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ABSTRACT

The transverse modes of high frequency combusticn instabitity in
liquid propellant rocket motors sre studied both thecreticzily and experimentally,
The nature of the phenomenon ic decwcribed, and previous experimernial and
theroretical work on the probicr ic discussed. A preliminrary eva'aratory seriss
of experiments demonstrates the need for additional theoretical analysis in order
to explain three effects: (1) the influence on stability of the orientation
of The eienents of the injection paltern with respect to Tne radial directien,
(2) the greater tendency to instability of the spinning forms of tangential
modes as compared to the standing forms. (3) the effect of the distribution of
injécfion across the irjector face.

The basic theory is derived for the case of a circularly cylindrical
combustion chamber with uniformly distributed injection. Follow ng Crocco,
the concept of a sensitive time lag is introduced. However, dependence of the
tTime lag on the radial and tangential velocity components as well as on the
therrodynamic state prooerties (represented by the pressure} is assumed. Small
perturbaticn theory is ~sed, in conjunction with an approximate order of
magnitude analysis, to derive a characterictic equation relating ths ‘regusncy
of neutral oscillation at the stability limits o the parame:ei 5 dsscribing
ihe combustion process., Extensions »>f the basic thenry 2-g made fo cover the
cases of () nonuniformly disfributed injection, (2) a variable angle sector
motor, and (3) more general iime lag formuiations. The use of the sector motor
in the study of tangential modes of instability is discussed, Calculatiaons

for an \dealized rocket motor are pr.cented in order to illustrate the results

: of the theoretical analysis.

A series of experiments using both sector and full cylindrica! motors

is described. It is shown that partial and qualitative verification is obtained
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for the theoretical predi_tions that (1) tt. standing form of a langential

mode 1s more stable than the spinning form because the tangential veloc:ty
effects are iaoperative in the former, (2) the radial velocity fluctuatio.s

cause a shifi of the unstaple ranges of the sensitive time lag, (3) increasing
stability 1s obtained as +he propellant inject:ur ic moved toward the center

of the chamber, (4) the pressure dependent comoustion parameters correspond to
those which govern the longitudinal modes of instability, Tne validiiy of the
linearized apprcach is assessed and areas for further theoreticel and experimenta!

work are indicaten
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CHAPTER 1

Introduction

A Descripvion of The Phenomenon
in a liquid propellant rocket motor, the combustior process is never

entirely smooth. During the steady state period between starting ana cut i,
fluctuations oceur in all important properties (pressure, temperature, velocity,
efc.) around the desired operating values. The amplitude of such 1Igcfuat‘qn§
can vary over a wide range, from motor To motor. and in one motor for different
operating conditions. When the fluctuations are completely random, the
; operation is classified as "rough" combustion, A qualitative distinction can

be made between "roughf and “smooth" combustion on the basis of the root-

mean-square amplitude of the fluctuations.

Combustion instability, on the other hand, consists of organized

oscillations, which are maintained and amplified by the combustion process
itself. It is generally agreed that there are three xinas of instabil:ty,
differentiated by the frequency of the resulting osciliations. These are
referred to as low, intermediate and high frequency instability,

Low frequency unstable combustion has received much theoretical end
experimental study (1,2,3,4)%, It is now rather well understood and compara-
tively sssy to avoid or cure, A theoretical analysis exists for the interme-
diate frequency case (5), but the phenomenon is rarely observed. This
dissertation is concerned with The hiyh frequency type of combustion insta-
bility, which is by far the most dest-uctive type and the most difficult to

N contrcl.
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High frequency ins*ability is a forced oscillation of the combustion
chamber gases, driven by the combustion process interacting with the rescnance
effects of the chamber geometry, with damping supplied by the exhaust nozzle.
The resul+ing oscillation patterns are very similar fo those of the acoustic
modes of the chamber. For a cylindrical chamber, cne can distinguish between
longitudina! and transverse acoustic modes. 1In a longi+udinal mode the prop=
erty variations occur in the axial direction, white conaitions are uniform on
a section normal to the axis. Purely transverse modes invoive uniformity of
the properties along the axis, but variations in tne radial and circumferential
directions., Figure | shows the acoustic oscillation patterns for several purely
fransverse modes for a circular cross section. The most commonly observad
modes, in order of increasing frequency, are the first tangential, second
tangential, first radial, and the first combined radiai tangential. In the
"pH diagrams, severai typical isobars are drawn, for a given instant, with
the solid lines indicating values in excess of the mean pressure juvel. The
ny" dijagrams show streamlines at the same instant. Each acoustic mode has a
characteristic frequency, which is related to the S number chown with the
diagrams (the significance of this number will be discussed more fuliy in a
later section). It has-been observed that the frequencies of fullvy deQe!op-
ed pure transverse mode combustion oscillations fall within few percent of
The -acoustic frequencies for the corresponding modes. Each tfangential or
combined mode can exist in two forms: +the standing form, in which the padal
sufaces (indicated by the solid diametral tines of Figure 1) are station=ry,
and the spinning form, in which the nodal surfaces rotate a+ the unguiar fre-
quency of the osciliation. The two forms of the first tangentia! mode araz
illJstrated in Figure 2 which shows schematically pressure and velocity

ir instants during = pericd of oscillation.




Pureiy longitudina! modes occur in chambers with large length 1o
diameter ratio: «L/D y; 1); purely transverse modes, for L/D<< b combined
longitudinal-fransverse mocss may be cbserved when L/D~1; provided in all
cases ihat certain requirements for instability are met. The derivaT}on and
discussion of these requirements is the substance cf this dis<ertaticr,

A linearized theoretical ancivsis will be employed; althouch siuch
a theory is cepable of predicting tihe onset »f instability, 1t is entirely
unabie to determine the characteristics of the fully developed oscilfations.
In particular the ampiitude of the fluctuations, which is set Ly various
competing non-linear processes, may be small or.targe,- dependingnan.the.-
mode and the operating conditions., The amplitudes of purely transverse modes
have been observed in most cases to be very large; peak-fo-peak values of
up to 300% of steady state chamber pressure were measured in the course of
this investigation. One of the most defrimental consequences of such
oscillations is the burnout of combustion chamber hardware because of the
abnormally high heat transfer rates associated with instability. In one
series of tests (6) 2 jump in wall heat flux from 3 up fo 13 Btu/in?-sec,.
was measured accompanying the onset of a transverse mode oscillation. Such

effects provide a strong motivation for investigations leading Yo a bstter
understanding and contro! of this phenomenon. )
8. Previous experimental work

A considerable amount of experimental work has been done on
combustion instability in rocket motors. However, very little of This effort
has been of a systematic nature, or has been connected with theore+ical
tonsiderations. The initial studies of Berman and Cheney (7) of longitud=--
inzi modes of oscillation used siit window photographic methods, They-
detected the buildup of small disturbances into high ampiifudeishock type
waves, and showed That the frequencies of oscillation approximated the
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ecoustic frequencies within the combr stion chamber. Fllis and his asso~iates
(8) correlated measurements of pressure tluctuations with the optical methods
used aimost exclusively by Berman and Cheney in their initial studies.

Later work by Eilis extended the optical studies fu transverse modes
(9). These investigations showed high particle velocities (of the order of
2000 fps) and spiral particie trajgecicr s (in a plane normai iz -!-: combus-
tion chamber axis). The changes in the oscillation petterns observed in using
chambers of different diameters and different injector cenfigurations were
expiaines yusiiiatively by means of & Ypropellant preparation time™ and its
reiation to the "wave fravel time", the iatter being a function of the chamber
size.

Varicus methods have been developed by the industry to compare the
stability of different motor configurations by pulsing during steady state
rocket operation. In one method, a series of calibrated powder charges is
fired tangentiaily:intootne chamber in-ofder 16 disturb-the-combustion and
fiow patterns. Each charge is stronger than the preceding one, Shutdown of
the rocket motor is effected automatically following the onset of instabili~-
ty. The number of charges fired is thus a2 measure of the rzlative stebility
of the motor at thé particular operating conditions of the test. Whits sich

studies are of undoubted value in the development of a rocket engine system,

" thév contribute ~~latively little Yo the tindamente! under-standing of the

phenomenon ¢t instability.

Male, Kerslake, and Tischler (10) at the NASA Lewis Research Center
made optica!l studies which corroborated those of other expcrimenters (7, 8).
In additlon, they noted some inters.tion effe~ts betwesn longitudinal and
fransverse modes ot oscillation, as well as the greatly increased heat transfer

fo the combustion chamber wa!lls which is associated with transverse modes of

Gel.zmemo o
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instability. Other interesting aspects of combustion instability involving
chainber geomeiry were investigated by this grovp {l.. However, no attempt
was made to determine the underiying mechanisms.

Invest.gations by Osborn and Bonnell (!2, 13) using a gas rocket
system have sought to assess the effects of such parametercs as chambler
geometry, chamber pressure, ard nropeillant chemistry on combustion in~stability,
Working with a constant diameter, variable length motor, thay have noted with
some propeliants sharp changes in the stability behavior for transverse modes
when the chamber length is increased tc the point where longiiudinal mode
insvability is possible, thus indicating important interaction effects between
longituuinal and transverse modes. They have also reported widened instability
regions with propellants of Ligher heaT release rates,

All of the investigations described above wore restricted to the
purely empirical approach, rather than attempting fundamental, systematic
studies based on a2 quantitative theory.

C. Previous theoretical work

Probabiy the first theoretical investigation of the inferaction of
pressure waves and combustion was that made by Rayleigh in his expianation
of Rijke tones (il). He concluded that in order for heat fo drive & stazniing
wave, the heat input should maximize with tina when the pressurc is at its
local maximum, Subsequent investigations have zxtcnded Ravieigh's analysis
1o more general combustion systems.

The concept of a combustion Time fag as a coordinating influence to
excite organized osciiiations in a liquid propzllant rocket combustion chambsr
originated in von Kerman's group at the :et Proplulsion Laboratory ia 1941,
Gunder and Friant (2), Yachter (3) and Summerfield (4) made anaiyses of low
frequency instability (which depends upon the interaction between the feed
system and combustion process) based on a constant time lag. However, it was

AT TR,
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impossible to explain high frequency combustion instabillty using a consfant
time lag.

Crocco (15) introduced the time varying combustion time fag in his
analysis of high frequency instability, He represented the total time lag s
as the sum of two parts; vhe constant "insensitive" time lag T, , and the
Ngensitive" +time lag T , which varies with time, responding to fluctuations
in the chember conditions. Thus

Tr = tL+T

Rather than frying 1o describe quantitatively the effect of each of the
chamber conditions on the time lag, the simplifying assumption was made that
the variations of ali physical factors could be correlated with values of the
focal pressure. For smali amplitude perturbations, the rate at which the

sensitive time lag is affected cag be expressed by
T-¢T =T [(‘P—f)dt’
* -z
where the barred quantities correspond to steady state, The factor /v was
called by Crocco the "interaction index",

The synthetic representation of the combustion process by means of
the time lag concept eliminates the need for information on any of the specitic
processes occurring in the chamber, such as afomization, vaporization, mixing,
chemical kinetics, etc, This fact constitutes the primary civantagce ot the
time lag type analysis, since very little queniitative information is available
concerning the details of these various proces.es.

The application to the sensitive time lag theory to the longitudinal
mode was first made by Crocco in 1951 (I5). The expanded and generalizea theory

of longitudinal mode combustion instatility was published, but without experi-

mental verification, in 1956 by Crocco and Cheng (1). The validity of +h: theo-

ry was shown in a series of experiments reported by Cromco, Grey and Harrje (16).
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In Thr lalier paper, 2 simpie m2ans for measuring the combustion parzmeters :
and  through stability limits tests was presented, Tha first applicaiion of
the sensitive time lag theory to transverse modes was made by Scala (5), who
consigered the s*tability of general three dimensicnai perturbations on a one
dimensions! steacy state flow situation. ke was able io present only iimited
results caiculated from his theory, and no experimental results, aithough he
was zble to show theoretically the destabilizing effect of increasing the

fmme He) LIRS
ioned investigationt of Crosco

nozzle eniranc: wach number. The above ment
and his associates (1,5,15,16) provided an important f~undation for the present
study of transverse mode combustion instability.

Maslen and Moore ({7) investigated theoretically the effects ot
viscous damping in & chamber without combustion. Their results showed that
large amplitude non-shock fype waves could exist in the spinning form of the
tangential mode, but that the standing mode was subject fo damping proportionali
to the amplitude. The damping of the fundamental longitudinal mode was shcwn
to exceed that of the first tangential mode for low values of the ratio of
chamber length to diameter.

Recently, Pickfurd and Peoples (18) have attempted to analyze the
stability of [iquid rocket 'domoustion by means of.an available endrgy,,
concept, in an attemr* 2t an a priori calculation of stz.lity behavior from
knowledge of the physical and chemical nature of the propeliants,the injection
process, etc., However, it appears that the accompiishment of this objective
still lies in the future.

B. Preliminary exploratory testing

At the time of the initiation of the experimental phase of this

investigation of transverse mode ‘nstability, the theoretical analysis had

not been carried beyory that of Reference 2, and because of the complexitity
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of the computations required, very iittle guidance was available from that
source. Therefore the experimental program began.with a: serigs of exploratory
tests designed fo reveal the most significant parametefs, on whicu the lé?er,
more systematic tests were to concénfra?e. The first series of exploratory
tests was in the form of a parameter survey. Later, a second gkoup cf
experiments using half chambers ana giametral barriers was made in order
evaluate a proposed method of stability {imite testing.

The experimental apparatus consisted of a secfioned, uncooled,

copper iu.ket motor and its associated hardwe: ¢ ond insirumsatation (Figures

——

3 and 4). The three parts of the motor--the spud type injector, the four ?ﬁéﬁ
long cylindrical chamber section, and the nozzle~=were held ;ogefher by a
hydraulic cylinder arrangement to facilitate paéamefef changes. This stTemi
had been used successfully on the longitudinai program. The length of the
cylindrical section was fixed by the so-called "eritical length" of the pro-

- pellant-~injector combination (the length befow which longiTﬁdina{ mode inst-
bility is not possible), since it was de;ired to study purely transverse modes.
The nozzle consisted of a 300 half-angle convergent part biending into a cir=
cular arc throat and followed by a I5° half-angle divérgent cone. Th throat
diameter and the subsonic length wsre determined by the combination of ihrust
level, chamber pressure, and chamber diameter., Al! surfaces exposed .o the
hot combustion gcsas were ceramic coated (9.012" ziiconium oxide over 0.003"
nicket-chromium) to reduce heat fransfer, Starting was accomplished by means
of a solid propejlant squib which ignited a gaseous hydrogen preflow. The

hydrogen flow was terminated at the time of fuel introduction. The pressuri-

zed feed system made use of caviteling venturis for flow regulation. Run

durations varied between one-half and three seconds.

Instrumeniation included the usual steady-state equipment (propellant

!
v
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flow rates, chamber and injector pressures, etc.) and high response water

cooled strain-gage pressure transducers (19) flush mounted in the chamber.

Six locations were provided for the high frequency transducers in the cylin-

drical chamber secticn, in two axial and three meridianal pfanes, in grder fo

investigate the oscillation wave pattcrns. The steady and flucmating compo-

nents of each pressure signal were senarated,the steady state portinn appéar-

ing on a recurding potentiometer and the fluctuating portion on a seven channe!

FM magnetic tape recorder, Amplitudes and frenuencies of the recordad prassure
: oscillations were then measured electronically from the tape récording. A
special run cutoff device provided rapid shutdown in thg event of & lérgé ampli-

tude instability, in order to minimize-burnout of the hardware. “A detailed

discussion of the instrumentation is found in (20;.
: Tne exploratory tests were designed to fqyesfigafé the following
parameters, each of which was o be varied independently of the others:

(1) Chamber diameter—~In the transverse mode ?héory; it was sho;n
thet +he chamber diameter (oé radius) 1s the charactericstic léng+h associated
with fransverse modes of oscillation. Fur the exploratory tests, three .dia-
meters were c.ofen, in a range practical for testing at the Forrestal Research
Center rocket test facility., These diameters were 3, 6, and 9 inches. i'-uw-
ever, it was foﬁnd that the three inch d;émefer equipment couid ~ot be designed
with the flexibility required by The explorator ¢ zz-ins. Most of the experi-
ments were conducted, therefore, with the two larger diamefé}s.

(2) Chamber pressure-~-The effect of this parameier was largety
unknowq at the sfart, Although some effect on the combustion paramefersr(Tnme

lag and interaction index) was expected. no clear trends had been shown by

longitudinal mode testing., The levels selected for testing were 150, 500, ad

-900 psia.

{3} Thrust~~The effec! of the tThrust levei was aiso unknown.

=
=
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Injection veivcities were kept ccistany, and the thrust was varied by means
of thie injector hole size. Some effect on the combustion parameters could
be expected from the hole size changes because of dJifferences ir rhe atomi-
zation characteristics of the injectors. In addition, ths thrust level,
chamber pressure, and chamber diameter determine the chamber Mach nUmbéri
which had teen shown to be of “wporterce in the limited ressit. cresented in
Reference 2. Tests were made at thrust levels ot 120, 500 and {000 pounds.

(4) Mixture ratio---The longituiinal -stabitity limits tasting
demoms irated that.the combusticr parameters were strongly agoendent .on. mixture
ratio. The exact physical nature of this &ependence remains to be determined,
Mixture ratios from 1.0 fo 2.2 were surveyed. Included in this-range were
the maximum characteristic velocity (c¥*) ratio (1.4 for the propeljants usad)
and the stoichiometric ratio (2.09).

(5) Design mixture ratio~—This parameter was defined as that ratio -
at which the bipropeilant injection velocities were equal and-tfie-nat momen-
tum of the spray produced. by the ﬁoublef injestor was axial, Varying the
design mixture ratio over the values of 1.0, 1.4, 1.8, and 2,2 resuitfed ir.
changes in injector hole size as weki as in the angles «f the injector pas~
sages with respect to the combustion chamber axis, with important efrecis on
atomization and mixing 16 be -expected. However, the infiuence of sich affects
could not be predicted. Most of the tests wer-e made Jgsing the {.4 degign mix-

ture ratio ipjectorss -

(6) Injector type~—A simple-unlike impinging doublet type injcctor,
with impingement at the injector face and 12 orifice pairs, #3s chosen. for the
initial tests ot the exploratory s.ries. Although. the combustion paramatfars-

had been clearly shown fo be strcng functions of injector type, the greatest

amount of jongitudinal experience had been obtained with such an Injector,
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(7) Propellants=--As in the case of the type of injector, the
propailant combination was known tc have a strong influence on stability. The
combination of liquid oxygen and 95 percent efhyl alcohol (Solox) was chosen
for the first series, again on the basis of greatest instability fasting ex-
perience: . A

(8) Injection diameter--~In the exploratory test series, ~he 12
injeCtion points were equally spaced around the circumference of a8 single
circle, Other experimenters had noted a dgsfabilizing trend as the diameter
of the injection circle approached the chamber diameter. Injecters were
desighed for 2 - 1/4, 5, and 8 inch circles. " However, thé smallest of these
proved to be impractical,

(9) Orientation-~-For maximum experimental flexibility, spud type
injectors were used (Figures 5 and 6), Each doublet pair was contained in a
single spud, wﬁich could be oriented in either of fwowways, 90° apart (see
FiguFa 7). In the "radial" orientation, each spud was arranged so that the
Iine:of centers of the injection orifices lay along a radius. With the
spud rotcted through 80° to the "fangentiai™ orientation, the line of centers
was tangential to the injection circle. The spud orientati.n proved io ve :
one of the most important parameters.

