AD-A150 961

U.S. ARMY TANK-AUTOMOTIVE COMMAND RESEARCH AND DEVELOPMENT CENTER Warren, Michigan 48090

NOTICES

This report is not to be construed as an official Department of the Army position.

Mention of any trade names or manufacturers in this report shall not be construed as an official indorsement or approval of such products or compantes by the US Government.
nestroy this report when it is no longer needed. Do not return it to the originator.

1a. REPORT SECNRITY CLOSSIFICATION	1b. RESTRICTIVE MARKINGS None			
2a. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTIGN/AVAILABIUTY OF REPORT Approved for public retease distribution unlimited			
2b. DECLASSIFICATION/TEWNGRADING SCHEDULE				
4. PERFORMING ORGANIZATION REPORT NUMBER(S)	5. MONIIORING ORGANIZATION REPORT NUMBER(S) TACOM T.R. \#13004			
6a. NAME CF PERFORMING ORGANIZATION Michigan State University\quad6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORINE: ORGANIZATION TACOM AMSTA-RI:KM			
6c ADDRESS (GTy, State, and ZIP Code) Dept. of Met. Mech. \& Mat. Sci. Michigan State University E. Lansing. MI 48824-1226	```7b. AODRESS (City, Stare, and ZIP CODe) TACOM Attn: AMSTA-RCKM Warren, MI 48090```			
8. NAME OF FUNDING/SPONSORING ORGANIZATION Same as 7 8b. OFFKCE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Contract DAAE07-82-K-4002			
8. AOCRESS (City, State, and 2iP Cocte)	10. SOURCE OF FUNDING NUMBERS			
	PROGRAM ELEMENT NO.	$\begin{aligned} & \text { PROJECT } \\ & \text { NO. } \end{aligned}$	TASK NO.	

11. TITLE (Include Securty Gasufication)

Theoretical and Experimental Investigation of Mechanically Fastened Composites
iz. PERSONAL AUTHOR(S)
Clójd, Gary; Sikarskie, Cavid; Mahajerin, Enayat; and Herrera, Pedro

13. TYPE OF REPORT Final		$\begin{gathered} \text { 136. TIME } \\ \text { FROM } \end{gathered}$	$\begin{aligned} & \text { VERED } \\ & 82^{2} \\ & \hline \end{aligned}$	14. DATE OF REPORT (Year, MONth, Day) 1984 July	15. PAGE COUNT
16. SUPPLEMENTARY NOTATION					
17. - COSATI CODES			18. SUBJECT TERMS (Continue on reverse if necessary and identify by block mumber)		
FEELD	GROUP	SUB-GROUP			
19. ABSTRACT (Contione on reverse if necessery and ictertify by olock number)					

The mechanics of fasteners in composites were studied ir a combined experimentaltheoretical research program. The objectives were to gain fundamental insight into the stress-straln field near pin-type fasteners and to provide guidance to designers responsible for the selection and sizing of fasteners. The primary experimental method utilizes Moire interference with optical fourier processing of grid phutoplates. A new technique using optical interference to generate gratings in three directions was developed to gain a factor of 10 in sensitivity. The constitutive properties of the material studied were measured. For the analytical work, a boundary element method (BEM) was developed, a compact and efficient compiter code written, and the method compared with the finite-element method. (FEM).- 5or the problems investigated, the BEM is more efficient. The material used was fiber giass-epoxy laminate with woven fibers. The analytical and experimental forces were brought to. bear on the problem of a loaded pin snugly fit in a hole. Results from the two approaches agreed well for the specific composite.

PREFACE

The research described in this report was conducted at Mf chigan State University in the Department of Metallurgy, Mechanics and Materials Science and in the Center for Composite Materials and Structures. Investigators were Dr. Gary Cloud, Professor; Dr. David Sikarskie, Chairman; Dr. Enayat Mahajerin, Post-doctoral Student; and Mr. Pedro Herrera, Doctoral Candidate. Manuscript preparation was by Ms. Arlene Klingbiel.

This page left blank intentionally.

TABLE OF CONTENTS

Secition Page
1.0. INTRODUCTION 11
1.1. Background 11
1.2. Project Summary 11
2.0. ANALYTICAL DEVELOPMENT, RESULTS AND COMPARISON 12
2.1. Problem Statement 12
2.2. BEM Formulation 13
2.3. Example Problems 18
2.4. Comparison of BEM and FEM 18
3.0. EXPERIMENTAL METHODS AND RESULTS 27
3.1 Introcuction 27
3.2. Specimen Fabrication and Material Specification 28
3.3. Specimen Cratings 28
3.4. Printing Grating Onto Specimen 31
3.5. Grid Photography 31
3.6. Summary of Optical Processing to Create Fringe Patterns 34
3.7. Experimental Results 35
3.8. Experimental Evaluation of Elastic Constants for Composite 46
3.9. Experimental Results and Discussion 47
3.10. High-sensitivity Interferometric Moire Technique 49
4.0. COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS 52
REFERENCES 54
APPENDIX A FUNCAMENTAL SOLUTIONS A-1
APPENDIX B THE COMPUTER PROGRAM "BEM" B-1
APPENDIX C SIMPLE OPTICAL PROCESSING OF MOIRE-GRATING PHÜTOGRAPHS C-1
DISTRIBUTION LIST D-1

This page left blank intentionally.

LIST OF FIGURES

Figure Page
2-1. Geometry for the Boundary Element Me thod 14
2-2. Geometry for Computation of $a * \beta \gamma$'s 16
2-3. Double-lap Mechanical Joint 19
2-4. Geometry for the Example Problem 20
2-5. Schematic of, Boundary Element Subdivisions 21
2-5. FEM and BEM Subdivision Schemes for the Mechanica; Jcint Problem 26
3-1. Dimensions of the Test Coupon 29
3-2. Grating Production Process 32
3-3. Set-up for Grating Photography 33
3-4. Photograph of Moire Pattern Showing Displacements Perpendicular to Load Line for Zero Load with Pitch Mismatch 36
3-5. Photograph of Moire Pattern Showing Displacements Perpendicular to Load Line for 400 lbs. Load with Pitch Mismatch 37
3-6. Photograph of Moire Pattern Showing Displacements Parallel to Load Line for Zero Load with Pitch Mi snatch 38
3-7. Photograph of Moire Pattern Showing Displacements'Parallel to Load Line for 400 ib . Load with Pitch Mismatch 39
3-8. Strain Perpendicular to Load Axis (ε_{x}) Along Several Limes in the Ligaments of Fastener Hole 40
3-9. Stra!n Perpendicular to Load Axis (ε_{x}) Along Several Lines in Bearing Region hear Hole 41
3-10. Strain Parallel to Load Axis (ε_{y}) Along Seyeral Lines Encompassing a Ligament Region 42
3-11. Strain Parallel to load Axis (ε_{y}) Along Several Lines in and Opposite to the Bearing Region 43
3-12. Specimen Showing Location of Strain Gages 44
Figure Page
3-13. Typical Tensile Stress-strain Plots for Determination of Mechanical Properties of Orthutropic Composite usea in this Project 45
3-14. Distribution of Tensile and Compressive Strain (ε_{y}) Near the Fastener Hole 48
3-15. High Sensitivity Moire Fringes Showing Displacements Perpendicular to the Directicn of Loading for No Load with Rotational Mismatch 50
3-16. High Sensitivity Moire Fringes Showing Displacements Perpendicular to the Direction of Loading for a 130 1b. Load with Rotational Mismatch 51
4-1. Comparison of Stress Concentration Factors Obtained by Numerical and Experimental Techniques 53
Table Page
2-1. Stresses along the ligamel.t line ab for an orthotropic composite. Uniaxial Tension, $d / w=.5, N=60$ (boundary subdivisions) $d=0.5, e=C .5, h=1.5, w=1.0$ 22
2-2. Stresses along the ligament line ab for ai arthetropic composite. Cosine distribution of tractions on the upper half of the hole, $d / w=.5, N=60$ (boundary subdivisions) $d=0.5, e=0.5, h=1.5, w=1.0$ 23
2-3. Stresses along the lijament line ab for an orthotropic composite. Cosine distribution of tractions on the upper half of the hole, $d / w \times .2, N=60$ (boundary subdivisions) $d=0.2, e=0.5, t=1.5, w=1.0$24
2-4. Stresses along the ligament line ab for an orthotropic composite. Fixed pin case, $d / w=.5, N=60$ (boundary subdivisions) $d=0.5 ; e=0.5, h=1.5, w=1.0$25

This page left blank intentionally.

1.0. INTRODUCTION

1.1. Background

There has been a dramatic increase ir, che use of composite materia?s. The center of grayity of this growth has been in aerospace and defensa-related industries. As composite material developments continue to increase, resulting in decreases in cost, use of these materials will naturally spread to other industries.

