39.8 | 39.4 | 39.0 | 38.2 | 38.0 | $\therefore .6$ | 36.9 | 36.1 | 29.5 | 20.6 |
| 16* | 39.8 | 39.0 | 38.8 | 38.3 | 37.7 | 36.8 | 35.5 | 32.0 | 28.3 | 26.2 |
| 17* | 38.9 | 38.0 | 37.9 | 37.7 | 37.3 | 36.6 | 35.8 | 33.5 | 26.7 | 24.9 |
| 13* | 36.5 | 34.7 | 34.3 | 33.7 | 33.1 | 32.5 | 31.9 | 30.4 | 27.6 | 23.9 |
| 19 | 38.5 | 37.2 | 35.4 | 35.5 | 33.4 | 30.2 | 29.7 | 28.3 | 27.0 | 23.6 |
| 20* | 365 | 36.1 | 35.9 | 35.5 | 33.0 | 34.1 | 33.5 | 30.3 | 27.0 | 24.1 |
| 21 | 33 | 32.- | 32.2 | 31.9 | 31.3 | 30.5 | 30.0 | 27.9 | 25.0 | 22.8 |
| 22 | 31.0 | $3{ }^{\text {c, }}$ ? | 30.6 | 30.3 | 29.8 | 29.3 | 28.6 | 27.2 | 24.9 | 22.9 |
| 23 | 30.9 | 30.2 | 30.0 | 29.8 | 29.4 | 29.1 | 29.0 | 27.7 | 25.1 | 23.1 |
| Number of Obs, | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 399 |
| Dally <br> Mean | 37.7 | 37.1 | 36.8 | 36.4 | 36.0 | 35.6 | 35.2 | 34.3 | 32.7 | 30.1 |

LITTLE AMER.Ca Mean Temperatures
24 September 1957

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 860 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | $30.0+$ | $29.1+$ | $28.8+$ | $28.3+$ | 27.7+ | 27.2+ | 26.6+ | 25.42 | $24.2+$ | 22.64 |
| 01 | 28.6 | 27.3 | 268 | 26.2 | 25.3 | 24.3 | 23.6 | 22.7 | 22.0 | 21.1 |
| 02 | 27.8 | く0゙. 3 | 26.0 | 25.5 | 24.7 | 23.7 | 22.9 | 22.4 | 21.7 | 20.8 |
| 03 | 27.8 | 27.0 | 26.6 | 26.1 | 25.4 | 24.8 | 24.4 | 23.4 | 22.7 | 21.7 |
| 04 | 27.7 | 26.7 | 26.4 | 26.1 | 25.4 | 24.6 | 24.1 | 23.3 | 22.3 | 21.2 |
| 05 | 26.9 | 26.0 | 25.5 | 25.1 | 24.9 | 24.1 | 23.7 | 22 ' | 21.5 | 21.5 |
| 06 | 25.8 | 24.5 | 24.1 | 23.4 | 22.8 | 22.1 | 21.8 | 21.2 | 20.7 | $20 . ?$ |
| 07 | 24.8 | 23.6 | 23.0 | 22.5 | 22.0 | 21.1 | 21.6 | 21:3 | 21.1 | 20.4 |
| 08 | 25.2 | 25.0 | 23.9 | 23.9 | 23.7 | 23.5 | 23.6 | 23.5 | 23.6 | 23.0 |
| 09 | -1. | 24.6 | 23.3 | 23.9 | 22.8 | 22.6 | 22.9 | 23.7 | 22.6 | 21.3 |
| 10 | 24.4 | 24.2 | 22.6 | 22.6 | 22.5 | 22.4 | 22.8 | 22.7 | 22.9 | 21.9 |
| 11* | 24.2 | 24.1 | 22.7 | 22.4 | 22.3 | 22.1 | 22.8 | 22.7 | 22.5 | 21.1 |
| 12 | 23.6 | 22.8 | 21.4 | 21.4 | 20.9 | 20.6 | 21.1 | 20.8 | $=0.5$ | 19.9 |
| 13* | 23.4 | 22.7 | 21.5 | 21.3 | 21.1 | 20.6 | 20.9 | 20.6 | 20.4 | 19.9 |
| 14 | 24.5 | 24.6 | 24.4 | 24.1 | 24.0 | 23.9 | 24.3 | 24.1 | 24.2 | 23.8 |
| 1.5 | 25.3 | 25.4 | 25.2 | 25.2 | 25.1 | 25.0 | 25.2 | 25.3 | 25.4 | 25.3 |
| 16* | 25.6 | 23. 5 | 25.6 | 25.4 | 25.2 | 25.2 | 25.4 | 25.4 | 25.6 | 25.2 |
| 17 | 25.8 | 25.5 | 25.8 | 25.3 | 2.5 .1 | 25.1 | 25.1 | 25.2 | 25.3 | 24.6 |
| 18 | 25.9 | 25.7 | 26.0 | 25.6 | 25.3 | 25.2 | 25.3 | 25.4 | 25.7 | 25.2 |
| 19 | 26.4 | 26.4 | 26.4 | 26.2 | 26.0 | 26.0 | 26.0 | 26.1 | 26.1 | 26.2 |
| 20 | 26.9 | 263 | 27.1 | 26.6 | 26.4 | 26.3 | 26.4 | 26.5 | 26.7 | 26.5 |
| 21 | 27.4 | 27.3 | 27.5 | 27.2 | 27.0 | 26.9 | 27.0 | 27.2 | 27.4 | 26.9 |
| 22 | 27.8 | 27.8 | 28.0 | 27.8 | 27.6 | 27.5 | 27.6 | 27.8 | 28.0 | 27.7 |
| 23 | 27.0 | 26.9 | 27.2 | 26.9 | 26.6 | 2f. 5 | 26.6 | 26.7 | 27.0 | 26.7 |

10.063
Laily
littile america v Houriy Mean Temperaiures
29 Septemoer 1957

| cm | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 80 C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 28.1 | 28.4 | 27.9 | 28.4 | 28.3 | 28.3 | 28.4 | 28.5 | 289 | 28.) |
| 01 | 2.8 .3 | 28.5 | 28.6 | 28.5 | 28.4 | 28.3 | 28.4 | 28.6 | 28.9 | 28.6 |
| 02 | 28.0 | 27.9 | 28.3 | 27.9 | 27.7 | 27.6 | 27.7 | 27.8 | 28.1 | 217 |
| 03 | 31.4 | 31.9 | 31.7 | 31.5 | 31.4 | 31.3 | 31.3 | 31.5 | 31.7 | 30.8 |
| 04 | 34.6 | 34.8 | 34.7 | 34.7 | 34.7 | 34.7 | 34.4 | 34.6 | 34.6 | 32.6 34.5 |
| 05 | 35.6 | 36.1 | 36.6 | 36.8 | 37.0 | 37.1 | 36.9 | 37.1 | 37.4 | 34.5 |
| 06 | 35.8 | 35.7 | 36.1 | 36.5 | 36.7 | 36.8 | 36.9 | 37.0 | 37.3 | 33.1 |
| 07 | 34.7 | 35.1 | 36.8 | 37.2 | 37.0 | 37.2 | 37.5 | 37.3 | 38.1 . | 37.3 |
| 08 | 33.6= | 35.3= | 35.9= | 36.5 $=$ | 36.0 $=$ | 36.20 | 36.8* | 36.40 |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 | 39.1- | 38.4- | 38.1 - | 37.7- | 37.6- | $37.6-$ | 38.1 - | 37.5 | 38.0 | $37.9$ |
| 12 | 39.3 | 38.3 | 37.8 | 37.4 | 37.3 | 37.3 | 37.6 | 37.5 37.9 | 38.0 | 38.0 |
| 13* | 39.6 | 38.8 | 33.0 | 37.8 | 37.6 | 37.6 | 37.9 38.5 | 37.9 38.5 | 39.0 | 38.1 |
| 14* | 40.0 | 39.6 | 39.1 | 38.4 | 38.5 | 39.4 | 38.5 39.5 | 38.5 39.6 | 39.9 | 38.7 38.3 |
| 15* | 40.5 | 40.3 | 40.4 | 397 | 39.7 | 39.5 | 39.5 | 49.6 | $4 \mathrm{C}, 4$ | 39.7 |
| 16 | 41.1 | 40.7 | 40.8 | 40.4 | 40.3 | 40.2 | 40.1 | 40.2 | 46.4 |  |
| 17 | 41.7 | 41.4 | 41.5 | 41.3 | $4: 1.2$ | 41.0 | 40.9 | 41.0 | 41.0 | 39.9 40.2 |
| 18 | 41.7 | 41.5 | 41.6 | 41.4 | 41.2 | 41.1 | 41.0 | 41.0 | 41.1 | 40.2 |
| 19 | 41.9 | 41.7 | 41.8 | 41.6 | 41.5 | $4: .3$ | 41.2 | 41 | 41.4 | 40.6 |
| 20 | 42.8 | 42.7 | 42.8 | 42.7 | 42.5 | 4, 6 | $\therefore 2.3$ | 42.3 | 42.5 | +2.1) |
| 21 | 43.4 | 43.4 | 43.5 | 43.3 | 43.2 | 43.1 | 43.0 | 43.0 | 43.1 | 4.2.3 |
| 22 | 44.4- | 44.4- | 44.6- | 44.5- | 44.4- | /4..3- | 44.2- | 44.3- | 4... | 42.5 |
|  | 4.4 .4 |  |  |  |  |  |  |  |  |  |
| Number of Obs | 367 | 367 | 367 | 367 | 356 | 367 | 366 | 366 | 365 | 366 |
| Dally Mean |  |  | 37.3 | 37.2 | 37.1 | 37.0 | 37.1 | 37.1 | 37.4 | 36.- |
|  | 37.2 | 37.3 | 37.3 |  |  |  |  |  |  |  |

Little Aidikicn $V$
Hourly Mean Tempe:ature

| Hr | Sfe | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 44.7 | 44.7 | 44.9 | 44.7 | 44.6 | 44.5 | 44.4 | 44.5 | 44.6 | 41.7 |
| 01 | 45.0 | 45.1 | 45.2 | 45.1 | 45.0 | 44.9 | 44.7 | 4.4 .8 | $4{ }_{4} 4.3$ | 42.7 |
| 02 | 44.9 | 4,4.9 | 45.1 | 44.9 | 44.8 | 44.6 | 44.4 | 44.4 | 43.7 | 38.7 |
| 03 | 44.8 | 44.7 | 44.9 | 44.0 | 44.5 | 44.3 | 44.1 | 44.1 | 43.9 | 39.6 |
| 04 | 44.4 | 44.6 | 44.6 | 44.5 | 44.3 | 44.1 | 44.0 | 44.1 | 43.7 | 39.5 |
| OS | 43.3 | 43.7 | 43.8 | 41.6 | 43.7 | 43.6 | 43.5 | 43.5 | 42.6 | 38.1 |
| 06 | 41.2 | 41.9 | 41.7 | 21.5 | 41.7 | 417 | 41.8 | 41.4 | 39.6 | 35.7 |
| 07 | 41.1 | 40.7 | 40.6 | 40.1 | 40.1 | 40.1 | 40.4 | \%0.3 | 38.8 | 34.3 |
| 08 | 38.8 | 40.1 | 4.0 .3 | 40.0 | 40.0 | 39.9 | 40.2 | 40.2 | 40.6 | 38.2 |
| 09 | 36.7 | 37.7 | 37.9 | 37.5 | 37.5 | 37.4 | 37.6 | 37.5 | 38.0 | 37.0 |
| 10 | 34.9 | 35.8 | 35.8 | 35.5 | 35.4 | 35.3 | 35.6 | 35.6 | 36.0 | 35.0 |
| 11 | 34.1 | 34.9 | 34.9 | 34.7 | 34.6 | 34.5 | 34.7 | 34.5 | 35.1 | 34.6 |
| 12* | 33.1 | 33.6 | 33.6 | 33.5 | 33.4 | 33.2 | 33.4 | 33.4 | 33.6 | 33.2 |
| 13* | 33.9 | 34.5 | 34.5 | 34.4 | 34.3 | 34.2 | 34.3 | 34.4 | 34.7 | 34.6 |
| 14* | 34.2 | 34.7 | 34.7 | 34.7 | 34.5 | 34.4 | 34.6 | 34.6 | 34.9 | 34.9 |
| 15* | 35.4 | 35.9 | 36.0 | 36.0 | 35.9 | 35.8 | 35.9 | 36.1 | 36.4 | 36.4 |
| 16 | 35.7 | 36.1 | 36.2 | 36.2 | 36.1 | 36.0 | 36.1 | 36.3 | 36.5 | 36.5 |
| 17 | 36.1 | 36.6 | 36.8 | 36.8 | 36.7 | 36.6 | 36.7 | 36.9 | 37.3 | 37.2 |
| 18 | 36.9 | 37.3 | 37.5 | 37.4 | 37.3 | 37.3 | 37.3 | 374 | 37.8 | 37.7 |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Ob : | 358 | 358 | 358 | 357 | 358 | 358 | 358 | 358 | 358 | 358 |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mean | 38.9 | 39.3 | 39.4 | 39.2 | -9.2 | 39.1 | 39.2 | 39.2 | 39.1 | 37.1 |

saxnjexodual ubow Kianoh
$\Lambda$ VOIHaNy ajalit

| 8 |  <br>  | $\stackrel{\sim}{2}$ |
| :---: | :---: | :---: |
| $8$ | onNmoronatmo <br>  | $\stackrel{\sim}{\sim}$ |
| 웅 |  <br>  | $\stackrel{\sim}{\mathrm{N}}$ |
| $8$ | Noncoonmoono <br>  | $\underset{\sim}{\text { in }}$ |
| in |  <br>  | さ |
| $\cdots$ | かonNOOnNou＊N <br>  | N |
| $\sim$ |  がल | $\xrightarrow{N}$ |
| $\bigcirc$ |  <br>  | $\underset{\sim}{ \pm}$ |
| $m$ |  が | $\underset{\sim}{\sim}$ |
| 岕 | かoNさのmホNーヘへさ <br>  | $\underset{\sim}{*}$ |
| E $\underset{y}{x}$ |  | 号号 |