The exploratory testing was begun at the 100 pound: thrust isvai,
However, the results were somewhat indeterminate When oscillations were
present, the amplitudes were very small. In addition, reliable starting was
a probiem because the small throat diameiers necessifated the use of a spark
‘gaiier r
stability tests €16). Also, with the small propellant ¥lows involved in
these tests, considerable trouble was had with clogging of the cavifating
venturis, Therefore, affer a {imited number of Tésfs;?+he 100 pound level

i

was discarded in favor of the mcre reasonabie 500 pound thrust levei,

w{:’:"" B -

TERRey




T

e —————

mrow

N RN o v

Six series of tests comprised the exploratory testing at the 500

pound thrust level. These series were as fo!lows:

| - 9% chamber, 5" injector, spuds tangential

2 - 9" chember, 8% injector, spuds ?angen?ial—i

3 - 6" chamber, S" injéctor, spuds tangentiai

4 - 9" chamber, 5" injector, spuds radial

5 - 9" chamber, 8" injector, spuds radial

6 ~ 6% chamber,rs" injector, spuds radial

In sach szcries, a mixture ratio survey was made (the desiy:: mixture ratio was
|.4 for all series) at eacé of three chamber prezsure tevels, 150, 500, and

900 psia, The results of these tasts. are shown in Figures 8 and 9.

In Figure 8, the test points of seriés | to 3 are plotted on the

chamber pressure, mixture raffbrp!ane, with the nature of the osc{liqfion
shown by the shading of %hefpoénfl iI'I' qén be séen that all tests with the
tangential orientation were unsteble in the first tangential mode. Many of
the fedts caused destruction of the pressure Tran;ducer or of chamber or
injector parts, in spite of the runishuTQan device. The peak~fo-peak amp-
litudes of the pressure flu?uations/;aried between {/u and 330 psi on these
+ests. Figure 10 shows the wave shapes, and inaicafés the use of rultiple
pickups to determine the wave pattern within the combustion chambur. It was
observed that the oscillations in these terts were ali of the spinning type.
This fact can be seen in Figure 10 in that the g0° phase lag of trace 2 with
respect to trace | corresporas exactly to The spacing of the two pressure
transducers around- the circumference ot the egamber. In addition, it can be
seéen that the pressure oscillation near fﬁe nozzie is smaller and less steep-
ened than, and lags slightly behind, the osciliatien near the injector. This
result is to be expected, since it has bsen shown that the combustion zone,

with this particular injector and propeliant combination, is concentrated
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within 2" of the injector face, None of the waves, even close to the injector,
showed steepening into shock-type waves, in contrast with those observed on
longitudinai tests (Figure I1). Although all tests with the tangential criertation
were unstable, the amplitudes of the ful]y developed oscillations were greater

when the propellants were injected near the chamber wall (Figure 8), Thus showing
one effect of the injection diameter.

Quite different resulfs were obtained with the radiai spud orientaiion
as shown in Figure 9. The first observafién which can be made Is that the radia! -
orientation +e<is were more stable than the tangential. Only the 9% chamber with
the 8" injJector gave well defined zones of instability. The first fangential
mode was observed at the lowest pressure level for mixfure ratios in the vicinity
of the design point (1.4). The disappearance of the first tangential mode can
be expiained qualitatively by the fact (determined by the analysis of Reference
5) that decrease in the chamber Mach number is stabilizing. Since all tests of
this series were made at the 500 pound thrust level, the higher pressures were
obtained by decreasing the size of the nozzle throat, thus decreasing the
chamber Mech number. st higher pressures, the second fangential made was ob-
served, but with very much smafler amplitudes. No calculations were made in
Reference 2 for the second tangential mode. However, the presence of the feorond
mode in these tests agrees well with theoretical results presented in a jater
section. It can be seen that only for this seriec (5 were well defined sta-
bitity himits observed, fo which a i{inear theory could be appiled.

Injection of the propellant nearsr fo the center of the combustion
cr2mber was seen in series 4 tests (9" chamber, 5% injector, radial orientatic.)
to have a stabilizing effect, a result which agrees qualitatively with the re-
duced amplitudes of the corresponding tangential orientation tests (series ).
The results of the 6" chamber, 5" injector tests (radial orientation) were

not ciear, AT fhe iow pressure ievei stabiiity was observed, At higher

A

i W




~14~-

pressures the traces showed several modes present intermittently, including
the rirst and second tangentiai and first radial modes. The stabiiity of the
8" motor ac contrasted to the instapility observed for similar operating ccn-
ditions with the 9" motor can be explained qualitatively by noting that while
the resonance properties of the 9" chamber were matched to the time lag of the
combustion process, the decrease in diameter destroyed the re-onant coupling.

At this point, the need for more systematic experiments,
invoiving the determination of stability timits, which could be compared
guantitatively with the theory being developed, became clear. . In the longi-
tudinai program, the primary experiment is tnat of determining limits of
stapility on the mixture ratio-chamber length plane., Because of the fact
that the length of the chamber (above & certain minimum) has litfle effect
on the combusticn pattern but a great effect on the resonance properties of
the chamber, suck limits can be used fo deduce values of the combustion para-
meiers, the sensitive time lag ¢ and the interaction index m. (16).

For the case of the tangential modes of fransverse insfabiliTy,ﬂ
the Ysector motor™ concept was evolved., In this fype of fest, only one
sector of the motor is operated, the rest of the chamher ard noz2iz {to the
throat) are filled in with a copper insert, Such a motor ic shown schemati-
cally in Figure 12(b) and in Figure 3.

A 180° or half chamber, formed by means of an insert, can cscillate
only in the stanoing form of a iangential mode, On the other hand, a full
360° chamber can sustain either the standing or spinning form of the mode,

As in the tests discussed above, the spinning form is the one normaily ch~
served in an unsteble full chamber, According to the pressure sensitive time
lag theory of (5), the stability behavior should be the same for toth the
full and half chambers, as long as the operating conditions are the same. A

ceries of tests was made in order fo test this canclucion, The results are




-5~

presented in Table |. All tests were made at the same conditicns of chamber
prescure and mixfure ratio, but it is ciear that +he stability behavior of the
two torms of first tangential mode .is not the same.

Further tests in this series made use of barriers, of /4" thick
steel and of various lengths, placed in the chamber alongra diametral surface,
instead of the 180° sector insert (see Figure 12(a)), Such barrier: were
found fo be capable of producing the same stable operation as the full 180°
insert. It was also determined that stable operation resuited with a barrier
only 5/8% lone, if the barrier was pilaced againsSt the injector face. If &
space was laft between the injector and barriér, instability was:oﬁSer;éd,
even though a longer barrier was ‘used, The conclusions fo be drawn aré that
the pressure sensitivity theory of (5) Is not sufficient fo explain completely
transverse modes of instability, and +ha+7+he additional effects, which cause
the spinning form 1o bé‘much more unstable than the standing form, are con-
centrated near the injector face, in the early combustion zone.

In order to inves%lgafe the transition from the stable sféhding
form of the tangential modes to the unstable Spinnfng form, the permanent
steel barrier was replaced with a destructibie one, Tgé ialrsr nes wode of.
aluminum, 1/8" thick by I" long, and was placed agal nst the injector face.
Experiments showed that the aluminum barrier remained essentially intact for
the first second of operation, but disappeared quickly at that time. Thus
each aluminum barrier test could show mofor operation under both stable and
unstable conditions.

‘A comparison of the stabitity of the standing and spinning medes
using the tangential spud orientation is shown in Figure 14. The first and
second |ines represent the whole and haif chamber tests, respectively, which
were discussed above, The third and fourth lines present the results of the ~

aluminum barrier fests. It can be seen that the eariy portion of these tests

e - -
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corresponded o the l809 sector tests, and that as soon as the constraint to
The standing mode was removed, the rocket operation became unstzble, In the
fransition period a smooth increass in amplitude from the combustion noise
level io that of the fully developed oscillation was observed.

Results of a similar series of experiments using the radial spud
orientation are presented in Figure |5, Just as in the tangsatial orientation
tests, *he unstabie region observed with fuli chamber uoperation was not pre-
sent in the half chamber tests, The aiuminum barrier tests reproduced The
half champer test results during the early portion of each run {(t < | second).
However, unlike the corresponﬁing tangential orientation tests, when the
barrier burned away, the rocket motor operation remained stable, Such
anomalous behavior may indicate the existence of non-linear effects during
the starting transient period of the radial orienftation tests.

The exploratory test program demcnstrated three effects not pre-
dicted by previous theories, They were: (1) the marked difference in sta<
bility behavior between the tangential and radial =soud orientations, (2) the
greater tendency fo ipsfability of the spinning mode compared to the standing
mode, and (3) the effect of the injection diameier i.,. a. :ujeciion pattern
concentrated on a single circle. It then became necessary +o modif: tne
existing theory in an attempt fo explain the effects noted.

These modifications are developed in the following two chapters.

In Chapter 1I, the stability analysis is made for a one dimensional steady
state flow, which implies that the injection is uniformiy distributed, The
geometry of ihe combustion chamber is ihai of & circular cyiinder, cor: a-
sponding to the full chamber used ir the exploratory tests. The analysis
is extended in Chapter III to cover cases of non-uniformly distributed .n-
jection and is also applied to the sector motor. Chapter IV presents ex-
perimental dats which is compared with The theoretical predictions; Thse

validity of the modified theory is then assessed,
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Instability Analysis for a Circular Cyiindrical
Combustion Chamber with Uniform Injection

A. Governing Eguations

The anaiysis which follows is based on tne consider~tion of the
stability of small pertirbations. Each of the quantiries describing the “low
in the rocket motor is assumed to oscillate about a given steady state value.
For czr+2in operating conditions, the osciilation amplitudes will increase
with time, even for arbifrarily small initial amplitudes. Since random fluc~
tuations of small but finite amplifude (generaily referred to as "combustion
noise") are always present in a rocket motor, such unstable operating condi- -
Tions must be avoided. The approach which will be used in the determination
of the stability of a rocket combustion system is the faliowing. Conditions
will be established {or the existence of neutral oscillations, the amplitudes
of which neither increase nor decrease with time., The assemblage of the
operating points of the system which satisfy the conditions for neutrai oscif-
lation forr +the Ystability limits" which divide the wnstarle from the stable
regions of operation. The complete stability behavior of the rocks: is des-
cribed by specifying the stability limifs and indicating the unstable regions.

The rocket motor to be considered consists of 2 circular cvylirdrical
combust’on chamber of length L. and radius re» followed by a converging-
diverging expansion nozzle. The walls are assumed To be rigid, impervious,
and adiabatic. The medium within ihe chamber consists of gaseous products
of combustion in which are distributed burning droplets of the liquid pro~
pellants. The volume occupied by the liquid is take.. to be negligibly
smatl. In this two phase flow, the burning drorlets act as distributed

sources of mass, momentum, and enerqy. It is assumed tiaf combus*ion is
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completed within the combustion chamber and that the gas velocity in the

chamber Is so smal! that the square of the Mach number is negligibie compared

o unity. Thus, in this ideal rockst motor, the flow is divided into two

parts, a low speed combustioR process and an expansion to supersonic velocity

without combustion.

It i3 convenient to carrv cut the analysis in +crms of the follow-

ing dimegnsionless variables:

*
pressure  $ = %*
y L

density [ ﬁ;
temperature  T= L:
To

enthalpy 4= (¥-) A

X eF T
%
entropy & = %,_
r 2.1
¥
velocity '\7 = Y_
'S
£~
T % A%
L 2
mass burning rate per unit volume = Q——-—-‘:'
A
¥ =
time t-:.- LC_O
Lo
) 2%
axial distance 2= =
Qi
dial dist = ﬁf
radial distance e

L8
where c* is the velocity of sound, C"‘)E is the constant pressure specific

heat, this the ratio of specific heats, and R* is the gas constant. The
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subscript o denotes values at the injector face, ¥ indicates a dimensional
quantity, a superposed arrow indicates a vector, and barred quantities corre-
spond to steady state. Droplet properties will be denoted by the subsceipt
L. It should be noted that the droplet den:ify“nz is the total mass of
droplets per unit volume of gas. Since the s'eady state gas velocity must
vanish at the injector face, 4% , E¥, ig* and & are stagnation quan-
tities. The cylindrical coordinate system is shown in Figure i6.

The equations stating the conservation of mass, momentum, and erergy
for the system of burning droplets and combustion products will be presented

here without derivation. For a more complete discussion, the reader is

referred to References(l) and (5). The continuity equations are

ff + 7. (PT"; j o= D 25, .o
2& . )= 1R = -—6{?. ARy ) (2.2a)
T =7 o

o
o~

Neglecting viscous effects, the conservation of momentum takes the form

~ e 3o - —_ - . -5
VAV V(5. T 4 (T el
(2.2b)
-2 = - \ I .
+RNAT VG (VL“‘?/PL_\'{ = Ty Y b
In the energy conservation equation, terms expressing the work done by
viscous stresses and heat transferred by conduction or diffusion wil! be
negliected., Then the energy equation in terms of the stagnation enthalpy,
-~} .
{’s B —}9-;: \‘-_.2— % 2 is
{2.2¢)

—— -
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whereJ{LS inciudes the chemical e-ergy of the propellants.
The momentum intercnange between the liquid and gaseous phases can

be expressed by the equc*ion

-

+ (iz.' ‘7) V. = *® ( K"":JL )

©
d»L(&

(2.2d)

whare The coefficient & is related +o the frictiona! drag. The eguation
describing the energy transfer between phases will, foilowing Crocce (i),

be replaced by the simple relaticon

31{;: >
s+ V,sV)be=0
° ( y ) * (2.2e)

The equation of state of the combustion gases is taken as

P=pT (2.2f)

The set of equations fc be solved must be completed by an expression
for the burning rate Q, +o be derived in a later section, and appropriate
boundary conditions on all of the variables.

Each quantity is now writfen as the sum of 2 st+a

iy
2
*
o
-t
o

T
[
e ]
s
[
2
o.

a time varying perturbation. Thus the pressure is expressed as
- 1 st
b=t+Pe (2.3)

< I
where 4 is the sizady staie pressure and % is the complex, space dependent
perturbation amplitude. (For simplicity in the analysis below the term

Ypressure perturbation" will be understood to mean 4 only).

TR ETERIeemEs
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In the time dependant factor 37 ,$=A+iw, in which the real part L
is the omplification factor and the imaginary part is the frequency
of oscillation.* Tne condition A=0 corresponds to neutral oscillation at
a stabiltity timit, while A<@ ,A>o represent stability and instability,
respectively. As mentioned above, the analysis will be directead toward
the determination of the conditions which prevail when AfC or s=iw. It is
assumed that the perturbations are sufficiently small that ths squares and
products of perturbations can be neglected zn comparison to the steady state
values,

The components of the vectorial gas and droplet velocities 17
and \7._ , are represented as follows:

axial components w, u,

radial components VU, A~

tangential components W=, W
The steady state flow is assumed to be one dimensionzl, although the

perturbations will be considered in three dimensions, thus

= - = -
VvV = «w ) VL = LLL 7
= =4 = W =0 (z.4)

and the time and transverse space derivatives vanish in th: steady state

governing equations.

*In the complex representation of oscillatirg quantities, used in this
analysis, the actual physical value of a cuantity is given by the real
part of the corresponding compiex expression.
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The systam of steady stat~ equations-is then

(2.5a)
d (n~2y, d -2 L db

P =~Q R ) (2.5¢)

(2.5d)
0, 48 = R(R-1) |
dz e - 12.5e)
dfhs |
- =90 (2.5%)
3 .
with the ioliowing boundary conditions at 2 = O ;
u=o, =0, FL= Ao
-p = f = T A: {
“R$=‘es°:‘kfts=‘£ts’o; 6=0 )
The continuity equations are integrated to give
2
- - = - ' / - - - =
u fQ(i )dZ - ﬁ_outa —PL U, {2.6)
0
where ﬁaﬁ.‘o is the gropellant injection rete. The momentum equaticn
yields
T -0, =52 5 5
b == ¥(pat+p il -F s )
2.7)
2 :
Then, since T= -I; = | —(({')&,z , the steady stateigas density-is.given
To
by — — - =2 = =%
P v Y {FE AR Ao i) (2.8)

|- (e 1= (%)
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The dimenéionless gas velacity G, which i¢ very nearly equal to the Mach
number, increases from zero at the injector face to a maximum vaiue ﬁe af/
the chamber exit (or nozzle enirance) station; z = z, = %E . Itis
assumed that the exit velsciiy U is smali enough that Its square is negligi-
bie compared fo unity. That is, the analysis will be carried oui to Inciude
terns of the same order of magnitude s “h= 2x!+ velocity (wriften symbs)’-
cally as 0(Ug) ), but terms of rhe order of Ue2 wili be neglscted.

The order of magnitude comparisons to be made in the following

analysis are nor :ntended to be mathematically exact, but rather vo expresé

relations which are approximately frue in the range of paramater vafues

considered, 4
Liquid injection velocities are typically scmewhat less than the
chamber exit velocities. Initiailiy, the droplet velocity decreases because

the gas velocity is very nearly zero in the vicinity of the injecter. For

injection into stagnant gas, equation (2.5e) gives
da,

emok
The distance which the droplet penetrates into gas is then
= Lo
% %
A reasonable assumption is that the "penefration distance® 2, is 0(1),

so that the droplet coeificient B is O(Ge). Therefore, the q}opls?
velocity decreases gradually, as the gas velocity increases dus 12 combustion,
until the two velocities are equal, Thon GL increases-again as the drOple¥s
are carried along with the gas stream toward the nozzie, The droplet velocity
is ajways less than the gas velocity end approaches it asvmptotically. It

is clear that the momentum interchange coef‘icient £ will Increase as the
droplet vaporize: and burns, Rather than fake this variation in+o accoynt

specifically a constant, effective value will be used.

e aiads
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The steady siate values of nressure, temperature, and density zre,

to O(Ee) R _ _
b=T=p= 2.9
The relation between the gas v2locity and the buraing rate is
, ]
v =jc§(z'3a‘t'
s (z.10a)
or
- _ da
QT Iz .
(2.10b)

Integration of equation {2,5f) vylelds

-

“e\z,_s = constent = ‘g,,_s‘, .

