

AERIAL REFUELING SYSTEMS ADVISORY GROUP

Guidance Document

Aerial Refueling Modeling and Simulation Standardization

Document Number Unrestricted 54-18-22 Date 24 June 2022

> A R S A G INTERNATIONAL * GLOBAL INTEROPERABILITY * * * * * * *

[signed] ARSAG Executive Director Dexter H. Kalt

[signed] Rob Tipton / #6 Working Group Lead [signed] ARSAG Secretary Col Gomer C. Custer, USAF, ret.

[signed] Elizabeth Knoblauch, Document Manager

[signed] Farhad H. Choudhury, NAVAIR Chair, Joint Standardization Board (JSB) for Aerial Refueling Systems [signed] David A. Benson, AFLCMC/EZFA Deputy Chair, Joint Standardization Board (JSB) for Aerial Refueling Systems

Distribution Statement: This is an ARSAG Document prepared by a group of international contributors during scheduled ARSAG Workshop Sessions. This ARSAG document is intended to provide guidance derived from lessons learned and offer aerial refueling tanker/receiver interface guidance regarding standardization of aerial refueling systems. It is distributed to promote consistent, unambiguous communication among the international aerial refueling community. It does not contain proprietary, sensitive, classified or otherwise restricted information. ARSAG documents, as prepared, are not DOD, MOD or NATO standards, but provide recommendations regarding aerial refueling systems to United States military services, their allied military organizations involved in aerial refueling and their associated contractors. This document is suitable for unlimited release in the public domain; it may be included in DOD and NATO databases such as ASSIST, DTIC, Military Specifications, SRDs, STANAGs, etc. Contact: arsaginc@earthlink.net or 937 760-7407.

ARSAG is chartered in the US by the DOD as the Joint Standardization Board for Aerial Refueling Systems. JSB Chair and Deputy Chair signatures do not denote authorization for the use of this ARSAG document as a USAF or USN requirements / standards document.

	REP	ORT DOCUM	ENTATION PAGE			Form Approved OMB No. 0704-0188	
The public reporting maintaining the data suggestions for redu person shall be subje PLEASE DO N	burden for this collecti needed, and completii cing the burden, to th ect to any penalty for fa DT RETURN YO	on of information is es ng and reviewing the c e Department of Defe illing to comply with a c UR FORM TO T	timated to average 1 hour per re ollection of information. Send co nse, Executive Service Directora collection of information if it does r HE ABOVE ORGANIZAT	sponse, including the mments regarding thi te (0704-0188). Res not display a currently TON.	e time for rev is burden est pondents sho y valid OMB o	iewing instructions, searching existing data sources, gathering and imate or any other aspect of this collection of information, including ould be aware that notwithstanding any other provision of law, no control number.	
1. REPORT DA 24	ATE (<i>DD-MM-YY</i> /06/2022	<i>YY)</i> 2. REPC	DRT TYPE Technica	1		3. DATES COVERED (From - To) 07/02/2019 to 20/02/2022	
4. TITLE AND	SUBTITLE		1 1: .:	-	5a. CO	NTRACT NUMBER	
Aerial Refuelin	ig Modeling and	Simulation Stand	lardization			N/A	
					5b. GR/	ANT NUMBER N/A	
					5c. PRO	DGRAM ELEMENT NUMBER	
					5d PRO		
Knoblauch, Eli	zabeth, M.				5 0. 1 K	ARSAG 54-18-22	
Fialho, Ian, J.	,				50 TAS		
Boothe, Kenny	E.				Je. 140	N/A	
Clark, Henry T					56 MOI		
Jann Thomas	el J.				51. WOF		
						N/A	
7. PERFORMIN	NG ORGANIZAT	ION NAME(S) AN	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
Dexter H Kalt							
1011 Ankeney Road					ARSAG 54-18-22		
Xenia OH 4538	35						
9. SPONSORI	NG/MONITORING	G AGENCY NAM	E(S) AND ADDRESS(ES	i)		10. SPONSOR/MONITOR'S ACRONYM(S)	
Farhad H. Cho	udhury					NAVAIR	
US Navy NAV	AIR 120.2						
Hwy 547	, 120-2					NUMBER(S)	
Lakehurst NJ 0	8733					N/A	
12. DISTRIBUT	ION/AVAILABIL	ITY STATEMENT	Г				
Unlimited Dist	ribution in Public	e Domain					
13. SUPPLEME Original docum	ENTARY NOTES	ed with suppleme	entary revisions				
14. ABSTRACT This document versions of this allows for the i components, an any give ARM ground, and fli end uses that ca	presents a standa document to inc ntegration of an nd/or visual repre- is left to the disc ght) as appropria an be easily share	ardized interface clude the Boom/F ARM into an ind esentation to achi cretion of the AR te. By standardiz ed across multipl	for end-to-end Aerial Re Receptacle method of Aer lependent simulation env eve an AR End-to-End s M developer along with ting the interface for ARI e vendors and platforms	efueling Model rial Refueling. 7 ironment consis imulation. The the modeling ar Ms, the result is	(ARM) of The conce sting of ta fidelity, p and simulat to achiev	f hose-drogue systems with future revision eptual architectural layout presented in this release unker model, receiver model, environmental obysical properties, and configuration variations of tion validations by actual testing (e.g., lab, ve highly plug and play simulations for multiple	
15. SUBJECT 1	ERMS						
See Paragraph End-to-End	5.0 Abbreviation	s and Terminolo	gy				
16 SECUDITY			17. LIMITATION OF	18. NUMBER	19a NAM	ME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF	Farhad	H. Choudhury	
U	U	U	UU	30	19b. TEL	EPHONE NUMBER (Include area code) 732 674-4347	
						Standard Form 298 (Rev. 8/98	

