Reproduced by

"NOTICE: Wher Gcyernment or other drawings, specifications or other data $a r e$ used for any purpose other than in connection wit ${ }^{2}$. a defirit y elated Government procurement operation, the U.S. Govermmen chereby incurs no responsibility, nor any obligation whotesever. $2 \cdots$ the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data is not to be regarded ky implication or otherwise is in any manner licensing the hoider or any other person or corpcration, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related there\%."

STUDIES ON THE VALIDITY OF THE HYDRAULIC andlogy to supersonc flow

Parts I and II

Massachusetts Institute of Technology

United States Air Force
Air Materiel Command

STUDIES ON THE VALDITY OF THE HYDRAULIC ANALOGY TO SUPERSONIC FLOW

Part I

Massachusetts Institute of Technology

United States Air Force
Air Materiel Command
Wright-Patterson Air Force Base, Dayton, Ohio

PORESHORD

This roport was propared by Donaid R. F. Barlegan undor the cirreotion of Dr. Arthur T. Ippen, Profossor of Hydraulion, Department of Civil and 8anitary Engineoring, Massachusotts Institute of Toohnology, under USAF Contract Humber W3-038-a.-18703. The oontract was initiated under the researoh and devolopment projeot, identified by Expendituro Order Mumber 468-4i3, and it was adminiatered under the direction of the Alrorart Laboratory, Engineoring Division, Air Materiel Cornmand, with kr. Josoph Flatt aoting as project ongineor.

ACEAOHLEDGEATENT

This atudy was initiated originally by Dr. Arthur F_{s} Ippen who aoted as project superfisor for the Division of Induatrial Cooperation of the Hassachusetts Inatitute of Tochnology. The deaign and oonstruotion phasos were carried on by Mr. Donald R. P. Harlgman, Resoaroh Assooiate, with tho ald of Kr. Charles E. Carver, Researoh Assistant in the Department of Civil and sanitary Engineoring. Professor Emeritus voorge E. Buseell and Mr. Goorge R. Alggins contributed greatly in the proparation of the report material. During the oonstrustion and oreotion of the ohannel, valuable cooperation was received fron the techniome etaff of the laboratory.

The primary concern of Part I of this research program Is the design, construction, adjustment and calibration of a supercritical flow channel best suited for experimental inrestigations on the hydraulic analogy to supersonic flow.

A oomprehonaive review of previous experimental works both on supercritical sow and on the hydraulic analogy was prepared in order that the design of the channel might bonefit from past experience. The construction features of the channel are described in detail.

The instrumentation of the channel together with a desoription of the method of setting up initial flow condition a is also discussed. It is concluded that the operation of the channel after adjustment and calibration conformed to the original specifications and that it constitutes a useful res search facility.

PUBLICATION RETIE M

Manuscript Copy of this report hes been reviewed and found antiafactory for pabliontion.

FOR THE COABMADIHG TESSERA:

Page No.

I

Conclusions28
Bibliography - Soe page 94 and rollowing O8AF-TR- 6985, PART II
D8AF-TR-5986
Part I
F18. Pare Vo.
1 Supercritioal Flow Channod - General desembly 12
2 Goneral View of Guperoritionl Flow Channel Looking Dpetrean 12
3 Jpatrean $\nabla 1$ ow of Channed Interior Showins Qlase Botton 18
4 Downetrean and Truse Einge Lounte showing Disoharge Pipe, Ball and socket Joint and Rubber Coupling to ITHap 18
b Dotald of 8pindie Lifting Mohanim Showing Mioro= 8uitoh Control 18
6 View of Allis-Chalrer: Ciroulating Phap 15
7 View Opetroan of Bintranoo Nossio with Liftias Mobanian 18
8 810pe Calibration Curvo 19
9 Nossio Calibration Curpe 20
10 Point Gege Attached to Croserall of Traveling Carríage 22
11 Dotalds of Ares-Dial Point Gage 22
12 Comparison of Volooity Distributions Obtained by Parious Instruments 24
13 Prandti Type Pitot Tube Mounted on Traveling Carriage 28
14 8inple Glase impat Iube with Carriage Mounting 25
16 Slope and Depth vi Froude Fumber for Different Rates of Flom 27

ABCTIO I

RHVIEN OF PREVIOOS EXPRRIMBNTAL WORI

The design of a high relooity water channel whioh would be best audted for experimental work doaling with the hydraulic anelogy is the primary concern of Fhese I of this researoh projeot. doourdinuly, a oareful study of previous resoarah was undertaren in order to benerit from sugestion and observations of predous investigatori. Abstraots of the pertinent inveatigatione wioh were studied are presented below.

1. A. T. Ippen and R. T. Kapp. Experiountal Inveotipationa of Flow in Curped Chamels. (Ror. la, Ib, 10)

In 1986-86, Ippon and Erapp demonstrated for the firat tine exe perimontaliy, the applioation of the methods of supersondo gas dynanios to hydraulis problena. The fact that the analogy oxiote had been pointed out by Riabouahineky (Ref. 2) and ron Karman (Ref. 8). Ippon and Inapp undertoak atudy of the fundamental aature of the ourdilinear flow of isquide in an opon ohanne:. The bealo equipment used in the experimental mort consiated of a $12^{\prime \prime}$ and later of an $18^{\prime \prime}$ ohangel on a tilting platforz 200 foet long. Ciroular aro ourrea wore ineerted into the ohanel mioh resulted in transreree disturbances and shook waven oroseing the etroan poriodioally and causing altorming dopth changes of large mage situde alore the malde.

The diow through oomplex ourves spoially designed by the method of oharaoteristion to alatmise periodio vertiond depth ohangee wac also studied but did not lead to praotioal colutione for suoh hydraulio rtruoe tures, Dapthe of from $1 / 2^{n}$ to $4^{\prime \prime}$ were ueed mith redooities up to 15 fpa. oorresponding to froude aubera fron 2 through 6. 8atiefaotory quantitative agrement betwoen theory and experiment was obtained for mater prom files along the aide walle up to the point of the firat maximu of the depth profile. Beyond this looation, the egrement was lest atisfaoe tory because damping is negleoted in the theory, and the errore due to boundary resistance along the aide walis are ounulative.

2. B. Preiswerk. Applioation of the Mothode of Gas Dyparios to Water Flow mith a Froe duriace. (ior. 4)

In 1838 Prelewert extended the theory of the hydraudic analogy for both lsentropio flow and 110 with shook and conduoted ane experimente designed to chow the applioability of the analogy to eerodymanio problems. The experimente, wile not extemilv, served to indioate the usefulnest of the analogy as a researoh tool. 1 sual, fixed iope water ohanel wes used in whioh uperoritioal flow wat produoed by Laval nosslo deaigned by the method of oharaoteristios. The nozsie had a throat
of approximately 8 inohes and an exit moh zuber of 2. The main purpose of the experimental program was to determine the performanoe of tio nossle under various ontranoe depthe ranging fran 4 inohes to 1 inoh and fram 1 inoh to 0.3 inches at the exit eeotion.

Satisfaotory quantitative greament for the water urface profilea throush the nossle was obtained at practioally all initial depthes however, better agrement was found for the maller depthe. The dieorepan. oler at la rger depthe ere attributed to large rertiond aoolerationi Whioh are negleoted by the theory. The influence of botton and eide wald boundery layers upon the $\mathcal{I N O W}$ oharactoristios of the haval nossle wac aloo inventigated. The experimente were conduoted with a high degree of aoouraoy, and the results provide substantial rerifiontion of the oharaoteristios mothod in mator.
8. Johnson witbeok. Water Analocy to Iwo-Digongional dir Fow. Geaeral Bleotrio Company. (Ror. E)

In 1941, the General Eleotrio Company reported the ue of a water table In thich pasages for rar-jets and other aerodyacilo devisee were to be atudied. The morking section mes approxisatels one foot wide, and the water was acoelerated by meanc of a dan with apllway eootion dise oharging onto glase plate. Thus a Ilow was produced at Mach aubers groater than unity prosmably with emall depthe. The models were looated at the root of the epiliway, and the resulting patterne of flom were photographed by zeane of a shadowgraph mothod, It was tated that proseure dietributione were obtained by peinting the model with mater eoluble dye which mehed off the ubierged portion, thus learing a reoord of the water depth distribution.

The statio pressure was then deternined fron the equare of the depth ratio as required by the analogy. Eo otatement is made as to the ecouraoy obtalned with thig method nor are any quantitative data given.
4. North Amerioan Ariation Ino. Appilontion of the Fater Channel Compressible Gas Anelocr. (ROT. 6)

The Forth Arerioan Ariation Company has used a water ohennel foup feet wide and twenty feet long to oonduot a series of test on the analog. The water is atationary, and models are towed through the water by moan of a trevelifing carriage. Fariatione in Moh nubor are obtained by holding the peed of the oarriage oonstant and varyine the deptha of the water. Looelerated or deoelerated motion of the ourriage is also posible.

Advantages and disadrantages of this type of ohannel are as followa:
a. The depth diatribution around the model is nenessary for a quantitative applioation of the analogy. This is aimple in the oase where the water moves past a atationary model, but quite dirfioult for the converse oase. Two aleotro-mechanical means are augsested, One is to measure the depths by means of the varying resistance botwean two stationary vertioal eleotrodes. The second is to measure the position, at instant of oontaot, of vertioally osoillating eleotrode. Ho acm curate mochanioal method of moasuring the water depth or pressure has beon found to be feasible, and the eleotro-meohanical gethods had not been fully devoloped at the time of the report. should suoh a devioo prove fearible, it would, at the most, give water depthe relative to the model at only a fow pointi, whereas large number of pointio are roquired for acouraoy.
b. Shook wave angles must be measured from plotures photographed from the coving oarriage. sinoe the photographs are usually obtained by the ohadongraph method or other means dependent on the rofraotion of ilght rays by ourred water surfaoe, tho question arises as to the ree liablilty of these mothods. It has beon observed that the undular type of oblique jump has a orest of sharp ourvature behind the aotual ware front. Therefore, wave angles observed by this nethod are subjeot to oonelderabie dirrioulties in interpretation.

In a sories of teste made in the North Amerioan ohannel, the offect of statio water depth and nodel sise on the shook-wave angie for a $g^{i v o n}$ deflootion angle were obtainod. The statio water depth mas raried from 0.1 inches to 1.0 inches. Best agreement with theory was obtained in the range 0.2 inohos to $0 . s$ inohes, here the ratio ain β (theor. γ inn (3 (oxp.) varied from 95\% to 116\%. At atatio water depth of 1.0 inoh this same ratio raried from 130% to 2750 depending on the oombination of model leagth and deflection angle. The modele used raried in longth from 3 inohes to 10 inches, and the dofleotion angles from 3° to 120. It Fas not posisile to caloulate the oorresponding Mach numbers as the spoeds with whioh the models were towed through the tank were not given. It $i s$ soen that in most oeses, the experimental anglon were too emall mich may have been due to the optical mothod of doteraination. The report coneludes that the optimun water depth is .25 inchea whioh is the depth predioted for mindmum offeots of onpillarity.
O. The adrantages obtained from this type of ohannel are primarilyi
(1) the fiexibility and ease of detemination of the mol number from the eped of the oarriage and the still water depth.
(2) the ease with whioh transiont phonamena may be observed.

An experimental investigation of soveral techniques for obtaining photographe of shook wares in the water ohanel was also undertaken by Horth dmerloan (Ref. 7) with best results obtalned by the aboorption teehasque. The absorption nothod is based on the faot that the transmiselon of light through dye oolored water is a funotion of the water depth. Bence, when wares are formed in the twans basin, whioh is 11luminated from below, the ware orests and trougha will show up as relatively light and dark areas. By photometric measurementa on the negative film, it 10 posibib to obtaln quantitative information on the oontours of the waves. Galibration oell: oontaining known depthe of the iiquid are placed at the edge of the towing basin, and each pioture then oarries its orn oalibration."
6. Department of Civil danitary Bigineering, M.I. F. Inventigations on Eydraulio shook Waree. (Ref. 8, 8a, 16a, 160)

Theoretioal as will as experimental investigations on hydraulio shook waves have been oarried on by A. T. Ippen at lehich Univeraity and also at M.I.T. Whioh liod to ocmprehensive aumary of the theory of auperoritionl Mow of water in open ohannele whioh oorreaponde to the two-dimensional superionio flow of gas. dil the findinge are contalned In Ref. 16a. spocifio appliontion of the theory to the design of ohannel oontractions led to the experimente reported in Ref. 160 whioh gave in a number of oases good quantitative agreement betweon theory and exporiments for a variety of boundary condítions. Por these experiments on ohannei oontractions, a tiliting ohannel $\$$ foot wide and 10 foot in ieugin was oonetruoted in 1946 in which Barsohdorf and Moodbury (Ref. 8) oonduoted a corien of experiments on oblique shock waves in water.

Due to the dinitations of the available equipmont, the water was accolerated by means of a vertioal luice with a free surface upstrean of the gate. Control of the depth was seoured by rertioal adjustment of the sluice, while uniform flom was obtained by adjusting the slope of the ohannel by meane of jack at the lower ond. The primary testo wore ande at an initial depth of approximately 0.80 inches and an injtial Froude number of 3.86 , oblique shooks vere generated by means of motable side walls which produced the required defleotion of the flow. Depih profiles of the water surface were obtained with a etandard vernior point gage mounted on a travelling oarriage. Good quantitative agroenont was found for the depth ratio across the shook and the shook wave angle for the various deflection angles at the one Froude number tosted.
several disadmatages of thia type of ohamel were made orident by thi e researoh:

1. The range of Proude number: in linited by the atatic depth behind the siuice.
2. Surface disturbances are oaused by vortioes whioh form in back of the sluice and are oarried out into the superoritionl flow.
3. The channel had an aluainum floor whioh prevented lighting from below for photographio purposes.

Huoh raluable information was obtained for the deaign of the large uperorition flow ohannel ueod in the resentoh dosoribed in this report. In addition, many of the experimental techniques ueed were dereloped on this amal channel, and many ohangea incorporated in the final channed deajgn ware tested hore.
6. Mohanical Engineoring Dopartmont, M.I.T. Hydraulio Analogy Investigations. Froject Heteor. (Ref. 9, 10, 11, I2, S1)

During 2946, there was also inotituted in the Moohanioal Bagineering Departmeat under the direotion of Dr. A. H. Shapiro researoh progran dealing with the hydraulio analogy in conneotion with Projeot Moteor. To dato this program has beon the subjeot of four reporte in the form of thesen.

Goldman and Moerbaum (Ref. 9) oonstruoted aixed slope ohannel of 8 ft . lenzth with morking seotion approximately 2 ft . by 2 ft . consisting of giass floor supported on ateol frame. Superoritioal flow at aroude nuber of 2 was obtained by 4 foot lavil type nossie construoted of mood. Photographio technique was investigated for Slow around diasond and bullet ehaped modelo approximateiy 8 inohes in longth with an initial depth of 2 inoher. No quantitative measurenents were obtalned. Munford (Ref. 20) replaced the woodea nozzle which had marped, with metal oontour and continued the developaent of technique. Atteapts were made to obtain stromilnea by ingeotion of dye, and good resuite were obtained with the shadowgraph toohnique of photographing wave pattorne.

In 1948, langtry (Rof. 11) replaood the Laral nossio by a siuloetype nossio because of disturbance wares whioh persisted in tho nossie. The initial Maoh number was determined by moseuring the stagnation depth at point in the stroan. This devioe was oalibrated by measuring the oblique chook wave produced by defleoting plate of approximately 6 inohes length; the corresponding oaloulated Mah number was ocmpared to the value obtalned from the stagnation depth. Very good aerecment was obtained at initial depth of $1 / 4$ inch; howover, at initial depth of $3 / 4$ inoh, errors ranging fran 10% to 40% were observed. The writer belieres that the length of the defleotor plate was too short to give good resulte for the ingher volooities necessitated by the larger depth. The Phase II report confirme the observition that the initial portion of the shook ware is distorted due to local rertioal aooeleratione and that the length of the deflector plate is of considerable importapoe in this reepeot.

The romeinder of the experimental work in Ref. 11 oonsisted of a study of the 1 Iow pattorn in a uperionio diffuser. Good qualitative results were obtained, and much valuable information wan gained on such probleme as sterting and ohoking of a supersonio diffuser. Girand (Rei. 12) oontinued this work to study aupersonio oasoade errangomenta. A fow oblique shook wave contours were measured, but conisderable diffioulty was onoountered in correlating the Maoh number oaloulated fran the etage nation lepth with the Moh number obtained from the chook angle. Also curvature of the shooks was notioed in the plan Fiows. All messureatats were taken within 10 inohes of the front odge of the defleotor plate. Some experimente of ahook followed by an expansion were gain diffioult to corrolate quantitatirelyi in this oase, the defleotor plate was only 1 inoh long and about $5 / 26$ inoh in front projeotion for an initial dopth of $2 / 8$ inoh. In general, exoellont reaulte were obtained on the qualitative studies cf blade arrangements and of atarting and ohoking oonditione.

A sumary and oritioal evaluation of the work reported in this artiole wes givion by Profosior A. H. Shapiro in Ref. Sl.
7. F. Rouse, B. V. Bhoota, E-Y. Bou, Dosign of Chanel Expansions. State Oniveraity of Iown. (Ref. 16d)

The Iowe Institute of Hydraulio Researoh under ite direotor, Dr. Eunter Rouse, has carried on a researoh progran dealing with superofitioal Mow in channel expansions. IIgh volooity jete having widthdepth ratios of 1,2 and 4 and Proude numers up to 8 were used to study the oharaoteriatios of slow at abrupt expansions and alone gradually expanding boundaries. The water surfaces of the expanding jots were surreyod, and the reaulte were compared to theorotioal solutions obtained by the method of oharacteristion. The conoluaion was roachod that the elemontary wave theory will yield resulta in essential agreement with oxperiment as long as the assumptions involved in the theory are approximately eatisfiod.

8. Califoraia Inatitute of Teohnology. Analogy betwoen surface 8hook Waves in a liquid and shooks in comprosilble Gaios. (Rof. 13, 24)

A study of oblique were intersections has beon onrind on at the Hydrodymanion Laboratory of the Califoraia Inatitute of Toohnology under the direotion of Enapp and Plesset. In this progran two surges of mater were released upon horisontal water table containing initially - statio water depth of epproximately $1 / 4$ inoh. Dopth ratios beforo and after the shook from 1.2 to 1.9 were used. In all ossos studied, there wes definite dieagreoment botween experimontal and theoretioal valuea for Moh interseotions and ane disegresment for regular intarseotione.

ס8AF-TR-6985
Part I

The report reoomended that the theory of Mach interactions be revised to acoount for everal noted discrepancios in the assuptions.

A researoh program designed to test the hydrauilo analogy for flow around oiroular oylinders was undertaken by the National Advieory Comptree for Aeronautios at Langley Field, Virginia, in 1846. The toste were conduoted in a vertical, return-fiow water channel with a fixed ohannel siope of i°. The working seotion of length 3 feet and Width 2 feet was preceded by a convergent seotion which acoelorated the water. Depth measurements were obtained by miforoneter point gage with neon lamp to provide a sign of contact betweon the probe and the Water level. Hater dopthe were also obtained by means of atatio pres. sure conneotions in the iloor, along the walls and in the ofroular cyline ders. Fhotographio lightine was provided through the glase floor of the working sootion.

In ald of the teats, the initial Moh number was in the suboritionl rangel however, in ome of tho tests on flow around oylindera, the looad Mach number extended into the aupersonio range. For the first t lie, a quantitative oomparison of reaulti from water ohannol and a wind tunned was obtained. Good quantitative rosults were found both aunerioaldy and photographioally, thus verifying tho analoey for the subsondo range up to the sonio rolocity.

8ECTIOM II

DESIGA, CONETRJCTIOM AND OALIBRATIOM
OF THP SUPERCRITIGAL FON CBUNTEL

1. Study of Basio Requirements

The design of the superoritioal flow ohannel used in this reeoarch progran was the rosult of a performance atudy and enalyais of ohannels previously used in work on euperoritioal fiow studies and on the hydraulio analogy.

The following basio requiraments seomed to orystailize as the dominant ones whioh ihould govern the type and the dimenilons of a water ohennel most asitable for the work oontemplated:
a. Adequate width to permit the etudy of models of relatively iarge sises, Large dimenaions are desirable since shook wave fronts in water extend longitudinally for a oonsiderabie distance in torme of depth. The distance for the transition from the initial to the ginal equilibrium oondition through a shook front muat be made emalder than the distance between oucoesolve origins of shook waves on the model boundary, 1,e. equilibrilu oonditions must be attained betweon suo. cesilvo ghoak wares or between ohook waves and boundary ohanges.
b. Length of the ohannel should be auch that the working seotion 1s far enough domastrean of the entranoe seotion to allow the derelopment of the rolocity diatribution oorresponding to uniform flow ahead of the model, whle dowastrean of the aodel surfiolent length must be given to study shook wave patterns.
c. The adde walls should be made adjustable to permit the study of flow in non-uniform eootion.
d. The botton should be transparent so that widest soope oan be given to lighting and photographing from above or below.
-. A uniform slope of the ahannel it necossary to secure uniform slow. The slope must be made adjustablo to obtain this condition for any desired initial Proude number. Looal deflections of the ohannel botton must be minigized for the same reason.
f. Flow of any dealred Froude number must be readily attainable within a minimum distance without transverso disturbances.
R. The channel interior must be unobstruoted and readily aocesalble over its fill width and length for convenionce of operation. It thus is also readily oonverted to towing experiments.
h. A fai y wide rango of water depths and of volooitios muet be provided for in order to permit systematio studies on the influenoe of viscosity anr surface tension.

In aooor m 00 with the pecifioations set forth and with the reocmendations of other experimenters (Ref. 16), the dimensions of the ohannel wers ohosen as large as possible for the sace avallable in the laboratory. It was deoided to make the ohannel width four foet and the length 45 feet overall so that towing experimente might aleo be poselble. The width chosen is still convenient for depth measurements near the conter. The leagth is adequate to permit an approach seotion with bafflas and nozsle designed for eradual flow eooeleration.

