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FOREWORD

This technical memorandum documents the activities of the Unsteady
Aerodynamics Integrated Product Team (UAIPT). Dr. Wladimiro Calarese, Chairman of
the UAIPT from September 1993 until his retirement in January 1997, and Elijah Turner,
a member of the UAIPT from October 1994 to the present, prepared this memorandum
based on the work of the UAIPT. The study reported herein was conducted under work
unit 24044951.

The support of all of the members of the UAIPT, SARL wind tunnel personnel,
and other Flight Dynamics Directorate personnel is gratefully acknowledged. BobWeyer
(ASC/ENFT) performed the Euler simulations while working in WL/FIMC.

This manuscript was released by the authors in August 1997 for publication as a
Wright Laboratory Technical Memorandum.
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I INTRODUCTION

The problem of buffet excitation on vertical twin tails at high angle of attack has
been studied by many scientists for many years with various degrees of success. Shock
wave-boundary layer interaction, separated flows at high angles of attack, vortex
interaction and bursting are phenomena responsible for buffet excitation and structural
response of vertical twin tails of aircraft flying and maneuvering at high angles of attack.
The magnitude of the structural loads can approach limiting values and would
considerably reduce the fatigue life of the structure.

Various techniques for buffet attenuation have been developed. Unfortunately,
the problem has not been solved. Advanced fighter aircraft capable of maneuvering at
high angles of attack and high g’s experience strong multiple-mode tail buffeting. Buffet
attenuation and possible elimination must be studied both theoretically and
experimentally. In order to achieve reliable results, the different static and dynamic
effects on an aircraft structure must be analyzed simultaneously.

The first studies of buffeting started in the 1930’s and both the USA and European
countries showed a lot of interest in the problem (Ref 1). Later on, some predictions of
tail buffet loads and fatigue damage experienced by fighter aircraft during high angle of
attack maneuvering were reported for design application (Ref 2). Predictions were
obtained for the F-111 using forcing functions derived by integration of pressure time
histories with the natural buffeting modes, correlation of predicted and measured
damping, and correlation of predicted and measured buffet response (Ref 3).

Wind tunnel testing was used extensively to measure unsteady pressures present
on the tails of aircraft at high angles of attack and the buffeting response (Refs 4-5).
Experimental research was carried out separately by the structures and aerodynamics
scientists. Huston (Ref 6) used traditional methods to correlate wind tunnel data with
flight buffeting response while Mabey (Ref 7) presented an evaluation of dynamic loads
due to the separation of the flow field. Investigations of buffet on wings, fuselage, and
weapon bays of aircraft were also reported by various researchers ( Refs 8-11).

This report refers, in chronological order, to studies of buffet excitation on
advanced fighter aircraft tails and, in particular, to the F-15 twin vertical tails.




I BACKGROUND

Aircraft can experience buffet when unsteady pressures associated with separated
flow excite modes of vibration of the aircraft structure. For twin tail fighter aircraft,
buffet can be severe when maneuvering at high angles of attack, due to separation at the
leading edge of the wing being convected down stream and impinging on the vertical tail.
This buffet is a function of the geometry of the wing, fuselage, and vertical tails. Triplett
(Ref 5) performed wind tunnel tests to obtain the buffeting pressures on the vertical tail
surfaces of a 13 percent F-15 model equipped with a rigid and a flexible tail. The
MCAIR low speed tunnel was used. The research indicated that, for the configuration
tested, the pressures and the buffet response levels reached a maximum at 22 degree angle
of attack, and the predominant mode was the first torsion. Kulite pressure transducers
were used to measure both steady and unsteady pressures. These pressures on the flexible
tail were different in magnitude and distribution when compared to the rigid tail. For the
same tail incidence, the lift was three times as large for the flexible tail. The results
obtained were very valuable for the analysis and design of a torsional oscillation
suppression system for the vertical tails.

At first, aerodynamicists and structures experts researched vortex-dominated and
buffet flows separately. As mentioned in the introduction, Huston (Ref 6) indicates the
traditional methods used to correlate wind tunnel and flight buffeting response; Mabey
(Ref 7) gives an assessment of dynamic loads due to flow separation.

Other researchers tried to predict buffet on empennage by theoretical and
experimental techniques. Edwards (Ref 12) assessed the validity of Euler as well as
Navier-Stokes equations in modeling vortex-dominated flows conducive to buffet. He
stressed the importance of grid density to obtain accurate, converged calculations, and
showed that computational finite difference methods can provide accurate solutions of the
thin-layer Navier-Stokes equations for flows about complex aircraft. Ferman et al. (Ref
13) developed a unified approach for predicting buffet response of a fighter aircraft
empennage operating at high AOA. Ferman derived two approaches for predicting buffet
response of a fighter aircraft empennage. The first one used elastically scaled models in
wind tunnel tests to provide full scale prediction. The second was based on calculations
using measured pressure data from wind tunnel tests. The latter method was considered
to be more versatile.

Zimmerman et al. (Ref 14) show the buffet pressure frequency responses for an
advance fighter aircraft; the peak frequency decreases with increasing angle of attack.
Cunningham et al. (Ref 15) report unsteady pressure and flow visualization tests on
oscillating delta wing models, with particular reference to the vortex systems ( strake and
wing vortices). Vortex lift augmentation is shown to occur between 8 and 18 deg angle
of attack and the downward break in the lift curve slope indicates the onset of burst
vortex flow over the planform. The maximum normal force coefficient, C, , occurs at 35

degree AOA; at higher angles the flow is fully separated and the value of C, falls. The
aerodynamic community is trying to understand the physics of separated vortical flows,



and data bases are being gathered which can be used to validate CFD codes. Experiments
have been performed on static, rigid models.

