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FOREWORD 

This technical memorandum documents the activities of the Unsteady 
Aerodynamics Integrated Product Team (UAIPT). Dr. Wladimiro Calarese, Chairman of 
the UAIPT from September 1993 until his retirement in January 1997, and Elijah Turner, 
a member of the UAIPT from October 1994 to the present, prepared this memorandum 
based on the work of the UAIPT. The study reported herein was conducted under work 
unit 24044951. 

The support of all of the members of the UAIPT, SARL wind tunnel personnel, 
and other Flight Dynamics Directorate personnel is gratefully acknowledged. BobWeyer 
(ASC/ENFT) performed the Euler simulations while working in WL/FIMC. 

This manuscript was released by the authors in August 1997 for publication as a 
Wright Laboratory Technical Memorandum. 
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I INTRODUCTION 

The problem of buffet excitation on vertical twin tails at high angle of attack has 
been studied by many scientists for many years with various degrees of success. Shock 
wave-boundary layer interaction, separated flows at high angles of attack, vortex 
interaction and bursting are phenomena responsible for buffet excitation and structural 
response of vertical twin tails of aircraft flying and maneuvering at high angles of attack. 
The magnitude of the structural loads can approach limiting values and would 
considerably reduce the fatigue life of the structure. 

Various techniques for buffet attenuation have been developed. Unfortunately, 
the problem has not been solved. Advanced fighter aircraft capable of maneuvering at 
high angles of attack and high g's experience strong multiple-mode tail buffeting.   Buffet 
attenuation and possible elimination must be studied both theoretically and 
experimentally. In order to achieve reliable results, the different static and dynamic 
effects on an aircraft structure must be analyzed simultaneously. 

The first studies of buffeting started in the 1930's and both the USA and European 
countries showed a lot of interest in the problem (Ref 1). Later on, some predictions of 
tail buffet loads and fatigue damage experienced by fighter aircraft during high angle of 
attack maneuvering were reported for design application (Ref 2). Predictions were 
obtained for the F-111 using forcing functions derived by integration of pressure time 
histories with the natural buffeting modes, correlation of predicted and measured 
damping, and correlation of predicted and measured buffet response (Ref 3). 

Wind tunnel testing was used extensively to measure unsteady pressures present 
on the tails of aircraft at high angles of attack and the buffeting response (Refs 4-5). 
Experimental research was carried out separately by the structures and aerodynamics 
scientists. Huston (Ref 6) used traditional methods to correlate wind tunnel data with 
flight buffeting response while Mabey (Ref 7) presented an evaluation of dynamic loads 
due to the separation of the flow field. Investigations of buffet on wings, fuselage, and 
weapon bays of aircraft were also reported by various researchers ( Refs 8-11). 

This report refers, in chronological order, to studies of buffet excitation on 
advanced fighter aircraft tails and, in particular, to the F-15 twin vertical tails. 



II BACKGROUND 

Aircraft can experience buffet when unsteady pressures associated with separated 
flow excite modes of vibration of the aircraft structure. For twin tail fighter aircraft, 
buffet can be severe when maneuvering at high angles of attack, due to separation at the 
leading edge of the wing being convected down stream and impinging on the vertical tail. 
This buffet is a function of the geometry of the wing, fuselage, and vertical tails. Triplett 
(Ref 5) performed wind tunnel tests to obtain the buffeting pressures on the vertical tail 
surfaces of a 13 percent F-15 model equipped with a rigid and a flexible tail. The 
MCAIR low speed tunnel was used. The research indicated that, for the configuration 
tested, the pressures and the buffet response levels reached a maximum at 22 degree angle 
of attack, and the predominant mode was the first torsion. Kulite pressure transducers 
were used to measure both steady and unsteady pressures. These pressures on the flexible 
tail were different in magnitude and distribution when compared to the rigid tail. For the 
same tail incidence, the lift was three times as large for the flexible tail. The results 
obtained were very valuable for the analysis and design of a torsional oscillation 
suppression system for the vertical tails. 

At first, aerodynamicists and structures experts researched vortex-dominated and 
buffet flows separately. As mentioned in the introduction, Huston (Ref 6) indicates the 
traditional methods used to correlate wind tunnel and flight buffeting response; Mabey 
(Ref 7) gives an assessment of dynamic loads due to flow separation. 

Other researchers tried to predict buffet on empennage by theoretical and 
experimental techniques. Edwards (Ref 12) assessed the validity of Euler as well as 
Navier-Stokes equations in modeling vortex-dominated flows conducive to buffet. He 
stressed the importance of grid density to obtain accurate, converged calculations, and 
showed that computational finite difference methods can provide accurate solutions of the 
thin-layer Navier-Stokes equations for flows about complex aircraft. Ferman et al. (Ref 
13) developed a unified approach for predicting buffet response of a fighter aircraft 
empennage operating at high AOA. Ferman derived two approaches for predicting buffet 
response of a fighter aircraft empennage. The first one used elastically scaled models in 
wind tunnel tests to provide full scale prediction. The second was based on calculations 
using measured pressure data from wind tunnel tests. The latter method was considered 
to be more versatile. 

Zimmerman et al. (Ref 14) show the buffet pressure frequency responses for an 
advance fighter aircraft; the peak frequency decreases with increasing angle of attack. 
Cunningham et al. (Ref 15) report unsteady pressure and flow visualization tests on 
oscillating delta wing models, with particular reference to the vortex systems ( strake and 
wing vortices). Vortex lift augmentation is shown to occur between 8 and 18 deg angle 
of attack and the downward break in the lift curve slope indicates the onset of burst 
vortex flow over the planform. The maximum normal force coefficient, Cn, occurs at 35 
degree AOA; at higher angles the flow is fully separated and the value of C„ falls.    The 
aerodynamic community is trying to understand the physics of separated vortical flows, 



and data bases are being gathered which can be used to validate CFD codes. Experiments 
have been performed on static, rigid models. 