One of the attractive features of composites as opposed to metals is their ability to be molded into complex "final shape." Important advantages of this approach include requiring a minimum number of fasteners as well as being able to locate the necessary fasteners in regions of low stress. Because of cost, however, such elaborate design is usually possible only for sophisticaié structures, e.g., military aircraft. White fastener problems are significant in these structures, it is expected that their importance will increase as composites usage spreads to less-sophisticated applications.

The fastening of composites poses some special problems. In the fastening of metals, normal metal plasticity acts' as an "averaging" mechanism tending to relieve both high local stresses and uneven load distribution in fastener patterns. In general, composites are considerably more brittle, more sensitive to stress concentrations, and have much lower strain to failure. Fastener techniques which distribute bearing loads more evenly (reduce stress concentrations) result in higher-strength joints. Techniques which distribute bearing loads include fastener arrays, interference-fit fasteners, glued fasteners, and hybrid adhesivemechanical joints. A typical example invoives replacing lcad-aligned graphite fibers near the fastener hole with lower-modulus glass fibers. Stress concentration relief in the interference-fit fastener case is derived from a matrix "softening" in the vicinity of the hole. This softening is actially an inter-or intra-ply separation which can occur without fiber breakage.

1.2. Project Summary

The contractors conducted a one-year study of the mechanics of fasteners in composites. It should be noted that the analytical and experimertal tools used in this study are fairly novel, particularly in the context of somposite fastening, and in that serse are unique contributions in their own right, The theoretical effort concentrates on the extension of boundary element me thods to determine stress-strain fields for complex multiply-connected and three-dimensional geometries with anisotrapic materials. Experimental approaches include a Moire method involving high-resolution grating replicetion, Fourier optical processing of grating replicas, and digital lata reduction.

This report describes the methodology developed for both the analytical and experinental studies. The techniques developed werte used to determine
stresses and strains in the vicinity of a single-pin loose-fit lap joint in an actual glass-epoxy composite; these results are reported. The properties of the composite were measured so that theory and experiment could be compared. The comparison, which is described in Section 4.0. showed good agreement for the furdamental case studied.
While this one-year effort was successfu? in terms of methodology and results, it was viewed from the start by the researchers involved as the early steps in a more comprehensive research program. A unique aspect of this program is that the experimental and analytical techniques are simultaneously being developed and used by researchers in the same group. This work is necessary before systenatic fabrication of structures from conposites can be successful in engineering and economic terms. The effort is considerably enhanced by having the theoretical and experimental researchers together. Significant progress has been made after the close of the one-year contract because the contractirs were committed to the ideas and the people involved. The researchers feel strongly that the major benefits will come from research yet te be done, and they suggest that continued support is appropriate for proper rezlization of the resources and personnel already developed.

2.0. ANALYTICAL DEVELOPMENT, RESULTS AMD COMPARISOH

2.1. Problem Statement

This section presents the analytical developse: nt of a boundary element formulation for calculating stresses and deformations in mechanically fastened composites. Tine purpose of this development results from the following observations. In a vast majority of the composites ifterature in which stress and/or deformation calcuiations are required. the finite element method (FEM) is used. This methad is, of course, very powerful and has the advantage of access to mell developed codes. It is not necessarily the most efficient numerical procedure, however. Numerous authors have shown (i)* that the boundary element method is, for certain classes of problens, considerably more efficient than the FEM. The main purpose of this section is to develop a boundary element method (BEM) code pertinent to a mechanically fastened composite structure. This code will then be directly compared with a current state-of-the-art FEM code to see 1: significant improvement in efficiency is possicie. For comparative purposes both codes are run on the same computer, a Prime 250. In terms of problem selection for comparative purposes there are a number of possible boundary value problems to look at in the composite fastening area. Examples include multiple fasteners, fnterference fit fasteners, softening strips, etc. For this example, a simple lap joint, single pin, loose fit connector is constdered, and results using both numerical methods are compared. If fmprovements can be shown in the simple case, it is reasonabie to expect improvement in more complicated situations.

[^0]However, code development for the more complicated situations are covered under fuiture proposed research. The next subsection will explain the BEM formuiation. This is followed by the solution of some example problems and a comparison of BEM and FEM.

2.2. BEM Formulation

Let an anisotropic body (Figure 2-1) occupy a finite open plane region D bounded by a single smoctin contcur ∂D which admits a representation in the form $x_{i}=x_{i}(s)$. The parameter s is the length along, 20 irom an arbitrary origin, and x_{i} are cartesian coordinates (see Figure 2-1). For the well-known mixed boundary value problem of anisotropic elastostatics:

$$
\begin{array}{ll}
S_{\alpha B Y \delta} u_{Y, \delta B}=0 & \text { in } D \\
\sigma_{\beta \gamma n_{Y}}=\bar{t}_{B} & \text { on } \partial D_{t} \tag{1}\\
u_{B}=\bar{u}_{B} & \text { on } 2 D_{U} \\
\alpha, B, Y=1,2 & \partial D=2 D_{t}+\partial D_{U}
\end{array}
$$

Uy represents the displacement components, the comme denotes differentiation with respect to the arguments after the comma, $\sigma_{\beta \gamma}$ is a component of stress, t_{β} is the corresponding traction vector, n_{Y} is a component of the unit outward normal to the boundary 20, and $S_{\text {abys }}$ denotes the "stiffness tensor" for the material. To solve this problem by an indirect boundary element method, one can apply the initially unknown layer of body forces R_{Y} to the boundary of the embedded region and use the principle of superposition to obtain (2):

$$
\begin{align*}
& \sigma_{\alpha \beta}(\xi)=\int H_{\alpha B Y}\left(\xi, x^{\prime}\right) R_{Y}\left(x^{\prime}\right) d s \tag{2}\\
& u_{\beta}(\xi)=\int U_{B Y}\left(\xi, x^{\prime}\right) R_{Y}\left(x^{\prime}\right) d s \tag{3}
\end{align*}
$$

where $\xi=\left(\xi_{1}, \xi_{2}\right), \lambda^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ are field point and source point respectively. $U_{B y}$ and $H_{a B y}$ are the fundamental displacement and stress solutions* for a point load in the r direction in an infinite medium. As ξ approaches a boundary point from inside the region, equation (2) reduces to an integral equation of the second kind for which the integral is defined in a Caichy principal value (CPV) sense. For equation (3) the corresponding boundary integral is of the first kind and need not be considered as a CPV. For simplicity, a general boundary integral equation covering several cases can be written as:

$$
\begin{align*}
& P_{B}(s)=\delta_{B Y} R_{Y}(s)+\int_{\partial O} G_{B Y}\left(s, s^{\prime}\right) R_{Y}\left(s^{\prime}\right) d s^{0} \tag{4}\\
& B, Y=1,2
\end{align*}
$$

[^1]

FICURE 2-1. Geometry for the Boundary Element Method.
we consider three cases:
The pure displacement problem
$a=0$
$P_{B}=u_{B}$
$G_{B \gamma}=U_{B \gamma}$
The pure traction problem
$a=1 / 2$
$P_{B}=t_{B}$
$G_{\beta \gamma}=H_{\alpha \beta \gamma} H_{\alpha}$
The mixed problen (i.e., displacements are prescribed on ∂D_{u} and tractions are prescribed on ∂D_{t}) requires an appropriate combination of case (i) and case (ii).

In the numerical solution of equation (4) one can replace 20 by If straight line seaments $\partial D_{j}, j=1, \ldots, N$ on which the point loads $R_{X}\left(s_{j}\right)$ are approximated by piecewise constant functions $R_{Y}\left(s_{j}\right), r=1,2, j=1, \ldots$ W. If the boundary zonditions are satisfied at the center of each segment then equation (4) reduces to a system of 2 N simulataneous linear algebraic equations denoted by:

$$
\begin{equation*}
A \underline{R}=\underline{D} \tag{5}
\end{equation*}
$$

where A is a $2 N \times 2 N$ coefficient matrix, $R=\left(R_{1}, R_{2}, \ldots R_{2 N}\right)^{\top}$ are the unknown point loads and $b=\left(b_{1}, b_{2} \ldots b_{2 N}\right)^{\top}$ are the prescribed boundary conditions. The essence of the computation is the construction of A. From the discretized version of equation (4) it can be seen that A is N blocks of 2×2 matrices having elements:

$$
\begin{align*}
& 1 / 2 \delta_{B \gamma} \quad 1=1 \\
& \left(a_{\beta \gamma}\right)_{i j}=\int_{\partial D_{j}} H_{\alpha B \gamma}\left(s_{j}, s^{\prime}\right) n_{\alpha} d s^{\prime} \quad 1 \neq j \tag{6}\\
& \text { (} \left.{ }^{*}{ }_{B r}\right)_{j j} \quad 1=j \\
& \left(a_{B Y}\right)_{i j}=\int_{\partial D_{j}} U_{B Y}\left(s_{i}, s^{\prime}\right) d s^{\prime} \quad 1 \neq j \tag{7}
\end{align*}
$$

