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ABSTRACT

A procedure for writing finite difference analogs of the
principles of continuum mechanics is presented. The method
leads to analogs of the integral statements of mass and
momentum conservation, and the first law of thermodynamics,
which are exact under two simple discretization assumptions,
and which imply an exactly conservative finite difference
equation for the total energy. The method and the equations
which follow from 1t apply to general systems of continuous
media, hydrodynamic or otherwise. Thes/finite difference
equations form the basis of a set of computer codes for the
calculation of motion described by one and two spatial
coordinates. The codes permit the use of arbitrary time
dependent coordinate systems to solve specific problems,

The AFTON I code, which {Qeals with linear, cylindrical, and
spherical one-dimensionai\systems, has been expanded to
include general stresses and strains, Some preliminary
attempts have been made to define an optimum coordinate mesh
to describe continuum motion, and specific problems have been
solved by AFTON I using these coordinate systems., For {
spherically diverging waves in an elastic medium, the solutions
obtained have been more accurate than those given by numerical
Lagrangian methods with the same number of mesh points,
although some shock front erosion is evident, apparently as a
result of deficiencies in the coordinate systems employed.
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SECTION 1.0

THE CONSTRUCTION OF FINITE DIFFERENCE EQUATIONS
FOR TRANSIENT CONTINUUM MOTION IN TWO SPACE DIMENSIONS

1,1 THE AFTON CODES: GENERAL REMARKS

The name "AFTON" is used to denote a set of computer codes
which are used to solve transient continuum motion problems,
Work on these codes was begun about six years ago at the
Lawrence Radiation Laboratory in Livermore, California.
However, their development has beer. pursued most intensively
in the past two or three years under Air Force Contracts
AF29(601)-5971, "Development of a Computer Program for
Predicting Free Field Ground Motion," and AFP29(601)-6683
(same title) as part of Project Ferris Wheel. Code modifi-
cations which are particularly useful in the solution of
viscous compressible fluid flow problems, were made under
NASA Contract NAS8-11400, "Calculation of Two-Dimensional
Turbulent Flow Fields."

Mainly as a result of work on the contracts cited, there are
now three AFTON codes, namely, AFTON 1, AFTON 2A, and AFTON 2P.
AFTON 1 solves transient continuum motion problems in systems
80 symmetric as to require juet one spatial coordinate for
their description. It includes the three geometrically possible
one-dimensional cases, namely, linear, cylindrical and spherical
motions. The AFTON 2P code solves transient continuum motion
problems in plane symmetric systems whose motion is the same

in every plane normal to some one direction, and which can
therefore be described in terms of two Cartesian position I
coordinates and the time. The AFTON 2A code solves problems of |
transient continuum motion in axisymmetric systems, 1i.e.,
systems whose motion is the same in every half-plane bounded
by some one straight line, and which can therefore be described




in terms of the radial and axial position coordinates of a
cylindrical coordinate system, and the time,

The main purpose of this report is to provide a detailed
description of the AFTON computer codes which have come into
being in the past year under Contract AF29(601)-6683. The
report is also intended to give an account of the method of
construction of finite difference equations for continuum
motion on which all the AFTON codes are based, Two-dimensional
motion with plane symmetry ic complicated enough to afford a
reasonably complete description of the method, and is at the
same time simple enough to avoid much of the algebraic
complexity encountered in our formulation of finite difference
equations for more general types of motion. The explanation
of the finite difference method embodied in the AFTON codes,
and the derivation of specific finite difference equations,

is therefore presented here chiefly for two-dimensional plane-
symmetric continuum motion — the case to which AFTON 2P
specifically applies.

1.2 FINITE DIFFERENCE MESHES AND ZONES IN AFTON 2P AND AFTON 2A

Numerical procedures for solving the equations of continuum
mechanics all begin by replacing the continuous variables of
space and time by a discrete set of points, As the density
of its points is increased, the point set more and more closely
approximates the space-time continuum, at least in the sense
that any piecewise continuous function can be represented
more and more accurately by specifying its discrete values at
the points of the set. Finite difference equations are then
written which are approximate expressiohs of the principles of
continuum mechanics, and high-speed computers are programmed
to perform the operations of arithmetic and logic required by
the finite difference equations,




The most basic statement of the principles of continuum
motion consists of integral equations for conservation of
mass, energy and momentum, and for the First Law of thermo-
dynamics (Ref. 1), although less fundamental differential
equations have served as a starting point for most numerical
procedures which describe continuum motion. The integral
equations take on their simplest form for a closed finite
region whose boundary surface moves with the local velocity
of matter, and which, therefore, always contains the same
material particles. This description of continuum motion 1is
termed "Lagrangian,"” and a sheet of material particles is '
called a Lagrangian coordinate surface. The reason for the |
special importance of the Lagrangian form of the continuum
mechanical laws is simply that Newton's Second Law, on which
all classical mechanics rests, applies in the first instance

- to particles of constant mass. The statement of the principles
of continuum motion in integral form for finite Lagrangian
regions is here termed "more basic" than related differential
statementé, because such a formulation places lighter
continuity restrictions on the various possible flow fields, . ]

L

The AFTON codes are based on a specific method for constructing
finite difference approximations to the laws of continuum
mechanics in integral (not necessarily Lagrangian) form (Refs. 2,
3, and 4), Broadly stated, the central ideas of the method
are that the finite difference equations should be as self-
consistent as possible, and also should constitute as direct
a statement as possible of the underlying principles of
continuum motion on finite regions. The particular aspect of
consistency deemed most important 1s,the complete and exact
equivalence of mass conservation, enérgy conservation and the
First Law of thermodynamics, when these are courled with

= momentum conservation. Thus, we insist that the finite




difference equations for mass and momentum conservation, ! ;
and the First Law, imply an exactly conservative finite
difference equatiion for total energy. Application of the
criterion of consistency has led to finite difference
equations with an exact energy conservation property in the
sense just defined; these equations have the satisfying
property that they can each be given a precise meaning in
elementary physical and geometric tems,

The finite difference technique used in the AFTON codes is ‘
of the "time-marching" kind., That 1s, the space continuum
is replaced by a discrete mesh of points, and, starting with
a system in a known state at some initial time, the variables
of the motion are updated by a discrete time increment at all
points of the space mesh, according to some finite difference

' equations of motion. The updating process is then repeated
using the just-calculated values of the variables of the
motion as fresh initial value data, and so on. Owing to the
assumed symmetry of the motion, a space mesh for AFTON 2P need
only be defined as an array of points in a single plane, the
variables of the motion having identical values at correspond-
ing points of all planes parallel to this one; for AFTON 2A,
the variables of the motion have identical values at correspond-
ing points on all half-planes (azimuthal planes) bounded by
some one straight line, As is customary (but not necessary)
in computer codes describing motion in two space dimensions,
the points of an AFTON 2P or AFTON 2A finite dif'ference mesh
are topologically equivalent to the corner points of a set of
unit squares which cover a rectangular region in one-to-one
fashion, The mesh points are, therefore, the vertices of
quadrilaterals which can be produced by the continuous s
distortion of a rectangular array of unit squares. The region
of two-dimensional plane flow 18 thus covered by elementary .




quadrilaterals; these quadrilaterals are the '"zones" of the
finite difference mesh. Actually, it 1s basic to the method
of differencing which underlies the AFTON codes that real
physical systems have finite extension in a direction normal

to the symmetry plane in which the quadrilaterals lie., What
appears in the plane of flow as a side of a quadrilateral

zone actually represents the intersection of the flow plane
with another plane at right angles to it. Thus, in the case

of AFTON éP, we consider the medium to be divided into quadri-
lateral slabs of unit thickness, each of which can be generated
by moving a quadrilateral zone through a unit distance normal
to the plane of flow. A quadrilateral zone is then Just a
cross-section of a quadrilateral sladb in a symmetry plane.

The quadrilateral slab, which is a solid figure, is the basic
geometric entity of the AFTON 2P finite difference mesh., It :
is a polyhedron with two parallel congruent quadrilateral faces
and four rectangular faces normal to the quadrilaterals. These
geometric figures are shown in Figure 1, In the case of AFTON
2A, the system is divided into "quadrilateral wedges", a
quadrilateral wedge being a polyhedron bounded by two nearly
parallel azimuthal planes, and having a quadrilateral cross-
section in any azimuthal plane between these two. Figure 12 of
Appendix I depicts this polyhedron. (The figure appears in

an Appendix because the discussion of two-dimensional motion in
the text of this report is limited almost entirely to the plane-
symmetric case,)

The integral equations (Ref. 1) and associated finite diffevence
equations which underlie AFTON 2P have been written in sufricient
generality to include non-Lagrangian as well as Lagrangian
descriptions of continuum motion. Correspondingly, the code
itself contains a subroutine which defines the coordinate system
to be used for any given problem. However, the Lagrangian case
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will be discussed first, since the finite difference technique
as it applies to AFTON 2P is most simply explained for this
case. The points of the finite difference mesh are then mass
points whose velocities provide a discrete approximation to

the material velocity field of the continuous medium, It is
also true in the Lagrangian case that a quadrilateral sladb is

a finite mass element consisting of the same material particles
at one time as at any other time, and a quadrilateral zone — a
cross-3section of a quadrilateral slab in a symmetry plane — is
defined by one specific set of co-planar particles. Motion of
the vertices of a quadrilateral zone therefore produces distortion
("strain") and attendant changes in all the flow variables, for
.a finite element of material. We now discuss the calculation
of these changes.

1.3 THE CALCULATION OF THERMODYNAMIC VARIABLES IN AFTON 2P

FOR LAGRANGIAN MESHES (HYDRODYNAMIC MOTION)
The variables of the motion are divided into two classes, namely,
those associated with the vertices of zones, and those associated
with their centers or interiors. The first class consists of
mesh point positions and their time derivatives, e.g., their
velocities (dynamic variables), while the second class consists
essentially of strain, stress, and internal energy (thermo-
dynamic variables). The calculation of zone-centered variables,
which we describe first, proceeds under two assumptions which
are fundamentally alike:

(a) A material element which initially occupies a
quadrilateral slab region, always has the shape of a
quadrilateral slab,

(b) Zone-centered variables are constant in value
throughout a quadrilateral slab region at any given
time, and also change at a constant rate during any
particular time step.




With respect to assumption (a), we note that the particles
initially comprising a side of a quadrilateral zone will in
general not remain co-linear; likewise, the corresponding

face of the quadrilateral slab associated with the zone usually
will not, in physical reality, remain rectangular. Rather,

the initially rectangular Lagrangian surfaces of a quadri-
lateral slab will ordinarily deform into more general curved
shapes, Assumption (a) therefore imposes a nonphysical constraint
on the system, which is part of the price paid for replacing

the space continuum by a discrete mesh of points., Obviously,
assumption (b) entails a similar nonphysical restriction; real
physical stresses and strains generally vary over finite
distances., If the error from-these sources is unacceptable,
then it can be reduced by increasing the density of mesh points
to provide a better approximation to a continuum. Moreover,
while it is not entirely obvious, increasing the density of

mesh points is the only way to reduce this decretization error;

a close look at the rate of decay of numerical solution error
with increasing mesh point density shows thet the discretization
error cannot be made to vanish more rapidly by permitting the
sides of a quadrilateral zone to be more general curves than
straight lines — straight lines with "higher-order" corrections,
As 1s showvn elsewhere (Ref, 4), the hyperbolic character of

the equations of continuum motion makes it impossible to increase
the rates of decay of numerical solution errors by means of
higher-order differencing techniques.

The calculation of the change in the volume of a quadrilateral
slab produced by the motion of .the vertices of its assoclated
quadrilateral zone provides the key to the construction of the
finite difference equations of AFTON 2P, In making the calcula-
tion, we adopt the following definitions and conventions:




(1) Y, r, U, A denote volume, position, material
velocity, and vector area, respectively,

(2) The superscripts 1 and o refer to a "later
time" tl, and an "earlier time" t°, separated by
the interval At = t1 - t°, |

(3) If no superscript is attached to a variable, it
1s understood to be defined at some time between t°
and tl. In particular, the position vector of a
point, without a superscript, is by definition equal
to the arithmetic mean of the positions of the point
at the two times tl and t°, i.e.,

r =@l + 2°).

(4) Position and velocity subscripts refer to the
mesh points labeled as in Figure 1,

(5) The vector area'ﬂaa is the rectangular surface
generated by moving the side of the quadrilateral
zone of Figure 1 between the vertices 8, o, through
a unit distance normal to the plane of the figure,
The sense of the vector area Aﬁa is that of the
inner normal to the quadrilateral. Thus if one
encounters point o, and then the point 8, as the
perimeter of the quadrilateral is traversed clock-
wise, then

Agy = (x5 = )%k

(1)

(2)
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where k is a unit vector normal to the plane of flow.

(6) The velocity of a point 1s related to its
position.g1 :;mclg° at the times t' and t° according
to '

U= (z! - 0)at | (3)

It can be seen that Eq. 3 involves the kind of discretization
error entailed in assumption (b) above; in this case the
velocity is taken to be constant over a finite time interval,
namely At. One can now show by an exact calculation of the
volume of a quadrilateral slab that

- (- YO)/0t = (U, + Uy )eByy + B(Ug + Up)eAg,

+ %(.I_J).; + .93)'51;3 + &@1 + .gu)'.elu (#)

or
- (1 - YO)/8t = Uy b (Byy + Apy) + Uped(Ay + Agp)

+ g3.-§(532 + 5143) + l’u'i(ﬂza + -Ailh)
=58y + Agy) + Ve (Apg + Agp) ’

"‘93'(.&3_2_ "'.5_33) +-I-]h'(-l—\4_3 +-‘-\gll) (5)

where the underlined subscripts a, etc., refer to the midpoints
of the sides of zone (a) as shown schematically in Figure 2,

Equation 4 has the geometric interpretation that the change in
the volume of a quadrilateral slab in a time interval At is

equal to the ulgebraic sum of the volumes swept out by the four

10
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rectangular faces of the slab normal to the plane of flow,

if each face moves with a velocity equal to the arithmetic
mean of the velocities of its end edges. Two points should
be emphasized here, First, this geometric representation is
concrete and precise; by time-averaging the positions of the
quadrilateral zone vertices, one obtains the quadrilateral
whose sides define the moving areas of the quadrilateral slab,
and each of these areas moves uniformly with the average of
the velocities of the two vertices it subtends, Secondly,
the volume change so calculated is exact, regardless of the
time interval At or of the positions of the vertices of the
quadrilateral zone at the beginning and end of this interval.
However, this geometric interpretation of the volume change
is not unique, For example, the righthand side of Eq. 4 can
be rewritten in the form shown in Eq, 5, It is then natural
to assoclate half of each rectangular face of the quadri-
lateral slab with one of the two edges of this face normal to
the plane of flow. If each pair of half-faces meeting at such
an edge 1s allowed to move uniformly with the velocity of the
edge, then the resulting rates at which the half-face pairs
sweep out volume, summed over the four pairs, is exactly the
rate of change of volume of the quadrilateral slab.

According to assumption (b), thermodynamic variables such as
stresses and intemal energies are considered to be properties
of quadrilateral slabs as a whole. These variables are i.p-
dated for general stresses and strains by an extension of a
standard numerical hydrodynamic procedure in which a finite
difference analog of the First Law is satisfied simultaneously
with the constitutive equation for a given medium (Ref. 5).-

In the hydrodynamic case, the change in the internal energy of
a quadrilateral slab 1s just its volume change (given by Eq. 4),

12




multiplied by the negative of the arithmetic mean of the
pressures in the slab at the times tl and t°, If an
equation of state is used to eliminate the new pressure
(1.e., the pressure at time ¢l ) from the finite difference
analog of the First Law, then the fact that equations of
state generally involve the internal energy renders the
First Law analog an implicit equation for the new internal
energy. In this calculation, it is worth noting that if the
pressure in the quadrilateral slab were indeed uniform and
equal to its mean value on the time interval 4t, then the
calculation of the change in the internal energy of the slab,
as well as its volume change, would be exact. Thus, under
assumptions (a) andfjbﬁ, all thermodynamic variables are
computed exactly. he relevant equations for hydrodynamic
motion are the First Law analog

EL - E° = - (P + Q)(YL - ¥°) (6)

and the equation of state
P! = a(El/m, Yi/m) (7)

Here G 1s some (known) function of two variables, and P,

E, m denote the pressure, internal energy and mass of the
quadrilateral slab, respectively, the mass being constant in
the Lagrangian case under discussion. Also, Q is a genera-
1lization of thé artificial viscosity of Richtmyer and von
Neumann, such as that given by Noh (Ref. 6); Q is computed
explicitly knowing Y, while P' and E! must be obtained by
solving Eqs., 6 and 7 simultanecusly. '

13




1.4 THE CALCULATION OF THERMODYNAMIC VARIABLES IN AFTON 2P

FOR LAGRANGIAN MESHES (GENERAL STRESS AND STRAIN)
For general plane two-dimensional motion, the procedure for
writing an exact finite difference analog of the First Law, even o
under assumptions (a) and (b), 1s not so obvious as for
hydrodynamic motion. In fact, it willl be seen later that an
exact analog of the First Law can be written only for triangular
zones and not for more general polygons such as quadrilaterals.

In obtaining our finite difference analog of the First Law for
general stress and strain, the change in the volume of the zone, |
as glven in Eq. 5, 1s of prime importance. Introducing this
expression for the volume change into Eq. 6 leads directly to
a finite difference analog of the First Law which can be used
for any stress, hydrodynamie or otherwise, and which 1s exact
in the hydrodynamic case under assumptions (a) and (b). This
combination of Eqs. 5 and 6 1s ) .
4 -
0=t ) U R - | (8)
i=1

E1

For hydrodynamic motion 1t follows from Eqs. 5 and 6, that the
forces El’ el E& in Eq. 8 are given by the equations

Fy

( P+Q) %(A14+A21 )

(P+Q)(Al§fégl) , etc.

(9)

To compute the change 1n the internal energy for general stresses
we replace the scalar hydrodynamic stress (P+Q) of Eq. 8 by the
stress tensor 0; 0 might be the sum of a thermodynamic stress
tensor P and an artificial viscosity tensor Q, but there is no
point here in specializing the definition of ¢ in this way.
Again, in accord with assumption (b), 0 is assumed to be constant
during a fime step throughout any particular quadrilateral slab.

14




The definitions of the forces Fys --es By then become

1), etc.: (10)

where the multiplication called for in Eq. 10 is that of a
matrix with a vector.

As Eq. 8 18 written, it does not consist of terms related in

any self-evident way to internal energy changes, even in the
hydrodynamic case. To make Eq. 8 more plausible, it is useful

to recall thaQJeven for hydrodynamic materials, the familiar
expression -P{ for the rate of change for internal energy refers
only to an overall volume change, which is not the most elementary
process for producing an internal energy change. The less-than-
fundamental status of -PY as the rate of change of internal
energy is evident at once when one has to deal with nonhydro-
dynamic stresses. The stress acting on an element of area then
depends upon the orientation of the element's normal, and changes
in total volume can no longer be related uniquely to changes in
internal energy for a given stress fleld. Simple extensions
(1.e., one-dimensional linear expansions and contractions) are
more elementary and baslc processes for describing internal energy
changes than are volume dilatations, as evidenced by the fact
that total volume changes can be expressed i.. erms of simple
extensions, but not the reverse. By interpreting the right-hand
member of Eq. 8 in terms of one-dimensioﬁal linear displacements,
Zg. 8 can be .iaude more reasonable than it now appears as an
expression of the First Law - and no less plausible for general
stresses than for hydrodynamic media.