Elsenaar et al. (Ref 16) report results of vortex flow development on a 65 degree
cropped delta wing at Mach 0.4 to 4.0. Both sharp and rounded leading edges were tested
for validation of Euler and Navier-Stokes codes. Other experiments have used non-
intrusive 3-D laser Doppler velocimeters to improve the data quality for code validation.
Pagan and Soligna (Ref 17) investigated in detail the bursting of vortices generated by a
75 degree delta wing. RMS velocity components were reported together with mean
velocity. This was done in order to study the unsteady aspects of the flow field. The
region downstream of the vortex burst generated strong fluctuations.

Komerath (Ref 18) reported a quantitative study on the low speed flow
environment of a scaled model of an F-15 fighter aircraft at high angles of attack. Laser
sheet flow visualization was used to observe the various locations of vortex generation,
and the evolution of these vortex flows. Laser Doppler velocimetry was used to obtain
quantitative values of the velocity field. Although the vertical tails were immersed in
rotational flow, no concentrated vortex was observed. At 22 degrees AOA, the flow
separated on the outside surfaces of the vertical tails. Mabey (Ref 19) performed
extensive studies of tail buffeting at high angles of incidence on a complete scale model
with a single fin. He found that the buffet excitation in the first bending mode was
controlled by the wing flow separations and contained a peak at a well-defined frequency

parameter. Adding trapezoidal or gothic canards strongly influenced the fin buffeting,
and sideslip or strakes increased it.

Other researchers studied, both theoretically and experimentally, the tail buffet
characteristics on the F-18 (Refs 20-22). Komerath et al. (Ref 20) observed sharply
peaked spectra both inboard and outboard of the upper portion of the vertical tails. The
narrow-band fluctuations appeared to originate in the separated flow over the wing
surfaces. This demonstrated that the tail oscillations were driven by narrow-band fluid
dynamic oscillations, whose frequency varied with angle of attack and flight velocity.

Zan (Ref 23) measured the buffeting on a single-tail generic fighter aircraft, such
as the F-16. The results were correlated in terms of the buffet excitation parameter

JnG(n) . Atlow angle of attack, where the flow on the forebody remained attached, the

buffeting on the tail was negligible. The beginning of buffeting coincided with the onset
of symmetric vortices and increased with increasing angle of attack, up to the onset of
asymmetric vortices. At higher angles of attack, the buffeting decreased considerably. It
was evident that the buffeting was directly connected with the vortex flow in the vicinity
of the tail. Bean (Ref 24) then tried tangential leading edge blowing to alter the vortex
flow pattern and characteristics on a single fin model with the intent of attenuating the fin
buffet. Blowing at a constant rate delayed vortex breakdown and shifted the maximum
buffet response to higher angles of attack. It is probable that the optimum blowing profile
would be wing dependent and change with flight condition. Using an optimum blowing




profile might completely suppress the buffeting response without significantly changing
the wing characteristics.

Jacobs (Ref 25) used artificial intelligence for predicting empennage buffeting
pressures and elastic response as a function of upstream flow field and geometric
conditions. The effort employed a combined neural network and finite element modeling
to predict flexible tail response based on rigid pressure information. Weeks and Nagaraja
(Ref 26) surveyed a number of numerical codes used for linear and nonlinear problems

which can analyze vertical tail buffet and the aeroelastic responses of 3-D vehicles at high
angles of attack.

Other studies were conducted during the time span 1993-1995 on vertical tail
buffet for existing fighter aircraft, such as the F-15 and F-18. Some were directed towards
the analysis of the vortex flow surrounding the tail, and vortex burst over the wings and
tails (Refs 27-43). Cornelius (Ref 40) evaluated criteria for vortex breakdown. The
parameters that govern stability were formulated in terms of the local vortex flow
variables. Laser measurements were taken and showed that the critical parameters, such
as the ratio of axial-to-crossflow energy, decreased downstream from the adverse pressure
gradient along the vortex trajectory, providing conditions that correlate with the location
of vortex breakdown. Visbal (Ref 38) ascertained that breakdown emerged from the
growth and upstream propagation of essentially axisymmetric disturbances which
subsequently lose stability to helical modes. Both spiral and bubble modes of breakdown
were compared with experimental measurements. Compressibility was shown to have a
significant effect on the flow structure above a 75 degree swept wing at incidences
corresponding to breakdown onset. Others studied the characteristics of surface pressures
due to buffet (Refs 44-45). Correlation of wind tunnel and flight data were obtained for
the F/A-18 vertical tail buffet (Ref 46). Mabey et al. (Ref 47) performed measurements
in a cryogenic wind tunnel in order to find out the importance of the variations in
frequency parameter and Reynolds number, the choice of model material ( considering
stiffness and damping), and the effect of static aeroelastic distortion. The choice of the
wind tunnel gave them the opportunity to obtain conditions independent of temperature
effects and to test at higher Reynolds numbers. Dima and Jacobs (Ref 48) investigated
the effects of dynamic pitch-up maneuvers on empennage environment by means of a
system of local-stationary equations based on the steady-state response equivalence. This
system constituted a design tool to obtain more accurate values of buffet response and
structural fatigue. Wolfe et al. (Ref 49) investigated the surface pressure loading on
buffeting fins and concluded that the onset of vortex breakdown played a major role in
dictating the spectral content of the pressure fluctuations on the fin. Pendelton et. al (Ref
45) and Meyn et. al (Ref 50) performed wind tunnel buffet studies on a full scale F/A-18
with and without a LEX fence. The fence significantly reduced the magnitude of the rms
pressures and bending moments for angles of attack up to 22 degrees. The importance
of this experiment lay in the comparison of the full-scale results with small-scale tests. It
showed that the tail buffet frequency scales very well with length and velocity. Moses
and Pendleton (Ref 51) also compared the pressure measurement results of a full-scale
and a 1/6 scale F/A-18 twin tail during buffet. In 1995/96, multidisciplinary methods