Elsenaar et al. (Ref 16) report results of vortex flow development on a 65 degree 
cropped delta wing at Mach 0.4 to 4.0. Both sharp and rounded leading edges were tested 
for validation of Euler and Navier-Stokes codes. Other experiments have used non- 
intrusive 3-D laser Doppler velocimeters to improve the data quality for code validation. 
Pagan and Soligna (Ref 17) investigated in detail the bursting of vortices generated by a 
75 degree delta wing. RMS velocity components were reported together with mean 
velocity. This was done in order to study the unsteady aspects of the flow field. The 
region downstream of the vortex burst generated strong fluctuations. 

Komerath (Ref 18) reported a quantitative study on the low speed flow 
environment of a scaled model of an F-15 fighter aircraft at high angles of attack. Laser 
sheet flow visualization was used to observe the various locations of vortex generation, 
and the evolution of these vortex flows. Laser Doppler velocimetry was used to obtain 
quantitative values of the velocity field. Although the vertical tails were immersed in 
rotational flow, no concentrated vortex was observed. At 22 degrees AOA, the flow 
separated on the outside surfaces of the vertical tails. Mabey (Ref 19) performed 
extensive studies of tail buffeting at high angles of incidence on a complete scale model 
with a single fin. He found that the buffet excitation in the first bending mode was 
controlled by the wing flow separations and contained a peak at a well-defined frequency 
parameter. Adding trapezoidal or gothic canards strongly influenced the fin buffeting, 
and sideslip or strakes increased it. 

Other researchers studied, both theoretically and experimentally, the tail buffet 
characteristics on the F-18 (Refs 20-22). Komerath et al. (Ref 20) observed sharply 
peaked spectra both inboard and outboard of the upper portion of the vertical tails. The 
narrow-band fluctuations appeared to originate in the separated flow over the wing 
surfaces. This demonstrated that the tail oscillations were driven by narrow-band fluid 
dynamic oscillations, whose frequency varied with angle of attack and flight velocity. 

Zan (Ref 23) measured the buffeting on a single-tail generic fighter aircraft, such 
as the F-16. The results were correlated in terms of the buffet excitation parameter 

^nG(n) . At low angle of attack, where the flow on the forebody remained attached, the 

buffeting on the tail was negligible. The beginning of buffeting coincided with the onset 
of symmetric vortices and increased with increasing angle of attack, up to the onset of 
asymmetric vortices. At higher angles of attack, the buffeting decreased considerably. It 
was evident that the buffeting was directly connected with the vortex flow in the vicinity 
of the tail. Bean (Ref 24) then tried tangential leading edge blowing to alter the vortex 
flow pattern and characteristics on a single fin model with the intent of attenuating the fin 
buffet. Blowing at a constant rate delayed vortex breakdown and shifted the maximum 
buffet response to higher angles of attack. It is probable that the optimum blowing profile 
would be wing dependent and change with flight condition. Using an optimum blowing 



profile might completely suppress the buffeting response without significantly changing 
the wing characteristics. 

Jacobs (Ref 25) used artificial intelligence for predicting empennage buffeting 
pressures and elastic response as a function of upstream flow field and geometric 
conditions. The effort employed a combined neural network and finite element modeling 
to predict flexible tail response based on rigid pressure information. Weeks and Nagaraja 
(Ref 26) surveyed a number of numerical codes used for linear and nonlinear problems 
which can analyze vertical tail buffet and the aeroelastic responses of 3-D vehicles at high 
angles of attack. 

Other studies were conducted during the time span 1993-1995 on vertical tail 
buffet for existing fighter aircraft, such as the F-15 and F-18. Some were directed towards 
the analysis of the vortex flow surrounding the tail, and vortex burst over the wings and 
tails (Refs 27-43). Cornelius (Ref 40) evaluated criteria for vortex breakdown. The 
parameters that govern stability were formulated in terms of the local vortex flow 
variables. Laser measurements were taken and showed that the critical parameters, such 
as the ratio of axial-to-crossflow energy, decreased downstream from the adverse pressure 
gradient along the vortex trajectory, providing conditions that correlate with the location 
of vortex breakdown. Visbal (Ref 38) ascertained that breakdown emerged from the 
growth and upstream propagation of essentially axisymmetric disturbances which 
subsequently lose stability to helical modes. Both spiral and bubble modes of breakdown 
were compared with experimental measurements. Compressibility was shown to have a 
significant effect on the flow structure above a 75 degree swept wing at incidences 
corresponding to breakdown onset. Others studied the characteristics of surface pressures 
due to buffet (Refs 44-45). Correlation of wind tunnel and flight data were obtained for 
the F/A-18 vertical tail buffet (Ref 46). Mabey et al. (Ref 47) performed measurements 
in a cryogenic wind tunnel in order to find out the importance of the variations in 
frequency parameter and Reynolds number, the choice of model material ( considering 
stiffness and damping), and the effect of static aeroelastic distortion. The choice of the 
wind tunnel gave them the opportunity to obtain conditions independent of temperature 
effects and to test at higher Reynolds numbers. Dima and Jacobs (Ref 48) investigated 
the effects of dynamic pitch-up maneuvers on empennage environment by means of a 
system of local-stationary equations based on the steady-state response equivalence. This 
system constituted a design tool to obtain more accurate values of buffet response and 
structural fatigue. Wolfe et al. (Ref 49) investigated the surface pressure loading on 
buffeting fins and concluded that the onset of vortex breakdown played a major role in 
dictating the spectral content of the pressure fluctuations on the fin. Pendelton et. al (Ref 
45) and Meyn et. al (Ref 50) performed wind tunnel buffet studies on a full scale F/A-18 
with and without a LEX fence. The fence significantly reduced the magnitude of the rms 
pressures and bending moments for angles of attack up to 22 degrees.    The importance 
of this experiment lay in the comparison of the full-scale results with small-scale tests. It 
showed that the tail buffet frequency scales very well with length and velocity. Moses 
and Pendleton (Ref 51) also compared the pressure measurement results of a full-scale 
and a 1/6 scale F/A-18 twin tail during buffet. In 1995/96, multidisciplinary methods 