As an expression for the change of internal energy, the right-
hand member of Eq. 8 presents one obvious problem; namely, its
terms are all defined only on the surface of a material element,
whereas "internal' energy is in fact a quantity assoclated in an
essentlal way with the interior of a material reglon. Changes
in internal energy cannot be calculated simply from the forces

15
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exerted on the surface of a piece of material. They must be

computed as a sum of changes taking place throughout the

material's entire volume. If this were not so, we would have

a conservation theorem for the internal energy itself; the .
fundamental difference between a quantity which is conserved

and one whilch is not lles precisely in whether or not changes ;
in the total amount of the quanpity within a given region can

be computed from variables defined only on the surface of the

region. For internal energy, the increments of change to be

summed throughout the region must be computed on subregions {
small enough so that the stress in each subregion can be taken
with negligible error to be constant. According to assumption
(b), a quadrilateral slab - however large - is small enough 1
so that the stress can be considered constant throughout 1ts |
volume. It 1s for thls reason that the right-hand side of

Eq. 8, which consists only of terms defined on the surface of {
a quadrilateral slab 18 an exact expression for the change of §
internal energy, even though the calculation of an internal

energy change must generally be made by summation over tiny

elements which:.fill the interior of the slab. Nevertheless, i
since internal energy changes are fundamentally volume-

computed quantities, Eq. 8 will have to be rewritten in such

a way that the forces appearing in 1t act on interior areas,

rather than surface areas, of a quadrilateral slab.

To transform Eq. 8 so that it involves only interior areas of

a quadrilateral slab, we invoke an elementary geometric theorem.
This theorem, which 1s a cornerstone of the finite difference
method embodied in the AFTON codes, simply states that the sum
of the vector areas of any polyhedral surface 1s zero, where

the sense gf the vector area associated with each plane face of
the polyhedron 1s understood to be that of the outer normal to

the enclosed volume. The truth and meaning of the theorem
can be exhibited in the following intuitive way. Viewed from
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any aspect at a sufficlently great distance, a polyhedron
presents a cross-section which 18 at one and the same time the
projection of the front side of the polyhedron on a plane normal |
to the viewer's line of sight, and also of its back side. The b
area of the cross section is equal in magnitude to the component )
of the resultant vector area of the plane surfaces making up the
front side of the polyhedron, and 1s also the negative of the !
corresponding component of tﬁe resultant area of the faces of
the back side. Since the faces of the front and back side make
up the entire (closed) polyhedral surface, the sum of all the ' |
vector areas 1s plainly zero. The theorem is not subtle and
certainly not new, but is so central to our differencing
technique as to call for more than cursory mention here. .

With respect to our discussion of the calculatlion of internal
energy changes, we can now transform Eq. 8 so that its forces
refer only to surfaces in the interior of the quadrilateral

slab. The theorem just discussed implies, for example, that

A12.+ Ag; + Aag_+ AE?’ plus the sum of the areas of the two
plane parallel quadrillateral surfaces of the slab, is ze#b.
Since the surfaces of any quadrilateral slab parallel to the
symmetry plane have equal area but opposite sense, their vector

sum vanishes. We therefore conclude that
Big * Ay = - (Bgg + Ag) (1)

Thus Eq. 8 can be written in the form
N-EC = ot [Fope (O - 0y) * Bop + (Tp - )
* Fa - (g3 "—Jl;)*Eag - (L '91)]'

In the rearranged form of Eq. 12, Eq. 8 can now be interpreted

as & sum of internal energy changes produced by the simple

extension >f materisl in directions normal to the forces exerted

on specific interior surfaces of the quadrllateral slab. Each i

(12)\
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of the four interior surfaces corresponding to the line segments
aa, 2a, 3a, ad 1s represented on the right-hand side of Eq. 12
by one such term. These surfaces are "complete'" in the sense
that they exhaustively subdivide the slab into mutually exclusive
volumes. The veloclty difference appearing in a term of Eq. 12
has a component in the direction of the force acting on the
interlor area relevant to that term. This component of the
veloclty difference measures the rate of uniaxial spreading or
contraction of material which, multiplied by the magnitude of

the force, glves the rate of production of internal energy due
to particle displacements along the line of the force.

While i1t introduces the essential feature of unlaxial contri-
butions to the overall internal energy change of a zone, Eq. 12
can, nevertheless, be shown to be quantitatively exact under
assumptions (a) and (b) only for simple displacement filelds.
For example, 1f the quadrilateral slabs are rectangular, and
displacements take place parallel to one set of faces, then

Eq. 12 clearly gives the change in internal energy correctly
whether the medium 1is hydrodynamic or ﬁot.

However, as noted earlier, internal energy changes computed
from Eq. 8 under assumptions (a) and (b) cannot generally be
exact. This situation stems from the fact that under assump-
tion (a) a linear displacement is required to produce the
homogeneous strain of assumption (b). The displacement field
must be such as to distort a quadrilateral zone of material
from a strain-free state to the arbitrarily strained config-
uration presented by the zone at a given instant of time 1in
the course of the numerical calculation. Hence, the constant
coefficlents of a linear coordinate transformation must be
determined in such a way that the transformation will distort
a given polygon into another given polygon. Now, the most
zeneral linear transformation relating two sets of two varlables
will, including additive constants which correspond to pure

18




ey

translation, permit the arbitrary specification of six constants.
This 1s just the number of parameters needed to determine the
positions of three points in a plane. Hence, except for
triangles, the specification of the vertex positions of a poly-
gon in two strailn states places more conditions on a linear
displacement fleld than there are constant coefficlents in the
equations which define the fleld; the appropriate linear trans-
formation usually will not exist: It therefore appears that
only with triangular zones can one obtain finite difference
equations for motion in two space dimensions by applying the
same discretization assumptions to the First Law as to each

of the other principles of continuum motion, while at the same
time minimizing the number of such assumptions. In any case,
triangular zones are necessary 1i1f our finite difference equations
are to be exact under assumptions (a) and (b). That the general
practice of employing quadrilateral zones has been followed so
far with the AFTON codes 1s felt to be an error which should be
corrected in the future. We now proceed to show that for a
triangular zone, a finite difference equation can be written
which 1s indeed an exact statement of the First Law, given
hypotheses (a) and (b). For simplicity, the discussion 1is
limited to isotropic materials.

A trilangular zone and 1ts assoclated trlangular slab are shown
in Figure 3. The counterpart of Eq. 8 for the change in the
internal energy of a triangular slab of materlal is
3
E' - E® = 8t ) U,°F, (13)
i=1
where

Ey=ot (5-13 + Aoy ).

On the other hand the change in the internal energy of a
triangular slab of isotropic material 1s given by




3 .
1 .0 rel Ey
E®" - E° = - P dxdydz dt 14
J co fw(Z:l 13-1) y (14)

where El’ E2, E3 are the principal extensions of the strain
field, Pl, P2, P3 are principal stresses and x, y, z are the
usual Cartesian coordinates; the stress and strain axes coincide
for an isotroplc medium.

Under assumptions (a) and (b) Eq. 14 becomes

1 o _ 1 o\ ‘/ 1l o\ =
E- - E° = - [Pl(El - EV/E1 + P E5 - E2//E2]YAt (15)

where
_ 1 o™

and Y 1s the "mean-time" volume of the triangular slab, 1i.e.,
the volume computed from the vertex position r, (see Eq. 1).
Our problem is now to show that the change in the internal
energy in the triangular slab computed according to Eq. 13

is identical to that glven by Eq. 15; Eq. 13 1s an exact
expression for the change in internal energy under assumptions
(a) and (b). For this purpose 1t 1s necessary %o recall the
calculation of strain used in the AFTON codes. In the case of
plane strain, the pertinent equations are Egs. 42 through 57
and 62 through 64 of Appendix I, except that the points labeled
a, B, Y of the Appendlx are now understood to be the points

2, 3, 1, respectively, of Filgure 3. Without loss of generality,
we can assume that all vectors and tensors are expressed 1n the
system of the principal stress axes. In this coordinate system
we have

z, = E, &1
S0 = Ep %3
¢, = B, 3
Co = E, g;
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FIGURE 3
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(a) TRIANGULAR ZONE; (b) TRIANGULAR SLAB
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where the * superscript refers to the triangular slab of material
in i1ts unstrained state. It then follows from Eq. 15 that

54 py(ELED) (14D + py(EL - ED) (El4ed)]¢” .

which, 1n view of Eq. 3 and the definitions of Appendix I,
can be written as |

B o512 (s - v vy - )+ un - 5] |
- Py{"1<x2 - x3> + V2<x3 - xl) v "3("1 - x2>]} (16)

On the other hand, in the principal axis system we find from
Eq. 13 that

1l .0 - LPx<§1 a) + Uya, + Uga 3)
+ Py(ylbl + v2b + v3 3 ]At

where a, b denote the x and y components, respectively, of the
vector area A. Then, making use of the relations

-=1=§<521+513>=<£e'£>xg_, etc.

E

A

we deduce that

gt - £° - 'At Px[“1<y2 = y3> + u Y3 - Y1> * “3(5’1 - y2>

- Py["l("a - x3> + "23‘3"‘1) * "3<x1 } "2)]} (17)

Thus the internal energy Eq. 13 does 1n fact constitute an
exact expression for the change Iin the internal energy of a
rectangular slab. It 1s particularly satisfying that Eq. 13
wab originally derived to insure conservation of energy rather

than to express the First Law exactly under assumptions (a)
and (b). In a later section we will discuss the energy
conservation property of the finite difference equations.
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1.5 THE CALCULATION OF MOMENTUM IN AFTON 2P FOR LAGRANGIAN
MESHES
In a finite difference scheme for solving the equations of con-
tinuum mechanics, it 1s necessary not only to provide for the
updating of thermodynamic variables, but also for the calculation
of new mesh point positions and velocities. The method used in
AFTON 2P to update the velocity fileld is similar in most respects
to that Jjust described for thermodynamic fields, although i1t now
expresses the physical principle of momentum conservation rather
than the First Law of thermodynamics. It 1s again the essence
of the finite difference procedure that the finite difference
analog of momentum conservation be exact under assumptions (a)
and (b), by which the variables of the motion known only at a
discrete set of points are defined throughout the space continuum.

Since positions and veloclitles are associated with mesh points
rather than zone centers, the elemental regions on which momentum
1s conserved, 1.e., the momentum zones, are centered at mesh points.
The momentum zone assigned to any given mesh point is made up of
portions of each of the four quadrilateral zones, like those of
Figure 2, which share that mesh polnt as a common vertex. In
physical reality, the same particles of mass which experlence
strain also possess a materlal's momentum. To be consistent with
this aspect of the real world, we must therefore require that the
mass of a quadrilateral zone be assigned to each of its corner
points in such a way that each particle of mass contributes 1ts
momentum to one and only one momentum zone. Moreover, 1f (as in
the present case) the momentum zones are to be Lagrangian, then
each particle must always contribute i1ts momentum to the same
momentum zone.

These conditions can be met without invoking any assumptions other
than (a) and (b). To this end, we recall the geometric fact that
a point can always be found which, when Joined to the mid-points
of the sides of a quadrilateral by straight lines, will divide
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the quadrilateral into four pieces of equal area. The corre-

sponding quadrilateral slab is then divided into four corner

pleces of equal volume, each of which itself has the shape of

a quadrilateral slab. On the assumption that the density of .
material 1s constant within any given quadrilateral slab |
(assumption (b)], each of the four corner pieces will contain g
exactly one quarter of the mass of the quadrilateral slab i
throughout the course of the motion. In addition, we .ote

that the four interior surfaces of a quadrilateral slab which

divide 1t into its four corner sections, are plane surfaces.

It 1s consistent with the fact that these interlor surfaces

bound regions of constant mass, that they be considered as ‘
Lagranglan surfaces, 1.e., mass-point sheets. The requirement

that these sheets of mass points always be planar represents a
nonphysical constraint on the motions of the points. This

constraint 1s Just another instance of the discretization

error implied by assumption (a). The momentum zone of AFTON

2P 1s then the elght-sided polygon shown schematically in

Figure 4. Four lines emanating from a mesh point, such as

point 1 of Figure 4, are sides of the four quadrilateral zones

sharing that point as a common vertex. The midpoints of these 2
four lines, and the center points of {he four quadrilateral

zones, are the vertices of the octagonal momentum zone around

the given mesh pbint.

i st

With regard to momentum conservation, the basic geometric object
contemplated by the numerical method is the three-dimensional
octagonal slab generated by movlng the octagonal momentum zone
through a unit distance normal to the plane of flow. The
octagonal slab consists of a quarter-section of each of the
four quadrilateral slabs assoclated with the mesh point, and

1t therefore contalns a mass of material equal to one quarter

of the sum of the masses of these quadrllateral slabs. The
material of the octagonal slab undergoes acceleration under

the action of forces exerted on 1ts elght rectangular faces
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FIGURE 4

SCHEMATIC DIAGRAM OF AN AFTON 2P SPACE MESH, SHOWING A
MOMENTUM ZONE AND THE FOUR QUADRILATERAL ZONES WHOSE

CORNER PIECES MAKE UP THE MOMENTUM ZONE.
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normal to the plane of flow. Each of the four quadrilateral

slabs contributes two of these faces, which are among the four
" intérior faces dividing that slab into quarter sections.
According to assumption (b), such a pailr of surfaces, being
interior to a quadrilateral slab, are acted on at all points
by the same constant stress for an entlire time step. If we
now extend assumption (b) to the octagonal momentum slab by
assﬁming a uniform momentum density (= velocity) on this region,
then the change in the slab's momentum in a time step can be {
calculated exactly. For this purpose, let M be the momentum of
the octagonal slab associated with the momentum zone of Figure 4,
whose vertices, 1n clockwlse order, are the points a, a, b, b, c,
¢, d, d. 1If we‘let F denote force and now let subscripts refer
to the points a, a, etc., then, retalning the definitions used
in Eq. 4 and 5 we have
EBa = Péea (18)
where P 1s the stress in the zone for which A is an 1nterior
area, and the'stress-area product of Eq. 18 is just a matrix-
vector multiplication. (In the hydrodynamic case, the matrix-
vector multiplication reduces to the multiplication of a vector
area by a scalar pressure.) Under assumptions (a) and (b),
conservation of momentum 1s now expressed exactly for the
octagonal slab of material by the equation

—————

1l o] _
- M°)/bt = F 4 + F,, (19)

(M

+ F

—ba+F

=bb

+ Ec§_+ Egc

+Ed_g+£‘-gd .a,l

Under assumption (b), by which the momentum per unit mass of
material 1s constant over octagonal momentum slab, the velocity
of the mesh point on which the slab is centered is related to
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the momentum of the slab according to

vt = ut/m (20)

where m, the mass of the momentum region, is equal to a quarter
of the sum of the masses of the quadrilateral slabs assocliated

with 1ts central mesh point; m has not been superscripted since
mass does not change with time on a Lagranglan region.

The foregolng explanatlon of the finite difference technique on
which AFTON 2P 1s based is sufficlently detalled that we have
derived a few of the more important finite diffeivence equations
around which the code 1s written. The only important aspect of
the finite difference technique which has not been discussed for
the Lagrangian case 1s its energy conservation property. As
mentioned earlier, the finlte difference equations for mass con-
servation (mass is automatically conserved in a Lagranglan '
coordinate system), momentum conservation, and the First Law
were selected 1n the first place to satisfy the condition that
they imply an exactly conservative finite difference analog of
the integral equatlion for conservation of total energy. The
energy conservation equation will be derived in the next section
from the equations already discussed. Although thls 1s a
reversal of the steps actually taken in developing the AFTON
codes, we are more concerned here with the numerical method

than with the process of reasoning by which the method was
developed from the criterion of consistency of the finilte
difference equations.

1.6 ENERGY CONSERVATION

That the finite difference equations for *mass and momentum
conservation and the First Law rigorously imply a total energy
conservation theorem was the consideration which originally
led to the scheme of differencing employed in the AFTON codes.

To demonstrate this property of the finite difference equations,

/
R4
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we first form the scalar product of Eq. 19 for momentum
conservation, with the particle velocity U. It 1s important
at this point to note that we actually define two velocities,
centered differently in time. One of these 1s the ratio of
momentum to mass given in Eq. 20, This is the primary velocity
derived from the finite difference equations, although it does
not explicitly enter our equations again. The other velocity
1s that appearing in Eq. 2, and in the subsequent equations of
section 1.3 and 1.4. However, Eq. 3 1s used to compute the
change in the position of a mesh point over a time step rather
than to compute the velocity U which is centered at the "middle"
of the time-step, 1.e., the equaﬁion shows how the velocity U
1s related to the position coordinates of a mesh point, but does
not deflne U. Actually, U 1s defined by the condition that the
arithmetic mean of i1its values on two consecutive time steps be
equal to the primary velocity, which 1s the ratio of momentum
to mass. Making use of half-integer superscripts to denote
time at about the middle of a time-step, the equation used to
advance the velocity U from one time-step to the next 1s

v -a®/m - uFe o - uta o -y (21)
Thus, the veloclity from which a mesh point position change is
computed, is found from the primary velocity for the point by a
forward extrapolation in time. Alternatively, the primary
velocity of a point is equal to the arithmetic means of the
velocitles used to move the point on two consecutive time-
steps. We then find from Eq. 19 that

-3 ryl o g
us(u - M0)/et = U (Bpq + Fop 4 Fpg *+ Bp * oy
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or, in view of Eq. 21 and the fact that the momentum mass
assoclated with the mesh point does not change with time, - I

-ad -aa Ba * Db Fop * Egc

’ + Fgo + Fgg 0t » (23) 1
where
70 - %m_% : Hf% (241
is the finite difference analog of the kinetic energy for an ‘
octagonal slab of material assoclated with a mass point. To

exhlbit the fact that total energy 1s conserved, 1t 1s only
necessary to observe that if thils last equation and the internal
energy equation in the form of Eq. 12 are summed over the

entire set of mesh points, then all the scalar velocity-force
products appearing in Eq. 23 for interior mesh polnts exactly
cancel the same products in Eq. 12 for interior zones. As

a result, the sum of the internal and kinetic energies for the
entire system will change 1n a time step by an amount determined
entirely by conditions at its boundary. These boundary
conditions will give rise to terms which, since they determlne
the overall energy change of the system, are a finlte difference
expression for the net work done on 1t. By the same token, since
there 18 no contribution to the overall work done on the system
from any of 1ts interlor surfaces, the net rate of working of
interior rorces 1s zero.

Although the simple observation made above 1s sufficlient to
establish energy conservation, the conservation theorem can be
made more complete and satisfying. For example, while we

have concluded that the net rate of working interior forces is
zero, no expression for the rate of work on an interior surface
has been formulated. A truly satisfactory energy conservation
theorem should include an explicit expression for the total
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energy quantity conserved in an arbitrary 1ntefior zZzone, along
with an explicit formulation of the work doﬁe on the zone in a
time step. The fact that a momentum zone does not coincide

with a thermodynamic zone somewhat complicates the achievement
of thls result. However, ultimately we can and will obtain an
equation for total energy conservation for each type of region.