The method by whioh superoritioal flow is obtained is of primary importanoe. Acoordingly, oareful consfderation had been given to the following mothode:
a. A Laral type nozzle has the shortooming of requiring disforent nozelo for each froude number.
b. A Splilway has the disadvantage that both volocity and depth of flow are diricoult to oontrol. Lareo vertioel helght would be ree quired to obtain high Froude numbers.
0. The Vertion eluloe rate provides rolativoly flexiblo adjustment; however, serious surfaco disturbances due to formation of vortioes behind the geto constitute a problom.
d. A Nopzo giver gradusi aoceleration from an approach section, and the flow emerges as a smooth, high velooity stream. The volooity 10 easily controlied by means of a throttlo valvo in the supply ine, and the depth is regulated by raising or loworing the lip of the nozzio. A large range of Froude numbers can be readily obtained since the supply fyetem 18 under pressure to the lip of the nozele. In aocordanoe With this analyis, the nossle seored the most suitable arrangement to produce the uperoritiond flow desired.

Consideration was also given to towing models in still water. The disadrantages of this method were stated in seotion I-4, the dif. ficulties belng primarily those of adequate instrumentation. However, it is felt that this mothod has advantages in investigations of oertaln unsteady flow problons if these difficulties oan be overcome. Uitimate use of the ohannel for towing experiments was therefore considered in its design.

USAP-TR-5986
part I

The neight of the working sfotion above the floor of the laboratory was planned to aliow onough pace for photography and lighting through the glass floor. In addition, it was decided to have two point support over the length of the channel to simplify the tilting moohanism; therefore, the truss supporting the working seotion had to have depth sufiloiont to riniadze defleotions.

The disoharge and slope requirements wore such that Froude numers of approximately 8 or 10 could be obtained. a centrifugal puap haring a capacity of 4,000 gallons per minute under a head of 45 feot was araileble and was found to meet the requiroments. A maximur slope of 1 in 10 wes deoided upon to meet the Froude number opeoifloations and obtein flow with uniform depth. Heving set up the besio requirementa, the detalled design of the apparatus is next oonsidered.

2. Design and Conatruction of the Superoritioal Fiow Channel

A plan and elevation view of the superoritical flow chanacl and Ite eppurtenances is shown in Fig. d. Essentially, it consista of the following oomponents

a. Channel and Supporting 8truoture

The rectangular ohannel is approxinately 40 feot long, 4 feet Wide and one root in depth. The lloor consiats of $1 / 2$ inoh plate glase over a length of 30 feet. For short distanoes at either end, $1 / 4^{\circ}$ aluninum plate is employed. The vertical alde walle of the ohennel are made of $1 / 4$ inoh aluman plate attached at intervale of $2-1 / 2$ foet to the top chord of the supporting etruoture. The ohannel is supported by two paraliel steel trusies, $4-1 / 2$ feet deop; the top ohords of whioh oonsist of two 10 inch ohannel ceotione wolded back to back. The top slange of one of the ohannel anotion provides the longitudinal eupport for the glase and alumaum rloor and runs the ontire length of the etruoture.

To provide epace for the punp, the top ohord is oantilevered at the dowatream ond, thus permitting the lower ohord to be 20 feot shorter. The apporting trusses were designed to lirat the deflection under full load of 8 inches of water to 0.025 inohes. At if foot intervals, orose ties between the top chords propide supports for the ohannel floor. 81me ler ties at the lower panel points support the water apply pipe and diffuser. Lateral bracing in the horisontal and rertioni planes insures torsional rigidity of the struoture. Care was taken not to obstruct the panels direotly beneath the glass loor; eocordingly, the top ohord lata eral bracing was placed only at oither end beneath the aluninum floor. Between oach 10 foot longth of glass, a brase spacing bar inch wide is placed. These bers were incorporated so that it would be posisble to attaoh objects to the floor. 1 ll joints betweon glass and metal were carefully moothed and sealed againat loakage. Ooneral viows of the ohannel and supporting atructure are shown in Figa, 2 and 3.

FIG. 3
UPSTREAM VIEW OF CHANNEL INTERIOR SHOWING GLASS BOTTOM.

FIG. 4
DOWNSTREAM END TRUSS HINGE MOUNTS SHOWING DISCHARGE PIPE, BALL AND SOCKET JOINT AND RUBBER COUPLING TO PUMP.

FIG. 5
DETAIL OF SPINDLE LIFTING MECHANISM SHOWING MICROSWITCH CONTROL.

b. Chanael FYlting Mochaniza

Variation of the longitudinal slope of the ohanel is provided for by meane of a tilting mechanian deaigned an follows:

It the dowastrean end of the lower chord, the trusses aro mounted on hinge pins and bearinge and atet on blooks mounted on aigid beam panning the reaervoir at shown in Fig. 4. The upetran support is looated at the next to last panel point where two large bronse nute transfor the weight to three inoh steel pindlea threaded over thoir ontire longth of 85 Inches. The ateol apindies reat on thrust bearinga beneath whiah are looated right angle drives. The rertioal chafts of the right angle drive are keyod into the lower end of the apindies, while the horisontal inafte are conneoted to a 1 B.P. eleotrio rerering motor looated betweon the two pindies. The drives, motor and spindle supports aro all mounted on knife edges placed on apporting beam and in a ine at right angies to the longitudinal axis of the ohannel.

The rotation of the horisontal shaft conneoted to the motor causea the epindles to rotate at aped reduotion of 276 to 1 through the comepound reduotion in the right angle drives. Rotation of the epindies onuses the nute whioh are conneoted by hinge pins and bearinge to the main trues to move up or down, thus ohanging the alope of the ohannel. Inamiuoh as the nuts must move along a ofroular aro sbout the domatrean plot, the tilting of the spindies is provided for by the knife edge mounting mentioned above. A detali Fiew of the tilting meohanism of the ohannel is showa in Fig. 6. Power from the motor is tranmaitted to the horisontal shaft by means of rariable peed pulloy drive, thus a rate of ohannel movenent of from 2 to 5 inohes per minute is posible. Moro ewitoher autceationily top the motion of the chamel when it has reached elther the level poition or ite position of maximu lope of 1 to 10.

The cotual setting of the ohanned to a deaired slope is soocme plished by meane of revolution counter attached to the sindie drive sheft. In order to confine the moverent of the onannel to true rortioal plane, guides are placed on the outside of aah trues at the upper end panel pointe.
0. Water supply syoter

The water supply and storage systom is arrenged as follows,

A conorete-i ined reserroir, 52 feet long, 6 feet wide and 6 feot deep and hevins a capacity of 14,000 gallone le set into the 1200 of the laboratory with ita top flush with the floor. The longitudinal axie of the ohannel coinoides with that of the reservoir. The punping equip mont is shown in Fig. 6 and oonsists of direot motor driven ilileChalmere oentrifugal puap rated at 4,000 gallona per minute under a

FIG. 6

FIG. 7
VIEW UPSTREAM OF ENTRANCE NOZZLE WITH LIFTING MECHANISM

USAF-TR 5985 PARTI

46 foot head. The puap is bolted to a bean spanning the reservoir underneath the oantilever portion of the trusc. The $12^{\text {n }}$ suotion pipe extende vertionily down into the reservoir and along the botton of the resorvoir to a $12^{\prime \prime}$ gate valve. This valve provides a meana of holding water in the pump for priming purposes. The horizontal extent of the intake pipe along the reservoir botton prevents air entraiment Which would be caused by having the intake too 010 se to the point at whioh the water is returned to the reservoir from the dowstroam ond of the ohannol. The disoharge aide of the promp is coupled to a $10^{\prime \prime}$ rubber expaneion joint plaoed to oliminate tibrations of the pump from being transferred to the trusees. Figure 4 show the rubber joint couplod to a ball and sooket joint set so that it contor of rotation ooincides with the eonter line of the hinge pins about wioh both the ohannel and the apply pipe rotate during the tilting procesa.

The aupply pipe oontinues for a distance of 12 seet from the ball joint to a $10^{\prime \prime}$ by $6^{\prime \prime}$ Vonturi neter which is uned to meter the Flow. Five foot domatream of the Venturi is looated a 10 inch throtiling valve whioh controls the rate of flom. Direotly conneoted to the valve is a transition eoction from a 10 inch oiroular section to section 10 inches square. Thereafter the flow is deoelerated by a gradually expanding diffueer into a seotion 10 inohes deep and 48 inohes wide. Io reduce the rate of expansion and to provent separation and eddying, a stroamined body similar to an airfoll section temporarily divides the flow in the diffuser. The final diffuser area is six times as largo at the original, thus voloalties are oorrespondingly reduoad. The flow then rises rortioally after being turned by a eories of guide vanes and is again turned through 90° into the nossie approach seotion. The entire water supply system is galranised to provent discoloration of the mater and subsequent interforence with photography.

Completing the supply aysten and built integraily into the support atruoture is a nossie from which water from the diffuser onters tho ohannel. This oonsiste of an approach eootion designod to aocommodate flow baffles and the nozele Which is gade of a $1 / 4$ inch aluminum plate extending aoross the channel. The plate 1510 inohes above the channel floor at the hinpe and oonverges to any desired opening at the 11p where the etrean exerge: from the nossle. Rubber seals prevent leakage betweon the edge of the nozele plate and the rertiona walls of the channel. The rubber atripa are held in piace by an aroh spring spanning the nossie. The aroh oan be made to develop a thrust upon the strips onoe the plate has beon set to desired opening. The nozele seotion was carefully aligned to insure that the emerging strean did not have an initial angularity with rospect to the channel walla. The lip of the nosie is reinforood for etiffnes: and is set parallel to the glass floor insuring in all positione uniform depth of flow. The rotation of the plate about its hinge controla the amount of nosile opening, and the
motion of the plate is aoomplished by misans of a hand-operated sorew mechanism, Thic oonsiate of three vertioal spindles, olearly seen in Fig. 7, operated by miter gears mounted on a comuon horizontal shaft. A revolution oounter attached to the shaft reads zero when the ifp is in contaot with the floor and registers 228 counts for oach one inch vertion rise of the plate. This permite duplioation of any givon nozele sotting.

The wator from the ohannel 18 returned to the reservoir at the extreme downetrean end of the ohannel by means of a oolleotor hood mounted rertioally and independently of the ohannel.

3. Adjuatrent and Calibration of Channol

a. Adfustmont

Inesmuch as it was dosirable that the channel be geometrioally aoourate in all its positions, it was assembled with muoh oare. The two hinge pointa wore oarefully aligned and oet at the wane lovel. The glass floor plates imnediately over the hingos were then leveled trenem versely by means of an engineer's level. The floor at the upper end of the channel was then set at this same lovel by means of the spindie mochanism, thus ostablishing the position of zero siope. Then on oach of the glase panels, the olovations of 15 pointe were oheoked, and the glass set horisontal by means of fiber shims.

To insure longitudinal straightness and a constant width of 48 inches in the ohanal, an eneineor's transit was set up at the lower ond and on the oeater ilne. The aluminum wall plates wore then eat at equal distanoes from iine of sight, 1.0 , the genter inno by means of a steel rule placed between the inside of the wal plates and the inge. Vortioal alignment was obtained through the use of a sensitive spirit level. Hhen in proper position, the wall plates were rigidiy bolted to tho top chord of the trusses by means of spacers, gusset plates and angles.

Test runs made soon after completion of the ohannel showed the prosence of ∇ ibrations in the struoture. These were traced to the colleotor hood at the lower end of the channel which had been mounted integrally with the channel. The hood was dotached and mounted on the laboratory floor. Vibrations then wero negligible. Test runs also indicated the probable existence of a spiral fiow in the supply pipe as the water left the pump. As this could affect the readings of the venturi meter, otraightoning vanes were placed in the pipe just beyond the universal joint.

USAF-TR-5985
Part I

It was also obsorved that vortioos appoared in the flow as the wator emerged from the nozzle ilp. To oliminate those disturbancea, baffles were instalied in the nozzle approsoh where it joined the nozele. The core of an automobile radiator was out in half and jointed togethor to form a oontinuous baffie, 10 inohes high by 48 inohes wide extending aoross the eootion. Not oniy dia it oliminate objeotionable vortices, but it also raduod depth flustuation to negigible mount.
b. Cadibration

Several wooks were spent in oaldbration teats of the ohanned. Longitudinal slopes were calibrated againet readings of the revolution counter attachod to the spindie drive-shaft. At increments of 500 or 1000 oounts of the oounter, elovations of the ohannel floor were determined at three chosen points by an ongineer's level. From these the main ohannel slope was oomputed. The slope va, raadinga of the rovolution oounter was found to have perfootly inear relation (Fig. 8). Subsequently in operating the ohannel, it was posisible to oot the ohamnel to any desired slope by meane of the oounter reading. Likewise the anount of the nosslo opening was callbratod againet readings of the oounter attached to the operating shaft. Figure 8 ahowi this relation.

4. Instrumentation

a. Point Gage and Carriage

In order to provide oudtable and quick moans for the measuroment of flow deptha in any portion of the channel, a travelling oarriage oarrying a point gage was oonstructed.

Steel raile, oircular in section and $2-1 / 4$ inch in diameter, were mounted outaide the ohannel walls on the top flanges of the channels forming the top ohorde of the trusses. These are supported on adjustable sorews and were made parallel to the ohannol floor by means of a preoise level. They were adjusted also to parallelism with the channel walla. The travelling carriage which spacs the ohannel runs the length of the channel on these rails. At both onds of the oarriage vertiond supports oarry ball bearing rollers resting on the rails. The rollers on the left side of the carriago, four in number, are sot in pairs at an angle of 90°, thus holding the carriage to the track and insuring rigidity. Two rollers with horizontal axes support the right end of the oarriage and both onds are provided with clamping devioos by wioh the carriago may be looked to the rails.

The main member of the carriage consists of a horizontal 5 inch aluminum ohannel carrying throe rails, likowise of aluminum, that serve as supports and guides for a transverse carriage to whioh the point gage is attached. This carriage is supported vertically on roller bearings

While others at the top and bottom act as guides and hold the oarriage seourely to the ralls. The lattor were carofully maohined and so aligned that all roller bearings are simultaneously in oontact with the tracks. The oross-oarriage is equipped with a olamping device wish engages a fourth horizontal rail.

Looated contrally on this ame oarriage ia a mounting to oarry the point gage. Ita deaign permita the easy ramoval of the gage and the subatitution of Pitot tube. It also allows the point gage to be rotated on ite vertioal axis and to be kept in a vertiond position as the slope of the flow ohannel is altered. The point gage ombodies a novel idoa in that an Ames dial, having a 10 inoh traved and rooording to 0.01 of an inah, is substituted for the more ocomon deolmal soale and remior. The main tem of the point gage oarries a rack whioh, moshing with gears in the dial box, transfers vertical movements of the gage to the dial. Figures 10 and 12 show the point gage and travelling carriage.

In reading water depths, the point of the gage is lowerod to the ohannel floor and the adjustabio dial rotated to ite zero reading under the indioating hand. The point is then raised to the water surface, and the depth read directly from the dial. The lateral looation of the point gage is read from tape haring its froe ond attachod to the pointgage carriage, while the other is fastened to the oarriage aupport. spring winding of the tape koeps it taut at all times.

b. Pitot Iubes

The measurement of velooity distributions in the ohannol and the ohocking of the Venturi meter ooerficiont called for the uso of Pitot tubes. Early experimental runs indicated that the form should be Tuch as to runotion acourately in fow sections of small depth and high volooity. A Loupold and Stevens Pltot-statio tube having an outside dimeter of $5 / 16$ inch was first tried out but found to be too large for measuremente olose to the boundaries. It was used, however, in ohooking the coofficient of the Venturi moter whioh was done at much larger depth of 1100 m (3.5 inchea) than was later used in studying wave proflios. It coeffioient of 1.02 was determined by comparative measurements made with a Prandil tube having a coofficiont of 1,00 . The latter had a diameter of 0.24 inch misioh permitted observations to be made fairly olose to the boundaries. It was used in all subsequent velooity dotorminations.

Near the olose of the experimental work on wave formations, it was deoided to chook the accuracy of results obtained by the Prandtl tube. For this purpose, two other tubes were construoted both of whioh were plain impact tubes. One was made of glass, the other of stainioss Ateol. Both wero $1 / 8$ inch in diamoter with a confcal nose and impaot oponing approximatoly $1 / 16$ inch in diamoter. The glass tubo was mounted

USAF-TR 5985 PARTI
like the Prandtl tube on the traveliling carriage. The atainless ateel tube, howerer, was inserted upward, in an invortod position, through ono of the brass etrips soparating the glasa plates of the bottom. Inis position was for the purpose of permitting measurements 01000 to the water surface without haring the stom of the tube interfere with near-surface roloodties.

Observation with all three tubes were made at a ingle station for a oonstant rate and depth of Ilow , and the results plotted. These are hown in Pig. 12. Although the impaot tubes indionted valooitios slightly larger than the Prandtl tube, the percentage difforenoes were mall. It wat deoided to aoopt the rosulta of the Prandtl tube ainoo the coeffioiente of the plain impact tubes were uncertain. It should be otated that ooeffioiont of 1.00 was used for all threo tubes for the comparison in Fiz. 12 . Photographe of the Prandti tube and giass 1mpaot tubes are hown in Fige. 13 and 14.

0. The Venturi Moter

The efreotive mean $v e l o 01 t 108$ and depths had to be determined by Pitot tube traverses and by point gage to oliminate ohenned wall - freote and to obtain the offeotive Froude numbers as pointed out in a later seotion. Therefore, the measurement of total rate of flow was unneoessary exoept for the purpose of duplicating desired flow oonditions in the chancel. 110 inoh by 6 inoh Venturi neter was proe Fided in the supply line for the latter reason.

The Venturi meter coeffioient, 0.983 , was obtained fran "Fluid Noters, Their Theory and Applioation", Part 1, A.S.N. E. Report, 1937, 4th Edition. Flow-rates based on this ooeffioient were found to ohock olosely with those based on Pitot tube measurements simultaneously made in the ohannol.

The flow-rate, in oubic feot per second, corresponding to a differential head, Δh, in fact, as read from the gages is given by the following expreseions:
$Q=2.869 \sqrt{\Delta h} \quad u 81 n g$ the air-water manometer (1)
$Q=5.876 \sqrt{\Delta h}$ using the meroury-water manomotor (2)
6. Mothod of Ottaining a Desired Froude Humber

The flow-rate in giron ohannel is a funotion of the water depth and ohannel slope. Caloulations of the slopes nocessary to produce a given Froude number (hence velocity) at different depthe wore

\bar{V} (Prandil Tube) $=5.97$ fps
$\bar{V}\left({ }^{2}\right.$
$=6.05 \mathrm{fps}$
v (禀)

- 6.08 f ps

COMPARISON OF VELOCITY DISTRIBUTIONS OBTAINED BY VARIOUS INSTRUMENTS

FIG. I2

FIG. 13
PRANDTL TYPE PITOT TUBE MOUNTED ON
TRAVELING CARRIAGE. DETAIL OF $6^{\prime \prime}$ LEAD VANE AHEAD OF DEFLECTOR VANE.

FIG.I4
SIMPLE GLASS
IMPACT TUBE WITH CARRIAGE MOUNTING.

made to facilitate the initidi adjustment of the ohanel. Por thit purpose the ocmonly accepted lanning formula for open-ohannel flow,

wes amployed, whereln
∇ = relooity in feot per reoond
R - hydraulio radius in foet
S = ohannel slope aine of angle of incination
n - roughnes: 000 ££101ent

From atandard ralues of $\underline{n}_{\text {, }}$ ralue of 0.008 was taken and leter found to be substantialiy corroot for the arooth glase and aluminum ohanel. For this ralue of n, the ebove equation was used to dotermine the ourves for conetant depth as a funotion of slope and Froude number shown in Pig. 18 so that for any desired depth and Froude number, the ohannel slope could be read. Also ourres of constent disoharge were plotted in the same graph as sunotion of Froude number and depth whioh gare at onoe the disoharge for the deaired depth and Froude number. Initial adjustment of the $\mathcal{N O}$ conditions were therefore quidoly made, and flnal adjustment necossary to produce truly uniform flow were reo duoed to a minfmun.

With this procedure oompleted, the velooity diatributions ofer a fow depthe arose the flow seotion are determined by means of the Pitot tube, and the oorresponding curver are plotted. The mean velooities are then determined by planimeter. The averago of these is used to oonpute afirst value of the Froude amber. Inls value, and that of the existing depth, are ueually found to be falriy ciose to the deaired ralues, and the ohannel slope and nozele opening need to be ahanged ilttle to correot the disorepanoles. Vortical rolooity ourver in ome oight or atme locations are thon again obtained and plotted. Fram them the transverse ourve of mean relocities for the entire sootion is plotted and planimetered to obtain the sinal mean. The value of the resulting Froude number is the final one.

This mothod of setting up the flow to obtain a desired froude number at given dopth was found to be vory satisfactory. It was possible to obtain the same flow oharaoteristios at any time by simply setting the differential gage, channel iope and nozele opening at the reoorded nilues.

FIG. 15

USAF -TR-5985
Part I

To produce oblique shook-waves, a variablo-angle deflooting Fane was installed in the ohannol at a point il foet downtrean from the nosele opening. It consisted of two parts:

1. the movable defleoting rane, 7 foet long by 10 inohen high, set rertioally, and
2. a short etationary lead-vane, $2-1 / 2$ foet long and 10 inches high, attached to the ohannel wall by angles and guseet plates.

The face of the latter was parallel to, and 4 inohes from, the wall. To it the defleotor rane was joined by speoially desigued hingea whioh permitted the deflector to be moved through a. Wide angle with a sharp break and tight joint between it and the lead rane. The lead vane wan replaceable with ranes of shorter length, and provision was made to obtain flow defleotion without a lead rane. The primary purpose of the lead vane was to inltiate a boundary layer in the flow ahoad of the derleotor.

The dofleotor vane oan be aet to parious angles from 5° to 21° in inorements of three degreen by means of a rertioal pin looated near the downetroam end of the rane. The pin passes through holes in a orose member apaning the ohamel, thence through a bracket attachod to the rane and thon ongages acourately apaced holes in one of the bras: bara on the ohannol floor. Heasurementa after instaliation indioated that the angies obtained by this mothod were acourate within five minutes. Both lead vane and deßleotor were made of $1 / 4$ inoh aluminum plate reinforoed for atifines.