were used to compute the vertical tail buffet (Ref 52). Three sets of equations were used
on a multi-block grid structure. The first set was the unsteady, compressible, full Navier-
Stokes equations. The second set was the coupled aeroelastic equations for bending and
torsional responses. The third set was the grid-displacement equations used to update the
grid coordinates due to the tail deflections. This system allowed the computation of
coupled and uncoupled bending-torsional responses. Cunningham (Ref 53) illustrated
problems associated with nonlinear aerodynamic effects and their impact on structural
integrity.




I F-16 UNSTEADY AERODYNAMICS INVESTIGATION

Fighter aircraft can experience oscillations of external stores that critically affect
structural integrity and result in performance limitations. Limit Cycle Oscillations (LCQ)
result from a variety of phenomena that produce unsteady separated flow for some stor:
configurations. The F-16 experienced LCO for several store configurations due to shoc
induced trailing edge separation on the wing. Engine spillage during throttle transients
can cause vibration on the down stream structures such as store fins and antennas,
resulting in fatigue damage.

Cunningham (Ref 53) performed a detailed investigation with regard to the fatigue
life of the ventral fins of the F-16 fighter aircraft. The fatigue life was shortened
considerably with the use of LANTIRN pods upstream of the fins. Inlet spillage also
contributed to the deterioration of the fins. Airflow separating and reattaching
continuously ahead of the fins (caused by strong turbulence) was another cause of the fins
fatigue problem. Modification of the aircraft, such as increased inlet size for larger
engines, inlet thin lip effects (such as severe flow separation) during throttle chops, and
the addition of the cooling system exhaust deflector accentuated the buffet loads even
more and led to fatigue problems on the fins. As a result, the ventral fins had to be re-
designed. Using a semi-empirical model, various modifications were investigated, such
as increasing the stiffness by 40%, leading edge nose cap, and using a constant NACA
airfoil section from root to tip for the fins. Results showed that the solution that takes
into consideration the aeroelastic nonlinearity has the best chance to solve the fin
problem. As stated above, it is important to limit the effects of two types of nonlinear
aeroelastic problems, i.e. limit cycle oscillations and large amplitude buffet.



IV TECHNIQUES FOR BUFFET ATTENUATION

Various techniques for buffet attenuation have been developed with some degree
of success. Unfortunately, the problem has not been solved. Advanced fighter aircraft
capable of maneuvering at high angles of attack and acceleration experience strong
multiple-mode tail buffeting.

Ferman (Ref 54), referring to the vertical tail buffet, stated that "traditional fixes
related to structural fatigue consisted of reinforcing the broken structure. This tended to
merely chase cracking in the secondary structure from one area to another on the tail.
With the use of composite material technology and adhesive bonding technology, it was
possible to improve the F-15 vertical tail durability”. He then tried to reduce the strong
buffeting of the F-15 vertical tails by using a bond-on composite stiffening doubler called
Exoskin. This approach should reduce the tail vibration response created by high angle of
attack buffeting forces. However, this patch has not been in use long enough to
determine its effectiveness.

Mabey and Pyne (Ref 55) performed some new research on the effects of wing
leading edge blowing, similar to what had been done before by Bean et al. (Ref 24). The

buffet excitation parameter \/nG(n) decreased consistently with increasing blowing
momentum coefficient C,, up to the attainment of an optimum C, for a given angle of

incidence. The indication was that buffeting could be attenuated. In addition, the overall
L/D increased. They believed that this technique was promising.

Rock and Ashley (Ref 56) presented a technique that used active control to reduce
the fin buffet response on the F/A-18 vertical tail. They first developed a model for
control design generated by finite element structural analysis and linearized potential
aerodynamic theory. With this model they designed a feedback control law that affected
the movement of the rudder by means of feedback signals received from an accelerometer
mounted on a fin-tip vane. They proved that it was possible to reduce the bending
moment associated with the first modal frequency by 34% with the rudder motion limited
to 2 degrees. A similar model was also effective on the F-15 aircraft. This result was
based on theoretical analysis and was not proven in practice. However, there was a
potential for enhancing the fatigue life of the empennage structure of aircraft operating at
high angles of attack. Later on, RANN Corporation and McDonnell Douglas (MDA)

suggested the use of adaptive feedback neural network controllers to activate the rudder
command signal.

Barrett et al. (Ref 57) tried to reduce the buffet response of an advanced fighter
tail section by passive damping, i.e. they started a research and development program
whose goal was the development of buffet and fatigue resistant structure. They applied
passive damping technology to redesign structural components. The specific components
addressed included the beavertail section of the F-14D and the spars of the F/A-18
vertical tails. The damping material used consisted of advanced composites. Benefits




can be obtained by including damping as a parameter in the design of parts of the
structure that are subjected to dynamic loads.

