AD 702 896

MICRODYNAMICS OF WAVE PROPAGATION

Alberto Puppo, et al

Whittaker Corporation San Diego, California

October 1968

This document has been approved for public release and sale.

AFML-TR-68-311

45622

6

70289 MICRODYNAMICS OF WAVE PROPAGATION

MAANA Lile

Alberto Puppo Ming-yuan Feng Juan Haener

TECHNICAL REPORT AFML-TR-68-311 October 1968

This document has been approved for public release and sale; its distribution is unlimited.

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

Air Force Materials Laboratory Air Force Systems Command Wright-Patterson Air Force Base, Ohio

it. sm	*		/
BFSTE	WHITE	ESTIMA CO	
786			
2 .458 670		0	
: STREMAT	ION		

715TR:007	IVE/AVAILLO	NITY COOPER	
1 91ST.	ATAIL DE	/# #FP144	
1		W	hen
1	1	0.001	

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation; the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

MICRODYNAMICS OF WAVE PROPAGATION

Ą

3

*

Alberto Puppo Ming-yuan Feng Juan Haener

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

This annual summary report was prepared by Whittaker Corporation, Research and Development/San Diego, under Contract F33615-67-C-1894, "Microdynamics of Wave Propagation." Work was accomplished under the direction of Dr. N. J. Pagano, MANC, Nonmetallic Materials Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433.

This report covers the period from June 1967 through June 1968. It was released by the authors for publication in July 1968.

Work at Whittaker was conducted under the administration of Mr. Boris Levenetz, Manager of the Advanced Composites Engineering Department. Mr. Alberto Puppo was the Principal Investigator, working under the technical guidance of Dr. Juan Haener, Chief of Analytical Engineering. Mr. Puppo was assisted in his work by Mr. Ming-yuan Feng.

The authors wish to acknowledge Dr. G. Nowak, who, as consultant to this program, provided invaluable assistance in this work.

This technical report has been reviewed and is approved.

\$

J. D. Ray, Acting Chief Plastics and Composites Branch Nonmetallic Materials Division Air Force Materials Laboratory

ABSTRACT

Part I of this report covers the problem of free and forced vibration of a unidirectional, multifiber reinforced composite. A theoretical investigation is conducted through the use of the linear theory of elasticity. For this case, the geometrical array of the representative element consists of a circular, inner solid fiber cylinder bounded by and bonded to a circular outer matrix shell. Composites of infinite, finite, and semi-infinite lengths are treated. It is assumed that the deformation is axisymmetrical and that the vibration is longitudinal. Characteristic equations are established which relate circular frequencies to axial wave numbers of three cases of composite length. Solutions are obtained for stresses and displacements of composites, of finite or semi-infinite length, subjected to axial, piecewise-constant, or sinusoidal loading at one end and different geometrical boundary conditions at the other. Part II presents an approximate differential equation based on the Bernoulli hypothesis of deformation. The solution of this equation is established for steady and transient states of vibration in composites of both finite and infinite length. Computation of the coefficients in the differential equation is performed by assuming symmetry of revolution for the basic element and also by using a hexagonal fiber arrangement. Part III lists numerical results based on the equations developed in Parts I and II. The appendixes in this report give the computer programs used to perform the computations.

TABLE OF CONTENTS

.

•

USING	EQUATIONS OF THE THEORY OF ELASTICITY	•	•	•	•
Intro	duction and Summary		•	•	•
Gener in Te	al Solutions of Displacements and Stresses rms of Lame-Helmholtz Potentials		•	•	•
Solut Symme	ions of Potentials in the Case of Axially tric Deformation and Longitudinal Vibration .	•	•	•	•
Doubl and S	e Infinite Series Solutions of Displacements tresses (General Form)		•	•	•
Domai	n and Boundary Conditions		,	•	•
Chara for t Compo	cteristic Equation (Frequency Equation) he Cases of Infinite and Finite Length sites		•	•	٠
Chara for t Compo	cteristic Equation (Frequency Equation) he Case of the Semi-Infinite Length site		•	•	•
Solut End (Subje Sinus	ions for Finite Length Composite With One z = 0) Fixed and the Other (z = L) cted to Axial Piecewise-Constant or oidal Loading		•	•	•
Solut End ((z = Sinus	ions for Finite Length Composite With One z = 0) Freely Supported and the Other L) subjected to Axial piecewise-Constant or oidal Loading				
Solut	ions for Semi-Infinite Length Composites With	1		-	-
the E	nd $z = 0$ Under Axial Piecewise-Constant or				
Sinus	oida! Loading	•	•	•	•
Conc 1	usions and Discussion	•	•	•	•
ANALY MATER	SIS OF THE VIBRATIONS OF A COMPOSITE LAL IN STEADY AND TRANSIENT STATE USING				
AN AP	PROXIMATE THEORY.	•	•	•	•
Deriv Equat	ation of the Fundamental Differential			•	•
Stead	y State of Vibrations			•	•
	ant Chata of Williams				

<u>Part</u> I

II

Page

TABLE OF CONTENTS (Continued)

<u>Part</u>			Page
II	Constants of the Equation for the	e Fundamental Differential e Hexagonal Arrangement	
	 of Fibers		71
III	NUMERICAL RESUL	TS	82
	Technical Discu	ssion	82
	Conclusions		87
	APPENDIX I.	General Solutions of Stresses and Displacements for Infinite and Finite Length Composites	89
	APPENDIX II.	General Solutions of Stresses and Displacements for the Case of Semi-Infinite Length Composite	97
	APPENDIX III.	Characteristic Equation (Frequency Equation) for the Case of Infinite and Finite Length Composite	101
	APPENDIX IV.	Characteristic Equation (Frequency Equation) for the Case of Semi- Infinite Length Composite	104
	APPENDIX V.	Solutions for Composite of Finite Length With One End $(z = 0)$ Fixed and the Other End $(z = L)$ Under Axial Piecewise-Constant Loading	108
	A PPE NDIX VI.	Solutions for Composite of Finite Length With One End $(z = 0)$ Freely Supported and the Other End $(z = L)$ Under Axial Piecewise- Constant Loading	117
	APPENDIX VII.	Solutions for Composite of Semi- Infinite Length With One End (z = 0) Under Axial Piecewise-	195
	APPENDIX VIII	Evaluation of an Integral	133
	APPENDIX IX.	Computer Programs for the Determina-	100
		tion of Eigenfrequencies and Wave- length in a Composite Element	137

TABLE OF CONTENTS (Continued)

<u>Part</u>

L

											Page
APPENDIX X	•	Program for Foundation Fo	orced Vibr ied Analys	ation is	•	• •	•	•	•	•	171
APPENDIX X	I. (Composite Velo	ocities .	•••	•	•	•	•	•	•	174
APPENDIX X	II. :	Description and Ω_2 , and Ω_3	nd Compute mination o in a Hex	r Prog f _{டி} agonal	;ram ,						
	1	Aultifiber Ele	ement	•••	•	•	•	•	•	•	182
BIBLIOGRAP	HY.		• • • • •	•••	•	•	•	•	•	•	216

LIST OF ILLUSTRATIONS

ĉ

;

1

Figure		Fage
1	Geometry and Coordinates System for a Basic Representative Element Composite of Finite Length	9
2	Basic Element	33
3	Fixed-Free Composite Under Periodic Load	40
4	Free-Free Composite Under Periodic Force	40
5	Variation of Load	45
6	First Derivative (N $\times \epsilon = 1$)	45
7	Second Derivative (N $\times e^2 = 1$)	45
8	Boundary Condition for Impact	47
9	Forming the Step Function	48
10	Poles for Laplace Inversion	54
11	Hexagonal Element	72
12	Geometry Description	73
13	Distribution of Matching Points	78
14	Velocity as Netermined by the Exact and Approximate Theories	83
15	Wave Velocity VS. Wave Length in a Composite	85
16	Propagation Velocity as Function of the Exciting Frequency as Calculated by the Exact and Approximate Theory	85

LIST OF TABLES

<u>Table</u>		Page
1	Range of Circular Frequencies and Appropriate Bessel Functions Used	20
2	Comparison of Computer Values, Using Exact and Approximate Theory	86
3	Constants of the Differential Equation for the Hexagonal Arrangement	87

LIST OF SYMBOLS

 A_i, B_i, C_i, D_i arbitrary or integration constants when subscripts are used (i = 1...8) $\overline{A}_{i}, \overline{B}_{i}, \overline{C}_{i}, \overline{D}_{i}$ A_{r_i}, B_n, C_n, D_n constants fiber radius as defined in (161), or in (173), or in (186) а or in (199) matrix radius as defined in (161) or in (199) Ъ defined in equation (173) or in (185) С velocity of dilatation wave in an infinite medium **c**₁ velocity of distortion wave in an infinite medium C2 phase velocity or propagation velocity Sa d_{ij} , \overline{d}_{ij} 6 × 6 determinants defined in Appendixes III and IV, respectively Ε Young's modulus dilatation defined by $\epsilon_{11} + \epsilon_{32} + \epsilon_{33}$ e Cauchy strain tensor e_{ij} $\mathbf{F}_{\mathbf{p}}$ Fourier coefficients in equation (79) shear modulus, = $\frac{E}{[2(1+v)]}$, or Lamé constant G gij associated metric tensor (i, j = 1,2,3) Euclidean metric tensor (i, j = 1, 2, 3)g_{ij} Ĩ impact momenuum as defined in (144) modified Bessel functions of the first kind, of order I_0, I_1 zero and one, respectively Bessel functions of the first kind, of order zero and J, J one, respectively constant defined in equation (109) K modified Bessel functions of the second kind, of order Ko, Ki zero and one, respectively

LIST OF SYMBOLS (Continued)

k	constant defined s +1 whenever it is associated with J,Y, and -1 whenf /er it is associated with I,K
L	composite length
L_0 , L_1	Lamé-Helmholtz displacement potentials (i = 1,2,3)
М	number of layers
Μίαβ	constants defined by equations (257) (i = $1, \ldots 3$)
Μιαβ	constants defined by equations (276) ($i = 610$)
Μ _{iaβ}	constants defined by equations (291) ($i = 15$)
Nij	5 x 5 determinant defined in Appendix V
Naij	5 x 5 determinant defined in Appendix VI
Nij	5 x 5 determinant defined in Appendix VII
n	integer
P ₁ ,P ₀	external force
р	Laplace transform exponent
Q(r) , F(r)	functions of r in equations (79) and (80)
r,θ,z	cylindrical coordinates
Т	period
t	time
ui	displacement potentials (i = 1,2,3)
u,v,w	displacements in r, θ, z directions, respectively
W ₀ ,W ₁	denote Bessel functions of the second kind, of order zero and one, respectively, when μ 's are real; or modified Bessel functions of the second kind, of order zero and one, respectively, when μ 's are imaginery
Y ₀ , Y ₁	Bessel functions of the second kind, of order zero and one, respectively

х

LIST OF SYMBOLS (Continued)

Contra ca ca

Z ₀ , Z ₁	denote Bessel functions of the first kind, of order zero and one, respectively, when μ 's are real; or modified Bessel functions of the first kind, of order zero and one, respectively, when μ 's are imaginary
$\alpha_i, \beta_i, \gamma_i, \delta_i$	arbitrary constants $(i = 1, 2)$
<u>۵,2,9</u> ,۲, <u>۵</u>	indicate the numbers different from α ,9, $\overline{9}$, γ , δ , respectively
₿	axial wave number
β	equal to iβ
Δ_{1ij}	5 × 5 determinants defined in Appendix V
∆ _{2ij}	5 X 5 determinants defined in Appendix VI
Δ _{ij}	5 x 5 determinants defined in Appendix VII
e	impact duration in seconds
ϵ_{ij}	physical components of strain tensor (i, j = 1,2,3)
€ _{ijk}	permutation tensor $(i, j, k = 1, 2, 3)$
ζ	defined in (197)
• λ	Lamé constant defined as $\frac{Ev}{[(1+v)(1-2v)]}$ or wave length
μι αβ , μεαβ μιγδ , μεγδ	eigenvalues defined by equations (63) through (66) and equation (288)
$\frac{\overline{\mu}_{1}}{\overline{\mu}_{2}}\frac{\alpha\beta}{\gamma\delta}, \frac{\overline{\mu}_{2}}{\overline{\mu}_{2}}\frac{\alpha\beta}{\gamma\delta}$	moduli of eigenvalues μι α β , μ εαβ , μ ιγδ , μεγδ respectively
$ \begin{array}{c} \overline{\mu}_1 \underline{\alpha} \underline{\beta} \\ \overline{\mu}_1 \underline{\gamma} \underline{\delta} \end{array} , \begin{array}{c} \overline{\mu}_2 \underline{\alpha} \underline{\beta} \\ \overline{\mu}_2 \underline{\gamma} \underline{\delta} \end{array} , \begin{array}{c} \overline{\mu}_2 \underline{\alpha} \underline{\beta} \\ \overline{\mu}_2 \underline{\gamma} \underline{\delta} \end{array} $	eigenvalues different from $\mu_1\alpha\beta$, $\mu_2\alpha\beta$, $\mu_1\gamma\delta$, $\mu_2\gamma\delta$, respectively
ν	Poisson's ratio, or as defined in the text
5	defined in (197)
ρ	mass density of material
σ _{ij}	physical components of stress tensor associated with coordinate directions as indicated by subscripts (i,j = 1,2,3)

хi

LIST OF SYMBOLS (Continued)

т	variable of convolution integral defined in equation (168)
τij	stress tensor (i, $j = 1, 2, 3$) or as defined in text
X1,X2,X3	orthagonality factors
X 4 , X1 , X2	
ա _ն , ա _ռ	circul a r fre q uencies
ω _e	external exciting frequencies
Ω _{ij}	physical components of rotation tensor $(i, j = 1, 2, 3)$
<u> </u>	rotation tensor $(i, j = 1, 2, 3)$
$\overline{\Omega}_{\mathbf{k}}$	rotation vector $(k = 1, 2, 3)$
$\Omega_1, \Omega_2, \Omega_3$	coefficients of the differential equation
∆s	Laplacian operator in cylindrical coordinates
I	superscribed for fiber material
II	superscribed for matrix material

PART I

ANALYSIS QF FREE AND FORCED VIBRATION OF A UNIDIRECTIONAL MULTIFIBER REINFORCED COMPOSITE USING EQUATIONS OF THE THEORY OF ELASTICITY

INTRODUCTION AND SUMMARY

This portion of the program was concerned with the analytical investigation of a unidirectional, multifiber reinforced composite subjected to longitudinally forced vibration (dynamic loading at one end) and to free vibration. The theory of elasticity was used for the case of axial symmetry. In this report, solutions to Navier's equations of motion are expressed in the scalar and vector wave potentials associated with the names of Helmholtz and Lamé. Double infinite series solutions for the stresses and displacements of fiber and matrix in their general forms then are established from these functions.

Ahmed [1]* studied the axisymmetric plane strain vibrations of a thick-layered orthotropic cylindrical shells subjected to internal and external pressures. In his analysis, the eigenmodes of the composite shell in terms of the eigenmodes of the individual layers were determined. Using linear theory, Armenakas [2] solved the problem of free vibration of a single composite cylindrical shell of finite length. No numerical solutions were given in his paper, however.

In this report, a hexagonal array of fibers in a matrix was assumed for the sake of convenience. The basic representative element considered was a circular composite cylinder taken from the whole composite. Specifically, it contained a circular inner solid cylinder of one material bounded by and bonded to a circular outer shell of another material. A model of the element so defined was needed for this investigation. Three different cases of composite length, infinite, finite, and semi-infinite, were considered.

For free vibration, a characteristic equation (frequency equation) which expresses the relationships between circular frequencies and axial wave numbers have been found in the form of a 6 x 6 determinant, transcendental equation. The frequency equations for the infinite and finite cylinder are identical, except that in the latter case, the axial wave numbers are determined by imposing boundary conditions at the ends. For a semi-infinite element, the coefficients in the exponents of the exponential functions in the axial direction in the frequency equation must be real and positive in order to have vanishing stresses and displacements at infinity.

For forced vibration, the analysis centers on the problem of a composite of finite or semi-infinite length, under the axial, piecewise-constant

*Numbers in the bracket designate references at the end of the report.

or sinusoidal loading at one end. The boundary geometry at the nonloading end of the finite composite cylinder is either fixed or freely supported. Solutions of stresses and displacements of fiber and matrix for the aforementioned cases have been obtained through the generalized Fourier series technique, which permits one to determine the eigenmodes of the composite element, in terms of the eigenmodes of individual constituents. The concept of quasi-orthogonality was initiated by Tittle and is now used in a rigorous expansion of the boundary functions traversing two regions into a series of nonorthogonal eigensets that arise from the solutions of the potentials in two different media. In other words, the eigenfunctions are not orthogonal over the total interval in the radial direction, because the conditions of the Sturm-Liouville problem are not satisfied. Specifically, the physical constants of the governing differential equations of Lamé-Helmholtz potentials of a composite are different for each constituent. Therefore, it is impossible to represent a function across the boundary as the expansions of such noncrthogonal eigensets in the conventional way; for example, by means of Fourier-Bessel or Dini-Bessel expansion. To this end, orthogonal sets must be constructed from the quasi-orthogonal eigensets by the use of orthogonality factors for each medium from the orthogonality conditions.

In formulating and solving the problem, the following considerations and assumptions prevail:

- 1. Both materials are elastic, isotropic, and homogeneous.
- 2. Body forces and dissipative forces are neglected.
- 3. Density as well as velocities of dilatational and distortional waves in an infinite medium of both constituents are constants.
- 4. Only small displacements are considered; in other words, squares and products of angles of rotation are negligibly small in comparison with elongations and shears.
- 5. Deformation is axisymmetrical.
- 6. The vibration is longitudinal, nontorsional, and non-bending.
- 7. Dynamic buckling phenomena are not considered.
- 8. Applied force is independent of deformation.
- 9. Continuity of displacements and stresses at the fiber-matrix interface is ensured.

GENERAL SOLUTIONS OF DISPLACEMENTS AND STRESSES IN TERMS OF LAME-HELMHOLTZ POTENTIALS

In the absence of prescribed body forces, Navier's equation of motion in linear elasticity for a homogeneous, isotropic medium is, in a general coordinate system,

$$g^{jk} u_{i,jk} + \frac{1}{2(1-2\nu)} \left[g^{jk} (u_{j,k} + u_{k,j}) \right], i = \frac{\rho}{G} \ddot{u}_{i}$$
(1)

where g^{jk} is the associated metric tensor, v is Poisson's ratio, G is a Lamé constant, ρ is mass density of the material, and repeated indices indicate summation.

In a cylindrical coordinates (r,θ,z) system, equation (1) can be written in the following manner: [15],[17],[27],[28]

$$\nabla^{2} u + \frac{1}{1-2\nu} \left(\frac{\partial e}{\partial r} - \frac{u}{r^{2}} - \frac{2}{r^{2}} \frac{\partial v}{\partial \theta} \right) = \frac{\rho}{G} \frac{\partial^{4} u}{\partial t^{2}}$$

$$\nabla^{2} v + \frac{1}{1-2\nu} \left(\frac{1}{r} \frac{\partial e}{\partial \theta} + \frac{2}{r^{2}} \frac{\partial v}{\partial \theta} - \frac{v}{r^{2}} \right) = \frac{\rho}{G} \frac{\partial^{2} v}{\partial t^{2}}$$

$$\nabla^{2} w + \frac{1}{1-2\nu} \frac{\partial e}{\partial z} = \frac{\rho}{G} \frac{\partial^{2} w}{\partial t^{2}} \qquad (2)$$

where $u = \sqrt{g^{11}} u_1$, $v = \sqrt{g^{22}} u_2$, $w = \sqrt{g^{33}} u_3$ and ∇^2 is the Laplacian operator, defined as

$$\nabla^{2} = \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$
(3)

and e is the dilation defined by

 $e = \frac{1}{r} \frac{\partial(ru)}{\partial r} + \frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{\partial w}{\partial z}$ (4)

Equations (2) are often associated with the names of Pochhammer and Chree.

Based on the Helmholtz theorem, Lamé suggested that a general solution to the differential equation (1) assumes the following form: [8],[9],[11], [20],[21],[25]

$$u_{i} = \sqrt{g^{ii}} L_{o,i} + \sqrt{g^{jk}} \varepsilon_{ijk} L_{k,j}$$
 (5)

where i,j,k = 1,2,3; i is not summed in $\sqrt{g^{ii}}$ and $\sqrt{g^{jk}}$, ϵ_{ijk} is the permutation tensor, and L_0 , L_1 (1,2,3) are the displacement potentials, which are called Lame-Helmholtz potentials in this report, such that

$$g^{jk} L_{o,jk} = \frac{1}{c_1^2} \frac{\partial^2 L_o}{\partial t^2}$$
(6)

$$g^{jk} L_{i,jk} = \frac{1}{c_a^3} \frac{\partial^3 L_i}{\partial t^3}$$
(7)

and

$$L_{i,i} = 0 \tag{8}$$

Here

$$c_1 = \left(\frac{2G+\lambda}{\rho}\right)^{\frac{1}{2}}$$
(9)

and

$$c_2 = \left(\frac{G}{\rho}\right)^{\frac{1}{2}}$$
(10)

are the velocities of dilation and distortion waves, respective, in an infinite medium, and λ is the Lamé constant [20]. Equations (6) and (7) are scalar and vector wave equations, respectively. Written out in scalar form in cylindrical coordinates, equation (5) becomes

$$u = \frac{\partial L_0}{\partial r} - \frac{\partial L_2}{\partial z} + \frac{1}{r} \frac{\partial L_3}{\partial \theta}$$

$$v = \frac{1}{r} \frac{\partial L_0}{\partial z} + \frac{\partial L_1}{\partial z} - \frac{\partial L_3}{\partial r}$$

$$w = \frac{\partial L_0}{\partial z} - \frac{1}{r} \frac{\partial L_1}{\partial \theta} + \frac{1}{r} \frac{\partial}{\partial r} (rL_2)$$
(11)

The strain tensor is expressed as

$$e_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$
 (12)

Its corresponding physical components of strain tensor, in general coordinates, are

$$\boldsymbol{\varepsilon}_{ij} = \sqrt{g^{ii}} \sqrt{g^{jj}} \boldsymbol{\varepsilon}_{ij}$$
(13)

where i, j are not summed. In cylindrical coordinates, the physical components of strain tensor, derived from equations (12) and (13), are

$$e_{21} = \frac{\partial u}{\partial r}$$

$$e_{22} = \frac{u}{r} + \frac{1}{r} \frac{\partial v}{\partial \theta}$$

$$e_{33} = \frac{\partial w}{\partial z}$$

$$e_{12} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r} \right)$$

$$e_{13} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right)$$

$$e_{23} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{1}{r} \frac{\partial w}{\partial \theta} \right)$$
(14)

Substituting equations (11) into equations (14) gives the strain in terms of potentials in cylindrical coordinates:

$$\epsilon_{11} = \frac{\partial^{2} L_{0}}{\partial r^{2}} - \frac{\partial^{2} L_{2}}{\partial r \partial z} + \frac{1}{r} \frac{\partial^{2} L_{3}}{\partial r \partial \theta} - \frac{1}{r^{2}} \frac{\partial L_{3}}{\partial \theta}$$

$$\epsilon_{22} = \frac{1}{r} \left(\frac{\partial L_{0}}{\partial r} + \frac{1}{r} \frac{\partial^{2} L_{0}}{\partial \theta^{2}} + \frac{\partial^{2} L_{1}}{\partial \theta \partial z} - \frac{\partial L_{2}}{\partial z} + \frac{1}{r} \frac{\partial L_{3}}{\partial \theta} - \frac{\partial^{2} L_{3}}{\partial r \partial \theta} \right)$$

$$\epsilon_{33} = \frac{\partial^{2} L_{0}}{\partial z^{2}} - \frac{1}{r} \frac{\partial^{2} L_{1}}{\partial \theta \partial z} + \frac{1}{r} \frac{\partial^{2}}{\partial r \partial z} (rL_{2})$$

$$\epsilon_{12} = \frac{1}{2} \left(\frac{2}{r} \frac{\partial^{2} L_{0}}{\partial r \partial \theta} - \frac{2}{r^{2}} \frac{\partial L_{0}}{\partial \theta} + \frac{\partial^{2} L_{1}}{\partial r \partial z} - \frac{1}{r} \frac{\partial L_{3}}{\partial z} - \frac{\partial^{2} L_{3}}{\partial r^{2}} - \frac{1}{r^{2}} \frac{\partial^{2} L_{3}}{\partial \theta^{2}} \right)$$

5

$$\epsilon_{13} = \frac{1}{2} \left(2 \frac{\partial^2 L_0}{\partial r \partial z} + \frac{1}{r^2} \frac{\partial L_1}{\partial \theta} - \frac{1}{r} \frac{\partial^2 L_1}{\partial \theta^2} - \frac{L_2}{r^2} + \frac{1}{r^2} \frac{\partial^2 L_2}{\partial \theta^2} + \frac{1}{r} \frac{\partial^2 L_3}{\partial \theta^2} \right)$$

$$+ \frac{1}{r} \frac{\partial L_2}{\partial r} + \frac{\partial^2 L_2}{\partial r^2} - \frac{\partial^2 L_2}{\partial z^2} + \frac{1}{r} \frac{\partial^2 L_3}{\partial \theta^2} \right)$$

$$= 1 \left(2 \frac{\partial^2 L_0}{\partial r^2} - \frac{1}{r^2} \frac{\partial^2 L_1}{\partial r^2} - \frac{\partial^2 L_3}{\partial r^2} - \frac{\partial^2 L_3}{\partial r^2} \right)$$
(15)

$$\mathbf{e_{23}} = \frac{1}{2} \left(\frac{2}{r} \frac{\partial^{2} \mathbf{L}_{0}}{\partial \theta \partial z} - \frac{1}{r^{2}} \frac{\partial^{2} \mathbf{L}_{1}}{\partial \theta^{2}} + \frac{\partial^{2} \mathbf{L}_{1}}{\partial z^{2}} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial r \partial \theta} (r \mathbf{L}_{2}) - \frac{\partial^{2} \mathbf{L}_{3}}{\partial r \partial z} \right)$$
(15)

The dilatation e in cylindrical coordinates, then, is

$$\mathbf{r} = \frac{\partial^2 \mathbf{L}_0}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial \theta^2}{\partial \theta^2} + \frac{\partial^2 \mathbf{L}_0}{\partial \mathbf{z}^2} = \boldsymbol{\nabla}^2 \mathbf{L}_0$$
(16)

The rotation tensor is

$$\overline{\Omega}_{ij} = \frac{1}{2} \left(u_{i,j} - u_{j,i} \right)$$
(17)

Then the rotation vector in general coordinates is

$$\overline{\Omega}_{k} = \frac{1}{2} \epsilon_{kij} \Omega_{ij}$$
(18)

where $\Omega_{i\,j}$ are the physical components of rotation tensor defined by

$$\Omega_{ij} = \sqrt{g^{ii}} \sqrt{g^{jj}} \overline{\Omega}_{ij}$$
(19)

where i, j are not summed.

In cylindrical coordinates, equations (17) through (19) become

$$\overline{\Omega}_{1} = -\frac{1}{2} \left(\frac{\partial v}{\partial z} - \frac{1}{r} \frac{\partial w}{\partial \theta} \right)$$

$$\overline{\Omega}_{2} = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial r} \right)$$

$$\overline{\Omega}_{3} = -\frac{1}{2r} \left(\frac{\partial u}{\partial \theta} - \frac{\partial (rv)}{\partial r} \right)$$
(20)

From equations (11) and (20), we have

$$\overline{\Omega}_{1} = -\frac{1}{2} \left(\frac{\partial^{2} L_{1}}{\partial z^{2}} + \frac{1}{r^{2}} \frac{\partial^{2} L_{1}}{\partial \theta^{2}} - \frac{1}{r^{2}} \frac{\partial^{2}}{\partial r \partial \theta} (rL_{2}) - \frac{\partial^{2} L_{3}}{\partial r \partial z} \right)$$

$$\overline{\Omega}_{2} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial^{2} L_{1}}{\partial r \partial \theta} - \frac{1}{r^{2}} \frac{\partial L_{1}}{\partial \theta} + \frac{L_{2}}{r^{2}} - \frac{1}{r} \frac{\partial L_{2}}{\partial r} - \frac{\partial^{2} L_{2}}{\partial r^{2}} - \frac{\partial^{2} L_{2}}{\partial z^{2}} + \frac{1}{r} \frac{\partial_{2} L_{3}}{\partial \theta \partial z} \right)$$

$$\overline{\Omega}_{3} = -\frac{1}{2r} \left(\frac{\partial L_{1}}{\partial z} + r \frac{\partial^{2} L_{1}}{\partial r \partial z} + \frac{\partial^{2} L_{2}}{\partial r \partial z} - \frac{\partial L_{3}}{\partial r} - r \frac{\partial^{2} L_{3}}{\partial r^{2}} - \frac{1}{r} \frac{\partial^{2} L_{3}}{\partial \theta^{2}} \right)$$
(21)

In the case of a homogeneous, isotropic medium, the generalized Hocke's law which relates the physical components of stress tensor to that of the strain tensor in general coordinates assumes the following form:

$$\sigma_{ij} = \lambda g_{ij} g^{ij} \epsilon_{ij} + 2G \epsilon_{ij}$$
(22)

where g_{ij} is the Euclidean metric tensor. The relationship between the stress tensor and the Cauchy strain tensor has the same form as that given in equation (22), since

$$\sigma_{ij} = \sqrt{g^{ii}} \sqrt{g^{jj}} \tau_{ij} \qquad (23)$$

where τ_{ij} is the stress tensor and i, j are not summed. Combining equations (15), (16), and (22), we obtain the stress components, in terms of Lame-Helmholtz potentials, in cylindrical coordinates as

$$\sigma_{11} = \lambda \nabla^2 \mathbf{I}_0 + 2G \left(\frac{\partial^2 \mathbf{I}_0}{\partial r^2} - \frac{\partial^2 \mathbf{I}_2}{\partial r \partial z} + \frac{1}{r} \frac{\partial^2 \mathbf{I}_3}{\partial r \partial \theta} - \frac{1}{r^2} \frac{\partial \mathbf{I}_3}{\partial \theta} \right)$$

7

$$\begin{aligned} \sigma_{33} &= \lambda \sqrt{2} I_0 + \frac{2G}{r} \left(\frac{\partial I_0}{\partial r} + \frac{1}{r} \frac{\partial^2 I_0}{\partial \theta^2} + \frac{\partial^2 I_1}{\partial \theta \partial z} - \frac{\partial I_2}{\partial z} + \frac{1}{r} \frac{\partial I_0}{\partial \theta} - \frac{\partial^2 I_3}{\partial r \partial \theta} \right) \\ \sigma_{33} &= \lambda \sqrt{2} I_0 + 2G \left(\frac{\partial^2 I_0}{\partial z^2} - \frac{1}{r} \frac{\partial^2 I_1}{\partial \theta \partial z} + \frac{1}{r} \frac{\partial^2}{\partial r \partial z} (rI_2) \right) \\ \sigma_{12} &= G \left(\frac{2}{r} \frac{\partial^2 I_0}{\partial r \partial \theta} - \frac{2}{r^2} \frac{\partial I_0}{\partial \theta} + \frac{\partial^2 I_1}{\partial r \partial z} - \frac{1}{r} \frac{\partial I_1}{\partial z} - \frac{1}{r} \frac{\partial^2 I_2}{\partial \theta \partial z} + \frac{1}{r^2} \frac{\partial^2 I_3}{\partial \theta \partial z} \right) \\ \sigma_{13} &= G \left(2 \frac{\partial^2 I_0}{\partial r \partial z} + \frac{1}{r^2} \frac{\partial I_1}{\partial \theta} - \frac{1}{r} \frac{\partial^2 I_1}{\partial \theta^2} - \frac{I_2}{r^2} + \frac{1}{r} \frac{\partial I_2}{\partial r} + \frac{1}{r^2} \frac{\partial^2 I_3}{\partial \theta^2} \right) \\ \sigma_{13} &= G \left(2 \frac{\partial^2 I_0}{\partial r \partial z} + \frac{1}{r^2} \frac{\partial^2 I_1}{\partial \theta} - \frac{1}{r} \frac{\partial^2 I_1}{\partial \theta^2} - \frac{I_2}{r^2} + \frac{1}{r} \frac{\partial^2 I_2}{\partial r} + \frac{1}{r} \frac{\partial^2 I_3}{\partial \theta \partial z} \right) \\ \sigma_{23} &= G \left(2 \frac{\partial^2 I_0}{\partial \theta \partial z} - \frac{1}{r^2} \frac{\partial^2 I_1}{\partial \theta^2} + \frac{\partial^2 I_1}{\partial z^2} + \frac{1}{r^2} \frac{\partial^2 I_2}{\partial r^2} \right) \right) \end{aligned}$$

In this analysis, the hexagonal array of fibers is assumed. A basic, representative element, which is a composite cylinder taken from a composite of infinite size, contains a continuous, circular inner solid cylinder of fiber bounded by and bonded to an outer shell of matrix, the contour of which is approximated by a circle. The geometry and coordinates system for an elemental composite cylinder are depicted in Figure 1.

SOLUTIONS OF POTENTIALS IN THE CASE OF AXIALLY SYMMETRIC DEFORMATION AND LONGITUDINAL VIBRATION

In the case of axially symmetric deformation and longitudinal vibration, we have

$$v = \sigma_{12} = \sigma_{23} = \overline{\Omega}_1 = \overline{\Omega}_3 = 0$$
 (25)

Therefore, when written out in scalar form in cylindrical coordinates, equations (6) and (7) become

$$\left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^{2}}{\partial z^{2}} - \frac{1}{c_{1}^{2}}\frac{\partial^{2}}{\partial t^{2}}\right)L_{0} = 0 \qquad (26)$$

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} - \frac{1}{r^2} + \frac{\partial^2}{\partial z^2} - \frac{1}{c_a^2}\frac{\partial^2}{\partial t^2}\right)L_a = 0$$
(27)

The foregoing equations can be solved by the method of separation of the variables.

Omitting the routing procedure, we arrive at the general product solutions of equations (26) and (27) as follows.

For the case of infinite and finite length,

$$\begin{split} \mathbf{L}_{\mathbf{0}} &= \sum_{\alpha_{1} \geq 0}^{\infty} \left\{ \sum_{\beta_{1} \geq 0}^{\infty} \left[\mathbf{A}_{1\alpha\beta} \sin(\theta_{1} z) \sin(\alpha_{1} c_{1}^{\mathbf{I}} t) + \mathbf{A}_{3\alpha\beta} \sin(\theta_{1} z) \cos(\alpha_{1} c_{1}^{\mathbf{I}} t) + \mathbf{A}_{5\alpha\beta} \cos(\theta_{1} z) \sin(\alpha_{1} c_{1}^{\mathbf{I}} t) + \mathbf{A}_{7\alpha\beta} \cos(\theta_{1} z) \cos(\alpha_{1} c_{1}^{\mathbf{I}} t) \right] \mathbf{Z}_{0} \left(\overline{\mu_{1}}_{\alpha\beta} \mathbf{r} \right) + \\ &= \left[\mathbf{A}_{3\alpha\beta} \sin(\theta_{1} z) \sin(\alpha_{1} c_{1}^{\mathbf{I}} t) + \mathbf{A}_{4\alpha\beta} \sin(\theta_{1} z) \cos(\alpha_{1} c_{1}^{\mathbf{I}} t) + \right] \mathbf{Z}_{0} \left(\overline{\mu_{1}}_{\alpha\beta} \mathbf{r} \right) \right\} + \\ &= \left[\mathbf{A}_{3\alpha\beta} \cos(\theta_{1} z) \sin(\alpha_{1} c_{1}^{\mathbf{I}} t) + \mathbf{A}_{4\alpha\beta} \sin(\theta_{1} z) \cos(\alpha_{1} c_{1}^{\mathbf{I}} t) + \right] \mathbf{W}_{0} \left(\overline{\mu_{1}}_{\alpha\beta} \mathbf{r} \right) \right\} + \\ &= \left[\mathbf{A}_{3\alpha\beta} \cos(\theta_{1} z) \sin(\alpha_{1} c_{1}^{\mathbf{I}} t) + \mathbf{A}_{8\alpha\beta} \cos(\theta_{1} z) \cos(\alpha_{1} c_{1}^{\mathbf{I}} t) \right] \mathbf{W}_{0} \left(\overline{\mu_{1}}_{\alpha\beta} \mathbf{r} \right) \right\} + \\ &= \sum_{\overline{\mu_{1}}}^{\infty} \left[\left[\mathbf{A}_{1\alpha} \mathbf{z} \sin(\overline{\mu_{1}}_{\alpha} c_{1}^{\mathbf{I}} t) + \mathbf{A}_{3\alpha} \mathbf{z} \cos(\overline{\mu_{1}}_{\alpha} c_{1}^{\mathbf{I}} t) \right] \mathbf{Z}_{0} \left(\overline{\mu_{1}}_{\alpha} \mathbf{r} \right) \right\} + \\ &= \left[\mathbf{A}_{2\alpha} \mathbf{z} \sin(\overline{\mu_{1}}_{\alpha} c_{1}^{\mathbf{I}} t) + \mathbf{A}_{4\alpha} \mathbf{z} \cos(\overline{\mu_{1}}_{\alpha} c_{1}^{\mathbf{I}} t) \right] \mathbf{W}_{0} \left(\overline{\mu_{1}}_{\alpha} \mathbf{r} \right) \right\} + \\ &= \left[\mathbf{A}_{10} \mathbf{z} + \mathbf{A}_{20} (\log \mathbf{r}) \mathbf{z} + \mathbf{A}_{50} + \mathbf{A}_{80} \log \mathbf{r} \right] \right]$$

where $\overline{\mu_1}_{\alpha\beta}$ and $\overline{\mu_1}_{\alpha}$ are moduli of $\mu_1_{\alpha\beta}$ and μ_1_{α} , respectively, and

$$\mu_{1\alpha\beta}^{2} = \alpha_{1}^{2} - \beta_{1}^{2} , \quad \mu_{1\alpha} = \alpha_{1} \qquad (29)$$

and Z_0 and W_0 denote Bessel functions $J_0(\mu_1 \alpha_\beta)$ and $Y_0(\mu_1 \alpha_\beta)$ when $\mu_1 \alpha_\beta$ is real, or modified Bessel functions $I_0(\mu_1 \alpha_\beta r)$ and $K_0(\mu_1 \alpha_\beta r)$, respectively, when $\mu_1 \alpha_\beta$ is imaginary, and α_1 , β_1 , are eigenvalues which depend upon the boundary conditions in a given problem. In addition,

$$L_{2} = \sum_{\alpha_{2}\geq0}^{\infty} \left\{ \sum_{\beta_{2}\geq0}^{\infty} \left(\left[B_{1\alpha\beta} \sin (\beta_{2}z) \sin(\alpha_{2}c_{2}^{II}) + B_{3\alpha\beta} \sin(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) + B_{5\alpha\beta} \cos(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) + B_{5\alpha\beta}\cos(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) + B_{5\alpha\beta}\cos(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) \right] - Z_{1}\left(\tilde{\mu_{2}}_{\alpha\beta}r\right) + \left[B_{2\alpha\beta}\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}^{II}) + B_{4\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) + B_{6\alpha\beta}\cos(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) + B_{6\alpha\beta}\cos(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) \right] + \left[B_{2\alpha\beta}\cos(\beta_{2}z)\sin(\alpha_{2}c_{2}^{II}) + B_{6\alpha\beta}\cos(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) \right] - \sum_{\tilde{\mu_{2}}}^{\infty} \left\{ \left[B_{1\alpha}z\sin(\tilde{\mu_{2}}\cos(\beta_{2}z)\cos(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) \right] - Z_{1}\left(\tilde{\mu_{2}}\alpha_{\beta}r\right) \right\} + \left[B_{2\alpha}z\sin(\tilde{\mu_{2}}\cos(\beta_{2}z)\cos(\beta_{2}z)\cos(\alpha_{2}c_{2}^{II}) \right] - Z_{1}\left(\tilde{\mu_{2}}\alpha_{\gamma}r\right) + B_{3\alpha}z\cos(\tilde{\mu_{2}}\alpha_{2}c_{2}^{II}) \right] - Z_{1}\left(\tilde{\mu_{2}}\alpha_{\gamma}r\right) + B_{3\alpha}z\cos(\tilde{\mu_{2}}\alpha_{2}c_{2}^{II}) - Z_{1}\left(\tilde{\mu_{2}}\alpha_{\gamma}r\right) + B_{3\alpha}z\cos(\tilde{\mu_{2}}\alpha_{2}c_{2}^{II}) \right] - Z_{1}\left(\tilde{\mu_{2}}\alpha_{\gamma}r\right) + B_{3\alpha}z\cos(\tilde{\mu_{2}}\alpha_{2}c_{2}^{II}) - Z_{1}\left(\tilde{\mu_{2}}\alpha_{\gamma}r\right) + B_{3\alpha}z\cos(\tilde{\mu_{2}}\alpha_{2}r\right) - Z_{1}\left(\tilde{\mu_{2}}\alpha_{\gamma}r\right) + B_{3\alpha}z\cos(\tilde{\mu_{2}}\alpha_{2}r\right) + B_{3\alpha}z\cos(\tilde{\mu_{2}}\alpha_{2}r\right) - Z_{1}\left(\tilde{\mu_{2}}\alpha_{2}r\right) + B_{3\alpha}z\cos(\tilde{\mu_{2}}\alpha_{2}r\right) - Z_{1}\left(\tilde{\mu_{2}}\alpha_{2}r\right) - Z_{1}\left(\tilde{$$

where $\overline{\mu_{2\alpha\beta}}$ and $\overline{\mu_{2\alpha}}$ are the moduli of $\mu_{2\alpha\beta}$ and $\mu_{2\alpha}$, respectively, and

$$\mu_{2\alpha\beta}^{2} = \alpha_{2}^{2} - \beta_{2}^{2} , \quad \mu_{2\alpha} = \alpha_{2}$$
 (31)

and Z_1 and W_1 denote Bessel functions $J_1(\mu_{2\alpha\beta})$ and $Y_1(\mu_{2\alpha\beta}r)$ respectively when $\mu_{3\alpha\beta}$ is real, or modified Bessel functions $I_1(\overline{\mu_{2\alpha\beta}}r)$ and $K_1(\overline{\mu_{2\alpha\beta}}r)$ respectively, when $\mu_{2\alpha\beta}$ is imaginary.

In case of modes exited below their cut-off frequency, attenuated waves exist which may be described by the following solution

For the case of semi-infinite length,

$$L_{o} = \sum_{\alpha_{1} \geq o}^{\infty} \left\{ \sum_{\overline{b}_{1} \geq o}^{\infty} \left(\left[\overline{A}_{\overline{b}\alpha\beta} e^{-\overline{b}_{1}z} \sin(\alpha_{1}c_{1}^{I}t) + \overline{A}_{7\alpha\beta} e^{-\overline{b}_{1}z} \cos(\alpha_{1}c_{1}^{I}t) \right] \right\} \right\}$$

$$J_{o}(\mu_{1\alpha\beta}r) + \left[\overline{A}_{0\alpha\beta} e^{-\overline{b}_{1}z} \sin(\alpha_{1}c_{1}^{I}t) + \overline{A}_{0\alpha\beta} e^{-\overline{b}_{1}z} \cos(\alpha_{1}c_{1}^{I}t) \right] \cdot$$

$$Y_{o}(\mu_{1\alpha\beta}r) + \sum_{\mu_{1\alpha}=\alpha_{1}}^{\infty} \left\{ \left[\overline{A}_{0\alpha}z \sin(\mu_{1\alpha}c_{1}^{I}t) + \overline{A}_{7\alpha}z \cos(\mu_{1\alpha}c_{1}^{I}t) \right] + \overline{A}_{7\alpha}z \cos(\mu_{1\alpha}c_{1}^{I}t) \right\} -$$

$$J_{0}(\mu_{1}\alpha^{r}) + \left[\overline{A}_{8\alpha}z \sin(\mu_{1}\alpha^{c_{1}t}) + \overline{A}_{8\alpha}z \cos(\mu_{1}\alpha^{c_{1}t})\right] Y_{0}(\mu_{1}\alpha^{r})\right\} + \overline{A}_{10}z + \overline{A}_{20}(\log r) z + \overline{A}_{50} + \overline{A}_{60}(\log r)$$
(32)

and

$$L_{\theta} = \sum_{\alpha_{\theta} \geq 0}^{\infty} \left\{ \sum_{\beta_{\theta} \geq 0}^{\infty} \left(\left[\overline{B}_{5_{\alpha}\beta} e^{-\overline{\beta}_{\theta}z} \sin(\alpha_{2}c_{2}t) + \overline{B}_{7_{\alpha}\beta} e^{-\overline{\beta}_{\theta}z} \cos(\alpha_{2}c_{2}t) \right] \right\} \right\}$$

$$J_{1} \left(\mu_{2\alpha}\beta r \right) + \left[\overline{B}_{6\alpha\beta} e^{-\overline{\beta}_{2}z} \sin(\alpha_{2}c_{2}t) + \overline{B}_{\theta\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] \cdot$$

$$Y_{1} \left(\mu_{2\alpha}\beta r \right) \right\} + \sum_{\mu_{2\alpha}=\alpha>0}^{\infty} \left\{ \left[\overline{B}_{5\alpha}z \sin(\mu_{2\alpha}c_{2}t) + \overline{B}_{7\alpha}z \cos(\mu_{2\alpha}c_{2}t) \right] \cdot$$

$$J_{1} \left(\mu_{2\alpha}r \right) + \left[\overline{B}_{6\alpha}z \sin(\mu_{2\alpha}c_{2}t) + \overline{B}_{8\alpha}z \cos(\mu_{2\alpha}c_{2}t) \right] Y_{1} \left(\mu_{2\alpha}r \right) \right\} +$$

$$\overline{E}_{10} rz + \overline{B}_{90} r^{-1}z + \overline{E}_{50} r + \overline{E}_{60} r^{-1}$$

$$(33)$$

where, in equations (32) and (33),

$$\mu_{1\alpha\beta}^{2} = \alpha_{1}^{2} + \overline{\beta}_{1}^{2} , \quad \mu_{1\alpha} = \alpha_{1} \quad (34)$$

and

$$\mu_{2\alpha\beta}^{2} = \alpha_{2}^{2} + \overline{\beta}_{2}^{2} , \quad \mu_{2\alpha} = \alpha_{2} \qquad (35)$$

In equations (28) through (35) the expressions are for the matrix. For the fiber, we must:

1. Replace
$$A_{i\alpha\beta}$$
 by $C_i\gamma\delta$ (i = 1,3,5,7)
 $\overline{A}_{i\alpha\beta}$ by $\overline{C}_i\gamma\delta$ (i = 5,7)
 $B_{i\alpha\beta}$ by $D_i\gamma\delta$ (i = 1,3,5,7)
 $\overline{B}_{i\alpha\beta}$ by $\overline{D}_i\gamma\delta$ (i = 5,7) (36)

- 2. Then let $A_{i\alpha\beta}$, $B_{i\alpha\beta}$, $\overline{A}_{i\alpha\beta}$, $\overline{B}_{i\alpha\beta}$ (i = 2,4,6,8) = 0 (37) so that we will have finite values of stresses and displacements at r = 0
- 3. Replace α_1 , β_1 , $\mu_{1\alpha\beta}$, $\mu_{1\alpha}$, α_2 , β_2 , $\mu_{2\alpha\beta}$, $\mu_{2\alpha}$, $\overline{\beta_1}$, $\overline{\beta_2}$ with γ_1 , δ_1 , $\mu_{1\gamma\delta}$, $\mu_{1\gamma}$, γ_2 , δ_2 , $\mu_{2\gamma\delta}$, $\mu_{2\gamma}$, $\overline{\delta_1}$, $\overline{\delta_2}$ (38)
- 4. Replace A_{10} , A_{50} , B_{10} , B_{50} , \overline{A}_{10} , \overline{A}_{50} , \overline{B}_{10} , \overline{B}_{50} by C_{10} , C_{50} , D_{10} , D_{50} , \overline{C}_{10} , \overline{C}_{50} , \overline{D}_{10} , \overline{D}_{50} , and set A_{20} , A_{80} , B_{20} , B_{80} , \overline{A}_{20} , \overline{A}_{80} , \overline{B}_{20} , \overline{B}_{80} to zero.

5. Replace c_1^{II} , c_2^{II} by c_1^{I} , c_2^{I} , respectively for the reinforcement

In equations (28) and (30), the finiteness of potentials, which in turn are the finiteness of displacements and stresses, has been satisfied as t approaches infinity.

DOUBLE INFINITE SERIES SOLUTIONS OF DISPLACEMENTS AND STRESSES (GENERAL FORM)

The solutions of displacements and stresses in the form of double infinite series are obtainable by substituting equations (28) and (30), or equations (32) and (33), into equations (11) and (24). The expressions obtained for the cases of infinite and finite length cylinders as well as for semi-infinite length cylinders, are written out in Appendixes I and II, respectively. These equations are the general solutions of the matrix. For the fiber, the results are of the same form, but $A_{i\alpha\beta}$, $B_{i\alpha\beta}$, $\overline{A}_{i\alpha\beta}$, $\overline{B}_{i\alpha\beta}$ are replaced with $C_{i\alpha\beta}$, $D_{i\alpha\beta}$, $\overline{C}_{i\alpha\beta}$, and $\overline{D}_{i\alpha\beta}$, respectively, when i = 1, 3, 5, 7. Furthermore, $A_{i\alpha\beta}$, $B_{i\alpha\beta}$, $\overline{A}_{i\alpha\beta}$, $\overline{B}_{i\alpha\beta}$ are set equal to zero when i = 2,4,6,8 for all α 's and β 's. This is understood, as stated in the preceding section, because the finite values of stresses and displacements must be maintained at r = 0. It must be mentioned here that, for the case of infinite length composites, the displacements and stresses must be finite as z approaches infinity; specifically, $A_{\rm i}\alpha$ and $B_{i\alpha}$ when i = 1, 2, 3, 4, A_{eo} and B_{io} in Appendix I must be set to zero.

In Appendix I, all solutions for stresses and displacements are expressed in terms of Bessel functions or modified Bessel functions, depending on whether the μ 's are real or imaginary. A constant k is defined as +1 whenever a Bessel function is used, or -1 whenever a modified Bessel function is adopted. The range and functions to be used will be discussed in the next section.

DOMAIN AND BOUNDARY CONDITIONS

There are three kinds of geometry for composite length that must be considered: finite, infinite, and semi-infinite length. The fiber array within the composite is assumed to be hexagonal. Each basic, representative element consists of a circular, cylindrical fiber surrounded by a shell matrix of circular section. The domains for these three cases are:

1.	Finite Length Composite	(Fiber):	0 0 0	۶ ۲	r z t	۲ ۲ ۲	a L ∞	(39)
		(Matrix):	a 0 0	۲ ۲ ۲	r z t	ک ک ک	b L ∞	(40)
2.	Infinite Length Composite	(Fiber):	0 ∞- 0	۶ ۲ ۲	r z t	≤ ≤	a ∞ ∞	(41)
		(Matrix):	a 	۶ ۶	r z t	55	b ∞ ∞	(42)

14

3. Semi-Infinite Length Composite (Fiber): $0 \le r \le a$ $0 \le z \le \infty$ $0 \le t \le \infty$ (43) (Matrix): $a \le r \le b$ $0 \le z \le \infty$

 $0 \le t \le \infty$ (44)

For each element, the condition of perfect bonding between fiber and matrix and the compatibility conditions between basic representative elements must also be imposed. In other words, displacements and stresses σ_{ij} are continuous at the fiber-matrix interface, and all elements behave exactly alike. Therefore, the boundary conditions of an element at the lateral surfaces are:

1. At the interface,

$$u^{I}(a,z,t) = u^{II}(a,z,t)$$

$$w^{I}(a,z,t) = w^{II}(a,z,t)$$

$$\sigma^{I}_{11}(a,z,t) = \sigma^{II}_{11}(a,z,t)$$

$$\sigma^{I}_{13}(a,z,t) = \sigma^{II}_{13}(a,z,t) \qquad (45)$$

2. At the outer surface,

$$u^{II}(b,z,c) = 0$$

 $\sigma_{13}^{II}(b,z,c) = 0$ (46)

The boundary conditions (46) are assumed such that all elements in an infinite region of composite vibrate simultaneously at the same phase and without longitudinal shear stresses between them.

 All displacements and stresses should be finite as r approaches zero and/or t tends to infinite.

In addition to the boundary conditions stated above, more conditions are present for the different cases of vibration which will be considered here.

- 1. Case 1: Infinite and Finite Length, Free Vibration
 - a. For the case of infinite length cylinders, all stresses and displacements should be finite as z approaches infinity.

- b. For the case of finite length,
 - (1) At z = 0, fixed or free end,

$$\begin{cases} w^{I,II}(r,0,t) = 0 \\ \frac{\partial u^{I,II}}{\partial z}(r,0,t) = 0 \end{cases}$$
 or
$$\begin{cases} \sigma_{33}^{I,II}(r,0,t) = 0 \\ \sigma_{33}^{I,II}(r,0,t) = 0 \\ \frac{\partial u^{I,II}}{\partial z}(r,0,t) = 0 \end{cases}$$
 (47)

The fixed end boundary conditions should actually be $w^{I,II} = 0$ and $u^{I,II} = 0$. The reason for using $\frac{\partial u^{I,II}}{\partial z}(r,0,t) = 0$ instead of $u^{I,II}(r,0,t) = 0$ is that this is a very good approximation if we want to have a consistent solution.

(2) At z = L, free end

$$\sigma_{33}^{I,II}(r,L,t) = 0$$

 $\sigma_{13}^{I,II}(r,L,t) = 0$ (48)

- 2. Case 2: Semi-Infinite Length With Free End
 - a. At z = 0,

$$\sigma_{33}^{I,II}(r,0,t) = 0$$

$$\sigma_{13}^{I,II}(r,0,t) = 0$$
(49)

- All stresses and displacements should tend to zero as z approaches infinity.
- 3. Case 3: Finite Length, Forced Vibration (One end, z = 0, is fixed, and the other end, z = L, is under axial piecewise-constant or sinusoidal loading)

a. At
$$z = 0$$
,

and

 b. At $z = J_i$,

$$2\pi \int_{0}^{u} \left[\sigma_{33}^{I}(\mathbf{r}, \mathbf{L}, t) \right] \mathbf{r} d\mathbf{r} +$$

$$2\pi \int_{a}^{b} \left[\sigma_{33}^{II}(\mathbf{r}, \mathbf{L}, t) \right] \mathbf{r} d\mathbf{r} = \begin{cases} P & \text{for } J < t < T/2 \\ -P & \text{for } -T/2 < t < 0 \end{cases}$$
(51)

$$= \begin{cases} P \sin(\omega_e t) \text{ for } t > 0 \\ 0 \text{ for } t < 0 \end{cases}$$
(52)

and

$$\sigma_{13}^{I,II}(r,L,t) = 0$$
 (53)

where T is period and w_e is the external exciting frequency.

4. Case 4: Finite Length, Forced Vibration (One end, z = 0, is freely supported and the other end, z = L, is under axial piecewise-constant or sinusoidal loading)

a. At
$$z = 0$$
,

$$\begin{cases} \sigma_{33}^{I,II}(r,0,t) = 0 \\ \sigma_{13}^{I,II}(r,0,t) = 0 \end{cases}$$
(54)

b. At z = L,

$$2\pi \int_{0}^{a} \left[\sigma_{33}^{I}(r,L,t) \right] r dr +$$

$$2\pi \int_{a}^{b} \left[\sigma_{33}^{II}(r,L,t) \right] r dr = \begin{cases} P & \text{for } 0 < t < T/2 \\ -P & \text{for } -T/2 < t < 0 \end{cases}$$
(55)

$$= \begin{cases} P \sin(w_e t) \text{ for } t > 0 \\ 0 \text{ for } t < 0 \end{cases}$$
(56)

and

$$\sigma_{13}^{I,II}(r,L,t) = 0$$
 (57)

5. Case 5: Semi-Infinite Length, Forced Vibration (Axial Piecewise-constant or sinusoidal loading applied at z = 0)

a. At z = 0,

$$2\pi \int_{0}^{a} \left[\sigma_{33}^{I}(r,0,t) \right] r dr +$$

$$2\pi \int_{a}^{b} \left[\sigma_{33}^{II}(r,0,t) \right] r dr = \begin{cases} P & \text{for } 0 < t < T/2 \\ -P & \text{for } -T/2 < t < 0 \end{cases} \quad \text{or} \quad (58)$$

$$(P \sin(w, t) \text{ for } t > 0)$$

$$= \begin{cases} P \sin(\omega_e t) \text{ for } t > 0 \\ 0 \text{ for } t < 0 \end{cases}$$
(59)

and

$$\sigma_{13}^{I,II}(r,0,t) = 0$$
 (60)

b. All stresses and displacements tend to zero as z approaches infinity.