Infroducing tiiis result intc the energy equation (2.5¢) gives

_d*é_. a3 /=
e é—; = “‘ é(ﬁr"zso‘)

whicn can be writfen as-
fi[ a('e:u'zcro)] =0
and integrates to
& <£s - f:v.sn ) = constant

The orly constant vu«iue which will satisfy this relation is 2ero, Therefore
) 4 "‘ﬁﬁ.s, =R = fose (2.11)

In order to investigate the stabil{ty problem for u pe-ticutar
rocket motor, it is necessary to have :;;-ecified the steady state combustion
distribution function § (2) , equivalently, the gas velocity distribution
W) . The ilquid dr‘opvlé‘f velocity can be found in terms of the gas velocity
from equation (Z.Se), as discussed in Appendix A. Then, since it is assumed

that combustion is compiete at the chamber exit, the liquid density is
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obfained from the continuity equation by the relation
— Wo ~ H (3
- @ = e TU®
@ (#) (2.12)

In order to obtain the solution for the unsteady flow, the steady

state solution, eguations {2.9) 4o (2.12), is perturbed by writing
N

- }5‘4 - l_gé
Jb-—l'*'f’e) p=lrplé f:*—!—T'e‘i -
-y 'S‘é lSt }
U=uwtuwe ' a=a'g , D/"'::L'J-Iesé; /
I =f-*'.”a'(°$f w. = u{l-tu,'_est w= = Ay ! eS£ .
) - - [ b (2.!3)
1ot o 1o 3 1
w = Wy - = S 2 st
I L € ) Q di‘LQe) ‘25 Stgo * K—_qe
— B !
-R’Li:ﬂ'LS’cT_g'LS{
as discussed above. The exr . s (2.13) are then inserted into the

eguations governing the flow, equations (2.2a) to (2.2f), the indicated
differentiations and multiplications are carried out, and the fterms involving

squares and products of perturbations are neglected. Then subtraction of the

st

steady state equations and cancellation of the factor e give the equations

to be satisfied by the perturbations (i. e., the space dependent pei turbation
amplitudes). These steps are presented in detail in (3) and will not be re-
peated here. The resulting perturbation equations (in cyliadrical coordinater)
are the following:

continuity,

1, 9d |, av' ) -
Sp ot Z 4Ry LW, P di /
2% ar v z Q (2. 14a)
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axial component of moment 1,

~ — - AJI ' ] -
C}({L”!‘l,(,f”)‘f‘u(g—r -td-f:f;a-—-ﬁ - a“-é—g 2

2
—5s(p ' 3 o _——/31}'_/*4,—’ 2’ = = Du! -
( e+, 0] ) RW 3o+ -.*"';‘Zgjé’)"iﬁu‘-;—;"“zﬁ_;%L w, (2.14b)
‘-Za,_ dlq PR J(.TL ; )
dz N S dz e
radial componen'r of mosmentum
s{v' v au 7o + *JJC'('L 1
(v'rF ) + 4 V' tas L Tty
=~ ov’ d7z ’
TR =+ ¢+ g 9f o1 2 (2.14c)
t oz W Z; ’UL - ¥ 3r
tangential component of momentum
-ow! | Sdg, .
45 o o | o~ dE | o'
—t el - = 9P (2.14d)
PLL_.L,\PU«“WZ— ¥ 06
energy,
9{ ¥-1 I
) ok ~d ! P -
droplet dynamics
S du A
u‘L + u’l..é—% + c L. {(q_ -ul.
sw! v, 2 o Lo (2.148)
‘ a% (vl
2wy N
swil+ Gt =8 (w!ewy!) ;
state,
'= ! + T /
,'b £ (2.149)
and droplet energy,
!
! - 2%
{ AT
S T Tl az -©° (2.14h)

This last equation is satisfied by

ﬂso( 0,v6) e "

Jr%é dz’
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Assuming that the enthalpy (or energy) of the iiquid propellants supplied s
{ /

to the rocket motor is cons?anf,ﬁLs“ =, and thus 4LLS = 0 . Introducing

this result into the energy equation and replacing the stagnation enthalpy

perturbation by
t ! . -
b =P -p + DR

. 1 ! , . . . . .
(since 1‘3, = T for the nondimensionalization scheme used, and 7The equeT.on

1 !
of state gives =P - ) yields a mdified energy equation.

Sr ~- +(3 ')uu.]-l-- ['jp—p4—b’l wu X—I-.
1’ f Fnaw]=Tsp (2.i41)
The equations describing the dynamics of the i:qu;d droplets are

discussed in Appendix A, Solutions are obtained of the form

W, = %? w ~
,U‘ ! = .&,(‘Z) v, *
L -5
(2.15)
i
. RGE) G /
we= 5% ‘
wsig_il / _
where '&(%) 'K(" R ) Since £ and B are O(u,), the liquid velocity

ascillations are an order of magnitude smaller than the corresponding gas
velocity oscillations.
8. Burning Rate Perturbation

The system of perturbation equations is not comp.efe without an
expression for the burni -5 rate perfurbéfion, Q'. The re!ziion for Q' derived
by Crocco (}) and later used by Scala (5) made use of the concept of the
combustion time lag. That is, the gradua! evolution of combustion products
from an element of propeliant mixture traveling through the conbustion chamber
after injection was approximated by a dis:cntinuous conversion from reaciants

to products after a certain time, called the time lag, had elapsed, By this

approximation, the impossible task cf describing the combustion process
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througk the quant: rative knowledge ¢ ¢ its intermediate history was greatiy
simplified., It was recognized that if the combustion chamber conditions
fluctuate, the time lage must alsc vary. An additional approximation was
introduced to simplify the description of the effect of the chamber condi-
tions on the time lag. The total time lag fir was taken as the sum of an
insensitive time lag T, and a sensitive :ime lag T . The varicus .hyslcai
conditions were assumed to affect the combustion processes only during The
sensitive portion of the total time lag. Thus, during fluctuating cperation
of the rocte. motor, the time variation of the total combustion tims lag is
taken up completely by the sensitive time lag; the insensitive time lag is
constant.

The burning raTe pertfurbation can be related +o the rate of change
of the time lag by considering a smal| fractional elemen1'J3ﬁ.<9f the propel-
lants burning at a given location at the time t. The burning rate of such
an element is related to the local burning rate per unit volume by

f/ﬁb(})r; 6t)= Q% 6,t) rdr db da
This =lement was injected Ty(@v,gt ) seconds before combustion, as & frac-
tion of the fotal injection rate

§on (¢ ~Tr[56,¢7 )
Then, since the element burning during the time interval dZ was injectd
during the interv=i d(t‘-cf) , continuity -~equires +-at
Tom, (t-T1) d(t-t7) = domy(¢) dt

or

0(‘4;)‘, (i-)':‘,o,f) -.—.'J‘/);)"’ (-é- Z"-![?)r)'e)cj)' "’_- %T)

T

e oo
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Introducing the division of the fotal time lag into its sensitive and -

insensitive parts,

TT = Tl + T
where, by definition, (aigiso , gives

Sy (&) = & om: (t-7¢)- ('-gi-c)

Under steady state conditions, this last relation reduces to

——— —

dﬂ,mL = -

v
In the following analysis, attention will be concentrated on
intfrinsic instahitity, vhat is, instabiiity occurring when the injection rate

is constant. Then

fom = domy = &,

3 [3

and
- -—:. dt
Jom, = o, (1= )
In terms of the burning rate per unit volume,
Q = Q (l— j’f) + h-'jhef order terms

or
z dt
2 (2.16)

S

QUet=q-6 =-

ey

Spatial effects due to the fluciuations of the total time lag and iiguid
droplet velocity contribute tairms of the same order oi magnitude as E‘ggf ,
WHile 5%: may be O(1) locally, the effect of this factor intzgrated cver
the entire chamber is on!;, O(ly ). This result is demonstra+_d Appendix B.
The terms introduced by spatial variations are therefore O(ﬁez) and have been
neglected.

In the original formufation by Crocco, the time lag wa< defined
by noting that the transformation for burnt gasas takes place only when the
processes occurring during the time lag have accumulated up to a .ell

determined level, E. . This conditio- was expressed by the equation

—
R,




t ¢
f{(x‘. (#'1)de! = Eq = /{(x;[ﬁ])a-c’ (2,17
t-Ir

t"‘fT

where 1} is the overall rate of the various processes involved in the com-
bustion of the liquid bipropellants, and t is the time a+ which +he trans-
formation to burned gases occurs. 1in the infegrals, the ra+e1§« must be
computed using the instantaneous values of ths physical conditlons at each
instant + at the location ¥, (representing the spatial variables 2,%6 )
where the zlement is at that instant. The sensitivity of tie rate 1} to

variations in chamber conditions (correlated to the local pressure) was

-

exprassed by the Interaction index n, defined by

b (of , ot 2l ‘
"”;-'(91@ YT 29 "') (2.18)

where the parenthetical expression is evaluated at the steady state operating

conditions, The assumption was made that the sensitive portion cof the time
lag occurrs just before the conversion to combustion products, Then during
the insensitive time lag The unsteady process rate is equal to the steady

state rate,

‘ﬁ-={, t-mr et st-T

(2.19)
- 1
Since the unsteady pressure is of the form 'j.r*;,-‘-‘]pcsé, the process rate
durlng the sensitive time lag is given by
- . st/ t
‘6.=-é(:+m,1°'e ), t-Tst <t
(2.20)

e —

v
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Im‘rﬂducnng these ecpressnons for ’: into equation (2.17) gives

f{—dé j;d{ + f-ﬁ('*“?e‘“{)d = Ea

or - vy -t
't
J g4 f#n\dﬂ' e = E, 2.21)
0 £-T

The first term in this equa’rion can be wri:fru €

j 2;1: + fﬁd‘t
t-T

+-T, -
which, by equation {Z.17) is
-5
f{dt’ + Eq
sy
Then equation (2.2! becomes
1-% t
YW Fl st!
fd"-' = - | TPE At
t-1p t-T (2,22)

Assuming the spatial nonuniformity of f o be negligibie, the integral on

the-left sicde of equation (2.22) can be written as # (-(‘T —r«,—), and

TT'fr=T—f '/;ujoe dt’

(£.23)
neglecting higher order terms. Ditferentiation of equation (2.23) wiii
respect to time gives
a7 (. sé - s(t-t)
ag =" b (e —F'(xlt-T1)e
which. can be rewritten as
d [ st +1(x [t-T]) g%
¢ Bl V) 3’ ("a{t])e | - _'._..:-——.—. e sT (2.24
P - [2D) -24)

Finally, combining equations (2,16 and (2.24), the burning rate perturpation

is given by
Q;l_; d—gm P (wf-#-t]) -sT } c
N e e e

(2.2%a)
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vhich is of the form

o

w
%

Q'=

}

i3 jﬂ’ (x; (22 )

Q

(2.25b)

In the preiiminary exploraiory tests, the orientation of the spray
fans (produced by unlike impinging daublets arranged around rhe circumference
of a circle) was found to be critical with regard to transverse mode instabii-
ity. Such a result could not be predicted u;ing the burning rate expression
of equation (z.25a}, in the derivation of which it was assumad +that all
quantities affecting the combustion process could be ccrrelated to the local
pressure. While this assumption can be applied to thermodynamic state proper-
ties such as temperature and density, it can not be applied +c the components
of the gas velocity, which may be of equal importance in the combustion pro-
cess., The effects of tie velocity perturbations must therefore be taken into
account separately from the effects of those quantities which can be correlated
with the pressure.

Only the transverse (i, e., radial and ftangential) components of

the veiocity perturbation can be significant in the explanation ot tne
orientation effect. For purely transverse modes of oscillation, the long -
tudinal component is always much smaller than the transverse comranenis.
In addition, the longitudinal velocity perturbat on vanishes at the injector
face and has its smellest magnitude in the earty combustion region, the zone
in which the diametra! barriers were seen in the preliminary testing to have
the greatest infiuence on stabifity.

0f the various intermediate prr:esses occurring during the combustion

of liquid bipropellants, those most sensitive to velocity are the vaporizatica

of the liquid droplets and the mixing of the veperized propellants which must

precede chemjca| reaction, JIn the process of vaporizatian, the important




J T ——

-33=

quantity is the absolute mzgnitude of the ve ocity of the hot gases relative
to the liquid droplet. Tnhe differences in The veiocity paiterns of ths stand-
ing and spinning forms of tangential modes of oscillation (which were obser'-ed
to have strikingly different stability characteristics) could result in differ-
ernces in the tocal and overall vaporization rates, However, since the direction
of the relative velocity is immaterial, The criz.iation effect is nut esrpidiiim
able by means of the vaporization process. In addition, the theoretical
study of Wieber and Mickelsen (21) indicates that trh~ oscitlatiag velocity,
efiect on droplet sncrization is essentiaily nonlinear, because of the
dependence of the evaporation rate ¢cn thc ztzclute magnitude of the relative
velocity. On the other hand, the mixing of the propellants by the oscillating
velocities is very strongly dependent on the orientation of the liquid spray
fans (produced by the unlike impinging doublet injector). Although no de-
tailed description of such a complex phenomenon is now possible, the follow~
ing schematic discussion illustrates one process by which the burning rate
may be caused fo oscillate by an oscillating transverse velocity.

Concider the mixture of gaseous combustion prodgcfs, vapor i zed
propeliants (oxidizer and fuel), and liquid propellant droplets at soma
axial station downstream of an injector doublet. For an uniike impinging
injector, liquid mixing is imperfect and some degree of stratificatin exists
in the mixture, For concrteness, the area of interest is sh-wn 1n Figure
I7 (a) for a doublet spud oriented with the line of centers of its orifices
tangential to the injection circle. Theﬁ the stratification is almost
entirely in the tangential direction, as shown by the lines of censiant
mass fraction of vaporized oxidizer in the us wixture, Y,. The exact
shape of the constant Y, contours will be dependent on the design and oper-
ating mixture ratios, the propellant characteristics, etc, E:cause of the

turbulence in the combustiun chamber, the stratification pattern shown
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schematicaliy in Figure |7 (a) represents only a mean condition.

A tvpical fuel rich droplet is shown at position A in the region
which is relatively rich in vaporized fuel, A corresponding oxidizer rich
droplet is shown at B in the oxidizer rich region of the mixiure, As a
droplet evaporates, the vapors diffuse away and must mix with the other
vaporized propellant in the proper ;r~pertions for chemical raction. In a
rockel combustion chember, the transport and mixing of the vapors is most
likely fo be carried out primarily by turbulence rather -than molecular
diffusion. The overall burning rate c¢ a fuel rich droplef,z@; , will
therefore be a function of the amount of oxidizer vapor near the droplet,
{LF:&KYQJ, where subscript A indicates conditions in the vicinity of the
fuel rich dropiet at position A (the subscript B wili be used similarly to
denote conditions near the oxidized drop atB).

In the presence of small, periodic, fransverse gas velocity
oscillations ar%fwi uJeaJﬁ » the gaseous mixture will be transported rela-

tive to the droplets, causing oscillations of the local mass fractions of

oxidizer and fuel. The perturbation in the rafe-ﬁp can then be written.
L aiﬁ ’
T;F ';F h -f? ( - ) (\f; )A

3
where the proportionality factor ay;ZudePe"ds on (Y:)n and o *he propel-

{2.26)

lant physical and chemical characteristics., The dependence is not neces-
sarily that determined by investigators of laminar dropliet burning (22).
The change in the local oxidizer mass fraction due to the tangential velocity

pef+urba+ion is

(Yx')A':‘-;'. ?ﬁ‘ f(A"' JA dt'

- - —L an) wa) e(“"ré

Lwr

(2.27)

where Auw' is the relative velocity of the gases with respect to the droplet.
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The motion of +he larger droplets is small ct apared to the gas motion, while
The smaiier dropiets fend Vo move witih the gas. Therefore the discussion here
pertains tc the larger droplets, As a droplet evaporates, the sffect on it
of the transverse velocity decreases, Thus the velocity effect described here
can be expected *c be most important in the early combustion region, in
agreement with the results of the exploratory rtesfing,

Combining equations (2.26) and (2.27) gives an expression for the ;

rate perturbation for the fuel rich droplet at A,

(S (L2 (e e
te k?)&)‘\ rosja (w © (2.28a)

For the corresponding oxidizer rich droplet at B, the expression is

_ (35».() '37; (aw')y (Wt
T\ s"ag’ﬂ o © (2.28b)

Since the fue!l rich droplel is in an oxidant deficient reg{on, an increase
in the oxidizer mass fraction will increase its contribution fo the overall
purning rate, that is, ?6:%270 . The opposite is true for the oxidizer rich
droplet; a—;‘i‘ {0 since an increase in the local oxidizer fraction is accompan-
ied by a decrease in the local fuel fraction. A perturbation veiociiy in
the positive @ ~direction will increase the oxidizer rich droplet burning
rate and decrease the fuel-rich droplet burning rate. Therefore the effects
on the two droplets yif! tend fo cancef.

The net burning rate perturbation is given approximately by

' ! ! ~ ud
’gne? = fet b _"" - {9‘&. av&] (1‘2’2‘) A'w 3 e (2.29.)

[

.
where the subscript o denotes conditions - tha center of the spray. Then
1
] > | 8 . i . s
f:!ﬁA <o asj 5%;! < ’5%2 ,. That is, for a positivas velecity perturbation,

the sign of the net rate perturbation Zepends con the relative magnitudes of é;gf

and é?g . In order to de*ermine the effects of the velocity perturbation on
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the entirs spray, the summation must inc!ude ali of the propellant droplets.
If one of- the propellants vaporizss 2+ a greater rate than +he
other, most of the drcplets in the mixture will be of the slower evapor>ting
propellant, Therefore, thsre will be no cancellation of opposing effects and
ihe overall velocity effect will be determined by the characteristics of the
less volatile propellant, For the [iquiu oxygen-ethyl aicoho! comtinet.on
used in the experimental phase of the present investigation, it can be esti-
mated, using the spray evaporation calculations of Priem and Heidmann (23)
and the reiative vaporization raie data of Pass and Tischler (24), that+ at
any station, twice as much oxidant as fuel will have bsen vaporized. Thus
an important velocity effect can be expected, For propeliant combinations
using non-cryogenic oxidizers, the avaporation rates of the fuel and oxidizer
should not be so different, and the velocity mixing effect should be consider-
ably reduced.
The analysis of liquid dropfet dynamice presenfed in Appendix A
shows that the relative velocity perturbation suf is proportional fo the
gas velecity perturbation w'. Then the net rate per%urbafion can be written

in the form

where

0

357 a# /—LQY 'A‘)
£ =g (5% ), (o5 ) (%)

is a velocity interaction index analogous tc the pressure interaction index
defined originally by Crocco (equation 2.18), A spray thicknest .. can be
defined as the distance between iwo referance contours of constant oxidizer

fraction (e, g. lines | and 2 in Figure 17 (a)). Then

-’-'?.‘é) = M~ Y &Yx
v g/, = 2t o= &

4 : A

(2.23b)
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and *hs velocity index L is szen to be inverse!. proportional to the soray
thickness. 1In general, the net combustion process rate perturbation wili
depend on both the radial and tangential veiocitios,

g ! iwt
where - and {, are *the radial and the tangentiai veiocity indices.

If the injector doublet which produces the mixture discussea above
is rotated through an angle 8, from the tangential orientation, the resulting
mixture will also be rotated, and will appear as shown in Figure i7 (b). The
spray thicknesses in the radial and tangential .directions are thenr

I
v -‘55:%‘? de * ;;:b‘

Each velocity index is Invercely proportional to the corresponding spray
thicknsss, or

Re~ éﬁiﬂ ’ ’Q;”‘ ?%iﬁ
For the tengential spud orientation, §¥=o and 4, =¢ ; for the radial
orir:nfai“ion,(ig--%~ so thatf, =o . For a given injJector spud, producing a
spray with a given thickness d, the sum of the squares of the velocity
indices will be a constant, independent of the angle of orientation.