LITTLE AMERICA $v$

| $\mathrm{Hr} \mathrm{~cm}$ | Stc | ) | 6 | 12 | 2) | SU | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 31.4 | 30.7 | 30.9 | 30.5 | 30.4 |  | 30.2 | 30.3 | 30.5 | 30.1 |
| 01 | 31.0 | 29.9 | 29.8 | 29.6 | 29.4 | 27.2 | 29.2 | 29.2 | 294 | 28.3 |
| 02 | 32.7 | 31.6 | 31.5 | 31.2 | 30.9 | 3). 7 | 30.6 | 30.6 | 30.5 | 29.6 |
| 03 | 34.2 | 330 | 33.0 | 32.7 | 32.3 | 32.0 | 31.9 | 31.7 | 31.5 | 30.4 |
| 04 | 33.4 | 31.8 | 32.0 | 31.4 | 31.0 | 30.7 | 30.4 | 30.2 | 29.7 | 278 |
| 05 | 30.6 | 29.0 | 28.8 | 28.2 | 28.0 | 27.7 | 27.5 | 27.3 | 27.0 | 254 |
| 06 | 28. 5 | 27.3 | 27.1 | 267 | 26.4 | 26.2 | 2f. 3 | 26.3 | 26.3 | 25.7 |
| 07 | 28.3 | 28.0 | 28.0 | 27.6 | 27.5 | 27.4 | 27.6 | 27.6 | 28.0 | 27.8 |
| 08 | 27.9 | 27.6 | 27.7 | 27.1 | 27.0 | 26.9 | 27.1 | 27.2 | 27.6 | 27.4 |
| 09 | 26.7 | 26.3 | 26.4 | 25.8 | 25.7 | 23. 5 | 25.7 | 25.7 | 26.1 | 25.8 |
| 10 | 24.7 | 25.0 | 25.0 | 24.6 | 24.4 | 24.2 | 24.4 | 24.5 | 24.8 | 24.4 |
| 11* | 24.0 | 24.4 | 24.4 | 23.9 | 23.7 | 23.5 | 23.7 | 23.7 | 24.0 | 23.7 |
| 12* | 23.7 | 24.1 | 24.0 | 23.6 | 23.5 | 23.3 | 23.5 | 23.5 | 23.7 | 23.4 |
| 13* | 24.2 | 24.7 | 24.6 | 24.3 | 24.2 | 24.1 | 24.3 | 24.3 | 24.6 | 24.3 |
| 14 | 24.6 | 25.1 | 25.1 | 24.7 | 24.6 | 24.6 | 24.1 | 24.8 | 25. 0 | 24.8 |
| 15 | 24.9 | 25.2 | 25.2 | 25.0 | 24.9 | 24.8 | 24.8 | 24.9 | 25.1 | 24.9 |
| 16 | 25.4 | 25.5 | 25.5 | 25.4 | 25.2 | 25.1 | 25.1 | 25.1 | 25.3 | 25.2 |
| 17 | 25.5 | 25.5 | 25. 6 | 25.4 | 25.2 | 25.1 | 25.1 | 25.2 | 25.4 | 25.2 |
| 18 | 25.8 | 2.5 .8 | 25.9 | 25.8 | 25.7 | 25.6 | 25.6 | 25.6 | 25.8 | 25.7 |
| 19 | 25.7 | 25.7 | 25.8 | 25.7 | 25.6 | 25.5 | 25.5 | 25.6 | 25.7 | 25.0 |
| 20 | 25.7 | 25.7 | 25.8 | 25.7 | 25.6 | 25.4 | 25.4 | 25.5 | 25.6 | 25.6 |
| 21 | 23. 8 | 25.8 | 25.8 | 25.7 | 25.6 | 25.5 | 25.5 | 25.6 | 25.7 | 25.6 |
| 22 | 25.4 | 25.4 | 25.4 | 25.2 | 25.1 | 25.0 | 25.0 | 25.0 | . 5.2 | 25.1 |
| 23 | 24.6 | 24.5 | 24.6 | 24.3 | 24.2 | 24.1 | 24.1 | 24.1 | 24.3 | 24.1 |


| Humber |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , \% Obs | 447 | $\therefore 17$ | 1.47 | 447 | 447 | 447 | 447 | 447 | 147 | $4: 47$ |
| Dail: |  |  |  |  |  |  |  |  |  |  |
| Mear: | 27.3 | 27.0 | 27.0 | 26.7 | 26.5 | 26. 5 | 264 | 26.4 | 26.5 | 26.1 |


|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 24.2 | 24.1 | 24.1 | 23.9 | 23.7 | 23.6 | 23.6 | 23.6 | 23. | 23.6 |
| 01 | 24.0 | 23.8 | 23.9 | 23.6 | 23.4 | 23.2 | 23.3 | 23.4 | 23.5 | 23.4 |
| 02 | 24.0 | 23.9 | 24.0 | 23.7 | 23.5 | 23.4 | 23.4 | 23.5 | 23.6 | 23.5 |
| 03 | 24.1 | 24.0 | 24.2 | 23.9 | 23.7 | 23.6 | 23.6 | 23.7 | 23.9 | 23.8 |
| 04 | 24.2 | 24.2 | 24.3 | 24.1 | 23.9 | 23.8 | 23.8 | 23.9 | 24.1 | 23.9 |
| 05 | 24.3 | 24.3 | 24.5 | 24.3 | 24.1 | 24.0 | 24.0 | 24.1 | 24.3 | 24.2 |
| 06 | 24.0 | 24.1 | 24.3 | 24.2 | 24.0 | 23.9 | 23.9 | 24.0 | 24.2 | 24.0 |
| 07 | 23.8 | 23.9 | 24.1 | 23.9 | 23.7 | 23.6 | 23.7 | 23.8 | 23.9 | 23.8 |
| 08 | 23.2 | 23.4 | 23.6 | 23.4 | 23.2 | 23.0 | 23.1 | 23.2 | 13.4 | 23.2 |
| 09 | $23.0 \%$ | 23.3* | 23.40 | 23.3* | 23.1\# | 22.8\# | 22.94 | 23.14 | 23.2* | 33.14 |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11* | 24.3+ | $24.5+$ | 24.6+ | $24.5+$ | $24.5+$ | $24.4+$ | $24.5+$ | $24.6+$ | $24.9+$ | 24.7 |
| 12 | 24.4 | 24.5 | 24.6 | 24.6 | 24.5 | 24.4 | 24.5 | 24.6 | 24.8 | 34. 1 |
| 13 | 24.6 | 24.8 | 24.8 | 24.8 | 24.7 | 24.7 | 24.7 | 24.8 | 25.0 | 25.0 |
| 14* | 25.4 | 25.5 | 25.7 | 25.6 | 25.5 | 25.4 | 25.5 | 25.6 | 25.8 | 25.7 |
| 15* | 26.0 | 26.0 | 26.2 | 26.2 | 26.1 | 26.0 | 26.0 | 26.1 | 26.3 | 26.3 |
| 16* | 26.8 | 27.0 | 27.1 | 26.9 | 27.0 | 26.9 | 26.9 | 27.0 | 27.1 | 27.1 |
| 17 | 28.0 | 28.1 | 28.3 | 28.3 | 28.3 | 28.2 | 28.2 | 28.3 | 28.4 | 28.3 |
| 18 | 28.8 | 28.9 | 29.1 | 29.1 | 29.1 | 29.1 | 29.0 | 29.1 | 29.2 | 292 |
| 19 | 30.6 | 30.7 | 30.8 | 30.8 | 30.7 | 30.7 | 30.6 | 30.1 | 30.8 | 30.7 |
| 20 | 33.5 | 33.4 | 33.5 | 33.4 | 33.2 | 33.1 | 33.0 | 33.0 | 33.1 | 32.8 |
| 21 | 35.3 | 35.0 | 35.0 | 34.9 | 34.7 | 34.6 | 34.5 | 34.') | 34.5 | 33.6 |
| 22 | 36.7 | 36.6 | 36.5 | 36.5 | 36.3 | 36.2 | 36.0 | 36.0 | 16.0 | 35.5 |
| 23 | 38.4 | 38.3 | 38.3 | 38.2 | 38.2 | 38.1 | 38.0 | 38.0 | 38.0 | 37.8 |
| Number of Obs | 411 | 411 | 411 | 411 | 411 | 411 | 411 | 411 | 411 | 41: |
| Daily <br> Mean | 27.2 | 27.2 | 27.3 | 2.7 .2 | 27.1 | 27.0 | 27.0 | 27.0 | 27.2 | 27.0 |


| $\mathrm{Hr}^{\mathrm{cm}}$ | Stc | 1 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 38.9 | 38.7 | 38.7 | 38.6 | 38.5 | 38.4 | 38.3 | 38.3 | 38:3 | 37.9 |
| 01 | 39.4 | 39.3 | 39.3 | 39.2 | 39.1 | 39.0 | 38.8 | 36.8 | 38.7 | 38.4 |
| 02 | 39. 3 | 39.2 | 39.2 | 39.1 | 38.9 | 38.7 | 38.5 | 38.4 | 38.3 | 37.6 |
| 03 | 39.3 | 39.2 | 39.2 | 38.9 | 38.8 | 38.7 | 38.4 | 38.3 | 38.1 | 37.5 |
| 04 | 39.6 | 39.6 | 39.6 | 39.5 | 39.4 | 39.3 | 19.1 | 39.2 | 39.2 | 39.0 |
| 05 | 39.7 | 39.7 | 39.6 | 39.6 | 39.7 | 39.7 | 39.6 | 39.7 | 39.9 | 38.8 |
| 06 | 39.5 | 39.1 | 39.1 | 39.0 | 39.0 | 39.0 | 39.0 | 39.1 | 39.4 | 39.2 |
| 07 | 38.5 | 38.3 | 38.2 | 38.1 | 38.1 | 38.1 | 38.2 | 38.2 | 38.6 | 38.4 |
| 08 | 37.7 | 37.4 | 37.2 | 36.9 | 36.9 | 36.9 | 37.0 | 37.1 | 37.6 | 37.4 |
| 09 | 37.5 | 36.9 | 36.9 | 36.5 | 36.4 | 36.4 | 36.5 | 36.5 | 37.0 | 36.7 |
| 10* | 37.2 | 36.1 | 35.6 | 35.0 | 35.1 | 35.1 | 35.2 | 35.2 | 36.0 | 35.6 |
| 11* | 37.2 | 36.5 | 36.4 | 35.8 | 35.8 | 35.7 | 35.8 | 35.8 | 36.0 | 35.8 |
| 12* | 36.5 | 35.9 | 34.6 | 34.1 | 34.0 | 34.0 | 34.1 | 34.2 | 34.3 | 34.1 |
| 13* | 37.0 | 37.0 | 37.0 | 35.1 | 35.1 | 35.0 | 35.1 | 35. 6 | 36.1 | 34.8 |
| 14 | 37.8 | 38.4 | 38.1 | 37.4 | 37.3 | 37.2 | 37.2 | 37.6 | 38.0 | 36.7 |
| 15 | 39.2 | 39.5 | 39.3 | 38.8 | 38.7 | 38.7 | 38.6 | 38.5 | 38.2 | 37.8 |
| 16 | 40.9 | 40.8 | 40.9 | 40.6 | 40.4 | 40.3 | 40.2 | 40.3 | 40.2 | 38.9 |
| 17 | 42.1 | 42.0 | 42.1 | 41.9 | 41.8 | 41.7 | 41.6 | 41.8 | 41.9 | 40.9 |
| 18 | 43.1 | 42.9 | 43.0 | 42.9 | 42.8 | 1.2 .6 | 42.4 | 42.6 | 42.6 | 40.9 |
| 19 | 43.8 | 43.6 | 43.7 | 43.5 | 43.4 | 43.2 | 43.0 | 43.3 | 43.1 | 40.9 |
| 20 | 44.5 | 44.3 | 44.4 | 44.3 | 14.2 | 44.1 | 44.0 | 44.1 | 44.1 | +3.3 |
| 2.1 | 45.1 | 45.0 | 45.2 | 45.0 | 44.9 | 44.8 | 44.7 | 44.9 | 45.0 | 437 |
| 22 | 45.4 | 45.4 | 45.4 | 45.4 | 45.4 | 45.3 | 45.1 | 45.1 | 45.1 | 44.9 |
| 23 | $46.0+$ | $46.0+$ | $46.1+$ | $46.0+$ | $46.0+$ | $46.0+$ | 45.9 + | $45.9+$ | $45.9+$ | 458 |
| Number <br> of Ob: | 441 | 439 | 439 | 441 | 441 | 441 | 441 | 441 | 4.40 | $4: 1$ |
| Dially !ean | 40.2 | 40.0 | 39.9 | 39.6 | 39.5 | 39.5 | 39.4 | 39.5 | 39.6 | 38.9 |

LITTLE AMERICA V
Hourly Mean remperatures

1. October 1957

|  | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 46.6 | 46.5 | 46.5 | 46.3 | 46.3 | 46.3 | 46.1 | 46.1 | 46.2 | 46.0 |
| 01 | 46.4 | 46.3 | 46.4 | 46.2 | 46.2 | 46.2 | 46.1 | 46.1 | 46.1 | 45.7 |
| 02 | 46.7 | 46.6 | 46.6 | 46.5 | 46.4 | 46.3 | 46.2 | 46.1 | 46.1 | 44.9 |
| 03 | 46.5 | 46.4 | 46.4 | 46.2 | 46.2 | 45.9 | 45.6 | 45.3 | 44.9 | 43.4 |
| 04 | 46.1 | 46.2 | 46.2 | 46.2 | 46.1 | 46.0 | 45.8 | 45.9 | 45.9 | 44.7 |
| 05 | 45.7 | 45.8 | 45.7 | 45.7 | 45.9 | 45.9 | 45.9 | 46.2 | 46.7 | 45.8 |
| 06 | 45.0 | 44.8 | 44.8 | 44.7 | 44.8 | 44.8 | 44.9 | 45.3 | 45.5 | 43.8 |
| 07 | 43.7 | 43.6 | 43.6 | 43.4 | 43.4 | 43.4 | 43.5 | 43.9 | 44.1 | 4 C .9 |
| 08 | 42.4 | 42.2 | 42.0 | 41.5 | 41.5 | 41.6 | 41.8 | 41.7 | 41.4 | 39.8 |
| 09 | 41.1 | 40.3 | 40.2 | 38.7 | 36.8 | 38.9 | 39.1 | 39.6 | 40.0 | 37.2 |
| 10 | 41.0 | 40.4 | 39.8 | 38.7 | 38.8 | 38.8 | 39.1 | 39.5 | 39.8 | 36.5 |
| 11 | 39.8 | 38.8 | 38.3 | 37.7 | 37.5 | 37.4 | 37.7 | 37.8 | 3\%.8 | 37.3 |
| 12 | 40.6 | 38.9 | 37.7 | 37.2 | 37.0 | 37.1 | 37.6 | 37.9 | 38.1 | 37.3 |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 | 243 |
| Dsily |  |  |  |  |  |  |  |  |  |  |
| Mean | 44.0 | 43.6 | 43.4 | 43.0 | 43.0 | 43.0 | 43.0 | 43.2 | 43.2 | 41.8 |