RECORD OF REVISIONS

REVISION	DATE	REASON FOR REVISION
		Initial Release

TABLE OF CONTENTS

1.0	0 Executive Summary				
2.0	Acknowledgements	8			
3.0	References	9			
4.0	Associated Documents	9			
5.0	Abbreviations and Terminology	10			
6.0	Introduction	11			
6.1	Scope of Document	11			
6.2	Scope of First Release	11			
6.3	Generalized Simulation Architecture and interface	11			
7.0	Aerial Refueling Modeling and Simulation	14			
7.1	Aerial Refueling End-to-End Model	14			
7.1.1	General	14			
7.1.1.	1 Coordinate System Definitions	14			
7.1.1.2	2 Model Architecture	16			
7.1.1.3	3 Interface Structure and UDP Ports	17			
7.1.2	Hose Drogue Simulation Message Structure	20			
7.1.2.	1 Messages Host-to-ARM	20			
7.1.2.2	2 Messages ARM-to-Host	26			
7.1.3	Boom-Receptacle Model	29			
7.1.4	BDA Model	29			
7.2	AR Component Level Modeling	29			
7.3	Environmental Modeling – Best Practices	29			
7.4	Simulation Validation and Verification-Standard Simulation Results	29			

7.5	Modeling Documentation	29
7.6	Using Simulation in Certification Process	29
7.7	Survey of Components and Map to Real World AR System	29
8.0	Appendix / Auxiliary Sections	30
8.1	Tanker Hose-Drogue Refueling System Nomenclature.	30
8.2	Receiver Hose-Drogue Refueling System Nomenclature.	30

1.0 EXECUTIVE SUMMARY

This document presents a standardized interface for end-to-end Aerial Refueling Model (ARM) of hose-drogue systems with future revision versions of this document to include the Boom/Receptacle method of Aerial Refueling. The conceptual architectural layout presented in this release allows for the integration of an ARM into an independent simulation environment consisting of tanker model, receiver model, environmental components, and/or visual representation to achieve an AR End-to-End simulation. The fidelity, physical properties, and configuration variations of any give ARM is left to the discretion of the ARM developer along with the modeling and simulation validations by actual testing (e.g., lab, ground, and flight) as appropriate. By standardizing the interface for ARMs, the result is to achieve highly plug and play simulations for multiple end uses that can be easily shared across multiple vendors and platforms

ARSAG Workshop / DOD Joint Standardization Board (JSB) for Aerial Refueling Systems PROJECT INITIATION FORM (PIF)

Items 1 through 3 to be (Completee	l by Req	uester						
1. PROJECT SPONSC	OR OR IN	ITIATING	G AGEN	CY					
Name of Individual:	Elizabet	Elizabeth Knoblauch (Liz)							
Name of Organization:	NAVAIR	NAVAIR							
BOC Information:	Phone	hone 301-995-2266		E	-mail	Elizabet	h.m.knoblau	ıch.civ	@us.navy.mil
FOC Information.	Mobile			A	Alt				
2. PROJECT REQUES	2. PROJECT REQUEST								
Project Purpose and Scope	Develop a standardized format (Interface Control Document) for the modeling and simulation of Aerial Refueling Systems to include hose/drogue, boom/receptacle, and BDA (boom-to-drogue adaptor) kit configurations. As the community moves toward certification by modeling and simulation, it will be critical that model components can be easily shared among organizations, and standardization will be key to that.								
Proposed Project Title:	Aerial R	efueling	Modeling	g and Sin	nulation	Standar	dization		
	ARSAG		Guid	de Docum	ent		Recomm	endeo	d Requirements
	Docume	nt:		x					
	Input to	DoD	Speci	ification	Stan	dard	JSSG		Other
Proposed Product	Standard Docume	lization nt:			tk	bd			
Outcome: (Mark with X)	Input to NATO Document:		A		STAN	IREC	SRD		Allied
(51/	tbd					Fublications
	Input to Industry Document:			Standard			Other		her
				tbd					
Would you be willing to	participat	e as	Yes X		No				
3 PRO JECT TIMELIN	/our prop F	osed pro	ject?				_		
Project Request Submitt	al Date:	Date	Jan 201	19					
Requested Completion	Date:	Date	April 20)20					
Item 4 to be Completed by	ARSAG								
4. PROJECT DISPOSI	TION								
Project Request Receipt	Date			Jan 201	9				
				JSB Chair			JS	JSB Deputy Chair	
Approved as ARSAG Pro	oject: Initi	al & Date)	F. Chou	dhury, 7 F	⁻ eb '19	D. Bens	on, 7	Feb /19
Declined as ARSAG Pro	ject: Initi	al & Date)						
					ARS	AG Exec	cutive Dire	ector	(ED)
Approved as ARSAG Pro	oject: Initi	al & Date	•	D Kalt,	7 Feb '19	9			
Declined as ARSAG Project: Initial & Date									
Priority Assessment 2 Project Number Assignment: 54-18-21WD									
Working Group Assignm	nent	WG	5 6; R. Tip	oton, Lea	d; E. Kn	oblauch	, Doc Mgr	-	
project is declined,	n project is declined,								
ARSAG Response to Sponsor/Initiating Agency: ED initial & Date DHK, 7 Feb '19									
Transfer to ARSAG/JSB Working Group: ED Initial & Date DHK, 7 Feb '19									

