IMPROVED METHODS FOR THE

 PRODUCTION OF TITANIUM ALLOY EXTRUSIONS

JOHN J. CHRISTIANA

REPUBLIC AVIATION CORPORATION MANUFACTURING RESEARCH

CONTRACT: AF $33(600) 34098$
ASD PROJECT: 7-556
FINAL TECHNICAL ENGINEERING REPORT
1 JANUARY 1957 - 31 OCTOBER 1963

A process has been developed to produce long, thif ixequ shapes in high-strength titanium alloys by a combilltoldochRt egtrusion and warm drawing.

A variety of structural shapes such as angles, channels, zees, hats and tees were extruded in the following titanium alloys: Ti-155A, MS 821, $\mathrm{Ti}-7 \mathrm{Al}-4 \mathrm{Mo}$, $\mathrm{Ti}-4 \mathrm{Al}-3 \mathrm{Mo}-1 \mathrm{~V}$, and $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$.

METALLURGICAL PROCESSING BRANCH MANUFACTURING TECHNOLOGY DIVISION A.F. MATERIALS LABORATORY RESEARCH \& TECHNOLOBY DIVISION UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, (OHIO)

John J. Christiana
Republic Aviation Corporation
Manufacturing Research

Contract: AF33(600)34098
ASD Project: 7-556

Final Technical Engineering Report
1 January 1957-31 October 1963

A process has been developed to produce long, thin aircraft structural shapes in high-strength titanium alloys by a combination of hot extrusion and warm drawing.

A variety of structural shapes such as angles, channels, zees, hats and tees were extruded in the following titanium alloys: Ti-155A, MS 821. Ti-7Al-4Mo, $\mathrm{Ti}-4 \mathrm{Al}-3 \mathrm{Mo}-1 \mathrm{~V}$, and $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$.

> Metallurgical Processi•g Branch Manufacturing Technology Division
> A. F. Materials Laboratory
> Research \& Technology Division
> United States Air Force
> Wright-Patterson Air Force Base, Ohio

IMPROVED METHODS FOR THE PRODUCTION OF TITANIUM ALLOY EXTRUSIONS

John J. Christiana
Republic Aviation Corporation

A process has been developed to produce long, thin aircraft structural shapes in high-strength titanium alloys by a combination of hot extrusion and warm drawing.

A variety of structural shapes such as angles, channele, zees, hats and tees were extruded in the following titanium alloys: Ti-155A, MS 821, Ti-7Al-4Mo, $\mathrm{Ti}-4 \mathrm{Al}-3 \mathrm{Mo}-1 \mathrm{~V}$, and $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$.

Extrusion of $1 / 16$ inch cross sectional thickness shapes of 20 ft length can be accomplished by the utilization of split ceramic coated dies and a composite glass-wool/granular-glass die pad. A ceramic coating thickness of $.010^{\prime \prime}-.020^{\prime \prime}$ is recommendet on the entrance and land of the die toact as a thermal barrier and prevent die wash. Split Peerless A tungster steel dies are reusable but must be recoated with ceramic after each extrusion. The billets were preheated to $1800^{\circ} \mathrm{F}$ in an argon atmosphere with protection glass on the billet surface during heating. The temperature of the tooling was $900^{\circ} \mathrm{F}$ for the die, $900^{\circ} \mathrm{F}$ for the container, and $400^{\circ} \mathrm{F}$ for the dummy block.

The straightening process developed consists of a combination of stretch and punch straightening. The extrusions were resistance heated to $1100^{\circ} \mathrm{F}$ with current passing directly through the jaws, stretch atraightened 3% and punch straightened to remove bow while still warm.

Warm drawing of the extrusion can be successfully accomplished by preheating the lengths to $1050^{\circ} \mathrm{F}$ in an electric furnace and drawing at 24 feet per minute. Warm drawing is employed to improve dimensional tolerances and surface finish. In addition, warm drawing can be employed to produce thin shapes beyond the present limits of the extrusion process ($1 / 16$ inch) by reducing the thickness in successive draw reductions of approximately 10% per pass. Drawn tee shapes in cross section thicknesses of .090', . 080', .075'. . 063" and . 040" were produced. Split tungsten carbide draw dies, shimmed to accommodate the various draw sizes, have proven to be an economical and attractive method for drawing the thin shapes. Positive gripping of the extrusion points was accomplished with Hufford Universal jaw grips. The lubricant system developed consists of a Granodraw T conversion coating, lime dip coat, Alpha Molykote 196X overcoat, and Fiske 604 grease applied at the die.

Typical structural "T" shapes for the RB-70 weapons system were produced in Ti-6Al-4V to prove the process. A workable procese was demonstrated to produce RB-70 shape 64E15 by extruding to $3 / 32$ inch and warm drawing in two passes to 0.080 inches. It was proved feasible to produce 0.043 " "T" shapes by extruding to $1 / 16^{\prime \prime}$ and warm drawing in five passes to $0.043^{\prime \prime}$. However, a high degree of material loss was experienced and present technology cannot be considered suitable for a production process for $0.043^{\prime \prime}$ shapes

NOTICES

Abstract

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies have been released for sale to the public and may be purchased from the Office of Technical Service (OTS), Department of Commerce, Washington 25, D. C., after October 1964.

Qualified requesters may obtain copies from DDC (ASTIA), Defense Documentation Center, Cameron Station, Bldg. 5, 5010 Duke Street, Alexandria, Virginia 22314. Orders will be expedited if placed through the Librarian or other persons designated to request documents from DDC.

Do not return copy unless return is required by security consideration, contractual obligation, or notice on a specific document.

FOREWORD

This Final Technical Engineering Report covers the work performed under Contract AF33(600)34098 from l January 1957 to 31 October 1963. The manuscript was released by the author on 29 November 1963 for publication as a RTD Technical Report

This Contract with Republic Aviation Corporation, Farmingdale, Long Island, New York, was initiated under the Research \& Technology Division Project 7-556, "Improved Methods for the Production of Titanium Alloy Extrusions." It was administered under the direction of Mr. T. S. Felker, Metallurgical Processing Branch (MATB), Manufacturing Technology Division, AF Materials Laboratory, Research and Technology Division, Wright-Patterson Air Force Base, Ohio.

This report, identified as RAC 2571, was prepared by Mr. J. J. Christiana of the Manufacturing Research Department of Republic Aviation Corporation who was the project engineer. Former project engineers of this program were Mr . M. Levine and Mr. G. Pfanner. The work performed at the various companies was under the direction of the following personnel:

Babcock and Wilcox
Titanium Metals Corporation
Allegheny Ludium Steel Corporation Battelle Memorial Institute United States Steel Corporation H. M. Harper Company
Comptoir Industrial D'Etirage \&
Profilage DeMetaux

- Mr. J. Barrett
- Mr. H. Palmer
- Mr. E. Emmerich
- Mr. A. Sabroff
- Mr. D. McBride
- Mr. J. Stevenson
- Mr. R. Hubert

The primary objective of the Air Force Manufacturing Methods Program is to develop on a timely basis manufacturing processes, techniques and equipment for use in economical production of USAF materials and components. This program encompasses the following technical areas:

Rolled Sheets, Forgings, Extrusions, Castings, Fiber and Powder Metallurgy Component Fabrication, Joining, Forming, Materials Removal
Fuels, Lubricants, Ceramics, Graphites, Non-metallic Structural Materials Solid State Devices, Passive Devices, Thermionic Devices.

Your comments are solicited on the potential utilization of the information contained herein as applied to your present or future production programs. Suggestions concerning additional Manufacturing Methods development required on this or other subjects will be appreciated.

PUBLICATION REVIEW

This repc~t has been reviewed and is approved.
FOR THE COMMANDER
Mehuin Ce. Fielda
MELVIN E. FIELDS, Colonel, USAF
Chief, Manufacturing Technology Division
AF Materia?s Laboratory

ACKNOWLEDGEMENT

The development program was conducted by Republic Aviation's Manufacturing Research Department personnel under the supervision of R. W. Hussa, Assistant Chief Manufacturing Research E:igineer.

The following are especially acknowledged for their major contributions to the program:

$$
\begin{array}{ll}
\text { T. Felker, } & \text { Research and Technology Division, WPAFB } \\
\text { G. Pfanner, } & \text { Republic Aviation Corporation } \\
\text { D. Edgecomb, } & \text { Babcock and Wilcox Company } \\
\text { E. Bohanek, } & \text { Titanium Metals Corporation of America }
\end{array}
$$

Mr. Bohanek wrote certain sections of this report dealing with warm drawing. Many others have made significant contributions in technical suggestions and report preparation. Although it is impossible to include all, the efforts of the following are recognized.

Republic Aviation
M. Levine
M. Negrin
W. Trepel
W. Harvey
H. Sieber
U. S. Steel
J. Stewart

Allegheny Ludlum
J. Rice

Babcock \& Wilcox
T. Gorecki
W. Walker
J. Trees
J. Chalmers
W. Williams
H. M. Harper
E. Harness

Battelle
T. Byrer

Cefilac
J. Buffet

The patience of Miss Jane Hunter in typing this voluminous report is particularly appreciated.

TABLE OF CONTENTS

Page
I INTRODUCTION 1
』 CONCLUSIONS 3
III PROCESS DEVELOPMENT 8
A. Part I - Determination of Shapes and Materials 8

1. Survey of Airframe Manufacturers 8
a. Agenda 8
b. Summary of Airframe Manufacturers Requirements 9
2. Alloy Survey 9
3. Selection of Shapes and Sizes 10
4. Selection of Alloys 10
5. Selection of Extruders 10
B. Part II - Extrusion of First Category Shapes 16
6. Extrusion, Straightening and Heat Treat Development at Babcock and Wilcox Co. 16
a. Extrusion Development 16
b. Straightening Development 17
c. Heat Treatment Study and Mechanical Property Testing 18
7. Extrusion, Straightening end Heat Treat Development at United States Steel Corp. 22
a. Extrusion Development 22
b. Straightening Development 24
c. Heat Treatment Study and Mechanical Property Testing 24
8. Extrusion Development at H. M. Harper Co. 28
9. Manufacturing Evaluation at Republic Aviation Corporation 32
a. Resistance Heating Experiment 32
b. Contamination Rate Study 35
c. Stretch Wrapping Evaluation 36
d. Joggling Evaluation 40
e. Bend Testing Evaluation 42
f. Drilling Evaluation 42
10. Heat Treatment Studies and Mechanical Property Testing 55
C. Part III - Extrusion of Second Category Shapes 58
11. Extrusion and Straightening Development at Babcock and Wilcox Company 53
a. Extrusion Development 58
b. Straightening Development 62
12. Extrusion Development at Comptoir Indus - triel D'Etirage \& Profilage de Metaux 74
13. Heat Treatment Study and Mechanical Property Testing 76
D. Part IV - Extrusion and Drawing Development of Third Category Shape 80
14. Extrusion and Straightening Development and Billet Heating Trials at Babcock and Wilcox Company 80
a. Extrusion Development and Billet Heating Trials 80
b. Straightening Development 82
15. Extrusion Development at Battelle Memorial Instituce 83
16. Warm Drawing Development at Allegheny Ludlum Steel Corporation 88
a. Introduction 88
b. Equipment Development 8 8.
c. Process Development 93
E. Part V - Extrusion and Drawing of Typical RB-70 Shape 8 121
17. Introductica 121
Page
18. Extrusion Trials at Babcock and Wilcox Co. 121
a. Initial Extrusion Trials of Part V 121
b. Final Extrusion Trial 125
(1) Objectives 125
(2) Facilities and Extrusion Practice 125 125
(3) Extrusion Parameters 126
(4) Extrusion Trial 126
(5) Results 127
(6) Evaluation 132
19. Warm Drawing at Titanium Metals Corp. 154
a. Equipment and Procedure 154
b. Drawing Shape 64E15 156
c. Drawing Shape 64E12 (modified) 167
20. Evaluation 191
a. Surface Quality and Surface Finish 191
b. Metallurgical Analysis 192
c. Inspection by North American Aviation 195
d. Summary 197
IV RECOMMENDED OPERATIONAL PROCEDURE 228
A. Extrusion 228
B. Post-Extrusion 229
C. Warm Drawing 230
APPENDIX
A. Extrusion Trial Data Sheets
B. Dimensional Measurements of Warm Drawr. Shapes
DISTRIBUTION LIST

LIST OF ILLUSTRATIONS

FIGURE PAGE
1 Shapes Selected for Extrusion Method Development
Part II2 Shapes Selected for Extrusion Method Development13Part 'III
3
Shape Selected for Extrusion Method Development Part IV
4
Shape Selected for Extrusion Method Development Part IV (Revised)
Shapes Selected for Fabrication as Typical B-70 15 Aircraft Titanium Alloy Extrusions
6
Extrudec Product of Test Group No. 2 at B \& W 20
7 Mandrel and Die Used for Extrusion of 3 Angles 20 with a Drilled Billet
8
Multi Port Extrusion Die For Angle Shape 21
9
Typical Scalp and Extrusion Butt in the Scalping 21Technique
10 Flat Face Extrusion Die 26
11 Surface Finish of Channel Extrusion Push No. 34 27at U.S. Steel12 Rate of Resistance Heating at Various Voltage Settings50for a Ti-4Al-4Mn AngleTi-7Al-4Mo Angle During Stretch Wrapping52
16 Stretch Wrapped Ti-7Al-4Mo Angle 52Joggles in a Ti-7Al-4Mo Angle53
18 Drill Point Configurations for Titanium Alloy Drilling 54

LIS'I OF ILLUSTRATIONS (Cont'd)

19	Tooling Arrangement Used During Part III Extrusion Trials	64
20	Back End Laminations and Pickup Score Lines	65
21	Tears During Initial Break-Through on Extrusion of Cast Billet Material	66

Discard of Push No. 16866

Micrographs Showing Varying Degrees of Billet 67 Surface Marks in the Extrusion Surface after Deglassing
Extrusion 172 showing Rough Surface Resulting from 68
Using the Soft (I. ower Viscosity) 318 Glass as a Die Lubricant
Photograph of Butt Ends from Extrusions 92 and 93 68
Billet and Extrusion Discard - Push No. 177 69
Billet Discard Push No. 184 70
Extreme Waviness in the Tee Upright Resulting from 71 an Excess of Material Being Extruded Through This Portion of the Die OrificeView of Butt End of Extrusion \#10771
An Example of Extrusion Scoring due to Die Pick-up 72
Function of "Jaw Release Bar" in Stretch Straightening 73
Configurations of Specimens Used in Tensile Testing 79
An Uncoated 0.063 Inch Die After Extrusion 87
Condition of an 0.063' Alumina-Coated Die After Two 87 Consecutive Extrusions
View of Warm Drawing Assembly 97
Resistance Heated Stainless Steel Muffle Tube Furnace 98
Temperature Uniformity Along the Length of a Warm 9837Drawn Extrusion, Heated in a Resistance Heated TubeFurnace, Ten Foot Long

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE PAGE
38
Arcing of Extrusion Extremities During the . 058' 99 Pass (Ext. \#236)
39
Flattened Teeth in Nitrided H-1l Gripper Jaws 99
40
View Illustrating the Modified 1/16" Diamond Pattern 100Jaws
41
A View of the Gripper Impression from the Modified 100 1/16 in. Diamond Pattern Jaw4243Sketch Illustrating Initial Die Design and Modified101Design Permitting Unrestrained, Edge Metal Flow
A View of the Assembled 3-Piece Split Carbide Draw 101 Die with the Steel Cover Plate Removed
Buckling and Resultant Chevron Defects in a Nominal 102 1/16 in. T Extrusion of Ti-7Al-4Mo
Views Illustrating Heat Checking Noted in the Upper 103 Right and Left Draw Die Inserts of Tungsten Carbide
A Bottom View of Two Tee Extrusions Warm Drawn 104
Directly Through the 0. 110" Die Using Magnus 400 Stearate Soap as the Exterior Lubricant474544A View of the Gripper Head with Load Cell Located105Between This Unit and Trolley48A 3/32" Tee After Warm Drawing to $0.080^{\prime \prime}$106
Distortion in As-Drawn Tee Extrusions 106
50 Transverse Microstructures of a Nominal 1/16 in. T of 107 Ti-6Al-4V (B\&W \#226), As Extruded and Straightenedand Also in the Heat Treated Condition
51
Transverse Microstructures of a Nominal 1/16 in. T 108
Extrusion of Ti-4Al-3Mo-1V (B\&W \#243) As Extruded and Straightened and Also as Heat Treated
Microstructures of an As-Extruded $1 / 16$ in. T of 109Ti-7Al-4Mo (Battelle \#55)Microstructures of a $1 / 16 \mathrm{in}$. T Extrusion (Battelle110\#55) of Ti-7Al-4Mo Heat Treated

LIST OF ILILUSTRA'TIONS (Cont'd)

FIGURE
54 Transverse Microstructures of a Nominal $1 / 16$ in. Tof Ti-7Al-4Mo (B\&W \#230), Annealed and Also inthe Heat Treated State55 Transverse Microstructures of a Nominal 3/32in. Tof $\mathrm{Ti}-7 \mathrm{Al}-4 \mathrm{Mo}$ ($\mathrm{B} \& \mathrm{~W} \# 223$), as Warm Drawn to $1 / 16 \mathrm{in}$.and also in the Heat Treated Condition
56 Transverse Microstructure of $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$ and 113
$\mathrm{Ti}-4 \mathrm{Al}-3 \mathrm{Mo}-1 \mathrm{~V}$ Alloys Warm Drawn from a Nominal 1/16 in. Thickness
57 Longitudinal and Transverse Microstructures of a114Nominal $1 / 16$ in. T Extrusion of Ti-7Al-4MD (B\& W\#232) Warm Dra'on to 0.043 in . and Heat Treated
Butt Discards Showing Typical Billet Scalping 124 and Lamination
592500 Ton Loewy Extrusion Press Used for the Titanium 134
Extrusion Program at the Babcock \& Wilcox Company60Glass Ring and Billet Configuration Used on Final135
Extrusion Trial112Modified Flat Face Die Design Used During Final136Extrusion Trial
62 Photograph Showing Extent of Ceramic Coating 137 on Three Piece Extrisior Dies
Dies Used on Final Trial Shown After Extrusion 138 6364Dies Used on Final Trial Shown After Extrusion and139Sand Blasting
65
Closeup of Die 7C (Push \#290) After Extrusion 140
6667

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE

70 Views of Extrusion \#287 Illustrating Typical 143
Surface Quality of 3/32" Shapes Prodiced at Final Trial
71 Views of Extrusion \#291 Illustrating Typical 144 Surface Quality of $1 / 16^{\prime \prime}$ Shapes Produced at Final Trial
72 Typical Load Curves During Warm Drawing of 64E 15 160
Extrusions at $1050^{\circ} \mathrm{F}$. Two pass cycle.
73 a) 64E 15 Extrusions After Solution Treatment 161
73 b) 64E 15 Extrusions After Solution Treatment and After 161
Solution Treatment and Stretch Straightening
74
Photomicrographs of 64E15 Extrusions Showing 162 Differences in Microstructure Between As-Extruded and Drawn Shapes Aiter Full Heat Treatment
Alteration in Dimengions Through All Processing 163
Stages for 64E15 Extrusion \#285
Profile of Several 64E 12 Extrusions Exhibiting 179
Constricted Areas in Vertical Leg
77 Mode of Failure of Several 64E 12 Extrusions After 180
First Draw Pass
78 Necking and Strain-Induced Porosity Noted in Areas 180 Adjacent to Failures in Figure 77
79 Various Point Failures Noted Upon Drawing 64El2 181 Extrusions Through a Draw Pass
80
Failures Due to Separation of the Vertical Leg; Failure 181 Occurring in Third Pass
81
Plot of Pressure Versus Draw for the First Three 182Passes of Two 64El2 Extrusions
82
Pressure Versus Draw Chart for the Last Two Passes 183 on Two 64El2 Extrusions
83
Straightness of the Six 64E 12 Extrusions Drawn Through 184 All Five Warm Draw Cycles, Prior to Solution TreatmentDistortion of 64E 12 Extrusions After Solution Treatment184

LIS'T OF ILLUSTRATIONS (Cont':"

FIGURE PAGE
85 Three Longest Lengths of 64E12 Extrusions After 185 Restraightening Following Solution Treatment
Marked Alteration and Refinement in Transverse 186
Microstructure Typical of 64E 12 Extrusiors
87 Dimensional Control Exhibited in Two 64E 12 Extrusions 187 After Final Edge Machining
85 Step by Step Alteration in Dimensions Throughout 18.8
Entire Processing of 64E12 Extrusion \#290
89 Alteration and Improvement in Surface Quality of 204 Extrusion \#253
90 Alteration and Improvement in Surface Quality of 205 Extrusion \#263 by Warm Drawing
91 Plan View of Horizontal Flange of Finished 64E 15 206
Extrusions 254, 263, 282, and 284
92
Plan View of Horizontal Flange of Finished 64E 15 207 Extrusions 286, 285, 288 and 289
93
Starting and Finished Surface Quality of 64E12 208
Extrusions 260 and 261
94 Starting and Finished Surface Quality of 64E12 209
Extrusions 264 and 266
Starting and Finished Surface Quality of 64E12 210 Extrusions 290 and 294
96
Surface Finish Measurements of Five (5) Heat 211 Treated Finished Extrusions
97
Photomicrographs of Extrusion \#253 215
98
Photomicrographs of Extrusion \#270 21799100101
Photomicrographe of Extrusion \#271 218
Photomicrographs of Extrusion \#277 and \#273 219
Photomicrographs of Extrusion \#272 221

LIST OF TABLES

PAGE

1. A.C. Transformer Power Requirements for Resistance 45
Heating Titanium Alloy Extrusion Length
2. Stretch Wrapping Data - Ti-7Al-4Mo Angle Extrusions 46
3. Joggling Data for $3 / 32^{\prime \prime} \times .850^{\prime \prime} 7 \mathrm{Al}-4 \mathrm{Mo}$ Titanium Alloy 47 Angles
4. Bend Test Results - 3/32' 7Al-4Mo Extrusions 48
5. Results of Titanium Extrusion Drilling 49
6. Tensile Properties of Part IV Extrusions 115
7. Typical Tensile Properties of a Ti-7Al-4Mo Extrusion 118
3/32 in. T (No. 223) Warm Drawn to $1 / 16$ in.
8. Annealed Properties of Part IV Extrusions 119
9. Heat Treat Response In Part IV Extrusions 120
10. Die Orifice Dimensions Prior to Extrusion 145
11. Final Extrusion Trial Data Sheet 146
12. Cross Sectional Dimensions (As Extruded and Stretch 147 Straightened)
13. Dimensiora: Variation of Die Orifice Dimensions After 152
Ceramic Coating
14. Dimensional Variation of Extrusion Cross Section Thickness 153
15. Tensile Property Survey of 64El5 Extrusions 164
16. Effect of Thermal and Strain Variables On As-Solution 165
Treated Ti-6Al-4V Extrusions (64E15)
17. Heat Treat Response of As-Extruded 64E15 Extrusions 166
18. Draw Bench Data - 0.065 or 0.075 in First Pass - 64 El 2 174
19. Draw Bench Data - 0.058 in. Second Pass - 64El2 175
20. Draw Bench Data - 0.053 in. Third Pass - 64 E 12 176
21. Draw Bench Data-0.047 in. Fourth Pass - 64El2 177

LIST OF TABLES (CONTINUED)

PAGE
22. Draw Bench Data - 0.043 in . Fifth Pass - 64 E 12 178
23. Tensile Property Survey of 64El2 Extrusions 189
24. Heat Treat Response of As-Extruded 64El 2 Extrusions 190
25. Surface Finish of 64E15 Extrusions - Nominal 0.095 in. 200 As-Extruded
26. In-Process Variation In Surface Finish of Warm Drawn 64El5 201
Extrusions
27. Surface Finish of As-Extruded 64El2 Extrusions, Nominal 202 0.065 in.
28. Surface Finish of Finished Warm Drawn 64El5 Extrusions, 203 Nominal 0.043 in.
29. Processing History of Extrusions Evaluated at RAC 212
30. Mechanical Properties of 6Al-4V Titanium Alloy Extrusions 213 Evaluated at RAC
31. Room Temperature Tensile Results of Extrusions Evaluated at NAA 223
32. Elevated Temperature Tensile Results ($700 \pm 10^{\circ} \mathrm{F}$) Of Extrusions Evaluated at NAA 224
33. Che'nical Composition of Extrusions Evaluated at NAA 225
34. Dimensional Measurements of Extrusions Evaluated at NAA 227

Present military aircraft designs normally utilize large percentages of extruded sections. The reasons for the extensive use of extrusions are:

1. The extrusion process is the most practical and economical method for producing the many structural shapes required by the airframe industry.
2. The extrusion process permits design flexibility unequaled by other methods of working a metal.

The ultimate objective of this program was to create usable titanium extrusions in common sections for use by the aircraft designer for random structural application. To further define this objective, the extrusions had to have small gage straightness and twist tolerances. In addition, they had to have the proper thickness ratio to prevent any weight penalties. They also had to make maximum use of the material and contain no inherent defects due to the conversion process. The attainment of the ultimate objective dictated a research and development program of a rather large scope.

The development program was originally scheduled in five parts to produce titanium alloy structural shapes in three size categories. The extrusion development for the first and second category shapes (Figures 1 and 2) was completed in Parts II and III of the program. The double tee shape (Figure 3) originally selected for extrusion development in Part IV, was replaced with thinner tee shapes (Figure 4) which were produced by a combination of extrusion and subsequent drawing. Such thinner shapes represented design requirements in advanced airframe structures. The scope of the program was further increased by the addition of Parts V to produce a typical RB-70 titanium alloy shape and Part VI to develop heat treatment procedures for full length titanium alloy extrusions. Part VI was subsequently deleted. The program parts are listed below as originally scheduled and as revised.

	Original Program
	Part I Determination of Shapes and Materials Part II Extrusion of First Category Shapes (Fig. 1) Part III Extrusion of Second Category Shapes (Fig.
Deleted	```Part IV Extrusion of Third Category Shape (Fig. 3) Part V Final Report```

Revised Program

Determination of Shapes and Materials
Part II
Extrusion of First
Category Shapes (Fig. 1) Part III
Extrusion of Second Category Shapes (Fig. 2) Part IV
Category Shape (Fig. 3) Part V Final Report

Part IV
Extrusion and Drawing of Third Category Shapes (Figure 4)
Part V
Extrusion and Drawing of Typical RB-70 Shape (Fig. 5)
Part VI

A. Product

1. A workable process was demonstrated to produce a typical R $\mathrm{B}-70$ titanium " T " shape (64 E 15) by a combination of extrusion and warm drawing processes.

In the final extrusion trial, eight of the eight nominal 3/32" thickness 64 E15 extrusions were considered suitable for warm drawing, indicating a development of satisfactory die design, billet heating practices, lubrication and straightening techniques for the extruded lengths.

In the Part V warm drawing trials, eight of eight extrusions were successfully drawn two passes to 0.080 in . thickness in 20 foot lengths, indicating a development of satisfactory die design, lubrication and drawing practices, straightening techniques, and anneal and heat treat cycles for the drawn lengths. The eight 20 foot lengths consisted of six extrusions from the final extrusion trail and two extrusions that were drawn earlier.
2. It was found feasible to produce 0.043 in . titanium " T " shapes by extruding to nominal 0.065 in . thickness and warm drawing in five passes to 0.043 in . (RB-70 shape 64El2 modified). However, a high degree of material loss was experienced and present technology cannot be considered suitable for a production process. The longest drawn finished length was approximately 15 feet.
3. Tolerances of $\pm 0.005 \mathrm{in}$. of nominal size on thickness dimensions was demonstrated to be within the capability of the developed process for both 0.080 in . and 0.043 in . " T " shapes.
4. Edge machining was demonstrated as being a feasible method of finishing the edges of the " T " to finished print tolerances of -0.005 in . The alternative of warm drawing the edges produces severe metal losses due to column failure.
5. Aircraft requirements for straightness tolerances was demonstrated to be within the capability of the developed process for both 0.080 in . and 0.043 in . "T" shapes. The straightness requirements were 0.010 in . per foot straightness; $1 / 2^{\circ}$ per foot, 3° max. twist; and $\pm 1 / 2^{\circ}$ angle.
6. The process did not meet the target surface finish goal of 100 u in, RMS for the 0.043 in , shapes. The average surface finish for these shapes was 115 u in RMS. The failure to meet the 100 u in RMS surface finish can be traced to longitudinal striations in the extruded shape caused by pickup on the extrusion die. This appears to be the major problem area in titanium extrusion of thin shapes. Scoring due to die wash and/or coating failure and laminations due to improper flow were eliminated.

Surface finish requirements were met for the 0.080 in . shapes which had an average surface finish of 80 u in . RMS.
7. It was demonstrated that the process produced extrusions which met aircraft requirements for minimum mechanical properties and internal microstructure after solution treatment and aging. The minimum room temperature tensile property requirements for the $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$ alloy " T " shape were 160.0 ksi ultimate, 150.0 ksi yield (0.2% offset) and 6.0% elongation (2 inches). The minimum elevated temperature tensile properties were 110.0 ksi ultimate and 90.0 ksi yield (0.2% offset). ($700^{\circ} \mathrm{F}$)

B. Extrusion

1. Billet Preparation
a. Smooth polished billet surfaces are necessary to eliminate billet surface markings being carried into the extruded surface. Forged billet material results in an extrusion surface with less oxygen contamination than cast billet material.
b. A slightly tapered billet nose configuration assists in obtaining smooth flow.
c. Sprayed glass coatings for billet protection during heating are more adherent than dip coatings.
d. Sprayed protective glass coatings must be applied on a warm billet and predried to obtain maximum protection.
e. Billet heat soak time should be kept to a minimum to avoid deterioration of the billet coating. The billet should be kept at temperature only long enough to insure sufficient heat soak and avoid a sticker. For the $4^{\prime \prime}$ diameter billets in this program, 1 hour at $1800^{\circ} \mathrm{F}$ proved to be optimum.
2. Die Design
a. Modified flat face dies were superior to conical shaped dies in obtaining good metal and glass flow. The conical dies did not retain sufficient glass at the die face for proper lubrication throughout 20 foot lengths. Modified flat face dies with 20° entry angles and $1 / 4^{\prime \prime}$ land were employed with good results on this program.
b. Peerless A tungsten steel dies were satisfactory for extruding $1 / 8^{\prime \prime}$ and larger shapes. The high tungsten steel dies proved superior to other steels evaluated on this program.
c. For extrusion of $1 / 16^{\prime \prime}$ shapes, ceramic coated, segmented dies are required. A minimum coating thickness of . 010' is necessary. Meticulous care must be maintained in the application of the coating to insure an adherent coating. The ceramic must be applied by spraying perpendicular to the surface. A finish machining operation is required on the ccramic to obtain accurate orifice dimensions.
d. The tooling arrangement utilizing a tapered seal between the conical die holder and container is an attractive technique of locking segmented dies together in compression without the necessity of shrink fitting the dis segments in the die holder.
3. Lubrication
a. A relatively high viscosity die glass improves die fill at the start of extrusion.
b. Glass in fiber form has more favorable melting characteristics than granular glass for providing lubrication at the start of extrusion. Provision of an orifice in glass wool pads is required to prevent stickers resulting from glass blockage of the die orifice.
C. Granular die pad glasses give better die fill and surface finish when used in the $-30+100$ mesh size range than in the -325 mesh range.
d. Hot tooling is required to obtain good lubrication practice.

C. Straightening

1. Effective straightening can be realized by a combination of stretch straightnning 3% at $1100^{\circ} \mathrm{F}$ and punch straightening to remove bow and camber mie the shape is still warm (over $300^{\circ} \mathrm{F}$).
2. The decrease in shape dimensions with extrusion elongation is sufficient to necessitate increasing the die orifice dimensions to anticipate the decrease.
3. Air operated collets with diamond shaped teeth of $1 / 16^{\prime \prime}$ pitch nitrided. $015^{\prime \prime}$ to Rc 67 are suitable to securely hold the extrusioss without slippage.
4. Use of insulated jaws as electrodes assures uniform electrical contact, produces a straightened extrusion near the grips and saves at least 1 foot of cropping per extrusion by avoiding local hot spots from clamping the electrodes.

D. Warm Drawing

1. Pointing and Lubrication
a. The pointing procedure of grinding the fillet radii and chem milling the points was satisfactory for pointing $0.080^{\prime \prime}$ shapes. Improved techniques should be developed for pointing 0.040' shapes.
b. The lubricant system of Granodraw T conversion coat, lime dip coat, Molykote 196X overcoat and Fiske 604 performed best of the lul ricants investigated during this program.
2. Die Design
a. Split dies are attractive for warm drawing in that one set of dies can accommodate a complete drawing reduction and in addition can be used for several dimensioral sizes of a specific configuration.
b. Tungsten carbide dies are suitable for warm drawing titanium shapes. No wear or wash of the dies resulted during the course of the program.
c. The tungsten carbide blocks must be tightly wedged in the die case. A small amount of movement of the blocks will result in cracking of the die blocks.
d. The dies must be preheated to prevent heat checking of the carbide blocks.
3. Gripping
a. Jaw teeth must be nitrided to high hardnesses (Rc 67) to avoid gross deformation of the teeth.
b. A diamond pattern of $1 / 16^{\prime \prime}$ pitch is more efficient than $1 / 8^{\prime \prime}$ pitch in gripping into the titanium surface.
c. Gripper jaws with individually operated air cylinders for each jaw insert were not satisfactory in gripping and holding the extrusion throughout the draw cycle.
d. The Hufford Universal Gripper Jaw which is an air operated wedge shaped chuck was successfully employed to grip the shapes.

t. Hoating

a. Induction heating was found unsuitable for heating the extrusions prior to warm drawing. Further development would be required to make this technique attractive.
b. The practice of resistance heating the extrusions to temperature and placing in a holding furnace was found to be entirely satisfactory for heating the thin shapes prior to warm drawing.

A. PHASE I - DETERMINATION OF SHAPES AND MATERIALS

1. Survey of Airframe Manufacturers
a Agenda
The survey included Boeing Airplane Company, Seattle, Washington; North American Aviation, Incorporated, Inglewood, California; Douglas Aircraft Company, Santa Monica, California; Northrop Aircraft, Incorporated, Hawthorne, California; Lockheed Aircraft Corporation, Burbank, California; Convair, Div. of General Dynamics Corporation, San Diego, California; Change-Vought Aircraft, Incorporated, Dallas, Texas; McDonnell Aircraft Corporation, St. Louis, Missouri; and Republic Aviation Corporation, Farmingdale, New York

All meetings were conducted according to an agenda that was sent in advance of the visit. This lead time enabled the interested groups to review and prepare drawings and reports for the conference. The agenda covered is shown below:

1) Operational Specifications

Determination of the environmental requirements of extruded elements such as temperature, duty service at temperature and strengths.

2) Alloy Recommendations

Determination of applicability of available titanium alloys to the aircraft industry's use in the extruded form (the heat treatable alloys as well as the non-heat treatable alloys were under consideration in the study).
3) Shapes and Size

Selection of six sections for evaluation; three sections to be of a configuration capable of being confined in a $1 / 2^{\prime \prime}$ circle, two sections to be confined in a $1 / 2^{\prime \prime}-3^{\prime \prime}$ circle, and one section to be confined in a $3^{\prime \prime}-4^{\prime \prime}$ circle.
4) Tolerance and Finish

Tolerance and finish were discussed not only from the standpoint of what was desirable, but also the maximum values that were acceptable without excess in-plant processing.
5) Evaluation Program

Determination of type and scope of tests required to satisfy conformance to operational specifications.

The airframe manufacturers requirements are summarized below:
(1) Target mechanical properties

Room temperature U.T.S. $180,000 \mathrm{psi}$
$800^{\circ} \mathrm{F}$ stability at 70,000 psi load for 500 hours
Creep 0.5% max. after exposure at $800^{\circ} \mathrm{F}$ stability conditions
(2) The dimensional tolerances shall be equal to the present aluminum extrusion tolerances
(3) Surface finish shall be 125 RMS maximum and entirely free from oxygen contamination
(4) Most useful shapes are angles, tees and channels in lengths of 20 feet.
2. Alloy Survey

After receiving the requirements and recommendations of the airframe manufacturers as to mechanical properties needed in the titanium extrusions, a survey of the metal producers was made to determine if these properties were obtainable using alloys that were presently available for release in billet and large diameter round form. Discussion was limited to those alloys that were sufficiently tested and evaluated in the wrought form for room and elevated temperature properties to provide a datum line for comparison with extruded properties. This accumulated data also served to establish the capabilities of the alloy and thereby eliminate alloy development work which is beyond the scope and cost estimates of the extrusion program.

Titanium Metals Corporation of America, Rem-Cru Titanium Incorporated, Malloy -Sharon Titanium Corporation and Republic Steel Corporation research laboratories were visited and the alloy selection problem discussed with their alloy designers and research staffs. The data is summarized below:
a. Titanium Metals Corporation of America, Henderson, Nevada

TMCA recommended Ti 155 A as an alloy that could be heat treated for propertiec similar to the requirements. Nominal composition $5 \% \mathrm{Al}, 1.2 \% \mathrm{Mo}, 1.4 \% \mathrm{Cr}$, 1. $4 \% \mathrm{Fe}$ and beta transus $1830{ }^{\circ}-15^{\circ} \mathrm{F}$.
b. Rem-Cru Titanium, Incorporated, Midland, Pennsylvania

After reviewing the room temperature and elevated temperature requirements, the Rem-Cru staff proposed the use of C-135A Mo with a nominal composition of $7.0 \% \mathrm{Al}$ - 4.0% Mo.
c. Mallory -Sharon Titanium Corporation, Niles, Ohio

The Mallory -Sharon alloy that appears best suited for this program is MS82l containing $8 \% \mathrm{Al}, 2 \% \mathrm{Cb}, 1 \% \mathrm{Ta}$ with a beta transus temperature of $1920^{\circ} \mathrm{F}$. This alloy has been developed for weldability and is age hardenable.

d. Republic Steel Corporation, Massillon, Ohio

RS 140 is a Republic Steel titanium alloy with properties very similar to those outlined by the airframe manufacturers. Nominal composition 5\% Al, 2. $75 \% \mathrm{Cr}, \mathrm{l} .25 \% \mathrm{Fe}$.

3. Selection of Shapes and Sizes

Since no titanium extrusion existed that even remotely correlated to available aluminum extrusions, and the immediate prospects of one becoming available were not good, no airframe manufacturer had any specific needs. Rather, the needs were for very special extruded shapes for special applications where the use of titanium is almost mandatory. It was not the intention of this program to create such a specialized product, but rather produce something of almost universal usefulness. Upon thorough study of the designers problems, certain conclusions were reached, however, and these conclusions were sufficient to establish the product shape criteria. Using the basic design factors such as optimum thickness ratios, common sections, general size requirements, etc., as the basis for decision, the following conclusions were reached:
a Sections inscribed within a $1 / 2^{\prime \prime}$ circle can tolerate a maximum gage thickness of $094^{\prime \prime}$ and a lesser thickness of $065^{\prime \prime}$ is desirable for many applications. Sections of this size are most usable in lengths 10-15'.
b Sections inscribed in a $3^{\prime \prime}$ circle can tolerate a maximum gage thickness of $\mathrm{e}^{\prime 2} 5^{\prime \prime}$ and a lesser thickness of $.100^{\prime \prime}$ is desirable for many applications. Sections of this size are most usable in lengths of 15-18'.
c Sections inscribed in a $41 / 2^{\prime \prime}$ circle can tolerate a maximum gage thickness of $.200^{\prime \prime}$ and a lesser thickness of $180^{\prime \prime}$ is desirable for many applications. Sections of this size are most usable in lengths of 20'-25'.
d In general, the smaller the section size the more simple the section. The converse is not universally true since many large simple shapes are required, but the more complex sections occur in the large sizes. Based on the above conclusions, it was recommended that the sections shown in Figures l-4 be extruded during Parts II, III, and IV of the program.
4. Selection of Alloys

The alloys selected were:

1. C-135A Mo $7 \% \mathrm{Al}-4 \% \mathrm{Mo}$.
2. MS-821 $8 \% \mathrm{Al}-2 \% \mathrm{Cb}-1 \% \mathrm{Ta}$
3. $\mathrm{Ti}-155 \mathrm{~A} \quad 5 \% \mathrm{Al}-1.4 \% \mathrm{Fe}-1.4 \% \mathrm{Cr}$ - $1.2 \% \mathrm{Mo}$
4. Selection of Extruders

Per the cortractual statement of work, three extruders were required for Part II of the contract.

The following extruders were selected as sub-contractors to produce the indicated sections and alloys:

Babcock and Wilcox
U. S. Steel
H. M. Harper

Section Alloys
Angle Channel Zee

C-135 A Mo and MS 821 Ti 155A and C-135A Mo MS 821 and Ti-155A

SHARP CORNERS 士. 015
STRAIGHTNESS .050" PER FOOT TWIST - 1° PER FOOT

ANGLES $\pm 2^{\bullet}$

SHAPES SELECTED FOR EXTRUSION METHOD DEVELOPMENT

PART II
FIGURE 1

SHARP CORNERS .OI5RAD. MAX. STRAIGHTNESS .OI25" PER FOOT TWIST $1 / 2^{\bullet}$ PER FOOT, MAX. 5°

SHAPES SELECTED FOR EXTRUSION

 METHOD DEVELOPMENT PART IIIFIGURE 2

SHAPE SELECTED FOR EXTRUSIOM
FICURE 4

SHAPE SELECTED FOR EXTRUSION

B. PART II - EXTRUSION OF FIRST CATEGORY SHAPES

1. Extrusion, Straightening and Heat Treat Development at Babcock and Wilcox Company.
a) Extrusion Development

The extrusion program consisted of eight trials conducted on eight different occasions. The work performed on each date was designated as a separate test group.

1) Extrusion Facilities

The extrusion press is a 2500 ton Loewy-Hydropress capable of operating at the fast extrusion speeds necessary in steel and titanium extrusion. The extrusion press was equipped with a 4 3/16" container and $41 / 16^{\prime \prime}$ diameter hardened steel stem for all the extrusion trials. The 180,000 psi stress limitation in the steel stem required that the press extrusion force be limited to about 1,000 tons.
2) Extrusion Trials

Extrusion trials were performed on both of the titanium alloys involved, namely, C135 AMo and MS 821 . The extrusion trials can be divided roughly into three categories: (1) Extrusion of Round Bars, (2) Extrusion of Angles using a Drilled Billet, and (3) Extrusion of Angles using a Solid Billet. The results of seventy-six (76) extrusions, forty-five (45) of C135 AMo alloy, eighteen (18) of MS 821 alloy and thirteen (13) of AISI 4340, are summarized below. The extrusion data is listed in the Appendix. The extruded product from test group $\# 2$ is shown in Figure 6.

1. All titanium alloy billets were heated in an electric furnace with an argon atmosphere. The billets were coated with a glass frit before they were charged to the furnace. This method was used to obtain a uniformly heated billet with a scale-free surface.
2. Both glass lubricants and grease and graphite lubricants were investigated. Glass lubrication resulted in better surfaces and die life. The major problem with grease and graphite was maintaining sufficient lubrication over the full length of the extrusion. Fine mesh glass gave a better surface to the extrusion, but was more prone to die orifice plugging than regular mesh glass.
3. Two die designs were tried, First, a special die and mandrel were used in conjunction with a drilled billet to produce three angles in one extrusion (See Figure 7). The other die design (Figure 8) was a multi-hole die, again used to produce three angles simultaneously. These die designs were used to lower the extrusion ratio from that encountered with a single port die. The extrusion ratio for the die and mandrel was 22:1 and for the multi-hole die was 25:1. The multi-hole die appeared
to be more promising because of three shortcomings of the die and mandrel practice. These were (1) complications in manufacture of toolage; (2) loss in extrusion yield because of drilled billets; and (3) failure of the billet surface during the collapze of the billet to conform to the mandrel shape prior to extrusion. Flat dies with 20° inlet angle produced better results than dies with 30° inlet angles. .
4. Shell cast dies of two standard die steels, a chromium-nickel steel and a 12% tungsten hot work steel were employed. The 12\% tungsten hot work steel gave evidence of better die life and improved extruded surfaces than the chromium-nickel die steel. The dies were heat treated to Rc 40-46.
5. Both scalping and full lubrication* extrusion techniques were examined. To avoid division of effort between two different practices, it was decided to thoroughly explore the scalping techniques during this phase of the program.
6. It was established that the temperature of the tooling was critical. For the scalping method, a container preheated to $400^{\circ} \mathrm{F}$ was better than a hot $\left(1000^{\circ} \mathrm{F}\right)$ container. The colder container chills the billet skin and retards flow which is essential for the scalping method. Hot (800. $1000^{\circ} \mathrm{F}$) dies and die holders are advantageous for glass extrusion since the hot die will fuze the glass and minimize die clogging.
b) Straightening Development

Straightening trials were conducted in a 150 ton Loewy hydropress stretcher and detwister. This press had 40' head travel for stretching and could straighten 40 foot lengthe. The press was normally used for the straightening of heavy shapes. Limiting the machine tension to the low pressures required for the small angle extrusions was difficult, although in most cases the limiting tension was determined by the slip of the gripping jaws.

The current for resistance heating was supplied by a tube welding transformer. The voltage setting used for each extrusion was determined by the length of extrusion between the electrodes. The voltage settinge were selected to maintain the desired temperature (approximately $1100^{\circ} \mathrm{F}$) with continuous current, although it was occasionally necessary to shut the current off momentarily to prevent overheating.

* Full lubrication is the standard method of extrusion whereby the lubricated billet skin moves out of the container during extrusion to become the extrusion surface. Billet scalping is accomplished by pushing an undersize dummy block through the billet during extrusion and leaving a roughly concentric can, formed of the billet skin, in the container. This requires somewhat higher extrusion force than the full lubrication technique but presents the cleanent possible material to the die during extrusion. In order to retard the flow of the billet sixin and thereby achieve the scalping effect, the glass used to lubricate the billet should be a higher melting glass than that used for the glass pad. Figure 9 shows the scalp obtained on the extrusion discard.

Considerable difficulty was experienced in straightening and detwisting the $3 / 32^{\prime \prime} x l^{\prime \prime}$ titanium alloy angle extrusions. During initial trials, the principle difficulty stemmed from the slipping of the extrusions through the stretch press jaws which made it impossible to keep the extrusions in the yield condition as required for complete straightening. Additional problems resulted from local non-uniform resistance heating due to small electrode contact and occasionally due to extrusion cross section variation.

Improvement in the gripping problem was obtained with insulated jaws fitted with hard replaceable file inserts at the areas of contact with the angle extrusion. It was not possible to avoid slipping entirely, however, since the tapered jaw holders require tension to wedge the file teeth into the extrusion, and the slipping which occurs during the initial tension application dulls the file teeth and thereby permits further slip against the hard titanium surface when the tension is later increased.

Temperature measurements were made with optical and surface contact pyrometers. At higher temperatures fairly arcurate measurements were obtained with the optical pyrometer, but the surface contact pyrometer proved unsatisfactory for measurements in the $1000^{\circ} \mathrm{F}$ to $1300^{\circ} \mathrm{F}$ range so that Tempilsticks were used to measure the lower temperatures.

After straightening, the extrusions were sandblasted. This was accomplished in a large enclosed room by an operator wearing a respirator who walked along the angles and sandblasted them at table height.
c) Heat Treatment Study and Mechanical Property Testing

Mechanical property data obtained during the initial phases of the program proved to be erratic. Room temperature strength and ductility varied over a broad range with some attendant brittle fractures. Examination of these brittle fractures showed them to initiate from the surfaces which contained varying amounts of surface contamination. Subsequent evaluation revealed that brittle behavior was exhibited only when the extrusions were re-heated into the solution temperature range during heat treatment or straightening. Therefore, this brittle behavior was attributed to surface contamination formed during the high temperature exposure in air.

To eliminate the effect of surface contamination, tensile specimens were prepared by surface grinding the as-extruded and heat treated surfaces from the specimens. Tensile results were obtained on as-extruded, as-straightened, and heat treated samples. The as straightened samples were obtained from angles which had been solution treated at $1600^{\circ} \mathrm{F}$ by resistance heating for a few seconds to two minutes followed by a water quench. The angles were then straightened at approximately 1100 to $1200^{\circ} \mathrm{F}$.

The heat treated samples included those heat treated after straightening in the Babcock and Wilcox Labordtory and some which were heat treated at the Metlab Company in P hiladelphia prior to straightening at Babcock \& Wilcox. In all cases the solution treating temperature was $1650^{\circ} \mathrm{F}$. The
aging treatment varied from $1050^{\circ} \mathrm{F}$ to $1200^{\circ} \mathrm{F}$ for various time intervals. The heat treatment done at the Metlab Company was accomplished in a propane fired, vertical furnace. A protective atmosphere of helium gas was employed during the heating cycle. The heat treatment conducted at Babcock and Wilcox was accomplished in a laboratory muffle furnace with no protective atmosphere.

The most significant conclusion indicated by the heat treatment study and mechanical property testing was that in none of the conditions was it possible to obtain the objective mechanical properties for Cl35 AMo titanium alloy of 180,000 psi room temperature ultimate strength with 8% elongation. Secondly, improvement upon the as extruded properties was not obtained by heat treatment. T he lack of heat treatment response was a function of the extrusion process employed in Part II since the heat treatment capability of the 7Al 4Mo billets prior to extruaion was determined in the initial testing of the program to be 190,000 psi ultimate strength with 8% elongation.

Metallographic examination of the extruded product indicated that the majority of extrusions took place at or above the beta transue.

Extruded Product of Test Group No. 2 at Babcock \& Wilcox

Figure 6

Mandrel and Die Used for Extrusion of 3 Angles with a Drilled Billet

Figure 7

2.
 Extrusion, Straightening and Heat Treat Development at United States Steel Corporation

a. Extrusion Development
(1) Extrusion Facilities

The press tools for adapting the 2,500 ton extrusion press at the Gary Plant of the National Tube Division for extrusion of the small channel section from 2-3/4' diameter billets consisted of the following:
(a) Extrusion Press Liner - 2-7/8 inch inside diameter (extrusion ratio 27:1) - SAE 4340 steel heat treated to $300 / 350 \mathrm{BHN}$.
(b) Hollow Mandrel Holder - SAE 4340 steel heat treated to $390 / 440 \mathrm{BHN}$
(c) Stem - Halcomb 218 steel heat treated to 390/440 BHN.
(d) Dummy Blocks - Halcomb 218 steel heat treated to 390/440 BHN.
(e) Die Holder - Halcomb 218 steel heat treated to 390/440 BHN.
(f) Bolster - SAE 4340 steel heat treated to $360 / 419$ BHN.
(g) Guide Barrel - mild steel.

The extrusion tools were designed for a maximum press force of 500 tons. This is the extrusion force resulting from the maximum allowable stress of $180,000 \mathrm{psi}$ in the 2-7/8 inch diameter Halcomb stem. The tools, in general, performed satisfactorily during the extrusion trials. Two methods for heating the extrusion billets were used: (1) an electrically heated muffle furnace with argon protective atmosphere and (2) a container of molten glass heated by immersing the container in a high temperature salt pot.
(2) Extrusion Trials

Six extrusion trials were conducted at the Gary Plant. The data sheets for the trials are included in the Appendix.

The trials included pushes with grease and glass lubrication of flat face and modified flat face dies machined from ; chrome steel and cast from 11% tungsten steel. The flat face die design is shown in Figure 10.

Due to inadequate lubrication, it was not possible to develop an extrusion method capable of producing long ($15-20$ feet) extrusions with 125 RMS surface throughout and within the dime sional tolerances required. A section from the front end of a typical channel extrusion is shown in Figure 11 .

Specific conclusions concerning the important extrusion variables are presented below.

Billet Heating and Trans fer

Heating the titanium alloy billets under a protective atmosphere of argon in a closed container immersed in a molten salt bath provided good temperature control, temperature uniformity, and protection from surface contamination. Manual transfer of the small billets from the heating container to the press chamber was satisfactory when relatively few extrusions are to be made, but the billet transfer should be automated for commercial production runs.

Die Material

Dies shell-cast from steel containing about 0.40% carbon, 2% chromium, 0.35% vanadium, and 11.5% tungsten heat treated to a hardness of about 50 Rockwell C are resistant to wear, and therefore maintained uniform cross sectional dimensions in the extruded product. The required uniformity of cross sectional dimensions were not maintained when extrusion dies made from steel containing 0.20% carbon, 1.5% chromium, 1% nickel, 1% cobalt (about $20 \mathrm{R}_{\mathrm{C}}$) or steel containing 0.40% carbon, 1.05% silicon, 5.0% chromium, 0.35% vanadium, and 1.35% molybdenum ($50 R_{c}$) were used for the extrusion dies.

Die Design

Conical dies had no noticeable advantage over flat-face dies when glass lubrication was used during the extrusion; laminar flow being obtained with both die types. A disadvantage of conical dies with glass lubrication, apparent during the last trial, was the loss of much of the glass pad with the first foot of extrusion. When grease-base lubrication was used, shear-type flow occurred with both conical and flat face die types, but the shear cone formed was somewhat less pronounced with a conical die contour

Lubrication

No lubrication system was developed that provided the required surface finish on the extrusions beyond about six feet of extruded length. Of the lubricants studied, the best front end surface was obtained with Fisk No. 604, but Corning 3 KB glass gave better results in the sense that the surface of the extrusions remained somewhat smoother at the back end than when Corning No. 575 glass, Corning No. 9771 glass, Fisk No. 601 grease, or Fisk No. 604 grease were used. The protective film of glass obtained from a wetting of the extrusion from the glass pad reservoir that is typical of steel extrusion was not obtained with any of the glass compounds used during the program.

Extrusion Ratio

The extrusion ratio of 27 to 1 used throughout the program appeared to be suitable for the extrusion of the small channel section in 15 to 20 foot lengths. Variations in extrusion ratio were not studied in the program.

b. Straightening Development

Experiments were made at the Gary Plant of the National Tube Division to establish a suitable practice for hot straightening and detwisting the channel sections and for commercial heat treatment of the sections in conjunction with the straightening operation.

The stretch straightening and detwisting equipment at the Gary Plant of the National Tube Division consists of a Loewy 100 -ton capacity, horizontal stretch-straightening and detwisting machine. The essential parts of this machine are (1) a heavy cast iron bed, (2) a fixed rotatable head at one end, and (3) a movable hydraulically powered, non-rotating head. In operation, the ends of the bar to be straightened are clamped in the two heads of the machine, the fixed head is rotated to effect detwisting, and tensile force sufficient to produce slight plastic yielding throughout the bar is applied to effect straightening. Specicl jaws for gripping the small channel section in the heads of the stretch-straightener were constructed.

An Alnor "Pyrocon" contact-thermocouple pyrometer with a temperature range 0 to $1200^{\circ} \mathrm{F}$ was used to indicate the 900 to $1000^{\circ} \mathrm{F}$ straightening temperature and a Leeds \& Northrop optical pyrometer was used to indicate the 1600 to $1700^{\circ} \mathrm{F}$ solution temperature. The longer channels (12 to 15 feet) were resistance heated using the 45 -volt tap of the main salt-bath transformer and the shorter channels were heated using the 33 -volt tap. The temperature of the channels was controlled by switching the current in the transformer primary off when the channel reached a temperature $50^{\circ} \mathrm{F}$ above the desired temperature and switching it on at $50^{\circ} \mathrm{F}$ below the desired temperature. The controlling switch was located at the straightening press and was connected to operate a relay to furnish current to the primary coils of the transformer.