CHARACTERISTIC EQUATION (FREQUENCY EQUATION) FOR THE CASES OF INFINITE AND FINITE LENGTH COMPOSITES

The domain, boundary conditions, and solutions of displacements and stresses are written in equations (39) through (42), (45) through (48) and the conditions thereunder, and in Appendix I.

For perfect bond in order to satisfy equation (45), the wave numbers along the axial direction and the circular frequencies of fiber and matrix must be identical; in other words,

$$\theta_1 = \theta_2 = \delta_1 = \delta_3 = \beta \tag{61}$$

$$\alpha_1 c_1^{II} = \alpha_2 c_2^{II} = \gamma_1 c_1^{I} = \gamma_2 c_2^{I} = \omega_{\alpha}$$
(62)

Then equations (29) and (31) become

$$\mu_{1\alpha\beta}^{2} = \left(\frac{\omega_{\alpha}}{c_{1}}\right)^{2} - \beta^{2} = \left[\left(\frac{c_{\alpha}}{c_{1}}\right)^{2} - 1\right] \theta^{2}$$
(63)

$$\mu_{2\alpha\beta}^{2} = \left(\frac{\omega_{\alpha}}{c_{2}^{II}}\right)^{2} - \beta^{2} = \left[\left(\frac{c_{\alpha}}{c_{2}}\right)^{2} - 1\right] \beta^{2}$$
(64)

Also,

$$\mu_{1\gamma\delta}^{2} = \left(\frac{\omega_{\gamma}}{I}\right)^{2} - \beta^{2} = \left[\left(\frac{c_{\gamma}}{I}\right)^{2} - 1\right]\beta^{2}$$
(65)

$$\mu_{2\gamma\delta}^{2} = \left(\frac{\omega_{\alpha}}{c_{2}}\right)^{2} - \beta^{2} = \left[\left(\frac{c_{\alpha}}{c_{2}}\right)^{2} - 1\right]\beta^{2}$$
(66)

where β is axial wave number, ψ_{α} is circular frequency, and c_{α} is phase velocity.

Imposition of boundary conditions (45) and (46) onto equations (223) through (225) and (228) in Appendix I yields six simultaneous, homogeneous, algebraic equations. For a nontrivial solution of the amplitudes, the determinant of their coefficients is set equal to zero, resulting in the following characteristic equation:

$$|d_{ij}| = 0 \tag{67}$$

where i, j = 1...6. This equation is written out in Appendix III to this report.

Equation (67) is a transcendental equation which relates circular frequency w_{2} to axial wave number β for composites of infinite and finite length.

19

As mentioned previously, all μ 's may be either real or imaginary, depending on the circular frequency ω_{0} . Table I lists the range of circular frequency ω_{0} , the values of μ 's, and the appropriate Bessel functions to be used in the expressions in which Bessel functions appear.

TABLE I

Range of w _a	Values of µ's	Appropriate Functions Used for Different Ranges of Circular Frequencies w _C										
un≻βc1	μιγδ,μεγδ real	$J(\mu_{\gamma\delta}r)$	0	J(Heyőr)	0							
uα>βc1	μιαθ,μεαθ real ·	$J(\mu_1 \alpha \beta^r)$	^Υ (μ _{1αβ} r)	^J (μ _{2αβ} r)	Υ(μ _{εαθ} r)							
9 ^I 9c₂≪υα≪βc₁	μ _{lγδ} imaginary μ _{2γδ} real	$I(\overline{\mu_1}_{V\delta}r)$	0 	 J(μεγδr)	0							
9c ₂ ¹¹ < ⊔α <βc ₁ ¹¹	μ _{1αβ} imaginary μ _{2α} g real	¹ (μ _{1α} 9r) 	κ(μ _{1α3} r) 	J(μ _{2α} qr)	[⊥] ^Y (μ≥αβ ^r)							
$\mu_{\alpha} < 9c_2^{I}$	μ _{ινδ} ,μ _{ενδ} imaginary	$I\left(\overline{\mu_{1}}_{V\delta}r\right)$	0	I (∏₂vôr)	0							
ચα્≪8c₂ ^{II}	μ _{ιαθ} ,μ _{εαθ} imaginary	$I(\overline{\mu}_{1\alpha\beta}r)$	к(<u>-</u> изавт)	I($\overline{\mu}_{2\alpha\beta}r$)	K(Ūzaar)							

RANGE OF CIRCULAR FREQUENCIES AND APPROPRIATE BESSEL FUNCTIONS USED

In equations (249) through (254), $\,k\,$ is defined as before; in other words,

 $k = \begin{cases} +1 & \text{whenever it is associated with } J, Y \\ -1 & \text{whenever it is associated with } I, K \end{cases}$

In principle, characteristic equation (\circ 7) should be valid for both composites of infinite length and of finite length, of a large aspect ratio. For a free-free cylinder, the stresses should vanish at both ends (z = 0,L); i.e.,

$$\sigma_{33}^{I,II}(r,0,t) = 0$$
 , $\sigma_{33}^{I,II}(r,L,t) = 0$ (68)

With this in mind, after applying these boundary conditions (68) into equations (240) and (241) of Appendix I, we get

$$A_{5\alpha\beta} = A_{7\gamma\beta} = A_{8\alpha\beta} = A_{8\alpha\beta} = B_{1\alpha\beta} = B_{3\alpha\beta}$$
$$= B_{2\alpha\beta} = B_{4\alpha\beta} = C_{5\gamma\delta} = C_{7\gamma\delta} = D_{1\gamma\delta} = D_{3\gamma\delta} = 0$$
$$A_{1\alpha} = A_{2\alpha} = A_{3\alpha} = A_{4\alpha} = C_{1\gamma} = C_{3\gamma}$$
$$= B_{1\alpha} = B_{2\alpha} = B_{3\alpha} = B_{4\alpha} = B_{4\alpha} = D_{1\gamma} = D_{3\gamma} = 0$$
$$B_{10} = B_{20} = 0$$
(69)

and

$$g(n) = \frac{n\pi}{L}$$
(70)

The s

where n = 1, 2, 3.... With the eigenvalues established through equation (70), we can find the exact values of circular frequency w_{α} of a composite of finite length. It must be stated that the conditions of the vanishing shear stresses at both ends are not satisfied; in other words,

$$\sigma_{13}^{I,II}(r,0,t) \neq \sigma_{13}^{I,II}(r,L,t) \neq 0$$

This is not important, however, since shear stress σ_{13} is always small at both ends and self-equilibrating, the shear stress along the outside lateral boundary vanishes:

 $\sigma_{13}^{\text{II}}(b,z,t) = 0$

CHARACTERISTIC EQUATION (FREQUENCY EQUATION) FOR THE CASE OF THE SEMI-INFINITE LENGTH COMPOSITE

In a similar manner, a system of six simultaneous, homogeneous algebraic equations is found by imposing boundary conditions (45) and (46) onto equations (242) through (244) and (247) in Appendix II. The vanishing of the determinant for the amplitude coefficients yields the frequency equation for the semi-infinite length composite, as follows:

$$\left| \overline{\mathbf{d}}_{\mathbf{i}\mathbf{j}} \right| = 0 \tag{71}$$

where i, j = 1...6. This equation is written out in Appendix IV.
Ic must be emphasized that equation (71) is very similar to equation (67); however, the physical meanings and mathematical results are different and should not be confused with **each other**. In equation (71), \overline{B} is real and positive in all cases, but B in equation (67) has no such restriction and is the wave number in the axial direction for longitudinal vibration of the composite. Furthermore, μ 's in the previous case may be real or imaginary, depending on the range of frequency; on the other hand, μ 's in the semi-infinite rod are always real. In addition, equations (63) through (66) become

$$\mu_{1\alpha\beta}^{2} = \left(\frac{w_{\alpha}}{II}\right)^{2} + \bar{\beta}^{2}$$
(72)

$$\mu_{\mathbf{2}}^{2}\alpha_{\mathbf{\beta}} = \left(\frac{\omega_{\alpha}}{\underset{c_{\mathbf{2}}}{\mathrm{II}}}\right)^{2} + \bar{\theta}^{2}$$
(73)

$$\mu_{1\gamma\delta}^{2} = \left(\frac{\omega_{\alpha}}{c_{1}}\right)^{2} + \bar{\beta}^{2}$$
(74)

$$\mu_{2}^{2}v_{\delta} = \left(\frac{\mu_{0}}{I}\right)^{2} + \bar{\beta}^{2}$$
(75)

SOLUTIONS FOR FINITE LENGTH COMPOSITE WITH ONE END (z = 0) FIXED AND THE OTHER (z = L) SUBJECTED TO AXIAL PIECEWISE-CONSTANT OR SINUSOIDAL LOADING

Now let us solve a vibration problem of composite with one end fixed and the other end under piecewise-constant loading. No initial condition is specified, since only steady-state solution is obtained. In numerical calculation, period T as well as the magnitude of piecewise-constant loading P must be given.

The Fourier expansion of a piecewise-constant function P (equation 51) is

$$\frac{4P}{\pi} \sum_{n=1,2,3,...}^{\infty} \frac{1}{2n-1} \sin \frac{2(2n-1)\pi t}{T}$$
(76)

Combining equations (50), (51), (53), (236), (237), (240), (241), and (76),
we get
$$(\sigma_{13}^{I,II}(r,0,t) = 0)$$

$$\frac{AP}{\pi} \left(\frac{1}{2n-1}\right) = - \sqrt{\sum_{\beta \ge 0}^{\infty}} A_{\beta\alpha\beta} \left[2\pi \int_{0}^{a} \left\{ \left[\left[\lambda^{II} + 2G^{II} \right] \theta^{a} + k\lambda^{II} \frac{a}{\mu_{1\alpha}\theta} \right] \right] \right\}$$

$$Z_{0} \left(\overline{\mu_{1\alpha}} \theta^{r} \right) + M_{1\alpha\theta} \left[\left(\lambda^{II} + 2G^{II} \right) \theta^{a} + k\lambda^{II} \frac{a}{\mu_{1\alpha}\theta} \right] \right]$$

$$W_{0} \left(\overline{\mu_{1\alpha}} \theta^{r} \right) - M_{3\alpha\theta} \left(2G^{II} \overline{\mu_{3\alpha\beta}} \theta \right) + W_{0} \left(\overline{\mu_{3\alpha\beta}} r \right) \right\} r dr + 2\pi \int_{a}^{b} \left\{ M_{4\alpha\theta} \left[\left(\lambda^{I} + 2G^{I} \right) \theta^{a} + k\lambda^{I} \overline{\mu_{1\alpha}} \theta \right] \right\}$$

$$Z_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) - M_{5\alpha\theta} \left(2G^{II} \overline{\mu_{2}} \gamma_{\delta} \theta \right) + k\lambda^{I} \overline{\mu_{1\alpha}} \theta \right] \cdot Z_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) - M_{5\alpha\theta} \left(2G^{II} \overline{\mu_{2}} \gamma_{\delta} \theta \right) + k\lambda^{I} \overline{\mu_{1\alpha}} \theta \right] \cdot Z_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) - M_{5\alpha\theta} \left(2G^{I} \overline{\mu_{2}} \gamma_{\delta} \theta \right) \cdot Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) - M_{5\alpha\theta} \left(2G^{I} \overline{\mu_{2}} \gamma_{\delta} \theta \right) \cdot Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) - M_{5\alpha\theta} \left(2G^{I} \overline{\mu_{2}} \gamma_{\delta} \theta \right) \cdot Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \left\{ r dr \right\}$$

$$w_n = \frac{2(2n-1)\pi}{T}$$
 (78)

A - - A CORD CORD CORD

where n = 1, 2, 3, ..., and the rest of the coefficients in the expressions for stresses and displacements are zeroes (reference equations 262, 263, 267, and 269 in Appendix V). Here in equation (77), M's and \underline{u} 's are defined by equations (266) and (270) through (276).

In order to obtain the coefficients $A_{5\alpha\beta}$, we must employ the socalled quasi-orthogonality property [24] of a function across multiple media. The eigenfunctions in equation (77) are not orthogonal over the total interval in the radial direction, because the conditions of the Sturm-Liouville problem are violated, in that the physical constants of the governing differential equations of a composite are different for each constituent. Therefore, it is not possible to represent a function as the expansions of such nonorthogonal eigensets in the ordinary sense, such as Fourier-Bessel or Dini-Bessel expansion.

In general, the Fourier coefficients F_p of a function Q(r) for a multiple M-layer composite can be determined by

.

$$\mathbf{F}_{p} = \left\{ \sum_{m=1}^{M} \chi_{m}^{2} \int_{r_{mi}}^{r_{mo}} r Q(\mathbf{r}) R(\mu_{p}r) dr \right\} \div \left\{ \sum_{m=1}^{M} \chi_{m}^{2} \int_{r_{mi}}^{r_{mo}} r R^{2}(\mu_{p}r) dr \right\}$$
(79)

where χ_m is defined as

$$\sum_{m=1}^{M} \chi_{m}^{2} \sum_{q \neq p}^{\infty} \int_{r_{mi}}^{r_{mo}} r \left[R(\mu_{p}r) \right] \left[R(\mu_{q}r) \right] dr = 0$$
(80)

where M is the number of layers and the mth region is $r_{mi} \le r \le r_{mo}$. Equation (80) is the condition of the quasi-orthogonality and R = eigenfunction corresponding to homogeneous boundary conditions of the type considered in the problem.

For the present problem, the coefficients $A_{5\alpha\beta}$ of equation (77) may be represented in the following form:

$$A_{5\alpha\beta} \cos(\beta L) = -\frac{4P}{\pi} \left\{ \left[\chi_{1}^{2} \left(\frac{1}{2n-1} \right) 2\pi \int_{0}^{a} \left[\int_{0}^{a} \left\{ M_{4\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) g^{2} + k \lambda^{I} \frac{a}{\mu_{1}} \gamma_{\delta} \right] Z_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) - M_{5\alpha\beta} \left(2G^{I} \overline{\mu_{2}} \gamma_{\delta} - g \right) \right] \right\}$$

$$Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) r dr r dr + \left[\chi_{2}^{2} \left(\frac{1}{2n-1} \right) \right] \cdot \left[2\pi \int_{a}^{b} \left[\int_{a}^{b} \left\{ \left[\left(\lambda^{II} + 2G^{II} \right) g^{2} + k \lambda^{II} \frac{a}{\mu_{1}} \gamma_{\beta} \right] Z_{0} \left(\overline{\mu_{1}} \gamma_{\beta} r \right) \right] \right\} \right\}$$

$$+ \mathbf{H}_{\mathbf{k}\alpha\beta} \left[\begin{pmatrix} \lambda^{\mathbf{II}} + 2\mathbf{G}^{\mathbf{II}} \end{pmatrix}_{\mathbf{\theta}^{2}}^{\mathbf{\theta}} + \mathbf{k}\lambda^{\mathbf{II}} \mathbf{\mu}_{\mathbf{k}\alpha\beta}^{\mathbf{\theta}} \right] \mathbf{W}_{0} \left(\mathbf{\mu}_{\mathbf{k}\alpha\beta} \mathbf{r} \right) - \\ \mathbf{H}_{\mathbf{\theta}\alpha\beta} \left(2\mathbf{G}^{\mathbf{II}} \mathbf{\mu}_{\mathbf{\theta}\alpha\beta} \mathbf{\theta} \right) \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{r} \right) \right] + \\ \mathbf{H}_{\mathbf{k}\alpha\beta} \left(2\mathbf{G}^{\mathbf{II}} \mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{\theta} \right) \mathbf{k} \mathbf{W}_{0} \left(\mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{r} \right) \right] \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} \mathbf{r} d\mathbf{r} \right] \mathbf{r} d\mathbf{r} \right] \mathbf{r} d\mathbf{r} \right] \mathbf{r} d\mathbf{r} + \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left(2\mathbf{G}^{\mathbf{II}} \mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{\theta} \right) \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} \right] \mathbf{r} d\mathbf{r} + \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left(2\mathbf{G}^{\mathbf{I}} \mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{\theta} \right) \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} \right] \mathbf{r} d\mathbf{r} + \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left[2\mathbf{G}^{\mathbf{I}} \mathbf{\mu}_{\mathbf{a}\gamma\delta} \mathbf{\theta} \right] \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{a}\gamma\delta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} \right] \mathbf{r} d\mathbf{r} + \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left[2\mathbf{G}^{\mathbf{I}} \mathbf{\mu}_{\mathbf{a}\gamma\delta} \mathbf{\theta} \right] \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{a}\gamma\delta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} + \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left[\left(\lambda^{\mathbf{II}} + 2\mathbf{G}^{\mathbf{II}} \right) \mathbf{\theta}^{\mathbf{s}} + \mathbf{k}\lambda^{\mathbf{II}} \mathbf{\mu}_{\mathbf{a}\beta\beta}^{\mathbf{s}} \right] \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{k}\alpha\beta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} + \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left[\left(\lambda^{\mathbf{II}} + 2\mathbf{G}^{\mathbf{II}} \right) \mathbf{\theta}^{\mathbf{s}} + \mathbf{k}\lambda^{\mathbf{II}} \mathbf{\mu}_{\mathbf{a}\beta\beta}^{\mathbf{s}} \right] \mathbf{W}_{0} \left(\mathbf{\mu}_{\mathbf{k}\alpha\beta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} - \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left[\left(2\mathbf{G}^{\mathbf{II}} \mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{\theta} \right) \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} - \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left[2\mathbf{G}^{\mathbf{II}} \mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{\theta} \right] \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} - \\ \mathbf{M}_{\mathbf{k}\alpha\beta} \left[2\mathbf{G}^{\mathbf{II}} \mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{\theta} \right] \mathbf{z}_{0} \left(\mathbf{\mu}_{\mathbf{a}\alpha\beta} \mathbf{r} \right) \mathbf{r}^{\mathbf{t}} d\mathbf{r}^{\mathbf{t}} \right] \right] \mathbf{T} \mathbf{t} \mathbf{r} \mathbf{r}$$

where χ_1 and χ_2 are defined in equations 280 in Appendix V.

With $A_{5\alpha\beta}$ found by equation (81) and with the eigenvalues obtained from equations (248) through (254), we can get $A_{\alpha\beta\beta}$; $B_{1\alpha\beta}$, $C_{\epsilon\gamma\delta}$, $D_{1\gamma\delta}$ from equations (270) through (276) and then obtain displacements and stresses of the composite from equations (236) through (241). This completes the solutions for composites of finite length with one end (z = 0) fixed and the other end (z = L) subjected to axial piecewise-constant loading. Detailed procedures are written out in Appendix V.

If the composite is under sinusoidal loading $P \sin(w_e t)$ at z = L, the problem is much easier to solve. From equations (52) and (240), we have the following:

$$P = -A_{5} \left[2\pi \int_{a}^{b} \left\{ \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \frac{a}{\mu_{1}\alpha\beta} \right] Z_{0} \left(\overline{\mu_{1}}\alpha\beta r \right) \right] \right]$$
$$M_{1} \left[\left(\lambda^{II} + 2G^{II} \right) \beta^{2} + k\lambda^{II} \frac{a}{\mu_{1}\alpha\beta} \right] W_{0} \left(\overline{\mu_{1}\alpha\beta}r \right) - M_{5} \left(2G^{II} \overline{\mu_{2}} \beta \right) Z_{0} \left(\overline{\mu_{2}\alpha\beta}r \right) - M_{5} \left(2G^{II} \overline{\mu_{2}} \beta \right) k W_{0} \left(\overline{\mu_{2}\alpha\beta}r \right) r dr + 2\pi \int_{0}^{a} \left\{ M_{4} \left[\left(\lambda^{I} + 2G^{I} \right) \beta^{2} + k\lambda^{I} \frac{a}{\mu_{1}\gamma\delta} \right] Z_{0} \left(\overline{\mu_{1}}_{\sqrt{\delta}}r \right) - M_{5} \left(2G^{I} \overline{\mu_{2}\gamma\delta}r \right) \right\} r dr + M_{5} \left(2G^{I} \overline{\mu_{2}\gamma\delta}r \right) Z_{0} \left(\overline{\mu_{1}}_{\sqrt{\delta}}r \right) - M_{5} \left(2G^{I} \overline{\mu_{2}\gamma\delta}r \right) Z_{0} \left(\overline{\mu_{2}\gamma\delta}r \right) \right\} r dr$$

and the other coefficients vanish. In equation (82), M's and μ 's are defined in equations (266) and (270) through (276). It should be mentioned that all of the subscripts associated with this case should be dropped, since summation is not performed in this problem. Also, it should be noted that, for a composite under longitudinal loading of simple harmonic force, the Fourier series expansion and the quasi-orthogonality technique of the function are not used.

 A_5 in equation (82) can be determined by the integration of both sides. Therefore, other coefficients of solutions under Appendix I can be found from equation (270).

SOLUTIONS FOR FINITE LENGTH COMPOSITES WITH ONE END (z = 0)FREELY SUPPORTED AND THE OTHER (z = L) SUBJECTED TO AXIAL PIECEWISE-CONSTANT OR SINUSOIDAL LOADING

From the following equation,

1

$$P = 2\pi \left[\int_{0}^{a} \left(\sigma_{33}^{I} \right)_{z=L} r dr + \int_{a}^{b} \left(\sigma_{33}^{II} \right)_{z=L} r dr \right]$$
(84)

and proceeding in the same manner delineated in the previous section, we can obtain the expression for the coefficient $A_{1\alpha\beta}$ in the case of a composite placed under piecewise loading.

$$\begin{split} A_{\lambda\alpha\beta} \sin(\beta L) &= -\frac{4P}{\pi} \left\{ \iint \left[\chi_{3}^{2} \left(\frac{1}{2n-1} \right) \cdot \right] \right\} \\ &= 2\pi \int_{0}^{a} \left[\int_{0}^{a} \left\{ H_{\Theta\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \beta^{2} + k\lambda^{I} \overline{\mu}_{\alpha} \gamma_{\delta}^{2} \right] z_{0} \left(\overline{\mu}_{1} \gamma_{\delta} \right) + \right] \right\} \\ &= M_{10\alpha\beta} \left(2G^{I} \overline{\mu}_{0} \gamma_{\delta} \beta \right) z_{0} \left(\overline{\mu}_{0} \gamma_{\delta} r \right) \left\{ r^{d}r^{i} \right] r^{d}r^{i} \right] + \left[\chi_{4}^{2} \left(\frac{1}{2n-1} \right) \right] \\ &= 2\pi \int_{0}^{b} \left[\int_{0}^{b} \left\{ \left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \overline{\mu}_{1\alpha\beta}^{2} \right] z_{0} \left(\overline{\mu}_{1\alpha\beta} r \right) + \right] \\ &= M_{\theta\alpha\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \beta^{2} + k\lambda^{II} \overline{\mu}_{1\alpha\beta}^{2} \right] W_{0} \left(\overline{\mu}_{1\alpha\beta} r \right) + \\ &= M_{\theta\alpha\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \beta^{2} + k\lambda^{II} \overline{\mu}_{1\alpha\beta}^{2} \right] W_{0} \left(\overline{\mu}_{1\alpha\beta} r \right) + \\ &= M_{\theta\alpha\beta} \left(2G^{II} \overline{\mu}_{2\alpha\beta} \beta \right) z_{0} \left(\overline{\mu}_{2\alpha\beta} r \right) + \\ &= M_{\theta\alpha\beta} \left(2G^{II} \overline{\mu}_{2\alpha\beta} \beta \right) k W_{0} \left(\overline{\mu}_{2\alpha\beta} r \right) \left\{ r^{i} dr^{i} \right] r^{i} dr \\ &= \left[\chi_{3}^{2} \int_{0}^{a} \left\{ 2\pi \int_{0}^{a} \left\{ M_{\theta\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \beta^{2} + k\lambda^{I} \overline{\mu}_{1\alpha\beta}^{2} \right] z_{0} \left(\overline{\mu}_{1\gamma\delta} r \right) r^{i} dr^{i} + \\ &= \left[\chi_{3}^{2} \int_{0}^{a} \left\{ 2\pi \int_{0}^{a} \left\{ M_{\theta\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \beta^{2} + k\lambda^{I} \overline{\mu}_{1\gamma\delta} \right] z_{0} \left(\overline{\mu}_{1\gamma\delta} r \right) r^{i} dr^{i} \right\} \right] \right] z_{0} \left[\overline{\mu}_{1\gamma\delta} r^{i} r^{i} dr^{i} r^{i} r^{i} r^{i} r^{i} dr^{i} r^{i} r^{i}$$

$$\left[M_{10}{}_{\alpha\beta} \left(2G^{I} \ \overline{\mu}_{2}{}_{\gamma\delta}{}^{\beta} \ \beta \right) z_{0} \left(\overline{\mu}_{2}{}_{\gamma\delta}{}^{r} \right) r'dr' \right]^{2} rdr + \\ \chi_{4}^{2} \int_{a}^{b} \left[2\pi \int_{a}^{b} \left\{ \left[\left(\lambda^{II} + 2G^{II} \right) \theta^{2} + k\lambda^{II} \ \overline{\mu}_{1}^{2}{}_{\alpha\beta} \right] z_{0} \left(\overline{\mu}_{1\alpha\beta}{}^{r} \right) r'dr' + \right] \\ M_{e\alpha\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \theta^{2} + k\lambda^{II} \ \overline{\mu}_{1\alpha\beta}{}^{2} \right] W_{0} \left(\overline{\mu}_{1\alpha\beta}{}^{r} \right) r'dr' + \\ M_{7\alpha\beta} \left(2G^{II} \ \overline{\mu}_{2\alpha\beta}{}^{\beta} \right) z_{0} \left(\overline{\mu}_{2\alpha\beta}{}^{r} \right) r'dr' + \\ M_{9\alpha\beta} \left(2G^{II} \ \overline{\mu}_{2\alpha\beta}{}^{\beta} \right) z_{0} \left(\overline{\mu}_{2\alpha\beta}{}^{r} \right) r'dr' + \\ \left[M_{9\alpha\beta} \left(2G^{II} \ \overline{\mu}_{2\alpha\beta}{}^{\beta} \right) W_{0} \left(\overline{\mu}_{2\alpha\beta}{}^{r} \right) r'dr' \right]^{2} rdr \right]$$
(85)

where χ_{3} and χ_{4} are defined by equation (299).

4

With $A_1 \alpha_\beta$ found by equation (85) and with the eigenvalues obtained from equations (248) through (254), we can obtain $A_{2\alpha\beta}$, $B_{5\alpha\beta}$, $B_{6\alpha\beta}$, $C_1\gamma\delta$, $D_5\gamma\delta$ from equations (289) through (295), and then obtain the stresses and displacements of the composite from equations (236) through (241). This completes the solutions for composites of finite length with one end (z = 0) freely supported and the other (z = L) subjected to axial piecewise-constant loading. Detailed procedures are written out in Appendix VI.

For the case of a composite cylinder element subjected to sinusoidal loading P sin (x_{et}) , we have

 $\omega_{cr} = \omega_{e} \tag{86}$

$$P = -A_{1}\left[\left(2\pi \int_{a}^{b} \left\{\left[\left(\lambda^{II} + 2G^{II}\right)g^{2} + k\lambda^{II} \frac{2}{u_{1}\alpha\beta} Z_{0}\left(\overline{u_{1}\alpha\beta}r\right)\right] + M_{8}\left[\left(\lambda^{II} + 2G^{II}\right)g^{2} + k\lambda^{II} \overline{u_{1}\alpha\beta}\right]W_{0}\left(\overline{u_{1}\alpha\beta}r\right) + M_{7}\left(2G^{II} \overline{u_{2}\alpha\beta}g\right)Z_{0}\left(\overline{u_{2}\alpha\beta}r\right) + M_{8}\left(2G^{II} \overline{u_{2}\alpha\beta}g\right)kW_{0}\left(\overline{u_{2}\alpha\beta}r\right)\right\}rdr - M_{7}\left(2G^{II} \overline{u_{2}\alpha\beta}g\right)Z_{0}\left(\overline{u_{2}\alpha\beta}r\right) + M_{8}\left(2G^{II} \overline{u_{2}\alpha\beta}g\right)kW_{0}\left(\overline{u_{2}\alpha\beta}r\right)\right)rdr - M_{7}\left(2G^{II} \overline{u_{2}\alpha\beta}g\right)Z_{0}\left(\overline{u_{2}\alpha\beta}r\right) + M_{8}\left(2G^{II} \overline{u_{2}\alpha\beta}g\right)kW_{0}\left(\overline{u_{2}\alpha\beta}r\right)$$

$$- 2\pi \int_{0}^{a} \left\{ M_{\theta} \left[\left(\lambda^{I} + 2C^{I} \right) \beta^{2} + k \lambda^{I} \overline{\mu}_{1\gamma\delta}^{2} \right] Z_{0} \left(\overline{\mu}_{1\gamma\delta} r \right) + M_{10} \left(2C^{I} \overline{\mu}_{2\gamma\delta} \beta \right) Z_{0} \left(\overline{\mu}_{3\gamma\delta} r \right) \right\} r dr \right]$$

$$(87)$$

where M's are defined in equation (289), with the subscripts dropped. Once the other coefficients are obtained, we can then calculate stresses and displacements from equations (236) through (241) without the need to perform a double summation.

SOLUTIONS FOR SEMI-INFINITE LENGTH COMPOSITES WITH THE END z = 0UNDER AXIAL PIECEWISE-CONSTANT OR SINUSOIDAL LOADING

Combining boundary conditions (58), (45), and (46) with equations (242) through (244) and (247), together with the use of generalized Fourier series techniques, the coefficients $\overline{A}_{5\alpha\beta}$ can be found as follows:

$$\begin{split} \overline{A}_{5\alpha\beta} &= -\frac{4P}{\pi} \left\| \left\| \left[\overline{\chi}_{1}^{2} \left(\frac{1}{2n-1} \right) 2\pi \int_{0}^{a} \left[\int_{0}^{a} \left\{ \overline{M}_{4\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \overline{\beta}^{2} - \lambda^{I} \mu_{1}^{2} \gamma_{\delta} r \right] \right\} \right] \right. \\ & \left. J_{o} \left(\mu_{1} \gamma_{\delta} r \right) - \overline{M}_{5\alpha\beta} \left(2G^{I} \mu_{2} \gamma_{\delta} \overline{\beta} \right) J_{o} \left(\mu_{2} \gamma_{\delta} r \right) \right\} r' dr' \right] r dr \right) + \\ & \left(\left[\overline{\chi}_{2}^{a} \left(\frac{1}{2n-1} \right) 2\pi \int_{a}^{b} \left[\int_{a}^{b} \left\{ \left[\left(\lambda^{II} + 2G^{II} \right) \overline{\beta}^{2} - \lambda^{II} \mu_{1}^{2} \gamma_{\beta} \right] \right\} \right] \right. \\ & \left. J_{o} \left(\mu_{1} \alpha_{\beta} r \right) + \overline{M}_{1} \alpha_{\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \overline{\beta}^{2} - \lambda^{II} \mu_{1}^{2} \gamma_{\beta} \right] \right] \right. \\ & \left. Y_{o} \left(\mu_{1} \alpha_{\beta} r \right) - \overline{M}_{2\alpha\beta} \left(2G^{II} \mu_{2\alpha\beta} \overline{\beta} \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) - \overline{M}_{3\alpha\beta} \left(2G^{II} \mu_{2\alpha\beta} \overline{\beta} \right) \right] \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) - \overline{M}_{3\alpha\beta} \left(2G^{II} \mu_{2\alpha\beta} \overline{\beta} \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) - \overline{M}_{3\alpha\beta} \left(2G^{II} \mu_{2\alpha\beta} \overline{\beta} \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) - \overline{M}_{3\alpha\beta} \left(2G^{II} \mu_{2\alpha\beta} \overline{\beta} \right) \right] \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\alpha\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\beta} r \right] \\ & \left. J_{o} \left(\mu_{2\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\beta} r \right) \right] \\ & \left. J_{o} \left(\mu_{2\beta} r \right) \right] \\ & \left.$$

$$\div \left(\left[\overline{\lambda}_{1}^{a} \int_{0}^{a} \left[2\pi \int_{0}^{a} r' \left\{ \overline{M}_{4\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \overline{\beta}^{2} - \lambda^{I} u_{1}^{2} \psi_{1}^{2} \right] \right] \right] \right] \right)$$

$$J_{0} \left(\mu_{1} \psi_{\delta} r \right) dr - \overline{M}_{5\alpha\beta} \left(2G^{I} u_{a} \psi_{\delta} \overline{\beta} \right) J_{0} \left(\mu_{a} \psi_{\delta} r \right) \right) dr' = rdr +$$

$$\overline{\lambda}_{0}^{a} \left[2\pi \int_{a}^{b} r' \left\{ \left[\left(\lambda^{II} + 2G^{II} \right) \overline{\beta}^{2} - \lambda^{II} u_{1\alpha\beta}^{2} \right] \right] \right] \right]$$

$$J_{0} \left(\mu_{1\alpha\beta} r \right) dr' + \overline{M}_{1\alpha\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \overline{\beta}^{2} - \lambda^{II} u_{1\alpha\beta} \right] \right]$$

$$Y_{0} \left(\mu_{1\alpha\beta} r \right) dr' + \overline{M}_{2\alpha\beta} \left(2G^{II} u_{a\alpha\beta} \overline{\beta} \right) +$$

$$J_{0} \left(\mu_{2\alpha\beta} r \right) dr' - \overline{M}_{2\alpha\beta} \left(2G^{II} u_{a\alpha\beta} \overline{\beta} \right) +$$

$$J_{0} \left(\mu_{2\alpha\beta} r \right) dr' - \overline{M}_{3\alpha\beta} \left(2G^{II} u_{a\alpha\beta} \overline{\beta} \right) +$$

$$(88)$$

where χ_1 and χ_2 are defined by equation (314).

With $\overline{A}_{5\alpha\beta}$ found by equation (88) and the eigenvalues obtained from equations (255) through (260), we can get $\overline{A}_{6\alpha\beta}$, $\overline{B}_{5\alpha\beta}$, $\overline{B}_{6\alpha\beta}$, $\overline{C}_{5\gamma\delta}$, and $\overline{D}_{5\gamma\delta}$, from equations (304) through (310) and then obtain the solutions of the stresses and displacements of the composite from equations (242) through (247). This completes the solutions for composites of semi-infinite length with the end z = 0 subjected to axial piecewise-constant loading. Detailed procedures and solutions are written out in Appendix VII.

For a composite of semi-infinite length with the end z = 0 subjected to sinusoidal loading, we have, by applying boundary conditions (56) in equation (246),

$$P = -A_{5} \left[\left(2\pi \int_{a}^{b} \left[\left(\lambda^{II} + 2G^{II} \right) \overline{B}^{2} - \lambda^{II} u_{1\alpha\beta}^{2} \right] J_{0} \left(u_{1\alpha\beta}r \right) + \overline{M}_{1} \left[\left(\lambda^{II} + 2G^{II} \right) \overline{B}^{2} - \lambda^{II} u_{1\alpha\beta}^{2} \right] Y_{0} \left(u_{1\alpha\beta}r \right) - \overline{M}_{2} \left(2G^{II} u_{2\alpha\beta}\overline{B} \right) J_{0} \left(u_{2\alpha\beta}r \right) - \overline{M}_{3} \left(2G^{II} u_{2\alpha\beta}\overline{B} \right) Y_{0} \left(u_{2\alpha\beta}r \right) \right] rdr +$$

$$+ 2\pi \int_{O}^{I} \left\{ \overline{M}_{e} \left[\left(\lambda^{I} + 2G^{I} \right) \overline{\theta}^{2} - \lambda^{I} \mu_{1}^{2} \gamma_{\delta} \right] J_{O} \left(\mu_{1} \gamma_{\delta} r \right) - \overline{M}_{E} \left(2G^{I} \mu_{2} \gamma_{\delta} \overline{B} \right) J_{O} \left(\mu_{2} \gamma_{\delta} r \right) \right\} r dr \right]$$
(89)

where \overline{M} 's and μ 's are determined by equations (301) and (304) through (310). As was done in the previous section, A_5 can be found by integrating both ends from r = 0 to r = b. The other coefficients, $\overline{A_5}$, $\overline{B_5}$, $\overline{B_6}$, $\overline{C_5}$, and $\overline{D_5}$, are then obtained from equations (304). The solutione of the stresses and displacements are therefore obtainable from Appendix II.

CONCLUSIONS AND DISCUSSION

Frequency equations which relate circular frequencies and axial wave numbers have been established for the cases of infinite and finite, and semi-infinite length composites (reference Appendixes III and IV). For longitudinal forced vibration, the solutions of stresses and displacements have been obtained for composites of the following types:

- 1. Finite length cylinder with one end (z = 0) fixed and the other end (z = L) under axial piecewise-constant or sinusoidal loading.
- 2. Finite length cylinder with one end (z = 0) freely supported and the other (z = L) under axial piecewise-constant or sinusoidal loading.
- 3. Semi-infinite length composite with the end z = 0 under axial piecewise constant or sinusoidal loading.

These solutions are given in Appendixes V, VI, and VII, together with Appendixes I and II.

In obtaining the steady state solution of forced vibration, the generalized Fourier series technique was used instead of transforms or Green functions. The method devised for this program is much simpler than these techniques. The transform or Green function methods would be required for the study of the behavior of transient phenomena, however.

PART II

ANALYSIS OF THE VIBRATIONS OF A COMPOSITE MATERIAL IN STEADY AND TRANSIENT STATE USING AN APPROXIMATE THEORY

For real composite materials, the ratio of fiber length to fiber diameter is large (more than 1000). This suggests that it could be possible to analyze the composite vibrations for waves traveling in the fiber direction by using an additional hypothesis of deformation, as it is assumed for bars under longitudinal vibrations. This additional hypothesis of deformation is the so-called Bernoulli hypothesis; namely, that the plane cross sections remain plane while the wave is passing through.

To arre that results obtained from a composite materials theory based on the Be.noulli hypothesis will be accurate, the criterion will be analogous to that established for the longitudinal vibration of bars; in other words, that the accuracy decreases when the ratio of fiber diameter to wave length increases. The approximate theory will be applicable even for the study of high-frequency vibrations, since the fiber diameter is quite small. Part III of this report will compare numerical results obtained from the exact Navier's equations for typical composite materials (Part I of this report) and those obtained by using the approximate theory. This comparison will define the field of application of the approximate theory. It can be said in advance, however, that the results obtained from this theory are sufficiently accurate to be applicable to most of the technical problems encompassed by this program.

The boundary conditions are simplified, as in Part I, by assuming symmetry of revolution. However, the constants that appear in the fundamental differential equation are also computed by considering the more exact boundary conditions corresponding to the hexagonal arrangement of the fiber into the matrix. Part III gives numerical results for the comparison of both types of boundary conditions.

The basic representative element used in the development of the approximate theory is identical to that used in Part I (Figure 1) as are the hypothesis for the material characteristics (e.g., perfect elasticity, isotropy).

By using the approximate theory, w can find the velocity of the propagation of elastic waves, and the solutions for the free-free and free-fixed end cases, in both steady and transient states of vibration. These results are extended to encompass the semi-infinite composite. In the transient state, both impact and sudden loads are given consideration.

The finite Fourier transforms and the Laplace transforms are employed in the integration of the differential equation. These transforms represent the space and time variables, respectively. The corresponding solutions are given in the form of Fourier series.

DERIVATION OF THE FUNDAMENTAL DIFFERENTIAL EQUATION

The so-called Bernoulli hypothesis is assumed. A slice of a composite with a thickness Δz is considered (see Figure 2).

Figure 2. Basic Element

When the wave front passes through this slice, all the plane cross sections remain plane, on the basis of the Bernoulli hypothesis. There is then a plane strain at any plane cross section $z = z_0$, or, in another form,

$$(\epsilon_{33})_{z=z_0} = f(t)$$
(90)

At any cross section, the following boundary conditions must also be satisfied:

$$\begin{pmatrix} \sigma_{11}^{I} \end{pmatrix}_{r=a} = \begin{pmatrix} \sigma_{11}^{II} \end{pmatrix}_{r=a}$$

$$\begin{pmatrix} u^{I} \end{pmatrix}_{r=a} = \begin{pmatrix} u^{II} \end{pmatrix}_{r=a}$$

$$\begin{pmatrix} u^{II} \end{pmatrix}_{r=b} = 0$$

$$(91)$$

which are equivalent to the boundary conditions given by the expressions in equatic s (45) and (46).

From the displacements $u = C_1 r + \frac{C_2}{r}$, we obtain the strains

$$e_{11} = C_1 - \frac{C_2}{r^2}$$
, $e_{22} = C_1 + \frac{C_2}{r^2}$ (92)

By setting

$$C_{1}^{I} = K_{1}^{I}\epsilon_{33}$$
, $C_{1}^{II} = K_{1}^{II}\epsilon_{33}$, $C_{2}^{II} = K_{2}^{II}\epsilon_{33}$ (93)

the total displacement can be obtained

$$u^{I} = \left(-v^{I} + K_{1}^{I}\right) \epsilon_{33} r \qquad (94)$$

and, for the matrix,

$$u^{II} = \left(-v^{II} + K_1^{II}\right) \epsilon_{33}r + K_3^{II} \frac{\epsilon_{33}}{r}$$
(95)

The total specific strain energy per unit of length is

$$\overline{W}^{\mathbf{I}} = \left\{ \frac{\mathbf{E}^{\mathbf{I}}}{2} \frac{\mathbf{E}^{\mathbf{I}}}{(1+\nu^{\mathbf{I}})(1-2\nu^{\mathbf{I}})} \left[\left(\mathbf{K}_{1}^{\mathbf{I}} \right)^{2} + (1-2\nu^{\mathbf{I}}) \frac{\left(\mathbf{K}_{1}^{\mathbf{I}} \right)^{2}}{r^{4}} \right] \right\} \varepsilon_{\mathbf{33}}^{2}$$
(96)

$$\overline{W}^{II} = \left\{ \frac{E^{II}}{2} + \frac{E^{II}}{(1+\nu^{II})(1-2\nu^{II})} \left[\left(K_{1}^{II} \right)^{2} + \left(1-2\nu^{II} \right) \frac{\left(K_{2}^{II} \right)^{2}}{r^{4}} \right] \right\} \epsilon_{33}^{2} \qquad (97)$$

To establish the differential equation of motion from Hamilton's variational principle, it is necessary to know the kinetic and potential energies of the system.

The kinetic energy per unit length is

$$T = \frac{1}{2} \int_{V}^{0} \rho V^{2} dV = \frac{1}{2} \left\{ \int_{0}^{a} \rho^{I} \left[\left(\frac{\partial u}{\partial t}^{I} \right)^{2} + \left(\frac{\partial w}{\partial t} \right)^{2} \right] 2\pi r dr + \int_{a}^{b} \rho^{II} \left[\left(\frac{\partial u}{\partial t}^{II} \right)^{2} + \left(\frac{\partial w}{\partial t} \right)^{2} \right] 2\pi r dr \right\}$$
$$= \Omega_{1} \left(\frac{\partial^{2} w}{\partial z \partial t} \right)^{2} + \Omega_{2} \left(\frac{\partial w}{\partial t} \right)^{2}$$

(98)

where the equations (94) and (95) have been used and where, after performing the integration and extensive analysis, the constants Ω_1 and Ω_2 were defined as follows:

$$\Omega_{1} = \rho^{I} \pi \left(-\frac{I}{\nu} + K_{1}^{I} \right)^{2} \frac{a^{4}}{4} + \rho^{II} \pi \left[\left(-\frac{II}{\nu} + K_{1}^{II} \right)^{2} \frac{b^{4} - a^{4}}{4} + \left(-\frac{II}{\nu} + K_{1}^{II} \right) K_{2}^{II} \left(b^{2} - a^{2} \right) + \left(K_{2}^{II} \right)^{2} \ln \frac{b}{a} \right]$$

$$\Omega_{2} = \rho^{I} \pi \frac{a^{2}}{2} + \rho^{II} \pi \frac{b^{2} - a^{2}}{2}$$
(99)

The potential energy is

$$\begin{split} \vec{w} &= \int_{V} \vec{w} dV = \left[\frac{E^{I}}{2} \int_{0}^{a} 2\pi r dr + \frac{E^{II}}{2} \int_{a}^{b} 2\pi r dr \right] \left(\frac{\partial w}{\partial z} \right)^{a} + \\ &= \frac{E^{I}}{\left(1 + v^{I} \right) \left(1 - 2v^{I} \right)} \left(\frac{\partial w}{\partial z} \right)^{a} \int_{0}^{a} \left(K_{1}^{I} \right)^{a} 2\pi r dr + \\ &= \frac{E^{II}}{\left(1 + v^{II} \right) \left(1 - 2v^{II} \right)} \left(\frac{\partial w}{\partial z} \right)^{a} \int_{a}^{b} \left[\left(K_{1}^{II} \right)^{a} + \left(1 - 2v^{II} \right) \frac{\left(K_{2}^{II} \right)^{a}}{r^{4}} \right] 2\pi r dr \\ &= \Omega_{3} \left(\frac{\partial w}{\partial z} \right)^{a} \end{split}$$

$$(109)$$

where

$$\Omega_{3} = \pi \left\{ \frac{E^{I}}{2} a^{2} + \frac{E^{II}}{2} \left(b^{2} - a^{2} \right) + \frac{E^{I}}{\left(1 + v^{I} \right) \left(1 - 2v^{I} \right)} \left(K_{1}^{I} \right)^{2} a^{2} + \frac{E^{II}}{\left(1 + v^{II} \right) \left(1 - 2v^{II} \right)} \left(K_{1}^{II} \right)^{2} \left(b^{2} - a^{2} \right) - \frac{E^{II}}{1 + v^{II}} \left(K_{2}^{II} \right)^{2} \left(\frac{1}{b^{2}} - \frac{1}{a^{2}} \right) \right\}$$
(101)

Having established the energies of the system, it is now possible to apply Hamilton's variational principle so that we can obtain the Euler-Lagrange equation. This will be the differential equation which describes the motion of the system. The expression of the Hamilton principle is

$$\delta \iint (T-W) \, dzdt = \delta \iint F \, dzdt = 0 \qquad (102)$$

where

$$\mathbf{F} = \Omega_1 \left(\frac{\partial^2 w}{\partial z \partial t}\right)^2 + \Omega_2 \left(\frac{\partial w}{\partial t}\right)^2 - \Omega_3 \left(\frac{\partial w}{\partial z}\right)^2$$
(103)

Equation (103) is obtained from equations (98) and (100). The variation of the integral (102) gives the Euler-Lagrange equation directly:

$$-\frac{\partial}{\partial t}\frac{\partial F}{\left(\frac{\partial w}{\partial t}\right)} + \frac{\partial^2}{\partial t}\frac{\partial F}{\partial z}\frac{\partial F}{\left(\frac{\partial^2 w}{\partial t}\right)} - \frac{\partial}{\partial z}\frac{\partial F}{\left(\frac{\partial w}{\partial z}\right)} = 0$$
(104)

Introducing equation (103) into (104), the fundamental differential equation is obtained:

$$\Omega_1 \frac{\partial^4 w}{\partial z^2 \partial t^2} - \Omega_2 \frac{\partial^2 w}{\partial t^2} + \Omega_3 \frac{\partial^2 w}{\partial z^2} = 0 \qquad (105)$$

The constants Ω_1 , Ω_2 , and Ω_3 are given in equations (99) and (101).

By performing the variation of equation (102), other differential equations appear in addition to (105). These are the natural boundary conditions.

The initial boundary condition is

$$\frac{\partial F}{\left(\frac{\partial w}{\partial t}\right)} - \frac{\partial}{\partial z} \frac{\partial F}{\left(\frac{\partial^2 w}{\partial z \ \partial t}\right)} = 0$$
(106)

or, expressing F by equation (103),

$$\Omega_{2} \frac{\partial w}{\partial t} - \Omega_{1} \frac{\partial^{3} w}{\partial z^{2} \partial t} = 0$$
(107)

where t is constant.

The condition at the bar ends is

$$\frac{\partial F}{\left(\frac{\partial w}{\partial z}\right)} - \frac{\partial}{\partial t} \frac{\partial F}{\left(\frac{\partial^2 w}{\partial z \ \partial t}\right)} = 0$$
(108)

or introducing F from equation (101),

$$\eta_1 \frac{\partial z}{\partial x} \frac{\partial t}{\partial t} + \eta_0 \frac{\partial z}{\partial w} = 0$$

The fundamental differential equation (103) will be solved for different conditions. First, the steady-state waves will be considered.

If it is specified the total force P acting on one end of the composite

$$P = 2\pi \int_{0}^{a} \sigma_{33} r dr + 2\pi \int_{0}^{a} \sigma_{33} r dr ,$$

by using the Hooke's law it is possible to write

 $P = K \epsilon_{33} ,$

with

$$K = \pi \left\{ \left[\frac{2v^{I} K_{I}^{I}}{(1+v^{I})(1-2v^{I})} + 1 \right] E^{I} a^{2} + \left[\frac{2v^{II} K_{I}^{II}}{(1+v^{II})(1-2v^{II})} + 1 \right] E^{II} (b^{2} - a^{2}) \right\}$$
(109)

STEADY STATE OF VIBRATIONS

To find the phase velocity, we assume a sinusoidal displacement

$$w = A \sin \frac{2\pi}{\lambda} (z - ct)$$
 (110)

where A is the amplitude, λ is the wavelength, and c is the wave propagation velocity. Introducing equation (110) into (105) yields the following equation for the wave propagation velocity in a composite:

$$c = \sqrt{\frac{\Omega_0}{\Omega_2 + \frac{4\pi^2}{\lambda^2}}}$$
(111)

Therefore, in a composite material, the wave velocity depends not only on the material of the components and the geometry involved, but also on the wavelength λ .

Taking into account the frequency

$$f = \frac{w}{2\pi} = \frac{c}{\lambda}$$

we express equation (111) in the following form:

$$c = \sqrt{\frac{\Omega_3 - \omega^2 \Omega_1}{\Omega_8}} = \sqrt{\frac{\Omega_3 - 4\pi^2 f^2 \Omega_1}{\Omega_8}}$$
(112)

If the lateral inertia is neglected, then Ω_{1} is zero, and c does not depend on the frequency f .

Part III of this report presents the numerical calculations needed to establish the velocity of propagation for different types of composites, using expressions (111) and (112).

The two steady state cases are treated in the following analysis. One is the fixed-free composite with an exciting harmonic load at the free end, as depicted in Figure 3.

Figure 3. Fixed-Free Composite Under Periodic Load

The second is a free-free composite with an exciting harmonic load, as shown in Figure 4.

Figure 4. Free-Free Composite Under Periodic Force

Assuming the solution of differential equation (105) is

$$w(z,t) = \varphi(z) \sin \omega_z t \qquad (113)$$

then equation (105) becomes

$$\frac{d^2\varphi}{dz^2} + \frac{\Omega_2 \omega^2}{\Omega_3 - \omega^2 \Omega_1} \varphi = 0$$
(114)

The solution of this ordinary differential equation is

$$\varphi = B_1 \sin \sqrt{\frac{\Omega_0 \omega^2}{\Omega_3 - \omega^2 \Omega_1}} z + B_0 \cos \sqrt{\frac{\Omega_0 \omega^2}{\Omega_3 - \omega^2 \Omega_1}} z \qquad (115)$$

for $\Omega_3 - \omega^2 \Omega_1 > 0$.

The following boundary conditions will be used to determine B_1 and B_2 .

Fixed-Free
$$\begin{cases} \varphi(0) = 0 \\ \frac{d\varphi}{dz} \bigg|_{z=L} = \frac{P_o}{K} \end{cases}$$
(116)

Free-Free
$$\begin{cases} \frac{d\varphi}{dz} \middle|_{z=0} = 0 \\ \frac{d\varphi}{dz} \middle|_{z=L} = \frac{P_0}{K} \end{cases}$$
(117)

where K is a constant. From equations (115) through (117), we obtain, for the fixed-free case,

$$\varphi = \frac{P_o}{R} \sqrt{\frac{\Omega_3 - w^2 \Omega_1}{\Omega_2 w^2}} \frac{\sin \sqrt{\frac{\Omega_2 w_e^2}{\Omega_3 - w_e^2 \Omega_1}} z}{\cos \sqrt{\frac{\Omega_2 w_e^2}{\Omega_2 - w_e^2 \Omega_1}}}$$
(118)

and, for the free-free case,

£

$$\varphi = \frac{P_{o}}{K} \sqrt{\frac{\Omega_{3} - \omega^{2} \Omega_{1}}{\Omega_{2} \omega^{2}}} \frac{\cos \sqrt{\frac{\Omega_{3} \omega_{e}^{2}}{\Omega_{3} - \omega_{e}^{2} \Omega_{1}}} z}{\sin \sqrt{\frac{\Omega_{2} \omega_{e}^{2}}{\Omega_{3} - \omega_{e}^{2} \Omega_{1}}} L}$$
(119)

To find the natural frequencies, the denominator of equations (118) and (119) must be zero. Therefore, in the fixed-free case, the natural frequencies are

$$w_{n} = \frac{(2n+1)\pi}{L} \sqrt{\frac{\Omega_{3}}{4\Omega_{2} + \frac{(2n+1)^{2}}{L^{2}} \pi^{2}\Omega_{1}}}$$
(120)

and, in the free-free case,

$$\omega_{n} = \frac{n\pi}{L} \sqrt{\frac{\Omega_{3}}{\Omega_{2} + \frac{n^{2}\pi^{2}}{L^{2}} \Omega_{1}}}$$
(121)

In the event that the exciting force is periodic but not harmonic, then expressions similar to (118) and (119) can be applied for each component of the Fourier series development of the periodic force.

Once \mathfrak{D} is determined by using equations (118) or (119), the displacement w is obtained from equation (113). By differentiation with respect to z, we find \mathfrak{e}_{33} , and from this, we can compute the stresses with the expression (92). The stress σ_{33} for the fiber and the matrix, respectively, results:

$$\sigma_{33}^{I} = E^{I} \varepsilon_{33} + v^{I} \left(\sigma_{11}^{I} + \sigma_{22}^{I} \right)$$

$$\sigma_{33}^{II} = E^{II} \varepsilon_{33} + v^{II} \left(\sigma_{11}^{II} + \sigma_{22}^{II} \right) \qquad (122)$$

The stress distribution. For some composites is shown in Part III of this report.

TRANSIENT STATE OF VIBRATIONS

For the transient state of vibrations, the differential equation (105) must be solved by considering not only boundary conditions but also initial conditions.

To begin, the finite cosine Fourier transform to the fundamental equation (105) is applied.

(123)

$$\overline{w}_{n}(t) = \int_{0}^{L} w(z,t) \cos \frac{n\pi z}{L} dz \qquad (124)$$

 $\Omega_{3}\int^{\mathbf{L}}\frac{\partial^{2}w}{\partial z^{2}}\cos\frac{n\pi z}{\mathbf{L}}\,\mathrm{d}z = 0$

is the finite cosine Fourier transform, then equacion (123) becomes

 $\Omega_{1} \int_{0}^{L} \frac{\partial^{4} w}{\partial z^{2} \partial t^{2}} \cos \frac{n \pi z}{L} dz - \Omega_{2} \int_{0}^{L} \frac{\partial^{2} w}{\partial t^{2}} \cos \frac{n \pi z}{L} dz +$

$$\left(\Omega_{1}\frac{n^{2}\pi^{2}}{L^{2}}+\Omega_{2}\right)\frac{d^{2}\overline{w}_{n}}{dt^{2}}+\Omega_{3}\frac{n^{2}\pi^{2}}{L^{2}}\overline{w}_{n}=\Omega_{1}\left(-1\right)^{n}\frac{\partial^{3}w}{\partial z\partial t^{2}}\left(L,t\right)+\Omega_{3}\left(-1\right)^{n}\frac{\partial^{w}}{\partial z}\left(L,t\right)-\Omega_{1}\frac{\partial^{3}w}{\partial z\partial t^{2}}\left(0,t\right)-\Omega_{1}\frac{\partial^{3}w}{\partial z\partial t^{2}}\left(0,t\right)-\Omega_{3}\frac{\partial^{w}}{\partial z}\left(0,t\right)$$

$$\left(125\right)$$

This is an ordinary differential equation in $\overline{w}_n(t)$. To solve this equation, the Laplace transform will be applied.