ARSAG Document Name and Number	Aerial Refueling Modeling and Simulation Standardization; 54-18-21WD
Need for Project	Company/academia/government participates are engaged in studying, developing, utilizing aerial refueling models at various levels of fidelity and validation/verification. These models are used for engineering analysis, pilot and operator training, accident investigation, as well as various levels of flight clearance and certification. As more and more work shifts from flight test to simulation the ability to share and compare simulation models is becoming more critical to the advancement of aerial refueling. Providing a standardize format (Interface Control Document) for hose/drogue, boom/receptacle, and BDA(Boom-to-Drogue adaptor) kit configurations is desirable such that models can be readily shared and integrated across partners and platforms.
Background	The initial concept of the ARSAG working group envisioned an ICD document that would detail the interfaces between full Aerial Refueling Models (ARM) and subcomponents; covering hose/drogue, Boom/Receptacle and BDA refueling techniques. Adhering to the ICD would allow for shared "black box" models and modeling components between corporations, academia, and governments. Additionally, it was the vision of the working group to draw from the collective expertise in flight test and simulation of aerial refueling to include in the document best practices for model development, aerial refueling environmental guidelines, recommendations for validation and verification standards of models, and guidance for use of ARM in training and certification efforts was also envisioned.
Changes to Original Project Purpose and Scope	Given the scope of the final document, this first release covers only the standardized interface (ICD) for end-to-end AR modeling of hose-drogue systems. The conceptual architectural layout presented in this release allows for the integration of an Aerial Refueling Model (ARM) into an independent simulation environment consisting of tanker model, receiver model, environmental components, and/or visual representation in order to achieve an AR End-to-End simulation. The intent, is by initial release of the ICD, partners can begin moving towards common model interfaces for shared system modeling.

2.0 ACKNOWLEDGEMENTS

Name	Organization	Role In Document
Dexter Kalt		Executive Director
Robert Tipton	Lockheed Martin	Group 6 Lead
lan Fialho	Boeing	Group 6 Co-Lead
Elizabeth Knoblauch	NAVAIR	Document Manager
Henry Clarke	Badgerworks	Prev Group6 Co-Lead Technical Advisor
Kenny Boothe	Shifting Technologies	Technical Advisor
Alex McDonald	Cobham	Group6A Participant
James Prentice	Cobham	Group6A Participant
Jeremy Schaeffer	Cobham	Group6A Participant
James Reinholdt	Cobham	Group6A Participant
Paul West	Cobham	Group6A Participant
Jon Mead	Cobham	Group6A Participant
Attila Lengyel	Mide	Group6A Participant
Marthinus van Schoor	Mide	Group6A Participant
Andrew Erickson	SDI	Group6A Participant
Phillip Richards	SDI	Group6A Participate
Thomas Jann	German Aerospace Center	Group6A Participant
Philipp Weber	German Aerospace Center	Group6A Participant
Pablo Martinez Arnal	AIRBUS	Group6A Participant
Bruno Martinez	AIRBUS	Group6A Participant
Miguel Payo-Gomez	AIRBUS	Group6A Participant
Justin McFatter	Boeing	Group6A Participant
Daniel Lesieutre	АМА	Group6A Participant
Andrew Rowe	Lockheed Martin	Group6A Participant
Jacob Connors	Lockheed Martin	Group6A Participant
Blake Graham	Lockheed Martin	Group6A Participant
John Fristachi	CALSPAN	Group6A Participant
Mark Jean	On Station LLC	Group6A Participant
Domenic Marcello	Northrop Grumman Corp	Group6A Participant
Stephen Sipprell	Eaton Aerospace	Group6A Participant
Harmjan Boels	MAA-NLD	Group6A Participant
Abigail McAdams	Triton	Group6A Participant

3.0 REFERENCES

None

4.0 ASSOCIATED DOCUMENTS

TITLE	REFERENCE	ISSUE	DATE	SOURCE
Aerial Refueling Probe/ Drogue	DTIC No.	1	15 Oct	ARSAG
System Design Guide	AD1064517		2018	04-06-18

5.0 ABBREVIATIONS AND TERMINOLOGY

ABA	Aircraft Body Axis
ARM	Aerial Refueling Model
AR	Aerial Refueling
BDA	Boom-to-Drogue Adaptor
ECEF	Earth Centered, Earth Fixed
FEA	Flat Earth Axis
ICD	Interface Control Document
ISA	International Standard Atmosphere
KCAS	Knots Calibrated Airspeed
KIAS	Knots Indicated Airspeed
KTAS	Knots True Airspeed
KEAS	Knots Equivalent Airspeed
MSL	Mean Sea Level
TADA	Tanker Aircraft Drum-centric Axis
UDP	User Datagram Protocol
UTM	Universal transverse Mercator

Indicated Airspeed (IAS) – This is normally measured from aircraft instruments (Pitot tubes) and is calculated based on the dynamic pressure (which is calculated from the total pressure less the static pressure measured from the Pitot tubes on the aircraft). This is not corrected for angle of attack and is calibrated for standard atmosphere adiabatic compressible flow at sea level.