Initial trials indicated that the C135A Mo extrusion could be water quenched from $1600^{\circ} \mathrm{F}$ solution temperatures while held taut in the stretchstraightener without distorting during quenching. However, when the Ti-155A extrusions were similarly processed, considerable bow resulted and subsequent Ti -155A extrusions were therefore permitted to air cool and considerable improvement in straightness was obtained.

Gripping pressure was provided by an air cylinder, but during tension ir the yield range, this pressure was not sufficient and the additional wedging action of the jaws in the jaw holder during tension was required.

It should be noted that, whereas many of the channels were straightened and detwisted satisfactorily, several were bowed nlightly more than desired and several had localized sections with excessive twist that could not be rectified r the equipment used in this trial.
c. Heat Treatment Study and Mechanical Property Testing

Following the straightening and solution annealing treatment, all the channels were aged at $1200^{\circ} \mathrm{F}$ in a commercial roller hearth furnace. To insure uniform aging of these small sections, they were inserted into 7 -inch $O D$ by $1 / 2$-inch wall carbon steel tubes during the aging treatment in the gas-fired roller hearth furnace.

Three of the Ti-155A and one of the C135 AMo channels were selected for product evaluation at the Applied Research Laboratory of United States Steel. In addition, a channel section that had been extruded at the National Tube Division, Gary Plant, and heat treated in a vertical quench furnace with helium atmosphere at the Met Lab Company, Philadelphia, Pa., was also selected for evaluation.

The mechanical property evaluation consisted of room temperature tension tests, elevated temperature tension tests, and creep and stress rupture tests. In addition, the metallographic characteristics of the product were determined and documented.

From the results of the evaluation, the following conclusions can be drawn:
(a) Tensile strengths in the range 170,000 to 180,000 psi were obtained in both Ti-155A and the C135 AMo titanium alloy channels heat treated by the practices described in the previous section. However, as indicated by tensile elongation, only the Cl35 AMo alloy exhibited ductility within the desired range.
(b) Both Ti-155A and Cl 35 AMo channels are more notch sensitive at room temperature than at $800^{\circ} \mathrm{F}$ in s harply notched specimens.
(c) The fully processed channels of both alloys exhibited $800^{\circ} \mathrm{F}$ tensile strengths of about 70 percent of their room temperature tensile strengths and yield strengths of about 60 percent of their room temperature yield strengths.
(d) The creep strengths of the commercially processed channels were about the same as those of laboratory heat treated samples of the two alloys. The Cl35 AMo titanium alloy channel exhibited the desired creep of less than 0.5 percent in 500 hours when tested at $800^{\circ} \mathrm{F}$ and 70,000 psi stress. The $\mathrm{Ti}-155 \mathrm{~A}$ channels exhibited about five times the desired creep under these test conditions.
(e) Both the Ti-155A and the Cl35 AMo channels withstood 1,000 hours at $800^{\circ} \mathrm{F}$ under a stress equal to one-third the room temperature tensile strength in stress rupture tests. However, the Ti-155A alloy extended six times as much as the C135 AMo alloy in this test. In $800^{\circ} \mathrm{F}$ stress-rupture tests with a stress of two-thirds room temperature tensile strength, the C135 AMo alloy had a life of 24 hours, whereas the $\mathrm{Ti}-155 \mathrm{~A}$ alloy failed in 0.2 hours.
(f) Stability test results indicated that the tensile and yield strengths of the titanium alloy channels were not affected by heating for times as long as 1,000 hours while stressed at one-third the room temperature tensile strength, but that the ductility of the alloys was markedly reduced by heating highly stressed specimens for only 20 hours.

SECTION B-B

FLAT FACE EXTRUSION DIE
PART II CHANNEL
FIGURE 10
PROFILOMETEK READINGS IN 125-135 PROFILOMS MICRONCHES WERE TA-
KEN IN THE DRECTION
TRANSVERSE TO EXTRUSION

Surface Finish of Chinnel Extrusion
FIGURE 11
Push No. 34 at U. S. Steel

3. Extrusion Development at H. M. Harper Company

a. Extrusion Facilities

The extrusion press was a Loewy Hydropress four-column horizontal press of 1650 -ton capacity. The press was a high-speed water type capable of ram speeds from $1 / 4$ inch per second to 6 inch per second fully variable and controliable at any speed between the limits.

The press tools to adapt the 1650 -ton extrusion press to extrusion of the zee section from 3-7/8 inch diameter billets consisted of the following:
(1) Extrusion Press Liner - 4-inch inside diameter (extrusion ratio 102:1) Ajax Ti steel heat treated to 429/461 BHN.
(2) Stem - Ajax Ti steel heat treated to $445 / 475$ BHN
(3) Dummy Blocks - Ajax Ti steel heat treated to $415 / 429$ BHN.
(4) Backer - Ajax Ti steel heat treated to 401/429 BHN.
(5) Die Holder - Ajax Ti steel heat treated to $429 / 461$ BHN.
(6) Bolster - Ajax Ti steel heat treated to $401 / 425$ BHN.

Billet heating for all the extrusion trials was accomplished in an induction heating setup with three magnathermic vertical 60-cycle induction coil billet heaters. The heater pedestal was modified to permit heating the 3-7/8 inch diameter $x 4$ inch billets in the standard 5-5/16 inch heating coil. It was determined that by delaying (cycling) the heating rate, a billet could be heated rapidly to an even temperature throughout. The rapid heating possible in the induction heater minimized the possibility of billet surface contamination. After heating, the billet rolled down to the extrusion press and was placed into the container with a hand cradle in an average transfer time of seventeen seconds.
b. Extrusion Trials

Five extrusion trials were held at H. M. Harper Company. A total of fifty-five extrusion pushes were made consisting of thirteen pushes of 4140 steel, thirty-eight of Ti -155A titanium alloy and four of MS 821 titanium alloy. The trial data sheets are included in the Appendix.

The trials indicated that extrusion of the difficult zee section was possible at a $102: 1$ extrusion ratio, but good surfaces and the desired dimensional tolerances were not obtained due to die wear.

Glass, grease and graphite lubrication vere investigated as well as extrusion in $5 / 8$ inch wall thickness low carbon steel tubes which was unsuccessful.

The following die materials and designs were used during the extrusion trials:

Cast Dies

> M2 or HMH $72-.70 \%$ C. $4 \% \mathrm{Cr} 2 \% \mathrm{~V} 5 \% \mathrm{Mo} 6 \% \mathrm{~W} \mathrm{R}_{\mathrm{c}} \mathbf{5 0 - 5 2}$ Star "J" 2.5\% C. 41% Co. 32% Cr 17% W
> Machined Dies
> $\begin{array}{llll}\text { Crucible Halcomb } 218 & .40 \% \mathrm{C} . & 5 \% & 1.35 \% \text { Mo. . } 35 \% \mathrm{~V} . \\ \mathrm{R}_{\mathrm{C}} 50-52\end{array}$
> $\begin{aligned} & \text { Crucible Peerless "A" . } 28 \% \text { C. } 3.25 \% \text { Cr } 9 \% \text { W. . } 25 \% \text { V } \\ & \text { Carpenter TK }\end{aligned}$
> Insert Dies

Aluminum oxide insert with a HMH 72 shell cast shroud.
Chrome carbide insert with a Halcomb 218 shroud. Zirconium carbide insert with a HMH 72 shell cast shroud.

Design 1
A 25° conical face die, entry radii $3 / 8$-inch, bearing length of $1 / 4$-inch and a 7° back relief $1 / 8$-inch long.

Design 2
A 25° conical face die, entry radii $3 / 8$-inch, 25° angle to bearing, bearing length of $1 / 16$-inch, and 7° back relief $1 / 16$-inch long.

Design 3
Flat faced die with entry radii of $3 / 8$-inch with $1 / 4$-inch bearing length, and 7° back relief about $3 / 4$-inch long.

The three methods of extrusion used during the trials were:
Standard
The billet was brought to the die with the stem under extrusion press prefill pressure and upset. High pressure was then applied. A delay of 1-2 seconds occurred before extrusion.

Throttle
The press speed was throttled by means of a manual valve. This in turn caused a delay of $3-6$ seconds before high pressure could be applied.

Impact

High pressure was applied to the billet as the stem made contact. There was no delay. The results obtained with the use of the impact extrusion method indicated that the glass lubricant was not given time to fuse and thereby shield the die from the billet heat to avoid die deformation.

c. Conclusions

The extrusion objectives of surface finish and dimensional uniformity for the zee section were not approached. Lengths of 25 feet were produced but die washout was excessive. The thickness was held within the $.062 \pm .006$ tolerance for some parts of the cross section for the entire length on the best extrusion (Push No. 19) but the die wash originating in the fillet areas tapered into much of the .062 areas.

The specific conclusions that could be drawn from the extrusion techniques employed during the trials are presented below for each of the extrusion variables.
(1) Billet Heating

Billet heating was not a problem during the trials. Billets heated in the 60 -cycle billet heater were uniform in temperature and did not have a surface oxidation determined to be harmful in extrusion.
(2) Die Materials

The die materials used during the trials did not seem to have the properties necessary to withstand extrusion under the prevailing conditions. The metal dies had several deficiencies. The most serious of these was their lack of resistance to the combination of hot glass and hot titanium during the extrusion of such a thin section.

The ceramic and carbide materials failed due to their extreme brittleness under tension type stresses. The designs used during the trials allowed this type stress since the insert was not confined sufficiently in the die shroud.
(3) Die Design

The design of an extrusion die for titanium extrusion using glass lubrication must be one that permits proper lubrication and eases the flow of the metal during extrusion. The conical type die eased the flow, but did not retain glass for proper lubrication. This was because the glass had a tendency to flow at a faster rate than the metal.

The proper design for grease-type lubrication could not be determined since the high extrusion temperature volatilized the grease, thus leaving only graphite for lubrication.

Of the three basic die designs that were used, design no. 2 with large open double angle conical entry was the least satisfactory, although the press force was reduced with that design. The design does not have sufficient die mass at the bearing area to carry away the heat of the passing titanium alloy. As a result, the bearing area washed considerably.
(4) Lubrication

Glass lubrication was the most promising type used. Complete coverage of the extrusion with glass was achieved on most pushes. However, the glass was not uniformly thick on the extrusion. Where the glass was thin, pickup and resulting scratching occurred. Where glass was thick, the lines formed on the billet face were carried through the die and appeared as sharp lines on the extrusion.

The defect called pickup was probably a reaction product from a reaction between titanium, glass and/or the die. Examination under polarized light indicated that the material called pickup was crystalline in nature. Tae glass as used for lubrication was not crystalline under polarized light. Some hard particles that could be produced from a glass, titanium and die reaction are $\mathrm{Al}_{2} \mathrm{O}_{3}$ - aluminum oxide; SiO_{2} - silica; TiO_{2} - titanium dioxide; TiC - titanium carbide; and combinations of these. All of the above materials are hard at extrusion temperatures.

To overcome the variation of thick and thin glass on the extrusion, a glass slurry coating was used on a conical die (Push No. 22). This procedure was not successful because the glass was consumed by the first few feet of the extrusion.
(5) Die Teınperature

The die temperature variable was not completely investigated. Temperatures as high as could be used without excessive tool wear were maintained. These temperatures were $400^{\circ} \mathrm{F}$ to $1200^{\circ} \mathrm{F}$. This was in line with general extrusion practice.
(6) Extrusion Ratio

The extrusion ratio necessary to extrude the section from a four-inch diameter container was the greatest deterrent to achieving success in this program.

The high extrusion ratio necessitated the use of high billet temperatures which in turn caused other problems such as surface contamination and excessive die wear.

4. Manufacturing Evaluation at Republic Aviation Corporation

a. Resistance Heating Experiment

Purpose

The resistance heating experiment was conducted to determine the heating characteristics of various voltage and temperature ranges in the resistance heating of a titanium alloy structural length, and to determine the degree of temperature differentials in the cross section at the range of temperatures. This information can be used as a guide in the consideration of hot stretch straightening or heat treatment of the extruded lengthe. A 4Al-4 Mn titanium alloy extruded length 51 long and machined to $3 / 32^{\prime \prime} \times l^{\prime \prime} x l^{\prime \prime}$ was used for the resistance heating tests.

Conclusions

Less time was required to reach the maximum temperature at higher voltages. For example, at 22 volts the maximum temperature, $1795^{\circ} \mathrm{F}$, was reached in 80 seconds and at 9.4 volts the maximum temperature, $935^{\circ} \mathrm{F}$ was reached in 170 seconds. This was a result of the temperature exponential radiation heat loss which was a much larger factor at the higher temperatures and abruptly halted the rate of heating at the higher temperatures.

The data plotted in Figure 12 shows the rate of heating at voltage ranges of 9.4 to 22 volts and the maximum temperature these voltages produced in the 5 foot angle used for the test. The current required to reach the maximum temperatures at the range of AC tranaformer voltage settings was plotted in Figure 13.

The equipment and power requirements for other extruded shapes and alloys in various lengths can be approximated by correcting for the difference in resistivity of the alloys, cross section area, and length by means of Ohms Law and the equation $R=\rho l$ where $R=$ resistance, $p=$ resistivity, $1=$ length and $A=$ cross section area. This is possible since the maximum temperature attainable for the voltages plotted are determined by the equilibrium between the heat equivalent of the KVA input and the conductive and radiant heat losses. Since the ratio of surface perimeter to surface area in structural extrusions are roughly similar, approximately equal maximum temperatures will be realized in resistance heating all titanium alloy extruded lengths provided that the KVA inputs per square inch of cross section per foot of length are equal. Transformer power requirements for resistance heating various titanium alloy extruded lengthe to temperatures in the range of 935° to 1795° are shown in Table 1.

Variations in temperature in the resistance heated length occurred at points in the cross section of the angle. The corner and fillet area was consistently at a higher temperature than the outer portions of the lags. This can be attributed to the concentration of the mass of the cross section in the sharp corner and fillet area which reduces radiation losses, and to the relatively greater exposure of the legs. The temperature differential varied from $20^{\circ} \mathrm{F}$ at $1000^{\circ} \mathrm{F}$ to a differential of $100^{\circ} \mathrm{F}$ at $1800^{\circ} \mathrm{F}$. This differential in temperature was consistent throughout the length, and no temperature gradients existed along the extruded length except at the ends in the zone $l^{\prime \prime}$ to $2^{\prime \prime}$ from the electrodes where heat is conducted to the electrodes.

Equipment

100 KVA Transformer, single phase, 60 cycle, $220 / 440$ volt connected to deliver secondary output in a range oi 7 to 22 volts.

Millivoltmeter to determine temperature.
Microvoltmeter to determine temperature variations through the cross section and along the length of the angle.

Vacuum tube voltmeter to record voltage drop across shunt.

Procedure

A pair of clamps machined to fit the angle around its entire surface were used as electrodes. The clamps were spaced 5 feet apart on the angle and then fastened. The transformer leads were screwed to the angles to complete the setup. The titanium angle was heated by passing current through the angle at 6 voltage settings of the transformer. The angle was continuously heated at each voltage setting and the temperature was recorded at 10 second intervals until the maximum temperature was reached. The current flow during each test was determined from the voltage drop across a $2,000 \mathrm{amp}$ shunt connected in series with the angle being heated. The voltage drop remained quite constant during the heating with a variation of 5% from minimum to maximum readings. This can be attributed to the relatively constant resistivity of the $4 \mathrm{Al}-4 \mathrm{Mn}$ alloy which ranges from 150 to 170 to 150×10^{-6} ohm cm in the 200° to 1000° to $1800^{\circ} \mathrm{F}$ temperature range. Maximum readings were recorded for the voltage drop across the shunt for each of the heating tests. The voltage drop readings were measured with a vacuum tube voltmeter which was isolated from the heating circuit by an instrument transformer with a l:l ratio.

Chromel-Alumel thermocouple wires were welded to various cross section locations on the titanium angle by heliarc welding which permitted inserting the twisted wire into a tiny molten puddle of titanium. One pair of thermocouple wires was connected to the millivoltmeter so that the total temperature of the angle could be determined from the millivoltmeter readings. Other the rmocouple wires were joined and connected to the microvoltmeter 80 that the potential difference at various parts of the cross section could be determined.

A step switch was used to permit rapid alternate readings of difference in potential between various points in the cross section and length of the extrusion Separate heating tests were conducted to determine the variation in temperature at various points in the cross section or along the length of the extrusion. Readings were taken immediately after the heating current was shut off to avoid distortion of the thermocouple readings due to voltage differentials along the extrusion length.

The data in Table l is presented to indicate the power requirements to heat extruded titanium alloy lengths to the indicated temperstures. The data for the 10,15 and 20 foot lengths is calculated from the data recorded during the resistance heating tests of the $4 \mathrm{Al}-4 \mathrm{Mn}$ five foot extruded angle which was heated by a l00KVA transformer operating at 100% duty cycle for the indicated voltages.

Commercial transformer equipment is available for heating lengths to the lower temperatures, but specially designed equipment would be required for the power to heat to the higher temperatures. Another consideration in resistance heating heavy sections to high temperatures that will require investigation is the pertinent safety codes for the high currents required.

The data in the table is based on an average extrusion shape with a perimeter to cross section ratio of approximately $21: 1$ and an average resistivity of 160×10^{-6} ohm cm. Correction for a higher or lower resistivity can be made by raising or lowering the voltage required and KVA required in proportion.
b. Contamination Rate Study

Purpose

The surface contamination of titanium alloys at elevated temperatures for various time exposures is an important consideration during billet heating and during extrusion, hot straightening and heat treatment of the extruded lengths. The purpose of this study was to determine the rate of contamination during heating in open air and in the restricted air supply and circulation of an electric furnace

Conclusions

As indicated in the curve Depth of Contamination vs. Time of Exposure (Figure 14), the rate of contamination of Ti 155A alloy specimen resistance heated in free air was almost twice as rapid as the rate of contamination of a specimen heated in a muffle air furnace. These two heating conditions can be considered the upper and lower limits of contamination rate in heating without atmosphere. The estimated contamination depth for practical heating applications will approximate the depth of either of the test conditions or an in-between condition.

The maximum allowable contamination of .0025 for removal by chemical or mechanical finishing is plotted on the curve. This indicates that $1650^{\circ} \mathrm{F}$ is a safe temperature for heating periods of over 1 hour and 5 to 15 minute exposures at $1750^{\circ} \mathrm{F}$ are allowable. At higher temperatures, only short exposure of less than 1 to 3 minutes can be considered.

The rate of beta grain growih above the beta transus was instantaneously very rapid. At temperature of 1900 to 2250 , large grains (25 and 30 microns respectively) were present after 1 minute heating. After 10 minutes, these grains grew to 50 to 55 microns respectively.

Equipment
For furnace heating - Tempco Electric Double Door Muffle Furnace $81 / 2 \times 91 / 2 \times 131 / 2$ heating chamber

For resistance heating - 100 KVA Transformer, single phase, 60 cycle, 220/440 volts, connected to deliver secondary output at 7.3 volts with adjustable percentage heat control for resistance heating.

Bausch \& Lomb MILS Metallograph

Procedure

The electric muffle furnace was brought to the test temperature and small specimens (approx. $1 / 16^{\prime \prime} \times 1 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$) of Ti 155 A alloy were placed on a titanium platen in the furnace. It was estimated that the specimens reached the test temperature in approximately 10 seconds and were then held at the temperature for the time intervals plotted in the curves. Quenching was accomplished by a rapid transfer into a water can at the furnace door. The specimens were mounted, polished, etched with $10 \% \mathrm{HF}-5 \% \mathrm{HNO}_{3}$ solution, examined metallographically and photographed. This preparation included removing $1 / 64^{\prime \prime}$ of material from the face of the specimens to be viewed. The structure viewed was longitudinal to the billet axis. Contamination depth was measured with a B\&L micrometer eyepiece on the surface exposed to the air.

The resistance heating tests were conducted with Ti 155A specimens approximately $1 / 16^{\prime \prime} \times 3 / 8^{\prime \prime} \times 6^{\prime \prime}$ which were prepared from $23 / 4^{\prime \prime}$ round billet bars. The specimens reached the 1750° test temperature in 30 seconds and reached the 2050° test temperature in 20 seconds after the current was applied. Temperature measurement was made with a Chrom-Alumel thermocouple. By adjusting the heat control, the test temperature was maintained for the time intervals plotted in the curve. Quenching was accomplished by pouring water over the hot specimens. The specimens were then prepared and examined as described in the above paragraph.

c Stretch Wrapping Evaluation

Specimens, Equipment and Procedure

An evaluation of the stretch wrapping characteristics of the 7Al-4Mo titanium alloy angle extrusions which were produced by the best extrusion method
(glass lubrication-hot tooling-scalping) developed during Part II of the program was conducted at Republic Aviation Corporation.
$3 / 32^{\prime \prime} \times l^{\prime \prime}$ angles were received from Babcock and Wilcox in lengths that were straightened and solution treated with resistance heat and surface cleaned by grit blasting. The resulting surface finish was quite consistent throughout the lengths and was not essentially altered from the as-extruded condition. The 7Al-4Mo angle extrusions typically have an . 0005" contaminated surface after the above treatment. Extrusions with smooth (100 microinch, RMS) and rough (250 microinch orange peel, little striation) surfaces were used for the evaluation.

The amount of material available for the evaluation was limited. Much of the extruded product was unsatisfactory due to incomplete section fillout during extrusion, and most of the best product had been used for mechanical property testing and heat treatment studies. Of the material available, it was possible to cut only eight lengths $58^{\prime \prime}$ long.

An $18^{\prime \prime}$ die diameter was selected as a fairly severe bend for a 3/32' $\times \mathbf{l}^{\prime \prime}$ angle structure, and the angles were wrapped to 180° during the operation. All the stretch wrapping was done on a Hufford Al2 stretch press equipped with air operated collets to grasp the extrusions. The collets held the insulated jaws required to permit resistance heating of the extrusions without passing current through the machine bed. Jaw teeth were cut to a medium 21 pitch diamond knurl and hardened to Rockwell C-60. This is a finer knurl than is used for softer metals and has been found to be effective in grasping titanium without slipping or notching to failure at the jaws. A photograph of the equipment during stretch wrapping is shown in Figure 15.

Fitted electrodes were fastened to the angles at points just outside the stretch press jaws. Flexible cables were used to connect the electrodes to the output of a 1500 amp Hobart Motor Generator (variable voltage, $0-30$ volts). During the trials the voltage required to heat the angles into the 1100-1200 range was approximately 9 to 11 volts.

The dies were heated into the range of 800 to $1200^{\circ} \mathrm{F}$ before the angles were brought into contact with the die. This heating was accomplished at the press with two acetylene torches. Twenty to thirty minutes were required to heat the die from room temperature to the operating range.
Stretch Wrapping Trails
A typical part formed during the evaluation is shown in Figure 16. The data is listed in Table 2.
The first two trials were conducted with rough and smooth extruded surfaces with a 1100° die and a 4-ton wrapping force. Both angles failed before wrapping had progressed more than 10°. The failure was attributed to localized strain at point of contact with the die due to the reluctance of the colder material outside the die to yield. In the balance of the trials, the angles were resistance heated to a uniform temperature throughout the angle before being brought into the die. Approximately one minute was required to bring the angle from room temperature to the operating range.

The first resistance heated trial, \#3, produced a wrapped angle without failure. However, considerable difficulty was experienced in getting the compression leg to enter the die after about 90° of wrapping due to twist in the portion of the angle outside the die. This twist occurred due to an equalization of forces in the two angle legs outside the die. A large lower plate was substituted on the die to provide a l" flange for entry. This considerably improved the entry problem, and subsequently it was found that higher wrapping forces also facilitate entry.

Trials \#4, 5,6 were conducted with continuous or intermittent resistance heating during the wrapping and stretching operations. This heating proved to be a problem since it was difficult to avoid overheating either at the die contact or in the portions of the angle outside the die as the overall electrical resistance dropped during the wrapping operation.

The most successful results were obtained in trials \#7 and \#8 by resistance heating the angles until wrapping was started. The higher wrapping forces (4 tons) used for trial 7 and 8 eliminated corrugation even though the compression leg clearance was excessive (9/64') due to die deformation.

Stretching into the yield range was not effectively realized before Push \#7, and most of the trials showed almost no elongation in the unwrapped portions of the angle. The 4 ton forces used for stretching did not put the angles into yield. However, since the fracture point is so close to the yield point in titanium alloys, several failures had occurred. The stretch force was not increased until trial \#7 since the number of angles available for evaluation was limited. An elongation of approximately 3% was obtained in the unwrapped portion of \#7 and shrink was a minimum of $11 / 2-2 \%$ with approximately 10% stretch. After successfully yield stretching this angle, it was disappointing to find that the part radius still did not conform to the $9 \prime$ die radius even after a $1 / 2$ hour period at 1200 to $900^{\circ} \mathrm{F}$. Subsequently, the die was reheated to $1300^{\circ} \mathrm{F}$. At this higher temperature, the creep forming temperature of the $7 \mathrm{Al}-4 \mathrm{Mo}$ alloy was attained and the radius of part \#7 conformed to the die radius ($91 / 16^{\prime \prime}$ vs $9^{\prime \prime}$) after a short 3 minute low tension contact with the hot die.

A radiation pyrometer was available to record the temperature of the heated extrusion, but this method of temperature measurement was unsatisfactory since variations of temperature along the angle lengths could not be recorded and the angle target moved out of focus and position during the wrapping operation. Tempilstiks were found to be satisfactory for die and angle temperature measurements.

A die was machined to $18^{\prime \prime}$ diameter from SAE 1010 steel for the evaluation. Originally, the die contained only thrie screws to fasten together the upper plate, spacer and lower plate. The plates are $l^{\prime \prime}$ thick and the spacers are variable from $3 / 32$ to $5 / 32^{\prime \prime}$. After the first three trials, it
was determined that a flange portion added to the lower plate would reduce the tendency for the angle to twist before entering the die. To accomplish this, a new $20^{\prime \prime}$ diameter lower plate was substituted and a circumferential ring of screws was added to reduce deformation of the plates during the $1000^{\circ} \mathrm{F}$ operation. Examination of the upper and lower plates after the eight stretch wrapping trials showed that both had deformed approximately $1 / 16^{\prime \prime}$. This condition progressed during the trials, and the circumferential screws were not adequate to fasten the plates securely against the spacer ring to obtain a restricting flange space. However, the combination of high operation temperature and wrap force was sufficient to prevent corrugating the later trials. Typically, the compression edge increased about . 005" while the tension leg of the angle reduced about . 003" in thickness.

The die surfaces in contact with the angle were coated with a 1/64' layer of aluminum oxide ceramic spray as furnished by Metallizing Engineering Company. This coating was then sealed with brush coats of hydrolized ethyl silicate. The ceramic coating provided a hard forming surface and an electrical insulation between the die and angle to permit the resistance heating of the angle during wrapping without creating a short circuit through the die. The ceramic coating was an effective electrical insulation except at points of severe corrugation which created pressure points against the die thereby creating arc spots. Such arc spots were the center of local compression yielding. After Push \#5, when the die was heated to $1200^{\circ} \mathrm{F}$ with acetylene torches, the ceramic coating began to peel off the steel die. This is attributable to the intense torch heat and localized heating, since the coating is normally adherent at much higher temperatures.

The limited evaluation performed indicated further work was required but permitted the following conclusions and recommendations:

1. Extruded 7Al-4Mo titanium extrusions can be successfully stretch wrapped to part configurations but higher temperatures are required for this high creep strength alloy than are required with other alpha beta titanium alloys in current use.
2. One part, \#7 was successfully formed to the part configuration (Figure 16) by wrapping at $1100^{\circ} \mathrm{F}$ and creep forming at $1300^{\circ} \mathrm{F}$.
3. Future stretch wrapping evaluation should include the following:
(1) Hot die - no resistance heat
a. Range of die temperatures
b. Range of wrapping forces
(2) Hot die - resistance heated part
a. Locally, internally heated die to permit temperature increase into creep range after forming.
b. Separate creep fixture if (a.) is not practical.
4. The $l^{\prime \prime}$ thick carbon steel dies cannot resist the 1200° forming temperatures without deformation. For future evaluations, the following should be considered:
a. Hot work steel dies
b. Thicker dies
c. Locally, internally heated die with ope rating temperature confined to die circumference.

d. Joggling Evaluation

Introduction

A joggling evaluation was conducted with 7Al-4Mo titanium alloy angles which were extruded during Part II of the program. The objective of the evaluation was to determine the forming characteristics of these extrusions under various tool and part temperatures for tight, standard and open joggles.

The extruded material available for the evaluation varied considerably in surface finish. Most of the better material had been used for previous property testing. Some of the angles which were used for the joggling evaluation were cut from the straight ends of angle lengths which had previously been used in stretch wrapping. Since the overall leg dimensions (nominal $1.000^{\prime \prime}$) varied considerably, one leg of the angles was milled to . $850^{\prime \prime}$ so that the joggle kick plate would bear uniformly in all tests.

The joggling was performed with a Model 2B joggle die manufactured by the Joggle Tool and Die Co. The die was equipped with heaters in the lower portion which permitted tool temperatures up to $600^{\circ} \mathrm{F}$. The die inserts were interchangeable for various extrusion shapes and both joggle depth and joggle length are adjustable. The first tests with unhardened tool steel inserts normally used for aluminum forming showed such inserts were too soft for forming titanium alloy, whether heated or unheated. Hardened tool steel blocks were obtained with hot work die steel kick plate inserts. These proved satisfactory and showed no wear after 50 trials at roum and elevated temperatures.

The initial testing at room temperature proved to be unsuccessful and resulted in severe cracks in all cases (see Figure 17). The remainder of the tests were conducted at temperatures from $500^{\circ} \mathrm{F}$ to $1300^{\circ} \mathrm{F}$. Angles $4^{\prime \prime}$ long were heated in a small electric clam shell furnace for periods up to 3 minutes to reach the desired temperature. The angles were quickly removed with asbestos gloves and dropped into the die opening. While the operator clamped the extrusion with a hand lever, the temperature of the unclamped flange was read by a technician with a contact thermocouple pyrometer. No more than 5 seconds elapsed between removal from the furnace and the joggle press stroke, and parts were, therefore, formed at the temperatures recorded.

Results and Conclusions

Joggling Method

Extruded angle material was available for approximately 50 joggle trials. The first 10 attempts at joggling were done with both the angles and the die at room temperature. The severe cracking which invariably occurred is shown in Figure 17. Formability was greatly improved during the last 40 trials with heat, but the number of tests was not sufficient to conclusively indicate the best heating method or forming temperature.

The trial conditions and results with the heated tests are presented in Table 3. In the first series of tests, both die and angles were separately heated; in the second series, the angles were heated while clamped in the hot die; and in the third series, hot parts were formed in the room temperature die. Heating the parts in a hot die proved to be the least successful method and in four trials, all angles showed slight cracks. The results do not indicate a statistical choice between furnace heated parts in either the hot or cold die since in both methods, cracks were obtained in approximately 25% of the trials. However, heating both the die and the part would appear to be the most practical production method since more time is available to the press operator before excessive temperature drop occurs.

Joggling Temperature

The results are entirely inconclusive as far as a choice of joggle temperature is concerned. Both cracked and uncracked joggles were obtained at all temperatures from 500 to 1100°. No cracks were obtained in six trials over 1200°. Inspection of the cracked angles did not indicate that cracking resulted from extrusion defects. Some of the failures were in the form of very small multiple cracks which are associated with surface contamination. From the limited number of specimens available for testing, no definite conclusions could be drawn on either the cause of cracking or optimum temperature. The results indicated that heating to 500° markedly reduced the degree of cracking. Further testing would be required to determine whether best results would be obtained at a temperature between 500 and 1200° or whether joggling must be performed over $1200^{\circ} \mathrm{F}$.

A typical joggle formed at elevated temperature is shown in Figure 17.

Joggle Dimensions

A joggle shim of $.162^{\prime \prime}$ was used for all trials. This resulted in a finish joggle height varying from . 105 to $.150^{\prime \prime}$. The least variation occurred with furnace heated angles in a heated die. With this procedure, the finish joggle height varied from . $130^{\prime \prime}$ to $.150^{\prime \prime}$. The forming of tight joggles ($7 / 16^{\prime \prime}$) transition appears to be a problem at temperatures under $1200^{\circ} \mathrm{F}$. Longer ($17 / 32^{\prime \prime}$) joggle transitions resulted in a lower percentage of cracked parts. Only three trials were conducted with the longest (5/8') transition and no conclusions can be drawn from such limited results, although it is felt that a long joggle transition is desirable.
e. Bend Testing Evaluation

Specimens, Equipment and Procedure

Bend tests were performed with specimens taken from 7Al-4Mo angle and channel extrusions to determine the minimum bend radius for this extruded titanium alloy.

3/4' longitudinal strips were cut from the angles and channels. The as-extruded surface of the specimens was not altered for the bend tests. All bends were made transverse to extrusion between beryllium copper V blocks mounted in a vise. Bend tests were made at room temperature, $800^{\circ} \mathrm{F}$ and $1000^{\circ} \mathrm{F}$. For the high temperature tests, specimens were heated in air in an electric furnace for 10-15 minutes to reach the recorded temperature. The beryllium copper jaws were maintained at $800^{\circ}-900^{\circ}$ by internal cartridge heaters for both $800^{\circ}-1000^{\circ}$ bend specimens. Transfer from the furnace to the V blucks was accomplished with hand tongs in approximately 5 seconds. The gradual cooling as vise pressure was applied generally required 2 or 3 furnace reheatings of the specimen to maintain the temperature until the desired 90° bend was attained. The bent specimens were then examined for cracking without magnification.

Results

The results of the bend tests of 3/32" 7Al-4Mo extrusions are shown in Table 4.

It was not possible to bend specimens at room temperature without cracking at $\# 6 T$ radius, which was the largest radius available in the bend test tooling. Extruded material did not crack at radius up to 3 T , at 800° and $1000^{\circ} \mathrm{F}$. Heat treated and aged material required a 4 T radius to avoid cracking at 800° and 1000°. The solution treated material was least ductile and required 5 T at $800^{\circ} \mathrm{F}$ and 4 T at $1000^{\circ} \mathrm{F}$ to avoid cracking.

f. Drilling Evaluation

Introduction
A drilling evaluation was conducted with 7Al-4Mo titanium alloy angle and channel extrusions to determine the drilling characteristics of the material. As extruded and heat treated extrusions in the Rockwell "C" hardness range of 37 to 40 were used in the evaluation. Drill sizes of \#7 and \#21 which represent typical small fastener hole sizes were tested with the higher included point angles typically used for harder materials. Drill life was measured in terms of the maximum number of holes which could be drilled into the $3 / 32^{\prime \prime}$

[^0]thick extrusions before either the drilling pressure or the drilling time doubled. Feed pressure was maintained by hand to obtain the highest cutting rate possible without excessively heating or breaking the drill. A table of the results of the evaluation is presented in Table 5. The table indicates the number of holes which resulted from standard twist drills of steel and carbide when these drills were tested with 3 surface speeds and several drill pint modifications (Figure 18). The time required to drill the first hole for each set of conditions is an economically important factor and is tabled with the number of holes obtained so that both factors can be considered together.

Results and Conclusions

Drill Material
Carbide tipped drills with standard point configuration produced 25 to 30 holes as compared to 3 to 14 holes with the various grades of steel drills. This advantage with carbide did not occur in the type " D " reduced web point where the carbide tipped drill produced 50 holes as compared to 60-130 holes with steel drills. The results further indicated that carbide drills were not advantageous since longer drilling times were required due to the sensitivity of the carbide point to compressive forces which required lower feed pressures to avoid crumbling the drill edge. Therefore, since the carbide tipped drills did not result in a performance advantage under the best drill point conditions and since these drills cost considerably more than steel drills, they are not recommended for this application.

Cobalt steel and deep nitrided steel drills produced more holes than high-speed drills under comparable drill point conditions. This advantage varied from 10 to 100% depending upon drill speed and drill point. After the first sharpening nitrided drills produced less holes since grinding removes the nitrided case at the base of the drill, and reground nitrided drills can be considered equivalent to high-speed drills. In view of the performance advantage, cobalt and deep nitrided drills are particularly recommended, although high-speed steel drills are quite satisfactory. In this application, the additional cost of the cobalt steel drill will be more than offset by the greater number of holes produced during the life of the drill.

Drill Speeds

The results indicated that slower surface speed of 16 feet per minute produced more holes between sharpening than the higher surface speeds of 27 and 35 feet per minute. However, considerably longer drilling time is required per hole at the slower surface speed. For this type of application, 30 to 35 surface feet per minute with a feed rate of .002 to .004 inches per revolution are recommended since the reduced labor cost in shorter time per hole greatly exceeded the additional drill cost resulting from less holes between sharpening.

Drill Point

The most significant result of the drilling evaluation was the establishment of the drill point configuration as the major factor in determining drill productivity. The recommended Type " D " Reduced Web drill point produced approximately 100 holes between sharpenings as compared to approximately 10 holes for a standard point drill. The photographs and drill point descriptions in Figure 18 illustrate several drill point modifications that resulted in improvement over the Type A Standard Point.

The secondary clearance modification in the Split Point Type "B" drill resulted in a small improvement over the Standard Point due to the reduction in bearing'work hardening and improved opportunity for cutting at the drill center.

The Type C Slash Point drill resulted in further improvement since the front edge grinding brings the center to a point to obtain minimum work hardening during irilling and the grinding also reduced the normal drill rake to 0° therely strengthening the point cutting edge.

The Type D Reduced Web drill did not bring the drill center to a point and therefore can work harden the titanium to a greater degree than Type C. Type D, however, retains enough web to maintain a strong point for a greater number of hoies than Type C where the sharper center breaks down sooner.

The Type E. Modified Split Point also has the advantage of reduced web but requires more drilling time than Type D.

AC TRANSFORMER POWER REQUIREMENTS FOR RESISTANCE HEATING TITANIUM ALLOY EXTRUSION LENGTH

Max. Temp.	5' Length	10' Length	15' Length	$\begin{gathered} \text { Cross } \\ \text { Section } \\ \text { Area } \\ \text { (sq.in.) } \end{gathered}$	Current (amps) All Ligths	Rated KVA Reqd per ft to Reach Max. Temp.
${ }^{\circ} \mathrm{F}$. 1	215	4.04
				. 2	430	8.08
935	9.4	18.8	28.2	. 3	645	12.12
				. 4	860	16.16
				. 5	1075	20.20
				. 1	332	9.7
				. 2	664	19.4
1265	14.6	29.2	43.8	. 3	996	29.1
				. 4	1338	38.8
				. 5	1660	48.5
				. 1	371	11.9
				. 2	742	23.8
1410	16.0	32.0	48.0	. 3	1113	35.7
				. 4	1484	47.6
				. 5	1855	59.5
				. 1	441	16.6
				. 2	883	33.2
1550	18.8	37.6	56.4	. 3	1324	49.8
				. 4	1766	66.4
				. 5	2207	83.0
				. 1	474	19.9
				. 2	948	39.8
1730	21.0	42.0	63.0	. 3	1422	59.7
				. 4	1896	79.6
				. 5	2370	99.5
				. 1	516	22.7
				. 2	1032	45.4
1795	22.0	44.0	66.0	. 3	1548	68.1
				. 4	2064	90.8
				. 5	2580	113.5

TABLE 2
Stretch Wrapping Data－7Al 4Mo Angle Extrusions

1100°
1100°
800°
1100
Stretch
Force 0
0
0
0
0
1
Wrap ${ }^{(2)}$
Force，
7
$\begin{array}{ll}\text { Force } & \begin{array}{l}\text { Failed at hot spot due to contact } \\ \text { with die }\end{array} \\ 4 & \begin{array}{l}\text { Current on during wrapping and } \\ \text { stretching．No flange on die．}\end{array} \\ 4 & \begin{array}{l}\text { Part corrugated．Arc spot due } \\ \text { to corrugation pressure．}\end{array} \\ & \begin{array}{l}\text { Current on during wrapping，off } \\ \text { during stretching．Some corruga－} \\ \text { tion．Flange added to die．}\end{array}\end{array}$

\left.| Force | Remarks |
| :--- | :--- |
| Failed at hot spot due to contact | |
| with die | |$\right]$

\left.| Force | Remarks |
| :--- | :--- |
| Failed at hot spot due to contact | |
| with die | |$\right]$

\left.| Force | Remarks |
| :--- | :--- |
| Failed at hot spot due to contact | |
| with die | |$\right]$

\left.| Force | Remarks |
| :--- | :--- |
| Failed at hot spot due to contact | |
| with die | |$\right]$

\left.| Force | Remarks |
| :--- | :--- |
| Failed at hot spot due to contact | |
| with die | |$\right]$

\left.| Force | Remarks |
| :--- | :--- |
| Failed at hot spot due to contact | |
| with die | |$\right]$

Force	Remarks
Failed at hot spot due to contact	
with die	

Current on during w rapping．
Failed at hot spot due to higher
Current on during w rapping．
Failed at hot spot due to higher
temperature of die．
Intermittent current to maintain temp．in portion of angle not yet

 －©upupzaxts siuṭnp uoṭxod paddexm Good result．Low \％shrink． ＇भu！xys \％पsith •insax food Rough－250－350 microinches，RMS．
 －
（1）

Extruded
Surface
Finish

Rough
Smooth
Smooth
Stretch

Smooth
950°
1100°
1150°
1150°
1200°
1100°
Smooth－ 75 to 125 microinches．RMS
1150°
1200°
800°
800°
∞
OT
I
モ
ーフ！̣ル
，
$N \quad N \quad N$ I
Resistance
$\begin{array}{r}\text { Heated } \\ \text { Angle } \\ \text { Temp } \\ \pm 100^{\circ} \\ \hline\end{array}$

Die
Temp．
+0
-100°

1100°
950°
1200°
1150°
1100°
during the wrapping operation．
Rough
Rough
Rough
Rough
a
0
0
0
0
0
0 －－－

Joggling Data for $3 / 32^{\prime \prime} \times .850^{\prime \prime} 7 \mathrm{Al}-4 \mathrm{Mo}$ Titanium Alloy Angles

$\begin{aligned} & \text { Specimen } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Die } \\ \text { Temip. } \\ \text { of } \\ \hline \end{gathered}$	Part Tenp. OF'	$\begin{aligned} & \text { Joggle } \\ & \text { Shit } \end{aligned}$	Transition Block Specint		shed Dimentions Transiticn	Gracked
I Hot Die,	Furnace Heated rarts, Variable Teuperatures and Jocgle Iransition						
1	540	900	. 162	. 250	. 134	5/8	No
2	540	900	0.162	. 2.50	.140	5/8	No
3	540	820	. 162	. 062	. 1449	7/16	Slight
4	550	1000	.152	. 062	. 149	7/16	Very ilight
5	550	1100	. 162	. 062	. 142	7/16	Very silight
6	550	1230	. 162	. 062	. 155	7/16	No
7	550	2300	. 162	. 062	. 148	7/16	No
8	550	1400	. 162	.000	.150	5/16	No (side sheared)
9	560	1100	. 162	. 1.56	. 218	17/32	No
10	560	820	.162	. 156	. 140	17/32	Slight
11	560	920	.162	. 156	. 141	17/32	No
12	560	760	. 162	156	. 244	17/32	No
13	610	700	. 162	. 156	. 130	17/32	No
14	610	750	. 162	256	. 133	17/32	No
15	610	800	. 162	. 156	. 136	17/32	No

II Part Heated While Gamped In Hot Die, Medium Joggle Tranaition

16	610	500	.162	.156	.136	$17 / 32$	Ies
17	610	500	.162	.156	.1 .39	$17 / 32$	Very Slight
18	610	500	.162	.156	.1 .38	$17 / 32$	Yes
19	10	500	.162	.250	.144	$5 / 8$	Slight Cracks

III Unheated Die, Furnace Heated Parts, Medium Joggle Tranaition

20	80	420	.162	. 156	. 132	17/32	Ios
21	\%	500	,		. 127	n	No
22	"	500	"	n	. 105	"	No
23	"	520	"	"	. 135	"	No
24	"	520	"	"	. 113	"	Sevare
25	"	520	"	\cdots	. 129	"	No
26	"	620	\cdots	"	.J. 37	\cdots	No
27	"	630	n	"	. 128	"	No
28	"	700	"	N	. 130	\cdots	No
29	"	720	"	n	. 135	"	Tos
30	"	720	"	"	. 120	"	No
31	"	930	"	"	. 120	"	No
32	"	1000	"	"	. 120	"	No
33	"	1030	"	"	. 139	N	Yea
34	1	1060	"	"	. 137	"	No
35	"	1100	"	"	. 136	N	Ios
36	"	1200	"	"	. 139	"	No
37	"	1200	n	"	. 136	"	No
38	"	1200	"	"	.140	"	No
39	"	1300	n	"	. 242	\cdots	No

Part temperatures read with contact thermocouple pyrometer immedistoly before joggle press troke.

Variable $1^{\prime \prime}$ angle extrusions machined to $.850^{\prime \prime}$ to obtain unitorm hedght dimenaion to conform with joggle kdek insert height.

Bend Test Results - 3/32" 7Al LMo Extrusions

All tests with 3/4" extrusions with as extruded surface. Bends made in direction transverse to extrusion.

[^1]

TIME IN MINUTES OF EXPOSURE AT TEMPERATURE

Depth of Contamination Versus Exposure Time in Heating of $\mathrm{Ti}-155 \mathrm{~A}$

Ti-7Al-4Mo Angle During Stretch Wrapping FIGURE 15

Stretch Wrapped Ti-7Al-4Mo Angle
FIGURE 16

Type A - Used
Standard Point
130° Included Angle
10° Back Clearance
No web modifications
3 to 30 Holes

5-25 Holes
Drill Point Configurations for Titanium Alloy Drilling

Extensive heat treatment studies and mechanical property testing was performed with both the Ti 155A titanium alloy and the C135 A Mo titanium alloy. Studies were conducted at U. S. Steel Corporation, Babcock and Wilcox Company, Crucible Steel Company and Republic Aviation Corporation. The objectives of the studies were to develop heat treat cycles which would give the following target properties:

1) Room temperature tensile ultimate strength of 180,000 psi with 8% minimum elongation
2) $800^{\circ} \mathrm{F}$ stability at $70,000 \mathrm{psi}$ load for 500 hours

3: 0.5% creep after exposure to the $800^{\circ} \mathrm{F}$ stability conditions

Crucible Steel Company developed a heat treat cycle for Cl35 AMo with micro tensile specimens having a $0.6^{\prime \prime}$ gage length which met the ultimate tensile strength requirements of 180,000 psi with 8% elongation. The desired properties were achieved by both of the following processes:

1
Extrusion: $1800^{\circ} \mathrm{F}$
Solution Heat Treat: $1800^{\circ} \mathrm{F} /$
l/2 hour water quench
Aging: $1200^{\circ} \mathrm{F} / 4$ hours air
cool

$\frac{2}{1750^{\circ} \mathrm{F}}$
$1800^{\circ} \mathrm{F} / 1 / 2 \mathrm{hr}$. water quench
$1150^{\circ} \mathrm{F} / 8$ hours air cool

However, considerable testing at Babcock and Wilcox Company and Republic Aviation Corporation indicated that the target properties could not be obtained with the heat treat developed by Crucible Steel Company when a standard tensile specimen (2 inch gage) was used for the test.

The testing also revealed that no significant differences in properties between "as cast" and "forged" billet extrusions were indicated in heat treated material. "As-extruded" material with an "as cast" history had comparable tensile ultimate strength to the "forged" billet extrusions; however, the tensile yield strength of the "as cast" extrusion was slightly lower while ductility and modulus of elasticity was slightly higher. Typical extruded properties were 173,000 ultimate strength with 8% elongation and typical heat treated properties were 187, 000 ultimate strength with 2.5% elongation. The microstructure of the extrusion produced from an "as cast" billet did not show any significant difference from that of the "forged'billet.

Metallographic analyses conducted at each of the four organizations listed abuve indicated that the majority of the extrisions produced using billet temperatures of $1800^{\circ} \mathrm{F}$ exceeded the beta transus. This rise in temperature of the billet during extrusion is attributed to internal friction generated in the billet. A typical photomicrograph is shown in Figure 52.

The presence of Widmanstattan alpha platelets (basketweave) within the prior beta grains outlined by an alpha network, indicate that the material has exceeded beta transus temperatures. The complete transformation of alpha to beta above the beta transus is time dependent. This would explain the presence of the primary alpha often seen after extruding (short time operation) at temperatures above the beta transus. The delineation of these alpha globules varies directly as the amount of time spent above the beta transus. Most of the 7Al-4Mo alloy billets extruded at $1650^{\circ} \mathrm{F}$ to $1810^{\circ} \mathrm{F}$ billet temperature contained 5 to 25 percent primary alpha. Mechanical property results show these type structures superior to those obtained when extruding at temperatures higher in the beta field. At these temperatures, no primary alpha remains and thus some beta embrittlement may occur.

b. Heat Treatment of full Length Sections

Heat treatment of full length extruded sections was conducted in an atmosphere controlled vertical furnace to test the process as a production method. The heat treating was conducted at Metlab Company. The lengths to be heat treated included three Cl35 A Mo channel extrusions and six 7Al-3Mo angle extrusions. Solution treatment was conducted at $1650^{\circ} \mathrm{F}$ for 10 minutes followed by a water quench. Aging was accomplished by reheating to $1200^{\circ} \mathrm{F}$ for one hour followed by an air cool. Temperature tolerance was set at $\pm 10^{\circ} \mathrm{F}$.

The heat treating equipment used consisted of a propane fired vertical furnace with an Inconel X retort and uniform heat zone of about 13 feet. This heat zone was divided into five sub-zones, each individually controlled by a Foxboro mechanical controller and facilities for recording temperatures at each zone with a Brown mechanical multipoint recorder. For protective atmosphere, helium out of a steel bottle was fed into a manifold equipped with a Selas flowmeter. During the purging operation, a flow of about 50 cubic $\mathrm{ft} / \mathrm{hr}$. was maintained. The retort was purged for about two hours, and then the first load of work was placed into the furnace and suspended from a spider with Inconel X pins. The work was split into two runs in order to be able to check out the method. For the first run, one channel and one angle were used. On this run, a blower inadvertently discontinued operation, thus decreasing the furnace temperature to $1425^{\circ} \mathrm{F}$ before a return to the required temperature could take place. Twenty-two minutes elapsed before $1650^{\circ} \mathrm{F}$ was again reached after which the work was held at temperature for 8 minutes. The subsequent water quench has handled well and took no more than one minute for the entire length to hit the water.

The furnace was then allowed to return to the equilibrium temperature of $1650^{\circ} \mathrm{F}$ and the second load consisting of two channels were admitted. No difficulties occurred during the run. The furnace dropped only 60 degrees which was corrected within eleven minutes. The work was then held at temperature for 10 minutes and quenched in water.

The aging treatment was performed with the same equipment at $1200^{\circ} \mathrm{F} \pm 10^{\circ}$ for 1 hour and was then allowed to air cool.

Straightened extrusions were not available at the time the vertical heat treatments were conducted. The angle and channel lengths were heat treated with the twist and distortion resulting from extrusion, and were stretch straightened after heat treatment. Due to the lack of straightness in the extrusions before heat treatment, it was not possible to establish how much additional distortion occurred during heating and quenching.

Mechanical property tests on specimens obtained from the production heat treated lengths indicated that all target properties could be achieved with the exception of room temperature elongation.

C. PART III EXTRUSION OF SECOND CATEGORY SHAPES

1. Extrusion and Straightening Development at

Babcock and Wilcox Company
a. Extrusion Developrrent

Objectives

The general objective of the Part III development program at Babcock and Wilcox was the establishment of extrusion and straightening processes for the production of the $1 / 8$ inch Tee shape shown in Figure 2 .

The extrusion objectives of Part III were to provide an extruded product of 125 microinch RMS surface and dimensional uniformity throughout fifteen foot lengths. The desired mechanical properties of heat treated extrusions were (1) 180,000 psi ultimate strength with 8% minimum elongation, (2) less than. 5% permanent deformation after $800^{\circ} \mathrm{F}, 70,000 \mathrm{psi}$, 500 hour creep exposure, (3) stability after creep exposure as indicated by subsequent room temperature ductility.

Efforts to achieve the dimensional objectives included investigation of variables such as lubrication, die materials, billet temperature, billet length and tooling temperatures.

Extrusion Trials

Seven trials were held in Part III. A total of eighty-five extrusions were pushed including six 4340 steel billets, seven $18-8$ stainless steel billets, ten $\mathrm{Ti} 6 \mathrm{Al}-4 \mathrm{~V}$ titanium alloy billets and sixty -two $\mathrm{Ti} 7 \mathrm{Al}-4 \mathrm{Mo}$ titanium alloy billets. Initial extrusions of AISI 4340 and Croloy 18-8 were made to check the extrusion practice and new tooling for the tee shape

Considerable die breakage was experienced during the December lst trial of Part III due to insufficient circumferential support during extrusion. This condition was corrected by reducing the outside diameter of the dies and incorporating the smaller dies into a thin conical die holder, Figure 19. The tapered fit between the die holder and container produced a compressive force on the die holder which is transmitted through the thin cone to support the die. The new desigin was completely effective in avoiding die breakage. A comparison of die dimensions before and after extrusion indicated that the compressive effect actually closed the orifice dimensions during extrusion.

After each push, dies and butts were examined in an effort to relate flow lines to extrusion scores and to determine whether the glass reservoir was adequate. Examination was made with glass caked to the butt and die and again after the glass was cleaned off. Extrusion butts and shapes revealing typical extrusion defects are shown in Figures 2030.

The results of the trials are summarized below:
Results
(1) Cast billet material tends to tear along the leading edges of the extrusion during the initial breakthrough. The forged material does not. (See Figure 21).
(2) Uneven material flow during extrusion, due to uneven temperature distribution or lubrication, leads to partial scalping and results in laminations (See Figure 20)
(3) The can and cover used for heating and transporting the billets should be made of stainless steel to avoid contamination of the billet coating when the billets are removed from the can.
(4) Continuous glass lubrication for the entire length of. extrusion protects the die and assists in preventing die wear.
(5) Longer heating time produced a streaky billet possibly due to excessive fluidity of the glass coating. This caused glass flow, thereby reducing glass protection in some areas In certain cases, the contamination appeared as small dark areas and caused surface imperfections on the billet surface and extruded section (See Figure 22). Figure 23 shows photomicrographs which identify the dark particles as separated portions of the billet skin. The particles appear as alpha phase from interstitial contamination during heating
(6) Softer glass die glass pads such as 318 material produced an irregular rough surface. It was felt that the 318 glass was not hard enough to iron the extruded metal as well as coat it at elevated temperatures. (See Figure 24).
(7) The die material was not too critical. There was little to choose from between the Peerless " A " and M-36 as long as lubrication was effective. The Inconel 713C dies were better in flat areas, but flowed readily in the fillet area at
high temperatures. Shell-mold cast, single orifice dies were satisfactory. Final orifice dimensioning was done by electric spark machining and consistent dimensions were obtained. Heating the dies to $900^{\circ} \mathrm{F}$ gave good results. Little or no die marking or deformation occurred in the orifice area under the best conditions. Such damage as did occur generally reduced the orifice size and was readily removed by a repeat spark finishing operation.
(8) The chromium plated container was generally good and reusable after the trials. There were two spots approximately 1 -inch square that flaked off in areas where the die holder seated against the container. There was no container wear in the billet area except for some scratch lines in the upper portion of the container which was apparently due to dummy block eccentricity.
(9) A high container temperature appeared to be the controlling factor for proper continuous glass lubrication.
(10) The excess lubricant from the l-inch thick die lubricant pads constricted the extrusion material approaching the die. This was clearly shown in the butts from Pushes 92 and 93 in Figure 25. The constricted "cross section" was less than the die orifice height and width and resulted in an incomplete "filling out" of these dimensions on the shape. Pads one-half inch thick eliminated the constriction effect and produced width and thickness fill-out.
(11) Die pads compacted of -40 fine mesh glass particles yielded shapes that were smaller and with more variation from front to back. The standard -14 mesh particles yielded shapes of more consistent dimensions.
(12) The scalping technique produced a smooth surface (60-125 RMS) without billet surface marks whereas the full lubrication technique produced a rougher (100-200 RMS) surface with billet surface marks. Under good heating and extrusion conditions such marks were so shallow that with a light grit blast, the typical herringbone pattern of the marks was removed. The effect of billet surface marks on the extruded surface is shown in Figures 26 and 27.
The full lubrication technique had the following advantages over the scalping technique:
(a) Lower extrusion pressures due to less sidewall friction. With the 7Al 4 Mo titanium alloy, the lower pressure permitted full lubrication extrusions of 20 feet whereas the scalping technique appeared limited to $12-15$ feet with the particular shape and press tooling involved.
(b) Full lubrication offered a higher product yield since the billet skin was not rejected in the container as occurred in scalping.