Hourly Mean Temperatures
2 October 1957

| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13* | $31.0+$ | 29.8+ | 29.3+ | 28.7+ | 28.3+ | $28.0+$ | 28.1+ | $2,32+$ | 27.1+ | $25.6+$ |
| 14 | 30.9 | 30.0 | 29.4 | 28.9 | 28.6 | 28.3 | 25.0 | 28.1 | 26.9 | 25.1 |
| 15 | 30.8 | 30.3 | 29.9 | 29.3 | 28.7 | 28.3 | 77.8 | 27.7 | 27.0 | 25.3 |
| 16 | 28.6 | 28.3 | 28.2 | 27.6 | 27.2 | 26.9 | 26.8 | 26.8 | 26.7 | 25.7 |
| 17* | 28.5 | 27.9 | 27.5 | 27.0 | 26.7 | 26.2 | 25.9 | 25.8 | 25.4 | 24.2 |
| 18* | 30.5 | 30.3 | 30.4 | 29.2 | 28.6 | 23.0 | 27.6 | 27.2 | 26.5 | 25.1 |
| 19 | 31.0 | 30.8 | 31.0 | 30.6 | 30. 3 | 29.9 | 29.5 | 28.7 | 274 | 25.4 |
| 20 | 29.8 | 29.8 | 30.0 | 29.5 | 29.3 | 29.0 | 28.9 | 28.2 | 25.1 | 23.5 |
| 21 | 28.8 | 28.7 | 28.8 | 28.2 | 27.7 | 27.1 | 26.4 | 23.9 | 22.9 | 21.7 |
| 22 | 26.6 | 25.8 | 25.6 | 24.7 | 23.8 | 22.9 | 22.2 | 21.7 | 21.7 | 20.9 |
| 23 | 25.4 | 24.6 | 24.6 | 23.7 | 23.2 | 22.5 | 22.0 | 21.6 | 21.4 | 20.5 |
| Number of Obs | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 | 201 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 29.2 | 28.7 | 28.6 | 27.9 | 27.5 | 27.0 | 26.6 | 26.2 | 25.3 | 23.9 |

hittle america
Hourly Mean Tomperaturec; ( $-{ }^{\circ} \mathrm{C}$ )

| 8 |  | $\stackrel{\sim}{3}$ |
| :---: | :---: | :---: |
| 응 |  <br>  | - |
| 8 |  <br>  | $\stackrel{0}{*}$ |
| 8 |  <br>  | ¢ |
| i |  | \% |
| $\stackrel{\sim}{\sim}$ |  <br>  | ¢ |
| $\sim$ |  <br>  | $\stackrel{0}{8}$ |
| 0 |  <br>  | $\underset{\sim}{*}$ |
| m |  <br>  | $\stackrel{3}{3}$ |
| $\underset{\sim}{\text { us }}$ |  <br>  | $\stackrel{0}{5}$ |
|  |  |  |

LITTLE AMERICA $V$
Hourly Mean Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$
4 Octoher 1957

| $\begin{aligned} & 8 \\ & \infty \end{aligned}$ |  |
| :---: | :---: |
| $8$ |  |
| $\underset{\sim}{\mathbf{N}}$ |  <br>  |
| $8$ |  |
| in |  |
| $\sim$ |  <br>  |
| $\pm$ |  <br>  |
| $\bigcirc$ |  |
| m |  <br>  |
| $\underbrace{u}_{0}$ |  <br>  |
| E <br> $\pm$ |  |


L.ITTLE AMERICA $V$
Hourly Mesn Temperatures $\left(-{ }^{\circ} \mathrm{C}\right)$

|  | Sfc | 3 | 6 | 12 | 2; | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14* | 16.74 | 16.3* | 16.9\# | 16.51 | 16.10 | 16.20 | 16.54 | 17.10 | 16.9* | 159 |
| 15* | 17.8 | 17.4 | 17.5 | 17.4 | 17.0 | 17.0 | 17.2 | 17.7 | 17.6 | 16.9 |
| 16* | 17.6 | 17.7 | 17.5 | 17.1 | 16.8 | 16.7 | 16.8 | 17.0 | 17.0 | 16.4 |
| 17* | 17.7 | 17.8 | 17.7 | 17.5 | 17.3 | 17.2 | 17.3 | 17.4 | 17.5 | 16.6 |
| 18* | 20.5 | 20.0 | 21.0 | 21.2 | 21.2 | 21.3 | 21.5 | 21.7 | 21.8 | 20.7 |
| 19 | 21.5 | 21.3 | 22.0 | 22.6 | 22.7 | 22.5 | 22.8 | 23.1 | 23.2 | 21.8 |
| 20 | 21.8 | 21.7 | 22.2 | 22.5 | 32. 2 | 22.5 | 22.6 | 22.8 | 23.0 | 22.2 |
| 21 | 21.5 | 21.5 | 21.6 | 21.5 | 21.4 | 21.3 | 21.3 | 21.4 | 21.5 | 20.9 |
| 22 | 21.3 | 21.6 | 21.9 | 21.8 | 21.7 | 21.6 | 21.6 | 21.7 | 21.9 | 20.8 |
| 23 | 22.2 | 21.9 | 22.3 | 22.2 | 22.1 | 21.9 | 22.0 | 22.1 | 22.3 | 21.5 |


| Number <br> of Obs | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 | 172 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 172

LITTLE AMERICA $V$ Hourly Medn Temperafure', ( ${ }^{-} \mathrm{C}$ )

| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 22.5 | 22.3 | 22.5 | 22.5 | 22.4 | ? 2.4 | 22.4 | 22.4 | 225 | 22.5 |
| 01 | 22.6 | 22.5 | 22,5 | 22.5 | 22.4 | 22.4 | 22.4 | 22.4 | 22.5 | 22.4 |
| 02 | 22.3 | 22.4 | 22.4 | 22.3 | 22.1 | 22.0 | 22.0 | 22.0 | 22.2 | 20.1 |
| 03 | 22.8 | 22.6 | 22.9 | 22.: | 225 | 22.5 | 22.5 | 226 | 22.7 | 212 |
| 04 | 236 | 23.1 | 23.8 | 23.7 | 23.5 | 23.3 | 23.3 | 234 | 23.5 | 234 |
| 05 | 23.2 | 23.2 | 23.2 | 23.0 | 22.1 | 22 5 | 22.5 | 226 | 22.6 | 22 5 |
| 06 | 22.9 | 221 | 22.3 | 22.1 | 21.7 | 21.6 | 21.6 | 21.9 | 21.8 | 21.7 |
| 07 | 23.0 | 22.1 | 21.3 | 21.0 | 20.5 | 20.7 | 20.8 | 21.4 | 21.2 | 211 |
| 98 | 23.2 | 22.3 | 22.0 | 20.7 | 198 | 20.0 | 20.4 | 21.2 | 20.9 | 20.8 |
| 109 | 22.3 | 21.4 | 20.5 | 19.0 | 18.0 | 18.5 | 19.0 | 19.4 | 19.6 | 19.5 |
| 10 | 21.3 | 20. | 20.2 | 19.2 | 18.8 | 18.8 | 19.0 | 19.3 | 19 j | 196 |
| 11 | 20.1 | 193 | 19.5 | 17.8 | 17.7 | 17.9 | 18.2 | 184 | 186 | 18.9 |
| 12 | 19.4 | 19.2 | 19.2 | 17.3 | 17.5 | 17.0 | 17.9 | 18.4 | 18.3 | 18.1 |
| 13 | $13 . i$ | 19.5 | 19.4 | 18.7 | 18.7 | 18.6 | 186 | 18.8 | 188 | 18.8 |
| 14 | 205 | 20.3 | 20.3 | 19.8 | 19.7 | 19.6 | 19.6 | 10.? | 19.7 | 11.5 |
| 15 | 21.6 | 21.3 | 21.5 | 21.0 | 20.8 | 20.7 | 20.7 | 20.1 | 20.8 | 19.8 |
| 16 | 21.4 | 21.4 | 21.4 | 21.1 | 20.9 | 20.8 | 20.7 | 20.7 | 20.7 | 20.1 |
| 17 | 21.2 | 21.2 | 21.2 | 21.0 | 208 | 20.8 | 207 | 20.7 | 20.7 | 20.6 |
| 18 | 21.0 | 21.0 | 21.0 | 20.9 | 20.7 | 20.6 | 20.5 | 20.5 | 20.6 | 201 |
| 19 | 20.4 | 20.5 | 20.5 | 20.3 | 20.1 | 200 | 20.0 | 20.0 | 200 | 199 |
| 20 | 20.1 | 20.1 | 201 | 19.9 | 19.8 | 19.7 | 19.7 | 19.7 | 19.7 | 193 |
| 21 | 20.5 | 20.6 | 20.3 | 19.9 | 19.3 | 19.2 | 19.5 | 19.6 | 19.7 | 19.5 |
|  | 21.2 | 21.2 | 199 | 19.6 | 19.0 | 18.7 | 19.2 | 19.1 | 192 | 190 |
| < 3 |  |  |  |  |  |  |  |  |  |  |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Ohs | 427 | 427 | 421 | 425 | 427 | 427 | 427 | '27 | 427 | 423 |
| Dally |  |  |  |  |  |  |  |  |  |  |
| Mean | 2 i .6 | 21.4 | 21.2 | 20.7 | 20.4 | 20.4 | 2U. 5 | 20.7 | 29.7 | 204 |

LITTLE AMERICA $V$
Hourly Mean Tenperatures

| $\hat{c m}$ | SfC | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 05 |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12. |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  | 18.6 |  |
| 20 | 20.7 | 19.4 | 19.2 | 19.1 | 18.8 | 15.6 |  |  |  |  |
| 21 | 19.9 | 18.8 | 18.7 | 18.5 | 18.1 | $1 \varepsilon .0$ | 17.9 | 18.0 | 17.9 |  |
| $22^{*}$ | 18.7 | 18.0 | 17.8 | 17.7 | 17.5 | $17.4$ | $17.3$ | $17.5$ | $17$ | $15.0$ |
| 23* | 18.2 | 17.4 | 17.3 | 17.1 | 17.0 | 16.9 | 16.8 | 16.9 | 16. | . 4 |
| Number or Ob | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 | 78 |
| Daily Mean | 19.4 | 18.5 | 18.3 | 18.2. | 17.9 | 17.8 | 17.7 | 17.8 | 17.8 | 15.1 |

LITTLE AMERICA $v$

| $\mathrm{Hr}^{\mathrm{cm}}$ | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 18.4 | 17.7 | 17.5 | 17.4 | 17.3 | 17.2 | 17.2 | 17.4 | 17.5 | 15.7 |
| 01 | 19.3 | 18.6 | 18.4 | 18.2 | 18.2 | 18.1 | 18.1 | 18.3 | 18.4 | 17.5 |
| 02 | 19.9 | 19.2 | 19.0 | 18.9 | 18.9 | 18.8 | 18.7 | 18.9 | 18.9 | 17.9 |
| 03 | 20.1 | 19.7 | 19.4 | 19.2 | 19.2 | 19.1 | 19.0 | 19.3 | 19.4 | 17.9 |
| 04 | 20.3 | 19.9 | 19.7 | 19.5 | 19.5 | 19.4 | 19.4 | 19.5 | 19.6 | 18.5 |
| 05 | 20.3 | 19.9 | 19.6 | 19.3 | 19.4 | 19.3 | 19.3 | 19.5 | 19.6 | 19.0 |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 08 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |


| Number <br> of Obs | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daily | 19.7 | 19.2 | 19.0 | 18.7 | 18.7 | 18.7 | 18.6 | 18.8 | 18.9 | 11.8 |
| Mean |  |  |  |  |  |  |  |  |  |  |


|  | 1.ITtLE AMERICA $v$ <br> Hourly Mean Temperature. ( $-{ }^{\circ} \mathrm{C}$ ) <br> 18 October 1957 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Hr}{ }^{\text {sm }}$ | Sfe | 3 | 6 | 12 | 25 | 50 | 140 | 200 | 400 | 800 |
| 00 |  |  |  |  |  |  |  |  |  |  |
| 01 |  |  |  |  |  |  |  |  |  |  |
| 02 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 04 |  |  |  |  |  |  |  |  |  |  |
| 0 0, |  |  |  |  |  |  |  |  |  |  |
| 06 |  |  |  |  |  |  |  |  |  |  |
| 07 |  |  |  |  |  |  |  |  |  |  |
| 03 |  |  |  |  |  |  |  |  |  |  |
| 09 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 17 | 27.2+ | 26.5* | 24.3+ | $23.0+$ | 24.2+ | $24.0+$ | 24.5 | 25.6+ | 25.24 | 24.8+ |
| 14 | 27.1 | 27.1 | 24.0 | 23.8 | 24.6 | 24.6 | 25.0 | 26.1 | 25.6 | 25.1 |
| 15 | 28.5 | 28.5 | 26.3 | 25.9 | 26.3 | 26.3 | 26.) | 27.5 | 27.1 | 26.2 |
| 16 | 28.2 | 30.'4 | 29.6 | 29.2 | 29.2 | 29.1 | 29.1 | 29.4 | 28.7 | 27.5 |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 | $35.9+$ | 15.14 | 34.94 | $34.7+$ | 34.64 | 3/44+ | $34.1+$ | 13.54 | 32.1+ | $29.0+$ |
| 21 | 35.7 | $33^{3} .8$ | 34.7 | 34.5 | 34.5 | 3/3. 3 | 3.01 | 33.6 | 32.9 | 30.0 |
| 22 | 36.2 | 35.7 | 35.5 | 35.3 | 35.2 | 35.1 | 34.is | 34.6 | 3.2 |  |
| 23 | 37.9 | 37.0 | 36.9 | 36.6 | 36.6 | 36.4 | 3 1 | 359 | 35.6 | 330 |


| Number <br> of Obs | 14.7 | 142 | 1\%2. | 142 | 142 | 142 | 142 | 14. | 142 | 142 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Daily |  |  |  |  |  |  |  |  |  |  |
| Mein | 32.0 | 31.4 | 30.8 | 30.4 | 30.1 | 30.5 | 10.3 | 30. 2 | 302 | 24.6 |