As the first case, the problem of a composite of finite length and of free-free character (Figure 4) placed under a sudden applied load on z = L will be considered. Figures 5 through 7 are indicative of the variation of the load, and show its first and second derivatives with respect t ime.

The boundary conditions are

$$\frac{\partial \mathbf{w}}{\partial z}(\mathbf{o},t) = 0 \quad \text{for } t \ge 0 \tag{126}$$

$$\frac{\partial w}{\partial z} (L, t) = \begin{cases} 0 & \text{for } t \leq 0 \\ \\ \frac{P}{K} & \text{for } t > 0 \end{cases}$$
(127)

The Laplace transform of the function $\overline{w}_n(t)$ is

$$f_{n}(p) = \int_{0}^{\infty} \overline{w}_{n}(t) e^{-pt} dt \qquad (128)$$

The transformation of the second derivative of $\overline{w}_n(t)$ is

$$\int_{0}^{\infty} \frac{d^2 \overline{w}_n(t)}{dt^2} e^{-pt} dt = p^2 f_n(p) - p \overline{w}_n(o^-) - \frac{d \overline{w}_n(o^-)}{dt}$$
(129)

If the composite is at rest before load is applied,

$$\overline{w}_{n}(o^{-}) = \frac{d\overline{w}_{n}(o^{-})}{dt} = 0 \qquad (130)$$

With equations (126) through (130), equation (125) becomes

$$\left[\Omega_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \Omega_{2} p^{2}\right] f_{n}(p) + \Omega_{3} \frac{n^{2} \pi^{2}}{L^{2}} f_{n}(p) = (-1)^{n} \frac{P}{K} \left\{\Omega_{3} \frac{1}{p} + \Omega_{1} p\right\}$$
(131)

-

 $\tau \leq z$

Figure 6. First Derivative (N $\times \epsilon = 1$)

Figure 7. Second Derivative $(N \times \epsilon^2 = 1)$

Solving equation (131) for $f_n(p)$, we obtain

$$f_{n}(p) = \frac{P}{K} \times \frac{(-1)^{n} \Omega_{s}}{\Omega_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \Omega_{2}} \times \frac{1}{p \left(p^{2} + \frac{\Omega_{3}}{\Omega_{1} + \frac{L^{2}}{n^{2} \pi^{2}} \Omega_{2} \right)} + \frac{P}{\Omega_{1} + \frac{L^{2}}{n^{2} \pi^{2}} \Omega_{2}}$$

$$\frac{\frac{P}{K} \times \frac{(-1)^{n} \Omega_{1}}{\Omega_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \Omega_{2}} \times \frac{P}{p^{2} + \frac{\Omega_{3}}{\Omega_{1} + \frac{L^{2}}{n^{2} \pi^{2}} \Omega_{2}}}$$
(132)

Applying the inverse Laplace transform to equation (132) we obtain, after some manipulation,

$$\overline{w}_{n}(t) = \frac{P}{K} (-1)^{n} \frac{L^{2}}{\pi^{2} n^{2}} \left\{ 1 - \left(1 - \frac{n^{2} \pi^{2}}{L^{2}} \frac{\Omega_{1}}{\Omega_{2} + \Omega_{1}} \frac{n^{2} \pi^{2}}{L^{2}} \right) \cos \frac{n \pi \sqrt{\Omega_{3}} t}{\Omega_{1} \pi^{2} n^{2} + L^{2} \Omega_{2}} \right\} (133)$$

For $n \rightarrow 0$, the last expression becomes indeterminate. Applying the L'Hospital rule, we have

$$\overline{w}_{0}(t) = \frac{P}{K} \frac{\Omega_{3}}{\Omega_{2}} \left\{ \frac{\Omega_{1}}{\Omega_{3}} + \frac{t^{2}}{2} \right\}$$
(134)

The inverse of the finite cosine Fourier transform is given by:

$$w(z,t) = \frac{1}{L} \overline{w}_{0}(t) + \frac{2}{L} \sum_{n=1}^{\infty} \overline{w}_{n}(t) \cos \frac{n\pi z}{L}$$
(135)

Introducing equations (133) and (134) into (135) finally leads to the following equation for the displacement:

とういいのうろう

Section 2

$$w(z,t) = \frac{P}{K\ell} \frac{\Omega_3}{\Omega_9} \left\{ \frac{\Omega_1}{\Omega_3} + \frac{t^2}{2} \right\} + \frac{2P\ell}{K\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos \frac{n\pi z}{L} \left\{ 1 - \frac{1}{1 + n^2} \frac{1}{\frac{\pi^2}{L^2}} \frac{\Omega_1}{\Omega_2}}{\frac{1}{L^2} \frac{1}{\Omega_2}} \cos \frac{n\pi \sqrt{\Omega_3}}{L\sqrt{1 + \frac{\pi^2 n^2}{L^2}} \frac{\Omega_1}{\Omega_2}} \right\} (136)$$

In this equation, we see a constant term which, in general, is a very small displacement of the whole system in the z direction. Another term is proportional to time squared, corresponding to the action of the constant force over the system considered as a rigid body. The other terms of equatics (136) represent an infinite number of wave displacements.

In the next portion, an impact load will be considered. In this case, the boundary condition (126) is also valid. Instead of boundary condition (127), however, we now have the following (illustrated in Figure 8).

$$\frac{\partial w}{\partial z} (L,t) = \begin{cases} 0 & \text{for } t < 0 \\ \frac{P}{K} & \text{for } 0 \le t \le \epsilon \\ = 0 & \text{for } t > \epsilon \end{cases}$$
(137)

Figure 8. Boundary Condition for Impact

The Laplace transform of equation (137) is

$$\chi' \frac{\partial w}{\partial z} (L,t) = \frac{P}{K} \frac{1 - e^{-\varepsilon P}}{P}$$
(138)

Consequently,

$$\chi \left(\frac{\partial^3 w}{\partial z \ \partial t^2}\right) (L,t) = \frac{P}{K} p \left(1 - e^{-\epsilon p}\right)$$
(139)

The impulse can be constructed by adding the two-step function a and b, shown in Figure 9, displaced to each other by the time ε .

Figure 9. Forming the Step Function

From this, the Laplace transform is obtained by simple multiplication of equation (132) by the factor $1 - e^{-ep}$. Tous, the Laplace transform is

١

$$f_{n}(p) = (-1)^{n} \frac{p}{K} \cdot \frac{\Omega_{1}}{\Omega_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \Omega_{2}} \left\{ \frac{\frac{1 - e^{-\epsilon p}}{p \left(p^{2} + \frac{n^{2} \pi^{2}}{L^{2}} - \frac{\Omega_{3}}{\Omega_{2}} + \Omega_{1} - \frac{n^{2} \pi^{2}}{L^{2}}\right)}{\left(1 + \Omega_{1} - \frac{n^{2} \pi^{2}}{L^{2}} - \frac{\Omega_{3}}{\Omega_{2}} + \frac{1}{\Omega_{1} - \frac{n^{2} \pi^{2}}{L^{2}}}\right)} \right\} + (140)$$

Then the function $w(z, \iota)$ is equal to equation (136) for $0 < t \le \varepsilon$.

For $\varepsilon < t \le \infty$, w(z,t) is obtained by subtracting the same function with the v riable $(t - \varepsilon)$ in place of t, from equation (136):

And a state of the state of the

$$v(z,t) = \frac{P}{2K} \frac{\Omega_{3} \varepsilon}{\Omega_{2}} (2t-z) + \frac{2P\ell}{Kn^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \frac{\cos \frac{m\pi z}{L}}{1+n^{2} \frac{\pi^{2}}{L^{2}} \Omega_{2}} \left\{ \cos \frac{m\sqrt{\Omega_{3}}}{L\sqrt{1+\frac{\pi^{2}n^{2}\Omega}{L^{2}}} -\cos \frac{n\pi\sqrt{\Omega_{3}}}{L\sqrt{1+\frac{\pi^{2}n^{2}\Omega_{1}}{L^{2}}}} \right\}$$

$$(141)$$

If the time of impact is small, ε is moving toward zero, and equation (141) becomes

$$w(z,t) = \frac{I}{K} \frac{\Omega_3}{\Omega_2} t + \frac{2I}{K_{\pi}} \sqrt{\frac{\Omega_3}{\Omega_2}} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \frac{\cos \frac{n\pi z}{L} \sin \left(\frac{n\pi \sqrt{\frac{\Omega_3}{\Omega_2}} t}{L\sqrt{1 + \frac{\pi^2 n^2}{L^2} \frac{\Omega_3}{\Omega_2}}\right)}{\left(1 + n^2 \frac{\pi^2}{L^2} \frac{\Omega_3}{\Omega_2}\right)^{\frac{3}{2}}}$$
(142)

where $I = P \varepsilon$.

To compute the impact momentum, we must assume that the impacting mass is an ideal, rigid body. Then, the impact velocity is equal to the velocity V of the mass

$$\frac{\partial w}{\partial t} (L, n) = V$$
 (143)

Introducing equation (142) into equation (143) and solving for I, we get

$$I = \frac{VLK\Omega_2}{\Omega_3} \frac{1}{1+2\sum_{n=1}^{\infty} \left(\frac{1}{1+n^2 \frac{\pi^2}{L^2} \frac{\Omega_1}{\Omega_2}}\right)^2}$$

or expressing the summation in terms of hyperbolic functions,

$$I = \frac{2V \frac{K}{L} \frac{\Omega_1}{\Omega_3} \sinh^2 \left(L \sqrt{\frac{\Omega_2}{\Omega_1}}\right)}{1 + \frac{1}{2L} \sqrt{\frac{\Omega_2}{\Omega_2}} \sinh \left(2L \sqrt{\frac{\Omega_3}{\Omega_1}}\right)}$$
(144)

where the displacement w due to the impact momentum I in a free-free composite is given by (142). If the impacting mass is not a perfectly rigid body, the right side of equation (144) must be multiplied by a factor $0 \le \alpha \le 1$.

We will now consider the fixed-free end composite (Figure 3). We first consider an applied impulsive load (Figure 8). Then the boundary conditions are

$$w(o,t) = 0$$

$$\frac{\partial w}{\partial z} (L,t) = \begin{cases} 0 & \text{for } t < 0 \\ \frac{P}{K} & \text{for } 0 < t \le \varepsilon \\ 0 & \text{for } t > \varepsilon \end{cases}$$
(145)

Taking into account that, from equation (145),

$$\mathcal{L}\left[\frac{\partial w}{\partial z}\left(L,t\right)\right] = \frac{P}{K}\frac{1}{p}\left(1 - e^{-\varepsilon P}\right)$$

$$\mathcal{L}\left[\frac{\partial^{3} w}{\partial z \partial t^{2}}\left(L,t\right)\right] = \frac{P}{k}p\left(1 - e^{-\varepsilon P}\right)$$
(146)

and calling

$$\frac{\partial w}{\partial z}(0,t) = F(t)$$

$$\int \left[\frac{\partial w}{\partial z}(0,t)\right] = \phi(p)$$

$$\left(\frac{\partial^{3} w}{\partial z \partial t^{2}}(0,t)\right] = \rho^{2}\phi(p)$$
(147)

A boot and the second state of the second stat

the Laplace transform of $\overline{w}_n(t)$ results in

$$f_{n}(p) = \frac{\left[(-1)^{n} \frac{P}{K} (1 - e^{-\epsilon p}) - \phi(p)\right] \left[\Omega_{a} + \Omega_{p} p^{2}\right]}{p \left[\Omega_{a} \frac{n^{2} \pi^{2}}{L^{2}} + \left(\Omega_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \Omega_{2}\right) p^{2}\right]}, \quad (148)$$

where

$$f_{n}(p) = \int_{0}^{\infty} \overline{w}_{n}(t) e^{-pt} dt \qquad (149)$$

Remembering that

$$\overline{w}_{n}(t) = \mathcal{J}^{-1}[f_{n}(p)]$$
(150)

$$w(z,t) = \frac{1}{L} \overline{w}_{0}(t) + \frac{2}{L} \sum_{n=1}^{\infty} \overline{w}_{n}(t) \cos \frac{n\pi z}{L}$$
(151)

and in accordance with the first equation (145), we have for z = 0,

$$0 = \frac{1}{L} \overline{w}_0(t) + \frac{2}{L} \sum_{n=1}^{\infty} \overline{w}_n(t) \qquad (152)$$

In other words,

$$\mathcal{L}^{1}\left[f_{o}(p)\right] = -2\sum_{n=1}^{\infty} \mathcal{L}^{1}\left[f_{n}(p)\right] = -2\mathcal{L}^{-1}\left[\sum_{n=1}^{\infty} f_{n}(p)\right] \quad (153)$$

Taking the Laplace transform of this equation, we obtain

$$f_{o}(p) = -2 \sum_{n=1}^{\infty} f_{n}(p)$$
 (154)

Substituting equation (148) into equation (154), we hold

$$\frac{\frac{P}{K}(1 - e^{-\epsilon p}) - \phi(p)}{\Omega_2 p^2} = -2 \sum_{n=1}^{\infty} \frac{(-1)^n \frac{P}{K}(1 - e^{-\epsilon p}) - \phi(p)}{\Omega_3 \frac{n^2 \pi^2}{L^2} + \left(\Omega_1 \frac{n^2 \pi^2}{L^2} + \Omega_2\right) p^2}$$
(155)

and solving for $\phi(p)$:

$$\phi(p) = \frac{P}{K} (1 - e^{-\epsilon p}) \frac{1 + 2 \sum_{n=1}^{\infty} \frac{(-1)^n}{1 + \frac{\pi^2}{L^2} \frac{\Omega_3 + p^2 \Omega_1}{\Omega_2 p^2} n^2}}{1 + 2 \sum_{n=1}^{\infty} \frac{1}{1 + \frac{\pi^2}{L^2} \frac{\Omega_3 + p^2 \Omega_1}{\Omega_2 p^2} n^2}}$$
(156)

Considering the identities

• •

-

i

$$\sum_{n=1}^{\infty} \frac{1}{1+a^2 n^2} = \frac{1}{2} \left(\prod_{a=1}^{II} \operatorname{cth} \frac{II}{a} - 1 \right)$$
(157)

.

Le mertine en entretteringen filts uiter fifthennis entretterine

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+a^2n^2} = \frac{1}{2} \left(\frac{\text{II}}{a} \frac{1}{\frac{1}{\text{sh a}}} - 1 \right)$$
(158)

where a is a constant, then equation (156) becomes

$$\phi(p) = \frac{P}{K} (1 - e^{-\varepsilon p}) \frac{1}{\operatorname{ch}\left(\frac{L\sqrt{\Omega_2} p}{\sqrt{\Omega_3 + p^2 \Omega_1}}\right)}$$
(159)

Now we may calculate the inverse Laplace transform of

$$\varphi(\mathbf{p}) = \frac{\phi(\mathbf{p})}{\frac{P}{K}(1 - e^{-\varepsilon \mathbf{p}})} = \frac{1}{\operatorname{ch}\left(\frac{L\sqrt{\Omega_2}}{\sqrt{\Omega_3} + p^2\Omega_1}\right)} = \frac{1}{\operatorname{ch}\left(\frac{bp}{\sqrt{p^2 + a^2}}\right)}$$
(160)

wich

$$\sqrt{\frac{\Omega_3}{\Omega_1}} = a$$
, $L\sqrt{\frac{\Omega_2}{\Omega_1}} = b$ (161)

Using the Bromwhich integral, we have

$$f(t) = \int_{a}^{-1} [\varphi(p)] = \lim_{y \to \infty} \frac{1}{2\pi i} \int_{\alpha - iy}^{\alpha + iy} \frac{e^{pt}}{ch\left(\frac{bp}{\sqrt{p^2 + a^2}}\right)} dp \qquad (162)$$

It is possible to put $\alpha = 0$ because the real part of p is less than zero (Re [p] ≤ 0) for t > 0.

To solve the complex integral of equation (162), we will apply the residues theorem. The denominator of the integrand has poles (Figure 10) at

$$P_{n} = \pm ia \sqrt{\frac{1}{1 + \frac{4b^{3}}{\pi^{2} (2n + 1)^{1/2}}}}$$
(163)

where $n = 0, \pm 1, \pm 2, ...$

Figure 10. Poles for Laplace Inversion

The residue for an arbitrary n is given by:

$$\lim_{p \to p_{n}} \frac{e^{pt} (p - p_{n})}{ch} = (-1)^{n} \frac{a}{ib} \frac{e^{p_{n}t}}{\left(1 + \left[\frac{(2n + 1)\pi}{2b}\right]^{2}\right)^{3/2}}$$
(164)

A State of the second sec

1. 1. 1. A. A. 1. 1.

To find this result, the L'Hospital rule has been applied. Using equation (164), we obtain the sum of all the residues:

$$\frac{2a}{b}\sum_{n=0}^{\infty} (-1)^{n} \frac{\sin \left[\frac{at}{1 + \frac{4b^{2}}{(2n+1)^{2}\pi^{2}}}\right]^{1/2}}{\left\{1 + \left[\frac{(2n+1)\pi}{2b}\right]^{2}\right\}^{3/2}}$$
(165)

Replacing the integral of equation (162) with the value given in equation (165), and remembering equations (161), we obtain

$$f(t) = \frac{2}{L} \sqrt{\frac{\Omega_{3}}{\Omega_{2}}} \sum_{\nu=0}^{\infty} (-1)^{\nu} \frac{\sin \left\{ \frac{\int \frac{1}{\Omega_{3}}}{\int \frac{1}{\Omega_{2}} \frac{\Omega_{3}}{\Omega_{1}}} \right\}^{1/2}}{\left\{ 1 + \frac{4L^{2}}{\pi^{2}} \frac{\frac{\Omega_{3}}{\Omega_{1}}}{(2\nu + 1)^{2}} \right\}^{3/2}}$$
(166)

To perform the inversion of equation (148), we write this equation in the following form:

$$f_{n}(p) = \frac{(-1)^{n} \frac{P}{K} (1 - e^{-\varepsilon_{\Gamma}}) [\widehat{\Omega}_{3} + \widehat{\Omega}_{1} p^{2}]}{p \left[\widehat{\Omega}_{3} \frac{n^{2} \pi^{2}}{L^{2}} + \left(\widehat{\Omega}_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \widehat{\Omega}_{9} \right) p^{2} \right]} - \frac{\widehat{\Omega}_{3} + \widehat{\Omega}_{1} p^{2}}{p \left[\widehat{\Omega}_{3} \frac{n^{2} \pi^{2}}{L^{2}} + \left(\widehat{\Omega}_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \widehat{\Omega}_{9} \right) p^{2} \right]}$$
(157)

and we find the inverse of the second term by putting

$$= \int_{0}^{t} f(\tau) \, \bar{w}_{n}(\tau,\tau) \, d\tau$$

$$\frac{\frac{p}{K} (1 - e^{-\epsilon p}) \left(\Omega_{3} + \Omega_{1} p^{2} \right)}{p \left[\Omega_{3} \frac{n^{2} \pi^{2}}{L^{2}} + \left(\Omega_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \Omega_{9} \right) p^{2} \right] }$$

$$= \int_{0}^{t} f(\tau) \, \bar{w}_{n}(\tau,\tau) \, d\tau$$

$$(168)$$

because $f(\tau)$, given by equation (166), is the inverse transformation of $\phi(p)$, as equation (162) illustrates. $w_n(t-\tau)$ is the inverse transformation of the second factor; it is given by equation (142), with $t-\tau$ instead of t:

$$\overline{w}_{n}(t - \tau) = -\frac{P_{\varepsilon}L}{K\pi} \frac{\Omega_{3}}{\Omega_{2}} \frac{(-1)^{n}}{n} \frac{\sqrt{\frac{1}{\Omega_{3}}}}{\sqrt{1 + \frac{\tau^{2}n^{2}}{L^{2}} \frac{\Omega_{3}}{\Omega_{2}}}}{\left(1 + \frac{n^{2}\pi^{2}}{L^{2}} \frac{\Omega_{1}}{\Omega_{2}}\right)^{3/2}}$$
(169)
$$\overline{w}_{0}(t - \tau) = -\frac{P_{\varepsilon}}{K} \frac{\Omega_{5}}{\Omega_{2}} (t - \tau)$$
(170)

where $n=1,2,\ldots$. Thus, substituting equations (169) and (170) into equation (168), we can find:

For $n \neq 0$:

$$= -\frac{2P\varepsilon}{\left[p\left[\Omega_{3}\frac{n^{2}\pi^{2}}{L^{2}} + \left(\Omega_{1}\frac{n^{2}\pi^{2}}{L^{2}} + \Omega_{2}\right)p^{2}\right]} - \frac{2P\varepsilon}{K\pi}\frac{\Omega_{2}}{\Omega_{2}} \cdot \frac{(-1)^{n}}{n} \cdot \frac{1}{\left[1 + \frac{n^{2}\pi^{2}}{L^{2}}\frac{\Omega_{1}}{\Omega_{2}}\right]^{3/2}}{\left(1 + \frac{n^{2}\pi^{2}}{L^{2}}\frac{\Omega_{1}}{\Omega_{2}}\right]^{3/2}} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{\left[1 + \frac{\Omega_{1}}{\Omega_{2}}\left[\frac{(2\nu+1)\pi}{2L}\right]^{2}\right]^{3/2}}$$

$$\int_{\tau=0}^{\tau=t} \sin \frac{\frac{\sqrt{\Omega_{3}}}{\Omega_{9}}}{\left[1 + \frac{4L^{2}}{\pi^{2}} \frac{\Omega_{1}}{(2\nu+1)^{2}}\right]^{1/2}} \cdot \sin \frac{n\pi}{L} \frac{\frac{\sqrt{\Omega_{3}}}{\sqrt{\Omega_{9}}} (t-\tau)}{\left(1 + \frac{\pi^{2}n^{2}}{L^{2}} \frac{\Omega_{1}}{\Omega_{9}}\right)^{1/2}} d\tau \quad (171)$$

.

For n = 0:

$$\mathcal{L}^{-1}\left(\frac{\phi(\mathbf{p})\left(\Omega_{3}+\Omega_{1}|\mathbf{p}^{2}\right)}{\Omega_{3}|\mathbf{p}^{3}}\right) = -\frac{P\varepsilon_{Z}}{KL}\left(\frac{\Omega_{3}}{\Omega_{9}}\right)^{3/2}\sum_{\nu=0}^{\infty}\frac{(-1)^{\nu}}{\left\{1+\frac{\Omega_{1}}{\Omega_{9}}\left[\frac{(2\nu+1)}{2L}\right]^{2}\right\}^{3/2}}\cdot$$

$$\int_{0}^{t}(t-\tau)\sin\frac{\sqrt{\frac{\Omega_{3}}{\Omega_{1}}\tau}}{\left[1+\frac{4L^{2}}{\pi^{2}}\frac{\overline{\Omega_{1}}}{(2\nu+1)^{2}}\right]^{1/2}}d\tau \quad (172)$$

We put, for simplicity,

$$c = \frac{\sqrt{\Omega_3}}{L\sqrt{1 + \frac{n^2\pi^2}{L^2}\Omega_1}}, \quad a = \frac{\sqrt{\Omega_3}}{\sqrt{\Omega_2}} \qquad (173)$$

and solve the integrals

$$\int_{0}^{t} \sin a\tau \sin c(t-\tau) d\tau = \frac{ac}{a^{2}-c^{2}} \left(\frac{1}{c} \sin ct - \frac{1}{a} \sin at \right)$$
(174)

$$\int_{0}^{t} (t-\tau) \sin a\tau d\tau = \frac{1}{a} \left(t - \frac{1}{a} \sin at \right)$$
(175)
Substituting equations (174) and (175) into equations (171) and (172), and taking into account equation (173), we finally obtain the following from equation (167):

$$w(z,t) = -\frac{1}{L} \frac{P\varepsilon}{K} \frac{\Omega_3}{\Omega_2} \left\{ t \left[1 - \frac{4}{\pi} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{\left[1 + \frac{\Omega_1}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \right] + \frac{1}{2} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \right] + \frac{1}{2} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \right] + \frac{1}{2} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \right] + \frac{1}{2} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \right] + \frac{1}{2} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \right] + \frac{1}{2} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \right] + \frac{1}{2} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \right] + \frac{1}{2} \left[1 + \frac{\Omega_2}{\Omega_2} \left(\frac{\pi}{2L} \frac{(2\nu+1)^2}{2L} \right)^2 \right] (2\nu+1)} \left[1 + \frac{\Omega_2}{\Omega_2} \frac{(2\nu+1)^2}{2L} \right] \left[1 + \frac{\Omega_2}{\Omega_2} \frac{(2\nu+1)^2}{2L} \frac{(2\nu+1)^2}{2L} \right] \left[1 + \frac$$

$$\frac{8L}{\pi^2} \sqrt{\frac{\Omega_e}{\Omega_3}} \cdot \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{(2\nu+1)^2 \left[1 + \frac{\Omega_1}{\Omega_2} \left(\frac{(2\nu+1)\pi}{2L}\right)^2\right]}$$

$$\sin \frac{\sqrt{\frac{\Omega_3}{\Omega_c} t}}{\left[1 + \frac{4L^2}{\pi^2} \frac{\frac{\Omega_1}{\Omega_1}}{(2\nu + 1)^2}\right]^2} - \frac{2P\varepsilon}{K\pi} \sqrt{\frac{\Omega_3}{\Omega_1}}.$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cos \frac{n\pi z}{L}}{n} \cdot \sin \frac{\sqrt{\frac{\Omega_3}{\Omega_2} t}}{\sqrt{1 + \frac{4L^2}{\pi^2} - \frac{\Omega_2}{\Omega_1}}}$$

$$\cdot \left\{ \frac{1}{\left[1 + \frac{n^{2} \pi^{2}}{L^{2}} \frac{\Omega_{1}}{\Omega_{2}}\right]^{3/2}} - 2\left(\frac{2L}{\pi}\right)^{3} \sqrt{\frac{\Omega_{2}}{\Omega_{1}}} \cdot \frac{1}{(2n)^{2} \left(1 + \frac{(2n)^{2}}{4L^{2}} \frac{\Omega_{1}}{\Omega_{2}}\right)^{\frac{1}{2}}} \right\}$$

The second second second

A contraction

$$\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{\left[2(\nu-n)+1\right]\left[2(\nu+n)+1\right](2\nu+1)\left[1+\frac{\Omega_{1}}{\Omega_{2}}\left(\frac{(2\nu+1)\pi}{2L}\right)^{2}\right]} -$$

$$\frac{2\operatorname{PeL}}{\operatorname{\pi K}}\left(\frac{2\operatorname{L}}{\operatorname{\pi}}\right)^{3} \frac{\sqrt{\Omega_{2}\Omega_{3}}}{\Omega_{1}} \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2n^{2}} \frac{\cos \frac{\operatorname{n\pi z}}{\operatorname{L}}}{1+\frac{(2n)^{2}}{4\operatorname{L}^{2}}} \frac{\Omega_{1}}{\Omega_{2}}$$

$$\sum_{\nu=0}^{\infty} \frac{\sqrt{\frac{\Omega_{3}}{\Omega_{1}}} t}{\left[2(\nu-n)+1\right]\left[2(\nu+n)+1\right](2\nu+1)^{2}\left[1+\frac{\Omega_{2}}{\Omega_{2}}-\frac{\overline{\Omega_{1}}}{(2\nu+1)^{2}}\right]^{\frac{1}{2}}}{\left[1+\frac{\Omega_{2}}{\Omega_{2}}\left(\frac{(2\nu+1)\pi}{2L}\right)^{2}\right]^{\frac{1}{2}}}$$
(176)

In the developing of this expression the equation (142) has been used, because it corresponds to the inverse of the first term of the right hand of equation (167).

Now we will consider the fixed-free composite under a sudden load (Figure 5).

Thus, the boundary condition at the free end is

$$\frac{\partial w}{\partial z} (L,t) = \begin{cases} 0 & \text{for } t \leq 0 \\ \frac{P}{K} & \text{for } 0 < t < \infty \end{cases}$$
(177)

instead of the condition given in equation (145).

The case of sudden load will be solved as the limit when $c \rightarrow \infty$ of the impact load case. Thus, the equations (159) and (168) become

$$\phi(\mathbf{p}) = \frac{\mathbf{p}}{\mathbf{K}} \frac{1}{\frac{\mathbf{L}\sqrt{\Omega_{\mathbf{q}}} \mathbf{p}}{ch \frac{\mathbf{L}\sqrt{\Omega_{\mathbf{q}}} \mathbf{p}}{\sqrt{\Omega_{\mathbf{3}} + \mathbf{p}^2 \Omega_1}}}$$
(178)

$$\mathcal{L}^{-1}\left\{\frac{\underline{p}(\mathbf{p})}{\frac{P}{K}} \cdot \frac{\frac{P}{K}(\Omega_{\mathbf{p}} + \Omega_{1}\mathbf{p}^{2})}{p\left[\Omega_{3}\frac{n^{2}\pi^{2}}{L^{2}} + \left(\Omega_{1}\frac{n^{2}\pi^{2}}{L^{2}} + \Omega_{\mathbf{p}}\right)\overline{p_{\mathbf{p}}}\right]}\right\} = \int_{0}^{t} f(\tau) \bar{g}_{n}(t-\tau) d\tau \quad (179)$$

with

For $n \neq 0$:

$$\bar{g}_{n}(t-\tau) = \frac{PL^{2}}{K\pi^{2}} \frac{(-1)^{n}}{n^{2}} \left\{ 1 - \frac{\frac{n\pi}{\sqrt{\Omega_{3}}} (t-\tau)}{\frac{L\sqrt{1+\frac{\pi^{2}n^{2}}{L^{2}} \frac{\Omega_{1}}{\Omega_{3}}}}{1+\frac{n^{2}\pi^{2}}{L^{2}} \frac{\Omega_{1}}{\Omega_{3}}} \right\}$$
(180)

and the second of the second second

for n = 0:

$$\overline{g}_{0}(t-\tau) = \frac{P}{K} \frac{\Omega_{3}}{\Omega_{9}} \left[\frac{\Omega_{1}}{\Omega_{3}} + \frac{(t-\tau)^{2}}{2} \right]$$
(181)

inverse Laplace transform of the second factor in the left-hand of equation (179).

On the other hand, the inverse Laplace transformation of $\phi(p)$ given in equation (178), is

$$f(\tau) = \frac{2}{L} \sqrt{\frac{\Omega_3}{\Omega_2}} \sum_{\nu=0}^{\infty} (-1)^{\nu} \frac{\sin \frac{\sqrt{\Omega_3}}{\left[1 + \frac{4L^2}{\pi^2} \frac{\Omega_1}{(2\nu+1)^2}\right]^{1/2}}{\left[1 + \frac{\Omega_1}{\Omega_2} \frac{(2\nu+1)^2\pi^2}{4L^2}\right]^{3/2}}$$
(182)

With the equations (180), (181), and (182) the equation (179) is expressed in the following form

For
$$n \neq 0$$
:

$$\tilde{w}_{n}(t) = \mathcal{L}^{-1} \left\{ \frac{\phi(p) \left(\Omega_{3} + \Omega_{1} p^{2}\right)}{p \left(\Omega_{3} \frac{n^{2} \pi^{2}}{L^{2}} + \left(\Omega_{1} \frac{n^{2} \pi^{2}}{L^{2}} + \Omega_{9}\right) p^{2}\right)}_{p}\right\}_{e=\infty} = (-1)^{n} \frac{2PL}{n^{2} \pi^{2} K} \sqrt{\frac{\Omega_{9}}{\Omega_{9}}} \sum_{V=0}^{\infty} \frac{(-1)^{V}}{\left[1 + \frac{\Omega_{1}}{\Omega_{9}} \frac{(2v+1)^{2} \pi^{2}}{4L^{2}}\right]^{3/2}} \cdot \left(\frac{\cos \frac{n\pi \sqrt{\frac{\Omega_{9}}{\Omega_{9}}}}{1 + \frac{n^{2} \pi^{2}}{\Omega_{9}}} \frac{(-1)^{V}}{\Omega_{9}}}{1 + \frac{n^{2} \pi^{2}}{\Omega_{9}}}\right) \sin \frac{(2v+1)\pi \sqrt{\frac{\Omega_{9}}{\Omega_{9}}}}{2L \sqrt{1 + \frac{\pi^{2} (2v+1)^{2}}{4L^{2}}}} d\tau$$
(183)

For
$$n = 0$$
:

$$\bar{w}_{0}(t) = \mathcal{A}^{-1} \left\{ \frac{\phi(p) \left(\Omega_{3} + \Omega_{1} p^{2} \right)}{\Omega_{2} p^{3}} \right\}_{c=\infty} = \frac{2P}{KL} \left(\frac{\Omega_{3}}{\Omega_{2}} \right)^{3/2} \cdot \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{\left[1 + \frac{\Omega_{1}}{\Omega_{2}} + \frac{(2\nu + 1)^{2} \pi^{2}}{4L^{2}} \right]^{3/2}} \int_{0}^{t} \left(\frac{\Omega_{1}}{\Omega_{3}} + \frac{t^{2}}{2} - t\tau + \frac{\tau^{2}}{2} \right) \cdot \frac{1}{2} \left[1 + \frac{\Omega_{1}}{\Omega_{2}} + \frac{(2\nu + 1)^{2} \pi^{2}}{4L^{2}} \right]^{3/2} = 0$$

$$\sin \frac{(2\nu + 1) \pi \sqrt{\frac{\Omega_3}{\Omega_2}} \tau}{2L \sqrt{1 + \frac{\pi^2 (2\nu + 1)^2}{4L^2} \frac{\Omega_1}{\Omega_2}}} d\tau \quad (184)$$

We put, for the sake of brevity,

$$c = \frac{n\pi}{L} \frac{\sqrt{\Omega_{3}}}{\sqrt{1 + \frac{n^{2}\pi^{2}}{L^{2}} \frac{\Omega_{1}}{\Omega_{2}}}}$$
(185)

.

•

-

$$a = \frac{(2\nu + 1)\pi}{2L} \frac{\sqrt{\Omega_{3}}}{\sqrt{1 + \frac{\pi^{2}(2\nu + 1)^{2}}{4L^{2}}}} \qquad (186)$$

On the other hand, we have

$$\int_{0}^{L} \sin a\tau d\tau = \frac{1}{a} (1 - \cos at)$$
(187)

$$\int_{0}^{t} \sin\left(\operatorname{ct} + (\operatorname{a-c}) \right) d\tau - \int_{0}^{t} \sin\left(\operatorname{ct} - (\operatorname{a+c}) \right) d\tau$$

=
$$\frac{a}{a^2 - c^2}$$
 (cos ct - cos at) (188)

$$\int_{0}^{L} (t-\tau)^{2} \sin a\tau d\tau = \frac{t^{2}}{a} - \frac{2}{a^{3}} (1 - \cos at)$$
(189)

By substitution of equations (187), (188), and (189) into equations (183) and (184) and considering equations (185) and (186), after some algebraic manipulations, we obtain

$$\bar{w}_{n}(t) = (-1)^{n} \frac{4PL^{2}}{\pi^{3}K} \left\{ \left[-\cos\left(\frac{n\pi t}{L} \frac{\sqrt{\Omega_{3}}}{\sqrt{1 + \frac{\pi^{2}n^{2}}{L^{2}}} \frac{\Omega_{1}}{\Omega_{3}}}\right) \right] \right\}$$

$$\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} (2\nu+1)}{\left(1 + \frac{\Omega_1}{\Omega_2} \frac{(2\nu+1)^2 \pi^2}{4L^2}\right) \left[(2\nu+1)^2 - 4\pi^2\right]} +$$

$$\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{(2\nu+1)\left(1+\frac{\Omega_1}{\Omega_2} \frac{(2\nu+1)^2 \pi^2}{4L^2}\right)} \int_{\pi^2}^{\pi^2} +$$

$$4 \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} \cos \frac{(2\nu+1)\pi}{\sqrt{1+\frac{\pi^{2}(2\nu+1)^{2}}{\sqrt{1+\frac{\pi^{2}(2\nu+1)^{2}}{\sqrt{1+\frac{\pi^{2}}}{\sqrt{1+\frac{\pi^{2}}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{\sqrt{1+\frac{\pi^{2}}{1+\frac{\pi^{2}}}{1+\frac{\pi^{2}$$

$$\overline{w}_{0}(t) = \frac{2P}{KL} \left(\frac{\Omega_{3}}{\Omega_{2}}\right)^{3/2} \left\{ \frac{2L}{\pi} \frac{\Omega_{1}}{\Omega_{3}} \sqrt{\frac{\Omega_{2}}{\Omega_{3}}} \sum_{V=0}^{\infty} \frac{(-1)^{V}}{(2V+1)\left(1 + \frac{\Omega_{1}}{\Omega_{2}} \frac{(2V+1)^{2}\pi^{2}}{4L^{2}}\right)} + \frac{1}{2} \frac{1}{\Omega_{2}} \frac{(2V+1)^{2}\pi^{2}}{4L^{2}} \right\}$$

$$\frac{8L^{3}}{\pi^{3}} \left(\frac{\Omega_{2}}{\Omega_{3}}\right)^{3/2} \sum_{\nu=0}^{\infty} \frac{\cos \left[\frac{(2\nu+1)\pi}{\sqrt{\Omega_{2}}} \frac{1}{\Omega_{2}} \frac{1}{\Omega_{2}} \frac{1}{\Omega_{2}} - 1\right]}{(2\nu+1)^{3} \left[1 + \frac{(2\nu+1)^{2}\pi^{2}}{4L^{2}} \frac{\Omega_{1}}{\Omega_{2}}\right]} + \frac{8L^{3}}{(2\nu+1)^{3} \left[1 + \frac{(2\nu+1)^{2}\pi^{2}}{4L^{2}} \frac{\Omega_{1}}{\Omega_{2}}\right]}{(2\nu+1)^{3} \left[1 + \frac{(2\nu+1)^{2}\pi^{2}}{4L^{2}} \frac{\Omega_{1}}{\Omega_{2}}\right]}$$

$$\frac{2\mathrm{L}}{\pi} \left(\frac{\Omega_{\mathbf{g}}}{\Omega_{\mathbf{g}}} \right)^{1/2} \left(\frac{\mathrm{t}^{2}}{2} - \frac{\Omega_{\mathbf{g}}}{\Omega_{1}} \right) \sum_{\mathbf{V}=0}^{\infty} \frac{(-1)^{\mathbf{V}}}{(2\mathrm{V}+1) \left(1 + \frac{\Omega_{1}}{\Omega_{\mathbf{g}}} \frac{(2\mathrm{V}+1)^{2} \pi^{2}}{4\mathrm{L}^{2}} \right)} \right\} (191)$$

and the second se

But, taking into account that

$$\sum_{\mathbf{V}=0}^{\infty} \frac{(-1)^{\mathbf{V}}}{(2\mathbf{V}+1)\left[1+\frac{\Omega_{1}}{\Omega_{2}}\frac{\pi^{2}}{4L^{2}}(2\mathbf{V}+1)^{2}\right]} = \frac{\pi}{4} - \frac{\pi}{2}\frac{\sinh\left(L\sqrt{\Omega_{2}}\right)}{\sinh\left(2L\sqrt{\Omega_{2}}\right)}$$
(192)

$$\sum_{\nu=0}^{9^{n}} \frac{(-1)^{\nu} (2\nu+1)}{\left[1 + \frac{\Omega_{0}}{\Omega_{0}} \frac{\pi^{2}}{4L^{2}} (2\nu+1)^{2}\right] \left[-4n^{2} + (2\nu+1)^{2}\right]}$$

$$= \frac{L^{2}}{4\pi} \cdot \frac{\Omega_{0}}{\Omega_{1}} \cdot \frac{(-1)^{n} - 2}{\frac{\sinh\left(L\sqrt{\frac{\Omega_{0}}{\Omega_{1}}}\right)}{\sinh\left(2L\sqrt{\frac{\Omega_{0}}{\Omega_{1}}}\right)}}{n^{2} + \frac{L^{2}}{\pi^{2}} \frac{\Omega_{0}}{\Omega_{1}}}$$
(193)

Thus, by using equations (192) and (193), equations (190) and (191) become

$$\overline{w}_{n}(t) = (-1)^{n} \frac{4PL^{2}}{\pi^{3}K} \begin{cases} \frac{1}{\pi^{2}} \left[\frac{\pi}{4} - \frac{\pi}{2} - \frac{\pi}{2} + \frac{sh\left(L\sqrt{\Omega_{2}}\right)}{sh\left(2L\sqrt{\Omega_{1}}\right)} + \frac{sh\left(2L\sqrt{\Omega_{2}}\right)}{sh\left(2L\sqrt{\Omega_{1}}\right)} + \frac{sh\left(2L\sqrt{\Omega_{2}}\right)}{sh\left(2L\sqrt{\Omega_{1}}\right)} + \frac{sh\left(2L\sqrt{\Omega_{2}}\right)}{sh\left(2L\sqrt{\Omega_{1}}\right)} \end{cases} \end{cases}$$

$$+ \frac{L^{2}}{4\pi} \frac{\Omega_{a}}{\Omega_{1}} \frac{\frac{(1)^{n} - 2}{\ln \left(\frac{L^{2}}{\sqrt{\Omega_{1}}}\right)}}{\frac{L^{2}}{\pi^{2}} \frac{\Omega_{a}}{\Omega_{1}} + n^{2}} \cos \left(\frac{\frac{n\pi}{L}}{L} \frac{\sqrt{\Omega_{a}}}{\sqrt{\frac{1}{2}}}}{\sqrt{1 + \frac{n^{2}\pi^{2}}{L^{2}} \frac{\Omega_{1}}{\Omega_{2}}}}\right) + \frac{1}{2\pi}$$

$$+ 4 \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} \cos\left(\frac{(2\nu+1) \pi \sqrt{\Omega_{3}}}{2L \sqrt{1 + \frac{\pi^{2}}{4L^{2}} (2\nu+1)^{2} \frac{\Omega_{1}}{\Omega_{2}}} t\right)}{(2\nu+1)[(2\nu+1)^{2} - 4n^{2}]\left[1 + \frac{\Omega_{1}}{\Omega_{2}} \frac{\pi^{2}}{4L^{2}} (2\nu+1)^{2}\right]} \right\} (194)$$

A CHARTER MARK SALAN COMPANY NEWS

$$\overline{w}_{0}(t) = \frac{4P}{K\pi} \left\{ \frac{\Omega_{3}}{\Omega_{2}} \frac{t^{2}}{2} \left[\frac{\pi}{4} - \frac{\pi}{2} \frac{\operatorname{sh}\left(L\sqrt{\Omega_{2}}\right)}{\operatorname{sh}\left(2L\sqrt{\Omega_{1}}\right)} \right] - \frac{4L^{2}}{\pi^{2}} \right\}$$

$$\sum_{\nu=0}^{\infty} \frac{1 - \cos\left[\frac{(2\nu+1)\pi}{2L} \cdot \frac{\sqrt{1 + \frac{\pi^2}{4L^2}(2\nu+1)^2 \frac{\Omega_1}{\Omega_2}}}{\sqrt{1 + \frac{\pi^2}{4L^2}(2\nu+1)^2 \frac{\Omega_1}{\Omega_2}}\right]} (195)$$

Finally, applying the finite cosine Fourier inversion, we find the displacement function for the sudden load at the fixed-free composite:

$$\begin{split} \mathbf{w}(\mathbf{z},\mathbf{t}) &= \frac{1}{L} \mathbf{w}_{0}(\mathbf{t}) + \frac{2}{L} \sum_{n=1}^{\infty} \mathbf{w}_{n}(\mathbf{t}) \cos \frac{n\pi z}{L} \\ &= \frac{4PL}{\pi K} \left\{ \frac{\pi}{L^{2}} \frac{\Omega_{0}}{\Omega_{0}} \left[\frac{1}{2} - \frac{\sinh\left(L\sqrt{\Omega_{0}}\right)}{\sinh\left(2L\sqrt{\Omega_{0}}\right)} \frac{t^{2}}{4} - \frac{4}{\pi^{2}} \cdot \right] \\ &= \frac{4PL}{\pi K} \left\{ \frac{\pi}{L^{2}} \frac{\Omega_{0}}{\Omega_{0}} \left[\frac{1}{2} - \frac{\sinh\left(L\sqrt{\Omega_{0}}\right)}{h} \frac{t^{2}}{2} - \frac{4}{\pi^{2}} \cdot \right] \\ &= \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1 - \cos\left[\frac{(2\nu+1)\pi}{2L}\sqrt{\Omega_{0}}\left(1 + \frac{\pi^{2}}{4L^{2}}\frac{\Omega_{1}}{\Omega_{0}}\left(2\nu+1\right)^{2}\right)^{-1/2} t\right]}{(2\nu+1)^{3}\left[1 + \frac{(2\nu+1)^{2}\pi^{2}}{4L^{2}}\frac{\Omega_{1}}{\Omega_{0}}\right]} \right\} + \\ &= \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \left\{ \frac{\pi}{4} \left(1 - 2\frac{\sinh\left(L\sqrt{\Omega_{0}}\right)}{h} \right) + \frac{2}{\sinh\left(2L\sqrt{\Omega_{0}}\right)} \right\} + \\ &= \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \left\{ \frac{\pi}{4} \left(\frac{L\sqrt{\Omega_{0}}}{\frac{1}{\Omega_{1}}} - \frac{2}{\sinh\left(2L\sqrt{\Omega_{0}}\right)} - \frac{1}{2\pi} t^{2}}{\frac{1}{\Omega_{0}}} \right\} + \\ &= \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \left\{ \frac{\pi}{4} \left(\frac{L\sqrt{\Omega_{0}}}{\frac{1}{\Omega_{1}}} - \frac{1}{2\pi} t^{2}}{\frac{1}{\Omega_{0}}} \right) + \\ &= \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \left\{ \frac{\pi}{4} \left(\frac{L\sqrt{\Omega_{0}}}{\frac{1}{\Omega_{1}}} - \frac{1}{2\pi} t^{2}} t^{2}}{\frac{1}{\Omega_{0}}} \right\} + \\ &= \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \left\{ \frac{\pi}{4} \left(\frac{L\sqrt{\Omega_{0}}}{\frac{1}{\Omega_{1}}} - \frac{1}{2\pi} t^{2}} t^{2}} t^{2}}{\frac{1}{\Omega_{0}}} t^{2}} t^{$$

$$+ 4 \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} \cos \left[\frac{(2\nu+1)\pi}{2L} \sqrt{\frac{\Omega_{3}}{\Omega_{2}}} \left(1 + \frac{\pi^{2} (2\nu+1)^{2}}{4L^{2}} \frac{\Omega_{1}}{\Omega_{2}} \right)^{-1/2} t \right]}{(2\nu+1) \left[\left(\frac{2\nu+1}{2n} \right)^{2} - 1 \right] \left[1 + \frac{\pi^{2} \Omega_{1}}{4L^{2}} \frac{\Omega_{2}}{\Omega_{2}} (2\nu+1)^{2} \right]} \right\} \cos \frac{\pi\pi z}{L} \quad (196)$$

In the following text, a composite of semi-infinite length subjected to both sudden and impulsive loads will be considered.

The case of impact for a composite of infinite length can be developed as the limit of the free-free case with impulsive load when the length tends to infinity. Taking

$$\Delta \xi = \frac{\pi}{L} , \quad \xi_n = \frac{n\pi}{L} , \quad L-z = \zeta \quad (197)$$

where ζ is the distance from the impacted end. With equations (197), equation (142) becomes

$$w(\zeta,t) = \frac{I}{K} \frac{\Omega_3}{\Omega_2} \frac{\Delta \xi}{\pi} t + \frac{2I}{\pi K} \sqrt{\frac{\Omega_3}{\Omega_2}}$$

$$\sum_{n=1}^{\infty} \frac{\cos(\xi_{n}\zeta) \sin\left(\xi_{n} \frac{at}{\sqrt{1+\xi_{n}^{2}b^{2}}}\right)}{\xi_{n} \left(1+\xi_{n}^{2}b^{2}\right)^{3/2}} \Delta \xi \quad (198)$$

-

with

$$b = \sqrt{\frac{\Omega_1}{\Omega_2}} , \quad a = \sqrt{\frac{\Omega_3}{\Omega_2}}$$
(199)

Taking the limit of expression (198) when $\ensuremath{\Delta\xi} \to 0$ and $\ensuremath{n} \to \infty$, we find

$$w(\zeta,t) = -\frac{2}{\pi} \frac{I}{K} \sqrt{\frac{\Omega_{3}}{\Omega_{2}}} \int_{0}^{\infty} \frac{\cos(\xi,\zeta) \sin\left(\frac{\xi}{\sqrt{1+\xi^{2}b^{2}}}\right) d\xi}{\xi (1+\xi^{2}b^{2})^{3/2}}$$
(200)

In Appendix V, details on the evaluation of the integral in equation (200) are given. The final result is

$$w(\zeta,t) = -\frac{1}{2} \frac{I}{K} \sqrt{\frac{\Omega_3}{\Omega_2}} \cdot e^{-\frac{\zeta}{b}}$$

$$\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} \nu!}{(2\nu+1)!} \left(\frac{at}{2b}\right)^{2\nu+1} \left(\frac{z}{b}\right)^{\nu} \sum_{\mu=0}^{\nu} \frac{(-1)^{\mu} \left(\frac{z}{b}\right)^{\mu}}{\mu! (\nu-\mu)! (\nu+\mu+3)!}$$
(201)

$$\sum_{k=-3}^{\infty} \left(\frac{b}{2z}\right)^k \frac{(v+\mu+k+6)!}{(3+k)!(v+\mu-k)!}$$

The case of sudden load applied on a composite of infinite length will now be considered. Taking the limit for $L \rightarrow \infty$ at formula (136) corresponding to the case of sudden load for finite length, we obtain

$$w(z,t) = \frac{2P}{K\pi} \sum_{n=1}^{\infty} \frac{\pi}{L} (-1)^n \frac{\cos \frac{n\pi z}{L}}{\left(\frac{\pi n}{L}\right)^2} \left\{ 1 - \frac{\sqrt{\frac{n\pi}{2}}t}{\left(\frac{1+\left(\frac{n\pi}{L}\right)^2 \cdot \frac{n_1}{L}}{1+\left(\frac{n\pi}{L}\right)^2 \cdot \frac{n_1}{L}}}{1+\left(\frac{n\pi}{L}\right)^2 \cdot \frac{n_1}{L}} \right\}$$
(202)

or, using equations (209) and doing $\Delta \xi \rightarrow 0$ and $n \rightarrow \infty$

$$w(\zeta,t) = \frac{2P}{K\pi} \int_{0}^{\infty} \frac{\cos \xi \zeta}{\xi^{2}} \left[1 - \frac{\cos \left(\frac{a\xi t}{\sqrt{1 + \xi^{2} b^{2}}} \right)}{1 + \xi^{2} b^{2}} \right] d\xi$$
(203)

This integral can be evaluated using a similar method that is employed in Appendix VI, or by direct numerical integration.

CCNSTANTS OF THE FUNDAMENTAL DIFFERENTIAL EQUATION FOR THE HEXAGONAL ARRANGEMENT OF FIBERS

In this section, the constants Ω_1 , Ω_2 , and Ω_3 of the fundamental differential equation are computed by using the boundary conditions that correspond to the hexagonal arrangement of the fibers, instead of the assumed symmetry of revolution made before.

According to the method indicated in Section II, the solution of a plane strain problem must be found. Then the use of the Airy function, $\phi(\mathbf{r},\theta)$ defined by

$$\sigma_{\mathbf{r}} = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \phi}{\phi \theta^{2}}$$

$$\sigma_{\theta} = \frac{\partial^{2} \phi}{\partial r^{2}}$$

$$\tau_{\mathbf{r}\theta} = \frac{1}{r^{2}} \frac{\partial \phi}{\partial \theta} - \frac{1}{r} \frac{\partial^{2} \phi}{\partial r \partial \theta}$$
(204)

is appropriate.

Because of the symmetrical arrangement (see Figure 11), it is necessary to consider only the shaded area. The boundary conditions for the element of Figure 12 are

The first four conditions correspond to the interface, and the last two correspond to the straight line AB (see Figure 12), referred to the unit vectors \overline{n} and \overline{t} . In the following, instead of r, θ , z, is sometimes written 1, 2, 3, correspondingly.

Figure 11. Hexagonal Element

1日日の日本の日本の日本の日本の日本 していていたい

Figure 12. Geometry Description

We adopt as the Airy function

$$\phi = E_0 \ln r + C_0 r^2 + \sum_{n=6,12}^{\infty} (A_n r^n + B_n r^{-n} + C_n r^{n+2} + D_n r^{-n+2}) \cos n\theta \quad (206)$$

By substituting equation (206) into equations (204), the following stresses are obtained:

$$\sigma_{11} = B_{0}r^{-2} + 2C_{0} - \sum_{n} \left[n(n-1) A_{n}r^{n-2} + n(n+1) B_{n}r^{-n-2} + (n+1)(n-2) C_{n}r^{n} + (n-1)(n+2) D_{n}r^{-n} \right] \cos n\theta$$

$$r_{32} = -B_{0}r^{-2} + 2C_{0} + \sum_{n} \left[n(n-1) A_{n}r^{n-2} + n(n+1) B_{n}r^{-n-2} + (n+1)(n+2) C_{n}r^{n} + (n-1)(n-2) D_{n}r^{-n} \right] \cos n\theta$$

$$\sigma_{13} = \sum_{n} \left[n(n-1) A_{n}r^{n-2} - n(n+1) B_{n}r^{-n-2} + n(n+1) C_{n}r^{n} - (n(n-1) C_{n}r^{n}) - n(n-1) C_{n}r^{-n} \right] \sin n\theta$$

$$(207)$$

By substituting equations (207) into the expressions of the generalized Hooke law and then integrating, we obtain the displacements

$$u_{r} = \frac{1+\nu}{E} \left\{ -B_{0}r^{-1} + 2(1-2\nu) C_{0}r - \sum_{n}^{\infty} \left[n A_{n}r^{n-1} + (n+2-4\nu) D_{n}r^{-n+1} \right] \cos n\theta \right\}$$

$$(n-2+4\nu) C_{n}r^{n+1} - (n+2-4\nu) D_{n}r^{-n+1} \cos n\theta$$

$$(208)$$

$$u_{\theta} = \frac{1+\nu}{E} \sum_{n} \left[n A_{n}r^{n-1} + n B_{n}r^{-n-1} + (n+4-4\nu) C_{n}r^{n+1} + (n-4+4\nu) D_{n}r^{-n+1} \right] \sin n\theta$$

To satisfy the symmetry conditions, we must take n=6,12,18,... in equations (207) and (208). However, the displacements and stresses for r=0 must be finite. Then, for the fiber,

$$B_{c}^{I} = S_{n}^{I} = D_{n}^{I} = 0$$
 (209)

. Water Cor

Thus, considering equations (207), (208), and (209), the stresses and displacements in the fiber (Index I) are

$$\sigma_{11}^{I} = 2C_{0}^{I} - \sum_{n=6,12,...} \left[n(n-1) A_{n}^{I} r^{n-2} + (n+1)(n-2) C_{n}^{I} r^{n} \right] \cos n\theta$$

$$\sigma_{32}^{I} = 2C_{0}^{I} + \sum_{n=6,12,...} \left[n(n-1) A_{n}^{I} r^{n-2} + (n+1)(n+2) C_{n}^{I} r^{n} \right] \cos n\theta$$

$$\sigma_{12}^{I} = \sum_{n=6,12,...} \left[n(n-1) A_{n}^{I} r^{n-2} + n(n+1) C_{n}^{I} r^{n} \right] \sin n\theta$$
(210)

$$u_{\mathbf{r}}^{\mathbf{I}} = \frac{1 + v_{\mathbf{I}}}{E_{\mathbf{I}}} \left\{ 2 \left(1 - 2v_{\mathbf{I}}^{\mathbf{I}} \right) C_{\mathbf{o}}^{\mathbf{I}} - \sum_{\mathbf{n}=6,12...} \left[n A_{\mathbf{n}}^{\mathbf{I}} r^{\mathbf{n}-1} + \left(n - 2 + 4v_{\mathbf{I}}^{\mathbf{I}} \right) C_{\mathbf{n}}^{\mathbf{I}} r^{\mathbf{n}+1} \right] \cos n\theta \right\} + v_{\mathbf{I}} \epsilon_{33} r$$

$$u_{\mathbf{o}}^{\mathbf{I}} = \frac{1 + v_{\mathbf{I}}}{E_{\mathbf{I}}} \sum_{\mathbf{n}=6,12,...} \left[n A_{\mathbf{n}}^{\mathbf{I}} r^{\mathbf{n}-1} + \left(n + 4 - 4v_{\mathbf{I}}^{\mathbf{I}} \right) C_{\mathbf{n}}^{\mathbf{I}} r^{\mathbf{n}+1} \right] \sin n\theta$$

$$(211)$$

and, for the matrix (index II), are

$$\sigma_{11}^{II} = B_{o}^{II} r^{-2} + 2C_{o}^{II} - \sum_{n=6,12,...} \int_{n(n-1)}^{n(n-1)} n(n-1) A_{n}^{II} r^{n-2} + n(n+1) \cdot B_{n}^{II} r^{-n-2} + (n+1)(n-2) C_{n}^{IL} r^{n} + (n-1)(n+2) B_{n}^{II} r^{-n} \cos n\theta$$

$$\sigma_{32}^{II} = -B_{o}^{II} r^{-2} + 2C_{o}^{II} + \sum_{n=6,12,...} \left[n(n-1) A_{n}^{II} r^{n-2} + n(n+1) \cdot B_{n}^{II} r^{-n-2} + (n+1)(n+2) C_{n}^{II} r^{n} + (n-1)(n-2) B_{n}^{II} r^{-n} \right] \cos n\theta$$

$$\sigma_{12}^{II} = \sum_{n=6,12...} \left[n(n-1) A_{n}^{II} r^{n-2} - n(n+1) B_{n}^{II} r^{-n-2} + n(n+1) B_{n}^{II} r^{-n} \right] \sin n\theta$$

$$n(n+1) C_{n}^{II} r^{n} - n(n-1) B_{n}^{II} r^{-n} \sin n\theta$$

$$\begin{aligned} u_{r}^{II} &= \frac{1+v_{II}}{E_{II}} \\ & \left\{ -B_{o}^{II}r^{-1} + 2\left(1-2v_{II}\right)C_{o}^{II}r - \sum_{n=6}^{n} \left[n A_{n}^{II}r^{n-1} - nB_{n}^{II}r^{-n-1} + \left(n-2+4v_{II}\right)C_{n}^{II}r^{n+1} - \left(n+2-4v_{II}\right)D_{n}^{II}r^{-n+1}\right]\cos n\theta \right\} + v_{II} \epsilon_{33} \\ & u_{\theta}^{II} &= \frac{1+v_{II}}{E_{II}} \sum_{n} \left[n A_{n}^{II}r^{n-1} + nB_{n}^{II}r^{-n-1} + \left(n+4-4v_{II}\right) + \left$$

The "point matching" method may be used to find the constants that appear in equations (210) through (213). The nine constants A_n^I , C_n^I , C_0^I , A_n^{II} , B_n^{II} , C_n^{II} , B_n^{II} , and C_0^{II} represent

p = 3 + 6n

unknowns.