It was felt that where surface finish is more of a consideration than maximum length, the scalping technique is preferred. Where maximum lengths are required, the full lubrication practice is preferred.

The extrusion trials which were conducted during the latter portion of Part III emphasized the full lubrication practice in an effort to meet the program objectives of 15 -foot lengths.

b. Straightening Development

Effective hot stretch straightening was realized during Part III on a specially constructed stretch press modified with improved pneumatic operated grips which were insulated and served as the electrodes.

The straightness of the straightened shapes approached, but did not meet, the objectives of . 012" per foot over the entire length.

The technique employed in straightening the shapes consisted of placing the extrusion in the gripper jaws and gripping the shape; resistance heating the length to temperature, detwisting and then stretching. After straightening the tension was released gradually. The air pressure holding the jaws closed was then released. Tension on the extrusion was continually released gradually until the extrusion started to bow in compression. This supplied the force necessary to release the jaws by forcing the jaws back into the wedge shaped chuck.

In an attempt 10 prevent the formation of the bow on the straightened extrusion, a bar was placed between the jaws when the extrusion was in the stretched position. Gradual release of tension would then result in the "jaw release bar" supplying the force necessary to slide the jaws so that they are in the opened position (see Figure 31)

However, several attemıpts with the "jaw release bar" resulted in bending of the bar or shearing oi the bolts holding the stationary gripper head to the bed of the machine. Use of the "jaw release bar" was therefore discontinued, Attempts were also made to maintain straightness during cooling and eliminate the mushroom shape crown in the top of the tee shape by placing the extrusion in a restriction fixture upon removal from the stretch press. Steel rods were tack welded to the hinged cover of the fixture in an effort to produce an overbending effect to correct the crown shape in the top of the tee. The restriction fixture was unsuccessful, however, since the extrusions cooled sufficiently during transfer from the stretch press to the fixture to make straightening by this method impractical.

Results and conclusions of the Part III straightening trials are listed below:

1. The decrease in shape dimension with extrusion elongation was sufficient to necessitate increasing the die orifice dimensioas to anticipate the decrease.
2. Air operated collets with diamond teeth of $1 / 16^{\prime \prime}$ pitch securely held the extrusions without slippage. The jaws should be clamped on a portion of the tee shape that is not severely distorted or twisted.
3. Use of insulated jaws as electrodes assures uniform electrical contact, produces a straighter extrusion near the grips and saves at least 1 foot of cropping per extrusion by avoiding local hot spots from clamping the electrodes.

It is necessary to check that all three jaws contact the tee shape uniformly. One extrusion was not uniformly clamped and a hot spot developed at the jaw. Reclamping eliminated the problem and the extrusion was straightened without failure.
4. Stretch straightening and detwisting at low elongations of $2-4 \%$ produced overall straighteness, but do not completely remove local twists. Higher elongations of 6% produce complete straightness and remove local twists completely. However, high elongations produced greater dimensional variation along the extrusion. Resistance heating with the tee shape in an upright position (as in the printed letter, T) produces a differential of $100-150^{\circ}$ between the stem and the top of the tee. The stem does not become as hot since it is more exposed and the heat rising from the stem shields the top. Uniform heating throughout the section was obtained by clamping the tee extrusions in the reverse position so that the heat rising from the base shields the more exposed stem.
5. A very severe instance of high temperature, high stress corrosion was experienced in one 3' area near the middle of one of the extrusions. After straightening at 6% elongation, severe transverse cracks were apparent in parallel lines in the 3 " area. The cracks corresponded exactly to tempilstik crayon markings which were used to determine temperature. Smaller cracks originating from tempilstik corrosion were also observed on another extrusion which was straightened. Use of tempilstiks to measure temperature was therefore discontinued.

(1) DIE HOLDER
(2) DIE
(3) CONTAINEP

Tooling Arrangement Used During Part III Extrusion Trials.
During Extrusion, the Conical Die Holder (1) is Wedged Into the Container Which Thereby Transmits a Compressive Force Which Supports the Die Circumferentially

The laminations are extruded after an internal shearing of the billet metal has occurred. The shearing is due to the slower flow of the relatively cool billet surface as compared with faster flow of hotter interior

[^2]
Tears During Initial Break-Through on
Extrusion of Cast Billet Material

C Extrusion 128 250X $\mathrm{HNO}_{3} \mathrm{HF}$ etch
"Smooth" type billet mark which appears dark in the glass film and is gray after degassing.
"Pebbly" type billet mark which appears dark in the glass film and is dark after deglassing.

Severe billet surface mark which appears to be an accumulation sheared from the extrusion.

White alpha phase grains indicate contamination during heating.,

Transverse cracks are typically present higher concentration of alpha
grains than above. $\begin{aligned} & \text { metal moved away from the billet } \\ & \text { surface mark or extruded faster } t \\ & \text { the billet surface. }\end{aligned}$
A and B are from the front end of 133 and C was taken near the back of 1
Micrograph showing Varying Degrees of Billet Surface Marks in the Extrusion Surface after Deglassing

Direction of Extrusion \qquad

FIGURE 23

Extrusion 172, Showing the Rough Surface Resulting From Using the Soft (lower viscosity) 318 Glass as a Die Lubricant.

Area Shown is Near the Shape Front-End.
FIGURE 24

Photograph of Butt Ends from Extrusions 92 and 93.
Tine wavy Condition of the Tee Stem and the Constricted 7.ones Between the Billet and the Extrusion Result from the Excess Lubricant in 1" Thick Glass Pads

Billet and Extrusion Discard - Push No. 177. Discontinuous Herringbone Pattern due to Billet Surface Machine Marks are

Distinguishable on the Extrusion Surface.
FIGURE 26

Micro Examination Shows Flow Effect on Billet Surface Machining Marks (50X mag.). Micrographs A, B\&C trace the Growth of the

Herringbone Pattern from the Closely Spaced Markings on the Upset Billet to the Widely Spaced Markings at the Inside Radius Area Approaching the Extrusion Die.

Billet Discard Push No. 184.

 Back End Suck-in Effect. This Effect Co: tinues Through the Extrusion as a Seam Crack f, , roxmately 1 foot.
FIGURE 29
!.

Extreme Waviness in the Tee Upright Resulting
$\because \because$

The die has been positioned on the discard so that the die pick-up and score lines match. This discard represents Push No. 166. The hard 3 KB glass was used for die and billet lubrication and resulted in partial scalping and severe lamination of the billet sion Scoring Due to Die Pick-Up
FIGURE 30

Function of "Jaw Release Bar" in Stretchin Straightening FIGURE 31
2. Extrusion Development at Comptoir Industriel D'Etirage and Profilage De Metaux

Introduction
An extrusion development trial was conducted in Persan, France, by Comptoir Industriel D'Etirage et Profilage de Metaus to determine the potential of their glass lubrication technique for the extrusion of airframe structural shapes. The trial was conducted on a 440 ton vertical press and consisted of four (4) pushes of 4340 steel and six (6) pushes of $6 \mathrm{Al}-4 \mathrm{~V}$. Excellent results were obtained with the three small shapes (angles, channels, and zees) (Figure 1) in 4340 steel and good results were obtained with 6Al-4V titanium alloy in the angle and channel shapes. The zee extrusion, 1/16" thickness at 40:1 ratio, exhibited severe dimensional deterioration from the front to the back of the lengths as a result of die washout.

Since Comptoir did not have previous experience with the 7Al-4Mo titanium alloy selected for Part III of the development program, it was determined that they would conduct exploratory extrusion trials with rounds and small shapes on their 440 ton experimental press before proceeding with the development of Part III shapes on the 1650 ton horizontal production press. The 1650 ton press was equipped with a 4.970' I. D. container.

Twelve (12) pushes were made with the Ti 7Al-4Mo alloy on the 440 ton press. Ram speed on the 440 ton press was controlled to approximately $5^{\prime \prime}$ per second, and the die was lubricated by means of a glass pad. Billets were prepared from forged 7Al-4Mo titanium alloy to 2. $36^{\prime \prime}$ diameter in $51 / 2^{\prime \prime}$ lengths. The billets were protected with a glass coating during heating to $1650-1750^{\circ} \mathrm{F}$ for heating times ranging from 40 to 65 minutes. Handling time to transfer the billets from the furnace to the extrusion press was very fast and was accomplished in 3 to 5 seconds.

In general, the 7Al-4Mo alloy extrusions produced during the trials were substantially poorer than the 6Al-4V extrusions produced earlier.

Several series of trials were then conducted at Persan with Ti 7AI-4Mo alloy billets in the following sequence:

Series "A"

Objective

Extrude the Part III tee and hat shapes shown in Figure 2 in 15 to 20 foot lengths with 4 3/4" dia. billets in 1650 ton horizontal press.

Results

A total of twelve (12) pushes were made consisting of (9) tees and (3) hats. Extrusions over 20 feet with uniformly acceptable surface finish but with varying degrees of pickup score lines were produced.

Objective

Extrude small 2 3/8" dia. billets in the 440 ton vertical press into $3 / 32^{\prime \prime} \times 1^{\prime \prime}$ angles to determine conditions which caused scoring obtained in "A" above.

Results

A total of (16) pushes were made. Scores resulted from foreign particles or excess extrusion speed. Particles created localized pickup whereas extrusion speeds which did not permit formation of an adequate glass film resulted in catastrophic overall pickup.

Pickup which was almost indiscernible on the die became aggravated in reuse of the die.

Results

Pickup scores werc still present on all extrusions to at least the same degree as obtained in "A". Results were poorer than in "B". A likely reas on for the poorer results was the inability to heat the 1650 ton container. similar to "A" except for use of particle free glass grade found to extrude best in Series "B" trials.
Series "C"

Objective

Extrude the Part III tee and hat shapes in 15 to 20 foot lengths with 4 3/4' dia. billets in 1650 ton horizontal press. Extrusion conditions

Nine additional billets were extruded into $l^{\prime \prime} \times l^{\prime \prime} \times . l^{\prime \prime}$ angles on the 440 ton press to investigate die pickup, but conclusive results could not be obtained.

During Part III, a series of tests were conducted at Republic Aviation and Babcock and Wilcox to confirm the results obtained in a heat treatment study with Cl35 AMo titanium alloy extrusions at the Midland Research Laboratories of Crucible Steel. The Crucible work indicated that high ($1800^{\circ} \mathrm{F}$) solution temperatures with $1150-8$ hour or $1200^{\circ} \mathrm{F}-4$ hour aging, would produce the combined target properties of 180,000 with 8% elongation. Previous testing at Republic indicated that high solution temperatures result in brittle failures or elongations considerably below the 8% target and that $1650^{\circ} \mathrm{F}$ solution temperatures resulted in the best combination of tensile strength and elongation. It should be noted that this treatment was borderline and although the strength objectives were met, elongation of only 7% were typical.

A program was formed between Babcock \& Wilcox, Crucible Steel and Reputlic Aviation to evaluate the heat treatment developed by Crucible Steel for 7Al 4Mo extrusions. The objectives of the program were:

1. To determine the consistency of the heat treatment.
2. To determine whether RAC and B\&W practices would reproduce the Crucible results.
3. To determine whether standard tensile specimens would equal the Crucible results with sub-size specimens.

Tests were conducted with 7A1 4Mo titanium alloy rounds and angle extrusions produced by Comptoir during their exploratory extrusion trials at $1650^{\circ}, 1700^{\circ}$ and $1750^{\circ} \mathrm{F}$ extrusion temperatur es.

When the Crucible heat treatment was employed with 1/4" round tensile specimens having 1"gage lengths, the target properties of 180,000 psi ultiriate strength with 8% elongation were consistently obtained.

However, the $1 / 2^{\prime \prime}$ flat 2" gage length tensile specimens did not meet the target properties when heat treated with the optimum Crucible treatment. Strength levels were similar to those reported by Crucible but elongation in the standard size 2. $0^{\prime \prime}$ gage length specimens tested at Republic Aviation ranged from 0 to 3% with most failures occurring where the specimen radius blends into the reduced area. Elongations of $8-9 \%$ were obtained with similarly heat treated. 6" gage length microtensile specimens tested at Crucible and these failures occurred near mid-gage.

It was suspected that this discrepancy in elongation could be attribuied to the large difference between the .6 and $2.0^{\prime \prime}$ gage lengths ince in titanium a large proportion of elongation is non-uniform. Microtensile specimens were prepared from the fractured 2. $0^{\prime \prime}$ gage length specimens as indicated in the lower sketch in Figure 32. Since the standard specimens were prepared in a 7 " overall length, it was possible to cut the microspecimens from the fractured specimens so that the new. 6 gage length was entirely in the area
previously under the grips. Because of inadequate section lengths, the microtensile specimens could not be made long enough to allow for clearance between the grips sufficient to permit attaching an extensometer. Therefore, stress-strain curves could not be obtained. However, the primary objective of the microtensile tests was to ascertain whether the high ($8-9 \%$) elongation obtained with 188,000 to 190,000 ultimate strength could be attributed to the difference in the gage length and the cross section proportions between the standard and the microtensile specimens. The results indicate that the typical elongation of the microtensile specimens is 6% with 190,000 psi ultimate strength as compared to a typical 2% elongation with $185,000 \mathrm{psi}$ strength for the standard specimens.

The following explanations are offered for the variation in elongation obtained with roand, flat micro and flat standard tensile specimens (Figure 32).

1. Standard quarter-inch round tensile bars of 185,000 psi strength levels exhibited typical elongation values of 8% over a one-inch gage length. Although the theoretical stress concentration factor across the fillet of the round specimen and through the transition area of the standard flat specimen were both equal to 1.122 , the stress flow along the reduced area was more evenly distributed in the round bar. In the flat specimen, additional stress concentrations at the corners reduced the ductility available in the material.
2. Some of the increase in elongation obtained with microtensile specimens was attributed to the shorter gage length. The increase effect was typical in shorter gage length testing since the local necking near the fracture was more significant in overall elongation when divided by . $6^{\prime \prime}$ than when divided by 2. $0^{\prime \prime}$ gage length.

Additional testing was performed to compare properties of the Part III extrusions straightened at the $1000^{\circ}-1100^{\circ} \mathrm{F}$ and $1400^{\circ}-1500^{\circ} \mathrm{F}$ temperature range. Both the Ti 7 Al 4 Mo and Ti 6 Al 4 V titanium alloys were tested for:
a) short-time room and elevated temperature tensile properties
b) room temperature tensile properties of sfecimens exposed to $800^{\prime \prime} \mathrm{F}$ for 500 hours
c) room terrperature flexure fatigue strength
d) $800^{\circ} \mathrm{F}$ creep when exposed at $2 / 3$ ultimate for 10 hours and $1 / 3$ ultimate for 500 hours

The flexture fatigue tests were conducted with specimens with severely mottled extrusion surface, lightly mottled extrusion surface and ground surface for comparison.

Test results indicated that room temperature tensile strengths before and after thermal exposure, and elevated temperature tensile strengths of both alloys were higher for material strengthened in the $1000^{\circ} \mathrm{F}$ range. Elongations for both allojs were higher for material straightened at $1500^{\circ} \mathrm{F}$. Typical room temperature properties for 6 Al 4 V extrusions straightened at $1100^{\circ} \mathrm{F}$ were 152,000 psi ultimate strength with 6% elongation before exposure and $151,000 \mathrm{psi}$ ultimate with 9.5% elongation after exposure to $800^{\circ} \mathrm{F}$ for 500 hours. For 6 Al 4 V extrusions straightened at $1500^{\circ} \mathrm{F}$, typical properties were 148,000 psi ultimate with $8,5 \%$ elongation before thermal exposure and 147,000 psi ultimate with 8.5% elongation after thermal exposure.

The results suggested that intermediate straightening temperatures should be investigated. However, it was anticipated that the warm drawing operation after straightening would decrease the critical aspects of the straightening temperature regarding mechanical properties. With this as a consideration, the lowest possible straightening temperature was used in the Part IV work to minimize the occasional localized necking which occurred at the higher temperature range. Localized necking was undesirable since it presented non-uniform cross sections for the subsequent warm drawing operation.

Unstressed exposure at $800^{\circ} \mathrm{F}$ did not significantly alter tensile properties for material straightened at both temperatures. Flexure fatigue tests indicated a greater undesirable effect on fatigue life occurred as the degree of mottled surface became more severe.

The creep tests made at $1 / 3$ stress level at 500 -hours show that 7Al 4 Mo extruded tee alloy had better high temperature properties than the 6Al 4V extruded alloy. Both alloys were well within the allowable tolerance of 0.5% maximum creep at $800^{\circ} \mathrm{F}$.

Configurations of Specimens Used in Tensile Testing FIGURE 32

D. PARTIV - EXTRUSION AND DRAWING DEVELOPMENT OF THIRD CATEGORY SHAPE

1. Extrusion and Straightening Development and Billet Heating Trials at Babcock and Wilcox Company
a. Extrusion Development and Billet Heating Trails

The general objectives of the Part IV tee extrusion trials were to extrude $1 / 8^{\prime \prime}$ tee shaped sections to prove the extrusion process using the best extrusion practice developed under Part III and to develop new techniques for extruding thinner tee sections down to $1 / 16^{\prime \prime}$.

The extrusion of thinner tee shapes generated higher die heat due to the greater deformation work at the die. The die materials, therefore, had to be fabricated from higher heat resistant alloys or be thermally protected by the lubricant to remain below the plastic flow temperature of the die material.

In extrusions of tungsten at the Wright-Patterson Air Force Base Extrusion Facility, exceptionally good surface with practically no die erosion was obtained by steel dies coated with alumina at Republic Aviation. In view of the good results obtained with the tungsten extrusion trial, alumina coated dies were evaluated for extruding titanium shapes under 1/8'.

The general procedure for coating the die surface was as follows:
(1) The die surface was degreased
(2) All areas to be coated were protected with a rubber base maskant.
(3) All exposed die areas were sandblasted to remove residue grease and handling contamination.
(4) An undercoat of molybdenum metal, . 001 .002 inches thick was applied with a Metco KD Gun
(5) Rokide A alumina rod ceramic composition was sprayed over the molybdenum undercoating.
(6) The rubber maskant was removed and final machining or hand grinding of the coating was employed to size the dies.

During Part IV, four (4) extrusion trials covering five (5) days were held

A total of sixty-nine (69) pushes were made consisting of seven (7) pushes of $\mathrm{Ti}-4 \mathrm{Al}-3 \mathrm{Mo}-1 \mathrm{~V}$, eight (8) pushes of Ti-6Al-4V, and fifty-four (54) pushes of Ti-7Al-4Mo.

The results of the extrusion trials and billet heating trials conducted during the same period are summarized below:
(1) High container temperatures $\left(900^{\circ} \mathrm{F}-1000^{\circ} \mathrm{F}\right)$ in combination with the glass lubricant of proper viscosity resulted in a uniform and continuous glass coverage on the extrusion surface.
(2) Longer heating time of the glass protected billet increased the depth of penetration of oxygen contamination in billet surface marks.
(3) Cast billets extruded without any difficulties and produced surfaces comparable to forged billets. Oxygen contamination was more severe with the cast st-ucture.
(4) Extrusion of $092^{\prime \prime}$ thick tee shapes was realized using the best extrusion technique developed for $1 / 18^{\prime \prime}$ thick tee shapes, but scoring and die wear occurred about 12 feet from the front end of the 20 foot extrusion and ceramic coated dies were indicated for extrusions $3 / 32^{\prime \prime}$ and thinner.
(5) Continuous glass lubrication was realized with the $3 \mathrm{~KB}-14$ mesh glass ring/glass wool die lubricant pad. The glass ring provided a reserve of molten glass and also directed material flow by preventing shearing in the billet radius at the die approach area.

Provision of an orifice in the glass wool pads is required to prevent stickers from die blockage.
(6) Dishing of the billet nose had an advantage over the flat nose billets in terms of creating a greater reservoir of molten die glass available to the billet surface at the die opening and easing metal flow.
(7) The initial peak and average extrusion pressures for the . 092" and . $062^{\prime \prime}$ tee sections were comparable to the pressures experienced with the $.125^{\prime \prime}$ tee extrusions.
(8) The initial peak and average extrusion pressures for the 45 and 60 -minute billet heat soak time at $1800^{\circ} \mathrm{F}$ were comparable to the pressures experienced with longer heating times - 90 - 125 minutes.
(9) With respect to dies, the uncoated dies experienced wear, wash and hot creep deformation at extrusion ratios over 40:1, whereas with the ceramic coated dies, the die material remained undisturbed. The alumina coating was superior to chrome oxide coating. Mechanical damage to the land area coating during removal of the billet discard was obtained. Therefore, it could not be determined whether more than one push per coated die could be obtained.
(10) Micro-examination comparison of extruded surfaces indicated that oxygen stabilized alpha titanium contamination was minimized with decreased billet heat soak time at $1800^{\circ} \mathrm{F}$. The optimum heating time ranged from 60-65 minutes.
(11) Good lubrication resulted from a double roll pass of the billet through the 318-14 mesh glass powder on the runout table to obtain a heavy coat.
(12) The use of the E-71 family of glasses for all extrusion locations resulted in poor lubrication properties and extrusion surface scoring as compared to the practice oi using 85, 318, and 3 KB glass compositions. However, a combination of te 85 billet coating with E-7l glass compositions (push Nos. 235 and 238) for O. D. and die lubrication resulted in the smoothest extruded surfaces of the Group 19 trial. This combination will be evaluated in the initial trials of Part V.
(13) Application of the glass coating for heating protection by dipping the billet into the slurry resulted in severe spalling of the coating when handled with tongs. This occurred in both the wet charge method and oven drying the coating prior to charging and handling of the billets. In contrast, the sprayed billet ccating remained intact during the billet transfer procedure.

Examination of the glass coating immediately upon removal from the furnace at $1800^{\circ} \mathrm{F}$ showed a uniform, continuous, smooth fused glass coating for sprayed billets, as compared to non-uniform, porous glass coverage associated with the dip coated slurry.

Good results, in terms of smooth extrusion surfaces without contamination, were obtained when the billets were belt ground and polished smooth prior to glass spray coating which was applied at $300^{\circ} \mathrm{F}$ and then oven dried.

b. Straightening Development

Straightening procedures developed in Part III were employed to straighten the Part IV extrusions. The major contribution of the Part IV straightening work was the coupling of a punch straightening operation to the stretch straightening operation.

Punch straightening was performed on a 300 ton horizontal press and succeeded in reducing bow to $1 / 4^{\prime \prime}$ in a 20^{\prime} section and eliminating camber. It is imperative that the extrusion is punch straightened while still warm to avoid imparting kinks to the extrusion. This requires close proximity of the punch press to the stretch press and demands haste in transporting the extrusions from the stretch press to the gag press.

Prior to embarking on a full scale extrusion program to produce the thin section tee extrusions at the Babcock and Wilcox production extrusion facility, pilot studies on glasses for heating and lubrication, and accompanying modifications in extrusion practice were conducted on the experimental extrusion facility at Battelle Memorial Institute.

Glass Studies

Initial efforts were directed towards evaluating protection and lubrication glasses. A study of the reactivity of a number of glasses with titanium indicated that the potassium borosilicate glass E-71 rearted least. However, its viscosity characteristics in the temperature range 1750 to $1850^{\circ} \mathrm{F}$ were such that it could not be used to serve simultaneously as a heating glass, container lubricant, and die lubricant. Therefore, a family of glasses based on E-7l were developed which had the following characteristics: (1) compatible with one another, (2) as inert to titanium as the base glass, and (3) permitted the selection of glasses for the various functions by having a range of viscosity.

Four glasses were developed with variations in both the $\mathrm{SiO}_{2} / \mathrm{B}_{2} \mathrm{O}_{3}$ ratio and minor oxide additions for viscosity evaluation. The glasses were designated as E-71A, E-71B, E-71C and E-71D.

The glasses were smelted at $2200^{\circ} \mathrm{F}$ for 1 hour and water quenched. After drying, the glasses were ground to pass a 50 -mesh screen.

For relative viscosity tests, cylindrical specimens $1 / 2$-inch diameter by $1 / 2$-inch long were compacted under 6 tons pressure. Each pellet weighed 3 grame.

One pellet of each glass composition was placed on a 16-gage stainlese steel "setter" and heated for $2-1 / 2$ minutes at $1750^{\circ} \mathrm{F}$. The setter was then tipped at an angle of 110 degrees to allow the glass pellets to flow down the setter sheet. After 1 minute in this position, the setter was removed from the furnace and the length of flow of each pellet was determined as a measure of relative viscosity. Flow lengtins for the various glasses were:

Glass	Length of Flow
E-71A	2.084
E-71C	2.149
E-71 (Base)	2.334
E-71D	2.612
E-71B	2.783

These results gave the desired viscosity variations, namely, two more viscous and two more fluid than E-7l.

The experimental glasses were crushed in a roll crusher, ball milled, and screened to provide material having particle-size limits of -80 mesh +120 mesh for making glass pads. The sized glass was mixed with 5 weight percent liquid sodium silicate as a binder and compacted into pads 3 inches in diameter on a small press under a pressure of 2000 psi. Pads were dried in air at room temperature over night and then dried at $185^{\circ} \mathrm{F}$ over night.

Extrusion Facilities

Extrusion trials were conducted on a 700 -ton vertical hydraulic press in the Battelle metalworking laboratory. This press was equipped for hot extrusion and has the following performance characteristics:

Main ram force	700 tons
Container sealing force	100 tons
Ram closing speed	1070 ipm
Ram pressing speed	80 ipm
Container size	3.2 in. diameter $\times 14 \mathrm{in}$. bore
Maximum container temperature	$1000^{\circ} \mathrm{F}$
Stem size	3 in . diameter $\times 19 \mathrm{in}$
Maximum billet length	10 inches
Maximum stem pressure	$190,000 \mathrm{psi}$

Accessories are available for control and measurement of ram speed, container temperature, and pressure. The press is located over a readily accessible pit 15 feet deep.

A $30-\mathrm{kw}$, 3000-cycle induction heater having a controlled argon flow atmosphere heating chamber was used for heating the glass coated billets to $1800^{\circ} \mathrm{F}$.

Extrusion Trial

A total of sixty-six (66) pushes were made with Ti 7Al-4Mo titanium alloy. The initial ext usion effort consisted of four (4) pushes to establish a reference condition from which modifications in the use of glass, heating practice, die design, could be evaluated. These trials were made with 0.125 inch tees following as closely as possible the best practices evolved in the Babcock and Wilcox work.

Evaluation trials were then made on the 0.094 -inch tee following essentially the same practices, but with the experimental glasses. These trials were set up to ascertain the optirnum glass-viscosity requirements for container and die lubrication consistent with the best billet coating practice for heatiig.

Subsequent trials were made with the . 063 inch tee in an effort to optimize the use of the glasses for extrusion. Variables that were considered were: Glass pad thickness and form; Glass pad temperature; Die glass grain slze.

Several pushes were made with alumina coated and uncoated dies to evaluate the alumina coating. Figures 33 and 34 show the condition of the two types of dies after extrusion.

Results

The results of the trials showed that with alumina-coated dies, the best combination of glasses on the basis of surface finish and dimensional uniformity was E-71A and glass wool for the die, E-7lor E-71B for the billet coating, and E-71B for container lubrication.

The effects of the glass variables on the performance of the glasses are summarized below for die glass E-71, E-71A and E-71B.

Glass grain sizes of 20,100 , and 325 mesh were evaluated using the open ring with 1 glass wool pad (Tests $40,42,43$). Better die fill and overall glass coverage was obtained with the $20-$ mesh glass, but the best as extruded surface finish was obtained with the 100 -mesh glass. It appeared that with $20-m e s h$ and 100 -mesh glass the glass particle flow during pad crushing at the oatset of extrusion promoted die fill and resulted in better lubrication. The $325-$ mesh glass pad was very hard as compacted and little or no pad crushing occurred. Thus, melting of the glass particles did not appear to be as uniform with a hard, fine-mesh glass pad as with a more friable, coarse-mesh glass.

Both the pad shape and the conditions under which each pad shape was used had significant effects on extruded quality. The use of glass wool in addition to the die pad also proved to be an impo:tant factor in the overall lubricating process.

The use of a tapered ring at room temperature with 3 glass wool pads produced a good overall extruded section. The use of a shaped pad at room temperature without glass wosl gave an inferior product. Heating of the shaped pad to $1000^{\circ} \mathrm{F}$ improved results somewhat.

Thus, on the basis of glass variables only, improvement in surface finish and dimensional accuracy were mainly the result of:
(1) The use of glass wool in combination with the compacted ground glass pads
(2) Preheating the compacted ground glass die pads

The advantage of the glass wool appeared to be in its melting characteristics in contact with the hot billet. The individual strands of glass fiber are much finer than the glass particles normally used in compacted pa.ls. Melting of the fibers appeared to be more rapid than the ground glass, so that a film of molten glass was immediately available at the die, at the start of extrusion to supplement the glass applied as a coating for heating. As extrusion proceeds, the compacted pad begins to melt and supplies the
glass for the remainder of the extrusion.
Preheating the ground glass pai to $1000^{\circ} \mathrm{F}$ appeared to have several advantages: (1) less time was required to melt the glass, (2) less heat was removed from the billet to melt the glass, and (3) no heat was removed from the die in coatact with the glass. All of these factors contributed to achieving the conditions desirable at the billet-die interface for proper glass lubrication; namely, a film of completely molten glass with no solid glass particles.

Conclusions

Several significant effects of glass variables on extrusion quality were observed in the trials and the following conclusions can be drawn:

1. A relatively high viscosity glass improved the die fill at the start of extrusion
2. Glass in fiber form had more favorable melting characieristics then granular glass for providing lubrication at the start of extrusion
3. Preheating compacted granular glass pads to the die temperature ($1000^{\circ} \mathrm{F}$) improved the lubricating performance of the glass
4. Granular die pad glasses give better die fill and surface finish when used in the -30 r 100-mesh size range than in the -325 mesh range.

One-half of die vaporblasted to show
condition of base metal
Condition of an 0.063' Alumina-Coated Die After Two Consecutive Extrusions. FIGURE 34

(1) indicates die wear on land, (2) radius wash and (3) pick-up of metal particles on die land

An Uncoated 0.063 inch Die After Extrusion FIGURE 33

3. Warm Drawing Development at Allegheny Ludlum Steel Corporation

a. Introduction

The Titanium Metals Corporation of America was selected to conduct the warm drawing portion of the program. The work was performed at the Allegheny Ludlum Steel Corporation facilities. Because of the large amount of development work that was required for warm drawing equipment, it was decided to perform the initial development work with $1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ and $1 / 16^{\prime \prime}$ shapes prior to drawing the tee shapes to the target . 043" thickness. After workable equipment was developed and the large amount of variable parameters relative to lubrication, temperature and die design were narrowed and/or fixed during development work with the larger sizes, the drawing development for the . 043" shapes proceeded at an accelerated rate.

Based on the above, a four-phase program was initiated. The phases are generalized as follows:

> Phase I Development of the drawing techniques for sizing as-extruded shapes having a cross section of 0.125 inch.

Phase II The development of drawing techniques for the production of shapes having an 0.063 inch cross section from extrusions of 0.125 inch section.

Phase III The development of sizing procedures for extrusions having a cross section of 0.075 inch. This was modified to start with nominal 0.095 inch thick extrusions.

Phase IV The development of drawing procedures to make 0.040 inch section shapes from extrusions having an initial thickness of 0.063 inch.
b. Equipment Development

1. Heating

Induction - Initial heating trials were concerned with the development of induction heating techniques. A 100 kw induction heating unit was procured, on a rental plan, from Lepel High Frequency Laboratories.

The temperature sensing device of the thermistor (infrared radiation) type produced by Mason Instrument Company was connected to the Pyrotel temperature controller which, in turn, controlled the 100 kw power pack. Figure 35 illustrates relative position of the 100 kw Lepel unit and Pyrotel RMF controller in relationship to the draw bench and induction coil.

The induction coil was threc feet long and consisted of flat copper tubes wound around a ceramic (Fiberfrax) liner. Sight ports were provided in the liner through which the Mason instrument could read infrared radiation and record temperature. The coils were uniformly spaced 5/8 inches apart as received. The coil was mounted as shown in Figure 35

Sighting with the Mason instrument at a point 6 inches from either end of the coil resulted in a temperature $250^{\circ} \mathrm{F}$ higher in the center than at either end due to end cooling effect. With the refractory liner removed, the temperature was uniform along the entire length. The inverse temperature gradient in the exit half of the coil negated temperature control since the sensing device was seeing a temperature higher than that initially controlled. Under dynamic drawing conditions, uncorrected, the coil would develop a $500^{\circ} \mathrm{F}$ temperature fluctuation in a three-foot interval. To correct the condition, the coil was respaced with an additional two turns in the front end to obtain a hotter zone at the exit end. In addition, holes were drilled in the cenier portion of the liner to facilitate dissipation of heat. This resulted in a positive temperature gradient from the control point to the back and the unit controlled proportionately the power demands. The control point was placed 12 inches from the exit end to obtain improved control. All initial temperatures were determined by welding thermocouples to the test extrusion.

The potential effect of emissivity of various lubricant systems on determining metal temperature with the Mason instrument was ascertained by heating a bright pickled surface and one coated with a black graphite lubricant. The maximum temperature variability was only $25^{\circ} \mathrm{F}$ and thus presented no problem in the lubricant study.

Continuous problems were encountered with the induction heating system. During the initial trials, "shorting" between the titanium extrusion and the coil resulted from arcing of the extrusion to a wet liner. The highly absorbent fibrax liner material was wetted by absorbing water of condensation from the coil turns. The arcing was eliminated by applying a water resistant coating of glyptol to the O.D. of the liner and by the use of preheated cooling water to the coil. Other problems that were associated with the induction heating system were burnout of the coil due to overheating from insufficient cold water flow through the coil and splitting of the underground, water-cooled coaxial power lead from ice formation in the line.

The coil requirement to obtain a $\pm 25^{\circ} \mathrm{F}$ temperature control in the 800-1 $300^{\circ} \mathrm{F}$ temperature range did not perform as anticipated; uniform heating could not be obtained. A second sensor head was incorporated for uniform heatirg, and damping circuitry was installed to reduce response of the sensor to compensate for a time delay function. These factors reduced the temperature variance from $\pm 500^{\circ} \mathrm{F}$ to $\pm 100^{\circ} \mathrm{F}$. This was still beyond the tolerance necessary for the program which required temperature control in order to evaluate a wide range of lubricante and develop the optimum lubricant system. The temperature controlling device was disregarded and temperature curves for constant power heating were developed. By heating with a constant power input, temperature variability was reduced to a nearly acceptable $\pm 50^{\circ} \mathrm{F}$ but at the expense of temperature and draw speed selection.

When attempts were made to draw thinner shapes, it was found that the equipment could not heat $1 / 16$ inch and thinner sections to warm draw temperatures of $1000^{\circ} \mathrm{F}$ without major, costly modification. A decision was
made to develop a resistance heated tube furnace and to dispense with the induction heater.

Radi ${ }^{2}$ nt Tube, Resistance Heated Furnace

The radiant tube furnace, is illustrated in Figure 36
The central resistance heated tube chamber was Type 310 stainless steel, a nominal 3.00 in I.D. $x 0.098$ in. wall $\times 12$ foot length. The tube was surrounded by 2800 series refractory MgO bricks and a carbon steel shell. One foot of the tube protruded on each end to which the water cooled copper power clamps were attached. Two G.E. 1500 amperes continuous duty DC rectifiers were installed in parallel to supply 3000 amperes, $0-40$ volts DC. The primary power source was three phase 550 volts, approximately 200 KVA; the secondary was metered. Tie temperature was controlled by a controlling the rmocouple.

The satisfactory temperature control in heating an extrusion longer than the furnace is depicted in Figure 37. The furnace, located about $6-8$ inches away from the die stand, was set at $1325^{\circ} \mathrm{F}$; the extrusion was then introduced with one end about 18-24 inches from the discharge port, heated 30 seconds, pushed through the die, and drawn at 12 fpm . In this curve the temperature varied only from about $870^{\circ} \mathrm{F}$ minimum to about $950^{\circ} \mathrm{F}$ maximum; one instantaneous peak of $1010^{\circ} \mathrm{F}$ was recorded. The power was generally on for 10-15 seconds (10-12V, 2500 A) and then off for 60-90 seconds. The Pyrotel head was used to measure draw temperatures and was placed 8 inches from the exit end of the furnace.

Minor, but objectionable arcing occurred sporadically when the thin edged extrusions were in contact with the extremities of the tube furnace. The severity and frequency of the areas of metal spark erosion are depicted in Figure 38. However, few failures through these notches were observed upon drawing. Initially, to circumvent this arcing, rings of fiberfrax were inserted on both of the ends and the middle of the tube furnace to keep the extrusion from contacting and arcing to the tube. A more positive means of preventing arcing consisted of turning the furnace power off during the draw operation. This practice was feasible as the temperature losses during the short draw cycle were minor in the well-insulated furnace. However, this practice was limited to extrusions about 12 feet in length.

Resistance Heating and Electric Furnace

Due to equipment limitations (straightening facilities in particilar) the warm draw program was transferred to the Titanium Metals Corporation upon installation of the new warm draw facility at Toronto, Ohio. The heating equipment consisted of a 20^{\prime}, three zone, side opening electric furnace. The furnace was placed in the draw bench trough adjacent to and lined up with the die stand. Electrode clamps were situated alongside the electric furnace for
resistance heating the shapes prior to insertion in the furnace. Resistance heating was employed to minimize the time at temperature of the extrusion to avoid lubrication breakdown. The electric holding furnace was used to equalize the temperature throughout the length and obtain uniform heating.

This arrangement proved entirely satisfactory and is the type of equipment recommended for warm drawing.

2. Gripper-Head and Jaws

One of the most persistent problem areas which hindered progress in warm drawing was the inability to consistently grip and hold the extrusion during the drawing operation. The normal force distributed to the surface of the extrusion from jaws operating at 30° angles was not adequate. The three cylindrical jaws each actuated separately from a 500 pound pressure attained from a nitrogen bottle invariably permitted slippage and rapid point deterioration on almost any patterned, nitrided, steel jaws. Figure 39 illustrates two of the three jaws and the rounding off of the $1 / 8$ inch diamond pattern teeth which rendered further drawing impossible. The jaw material was $\mathrm{H}-11$ die steel nitrided to a 0.015 inch case depth.

Cutting of the O-ring viewed in the bottom cylinder in Figure 39 was a frequent occurrence in all three jaw inserts at one time or another; the net effect was an excessive loss of gripping pressure and failure to draw. The cutting of O -rings was attributed to one cylindrical insert progressing further than the other two separately actuated inserts and cutting of the ring on a metal stop. The frequency of this phenomenon increased with the shortening of the inserts from repeated recutting of the diamond pattern.

An effort was made to avoid some of the difficulties in jaw gripping by evaluating a simple form of pin insertion. For simplicity sake only one $1 / 2$ inch diameter pin was inserted through the vertical leg. The point failed by shearing and no drawing transpired. No further efforts at pin gripping were attempted.

Several designs of the diamond pattern jaws were evaluated but none proved entirely successful. The best results were achieved with a modified $1 / 16$ inch diamond pattern, illustrated in Figure 40. The positive gripping achieved with this improved design is viewed in Figure 41. The wide ($1 / 8^{\prime \prime}$ diamond) did not penetrate the titanium extrusion surface to the same depth as the $1 / 16^{\prime \prime}$ pattern. However, only moderate success was achieved with the design. Efforts to improve gripping entailed torch heating the grippers to about $300 / 500^{\circ} \mathrm{F}$; it was felt that in handling the thin $1 / 16$ inch extrusions, the jaws would not then act as giant heat sinks and chill the sections to the point that securing the shape would not be possible. Moderate success was indicated but more desirable means of heating the jaws would be necessary.

The problem was finally solved by replacing the gripper head with an 8 inch Hufford Universal Gripper. The jaw inserts were of the same design
as used in the Babcock \& Wilcox stretcher straightener, but the insert material was different. The inserts manufactured by Hufford were 1020 carbon steel heat treated, carburized and then chrome plated. It was no longer necessary to actuate the jaws with 500 psig as had been the case with the old head; the new jaws were actuated with $80-100$ psig bottled nitrogen or air. Laboratory testing prior to delivery of the jaws indicated that a $1-1 / 2$ in $\times 1-1 / 2$ in $\times 0.120$ in. thick T sustained a $43,330 \mathrm{lb}$ load (120 Ksi) without slippage.

Subsequent warm drawing trials justified the transition to the Hufford Universal Gripper heads; no slippage was encountered under the most adverse conditions.

3. Draw Dies

One of the major accomplishments of the program was the design and development of the split tungsten carbide draw dies. The original concept, designed by American Carbide Company, Union City, New Jersey and the modification designed by Republic Aviation are shown in Figure 42. A view of the die inserts assembled in the die case can be seen in Figure 43. The split die sections were held by means of screw loaded wedges.

The major reason for using the modified design (Figure 42) was to eliminate working the edges of the tee during a reduction pass which caused buckling and "Chevron" defects (See Figure 44). The new design permitted unrestrained working of the edges and eliminated the "Chevron" defect. In addition, the complicated. $010^{\prime \prime}$ recesses to contour the edges of the extrusion in drawing were eliminated so that machining time for the modified design was considerably less. Dimensional control was accomplished hy altering the size of the three steel shims. It would be possible to incorporate tnd working in a final pass by introducing carbide end blocks with the desired redius.

Shims were made to accommodate changes in the die opening from . $093^{\prime \prime}$ to . 040' with one set of dies. Another advantage of the modified design is that it could be used for various tee configurations (and in fact, was used for the Part V work) resulting in considerable savings in tool cost.

Some of the difficulties encountered with the draw dies was cracking of the bottom block. This was traced to the fact that the top blocks and shim assembly exceeded the bottom dimension by. $0015^{\prime \prime}$ thereby resulting in some slop of the bottom block which resulted in cracking at the radius area.

The condition was overcome with careful dimensional control, assuring the bottom block being 0.0005 inch larger than the cumulative size of the upper two top blocks and shim. Another problem was thermal fatigue
which resulted in heat checking of tie top right and left hand blocks, as seen in Figure 45. The blocks were not polished prior to photography.

It was assessed by the supplier that the defects were about 0.010 inch deep. To avoid this heat checking, the dies and die case were preheated to $500^{\circ} \mathrm{F}$ prior to usage in warm drawing.

No further difficulties were experienced with the draw dies, and periodic inspection of the dies indicated no wear was encountered.

c. Process Development

The process development consisted of an evaluation and development of a lubricant system, and an evaluation of drawing speeds and drawing temperature. In addition techniques were developed relative to pointing of the extrusions and guiding the extrusions to eliminate bending moments on the points as the extrusion is drawn. The initial work was conducted with four foot lengths prior to using ten and twenty foot lengths.

Lubricant System

Good lubrication during the draw operation is necessary to prevent seizure of the metal to the die and galling of the extrusion. The lubricant system must have the ability to wet the extrusion and adhere without spalling off during handling and during the preheat operation. The lubricant must also resist breakdown when subjected to the heat generated at the die face by the metal reduction.

Various lubricant systems such as colloidal graphite (Prodag, Aquadag), molydisulfide (Alpha-Molykote 196X) and Fiske 604 (lithium grease, aluminum, mica, molydisulfide, bentonite) have been investigated and employed successfully from $750^{\circ} \mathrm{F}$ to $1150^{\circ} \mathrm{F}$ over a chemical conversion coat. A glass-type lubricant such as Phosphatherm (a phosphate type glass) was investigated at $1150^{\circ} \mathrm{F}$ in a preliminary fashion with only mild success due to limited temperature control for such a lubricant.

The lubricant system which performed best and which was selected for the Part V work consisted of the following:

An Amchem Granodraw T subcoat which is a conversion coating was put on the extrusion to facilitate wetting of the extrusion by the lubricants. This was followed by a lime dip coat and a brush coating of Alpha Molykote 196X which is a moly disulphide. Fiske 604 lubricant, which is a Bentone type base product combined with graphite and aluminum powder and mineral oil, was applied at the die face.

Preheat temperatures ranging between $800^{\circ} \mathrm{F}$ and $1400^{\circ} \mathrm{F}$ and draw speeds between 6 ft . per minute and 24 ft . per minute were investigated. The temperature of the exiting extrusion can be controlled by varying the distance between the furnace exit and the die orifice at a preset furnace temperature and draw speed. This distance is critical as rapid cooling of the thin tee section occurs due to radiation losses. The 10^{\prime} long furance was capable of heating the $1 / 16^{\prime \prime}$ thick and thinner extrusions uniformly to draw temperatures of $1000^{\circ} \mathrm{F}$ at the die entrance at draw speeds of $12 / 14 \mathrm{fpm}$ without difficulty. The distance between the furnace and the die stand was $7^{\prime \prime}$ and the furnace was preset at $1350^{\circ} \mathrm{F}$.

Higher preheat temperatures would result in lubrication burnoff and subsequent galling of the extrusion. Galling of the extruded surface due to lubricant breakdown is illustrated in Figure 46. The $1000^{\circ} \mathrm{F}$ draw temperature was found to be satisfactory in that relatively low draw loads (in the order of 7000 lbs . for a 10% reduction) were obtained.

With the 20^{\prime} electric furnace at the TMCA facility, good results (low draw loads and elimination of galling due to lubricant breakdown) were obtained with a preset furnace temperature of $1050^{\circ} \mathrm{F}$ and a draw speed of 24 feet per minute.

Draw Force

Facilities for recording stress during warm drawing were incorporated in the drawing assembly at the Allegheny Ludlum plant. Figure 47 illustrates the location and nature of the load cell. The cell, a threaded round with a $1-1 / 2$ inch diameter reduced section was calibrated in a $60,000 \mathrm{lb}$. Riehle universal testing machine. During the actual drawing, a Heiland Visicorder was incorporated into the equipment for a continuous record of loading.

At the TMCA facility, a recording ammeter was employed as an indication of the draw force. The ammeter measured the DC current to the motor pulling the trolley. At 100% motor amperage rating, a 50,000 pound pull would be exerted on the 50,000 pound draw bench.

The mean draw forces encountered were in the order of 5000 to $10,000 \mathrm{lbs}$. for 10% reductions.

Pointing

Both grinding and chemical milling of the points were utilized. The procedure employed consisted of grinding the fillet radii to insure insertion through the die and chem milsing the points in a solution of $35 \mathrm{HNO}_{3}$ and 5HF. Metal removal was at the rate of 1 mil per minute. Undercutting at
the air-liquid interface was prevented by taping that area of the shape. It should be emphasized that care must be exercised during the pointing operation to avoid making the points too thin. Excessively thin points caused numerous difficulties when the program was transferred to the TMCA facility in that continual point slippage and/or breakage occurred.

Point slippage occurred because the buildup of the pasty Fiske lubricant on the Hufford Jaws prevented closure on the excessively thin points. Point breakage occurred when the thin points could not carry the draw force. Further effort is required in the area of pointing extruded shapes to make the process attractive.

General

It was generally established that laminations, seams and striations greater than . 006" could not be refined in the drawing process. Figure 48 shows the appearance of a lamination after drawing from $3 / 32^{\prime \prime}$ to $.080^{\prime \prime}$.

Figure 49 illustrates typical distortions that were obtained after a warm draw pass resulting from non-uniform metal flow. Since the extrusions required straightening after each pass, hot stretch straightening ($1500 / 1550^{\circ} \mathrm{F}$) was employed which imparted an anneal to the extrusions. Therefore, it was not determined whether an in process anneal was necessary after each draw pass to avoid internal shear cracking due to work hardening of the section.

The warm draw process developed during Part IV accomplished the following general improvements in the extruded product:

1. Ironed out transverse glass markings and light striations (under. 006" depth) on the extruded surface.
2. Improved surface finish approximately 50% (from 200 u in RMS to 100 u in RMS and from 125 u in RMS to 75 u in RMS).
3. Improved dimensional tolerances to $\pm .004^{\prime \prime}$ on thickness dimensions.

Tensile Property Survey and Microstructural Examination
A series of samples were procured from the as extruded and straightened extrusions and from extrusions after warm drawing to determine mechanical properties and heat treat response of the material before and after warm drawing. The data for the three alloys: $\mathrm{Ti}-7 \mathrm{Al}-4 \mathrm{Mo}$; $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$; and Ti-4Al-3Mo-1V are listed in Tables 6, 7, 8 and 9. Included in Table 6 are tensile tests at $1000^{\circ} \mathrm{F}$ which indicate the relative ease of drawing at this temperature for the three alloys. It can be seen that Ti-7Al-4Mo offers the greatest resistance to flow and $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$ the least. Table 7 reveals the properties of a nominal 3/32" T shape of Ti-7Al-4Mo warm drawn to 1/16'". The properties are equivalent to the properties of $\mathrm{Ti}-7 \mathrm{Al}-4 \mathrm{Mo}$ as extruded shapes similarly heat treated, but slight improvements in heat treated ductility are indicated.

The material was examined metallographically in both the as extruded and straightened condition and after warm drawing. The photomicrographs are shown in Figures 50-57. A minor structural refinement is noted in the primary alpha particle size of the extrusions drawn to 1/16' from 3/32" when a comparison is made to an as-extruded $1 / 16^{\prime \prime}$ section (See Figures 54 and 55).

View of Warm Drawing Assembly,
Left Rear, 100 KW Unit; Right Rear Control Unit;
Left Front Trolley on Draw Bench; Right Front, Induction Coil
FIGURE 35

Resistance Heated Stainless Steel
Muffle Tube Furnace
FIGURE 36

Temperature measured at die entrance, 8 inches away from the exit end of furnace

Temperature Uniformity Along the Length of a Warm Drawn Extrusion, Heated in a Resistance Heated Tube Furnace, Ten Foot Long

FIGURE 37

Arcing of Extrusion Extremities

Arcing
During

A View of the Gripper Impression From

$$
\text { FIGURE } 41
$$

Buckling and Resultant Chevron Defects in a Nominal
1/16 in. T Extrusion of Ti-7A1-4Mo
FIGURE 44

Approx. 2 1/2x

Views Illustrating Heat Checking Noted in the Upper Right and Left Draw Die Inserts of Tungsten Carbide. Hairline Cracks are at Approximately the Bearing Line

FIGURE 45

[^3]Galled areas (indicated by arrows) are a result of lubrication breakdown due

Extrusions Warm Drawn Directly Through the 0. 110'1 400 Stearate Soap as the Exterior Lubricant

FIGURE 46

A View of the Gripper Head with Load Cell Located Between this Unit and Trolley

FIGURE 47

Base of crack caused in gag straightening operation

No working occurred on extremities since flange was tapered and edges were thinner than die opening

Lamination in original extrusion resulted in
'pitting" of drawn section

A $3 / 32^{\prime \prime}$ Tee After Warm Drawing to $0.080^{\prime \prime}$. Ironing in Middle of Base Due to Heavy Fillet Reduction. Note Inability to cope with Seams in Warm Drawing

FIGURE 48

Distortion in As-Drawn Tee Extrusions, Resulting from Improper Die Alignment and Non-uniform Metal Flow. Arrow indicates mechanically Pointed Front Ends.

Transverse Microstructures of a nominal $1 / 16$ in. T of $6 \mathrm{Al}-4 \mathrm{~V}$ (B\&W \#226), as Extruded and Straightened and also in the Heat Treated Condition

FIGURE 50

Transverse Microstructures of a Nominal $1 / 16$ in. T Extrusion of Ti-4Al-3Mo-1V (B\&W \#243) As Extruded and Straightened and also as Heat Treated

FIGURE 51

Transverse

UTS, Ksi	164.4
YS(0.2\%),Ksi	143.7
EL(1/2in) $\%$	4.0

$$
62-234 D
$$

500x

Longitudinal

UTS, Ksi	169.7
YS(0.2\%), Ksi	139.6
EL(1 inch)\%	11.0

62-285G 500X

Longitudinal

UTS, Ksi	189.0
YS(0.2\%),Ksi	167.1
EL(linch),\%	3.5

62-285H 500X

Microstructures of a $1 / 16$ in. T Extrusion (Battelle \#55) of
$\mathrm{Ti}-7 \mathrm{Al}-4 \mathrm{Mo}$, Heat Treated $1750^{\circ} \mathrm{F}$ (5 min.$\left.\right) \mathrm{WQ}+1150^{\circ} \mathrm{F}$ (4 hrs .) AC
FIGURE 53

500X

Transverse Microstructures of a Nominal l/l6 in. T of Ti-7Al-4Mo ($\mathrm{B} \& \mathrm{~W} \# 230$), Annealed and also in the Heat Treated State

FIGURE 54

Transverse Microstructures of a Nominal 3/32 in. T of Ti-7Al-4Mo (B\&W \# 223), As Warm Drawn to $1 / 16$ in. and also in the Heat Treated Condition

FIGURE 55

Ti-6Al-4V
Warm Drawn
0.048 in

As - Hot
(1550F)
Stretched

500X.