Let us first consider, ac the region for which a total energy ]
conservation equation must be developed, a quadrilateral slab
(which 1s the basic region of definition of thermodynamic
variables). We then proceed by considering a momentum zone

to consist of four pleces, which are just the quarters of the
quadrilateral slabs from which (as discussed in section 1.5)

the momentum zones were origlinally made up. Referring to
Figure 4 1t can be seen that the surfaces of contact of the
quadrilateral slabs, 1.e., the boundary surfaces of these slabs,
are interior surfaces of the momentum slabs, across which there
is no net rate of production of kinetic energy. Thus Eq. 23
can be written 1n the followlng form:

o ~,
- % = 0{(Boq * Fan * F1a * Ba1) * (Bug * Eop * Fap * Fa1)

Tl

* @02 Tt gt Egl) * (Ed_c_ *Eyg t gt Egl)]“ (25)

are the forces acting on those quadrilateral slab half-faces
which appear in the interior of the momentum slab; these half-
faces bound the pieces of the momentum\slab contributed by each
of the four surrounding quadrilateral slabs Also, of course,
Edl 1s the negative of Eﬁd’ etc. Now, the mass of a momentum
sTab is the sum of quarters of the masses of the four surround-

ing quadrilateral slabs. The kinetic energy Eq. 25 can
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therefore be written as the sum of four equations, one for each
of the quadrilateral quarter-zones which make up the momentum
zone. The quarter-sone contribution to the kinetic energy

Eq. 25 from zone (a) of Figure 4 is then

U'% -

372 41/2 _ 1 i S/
a1 Ui -U° = U (Bag * g

U - gmelre

+ Fiq

gm + F Bt (26)
Similar equations hold for the changes of kinetic energy in

the quarter sections of slabs b, ¢ and d; these four quarter-
zone sections together make up the momentum slab assoclated with
the point 1 of Figure 4. The kinetic energy equations for the
four quarter-zones add up to the kinetic energy equation for the
entire momentum slab. Furthermore, one can also select the four
quarter-zone kinetic energy equations like Eq. 26 which corre-
spond to the sections of a given quadrilateral slab. Thus by
adding to Eq. 26 the three quarter-zone kinetic energy equations
which represent the contribution of zone (a) to the momentum
slabs centered at points 2, 3, and 4 of Figure 4, we obtain the
following equation for the change of kinetlic energy of the
entire quadrilateral slab centered at (a):

s -lu '<§'§1 * El:;) U '@291 i E%ED * i3 <E3% ' E33>

+94‘<Eu3+13gu>+ e (F * By )*U (Fda -a2

; N
* U3t Hoa t Eaz) t Uy <E§a * Eaé)]At (27)
where
T, = %3- U% 1% + gg Ué - gg-g?:% + gﬁ-gi%.

Since we assume a constant stress on the face of a quadrilateral
slab, and a bisects the line IZ, we have

F1a = Fay = $Ey (28)
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with simllar equations for the other forces. Hence, we obtain

T, -7 = [y, + Up)Epy + R (U + )" F3p (29)

+ 3y + Up)Bys + MYy + ) By ot
- (1, - I-Jl}Eag + (Y5 - 92)'1‘3;@ +(uy - l-13,\"}3a3
+ (U - 0y Jor
By combining this last equation with Eq. 12 we find the

following equatlion for conservation of energy in the quadri-
lateral slab of zone (a):

(H; - H:) = waAt (30)
where

Hy = Tp + EJ
and

Wy = & Uz““,gl.)'r‘-'z tE U + Up)'F F3o

+ 4 (y, + ‘-’3)' Fyz + é(‘-’1 + Uy By

Equatlion 30 i1s one of the two main statements of exact energy
conservation implied by our equations for mass and momentum
conservation, and the First Law. Each of the terms appearing
in the expression for the rate of working ﬁa on the quadri-
lateral slab associated with zone (a) gives the rate at which
work 1s done across one of the rectangular faces of the slab;
the same face serves as a boundary for the adjacent slab (b),
ana in this role the work done on the face in any given time
interval is the negative of that done across it on slab (a).
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| Therefore, there 1s no net work done by the forces acting in
the interior of the system. Of course, up to now the stresses
acting on the slab faces have not been defined - nor 1s it
really necessary to define them. Since they act on interior
faces of the momentum slabs these stresses contribute nothing
to the acceleration of mesh points; neither do they appear in
Eq. 12 to influence the internal energy. However, for
completeness, and for certain types of boundary conditions, it

1s worth 1oting that in AFTON.2P the stress acting on the face
of a quadrilateral slab 1s taken to be the arithmetic mean of
the stresses of the quadrilateral slabs in contact across a
glven face.

The other important statement of energy conservation is one in
which the reglon of conservation is a momentum zone rather than
an internal energy zone. To find an energy conservation equation
for thils region, an expression must be developed for the change |
in internal energy of a quarter-zone of material assoclated with ]
a momentum slab, Just as in the previous case it was necessary
to develop a quarter-zone kinetlc energy equation. The reason
why these quarter-zone expressions are needed is that quarter-
zones are the largest regions on which both the kinetic energy
denslty and internal energy density are constant. Thls follows
because in the AFTON code (as in most other two-dimensional
time-marching schemes for the solution of the equations of
continuum mechanics), the dynamic variables are mesh-point-
centered while the thermodynamic varlables are zone-centered.

To obtain the desired quarter-zone internal energy equation we
simply assocliate half of each term of Eq. 12 with each of the
corner points whose velocity appears in the term. Thus, for
example, for the quarter of zone (a) associlated with the mesh

point 1 we have

1 _ e . o ™.
= - MUy - Uy By HETY - Uy Eag.’ (31)

Eal

0
- B

33




The internal energy of the momentum slab associated with point

1 1s then governed by the equation
1 0 _ A id7u o 3 4 g
By - Y= - 0t BTy - U By + 3 Y - U ey (32)
(Y - 0 Ry + (T - U )Ry -]
// * ~
+ 3 (U - Uy) By + 3 (Y - Ug)Eg,
4 ™, - ™ K
+3{Y - Ug)Ege + 410y - Up)Egqy
and
1 .0 .
where
1 = & m/ufuf 4 ¥ mEC® + mEC + mEC 4 mE
1 1 93U W mEy + mpBy o+ mo By + mgEy -
and
= e [/ \\. R
Wy = XUy + %) \Epp * Elgc) tEy + ) (\Ecg * Eea

,/ . 2 . ~ . ~N
* 5_91 * 92/'<Edq * Eg#) + é(:I-Jl Ty /)Cgag * Egb)

1.7 NON-LAGRANGIAN COORDINATE SYSTEMS

In developing the AFTON codes so that they apply to arbitrary
time-dependent coordinate systems, the key idea has been to
retain the Lagrangian form of the equations for actually updat-
ing the variables of the motion. The events taking place in

a time step are then the following: at the start of a time-
step, a quadrililateral slab of material happens instantaneously
to coinclde with a quadrilateral slab of space assoclated with
a generalized zone. The equations of motion being essentially
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Lagrangian, the variables of the motion are updated by a time
step for the quadrilateral material slab; this 1s a completely
Lagrangian calculation. At thls point, a new generalized
coordinate mesh is laid down. Since 1ts zones will in most
cases overlap two or more Lagrangian zones, a non-lLagrangian
coordinate system now presents the additional problem of
distributing the updated varlables of the motion, such =8 mass
or internal energy, among the various generalized zones over
which a given Lagranglan zone 1s spread. The distribution of
the materlal of a Lagranglan zone over other regions can be
effected in many ways without negating the conservation
properties of the finite difference equations of motion. The
reason for this 1s that the material which moves from one
region into another need.only be accounted for in the finite
difference equations in such a way that the material lost by
the one reglon appears precisely as a galn to the other.
Estimates of the flow of mass, for example, can be physically
unreasonable and still be treated conservatively by insuring
that the mass which leaves each and every zone enters neighbor-
ing zones.

A simple and reasonable procedure for updating the variables of
the motion 1n a generallzed zone would be to adhere strictly

to assumptions (a) and (b) of section 1.3. In fact, taken with
the Lagranglan calculations described earlier, this 1s the most
consistent method of distribution of the properties of a
Lagranglan zone among the generalized zones which it overlaps.
It would, however, require a rather lengthy calculation of the
volumes of polyhedral solids. To avoid such computation, a
simpler method has been used in the AFTON codes to account for
the transport of material from one zone to another. We assign
to each coordinate surface of a quadrilateral slab normal to
the plane of flow a material velocity (g - §) relative to the
surface (S will be used in general to denote the velocity of

a coordinate surface or of a mesh point). The scalar product
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of (U - S) with the vector area of the relevant surface of the
quadrilateral slab then glives the rate at which material volume
crosses the surface, e.g., cm3/sec. Multiplying this rate by
At we obtain an estimate of the volume of material which flows
across the surface during a time-step. Then, by estimating the
density, 1.e., the amount per unit volume, of any particular
material property, and performing a further multiplication by
this density, the total amount of the property which flows
across the surface 1n a time step is determined. By summing
the quantities so somputed over all the laces of a polyhedral
reglon the net change of that material property in a time step
is found for the region. In the case of mass conservation, the
equation embodying this procedure in AFTON 2P 1s as follows:

mt = m® - at [(pWA)12 + (pWA)p3 + (PWA)gy + (pWA)ul] (34)

where

W

(pWA) p = pyoHyp° A

=12

and (pWA)23, (pWA)34, (pWA)u1 are computed in a similar manner.
Pio 1s the density of material flowing across the surface whose
area 18 Ayy (See Appendix I, Eq. 81).

The flow of internal energy, momentum, etc., from one polygonal
slab to another, 1s calculated in analogous fashion.
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SECTION 2,0

THE CALCULATION OF GENERAL ONE-DIMENSIONAL
STRESSES AND STRAINS IN AN ARBITRARY TIME-DEPENDENT
COORDINATE SYSTEM AND THE PROPERTIES OF SCME
TIME-DEPENDENT MESHES

With regard to the use of numerical methods tc predict one-
dimensional continuum motion the main results achieved in the
program have been of two kinds, First, the AFTON 1 code (Ref, 3)
has been expanded to handle general stresses and strains for the
three cases of one-dimensional motion (linear, cylindrical and
spherical). Previously, only hydrodynamic motion could be
described by the code. Again, the code permits the use of
virtually any time-dependent coordinate mesh in which to describe
motion and as in all the AFTON codes, the underlying finite
difference equations satisfy exact conservation theorems for
mass, momentum, and energy. Secondly, progress has been made

in defining an optimum time-dependent coordinate system for

the numerical description of continuum motion., With the
generalized coordinate system definitions adopted in the
program, AFTON 1 has been used to solve some specific problems
of spherical motion which have also been computed by numerical
Lagrangian methods, Although the time-dependent coordinate
systems employed have some deficienciles which are now obvious,
the results thus far obtained provide evidence that the accuracy
of numerical solutions can be significantly improved by properly
distributing a givgn set of mesh points at each instant of time,

The calculation of strains in non-Lagrangian finite difference
meshes 1is carried out by a method similar in spirit to that
suggested in the Final Report (Ref, 3) on the first year's work,
although it 1s quite different in detail.

Strain is basically a property of individual mass elements and
its evaluation 1s therefore most naturally carried out in a




Lagrangian coordinate system. This state of affairs is
reflected in our procedure for the calculation of strain-even
in an arbltrary time dependent coordinate system, changes in
strain are determined only by material motion, in a calculation
made explicitly for regions of fixed finite mass. In fact,

the search for a satlsfactory procedure for updating the
strain variables in a generallzed coordinate zone'has led us

to divorce completely the principles of motion from the
calculation of transport. The laws of motion apply in thelr
most basic and elementary form to elements of fixed mass, just
asfdoes the definition of straln; transport results from the
essentlally arbltrary choilce of a coordinate system by an
ohserver to help him describe the motion he observes. Specirf-
ically, AFTON 1 now updates the varlables of the motion by a
time step 1n two distinct and sequential calculations. First,
the elements of mass which happen to be contained within the
boundaries of a zone at some "earlier time" are moved to some
"later time" positions according to Newton's Second Law , which
as stated 1s basically Lagranglan. When thils Lagrangian
calculation has been completed, the finite difference mesh
selected by the problem solver 1s overlaid on the updated
Lagrangian mesh, and the contents of each generaiized zone are
examined for the purpose of defining the updated varlables of
the motion in these zones. Thus, for example, 1f the density
in each Lagranglan zone 1s assumed constant, then the mass
encompassed by the boundarles of any given generallzed zone can
be found at the later time from the densities resulting from the
Lagranglan calculation. It 1s likewlse possible,in the one-
dimensional cases, to compute unamblguously and exactly the mean
principal strains of each generallized zone, knowlng the stralns
in the Lagranglan zones at the earliler and later times. The
corresponding calculation 1s not unambiguous 1n two and three
space dimensions.
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With regard to strain, the procedure Just outlined for spherical
symmetry 1s 1llustrated more fully by Figures S5a and 5b,

Figure 5@ shows a portion of the finite mesh at an "earlier time" s
tn'l. Figure 5b shows the same four zones at a later time t". é
In Figure 5b the dashed lines indicate the later time positions
of those particles which happen to coincide with the various
zone boundaries at the earlier time t%°1 (Figure 5a );

the solid lines 1ndicate the later-time positions of the
generalized zone boundaries themselves. The numerical calcula-
tion then proceeds as follows. The positions of the mesh polnts
which coincide with zone boundarles at tn'l are updated to their
new values according to Eq. 35.

_1 n-%
2y g (35)

where Xg 1s the new position of the Jth mass element boundary;

n-1 J . N=% n-%
X its previous positicn; U 1ts velocity, and A t the
J J

1
current time step. The new speclfic volume ngg, and the

1
dilatation A? g can now be found from Eqs., 36 and 37.

1
-2
1

a3 - [l - (543 (9

where m?:i is the mass between the zone boundaries J and j-1.

i e G AN (37)

To f£ind the radial strain eg } in zone "B" of Figure 5b we note that
the positions of the boundaries of the Lagrangian mass element

are known at both the earlier and later times along with the

’ 39




T VS STy

s

J+2

J+1
Cc
J (a) time to-1
B
J=1
A
J=2
|
1
J+2
J+l1
¢ .
3 (b) time tR ]
B |
J-1
A :
J-2

Figure 5
SCHEMATIC OF A PORTION OF A FINITE DIFFERENCE
MESH FOR ONE-DIMENSIONAL SPHERICAL MOTION

(a) Positions of the zone boundaries at tB-1,

(b) Dashed lines indicate the positions at t2 of those
particles which happen to coincide with_the various
zone boundaries at the earlier time tn'ls the solid
lines indicate the generalized zone boundaries at tB.
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state of strain of the element at the earlier time. The
principal radial strain of zone "B" at the later time is then

given by . .
n _ .n-1 n-1 | J-1 an-z
QLJ_% = GJ-% S 8 - QJ_% X?_I ) X?_i t (38)

Equation 38 gives exactly the mean strain of the element at time
tn, if the values of the variables on the right hand side of

the equation are exact. Since the line of mass points between
the boundaries of a generallzed zone consists of segments which i
fall 1n a set of contlguous mass elements, the unstrained
length of each segment, and hence of the entire line, can be
readily computed. The mean principal radial extension cf the
material in that generalized zone 1s then just the radial
distance across the zone dlvided by the unstralned length of
the radial line of mass points between 1ts boundaries. The
principal radial strain 1s Just thils ratio minus one. For
example, the zone "D" of Figure 5b has 1ts boundaries at the

radlal positions X?, X?-l and consists of part or all of the
three Lagranéian zones bounded:by the radial positions

Xg ,XE ,XE s, and Xg . The three Lagranglan zones in
J+1 73 “J-1 j-2

question are "A," "B," and "C" of Figure 5b, If L: is the length of

any radial mass line contained within zone "A" at time n, then

1+ el \, where

its unstralned length is Jjust equal to Lg/

al
eg is the principal radial strain in zone "A" at time n. 1In
a
particular the mass-line segment between XE and Xj-l’ which
J-1

is that portion of zone A's radial mass line contalned within

zone "D," must have an unstrained length equal to

/

n n n
X - X 1 + 1.
LJ-l J-1 a

Making a similar computation for
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zone "B, which lles entirely within zone "D} and for zone "C,"
which lies partially in zone "B,"we find that the radial mass
line contained within zone "D" has an unstrained length given
by

&, - x0 X, - x0 5.

n _ “Lj-1 J-1 LJ LJ-1 J LJ
Ly = 2 i (39)
D g o eX 1+ eg T eg

The princlipal radial strain of zone "D" is therefore given by

xt . x?
eg =._i_7rl:l -1 (40)
Ly

It 1is assumed for simplicity that each Lagranglian zone 1s homo-
geneously straineq,and in this case the valué of eg Just computed
is exact for the mean principal radial straln of zone "D" at

time t". If a more complicated strain distribution 1s assumed

in the interlors of the Lagrangian zones, then, while a calcu-
lation of the principal radial strain in a generalized zone
proceeds in steps 1dentical to those Just taken, the algebraic
form of the result will be more involved.

The treatment of straln Just 3escribed for non-Lagranglan coordi-
nate systems has been incorporated into one-dlmensional computer
codes and tested in some non-Lagranglian time dependent coordinate
systems. The principal non-Lagrangian coordinate systems investi-
gated so far are an "accordion" coordinate system, and an "activity
coordinate system. In the accordion coordlinate system the space
between the boundaries of a material at any given time 1s divided
into zones of equal wlidth. The activity coordinate system uses

a measure of local activity, y,, to determine the relative thick-
nesses of the zones contalned within the boundaries of a glven
material. In the activity coordinate system, the greater the
activity quantity YJ’ for a zone, the thinner that zone 1s made.
Two measures of activity have been used so far. They are given

by
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1

Yy = - —j 3 (39)
S R I LS I LR
4!Aquax .
and
1
Yy =S TE, T ¥ 2R, F & (40)
1Pg-1, *efy L,
T R @
max

Here, |UJ - UJ_1 1s the maghitude of the veloclty difference ‘
across the Jth zone at time tn,and ‘AJ,, the magnitude of the

mean of the accelerations experienced by the jth zone boundary 1
at time tn'l and t®. The width of a zone 1s then made Inversely
proportional to 1ts activity. The parameter q, which appears

in both deflnitions of Y42 1s an input quantity which may be
used to control the ratio between the maximum to minimum zone

size in any gliven problem. The ratio Ymeix to Ymin is given by

Yoax/Ymin = (@ + 1)/a =k + 1 (41)

where k = 1/q. Thus, for example, 1f k = 3, the ratio of the
maximum to minimum zone width 1s 4.

To test the validity of the finite difference equations used to

calculate strain in a generallzed time-dependent coordinate system

and to gain some 1insight into the proper choice of an activity

' quantity, Yy calculations have been made for a shock running
outward from a spherical cavity into an elastic medium with
Lame' constants A = 1, ¥ = O (the hydrodynamic limit) and with
A= u = 1/3. The code runs were made using a Lagrangian coordi-
nate system and a time-dependent coordinate system which 1s
intended to cluster zones 1n regions of maximum activity, as
described above. The spherical compression wave in the elastlc
medium 1s generated by the uniform adiabatic expansion of a gas

- in the spherical cavity. Thils problem was chosen because 1t bhas
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an exact analytical solutlion for the radial velocity as a
function of time. Lt. H. Cooper of the Air Force Weapons
-Laboratory has provided a corvenient form of this exact
solution.

Figures 6 and 7 compare the results of three different code
runs with the exact analytical solution for the hydrodynamic
case. In these flgures the radial veloclity 1s plotted as a k|
function of a radlal coordinate for a glven time 1. Of these
three code runs, two used Lagranglan coordinates. The first,
Problem I, had a flxed number of zones per unit radial distance.