- Calibrated Airspeed (CAS) This is the indicated airspeed corrected for instrument and installation errors i.e., Pitot tube alignment to the flow. In normal flight KIAS ≈ KCAS when the Pitot tube is aligned to the flow direction. When corrected for angle of attack the indicated airspeed reduces relative to calibrated airspeed.
- *True Airspeed (TAS)* This gives the actual velocity the aircraft is moving relative to the atmosphere. At increasing altitude, if the equivalent airspeed stays constant, the true air velocity must increase to maintain the same dynamic pressure reading.
- *Equivalent Airspeed (EAS)* This is the airspeed at sea level ISA at which the dynamic pressure is the same as the dynamic pressure of the true airspeed and altitude the aircraft is flying. Therefore, this term effectively compensates for aircraft altitude in its expression.
- *Coupling Ball Joint* The coupling ball joint provides for a limited degree of motion in both lateral and vertical axes of rotation between the hose and the drogue.
- *End-to-End* An overall simulation system where the "ends" are defined by the interfaces to the simulation. The end-to-end Aerial Refueling model of the Hose-Drogue system is the simulation process that takes the inputs of the environment, tanker motion, and receiver contact as inputs and provides the output response of the hose/drogue system including the reel response, hose motion and drogue positioning.

6.0 INTRODUCTION

6.1 Scope of Document

The goal of this project is to develop a standardized format (Interface Control Document) and validation/verification best practices for the modeling and simulation of Aerial Refueling Systems to include hose/drogue, boom/receptacle, and BDA (boom-to-drogue adaptor) kit configurations. As the community moves toward certification by modeling and simulation (M&S), it will be critical that the validation of model components is understood/documented and can be easily shared among organizations.

This final issue of this document will consist of segments covering:

- standardized interface for end-to-end AR modeling resulting in highly plug and play simulations for multiple end-uses that can be easily shared across multiple vendors and platforms
- standardized interface for higher fidelity model architecture and interfaces to enable more detailed AR modeling
- discussion and guidance on environmental modeling and best practices as pertains to AR; including turbulence, receiver bow waves, and tanker air wakes
- simulation validation and verification standardization and best practices to include discussions on typical receiver and tanker profiles for model development, verification tools, model validation best practices, and AR component level tests
- recommendations for model documentation
- recommendations for the use of simulations in certification process

6.2 Scope of First Release

Given the scope of the final document, it was envisioned that the first document release would cover the standardized interface for end-to-end AR modeling of hose-drogue systems only, with the intent being to quickly share and adapt this common ICD throughout the modeling community.

The conceptual architectural layout presented in this release allows for the integration of an Aerial Refueling Model (ARM) into an independent simulation environment consisting of tanker model, receiver model, environmental components, and/or visual representation to achieve an AR End-to-End simulation. The fidelity, physical properties, and configuration variations of any give ARM is left to the discretion of the ARM developer, along with the level and type of modeling and simulation verifications and validations conducted by actual testing e.g., lab, ground, and flight as appropriate.

6.3 Generalized Simulation Architecture and interface

The aerial refueling domain as defined for implementation into a simulation environment consists of the interactions between a receiver aircraft, a tanker aircraft, and the aerial refueling system. Currently there are three refueling system methods: BDA, boom/receptacle, and hose-drogue. The three configurations are shown in Figure 1. The Aerial Refueling Model (ARM) can reflect any of these three systems.

Figure 1. Aerial Refueling Systems

The refueling domain also includes the physical environment through which the tanker and receiver aircraft fly and the wind disturbances they each experience and create. For use in the simulation environment, user inputs of ARM system controls and the aerial refueling system failure scenarios are also considered.

A generalized system architecture that relates these elements is shown in Figure 2. Each block is its own model(s) or interface. The arrows representing the flow of data.

Figure 2. Generalized Simulation System Architecture

Tanker and Receiver Aircraft models provide positions, velocities, orientation, and orientation rates to the ARM. These models can range from high fidelity aerodynamic models to simple time data inputs.

Wind Disturbances can include free air turbulence models, tanker air wake disturbances, and/or receiver bow wave disturbances.

Environment conditions relate the altitude and airspeeds of the tanker and receiver aircraft to air temperature and pressure.

ARM System Control, Failure Scenarios input, Refueling Status, and ARM Refueling System Specific Outputs are unique to the AR system being modeled. In general, ARM System Control provides the controls for the AR system and simulation models. The Failure Scenarios interface allows the option to replicate fault scenarios. The AR System Specific Output format, at a minimum, includes the location of the refueling fuel transfer and refueling status information. The generalized architecture coupled with a consistent-standardized interface along the data flow lines, strives to allow for the integration of an Aerial Refueling Model (ARM) into any independent simulation environment consisting of tanker model, receiver model, environmental components, and/or visual representation to achieve an AR End-to-End simulation. It also allows various ARMs to be shared across tanker/receiver platforms, and between contractor, government, and international agencies with minimum modifications.

7.0 AERIAL REFUELING MODELING AND SIMULATION

7.1 Aerial Refueling End-to-End Model

7.1.1 General

7.1.1.1 Coordinate System Definitions

ABA – Aircraft Body Axis (commonly referred to as "b" in ISO-1151 standard) The ABA coordinate system is defined relative to the aircraft platform, Figure 3.