In each point of Type (a) in Figure 13, it is necessary to take the four boundary conditions given by the first four equations (205). For each point of Type (b), we have the two boundary conditions given by the last two equations (205).

Figure 13. Distribution of Matching Points

Taking, for example, 8 points (a), 12 points (b), and n = 4, we arrive at a system of 56 linear algebraic equations with only 27 constants unknown. Solving this system by the least squares and substituting the identified constants in equations (210) through (213), we have the stresses and displacements as functions of the imposed plane strain ε_{33} .

Now we must compute the strain (potential) W and kinetic T energies. The total energies are given by

$$W = \int_{0}^{\pi/6} \int_{0}^{a} \overline{W}_{0I} r dr d\theta + \int_{0}^{\pi/6} d\theta \int_{a}^{b} \frac{\overline{\cos\left(\frac{\pi}{6} - \theta\right)}}{W_{0II} r dr +}$$

$$\int_{0}^{\pi/6} d\theta \int_{0}^{a} \overline{W}_{2I} r dr + \int_{0}^{\pi/6} d\theta \int_{a}^{b} \frac{\overline{\cos\left(\frac{\pi}{6} - \theta\right)}}{\overline{W}_{2II} r dr} r dr \qquad (214)$$

$$T = \int_{0}^{\pi/6} d\theta \int_{0}^{a} c_{I} \left[\left(\frac{\partial u^{I}}{\partial t} \right)^{2} + \left(\frac{\partial v^{I}}{\partial t} \right)^{2} + \left(\frac{\partial w}{\partial t} \right)^{2} \right] r dr +$$

$$\int_{0}^{\pi/6} d\theta \int_{0}^{\frac{\pi}{6} - \theta} \frac{\overline{\cos\left(\frac{\pi}{6} - \theta\right)}}{c_{II} \left[\left(\frac{\partial u^{II}}{\partial t} \right)^{2} + \left(\frac{\partial w^{II}}{\partial t} \right)^{2} + \left(\frac{\partial w^{II}}{\partial t} \right)^{2} \right] r dr + \qquad (215)$$

(215)

where

$$\vec{W}_{0I} = \frac{E_{I}}{2} \left(\frac{\partial w}{\partial z} \right)^{2} , \quad \vec{W}_{0II} = \frac{E_{II}}{2} \left(\frac{\partial w}{\partial z} \right)^{2}$$
(216)
$$\vec{W}_{1I} = \frac{1}{2} \left[\sigma_{11}^{I} \frac{\partial u^{I}}{\partial r} + \sigma_{aa}^{I} \left(\frac{u^{I}}{r} + \frac{1}{r} \frac{\partial v^{I}}{\partial \theta} \right) + \sigma_{1a}^{I} \left(\frac{\partial v^{I}}{\partial r} - \frac{v^{I}}{r} + \frac{1}{r} \frac{\partial u^{I}}{\partial \theta} \right) \right]$$
$$\vec{W}_{1II} = \frac{1}{2} \left[\sigma_{11}^{II} \frac{\partial u^{II}}{\partial r} + \sigma_{aa}^{II} \left(\frac{u^{II}}{r} + \frac{1}{r} \frac{\partial v^{II}}{\partial \theta} \right) + \dots \right]$$
(217)
$$\sigma_{1a}^{II} \left(\frac{\partial v^{II}}{dr} - \frac{v^{II}}{r} + \frac{1}{r} \frac{\partial u^{II}}{\partial \theta} \right)$$

-

Introducing new constants by means of

$$C_{0}^{I} = \frac{\partial w}{\partial z} c_{0}^{I} , \qquad A_{n}^{I} = \frac{\partial w}{\partial z} a_{n}^{I} , \qquad C_{n}^{I} = \frac{\partial w}{\partial z} c_{n}^{I}$$

$$B_{0}^{II} = \frac{\partial w}{\partial z} b_{0}^{II} , \qquad C_{0}^{II} = \frac{\partial w}{\partial z} c_{0}^{II} , \qquad A_{n}^{II} = \frac{\partial w}{\partial z} a_{n}^{II}$$

$$B_{n}^{II} = \frac{\partial w}{\partial z} b_{n}^{II} , \qquad C_{n}^{II} = \frac{\partial w}{\partial z} c_{n}^{II} , \qquad D_{n}^{II} = \frac{\partial w}{\partial z} d_{n}^{II}$$

$$(218)$$

and substituting the displacements given in equations (211) and (213) into equations (214) and (215), we find the expressions for the energies with $\epsilon_{33} = \frac{\partial w}{\partial z}$ as a common factor. Thus,

$$W = \left(\frac{\partial w}{\partial z}\right)^{2} \left\{ \frac{E_{I}}{24} a^{2} \pi + \frac{E_{II}}{4} \left(\frac{b^{2}}{\sqrt{3}} - \frac{a^{2} \pi}{6}\right) + \int_{0}^{\pi/6} \int_{0}^{a} \overline{w}_{1} r dr + \int_{0}^{\pi/6} \int_{0}^{b} \int_{a}^{b} \overline{w}_{1} r dr \right\}$$

$$T = \left(\frac{\partial w}{\partial z \partial t}\right)^{2} \int_{0}^{\pi/6} \int_{0}^{a} \rho_{I} \left[\left(u^{I}\right)^{2} + \left(v^{I}\right)^{2}\right] r dr + \int_{0}^{\pi/6} \left(\frac{b}{\partial z \partial t}\right)^{2} \int_{0}^{\pi/6} \int_{0}^{a} \rho_{I} \left[\left(u^{I}\right)^{2} + \left(v^{I}\right)^{2}\right] r dr + \int_{0}^{\pi/6} \left(\frac{b}{\cos\left(\frac{\pi}{2} - \theta\right)}\right) f(z) = 0$$

$$(219)$$

$$\pi/6 \int_{a}^{\cos\left(\frac{\pi}{6} - \theta\right)} o_{II} \left[\left(u^{II} \right)^{2} + \left(v^{II} \right)^{2} \right] r dr + \left(\frac{\partial w}{\partial t} \right)^{2} \left[\rho_{I} \frac{a^{2}\pi}{12} + \frac{\rho_{II}}{2} \left(\frac{b^{2}}{\sqrt{3}} - \frac{a^{2}\pi}{6} \right) \right]$$

The constants Ω_1 , Ω_2 , Ω_3 , first discussed in Part 1, now appear in the following form, as a result of equation (219):

$$\Omega_{1} = \int_{0}^{\pi/6} d\theta \int_{0}^{a} \rho_{I} \left[\left(u_{z}^{I} \right)^{2} + \left(u_{r}^{I} \right)^{2} \right] r dr +$$

$$\int_{0}^{\pi/6} d\theta \int_{a}^{\frac{b}{\cos\left(\frac{\pi}{6} - \theta\right)}} \rho_{II} \left[\left(u^{II} \right)^{2} + \left(v^{II} \right)^{2} \right] r dr \quad (220)$$

-

$$\Omega_2 = \rho_1 \frac{a^2 \pi}{24} + \frac{\rho_{11}}{4} \left(\frac{b^2}{\sqrt{3}} - \frac{a^2 \pi}{6} \right)$$
(221)

$$\Omega_{3} = \frac{E_{I}}{24} a^{2\pi} + \frac{E_{II}}{4} \left(\frac{b^{2}}{\sqrt{3}} - \frac{a^{2}\pi}{6} \right) + \int_{0}^{\pi/6} d\theta \int_{0}^{a} \overline{W}_{1} r dr + \int_{0}^{\pi/6} d\theta \int_{a}^{b} \frac{b}{\overline{W}_{1}} \overline{W}_{1} r dr \quad (222)$$

PART III

NUMERICAL RESULTS

TECHNICAL DISCUSSION

This portion of the report presents the numberical values obtained when both the exact theory developed in Part I and the approximate theory of Part II are used.

Figure 14 is a plot of the nondimensional values of c/c_I against a/λ , wherein c is the phase velocity in the composite, c_I is the velocity of propagation in the fiber, a is the radius of the fiber, and λ is the wavelength.

The composites used for this comparison have the following characteristics:

 $E_{I} = 10 \cdot 10^{6} \text{ psi} \qquad \rho_{I} = 2.427 \cdot 10^{-4} \text{ lb-sec/in.}^{4}$ $E_{II} = 3.8 \cdot 10^{5} \text{ psi} \qquad \rho_{II} = 1.159 \cdot 10^{-4} \text{ lb-sec/in.}^{4}$ $v_{I} = 0.2 \qquad a = 2.5 \cdot 10^{-3} \text{ in.}$ $v_{II} = 0.35 \qquad V_{F} = 0.65$

The values of c corresponding to the exact theory are found by solving the transcendental equation which results when the 6 × 6 determinant is made equal to zero, as described in Part I. Appendix VII describes the computer program used to find these roots, with $\hat{\mathcal{A}}_1$, $\hat{\mathcal{A}}_2$, $\hat{\mathcal{A}}_3$ given by formulas (87) and (89). The assumption of symmetry of revolution for the basic element is then used in both cases.

The curves in Figure 14 illustrate that the error in the velocity given by the approximate theory is less than 3 percent for a/λ smaller than 0.10. If the radius of the fiber, for example, is $2.5 \cdot 10^{-3}$ in., a wave length $\lambda = 2.5 \cdot 10^{-2}$ in. will correspond to $a/\lambda = 0.10$. The wave velocity in the fiber is

$$c_{I} = \sqrt{\frac{E_{I}}{\rho_{I}}} = \sqrt{\frac{10 \cdot 10^{6}}{2.427 \cdot 10^{-4}}} = 2.03 \cdot 10^{5} \text{ in./sec}$$

Construction of the second sec

Then for $a/\lambda = 0.1$, the curve corresponding to the exact theory yields the following equation:

 $c = 0.903 \cdot c_T = 1.83 \cdot 10^5 \text{ in./sec}$

With $\lambda = 2.5 \cdot 10^{-2}$ in., the following frequency results:

 $\tilde{\mathbf{r}} = \frac{c}{\lambda} = \frac{1.83 \cdot 10^5}{2.5 \cdot 10^{-2}} = 7.33 \cdot 10^6 \frac{1}{\text{sec}}$

Then for any frequency smaller than $7.33 \cdot 10^8$ l/sec, the approximate theory gives a velocity with an error of less than 3 percent.

The exact theory yields two different velocities of propagation. The implication is that two different types of waves exist, the interface waves (Raleigh waves) and those which contain combinations of dilatational and distortional waves.

A representation, where the validity of the approximate theory is more evident, is given in Figure 15, where the wave velocity in a composite (is plotted as function of the wave length in terms of fiber diameters.

The upper curve in Figure 14 corresponds to a mode which propagates only above the frequencies of 15 x 10^6 cycles per second. This phenomenon is clearly exhibited in Figure 16, where the wave velocity is plotted as function of the existing frequency. The frequency of 15×10^6 cycles per second is the cutoff frequency for this mode, below which this mode cannot propagate.

Appendix VIII presents the velocities for several composites. Using this parametric study, it is possible to evaluate the influence that Poisson's coefficient of the matrix and the volumetric content of fibers have on the velocity. For this computation, a ratio $a/\lambda = 0.05$ is assumed, but the values of the velocity do not change in the figures given here for any a/λ less than 0.05.

The stresses and displacements obtained in a composite of finite length, free at one end and loaded with a harmonic load at the other, with now be compared, using the exact theory as described in Part I and in formula (122) derived from the approximate theory. A composite with the following characteristics is assumed for this comparison:

a =
$$0.2500 \cdot 10^{-2}$$
 b = $0.3101 \cdot 10^{-2}$ V_F = 0.6500
 ρ^{I} = $0.2428 \cdot 10^{-3}$ ρ^{II} = $0.1159 \cdot 10^{-3}$ E^I $\sim 0.1000 \cdot 10^{-3}$

Figure 16. Propagation Velocity as Function of the Exciting Frequency as Calculated by the Exact and Approximate Theory

$$E^{II} = 0.3800 \cdot 10^{6}$$
 $v^{I} = 0.2000$ $v^{II} = 0.3500$
 $L = 3.0000$ $w_{0} = 1.5 \cdot 10^{5}$

The units are given in pounds, inches, and seconds. Table II contains the exact numbers printed by the computer. These results correspond to the cross-section z = 1.0. The lowest values of β are 0.80073511 (exact theory) and 0.80073 (approximate theory.

TABLE II

COMPARISON OF COMPUTER VALUES, USING EXACT AND APPROXIMATE THEORY

r	Stresses and Displacements	Exact Theory	Approximate Theory
0.00125	J11 Jas G33 u W	7.54189E 05 7.54189E 05 1.09551E 07 -1.98458E -04 -1.29026E 00	7.542E 05 7.542E 05 1.096E 07 -1.93459E -04 -1.2963E 00
0.00250 (Fiber)	ວ <mark>11</mark> ປີ22 ປີ33 ບ ພ	7.54189E 05 7.54189E 05 1.095551E 07 -3.96916E -04 -1.29026E 00	7.542E 05 7.542E 95 1.096E 07 - 4.96918E - 04 -1.2903E 00
0.00250 (Resin)	ີ 11 ອີສສ ເງລ ພ ພ	7.54183E 05 4.98952E 05 8.43770E 05 -3.96916E -04 -1.29135E 00	7.542E 05 4.988E 05 8.434E 05 -3.96918E -04 -1.2903E 00
0.00265	-11 -728) -233 -4 -4 -4	7.40118E 05 5.13016E 05 8.43756E 05 -2.88343E -04 -1.29134E 00	7.401E 05 5.129E 05 8.434E 05 -2.84357E 05 -1.290 E 10
0.00280	-11 -729 -733 -11 	7.28239E 05 5.24874E 05 8.43762E 05 -1.86693E -04 -1.29133E 00	7,283E 05 5,247E 05 8,533E 05 -1,85572E -05 -1,2903E 00
Ŭ.U0295	รี 11 228 รังง เม	7.18139E 03 5.34973E 05 8.45758E 03 -9.08330E -05 -1.29132E 00	/ 182E 05 5.3.8E 05 8.434E 05 -9.0834E -05 -1.2903E 00
0.00310	011 020 	7.09494E 05 5.43637E 05 8.43754E 05 -9.64452E -10 -1.29130E 00	7.182E (0) 5.338E (0) 8.434E (0) -6.36646E -12 -1.2403E (00

Formulas (220) through (222) are used to compute the constants of the differential equation of the approximate theory; a hexagonal fiber arrangement is assumed. The results presented below were obtained for a composite having the following characteristics:

а	-	0.2500 · 10 ⁻²	ν [⊥]	×	0.2000
EI	-	1.0000 · 10 ⁷	v^{II}	=	0.3000
EII	=	2.0000 · 10 ⁵	٥	n	$2.4275 \cdot 10^{-4}$
			ρ ^{II}	H	1.6180 · 10 ⁻⁴

Table III presents the results for three composites having a fiber volumetric content of 0.60, 0.70, and 0.80, respectively.

TABLE III

CONSTANTS OF THE DIFFERENTIAL EQUATION FOR THE HEXAGONAL ARRANGEMENT

v _F	0.60	0.70	0.80
Ω	6.07319E -16	5.33778E -16	4.37757E -16
Ω	3.44217E -09	3.06396E -09	2.78031E -09
Ω_3	9.94555E 01	9.90068E 01	9.88233E 01

The phase velocity obtained with these values, when used in formula (112), varies less than 3 percent from the velocity found with the constants corresponding to the symmetry of revolution. However, the stress distribution in the normal plane is significantly different, especially when a high percentage of fiber is used.

CONCLUSIONS

It can be concluded that the accuracy of the approximate theory is very high. While the comparisons were performed for steady-state vibrations, the study of Figures 14 and 15 shows that the transient behavior of the composite also can be performed with the approximate theory. In fact, the predominant influence in the transient solutions is wrought by terms of low frequency; for these low frequencies, the results of the approximate theory are very accurate for the actual composites, in which a is very small. From this analysis it is evident that existing dimensions in composite materials are not adversely affected, and the transverse shear correction can be disregarded with no appreciable affect on the accuracy of the numerical results. The transverse shear correction has been taken into account in the Mindlin-Herman theory (Ref. 16) for longitudinal vibrations of an elastic bar; the differential equations that come from this theory are completely hyperbolic, and can be solved by the numerical method of characteristics. However, in the present theory, it was possible to find closed analytical solutions even in the transient cases, which can be applied to hexagonal or other geometrical arrangements.

Appendix VI contains the computer program for determining eigenfrequencies and wavelength in a composite element; Apendix IX contains the computer program for determining Ω_1 , Ω_2 , and Ω_3 in a hexagonal multifiber element.

APPENDIX I

_

A

GENERAL SOLUTIONS OF STRESSES AND DISPLACEMENTS FOR INFINITE AND FINITE LENGTH COMPOSITES

RADIAL DISPLACEMENT

u

.

$$= -\sum_{\alpha_{1},\alpha_{2}\geq 0}^{\infty} \left\{ \sum_{\beta_{1},\beta_{2}\geq 0}^{\infty} \left\{ k \left[\dot{A}_{1\alpha\beta} \sin(\beta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{3\alpha\beta} \sin(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{5\alpha\beta} \cos(\beta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{3\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{5\alpha\beta} \cos(\beta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{7\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) \right] \right. \\ \left. \left[A_{2\alpha\beta} \sin(\beta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \sin(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) \right] \right] \left. \dot{\mu}_{1\alpha\beta} H_{1}(\mu_{1\alpha\beta}r) + \left[B_{1\alpha\beta} \cos(\beta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{8\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) \right] \right] \left. \dot{\mu}_{1\alpha\beta} H_{1}(\mu_{1\alpha\beta}r) + \left[B_{1\alpha\beta} \cos(\beta_{2}z) \sin(\alpha_{2}c_{2}t) + B_{3\alpha\beta} \cos(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{5\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) + B_{3\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{5\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\beta_{2}z) \cos(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\beta_{2}z) \sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\beta_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\beta_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\beta_{2}c_{2}t) + B_{4\alpha\beta} \cos(\beta_{2}z) \cos(\beta_{2}c$$

$$+ \left[A_{a\alpha} z \sin(\mu_{1}\alpha c_{1}t) + A_{4\alpha} z \cos(\mu_{1}\alpha c_{1}t) \right] \mu_{1\alpha} W_{1} \left(\overline{\mu}_{1}\alpha r \right) + \\ \left[B_{1\alpha} \sin(\mu_{2\alpha}c_{2}t) + B_{3\alpha} \cos(\mu_{2\alpha}c_{2}t) \right] Z_{1} \left(\overline{\mu}_{2\alpha}r \right) + \\ \left[B_{a\alpha} \sin(\mu_{2\alpha}c_{2}t) + B_{4\alpha} \cos(\mu_{2\alpha}c_{2}t) \right] W_{1} \left(\overline{\mu}_{2\alpha}r \right) + \\ A_{a0} \frac{z}{r} - B_{10} r + (A_{60} - B_{20}) r^{-1}$$
(223)

.

AXIAL DISPLACEMENT

w

$$= \sum_{\alpha_{1},\alpha_{2}\geq 0}^{\infty} \left\{ \sum_{\beta_{1},\beta_{2}\geq 0}^{\infty} \left\{ \begin{bmatrix} A_{1\alpha\beta}\cos(\beta_{1}z)\sin(\alpha_{1}c_{1}t) + \\ A_{3\alpha\beta}\cos(\beta_{1}z)\cos(\alpha_{1}c_{1}t) - A_{8\alpha\beta}\sin(\beta_{1}z)\sin(\alpha_{1}c_{1}t) - \\ A_{\alpha\alpha\beta}\sin(\beta_{1}z)\cos(\alpha_{1}c_{1}t) \end{bmatrix} \cdot \hat{p}_{1}Z_{0}(\tilde{\mu}_{1}\alpha\beta r) + \\ \begin{bmatrix} A_{\alpha\alpha\beta}\cos(\beta_{1}z)\sin(\alpha_{1}c_{1}t) + A_{4\alpha\beta}\cos(\beta_{1}z)\cos(\alpha_{1}c_{1}t) - \\ A_{6\alpha\beta}\sin(\beta_{1}z)\sin(\alpha_{1}c_{1}t) - A_{8\alpha\beta}\sin(\beta_{1}z)\cos(\alpha_{1}c_{1}t) \end{bmatrix} \cdot \\ \hat{P}_{1}W_{0}(\tilde{\mu}_{1}\alpha\beta r) + \begin{bmatrix} B_{1\alpha\beta}\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + \\ B_{3\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + B_{5\alpha\beta}\cos(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ B_{7\alpha\beta}\cos(\beta_{2}z)\cos(\alpha_{2}c_{2}t) \end{bmatrix} \cdot \tilde{\mu}_{2\alpha\beta}Z_{0}(\tilde{\mu}_{2\alpha\beta}r) + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + B_{4\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\sin(\beta_{2}z)\sin(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\sin(\beta_{2}z)\cos(\alpha_{2}c_{2}t) + \\ \end{bmatrix} + \\ \frac{1}{2} \begin{bmatrix} B_{3\alpha\beta}\cos(\beta_{2}c_{2}t)\cos(\alpha_{2}c_{2}t$$

+ $B_{\theta\alpha\beta}\cos(\theta_{2}z)\sin(\alpha_{2}c_{2}t) + B_{\theta\alpha\beta}\cos(\theta_{2}z)\cos(\alpha_{2}c_{2}t)$

$$\overline{\mu}_{\mathbf{a}\alpha} \underset{\mathfrak{B}}{\oplus} W_{0} \left(\overline{\mu}_{\mathbf{a}\alpha} \underset{\mathfrak{C}_{1}}{\oplus} r \right) \right) + \sum_{\substack{\overline{\mu}_{1\alpha}, \overline{\mu}_{\mathbf{a}\alpha} > 0 \\ (\mathfrak{B}_{1}, \mathfrak{B}_{\mathbf{a}} = 0)}^{\infty} \left(\left[A_{1\alpha} \sin(\mu_{1\alpha}c_{1}t) + \right] \right) \right)$$

$$A_{3\Omega} \cos(\mu_{1}\alpha c_{1}c) \left[Z_{0}(\overline{\mu}_{1}\alpha r) + A_{2\alpha} \sin(\mu_{1}\alpha c_{1}t) + A_{4\alpha} \cos(\mu_{1}\alpha c_{1}t) \right] W_{0}(\overline{\mu}_{1}\alpha r) + \left[B_{1\alpha} \sin(\mu_{2}\alpha c_{2}t) + B_{3\alpha} \cos(\mu_{2}\alpha c_{2}t) \right] \left(\overline{\mu}_{2}\alpha z \right) Z_{0}(\overline{\mu}_{2}\alpha r) + k \left[B_{2\alpha} \sin(\mu_{2}\alpha c_{2}t) + B_{4\alpha} \cos(\mu_{2}\alpha c_{2}t) \right] \left(\overline{\mu}_{2}\alpha z \right) W_{0}(\overline{\mu}_{2}\alpha r) \right\} + A_{10} + A_{20} \log r \div 2B_{10}z + 2B_{50}$$
(224)

NORMAL RADIAL STRESS

$$\sigma_{11} = -\sum_{\alpha_1,\alpha_2 \ge 0}^{\infty} \left(\sum_{\beta_1,\beta_2' \ge 0}^{\infty} \left[\left[A_{1\alpha\beta} \sin(\beta_1 z) \sin(\alpha_1 c_1 t) + \right] \right] \right] \right)$$

$$\begin{split} A_{3\alpha} & \beta \sin(\beta_{1} z) \cos(\alpha_{1} c_{1} t) + A_{5\alpha} \beta \cos(\beta_{1} z) \sin(\alpha_{1} c_{1} t) + \\ A_{7\alpha} & \beta \cos(\beta_{1} z) \cos(\alpha_{1} c_{1} t) \end{bmatrix} \cdot \\ & \left\{ \begin{bmatrix} \lambda \beta_{1}^{2} + k(\lambda + 2G) \overline{\mu}_{1\alpha}^{2} \beta \end{bmatrix} Z_{0} (\overline{\mu}_{1\alpha} \beta r) - \frac{2G \overline{\mu}_{1\alpha} \beta k Z_{1} (\overline{\mu}_{1\alpha} \beta r)}{r} \right\} + \\ \begin{bmatrix} A_{3\alpha} \beta \sin(\beta_{1} z) \sin(\alpha_{1} c_{1} t) + A_{4\alpha} \beta \sin(\beta_{1} z) \cos(\alpha_{1} c_{1} t) + \\ \end{array} \end{split}$$

+
$$A_{\mathbf{e}\alpha} g \cos(\theta_1 z) \sin(\alpha_1 c_1 z) + A_{\mathbf{e}\alpha\beta} \cos(\theta_1 z) \cos(\alpha_1 c_1 z) \Big]$$
.

$$\begin{cases} \left[\lambda \theta_1^2 + k(\lambda + 2G) \bar{\mu}_{1\alpha\beta}^2 \right] W_0 \left(\bar{\mu}_{1\alpha\beta} r \right) - \frac{2G \bar{\mu}_{1\alpha\beta} W_1 \left(\bar{\mu}_{1\alpha\beta} r \right)}{r} \right] + \\ \left[B_{1\alpha\beta} \cos(\theta_2 z) \sin(\alpha_2 c_2 z) + B_{3\alpha\beta} \cos(\theta_2 z) \cos(\alpha_2 c_2 z) - B_{8\alpha\beta} \sin(\theta_2 z) \cos(\alpha_2 c_2 z) \right] - \\ B_{8\alpha\beta} \sin(\theta_2 z) \sin(\alpha_2 c_2 z) - B_{7\alpha\beta} \sin(\theta_2 z) \cos(\alpha_2 c_2 z) \Big] + \\ \left[2G \bar{\mu}_{3\alpha\beta} \theta_2^2 \right] \left[Z_0 \left(\bar{\mu}_{3\alpha\beta} r \right) - \frac{Z_1 \left(\bar{\mu}_{3\alpha\beta} r \right)}{\bar{\mu}_{3\alpha\beta} r} \right] + \\ \left[B_{2\alpha\beta} \cos(\theta_2 z) \sin(\alpha_2 c_2 z) + B_{4\alpha\beta} \cos(\theta_2 z) \cos(\alpha_2 c_2 z) - B_{6\alpha\beta} \sin(\theta_2 z) \cos(\alpha_2 c_2 z) \right] - \\ \theta_{6\alpha\beta} \sin(\theta_2 z) \sin(\alpha_2 c_2 z) - B_{8\alpha\beta} \sin(\theta_2 z) \cos(\alpha_2 c_2 z) \Big] - \\ \theta_{6\alpha\beta} \sin(\theta_2 z) \sin(\alpha_2 c_2 z) - B_{8\alpha\beta} \sin(\theta_2 z) \cos(\alpha_2 c_2 z) \Big] - \\ \left[2G \bar{\mu}_{3\alpha\beta} \theta_3^2 \right] \left[k W_0 \left(\bar{\mu}_{3\alpha\beta} r \right) - \frac{W_1 \left(\bar{\mu}_{2\alpha\beta} r \right)}{\bar{\mu}_{3\alpha} e^r} \right] \right] \right] \right] \right] - \\ - \sum_{\vec{\mu}_{1\alpha}, \vec{\mu}_{2\alpha}^2 > 0} \left\{ \left[A_{1\alpha} \sin(\vec{\mu}_{1\alpha} c_1 t) + A_{3\alpha} \cos(\vec{\mu}_{1\alpha} c_1 t) \right] - \\ \left[\Delta_{\theta\alpha} \sin(\vec{\mu}_{1\alpha} c_1 t) + A_{4\alpha} \cos(\vec{\mu}_{1\alpha} c_1 t) \right] + \left[B_{1\alpha} \sin(\vec{\mu}_{2\alpha\beta} r) \right] + \\ \left[A_{\theta\alpha} \sin(\vec{\mu}_{1\alpha} c_1 t) + A_{4\alpha} \cos(\vec{\mu}_{1\alpha} c_1 t) \right] + \left[B_{1\alpha} \sin(\vec{\mu}_{2\alpha\beta} r) \right] + \\ B_{3\alpha} \cos(\vec{\mu}_{3\alpha} c_9 t) \right] \left[2G \bar{\mu}_{2\alpha} \right] \left[(Z_0 \ \vec{\mu}_{2\alpha} r) - \frac{Z_1 \left(\bar{\mu}_{2\alpha} r)}{\bar{\mu}_{2\alpha} r} \right] + \\ B_{3\alpha} \cos(\vec{\mu}_{3\alpha} c_9 t) \right] \left[2G \bar{\mu}_{2\alpha} r \right] \left[(Z_0 \ \vec{\mu}_{2\alpha} r) - \frac{Z_1 \left(\bar{\mu}_{2\alpha} r)}{\bar{\mu}_{2\alpha} r} \right] + \\ B_{3\alpha} \sin(\vec{\mu}_{3\alpha} c_9 t) \right] \left[2G \bar{\mu}_{2\alpha} r \right] \right] \left[(Z_0 \ \vec{\mu}_{2\alpha} r) - \frac{Z_1 \left(\bar{\mu}_{2\alpha} r \right)}{\bar{\mu}_{2\alpha} r} \right] + \\ B_{3\alpha} \sin(\vec{\mu}_{3\alpha} c_9 t) + B_{4\alpha} \cos(\vec{\mu}_{3\alpha} c_9 t) \right] \cdot \left(2G \bar{\mu}_{2\alpha} \right) + \\ \end{array}$$

$$\cdot \left[k W_{0} \left(\overline{\mu}_{2\alpha} r \right) - \frac{W_{1} \left(\overline{\mu}_{2\alpha} r \right)}{\overline{\mu}_{2\alpha} r} \right] \right\} - 2G \left[A_{20} r^{-2} z + (A_{00} - B_{20}) r^{-2} + B_{10} \right]$$
(225)

,

NORMAL CIRCUMFERENTIAL STRESS

$$\begin{split} \sigma_{\mathbf{32}} &= -\sum_{\alpha_{1},\alpha_{2}\geq 0}^{\infty} \left\{ \sum_{\beta_{1},\beta_{2}\geq 0}^{\infty} \left\{ \left[A_{1\alpha\beta} \sin(\theta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{3\alpha\beta} \sin(\theta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{5\alpha\beta} \cos(\theta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{3\alpha\beta} \cos(\theta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{5\alpha\beta} \cos(\theta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{3\alpha\beta} \cos(\theta_{1}z) \cos(\alpha_{1}c_{1}t) \right\} + \left\{ A_{2\alpha\beta} \sin(\theta_{1}z) \sin(\alpha_{1}c_{1}t) + \frac{2G \overline{\mu}_{1\alpha\beta} kZ_{1} \left(\overline{\mu}_{1\alpha\beta} r^{*} \right)}{r} \right\} + \left[A_{2\alpha\beta} \sin(\theta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \sin(\theta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \cos(\theta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \cos(\theta_{1}z) \cos(\alpha_{1}c_{1}t) \right\} + \left[B_{1\alpha\beta} \cos(\theta_{1}z) \sin(\alpha_{2}c_{1}t) + \frac{2G \overline{\mu}_{1\alpha\beta} W_{1} \left(\overline{\mu}_{1\alpha\beta} r^{*} \right)}{r} \right\} + \left[B_{1\alpha\beta} \cos(\theta_{2}z) \sin(\alpha_{2}c_{2}t) + B_{3\alpha\beta} \cos(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{5\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{7\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) \right] + \left[B_{2\alpha\beta} \cos(\theta_{2}z) \cos(\alpha_{2}c_{2}t) + B_{4\alpha\beta} \cos(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \sin(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos(\alpha_{2}c_{2}t) - B_{6\alpha\beta} \sin(\theta_{2}z) \cos($$
$$\left[\left(2G\vartheta_{2} \right) \frac{W_{1} \left(\bar{\mu}_{2} \alpha \vartheta r \right)}{r} \right] \right] = \sum_{\bar{\mu}_{1} \alpha, \bar{\mu}_{2} \alpha^{>0}}^{\infty} \left\{ k \left[A_{1} \alpha \sin \left(\bar{\mu}_{1} \alpha^{c_{1}} t \right) + \frac{G \bar{\mu}_{1} \alpha^{c_{1}} t}{r} \right] + \frac{2G \bar{\mu}_{1} \alpha^{2} I_{1} \left(\bar{\mu}_{1} \alpha^{r} \right)}{r} \right] + \frac{A_{3} \alpha \cos \left(\bar{\mu}_{1} \alpha^{c_{1}} t \right)}{r} \right] \cdot z \cdot \left[\lambda \bar{\mu}_{1}^{2} \alpha^{2} \sigma \left(\bar{\mu}_{1} \alpha^{r} \right) + \frac{2G \bar{\mu}_{1} \alpha^{2} I_{1} \left(\bar{\mu}_{1} \alpha^{r} \right)}{r} \right] + \frac{A_{4} \alpha \cos \left(\bar{\mu}_{1} \alpha^{c_{1}} t \right)}{r} \right] \cdot z \cdot \left[k \lambda \bar{\mu}_{1}^{2} \alpha^{W} \sigma \left(\bar{\mu}_{1} \alpha^{r} \right) + \frac{2G \bar{\mu}_{1} \alpha^{C_{1}} t}{r} \right] + \left[B_{1} \alpha \sin \left(\bar{\mu}_{2} \alpha^{c_{2}} t \right) + B_{3} \alpha \cos \left(\bar{\mu}_{2} \alpha^{c_{2}} t \right) \right] \cdot z \cdot \left[2G \bar{\mu}_{1} \alpha^{r} \right] + \left[B_{1} \alpha \sin \left(\bar{\mu}_{2} \alpha^{c_{2}} t \right) + B_{3} \alpha \cos \left(\bar{\mu}_{2} \alpha^{c_{2}} t \right) \right] \cdot \left[2G \right] \cdot \frac{Z_{1} \left(\bar{\mu}_{2} \alpha^{r} \right)}{r} + \left[B_{2} \alpha \sin \left(\bar{\mu}_{2} \alpha^{c_{2}} t \right) + B_{4} \alpha \cos \left(\bar{\mu}_{2} \alpha^{c_{2}} t \right) \right] \cdot \left[2G \right] \cdot \frac{W_{1} \left(\bar{\mu}_{2} \alpha^{r} \right)}{r} + 2G \left[A_{2} \sigma^{r}^{-2} z + (A_{3} \sigma^{-2} B_{2} \sigma) r^{-2} - B_{1} \sigma \right]$$
 (226)

.

.

NORMAL AXIAL STRESS

$$\begin{split} \sigma_{33} &= -\sum_{\alpha_{1},\alpha_{2}\geq 0}^{\infty} \left\{ \sum_{\beta_{1},\beta_{2}\geq 0}^{\infty} \left\{ \left[A_{1\alpha\beta} \sin(\beta_{1}z) \sin(\alpha_{1}c_{1}z) + A_{3\alpha\beta} \sin(\beta_{1}z) \cos(\alpha_{1}c_{1}z) + A_{5\alpha\beta} \cos(\beta_{1}z) \sin(\alpha_{1}c_{1}z) + A_{3\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}z) + A_{5\alpha\beta} \cos(\beta_{1}z) \sin(\alpha_{1}c_{1}z) + A_{3\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}z) \right\} + \left\{ \left[(\lambda + 2G)^{2} + k\lambda_{\mu_{1}}^{2} + k\lambda_{\mu_{1}}^{2} \right] Z_{0} \left(\mu_{1\alpha\beta}z^{\dagger} \right) \right\} + \left[A_{3\alpha\beta} \sin(\beta_{1}z) \sin(\alpha_{1}c_{1}z) + A_{4\alpha\beta} \sin(\beta_{1}z) \cos(\alpha_{1}c_{1}z) + A_{4\alpha\beta} \sin(\beta_{1}z) \cos(\alpha_{1}c_{1}z) + A_{4\alpha\beta} \sin(\beta_{1}z) \cos(\alpha_{1}c_{1}z) + A_{4\alpha\beta} \cos(\beta_{1}z) \cos(\beta_{1}z) \sin(\alpha_{1}c_{1}z) + A_{4\beta} \cos(\beta_{1}z) \cos(\beta_{1}z) \sin(\beta_{1}z) + A_{4\beta} \cos(\beta_{1}z) \cos(\beta_{1}z) + A_{4\beta} \cos(\beta_$$

+
$$B_{3\alpha\beta} \cos(\beta_{9}z) \cos(\alpha_{9}c_{9}t) - B_{5\alpha\beta} \sin(\beta_{9}z) \sin(\alpha_{9}c_{9}t) -$$

 $B_{7\alpha\beta} \sin(\beta_{9}z) \cos(\alpha_{9}c_{9}t)] \cdot \left[\left(2G\overline{\mu}_{3\alpha\beta}\beta_{9} \right) Z_{0} \left(\overline{\mu}_{3\alpha\beta}r \right) \right] -$
 $k \left[B_{3\alpha\beta} \cos(\beta_{9}z) \sin(\alpha_{9}c_{9}t) + B_{4\alpha\beta} \cos(\beta_{9}z) \cos(\alpha_{9}c_{9}t) -$
 $B_{6\alpha\beta} \sin(\beta_{9}z) \sin(\alpha_{9}c_{9}t) - B_{6\alpha\beta} \sin(\beta_{9}z) \cos(\alpha_{9}c_{9}t) \right] \cdot$
 $\left[\left(2G\overline{\mu}_{3\alpha\beta}\beta_{9} \right) W_{0} \left(\overline{\mu}_{2\alpha\beta}r \right) \right] \right] \right] - \sum_{\mu_{1\alpha},\mu_{2\alpha}>0}^{\infty} \left\{ k \left[A_{1\alpha} \sin(\mu_{1\alpha}c_{1}t) + (\beta_{1},\beta_{9}=0) - (\beta_{1},\beta_{9}=0) - (\beta_{1},\beta_{9}=0) - (\beta_{1},\beta_{9}=0) - (\beta_{1\alpha}\sin(\overline{\mu}_{1\alpha}c_{1}t) + (\beta_{1\alpha}\cos(\overline{\mu}_{1\alpha}c_{1}t) - (\beta_{1\alpha}\sin(\overline{\mu}_{1\alpha}c_{1}t) + (\beta_{1\alpha}\cos(\overline{\mu}_{1\alpha}c_{1}t)) - (\beta_{1\alpha}\sin(\overline{\mu}_{1\alpha}c_{1}t) - (\beta_{1\alpha}\sin(\overline{\mu}_{2\alpha}c_{2}t) + (\beta_{2\alpha}\cos(\overline{\mu}_{2\alpha}c_{9}t)) - (2G\overline{\mu}_{2\alpha}) \cdot Z_{0} \left(\overline{\mu}_{2\alpha}r \right) - k \left[B_{2\alpha}\sin(\overline{\mu}_{2\alpha}c_{2}t) + B_{3\alpha}\cos(\overline{\mu}_{2\alpha}c_{9}t \right] + 4GB_{10}$ (227)

÷

SHEAR STRESS

$$\sigma_{13} = -G \sum_{\alpha_{1},\alpha_{2}\geq 0}^{\infty} \left\{ \left\{ \sum_{\beta_{1},\beta_{2}\geq 0}^{\infty} \left\{ k \left[A_{1\alpha\beta} \cos(\beta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{3\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \sin(\beta_{1}z) \sin(\alpha_{1}c_{1}t) - A_{7\alpha\beta} \sin(\beta_{1}z) \cos(\alpha_{1}c_{1}t) \right\} \right\} \right\} = \left[A_{7\alpha\beta} \sin(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) \right] \right] = \left[A_{2\alpha\beta} \cos(\beta_{1}z) \sin(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{4\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) + A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c_{1}t) - A_{5\alpha\beta} \cos(\beta_{1}z) \cos(\alpha_{1}c$$

$$\begin{aligned} A_{\theta_{\Omega}\beta} \sin(\epsilon_{1}z) \sin(\alpha_{1}c_{1}t) - A_{\theta_{\Omega}\beta} \sin(\epsilon_{1}z) \cos(\alpha_{1}c_{1}t) \Big] \cdot \\ \left[\left[2\bar{\mu}_{1}\alpha_{\beta}\beta_{1} \right] W_{1} \left[\bar{\mu}_{1}\alpha_{\beta}r \right] \right] + \left[B_{1}\alpha_{\beta} \sin(\epsilon_{2}z) \sin(\alpha_{2}c_{2}t) + \right] \\ B_{3}\alpha_{\beta} \sin(\epsilon_{2}z) \cos(\alpha_{3}c_{3}t) + B_{6}\alpha_{\beta} \cos(\epsilon_{2}z) \sin(\alpha_{2}c_{2}t) + \\ B_{7}\alpha_{\theta} \cos(\epsilon_{3}z) \cos(\alpha_{3}c_{3}t) + B_{6}\alpha_{\beta} \cos(\epsilon_{2}z) \sin(\alpha_{3}c_{2}t) + \\ B_{7}\alpha_{\theta} \cos(\epsilon_{3}z) \cos(\alpha_{3}c_{3}t) + B_{6}\alpha_{\beta} \cos(\epsilon_{3}z) \cos(\alpha_{3}c_{3}t) + \\ \left[B_{8}\alpha_{\beta} \sin(\epsilon_{3}z) \sin(\alpha_{3}c_{3}t) + B_{4}\alpha_{\beta} \sin(\epsilon_{3}z) \cos(\alpha_{3}c_{3}t) + \right] \\ \left[B_{8}\alpha_{\beta} \cos(\epsilon_{3}z) \sin(\alpha_{3}c_{3}t) + B_{8}\alpha_{\beta} \cos(\epsilon_{3}z) \cos(\alpha_{2}c_{3}t) + \\ B_{6}\alpha_{\beta} \cos(\epsilon_{3}z) \sin(\alpha_{3}c_{3}t) + B_{8}\alpha_{\beta} \cos(\epsilon_{3}z) \cos(\alpha_{2}c_{3}t) \right] \cdot \\ \left[\left[k\bar{\mu}_{3}^{2}\alpha_{\beta} - \beta_{3}^{2} \right] W_{1} \left[\bar{\mu}_{3}\alpha_{\beta}r \right] \right] \right\} \\ \left] - G \sum_{\mu_{1}\alpha,\mu_{3}\mu_{3}\alpha_{2}>0} \left\{ k \left[A_{1}\alpha \sin(\bar{\mu}_{1}\alpha_{c}t) + \right] \right] \\ \left[A_{3}\alpha \cos(\bar{\mu}_{1}\alpha_{c}t) \right] \left[2\bar{\mu}_{1}\alpha \right] + Z_{1} \left[\bar{\mu}_{1}\alpha_{1}r \right] + \left[A_{2}\alpha \sin(\bar{\mu}_{1}\alpha_{c}t) \right] + \\ A_{4}\alpha \cos(\bar{\mu}_{1}\alpha_{c}t) \right] \left[2\bar{\mu}_{1}\alpha \right] + W_{1} \left[\bar{\mu}_{1}\alpha_{1}r \right] + k \left[B_{1}\alpha \sin(\bar{\mu}_{2}\alpha_{c}z) \right] + \\ B_{5}\alpha \cos(\bar{\mu}_{2}\alpha_{2}z) \right] \left[\bar{\mu}_{2}^{2}\alpha_{2}z \right] + Z_{1} \left[\bar{\mu}_{2}\alpha_{1}r \right] + 2GA_{2}\sigma r^{-1} \end{aligned}$$

$$(228)$$

APPENDIX II

_

GENERAL SOLUTIONS OF STRESSES AND DISPLACEMENTS FOR THE CASE OF SEMI-INFINITE LENGTH COMPOSITE

RADIAL DISPLACEMENT

$$u = -\sum_{\alpha_{1},\alpha_{2}\geq 0}^{\infty} \left\{ \left\{ \sum_{\overline{s}_{1},\overline{s}_{2}\geq 0}^{\infty} \right\} \left\{ \left[\overline{A}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{1}z} \sin(\alpha_{1}c_{1}t) + \overline{A}_{\overline{\alpha}\alpha\beta} e^{-\overline{\beta}_{1}z} \cos(\alpha_{1}c_{1}t) \right] + \mu_{1\alpha\beta} J_{1}(\mu_{1\alpha\beta}r) + \left[\overline{A}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{1}z} \sin(\alpha_{1}c_{1}t) + \overline{A}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{1}z} \cos(\alpha_{1}c_{1}t) \right] + \left[\overline{A}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{1}z} \sin(\alpha_{1}c_{1}t) + \overline{A}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{1}z} \cos(\alpha_{1}c_{1}t) \right] + \mu_{1\alpha\beta} Y_{1}(\mu_{1\alpha\beta}r) - \left[\overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \sin(\alpha_{2}c_{2}t) + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \sin(\alpha_{2}c_{2}t) + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{B}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{B}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{B}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha} + \overline{B}_{\overline{s}\alpha\beta} e^{-\overline{B}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{A}_{\overline{s}\alpha} - \overline{B}_{20} \right] r^{-1}$$

$$(229)$$

AXIAL DISPLACEMENT

$$\begin{split} \bullet_{W} &= \sum_{\alpha_{1},\alpha_{2}\geq 0}^{\infty} \left(\sum_{\overline{\beta_{1}},\overline{\beta_{2}}\geq 0}^{\infty} \right) - \left[\overline{A_{5}}_{\alpha\beta} e^{-\overline{\beta_{1}}z} \sin(\alpha_{1}c_{1}t) + \\ \overline{A_{7}}_{\alpha\beta} e^{-\overline{\beta_{1}}z} \cos(\alpha_{1}c_{1}t) \right] \times \overline{p_{1}} J_{0}(\mu_{1}\alpha\beta^{r}) - \\ \left[\overline{A_{6}}_{\alpha\beta} e^{-\overline{\beta_{1}}z} \sin(\alpha_{1}c_{1}t) + \overline{A_{6}}_{\alpha\beta} e^{-\overline{\beta_{1}}z} \cos(\alpha_{1}c_{1}t) \right] . \end{split}$$

$$\overline{\beta}_{1} Y_{0} (\mu_{1\alpha\beta}r) + \left[\overline{B}_{\beta\alpha\beta} e^{-\overline{\beta}_{\beta}z} \sin(\alpha_{\beta}c_{\beta}t) + \overline{B}_{7\alpha\beta} e^{-\overline{\beta}_{\beta}z} \cos(\alpha_{\beta}c_{\beta}t)\right] \cdot \mu_{\beta\alpha\beta} J_{0} (\mu_{2\alpha\beta}r) + \left[\overline{B}_{\alpha\alpha\beta} e^{-\overline{\beta}_{\beta}z} \sin(\alpha_{\beta}c_{\beta}t) + \overline{B}_{\alpha\alpha\beta} e^{-\overline{\beta}_{\beta}z} \cos(\alpha_{\beta}c_{\beta}t)\right] \cdot \mu_{2\alpha\beta} Y_{0} (\mu_{\beta\alpha\beta}r) \right\} + \overline{A}_{10} + 2\overline{B}_{50}$$
(230)

NORMAL RADIAL STRESS

$$\sigma_{11} = \sum_{\alpha_{1}, \alpha_{2} \geq \alpha}^{\infty} \left\| \sum_{\overline{b}_{1}, \overline{b}_{2} \geq \alpha}^{\infty} \left\| \left[\overline{\lambda}_{\overline{b}\alpha\beta} e^{-\overline{b}_{1}z} \sin(\alpha_{1}c_{1}t) + \frac{\overline{\lambda}_{7\alpha\beta} e^{-\overline{b}_{1}z} \cos(\alpha_{1}c_{1}t)}{r} + \frac{\overline{\lambda}_{7\alpha\beta} e^{-\overline{b}_{1}z} \cos(\alpha_{1}c_{1}t)}{r} \right] + \left[\overline{\lambda}_{\overline{b}\alpha\beta} e^{-\overline{b}_{1}z} \sin(\alpha_{1}c_{1}t) + \frac{2G\mu_{1\alpha\beta} J_{1}(\mu_{1\alpha\beta}r)}{r} \right] + \left[\overline{\lambda}_{\overline{b}\alpha\beta} e^{-\overline{b}_{1}z} \sin(\alpha_{1}c_{1}t) + \frac{\overline{\lambda}_{\overline{b}\alpha\beta} e^{-\overline{b}_{1}z} \cos(\alpha_{1}c_{1}t)}{r} \right] + \left[\overline{\lambda}_{\overline{b}\alpha\beta} e^{-\overline{b}_{1}z} \sin(\alpha_{2}c_{1}t) + \frac{2G\mu_{1\alpha\beta} Y_{1}(\mu_{1\alpha\beta}r)}{r} \right] + \left[\overline{B}_{5\alpha\beta} e^{-\overline{b}_{2}z} \sin(\alpha_{2}c_{2}t) + \frac{2G\mu_{1\alpha\beta} Y_{1}(\mu_{1\alpha\beta}r)}{r} \right] + \left[\overline{B}_{5\alpha\beta} e^{-\overline{b}_{2}z} \sin(\alpha_{2}c_{2}t) + \frac{J_{1}(\mu_{2}\alpha\beta}r)}{\mu_{2}\alpha\beta} \right] + \left[\overline{B}_{\alpha\beta} e^{-\overline{b}_{2}z} \cos(\alpha_{2}c_{2}t) + \frac{J_{1}(\mu_{2}\alpha\beta}r)}{\mu_{2}\alpha\beta} \right] + \left[\overline{B}_{\alpha\beta} e^{-\overline{b}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{$$

NORMAL CIRCUMFERENTIAL STRESS

$$\sigma_{22} = \sum_{\alpha_{1},\alpha_{2}\geq o}^{\infty} \left\{ \sum_{\beta_{1},\beta_{2}\geq o}^{\infty} \left\{ \left[\overline{\lambda}_{\theta\alpha\beta} e^{-\overline{\beta}_{1}z} \sin(\alpha_{1}c_{1}t) + \overline{\lambda}_{\alpha\alpha\beta} e^{-\overline{\beta}_{1}z} \cos(\alpha_{1}c_{1}t) \right] \cdot \left[\lambda \left(\overline{\beta}_{1}^{2} - \mu_{1\alpha\beta}^{2} \right) J_{0}(\mu_{1\alpha\beta}r) - \frac{2G_{\mu_{1}\alpha\beta} J_{1}(\mu_{1\alpha\beta}r)}{r} \right] + \left[\overline{\lambda}_{\theta\alpha\beta} e^{-\overline{\beta}_{1}z} \sin(\alpha_{1}c_{1}t) + \overline{\lambda}_{\theta\alpha\beta} e^{-\overline{\beta}_{1}z} \cos(\alpha_{1}c_{1}t) \right] \cdot \left[\lambda \left(\overline{\beta}_{1}^{2} - \mu_{1\alpha\beta}^{2} \right) Y_{0}(\mu_{1\alpha\beta}r) - \frac{2G_{\mu_{1}\alpha\beta} Y_{1}(\mu_{1\alpha\beta}r)}{r} \right] + \left[\overline{B}_{\theta\alpha\beta} e^{-\overline{\beta}_{2}z} \sin(\alpha_{2}c_{2}t) + \overline{B}_{\gamma\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\theta\alpha\beta} e^{-\overline{\beta}_{2}z} \sin(\alpha_{2}c_{2}t) + \overline{B}_{\gamma\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\theta\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\theta\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{\theta\alpha\beta} e^{-\overline{\beta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] \right] \right\}$$

$$\left[(2G\overline{\beta}_{2}) \frac{Y_{1}(\mu_{2}\alpha\beta r)}{r} \right] + 2G(\overline{\lambda}_{\theta0} - \overline{B}_{2}o)r^{-2}$$

$$(232)$$

-

NORMAL AXIAL STRESS

$$\begin{aligned} \sigma_{33} &= \sum_{\alpha_1, \alpha_2 \geq 0}^{\infty} \left\{ \sum_{\beta_1, \beta_2 \geq 0}^{\infty} \left\{ \left[\overline{A}_{5\alpha\beta} e^{-\overline{\beta}_1 z} \sin(\alpha_1 c_1 t) + \overline{A}_{7\alpha\beta} e^{-\overline{\beta}_1 z} \cos(\alpha_1 c_1 t) \right] \cdot \left\{ \left[(\lambda + 2G) \overline{\beta}_1^2 - \lambda \mu_{1\alpha\beta}^2 \right] J_0(\mu_{1\alpha\beta} r) \right\} + \left[\overline{A}_{6\alpha\beta} e^{-\overline{\beta}_1 z} \sin(\alpha_1 c_1 t) + \overline{A}_{6\alpha\beta} e^{-\overline{\beta}_1 z} \cos(\alpha_1 c_1 t) \right] \cdot \end{aligned}$$

$$\begin{bmatrix} (\lambda + 2G) \overline{B}_{1}^{2} - \lambda \mu_{1}^{2} B \end{bmatrix} Y_{0} (\mu_{1} \alpha \beta r) - \\ \begin{bmatrix} \overline{B}_{5} \alpha_{B} e^{-\overline{B}_{2} z} \sin(\alpha_{2} c_{2} t) + \overline{B}_{7} \alpha_{B} e^{-\overline{B}_{2} z} \cos(\alpha_{2} c_{2} t) \end{bmatrix} \cdot \\ \begin{bmatrix} (2G_{\mu_{2}} \alpha_{\beta} \overline{B}_{2}) J_{0} (\mu_{2} \alpha \beta r) \end{bmatrix} - \begin{bmatrix} \overline{B}_{e} \alpha_{\beta} e^{-\overline{B}_{2} z} \sin(\alpha_{2} c_{2} t) + \\ \overline{B}_{e} \alpha_{\beta} e^{-\overline{B}_{2} z} \cos(\alpha_{2} c_{2} t) \end{bmatrix} \cdot \begin{bmatrix} (2C_{\mu_{2}} \alpha_{\beta} \overline{B}_{2}) Y_{0} (\mu_{2} \alpha \beta r) \end{bmatrix} \end{pmatrix}$$
(233)

.