Hauch et al. (Ref 58) studied the possibility of reducing tail buffet response by
using integrated piezoelectric actuators. They performed their experiments on a 5%-scale
aeroelastically-tailored structure that had similar vibration response to a full-scale aircraft
structure. At high angles of attack, the leading edge vortices generate severe buffet
pressures on the vertical tails, causing excitation of the first few natural modes of the
flexible tail. Simple control algorithms were used with piezoelectric actuators and
sensors to attenuate the strain at the root of the tail. Spectral analysis showed that the
peak response was 65% less than the one without actuators.

Lazarus et al. (Ref 59) also addressed the feasibility of using active piezoelectric
buffet suppression system to reduce buffet vibration in the vertical tails of aircraft. Full-
scale piezoelectric buffet suppression systems were designed and evaluated. Many
different actuator distributions, sensor locations and controller architectures were
examined. Significant performance improvement was achieved (greater than 70%) with
minimal weight penalties. This study showed that the tail vibrations could be reduced
and the fatigue life extended.

It is important to list past and on-going WL efforts on techniques for tail buffet
attenuation. The past efforts included a contracted F-15 buffet test in 1982 on a 13%
scale-model with one rigid and one flexible vertical tail by Triplett (Ref 5), and a RANN
analytical effort for active control using rudder on the F/A 18 and a tip vane on the F-15
(Ref 60). WL supported NASA Ames wind tunnel tests on a full-scale F-18 by
conducting ground vibration tests on the vertical tails and measuring buffet data on one of
the vertical tails (Ref 45). WL also supported NASA Langley Research Center’s (LaRC)
test on a 16% scale F-18 model through the supplying of a technician and test equipment
and by supplying a control law through a data exchange agreement (DEA) with Germany.
WL supported ACX and Rohini International with SBIR contracts for research on buffet
load alleviation, provided an in-house numerical simulation of the interaction between
leading edge vortex and a rigid vertical tail (Ref 61), awarded a grant to Dr. Singh (Clark
Atlantic University), Dr. Sankar (Georgia Tech University) and Dr. Smith (Georgia Tech
Research Institute) to modify an Euler/Navier-Stokes computer code (ENS3DAE) and
include a trim module in order to perform trimmed and untrimmed aeroelastic analyses.
Funding was also provided to Georgia Tech Research Institute to improve the computer
code FASIT (Fluid and Structures Interface Toolkit), which is used to transfer data
between different computational grids; specifically, it transfers data between CFD and
structural grids in order to perform static aeroelastic calculations. FASIT is being
enhanced to include data transfer for solutions of dynamic aeroelastic problems, as well
as data transfer to/from unstructured CDF grids. On-going WL efforts include RANN
analytical research on the F-22, ACX Phase II SBIR research for buffet load alleviation
on the F-18 vertical tails, and Rohint International Phase II SBIR research for buffet load
alleviation on the F-15 vertical tails.



Another on-going effort is NASA LaRC’s ACROBAT (Actively Controlled
Response of Buffet Affected Tails) program. This program consists of wind tunnel tests
in NASA LaRC’s 16-foot transonic dynamic tunnel to ascertain the effect of piezoelectric
actuators and rudder on vertical tail buffeting. Moses (Ref 62) performed the experiment
and recently presented some preliminary results, which indicated a reduction in power
spectral density (PSD) of the root strain (bending moment) of up to 60% for certain
angles of attack. In the Active Vertical Tail (AVT) tests, McDonnel Douglas Aircraft
(MDA) and NASA LaRC conducted buffet suppression tests using integrated
piezoelectric actuators. The model was a generic fighter that could be assembled into
different configurations. MDA chose an F/A-18 to pursue the Buffet Load Alleviation
System Technology (BLAST) program which refers to vertical tail buffet. An adaptive
neural network is proposed for control of the rudder actuator . The Navy also conducted

in-house wind tunnel tests and CFD simulations on a generic fighter configuration similar
to the MDA/NASA model.




V ROLE OF WL/FI RESEARCH TEAM

In view of the importance of obtaining solutions of unsteady aerodynamic
problems, WL decided at the beginning of 1994 to establish the "Unsteady Aerodynamics
Integrated Product Team" (UAIPT). This team was formed by scientists and engineers
from three different divisions in order to coordinate muitidisciplinary research. The three
divisions were the Aeromechanics Division, mostly involved in experimental and
computational aerodynamic problems, the Structures Division, involved in both metallic
and composite structures development, and the Flight Control Division, mainly involved
in establishing and evaluating flight control laws (Fig 1).

The UAIPT was considered the center for coordinating and integrating unsteady
aerodynamic research at WL (Fig 2). It initiated contacts with the various System
Program Offices (SPOs) at Wright-Patterson AF Base, such as the F-15 SPO, the F-16
SPO, the F-22 SPO, the C-17 SPO, and the B-2 SPO. Among the many problems in
unsteady aerodynamics, such as Limit Cycle Oscillations (LCO), buffet, flutter, separated
flow, etc., the buffet problem seemed to be the most important due to the many requests
received for immediate attention and support (Fig 3). Buffet attenuation and possible
elimination had to be studied both theoretically and experimentally in-house and by
contract. In order to achieve reliable results, the different static and dynamic effects on an
aircraft structure had to be studied simultaneously. Team members had to work together
and interact with each other to define and conduct an in-house program. Support was
received by another service, the Navy, by a Government agency, NASA, and private
companies, such as Rohini International, RANN Corporation, ACX, and MDA (Fig 2).
Research was centered on computational fluid dynamics (CFD), finite element research,
vibration tests, and wind tunnel tests. The first project selected by the UAIPT consisted
in improving present technology to obtain significant buffet vibration reduction.