In the second Lagranglian run, Problem II, twlce as many zones
were used per unlit radial distance as in Problem I. The third,
Problem III, employed a generallzed coordlnate system whose
activity quantity, y,, is given by Eq. (40), The initial
coordlnate mesh in Problem III was l1dentical to that of Problem
I.

It 1s clear from these figures that, 1n the hydrodynamic case,
accurate numerical solutions can be obtained 1n both types of
coordinate system. Only in the immedlate vicinity of @& shock
front do gizable percentage errors in the veloclty appear.

These errors take the form of a diffusion or spreading out of

the 1deally discontinuous velocity which 1s unavoldable in a
discrete mesh and, perhaps more importantly, are evidenced Ly
osclllations in the yelocity about the correct values. Such
differences as are evident indicate that the time-dependent
coordinate system leads to more accurate results than a Lagrangian
coordinate system with the same number of zones and produces
smaller errors even than a Lagrangian problem with twice the
number of zones. Mainly, thls reflects the smoothing of the
oscillations behind the shock front by the backward treatment

of transport in the code. However, since the particle veloclty
of the shock front 1s 1tself small relative to the peak velociuy
of compressed material found at the cavity wall, the errors in
veloclity appear 1in all cases to be insignificant for hydrodyramlc

motion.
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Figure 6

s COMPARISONS OF THE NUMERICAL AND ANALYTICAL SOLUTIONS

OF A SPHERICALLY DIVERGING COMPRESSION WAVE IN AN
ELASTIC MEDIUM WHOSE LAME' CONSTANTS ARE

‘ . \= 1,4 - o (Hydrodynamic Limit)
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Figure 7

DETAIL OF SOLUTIONS AT THE SHOCK FRONT OF A
SPHERICALLY DIVERGING COMPRESSION WAVE IN AN
ELASTIC MEDIUM WHOSE LAME' CONSTANTS ARE
A= 1,4 - o (Hydrodynamic Limit)
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In the case of A = u = 1/3, where hoop stresses are comparable
to pressures, the situation is different. The velocity at the
shock front is the same as in the hydrodynamic case but is now
the largest velocity to be found in the shocked material.
Errors significant compared to this velocity no longer appear
negligible, In fact, the whole scale of significant velocities
i1s reduced by at least an order of magnitude, and this case
therefore provides a more stringent test of the numerical calcu-
lational procedure, The results are shown in Figures 8, 9, and
10 where the numerical solution i1s again compared to the exact
analytical solution at a given time T, Except for the Lame!
constants, these problems are identical to Problems I, II, and
III., Once more, Figure 8 shows the Lagrangian result with the
zoning of Problem I, Figure 9 shows the Lagrangian results
with the zoning of Problem II, and Figure 10 shows the results
obtained using a time-dependent coordinate system in which the
initial coordinate mesh was identical to that of Problem I.

In the case of equal Lame' constants, the Lagrangian solutions
are accurate only in a time- or space-averaged sense., At a
single time, zone by zone oscillations appear in velocity, radial
stresses, etc., which can constitute errors of 50 percent or

more at specific mesh points., (See Figure 8,) It was found

that these errors decrease as the mesh is refined (Figure 9),
although at a somewhat less rapid rate than was expected (Ref. 3).
For = the equations of Von Neumann and Richtmyer (Ref. 7), these
oscillations represent a basic limitation on the accuracy of
solutions to problems of this kind, On the whole, the results
obtained with the generalized coordinate system were significantly
better than the results shown in Figures 8 or 9, although the
shock front itself was considerably eroded. This erosion is due
to a combination of two effects: diffusion of mass and momentum
arising from backward differencing, and the failure of the co-
ordinate mesh to provide fine zoning at the shock front, This
result is shown in Figure 11 where YJ is superimposed over the
exact solution.

u7




e

o
Analytical Solution-———,
0.16 —
B Numerical Solution
(Problem I, Lagrangian)
0.12 |~
30.08 W
-y
8 8
-{
)
>
%0.04 |
Lol
:
| I i
0 2 3 4
Radial Position Coordinate
-0.0"'

Figure 8
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Figure 10
COMPARISON OF THE NUMERICAL SOLUTION USING A TIME-DEPENDENT
COORDINATE SYSTEM WITH THE ANALYTICAL SOLUTION OF A
SPHERICALLY DIVERGING COMPRESSION WAVE IN AN ELASTIC
MEDIUM WHOSE LAME' CONSTANTS ARE 'G=p= 1/3
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ACTIVITY QUANTITY, ¥j, OF PROBLEM III OVERLAID ON THE
ANALYTICAL SOLUTION
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The two definitions of activity led to essentially ldentical

results 1In the case of spherically outgolng elastic comprescsion
waves, and both suffer from the defect that they imply relatively
little éctivity at the peak of a conmpression pulse, where fine
zoning 1s desired. Nevertheless, 1t appears that the effort made

in AFTON 1 to achieve great flexlbility in the choice of a coordi-

nate system will in fact lead to the economical solution of
continuum motion problems originally intended. As a result of

the work done to date, some speciflc ways of lmproving on the

coordinate system definitions used in this program are now evident,

and the resulting coordinate system definitions appear capable of
relatively simple extension to two-dimensional motion where the
potentlal economies of solution are substantlally greater than

in one space dimension.

To obtain the maximum possible accuracy

of numerical solutions by an optimum distribution of mesh points,
further studles of activity definltlons and coordinate systems

should be made.
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APPENDIX I
INTERIOR AND BOUNDARY
EQUATIONS FOR AFTON 2A
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NOTATION
Principal extensions
Internal energy of zone "a" at time t°
Energy of material tranaported across
zone boundary " m
Force on the quarter zone wedge face area
Vector force assoclated with vertex
point (1) of zone "a" at time tR
Energy of the total system at time "
Total energy of zone "a" at time t"

Vector momentum of mesh point -
at time tn

Momentum mass assoclated with mesh
mint 1) 1"

Momentum of the total system at time &
Mass of zone "a" at time t"

Diagonal element of the artificial
viscosity tensor

Vector velocity of mesh point "1i" at time

"% having components u and v in the
radial and axial directions respectively

Rate of work on the total system

Rate of work on face "mt"
Specific volume of zone "a" at time t"
Radial position coordinate at time ¢

Axial position coordinate at time "
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P
n

Pa

R
Xyl

Ay = | A
0
le

Ay = |2z
0

A

ah=%y

Stress tensor defined in the coordinate
system of the principal strains; its
components are

Py 0 0
= 0
0 Py

Stress tensor defined in the external
coordinate system; its components are

Pj3 Pp O
Poy Py O
0 o P,

Rotatlon matrix; its components are

Xyl le 0
Xy2 xz2 0
0 0 1

Principal strain direction; radial
component xyl’ axial component xya

Principal strain direction; radial
component le, axial component xza

Volume dilatation

Time step used to advance the variables
from t"1 to t"
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Constants

A,u

Principal Strains

Compression of zone "a" at time t"

Excess compression of zone "a" at time t"

Density of materilal transported across
zone boundary "Am"

Density of zone "a" at time t"

Volume of zone "a" at time t®

Lame! constants

Input constant to control the number of
zones over which shocks are spread

Tillotson Equation of State constants

-
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Figure 12
SCHEMATIC OF A QUADRILATERAL WEDGE
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SCHEMATIC OF THE POINTS AND SIDES OF THE FCUR
QUADRILATERAL ZONES (a, b, ¢, d).

The labeling of this figure is consistent with the notation

used in the equations of Appendix I, which describe the cal-
culations for interior and boundary zones both.
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Strain Calculation

Let a quadrilateral zone be divided into two triangles by a

diagonal connecting two of its vertices a, B. Let a, B, Y be a
clockwise ordering of the vertices of one of the triangles. Also
let Ty be the position vector of the point &, etc. for the unstrained
quadrilateral and g&, etc. the corresponding vectors for the

strained quadrilateral,

5a = Vg - Yy (42)
8 =¥ - (43)
Co =2 - 2y (44)
¢4 =zy -2y (45)
§g =Yg -y (46)
6 = Yh- Yy (47) '
Ce = 2zg - 2, (48) &y
Chb =z -z} (49)
A = §:68 - 8gqa (50)
ae = (Ca8d - Catp)/A (51)
ap3 = -(3p84 - Sa%h)/A (52) '
azp = (gls - CalpIa - (53)
‘agy = -(8g%4 - SaCh)/A (54)
Repeat Eqs. 42 through 54 for each of the four triangles into

which the quadrilateral can be divided by its two dlagonals ;
compute 522,etc.,as the arithmetic mean of the four values of

CPYY etc. so generated. Then calculate:
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Ir

22

a3

33

e3

2 2

85p + &3
522523 + 532533
. 5232 + a332

= 0, set
ir ¢t
ir ¢t

>t

22’ 22

op <t

. {t33, 1f top > ¢

if t22 <t

p |
0

|
(o

# 0, compute

= %?(taa + t33)t [(t,,- t33)2 + 41:332]&]

il
N\
<
oé
4
~

-
&)
N

33
33

33
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2 2]-4 23
Ay = ["23 + (b - %) ]- oo - *s (66)
0

Of the four unit vectors A* and their negatives choose as the
strain axes the two having the largest positive y and z components
respectively. These are called éy and A, .

v = E-1 (67)
¢, = Ey-1 (68)
€ = Eg-1 (69)
A = (Yn/Yo) -1 (70)
Moo= d/e, (71)
N L (72)
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For simplicity, the transport calculation defined by Eqs.74 through
82 refers to a mesh of Eulerian rectangular zones. The general
case requires the additional calculation of the relevant interior
vector areas for momentum transport, and the inclusion of the

mesh point motion in the definition of transport velocity.

By definition, for any variable f (scalar, vector, or tensor), let

? = 37 + M) (73)

Then compute

nN?
”~
'

i |
"0y = 3@, + ) [Ty - (74)
0
B - 7
g = Gy + 25) |9y - ¥y (75)
0
Ay = paml"' "am (76)

where the point m follows the pointl as the perimeter of a zone
1s traversed clockwise.

Wit @t . Y (77)
Wat = 3@ + v57?) (78)
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(Ma))y = my ol <Oy (79)
(OWA)23 = 923_2-3.% 'Q.32 (80)

where, depending on the smoothness of the density field in the
nelghborhood of the zone at time tn, elther

P12 = J‘k("a“l * 92-1) = (.15%'(.121)”'%92'1/(22- 2?) (81)

or _
ol e (5% -0y > o
912 = (82)
Bt ir @115% "Qy) <O

An analogous computation 1s made for 923

.yl _ yo (83)

N An-%t[m)la + (W) + (MHR)gy

+ (pr),u] (84)

pn - mn/Yn
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Stress Calculation

P, O O

P =[O0 B, O (87)
o o P

® - R p R (88)

Where the components P_, P_, P_ of P are given by

y’ "z’ °x
Py = -(M + auey) (89)
Pz o -(XA + auez) (90)
P, = -(XA + a;cx) (91)

for an elastic medium, or Py = Pz = Px = P 1f the material can

be described hydrodynamically. One such hydrodynamic description
for TUFF is the Tillotson (Ref. 8) Equation of State:

E" N

P = (a + b/g) + M+ B.lna (92)

when V/V_ < 1 for all E" > 0

V/V, < Vg for all ER < Eq

or

P = aE' + [ GE"/g) + m" exp eu“/n“)] exp[-a(u“/n“)g] (93)
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T DU -

when |
n *
1l < V/Vo_< VS for E" > ES

and
V/V, > Vg for all E' >0
Here
g = -—E-n—ﬁ-é + 1
Eo'f'l |
l
i
Then P11 P12 0 |
n tr {
By = RPRy ={Pp Py O (94) | |
0 o | P I
, ~ T
2 2
Pyy = APy *+ APy (95) |
Plo = Xylxyepy + Az1)z0f, (96) '
]
2 2
Pap = AyoPy + AzoP, (97) x
and
q o o
0 0 q

2
4 yn_ yn-1
q = Cq p" é[Cy? - yg)a + (?3 - z?)2] [;n-it Y"'%] (99)

Pq; = €" Pt (100)
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AJ.1 - y?z? = y?z? ; 1, = 1,2,3,4
O‘iy 2y (Fsoat F4) - Ry (et 3’1+1) +*Ay,0 A a0y
_ 1l 5 G..+5.)43 -
Q, =|Q,|- 6| Y1-1 (roy * 51) + 5206y + 5440)
0 0

For non-Eulerian coordinate systems, Yg is calculated as

M
Y e 3 un-t . a, (102)
1ml
-1 5 -
A R A (103)
Define
Ve = [(yf + ¥,¥p + nr';')/3]it (104)
(yo = ¥4)24 + - '
2y = Yo = ¥4)Zq + (¥4 - ¥1)25 (105)

- (ye - yl)

Similar definitions hold for the points 2, 3, and a of Figure 13
A = (y;_1 - yg)(z; - z?) for i=1 (106)

An analogous definition holds for 1=2,3,4,
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Ry, (@4 - A)) + PRy, O, + FRA, (107)

Fa1 = l’-"112((11;; - &) + Py, Uy,
0
(PWAE) 5 = (pWA),, Eyp (165)

where, depending on the smoothness of the energy field in the
neighborhood of a zone at time tn, either

Bp = 4ET B - @17 0 Y/ - 2 (109)

or
-1 -
e, B 100 ) 2o
-1 =
Eq ~, 1f (‘1'1‘2% 'Qpy) <O | (110)
E, = (PWAE)y, + (PWAE),s + (PWAE)gy, + (PWAE)y, (111)
4
E} = E;"l - iy (E, + 1§ R, -U,] (112)
MD =Ml (R ¢ By ¢ Byt Fa) (113)
‘ i
Sal = | A, | A0, | (114)
saz = | Oyl 4 Qg | (115)

68




g %(°a1"‘a 4oy + 8o, + °d1"‘d) (116)

o () - ()
n & 1 4 Un'% +%

Hy =By +gmy|sEy Uy 2 - Uf (118)

At = E H" (119)

all zones

Let B, be the given (input) stress tensor acting on the face
mt . Then

mgml = ~Pmg mQ‘ml =
Tt = Pt Ui (121)
ARl SIS S ¥ =
ot g ngg | (123)
Poo= iy + By ) (124)

where the summations are taken over all boundary faces ml .
n »
m =3 (125)
z M

where the summation 1s taken over all mesh points p

F

y = T (PA) (126)

qz az

where the sumation is taken over all quarter zones qz
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Fore|o
F 0
2 N .
_}/n-l
- et
-mn-l . (127)
=7 4“'%1: 1
(128)
(129)
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At the axis of symmetry (z-axis) J = 1):

v @), = o (130)
lamn = maml. =0 (131)

If point 2 of Figure 4 is a point on the axis of symmetry then,

@g)z = @g-l)z & (Eaz i l?da)z An-%t (132)
m, = £(m, + my) (133)
eI L [200) /m,) -0t (134)

At the boundary logically parallel to the axis of symmetry
(T = JMAX):

u= (), =0 (135)

Ig point 6 of Figure 4 is a point of the JMAx6boundary,'chen
( E76 + _13'65)z 1s assumed to be given. If ( Fog + ?-'65)2 = 0,
the boundary condition 1is one of "free sliding." Next,

6
(61-?76 i E65)y = @cG i EbG)y (136)
ow both components of E76 + 1_?65) are known.

%), = (6?76 +Eg t Fpg * GEss)z oty @-2-1)2 (137)

mg = (a, + m) (138)
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phEE [Q@g)z/%] -2t (139)

The resultant applied force <?E76 + 6§65) contributes an amount

1 ook g
-6-2°(§E76 + 6§35) to the overall rate of work W' 2 on the entire .
system. It also contributes (FE76 + 6§652An'%t to the total.
impulse delivered to the system in time A "%t.

Boundary (K=1) with velocity prescribed (i.e., if point 8 of
Figure 4 1s a point of the K=1 boundary, then yﬁ* is given

3

for all n). i
mg =iy +m,) (o) 1

B - g+ o) (141) |

%ar + o = (8 - M3/ Ht - (ggp + Bop) (142) -

The resultant applied force 8387 + 8398 contributes an amount .
gg'%.(?§87 + 829é) to the overall rate of work W% on the entire

system. In the time-step An'%t, it also contributes (?E87 + 8396>An-%t

to the impulse delivered to the entire system,

Top boundary (K = KMAX) with velocity prescribed (1.e%, if point 4§
of Figure 5 1s a point of the KMAX boundary, then yﬂ+ is given
for all n)

m,, = &(@b + m;) (143)

R AR & " (14 .

g + By = O - M)/ - (R ¢ Fy) (145) &t
T2




The resultant applied force I‘F,B + qull contributes an amount

y“" (ali‘“3 + Fsll) to the overall rate of work W% on the
entire system., In the time-step A" %t 1t also contributes
(Flt3 + Fslt)An %t to the impulse delivered to the entire system.

Sc ithwest corner (J=1, k=1) with velocity prescribed(i.e., if
point 9 of Figure § is the southwest corner point then Um'
given for all n, and Un % @ng)y = 0).

s = (45 - W3/ He - pyg | - (147)
Northwest cormer (J=1, K=KMAX) with velocity prescribed (i.e., if

point 3 of Figure 5 is the northwest corner point, then Um'% is
given for all n, and Um'% = (M n) = 0).

my = im (148)
-1 =
- (5 - /e - s (119)
Northeast corner (J=JMAX, k=KMAX) with velocity prescribed (1i.e.,

if point 5 of Figure 5 1s the northeast corner point, then U5 n+} is
given for all n, and Un = (y") = 0).

mg = im (150)

5 5 n-1y ,,n- '
%Eoy + %Res = (5 - m)MEe - g (151)
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point 7 of Figure 5 is the southeast corner point, then unt
Rt o @), = 0) T
given for all n, and 7 M? v = .

im, (152)

Southeast corner (J=JMAX, K=1) with velocity prescribed (1.e%, if
is

m7 =

T + By = @ - /e - B (153)
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APPENDIX II
INTERFACE EQUATIONS
FOR AFTON 2A
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s N\
/s N\
’ \
7/ N ]
// \\
a2, AN |
]
S| R P
1 \_\ -5-1 // 3 |
\ / '
\ //
\\ / ﬂ
/
\ |
\ ‘,’4 |
5—1 J J+1
Figure 15

SCHEMATIC ARRANGEMENT OF MESH POINTS,
HALF-ZONES, AN TRIANGLES AROUND AN
INTERFACE POINT

All subscripts used in Eq. 154 through 178
which determine motions of an interface
point, refer to the labeling shown in this

figure,
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n, =kx (_ = r? HA _1;2"1- g?'ll (154) ’
|
1 - (2071 - 21
3' rg‘I = r?'j-_'- yg-l - y;.l-l (155)
0 )

y, - {E(yf;-l)"‘ P EDED + G ase)

\

I [ R N SN B V- ) B CES

B op, o+ (Y2 s Y2y (158) ?

The final position 2' of the interface point 2 is found by
iteration. Each 1iteration i1s begun with a guess at the proper
value of the variable a, which is the component of the
particle velocity at the point 2 normal to the interface; a(l)
is the first guess at a.

n, = (5o + npy) (159)
Y, = n,xk-= a2 (160)

-%2

.