SHEAR STRESS

•

.

$$\sigma_{13} = -G \sum_{\alpha_{1},\alpha_{2}\geq 0}^{\infty} \left\{ \left\{ \sum_{\theta_{1},\theta_{2}\geq 0}^{\infty} \left\{ -\left[\overline{A}_{5\alpha\theta} e^{-\overline{\theta}_{1}z} \sin(\alpha_{1}c_{1}t) + \overline{A}_{\alpha\alpha\theta} e^{-\overline{\theta}_{1}z} \cos(\alpha_{1}c_{1}t) \right] + \left[(2\mu_{1}_{\alpha\theta}\overline{\theta},\overline{\theta}_{1}) J_{1}(\mu_{1}_{\alpha\theta}\overline{\theta},\tau) \right] - \left[\overline{A}_{\alpha\alpha\theta} e^{-\overline{\theta}_{1}z} \cos(\alpha_{1}c_{1}t) + \overline{A}_{\theta\alpha\theta} e^{-\overline{\theta}_{1}z} \cos(\alpha_{1}c_{1}t) \right] \right\} \right] \left[\left[(2\mu_{1}_{\alpha\theta}\overline{\theta},\overline{\theta}_{1}) Y_{1}(\mu_{1}_{\alpha\theta}\tau) \right] + \left[\overline{B}_{5\alpha\theta} e^{-\overline{\theta}_{2}z} \cos(\alpha_{1}c_{1}t) \right] + \left[(2\mu_{1}_{\alpha\theta}\overline{\theta},\overline{\theta}_{1}) Y_{1}(\mu_{1}_{\alpha\theta}\tau) \right] + \left[\overline{B}_{5\alpha\theta} e^{-\overline{\theta}_{2}z} \sin(\alpha_{2}c_{2}t) + \overline{B}_{7\alpha\theta} e^{-\overline{\theta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{5\alpha\theta} e^{-\overline{\theta}_{2}z} \sin(\alpha_{2}c_{2}t) + \overline{B}_{7\alpha\theta} e^{-\overline{\theta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{6\alpha\theta} e^{-\overline{\theta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{6\alpha\theta} e^{-\overline{\theta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] + \left[\overline{B}_{6\alpha\theta} e^{-\overline{\theta}_{2}z} \cos(\alpha_{2}c_{2}t) \right] \right] \right\}$$

$$\left[\left(\mu_{2\alpha\theta}^{2} + \overline{\theta}_{2}^{2} \right) Y_{1}(\mu_{2\alpha\theta}\tau) \right] \right\} \right]$$

$$\left[\left(\mu_{2\alpha\theta}^{2} + \overline{\theta}_{2}^{2} \right) Y_{1}(\mu_{2\alpha\theta}\tau) \right] \right\} \right]$$

$$\left[\left(\mu_{2\alpha\theta}^{2} + \overline{\theta}_{2}^{2} \right) Y_{1}(\mu_{2\alpha\theta}\tau) \right] \right\} \right]$$

$$\left[\left(\mu_{2\alpha\theta}^{2} + \overline{\theta}_{2}^{2} \right) Y_{1}(\mu_{2\alpha\theta}\tau) \right] \right\} \right]$$

$$\left[\left(\mu_{2\alpha\theta}^{2} + \overline{\theta}_{2}^{2} \right) Y_{1}(\mu_{2\alpha\theta}\tau) \right] \right] \right\}$$

$$\left[\left(\mu_{2\alpha\theta}^{2} + \overline{\theta}_{2}^{2} \right) Y_{1}(\mu_{2\alpha\theta}\tau) \right] \right] \right]$$

$$\left[\left(\mu_{2\alpha\theta}^{2} + \overline{\theta}_{2}^{2} \right) Y_{1}(\mu_{2\alpha\theta}\tau) \right] \right] \right] \left[(234)$$

APPENDIX III

CHARACTERISTIC EQUATION (FREQUENCY EQUATION) FOR THE CASE OF INFINITE AND FINITE LENGTH COMPOSITE

The frequency equation for the composite of infinite and finite length is as follows.

$$\begin{vmatrix} d_{ij} \end{vmatrix} = 0 \tag{235}$$

L

where i, j = 1...6, and where

$$d_{11} = k\overline{\mu}_{1\alpha\beta} Z_{1} \left(\overline{\mu}_{1\alpha\beta} b \right)$$

$$d_{12} = \overline{\mu}_{1\alpha\beta} W_{1} \left(\overline{\mu}_{1\alpha\beta} b \right)$$

$$d_{13} = \pm \beta Z_{1} \left(\overline{\mu}_{2\alpha\beta} b \right)$$

$$d_{14} = \pm \beta W_{1} \left(\overline{\mu}_{2\alpha\beta} b \right)$$

$$d_{15} = 0$$

$$d_{16} = 0$$

$$d_{16} = 0$$

$$d_{21} = 2k \overline{\mu}_{1\alpha\beta} \beta Z_{1} \left(\overline{\mu}_{1\alpha\beta} b \right)$$

$$d_{22} = 2 \overline{\mu}_{1\alpha\beta} \beta W_{1} \left(\overline{\mu}_{1\alpha\beta} b \right)$$

$$d_{34} = \pm \left[k\overline{\mu}_{2\alpha\beta}^{2} - \beta^{2} \right] Z_{1} \left(\overline{\mu}_{2\alpha\beta} b \right)$$

$$d_{25} = 0$$

$$d_{26} = 0$$

$$(237)$$

$$d_{91} = k\overline{u}_{1\alpha\beta} Z_{1} \left(\overline{\mu}_{1\alpha\beta}^{a}\right)$$

$$d_{92} = \overline{u}_{1\alpha\beta} W_{1} \left(\overline{\mu}_{1\alpha\beta}^{a}\right)$$

$$d_{33} = \pm 8 Z_{1} \left(\overline{\mu}_{2\alpha\beta}^{a}\right)$$

$$d_{34} = \pm 8 W_{1} \left(\overline{\mu}_{2\alpha\beta}^{a}\right)$$

$$d_{35} = k\overline{u}_{1\gamma\delta} Z_{1} \left(\overline{\mu}_{1\gamma\delta}^{a}\right)$$

$$d_{36} = \mp Z_{1} \left(\overline{\mu}_{2\alpha\beta}^{a}\right)$$

$$d_{41} = \beta Z_{0} \left(\overline{\mu}_{1\alpha\beta}^{a}\right)$$

$$d_{42} = \beta W_{0} \left(\overline{\mu}_{1\alpha\beta}^{a}\right)$$

$$d_{43} = \mp \overline{\mu}_{2\alpha\beta} Z_{0} \left(\overline{\mu}_{2\alpha\beta}^{a}\right)$$

$$d_{44} = \mp k\overline{u}_{2\alpha\beta} V_{0} \left(\overline{\mu}_{2\alpha\beta}^{a}\right)$$

$$d_{45} = -\beta Z_{0} \left(\overline{\mu}_{1\gamma\delta}^{a}\right)$$

$$d_{51} = \left[\pm^{11} \beta^{2} \pm k \left(\lambda^{11} \pm 26^{11}\right) \overline{\mu}_{1\alpha\beta}^{2}\right] Z_{0} \left(\overline{\mu}_{1\alpha\beta}^{a}\right) - \frac{26^{11} \underline{\mu}_{1\alpha\beta} W_{1} \left(\overline{\mu}_{1\alpha\beta}^{a}\right)}{a}$$

$$d_{42} = \left[\pm^{11} \beta^{2} \pm k \left(\lambda^{11} \pm 26^{11}\right) \overline{\mu}_{1\alpha\beta}^{2}\right] W_{0} \left(\overline{\mu}_{1\alpha\beta}^{a}\right) - \frac{26^{11} \underline{\mu}_{1\alpha\beta} W_{1} \left(\overline{\mu}_{1\alpha\beta}^{a}\right)}{a}$$

$$d_{42} = \left[\pm^{11} \beta^{2} \pm k \left(\lambda^{11} \pm 26^{11}\right) \overline{\mu}_{1\alpha\beta}^{2}\right] W_{0} \left(\overline{\mu}_{1\alpha\beta}^{a}\right) - \frac{26^{11} \underline{\mu}_{1\alpha\beta} W_{1} \left(\overline{\mu}_{1\alpha\beta}^{a}\right)}{a}$$

$$d_{43} = \frac{26^{11} \underline{\mu}_{1\alpha\beta} W_{1} \left(\overline{\mu}_{1\alpha\beta}^{a}\right)}{a}$$

$$d_{44} = \frac{26^{11} \underline{\mu}_{1\alpha\beta} W_{1} \left(\overline{\mu}_{1\alpha\beta}^{a}\right) + 26^{11} \overline{\mu}_{1\alpha\beta}^{2} - 26^{11} \overline{\mu}_{1\alpha$$

In the foregoing equations (235) to (241), $\bar{\mu}_{1\alpha\beta}$, $\bar{\mu}_{2\alpha\beta}$, $\bar{\mu}_{1\gamma\delta}$, $\bar{\mu}_{2\gamma\delta}$ are defined in equations (63) to (66), and the upper signs are for the case of one end free, one end fixed, and the lower signs are for the case of both ends free in finite composite.

APPENDIX IV

CHARACTERISTIC EQUATION (FREQUENCY EQUATION) FOR THE CASE OF SEMI-INFINITE LENGTH COMPOSITE

The frequency equation for the composite of semi-infinite length is as below

$$\left| \bar{d}_{ij} \right| = 0 \tag{242}$$

where i, j = 1...6, and where

$$\vec{\mathbf{d}}_{11} = \mathbf{u}_{1\alpha\beta} \mathbf{J}_{1} \begin{pmatrix} \mathbf{u}_{1\alpha\beta} \mathbf{b} \\ \mathbf{u}_{1\alpha\beta} \mathbf{b} \\ \mathbf{d}_{12} = \mathbf{u}_{1\alpha\beta} \mathbf{Y}_{1} \begin{pmatrix} \mathbf{u}_{1\alpha\beta} \mathbf{b} \\ \mathbf{u}_{2\alpha\beta} \mathbf{b} \\ \mathbf{d}_{13} = -\vec{\beta} \mathbf{J}_{1} \begin{pmatrix} \mathbf{u}_{2\alpha\beta} \mathbf{b} \\ \mathbf{u}_{2\alpha\beta} \mathbf{b} \\ \mathbf{d}_{14} = -\vec{\beta} \mathbf{Y}_{1} \begin{pmatrix} \mathbf{u}_{2\alpha\beta} \mathbf{b} \\ \mathbf{u}_{2\alpha\beta} \mathbf{b} \\ \mathbf{d}_{15} = \mathbf{0} \\ \mathbf{d}_{16} = \mathbf{0} \\ \mathbf{d}_{16} = \mathbf{0} \\ \mathbf{d}_{21} = 2\mathbf{u}_{1\alpha\beta} \mathbf{\beta} \mathbf{Y}_{1} \begin{pmatrix} \mathbf{u}_{1\alpha\beta} \mathbf{b} \\ \mathbf{u}_{1\alpha\beta} \mathbf{b} \\ \mathbf{d}_{22} = 2\mathbf{u}_{1\alpha\beta} \mathbf{\beta} \mathbf{y}_{1} \begin{pmatrix} \mathbf{u}_{1\alpha\beta} \mathbf{b} \\ \mathbf{u}_{1\alpha\beta} \mathbf{b} \\ \mathbf{d}_{23} = -\left(\mathbf{u}_{2\alpha\beta}^{2}\mathbf{a} + \mathbf{\beta}^{2}\right) \mathbf{J}_{1} \begin{pmatrix} \mathbf{u}_{2\alpha\beta} \mathbf{b} \\ \mathbf{u}_{2\alpha\beta} \mathbf{b} \\ \mathbf{d}_{25} = \mathbf{0} \\ \mathbf{d}_{26} = \mathbf{0} \\ \mathbf{d}_{26} = \mathbf{0} \end{cases}$$
(244)

$$\begin{split} \vec{a}_{31} &= u_{1\alpha\beta} J_{1} \left(u_{1\alpha\beta}a \right) \\ \vec{a}_{33} &= u_{1\alpha\beta} Y_{1} \left(u_{1\alpha\beta}a \right) \\ \vec{a}_{33} &= -\vec{\beta} J_{1} \left(u_{2\alpha\beta}a \right) \\ \vec{a}_{34} &= -\vec{\beta} Y_{1} \left(u_{2\alpha\beta}a \right) \\ \vec{a}_{36} &= -u_{1\gamma\delta} J_{1} \left(u_{1\gamma\delta}a \right) \\ \vec{a}_{36} &= +\vec{e} J_{1} \left(u_{2\gamma\delta}a \right) \\ \vec{a}_{41} &= \vec{e} J_{0} \left(u_{1\alpha\beta}a \right) \\ \vec{a}_{42} &= \vec{e} Y_{0} \left(u_{1\alpha\beta}a \right) \\ \vec{a}_{43} &= -u_{2\alpha\beta} J_{0} \left(u_{2\alpha\beta}a \right) \\ \vec{a}_{44} &= -u_{2\alpha\beta} Y_{0} \left(u_{2\alpha\beta}a \right) \\ \vec{a}_{46} &= -\vec{e} J_{0} \left(u_{1\gamma\delta}a \right) \\ \vec{a}_{46} &= -\vec{e} J_{0} \left(u_{1\gamma\delta}a \right) \\ \vec{a}_{46} &= -u_{2\gamma\delta} Y_{0} \left(u_{2\gamma\delta}a \right) \\ \vec{a}_{51} &= \left[\lambda^{II} \vec{\beta}^{2} - \left(\gamma^{II} + 2G^{II} \right) u_{1\alpha\beta}^{2} \right] J_{0} \left(u_{1\alpha\beta}a \right) + \\ \frac{2G^{II} u_{1\alpha\beta} J_{1} \left(u_{1\alpha\beta}a \right)}{a} \\ \vec{a}_{52} &= \left[\lambda^{II} \vec{\beta}^{2} - \left(\gamma^{II} + 2G^{II} \right) u_{1\alpha\beta}^{2} \right] Y_{0} \left(u_{1\alpha\beta}a \right) + \\ \frac{2G^{II} u_{1\alpha\beta} Y_{1} \left(u_{1\alpha\beta}a \right)}{a} \end{split}$$

$$\begin{split} \tilde{\mathbf{d}}_{\mathbf{53}} &= 2\mathbf{G}^{\mathbf{11}} \mathbf{u}_{\mathbf{2}\alpha\beta} \tilde{\mathbf{p}} \left[\mathbf{b} \left(\mathbf{u}_{\mathbf{2}\alpha\beta} \mathbf{a} \right) - \frac{\mathbf{J}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{2}\alpha\beta} \mathbf{a} \right)}{\mathbf{u}_{\mathbf{2}\alpha\beta} \mathbf{a}} \right] \\ \tilde{\mathbf{d}}_{\mathbf{54}} &= 2\mathbf{G}^{\mathbf{11}} \mathbf{u}_{\mathbf{2}\alpha\beta} \tilde{\mathbf{s}} \left[\mathbf{V}_{0} \left(\mathbf{u}_{\mathbf{2}\alpha\beta} \mathbf{a} \right) - \frac{\mathbf{V}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{2}\alpha\beta} \mathbf{a} \right)}{\mathbf{u}_{\mathbf{2}\alpha\beta} \mathbf{a}} \right] \\ \tilde{\mathbf{d}}_{\mathbf{55}} &= -\left[\lambda^{\mathbf{1}} \tilde{\mathbf{3}}^{\mathbf{2}} - \left(\lambda^{\mathbf{1}} + 2\mathbf{G}^{\mathbf{1}} \right) \mathbf{u}_{\mathbf{1}\gamma\delta}^{2} \right] \mathbf{J}_{0} \left(\mathbf{u}_{\mathbf{1}\gamma\delta} \mathbf{a} \right) - \frac{2\mathbf{G}^{\mathbf{1}} \mathbf{u}_{\mathbf{2}\gamma\delta} \tilde{\mathbf{a}}}{\mathbf{a}} \right] \\ \tilde{\mathbf{d}}_{\mathbf{56}} &= -2\mathbf{G}^{\mathbf{1}} \mathbf{u}_{\mathbf{2}\gamma\delta} \tilde{\mathbf{s}} \left[\mathbf{J}_{0} \left(\mathbf{u}_{\mathbf{2}\gamma\delta} \mathbf{a} \right) - \frac{\mathbf{J}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{2}\gamma\delta} \mathbf{a} \right)}{\mathbf{u}_{\mathbf{2}\gamma\delta}^{2} \mathbf{a}} \right] \end{split}$$
(247)
$$\\ \tilde{\mathbf{d}}_{\mathbf{56}} &= -2\mathbf{G}^{\mathbf{11}} \mathbf{u}_{\mathbf{1}\alpha\beta} \tilde{\mathbf{s}} \mathbf{J}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{1}\alpha\beta} \mathbf{a} \right) \\ \tilde{\mathbf{d}}_{\mathbf{61}} &= 2\mathbf{G}^{\mathbf{11}} \mathbf{u}_{\mathbf{1}\alpha\beta} \tilde{\mathbf{s}} \mathbf{J}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{1}\alpha\beta} \mathbf{a} \right) \\ \tilde{\mathbf{d}}_{\mathbf{62}} &= -2\mathbf{G}^{\mathbf{1}} \mathbf{u}_{\mathbf{1}\alpha\beta} \tilde{\mathbf{s}} \mathbf{J}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{1}\alpha\beta} \mathbf{a} \right) \\ \tilde{\mathbf{d}}_{\mathbf{63}} &= -\mathbf{G}^{\mathbf{11}} \left[\mathbf{u}_{\mathbf{6}\alpha\beta}^{2} + \tilde{\mathbf{a}}^{2} \right) \mathbf{J}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{2}\alpha\beta} \mathbf{a} \right) \\ \tilde{\mathbf{d}}_{\mathbf{64}} &= -\mathbf{G}^{\mathbf{11}} \left[\mathbf{u}_{\mathbf{6}\alpha\beta}^{2} + \tilde{\mathbf{5}}^{2} \right) \mathbf{V}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{2}\alpha\beta} \mathbf{a} \right) \\ \tilde{\mathbf{d}}_{\mathbf{65}} &= -2\mathbf{G}^{\mathbf{1}} \mathbf{u}_{\mathbf{1}\gamma\delta} \tilde{\mathbf{s}} \mathbf{J}_{\mathbf{1}} \left(\mathbf{u}_{\mathbf{1}\gamma\delta} \mathbf{a} \right) \end{aligned}$$

$$\bar{d}_{33} = +G^{I} \left(u_{2}^{2} \gamma \delta + \bar{\rho}^{2} \right) J_{I} \left(u_{2} \gamma \delta^{a} \right)$$
(248)

In these equations (243) to (248), $u_{1,\gamma\beta}$, $u_{2,\gamma\beta}$, $u_{1,\gamma\delta}$, $u_{1,\gamma\delta}$, are defined by (72) to (75).

.

•

Equation (242) is a transcedental equation which relates circular frequency ω_{α} to β for given physical and geometrical values of constituents.

۰.

It must be mentioned here that the imposition of boundary conditions also gives

 $A_{20} = B_{10} = 0$ $A_{50} = B_{20}$ $A_{1c} = C_{10}$ $B_{50} = D_{50}$

which have no effect on frequency. These results are of no interest to us.

APPENDIX V

$\label{eq:solutions for composite of finite length} \\ \text{WITH ONE END (z = 0) FIXED AND THE OTHER END (z = L)} \\ \text{UNDER AXIAL PIECEWISE-CONSTANT LOADING} \\ \end{aligned}$

By applying boundary conditions (53) onto equations (223) and (224), we have

$$A_{1\alpha\beta} = A_{3\alpha\beta} = A_{2\alpha\beta} = A_{4\alpha\beta} = B_{5\alpha\beta} = B_{7\alpha\beta}$$
$$= B_{8\alpha\beta} = B_{8\alpha\beta} = A_{1\alpha} = A_{3\alpha} = A_{2\alpha} = A_{4\alpha}$$
$$= A_{20} = C_{1\gamma\delta} = C_{3\gamma\delta} = C_{2\gamma\delta} = C_{4\gamma\delta} = D_{8\gamma\delta}$$
$$= D_{7\gamma\delta} = D_{8\gamma\delta} = D_{8\gamma\delta} = C_{1\gamma} = C_{3\gamma} = C_{2\gamma}$$
$$= C_{4\gamma} = C_{20} = 0$$
(249)

and

$$A_{10} + 2 B_{50} = C_{10} + 2 D_{50} = 0$$
 (250)

The Fourier expansion of the piecewise-constant function |1| is

$$\frac{4}{\pi} \sum_{n=1,2,3,\ldots}^{\infty} \frac{1}{2n-1} \sin \frac{2(2n-1)\pi t}{T}$$
(251)

Substituting boundary conditions (51), with the introduction of equation (251) into equation (227) we obtain

$$\frac{4P}{\pi} \sum_{n=1,2,3,\ldots}^{\infty} \frac{1}{2n-1} \sin \frac{2(2n-1)\pi t}{T}$$

$$= -\sum_{\alpha \geq 0}^{\infty} \left\| \sum_{\beta \geq 0}^{\infty} \left[\left[2\pi \int_{0}^{a} r \left\{ C_{\delta\gamma\delta} \left[\left[\lambda^{I} + 2G^{I} \right] \beta^{2} + \lambda^{I} \overline{\mu_{1}^{2}} \gamma_{\delta} \right] Z_{0} \left[\overline{\mu_{1}} \gamma_{\delta} r \right] - D_{1}\gamma\delta \left[2G^{I} \overline{\mu_{2}} \gamma_{\delta}\beta \right] Z_{0} \left[\overline{\mu_{2}} \gamma_{\delta} r \right] \right\} dr + 2\pi \int_{a}^{b} r \left\{ A_{\delta} \alpha \beta \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \overline{\mu_{1}^{2}} \alpha \beta \right] Z_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) + A_{\delta} \alpha \beta \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \overline{\mu_{1}^{2}} \alpha \beta \right] Z_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) + A_{\delta} \alpha \beta \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \overline{\mu_{1}^{2}} \alpha \beta \right] k_{0} \left(\overline{\mu_{1}} \gamma_{\delta} r \right) - B_{1} \alpha \beta \left[2G^{II} \overline{\mu_{2}} \alpha \beta \beta \right] Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) - B_{2} \alpha \beta \beta \left[2G^{II} \overline{\mu_{2}} \alpha \beta \beta \right] k_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) + A_{\delta} \alpha \beta \left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \overline{\mu_{1}^{2}} \alpha \beta \beta \left[k_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) - B_{1} \alpha \beta \left[2G^{II} \overline{\mu_{2}} \alpha \beta \beta \right] Z_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) - B_{2} \alpha \beta \beta \left[2G^{II} \overline{\mu_{2}} \alpha \beta \beta \right] k_{0} \left(\overline{\mu_{2}} \gamma_{\delta} r \right) \right] cos(\beta L) sin(\omega_{0} t)$$

$$(252)$$

L

where $\bar{\mu}_{1}\alpha^{\rho}$, $\bar{\mu}_{2}\alpha^{\rho}$, $\bar{\mu}_{1}\gamma^{\rho}$, $\bar{\mu}_{2}\gamma^{\rho}$ are moduli of $\mu_{1}\alpha^{\rho}$, $\mu_{2}\alpha^{\rho}$, $\mu_{1}\gamma^{\rho}$, $\mu_{2}\gamma^{\rho}$, respectively and where

$$u_{1\,\alpha\beta}^{2} = \left(\frac{u_{\alpha}}{c_{1}^{1}}\right)^{2} - \beta^{2} = \left[\left(\frac{c\alpha}{c_{1}^{1}}\right)^{2} - 1\right]\beta^{2}$$

$$u_{2\,\alpha\beta}^{2} = \left(\frac{u_{\alpha}}{c_{2}^{1}}\right)^{2} - \beta^{2} = \left[\left(\frac{c\alpha}{c_{1}^{1}}\right)^{2} - 1\right]\beta^{2}$$

$$u_{1\,\gamma\delta}^{2} = \left(\frac{u_{\alpha}}{c_{1}^{1}}\right)^{2} - \beta^{2} = \left[\left(\frac{c\alpha}{c_{1}^{1}}\right)^{2} - 1\right]\beta^{2}$$

$$u_{2\,\gamma\delta}^{2} = \left(\frac{u_{\alpha}}{c_{2}^{1}}\right) - \beta^{2} = \left[\left(\frac{c\alpha}{c_{2}^{1}}\right)^{2} - 1\right]\beta^{2}$$

$$(253)$$

and

$$A_{7 \alpha \beta} = A_{8 \alpha \beta} = B_{3 \alpha \beta} = B_{4 \alpha \beta} = C_{7 \alpha \beta} = D_{3 \alpha \beta}$$
$$= B_{10} = D_{10} = 0$$
(254)

From equation (265) we also have

$$\omega_{\alpha} = \omega_n = \frac{2(2n-1)\pi}{T}$$
, n=1,2,3 (255)

Substitution of equation (53) into equation (241) yields

$$B_{1\alpha} = B_{3\alpha} = B_{2\alpha} = B_{4\alpha} = B_{1\gamma} = D_{1\gamma} = D_{3\gamma} = 0$$
 (256)

Applying boundary conditions of displacements and stresses at interface and outer surface, equations (45), (46), (223) through (225), and (228), we get the following relationships between coefficients

$$A_{\mathbf{8}\alpha\beta} = \frac{|\mathbf{N}_{1}\mathbf{i}\mathbf{j}|}{|\Delta_{1}\mathbf{i}\mathbf{j}|} A_{\mathbf{5}\alpha\beta} = M_{1\alpha\beta} A_{\mathbf{5}\alpha\beta}$$

$$B_{1\alpha\beta} = \frac{|\mathbf{N}_{2}\mathbf{i}\mathbf{j}|}{|\Delta_{1}\mathbf{i}\mathbf{j}|} A_{\mathbf{5}\alpha\beta} = M_{2\alpha\beta} A_{\mathbf{5}\alpha\beta}$$

$$B_{2\alpha\beta} = \frac{|\mathbf{N}_{3}\mathbf{i}\mathbf{j}|}{|\Delta_{1}\mathbf{i}\mathbf{j}|} A_{\mathbf{5}\alpha\beta} = M_{3\alpha\beta} A_{\mathbf{5}\alpha\beta}$$

$$C_{5\gamma\delta} = \frac{|\mathbf{N}_{4}\mathbf{i}\mathbf{j}|}{|\Delta_{1}\mathbf{i}\mathbf{j}|} A_{\mathbf{5}\alpha\beta} = M_{4\alpha\beta} A_{5\alpha\beta}$$

$$D_{1\gamma\delta} = \frac{|\mathbf{N}_{5\mathbf{i}\mathbf{j}}|}{|\Delta_{1\mathbf{i}\mathbf{j}\mathbf{j}|}} A_{\mathbf{5}\alpha\beta} = M_{5\alpha\beta} A_{5\alpha\beta}$$

$$(257)$$

where determinants $|N_{1ij}|$, $|N_{2ij}|$, $|N_{3ij}|$, $|N_{4ij}|$, $|N_{5ij}|$, and $|\Delta_{1ij}|$ are defined as below.

 $(\Delta_{1})_{41} = + \left[\lambda^{II}_{\beta} \beta^{2} + k \left(\lambda^{II}_{\gamma} + 2G^{II} \right) \overline{u}_{1\alpha\beta}^{2} \right] W_{0} \left(\overline{u}_{1\alpha\beta}^{a} \right) - \frac{2G^{II}_{\overline{u}_{1\alpha\beta}} W_{1} \left(\overline{u}_{1\alpha\beta}^{a} \right)}{a} \right]$ $(\Delta_{1})_{42} = +2G^{II}_{\overline{u}_{2\alpha\beta}} \theta \left[Z_{0} \left(\overline{u}_{2\alpha\beta}^{a} \right) - \frac{Z_{1} \left(\overline{u}_{2\alpha\beta}^{a} \right)}{\overline{u}_{2\alpha\beta}^{a}} \right] \right]$ $(\Delta_{1})_{43} = +2G^{II}_{\overline{u}_{2\alpha\beta}} \theta k \left[W_{0} \left(\overline{u}_{2\alpha\beta}^{a} \right) - \frac{kW_{1} \left(\overline{u}_{2\alpha\beta}^{a} \right)}{\mu_{2\alpha\beta}^{a}} \right] \right]$ $(\Delta_{1})_{44} = - \left[\lambda^{I}_{\beta} \beta^{2} + k \left[\lambda^{I}_{\gamma} + 2G^{I}_{\gamma} \right] \overline{u}_{1\gamma\delta}^{2} \right] Z_{0} \left(\overline{u}_{1\gamma\delta}^{a} \right) + \frac{2G^{I}_{\overline{u}_{1\gamma\delta}} k Z_{1} \left(\overline{u}_{1\gamma\delta}^{a} \right)}{a} \right]$ $(\Delta_{1})_{45} = -2G^{I}_{\overline{u}_{2\gamma\delta}} \theta \left[Z_{0} \left(\overline{u}_{2\gamma\delta}^{a} \right) - \frac{Z_{1} \left(\overline{u}_{2\gamma\delta}^{a} \right)}{\overline{u}_{1\gamma\delta}^{a}} \right]$ $(\Delta_{1})_{45} = -2G^{I}_{\overline{u}_{2\gamma\delta}} \theta \left[Z_{0} \left(\overline{u}_{2\gamma\delta}^{a} \right) - \frac{Z_{1} \left(\overline{u}_{2\gamma\delta}^{a} \right)}{\overline{u}_{1\gamma\delta}^{a}} \right]$ (261)

$$(\Delta_{1})_{51} = 2G^{II}_{\overline{u}_{1}\gamma\beta} \exists W_{1} \left(\overline{u}_{1}\gamma\beta^{a}\right)$$

$$(\Delta_{1})_{52} = -G^{II} \left(k\overline{u}_{2\gamma\beta}^{2} - \beta^{2}\right) Z_{1} \left(\overline{u}_{2\gamma\beta}^{a}\right)$$

$$(\Delta_{1})_{53} = -G^{II} \left(k\overline{u}_{2\gamma\beta}^{2} - \beta^{2}\right) W_{1} \left(\overline{u}_{2\gamma\beta}^{a}\right)$$

$$(\Delta_{1})_{54} = -\left(2G^{I}_{\overline{u}_{1}\gamma\delta} - \beta\right) Z_{1} \left(\overline{u}_{1\gamma\delta}^{a}\right)$$

$$(\Delta_{1})_{55} = +G^{I} \left(k\overline{u}_{2\gamma\delta}^{2} - \beta^{2}\right) Z_{1} \left(u_{2\gamma\delta}^{a}\right)$$

$$(252)$$

For $|N_{ij}|$, the elements of the second through the fifth column are the same as that of $|\Delta_{ij}|$, and the elements of the first column are as follows:

$$(N_{1})_{11} = -k \overline{\mu}_{1\alpha\beta} Z_{1} \left(\overline{\mu}_{1\alpha\beta} b \right)$$

$$(N_{1})_{21} = -k \overline{\mu}_{1\alpha\beta} Z_{1} \left(\overline{\mu}_{1\alpha\beta} a \right)$$

$$(N_{1})_{31} = -\theta Z_{c} \left(\overline{\mu}_{1\alpha\beta} a \right)$$

$$(N_{1})_{41} = -\left[\lambda^{II} \theta^{2} + k \left(\lambda^{II} + 2G^{II} \right) \overline{\mu}_{1\alpha\beta}^{2} \right] Z_{0} \left(\overline{\mu}_{1\alpha\beta} a \right) + \frac{2G^{II} \overline{\mu}_{1\alpha\beta} Z_{1} \left(\overline{\mu}_{1\alpha\beta} a \right)}{a}$$

$$(N_{1})_{51} = -2kG^{II} \overline{\mu}_{1\alpha\beta} \theta Z_{1} \left(\overline{\mu}_{1\alpha\beta} a \right) \qquad (263)$$

For N_{2ij} , N_{3ij} , N_{4ij} , N_{5ij} , the elements of the second, third, fourth, and fifth columns are, respectively, the same as equations (263), and the rest of their elements are the same as the corresponding elements in $|\Delta_{1ij}|$.

With $A_{8\alpha\beta}$, $B_{1\alpha\beta}$, $B_{2\alpha\beta}$, $C_{5\gamma\delta}$, $D_{1\gamma\delta}$, defined in equations (257), we can rewrite equation (252) in the following manner:

$$Z_{0}\left(\overline{\mu}_{1}\gamma_{\delta}r\right) - M_{5}\alpha\beta\left(2G^{I}\overline{\mu}_{2}\gamma_{\delta}\beta\right)Z_{0}\left(\overline{\mu}_{2}\gamma_{\delta}r\right)\right) rdr \left(\cos(\beta L)\right)$$
(264)

In this equation, β , $\overline{\mu}_{1\alpha\beta}$, $\overline{\mu}_{2\alpha\beta}$, $\overline{\mu}_{1\gamma\delta}$, $\overline{\mu}_{2\gamma\delta}$ are determined by equations (253) and the determinant d_{ij} (Appendix III) with the use of

$$\omega_n = \frac{i(2n-1)\pi}{T}$$
(265)

where n = 1, 2, 3....

By the concept of quasi-orthagonality, the coefficients $A_{5\alpha\beta}$ in equation (264) are represented as follows:

$$\begin{split} \mathbf{A}_{\mathbf{5}\alpha\beta} \cos\left(\beta\mathbf{L}\right) &= -\frac{4P}{\pi} \left\| \left(\mathbf{x}_{\mathbf{1}}^{2} \left(\frac{1}{2n-1} \right) 2\pi \int_{0}^{a} \left[\int_{0}^{a} \left\{ \mathbf{M}_{\mathbf{6}\alpha\beta} \left[\left(\lambda^{\mathbf{I}} + 2G^{\mathbf{I}} \right) \beta^{2} + k\lambda^{\mathbf{I}} \frac{\mathbf{I}_{\mathbf{1}}^{2}}{\mathbf{u}_{\mathbf{1}} \sqrt{\delta}} \right] \right] \cdot \\ &= Z_{0} \left(\overline{\mathbf{u}}_{\mathbf{1}} \mathbf{v}_{\delta} \mathbf{r} \right) - \mathbf{M}_{5\alpha\beta} \left[2G^{\mathbf{I}} \overline{\mathbf{u}}_{\mathbf{2}} \mathbf{v}_{\delta} \beta \right] Z_{0} \left(\overline{\mathbf{u}}_{\mathbf{3}} \mathbf{v}_{\delta} \mathbf{r} \right) \right\} \mathbf{r}^{\dagger} d\mathbf{r}^{\dagger} \mathbf{r} d\mathbf{r}^{\dagger} + \\ &\left[\left(\mathbf{x}_{\mathbf{3}}^{2} \left(\frac{1}{2n-1} \right) 2\pi \int_{a}^{b} \left[\int_{a}^{b} \left\{ \left[\left(\lambda^{\mathbf{I}\mathbf{I}} + 2G^{\mathbf{I}\mathbf{I}} \right) \beta^{2} + k\lambda^{\mathbf{I}} \mathbf{I} \frac{\mathbf{u}_{\mathbf{1}}^{2}}{\mathbf{u}_{\mathbf{1}} \alpha\beta} \right] \right] \cdot \\ &= Z_{0} \left(\overline{\mathbf{u}}_{\mathbf{1}\alpha\beta} \mathbf{r} \right) + \mathbf{M}_{\mathbf{1}\alpha\beta} \left[\left(\lambda^{\mathbf{I}\mathbf{I}} + 2G^{\mathbf{I}\mathbf{I}} \right) \beta^{2} + k\lambda^{\mathbf{I}\mathbf{I}} \frac{\mathbf{u}_{\mathbf{2}}^{2}}{\mathbf{u}_{\mathbf{1}} \alpha\beta} \right] \cdot \\ &Z_{0} \left(\overline{\mathbf{u}}_{\mathbf{1}\alpha\beta} \mathbf{r} \right) - \mathbf{M}_{\mathbf{2}\alpha\beta} \left[2G^{\mathbf{I}\mathbf{I}} \mathbf{u}_{\mathbf{2}\alpha\beta} \beta \right] \cdot \\ &Z_{0} \left(\overline{\mathbf{u}}_{\mathbf{2}\alpha\beta} \mathbf{r} \right) - \mathbf{M}_{\mathbf{2}\alpha\beta} \left(2G^{\mathbf{I}\mathbf{I}} \mathbf{u}_{\mathbf{2}\alpha\beta} \beta \right) \right] \cdot \\ &Z_{0} \left(\overline{\mathbf{u}}_{\mathbf{2}\alpha\beta} \mathbf{r} \right) - \mathbf{M}_{\mathbf{3}\alpha\beta} \left(2G^{\mathbf{I}\mathbf{I}} \mathbf{u}_{\mathbf{2}\alpha\beta} \beta \right) \mathbf{k} \cdot \mathbf{v}_{0} \left(\overline{\mathbf{u}}_{\mathbf{2}\alpha\beta} \mathbf{r} \right) \right\} \mathbf{r}^{\dagger} \mathbf{r}^{\dagger} \mathbf{r}^{\dagger} \mathbf{r}^{\dagger} \mathbf{r}^{\dagger} \right] \mathbf{r}^{\dagger} \mathbf{r}$$

$$\chi_{a}^{3} \int_{a}^{b} \left[2\pi \int_{a}^{b} r' \left\{ \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k \lambda^{II} \frac{2}{\mu_{1} \alpha \beta} \right] \right\} \right]$$

$$Z_{o} \left[\overline{\mu_{1} \alpha \beta} r \right] + M_{1 \alpha \beta} \left[\left[\left(\lambda^{II} + 2G^{II} \right) \beta^{2} + k \lambda^{II} \frac{2}{\mu_{1} \alpha \beta} \right] \right]$$

$$W_{o} \left[\overline{\mu_{1} \alpha \beta} r \right] - M_{2 \alpha \beta} \left[2G^{II} \overline{\mu_{2} \alpha \beta} \beta \right]$$

$$Z_{o} \left(\overline{\mu_{2} \alpha \beta} r \right) - M_{3 \alpha \beta} \left[2G^{II} \overline{\mu_{2} \alpha \beta} \beta \right] W_{o} \left[\overline{\mu_{2} \alpha \beta} r \right] \left\{ dr' \right]^{2} r dr \qquad (266)$$

n - 1917 - 11 - Litt Rij, Karles wijsen ne 2013 - 1314 jen de

.< 74

Mr. Jack and a second as

where χ_1 and χ_2 are defined as follows:

and a second second

$$\begin{split} \chi_{\mathbf{i}}^{\mathbf{a}} \int_{0}^{\mathbf{a}} \mathbf{r} \left[2\pi \int_{\mathbf{a}}^{\mathbf{b}} \left\{ M_{\mathbf{b}}_{\alpha\beta} \left[\left(\lambda^{\mathbf{I}} + 2\mathbf{G}^{\mathbf{I}} \right) \beta^{2} + \lambda^{\mathbf{I}} \frac{\mathbf{u}}{\mathbf{u}_{1}\gamma\delta} \right] \cdot \\ & Z_{0} \left(\overline{\mathbf{u}}_{1\gamma\delta} \mathbf{r} \right) - M_{5\alpha\beta} \left(2\mathbf{G}^{\mathbf{I}} \mathbf{u}_{2\gamma\delta} \beta \right) Z_{0} \left(\overline{\mathbf{u}}_{2\gamma\delta} \mathbf{r} \right) \right\} \mathbf{r}^{\prime} \mathbf{d} \mathbf{r}^{\prime} \cdot \\ & 2\pi \int_{\mathbf{a}}^{\mathbf{b}} \left\{ M_{\mathbf{b}} \underline{\alpha\beta} \left[\left(\lambda^{\mathbf{I}} + 2\mathbf{G}^{\mathbf{I}} \right) \underline{\beta}^{2} + \lambda^{\mathbf{I}} \frac{\mathbf{u}}{\mathbf{u}_{1}\gamma\delta} \right] Z_{0} \left(\overline{\mathbf{u}}_{1\gamma\delta} \mathbf{r} \right) - \\ & M_{5\underline{\alpha}\underline{\beta}} \left(2\mathbf{G}^{\mathbf{I}} \mathbf{u}_{2\gamma\underline{\delta}}\beta \right) Z_{0} \left(\overline{\mathbf{u}}_{2\gamma\underline{\delta}} \mathbf{r} \right) \right\} \mathbf{r}^{\prime} \mathbf{d} \mathbf{r}^{\prime} \right] \mathbf{d} \mathbf{r} + \\ & \chi_{\mathbf{a}}^{2} \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{r} \left[2\pi \int_{\mathbf{a}}^{\mathbf{b}} \left\{ \left[\left[\lambda^{\mathbf{II}} + 2\mathbf{G}^{\mathbf{II}} \right] \beta^{2} + \mathbf{k} \lambda^{\mathbf{II}} \mathbf{u}_{1\alpha\beta}^{2} \right] \cdot \\ & Z_{0} \left(\overline{\mathbf{u}}_{1\alpha}\beta\mathbf{r} \right) + M_{1\alpha\beta} \left[\left(\lambda^{\mathbf{II}} + 2\mathbf{G}^{\mathbf{II}} \right) \beta^{2} + \mathbf{k} \lambda^{\mathbf{II}} \mathbf{u}_{1\alpha\beta}^{2} \right] \cdot \\ & W_{0} \left(\overline{\mathbf{u}}_{1\alpha\beta}\mathbf{r} \right) - M_{\mathbf{a}}\alpha\beta} \left(2\mathbf{G}^{\mathbf{II}} \mathbf{u}_{2\alpha\beta\beta} \right) \cdot \\ & Z_{0} \left(\overline{\mathbf{u}}_{2\alpha\beta}\mathbf{r} \right) - M_{\mathbf{a}}\alpha\beta} \left(2\mathbf{G}^{\mathbf{II}} \mathbf{u}_{2\alpha\beta\beta} \right) W_{0} \left(\overline{\mathbf{u}}_{2\alpha\beta}\mathbf{r} \right) \right\} \mathbf{r} \mathbf{d} \mathbf{r} \cdot \end{split}$$

$$2\pi \int_{a}^{b} \left\{ \left[\left(\lambda^{II} + 2G^{II} \right) \underline{\beta}^{2} + k\lambda^{II} \overline{\mu}_{1\underline{\alpha}\underline{\beta}}^{2} \right] \cdot Z_{0} \left(\overline{\mu}_{1\underline{\alpha}\underline{\beta}} r \right) + M_{1\underline{\alpha}\underline{\beta}} \left[\left(\lambda^{II} + 2G^{II} \right) \underline{\beta}^{2} + k\lambda^{II} \overline{\mu}_{1\underline{\alpha}\underline{\beta}}^{2} \right] \cdot W_{0} \left(\overline{\mu}_{1\underline{\alpha}\underline{\beta}} r \right) - M_{\underline{\alpha}\underline{\beta}} \left(2G^{II} \overline{\mu}_{\underline{\alpha}\underline{\beta}} \underline{\beta} \right) + Z_{0} \left(\overline{\mu}_{\underline{\alpha}\underline{\beta}} r \right) - M_{\underline{\alpha}\underline{\beta}} \left(2G^{II} \overline{\mu}_{\underline{\alpha}\underline{\alpha}\underline{\beta}} \underline{\beta} \right) - W_{0} \left(\overline{\mu}_{\underline{\alpha}\underline{\beta}} r \right) \right\} r' dr' dr = 0 \quad (267)$$

With $A_{5\alpha\beta}$ found by equation (266) and the eigenvalues obtained from equations (235) through (241), we can get $A_{8\alpha\beta}$, $B_{1\alpha\beta}$, $B_{2\alpha\beta}$, $C_{5\gamma\delta}$, $D_{1\gamma\delta}$ from equations (251) through (263) and then obtain displacements and stresses of the composite from equations (223) through (228).

APPENDIX VI

Ŧ

SOLUTIONS FOR COMPOSITE OF FINITE LENGTH WITH ONE END (z = 0) FREELY SUPPORTED AND THE OTHER (z = L) UNDER PIECEWISE-CONSTANT LOADING

By applying boundary conditions (54) to equations (223) and (224), we have the following:

$$A_{5\alpha\beta} = A_{\gamma\alpha\beta} = A_{6\alpha\beta} = A_{6\alpha\beta} = B_{1\alpha\beta} = B_{1\alpha\beta} = B_{3\alpha\beta} =$$

$$B_{2\alpha\beta} = B_{4\alpha\beta} = B_{1\alpha} = B_{3\alpha} = B_{2\alpha} = B_{4\alpha} =$$

$$B_{10} = C_{5\gamma\delta} = C_{7\gamma\delta} = C_{6\gamma\delta} = C_{6\gamma\delta} = D_{1\gamma\delta} =$$

$$D_{3\gamma\delta} = D_{2\gamma\delta} = D_{4\gamma\delta} = D_{1\gamma} = D_{3\gamma} =$$

$$D_{4\gamma} = D_{10} = 0$$
(268)

and

$$A_{00} - B_{20} = C_{00} - D_{20}$$
 (269)

The Fourier expansion of the piecewise constant function 1 is:

.

$$\frac{4}{\pi} \sum_{n=1,2,3...}^{\infty} \frac{1}{2n-1} \sin \frac{2(2n-1)\pi t}{T}$$
(270)

Substituting boundary conditions (55) into equation (227), and also introducing equation (270), we obtain

$$\frac{4P}{\pi} \sum_{n=1,2,3...}^{\infty} \frac{1}{2n-1} \sin \frac{2(2n-1)\pi t}{T} = -\sum_{\alpha>0}^{\infty} \left[\left(\sum_{\beta\geq0}^{\infty} 2\pi \int_{0}^{a} r \right) \right] \left[\left(\lambda^{I} + 2G^{I} \right) \left[\left(\lambda^{I} + 2G^{I} \right) \right] \left[\left(\lambda^{I} + 2G^{I} \right) \right] \left[\left(\lambda^{I} + 2G^{I} \right] \left[\left(\lambda^{I} + 2G^{I} \right) \right] \left[\left(\lambda^{I} + 2G^{I} \right) \left[\left(\lambda^{I} + 2G^{I} \right) \right] \left[\left(\lambda^{I} + 2G^{I} \right] \left[\left(\lambda^{I} + 2G^{I} \right) \right] \left[\left(\lambda^{I} + 2G^{I} \right) \left[\left(\lambda^{I} + 2G^{I} \right) \right] \left[\left(\lambda^{I} + 2G^{I} \right) \left[\left(\lambda^{I} + 2G^{I} \right) \right] \left[\left(\lambda^{I} + 2G^{I} \right) \right] \left[\left(\lambda^{I} + 2$$

$$+ D_{5\gamma\delta} \left(2G^{I} \overline{\mu_{2}\gamma\delta}\beta\right) Z_{0}\left(\overline{\mu_{2}\gamma\delta}r\right)^{2} dr + \frac{2\pi}{a} \int_{a}^{b} r \left\{A_{1\alpha\beta}\left[\left(\lambda^{II}+2G^{II}\right)\beta^{2}+k\lambda^{II} \overline{\mu_{1}\alpha\beta}\right]\right] dr + \frac{2\pi}{a} \int_{a}^{b} r \left\{A_{1\alpha\beta}\left[\left(\lambda^{II}+2G^{II}\right)\beta^{2}+k\lambda^{II} \overline{\mu_{1}\alpha\beta}\right]\right] dr + \frac{2\pi}{a} \int_{a}^{b} \left[\left(\lambda^{II}+2G^{II}\right)\beta^{2}+k\lambda^{II} \overline{\mu_{1}\alpha\beta}\right] dr + \frac{2\pi}{a} \int_{a}^{b} \left[\left(\lambda^{II}+2G^{II}\right)\beta^{2}+k\lambda^{I} \left[\left$$

where $\overline{\mu_1}_{\alpha\beta}$, $\overline{\mu_2}_{\alpha\beta}$, $\overline{\mu_1}_{\gamma\delta}$, $\overline{\mu_2}_{\gamma\delta}$ are moduli of $\mu_1_{\alpha\beta}$, $\mu_2_{\alpha\beta}$, $\mu_1_{\gamma\delta}$, $\mu_2_{\gamma\delta}$, respectively, and where

$$\begin{split} u_{1\alpha\beta}^{2} &= \left(\frac{u_{\alpha}}{\Pi}\right)^{2} - \beta^{2} &= \left[\left(\frac{c_{\alpha}}{\Pi}\right)^{2} - 1\right] \beta^{2} \\ u_{2\alpha\beta}^{2} &= \left(\frac{u_{\alpha}}{\Pi}\right)^{2} - \beta^{2} &= \left[\left(\frac{c_{\alpha}}{\Pi}\right)^{2} - 1\right] \beta^{2} \\ u_{1\alpha\beta}^{2} &= \left(\frac{u_{\alpha}}{\Pi}\right)^{2} - \beta^{2} &= \left[\left(\frac{c_{\alpha}}{\Pi}\right)^{2} - 1\right] \beta^{2} \\ u_{2\gamma\delta}^{2} &= \left(\frac{u_{\alpha}}{\Pi}\right)^{2} - \beta^{2} &= \left[\left(\frac{c_{\alpha}}{\Pi}\right)^{2} - 1\right] \beta^{2} \\ u_{2\gamma\delta}^{2} &= \left(\frac{u_{\alpha}}{\Pi}\right)^{2} - \beta^{2} &= \left[\left(\frac{c_{\alpha}}{\Pi}\right)^{2} - 1\right] \beta^{2} \end{split}$$
(2.72)

and

$${}^{\circ}A_{3\alpha\beta} = A_{4\alpha\beta} = B_{7\alpha\beta} = B_{8\alpha\beta} = C_{3\alpha\beta} = D_{7\alpha\beta} =$$

$$B_{1\alpha} = D_{1\alpha} = 0$$
(273)

From equation (271), we also have

$$w_{ij} \simeq w_{ij} = \frac{2(2n-1)\pi}{T}$$
 (274)

where n = 1, 2, 3....

Substituting equation (57) into equation (228) yields

$$A_{1\alpha} = A_{3\alpha} = A_{2\alpha} = A_{4\alpha} = C_{1\gamma} = C_{3\gamma} = 0$$
 (275)

Applying the boundary conditions of the displacements and stresses at the interface and the outer surface — in other words, equations (45), (46), (223) through (225), and (223) — we obtain the following relationship between coefficients:

$$A_{2\alpha\beta} = \frac{|N_{8ij}|}{|\Delta_{2ij}|} A_{1\alpha\beta} = M_{8\alpha\beta} A_{1\alpha\beta}$$

$$B_{5\alpha\beta} = \frac{|N_{7ij}|}{|\Delta_{2ij}|} A_{1\alpha^{\prime}} = M_{7\alpha\beta} A_{1\alpha\beta}$$

$$B_{6\alpha\beta} = \frac{|N_{8ij}|}{|\Delta_{2ij}|} A_{1\alpha\beta} = M_{8\alpha\beta} A_{1\alpha\beta}$$

$$C_{1\gamma\delta} = \frac{|N_{9ij}|}{|\Delta_{2ij}|} A_{1\alpha\beta} = M_{9\alpha\beta} A_{1\alpha\beta}$$

$$D_{5\gamma\delta} = \frac{|N_{10ij}|}{|\Delta_{2ij}|} A_{1\alpha\beta} = M_{10\alpha\beta} A_{1\alpha\beta}$$
(276)

where the determinants N_{Sij} , N_{jij} , N_{sij} , and Δ_{sij} are defined as follows: For Δ_{sij} , with i, j = 1...5,

$$(\Delta_{2})_{11} = \overline{u}_{1\alpha\beta} W_{1} (\overline{u}_{1\alpha\beta}b)$$

$$(\Delta_{2})_{12} = -\beta Z_{1} (\overline{u}_{2\alpha\beta}b)$$

$$(\Delta_{3})_{13} = -\beta W_{1} (\overline{u}_{2\alpha\beta}b)$$

$$(\Delta_{3})_{14} = 0$$

$$(\Delta_{3})_{16} = 0$$

$$(277)$$

$$(\Delta_{3})_{21} = \overline{u}_{1\alpha\beta} W_{1} (\overline{u}_{1\alpha\beta}a)$$

$$(\Delta_{3})_{22} = -\beta Z_{1} (\overline{u}_{2\alpha\beta}a)$$

$$(\Delta_{3})_{23} = -\beta W_{1} (\overline{u}_{2\alpha\beta}a)$$

$$(\Delta_{3})_{24} = -k \overline{u}_{1\gamma\delta} Z_{1} (\overline{u}_{1\gamma\delta}a)$$

$$(\Delta_{3})_{26} = +\beta Z_{1} (\overline{u}_{1\gamma\delta}a)$$

$$(\Delta_{3})_{31} = \beta W_{0} (\overline{u}_{1\alpha\beta}a)$$

$$(\Delta_{3})_{32} = +\overline{u}_{2\alpha\beta} Z_{0} (\overline{u}_{2\alpha\beta}a)$$

$$(\Delta_{3})_{33} = +\overline{u}_{2\alpha\delta} k W_{0} (\overline{u}_{2\alpha\beta}a)$$

$$(\Delta_{2})_{34} = -\beta Z_{0} (\overline{u}_{1\gamma\delta}a)$$

$$(\Delta_{2})_{41} = + \left[\lambda^{11}\beta^{\mu} + k \left(\lambda^{11} + 2c^{11} \right) \overline{u}_{1\alpha\beta}^{\mu} B \right] W_{0} (\overline{u}_{1\alpha\beta}a) - \frac{2c^{11}\overline{u}_{1\alpha\beta}W_{1} (\overline{u}_{1\alpha\beta}a)}{a}$$

. 1.1.

$$(\Delta_{2})_{42} = -2G^{II} \overline{\mu_{2}}_{\alpha\beta} \beta \left[Z_{0} (\overline{\mu_{2}}_{\alpha\beta}^{a}) - \frac{Z_{1} (\overline{\mu_{2}}_{\alpha\beta}^{a})}{\overline{\mu_{2}}_{\alpha\beta}^{a}} \right]$$

$$(\Delta_{2})_{43} = -2G^{II} \overline{\mu_{2}}_{\alpha\beta} \beta k \left[W_{0} (\overline{\mu_{2}}_{\alpha\beta}^{a}) - \frac{\kappa W_{1} (\overline{\mu_{2}}_{\alpha\beta}^{a})}{\overline{\mu_{2}}_{\alpha\beta}^{a}} \right]$$

$$(\Delta_{2})_{44} = -\left[\lambda^{I} \beta^{2} + k (\lambda^{I} + 2G^{I}) \overline{\mu_{1}}^{2}_{\gamma\delta} \right] Z_{0} (\overline{\mu_{1}}_{\gamma\delta}^{a}) + \frac{2G^{I} \overline{\mu_{1}}_{\gamma\delta} k Z_{1} (\overline{\mu_{1}}_{\gamma\delta}^{a})}{a}$$

$$(\Delta_{2})_{45}^{a} = + 2G^{I} \overline{\mu_{2}}_{\gamma\delta}^{a} \beta \left[Z_{0} (\overline{\mu_{2}}_{\gamma\delta}^{a}) - \frac{Z_{1} (\overline{\mu_{2}}_{\gamma\delta}^{a})}{\overline{\mu_{2}}_{\gamma\delta}^{a}} \right]$$

$$(280)$$

$$(\Delta_{2})_{51} = 2G^{II} \overline{\mu}_{1 \alpha \beta} \beta W_{1} (\overline{\mu}_{2 \alpha \beta}^{a})$$

$$(\Delta_{2})_{52} = + G^{II} \left(k \overline{\mu}_{2 \alpha \beta}^{a} - \beta^{2} \right) Z_{1} \left(\overline{\mu}_{2 \alpha \beta}^{a} \right)$$

$$(\Delta_{2})_{53} = + G^{II} \left(k \overline{\mu}_{2 \alpha \beta}^{a} - \beta^{2} \right) W_{1} \left(\overline{\mu}_{2 \alpha \beta}^{a} \right)$$

$$(\Delta_{2})_{54} = - \left(2G^{I} \overline{\mu}_{1 \gamma \delta} \beta \right) Z_{1} \left(\overline{\mu}_{1 \gamma \delta}^{a} \right) k$$

$$(\Delta_{2})_{55} = - G^{I} \left(k \overline{\mu}_{2 \gamma \delta}^{a} - \beta^{2} \right) Z_{1} \left(\overline{\mu}_{2 \gamma \delta}^{a} \right)$$
(281)

For $|N_{g_{ij}}|$ the elements of the second to the fifth column are the same as that of $|\Delta_{2ij}|$ and the elements of the first-column are as follows: $(N_{g})_{11} = -k \overline{u}_{1 \alpha \beta} Z_1(\overline{u}_{1 \alpha \beta} b)$ $(N_{g})_{21} = -k \overline{u}_{1 \alpha \beta} Z_1(\overline{u}_{1 \alpha \beta} a)$ $(N_{g})_{31} = -\beta Z_0(\overline{u}_{1 \alpha \beta} a)$ $(N_{g})_{41} = -[\lambda^{II} \beta^{\omega} + k(\lambda^{II} + 2G^{II}) \overline{u}_{1 \alpha \beta}^{\omega}] Z_0(\overline{u}_{1 \alpha \beta} a) + \frac{2G^{II} \overline{u}_{1 \alpha \beta} Z_1(\overline{u}_{1 \alpha \beta} a) k}{a}$ $(N_{g})_{51} = 2kG^{II} \overline{u}_{1 \alpha \beta} \beta Z_1(\overline{u}_{1 \alpha \beta} a)$ (282)

For $N_{7\,ij}$, $N_{8\,ij}$, $N_{9\,ij}$, and $N_{1C\,ij}$, the elements of the second, third, fourth, and fifth columns are, respectively, the same as those in equation (282), and the rest of their elements are the same as the corresponding elements in $\Delta_{2\,ij}$.