- Translational Components
- X: positive forward parallel to aircraft fuselage waterline
- Y: positive starboard wing; parallel to aircraft fuselage buttline
- Z: positive down

TADA – Tanker Aircraft Drum-centric Axis

The TADA is a convenience coordinate system defined as being parallel to the traditional ABA, while having its origin at the center of the hose drum, Figure 3.

- Translational Components
- X_{TADA}: positive forward parallel to aircraft fuselage waterline
- Y_{TADA}: positive starboard wing; parallel to aircraft fuselage buttline
- Z_{TADA}: positive down

Ref: Figure 7. Hose-Drogue Indexed Points- Conceptual

Figure 3. TADA and Ordinary ABA Coordinate Systems

FEA – Flat Earth Axis

The FEA is the inertial coordinate system used within the Aerial Refueling Modeling and Simulation environment. It is a Cartesian right-hand coordinate system and is equivalent to a North East Down (NED) axis system for a flat earth assumption/simplification:

- gravity is constant and everywhere aligned to FEA vertical axis
- earth's curvature and rotation are not considered

Figure 4 shows the FEA coordinate frame, and examples of how the tanker's Euler angles are defined relative to this axis system. The horizontal plane defined by the X_{FEA} , and Y_{FEA} axes represents a flat earth plane located at 0 ft altitude Mean Sea Level (MSL). In this way, (-) Z_{FEA} can be used as an altitude input to the standard atmosphere model and produce the appropriate density for aerodynamic calculations. The initial position of the origin of the TADA, in the FEA, is defined as {0, 0, -MSL of the drum center} at the start of the simulation.

- Translational Components
- X_{FEA}: positive North
- Y_{FEA}: positive East
- Z_{FEA}: positive down

Figure 4. FEA Coordinate System

The tanker position is provided as FEA coordinates of the hose drum center in the message group 50001 to the ARM and the receiver model. This reference allows converting relative coordinates from the TADA frame (e.g., of receiver and hose/drogue system) into FEA coordinates and vice versa.

A simple and universal conversion between FEA (flat earth) and WGS-84 (round earth) coordinates is not available, as this depends on the chosen map projection approach for a selected certain region (e.g., UTM). Therefore, it was decided to omit WGS-84 (and ECEF) coordinates in the simulation for the moment.

The FEA, rather than an NED system, is explicitly defined for inertial calculations to avoid ambiguities that may arise from unintended mixed coordinate system usage. One example of a potential issue is that a tanker aircraft is operating in one NED frame while the receiver aircraft propagates in a second NED frame that is attached elsewhere to the ellipsoid. Another source of incompatibility can arise when one simulation component is integrating accelerations in an Earth Centered, Earth Fixed coordinate system while another component, although acting in the same NED 'neighborhood', is integrating NED accelerations while defining gravity to be parallel with the Down axis. While these issues may not lead to large errors, they can certainly produce the type of numerical methods nuisances such as unwanted relative drift, especially over time.

Operators that wish to blend their round earth simulation environment with the FEA are encouraged to use a vehicle carried NED system, which will remain aligned to FEA at every time step. Relative coordinates of receiver and hose/drogue elements can be easily transformed from the TADA into the vehicle carried NED frame and then – as offset to the tanker WGS-84 position – converted into round earth coordinates. The remaining error from the conversion is negligible, provided that the receiver remains in the neighborhood of the tanker. This concept is depicted in Figure 5.

Figure 5. Vehicle Carried NED Example

7.1.1.2 Model Architecture

Figure 6 shows the conceptual architectural layout allowing the integration of an Aerial Refueling Model (ARM) into an independent simulation environment consisting of tanker model, receiver model, environmental components, and/or visual representation to achieve an AR End-to-End simulation. The fidelity, physical properties, and configuration variations of any give ARM is left to the discretion of the ARM developer.

Figure 6. AR End-to-End Simulation Architecture

7.1.1.3 Interface Structure and UDP Ports

The data transferred between the external environment and the ARM "Black Box" are defined in US customary units to maintain consistency. Angle definitions are specified in radians defined between the values of $-\pi$ (pi) to π . For developers using SI units in modeling, SI to US Customary conversion values are included in Table 1 below for reference. In addition to the columns outlined in Table 2 thru Table 11, the users could choose to provide reference ranges of variable values for system integration and flagging of off scale conditions, including occasions where only positive values are accepted to a variable.

SI Units	US Customary Units	Conversion Factor SI to US Customary
Meters	ft	3.28084
Kilograms	lbm	2.20462
КРа	psig	0.145038
°C	٥F	°F = (°C * 9 / 5) + 32
N (newton)	lbf	0.224809

Table 1. SI to US Customary Conversions

Interaction between the various subsystems is achieved using messages transmitted via UDP. The messages will comprise matrices of doubles or integers. In some cases, where integer types are used, the values will be scaled prior to transmission to preserve precision;

these scaling factors are detailed in this document. Send and receive port numbers and IP addresses are specified in scripts at build time. A port is a computer networking endpoint. Along with the type of transport protocol (the most common being TCP and UDP) and IP address, it defines the network address for the destination or origination of a message. The messages from the ARM to the host may be sent to multiple ports to ensure that the messages are not split up into packages.