were used to compute the vertical tail buffet (Ref 52). Three sets of equations were used 
on a multi-block grid structure. The first set was the unsteady, compressible, full Navier- 
Stokes equations. The second set was the coupled aeroelastic equations for bending and 
torsional responses. The third set was the grid-displacement equations used to update the 
grid coordinates due to the tail deflections. This system allowed the computation of 
coupled and uncoupled bending-torsional responses. Cunningham (Ref 53) illustrated 
problems associated with nonlinear aerodynamic effects and their impact on structural 
integrity. 



Ill F-16 UNSTEADY AERODYNAMICS INVESTIGATION 

Fighter aircraft can experience oscillations of external stores that critically affect 
structural integrity and result in performance limitations. Limit Cycle Oscillations (LCO) 
result from a variety of phenomena that produce unsteady separated flow for some ston 
configurations. The F-16 experienced LCO for several store configurations due to shoe 
induced trailing edge separation on the wing. Engine spillage during throttle transients 
can cause vibration on the down stream structures such as store fins and antennas, 
resulting in fatigue damage. 

Cunningham (Ref 53) performed a detailed investigation with regard to the fatigue 
life of the ventral fins of the F-16 fighter aircraft. The fatigue life was shortened 
considerably with the use of LANTIRN pods upstream of the fins. Inlet spillage also 
contributed to the deterioration of the fins. Airflow separating and reattaching 
continuously ahead of the fins (caused by strong turbulence) was another cause of the fins 
fatigue problem. Modification of the aircraft, such as increased inlet size for larger 
engines, inlet thin lip effects (such as severe flow separation) during throttle chops, and 
the addition of the cooling system exhaust deflector accentuated the buffet loads even 
more and led to fatigue problems on the fins. As a result, the ventral fins had to be re- 
designed. Using a semi-empirical model, various modifications were investigated, such 
as increasing the stiffness by 40%, leading edge nose cap, and using a constant NACA 
airfoil section from root to tip for the fins. Results showed that the solution that takes 
into consideration the aeroelastic nonlinearity has the best chance to solve the fin 
problem. As stated above, it is important to limit the effects of two types of nonlinear 
aeroelastic problems, i.e. limit cycle oscillations and large amplitude buffet. 



IV TECHNIQUES FOR BUFFET ATTENUATION 

Various techniques for buffet attenuation have been developed with some degree 
of success. Unfortunately, the problem has not been solved. Advanced fighter aircraft 
capable of maneuvering at high angles of attack and acceleration experience strong 
multiple-mode tail buffeting. 

Ferman (Ref 54), referring to the vertical tail buffet, stated that "traditional fixes 
related to structural fatigue consisted of reinforcing the broken structure. This tended to 
merely chase cracking in the secondary structure from one area to another on the tail. 
With the use of composite material technology and adhesive bonding technology, it was 
possible to improve the F-15 vertical tail durability". He then tried to reduce the strong 
buffeting of the F-15 vertical tails by using a bond-on composite stiffening doubler called 
Exoskin. This approach should reduce the tail vibration response created by high angle of 
attack buffeting forces. However, this patch has not been in use long enough to 
determine its effectiveness. 

Mabey and Pyne (Ref 55) performed some new research on the effects of wing 
leading edge blowing, similar to what had been done before by Bean et al. (Ref 24). The 
buffet excitation parameter ^nG(ri) decreased consistently with increasing blowing 

momentum coefficient  C^, up to the attainment of an optimum C^ for a given angle of 

incidence. The indication was that buffeting could be attenuated. In addition, the overall 
L/D increased. They believed that this technique was promising. 

Rock and Ashley (Ref 56) presented a technique that used active control to reduce 
the fin buffet response on the F/A-18 vertical tail. They first developed a model for 
control design generated by finite element structural analysis and linearized potential 
aerodynamic theory. With this model they designed a feedback control law that affected 
the movement of the rudder by means of feedback signals received from an accelerometer 
mounted on a fin-tip vane. They proved that it was possible to reduce the bending 
moment associated with the first modal frequency by 34% with the rudder motion limited 
to 2 degrees. A similar model was also effective on the F-15 aircraft. This result was 
based on theoretical analysis and was not proven in practice. However, there was a 
potential for enhancing the fatigue life of the empennage structure of aircraft operating at 
high angles of attack. Later on, RANN Corporation and McDonnell Douglas (MDA) 
suggested the use of adaptive feedback neural network controllers to activate the rudder 
command signal. 

Barrett et al. (Ref 57) tried to reduce the buffet response of an advanced fighter 
tail section by passive damping, i.e. they started a research and development program 
whose goal was the development of buffet and fatigue resistant structure. They applied 
passive damping technology to redesign structural components. The specific components 
addressed included the beavertail section of the F-14D and the spars of the F/A-18 
vertical tails. The damping material used consisted of advanced composites. Benefits 



can be obtained by including damping as a parameter in the design of parts of the 
structure that are subjected to dynamic loads. 