It was found that the superoritioal Now ohannel arter the indtial period of adjuatmont and oalibration conformed to the original spoeifications sot formard at the begianing of seotion II. Relatively ilttio time was apent on adjustments, and all majnr features of the ohannol remained as originally designed.

A number of iteme in the deaign were conditioned by the arallable apace in the laboratory and by the equipnent on hand eince many materials were etill in ahort supply at the time of oonatruotion. Bowover, these faotora did not neopsitate the saorifioe of any of the spooirioationa originally set.

It 18 expeoted that the ohannel will be used to advantage for purposes beyond the \quad oope of the researah reported in fart if of this program, and these possibilitios were oonnidered throughout the deaign,

STUDIES ON THE VALDITY OF THE HYDRAULIC ANALOGY TO SUPERSONIC FLOW

Part II

Massachusetts Institute of Technology

United States Air Force
Air Materiel Command Wright-Patterson Air Force Base, Dayton, Ohio

TORETORD

This report wat propared by Donald R. F. Barleman under the direotion of Dr. Arthur T. Ippen, Professor of Bydrauliois Departmont of Civid and Sanitary Pagineoring, Yasemohusette Institute of Teohnology, under U8AF Contraot Number HSS-0S8-ac-16703. The oontraot was initiated under the researoh and development projeot, identified by Expenditure Order lumber 458-4is, and it mai admindatered under the direotion of the airoraft Laboratory, Enginoering Division, Alr Materiel Command, with Kr. Joseph Flatt aoting as projeot ongineer.

ACSOMLSDOENETT

Inis study was initiated originaliy by Dr. Arthur T. Ippen, who soted at project supervisor for the Division of Industrial Cooperstion of the Mesachusette Institute of Toohnology. The experimental and analytical work wan care riod on by Mr. Donald R. F. Barleman, Researoh assoolate, with the asaistance of Mr. Charlea E, Carver and Mr, Gearge E Eiggine, Researoh Asaistants, in the laboratory. Profesior Beritua, Oeorge E. Russell, contributed greatly in the enaly sia of experdmontal resulta and in tre proparation of the report material.

An experimental program deaigned to verify the theory of oblique shooks in water constitutes the primary conoern of this investigation. Additional experiments are oarriod out to dotermine factors affecting the friotional diatortion of the basic rave form and to determine the influence of nonuniform velooity distribution and boundary layer devolopment.

The hydraulic analogy for supersonio flow with shooks is presented. Two possible modifioations in the enalogy are proposed which promise improverments in the method of obtaining quantitative aerodymamio information from water measurements for the simple shook wave patterns investigated.

Definite oonolusions derived from the present study are as followel
(1) there is oatisfactory agreement between theory and experdmeat for oblique shook waves in water.
(2) non-uniform velooity distribution inherent in this oxperimental method has a negilgible iniluenoe upon the rosults.
(3) the size of model used in experiments in mater has an important effeot upon the results, and large ratios of longitudinal dimenaions to depth should be omployed.
(4) the practioal 1 imits of the analogy are consistent with the range in which supersonio flow theory applies.
(5) optimuse uf the mater ohannel as a researoh tool requires intimate knowledze of its hydraulio oharacteristics combined with a judioious interpretation of results.

PUBLICATION REVIET

Manuscript Copy of this report has been reviewed and found satisfactory for publioation.

FOR THE COMMANDING GENERAL:

USAF-TT:-5955
111
Part II
I'hooretioad Summary uf tite Kydrauile Analogy . . . 1

1. Introduction to Flow through a Normal Compression Shook or Jump 1
2. Normal Hydrauilo Jump 4
3. Normal Compreasion Shook in Gae 6
4. Investization of the Analogy 8
5. Flow through an Oblique Hydraulio Jump 10
6. Constont Specif1o Energy Flow 13
7. Oblique Compression Shooks 17
8. Isentropio Fiow 29
Poseible Hodifioations in the Analogy forQuantitative Applioation21
9. Introduotion 21
10. Corredation of Nater-Air Data by Diroot Analogy. 22
11. First Modification of the Direct Analogy 22
12. Second Modification of the Direot Analogy 25
Experimental Program and Procedure 34
13. Experimental Series I - Determination of β and h_{2} / h_{2} for given F_{1} and θ 34
14. Experimental Series II - Influence of length of lead vane and of initial depth for const. F_{1} 37
15. Experimental Series III - Depth profiles related to leneth of lead vane 42
16. Experimental Series IV - Experimental Determination of F_{2} 42
Seotion Paze
IV Analyeis of Experimental Data 44
17. Method of Dotermining the Shoor- Have Characteristics 44
a. Determination of Initial Froude Number 44
b. Determination of Depth Ratio Aoross Shook 44
o. Determination of Shook Wave Anele 47
d. Detarmination of Froude Jumber Behind Shock 58
18. Correlation of Oblique Jurap Charaoteristios with Rydraulic Theory 60
19. Effoot of Initial Dopth and Volocity Distribution on the Shook Charaoteriatics 72
20. Effect of Initial Side-Hall Boundary Layor 81
21. Effoct of Surface Tension 85
22. Dinoussion of Shook-Have Shape 85
23. Correlation of Experimental Results with Aerodynamic Theory 88
a. Uach Number Assumed Equal to Froude Nurber 88
b. On Basis of Modified Analogy 89
∇ Summary of Conolusions 97
Bibliography 98
TABLES
Table
I Sumary of Gas-Water Flow Direct Analogy 21
II Theoretical Correlation of Air-Hater Data by Firat Yodification of the Analogy 24
III Sumary of Experimental Series I 35
IV Sumary of Experimental Sories II 43
V Sumpary of Experimental Sorios III 43
vI Comparison of Methods for Dotermination of F_{2} 60
VII (a-k) Hydraulic Correlations Sumarized 61-70
VIII (a-d) Air Correlations Sumarized 90-93
FIg. Page
Fnotographs of Shook Hiares
Photographe of Shook Haves$F_{1}=3.20$Determining Shook Front
Definition Sketoh of Hydraulio Jump and Ges Compression Shook 2
Definition Sketoh of Normal Jump 11
Definition Sketoh of Oblique Jump 11
Flow Paramotors across Oblique Shooks
In Water for Varioua Initial Froude Numbers 14-15
Charaoteristios Diagram for Expansion or Constant Energy Flow of Hater 18
Theoretioal Corrolation betweon Analogous Water and Air Characteristios 23
Ratio of Froude Number to Uaoh Number for Similar Geometry of Flow 27
Comparison of F_{1} and M_{1} for Similar goometry of Flow 28-30
Theoretioal Comparison of Wodified Analogy for Sucoessive Shooks 31
10 Theorotioal Comparison of Modified Analogy for Combined Shook and Expansion Waves 32
Plan Viem of Test Soction Showing Defleotor Vane 36
$F_{1}=4.18$ ن8-3940-41
14 Volooity Distribution for Determination of Indtial Froude Number, Run B 46
Velooity Distribution for Determination of Initial Froude Number. Run G 46Section through Shook Hiave Showing Method of58
Volocity Profiles and Contours behind Shock Front. 59
Hydraulic Corrolation: Comparison of Experimentaland Theoretioal Values for Oblique Shook-have Angles
in Water 72

ILLUSTRA TIOAS

Fis. Page
20 Hydraulic Corrolation: Comparison of Experimental and Theorotioad Depth Ratio across an Oblique shook in Water 7822 Hydraulio Corrolation: Comparison of Experimentaland Thooretioal Values for Froude Number Behind anOblique Shook in Hater.........dique Shook in Fater74
22
Definition skotoh: Effeot of Volocity Dietribution on Shook Haves 71
23
Comparison of Experimental Volooity Distribution with Boundary Layor Equations 78
24
Comparison of Volooity Dietributions Before and After Shook Front 78
26
Effeot of Initial Depth on Shook Charactoristios . . 7926
Effoot of Initial Depth Variation on Shook Characeteristios for Constant Froude Number andDeflection Angle80
27 Effeot of Length of Lead Vane on Depth Profiles, along Defleotor Wall, at Initial Depth $h_{1}=0.80^{\circ}$. . . . 8Effeot of Length of Lead Vane on Depth Profiles, alongDeflector Wall, at Initial Dopth $h_{1}=1.50^{\prime \prime} \ldots .$. . 83
29
Comparison of Hall Profiles for Various Lengtheof Load Vane84
30
Classification of Jump Form by Use of Froude Numbers Normal to Fiave Front 87
31
Air Corrolation: Comparison of Hydraulic Experimonts with Aorodynamic Theory by Direot Analogy. Have Anglo 9432
Air Corrolation: Comparison of Hydraulic Experiments-ith Aerodynamic Theory by Direot Analogy.Donsity Ratio95
33 Comparison of Theoretical and Experimental $\begin{aligned} \text { aluas of }\end{aligned}$ F_{1} and X_{1} to produce Similar Geometry of Flor 96

yONAIIOSS

```
a = loonl sonic velooity
C = colerity of a small gravity wave
ov = spocific hoat at constant volume
Op - spolfico heat at oonstant pressure
- - base of natural logarithime
E
Eg - Internal energy por unit mass for gases
F - Proude number = V/\sqrt{}{gh}
8 - gravitational aocoloration
h - mater depth
H - epeoifio flow energy for water
I - onthalpy
M - Maoh number - V/a
p - atatio pressure
P - Sorce due to hydrostatio preseure
r - radius of ourvature of free ilquid surface
R = universal gas constant
8 - entropy or slope of froe surface
T - absolute temperature
O - local velooity
\nabla = average volooity of flom
w - weight per unit volume
\beta - shook wave angle With respeot to original flow direotion
\gamma - ratio of spooific heats
\eta - momentum oorrection factor
0 = deflection anglo of flow
P - mase donsity
\sigma - surface tension of liquid
Subecipt l rofors to conditions in front of shook wave
Subscript 2 refers to conditions in back of shook weve
Subsoript n refers to direction normal to shock wave
```

1. Introduction to Flow tnrough a Hormal Compression Shook or Jump

The analogy for the apecial slow oondition of the normal compression shook or right-anglo hydraulio jump is presented as baokground for the more general flow in whioh oblique shooks 000 (seo seotion I-5). The analogy for iaentropio flow or constant onergy flow without disoontinuitios and the analogy for flows involving thooks are fundamentally quite difforent. The isentropio fiom analogy hei boon oxtensively inrestigated both theoretically and exporimentally by Prolamerk (Ref. 1), E.A.C.A. (Ref. 15) and others. (See sumary in Fhase I report, seotion I) The isentropio analogy depende upon disturbances or ohanges in the flow being propagated as long waves of small amplitude while the ahook-mave analogy is bated upon the prinoiples of oonservation of matter, momentum and onerey.

The type of flow to be ooneidered is essentialiy one-dimenalomal both in hydrodynamice and gas dyamios. Spooificalily ini

Eydrodyanados, A parallel undform flow of liquid having a froe surface in a horisontal ohannel of infinite Fidth is assumed, Variations in the velooity ooour only in the X direotion. The flow is friotionless: in practice, the implioations of this requirement are met indireotly by sioping the ohannol in the direotion of flow until houndary resistance is balancod by gravity forces. Thus, initialiy, flow of uniform depth and constant velocity is obtained.

Gas Dymanios: Flow in a duct of oonstant sootion is assumed aithout friction or heat transfer; that is, the gas flow is noz-risoous and adiabatio. Variations in the flow take place only in the X direotion.

If, as in Fig. 1 , the existanco of a normal hydraulio jump and a normal oompression shoak are postulated, the continuity, momentum and onergy equations show that such flows are posibio. In the following development the subscript l refers to conditions in front of the shook while subsoript 2 refors to conditiona behind the shook. $V_{n} 1 s$ the velocity normal to the shook; h the depth of the liquid; p and ρ the pressure and donsity; $E_{\text {w }}$ the internal energy por unit weight for liquid; and E_{g} the internal energy per unit mass for gas. Where equations for gas and liquid bear the same number, they aro distinguishod by subscripts - for liquid and g for gas.

GAS COMPRESSION SHOCK

FIG.I

Continuity
$h_{1} V_{n_{1}}=h_{2} V_{n_{2}}$
(I_{w})
$p_{1} V_{n_{1}}=p_{2} V_{n_{2}}$
Momentum

$$
\begin{equation*}
\left.1 / 2 g\left(h_{2}^{2}-n_{1}^{2}\right)=h_{1} V_{n 1}\left(V_{n 1}-V_{n 2}\right) \quad(2)^{2}\right) \quad p_{2}-p_{1}=\rho_{1} V_{n 1}\left(V_{n 1}-V_{n 2}\right) \tag{2g}
\end{equation*}
$$

Energy

$$
\frac{V_{n 1}^{2}}{2 g}+h_{1}+E_{w 1}=\frac{V_{n 2}^{2}}{2 g}+h_{2}+E_{w 2} \quad\left(3_{w}\right) \quad \quad \frac{V_{n 1}^{2}}{2}+\frac{p_{1}}{p_{1}}+E_{g 1}=\frac{V_{n 2}^{2}}{2}+\frac{p_{1}}{p_{2}}+E_{g 2}\left(3_{g}\right)
$$

The formal analogy is obtained by comparing the three fundamental equations. The two continuity conditions are identical if h is equivalent to ρ, then

$$
\begin{equation*}
h_{2} / h_{1} \sim \rho_{2} / \rho_{1} \tag{4}
\end{equation*}
$$

The momentum conditions are identical if h is equivalent to ρ and $g \frac{h^{2}}{2}$ 1. equivalent to p, then

$$
\begin{equation*}
\left(n_{2} / n_{1}\right)^{2} \sim p_{2} / p_{1} \tag{5}
\end{equation*}
$$

These two conditions imply a relation for the gas between p and p of the form

$$
\begin{equation*}
P_{2} / P_{1}=\left(\rho_{2} / P_{1}\right)^{2} \tag{6}
\end{equation*}
$$

From the perfect gas relation, $p=\rho R T$, it is soon that

$$
h_{2} / h_{1} \sim T_{2} / T_{1}
$$

The speed of propagation of an infinitesimally small pressure wave is the speed of sound and is equal to $a=\sqrt{\gamma P / \rho}$. If p is replaced by $g \frac{h^{2}}{2}, \rho$ by h, and $\gamma=2$ from the relation indicated by Eq. (6), then an $\sqrt{g h}$ and the sonic velocity is analogous to the ooierity $0=\sqrt{g h}$ of vanishingly small gravity wave. Accordingle, the Mach number $M=\frac{\nabla}{2}$ and the Froude number $F=\frac{\nabla}{\sqrt{B h}}$ are also analogous. The energy conditions are identical if h is equivalent to p / ρ; this requirement is satisfied by Eqs. (4) and (5) and does not result in any new relationship. The energy equations also imply that Em

1: equiralont to Eg_{g} Tho oxaot analogy exista then only for gas whioh atidifies the preasure density roiation given by Bq. (6) provided that the intermal enerey term for iiquid and gas are nown to bo equiralent. These conditions will be inrestigated in detall after the neossary equan tions for hydraulio fumps and compression shooks have boen dovoloped.

2. Normal Evidraulio Jump

Considering eirst the hydrodynanio problom of the normal hydraulio Jump (Pig. i) in uniform paraliel flow, it is oonvenient to choose ooordinates etationary with reapect to the jump theroby reduoing the problom to one of etoady flow. It is aeon Irom Eqs. (1 Fw), (2w) and (5 F) that if $\nabla_{n i}, h_{1}$ and Eri are given, the three untonowne $\nabla_{n 2}, h_{2}$ and $\mathrm{B}_{\mathrm{a}} 2$ oan bo deternined by meane of the three equetions. However, since the internal onergy term appari only in the energy equation, $h 2$ and $\nabla_{n 2}$ can be oale culated when hi and $\nabla_{n i}$ are given by use of the oontinuity and momentum relations alone. Thus, solving Eg. (2w) for $\nabla_{n i}$ and oliminating $V_{n 2}$ by Eq. (IT)

$$
\begin{equation*}
V_{n_{1}}=\sqrt{\frac{1}{2}\left(g n_{1}\right)\left(\frac{n_{2}}{n_{1}}\right)\left(1+\frac{n_{2}}{n_{1}}\right)} \tag{7}
\end{equation*}
$$

or in terme of the initial Froude number $F_{n 1}=\frac{\nabla_{g I}}{\sqrt{g h}}$, the depth ratio acrose the jump beoceres,

$$
\begin{equation*}
\frac{n_{2}}{n_{1}}=\frac{1}{2}\left(\sqrt{8 F_{n_{1}}^{2}+1}-1\right) \tag{8}
\end{equation*}
$$

This equation and the results of the onergy equation next considerad oompletely determine the flow condition for a hydraulic jump and show the existenoe of this phenomenon previously postulated. The inerease in internal energy acrose the jump oan be caloulated from Bq . (3W) by oldrinating $\nabla_{n i}$ and $\nabla_{n 2}$ by means of Eqs. (1σ) and (2π) thon,

$$
\begin{align*}
E_{w 2}-E_{w 1} & =\Delta E_{w}=\frac{\left(h_{2}-h_{1}\right)^{3}}{4 n_{1} n_{2}} \\
& \frac{\Delta E_{w}}{n_{1}}=\frac{\left(h_{2} / h_{1}-1\right)^{3}}{4 n_{2} / n_{1}} \tag{9}
\end{align*}
$$

An inspeotion of this equation shows that if he/hi is less thas unity, there must be deorease in internal onergy. For an incompressible rluid, this requires a decrease in entropy, violation of the eocond
law of thermodymanios, thus a hydraulio drop of the shook type is physioally inpossible. since $\mathrm{ha}_{2} / \mathrm{h}_{2} \geqslant 1 \mathrm{~Bq}$. (8) shows that $\mathrm{F}_{\mathrm{n}} \mathrm{l}$ - 1 and aydraulio jump can ooour only in aupercritioal flow. Bq. (9) also chows that the gain in internal or loss of initial "flow" energy (dofinod as $\frac{\nabla_{g_{1}}^{2}}{2 g}+h_{1}$) is roiativoly small. For a 100% depth ohange $h_{2} / h_{1}=2$, the "lost" onergy is $6 x$ of the initial " $510{ }^{\prime \prime}$ " onergy. further onergy consideration will be disoused after the necessary equations have been developed for the oompresision gas shook. The simplifioations and ifnitations inplied in the derivation of the hydrauilo jump are umarized below.
a. The flow is eteady.

All quantities are independent of time.
b. The flow is friotioniess.

There are no non-oonservative or risoous foroes.
0 . The flow in inoomprosibie.
Density of the liquid is oonstant.
d. The pressure on the froe surface of the liquid is oonetant.

- The pressure distribution is hydrostatio.
f. Surface tonaion foroes are negilgible.

3. Normal Compression Shook in Oas

Choosing oooridinates making the shook stationary with reapeot to the duct in wioh it oocurs, the fundamental equations are derived by a consideration of continuity, momentum and onergy in a mannor aimilar to that used for the hydraulio jump: The energy Eq. (3g) may be rewritten in terme of enthalpy

$$
\begin{equation*}
\frac{V_{n_{1}}^{2}}{2}+I_{1}=\frac{V_{n_{2}}^{2}}{2}+I_{2} \tag{10}
\end{equation*}
$$

Wern I, the onthalpy or total heat content 18 given by $I=\frac{P}{P}+B={ }_{C P} I$ where op is the spocifio heat at constant pressure and T is the absolute temperature. Eq. (10) then becames

$$
\begin{equation*}
\frac{V_{n_{1}}^{2}}{2}+c_{p} T_{1}=\frac{V_{n_{2}}^{2}}{2}+c_{p} T_{2} \tag{11}
\end{equation*}
$$

A consideration of Eq. (1 g) (2 g) and (21) shows that four variables ρ, ∇_{n}, p and T are now involved and that an additional oquation is noeded.

The perfect gas relation

$$
\begin{equation*}
P=R \rho T=\frac{y_{-j}}{y} c_{p} \rho T \tag{12}
\end{equation*}
$$

constitutes the additional relation and thus if $\rho_{1}, \gamma_{n i}, p_{1}$ and T_{1} are specified for a given gas $\rho_{2}, V_{n 2}, p_{2}$ and T_{2} can be oaloulatod. The fact that four equations are neoeanary for the gas problem while only three appear in the hydrodynamic problem is explained by noting that an analogous "perfect gas relation" for an incompressible fluid is ombodied in the momentum equation under the assumption of hydrostatic pressure conditions. (The relation between pressure and depth is $p=$ m (density being constant) and the corresponding total hydrostatic pressure force over a vertical section is $P=\frac{\nabla h^{2}}{2}$).