Messages shall be grouped and sent to a target port as required. The message group and their port numbers will always remain fixed. Additional ports have been reserved for any future requirements. The generic message structure is outlined in Table 22.

Members of the working group researched and tested different message protocols and found that UDP (User Datagram Protocol) was the preferred method of passing data between models. For time-sensitive applications UDP is useful because dropping packets is preferable to waiting for packets delayed due to retransmission, which may not be an option in a real-time system. The aim is to standardize on one interface solution to make model sharing easier, reduce integration costs and stimulate innovation. However, if developers choose to use a different interface, then the document provides guidance on the input/output variables for which another interface protocol could be used. In this case the end users would need to coordinate extensively with one another

Integration of the hose-drogue black box model:

The hose-drogue black box model is integrated into the flight simulation or simulation executive using the co-simulation method. This method specifies that the hose-drogue black box contain its own numerical solver. The flight simulator and the black box model exchange inputs and outputs at a predetermined time interval known as the communication interval or co-simulation interval. The flight simulation provides inputs to the black box model at each communication interval. The black box solves its equations of motion and returns the requested outputs to the flight simulator at the next communication interval. This approach allows the black box to simulate with a smaller time step than the flight simulator, which is typically needed to solve the higher frequency hose-drogue system dynamics.

	Message Group	UDP Send/Receive Port Number	Message Description	Section
	Receiver Motion Tanker Motion	50001	Provides receiver positions/velocities and orientations/orientation rates Provides tanker positions/velocities and orientations/orientation rates	7.2.1.1
-	ARM System Control	50002	Provides the controls for the AR system and simulation models	7.2.1.2
to ARN	Environment	50003	Provides the controls for environmental variables	7.2.1.3
Host t	Failure Scenarios	50004	Provides the option to replicate fault scenarios	7.2.1.4
	External Wind Vector- Environmental (including turbulence)	50005	Host generated wind vector reflecting environmental wind conditions to include turbulence	7.2.1.5.1
	External Wind Vector-Bow Wave	50006	Host generated wind vector reflecting receiver bow wave	7.2.1.5.2
	External Wind Vector- Tanker Wake	50007	Host generated wind vector reflecting tanker wake	7.2.1.5.3
to Host	Model Specific Hose/Drogue Modeling	50011	Provides hose and drogue positions	7.2.2.1
ARM	Refueling Status	50012	Provides information on refueling status	7.2.2.2

Table 2. Messaging Structure and UDP Ports

7.1.2 Hose Drogue Simulation Message Structure

The hose and drogue aerial refueling "end-to-end" model is intended to be generic, robust, and easily exchangeable and used for real-time and pilot in-the-loop simulations. For loads or stress analysis higher-fidelity models are required.

7.1.2.1 Messages Host-to-ARM

7.1.2.1.1 Aircraft Positions

The host will send Aerial Refueling Model the following as a single UDP packet as an 8 x 3 matrix of type double. This message will be transmitted at a rate of at least 100Hz. This transmission rate is intended to support real-time simulation and pilot-in-the-loop simulations. Higher fidelity models are expected to require finer simulation time steps. All transmitted position data is in the FEA, Table 3.

Size	8 x 3	Data Type	Double	Transmission Rate		100 Hz	Port Number	50001	
Index	1	2	3	Units Comment					
P1	X _R	Y _R	ZR	ft	Receiver Probe Tip Position*				
P2	Vrx	Vry	V _{RZ}	ft/s	Receiver Probe Tip Velocity*				
P3	Φ _R	Θr	Ψ_{R}	Rad	Receiver Probe Orientation				
P4	PR	QR	RR	Rad/s	Receiver Probe Orientation Rate				
P5	XD	YD	ZD	ft	Hose Drum Center Position				
P6	V _{DX}	Vdy	Vdz	ft/s	Hose Drum Center Velocity				
P7	ΦD	ΘD	Ψ_{D}	Rad	Hose Drum Center Orientation				
P8	PD	QD	RD	Rad/s	Hose Dr	um Cente	r Orientatio	on Rate	

Table 3.Host to Aerial Refueling Model Aircraft Position Message Structure

*The assumption is the contact model between the probe and the drogue is computed in the ARM. The receiver probe position and velocity in Table 3. is described as tip position; however, this could potentially be a more generic coordinate point depending on the fidelity of the receiver probe modeling and contact to drogue interaction.

7.1.2.1.2 ARM System Control

This section summarizes the commands sent from the tanker AR panel to the hose drum, Table 4.

Size	11 x 1	Data	Int16	Transmission	100 Hz Port		50002
		Туре		Rate		Number	

Index	Name	Units	Scaling	States
A1	Pause Simulation	-	1	[0 = Run] 1 = Pause
A2	Deploy/Stow	-	1	[0 = Stow] 1 = Deploy
A3	Pre-contact Hose Fuel State	-	1	0 (empty) to 100% (full)
A4	Fueling Status	-	1	[0 = Automatic] 1 = Stop Fuel
A5	Hose Jettison	-	1	[0 = Off] 1 = On
A6	Red Signal Lamp Override	-	1	[0 = Off] 1 = On
A7	Fuel Mass Flow Rate	lbm/min	1	
A8	Hose end delivery pressure set point	Psig	1	
A9	Inlet Pressure at tanker-hose interface	Psig	1	
A10	Receiver back- pressure downstream of probe	Psig	1	
A11	Simulation Time Step Identifier	-	1	

Note that default values are denoted in square brackets, [].