The simple argument presented above is intended to suggest how the
transverse velocity oscilliations can affect the mixing of the ' aporized
oropel lants and produce osc..!ztions in the overall burning raic, For the
unlike impinging doublet, it is seen that fhe perturbation of the combustion
process rate is a linear function of the radié! and tangential components of
‘the velocity perturbation, assuming that the perturbation is very smaili,
Other injJector tvpes will not exhibit this tincar velocity effect; some will
be insensitive to oscillating velocities while other will show a velocity

dependence which cannot be |inearized.

At the present time, the maéﬁifudes of the velocity Indices and

Foct = (4, v 4+ 4, ') e (2.29¢)
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their variations with axial distence canac ¢ be calculated because of the lack
of quantitative knowledge cf the processes involved in liquid bipropeliant
compdystion under turbulent rocket combustion chamber conditions,

In this chapter, it will be assumed that the velocity effects cccur
during the seme Time interval (the sensitive time lag) as the pressure sffects.
Although this is the simplest manner in wnich rhe veiocity effecTs can te
introduced, it is not necessarily the proper one. Consideration is given to
alternative formulations and *their implicatious in Chapter III . . It should
be noted, however, that the alternative burning rate expressions involve addi-
tional parameters which, like -y, o, and U, cannc* 2t present be
calculated a priori from a consideration of physical and chemical processes.
Resort to experimental +echniques will be necessary in order fo determine
the proper description of the unsteady combustion process, including both
pressure and velocity effects. Assuning, fhen, @ }inear dependence of the
perfurbation of the overall rate of the processes uccurring during the sensi-
tive time lag on the perturbations of pressure and radial and fangential

velocity, equation (2.,20) becomes

a /., 4'.3‘:“' ,(: S ! S 2 !
Lot A0 LSy L e t-T <t <t
L ° s )’ (2.30)

The time rate of change of the sensitive time lag is found, by the same

procedure as used previously, to be
L - - ’; 5 —
RS S A L
2 A gz ] e &
<

. P (2])

A AR DI
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‘Then the burning rate perturbation can be written as
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where 5 { ‘?:<xcii“f ]) -ST
= on } \ - ——— e
. biix (1)

2’ Ax (4-2]) -sE
(x [£3) {
y § Wi (¢-2]) -sF {
6 ( wt{x¢ (1) 3
In general, T=T (z) veries from one propellant element to another.
The effect on combustion instability of such a spread in the sensitive time
lag has been evaluaicd by Crocco and Cheng (!}. In this znalysis, it is
assumed that all propellant elements have equal mean sensitive time lags,
so that T'=constant,
C. Solution for the Perturbations
The addition of velocity terms to ;he‘burning rate perturbation
expression makes separation cof the variabls impossible, Therefore a differ-
enT Cpprouch is used. The solution is asuumed ;o take the form of a series;

the pressure perturbation, for example, is
i =3 + +- 'h,- 4+ s
PRt R , (2.33)

where P, is assumed fo be 0 (Ugh), P, is 0 (Gezpc), efc. Since the
governing equations wur2 derived neglecting terms of oZEe2>, the solution
will be carried only as far as the first érder correction, QP, .7 As dis-
cussed graviovely, it is asswicd that the combusfionfpfocess sroguces a
through velocity in the combustion chamber which is smail“compared to the
velocity of sound, and that the droplef drag, and hence the drqple+ osci |~
lation amplitude, is also smail. Therafore, the zeroth order solution cor-
responds fo acouctic oscillations, and +Be first orderrcorrecfion includes

the effects of the combustion process, the liqu:id gas interaction, and the

exhaust nozzle.




e ——————

-40-

The zeroth order eguations are

3 843 2w,
Y -+ Y% g L 1 —t =
Pot o5 * 57 t 7%t r35g =0 (2.342)
i °
Sug, = - ¥ 5—?‘
(2.34b)
sir - - -L %’
° Y oy (2-34C)
1 2h
SW, =" ¥r 5B (2.344)
'TPQ _
5 = F (2.348)
The boundary conditons at the combustion chamber walls are that the veloclty

perturbation normai to the wall must vanish; that is, W' =0 2t 2=0 and
vi =0 at r = |, In addition, it 1s necessary to impose conditions of
boundedness and periodicity in order to obtain a solutlon, At the combustion
chamber exit, £ = Z e’ the proper boundary condition is a relation be-
twesn the perturbations of pressure, velocity, and entropy. (This "nozzle=
admlttance relation” is discussed more fully later In this chapter and In
Appendix C.) However, the oscillations in a closed end cylindsr dre Gults
slmifar to those in a rocket combusticn chamber. Therefore, It is lastructive
1o consider the zeroth order solution with the solid wall boundary condizion
imposed at the nozzle entrance,
U'(z=2e) = O
Equations (2.34a) to (2.34s) can be solved for -p, fo give

A S X =
® P =0 (2.35)

where 4 1s the Laplacian operator
L, 12 Lt
a 2551'{' vz TR v * 7250t
The solution is obtained by assuming b, in the form

- (V‘> @ ’9)
P=RwY, o ! (2.368)
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so that the other perturbstion quantities become

L=s RO TE @

(2.36b)
L dR®@ JJ ) @6,
! d ;D ,
o= ~— Plzy T2 (8) (2.36d)
L= w B 50 6,
| A ®, .

W= T s F) i @c(r) v (2.368)
Substitution ot the cxpression (2.36a) into equation (2.35) yields ths ,
folfowing three ordinary differential equations:

d*p, 2

- + $ ¥> =0 . )

I= (5% +sm) (2.372)-

K3

1d 02 d% z 2 (2 s
rd 93 Surt-v2)¥ = o @3

pp + T -f-( Vh ) ° ) {Z.37h)

d- @, * V (237

Y, L 0t® =0 (2.37c)

46 ’ - :

where sz‘;, and vz are separation constants,

Equation (2.37b) is a Bessel equation of order , for which the

sojutions are
J-.y (Svk"") R \(.‘,(Sukr) -
The boundary conditlon at r = | is the solid waii condition, q.i’a... '\' = 0.
At r = 0, which is a singular point for the diffarential aqcation, the-

condition is that the perturbations must be finite; 1. e., ¥, is to be-
regular. Therefore the Bessel function of the second kind, Y,(s.,u), is
excluded because of its logarithmic singularity at r = 0. Thg fh:sf
condition determines the vatue of the constant 3I,t,. Tha'r'is, Syk is the
solution of the equation

%—-'I,—"(Svl.) =0 »
For each value of the parameter ¥/ , there are an infinite number of zgros

Syh , counted by the index h, Physically, h 1is the number of cylindricai
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surfaces, including the cuter solid wal!l, on which the radial velocity
perturbation vanishes; h = 1| corresponds to a purely fangertial mo’s, h = 2
o the first radial mode, h = 3 to the second radial mcde, eic,

The solutions cf the harmonic oscillator equation (2.36c) are

vo -~ >0
(&4 . e

® , represeats a wave moving in ths regative

The first of these solutions, ¢¢”
& d.rection since C[w‘t-i'zlé) .

P ~ e N

. . w - \ ~L¥
and the phasz velocity is YR Similarly, the second solution, € »
represents a wave moving at the same speed in the positive direction. The
combination of the two oppositely moving waves prcduces a standing oscillation

pattern, with '
‘wﬁ

wk ot
u)’o'v Sin Vg e

/}70 ~ cos ‘Vi&ei 5

8cth +he spinning and standing sciutions must be periodic, since the direc-

tions represented by © = 0 and O =1X are physically identical. Thus

$.(8) = 4, (0+2r) 1
Moreover, the sfaqding moge tangential veleccity perturbation vanishes on_ 7/
staticnary diamé+ral surfaces (nodat surfaces) which can fhen bs cspiaced by
sclid surface§=(e. g., berriers or sec+of inserts) without disturbing the
oscillation pattern. In a spféﬁing mode the nodaf surfaces rotate ar ?hei
oscillation freguency. For PY=0 , the solution of equation }2.36c) is simoiy
Q= constant A

which represents-a puréfyiradia} d#de, since there is no variation in the
fangén?ial direction. The first Téngen?ial’mode corré5ponds to ¥ = 1,
the second féngenfiél mode to ¥= 2, and so on.

The solution of equation (2.36a) which satisifies the solid wall

boundary condition at the injector (2 = 0 ) is

%(2-) = Voo Cosh¥siesy 2
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where P 5 Po(o) is an arbitrary constant., The solid wa!l condition at

the notzle end of the combustion chamber,

ap,
= (e=%) = 0
can be satisfied if s = {w . Then

P (2) = P,y Cos Yyw?-si, 2

and the boundery condition becomes
- sin { wi-syi 2, T O

which impiies that

{ N z . . R
@6_51“‘ % = 7"“ > ? :»o) l) z) see
. 2 2 2z
w5+
2e

Thus the acoustic oscillations in a closed bylinder are neutral (A=0) with

or

(2.38)

discrete, well defined frequencies. The purely longitudinal modes correspond

) = . . ¢ = . .‘:2‘1‘-
71'0 %— Sa, =0, 4 =1, 2, e so that w 2_; and

- . ?
'-‘bp: F(2) = P,, cos 37‘(.\-,—0) , Vg=up =0
Purely transverse modes are cbtained when §=0,Svn$o - Then the frequency

of oscillation is 605'8;,;,. As discussed above, Sul, is a function of +he
indices ¥ and h_ which specify the mode. Isobar and streamline patterns

for several fransverse (sfanding) modes, with the corresponding values of 3,1,

are shown in Figure i. For these modes,

Re)=Fo , Y=o

The mnst general three dimensional osciliations involve combinations of

icngifuqinal and transverse modes, in which bc‘?h the axial and transverse
velocity perturbations are of the same order of magnitude as the pressure
pe-~turbation. 'f‘he oscillation fraquency in the general case is given by
equation (2.38) with both s, and ? having nonzero values.

The present investigation is concerned only with the purely trans-

verse modes. By this restriction of attenticn, considerable reduction in
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complexity is obtained and the prope: ties peculiar to the fransverse oscil-
fations may more easiiy be seen. However, important effects can be expected
to result from the interaction >f longitudinal and transverse modes, and
ultimately the snalysis of general three dimensional oscillations should be
made, :

1he oscillations in a rocket combustion chamber differ from the
acoustic vibrations just discussed for two reasons. The {irst is the pres-
ence of the liquid propellant combustion process with the resulting small
nonzero through velocity. Second, the boundary condition at the chamber exit
imposed by the -exhaust nozzle in supercritical operation is significantly
different from the solid wall condition used in the acoustic solution., The
nozzle boundary candition for transverse modes of neutral oscillations was
derived by Crocco; an analytical discussion of this derivation is given in
(25).

Let the perturbations of pressure, velocity, and entropy be given
by

/)o/ = P() Q,,k(f) Q,(e)

W = V@) 8, (r) @8

15
w' = W(z)$ Gulr) :‘fév

D
/
v = Vi(z) OL'—“T‘V;! @, (8) (
A = Se) Py ale) j

-8
where % —._-.:_7,7(5,“._,\, ®,=ccv8 or € are the transverse distribution
functions discussed above, and the fime dependence is harmonic, e‘boé From
the transverse momentum conservation equations it follows that V = W,

Then the boundary condition at *he nozzle entfrance, which by analogy with

acoustical terminology was called by Crocco tne nozzle admittance relation,
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takes The form

QL) 7 '\’/_.. (
T g, e 13
{0

c N
Plo) Po) Plo)
The admiftance coefficients # , 63, and C arz complex functions of the mode,

frequency, chamber exi+ velocity, and nozzle convergent section geomefry. A
discussion of the calculation of the admittance cucrficients for an
axisymmetric nozzle 1s included as Appendix C of this dissertation.

The computations which have been made indicaie that the admittance
coefficients are app: vaimately O(ﬁe), or slightly larger, for freguencies
in the vicinity of the acoustic oscillation frequency. For *ransverse modes,
tgi)and %g?% are 0(1). It will be shown later that if combustion is complete
at the nozzle entrance the entropy perturbation %%%? is at most 0(Te?). “Then
from the admittance relation it can be seen that thes axial velo:ify perturba~
tion %égg is not zero as in the acoustic case, but is reaily epproximately
0(d,).

By definition,

2. L BB g 6,6 + 0C)

POO - POa
and from the discussion above

]
b e nk(E)86 + o) # ociy.
That is,
éi ‘L’g) \/—"5*/" Sinh 57""53:2’?0’:“2)
Expanding the funciion smk1é&§;7 and neglecting higher order ‘erms gives
the not unexpééTéﬁ ‘esult ) o .
SSeson ¥ O(T)
since Zg is O(1). Thus, for purely fransverse modes, the combustion
process and exhaust nozzle give rise to a small axial velocity perturbation
and a small shift in {requency from the corresponding acoustic frequency.

In addition, the osciilatiors> in @ rocket mptor may be unstable, whereas

=G (2.40)

e et e e e
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the acoustic oscillaticns are always nev ral,
It should be noted that the series expansion usad for the pertur-
bations,
1@': by +b 4 , W ug + Uy 4o
cannot be applied to the admittance coefficients A, &, and & An sspansion
of the form

J‘L:‘.Ae -i-\/{‘ e

requires that & = O(Ug). Since A = O(Ug), the requirements is that A,
Ve

ol

must be OCEei;. The admittance coefficients are functions oi tue frequency

W; therefore the terms in the series expansion can be wri.ten
Romhlwssin) | A= (22) - (wmsm)
wssy,

Thus, since wW-s, is O0(Uy), the derivative %‘% must be 0(Ug) also. The
curves presented in Figure 18, which show a frequency dependence typical of
the admittance coefficients in gene.al, demonstrate that gf% can be 0(1), so
that the series expansion breaks down. 1In this analysis, therefore, the
3 application of the nozzle boundary condition will be deferred untif the first
order solution is obtained.

The equations governing the first order solution for the partur-
bations will now be derived. 1In this derivation the simplitying assuption
will be made that % gradient of a quantity is ot 1he samc ¢rder of magni-

tude as the quantity itself. However, an excaption must be made in the cace

of the steady state axic! gas velocity, u(Z) . In order to allow for the

2 e
case of a relatively concentrated combustion zone, the velocity gradient jE:
i must be allowed to be O(1) locally, ra“ier than O{ug). The chamber length
> i -
o § - Zo is assumed to be O(l); therefore the axial distance over which 3; Is OC1

can only be 0(Ug). The determination of the first order solution is much

simplified by requir.ng the steady state velocity gradient fo be of the same
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order of magnitude as the exit velocity. I1 ¢s demonsitrated in Appendix B
that the seme solution resultz when the magnitude restriction on the
velocity gradtent is removed, althcuch *+he analysis is considerably more

complicated,

S

Assuming, then, thet Jé: is O(u,), the tirst order eguations are

obtsined as follows, The perturpations are given by
i
.b = '@c- *-’Pl ~\
[
[9 = §f1% ¥ f“ //

w=-%ZPeu = oleh)
) |
L 2 -
e - e 5%? + %,
t RE-)) -
wr =~b,sr5.-é” + u}';’ (2.41)
‘ -~
o= = Olded,)

ML' = "‘k' (k‘ = O(‘Iez bo)
U LN --kE oh + O (Gt h,)

%;' = ¥st &¢
_ Rz R X -
W= ‘3')“'- f?s-—?—,? ;‘%’ + 0 Gidt,)

where the first order solution -33 has been found 1o be

b = 2,212 1 O ,
Po =Foo] 14 (s%s5)3 | & (v) @, 66) (2.412)
. . -<v0 .
with ¥, (r) :];) (yur) @) = cos w@standing mode) or e {spinning
mode), and s*+sh, = Ol). The expressions (2.4l) are inserted into
equations (2.148), (2.14b), (2.14d), and (2.14i) and 17¢ zeroth ordep
relations are subfracted off. The resulting system of partial differential
equations is:

du, L Y, vy, 49w I[: I o2 1 3
TR e * 7 e 5 (Ph R P TeBh - B ]

1
¥ 5% (2.42b)
- =) : / I =
sV =~ ¥ 5‘?‘ rs(‘éf’t +4¥ )57 (2.42¢)
=Y) (2.42d)

i
- ;1___ (¥4, (2.42e)
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The boundary .onditions on thes equations are those which were
applied to the zeroth order solution, namely, the soiid wal{ condition at
z = Qand r = |, the condition of regularity at r = 0, and the
periodicity condition in the circumferential direction, including the same
distinction between the standing and the spinning forms of fangential modes.
The nozzle beundary condition wiil be uppiie” To the overall sciution, +hat
is, tc the sum of the zeroth and first order solutions,

The systems of first order equations can be solved for 1§ , glving
2 4 [ A'I 1 - Aﬁ'
Ap-st b = [¥a+m g Jsh -0 54,

da adbo n 8190
te%E v 75‘3“{155

+_3 41 F
Tt ih g

solution can be found by superposition. Let

“P, = 1%4 +‘“ﬁ3 +"$Z + 1?9

where l& Since equation (2.43) is linear, the

where the partial solutions t%,‘ba,1h'a"d P, are solutions of the

following equations

A’PA ‘SI’bA 2‘3’5@% poo@,;h @,1

(2.43)

(2.44)

(2.45a)

A%-Sz?s = CQOL.‘T Poo "';gi“ @ éz.456>:

s~k = IR P g‘vz"’él’@
13'1&) $ -ﬁD“ l:ik PL'F (8%4) ,] S on éELk G?y

The partial solution ’h4 can be obtained by letting

bo=Pale) &, v @, (0

Then equation (2.45a) becomes

46 2 19 L& 7y
L8 0@ Pt s e ) LB <B4 G

(2.45¢)

(2.454)

(2.46)
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The transverse distribution functions satisfy rhe relation

) v ot

o W S - - z

or2 v or  vZjg2 ) EPJI,@ == S 9% @J
Making use of this relation, equation (2.46) becomes

4t ( Pa ( hy
422 (gd) +\s"‘+s;i)£_; =-¥s0 3

However, since 534éﬁi and ;? are both C{us), the differential equation
[>2]

for Pp reduces to

T 7 r \ - ‘e
(R )=-40F + o)

This equation is easily integrated 7o give

2
h® =—Xs(?jfﬁda’ + Ka
P .

[T A
where the integration constfand K, represents the vaiue of ;%; at the
injector face, # = 0; therefore K, = O(Uy).

The partial solution 4p° is obtained in the same manner from

equation (2.45d} with “py= Po@)\,,(r) @J8) and

P Z 2 z
"é‘o“ '-'gf"?'[-fz'fz")ﬁ(e")d%" + (¥ )sj a@)ds’ 4 Kp
g °

°
- ) -
where again = = .
Kp=2~ =0(%)
A different procedure must be adopted in o~der ic obtain +hs

parTtial solutions 1% and 1% because equations (2.45b) ar (2.45¢c) are not

separable, These equations are of the form

Ab -5 = F@)-G(56)

The solutions (eigenfunctions) of the correspending homogeneous equation we

determined previously in the discussion of the zeroth order perturbation

solution. The transverss distribution functions for these solutions were

(2.47;

(2.48)

{2.49)

(2,29

(2.51)

2
-
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found fo be

Cos P9
r}; = - ‘l') W (8 I
Sz;q (r) (Spq (j% (8) . ( oip0
P=0, L3 3, q= 7,5
These transverse eigenfunctions form a complete, orthogonal set. A solution
of equation (2.5!) can be obtained, therefore, by expanding (;(ge)

*
series of the transverse eigenfunctions.

wo QO
2 Z Aeq Trq (2D, (8)
P=o 9=t
Write the solution of equation (2.5') in the form
[ -]
1’ = Z Z Q,vq (2‘)\1/,; (v) @ (6) (2.52a)
p=o q=1
The transverse eigenfunctions must satisfy the relation stated previously

in equation (2.45). Then equation (2.51) vields

dtp, . 7
o‘?‘l[ a_éq_(sz+sg-q Y Peg J = A,c’ F(z) for all P9

Let Qﬁ—_-.A,,q . Then the partial differential equation (2.5!) har boen

reduced fo the set of linear, second order, inhomogeneous, ordinary

differential equa+ioné

d2Pm 2 AR ) =
—! - ($* 45 I = [ /z)
d2? SR (2.538)

The expansion coefficients are given by
!