Substituting the perfect gas relation (Eq. 12) into the momentum equation (2 g) and eliminating ρ_{2} by means of the continuity equation (l_{g}) there results,

$$
V_{n_{1}}\left(V_{n_{1}}-V_{n_{1}}\right)=\frac{Y-1}{Y} c_{p}\left[\frac{V_{n_{1}}}{V_{n_{2}}} \cdot T_{2}-T_{1}\right] \quad-(13)
$$

Eliminating T_{2} by moans of the perfect gas relation (12) and rearrangeing in term of the initial Mo oh number,

$$
\begin{equation*}
M_{n_{1}}=\frac{V_{n_{1}}}{\sigma_{1}}=\frac{V_{n_{1}}}{\sqrt{y p_{1}}}=\frac{V_{n_{1}}}{\sqrt{(y-1) c_{p} T_{1}}} \tag{14}
\end{equation*}
$$

where a_{1} is the look sound velocity,

$$
\text { gives: } \quad \frac{V_{n_{2}}}{V_{n_{1}}}=\frac{(\gamma-1) M_{n_{1}}^{2}+2}{(y+1) M_{n_{1}}^{2}}=\frac{e_{1}}{P_{2}}
$$

The temperature ratio may be obtained by oambining Eq. (16) with the energy (Eq. 11)

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\frac{\left(2 \gamma M_{n_{1}}^{2}-(\gamma-1)\right]\left[(\gamma-1) M_{n_{1}}^{2}+2\right]}{(\gamma+1)^{2} M_{n_{1}}^{2}} \tag{16}
\end{equation*}
$$

the corresponding pressure ratio results from the perfect gas relation (12) and Eq. (16)

$$
\begin{equation*}
\frac{P_{2}}{P_{1}}=\frac{2 \gamma M_{n_{1}}^{2}-(\gamma-1)}{\gamma+1} \tag{17}
\end{equation*}
$$

USAF-TR-5985
Part II
thus

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\left(\frac{R_{1}}{P_{1}}\right)\left(\frac{P_{1}}{P_{2}}\right) \tag{18}
\end{equation*}
$$

The gankine- Iugoniot pressure-density relations are obtained by oconbining Eq. (15) and (17),

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\frac{(y+1) \frac{e_{1}}{(y-1)}-1}{\frac{(y+1)}{(y-1)}-\frac{e_{1}}{p_{1}}} \tag{19a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{R_{2}}{P_{1}}=\frac{1+\left(\frac{y+1}{y-1}\right) \frac{p_{1}}{p_{1}}}{\left(\frac{y+1}{y-1}\right)+\frac{p_{1}}{p_{1}}} \tag{19b}
\end{equation*}
$$

Por an adiabatio flow proceas the ahange in ontropy, 8 , is givon by

$$
\Delta S=S_{2}-S_{1}=\left(S_{v}\right) \ln \left(\frac{P_{1}}{R_{1}}\right)\left(\frac{P_{1}}{\Gamma_{2}}\right)^{y} \quad-(20)
$$

Therefore in a oonatant ontropy or isentropio prooess $48=0$, then

$$
\begin{equation*}
\left(\frac{p_{1}}{p_{1}}\right)\left(\frac{p_{1}}{p_{2}}\right)^{\gamma}=1 \quad \text { or } \quad \frac{p_{1}}{p_{1}}=\left(\frac{p_{1}}{p_{1}}\right)^{\gamma} \tag{21}
\end{equation*}
$$

Inagauoh as the pressure density relations obtained in the shook analysis, Bg. (18) and (19), are not of this simple form, a ahang in ontropy must bo expected for flow through a shook. The ohange in ontropy across a shook is found fram Bq. (20) by substituting Bq. (15) and (17)

$$
\begin{equation*}
\frac{\Delta s}{Z_{V}}=\ln \left(\frac{2 \gamma M_{n_{1}}^{2}-(\gamma-1)}{\gamma+1}\right)\left(\frac{(\gamma-1) M_{n_{1}}^{2}+2}{(\gamma+1) M_{n_{1}}^{2}}\right)^{\gamma} \tag{22}
\end{equation*}
$$

an inspeotion of this equation indioates that for ΔS to be positivo nal muat be largor than unity. Therofore, a shook oan ocour only in a supersonio strean.

Lot $Y_{21}{ }^{2} \equiv 1+m$, then Bq. (22) boccanes

$$
\begin{equation*}
\frac{\Delta S}{c_{\gamma}}=\ln \left(1+\frac{q \gamma}{\gamma+1} m\right)\left(1+\frac{(\gamma-1)}{(\gamma+1)} m\right)^{\gamma} \frac{1}{(1+m)^{\gamma}} \tag{23}
\end{equation*}
$$

JSAP-TR-5985
Part II

For Mach numbers close to $1,2.0$. mall Values of $m, E q$. (23) may be expanded in a power series in m.

$$
\begin{equation*}
\frac{\Delta s}{c_{r}}=\frac{2 y(\gamma-1)}{(\gamma+1)^{2}} \frac{m^{\prime}}{3}+\cdots \cdots \tag{24}
\end{equation*}
$$

or
since $\quad \gamma=\frac{o_{p}}{o_{p}}$ and $R=o_{p}=o_{V} \quad$ where R is the gas constant

$$
\begin{equation*}
\frac{\Delta s}{R}=\frac{2 \gamma}{(\gamma+1)^{2}} \frac{\left(M_{n_{1}}^{2}-1\right)^{3}}{3}+\cdots \cdots \cdots \tag{25}
\end{equation*}
$$

Thus for weak shocks, the entropy increase is of the third order with respect to the shook strength. It beoames zero and therefore 1 entropic as Mil appromohes unity. Equation (25) may bo compared to Bq . (9) whit oh wan developed for the change in internal energy for the hydraulic jump. For values of h_{2} / h_{1} close to unity the internal energy changes also with the cube of the j ump height.

The assumptions inherent in the foregoing gat flow analysis are at follow a:
a. The flow is steaciys all quantities are independent of tine.
b. The flow is frictionless and adiabatio.
0. The gas 1: poigtropio; 1.0. Internal energy is a function of temperature alone.
4. Investigation of the Analogy

With the fundamental equations for the hydraulic jump and the compression shook thus established, it is neoesasy to return to the development of the analogy. [Eq. (4), (5) and (6)] It hat been show that the exact analogy exists for a gas which satisfies the pressure density relation

$$
\begin{equation*}
\left(\frac{Q_{1}}{p_{1}}\right)=\left(\frac{p_{1}}{p_{1}}\right)^{2} \tag{Eq.6}
\end{equation*}
$$

provided also that an g changes in internal energy for the 11 quid and gas are equivalent. The first condition, that of the prossuro-donsity relaxLion, may be examined by means of Eq. (18), (19) and (20). Equation (20) may be rewritten in exponential form

$$
\begin{array}{r}
\left(\frac{P_{1}}{P_{1}}\right)\left(\frac{\Gamma_{1}}{\rho_{2}}\right)^{\gamma}=e^{\Delta s / c_{v}}-(2 b a) \quad \text { and Eq. (6) yields } \\
\left(\frac{P_{2}}{P_{1}}\right)\left(\frac{\rho_{1}}{\rho_{2}}\right)^{2}=1 \quad-(26 b)
\end{array}
$$

Therefore, tho exact analogy applies for a gas having a ratio of specific heats, $\gamma=2$ and for a shook across mich $\Delta 8=0$. Neither condition is fulfilled by real gases, air has value for $\gamma=1.40$, and it has been shown that for flow involving shook: a change of ontrope must pour. The degree to whin the change of entropy affects the analogy for a hypothetical gas of $\gamma-2$ for Mach numbers close to unity is shown by setting $\gamma=2$ and expanding 0% in Eq. (28a), thus

$$
\left(\frac{p_{2}}{p_{1}}\right)\left(\frac{p_{1}}{r_{2}}\right)^{2}=1+\frac{\Delta s}{c_{v}}+\cdots \text { ubetituting for }
$$

$\frac{48}{\theta_{\gamma}}$ fran Eq. (24), with $\gamma=2$,

$$
\begin{equation*}
\left(\frac{P_{2}}{P_{n}}\right)\left(\frac{\rho_{1}}{\rho_{2}}\right)^{2}=1+.148\left(M_{n_{1}}^{2}-1\right)^{3}+\cdots \tag{27}
\end{equation*}
$$

While for $\gamma=1.40$

$$
\begin{equation*}
\left(\frac{p_{2}}{p_{1}}\right)\left(\frac{p_{1}}{\rho_{2}}\right)^{1.4}=1+0.162\left(M_{n_{1}}^{2}-1\right)^{3}+\cdots \tag{28}
\end{equation*}
$$

these values are to be compared to

$$
\left(\frac{p_{2}}{\rho_{1}}\right)\left(\frac{\rho_{1}}{\rho_{2}}\right)^{\gamma}=1 .
$$

Considering, now, the equivalence of the internal energy terns appearing in Eggs. (Bx) and ($3 g$), it can be soon that for water all of the change in internal energy Δ Er must go into energy of turbulence and ultimately into heat. Thus, this portion of the total energy can have no further influence on the flow conditions. In the case of gases, the change of internal energy has an offoot on both the temperature and densty in accordance with:

$$
\Delta E_{g}=T \Delta S-\frac{p}{\Delta P}
$$

Thus, only a portion of the change in internal energy is used to increase the entropy of the system while the remainder affects the dynamic properties of the flow. Therefore, the energy conversions are not exactly equivalent. Section II of this report deals with the correlation of airwater data for flow with shook.

The equations doveloped for the normal jump and compresaion shock in the preflous section ray be readily generalised to include slows in whioh obilque shoaks and jumps oocur. The derivation and statementa rogarding the analogy are unohanged by this generalisation.

It ia convonient to again oonaider the shook wave as fixed with respeot to the ocordinate astem with the fluid morine obliquely through it. Suoh a field of flow oan bo obtained from a normal hydraulio jump by superimposing on the whole syetem a oonstant velooity $V_{t 1}$ and $V_{t 2}$ (where $\nabla_{t l}=\nabla_{t 2}$) parallel to the fump front and normal to the original direction of flow given by $\mathrm{Vnl}_{\text {a }}$ and $\nabla_{n 2}$, at chom in Fig. 2, The resultant flow fiold is piotured in Fig. Sb wherein the flow has been oriented so that ∇_{1} beocmes the initial flow direotion and V_{2} the direction of flow turnod through the angle θ after pasing through the jump. The continuity, momentum and energy Eqs. (1w), (2w), (3w) are unaffeoted by the transformation, and the notation as used for the normal jump also conforme to that used in this sootion. Considering only the mechanioal shook conditions, that 1s, oontinuity and momentum, there are two equations and two unknown ($V_{n 2}, h_{2}$) whon $V_{n j}$ and h_{1} are speoified. The inolusion of oblique shooke brings two addítional variables into the analysisi β the angle between the shook wave and the original direction of flow and O, the deflootion angle through which the $\mathfrak{F i}$ ow ta turned. oaly one additional independent equation is obtalned from the gecesetry of the veotor diagrami

$$
\begin{equation*}
\frac{\tan \beta_{1}}{\tan \left(\beta_{1}-\theta\right)}=\frac{V_{n_{1}}}{V_{n_{2}}} \tag{29}
\end{equation*}
$$

θ may be apooified and β oomputed from Eq. (29). Since it is inconvenielit to work with the volooity componenta $\nabla_{n 1}$ and $\nabla_{n 2}, \nabla_{1}$ and ∇_{2} will henceforth be used as deternined from the geometry,

$$
\begin{equation*}
V_{1}=\frac{V_{n_{1}}}{\sin \beta_{1}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2}=\frac{V_{n 9}}{\sin (\beta, \theta)} \tag{31}
\end{equation*}
$$

Eowever, in most oases, the equations reiating the variables are obtained in a more userul form if instead of the volooity ∇_{1} and ∇_{2} the Froude numbers bofore and after the jump aro used.

$$
\begin{equation*}
F_{1}=\frac{V_{1}}{\sqrt{g h_{1}}} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}=\frac{V_{2}}{\sqrt{g h_{2}}} \tag{33}
\end{equation*}
$$

JSAF-TR-5985

Fran Eq. (7),

$$
V_{n_{1}}=V_{1} \sin \beta_{1}=\sqrt{V_{2}(g h) \frac{h_{2}}{h_{1}}\left(1+\frac{h_{2}}{h_{1}}\right)}
$$

or

$$
\begin{equation*}
\sin \beta_{1}=\frac{1}{F_{1}} \sqrt{1 / 2 \frac{h_{2}}{h_{1}}\left(1+\frac{h_{2}}{h_{1}}\right)} \tag{34a}
\end{equation*}
$$

thus the fundamental relation betweon $\beta_{1}, F_{1} \& \frac{h_{2}}{h_{1}}$ is obtained. For oonvenience in later developmonts, the two alternate forms are also given hore.

$$
\begin{align*}
& F_{1}=\frac{1}{\sin \beta_{1}} \sqrt{h_{2} \frac{h_{1}}{h_{1}}\left(1+\frac{h_{2}}{h_{1}}\right)} \tag{34b}\\
& \frac{h_{8}}{h_{1}}=\frac{1}{2}\left(\sqrt{1+8 F_{1}^{2} \sin ^{2} \beta_{1}}-1\right) \tag{34c}
\end{align*}
$$

A ocmbination of the geometrio Eq. (29) and continuity ($2 \boldsymbol{w}$) results in a rolation for depth ratio aoross the shook in terms of β, and θ,

$$
\begin{equation*}
\frac{h_{2}}{h_{1}}=\frac{\tan \beta_{1}}{\tan \left(\beta_{1}-\theta\right)} \tag{35}
\end{equation*}
$$

Equations (340) and (35) oan be equated to obtain a form involving F_{1}, β_{1} and θ, thus,

$$
\begin{equation*}
\tan \theta=\frac{\tan \beta_{1}\left(\sqrt{1+8 F_{1}^{2} \sin ^{2} \beta_{1}}-3\right)}{\sqrt{\left.2 \tan ^{2} \beta_{1}-1\right)+\sqrt{1+8 F_{1}^{2} \sin ^{2} \beta_{1}}}, \frac{1}{}} \tag{36a}
\end{equation*}
$$

Which then soived for F_{1}, becomes

$$
\begin{equation*}
F_{1}=\frac{1}{\sqrt{8 \sin ^{2} \beta_{1}}} \cdot \sqrt{\left(\frac{\left.\tan \theta\left(1-2 \tan \beta^{2} \beta_{1}\right)-3 \tan \beta_{1}\right)^{2}}{\tan \theta-\tan \beta_{1}}-1\right.} \tag{36b}
\end{equation*}
$$

The Froude number F_{2} after the shock can be obtained from Eq. (7), oliminating $V_{n l}$ by the continuity Eq. (1w), and oliminating $\nabla_{n 2}$ by means of the goometric rolation (31), rosulting in

$$
\begin{equation*}
F_{2}=\frac{h_{1} / h_{2}}{\sin \left(\beta_{1}-\theta\right)} \sqrt{\frac{1}{2}\left(1+\frac{h_{2}}{h_{1}}\right)} \tag{37a}
\end{equation*}
$$

USAF-TR-5985
Part II
or in terms of F_{1} and $h_{2} \bar{h}_{1}$,

$$
\begin{equation*}
F_{2}=\sqrt{\frac{h_{1}}{h_{2}}\left[F_{1}^{2}-\frac{1}{2} \frac{h_{1}}{h_{2}}\left(\frac{h_{2}}{h_{1}}-1\right)\left(\frac{h_{2}}{h_{1}}+1\right)^{2}\right]} \tag{37b}
\end{equation*}
$$

A graphical plot of certain of these relationships becomes necessary When any analysis is to be carried out. For instance, it is very often necessary to find the shook angle β_{1} for a given initial froude number F_{1} and deflection angle θ. Insomuch as Eq. (36) oannot be solved explicitly for β a graph is desirable to avoid trial and error solutions. A convenient four quadrant plot is presented in Fig. 4 which relates all of the variables for liquid flow across an oblique jump. For a given F_{1} and $\theta ; \beta_{1}, h_{2} h_{1}$ and F_{2} are easily determined. Figure 4, therefore, represents in a cartesian plot the information for water which is usually contained in the familiar Busemann shook-polar diagram for gases. In analyses involving relatively few shocks, the cartesian plot is normally easier to use. It should be pointed out that most of the relationships developed in this section and therefore Fig. 4 can be used for flow analysis where shocks are present, which result in a decrease of the available flow energy.

6. Constant 8peoif10 Energy Flow

Superoritioal flow fields or portions thereof in which changes in flow conditions without jumps are accomplished can be treated as oses in which the "flow" energy remains constant, as long as boundary resistance may be neglected. The following additional specification is then satisfied:

$$
\frac{v^{2}}{2 g}+h=H=\text { constant }
$$

Where $月$ is called the specific energy and is referred to the bottom bourcary of the chanel. Inasmuch as the theory of oharacterietios is externsively treated in the literature, only a brief development for liquids Will be given here in order to have the necessary equations available in this notation. The theory of characteristics may be developed in a condense manner by writing the momentum equation in differential form:

$$
g h(d h)=h V_{n}\left(d V_{n}\right)
$$

or

$$
\begin{equation*}
\left(d V_{n}\right)=g \frac{(d h)}{V_{n}} \tag{39}
\end{equation*}
$$

The geometric relation for an infinitesimally small change in the flow geometry may be obtained from Fig. ib by replacing θ by $\Delta \theta$ and the

Fig. 4. Flow Parameters Across Oblique Shocks in Wal for Various:Initial Froude Numbers

USAF-TR-5985

ters Across Oblique Shocks in Water
itial Froude Numbers
vector $V_{n l}-\nabla_{n 2}$ by $\Delta \nabla_{n}$. Then by the law of seines

$$
\frac{\Delta V_{n}}{V_{1}}=\frac{\sin \Delta \theta}{\sin \left(90^{\circ}=(3+\Delta \theta)\right.}
$$

and, for infinitesimal changes in θ,

$$
\begin{equation*}
\left(d V_{n}\right)=\frac{V(d \theta)}{\cos \beta} \tag{40}
\end{equation*}
$$

Combining Eq. (30) and (40) and eliminating ∇_{n} by ∇ an β,

$$
\begin{equation*}
(d h)=\frac{V^{2}}{g} \tan B(d \theta) \tag{41}
\end{equation*}
$$

An additional relation is obtained from Eq. (34a) if h_{2} / h_{1} approaches unity

$$
\sin \beta=\frac{1}{F}=\frac{\sqrt{g h}}{V}
$$

Thus (3 here defines the characteristic or "tach" lines of infinitesimal discontinuities. Equation (41) may be integrated by replacing V from the energy Eq. (38) by $\nabla=\sqrt{2 g(E-h)}$ and $\tan \beta$ from Eq. (42a)

$$
\begin{equation*}
\tan \beta=\frac{V_{n}}{V_{1}}=\frac{\sin \beta}{\sqrt{1-\sin ^{2} \beta}}=\frac{\sqrt{g h}}{\sqrt{V^{2}-g h}}=\frac{\sqrt{h}}{\sqrt{2 H-3 h}} \tag{42b}
\end{equation*}
$$

Equation (41) becomes finally,

$$
\begin{equation*}
\frac{d h}{d \theta}=\frac{2(H-h) \sqrt{h}}{\sqrt{2 H-3 h}}=\frac{\sqrt{2 h / H}(1-h / H) H}{\sqrt{1-3 / 2 h / H}} \tag{43}
\end{equation*}
$$

which was obtained by vol Ragman in 1935. Integration of Eq. (43) gives

$$
\begin{equation*}
\theta=\sqrt{3} \tan ^{-1} \sqrt{\frac{\frac{h}{2 H / 3}}{1-\frac{h}{2 H / 3}}}-\tan ^{-1} \frac{1}{\sqrt{3}} \sqrt{\frac{\frac{h}{2 H / 3}}{1-\frac{h}{2 H / 3}}}-\theta_{1} \tag{44a}
\end{equation*}
$$

θ, is the constant of integration defined by the initial boundary condiction that for $\theta=0, h$ equals the initial depth h_{1}. Equation (44a) may also be written in an alternate form employing the froude number to express $\frac{h}{2 甘 / 3}=\frac{3}{2+P^{2}}$. Substituting in Eq. (44a) results in

$$
\begin{equation*}
\theta=\sqrt{3} \tan ^{-1} \frac{\sqrt{3}}{\sqrt{F^{2}-1}}-\tan ^{-1} \frac{1}{\sqrt{F^{2}-1}}-\theta_{1} \tag{44b}
\end{equation*}
$$

USAF-TR-5985
Part II
inesmuch as $\sin \beta=\frac{1}{F}$ a third form is also obtainablo. Nil threo
forms have been plotted in Fig. 5. Both Fig. 4 and Fig. 5 were developed for use in hydrauilo problems by 1 . T. Ippen and a complete dieoussion of their use may be found in Ref. 18.

7. Oblique Compression Shocks

Fellowine the same procedure as with the oblique hydraulio jump, the velooity $\nabla_{n l}$ is reaolved into oomponents V_{1} and $V_{t l}$ parailel to the shook front and the same geometrical relations, Eq. (28), (30) and (31) are obtained. The Mach numbers before and after the shook are deined,

Equation (15) beoomes,

$$
\begin{align*}
& M_{1}=\frac{V_{1}}{\sqrt{\gamma \frac{p}{1}}} \tag{45}\\
& M_{2}=\frac{V_{2}}{\sqrt{\gamma \frac{V_{2}}{l_{2}}}} \tag{46}
\end{align*}
$$

$$
\begin{equation*}
\frac{C_{2}}{P_{1}}=\frac{M_{1}^{2} \sin ^{2}(3(\gamma+1)}{M_{1}^{2} \sin ^{2} B(y-1)+2} \tag{47a}
\end{equation*}
$$

and the alternete form is

$$
\begin{equation*}
\sin \beta=\frac{1}{M_{1}} \sqrt{\frac{\beta_{2}}{\rho_{1}}\left(\frac{\frac{2}{\gamma-1}}{\frac{\gamma_{1}+1}{\delta-1}-\rho_{2}}\right)} \tag{47b}
\end{equation*}
$$

A combination of the geometrio Eq. (29) and continuity Eq. (1 g) gives a relation for the density ratio in terme of β and θ,

$$
\begin{equation*}
\frac{P_{R}}{P_{1}}=\frac{\tan \beta}{\tan (\beta-\theta)} \tag{48}
\end{equation*}
$$

It is noted that this equation is identical with that obtained for the depth ratio acrose an oblique jump (Eq. 35). Equations (47a) and (48) oan be equated giving two usofil relationships

$$
\begin{equation*}
\tan \theta=\frac{-\cot \beta\left(1-M_{1}^{2} \sin ^{2} \beta\right)}{\left(1-M_{1}^{2} \sin ^{2} \beta\right)+\left(\frac{\gamma+1}{2}\right) M_{1}^{2}} \tag{49}
\end{equation*}
$$

USAF-TR-5985
Part II

and

$$
\begin{equation*}
M_{1}=\sqrt{\frac{1}{\sin ^{2} \beta-\left(\frac{\gamma+1}{2}\right)\left(\frac{\sin \beta \cos \theta}{\cos (\beta-\theta)}\right)}} \tag{49b}
\end{equation*}
$$

Pressure and tomperature ratios are obtained direotiy from Eqs. (16) and (17),

$$
\begin{align*}
& \frac{T_{2}}{T_{1}}=\frac{\left(M_{1}^{2} \sin ^{2}\left(\beta-\frac{y-1}{2 Y}\right)\left(M_{1}^{2} \sin ^{2} \beta+\frac{2}{\gamma-1}\right)\right.}{\frac{(\gamma+1)^{2}}{2 \gamma(\gamma-1)} M_{1}^{2} \sin ^{2} \beta} \tag{50}\\
& \frac{P_{2}}{R_{1}}=\frac{\left(M_{1}^{2} \sin _{1}^{2} \beta-\frac{\gamma-1}{2 \gamma}\right)}{\frac{\gamma+1}{2 \gamma}} \tag{5I}
\end{align*}
$$

The Bankine-Eugoniot pressuro-density relation Eq, (19) and the tome perature relation Eq. (18) are unchanged by the traneformation and apply also to the oblique shook. The Mach number μ_{2} after the shook is obe tained from Eq. (470) with the ald of Eqs. (45) and (46) and the geometry

$$
\begin{equation*}
M_{2}=\frac{1}{\sin (\beta-\theta)} \sqrt{\frac{\frac{\beta}{\gamma-1}}{\left(\frac{\gamma+1}{\gamma-1}\right) \frac{\gamma_{2}}{\rho_{1}}-1}} \tag{52a}
\end{equation*}
$$

or in terme of y_{1},

$$
\begin{equation*}
M_{2}=\sqrt{\left(M_{1}^{2}-\frac{2(1-(P / R)}{P_{1} / R(\gamma+1)-(\gamma-1)}\right)\left(\frac{P_{1}}{P_{2}} \cdot \frac{P_{2}}{P_{1}}\right)} \tag{52b}
\end{equation*}
$$

Tables and charts of the oblique shock relations for air arc available in Befs. 17, 18, 18, 20 and 21.