Where ($\mathrm{a}^{*} \mathrm{BY}$), $\mathrm{B}, \gamma=1,2$ have been computed analytically using Finure 2-2
Field Point

FIGURE 2-2. Geometry for Couputation of $a^{*} \beta \gamma$'s

$$
\left(a_{\beta \gamma}^{*}\right)_{j j}=\operatorname{Limit} \int_{a \rightarrow 0}^{h_{j} / 2} U_{\beta \gamma} d s
$$

for both isotropic and orthotropic materials. In Figure 2-2, h_{i} is the mesh length. As $a+0$, the field poirt approaches the boundary point and the integrals over this mesh length become singular. The integrals are evaluated by first assuming that the unknown traction components R_{t}, R_{n} are constant over the mesh length. $R_{t} . R_{n}$ can then be taken outside the integrals, and the resulting integrals can then be evaluated analyticalily for $a \neq 0$. The resulting values of $(a * \beta y)_{j j}$ are obtained by taking the limit as $a+0$. The results are:
(i) For the isotropic case

$$
\begin{aligned}
& \left(a^{*} 11\right)_{j j}=2 Q h_{j}\left(1 n\left(h_{j} / 2\right)-1\right)+h_{j} \cos ^{2} a_{j} \\
& \left(a^{*} 12\right)_{j j}=\left(a^{*} 21\right)_{j j}=h_{j} \sin a_{j} \cos a_{j} \\
& \left(a^{\star} 22\right)_{j j}=2 Q_{j}\left(\ln \left(h_{j} / 2\right)-1\right)+h_{j} \sin ^{2} a_{j}
\end{aligned}
$$

with $Q=(3-v) / 2(1+v)$, where v is the Poisson's ratio for material.
(ii) For the orthotropic case

$$
\begin{aligned}
& \left(a^{*} 11\right)_{j j}=-\left[\left(c_{1} A_{1}-c_{3} A_{2}\right) \cos ^{2} \alpha_{j}+\left(c_{4} A_{1}-c_{2} A_{2}\right) \sin ^{2} \alpha_{j}\right] h_{j}\left(1 n\left(h_{j} / 2\right)-1\right) / 2 \\
& \left(a^{*} 12\right)_{j j}=-\left(\left(c_{1} A_{1}+c_{2} A_{2}-c_{3} A_{2}-c_{4} A_{1}\right) \cos \alpha_{j} \sin \alpha_{j}\right) h_{j}\left(1 n\left(h_{j} / 2\right)-1\right) / 2 \\
& \left(a{ }^{*} 21\right)_{j j}=\left(a^{\star} 12\right)_{j j} \\
& \left(a{ }^{*} 22\right)_{j j}=-\left[\left(c_{1} A_{1}-c_{3} A_{2}\right) \sin ^{2} a_{j}+\left(c_{4} A_{1}-c_{2} A_{2}\right) \sin ^{2} \alpha_{j}\right] h_{j}\left(1 n\left(h_{j} / 2\right)-1\right) / 2
\end{aligned}
$$

where c 's and A's have been defined I/، Appendix A.
The integrals in equations (6) and (7) have been computed in:nopically using a four-point Harris-Evans quadrature formula (3). This quadrature is useful when the integral is singular. In this formulation (the singular case), i=j has been excluded, but in the adjacent segments (near singularities) this quadrature is helpful.

Once the system (5) is solved for R, stresses and displacements at any internal field point can be computed from the discretized form of equations (2) and (3). The boundary element method is unable to predict stresses and displacements at boundary points. However, by excluding singular points (i.e., evaluating elastic fields analytically) and employing the Harris-Evans quadrature for the rest of the points, we can predict boundary fields (especially the stress concentration factors in the example problems) quite accurately.

The corresponding computer program, BEM (see Appendix 8), is based on the formulation explained here and is writiten in FORTRAN 77.

2.3. Example Problems

A number of example problems were solved using the BEM program. All problems have a common geometry, namely, the lower section of the simple lap mechanical joint (see Figure 2-3.). Making use of the symmetry of the specimen (for the principal material and coordinate axis coincident), the final geometry analyzed is s! iown in Figure 2-4. Figure 2-5. is a schematic of the boundiary slement subdivision used. Both isotropic and orthotropic problems were: solved; however, only crthotropic results are presented. All orthotropic problems were based on a paríicular glass-epoxy composite having the following compliances:

$$
\begin{align*}
& c_{11}=5.00 \times 10^{-8} 1 / \mathrm{psi} \\
& c_{12}=-1.05 \times 10^{-8} 1 / \mathrm{psi} \tag{8}\\
& c_{22}=4.7 .6 \times 10^{-7} 1 / \mathrm{psi} \\
& c_{33}=1.18 \times 10^{-6} 1 / \mathrm{psi}
\end{align*}
$$

These compliances were measured for the laminate used in the experimental strain analysis phase of this project (see Section 3-8.).

Two items were investigated in this limited numerical study. The first involved hole size, i.e., the d / w ratio, and the second was the effect of various boundary conditions. Tables 2-1, through 2-4. shown with the enclosed figures are self explanatory and give selected solutions for these parameters. Full field stresses were computed but only ligament line (the line from the edge of hole to the edge of the specimen) stresses are presented. These stresses are particularly useful for two reasons: the maximum stress concentration is along this line (at the hole edge) and the appropriate summation of these stresses' (forces) is a check on overall equilibrium. All computations were done on a Cyber 750 computer. Note that in the following subsection in which BEM is compared to FEM, both programs were run on the Prime 250 system. This system had graphics capability which permitted graphic display of computed data.

2.4. Comparison of BEM and FEM

As discussed earlier, one of the main objectives of this work is to make a comparison of BEM and FEM numerical procedures. For this purpose it was useful to run both progriams on the same computer. The FEM computer code was available on the Prime 250 system. For this reason, the BEM code was adapted to the Prime 250 computer system. For this contract FEM-BEM comparison has been done only for the case of isotropic material with the simple joint in tension. This is the isotropic version of the results in Table 2-1. The comparison was based on a common boundary subdivision, 1.e., in the BEM code 57 boundary elements corresponded to 134 quadratic FEM elements, see Figure 2-6. For this case, the stress concentration also is "known" (4). Results are summarized in Figure 2-6. and below:

FIGURE 2-3. Double-lap Mechanical Joint.

FICURE 2-4. Gemetry for the Example Problem

TABLE, 2-1.
Stresses along the ligament, line $a b$ for an orthotropic composite. Uniaxial Tersion, $\mathrm{d} / \mathrm{w}=.5$, $N=60$ (bounutacy subdivisions)
$d=0.5$
$e=0.5$
$h=1.5$
$\mathrm{w}=1.0$

x		$\sigma_{x x}$	$\tau_{x y}$	$\sigma_{y y}$
.02	1.5	.0070	.0015	-.1135
.04	1.5	.1593	.0091	.2379
.06	1.5	.2279	.0145	.5569
.08	1.5	.2861	.0189	.8721
.1	1.5	.3509	.0225	1.1847
.12	1.5	.4174	.0251	1.5085
.14	1.5	.4794	.0269	1.8589
.16	1.5	.5289	.0275	2.0496
.18	1.5	.5543	.0270	2.7191
.2	1.5	.5391	.0243	3.2888
.21	1.5	.5095	.0299	3.6290
.22	1.5	.4616	.0186	4.0195
.23	1.5	.3990	.0139	4.4765
.24	1.5	.3812	.0072	$5.03 . j$
.25	1.5	-1.4308	.0082	6.4621

TABLE 2-2.
Stresses along, the ligament line ab for an orthotropic composite.
Cosine distribution of tractions on the upper half of the hole, $\mathrm{d} / \mathrm{w}=.5$, $\mathrm{N}=60$ (boundary subdivisions)
$d=0.5$
$e=0.5$
$h=1.5$
$\mathrm{w}=1.0$

x	y	$\sigma_{x x}$	$\tau_{x y}$	$\sigma_{y y}$
.02	1.5	.2160	-.1639	.7849
.04	1.5	.1100	-.1734	.9807
.06	1.5	.1555	-.1826	1.1347
.08	1.5	.2200	-.1826	1.2813
.1	1.5	.2775	-.1799	1.4318
.12	1.5	.3224	-.1643	1.5958
.14	1.5	.3531	-.1495	1.7830
.16	1.5	.3669	-.1323	2.0057
.18	1.5	.3575	-.1137	2.2820
.2	1.5	.3088	-.0949	2.6403
.21	1.5	.2585	-.8586	2.8645
.22	1.5	.1848	-.0770	3.1305
.23	1.5	.0826	-.0678	3.4528
.24	1.5	-.0037	-.0583	3.8640
.25	1.5	-.9524	-.2265	5.7545

TABLE 2-3.