Ti-4Al-3Mo-1V
Warm Drawn
0.053 in

As-Hot
(1550F)
Siretched

63-235C
500x
Transverse Microstructure of $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$ and $\mathrm{Ti}-4 \mathrm{Al}-3 \mathrm{Mo}-1 \mathrm{~V}$ Alloys Warm Drawn From a Nominal $1 / 16$ in. Thickness

FIGURE 56

Longitudinal

UTS,Ksi 194.9 YS (0.2\%) 168.1 EL(1in),\% 6.0 Q

63-100A
500X

Transverse

63-100B
500X

Longitudinal and Transverse Microstructures of a Nominal
1/16 in. T Extrusion of Ti-7Al-4Mo (B\&W \#232) Warm Drawn to 0.043 in. and Heat Treated

FIGURE 57

$\begin{array}{lll}0 & 0 \text { nno } & 000 \\ \dot{\sim} & 0 \sim N & 0 \text { Nin }\end{array}$
ONOOU \quad O
coajaian

 184.0
174.0
169.7
121.3
118.3 168. 4

TENSILE PROPERTIES OF PART IV EXTRUSIONS *

Condition

Location Direction

Ti-4Al-3Mo-1V - $1 / 16$ in. T (B\& W \#243)

A
B
C
D
G
A
B
C
D
G

Ti-7Al-4Mo-1/16 in. T (B\&W \#230)

	$+\infty$	σ	- サの	\cdots	∞ Nroof	
$\stackrel{n}{H} \underset{\sim}{\omega}$	$\mathbf{T i}^{\infty}$	$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{0} \end{aligned}$	$\dot{o}^{\circ} \mathbf{N O}_{\infty}^{\infty}$	$\stackrel{\circ}{\sim}$		

TABLE 7

TYPICAT TENSILE PROPPRTTES $*$ OF A Ti-7A1-4MO
FXTRUSION $3 / 32$ in T (NO. 223) WARM DRAWN TO $1 / 16$ in

TABLE 8

ANNEALED ${ }^{\text {* }}$ PROPERTIES OF

PART IV EXTRUSIONS

Extrusion No.	Alloy	Drawn Wet Thickness, In	$\begin{aligned} & \text { UTS } \\ & \text { Ksi } \end{aligned}$	$\begin{gathered} \mathrm{YS}(0.2 \%) \\ \mathrm{Ks} 1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{El}(1 \mathrm{in}) \\ \% \\ \hline \end{gathered}$
228	Ti-4Al-3Mo-1V	0.052	135.5	121.8	14.0
229	Ti-4Al-3Mo-1V	0.052	136. 7	121.3	13.5
230	$\mathrm{T}:-7 \mathrm{Al}-4 \mathrm{Mo}$	0.058	170. 3	156.6	6. $0^{\text {Q }}$
235	Ti-6Al-4V	0.048	150.3	130.9	13.0 $0^{\text {Q }}$
239	Ti-6Al-4V	0. 052	154.5	140.9	15.0
240	Ti-4Al-3Mo-1V	0. 058	132.2	114.0	14.0
245	Ti-4Al-3Mo-1V	0.052	132.6	117.2	10.5

* Heated 1550 F (10 Sec.) hot, stretched (1/2-1 percent.).
TABLE 9

Drawn from a nominal $1 / 16$ in extrusion thickness.
$*$

1. Introduction

In order to determine the practicability of the techniques developed under Part IV, two shapes required for the RB-70 Weapons System were selected for fabrication. The two shapes are shown in Figure 5. These shapes were selected since they represent a significant increase in the state-of-art of titanium extrusion and at the same time were compatible with the existing warm draw tooling. The material for the two shapes was Ti 6Al-4V.

To produce the shapes it was determined that it would be economically advantageous to extrude to as close to the finished dimensions as possible, consistent with the limitations of the extrusion process, so that the required draw reduction would be a minimum. With this in mind, it was decided to produce shape 64El5 by extruding to . 093' cross section and warm drawing to the final. $080^{\prime \prime}$, providing a reduction of $013^{\prime \prime}$ or 14%. The modified shape 64E12 was produced by extruding to . $063^{\prime \prime}$ cross section and warm drawing to . 043', providing a reduction of . $020^{\prime \prime}$ or 32%. Detailed data was obtained, relative to dimensional uniformity, surface finish, micro structure and mechanical properties for both shapes, in the as-extruded condition and after various draw stages to ascertain the degree of improvement in warm drawing.

The cross sectional dimensions shown in Figure 5 were the dimensions selected at the start of Part V. However, as discussed later in the report, the scope of Part V was changed to include heat treatment of the shapes which resulted in a reduction of the nominal cross section 1 thickness of each shape.

After heat treatment, five (5) extrusions were shipped to North American Aviation, Inc. for testing relative to NAA specifications applicable to the RB-70 Weapons System.

2. Extrusion Trials at Babcock and Wilcox Corporation

a) Initial Extrusion Trials of Part V

(1) Objectives

The objectives of the initial extrusion trials were to evaluate the techniques developed under Part IV, and supply extrusions for the warm drawing phase.

A secondary objective of the trials was to determine the production potential of extruding shapes for the RB-70 aircraft by demonstrating multihole extrusion capability.
(2) Results and Evalcation

In the first two trials of Part V, a total of 30 pushes were made consisting of ten (10) pushes through the. $063^{\prime \prime}$ orifice die, ten (10) pushes
through the $.093^{\prime \prime}$ orifice die and ten (10) pushes through the multiport die which contained two (2).093" orifice tees. The extrusion data for these pushes is listed in the Appendix. The extrusion conditions for these trials were similar to the conditions for the final extrusion trial which are discussed in detail in the next section of this report.

During the first trial, a final evaluation was made of two glass systems which performed well during Part IV of the program. (E71BOD glass - E7l die glass and 318 OD glass - 3 KB die glass). Poor results were obtained with the E71B-E7l combination in terms of heavy titanium pickup and wash of the dies and heavy scoring of the extrusions. Therefore, it was decided to use the $318-3 \mathrm{~KB}$ combination for the balance of the program.

During the first trial, a lamination condition existed which indicated an uneven metal flow caused by nonuniform glass lubrication. Scalped discards from this trial are shown in Figure 58. During the second trial, the lamination condition was traced to the skid rails on which the billet was pisced prior to insertion into the container. It was felt that the glass coating on the billet was being scraped off when the billet was pushed along the skid rails by the stem and/or the billet surface in contact with the skid rails was being chilled. Coating the rails with \#85 glass slurry prior to placement of the billet on the rails eliminated this condition and no lamination defects were observed for the remainder of the program.

Examination of the dies for the second trial revealed that washing of the fillet radius consistently occurred and the areas of die wash corresponded to areas of scoring on the shapes. The relatively heavy die wash was attributed to a relatively light ceramic coating on the die radius which was not sufficient to act as a thermal barrier between the hot billet and the die material. The technique used in spraying the dies was to spray with the gun perpendicular to the die land to be sprayed. However, the spray gun was not aimed radially at the land of the fillet radius and the only ceramic pickup the fillet radius received was at an angle from coating the stem and flange lands - see sketch below).

The spray technique was modified as shown above for the dies used in the third trial with excellent results. (See discussion in next section).

The production potential of extruding thin tee shapes in multiport dies was demonstrated by producing lengthe of $17^{\prime} 0^{\prime \prime}$ and $16^{\prime} 8^{\prime \prime}$ in one push (approximately 34 ' of extrusion) but additional development work would be required to obtain good lubrication on all portions of the cross section.

The shapes were straightened by a combination of stretch and punch straightening developed under Part IV of the program. The detailed procedures used during these trials are presented in the section titled "Recommended Operational Procedure." No difficulties were experienced during these trials which were run very smoothly at the Babcock and Wilcox Corporation. Comparison of cross sectional dimens ions after stretch straightening with as-extruded dimensions revealed that considerable dimensional contraction resulted after stretching 3\%. This contraction is sufficient to require an allowance in extrusion die design. For the tee sections involved, the allowance should be 0.017" for the height and width dimensions and 0.0025" for the thickness dimensions.

The Arrows on Push \# 266 Discard Show the Lamination Leading up into the Shape. The Scalped Portion of Push \#252 Discard is Missing.

Butt Discards Showing Typical Billet Scalping and Lamination
FIGURE 58
b) Final Extrusion Trial

The final extrusion trial of the campaign was performed at Babcock and Wilcox Corporation.
(1) Objectives

The objectives of the trial were to prove out the extrusion process developed during the program and to provide material for warm drawing NAA Shapes 64E 12 and 64E 15 by producing 20^{\prime} lengths of the shapes in $0.093^{\prime \prime}$ and $0.063^{\prime \prime}$ cross sections.
(2) Facilities and Extrusion Practice

The extrusion press was a 2500-ton Loewy hydropress equipped with a 4-3/16' I. D. container and a 4-1/16' hardened steel stem for extruding $4^{\prime \prime}$ diameter billets. The 180,000 pai stress limitation in the steel stem required that the press extrusion force be limited to 1100 tons (l540 psi bottle pressure). The press is shown in Figure 59

The billet surfaces were belt ground to 100 grit, degreased, heated to $300^{\circ} \mathrm{F}$ and sprayed with \#85 protection glass slurry prior to heating. The billets were then placed into a pre-heated ($1800^{\circ} \mathrm{F}$) stainless steel can, covered and given a 60 second argon purge. The can is then placed into a controlled argon atmosphere, electric resistance furnace. During billet heating, the glass slurry forms a protective film of glass over the billet. In subsequent extrusion, the glass film on the billet surface insulates the hot ($1800^{\circ} \mathrm{F}$) billet from the relatively cooler container liner ($900^{\circ} \mathrm{F}$).

The billets were transferred to the extrusion press manually in the stainless steel can and tipped out of the transport can onto the runout table where additional glass powder was applied.

After the billet was in position in the container, the stem was advanced rapidly until contact was made with the billet. The stem remained in this position for one or two seconds while upsetting the billet, and then extrusion proceeded in about two seconds.

The die was lubricated and protected from washout during extrusion by a film of glass which was continuously fuzed from a ring of compacted glass powder. The granular glass ring (shown in Figure 60a.) was inserted into the container adjacent to the die and three (3) glass wool pads were inserted next to the granular glass ring. The glass wool pads were slotted and shaped by hand into a "doughnut" form, the I. D. of which was larger than the tee opening of the die (to avoid die clugging). The thin glass fibers of the glass wool pads melt easily and provide the initial lubrication at breakthrough.

The billet configuration is shown in Figure 60b. The convex faced nose created a reservoir of molten die glass which was available to the billet surface at the die opening. The relatively small radius $\left(3 / 8^{\prime \prime}\right)$ at the front face of the billet was employed to obtain good fillout at the front of the extrusion.

Shape 64 E 15 had an average die opening of $0.096^{\prime \prime}$ and width and height openings of $1.85^{\prime \prime}$ and $1.05^{\prime \prime}$ respectively. The cross sectional area for this shape was approximately 0.269 in 2 . With a container of 4-3/16' I. D. , the extrusion ratio for this section was approximately 51 to 1 . Shape 64E 12 had an average die opening of $0.069^{\prime \prime}$ and width and height openings of $1.85^{\prime \prime}$ and $1.68^{\prime \prime}$ respectively. The cross sectional area for this shape was approximately 0.242 in 2 and tne extrusion ratio was approximately 57 to 1.

Peerless A tungsten steel dies heat treated to Rc 48-51 and sprayed with approximately $0.012^{\prime \prime}$ ceramic over a $0.002^{\prime \prime}$ undercoat of molybdenum were used for all the pushes. The dies were of three piece design to allow the application of the ceramic coating by the flame spray method. The die design is shown in Figure 61. The die orifice dimensions after coating are shown in Table 10. The thickness dimensions were obtained by feeler gage measurement and the width and height dimensions obtained with specially made inside calipers. All the dies were coated with alumina except dies $7 \mathrm{E}, 7 \mathrm{BB}, 8 \mathrm{ZZ}$ and 8 VV which were coated with zirconia. The extent of ceramic coating on the dies is shown in Figure 62.

The temperature of the billet and tooling during the trial was as follows:

billet	$1800^{\circ} \mathrm{F}$
die	$900^{\circ} \mathrm{F}$
container	$900^{\circ} \mathrm{F}$
dummy block	$400^{\circ} \mathrm{F}$

A new chromium plated and polished liner was used for the trial.

The lubrication system employed consisted of the \#85 billet coating, 318-14 mesh O. D. glass and 3KB-14 mesh die glass.
(4) Extrusion Trial

The trial schedule is listed in Table 11 with the conditions for each push. Force measurements are not listed due to faulty instrumentation. The data listed under the Remarks column are notes that were made during the trial and reflect the impressions made as the events occurred. A more detailed analysis of the conditions of the shapes and dies are presented in the Results section.

Four stainless steel heating cans were available which allowed flexibility in the billet heating cycle. Previously sprayed glass coated billets were categorically lined up in front of the four furnace entry positions in order to maintain continuous availability of hot billets in accordance with the heat soak schedule. The billets were charged into the furnace one every fifteen minutes.

The trial was set up to extrude eight (8) lengths through the $3 / 32^{\prime \prime}$ orifice dies followed by eight (8) lengths through the $1 / 16^{\prime \prime}$ orifice dies. Since this was the final trial, it was decided to hold all conditions as constant as possible to prove out the process. The trial was run very smoothly and no major difficulty was experienced. Glass coverage of the extrusion was not optimum in that the glass was not getting into the fillet radii on some of the shapes. Some variation was made on the last few pushes by adding more glass wool pads to correct this condition (see remarks in Table 11) but the additional glass wool did not noticeably improve the glass coverage. Examination of the dies after the trial revealed that on several dies the entrance radius at the fillet was sharper than the design radius ($1 / 8^{\prime \prime}-3 / 16^{\prime \prime} R$ instead of $1 / 4^{\prime \prime} R$) and suggested that the glass flow in the fillet was restricted by the sharp radius.

The balance of the shape cross sections had excellent glass coverage with a thin, clear, bluish film of glass covering the entire length.

(5) Results

After deglassing and stretch straightening, the extrusions were visually inspected along the entire length and cross sectional measurements were taken at the back end, middle, front end, and at every foot from the front end until the dimensions were approximately equivalent to the dimensions at the middle of the extrusion (to determine the point at which good fillout was obtained). The measurements are tabulated in Table 12.

The conditions of the shapes and dies are presented below under the individual push number:

Push No. 282
Shape - good surfaces all over - light striations in fillet radii from front to back - slight amount of occasional pitting - edge radii sharp. Shape rated good

Die - ceramic flaked off in several areas - all surfaces looked good
Die reusable

Shape	light scoring and some pits on front end on right flange and right side of stem - light scoring on left flange and left side of stem with heavy scoring in left fillet radius toward back end - light scoring and a few areas of pitting on bottom of flange edge radius sharp toward back end Shape rated fair
Die	most of ceramic still intact - very light scoring in ceramic on bottom of flange Die reusable

Push No. 284

Shape - good surfaces all over with light pitting distributed lightly over entire length - very light striations on bottom of flange with patches of pitting over the full length - slight sharpness on edge radius Shape rated good

Die - die surfaces good - part of ceramic still intact Die reusable

Push No. 285
Shape - all surfaces good over entire length with some pitting approximately 4^{\prime} from the front end - very light striations toward back end - O. D. radius slightly rough Shape rated good

Die - all surfaces good with light titanium pickup on left stem and right fillet radius Die reusable

Push No. 286
Shape - left and right stem and flange good surfaces to light scoring front to back - bottom of flange numerous pits with very light striations front to back - some scoring on edge radii Shape rated good

Die - almost all of the ceramic gone from land - no wash or wear on die
Die reusable

Shape

Die
very light striations on all surfaces full length one area of fine pits on bottom of flange - light to medium scoring front to back in right radius sharp radius on edge Shape rated fair

Push No. 288
Shape - very light striations full length on right flange light scoring in right fillet radius at back end stem rippled for l^{\prime} from front end - some pits toward front end on left side of flange - very light striations full length on left stem and radius and bottom of flange - slight sharpness on edge radius Shape rated good

Die - heavy titanium pickup on top of ceramic in left fillet radius - rest of die lands good Die reusable

Push No. 289
Shape - very light striations full length on right flange, right fillet radius and right stem - light striations toward back end of left flange - light striations in back end of left fillet radius - one area of pitting on left stem - light striations with discontinuous pitting on flange bottom - edge radius good
Shape rated good
Die - die surfaces good - part of ceramic still intact Die reusable

Push No. 290

Shape

Die
good surfaces all over with light pitting distributed lightly over entire length - very light striations on bottom of flange - edge radius good Shape rated very good

- all surfaces good - ceramic flaked off in several areas
Die reusable

Shape - light scoring and some pits on front end on right flange and right side of stem - light striations left flange and left stem - heavy scoring front to back on left fillet radius - very light striations on bottom of flange full length - occasional light pitting over entire length - slight sharpness on edge radius Shape rated fair

Die - heavy titanium pickup on left fillet radius - rest of land good Die Reusable

Push No. 292
Shape - light to medium scoring on back end of right flange tear starting in stem approximately 6^{\prime} from front end of left flange - slight ripple in stem 5^{\prime} from front end of right stem - very light pitting right fillet radius - very light to light striations full length on bottom of flange with very light pitting. Shape rated good

Die - all surfaces good - ceramic flaked off in several areas
Die Reusable

Push No. 293
Shape - very light striations over all surfaces - discontinuous pitting on all surfaces - kink 8^{\prime} from front end of right stem - good edge radius Shape rated very good

Die - all surfaces good - some ceramic still intact Die reusable

Push No. 294
Shape - very light striations full length on all surfaces fine pitting over entire surface - edge tears on flange from approximately 3^{\prime} to 6^{\prime} from front end edge radius good.
Shape rated good
Die - all surfaces good
Die reusable

Shape - light striations front to back over all surfaces slight pitting on all surfaces front to back edge radius good Shape rated good

Die - all surfaces good Die reusable

Push No. 296
Shape - light striations front to back right flange, right stem, right fillet radius - light to medium scoring front to back left flange and left fillet radius edge tears for first 7^{\prime} - pitting on all surfaces light striations front to back of bottom of flange edge radius very sharp
Shape rated poor due to tear
Die - all surfaces good
Die reusable

Push No. 297
Shape - light to medium scoring front to back of right flange - some ripples on right stem - light to medium scoring front to back of bottom of flange edge radius very sharp Shape rated fair

Die - all surfaces good
Die reusable

Dies

An analysis of the results of the trial indicated that the dies performed excellently. Only one die out of the sixteen had some wash in the fillet radius (die 8 TT - push 287) and this die was reusable with some rework.

The sixteen dies are shown after extrusion in Figure 63 and after extrusion and sand blasting in Figure 64. Figures 65 and 66 show closeups of die 7C - push 290 which was typical of the condition of the dies. Figure 65 shows that wear was obtained in the ceramic on the stem lands but an examination of Figure 66 shows that the base metal was untouched.

The lack of glass at the fillet radius of some of the shapes during extrusion made the trial a severe test of the ceramic coating. The lack of wash or wear on all of the dies except ont is evidence of the excellent performance of the ceramic coating.

Surface Quality

Figure 67 shows the discards after the trial. No laps or laminations were noted on any of the discards or extruded shapes. Figure 68 is a closeup view of discard \#295 which was typical of the discards. Examination of Figure 68 and Figure 69 (which is a section cutting the stem of discard \#295) reveal the good metal flow obtained during extrusion.

The general surface quality of the extrusions was fair with light longitudinal striations running the length of the extrusions on most surfaces. The surface finish ranged between 50 and 370 . The average surface finish was about 170 RMS. Figures 70 and 71 illustrate the typical surface quality of the extrusions produced during the trial. The as-extruded surface quality of two $1 / 16^{\prime \prime}$ extrusions processed for warm drawing can be seen in Figure 95. These views were taken of the back ends of the extrusions. Of the eight (8) $3 / 32^{\prime \prime}$ shapes, six (6) shapes were rated good and two (2) shapes were rated fair. Of the eight (8) $1 / 16^{\prime \prime}$ shapes, five shapes were rated good, two (2) shapes were rated fair and one (1) shape was rated poor (due to a tear in the flange). (See "Results" section for detailed description of shapes).

Dimensional Analysis

During the latter portion of the Part IV warm draw program (which was run concurrently with the extrusion effort in Part V) difficulty was experienced on the TMCA draw bench in drawing the shapes below . 058". Based on a recommendation by TMCA that the Part V shapes could not be successfully drawn below. 058', the extrusion dies for the final Part V trial were opened up by electric discharge machining. This was done to allow sufficient reduction in drawing to effect a surface improvement. The 1/16" dies were opened up to provide a nominal $.072^{\prime}$ opening after ceramic coating. In addition, the height and width dimensions of the tee were increased to insure that sufficient stock would be available for edge machining the
shapes to the target dimensions. However, it was established that technical errors rather than process problems prevented drawing the shapes below .058'. Two of the dies (7GG and 7CC - which were not coated with the previous group) were then coated with a heavier ceramic buildup and machined back to provide a nominal . 063" orifice. The other 14 dies were not machined after application of the ceramic coating. The variation in die orifice size is due to the lack of control of buildup in the application of the ceramic spray. The variation in die dimensions after coating is tabulated in Table 13.

The extrusion cross section dimensions are listed in Table 12 and the dimensional variation of each extrusion is tabulated in Table 14. It can be seen from Table 14 that the maximum variation from front to back on any one leg of the extrusion is $.010^{\prime \prime}$. This was obtained on extrusion 283 which had poor die fillout for the first several feet. However, extrusion 283 was 25' $9^{\prime \prime}$ long and dimensional tolerances for a 20^{\prime} (target) length of the extrusion are considerably better than indicated in Table 14. Referring to Table 12, by cropping only 1 foot from extrusion \#283, the variation from front to back on any one leg is reduced from . 010' to $0005^{\prime \prime}$. Cropping ${ }^{31}$ from the extrusion would reduce the variation to .004" and would reduce the total variation on the three legs from. 020" (see Table 14) to . 014".

Also seen from Table 14, the average variation from front to back on any one leg was. 004". This small variation is attributed to good die performance and glass practice. Again referring to Table 14, it can be seen that the maximum total variation on all three legs was . 022" while the average total variation was. $012^{\prime \prime}$. This variation is attributed to both variation in die opening and poor die fill for the first several feet. Again, cropping the extrusions to the target 20^{\prime} would reduce the dimensional variation considerably.

Table 14 reveals that all of the extrusions produced at the final trial with the exception of "283 are within $\pm .012$ " of nominal size. The low variation from front to back on each leg indicates that tighter extrusion tolerances could be attained by more accurately controlling the die orifice size in a finish machining operation.

2500 Ton Loewy Extrusion Press Used for the Titanium Extrusion Program at the Babcock \& Wilcox Company

$$
\text { FIGURE } 59
$$

Granular Glass Ring Configuration

Convex Shaped Nose Billet Configuration Glass Ring and Billet Configurations Used During Final Extrusion Trial FIGURE 60

SHAPE	A	B	C	D	E
676	.063	.0315	1.685	1.840	.410
$676 A$.072	.036	1.685	1.840	.410
677	.098	.049	1.050	1.840	.175

Modified Flat Face Die Design Used During Final Extrusion Trial FIGURE 61

Dies Used on Final Trial Shown After Extrusion and Sand Blasting

Closeup of Die 7C (Push \#290) After Extrusion FIGURE 65

Closeup of Die 7C (Push \#290) After Extrusion and Sand Blasting

FIGURE 66

Closeup of Discard \# 295
FIGURE 68

Sectioned View of Discard \#295 Showing Metal Flow
FIGURE 69

Back of
Flange
and Upper
Flange

DIE ORIFICE DIMENSIONS* PRIOR TO EXTRUSION

DIE NO.

	A	B	C	D
8E	. 098	. 096	. 106	1.847
8H	. 095	. 093	. 093	1.835
8K	. 096	. 098	. 101	1.828
8RR	. 098	. 099	. 097	1.842
8SS	. 109	. 095	. 100	1.839
8TT	. 100	. 099	. 097	1.850
8VV	. 097	. 095	. 095	1.853
82 Z	. 100	. 100	. 097	1.842
7C	. 072	. 074	. 077	1. 834
7DD	. 071	. 077	. 076	1.842
7 E	. 076	. 077	. 070	1.830
7 BB	. 089	. 088	. 077	1. 855
7EE	. 075	. 070	. 075	1.846
7FF	. 076	. 075	. 068	1. 829
7GG	. 064	. 065	. 062	1. 830
7CC	. 062	. 065	. 062	1.832

PUSH NO.
(REFERENCE) 282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

[^4]FINAL EXTRUStON TRIAL DATA SHEET

$\begin{aligned} & \text { PUSH } \\ & \text { NO. } \end{aligned}$	BLLET HTG t1ME (MIN	BLLET TRANSFER tines (SECS)	$\begin{aligned} & \text { DIE } \\ & \text { NO. } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{DIE} \\ & \mathrm{CTG} \\ & \hline \end{aligned}$	Extrusion LENGTH	REMCARKS
282	33	54	02	Zirconia	21'9"	Difficulty romoving cover from billot can - cta on billat looked good coming out of can (no dark apots) - ahape was dry in both fillot radil - belapce had oxcellent glese covarafe all over die ctes was removed in fillet but land did not apposer to bo weohed obape looked good.
283	36	40	0 H	Alumina	25'9'	Billet looked good out of can - shape again dry in both allet radit - excellont glese coverage all over except in tillet - die looked good - land and cte held up well - ohape looked good but had fine necoring in fillet where no glase covarage was obtained. vertical leg of ohape had step on extremity (may be due to ctot buil on die-no lape on diecard.
284	91	48	8K	Alumina	231"	Billat was given two revalutions on glaes table to try to cover a bed area in cts - part of cts eeemed to be teperated from the bllet; however, no acale was noted on billet - diecard had no laps and good glags coverage - the ohape had excellent glass coverace except in fillot where very light ecore was noted - no otep was obeerved on lef extremitien - dile cts held up well.
285	92	36	8RR	Zirconia	23'3"	BHet ctg looked good - billet wae givon a double roll in glase ohape looked excellent - left fillet radius wae dry - right radiue h good glase coverage - one eection of ehape in the midcie of the extruaion was dry and appeared to be acored very lighely - may have been due to a bad epot in ctg that wae not seen - difficulty gotting die out of holder.
286	68	36	sss	Aumina	21'3'	Billet ctg looked good - shape looked excellent - slight atep oa vertical extromity - diocard had no lapi, good glase coverage and flow - ceramic on die intact.
287	73	45	8 TT	Aumina	$22^{1} 10^{\prime \prime}$	Shape looked sood - fillet radil dry - glaen was aperee in arga from 3' to 91 from front end on bottom of horisontal leg but then picked up - balance if shape had excellent glase coverage - some titanium pickup notad right fillot rediue of die.
288	72	42	8v	Aumina	24'4'	Bllet cts looked good - dic looked good (ctg Intact). Excellent glase coverage over entire ohape.
289	72	36	822	Alumina		Resulte aimilar to above.
290	70	40	7 C	Zirconle	19 3"	Resulte eimilar to above - Shorter length due to ehorter billet longth (balance of avallable stock).
291	84	42	7DD	Alumina	22' ${ }^{\prime \prime}$	Good gleas covarage except in radius - some scoring in left rediua - ohape had undorcut in right radius on beck ond die had eome Ti pickup on left radius (correaponding to undercut in ehape) reat of die looked good.
292	85	36	15	Aumina	24'4'	Glase coverage good for firat 14' and apoty for laat 101 on both uldet of borimontal leg.
293	97	35	188	Aumisa	19' ${ }^{\prime \prime}$	The granular glase ring wae reduced ta thleknese to $1 /$ st $^{\prime \prime}$ Inateed of $5 / 6^{\prime \prime}$ and 1 axtra glate wool ped was ubed (total of 4) to attomp to got mere gleses in the radius - good glase coverage over oatire ohape - diselird hed good glees coverage and dow.
294	90	42	75	Zirconia	23' 3'	Five glase wool peds ueed - ohepp looked pood - axcollont glaen coverage ald over - glasi wal apoty in fillote.
295	90	42	75	Alumins	$23^{\prime \prime} 10$	Bape olmilas to 293 and 294 - dry tn redil tewarde beek ond heavy glese loft ea dle - dio hed no whoh or wasz - dle ety ramoved but land meld up.
296	96	40	700	Alumina	26' ${ }^{\prime \prime}$	Four glase weol pedo ueod otace five pede did not chow as improvemont over lour - ohage hed ollght toart in gaype (probally due to glene clogging die and fegtrictiag low to that the matorial talle in toachen - heary glees left ca dle.
297	98	-	7CC	Alumias	20'1"	Throe glaee wood pede ueod - $1 / 4$ " dhek greauler gleen riap taedvertontly ueod with the (3) cleos wood pede tantect of a 3716^{11} chack ring - Thie coupled with the long leagth (due to a amallet orifice oppalag than the othor dios) produced a ohapo with apirte. glase coveriag.

a川ot Tomp. - 18000%	Containar Temp. ${ }^{-1000} \mathrm{~F}$
Bulat Longth - $63 / 4{ }^{\prime \prime}$	Die Temp. - $900{ }^{\circ} \mathrm{F}$
Bulat Conlig. - Convox Finco	Dummy Block Tomp. - ${ }^{400}{ }^{\circ} \mathrm{F}$
Bulat Ctg. \$15	
O, D, Glate - 318 - 14 Megh	Chrome Flated Liner ${ }^{\text {c }}$
Die Ciasi - 3 KB - 14 mogh	Bulat His - Electric Turnace Argon Atmosphero
Die Glass Confly. - Rigis tu	

CROSS SECTIONAL DIMENSIONS

(AS EXTRUDED AND STRETCH STRAIGHTENED)
Dimensions (inches)
(See sketch for dimension locations)

EXTRUSION NO.

FT. FROM FRONT END

B
C
D
1.091 .090 . 095 1.706 . 93¢

2

3

4
5
Middle
Back end
.097
.095
.084 .074
.089 .078
.090 .079
.090
.080
1.676 . 94

1. 705.97

6

7
Middle . 089 . 092 . 082
Back end . 091
.094
.082
$1.762 \quad 1.00$
$1.797 \quad 1.01$
$1.806 \quad 1.02$

View Looking From Frunt End Of Extrusion

TABLE 12 (continued)

CROSS SECTIONAI DIMENSIONS

(AS EXTRUDED AND STRETCH STRAIGHTENED)

> Dimensions (inches)
> (See sketch for dimension locations)

| EXTRUSION | FT. FROM | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| NO. | FRONT END | A | B | C | D |

| 1 | .097 | .097 | .090 | 1.710 | .980 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | | | 1.753 | .992 |
| | 4 | .098 | .098 | 1.760 | .984 |
| Middle | .097 | .098 | .091 | 1.781 | .993 |
| Back end | .097 | .098 | .090 | 1.783 | .988 |
| | | | | 1.780 | .992 |

1	.092	.095	.093	1.780	1.011
Middle	.092	.094	.092	1.776	1.006
Back end	.093	.096	.095	1.798	1.016

	1	.106	. 092	. 095	1. 772	1.011
	2				1.776	
286	Middle	. 106	. 089	. 095	1. 782	1.016
	Back end	. 107	. 090	. 095	1. 791	1.016
	1	. 097	.088	. 093	1. 766	. 983
	2				1. 788	. 993
287	Middle	. 097	. 088	. 093	1. 789	1. 001
	Back end	. 097	. 089	. 093	1.791	1.001

TABLE 12 (continued)
CROSS SECTIONAL DIMENSIONS
(AS EXTRUDED AND STRETCH STRAIGHTENED)
Dimensions (inches)
(See sketch for dimension locations)

$\begin{aligned} & \text { EXTRUSION } \\ & \text { NO. } \\ & \hline \end{aligned}$	FT. FROM FRONT END	A	B	C	D	E
	1	. 089	. 087	. 091	1. 727	. 993
	2				1. 725	. 989
	3				1. 747	
288	4				1. 747	
	5				1. 755	
	Middle	. 090	. 085	. 089	1. 761	. 980
	Back end	. 092	. 088	. 092	1. 771	. 994
	1	. 092	. 091	. 093	1. 753	. 993
	2				1. 752	
289	3				1. 772	.
	Middle	. 092	. 091	. 091	1. 775	. 994
	Back end	. 094	. 093	. 092	1. 794	1. 007

TABLE 12 (continued)
CROSS SECTIONAL DIMENSIONS
(AS EXTRUDED AND STRETCH STRAIGHTENED)
Dimensions (inches)
(See sketch for dimension locations)

EXTRUSION NO.	FT. FROM FRONT END	A	B	C	D	E
	1	.059	.067	.071	1.601	1.527
	2			1.655	1.557	
291	3			1.702	1.599	
	4			1.727	1.625	
	5			1.730	1.611	
	6				1.788	1.632
	Middle	.062	.069		1.798	1.630
	Back end	.065			1.809	1.643

292 See 'Table B-1 in Appendix B

	1	. 089	. 084		. 067	1. 752	1. 533
	2					1. 767	1. 540
	3					1. 777	1. 564
	4					1. 784	1. 578
293	5						1. 587
	6						1.610
	7						1. 636
	Middle	. 089	. 085		. 068	1. 796	1. 642
	Back end	. 089	. 085	. 081	. 067	1. 795	1.646

TABLE 12 (continued)

CROSS SECTIONAL DIMENSIONS

(AS EXTRUDED AND STRETCH STRAIGHTENED)
Dimensions (inches)
(See sketch for dimension locations)

$\begin{aligned} & \text { EXTRUSION } \\ & \text { NO. } \end{aligned}$	FT. FROM FRONT END	A	B	C	D	E
296	1	. 061	. 054	. 055	1. 697	1. 633
	2				1. 727	1. 621
	3				1. 753	1. 628
	4				1. 743	1. 638
	5				1. 756	1. 645
	6				1. 765	
	Middle	. 061	. 052	. 058	1. 772	1. 645
	Back end	. 064	. 056	. 059	1. 788	1. 661
297	1	. 058	. 055	. 049	1. 716	1. 572
	2				1. 737	1. 599
	3				1. 761	1. 604
	4				1. 777	1. 610
	5				1. 783	1. 615
	Middle	. 061	. 058	. 051	1. 795	1. 620
	Back end	. 065	. 061	. 054	1. 805	1. 640

DIMENSIONAL VARIATION* OF DIE ORIFICE DIMENSIONS AFTER CERAMIC COATING

$\begin{aligned} & \text { PUSH NO. } \\ & \text { (Ref.) } \\ & \hline \end{aligned}$	DIE	AVERAGE DIMENSION OF 3 LEGS	DIMENSIONAL RANGE OF 3 LEGS	NOMINAL DIMENSION	MAXIMUM VARIATION FROM NOM. ON ALL LEC
282	8E	. 100	. $096-.106$. 098	$\begin{aligned} & +.008 \\ & -.000 \end{aligned}$
283	8H	. 094	. $093-.095$. 098	$\begin{aligned} & +.000 \\ & -.005 \end{aligned}$
284	8K	. 098	. $096-.101$. 098	$\begin{aligned} & +.003 \\ & -.002 \end{aligned}$
285	8RR	. 098	. $097-099$. 098	$\begin{aligned} & +.001 \\ & -.001 \end{aligned}$
286	8SS	. 101	. 095 -. 109	. 098	$\begin{aligned} & +.011 \\ & -.003 \end{aligned}$
287	8TT	. 099	. $097-100$. 098	$\begin{aligned} & +.002 \\ & -.001 \end{aligned}$
288	8 VV	. 096	. $095-.097$. 098	$\begin{aligned} & +.000 \\ & -.003 \end{aligned}$
289	8Z Z	. 099	. $097-.100$. 098	$\begin{aligned} & +.002 \\ & -.001 \end{aligned}$
290	7 C	. 074	. $072-.077$. 072	$\begin{aligned} & +.005 \\ & -.000 \end{aligned}$
291	7 DD	. 075	. $071-.077$. 072	$\begin{aligned} & +.005 \\ & -.001 \end{aligned}$
292	7 E	. 074	. $070-.077$. 072	$\begin{aligned} & +.005 \\ & -.002 \end{aligned}$
293	7 BB	**	-	-	-
294	7EE	. 073	. $070-.075$. 072	$\begin{aligned} & +.003 \\ & -.002 \end{aligned}$
295	7 FF	. 073	. $068-.076$. 072	$\begin{aligned} & +.004 \\ & -.004 \end{aligned}$
296	7GG	. 064	. $062-.065$. 063	$\begin{aligned} & +.002 \\ & -.001 \end{aligned}$
297	7 CC	. 063	. $062-.065$. 063	$\begin{aligned} & +.002 \\ & -.001 \end{aligned}$
* See Ta					

See Table 10
Inadvertently machined oversize See Table 10 for dimensions.

	$\begin{aligned} & \text { Nin } \\ & O_{0}^{\circ} \\ & +i \\ & +i \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \\ & +i \end{aligned}$	$\begin{aligned} & \text { Men } \\ & 0_{0}^{\circ} \\ & +i \\ & +i \end{aligned}$	$\begin{aligned} & -10 \\ & 0.0 \\ & +i \end{aligned}$	$\begin{aligned} & \text { NO } \\ & 00 \\ & +i \end{aligned}$	$\begin{aligned} & N 1 \\ & O 8 \\ & 08 \\ & +i \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & +i \end{aligned}$	$\begin{aligned} & 8 \mathrm{~B} \\ & 8 \mathrm{O} \\ & +1 \end{aligned}$	$\begin{aligned} & \overrightarrow{2} \\ & 0 \\ & +i \end{aligned}$	$\stackrel{\infty}{\circ} \frac{0}{0}$ $+i$	$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & +i \end{aligned}$	$\begin{aligned} & \text { +in } \\ & 00 \\ & +i \end{aligned}$	$\begin{aligned} & N= \\ & 0 \\ & 0 \\ & +i \end{aligned}$	$\begin{aligned} & +\infty 8 \\ & \text { O}_{\circ}^{\infty} \\ & +i \end{aligned}$	$\begin{aligned} & n= \\ & 00 \\ & +i \end{aligned}$

DIMENSIONAL VARIA TION OF EXTRUSION CROSS SECTION THICKNESS (Measured after stretch straightening)

Dimensional Range on all 3 legs

 $\stackrel{\infty}{\circ}$ O $\stackrel{\infty}{\circ} \quad \stackrel{\circ}{0}$
O
 $\begin{array}{lllll}0 & n & N & 0 & N \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ TABLE 14 Variation front to
back on each leg $\begin{array}{ccc}\text { A } & \text { B } & \text { C } \\ .006 & .005 & .002\end{array}$ $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & - \\ 0 & 0\end{array}$
 $\begin{array}{ll}8 \\ 0 \\ 0 \\ 0 & 8 \\ 0 & \end{array}$ $8 \quad$ ㅇ ㅇ ठ N
0
0
0
0
0
0
0
 Dimensional Range
on each leg
 $.064-.073$
$.058-.071$
$.052-.064$
$.049-.065$

Extrusion

[^5]3. Warm Drawing at Titanium Metals Corporation
a) Equipment and Procedures

Following incoming or in-process inspection, pointing and surface preparation and lubrication, each extrusion followed this sequence:

1. Preheat, electrical resistance
2. Transfer to electrically heated holding furnace to maintain preheat and draw temperature
3. Exit from holding furnace, pass point through die and grip point in Hufford grips attached to carriage of draw bench
4. Draw entire length through die
5. Stretcher straighten using resistance heating. Two Hufford grips are used for this operation. Electrical power may be applied through the Hufford grips or by attachment directly to the extrusion

The equipment and procedures involved are described below:

Rectifiers and Resistance Preheater

A bank of eight (8) 1200 ampere, 40 volt rectifiers are connected in parallel to provide electrical resistance heating for warm drawing. This same arrangement was also employed for resistance heating during stretcher straightening.

Variable lengths can be handled from a minimum of about 3 feet to a maximum of 21 feet. For these sections, a preheat of $1050^{\circ} \mathrm{F}$ was possible in less than 90 seconds by the use of four or five rectifiers set at 200/250 amperes.

Power is applied through the point on the fixed south end by means of a copper contact; exerting pressure vertically; the north end copper contact is movable to accommodate any length of extrusion up to the maximum of 21 feet.

The preheater is located immediately adjacent and parallel to the door of the electric holding furnace. All temperatures were checked manually with a contact pyrometer.

Electric Holding Furnace

The electrically powered holding furnace had an 8×8 in $\times 21$ foot maximum ueable length hearth. The floor of the hearth was a perforated metal plate which was in line with the center line of the draw bench and die
stand. The furnace is rated at 80 KW , operating at 440 V and was designed for use up to $1500^{\circ} \mathrm{F}$.

Draw Bench
The draw bench was a 50,000 pound Aetna-Standard bench with variable speed control from 0 to 100 fpm . Through Part V, the draw bench speed was standardized at 24 fpm . An assessment of draw loads was made by incorporating a recording ammeter on the DC motor drive. The maximum drawn length on the bench (45 feet) far exceeds the preheat and holding furnace limitations.

A conical, tapered die holder was positioned in the die stand. This accommodated an 8 inch maximum O. D. steel die case engineered by American Carbide. For gripping of the extrusion during drawing, an air actuated Hufford Universal gripper (3 segments) was employed.

During drawing, the extrusion in the holding furnace was manually pushed through the die assembly into the Hufford jaws for point gripping. As the extrusion moved out of the furnace into the die stand, lubricant (Fiske 604) was applied by brushing. The Hufford jaws were made from heat treated H-13 die steel, subsequently nitrided by the Tuftride (Kolene) process. The knurled gripping surface of each jaw was a shallow crisscross pattern with $1 / 16$ in. diamond teeth.

Stretcher Straightener

The stretcher straightener consisted of two opposing Hufford grips, each rated at $100,000 \mathrm{lbs}$. pulling force. One grip was mounted on the draw carriage of the 50,000 pound bench and the second to the 15 ton hydraulic cylinder which, in turn, was mounted in a separate, detachable carriage, removed from the draw bench when not in use. When stretching, this carriage was mounted on the draw bench and hooked into the stationary draw bench chain.

During in-process straightening, the electrical power is attached directly to one end of the extrusion (pointed end) in order to preserve the point for subsequent drawing. On the opposite end, power is brought through the Hufford gripper. For final straightening, the pnint is cut off and power is then brought to the extrusion through the Hufford grips.

During final stretcher straightening, the position of the jaws was checked with a spirit level to assure that the ends are parallel and thus minimize twist in the final product. All temperatures were checked with either a contact pyrometer or an optical pyrometer. Limitations on the unit were the 15 ton hydraulic cylinder and a maximum length that can be handled, approximately 22 feet.
b) Drawing Shape 64E15

A drawing of 64E 15 is illustrated in Figure 6 Initial work was conducted on two short lengths from extrusion 253 followed by work on 254 and 263. Upon completion of these four pieces, an additional six lengths were processed, namely 282, 284, 285, 286, 288 and 289.

Pointing

All incoming extrusions had a $1 / 16 \mathrm{in}$. fillet radius milled for a nine inch length on one end destined to become the point. The extrusions were then taped with acid resistant tape from the end of this nine inch length to an additional 9-12 in. length and then the point reduced to $0.070 \mathrm{in},+0.000$, -0.010 in . in a 15 percent acetic acid - 5 percent hydrofluoric acid bath. The function of the tape was to prevent or minimize undercutting at an air-liquid interface. This point would permit drawing through the two cycles.

Cleaning, Coating and Lubrication

All extrusions were cleaned by alternate immersion in a KOH bath at about $425^{\circ} \mathrm{F}$, rinsing, immersion in a 15 percent $\mathrm{H}_{2} \mathrm{SO}_{4}$ bath at about $120^{\circ} \mathrm{F}$, rinsing, flash pickling in a $15 \mathrm{HNO}_{3}-1-1 / 2 \mathrm{HF}$ bath at RT, rinsing and then conversion coating in Amchem Granodraw "T" (3 ox/gallon) and drying. The extrusions were all to have been lime dip coated at this point but as there existed difficulty in developing a good, dry coat which would not spall off on resistance heating, the lime coat was disbanded for these shapes. Two coats of Alpha-Molykote 196X were applied over the dry conversion coat by brushing and air drying between coats.

During resistance preheating, at about a temperature of $400 / 500^{\circ} \mathrm{F}$, the power was turned off and Fiske 604 brushed over the entire warm extrusion. In addition, Fiske 604 was applied at the die face during the actual draw.

Dies

All extrusions were scheduled to be drawn through two passes, one a sizing pass primarily to work the fillet radii and a second pass to finished web thickness. No edge working was to occur in any of these passes. These passes were as follows:

$$
\begin{aligned}
& \text { 1. } 0.090 \mathrm{in} . \\
& \text { 2. } 0.080 \mathrm{in} .
\end{aligned}
$$

Prior to drawing, the die assembly was preheated to approximately $500^{\circ} \mathrm{F}$ to prevent and minimize thermal fatigue failure of the carbide blocks.

A view of the draw die assembly is shown in Figure 42. The size change is accomplished by altering heat treated steel shims S.

Heating and Drawing, Straightening

The coated extrusions were resistance preheated to about $400 / 500^{\circ} \mathrm{F}$. Fiske 604 applied by brushing over all surfaces and then the extrusion heated to $1000^{\circ} \mathrm{F}$ and manually inserted into the electric holding furnace set at $1050^{\circ} \mathrm{F}$.

It was generally necessary to air blast the point during resistance preheating to prevent overheating and possibly sustain a point break in the drawing operation.

The extrusions were soaked at $1050^{\circ} \mathrm{F}$ for one minute and then the extrusion was inserted manually through the preheated dies into the Hufford gripper jaws and drawing started at a draw speed of 24 fpm. Fiske 604 lubricant was applied at the die face during the drawing operation. A recording ammeter was incorporated on the $D_{0} C$. drive; this provided a good indication of the draw forces involved. No abnormal peak loads were seen in starting the actual draw operation. Typical load curves are shown in Figure 72 , approximately $10-12$ percent of the total draw force merely represents power required to move the draw chain.

After each draw pass, the extrusions were cleaned by multiple immersions in KOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$ and inspected dimensionally. It was generally necessary to remove excessive Fiske 604 lubricant from areas which were not reduced in the first draw pass by means of a Scothbrite pad and 6161 solvent; the $425^{\circ} \mathrm{F} \mathrm{KOH}$ bath cculd not remove this excess lubricant without this operation.

After the cleanup and inspection, the extrusions were then stretcherannealed by resistance heating to $1550 / 1600^{\circ} \mathrm{F}$ for about 20 seconds accomplishing an anneal and straightening by stretching between $1 / 2$ and $1-1 / 2$ percent longitudinal strain. Following the stretcher-anneal, the extrusions were then again cleaned by means of KOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$ immersions and then reinspected.

The cleaned extrusions, after the first draw pass and anneal, were then recoated, reheated, redrawn and restraightened as for the first pass. However, this time the extrusions were drawn through dies presenting an 0.080 in . web thickness; again the dies were end free working.

In the original scope of the contract, the extrusions were not scheduled for any further processing. However, it was decided to perform mill heat treatment on these extrusions since they are not used in the annealed condition.

A 1/8 to $1 / 4 \mathrm{in}$. diameter hole was drilled on the front end of each extrusion to facilitate a rapid withdrawal and quench after solution treatment. This is particularly important in solution treating these thin extrusions, since radiated heat losses are rapid. All extrusions were then solution treated $1725 \mathrm{~F}(2 \mathrm{~min}$.) and water quenched within 3 seconds. The degree of distortion in water quenching these extrusions required that they be restretcher straightened.

It was intended that two of the extrusions be supplied in the solution treated and aged condition and the remaining six be supplied in the solution treated only condition. It will be discussed later that extrusions to spesifications for solution treated only material (150 Ksi maximum yield strength) cannot be supplied for in stretcher straightening (1-1-1/2 percent) at temperatures below aging or omega embrittlement (400/450F) the yield strength is increased from about 115 Ksi to $155 / 165 \mathrm{Ksi}$. However, after descaling, extrusions $282,284,285,286,288$ and 289 were successfully stretcher straightened at $400 / 450 \mathrm{~F}$ (20 seconds). The remaining two extrusions 254 and 263 were in essence aged by stretcher straightening at aging temperatures of $1000 / 1025$ F. Figure 73 shows the distortion after solution treatment and the straightness after stretch straightening following solution treatment.
Tensile Property Survey
A test slice was removed from one end of each finished extrusion plant heat treated and straightened and a tensile property evaluation made. It was only feasible to acquire tests in the longitudinal direction. These results appear in Table 15. It is readily seen that it was not possible to supply straightened extrusions in the solution treated only condition as the yield strength was generally well in excess of 150 Ksi . Only a minor strength spread existed when a 1000F (4 hrs) AC aging treatment was imposed on test specimens in the laboratory.

It would be recommended that the aging or stretch-aging temperature of this Ti-6Al-4V material be increased to l100F to reduce the strength level more closely to the maximum 150 Ksi required for solution treated only extrusions. Table 15 also reveals that aging has occurred upon stretch aging at $1000 / 1025$ F.

A laboratory study was initiated to delineate the stage at which alterations in strength were noted in solution treated only extrusions. As can be seen from the data in Table 16, were it not for the stretch straightening required, the yield strength would be as low as 133 Ksi but imposing a $1-1 / 2$ percent longitudinal strain, as in stretcher straightening, the yield strength increased to 162 Ksi . The effects of exposure to a 425 F KOH bath are relatively minor and insignificant. Additional laboratory heat treat studies revealed the heat treat response of the as-extruded $3 / 32 \mathrm{in}$. think " T " extrusions and this data can be seen in Table 17. This increase in strength in the drawn extrusions may be associated with the microstructural changes introduced by warm drawing; the transverse microstructures of the as-extruded and warm drawn shapes in the heat treated condition can be seen in Figure 74. A refinement of the primary alpha platelet areas can readily be noted.

Edge Machining

Upon a review of the dimensional survey of the 64E15 extrusiona, it was decided to attempt edge machining of two extrusions (282, 285) which appeared to exhibit sufficient stock to machine to the required size of $1.000+0.005 \mathrm{in} . \times 1.750 \pm 0.005 \mathrm{in}$. The other extrusions were already under this size and machining to another size to clean up the undrawn edges was not considered. Edge machining was adopted for conditioning of the edges rather than warm drawing; this was to prevent metal losses by development of a "chevron" buckle in excessive edge working and to present a much improved dimensional integrity by edge machining as the final operation.

Figure 75 summarizes the total dimensional history from one starting extrusion to the finish, drawn and edge machined part.

15,000
10,000
5,000

T6428-D

Extruded \& Warm Drawn (. 080-in.) in 2 Passes \& STA Etch: $\mathrm{HNO}_{3}-\mathrm{HF}$ Mag:500X

T6428-B
Extruded (0.095) \& STA
Etch: $\mathrm{HNO}_{3}-\mathrm{HF}$
Mag: 500X

Photomicrographs of 64E15 Extrusions Showing Differences in Microstructure Between As-Extruded and Drawn Shapes After Full Heat Treatment

FIGURE 74

Alteration in Dimensions Through all Processing Stages for 64E15 Extrusion \#285

Tensile Property Survey of 64E 15 Extrusiois of Ti-6Al-4V (64E15) Warm Drawn 2 cycles (15.8% Reduction) to 0.080 in . and Plant Heat Treated

Ext. No.

UTS	YS(0.2\%) Ksi	ELi (1 in) $\%$

(A) $-1725^{\circ} \mathrm{F}(2 \mathrm{~min}) \mathrm{WQ}+\mathrm{Warm}$ Stretch $400 / 450^{\circ} \mathrm{F}$
193. 2
177. 3
173. 1
186. 6
177. 4
188. 4
191. 3
189.9
187. 9
186.6
187. 9
174. 7
159. 7
153.6
165. 5
152. 9
172. 3
6. 0
11.5
10.0
6. 0
10. 0
7.0
(B) $-(\mathrm{A})+1000^{\circ} \mathrm{F}(4 \mathrm{hrs}) \mathrm{AC}$ in Laboratory
188. $8 \quad 172.5$
8. 0
176. 4
6. 0
174.3
7.0
172. 9
7.0
172.4
7.0
6.0
174.6 6.0
(C) $-1725^{\circ} \mathrm{F}(2 \mathrm{~min}) \mathrm{WQ}+$ Hot Stretch $1000 / 1025^{\circ} \mathrm{F} \mathrm{AC}$
198. 2
182. 1
6.0
194. 2
182. 1
6.0
(D) $\quad-(\mathrm{C})+1000^{\circ} \mathrm{F}(4 \mathrm{hrs}) \mathrm{AC}$ in Laboratory

254
263
194. 2
192. 1
179. 4
178. 1
6. 0
8. 0

Condition		Test Temp	UTS Ksi	$\begin{gathered} \text { YS(0. 2\%) } \\ \mathrm{Ksi} \\ \hline \end{gathered}$	$\begin{gathered} \text { El (1 in) } \\ \hline \end{gathered}$
(A)	$1725^{\circ} \mathrm{F}(2 \mathrm{~min}) \mathrm{WQ}$	RT	171.7	129.3	12.0
(B)	(A) $+425^{\circ} \mathrm{F}(1 / 2 \mathrm{hr}) \mathrm{AC}$ (Simulating KOH Cycles)	RT	171.3	133.4	12.5
(C)	$\begin{aligned} & \text { (B) }+1-1 / 2 \% \text { Stretch at } \\ & \left(425^{\circ} \mathrm{F}(\mathrm{AC})\right. \end{aligned}$	RT	172.4	162.4	13.0
	(Simulating $425^{\circ} \mathrm{F}$ stretcher straightening)	$425^{\circ} \mathrm{F}$	-	99.9	1.5
(D)	(C) $+425^{\circ} \mathrm{F}(1 / 2 \mathrm{hr}) \mathrm{AC}$ (Simulating KOH cycle after warm stretch)	RT	174.1	166.8	10.0
(E)	(B) $+1-1 / 2 \%$ Stretch at RT	RT	174.9	159.9	10.0 BS

Note: Vapor blast and pickle after every thermal cycle

TABLE 17

Heat Treat Response of As-Extruded 64E15 Extrusions

Ext. No.	Web Thickness	Heat Treatment		UTS Ksi	$\begin{gathered} \mathrm{Ys}(0.2 \%) \\ \mathrm{Ksi} \\ \hline \end{gathered}$	$\begin{gathered} \text { El(l in) } \\ \% \end{gathered}$
284	0.095	$1725^{\circ} \mathrm{F}(2 \mathrm{~min}) \mathrm{WQ}$	$+1000^{\circ} \mathrm{F}(4 \mathrm{hrs}) \mathrm{AC}$	180.2	161.4	8.0
284	0.095	"	+ "	185. 0	166. 3	-
286	0.095	"	+ "	181.4	164.2	8. 0
286	0.095	"	+ "	181.1	162.7	7.0
286	0.095	$1725^{\circ} \mathrm{F}(2 \mathrm{~min}) \mathrm{WQ}$		165.9	119.4	13.0

c) Drawing Shape 64E12 (modified)

Material

Eight extrusions were selected for application to this phase of the warm draw program. These were nominal $1 / 16$ in. thick "T" extrusions to be warm drawn to supply finished extrusions to print 64E 12 depicted in Figure 5.

The irregularity in web thickness on several of these extrusions can be seen from Figure 76. It will be discussed later how these constricted areas contributed to much material loss in actual warm drawing.

Procedures

The general processing outline for this five stage warm drawing was as follows, in all cases utilizing end free drawing:

1. Inspect incoming extrusions
2. Machine $1 / 16 \mathrm{in}$. fillet radii for 9 in . point length
3. Point, chemically, to 0.050 in, web thickness +0.000 , -0. 010 in .
4. Clean, pickle in $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HNO}_{3}-\mathrm{HF}$ baths
5. Conversion coat, lime coat, brush coat Alpha Molykote 196X
6. Resistance preheat $1050^{\circ} \mathrm{F}$
7. Discharge into electric holding furnace set at $1050^{\circ} \mathrm{F}$ and commence drawing without any holding time.
8. Hook up and draw at 24 fpm applying Fiske 604 lubricant by brushing while drawing through preheated dies. First die pass 0.065 in . for all but 264, 292, 294 and 295. For these, the first die pass opening was $0.075 \mathrm{in}_{\text {. This }}$ was done to minimize the reduction since the fillet radius was $11 / 64$ inch.
9. Clean, pickle as in Step 4
10. Inspect
11. Hot stretcher anneal $1550 / 1600^{\circ} \mathrm{F}$
12. Clean, pickel as in Step 4
13. Inspect
14. Repeat Step 5
15. Repeat Step 6
16. Repeat Step 7
17. Warm draw second pass of 0.058 in . drawing again at 24 fpm
18. Repeat Step 4
19. Inspect
20. Repeat Step 11, stretcher annealing
21. Repeat Step 4
22. Inspect
23. Repoint to $0.040+0.000,-0.010$
24. Repeat Steps 5, 6 and 7
25. Warm draw third pass of 0.053 in . drawing again at 24 fpm
26. Repeat Step 4
27. Inspect
28. Repeat Step 11 stretcher annealing at $1550 / 1600^{\circ} \mathrm{F}$
29. Repeat Step 4
30. Inspect
31. Repeat Steps 5, 6 and 7
32. Warm draw fourth pass of 0.047 in drawing at 24 fpm
33. Repeat Step 4
34. Inspect
35. Repeat Step 11 stretcher annealing at $1550 / 1600^{\circ} \mathrm{F}$
36. Repeat Step 4
37. Insfect
38. Repoint to $0.030+0.000,-0.010$
39. Repeat Steps 5, 6 and 7
40. Warm draw fifth pass of 0.043 in . drawing again at 24 fpm
41. Repeat Step 4
42. Inspect
43. Repeat Step 11, stretcher annealing at $1550 / 1600^{\circ} \mathrm{F}$
44. Repeat Step 4
45. Inspect

Per the original scope of the program, no heat treatment was to be conducted on these extrusions. However, the scope of the program was altered to include heat treatment of the shapes and solution treatment and restraightening was performed. Five lengths were solution treated $1725^{\circ} \mathrm{F}$ (15 seconds) WQ. The extrusions were again descaled by $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3} - HF immersions and either stretched at $400 / 450^{\circ} \mathrm{F}$ or $1000 / \mathrm{K}_{0} 025^{\circ} \mathrm{F}$ as required and then again descaled as above. Two lengths were of sufficient stock to warrant edge machining to $1.600 \mathrm{in} . \pm 0.005 \mathrm{in} . \times 1.750 \mathrm{in}$. $\pm 0.005 \mathrm{in}$.