With $A_{2\alpha\beta}$, $B_{5\alpha\beta}$, $B_{6\alpha\beta}$, $C_{1\gamma\delta}$, $D_{5\gamma\delta}$ defined in equations (276), we can rewrite equation (271) as follows:

$$\frac{4P}{\pi} \left(\frac{1}{2n-1}\right) = - \left\| \sum_{\beta \ge 0}^{\infty} A_{1} \alpha \theta \left(2\pi \int_{a}^{b} r \left[\left[\left[\lambda^{II} + 2G^{II} \right] \beta^{\mu} + k\lambda^{II} \overline{u}_{1}^{2} \alpha \beta \right] \right] \right] \right.$$

$$Z_{0} \left(\overline{u}_{1} \alpha \beta^{r} \right) + M_{\theta} \alpha \beta \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \overline{u}_{1}^{2} \alpha \beta \right] \right]$$

$$W_{0} \left(\overline{u}_{1} \alpha \beta^{r} \right) + M_{7} \alpha \beta \left(2G^{II} \overline{u}_{2} \alpha \beta^{\beta} \right) \left. \left. \sum_{0 \le \alpha \beta^{r}} \left(\frac{1}{2} \alpha^{2} \beta^{r} \right) + M_{9} \alpha \beta \left(2G^{II} \overline{u}_{2} \alpha \beta^{\beta} \right) k_{1} W_{0} \left(\overline{u}_{2} \alpha \beta^{r} \right) \right\} dr + 2\pi \int_{0}^{\alpha} r \left\{ M_{9} \alpha \beta \left[\left(\lambda^{I} + 2G^{I} \right) \beta^{2} + k\lambda^{I} \overline{u}_{1}^{2} \gamma_{\delta} \right] \right.$$

$$Z_{0} \left(\overline{u}_{1} \gamma_{\delta} r \right) + M_{10} \alpha \beta \left(2G^{I} \overline{u}_{2} \gamma_{\delta} \beta \right) Z_{0} \left(\overline{u}_{2} \gamma_{\delta} r \right) \right\} dr \right) \sin(\beta L) \left\| (283)$$

In the equation above, β , $\overline{\mu_1} \alpha \beta$, $\overline{\mu_2} \alpha \beta$, $\overline{\mu_1} \gamma \delta$, $\overline{\mu_2} \gamma \delta$ are determined by equations (272) and the determinant $|d_{ij}|$ with the use of

$$w_n = \frac{2(2n-1)\pi}{T}$$
 (284)

where n = 1, 2, 3....

By the same approach taken in Appendix V of this report, the coefficients $A_{1\alpha\beta}$ of equation (283) are represented by the equation which follows on the next page.

$$\begin{split} A_{1\alpha\beta} \sin(\beta L) &= -\frac{4P}{\pi} \left(\chi_{a}^{a} \left(\frac{1}{2n-1} \right) 2\pi \int_{0}^{a} \left[\int_{0}^{a} \left\{ \frac{1}{N_{0}\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \beta^{2} + k \lambda^{I} \frac{1}{\mu_{1}\gamma\beta} \right] \right] \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\gamma\delta} r \right] + M_{a} \alpha_{\beta\beta} \left(2G^{I} \frac{1}{\mu_{a}\gamma\delta} \beta \right) Z_{0} \left[\overline{\mu_{a}\gamma\delta} r \right] \right] rdr^{2} rdr^{2} rdr + \\ &= \chi_{a}^{a} \left(\frac{1}{2n-1} \right) 2\pi \int_{a}^{b} \left[\int_{a}^{b} \left[\left[\left(\lambda^{II} + 2G^{II} \right) \beta^{2} + k \lambda^{II} \frac{1}{\mu_{1}\alpha\beta} \right] \right] \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \beta^{2} + k \lambda^{II} \frac{1}{\mu_{1}\alpha\beta} \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left[2G^{II} \frac{1}{\mu_{a}\alpha\beta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left(2G^{II} \frac{1}{\mu_{a}\alpha\beta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left(2G^{II} \frac{1}{\mu_{a}\alpha\beta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left(2G^{II} \frac{1}{\mu_{a}\alpha\beta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\gamma\delta} r \right] + M_{10}\alpha\beta} \left(2G^{II} \frac{1}{\mu_{a}\alpha\beta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\gamma\delta} r \right] + M_{10}\alpha\beta} \left(2G^{II} \frac{1}{\mu_{a}\gamma\delta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\gamma\delta} r \right] + M_{10}\alpha\beta} \left[2G^{II} \frac{1}{\mu_{a}\gamma\delta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\gamma\delta} r \right] + M_{10}\alpha\beta} \left[2G^{II} \frac{1}{\mu_{a}\gamma\delta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\gamma\delta} r \right] + M_{10}\alpha\beta} \left[2G^{II} \frac{1}{\mu_{a}\gamma\delta} \beta \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \frac{1}{\mu_{1}^{2}\alpha\beta} \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \frac{1}{\mu_{1}^{2}\alpha\beta} \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left[2G^{II} \frac{1}{\mu_{a}\alpha\beta} r \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left[2G^{II} \frac{1}{\mu_{a}\alpha\beta} r \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left[2G^{II} \frac{1}{\mu_{a}\alpha\beta} r \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] \right] \\ &= Z_{0} \left[\overline{\mu_{1}}_{\alpha\beta} r \right] + M_{0}\alpha\beta} \left[2G^{II} \frac{1}{\mu_{a}\alpha\beta} r \right]$$

where χ_3 and χ_4 are defined as follows:

$$\begin{split} \chi_{a}^{a} \int_{a}^{a} r \left[2\pi \int_{a}^{b} \left\{ \mathcal{H}_{b\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \beta^{2} + \lambda^{I} \overline{u_{1}^{2}}_{\gamma\delta} \right] Z_{0} \left(\overline{u_{1}}_{\gamma\delta} r \right) \right\} r^{d} r^{d} r^{\prime} \cdot \\ & 2\pi \int_{a}^{b} \left\{ \mathcal{H}_{b\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \frac{\beta^{2}}{2} + \lambda^{I} \overline{u_{1}^{2}}_{\gamma\delta} \right] Z_{0} \left(\mu_{1}\gamma_{0}r \right) \right\} \right. \\ & \left. 2\pi \int_{a}^{b} \left\{ \mathcal{H}_{b\alpha\beta} \left[\left(\lambda^{I} + 2G^{I} \right) \frac{\beta^{2}}{2} + \lambda^{I} \overline{u_{1}^{2}}_{\gamma\delta} \right] Z_{0} \left(\mu_{1}\gamma_{0}r \right) \right\} \right. \\ & \left. \mathcal{H}_{b\alpha\beta} \left(2G^{I} \overline{u_{a}}_{\gamma\delta} \frac{\beta}{2} \right) Z_{0} \left(\overline{u_{a}}_{\gamma\delta} \frac{r}{2} \right) \right\} r^{d} r^{I} dr + \\ & \left. \chi_{a}^{a} \int_{a}^{b} r \left[2\pi \int_{a}^{b} \left\{ \left[\left(\lambda^{II} + 2G^{II} \right) \beta^{2} + k\lambda^{II} \overline{u_{1}}_{\alpha\beta} \frac{\beta}{2} \right] Z_{0} \left(\overline{u_{1}}_{\alpha\beta} r^{I} \right) + \right. \\ & \left. \mathcal{H}_{b\alpha\beta} \left[\left[\lambda^{II} + 2G^{II} \right] \beta^{2} + k\lambda^{II} \overline{u_{1}}_{\alpha\beta} \frac{\beta}{2} \right] Z_{0} \left(\overline{u_{1}}_{\alpha\beta} r^{I} \right) + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left(2G^{II} \overline{u_{a}}_{\alpha\beta} \frac{\beta}{2} \right) Z_{0} \left(\overline{u_{a}}_{\alpha\beta} r^{I} \right) \right\} r^{I} dr + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left(2G^{II} \overline{u_{a}}_{\alpha\beta} \frac{\beta}{2} \right) Z_{0} \left(\overline{u_{a}}_{\alpha\beta} r^{I} \right) \right\} r^{I} dr + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left(2G^{II} \overline{u_{a}}_{\alpha\beta} \frac{\beta}{2} \right) Z_{0} \left(\overline{u_{a}}_{\alpha\beta} r^{I} \right) \right\} r^{I} dr + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left(2G^{II} \overline{u_{a}}_{\alpha\beta} \frac{\beta}{2} \right) Z_{0} \left(\overline{u_{a}}_{\alpha\beta} \frac{r}{2} \right) \left[z_{0} \left(\overline{u_{1}}_{\alpha\beta} \frac{r}{2} \right) \right] r^{I} dr + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \frac{\beta^{2}}{2} + k\lambda^{II} \overline{u_{a}}_{\alpha\beta} \frac{r}{2} \right] Z_{0} \left(\overline{u_{1}}_{\alpha\beta} \frac{r}{2} \right) + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \frac{\beta^{2}}{2} + k\lambda^{II} \overline{u_{a}}_{\alpha\beta} \frac{r}{2} \right] Z_{0} \left(\overline{u_{1}}_{\alpha\beta} \frac{r}{2} \right) + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \frac{\beta^{2}}{2} + k\lambda^{II} \overline{u_{a}}_{\alpha\beta} \frac{r}{2} \right] Z_{0} \left(\overline{u_{1}}_{\alpha\beta} \frac{r}{2} \right) + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \frac{\beta^{2}}{2} + k\lambda^{II} \overline{u_{a}}_{\alpha\beta} \frac{r}{2} \right] Z_{0} \left(\overline{u_{1}}_{\alpha\beta} \frac{r}{2} \right) + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left[\left(2G^{II} \overline{u_{a}}_{\alpha\beta\beta} \frac{r}{2} \right] Z_{0} \left(\overline{u_{a}}_{\alpha\beta\beta} \frac{r}{2} \right) \right] r^{I} dr + \\ & \left. \mathcal{H}_{\alpha\beta\beta} \left(2G^{II} \overline{u_{a}}_{\alpha\beta\beta} \frac{r}{2} \right) Z_{0} \left(\overline{u_{a}}_{\alpha\beta\beta} \frac{r}{2} \right) r^{I} dr \right] dr = 0 \quad (286)$$

With $A_{1\alpha\beta}$ found by equation (285) and the eigenvalues obtained from equations (235) through (241), we can get $A_{2\alpha\beta}$, $B_{5\alpha\beta}$, $B_{6\alpha\beta}$, $C_{1\gamma\delta}$, and and $P_{5\gamma\delta}$ from equations (276) and then obtain displacements and stresses of the composite from equations (223) through (228).

APPENDIX VII

÷

water and the period

SOLUTIONS FOR COMPOSITE OF SEMI-INFINITE LENGTH WITH THE END (z = 0) UNDER PIECEWISE-CONSTANT LOADING

By applying boundary conditions (58) on equations (233) and (234), we get

$$\frac{4P}{\pi} \sum_{n=1,2,3...}^{\infty} \frac{1}{2n-1} \sin \frac{2(2n-1)\pi t}{T}$$

$$= -\sum_{n=1,2,3...}^{\infty} \left\| \sum_{\beta>0}^{\infty} \left[2\pi \int_{0}^{\alpha} \left\{ \overline{c}_{\delta \sqrt{\delta}} \left[\left[\lambda^{I} + 2G^{I} \right] \overline{\beta}^{2} - \lambda^{I} \mu_{1}^{2} \sqrt{\delta} \right] J_{0} \left(\mu_{1} \sqrt{\delta r} \right) - \overline{D}_{\delta \sqrt{\delta}} \left\{ 2G^{I} \mu_{2} \sqrt{\delta \overline{\beta}} \right] J_{0} \left(\mu_{2} \sqrt{\delta r} \right) \right\} dr + 2\pi \int_{\alpha}^{b} \left\{ \overline{\lambda}_{\delta \alpha \beta} \left[\left[\lambda^{II} + 2G^{II} \right] \overline{\beta}^{2} - \lambda^{II} \mu_{1\alpha \beta}^{2} \right] J_{0} \left(\mu_{1\alpha \beta} r \right) + \overline{\lambda}_{\delta \alpha \beta} \left[\left[\lambda^{II} + 2G^{II} \right] \overline{\beta}^{2} - \lambda^{II} \mu_{1\alpha \beta}^{2} \right] Y_{0} \left(\mu_{1\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[\left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^{II} \mu_{2\alpha \beta} \overline{\beta} \right] J_{0} \left(\mu_{2\alpha \beta} r \right) - \overline{B}_{\delta \alpha \beta} \left[2G^$$

where

$$\mu_{1}^{2} \alpha_{\beta} = \left(\frac{\omega_{\alpha}}{c_{11}^{11}}\right)^{2} + \overline{\beta}^{2} = \left[\left(\frac{\overline{c}\alpha}{c_{11}^{11}}\right)^{2} + 1\right]\overline{\theta}^{2}$$
$$\mu_{2}^{2} \alpha_{\beta} = \left(\frac{\omega_{\alpha}}{c_{11}^{11}}\right)^{2} + \overline{\theta}^{2} = \left[\left(\frac{\overline{c}\alpha}{c_{11}^{11}}\right)^{2} + 1\right]\overline{\theta}^{2} \qquad (continued)$$

$$\mu_{1\gamma\delta}^{2} = \left(\frac{\omega_{\alpha}}{c_{1}}\right)^{2} + \overline{\beta}^{2} = \left[\left(\frac{\overline{c}\alpha}{c_{1}}\right)^{2} + 1\right]\overline{\beta}^{2}$$

$$\mu_{8\gamma\delta}^{2} = \left(\frac{\omega_{\alpha}}{c_{9}}\right)^{2} + \overline{\beta}^{2} = \left[\left(\frac{\overline{c}\alpha}{c_{9}}\right)^{2} + 1\right]\overline{\beta}^{2} \qquad (288)$$

and

$$\overline{\mathbf{A}}_{\mathbf{7}\mathbf{0}\mathbf{'}\mathbf{\beta}} = \overline{\mathbf{A}}_{\mathbf{8}\mathbf{0}\mathbf{'}\mathbf{\beta}} = \overline{\mathbf{B}}_{\mathbf{7}\mathbf{0}\mathbf{'}\mathbf{\beta}} = \overline{\mathbf{B}}_{\mathbf{8}\mathbf{0}\mathbf{'}\mathbf{\beta}} = \overline{\mathbf{C}}_{\mathbf{7}}\mathbf{\mathbf{0}}\mathbf{\mathbf{'}\mathbf{\beta}} = \overline{\mathbf{D}}_{\mathbf{7}}\mathbf{\mathbf{0}}\mathbf{'}\mathbf{\beta} = 0 \qquad (289)$$

From equation (300), we have

$$\frac{2(2n-1)\pi}{T} = \omega_{0} = \omega_{n} , \quad n = 1, 2, 3... \quad (290)$$

Applying boundary conditions of displacements and stresses at interface and outer surface (equations (45), (46), (229) through (231) and (234)), we get the following relationships between coefficients

$$\overline{A}_{\Theta\alpha\beta} = \frac{\overline{N}_{1}ij}{\left|\overline{\Delta}_{1}j\right|} \quad \overline{A}_{\Theta\alpha\beta} = \overline{M}_{1}\alpha\beta \quad \overline{A}_{\Theta\alpha\beta}$$

$$\overline{B}_{5}\alpha\beta = \frac{\overline{N}_{5}ij}{\left|\overline{\Delta}_{1}j\right|} \quad \overline{A}_{5\alpha\beta} = \overline{M}_{9}\alpha\beta \quad \overline{A}_{5\alpha\beta}$$

$$\overline{B}_{9}\alpha\beta = \frac{\overline{N}_{3}ij}{\left|\overline{\Delta}_{1}j\right|} \quad \overline{A}_{5\alpha\beta} = \overline{M}_{3}\alpha\beta \quad \overline{A}_{5\alpha\beta}$$

$$\overline{C}_{5}\gamma\delta = \frac{\overline{N}_{4}ij}{\left|\overline{\Delta}_{1}j\right|} \quad \overline{A}_{5\alpha\beta} = \overline{M}_{4\alpha\beta} \quad \overline{A}_{5\alpha\beta}$$

$$\overline{D}_{5}\gamma\delta = \frac{\overline{N}_{5}ij}{\left|\overline{\Delta}_{1}j\right|} \quad \overline{A}_{5\alpha\beta} = \overline{M}_{5\alpha\beta} \quad \overline{A}_{5\alpha\beta}$$
(291)

.

where determinants $|\overline{N}_{1\,ij}|$, $|\overline{N}_{3\,ij}|$, $|\overline{N}_{3\,ij}|$, $|\overline{N}_{4\,ij}|$, $|\overline{N}_{8\,ij}|$, and $|\overline{\Delta}_{ij}|$ are defined as follows

For Z	$\bar{\lambda}_{ij}$ (i,j = 1,,5),	
	$\overline{\Delta}_{11} = \mu_{1} \mu_{\beta} Y_1 (\mu_{1} \alpha_{\beta} b)$	
	$\overline{\Delta}_{18} = -\overline{\beta} J_1 (\mu_{12}\beta b)$	
	$\overline{\Delta}_{13} = -\overline{\beta} Y_1 (\mu_1 \alpha \beta b)$	
	$\overline{\Delta}_{14} = 0$,
	$\overline{\Delta}_{15} = 0$	(292)
	$\overline{\Delta}_{g_1} = \mu_1 \alpha_\beta Y_1 (\mu_1 \alpha_\beta a)$	
	$\overline{\Delta}_{gg} = -\overline{\beta} J_1 (\mu_g \alpha \beta a)$	
	$\overline{\Delta}_{\mathbf{g}3} = -\overline{\beta} Y_1 (\mu_{\mathbf{g}}\alpha\beta \mathbf{a})$	
	$\overline{\Delta}_{94} = -\mu_{2\gamma\delta} J_{2} (\mu_{2\gamma\delta} a)$	
	$\overline{\Delta}_{85} = \overline{\beta} J_1 (\mu_{8\gamma\delta} a)$	(293)
	$\overline{\Delta}_{31} = \overline{\beta} Y_0 (\mu_1 \alpha \beta a)$	
	$\overline{\Delta}_{3s} = -\mu_{s}\alpha_{\beta} J_{0} (\mu_{s}\alpha_{\beta} a)$	
	$\overline{\Delta}_{33} = -\mu_{3\alpha\beta} Y_0 (\mu_{3\alpha\beta} a)$	
	$\overline{\Delta}_{34} = -\overline{\beta} J_0 (\mu_2 \gamma_0 P)$	
	$\overline{\Delta}_{35} = \mu_{3\gamma\delta} Y_0 (\mu_{3\gamma\delta} a)$	(294)

$$\overline{\Delta}_{42} = \left[\lambda^{II} \overline{\beta}^{2} - \left(\lambda^{II} + 2G^{II} \right) \mu_{1}^{2} \alpha_{\beta} \right] Y_{0} (\mu_{1} \alpha_{\beta} a) + \frac{2G^{II} \mu_{1} \alpha_{\beta} Y_{1} (\mu_{1} \alpha_{\beta} a)}{a}$$

i

$$\overline{\Delta}_{4.9} = 2G^{II} \mu_{9\alpha\beta} \overline{\beta} \left[J_0 (\mu_{9\alpha\beta} a) - \frac{J_1 (\mu_{9\alpha\beta} a)}{\mu_{9\alpha\beta} a} \right]$$

$$\overline{\Delta}_{4.9} = 2G^{II} \mu_{9\alpha\beta} \overline{\beta} \left[Y_0 (\mu_{8\alpha\beta} a) - \frac{Y_1 (\mu_{8\alpha\beta} a)}{\mu_{8\alpha\beta} a} \right]$$

$$\overline{\Delta}_{4.4} = -\left[\lambda^I \overline{\beta}^2 - \left(\lambda^I + 2G^I \right) \mu_{1\gamma\delta}^2 \right] J_0 (\mu_{1\gamma\delta} a) - \frac{2G^I \mu_{1\gamma\delta} J_1 (\mu_{1\gamma\delta} a)}{a}$$

$$\overline{\Delta}_{45} = -2G^{I} \mu_{2\gamma\delta} \overline{\beta} \left[J_0 \left(\mu_{2\gamma\delta} a \right) - \frac{J_1 \left(\mu_{2\gamma\delta} a \right)}{\mu_{2\gamma\delta} a} \right]$$
(295)

$$\overline{\Delta}_{51} = 2C^{II} \mu_{1\alpha\beta} \overline{\beta} Y_1 (\mu_{1\alpha\beta} a)$$

$$\overline{\Delta}_{53} = -C^{II} (\mu_{3\alpha\beta}^2 + \overline{\beta}^2) J_1 (\mu_{3\alpha\beta} a)$$

$$\overline{\Delta}_{53} = -G^{II} (\mu_{3\alpha\beta}^2 + \overline{\beta}^2) Y_1 (\mu_{2\alpha\beta} a)$$

$$\overline{\Delta}_{54} = -2G^{I} \mu_{1\gamma\delta} \overline{\beta} J_1 (\mu_{1\gamma\delta} a)$$

$$\overline{\Delta}_{55} = G^{I} (\mu_{3\gamma\delta}^2 + \overline{\beta}^2) J_1 (\mu_{3\gamma\delta} a) \qquad (296)$$

For $|\overline{N}_{ij}|$, the elements of the second to the fifth column are the same as the corresponding ones of $|\overline{\Delta}_{ij}|$, and the elements of the first column are as follows

$$(\overline{N}_{1})_{11} = -\mu_{1}\alpha\beta J_{1} (\mu_{1}\alpha\beta b)$$

$$(\overline{N}_{1})_{81} = -\mu_{1}\alpha\beta J_{1} (\mu_{1}\alpha\beta a)$$

$$(\overline{N}_{1})_{81} = -\overline{\beta} J_{0} (\mu_{1}\alpha\beta a)$$

$$(\overline{N}_{1})_{41} = -\left[\lambda^{II} \overline{\beta^{2}} - \left(\lambda^{II} + 2G^{II}\right)\mu_{1}^{2}\alpha\beta\right] J_{0} (\mu_{1}\alpha\beta a) - \frac{2G^{II} \mu_{1}\alpha\beta J_{1} (\mu_{1}\alpha\beta a)}{a}$$

 $(\overline{N}_1)_{51} = -2G^{II} \mu_{1\alpha\beta} \overline{\beta} J_1 (\mu_{1\alpha\beta} a)$ (297)

For $|\overline{N_{0}}_{ij}|$, $|\overline{N_{5}}_{ij}|$, $|\overline{N_{5}}_{ij}|$, $|\overline{N_{5}}_{ij}|$, the elements of the second, third, fourth, and fifth columns are, respectively, the same as equations (297) above, and the rest of their elements are the same as the corresponding elements in $|\overline{\Delta}_{ij}|$.

With $\overline{A}_{3\Omega2\beta}$, $\overline{B}_{5\Omega2\beta}$, $\overline{B}_{6\Omega2\beta}$, $\overline{C}_{6\gamma\delta}$, $\overline{D}_{5\gamma\delta}$ defined as equations (291) to (297), we can rewrite equation (287) as follows

$$\frac{4P}{\pi} \left(\frac{1}{2n-1} \right) = - \left\| \sum_{\beta>0}^{\infty} \overline{A}_{\beta\alpha\beta} \right\| \left[2\pi \int_{a}^{b} \left\{ \left[\left[\lambda^{II} + 2G^{II} \right] \overline{\beta}^{2} - \lambda^{II} \mu_{1}^{2} \alpha\beta \right] \right] J_{0} \left(\mu_{1} \alpha\beta r \right) + \overline{M}_{1} \alpha\beta \left[\left[\lambda^{II} + 2G^{II} \right] \overline{p}^{2} - \lambda^{II} \mu_{1}^{2} \alpha\beta \right] Y_{0} \left(\mu_{1} \alpha\beta r \right) - \overline{M}_{0} \alpha\beta \left[2G^{II} \mu_{3} \alpha\beta \overline{\beta} \right]^{\circ} \right] J_{0} \left(\mu_{3} \alpha\beta r \right) - \overline{M}_{3} \alpha\beta \left[2G^{II} \mu_{3} \alpha\beta \overline{\beta} \right] Y_{0} \left(\mu_{3} \alpha\beta r \right) - \overline{M}_{3} \alpha\beta \left[2G^{II} \mu_{3} \alpha\beta \overline{\beta} \right] Y_{0} \left(\mu_{3} \alpha\beta r \right) \right] dr + dr$$
+
$$2\pi \int_{G}^{A} \left\{ \overline{M}_{6} \alpha \beta \left[\left[\lambda^{I} + 2G^{I} \right] \overline{\beta}^{2} - \lambda^{I} \mu_{1}^{2} \gamma \delta \right] J_{0} \left(\mu_{1} \gamma \delta^{T} \right) - \overline{M}_{8} \alpha \beta \left[2G^{I} \mu_{9} \gamma \delta \overline{\beta} \right] J_{0} \left(\mu_{2} \gamma \delta^{T} \right) \right\} dr \right) \right\}$$
(298)

In this equation, $\overline{\beta}$, $\mu_1 \alpha_\beta$, $\mu_3 \alpha_\beta$, $\mu_1 \gamma_0^{\circ}$, $\mu_3 \gamma_0^{\circ}$ are determined by equations (288) and the determinant $|\overline{d}_{ij}|$ (Appendix IV) with the use of

1

$$w_n = \frac{2(2n-1)\pi}{T}$$
, $n = 1, 2, 3, ...$ (299)

Using the same technique in the representation of a function into a nonorthogonal eigenfunctions, we get

$$\begin{split} \mathbf{A}_{\mathbf{a}\mathbf{c}\mathbf{c}\mathbf{\beta}} &= -\frac{4P}{\pi} \left[\left[\overline{\chi}_{1}^{2} \left(\frac{1}{2n-1} \right) 2\pi \int_{0}^{a} \left[\int_{0}^{a} \left\{ \overline{\chi}_{\mathbf{a}\alpha\mathbf{\beta}}^{a} \left[\left[\lambda^{I} + 2G^{I} \right] \overline{\beta}^{a} - \lambda^{I} \mu_{1}^{2} \gamma \mathbf{\delta} \right] J_{0} \left(\mu_{1}\gamma \delta^{2} \right) - \overline{M}_{\mathbf{a}\alpha\mathbf{\beta}} \left[2G^{I} \mu_{\mathbf{a}\gamma\mathbf{\delta}} \overline{\beta} \right] J_{0} \left(\mu_{\mathbf{a}\vee\delta\mathbf{r}} \right) \right] \mathbf{r}^{\dagger} d\mathbf{r}^{\dagger} \mathbf{r} \mathbf{r} \mathbf{r} + \\ \overline{\chi}_{\mathbf{a}}^{2} \left\{ \frac{1}{2n-1} \right\} 2\pi \int_{a}^{b} \left[\int_{a}^{b} \left\{ \left[\left[\lambda^{II} + 2G^{II} \right] \overline{\beta}^{a} - \lambda^{II} \mu_{1}^{2} \gamma \beta \right] J_{0} \left(\mu_{1}\alpha\beta\mathbf{r} \right) + \right. \\ \overline{M}_{\mathbf{a}\alpha\beta} \left[\left[\lambda^{II} + 2G^{II} \right] \overline{\beta}^{a} - \lambda^{II} \mu_{2}^{2} \gamma \beta \right] Y_{0} \left(\mu_{1}\alpha\beta\mathbf{r} \right) - \\ \overline{M}_{\mathbf{a}\alpha\beta} \left[\left[\lambda^{II} + 2G^{II} \right] \overline{\beta}^{a} - \lambda^{II} \mu_{2}^{2} \gamma \beta \right] Y_{0} \left(\mu_{1}\alpha\beta\mathbf{r} \right) - \\ \overline{M}_{\mathbf{a}\alpha\beta} \left[2G^{II} \mu_{\mathbf{a}\alpha\beta} \overline{\beta} \right] J_{0} \left(\mu_{\mathbf{a}\alpha\beta}\mathbf{r} \right) - \overline{M}_{3\alpha\beta\beta} \left[2G^{II} \mu_{\mathbf{a}\alpha\beta} \overline{\beta} \right] \\ Y_{0} \left(\mu_{\mathbf{a}\alpha\beta}\mathbf{r} \right) \right] \mathbf{r}^{\dagger} d\mathbf{r}^{\dagger} \mathbf{r} \mathbf{r} \mathbf{r} \right] \mathbf{r} \mathbf{r} \mathbf{r}$$

$$- \overline{M}_{a\alpha\beta} \left[2G^{I}\mu_{e\gamma\delta} \overline{\beta} \right] J_{0} \left(\mu_{a\gamma\delta}r\right) \left\{ dr^{I} \right]^{2} r dr + \overline{\chi}_{e}^{a} \int_{a}^{b} \left[2\pi \int_{a}^{b} r^{I} \left\{ \left[\left(\lambda^{II} + 2G^{II} \right) \overline{\beta}^{a} - \lambda^{II}\mu_{i\alpha\beta}^{a} \right] J_{0} \left(\mu_{i\alpha\beta}r\right) + \overline{M}_{i\alpha\beta} \left[\left(\lambda^{II} + 2G^{II} \right) \overline{\beta}^{a} - \lambda^{II}\mu_{i\alpha\beta}^{a} \right] Y_{0} \left(\mu_{i\alpha\beta}r\right) - \overline{M}_{a\alpha\beta} \left[2G^{II}\mu_{e\alpha\beta} \overline{\beta} \right] J_{0} \left(\mu_{e\alpha\beta}r\right) - \overline{M}_{e\alpha\beta} \left[2G^{II}\mu_{e\alpha\beta} \overline{\beta} \right] Y_{0} \left(\mu_{e\alpha\beta}r\right) \left\{ dr^{I} \right]^{a} r dr \right]$$
(300)

where $\overline{\chi_1}$ and $\overline{\chi_2}$ are defined as follows

$$\begin{split} \overline{\chi}_{1}^{\mathfrak{g}} \int_{0}^{\mathfrak{a}} r \left[\left(2\pi \int_{\mathfrak{a}}^{\mathfrak{b}} \left| \overline{\mathfrak{M}}_{\mathfrak{s}\mathfrak{c}\mathfrak{q}\mathfrak{b}} \left[\left[\lambda^{\mathrm{I}} + 2\mathrm{G}^{\mathrm{I}} \right] \overline{\beta}^{\mathfrak{g}} - \lambda^{\mathrm{I}} \mu_{1}^{\mathfrak{g}} q_{\mathfrak{b}} \right] J_{0} \left(\mu_{1} \gamma_{\mathfrak{b}} r \right) - \\ \overline{\mathfrak{M}}_{\mathfrak{s}\mathfrak{G}\mathfrak{g}\mathfrak{b}} \left[2\mathrm{G}^{\mathrm{I}} \mu_{\mathfrak{s}} \gamma_{\mathfrak{b}} \overline{\mathfrak{p}} \right] J_{0} \left(\mu_{\mathfrak{s}} \gamma_{\mathfrak{b}} r \right) \right] \right\} r^{\mathrm{d}} r^{\mathrm{d}} \cdot 2\pi \int_{\mathfrak{a}}^{\mathfrak{b}} \cdot \left\{ \overline{\mathfrak{M}}_{\mathfrak{s}\mathfrak{G}\mathfrak{g}\mathfrak{g}} \left[\lambda^{\mathrm{I}} + 2\mathrm{G} \right] \overline{\mathfrak{p}}^{\mathfrak{g}} - \\ \lambda^{\mathrm{I}} \mu_{1}^{\mathfrak{s}} \gamma_{\mathfrak{b}} \right] J_{0} \left(\mu_{1} \gamma_{\mathfrak{b}} r \right) - \overline{\mathfrak{M}}_{\mathfrak{s}\mathfrak{g}\mathfrak{g}\mathfrak{g}} \left(2\mathrm{G}^{\mathrm{I}} \mu_{\mathfrak{s}} \gamma_{\mathfrak{b}} \overline{\mathfrak{p}} \right) J_{0} \left(\mu_{\mathfrak{s}} \gamma_{\mathfrak{b}} r \right) \right\} r^{\mathrm{d}} r^{\mathrm{d}} + \\ \overline{\chi}_{\mathfrak{s}}^{\mathfrak{s}} \int_{\mathfrak{a}}^{\mathfrak{b}} r \left[\left(2\pi \int_{\mathfrak{a}}^{\mathfrak{b}} \left\{ \left[\left[\lambda^{\mathrm{II}} + 2\mathrm{G}^{\mathrm{II}} \right] \overline{\mathfrak{p}}^{\mathfrak{s}} - \lambda^{\mathrm{II}} \mu_{\mathfrak{s}}^{\mathfrak{g}} \overline{\mathfrak{p}} \right] J_{0} \left(\mu_{\mathfrak{s}} \gamma_{\mathfrak{b}} r \right) + \\ \overline{\chi}_{\mathfrak{s}}^{\mathfrak{s}} \int_{\mathfrak{a}}^{\mathfrak{b}} r \left[\left(2\pi \int_{\mathfrak{a}}^{\mathfrak{b}} \left\{ \left[\left[\lambda^{\mathrm{II}} + 2\mathrm{G}^{\mathrm{II}} \right] \overline{\mathfrak{p}}^{\mathfrak{s}} - \lambda^{\mathrm{II}} \mu_{\mathfrak{s}}^{\mathfrak{g}} \overline{\mathfrak{p}} \right] J_{0} \left(\mu_{\mathfrak{s}} \gamma_{\mathfrak{b}} r \right) + \\ \overline{\mathfrak{M}}_{\mathfrak{s}} \mathfrak{s} \left[\left[\lambda^{\mathrm{II}} + 2\mathrm{G}^{\mathrm{II}} \right] \overline{\mathfrak{p}}^{\mathfrak{s}} - \lambda^{\mathrm{II}} \mu_{\mathfrak{s}}^{\mathfrak{s}} \mathfrak{q} \right] Y_{0} \left(\mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} r \right) - \\ \\ \overline{\mathfrak{M}}_{\mathfrak{s}} \mathfrak{s} \left(2\mathrm{G}^{\mathrm{II}} \mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} \overline{\mathfrak{s}} \right) J_{0} \left(\mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} r \right) - \overline{\mathfrak{M}} \mathfrak{s} \alpha_{\mathfrak{p}} \left(2\mathrm{G}^{\mathrm{II}} \mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} \overline{\mathfrak{p}} \right) J_{0} \left(\mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} r \right) + \\ \\ \overline{\mathfrak{M}}_{\mathfrak{s}} \mathfrak{s} \left(2\mathrm{G}^{\mathrm{II}} \mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} \overline{\mathfrak{s}} \right) J_{0} \left(\mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} r \right) - \overline{\mathfrak{M}} \mathfrak{s} \alpha_{\mathfrak{p}} \left(2\mathrm{G}^{\mathrm{II}} \mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} \overline{\mathfrak{p}} \right) J_{0} \left(\mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} r \right) + \\ \\ \overline{\mathfrak{M}}_{\mathfrak{s}} \mathfrak{s} \left[\left[\lambda^{\mathrm{II}} + 2\mathrm{G}^{\mathrm{II}} \right] \overline{\mathfrak{s}}^{\mathfrak{s}} - \lambda^{\mathrm{II}} \mu_{\mathfrak{s}}^{\mathfrak{s}} \mathfrak{s} \right] Y_{0} \left(\mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} r \right) - \\ \\ \\ \overline{\mathfrak{M}}_{\mathfrak{s}} \mathfrak{s} \left[\left[\lambda^{\mathrm{II}} + 2\mathrm{G}^{\mathrm{II}} \right] \overline{\mathfrak{s}}^{\mathfrak{s}} - \lambda^{\mathrm{II}} \mu_{\mathfrak{s}}^{\mathfrak{s}} \mathfrak{s} \right] Y_{0} \left(\mu_{\mathfrak{s}} \alpha_{\mathfrak{p}} r \right) - \\ \\ \end{array} \right] \right]$$

-
$$\overline{M}_{\alpha\beta}\left(2G^{II}\mu_{\alpha\beta}\overline{\beta}\right)$$
 Jo $(\mu_{\alpha\beta}r)$ -

$$\overline{M}_{3\alpha\beta}\left(2G^{II}\mu_{3\alpha\beta}\right)\overline{E} Y_{0}\left(\mu_{3\alpha\beta}r\right)\right\} r'dr' dr = 0 \quad (301)$$

In the equations, $\underline{\alpha}$, $\underline{\beta}$, $\underline{\beta}$, $\underline{\gamma}$, $\underline{\delta}$ indicate the values that are different from that of α , β , $\overline{\beta}$, γ , δ , respectively.

APPENDIX VIII

EVALUATION OF AN INTEGRAL

In this appendix are given the details on the evaluation of the integral

$$\tau(z,t) = \int_{0}^{\infty} \frac{\cos(\xi z) \sin\left|\xi \frac{at}{\sqrt{1+b^{2}\xi^{2}}}\right| d\xi}{\xi (1+b^{2}\xi^{2})^{3/2}}$$
(302)

.

..

taking into account the development in series of sine, equation (302) can be written

$$\tau(z,t) = \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{(2\nu+1)!} (at)^{2\nu+1} \int_{0}^{\infty} \frac{\xi^{2\nu} \cos\xi z}{(1+b^{2}\xi^{2})^{2}(\nu+2)} d\xi \quad (303)$$

On the other hand, using the identity

$$g^{\bullet \vee} = \sum_{\mu=0}^{\nu} A_{\mu} \left(1 + b^2 g^2 \right)^{\mu}$$
$$A_{\mu} = (-1)^{\nu-\mu} \left(\frac{\nu}{\mu} \right) b^{-2\nu}$$

with

W Hand

equation (303) is expressed as

$$\tau(z,t) = at \sum_{\nu=0}^{\infty} \frac{\left(\frac{at}{b}\right)^{2\nu}}{(2\nu+1)!} \sum_{\mu=0}^{\nu} (-1)^{\mu} {\binom{\nu}{\mu}} \int_{0}^{\infty} \frac{\cos\{z,d\}}{\left(1+b^{2}\xi^{2}\right)^{2}(\nu+2)-\mu} (304)$$

The following step is the evaluation of the integral that appears in equation (304),

$$\int_{0}^{\infty} \frac{\cos\{z \, d\}}{\left|1 + b^{2}\xi^{2}\right|^{2} (\nu+2) - \mu}$$
(305)

.

• '

i

.

•

for which we need to solve the complex integral

$$I = \int_{0}^{\infty} \frac{\cos \mu z}{\left(a^{2} + z^{2}\right)^{n}} dz = \operatorname{Re} \int_{0}^{\infty} \frac{e^{i\mu z}}{\left(a^{2} + z^{2}\right)^{n}}$$
(306)

where z is now the complex independent variable and μ and a are constants. Through development in the factors of the denominator, we obtain

I = Re
$$\frac{1}{(2ia)^n} \int_0^\infty \frac{e^{i\mu z} dz}{(z - ia)^n \left| 1 + \frac{z - ia}{2ia} \right|^n}$$
 (307)

taking into account that

2

÷

.

,

ł

.

$$\left(1 + \frac{z - ia}{2ia}\right)^{-n} = \sum_{m=0}^{\infty} {\binom{-n}{m}} \frac{(z - ia)^{m}}{(2ia)^{m}}$$
$$e^{i\mu z} = e^{-\mu a} e^{i\mu (z - ia)} = e^{-\mu a} \sum_{r=0}^{\infty} \frac{i^{r}}{r!} \mu^{r} (z - ia)^{r}$$

equation (307) becomes

$$I = \frac{e^{-\mu a}}{(2ia)^n} \int_0^\infty \frac{1}{(z - ia)^n} \sum_{m=0}^\infty {\binom{-n}{m}} \frac{(z - ia)^m}{(2ia)^m} \sum_{r=0}^\infty \frac{i^r}{r!} \mu^r (z - ia)^r$$
(308)

By putting $r + m - n = \sigma$, equation (308) is transformed into

$$I = Re \frac{e^{-ua}}{(2ia)^n} \sum_{\sigma=-n}^{\infty} \int_0^{\infty} (z - ia)^{\sigma} dz \sum_{m=0}^{m+\sigma} {\binom{-n}{m}} \frac{(i)^{m+\sigma-m} n+\sigma-m}{(2ia)^m (n-m+\sigma)!}$$
(309)

Remembering that

and a state of the state of the

And the second second

$$\int_{0}^{\infty} (z - ia)^{\sigma} dz = \begin{cases} 2\pi i & \text{for } \sigma = -1 \\ 0 & \text{for } \sigma = 0 \end{cases}$$

equation (309) can be written in the following form:

$$I = \operatorname{Re} \frac{e^{-\mu a}}{(2a)^{n}} 2\pi \sum_{m=0}^{n-1} {\binom{-n}{m}} \frac{\mu^{n-1-m}}{(n-1-m)!}$$
$$= \frac{2\pi e^{-\mu a}}{(2a)^{2n-1} (n-1)!} \sum_{k=0}^{n-1} (2a\mu)^{k} \frac{(2n-k-2)!}{(n-k-1)! k!}$$
(310)

where k = n - m - 1.

Then, by using equations (306) and (310), we can write integral (305) in the following manner:

$$\int_{0}^{\infty} \frac{\cos \xi z}{(1+b^{2}\xi^{2})^{2}(\nu+2)-\mu} = \frac{\pi e^{-z/b}}{b\cdot 4^{2\nu-\mu+3}} \cdot \frac{1}{(2\nu-\mu+3)!} \cdot \frac{2\nu-\mu+3}{k^{2}(2\nu-\mu+3)!} \cdot \frac{2\nu-\mu+3}{k^{2}(2\nu-\mu+3)!}$$
(311)

By introducing equation (311) into equation (304), we finally obtain

$$\tau(z,t) = \int_{0}^{\infty} \frac{\cos(\xi z) \sin\left(\frac{\xi}{2} \frac{at}{\sqrt{1+b^{2} \xi^{2}}}\right) d\xi}{\xi \left(1+b^{2} \xi^{2}\right)^{3/2}}$$

$$= \frac{\pi}{4} e^{-z/b} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} \nu!}{(2\nu+1)!} \left(\frac{at}{2b}\right)^{2\nu+1} \left(\frac{z}{b}\right)^{\nu} \sum_{\mu=0}^{\nu} \frac{(-1)^{\mu} \left(\frac{z}{b}\right)^{\mu}}{\frac{u!}{(\nu+\mu+3)!}} \cdot \frac{\sum_{k=-3}^{\nu+\mu} \left(\frac{b}{2z}\right)^{k} \frac{(\nu+\mu+k+6)!}{(3+k)! (\nu+\mu-k)!}}{(312)}$$

APPENDIX IX

COMPUTER PROGRAMS FOR THE DETERMINATION OF EIGENFREQUENCIES AND WAVELENGTH IN A COMPOSITE ELEMENT

BBACBAH CABCEA
C CIPCULAN BUTER NOTINGARY
COMMONTBESSLTMESSELJIZIZISI BESSELVIZIZISI
COMMON/MU/FMUIAB+ FMUIAB+ FMUIGD+ FMUIGD
COMMON/IMAG/STON(4) ; [MAG14]
COMMON/14PU?/A:B:G1:G2:FLAMDA1:FLAMDA2:BETA:BETASO:ONEGA.OHEGASO
COMMON/MAT/C(6+6)+KR(6)
<u></u>
COMMON /DATAZ/CIANFA1 (CIANFA2
NITERSINE (LISISI) SCREENSII PRULTI Dimpension (Lisisi)
DATA (#1 = 1.141507451)
6
READ VOY . A. EI . EX . PRUT . PRUT . PROT . RHOT . RHOT . V L. OHEGA . BEYA. BELTA
1 • PK11• PK12
READ YOL . ITTR
445 FORMAT(8F10.5)
700 FORMATIAF20.51
701 FORMAT(515)
FN = 1.
J = 0 S JFLAG = 1
OMEGASO + OMEGA + OMEGA
$\mathbf{B} = \mathbf{A} + \mathbf{SORTF}(1, / \mathbf{VF})$
• FLAMDA1 = E1*FNU1/((1.+FNU1)*(12.*FNU1))
FLAMDA2 = E2*FNU2/((1++FNU2)*(1+-2+FNU2))
GI = EI/(2**(1*+FNUI)) 5 $G2 = E2/(2**(1*+FNUZ))$
(AARTAZ + P) + P = (AREA)
C 11250 = 62/8402
PRINT 600+ A+ F1+ E2+ B+ FNU1+ FNU2+ VF+ G1+ G2+ FL+ RHO1+ RHO2+
FN. FLAMDA1. FLAMDA2. OMEGA. TGL
600 FORMAT(3H1A +F20,5+10X+6HF1 +F17+5+10X+6HE2 +E17+5+/+
- 3HOR + F20.5+10X+6HNU1 + F17.5+10X+6HNU2 + F17.5+/+
3HOVF * E20 * 5 * 10X * 6HG 1 * F17 * 5 * 10X * 6HG 2 * E17 * 5 * / *
61100MEGA+E17-5+ / +6H0TOL +E17-5+ / +4H3 J+7X+6H8ETA +11X+
SHDETRM+IOX+IIHFMUIAB (H2)+9X+IIHFMUZAB (K2)+9X+IIHFMUIGD (H1
• 9X.11HFMU2GD (K1), /)
Z (ALL MATRIX
LELIDET CO. OL CO TO 20
AMARTINE AMARTINE AMARTIMENT
20 J + J+1
PRINT 601. J. BETA . DETRM. (FMULLI). IMAGLIL. INLAS
601 FORMAT(14, 2E17.8, 4(F17.7, A31. /)
TOL = 1+E=6
CALL ROOT (HETA+ DETRM+ TOL+ DELTA + DIFF+ JJ+ JFLAG)