! *
Ap = " j fG(GBJ ‘;_13,,9 8" vdrde *2.54a)

8= “rxo
where H is a normalizing factor, defined by

- i;brf ng.;?: ®, @;* rdrd 8

and ();&is the complex conjugate of CD?.

* The validity of the expansnon depends on the existence of Green's function
for the boundary condition ﬁév(Vhl)—-c», which follows the existence of
Green's function for the boundary condi tion p@“")‘ . (26,27)
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Consider first the partial solution 'pe » given by
Papa (@) r e
,?—o z! Bey Pera (2 L, (r) @, (6) S
= (1-
«here the axial distribution functions PBP? satisfy the differentia! equations
dat (Pem) 2,2 Y Pere dix
- (5°+S5pq ) =V = ——
diz ‘ =) ( F) . @
(2.53h)
The mode of instasiiity under consideration is specified by the pair of indices

“J,h. If p =V , g = h, equation (2.53b) reduces to

E‘L'z(ﬁw‘) =3 :Tlé:

exactly as for the partial solutions P, and 1’9 . Then

%-’-’l‘- =R fﬁ(é’)de' + Kavi, (2.552)
%o (N

as before. For all other values of p and q , egquation (2.53b) becomss

PBP‘?\ (s z \ P ? ®
( -5 8rg - A
Poo F? yh) Pos dz

since s%*z "S;k + O(;e) . The solution of this equation is obtained

by the method of variatisn of constants as

pm du smLYS S.,,,(? -2') 55—
=N “XJ) —/sTP’?“ ey b Vohysi

The expsnsion s,oeffime qu are given by
J -
f J a-i e @ @P rd-d @
f'r G @, @F rdedo o
P:e-LPQ

) !
- Then, denoting = by I/(F‘),

-
‘

Tor & wpinning mode,

je‘ye“’odg 53,,,, (sy;,.\J fmr) rdr
L 40 J J"l(Mr) rde

From this expression, since the functions €

rT

P&
gand e‘P are orthogonal, it

can be seen that

!
l
. Syim f vy vh‘")J;j(Syq r)vdr
ch'=0) P%)) ) BV?- o

T e ) rdn (2.56)

(4
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The came result s obtained for the standing mods, because cosy @ and

cosp € (0<0 s2w ) are also orthogonal.

[————__

The partial sclution . is obtained by the same precedure as used

for JPB . Thus let

g ; Cr Pep @ T (9 @, (6)

where the axiai dls-rrlou+|on functions are

R

? Z., sinh st (2-2')
m‘"]j “)5%——4‘2 + Kepg csh ¥i353, 2

The expansion coefﬂc:en‘l‘s for 1>c are given by the expression

ff 5%y @0 rdo
j«zﬁ @ @, O vdrdg e

For a spinning mode @V__eo.‘lﬂ Then Q/'___L is orthogonal to all of
(P&

Cyq

the *functions @::e except @y , so that

Cm =O, f:#v

and i
L L6ne) Ilsygv) dre
qu =—[')} 7 H
' ~ d r J
j; J;/ &,q c ) K
In perticular, for @ = h , the second of equations (2.58a) becomes

Ch=-iv lkx}(‘vh‘”)d"
[T smr vir

where an, is a positlve real number. Thus, the expansion coefficient

.~
= =Gy

zorresponding to the mode of instability under consideration is a2 negative
purely Imaginary number,
However, for a standing mode of osc:llation, @ =cospg, and the

. ! .
derivative ®,=_713m:9 is orthogonal to @}COSPO for all p, over the

(2.522)

(2.57a)

{
{

(2,57b)

(25)

(2.58b)

interval 0$ @ € 2™ ., 1In order to obtain expressions for the expansicn
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coefficients, the interval of definition of 1 .e eigenfunction expansion is
changed from 0462w *o 0SS Q<™ . Since the standing mode oscillatior
pattern is symmetrical about 8 = 0, (or@=r ), the other half of the

solufion can be obtained by refiection. Then for a standing mode,

v
j.sm V8 cos pﬁc‘é‘/f (swhe) Tp(Spqr) d v

Cm =—9 F
2
Jo wxp® d6 \[J; (S‘Hr-) rdre

or

Cpq =0, for P—#=2m, m=o)t» 12, e

ot f 3, Gsne) T, (s,,,,.-ur (2.58¢)

C
Py = 1\'(? v?-) II(ﬁq") ~dv

The most important result here is that the eagenfunc‘hon expansion for 'h»_

does not include a term corresponding to the mode the stability of which is
being considered.

It should also be noted that whereas the expansions for $, and for
. in The case of a spinning mode are uniformly convergent, the standing mode

series for §. ,

Z 2 Coq Rpq(2) I, Gsrqr) cos p 6
P
is not uniformly convergent, This result follows from the fact that the

tangential part of the nonhomogeneous ferm of sguation (2.45c),

4
JQK ==y Sinv9

vanishes at @ = and f* . On the contrary, the 2igenfunctions

®P= Cosp@ o not vanish, but have vanishing derivatives 9?/ at the

endpoints. Thus the expansion

q—l

does no+ converge at the boundaries, € = 0,4 . However, the eigenfunc<

G(ge) =—;.'-J'y(s,,,\r)-/sf.-.ve = g ZCﬁ Péﬁ +) cosp &
- 4

o
tion series for does =.tisfy the tangential boundary condition (5E =0
9 2100 fr
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and does represent ine partiual soluti n #t away from the tangential
boundaries.
In summary, the solution for the pressure perturbation hac been

foupd to be

i o~
$= { [§(2)+P4(2i +8,, Porh(2) < Gu Py (@ +P le)] Iy (Sr)
- P (2.59%)
+# [9,,?;,,,«) + Gy Py @] I,y r)} e

fér the spinniag mode, and
4'= {[P,(%) + Ba@) 4B P @ +Po)] J, (sisv)
+ % Bag Povg@ T, (504 v) } Cos ¥
ad
+7 X Cpg % (5997 cos po

@
for the standing mode. Both of these <olutions are of the form

$'= [ L {eY) +PM,(3)] f,,‘(r)@y@) + 5 ’%‘ Pipe(® %‘-" & ) (2.60a)

so that the velocity perturbations can be written as

i__1§,4R (4P Pe
® :-&[{gi*%")&@g 4-92 :L“']"!” L{/H @,]

(2.59b)

(2.60b)

(2.60c)

v { [+ i) esmn] ] w—s,;;en%’@,}

U
W':-LZ([(H*"‘Hﬁ)p £ 18 o /7
o iR B g ¢ Yo (2.60d)
J I3 Ql ZZ"’, r @,
Ths entropy perturtation must be evaluated befors tne nozzle
boundary condition can be imposed, T:. tundamental identical relation of

thermodynamics can be written in dimensionless form as

= 42 - ¥t 4P
Tde = di -
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In terms of steady state and perturbation qui

= / b’__} !
I A& ==-4£ - ¥ ;zi .

Y .
It has been shown that T = §=F= ! and -R,I--- T!

1tities, this relation becomes

. Then the enfropy
perturbation is given by 7

1] } ¥t / .
A=T ~ T ¢

or, making use of the equation of state (2.14gjto efiminate the temperature-
perturbation, /

- #

I
A

(2,61)
The perturbations of af| unsteady quantities have been assumed
to be represented by series expansions. Thus for the enfropy
/
& =4+ +
where from equation (2.61)
=P < P _
A’o— 7— -.-Fo 3 .»d/,s ..5; ﬂ by
The zeroth order energy equation (2.34e) shows that
Ay =
From the first order energy equation (2.42e) it can be seen that
/4, =1 d_‘; !‘:I
/ s dg v 7k$
or
! V di 7Y -2
=4 =~ _ —_ r
A =2 3 4z ( y)BoSPvA( '@ t) + 0 (2.62)
Thus,

the entropy perturbation is largest in the region where the cambustion
is ncst intense. At the nozzle entrance, where combustion jg assuned com-
plete, the entropy perturbation vanishes,

It is now possible fo examins the svabiiity vehavior of the rocket
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motor by 2pplying the cnamber exit bound: -y condition, which is the nozzle
admi Ttance relation. The conditions at Thersfabilify'llﬁifs, which brund
the regions of unstabie operation, will be derived by setting the amplili~
cation factor A equal fo zero. Then the complex timc parameter s is
purely imaginary, s = -i&w , where &t is the freqﬁehcy of oscillation,
E. Characteristic Equation
The boundary condition imposed bv the exhaust-nozzle upsn the

. osciflatory flow in the rocket combusiion chamber hasibeen presented in
equation (Z.40; in a form appropriate to the zeroth order soiution. Bccause
of the distortion of the wave pattern introduced by thc-effects on the
combustion process of the transverse velocity fluctuztions, it has been =
necessary to make use =f eigenfunction expansions in the perturbation soiu-

tion, which has been found to take the following for =

- o0
4 =2 Z R F( B9

peo 9=

U.I = :Zo 92? U,q(a) Qﬁ‘”) @P(e)

%0 Q=4
[

- o0 R /
w'=3 T Vi @F (1) @p(s) -
; = P ’ (2.63)

oo 00
W'=Y 7 Ve (& 28 @(e)
Pso $=1

;4«' ’if 123-!") (i’~)t g',’q(d @g(ﬂ)
ZAE

Then, imposing the nozzle ‘boundary conditions resuits in not one relation as

in equation {2.40), but infinitely many relations of the for:n

P t4 %‘g&)’r@% Pae) | W) (2.64)
oo g0 (-] o0

There is thus an admittance reifation corresponding o each term in the

. eigenfunction expansions. -
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Since combustion is assumed to be complete at the entrance to the

nozzle,

d* (?u P () =

Hence, the axial distribution functions become, using equations (2.5%) and

(2.60).

Buul2e) = B, (i) + Palae) + B Pomion) =18 Rop, (2}t R i)
Pm (%') = Bp’ Pqu(ig) +CH PCPQ (Ze)
=l dReED

(2.65)
VP? (2e) = -\—E Pp?(ie)

were B @) Po [ 1+ (2455) 8]
Patt) =Ry [ 45 @ [ider +a ]
* w
Psu(%):‘Poo[ Q\f;ﬁ-d%l +f-{gv‘s] {
2z
=7 [ 3 (3 00 ] Y e
[}
P @ = Bo[s lzi'i‘z' da" +(X‘H)sfu d! "'K" \

2
) - r -
Pon@® = R [® f & sm‘;/*’;n_‘tf!* 2 ! + K cehv - s,g;

u.rq(z) = Pao [jfdl& Emjr‘i—-_;:—“,‘(%i)d ! Kcn W&‘VSH 2}

Substituting the relations (2.65) into the nozz!. admittance equation (2.64),

and defining & combined admittance cosefficient € by

€ = gr+a85=(§)u1 +t 8

(2.67)
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there results the equation

[ d \ P
{ * < P —
U;_NHE/SS_(@)_Q (2.68)
-]
Each of the par+tiatl solutions making up the pressure perturbation
fu',;:ih/,*
—p' includes a :onsfan?iQeSpifing from the integration in the axial direc-

tion. For each pair of indices p, a (that 1s, for each term in The etgen~
function expansion), the several integration constants can bhs combined into
one, Then the axial distribution functions Ppo(Z) take the following

form:

P (2) = R, [PN(E + Kpq cosh S5y ~Soh 2 3 (2.69)

~

where the function aq dces not include any integration constant and the

constants qu are a!l O(ue). In particular, the axial function corre-

sponding ¥o the mode of oscillation under consideration can be written as
P -~
(@ =P (14 K + B ) (2.70)

The function F,y, , which from equations (2.65 and (2.66) Is given by

= o 2
~ N . p
2,2 1 { plem 4.1 e - !
Pu@) =(s84+40) 3 +5[ é2 fiﬂda + [(am)s- XSQ-D‘BAQ—LC“,J)‘) Zdi (2.70)
(-] o A
is O(Ee). The integration constant KVh can be absortzd into the consta: t
D.o. @S ¢an be seen i.vm the following discussion. Equurion (2,69) is

. ~ - .
divided through by B=P,(1+Ky,) giving

P‘ ~
n = ?n/h — (o4 N _3
A I+ ey [+ P (1 Km) + O (a. )

or

% = H—ﬁva ‘K\/h'ﬁw‘ + O(F‘eg)

Since both Ka%, and ﬁ;k are 0(u, ),their product. is O(Gez), and thus
~t

W) = B (14 B ) + 0 (@)

;O

,

(2.70a)
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Similarly, replacing Py, With B, in equation (2.69) results in an
error of O(Gez), which in this analysis has been assumed to be negligible.
The solution for *he pressure pertfurbation, equation (2.60a) can

thus be written

' &ne) = i (1+7,.@]8,0 8,0 +

12.72)
+ Z ZL (Bq @)+ kg casbtblysiz ) Pealr) @pl0) 73
The constant gm , which represents the perturbation amplitude levei, will
not affect the stability solution. For eacir p9 Jn{A , the nozzle boundary
conditiun
-t
AWertn) + Koy VBB s A 2 - i
(2.73a)
[d
- ‘»Smﬁ(v,sa)[Pn(zq) +Kpy Cosh /5% 55, Ze ] =o
can be used to determine the integration constant pq . Appilcation of the
remaining boundary condition,
)
d P . i~ g —J
T ) —isn €lo,5a) | 1+ Ba(m) ] = 0 (2.73b)

resuits in an eigenvalue problem, That is, equation (2.73b) is the character-
istic equation for the eigenvalues s=3+i¢ - The following discussion will
be concerned with the neutral oscillations occurring at the stability limits,
for which A=0 .

By use of the expression for P, (z) obtained from equations (Z.7C

and (2.71), the characteris™ic equation (2.73b) can Lte written =s

. B‘)
+ (& )& +(%)3 = h (2.74)
where the right hand side is of the form
h= iﬂﬂ + hl
(2.75a)

J*&‘ﬁde r 15, n*&({ 7/
' 23
_E ~-~s=';§(f‘f) +€$uh£df£é.ad?, ] (2.75¢)
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In the expressions for h, and h, a r.duced frequency 'f'=s%:, has been

!
introduced. Since @S5 = O(&) for e purely transverse mode, th:
reduced frequency takes on values near unity,
It is convenient in discussing the characteristic equation to
define severa! auxiliary functions:
e .
@=aoria; =24y ﬁ@'@) f o
2 o o
r= Ska(“/«@)d—e
b %
A = ,J.&Ip‘- = L f i
$F @ o-ké)ﬁ(e\d%
U= Sy, Fe

The functions h; and h, in equation (2,76) can be iritten in terms of

(2.76a)

these auxiliary functlons as

h =¥ (1- ek )
hy = E{A-ﬂ—i%(;-.{‘_)_%&'_%}z(f-;’)}z€q} (2.76b)
As written in equation (2.74) above,the characteristic equation

exhibits the balance which exists at the stabiliiy limits, In order for
neutral osciilations to be maintained, the energy supplied by the combusticn
process, represented by the left side of equation (2.74), must be compietely
absorbed by the fluid mechanical processes, which are representec by the
function h on the right side of the characteristic equation. If more than
sufficient energy is supplied, the osciilation ampiitud= will grow, Such
an cscillation is liase>-ly unstable, Eventually, nonliiwr energy-absorbing
processes will restore the energy balance at some high level of amplitude.
The importance of the oscillation ro the proper operation of the rocket motor
depends upon the amplitude level finally attained. However, i1 has been
observed that nearly all transverse mouc instabilities grow to very high
levels, causing rapid combustion chamber destruction. Stable operation resuits
in the case that the energy release is insufficient fo balance 1he energy

absorbed by the osciliation. The fact that the charaeteristic equation Is
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complex implies that there is a phase condition, as wail as the amplitude
condition, relating the oscillating rates of energy release and energy
absorption for neutrai osciilations.

Assuming that the pressure ana valocity effects are character izad
by the same mean sensitive time lag T . the definitions of ' bHurning rate

parameters are T

C39== ~m(l-e )

@ =4 (1-e'“T) ,
—tw? 2.77)

T=Ls(t-e ) )

Then the characteristic equation takes the form
[H- ((Baylr o (28)% | m(1-€9F ) = h(w) (2.78)

This complex equation is equivalent fo two real equeations. Therefore, for
neutral oscillations of a given rocket motor, The rour combustion parameters,
”m, 7:, f";)and ’%& , are not independent. If any thr-ee are known, then

the fourth, together with the oscillation frequency, can be determined from
equation (2.78). Because the frequency dependance.of h (&) is quite com-
plicated, it is most convenient to regard the frequency as one of the indepen-
dent variables. 1In order that the present investigation may be related more
easily to previous studies of both longitudinal and transvers: modes, the two
dependent variables will t- taken fo be The mean sen<itive tim: lag ¥ and

the pressure interacticn index ms . Thus,

m=m (W é\r/)’,gy\';)

T = T (w, 1%5: ’é%i )

will be determined from the characteristic egjsation, which can be writ+an
as
. ~ A
-wT, h o __,k,__. L‘ .'u.
m(i-e” )= 7 L(BopYe 4 (S Yl et (2.79
v+(. YU /—n’"' Yw /™M . )

At present, ncne of the combustion parameters can be calculated
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a priori, although a method has been ueveloped for measuring m» and T
experimentally (16). Since very little is known about the velocity parameters
their effect will be shown by ca!culating m and T for assumed reai values
of the ratios ;‘f—: and ‘% . The medifications Introduced by the assumed
velocity effecis wiil then be noted and compared with the resuiis of
appropriaie experiments,

The real and imaginary parts of equation (2,79),

m(\- cos wT )= h,
~ ? (2.80)
m S WT = h
comprise @ simultaneous pair of equations for m and T . The solution
is found to be
~ ~T
~ = he + hy
2 he
(2.81)
R4 N P
'l’:-;,stn (; = s l-%}
~
where T is determines modulo 2% . When WT=T, $in wT= h; =& and
(t-cos wT Y= 2 ., Then
' —~
mn = = ‘\ = M
2 ~ ( (2.82)
=rF - T
T=5 = "

~
For physically realizable systems, h, >0 , so that m 2 v, >
It can be seen that my, is the minimum value f t“e ‘nteraction index, for

~J
when WTH 7 , h, # 0 and

AT +4L
Mm=3 h.+7

S

; . . . ~ ~2 ‘s
which is greater fThan my,, since h, and h-“ are positive, Fo~ mpmn,
there are two solutions for ¢ , name'y,

=37
o, ’/h; b, Py
T' =z“,‘ Sin - —4-: > rz': ;2 sin (.‘ V—\h:

with ‘zI)TM)‘C, and w,( UJM (w-g_.