8. Isentropio FIOW

Portions of a How field which accomplish ohanges without shooks a uoh as expansion flow around oorners must, of course, be handled by the method of characteristics. A cartesian plot of tho characteristics diagran for air which is analogous to fig. 5 for water is found in Ref. 18.

For convenience, the isentropic flow relationships are summarized here in terms of the density ratio. The equation of state yields,

$$
\begin{equation*}
\frac{P_{2}}{P_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\gamma} \tag{53}
\end{equation*}
$$

and from the perfect gas law,

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{\gamma-1} \tag{54}
\end{equation*}
$$

The value of the $100 a 1$ Ka oh number is obtained from the energy equation

$$
\frac{V_{1}^{2}}{2}+\frac{\gamma}{\gamma-1} \frac{P_{1}}{\rho_{1}}=\frac{V_{2}^{2}}{2}+\frac{y}{\gamma-1} \frac{P_{2}}{\rho_{2}}
$$

by use of Eq. (53)

$$
\frac{M_{1}^{2}+\frac{2}{Y-1}}{M_{2}^{2}+\frac{2}{\gamma-1}}=\left(\frac{\rho_{1}}{\rho_{1}}\right)^{\gamma-1}
$$

so that finally N_{2} may be expressed in terms of the density ratio and the initial Mach number:

$$
\begin{equation*}
M_{e}=\sqrt{\frac{M_{1}^{2}+\frac{2}{\gamma-1}}{\left(\frac{q_{1}}{\gamma-1}\right.}-\frac{2}{\gamma-1}} \tag{55}
\end{equation*}
$$

1. Introduction

The ultimate aim of the hydraulic analogy method of investigation 1: to predict fith roasoubilo accuracy the aerodynamio characteristios of a given shape or struoture by means of results obtained in a water channel. The most direot why to approach this problemi is to consider the agreement of various theoretioal quantities obtained for water with the theoretioal aerodynamic rosults thus establishing a basis for the applioation of the analogy in experimental work. In other words, certain simple shapes for which it is possiule to oalculate flow oharaoteristios both for water and for air will be compared to point out the aocuracy to be expected by the hydraulio analogy method. It is ther. the rile of the experimental program to show how elosely aotual experiments agree with either theory. The following divisions show the acouraoy of applying the direot analogy quantitatively and the improved agreement resulting from a fow simple modifioations.

2. Correlation of hater-Air Data by Diroct Anelogy

By direot analogy is meant the relationships between water and alr quantitios obtained by a oomparison of the fundamental equations as given in section I. Table I lists the relationships between analogous quantities required by the direot analogy,
table I
Sumary of Gas-Hater Flow Direct Analogy

GAS FLOM	FATER FLOW
Speed of propagation of sound	Speed of propagation of small
wave a $=\sqrt{\gamma+9 / p}$	gravity wave c $=\sqrt{\mathrm{gh}}$
Mach number, $x=\frac{V}{\sqrt{\gamma P / p}}$	Froude number, $F=\frac{V}{\sqrt{g h}}$
Density ratio, P_{1} / P_{1}	iepth ratio, $\mathrm{h}_{2} / \mathrm{h}_{1}$
Pressure ratio, $\mathrm{P}_{2} / \mathrm{F}_{1}$	(Dopth ratio $)^{2}$, ($\left.\mathrm{h} / 2 / \mathrm{h}_{1}\right)^{2}$
Temperature ratio, $\mathrm{T}_{2} / \mathrm{T}_{1}$	Depth ratio; $h_{2 / h_{1}}$

It has been pointed out previously that the water-air analogy for flows involving shooks is imperfect for two basio reasons. First, γ m. 4 for air while the analogy requires γ - $2 ; ~ s e c o n d$, the change in internal energy for gas is not equivalent to the change in internal energy for weter. As an example, the change in flow produced by a 9° deflection at initial lach numbers ranging from 1 to 9 will be inveatigated. Figure 6 shows the theoretical correlation between the aerodymaio ratios of donsity, pressure and temperature as oaloulated from aerodynamio theory and the analogous hydraulio depth ratio for $\theta=9^{\circ}$. It is seen that best agreement is obtained between the depth ratio and tho density ratio. It has been the practioe up to now to determine the desired aerodynamio quantities from hydraulic data aocording to the relationships given in table I; thus, varying degrees of agreement are obtained depending on the quantities desired.

3. First Modification of the Direot fanajogy

It is proposed that in order to improve the theoretical agreement of the analogy, a departure be made from the derived relationshipa sumarized in Table I. If in a gas flow anadyois the initiad Mach numbor and the ceometry of the shape are know, and if the pressure varia. tion along the body is obtained from experimente, the corresponding densitios, temperatures and local Hach numbers can be determined from the aerodynamio equations developed in section I. If an analocous test were performed with water, it does not se日m desirabie in view of the information Given in Fig. 6 to correlate the measured depth ratios to the corresponding adr quantities by strict adherence to the direct analogy. Instead, it is proposed to use the depth ratio only to determine the analogous density ratio and then to caloulate with this density ratio the temperature, pressure and local Mach number volues by means of the aerodynamic relations. This method seems to give cood agrement for all practionl palues of the deflection angle θ.

In summary, it may be stated that for actual gases for ald prace tical furposes, the analogy holds only as far as density and water depth are concerned. The derivation of pressures and temperatures directly from the water depths is not feasiblo.

Table II shows the results of a comparison made for two Mach numbers and a deflection angle of 9°. In this example the pressure ratio for $M_{1}=2.50$ as obtained from the direct analogy iffers from the theoretical air results by 22%, while the same quantity obtained from the first modification of the analogy differs by 2.3\%. Temperature and local Nach number show even better improvement. It should be pointed out that when crossine a shock, the pressure, temperature and Nach number ratios must be calculated from the equations taking account of the change in entropy. (e.g. Eq. (18), (19) and (52b). In crossing

USAF - TR-5985
PART II

$$
\mu_{1}=2.60
$$

$$
y_{1}=5.00
$$

note: percentages are differences between the quantities obtained from the analogy and theoretical air results.

TABLE II
THEORETICAL CORRELATION OF AIR-HATER DATA BY FIRST MODIFICATION OF THE ANALOGY.
an "expansion" wave or in other regions of isentropic flow, the equations dereloped in eeotion Im8 are used; thus, for $\gamma=2.40$,

$$
\begin{align*}
& \frac{P_{2}}{R_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{1.40} \tag{53}\\
& \frac{T_{0}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{0.40} \tag{54}
\end{align*}
$$

and

$$
\begin{equation*}
M_{2}=\sqrt{\frac{M_{1}^{2}+5}{\left(\frac{\rho_{1}}{R_{1}}\right)^{0.40}}-5} \tag{55}
\end{equation*}
$$

Therefore, it is soen that after having obtained the density ratio from the water depth ratio, all the other oharaoteristios may be oaloulatod from the aerodymamio rolations whioh apply to the region in quetion.

4. Second Modifloation of the Diroot Analogy

The progrese toward a quantitative applioation of the analogy suggested a further modifioation wioh may be used for flows involving hooks. The firat modifioation leaves the fundenental differenoe betweon the water depth ratio and the donsity ratio for oqual initial Maoh and Froude numbers unchanged, but relatea the other aerodynamio oharaoteristios to the density ratio rather than to the depth ratio. The seoond modifioation aine at botter gumerioul agrooment for the depth ration and density ratios. It thon incorporates the first modification to obtain the other quantitiea, thereby improving at the ame time their numerioal ralues.

The equations relating h_{2} / h_{1} and P_{8} / P_{1} to the geometry of the flow aross a shook are identical (see Eq. (35) and (48). Thus,

$$
P_{1}=\frac{\tan \beta}{\tan (\beta-\theta)}=\frac{h_{2}}{h_{1}}
$$

The density and depth ratios can be expeoted to be of the same magnitude only when defleotion angles and shock wave angles are identiced for water and air. The necessary adjustment in the flow geometry is aoocmplished by changing the Froude number of the water flow. As an oxamplo, consider again the 9° medgo shown in Tablo II. When tho initial Maoh number equals the initsel Froude number of 2,50 for deflection anelo
$\theta=9^{\circ}$, the shock angle for water is $\beta=32^{\circ} 30^{\prime}$, while for air $\beta=30054^{\prime}$. The Froude numer neosesary to give a 3 . $30^{\circ} 54^{\prime}$ for water $18 \mathrm{Fl}=2.65$ as compared to $M_{1}=2.60$ for air. It is ovidont that if the mater oxperiments aro conducted with $F_{1}=2.65$, and if the rosults are interpreted as correspuiding to air flow with $H_{1}=2.50$, the depth ratio will theorotically
equal ihe density ratio and thus all quantitios determined from this density ratio will be identioal with the aerodymamio analysis. In a similar manner, the $k j=5.00$ example shown in Table II would require that the hydraulio test be made with $F_{2}=5,48$, For the case of suoúsosive shooks or curved shocks, it is of course impossible to obtain geometricaliy similar flow patterns; however, the initial froude number may bo adjustod in such a way as to give the bast overali agreement of the flow geometry. It should again be pointed out that ell oomparisons as to the acouracy of the analogy made in this section are based on theoretioal analyses both for the water and air flowi. imile they are not immediately of practioal value, they do show how the analogy can eventually be improved for oases ribioh mist be analyeed experimontally.

- The question of such Froude number adjustments is further disoussed in seotion IV-7, Correlation of Experimental Results with ferodynamio Theory.

A ourve showing the adjustment to the Froude number may be plotted against density ratio for all possible oombination of θ and β. The curve is obtained by rewriting Eq. (34b) and (47b) as follows:

$$
\begin{align*}
& F_{1} \sin \beta_{1}=\sqrt{\frac{h_{2}}{h_{1}} \cdot \frac{1}{2}\left(1+\frac{h_{2}}{h_{1}}\right)} \tag{34b}\\
& M_{1} \sin \beta_{1}=\sqrt{\frac{\beta_{1}}{\rho_{1}}\left(\frac{5}{6-\rho_{2} /_{1}}\right)} \tag{47b}
\end{align*}
$$

For similar, geometry of fiow, $h_{2} / h_{1} \cdot P_{2} / \rho_{1}$. If Eq. (34b) is divided
by Eq. (47b):

$$
\begin{equation*}
\frac{F_{1}}{M_{1}}=\sqrt{\frac{\left(1+e_{2} / p_{1}\right)\left(6-P_{1} / p_{1}\right)}{10}} \tag{56}
\end{equation*}
$$

This relation is plotted in Fig. 7.
The curve exhibits several interesting features:

1. The difference hetween F_{1} and H for similar flow geometry reaches a maximum for $P_{2} / \rho_{1}=2.50$ with $\mathcal{F}_{1} / M_{1}=2.207$. This property has the fortunate efiect of making large errors in the adjustment to the Froude number impossible in cases in which complicated shocis configurations occur. Thus in practioe, all adjustments to F will fall between 1.00 and 1.107 for $P_{1} / P_{1}=h_{2} / h_{1}<4$.
2. At $C_{2} / P_{1}=4$, the fiows become geometrically similar for the same F and $M(F / M=1)$. Beyond $\rho_{i} / \rho_{1}=4$, the ratio F / M becomes

FIG 7
FLOW
OF
GEOMETRY
FROUDE
SIMILAR
RATIO OF
NUMBER FOR
RATIO OF
NUMBER FOR
FROUDE NUMBER TO MACH
TO MACH
less than unity and the ratio approaches zero as $P_{8} / \rho_{1} \rightarrow 6$. The fallure of the equation at $P_{s} / P_{1}=6$ is due to a breakdown in the air flow theory. The temperature ratios across such hieh compression shooks beoome very large, and the assumption of a perfect gas is no longer valid. Flows in this range are designated as hypersonic. The hydraulio analogy as considerod here is therefore not applicable. For ready comparison of initial Froude and Mach numbers for similar geometry
 Fig. 8. This ficure has a plot of En. (36a) rolating Fi, β and θ for water on the leit, and a plot of Eq. (49a) on the rieht relating the same variables for air. Starting on the right side with a given M_{1} and θ,
© is determined; orosing over to the left for the same θ the value of F_{1} giving the same ilow pattern is obtained. The same adjustment to the froude number 18 obtained from the ourve as from Fig. 7 if the density ratio corresponding to the given μ_{1} and θ were used in Fig. 7. In addition to use of this ourve in adjustment of initiad froude or Lach number, the ourves are convonient when analyeing water and air flows independently in oonjunotion with Fig. 4.

Two additional examples are presented to show the results of the eocond modification when appiled to flows involving ou00essive shooks and combinations of shooks and expansion waves. Figuro 8 illustrates the case of suncessive shooks. In the analysis by the first modification, $F_{1}=M_{1}$, the differences in pressure ratio compared to theoretioal aif 183.9% for the first shook and 8.3% for the second successive chock. The Froude number is then adjusted acoording to the procedure of the senond modification. In this case, it was decided to make the rirst shook angle in water equal to the corresponding angle in air; thus from Fig. 8, $F i=3.22$, and the differences in pressure ratios are res duoed to zero for the initial shock and to 3% for the second shook. The Falues of the local kach numbers $M 2$ and M_{3} are not equal to the local Froude numbers but are obtained rrom the density ratio by means of Eq, (52b). It is seen that the oharacteristics of successive shocks are improved by the initial adjustment even though similar flow patterns are not possible. Other methods of adjustment micht have been used, such as: (l) approximating the boundary by a single straight line and basing the adjustment on this fiotitious deflection angle or (2) assuming an average value for the depth ohange, and by use of Fig. 7, determining the neoessary adjustment. Both of these methods can be used when dealing with curved boundaries.

Figure 10 iliustrates the case in which combinations of shocks and expansion waves are present. In the second modification, the adjustment to the Froute number was made by obtaining sindlar flow geometry for the first shock on the bottom side of the diamond shaped airfoil. It is seen that in all regions, the correlation is improved; in most places, the erfor is halved. Thus, a shock followed by an expansion wave and two successive expension wares all benefit from the original adjustment.

noter pressure ratios obtained from
water onalysis ore colculated and $y=1.40 \quad h_{1}$

$$
\text { from eq (19d where } \frac{h_{h}}{h_{1}}=\frac{8}{?}
$$

THEORETICAL COMPARISON
OF MODIFIED ANALOGY
FOR SUCCESSIVE SHOCKS
NOILVOISIOOM
ONOS3S
Y $\exists \perp \forall M$
local Moch Numbers are (439) tbe was pespinios

The experteontal resulte pertaining to the direot and modified analogy are presented in seotion IV-7. It in not within the soope of thie researoh projeot to present experimental results on hapes suoh at the diamond airfoll. The purpose of the foregoing oonsideratione is to point out the possibilities of improving the experimental and analytioal methode as meane of obtaining better quantitative gresmont botmeon resulto obtained from a wetor ohannel and actual results in elr. These mothodi eoem espelally promising for securing preasure diatribution around rariou aerodynanio shapes.

All of the experimental investigations described herein were oonduoted in the superoritical flow channel in the Hydrodynamics Laboratory of the lassachusetts Institute of Teochnology. The design and oonstruction and the methods of operation of the ohannel constitute Phase I of the researoh projeot and are dealt with in USAF Technical Report No. 5985, Part I.

The purpose of the experimental work which comprises phase II of the research projeot is to establish experimentally the characterlotios of oblique shook waves and to oompare these to the theoretioal oharacteristios developed in seotion I of this report. Specifioally, the following quantities have been deterained, shook wave hoight, shook-wave angle, froude number before and after the shoak, all as a function of the defleotion angle of the flow. Additional experimente have also been made to inveatigate the effeote of velooity distribution and boundary layer development upon the basio wave oharaoteristios. These experimental etudies served to delineate the approximate range wit.in whioh experimental results may be expeoted to oonform to the theory, and outside of which inheront limitations imposed by basio assumptions lead to excessive deviations.

1. Experimental Sories I

This suries oomprises the basic experimental runs B to K for the determination of depth ratios aorose shooks and of the shook-wave angles. Tabio III sumarizes the experimental runs in this sories. The initial Froude numbers F_{1} range from a minimum of 2.00 to a maximum of 7.00 for initial depths of $h_{1}=0.90$ inches and $h_{1}=1.50$ inohes. The deflection angles θ were varied in incremente of 3^{0} up to a maximum whioh reached 21° in several cases.

The experimental procedure for a given run is described below. Haping chosen nominal ralues for initial froude number and initial depth, the channel settings were obtained from the channel calibration curves. (Figs. 8, 9 and 15 , Phase I report) Further slope adjustments were then made to produce uniform flow throughout the length of the test seotion. A plan piew of the test section is shown in Fig. ll which gives also the location of the variable angle deflector vane and the orientation of the trazsverse and longitudinal scales.

The first step in the experimental run is the determination of the actual initial Froude number F_{1} by means of measured velocity distributions whioh are obtained at station 15 with the deflector vane

USAF-TR-5985
Part II

Exporimental Series I
SURMARY OF EXPDRIMENTAL RUNS FOR DETERMINATION OF SHOCK CHARACTERISTICS BY VARIATION OF $F_{1} \& \theta_{1}$

RUNS B to \mathbb{I}

Initial Froude no.	Initial Depth $h_{1}=0.90^{\prime \prime}$	Initial Depth $h_{1}=1.50^{n}$
2.00	$\begin{gathered} R O N I \\ \theta=3^{\circ}, 6^{\circ}, 9^{\circ}, 12^{\circ} \end{gathered}$	
2.08		$\theta=\frac{\text { RUN D }}{} \theta=3^{\circ}, 6^{\circ}, 9^{\circ}, 12^{\circ}$
3.05		RON B $\begin{aligned} \theta= & 30,6^{0}, 9^{\circ}, 12^{\circ}, \\ & 15^{\circ}, 18^{\circ} \end{aligned}$
3.20	$\begin{gathered} \operatorname{RUN~F} \\ \theta=30,80,90,120,160, \\ 18^{\circ}, 21^{\circ} \end{gathered}$	
3.80		$\begin{gathered} \text { RUN C } \\ \theta=30,60,9^{\circ}, 120 \\ 160,18^{\circ}, 210 \\ \hline \end{gathered}$
4.18	$\begin{gathered} \text { RUN J } \\ \theta=30,60,90,120, \\ 15^{\circ}, 18^{\circ} \end{gathered}$	$\theta=\begin{array}{r} \text { RUN } \mathbb{} \\ \hline 9^{\circ}, 15^{\circ} \end{array}$
5.91	$\begin{gathered} \mathrm{RUN}=3^{\circ}, 6^{\circ}, 9^{\circ}, 12^{\circ}, \\ 15^{\circ}, 18^{\circ} \end{gathered}$	
6.30		$\begin{gathered} \text { RUN 日 } \\ \theta=3^{\circ}, 6^{\circ}, 9^{\circ}, 12^{\circ} \end{gathered}$
7.00	$\begin{gathered} \text { RUN E } \\ \theta=3^{\circ}, 6^{\circ}, 9^{\circ}, 12^{\circ} \\ 15^{\circ}, 18^{\circ} \end{gathered}$	

- All above runs used 30^{n} iead vane.

FIG II
at $\theta=0^{\circ}$. Nine sections are chosen in the transverse direction between the lead vane and the right hand wall. A standard pitot tube of the Prandtl type was employed which was attached to the point cage carriage. Before and after the Pitot tube measuremente, a transverse depth profile was taken with a dial point gage at station 15.00 in intervals of 0.2 foot. Detuiled descriptions and photographs of these instruments are found in Phese I report, section II.

The second stan is the determinution of the shock-weve depth profiles for successive settings of the defleotor vane at intervals of 30. Startine at longitudinal station 15.00 , a depth profile is taken transversely across the test section in the undisturbed region in intervals of 0.2 ft . Thereafter, transverse depth proflles across the shook mave are taken at stations $16.00,17.00,18.00,19.00$ and 20.00 . All of these depths are read at intervals of 0.05 ft . Following these measurements, a depth profile is obtained alone the deflector vane itsolf. The dischare was measured by means of the $10^{\prime \prime} \times 6^{\prime \prime}$ Venturi meter.

For the low Froude numbers, nominal $F_{1}=2$, the maximum angle is ilmited by a "ohoking" condition in whioh the reflection of the shook on the right hand wall strikes the deflector vane. When this ooours, a nomal hydraulic jump is formed whioh moves to a position just upstream of the deflector vane. For oertain oases, it was posithle to delay this jump formation somewhat by the introduction of a jet of water alone the right wall near the point at whioh the wave is refleoted. At high froude numbers, the maximum practioal angle is limited by the overturning of the wave front which introduoed considerable difficulties in defining its location. A oomplete classification of shock waves according to shape is Given in the analyeic section IV- 6 .