An IF(J, I, T. ITFR) GO TO 2 PRINT AND		17(JJ) 70. 80. 85 70 PRINT 602 5 60 TO 1 602 FORMAT(////. 10X. 20HSTFRATION
C AS PRINT AGA. BETA. DIFF 606 FORMAT(//: TH BETA =:EIT.8: IDX.TH DIFF =: EIT.8) CALL MATRIX C II = 1 DO SO I=1.A IF(I) = 70.700 TO 90 DO 89 J2216 S JJ = J = 1 CC(II-JJ) = C(I-J) R0 CONTINUE RATII = -C(I-1) II = 11 + 1 90 CONTINUE CALL NUMATINVICC.BB.SCRATCH.6.5.1.DET.IDET. C CALL NUMATINVICC.BB.SCRATCH.6.5.1.DET.IDET. C FM GAR = DA(1) FM TAR = RD(2) FM GAR = RA(3) FM GAR = RA(3) FM GAR = RA(4) FM TAR = RD(2) CALL SIMCON(O.A.TEST.LIM.ARCA2.NOI2.R2.F2) CALL SIMCON(O.A.TEST.LIM.ARCA2.NOI2.R2.F2) CALL SIMCON(O.A.TEST.LIM.ARCA3.NOI3.R3.F3) C ARFA1 = DIS((12.STAUJ)FK11/(I1.STAUJ)1)1.1.SF2(8+2-A+2) A3AR = -AREAJ/(IARFA2*ARFA3)SIMF(AFTAFL)1 - RB(6) = .3. C PRINT GOS.(RA(1)]1-1-1.51.63AB GOS FORMAT(/.SOB =: S20.5.10X.M FAB =: S20.5.10X.M F	10 g. ggi i manina in 11 g =	AD IF (J .LT. ITFR) GD TO 2 PRINT 604+ BETA+ DIFF
CALL MATRIX C 11 = 1 DO. 90 1=1.4. 19(1 + F0, 2)160 TO 90 OR 49 J=2:6 S 10 = J - 1 C(11(JJ) = C(1+J) A9 CONTINUF AA(11) = -C(1+J) 11 = 11 + 1 90 CONTINUF C CALL NWMATINV(CC+BB+SCRATCH+6+5+1+DET+TDET) C FM 6AB = DA(1) FM 7AB = BA(2) FM 6AB = DA(1) FM 7AB = BA(2) FM 6AB = BA(3) FM 6AB = CARCAL C C C C AAAB = PI=((12,*FAU2)*F(1)/((1,*FAU2)*F(3)*F3) C AAAB = -AR(A)(1)(A*FA2*ARFA3)*SINF(BFTA*FL)) AB(6) = A3AB C PRINT A05, (AB(1), J=1, 5), A3AB 605 FORMAT(/, IOM 6AB = '.620(5)(0X,'M 7AB ='.620(5)(0X,'A 3AB ='.620(5)(0X,'A 3))	AS PRINT ANA. RETA. DIFF 604 FORMAT(//. TH BETA =. E17.8. 10
<pre>C</pre>	0	CALL MATRIX
h0 en 1=1+A 1 1=1+A 1 1 1 1 1 1 2 C(1+J) 2 1 2 C(1+J) 2 1 1 - C(1+J) 1 - C(1+J) 1 1 - C(1+J) - C C C C C - C C C TEST = 1+F-4 C C L1M = 20 C C C C TEST = 1+F-4 C C C C TEST = 1+F-4 C L1M = 20 C C C C		د
1#(1, #G, 2)(G) TO #0 DD R9_J=2:6 JJ = J = 1 CC(II)JJ = C(I:J) A CONTINUE RR(I) = -C(I:I) I = II + 1 90 CONTINUE CALL NWMATINVICC:000.SCRATCH.6:5:I.DET.IDET. C CALL NWMATINVICC:000.SCRATCH.6:5:I.DET.IDET.IDET. C CALL SAMCON(A:BR(1)) PR(6) = 1: C CALL SIMCON(A:B.TEST:LIM:ARCA2:NO12:R2:F2) CALL SIMCON(0:+A.TEST:LIM:ARCA2:NO13:R3:F3) C CALL SIMCON(0:+A.TEST:LIM:ARCA2:NO13:R3:F3) C CALL SIMCON(0:+A.TEST:LIM:ARCA2:NO13:R3:F3) C CALL SIMCON(0:+A.TEST:LIM:ARCA2:NO13:R3:F3) C AAFA = PNU2:F1/2/(1]:+FNU2:F1/(1]:+FNU1)*(1]:-2:*FNU1):1:1:1:1:*F1*A**************************		00 90 1=1+6
(P) A y J 2 2 0 y (C(11) J) = C(1+J) (C(11) J) = C(1+J) II = II + 1 90 CONTINUIF (ALL NUMATINVICC-BB-SCRATCH-6+3+1+DET+IDET) C CALL NUMATINVICC-BB-SCRATCH-6+3+1+DET+IDET) C CALL NUMATINVICC-BB-SCRATCH-6+3+1+DET+IDET) C CALL NUMATINVICC-BB-SCRATCH-6+3+1+DET+IDET) C CALL SIMCONI A+B+IEST+LIM+ARCA2+NOI2+R2+F2) CALL SIMCONI A+B+IEST+LIM+ARCA2+NOI2+R2+F2) CALL SIMCONI A+B+IEST+LIM+ARCA3+NOI3+R3+F3) C TEST = 1+F-4 LIM = 20 CALL SIMCONI A+B+IEST+LIM+ARCA3+NOI3+R3+F3) C TEST = 1+F-4 LIM = 20 CALL SIMCONI A+B+IEST+LIM+ARCA3+NOI3+R3+F3) C ARFA1 = PI+((2+FNU2)+FK11/((1++FNU2)+(1+-2+FNU2))+1+1+(2+FNU2)+1+1+(2+FNU2)+1+1+1+F2+(FA+FE+1)) ABI(6) = -AREA1/((ARFA2+ARFA3)+SINF(RFTA+FL1) ABI(6) = -AREA1/((ARFA2+ARFA3)+SINF(RFTA+FL1)) ABI(6) = -AREA1/((ARFA2+ARFA3)+SINF(RFTA+FL1) ABI(6) = -AREA1/((ARFA2+ARFA3)+SINF(RFTA+FL1)) ABI(6) = -AREA1/((ARFA2+ARFA3)+SINF(RFTA+FL1)) ABI(6) = -AREA1/((ARFA2+ARFA3)+SINF(RFTA+FL1)) ABI(6) = -AREA1/((ARFA2+ARFA3)+SIN		1F(] .FQ. 2)GO TO 40
A9 CONTINUE RR(11) = -C(1+1) 11 = 11 + 1 90 CONTINUE CALL NUMATINVICCOBS.SCRATCH.6.3.1.DET.TDET. C CALL NUMATINVICCOBS.SCRATCH.6.3.1.DET.TDET. C CALL NUMATINVICCOBS.SCRATCH.6.3.1.DET.TDET. C CALL NUMATINVICCOBS.SCRATCH.6.3.1.DET.TDET. C CALL NUMATINVICCOBS.SCRATCH.6.3.1.DET.TDET. C CALL SIMCON(A.B.TEST.LIM.ARCA2.NO12.R2.F2) CALL SIMCON(A.B.TEST.LIM.ARCA2.NO12.R2.F2) CALL SIMCON(A.B.TEST.LIM.ARCA2.NO12.R2.F2) CALL SIMCON(A.B.TEST.LIM.ARCA2.NO12.R2.F2) CALL SIMCON(A.B.TEST.LIM.ARCA3.NO13.R3.F3) C ARFA1 = PI*((2.*FNU1*FK11/((1.*FNU1)*(12.*FNU1))))+1.)*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU1))))+1.)*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU1))))+1.*]*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU1))))+1.*]*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU1))))+1.*]*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU1))))+1.*]*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU1))))+1.*]*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU1))))+1.*]*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU1))))))))))))))))))))))))))))))))))))		$\frac{1}{CC(11+JJ)} = \frac{1}{CC(11+JJ)} = \frac{1}{CC(11$
RA(1): = -C(T,1) II = II + 1 90 CONTINUE CALL NUMATINV(CC:BB.SCRATCH.6.3.1.DET.IDET) C CALL NUMATINV(CC:BB.SCRATCH.6.3.1.DET.IDET) C CALL NUMATINV(CC:BB.SCRATCH.6.3.1.DET.IDET) C CALL NUMATINV(CC:BB.SCRATCH.6.3.1.DET.IDET) C C FM 6AR = RA(1) FM 9AR = RR(3) FM 9AR = RR(5) PR(61) = 1. C CALL SIMCON(A.P.IEST.LIM.AREA2.NOI2.R2.F2) CALL SIMCON(A.P.IEST.LIM.AREA3.NOI3.R3.F3) C CALL SIMCON(A.P.IEST.LIM.AREA3.NOI3.R3.F3) C ARFA1 = PIP(((2.*FRU2*FR12/((1.*FRU2)*(12.*FRU2)))*).1*EE*(R*E*2*(R**2*-A**2)) A3R = -AREA1/((IARFA2+ARFA3)*SINF(RFTA*FL)) RB(6) = A3AP PRINT A05.(RB(1).).1*E2*(RFA2+ARFA3)*SINF(RFTA*FL)) RB(6) = A3AP OS FORMAT(/.'OM 6AB = '*E20.5:10X*'M 7AB ='*E20.5:10X*'M RAB ='*E20 C /'.'OM 9AB = '*E20.5:10X*'M 7AB ='*E20.5:10X*'A 3AB C /'.'OM 9AB = '*E20.5:10X*'M 7AB ='*E20.5:10X*'A 3AB ='*E20 C /'.'OM 9AB = '*E20.5:10X*'M 7AB ='*E20.5:10X*'A 3AB ='*E20 C /'.'OM 9AB = '*E20.5:10X*'M 7A		AQ CONTINUE
11 = 11 + 1 90 CONTINUE C CALL NUMATINV(CC:BB·SCRATCH+6+5+1+DET) C FM 6AR = CA(1) FM 7AR = RD(2) FM 8AR = RA(3) FM 9AR = RR(5) PB(6) = 1+ C TEST = 1+F-4 LIM = 20 CALL SIMCON(A+P+TEST+LIM+ARCA2+NO12+R2+F2) CALL SIMCON(A+P+TEST+LIM+ARCA3+NO13+R3+F3) C TEST = 1+F-4 LIM = 20 CALL SIMCON(0+A+TEST+LIM+ARCA3+NO12+R2+F2) CALL SIMCON(0+A+TEST+LIM+ARCA3+NO13+R3+F3) C ARFA1 = PI+(((2+FNU1+FK11//(11+FNU1)+(11+-2+FNU1)+1)+1+)+F2+(R++2+A++2) A3AR = -ARCA1//(1ARFA2+ARFA3)*SINF(RFTA*F1) A3AR = -ARCA1//(1ARFA2+ARFA3)*SINF(RFTA*F1) A3AR = -ARCA1//(1ARFA2+ARFA3)*SINF(RFTA*F1) A3AR = -ARCA1//(ARFA2+ARFA3)*SINF(RFTA*F1) A3AR = FM 6AS = *C20.5+10X+M 7AB =*C20.5+10X+M 7A		AR(11) = -C(1+1)
C CALL NWMATINVICC.BB.SCRATCH.6.3.1.DET.IDET. C FM 6AR = DA(1) FM 7AR = AB(2) FM 8AR = AB(3) FM 0AR = AB(4) FM 0AR = AB(4) FM 0AR = AB(5) RB(6) = 1. C IEST = 1.F-4 LIM = 20 CALL SIMCON(A.B.TEST.LIM.AREA2.NO12.R2.F2) CALL SIMCON(0.+A.TEST.LIM.AREA3.NO13.R3.F3) C ARFA1 = P1*(((2.*FNU]*FK11/((1.+FNU1)*(12.*FNU1))))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU1)*(12.*FNU1)))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU1)*(12.*FNU1)))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU1)*(12.*FNU1)))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU1)*(12.*FNU2)))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU2)))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU2)))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU2)))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU2))).1*E1*A** * ((2.*FNU2*FK12)) * ((1.*FNU2*FK12)) * ((1.*FNU2*FK12)) * ((1.*FNU2*FK12)) * (1.*FNU2*FK12) * (1.*FNU2*FK12)		
CALL NWMAYINVICC:08.3CRATCH.6.3.1.DET.IDET. C FM 6AR = DA(1) FM 7AR = AB(2) FM 8AR = AB(3) FM 0AR = AB(3) FM 0AR = AB(5) FM 0AR = AB(5) RB(6) = 1. C TEST = 1.F-4 LIM = 20 CALL SIMCON(A.B.TEST.LIM.AREA2.NO12.R2.F2) CALL SIMCON(0.4.TEST.LIM.AREA3.NO13.R3.F3) C ARFA1 = PI*(((2.*FNU]*FK11/((1.*FNU1)*(12.*FNU1)))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU1)*(12.*FNU1))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU1)*(12.*FNU1))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU1)*(12.*FNU1))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU1)*(12.*FNU1))).1*E1*A** * ((2.*FNU2*FK12/((1.*FNU2)*(12.*FNU2))).1.*F2*(A**2*A**2) A3AR = -AREA1//((ARFA2*ARFA3)*SINF(AFTA*FL)) AB(6) = A3AB 605 FORMAT(/.*UM 6AB = **E20.5.10X.*M 7AB = **E20.5.10X.*M 8AB = **E20 * /.*UM 9AB = **E20.5.10X.*M 7AB = **E20.5.10X.*M 8AB = **E20 * /.*UM 9AB = **E20.5.10X.*M 7AB = **E20.5.10X.*M 8AB = **E20 C A44B = FM 6AB * A3AB 7 ABA = FM 7AB * A3AB 7 ABA = FM 7AB * A3AB 7 ABA = FM 7AB * A3AB 7 ABA = FM 9AB * A3AB 7 CALL STRWAVF		C C
F# 6AB = DATI) FM 7AB = BD(2) FM 7AB = BD(2) CALL SIMCON(A.B.TEST.LIM.ARCA2.NO12.R2.F2) CALL SIMCON(0.A.TEST.LIM.ARCA2.NO12.R2.F2) CALL SIMCON(0.A.TEST.LIM.ARCA2.NO13.R3.F3) C ARFA1 = P1*(((2.*FNU1*FK11/((1.*FNU1)*(12.*FNU1))))))))))))))))) ARFA1 = P1*(((2.*FNU1*FK11/((1.*FNU1)*(12.*FNU1))))))))))))))))))))))))))))))))))))		CALL NWHATINVICCIBBISCRATCHIG
FM 7AR = RB(2) $FM 7AR = RB(2)$ $FM 9AR = RB(3)$ $FM 9AR = RB(4)$ $FM 10AR = RB(5)$ $RB(6) = 1.$ C $TEST = 1.F-4$ $L1M = 70$ $CALL SIMCON(A * B * TEST * L1M * AREA2 * NO12 * R2 * F2)$ $CALL SIMCON(0 * A * TEST * L1M * AREA3 * NO13 * R3 * F3)$ C $ARFA1 = P1 * ((2 * FNU) * FK1) / ((1 * FNU)) * (1 * -2 * FNU)) * 1 * 1 * F1 * A * * * * (12 * FNU) * FK1) / ((1 * FNU)) * (1 * -2 * FNU) * 1 * 1 * F1 * A * * * * (12 * FNU) * FK1) / ((1 * FNU)) * (1 * -2 * FNU) * 1 * 1 * F1 * A * * * * (12 * FNU) * FK1) / ((1 * FNU)) * (1 * -2 * FNU) * 1 * 1 * F1 * A * * * * (12 * FNU) * FK1) / ((1 * FNU)) * (1 * -2 * FNU) * 1 * 1 * F1 * A * * * * * (12 * FNU) * FK1) / ((1 * FNU)) * (1 * -2 * FNU) * 1 * 1 * 1 * F2 * (B * * 2 * A * * 2) * A * A * * (12 * * FNU) * 1 * 1 * 1 * F2 * (B * * 2 * A * * 2) * A * * (1 * -2 * FNU) * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 *$	••••••	FM 648 = 08(1)
FM MAR = RR(3) FM MAR = RR(4) FM MAR = RR(4) RR(4) = 1. C TEST = 1.F-4 LIM = 20 CALL SIMCON(A+R+TEST+LIM+AREA2+N012+R2+F2) CALL SIMCON(0+A+TEST+LIM+AREA3+N013+R3+F3) C ARFA1 = P1+(((2+FNU)+FK11/((1+FNU))+(1+-2+FNU))))+1++F1+A+++ + ((2+FNU2+FK12/((1++FNU))+(1+-2+FNU))))+1++F1+A+++ + ((2+FNU2+FK12/((1++FNU))+(1+-2+FNU))))+1++F1+A+++ + ((2+FNU2+FK12/((1++FNU))+(1+-2+FNU))))+1++F1+A+++ + ((2+FNU2+FK12/((1++FNU))+(1+-2+FNU))))+1++F1+A+++ + ((2+FNU2+FK12/((1++FNU))+(1+-2+FNU))))+1++F1+A+++ + ((2+FNU2+FK12/((1++FNU))+(1+-2+FNU))))+1++F1+A+++ + ((2+FNU2+FK12/((1++FNU))+(1+-2+FNU)))))+1++F1+A++++ + ((2+FNU2+FK12/((1++FNU))+(1+-2+FNU)))))+1++F1+A+++++++++++++++++++++++++++		FM 7AR = RB(2)
FM 10ÅR = PR(4) FM10ÅR = PR(4) PR(6) = 1. C TEST = 1.F-4 LIM = 20 CALL SIMCON(A.B.TEST.LIM.AREA2.NO12.R2.F2) CALL SIMCON(0A.TEST.LIM.AREA3.NO13.R3.F3) C ARFA1 = PI+(((2.*FNU1+FK11/((1.+FNU1)+(12.*FNU1))))))))))))))))))))))))))))))))))))		FM BAR = AR(3)
RB(6) = 1. C TEST = 1.F-4 LIM = 20 CALL SIMCON(A+B+TEST+LIM+AREA2+NO12+R2+F2) CALL SIMCON(0+A+TEST+LIM+AREA3+NO13+R3+F3) C ARFA1 = PI+(((2+FNU)+FK11//((1+FNU)+(1+-2+FNU)))+1+)+E1+A++ + ((2+FNU2+FK12/((1+FNU2)+(1+-2+FNU)))+1+)+E2+(R++2+A++2) A3AR = -AREA1/((ARFA2+ARFA3)*SIMF(AFTA+FL)) AB(6) = A3AB C PRINT A05+(AB(1)+J=1+51+A3AB 605 FORMAT(/+10M 6AB = *+E20+5+10X+*M RAB =*+E20 * /*10M 9AB = *+E20+5+10X+*M RAB =*+E20 A4AB = FM 6AB + A3AB R7AB = FM 7AB + A3AB C A6AB = FM 7AB + A3AB C A6AB = FM 6AB + A3AB CALL STRWAVF		FM10AR = RR(5)
C TEST = 1.F-4 LIM = 20 CALL SIMCON(A + B + TEST + LIM + AREA2 + NO12 + R2 + F2) CALL SIMCON(0 + + + TEST + LIM + AREA3 + NO13 + R3 + F3) ARFA1 = PI + ((2 + FNU2 + FK11/((1 + FNU1) + (1 - 2 + FNU1))) + 1 + 1 + F1 + + + + + ((2 + FNU2 + FK12/((1 + + FNU2) + (1 - 2 + + FNU2))) + 1 + 1 + F2 + (1 + + + + + + + (2 + FNU2 + FK12/((1 + + FNU2) + (1 - 2 + + + + + + + + + + + + + + + + + +		BB(6) = 1.
TEST = 1+F=4 LIM = 20 CALL SIMCON(A+B+TEST+LIM+AREA2+N012+R2+F2) CALL SIMCON(0+A+TEST+LIM+AREA3+N013+R3+F3) ARFA1 = P1+((2+FNU1+FK11/((1+FNU1)+(1+-2+FNU1)1)+)+1+FE+A+++ + ((2+FNU2+FK12/((1+FNU2)+(1+-2+FNU2)1)+1+1+FE+A++++ + ((2+FNU2+FK12/((1+FNU2)+(1+-2+FNU2)1)+1+1+FE+A+++++++++++++++++++++++++++++++		C
CALL SIMCON(A+B+TEST+LIM+AREA2+N012+R2+F2) CALL SIMCON(0+A+TEST+LIM+AREA3+N013+R3+F3) ARFA1 = PI+((2+FNU1+FK11/((1+FNU1)+(1+-2+FNU1)))+1+1+F2+(B++2+A++ + ((2+FNU2+FK12/((1+FNU2)+(1+-2+FNU2))+1+1+1+F2+(B++2+A++2)) A3AR = -AREA1/((ARFA2+ARFA3)+SINF(RFTA+FL)) AB(6) = A3AB C PRINT A05+(AB(1)+J=1+51+A3AB 605 FORMAT(/+'0M 6AB ='+E20+5+10X+'M AAB ='+E20 + /+'0M 9AB ='+E20+5+10X+'M 7AB ='+E20+5+10X+'M AAB ='+E20 C A44B = FM 6AB + A3AB B7AB = FM 6AB + A3AB 'A44B = FM 6AB + A3AB C C C C C C C C C C C C C		$TEST = 1 \cdot F - 4$
CALL SIMCON (0 + A + TEST + LIM + AREA3 + NOI3 + R3 + F3) ARFA1 = PI + (((2, +FNU) + FK1)/((1, +FNU)) + (1, -2, +FNU)) + 1, + + + + + + + + + + + + + + + + +		CALL SIMCONE A+B+TEST+LIM+AREA
C ARFA1 = PI*(((2.*FNU]*FK11/((1.*FNU])*(12.*FNU]))))))))))))))))) ARFA1 = PI*(((2.*FNU]*FK11/((1.*FNU])*(12.*FNU]))))))))))))))))))))))))))))))))))))		CALL SIMCONIO. A.TEST .LIM.AREA
ARFA] = PI*(((2.*FNU)*FNI)*(1.+FNI)*(12.*FNU))*(.)*E1*A** + ((2.*FNU2*FN12/((1.*FNU2)*(12.*FNU2)))*).)*E1*A** A3AR = -AREA1/((ARFA2+ARFA3)*SINF(RFTA*FL)) AB(6) = A3AB C PRINT 60%*(AB(1)*J=1*5)*A3AB 605 FORMAT(/*'(M 6AB =**E20*5*10X*'M 7AB =**E20*5*10X*'M 8AB =**E20 * /*'OM 9AB =**E20*5*10X*'M 7AB =**E20*5*10X*'M 8AB =**E20 * /*'OM 9AB =**E20*5*10X*'M 7AB =**E20*5*10X*'A 3AB ***E20*5*10X*'A 3		<u> </u>
C PRINT 605+(RR[]]+J=1+51+63AR 605 FORMAT(/+'0M 6AB ='+20+5+10X+'M 7AB ='+20+5+10X+'M RAB ='+20 + /+'0M 9AB ='+20+5+10X+'M10AB ='+20+5+10X+'A 3AR ='+20 A44R = FM 6AR + A3AR R7AR = FM 6AR + A3AR B7AR = FM 7AR + A3AB C ALL STRWAVE	#F2+(A++2-A++2))	ARFA] = PI*((2,*FNU19FK1)/(1) + ((2,*FNU29FK12/((),*FNU2)* AJAR = -AREA1/((ARFA2+ARFA3)*S BR(6) = AJAR
PRINT 605+(AB(1)+J=1+5)+A3AB 605 FORMAT(/*'0M 6AB ='+E20+5+10X+'M 7AB ='+E20+5+10X+'M 8AB ='+E20 * /+'0M 9AB ='+E20+5+10X+'M10AB ='+E20+5+10X+'A 3AB ='+E20 A44B = FM 6AB + A3AB B7AB = FM 7AB + A3AB ' B8AB = FM 7AB + A3AB C GALL STRWAVE		C
A44B = FM 6AB + A3AB B7AB + FM 7AB + A3AB B7AB + FM 7AB + A3AB C3GD + FM 9AB + A3AB D7GD = FM10AB + A3AB C C C CALL STRWAVE	X . IM AAB = 1 . E20.5.	PRINT_605+(BB(1)+J=1+51+63AB 605 FORMAT(/+'0% 6AB = +*E20-5+10X+
A43B = FM 6AB + A3AB B7AB = FM 7AB + A3AB ' BBAB = FM BAB + A3AB C3GD = FM 9AB + A3AB D7GD = FM10AB + A3AB C C CALL STRWAVE	ATTA JAD - 1020031	
B7AB = FM 7AB + A3AB ABAB = FM 8AB + A3AB C3GD = FM 9AB + A3AB D7GD = FM10AB + A3AB C C C CALL STRWAVE		A448 - FM 648 - A348
HRAH FM FM FAH A3AB C3GD FM FM SAB D7GD FM FM SAB C C		BTAR . FM TAR . AJAB
DTGD = FM10AB + A3AB C CALL STRWAVE	••• ··	ABAR = FM BAR + AJAB
C CALL STRWAVE		D7GD = FM10AB + A3AB
CALL STRWAVE	•	C
		CALL STRWAVE
		C 1 END
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

.... IFERALTANON TO 250 DO SAME THING FOR PESTN ZIMIAR-ZI (FMU)AR-P.SIGNI) 214248-231(PHU248-8,5[GN2) 20M148-201PHU148-8,5[GN1) 20M248-201PHU248-8,5[GN1) C WIM AROWI (PHILLAR + 8.516NI) WIMPAREWI (FMUZARER .SIGN2) WOM CAREWO (PHUS ARER STON) WOSPAR-HO(FHUPAS+P+SIGNP) C XTISUP2-- (ATAR+SIGN1+FMUTAR+ZIMTAB +ALAR+FMJIAR+WIMIAR-RTAR+RFTA+Z1MZAR -BRAR +BETA+WIM2AB1+SIN(BETA+Z) 2 C XISSUP2+IASAR+RETA+ZOMIAR+A6AR+RETA+VOMIAR +RTAR+FMUZAR+ZOMZAR+RAAR+SIGN2+FMUZAR+WOMZAR) 1 +COSIRFTA+Z) 2 C S11SUP2=-(A3AR*((FLAMDA2*BETASO+SIGH1*(FLAMDA2+2.*G2)*FMU1AR**2 1+20M1AR-2.+G2+FMU1AR+SIGN1+2141AR/R1 +A4AR+((FLAMDA2+BETASQ+SIG41+(FLAMDA2+2,+G2)+FMU1AR+#2 ----1+WOM1AR-2.+G2+F4U1AR4W141AR7R) -B7AR4(2.+G2+FMU2AR4RFTA)+(20M2AR-2147AR7(FMU2AR4R)) -BRAR4(2.+G2+FHU2AB4RFTA)+(SIGN2+W0M2AR-W1M2AR7(F4U2AR49) 6 1) #51N(8FTA#2) - -- -C 52250P2=-(A3AR*1* 10A2*(SIGN)*FMU)A6**2 2.462*FMU1A8*SIGN1*Z1 M 1A8/R) IDA2*(SIGN1*FMU1AB*#2+BETASQ)*ZOM1AB +A4A5+(FLAMDA2+(SIGN)+FMULAB+2+RETASO)+WOMLAB 3 4 +2. +G2+FM(1)AR+W14)AR/R1 -B7AB412. 4624BFTA4Z1M2AB7R1) -B4AB412.4624BFTA4W1M2AB7R1145IN(BETA4Z) 6 ٢ \$3350P2=-(A3AR*1(FLAMDA2+2+*G2)*BFTA50+51GN1*FLAMDA2*FMU1AB**2) -27041AR +A4AR+([FLAMDA2+2++G2]+RFTA5Q+SIGN14FLAMDA2+FMU1AR++2] 1 +R7AR+2.+G2+FMU2AR+BFTA+20M2AR +RAAB+2. #SIGN2#62#FMUZAR#RFTA#WOM2AR 4 1*SINIRFTA#71 8 SI3SUP7=-IA3AR+2.+SIGNI+G2+FMUIAR+RETA+ZIMIAR +A4AB+2, +G2+FMU1AB+8FTA+W1M1AB +B7AB+G2+15IGN2+FMU2AB++2-BETASQ1+Z1M2AB 1 2 +88A8+62+(SIGN2+FMU2A8+42-8ETAS0)+W1M2A8 3 .. . 1+COS(BETA+7) 4 c • • PRINT PESHLTS FROM RESIN C PPINT 805+8+7 805 FORMAT(//2UX++ R = ++F15+8+5X++ Z = ++F15+2/20X+42(1H+) +//) C PRINT ROASX1150P2-X1350P2 ROA FORMAT(' XI 1 RESIN ='+F15+5+5+5X+'XI 3 RESIN ='+F15+5/)

140 '

PRINT 807.51150P2.52250P2.53350P2.51350P2

e

	AD7 FORMATI' SIGMA 22 +*+F14+5+5+5X++SIGMA 22 +*+E15+57+ SIGMA 33 +*+F14 1+4+5X++SIGMA 23 +*+E15+57}
۲,	290 CONTINUE GO TO 999 END
	•
	· ····································
	·····
· •	
• • •	
	· · · · ·
	·
	····
.	
•	

week a subder out

Abiles!

FUNCTION REXIARG SIGNI veec CALCULATES J AND Y OF ARG IF SIGN=1. CALCULATES I AND K OF ARG IF SIGN=-1. • DIMENSION ANS(5) ¢ ENTRY Z1 . . C IF(SIGN)10+10+20 20 CALL BESSEL(ARG+1+ANS+1+0) REX=ANS(2) PTURN C 10 CALL RESSEL (ARG+1+ANS+3+0) - 111 BEX=ANS(2) RETURN ¢ ENTRY ZO C 1F(SIGN) 30+30+40 ----40 CALL BESSEL (ARG+1+ANS+1+0) BFX=ANS(1) RETURN C 30 CALL BESSFL (ARG .] . ANS . 3 . 0) BEX=ANS(1) RETURN C 1F(SIGN)50+50+60 ENTRY W1 60 CALL BESSEL(ARG+1+ANS+2+0) RETURN C 50 CALL BESSEL (ARG+1+ANS+4+0) BEX=ANS(2) RETURN C ENTRY WO C IF(SIGN)70+70+80 IF(SIGN)70+70+80 70 CALL BESSEL(ARG+1+ANS+2+0) REX=ANS(1.)_____ RETURN . C AO CALL RESSEL (ARG+1+ANS+4+0) BEX=ANS(1) RETURN END

14**2**

.

. **.** .

and the second second

ž

		RETURN
ž		· ····
•	. 20	F1 = 0+0 RETURN
ſ		FND
		······································
•	·• —	
		· · · · · · · · · · · · · · · · · · ·
	•	· · · · · · · · · · · · · · · · · · ·
	•	
	• • •	· · · · · · · · · · · · · · · · · · ·
		······································
••••	· 	•••••••••••••••••••••••••••••••••••••••

••••••	• • • • •	
· ••••		
· · ···		· · · · · · · · · · · · · · · · · · ·
	• • •	···· ·································
	••••••	
• •	•	
• • • • • • • • •	•• •••	
•		

```
SUNDA TINE MATRIX
         CONMON/BESSE/RESSEL J(2+2+3)+ BESSEL Y(2+2+3)
         CUMMON/INPUT/A+B+G1+G2+FLAMDA1+FLAMDA2+BETA+BETASD+OMEGA+OMEGASG
CUMMON/MU/FNUIA3+ FMU2A3+ FMU1GD+ FMU2GD
         COMMON/MUSO/SUFMULAB . SOFMUZAB . SQFMULGD . SOFMUZGD
         COMMON/IMAG/SIGN(4)+IMAG(4)
         COV"CH/YAT/C16+61+3516:
         CONHON/DATA/CI150+CI250+CI1150+CI1250
          THENSION EVULAD . COPHILAD
         EQUIVALENCE (FMU+FMUIAR) + (SOFMU+SOFMUIAR)
 ٢
C,
                                                        . . . . . .
         BETASO = BETA + BETA
¢
        FMU(1) = OMEGASO/C I 250 - BETASO
FMU(2) = OMEGASO/C I 1250 - BETASO
FMU(3) = OMEGASO/C I 150 - BETASO
FMU(4) = OMEGASO/C I 150 - BETASO
¢
         DO 6 1 = 1+4
JF(FMU(1)) 3+3+4
         D0 6
                               _____
                                                        . . .
                                $
      3 [MAG(1) = 3H 1
                                           SIGN(I) = -1+0
                                                                     $
                                                                             FMU(T) = -FMU(T)
         K = 1
60 TO 5
      GO TO 5

4 IMAG(I) = 3H $ SIGN(I) = 1.0

5 SOFMU(I) = SIGN(I) = FMU(I)

FMU(I) = SORTE (FMU(I))
                                            SIGN(1) = 1.0
        JF(K +FQ, 4) GO YO ?
      6 CONTINUE
C
                                                 . ... .....
         CALL BESLEUN
    11 C(1+1) = FMU)AR+AFSSFLJ(2+1+2)

12 C(1+2) = FMUJAB+BFSSFLY(2+1+2)

13 C(1+3) = -BFTA+BFSSFLJ(2+2+2)

14 C(1+4) = -BFTA+BESSELY(2+2+2)

15 C(1+5) = C(1+6) = C(2+5) = C(2+5)
C
    15 C(1+5) = C(1+6) = C(2+5) = C(2+6) = 0.
C
    21 C(2+1) = 2. #FMULAB*BETA*BESSELJ(2+1+2)
    22 C(2+2) = 2+FMU1AB+BFTA+BESSFLV12+1+2)
23 C(2+3) = (SOFMU2AB-BFTASO)+PFSSFLJ(2+2+2)
24 C(2+4) = (SOFMU2AB-BFTASO)+BFSSFLV(2+2+2)
r
    31 C(3+1) = FMU1AR*AESSELJ(2+1+1)
32 C(3+2) = FMU1AR*BESSELY(2+1+1)
   36 C(3+6) # BETA+BESSELU(2+2+3)
C
    41 C(4+1) = HETA+BESSELJ(1+1+1)
    42 C14+21 = BETA+RESSELY(1+1+1)
                                                     - -
    43 C(4+3) = FMU2AB+BESSELJ(1+2+1)
    44 C(4+4) = FMU2AR+PESSFLY(1+2+1) .....
45 C(4+5) = -BFTA+BFSSFLJ(1+2+3)
                                                            - ---
    46 C(4+6) = -FMUZGD+BESSFLJ(1+2+3)
C
    51 C(5+1) = (FLAMDA2+BETASO+(FLAMDA2+2++G2)+SQFMU1AB)+
                  BESSELJ(1+1+1)-2+#G2#FMU1AR*BESSELJ(2+1+1)/A
    52 (15+2) = (FLAMDA2*BETA50+(FLAMDA2+2.*G2)*SQFMU1AB)*
```

. . .

```
• PF .5ELY(1+1+1)-2+#62#FMU1A9#BESSELY(2+1+1)/A

A* C(4+3) = -2+#62#FMU2AB#BETA#(BESSELJ(1+2+1)-BESSELJ(2+2+1)/

• (TMU2AB#A))
    54 (15+4) + -2.+62+FHU2AB+3FTA+(BESSELY(]+2+1)-BESSELY(2+2+1)/
                 1=402494411
    55 ((5.5) = (FLAMDA) + RFTASO+(FLAMDA)+2.+61)+SQFMUIGD)*
   * SESSELJ(1+1+3)+2.*G1*FMU1GD*BESSELJ(2+1+3)/A
56 C(5+6) * 2+*G1*FMU2GD*BETA*(BESSELJ(1+2+3)-BESSELJ(2+2+3)/
                 (FMU260+A))
C
  A1 C(A+1) = 7+67>FMU1AB+RFTA+RFSSFLJ(7+1+1)

62 C(A+2) = 2+63+FMU1AB+RFTA+BESSFLJ(2+1+1)

IF(SIGN(7)1)A2+1A2+63

162 C(A+3) = 0+0 S GO TO 64

63 C(A+3) = G2+(SOFMU2AB-BFTASO)+RESSFLJ(2+2+1)

64 C(A+4) = G2+(SOFMU2AB-BETASO)+RESSFLJ(2+2+1)

65 C(A+6) = -G1+2+FMU1GD+RFTA+RFSSFLJ(2+1+3)

65 C(A+6) = -G1+(SOFMU2GD-RFTASO)+RESSFLJ(2+2+3)

3 SETURA
     1 PETURN
  2 PRINT 500+BETA S. REMOVE THIS CARD TO ALLOW IMAGINARY ARGUMENTS
STOP1 S. REMOVE THIS CARD TO ALLOW IMAGINARY ARGUMENTS
500 FORMAT(* PETA =*E17.5) S. REVOVE THIS CARD
       END
                  -----
            ----
                   ----
                 . ....
                 -----
                       . . . .
                                                 -
                      ....
                   - - - - --
                     - -
                                                 .
                   ____
                                           ..
                                                     -
                                 -
                 . . ..
                                ......
                                              . . . . . .
                                                        - -
```

.

```
SUBCOUTINE RESIEUN
        CTMMON/NESSL/AESSELU(2+2+3)+RESSELY(2+2+3)
COMMON/INPUT/A+5+G1+G2+FLAMDA1+FLAMDA2+BETA+BETA+SO+OMEGA+OMEGASO
        COMMON/MU/FHUIAB + FMUZAB + FMUIGD + FMUZGD
        COMMON/IMAG/SIGN1+SIGN2+SIGN3+SIGN4+IMAG(4)
        DINENSION ANS(2)
DATA(PI = 3-141592653)
¢
       X] = FMU1AR = A
                              5
                                   XX1 = FMU2AB + A
        X2 = FMUIAB + B
                                      XX2 ... FMUZAR ... B
      X3 = FMUIGD + A
                               $
                                      XX3 = FMJ2GD # A
¢
                                                 . ......
                                      - ---
                                          .. .
        IF(SIGN1)1+1+5
     1 CALL BESSEL(X 1+1+ANS+3+0)

RESSELJ(1+1+1) = ANS(1)
                                                              · . .
                       BEJSELU(2+1+1).=..=ANS(2)....
       CALL RESSEL(X 1+1:ANS+6+0)

BESSELY(1+1+1) = -ANS(1) ...

BESSELY(2+1:1) = -ANS(2)
       CALL BESSEL(X 2+1+ANS+3+0)
                      K 2+1+AN5+3+0)
BESSFLJ(2+1+2) = ANS(2)
       CALL BESSELIX 2.1.ANS.4.01
                       BESSELY(2+1+2) = ANS(2)
       60 10 6
                                       •••••
                          .
                                ....
                                               .
c
c
     S CALL PESSFLIX 1+1+ANS+1+0)
                                              · · · · ·
                      BESSELJ(1+1+1) = ANS(-)
BESSELJ(2+1+1) = ANS(2)
                 . .
                                                          .
       CALL BESSEL(X 1+1+ANS+2+0)
                      (1+1+AN5+2+0)
RESSELY(1+1+1) = ANS(1)
       CALL PFSSFL(X 2+1+ANS+1+0)
BESSELJ(2+1+2) = ANS(2)...
       CALL BESSELIX 2+1+ANS+2+01
                      BESSELY(2+1+2) .= ANS(2) .....
C
     ¢
     7 CALL RESSEL(XX1+1+ANS+3+0)
                       PFSSFLJ(1+2+1) = 0+0

PFSSFLJ(2+2+1) = -ANS(2)

RESSELY(1+2+1) = -ANS(1)
                      BESSELY(2+2+1) = = ANS(2)
                       RESSELJ(2+2+2) = 0.0
       CALL BESSEL(XX2+1+ANS+3+0)
                      RESSELY(2+2+2) = -ANS(2)
       GO TO 11
٢
   10 CALL BESSEL(XX1+1+ANS+1+0) _____

PESSELJ(1+2+1) = ANS(1)

BESSELJ(2+2+1) = ANS(2)
       CALL BESSEL(XX1+1+ANS+2+0)
                       BESSEL (11+2+1) = ANS(1)
                      AESSELV(2+2+1) = ANS(2)
       CALL BESSEL(XX2,1+ANS+1+0)
                      (X2,1+ANS+1+C) _____
PESSELJ(2+2+2) = AMS(2)
       CALL RESSEL("X2+1+ANS+2+0)
                      RESSELV(2+2+2) = ANS(2)
C
   11 IF(51GN3)12.12.15
C
```

147

·

```
19 CALL RESSEL(X 3+1+AN1+3+0)
RESSELU(1+1+3) = ANS(1)
RESSELU(2+1+3) = -ANS(2)
   60 10 14
C
  14 CALL RESSELIX 3+1+ANS+1+0:
BESSELJ(1+1+3) = ANS(1)
_____RESSELJ(2+1+3)_=__ANS(2)_
                            ----
٢,
  14 IF(SIGNA)17.17.70
                           ... •.
                      •
م
  17
           RFSSFLJ(1+2+3) = 0.0
RFSSFLJ(2+2+3) = 0.0
                          ••
   RETURN
                          • • • •
             • •
                - - -- -----
C
  20 CALL RESSEL(XX3+1+ANS+1+0)
RESSELJ(1+2+3) = ANS(1)
RESSELJ(2+2+3) = ANS(2)
C
   OFTURN
                         ____
C
   END
      ------
        ------
       -----
      .....
       -----
            .
         . . . . . . . .
       · ····
         ....
                          .
      -----
               ·· -
                 ......
                .
```

.

SURPOLITING ROOTLY, Y. TOL. DEL. DIFF. IF! G. JELAGI C C C THIS SUBROUTINE WILL FIND A ROOT BY FALSE POSITION IFLAG = 0 GO TO (10. 20. 30) JFLAG C s · 10 X1 = X Y1 = Y • • JFLAG = 2 18 X = 7 + DEL S RETURN 20 X2 = Y S Y2 = Y IF (Y1 = Y2) 25, 50, 21 21 X1 = X2 S Y1 = Y2 S GO TO 15 25 JFLAG = 3 26 X + X2 - ((X2-X1)/(Y2-Y1)) + Y2 \$ RETURN C 10 X3 = X \$. Y9 = Y C DIFF + ARSF(X3 - X2) IF(DIFF +LT+ TOL) GO TO 30 DIFF + ARSF(X3 - X1) IF(DIFF +LT+ TOL) GO TO 50 1] [F(Y] + Y1) 12, 50, 11 C
 32 X2 = X3
 S
 Y2 = Y3
 S
 GO TO 26

 33 1F(Y2 = Y3)
 34, 50, 40

 34 X1 = X3
 S
 GO TO 26
 C C 50 IFLAG =_1 ____S ____ RETURN _____S ___ END _____ . . -----------. . . -----------•

149

	SUMPOUTINE RESSEL (X. N. VALUE, INDEX.MM)	
	DIMENTION VALUE(41) (BU(100) + #(100)	
	DIMENSION D1(2)+D2(2)	
	FGJIVALENCE (D1(2), BJ(1)) + (D2(2) + F(1))	
•	DATA (PI=3.141542653)	
	5154(X)+0_54(FXPF(X)-FXPF(-X))	
	TE (X) 10-10-9	
		,
280		•
20.8	FORMATIANH ARGUMENT PLUS ORDER TOO LARGE. INCREASE DIMENSIONS AND	ł
4 7 11	John Acata, 1	
		1.
100		1.
1.711		i:
	5010(40+40+60+60+80+90+100+110)+ INDEX	14
10	DDINT A.V	1.
	DEDRMAT LIX A 3 HSUPROUTINE RESSEL DOES NOT WORK FOR X=0 OR LESS THAN	16
	1 A. HEPE VE FIS. AL	1.
		15
		je
		21
	The Mark and the second s	21
•••		22
11		25
		74
12		26
		76
12		
.,		75
		75
۱۸		36
1-		
		32
43		
45		34
		36
42	DO 41 IFTKI N	
41		
	PETITAN PETITAN	эe
50	60 10 40	16
54	FC = 5772156669	40
	Stime0.0	41
	IK=K/2	47
	DO 15 Intel K	47
	Fiat	44
15	SUM=SUM+((-1+0)++(1-)++BJ(2+1))/FI	45
• ·	F(IKL)=(2+0/PI)+(BJ(IKL)+(LOGF(0+5+X)+EC)+2+0+SUM)	
	F(1)=(AJ(1)+F(1KL)-2.0/(P1*X))/AJ(1KL)	
	IN=N-1	49
	DO 16 I=1+IN	49
	FI=1	5.0
16	F(1+1)=2.0+F1+Z+F(1)-F(1-1) .	s 1
	90 51 [=]KL+N	
51	VAL(F((+))=F())	
-	RETURN	54
60	·9J{K+1)=0.	55
	BJ(K)=10.E-30	56
	L=K	57
10	FLat	58

	B ((1 -) 1 - 2 - 65) #7#B ((1 1AB ((1 A))		
	18// =//=/s==(-/-/=////===() 18// =///////		4,
10			4
	.L. 4L 4L 4		6
			6
•••			
- 21			
	C#(FXPF(X))/(HJ(KL)+Z+SU=)		
_	67 T1(1+1+61+67)+[NDFX		7
1			
	RETIIRN	•	1
1000	FORMATIANH CARD MISSING. IGNORE RESULTS.	1	
62	50 64 J=1KL+1		-
64	BJ(1)=C+9J(1)		7.
	60 10 71		7
61	DO 65 I=IKL+N		
	VAL!!F{1+1)=C+RJ(1)		
	OFTION		71
70	GG TO AD		7
71	(F(5.0-X) 120.121.121		7
121	Helf		79
	GO TO 122		8
120	Mag		81
122	FITKL 1#GAUSS(0.0.1.0.M.X)		
	F(1)=(1,/X-F(1KL)=RJ(1))/RJ(1KL)	•	
			84
		•	
	(1) // 1-1+1-1 Ft-1		
	F ([+]]=/=U=F=C=F (])+F (]=[]		•
	CO 72 I*[KL+N		
77	VAL((F(1+1)=F(1)		
	RETURN		
80	F(K+))=0.0		
	F (K)=10+0E=30		4,
	L=K		9.
- 25	FL=L		94
	F (L-1)=(2+0+FL+1+0)+Z+F (L)+F (L+1)		99
	IF (L-1) 23+23+24		- 26
24	L=L-) '		07
	GO TO 25		98
23	C=SINF(X)/(X+F(1KL))		
	1F(MM)200+200+201		101
201	50+50RTF(2++X/P1)		101
	DC 202 I*IKL+N		
202	VALUE(1+1)=C+5Q+E(1)		
	RETHRN		104
200	DO 26 1=1KL+N		
26	VALUE(1+1)=C+F(1)		
	PFTIIRN		1.01
00	FITTIN-COSFIXI/X		
	F (1) == SINF(X)/X=COSF(X)/X=#2		: 09
	TMenel		110
			111
	Fist		112
27	F(1+1)=(2,#F1+1,0)#7#F(1)=F(1=1)		111
• /	161444 203.204		114
204	5A=C()07E(), 4¥/D11		2.14
2014			
201	1/11 / 117 54 K 17		
205	AUTOF (1+11+11) + 20+1-1*) + 4(-1)		
			116
201	DO VI ITIKLIN		
91	VALUF([+])=F([)		

A STATE OF A

	PETITA	12
100) F {r+}}z^{}}	. 17
	f et.	12
30	i fl.et	17
	F (L-1)=(7,0*FL+1,0)*Z*F (L)*F (L+1)	12
29) [e[=]	12
	60 TO 30	12
78	C=SINH(X)/(X=F(IKL))	19
207	1 = (***) 2 / (+ 2 / (+ 2 /)) / (+ 2 / (+ 2 / (+ 2 /)) / (+ 2 /	13
• • • •	DC 208 I=IKLON	
208	VAL11F(1+))=C+S0+F(1)	
206	NETINA DO 101 TETREAN	4 7
101	VALUE(1+1)=C+F(1)	
	RFTIRK	14
110	F (]K[)+0,6+(-P]+FXPF(-X)/X) F (]K[)+0,6+(-P]+FXPF(-X)/X)	
	1N=N-1	14
	DO 93 1=3+14	14
• •	Flei 18. (1.1).c. (1.1).(1.0.001.) (1.6748-(1).	14
1	IFINM1 209+209+210	14
210	\$0=50RTF(2.4X/P1)	14:
	DO 211 1=1KL+N	
211	* VALUE (1+1) #F/11) #CUM/1/14 / ## (#1 #1)	14:
200	DO 111 I=IKL+N	
111	VALUF([+])=F(])	15
111	VALUF(1+1)=F(1) RETURN END	15 15
111	VALUE(I+1)+F(I) RETURN END	15 15
111	VALUE(I+1)=F(I) RETURN END	15
111	VALUE(I+1)=F(I) RETURN END	15
)11	VALUF(T+1)=F(T) RETURN END	15
111	VALUF(1+1)=F(1) RETURN	15
)11	VALUF(1+1)=F(1) RETURN	15
111	VALUF(T+1)=F(T) RETURN	15
111	VALUF(1+1)=F(1) RETURN	15
)11	VALUF(1+1) =F(1) RETURN	15
111	VALUF(1+1)=F(1) RETURN	15
111	VALUF(1+1) = F(1) RETURN	15
111	VALUF(1+1) = F(1) RETURN	15
111	VALUF(1+1) = F(1) RETURN	15
111	VALUF(T+1) =F(T) RETURN END 	15

•

	SINCTION CAUSSICH	150
	DIVENSION 21101-00101	165
	11(1) 384 - 0746 3716 95	14#
		164
		340
		141
		171
		177
	U(K) == = == = = = = = = = = = = = = = = =	197
	117 3 =+ , 6775 3 [6333	Inn
	U(8)==+4325316833	165
	(1(+)++++++++++++++++++++++++++++++++++	100
	U(10)=-+4869532643	167
	R()}=+•]477421126	168
	R(2)=++1477621126	149
	******	170
	R{6}#+#1946933807	171
	, #{<1=,100%4%1#113	172
	P(6)=.10954518113	173
	R(7)=+.07472567458	174
	P(8)++.07472567458	179
	#(9)=+.03733567215	176
	P(10)=+.03333567215	177
	A=G	178
	FNaM	170
	P#(P+A)/FN	180
	GAUSSHOAD	161
		182
	C=0.0	143
	V-AD	1.84
		185
		184
		107
		197
1		144
	RETURN	[97
		191
	- 4+44 at	
	FUNCTION GAUSSF(U+x)	192
	COSH(X)="+5"(EXPE(X)+EXPE(=X))	
	IF(1+0/U=/10+0)123+124+124	. 193
124	GAUSSE #D+0	194
	RETURN	105
	GAUSSEN (FYDEL-Y#COSWI),0/0-1,0/11#449	104
123		148

*** *

. ...

SUGACUTESF SEVEN (X1+XEND+TEST+LIM+AREA+NG.+R+F) 000 *** INTEGRATES THE EXTERNAL FUNCTION E RETWEEN THE LIMITS X1 AND XEND. *** IT SUCCESSIVELY HALVES THE INTERVAL UNTIL THE ERROR IS LESS THAN TEST. NO1=0 Sturne 1 STYCON . a:=11.0 cincur 1 000=0.0 STHEN INT = 1 SIMCON F V=1.0 FVFN=0.0 STUCON C SIMONIC APFA1=0.0 57-10-11 FNDS=F(X1)+F(XFND) 19 STACONIS HEEXEND-X11/V 2 ODD=EVEN+000 X=X1+H/2+ SINCONIN 51400414 51400414 51400415 FVFN=0.0 DO 3 1=1+INT EVEN=EVEN+E(X) ··· · · · · · 21 SIVERNIE X=X+H equention • CONTINUE Streetse AREA= ([ND 5+4 + 0+EVEN+2+0+000 ++H/6+0 31 S1400-21 S1400-21 NOT=NOT+1 R=ABSF((ARFA1-ARFA)/AREA) 34 514-1-37 IF(MOL-LIM)341+35:35 e 140 01,74 IF(P-TFST)35+35+4 741 STUCONOF 15 RETURN • APFAJ=ARFA 4 STYPON:26 SINCONT INT=2+INT 26 STURMONDA V=2.0+V SINCA 29 GO TO 2 END SIMCONSO . ----. · · · · · · · · · . - -- - ------------ •••

SIMCON

154

.

•· ····

-

١Ô

		SUBMOUTINE NUMATINV (A.B. INDEX.NMAX.N.M.DETERM.IDET)	NWYV	1
		TIMENSION ALMMAX, LISB (NMAX, LISTNDEX (1)	NWVV	;
		COUNTY AND THE TREAS BOUST DATE TO THE TOTAL TOTAL TOTAL	' NWMV	٩
		CONTRACTOR CONTRACTOR AND TAMANA CONTRACTOR ATTEMPT	NWYV	4
		I MATCH CONTRACTOR ALL DE MARTELE INCOMPTENDENT CONTRACTOR INCOMPTENDENT	ALL MARK	
		5AT7 ("11:05*6000000000000000	- Werv	
51	•	INTEALIZATION.		
		DFTERM#1.0	NWWV	
		DO 20 J#1+N	NHHY	•
	20	THORY CONTINUES	NWWV	- F
		55 860 Tel.N	NWHV	1
		FRADEW FOR FIRMENT OF LADREET MARNITUDE		
. ·		SPARIN FUR FLERING OF LARGEST MAGNITURE	A1 1/10/12	11
		C + C + C + C + C + C + C + C + C + C +		÷.
		DO 105 J1=1+N	NWYY	11
		IF(-INDEX(J1)) 105+105+60	NAMA	11
	60	DO 100 K1=1.N	NWMV	14
		1F1-INDFX[K111 100+100+80	NWWV	14
•		TENDALLYAJII	NWYV	j∎.
		1017000101.100.00	NWWV	10
		The second strange	ALL AND A	
	= 7	LEWD Rev LEWD		
		IF(-ITFMP-IAMAX) 100,100,84	NWWV	18
	84	AMAX=-TEMP	AnnA	14
	•	1P=K)	N1%'M\/	21
		1(=3)	NWMV	21
	100		ANIVY	7:
	104		ALWANT	22
	10-		A11/141/	21
		IPLAMAXIIZU0117		
	115	DETERMEN	NETV	<i>7</i> •
		IDET = 0		
		RETURN	AMAA	76
	120	IROW= IR	NWYV	27
		ICOLUM=IC	NWYV	28
		INDEX (ICOLUM) = INDEX (ICOLUM) - AND - NOT - MINUS	NWYV	20
		151 NOT - (180W-1601 HM1 3240-140	AT 141 445 /	31
				1
	140		44.44	41
C. •	•	FREHANGE ROWS.		
		DO 200 L=1+N	4444	32
		SWAP=A(TROW+L)	N VYV	33
		ALTROWAL)=A(ICOLUMAL)	NYYV	34
	200	A (TCOLUM+L)=SWAP	NWMY	3=
		1F(_UOT_1)260,210	11-1-11	14
	210		ALL/***	27
	~ 1 11		10 P	
			41	
			of all a first of	
	230	HEICOLUM+LIISVAP	.1%*V	6 4 T
C.	•	SAVE PIVOT INFORMATION. DO DETERMINANT.		
	260	INDEX([]=1R0W+100000008+1COLUM+1NDEX([)	NWYV	41
		PIVOT = =A(ICOLUM+ICOLUM)	NWWV	42
		NETERMENTERMENT VOT	NEWV	41
C				
è		YEEP DETERMINANT BETWEEN 1-0E-20 AND 1-0E+20		
•	270	DETERNI - ASSEIDETERNS		
	e		·	
		DETERM # DETERM # 1+E20		
		IDFT = IDFT = 70		
		GO TO 270		
	274	DETERMI . ARSE (DETERM)		
	275	1F(DETERM1 +LT+ 1+E20) G0 T0 300		
		DETERM & DETERM / 1.F20		
		10FT + 10FT + 20		
		CO TO 374		
	100			

•

-----• -

いいののであるのであるとなっていたのではないないであるのです。たちのものです」と、この、 ころうてい しゅうちん

warner and martely

155

<

.

C++	PEDUCE LEADING COPE TO 14		
	ALICOLIN, ICOLINI)=1.0	NWYV	1.1
	50 350 L#1+N	AMMA	41
144	ACTCOLINAL DEACTCOLUMAL D/PIVOT	MMMA V	41
	TEL NOT NITAR 1480	NYWV	4
160	00 371 La1+4	1444	6
370	BITCOLUMAL TERITCOLUMAL TOPINOT	NWMV	41
A	CURCTITUTE COR NTH VARIABLE.		
180		NWMV	5.
14.7	TEL-VOT-111-TCOLIMIN - 550-400	NWWV	5
400		NWWV	5:
		NWWV	
	TOLIVINGUTITUS I I I I I I I I I I I I I I I I I I I	NWWV	51
2.6.0	177 971 LEVAN A 11 1 1 1 4 4 1 1 1 1 4 4 1 201 104 1 1 4 7	NWYV	61
		ALLINA	51
		NWWV	
		NUMV	6.1
500		ALLAN V	i.
770		NW * V	· .
C • •	UNDO POW FXCHANGES.		
		N MMMV	<u>5</u>
	DO 710 L2=1+N	NW**V	51
	JROW-INDEX(L)/10000000B	NVMV	- 67
	JROW=JROW.AND.777778	NWYV	61
	JCOLUMA INDEX (L) . AND . 777778	NWWV	61
	IF(.NOT.(JROW-JCOLUM))710.630	NMMA	- 6 *
610	00 705 K=1+N	NWYV	66
	SWAD=A(K, JROW)	NWWV	61
	A(K, JROW) = A(K, JCOLLIM)	MAAA	6F
705	A(K .JCOLUM) +SWAP	NWWV	64
710	LeL-1	NWMV	71
740	RETURN	. N₩ [₩] V	7]
	END	N₩¥V	7;
• • •			
•			
• ·	na na na mana ang kana na mananangkan sa sang pangkangkangkan na minin dia minin dia sang kana kana na na na na		
	a – e a e constante de la const		

.

......

-

- --

.

....

...

PROGRAM NULLMAT	
COMMON/BESSLL/BESLIA1	
COMMON/DATA/FH(2) . FK(2]+ FLAMDA(2)+ FMU(2)+ IH(2)+ R+ PI+ GAMMA+
CAMMASO	
DIMENSION AAIA+61+ CCI6	1. 1HAG(4). SIGN(3). RHO(2)
DATA(PI # 3.1415926531+	(SIGN # 1 + + + + + + + + + + + + + + + + + +
P	
C INDUIT AND INITIAL ISE	DATA
م من المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة من عنه من م	• 46 T-6 T -6 • • • • • • • • • • • • • • • • • • •
L DEAD TOO ME EN. OHEGS	DONECH. TOUR TTER
100 FORMATISELS. 8. 161	
100 FURMAL (3113634 131	
	•••••••••••••••••••••••••••••••••••••••
XII. JI LAG	
FL # 34	
A = _0025	S B & SORTF (A*A/YF)
E1 # 1.00 E 7	5 E2 • 3+80 E 5
FNU1 = Q,2	<u>SENU2 = Q.35</u>
GAMMA = FN+P1/FL	5 GAMMASO = GAMMA++2
RHO(1) = 2+A2754 E -4	<u>8</u>
FMU(1) = F1/(2+42+4FNU)	1
FMU(2) # F2/(2++2+#FNU2	
FLAMDA(1) = FNU1+E1/1(1	+FNU1)+(12.+FNU1))
FLANDA121 # FNU29E2/111	**FNU21#(1***2**FNU2)1
C	
PRINT 600+A+E1+E2+B+FNU	1 #FNU2 #VF#FMU(1) #FMU(2) #FL#RHO(1) #RHO(2) #
. ENSELANDALTISELANDAL	2) . GAMMA . TOI
400 FORMATI 3414 .520.5.10%	AHE1 .F17.5.10X.4HE2 .F17.5./.
* 3NOR +E20-5-10X+	6HNU11 4F17.9410X+6HNU2 4F17.94/4
4 \$NOVE+520-5-10Y+	
5 100 . 570.5.10X.	44940 1 .517.5.107.44000 2 .517.5./.
- SHOL TELOTION	ANIAMDA1.517.6.107.4NIANDA3.517.6.7.
	DUCIOS (51/63) / (403 0//A)DUSTERN(138)
C	inn a chuin
	-A. P.W
C	
CALCULATE H 1 AND	<u>H. Z</u>
C	
	··· ······
1MAG(1) = 3H \$	1H[]) • 0
	AMDAIL1+2+ EMULILI - GAMMASQ
IFIVAR50) 4+ 3+ 5	
SEHI	11 = 0. <u>5</u> <u>60 10 10</u>
4 VARSO = -VARSO S	IMAG(1) = 3H \$ 1H(1) = 1
10 CONTINUE	
<i>C</i>	
C CALCIDATE K'T AND	K)
PO 15 Jala2	
IMAG11+31 - 34	
VARSOL . OSO4PHO/ 11/ENUI	
16/VADCO1 19. 11. 19	1) - CAMMASO
and a second second of the second	1) - GAMMASO
11 IFLAG . 1 & EVI	1) - GAMMASQ
11 IFLAG = 1 \$ FK1	1) - GAMMASO 1) - 0. 5. GO TO 15. 1. MGC 20101 - 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
11 IFLAG = 1 \$ FK1 12 VARSO =	1) - GAMMASO 1) = 0, \$ GO TO 19 IMAG(201+1) = 3H 1 \$ IFLAG = 1 .
11 IFLAG = 1 S FK(12 VARSO = -VARSO S 13 FK(:) = SORTF(VARSO) 14 CONTINUE	1) - GAMMASO 1) • 0. \$ GO TO 19 IMAG(201+1) = 3H 1 \$ IFLAG = 2
11 IFLAG = 1 S FK(12 VARSO = -VARSO S 13 FK(:) = SORTF(VARSO) 	1) - GAMMASO 1) = 0, \$ GO TO 19 IMAG(2#1+1) = 3H 1 \$ [FLAG = 2 /
11 IFLAG = 1 \$ FK(12 VARSO = =VARSO \$ 13 FK(:) = SORTF(VARSO) 15.CONTINUE IF(IFLAG) GO TO 40	1) - GAMMASQ 1) = 0, \$ GO TO 19

	C.	GENERATE MATRIX
•	C	
•		
-		D0 30 101,3
	•	IND = (1+2)/2 S ICOL = 2+1-1 S IBES = (1+1)/2
	¢	
		AND TOTAL ADDA ADDA ADDA
•		
		$\mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} $
		AALSELLUL – BIONITE SCRUTTER
	r	
••••		
•••		ALL BESSEL IN A BESS A IDES. AN
		AA(A + 1CO(1) = S(S(1)) = B(S(N))
	30	
•	<i>c</i> 24	
	•	AA(5.1) = AA(5.2) = AA(6.1) = AA(6.2) = 0.
		C41 BESTELL 1. 2.
		A(5,3) = F5(2)
		AA(6,3) = F3(2) / FMU(2)
•		CALL BESLF(1) + 2 + 21
		AA(5,5) = F5(2)
		AA(6.5) = F3(2) / FMU(2)
	٢	
		X = FK(2) # R
		CALL BESSEL(X+ 3+ BESL+ 3+ Q)
		AA(5,4) = F6(2)
		AA16+14] # F6121 / FMU(2)
		CALL BESSFL(X+ 3+ BESL+ 2+ 0)
		ΑΑ(5+6) π Εδ(2)
		AA(5+6) = F4(2) / FMU(2)
.	С	
		CALL NWMATINVIAA+RR+CC+6+6+0+DET+1DET1
		_JDET = 20 + IDETSDETRM + DET + (10.0++JDET)
	C	
		PRINT 601; J> DETRM: P: (FH(I): 1MAG(I): 1-1;4)
	601	FORMAT(14, 2F17,8, 4(F17,7, A3), /)
	C	
		CALL ROOTIP, DETRM, TOL, DOMEGA, DIFF, [], JFLAG)
		_1F(11)_35+L50+51
	. 35	PRINT 602 \$ GO TO 1
	602	FORMATY (///+ 10x+ 20HITERATIONS DIVERGING:
	C	
	40	PRINT 603, J. P. (5H(1), IMAG(1), 1=1.41.
	603	FORMAT(14+ 178+ E17-5+ 4(E17-5+ A3)+ /)
	·	
•	50	
	51	
	404	PRINT DUGT PREME WIFF
	604	FURTHING AN INTER TICLIDE LUXIAN DIFF BE ELGOD
	100	Gan and a second s
	100	

--- ...