Table 4.ARM System Control Message Structure

Hose Jettison:

This functionality mirrors the jettison behavior of the aerial refueling system. For the guillotine operated systems, it immediately cuts the hose; for the non-guillotine systems, it trails to standby and then releases the hose.

7.1.2.1.3 Environment

This section summarizes variables that define the operating environment of the hose-drogue system, Table 5.

Size	6 x 1	Data Type	double	Tra Ra	ansmissio Ite	on	1 Hz	Port Number	50003		
-		1			_	_					
Sys	Index	Name			Units	States					
	E1	Airsp	eed (Calibrated)	Knots	-						
	E2	Air To	emperature	٥F	-						
	E3 Altitude (MSL)				ft	-					
onment	E4	Envir Soure turbu	onmental Wind ce (includes lence)		-	0 = Only External Velocities Used;1 = Only Internal Velocities Used					
Envire	E5	Bow	Wave Wind Sour	ce	-	0 = Only External Velocities Used; 1 = Only Internal Velocities Used					
	E6 Tanker Wake Wind Source			-	0 = Only External Velocities Used; 1 = Only Internal Velocities Used						

Table 5. Environment Control Message Structure

7.1.2.1.4 Failure Scenarios

This section summarizes variables that define various failure scenarios of the hose-drogue system, Table 6.

Size	6x 1	Data	Int16	Transmission	100 Hz	Port	50004
		Туре		Rate		Number	

Sys	Index	Name	Units	Scaling	States	
Failure Scenarios	F1	Dead Hose	-	1	[0 = No Fault] 1 = Fault	
	F2	Damaged Drogue	-	1	[0 = No Fault] 1 = Fault	
	F3	Drogue Spoking	-	1	[0 = No Fault] 1 = Fault	
	F4	Stuck Latches	-	1	[0 = No Fault] 1 = Fault	
	F5	Failure to Latch	-	1	[0 = No Fault] 1 = Fault	
	F6	Severed Hose	-	1	[0 = No Fault] 1 = Fault	

Note that default values are denoted in square brackets, [].

Table 6.	Failure	Scenarios	Message	Structure
----------	---------	-----------	---------	-----------

Dead Hose:

This functionality means that there will be no drum torque. The hose length would be locked, as the drum will not be able to rewind during contact mode.

Damaged Drogue:

The functionality means that there would be a reduction in drogue drag.

Drogue Spoking:

Spoking refers to an off-nominal contact where the probe-tip penetrates and gets entangled with the ribs of the drogue basket. Based on receiver approach profile and contact conditions, identify when spoking is likely to occur and update visuals and release forces accordingly.

Stuck Latches:

This functionality would mean an increase in coupling latch disconnect force levels

Failure to Latch:

This functionality would mean an increase in coupling latch engagement force levels

Severed Hose:

This functionality enables situations where the hose severs, for example at the coupling interface

7.1.2.1.5 External Wind Vectors

For unsteady aerodynamic effects such as turbulence, tanker wake, and receiver bow wave, either the host or ARM can calculate the wind vectors as velocity deltas to the free stream aerodynamics, with the source as specified in Table 5. For the external wind vector case, the host sends a wind vector generated by the host that will be applied to the ARM, this wind vector will be velocity deltas added to the ARM wind vector, information to the ARM in a single UDP message as an 83 x 3 matrix of double type. All transmitted position data is in TADA coordinates. For models with fewer than 80 hose elements (N elements), use row H4 through H(N+3) for the hose element start coordinates with H1 as the drogue end, H2 as the coupling ball joint articulation point, and H3 as the end coordinate of the final hose element. Table 7, Table 8, and Table 9 define the UDP for external wind vectors of turbulence, bow-wave, and tanker-wake, respectfully.

7.1.2.1.6 External Wind Vector- Environmental (including turbulence)

Size	83 x 3	Data Type	Double	Transmission Rate		100 Hz	Port Number	50005	
		•							
Index	1	2	3	Units	Commer	nt			
H1	U	V	W	ft/s	Drogue End				
H2	U	V	W	ft/s	Coupling Ball Joint Articulation Point				
H3	U	V	W	ft/s	End coor	rdinate of	final hose	element	
H4	U	V	W	ft/s	Start coo	ordinate of	^t final N th h	ose element	
H5 H(N+2)	U	V	W	ft/s	Start coordinate of 2 nd to (N-1) hose elements			1) hose	
H(N+3)	U	V	W	ft/s	Start coo	ordinate of	[:] 1 st hose e	lement	

Table 7. Tanker Wake External Wind Vector Message Structure

Size	83 x 3	Data Type	Double	Transmission Rate		100 Hz	Port Number	50006	
Index	1	2	3	Units	Comment				
H1	U	V	W	ft/s	Drogue End				
H2	U	V	W	ft/s	Coupling Ball Joint Articulation Point				
H3	U	V	W	ft/s	End coc	ordinate of	^f final hose	element	
H4	U	V	W	ft/s	Start co	ordinate c	of final N th h	nose element	
H5 H(N+2)	U	V	W	ft/s	Start coordinate of 2 nd to (N-1) hose elements			1) hose	
H(N+3)	U	V	W	ft/s	Start co	ordinate c	of 1 st hose	element	