UMW A w e
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A typical solution for m (w) and T'(w) for assumed values of
4%%» and Eﬂ/“, is shown in Figure 19. This solution applies at the
stability limits where A 0. It can be seen that for any given value
of the time lag, only one value cf the pressure interaction index is
consistent with neutral cscilliations., For the same T , <= larger vaiue
of ms corresponds to instability (A>0 ), a smaller value +o stability
(A<o ). Thus the m, T —plane is dividzd by the loci of A= 0 Into
stable and unstabis regions, as shown in Figurs 20,

A given rocket motor system at given operating conditions is
assumed to be characterized by a set of values of the combustion parameters
m; T, %' and % . If the point on the m, T-plane representing this
motor fells within one of the unstable regions (i. e., above the stabiiity
limit curve) corresponding to one of the transverse modes and to the
appropriate values of ‘7;, and ﬂggv , Then the operation of the rocket will
be unstable, and large amplitude 3scillations can be expected to result.
Therefore, =ny effect which increases the size of the unstable areas on the
m, T-plane (e.g., by shifting the stability limits to smaller = fcr af!
T, or by flattening the limit curves without changing ””30 is a destabl-
lizing effect.

Since the function h(w) in equation (2.79) depends on Sy, ,
there is a ditferent stability pattern for each mode of oscillation. In
Figure 21, stability {imits are presented fcr saveral purely transverse
modes. For a given interaction index value, the value of the time lag at
the stability limit is nearly Inversely proportional to the acoustic frequency
Sy, . Thus higher modes are associated with smaller sensitive time lags,

By definition,

= &
(2%

Hence, a shorter time lag is obtained by a decrease in the stagnation
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sound velocity of the combustion gases, by an increase in the combustion
chamber diameter, or by a decrease in the dimensionai time lag I+se,f. _

The nature of the functional relationships involved in the
characteristic equation precludes a general analytical solution. Therefore,
it is necessary to rely on numerical solutions for specific cases. A large
volume of calculations is thus requirea fo explore the dependence of the
stabillty patterns on each physical parametsr. In this sifuation, many
important insights can be gained by consldering a very much simplified
rocket mctor ~ystem, for which some analytical results are zlso possivie,

The simplest steady state combustion distribution is that in which
all of the combustion occurs at a singie axial station, This ideal combus-
tion pattern is actual!ly a good approximation to that produced by an efficient
injector (such as the unlike impinging doublet type used in the experimental
phase of this investigation), which provides good atomization and rapid
mixing of the liquid propellants. The steady state axlal velocity distri-~
bution for concentrated combustion is given by

=0, 0<¢ %< 2z,
Usde, BméZ S 2?
where #Zn Is the locaticti of the combustion front and 2. is the nozzle

entrance station, The other simplification to be intrciuced Is

s

u, = Q\.m = Constant

which is applicable when the droplat momentum coefficient & is not too
large.

For this simple model, the auxi!iary functions defined in




equation (2.7%a) become

@ =38(r+3) +pec, +0(UE) ’

L = S (%-%) S
: (2.83)

ldrz [9(1+6r>
A= RS

shere ﬁ = ‘6\_—2‘_»,

U

- ¢os
So= e B
6: =-E;p Sﬁn}&
b p-ht/.a.

/“_t g‘ Sﬂazm

Since the frequency corresponrdinra to the minimum interaction index is =lose
to the acousvic frequency, the reduced frequency f can be approximated
. T,
oy I+v¢ , where p=<& | .

Consider first the case in which there are no velocity effects
on combustion, only pressure effects. Then m,,= L‘{ and h;:.-o ittt
h. and h; are the real and imaginary parts of the fui-tion b defined

in ecuation (2.75) as

S hen

S h2 + h% (2.84;

h = h,r ‘\21 "“"‘: l‘lzr.

2 ]
h;r + Ty
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Introducinrg the expressions (2.83) intc nc detinitions of hy and h2
of equation (2.75) gives
hye =¥ (14 S0 ) 7
hi = '_b’&;f=€" \\’
\

hz.r = g [K}f‘ ‘%(\-Y"‘\o }Z) +C. 2+ & Q:_] (2.85)

= @ c4 2 : 7 }
"‘22 = ke [/du + ——E)Z, - f?(""f"P%') *‘Eiai"érdr]

Yo Ue
These expressions can be simpiified by noting the order of magnitude of each

term and neg!~zring the hicher order terms. 1t can be seen frow squation

(2.83) that, since R and {T, are Ollg)while 2o, 2., and Spi are O(1),
B,Azdp, p are OG)
M =0 (VQ )
656, at, d; are O@)

The real part of tne combined admittance coefficient, €, , is at most O(@)

.y

. X 2
However, the imaginary part can fake on somewhat greater values, so that 6;
is O&) in the range of exiT velocities considered here,
Straightforward calculation, making use of the above order of

magnitude observafions- yields

o =L !
M= ?QI(H-}G)?’ E*FSJFHzE«(V’-}j "'51-7
J {2.86)
&/ f , ’(,
— ey [Ogt)1-pB) -2
2¥(+eE ) f ¥ e £ ,<‘-3»7 J
where from the condition h; =@ the frequency i~ ~iven by
|
I+ %+ -1 (2.87)

The important quantities governing the stability iimiis are the
chamber exit velocity \-.IC, through the :zami *tance coefticients €~ and i‘;
{which zre @130 freguency dependent), the droplet drag factor 8 , and the

length parameter, % . The quaniify a , which measures the volume

cccupied compietely by yasecus products of combustion, has & very small
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infiuence on My - The derivative

pl2€ +L €l (3+20) -p & [H- D&My ]~4¥E (i B ) (4e8.)
9/“- 2 (v 2

is at most O0(TUg). The function g, , which is given approximately by

Sin (% 2o )

r:

(o)
osciilates very rapidly with respect to Z  (in ganeral, f%%i, is at least
35). Thus, the small spreading of the combustion front which must bse
present in any acrui rocket chamber will cause Yhe effect of §  7To be
cancelled,

Figure 22 shows the variation of the nozzle admittance coefficients
with the combustion chamber exit velocity for itwo frequancies, W= Sy
and @ = [,05 %, . For longitudinal modes, the rozzie admitiance, defined

by
¥ U(ze)
P (3e)

is positive. It has been shown (I} that The nozzle exerts a strong damping

oAy Ue =

effect. On the other hand, for transverse modes, the admittanceg is; from

equation (2.68),
§ YV (%)
P(2e)

so thar
is N - :.‘£V\ae
For all but the smaliect nozzle enirance velocities, the transverse mode
nozzle admittance ratio is positive. Therefore, in transverse modes, the
exhaust nozzle exerts negative damping, i.e. it has a destabiliziug effect,
At the lower velocities (U,< 0.1Cy, £ is nearly constant,
but Efﬁé increases rapidly with increasing veiocity. Therefore, the

minimum interaction index shows a sharp decrease with increasing exit

velocity in this range, as -.an be seen from equation {2.86). Figure 23
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shows that the eniire stability !imit curve 1s shifred downward when the
exit velocity is increased from 0.0%5 to 0.10. For larger velocities, e*'/%
levels off and *hen decreases. but the stabilizing eftect of the %; decrease
is otisst by the destatilizing effect of the decrease of & . The resulr
is th © M, continuss fo decrease with increasing u_, although muc, more
slowly. Some compbustion chamber configurations show in increase in My
with velocity for WUe P 0.30. However, these results cannoT be trusted
because the O{ag;' terms which have Geen neglected may be very important.
Hence, in the range of exit valocities appropriare 1o the smal! Mach number
assumption, increasing vhe combustion chamber exit velocity (decreasing the
nozzle ccirt action ratic) always has a destabilizing etfect.

ine nozzle admiTtignce coefficients shown in Figure 22 correspond
to a nozzle with a linear velocity profile in The subsonic section. For &
nozzle with a conical converging part, the coefficients show similar frends,
tut the values of % for the "conical" nczzie are much larger than those
for the "linear" nozzle, ecpacially the range e £ 0.15. For higher
exit velocities, the coefficients for the twe types of nczrie fend 1o con-
verge. Therefore, The minimum interaction index is smalfer for +he conice!
nozzle than for the linear for corresponding combustion chamber condirians,
as shown in Figure 24,

The dropleT uirag coefficient B is, by equation (2.83), the product
o tne moementum interchange coefficient £ , which represents The rate af
which energy is fransferred into the oscillatory motion of the liquid
propellant droplets, and the drcplet Iifeﬂme,*‘“/-;m, that is, the time
interval during which the dropieis can absorb energy from vt: oscillations
of the gases in the combusiion chamber. From equation (2.86),

2t _ (o€ W1+ & [3+c])
2p 2y (1+RE )
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which is positive and 0(1), Thus, increasing J: has an appreciable
stabilizing effect, as shown in Figure 25. The quantity 8§ cen also be
considered as the ratio of the distance of the combustion front from the
injector face, Z,, To the distance of droplet penetraticn into stagnant
combustion gas, Zp = gi? , based on a mear droplet velocity and an
effactive momentum coefficient. Then @ can be seen to depend or the
injector spray characteristics, including the droplet size distribution

and the effectivenesc of iiquid mixing, and on ths droplet vaporization
characteristics., The 5 rar.ge for these calculations V.2g g 0.7) was
chosen so 2s to include values wnich are likely fo be found in actual rocket
motors. However, further basic information is needed to estabjjish the value
of ﬁ more definitely.

The effect of the chamber length parameter, @. = 8y - Zg, CaN

be seen from equation (2.86) by calculating the derivative,

t ,
55 = oo § 1 PEOTER) + 2p & 3 (-e8) 2 )

- 2¥(1+ £61)?
& [ F)-eB)-2£3 ][ 3+ J]
o [+ +2%g 7

For most cases the positive terms dominate, so that an increase in combustion

chamber length has a stabilizing effect. The only exceptions are cases with
tow B values and very low exiT velocities (ug€ 0.0%), ior which E’&é is

R 1 - .
negative (linear nozzle). However, My is onty O(dg) in any case, so that a

o
large change in length is required fo E;Oduae a significant shift in the
stability limits. In Figure 26, stability limits are shown for the first
tangential mode for two lengths which are in *ue ratio of 2 o |. Because of
the factor S, , changes in length are more signiticant for higher transverse

modes thun for ths first tangential, 1f the length is increased beyond the

critical length, longitudinel and mixed longitudinal~fransverse modes will

e e e o e

=
i
N
1
£
3
%
£
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also be unstable, ard the present tnhec y will not be applicable.
The preceding discussion has been concerned only with pressure ;L
effects. If now the tangeniiail (but not radial) velocity fluctuations are ="~

also assumed to affect the combustion process, the cnaracteristic equation -

becomes

. . )
-Lh’t):— h-_—_ ~
Y

w{i-e

The ratio of the minimum interaction index Encinding tangential velocity

effecfsxn&?, ¥ that for pressure efiecTs alone,Mpp, is vhen
~
Mmr I
Misp - A
br V{5132

~S
fherefore, since 59“7 0, a positive value of the tangential velocity
w
interaction index ceuses a downward shift of the stability limit curve on

The:n3I= plane by contracting the ordinates of the limit+ points, which

o

is a destabilizing frend. Since % is real, there is n. effect on the tim
lag value at the minimum pcint. Figure 27 shows ths 'nfluence ot the

tangential velocity effect on the stability limits for the first tangentia! - -
spinning mode. For other modes of oscillation, the effects will be qual-

itatively the same. The megnitude of the velocitv effect, for a given

3

value, depends on the ratio of the expansion ceoefficient E:m To Tha

frequency a:={syh . This ratio is approximate.y egusl 1o Eﬂb s values
Yh

of which are given in Table II for several modes. The second tangential

mode is sesn to be slightiy more influenced by the iangential velocity e
oscillations than the other modes. It should be recalfed +hat the expansion. -
coefficient E:M vanishes for a sfandi:g tangential mode, so that there =
are no tangential velocity effects for such an oscillation,

The vetocity index Ie is positive in the case tnat fhe burning -

rate is increased by 2 positive velocity. For the tangential velocity, the
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but s *tha dirsction in which a spinning wave travels,

in the positive direction will augment The pressure effec*,

wave moving :n the other direction, the

the pressure., It

positive fe directicn of ine injector.

g

pressure, i.e., & % 0 but G, = 0.
is

i
"

s

+:(%_":€_L‘

(- e_awr) P

~
Since the ratiu %/k is complex, one can expect an influence on

well as on m . At rhe minimum pressure interaction index poinT,

~ B'-l
= ir o g b @RI (2 )
-2 he = -
=0 ‘4'(%%34} r 7 I 4.(§1L @ryz
"~ T o

Thus, wnen the radial velocity effect is included, the
minimum is

) b

hy = (22 L

-
v a’wm/

rather than h. =

From Figure 28 it can be seen that &

positive direction 1s not fi<ed with respsct *o the rocket combustion chamber,
Assuming that the .
injector is characterized by a posifive»,ée. direction (determined by the
orientation of the injsction pattern), the velocity effect of 2 wave moving
However, tor a
oheretv effent will oppose thai of
is apparent, Tnerefore, that the preferred wave travel
direction with respect ro the physical frame of referance is the same as the
Without more detfaifed knowicdye of
the combustion process than is presently availanle, *this direction cannot be
determined a priori, but must he esfablisned by experimental evidence.
Consider now the effect of the radial velocity coupled with the

Then the characteristic equation

T as

condition at the

0. Then ‘&“-rz Ls, OF M= -’2 hr(wm) , &8s befcre.
posttive radial velcciTy index implies

a higher frequency a3t any M, than that corresponding to pressure effects
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alone. The flatness of the h{w) curve indicates that the minimum value of
the pressure ingex will not be significantly altered by the addition of

radial velocity effects., Since T~ 15 , a positive vaiue of £~ corre-
sponds to a shitt of the minimum point toward smaller U . However, the
magnitude or the shift is sery smail, as a result of the st-ong.variziton of
kz with &) ond the low valuses *aven bv the ratic %fi , listed in
Table 1I. For m >m,,, the shift of the stabiiiry limits reverses, bécause
a positive radis! vetocity index brings about an increase in w¥ which is
slightly yi eater than the incresse in e | Thus, except fui the near
vicinity of the minimum poini, the limit curve is skifted in the direction
cf longer time lags for a positive index £~ . These recults are shown in
Figure 29. In the cylindricai coordinate system, the positive radial direc-
tion is from thz center of the chamber toward the outer waltl. If & pesitive
velocity increases the burning rate, er is positive and the s%ability
timit curve is snifted foward longer € , and vice versa. However, (T can
be seen that the magnitude of the radial velocity efiezt is much smaller

than that of the tangential velocity effect for equal veiocity interaction

indices,

-,
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CHAPTER III

Extensions of Tnstability Analysis

A, TInstability Analysis with Nonun!form Injection

Ir the preceding enalysis it was assumed that the steady state flow in
the combustion chamber was one dimensional. That is, the iajection of the iiquid
propellants, thzir conversion to combusticon products, and all fluid properties
were taken +o be uniformly distributed across each rransverse =ection. The
anaiysis of Jongitudinal mocdes of instability developed in (1) has demonstrated
that the exial distribution of the combustion relative to the pressure pertur-
bation distribution is of greal importance in determining the stability behavior
of the rocket motor. According to the combustion mode! used in that anziysis,
the fluctuating energy release is proportional +o the amplitude of the pressure
fluctuation. At a pressure node, the pressure oscillation vanishes, Therefore,
if all of the combustion is concentrated at an axial stetion corresponding to 2
node fcr o given longifur . al mode, no oscillation in the burning rate will result
and the rocket motor operation wiil be stable with respect +o *.z glven mode. .
For a combustion front located a short distence from the nodal peirt, ths pres-
sure perturbation amplitude is not zero, and instebility is possibie if the
sensitivity of the combustinn process to pressure variations (measured by the
interaction index) is sufficiently large. Acs the combustion front is moved away
from the node, the magnitude of the interaction index required for instablility
decreases, reaching a minimum value when the combustion front s located at the
pressure antinode. 1If the combustion is not concentrated, hut is spread over a
certain zxial distance, then the stability behavior depen.s on the mean
sensitivity over the combustion zone.

For puregiy 1rs

variations in the oscillating quantities occur in the lateral rather than in the
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axial direction. Therurore, the traonsve se distribution of the combustion
refative to the transverse pertubation disiributions is of great sign'ficance.
0t necessity, some nonuniformity in *he injecticn distribution Is present in
any liquid propellant rocket motor. Although the flow in a rocket vhrust
chamber is highly turbulent, *here is definite evidence of stratificaiion of
+he combustion, which persists througnuut 7. flow, wven past ‘ie -on.o Throat
This stratification, observed opticaily using both rectangular {26) and
circular sector motors (9) with trensparent vaiis, lias neen :zlearly identified
with a nonuni®~-r propeliant tnjection distributior,

The exact treatment of unsteady, axisymmetric, two phase furbulent
flow, with combustion distributed arbitrari{, in *hree dimemsinnrs, is quite a
formidahle proplem. The steady stets oolution appears 1o cfter the greatest
difficulties, s‘nce the soluiion for the perturbations can pe based on an
expansion method simifar to tnat used in Chanter 1I.. LitTtie quantiiative
cata is presently availavle concerning the proce. “es which are important in
rocket motoi combustion or the three dimensional distribution of combustion
which exists in a typical wo*or. Thus it ig iikelv that the exact soluticn
of the generaj problem wili be difficult to interpret in terms o actual mofor
designs.

Therefere, bocauze of the problems associated with the excet sof tion
and ia view of the oberrved stratification ni combustior, “he iollowing approxi-
mate approach is used in the presert analysis. The one dimensional nature of
the steady state flew is rctained. The e¢ffect of The nonuniform transverse
distribution of combustion appears oniy as a variation in the sensctivity of
the combustion process to the effects o4 prossure and velocity, This variatica
is described by a disiribution functieon _¢ (r,s ). Thus the burning rate
perturbation for nonunjform injection it ralzted to that for unitorm injection by

™ e ™ . s
1 ' 2 oon'F E’}

IR |

. : 3.0




The distribution function is identified with the .njection density o(v,e) .,

detined by
S
i
shil, 2= . = / [ s /v (=
. " / 1! §¢(v; 8) rdrd (3.2
v N
Yz¢ 8=0
where m. is the total mess injeciion rat~ Tren wfré€)can be defined as

the ratio of the local injection censity 9 to the mean injection density G, ,
where
" I .2r
Gen / rdrdg = TS, = &(5 @) rdrde (3.3)
e o Y

That is, the burning rate distribution function is defined by

(coy = S
S0 S (3.4)

with the nurmalizing condition

/l/nzn- 1 I (3.5
Jj/*“}e)r‘drde = A =/fr¢1rJ@ =
2 VYo 3 '

For uniform injection, u (,8)=1|.

It is clear that this approach involves a2 contradiction in that
the steagy state solution assumes that all fluid properties are unitorm across
every socticn wheress the perio~bation solution is based on a rz (niform
trarsverss combustion distribution. However, it was found previously that the
major part of the oscillation corresponds to that of a homogeneous gas, because
the Mach number in the chamber is small compared 7o unity. The precance of
the cembustion introduces 2 higher orasr corre..ion which is primerily dus +c
the censitivity of the combustion process to fluctuations of oressure and

velocity.
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The identification of the burning rate distribution AL with the in-
Jection density ¢ neglects the spreading of the streams of injected propellants
as they are atomized, vaporized, anc underge turpulent mixing with the hot
combustion products prior to the final chemical reaction. Unfortunately, i+
is not possible wiTh present knowledge to calcujate the spreading of the
propallant stresms. However, the effect of spreading on stabllity can be
estimated by introducing appropriate burning rate distribution functions inte
ine analysis.