!21 - rg 1y ab ).BgAn-it
. ande [@3'3/2)3, ny, - (U¥2), nzy] £, (161)
|
7

\



= é(%g + zg'l) (162)

Z., = %(?2, + zgtl) [ use guessed value for zp,](163)

3] + z,),ete. (164)

Referring to triangle 2TAL = I:

2,(5 + Fo1) = 240 + Fp) + Baug + Rpa

asE-% .. . .. . (165)
20T L5 G + o) + 5aGan + T

0

Similar expressions hold for the other two corner points of
the triangle. Next,

RGO ST o

u = G- e (167)
Compute

Y . grel-'-% : QST% + 1_,2-% . Qg-% N @-% . gg-% (168)

T DL 7 aP-%¢, (169)
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Calculate principal strains and strain axis directions for
triangle I, using gg and gg to obtain g:. Repeat the calcula-
tions for triangles II, III, IV. Iterate to solve the
following equations for the principal stresses P;I PZI, PQI
and the internal energy E?: ’

a0 #
Pyp = Pyr QF €y1’ Cz1’ ‘.‘:’Ix/“‘x):“"'

22 for triangle I

Form P’l‘l, 9‘1‘2, P

Calculate:

b = Ay = 2 = 305 - TDEE - DG - DGR - ] oo |

|

[BQF5 - 2) + #5¢ A%k + E |

| AP OE - ) ¢ 03 ()

| o

Ef = Rt - A“'%t@g7§~ge, +yt F, + yg‘% . gs) (172)

=A

Repeat the calculations for triangles I1I, III, IV.

Calculate: E
n n
Z21 - 2
2Ug,, = (g + v31)| ¥3 - 5 (173)
0
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28Fgo1 = (Bpp - Pr1p)20p,, | (174)

28Foy = (PI - P1\1)2(—12'A (175)
28F = 2bF,,, + 24Fp,, (176)
20F, = n,-204F, (177)

Form the next guess at a, and repeat the calculation starting
with Equation (161). Successive a-guesses are intended to
reduce AFn systematically to zero.

Compute:
vl 1 -t

Ul . (U 4 Ul 2).t, (178)
U:‘l‘% = Converged value of @& (179)

yh-%
yg'% & mz( '; ) (180)

[ where

| Nzo Nyo
| R, = (181)

“Nyo Nzo
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Figure 16

SCHEMATIC OF THE INTERFACE AND HALF-ZONES

All subscripts used in Eqs. 178 through 212
which determine the half-zone variables, refer
to the labeling shown in this figure.
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Calculate
Calculate

Calculate:
Qut3|
P 43

Eh'3'

straln in ,Iy_

stress in ,&L, using the old internal energy E".

- -%<?ﬁl + yzl)

zgl - zﬂl
Yyo = Y3
0

1
ﬂ- L)

(182)

= Average of the stress in 21_ with the stress in

the zone sharing face 4'3' with

= P4|3| c_llp3v

Similarly, calculate El'h" 23,2,, 36'5" ES'I' and §2'6"

Calculate:

- 463 - R - ) - 63 - EDE - D)

- 3[63 - EIER - ) - 63 - LG - )
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(185)

(186)

(183)

(184)




Your = yll\
t = 1 z -2 ‘
=2'1! Tor = Ty 2! 1'/ (187)

0

The condition for a strongly glued, or nonsliding interface

1s then expressed as follows:

Foigrr toigr = {[m.g.@llul + §u|3t + E3|2| + Ew-)
-m_(F 16! +E6|5| +

* Ew)} ' t2'1'} M+

= J.I':J

Em = [(im - §].').2-2' ¥ (52' = im)zll]/ (\ygl - yl') (190)

There are similar expressions for ym+, ym P, zm+, zm ;s these
were formed as part of the interior (i.e., nonboundary)

motion calculation

App = 'k(- Vy)(‘ E zlu) G -yu,)(z E zl').

A3, and A), are assoclated with the half-zone / _; corresponding

areas AS' and Ag, must be calculated for the half-zone /..
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1 © (188)

A R ARE DY & (189)

o= 4Gy - 5 - B) - G - )G - 5)

(191)

(192)




Solve simultaneously for E&, Ef:

et - 3(ER - Q4 egY)

et - 3"+ Q7+ pQMY)

m+
Pom = P 4G + 50) | Tn - T
o
: -% |
Fem = (qu_‘-i). 35, + ¥,) ( §: : ir: (196)
0
et o Q0 4 P Y) (197)

-CEa111); Boo- By

Fyomy = ( (t2rar) ) {eqnt . 2@y + im)(in = s'1-)

-(t2120)e Za1 - Iy

®21m '( @2'1')y) { me™t - 1Ga + s'm)(’-’m E l-'a")
_, 0

0

| Agrydd = 42 + 71 [(5'21 7 5'71.)2 + (o - 21,)2*

Py ." @2!1! ‘ tgllu)A Agllu' -
Gzlla)y (t.gql)z -
o T -(ta);  (onr)y O
' 0 0 1
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(198)

(199)

(200)

(201)




(El'm)'l‘

(Foip )y

-1l'm

g'2'm

AR R [@1-' Uss) Fp gt @s:- %) Tnum

ET -gf 4 [@2:-93')'?-'1'111* @3" yl,.)-Em-m

2,
* % . %(S’lu * ?m) im

* ).Bm . %(§2| + im) im - §2l

(131'm)T

@l'm N

(Faim)7

(Fz'm N

+ @6-" ygt)'?gnm] An-%t

- (US')y e x+A5l) - (U t)y Cyhg1)

+ @lp" 91!)'?1%]6“-%17

- 030y By 23) - @)y Gy y)

(203)

(204)

(295)

(206)

(207)

7 ~ (208)




The forces need to update the mcmenta at 3', 4', 5', and 6' are:

Py Az

Fav = Foig~Epmt| © (209)

P, Ay

Fpo = Fpm = Py (210)

Prih6r

Fey, = F -

F B (212)

_ ( -
( |
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APPENDIX III
FORTRAN NOTATION
FOR AFTON 2A
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“ Sense Switch Control

Sense
Switch

No.

Use

(NOTE: All Sense Switches Are Normally Assumed
to be OFF,)

S.S. #1 forces the current problem to edit,
makes a restart dump, and returns control to

the Monitor System.

S.S. #2 forces the current problem to edit,
makes a restart dump, and then starts calculation

of the next data run.

8 8




Equations of State

Tillotson Equation of State

Defininitions:

Case I

and

where

Case II

For TUFF

m << T > o
I ]
= —
(@] .
o [
(@]

Q
It
wn

V/V_. <1 for all E® >0
n
V/V° <Vs for all E <E'8

{a + b/g}(;n/Vf) + M+ B

2

)
e
n

g = (En/Eonz) +1
1<V/V <V, for E“>E's

VAV >V, for all E™0

PP = aE%™ +  J(bE™™/g)+Auexp(-8h)) exp(-ah?)
where: g = (En/Eon2)+1
_ S R ')
h= (VV)-1=%-1=2
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‘Elastic Medium

P, = -(xA+2uey)

P, = '(}A+2“ez)

] P, = -(\a+2ue, )
where

A, 4 are Lame' constants
A = Volume dilatation

€ cRN= The three principal sgtrains

y, €z:

Test Problem Data
For region 1 \=u=1l,

For region 2 \=y=1l.1
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INITIAL INPUT DATA

CARD - FORMAT -~ VARIABLE - VALUE

1 (16) ICON
0
Any
Value
EOF
2 (9A8) TITLE Any
Value
3 (6E12.5) PROBNO Any
Value
4 (1216) KSV1 0
1l
KSv2 0
1
KSV3 ---
KSV4 0
Any
Value
KSVHs 0
Any
Value
KSV6 Any
Value
KSV7 0
Any
Value
KSv8 0
Any
Value

9l

- MEANING

Sentinel to define type of run
Normal run, start from

initlal conditions gilven
below

Restart dump number, which

is used to search dump tape
End cf fille; stops run, no
more data to follow

Problem title or description
NOTE: Column one should
contain a zero for carriage
control on printer

Problem number. NOTE: Out-
put format is (F7.2)

No edlit on MAXN or TMAX
Edit on MAXN or TMAX

No dump taken on MAXN or TMAX
Dump taken on MAXN or TMAX

(Available Variable)
No edit at start of calcu-
lation

Number of consecutive cycles

to be edited at start of
calculation

No editing on cycle count (N),
ignore KSV6

Number of cycles between
edits

Number of cycles when next
«dit occurs

One cycle in each edit
Number of consecutive cycles
in each edit

No dumpirgon cycle count,
ignore KSV9

Number of cycles between
dumps




e e e e s |

CARD - FORMAT - VARIABLE - VALUE - MEANING

5

6

(6E12.5)

(1216)

KSv9 Any
Value
KSv10 -——
KSvV1l 0
Any
Value
KSvi2 0
1
SAV1 0
Any
Value
"SAV2 Any
Value
SAV3 0
Any
Value
SAVY Any
. Value
JBOT ——
JTOP -———
KBOT -—
KTOP -——
KBUG 0
1
MOTION 1
2
3
KINT(K) 0
Any
Value

92

Number of cycles when next
dump occurs

(Available Variable)

Full edit all grid points,
no extra card number 28

Number of short edits, see
card 28 for J and K limits

Edit generator initial
conditions

No edit of generator initial
conditions

No editing on physical time,
ignore SAV2

Amount of physical time
between edits

Physical time next edit
oceurs

No dumping on physical
time, ignore SAV
Amount of physical time
between dumps

Fhysical time when next
dumpd occurs

(Available Variable)
(Avallable Variable)
(Available Variable)
(Available Variable)

No debug print, no card
number 22

Take debug print see card
22 for J, K limits

Eulerian grid motion
Lagrangian grid motion
(Available Sentinel)

No interfaces

Mumber of a K Line to be
treated as an interface.

NOTE: Five interfaces maximum




CARD - FORMAT - VARIABLE - VALUE

7 (6E12.5) DTNM Any
Value
8 (6E12.5) CUTOFF Any
Value
9 (16,2E12.5)
MAXN Any
Value
TMAX Any
Vall}e
10 (1216) JMIN 1
JMAX Any
Value
KMIN 1
KMAX Any
Value
11 (216,5E12.5/6E12 .5)
JYMIN Any
Value
JYMAX Any
Value
™(J) Any
Value
12 (216,5E12.5/6E12.5)
KZMIN Any
Value
KZMAX Any
Value

93

- MEANING
Size of initial time step

Sentinel used to set a
minimum value of a variable

Maximum number of cycles to
run problem

Maximum physical time to
run problem

First J Line

Number of maximum J Line in
a regilon. NOTE: Limit 55

First K Line 1in a region

Number of maximum K Line
in a region. NOTE: Limit 101

Number of J Line for first
radial component of position
entry

Number of :J Line for last
radlial component of position
entry

Value of radial component

of position for JYMIN to
JYMAX. If JYMAX 1s greater
than 5, 5 TX(J) follow JYMAX
on the first card, 6 TX(J)
per card follow until
TX(JYMAX) 1s reached

Number of K Line for first
axial component of position
entry

Number of K Line for last
axlal component of position
entry




CARD - FORMAT - VARIABLE - VALUE

TY(K) Any
Value

NOTE: If JYMIN equals JMIN and
follows.

13 (16,2E12.5)

JTMAX Any
Value

DELTAY , Any
. Value

RATEY Any
Value

- MEANING

Value of axlal component of
position for KZMIN to KZMAX.
If KZMAX 1is greater than 5,
5 TY(K) follow KSMAX on the
first card, 6 TY(K) per card
follow until TY(KZMAX) 1is
reached

JYMAX equals JMAX, no card 13

Number of J Line for last
radial component of position
entry

Initial radial distance
across a zone

Rate of change in radilal
distance across a zone

NOTE: If JTMAX 1s less than JMAX repeat card 13.

NOTE: If KZMIN is equals KMIN and KZMAX equals KMAX, no card

14 follows.
14  (16,2E12.5)

KTMAX Any
Value

DELTAZ Any
Value

RATEZ Any
Value

Number of K Line for last
axlal component of position
entry

Initial axial distance across
a zone

Rate of change in axial
distance across a zone

NOTE: 1If KZMIN 1s greater than KMIN or KTMAX 1s less than

KMAX repeat card 14.

15 (6E12.5) UXLBIN Any
Value

UXBIN Any
Value

UXRBIN Any
Value

o4

Radial component of
velocity at JMIN, KMIN

Radial component of
veloclity at an interior J,
KMIN

Radial component of
veloclty at JMAX, KMIN

i b e




CARD - FORMAT - VARIABLE - VALUE -

UYLBIN Any
Value

UYBIN Any
Value

UYRBIN Any
Value

16 (216,E12.5/216,E12.5)

JUMAX Any,
Value

KUMAX Any
Value

UXIN Any
Value

JVMAX Any
Value

KVMAX Any
Value

UYIN Any
Value

17 (6E12.5) UXLTIN Any
Value

UXTIN Any
Value

UXRTIN Any
Value

UYLTIN Any
Value

UYTIN Any
Value

UYRTIN Any
Value

95

MEANING

Axlal component of veloclty
at JMIN, KMIN

Axial component of velocity
at an interior J, KMIN

Axial component of velocity
at JMAX, KMIN

Number of last J entry for
radial component of veloclity
at an interior K

Number of last K entry for
radial component of velocity
at an interior K

Radial component of velocity
at an inteyior K

Number of last J entry for-
axlal component of veloclty
at an interior K

Number of last K entry for
axlial component of veloclty
4% an interior K

Axial component of veloclty
at an interior K

Radial component of velocity
at JMIN, KMAX

Radial component of veloclity
at an interior J, KMAX

Radial component of velocity
at JMAX, KMAX

Axlal component of velocity

at JMIN, KMAX

Axial component of velocity
at an interior J, KMAX

Axial component of velocity
at JMAX, KMAX




S ———————
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CARD - FORMAT - VARIABLE - VALUE - MEANING
18

19

20

3(216,E12.5)
JZMAX

KZMAX

R ZERO
JRMAX
KRMAX
RHO 1
JEMAX
KEMAX
El
(6E1%.5) TINY A
TINY B
BIG A

BIG B

RCP V S

E ZERO

(6E12.5) E S

Value
Value

Any
Value

96

Number of last J entry for
R ZERO

Number of last K entry for
R ZERO

Reference density (po), a
constant

Number of last J entry for
RHO 1

Number of last K entry for
RHO 1

Initial materlal density
Number of last J entry for
El

Number of last K entry for
El

Initial specific internal
energy

Tillotson equation of state
constant

Tillotson equation of state
constant

Tlllotson equation of state
constant

Tillotson equation of state
constant

Tillotson equation of state
constant

Tillotson equation of state

constant

Tillotson equation of state
constant




CARD - FORMAT - VARIABLE - VALUE - MEANING

ALFA Any
Value

BETA Any
Value

QCON Any
Value

NOTE: Cards 19 and 20 appear NREG

21 (6E12.5) SFMLYR Any
Value

SFMLZR Any
Value

Tillotson equation of state
constant

Tillotson equation of state
constant

Q constant

times.

Radial component of the
external force applied to a
zone on the JMAX boundary

Axlal component of the
external force applied to
a zone on the JMAX boundary

NOTE: If KBUG 1s equal to O, no card 22 follows.

22 (1216) JBMIN Any
Value
JBMAX Any
Value
KBMIN Any
Value
KBMAX Any
Value

no card 23 follows.

23 (216,E12.5)

J UMAX Any
Value

KUMAX Any
Value

UXIN Any
Value

NOTE: If JUMAX x KUMAX 1s greater
JMAX x KMAX, repeat card 23.

97

First J Line to be included
in a debug edlt

Last J Line to.be included in
a debug edit

Filrst K Line to be included 1in
a debug edit

Last K Line to be included in
a debug edit

NOTE: 1If JUMAX x KUMAX 1s equal to O or equal to JMAX x KMAX,

Number of last J entry for
radial component of velocity
at an interior K

Number of K entry for radial
component of veloclty at an
interior K

Radlal component of velocity
at an interior K

than 0 and less than




CARD - FORMAT - VARIABLE - VALUE - MEANING
1

NOTE: If JVMAX x KVMAX 1s equal to O or equal to JMAX x KMAX,
no card 24 follows.

24 (216,E12.5)

JVMAX Any Number of last J entry for
Valye axial component of velocity
v at an interior K
i KVMAX Any Number of last K entry for
_ Value axlal component of veloclty
at an interior K
UYIN Any Axlal component of velocity
Value at an interior K

NOTE: If JVMAX x KVMAX 1is greater than O and less than
JMAX x KMAX repeat card 24.

NOTE: 1If JZMAX x KZMAX 1s equal to O or equal to JMAX x KMAX,
no card 25 follows.

25 (216,E12.5)

JZMAX Any Number of last J entry for
Value the reference density
KZMAX Any Number of last K entry for
Value the reference density
{ R ZERO Any Reference density
Value

NOTE: If JZMAX x KZMAX 1is greater than O and less than JMAX
x KMAX, repeat card 25.

NOTE: If JRMAX x KRMAX 1s equal to O or equal to JMAX x KMAX,
no card 26 follows.

26 (216,E12.5)
JRMAX Any Number of last J entry for
Value density

KRMAX Any Number of last K entry for
Value density

RHO 1 Any Density
Value

NOTE: If JRMAX x KRMAX 1s greater than O and less than
JMAX x KMAX, repeat card 26.




CARD FORMAT VARIABLE VALUE MEANING

NOTE: If JEMAX x KEMAX 1s equal to O or equal to JMAX x KMAX,
no card 27 follows.

27 (216,E12.5)

JEMAX Any Number of last J entry
Value for specific internal
energy
KEMAX Any Number of last entry K
Value for specific internal
energy
El Any Specific internal energy
Value

NOTE: If JEMAX x KEMAX 1s greater than O and less than JMAX
x KMAX, repeat card 27.

NOTE: If KSV1l equals O, no card 28 follows.

28 (416) JIMIN Any First J Line to appear in
Value an edit

JIMAX Any Last J Line to appear in
Value an edit

v KKMIN Any First K Line to appear 1n
Value an edit

KKMAX Any Last K Line to appear in
Value an edit

This 1s the end of the Initial Input Data, it may be followed
by another Initial Input Data Deck, a Restart Data Deck, or
three blank cards signifying end of run, no more Data Decks
to follow.
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RESTART INPUT DATA
CARD - FORMAT - VARIABLE - VALUE - MEANING
1 (16) ICON Any Number of restart dump from
Value which to start calculation
Greater
Than O
2 (9a8) TITLE Any Problem title or description.
Value Column 1 should contain a
O for carriage control on
printer
(12I16) KSv1-12 See card 4, Initial Input Data
(6E12.5) SAV 1-4 See card 5, Initial Input Data
5 (I6,2E12.5)
MAXN Any New maximum cycle count, stop
Value problem if cycle count (N)
exceeds this number
TMAX Any New physieal time, stop
Value problem 1f TIME exceeds this
number

NOTE: If KSV1l equals O, no card 6 follows.

6 (416) JJIMIN-KKMAX See card 23, Initial Input Data
This 1s the end of Restart Input Data, it ma, be followed by
another Restart Data Deck, and Initial Input Data Deck, or

three blank cards signifying end of run, no more Data Deck
to follow.