Hauch et al. (Ref 58) studied the possibility of reducing tail buffet response by 
using integrated piezoelectric actuators. They performed their experiments on a 5%-scale 
aeroelastically-tailored structure that had similar vibration response to a full-scale aircraft 
structure. At high angles of attack, the leading edge vortices generate severe buffet 
pressures on the vertical tails, causing excitation of the first few natural modes of the 
flexible tail. Simple control algorithms were used with piezoelectric actuators and 
sensors to attenuate the strain at the root of the tail. Spectral analysis showed that the 
peak response was 65% less than the one without actuators. 

Lazarus et al. (Ref 59) also addressed the feasibility of using active piezoelectric 
buffet suppression system to reduce buffet vibration in the vertical tails of aircraft. Full- 
scale piezoelectric buffet suppression systems were designed and evaluated. Many 
different actuator distributions, sensor locations and controller architectures were 
examined. Significant performance improvement was achieved (greater than 70%) with 
minimal weight penalties. This study showed that the tail vibrations could be reduced 
and the fatigue life extended. 

It is important to list past and on-going WL efforts on techniques for tail buffet 
attenuation. The past efforts included a contracted F-15 buffet test in 1982 on a 13% 
scale-model with one rigid and one flexible vertical tail by Triple« (Ref 5), and a RANN 
analytical effort for active control using rudder on the F/A 18 and a tip vane on the F-15 
(Ref 60). WL supported NASA Ames wind tunnel tests on a full-scale F-18 by 
conducting ground vibration tests on the vertical tails and measuring buffet data on one of 
the vertical tails (Ref 45). WL also supported NASA Langley Research Center's (LaRC) 
test on a 16% scale F-18 model through the supplying of a technician and test equipment 
and by supplying a control law through a data exchange agreement (DEA) with Germany. 
WL supported ACX and Rohini International with SBIR contracts for research on buffet 
load alleviation, provided an in-house numerical simulation of the interaction between 
leading edge vortex and a rigid vertical tail (Ref 61), awarded a grant to Dr. Singh (Clark 
Atlantic University), Dr. Sankar (Georgia Tech University) and Dr. Smith (Georgia Tech 
Research Institute) to modify an Euler/Navier-Stokes computer code (ENS 3 DAE) and 
include a trim module in order to perform trimmed and untrimmed aeroelastic analyses. 
Funding was also provided to Georgia Tech Research Institute to improve the computer 
code FASIT (Fluid and Structures Interface Toolkit), which is used to transfer data 
between different computational grids; specifically, it transfers data between CFD and 
structural grids in order to perform static aeroelastic calculations. FASIT is being 
enhanced to include data transfer for solutions of dynamic aeroelastic problems, as well 
as data transfer to/from unstructured CDF grids. On-going WL efforts include RANN 
analytical research on the F-22, ACX Phase II SBIR research for buffet load alleviation 
on the F-18 vertical tails, and Rohini International Phase II SBIR research for buffet load 
alleviation on the F-15 vertical tails. 



Another on-going effort is NASA LaRC's ACROBAT (Actively Controlled 
Response of Buffet Affected Tails) program. This program consists of wind tunnel tests 
in NASA LaRC's 16-foot transonic dynamic tunnel to ascertain the effect of piezoelectric 
actuators and rudder on vertical tail buffeting. Moses (Ref 62) performed the experiment 
and recently presented some preliminary results, which indicated a reduction in power 
spectral density (PSD) of the root strain (bending moment) of up to 60% for certain 
angles of attack. In the Active Vertical Tail (AVT) tests, McDonnel Douglas Aircraft 
(MDA) and NASA LaRC conducted buffet suppression tests using integrated 
piezoelectric actuators. The model was a generic fighter that could be assembled into 
different configurations. MDA chose an F/A-18 to pursue the Buffet Load Alleviation 
System Technology (BLAST) program which refers to vertical tail buffet. An adaptive 
neural network is proposed for control of the rudder actuator . The Navy also conducted 
in-house wind tunnel tests and CFD simulations on a generic fighter configuration similar 
to the MDA/NASA model. 



V ROLE OF WL/FI RESEARCH TEAM 

In view of the importance of obtaining solutions of unsteady aerodynamic 
problems, WL decided at the beginning of 1994 to establish the "Unsteady Aerodynamics 
Integrated Product Team" (UAIPT). This team was formed by scientists and engineers 
from three different divisions in order to coordinate multidisciplinary research. The three 
divisions were the Aeromechanics Division, mostly involved in experimental and 
computational aerodynamic problems, the Structures Division, involved in both metallic 
and composite structures development, and the Flight Control Division, mainly involved 
in establishing and evaluating flight control laws (Fig 1). 

The UAIPT was considered the center for coordinating and integrating unsteady 
aerodynamic research at WL (Fig 2). It initiated contacts with the various System 
Program Offices (SPOs) at Wright-Patterson AF Base, such as the F-15 SPO, the F-16 
SPO, the F-22 SPO, the C-17 SPO, and the B-2 SPO.   Among the many problems in 
unsteady aerodynamics, such as Limit Cycle Oscillations (LCO), buffet, flutter, separated 
flow, etc., the buffet problem seemed to be the most important due to the many requests 
received for immediate attention and support (Fig 3). Buffet attenuation and possible 
elimination had to be studied both theoretically and experimentally in-house and by 
contract. In order to achieve reliable results, the different static and dynamic effects on an 
aircraft structure had to be studied simultaneously. Team members had to work together 
and interact with each other to define and conduct an in-house program. Support was 
received by another service, the Navy, by a Government agency, NASA, and private 
companies, such as Rohini International, RANN Corporation, ACX, and MDA (Fig 2). 
Research was centered on computational fluid dynamics (CFD), finite element research, 
vibration tests, and wind tunnel tests. The first project selected by the UAIPT consisted 
in improving present technology to obtain significant buffet vibration reduction. 