Acceraingly, the steady state solution for the case of nonuniformly
oistributed combustion is taked to ba that given by eguations (2.9) through
(2.12). The zeroth order perfurbation solution, equation (2.4la), is also un-
changed, since it does not involve the combustion at all. Howevar, the

differential equaticn for the first order pressure perturbation becomes
B ~stp = [RE +(w) 2] rpso-ysegi g,
z 2k J‘..’@BJ
WRE L +3 5358

The boundary conditions are unchanged by the Introduction of the hirping rate

(3.6)

distribution. Therefore, as before, the solution is gbtained by supercvosition,

so that

= bat Patdh +h (3.7

whers

Aty =52 py = -¥s @ 52 PooWlr) Opt6) plzo)  (rusw

- a *
A3g-5'dy = C?%‘% P a—&,%‘ ®, (8) plr8)

(Z.8b)
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A T -‘a(: i g d@
ﬁ-ﬁ\“s PC =.j Zé FL@ r qzm( ) Z?;y/Ul(h‘s) (3 ac)

24 r fe {3 o] -
103»57“;3 :{‘ﬁpL -:-{X-';gg jSP I )@»/‘9)/‘(5"’) 5.84)

Sincz squation (3.3¢) is iaentical to squation (2.45d), the sojution

is that given by equation (Z.30).

Sccause of the presencs of the aistribution function M 6,

it is nacessary T opply the ei enfunchon expensi methos to ‘P‘ as wel]

Z i A "-"%C"‘)iq"’ @,(8)

7.

-.

b= Z Z B pg Py,,(z) @?(r) o, (¢) (3.95)

o OO —
4 = Zc, LB E (0 Q)
He é; & ThTE 3 (3.92)

{ o ]
4 f/*@-@f& % Q@ rdrde o
,P"g?1 = _.‘- '-'r (3. (03,
[| & & afrae
{
N S A e S
- < 2
Y9 T 3.108)

;T'L o /" '3
! :J?q GP ©n i rd@
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o
Jo Jf/&(rle)';l: ‘I.JA @91 @y‘ @P*rdrde

P?= moam
2 * (3,122}
ff P @, @F rdrdd

The differential equation to be satisfied by the ka4&’ is

& (Pm) - (2462) (B8} = ws@ 35
= () +$9) (37 ) =—¥sP g3 (3.10
which has the solutions
2
%L*;-Ys(?fi&'ﬂ‘%' + Kavhy (3.122)
os [
2

823 z hysg- s
o z -

=¥ B Sin n(#2) ' 2
od;.) W dr’ +¥am Cosh/s3-sh2 (3.12b)

The solutions for Pe"! and Pcn are of this same form, and are given by

equations (2.55) and 2.57). Thus the pressure perturbation becomes

$'= [+ AnBd®) 48, Pon® +Cu Py @) +R@ | B0 Q®) 5 5,

3 Y [ Ann@ ¢ By Pam(s) +CrgReg @ ] P @
D?#‘Sh )
Equation (3.13) is of the same form as equation (2.60a), so thet the velocity

perturbations are given by equations (2.60b), (2.60c), and (2.60d} in this case
also.

The only modifirnations introduced by the nonuniformity of the Injection
and combustion are the introduction of the expansion coefficlients /Q" and the
~edefining of Bpq and C,’ to include the distribution furction /4_((39 ).

Therefore, +he characteristic equation takes the form

N

.
o

~
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nd Is given by
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the expressions of equation (2.75).
The effect of +he nonunifermities can be seen immediately by consider-

ing the case in which only pressure variations affect the burning rate. Then

m(Ci-¥%) - Ab,} {3.15)
h

The coefficient A,” is always real, so that-only the value of the interaction

index is changed. Thus, for ail W ,

L { i
—_ = = (3:162)
mﬂh:férm A,n‘
and
T = tunifom (3.16b)

For a combustion distribution cheracterized by Ay, > I'yitr.

n ay 2 That is, the ordinates of S'rabi;)l‘l’y Jimit curve on the ov,t'-;plan'e

are contracted, increasing the area of the unstable region above thé curve.
Therefore, an injection distribufion for which 4., >3V  is more unsfable
+han a uniform one, for corresponding inéaj; combustion chamber conditions,

-Consider $irst +he case in which the only nonuniformity i In the

radial direction, so that i = ), This case is gif the greatest interést
in this investigation because in +hé rocket motors used for the experimental

phase the injection of the propell2nts-Wgs concentrated-at a stnélé radius,

thus providing a highly nofuniférm-distribution; Then--

9 : ]
f Ae) T G Firdr -
Ay = i -

j J; (sur)rdr
° -
The integral in the denominator gives

i  a ] )
f Lifsur) rdr = 1 [ 6y~ T, on) TuGy]
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so that the pressure coefficient ;Aih b :comes

I- ] ,
j- ) ];2(5,.‘ r}rde

-

A, (3.17)

2 [ 3o -L,6a )y, (5]

The limlting case of concentration corresponds to a distribution

function in the form of a pulse al a single radius r}

/((V) =0 7, f'# l"i }

, (3.18)
Mm(r)#o , =% o

The norma}izinzg condition, equation (3.5), lIs, fOl"/,Lg/A(t‘),
!
r)rde = 4
J"“‘ ) 2z
[]
then

jzfsir»‘f;
by Agin) = )
J,‘%)“L.;(Sb)Ln(sw) ‘

3.19)

Figure 30 shows the radial variation of the pressure coefficient 4, (%) for
+he first and second tangential modes and the first radiai moge, It can be

seen that & rocket motor with injection conceri'rra:r':?d on 2 cirele the radiyds of -

which is greater than approxima're!‘y sjix 1_ep*§:hs of the chamber radius Is wire

urstable in *he 'fagjge;ﬂj!ai modes then a corresponding :nqrqrnirﬁf uniforaly
distributed combustion. The most wsfable conflqura*ion for these modes is

that for which the In,je'c':fdn radius equals the chamber radius. For this case,

for the first tangential mode, e o
™= 0.7 Moynitorin . h

O the other hand, the first radiai mode is absolutely stable when ¢ Fo.63

(pressure node); and concentrated-combustion i$ more unstabie than uniform

only for r;€a¢s ; o ) T
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An estimate of the effect of the spreading of the propellant
streams on thc stebility behavior car be obtained by considering a rectangular

injection distribution,

= - . b oa
Ml)=0, (QOgr £r—34x

‘E l - o -'- e

i SR ey e LU A (2.203
- At S

) PRGN ’Q#-%Ar‘;,{rs 1 J‘

- ’

S where AQ’O corresponds to the pulse distripution. In Figure 31, the coeffi-

=ient A,, , which corresponds to the first tangential mode, 15 shown as a

function of the ex;ren'.* of the spreading, Af; , for three vajues of the mean
radius v; . For this distribution, coefficients greater than unity are
reduced and those less than unity are increased as 4v; is incréased. For
moderate amounts of spreading, thé changes in the coefficients are not large.
Therefore, since the actual burning rate distribution is not known for a
rocket motor-with radially concentrated injection, 2 good approximetion to the
= - stability limits in such a case can be obtained by ucing a pulse fype distribu-
tion fupcﬂon.
A ‘more uniform combustion distribution can be achieved by injecting
- at g@re‘d‘han one radius. If the spreading of the propellant . sfreums is

neéiég‘!‘éd, thé burning -ra_')'e’ di ;triiu?ibn funéﬂéi\ can be takei as.

v S /“(r) = zﬂz‘ ;(")

o & (3:21)
B i «the J‘r) is the’ Sivec deHa funchon, i.e., a pulse at "a‘"“s % . and

;l 7 .7 ;_rt the frachon of ﬂ\e total -propel !an+ ilow rate whlch is lnjecfed at

Sl e e [ iv,a‘tr)l,'(s,,.d rdi 27‘. j: 3633 (o) e

- 7 = = % e

‘ , —'“ RS WAy | 1[176n) -, (6], (5] (3.22)

i Y, A (1)

L:l
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Consider za injector ror which I,Z'-':”L:; . Then
. _ 1 < )
5.« "3 i Ay () (3.22a)
et
In order to obtain the most uniform injection density distribution, the
injection radii must be such that the areas corresponding to the n are all

equal. It may be verified that

G-y %"

For such an injector, the variations with the number of injection radii of the
pressure coefficients for the first and second tangential modes and the first

radical mode are given in the following table:

i=1 App = 1.142 Az = 1.110 Agz = 0.133
2 1.036 1.009 0.600
: 1.011 1.003 0.8

-Thus, for the +angenﬂél modes. as few as three injection circles can produce
a pressure sensitivity substantial!, equivalent to that of an absolutely
uniform injection distribution. However, the first radial mode requires a
larger sumber of circies in order to accomplish 2 similar result.

- With resard to pressure sensifivity, nonuniformity of the injection
density In the tangertial direction is not significant for radial modes c-
for the spinning forms of tangential modes. The reasons are tha+ there ore
no diamétral nodal surfaces for radial modes, arg i+ the tangential modes,

the nodal surfaces rotate with respect to the injector. Thus, in the defini-

. tion of 'A,,, equation (3.10a), the produci Q,Qj-—'. | identically for radial

2nd spinning tangential modes. -
Assuming thet the injection distribution Is uniform radiaily,
168 =u(e). For a;fandlng mode, @),z cos v@ » So that

l /408) cos*ve do

w
A — _ L 2
¥ W =% S/t(s)cu v8d48 (3.23)
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The normalizing condition on /‘(9) is

o
f,u.(e}&o = 2l
(]
It all injection is concentrated along a single radius 8= &; ,

pmie)=468(6) (3.24)
Then

Aun(6:)= 2 costv8; (3.25)

In 8 standing tangential mode. the pressure nodal surfaces are
located at 9='-§, and 25 , énd the antinodal surfaces are 21 & =0
and g . Then according to equation {3.24), if combustion is concentrated at
a node, the pressvre coefficient is zero, so that the interaction Index required
k tor neutral oscillalions is infinite. Thus the opératicn in unconditionally
stable. On the other hand, If combustion is concentrated at an antinoude, the
coefficient A, (0;) attains its maxImum value of 2. Then the interaction

index at a stability limit is just half of that for a uniform combustion dis~

tribution. Positions cf the combustion zone intermediate between the nodes and
antinodes give Aﬂ. values between zero and two. In particuiar, injection

at e:g,g,g °‘";z.;"l resuits in a oressure sensitivity equivalent to that of

uniform.injection. These results correspond fo those obtained by the analysis
of longifudinal modes for combustion concentrated at arbitrary uxlai stations {1).
When the propellants are injected at more than one discrete zngle,

the distribution function can be written as

'3

r(0)= i’h f(8.) {3.26)

2
=

A

where ; is the fraction of the total flow rate injected at @ and A

"
>

3(0;) is the Dirac function, as before. Then

)/
Ap =2 Z 7: Cos* 96: (3.27)

i
For the case in which ol‘. =J

¥

2 4 2 3.27
=3 Zflcos v8, (3.27a)
=

The experimental rocket motors used in thic investigation had injection

—

o —
"
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c..centrafed ai twelve cagular positions. It can be checked that A, = A, =

for this case, so that the experimental motors represented well the pressure

sensitivity of combustion uniformly distributed in the tangential directioun.
Finally, the case of combustion concentrated both radialiy and

tangentially wiil be considered. Let
(3.28)

£ 4
pulre) < 2 2'7..1 AGSTICH

=t =

This burning rate distribution represents that corresponding 10 &4 discrete
injection points (¥ > 6; Y. The pressure coefficient ror a standing tangential
mode is then

!
ar
7 j‘f ()L, ae) rde fé'(e; ) as Vpde

[ iM=
Jbﬂh

AW5='

3

EHISER WIS WY
which is equivalent to

£
Aﬁzé' ‘g. 7;5 Aﬂ.("‘;} A (8 ) (3.291
where Mrg), Ay}, (8) are defined in equations (3.19) and (3.25) The remarks
made above concarning the location, both radially and tangentially, of the
injection points apply fo this case also. If the injection rats is the same

] .
at each point, then 9., = s— , and equation (3.29) simplifies to
T 42

-

7 y 4
| & 1
Aﬂ. ::(i Z Ay () }(1 Z 4-,4,(0;)) (3.29a)
b : i
which is Just the product of the expressions obtained previously, equations
(3.22a) and (3.272), by considering separately the effects of radial and
tangential injection concentration.
In order teo determine the velor. ty effects for nonuniform injection

distributions, i+ is convenient to divide equation (3.14) through by 4y,




after inserting the definitions

0:4»(\— ..-»w'c) , &:%0), 3::.‘.;.’.@-

Thus,

. e T _‘Q_ - Y
(“‘fzﬁ' A RE S EICE )= am =h

The characteristic equation is now of the same form as equation (2.78). Then,

once the pressure effect of the nonuniformity has been +aken Into account,

the velocity effects modify tne stability limiis as discussed for the uniform
‘njection case. That is, if the expansion coefficient &y is of the form
-1&:;, where Eﬁ; is a positive, real number, the tangential veloclty will
cause a contraction or expansion in the m direction of the stability limit
curves on the #, T - plane. The effect of the radial veloclty, as before,
will be a shifting of the curves in the T direction. The magnitudes of these
Sa
effects will depend on the values taken by& and . These
™
coefficients will now be examined for several cases of nonunlform injection
distribution.
From equations (3.10), the two velocity coefficients for a ganeral

burning rate distribution /L(r 8 ) are
j fﬂ‘rQ)L(a')L(‘&r)@;Q,*rdrdo
r{ jJ/‘(rO) JjGar) G, @, rdrda-

13

{3.31)
¥w A,

f fﬂm;i L6 @) @ rdrde
Ch - ;
Yo ffu. f f/u(r,e) (S‘,‘r) o, @, rdrdf

When the nonuniformity is in the radial direction only, the coefficients

(3.32)

e




become
{

.
. ) e T Goer) 3,he) rd e
(&

,—B-zf,"' = ¥ (3.3%)
wWh ~ )
" j /«(r) ];l(syg,r} rdr
(=]
!
Vo2, :
s &) rdr -
e Y f/*' r vy )
X__.?_'.I" = -t ;,—‘;" 6, T - gﬂ‘
WAV, £ L‘ e T2 (su0) Cdr YwA (3.34)
{spinning mode) i
Gk }
Bwdg, = © J

{stangding mode;

It is clzar that tha cocnvergsnce probiems encounterec previously* with the
tangential velocity effoct for a stending mode are present for any combustion
distribution which is uniiorm in the tengential direction. The effects of
nonuniformities can be scer by considering the casz of combustion concentrated

n
at a single radius. FOF/A.(Y‘ Yy = 4« v, ) the coefficients are

1
By 1 L6.p (2.35)
¥u Ag, ¥ I’(-‘wl;ff J
S v 1
= - (spinning mode) (3.36)

Bp ~ XS
The magnitudes ot ihese vaiocity effest coelficlents relative to those for
uwniform injection are shown in Figures 32 and 33.
For the tangential wodes, both the radial and tangeaticl velocity
effects increase ir rejzticn 4o the pre._ure effect 23 the racius of irjection
approazches zero. However, since the pressure effect cosfficiant is also

decreasing. and at a more rapid rzre, the overall result is that of increasing

v
Ch
w
-

¥vid.  op. ¢




P T———

e At o mesmn e ee—e———

s S

-87-

stability as the radius of injection is decr ased., In the case of the first
radial mode, simiiar conciusions can be drawn as the injection radius apgroaches
The radius which corresponds to the pressure node, ¢ = 0.6276.

Whan the nonuniformity in the burning rate distribution is entirely
in the tangential direction, the velocity effect coefficients differ from the
uniform injection coefficients only for the stenuing mode, for which

'
B _ 0 ):L'(S.I.r) Lbur) rde
YwhAy, 5 Ll:):’{r;‘r) o

!
C,L. ¥ j J r)dr J‘ﬂ(” $in V6 sl d@

%ol = ¥,
{ Bisae)rde f,u(o) ws*vo d6
Comperison of fhese equations with equations (2.56) and (2.58b) yields

- ) (3,37
Ywhs, - L ww /hﬁ kniform
o
Ga crh_ ,L:/‘¢Q9) sﬁ\ilé‘fostqQGIGD
Yiksy =7 \o A hiigorn | (3.38)

Iﬁ/u(a) costve do

Thus, the radial velocity effect i5 insensitive to nonuniformities in vhe
tangential direction, as would be expected. In addition, for certain distri-
butions, tangential velocity effects will be present for the standing mode,
vhereas there are no such ~ffects for the uniform injection czse. If /u(g )
is properly continuous and vanishes at & = o, 7, ihen the Convergence
problems cncountered previously wil! no longer be present hecause 7h$ function
which must be expanded in the eigenfunction series, J'-‘L(S")/dl)s.'. 6 ,
does satisfy the same boundary conditions as rhe eigenfunctions themeelves,

For certain funcfions,u,(e) the coefficient vanishes., In order to

determine the nature of such distribution functions, the integral in the
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nume ator of equation (3.38) is written =s the sum of integrals gver

subintervals of length ,1-5 ,

2
o ) z 2%, -
f/‘(&)&n'\}e COS'UGAQ :J::-Ae +f.‘.de+ e +f'“de + ju. de (3.39)
o
° & -3, -3y
Since
Sinv8 = Sin J(5-8)
cosvg =~ cas V($-0)
the second iniegrai on the right side of =guation (3.39) becomes
4 &
l,u@)swea;veae - f,ui'-ﬁ-e) sin HL 9 )eosy & -0 )d(T o)
3 o

Thus, if w (&) =/~L(Iy -8 ), *he first two terms on the right cancel.
Vuréover, it ,u.(é ) is periodic, with period }; , all pairs of ferms in
equation {3.39) cancel. Therefore, in order that the tangential velocity
effect vanish for 2 standing tangential mode, the burning rate distribution
must satisfy the conditions

MO =p(6+T) ‘ : -

(3.s0)
P (0)=pu(F-6)
It is clear that the uniform distribution, = 1, is such a function.
For fgncﬂon”s}u_(g ) which dc not satisfy the ccndi‘!'iéns (3.«145),
+he targentia! velocity coefficient for the standing mode is real, rather
than imaginary as for the spinning mode. Thus, for such injectors the iangentiai
velocity causes a shift of the stability limits in the ¥ direction for the

standing mode, but in the m.direction for a seinning mode. (f t+he combustion

is concentrated along a single rad!us,/,_( &)= J‘( @; ), and

~J
G o . .
YA, = )’T/A,q) . {rmv'e; (sianding mode) (3.41)

LT T
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Al+hough fqml'éb-*;ﬂo for 9; = g} + (42¢ )}, K =0, the characteristic

equation,

. Ch 4 -
(A v @2 ntimeTioT )

= h
vith A,ﬁ'vc‘-,éveL » GuivSmVB: cosv8; » Shows +hat/n~se0 for injecﬂon at, thic

angle. If severai injection angles are used. So +ha+/u (8 ) —i"l- J\(O‘

L=

S ( ) ‘2—.1 Sinv8 ; Cos VB
*('H(arm

o 27 Cos® v 6;

which can vanish if 4(8) saflsf:es the periodicity and symmeTry conditions

(3.42)

of equation (3.40). The tangential velocity effect coefficient for injection
at a series of discrete points (n,6; ) can be obtained, in the same manner as
used for the pressure coefficient A,, , by combining equations (3.36) and
(3.42).
B. Application of the theory to a Variable Angle Sector Motor

In the experimental verification of the theory of longitudinal mode
comwustion instability, stability limits were determined on the mixture ratio,
chamber {ength plane (16). From such limits, it was possible to derive vajues
of the interaction index and sensitive time lag as functions of the mixture
ratio. This experimental techaique was made possible by the fact that as
long as the length was kept greater than that necessary for substantially
comp!ete combustion, chary < of iength had no effec! on the cosbustion zone,
i.e., onmand T , the parameters characterizing “he comb'stion process.
Since the chamber resonance properties were chang:d with a change in length,
it was pussible to survey the entire range of stability behavior, from stable
nperation through several harmonics of osciiiatory operaticn,

A similar approach to the study of purely traasverse medes of

combustion instability is much more diificult, The reason is that the charac-
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teristic 1ength for transverse modes i. the chamber radius. Simply changing
the radius of the combustion chamber wil! result also in changes in the
recirculation pattern and in the nozzle contraction ratio. If the |a2i/ter is
kept constant, the pressure level will fall, unless the injector hole size is
increased or mer® hoies are added to the injector. Mainteining the |ength

to diameter ratio ol the combustion chamber carries with It the aanger of
entering reglons of longitudinal mode instability. Although some of these
variables, such as the contraction ratio and chamber length, can be accounted
for theoreiiwuiiy, the dependence of the combustion paremeiers on the others
is not known at the present time.