Warm Drawing First Pass (0.065 or 0.075 in.$)$
The anticipated die sequence in five stage drawing of Part V extrus ions was as follows:

1.	0.065
2.	0.058
3.	0.053
4.	0.047
5.	0.043

These are all nominal 10 percent reductions. The first five extrusions $(260,261,266,290$ and 292) were drawn through the 0.065 in. pass, selecting those extrusions which would pose only minimal problems. This generally implied that the web thickness was no thicker than 0.065 in and only the heavy fillet radii ($9 / 64$ to $11 / 64$ in.) would be worked through the 0.125 in die radius. The remaining extrusions (264, 292, 294 and 295) generally possessed combinations of heavy webs (greater than 0.065 and up to 0.080 in) and fillets ($11 / 64 \mathrm{in}$.) ; these extrusions then received their first pass through an 0.075 in . die opening, end free drawing.

Table 18 summarizes the pertinent draw bench data such as mean draw loads, areas of working and the like. Generally the heavy over-working of the fillet resulted in rather extreme build up of heat (approx. $300^{\circ} \mathrm{F}$) in this region and subsequent lubricant breakdown and metal seizure. An 11/64 in fillet radius reduced to $1 / 8 \mathrm{in}$. upon drawing represents a severe local deformation of 27 percent reduction in thickness; the accompanying heat buildup and attendant galling can thus be rationalized.

Due to the heavy working of the fillet, minor growth of about 0.025 in. of the vertical leg occurred upon comparison to the starting extrusion dim ensions.

This can be noted by comparison of dimensions after the first pass (Table B2) and the starting dimensions (Table B1). Comparison of Table B2 with Table B3 (dimensions after stretcher straightening-annealed) revealed that little change (contraction) in dimensions transpired in this operation.

Reasons for metal loss in the first warm draw pass, be it 0.065 in . or 0.075 in., were associated with physical separation of the vertical leg from the horizontal flange upon emerging from the draw die. This type of failure is depicted in Figure 77. Referring back to Figure 76, reasons for this metal failure are rather obvious. The thin areas in the starting extrusions, adjacent to oversize fillet radii, were heated more readily in resistance preheating and during the drawing operation with overworking of the fillet zones the thin areas are incapable of sustaining the draw forces; thus metal separation ensues, initially necking, however.

A microstructural examination adjacent to the failure revealed the further thinning or necking of the thin apotin the web of the vertical leg and the development of strain induced porosity near the tensile fracture. (See Figure 73).

Warm Drawing Second Pass (0.058 in.)
After surface preparation, lubrication and the like, the extrusions were then preheated and drawn through the second pass to 0.058 in. The exception to this was extrusion 292 which was worked 0.075 in. and then 0.065 in . The 0.058 in . pass was then the third for this extrusion. This extrusion again revealed extensive separation of the vertical leg from the horizontal flange for reasons discussed previously and had to be scrapped.

The draw forces, as noted in Table 19, were generally higher than for the first sizing pass. No undue damage was inflicted by going from 0.075 in . pass to 0.058 in . on the three extrusions but this merely resulted in slightly higher draw forces than going from 0.065 in . to 0.058 in .

As can be seen from Figure 79, point damage was extensive after the second draw pass and all had to be removed prior to the stretcher straightening-annealing operation. Representative causes for failure were buckling upon release of the extrusion through the draw die, tearing of tapered knife edges of the point or start of separation of the vertical leg from the horizontal flange in the point, generally due to undercutting in the
original extrusion.
The dimensions of the extrusions after the second draw and also after stretcher annealing is tabularized in the Appendix in Tables B-4 and B-5.

All extrusions were machined in the fillet for a nine inch length and then chemically pointed to $0.040 \mathrm{in},+0.000,-0.010$ prior to the third draw.

Warm Drawing Thire Pass (0.053 ino)
The extrusions were prepared for third pass warm drawing as for the previous two passes; the same heating and drawing techniques were utilized. As can be seen from the pertinent draw bench data in Table 20, it became necessary to scrap the second extrusion, number 295 , as physical separation of the vertical leg from the horizontal occurred. The failure typified in extrusion 295 is shown in Figure 80; this, however, is a picture of extrusion number 266 which failed in an identical fashion four (4) feet from the rear end of the extrusion.

Almost invariably, it became necessary to repoint all extrusions at this stage for after the 0.053 in . pass, most extrusions exhibited point failure.

From this stage on, pointing (machining of fillet and chemically milling of flats) was conducted in laboratory facilities to exercise the greater control necessary to warm draw thin extrusions. The tendency to cut into the web thickness in machining the fillet radius in the point or over-pickling of the point thickness was thus curtailed. It was thus possible to pull an extrusion through the 0.048 in. die opening with a point thickness as great as 0.040 in . Care had to be exercised in cutting off the old points as the angularity of the vertical leg could be ruined and all other control in pointing would be of no avail.

The dimensional measurements of these extrusions after the third draw pass and after the stretcher-anneal operation is presented in Table B-6 and B-7 in the Appendix.

Warm Drawing Fourth Pass (0.047 in $)$

The remaining six lengths of the starting eight extrusions were again prepared and warm drawn as in earlier passes. The draw bench performance data is summarized in Table 21. There was a tendency for rippling of the edges of these warm drawn extrusions as a 0.001 in , variation in web thickness from side to side would induce extreme undulations and require excessive stretcher straightening to remove these ripples. Here again, point breakage was encountered for, in generai, the points were too thin (as low as $0.025 \mathrm{in}_{4}$) to sustain the shock of the extrusion emerging from the die and buckling or metal failure occurred.

The variability of the dimensions of the extrusions, after being drawn through the 0.047 in . die opening and after stretcher straightening, is
summarized in Table B-8 and B-9 in the Appendix.

Final Warm Draw Pass - (0,043 ino $)$

Six extrusions were capable of being drawn through the required five warm draw passes. Prior to introducing this last pass, it was again necessary to repoint. Again the laboratory was assigned to machine the radius in the point and to chem-mill the point. Here the points varied from only 0.032 to 0.038 in . in web thickness, thus incorporating a strong point to pull the extrusion through the 0.043 in . die opening. It would not have been practical to control the size much closer than that demonstrated here. The operation, however, was time consuming, requiring nearly $3 / 4$ hour for accurate machining of the fillet radii and another $1 / 4$ hour for preparation and actual pickle pointing.

Pertinent draw bench data is summarized in Table 22. No unusual problems were introduced but, in general, all extrusions exhibited excessive waviness of the web thicknesses.

Throughout this program, the draw forces were recorded for each pass by means of a recording ammeter hooked into the DC motor circuit. Figures 81 and 82 reveal the pressure versus time curves for the two longest extrusions processed; the data represents the load curve for each of the five passes. Beyond the first pass, wherein extrusion number 290 was heavily worked and 294 only lightly in the fillets, the draw forces were essentially the same. Ordinarily about $10 / 12$ percent of the available bench capacity is used merely to drive the chain. Galling can be readily detected on these charts such as on extrusion 290 towards the rear end of the first 0.065 in . pass and minor galling at the extreme end of extrusion 294 at the 0.058 in. pass.

The dimensions of the extrusions after the fifth, and final, draw pass to 0.043 in. thickness and after stretcher straightening is presented in the Appendix in Table B-10 and B-11.

Straightness and overall view of the completed 64E1r. extrusions are viewed in Figure 84.

With the change in scope to include heat treatment, five (5) of the six (6) extrusions finished through the 0.043 in draw pass were plant solution treated and aged. Extrusion 260 was left in the annealed condition.

Heat Treatment
Five of the six extrusions were selected for heat treatment at TMCA. Extrusions numbers $261,264,266$, and 294 were solution treate $1725^{\circ} \mathrm{F}$ (15 seconds) and water quenched. As can be seen in Figure 84, considerable distortion developed in solution treating of these extrusions.

Extrusion 264 was stretcher straightened at $400^{\circ} \mathrm{F}$ and the remainder at approximately $1000^{\circ} \mathrm{F}$. The appearance of the three longest lengths after restraightening is noted in Figure 85. It was necessary to stretch more than $1 / 2$ percent in about every case to restore straightness.

The tensile property survey of these three long lengths revealed the values noted in Table 23. The heat treat iesponse is essentially that noted in the original extrusions and summarized in Table 24, however, marked microstructural refinement in warm drawing could be noted by viewing Figure 86.

A dimensional survey was made on the extrusions after straightening of the solution treated product; this data appears in the Appendix in Table B-12. From this data, it was decided to machine the edges of two extrusions. Warm drawing of the edges was not considered for reasons discussed earlier.

Edge Machining

Extrusions 290 and 294 had nearly sufficient stock on the leg height and width to machine the edges to the required 1.600 in ± 0.005 in $\times 1.750$ in $\pm 0.005 \mathrm{in}$. Figure 87 shows the dimensional controls exhibited in these two extrusions. These lengths were pickled one mil in a HNO $3-\mathrm{HF}$ bath and shipped to North American Aviation for inspection with the 64E15 extrusions.

Figure 88 summarizes the history of extrusion 290 from the incoming extrusion size, progressively through all five draw nasses, heat treatment and final edge machining.
Table 18 Draw Bench Data
0.065 or 0.075 in First Pass - 64 El 12

No. Ext.	Pass	Draw Temp.	$\begin{aligned} & \text { Mean } \\ & \text { Load } \end{aligned}$		Remarks
260	0.065	1050F	7,500	1bs	Heavy working of fillet radii Galling on bottom of horizontal flange. Final 2 feet fractured.
261	0.065	1050F	3,000	1bs	Drawn oK. Worked fillet radii only. No galling.
264	0.075	1050F	3,000	1bs	Drawn OK, Worked fillet radii only. No galling.
266	0.065	1050F	10,000	1bs	Heavy working of fillet radii only. Minor galling in fillet. Final 3 feet fractured.
290	0.065	1050F	12,000	lbs	Fillet radil worked heavy, Galling on bottom of horizontal flange. Final 2 feet fractured.
292	0.075	1050F	3,500	1bs	Heavy working of fillet radii and horizontal flange. Final 30 in. ruptured. No galling.
292	0.065	1050\%	-		Broke point. Unable to draw
292	0.065	1050F	3,000	1bs	Drawn OK. Last 30 in ruptured.
294	0.075	1050F	5,000	1bs	Heavy working of fillet radii. No galling.
295	0.075	1050F	3,500	lbs	Heavy working of fillet radif. No galling.

All draw speeds 24 fpm.
Table 20
Draw Bench Data
0.053 in Third Pass - 64 E 12

Ext. No	Pass	Draw Temp	Mean Load	Remarks
260	0.053	1050F	9.000 lbs	Work all flat surfaces Final 2 feet broke in die
261	0.053	1050F	5.500 lbs	30 -second delay in hookup Ali flat surfaces worked except extreme edges Point buckled
264	0.053	1050F	6,500 1bs	Drawn OK, All flat surfaces worked except extreme edges. No galling. Point ruftured
266	0053	1050F	5.500 lbs	Drawn ok Vertical ieg suptured 4 feer surfaces worked from rear, Nc galling All flar surfaces worked
290	0.053	1050F	--	Broke point, unable tc draw; cut from die.
290	0.053	1050F	7,500 1bs	Repointed Drawn OK One side of horizontal flange badly ripped All flats worked, no galling.
294	0.053	1050F	6,500 1bs	All flat surfaces worked One side of horizontal flange worked harder than other causing tremendous side sweep Point broke.
295	0.053	1050F	--	Point broke, couldn't draw.
295	0.053	1050F	--	After drawing 3 feet, metal separating horizontal from vertical flange in many places. Extrusion scrapped.
All draw speeds 24 fpm .				

u

$$
\text { Table } 21
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Draw } \\
\text { Temp. }
\end{array}
\end{aligned} \frac{\begin{array}{c}
\text { Mean } \\
\text { Load }
\end{array}}{5,500 \mathrm{lbs}}
$$

Draw Bench Data
0.047in Fourth Pass - 64E12

$$
\begin{aligned}
& \quad \text { Remarks } \\
& \text { Broke point, regripped and drew OK. } \\
& \text { All flat surfaces worked. } \\
& \text { Drawn ok. All flat surfaces worked } \\
& \text { except extreme edges. No galling. } \\
& \text { Point still good. } \\
& \text { Delay in hookup. Drawn OR. All } \\
& \text { flats worked. } \\
& \text { Drawn OK - all but last 2-1/2 feet as } \\
& \text { point broke, All flats worked. One } \\
& \text { side of horizontal flange worked harder } \\
& \text { than other. } \\
& \text { Drawn or. Rippling at one leg of } \\
& \text { horizontal flange, All flat surfaces } \\
& \text { worked; point buckled at end. } \\
& \text { Broke point, couldn't draw } \\
& \text { Drawn ok. Twisting from one side of } \\
& \text { horizontal flange working harder than } \\
& \text { other. All flat surfaces worked good. } \\
& \text { Point broke. }
\end{aligned}
$$

5,500 1bs
1050F
1050F
1050F
1050F
$1050 F$
$1050 F$

$$
3,500 \mathrm{lbs}
$$

$$
6,500 \mathrm{lbs}
$$

3,500 lbs
3,500 1bs
Table $2 e$
Draw Bench Data

		Draw Bench Data		
		0.043in Fifth Pass - 64E1		
$\begin{aligned} & \text { Ext. } \\ & \text { No. } \\ & \hline \end{aligned}$	Pass	Draw Temp	Mean Load	Remarks
260	0.043	1050F	5,500 1bs	Drawn OK, Too short to resistance heat. Heated entirely in holding furnace.
261	0.043	1050F	8,500 1bs	Progressive galling from beginning. Final 3ft broke in die Areas still not worked on both horizontal and vertical legs.
264	0.043	1050F	7,000 1bs	Drawn OK. Final 3/4in end split. All flats worked. No galling.
266	0.043	1050F	5,500 1bs	Drawn OK. Final 1/2in split; point split. Horizontal leg rippled.
290	0.043	1050F	5,500 1bs	Drawn OK. Minor galling in vertical leg. All edges rifried.
294	0.043	1050F	4,500 1bs	Drawn OK. One side of horizontal flange worked harder than other; extrusion corkscrewed.

Profile of Several 64E12 Extrusions Exhibiting Constricted Areas in Vertical Leg
FIGURE 76
M63-335-B

Mode of Failure of Several 64E 12
Extrusions After First Draw Pass
FIGURE 77

Necking and Strain-Induced Porosity Noted in Areas Adjacent to Failures in Figure 77

FIGURE 78

Various Point Failures Noted Upon Drawing 64E 12 Extrusions Through a Draw Pass FIGURE 79

Failures Due to Separation of the Vertical Leg;
Failure Occurring in Third Pass
FIGURE 80

Plot of Pressure Versus Draw for the First Three Passes on Two 64El2 Extrusions FIGURE 81

15,000

10,000

20,000

Distortion of 64E 12 Extrusions After

Three Longest Lengths of 64E12 Extrusions After Restraightening Following Solution Treatment

FIGURE 85

R36-64

LENGTH, FEET

Dimensional Control Exhibited in Two 64E12 Extrusions After Final Edge Machining

FIGURE 87

Step by Step Alteration in Dimensions Throughout Entire Processing of 64E12 Extrusion \# 290

FIGURE 88

Tensile Property Survey of 64E12 Extrusions
 of Ti-6A1-4V (64E12) Warm Drawn 5 Cycles to
 $0.0431 n$ and Plant Heat Treated

Ext. No.		UTS Ksi	$\begin{gathered} \text { YS (0.2\%) } \\ \text { Ksi } \\ \hline \end{gathered}$	$\begin{gathered} \text { EL(1in) } \\ \% \end{gathered}$
261		175.3	165.3	5.5
290		176.2	158. 5	5.5
294		178.1	158.6	8.0
(B) $-(\mathrm{A})+1000 \mathrm{~F}(4 \mathrm{hrs}) \mathrm{AC}$ in Laboratory				
261		187.2	172.7	8.0
290		173.2	162.8	10.0
294		173.8	164.0	8.5

TABLE 24

Heat Treat Response of As-Extruded

64E12 Extrusions

Ext. No.	Web Thickness	Heat Treatment		UTS Ksi	$\begin{gathered} \mathrm{Ys}(0.2 \%) \\ \mathrm{Ksi} \end{gathered}$	E1 (1in)
261	0.065	1725F(15Sec) WQ	+ 1000F(4hrs) AC	186.2	167.8	10.0
261	0.065	"	+ "	187.7	171.4	10.0
290	0.065	"	+ "	186.0	170.2	9.0
290	0.065	"	+ "	181.8	164.7	7.0
294	0.065	"	+ "	181.7	165.4	8.0
294	0.065	"	+ $\quad 1$	186.4	163.7	7.5
294	0.065	1725F(15Sec)WQ		158.7	117.8	12.0

4. Evaluation
a. Surface Quality and Surface Finish

The as-extruded surface finish measurements for six of the nominal 3/32 in. extrusions are shown in Table 25. The progressive surface im provement by warm drawing two extrusions from a nominal $3 / 32$ in. thick tee in two light passes to $0.080^{\prime \prime}$ is shown in Figures 89 and 90. Table 26 reveals the RMS readings at each stage. Figures 91 and 92 show the surface quality of the $0.080^{\prime \prime}$ extrusions.

Table 27 reveals the as extruded surface finish measurements of the nominal $1 / 16^{\prime \prime}$ extrusions. Comparison of Table 271 with Table 28 reveals the improvement in surface finish by warm drawing. The improvement in surface quality by warm drawing the nominal $1 / 16^{\prime \prime}$ extrusions to $0.043^{\prime \prime}$ in five draw passes is shown in Figures 93, 94 and 95.

Detailed surface finish measurements on the five extrusions submitted to NAA for inspection are shown in Figure 96. The high readings were generally over areas containing light striations which can be seen in certain of the photograph closeups. These can be related back to defects in the as-extruded material which were not completely ironed out. Typically, the surface adjacent to the striation was in the order of 80 u in RMS while the mea urement over the striation would be upwards of 120 u in RMS. This can be seen in Figure 95. The surface of the warm drawn extrusion \#290 (upper part of photo) measures 70-80 u in RMS except in areas at the center of the flange ($100-120 \mathrm{u}$ in RMS) and the upper part of the flange (120-150 u in RMS). Examination of Figure 95 shows the light striations at the center and upper part of the flange. Referring to the extruded surface in Figure 95, the severity of striations that cannot be tolerated in extrusion to attain a warm drawn product (30% reduction) of $100 u$ in RMS can be observed. Also, the severity of striations that can be tolerated can be seen from the photograph.
b. Metallurgical Analysis

A metallurgical evaluation of the 6A1-4V titanium alloy extrusions was conducted to complete Part V of the program.

Three investigations were conducted independently by North American Aviation, Titanium Metals Corporation and Republic Aviation Corporation to evaluate the extrusions. The tensile property survey conducted at TMCA is included in the previous section on warm drawing and the testing at NAA is discussed in the next section. The processing employed on the extrusions evaluated by Republic Aviation in Part V are shown in Table 29 while a tabulation of the mechanical properties is shown in Table 30. Extrusion \#253 is representative of the 0.080 inch thick shapes forwarded to North American Aviation for qualification testing. Figure $97 a$ through c illustrate photomicrographs of the extrusion after several processing variations. In the as-extruded and straightened condition (Figure 97a) the structure consists of a coarse Widmanstatten (basketweave) structure. There appears to be some evidence of primary alpha present in the structure indicative of the extrusion having exceeded the beta transus for a short period of time.

The tensile properties (Figure 97a) indicate that some minor hardening by al pha precipitation has occurred during cooling from the extrusion temperature. This occurs because the cooling is sufficiently rapid to allow retention of more than the equilibrium amount of beta phase which now transforms to alpha. A gradual refinement of the basket weave structure is observed when additional warm working is imparted to the extrusion.

No strength increase is seen after the first draw and straightening operation, (Figure 97 b) due to the minor amounts of deformation introduced into the extrusion. The increase in strength noted after an additional drawing and straightening operation (Figure 97c) is due to the plastic deformation experienced. (10% reduction @ $950^{\circ} \mathrm{F}$.) The effect of the $1550^{\circ} \mathrm{F}$ treatment after drawing is considered negligible due to the insufficient (less than 30 seconds) time at temperature. Figure 97d shows the mechanical properties and microstructure obtained on the extrusion which was heat treated by direct $\left(1000^{\circ} \mathrm{F} / 4\right.$ hours) aging, while Figure 97 e shows the effects of solution treatment $\left(1750^{\circ} \mathrm{F} / 30\right.$ minutes) and aging ($1000^{\circ} \mathrm{F} / 4$ hours). The conspicuous absence of martensite (alpha prime) is due to an inadvertent delay during quenching. This delay resulted in cooling below the M_{s} before quenching, thus producing a basketweave alpha-beta matrix with primary alpha growing from the grain boundaries. Previous data has shown that quench delays of greater than 10 seconds cause reductions in as quenched strength. It is felt that strengths in excess of those shown are obtainable if a complete (long time) solution heat treatment is employed with a maximum quench delay time of 10 seconds.

Photomicrographs and mechanical property tests of extrusion \#270 are shown in Figure 98a, b, and c. As previously described (extrusion \#253), the micro structure consists of a Widmanstatten structure with evidence of primary alpha present. The increase in strength observed upon directly aging after extruding is likely due to an additional beta to alpha transformation. As in the previous extrusion, the lack of alpha prime can be attributed to a delay
in quenching. The differences between this extrusion and \#253 (Figs. 97 \& 98) appear to lie in the size of the alpha plates (formed from the primary alpha on cooling) present after STA heat treatment.

Although the strength (Fty) of extrusion \#270 was slightly higher than \#253, elongations were lower. This can be attributed to the greater amount of deformation (from drawing and stretch straightening) imparted to extrusion \#253, and consequently the finer Widmanstatten and alpha platelet structure formed after heat treating.

The effect of the additional deformation is to break-up the large alpha-beta structure formed by extruding above the beta transus. A microstructure obtained by heating above the beta transus (in the absence of mechanical work) usually results in an embrittled material. However, mechanical working (at temperature) is directly proportional to the ductility restored after processing. Figure 99a, b and c illustrate the microstructures obtained on extrusion \#271. It should be noted here that extrusions \#271, 270 and 253 differ only in their post-extrusion processing. The mechanical properties and microstructures obtained on extrusions \#27l and 270 differed only slightly, indicative of the first stretch straightening operation (3\% @ $1100^{\circ} \mathrm{F}$) having a negligible effect on mechanical properties. This is also seen upon observation of the tensile data from extrusion \#253. The first strength increase is seen only after heavy (10%) drawing operations. It should be noted that on all shapes extruded at $1800^{\circ} \mathrm{F}$ with a $51: 1$ ratio, no contamination was noted.

Examination of extrusions \#277 and 273 (Figure 100a through d) show the microstructures and mechanical properties obtained on shapes extruded $\left(1800^{\circ} \mathrm{F}\right)$ at $24: 1$ and $57: 1$ ratios respectively. Figure 100 a indicates that the extrusion exceeded the beta transus during fabrication. This can be seen from the small prior beta grain size. Only very small amounts of primary alpha can be noted in the relatively large basketweave structure. The flange area (Figure 100b)shows a stabilized alpha phase at the surface (0. 0008 -inches thick). However, no hardness differences between this surface and the core were noted.

The microstructure, and mechanical properties of extrusion \#273 can be seen in Figure 100c. Plastic deformation received by the material (57:l extrusion ratio) has resulted in a fine Widmanstatten structure. The stabilized alpha phase noted in the flange (Figure 100d) showed no hardness differences between this surface and the core. This is due to the fact that a rather high composition of alpha stabilizing interstitials must be present before any hardness difference is seen. The alpha case thus formed is due to the diffusion of alpha stabilizing elements (from the glass lubricant) into the surface of the extrusion. Figurelolathrough fillustrate photomicrographs of the front and rear ends of extrusion \#272.

The microstructure seen in Figure $10 \mathrm{la}, \mathrm{c}$ and e indicate that the material has just exceeded the beta transus. As indicated by the flow observed in Figure 10 la, only partial recrystallization has occurred in the front of the extrusion.

The photomicrographs shown in Figure $10 \mathrm{lb}, \mathrm{d}$ and f illustrate the microstructures obtained from the rear of the same (\#272) extrusion. Note the larger Alpha platelets, and lack of initial flow seen in this area of the extrusion. This is indicative of the higher temperatures obtained toward the rear of the extrusion as a result of increased friction. The alpha phase seen on the surface of the extrusion (Figurelole and f) failed to show any hardness differences with the base metal. The sketch in Figure 101 shows the locations where photomicrographs were taken.
c) Inspection by North American Aviation
(1) Introduction

Five extrusions were submitted to North American Aviation Inc. for evaluation relative to application for the RB-70 Weapons System. Two of the extrusions were of the modified 64E12 configuration and three extrusions were of the 64E15 configuration. The extrusions submitted to NAA were $290,294,282,285$ and 289 . These extrusions were reidentified by NAA as 64E12, \#1 and \#2 and 64E15, \#1, \#2 and \#3. All extrusions were in the solution treated and aged condition.
(2) Procedure

One sample from each end of each extrusion was tensile tested at room temperature and one sample from one end of each extrusion was tensile tested at $700+10^{\circ} \mathrm{F}$ to the requirements of NAA Material Specification L B0170-147" Titanium Alloy (6Al-4V) Bars, Rods and Shapes, Extruded." Tensile tests were performed on flat specimens selected from the vertical leg of the 64 E 12 extrusions and from the base of the 64 E 15 extrusions.

Each extrusion was checked dimensionally to the drawing requirements for 64 E 12 (modified) and 64E15 shapes as shown in Figure 5. Measurements were made at each end of each extrusion and at one foot intervals.

In addition, all extrusions were: (1) fluorescent penetrant inspected, (2) analyzed for chemical composition, and (3) metallographically examined at 100 and 500X. Chemical analyses for Al, V and Fe were performed by x-ray fluorescence; 0_{2} and C by Leco gas analyzer; N_{2} by the Kjeldahl method; and H_{2} by hot vacuum extraction.
(3) Results

Tensile results are shown in Tables 31 and 32. Elevated temperature tensile data for one of the 64 E 15 extrusions were invalid due to sitataring of one of the specimen holding pins. The minimum ultimate strergth requirement was reached, however, before the holding pin failed, indicating that the strength of the specimen was satisfactory. From Table 31 , it can be seen that for the 64 E 12 extrusions there was a wide variation in strength from one end to the other.

Results of dimensional measurements are shown in Table 33. The dimensional range is recorded where it was found that dimensional requirements were not met. RMS values ranged from 40 to 190 for the 64 E 12 extrusions with an average of 115 . Values for the 64 E 15 extrusions ranged from 30 to 130 with an average of 80 . NAA Material Specification LB0170-147 stipulates that surface finish should be equivalent to RMS/ 100 or better.

Fluorescent penetrant inspection revealed no surface defects other than rounded shallow pits. The pits and a scale pattern noted on the extrusion surfaces are typical of titanium that has been descaled by chemmilling (acid pickling).

Results of chemical analyses are listed in Table 34. Hydrogen content for one of the 64 E 12 extrusions was high, i.e., 170 ppm . Two additional analyses on this extrusion showed 165 and 182 ppm.

Microstructural examination of each extrusion revealed an acicular alpha structure. Prior beta grain boundaries were evident in all extrusions; however, these boundaries were almost completely broken up at the intersection of the horizontal and vertical legs. No inclusions, laminations or separations were noted in the microstructural specimens examined.

A workable process was demonstrated to produce "T" shape 64 E 15 by a combination of extrusion and warm drawing processes. In the final extrusion trial, eight of the eight nominal 3/32" thickness 64E 15 extrusions were considered suitable for warm drawing, indicating a development of satisfactory die design, billet heating practices, lubrication and straightening techniques for the extruded lengths.

In the Part V warm drawing trials, eight of eight extrusions were successfully drawn two passes to 0.080 in, thickness in 20 foot lengths, indicating a development of satisfactory die design, lubrication and drawing practices, straightening techniques and anneal and heat treat cycles for the drawn lengths. The eight 20^{\prime} lengths consisted of six extrusions from the final extrusion trial and two extrusions that were drawn earlier.

It was found feasible to produce 0.043" titanium " T " shapes by extruding to nominal 0.065 in. and warm drawing in five passes to $0.043^{\prime \prime}$ with present technology. Six of the original eight extrusions were drawn the required five cycles of nominal 10 percent wall reductions but with much attendant material loss and greater difficulty than in drawing shape 64 E 15 to $0.080^{\prime \prime}$. The longest drawn finished length was approximately 15 feet.

Originally five extrusions were to be submitted in the annealed condition to North American Aviation for testing. The extrusions after the final anneal operation were within the required print dimensions of $0.080^{\prime \prime} \pm .005^{\prime \prime}$ and $0.043^{\prime \prime} \pm .005^{\prime \prime}$ for the two shapes (see Table B13 and Bll in Appendix). After fabricating the extrusions to size, it was decided to heat treat the extrusions so that they could be inspected in the condition in which they are used. The stretch straightening and pickling operations after heat treatment reduced the cross sectional thicknesses to nominal dimensions of $0.075^{\prime \prime}$ and $0.040^{\prime \prime}$ which were under the NAA print dimensions (see Table 33). The cropping of the extrusions after the final stretch straightening operation reduced the length of the extrusions to approximately 18^{\prime} and 10^{\prime} for the 64 E 15 and 64 E 12 extrusions, respectively.

The NAA inspection revealed that all the extrusions met the requirements for minimum mechanical properties and internal structure, one of the 64 E 12 extrus ions failed to meet the requirement for minimum hydrogen content and the surface finish (RMS) for the 64El2 extrusions was unsatisfactory. The surface finish (RMS) for the 64E15 extrusions was found to be satisfactory.

Failure of one of the extrusions to meet the requirement for minimum hydrogen content suggests that a vacuum anneal be given the extrusions after the final draw pass and prior to solution treatment. However, additional testing would have to be performed to determine the necessity of this operation.

The failure of the 64E12 extrusions to meet the minimum surface finish requirement of $100 u$ in RMS can be traced to longitudinal striations in the extruded surface which were not completely ironed out during warm
drawing. The longitudinal striations are caused by pickup on the extrusion die which appears to be the major problem area in titanium extrusion of thin shapes. Scoring due to die wash and/or coating failure and laminations due to improper flow were eliminated. Warm drawing did improve the surface finish of the 64E12 extrusions from a scatter of RMS values from $60 / 290$ in the extrusion to a range of $40 / 190$ with an average of 115 . The 64 E 15 extrusions after warm drawing ranged from 30 to 130 with an average of 80 .

Warm drawing also refined the coarse Widmanstatten microstructure of the extrusions, but no real improvement in heat treated ductility was noted by this alteration in microstructure.

Solution treatment of the shapes, especially the thin 0.040" extrusions, resulted in severe distortion. This necessitated a high degree (1-1/2\%) of hot stretch straightening to remove the quench distortion which tended to induce crowning across the flange in the transverse direction. The extrusions could not be supplied in the solution treat only condition. Upon stretch straightening of the solution treated extrusion at $400 / 450^{\circ} \mathrm{F}$, the yield strength is increased by about 30 ksi to values in excess of 150 ksi . Some form of restrained die quenching from solution treating temperatures appears necessary to prevent severe distortion which, in turn, necessitates a stretch straightening type operation. The procedures and facilities for supplying extrusions in the fully aged condition were found to be adequate.

Edge machining was demonstrated as being a feasible method of finishing the edges of the " T " to the finished print tolerances of $t 0.005$ ". The alternative of warm drawing the edges was not attempted as work in Part IV rerealed severe metal losses due to column failure. Several of the extruded shapes did not have sufficient stock to machine the edges to the required print dimensions. It appears necessary to provide approximately $0.070 / 0.090^{\prime \prime}$ over the print dimension on the extruded leg height and width to assure sufficient stock for edge machining.

Processing difficulties in drawing the 64E 12 shapes related to the as-extruded product quality were as follows:
(1) Excessive fillet radii (9/64 to 11/64 in.) for the $1 / 8 \mathrm{in}$. draw die radius resulting in excessive heat buildup in the fillet area and lubricant breakdown in warm drawing. The heavy working of an oversize fillet generally resulted in extrusion and growth of the vertical leg (0.020 in .). For ease of drawing, the incoming fillet radii should not exceed the draw die radii.
(2) Thin spots on the vertical leg near the fillet radii were as much as 0.012 inch thinner than the adjacent web thicknesses resulting in their inability to sustain the draw load and thus resulting in separation of the vertical leg from the horizontal flange. These thinner areas upon resistance preheating are hotter than the heavier areas; this condition contributed to metal separation by further necking and eventual tensile type failures.
(3) Uneven web thicknesses which resulted in pickle pointing problems. In pickling the thickest leg to pass through a die opening, the thinner legs are under-pickled and too weak to sustain a draw load.

The above difficulties were in part due to an attempt to utilize ceramic coated extrusion dies without a finish machining operation; the intent being to develop a process as economical as possible within the tolerance requirements of the warm draw process. However, the high material loss in warm drawing the thin shapes indicates that relatively close dimensional tolerances are required in the extruded product to realize efficient warm drawing of thin shapes. Therefore, it appears that a finish machining operation on the ceramic coated extrusion dies is mandatory.

Processing difficulties related to the actual warm draw operation generally centered on the following:
(1) Failure to point to the proper web thickness, machining through or excessive thinning of the fillet radius or chemical undercutting at the air-liquid interface during pickle pointing. All these conditions would result in failure of the point to grip in the jaws, failure to sustain the draw forces and break or buckling and fracturing of the point upon successful completion of the draw.
(2) Extreme waviness or corrugation of the flanges resulted from as little as $0.001 / 0.002$ inch variation in working of web thicknesses below 0.058 inch thickness. This required stretcher straightening more than the nominal 1 percent usually found adequate.

The above difficulties suggest that the present pointing practice is inadequate for thin shapes and new pointing techniques must be developed. Until an economical and accurate pointing process is developed, it is recommended that the extrusions be pointed to accommodate one 10 percent die pass only.

Surface Finish of 64E15 Extrusions
Nominal 0.095in
As-Extruded

RMS

Ext. No.	Horizontal Leg (H)		Vertical Leg (V)	
	Min.	Max.	Min.	Max.
282	140	370	50	350
284	110	220	80	210
285	100	260	90	180
286	120	230	70	220
288	100	180	70	120
289	110	220	60	130

TABLE 26
In-Process Variation in Surface Finish
of Warm Drawn 64E 15 Extrusions ${ }^{(*)}$

Ext. No.	Stage of Processing	Horizontal $\mathrm{Leg}(\mathrm{A}-\mathrm{AS}$)		ertical Leg(B-B)	
		Miñ.	Max.	KIn.	Max.
263	As-Extruded	60	130	60	130
263	lst draw 0.090	40	80	30	85
263	2nd draw 0.080	30	70	20	55
253	As Extruded	50	120	45	110
253	1st draw 0.090	40	80	45	85
253	2nd draw 0.080	20	65	15	40

(*) All pickled approximately 1 mil in $35 \mathrm{HNO}_{3}-5 \mathrm{HF}$ bath prior to profilometer measurements.

Ext. No.	RMS			
	Horizontal Leg (A-A)		Vertical Leg (B-B)	
	Min.	Max.	Min.	Max.
260	60	260	70	180
261	60	180	100	220
264	50	150	50	210
266	90	160	90	190
290	110	290	100	240
292	90	290	70	190
294	70	180	60	250
295	80	270	70	240

All pickled approximately 1 mil in $35 \mathrm{HNO}_{3}-5 \mathrm{HF}$ bath prior to profilometer measurements.

Surface Finish of Finished Warm Drawn

 64E12 Extrusions Nominal 0.043in.

RMS
Ext. No.

	RMS
Horizontal	Leg (A-A)
Min.	Max.
60	100
70	100
40	80
70	100
70	150
50	100

Vertical Leg (B-B)

Min.		Max.
		80
60		80
40		70
60		80
60		170
60		90

As Ext.
0.090 Pass

Alteration and Improvement in Surface Quality of Extrusion \# 253
By Warm Drawing
EIGURE 89

Plan View of Horizontal Flange of Finished 64E 15 Extrusions 254, 263, 282, 284

FIGURE 91

Plan View of Horizontal Flange of Finished 64E15 Extrusions 286, 285, 288 and 289

FIGURE 92

Starting and Finished Surface Quality of 64E12 Extrusions \#260 and 261 FIGURE 93

Starting and Finished Suríace Quality of 64 E12 Extrusions \#264 and 266 FIGURE 94

Starting and Finished Surface Quality of 64E12 Extrusions \#290 and 294 FIGURE 95

Surface Finish Measurements of Five (5) Heat Treated Finished Extrusions FIGURE 96

Processing History
Extruded $+3 \%$ stretch straightened © $01100^{\circ} \mathrm{F}$ + drawn 3\% (950 $0^{\circ} \mathrm{F}+$ 1. 5% stretch straighten @ $1500^{\circ} \mathrm{F}+$ drawn 10% @ $950^{\circ} \mathrm{F}+1.5 \%$ stretch straighten @ $1500^{\circ} \mathrm{F}$
Extruded + 3\% stretch straighten $\propto 1100^{\circ} \mathrm{F}$
As Extruded
As Extruded
Extruded + 3\% stretch straighten © $1100^{\circ} \mathrm{F}$
As Extruded - (Multiport - 2 extrusions from single push.

PROCESSING HISTORY OF EXTRUSIONS EVALUATED AT RAC
Thickness
(inches)
$\stackrel{N}{n}$
3/32 $\stackrel{N}{m}$ $1 / 16$ $1 / 16$
$\stackrel{N}{m}$
PROCESSING HISTORY OF EXTRUSIONS EVALUATED AT RAC

Extrusion
Ratio
and
Temp.

$51 / 1$
$1800^{\circ} \mathrm{F}$

$51 / 1$
$1800^{\circ} \mathrm{F}$
$57 / 1$
$1800^{\circ} \mathrm{F}$
$57 / 1$
24/1
TABLE 29

Billet
Heat-UP
Time
Hrs. Min_

$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1\end{array}$ | Extrusion |
| :--- |
| Number |

253
$\stackrel{n}{\sim}$
45
\sim
\sim
\sim
124
N
27
 PROCESSI
\qquad

 271

$+\operatorname{STA}^{(5)}$
x
$\mathbf{X}+\mathbf{A}$
$\mathbf{X}+\mathbf{S T A}$

0.	0	0	0
$B^{\circ}-$	$=1$	\sim	
\sim	\sim		

———_

0.2% $\%$ e Fty (ksi)	(in 166.2
164.2 10.0 160.1 10.0	

Photomicrographs of titanium alloy 6Al-4V extrusion (\#253) 3/32' thick. extruded at $1800^{\circ} \mathrm{F}$ at a $51: 1$ ratio. The fabrication sequence is shown chronologically from Figure 97 a to Figuro 97 e .) As can be nots in all but the material which was solution treated ($1750^{\circ} \mathrm{F}$) quenched, and aged $\left(1000^{\circ} \mathrm{F}-4 \mathrm{hrs}\right.$). As the number of past-extrusion processes are increased, a gradual refining of the alpha platelets may be observed. Absence of alpha prime (martensite) ordinarily expected after solution treating at $1750^{\circ} \mathrm{F}$ is due to inadvertent delay during quenching. This delay resulted in cooling below M_{s} before quenching, thus producing a coarse basket-weave alpha-beta matrix with primary alpha growing from the grain boundaries

Fig: 98 a MR 3-11-6A
Extruded \& Siretch Straightened
Etch: Krolls Mag: 500X
Fig: 98 b MR 4-1-H2
Extruded \& Stretch Straightened Etch: Krolls \& Aged Mag: 500X

$\begin{aligned} & \text { Ftu } \\ & \text { (ksi) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Fty } \\ & \text { (ksi) } \end{aligned}$	$\%$ e (in $\left.1^{11}\right)$
a 182. 3	169.3	6. 0
b 178.9	166. 7	6. 0
c 181.5	169.9	8. 0

Fig: 98 c MR 1-1-1-G
Extruded \& Stretch Straightened \& STA
Etch: Krolls Mag: 500X
Photomicrographs of titanium alloy 6Al-4V extrusion (\#270) 3/32" thick extruded at $1800^{\circ} \mathrm{F}$, at a $51: 1$ ratio and stretch straightened 3% at $11 C 0^{\circ} \mathrm{F}$. Figures 98 a and 98b show the coarse Widmanstatten (basket weave) structure. It should be noted that this material has reached temperatures beyond the beta transus during extrusion. Figure 98c shows structure obtained after a $1750^{\circ} \mathrm{F}$ solution treatment (water quench) followed by a $1000^{\circ} \mathrm{F}$ (4 hr.) age. Absence of alpha prime (Martensite) expected after this heat treatment is due to an inadvertent delay during quenching. This delay resulted in cn .ling below Ms_{s} before quencning thus producing a coarse basketweave alphabeta matrix with primary alpha beginning to grow from the grain boundaries.

Fig: 79 a MR 3-11-6E
As Extruded
Etch: Krolls Mag: 500X

Fig: 99 b MR 4-1-1E
As Extruded \& Aged
Etch: Krolls Mag: 500X

Fig: 99 c MR 4-1-1F9
As Extruded \& STA
Etch: Krolls Mag: 500X

Photomicrographs of titanium alloy 6Al-4V extrusion (\#271) 3/32" thick extruded at $1800^{\circ} \mathrm{F}$, at a $51: 1$ ratio. Figure 99 a and 99b show a coar: Widmanstatten (basket weave) structure. It should be noted that this material has reached temperatures beyond the beta transus during extrusion. Figure 99c shows the structure obtained after a $1750^{\circ} \mathrm{F}$ solution treatment (water quench) followed by a $1000^{\circ} \mathrm{F}$ (4 hr.) age. The absence of alpha prime (martensite) expected after this heat treatment is due to an inadvertent delay during quenching. This delay resulted in cooling below the M_{s} before quenching thus producing a coarse basketweave alpha-beta matrix with primary alpha beginning to show Widmanstatten growth from the grain boundaries.

Fig: 100 a MR 3-9-2-2A
As Extruded - Center
Etch: Krolls Mag: 500X

Fig: 100 b MR 3-9-22I
As Extruded - Edge
Etch: Krolls Mag: 500X

Photomicrographs of a titanium alloy multiport extrusion ("277) 3/32" thick extruded at $1800^{\circ} \mathrm{F}$ at a $24: 1$ ratio. The material has been heated just above the beta transus as can be seen from the small prior beta grain size. Although the flange shows a stabilized alpha phase at the surface ($0.0008^{\prime \prime}$ thick), no hardness differences between this surface layer and the base metal were noted. This is due to the fact that an exceptionally high composition of alpha stabilizing interstitials must be present befure any difference is seen. Any embrittlement present would be revealed by bend and/or toughness testing. The structure consists of Widmanstatten alpha-beta platelets.

Fig: 100 c
MR 3-9-22D
As Extruded \& Stretch Straightened Center
Etch: Krolls Mag: 500X

EXTRUSION \#273

Ftu (ksi)	0. 2\% Fty (ksi)	$\begin{aligned} & \% \text { e } \\ & \text { (in } \\ & \left.2^{\prime \prime \prime}\right) \end{aligned}$
a 151.8	128.1	8.0
b 152.5	119.1	10.0
c 154. 1	131.8	8.5

Fig: 100 d
As Extruded \& Stretch
Straightened - Edge
Etch: Krolls Mag: 500X

Photomicrographs of a titanium alloy extrusion (\#273) 1/16" thick, extruded at $1800^{\circ} \mathrm{F}$, at a $57: 1$ ratio and stretch straightened 3% at $1100^{\circ} \mathrm{F}$. The material has been heated above the beta transus as can be seen by the presence of alpha phase outlining the prior beta grains. The very fine alpha platelets in the Widmanstatten configuration seen in this structure (Fig. 100 d) are a result of more severe (58:1) reduction during extrusion and more rapid cooling (due to small thickness) from the extrusion temperature. These processing variables would tend to produce a structure higher in beta content. No hardness differences were noted between the high alpha surface (at flange) and the base metal.

Fig. 101 a MR 3-11-6E9 As Ext ruded
Etch: Krolls Mag: 100X

Photomicrograpl \#272 (1/16" thick microstructures the material has As indicated by t complete recrys the front of the e which appear not The microstruct f, illustrate the rear of the same platelets and lact of the extrusion. temperatures obt extrusion as a re alpha phase seen (rear and front), differences with below shows the graphs were take

Fig. 101 c MR 3-11-6D7 As Extruded Etch: Krolls Mag: 500X

Fig. 101 e MR 3-11-6E4
As Extruded
Etch: Krolls Mag: 500X

Photomicrograph of titanium alloy 6Al-4V extrusion \#272 (1/16" thick) extruded at a 57:1 ratio. The microstructures seen in Figures a, c, and e show the material has just exceeded the beta transus. As indicated by the flow observed in Figure a, complete recrystallization has not occurred in the front of the extrusion and there are some areas which appear not to have reached the beta transus. The microstructures shown in Figures b, d, and f, illustrate the microstructures obtained from the rear of the same extrusion. Note the larger platelets and lack of metal flow seen in this area of the extrusion. This is inclicative of the higher temperatures obtained toward the rear of the extrusion as a result of increased friction. The alpha phase seen on the surface of the extrusion (rear and front), do not show any hardness differences with the base metal. The schematic below shows the locations where photomicrographs were taken.

Rear
of

Extrusion

Al-4V extrusion l ratio. The c, and e show eta transus. Figure a , occurred in are some areas e beta transus. es b, d, and taine from the me larger 2 in this area of the higher ear of the fiction. The he extrusion rdness re schematic stomicro-

TABLE 31
ROOM TEMPERATURE TENSILE RESULTS OF EXTRUSIONS EVALUATED AT NAA

$\begin{aligned} & \text { EXTRUSION } \\ & \quad \text { NO. } \end{aligned}$	SPECIMEN	UTS, KSI	$\begin{gathered} \text { YS, KSI } \\ 0.2 \% \text { OFFSET } \end{gathered}$	ELONGATION, \% 2 INCHES
290	A	188.8	175. 5	6. 5
	B	175.5	162. 1	7. 0
294	A	175.3	158.6	8. 5
	B	199. 2	181.6	6. 0
282			151.3	8. 5
	B	173.6	154.5	10. 0
285	A	184. 2	169. 5	6. 5
	B	187.6	172.2	6. 0
289	A	181.6	168. 1	7. 0
	B	181.4	169. 1	6.0

Required Tensile Properties $\quad 160.0$ (Minimum) 150.0 (Minimum) 6.0 (Minimum)

TABLE 32
ELEVATED TEMPERATURE TENSILE RESULTS $(700 \pm 10 \mathrm{~F})$

EXTRUSION NUMBER	UTS, KSI	YS, KSI 0.2% OFFSET
290	126.8	107.9
294	125.4	96.5
282	131.4	109.0
285	$*$	-
289	129.7	101.7
Required Tensile Strength	110.0 (Minimum)	90.0 (Minimum)

[^6]
Radius \quad Height
(0.125 $\pm 0.005^{\prime \prime}$)

Satisfactory
($1.600 \pm 0.005^{\prime \prime}$ Satisfactory

Satisfactory

Extrusion No.
Required 289

285
Thickness
Radius
Height
(0.080 $\left.\pm 0.005^{\prime \prime}\right)$
(0.125 $\left.\pm 0.005^{\prime \prime}\right)$
(1.000 $\pm 0.005^{\prime \prime}$
*Unsatisfactory ${ }^{(4)}$ Satisfactory
Satisfactory
*Unsatisfactory
Satisfactory
Satisfactory
*Unsatisfactory ${ }^{(7)}$ Satisfactory Satisfactory

* See Summary page 197
$10<2$

TABLE 33
ISUREMENTS OF 64E 12 (MODIFIED) EXTRUSIONS

, MEASUREMENTS OF 64E 15 EXTRUSIONS

Straightness
05') (0.010" per ft) Satisfactory
ry ${ }^{(3)}$ Satisfactory

Twist
($1 / 2^{\circ}$ per ft, max. 3°)
Satisfactory

Satisfactory

Angle
$\left(\pm 1 / 2^{\circ}\right)$
Satisfactory

Satisfactory

EXTRUSIONS

Remarks

(1) Variation in thickness ($0.042^{\prime \prime}$ to 0.037'1)
(2) Variation in thickness (0.040' to 0.037")

First 3' undersize balance of 8^{1} satisfactory
thickness (0.077' to $0.073^{\prime \prime}$)
${ }^{(5)}$ Variation in thickness ($0.079^{\prime \prime}$ to 0.073")
${ }^{(6)} 0.020^{\prime \prime}$ kink
(7) Variation in thickness (0.076" to $\left.0.069^{\prime \prime}\right)$

$$
3 \text { of } 2
$$

Procedure

1. Belt grind billet surfaces to 100 grit
2. Degrease billet
3. Heat billet to $300^{\circ} \mathrm{F}$ and spray with protection glass slurry. Oven dry.
4. Place billet into preheated ($1800^{\circ} \mathrm{F}$) stainless steel can. Cover can and argon purge for 60 seconds.
5. Place can into controlled argon atmosphere electric furnace. Soak 60 minutes.
6. Transfer billet to extrusion press as fast as possible (20 to 40 seconds).
7. Remove billet from can on runout table.
8. Give billet a double roll on the runoat table to apply additional glass powder to billet surface.
9. Place glass ring/glass wool die pads into container against die face.
10. Place billet in container.
11. Advance stem rapidly until contact is made with billet.
12. Hold stem in position for one or two seconds while upsetting billet.
13. Extrude

Conditions

1. Chromium plated liner
2. Die temperature $-900^{\circ} \mathrm{F}$
3. Container temperature $-900^{\circ} \mathrm{F}$
4. Dummy block temperature $-400^{\circ} \mathrm{F}$
5. Die material - Peerless " A " tungsten steel, R_{c} - 48-52
6. Die coating - ceramic
7. Coating thickness - . 010 -. 020 inches per side
8. Billet protection glass - \#85 coating
9. Billet O. D. Lubricant - 318 glass - 14 mesh
10. Die lubricant - 3KB - 14 mesh glass ring(3) glass wool pads
B. POST EXTRUSION
Deglass
11. Dip in 30% solution of sodium hydroxide at abnut $425^{\circ} \mathrm{F}$for approximately one (1) minute
12. Water rinse
13. Dip in 15% sulphuric acid bath for approximately one (1) minute
14. Water rinse
15. Steam blast

Straightening

1. Insert one end of extrusion between jaws of stationary head on stretcher press.
2. Detwist manually sufficiently so that shape can be completely detwisted on press with one revolution of rotating head. Lock the detwisted end in the movable jaw.
3. Resistance heat extrusion through insulated jaws to 1000° $1100^{\circ} \mathrm{F}$, maintaining tension in the part.
4. Stretch to approximately 3% of the original extrusion length. An allowance of about $3^{\prime \prime}$ of springback for 20 foot lengths is made in determining the amount the extrusion is stretched.
5. Cut the power and air cool the extrusion under a constant diminishing tension until approximately 2 inches of contraction occurs. Release the air pressure holding the jaw grips so that further release of tension will cause the extrusion to bow slightly in compression and force the jaw grips to open.
6. Kemove camber and bow by "gag" straightening on a hydraulic press (while the extrusion is still warm - over $300^{\circ} \mathrm{F}$).

Procedure

1. Machine fillet radii over a $9^{\prime \prime}$ end length to insure insertion into draw die.
2. Chemically point extrusion ends in a 15% acetic acid - 5% hydrofluoric acid bath to $0.010^{\prime \prime}-0.020^{\prime \prime}$ less than 1 st pass dimension. Tape the air-liquid interface to prevent undercutting between the point and base extrusion.
3. Chemically clean extrusions by alternate immersion in a KOH bath at about $425^{\circ} \mathrm{F}$, rinsing; immersion in a $15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ bath at about $120^{\circ} \mathrm{F}$, rinsing; flash pickling in a $15 \mathrm{HNO}_{3}-11 / 2 \mathrm{HF}$ bath at room temperature and rinsing. Conversion coat with Amchem Granodraw "T" (3 oz/gallon); rinse, lime dip coat (4-8 oz/ gallon) at $160-180^{\circ} \mathrm{F}$, multiple immersion ($3-4$ dips about 1 minute each) with hot air drying between dips; brush coat two layers of Alpha Molykote 196X with air drying between coats.
4. Resistance heat extrusion to $1050^{\circ} \mathrm{F}$ at a station adjacent to holding furnace in draw bench trough.
5. Place extrusion in the holding furnace at $1050^{\circ} \mathrm{F}$ and hold for 0-1 minutes depending on shape thickness.
6. Hook up extrusion and draw at 24 feet per minute. 110% reduction per pass). Die is preheated to approximately $500^{\circ} \mathrm{F}$.
7. Brush apply die face with Fiske 604 lubricant during draw cycle.
8. In-process straighten extrusions by stretch annealing at $1550^{\circ} \mathrm{F}$.
9. Heat treat extrusions according to recommended heat treat cycle for designated alloy.
10. Pickle and final straighten extrusions (stretch straightening temperature is dependent on heat treat condition).
11. Machine extremities of extrusions to bring the end dimensions within size.
12. Clean, inspect and test.

APPENDIX A

Extrusion Trial Data Sheets

The original extrucion data sheets are reproduced in Appendix A for reference. Duplication of extrusion push numbers may be somewhat confusing since each extruder numbered his pushes consecutively beginning with 1 . However, the original push numbers have been maintained so that the data would correlate with the identification on the extrusions.

Several assigned push numbers were not used where the unavailability of tooling or problems in billet heat-up voided the push. The push numbers used and the total number of pushes are listed below for clarity. The entire program encompassed 535 puahes.