Twin tail buffeting problems are quite different for different aircraft. For
example, the F/A-18 problems are attributed to the bursting of strong vortices and the
attendant high intensity turbulence which drive the structural dynamics modes at high
angles of attack. F-15 aircraft investigations show a concentration of energy fluctuation
over the wing at high angles of attack, which then propagates downstream in a narrow
band of frequencies enveloping the vertical tails.

Rohini International was awarded a Phase II SBIR contract for research on buffet
load alleviation on the F-15 vertical tail (Ref 63). Under this contract the use of stacked
piezoelectric actuators was investigated as a means of suppressing buffet. Structural
dynamic tests were conducted on a full scale F-15 vertical tail subassembly with
piezoelectric actuators and reported by Hanagud et al. (Ref 64). Hanagud was able to
determine the vertical stabilizer dynamic response characteristics. Natural frequencies,
mode shapes, and damping ratios of the modes were studied to determine their
interaction. The results of these vibration tests correlated well with data from an
operational F-15 aircraft. Modes from the laboratory test article (F-15 subassembly) and
the aircraft were identified and found to be the same. The nonlinearities that were
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observed in the F-15 vertical tail structure appeared to be quadratic. Therefore, the
laboratory subassembly could be used to predict the effects of structural modifications of
the vertical stabilizer and the effects of active or passive vibration controllers on the full
scale aircraft (Ref 63). Since stiffening of the tail structure alone is not an effective
means of reducing the vibrations, it may be necessary to use an active vibration absorber

capable of sensing the buffet induced structural dynamics reducing the multi-mode
vibration.

In the Rohini/Georgia Tech effort, lateral and torsional vibrations in the plane of
the vertical tail were controlled by applying stresses and strains with piezoelectric
actuators. The optimum locations for the actuators that would give a maximum response
to lateral and torsional vibrations of the vertical tail had to be determined. That was
accomplished by using in-plane actuators and measuring lateral and torsional deflections
at various desired locations. In this way the best locations for controlling the vibrations at
each individual mode were found. The force disturbances were generated by a shaker
mounted on the outboard trailing edge of the vertical tail. Transfer functions between the
accelerometer and the actuator were determined. A control system was designed whose
purpose was to reduce the bending response (2nd bending at 39.8 Hz) of the tail as
measured by a tip mounted accelerometer. Tests results showed that the magnitude of the
acceleration at the tip could be reduced by nearly 40%.

A computer program was developed to construct a finite element model from the
measured experimental modal data. The first step in the program was to input the
experimentally measured modes and natural frequencies. The second step in the program
was to construct the mass matrix from the data provided in the vertical tail drawings, the
densities of different components, and the total weight of the vertical tail. In the third
step, the measured relative modal amplitudes were normalized with respect to the mass
matrix. Next, the damping and stiffness matrices were calculated, and the natural
frequencies were calculated from the reconstructed mass, damping, and stiffness matrices.
This experimentally-based finite element model yielded a range of frequencies which
were reasonably accurate.

ACX, Inc. was also supported by WL in their research on buffet load alleviation
with distributed piezoelectric actuators applied to the vertical tails of an F-18 aircraft.
SBIR Phase I and Phase II contracts were awarded, with the goal to conduct ground
vibration tests on a full scale structure, measure the vibration level reduction, and
demonstrate piezoelectric actuators’ authority at full loads.

In Phase I (1994), ACX assessed the feasibility of employing piezoelectric
actuators. This was demonstrated on a scale model with simple geometry by Lazarus
(Ref 59). Design and feasibility studies were conducted on a full scale tail. A
distribution of actuators in the vertical tail was selected in the areas of maximum strain.
ACX demonstrated the effectiveness of buffet suppression using piezoelectric actuators
and active control. Power requirements and weights were expected to have minimal
impact on aircraft operation. For an 8% increase in tail weight, the damping of the first
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mode was increased by 60% which would significantly reduce structural damage and
fatigue.

In Phase II, ACX addressed the fabrication and integration of the actuators, the
electronics, and power conditioning. They evaluated the controller implementation,
testing, and performance. The controller did not have to be inserted in the flight control
system since it could be dedicated to the actuators only. In the meantime, McDonnel
Douglas Aerospace (MDA) studied the cost benefits of equipping the tail with actuators
instead of replacing it. The actuators should last the life of the tail to reduce maintenance
of the buffet suppression system and the added weight should be less than 25 pounds per
tail, with a maximum added weight to the aircraft of 100 pounds for both tails. The
actuators were embedded in the aircraft skin and thermal control had to be addressed.
The cable between the amplifiers and the actuators had to be shielded to avoid electro-
magnetic countermeasures (EMC) problems. Accelerometers and strain gauges were
used as sensors; the accelerometers turned out to be more reliable. The NASTRAN
finite element code was used for modeling the mode shapes, frequencies, and actuator
modal influence. A linear unsteady aerodynamics code was used to compute the
aerodynamic forces. The actuators were limited to peak actuation strain of 400
microstrain. In the case of least disturbance energy, up to 75% of buffet reduction was
achieved, and in most severe cases, a 20 % reduction was still attained.