Stresses along the ligament line ab for an orthotropic composite.
Cosine distribution of tractions on the upper half of the hole, $\mathrm{d} / \mathrm{h}=.2$, $\mathrm{N}=60$ (boundary subdivisions)
$\mathrm{d}=0.2$
$e=0.5$
$h=1.5$
$\dot{w}=1.0$

x	y	$\sigma_{x x}$	$\tau_{x y}$	$\sigma_{y y}$
.032	1.5	.0494	.0626	.5133
.064	1.5	.0343	.0343	.5494
.096	1.5	.0415	.0189	.5899
.128	1.5	.0553	.0227	.6100
.160	1.5	.0727	.0332	.6496
.192	1.5	.0934	.0460	.6787
.224	1.5	.1198	.0616	.7285
.256	1.5	.1554	.0766	.7978
.288	1.5	.2066	.0909	.9295
.320	1.5	.2816	.1045	1.0894
.336	1.5	.3284	.1116	1.2948
.352	1.5	.3752	.1190	1.4420
.368	1.5	.4006	.1250	1.9735
.384	1.5	.3269	.1103	2.4195
.400	1.5	-.4279	.2449	3.3944

TABLE 2-4.
Stresses along the ligament line ab for an orthotropic ccuposite.
Fixed pin case, $d / w=.5$, $\mathrm{N}=60$ (boundary subdivisions)
$\mathrm{d}=0.5$
e-0.5
$h=1.5$
$\mathrm{w}=1.0$

x	y	$\sigma_{x x}$	$\tau_{x y}$	$\sigma_{y y}$
.02	1.5	.0019	-.0077	.8061
.04	1.5	.0232	-.0728	.8580
.06	1.5	.0324	-.1015	.9069
		-08	1.5	.0390
.1	1.5	.0442	-.1029	.9600
.12	1.5	.0464	-.1007	1.0930
.14	1.5	.0432	-.0972	1.1815
.16	1.5	.0310	-.0913	1.3077
.18	1.5	.0040	-.758	1.4794
.2	1.5	-.0501	-.0467	1.7377
.21	1.5	-.0946	-.0221	1.9236
.22	1.5	-.1584	-.0116	2.1754
.23	1.5	-.2480	-.0527	2.5430
.24	1.5	-.3886	-.1264	3.2133
.25	1.5	-1.9566	-.9854	9.7269

1. FINTTE ELPMENT (ANSYS)
$(d=2, c=0.5, h=2.5, w=1.0)$

$N=134$ Quadratic Elements
Results: For $d / w=.2 \quad K_{L}=3.1102$
Total CPU time: 177 sec .
2. BOANDARY ELEMRNT (BEM)
($d=.2, e=0.5, h=1.5, w=1.0$)

$N=57$ Constant Elements
Results: For d/w = $2, K_{I}=3.0951$
Total CPU time: 27 sec .

FICURE 2-6. FEM and BEM Subdivision Schenes for the Mechanical Joint Problem.

$$
K_{I}=\frac{F E M}{3.1102}
$$

EXACT
$K_{I}=3.1352$

BEM

$$
K_{I}=3.0951
$$

CPU time $=177$ sec.
CPU time $=27 \mathrm{sec}$.
Note that BEM represents a significant reduction in computer time over FEM. This savings depencis to some extent on the particular case, how many field points are required, and so on.

3.0. EXPERIMEMTAL METHODS AND RESULTS

3.1. Introduction

The experimental components of this investigation encompassed two phases. Techniques appropriate to the problem and the material were developed. Some studies of composite pin-loaded specimens were carried out. In actuality, both phases ran similtaneously, so the program was rather complex and oper:-ended.
The primary experimental method uses Moire interference with Fourier optical processing of grid photographs.* Rugged grids are applied to the specimen, by vacuum-deposition, and these grids are recorded using high-resolution techniques for each state of the specimen. Sequential recording of grating replicas and subsequent coherent optical processing to obtain enhanced fringe patterns, of ten with multipiled sensitivtty, allow quantitative comparisons between any two states of the specimen at any later time. Such a procedure is especially advantageous in nonreversible structural testing.
A publication (5) discussing the theoretical basis and showing an appilcation of this Moire technique is duplicated in Appendix C. Complete descriptions appear in Air Force reports and papers by Cloud's group (6 to 12) so further description is not needed here.
It is worth noting that this version of the Moire method can be used in a "dirty" environment. It is tolerant of poor quality or course grids and poor photographic reproduction of the gratings. The approach has been used in difficuit situations invoiving high temperatures (up to $1,50^{\circ} \mathrm{F}$) long times (1,000 hours) and in the presence of comection currents, vibrations, and so on (6). The procedures appear to have great promise for application in field investigations of displacement and strain in structures of any meterial.
It soon became clear that the Moire technique as summerized above has a strain sensitivity which is marginal for wort on composites, as was expected. Consequently, while this method was befng used on the first

[^2]specimens in this project, a program to extend the sensitivity by a factor of 10 or more was begun. Both endeavors were successful. In order to compare theoretical and experimental results in this project, the constitutive properties of the material studied had to be measured. This aspect of the experimental work was also successful.

This section describes first the specimen materials and preparation, including the creation of Moire grids. The essential details of the Moire process leading to plots of strain are then outlined. Results obtained in this way are given, and interesting aspects of these data are discussed. The experiments to determine material properties for the composite are described and the results given. Finally, the high-sensitivity techniques are described in brief, and some results which illustrate the promise and flexibility of the method are reported.

3.2 Specimen Fabrication and Material Specification

The material used for this investigation was fiberglass-epori laminate with woven fibers (R1500/1581, 13 plies, 0.14 in. thick) supplied by CIBA-GEIGY, Composite Materiais Department, 10910 Talbert Avenue, Fountain Valley, California 92708.

The dimensions of the specimens are shown in Figure 3-1. It has been shown by Horgan (13) that, when working with composites, the end effects persist over distances of the order of several widths of the specimen. This stress channelling does not seem to be so severe in this case based on the results of the Moire patterns obtained, probably because of the reinforcing in the transverse direction. To be safe, however, the specimens were designed to be quite long and narrow.

The specimen was cut with the fiber orfented along the direction of the loading. Grating application techniques are described in section 3.3. Subsequent to applying the gratings, the fiducial marks, identifers, and code marks were applied with Presstype lettering. The specimen was then ready fior recording a baseline Hoire grating photograph, loading through the hole by means of a pin, and recording at-strain grating images.

3.3. Specimen Gratings

Appifcation of the moire effect to any problem depends on the successful deposition of line grids (or dots) on the specimen material.

The photoresist approach to creating grids on the specimens was'chosen because it is fairly simple, requires minimal spectal equipment, and is well proven in the contractors ${ }^{\prime}$ laboratory. Photoresists for Moire appifcations have peen studfed and described in detali by Luxmonre, Holister and Hermann $(14,15,16)$. Cloud and co-workers (6 to 12) have used this approach successfully.

The photciesist chosen mas Shipley Az1350J provided tiy the Shipley Co..

Figure 3-1. Dimensions of the test coupon. . $2 S$

Newton, Mass. The companion thinner and developer were purchased with the resist.

It is desired for Moire work, as with most other photoresist usage, that the resist coiating be thin and uniform. Common application methods include spinning, dipping, spraying, wiping and roller coating. The spinning and wiping techniques were found deficient in that they always left some build-up near the hole of the fastener boundary, that is, in the region of greatest interest.

Attention settled, therefore, upon the spraying method. An artist's airbrush was obtained and a spraying technique which gave satisfactory uniformity and coating thickness was worked out by trial and error. Superior results were obtained by thinning the resist. Testing was conducted to establish a balance of resist-thinner proportions, air pressure, airbrush nozzle opening, spraying distance, and brush motion.

In order to produce coatings of the desired thickness, the photoresist required thinning. The proportions arrived at through trial and error were by volume, one part AZ1350J to two parts $A Z$ thinner. The air pressure provided by "canned air" sold in art supply stores was satisfactory for the Paasche type $\mathrm{H}-3$ airbrush. The best nozzle setting for the airbrush used was $1-1 / 2$ to 4 full turns open from the closed position. The spraying procedure which was developed called for laying the clean and dry specimen inclined at about 80° to the horizontal. The airbrush containing the resist was held about 12 in. from the specimen. Flow of the atomized resist was begun and allowed to stabilize for about one or two seconds, after which the spray was quickly shifted onto the specimen. At the range the air flowed, it was necessary to sweep the brush from left to right to cover the whole surface. Care was taken to assure that the spray fan did not overlap the previously applied wet coating, otherwise small bubbles of photoresist started to form, yielding a nonuniform surface. It was absolutely necessary to start the spray well before bringing it to bear on the specimen, as some coarse droplets are expelled at the beginning of flow.

Coating thickness was controlled by spraying time and number of strokes (or coatings). Best results were obtained with one single layer of resist.