Twin tail buffeting problems are quite different for different aircraft. For 
example, the F/A-18 problems are attributed to the bursting of strong vortices and the 
attendant high intensity turbulence which drive the structural dynamics modes at high 
angles of attack. F-15 aircraft investigations show a concentration of energy fluctuation 
over the wing at high angles of attack, which then propagates downstream in a narrow 
band of frequencies enveloping the vertical tails. 

Rohini International was awarded a Phase II SBIR contract for research on buffet 
load alleviation on the F-15 vertical tail (Ref 63). Under this contract the use of stacked 
piezoelectric actuators was investigated as a means of suppressing buffet. Structural 
dynamic tests were conducted on a full scale F-15 vertical tail subassembly with 
piezoelectric actuators and reported by Hanagud et al. (Ref 64). Hanagud was able to 
determine the vertical stabilizer dynamic response characteristics. Natural frequencies, 
mode shapes, and damping ratios of the modes were studied to determine their 
interaction. The results of these vibration tests correlated well with data from an 
operational F-15 aircraft. Modes from the laboratory test article (F-15 subassembly) and 
the aircraft were identified and found to be the same. The nonlinearities that were 
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observed in the F-15 vertical tail structure appeared to be quadratic. Therefore, the 
laboratory subassembly could be used to predict the effects of structural modifications of 
the vertical stabilizer and the effects of active or passive vibration controllers on the full 
scale aircraft (Ref 63). Since stiffening of the tail structure alone is not an effective 
means of reducing the vibrations, it may be necessary to use an active vibration absorber 
capable of sensing the buffet induced structural dynamics reducing the multi-mode 
vibration. 

In the Rohini/Georgia Tech effort, lateral and torsional vibrations in the plane of 
the vertical tail were controlled by applying stresses and strains with piezoelectric 
actuators. The optimum locations for the actuators that would give a maximum response 
to lateral and torsional vibrations of the vertical tail had to be determined. That was 
accomplished by using in-plane actuators and measuring lateral and torsional deflections 
at various desired locations. In this way the best locations for controlling the vibrations at 
each individual mode were found. The force disturbances were generated by a shaker 
mounted on the outboard trailing edge of the vertical tail. Transfer functions between the 
accelerometer and the actuator were determined. A control system was designed whose 
purpose was to reduce the bending response (2nd bending at 39.8 Hz) of the tail as 
measured by a tip mounted accelerometer. Tests results showed that the magnitude of the 
acceleration at the tip could be reduced by nearly 40%. 

A computer program was developed to construct a finite element model from the 
measured experimental modal data. The first step in the program was to input the 
experimentally measured modes and natural frequencies. The second step in the program 
was to construct the mass matrix from the data provided in the vertical tail drawings, the 
densities of different components, and the total weight of the vertical tail. In the third 
step, the measured relative modal amplitudes were normalized with respect to the mass 
matrix. Next, the damping and stiffness matrices were calculated, and the natural 
frequencies were calculated from the reconstructed mass, damping, and stiffness matrices. 
This experimentally-based finite element model yielded a range of frequencies which 
were reasonably accurate. 

ACX, Inc. was also supported by WL in their research on buffet load alleviation 
with distributed piezoelectric actuators applied to the vertical tails of an F-18 aircraft. 
SBIR Phase I and Phase II contracts were awarded, with the goal to conduct ground 
vibration tests on a full scale structure, measure the vibration level reduction, and 
demonstrate piezoelectric actuators' authority at full loads. 

In Phase I (1994), ACX assessed the feasibility of employing piezoelectric 
actuators. This was demonstrated on a scale model with simple geometry by Lazarus 
(Ref 59). Design and feasibility studies were conducted on a full scale tail. A 
distribution of actuators in the vertical tail was selected in the areas of maximum strain. 
ACX demonstrated the effectiveness of buffet suppression using piezoelectric actuators 
and active control. Power requirements and weights were expected to have minimal 
impact on aircraft operation. For an 8% increase in tail weight, the damping of the first 
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mode was increased by 60% which would significantly reduce structural damage and 
fatigue. 

In Phase II, ACX addressed the fabrication and integration of the actuators, the 
electronics, and power conditioning. They evaluated the controller implementation, 
testing, and performance. The controller did not have to be inserted in the flight control 
system since it could be dedicated to the actuators only. In the meantime, McDonnel 
Douglas Aerospace (MDA) studied the cost benefits of equipping the tail with actuators 
instead of replacing it. The actuators should last the life of the tail to reduce maintenance 
of the buffet suppression system and the added weight should be less than 25 pounds per 
tail, with a maximum added weight to the aircraft of 100 pounds for both tails. The 
actuators were embedded in the aircraft skin and thermal control had to be addressed. 
The cable between the amplifiers and the actuators had to be shielded to avoid electro- 
magnetic countermeasures (EMC) problems. Accelerometers and strain gauges were 
used as sensors; the accelerometers turned out to be more reliable. The NASTRAN 
finite element code was used for modeling the mode shapes, frequencies, and actuator 
modal influence. A linear unsteady aerodynamics code was used to compute the 
aerodynamic forces. The actuators were limited to peak actuation strain of 400 
microstrain. In the case of least disturbance energy, up to 75% of buffet reduction was 
achieved, and in most severe cases, a 20 % reduction was still attained. 