ACX, through The Technical Cooperation Program (TTCP), has set up a test
program with the Defense Science and Technology Organization (DSTO), to be
performed at the International Follow-On Structural Testing Project (IFOSTP) facility at
the Aeronautical and Maritime Research Laboratory (AMRL) in Melbourne, Australia.
This program is the Buffet Load Alleviation (BLA) experimental investigation. The
USAF Technical Project Officers are Mark Hopkins and Doug Henderson, members of
the UAIPT. The reasons to conduct ground tests in Australia are twofold: (1) A full size
F/A-18 test aircraft is tested, i.e. a full size empennage is attached to the vehicle and not
to a structure; (2) Even though this is going to be a ground test, the facility has the
capability of applying realistic flight loads. It may be possible to go directly to flight
testing upon completion of the ground tests. This international cooperative program will
benefit a number of different aircraft, namely the F-14, F-15, F/A-18, F-22, and F-117.
This program will be completed by March 1999.

The UAIPT decided to conduct an in-house experiment on a 4.7% scale- model of
an F-15C aircraft to investigate the tail buffeting. The tests were performed in the SARL
(Subsonic Aerodynamics Research Laboratory) wind tunnel located at Wright-Patterson
AFB. A numerical investigation was conducted simultaneously.

The experiment used tangential blowing and later piezoelectric actuators to alleviate the
buffeting response from the tail structure. The first test was limited to tangential blowing
with sonic jets from the model’s nose, gun bump, and a portion of the wing’s leading edge
near the root (See Fig 4). The model was equipped with one stiff vertical tail (the right
tail) and one flexible tail. Fig 17 is a sketch of the modal patterns on the flexible vertical
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tail; damping and frequencies for the first 3 modes are shown. The rigid tail was
equipped with 12 dynamic pressure transducers, while the flexible one was equipped with
2 strain gauges, 2 accelerometers, and 12 dynamic pressure transducers. Fig 5 shows the
model assembly in the wind tunnel. The second entry will include piezoelectric actuators.
The locations of the actuators are shown in Fig 6 (note the axis location for the first
torsion and second bending modes). A NASTRAN code was used to identify areas of
high strain gradients which are effective locations for the piezoelectric actuators. Figs 36-
38 are plots showing the strain intensity on the vertical tail for the first three modes. The

accelerometer signals were used to determine the buffet excitation parameter, \/nG(n) , in
the vertical tail first bending mode according to the equation:

G = | 2

qs;

G(n) = power spectral density
n = reduced frequency
m = generalized mass in mode with respect to motion at tip

(for accelerometer mounted on tip)
= rms tip acceleration in mode
= dynamic pressure
f = exposed tail area

(AL 2NN SR NH

= total damping as a ratio of critical damping

The blowing tests were performed at Mach 0.2, angles of attack from zero to 32
degrees, sideslip angles from -4 to 4 degrees, and dynamic pressures up to 56 psf.
Pressures on both the rigid and flexible tails were measured as a function of angles of
attack with and without blowing. Fig 7 shows the location of the pressure transducers on
the vertical tails. Representative test conditions are shown in Tables 1-4. The B=0

degree cases are show in Figs 8-14 as plots of rms pressures acting on the flexible and
rigid tails for different conditions (with and without blowing). The pressure plots in
general show an increase in pressure with angle of attack, but the increase is more
pronounced for the rigid tail (the values on the rigid tail are higher than the values on the
flexible tail at the corresponding locations). Blowing had a beneficial effect at some
conditions; at alpha = 32 and beta =0, blowing at 45 psi from the wing’s leading edge
reduced the rms buffet response for the first bending mode; at alpha=32 and beta=4, the
same amount of blowing from the wing’s leading edge decreased the rms buffet response
for the second bending mode. For other combinations of alpha and beta decreases of up
to 36% were observed. Fig 15 is a laser light sheet photograph taken during the tests and
showing a typical vortex pattern and the impingement of the vortices on the vertical tails.
The buffet response from the tails was measured and power spectral densities are plotted
for the first bending and first torsion modes in Fig 16. Additional data are presented in
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Table 5. Figs 18-21 show the response of the different modes to the angle of attack
variation for different sideslip angles and blowing coefficients. For the bending mode,
the response increased with angle of attack up to the maximum test condition of 32
degrees, while for the torsion mode it increased up to an angle of attack of 24 degrees,
then decreased drastically. Positive sideslip generally reduced the bending mode
response; the torsion mode response decreased with a positive sideslip up to 24 degrees.
At an angle of attack of 32 degrees the negative sideslip gave the smallest response for
the torsion mode. The higher the blowing coefficient, the lower the bending mode
response. The same occurred for the torsion mode up to 24 degrees. At higher angles of
attack the blowing was detrimental. Specifically, for alpha (angle of attack)=32 and beta
(sideslip)=0, the tests showed the largest buffet response. Results showed that: 1)
Blowing from the wing leading edge with 45 psi of pressure reduced the rms buffet
response by 2.9% and the peak frequency by 0.2% in the range of the first bending mode
frequency; 2) For alpha=24 and beta=0, in the range of the first torsion frequency, the
blowing had an adverse effect, increasing the buffet response by 7.8%; and 3) For
alpha=32 and beta=4, in the range of the second bending frequency, the blowing
decreased the buffet response by 7.2%, even though the peak frequency increased by
20%. Rms buffet responses were reduced for four different conditions from 6.2 to 36.1%.
Only one other condition produced an increase of 1.7%.

The second phase of the in-house buffet test will investigate the use of
piezoelectric actuation to reduce the response due to buffet. To evaluate the effectiveness
of the actuators at various locations, frequency response tests were conducted. Figs 22-25
show the frequency response of the structure at the first bending, second bending, first
torsion, and first and second bending actuator locations.