If the coating did not appear satisfactory, it was removed using either thinner or acetone. This operation was performed as quickly as possible to avoid dissolving the surface of the specimen. The surface was then immediately washed with running water to get rid of any excess of acetone. After the spectmen dried at room temperature, another coating of photoresist was applied. The coated specimens were placed inside.a light-tight container to awalt exposure and development of the grating image.

3.4. Printins Grating onto Specimen

The Moire grid was printed on the photoresist coating on the specimen by a simple contact printing procedure in which a grid master was held in close contact with the sf cimen and the assembly exposed to ultraviolet light from a Mercury lamy. Figure 3-2. summarizes the process of applying the grids.

The master grid used to print the grid on the specimen was made by using a fine metal mesh with an orthogonal array of holes. In. this study, Nickel mesh with 2,000 lines per in. was used. First, a Nickel mesh was held in close contact with a piece of flat glass by spreading soap solution over it and then removing the surplus with filter paper. Then the corners of the piece of mesh were fastened to the glass with adhesive tape.

The Mercury lamp which was used has a. power of 200 Watts. The distance from the lamp to the master grating-specimen assembily was 20 in. The time of exposure was 30 seconds. The-newly exposed photoresist was developed according to manufacturer's instructions in the standard Shipley AZ developer diluted with water.

Next the specimen with its photoresist grid was placed in a vacuum deposition unit (Denton D.V. 502 high vacuum evaporator) and a film of aluminum was deposited over the whole surface. The result is a relief grid in the metal coating with excellent reflectivity. Aluminum was chosen because of its ability to resist tarnishirg, its high reflectivity in thin films, and its low cost.

3.5. Grid Photography

The complete state of strain throughout an extended field can be determined from Moire fringe photographs obtained through superposition of a submaster grating with deformed and undeformed (baseline) specimen grid replicas. Such superposition yields baseline Moire fringes and data (at strain) fringe patterns.

The set up used to accomplish the high resolution photography of the specimen grid is sketched in Figure 3-3. The camera used was a Horseman 4×5 bellows model. The lens was a Carl Zaiss S-planar with focal length of 120 mm and a maximum aperture of $5 . E$. The system rested upon a granite optical table and the camera was set up to give a magnification factor of one. The specimen was placed in the loading frame (loaded under tension). The light'sources were two flash lamps which were activated by an electronic triggering mechantsm.

Focus of the specimen image was very critical in this high resolution situation. The ground glass of the camera was not satisfactory for this critical work tecause it was too coarse and because such focus plates are often not exactly in the photoemulsion plane. For focusing, a blank plate of the thickness and type used in the photography was developed and fixed. and then mounted in a 4×5 plate holder which had the separator removed.
1)

2)

3)

4)

SPR $=$ Shipley Photo Resist

Figure 3-2. Grating production process.

Figure 3-3. Set-up for grating photography.

The imas: of the specimen in the emulsion was examined with a 160 x microsce: which had been focused first on the image of the specimen surface. ihis process facilitated bringing emulsion and image into the same :htut

After chacking that the image of the specimen was perfectly focused over its entire area and that the desired magnification was correct, the camera was locked in place to avoid losing the focus during the loading of the phcto-plate.

The right exposure was determined by trial and errur using Kodak high-speed holographic film (type $50-253,4 \times 5$ in.). After getting the best grid-replica from Kodak film, the data and baseline grids were recorded by using Kodak high speed holographic plates (type 131-02, 4×5 in.). In order to get the right exposure, the maximum aperture was used to avoid losing sharpness of the grating, and the intensity of the flash lamps was reduced by adding ground glass pieces in front of the flashlamps. These glasses cut down the intensity of the light by roughly one f-stop per piece. Also; it is worth noting here that the angle of incidence of the illumination was chosen by trial and error to give the best contrast in the grating image. Shadows of the three-dimensional grid structure evidently play an important role in grating visibility. The exposed 131-02 plates were individually developed in Kodak HRP developer for three 'minutes and fixed in Kodak fixer for the same amount of time.

After completion, each grating plate was examined and inspected for diffraction efficiency to assure that the photography had been successful. It was labelled with specimen number, loading, and magnification conditions for future reference and stored in a rack to await optical construction of Moire fringe patterns.

3.6. Summary of Optical Processing to Create Fringe Patterns

The grating photographs of this experiment produced an assembly of photographic plates of the undeformed (baseline) and deformed (data) specimen gratings as well as a submaster grating having an integer multiple of the specimen's grating spatial frequency.' The creation of Moire fringe patterns from these plates and the reduction of Moire fringe data have been described in detail (9 to 12). The steps required to produce Moire fringe photographs from these grid records were as follows:

1. A photoplate of the undeformed specimen grid was superymposed With a master grating having a spatial frequency of 1000 lpi (which was half the spatial frequency of the specimen grating) plus or minus a small frequency mi smatch.
2. The superimposed gratings were clamped together and placed in a coherent optical processor and adjusted to produce a correct base line (zero strain) fringe pattern at the processor output, where it was photographed. This photograph corresponded to the superposition of the $2 n d$ diffraction order of the master grating
with the first diffraction order of the corresponding specimen grating.
3. Steps 1 and 2 were repeated for the other component of the specimen grid i.e. the grating at 90° to the first one.
4. Steps 1 to 3 were repeated with the photographs of the deformed grid in order to create the "data" or "at strain" fringe patterns. The same submaster plate was used.
5. The fringe patterns were enlarged and printed with high contrast in a convenient size equivalent to about 5 times the actual specimen dimensions.
6. The prints were sorted and coded for identification.
7. Computer digitizing, data reduction, and plotting were performed on each photograph.
8. Digital processing of Moire data finished the analysis.

Digitization of the fringe patterns and subsequent data reduction followed the procedures described in detail by Cloud and colleagues (9 to 12). Some of the essentials are reproduced in Appendix C.

3.7 Experimental Results

In this investigation, the specimen had a two-way grating (a grid). By using the optical processor; a Moire fringe pattern was formed separately for each direction. One pattern was formed to get horizontal fringes (perpendiclilar to the direction of loading), and this fringe pattern was used to measure strain in the direction of loading. The other pattern was formed with vertical fringes (same as direction of loading); fringes in this direction were used to measure transverse strain (perpendicular to the direction of the load). The photograph of the fringe pattern was recorded separately for each direction and for each loading step. Sample photographs of the Moire fringe patterns obtained from the composite material fastener specimen for the horizontal and vertical directions are shown in Figures 3-4. to 3-7.

Figures 3-8. through 3-11, show the measured $\operatorname{strain}{ }^{\varepsilon_{x}}$ and ε_{y} for several different lines on the specimen. The whole-field nature of the Moire method means that a great deal of data are generated. Such data are always difficult to present and assimilate. The plots shown here are a reasonable compromise between completeness and confusion. The next step is to develop strain contour maps, which would be easier to understand at a glance. Such a step was not within the scope of this project. Programs for three dimensional computer graphics representations of the strain contours are being developed by the investigators.

Figure 3-5. Photograph of Moire pattern showing displacements
perpendicular to load line for 400 los. load with pitch mi smatch

Figure 3-7. Photograph of Moire pattern showing displacements parallel to load line for 400 lb . load with pitch mismatch.

Figure 3-9. Strain perpendicular load to axis (c_{x}) along several lines in

Figure 3-11. Strain parallel to load axis (c_{y}) along several lines in and opposite to the bearing region.

3.8. Experimental Evaluation of Elastic Constants for the Composite

In order to compare theory and experiment, it is necessary to know with precision the material properties of the composite used. An experiment to determine these parameters was conducted.
There are two goals in the design and test of a tensile specimen. First, the existence of a statically determinant, uniaxial state of stress within the test section must be assured; however; producing such a state of stress in the laboratory is not a trivial task. Several analytical studies have revealed that the first goal may be accomplished by establishing the specimen geome try such that the length-to-width ratio is a practical maximum $(13,17,18)$. In the current study the maximum length was chosen to be 12 in. and the width one in. The second goal of the design and test of the tensile specimen is to assure that the elastic responses in the in-plane shear and traverse tension modes are constant and that fallure will occur within the specimen test section.
Determination of E_{1}, E_{2} and v is quite straight forward. Two tensile tests are required, and for this purpose two specimens were constructed: one with the warp fibers oriented along the direction of the loading (for determination of E_{1} and v_{12}) and the other with woven (weft) fibers in the direction of loading (for determination of E_{2} and v_{21}).
As shown in Figure 3-12., four single-element strain gages of type EA-13-075AA-120 from Mi cromeasurements were used to check the uniformity of the stress field. Strain gage rosettes on both faces of the specimen were also used (type CEA-06-062UR-120), first to determine any effect of bending on the specimen and then to obtain the measurements needed to perform the calculations. Effects of transverse sensitivity were checked and found negligible.
The specimens were mounted in a loading frame using grips especially designed to avoid any clamping of the ends and to allow rotations, thus a:joiding any end effects.
Every specimen was loaded in increments up to 500 lbs and then unloaded and reloaded to the same stress. The tests were at room temperature $\left(75^{\circ} \mathrm{F}\right.$). The strain readings were made with a digital strain indicator from Northern Technical Services, Inc.
Figure 3-13. shows typical plots of stress vs strain obtained from this experiment.
The results obtained for Young's modulus and Poisson's ratio are as follows:

$$
\begin{array}{ll}
E_{1}=3.188 \times 10^{6} \mathrm{psi} & E_{2}=3.0824 \times 10^{6} \mathrm{psi} \\
y_{12}=0.11 & v_{21}=0.11
\end{array}
$$

Le 12 IN
$B=1 \mathrm{IN}$
Es.75. IN
1-4 Single element strain gage
5-6 Rectangular strain gage rosette

Figure 3-12. Specimen showing location of strain gages.