A series of photographs of the shock-waves obtained in runs J and F are presented in Fig. 22 and Fig. 13 respoctively. Figure $12(a)$ shows the undular type of shook at $\theta=60$ which is associated with small angles; Figure l2(b) through $12(\mathrm{~d})$ show the reguiar shock and $12(0)$ 11lustrates the overturning of the wave front or the "curl-over" obtained for $\theta=21^{\circ}$ at the initial Froude number $=4.18$. Ficure 13 shows a range of deflection angles for a lower initial froude number of 3.20 . In this case it is seen that the undular type is obtained for $\theta=9^{\circ}$ (Fig. l3(a)) while the jump becomes regular for $\theta=12^{\circ}$ and $\theta=15^{\circ}$, Fige. 13(b) and 13(c). At $\theta=20^{\circ}$ a maximum deflection angle is reached in this particular channel (Fig. 13(d)) and Fig. $13($ e) illustrates the choking condition for larger angles.

2. Experimental Sories II

This series comprises six runs which were made at the same initial Froude number specifically for the purpose of investigating piscous effects on the shock characteristics. In addition to the deflection angle, the

(b) $\theta=12$
LOOKING
DEFLECTOR VANE
FIG. IR

USAF - TR 5985
PART II
(c) $\theta=12^{\circ}$

正

FIG. 13

FIG. 13 (cont.)

USAF-TR 5985
PART II
(c) $\theta=15^{\circ}$
variables in this series were: the initial depth h_{1} and the length of the lead vano. Two sets of runs were made, each with three different initial depths. In the first set, a lead vane of $30^{\prime \prime}$ length prooaded the deflector rane, and in the seoond set the lead vane was anitted. It was found unnecessary to add runs with intermediate lengths of lead vane. The runs are summarized in Table IV.

A great deal of oare was necessary to obtain the same proude number at various initial depths. Several proliminary velocity distributions were necessary in order to calculate F_{1} and make the adjustments to reach the presoribed vilue of $F_{1}=4.18$. Experimentally, the prooedure is otherwise exactly the same as for Series I.

3. Exporimental Sorioa III

This series of experiments is designed to show the offect of initial flow oondftions on the depth profile along the deflector vane. The results of these oxporiments are intended to be ohiofly ueofud in determining the aize of modela necessary to produce good experimental results. The pariabies investigated were length of lead rane, initial Froude number, initial depth and defleotion angle. The experimental rune in this serios are summarized in table V.

The experimental procedure oonsists of setting up the required slow conditions determined by F_{1} and $h_{1} ;$ the depth profile along the deflector vane was then measured with the point gage for lead vanes of length $30^{\prime \prime}$, $6^{\prime \prime}$ and zero for various derleotion angles. The aotual depthe were measurad at a distance of $3 / 16^{n}$ away fram the wall to avoid the olight effeot of the menisous. The depth profiles for the 30" lead vane were obtained fram the runs of Series I. Therearter, the same flow oonditions were duplicated for the two sets of runs with $6^{\prime \prime}$ and zero lead pane.

4. Experimental Series IV

Two experimental runs were made to obtain data for the direot deteraination of the Froude number F_{2} behind the shook-wave. Camplete velocity distributions in back of the shock-wave were necessary for this purpose. These runs are designated $1 B-V_{2}$ and $l F-V_{2}$. The Pitot tube was placed with its nose parallel to the deflector vane set at $\theta=90$ in both cases. At station 20.68 eight locstions were chosen in a direction perpendicular to the defiector vane extending completely across the shock and into the undisturbed flow. At each location, a vertical velocity distribution was measured, and the corresponding depth profile was also determined across this same section.

Experimental Sories II

SUMARY OF EXPERDENTAL RUNS FOR DETERMINATION OF SHOCE CHARACTERISTICS BY VARIATION OP h_{1} AND LENGTH OF LBAD VARB.

$P_{1}=4.18$ Constant for A11 Runs

Runs J to 0

30' 1 ead vane			No lead vane		
$h_{1}=1.50 \mathrm{~m}$	$\mathrm{h}_{1}=.90^{\prime \prime}$	$\mathrm{h}_{1}=.60^{\prime \prime}$	$m_{1}=1.50^{\prime \prime}$	$\mathrm{h}_{1}=.90^{\prime \prime}$	m ${ }^{\text {a }}$. $60^{\prime \prime}$
$\begin{gathered} \text { RUI I } \\ \theta=90,15^{\circ} \end{gathered}$	$\begin{gathered} \text { RUN J } \\ \theta=5^{\circ}, 60,0^{\circ} \\ 12^{\circ}, 16,18^{\circ} \end{gathered}$	$\begin{gathered} \text { ROR L } \\ \theta=9^{\circ}, 15^{\circ} \end{gathered}$	$\begin{aligned} & \text { RUN I } \\ & \theta=9^{\circ}, 15^{\circ} \end{aligned}$	$\begin{gathered} R O N M \\ \theta=9^{\circ}, 15^{\circ} \end{gathered}$	$\begin{gathered} R O R O \\ \theta=9^{\circ}, 15^{\circ} \end{gathered}$

IABLE ∇
Experimental Series III

SJMARY OF EOPERINBNTAL RUNS FOR DETERYINATION OF DEPTR PROPILE ALONG DBFLECTOR VATS.

Rune B to J, $1 B$ to 1 J and $2 B$ to 2 J

Initial Proude Hon	30' lead vane		$6^{\prime \prime}$ lead rane		Ho lead vane	
	hl - .90'	$M_{1}=1.60{ }^{\prime \prime}$	$\mathrm{h}_{1}=.90^{\prime \prime}$	$h_{2}=1.60{ }^{\prime \prime}$	$\mathrm{h}_{1}=.90^{\prime \prime}$	$\mathrm{h}_{1}=1.60 \mathrm{~m}$
2.00	I		11		21	
2.08		D		10		2 D
3,05		B		1 B		2 B
3,20	F		$1 F$		$2 P$	
3.80		C		1 C		2 C
4.18	J		15		$2 J$	
5.91	0		1 G		2 G	
6.30		H		1H		2 H
7.00	B		15		25	

USAF-TR-5985
Part II

1. Mothod of Determining the Shook-ïave Charaoteristios from Experiments

In this seotion, the method is described by whioh experimental Frlues are determined for -
a. Initial Froude number - F_{1}
b. Dopth ratio across shook - h_{2} / h_{1}
o. Shook wave angie - (3
d. Froude number behind shook - F_{2}

a. Determination of Initial Froude Number

The reaults of the velooity distribution measurements desoribed in sootion III are plotted in Fig. 14 for Run B and in Fig. 15 for Run G. The average velooity for each vertioal profile is determined by planimetering the aroa under the velocity ourvo. The average velooities are then plotted to obtain the transverse distribution ourve. Since the shook wave is surteyed in the center portion of the channel, the froude number must be determined from the relocity distribution measured in that part of the ohannel. Effeotively, this meane that the boundary layers alone the sides of the ohannel are exoluded in determining the effective Froude number. This overall average of the velooities as determined in run B, for example Fig. (14), is designated as V_{1}. The corresponding depths are then averaged for this same section into a mean value of h_{1}. The initial Froude number F_{1} for the run is then oomputed from $F_{1}=\frac{V_{1}}{\sqrt{\text { fh }}}$. This value is rooorded in column 2 on the sugmary sheate of Table VI.
b. Determination of Depth Ratio Across Shook

For a given run, a plot is made in which a plan fiew of the channei bottom is represented to the same longitudinal and transperse scales. The wavo profiles are then plotted at their respective longitudinal stations; the actual depths being plotted to a vertical soale independent of the longitudinal scale. The resulting plot gives a "perspective" piew of the shock front while retaining all digensions in true soale, the only restriction being that angles bo measured in the plane of the cinannel floor. These plots have been made for the experimental series a through 0 comprising a total of 59 runs. The plots for each serios A through J for

OSAF-TR-5985
Part II

$\theta=9^{\circ}$ only are reproduced in this report as Figs. $16(a)$ through $16(\mathrm{j})$. The depth h1, being the depth of the undisturbed portion of the flow, is readily datermined since the wave proflle levels off in front of the shock. The depth h_{2}, i.e, the depth following the shock, is determined by a consideration of the type of shook produced hy the flow oonditions. Finile the ciassification of the shooks is treated in section IV-6: it may suffice to say here that in general the basio form of the shock wave may be either undular or regular. In the oase of the undular form, the equilibrium depth is well defined. The small undulations behind the initial front gradually disapper leaving a region of oonstant dopth as the derleotor vane is opproached. Furthermore, it is known (Ref. 22) and oonfirmed by the above experiments that the line of the equilibrium depth passes through the points of infleotion of the undulations following the initial front. In the case of the regular shooks, the depth ha is less easily defined due to the increasingly intense surface disturbances near the shook front. The depths h_{1} and h_{2} aro represented on the plote, Fig. 16(a-j), by horizontal dashed lines. It should be pointed out that the depth ratios are determined from those profiles where the shook front lies a considerable distance away from the deflector vane and where, therefore, the profile is no longer affected by the initial distortion of the shook wave. This distortion is due to the vertical acoelerations set up by the sudden ohange in direction required of the flow approaching the front portion of the deflector vane. For each run, the region of distortion may be observed from a consideration of the depth profile along the defleotor vane whioh is also included in figs.16(a-j). The final value of h_{2} / h_{1} for each run is the avarage of the individual ratios for several transparse depth proflles. This value is again reoorded on the sumnary sheets, Table VII, column 7.

0. Deternination of Shock hiave Angle

The shook wave ancle, β, is obtained by use of the horizontal ines denoting average value of h_{1} and h_{2}. Let Fig. 17 represent a typioal wave profile. The effective location of the wave front has been consistently assumed herein as being determined by a vertioal line dram so that area abo =a'b'o. The intersection of this line with the channel floor is marked as point (q). Point (q) is determined for each profile lying outside of the region of initial distortion, and a straight line $t s$ dram in plan through the points to determine the shock front.. hhile this method seams off hand somewhat arbitrary, it is a logically consistent system based on prefious experimental experience in this laboratory (Ref. 8). This method has the advantage of not placing undue weight upon any one measured point on the wave front; in addition, the position of the vertical line can be rapidly determined by breaking up the areas into emall triangles and parallelograms. The consistency of the method is shown by the fact that in most cases a straight line passes through the poinis determined in the above manner. The vaiue of β exp. this obtained is recorded on the summary

Part II

sheets, Table VI, in column 4.

Seotion through Shook Ware Showing
Kethod of Determining Shook Front
F18. 27

d. Determination of Froude Number behind shock

The Froude number in back of the ohock is oaloulated from the initial froude number and the experimental depth ratic by meane of Eq. (570).

$$
\begin{equation*}
F_{2}=\sqrt{\frac{h_{1}}{h_{2}}\left[F_{1}^{2}-\frac{1}{2} \frac{h_{1}}{h_{2}}\left(\frac{h_{2}}{h_{1}}-1\right)\left(\frac{h_{2}}{h_{1}}+1\right)^{2}\right]} \tag{37-b}
\end{equation*}
$$

Thls value of P_{2} (since it is dete: ined from experimental ralues of F_{1}, h_{1} and h_{2})is recorded in the summary sheots, Table VII, column 10, as F_{2} exp. In order to cheok the acouracy of this indiroct method, the epeoial experimental runs designated as Series IV were made. The data for both runs were plotted as illustrated in Fig. 18 for run $1 F$ - V2. The vertioal velooity distributions corresponding to the looetions in the seotion of the shock-wave perpendioular to the defleotor vane are glotted in the top half of the figure. The cross eection in the lower half shows the actual velocity contours for this transverse seotion. The values of $\bar{\nabla}_{2}$ obtained from each vertical section A through O were averaged to obtain the value of V_{2} used to calculate F2. The equillbrium depth hi is shown by the horizontal danhed ine. Table VI gives a comparison of the values of F_{2} obteined by this method with values obtained by uee of F_{2} and of experimental values of h_{2} / h_{1}.

USAT-TR-5985
Eert II

TABLE VI
COMPARISON OF METHODS FOR DETERMNATION OF F2

	RUN IF-V2		RUN 1B-V2	
Mothod of Analyaie	F_{1}	Caloulation of F_{2}	F_{1}	Caloulution of F ?
Velooity Diat. Enbli...? Shook	3.20	$\begin{gathered} \nabla_{2}=4.69 \mathrm{sp}_{8}, h_{2}=1.35^{n} \\ F_{2}=2.47 \end{gathered}$	3.05	$\begin{gathered} V_{2}=5.95 f f_{s}, h_{2}=2.34^{n} \\ F_{2}=2.37 \end{gathered}$
Eq. (370) using F_{1} and h_{2} / h_{1} ($0 x p$)	3.20	$\begin{aligned} & h_{2} h_{1}(0 \times p)=1.50 \\ & F_{2}=2.47 \end{aligned}$	3.05	$\begin{aligned} & h_{2} / h_{1}(\text { oxp })=1.51 \\ & F_{2}=2.34 \end{aligned}$

Table VI indioatea that reliable value for F_{2} may be obtained using Ef. (37) as was done oonsistently in this report.
2. Corrolation of Oblique Jump Charantoristios with Bydraulio Theory

This eoction presente the prinoipal experimental and theorotioal correlations of this investigation. The oxperimoctally detorminod shock wave oharauteristios of each experimental Series B through O are given in Tables VII (a-g) together with the corresponding theoretical oharacteristios and the percentage differenoes between experiment and theory. The method of obtaining the experimental oharaoteristios was described in the proceding section 1 , A brief description of the calculated quantities follows. Column 3 lists a Froude number based on the deflection angle and the oxperimental shock-wave angle (Eq. 36b); it is not a theoretical quantity and is presented for comparative purposes only. In all calculations, the initial Froude number, (obtained from Pitot tube traverses) which is constant for given run, is used, and the computation of this value is shown at the bottom in the correlation Tables VII. Column 5 records the theoretical wave angio β as determined from Eq. (36). (See Fig. 8 left-hand side) Column 6 gives the percent difference between calculated and experimental values. The theoretical depth ratio is given in column 8 as obtained from Eq. (35) using the theoretical shook-wave angle and θ. Column 9 again gives the percentage difference for exporimental and calculated values for the depth ratio. The values of F_{2}

Run	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(21)	(22)
	Nagl	$\begin{gathered} \text { Proude } \\ \text { Ho. } \end{gathered}$	Froude No.	Wavo Angle	Have Angla	meve Angle	Dopth Ratio	Dopth Batio	$\begin{aligned} & \text { Dopth } \\ & \text { Ret:io } \end{aligned}$	Proude No.	Froude \#о.	$\begin{gathered} \text { Proude } \\ \text { Io. } \end{gathered}$
	θ	P_{1}	$P 1$	31	31	3	h_{2} / h_{1}			P_{2}	P_{2}	P_{2}
		*Bxp.		Bxp.	Calo	$\begin{gathered} \text { sifr. } \\ \text { Calc. } \\ \text { re Bxp. } \end{gathered}$	Exp.	Calo.	$\begin{gathered} \text { D.II. } \\ \text { Cal.o. } \\ \text { ve. Exp. } \end{gathered}$	Exp.	$C \mathrm{Cal} 0$.	$\left\{\begin{array}{l} \text { Dife. } \\ \text { Calc. } \\ \text { Exp. } \end{array}\right.$
$\mathrm{C}-1$	3^{0}	3.80	3.91	17.40 ${ }^{\circ}$	$27.80{ }^{\circ}$	-2.28	1.2	1.22	-1. 6%	3.42	3.38	$+1.2$
C-2	6^{0}	3.80	3.93	19.85°	20.40°	-2.7%	1.43	1.45	-1.4%	3.08	3.24	-4.98
$C-3$	9^{0}	3.80	3.86	23.10^{0}	23.30°	-0.97	1.66	1.69	-1.8%	2.80	2. 78	$+0.78$
C-4	12°	3.80	3.79	26.45°	$26.35{ }^{\circ}$	$+0.48$	1.89	1.94	-2.6	2.67	2.52	$+1.98$
C-6	15°	3.80	3.78	29.55 ${ }^{\circ}$	29.50°	$+0.18$	2.15	2.19	-2.8 8	2.36	2.31	$+2.26$
C-6	18°	3.80	3.82	32.85°	32.70^{0}	-0.1\%	2.38	2.45	-2.9\%	2.16	2.12	41.98
C-7	21°	3.80	3.81	36.0°	36.10°	-0.1%	2.66	2.70	-1.5	1.96	1.94	$+1.03$
- Calculation of Initial Proude Number based on average Pitot tube velooity in test sootion, oliminating side-wall offoot.$F_{1}=\frac{\nabla}{\sqrt{\mathrm{gh} 1}}=\frac{7.76}{5.67 \times 0.36}=3.80$						Stn.	$\left(\text { Apo. }^{\mathrm{V}}\right)^{\mathrm{V}}$	Depth $\left(\ln _{\bullet}\right)$				
						$\begin{aligned} & 0.416 \\ & 0.834 \\ & 1.263 \\ & 1.713 \end{aligned}$	$\begin{aligned} & 7.80 \\ & 7.70 \\ & 7.61 \\ & 7.87 \end{aligned}$	$\begin{aligned} & 1.56 \\ & 1.58 \\ & 1.57 \\ & 1.56 \end{aligned}$				
						$\begin{aligned} & 2.713 \\ & 2.633 \\ & 3.093 \\ & 3.507 \end{aligned}$	$\begin{aligned} & 7.90 \\ & 7.85 \\ & 7.61 \\ & 7.68 \end{aligned}$	$\begin{aligned} & 1.57 \\ & 1.56 \\ & 1.54 \\ & 1.52 \\ & \hline \end{aligned}$		EXPERIMENTAL SERIES C WITH 30" LEAD VANE FROUDE NUMBER $F_{1}=3.80$ HOMINAL DEPTH $h_{1}=1.50^{n}$		
					Averaco Valuo-		7. 75	1.56				

HYDRAILIC CORFELATIONS SURMARIZED

			coicle	\%		\%					(1)	
		${ }_{1}$	r_{1}	β_{1}	β_{1}	B,	${ }^{2}$	${ }^{2}$	${ }^{2}$	${ }^{2}$	${ }_{2}$	
		*ar.	come	sp.	are.	cosity	4 s .	mo.		ar.	ate.	
		${ }^{\text {r., }}$	${ }^{1.26}$	${ }^{1.000}$	10,65	2.4	.	L.	2.1			
		7.,	7.0	${ }^{12,0^{\circ}}$	13.40	-3.x	1.87	${ }^{1.85}$	$2 . x$	¢.e	5.c	
	\bigcirc	7.0	7.0	18.700	18,20	-3.18	2.20	2.00	-1.x		.	
		${ }^{\text {r, }}$,	1.,6	$18.5{ }^{\text {s, }}$	39.10	S.x	${ }_{2,67}$	2,80	\cdots	-10	. 0	2.208
		${ }^{7} .00$	0.16	20.00°	22.100	-.18	3, 3	3,28	1.0\%	-	. 62	
		$\stackrel{2}{2}$	-. 0	23.55	25.20	-.9\%	-.	3.12	7.08	S. 16	\%20	

[^0] TABLB VII-d

	Run	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
-		$\begin{array}{\|} \text { Wall } \\ \text { Angle } \end{array}$	$\begin{aligned} & \text { Froude } \\ & \text { Mo. } \end{aligned}$	$\begin{gathered} \text { Proude } \\ \text { Ho, } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Wavo } \\ \text { Anplo } \end{array}$	$\begin{array}{\|c} \hline \text { Havo } \\ \text { Angle } \end{array}$	$\begin{array}{\|c\|} \hline \text { mave } \\ \text { Angle } \\ \hline \end{array}$	$\begin{aligned} & \text { Dopth } \\ & \text { Ratio } \end{aligned}$	Dopth	$\begin{aligned} & \text { Dopth } \\ & \text { Ratio } \\ & \hline \end{aligned}$	Froude Ho.	Proude No.	Proude Ho.
$\stackrel{\leftrightarrow}{\square}$		θ	F_{1}	${ }^{1}$	β_{1}	β_{1}	β,	$\mathrm{h}_{2 / h_{1}}$	${ }^{h_{2} / h_{1}}$	${ }^{h_{2 / h}}$	P_{2}	P_{2}	F_{2}
			*Exp.	based on θ and (3 oxp.	Exp.	calc.	$\begin{array}{\|c\|} \hline \text { P Drer. } \\ \text { Calc. } \\ \text { va. Bxp. } \end{array}$	Exp.	calc.	$\begin{gathered} \text { R Dirf. } \\ \text { Calo. } \\ \text { vs. Bxp. } \end{gathered}$	Exp.	Calc.	$\begin{aligned} & \text { 8 Diff. } \\ & \text { Calo. } \\ & \text { vs. Exp. } \end{aligned}$
	F-1	3°	3.20	3.06	2176°	20.80°	+4.68	1.18	1.18	0	2.89	2.9	-0.3\%
	P-2	6°	3.20	3.23	$23.45{ }^{\circ}$	23.60°	-0.6x	1.37	1.38	-0.78	2.63	2.62	+0.4\%
	F-3	9°	3.20	3.26	26.20°	26.600	-1.18	1.56	1.58	-1.3\%	2.41	2.4	+0.4x
\%	F-4	12°	3.20	3.30	28.95°	29.60°	-2.2x	1.78	1.79	-0.5\%	2.19	2.18	+0.46\%
	F-5	15°	3.20	3.28	32.35°	32.85°	-1.5\%	2.00	2.00	0	2.00	2.00	0
	F-6	18°	3.20	3.29	35.55°	$36.25{ }^{\circ}$	-1.9\%	2.24	2.22	+0.9x	1.81	1.82	-0.55\%
	F-7	21°	3.20	3.32	39.00°	$39.87{ }^{\circ}$	-2.27	2.45	2.44	+0.48	1.66	1.72	-3.58
	- Calculation of Initial proudo Numbor basod on avorago Pltot tube velocity in test eootion, oliminating side-wall offoct.$F_{1}=\frac{\nabla}{\sqrt{5 h_{1}}}=\frac{4.93}{5.67 \times 0.272}=3.20$						Sta. 0.833 1.233 1.733 2.183 2.683 3.083 3.483 - Valvo-		Dopth (in.) 0.93 0.90 0.89 0.88 0.88 0.89 0.88 0.89				IBS F ns $\begin{aligned} & =3.20 \\ & =0.90^{\prime \prime} \\ & \hline \end{aligned}$