7.1.2.1.6.1 External Wind Vector – Bow Wave

 Table 8. Bow Wave External Wind Vector Message Structure

7.1.2.1.6.2 External Wind Vector- Tanker Wake

Size	83 x 3	Data Type	Double	Transmission Rate		100 Hz	Port Number	50007		
Index	1	2	3	Units Comment						
H1	U	V	W	ft/s	Drogue End					
H2	U	V	W	ft/s	Coupling Ball Joint Articulation Point					
H3	U	V	W	ft/s	End coo	ordinate of	final hose	element		
H4	U	V	W	ft/s	Start co	ordinate o	of final N th h	nose element		
H5 H(N+2)	U	V	W	ft/s	Start coordinate of 2 nd to (N-1) hose elements					
H(N+3)	U	V	W	ft/s	Start co	ordinate o	of 1 st hose	element		

 Table 9. Tanker Wake External Wind Vector Message Structure

7.1.2.2 Messages ARM-to-Host

7.1.2.2.1 Hose-Drogue Positions

ARM sends hose information to the host in a single UDP message as an 83 x 3 matrix of double type, Table 10. All transmitted position data is in TADA. For models with fewer than 80 hose elements (N elements), use row H4 through H(N+3) for the hose element start coordinates with H1 as the drogue end, H2 as the coupling ball joint articulation point, and H3 as the end coordinate of the final hose element, Figure 7.

Figure 8 shows an example of a 5-element hose-drogue modeling system. This figure is not to imply that elements need to be equal in size or exist beyond the TADA origin. The index points exported from the ARM should give the external user information as to the hose shape and drogue position as well as provide query points for environmental tanker wake, bow wave, and turbulence effects. Indices "wrapped" about the hose reel may be zeroed or continue to have values in TADA depending on the ARM design.

Size	83 x 3	Data Type	Double	Transmission Rate		100 Hz	Port Number	50011		
					•	4				
Index	1	2	3	Units	Comme	ent				
H1	Х	Y	Z	ft	Drogue End					
H2	Х	Y	Z	ft	Coupling Ball Joint Articulation Point					
H3	Х	Y	Z	ft	End coo	ordinate of	final hose	element		
H4	Х	Υ	Z	ft	Start co	ordinate o	of final N th h	nose element		
H5 H(N+2)	X	Y	Z	ft	Start coordinate of 2 nd to (N-1) hose elements					
H(N+3)	Х	Y	Z	ft	Start coordinate of 1 st hose element					

Table 10. Hose Information Message Structure

Figure 7. Hose-Drogue Indexed Points- Conceptual

Figure 8 Hose-Drogue Indexed Points: Five Element Example

7.1.2.2.2 Refueling Status

ARM sends refueling status to the host in a single UDP message as a 12×1 vector of double type, Table 11.

Size	12	2 x 1	Data Type	double	Transmi Rate	ission	100 Hz	Port Number	50012	
Syste	m	Inde	x Nan	ne		Units		States		
		S1	Gre	en Signal L	amp	-		0 = Off 1 = On	0 = Off 1 = On	
		S2	Amt	Amber Signal Lamp				0 = Off 1 = On	0 = Off 1 = On	
		S3	Red	Signal Lan	np	-		0 = Off 1 = On		
sn		S4	Dep	loyed Hose	Length	ft		-		
		S5	Dru	m Speed		rad/s		-		
Stat		S6	Hos	Hose Linear Speed				-		
ling		S7	Hos	e Tension a	at Drum	lbf				
tefue		S8	Mea	n Probe Lo	ad X	lbf		-	-	
~		S9	Mea	n Probe Lo	ad Y	lbf		-		
		S10	Mea	n Probe Lo	ad Z	lbf				
		S11	Fue	I Mass Flow	/ Rate	lbm/mi	n			
		S12	Hos	e End Pres	sure	psig				
		S13	Prot	be Engaged	1			0 = not e 1 = enga	ngaged ged	

Table 11. Refueling Status Message Structure

Sign Convention:

Positive Drum Speed and Hose Linear Speed is in the trail direction, negative is rewind.

Probe Loads:

The probe loads passed from the ARM to the Host are the mean contact forces over each coarse 10 ms time-step. These loads are only intended to inform evaluation of pilot response and receiver flight dynamics and should not be used for higher-fidelity analysis such as probe structural analysis.

7.1.3 Boom-Receptacle Model

This section is reserved for future use

7.1.4 BDA Model

This section is reserved for future use

7.2 AR COMPONENT LEVEL MODELING

This section is reserved for future use

7.3 ENVIRONMENTAL MODELING – BEST PRACTICES

This section is reserved for future use.

7.4 SIMULATION VALIDATION AND VERIFICATION-STANDARD SIMULATION RESULTS

This section is reserved for future use.

7.5 MODELING DOCUMENTATION

This section is reserved for future use.

7.6 USING SIMULATION IN CERTIFICATION PROCESS

This section is reserved for future use.

7.7 SURVEY OF COMPONENTS AND MAP TO REAL WORLD AR SYSTEM

This section is reserved for future use.

8.0 APPENDIX / AUXILIARY SECTIONS

8.1 Tanker Hose-Drogue Refueling System Nomenclature.

8.2 Receiver Hose-Drogue Refueling System Nomenclature.