The numerical simulations were conducted by Bob Weyer, a UAIPT member (Ref
65). The computational model of a clean F-15C aircraft was similar to the wind tunnel
model (Fig 26). Both models had flow through ducts, and the inlets and internal ramps
were set for the subsonic high angle of attack condition. The engine sections on the inlet
grid were bottlenecked to limit the mass flow without choking it. The geometry for this
project was generated by a CAD system. This system retains the actual aircraft surfaces
as files. The files are converted to discretized structured surface panels. All details of the
aircraft were retained including the horizontal tail notch, inlet diverter gap, pods atop the
vertical tails, separation between the horizontal tail and fuselage. A new unstructured
grid generator (TETMESH) was used to create the grid around the complex configuration
(see Fig 27). Computationally, a farfield boundary condition was modeled; therefore,
tunnel effects were not modeled. An inviscid solution was obtained using the COBALT
unstructured grid flow solver.

Fig 28 shows the flow over the gun bump. The vector components are colored to
denote various pressures. From the top of the inlet the vortex core develops and moves
downstream, then lifts over the wing and envelops the vertical tails (Fig 29). Fig 30
shows the same vortex pattern but the smaller vortices at the root of the tails are also
visible. The streamline traces are shown in Figs 31-32.

14



The pressure on the vertical tails is shown in Figs 33-34. It is evident that the
bottom of the left tail has outboard flow while the top has inboard flow. The right tail
instead experiences outboard flow. For most of the conditions, the computational and
measured pressure coefficients differed by about 20% (Table 7).

The computations for the flow-through case were compared to the experimental
data for the forces and moments of the entire aircraft (Table 6). For alpha = 24 degrees
and beta = -4 degrees, the lift coefficients differed by only 1% (computed value being
larger), while the drag coefficients differed by 34% (computed value smaller). The
pitching moments differed by only 7% (computed value less negative), but the rolling
moments differed by 126% (computed value negative and measured value positive).

The follow-on computational effort included the engine-on case since the mass
flow rate through the inlet with the engine on in similar flight conditions is seven times
larger than the mass flow obtained with the flow-through inlet. Comparisons were made
between the two cases. With the engine operating, the lift increased 6% but the drag
increased by 10%. The pitching moment increased by 7%. The influence of the engine
suction consisted in changing the location of the vortex origin. The origin moved
forward on the leeward side while it moved aft on the windward side. The vortical

flowfield is similar to the one with flow-through, but it is tighter and closer to the vertical
tails (Fig 35).

The computational solution accurately described the flow field around an F-15
aircraft at high angles of attack and sideslip. The favorable comparison between
computations and measurements indicated that the unstructured grid approach and an
inviscid solution could be useful in further research.




VI SUMMARY

The review of research performed on the buffet problems of fighter aircraft has
revealed a continuous and steady progress toward the partial or full elimination of buffet
on the vertical tails at high angles of attack. Tangential blowing had some beneficial
effects at some conditions.

The latest, most promising technique of using piezoelectric actuators for active
buffet control is being applied to the empennage of scale-models and full size aircraft.
Preliminary results show that with a minimal weight increase due to the actuators, a
considerable reduction in buffet is obtained with attendant increase of vertical tail fatigue
life. The UAIPT is working in-house and with companies which are involved in different
buffet load alleviation systems and on aerodynamic nonlinear effects.

Work in this area is continuing at present at a fast pace and the new results

covering the performance of the actuators in ground tests and wind tunnel experiments
will be presented as soon as they become available.
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Fig 7. Left and Right Vertical Tail Dynamic Pressure Transducer Location

A-7




F-15 Vertical Tail Buffet Test
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Fig 8. Measured Dynamic Pressure Distribution versus Angle of Attack
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F-15 Vertical Tail Buffet Test

Flex Tail: Q=56 psf, Beta=0
45 psi blowing @ wing L.E.
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Fig 9. Measured Dynamic Pressure Distribution versus Angle of Attack
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F-15 Vertical Tail Buffet Test

Flex Tail: Q=56 pst, Beta=0
65 psi blowing @ wing L.E.
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Fig 10. Measured Dynamic Pressure Distribution versus Angle of Attack
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F-15 Vertical Tail Buffet Test

Flex Tail: Q=56 psf, Beta=0
65 psi blowing @ gun only
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Fig 11. Measured Dynamic Pressure Distribution versus Angle of Attack
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F-15 Vertical Tail Buffet Test
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Fig 12. Measured Dynamic Pressure Distribution versus Angle of Attack
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F-15 Vertical Taii Buffet Test
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Fig 13. Measured Dynamic Pressure Distribution versus Angle of Attack
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F-15 Vertical Tail Buffet Test

Flex Tail: Q=30 psf, Beta=0
45 psi blowing @ wing L.E.
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Fig 14. Measured Dynamic Pressure Distribution versus Angle of Attack
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Sketch of vertical tail FEM showing nodal patterns
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Fig 17. a) Sketch of Vertical Tail Showing Modal Pattern, b) Damping versus Velocity for
the First Three Modes, c) Frequency versus Velocity for the First Three Modes
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Fig 29. Vortical Flow Outside the Vertical Tails
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Fig 32. Streamline Traces from the Inlet and Wing Top
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F-15 Vertical Tail Buffet Test: RMS (in-Ibs) & Peak PSD (in-lbs**2/Hz)