	Push Numbers		Total Each Part
Part I - Survey (no pushes)			
Part II			
Babcock \& Wilcox	1-20, 24-66, 69-82	77	
U. S. Steel	1-74	74	
H. M. Harper	1-55	55	206
Part III			
Babcock \& Wilcox	$\begin{aligned} & 83-131,133-138, \\ & 140-141,144-155, \\ & 160-175 \end{aligned}$	85	
Cefilac	1-62	62	147
Part IV			
Babcock \& Wilcox	176-245	70	
Battelle	1-66	66	136
Part V			
Babcock \& Wilcox	251-256, 258-297	46	46
	Total Numbe	of Pushes	535

PART II EXTRUSION TRIAL

 DATA SHEETSBABCOCK AND WILCOX COMPANY

TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

	Hesem	0 mb	$\left\|\frac{\square \pi}{4}{ }^{5}\right\|$	Enafme (1)	${ }^{n} 10$			EXTRUSION PRACTICE	${ }_{0}^{018}$ (2)		\|88		\min					
1	crasamo	$4 \chi_{6} / 8$	1820	Mocen Aruot	85	$\begin{aligned} & \text { foswo } \\ & \hline \text { 3kB } \end{aligned}$	$\begin{aligned} & 5 K 8 \\ & 0 A D \\ & \hline \end{aligned}$	REQuLar	26230	限44.48	-	-	-	PARTIAL Stickil			1050	$5^{\prime}-8^{\prime \prime}$
2	"	"	1920	"	190	"	"	"	-.	"	-	-	-				891	$48^{\prime} \mathrm{APP}$
3	-	"	1930	"	205	'"	"	\cdots	\cdots	"	-	-	-				945	47 7^{\prime} APF
4	${ }^{\prime}$	"	1930	"	211	"	"	SCALPING	"	"	-	-	-				-	58 AP
5	"	"	1930	"	220	6REAEL	grtase	"	*	"	-	-	-				918	40^{\prime} APP
6	$1 \cdot$	-	1930	\cdots	230	$\begin{aligned} & \text { pow } \\ & 3 \mathrm{~KB} \\ & \hline \end{aligned}$	$\begin{aligned} & 3 K B \\ & \text { PAD } \end{aligned}$	1	"	"	-	-	-				675	16.4 PP
		(1) B	LETS	CMATED		Th*es	Glass	RIT.										
		(2) 5	AND	RD DIE	De	IGM												
		(3) D	E.S 9	ADE OF	ER1	EHTON	Alloy											

-	\| mivem	Ormaror mamis	at conamen	Vaomr				c.intre				1 Mo				mammis	scmenal data	
		amise (4)		4	1.	G	3	\square	\square	C	R	4	\cdots	4	Q			
1	crasand	$\begin{aligned} & \text { DEPRLONGITUDWAG } \\ & \text { SGRATEMES } \end{aligned}$	WASHED	$4 \frac{406}{410}$				-				-				* 4 - SURFACE SEVERLY	Palc : Octose	R 15,105
2		-	"	$\begin{array}{\|} 400 \\ 410 \\ \hline 10 \\ \hline \end{array}$				$\frac{-03}{400}$								SCRATCHED BUT BEST O GROUP AND COMPLETELY	COYPAMY: BABCO2 InCATIOM: BEAVER	rivilcox co FAlls PA.
3		"	"	$\begin{aligned} & 410 \\ & 4.3 \end{aligned}$				$\frac{31}{430}$								ROUND AT CENTER		
4		*	"	4.02 406				$\begin{aligned} & 4007 \\ & 400 \\ & 400 \end{aligned}$								*G. NO IMPROVEMENT		$\begin{aligned} & A=408 \\ & A=A N 0 \\ & c=.750 \end{aligned}$
5	,	*	"	$\begin{aligned} & 190 \\ & \hline 40 \\ & \hline 45 \end{aligned}$				$\begin{aligned} & 701 \\ & -12 \\ & 43 \end{aligned}$				$\begin{gathered} -379 \\ 412 \\ 50 \end{gathered}$				$\text { IL SURFACE OVER. } 408$ DIM. ROUNDS		$\begin{gathered} c \\ 0 \end{gathered}=.750$
6				$\begin{aligned} & 414 \\ & 740 \\ & \hline \end{aligned}$				172				$\begin{gathered} -781 \\ -78 \\ \hline \end{gathered}$					cnoss exction vitw	
		14 THESE SCR4	CHES - TEND	2-	HE	Funt											Phess camencit (ton STEM DIAMETEA	$-\frac{104 c}{4 x_{10}}$
		LENGTH गP	Ex-R - PRO	c													extrusion ration cominmer anctea	$\frac{26: 162811}{42 / 16^{\circ}}$

IEST DATA OF EXTRUSIOM: TRIALS AF 3 YBEOO 39098

TEST DATA OF EXTRUSIIN TRIALS AF $33(600) 34098$

					TEST DATA OF EXTRUSISN				TRIALS AF 331600$) 34098$					$40-\mathrm{c}-\mathrm{sin}$				
${ }^{14}$	Hamenm	anct	$\left\|\begin{array}{c} \text { merer } \\ 78 \end{array}\right\|$	mapimg cosimom				Div hubkicant	$\begin{aligned} & \text { Oig } \\ & 0 \text { ocmen } \end{aligned}$	$\underset{\operatorname{RC}}{\mathrm{OLE}}$	$\left\|\begin{array}{l} 018 \\ \text { myp } \\ \hline 18 p \end{array}\right\|$		$\left\lvert\, \begin{aligned} & \operatorname{lom} 1 \\ & \log \end{aligned}\right.$	ErTEusics Premtice				
3.4	4340	in	2250	Sast $\mathrm{Baxn}^{\text {and }}$	64	$\begin{array}{\|c\|} \hline P_{0} \text { pow } \\ \hline \end{array}$	-	GWG Pad	26515	$\text { 8R } 8$	550	22.8	4.2	Futulueaicmions			-	134
		" ${ }^{1}$		(Nu Contios)														105
		- 0																84
25	4340	\cdots												Nor Extruber				\rightarrow
26	$\begin{aligned} & \mathrm{c} 135 \\ & 4 \mathrm{mo} \\ & \hline \end{aligned}$		1930	$\begin{array}{\|l\|l\|} \hline \text { Etec Sums } \\ \text { neamo Anmos } \end{array}$	94	$\begin{aligned} & \text { Pow } \\ & 3 \mathrm{kB} \end{aligned}$	-	3kb Pad	26515	BA	550	28.8	3.	Fuml Lubricmeran			-	111
		-		-05 (minc)										Die paratianty PubGe) WITM				$57 / 2$
		\pm												Glass				51 (1)

axtrusion sectrom gimanem

IEST DATA OF EXTRUSION TRIALS AF 33 BOOC 34098

\pm			\| mix^{5}	$\underset{(1)}{\text { manem }}$	品	-8tioy	Temp	Die LuDRIEANT	018	${ }^{00 \mathrm{NE}}$		[9]	-	Expeusion Pextice		\mid	$\left.\right\|_{\text {ma }} ^{\text {min }}$	
34	C185	A	1930		64	$\begin{aligned} & 7,002 \\ & c \times 12 \end{aligned}$	800	3KB Pap	26399	8, 4×4	440	216	20	Scalams			1090	86
		j																90
		\bigcirc																$911 / 2$
35	$\begin{array}{\|l\|} \hline \text { M3 } \\ 821 \\ \hline \end{array}$	\times	1930	"	68	$\begin{array}{\|l\|} \hline S_{\text {ows }} \\ 6 \times 1 \end{array}$	$550^{\text {K2 }}$	$3 k 8 P_{n}$	26399	3π	440	22.8	2.4	Scmipine			1090	125
		\cdots																$901 / 2$
		\times																89
36	$\begin{aligned} & \operatorname{cis5} \\ & \text { AMO } \end{aligned}$	\cdots	1930	${ }^{*}$	113	$\begin{aligned} & \text { Powiz } \\ & \text { GW } \end{aligned}$	950	3KB Pad	26399	$8.84 a_{0}$	540	23A	2 H	Scalpine			1010	99
		$-$		(1) Brac_{1}	Ers	coat	With	*85 cRir										97
				(2) Temil	rach	tuas 4	rea 7	USm										79

Test Groue NoS-

	Est	ou*		5 -		TEST O	Data OF	EXTRUSISN	TAIALS	AF 35	600	34	098) 5	150		- -6.8
-nt	heorms	Man	$\left\|\frac{\text { ount }}{7}\right\|$	$\begin{aligned} & \text { Hapme } \\ & \text { coremin } \end{aligned}$	$\left\|\begin{array}{c} \operatorname{mos} \\ \sin \\ \sin =1 \end{array}\right\|$	$\mid \text { gicter } \mid$	$\left\lvert\, \begin{gathered} \text { cmuman } \\ T_{\ln } \end{gathered}\right.$	Die Lugaicant	oig	$\operatorname{mal}_{\mathrm{AC}}^{016}$	$\left\lvert\, \begin{aligned} & 018 \\ & 7 \% \\ & \hline 1 / 2 \end{aligned}\right.$			Entavsims Praltice				
42	C		1660	Ex Fuan	99	$\begin{array}{\|l\|l\|} \hline \text { Pows } \\ \text { Gwof } \end{array}$	980	B18 Pas	26515	gesnicn	100	22.8	-	Scabplas			-	
		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~J} \\ & \hline \end{aligned}$		$\begin{gathered} 885 \\ C_{\text {OMTING }} \\ \hline \end{gathered}$														
		$\sim_{0}{ }^{\circ}$																
43	$\begin{array}{\|c\|} \hline \mathrm{Ms} \\ \mathrm{BZ}, \\ \hline \end{array}$	\times	1760		140	$\begin{array}{\|l\|} \hline \text { Pow } \\ \text { GWG } \\ \hline \end{array}$	860	$318 P_{\text {a }}$	26515	$\begin{array}{r} 8 a \\ 0,44,-4 \infty \end{array}$	340	282	-	Scaloma			-	-
		0		$\begin{gathered} \text { coss } \\ \text { COAT } \end{gathered}$														
		\times																
44	$\begin{array}{r} 6135 \\ 4 \mathrm{MO} \\ \hline \end{array}$, ${ }^{\prime}$	1810	$\begin{array}{\|cc\|} \hline \text { Elc Fuan } \\ \text { Aanimbreses } \\ \hline \end{array}$	173	$\begin{aligned} & \text { Powt } \\ & \text { CWW } \end{aligned}$	380	Tum 3 Io Pay	26515	$\begin{array}{\|c\|} \hline 8 a . \\ 0.4 a \cdot 98 \end{array}$	830	28.2	so	Scalone			-	$1131 / 2$
				$\begin{gathered} 83 \\ \text { centing } \end{gathered}$														$90 \frac{1 / 2}{}$
																		-

me	0 \%reas	eximurm mamare	bereanam			Ont			CET	\%						nemanks	ecmabal daja
				\cdots	1	6	1	1	1	c	1	1	1	c	1		
42	$\left[\begin{array}{l} 135 \\ \text { ano } \end{array}\right.$		Div1													STICKER	pays : Decemece 27, 1937 comparir : Babuan \& Wricum C_{0}
43	$\begin{array}{\|r} \mathrm{MS} \\ 821 \\ \hline \end{array}$		Dict													Sticker	
45	$\begin{array}{\|c\|c\|} \hline \text { Cis3 } \\ \text { AMO } \\ \hline \end{array}$	COOD	$\begin{array}{\|l\|} \hline \text { Dic }{ }^{8} 8 \\ G 000 \\ \hline \end{array}$. 362	917	095	102	1008	971	093	099	1007	982	091	P98	Ons Dic moat Puger wity firath - OnN Two	
				967	. 885	087	04	910	48.	089	092	981	993	090	098	Angles ExTRubid	ixthusion ratrin comiamen onncten

Test Groud No 5 -
TEST DATA OF EXTRUSION TRIALS AF 33 (600) 34098

mox^{1}	marocel	$\begin{array}{\|l} \mid \text { extmumen manace } \\ \text { Mintan } \end{array}$	- comortion	Mons				Contre								nemaxks	cemenal oata	
				A	1		9	\square	1	-	1	1	1	6	0			
48	$\begin{aligned} & C 135 \\ & \text { AMO } \end{aligned}$	$\overline{-A I R}$	DiE 16 No Walmase	A_{N}					-	-	A	${ }_{\text {AT }}$			P	prghentatin	eall : Decempea 27, 1957 coprany : Badcuck t Wircon C_{0}. bration: Beaner Fals Pa	
			Some pickeup	986	992	096	094	981	967	092	099	960	962	093	O91			
				980	964	090	085	996	973	098	098	987	973	949	091		$f_{0}^{-0,0}$	
49	$\begin{array}{\|l\|} \hline 43 \\ 831 \\ \hline \end{array}$	One mable taen EnTile LENGTM	Die 214 - Onc Deat wabulp													ONR DORT OR DIE was Puefole with Glals -	A $x^{-1 / 8 r^{2}}$	$\begin{aligned} & A-1000 " \\ & \hat{A}=1000 \\ & c-094 . \end{aligned}$
		ONE ANGLE YOR back end	Sadoy													OMLT Two Angles wire ExTRUDEP	$1-\frac{1}{c}$	$\begin{gathered} c=0.44 \\ 0=094 \end{gathered}$
		NEirnea picle comperaty puleto															chitesmertion	
50	$\begin{array}{\|l} C 135 \\ \text { Amo } \\ \hline \end{array}$	Suracie fair	Dic 19 Two poars- OK	907	888	090	096.	91a	93,	095	Ons	. 984	976	096	092	(2) Specian dis Recessed	panss cabactir (mity frem diamete	$\frac{10 \frac{60}{4} 16}{16}$
		Front ent was Rpuen	By Auche	920	919	090	094	4	960	095	095	983	983	093	. 091	AT EENTER TO FORM 	extmusion Ration COMTAMER DMmeten	$\frac{22: 1}{43 / /_{6}^{n}}$
				. 92		092	1099	951	. 93			3100	1.004		. 103			

Tret Groun No 5
5
mec-4807

5	misen.		- covomom	Phowr				ernich				\%				nemarns	enmanal daja
				A	1	\%	e	1	L	¢ c	1	0	1	c	Q		
51	$\begin{array}{\|l\|} \hline M_{3} \\ B_{21} \\ \hline \end{array}$	Poor	$\begin{array}{r} 20 \\ 0 \mathrm{~K} \\ \hline \end{array}$	$\begin{aligned} & \text { Fag } \\ & B u \end{aligned}$	ner	${ }^{2}$	-	993	983	1.08	1.02	1.023	-	100	-	Special Dir-Rtcesses	
		Gnck Ruds tame ON Two pieces		.832	824	O94	102	. 923	878	096	102	. 931	. 935	082	105	AT CENTER TO FORm Docker per hutgigant	
				.ena	836	1098	009	-	98	. 101	. 101					Anale mot encle out	F^{-0+1} mowinat In inneng
52	$\begin{array}{\|c\|} C 135 \\ \text { Amo } \\ \hline \end{array}$	Poor	D. ${ }^{4} 18$ Discame siousk		e^{T}	[in2		-T								Dis Broke	$\begin{array}{ll} A & A-1.000^{\circ} \\ i=1010 & c-0094 \\ \hline \end{array}$
		Bencr antes row ou Totm pillel	To dit- No ixamination	987	976	. 043	108s	. 97	1022	. 087	On	995	1027	077	100		
			on Die mave	1.014	wis.	095	101	1.06	1023	093	. 104	1061	1059	. 02	. 105		choss serrow
																	extmusiom matio $\frac{32: 1}{43 / 10^{\circ}}-$

	st 6		No. 6			TEST	TA of	EXTRUSION	trials		00	0					200.6300000
		\%	\| \square_{4}^{4}	ceamm			Temp	Dis	$\stackrel{16}{ }$	$\lim _{n e}^{010}$	\mid	nan		Extrubion Practica			\mid
53	Cis	$4 \times 5^{\circ}$	1790	Etioc Fimin	107	Pout	400	Tum $318 P_{\text {a }}$	26515	0,80.an	850	21.0	1.2	Scaname		-	75
		san		- ${ }_{\text {cosing }}$													78
																	82
54	Cis	4×6	1790		135	$\begin{aligned} & \text { Paug } \\ & \hline \end{aligned}$	400	THin 318 Pad	26515	284.4.	850	39.6	2 A	Scanping		-	84
		Soun															84
																	88
55	4340	$4 \times 5^{\circ}$	2250	Sanc Bax	87	Pown	400-500	THW GWG PAD	26515	R.4AM,	3000	150	3.0	Funlusenari		-	$77 / 3$
		50w															60
																	78

TEst Group No. 7
IEST DATA OF EXTRUSION TRIALS AF 33 f600 34098

m^{*}	mares	moter mamer	- ${ }^{\text {a }}$ conamen			Ont			Cra	$1{ }^{1}$						memanks	efmenal data
				1	Q			A	1	E	1	1.	1	c	1		
57	$\begin{aligned} & C 135 \\ & \text { AMO } \end{aligned}$	GOOD	$\begin{gathered} 1.678 \\ G 001 \end{gathered}$	487	960		100	1023	1.023	101	103	. 945	L004	. 09	102		enil : Januatay 3, 1958 imear Bascock + Wilcox $\frac{\operatorname{macap} \text { inn }}{-1-c}$: Beaver Falls. Pa. - youmal
				996	981	Den	102	1029	1.020	099	1.04	990	194	101	104		
				722	982	093	100	977	994	094	101	990	994	043	102		
58	$\begin{aligned} & C 135 \\ & \text { AMO } \end{aligned}$	Sureaces	FONGIS wanh	971	973	1090	100	993	985	076	103	997	986	097	102		
		Scratched Sunt	Some pick-up	996	994	102	108	1003	946	303	III	1000	003	105	113		
				971	931	092	094	991	962	096	098	987	996	097	102		
59	$\begin{aligned} & \mathrm{C} 135 \\ & \text { AMO } \end{aligned}$	GOOD	$\begin{aligned} & \text { DiE F } 23 \\ & \text { Discal } \end{aligned}$	4.003	. 722	18	0095	Loor	774	100	100	1:30	857	03	. 100	Glagh Partialty mueger PM:ANGSS! onty	
		very hight	To Die	1003.	Ene	091	010	1.004	925	${ }^{4} 6$	0	1024	5	097	101	Partialty fllteo out	Eximusiom nitin $-\frac{25!}{43}$
		Scranturs		1.822		092	096	.038	. 870		8	387	722	003	049		

	mares	armanam semice	- 0 conomen	now ${ }^{\text {d }}$						1		\%99				menarks	atmeal oara
							Q	\square		c	R	A		f	2		
63	$\begin{aligned} & \operatorname{cis} 5 \\ & \text { AMO } \end{aligned}$	Ligut Scratches	$\begin{aligned} & 0.88 \\ & \text { Brosin } \end{aligned}$	805	$8^{6} 5$	091	O85	959	905	093	. 086	97	is2	043	099		gal January 3,1950 cimeane. Babcock 4 Wilcox ifation Beavica Faws, P_{A}.
				980	945	094	092	1000	984	098	103	986	1006	100	103		
				1002	980	100	OV	995	1000	06	099	1004	1004	100	102.		
64	$\begin{aligned} & C_{1} \text { 2E } \\ & A_{2} 2 \\ & \hline \end{aligned}$	GOOD	$\left\{\begin{array}{c} 012.26 \\ 0 k \end{array}\right.$	999	1000	101	103	1.000	1002	101	104	993	1002	101	106	Gonss partially plugeed ONF PORT - FRONT ENR	
				968	981	092	093	997	1002	.098	096	990	995	097	100	OFANGLE BPLT ANT Not comphtily	
												11.007	975	. 06	087	FILLEO OUT	
65	$\begin{aligned} & M_{5} \\ & 8 \cdot 5! \end{aligned}$	Poon	DIE $\$ 27$ 													FRont ends split	marse camactiv tront. 106 O ...
																AND ANGLES NOT	
																FILLED OUT:	

	st Grou	oup No	-. 8			IEST	ATA OF	EXTRUSIT,	TRIALS	AF 33	1500	0) 3	098					
mem	/nerema	(mati	$\left\|\begin{array}{c} \text { anct } \\ \hline \end{array}\right\|$	$\begin{gathered} \text { matuen } \\ \text { cotinne } \end{gathered}$		$\begin{gathered} \text { mincors } \\ O D \\ \hline \end{gathered}$		Die Lubricant	016	$\operatorname{mon}_{\text {oic }}^{\text {oic }}$	$\left\|\begin{array}{l} 0.8 \\ 78.0 \end{array}\right\|$	nuty	\%amy	Expruynow Practice				
79	Cl^{135}	4×87	1800	ERec Fuan	80	Pown cowt	650		26.562	$\begin{array}{\|l\|} \hline C C T-2 \\ \hline 10 \end{array}$	950	33.6	2.4	FunLugaremer			910	185
				$\begin{gathered} 88 \\ C_{0} \text { ring } \end{gathered}$					\#									142
																		161
80	"	$4 \times 8 \%$	1850	"	67	-	1090	*	-	\cdots	900	366	2.4	Scalped wita fung deme			980	215
									-11									149
																		147
81	\cdots	$4 \times 83 /$	1850	"	50	"	900	-	$\begin{aligned} & \text { Mancict } \\ & \text { FUR Fint } \end{aligned}$	*	900	34.2	3.0	"			1080	146
									*									197
																		3011

PART II EXTRUSION TRIAL DATA SHEETS

M M M	mental	ERTAusion sumpace FIMISM	DiE conoifiom	Eximisiom metion biramioms												memans	
				Fant				Camita				10					
				*	\square	c	0	1	0	c	0	1	1	6	0		
6	1015 Steel	-	$\begin{aligned} & \text { Derormed } \\ & \text { Slightly } \end{aligned}$					No	atr	10 n							Mall 1 Auguat 16, 1957
7	"	Good	OK					. 9001	1.029	. 898	895						cerour: Mational Tube Division
8	"	One Mange Wavy and Torn	OK					Not	Det	nin	d						kSalioy Cory, Indians mormal
9	"	Cood	OK					. 912	2.012	. 886	事点						
10.	*	-	$\begin{aligned} & \text { Deformed } \\ & \text { Badly } \end{aligned}$					No	Extr	sion							
11	"	Pacellent	OK					. 8980	1.015	. 883	$\begin{aligned} & 480 \\ & 4802 \\ & \hline 100 \end{aligned}$						$1 \cdot 0.094$
12	"	"	OK					Not	Detc	reint	d					Only $8^{\prime \prime}$ Product	vicw
13	T1 255A	-	OK					No	rtr	sion							
14	T1 155A	-	OK					No	ctr	$1{ }^{\text {a }}$							txinusion milo _ 27
15	Steel	-	OK					150	T	S100							comaimat siarten 2-15/16"

$\begin{gathered} \text { pusn } \\ \text { mo. } \end{gathered}$	mtemial	$\begin{aligned} & \text { OLLET } \\ & \text { Bim. } \end{aligned}$		westion $\operatorname{com} 01110 \mathrm{~m}$	$\begin{gathered} \text { NTG. } \\ \mathbf{T H I E} \\ \text { TMIN. } \end{gathered}$	allet tuenicant	comramen Lumatant	$\begin{aligned} & \text { oik } \\ & \text { Dfsicm } \end{aligned}$	$\underset{A C}{\text { MiEALI }}$			ExTh. (SEC)				
11	$\left\{\begin{array}{l} 1015 \\ \text { Steel } \end{array}\right.$	8-1/4'	2275	In Container In Salt Pot	52	None	Fisk 604 Grease	$\begin{array}{\|l\|} \hline \text { Pilcomb } \\ \text { Pet Puce } \\ \hline \end{array}$	$\begin{aligned} & \text { "218" } \\ & \text { R } 50 \mathrm{C} \\ & \hline \end{aligned}$	300	35	5	-	-	400	$9^{\prime}-11^{\prime \prime}$
				ilith Argon												
18	Ti 155A	$6^{\prime \prime}$	2180	In Mciten 0771 cleas	61	$\begin{array}{\|l\|} \hline \text { Moliten } \\ \hline 9771 \text { Gl } \\ \hline \end{array}$	None	"	"	*	34	-	-	-	500	-
19	"	6"	2200	"	30	"	"	"	"	*	64	-	-	-	500	-
20	"	6"	$\therefore 200$	In Container In Sult Pot	40	None	FMak MBO Grease	"	"	*	46	6	-	-	400	9'-6"
				With Argon												
4	"	8"	2000	"	35	"	"	"	"	${ }^{\prime \prime}$	21	6	-	-	500	11'-9"
$\angle 2$	"	\&"	1750	"	30	"	"	"	"	*	34	6	-	-	500	15'-11"
<3	"	8"	1640	"	30	"	+		galcomb $850 \mathrm{C}$	"	36	-	-	-	500	-
																.

mom．	mothias	Puby	$\left\|\begin{array}{l} 9 \\ \text { 多宛! } \end{array}\right\|$	cositimam		sichicimt	conriman turancent		${ }_{0}^{018}$									$\begin{gathered} \text { angion } \\ \text { intion } \end{gathered}$
24	71－155	$\begin{aligned} & 6-14 x \\ & 2-34^{4} \end{aligned}$	1800	$\begin{array}{\|l\|} \hline \text { In containaer } \\ \text { Lo gult Pot } \\ \hline \end{array}$	30	Nose	$\begin{gathered} \text { Mek job } \\ \text { arease } \end{gathered}$	Conteliner Pre heeted by ope	$\begin{aligned} & \text { Break- } \\ & \text { dove } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { B1gomb } \\ 218 \end{array}$	500	30	－	SIO Extrusion Attempted，		3500	500	Mose
				vith argio				S1em throu out na．	$\begin{aligned} & \text { net } \\ & \text { Mace } \end{aligned}$					$\begin{aligned} & \text { RIIde to } \\ & \text { mortrual } \end{aligned}$				
								plisibero on ：										
－	＂	＂	：800	＂	31	＂	＂	＂${ }^{\circ}$	$\begin{aligned} & \text { Fat Fuct } \\ & \text { iBn } \end{aligned}$	＂	＂	25	－	＂		＇	＂	＂
－	＂	＂	：5：0	＂	30	＂	＊	＂	＂	＂	＂	30	－	＂		＂		
$\cdots 1$	＂	＂	1550	＊	33	＂	＂	＂	＂	＂	＂	35	3	list kppllcatio		＂		C＇－
	＂ 1	＂	：800	＂	32			Alualnue roslope	F ${ }^{\prime}$	＂	＂	35	2	＂		32 cc	－	$\therefore \cdots$
23	＂	＂	1800	＂	42	＊		＂＂	＂	＂	＂	38	2	＂		33 CC	沉	二＇－2
							$\mathrm{Pad}_{\mathrm{pan}}$											

Pusu．	matenial	oruet		$\begin{aligned} & \text { matios } \\ & \text { covition } \end{aligned}$		alluet cunicant	compaiman tomictant								$\begin{array}{\|c\|} \hline \max . \\ \text { mision } \\ \text { mint } \end{array}$	mi4． mins mext （031）		
30	T1－155	$\begin{aligned} & 5-1,43 \\ & 2-3,4 \end{aligned}$	1800	Sasa but not Argon．	34	None	Pigk	$\begin{aligned} & \text { Aluminum } \\ & \text { pol } \end{aligned}$	Fat Fio 1／8＂Land	险 218	500 \％	30	2	HISt mpridikt po Prass Fored		3200	457	21－542＂
							575 ciat											
－	＂	＂	1800	$\begin{aligned} & \text { in caferiner } \\ & \text { in Sait Pot } \end{aligned}$	32	＊	$\begin{aligned} & \text { Hk } 1004 \\ & \text { Orvest } \end{aligned}$	Fis 1604 Careche and Plumbego of	$\begin{aligned} & \text { Fint } \\ & \text { Pace } \end{aligned}$	＂	${ }^{1}$	30	2.5	＂		3400	485	10＇E＇
				FIth Argok．				pras，Aluan int	$\begin{aligned} & .093^{3} \\ & \text { Land } \\ & \hline \end{aligned}$									
± 1	＂	＂	2750	$\begin{aligned} & \text { Same but nu } \\ & \text { Argon. } \end{aligned}$	30	＂	＂	＂	＂	＂	＂	－	－	＊		こご，	457	E＇－12＂
\cdots	＂	＂	1750	＂	30	＂	＂	＂	＂	＂	＂	－	－	＂		3 ECC	300	$\because{ }^{\prime \prime}$
$\rightarrow+$	＂	＂	1700	Same vith Argon．	50	＂	＂	＂	＂	＂	＂	25	2	＂		22：2	＋	$\cdots{ }^{\prime}-{ }^{\prime}$
1																		

ницаия

mom.	mram	oiki	$\begin{array}{\|l\|} \hline \text { inke } \\ \hline 8 \% \\ \hline \end{array}$	matrimem	$\underset{\min }{\operatorname{lin} .8}$	ankicit	gmalen		\%riem		$\frac{014}{10}$							
38	71-255	$\begin{aligned} & 61,44 \\ & 2 \\ & 2 \end{aligned}$	1700	$\begin{aligned} & \text { yis ocazarinar } \\ & \text { ma palt pot } \\ & \hline \end{aligned}$	30	nose		Mns $1804+$ prophite		$\begin{aligned} & 12006 \\ & 288 \end{aligned}$	$1 / 500$	24	-	pionis iuroun	mi	ced to	Extre	
39	.	-	2700	*	\%	*	-	*	-	"	*	34	-	*	*	.		r
40	\cdots	$\begin{array}{\|l\|l\|} 8 & 1 / 4 \\ 23 / 4 \\ \hline \end{array}$	2750	\cdots	ke	-	\cdots	-	\%	-	"	29	3		3300	3900		-4'-9゙"
41	\cdots	-	1750	*	54	"	\cdots	Opocitioen	.	*	"	3	3		3600	3600		4, -2"
42	-	-	1750	*	39	*	\cdots		*	*	*	67	8		3480	3450		$44^{\prime}-9^{\prime}$
43	*	-	2750	\%	52	\%	\cdots	$\text { In Mry } 300$	*	n	*	25	2		3600	3600		-4,
44	"	-	1750	*	54	-			\cdots	-	\cdots	30	2		3600	3600		13'-3:

Pusy.	mentas	$\operatorname{minf}_{\text {bing }}$		ratime		sump	Cmminat	Luricant	211	$\min _{\mathrm{in}}^{\operatorname{lin} \mathrm{In}}$	\%is.							
-	P-155A	$\begin{aligned} & 124 x \\ & 234{ }^{2} \\ & \hline \end{aligned}$	1750	$\begin{aligned} & \text { In contalinar } \\ & \text { manat pot } \end{aligned}$	40	sace			$\begin{aligned} & \text { Now } \\ & \text { net fact } \\ & \hline \end{aligned}$		\% 300	24	2		3600	3 Pco		12'-5゙
				Wids tram														
5	"	"	1750	\cdots	43	"	P1an 4	$\begin{aligned} & 20 \% \\ & \text { in phe gron } \\ & \hline \end{aligned}$		$\begin{array}{r\|} \hline 100 \mathrm{~cm} \\ 28 \\ \hline \end{array}$	-	31	-		mile	4 to	trusp	
H	*	-	1750	\cdots	40	*	\cdots		$\begin{gathered} \text { oort } \\ \text { ponion } \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|} \hline 10748 \\ \hline \end{array}$	-	28	2		3600	3600		2'-9"
	40.46	$\begin{array}{\|c\|} 6 x \\ \hline \end{array}$	1750	"	3	*	*	*	cres	-	*	32	2		3500	1300		8'-4
± 2	2400N0	"	1800	\cdots	404	"	*	*	"	*	"	\%	2		3300	3300		8.-8"

Pusus	mriniac	Pulut		matimem	$\left\lvert\, \begin{aligned} & \text { nit. } \\ & \text { inwili. } \\ & \text { nnw } \end{aligned}\right.$	cuntiour	comatien		$\xrightarrow{218}$	$\operatorname{mith}_{\mathrm{ac}}^{\text {minc }}$	$\frac{816}{}$		$\underset{\substack{\text { um. } \\ \text { (ixt }}}{ }$					
50	240ג10	$\begin{aligned} & 6 \times 3 \\ & 2.3,4 \end{aligned}$	1700	$\begin{aligned} & \text { In containar } \\ & \text { m ealt bath } \end{aligned}$	$56{ }^{\circ}$	now	1.0k 1604		cost	$\begin{aligned} & \text { Prarles } \\ & \text { ler-2 } \\ & \hline \end{aligned}$	${ }^{109}{ }_{500}$	31	2	$518007 \text { for } 364$	33 cce	3460		E-Es:
				With Argco				1ua Craphite										
51	"	"	1650	"	75*	"	*	$\text { pee of pis } 1 / 8^{\prime \prime}$.	-	\cdots	45	2		3200	3200		-12:
								71003						16305 5				
$=3$	\cdots	$\begin{array}{r} 81,4 x \\ 234^{\prime \prime} \\ \hline \end{array}$	2650	"	53*	"	*	$\begin{aligned} & \text { rak } \\ & \text { Five } \\ & \text { and } \end{aligned}$	\%	.	"	\%	-	$\begin{aligned} & 1700 \% \text { for } 16 x \\ & 1650 \% \text { for } 37 \mathrm{M} . \\ & \hline \end{aligned}$	Tule	1 to	truse	
														(por erpleat	an of	xema	caral	

100-6-5s)

Nom.	mream	Pount		matime	$\begin{array}{\|l\|l} \text { nis. } \\ \text { inim. } \\ \text { inim. } \end{array}$	atul	camanen	$\begin{gathered} \text { Die } \\ \text { Lubricant } \end{gathered}$	gitim		$\frac{1016}{10}$				panion			
53	12-155A	6-1/8"	1750	$\begin{aligned} & \text { Bit Dith; } \\ & \text { Arop } 10 \text { of } \\ & \hline \end{aligned}$	32	$\begin{array}{\|l\|} \hline 575 \text { arent } \\ \text { Pus } \\ \hline \end{array}$	$\begin{aligned} & \text { Mot } \\ & \hline 604 \\ & \hline \end{aligned}$	arspate oo Me Ree	$\begin{array}{\|l\|} \hline \text { net } \\ \text { neen } \\ \hline \end{array}$	$\begin{aligned} & \text { Cast Ein- } \\ & \text { Tarathan } \end{aligned}$	400	30	3		850	850	119	8'-3"
54	"	7-7/8 ${ }^{\text {² }}$	"	" "	33		Fin	" ${ }^{\text {" }}$	-	"	"	15	2		1800	1800	252	7'-8"
55	"	$8{ }^{8 \prime}$	"	" "	31	575	-	" ${ }^{\text {n }}$	"	"	600	25	2		2250	2250	325	2'-7' ${ }^{\prime \prime}$
56	"	$8 \cdot 1 / 8$.	1700	" "	40	.	" "	" "	"	*	500	28	2	$\begin{array}{\|c\|} \hline 713 \text { ala. } 1750 ; \\ \text { bel. } 1700 \end{array}$	2230	2250	315	12'41"
57	"	$8-1 / 8^{\prime}$	1650	" ${ }^{\prime \prime}$	$33 *$	"	" "	${ }^{\prime \prime}{ }^{\prime \prime}$	"	n	550	17	2		300	3100	434	22'-11"
58	"	$8-1 / 8^{\prime \prime}$	1650	" "	32	"	" "	" "	"	"	600	17	2		3300	3300	462	9'-5"
59.	"	8-316"	1650	" "	30	"	" "	" "	"	"	600	13	2		3300	3300	462	H'-8"
60	"	$8-3 / 16{ }^{\prime \prime}$	1650	" "	30	"	" "	" "	"	"	600	25	2		3300	3300	462	22-5"
61	"	$8-316{ }^{\prime \prime}$	1650	" n	32	"	" "	" "	conicas	"	900	20	4		3300	3300	462	1264"

mos.	mintion	Eximusimimanace	OIC cmeltiom	Lathestan section diemation												memiss	mumicam	
				mo				cewiren				Hie						
				,	.	6	1	a	.	c		A	-	c				
53	T1-155A	Le. R1dees ell along	ak-use on the noxt punh	905	1031	905	105	907	1038	908	110	895	1039	906	$\begin{aligned} & 110 \\ & 122 \end{aligned}$	putt and shove cood fiow.	mill : Fobriary 28, 1958 cramin: metional tube anvision Lecalisy ory, Indiana	
54	"	$\begin{aligned} & \text { Ridgen; Bedly } \\ & \text { torn edee } \\ & \hline \end{aligned}$	OK-ues on the noxt pubh	883	1040	900	(129	880	2037	892	$\begin{aligned} & 100 \\ & 117 \end{aligned}$	900	1040	900	$\begin{aligned} & 110 \\ & 120 \\ & \hline \end{aligned}$	Sutt-foldini fov not so good as \$53.		
55	"	\square blderas	$\begin{array}{\|l\|} \hline \text { mocerd on dde } \\ \text { D1e removed } \\ \hline \end{array}$	885	1040	903	$\begin{aligned} & 080 \\ & 120 \end{aligned}$	900	1040	905	$\begin{aligned} & 1209 \\ & 100 \\ & \hline 125 \end{aligned}$	900	1041	903	$\begin{aligned} & 120 \\ & 125 \\ & \hline \end{aligned}$	Butt falde; slidht shear; dropped tamp.		
56	"		OK	905	1050	895	$\begin{aligned} & 933 \\ & 120 \end{aligned}$	910	1032	900	$\begin{array}{\|} 120 \\ \hline 100 \\ \hline \end{array}$	910	1041	888	$\begin{aligned} & 27 \\ & 115 \\ & 120 \\ & \hline \end{aligned}$	Butt folding.		
57.	"	$\begin{aligned} & \text { Leed - Ralr, } \\ & \text { drat, Rude } \end{aligned}$	OK	895	2035	888	$\begin{array}{\|} 290 \\ 295 \\ 125 \end{array}$	910	2040	895	123	915	1043	907	$\begin{aligned} & \frac{1+v}{141} \\ & 117 \\ & \hline \end{aligned}$	Lost loceting Pin; Butt-good flor.		
58	"		Prok-up and mabhout. 2na	895	1050	915	$\begin{aligned} & 072 \\ & 090 \end{aligned}$	907	1035	910	$\begin{array}{\|l\|} \hline 100 \\ \hline \end{array}$	915	1040	905	$\begin{aligned} & 106 \\ & 128 \end{aligned}$	Butt - ovidence of aboar cens.		
59	"	laed - fair, Bl.-ridet.	$\begin{aligned} & \text { hathout. - } \\ & \text { neno } \\ & \hline \end{aligned}$	892	1040	895	(105	892	1038	898		903	1017	900	等3	$\begin{aligned} & \text { Butt-dev. Mater } \\ & \text { Bec. } \end{aligned}$	yin xcrim	
60	"	$\begin{array}{\|l\|} \hline \text { Might ridgen } \\ \hline \text { throughuat } \\ \hline \end{array}$	$\begin{aligned} & \text { Sec. ctuck in } \\ & \text { bre. litt. } \\ & \hline \end{aligned}$	905	990	915	$\begin{aligned} & 100 \\ & 127 \\ & \hline \end{aligned}$	900	1030	910	105 115	908	204	925	1120	Butt, - hove 500 d flov.	sien oiverten catwelom milio comaman binetinn	$\frac{500}{2.782^{\prime \prime}}$
61	"	R1dges throust	$\begin{aligned} & \text { anoter eec. } \\ & \text { out } \\ & \hline \end{aligned}$	925	1080	938	$\begin{aligned} & 992 \\ & 183 \\ & \hline \end{aligned}$	911	1059	905	[157	912	1061	902	$\frac{112}{112}$			27
																		2-15/16"

m0-6-881

\% \% ${ }_{\text {\% }}$	menta	orut		matims comoltion		Bulut	$\begin{gathered} \text { comanien } \\ \text { tomion } \end{gathered}$	$\begin{gathered} \text { Die } \\ \text { Lubricent } \end{gathered}$	$\begin{array}{ll} 018 \\ 018 \end{array}$		$\begin{aligned} & \text { pie } \\ & \text { yois. } \end{aligned}$				max.			
62	T1-155A	8-1/4"	1650	$\begin{array}{\|l\|} \hline \text { Salt Bath; } \\ \text { Argon } 10 \mathrm{~cm} \\ \hline \end{array}$	48	$\begin{aligned} & \text { cast Irin } \\ & \text { cosis: } \end{aligned}$	$\begin{aligned} & \text { Misk } \\ & 258 \underline{2} \\ & \hline \end{aligned}$	Graphite	Conical	$\begin{array}{\|c\|} \hline \text { cuat Ein- } \\ \text { ITngeten } \\ \hline \end{array}$	550	15	2		3550	3550	497	12'-4"
63	"	B-3/8"	"	" n	41	No ma	,	no araphit	"	"	550	18	2		3300	3300	462	[1-10"
64	"	8-3/8'	"	"	44	" ${ }^{\text {n }}$	"	" ${ }^{\text {n }}$	"	"	600	20	2		2900	2900	406	13'-2"
65	"	8-3/8"	"	" "	31	" "	"	" "	Mat	"	-	-	-	8 tichor	3300	3300	462	-
66	"	$3-1 / 8^{\prime \prime}$	"	" "	33	" ${ }^{\text {n }}$	"	Fisk an Dle	"	"	-	-	-		3300	3300	462	-
67	"	3-3/8"	"	" "	31	$\begin{array}{\|l\|} 575 \text { alat } \\ \text { Pad } \end{array}$	"	" ${ }^{\text {n }}$	"	"	-	-	-	8taber	3400	3400	476	-
68	C235ANC	$7{ }^{7}$	${ }^{\prime}$	" ${ }^{\circ}$	37	" ${ }^{\text {n }}$	"	Graphita on Die feo	\cdots	"	-	-	-	aticlimr	3400	3400	476	-
69	"	7-1/6"	1700	" "	37*	" "	"	" ${ }^{\text {n }}$	'	"	600	23	3	$\begin{aligned} & 15 \text { wa. at } \\ & 2650 \text { man } 2700 \end{aligned}$	3100	3100	434	10'-10"
70	"	7.5/8"	"	"	30		"	"	"	"	600	23	3		2750	2750	385	12'-2"

Pus.	mraime	Plut'		cosatimam		Ithaticamt	$\begin{array}{\|l\|l\|} \hline \text { compana } \\ \text { tiven oun } \end{array}$	$\begin{gathered} \text { Die } \\ \text { Lubricant } \end{gathered}$	\%18		$\begin{aligned} & 818 \\ & \hline \end{aligned}$		(acc)		$\underset{\operatorname{man} \cdot}{\substack{\text { masinime }}}$	mis is mind (pil)			SUEMCH
71	Cl 35 ncg 7	7-3/4"	1700	$\begin{array}{\|l\|} \hline \text { Salt } \\ \text { Argith } \\ \text { Argor. } 10 \mathrm{~cm} \\ \hline \end{array}$	30		$\begin{aligned} & \text { Mak } \\ & 158 \mathrm{al} . \end{aligned}$	Orephite	conteal	$\begin{array}{\|l\|} \hline \text { Cast } 1 \mathrm{II} \\ \text { Rungoton } \\ \hline \end{array}$	600	17	3		2600	2600	364	9'-11"	Pront
72	"	7-7/4"	"	${ }^{\prime}$	30	"	"	" ${ }^{\text {b }}$	"	"	600	17	3		3300	3300	462	13'.1"	Mroat
13	"	स-1316"	"	" "	31	Sol1d A plec	"	*	Fet	"	600	20	-	Bticker	3400	3400	476	-	-
14	"	9-3, ${ }^{\prime \prime}$	"	" "	30	$\begin{array}{\|l\|} \hline 3 K B \\ \text { PAD alm } \end{array}$	"	${ }^{\prime}$	"	"	600	22	3		3300	3300	462	15'-2"	Mone

PART II EXTRUSIUN TRIAL DATA SHEETS

H. M. HARPER COMPANY
TEST OATA OF EXTRUSION TRIALS AF 33 （600） 34098

						TEST	A Of	EXTRUSION	TRIALS	AF 33	600	0							
N00	mene	\％109		conime		ning	$\left\lvert\, \begin{aligned} & \text { commane } \end{aligned}\right.$		ole	mint	$\left\lvert\, \begin{aligned} & 0+8 \\ & y^{\circ} \end{aligned}\right.$	1	要蘊		$\begin{aligned} & \text { BrLAK } \\ & \text { TME } \\ & \text { A } \$ 1 \\ & \hline \end{aligned}$		$\cos ^{25}$	$\min _{4}^{m}$	
1	4140	31×4	2260 ，	$60 \text { crect }$	Syint	$\begin{array}{\|l\|} \hline \text { Scenp } \\ \text { dhese } \end{array}$	$\begin{aligned} & 100 \\ & 0 \end{aligned}$		5192×2	Mrez	300	20	7.8						21
2	4140	33×4	2250	＂	34	号	＂		5192×2	ecsogd	400	23	60						19
3	4140	$3 \mathrm{~g} \times 4$	2200	＂	$\begin{aligned} & \text { MiNo } \\ & \hline \text { NiNent } \\ & \hline \end{aligned}$	＂	＂		5192×1		350	20		STIGret					
4	4140	＂	2240	． 1	SMic	＂	＂		5192×2	$\begin{array}{c\|} M 2 \\ \operatorname{Rec}^{20}, 28 \\ \hline \end{array}$	350	is	6.6						20
5	4140	＂	2250	＂	$\begin{aligned} & \text { aming } \\ & \hline \operatorname{cosen} \end{aligned}$	${ }^{11}$	＂		5198×1	M2	350	15	8.4						26
6	4140	＂	2230	＂	timen	14	＂		5192×2	$\left\lvert\, \begin{gathered} M 2 \\ \text { RCSUSS } \end{gathered}\right.$	300	80		Sticrea					
7	T1．153A	＂	1850	＇	Punt	5kB	X． 579		5142×1	$\begin{aligned} & \mathrm{Mz} \\ & \mathrm{ec} ~ 54 ; s 6 \end{aligned}$	400	20		sticree	2000	2000	4×00	420	
8	T1．155N	＂	2060	＂	$\begin{aligned} & 3 \mathrm{sin} \\ & \operatorname{ssin} \\ & \hline \end{aligned}$	3 KB	3 KBA		5192×2	$\begin{gathered} M Z \\ \text { RCSCNE } \end{gathered}$	400	15		STICKET	2000	2089	52000	955	
9	T1．135N	＂	2200	＂		3 KB	3KBA		5192×2	$\begin{gathered} \text { Me } \\ \text { Bessiad } \end{gathered}$	400	20		Sticree	2100	2100	13 yog	965	

un	｜minue	－exmemom mances	－comamon		Pno	nT			cem	Ten						memanke	gemeral daya
				A	1	c	2	1	－	\bigcirc	\bigcirc	1	1	c	\bigcirc		
15	T1．15sA	Poole BAD DIE LINES	ERODED BEDON REUSE CEACKED	062	610	， 760	$\frac{1}{8}$	． 015	．633	． 200	16	107	． 645	000	$\frac{1}{4}$	OONE LEG DIO NOT FILL FOR five reet．	eate ：10－10－37
11	－1．13SA	11	＂	074	． 600	－	$\frac{3}{16}$	113	¢	－	$\frac{1}{4}$	294	6ed	－	\pm	O．ONE LEG DID NOT FILG FOE BIX FEET C．BAD TWIST	comeany ：H．M．HARPGE CO GCATIOM：MORTON GROVE ILL
																	virver metron La
																	$\frac{\text { axpevsion navo }}{\frac{102 T O T}{4 \mathrm{INCH}}}$

TEST DATA OF EXTRUSION TRIALS AF 33 (600) 34098

						TEST	A	EXTRUSION	ALS	AF	6	O	98		TaCtwa				
78	Home	\%ant	$\left\|\min ^{2}\right\|$		$\left\|\begin{array}{l} n+0 \\ n m i n \end{array}\right\|$	\|atigy			018	$\operatorname{mal}_{\operatorname{mit}}^{\text {git }}$	$\left\|\begin{array}{l} 018 \\ 8,0 \end{array}\right\|$	N	∞		$\begin{aligned} & \text { Berare } \\ & \text { Thry } \\ & \text { PS. } \end{aligned}$	$\frac{1}{8}$	$\begin{aligned} & \text { max } \\ & m+n \\ & \hline \end{aligned}$		$\left\|\begin{array}{l} \text { anymenew } \\ \text { inivin } \end{array}\right\|$
12	4140	33×4	2200	$\begin{aligned} & 60 \text { CRCLE } \\ & \text { NOUCIO } \end{aligned}$	Times	Scenp	1100		5/92Y8	Ec3098	400	20	6		1600	8040	44,000	135	15
13	T1.155N	"	1900	"	$\begin{aligned} & \text { miNy } \\ & \text { 39 } \end{aligned}$	3158	358		5198×2	ECSPSA	400	22	6		2050	1780	M9500	940	82
14	71.153	.	1400	"	0 mm	350	36B		3192x1	RC ${ }^{\text {M2 }}$	400	23	6		1780	1800	131,009	025	14
15	Ti.153a	$"$	1870	"	$\begin{gathered} \mathrm{Min} \mathrm{~m} \\ \operatorname{cosec} \\ \hline \end{gathered}$	3 KB	3 kB		5197x2	$\begin{aligned} & 3 \pi x+3 \\ & 5 c 61 \end{aligned}$	500	20	6		1420	2000	1 H ¢000	915	10
16	T1-155A	"	1900	"	AWM				5192x1	Ecsese	400	25		Sticker	2100	2100	153ang	960	
17	T1-135A	.	2030	11	$\begin{aligned} & \text { imin } \\ & \text { bisen } \end{aligned}$				5192×2	$\begin{array}{\|c\|} \hline \text { STAC } \\ \hline \text { EC } 61 \\ \hline \end{array}$	400	72	3		1700	2100	153,408	960	7
18	T1.155a	1	1930	"1	$\begin{aligned} & 7 \mathrm{~min} 9 \\ & \hline \text { grece } \\ & \hline \end{aligned}$	328	3KB		5192×1		400	21	5.4		1300	1740	127000	795	20

| m | \|manc| | formemen mence | de conamen | -romp | | | | | CEM | TEn | | cyo | | | | memanke | eemenal data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 1 | 1 | c | 9 | 1 | 1 | 5 | | 0 | C | c | | | |
| 12 | 4140 | HAS OE LINES | ELODED BEXOND REUSE CRACKED | 085 | 600 | I | 8 | 100 | . 610 | . 800 | $\frac{1}{16}$ | 147 | 615 | I | $\frac{1}{2}$ | | eare : $10 \cdot 21 \cdot 37$ |
| 13 | T1.155A | Wist BAD DIE LINES | - | . 109 | 655 | 1625 | $\frac{1}{4}$ | 117 | . 625 | 675 | $\frac{1}{2}$ | 117 | 635 | . 715 | $\frac{1}{2}$ | B-ONE LEG DD MOT FILL AT STAET OF EXTRUSION | Cempany :H.M. HARPER CO Lecarion: MORTON GRJVE ILL |
| 14 | " | bad die lines | " | 091) | 312 | 780 | $\frac{1}{4}$ | . 081 | . 560 | . 787 | $\frac{1}{2}$ | 132 | 604 | - | $\frac{1}{2}$ | c. BAD TWIST | |
| 13 | " | deep die lines | 11 | .076 | . 532 | 711 | $\frac{1}{4}$ | 000 | 651 | . 131 | $\frac{1}{2}$ | 130 | 530 | 809 | $\frac{1}{2}$ | | |
| 16 | " | STICKER | | | | | | | | | | | | | | | E-ite |
| 17 | " | VERT BAD Supane | WASMED BADLY | | | | | | | | | | | | | no dim. COULD de measured DUE TO VERY BAD SURFMCE | enow terrion La |
| 18 | " | $\begin{aligned} & \text { TWIST } \\ & \text { SAD SURFACE } \end{aligned}$ | $\begin{aligned} & \text { ERODED } \\ & \text { BEYOND REY3E } \\ & \hline \end{aligned}$ | 019 | 561 | 175 | $\frac{1}{4}$ | 105 | 580 | 714 | $\frac{1}{2}$ | 2 | . 732 | 764 | $\frac{1}{2}$ | | |
| | | | | | | | | | | | | | | | | | comaman amarer 4 INCH |
| | | | | | | | | | | | | | | | | | |

ver	marceos	criminor minuce	- ${ }^{\text {a }}$ comamon		\%RO				Ct	7en						newanxs	ocmemal oata
				A		$\underline{5}$	P	a	L	c	2	A	R.	c	0		
+8	T155A	$\begin{aligned} & \text { ATTACHED } \\ & \text { SHEET } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SHRDUD CRACKFD } \\ & \text { INSERT SPLIT } \end{aligned}$	$\begin{array}{r} 650 \\ 113 \\ 9.96 \\ \hline \end{array}$	- 48	718		$\begin{aligned} & 67 \\ & 019 \\ & 09 \\ & \text { of } \end{aligned}$	C	c	C	C	C	C	C		pare : 12/20/57 gompanr : H.M.HMRPER CO. LOCAPIOM: MORTON GROVE, ILL.
39			$\begin{aligned} & \text { FiGLETS BROKE } \\ & \text { OUT } \end{aligned}$													SADLV SCDED OMTVENO CHECK NOT POSSIOLE	
\because			$\begin{aligned} & \text { DIE ERPCKED } \\ & \text { FIGGETS WRGHED } \\ & \hline \end{aligned}$													2 सि PUSH WITH का STICKER	
\bigcirc			$\begin{aligned} & \text { SHRIUD CRALKED } \\ & \text { WSERT SPLIT } \\ & \hline \end{aligned}$													STICKER	
2	\downarrow	\downarrow	INSERT SPLIT													BADLY SCORTD DIMINBION CHELE NOT HOSSIBLE	
		(a) B, bleTS	COATER WTH	110	2 C	L A	S3	Pf	10				N				
		c) DIE COBTED	WTHH 1100 GL	SS	$+$	NO	GLA	SS	Pao	Us	D						
		c) DIMENSIONS	NOT MEASUR	AB	LE	DUE	To	Rov	GH	Sur	PaC^{5}						entmusion altio $\frac{102 \text { TO }}{4 \text { INCH }}$ compmen ontin