100




Variables in COMMON or DIMENSION and their Definitions

VARIABLE DIMENSION DEFINITION

NREG Number of regions in problem

MOTION Sentinel to speciry the coordinate
system to be used

PROBNO Problem number

DUMPV 600 Special area in common, equivalent
to NREG, first record of data dump

N * Cycle number

TIME Physical time of problem

DTNM Time step (At)

RDTNM 1./8¢

DTNMN Time step calculated for the next
cycle

DTNMP5 One-half the time step (.5 x At)

DINM2 Twice the time step (2. x At)

CUTOFF Sentinel used to set a minimum ;/
value of a variable

CUT1 ' At x CUTOFF

cuTr2 DTNM2 x CUTOFF

MAXN Maximum cycle count, stop problem N
if exceeds this number

TMAX Maximum physical time, stop problem
if TIME exceeds this number

SAV 12 Floating point sentinels

KSvV 24 Fixed point sentinels

TITLE 9 Title or description of problem

' (header card)

JMIN First J Line in a region

JMAX Last J Line in a region
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VARIABLE
JL
J3
JR

ICON

LINCT
IXI
KC
NDPA
NEDIT
NSIG

NMASS
NDMP

DIMENSION

Sentinel to define type of start,

DEFINITION

JMIN + 1,J Line in a region
JMIN + 2,J Line in a region 1
JMAX - 1, J Line in a region
JMAX - 2, J Line in a region
Minimum J Line for debug edit
Maximum J Line for debug edit
First K Line 1in a region
Last K Line 1n a region

KMIN + 1, K Line in a region
Minimum K Line for debug edit i
Mé#imum K Line for debug edit

K index of an interface

KMAX - 1L,K line in a region ]
KMAX - 2, K Line in a region

e.g., start from restart dump
K Line count for output '
K index for K Lines in core (I = 1,5)

K Line count for calculation

Data dump sentinel

Edit sentinel

Sentinel to define actlon to be
taken at the end of a cycle, e.g.,
read in new problem

Negatlive mass sentinel

Number of restart dump
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VARIABLE
X

TY
UYLBIN
UYBIN
UYRBIN
UXLBIN
UXBIN
UXRBIN
UYLTIN
UYTIN
UYRTIN
UXLTIN
UkTIN
UXRTIN

R ZERO
EIN

RHOIN

DIMENSION

55

101

DEFINITION

Radial component of position of a
mesh point

Axial component of position of a
mesh point

Axial component of veloclty at
JMIN, KMIN

Axial component of velocity at an
interior J, KMAX

Axial component of velocity at
JMAX, KMIN

Radial component of velocity at
JMIN, KMIN

Radial component of velocity at
an interior J, KMIN

Radial component of velocity at
JMAX, KMIN

Axilal component of velocity at
JMIN, KMAX

'Axial component of velocity at

an interior J, KMAX

Axlal component of velocity at
JMAX, KMAX

Radlal component of velocity at
JMIN, KMAX

Radlial component of velocity at
an interior J, KMAX

Radial component of velocity at
JMAX, KMAX

Reference density

Specific internal energy of an
interior zone

Density of an interior zone
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VARIABLE DIMENSION DEFINITION

UYIN Axlal component of velocity of
an interior mesh point
UXIN Radial component of velocity of
. an interior mesh point
QCON 5 Q constant

E S 5 Tillotson equation of state
constant

ALFA 5 Tillotson equation of state
constant

BIG A 5 Tillotson equation of state
constant

BIG B 5 Tillotson equation of state
constant

RCP V S 5] Tillotson equation of state
constant

. E ZERO 5 Tillotson equation of state
' constant

TINY A 5 Tillotson equation of state
: constant

TINY B 5 Tillotson equatlon of state
constant

BETA 5 Tillotson equation of state
constant

ICASE 55 Sentinel to distingulsh between the

two algebraic forms appearing in
the Tillotson equation of state

H 55 Working storage for Tillotson
equation of state .
BETAH 55 Working storage for Tillotson

equation of state

ALFAH 55 Working storage for Tillotson
equation of state

AMUBH 55 Working storage for Tillotson
equation of state

AMUBMU ‘ 55 Working storage for Tillotson
equation of state
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VARIABLE DIMENSION . DEFINITION
LAMMA 3 5 Lame' constant Lambda
EMU 5 Lame' constant Mu '
RXZ 55 x 5 Initial radial position coordinate
RYZ 55 x 5 Initial axial position coordinate
RXM 5 x 5 Radial position coordinate at |
° the start of a time step
RYM 5 x 5 Axial position coordinate at the ;
start of a time
RX 55 x 5 Radial position coordinate at
the end of a time step
RY 55 x 5 Axial position coordinate at
the end of a time step
UNMX 55 x 5 Radial component of velocity
at the start of a time step
UNMY 55 x 5 Axial component of velocity
at the start of a time step
UNPX 55 x 5 Radial component of velocity
at the end of a time step
UNPY 55 x 5 Axial component of velocity at
the end of a time step
U2 55 x 2 Square of the velocity
VOL 55 x 5 Specific volume
Qll 55 x 5 Element of the artificial
viscosity tensor
Ql2 5 x 5 Element of the artificial
viscosity tensor
Q22 55 x 5 Element of the artificial
viscosity tensor
(4) ¢ 55 x 5 Element of the artificial
viscosity tensor
PNM 5 x 5 Element of the stress tensor, without
an artificial viscosity contribution,
at the start of a time step
PN 55 x 5 Element of the stress tensor, without

an artificial viscosity contribution,
at the end of a time step
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VARIABLE
P11l

Pl2

P22

PX

54

Pz

PQNMXX

PQNMXY

‘PQNMYY

PQMX

PQNXX

PQNXY

PQNYY

PX

RHO
Vo

DIMENSION
55 x 5

55 x 5

55 x 5

55 x 5

55

55

55 x 5

55 x 5

55 x5

55 x 5

55 x 5

55 x 5

55 x 5

55 x 5
55 x 5

DEFINITION

Element of the stress tensor
minus Qll

Element of the stress tensor
minus Ql2

Element of the stress tensor
minus Q22

Principal stress along the
azimuthal stress axis minus QX

One of the three princlpal stresses,
without an artificlal viscosity
contribution

One of the three principal stresses,
without an artificial viscosity
contribution

Element of the total stress tensor
at the start of a time step

Element of the total stress tensor
at the start of a time step

Element of the total stress tensor
at the start of a time step

Total principal stress along the
azimuthal stress axic at the start
of a time step

Element of the total stress tensor
at the end of a time step

Element of the total stress tensor
at the end of a time step

Element of the total stress tensor
at the end of a time step

Total princlpal stress along the
azimithal stress axis at the end of
a time step

Density

Reference specific volume

Compression = VO x RHO .
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VARIABLE
GMU

ENM

FMASNM

FMASN

FMSNZ
CMASSI

ATY

AIZ

AWI

FIY

FIZ

FMNX

FMNY

RH3Z

DIMENSION
55

55 x 5
55 x 5
55 x 5
55 x 5

55 x 5
55 x 5

55 x 5

55 x 5

55 x5

55 x5

55 x5

55 x 5

55 x 5
55 x 5

55 x 5

DEFINITION

Working store for Tillotson egquation of :
state. Excess compression = ETA-1l. ]

Specific internal energy at the | i
start of a time step

Specific internal energy at the
end of a time step

Zone mass at the start of a time
step

Zone mass at the end of a time
step

Momentum mass

Mass of a zone assoclated with its
vertex I (I=1,2)

Radlal component of the vector area
subtended between wedge planes by
the side of a zone (I = 1,4) .

Axlal component of the vector aréa
subtended between wedge planes by
the side of a zone (I = 1,4) f

Area of a zone assoclated with one
of 1ts vertices (I = 1,4)

Radlal component of force assoclated
with the verte.. point (I) of a zone
(I . 1:4)

Axial component of force assoclated
with the vertex point (I) of a zone
(I 2 154)

Radlal component of momentum at the
start of a time step

Axlal component of momentum at the
start of a time step

Radlal component of momentum at the
end of a time step

Axial compdnent of momentum at the
end of a time step

Density of materlial transported across
a zone boundary in one coordinate
direction
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VARIABLE DIMENSION DEFINITION
RH1Z 55 x 5 Density of material transported across
a zone boundary in the other coordinate
direction ’
E3Z 55 x 5 Specific internal energy of a materilal

transported across a zone boundary
in one coordinate direction :

ElZ 55 x 5 Sbecific internal energy of a material
transported across a zone boundary
in the other co~rdlnate direction

et e

across a zone boundary in one
coordinate direction

RWA3Z 55 x 5 Rate of transport of mass across a i
zone boundary in one coordinate
direction !
RWAl1Z 55 x 5 - Rate of transport of mass across a 1
zone boundary in the other coordinate
direction
RWAE3Z 55 x 5 Rate of transport of internal energy {

RWAE1Z 555 x 5 Rate of transport of internal energy
across a zone boundary in the other
coordinate direction

NTPT b5 x 5 Sentinel to determine the proper form
of the transport density

YIB 55 Radlal position coordinate of a special
point S on the line segment jolining
two adjacent mesh points

YTERM 55 Difference between YIDB and the radial
coordinate of one of the two mesh 1
points defining the line segment on k
which S lies ‘

Y2TERM 55 Difference between YDB and the radial
coordinate of the other mesh point
defining the line segment on which
S lies

TAI 55 The point S divides the side of a
zone and 1ts assoclated area into
two parts. TAI is the fraction of
this area residing in cne of the two .
parts (I = 1,2)
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VARIABLE DIMENSION DEFINITION
A 55 Table of signs of second differences
of the density of one coordinate
direction
B 55 x 4 Table of signs of the second differ-
ences of the density in the other
coordinate direction
DIL 55 Volume dilatation |
EPX 55 Principal strain along the azimuthal |
strain axis
EPY 55 One of the three principal strains
EPZ 55 One of the three principal strains
FMLYB 55 Radlal component of the external
force applied to a zone on the
KMIN boundary
FMLZB 55 Axlal component of the external
force applied to a zone on the
KMIN boundary
FMLYR 101 Radial component of the external
force applied to a one on the
JMAX boundary
FMLZR 101 Axial component of the external
force applied to a zone on the
JMAX boundary
FMLYT 55 Radlal component of the external
force applied to a zone on the
KMAX boundary
FMLZT 55 Axial component of the external
. : force applied to a zone on the
KMAX boundary
LYT 55 Radial component of a unit vector {
along the principal strain axis (I), i
(I =1,2)
LZI 55 Axlal component of a unit vector

along the principal strain axis (I),
(I = 1:2)
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VARIABLE
RIH

ZIH

AYQ

AZQ

TRAPV

TRAPYH
TRAPZH
YDELTA

ALPHA
DF
DIST

221

Y2l

DIMENSION
55

55

55

55

55

101

101

55

100

100

DEFINITION

Radial component of position for

mesh point at time t“‘%; I(-1,4)
dintinguishes the vertices of a
single zone

Axial component of position for

mesh point at time t"°%; T (= 1,4)
distinguishes the vertices of a
single zone

Radlal component of a vector area
assoclated with a zone for the
calculation of the artificial
viscosity of the zone

Axial component of a vector area

assoclated with the zone for the

calculation of the artificilal
viscosity of the zone

Radial component of the mid point
of the side of a zone in one
coordinate direction

Radial component of the mid point - 1
of the side of a zone in the other L
coordinate direction

Axial component in the mid point
of the slde of a zone 1n the other
coordinate direction

Difference between radial position
coordinates of the two points defining
the side of a zone

Working storage, value of particle
velocity normal to an interface

Difference between the normal stresses
at the two sides of an intertface

Distance between two adjacent
interface points

Negative of the axlal component of
the vector jolning two adjacent
interface points

Radial component of the vector joining
two adjacent interface points
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VARIABLE DIMENSION DEFINITION

NY12 2 Radial component of a unit vector
normal to a vector joining two
adjacent interface points

NZ12 2 Axlal component of a unit vector
normal to a vector jolning two
adjacent interface points

YA 2 Radial position coordinate of a
special point on the line segment
Joining two adjacent interface
points, at the start of a time step

ZA 2 Axlal position coordinate of a
special point on the line segment
Joining two adjacent interfeace
points, at the start of a time step

YAN 2 Radial position coordinate of a
special point on the line segment
Joining two adjacent interface
points, at the end of a time step ]

ZAN 2 Axlal position cocrdinate of a
speclial point on tie line-segment
Joining two adjacent interface
points, at the end of a time step

UNAY 2 Radlal component of veloclity at %
an interface point averaged over
a time step

UNAZ 2 Axlal component of velocity at an
interface point averaged over
a time step

UNORM 55 x 5 Component of particule velocity
normal to the interface averaged
over a time step

YAZ 55 x 5 Radlal component of the initial
position of the point corresponding
to (YAN,ZAN)

ZAZ 55 x 5 Axial component of the initial
position of the point corresponding
to (YAN,ZAN)

AIYT ' 4 Radial component of the vector area
subtended between wedge planes by the
slde of an 1nterface triangle

AIZT 4 Axial component of the vector area

subtended between wedge planes by the
side of an interface triangle
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VARIABLE
FMASST
DILT

LYIT

LZIT

EPYT

EPZT

EPXT

PZT

PXT

P11T

Pl2T

p22T

P11BT

P12BT

P22BT

DIMENSION

DEFINITION
Mass of an interface triangle

Volume dilatation in an interface
triangle

Radial component of a unit vector
along the principal strain axis (Ig,
for an interface triangle (I = 1,2

Axial component of a unit vector
along the principal strain axis (I),
for an interface triangie (I = 1,2

One of three principal strains in
an Interface triangle

One of three principal strains in
an interface triangle

Principal strain along the azimuthal
straln axis in an interface triangle

One of the three principal stresses
in an interface triangle

One of the three princlpal stresses
in an interface triangle

Princlpal stress along the azimuthal
stress axis 1n an interface triangle

Element of the stress tensor for an
interface triangle

Element of the stress tensor for an
interface triangle

Element of the stress tensor for an
interface triangle

Element of the stress tensor for an
interface triangle, averaged over a
time step

Element of the stress tensor for an
interface triangle, averaged over a
time step

Element of the stress tensor for an

interface triangle, averaged over a
time step
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VARIABLE
PXBT

FIYT

FIZT

QLlT

QleT

Q22T

AT

VOLM

VOLT

ZB

YBU

ZBU

T

S e e o

DIMENSION
i

m

DEFINITION

Element of the stress tensor for an
interface triangle

Specific internal energy in an
interface triangle

Area of an interface triangle

Radial component of force assoclated
with vertex point (I), for an
interface triangle (I = 1,3)

Axlal component of force assoclated
with vertex point (I), for an
interface triangle (I = 1,3)

Element of the artificlial viscosity
tensor in an interface trliangle

Element of the artificla. viscosity
tensor in an interface triangle

Element of the artificlal viscosity
tensor in an interface triangle

Element of the artificial viscosity
tensor in an interface triangle

Specific volume in an interface
triangle at the start of a time step

Specific volume in an interface
triangle at the end of a time step

Radlal position coordinate of a mesh
point which lies on the interface,
averaged over a time step

Axial position coordinate of a mesh
point which lies on the interface,
averaged over a time step

Radial position coordinate of a mesh
point which lies on the KINT+1l K-Line,
averaged over a time sterp

Axial position coordinate of a mesh

point which lies on the KINT+1l K-Line,
averaged over a time step
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VARIABLE
YBD

ZBD

T21Y

T212

SUMIE

SUMKE

SUMTE

SMSTPT

SMASSI

SMASS

FIMPZ

SMZTPT.

SMOMZI

DIMENSION

2

55

55

55

55

DEFINITION

Radial position coordinate of a mesh
point which lies on the KINT-1 K-Line,
averaged over a time step

Axial position coordinate of a mesh
point which lies on the KINT-1 K-Line,
averaged over a time step

Radial component of a force used to
compute the tangentlial stress at an
interface

Axlal component of a force used to
compute the tangential stress at an
interface

Radial component of the unit vector
tangentlal to the interface

Axial component of the unit vector
tangential to the interface

Total internal energy contained within
the boundaries of a system at an
instant of time

Total kinetic energy contained within
the boundaries of a system at an
instant of time

Total energy contained within the
boundaries of a system at an instant
of time

\
Net mass transported into a system in
a time step

Mass of a system at the start of a
time step + SMSTPT

Total mass contained within the
boundaries of a system at an instant
of time

Total axial impulse delivered to a
system in a time step

Total axial momentum transported
across the boundaries of a system

Initial axial momentum + FIMPZ
+ SMZTPT
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VARIABLE
SMOMZ

SFW

FIMPY

SMYTPT

SMOMYI

SMOMY

SIETPT

SKETPT

usQ

WORK
SENERI

PTMASS

S1

S2

S1

TEM

KTOP
VACANT

DIMENSION

55

55

101

55

55

15

DEFINITION

Total axial momentum contained within
the boundaries of the system at an
instant of time

Toteal radial component of force acting
on the azimuthal plane boundaries of
a system during a time step

Total radial impulse delivered to a
system in a time step

Total radial momentum transported
across the boundaries of a system

Initiel radial momentum + FIMPY + SMYTPT

Total radial momentum contained
within the boundaries of the system
at an instant of time

Total internal energy transported
into a system across its boundaries

Total kinetic energy transported
into a system across its boundaries

Twice the kinetic energy per unit
mass for transport

Total work done on a system

Total initial energy of a system
+ SIETPT + SKETPT + WORK

Working storage for the edit
subroutine

Working storage for input/output
buffers

Working storage for input/output
buffers

Working storage for input/output
buffers, (I = 3, 33)

Working storage for the stress
subroutine

(Available Variable)
(Available Variable)
(Available Variable)
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APPENDIX IV i
FLOW DIAGRAM

FOR AFTON 2A
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0 Y
Time = Time +AT
N = N+1
Set:
NDPA
NepiT | =0 | ‘
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Set;
NEDIT =1

Set:

NEDIT = -1

™

%
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y
Compute: I:
KSV,= KSV,-1
é |
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KSV, = KSV,
+ KSVs

KSV, = KSV; -1
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T

Subscript (V)
refers to vertical
transport terms
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HORTPT
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Nete:
Subscript (H) refers
to Herizenel Trenspert

terms.
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RETURN
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Computa:

==

Compute:

SMASS
SMSTPT
SIETPT

!

Compute:

SKETPT
SMYTPT
SMZTPT

Compute:
FIMPY
FIMPZ
WORK
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il

Compute:

SUMIE
SMOMY
SMOMZ

{ ,

Compute:

SMASS
SUMKE

!

Compute:

FIMPY
FIMPZ
WORK
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Compute:

SMSTPT
SIETPT

!

Compute:

SUMKE
SMOMY
SMOMZ

Y

Compute:

SKETPT
SMYTPT
SMZTPT

!

Compute:

FIMPY
FIMPZ
WORK

N

Compute;
SUMTE

SMASSI
SENERI
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| Compute: . !

DIFFY
DIFFZ

| !

Compute:

! SFY *
SFZ

f
! .
Compute:

SUMTE {
DSTE

Y i
1
. < RETURN ) i

t
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RETURN
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SUMIE

SUMKE J

!

Compute:

SMOMY
SMOMZ

!

Compute:

FIMPY
FIMPZ

!

Compute:

SMASS
WORK

Compute for
Interfzco;

SMASS
SUMIE
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Compute;

SMOMY
SMOMZ

Compute:;

FIMPY
FIMPZ

Compute;

WORK
SUMKE

Compute;

SENERI
SMOMY |
SMOMZ|

RETURN




( ENERGY )

Compute:

( RETURN )
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G=D
'

Compute:

P11B, P12B
P22B, PXB

RETURN
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FORCE L

Interpolate

to find:

ZONE
AREAS

'

Compute:

P118B, P12B
P228, PXB

!

Compute:

F—al -F_4'
F2, F1
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‘(i HO:TPT:)

Ay Ay
A3, Auax

Y

Compute:

Pty
Et,

!

Compute:

pwhAy
pwAEqQ

el
i

Y
<=
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G

INITIALIZE

Working
Parameters

Move Mass
Points around
Interfaces

!