A test which is planned for subsequent study is to use an Instron machine to perforin the tensile test under different room humidity and room temperatures. It is suspected that humidity and temperature affect the material properties of this specific composite.

3.9 Experimental Results and Discussion

A typical composite pin-loaded joint exhibits a strong coupling between axial strain and bearing capacity at any given pin lecation.

In this investigation, the specimen had a two-way grating. By using the optical processor, the Moire fringe patterns were formed separately for each direction. One pair (Figures 3-4. and 3-5.) was formed with vertical fringes (direction parallel to the load) and these fringe patterns were used to measure strain ε_{x} in the traverse direction (perpendicular to the direction of the load). The other pair (Figures 3-6. and 3-7.) were formed with horizontal fringes (perpendicular to the loading direction); fringes in this direction were used to measure strain ε_{y} in the same direction as the load.

Both the photographs of the horizontally-oriented (from the horizontal grating) fringe patterns and the vertically-oriented (from the vertical grating) fringe patterns yielded some interesting results.
I.) Figure 3-8, and Figure $3-9$. plots of ε_{x} vs position are shown. In Figure 3-10, and Figure 3-11. ε_{y} vs position are shown.
From Figures 3-10, and 3-11. we can notice that, in the area of contact between pin and composite, ε_{y} is highty compressive; but, as we move away from the edge of the hole towards the end of the specimen, its value decreases to an average value.

Now, looking at the right hand edge of the hole, ε_{y} is of tensile nature; as we move away from the edge of the hole towards the edge of the specimen it decreases to an average value (shown by lines $\times 3$ to $\times 7$ in Figure $3-11$).

Figure 3-14. shows a distribution of strain based on the resuits from the the Moire fringes. This figure is developed from Figures 3-10. and 3-11. plus similar strain plots created for additional lines on the specimen.

Much more information useful to the designer can be extracted from these Moire photographs. As an example, examine the areas shown in Figure 3-14. where the normal strain, i.e., ε_{y}, changes from tensile to compressive. Along that interface, we find a very high shear strain which in some cases cer produce delamination and/or fallure by shearing; 'especially along the triusition zone from high compressive strain to tensile strain near the fastener. Such features of the Moire results allow the designer to get very useful information anywhere on the surface of the specimen providing better criteria for the determination of the optimum combination of

Figure 3-14. Distribution of tensile and compressive strain (ε_{y})
near the fastener hole.
parameters such as distance from hole to edge, ratio of pin to hole diameters, fiber orientation, lay-up sequence, etc.

3.10. High-sensitivity Interferometric Moire Technique

From the results for ε_{X} (the smaller strain component), it clear that the Moire technique has a marginaily low strain sensitivity for work on composite materials. This idea is suggested on Figure 3-8. which shows poor agreement between values of ε_{x} at areas located at the right and left of the specimen (shown by lines $x 0$ to $x 2$ and $X A$ to $x C$ respectively).

The Moire mothod yields full-field information of the in-plane surface displacerrents. It has great potential for the macroscopic strain analysis of composites, and this method does not suffer any limitation due to anisotropy, inhomogeneity, or inelasticity of composite material. Successful Moire strain analysis requires that the sensitivity, which is governed by the grating frequency, be matched to a degree with the magnitude of the deformation which is to be measured. Thus an extensive program to extend the sensitivity by a factor of 10 or more was begun.

An interferometric technique similar to that described by Fost (19, 20) and Walker, Mckelvie and McDonach (21) was developed in this laboratory. It is evident that this technqiue for measuring the strain distribution should operate over a sufficiertly short gage length to elucidate the details of the strain distribution, while at the same time giving an overall picture of the material behavior. In this interferometric Moire technique, the specimen grating is a phase-type grating. The analysis is carried out by using overlapping beams of coherent light to create the specimen grating and the master grating which is projected onto the deformed specimen.

The particular virtues of the system developed for this investigation are:

1. The efficiency of light use is very high.
2. No rigid connection is required between the specimen and the system. This last feature is relevant in view of the convenience of performing measurements in environments which are not so ideal as a vibration-free'optics laboratory.
3. Measurements car be performed in three different directions, ylelding a map of strains in the same number of directions and allowing calculations of maximum strains. In composites, it does not make much sense to talk about principal directions, since they depend on the material directions; still, information in three directions will provide very useful information for specific situations of fastener design.

Preliminary testing of this technique has been conducted and the results appear to be very promising. Figures 3-15. and 3-16. show Moire fringes

Figure 3-15. High sensitivity Moire fringes
showing displacements perpendicular to the direction
of loading for no load with rotational mi smatch.

of displacement in the x-direction (perpendicular to the direction of the loading). Notice the difference between these fringe patterns and those obtained by the traditional Moire technique (Figures 3-4. and 3-5.).

4.0. COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS

Section 3 describes the methodology of obtaining strain in the actual composite material by Moire techiniques which are self-ralibrating and which do not depend on assumptions of material behavior. Typical results are reported. Section 2 described a boundary-element approach to the problem and gives results from that method. Some finite element results are also computed and used for comparison of the two numerical approaches.

It is instructive and valuable to designer, theoretician, and experimentalist to compare the results from these widely diverse approaches to the problem. Since the methods are so different, good agreement of results would imply that the results are probably correct. Disagreement would give an idea of the magnitudes of errors in either or both sets of results.

To perform the comparison, some strains measured by Moire were converted to stress by use of generalized Hooke's law. This procedure inserts an assumption of material behavior into the experimental findings, but it does facilitate comparison. It is probably more reasonable, but also more difficult, to use Hooke's law to convert the numerical results to strain. The cunversion of experimental data was carried out for ε_{y} at selected points along the ligament line between hole boundary and specimen edge. These stresses were normalized, then plotted. They are compared with the matching finite element values. The comparison is shown graphicaity in Figure 4-1. The agreement between numerical and experimental findings is excellent, especially when one considers the fact that these composites do show some nonhomogeneity, i.e.. properties vary slightly from point to point.

This comparison is not extensive, but it does indicate that the work and the results are probably correct. Comparisons for other critical areas of the stress field are planned. In addition, it would be advisable to obtain a measure of the inhomogeneity of the materiai so that a "scatter band" of expected stress for a given load situation can be estabilished. The results presented suggest that numerical and experiment results would both lie within any such scatter band.

Figure 4-1. Comparison of stress concentration factions obtained by numerical and experimental techniyues.