HYDRAULIC CORBRLATIOES SUTMARIZED
tables VII-f

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	$\begin{aligned} & \text { Wall } \\ & \text { Anglo } \end{aligned}$	$\begin{gathered} \text { Froudo } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Froude } \\ \text { No. } \end{gathered}$	$\begin{array}{r} \text { Wavo } \\ \text { Anglo } \end{array}$	$\begin{array}{r} \text { Wave } \\ \text { Anglo } \end{array}$	$\begin{aligned} & \text { Wave } \\ & \text { Angle } \end{aligned}$	Dopth Ratio	Dopth Ratio	Dopth Ratio	Proudo Ho.	$\begin{gathered} \hline \text { Froude } \\ \text { No. } \\ \hline \end{gathered}$	Froude No.
	θ	F_{1}	F_{1}	β_{1}	β,	β	$\mathrm{h}_{2 / h_{1}}$	$\mathrm{h}_{2} / \mathrm{h}_{1}$	${ }^{h_{2} / h_{1}}$	F_{2}	F_{2}	${ }_{2}$
		*Exp.	based on θ and β oxp.	Exp.	Calc.	\% Diff. Calc. va. Exp	Exp.	Calc.	$\begin{aligned} & \text { f Diff. } \\ & \text { Callo. } \\ & \text { va. kxp. } \end{aligned}$	Exp.	Calc.	$\begin{gathered} x \text { Diff. } \\ \text { Calc. } \\ \text { Cs. Exp. } \end{gathered}$
J-1	3°	4.18	4.60	15.05°	16.30°	-7.7\%	1.24	1.24	0	3.70	3.7	-0.3\%
J-2	6°	4.18	4.30	18.50°	18.90°	-2.18	1.48	1.49	-0.7\%	3.33	3.35	-0.6\%
J-3	90	4.18	4.30	$21.45{ }^{\circ}$	21.80°	-1.6\%	1.76	1.76	0	3.00	3.01	-0, $\mathrm{E} \times$
J-4	12°	4.18	4.35	$24.25{ }^{\circ}$	24.80°	-2.2x	2.06	2.03	+1.6\%	2.70	2.74	-1.5\%
J-5	15°	4.18	4.25	27.60°	27.85°	-0.9\%	2.36	2.32	+1.7\%	2.46	2.55	-3.5\%
J-6	18°	4.18	4.25	$30.85{ }^{\circ}$	31.10°	-0.8\%	2.62	2.59	+1.2\%	2.26	2.28	-0.9\%
- -3	$9{ }^{\circ}$	4.18	4.30	21.45°	21.80°	-1.6\%	1.73	1.76	-1.7\%	3.03	3.01	0.78
M-5	15°	4.18	4.23	27.65°	27.85°	-0.7\%	2.29	2.32	-0.9\%	2.51	2.51	0
			of Initia in test side-wall $\frac{6.56}{5.67 \times 0.2}$	Froude Pitot soction, ffoct. - 4.18		Sta. 0.788 1.288 1.788 2.188 2.688 3.188 Valuo-	$\begin{array}{\|l\|} \hline \text { Avo. } V_{1} \\ \left(\text { fpos. }{ }^{\prime}\right. \\ \hline 6.57 \\ 6.53 \\ 6.54 \\ 6.59 \\ 6.56 \\ 6.59 \\ \hline 6.56 \\ \hline \end{array}$	Dopth (in.) 0.91 0.93 0.93 0.93 0.92 0.90 0.92		Series Series IMENTAI VANE - NUMBER IL DEPTI	$\begin{aligned} & \mathrm{J}-3 \mathbf{3 0}^{\prime} \\ & \mathbf{L}-\quad \text { но } \end{aligned}$	lead yane lead vane and M

PAELS 7II-J

Rum	(1)	(2)	(3)	(4)	(8)	(6)	(7)	(8)	(0)	(29)	(11)	(18)
	$\begin{array}{r} \text { Mald } \\ \text { conglo } \end{array}$	$\begin{gathered} \text { Prouse } \\ \text { Mo. } \end{gathered}$	Proude No.	$\begin{aligned} & \text { Wert } \\ & \text { Angdo } \end{aligned}$	$\begin{gathered} \text { Ware } \\ \text { Angio } \end{gathered}$	$\begin{array}{\|c} \hline \text { Wivo } \\ \text { Angelo } \\ \hline \end{array}$	Depth Ratio	$\begin{aligned} & \text { Dupth } \\ & \text { Ratio } \end{aligned}$	$\begin{aligned} & \text { Dopth } \\ & \text { Rat } 10 \end{aligned}$	Proude Mo.	Prouce Mo.	Proude Ho,
	θ	P_{1}	7_{1}	3	3,	3	$\mathrm{n}_{2} \mathrm{~h}_{1}$	$\mathrm{h}_{2 / h_{1}}$	${ }^{4} / \mathrm{A}_{2}$	${ }^{8}$	P_{2}	F_{2}
		- Sxp.	$\begin{aligned} & \text { bened on } \\ & \theta \text { and } \\ & \beta \text { Bexi. } \end{aligned}$	Exp.	Calo.	$\begin{gathered} x \text { Dirf. } \\ \text { cale, } \\ \text { ve. ixp. } \end{gathered}$	Exp.	Glo.		Exp.	calo.	$\begin{gathered} \text { x Diff. } \\ \text { कulo. } \\ \text { v. Exp. } \end{gathered}$
L-3	80	4.20	4.74	20.10°	$21.70{ }^{\circ}$	-2.88	1.78	1.77	-1.28	3.05	S.0s	0
L-8	18°	4.20	4.73	28.10°	27.80°	-6.18	2.33	2. 32	+0.48	2.48	2.82	-0.8\%
O-S	9°	4.20	4.73	20.18°	21.70°	-7.18	1.74	2.77	-1.78	3.04	3.03	-0.3\%
0.5	18°	4.20	4.74	86.08°	27.80°	-8.38	2.30	2.32	-0.8x	2.52	2, 81	-0.48
	- Guiculation or Ini:iad Proude Muber bused on averago fitot tube relocity in test section, elimiantiog sde-wal: eriect.$F_{2}=\frac{\bar{T}}{\sqrt{8 \lambda_{2}}}=\frac{5.34}{5.6750 .224}=4.20$					Ste. 1.14 2.85 2.56 3.28 $7.140-1$		Depth $\left(1 n_{0}\right)$ 0.80 0.61 0.80 0.58 0.80	Hote: Series L - 30' LRAD VAR Series $0-$ MO LRAD fart			

from Eq. (37b) using the theoretical depth ratio (Column 8) is found in colum 11 with the percentage difference in column 12. The correlations are also given in graphical form. Figure 19 shows the agreement between shock wave angle and deflection angle for the experimental froude numbers. To avold crowding the ourves are separated according to their nominal initial depth of $90^{\prime \prime}$ and $1.50^{\prime \prime}$. The correlation does not soom to be ereatly affeoted by the value of the initial depth; however, this factor is disoussed in greater detail in the following section IV-3. The average egremment botwoun theory and experiment for the ook-wave angle is of the order of magnitude of two percent whioh is within the exporimental acouraoy of the teste. The largest errors appoar in the minimum ard maximum defleotion angles. In the small defleotion angles, the orrors are partiy caused by the diffioulty of determinine the shook front acourately due to the very small depth ohanges involved. In the maximum defleotion angles, an extremely turbulent shock front makes measurements in this region diffioult. Small random scattering is probably due to errors in duplioation of initial froude numbers durine the course of several days necessary to make a complete run. Figure 20 shows the agreament between the depth ratio h_{2} / h_{1} across the shook for the same values of doflection angle and initial exporimental froude numbers. The average agrement is of the order of magnitude of $1 \frac{1}{\mathrm{a}} \%$ and shows lareer differences, in goneral, only for high initial froude numbers and large deflcotion angles. These differenoes may be attributed to oomparatively largo vertioal acoolerations present in this region. Again, no approciable effect of initial denth cun be notioed from the two sets of ourves.

Figure 21 shows the agreement between the Froude number k_{2}, behind the shook for the varlous deflection anglen and initial Froude numbers. The oorrelation is approximately the same as that obtained for the depth ratio.
3. Brfeot of Initial Depth and Velooity Diatribution on the Shook Charaoteristios

One of the assumptions inherent in the shock enalysis presented in section i is that the volooity, V is uniform throughout any vertical section of the flow. Inasmuch as the vertical velocity distribution is not uniform, the effect of this necessary deviation fram the basic assumptions must be investigated. The momentum equation is written for the normal junp illustrated in Fig. 22. The unbalance in hydrostatic pressure forces is equated to the rate of change of momentum through the jump, thus $P_{2}-P_{1}=\rho\left[\int_{0}^{n_{1}} U_{y_{1}}^{2} d y-\int_{0}^{h_{2}} U_{y_{2}}^{2} d y\right]$

Volocity Diatribution in Normal Jump
Fig. 22

CORRELATION-
MENTAL AND THEORETICAL
OBLIQUE SHOCK IN WATER
FIG. 20

- HYDRAULIC
DF EXPERI ACROSS AN
COMPARISON
DEPTH RATIO B

By definition, η is the ratio of the mean of the squares of $U y$ to the square of the mean Ul which is designated as \quad. Thus,

$$
\begin{equation*}
\eta=\frac{\int_{0}^{n} U_{y}^{2} d y}{U^{2} h} \tag{58}
\end{equation*}
$$

this ratio η is a pure number and is known as the momentum correction factor. Rewriting $E q$. (67) in terms of η and \mathbb{D}, and expressing the pressure forces in terms of the depth, there is obtained,

$$
\begin{equation*}
g \frac{\left(h_{2}^{2}-h_{1}^{2}\right)}{2}=\left[\eta_{1} \bar{U}_{1}^{2} h_{1}-\eta_{2} \bar{U}_{2}^{2} h_{2}\right] \tag{59}
\end{equation*}
$$

By use of the continuity equation,

$$
n_{1} \bar{U}_{1}=n_{2} \bar{U}_{2}
$$

$\overline{\mathrm{O}}_{2}$ is eliminated and Eq. (69) can be solved for $\bar{\sigma}_{1}$ which can be written as $V_{n i}{ }^{t o}$ conform to the previous notation; therefore,

$$
V_{n_{1}}=V_{1} \sin \beta=\sqrt{g h_{1}} \sqrt{\frac{h_{2}}{h_{1}} \cdot \frac{1}{2}\left[\left(\frac{h_{8}}{h_{1}}\right)^{2}-1\right]\left(\frac{1}{\frac{n_{2}}{h_{1}} \eta_{1}-\eta_{2}}\right)}
$$

or,

$$
\begin{equation*}
\sin \beta=\frac{1}{F_{1}} \sqrt{\frac{h_{2}}{h_{1}} \cdot \frac{1}{2}\left[\left(\frac{h_{2}}{h_{1}}\right)^{2}-1\right]\left(\frac{1}{\frac{h_{2}}{h_{1}} \eta_{1}-\eta_{2}}\right)} \tag{60}
\end{equation*}
$$

Equation (60) becomes identical with Eq. (34a) when $\eta_{1}=\eta_{2}=1$ which is the value of η for uniform velocity distribution. In order to oraluate η, it is convenient to have an analytionl expression for the velocity distribution curve.

It was observed that the turbulent boundary layer thickness was equal to the depth of flow within four to $81 x$ foot after the stream emerged from the nozzle. Accordingly, an attempt was made to fit boundary layer velocity distributions to the experimentally obtained curves. It was found that the ron Ramen logarithmic distribution law agreed with the observed point $\begin{gathered}\text { very closely. The Barman equation is applied to open }\end{gathered}$ channels following the method discussed in Ref. 24. A typical velocity distribution curve is compared with the Kerman equation in Fig. 23. It is seen that the seventh-root law does not agree as well. In addition, several dimensionless plots of velocity curves both in front of and in

COMPARISON OF EXPERIMENTAL VELOCITY
DISTRIBUTION WITH BOUNDARY LAYER EQUATIONS
FIG. 23

$$
\begin{aligned}
& i \\
& i
\end{aligned}
$$

back of the shook were superimposed and found to have very similar shapes. A typioal plot of this type is illuetrated in Fig. 24. Therefore, for the purposes of this discuseion η_{1} may be assumed equal to η_{2}. The integration indicated in Eq. (E8) may be performed using the Rarman relation,

$$
\begin{equation*}
U_{y}=\bar{U}+2.50 \sqrt{g h S}(1+\ln y / h) \tag{61}
\end{equation*}
$$

where $\overline{0}$ is the everage volooity for the vertiol seotion, h is the depth and 8 the slope for uniform flow. y is measured from the bottom boundary. The result is:

$$
\begin{equation*}
\eta=1+\frac{(g h S)}{J^{2}}=1+\frac{6.25 S}{F^{2}} \tag{62}
\end{equation*}
$$

Under the asoumption that $\eta_{1}=\eta_{\mathbf{2}}$ Eq. (80) may be written,

$$
\begin{equation*}
\sin \beta=\frac{1}{\left(F_{1}\right)(\sqrt{-r})} \sqrt{\frac{1}{2} \cdot \frac{h_{2}}{h_{1}}\left(1+\frac{h_{2}}{h_{1}}\right)} \tag{63}
\end{equation*}
$$

Whioh ia again indentioal with Eq. (34a) With the exception of the faotor $\sqrt{\eta}$. The produat ($F, \sqrt{\eta}$) is actually the real value of the offootive froude number taking the velooity dis+ribution into acoount. The numberical values of η rauge from a maximum of 1.015 at $F_{1}=2.00$ to a minimum of 1.007 at $F_{1}=6.3080$ that $\sqrt{\eta}$ has a maximum ralue of 3/4 of 1\%. The forogoing dovelopment is substantiated by the fact that the inorease in froude number obtained by the product $F_{1} \sqrt{\eta}$ is in the direotion whioh brings the experimental and caloulated ralues into eloser agreoment. It is conoluded that in fiew of the amall magnitude of the oorreotion, the effeot of velooity distribution may be considered negilsiblo.

Some exporimental observations on the effect of initial depth follow. Figure 25 illustrates the effect on β and he/hi of varying the initial depth and deflection angle while keeping the initial Froude number constant. It is observed that good agreoment for β is obtained at both $h_{1}=.90^{\prime \prime}$ and $h_{1}=1.50^{\prime \prime} 1$ the larger difference at $h_{1}=0.60^{\prime \prime}$ may be due to the fact that experimental errors are of increased peroentage magnitude wen dealing with small depths. Figure 26 shows dimensionless plots of the wave profiles obtained at these three initial depthe for a constant froude number of 4.18 and a deflection angle of 9°. While the position of the undulations are ohanged, it is seen that the equilibrium depths are essentially the same. The initial distortion along the deflector vane is also only silghtly affected. The $30^{\prime \prime}$ lead vane was used for all three rans.

Part II

COMPARISON OF VELOCITY DISTRIBUTIONS before and after shock front

FIG. 24

Part II

FIG. 26

Ficure 11 shows the deflector vane in relation to the test seotion with the 30 " lead vane in place. The deflector vane hinge was placed four inohes away from the left ohannel wall in order to seoure control of the initial wall boundary layer by varying the length of a lead vane eot parallel to the ohannel walls. Figures 14 and 15 show that at a distanco of 4 inches from the original channel wall, the average velooity of the saction has been reached; therefore, with no lead vane, it is possible to seoure a shook with no initisl wall boundary layor prosent. Then by attaching load vanes of various lengths, parallol to the ohannel wall, various thioknesses of the wall boundary layer may be built up ahoad of the deflootor vane. It is evident that the exiatenoe of wall boundary layer will reduce the local value of the Froude number in direot proportion to the ohange in velocity in the boundary layer. Consequently, looal vertioal acoelerations are also reduoed, and the depth along the defleotor vane assumes ite equiilbrium value more quiokly.

The offeot is illustrated by the following threo figures. Figure 27 shows the offoot of the aide-wall boundary layer upon the depth profile alone the defleotor pane for a range of froude numbers fran $F_{1}=2.00$ to 7.00 with $\theta=9^{\circ}$ and of initial depth $h_{1}=0.90^{\prime \prime}$. It is seen that while the initial rise is very great for the onse with no load rane compared to the $30^{\prime \prime}$ lead rane, the equilibrium depth is not affeoted. Since only the region of equilibrium depth was used to determine the depth ratio h_{2} / h_{1}, it is expeoted that the wall boundary layer would have very little offeot upon this value. This conolusion is oonfirmed by Fig. 25, which shows only silight difforenoes in dopth ratio by measurements with no lead vane and 30^{n} load pane. Plgure 28 shows rosulte edolar to Fig. 27 for approximately the same rango of Froude numbers at an initial depth of $1.50^{\prime \prime}$. Figure 29 1llustrates the result of varying the defleotion angle from 30 to 280 for a oonotant froude number. The above figures are veluable as an aid in determining the size of model nocessery to obtain resulte which are not influenced by the initial distortion of the basio wave form. In other words, the size of the model must be great onough to obtain measurements in the region of equilibrium depth. This fact alone illustrates the need for working on rather largo soale when quantitative results are to be expooted from the hydraulic analogy.

Figure 25 also showe that the shook angle β is oniy slightiy influenced by the leagth of lead vane with the exception that due to the larger initial curpriture of the shock, the front tends to be displaced very silightly parallel to itself.

It is conoluded that in any problom in whioh it is possible to uee a lead vars parailel to the initial flom diroction, its use will pormit smalior modela or larger areas over whioh reliable measurements may be taiken.

USAP-TR-6985
Part II

EFFECT OF LENGTH OF LEAD VANE ON DEPTH PROFILES,
ALONG DEFLECTOR WALL, AT INITIAL DEPTH $n_{1}=0.90^{*}$
FIG 2?

FIG. 28

 VARIOUS LENGTHS OF LEAD VANE $F_{1}=4.18, \quad h_{1}=0.90^{\prime \prime}$

PART II

6. Effect of Surfaoe Tension

The effect of surface tension on the basio shook wave charactoristica has boen a source of concern in much of the previous experimental work dealing with the hydraulic analogy. It is bolieived that these offeots become negiigible when the tests are conducted on a rolatively large acale suoh as used in the experiments described in this report. A few oalculations serve to show the order of magnitude of the oapiliary forces compared to the dominant gravitational forcos. It is ovident that surface tension has been asoumed negligible in the theoretioni development and that in addition, since capillarity has no counterpart in gas flow, these foroes should be negilgible for the analogy to hold as devoloped.

The ohange in pressure due to surface tension acrose a froe liquid surface having a finite radius of ourvatue is given by -
$p=\frac{C}{r}$ Where σ is the surface tension of the iiquid, and r the radius of ourvature of the free surface. The condition that surface tension foroes are negligibio oompared to grapitational forces requires
that $\frac{\rho}{r_{0}} \ll(\rho g h)$, where ($\left.\rho \mathrm{gh}\right)$ is the hydrostatio pressure. Several typioal wave profiles were plotted to the same horizontal and vertioal ooties, and the minimum radius of ourvature was determined graphioadly. For exarple, the emallest radius of ourvature for Run C-3, Station 20.0 is $r=0.12 \mathrm{ft}$. Which ocours at the orest of the shook where $\mathrm{h}=.268 \mathrm{ft}$, , then $\frac{r}{r}=0.041 \# / \mathrm{rt}^{2}$ and $\rho \mathrm{gh}=16.1 \# / \mathrm{f}^{2}$. Thus, the magnitude of the oapillary pressure compared to the hydrostatic pressure is approximately three-tenthe of one percent. This example 1s'typioal, and it is oonoiuded that oapillary iorces oan saioiy jo assumed nogigibic in oxperimental work on this scale and with the magnitude of velooities onoountered.

6. Disouseion of Shock-Wave Shape

The vertioal accelerations along the shook front due to the required ohange in depth give rise to a serios of undulations in back of the shook whioh dampen rapidly to an equilibrium depth alone the deflootor vano. However, at high Froide numbere and large deflection angles, the shook undergoes a transition from the undular form just described to a regular jurap form having a rather violent rolier. This transition is directly analogous to that whioh has been obserfed (Ref. 25) for the normal hydraulio jump and whioh is quite familiar in hydraulic practico. In fact, a useful correlation is obtained if the oblique fump is treated as a "normal" hydraulio jump by basing the Froude number on the normal component of the volooity ∇_{2}. Thus -

$$
v_{n 1}=V_{1} \sin \beta \quad \text { and } \quad F_{n 1}=\frac{\nabla_{n 1}}{\sqrt{8 h_{1}}}
$$

USAF-TR-5985
Part II

This Frouic number is uniquely rolatod to the depth ratio by Eq. (8),

$$
\begin{equation*}
h_{2 / h_{1}}=1 / 2\left(\sqrt{8 F_{n_{1}}^{2}+1}-1\right) \tag{8}
\end{equation*}
$$

For eaoh experimental run, Series B to J, the value of $F_{n,}$ was determined from the experimental values for initial Froude number and ware angle and plotted for the corresponding experimental depth ratio. These points, together with the theoretioal ourvo Eq. (8), are prem sented in Fig. 30. The experimental points were deaignated as undular, regular or "tranaition". These designationa were obtained by looking at the ware profiles and dooiding on the olassifioation outiined above. For fow runs, the ciassifioation of undular or regular was not clear, and these wore labeled as in "transition".

It is seon from Fig. 30 that the regions of undular and regular jumps are olear cut, those jumps for whioh h2/hi<2 aro undular, and for $h_{2} / h_{1}>2$ the jums are regular. The depth ratio h2/h1 - 2 is tho transition point acoording to an odservation by Bakhmeteif (Ref. 25) In wioh it is noted that the ratio of h2 to the total flow energy he/kl when plotted against Fal reaches maximum at Fni= $\sqrt{3}$ wioh corresponds to a depth ratio ha/hl-2.