Move Grid
Points (y,z)
around
Interfaces

Compute:

Ia

o
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Compute:

YA
zA

Set:

Alpha - U,

Compute:

Volm,

- — — — P

Note:

Subscript (T) refers
to Trionglar Zone.
T-123,4

Compute;

"\1 .

Compute:
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Compute:
‘\T
mT

Y

Compute:
El,
E2¢
€3,

' |

A RT v
Ay

!

. Compute:

Pr

Y :

Compute:

Er

]

Compute:

E;
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PN, SO

NREG = NREG
+1

b

D




NREG = NREG
+7




Note:

+, = rofers te helf
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Compute;

Al
i =1234




LINEIN (L)




{

READ MT
(5K-lines) / °

REVWIND MT
MT =MT 41

r
G
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REVWIND MT
MT - MT +1

WRITE 10
(K-line)

X L ]

END FILE

10
RETURN
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LINOUT (L)

READ 5

(Print
Limits)
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I <
2
Compute:

KSVyq = KSV;,

+1

&
R

Jmin Limit
Jmax Limit

0
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W

Set:

Uncalculated

output pare-
meter to zeros #

r¥

WRITE 6
OUTPUT

Paorometers

REWIND MT
MT - MT 1

=
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M
Compute:

Compute;

FMSNZ

Y

Compute:
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Compute:

WRITE MT
Working
Veariables
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M S




g —




READ 9
Data Block
K=1, Kmex

Q

REVWIND 9

Parameters

RETURN




Compute:

TRAPY
YDELTA

Compute:

MT=1+2
(Nmeod2)

r

WRITE MT
Data

179

st .o




7

REVIND MT
MT = MT +1

REWIND MT

®




G

Compute:

SNOISE

Set: Set: Set:
[ 2 + ¥
Compute:
WDA
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Set:

NTPT =1

Set:

NTPT -2

Set:

NTPT -3

y

<
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G
'

Move
Grid
Points

(v, 2)

Y

Compute:

Compute:

A

!

Compute:

Ey
Ez
Ex

¥
<=




STRESS

(o)

Compute;
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Compute:

$SS

Compute:

DSS

rFIM:

SAVy -
MAX(DSS)

R

SAV, =
MAX(DSH)

RETURN
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. APPENDIX V
COMPUTER LISTING
FOR AFTON 2A
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PROGRAN AAEWC I INPUT :OUTPUT o TAPES= IRPUT » TAPEOSOUTPUT s TAPEL o TAPE D

LTAPES»TAPELD)
CONNON NREG ROTRMe MNOTION, JiiNe JBMARe KBNINe
KBNARe TIME, SMUMZIe SM2TPTe SHMOMZe SMOMYLe SHYTPTe SMUNY,
SENERI s SIETPTy SKETPTe WORK SUMIE, SUMKEs SUMTEe FlINPL
FINPYe SHASSIoe SMSTPTe SMASSe PROBNOy DTNM, CUTOFF, Ny
KBO0T, KTOP o MAXN o TMAX ¢ OTNMNy SFu» OTNMPS 9y DTNMZ»
(4N CUT] CUT2, UYLBINs UYBIN» UYRBINe UXLBINe UXBIN,
UXRBINe UYLTINe UYTINs UYRTINe UXLTINy UXTINe UXRTINs KTMo
JMIN, JMAX » KMINo KMAX o JLoy J3 JRy JRM»
KT» EINe RHOIN» UYIN» UXIN, KINT(5)
€ S(5), ALFA(S)» BIG A(S)y BIG B(5)e RCP V SI(D)ek LERUI(D)
TINY A(S)e TINY B(5)9 R ZERO(5)¢BETA(D)» QCON(S)» SAV(12)
KSV(24) YTERM(55), Y2TERM(55)s TAL(55) TA2(55)
FMLYR(101)e FMLZR(101)e VACANTI(15)
COMMON Al(55)»
2 EPY(55), EP2(55), FMLYB(55),
3 FMLZT(5%) LY1(55), LY2(55),
& PY(55) P2(55), R1H(55),
5 ReMH(55) Z1H155), 22H(55),
6 U2(55+92) B(55,4)
COMMON

VENIDGOOOIOVEIWN

DIL(55)
FMLYT(55)
LZ1(%5)»
R2H(55)
Z3IH(55)

EPX(55)»
FMLZB(55),
L22(55)
RIH(55)
Z6H(55)

RX(55¢5) RY(55+5) UNMX (5595)

UNMY (5545)»
ENM(55+¢5)
PONMXX (55+5) o
PANXY(5505)
RWAE3Z(55¢5)
E32(5505)
ETA(55+5)
ALY (55¢5)
AGZ(55+5)
FaY(55¢5)
FoZ(55¢5)
FMNMX(5595)
AW1(55¢5)y
RXM(55¢5)
Ql1(55+95)
Pl11(55¢5)
PQAX(5595)

GONdOVENTIP G OOONOOVEWVLN->

UNPX(55¢5)
EN(55+95)
PANMXY (55¢5) »
PANYY(5595)
RWAE12(55¢5)
E12(55+5)
AlY(55¢5)
A12(5%,5)
F1Y(55¢5) 0
F12(55+5)»
NTPT(5595)
FMNMY (5595) »
AW2(55¢5)
RYM(5595)
Q1215595)
P12(5%¢5)
POMX(5595) »

UNPY(55+5)
PNM(55+¢5)
PONMYY (55+5)
RWA32(5595)
RH32(5595)
RHO(55+¢5)
A2Y(5595)
A22(55+5)
F2Y(55+5)
F2Z(55¢5)
FMSN2(5595)
FMNX(5505)
CMASS1(55¢5)
RXZ(55¢5)
Q221(55+5)
P22(55+5)
VO(55+5)

FMASNM(55¢5)
PR(55+5)
PONXX(5595)
RWAL1Z2(5595)
RH1Z2(55+5)
VOL(55¢5)
A3Y(55+5)
A3Z2(55+5)
F3Y(55e5)
F3Z(55+¢5)
FMASN(5595)
FMNY (5505)
CMASS2(5595)
RYZ(5595)»
QX(5595)
PX(5595)

S E— T T

COMMON  ICONs LINCTs LXls  LX2s  LX3s  LXés  LXSe
2 KCy NOPAs NEDITs NSIGs  NMASSs NOMP
COMMON AZQ(55) s TRAPV(5S5) o TRAPYH(101) s TRAPZH( 101) s AYQ(55)
24YDELTA(SS)
COMMON S1(55)+52(101)
COMMON GMU(55) sH(55) 9BETAH(55) s ALFAH(55) s AMUBH(55 ) s AMUBMU(55) »
2 ICASE(SS)

CHANGES

6 34H REASON-ACTIVITY CHECK ON PRESSURE/)

4 34H REASON-TAPE VERSION FOR 6600 /)
6 34H REASON-NEW G DEFINITION AND TRANS/)

SRR RRRRNENOTE

STRAIN IS COUNTER CLOCK WISE+FORCE CLOCK WISE
IN STRAIN AAB IS 1e/AAB

P XaXataYaaXataXaNaYaYaka

190




T€(60))

1 TISOMIAFTON 20 AXIALLY SYMNETRIC EULERIAN//
34M DATE OF LAST CHMANGE 01-095~637/
34M TIME 11307/
34H REASON-TIME STEP SHOCK ONLY /)

CALL AFTON

STOP

END

oSN

TR y—
s e .
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SNBROUTINE ACTIVE
<]

192

: NREG, ROTNM, NOTION: JBNMINe JBNAX, N
2 KDMAXe TIMEe SMOMZIo SMITPT, SMOMZe SHOMYIs SHYTPT, SHNOMY,
3 SENERIe SIETPTy SKETPT» WORKS SUMIEs SUMKE. SUMTE, FiMPZ,
& FIMNPYy SMASSIe SMSTPTs SMASSe PROBNOy DTNM, CUTOFFs Ny .
\ 5 KBOT, KTOP» MAXN o TMAX » OTMMNe SFuo DTNMPSy DTNM2,
6 KB CUTl CuT2, UYLBINe UYBINe UYRBINs UXLBINe UXBIN,
7 UXRBINe UYLTINs UYTINe UYRTINe UXLTINs UXTINs UXRTINe KTMs
8 JMINy JMAXe KMINy KMAXe  JLo J3e JRy JRM
9 KTo EINy RHOIN» UYIN» UXINs KINT(5)»
AE StS) ALFA(S5) BIG A(S5)s BIG B(5)9 RCP V S(5)9E 2ERO(5)
2 TINY A(S5)s TINY B(5)s R ZERO(5)sBETALS) QCON(5)» SAV(12)»
, & KSV(24) YTERM(55) YQTERM(55)9 TAl(55)» TA2(55)
5 FMLYR(101)es FMLZR(101)e VACANTI(1S5) :
COMMON AL55) DIL(55) EPX(55)
2 EPY(55), EP2155) FMLYB(55) FMLYT(55) FMLZB(55)
l 3 FMLAT(5%)y  LYL(55), LY2(55), L21(55) LZ2(55)
E b PY(55) PL(55) R1H(55), R2H(55)» R3IH(55)»
S RAM(55), Z1H155), L2H(55), LIH(55) LeH(55)
F 6 V2(55+2) B8(55:4)
COMMON
A RX(5595) RY(55+¢5) UNMX(5595)
1 UNMY(5545)0 UNPX(5505) UNPY(55+5) FMASNM(55+5)
2 ENM(55¢5) EN(55¢5) PNM(55¢5) PN(5595)
3 PONMXX(55+5) 9 PONMXY (550509 PONMYY(55¢5)9 PQANXX(5595)
& PQNXY(5595)s PANYY(5505) RWA3Z2(5595) RWA1Z2(5595)
S RWAE32(5595)9 RWAEL2(5505)9 RH3IZ(55+5) RH1Z(5595)
6 E3Z(55+5) E12(55¢5) RHO(5595) VOL(55+5)
7 ETA(15505) AlY(5595) A2Y(5545) A3Y(5595)
8 ALY (5505) AlLZ15595) A22155+95) A32(5595)
9 AMZ(55+5) FlY(55+¢5) 9 F2Y(155+95) F3Y(5595)
A F&Y(55958) F12(55¢5) F2Z15595) . F32(5595)
1 F42(55+5) NTPT(5505) FMSNZ(5595) FMASN(55+5)
2 FMNMX(5595)9 FMNMY(5505) FMNX(5505) FMNY(55¢5)
& AW1(55+5) AN2(5595) ¢ CMASS1(5595)9 CMASS2(55+5)
5 RXM(5595) RYM(55+5) RXZ(5595) RYZ(5595)
6 Q11(5505) Q12(55+5) Q22(5595) QX(5595)
| T P111(55¢5)» P12(5595) P22(5545)» PX(5595)
8 PQX(5595), POMX (5505) s VO(55,5) _
COMMON ICON» LINCTe LXIl» LX2s LX3y LXéb LXS»
2 KCy NOPA» NEDITe NSIGy NMASSs NDMP
Canans
IF(KCeEQeKMAX)IGO TO 20
Lol X1
L2sLX2
DO & JsJUMIN» JMAX
RWAL12(JeL2)%0e
[ RWAE1Z(JsL2)=00
S 00 10 JsJMINj»JIMAX
RWA32(JeL)20e
RWAE3Z(JeL)=0e
UNPX(JsL)SUNMX(JoL)
UNPY (JoL )SUNMY (JsL)
. FMASN(JoL )sFMASNM(JoL)
EN(JoL)SENM(JoL)
PN(JsL)SPNM(JoL)
PONXX(JoL )=PONMXX (JoL)
PONXY (Jo L )sPONMXY (JoL)
PONYY(JoL )SPANMYY (JoL)
PAX(Jol ) =PQMX (JoL)
F3Y(JeL)=0e
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|
SUBROUT INE AFTON
COMNON NREG ROTNMe MOTIONe JBMINe JONAXe KDMINe
2 KBMAXe TIMEs SMOMZIo¢ SMZTPTy SMOMZe SMOMYls SMYTPTe SMOMY, 4
3 SENERI» SIETPTe SKETPT» WORK SUMIEs SUMKEs SUMTEs FIMNPZ,
& FIMPYy SMASSLe SMSTPTe SMASSe PROBNOs DTNMy . CUTOFF, Mo
$ KBOT, KTOP» MAXN TMAX » OTNMNe SFW» DTNMPS5y DTNM2+s
6 KBy CUT1» CUT2, UYLBINs UYBINs - UYRBINe UXLUINs UXUBIN,
7 UXRBIN» UYLTINe UYTINs UYRTINs UXLTINe UXTINe UXRTINy KTMy 3
8 JMIN, JMAX » KMIN, KMAX ¢ JL» J3s JRy JRM»
9 KTy EINy RHOIN» UYIN» UXIN, KINT(5)
AE S(5) ALFA(S) BIG A(S)y BIG B(S5)y» RCP V S(5)+E ZERO(D5) v
2 TINY A(5)s TINY B(5)e R ZERO(S5)¢BETA(S)» QCONI(5) SAV(12)» |
b KSV(24), YTERM(55)s  Y2TERM(55)s TALl(55)» TA2(55)
S5 FMLYR(101)e FMLZR(101)9 VACANT(15) \ : |
COMMON AL55), DIL(55) EPX(55)
2 EPY(55), EP2(55), "FMLYB(55) FMLYT(55) FMLZB(55) 1
3 FML2T(55) LY1(55), LY2(55), LZ1(55) L22(55) |
& PY(55) P2(55) RIH(55) R2H(55) R3IH(55)
5 ROH(55) Z1H(55), Z2H(55), LIH(55) LeH(55)
6 U2155¢2)» B(55+94)
COMMON
A RX(5595) 0 RY(55¢5) UNMX (5595)
1 UNMY(5545) UNPX(5595) UNPY(55¢5) FMASNM(55+5)
2 ENM(5598), EN(5595) PNM(55¢5) PN(55+5)
3 PONMXX(5595)0 PONMXY(55+5)9 PONMYY(55+5)s PONXX(5545)
4 PONXY(55+¢5)9 PQNYY(5595) RWA32(55¢5) RWA121(5595)
5 RWAE3Z(55+¢5)9 RWAELZ2(55+5)9 RH3Z(55+¢5) RH12(55+5)
6 E32(55+5) E1lZ(55+5) RHO(55+5) VOL(55¢5)
T ETA(55+95) AlY(55¢5) A2Y(55¢5) A3Y(55+5)
8 ALY (5595) AlZ(55+5) A2Z(55+5) A32(5545)
9 ALZ(55+5) F1Y(15545) F2Y(55¢5) FAY(5545)
A FOav(55+¢5) Fl12(55¢5) F22(55+45) . F3l(5595)
1 F&Z2(55+5) NTPT(5595) FMSNZ(55+5) FMASN(5595)
2 FMNMX(5595)9 FMNMY(5505), FMNX(5595) FMANY (5595)
& AW1(559%) AW2(5595) CMASS1(5595)s CMASS2(55+5)
5 RXM(55¢5) RYM(55¢5) RXZ(55¢5) RYZ(55+5)
6 Q1l1(5595) Q12(5595) Q22(55+95) AX(5595)
7T P1l1(5595) P12(55¢5)» P22(5595) PX(5595)
8 PAX(55+%5) PQMX(5595) VO(5S5)
COMMON JCON» LINCTe LX)y LX2y LX3 LX&» LXS»
2 KC» NDPA NEDITes NSIG» NMASS» NODMP
COMMON AZQ(55) s TRAPV(55) s TRAPYH(101)sTRAPZH(101)+AYQ(55)
2oYDELTA(S5S5)
COMMON S1(55)952(101)
COMMON GMUI(55)9H(35)9BETAHI55) yALFAH(55) o+ AMUBH(55) 1 AMUBMU(55) »
2 ICASE(55) !
Chuuns
NOMP =0
REWIND 9
REWIND 10
4 REWIND 1
REWIND 3
READ(5+1) ICON
IF(ICONeEQeO) GO TO 20
10 CALL RSTART
NSIG=]
GO TO 32
20 CALL REDGEN
GO TO (3004)9NMASS
30 NSIG=]
31 TIME=TIME+DTNM
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NeNe)
32 SAV(9)=0,
SAV(10)=0.
NOPA =0
NEDITs0
Commee TEST FOR END OF PROBLEM

. 33 IF(NeGE«MAXN) GO TO 65

i IF(TIME«GE«TMAX) GO TO 65

C-===<TEST FOR FORCE OFF

IF(SENSE SWITCH 1)85+40

Covona TEST FOR FORCE TO NEXT PROBLEM

&0 JF(SENSE SWITCH 2 ) 86+50
C-====TEST FOR EDIT d
50 JF(KSV(&)eGTe0) GO TO 90
IFIKSV(5)eGTe0) GO TO 95
51 IF(SAV(1)eGTeO) GO TO 100
Comm=- TEST FOR DUMP
52 IFIKSV(8)¢GTe0) GO TO 105
53 IF(SAV(3)¢GT¢0) GO TO 110
Ce====FOR GENERAL COORDINATE SYSTEM
55 IF (MOTION«EQe2) GO TO 56
CALL FLOW
GO TO 57
56 CALL FLOW L
57 CONTINVE
Co====T0 CHANGE OT
KSV(14)=KSV(18)
KSV(15)aKSV(19)

. ‘ KSV(16)3KSV(20)
KSV(17)=KSVI21)
SAV(T)3SAV(9)
SAV(8)=SAVI1O0)

. IF(SAV(9)eGTeSAVI10)) GO TO 60
IF(SAVI10)¢EQe0) GO TO 62
DTNMN=1e/(4e®*SQRT(SAV(10)))
GO TO 61

60 DTNMN=1e/(4+8SQRT (SAV(9)))

] 61 STEPMAX=1005#DTNM

IF(DTNMNoGTeSTEPMAX)DTNMN=STEPMAX
OTNMsDTNMN
ODTNMPSs¢5%DTNM
DTNM2=20 #DTNM
CUT1=DTNM®*CUTOFF
CUT2sDTNM2#*CUTOFF
ROTNM=1e /DTNM
62 GO TO (319115+494)9NSIG
65 NSI1G=)
IFIKSV(2)¢EQe0) GO TO 75
70 NDPA=]
75 IFIKSV(1)eEQeO) GO TO 80
76 NEOITs)
GO 7O 55
80 NEDITs-)
GO TO 55
85 NSIG=s2
S GO TO 70
- 86 NSIG=)
GO T0 70
90 KSV(4)=KSV(4)=-1
GO TO 102
95 IF(NeLTeKSVI(6)) GO TO 51
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100

101
102

105

110
111
115

KSV(6)eKSV(6)oRIV(S)

G0 70 101

IFCITINESoSODTNN) oLTeSAV(2)160 TO 82
SAV(2)8SAVI2)+SAV(1)

KSV(4)=KSV(T) -1

NEDITs) ,

G0 TO 52 A
IF(NeLToKSV(9)) GO TO 53

KSV (9)5KSV(9)+KSV(8)

60 TO 111 |

IFCUTIME+«5%DTNM) oLToSAV(4)) GO TO 55
SAV(4)=SAV(4)+SAV(3)

NOPA =1

GO TO 55

END FILE 10

REWIND 10

STOP

FORMAT(16)

FORMAT(1H0+E16¢7/)