ACX, through The Technical Cooperation Program (TTCP), has set up a test 
program with the Defense Science and Technology Organization (DSTO), to be 
performed at the International Follow-On Structural Testing Project (IFOSTP) facility at 
the Aeronautical and Maritime Research Laboratory (AMRL) in Melbourne, Australia. 
This program is the Buffet Load Alleviation (BLA) experimental investigation. The 
USAF Technical Project Officers are Mark Hopkins and Doug Henderson, members of 
the UAIPT. The reasons to conduct ground tests in Australia are twofold: (1) A full size 
F/A-18 test aircraft is tested, i.e. a full size empennage is attached to the vehicle and not 
to a structure; (2) Even though this is going to be a ground test, the facility has the 
capability of applying realistic flight loads. It may be possible to go directly to flight 
testing upon completion of the ground tests. This international cooperative program will 
benefit a number of different aircraft, namely the F-14, F-15, F/A-18, F-22, and F-l 17. 
This program will be completed by March 1999. 

The UAIPT decided to conduct an in-house experiment on a 4.7% scale- model of 
an F-15C aircraft to investigate the tail buffeting. The tests were performed in the SARL 
(Subsonic Aerodynamics Research Laboratory) wind tunnel located at Wright-Patterson 
AFB. A numerical investigation was conducted simultaneously. 

The experiment used tangential blowing and later piezoelectric actuators to alleviate the 
buffeting response from the tail structure. The first test was limited to tangential blowing 
with sonic jets from the model's nose, gun bump, and a portion of the wing's leading edge 
near the root (See Fig 4). The model was equipped with one stiff vertical tail (the right 
tail) and one flexible tail. Fig 17 is a sketch of the modal patterns on the flexible vertical 
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tail; damping and frequencies for the first 3 modes are shown. The rigid tail was 
equipped with 12 dynamic pressure transducers, while the flexible one was equipped with 
2 strain gauges, 2 accelerometers, and 12 dynamic pressure transducers. Fig 5 shows the 
model assembly in the wind tunnel. The second entry will include piezoelectric actuators. 
The locations of the actuators are shown in Fig 6 (note the axis location for the first 
torsion and second bending modes). A NASTRAN code was used to identify areas of 
high strain gradients which are effective locations for the piezoelectric actuators. Figs 36- 
38 are plots showing the strain intensity on the vertical tail for the first three modes. The 

accelerometer signals were used to determine the buffet excitation parameter, -JnG{n), in 

the vertical tail first bending mode according to the equation: 

jnG(n) = -j= 
mz 
qS 

:i/2 

f ) 

G(n)    = power spectral density 
n = reduced frequency 

m        = generalized mass in mode with respect to motion at tip 
(for accelerometer mounted on tip) 

z = rms tip acceleration in mode 
q = dynamic pressure 
Sf       = exposed tail area 

E, = total damping as a ratio of critical damping 

The blowing tests were performed at Mach 0.2, angles of attack from zero to 32 
degrees, sideslip angles from -4 to 4 degrees, and dynamic pressures up to 56 psf. 
Pressures on both the rigid and flexible tails were measured as a function of angles of 
attack with and without blowing. Fig 7 shows the location of the pressure transducers on 
the vertical tails. Representative test conditions are shown in Tables 1-4. The ß= 0 
degree cases are show in Figs 8-14 as plots of rms pressures acting on the flexible and 
rigid tails for different conditions (with and without blowing). The pressure plots in 
general show an increase in pressure with angle of attack, but the increase is more 
pronounced for the rigid tail (the values on the rigid tail are higher than the values on the 
flexible tail at the corresponding locations). Blowing had a beneficial effect at some 
conditions; at alpha = 32 and beta =0, blowing at 45 psi from the wing's leading edge 
reduced the rms buffet response for the first bending mode; at alpha=32 and beta=4, the 
same amount of blowing from the wing's leading edge decreased the rms buffet response 
for the second bending mode. For other combinations of alpha and beta decreases of up 
to 36% were observed. Fig 15 is a laser light sheet photograph taken during the tests and 
showing a typical vortex pattern and the impingement of the vortices on the vertical tails. 
The buffet response from the tails was measured and power spectral densities are plotted 
for the first bending and first torsion modes in Fig 16. Additional data are presented in 
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Table 5. Figs 18-21 show the response of the different modes to the angle of attack 
variation for different sideslip angles and blowing coefficients. For the bending mode, 
the response increased with angle of attack up to the maximum test condition of 32 
degrees, while for the torsion mode it increased up to an angle of attack of 24 degrees, 
then decreased drastically. Positive sideslip generally reduced the bending mode 
response; the torsion mode response decreased with a positive sideslip up to 24 degrees. 
At an angle of attack of 32 degrees the negative sideslip gave the smallest response for 
the torsion mode. The higher the blowing coefficient, the lower the bending mode 
response. The same occurred for the torsion mode up to 24 degrees. At higher angles of 
attack the blowing was detrimental. Specifically, for alpha (angle of attack)=32 and beta 
(sideslip)=0, the tests showed the largest buffet response. Results showed that: 1) 
Blowing from the wing leading edge with 45 psi of pressure reduced the rms buffet 
response by 2.9% and the peak frequency by 0.2% in the range of the first bending mode 
frequency; 2) For alpha=24 and beta=0, in the range of the first torsion frequency, the 
blowing had an adverse effect, increasing the buffet response by 7.8%; and 3) For 
alpha=32 and beta=4, in the range of the second bending frequency, the blowing 
decreased the buffet response by 7.2%, even though the peak frequency increased by 
20%. Rms buffet responses were reduced for four different conditions from 6.2 to 36.1%. 
Only one other condition produced an increase of 1.7%. 

The second phase of the in-house buffet test will investigate the use of 
piezoelectric actuation to reduce the response due to buffet. To evaluate the effectiveness 
of the actuators at various locations, frequency response tests were conducted. Figs 22-25 
show the frequency response of the structure at the first bending, second bending, first 
torsion, and first and second bending actuator locations. 