LITILE AMERICA V
Hourly Mean Temperatures ( $-{ }^{\circ} \mathrm{C}$ )

| Hr cm | Sfc | 3 | 6 | 12 | 25 | 50 | 100 | 200 | 400 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 37.9 | $36.7-$ | 36.6 - | 36.4- | 36.2- | 36.2- | 35.9- | 33.8 - | $357-$ | 33.9 |
| 01 01 0 |  |  |  |  |  |  |  |  |  |  |
| 02 | 37.1 | 36.4 | 35.8 | 33. 3 | 35.7 | 35.5 | 35.5 | 35.9 | 35.8 | 35.4 |
| 03 | 37.6 | 36.9 | 36.7 | 36.3 | 36.4 | 36.2 | 36.1 | 35.3 | 364 | 36.1 |
| 04 | 36.5 | 35.9 | 35 \% | 3).0 | 35.2 | 35.0 | 350 | 35 , | 354 | 352 |
| 05 | 35.0 | 34.9 | 3:9 | 34.1 | 34.2 | 34.1 | 34.2 | 34.3 | 34.5 | 34.4 |
| 06 | נ3.) | 33.5 | 13.0 | 32.5 | 32.7 | 32.5 | 327 | 32.9 | 33.1 | 33.0 |
| 07 | 12.' | 32.8 | 32.4 | 31.9 | 32.1 | 32.0 | 32.2 | 32.4 | 326 | 32.6 |
| 08 | 31.3 | 31.4 | 11.1 | 30.6 | 30.7 | 30.6 | 30.8 | 31.0 | 31.2 | 31.2 |
| 04 | 29.1 | 29.0 | 28.5 | 28.1 | 28.2 | 28.0 | 28.2 | 28.4 | 28.6 | 28.6 |
| 10 | 27.8 | 2.1 .5 | 27.1 | 26.7 | 26.8 | 26.6 | 20.8 | 27.0 | 27.2 | 27.3 |
| 11 | 27.4 | 27.0 | 26.6 | 26:2 | 26.2 | 26.1 | 26.0 | 26.4 | 26.6 | 26.4 |
| 12 | 27.1 | 26.7 | 26.3 | 26.0 | 25.9 | 25.9 | 25.9 | 26.1 | 26.4 | 26.3 |
| 15 | 27.2 | 26.8 | 26.3 | 26.0 | 25.9 | 25.9 | 25.7 | 26.2 | 26.3 | 26.3 |
| 14 | 27.8 | 27.3 | 26.7 | 26.4 | 26.4 | 26.5 | 26. 3 | 26.8 | 26.7 | 26.6 |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| Number |  |  |  |  |  |  |  |  |  |  |
| of Obs | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 |
| Da!ly |  |  |  |  |  |  |  |  |  |  |
| Mean | 31.7 | 11.4 | 31.0 | 30.6 | 30.6 | 30.5 | 30.6 | 30.8 | 31.0 | 30.88 |

GMC WIND PROFILE DATA
LITTLE AMERICA $V$
Hourly Wind Speeds (cm/sec)

| Date - Time | He* | Spaed | Ht | Speed | Ht. | speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31. March 51 |  |  |  |  |  |  |  |  |  |  |
| 1600-1700 | 25 | 175.3 | 100 | 268.3 | 200 | 302.8 | 400 | 322.1 | 800 | 336.8 |
| 1801-1901 | 25 | 143.8 | 100 | 212.0 | 200 | 234.2 | 400 | 261.8 | 800 | 275.0 |
| 1901-2001 | 25 | 164.9 | 100 | 225.9 | 200 | 264.0 | 400 | 290.3 | 800 | 314.3 |
| 2001-2101 | 25 | 137.2 | 100 | 221.1 | 200 | 258.0 | 100 | 302.3 | 800 | 3701 |
| 2202-2202 | 25 | 163.1 | 100 | 226.5 | 200 | 255.5 | 400 | 291.0 | 800 | 363.0 |
| 1 Aprid 57 |  |  |  |  |  |  |  |  |  |  |
| 0500-0700 | 25 | 231.4 | 100 | 300.4 | 200 | 3,27.2 | 400 | 335.1 | 800 | 353.7 |
| $\frac{5 \operatorname{Apr} 1157}{1900-2000}$ | 25 | 808.5 | 100 | 959.4 | 200 | 1020 | 400 | 1074.9 | 800 | 1141.8 |
|  |  |  |  |  |  |  |  |  |  |  |
| 0300-0515 | 25 | 433.5 | 100 | 520.0 | 200 | 549.1 | 400 | 574.4 | 800 | 619.8 |
| 0702-0802 | 25 | 596.5 | 100 | 714.7 | 200 | 757.8 | 400 | 796.5 | 800 | 866.9 |
| 1200-1300 | 25 | 396.0 | 100 | 493.6 | 200 | 528.1 | 400 | 559.7 | 800 | 641.2 |
| 1 April 51 |  |  |  |  |  |  |  |  |  |  |
| 0700-0805 | 25 | 302.7 | 100 | 376.2 | 200 | 404.4 | 400 | 437.7 | 800 | 503.5 |
| 1107-1307 | 25 | 340.1 | 100 | 418.4 | 200 | 448.4 | 400 | 480.9 | 800 | 549.2 |
| 8 April 57 |  |  |  |  |  |  |  |  |  |  |
| 1000-1100 | 25 | 607.1 | 100 | 754.3 | 200 | 802.8 | 400 | 847.2 | 800 | 909.0 |
| 1400-1530 | 25 | 412.2 | 100 | 511.5 | 200 | 543.5 | 400 | 572.4 | 800 | 608.8 |

*月: (cm)


| Date－Tine | Ht＊ | Speed | $11 t$ | Specd | llt | speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{21.10 x: 157}{1400-1505}$ | 48 | 269.5 | 93 | 292.7 | 198 | 303.5 | 398 | 338.9 | 798 | 342.4 |
|  |  |  |  |  |  |  |  |  |  |  |
| 0705－0805 | 1.7 | 446.1 | 97 | 107．9 | 197 | ， $02 .$. |  |  | 797 | 436.2 |
| 1500－1600 | 47 | 339.0 | 97 | 371.0 | 197 | 303.9 | 397 | 421.6 | 797 | 436.2 -33.3 |
| 1704－1804 | 47 | 427.0 | 97 | 471.6 | 197 | 481.4 | 397 | 522.4 | 797 | ，33．3 |
|  |  |  |  |  |  |  |  |  |  |  |
| 1604－1794 | 49 | 441.9 | 99 99 | 481.3 324.8 |  | 526.8 344.9 | $\begin{aligned} & 399 \\ & 399 \end{aligned}$ | $\begin{array}{r} 593.9 \\ 376.8 \end{array}$ | $799$ | 418.4 |
| 2010－2110 | 49 | 299.9 | 99 | 324.8 | 199 | 344.9 |  |  |  |  |
| 25 April 57           <br> $0810-0910$ 49 332.3 99 367.0 199 392.5 399 426.8 799 482.6 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 0700－0830 | 49 | 187.6 | 99 | 211.5 | 199 | 23\％．1 | 399 | 267：3 | プリ | 326.8 |
| 1701－1801 | 19 | 130.5 | 99 | 200.0 | 199 | 210.0 | 399 | $\therefore 35.6$ | 795 | 254.5 |

*ilt (cm)
LITTLE AMERICA $V$
Hourly Wind Speeds (cm/sec)

| Date - Time | Ht* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| 0700-0800 | 49 | 451.1 | 99 | 550.3 | 199 | 589.5 | 399 | 635.3 | 799 | 715.9 |
| $\frac{8 \text { May } 57}{0800-090}$ | 50 | 364.6 | 100 | 403.0 | 200 | 439.5 | 400 | 478.6 | 800 | 526.2 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 1900-1959 | 51 | 893.2 | 101 | 980.8 | 201 | 1071.6 | 401 | 1135.9 | 801 | 1197.1 |
| 2000-2059 | 51 | 832.4 | 101 | 908.6 | 201 | 989.4 | 401 | 1052.7 | 801 | 1120.8 |
| 2240-2340 | 51 | 1380.9 | 101 | 1506.1 | 201 | 1664.8 | 401 | 1755.2 | 801 | 1843.4 |
|  |  |  |  |  |  |  |  |  |  |  |
| 0800-0859 | 41 | 463.6 | 91 | 574.2 | 191 | 704.9 | 391 | 778.3 | 791 | 823.3 |
| 0900-0959 | 41 | 410.7 | 91 | 574.9 | 191 | 787.6 | 391 | 955.6 | 791 | 1067.9 |
| 1000-1059 | 41 | 409.4 | 91 | 571.4 | 191 | 707.9 | 391 | 793.8 | 791 | 857.0 |
| 1500-1603 | 46 | 696.0 | 96 | 760.7 | 196 | 834.3 | 396 | 883.7 | 796 | 953.1 |
| 1604-1659 | 49 | 580.9 | 99 | 629.6 | 199 | 689.8 | 399 | 728.4 | 799 | 184.5 |
| 1700-1833 | 49 | 319.6 | 99 | 353.9 | 199 | 385.0 | 399 | 403.0 | 799 | 4314 |
| 1834-2038 | 49 | 115.7 | 99 | 139.1 | 199 | 163.6 | 399 | 183.1 | 799 | 203.2 |

*Ht (cm)
LI.TLE AMERICA $V$
! V ( c ly Wind Speeds ( $\mathrm{cm} / \mathrm{sec}$ )

| Date - rime Hit* Speed | Ht Speed | Ht Speed | Ht Speed | Ht Speed |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1200-1259 | 41 | 667.7 | 91 | 813.9 | 191 | 951.3 | 391 | 1068.6 | 791 | 1207.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1300-1359 | 41 | 1086. 3 | 91 | 1264.3 | 191 | 1372.1 | 391 | 1484.9 | 791 | 1655.6 |
| 1400-1459 | 41 | 1240.1 | 91 | 1394.4 | 191 | 1518.3 | 391 | 1656.3 | 791 | 1982.7 |
| 1500-1539 | 42 | 1305.9 | 91 | 1495.5 | 191 | 1637.8 | 391 | 1799.3 | 791 | 2029.7 |
| 1600-1659 | 41 | 1286.7 | 91 | 1499.1 | 191 | 1644.5 | 391 | 18U4.0 | 791 | 2013.0 |
| 1700-1759 | 41 | 1236.3 | 91 | 1482.1 | 191 | 1618.7 | 391 | 1774.7 | 791 | 1973.8 |
| 1800-1859 | 41 | 1006.2 | 91 | 1316.5 | 191 | 1337.1 | 391 | 1485.8 | 791 | 1629.5 |
| 13 May 57 |  |  |  |  |  |  |  |  |  |  |
| 0000-0059 | 41 | 1120.6 | 91 | 1241.5 | 191 | 1375.4 | 391 | 1514.0 | 791 | 1672.1 |
| 0100.0159 | 41 | 1045.3 | 91 | 1152.0 | 191 | 1292.6 | 391 | 1419.4 | 791 | 1440.4 |
| 0200-0259 | 41 | 973.4 | 91 | 1060.8 | 191 | 1163.8 | 391 | 1271.0 | 791 | 1351.1 |
| 0300-0359 | 41 | 754.9 | 91 | 809.8 | 191 | 882.3 | 391 | 963.2 | 791 | 1056.3 |
| 0400-0459 | 41 | 519.6 | 91 | 55:.8 | 191 | 610.1 | 391 | 670.4 | 791 | 759.2 |
| 0500-0559 | 41 | 408.2 | 91 | 463.5 | 191 | 491.8 | 391 | 537.9 | 791 | 626.0 |
| 0600-0659 | 41 | 407.0 | 91 | 499.0 | 191 | 503.7 | 391 | 521.5 | 791 | 575.8 |
| 0800-0359 | 41 | 419.7 | 91 | 547.6 | 191 | 594.0 | 391 | 640.2 | 791 | 698.1 |
| 0900-0959 | 41 | 469.0 | 91 | 628.1 | 191 | 735.3 | 391 | 552.5 | 791 | 955.7 |
| 1000-1101 | 41 | 656.0 | 91 | 896.9 | 191 | 971.1 | ,91 | 1033.5 | 791 | 1147.0 |
| 1101-1159 | 41 | 663.2 | 91 | 925.6 | 191 | 1033.1 | 391 | 1137.3 | 791 | 1270.2 |
| 1500-1559 | 48 | 410.7 | 98 | 523.9 | 198 | 698.8 | 398 | 39.].4 | 798 | 1033.2 |
| 1600-1659 | 48 | 351.3 | 98 | 474.7 | 198 | 522.3 | 398 | 582.2 | 798 | 648.5 |
| 1700-1759 | 48 | 257.0 | 98 | 335.5 | 198 | 386.1 | 398 | 438.3 | 798 | 494.2 |
| 1800-1859 | 48 | 114.1 | 98 | 136.6 | 198 | 163.0 | 398 | 195.1 | 798 | 235.3 |