END
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SUBROUTINE BOUND

COMMON NREG ROTNMe MOTIONe JBMINe JBMAXy RPMINe
2 KBMAXe TIME» SMOMZie SMITPTe SMOMZe SMOMYIes SMYTPTe SNOMYe
3 SENERIy SIETPTe SKETPTs WORKe SUMIEs SUMKEes SUMIEs FIMNPZ»
& FIMPYe SMASSIs SMSTPTe SMASSe PROBNO» DTNM, CUTUFFo No
5 KBOT» KTOP MAXN» TMAX » OTNMNy SFWo OTNMPY e DTNM¢
6 KBy CUT1 CUT2, UYLBINs UYBINe UYRBIN' UXLBINe UXBINe
T UXROINy» UYLTINe UYTINs» UYRTINs UXLTIN» UXTINe UXRTINe KTMe
8 JMIN» JMAX 9 KMIN, KMAX » JLo J3y JR» JRM»

9 KT» EINy RHOIN» UYIN» UXINy KINT(5)

A E S(5) ALFA(5)» BIG A(5)s BIG B(S5)e RCP V S(5)+E ZEROI(S)
2 TINY A(5)e TINY B(5)9 R ZERO(S)sBETA(S5) QCON(5)» SAV(12)»

& KSV(24) YTERM(55) YQTERM(55)s TAL1(55) TA2(5%5)

5 FMLYR(101)s FMLZR(101l)s VACANTI(1S5) TRAe:

COMMON A(55), DIL(55) EPX(5%)

2 EPY(55), EP2(55), FMLYB(55) FMLYT(55) FMLZB(55)
3 FMLZT(55) LY1(55), LY2(55)» LZ1(55)» LZ2(55)

& PY(55), PZ(55) RIH(55)» R2H(59)» RIHI55)

5 RH(55), Z1H(55)) Z2H(55) Z3IH(55) LeH(5%)

6 U2(55+92) B(5504)

COMMON
A RX(5595) RY(5595) UNMX(5505) 9
1 UNMY(5545) UNPX(5595) UNPY(55+5) FMASNM(5595) »

2 ENM(55+5) EN(55+5) PNM(55+95) PN(55+¢5)

3 PONMXX(5595)9 PONMXY(5505)y PONMYY(5595)9 PONXX(5595)0
& PONXY(5595)9 PQNYY(5595), RWA32(5595) RWAL1Z(55¢5)
5 RWAE3Z(5505)9 RWAEL1Z(55¢5)9 RH3Z(55+45) RH12(55+5)
6 E32(55+45) E1Z(55¢5) RHO(5545) VOL(5505)

7 ETA(55+5) AlY(55,5) A2Y(55¢5) A3Y(5595)

8 ALY (55+5) Al12(55+5) A22155+5) A32(55+95)

9 ALZ(55+5) F1Y(5545) F2Y(55+¢5) F3Y(55+¢5)

A F4Y(55+5) F12(5545) F22(55+¢5)» F32(5505)

1 F4Z(55+5) NTPT(55¢5) FMSNZ(5595) FMASN(55+5)
2 FMNMX(5595)s FMNMY(55+5) FMNX(55+5) FMNY(5595)
b AN1(55+5) AW2(5595)» CMASS1(5595)9 CMASS2(5595)
S RXM(55¢5)9 ' RYM(5595) RXZ2(55+5) RYZ(5595)

6 Ql1(55¢5) Q12(55,5), Q22(55+5) QX(5595)

7 Pl1(55+5) P12(5595) P22(55+¢5) PX(5595)

8 PQX(55+5) PQMX (5595) s VO(55¢5)

COMMON ICON» LINCTe LX1o» LX29 LX3» LX&y LXS5
2 KC» NDPA»s NEDITs NSIGs NMASSs NDMP

COMMON AZQI55) s TRAPV(55) s TRAPYH(101) o TRAPZH(101)9AYQ(55)

29YDELTA(55) -

COMMON S1(55)

$2(101)

COMMON GMU(55) sH(55) 9BETAH(55) o ALFAH(55) s AMUBH (55 ) o AMUBMU(55) »

2 ICASE(55)

Caones

1V
15

IF(KCeGTel) GO TO 50

JeJMIN

CALL HORTPT
WX=UXLBIN
WYsUYLBIN
RH1Z(Jel)=RHOI
E12(Jel)=EIN
TRAP= 5% (RX(Js

N
1)*RX(J+191)):

AXSRY (J+191)=RY(Je1)

AYERX(Jel)=RX(

J*lel)

RWALZ(Jo1)oRH1Z(Je 1) #TRAP® (WXRAX+WY#AY )
RWAEL1Z(Jy1)SRWALZ(J91)*ELZ(Js])
FMASN(Jo1)=FMASNM(Js 1) +(RWAIZ(J9e1)=RWAIZ(J+1s1)=RWALZ(Jel)+
2 RWAL1Z(J92))*DTNM
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IFIFRASRL ol 0060100)7
16 NEDI 1=}
NSIG:4
WRITE(60200)JeFMASNIJ])
17 GO T0(22¢20921) oMOTION
20 FMASN(Jo1)sFMASNM(Js 1)
21 RX(CJol)sRXM(Jel)+UNMX(J9 1) ®DTNM
RY(Js1)=RYM(Jo 1 )*UNMY (J9 1) #DTNM
22 JLeJ+] :
DO 40 J=JLsJR
GO TO (264927¢24)sMOTION
264 WX=UXBIN
WYsUYBIN
RH1Z(Js1)=RHOIN
E1Z(Jel)=EIN
TRAP=(SH#(RX(Jol)+RX(J+101))
AXERY(J+191)=RY(Jsl)
AYSRX(Je1)=RX(J+1y1)
RWAL1Z(Jo1)=RH1Z(Js 1) #TRAPH* (WX#AX+WYHAY )
RWAELIZ(Jel)=RWALZ(J91)®ELZ(Js])
FMASN(Jo1)=FMASNM(J91)+(RWA3Z(Js1)=RWA3Z(J+191)=RWALZ(Jsl)+
2 RWA1Z(J92) )#DTNM
IF(FMASN(Js1))25925+26
25 NEDIT=1
NSIG=4
; WRITE(69200)J9sFMASN(Jyl)
26 GO TO (40927+28)9MOTION
27 FMASN(J»s 1)2FMASNM(Js 1)
28 RX(Jol)=RXM(Jol )+UNMX(Js1l)®DTNM
RY(Je1)=2RYM(Js1)+UNMY(Js1l)#DTNM
40 CONTINUE
JsJMAX
GO TO (&£29+41+41)MOTION
41 RX(J91)3RXM{Jol)+UNMX{Js1)#DTNM
RY(J9l)=RYM(J91)+UNMY (Js 1) #DTNM
42 CALL STRESS
JueJMIN
UNPX(Js1)=UXLBIN
UNPY (Js1)=UYLBIN
CMASS1(Jol)=AWL(Jr1)RYTERM(J)®RHO(Js])
CMASS2(Js1)sAW2(Js )l ) #Y2TERM(J)#RHO(Js 1)
FMSNZ(Jo1)=e5#CMASS2(Js]l)
FMNX(Js1)=0,
FMNY (Js 1) =FMSN2(Js1)® (UNMY (J91)+UNPY(Js1))
JLaJel ,
DO 45 JsJLeJR
UNPX(Js1)=UXBIN
UNPY (Js 1)=UYBIN
CMASS1(Jel)sAWl(Jol)®YTERM(1)#RHO(Js 1)
CNASSZ(J.ID'AUZ(JOI)*YZTtRM(1)“RHQ{401)
FMSNZ(J91)3e5#(CMASS1(J-191)+CMASS2(Usl))
FMNX(Jo1)=FMSNZ(Js1) #(UNMXT1J9 1) +UNPX1Je1))
45 FMNY (Jo 1) ®FMSNZ(Js1) *(UNMY09’1)+QNPY(J91))
JEJMAX’
UNPX(Js1)=20e0 -
UNPY (Js1)=UYRBIN
FMSNZ(J9s1)me5#CMASSL1(J-191)
FMNX(Je1l)=0e
FMNY (Js1)=FMSNZ(Jsl) #(UNMY (Jol)+UNPY (Jsl))
46 CALL CONSCK
RETURN
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50 LsLX]

L2sLX2

LS=LXS

D0 500 J=JMINsJMAX

RHO(JeL2) 200

PN (JsL2)2040

FMASN(J9sL2)%0e0

ETA(JsL2)2040

EN (JsL2)2040

RH3Z (JeL2)20e0

RWA3Z (JsL2)=0e0

E3Z (JsL2)2040
500 RWAE3Z(JsL2)=0e0 ‘
501 CALL HORTPT

DO 502 JsJMINsJR

WXEUNMX(JeL2)+UNMX (J+19L2)

WYZUNMY (JoeL2)+UNMY (J+19L2)

RH1Z (JsL2) =RHO(JoL )

E1Z(JeL2)3ENMIJIL) 4

S Lt i ottt

TRAP=2425% (RX(JoL2)+RX(J+19L2))
AXSRY (J+19L2)-RY(JsL2)
AYSRX{JoL2)~RX(J+19L2)
RWA1Z(JsL2)=RH1Z(JoL2)#TRAP* (WX#AX+WYRAY)
502 RWAE1Z(JoL2)SRWAL12(JeL2)#EL12(JeL 2) 1
CALL MASS
504 CALL STRESS
CALL NEWU
CALL CONSCK
JEJMIN
KCaKMAX
505 UNPX(JsL2)=UXLTIN
UNPY (JsL2)=UYLTIN
FMSNZ(JsL2)=e5#CMASS2(JsL)
FMNX(JsL2)=040
FMNY (JoL2)=FMSNZ(JoL2)  #(UNMY(JeL2)+UNPY (JsL2))
51 JLaJ+]
DO 80 JsJLsJR
56 UNPX(JsL2)=UXTIN
UNPY (JsL2)=UYTIN
FMSNZ(JsL2)meS5#(CMASS1(J=19L)+CMASS2(JoL))
60 FMNX(JoL2)SFMSNZ(JsL2)  #(UNMX(JsL2)+UNPX(J9L2))
FMNY (JsL2)SFMSNZ(JsL2)  #(UNMY(JsL2)+UNPY(JsL2))
80 CONTINUE
90 J=JMAX
UNPX(JsL2)=0e
UNPY (JeL2)=UYRTIN
FMSNZ (JsL2)=e5%CMASS1 (J=10L)
FMNX(JsL2)=2040
FMNY (JoL2)=FMSNZ(JsL2)  ®#(UNMY(JsL2)+UNPY (JsL2))
CALL CONSCK

100 RETURN
200 FORMAT ( THOFOR J=y1698H AND K+2910H THE MASS=39E17e9+9H IN ERRUR)
END
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SUBROUTINE CONSCK
COMMON NREG» ROTNMs MOTIONs JBMIN» JBMAXs KBMIN»

2 KBMAXe TIME» SMOMZ]los SMZTPTs SMOMZe SMOMYIs S"YTPTe SMOMY,
3 SENER!Is SIETPTe SKETPTs WORKS SUMIEs SUMREs SUMTEe FIMPZy
& FIMPYy SMASSles SMSTPTe SMASSe PROBNOy DTNM, CUTOFF o N

5 K8OT, KTOP» MAXN ¢ TMAX » DTNMNy SFwo ODTNMPS¢ DTNMZ
6 KBy CuTl CUT2, UYLBINe UYBINs UYRBINy UXLBINe UXBIN,
7 UXRBINs UYLTINe UYTINs UYRTINs UXLTINs UXTINe UXRTINe KTMy

8 JMINe . JMAX» KMIN KMAX o JLo J3y JRoe JRM»

9 KTy EINy RHOIN» UYIN» UXINy KINT(5)
A E S(5) ALFAL(S5), BIG A(5)s BIG B(5)9 RCP V S(5)+E ZERO(S5)
2 TINY A(S5)s TINY B(5)s R ZERO(5)+BETA(S), QCON(S5)» SAV(12)
4 KSV(24), YTERM(55) YZTERM(55)s TALl(55) TA2155)

5 FMLYR(101)s FMLZR(101l)s VACANTI(15)

COMMON AL55)s DIL(55) EPX(55)

2 EPY(55), EPZ2(55), FMLYB(55), FMLYT(55) FMLZB(55)
3 FMLZT(55) LY1(55), LY2(55), LZ1(55) LZ2(55),

4 PY(55), PZ(55) RIH(55), R2H(55)» R3H(55)

5 ReH(55), Z1H(55) 22H(55) LIH(55) Z&H(55)

6 U2(5592) B(55+¢4)

COMMON .

A RX(5595) RY(55+5) UNMX(5595)

1l UNMY(5595) ¢ UNPX(550¢5)» UNPY (5595) FMASNM(55+5)

e ENM(55+5) EN(55¢5) PNM(5545), PN(55+5)

3 PONMXX(5505) s PONMXY(55¢5)9 PQNMYY(55+5)9 PQANXX(5505)

& PONXY(5595)9 PONYY(55+5), RWA32(55+5)> RWA12(55+5)

5 RWAE32(5595)9 RWAELZ(5595)9 RH3Z(55+5) RH1Z(5595)

6 E32(55+5) E12(5545) RHO(55+5) VOL(5595)

7 ETA(5545) AlY(55¢5) A2Y (55451 A3Y(5595)

8 AGY(55+5) AlZ2(55¢5) A22(5595) A32(55¢5)

9 ALMZ2(5545) FlY(55+5) F2Y(55¢5) F3Y(55¢5)

A FO4Y(55+5), F12(5545) F2Z(5595) F32(55¢5)

1 F4Z(55+5) NTPT(55+¢5) FMSNZ (5595) FMASN(5595)»

2 FMNMX(5595)9 FMNMY(5595) FMNX(5595) FMNY(5595)

4 AWL1(55+5) AW2(55¢5) CMASS1(55+5)9 CMASS2(5595)

5 RXM(55+5) RYM(55¢5) RXZ(55¢5) RYZ(5595) '

6 Q11(55+5) Q12(5545) Q221(55+5) OXt5595)

7T P11(55+5) Pl2(55¢5) P22(55+45) PX(5505)

8 PQAXi5595) PQMX(5595) VO(55+5) :

COMMON I1CON»s LINCTe LXl» LX2y LX3y ' LXbo» LXS»

2 KC» NOPA NEDIT» NSIGy NMASSe NDMP

COMMON AZQ(55) sy TRAPV(55) s TRAPYH(101) s TRAPZH(101)9AYQI(55)

22YDELTA(S55)

COMMON S1(55)982(101)
COMMON GMU(55) oH(55)sBETAHI55) o ALFAH(55) s AMUBH(55) s AMUBMU (55 ) »
2 ICASE(55)

DIMENSION USQ(2)

Cauann

IF(KCeGTel) GO TO 10
LsLX1

L2=LX2

LS5=LX5

JuuMIN

JiaJe]

JLEFT=])

JRIGHT=2

TFXY=0,

TFXZ=0e

STEMsSENERI

KL=l

KU=2
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SUMIESEN(Js1) *FMASN(Jsl)

U2(Je 1) sUNMX (Jo 1) BUNPX (Jo 1) +UNMY(Js 1 ) SUNPY (Js1)
SUMKE= 0.

SMOMY=FMNX (Jo1)

SMOMZ=FMNY (b1 )

SKETPT=0,

SMYTPT=04

SMZTPT=0., _

GO TO (1s2¢1)9sMOTION

SMASSSFMASN (Js1)

IF(SMASSeLTe0) WRITE(69110) NoJsKCo(FMASN(IoL)sFMASNM(T oL)
20RWALZ (T oL) sRWALZ (19L2) sRWASZ (1oL ) sRWAIZ (14100 ) s 18 IMINe JMAX)
SMSTPT=RWALZ (Js1)

SIETPTSRWAE1Z(Js1)

USQIJLEFT)=UNMX(Js1) #824UNMY(Js] ) 802

FXMST = 0o 25%(RWALZ(Js2) + RWALZ(J»1))®TA2(J)

FXTX = FXMST  #(UNMX(Js2) + UNMX{Js1))

FXTY = FXMST  #(UNMY(Js2) + UNMY(Je1))

FXMSB =TA2(J)*RWA1Z (Js1)

FXBX = FXMSBRUNMX(Js1)

FXBY = FXMSBRUNMY(Js1)

FXMSL = 0¢S5*RWA3Z (Jse1)

FXLX = FXMSL®UNMX(Js1)

FXLY & FXMSL®UNMY (Jo1)

FXMSR = 00125% (RWA3Z(Jsl) + RWA3Z(J+1s1))

FXRX = FXMSR  #(UNMX(Jsl) + UNMX{J4+1s1))

FXRY = FXMSR  #(UNMY(Jo1) + UNMY(J+1s1))

TFXY =FXLX=F XRX+FX T X=F XBX

TFXZ=FXLY=FXRY+FXTY=FXBY

FMLYB(J)==F2Y(Je1 ) =TFXY

FMLZB(J) = (FMNY (Jo 1) =FMNMY (Jo 1) )®RDTNM=F22 (JoL)=TFXZ
FIMPY=FMLYB (J)

FIMPZsFMLZB( J)

WORK = FMLYB (J) SUNMX ( J» 1) +FMLZB(J) SUNMY ( Jo 1)

DO 5 JeJLsJR

SUMIE=SUMIE+EN(Js1 ) #FMASN(Je1) :
U2(Je 1) mUNMX (Js 1) BUNPX (Je1) UNMY ( Jo 1) #UNPY (Js1)
SMOMY = SMOMY +FMNX ( J» 1)

SMOMZ = SMOMZ+FMNY ( Js1)

GO TO(39493) yMOTION

SMASSaSMASS+FMASN ( J» 1)

IF(SMASSeLTe0) WRITE(69110) NoJoKCo(FMASN(IsL)sFMASNM(T oL )
20RWALZ (1oL ) sRWALZ (1oL2) sRWABZ (1oL ) sRWASZ (I41sL) sl nJMING JMAX)
SMSTPTaSMSTPT+RWALZ (Js1)

SIETPT=SIETPT+RWAELZ (Jsl)
USQ(JRIGHT ) 5UNMX ( Js 1) B8 24UNMY (Js 1) 882 -
SKETPT=SKETPT+RWALZ (J=191)#(USQ(JLEFT ) +USQ(JRIGHT))
SMYTPTSSMYTPT+RWALZ (J=1+1)% (UNMX(J=191)+UNMX(Js1))
SMZTPT=SMZTPTHRWALZ (J=1s1)% (UNMY (J=10¢1)+UNMY (Je1))
JLEF T JRIGHT

JRIGHTEMOD(JLTFTs2)+1

FXMSTus25% (TAL(Jo1)# (RWALZ (J=152) +RWALZ (J=101) )4TAZ(J)®
2 (RWALZ(Js2)+RWALIZ(Js1)))

FXTX = FXMST  #(UNMX(Js2) + UNMX(Je1))

FXTY = FXMST  #(UNMY(Js2) + UNMY(Js1))
FXMSB=TA](J=1)*RWALZ (J=1+1)+TA2(J)#RWALZ(Js1)

FXBX = FXMSBSUNMX (Js1)

FXBY = FXMSB®UNMY (Js1)

FXLX = FXRX

FXLY = FXRY

FXMSR = 0e125% (RWA3Z(Jel) + RWA3ZAJ+1+1))
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FXRX = FXMSR # (UNMX(Jol) + UNMX(J+1l91)) l
FXRY = FXMSR #(UNMY(Jsl) + UNMY(J+1e1))
TEXY=FXLX=FXRX+FXTX=FXBX
TEFXZ=FXLY-FXRY+FXTY=FXBY
4 FMLYB(J) = (FMNX(Js1)=FMNMX(Js1) )#ROTNM=F1Y(J=191)~F2Y(Jsl)=TFXY
FMLZB(J) = (FMNY(Je1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>