The numerical simulations were conducted by Bob Weyer, a UAIPT member (Ref 
65). The computational model of a clean F-15C aircraft was similar to the wind tunnel 
model (Fig 26). Both models had flow through ducts, and the inlets and internal ramps 
were set for the subsonic high angle of attack condition. The engine sections on the inlet 
grid were bottlenecked to limit the mass flow without choking it. The geometry for this 
project was generated by a CAD system. This system retains the actual aircraft surfaces 
as files. The files are converted to discretized structured surface panels. All details of the 
aircraft were retained including the horizontal tail notch, inlet diverter gap, pods atop the 
vertical tails, separation between the horizontal tail and fuselage. A new unstructured 
grid generator (TETMESH) was used to create the grid around the complex configuration 
(see Fig 27). Computationally, a farfield boundary condition was modeled; therefore, 
tunnel effects were not modeled. An inviscid solution was obtained using the COBALT 
unstructured grid flow solver. 

Fig 28 shows the flow over the gun bump. The vector components are colored to 
denote various pressures. From the top of the inlet the vortex core develops and moves 
downstream, then lifts over the wing and envelops the vertical tails (Fig 29). Fig 30 
shows the same vortex pattern but the smaller vortices at the root of the tails are also 
visible. The streamline traces are shown in Figs 31-32. 
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The pressure on the vertical tails is shown in Figs 33-34. It is evident that the 
bottom of the left tail has outboard flow while the top has inboard flow. The right tail 
instead experiences outboard flow. For most of the conditions, the computational and 
measured pressure coefficients differed by about 20% (Table 7). 

The computations for the flow-through case were compared to the experimental 
data for the forces and moments of the entire aircraft (Table 6). For alpha = 24 degrees 
and beta = -4 degrees, the lift coefficients differed by only 1% (computed value being 
larger), while the drag coefficients differed by 34% (computed value smaller). The 
pitching moments differed by only 7% (computed value less negative), but the rolling 
moments differed by 126% (computed value negative and measured value positive). 

The follow-on computational effort included the engine-on case since the mass 
flow rate through the inlet with the engine on in similar flight conditions is seven times 
larger than the mass flow obtained with the flow-through inlet. Comparisons were made 
between the two cases. With the engine operating, the lift increased 6% but the drag 
increased by 10%. The pitching moment increased by 7%. The influence of the engine 
suction consisted in changing the location of the vortex origin. The origin moved 
forward on the leeward side while it moved aft on the windward side. The vortical 
flowfield is similar to the one with flow-through, but it is tighter and closer to the vertical 
tails (Fig 35). 

The computational solution accurately described the flow field around an F-15 
aircraft at high angles of attack and sideslip. The favorable comparison between 
computations and measurements indicated that the unstructured grid approach and an 
inviscid solution could be useful in further research. 
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VI SUMMARY 

The review of research performed on the buffet problems of fighter aircraft has 
revealed a continuous and steady progress toward the partial or full elimination of buffet 
on the vertical tails at high angles of attack. Tangential blowing had some beneficial 
effects at some conditions. 

The latest, most promising technique of using piezoelectric actuators for active 
buffet control is being applied to the empennage of scale-models and full size aircraft. 
Preliminary results show that with a minimal weight increase due to the actuators, a 
considerable reduction in buffet is obtained with attendant increase of vertical tail fatigue 
life. The UAIPT is working in-house and with companies which are involved in different 
buffet load alleviation systems and on aerodynamic nonlinear effects. 

Work in this area is continuing at present at a fast pace and the new results 
covering the performance of the actuators in ground tests and wind tunnel experiments 
will be presented as soon as they become available. 
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F-15 Vertical Tail Buffet Test 

Flex Tail: Q=56 psf, Beta=0 
0 psi blowing @ wing L.E. 
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F-15 Vertical Tail Buffet Test 
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F-15 Vertical Tail Buffet Test 
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F-15 Vertical Tail Buffet Test 
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F-15 Vertical Tail Buffet Test 

Flex Tail: Q=56 psf, BetarO 
65 psi blowing @ gun & wing L.E. 
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F-15 Vertical Tail Buffet Test 

Flex Tail: Q=30 psf, Beta=0 
0 psi blowing @ wing L.E. 
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F-15 Vertical Tail Buffet Test 

Flex Tail: Q=30 psf, Beta=0 
45 psi blowing @ wing L.E. 

Rigid Tail: Q=30 psf, Beta=0 
45 psi blowing @ wing L.E. 
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Sketch of vertical tail FEM showing nodal pattims 

1st torsion 

2nd betting 
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F-15 Vertical Tail Buffet Test:  RMS (in-lbs) & Peak PSD (in-lbs"2/Hz) 

1st Bending: 35-65 Hz 
S1-BENDING: No Blowing Pressure 
Bela 
-4 
-4 
-4 
-4 
-4 

0 
0 
0 
0 
0 

4 
4 
4 
4 
4 

Aloha 
20 
22 
24 
28 
32 

20 
22 
24 
28 
32 

20 
22 
24 
28 
32 

rms 
4719 
.6473 
.8462 
1.1270 
1.5490 

.4131 

.5085 

.6262 
1.0190 
1.6110 

.2885 

.4207 

.6123 

.9290 
1.3960 

peak 
3.268E-02 
4.857E-02 
1.104E-01 
2.024E-01 
3.856E-01 

2.155E-02 
3.832E-02 
4.925E-02 
1.584E-01 
5.005E-01 

8.435E-03 
2.526E-02 
6.338E-02 
1.363E-01 
3.659E-01 

1st Torsion: 180-210 Hz 
S2-TORSION: No Blowing Pressure 

Beta    Alpha       rms peak 
-4 20 .5690     2.721 E-02 
-4 22 .6756     3.987E-02 
-4 24        .5643     2.557E-02 