*Ht (cm)
LITTLEE LIERIC．$V$

|  | \％ |  | $\infty$ NmJNnnN ～io <br>  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 主 |  |  <br>  | $\stackrel{\rightharpoonup}{\circ}$ | 采呙呙只 |
|  | ［ |  | ma寸nのor～o <br>  <br>  <br>  |  | のヘッ～ー $\infty \infty_{\infty}^{\infty}$ 。 NOO웅 |
|  | $\pm$ | aciso |  Mo miono in i | 스잉 |  |
|  |  |  |  | $\begin{aligned} & 0.1 \\ & 0 . \\ & 0.0 \\ & 0.0 \end{aligned}$ |  |
|  | $\underline{\underline{2}}$ | $\begin{gathered} \infty \\ \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \\ \hline \end{gathered}$ | のロのタのロのa のののののののの | $\underset{-}{\circ}$ | 응옹응 |
|  | $\begin{aligned} & \text { D } \\ & \text { U } \\ & \text { dis } \\ & \text { in } \end{aligned}$ |  | $\rightarrow$－Nownoa <br>  <br>  |  | r．mon か～Nin水 |
|  | $\pm$ | ¢ヵ\％ |  | $\widehat{\sim}$ | 응용 |
|  | $\begin{gathered} \vec{U} \\ \text { 己 } \\ \text { C2 } \end{gathered}$ |  |  |  |  |
|  | $\stackrel{*}{ \pm}$ | $\stackrel{\infty}{\sim}$ | g9ogot fog | ¢ | 웅ㅇㅇ |
|  |  |  |  |  |  |

little america v

| Date - Time | H1* | apeed | Ht | Speed | Ht | Speed | Ht | speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 May 57 |  |  |  |  |  |  |  |  |  |  |
| 0800-0859 | 44 | 713.6 | 94 | 760.5 | 194 | 844.0 | 394 | 909.4 | 794 | 994.7 |
| 1100-1159 | 44 | 652.5 | 94 | 692.4 | 194 | 762.2 | 394 | 319.6 | 794 | 901.9 |
| 1200-1259 | 44 | 529.3 | 94 | 560.8 | 194 | 623.1 | 394 | 677.7 | 794 | 761.8 |
| 1300-1359 | 45 | 562.3 | 95 | 600.3 | 195 | 666.6 | 395 | 730.5 | 795 | 821.7 |
| 1600-1659 | 45 | 415.6 | 95 | 430.2 | 195 | 490.1 | 395 | 541.9 | 795 | 631.7 |
| 1-20-1859 | 45 | 373.8 | 95 | 392.4 | 195 | 443.8 | 395 | 496.2 | 795 | 585.6 |
| 22 May 57 |  |  |  |  |  |  |  |  |  |  |
| 1405-1500 | 45 | 450.6 | 95 | 478.5 | 195 | 534.2 | 395 | 593.6 | 795 | 667.5 |
| 1500-1559 | 45 | 515.1 | 05 | 546.1 | 195 | 598.5 | 395 | 651.0 | 795 | 739.8 |
| 1600-1659 | 44 | 650.2 | 94 | 691.6 | 191 | 763.8 | 394 | 829.1 | 794 | 928.5 |
| 1700-1759 | 44 | 581.5 | 94 | 617.0 | 194 | 678.9 | 394 | 736.7 | 794 | 830.4 |
| 18300-1859 | 44 | 696.0 | 94 | 736.1 | 194 | 804.7 | 394 | 864.4 | 794 | 966.3 |
| 2) May 57 |  |  |  |  |  |  |  |  |  |  |
| 0900-0959 | 43 | 288.4 | 93 | 317.9 | 193 | 360.1 | 393 | 410.2 | 793 | 513.6 |
| 1000-1102 | 43 | 321.9 | 93 | 356.7 | 193 | $\therefore 06.9$ | 393 | 465.1 | 793 | 563.2 |
| 1103-1200 | 43 | 175.6 | 93 | 197.4 | 193 | 226.3 | 393 | 257.1 | 793 | 310.1 |
| 1200-1259 | 43 | 160.2 | 93 | 184.7 | 193 | 221.5 | 393 | 263.1 | 793 | 354.0 |
| 1300-1359 | 43 | 303.1 | 93 | 329.6 | 193 | 39:.1 | 393 | 435.9 | 93 | 48 |

a) spoods purm Kimon
A voikuav axilit

| Date - Time | Ht* | Speed | Ht | Speed | ut | Speed | 11. | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 May 57 |  |  |  |  |  |  |  |  |  |  |
| 0900-0959 | 43 | 298.4 | 93 | 322.2 | 193 | 353.2 | 393 | 382.8 | 793 | 430.0 |
| 1000-1059 | 43 | 233.9 | 93 | 255.0 | 193 | 279.8 | 393 | 298.2 | 793 | 336.3 |
| 1100-1200 | 43 | 223.0 | 93 | 21:9.1 | 193 | 264.3 | 393 | 287.2 | 793 | 324.2 |
| 1201-1259 | 43 | 133.7 | 93 | 1\%6.0 | 193 | 161.7 | 393 | 180.4 | 793 | 221.4 |
| 1500-1559 | 43 | 342.6 | 93 | 379.0 | 193 | 417.0 | 393 | 436.4 | 793 | 480.3 |
| 1600-1659 | 43 | 405.1 | 93 | 453.2 | 193 | 504.0 | 393 | 539.1 | 793 | 600.5 |
| $25 \mathrm{Ma}=57$ |  |  |  |  |  |  |  |  |  |  |
| 0800-0900 | 43 | 393.2 | 93 | 429.9 | 193 | 471.1 | 393 | 500.1 | 793 | 546.9 |
| 0900-0959 | 43 | 341.9 | 93 | 370.6 | 133 | 402.6 | 393 | 426.0 | 793 | 481.9 |
| . 00-1106 | 43 | 376.2 | 93 | 408.4 | 193 | 441.1 | 393 | 467.2 | 793 | 546.7 |
| 26 May 57 |  |  |  |  |  |  |  |  |  |  |
| 1300-1359 | 43 | 261.0 | 93 | 266.4 | 193 | 311.2 | 393 | 351.3 | 793 | 419.1 |
| 1500-1600 | 43 | 349.9 | 93 | 374.8 | 193 | 413.6 | 393 | 449.3 | 793 | 517.4 |
| 1600-1700 | 43 | 397.4 | 93 | 429.8 | 193 | 471.9 | 393 | 508.6 | 793 | 591.4 |
| 1700-1800 | 43 | 404.3 | 93 | 442.6 | 193 | 488.7 | 393 | 529.3 | 793 | 631.6 |
| 27 May 57 |  |  |  |  |  |  |  |  |  |  |
| 0900-0959 | 43 | 216.6 | 93 | 238.2 | 293 | 261.0 | 393 | 276.5 | 793 | 295. 4 |
| 1000-1059 | 43 | 315.2 | 93 | 347.5 | 193 | 373.1 | 393 | 383.6 | 793 | 411.2 |
| 1500-1559 | 43 | 397.0 | 93 | 443.4 | 193 | 484.8 | 393 | 509.0 | 793 | 539.7 |
| 1559-1659 | 43 | 414.6 | 93 | 469.5 | 193 | 512.2 | 393 | 536.4 | 793 | 570.2 |
| 1700-1759 | 43 | 472.5 | 93 | 537.9 | 193 | 585.8 | 393 | 612.3 | 793 | 645.8 |

* Ht ( cm )
*Hit (cra)
LITTLE AMERIC., $V$
Hourly Wind Sperd: (cin

| Date - Time | 11t* | Speed | Ht | Speed | Ht | Speed | IIt | Speed | Itt | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 May 57 |  |  |  |  |  |  |  |  |  |  |
| 1000-1059 | 48 | 195.0 | 93 | 222.0 | 193 | 250.7 | 398 | 305.1 | 790 | 376.4 |
| 1300-1359 | 48 | 219.8 | 98 | 235.3 | 19ij | 291.2 | 398 | 339.5 | 798 | 407.7 |
| 1800-1901 | i,3 | 192.6 | 98 | 220.5 | 1 リ8 | 260.9 | 390 | 309.5 | 793 | 324.4 |
| 1 June 57 |  |  |  |  |  |  |  |  |  |  |
| 1000-1100 | 48 | 479.0 | 98 | 528.3 | 190 | 537.3 | 398 | 592.3 | 790 | 535.0 |
| 1100-1200 | 48 | 503.7 | 98 | 555.1 | 193 | 6 69.4 | 390 | 623.5 | 798 | 609.7 |
| 1200-1259 | 48 | 536,2 | 98 | 592.6 | 193 | 664.7 | 398 | 6657 | 798 | 018.5 |
| 2 June 57 |  |  |  |  |  |  |  |  |  |  |
| 1200-1300 | 48 | 860.2 | 98 | 1001.4 | 198 | 1034.2 | 398 | 1175.0 | 798 | 1257.1 |
| 1301-1401 | 48 | 849.6 | 98 | 992.7 | 198 | 1079.1 | 398 | 1172.3 | 798 | 1255.7 |
| 4 June 57 |  |  |  |  |  |  |  |  |  |  |
| 1700-1800 | 48 | 114.5 | 98 | 141.9 | 198 | 178.8 | 393 | 216.4 | 798 | 210.4 |
| 8 June $5 i$ |  |  |  |  |  |  |  |  |  |  |
| 1000-1100 | 46 | 78.7 | O | 30.3 | 196 | 103.9 | 395 | 107.0 | 796 | 120.6 |
| 11 June 51 |  |  |  |  |  |  |  |  |  |  |
| 1000-1059 | 46 | 588.0 | 96 | 651.7 | 196 | 708.6 | 396 | 748.5 | 796 | 811.3 |
| 1100-1205 | 46 | 619.8 | 96 | 686.8 | 196 | 745.6 | 396 | 734.6 | 796 | 841.6 |
| 1601-1701 | 46 | 651.0 | 96 | 718.3 | 196 | 777.4 | 396 | $\bigcirc 09.8$ | 796 | 356.0 |
| 1702-1802 | 46 | 665.6 | 96 | 737.6 | 196 | 800.0 | 396 | S34.0 | 796 | 876.2 |

*Ht (cm)

| Date－Time | Ift＊ | Spced | Ht | Speed | Ht | Spced | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 June 57 |  |  |  |  |  |  |  |  |  |  |
| 1000－1059 | 51 | 450.4 | 101 | 500.7 | 201 | 549.2 | 401 | 585.5 | 801 | 654.9 |
| 1100－1205 | 51 | 366.9 | 101 | 405.0 | 201 | 445.0 | 401 | 478.5 | 801 | 533.7 |
| 1206－1300 | j1 | 432.7 | 101 | 471.4 | 201 | 517.1 | 401 | 555．3 | 601 | 613.4 |
|  |  |  |  |  |  |  |  |  |  |  |
| 0702－0759 | 51 | 1197.9 | 101 | 1374.6 | 201 | 1527.6 | 401 | 1769.0 | 301 | 1811.9 |
| 26 Junc 57 |  |  |  |  |  |  |  |  |  |  |
| 1700－1800 | 50 | 447.0 | 100 | 489.2 | 200 | 523.6 | 396 | 568.9 | 796 | 622.2 |
| 1800－1901 | 50 | 406.5 | 100 | 444.6 | 200 | 482.2 | 396 | 520.4 | 796 | 573.1 |
| 1902－2002 | 50 | 552.5 | 100 | 604．E | 200 | 658.2 | 396 | 701.1 | 796 | 757.3 |
|  |  |  |  |  |  |  |  |  |  |  |
| 1000－1100 | 50 | 284.1 | 100 | 304.5 | 200 | 325.3 | 396 | 349.3 | 796 | 370.9 |
| 1300－1400 | 50 | 487.8 | 100 | 505.5 | 200 | 527.2 | 396 | 569.1 | 796 | 581.3 |
| 1401－1501 | 50 | 440.5 | 100 | 474.4 | 200 | 503.4 | 396 | 532.5 | 796 | 544.1 |
| 1501－1601 | 50 | 483.3 | 100 | 516.7 | 200 | 544.5 | 396 | 58\％． 3 | 795 | 604.8 |
| 1601－1701 | 50 | 542.7 | 100 | 557.4 | 200 | 584．6 | 396 | 620.5 | 796 | 632.9 |
| 28 June 57 |  |  |  |  |  |  |  |  |  |  |
| 1457－1557 | 50 | 323．ど | 100 | 334.1 | 200 | 336.4 | 395 | 389.3 | 796 | 415.0 |
| 1553－1700 | j0 | 297.0 | 100 | 311.4 | 200 | 363.7 | 396 | $\therefore 2.1$ | 796 | 506.5 |
| 1700－1800 | 50 | 269.7 | 100 | 288.0 | 200 | 336.5 | 396 | 392.0 | 796 | 449.1 |
| 1：300－1902 | 50 | 260.3 | $10^{\circ}$ | 231.3 | 200 | 291.4 | $3 j 0$ | 16\％．0 | 796 | ＂07．9 |

䔍
总
LITTL: AERICAV
Hourly Hind تpeed; (cn/sec)

| Date - Time | Ht* | Speed | Hit | Speed | Ht | speed | IIt | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 July 57 |  |  |  |  |  |  |  |  |  |  |
| 1000-1100 | 49 | 634.2 | 98 | 760.1 | 198 | 803.2 | 394 | 350.9 | 794 | 923.3 |
| 1100-1200 | 49 | 765.9 | 98 | 253.3 | 190 | 902.3 | 394 | 955:4 | 794 | 1 l 37.3 |
| 1200-1300 | 49 | 207. 3 | 23 | 92:. 2 | 100 | 973.0 | 32: | 1039.7 | 79\% | 1130.7 |
| 1500-1600 | 50 | 891.8 | リ9 | 975.4 | 109 | 1033.' | -25 | 1096.0 | 795 | 1153.: |
| 1600-1700 | 50 | 693.0 | 99 | 996.1 | 159 | 1050.0 | 395 | 1119.2 | 793 | 1213.9 |
| 1700-1800 | 50 | 911.8 | 99 | 1011.4 | 199 | 1075.4 | 395 | 1140.3 | 795 | 1237.2 |
| 4 July 57 |  |  |  |  |  |  |  |  |  |  |
| 1659-1759 | 50 | 163.2 | 100 | 192.3 | 200 | 229.3 | 400 | 292.2 | 811 | 365.5 |
| 1759-1859 | 50 | 168.3 | 100 | 194.5 | 200 | 229.9 | $\therefore 00$ | 293. | $\because:$ | 369.1 |
| 1900-2000 | 50 | 180.8 | 100 | 198.9 | 200 | 241.2 | 400 | 271.6 | 811 | 327.2 |
| 2000-2100 | 50 | 15.4 .6 | 100 | 168.2 | 200 | 211.2 | 400 | 221.7 | 311 | 257.6 |
| 5 July 57 |  |  |  |  |  |  |  |  |  |  |
| 0859-0959 | 50 | 124.7 | 100 | 150.6 | 200 | 168.3 | 400 | 193.5 | 800 | 161.4 |
| 1000-1100 | 50 | 114.8 | 100 | 141.4 | 200 | 155.7 | 400 | 150.5 | 300 | 113.6 |
| 1100-1200 | 50 | 102.3 | 100 | 121.5 | 200 | 125.2 | :00 | 113.0 | 300 | 61.1 |
| 1200-1300 | 50 | 101.6 | 100 | 125.9 | 200 | 135.1 | 4,00 | 137.5 | 300 | 111.5 |
| 1353-1450 | 50 | 250.3 | 100 | 275.3 | 200 | 315.7 | 1.00 | 3:4.7 | 000 | 303.5 |
| 1458-1553 | 50 | 346.0 | 100 | 378.5 | 200 | 416.1 | 110 | 4iv. 0 | 800 | 491.5 |