Fo:- tangential modes, which are by fér the most commonly obssrved,
t+he possibility exicts of measuring sfabifify limits by using a variagle angle
sector motor. Such & motor is shown In Figure 34. (Changes in the angle can
be made by means of sector shaped inserts which fit the internal contours
of the combustion chamber from the injector face to beyond the throat of
the nozzle. It is not necessary to extend the inserts very far Into th2
supersonic portion of the nozzle. For such a motor, the characteristic
iength can be taken to be R o

The use of a3 sector motor is not without difficulties. In the
study of longitudinal modes, the chamber length can be varied continuously,
i.e., in arkitraril; swall increments, so that quite pr.cise measurements of
the stability limits can be made, at least in principle. However, It is not
physically possible to construct an injector which is absolutely uniform in
the tangential direction. Therefore, the sector angle can aever be continuously
variable. EQen accepting such a [ini*.rion, which may be of greater or lesser
importance in any particulaer investigetion, further restrictions are imposed

on an injector to be used for angular stability limit tests.
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First. the injection ¢istribution mu.t be periodic in the tangential
direction. The smallest increment by which the sector angle can be changeas
is then equal to the period of the injecticn pattern. It is reasonable to
expect the recirculation pattern to have the same period. However, the
further requirement is imposed that the symmetry (or periodicity) of ;he
recirculation be maintained relative to meridianal planes. That is, there
must be no swirl, or angular distortion, of the recirculaiion pattern, Hence,
iT is requirea that the ner momentum of the injector sprays be directed
axially. If this conaition is not satisfied, urburned propellants may impinge
on the taces of the inserts. The liquid layers thus formed ray alter the
combusticn process to a sufficient degree that the tests bacome worthless.
Wall effects become incroasingly significant as the sector anglie is decreased.
Below a certain angle, the equivalence betwean the sector and the full chamber
motors may no longer be valid. However, it must be seid that sector motors
of fairly small angle (27°) have been operated with steady state performance
very close to that of the corresponding full circular motor (S).

In a sector motor, the boundary conditions in the tangentiai

direction are

W'(Q’o) =0 -7
w!(g=o)=¢ g

Since the proper solution of equation (2.37c) for the standing mode is

@V =CoS lje »

the fundamental component of the tangential velocity perturbation is

w, = V(2 %"(sm) sin VO

(3.-2)
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Then the soiid wall condition requires tiat

Sin Y& = O
which implies that
- T
v 2T, m=n, 3, (3.44)
where m = | corresponds to the first tangential mode, WM = 2 to Tiie second,

etc. The oscillation pattern in a sector motor of angle & =W s thus the
same as that of the standing mode in a tuii chember. The Bessel functions of
the first kind, J;, are continuous in the orderv ., Thergiore, the zeros Sva
of the derivatives of +he Bessel functions are continusus in ¥ , as shown in
Figure 35. Thus for @ given tangential mode, with each sector angle & is
associated a value of thes acoustic oscillation frequency. From Figure 35 and
equation (3.44) it can be seen that Sy, increases for d=creasing angle. Both
the nozzle admittance and the eigenfunction expansion coefficients are
functions of Sy,. The effects of the sector angiz or Ay, By , and&,for
radially concentrated combustion are shown in Figures 36, 37, and 38.

The center of the combustion chamber, v =g , is a stagnation
point for the transverse velocity components for angles less than . However,
for A > , ¥ € | for the first tangential mode, so that v = 0 is a poirT
of infinite velocity (for inviscid flow). 1In the flow ¢/ a real fluid aroind
such a corner a vortis tattern is established. For osci!,atory flow, vortices
will be alternately created and destroyed cyclicly on both sides of the
corner. Such a phenomenon constitutes a disturbance to the oscillation pattern;
it mayrhave an important, but incalculable éffecf in the statil:ty behavior.

In considering the influence -r tne transverse velocities and of the
injection gistribution nonuniformities in a sector motor, it is convenient to

make the change of varjable

/ - ™ e -
'~ T (3.45)
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so that 6’ ranges betwsen ¢ andf for & betwe n g and . Then the tangential
eigenfunctions are ]

@, = cos p o’ {3.46)
With this modification, all of the expressions derived previously for the
standing mode apply to the sector motor.

The effect of the sector angle on the =.ability limits for the rirer -
tangential mode with no velocity effects is demonstrataed by Figures 39, 40,
and 41. Thes2 curves were calculated for the axially concenirated steady
state combustion d!-*- tution which was discussed in Chapter JI.. Figure 32
shows the limits for sector angles of 60°, 20°, and 180° for a uniform trans-
verse combustion distribution. The slight differences in the minimum inter-
acticn index values are caused by the changes in the acoustic frequency Svi,
through the nozzle admittance coefficients. The solution for Wl is affected
to only 2 slight extent pny the value of Sy, . Therefore,T is approximately
proportionai to 3%; . As the sector angie is decreaszd, the region of
instability on the v, T - plene for any particular mode moves tcaard smaller

T . For a given value of w, the range of unstable time fag values also
decreases with decreasing angle.

The effect of concenmtrated combusTiin om the stability limits Is
shown in Figure 40 for ¢; = 8/9 and in Figure 4y for ¢, = 5. These
injection radii correspono “o those used in the exnerimental © ‘nch.diameter
rocket motor. For injection on the larger circle, the unstable zonas extend
to lower “n, as the sector angle decreases. OQn The other hand, for the smaller
injection radius, the sector motor becomes more stable as the anglz is

decreased. Although there is no radius for +..cin the minmuim interaction

index is independent of the sector angle, from Figure 36 it can be seen that

the smaliest variation of m,, with « occurs for y2 & C.76.

.
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From Flgures 39, 40, and 41, it is apparent that any point {a,? ) -
which is within an unstable region lies 6n the infersecffon‘of the stabllity
1imit curves for two sector angles. Therefere, there is a range oéraﬂg{és
for which tha rocket motor resresented by that n ,¢ pair is ués?able (in
the mode considered). Thus, the possibility exists for determining values of
the interaction index (for pressure) and the sensitive time !abiby measuring
angular s%géilify limits. Since the velocity indices £, and {, aréinéf
presently cajculable, these stabillty limif tests must be carried out using. .
velocity Insensitive injectors, such as a tangentially oriented spud in-
jector (see Figure 7) with a sufficiently lerge number of spuds. If the
pressure index and time |ag are known, then it appears possible to determine
the radial velccity index £, by noting the difference between the predicied
and actual anguler stability limits using the radial spud orientation. Then,
it £ =,¢5.'..P; and £g =Q¢,;F; , where B: s the spud orientetion angle,
as postufated iu Chapter 11 , the tengential velocity index, which is important
In the instability of the full circular motor, isrdéfermined at the seme time.
C. Generalized Time Lay Formulation

Iq the previous chapter, an expression for the burning rate
perturbation was derived, following (i), on the basis of the following time
lag schemetizaiion, The actual, gradual evolution of-combustion products from
+he lianid srooz2ilants w25 approximated by an instantaneous conversion,
atver a ccrfain time Interval from injection, called the total time lag ( Ty ).
It was assumed that the combustion process was not seasitive to fluctuating
condlfionsAin the combustion chamber during the first part of the total +ime
lag, cailed the insensitive jime lag (T_ . During the latter part, the
sensitive time lag (T ), the rates of the processes occuring during combustion
were assumed tc depend on the pressure and on the transverse components of

the gas velocity., The degree of sensitivity of the combustion prucess to the
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chamber conditions was represented by the pres ure interaction index av
and the velocity indices K¢ and ,ﬂo . Thus, considering combustion to
occur at time f , the interaction indices were assumed to be zero from
t-7r to t-t , and to have cons*ant values from -7 to € . Stability
critferia were derivea on the basis of this time iag scheme. The effect of
- alteinative time lag formulations on the characterstic equation for neuiva.
oscillations will be considered in this section. 7

The step function combustion model defining the totai time lag will

be retalned in the isiiowing analysis. However, the simple division of Ty

‘into a sensitive and insensitive oart wi)i be replaced by th~ more general
scheme shown in Figure 42 (b). AAccording’ +o this model, the combustion
Srocess is; sensiﬂve/fo velocity effects only during the time interval T to
T and to pressure effects only between Tyand Tq. Therefore Ty=sTg=T, is
the velocity sensitive Time lag and Tp=» T, is the pressure sensitive time
lag. A straigntforward calculation, following the procesdure used in Chapter
I1I., yields an oxpression for the burning rate perturbation,

The overall rate of the processes invoived in the combustion of .

the liquid bipropellaats is specified as follows:

]

£=f, t-7 <t 'si-vm A

ff(i+ d'et’) | t-Tret ¢ H gt

,{:{ (1+ L0 &5 nplest’ )t < tetoy 41 A
,‘,:f.(‘*‘“"ﬁ'e‘*’ ), t-g4tis £ ¢t-Ty+1a |

4= F, t-zrr <t

where the index ﬂand the perturbation 4\7’ r~fer 2ither to the radial or to

the tangential velocity, or to both. The tctal time lag is defined by the

H
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following equation

¢
f-{_(e')de' E. = ff(é')dt 2.17
t-T; t-%

which expresses the condition that 1he transformation from reactants to
products takes place when the processes occurring during the time lag have
accumulated to a certain level.

Introducing the expressions (3.47) into equation (2.17) gives
-t t-tpeT, £z

Fdt' + [ ar'et ) + f £ hSt e nplet )de!
t-t; 11747 T+,
éaqét; . . (3.48)
+ f Zli+nplest ot + f{ dt' =Ea=|{fdt’
i M €T

Upon rearrangement equation (3.48) bécomes
ﬁ?dt + |Faveta + ffﬂcp Stodt! Jf Zat'
&Tr fge =TT =
T+ 2 t‘l’T

- ] -
ffdt :_’fo"' Sty o m,ff_ﬁ:sé
t-% £t tot
Assuming the spatial nonuniformity of g{ to be negligible, the imivgra! on

the left side can be written as
,6: (4 -%)
so that -
: t-T4 Ty i@-t&*l& i}
Tr-Tr= -2 f""'E‘*'dt' - mJ ‘b‘e“ d¢’ (3.50)
-7, =TT,

neglecting higher order terms.
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The burning rat: perturbefion was tound in Chapter II to be related

to the time rate of change of the time lag by the expression i

vost dia v ,
= - (2.16)
Qe dz dt

Differentiation of equation {3.50) with respect to time and making use of

the definitions of T, and T gives

gg_r= __/Qvles(f-fri-f,) <es.E"..x)

~Ppe <e$tP,_ | ) + higher order terms fff?'“

Then, since- the burning rate perturbation is of the form

A z , =
Q'=a;(?-d-'+-§-;gv ,{_S_:Jwt

The proportionality factors are, from equation (3.51),
= -S(G -5 £
P = ST "'2)(65':,,_')
~s(Tr- T .
R = 2 &% A

-1)
J= /pe e.S(g_T;)(esa -1 ) )

These expressions are to be compared with those of equation (Z.275. -

From equation (3.53) it can be seen that the more general formula-
tion of the combustion process requires the use of eighv parameters: the toTal
time lag :[-fr ; the pressure interaction index mu and time lags 'E",, s ’—t‘; :
the vejociiy inaices G, X, ond time lags 7, , T, . If a relation exists
between JL.and{fL , 25 in the case of the unlike impinging doublet spud
injector considered in Chapter II , then the number of parameters required
is reduced to seven.

The charecteristic equation

. By <7 =
Av*,p"‘b-rw@ + Xw j 1'7 (3‘5:4)»7 ‘
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is a corplex relation between the comb.stlion parameters which must exist If
neutral oscillations of frequency are v occur. A solutior can be obtained,

as discussed previously, only if =l{ but two of the parameters are konown. AY
the prasent time, it is not possible to calculate any of the sensitive or
insensitive tims lags or interaction indices. However, the pressure sensitivity
theory hec been applied successfully to the enalysis of longitudina; modes

of instability. According to this formulation,

-

so that

QP = m (- %) (3.55)
on the basis of this fongitudinal mode theory, a nethod has been developed for
measuring M and T, experimentally.

The time lag model used "1 previous sections of this dissertation
constitutes the simplest extensicn of the pressure sensitivity theory to
include velocity offects. Thus, the velocity time jags were assumed fo be
identical to the pressure tim2 lag. In the preliminary experimental stugicz,
it was observed that the velocity eftects were more important in the early
combustion region than in -the zone of greatest combustion intensity. There-
fore, a better approximaiion to the actual combustion process than the
simple, common~time~lag model may b2 cbtzined by setting "f‘ = O , 50 that

-sT, z
ﬁ *»fre T(gsu-—l )

_ (3.56)

:7: j, e.Str (esﬁ—l)

while retaining equation {3.55) 1o describe the pressure effect.
It is seen that the total time lag is involved in the separate

time jag formuiation. The total time lag for a propellant element is definec
as F 4

- - !

Lr=T®-= ﬁs, (3.57)

Q
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where % is the station at which the elemen] undergoes conversion to
combustion products. If combustion is concentrated at a single axial staiion

4., and all elements have the same velacity, equation (3.56) becomes

Zm
I3
o= | 2 Em
T = Jgey T

where L. is a mean liquid velocity. For this case the functions R and
7 are independent of 2 . If the combustion is distributed axially, then
®=R(x) and =Tk, so that the form of the characteristic equation is

somewhat modifi=d, Equation (2.53b), for p =V, q = h, becomes

( ) & ST da (3.58)
az

where R =4, (¢ ST _ . Then

2
~ ~STr&
:;( ;;M) = & lf ﬂ)az'“ ’ (3.3%2)
and 2 2
Pet, &fd cJ’ -G &)
25 = t \e da % (3.59%)
Pbo A A 3;" d? 'f— 8)’1‘
(a4

Similar results are obtained for P, . If a function h, , is eetinzd es

e
b’f -“T(ﬂolu dg -1 vg,,gﬁzf 'sﬁ'&,,;udz (3.60)

then the characteristic equation for the case ot dist-ibuted combustion t.kes

the form

A @+L(%)(%)E+L(%‘£))(£‘:)5=h (3.61)
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and solutions are obtai~zd in the same mar~ner as for the concentrated case.

An imuortant application of either equation (3.54) or (3.6]) is the
determination of the velocity effect perameters once the pressure interaction
index . and time lag T, are known. It is clear that a vaiue of one of the
velocity indices L., £, , or a relation between th> two, must be known in
crder to fina solutions of the charalt~~is+ic zguation. Since both vhe
radiai and the tangential velocity effects are of the same form, it is
necessary to discuss the solution for orly one of them, Thus, let 1% =0 In
the foilowing. For simplicity, the sclution of equation (3.,54) .il] be
considered.

for this case, the characteristic equation can be wriftfen in the

form
(wT
Lo {t-e""" ) = 9 (w) (3.62)
where -
. Lyw it - (wTp
q :3‘, *i9. = __é———- [h(u—‘,\“A‘/A’“‘("‘e )]
vh

Since equation (3.62) is complex, it is equivalent to the two resal egquations

,E(-—-,Q,- Cos wfv = Sr

13.63)
~LZr Siw w‘EV = 3"
The solution of this simultaneous pair is
2 2
ﬂr(u’): R

Glele (3.64)

fv(w)=-;—) s;;'(.%:;) = Z") Cos-’<%- %: )

The most important difference between the "common® and "separat«t
+ime lag formulations is the presence of the total time lag as a parameter in
the latter model., Since % is O( &;) and 2, is 0 (1), the total time lag
i; .S 0(‘é; ). Thus, smail variations in the frequency w . which in the

method of solution Is regarded as the independent variable, cause large

changts in the function 9 () Therefore, it is important that the combustion

i
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distribution & (%) and the liquid velocity ¥, (2) pe accurately known if
a valid soiution for Tthe combustion paremeters is to be obtained from +he
separate Time lag formuiation. It can bc concluded, then, that further study
of the details of the combustion process is needed in order to refine the

time lag mod21 praoperiy.
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CHAPTER IV

Exper imenta. Results and Conclusions

A. General Constderations

The stabiiity limit relations for transverse modes vi instability in
vhe two nraceding chepters were based on thea comcept or a sensitive combustion
time lag. The validity ¢f This model as apolied fo longifudinal modes has
been demonzirated experimentally. However, the extension iu transverse modes
involved more than just a geometric change in the number of dimensions. It
was necessary also to include in the combustion model a sensitivity to velocity
as well as pressure oscillations, to treat nonuniform injection distributions,
and to develop a imefhud of measuring stability {imits at which the linearized
theory coivid te appiied. None of Thereffecfs.considered had beer studied
systematically by any previous worker. Therefore, the final phase of the

present investigation consisted of a series of experiments designed to test

“tne *neoretical predictions.

The experimental apparatus used in these tesis was the same as that
used in the exploratory tests described in Chapter I. All tests were ra2de at
a mean chamber pressure of 150 gsia and at a thrust ievei of (000 auunas
based on operation of the full circuiar chamber The injector spuds were
designed to give equal propeiiant velocities and axiaily directed spray fans
at a mixture ratio of .4, Most of ine effort was devoted to the measurement
of angular stability limits, using the variable angle sector motor. A limited
number of full motor tests were made i1 order to ouserve the wave patterns of
the spianing forms of tangential medes. In some of tnese tests, destruct ble
barriers were used to determine the role of starting fransients in the
stability problem, The number of full motor tests was necessarily restricted

by the exiremely destructive nature of the spinning tangential modes. Tests
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were also conducTes with a variable | agth motor in order to use the well-
developed