0 
0 
0 
0 
0 

4 
4 
4 
4 
4 

28 
32 

20 
22 
24 
28 
32 

20 
22 
24 
28 
32 

.3817 

.5708 

.7279 

.4221 

.2695 

.2140 

.3882 

.6070 

.7277 

.3947 

1.632E-02 
3.368E-02 
5.535E-02 
1.556E-02 
5.935E-03 

4.036E-03 
1.423E-02 
3.559E-02 
4.453E-02 
1.381 E-02 

2nd Bending: 210-240 Hz 
SI-BENDING: No Blowing Pressure 

Beta 
-4 
-A 
-4 
-4 
-4 

0 
0 
0 
0 
0 

4 
4 
4 
4 
4 

Table 5 

Alpha 
20 
22 
24 
28 
32 

20 
22 
24 
28 
32 

rms 
.3241 
.3698 
.3158 
.4941 
.3532 

.2478 

.3145 

.3090 

.4908 

.4465 

peak 
6.926E-03 
9.630E-03 
7.514E-03 
1.790E-03 
9.624E-03 

4.503E-03 
6.2O6E-03 
5.511E-03 
1.687E-02 
1.303E-02 

freq 
49.4 
50.0 
48.2 
48.2 
48.8 

50.0 
50.0 
48.8 
48.2 
47.6 

50.7 
50.7 
50.7 
50.0 
48.8 

freq 
190.4 
191.0 
191.6 

.2354     4.128E-03     194.7 

.2240     4.622E-03     193.5 

190.4 
189.8 
191.0 
191.0 
193.5 

192.3 
191.6 
193.5 
192.9 
195.3 

freq 
230.1 
226.4 
227.1 
227.7 
227.1 

228.9 
228.9 
228.9 
228.9 
231.3 

Wing Blowing Pressure 
&&. ieta   Alpha 

45 32 

45      0 24 
65      0 24 
45      0 32 

mis peak frea 

1.5620    4.819E-01      51.3 

6672 6.118E-02 51.3 
.6224 4.609E-02 47.0 

1.5644    4.996E-01      51.3 

45 32 

Wing Blowing Pressure 
B.P.   Beta    Alpha 

45 32 

1.5402    3.871 E-01      50.0 

nils peak freq 

.2372     5.284E-03     204.5 

45 0 24 .6712 5.378E-02 201.4 
65 0 24 .6099 3.122E-02 187.4 
45 0 32 .3151 1.124E-02 205.7 

45 32 .4154     2.289E-02     204.5 

Wing Slewing Pressure 
ÜE   Beta    Alpha rms peak freq 

45 32 .3313     1.299E-02     237.4 

45 0 24 .3143 8.208E-03 232.5 
65 0 24 .3136 7.744E-03 216.7 
45 0 32 .3797 1.529E-02 239.3 

20 .1100 8.259E-04 229.5 
22 .1812 2.647E-03 232.5 
24 .2640 5.177E-03 231.9 
28 .3367 9.148E-03 233.2 
32 .5290 1.955E-02 228.3                45      4         32 

. Additional Data for Different Test Conditions 
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Table 7. Vertical Tail Pressure Comparisons (Row Through Inlet Computations to Wind Tunnel Test) 

Gauge Test Computational Percentage Test Computational Percenta 
Pressure Pressure Difference Pressure Pressure Differen 

psi psi Coefficient Coefficient 
Right Inner 

K147 2 13.436 13.620 1.4 -0.725 -0.251 -65.4 
K148 3 13.576 13.620 0.3 -0.365 -0.251 -31.3 
K149 4 13.400 13.643 1.8 -0.817 -0.194 -76.3 
K145 5 13.480 13.668 1.4 -0.612 -0.127 -79.2 
K150 6 13.555 13.644 0.7 -0.419 -0.189 -54.8 

Right Outer 
K152 2 13.524 13.525 0.0 -0.499 -0.497 -0.3 
K153 3 13.533 13.567 0.2 -0.475 -0.389 -18.1 
K154 4 13.404 13.571 1.2 -0.807 -0.377 -53.3 
K151 5 13.224 13.591 2.8 -1.269 -0.323 -74.3 
K155 6 13.454 13.603 1.1 -0.678 -0.296 -56.4 

Left Inner 
K122 1 13.656 13.624 -0.2 -0.159 -0.242 52.1 
K121 2 13.604 13.602 0.0 -0.293 -0.298 1.8 
K115 3 13.601 13.576 -0.2 -0.301 -0.365 21.3 
K119 4 13.541 13.579 0.3 -0.455 -0.358 -21.3 
K114 5 13.533 13.581 0.4 -0.475 -0.352 -25.9 
K113 6 13.622 13.617 0.0 -0.247 -0.260 5.3 

Left Outer 
K144 1 13.545 13.562 0.1 -0.445 -0.402 -9.6 
K143 2 13.591 13.586 0.0 -0.326 -0.340 4.3 
K120 3 13.629 13.627 0.0 -0.229 -0.233 1.9 
K117 4 13.641 13.677 0.3 -0.198 -0.105 -»7.1 
K142 5 13.596 13.644 0.4 -0.314 -0.191 -39.0 
K118 6 13.653 13.640 -0.1 -0.167 -0.200 20.0 

Within 
Experimental 
Uncertainty 

* 
* 
* 

* 

* 

* 

* 

Table 7. Vertical Tail Static Pressure Comparison 
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