*ht (cm)
LITTLE AMERICA $V$
llourly $\because$ ind Speeds ( $\mathrm{cm} / \mathrm{sec}$ )

| Date - Time | IIt* | Speed | Ht | Speed | Ht | speed | 11. | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| 0859-0959 | 50 | 242.2 | 100 | 261.7 | 200 | 281.5 | 400 | 234.7 | 300 | 317.4 |
| 0959-1100 | 50 | 210.6 | 100 | 231.2 | 200 | 255.1 | 400 | 204.7 | 300 | 332.3 |
| 1101-1201 | 50 | 214.4 | 100 | 236.5 | 200 | 261.2 | 400 | 295.3 | -00 | 321.4 |
| 1201-1301 | 50 | 204.5 | 100 | 223.9 | 200 | 252.0 | 400 | 202.6 | , | 321.4 |
| $\frac{8 \text { July } 57}{2100-2200}$ | 50 | 745.0 | 100 | 014.6 | 200 | 857.9 | 100 | 909.5 | 800 | 372.1 |
| 9 July 57           <br> $1000-1100$ 50 547.6 100 597.0 200 634.3 400 688.2 800 761.1 |  |  |  |  |  |  |  |  |  |  |
| 1400-1500 | 50 | 4569 | 100 | 499.7 | 200 | 529.3 | 400 | 579.0 | 300 | 657.9 |
| 1700-1800 | 50 | 339.9 | 100 | 371.2 | 200 | 394.0 | 400 | 437.2 | 800 | 510.7 |
|  |  |  |  |  |  |  |  |  |  |  |
| 0859-0959 | 50 | 508.1 | 100 100 | 561.0 469.1 | 200 | 508.1 | 400 | 574.3 | 800 | 526.6 |
| 1100-1200 | 50 | 422.6 464.3 | 100 100 | 469.1 515.9 | 200 | 560.0 | 400 | 614.1 | 300 | 673.1 |
| $1200-1300$ $1300-1400$ | 50 50 | 464.3 598.1 | 100 | 675.5 | 200 | 728.5 | i00 | 720.6 | 800 | 353.5 |
| 1401-1501 | 50 | 502.5 | 100 | 550.7 | 200 | 604.1 | 400 | 667.0 | '00 | 737.5 |
| 1601-1701 | 50 | 427.9 | 100 | 432.7 | 200 | $529 . \%$ | 400 | 592.7 | 800 | 665.? |
| 2100-2200 | 50 | 325.8 | 100 | 36.4.9 | 200 | 396.5 | 400 | 413.3 | 300 | 514.0 |

LITTIE MERRIC. $V$
hourly illind Speeds (cm/sec)

| Date - Time | Ht* Speed | Ht Speed | Ht Speed | Ht Speed | Ht Speed |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| i1 July 57 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0958-1058 | 50 | 272.2 | 100 | 204.2 | 200 | 235.1 | 400 | 281.1 | 800 | 221.7 |
| 1058-1158 | 50 | 181.9 | 100 | 211.4 | 200 | 241.1 | 400 | 296.4 | 800 | 259.4 |
| 1.359-1459 | 50 | 167.8 | 100 | 204. 6 | 200 | 246.4 | 400 | 291.5 | 800 | 277.8 |
| 1500-1600 | 50 | 167.3 | 100 | 201.3 | 200 | 241.9 | 400 | 294.9 | 800 | 234.6 |
| 1600-1700 | 50 | 173.7 | : 00 | 207.6 | 200 | 246.0 | 400 | 294.8 | 800 | 329.1 |
| 12 July 57 |  |  |  |  |  |  |  |  |  |  |
| 0858-0958 | 50 | 436.2 | 100 | 484.8 | 200 | 512.2 | 400 | 550.6 | 800 | 584.2 |
| 0958-1058 | 50 | 458.7 | 100 | 511.3 | 200 | 542.1 | 400 | 584.8 | 800 | 613.5 |
| 1259-1359 | 50 | 555.6 | 100 | 615.3 | 200 | 652.7 | 400 | 709.5 | 800 | 747.6 |
| 1459-1559 | 50 | 591.3 | 100 | 651.8 | 200 | 691.8 | 400 | 747.5 | 800 | 779.9 |
| 13 Juiy 57 |  |  |  |  |  |  |  |  |  |  |
| 2101-2201 | 50 | 274.6 | 100 | 294.6 | 200 | 298.8 | 400 | 313.5 | 800 | 318.9 |
| 14 July 57 |  |  |  |  |  |  |  |  |  |  |
| 1159-1259 | 50 | 742.1 | 100 | 813.1 | 200 | 868.3 | 400 | 930.1 | 800 | 965.5 |
| 1459-1559 | 50 | 760.7 | 100 | 833.6 | 200 | 890.3 | 400 | 958.6 | 800 | 992.0 |
| 1800-1900 | 50 | 687.6 | 100 | 753.9 | 200 | 804.5 | 400 | 365.0 | 800 | 901.7 |
| 1901-2001 | 30 | 649.3 | 100 | 708.8 | 200 | 751.1 | 400 | 800.9 | 800 | 827.7 |
| 2001-2101 | 50 | 603.2 | 100 | 655.8 | 200 | 695.0 | 400 | 744.0 | 800 | 778.2 |
| 2201-2311 | 50 | 529.2 | 100 | 572.4 | 200 | 607.1 | 400 | 650.9 | 800 | 683.4 |

*Ht (cm)

| LIttle NERICA V Hourly Wind Speeds ( $\mathrm{cm} / \mathrm{sec}$ ) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date - Time |  | Speed | Ht | Speed | Hit | Speed |  | Speed | Ht | Speed |
|  |  |  |  |  |  |  |  |  |  |  |
| 1159-1300 | 50 | 1073.5 | 100 | 1151.7 | 200 | 124.5 .4 | 400 | 1117.0 | 800 | 1185.8 |
| 1502-1602 | 50 | 910.2 | 100 | 972.0 | 200 | 1048.6 | 400 | 1046.5 | 800 | 1102.3 |
| 1602-1700 | 50 | 853.6 | 100 | 907.8 | 200 | 978.0 | 400 | 911.5 | 800 | 949.9 |
| 1802-1902 | 50 | 725.0 | 100 | 771.9 | 200 | 843.1 | 4 | 811.5 810.5 | 800 | 843.2 |
| 1903-2003 | 50 | 650.7 | 100 | 687.8 | 200 | 752.0 |  |  |  |  |
| $\frac{22331457}{1830-1930}$ | 50 | 617.8 | 100 | 710.6 | 200 | 775.8 | 400 | 816.4 | 800 | 743.3 |
|  |  |  |  |  |  |  |  |  |  |  |
| 1400-1500 | 50 | 872.2 | 100 | 915.4 1189.0 | 200 | 1295.7 | 400 | 1390.4 | 800 | 1499.3 |
| 1500-1600 | 50 | 1114.3 | 100 | 1189.0 1003.3 | 200 | 1295.7 1090.0 | 400 | 1164.0 | 800 | 1250.0 |
| 1601-1701 | 50 | 937.1 | 100 | 1003.3 | 200 | 1090.0 | 400 | 1164.0 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $1602-1702$ $1702-1802$ | 50 50 | 248.7 201.6 | 100 | 234.3 | 200 | 275.3 | 400 | 319.3 | 300 | 408.0 |
| 1702-1802 | 50 | 201.6 | 100 | 234.3 200.3 | 200 | 241.4 | 400 | 298.8 | 800 | 395.1 |
| 1802-1904 | 50 | 168.5 | 100 | 200.3 | 200 | 24.4 |  |  |  |  |

LITTLE WERICA V
Hourly Wind Speed; (cm/sec)

| Date - Time | Ht* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 29 July 57 |  |  |  |  |  |  |  |  |  |  |
| 0758-0902 | 50 | 666.8 | 100 | 719.2 | 200 | 764.6 | 400 | 809.3 | 800 | 849.9 |
| 0902-0958 | 50 | 673.1 | 100 | 730.7 | 200 | 776.9 | 400 | 824.2 | 800 | 884.7 |
| 1359-1459 | 50 | 701.7 | 100 | 762.1 | 200 | 811.2 | 400 | 858.6 | 900 | 933.1 |
| 1500-1600 | 50 | 719.3 | 100 | 779.8 | 200 | 327.3 | 400 | 874.0 | 800 | 944.0 |
| 1600-1700 | 50 | 729.4 | 100 | 790.6 | 200 | 838.9 | 400 | 885.7 | 800 | 959.2 |
| 30 July 57 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 0959-1059 | 50 | 456.0 | 100 | 500.3 | 200 | 526.0 | 400 | 554.6 | 300 | 611.3 |
| 1059-1259 | 50 | 413.0 | 100 | 447.3 | 200 | 471.4 | 400 | 495.5 | 300 | 552.6 |
| 1300-1400 | 50 | $47 \% .5$ | 100 | 509.7 | 200 | 530.6 | 400 | 545.9 | 800 | 590.8 |
| 31 July 57 |  |  |  |  |  |  |  |  |  |  |
| 1059-1159 | 50 | 126.5 | 100 | 144.2 | 200 | 155.7 | 400 | 173.1 | 800 | 204.6 |
| 1159-1259 | 50 | 122.8 | 100 | 146.8 | 200 | 173.7 | 400 | 183.9 | 800 | 153.9 |
| 1259-1359 | 50 | 112.0 | 100 | 135.2 | 200 | 150.9 | 400 | 117.0 | 800 | 96.1 |
| 1359-1459 | 50 | 182.1 | 100 | 213.0 | 200 | 268.2 | 400 | 337.1 | 800 | 341.0 |
| 1500-1600 | 50 | 226.4 | 100 | 258.2 | 200 | 309.0 | 400 | 39:.6 | 800 | 471.2 |
| 1600-1700 | 50 | 331.7 | 100 | 363.7 | 200 | 401.2 | 400 | 467.1 | 800 | 589.7 |
| 1700-1800 | 50 | 4.34 .7 | 100 | 468.7 | 200 | 504.7 | 400 | 563:3 | 800 | 623.6 |

* Ht (cm)
LITTLE AMERIC, V
Hourly Wind Speeds ( $\mathrm{cm} / \mathrm{sec}$ )

| Date - Time | Ht* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| 1359-1459 | 50 | 1045.2 | 100 | 1172.9 | 200 | 1262.8 | 400 | 1343.3 | 800 | 1452.9 |
| 1500-1600 | 50 | 1121.1 | 100 | 1244.6 | 200 | 1333.5 | 400 | 1410.0 | 800 | 1524.5 |
| 1600-1700 | 50 | 259.9 | 100 | 953.1 | 200 | 1022.5 | 400 | 1073.1 | 800 | 1164.2 |
| 1701-1801 | s0 | 759.1 | 100 | 842.2 | 200 | 902.5 | 400 | 955.6 | 800 | 1041.1 |
| 1801-1901 | SO | 546.8 | 100 | 605.2 | 200 | 648.4 | 400 | 678.1 | 800 | 742.2 |
|  |  |  |  |  |  |  |  |  |  |  |
| 1059-1159 | 50 | 371.4 | 100 | 406.9 | 200 | 455.6 | 400 | 520.5 | 800 | 675.1 |
| 1159-1259 | 50 | 429.5 | 100 | 467.2 | 200 | 516.8 | 400 | 590.2 | 800 | 875.1 |
| 1259-1359 | 50 | 567.3 | 100 | 609.6 | 200 | 664.8 | 400 | 751.7 | 800 | 841.9 |
| 1559-1659 | 50 | 259.1 | 100 | 290.9 | 200 | 337.1 | 400 | 420.3 | 800 | 537.2 |
| 5 August 57 |  |  |  |  |  |  |  |  |  |  |
| 1259-1359 | 50 | 1258.8 | 100 | 1374.3 | 200 | 1468.8 | 400 | 1596.5 | 800 | 1639.3 |
| 1359-1459 | S0 | 1316.2 | 100 | 1446.8 | 200 | 1549.9 | 400 | 1682.3 | 800 | 1725.3 |
|  |  |  |  |  |  |  |  |  |  |  |
| 0059-0159 | 50 | 1368.0 | 100 | 1511.2 | 200 | 1617.3 | 4.00 |  |  |  |
| 0159-0259 | 50 | 1244.1 | 100 | 1364.6 | 200 | 1461.8 | 400 | 159..3 | 800 | 16406 |
| 0500-0400 | 50 | 1092.5 | 1.0 | 1189.0 | 200 | 1271.1 | 400 | 1379.6 | 800 | 1427.3 |
| 0601-0701 | 50 | 902.4 | 100 | 972.3 | 200 | 1035.7 | 400 | 1123.5 | 800 | 1178.1 |