The fump form, whother undular or regular, appears to have 1ittio absolute effeot upon the agreoment of experiment and theory, although it is evident that as the jump beoomes stronger (as measured by $F_{n 1}$), the rodent roller and acoompanying fluctuations in depth make procise measurements more difficult. It soems reasonable to conolude that one useful limit of the analogy is reached for values of $F_{n l}$ of the order of magnitude 2.6 as evidenoed by the rather large deriations for pointe in this region in Fig. 30. This is not a serious restriotion since $F_{n 1}=2.6$ requires, in general, largo Froudo numbors and largo doflootion angles. (For example $F_{1}=7.00, \theta=18^{\circ}$)

It is oonvenient at this time to disouss another physioal ilmitation of the analogy epplicable to low froude numbers and large deflection anglos. An inspeotion of Fig. 4 shows that for any Given $^{F_{1}}$ value, there is a maximum possible doflection angle θ. If this value ia exceoded in a channel of infinite width, theoretically the shook must detach itself and move upstroam as normal 90° jump. In a channel of finite width, this "ohoking" condition occurs before the limiting θ angle is reachod as described bolow. The initial shock wave strikes the right wall of the channol and is roflected back across the opening betweon the deflector vane and the wall. The flow behind the shook approaches the right hand wall with a Froude number F_{2} and is directod at an angle, , to this wall. If the value of θ is below the maimum possible defiection angie corresponding to F_{2}, a reflection is possible. However, a point is finally reached at whioh the required deflection of the flow is

FIG. 30
larger than is possible for F_{2} and this second deflootion produces a normal jump. This oondition is illustrated in the photographe of the shook waves in Fig. $12(0)$.

The ueeful range of the ohannel oan be exteaded silightiy boyond the limit desoribed above. Since the ohoking condition involves velooities near the oritioal, the refleotions are sensitive to amall ohanges In the flow energy. Therefore, the formation of the normal jump can be delaged by the addition of energy to the flow by meane of a water jot applied near the refleotion point alone the right wall. This mothod, whioh does not affoot oonditions upstream of the reflootion point, was ueed to obtain data for oertain angles beyond the theoretioal limit. Specifioaliy, for Runs D and I corresponding to Froude numbers of 2.08 and 2.00 respeotively, the jot was used to obtain deflection angle of 120 and for Run $F,\left(P_{2}=3,20\right)$, the jet was used to reach $\theta=21^{\circ}$ for the defleotion rase.

It 1s olear, therofore, that the ohoking is governed by the values of F and θ, in baok of the thook. The downetroam oad of the deflector vene influences the conditions at the point of refleotion by generating expansion waves. These expansion waves may or may not interseot the thook front upatrean of the rellootion point. If these expansion waves intersoot the shook front, they wlll deorease the local ralues of F and the deflection θ of the flom in baok of the initial shook. Thus, the ohoking oonditions oan be governod within oortain limits by reduoing the length of the defleotor rane.

7. Corrolation of Experimental Results Eith Aorodynanio Theory

a. Moh Number Assured Equal to Froude Number

The resulta of the hydraulio experimente on the shook characteristios for Sorios B through J are compared with the theorotioal aorodymamic solutions for air $(\gamma=1.4)$ on the basis of the initial Mah number equal to the initial froude number, 1.0. M1. Fi. A sumary of the oorrolation is presented in Tables VIII (a-d). Coluan 2 gives the Moh number equal to the initial froude number; Colum 3 lists the value of the ware angle dotermined from the hydraulio experimentes and Colume 4 gives the oaloulated wave angle for air obtalned from Eq. (49b) plotted in Fig. 8.
-a Colum 6 are recorded the theoretical differences in wave angle for water and air for the ame θ and $P_{1}=M_{1}$. In Colum 6, the theorotical angle in air is ocompared with the exporimental anele in water, and it may be noted that in practioally all oases, the experimentai percentage difference is less than the theoretioal. The experimental defiation fram the hydraulio theory is in the direction of the rilues expected from the aerodynamio theory. The results are illustrated in graphical
form in Fig. 31. A aimilar analysis is given in Colums 7 to 10 for the density ratio, and it la noted that in this oase the theoretical and experimental differences are of the ame order of magnitude. Rowever, in some cases the experimental differenco is larger. Figure 32 gives the latter results in graphioal form.

b. an Basi: of Modiriod Analogy

Figures 31 and 32 illuatrate olearly the basis of the modifiontion to the analogy as described in sootion II in whioh the 形ch or Froude number is adjuated to produce amilar geametry of flow. It is eeen that if the initial linch numbers wero roduced siightly, both the chook angle and the donsity ratio would show better agrooment with experimental points.. Following the exact modifioation desoribed previously for sinele shooks, an adjusted laoh number is obtained for each defleotion angle θ, and Proude number F_{1}. The theoretioal air ourves would then beoome identioal with the theoretioal hydraulic ourves shown in Figa. 19 and 20.

In erfeot, this prooedure reduces the theorotioal difrerence betweon water and air quantities to sero. Thus, the rosults of the hydraulio experiments may be interproted as aerodymanio quantities with the same degree of coouracy as was originally obtained between experiment and hydraulio theory. The Hach numbers may be adjusted by using Fig. 7 and reading the $\mathrm{F} / \mathrm{M}_{1}$ value for each F_{1} and $\mathrm{h}_{2} \mathrm{~h}_{1}$ or more conveniently from Fig. 33a in whioh tac ratio F / M is plotted against F with θ as the independent variable. For example in Run $J, F_{1}=4.18$ for $\theta=80$ the value of $\mathrm{F}_{1} / \mathrm{M}_{1}$ Erom Fig. ${ }^{33}$ is $\mathrm{K}_{1} / \mathrm{M}_{1}=1.082$ and thereforo $\mathrm{M}_{1}=3.86$.

An axparimantel ralue for the $\mathrm{Pi}_{1} \mathrm{Ki}_{1}$ ratio may bo obtained for ocmparison with the theoretioal value by onloulating an "experimental" Mach number based on θ and $(3$ oxp. Whioh will give the oxporimental Sow geometry. For the above exarpio $\theta=90$ and $P_{1}=4.18$, β exp. $=21.450$ and the corrosponding M_{1} from Eq. (496) is $M_{1}=3.97$. Therofore, the ratio ($\mathrm{F}_{\mathrm{L}} / \mathrm{I}_{1}$) exp-1.052. These values have beon caloulated for Runs B through J and plotted in Fig. 33b. Hhile the pointe scatter ounsiderably, the deshed ourves indioate the general trend. This soattering of experimental values is to be expected inasmuoh as the ratio F / M is extremely sonsitiva to experimental errorj it can be seon that the experimental ourves have the same shape but indioate amalier overall oorreotion.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Run	$\begin{aligned} & \text { Wall } \\ & \text { Angl } \end{aligned}$	Man Number	$\begin{aligned} & \text { Wave } \\ & \text { Angle } \end{aligned}$	Wave Angle	moor. \& Dirf.	Exper. $\$$ Difr.	Donsity Ratio	Donsity Ratio	theor. $\%$ Diff.	Prper.
	θ	1	β (nep)	$\beta^{(C a l o)}$	$\begin{aligned} & \beta(0.10) \Delta 1 I \\ & \beta(07) \end{aligned}$	$\begin{aligned} & \beta(\mathrm{Calc} 0 \mathrm{Alx} \\ & \beta(\mathrm{By}) \end{aligned}$	I (Bxp)	$\underset{\Delta 1 r}{x(\operatorname{Cal} c)}$	K (onc) Ain	$\left\{\begin{array}{l} \text { F(Glo) Afr } \\ \text { Wator } \end{array}\right.$
I-1	3^{0}	2.00	$33.10{ }^{\circ}$	$3 * .60^{\circ}$	-2.15	-2.83	1.12	1.13	+0.9\%	+0.9\%
I-2	6^{0}	2.00	35.25°	36.27^{0}	-3.8\%	-0.6\%	1. 25	1.26	0	$+0.8 \%$
I-S	9°	2.00	39.06 ${ }^{\circ}$	38.27°	-5.3%	-2.0%	1.39	1.41	$+0.7 \%$	$+1.48$
I-4	12°	2.00	42.95°	41.55°	-7.3\%	-3.48	1.52	1.56	$+1.3 \%$	+2.6\%
D-1	3^{0}	2.08	31.70	31.19°	-2.3\%	-1.7\%	1.13	1.15	0	0
D-2	6°	2.08	33.85°	35.95 ${ }^{\circ}$	-3.47	+0.3\%	1.26	1.27	+0.8\%	+0.8\%
D-5	\mathbf{g}^{0}	2.08	38.20°	36.77°	-5.3%	-3.9\%	1.39	1.42	+1.4\%	$+2.15$
D-4	12°	2.08	41.55°	39.97°	-6.9\%	-4.0,6	1. 65	1. 68	$+1.9 \%$	$+1.9 \%$
B-1	3^{0}	3. 06	$20.90{ }^{\circ}$	21.30°	-2.3%	$+1.9 \%$	1.15	1. 18	$+0.8$	+2. 5%
B-2	60	3.06	24.05°	23.60°	-4.2\%	-1.9%	1.31	1.38	$+1.4 \%$	$+5.16$
B-3	9°	3.06	27.00°	26.13°	-5.4%	-3.2%	1. 52	1.69	$+1.9 \%$	$+4.4 \%$
B-4	$\cdots 2^{\circ}$	3.05	29.46°	28.88°	-6. 1\%	-2.0%	1.70	1.82	$+3.3 \%$	$+6.6 \%$
B-6	160	3.05	33.26°	$31.83{ }^{\circ}$	-6. 78	-4.6\%	1.93	2.05	+4.4\%	$+5.8 \%$
B-6	18°	3.06	36.600	35.10^{0}	-6.7%	-4.33	2.11	2.28	+4.8\%	+7. 57

AIR CORRELATIONS SUMIARIEED TABLE VIII-a

air correlations sumenarized

等碞	（1）	（2）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	（10）
			${ }_{\substack{\text { mave } \\ \text { Angle }}}^{\text {a }}$			\％ R Rpor	$\begin{gathered} \text { Density } \\ \text { Dintio } \end{gathered}$	Donsity	${ }_{\substack{\text { moor }}}^{\text {morf．}}$	
畇	θ	${ }_{1}$	$\beta^{(\mathrm{kgxp})}$	$\beta^{\text {caic）}}$			$x\left(\begin{array}{l} (\mathrm{kxp}) \\ \text { nator } \end{array}\right.$		$\begin{aligned} & \mathrm{X}(\text { Calo Aitr } \\ & \mathrm{vs} \text { Wator } \end{aligned}$	
J－1	3°	4.18	15．050	$15.83{ }^{\circ}$	－3．08	4.98	1.24	1.25	＋0．	＋0．88
J－2	6°	4.18	18.50°	18.08°	－4．58	－2．38	1.48	1.53	＊2．68	＊3．5x
J－s	9°	4.18	${ }^{21.455^{\circ}}$	20.87°	－6．57	－3．0x	1.76	1.83	＊5．8x	＊3．68
J－4	12°	4.18	24.25°	23.33°	－6．37	－3．98	2.06	2.16	＋5．0x	＋3．96
${ }^{\text {J－6 }}$	$15^{\circ}{ }^{\circ}$	4.18	27.60°	26.42°	－5．48	－4．58	${ }^{2.36}$	2.46	＊5．78	＊4．17
J－6	18°	4.18	30．85 ${ }^{\circ}$	29.62°	－5．08	－4．12	${ }^{2.62}$	2.76	＋5．88	＋5．18
a－1	3°	5.91	12.35°	11．750	－3．88	－5．18	1.26	1.35	＋0．	＊6．
$\mathrm{G}-2$	6°	5.91	14.50°	14．008 ${ }^{\circ}$	－5．97	－3．08	${ }^{1.61}$	1．77	＊3．9\％	＋9．0\％
G－3	9°	5.91	17.40°	16．750	－5．18	－3．97	2.0	2.21	＊508	＊8．6\％
Q－4	12°	5.91	${ }^{20.255^{\circ}}$	19.67°	－4．6\％	－2．97	2.41	2.64	45．7\％	＋8．7\％
G－5	15°	5.91	${ }^{23.155^{\circ}}$	22.755°	－3．58	${ }^{-1.08 x}$	2.94	5．08	＊5．88	＋4．55
a－6	18°	5.91	25.60°	26.133°	－2．68	＋1．78	${ }^{3.33}$	3.46	＊4．98	＋3．8\％

COMPARISON OF HYDRAULC EXPERIMENTS WTTH AERODYNANIC THEORY BY DRECT ANALOGY
FIG. 31

 COMPARISON OF HYDRAULIC EXPERIMENTS WITH
FIG. 32

COMPARISON OF THEORETICAL AND EXPERIMENTAL VALUES OF F_{1} AND M, TO PRODUCE SIMILAR GEOMETRY OF FLOW FIG. 33

SECTIOA ∇

STRNARI OF CONCLUSINKS

1. The experimental program was primarily concerned with the verification of the theory of oblique shock waves in water. It has been demonstrated that there is satisfactory quantitative agreement between theory and experimont.
2. The non-uniform velocity distribution inherent in the experimental mothod has negligible influence upon the msults.
3. The geometric diseimilarity between aerodynamic and hydraulio shock weres can be largely compensated by selecting adequate model dimensions. Ueually large ratios of longitudinal dumensions to depth should be amployed.
4. The use of an induced indtial boundary layer at a point of flow deflection is an effective means of recucing the initial distortion of the basic wave form and has no effect on final euflibrium conditions. This consideration may have an important bearing upon the aize of the sodel.
5. The effect of arface tension can be made negligible by the use of reasonably large models, depths and velocities.
6. The practical limits of the analcigy in regard to madmum Froude numbers and deflection angles are consistent with the range in which the oupersondc flcw theory applies.
7. By means of the so-called first modification of the analogy, satisfactory conversion from hrdremlic masurements to aerodynamic quantities 1s possible.
8. The second modification of the analogy improves cunsiderably the quantitative conversion from hydraulic measurement to corresponding aero dynamic quantities. The application of the method requiren, however, a certain technique of interpretation and mat be adapted to the problem at hand foilowing the methods outlined.

Finally, it mat be understood that no claim is made at this time $a s$ to the general applicability of the methods proposed towards a solution of coulex problems of two dimensional supersonic Mow. However, it is felt that these wethods are promising if they are applied with a sound bowledge of all hydraulic factors involved in water channel operation and therefore 0 the resources thich offer themselpes to the experienced investigator. This latter restriction is, of course, not peculiar to this research tool alone, but applies to most experimental techniques.

Part II
(Ia) A. T. Ippon and R. T. Knapp. A Study of High Velocity flow in Curved Channels of Rectangular Cross Section. Transictions of the American Geophysical Union. I7th Annual Neoting, 1936. pp 516-621. (Unclassifled, Enelish)
(1b) A. T. Ippen and R. T. Knapp, Experimental Invostipations of Flow in Curved Channels. Abstract of results and rocommendations. U.S. Enginear Offioe, Los Angeles, California, 1938. 2 Volumes. (Unciassified, English)
(10) A. T. Ippen and R. T. Knapp. Curpilinear Flow of Liquids with Free Surfaces at Velooities above that of Wave Fropagation. Proceedings of the 5th Intornational Congress of Applied wechanics, 1938. pp 531536. (Unolassified, Englich)
(2) D. Riabouchinaky. Sur d'Analogia Hydrauiique des Houvements diun Fluide Compressible. Compt. Rend, de lAcademie dos Sciences. Volumo 195, 1932, and Volume 199, 1934. (Unclassified, French)
(3) T. von Karman. Eine praktische Anwendune der Analogie zwiscien Jeberschaliströmung in Gasen and whorkritischer Strömune In Offonon Gerinnen. Coltsohrif't fur ang. Wath. und Mochanik, No. 1, 1938 (Unolassiniad, Gorman)
(4a) E. Preiswork, Applioation of the Mathode of Gas Dynamics to hater Flows With Free Surfaco. Part I. Fions with no Energy Dissipation. Institut fur Aerodynemik Eldgenosaisohe, Technische Hoohschule, Zurich. N.A.C.A. Technioal Homo 934. (Unclassifiod, English)
(4b) E. Preiswerk. Appilcation of the Methods of Gas Dynamics to Water Flows with Free Surface. Part II. Fions with Momentum Discontinulties. Institut fur Aerodymanik Eidgenossische, Technische Zochschule, Zurich. N.A.C.A. Teohnical Komo 935. (Unclassified, English
(5) Johnson \& Hitbeck. Fiater Analogy to Two-Dimensional Air Fiow. General Electric Company. Report No. 55218, 1941. (Unclassifled, English)
(6) North American Aviation Inc. Application of the Water Channel - Compressible Gas Analogy. Report No. Na-47-87, March 3, 1947. (Unolassified, Eng118h)
(7) Jurth kmerican aviation Inc. An Experimentai Investigation of Several

Techniques for cotaining Photographs of Waves formed In Fater Channels. ANo. 129, March 7, 1947. (Unclassif1ed, Enclisi)

Part II
(8) K. P. Barsohdorf and H. G. Woodbury. Standing Waves in Superori: ical Flow of Fiater. 8. H. Thesis. Cipll Enginaering Vopt., M.1.T., Iget (Unolassified, English)
(8a) J. C. adams, Jr. Channed Transitions in Superorition flow of Fator. S. B. Thesis, Cimil Bigineoring Dopt., X. I. T., 1848. (Unolassicied, Engl1sh)
(9) X. Coldean $\&$ 8. Moorbaum. Hydraulio Analozy of supersonic Flow of Compreasible Fiow. S, M. Thesis. Wochanioal Engraering Dopt., W.1.T., 1946. (Unolassiried, Englioh)
(10) N. 8. Munford, Jr. A Hydraulio Analogy of Suporsonio flom of Com-
 184\%. (Unodaselfiod, Enpilah)
(11) B. D. Langtry. A Study of Superaonio Diffusors - An Applioation of the Eydraulio Analogy. S, W. Thesis. Wohanioal Enginooring Dept., M. I.T., 1947. (Unolaseisiod, English)
(12) F. L. Giraud. Experimental studies on Supersonio Cascades using Fater Analopy. 8. K. Thesis, Mochanioal Engineorine Dopt., X.I.T., 1946. (Unolasisiod, English)
(13) G1more a Flesset. The Analogy betwoen the Flow of a Liquid with a Froe Surface and the Two-Dimonaional how of ang. Momo. Roport Fo, M-64.1, Califormin Institute of Technology, 盾roh 1949. (Unolassifiod, Englioh)
(14) H. E. Crossloy, Jr. The Analogy botweon Surface Shook Haves in a Liquid and Shooks in Comproselble casos. Roport No. N-54.1, Callfornia Institute of Teohnology, August 1949. (Unolassified, English)
(15) J. K. Oriin, N. J. Lindner d. J. G. Bitterly. Applioation or the Analogy betweon Wator Fow with a Free Surface and Two-Dimensional Comprossiblo Gas Fiow. N.A.C.A. Tochnical Note IBE. (Unolassified
(16a) A. T. Ippen, Hechanios of Superoritioal Flow. Proceedings of the A.S.C.E., Noventer 1949, Volume 75, No. 9. Fp 1290-1317.
(Unciasified, English),
(16b) R. T. Knapp. De日ign of Channel Curves for Superorition fion. Prooeedings of the A.S.C.E. Bovember 1949, Volume 75, No. 9: pp 1318-1347. (Unclassifiod, Engliah)
(160) A. T. Ippen and J. H. Dawson, Design of Channel Contractiona. Prooesding: of the A.S.C.E. November 1949, Volume 75, No. 9. pp 1348-1388. (Unoiasaified, English)
(18d) B. Rouso, B. V. Bhoota, E-Y. Hsu. Dosign of Channel Expanaions. Proceedings of the A.S.C.F. November 1849, Volume 75, No. 9 pp 1369-1385. (Unolasidfiod, English)
(17) Ivey, Stiokle \& Sohuettler, Charte for Determinine the Charaotoristios of Sharp Nose Airfoils in Iwo-Dimensional Fion at Supersonio Speode. N. A.C.A. Toohnioal Note 1143. (Unolasisicd, Engiloh)
(18) W. E. Moockel \& \therefore F, Connors. Charts for the Determination of Supersonic A.15 Fiom againat Inolined planes and Axially jymmotrio Cones. N.A.C. A. Teohnioad Note 1373. (Unolasalified, Engioh)
(19) Mario A. Buroher. Compressible Flow Jables for Air. N. A. C.A. Toohnioal Note No. I682, Alugust 1948. (Unolase1sided, Engilsh)
(20) Kary M. Noloo. Tablos and Charta of Flow Paramoters aoross oblique Zhookso NoA.C.A. Tochnionl Note No. 1S7E, Aug. 1948. (Unolassifiod
(21) Edmonson, Murnaghan 4 Snow. Theory and Praotioc of Two-Dimenaional Supersonío Pressure Caloulations, Bumble leo Roport No, 26. Johns Hopkins Univeraity, Applied finyioa Lab., Doo. 1946. (Unolasaified, English)
(22) O. B. Roulegan \& G. W. Patterson. Mathematioal Ihoory of Irrotational Transiation Wavef. RP 1272, Journal of Reaearch of National Buroau of standards, January 1940. (Unolasaifiod, English)
(23) O. H. Koulegan. Laws of Turbulent Flow in Open Channols. RP 1151, Journal of Researoh of the National Bureau of Standarde, Deoomber is38. (Onclassifiod, English)
(24) V. Vanoni. Velooity Distribution in Open Channois. "Civil Engineerine", June 1941, P 356 . (Unclasalifed, English)
(25) B. A. Bakhotefi \& A. E. Matzke. The Hydrenilo Jump in Terms of
 P630. (Unolassiried, English;
(28) A. T. Inpen, Gas Wave Analogies in Open Channel Flow, Bulletin 27, Proceodings of Second Iydraulioo Conferonce, Univoritity of Iowa, 1943.
pp $248-285$. (Unolassifiod, English)
(27) J. J. Stoker. Pormation of Breakepe and Boree, Conattey on
 Eag110h)
(28) Air Matoriel Gommand, Writht AP Bace, Mothod of Cho raptoriation in
 Bglish)

(80) Courant d Friedrioha, Buparsonio Mow and chook Way in. Intoraotame

 M.I.T. (Unolasalfled, mingioh)

[^0]: HYDRAULIC CORRELATIONS SUNMRIZED