1st Bending: 35-65 Hz

S1-BENDING: No Blowing Pressure Wing Blowing Pressure

_ela Apha mms peak freq B.P. Beta Alpha
20 4719 3.268E-02 494

4 22 6473 4.857E-02 50.0

-4 24 8462 1.104E-01 482

4 28 1.1270 2.024E-01 482

-4 32 15490 3.856E-01 4838 45 4 32

0 20 4131 2155E-02 50.0

0 22 5085 3.832E-02 50.0

0 24 6262 4.925E-02 488 45 0 24

0 28 1.0190 1.584E-01 482 65 0 24

0 32 16110 5005E-01 476 45 0 32

4 20 2885 8.435E-03 50.7

4 2 4207 2526E-02 507

4 24 6123 6.3386-02 507

4 28 9290 1.363E-01 50.0

4 32  1.3960 3.659E-01 48.8 45 4 32

1st Torsion: 180-210 Hz
S2-TORSION: No Blowing Pressure Wing Blowing Pressure

_eta _nha ms peak freq B.P. Beta Alpha
5680 2.721E-02 1904

-4 22 8756 3.987E-02 191.0
4 24 5643 2.557E-02 191.6
4. 28 2354 4.128E-03 194.7
4 32 2240 4.622E-03 1935 45 4 32
0 20 3817 1.632E-02 190.4
0 2 5708 3.368E-02 189.8
0 24 7279 5535E-02 191.0 45 0 24
0 28 4221 1.556E-02 191.0 65 0 24
0 2. 2695 5.935E-03 1935 45 0 32
4 2140 4.036E-03 1923
4 22 3882 1.423E-02 191.6
4 24 6070 3.559E-02 1935
4 28 7277 4.453E-02 1929
4 32 3947 1.381E-02 195.3 45 4 32

2nd Bending: 210-240 Hz

S1-BENDING: No Blowing Pressure Wing Blowing Pressure

Beta Anha ms peak freq BP. Beta Alpha
-4 3241  6.926E-03 230.1
4 22 3698 9.630E-03 226.4
1 4 24 3158 7.514E-03 227.1
J -4 28 4941 1.790E-03 2277
; 4 32 3532 9.624E-03 227.1 45 -4 32
!
! 0 20 2478 4.503E-03 2289
0 2 3145 6.206E-03 2289
| 0 24 3090 5511E-03 2289 45 0 24
0 28 4908 1.687E-02 2289 65 0 24
0 32 4465 1.303E-02 231.3 45 0 32
4 20 1100 8.259E-04 2295
4 22 1812 2647E-03 2325
4 24 2640 5.177E-03 2319
4 28 3367 9.148E-03 2332
4 32 5280 1.955E-02 2283 45 32

__Table 5. Additional Data for Different Test CondlthﬂS
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ms

1.5620

8672
6224
1.5644

1.5402

ms

2372

6712
6099
3151

4154

3313

3143
3136
3797

4909

peak

4.819E-01

6.118E-02
4.609E-02
4.996E-01

3.871E-01

5.284E-03

5.378E-02
3.122E-02
1.124E-02

2.289E-02

\

Reak

1.299E-02

8.208E-03
7.744E-03
1.529E-02

2.343e-02

513

513
47.0
513

50.0

204.5

201.4
1874
205.7

204.5

2374

2325
216.7
239.3
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Table 7. Vertical Tail Pressure Comparisons (Flow Through Inlet Computations to Wind Tunnel Test)

Gauge Test Computational  Percentage Test Computational  Percentage
Pressure Pressure Difference Pressure Pressure Difference
pst psi Coefficient Coefficient
Right Inner
K147 2 13.436 13.620 1.4 -0.725 -0.251 -65.4
K148 3 13.576 13.620 0.3 -0.365 -0.251 -31.3
K149 4 13.400 13.643 1.8 -0.817 -0.194 -76.3
K145 5 13.480 13.668 1.4 -0.612 -0.127 -79.2
K150 6 13.555 13.644 0.7 -0419 -0.189 -54.8
Right Outer
K152 2 13.524 13.525 0.0 -0.499 -0.497 -03
K153 3 13.533 13.567 0.2 -0.475 -0.389 -18.1
K154 4 13.404 13.571 1.2 -0.807 -0.377 -53.3
K151 5 13.224 13.591 28 -1.269 -0.323 -74.3
K155 6 13.454 13.603 1.1 -0.678 -0.296 -56.4
Left Inner
K122 1 13.656 13.624 -0.2 -0.159 -0.242 52.1
K121 2 13.604 13.602 0.0 -0.293 -0.298 1.8
K115 3 13.601 13.576 -0.2 -0.301 -0.365 213
K119 4 13.541 13.579 03 -0.455 -0.358 -21.3
K114 5 13.533 13.581 0.4 -0.475 -0.352 -259
K113 6 13.622 13.617 0.0 -0.247 -0.260 53
Left Outer
K144 | 13.545 13.562 01 -0.445 -0.402 9.6
K143 2 13.591 13.586 0.0 -0.326 -0.340 43
K120 3 13.629 13.627 0.0 -0.229 -0.233 1.9
K117 4 13.641 13.677 0.3 -0.198 -0.105 47.1
K142 § 13.596 13.644 04 -0.314 -0.191 -39.0
K118 6 13.653 13.640 -0.1 -0.167 -0.200 20.0

Table 7. Vertical Tail Static Pressure Comparison

A=-45

Within
Experimental
Uncertainty

* #* * ® *
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