LITTLE AMERICA $V$
Hourly Wind Speeds ( $\mathrm{cm} / \mathrm{sec}$ )

| Date - Time | Ht* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 August 57 |  |  |  |  |  |  |  |  |  |  |
| 1100-1203 | 50 | 175.4 | 100 | 196.4 | 200 | 224.0 184.3 | 400 | 219.1 | S00 | 197.6 |
| 1203-1300 | 50 | 140.7 | 100 | 161.2 | 200 |  |  |  |  |  |
| 10 August 57 |  |  |  |  |  |  |  |  |  |  |
| 1600-1700 | 50 | 319.7 | 100 | 352.1 | 200 | 364.5 | 400 | 403.4 | 300 | 443.6 |
| 1700-1800 | 50 | 310.0 | 100 | 334.5 | 200 | 364.5 | 400 | 341.4 | 800 | 374.8 |
| 3801-1901 | 50 | 269.9 | 100 | 287.7 | 200 | 310.7 | 400 | 341.4 | 800 | 386.5 |
| 1901-2001 | 50 | 265.4 | 100 | 289.3 | 200 | 314.7 | 400 | 346.5 | 800 | 386.5 |
|  |  |  |  |  |  |  |  |  |  |  |
| 1259-1406 | 50 | 414.4 | 100 | 453.4 | 200 | 485.2 | 400 | 536.5 | 800 | 573.7 |
| 1458-1600 | 50 | 434.3 | 100 | 468.8 | 200 | 498.0 | 400 | 536.5 | 800 | 687.3 |
| 1601-1701 | 50 | 523.4 | 100 | 564.0 | 200 | 598.8 | 400 | 646.2 | 800 | 703.7 |
| 1902-2002 | 50 | 577.5 | 100 | 620.8 | 200 | 654.7 | 400 | 692.8 | 800 | 703.7 |
| 2002-2102 | 50 | 641.0 | 100 | 691.0 | 200 | 728.1 | 400 | 763.1 | 300 | 770.1 |
|  |  |  |  |  |  |  |  |  |  |  |
| 1005-1055 | 50 | 814.2 | 100 | 891.6 | 200 |  | 400 | 980.7 | 800 | 1062.0 |
| 1056-1156 | 50 | 792.0 | 100 | 358.0 | 200 | 914.5 | 400 | 1137.8 | 850 | 1216.7 |
| 11571257 | 50 | 312.2 | 100 | 995.3 | 200 | 1063.9 | 400 | 1137.8 |  |  |
| 1600-1700 | 50 | 1049.C | 100 | 1136.6 | 200 | 1208.1 | 400 | 1231.7 | 800 | 1367.3 |
| 1700-1802. | 50 | 1036.3 | 100 | 1120.1 | 200 | 1189.9 | 400 | 1259.4 | 800 | 1347.0 |

hittle arericn $V$
Hourly Wind Speeds (cm/sec)

| Date - Time | Ht* | Speed | it | Speed | Ht | Spe.ad | Ht | Speed | Hi | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 August 57 |  |  |  |  |  |  |  |  |  |  |
| 1059-1159 | 50 | 438 S | 100 | 464.9 | 200 | 502.6 | 400 | 541.9 | 800 | 603.1 |
| 1159-1259 | 50 | 438.1 | 100 | 463.0 | 200 | 502.9 | 400 | 542.2 | 860 | 598.9 |
| 1259-1359 | 50 | 425.2 | 100 | 453.0 | 200 | 489.7 | 400 | 528.3 | 800 | 595.1 |
| 1400-1500 | 50 | 4.)1 6 | 100 | 439.2 | 200 | 467.4 | 400 | 507.1 | 800 | 570.0 |
| 1500-1600 | 50 | 358.7 | 100 | 394:1 | 200 | 423.9 | 400 | 464.6 | 800 | 531.4 |
| 14 August 57 |  |  |  |  |  |  |  |  |  |  |
| 0858-0959 | 50 | 484.6 | 100 | 547.7 | 200 | 589.7 | 400 | 638.0 | 800 | 694.2 |
| 0959-1059 | so | 376.7 | 100 | 417.4 | 200 | 447.6 | 400 | 489.1 | 800 | 548.2 |
| 1059-1159 | 50 | 358.0 | 100 | 395.3 | 200 | 423.3 | 400 | 462.4 | 800 | 507.7 |
| 1159-1259 | 50 | 298.0 | 100 | 321.4 | 200 | 340.2 | 400 | 364.3 | 800 | 390.9 |
| 1300-14C0 | 50 | 290.6 | 100 | 308.3 | 200 | 326.2 | 400 | 351.4 | 800 | 369.7 |
| 15 August 59 |  |  |  |  |  |  |  |  |  |  |
| C959-1059 | 50 | 673.0 | 100 | 742.7 | 200 | 800.6 | 400 | 873.6 | 800 | 935.8 |
| 1059-1159 | 50 | 665.8 | 100 | 732.3 | 200 | 734.5 | 400 | 846.0 | :00 | 895.1 |
| 1159-1259 | 50 | 651.5 | 100 | 714.3 | 200 | 760.4 | 400 | 827.2 | 800 | 870.1 |
| 1259-1359 | 50 | 619.4 | 100 | 677.8 | 200 | 720.9 | 400 | 780.7 | 800 | 815.6 |
| 1400-1500 | 50 | 639.1 | 100 | 698.6 | 200 | 742.6 | 400 | 798.5 | 800 | 837.3 |

*Ht (cm)

| Date - Time | Ht* Speed | Ht Speed | Ht Speed | Ht Speed | Ht Speed |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


*Ht (cm)
LITTLE AMERICA $V$
Hourly Wind Speeds (cm

| Date - Time | Hit* | Speed | Ht | Speed | He | Speed | Ht | Speed | Ht. | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 August 57 |  |  |  |  |  |  |  |  |  |  |
| 1158-1258 | 50 | 569.3 | 100 | 704.3 | 200 | 884.8 | 400 | 937.0 | 800 | 1142.3 |
| 1400-1500 | 50 | 541.1 | 100 | 603.1 | 200 | 672.6 | 400 | 733.5 | 300 | 809.4 |
| 1500-160C | 50 | 396.2 | 100 | 416.9 | 200 | 441.4 | $\therefore 00$ | 485.3 | 800 | 511.4 |
| 23 Aujust 57 |  |  |  |  |  |  |  |  |  |  |
| 1400-1500 | 50 | 591.6 | 100 | 633.0 | 200 | 678.9 | 400 | 748.5 | 800 | 806.9 |
| 1500-1600 | 50 | 714.9 | 100 | 768.2 | 200 | 822.3 | 400 | 905.9 | 800 | 956.3 |
| 1600.1700 | 50 | 884.4 | 100 | 950.7 | 200 | 1013.4 | 400 | 1106.8 | 800 | 1154.5 |
| 1700-1800 | 50 | 994.3 | 100 | 1072.4 | 2 CO | 1144.6 | 400 | 1246.5 | 807 | 1297.2 |
| 1901-2001 | 50 | 1036.8 | 100 | 1135.2 | 200 | 1211.5 | 400 | 1310.9 | 800 | 1358.2 |
| 2001-2101 | 50 | 1069.9 | 100 | 1163.9 | 200 | 1246.9 | 400 | 1350.0 | 800 | 1405.9 |
| 2302-2359 | 50 | 1135.3 | 100 | 1222.1 | 200 | 1297.9 | 400 | 1410.5 | 800 | 1496.0 |
| 24 August 57 |  |  |  |  |  |  |  |  |  |  |
| 0000-0100 | 50 | 1014.9 | 100 | 1094.1 | 200 | 1162.2 | 400 | 1257.8 | 800 | 1327.9 |
| 0200-0300 | 50 | 860.4 | 100 | 923.7 | 200 | 981.3 | 400 | 1071.7 | 800 | 1125.6 |
| 1405-1459 | 50 | 142.6 | 100 | 168.4 | 200 | 210.9 | 400 | 2.42 .0 | ¢00 | 163.6 |
| 1459-1559 | 50 | 144.1 | 100 | 166.3 | 200 | 198.0 | 400 | 276.6 | 800 | 272.8 |
| 1559.1659 | 50 | 165.4 | 100 | 191.7 | 200 | 230.3 | 400 | 283.9 | 800 | 342.7 |

* Ht (cm)
* Ht ( cm )
LITTLE AMERICA V

| Date - Time | Hit* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 August 57 |  |  |  |  |  |  |  |  |  |  |
| 0000-0055 | 50 | 1482.8 | 100 | : 576.3 | 200 | 1706.6 | 400 | 1843.3 | 800 | 1911.8 |
| 0100-0155 | 50 | 1280.5 | 100 | 1362.4 | 200 | 1468.5 | 400 | 1592.0 | 800 | 1636.3 |
| 0304-0359 | 50 | 1080.4 | 100 | 1203.7 | 200 | 1332.2 | 400 | 1333.6 | 800 | 1527.6 |
| 0405-0500 | 50 | 984.1 | 100 | 1086.3 | 200 | 1197.0 | 400 | 1253.9 | 800 | 1391.1 |
| 0505-0645 | 50 | 664.5 | 100 | 714.2 | 200 | 770.6 | 400 | 836.5 | 800 | 900.7 |
| 2200-2300 | 50 | 307.9 | 100 | 341.9 | 200 | 362.6 | 400 | 387.5 | 800 | 417.5 |
| 2 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1501-1601 | 50 | 459.9 | 100 | 499.8 | 200 | 526.0 | 400 | 574.0 | 800 | 648.2 |
| 1601-1701 | 50 | 551.6 | 100 | 599.0 | 200 | 629.6 | 400 | 679.9 | 800 | 764.1 |
| 3 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1459-1559 | 50 | 288.2 | 100 | 321.1 | 200 | 350.2 | 400 | 391.5 | 800 | 458.3 |
| 1600-1700 | 50 | 322.6 | 100 | 3557 | 200 | 387.9 | 400 | 431.0 | 800 | 483.9 |
| 1700-1800 | 50 | 359.5 | 100 | 398.9 | 200 | 436.0 | 400 | 482.3 | 800 | 536.3 |
| 6 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1859-1959 | 50 | 342.0 | 100 | 378.2 | 200 | 415.3 | 400 | 476.9 | 800 | 550.7 |
| 1959-2101 | 50 | 356.2 | 100 | 393.4 | 200 | 433.0 | 400 | 499.4 | 800 | 578.8 |
| 2101-2200 | so | 357.4 | 100 | 395.1 | 200 | 434.9 | 400 | 500.3 | 800 | 570.1 |
| 2200-2300 | 50 | 333.8 | 100 | 369.8 | 200 | 410.8 | 400 | 476.4 | 800 | 552.7 |

LITTLE AMERICA V
Houriy Wind Speeds (cm/sec)

| Date - Time | HC* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1457-1557 | 50 | 699.6 | 100 | 766.6 | 200 | 819.4 | 400 | 873.6 | 800 | 938.8 |
| 1558-1658' | 50 | 659.5 | 100 | 722.1 | 200 | 770.2 | 400 | 821.5 | 800 | 880.6 |
| 1659-1805 | 50 | 620.5 | 100 | 676.9 | 200 | 720.1 | 400 | 768.1 | 800 | 831.5 |
| 9 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1259-1359 | 50 | 375.1 | 100 | 409.6 | 200 | 439.1 | 400 | 488.0 | 800 | 582.4 |
| 1459-1559 | 50 | 349.5 | 100 | 380.0 | 200 | 410.6 | 400 | 457.2 | 800 | 546.1 |
| 1600-1700 | 50 | 281.5 | 100 | 308.2 | 200 | 334.6 | 400 | 378.2 | 800 | 446.5 |
| 1700-1800 | 50 | 262.6 | 100 | 286.4 | 200 | 308.9 | 400 | 343.9 | 800 | 408.5 |
| 11. September 57 |  |  |  |  |  |  |  |  |  |  |
| 1600-1700 | 50 | 145.3 | 100 | 159.1 | 200 | 174.0 | 400 | 194.0 | 800 | 209.1 |
| 1700-1800 | 50 | 226.3 | 100 | 246.7 | 200 | 267.6 | 400 | 296.5 | 800 | 332.6 |
| 1800-1900 | 50 | 234.2 | 100 | 260.2 | 200 | 289.6 | 400 | 337.2 | 800 | 405.3 |
| 1901-2001 | 50 | 491.8 | 100 | 528.5 | 200 | 558.4 | 400 | 609.2 | 800 | 655.6 |
| 2001-2101 | 50 | 582.2 | 100 | 623.8 | 200 | 660.8 | 400 | 122.4 | 800 | 779.8 |
| 12 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1702-1759 | 50 | 604.5 | 100 | 656.4 | $=00$ | 694.4 | 400 | 739.1 | 800 | 795.2 |
| 1759-1900 | 50 | 599.2 | 100 | 667.7 | 2180 | 711.4 | 400 | 756.5 | 800 | 805.1 |
| 1900-2000 | 50 | 601.3 | 100 | 672.6 | 200 | 718.9 | 400 | 764.4 | 800 | 817.8 |

会
点
LITTLE AMERICA $V$
Hourly Wind Speeds ( $\mathrm{cm} / \mathrm{sec}$ )

| Date - Time | Hit | Speed | Ht | Speed | Ht | Speed | Ht | Speed | 11 | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1020-1100 | 50 | 545.0 | 100 | 593.7 | 200 | 6.35 .0 | 400 | 688.0 | 800 | 742.1 |
| 1100-1200 | 50 | 530.1 | 100 | 581.9 | 200 | 622.4 | 400 | 678.1 | 800 | 735.4 |
| 22 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1253-1358 | 50 | 585.7 | 100 | 638.7 | 200 | 682.7 | 400 | 733.5 | 300 | 314.3 |
| 1358-1458 | 50 | 554.9 | 100 | 603.7 | 200 | 647.2 | 400 | 698.3 | 500 | 733.3 |
| 1459-1559 | 50 | 582.7 | 100 | 635.5 | 200 | 680.9 | 400 | 732.5 | 300 | 814.5 |
| 1559-1659 | 50 | 543.1 | 100 | 591.2 | 200 | 633.9 | 400 | 684.2 | 800 | 770.0 |
| 1700-1800 | 50 | 503.2 | 100 | 554.5 | 200 | 598.0 | 400 | 649.5 | 800 | 728.3 |
| 23 Seplember 57 |  |  |  |  |  |  |  |  |  |  |
| 1058-1158 | 50 | 184.6 | 100 | 208.1 | 200 | 243.4 | 400 | 310.7 | 800 | 382.6 |
| 1158-1303 | 50 | 169.4 | 100 | 190.0 | 200 | 216.7 | 400 | 252.8 | 800 | 312.2 |
| 1358-1458 | 50 | 196.7 | 100 | 222.9 | 200 | 260.4 | 400 | 327.6 | 800 | 305.6 |
| 1458-1600 | 50 | 148.2 | 100 | 173.9 | 200 | 210.3 | 400 | 267.0 | 800 | 181.1 |
| 1600-1700 | 50 | 126.9 | 100 | 153.6 | 200 | 193.1 | 400 | 163.7 | 800 | 149.0 |
| 1701-1801 | 50 | 138.9 | 100 | 166.3 | 200 | 219.8 | 400 | 248.1 | 800 | 213.3 |
| 1801-1901 | 50 | 106.2 | 100 | 126.7 | 200 | 166.8 | 400 | 224.0 | 800 | 249.5 |
| 2018-2118 | 50 | 86.8 | 100 | 96.0 | 200 | 103.9 | 400 | 88.1 | 800 | 59.3 |
| 24 Septemiber 57 |  |  |  |  |  |  |  |  |  |  |
| 1100-1200 | 50 | 195.3 | 100 | 212.0 | 200 | 235.8 | 400 | 273.1 | 800 | 290.4 |
| 1301-1401 | 50 | 107.3 | 100 | 124.6 | 200 | 138.8 | 400 | 145.1 | 800 | 135.4 |
| 1601-1705 | 50 | 282.9 | 100 | 312.7 | ? 0 | 339.2 | 400 | 371:3 | 800 | 403.1 |