REFERENCES

1. C.A. Brebbia (ed), Proceeding of the 3rd International seminar on Boundary Element Methods, Pub: Springer-Verlag, 1981.
2. N.J. Altiero and D.L. Sikarskie "An Integral Equation Method Applied to Penetration Problems in Rock Mechanics," Boundary Integral Equation Method: Computational Applications in Applied Mechanfcs, AMD-Vot. II. ASME, 1975, 119-141.
3. C.G. Harris and W.B. Evans, "Extension of Numerical Quadrature Formula to Cater for Ered Point Singular Behavior Over Finite Integrals," Intern. J. Computer Math. 6B, 1977, 219-277.
4. R.E. Peterson, Stress Concentration Factors, John Wiley, 1974.
5. Cloud, G. " "Simple Optical Processing' of Moire-grating Photographs," E...p. Mech., 20, 8, 265-272 (Aug. 1980).
6. G. Cloud, Radke, R., and Peiffer, J. MMoire Gratings for High Temperatures and Long Times," Exp. Mech. Vol. 19, No. 10, 19N-21N. Oct. 1979.
7. Cloud, G., Paleebut, "The Oimensional Mature of Strain Field Near Coldworked Holes." AFHAL-TR-80-4204, Wright-Patterson AFB, Ohio (1980).
8. Paleebut, Somnuek, "An Experimental Study of Three-dimensional Strain Around Cold Worked Holes and in Thick Compact Tension Specimens," Ph.D. Thesis, Michigan Siate University, Department of Metallury, Mechanics and Materials Science, 1982.
9. Cloud, G., "Residual Surface Strain Distributions Near Holes Which are Cold Worked to Various Degrees," Technical Report AFML-TR-78-153, Wright-fatterson AFB, Ohio (1980).
10. Cloud, G. .MMeasurement of Strain Fields Mear Cold Worked Holes,"
Experimental Mechanics, 20, 2, 9-16, (January 1980).
11. Cloud, G., and Sulaimana, R., "An Experimental Study of Large Compressive Loads Upon Residual Strain Fields and the Interaction Between Surface Strain Fields Created by Cold Working Fastener Holes," Technical Report AFM,-TR-80-4206, Wright-Patterson AFB, Ohio (1980).
12. Cloud, G., and Tipton, M.. "An Experimental Study of the Interaction of Strain Fields Between Coldworked Fastener Holes," Technical Report, AFM-TR-80-4205, Wright-Patterson AFB, Ohio (1980).
13. Horgan C.O., "Saint-Venant End Effects in Composites," Journal of Composite Materiais, Vol. 16, Sept. 1982 pp. 411.
14. Luxmoore, A. and Hermann, R., "An Investigation of Photoresists For Use in Optical Strain Analysis," Jrnl. of Strain Anal., 5, 3, 162 July 1970.
15. Holister, G.S., and Luxmoore, A,R. "The Production of High density Moire Grids," Exp. Mech. 8, 210, May 1968.
16. Luxmoore, A.R., and Hermann R., "The Rapid Deposition of Moire Grids," Exp. Mech, 11, 5, 375, August 1971.
17. Pagano, N.J., and Halpin, J.C., "Influence of End Constraint. in the Testing of Anistropic Bodies," J. Composite Materials, Vol. 2 (1969) p. 18.
18. R.B. Pipes; "On the Off-Axis Strength Test for Anisotropic Materials," Journal of Composite Materials, Vol. 7 (April 1973), p. 246.
19. Post, D., "Optical Interference for Deformation Measurements-Classical, Holographic and Moire' Interferometry" Mechanics of Mondestructive Testing Proceedings edited by W.H. Stinchcomb, Plenum Publishing Corp., MY (1980).
20. Post, D. and Baracat, W.A., "High Sensitivity Moire Interferomenry- A Simplified Approach," Exp. Mech. 21, 3, 100-104 (March 1981).
21. McDonach; A., McKeivie, J., Mackenzie, P., and Malker, C. A., Proceedings of the V International Congress on Experimental Mechanics, Montreal, Canada June 10-15,1984 pp. 308-313.

This page left blank intentionally.

APPENDIX A

FUNDAMEMTAL SOLUTIONS

Abstract

This page left blank intentionally.

For the isotropic case
The stress and displacement fields at a point (x, y) due to a unit point load acting at the origin of coordinates in the x-direction in an infinite plate with material properties G and v under plane stress are:

$$
\begin{aligned}
& 46 U_{x} \\
& 0 \operatorname{lnr} r^{2}+y^{2} / r^{2} \\
& 46 U_{y} \\
& =-\frac{1+v}{2 \pi} \\
& -x y / r^{2} \\
& H_{x x} \\
& x\left(P+x^{2} / r^{2}\right) / r^{2} \\
& H_{x y} \\
& y\left(P+x^{2} / r^{2}\right) / r^{2} \\
& \text { Hyy } \\
& x\left(-p+y^{2} / r^{2}\right) / r^{2}
\end{aligned}
$$

where $P=(1-v) / 2(1+v), Q=.5+2 P$ and $r^{2}=x^{2}+y^{2}$. For a unit load in the y-direction, the results are:

4G U_{x}	$-x y / r^{2}$
4G U_{y}	$0 \ln r^{2}+x^{2} / r^{2}$
$H_{x x}$	$=-\frac{1+U}{2 \pi}$
$H_{x y}$	$y\left(-P+x^{2} / r^{2}\right) / r^{2}$
$H_{y y}$	
$x\left(P+y^{2} / r^{2}\right) / r^{2}$	
	$y\left(P+y^{2} / r^{2}\right) / r^{2}$.

The tractions are:

$$
\begin{aligned}
& T_{x, k}=H_{x x, k} \cos \alpha+H_{x y, k} \sin \alpha \\
& T_{y, k}=H_{x y, k} \cos \alpha+H_{y y, k} \sin \alpha
\end{aligned}
$$

where $k=$ either x or y and $a=$ angle that the exterfor normal makes with the x-axis.

For the orthotropic case
For a untt load in the x-direction

$U_{x x}$	
$U_{y x}$	
$H_{x x x}$	$\left(c_{1} A_{1} \ln r_{2}-c_{3} A_{2} \ln r_{1}\right) / 2$
$H_{x y x}$	$A_{1} A_{2}\left(\phi_{1}-\phi_{2}\right) / c_{22}$
$H_{y y x}$	$\left(c_{1} r_{2}-c_{3} r_{1}\right) x$
$\left(c_{1} r_{2}-c_{3} r_{1}\right) y$	
$\left(\delta_{1} c_{3} r_{1}-\delta_{2} c_{1} r_{2}\right) x$	

For a unit load in the y-direction

$U_{x y}$	$A_{1} A_{2}\left(\phi_{1}-\phi_{2}\right) / c_{22}$
$U_{y y}$	$\left(c_{4} A_{1} l n r_{1}-c_{2} A_{2} l n r_{2}\right) / 2$
$H_{x x y}=k$	$\left(c_{2} r_{2}-c_{4} r_{1}\right) y$
$H_{x y y}$	$\left(\delta_{1} c_{4} r_{1}-\delta_{2} c_{2} r_{2}\right) x$
$H_{y y y}$	$\left(\delta_{1} c_{4} r_{1}-\delta_{2} c_{2} r_{2}\right) y$

with

$$
\begin{aligned}
& k=1 / 2 \pi\left(\delta_{2}-\delta_{1}\right), \\
& r_{i}=1 /\left(\delta_{1} x^{2}+y^{2}\right), i=1,2 \\
& A_{i}=c_{12}-\delta_{1} c_{22}, i=1,2 \\
& \phi_{1}-\phi_{2}=\sin ^{-1}\left[y x \sqrt{r_{1} r_{2}}\left(\sqrt{\delta_{2}}-\sqrt{\delta_{1}}\right)\right], \\
& c_{1}=\sqrt{\delta_{2}}\left(\delta_{1}-c_{12} / c_{22}\right), \\
& c_{2}=\sqrt{\delta_{2}}\left(1-\delta_{1} c_{12} / c_{11}\right), \\
& c_{3}=\sqrt{\delta_{1}}\left(\delta_{2}-c_{12} / c_{22}\right), \\
& c_{4}=\sqrt{\delta_{1}}\left(1-\delta_{2} c_{12} / c_{11}\right) .
\end{aligned}
$$

δ_{1} and δ_{2} are the roots of the characteristic equation of the material;
$c_{22} \delta^{2}-\left(2 c_{12}+c_{33}\right) \delta+c_{11}=0$
Note that δ 's are either real or complex. If they are real, then since $\delta_{1} \delta_{2}=c_{11} / c_{12}>0$, they are either both positive or both negative. For clearness, the δ 's are taken to be real. For complex δ 's, $\delta 2$ is necessarily the conjugate of δ_{1} and the c's obtalned above are substituted in (1i) to obtain the equivalent complex forms of the fundamental solution, the real parts of which represent U's and H's.

APPENDIX B
THE COMPUTER PROGRAM "BEM"

Major steps in constructing BEM computer program
Step 1. Provide the following data:
Boundary points coordinator (XB, YB)
The angles that outward normal at boundary nodes make with +x-axis (T)

Field points coordinates (XF,YF)
Boundary conditions in X and $Y(B C)$, $B C=0$ displacement prescribed $B C=1$ stress prescribed

Boundary values (B)
Integration nodes and weights (Z, W)
Compliances, (c 's)
Step.2. Construct the influence matrix, A
Step 3. Solve $A X=B$
(stores results in B)
Step 4. Calculate displacements and stresses at given field points Remark:

The computer program BEM is developed for real δ_{1} and δ_{2}. The complex version of BEM follows directiy from the discussion given in Appendix I.