						TEST 0	data of	EXTRUSION	trials	AF 33	31600	0) 3	4098							
710	*	mur	mint		$\left\|\begin{array}{l} n+20 \\ n+0.010 \end{array}\right\|$			ertrusion panctice	012	$\omega_{n i}^{016}$					$\begin{array}{\|} \text { sing } \\ \text { P.S. } \end{array}$				$\left\lvert\, \begin{aligned} & \text { arramen } \\ & \text { imery } \end{aligned}\right.$	
33	+140	3\%/4	2100	60 crecte inoultion	5.40	bcint	1100	rigular	519281	An	200	18	7.2		2380	2360	1738	1049	40	
34	(4)		2140		6.0	..			5192×2	${ }_{\text {en }}^{4} 518.56$		14	10.2		1500	2320	43000	1060	12	
85	(8)		2100		590	*			5192×3	${ }_{4}^{4} \cdot{ }^{42} 8.56$		18	6.0		1900	2340	17000	1070	24	
36	(a)		2220		5.90	"			5192×1	4.98.66		17	8.4		2000	2320	161000	1040	40	
37			2120		46	(6)			5192×3			15	-	STICKEP	2400	-	115000	1100	-	
38	-(a)	.	. 0	\downarrow	+ 45	6600	\downarrow	\downarrow	5.92×2	$\begin{aligned} & \text { M2 } \\ & a^{2} \cdot 6 \times-56 \end{aligned}$	\downarrow	15	6.6		2000	2380	133000	1040	29	
		(a) B14	LETS	COATED	Wit	H_ل100	glass							$\times 1$ Die	$.20$	Ca,		ratic	surtend	deving
		(b) DI	E C	ATED W	TH	1100 Gf	ASS + NO	- Glass Pad	USED.					$\times 2$ Diq					conimil	
		(c) 0	MEN	IONS NOT		EASURA	LE DUE	E TO ROUG	URFACE											

unc－t－seor

						TECT	CAta	Extpicion	TRIALS AF	F 33150										
－	－		Enic	manims		－ut		EXTRUSION PRACTICE	Et	$\begin{gathered} \text { HE } \\ \text { ne } \\ \hline \end{gathered}$	mo_{0}		$\left\lvert\, \begin{aligned} & \tan \\ & \text { neses } \\ & \text { ter } \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \text { START } \\ & \text { Psi } \end{aligned}\right.$			$\left\lvert\, \begin{aligned} & \text { mis. } \\ & \operatorname{lin}_{4} \\ & \hline \end{aligned}\right.$		
44	Ti 155A	1950	$3{ }^{1} \times 4$	60 CMCLE INDUCTION	21	3 KB	3 KBA	740\％7	5192×1	以104	1000	24		STICKER	2400		185000	1100		
45	11	2000	H	11	22	11	W	$\begin{aligned} & \text { THROTTL } \\ & 1 / 2 \text { OPEN } \end{aligned}$	$\begin{aligned} & \text { DIE US } \\ & \text { PUSH } \end{aligned}$	144°	1000	20	8.0		2040	2300	K4000	1055	35	4.37
46	H	2050	11	11	19	11	11	11	592×1		1000	19	7.2		1700	2320	K5000	1060	38	5.28
47	II	2030	1	11	21	$\begin{array}{\|l\|} \hline E \times . \\ \text { FRIT } \\ \hline \end{array}$	MISN	11	5192×1	$\begin{aligned} & \text { chiter } \\ & 8.50 .52 \end{aligned}$	900	21	8.4		2060	2340	170000	1070	22	2.62
48	11	2050	11	H	19	$\begin{array}{\|c\|} \hline 4 \text { oz. } \\ \text { PRIT } \\ \text { Pry } \\ \hline \end{array}$	$\begin{gathered} \text { MES } \\ \hline 1 \text { " } \end{gathered}$	11	5192×1	Qughind	1000	19	6.6		1620	2320	169000	1060	20	3.03
49	\＃	2050	11	11	19	3 KB	11	11	$\begin{aligned} & 5182 \mathrm{~K} \\ & \text { SMROUD ONLY } \end{aligned}$	$\begin{gathered} M 2 \\ R, 52.54 \end{gathered}$	400	20	6.0		1320	2320	17000	1060	11	1.83
50	II	2050	11	11	19	11	11	11	5192×3 INSERT DE		1300	19		STICKER	2340		10000	1070		
51	N	2100	II	11	20	11	11	11	$\begin{aligned} & \text { DE USE } \\ & \text { PUSH } 50 \end{aligned}$	FOR	1300	20		STICKER	2380		173000	1090		
52	11	2100	11	11	21	11	11	11	$\begin{aligned} & 5192 \times 3 \\ & \text { INSERT } \\ & \hline \end{aligned}$		1300	20	3.3		2420	2460	160000	1130	9	2.72

m^{man}	Imineme	Eximerom trinct F1＋1＊	＊EComem														oemerise dava
				7	\square	c	5	π	1	${ }^{\circ}$	5	4	E	c	6		
44	Ti 155A																9ate．3－7－58
45	1			\％ 07	［．006	． 28	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 100 \\ & 099 \\ & 098 \end{aligned}$	＋00	780		$\begin{array}{\|l\|} \hline 122 \\ 38 k \\ \hline 21 \end{array}$	5	705	46		soman：H．M．HARPER CO． women MORTON GROVE，ILL．
46	11			$\begin{aligned} & 80 \\ & \hline 000 \\ & \hline 000 \\ & \hline \end{aligned}$	$\|.9437\|$	． 596	1.6		${ }_{0}^{5} 5$	，75	$\text { . } 0.60$	0	－ 65	760	$18 / 4$		
47	11			$\begin{aligned} & 1.041 \\ & \hline \\ & \hline \end{aligned}$	8	755	E	$\begin{aligned} & 0.54 \\ & 0-09 \\ & -09 \\ & \hline \end{aligned}$		． 755	－		58	． 808	\bigcirc		
48	11			\％${ }^{\text {ch }}$	$\left\lvert\, \begin{aligned} & 51 \\ & \hline 576 \end{aligned}\right.$	758	有 4	$\begin{array}{r} 671 \\ 691 \\ 091 \\ \hline \end{array}$	6	．773	頻		88	7\％	sen	LAST B FITIT BADLY SCORED	
49	11															GKDLY CODD，DMINSION CHECK IMPOSSI	1100
50	11															TNSGIR ONLY RLAFIE TO 1300 F WITH MAND TORCH	$\text { mans amorr trowas } \frac{1100}{513 / 16}$
51	4															TRSEITT ONLT HEATED TO 1300 F WITH HAND TORCN	$\frac{4 \text { INCH }}{102 \text { TOI }}$
52	11	$\begin{aligned} & \text { BADLY SCORED } \\ & \text { CANNOT MEASURE } \end{aligned}$	$\begin{aligned} & \text { OGFORMED } \\ & \text { CONSIDERABLY } \end{aligned}$													N3 WY ONLY NEATID TO BOO FITH HAND TOQCH	

MAC－2－seOI

TESI PATA OF EXTRUSION TRIALS AF 33 （ 600134098

PART III EXTRUSION TRIAL DATA SHEETS

BABCOCK AND WILCOX COMPANY

test data or extrusion trials af 396000 3409:

test data or extausion talals af $33(600) 34098$

Push No.	$\begin{gathered} \text { Billes } \\ \text { Material } \end{gathered}$	Billet Sise	$\begin{aligned} & \text { Billet } \\ & \text { Temp. } \\ & \cdot F \end{aligned}$	$\begin{gathered} \text { Billet } \\ \text { Conting } \end{gathered}$	Hesting Method		Billet Lubricant	Extrunion Practice	Contalner Temp. $\cdot 5$	Die Lubricant (2)	$\begin{gathered} \text { Die } \\ \text { Temp } \\ \hline \cdot \bar{F} \end{gathered}$	$\begin{gathered} \text { Die } \\ \text { Desien } \end{gathered}$	Dia Material $R \quad C^{2}$ 48.52	Die No.	$\begin{array}{\|l\|} \hline \text { Sillet } \\ \text { Trane. } \\ \text { Time } \\ \text { Sec, } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Ixtr. } \\ \text { Time } \\ \text { (Sec.) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { Preseare } \\ \text { Roading } \\ \hline \end{array}$	Max. Pressura en Bulate (sif)	Max. Torce on Bille (Tone)	
95	4340	61	2300	Salt	Bath	35	335-14	Full Lub.	600	GWG-1"	400	T	LCT-2	3	-	. 15			523	-
96	4340	10.4	2300	Salt	"	40	335-14	"	600	1	400	T	LCT-2	3	-	30			643	$=$
97	18-8	$6+1$	2300	Salt	${ }^{\prime \prime}$	43	335-14	"	600	"	400	T	P, A.	21 R	-	. 35			910	-
98	18.8	$10+$	2300	Salt	Ind,	60	335-14	1	600	GWG-1/2'	400	T	P.A.	9	8	. 40			635	-
99	C135*	43/4"	1800	85	Elect. Fce	120	GWG	Scalp	600	3KB-1/2'	900	T	P.A.	22	33	. 15			935	619.4
100	"	43/4'	1800	85	"	127	"	Scalp	600	3KB-1/2"	900	T	P.A.	17	35	. 15			850	$6111{ }^{\prime \prime}$
101	"	$5 \cdot 1$	1800	85	"	135	"	Scalp	600	${ }^{(1)}$	900	I	LCT-2	12	40	. 35			962	9401
102	"	$51 / 2$	1800	85	${ }^{* * *}$	60	"	$\underbrace{}_{\text {Scalp }}$	600	${ }^{\prime \prime}{ }^{(1)}$	900	T	LCT-2	24	20	.30			988	13327
103	$"$	$51 / 2$	1800	85	${ }^{* *}$	65	"	Scalp	600	"	900	T	P, A.	23	15	55			1040	1120
${ }^{4}$ Forged																				

$\begin{aligned} & \text { Push } \\ & \text { No. } \end{aligned}$	Extrution Surface and Straishtne as	Die Condition After Extrusion (See Table IV)
95	-	Moderate Die Wash
96	-	\cdots
97	-	"
98	-	"
99	Smooth arface Good straightnes.	Very blight die wath
100	Smooth aurface Siralohmenis OK	No Wear
101	$\begin{aligned} & \text { Goos ariace } \\ & \text { Wayy } \end{aligned}$	"
102	Smooth surface Stralghtne: OK	Sllght die wash
103	Smooth surface Fair straightnes:	Slight die wath one Inside corner only

Thinner ($3 / 8$ to $1 / 2^{\prime \prime}$) hat glain pade with $1 / 40$ tee openInge proved very effective in producing the finest con-
tinuous film of clear glaes ever observed at any of the previous triale. On two pubhet, this effective glath previous triale. On two puthen, this iffective glate lubrication resulted in dies without watar, pickup,
formation or any evidence of prior uee after a eand
blant cleanup On the cher three titanium alloy blant cleanup On the cther three titanium alloy mation at the radit of the tee. The effectiveneta of the alase lubrication tic considered primarily due to the thinneas of the pad although the influence of die temp. (or pad temp) hat not been determined. The $1 / 4 \prime \prime$
tee opening to the glan pard eliminate any early cloggtee opening in the glani pad eliminate any early clots-
ing of the die orificea which produces underaize gection dimenaione in the first few feet of extrucion.
Cast electric discharge machined dies were used. A new die design proved auccestiful in ellminating breakage during extruaion. The diet were conined in a thit
capered bhell which permitted the restriction of the conical container opening to be tranaforred to the die
test data or extausion trials arbl(600)34094.

$\begin{aligned} & \text { Puah } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Biliat } \\ \text { Material } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Billet } \\ \text { Sice } \end{array}$	$\begin{array}{\|c\|} \hline \text { Bulut } \\ \text { Tomp. } \\ \hline \cdot \mathrm{g} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Butuet } \\ \text { Coattis } \end{array}$	$\begin{gathered} \text { Heabing } \\ \text { Method } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Hes } \\ \text { Time } \\ \text { (Min) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Bilutt } \\ \text { Lubriceant } \end{array}$	Extruelioe Practic:	Comalaer Temp. $\cdot \boldsymbol{F}$	$\underset{\substack{\text { Die } \\ \text { Lubricent }}}{ }$	$\begin{gathered} \mathrm{Dle} \\ \text { Temp. } \end{gathered}$	$\begin{gathered} \text { D4 } \\ \text { Desiga } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Die } \\ \text { Materal } \\ \text { R } C \\ \hline 4.52 \\ \hline \end{array}$	$\begin{aligned} & \text { Die } \\ & \text { No. } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { Entr. } \\ \text { Time } \\ \text { (Esec.) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Mas. } \\ \text { Procsure } \\ \text { Restiny } \end{array}$			
104	4340	6	2300	45	Induction	-	335-14	Tall Lat	600	awo	400	1	LCT-2	3					1100	-
105	10-8	61	2300	13	"	-	\cdots	"	\cdots	"	\cdots	*	P.A.	22	13	-			180	-
106	4340	10י1	2300	${ }^{2}$	-	-	\cdots	\cdots	\cdots	"	"	*	P.A.	218	15	. 23			123	-
107	$\begin{array}{\|l\|} \hline C-135 \\ \hline \text { Farged } \\ \hline \end{array}$	${ }^{60}$	1800	15	$\begin{array}{\|c\|} \hline \text { Lrownt } \\ \hline \end{array}$	95	cwo	scalp	"	3K8 1/2,	900	"	P.A.	7	35	. 26			435	10064
108	.	${ }^{\prime \prime}$	1800	15	\cdots	143	"	"	"	\cdots	"	"	P.A.	19	60	1.60			1100	270
109	$\begin{aligned} & \mathrm{C}-135 \\ & \text { Cant } \end{aligned}$	$4 \times$	1000	03	\cdots	149	\cdots	\cdots	\cdots	"	"	"	LCT-2	14	25	. 15			353	3404
110	"	${ }^{6}$	1000	BS	${ }^{\prime}$	96	\cdots	"	"	"	"	"	P, A.	16	30	-			950	10034
111	$\begin{array}{\|l\|} \hline \mathrm{C}-135 \\ \text { rorred } \\ \hline \end{array}$	60	1800	13	$\begin{array}{\|l\|} \hline \text { IfocJig } \\ \text { e Induce } \\ \hline \end{array}$	$\begin{aligned} & 104 \\ & \text { ind. } \end{aligned}$	\cdots	\cdots	\cdots	"	"	\cdots	LCT-2	23	,	. 30			935	04*
112	\cdots	$6 \cdot$	1300	35	"	$"$	\cdots	"	\cdots	"	"	"	P.A.	16	-	-			1100	-

TEST DATA OE ExTAUSIONTRLALA AF $33(600) 34094$

Puah No.	$\left\|\begin{array}{c} \text { Billet } \\ \text { Material } \end{array}\right\|$	sillet Sise		BLllot Coathat	Heating Method	$\begin{gathered} \text { Hts } \\ \text { Time } \\ \text { (MIa) } \end{gathered}$	Extruaion Practice	Container Lubricant	Container Temp.	$\begin{gathered} \text { Die } \\ \text { Lubricant } \end{gathered}$	$\begin{gathered} \text { Die } \\ \text { Tomp } \\ \cdot r \end{gathered}$	$\begin{array}{\|c} \text { Dle } \\ \text { Deslgn } \end{array}$	$\begin{array}{\|c\|} \hline \text { Dit } \\ \text { Material } \\ k \quad c \\ 41-32 \\ \hline \end{array}$	Die No.	Bllet Trana. Time (告en.)	$\begin{array}{\|c\|} \hline \text { Extr. } \\ \text { TIme } \\ \text { (Sec.) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Max, } \\ \text { Preseure } \\ \text { Readiay } \end{array}$	Max. Prosoure (Bl山l (4		
113	$\begin{aligned} & c-133 \\ & \text { Forged } \end{aligned}$	$3 \cdot 1$	1800	85	$\begin{gathered} \text { Electric } \\ \text { Ese } \end{gathered}$	136	GWG	Scalp	600	3KB1/20	-900	T	P.A.	19	13	40			1045.	1514\%
114	\cdots	$6 \cdot$	1800	85	"	73	318	Tull Lub	\cdots	\cdots	\cdots	T	LCT-3	15	35	10			290	1003
115	"	601	1800	5	"	83	318	"	\cdots	1	\cdots	"	LCT. 2	14	30	. 30			990	114\%
116	*	$6 \cdot$	1800	85	"	36	318	\cdots	\cdots	*	"	"	LCT-2	10	40	. 30			039	10.90
117	"	600	1300	15	"	45	311	\cdots	\cdots	\cdots	\cdots	\cdots	1CT:2	1.	12	30			998	W6"

Geaeral Dats		
Date:	Janmery 23, 1939	
Company:	Babceck thwilex	Cempany
Lecation	Eenver Fells, Pr,	Nomial Dimenetene
		B 2-anat
		C. ch^{29}
		D 1.2 mom
Crass Bection View		5-124m
Cemtaner Diameter $\frac{43 / 16}{}$		
Extruesom Ratio 37il		

Puoh	Billet Materia	Billet size	$\begin{array}{\|c} \hline \text { Billet } \\ \text { Temp. } \\ -\mathbf{F} \end{array}$	Billet Coating	$\begin{gathered} \text { Heating } \\ \text { Method } \\ \\ \hline \end{gathered}$	$\begin{array}{\|r\|} \hline \text { Het } \\ \text { Time } \\ \text { (Min) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Billet } \\ \text { Lubricant } \end{array}$	Extrucion Practice	Container Temp. ${ }^{\bullet} \boldsymbol{F}$	$\begin{gathered} \text { Die } \\ \text { Lubricant } \end{gathered}$	$\begin{gathered} \text { Die } \\ \text { Temp } \\ \cdot \boldsymbol{F} \end{gathered}$	$\begin{aligned} & \text { Die } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Die } \\ \text { Material } \\ \text { R C } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Dre } \\ & \text { Lhab } \\ & \text { Shape } \end{aligned}\right.$		$\begin{aligned} & \text { Extr. } \\ & \text { Time } \\ & \text { (Sec.) } \\ & \hline \text { enemen } \end{aligned}$	$\begin{gathered} \text { Max. } \\ \text { Preasure } \\ \text { Readiage } \end{gathered}$		$\begin{array}{\|c\|} \text { Max. } \\ \text { Foree } \\ \text { on Bluet } \\ \text { (IOaO) } \end{array}$	$\begin{gathered} \text { Ext. } \\ \text { Exth } \\ {\left[\begin{array}{c} \text { Fit. } \end{array}\right.} \end{gathered}$
118	18-8	100	2300	85	$\begin{array}{\|l\|} \hline \text { ELI 1800 } \\ \text { Ind } 2300 \\ \hline \end{array}$	63	335-14	Full Lub	550-600	GwG	200	13		1/20	20					3040
119	18-8	100	2300	85	\cdots	95	"	\cdots	"	"	\cdots	2		n	\ldots					$20 \cdot 10$
120	7A1-4M Forsed	6 m	1800	*	Argon	80	Gwg		\cdots	3KB	900	23		\ldots	12					106m
121	$\begin{array}{\|l\|} \hline 7 \mathrm{Al}-4 \mathrm{Mo} \\ \text { Cait } \end{array}$	\cdots	\cdots	\cdots	\cdots	101	\cdots	Scalp	\cdots	\cdots	\cdots	20		\ldots	12	10				1010
122	7A1-4Mc Forged	\cdots	\ldots	\cdots	\cdots	78	318	Full Lub	600-550	*	n	29		.	15					119909
123	\cdots	\cdots	\cdots	318-xw	\ldots	86	\cdots	\cdots	\cdots	\cdots	\cdots	28		\cdots	15					1101"
125	$\begin{aligned} & \text { 6A1-4V } \\ & \text { Forged } \\ & \hline \end{aligned}$	\cdots	\cdots	85	.	95	GwG	Scalp	.	\ldots	.	12		\ldots	15					10,500
126	\cdots	${ }^{\prime \prime}$	\cdots	\cdots	\cdots	110	\cdots	\cdots	\cdots	\cdots	\cdots	32		\cdots	15					
124	7A1-4Mo Crint	$6{ }^{\prime \prime}$	\cdots	318-xw	"	65	318	Full Lub	*	***	\cdots	28		1/4*	15					11020

Crose section View
 Container Diameter $\frac{43 / 16^{6}}{\text { Eatruaion Ratio }} \frac{28: 1}{2}$
TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

Push	$\left\|\begin{array}{c} \text { Billet } \\ \text { Material } \end{array}\right\|$	$\begin{gathered} \text { Billet } \\ \text { Size } \end{gathered}$	$\begin{gathered} \text { Billet } \\ \text { Temp. } \\ \cdot \boldsymbol{F} \end{gathered}$	Billet Coating	Heating Method Met	$\begin{array}{\|c\|} \hline \text { Hig } \\ \text { Time } \\ \text { (Min) } \end{array}$	$\begin{gathered} \text { Billet } \\ \text { Lubricant } \end{gathered}$	Ext rustion Pr .ctic.	$\underset{\substack{\text { Container } \\ \text { Temp. } \\ \text { Fer }}}{\text { Com }}$	$\begin{array}{\|c\|} \hline \text { Die } \\ \text { Lubricant } \end{array}$	$\begin{gathered} \text { Die } \\ \text { Temp } \\ \hline \boldsymbol{F} \end{gathered}$	$\begin{aligned} & \text { Die } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Die } \\ \text { Material } \\ \text { R C } \\ \hline \end{array}$	$\begin{gathered} \text { Die } \\ \text { Lub } \\ \text { Stap: } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Billet } \\ \text { Trans. } \\ \text { Time. } \\ \text { Seec. } \\ \hline \end{array}$	$\begin{aligned} & \text { Extr. } \\ & \text { Time } \\ & \text { (Sec. } \end{aligned}$	Max. Pres Reading		Max. Force on Billet (Tone)	
127	$6 \times 1-4 V$ Forsed	$6 \times$	1800	85	$\begin{array}{\|l\|} \hline \text { EI Furn } \\ \text { Arpon } \\ \hline \end{array}$	78	318	Full Lub	600-650	3 KB	900	30		1/4"	15	. 75			814	11000000000
128	$\begin{aligned} & \text { 6AI-4V } \\ & \text { Foryed } \end{aligned}$	${ }^{\text {\% }}$	\cdots	318-XW	-	81	\cdots	\cdots	\cdots	\ldots	"	5		.	${ }^{2}$	1.50			\ldots	16010
130	Call $\begin{array}{\|l\|} \hline 7 \mathrm{Al}-4 \mathrm{Mc} \\ \text { Cat } \end{array}$	10.	\cdots	\ldots	\cdots	85	\cdots	\cdots	\cdots	\cdots	\cdots	30		3/8*	\ldots	\ldots			1036	18.100
131	"	"	"	\cdots	\cdots	51	3 KB		\cdots	\cdots	\cdots	23		-	"	-			-	-
129	\cdots	\cdots	\cdots	\ldots	\cdots	50	318		\cdots	\cdots	\cdots	-		\cdots	"	-			-	

[^7]| $\begin{gathered} \text { Max } \\ \text { Preasure } \\ \text { on Billiet } \\ \text { (pai) } \\ \hline \end{gathered}$ | Max. on Bille (Tons) | |
| :---: | :---: | :---: |
| | 756 | 7.70 |
| | 810 | 8.40 |
| | 810 | 14.8.1 |
| | 864 | 20.100 |
| | 756 | 20.11] |
| | 1013 | (2) |
| | 783 | 15.10- |
| | 837 | 11.900 |
| | 864 | 12 |

 Ex'rusion Section Dimeasions

$$
\text { TEST DATA OF EXTRUSION TRIALS AF } 33(000,34098
$$

$$
\begin{aligned}
&
\end{aligned}
$$

TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

u
TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

Billet	Extr.	Max.	Max.	Max.	Ext.
Pres.					

	154,400	996

Push No.	$\begin{array}{\|l\|} \text { Billet } \\ \text { Material } \\ \text { Forged } \\ \hline 7 \mathrm{~A} 4 \mathrm{Md} \end{array}$	Billet Size Lgth	Billet Temp. ${ }^{\bullet} \boldsymbol{F}$	Billet Coating	Heating Method (can)	Htg Time (Min)	Billet Lubricant	Container Lubricant	Container Temp. ${ }^{\bullet}$ F	Die Lubricant	$\begin{gathered} \text { Die } \\ \text { Temp } \\ \cdot F \end{gathered}$	Die Design 2-piece	$\begin{gathered} \text { Die } \\ \text { Material } \\ \text { R C } \end{gathered}$	Die No.	Billet Trans. Time (Sec.)	Extr. Time (Sec.)	Max. Presaure Reading	Max. Pressure on Billet (pol)	Max. Force on Bllet (Tone)	$\begin{aligned} & \text { Ext. } \\ & \log ^{2 t h} \\ & \text { iFt.) } \end{aligned}$
162	${ }_{\text {Ti }}$	71/2'	1800	85	Std.	109	318	None	675	$\begin{gathered} \text { 3KB 1/2" } \\ \text { Thick } \end{gathered}$	600	Tee		35	20.4	3.0		171,000	1080	14.100
163	"	$71 / 2$	"	"	"	132	"	"	620	"	600	"		53	21.0	2.4		120,000	750	14.500
164	*	$71 / 2$	"	"	"	138	"	"	605	"	800	"		57	18.6	2.4		111,000	700	19.
165	"	$71 / 2$.	"	"	"	148	"	"	590	"	"	"		55	19.8	2.4		111,000	700	14.900
166	"	$71 / 2$	"	"	"	98	3KB	"	575	3/8" Thick	"	"		50	22.2	2.0		102,000	650	14*20
167	"	$71 / 2$	-	-	"	90	"	MaS_{2}	560	"	"	"		46	22.8	2.4		142.000	900	15'2'
168	-	$71 / 2$	"	"	"	93	"	None	535	*	"	"		49	14.2	2.0		111,000	700	14.11"
169	"	$\begin{array}{\|l\|} \hline 7{ }^{\prime \prime}+1 / 2 \\ \text { ti } \text { nose } \\ \hline \end{array}$	"	"	"	108	318	"	530	"	"	"		41	18.6	2.2		80, 000	500	16°
170	"	$71 / 2$	"	\because	"	97		"	530	"	"	x'		56	21.6	1.8		96. 000	600	14.100'

[^8]TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

Push No.	$\begin{array}{\|c\|} \hline \text { Billet } \\ \text { Material } \\ \text { Forged } \end{array}$	$\begin{aligned} & \text { Billet } \\ & \text { Size } \end{aligned}$	Billet Temp	Billet Coating	Heating Method (Can)		Billet Lubricant	Container Lubricant	Container Temp ${ }^{\circ} \mathrm{F}$	Die Lubricant		$\begin{gathered} \text { Die } \\ \text { Design } \\ \text { 2-Piece } \end{gathered}$	Die Material R C	Die No.	Billet Trans. Time (Sec.)	Extr. Time (Sec)	Max. Presaure Reading	Max. Pressure on Billet (pel)	$\begin{gathered} \text { Max. } \\ \text { Force } \\ \text { on Billet } \\ \text { (Tons) } \end{gathered}$	$\left\{\begin{array}{l} \text { Ext } \\ \text { Lgth } \\ \text { (Ft.) } \end{array}\right.$
171	$\begin{gathered} 7 \mathrm{~A}_{\mathrm{i}} 4 \mathrm{Mg} \\ \mathrm{~T}_{\mathrm{i}} \\ \hline \end{gathered}$	$71 / 2$	1800	85	Std	103	3KB	None	545	$\begin{gathered} 3 \mathrm{~KB} 3 / 8^{\prime \prime} \\ \text { Thick } \end{gathered}$	800	Tee		59	21.6	2.2		142,000	900	16.11"
172	"	\cdots	\because	"	'	102	318	None	525	318	"	"		60	22.2	2.2		111. 000	700	15.6"
173	\cdots	\because	${ }^{\prime}$	"	\cdots	90	318	None	575	3KB	"	"		42	20.4	1.6		102.000	600	14.10.
174	-	-	\cdots	"	"	90	318	None	605	Glass W ool Pad	*	"		51	15.6	1.5		102.000	600	14.5.'
175	"	"	\cdots	"	.	97	3 KB	None	635	3 KB	\because	"		58	16.8	1.6		102,000	600	15.11"

[^9]PART III EXTRUSION TRIAL DATA SHEETS

COMPTOIR INDUSTRIEL d'ETIRAGE el PROFILAGE de METAUX

$\begin{aligned} & \text { DIE } \\ & \text { DESIGN } \end{aligned}$	$\begin{aligned} & \text { DIE } \\ & \text { MATERIAL } \\ & \text { RC } \end{aligned}$	$\begin{gathered} \text { DIE } \\ \text { TEMP. } \\ \text { OF } \end{gathered}$	$\begin{aligned} & \text { BILLET } \\ & \text { TRANSF } \\ & \text { TIME } \\ & \text { (SEC) } \end{aligned}$	EXTR. TIME (SEC)	:am Spend ineher/sect	Max. PRESSURE REAOING	MAX. PRESS OM BLIT (PSI)	MAX. FONCE on Bllt (toms)	ExThusion LEWGTM (feet) inches
11	Het work. die. sterl	Not hontod	Les: thren		7.1	25	113,000	525	82
1.	-	"	10 smont		8.6	27	121,500	565	109
7	\bullet	"	\because		8.8	31	140,000	650	174
11	\because	'	$1{ }^{\prime}$		8.6	25.5	115,000	535	84
LI	'	"	11		9.8	24.5	111,000	516	88
L	-	\%	"		10.3	25	113,000	525	100
7	-	"	\bullet		9.2	$\therefore 9.5$	133000	618	170
1.	-	"	"		10.0	24.5	111,000	516	88
L.	\bullet	-	*		9.1	24	109,060	506	101
7	11	-'	"		8. 3	28	126,000	586	169

IESI OATA OF EXTRUSION TAIAC

 \begin{tabular}{l}
$\begin{array}{l}\text { Pressure } \\
\text { Reading } \\
\text { psi/10 }\end{array}$

\hline $154 / 117$

$181 / 133$

$130 / 112$

$161 / 121$

$112 / 106$

$175 / 121$

$154 / 140$

$175 / 130$

188

$168 / 145$

$171 / 152$

$134 / 125$

Capacity:

Diameter:

Ram

Speed

in/sec.

\hline
\end{tabular}

 Test Data of Comptoir Extrusion Trials
TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

$\begin{aligned} & \text { Puah } \\ & \text { No } \end{aligned}$	Billet Material (1)	Bmet Size	$\begin{gathered} \text { Billet } \\ \text { Temp } \\ -F \end{gathered}$	Billet Coating Glae*	Heating Method	$\begin{array}{\|c\|} \hline \text { Htg } \\ \text { Time } \\ \text { (Min) } \end{array}$	$\begin{gathered} \text { BiLuet } \\ \text { Lubricant } \\ \text { Glase } \end{gathered}$	Container Lubricant	$\begin{aligned} & \text { Container r } \\ & \text { Temp. } \\ & \cdot \mathbf{F} \end{aligned}$	$\begin{gathered} \text { Die } \\ \text { Lubricant } \\ \text { Glace: } \end{gathered}$	$\begin{array}{r\|} \text { Die } \\ \text { Temp } \end{array}$	$\begin{gathered} \text { Die } \\ \text { Design } \end{gathered}$	$\begin{gathered} \text { Dle } \\ \text { Material } \\ \text { R C }(2) \\ \hline \end{gathered}$	Extr. Speed ft/sec	$\begin{array}{\|l\|} \hline \text { Buluet } \\ \text { Trane. } \\ \text { Timee } \\ \text { SSec. } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Extr. } \\ \text { Time } \\ \text { (Sec.) } \end{array}$				
23 T	7AI/4Mo	$\begin{aligned} & 4-3 / 44^{4} \\ & \times \quad \times 890 \end{aligned}$	1800	E71	$\begin{array}{\|c\|} \hline \text { Elec. } \\ \text { furnice } \\ \hline \end{array}$	70	E71	$\begin{gathered} \text { Mos }^{2} \\ \text { Grease } \\ \hline \end{gathered}$	200	E71	Room	2326(1)	MTC	11.5	13	2.2	1940	116, 000	1130	25.2
24 T	*	\cdots	1800	E71	"	73	E71	"	200	E71	Room	2326(2)	MTC	12.3	11	2.1	2080	119,000	1210	25, ${ }^{3}$
25Ω	"	$\begin{array}{\|l\|} \hline 4-3 / 4{ }^{\prime \prime} \\ \times 99+1 \\ \hline \end{array}$	1800	E71	"	97	E71	None	200	E71	Room	2327(1)	RDS	15.0	12	1.6	$\begin{aligned} & 2405 / \\ & 1765 \\ & \hline \end{aligned}$	$\begin{aligned} & 136,000 \\ & 106,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 14001 \\ & 1030 \\ & \hline \end{aligned}$	24
26Ω	*	"	1800	E71	*	103	E71	None	200	E71	Room	2327(3)	RDS	16.1	12	1.6	$\begin{aligned} & 24801 \\ & 1720 \\ & \hline \end{aligned}$	$\begin{aligned} & 149.000 \\ & 103,000 \\ & \hline \end{aligned}$	14401 1000	25.8
27 T	-	$\begin{array}{\|l\|} \hline 4-1 / 201 \\ \times 7-1 / 2 \\ \hline \end{array}$	1800	E71	\cdots	117	E71	$\begin{aligned} & \text { can bll cartron } \\ & \text { E71 between } \end{aligned}$	200	E71	Room	2326(1)	MTC	19.8	19	1.0	$\begin{aligned} & 1540 / \\ & 1495 \\ & \hline \end{aligned}$	$\begin{gathered} 102500 \\ 99,500 \end{gathered}$	$\begin{array}{r} 8901 \\ \hline 870 \\ \hline \end{array}$	19.8
28 T	.	..	1800	E71	\cdots	90	E71	$\underset{\text { Mrease }}{\text { Mas }}$ Grease	200	E71	Room	2326(1)	MTC	9.9	17	2.4	1930	115, 000	1125	23.8
29 T	*	"	1800	E71	"	95	E'1	$\begin{array}{\|c} \text { caublin carbon } \\ + \text { E71 } \end{array}$	200	E71	Room	2326(2)	MTC	10.5	12	2.0	1420	94,500	830	21.0
30Ω	*	\cdots	1800	E71	"	102	E71	$\begin{gathered} \text { can. bil. at. } \\ +E 71 \end{gathered}$	200	E71	Room	2327(2)	RDS	9.1	17	2.2	1465	97. 500	855	20.1

(1) All billet material waw forged, annealed ato:k			Extruaion Section Dimensions									RDS is 9\% Tungsten Hot Work Steal MTC ia 5\% Chrome Tool Steel (AJAX T-1)				
Push No.	Extrusion Surface and Straightnese	Die Condition After Extrusion	Front				Center				End				Remarks	General Data
			A	B	C	D	A	B	C	D	\wedge	B	C	D		
$\geqslant 3$	Scores near the endSlight twist.	Slight die pick-up	2.050	1.790	$\begin{array}{\|l\|} \hline .122 \\ .134 \\ \hline \end{array}$	$\begin{array}{r} 130 \\ .150 \\ \hline \end{array}$	2.052	1.790	$\begin{aligned} & .124 \\ & .128 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline .130 \\ .147 \\ \hline \end{array}$	2.039	1.803	.125 -122	$\begin{array}{\|} .125 \\ .138 \\ \hline \end{array}$		Dz'e: 9/7/59. 9/19/59, 10/3/59
24	Slight scores nearendSlight twiet.	Very slight die pick-up	1.865	1.785	$\begin{array}{\|r\|} 124 \\ 131 \\ \hline \end{array}$	$\begin{array}{r} 130 \\ .142 \end{array}$	2.039	1.803	$\begin{aligned} & .126 \\ & 126 \\ & \hline \end{aligned}$	$\begin{array}{r} 130 \\ 146 \\ \hline \end{array}$	2.050	1.803	.127 .110	.129 .145		Company: C.I.E.P. M, - Pernan (France)
25	```Good surface-very elight scort near end. Very poor straightness on last }6\mathrm{ feet.```	Very slight die pick-up.	$\left(\begin{array}{l} 2.551 \\ 1.511 \\ .694 \\ .539 \end{array}\right.$.874	.118 .120	. 118	$\begin{array}{r} 2.722 \\ 1.327 \\ .678 \\ .776 \\ \hline \end{array}$. 886	.111	. 114	$\left.\begin{array}{r} 2.870 \\ 1.535 \\ .732 \\ .752 \end{array} \right\rvert\,$	$\begin{aligned} & .874 \\ & .886 \end{aligned}$	$\left\lvert\, \begin{aligned} & .110 \\ & .111 \\ & .118 \end{aligned}\right.$. 115	A partial shell remained in the liner due to poor container lubri-	Locaticn Nominal Dimenaione A $\frac{2.000}{2}$
26	Score all along beco.ning more severe near end together with die wear.	Very severe die pick-up and wear.	$\begin{array}{r} 2.761 \\ 1.535 \\ .732 \\ .729 \end{array}$.882 .890	. 119	. 116	$\begin{array}{\|r\|} \hline 2.693 \\ 1.515 \\ .780 \\ .776 \\ \hline \end{array}$	$\begin{array}{r} .878 \\ .890 \end{array}$. 120	. 113	$\left.\begin{array}{r} 2.942 \\ 1.526 \\ .780 \\ .776 \end{array} \right\rvert\,$	$\begin{aligned} & .882 \\ & .894 \end{aligned}$	$\begin{aligned} & 1117 \\ & 119 \end{aligned}$. 112	cation. Thit caused poor flow conditions.	Croses Section View $\begin{aligned} & \mathrm{B} \frac{1.750}{C-172} \\ & D-175 \end{aligned}$
27	Scores very severe near the end.	Severe pick-up and grooves at the end.	2.039	1.790	$\begin{array}{\|l\|} \hline .129 \\ .138 \\ \hline \end{array}$	$\begin{array}{r} .133 \\ .151 \end{array}$	2. 053	1.803	$\begin{array}{r} 127 \\ .110 \\ \hline \end{array}$	$\left[\begin{array}{l} .133 \\ .147 \end{array}\right.$	2.050	1.810	$\begin{array}{\|} \hline .128 \\ .108 \\ \hline \end{array}$	$\begin{array}{r} .132 \\ .138 \\ \hline \end{array}$	Billet was pushed thrucan which re mained in liner.	
28	Good surface with 2 Light scores which are barely discernible.	Slight wear line:	1.993	1.755	$\left.\begin{array}{\|} .120 \\ .128 \end{array} \right\rvert\,$	$\begin{aligned} & .122 \\ & .136 \end{aligned}$	2.020	1.770	$\begin{aligned} & .121 \\ & .127 \end{aligned}$	$\begin{aligned} & .121 \\ & .133 \end{aligned}$	2.016	1.782	$\left\|\begin{array}{l} .123 \\ .124 \end{array}\right\|$	$\begin{aligned} & .119 \\ & .133 \end{aligned}$		
29	Scratches on the bate along 5 ft from front end - a few hollow defecte near diecard due to excest of glase drawn along by metal flow.	Severe wear line.	2.007	1.762	$\begin{array}{\|} .129 \\ .128 \end{array}$	$\begin{array}{r} .130 \\ .140 \end{array}$	2.023	1.882	$\left\|\begin{array}{l} .128 \\ .127 \end{array}\right\|$	$\left.\begin{array}{\|c} .128 \\ . \\ .141 \end{array} \right\rvert\,$	2.028	1.770	$\left.\begin{array}{\|} .134 \\ .128 \end{array} \right\rvert\,$	$\begin{array}{r} .126 \\ .140 \end{array}$	*	
30	A few hollow delects on the edges along the bar due to excese of glaee drawn along by metal flow. No pickup	Severe die wear probably due to extrusion tearing near end of extrusion. oring.	2.441 1.510 .569 .588	. 870	. 115	. 107	$\left\lvert\, \begin{array}{r} 2.000 \\ 1.533 \\ .686 \\ .698 \end{array}\right.$	$\begin{array}{r} .866 \\ .881 \end{array}$.113 .121	. 115	$\left.\begin{array}{\|r\|} \hline 2.823 \\ 1.540 \\ .752 \\ .768 \end{array} \right\rvert\,$	$\begin{array}{r} .870 \\ .877 \end{array}$	$\left\lvert\, \begin{aligned} & 112 \\ & .122 \end{aligned}\right.$. 109	"	

TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

Puoh No.	$\left\lvert\, \begin{gathered} \text { Billet } \\ \text { Material } \end{gathered}\right.$	Billet Size	Billet Temp. ${ }^{\bullet} \boldsymbol{F}$	Billet Coating Glane	Heatink Methoa	$\begin{aligned} & \text { Htg } \\ & \text { Iime } \\ & \text { (Min) } \end{aligned}$	Billet Lubricant Glass	Container Lubricant	Container Temp. -F	Die Lubricant Glase	$\begin{gathered} \text { Dle } \\ \text { Temp } \end{gathered}$	Die Deaign	$\begin{array}{\|c} \text { Die } \\ \text { Material } \\ \text { R C } \end{array}$	Extr Speed ft/eec	Billet Trane. Time (Sec.)	Extr. Time (Sec.)	Max. Pressure Reading (ril)	Max. Prearure on Billet (pei)	Max. Force on Blliet (Tone)	$\left\lvert\, \begin{aligned} & \text { Ext } \\ & L_{R} \text { th } \\ & \text { Fe. } \end{aligned}\right.$
31	TI	$4-3 / 4 n$	1800	571	Elec.	57	571	$\begin{gathered} \text { MaS² }^{\text {Grease }} \end{gathered}$	240	E71	Room	2326(1)	RDS	11.8	15	2	1940	116, 090	1130	23.5
32	\cdots	\cdots	1800	571	"	66	571	\cdots	240	271	Reom	2320(2)	MTC	15.5	13	1.5	1940	116,000	1130	23.2
33	\cdots	$\begin{aligned} & 4-3 / 40 \\ & \times 90 \end{aligned}$	1800	571	n	65	E71	\cdots	240	271	Room	2326(1)	MTC	6.1	13	4.5	2080	125,000	1210	27.2
34	\cdots	ω	1800	E71	\cdots	70	571	\cdots	240	E71	Roem	2326(1)	RDS	17.6	18	1.5	2030	120,000	1160	26,4

test data of extrausion truals arj3600) 36090

$\begin{aligned} & \text { Puob } \\ & \text { No. } \end{aligned}$	Billet Material \qquad	$\begin{aligned} & \text { Blllet } \\ & \text { Sise } \end{aligned}$	$\begin{array}{\|l\|l} \text { Billet } \\ \text { Temp. } \\ \hline \end{array}$	Billet Coating epray)	Heating Method	$\begin{aligned} & \text { Heg } \\ & \text { Time } \\ & \text { (Min) } \end{aligned}$	$\begin{aligned} & \text { Bilet } \\ & \text { Lubricant } \end{aligned}$	Container Lubricat	Container Temp. \bullet ${ }^{F}$	Die Lubricant (glace pad)	$\begin{aligned} & \text { Die } \\ & \text { Temp. } \end{aligned}$	$\begin{gathered} \text { Die } \\ \text { Deoige } \end{gathered}$	$\begin{array}{\|l} \text { DYe } \\ \text { Material } \\ \hline \text { R } \end{array}$	$\begin{array}{\|c\|} \hline \text { Exetr } \\ \text { Speed } \\ \text { ft/sec } \end{array}$		$\begin{array}{\|l\|l} \text { Enetr. } \\ \text { Time } \\ \text { (Sec. } \end{array}$	Mrecoure Readia (pal)	$\begin{array}{\|c\|} \hline \text { Man. } \\ \text { Presoure } \\ \text { en sulfor } \\ \text { (yent } \end{array}$	Mas. -a Blle (Teno	
35	$\begin{gathered} \mathrm{Ti} \\ \mathrm{ZAl} / 4 \mathrm{Mo} \\ \hline \end{gathered}$		1800	E71		24		$\begin{gathered} \text { Mos }^{2} \\ \text { Gremene } \end{gathered}$	750	E71 (200)	Room	2253(3)	MTC	9.2	-puoses 0 : $\%$ 'xosddv	0, 8	2330	125. 500	293	
36	.		1800	E72	\cdots	23		No	750	$E 71(140)$	Room	2253(5)	\ldots			Sucker	3980	175. 000	410	
37	*		1800	C105	*	28		$\begin{array}{\|l\|l\|l\|} \hline \text { Moszz } \\ \hline \end{array}$	750	E71 (100)	Room	2253(4)	.	10.9		0.8	3770	167,000	390	\% 7
38	\cdots		1800	E71	\cdots	24		"	750	$\begin{array}{\|c\|c\|} \hline & (401 \\ \hline E 71 & 100) \\ \hline \end{array}$	Room	2253(1)	.	9.4		0.7	3150	140,000	329	6,55
39	*		1800	571	"	22		*	750	E71 (200)	Room	2253(2)	*	12.8		0.6	2640	117,000	273	7.7
40	\cdots		1800	571	\cdots	22		*	750	E71 (200)	Room	2253(6)	\cdots	12.3		0.8	3770	167,000	390	9, 05
41	*		1800	C105	"	25		"	750	$\begin{aligned} & (2) \\ & 171 \\ & (200) \end{aligned}$	Room	2253(5)	\cdots	23.3		0.3	2640	117,000	273	
42	*		1800	C105	\cdots	21		"	750	$\begin{aligned} & (371(200) \\ & \hline \end{aligned}$	Room	$2253(2)$	\cdots	22.7		0.35	2640	117,000	273	7.95

1) Numeroue atecl chipa placed near orifice opening in glase pad. (2) Few ateel chipe placed 3/8 from orifice opening ia slaes pad into amall hole
Presumably ejected prior to break-through.
(3) Same as in 2 except oteel chipe on one leg and eme ry grain on other leg.

Date: November 16. 17, 1959 A $1.000 \pm .012$ | N |
| :---: |
| 0 |
| +1 |
| 0 |
| 0 |
| \vdots |
| \vdots |
| \vdots |

 Croas Section View (Teen)
 Contalner Dlameter $\frac{2,45^{\prime \prime}}{-25,2}$ Extruelee Ratie

BEoventa
Eront Center

0
0
0
0

IEST DATA OF EXTRUSION TRIALS AF 331600 34098

Push No. $2(11)$	Billet Material		Blllet Temp. $980^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline \text { Billet } \\ \text { Coating } \\ \text { (gass } \\ \text { spray) } \\ \hline \end{array}$	Heating Method Elec.	$\begin{aligned} & \text { Heg } \\ & \text { Time } \\ & \text { (Min) } \end{aligned}$	$\begin{gathered} \text { Billet } \\ \text { Lubricant } \end{gathered}$	Con:ainer Lubricont	Containe Temp $400^{\circ} \mathrm{C}$	Die Lubricant 6240	$\begin{gathered} \text { Die } \\ \text { Temp } \end{gathered}$	$\begin{gathered} \text { Die } \\ \text { Number } \end{gathered}$		$\begin{aligned} & \text { Ext. } \\ & \text { speed } \\ & \text { sple } \end{aligned}$		$\begin{array}{\|l\|} \text { Extr. } \\ \text { Time. } \\ \text { (Sec. } \end{array}$	$\begin{array}{\|c\|} \hline \text { Man. } \\ \text { Preseure } \\ \text { Reading } \end{array}$	$\begin{array}{\|c\|} \text { Max. } \\ \text { Precourat } \\ \text { on Billet } \\ \text { (pal) } \\ \hline \end{array}$	Max. on Blle (Tone	
$43^{(1)}$	T2 7/4	$\begin{array}{\|c} 58 \mathrm{~mm} \\ \hline 2 \mathrm{n} .2 \\ \hline \end{array}$	$\begin{array}{\|c} 9800^{9} \mathrm{C} \\ \hline 795 \cdot \mathrm{~F} \end{array}$		Elec.	92		Mos ${ }_{\text {Grease }}$	$\begin{aligned} & 400^{4} \mathrm{C} \\ & 750^{\circ} \end{aligned}$	$\begin{gathered} 6240 \\ (40-100) \\ \hline \end{gathered}$	Room	6	$\begin{gathered} \text { MTC } \\ 5 \% C_{5} \end{gathered}$	18.2		. 5		109, 000	280	8.6
$44(1)$						23				"		3		6.3		1.3		129.000	332	8.0
45 (1)						30				"		1		6.7		. 9		113,500	290	5.8
46						28				"		4		8.1		. 7		206,000	272	5.9
47						24				$\begin{gathered} \text { E } 71 \\ (40-100) \\ \hline \end{gathered}$		5		7.5		. 6		121,000	310	4.7
48						26				"		5		17.0		. 3		112.000	288	4.9
49						24				"		3		5.4		. 8		118.000	303	4.6
50						23				*		5						129,000	332	6.5

\footnotetext{
Extrueion Section Dimenaions

TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

TEST DATA OF EXTRUSION TRIALS AF $33(600) 34098$

Push No.	Billet Material	Billet Size	Billet Temp - F	Billet Coating	Heating Method	$\begin{array}{r} \text { Htg } \\ \text { Time } \\ \text { (Min) } \end{array}$	$\begin{gathered} \text { Billet } \\ \text { Lubricant } \end{gathered}$	Container Lubricant	Container Temp. $\cdot{ }^{-}$F	$\begin{gathered} \text { Die } \\ \text { Lubricant } \end{gathered}$	$\begin{gathered} \text { Die } \\ \text { Temp } \end{gathered}$	$\begin{gathered} \text { Mie } \\ \text { Design } \end{gathered}$	$\begin{array}{\|c} \text { Die } \\ \text { Material } \\ \text { R C } \end{array}$	$\begin{array}{\|l\|} \hline \text { Billet } \\ \text { Trane. } \\ \text { Time } \\ \text { (Sec. } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Extr. } \\ \hline \text { Time } \\ \text { (Sec.) } \\ \hline \end{array}$	Max. Preasure Reading			$\begin{gathered} \text { Ext. } \\ \text { EqEth } \\ \text { \&Ft.) } \end{gathered}$
54	Ti 7/4	$\begin{array}{\|l\|} \hline 2.36 \mathbf{x} \\ 5.310 \\ \hline \end{array}$	1800	C105	$\begin{array}{\|l\|} \hline \text { Salt } \\ \text { B ath } \\ \hline \end{array}$	30	None	Mas ${ }^{2}$	750	E-71	Room	One $P_{c_{2}}$	42.8	9	0.75		172,000	368	9.8 ft
-55	.	$\begin{aligned} & 2.36 \times 2 \\ & 5.4301 \end{aligned}$	"	*	Elec. Furnace	43	-	-	*	C-105	-	2 (1P)	41	3.5	0.9		177. 000	373	10.2
-56	"	$\begin{array}{\|l\|} \hline 2.36 \times x \\ 5.2801 \end{array}$	"	\cdots	"	33	-	-	"	E-71	"	5 (2P)	43.3	3	0.5		125, 000	264	10.1
- 57	"	$\begin{array}{\|l\|} \hline 2.36 x \\ 5.2411 \\ \hline \end{array}$	"	"	"	30	-	-	"	E-71	"	6 (2P)	43	3	1.0		158, 000	334	10.2
-58	"	$\begin{array}{\|l\|} \hline 2.36 \times \mathrm{x} \\ 5.39{ }^{\prime \prime} \\ \hline \end{array}$	"	"	"	30	-	-	"	C-105	"	7 (2P)	42.6	2.5	0.5		133, 000	280	10.2
- 59	$"$	$\begin{array}{\|l\|} \hline 2.36 \times \mathrm{x} \\ 5.3111 \\ \hline \end{array}$	"	"	"	37	-	-	"	E-71	"	11 (2P)	46	4.6	1.0		176.000	370	10.9
- 60	"	$\begin{array}{\|l\|} \hline 2.36 \times 2 \\ 5.311^{\prime \prime} \\ \hline \end{array}$	"	"	\cdots	30	-	-	"	C-105	"	10 (2P)	45.3	4	0.6		163, 000	343	10.4
-61	"	$\begin{array}{\|l\|} \hline 2.36 \times x \\ 5.3111 \\ \hline \end{array}$	"	"	\cdots	45	-	-	"	C-105	"	3 (1P)	44	3	?		186, 000	392	7.0
62	"	$\begin{array}{\|l\|} \hline 2.36 \times x \\ 5.19{ }^{\prime \prime} \end{array}$	"		"	35	C-80	-	"	C-105	"	12 (2P)	44.6	12	0.6		163,000	343	11.2

[^10]A-53

PART IV EXTRUSION TRIAL DATA SHEETS

BABCOCK AND WILCOX COMPANY

test data of extrusion trials af 33600034098

Push No.	Billet Material Forged	Billet Size	Billet Temp.	Billet Coating	Heating Method (can)	$\begin{array}{r} \text { Htg } \\ \text { Time } \\ \text { (Min) } \end{array}$	Billet Lubricant	Container Lubricant	Container Temp. $\cdot{ }^{-F}$	Die Lubricant	Die Temp -F	$\begin{gathered} \text { Die } \\ \text { Design } \end{gathered}$	$\begin{array}{\|c} \text { Die } \\ \text { Material } \\ \text { R C } \end{array}$	Die No.	Billet Trans. Time (Sec.)	Extr. Time (Sec.)	Max. Pressure Reading	Max. Pressure on Billet (pil)	Max. Force on Billet (Tons)	$\begin{aligned} & \text { Ext. } \\ & \mathrm{L}_{\mathrm{gth}} \\ & \text { Et. } \end{aligned}$
185	$\begin{array}{\|c\|} \hline 7 \mathrm{Al4MO} \\ \mathrm{Ii} \\ \hline \end{array}$	$8 \cdot$	1800	\$85	Std.	91	318	None	800	$\begin{array}{\|c\|} \hline \text { Glass Wool } \\ \text { (54-grams } \\ \hline \end{array}$	800	2-piece	$\begin{aligned} & \text { Ceramic } \\ & \text { Coated } \\ & -M=36 \end{aligned}$	\mathbf{x}	45	$31 / 2$		144, 000	905	20.7"
186	\because	$8 \cdot$	1800	\% 8	Std.	102	3 KB	None	"	3 KB	"	$\begin{gathered} \text { 3-piece } \\ \text { Tee } \end{gathered}$	$\begin{array}{\|c} \text { Peerless } \\ \mathbf{A} \\ \hline \end{array}$	4	45	3		146,000	918	23*10"
187	"	$71 / 2$	1800	\$85	Std.	88	318	None	"	$\begin{aligned} & \text { Glass Wool } \\ & \text { (54 grams) } \end{aligned}$	-	..	."	1	58	3		128, 000	813	10.80
						-														

[^11]IEST DATA OF EXTRUSI' RIALS AF 33(600) 34098

[^12]
Results
portion. Good glass coverage - wrinkles
on billet and extrusion surface over the
lamellar flow pattern.
Dies: galling in right radius and deep
wear on bottom flange - slight wear on
all surfaces.
Sticker - no material passed thru die -
possibility of glass blockage of die -
remedy was to open up tee orifice in
glass wool pad - alumina die coating
and die material undisturbed.
Tee orifice of glass wool pad opened up
$1 / 2^{\prime \prime}$ wide. Complete extrusion fill-out
at breakthru - no glass buildup. Glass
coverage very light and green coloration
due to reaction with chromium plated die
radii lubrication. Some scoring 3^{\prime} from
back end. Discard - uniform matl flow

- good glass coverage on discard. Die
does not iron out wrinkled billet skin on
discard. Dies - heavy wash on bottom
land section chrome plating was
depleted as indicated by copper sulphate
test. The chrome reacted with glass
lubricant and protected die surface to
some degree.

.

∞	0
0	0
N	N

a
N
N
$\mathrm{PA}-\mathrm{Cr}$
plated
$.005^{\prime \prime}$

Push No.	Billet		Extrusion Length
	Lgth	W t	
207 (continued)			
208	$73 / 4{ }^{\prime \prime}$	16\#	sticker
209	$73 / 4{ }^{\prime \prime}$	16\#	$17^{\prime} 7 \prime$

Push No.	$\begin{gathered} \text { Bill } \\ \text { Lgth } \end{gathered}$	W t	Extrusion Length	Billet Heating Time	Die Pad	Die Size	Die Matl.	Die No.	Results
210	$73 / 4^{\prime \prime}$	16\#	21^{\prime}	-	$\begin{gathered} \text { same } \\ \text { as } 209 \end{gathered}$.092'	PA Ni 3 piece	210	Fair to good glass coverage entire extrusion length. Ragged breakthru at front end and 1100 tons peak pressure indicated some difficulty at breakthru. Some scoring on right stem approx. 10' from front end. Discard - shows uniform metal flow and good glass coverage. Wrinkles on billet butt was not ironed out as it passed through die area. Die - Difficult to tell condition of glass covered dia; however, die washed along the entire bottom flange surface. Nitrided die material not acceptable. Some wash in stem corners.
211	$73 / 4^{\prime \prime}$	1\#	18'2'	-	$\begin{array}{r} \text { Same } \\ \text { as } 209 \end{array}$.092'	$\begin{aligned} & \mathrm{Pa} \mathrm{Ni} \\ & \mathrm{Cr} \\ & 3 \text { piece } \end{aligned}$	211	1125 ton peak pressure and jagged breakthru front end of extrusion - good glass coverage over entire length - green glass coloration due to reaction of glass lubricant with die chrome plating. Scoring approximately 5^{\prime} from front end on bottom flange-good glass coverage in radii.
									Discard similar to that experienced in push 210. Die stem area good. Some wash in corners - severe wash in flange area and depletion of chrome plating in most of die land area.