LITTLE AMERICA $V$
Hourl) Wind Speeds (cm/sec)

| Dare - Time | Ht* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 Sfptember 57 |  |  |  |  |  |  |  |  |  |  |
| 13012-1402 | 50 | 2536 | 100 | 281.5 | 200 | 306.7 | 400 | 333.4 | 800 | 374.7 |
| 1402-1502 | 50 | 327.3 | 100 | 361.1 | 200 | 397.4 | 400 | 438.0 | 800 | 496.9 |
| 1502-1602 | 50 | 406.2 | 100 | 451.4 | 200 | 499.2 | 400 | 547.2 | 800 | 606.7 |
| 26 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1159-1259 | 50 | 325.5 | 100 | 351.6 | 200 | 375.5 | 400 | 405.7 | 800 | 432.4 |
| 1259-1359 | 50 | 352.3 | 100 | 377.5 | 200 | 397.7 | 400 | 415.4 | 800 | 408.7 |
| 1359-1459 | 50 | 287.1 | 100 | 305.9 | 200 | 321.2 | 400 | 333.4 | 800 | 323.0 |
| 1500-1600 | 50 | 306.6 | 100 | 326.8 | 200 | 343.6 | 400 | 356.9 | 800 | 342.8 |
| 27 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1158-1258 | SC | 371.2 | 100 | 411.9 | 200 | 448.1 | 400 | 483.8 | 800 | 547.4 |
| 1259-1359 | 50 | 478.5 | 100 | 529.0 | 200 | 574.3 | 400 | 618.7 | 800 | 761.1 |
| 1359-1504 | 50 | 527.1 | 100 | 580.2 | 200 | 628.4 | 400 | 670.8 | 800 | 708.3 |
| 28 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1058-1158 | 50 | 314.1 | 100 | 330.6 | 200 | 349.5 | 400 | 367.1 | 800 | 386.9 |
| 1158-1258 | 50 | 298.3 | 100 | 311.9 | 200 | 328.9 | 400 | 342.2 | 600 | 361.3 |
| 1259-1359 | 50 | 294.6 | 100 | 306.1 | 200 | 316.8 | 400 | 320.6 | 800 | 318.7 |

会
志
LITTLE AMERICA V
Hourly Wind Speeds (cm/sec)

| Date - Time | Ht* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 29 September 57 |  |  |  |  |  |  |  |  |  |  |
| 1104-1159 | 50 | 571.7 | 100 | 620.9 | 200 | 662.1 | 400 | 699.3 | 800 | 738.3 |
| 1400-1505 | 50 | 514.8 | 100 | 562.7 | 200 | 601.0 | 400 | 635.5 | 800 | 671.6 |
| 1505-1600 | 50 | 432.1 | 100 | 470.3 | 200 | 502.6 | 400 | 531.5 | 800 | 558.6 |
| 1600-1701 | -0 | 397.1 | 100 | 433.7 | 200 | 465.1 | 400 | 492.5 | 800 | 519.2 |
| 30 September 57 |  |  |  |  |  |  |  |  |  |  |
| 0958-1059 | 50 | 259.1 | 100 | 275.2 | 200 | 292.8 | 400 | 306.3 | 800 | 337.5 |
| 1059-1159 | 50 | 300.7 | 100 | 319.8 | 200 | 340.5 | 400 | 361.1 | 800 | 404.3 |
| 1159-1259 | 50 | 176.3 | 100 | 188.0 | 200 | 207.7 | 400 | 227.6 | 800 | 275.3 |
| 1300-1400 | 50 | 175.3 | 100 | 188.7 | 200 | 210.7 | 400 | 227.7 | 800 | 258.6 |
| 2 October 57 |  |  |  |  |  |  |  |  |  |  |
| 1258-1400 | 50 | 315.4 | 100 | 346.9 | 200 | 387.8 | 400 | 449.1 | 800 | 552.6 |
| 1701-1801 | 50 | 124.0 | 100 | 143.7 | 200 | 172.6 | 400 | 217.1 | 800 | 296.1 |
| 1801-1901 | 50 | 69.6 | 100 | 89.7 | 200 | 107.6 | 400 | 138.6 | 800 | 161.3 |
| 4 October 57 |  |  |  |  |  |  |  |  |  |  |
| 1401-1501 | 50 | 737.2 | 100 | 805.2 | 200 | 867.0 | 400 | 923.2 | 800 | 1000.7 |
| 1501-1601 | 50 | 841.2 | 100 | 919.1 | 200 | 986.8 | 400 | 1049.9 | 800 | 1137.2 |
| 1601-1701 | 50 | 962.8 | 100 | 1063.8 | 200 | 1152.1 | 400 | 1226.1 | 800 | 1316.1 |
| 1701-1801 | 50 | 1087.8 | 100 | 1203.5 | 200 | 1302.9 | 400 | 1388.7 | 800 | 1486.8 |

*Ht (cm)
LITILE AMERICA V
Hourly Wind Speeds (cm/sec)

| Date - Time | Ht* | Speed | Ht | Speed | Ht | Speed | Ht | Speed | Ht | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 October 57 |  |  |  |  |  |  |  |  |  |  |
| 1901-2000 | 50 | 640.3 | 100 | 695.0 | 200 | 804.9 | 400 | 762.1 | 800 | 746.3 |
| 2200-2300 | 50 | 976.1 | 100 | 1029.0 | 200 | 1096.5 | 400 | 1148.4 | 800 | 1254.2 |
| 2300-0000 | 50 | 803.0 | 100 | 847.8 | 200 | 923.6 | 400 | 941.8 | 800 | 1001.1 |
| 19 October 57 |  |  |  |  |  |  |  |  |  |  |
| 1700-1800 | 50 | 1228.7 | 100 | 1372.6 | 200 | 1532.2 | 400 | 1668.5 | 800 | 1774.7 |
| 1800-1900 | 50 | 1258.2 | 100 | 14:3.9 | 200 | 1584.5 | 400 | 1725.9 | 800 | 1837.1 |
| 1900-2000 | 50 | 1234.9 | 100 | 1.177.1 | 200 | 1528.8 | 400 | 1603.0 | 800 | 1771.7 |
| 20 October 57 |  |  |  |  |  |  |  |  |  |  |
| 0102-0202 | 50 | 1138.8 | 100 | 1270.8 | 200 | 1417.4 | 400 | 1540.7 | 800 | 1635.9 |
| 0202-0302 | 50 | 1098.7 | 100 | - 228.2 | 200 | 1365.2 | 400 | 1482.3 | 800 | 1568.2 |
| 0302-0402 | 50 | 931.2 | 100 | 1017.8 | 200 | 1111.3 | 4.00 | 1201.4 | 800 | 1277.8 |
|  |  |  |  |  |  |  |  |  |  |  |
| 1558-1701 | 50 | 714. ${ }^{\text {\% }}$ | 100 | 783.8 | 200 | 856.1 | 400 | 921.3 | 800 | 977.9 |
| 1701-1801 | 50 | 605.2 | 100 | 660.2 | 200 | 719.0 | 400 | 770.0 | 800 | 831.9 |
| 1802-1902 | 50 | 537.1 | 100 | 588.0 | 200 | 643.9 | 400 | 691.1 | 800 | 748.9 |

*Ht (cm)


## Unclessified

## Abstract (continued)

contribute to instability $a:$ Litile America $\%$, wille cutrsasc sixies indicate tha: insiability at the South Rife can be caused cy iond-wave raiation from the tion of stratus cloud. The seasonei snift iown iess statie concitions, as well as the rise in texperature, was atiayed intil Ociocer.
 mu iemperature occurrec at the $t$ or 12 ct level, pracuci:ig an "anomeious" pro-


Values of the roughness iengt were small anc erratin. ind protile structure also was distinctly less rezular than ac ite Sonin roie. In spite of this, Fichardson nubers ctanted quite systeaxticaily with he ight helow $+\mathbb{E}$, suzgesina
 for momentun and heai ivensfer, if it exisiec, was ofter so srsi:ow tiat the levels of profile obsemations vere atove $2 t$.
 a similarity assumpioni dine bota estirajec surface ztress (with. Karmen's con-

 sentaifve climatological seans of ecay hes: ilux, a sietijis cal reictiocstip was établished between suartermaster coservazions (cjacmina proizie struciure versus buik stability) and regular symoptic or standarc ot=ervailons suppilec ty the U. S. weather Bureac. It is shown that it is perissizle to empioy constant coefficients of transfer of momeatum ani deat $a$ : líile inersa $V$, since variation of incivfiuai coefficients orth stability was gutte erratic becauce of the complicated propize structure. Averafe eddy teat flux veried fr- zem near neutral stakility to $-0.06931 y / \mathrm{fin}$ st extrame siability, and average surfsce stress from 1.0 dyces $/ c^{2}$ to 0.4 . Averases for 5 -ajay periois zers peaks of surface stress accompanying the passage of low pressure arear at ibis coastal station, in conirast with a lower average and amalier range at the continental South Pole Station.

The annuai variation of heat fiux at $\mathfrak{a}=$ cepil was computed by fourier
 The surface heat flux was obtainec by acicing the teat excrange between 2 a and the surface, computed by layer-by-layer integration of asy-zo-day temperature changes, to the heat flux at 2 a . The eneray biaget at the sa0\%-air interface is discussed. Computations were based on hourly values of net raciation supplied by Hoinkes and neat fluxes into air and sove as jescribes above. The lateat heat flux, obtained as a remeinder, indicates deposi=ion in the f-month pe: 30 c in 1957 equivalent to condensation of about 40 ma of vater, 2.2 times as zuck as thet reported for Maudteim durine corresponiting anths in 1050 and 1951. Increascd deposition 120 be filider winter veatias zay be due than aecompanyins increase in avaligble zoisture.
serurtis Clissifiralmon


1. ORIGINATING ACTIVITY: Enter the name and address of the contructor, aubcontractor, grantee, Department of Defense activily or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classilicution of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
2b. GROUP: Autimatic Jowngrading is specified In DoD Directive S200.:0 and Armed Forces Industrial Manual. Enter the eroup number. Also, when applicable, how that eptional markings have been used for Group 3 and Group 4 asthorized.
2. REPORT TITLE: Enter tie complete report tile in all capliat lelfera. Titles in all cases should be unclabsified. I! a meaningful title cannot be eelected without classification, show title classification in all capitalis in parenthesis inmediately fullowing the title.
3. DESCRIPTIVL NOTES: If appropriate, enter t'ie type of report, e, R., interim, progrees, summery, ennual, if final. Give the inclusive dates when a specific repa:ti' i perlod is covered.
4. AUTiKOR(S): Enter the amm(s) of authon(s) as ahown on or in the report. Enter last name, first name, middle inltial. If millitary, show rank and branch of service. The name of the principal author is un absolute minimum requirement.
5. REPORT DATE: Eitter the date of the report as day, month, year; or month, yeap. If more than one date appeara on the report, use date oi publicalic.

7a. TOTAL NUMBER OFP PAGES: The te:al pare count should 'ollow nomal pagination procedures. l.e., enter the number oi naces containing information
7b. NUMBER OF REFERENCES: Enter the cotal number of references ctted ! ! he roport.
8a. CONTRACT CR GRANT NUMBER: If appropriate, enter the applicable num, er of the contract or grant under which the report was wrillen
8b, \& \& 8d. PROJECT NUMBFR: Entef the appropriate military departmer: identification, such as project number. subproject number, system numbers, task number, etc.
9n. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the ofiginating activity. This numbet must be uratue to : his report.
9b. OTHCR REPORT NUMESR(S): If the report han been assigred any other report numbers (either by the oridinator of bu the sponsof), also enter itis number(f).
10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than tho e imposed by security classification, using standard statement:nuch as:
(1) "Qualified requesters may obtein coples of this report from DDC."
(2) "Foreign announcement and diseemination of this report by DDC is not authosized."
(3) "U. S. Government agencles may obtain copies ol thie report difectly from DDC. Other qualified DDC users ohall request through
(4) "U. S. military agencies may obteln copies of this report directly from DDC. Other quallitied users shall request through
"All distributinn of this repopt is controlled Qual. ified DDC users whall request through
the report has been furnished to the Office of Technical Scrvicea, Depaptmient of Commerca, for sale to the public, indicate this fact and enter the price, if known
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITAFY ACTIVITY: Fint er the name of the departmental project office or Inboratory uponsoring (par ing (or) the research and development. In :lude addreas.
13. AlsSTRACt: Enter an abstract giving a brief and factual sumni. y of the document indicative of the refort, even though it mov also appear elsewhere in the bedy oi the technical report. If adritional apace is required, oontinuation sheet shall be attached.

It is highly desirable that the abstract of classified re. ports he unclassified. Each parmgraph of the abstract thall end with an indication of the military security classification of the inforination in the paragraph, pepresented as (TS). (S), (C). of (U).

There is no limitation on the lenikth of the abstract. However. the sugkested length is from 150 to 225 words.
14. KF.Y WORDS: Key words are technically meaningful terms it ahort phrages thet charocterize a report und may be uled sa - ndex entries for -ataloging the report. Key words munt be selecter sn that nu security clussification is required. Idenfiera. such as equipment model denignation, trade name, mili. tary project corte name, geopraphic location, may be uned as key words hut will be follolved by in tndication af technical annext. The areignment of tinkn. rules. and weights is ntinnal.


[^0]:    *SIPRE, Snow, Ice and Permafrost Research Establishment CRREL, Cold Regions Research and Engineering Laboratory

[^1]:    *Chairman of Departient of Meteorology and Geophysics, Unsversity of Innsbruck, Austria.

[^2]:    | Number <br> of Obs <br> Datly | 445 | 445 | 444 | 445 | 445 | 445 | 445 | 445 | 445 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | Men | 40.3 | 39.7 | 40.0 | 39.6 | 39.7 | 39.3 | 39.3 | 39.3 | 39.6 |

[^3]:    $\stackrel{c}{\stackrel{\circ}{\sim}}$
    

[^4]:    | $\begin{array}{l}\text { Number } \\ \text { of Ubs } \\ \text { EA11y }\end{array}$ | 425 | 425 | 425 | 425 | 424 | 424 | 424 | 425 | 424 | 425 |
    | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
    | $\begin{array}{llllll}\text { Mean }\end{array}$ | 52.8 | 53.1 | 53.3 | 53.1 | 53.0 | 52.9 | 52.8 | 52.8 | 53.2 | 52.5 | Mean

[^5]:    

[^6]:    
    $\underset{\sim}{\underset{\sim}{7}}$
    N
    $\begin{array}{ll}\text { 号 } & \mathrm{j} \\ \mathrm{j}\end{array}$
    玉゙
    32.5

[^7]:    | $\begin{array}{l}\text { Number } \\ \text { of Obs } \\ \text { Daily } \\ \text { Mean }\end{array}$ | 447 | 447 | 447 | 447 | 447 | 447 | 447 | 447 | 447 | 314 |
    | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

[^8]:    424
    $\underset{\sim}{\approx}$

    445
    445
    n

[^9]:    429
    39.2
    