CALCLLATE CISPLACEMENTS AND STRESSẼS AT GIVEN FIELD POINTS
$00300 I=19 M$
$L X=U Y=T X X=T X Y=T Y Y=0$ 。
CT=CCS(T(I))
ST=SIN(T(I))
$00<06 J=1, N$
2*
$A x=x E(J+1)-x B(J)$
$A Y=Y B(J+1)=Y B(d)$
$H=S Q R T(A X * A X+A Y * A Y)$
$\operatorname{IF}((X F(I)-E *(X B(J+1)+X B(J))) * * 2+(Y F(I)-5 *(Y B(J+1)+Y B(J))) * * 2 *$
+LE-1.E-8) GOTO 150
$00110 \quad L=1.94$
$X=X F(I)-A:-Z(L)-X B(J)$
$Y=Y F(I)-Z(L) * A Y-Y B(J)$
R1二 $1 . /(x 1+X * X+Y * Y)$
$R 2=1 * /(X 2 * X * X+Y * Y)$
UXX=.5* (C1*A1*ALOG(R2)-C3*A2*ALOG(R1))
$U X Y=A 1 * A 2 * A S I N(X * Y * X 3 * S Q R T(R 1 * R 2)) / C 22$
I:YY=.5*(C4*AI*ALOG(R1)-C2*A2*ALOG(R2))
$H X X X=(C 1 * R 2-C 3 * R 1) * X$
$H X Y X=(C 1 * R 2-C 3 * R 1) * Y$
$H Y Y X=(X 1 * C 3 * R 1-X 2 * C 1 * R 2) * X$
$H X X Y=(C 2 * R 2-C 4 * R 1)+Y$
$H X Y Y=\{X 1 * C 4 * R 1-X 2 *(2 * R 2) * X$
HYYY=(X1*C4*R1-X2*C2*R2)*Y
$U X=U X+(B(K-1) * U X X+B(K) * U X Y) * H * W(L)$
$U Y=U Y+(B(K-1) * U X Y+B(K) * U Y) *+* W(L)$
$U Y=U Y+(B(K-1) * U X Y+B(K) * L Y Y) * F * W(L)$
IXX=TXX $(B(K-1) * H X X X+B(K) * H X X Y) * H * W(L)$
TXY $X X X Y+(B(K-1) * H X Y X+B(K) \# H X Y Y) * H * W(L$.
TYYETYY+(B(K-1)*HYYX+B(K) *HYYY)*H*W(L)
CCNTINUE
150 QI $=-H *(A L C G(H)-10)$
$(X X=G I *((C I * A 1-C J * A 2) * C T * * 2+(C 4 * A 1-C 2 * A 2) * S T * * 2)$
$U \times Y=Q I *(C 1 * A 1+C 2 * A 2-C 3 * A 2-C 4 * A 1) * C T * S T$
$L Y Y=G I *((C 1 * A 1-C 3 * A 2) * S T * * 2+(C 4 * A 1-C 2 * A 2) * C T * * 2)$
$\mathcal{L}_{X} X=U X+U X X * B(K-1)+U X Y * B(K)$
$U Y=U Y+U X Y * B(K-I)+U Y Y * B(K)$
TXX=TXX* $5 * C N *(C T * E(K-i)-S T * E(K))$
$T X Y \equiv T X Y+05 * C N *(-C T * B(K-1)+S T * E(K))$
TYY $=T Y Y+.5 * C N *(S T * B(K-1)+C T * E(K))$
200 CONTINUE
$3 C 0$ PRINT 40 C. $I, X F(I), Y F(I), U X, U Y, T X X, T X Y, T Y Y$
400 FCRMAT, (1HU, $5 X, I 2,3 X, 2(4 X, F B, 4), 6 X, 2(4 X, F 12-8), 6 X, 3(4 X, F 12,8))$

EMC

ECR
CEOF

INPUT DATAS

This page left blank intentionally.

Simple Optical Processing of Moiré-grating Photographs

Paper explains and muetrates how itew bease optical concepls can te employed in smode weys to mprove sansitivity and cuanivy of moin inceurbments
by Gary L. Cloud

mirecturplem

 Concsin

 inulus

Clecamporion of thaist Tcepmiques

(1) OH:

 grame or ungite filst of onvinem and meter

 nores

 inamentint.

Thuce Funcommental Comeepte

 derainel betem.

Prosoean minerfermee

 crove of the twe trems. Tis inemion of gremer inver

 me of innmer.

 protore A A

The lene es a founter fraintormer

 centin treme

 cmover"

He3 Oumet of opred

 aln

 trenemon triotriven Haver Cy Niveres find tue creme nerive
 ingretrone

nom m min tare on troct

 maswag ligita itrowgh the iwo chefraction gromego can be
 ounlined iscove. If a sinde merrow bawe of ligim is mate

 calleat ine zero order, is the umporten parime of of

 thero entat.

 mesmien. The inerineine tom enome anmere +1

 Fring T

 Hotan

 couced by ite uevelem theom.

Wholo-fiede Amelysta

For moint stris menomencm, it in converition to

 neme sinumions.

m. 8 -íninaten of Hix commone ben by an elachertrester

 the deyree to magh in approactios a recuapuitar-weve periotic surncture. One finds in sult a sinumion ithe each
 beoms correpponding to differevin orders of diflraction at

 comples ches in copencraide ceral. For ithis mert. in is

 can be atcmound to the pome where santy the basce two berous mexth prump are of sumperonetce.

Senciltwity Multipliestion

 framaney which is a moming of do bence graine fre-

 the gramen one havime

 grey ese arpmern mernarictan
 Pruphol.e-tmore $\rightarrow \cos$ mintor cenemorn

 fundementel giveinem-prime froqumoy. This concorp

 traem.

 plimenal. An importem simpoticuinm is then byiduciat

 The rumeinime beams rial te so inerume the bectaponed
 somber the mond frime

 anpingonel.

 ancind unelly.

 canant is nula moryis

 perreme of vacinus mamouide of in enerionentel spest

 a (modimenional arry of dols entrependives to the wodinampiond Fourier treaform.

Now, if another leas is phocud at or mear the trandonn

 lans forms the inverse crmaform to reeover the inples. it is ponide and ofle useful. mowever. to monty

 firering conerum optinileta pucinime or opion Pourit prooving.

 peoest is way grett.
 impower praines ase placul in an onciendererpevencime syum. A Fowin protrum of the ernimes is cruend th
 (cruety two or mone tridit dats clow togotive) an

 an inare on orvan. This has and arome combina cion ent be ordingr evaris. The lange is eon-

 inis eqpos iruavariv.

 extre informanien. Owe has a entria lminula in amecias the information that is ances unflul

Ratlonalleation of Two Approsetwe

 of in inciden bete of figh at the imporem foumre.

 with out find otronvion. As bedte is die eve wiht

A Preetcen Example

 procemerex
GA From severe erpereve grims phato ans umpre mplay miotiog of firce cerer

 rupuravy in apucy (roesper

 unel withowi a magrifire.

 in the procomer with smbormer riving plave of 2210

 of 763 lpm . Fur weverit of the speciovens, all or most of these several moint potterss wire anatraed to gin et-

 the geruitivily of the dan quatioy to vainion ir, sar oprient procerim.
 which hed diminy and diffretion chmocteriuices which betageed with the propertias of the spscimen pratias replies to produce the bee frinee genprat. Asso, the ray grop which greve ben fringe viribitisy cowld alwey be selectue.

 ine grodum.

Opteal Prueete to imprive Eratiog Protograpiny

 durio mainf of a proing fraques. Such a prooedre

Anderances:

NA a.

 aponamer

 - Whe shesis mace tmon.

 fom and ow crive
11. Cle O.L

APPENDIX D DISTRIBUTION LIST

This page left blank intentionally.
CDR 15
Defense Techuical Information Center
B1dg. 5 Cameron ANNEX
Attn: DDAC
Alexandria, VA 22314
Manager 2
Defense Logistic Studies
Information Exchange
Attn: AMXMC-D
Ft. Lee, VA 23801
Director
U.S. Army Materials \& Mechanics
Research Center
Attn: AMXMR-M 2
AMXMR-ER 2
AMXMR-S 2
Hatertown, MA 02172
Plastec
Picatinny Arsemal
Dover, NJ 07801 1
CDR 1
Air Force Materials Lab
Attn: LTM
Attn: LLN1
Attn: FIBEC 1
Wrinht-Patterson AFB, OH 45433
CDR
U.S. Army TACOM
Attn: AMSTA-TSL 2
AMGTA-R 1
AMSTA-RCKM 2
AMGTA-G 1
AMGTA-CR 1
Warren, MI , 48090
Naval Materiel Command 1
Cede CMT0424
Washington, D.C. 20360
Hdq., Dept. of Army 1Deputy Chief of Staff
For Research, Development and Acquisition
ilashington, DC 20310
Attn: DAMA-ARZ-E

CDR
U.S. Army Materisi Cmd

Attn: AMCMT-M
Alexandria, VA. 22333
Grumman Aerospace Corp.
Bethpage N.Y. 11714
Attn. Mr. Sam Baskin
Dr. Gary Cloud
Dept. of Met. Mech. \& Mat. Sci.
Michigan State University
East Lansing, MI 48823
Dr. David Sikarskie
Dean of Engineering
Michigan Technological University
Houghton, MI 49931

[^0]: *Wumbers in parenthesis refer to references given at the end of section 4.0.

[^1]: FThese fundamental solutions are given in detafl in Appendix A.

[^2]: Tn this report, grating means a set of parallel lines, while grid means a pair of orthogonal gratings -25 sets of $11 n e s$ at 90°.