Die
No．
212

$\cdots \cdots$

$-\stackrel{0}{0}$	$\sum 0$
4．0	
＜	
口 m	回－

Die Size
$.092^{\prime \prime}$

$\bar{\omega}$	$\overline{0}$
人	o
0	0
0	0

《
U
U
世
M
$\sum 0$
\dot{U}
$\times 0$
0
\sim
\sim
$\stackrel{\pi}{N}$

-
∞
0
0
0

same as
209

18% tungsten steel sə！̣ pąeoว eựunnit

11 II II

$\%$

116.22
$16^{\prime \prime} 7^{\prime \prime}$
16\＃
$73 / 4^{\prime \prime}$

Results
Good glass coverage of FE. Partial
coverage towards BE - incomplete
extrusion fill-out of the first 10^{\prime} from
FE at 1100 tons peak pressure. Left
flange incomplete fill out ($1 / 8^{\prime \prime}$ short)
along entire length due to die blockage.
Dimensional variation from front to
back end indicated both incomplete
fill-out at FE and die wear.

$\stackrel{\otimes}{\square}$

Die Mat1
PA UC* 3 piece

The billet discard was scalped with the extrusion butt severely scored and scalloped. The die was slightly worn in bottom flange area with areas of wash near the corners - overall die condition fair.

216 One glass wool pad was used to prevent washed.

Heated billet was rolled thr ough O. D.
glass once in an attempt to reduce billet
surface chilling. Only 5 of extrusion
flange came thru die orifice. Stem did
not extrude. Die showed severe wash of
area in contact with extrusion section.
$\stackrel{\rightharpoonup}{N}$

*PA $=\begin{gathered}\text { Peerless } \\ \text { Cr }\end{gathered}=$ Chrome Steel; UC = Uncoated

吴	\cdots	$\frac{a}{N}$
$\stackrel{\sim}{A}$		
$\stackrel{\otimes}{N}$	\bar{N} 0 0	$\begin{aligned} & \overline{1} \\ & 0 \\ & 0 \end{aligned}$
	1	1
		$\begin{aligned} & \bar{N} \\ & \infty \\ & \hline-1 \end{aligned}$
$\stackrel{+}{3}$	$\stackrel{\text { \# }}{\sim}$	$\begin{aligned} & \text { 隶 } \\ & \hline \end{aligned}$
	$\overline{5}$	$\underset{m}{i}$
	$\stackrel{\infty}{\sim}$	$\frac{a}{N}$

[^13]| p |
| :---: |
| d |
| a |
| + |
| Push |
| No. |

	Discard (a)		Glase Coverage (b)			Die Mzterial Condition (c)			
Pugh	Metal Flow	Glase Coverage \qquad	Front	Middle	Back	Extrus. Length	$\begin{aligned} & \text { Die } \\ & \text { No. } \\ & \hline \end{aligned}$	Wear	$\underline{\text { Wash }}$
220	Scalped	Good	Good	Good	Good	211 51	235		3, 6
221	Full flow	Sticker				13"	221	Good	
222		Sticker				3'	236	Good	
223	Full flow	Good	Good	Good	Good	210	237	Good	
224	Laminated	Good	Good	Fair	Fair	19'11"	206	Good	
225	Full flow	Good	Good	Good	Good	17'9"	219	Die Material undisturbed	
(a) Discard						(b) Glass Coverage			
Good: Fair: Poor	Uniform m Uneaqual m Scalped con	al how tal now ition - in	erior m rusion	etal form urface		Good: Fair: Poor	Unifo Strea Dry	m glase film glass coverage eas indicating n	$\begin{aligned} & \text { - some ba } \\ & \text { glas: cov } \end{aligned}$

[^14]$\frac{\text { Remarke }}{\text { Extrusion section of discard fractured }}$ in press, therefore it was not necessary to use the cut off wheel for discard eparation. Good breakthrough. Glase
run out in racii 10 feet from front end. Thick layer of die coating apalled off Extrusion necked down and broke after 12 inches of extruaion
Good breakthrough first 3 inches of extrusion
Sticker - Good breakthrough - Dxtrusion
Billet heat soak temperature raised to $1825^{\circ} \mathrm{F}$ with a long heat soak time. The

removed and the glass wool pad orifice
enlarged. Die used previously
$3^{\prime \prime}$ left on billet discard - press fust
stopped after $17^{\prime} 9^{\prime \prime}$ were extruded. pad heated to $1000^{\circ} \mathrm{F}$. Some twist to
extruded shape. Die used previously
(c) Die Material Condition

(b) Glass Coveraqe
Glase Coverage (b)

$\begin{array}{ll}8 & \text { M } \\ 0 & 4 \\ 0 & 4\end{array}$
$\begin{array}{ll}8 & \pi \\ 0 & 4 \\ 0\end{array}$
8
0
0
Good: Uniform metal fow
Poor: Scalped condition - interior metal forming

Remarks
Although there was adequate glass on
the billet discard, poor glass coverage
was experienced along the ritire
extrusion length. Some sciring at
back end of extrusion length.
Very light transparent glass coating
with areas of black patches along
entire extrusion length. Some scoring
and streaks of dry areas were experienced
indicating partial glass coverage
Good breakthrough. Poor glass pick-up
of 318 O. D. glass using an E-71 glass
coated billet. Severe scoring along
extrusion length accompanied by tearing
of left flange segment 10 ' from front end.
Riogged breakthrough condition. Some
twist and scoring along bottom flangearea.
Giood glass pick-up of E-71 O. D. glass
on a No. 85 glase coated billet.
Lightly streaked glass coating at front
end, some scoring on flange and stem
after 10 ' from front end. Fairly straight
as-extruded section. Straight extrusion
in terms of less twist has been experienced
with the E-71 glasses
A E-71 glass coated billet does not pick
up O. D. iubricating glass as well as the
85 glass.

Push	Metal Flow	Glass Cover- age	Front	Middle	Back	Extrus. Length	Die No.	Wear Wash
232	Full Flow	Poor	Poor	Poor	Poor	211	239	Die in good shape. No wash experienced in radii
233	Full Flow	Fair	Fair	Fair	Fair	19'3"	240	No die wear. Some glass build up
234			Poor	Poor	Poor		212	None None
235	Full Flow	Good	Good	Good	Good	26'4'		Severe radii wash and die wear overall die surface
236	Full Flow	Fair	Good	Fair	Fair	25' ${ }^{\prime \prime}$		Slight at No 6

Remarks
Poor breakthrough and severe scoring
onfirst three feet of extruded product
indicated there was some change in
extrusion procedure. This was first
push of Second Day of Trials
Areas of dry patches along extrusion
length and in radii. Heating time
increased to 90 minutes at l800
to prevent sticker from occurring.
Glass run out 6 from front end at
the radii areas. Severe scoring at
back end of extrusion corresponds to
severe die wear and wash
Lamination on extrusion length
corresponds to area where billet was
scalped. Right radius showed lack of
glass lubricant along entire extrusion
length - some scoring
Extrusion showed some scoring along
backsections. Good glass coverage
with the No. 85 - E-7l glass combination
Incomplete extrusion fill-out. Good glass
coating on billet surface. Application of
rolled on O.D. glass coating was satis-
factory. Glass run-out on stem, flange
and radii areas.

Front	Middle	Back	Extrus. Length	Die No.	Wear	Wash
Good	Good	Good	$\begin{aligned} & 3^{\prime} \\ & \text { sticker } \end{aligned}$	208	None	None
Good	Good	Good	26' 1"		None	None
Good	Good	Good	25' $4^{\prime \prime}$	229	Heavy All areas	Heavy except \#1
Good	Fair	Fair	23^{1111}	5	None	None
Good	Good	Good		220	None	No. 3
Fair	Poor	Poor	341	223		1,3,6

\(\left.$$
\begin{array}{ll}\text { Push } & \begin{array}{l}\text { Metal } \\
\text { Flow }\end{array}
$$

237 \& Full Flow\end{array}\right\}\)\begin{tabular}{l}
Scalped

238

240

Scall Flow

242
\end{tabular}

Remarks
Temperature raised from $1800-1850^{\circ} \mathrm{F}$
with this alloy. Lubricating glass run
out and heavy scoring was experienced
at back end.
Run-out of glass in radii and bottom
flange portion corresponding to die wash
in radii. Very straight extrusion. 10%
graphite by weight added to $318 \mathrm{O.D}$.
glass lubricant.

lo\% Graphite added to 318 O. D. glass
lubricant. Extrusion was extremely
straight, no twist was experienced.
Radiiarea dry after 10^{\prime} of extrusion.

Push	Metal Flow	Glass Cover age	Front	Middle	Back	Extrus. Length	Die No.	Wear
243	Full flow	Poor	Fair	Poor	Poor	17'3'	232	
244	Full Flow	Fair	Good	Good	Fair	20'11'	233	
245	Full Flow	Good	Good	Good	Good	23' ${ }^{\prime \prime}$	234	None

PART IV EXTRUSION TRIAL DATA SHEETS

BATTELLE MEMORIAL INSTITUTE
DATA FOR EXTRUSION OF O.125-INCH C-135A MO TEE SECTION
FOLLOWING B \& W LUBRICATION PRACTICE $(a, \overline{0})$

$\begin{aligned} & \text { Test } \\ & \text { No. } \\ & \hline \end{aligned}$	Die No.	Billet Heating Time, min.	Extrusion Pressure,psi		Length Extruded, in.	$\frac{\text { Surface Finish, ava. micro in, (c) }}{\text { Eront }}$					
					Flange Top	Stem	Flange Top	Stem	Extruded Quality		
1	40	10	104,000	-		-	-	-	-	-	Sticker
2	43	11	96,000	-	-	-	-	-	-	Sticker	
3	44	10	83,000	68,000	50	280/500	-	330/460		Good die fillgood glass coverage	
10	34	12	68,000	55,000	42	260/440		60/380	$280 / 420$	Good die fill-_ good glass coverage	
(a) Extrusion temperatures as follows: Billet -1800 F Container - 900 F Die \& Dummy - 1600 F											
Billet size was $3-1 / 8$-inch diameter $\times 4-1 / 4$ inches long. All billets heated by induction und atmosphere.											
(b) B \& W practice consisted of 3 KB glass padtglass wool as die lubricant, 85 glass billet container lubricant. 3 KB glass ring measured $3 / 8$-inch thick $\times 3^{\prime \prime} \mathrm{OD} \times 2^{\prime \prime}$ ID. Glass wo from 5-15 grams.											
(c) Surface finish given as range of values and indicates the general surface conditio											

TestNumber	$\begin{aligned} & \text { Die } \\ & \text { Number } \end{aligned}$	Lubricant			Billet Heating Tise .n.	$\begin{gathered} \text { Extrusioi } \\ \text { Pressure } \end{gathered}$	
		Coating	Container	Die ${ }^{\text {(c) }}$		Initial	Runout
17	8-2	E71A	E71A	E71a	10	68	78
20	8-3	E71A	E71	E71a	12	66	65
30	8-5	E71A	E71B	E71A	9	87	78
25	9-1	E71	E71A	E71A	8.5	67	66
9	5-1	E71	E71	E71a	10	65	67
14	6-2	E71	E713	E71A	12	67	68
16	7-2	E718	E71A	E71A	10	72	72
21	7-3	E718	E71	E71A	10	65	72
31	4-5	E718	E713	E71a		96	78
23	7-4	E71	E71A	E71	10	68	63
5	$1-1$	E71	E71	E71	14	85	82
28	5-2	E71	E71B	E71	10	82	70
11	6-1	E7:	E71A	E71	10	66	65
8	4-1	E718	E71	E71	12	60	66
29	9-2	E718	E718	E71	11	75	68
24	$8-4$	E71A	E71A	E11	9	63	57
6	2-1	E71A	E71	E71	14	88	77
13	8-1	E71A	E718	E71	10	73	73
27	6-5	E718	E71A	E718	9	72	60
19	4-3	E718	E71	E71B	14	62	62
12	7-1	E718	E718	E719	10	68	70
26	4-4	E71A	E71A	E718	9	73	70
22	6-4	E71A	E71	E718	11	57	68
32	7.5	E71A	E718	E718	9	80	75
18	6-3	E71	E71A	E718	14	65	67
7	$3-1$	E71	E21	E713	12	75	70
15	4-2	E71	E71B	E7 ${ }^{\text {B }}$	12	57	66

[^15]CONDITIONS AND DATA FOR EXTRUSION OF $0.063-\mathrm{INCH}$
TEE SECTIONS USING E71-BASE GLASSES - SERIES $3(a)$

$\begin{aligned} & \text { Test } \\ & \text { No. } \\ & \hline \end{aligned}$	Length Extruded. inches	Surface Finish, Average microinches				Typical Over-all Finish	Extruded suality		
		Fro		Re					
		$\begin{aligned} & \text { Fiange } \\ & \text { Top } \\ & \hline \end{aligned}$	Stem	$\begin{gathered} \text { Flange } \\ \text { Top } \\ \hline \end{gathered}$	Stem		Glass Coverage	Die Fill	seneral corments
39	\cdots	Severe	Scoring	--	--	--	Fair	Poor	Glass plegged die extrusion badly torn-scranped
45	133	100/160	180/420	130/230	180/390	230	Good	Poor	
40	116	130/300	130/270	150/230	$90 / 220$	150	Fair	Poor	Very good extrusion
42	123	260/380	90/260	200/380	130/290	180	Fair	Poor	
43	105	160/320	85/390	150/210	$70 / 300$	230	food	Good	
52	120	75/220	60/160	130/170	80/220	130	Fair	Fair	Very good extrusion
41	129	180/440	150/450	170/340	170/580	300	Fifr	Poor	Die plugged, dad sten tear
54	119	260/340	180/360	210/350	190/380	220	Fair	Good	
55	115	100/160	60/300	60/150	75/160	140	Sood	Yery good	$\begin{aligned} & \text { Very good } \\ & \text { ext rusion } \end{aligned}$
44	127	190/420	200/360	140/330	100/310	200	Fair	Fair	
51	114	180/500	140/290	70/150	100/220	180	Fair	Filr	Stem edge tears in middle of extrusion
56	114	70/260	70/170	95/190	70/140	140	Fair	Very good	very good extrusion
53	123	260/490	60/180	90/200	120/260	1 EO	Fair	Poor	
57	112	140/230	60/100	130/260	80/200	140	Fair	Good	Very good extrusion
46	121	160/360	130/250	170/250	160/290	200	Good	Good	
48	138	B0/290	100/360	210/500	300/500	240	Fair	Fair	
49	121	180/300	160/380	140/540	160/600	220	Fair	Poor	

TestNo.	$\begin{gathered} \text { Dig } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Billet } \\ \text { Coating }(c) \end{gathered}$	Cont. Lubr.	$\begin{gathered} \text { Die } \\ \text { Glass } \end{gathered}$	Die Glass Variables			Number Glass Wadst	Billet Heating Tiae ninutes	Extrusion Pressure, 1000 psi	
					$\begin{aligned} & \text { Mesh } \\ & \text { SIze } \end{aligned}$	$\begin{aligned} & \text { Pad Shape } \\ & \text { and Size }(d) \end{aligned}$	$\begin{aligned} & \text { Temp. } \\ & F \end{aligned}$				
									High Viscosity Die Glass		
39	2-1	E7184D	E718	E71A	100	Tapered ring	80	1.	$\frac{\text { High vi }}{10}$	Scosity 9	$\frac{84}{84}$
45	8-1	E718 + D	E718	E71A	100	Ditto	80	3	10	104	79
40	1-1	E7184D	E718	E71A	150		80	1	10	82	67
42	5-1	E718*D	E718	E71A	325	-	80	1	14	92	71
43	4-1	E718+D	E718	E71A	20	-	80	1	16	92	77
52	11-1	E71	E7Le	E71A	100		80	3	13	82	66
41	12-1	E7184D	E718	E71A	100	Shaped Pad	80	0	10	82	66
54	10-1	E718-D	E718	E71A	100	Shaped Pad 1000 ($1 / 2$ inch thick)		0	15	89	66
55	8-2	E71B+D	E718	E71A	100	Shaped Pad	1000	1	14	89	67
									Normal Viscosity Die Glass		
44	3-1	E718+D	E718	E71	100	Tapered ring	80	1	11	89	73
51	2-2	E718+D	E71B	E71	100	Ditto	80	3	16	69	56
								Lom Viscosity Die Glase			
56	5-2	E710	E718	E718	100	Shaped Pad	1000	1	17	97	73
53	3-2	E718*D	E718	E718	100	Tapered ring	60	3	-	87	53
57	1-2	E710	E718	E718	100	Shaped Pad 1	1000	1	15	77	63
									Republic - BSW Die Glase		
46	7-1	E718+D	E718	3KB	14	Flat ring	80	3	12	85	71
48	6-1	85	318	${ }_{\text {Ex }} \mathbf{6}$	14	Ditto	80	3	14	-	-
49	7-2	85	318	3KB	14	,	80	3	--	89	76

CONOITIONS AND DATA FOR EXTRUSION OF O.063-IINCH CI35AMO TEE SECTIONS - SERIES 4 (a)

$\begin{aligned} & \text { Test } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Die } \\ & \text { No. (b) } \\ & \hline \end{aligned}$	Billet Length, inches	Lubricants				Temperatures, F			Billet Heating Time, minutes	$\begin{gathered} \text { Extrusion Pressure, } \\ 1000 \text { psi } \\ \hline \end{gathered}$										
			$\begin{aligned} & \text { Sillet } \\ & \text { Coating } \\ & \hline \end{aligned}$	Container	Die																
					Glass(c)	Glass ${ }_{\text {d) }}$			Dies												
					Glass(c)		Billet	Container	Dumny		Initial	Runout									
58	11-2	4-1/2	85	E71B + graphite	E71	Econoline	1800	700	1000	21	--	--									
59	10-2	4-1/2	85	Ditto	E71	Econoline	1825	700	1000	37	--	--									
60	5-3	3-1/4	85	"	E71	Econoline	1850	750	1000	20	123	82									
61	12-2	3-1/4	85	"	E71	E71A	1850	750	1000	18	110	75									
62	7-3	3-1/4	85	"	E71	TWF	1850	750	1000	20	91	72									
63	2-3	4-1/2	85	"	E71ă	563	1850	750	1000	31	107	72									
64	2-4	4-1/2	85	$\begin{aligned} & 318+ \\ & \text { graphite } \end{aligned}$	3KB	3KB	1800	800	1000	21	85	68									
65	10-3	4-1/2	E71	E71B + graphite	E71	E71A	1800	800	1000	18	92	72									
66	11-3	4-1/2	E71	Ditto	E71A	THF	1800	800	1000	22	91	72									
(a)	Billets were heated by induction under an argon atmosphere. All billets were $3-1 / 3$-inch dian less ground surfaces (30 microinch finish).																				
(b) The first number is the die number; the second number signifies how many times the die	The first number is the die number; the second number signifies how many times the die has be All glass rings were 3 -inch diameter $\times 3 / 8$-inch thick at the 0.D.																				
(c)																					
(d)	Glass wo	1 pads	re 3-inc	diameter	l-inch t	ick with a	1-3/4-i	nch equilat	ral t	iangular	opening.										

Test No.	Length Extruded, inches	Surface Finish Average :hicroinches (e)				Typical Over-all Finish	Extruded Quality		
		Flange Top	Stem	$\begin{aligned} & \text { Flange } \\ & \text { Iop } \\ & \hline \end{aligned}$	Stem		Glass Coverage	$\begin{aligned} & \hline \text { Die } \\ & \text { Fill } \\ & \hline \end{aligned}$	General Comments
58	--	--	--	--	--	--	--	--	Sticker
59	--	--	--	--	--	--	--	--	Sticker
60	75	100/130	60/180	130/210	90/220	120	Fair	Fair	Localized scoring right stem area
61	96	150/300	70/220	150/250	130/220	165	Good	Poor	Bad stem tear at front end
62	74	103/250	90/180	180/300	100/400	140	Good	Good	Localized severe scoring
63	96	130/300	70/300	120/250	70/220	150	Good	Poor	Severe tears at front end-die plugged
64	100	180/340	80/240	80/320	110/240	160	Good	Fair	Poor stem fill
65	108	200/360	140/290	180/300	150/400	200	Fair	Poor	Severe tearing at front end-die plugged
66	93	160/380	100/150	190/410	100/270	170	Poor-Fair	Good	Higher billet temperature $\left(1850^{\circ} \mathrm{F}\right)$ necessary for better glass coverage

(e) Surface finish given as a range of values indicating the general surface condition in each location. Typical
surface finish is given to indicate over-all finish of the entire extruded section. surface finish is given to indicate over-all finish of the entire extruded section.

gmars
Extrusion broke opf－striated and crooved surfece－poor glase coverage on iliscari and on artingion－titenium pleloup on die－force seemed hilh．
Strintod and grooved marface－havery ${ }^{\text {ghem }}$ coating on dio－somo titemice pricrup on back of teo minpe looked good－farce still bich．
Extrusion pod－alistit atriation in radiua cood gians corcraso－good rlion on discard sto apponind oppration．
Extrusion cood－god glass cov erage on oxtrustion－heavy glass conting on die－ lan foree．
promobiy chitived ulllot．
mektrough－possibly due to conver faco．
Score mert on owe oide－titenimp pickup on En clape combination not lubricating ase on zune side as score mith－E71－ properis．
cood arface on merrusion－die looked sood－ dyecard looteod sood axcopt for lap which ad alase for belmace of trinh．
Sood extrusien－allegt scoring due to so plelap $=$ Do soalp on discard．
levor－ 7 extroded－Mulitt cost ing poorsed duriser then othery coming out rmec．
good extruetion－cealp again noted on dicoard but did not mit to dio．
Scorp mark on extruetion leg－ 810 looked cood－diecand looked good but agein had conditicn（realp）．
Badly acored mikrand on on botten－dle Into thap－moted pten on proes tcoling me beat upmerds．
bedily oxteoding into tupa．

嘼家 8	0	8	8	5	号	5	\ldots	R	R	3	\checkmark	2	N	\leqslant
	最 喿崖			2 0 0 0	7 7 $\frac{3}{2}$	8 8 8	$\begin{aligned} & \text { 关 } \\ & \dot{0} \\ & \text { 易置 } \end{aligned}$	－	－	－	＊	－	－	－
보을	\underline{H}	\cdots	2	\pm	$\underline{\square}$	\％	$\underline{\square}$	1	0	－	－	－	－	－
8家	E	필	\％	E	届易	g		\％	9	－	－	－	－	－
	3	\cdots	5	3	$\begin{array}{r} \text { B } \\ \times 1 \end{array}$	F	害	\pm	8	2	ผึ	\propto	2	\square
	N	\ldots	＊	F	\％	2	k	a	k	\cdots	2	0	\＄	5

客

NOTE: FINAL EXTRUSION TRIAL DATA SHEET (PUSH \# 282-297)IS LISTED ON PAGE 146

APPENDIX B

Dimensional Measurements of Warm Drawn Shapes

Table B－1（Con＇t）

\checkmark

N

は

 くカソロゅツじ

Ps

Table B-2

$\underset{\sim}{\infty}$
－r000

$$
\underset{-1}{0}
$$

$$
\because 0^{\circ} 0^{\circ}
$$

Extrusion 264－19 feet， 11 inches

\cdots	
익	Nincioto
	－inio 0°
∞	Nincinco
	－－${ }^{\circ} 0^{\circ}$
\bigcirc	
	－-100°
\checkmark	Nヘヘํㅇํㅇ
	－－7000

ーHOOO

	F	Extrusion 266－16 feet， 6 inches						14	E
		2	4	6	8	10	12		
A	1.706	1.720	1.740	1.752	1.750	1.750	1.743	1.754	1.754
B	1.384	1.448	1.493	1.520	1.538	1.557	1.576	1.602	1.660
C	0.058	0.054	0.054	0.054	0.054	0.054	0.055	0.055	0.055
D	0.062	0.062	0.063	0.063	0.063	0.064	0.063	0.064	0.063
E	0.056	0.057	0.057	0.058	0.059	0.058	0.058	0.058	0，058
	Extrusion 290－15 feet，6－1／2 inches							14	E
	F	2	4	6	8	10	12		
A	1．737	1.764	1.791	1.790	1.796	1.793	1.790	1.789	1.785
B	1.665	1.665	1.671	1.671	1.680	1.671	1.671	1.675	1.658
C	0.066	0.064	0.064	0.063	0.063	0.062	0.061	0.061	0.061
D	0.069	0.069	0.068	0.068	0.067	0.068	0.067	0.067	0.066
E	0.064	0.064	0.064	0.063	0.063	0.063	0.062	0.062	0.062

Table B-2 (Con't)

DIMENSIONAL SURVEY OF 64E 12 EXTRUSIONS AFTER
1st WARM DRAW PLUS HOT STRETCH STRAIGHTEN

Table B-3 (Con't)

Table B-3 (Con't)

Table B－4

DIMENSIONAL SURVEY OF 64E 12 EXTRUSIONS AFTER
2nd WARM DRAW PASS 0.058 in

2nd WARM DRAW PASS 0.058 in

$\frac{\text { Distance in Feet }}{\text { Extrusion } 260-10 \text { feet，} 3 \text { inches }}$

.761
. .623
.053
.058
0.058

$$
6
$$

《ゅいのゅ

			Extrus	on 261	15 fe	8 in	
	F	2	4	6	8	10	12
A	1.758	1.756	1.732	1.726	1.716	1.715	1.713
B	1.624	1.612	1.581	1． 569	1.560	2． 555	1.544
C	0.054	0.054	0.053	0.054	0.053	0.052	0.052
D	0.056	0.057	0.056	0.055	0.055	0.055	0.055
E	0.057	0.058	0.057	0.057	0.056	0.056	0.056

$$
\begin{array}{r}
n+n n m \\
\cdots \quad n o n n \\
i n o 00
\end{array}
$$

Table B－4（Con＇t）

$$
\begin{array}{ccc}
\text { Extrusion } 264 & -8 \text { feet } \\
\hline 4 & 6 & E \\
1.670 & 1.677 & 1.676 \\
1.523 & 1.531 & 1.548 \\
0.057 & 0.057 & 0.056 \\
0.056 & 0.057 & 0.057 \\
0.057 & 0.056 & 0.056
\end{array}
$$

$$
\begin{gathered}
\frac{\text { hes }}{12} \\
1.718 \\
1.582 \\
0.049 \\
0.058 \\
0.053
\end{gathered}
$$

$$
\text { v } \begin{aligned}
& -1 \infty \infty \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

[^16]a Nogniñ

- i-io
a mNiNN
$\underset{-}{-}$

			Extrus	on 294	14 fe	4 in	
	F	2	4	6	8	10	12
A	1.760	1.780	1.788	1.794	1.796	1.805	1.826
B	1.641	1.664	1.671	1.677	1.681	1.689	1.699
C	0.057	0.056	0.056	0.055	0.055	0.055	0.054
D	0.059	0.058	0.058	0.058	0.056	0.056	0.057
E	0.060	0.059	0.059	0.058	0.058	0.059	0.058
			Extrus	on 295	16 fe	10 i	
	F	2	4	6	8	10	12
A	1.801	1.819	1.822	1.823	1.832	1.827	1.827
B	1.698	1.690	1.693	1.683	1.694	1.679	1.673
C	0.055	0.053	0.053	0.052	0.052	0.052	0.051
D	0.062	0.061	0.061	0.060	0.059	0.059	0.058
E	0.061	0.061	0.061	0.060	0.059	0.058	0.058

Table B-5

DIMENSIONAL SURVEY OF 64E 12 EXTRUSIONS AFTER 2nd WARM DRAW

- TO 0.058 In PLUS HOT STRETCH STRAIGHTEN

Table B-5 (Con't)

Table B－6
DIMENSIONAL SURVEY OF 64EI2 EXTRUSIONS AFTER THIRD WARM DRAW TO 0 053in
 Distance in Feet Extrusion 260－6 feet， 7 inches
1.768
1.619
0.050
0.052
0.052

E

ベロがべヘ
N

くゅ゚ロゅ

〔

12

－1－1000

くゅひのゅ
Table B-6 (Con't)

DIMFNSIONAL SURVEI OF 64E12 ERAR：SIOGS AFTEX HIRD WAKM DRAN TO O G53 HOT STRERCH STRAICHTEN Table B－7
 Distance in Feet Extrusion $260-5$ feet， $8-1 / 2$ inches
ngonn
Nonno
Nonoso

Table B－8
DIMENSIONAL SURVEY OF 64E12 EXTRUSIONS AFTER

Distance in Feet

		Extrusion 261			-12 feet， $5-1 / 2$	inches
	2	4	6	8	10	E
F	2					
1.730	1.713	1.711	1.708	1.692	1.690	1.679
1.590	1.565	1.569	1.564	1.545	1.529	1.518
0.046	0.045	0.046	0.046	0.045	0.044	0.044
0.049	0.048	0.048	0.048	0.048	0.047	0.047
0.049	0.049	0.048	0.048	0.048	0.047	0.047

Table B-8 (Con't)

Table B－9
DIMENSIONAL SURVEY OF 64E12 EXTRUSIONS AFTER

SURVEY OF 64E12 EXTR WARM DRAW TO 0.047 in PLUS
HOT STRETCH STRAIGHTEN

Distance in Feet
Extrusion 260－4 feet，9－1／2 inches $\begin{array}{ll}4 & \mathbf{E} \\ 1.759 & 1.778\end{array}$
$\begin{array}{ll}1.759 & 1.778 \\ 1.575 & 1.594 \\ 0.047 & 0.048 \\ 0.047 & 0.048 \\ 0.048 & 0.049\end{array}$
Extrusion 261－12 feet， 6 inches

«めひのゅ
Extrusion 264－7 feet

E

$\begin{array}{ll}1.653 & 1.646 \\ 1.529 & 1.542 \\ 0.048 & 0.047 \\ 0.047 & 0.047 \\ 0.047 & 0.047\end{array}$

Table B-10 (Con't)

Table B－11
DIMENSIONAL SURVEY OF 64E 12 EXTRUSIONS AFTER

Distance in Feet
Extrusion 260－3 fee
Extrusion 260－3 feet， $9-1 / 2$ inches
ค
1.704
1.523
0.041
0.043
0.043
Extrusion 261－9feet， 11 inches
nn wo
مídot
nioco
8
amono
áNotion
niocio
nongo
nitioio
ino

～Niñ太す̊

（mingo $\begin{gathered}\text { Ninco } \\ \text { inco }\end{gathered}$

			Extrus	on 264	- 5 feet	1-1/2	inches
	F	2	4	E			
A	1.634	1.624	1.624	1.640			
B	1.510	1.504	1.504	1.529			
C	0.046	0.044	0.043	0.043			
D	0.044	0.043	0.043	0.043			
E	0.044	0.043	0.042	0.043			
			Extrus	on 266	- 6 feet	7-3/4	inches
	F	2	4	E			
A	1.736	1.719	1.719	1.697			
B	1.483	1.465	1.484	1.486			
C	0.040	0.039	0.038	0.038			
D	0.045	0.043	0.042	0.042			
E	0.043	0.042	0.041	0.041			
			Extrus	on 290	- 14 fee	11 inc	ches
	F	2	4	6	8	10	12
A	1.777	1.766	1.761	1.756	1.764	1.757	1.758
B	1.634	1.630	1.614	1.617	1.622	1.611	1.607
C	0.043	0.043	0.042	0.041	0.041	0.041	0.040
D	0.044	0.044	0.043	0.043	0.042	0.042	
E	0.046	0.045	0.044	0.043	0.042	0.042	
			Extrus	on 294	- 12 fee	4-1/2	inches
	F	2	4	6	8	10	E
A	1.804	1.783	1.776	1.764	1.765	1.746	1.751
B	1.681	1.638	1.630	1.632	1.619	1.609	1.625
C	0.042	0.041	0.041	0.040	0.040	0.040	0.040
D	0.043	0.043	0.042	0.043	0.042	0.042	0.042
E	0.044	0.043	0.043	0.043	0.042	0.042	0.042

Table B－12

DIMENSIONAL SURVEY OF 64 E 12 EXTRUSIONS AFTER
$\frac{\text { SOLUTION TREATING } 1725 \mathrm{~F}(15 \mathrm{sec}) \mathrm{WQ} \text { PLUS }}{\text { STRETCH－STRAIGHTEN AGING }}$

Distance in Feet
Extrusion 261－8 feet，4－3／4 inches

4	6	E
1.677	1.657	1.610
1.501	1.473	1.426
0.038	0.037	0.035
0.039	0.037	0.036
0.039	0.037	0.036
Extrusion 264	-5 feet	

E $\begin{array}{ll}1.611 & 1.627 \\ 1.489 & 1.524 \\ 0.041 & 0.043 \\ 0.041 & 0.043 \\ 0.041 & 0.041\end{array}$
 2

1.698	1.698
1.535	1.519
0.040	0.038
0.042	0.040
0.041	0.040

Table B-12 (Con't)

Table B－13
DIMENSIONAL SURVEY OF 64E15 EXTRUSIONS AFTER WARM DRAW
TO 0.080 INCHES AND HOT STRETCHER STRAIGHTEN

くめリのゅ

Extrusion 253D－ 9 feet， 4 inches
$\begin{array}{cc}1.735 & 1.744 \\ 0: 87 \\ 0: 078 & 0.995 \\ 0: 078 \\ 0.076 & 0.079 \\ 0.077\end{array}$

－io oo

の元an－
719
.987
0.07
.07
.07
－ioio．

	F			Extrusion 254-20 feet, 9-1/2 inches					16	18	E
		2	4	6	8	10	12	14			
A	1.740	1.725	1.715	1,721	1.715	1.709	1,715	1,703	1.698	1.698	1.692
B	0.998	0.991	0.991	0.995	0.987	0.993	0.988	0.980	0.982	0.993	0.985
C	0.081	0.080	0,079	0.079	0.077	0.077	0,077	0.076	0.076	0075	0075
D	0.081	0.080	0.079	0.079	0.078	0.078	0,078	0.077	0.077	0.077	0.076
E	0.079	0,078	0,078	0.077	0.077	0,076	0.076	0075	0.075	0075	0075
				Extrusion 263-21 Eeet, 5-1/4 inches							
A	1.724	1,722	1.721	1,723	1.720	1.722	1.722	1.721	1.721	1.721	1.722
B	0.991	0,992	0.990	0.993	0,992	0.988	0.988	0.988	0.986	0.985	0,984
C	0.079	0.078	0.077	0.077	0.076	0.076	0.076	0.076	0.075	0.075	0.074
D	0.082	0.081	0.081	0.080	0.080	0,080	0.079	0,079	0.079	0.079	0.079
E	0,081	0,080	0.079	0.079	0.078	0.078	0.078	0.078	0.078	0.077	0.077
				Extrusion 282-22 feet, 11-1/2 inches							
A	1.745	1,803	1.799	1.800	1,797	1.799	1.805	1.804	1.805	1.821	1.825
B	0.984	1.012	1.015	1,014	1.018	1.027	1.030	1.030	1.029	1.041	1.045
C	0.080	0.079	0.079	0.078	0. 078	0.078	0.078	0,078	0.078	0.077	0.077
D	0.079	0.080	0.080	0.080	0.079	0.079	0,079	0.079	0.079	0.079	0.079
E	0.079	0.079	0.079	0,079	0.079	0.079	0.079	0.078	0,078	0.078	0.078
				Extrusion 284-21 Eeet, 8 inches							
A	1.750	1.752	1.762	1.755	1.751	1.755	1.753	1.756	1.757	1.757	1.761
B	0.973	0.966	0.970	0.968	0,962	0,960	0.960	0.955	0.962	0.950	0.944
C	0.078	0.077	0.077	0.076	0.076	0.075	0,075	0.075	0.075	0.074	0.074
D	0.084	0.083	0.082	0.081	0,081	0,081	0,081	0.081	0.080	0.080	0.079
E	0.082	0.081	0.081	0.080	0.079	0.079	0.079	0.079	0.078	0,077	0.077

Table P-13(Con't)

Aerojet-General Corporation Manufacturing Division Attn: Mr. Paul R. Holmes, Mgr. 11711 South Woodruff Avenue Downey, California

Aeronca Manufacturing Corp. Municipal Airport Middletown, Ohio

Allegheny Ludlum Steel Corp. Attn: Extrusion Plant Watervliet, New York

Allegheny Ludlum Steel Corp. Attn: Mr. R. K. Pitler Brackenridge, Pennsylvania

The Alpha-Molykote Corporation Attn: Mr. Arch Maclay Application Engineering
65 Harvard Avenue
Stamford, Connecticut
Aluminum Company of America
Attn: Mr. R. W. Andrews
ALCOA Building
Pittsburgh, Pennsylvania
American Welding and Manufacturing Co.
Attn: Mr. Frank J. Shanaberg, Manager of Sales
195 Dietz Road
Warren, Ohio
AVCO Manufacturing Corporation Attr: Mr. W. H. Panke, Supt. Lycoming Division Stratford, Connecticut

Axelson Manufacturing Company Division of U.S. Industries, Inc. 6160 South Boyle Avenue
Los Angeles 68, California
Babcock and Wilcox Company
Attn: Mr. James Barrett
Beaver Falls, Pennsylvania
Baldwin-Lima-Hamilton Corp. Attn: Mr. Leon Mollick Philadelphia 42, Pennsylvania

Barogenics, Inc.
Attn: Mr. A. Zeitlin, Vice President 51 East 42nd Street
New York 17, New York
Battelle Memorial Institute
Defense Metals Information Center 505 King Avenue
Columbus 1, Ohio
Battelle Memorial Institute
Metal Working Division
Attn: Mr. A. M. Sabroff Assistant Chief
505 King Avenue
Columbus, Ohio
Beech Aircraft Corporation
Attn: Mr. Emmet Utter, Chief of Structures \& Weight Control
9709 E. Central Avenue
Wichita 1, Kansas
Bell Aerospace Corporation
Attn: Mr. Ralph W. Varrial, Mgr. Production Engineering
P. O. Box 1

Buffalo 5, New York

Bell Helicopter Company
Division Bell Aerospace Corporation
Attn: Mr. Nairn Ringueberg, Chief Production Development Engr.
P. O. Box 482

Fort Worth 1, Texas
Bendix Aviation Corporation
Bendix Products Division
Attn: Mr. W. O. Robbinson 401 North Bencix Drive South Bend, Indiana

Boeing Airplane Company
Attn: Mr. Walter Burnham Mfg. Research Mgr.
Wichita, Kansas
Boeing Airplane Company
Aerospace Division
Attn: Mr. George Hughes, Section Chief Materials \& Processes
P. O. Box 3107

Seattle 24, Washington
Bridgeport Brass Company
Reactive Metals Products
Niles, Ohio
Mr. William L. Bruckart Metallurgical and Marketing Consultant
85 Inglewood Drive
Pittsburgh 28, Pennsylvania
California Institute of Technology
Jet Propulsion Laboratory
Attn: Mr. I. E. Newlan
4800 Oak Grove Drive
Pasadena 3, California
Canton Drop Forging \& Manufacturing Co.
Attn: Mr. Chandis Brauchler
2100 Wilett Avenue
Canton, Ohio
Cessna Aircraft Corporation
Attn: Mr. George Biggs, Quality Control Manager
5800 Pawnee Road
Wichita 14, Kansas

Chance Vought Corporation
Ling-Temco-Vought, Inc.
Attn: Mr. G. A. Starr
P. O. Box 5907

Dallas 22, Texas

Chase Brass \& Copper Company
Research Department
Waterbury, Connecticut
Convair, A Division of
General Dynamics Corporation
Attn: Mr. J. C. Starnes, Supervisor Manufacturing Research and Development
Mail Zone P-46
Convair, A Division of
General Dynamics Corporation
Attn: Mr. V. G. Mellquist, Mgr. Manufacturing Division
P. O. Box 1128 (Zone 2900)

San Diego 12, California
Convair, A Division of General Dynamics Corporation
3165 Pacific Highway
P. O. Box 1950

San Diego 12, California
Curtiss-Wright Corporation
Metals Processing Division
Attn: Mr. T. A. Weidig, Mgr. Materials Laboratory
Buffalo 15, New York
Curtiss-Wright Corporation
Wright Aeronautical Division
Attn: Technical Library
Wood-Ridge, New Jersey
Dublin Manufacturing Corporation
Attn: Mr. Emanuel Helfand
889 Sheffield Avenue
Brooklyn 7, New York
Douglas Aircraft Company
Attn: Mr. R. L. Johnson, Chief Engr.
Missiles and Space System
Santa Monica, California

Douglas Aircraft Company
Attn: Mr. O. L. Rumble 3855 Lakewood Boulevard Long Beach 1, California

Douglas Aircraft Company
Attn: Technical Library
827 Lapham Street
El Segundo, California
Dow Chemical Company Metal Products Division Attn: Mr. Karl Braeuninger Madison, Illinois

Dow Chemical Company Metallurgical Laboratory
Attn: Dr. T. E. Leontis Assistant to the Director
Midland, Michigan
E. I. DuPont de Nemours \& Co. Inc.
Pigments Department
Attn: Mr. E. M. Mahla, Technical Manager Metal Products
Wilmington 98, Delaware
Erie Foundry Company
Attn: Mr. J. E. Wilson General Sales Manager
Erie 6, Pennsylvania
Fairchild Engine \& Airplane Corporation
Fairchild Aircraft Division
Attn: Mr. Ermont Williams Chief, Process \& Materials
Hagerstown, Maryland
Feller Engineering Company
Attn: Mr. R. C. Zeile, President
Empire Building
Pittsburgh 22, Pennsylvania
The Garrett Corporation
AiResearch Manufacturing Division
9851 Sepulveda Boulevard
Los Angeles 45, California

General Electric Company
Flight Propulsion Division
Technical Information Center
Mail Zone F-22
Cincinnati 15, Ohio
General Motors Corporation
Allison Division
Indianapolis, Indiana

General Motors Technical Center
Metallurgical Research Building
Metallurgical Engineering Research Staf
Attn: Mr. Clarence J. Tobin Warren, Michigan

Goodyear Aircraft Corporation
1210 Massillon Road
Akron 15, Ohio
Grumman Aircraft Engineering Corp.
Attn: Mr. W. A. Hoffman, Vice Pres. Manufacturing Engineering
Plant No. 2
Bethpage, Long Island, New York
H. M. Harper Company

Attn: Mr. K. G. Hookanson, General Manager, Metals Division
Lehigh Avenue \& Oakton Street
Morton Grove, Illinois

Harvey Aluminum, Incorporated
Attn: Mr. G. A. Moudry, Technical Director
19200 S. Western Avenue
Torrance, California

Hayes Aircraft Company
Attn: Mrs. Pomilda Crow, Engineering Technical Library
P. O. Box 2287

Birmingham, Alabama

Haynes Stellite Company
Division of Union Carbide Corp.
Attn: Mr. G. A. Fritzlen Manager of Technology Kokomo, Indiana

Hiller Helicopter
1350 Willow Road
Palo Alto, California
Hughes Aircraft Company
Attn: Mr. S. Edmunds, Marketing Florence \& Teale Streets
Culver City, California
Hughes Aircraft Company
Tucson, Arizona
Hunter-Douglas Division
Bridgeport Brass Corporation
Riverside, California
Jones \& Laughlin Steel Corp.
Attn: Mr. Robert S. Orr, Commercial Research Librarian
3 Gateway Center
Pittsburgh 30, Pennsylvania
Kaiser Aluminum \& Chemical Corporation
Dayton Sales Office
349 West First Street
Dayton, Ohio
Lockheed Aircraft Corporation
Missile Division
Attn: Mr. Alfred H. Peterson, Production Engineering Department Manager
Sunnyvale, California
Lockheed Aircraft Corporation
Attn: Mr. Elliot Green, Manager Production Engineering Dept.
Burbank, California
Lockheed Aircraft Corporation
Attn: Mr. Roy A. MacKenzie, Mgr. Manufacturing
Marietta, Georgia

Magnethermic Corporation
Attn: Mr. J. A. Logan
Youngstown, Ohio
The Martin Company
Attn: Engineering Library
Mail No. J-398
Baltimore 3, Maryland
The Martin Company
Orlando Division
Attn: Mr. George C. Pfaff
Orlando, Florida
McDonnell Aircraft Corporation
Attn: Mr. C. E. Zoller
Lambert St. Louis Municipal Airport
P. O. Box 516

St. Louis 3, Missouri
Metal Trims, Incorporated Jackson, Mississippi

Mueller Brass Company
Research Department
Attn: Mr. Thomas E. Fearnside
1925 Loffer Avenue
Port Huron, Michigan
National Academy of Science
National Research Council
Attn: Mr. E. V. Bennett, Division of Engineering \& Industrial Resources
Washington 25, D. C.
National Aeronautics and Space Administration
Attn: Mr. George Mandel, Chief - Library
Lewis Research Center
21000 Brookpark Road
Cleveland 35, Ohio
National Forge Company
Attn: Mr. James R. Becker
Project Engineer
Press Form Products
Irvine, Warren County, Pa.

Norair, A Division of Northrop Corporation
Attn: Mr. J. A. VanHammersveld, General Supervisor Materials Research and Product Analysis
Hawthorne, California
North American Aviation, Inc. Los Angeles Division
Attn: Mr. Walter Rhineschild International Airport
Los Angeles 45, California
North American Aviation, Inc.
Attn: Engineering Technical Library International Airport
Los Angeles 45, California
Nuclear Metals, Incorporated
Attn: Mr. Klein, Vice President
Concord, Massachusetts
Ontario Corporation
Attn: Mr. James A. Nolan
1200 West Jackson Street
Muncie, Indiana
Owens-Illinois
Technical Center
Attn: Mr. Ray S. Richards
Chief Metallurgist
1700 N. Westwood
Toledo, Ohio
Piper Aircraft Company
Lockhaven, Pennsylvania
Pratt \& Whitney Aircraft Division
United Aircraft Corporation
East Hartford, Connecticut
Prewitt Aircraft Company
410 South Springfield Road
Clifton Heights, Pennsylvania
Radioplane Division
Northrop Corporation
Engineering Administration Dept. Attn: Mr. T. D. Murphy, Manager 8000 Woodley Avenue
Van Nuys, California

Reactive Metals, Inc.
Attn: Mr. George W. Cleveland
Sales Engineer
Niles, Ohio
Republic Research Center
6801 Brecksville Road
Cleveland 31, Ohio
Republic Steel Corporation
Massillon, Ohio
Reynolds Metal Company
Attn: Mr. Stuart Smith 503 World Center Building
Washington 6, D. C.
Rohr Aircraft Corporation
Attn: Mr. F. E. Zimmerman, Mgr. Manufacturing Research
P. O. Box 878

Chula Vista, California
Ryan Aeronautical Company
Attn: Mr. L. J. Hull, Chief Metallurgist
Materials \& Process Laboratory
Lindberg Field
San Diego 12, California
Sikorsky Aircraft Division
United Aircraft Corporation
Bridgeport, Connecticut
A. O. Smith Corporation

Attn: Mr. H. D. Barnes, Director Government R\&D Division
P. O. Box 584

Milwaukee l, Wisconsin
Solar Aircraft Company
Attn: Mr. F. M. West
Chief Librarian
2200 Pacific Avenue
San Diego 12, California
Solar Aircraft Company
1800 Grand Avenue
Des Moines 5, Iowa

Standard Pressed Steel Company
Aircraft Products Division
Jenkintown, Pennsylvania
Thompson-Ramo-Woolridge, Inc. Staff Research \& Development Chemical \& Metallurgical Dept.
Attn: Mr. A.S. Nemy
23555 Euclid Avenue
Cleveland 17, Ohio
TRW Metals Division
Thompson Ramo Wooldridge Inc.
Attn: Mr. R. T. Bainster
Manager - Wrought-Metallurgy
Minerva, Ohio
Titanium Metals Corporation of America
Attn: Mr. Ward Minkler
233 Broadway
New York 7, New York
U. S. Atomic Energy Commission

Attn: Mr. Robert L. Shannon
Manager
Division of Technical
Information Extension
P. O. Box 62

Oak Ridge, Tennessee
United States Steel Corporation
Product Development Division
525 William Penn Place
Pittsburgh, Pennsylvania
United States Steel Corporation
Attn: Mr. Rex C. Corns, General Supervisor
National Tube Division
Gary, Indiana
Vertol Helicopter Corporation Morton, Pennsylvania

Westinghouse Electric Corporation
Attn: Mr. F. L. Orrell Materials Manufacturing Dept.
Blairsville, Pennsylvania
AFPRO
Attn: RERFD (Maj. J. W. Hitchcock) Republic Aviation Corp.
Farmingdale, L. I. N. Y.

Wolverine Tube
Division of Calumet \& Hecla, Inc.
Attn: Mr. F.C. Eddens, Manager Special Metals
New Products Division
17200 Southfield Road
Allen Park, Michigan
Chief Bureau of Aeronautics
Department of the Navy
Washington 25, D. C.
Commanding Officer and Director U. S. Naval Engineering

Experiment Station
Attn: Metals Division Annapolis, Maryland

ASD (ASZ-5, Mr. Walter Smith) Wright-Patterson Air Force Base Ohio

Aeronautical Systems Division Attn: ASRCMP-4 (Mr. V. DePierre)
Wright-Patterson Air Force Base Ohio

AFML (MAMP, Mr. S. Inouye)
Wright-Patterson Air Force Base Ohio

AFLC (MCPE, Col. R. O. Mitterling) Wright-Patterson Air Force Base Ohio

AFML (MAA, Mr. J. Teres) Wright-Patterson Air Force Base Ohio

AFML (MAX, Dr. A. M. Lovelace)
Wright-Patterson Air Force Base Ohio

FTD (TDEWP)
Wright-Patterson Air Force Base Ohio

AFML (MAMC, Mr. W. G. Ramke) Wright-Patterson Air Force Base Ohio

Huntington Alloy Products Division The International Nickel Company, Inc. Attn: Mr. James C. Judd Huntington, West Virginia 25720

RTD (SEDPB, Mr. Tom Sims)
Wright-Patterson Air Force Base Ohio

AFML (MAAM, Library)
Wright-Patterson Air Force Base Ohio

2 COPIES

Aeronautical Systems Division Attn: ASRCEM-1A (Librarian) Wright-Patterson Air Force Base Ohio

Commanding Officer
Attn: Mr. S. V. Arnold
Watertown Arsenal
Watertown, Massachusetts
ASD (ASOP, Mr. J. M. Troyan)
Wright-Patterson Air Force Base Ohio

3 COPIES

Air Force Systems Command Attn: Mr. Kniffen, RDTDEG Washington 25, D. C.

5 COPIES

AFML (MATB)
Wright-Patterson Air Force Base Ohio

10 COPIES

Defense Documentation Center (DDC)
Cameron Station
Alexandria, Virginia

AD A process has been developed to produce long, thin aircraft structural shapes in high-strength titanium alloys by a combination of hot extrusion and warm drawing. A variety of structural shapes such as angles, channels, zees, hats and tees were extruded in the following alloys: Ti-155A, MS 821, Ti-7Al-4Mo, Ti-4Al-3Mo-1V. and $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$	UNCLASSIFIED I Christiana, J.J. II Republic Aviation Corp. III Contract AF33 (000)-34098 IV RTD TR 63-7-556 V Manufacturing Technology Division UNCLASSIFIED	AD A process has been developed to produce long, thin aircraft structural shapes in high-strength titanium alloys by a combination of hot extrusion and warm drawing. A variety of structural shapes such as angles, channels, zees, hats and tees were extruded in the following alloys: Ti-155A, MS 821 Ti-7Al-4Mo, Ti-4Al-3Mo-1V, and Ti-6Al-4V	UNCLASSIFIED UNCLASSIFIED
$A D$ A process has been developed to produce long, thin aircraft structural shapes in high-strength titanium alloys by a combination of hot extrusion and warm drawing. A variety of structural shapes such as angles, channels, zees, hats and tees were extruded in the following alloys: Ti-155A, MS 821, Ti-7Al-4Mo, Ti-4Al-3Mo-1V, and Ti-6Al-4V.	UNCLASSIFIED I Christiana, J.J. II Republic Aviation Corp. III Contract AF 33 (600)-34098 IV RTD TR 63-7-556 V Manufacturing Technology Division UNCLASSIFIED	AD A process has been developed to produce long, thin aircraft structural shapes in high-strength titanium alloys by a combination of hot extrusion and warm drawing. A variety of structural shapes such as angles, channels, zees, hats and tees were extruded in the following alloys: Ti-155A, MS 821 Ti-7Al-4Mo, Ti-4Al-3Mo-1V, and Ti-6Al-4V.	UNCLASSIFIED I Christiana, J.J. II Republic Aviation Corp. III Contract AF 33 (600)-34098 IV RTD TR 63-7-556 v Manufacturing Technology Division UNCLASSIFIED

[^0]: * T represents material thickness. $6 T=6 \times 3 / 32=9 / 16$ radius.

[^1]: วโ̊
 FIGURE 13

[^2]: ations and Pickup Score Lines

[^3]: Die to temperature fluctuation of the induction coil.

[^4]: * See "Evaluation" page 132 for diecussion of die dimensions.

[^5]:

[^6]: * Tensile stress on specimen was 123.6 KSI when holding pin failed.

[^7]:

 General Data

 Preas Capecity (Toas) $\frac{1100}{41 / 69}$
 Stem Diameter
 Container Diameter $\frac{43 / 160}{416}$ Extruiner Diameter $\frac{43 / 10}{2 t: 1}$
 Contion Ration

[^8]: Extrusion Section Dimensions

 Cross Section View E . 12500
 Stem Diameter
 Container Diameter $-\frac{\text { 3/16 }}{25: 1}$
 Extrusion Ratio

[^9]: General Data
 (Press Capacity (Tons) $\frac{2500}{41 / 16^{\prime \prime}}$
 Stem Diameter
 Container Diameter $\frac{43 / 16^{\prime \prime}}{25 / 1}$ Extrusion Ratio 25:1

 Extrusion Section Dimensions
 Company: Babcock k Wilcox

 Cross Section View Extrusion Ratio

[^10]: Extrusion Section Dimenaions
 General Data

 | $\begin{array}{c}\text { Puah } \\ \text { No. }\end{array}$ | $\begin{array}{l}\text { Extrusion Surface } \\ \text { and Straightne: }\end{array}$ |
 | :---: | :--- |
 | 54 | See Resulte |

 | 54 | See Results | radius on the outhide legs. | |
 | :--- | :--- | :--- | :--- | :--- |
 | | | | |

 | | | | | | |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | | | | | | |

[^11]:

 General Data

 | Presa Capacity (Tons) $-\frac{2500}{41 / 16}$ |
 | :--- |
 | Stem Diameter |
 | $13 / 16$ | Container Diameter $\quad 43 / 16$

 Extrusion Ratio

[^12]: Date: November 27, 1961
 Company: Babcock Wilcox
 Location Beaver Falls, Pa.
 Crose Section View
 $\begin{array}{ll}\text { Press Capacity (Tons) } & \frac{2500}{41 / 16^{\circ \prime}} \\ \text { Stem Diameter } & \frac{1 / 16^{\prime \prime}}{} \\ \text { Container Diameter } & 3 / 1\end{array}$

[^13]: *PA-A1 = Alumina Coated Peerless "A" Steel Die

[^14]: Fair: Streaky glass coverage - some bare spots
 Poor: Dry areas indicating no glass coverage

[^15]: (a) Extrusion temperatures as follows: Billet - 1800 F ; Container - 900 F ; Die δ

 Billet size was 3-1/8-inch diapeter $x 4-1 / 4$-inches long.
 (b) First number is die number = second number signifies how many tiaes die has been used. (d) In extrusions where runout pressure exceeded initial pressure, incomplete die fill (e) Surface finish given as a range of values and indicates the general surface
 condition.

[^16]: σ

 Mrioo

 $$
 \begin{aligned}
 & \text { (a) }
 \end{aligned}
 $$

 > (a)
 > $\begin{aligned} & \pm N \\ & \sim \\ & \sim \\ & \sim \\ & \sim \\ & \sim\end{aligned}$