	FUNCTION COFFIL:
	COMMON/BESSLL/BEGLIAL
	COMMON/DATA/FH13;; FK(2); FLAMDA(2); FMU(2); IH(2); R; FI; GAMMA;
	• GAMMASQ
	DIMENSION SIGN(2)
	DATA(SIGN = 1.e -1.)
	PATRY P1
	GNINT. F#
ç	
	H20 • 1, 11++5
	COEF ILLANDAILI/Z ENULILIA SIGNIJIANSO. 4. BESLIN.
	+ - FLAMDA(1)/R + FH(1) + 8ESL(2)
	+ FLAMDA(I) + GAMMASQ) + BESL(I)
	OFTIDA
C 844	
C	FATBU FA
ç	
	.COEP. H. F. RUILLI. T. GAMMAT. FKILLTIGESKILLI DESKILLI.
	RETURN
C ###	
	ENTRY F3
	COEF
	RETURN
C ***	
	ENTRY FA
c	
	FK50 # FK(1)+#2
	COFE & FMULTI & (FKSD/A. # BESL/A)
	= -11 / (Da0) + 7 Reference = Gammaron = 050 (2)
	$T_1 = T_1 = T_1 = T_2 = T_1 = T_2 $
	TRAILIZERRI T BESCIIII
	-HETUKA
C +++	
	-ENTRY - F3
	COEF = -FH(I) + BESL(2)
	RETURN.
C 4##	
	ENTRY FL
c	
	COEF = GAMMA & RESI 121
	RETURN
C 444	
	ENTRY F7
<i>c</i>	
	COCE - CANNA & DECLARA
	COPP = GAMMA - Brocking
	-KE 1UKN
C ***	
	ENTRY FA
c	
	COEF == = = = = = = = = = = = = = = = = =
	RETURN S END
The second se	

	COMMON/RESSLE/RESLIGE
•	CONMON/DATA/FH(2), FK(2), FLAMDA(2), FMU(2), IH(2), R, PI, GANMA, GAMMASO
<u>خير او من او من من او </u>	X • FH(IND) • R
	IFIIHIINDIL GO TO LO
	CALL BESSEL (X) N) BESL) N) U) Definen
e	ME I UNIN
10	IF(M .EQ. 2) 60 TO 20
	CALL RESSEL IX. N. BESL. 3. 0)
	AFSL(1) = -RFSL(1)
	RETURN
<u> </u>	
20	CALL RESSEL(X) N, RESL, 4, 0)
· · · · · · · · · · · · · · · · · · ·	AFS: (1) @ -TOVRP1 + AFS(())
	BESL(2) = -TOVRPI + BESL(2)
	BESL(3) = TOVRPI + RESL(3)
	RETURN S END
	•••••••••••••••••••••••••••••••••••••••
•••	
· 	
•• ••	
	······································
	······································
	,

SUBROUTINE P	WHAT INV (A . R. INDEX . NMAX . N . M. DE TERH . IDET) NWHY	1
DIMENSION A	NMAX + 1) + B (NMAX + 1) + INDEX ())	2
. EQUIVALENCE		2
EQUIVALENCE		
DETERM=1.0	NW ⁴³ V	6
IDET = 0		
00 20 J=1+N	NWMV	7
20_INDEX (_]) =MI	IUSNWMV	
DO 550 1=1+/	NWMV	9
C SEARCH FOR.I	LEMENT OF LARGEST MAGNITUPLE	
AMA X=0.0		10
		11
100 F1-1		11
IFI-INDEXIK	11 100-100-80 EVY	14
AO TEMPALKIAJ	NWWV	15
IF(TEMP)83.	00 + 82 NWMV	16
82 TEMP=-TEMP	NAWA	17
83 1F(-ITEMP-14	MAX) 100+100+84 NWMV	18
RA AMAX -TEMP	NWMV	
[R=K]	NWMV	20
	NWMV	21.
100 CONTINUE	NWMV	77
105 CONTINUE	NWMV	23
IF(AMAX)120	115 NWMV	24
115_DETERM#0		25.
IDET = 0		
		20
120 180W+18		
INDEXILCOLUM	I) = INDEX (I COLUM) - AND - NOT - MINUS	20
	H=1COLUM11260+140	30
140 DETERM=-DETE	RM NWW	31
C	Sa	
DO 200 L=1+M	NWMV	32
SWAP=AIIROW	L1	. 33
A(IROW+L)=A(TCOLUM+L) NWMV	34
200_ALICOLUMALI	SWAPNWMV	35.
IF(.NOT.M)26	0+210 NWMV	36
	MNWMV	- 37.
SWAP=R{IROW	L: NWMV	38
BIROW+L)+BI		39
260 INDEV(1)-190		
PIVOT -ACT		4.7
DETERMEDETER	Nept vot Numv	41
C		
C ** KEEP DETE	RMINANT RETWEEN 1.0E-20 AND 1.0E+20	
270_DETERM1 #_ AB	SELDETERMI	
IF(DETERM1 •	GT. 1.E-20) GO TO 275	
DETERM A.DEJ	ERM. # 1.E20	
IDET = IDET	- 20 '	
		• • • • • • •
275 IF(DFTFRM1	LT. 1.F701 GO TO 300	
1057 - 1057		
60 TO 270	* 6 4	
300 CONTINUE		
CAN REDUCE LEADI	NG COPE TO T	

	ALICOLUM, ICOLUM)=1.0	NWHV	44
		- MWWV	
• 37 "	ALICOLUMALIAALICOLUMALI/PIVOT	NWNV	47
140	DO 170 LalaN	- NWHV	
170	RLICOLUMAL SERLICOLUMAL SZPIVOT	NWHY	49
C	SURSTITUTE FOR NTH VARIARIE.		
380	DO 550 L1#1.N	NWAV	50
	1F(_NOT_(L)=(COL()N)) 550.400	NWMV	51
A00		NWMV.	
	A(L1+1COLUM1=0+0	NWMV	
	00 450 Lelan	NWMY	
450	A(L1+L)=A(L1+L1-A(1COLUM+L)=?	NWHV	55
	1F(.NOT.M1550.460	NWMV	56
460	DO 500 L=1.M	NWMY	57
900	BILlaLISBILLALI-BIICOLUMALIST	_NWMV_	_58_
550	CONTINUE	NWMV	59
	UNDO ROW EXCHANGES.		
	LeN	NWMV	60
· - 	DO 710 L2=1+N	NWMV	61.
	JROW=INDEXIL1/100000000B	NMMA	62
	_JROW=JROW=AND_177778	_NWMV _	_63_
	JCOLUM=INDEX(L).AND.77778	NMMA	64
	IFI.NOT. (JROW-JCOLUH)17101630	NWMV	65
630	DO 705 K=1+N	NWMV	66
	SWAP=A(K,JROW)	NWYV	67
	A(K,JROW)=A(K,JCOLUM)	NWMV	68
705	A(K)JCOLUMISMAP	_NWMV _	69.
710			70
		NUMU	71
		-	
		• •	
	······································		
-			
	······································		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
••	•••••••••••••••••••••••••••••••••••••••		

• •

. .

. . . .

• •

.

		SUBR	OUT	INF	R00	T{X,	¥.	TOL) DFI	+ D	IFF.	1 F	LAG	JF	LAGI				• • • • • •		
• C		T	HIS	SUB	ROU	TINE		L FI	ND A	RO	OT B	Y F	ALSE	PO	5 I T I	ON		• • • • •	• - • • · · ·	•••••	
		EL A	6	0															_		
	Ċ	10 T	0 11	10.c.	29.e	101	JEL	AG								•••••			••••	•••••	
c 10	0)	(1 +	x				Y1.	• Y													
•		FLA	G	2			0.01														
		- -	A9.	INP.																	
	0)	2 -	X .							••••	•••••										••••
2	1)	(i •	XZ								.		0.10	1.19				••-••			
2	6_1		X2 -	<u>. u</u>	<u>x2-</u> 2	auz	172-	-111	. <u>.</u> .	2	L	R	ETUR	IN.							
C I	0.1		x		5		Y٦	• Y		•											
	Ċ	DIFF	• 1	MSF	(X3	- X	21									*****			•••••		
	1.1	FID	JFF 1 +	_+LI. ¥3}	▲!.(32 ()LI 50	<u>GQ.</u>]	19. 1 1							••••		••••				
ز	່	2.	<u>x</u> 3		5		¥2	= Y1	L		<u>.</u>	G	0 10	26							
3:	31	(F(Y) (1 =	2 + X3	¥3)	341	50	• 40 Y1) • Y1			\$	G	οτο	26							
C			-																		
41 C	נ_ח	ELA	G	1	X .		REI	UBA.					••••								••••
94	6_1	ELA	G	1_			RFT	URN			i		ND								
							• • • • • •		• • • • • • •		•••••						•••	•••••	• • • • • •		· · · · · · • •
											••••					••••				•••••	
			• • • • •																 .		
							•••••	•••••			••••				•••••		•••••				
																					_
		•••••									•••••								•••••		•••••
											•										
													•			• • • • •			• • • • • •	••••••	••••

.1	PROGRAM DETERM
- ç ·	CIRCULAR OUTER BOURDARY
	COMMON / INPUT /A 38 + G1 + G2 + FLAMDA1 + FLAMDA2 + BE TA+ BE TASO
	COMMON/BESSL/BES <u>SEL/LECTEREDICESEL/LECTEREDICESELLEREDE</u>
	COMMON/MU/FMUIAB+ FMUIAB+ FMUIAD+ FMUIAD
••••••••	DIMENSION CIAIALSCRAICH(61) EMULAIE MAG(91
	DIMPNSION II(4)
c	
1	READ 700, VF. FN. OMEGA, DOMEGA, TOL. ITER
700	FORMAT(5E15.9.12)
c	
	1F(E0F, 50) 100, 10
10	
• ••• •••••	E1 • 1 • 0.0
	F701 - 7,855 S FNU2 - 3,45-1
• ••• •• ••	RH01 = .0918/(32.2+12.) \$ RH02 = .0448/(32.2+12.)
	FL 9.3,
	J = 0 \$ JFLAG = 1
	B = A + SORTF11+/VF1
	FLAMDA1 = F1*FNU1/((1.+FNU1)*12.#FNU1))
••• • •••	FLAMDA2 = E2 FRU2/(((+FRU2)))]]=22 FRU2))
	$GI = EI/(E + (1 + 7 + 0)) \qquad \qquad GZ = EZ/(E + (1 + 7 + 0))$
	C 1 250 + (2 + 62 + FLAMDA2) / RH02
	C.11150 = G1/RH01
	C 11250 = G2/RH02
	BETA + FN+P1/FL
	BETASO * RETA**2
	PERINI, BUUS, AS ESS EZE BE FRUIE FRUZE VES GIE GZE LA RHUIE RHUZE
600	FORMAT(3):14 - F20-51 UX-6HE1
	3HUB +E20.5+10X+6HNU1 +E17.5+10X+6HNU2 +E17.5+/+
. (3HOVF+E20+5+10X+6HG 1 .+E17+5+10X+6HG 2.+E17+5+/+
	3HCL + E20+5+1CX+6HRH0_1_+E17+5+10X+6HRH0_2_+E17+5+7+
	3HON +E20,5,1CX;6HLAMDA1+E17+5,1DX;6HLAMDA2;E17+5/5
	• 640818 41742777 44640192 41742577 4483 34786808284 41133 667784 1041104011460140104 14116801404146801288 142104711460116011411
c	
2	OMEGASQ = OMEGA + OMEGA
	J • J+1
	$FMU(1) = OMFGASO/C 1 250 \longrightarrow RetASO$
	FMU(2) = 0*EGAS07C 1/2SQ = HETAS0 ;
•	FMULTE = OMPROADURE E LOUE - DELASU
c	
	K = 0
	DO 4 1=1+4 \$ IMAG(1) = 3H \$ []{] = 0
-	[F(FMU(1)) 3) 4) 4
3	K # K+1 > 1 ^m A()[] # 3M [> [[(K] #] EMU(1) = _EMU(1)
	CONTINUE
	FMULAB . SORTFI FMULLE 1
	EMUZAB = SQRTF(EMU(2))
	FMUIGD = SORTF(FMU(3))
	FMUZGD SUBIES FMU(91.).

•••••••••••••••••••••••••••••••••••••••
[F(K-1), 75+, 5+, 75
• • • • • • • • • • • • • • • • • • •
6 CALL BESLEUN
<u> </u>
$11 C(1 \cdot 1) = FM(1)AB #BFSSFLJ(2 \cdot 1 \cdot 2)$
12 C(1-2) = EMILLAR # 8/55EL Y(2-1-2)
13 C(1+3) = -52 (P+BESSELJ(2+2+2)
14_C(1+6) = -: RETACHESSELY(2+2+2)
15 (11.5) = (11.6) = (12.5) = (12.6) = 0.
21 CI2+11 = 2+=PMUIAN=HEIA+HESSELJIZ+1+21
22.C12+21. •.2+*EMULAR*BEJA*BESSELY(2+1+2)
23 C(2+3) = (FMU2AB++2-BETASQ)+BESSELJ(2+2+2)
24 (12.4) a (FMU2ABAA2-BETASO) 48FSSEL V(3.2.2)
ς
31.C(3+1). • FMUIAB#8E5SELJ/2+2+1
32 ((312) = FMU1ARPAESSELY(2+1+1)
33 C(3.3) BETAORESSE(1(2.2.1)
AL ALLAND AND ALLAND AND ALLAND AL
34 LIJ447 - TRIATREJELI(28281
15 C(3+5) • FMUIGD+BESSEL1(2+3+3)
36 C(3+6) = BETA+BESSELJ(2+2+3)
e
$ = \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
43 C(4+3) = FMUZAR+RF55FLJ(1+2+1)
A CLARAT P FMUZAB#BFSSFLY(1+2+1)
A& (14.5) # -AFTA+AF55F1 (13.1.3)
A CLANDIR PROZEDIBE SEL JIIJZAJI
ζ
51.CL9.L1
BESSELJ(1,1,1,1)+2,#G2#FMU1ABWRESSELJ(2,1,1)/A
RESSELY(1+1+1+2+*G2*FM(!IAR*RESSELY(2+1+1)/A
• (FMU240+4))
84 CI8.41 8 -3. 6. 30 FMIIJADORFTAGIRFCCRI VI1.3.11-855551 VI3.3.11/
T (FMUZANTA)1
55_C(5+5)_R=/FLAMDA1#BETASQ-(FLAMDA1+2+#G)1#FMU1GD##21#BESSEL1(1+1+1+1)
+ -2.*G1*FMU1GD*BFSSEL1(2.1.31/A
54 (14.6) = 2.4614FMU26D48FTA4(8FSSFL)(1.2.5)-8FSSFL)(2.2.5)/
• (PMU/2GD*A1)
c
A1 C(6.)1 . 2.9G2+FMU)AB+BETA+BESSELJ(2.1.1)
A2 (14.2) a 2.4624FMUJAB48FTA48FSSFLY(2.1.1)
VE SIGTET - EFNETEMENTEDETETETETETETETETETETETETETETETETETE
64 C(6+4) = G2#(FMUZAB##2-BETASO)#BESSELY(2+2+1)
65 C(6.51 # 2.*G1*FMU1GD*BETA*BESSEL1(2.1.*3)
AA (14.4) =
03 (18107
CALL NWMATINVIC, BB, SCRATCH, 6, 6, 0, DET, IDET)
JDET # 20*1DET
e
PRINT 403. L. OMEGA, DETRM. (EMILLE), INAGLES, LAS.A.
601 PURMATIEN Z11/600 NE 11/6/9 A319 / 1
CALL ROOT(OMEGA, DETRM, TOL, DOMEGA, DIFF, JJ, JFLAG)
16(11) 70. 80. 85
<u>AUX PORMATIZZZA JUXI ZOHITERATIONS DIVERGINGI</u>
C 75 PRINT 603, J. OMEGA, (FMULL) (MAG(1), [=1,4) 603 FORMAT(14, E17.5, 17X, 4(E17.5, A3), /) JFLAG = 1

C B0 (F(J +LTITER)_G0_IO_2 A5 FREO = OMEGA/(2+*PI) PRINT 604, FREO: DIFF 604 FORMAT(//* 7H FREO = E17.8+ 10X+7H DIFF =+ E17.8) G0 TO 3
100 END

	SUBROU	TINE	RESLEL	JN			
	COMMON	/INPU	TZAIB	G1+G2+FLAM	DA1 .FLA	MDA2+BETA+BETASQ	
•	COMMON	/BESS	LIAESS	ELJ(2+2+3)	. BESS	ELY(2+2+3)+ BEESEL1(2+2+3)	
	COMMON	/41/2	MIITAR	EMIIZAR. F	MU160.	ENUISOD	
	C OPLOSE	LON Y	TY AREA	WISS. ANEL	21. 414		
	019693	I CH A	1 3 7 9 3	ALST ANST	279 AN2		
	X(1), #	- EMNI	A0	X	.XLLL.	.R. F.M.ZASTA	
	X(2) =	FMU1	A8+8	5	XX(2)	· FMUZAR#R	
	X(3) .=	. EMUL	GD+A	S	-XX131.	R FMU2GD#A	
e							
•	00 10	1=1.3					
	CALL	ECCEI	14111.	1. ANS. 1	. 01		
	CALL D	PEEPI		1. ANEW. T			
	CALL D	L'SSEP	TÖVITI	ALKERA. ALSA	3 <u>Y</u> I		************
	BESSEL	101+1	•1) •	ANSIL	5	BESSELJ12+1+11 = ANS(2)	
	PESSEL	7(3.45	<u>•1) •</u>	<u>ANSW(1)</u>		HESSELU(2+2+1) + ANSW(2)	
	CALL R	FSSFL	(X(I).	1+ ANS+ 2	• 0)		
	CALL B	ESSEL	(XX(I)	+1+ ANSW+2	• 0)		
	RESSEL	¥ (] . 2	. [] .	ANSWELL	6	BESSEL Y12+2+11 # ANSW(2)	
	RECCEL	¥13.1		ANSIN		AFESEL VI2.1.11 . ANS(2)	
	DESSEL	1.1.4.2.4.			- 2		
10	CONTIN	UE					
	CALL R	FSSFL	(X(3).	1 ANS+ 3	, 0)		
	BESSEL	111.	1. 11	. ANS(1)	ŝ	AFSSF(1(2+1+3) = ANS(2)	
-							وحديدة فعاويها والباد
				FNA			
· · · · · · · · · · · · · · · · · · ·	RETURN		. . 9	END			

	•••••						
							•••••••••••••••••••••••••••••••••••••••
						······································	
					•		

	· · · · · · · · · · · · · · · · · · ·		
	SUBROUTINE NUMATINV(A+B+INDEX+NMAX+N+M+DETERM+1DET)	NWMV	1
	DIMENSION A (NMAX + 1) + B (NMAX + 1) + INDEX (1)	NWMV.	Z.
•	EQUIVALENCE (IROW, JROW, IR) > (ICOLUM, JCOLUM, IC)	NWMV	
	EQUIVALENCE (AMAX+T, SWAP+JAMAX)+IPIVOT+TEMP+ITEMP	NWMV	
	DATA IMINUS460000000000000000	NEWIN V	÷
C.**			
	DETERM=1.0	NWMV	6
•••••••••	IDET • 0		
	N 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	NWMV	
20	INDEX (1) SMINUS	NWMV_	8
	DO 550 I=1+N	NWMV	9
	SEARCH FOR ELEMENT OF LARGEST MAGNITUDE		
	AKAX=0+0	NAMA	10
	DO 105 J1+1+N	NWMV	. 11.
	IF(=[NDFX(J1)] 105+105+60	NWMV	17
60		NWMV_	-!!-
	TF(-(NDEX(K))) 100+100+80	NWMV	14
	TEMPOAIKISJI	NWMV.	17 -
	IF(TFMP)83+100+82	NWMV	16
	IEMbe-Itab	NWMV.	
83	IF(~ITEMP-IAMAX) 100+100+84	NWMV	1.
		NWMV	
	IRek 1	NWWV	20
	[C=J]	NWMV.	. 21
100	CONTINUE	NWWV	77
104		NWHV.	. 23.
	[F(AMAX)]20+115	NWMV	24
119.	_DETERM = 0	NWMV	_29_
	RETURN	NWMV	26
120		NWMV	77
	ICOLUM+IC	NWMV	28
	INDEX(ICOLUM)=INDEX(ICOLUM)+AND++NOT+MINUS	NWHV	29
	LELONQIALIROW-LCOLIMIIZADAIAD	NWMV	
140	DETERMA-DETERM	NWMV	- 11
	FXCHANGE ROWS	••	
	DO 200 L+1+N	NWWV	37
••••	SWAP=A(IROW,L)	NWMV.	. 33
•••	A (IROW+L)=A (ICOLUM+L)	NWMV	34
200	ALICOLUMILIESHAP	- NWMV_	-35-
	1F(•NOT•M)260+210	NWMV	36
210	DO 250 L=1, M	NWMV	37
	SWAP-R(IROW,L)	NWMV	7.8
	H[IROWsL)=H[ICOLUMsL)	NWMV	39
250	H(ICOLUM,L)=5WAP	NWMV	40
	SAVE PJYOI INEGRMATION, DO DELARMINANI.		·
200	INDEX[])=]NOW=IO0000008+ICOLUM+INDEX[])	NWMV	41
	PIVOT #A(ICOLUM)	NWMV	. 42 .
-	DETERMADETERMAPINGT	NWMV	43
C			
C c#	KEEP DETERMINANT BETWEEN 1.0E-20 AND 1.0E+20		
270	DETERM1 = ABSE(DETERM)		
	IF(DFTERM1 .GT. 1.E-20) GO TO 275		
	DETERM • DETERM • 1.E20		
	IDET = IDET = 20		
	GO 10 270		
275	IF(DETERM] .LT. 1.F20) GO TO 300		
	DETERM & DETERM / 1.E20		
	IDET = IDFT + 20		
	GO TO 270		
300	CONTINUE .		
C.**	REDUCE LEADING COEF. TO. 1.	····•	

	A(1COLUM:1COLUM)=1.0	NWMV	44
	DO 350 L=1+N	NWMV	45
* 350	A(ICOLUM+L)=A(ICOLUM+L)/PIVOT	MMMA	46
	JF1.NOT.M1380.360	NWMV	.47_
360	DO 370 L=1+M	NWMV	48
370	B(ICOLUMAL)=B(ICOLUMAL)/PIVOL	NWYV	49
C 4 4	SUBSTITUTE FOR NTH VARIABLE.	MUMU	60
	15/ NOT (1)-100000000000000000000000000000000000	NWM*:	- 50
400	1 - 4 / 1 - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	NWMV	52
		NVMV	53
	DO ASO LETAN	NWMV	54
450		NWMV	55
	1F(=NOT=H)550=660	NWMV	56
460	DO 500 L=1+M	NWWV	57
500	B(L1+L)=B(L1+L)-B(ICOLUM+L)+T	NWMY	-50_
550	CONTINUE	NWMV	59
	UNDO ROW EXCHANGES.		
	L=N	NWMV	60
	DO 710 L2=1+N	NWMV	61
	JROW=INDFX(L)/100000008	NWMV	62
	JROWS JROW AND TTTTTR	NWWV_	_61_
	JCOLUM=INDEX(L)+AND+7777B	NWMV	64
	IF 1. NOT I LOUT JCOLUMI J. 710 : 630	NWMV.	. 65
630	DO 705 K=1+N	NWMV	66
	SWAPPAIKIJROWL	NWMV.	. 67
	A (K + JROW) = A (K + JCOLUM)	NAHA	68
		NWCY	-22-
/10		NUM	70
	••••••••••••••••••••••••••••••••••••••	www.www.www.	
	end	NWMV	72
	end	NWMV	72
		NWMV	72
		NWMV	72
		NWMV	72
			72
			72
			72

SUBROUTINE ROOTIX. Y. TOL. DEL. DIFF.	IFLAG: JFLAG)
C THIS SUBROUTINE WILL FIND A ROOT B	FALSE POSITION
IFLAG = 0 GO TO (10: 20: 30) JFLAG	
C 10 X1 + X S Y1 + Y	
ISTLAG & RETURN	
21 X1 = X2 <u>Y1 = Y2</u> 25 JFLAG = 7	<u>GQ TO 15</u>
$\frac{26 \times 22}{C} = \frac{1}{2} $	RETURN
DIFF = ARSE($X3$ - $X2$) IF(DIFF = ALL_, TOL) GO TO 30	
31 [F(Y] # Y3) 32+ 50+ 33 32 X2 # X3 \$ Y2 # Y3 \$	GO 10.26
33 [F(Y2 * Y3) 34+ 50+ 40 34 X1 = X3	
40 IFLAG =1	
50 IFLAG = 1 \$ RETURN \$	EN2
· · · · · · · · · · · · · · · · · · ·	
	····· ···
· · · · · · · · · · · · · · · · · · ·	······································
.	
	· · · · · · · · · · · · · · · · · · ·
·· ··· •	• • • • •
	••••

APPENDIX X

PROGRAM FOR FORCED VIBRATION USING SIMPLIFIED ANALYSIS

100 SUSE LINEQSGAR 110° *** PROGRAM FOR FORCED VIBRATION USING SIMPLIFIED ANALYSIS 120° *** WRITTEN JUNE 15, 1945 BY GEORGE BURGIN *** 125° *** FREE-FREE CASE WITH U R (B) = ZERD-130 DIMENSION AA(25,25),RH8(25) 130 DIMENSION AAC25 140 103 CONTINUE 150 A = 0.0025 160 VF = 0.65 170 RH01=2.42734E-4 160 RH02=1.13942E-4 190 E1=EF=10000000. 200 E2=ER=350000. 210 FNU1=FNUF=0.2 220 FNU2=FNUR=0.35 230 G1=GF=E1/(2.+2.+FNU1) 240 G2=GR=E2/(2.+2.+FNU2) 250 PI=3.141592653 260 192 FORMAT("A = ",E10.4," B =",E10.4," VF =",E10.4/ 270 +"RH01 =",E10.4," RH02 =",E10.4," E 1 =",E10.4/ 280 +"E 2 = ",E10.4," NU 1 = ",E10.4," NU 2 = ",E10.4,/ 290 +"G 1 =",E10.4," G 2 = ",E10.4," FL = ",E10.4///) 300 B=A+SQRTF(1./VF) 310 FL=3. 320 PRINT 191 330 191 FURMAT(///"INPUT DATA"/"-----"//) 340 PRINT 192,A,B,VF,RH01,RH02,E1,E2,FNU1,FNU2,G1,G2,FL 350 AA(1,1)=A 360 AA(1,2)=-A 370 AA(1,3)=-1./A 380 AA(2,1)*EF/((1.+FNUF)+(1.+2.+FNUF)) 390 AA(2,2)=-ER/((1.+FNUR)+(1.-2.+FNUR)) 400 AA(2,3)=ER/((1.+FNUR)+A++2) 410 AA(3,1) = 0+0 420 AA(3,2)=B 430 AA(3,3) = 1+/B 440 RHS(1)=A+(FNU2-FNU1) 445 RHS(1)=-RHS(1) 450 RHS(2)=0.0 460 RHS(3)=8+FNU2 470 CALL LINEQ(AA, RHS, 3, 1) 480 FKIF*RHS(1) 490 FKIR=RHS(2) 500 FK2R+RHS(3) 510 FLANDAR=FNUR+ER/((1.+FNUR)+(1.-2.+F(UR)) 520 FLANDAF=FNUF+EF/((1.+FNUF)+(1.-2.+FNUF)) 530 T1=RHD1+PI+(-FNU1+FK1F)++2+A++4/4. 540 T2=(-FNU2+FK1F,++2+(B++4-A++4)/4. 550 T3=(-FNU2+FK1R)+FK2R+(B++2-A++2) 560 T4=FK2R++2+LOGF(B/A) 570 C1=T1+RH02+P1+(T2+T3+T4)

```
588 C2+RH01+PI+A++2/2.+RH02+PI+(8+8-A+A)/R.
578 T5+EF/2.+A++2
688 T6+ER+(8++2-A++2)/2.
610 T7=EF/(().+FNUF)+(1.-2.+FNUF))+FK1F++2+A++2
620 TR=ER/((|.+FNUR)+(|.-P.+FNUR))+FK1R++E+(3++E-A++E)
630 T9=-ER/(1.+FNUR)+FK2R++2+(1./8++2-1./A++2)
650 C3=P1+(T5+76+T7+T4+T9)
660 PRINT 194, FK1F, FK1R, FK2R
000 FRINI 174-FRIF-FRIF-FRIF-FR2R
670 194 FORMAT("K 1 F "">E10.4," K 1 R "">E10.4," K 2 R ">E10.4/)
680 PRINT 195-C1-32-C3
690 195 FORMAT("OMEGAL "">E10.4," OMEGA2 "">E10.4," OMEGA 3 ">E10.4/)
694 PRINT-115
695 M 726 N=1+5
695 'J /20 N=1,3
696 726 CALL OMEGANAT(C1,C2,C3,N,FL)
700 106 CJYTINUEJ PRINT 92
710 92 FORMAT (///"INPUT VALUE FOR OMEGA E ")J INPUT,OMEGAE
720 DMEGA1=C1:DMEGA2=C2:DMEGA3=C3
730 BETAL +OMEGA3-OMEGAE++2+OMEGAL
740 BETA2+OHEGA2+OHEGAE++2
750 F11=SORT(BETA]/BETA2);SOI=SORT(BETA2/BETA1)
755 PRINT 291;SOI
756 291 FURMAT (//" BETA = ";E12.5)
766 F12=F11/SIN(SQI+FL)
770" +++ START DO-LOOP ON Z +++++++++
788 DELTAZ=1.
782 Z=0+0
785 Z=0+0
799 00 999 KIJUNT=1,3
800 Z= Z+DELTAZ
805 PRINT 97,2
910 ARG=SORT()]MEGA2+DMEGAE++2/(DMEGA3-DMEGAE++2+DMEGAI))
820 DPHIDZ=F12+ARG+SIN(ARG+Z)
830 EPSZ=DPHIDZ
A0 PRINT 94,EPSZ

A50 94 FORMAT(/"EPS Z = ",£12,4/)

A60 Gi) TU 1575

PRO BRD CONTINUE
RR2 FHIF=CISUP1/EPSZ
R (3 FK1R=C1SJP2/EPSZ
BR4 FK2R=C2SUP2/EPSZ
900 97 FURMAT(//"--
                                                            910 +----"//20X," Z = ",F12+2/)
920 PRINT 55.CISUP1.CISUP2.C2SUP2
930 55 FORMAT(//"C 1 SUP 1 =", IPE20.7/"C 1 SUP 2 =", E20.7/
440 +"C 2 SUP 2 =", E20.7)
950 SIGMA1=E1/((1.+FNU1)+(1.-2.+FNU1))+C1SUP1
960 SIGMAIZ=EPSZ+E1+2++FNUI+SIGMA1
970 PRINT 57, SIGMA1, SIGMAIZ
789 57 FORMAT(//"SIGMA 1 R = SIGMA 1 THETA =", 1PE9+3," SIGMA Z =",
981 +1PE9-3)
```

```
FORCEA CONTINUED
```

```
990 UR1=(-FNU1+FK1F)+EPSZ+A
992 W=-F11+CUS(SQ1+Z)/SIN(SQ1+FL)
994 PRINT 995,URI,W
995 995 FUPMAT (" U R 1 =", 1PE15.5," W 1 =",E15.4)
1000 DELTAR=(B-A)/4.1R=A
1010 DI 95 KUUNTR=1,5
SIGHAZ =", 1PE9.3)
1600 AA(1,3)=-1./A
1610 AA(2,1)=EF/((1.+FNUF)+(1.-2.+FNUF))
1620 AA(2,2)=-ER/((1.+FNUR)+(1.-2.+FNUF))
1630 AA(2,3)=ER/((1++FNUR)+A++2)
1640 AA(3,1) = 0.0
1650 AA(3,2)=8
1650 AA(3,2)= 1./8
1660 AA(3,3) = 1./8
1670 RHS(1)=-EPSZ+A+(FNU2-FNU1)
1690 RHS(2) =0.0
1690 RHS(2) =0.0
1700 CALL LINEO(AA, RHS, 3, 1)
1710 CISUP1*RHS(1)
1720 C1SUP2=RH5(2)
1730 C2SUP2=RHS(3)
1740 GIJ TIJ RAO
2010 SUBROUTINE OMEGANAT(C1,C2,C3,N,FL)
2015 PI = 4.vATAN(1.)
2020 FN = N
2030 RAD=C3/(C2+FN+02+PI++2/FL++2+C1)
2040 DMEGA=FN+PI/FL+SQRT(RAD)
2050 PRINT 91,N,DMEGA
2060 91 FORMAT( "OMEGA NATURAL SUB", 13, " = ", IPE10.4)
2070 RETURNIEND
```

APPENDIX XI

COMPOSITE VELOCITIES

		5.000008-01	
	F1 =	1.0000000000	
	<u>PUC1 =</u>	2. 428005-04	
		$2 \cdot 420002 \cdot 04$	
		2.000000-01	
	NELL ZALLE	5 51/69	C
	NOTING		C
1 50	0 ((())	50 0	1 600755+05
1+50	0 4 4 4 4 7	50.0	
1+50	0.00007	100+0	
1.50	0.00057	150+0	
1+50	1.00001	200•0	1+ 58 0125.+05
		50 0	
1.50	0.57143	50.0	1.611402+05
1.50	0.57143	100.0	1.592102+95
1.50	0.57143	150.0	1.585496+05
1.50	0,57143	200•0	1.582156+05
2.00	0.66667	50.0	1.690502+05
2.00	0.66667	100.0	1.674U3E+U5
2.00	0.66667	150.0	1.66842E+05
2.00	0•66667	200•0	1+66559E+05
2.00	0.57143	50.0	1.69856E+U5
2.00	6.57143	100•0	1.67822E+05
2.00	0.57143	150.0	1.67125E+05
2.00	0.57143	200•0	1.66774E+05
2.50	0.66667	50.0	1•74983E+05
2.50	0.66667	100•0	1.73278E+05
2.50	0.66667	150.0	1•72698E+05
2.50	0.66667	200.0	1.72405E+05
2.50	0.57143	50 • 0	1.75818E+05
2.50	0.57143	100•0	1.73712E+05
2.50	0.57143	150.0	1.72991E+05
2.50	0.57143	200.0	1.72627E+05

	Vr =	6.00000E-01	
	E1 =	1.00000E+07	
	RH()1 =	2.42800E-04	
	NU1 =	2.00000E-01	
•			
R01/R02	NUIZNU2	E1/F2	C
			8
1.50	0.66667	50.0	1 716725+05
1.50	0.66667	100 0	
1.50	0 44447	100.0	1. 102982+03
1.50	0.00507	150.0	1.698262+05
1.20	0.00001	200•0	1+69587E+05
1 50	0 5 7 4 4 0		
1.50	0.57143	50.0	1.72372E+05
1.50	0.57143	100+0	1.70666E+05
1.50	0.57143	150+0	1.70076E+05
1.50	0.57143	200.0	1.69776E+05
2.00	0.68667	50.0	1.78682E+05
2.00	0.66667	100.0	1.77251E+05
2.00	0.66667	150.0	1.76760E+0S
2.00	0.66667	200.0	1.76512E+05
2.00	0.57143	50.0	1.794105+05
2.00	0.57143	100.0	1.774255+05
2.00	0.57143	150.0	1.770015+05
2.00	6.57143	200.0	1. 767005+05
2.00	0.37143	200.0	1.10/092+03
2.50	0 66667	50 0	
2.00	0.00001	20.0	1.833242+05
2.50	0.00007	100.0	1.81856E+05
2.50	0.66667	150.0	1+81352E+05
2.50	0•66667	200•0	1•81097E+05
2.50	0.57143	50.0	1-84071E+05
2.50	0.57143	100+0	1.82250E+05
2.50	0.57143	150.0	1.81619E+05
2.50	0.57143	200.0	1+81300E+05

	VF = E1 = RH(1) =	7.00000E-01 1.00000E+07 2.42800E-04	
	NU1 =	2.00000E-01	
R01/R02	NUI/NU	2 E1/E2	С
1.20	0 •66 667	50.0	1-81643E+05
1.50	0.66667	100•0	1.80360E+05
1.50	0.66667	150.0	1.79911E+05
1 • 50	0.66667	200•0	1 • 79683E+05
1.50	0.57143	50.0	1.82305E+05
1.50	0.57143	100.0	1+80718E+05
1.50	0.57143	150.0	1.80157E+05
1.50	0.57143	200•0	1•79869E+05
2.00	0•66667	50.0	1.86909E+05
2.00	0.66667	100.0	1.85589E+05
5.00	0.66667	150+0	1.85127E+05
2.00	0.66667	200•0	1 • 8 48 9 2 E + 0 5
2.00	0.57143	50+0	1.87590E+05
2.00	0.57143	100.0	1.85957E+05
2.00	0.57143	150.0	1.85380E+05
2.00	0.57143	200•0	1•85084E+05
2.50	0.66667	50.0	1.90298E+05
2.50	0.66667	100•0	1+88953E+05
2.50	0.66667	150.0	1 • 88 48 3E + 05
2.50	0.66667	200•0	1.88244E+05
2.50	0.57143	50.0	1•90991E+05
2.50	0.57143	100•0	1.89328E+05
2.50	0.57143	150.0	1.88740E+05
2.50	0.57143	200.0	1.88439E+05

	VF =	8.00000E-01	
	E1 =	1.00000E+07	
	RHO 1 =	2.42800E-04	,
	NU1 =	2.00000E-01	
R01/R02	NUTZNU2	E1/E2	С
			-
1.50	0.66667	50.0	1.907168+05
1.50	0.66667	100.0	1.997965+05
1.50	0.66667	150-0	1.000175+05
1.50	0 4 4 4 4 7	120+0	
1.20	U • 0000/	200•0	1.990945403
	0 57140	50 0	1 010010.05
1+50	0+5/143	20.0	1.913/1E+U5
1.50	0-57143	100.0	1.89769E+U5
1.50	0.57143	150.0	1.89177E+05
1.50	0.57143	200•0	1•88869E+05
5.00	0.66667	50.0	1.94216E+05
2.00	0.66667	100•0	1.92872E+05
2.00	0.66667	150.0	1•92384E+05
2.00	0.66667	200•0	1.92131E+05
5•00	9.57143	50.0	1.94883E+05
2.00	0.57143	100•0	1.93251E+05
2.00	0.57143	150.0	1.92649E+05
2.00	0.57143	200.0	1.92335E+05
- •••	• - • • •		•••••••••••••••••••••••••••••••••••••••
2.50	0.66667	50.0	1.96410F+05
2.50	0.66667	100.0	1.950516+05
2.50	0.66667	150.0	1.94558E+05
2.50	0.00001 P.44447	200 0	1.042025+05
2.50	6 • 00001	200 •0	1.743022403
0.50	0.57140	50 0	1.070255+05
2.50	0 57143	2U+U	
2.50	0.57143	100+0	1. 7343364 33
2.50	0.57143	150+0	1.948262+05
2.50	0.57143	200.0	1.94508E+05

	VF = E1 = RHD1 = NU1 =	5.00000E-01 6.00000E+07 2.42800E-04 2.00000E-01	
R01/R02	NUTINN	2 E1/E2	С
1 • 50 1 • 50 1 • 50 1 • 50 1 • 50	D•66667 D•66667 D•66667 D•66667	50.0 100.0 150.0 200.0	3.92837E+05 3.89008E+05 3.87706E+05 3.87049E+05
1 • 50 1 • 50 1 • 50 1 • 50	0.57143 0.57143 0.57143 0.57143 0.57143	50.0 100.0 150.0 200.0	3.94710E+05 3.89983E+05 3.88364E+05 3.87547E+05
2.00 2.00 2.00 2.00	D•66667 D•66667 D•66667 D•66667	50.0 100.0 150.0 200.0	4.14086E+05 4.10051E+05 4.08678E+05 4.07986E+05
2.00 2.00 2.00 2.00	0.57143 0.57143 0.57143 0.57143 0.57143	50.0 100.0 150.0 200.0	4.16060E+05 4.11078E+05 4.09372E+05 4.08510E+05
2.50 2.50 2.50 2.50 2.50	0•66667 0•66667 0•66667 0•66667	50.0 100.0 150.0 200.0	4.28620E+05 4.24443E+05 4.23022E+05 4.22305E+05
2.50 2.50 2.50 2.50	0.57143 0.57143 0.57143 0.57143 0.57143	50.0 100.0 150.0 200.0	4.30664E+05 4.25506E+05 4.23740E+05 4.22848E+05

	VF =	6.00000E-01	
	E1 =	6.00000E+07	
	RHO 1 =	2.42800E-04	
	NU1 =	2.00000E-01	
R01/R02	NU1/NU	2 E1/E2	С
1.50	0•66667	50.0	4.20510E+05
1.50	0.66667	100.0	4.17142E+05
1.50	0.66667	150.0	4.15986E+05
1.50	0.66667	200.0	4.15401E+05
1.50	0.57143	50.0	4.22223E+05
1.50	0.57143	100.0	4.18046E+05
1.50	0.57143	150.0	4.16599E+05
1.50	0.57143	200.0	4.15866E+05
2.00	0.66667	50•0	4.37681E+95
2.00	0.66667	100.0	4.34175E+05
2.00	0•66667	150.0	4• 32972E+05
2.00	0•66667	200.0	4• 32363E+05
2.00	0.57143	50.0	4.39464E+05
2.00	0.57143	100.0	1.35116E+05
2.00	0-57143	150.0	4.33610E+05
2.00	0.57143	200•0	4.32847E+05
2 50	0 ((())	50.0	
2.50		5U+U	4.49051E+05
2.50	0 66667	100.0	4.45454E+05
2.50	0.66667	150.0	4. 44220E+05
2.50	U • 0 0 0 0 /	200.0	4• 43595E+05
2.50	0.57143	50.0	4.50880E+05
2.50	0.57143	100.0	4.46419E+05
2.50	0.57143	150+0	4. 44875E+05
2.50	0.57143	200.0	4. 44091E+05

.....

$E_{1} = 6.00000E_{0}^{+} 07$ $RHO1 = 2.42800E_{0}^{-} 04$ $NUI = 2.00000E_{0}^{-} 01$ $RO1/RO2 = NU1/NU2 = E1/E2 = C$ $1.50 = 0.66667 = 100 \cdot 0 = 4.44933E_{0}^{+} 05$ $1.50 = 0.66667 = 100 \cdot 0 = 4.41790E_{0}^{+} 05$ $1.50 = 0.66667 = 200 \cdot 0 = 4.40691E_{0}^{+} 05$ $1.50 = 0.57143 = 50 \cdot 0 = 4.46555E_{0}^{+} 05$ $1.50 = 0.57143 = 100 \cdot 0 = 4.42667E_{0}^{+} 05$ $1.50 = 0.57143 = 150 \cdot 0 = 4.40588E_{0}^{+} 05$ $1.50 = 0.57143 = 150 \cdot 0 = 4.40588E_{0}^{+} 05$ $1.50 = 0.57143 = 200 \cdot 0 = 4.57832E_{0}^{+} 05$ $2.00 = 0.66667 = 50 \cdot 0 = 4.57832E_{0}^{+} 05$ $2.00 = 0.66667 = 150 \cdot 0 = 4.57832E_{0}^{+} 05$ $2.00 = 0.66667 = 150 \cdot 0 = 4.53467E_{0}^{+} 05$ $2.00 = 0.66667 = 200 \cdot 0 = 4.52891E_{0}^{+} 05$ $2.00 = 0.57143 = 50 \cdot 0 = 4.59501E_{0}^{+} 05$ $2.00 = 0.57143 = 50 \cdot 0 = 4.59501E_{0}^{+} 05$ $2.00 = 0.57143 = 50 \cdot 0 = 4.66132E_{0}^{+} 05$ $2.00 = 0.57143 = 200 \cdot 0 = 4.66132E_{0}^{+} 05$ $2.50 = 0.66667 = 150 \cdot 0 = 4.66132E_{0}^{+} 05$ $2.50 = 0.66667 = 200 \cdot 0 = 4.66132E_{0}^{+} 05$ $2.50 = 0.66667 = 150 \cdot 0 = 4.66132E_{0}^{+} 05$ $2.50 = 0.66667 = 150 \cdot 0 = 4.66132E_{0}^{+} 05$ $2.50 = 0.57143 = 50 \cdot 0 = 4.67831E_{0}^{+} 05$ $2.50 = 0.57143 = 50 \cdot 0 = 4.67831E_{0}^{+} 05$ $2.50 = 0.57143 = 100 \cdot 0 = 4.63758E_{0}^{+} 05$ $2.50 = 0.57143 = 100 \cdot 0 = 4.63758E_{0}^{+} 05$ $2.50 = 0.57143 = 100 \cdot 0 = 4.63758E_{0}^{+} 05$ $2.50 = 0.57143 = 100 \cdot 0 = 4.63758E_{0}^{+} 05$ $2.50 = 0.57143 = 100 \cdot 0 = 4.63758E_{0}^{+} 05$ $2.50 = 0.57143 = 100 \cdot 0 = 4.63758E_{0}^{+} 05$ $2.50 = 0.57143 = 100 \cdot 0 = 4.63758E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 0 = 4.61580E_{0}^{+} 05$ $2.50 = 0.57143 = 20 \cdot 0 = 0 = 4.61580E_{0}^{+} 05$			/• UUUUUE= 01	
RH(1) = $2.42800E-04$ NU1 =NU1 = $2.00000E-01$ RD1/RD2NU1/NU2 $E1/E2$ C1.50 0.66667 100.0 $4.41790E+05$ 1.50 0.66667 100.0 $4.40691E+05$ 1.50 0.66667 200.0 $4.40691E+05$ 1.50 0.66667 200.0 $4.40131E+05$ 1.50 0.57143 50.0 $4.42667E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 100.0 $4.40588E+05$ 2.00 0.66667 150.0 $4.57832E+05$ $4.5385E+05$ 2.00 0.66667 150.0 $4.52891E+05$ 2.00 0.66667 200.0 $4.52891E+05$ $4.53361E+05$ 2.00 0.57143 2.00 0.57143 100.0 $4.53361E+05$ 2.00 0.57143 2.00 0.57143 200.0 $4.53361E+05$ 2.50 0.66667 100.0 $4.53361E+05$ 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.66667 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.66667 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.66667 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 20.0		E1 =	6. UUUUUE+U7	
NUT = 2.00000E-01 R01/R02 NU1/NU2 E1/E2 C 1.50 0.66667 100.0 4.44933E+05 1.50 0.66667 100.0 4.41790E+05 1.50 0.66667 200.0 4.40691E+05 1.50 0.66667 200.0 4.40131E+05 1.50 0.57143 50.0 4.4655E+05 1.50 0.57143 100.0 4.42667E+05 1.50 0.57143 100.0 4.42667E+05 1.50 0.57143 100.0 4.42667E+05 1.50 0.57143 100.0 4.42667E+05 1.50 0.57143 100.0 4.54598E+05 2.00 0.66667 100.0 4.54598E+05 2.00 0.66667 200.0 4.52891E+05 2.00 0.57143 50.0 4.59501E+05 2.00 0.57143 100.0 4.52891E+05 2.00 0.57143 200.0 4.53361E+05 2.00 0.57143 200.0 <td></td> <td>RHU1 =</td> <td>2.42800E-04</td> <td></td>		RHU1 =	2.42800E-04	
R01/R02NU1/NU2E1/E2C 1.50 $C.66667$ 50.0 $4.44933E+05$ 1.50 0.66667 100.0 $4.41790E+05$ 1.50 0.66667 200.0 $4.40691E+05$ 1.50 0.66667 200.0 $4.40691E+05$ 1.50 0.57143 50.0 $4.46555E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 200.0 $4.57832E+05$ 2.00 0.66667 50.0 $4.57832E+05$ 2.00 0.66667 200.0 $4.54598E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.50 0.66667 200.0 $4.6188E+05$ 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.623758E+05$ 2.50 0.57143 200.0 $4.6188E+05$ 2.50 0.57143 200.0 $4.6188E+05$ 2.50 0.57143 200.0 4.61		NUI =	2.0000E-01	
1.50 0.66667 50.0 $4.44933E+05$ 1.50 0.66667 100.0 $4.41790E+05$ 1.50 0.66667 200.0 $4.40691E+05$ 1.50 0.66667 200.0 $4.40691E+05$ 1.50 0.57143 50.0 $4.46555E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 150.0 $4.41292E+05$ 1.50 0.57143 200.0 $4.40588E+05$ 1.50 0.57143 200.0 $4.40588E+05$ 2.00 0.66667 50.0 $4.54598E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 106.0 $4.55500E+05$ 2.00 0.57143 100.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.00 0.57143 100.0 $4.62839E+05$ 2.00 0.57143 200.0 $4.6132E+05$ 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$ 2.50 0.57143 200.0	R01/R02	NU1/NU2	2 E1/E2	С
1.50 0.666657 50.0 $4.44933E+05$ 1.50 0.66667 100.0 $4.41790E+05$ 1.50 0.66667 200.0 $4.40691E+05$ 1.50 0.66667 200.0 $4.40131E+05$ 1.50 0.57143 50.0 $4.46555E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 100.0 $4.42588E+05$ 1.50 0.57143 200.0 $4.40588E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 150.0 $4.57832E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.52891E+05$ 2.00 0.57143 100.0 $4.59501E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.00 0.57143 100.0 $4.66132E+05$ 2.00 0.57143 200.0 $4.6188E+05$ 2.50 0.66667 200.0 $4.6188E+05$ 2.50 0.66667 200.0 $4.6188E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$ 2.50 0.57143 20				
1.50 0.66667 50.0 $4.44933E+05$ 1.50 0.66667 100.0 $4.41790E+05$ 1.50 0.66667 200.0 $4.40691E+05$ 1.50 0.66667 200.0 $4.40131E+05$ 1.50 0.57143 50.0 $4.46555E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 150.0 $4.41292E+05$ 1.50 0.57143 150.0 $4.40588E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.54598E+05$ 2.00 0.57143 100.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.6132E+05$ 2.00 0.57143 200.0 $4.6132E+05$ 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.66667 200.0 $4.6188E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$ 2.50 0.57143 200.0 $4.61580E+05$				
1.50 0.66667 100.0 $4.41790E+05$ 1.50 0.66667 150.0 $4.40691E+05$ 1.50 0.66667 200.0 $4.40131E+05$ 1.50 0.57143 100.0 $4.4267E+05$ 1.50 0.57143 100.0 $4.4267E+05$ 1.50 0.57143 150.0 $4.41292E+05$ 1.50 0.57143 200.0 $4.41292E+05$ 1.50 0.57143 200.0 $4.40588E+05$ 2.00 0.66667 50.0 $4.57832E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 150.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.533467E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.54598E+05$ 2.00 0.57143 100.0 $4.54085E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.00 0.57143 100.0 $4.66132E+05$ 2.00 0.57143 200.0 $4.61102E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61380E+05$ 2.50 0.57143 200.0 $4.61380E+05$	1.50	0.66657	50+0	4. 44933E+05
1.50 $0.66/.67$ 150.0 $4.40691E+05$ 1.50 0.66667 200.0 $4.40131E+05$ 1.50 0.57143 100.0 $4.42655E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 150.0 $4.41292E+05$ 1.50 0.57143 200.0 $4.41292E+05$ 1.50 0.57143 200.0 $4.40588E+05$ 2.00 0.66667 50.0 $4.57832E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 100.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.54085E+05$ 2.00 0.57143 100.0 $4.54085E+05$ 2.00 0.57143 100.0 $4.66132E+05$ 2.00 0.57143 200.0 $4.6132E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$ 2.50 0.57143 200.0 $4.61580E+05$	1.50	0.66667	100•0	4.41790E+05
1.50 0.66667 200.0 $4.40131E+05$ 1.50 0.57143 50.0 $4.46555E+05$ 1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 150.0 $4.41292E+05$ 1.50 0.57143 200.0 $4.40588E+05$ 2.00 0.66667 50.0 $4.57832E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 100.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.55500E+05$ 2.00 0.57143 106.0 $4.53361E+05$ 2.00 0.57143 100.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.6132E+05$ 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.57143 50.0 $4.6132E+05$ 2.50 0.57143 50.0 $4.6132E+05$ 2.50 0.57143 50.0 $4.61102E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 200.0 $4.61580E+05$	1.50	0.66467	150.0	4.40691E+95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.50	0.66667	200•0	4,40131E+05
1.50 0.57143 100.0 $4.42667E+05$ 1.50 0.57143 150.0 $4.41292E+05$ 1.50 0.57143 200.0 $4.41292E+05$ 1.50 0.57143 200.0 $4.40588E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 100.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.55500E+05$ 2.00 0.57143 150.0 $4.6435500E+05$ 2.00 0.57143 100.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.6132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 200.0 $4.6132E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 200.0 $4.61380E+05$ 2.50 0.57143 200.0 $4.61580E+05$	1.50	0.57143	50.0	4.46555E+05
$1 \cdot 50$ $0 \cdot 57143$ $150 \cdot 0$ $4 \cdot 41292 \pm 05$ $1 \cdot 50$ $0 \cdot 57143$ $200 \cdot 0$ $4 \cdot 40588 \pm 05$ $1 \cdot 50$ $0 \cdot 57143$ $200 \cdot 0$ $4 \cdot 40588 \pm 05$ $2 \cdot 00$ $0 \cdot 66667$ $100 \cdot 0$ $4 \cdot 57832 \pm 05$ $2 \cdot 00$ $0 \cdot 66667$ $100 \cdot 0$ $4 \cdot 54598 \pm 05$ $2 \cdot 00$ $0 \cdot 66667$ $150 \cdot 0$ $4 \cdot 53467 \pm 05$ $2 \cdot 00$ $0 \cdot 66667$ $200 \cdot 0$ $4 \cdot 52891 \pm 05$ $2 \cdot 00$ $0 \cdot 57143$ $50 \cdot 0$ $4 \cdot 59501 \pm 05$ $2 \cdot 00$ $0 \cdot 57143$ $100 \cdot 0$ $4 \cdot 55500 \pm 05$ $2 \cdot 00$ $0 \cdot 57143$ $150 \cdot 0$ $4 \cdot 66132 \pm 05$ $2 \cdot 00$ $0 \cdot 57143$ $150 \cdot 0$ $4 \cdot 66132 \pm 05$ $2 \cdot 00$ $0 \cdot 57143$ $200 \cdot 0$ $4 \cdot 6132 \pm 05$ $2 \cdot 50$ $0 \cdot 66667$ $100 \cdot 0$ $4 \cdot 62839 \pm 05$ $2 \cdot 50$ $0 \cdot 66667$ $200 \cdot 0$ $4 \cdot 61688 \pm 05$ $2 \cdot 50$ $0 \cdot 57143$ $50 \cdot 0$ $4 \cdot 67831 \pm 05$ $2 \cdot 50$ $0 \cdot 57143$ $100 \cdot 0$ $4 \cdot 63758 \pm 05$ $2 \cdot 50$ $0 \cdot 57143$ $100 \cdot 0$ $4 \cdot 62317 \pm 05$ $2 \cdot 50$ $0 \cdot 57143$ $100 \cdot 0$ $4 \cdot 62317 \pm 05$ $2 \cdot 50$ $0 \cdot 57143$ $200 \cdot 0$ $4 \cdot 61580 \pm 05$	1.50	0.57143	100-0	4. 42667E+05
1.50 0.57143 1000 $4.40588E+05$ 1.50 0.57143 200.0 $4.40588E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 150.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.55500E+05$ 2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 150.0 $4.66132E+05$ 2.00 0.57143 200.0 $4.6132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 150.0 $4.6188E+05$ 2.50 0.66667 200.0 $4.6188E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	1.50	0.57143	150.0	4. 41292E+05
1.50 0.57143 200.0 $4.57832E+05$ 2.00 0.66667 100.0 $4.54598E+05$ 2.00 0.66667 150.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.55500E+05$ 2.00 0.57143 100.0 $4.54085E+05$ 2.00 0.57143 100.0 $4.54085E+05$ 2.00 0.57143 150.0 $4.66132E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 200.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	1.50	0.57143	200.0	A. 40588E+05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1+ 36	0+37143	20000	
2.00 0.666667 50.0 $4.57832E+05$ 2.00 0.666667 100.0 $4.54598E+05$ 2.00 0.66667 150.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 106.0 $4.55500E+05$ 2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$				
2.00 0.666667 100.0 $4.54598E+05$ 2.00 0.666667 150.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 106.0 $4.55500E+05$ 2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 150.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.62317E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	2.00	0•66667	50.0	4.57832E+05
2.00 0.66667 150.0 $4.53467E+05$ 2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 106.0 $4.55500E+05$ 2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 150.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	2.00	0•66667	100•0	4.54598E+05
2.00 0.66667 200.0 $4.52891E+05$ 2.00 0.57143 50.0 $4.59501E+05$ 2.00 0.57143 100.0 $4.55500E+05$ 2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.50 0.66667 50.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 150.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	2.00	0.66667	150.0	4•53467E+05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.00	0•66667	200•0	4.52891E+05
2.00 0.57143 106.0 $4.55500E+05$ 2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.00 0.57143 200.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 100.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	2.00	0.57143	50.0	4.59501E+05
2.00 0.57143 150.0 $4.54085E+05$ 2.00 0.57143 200.0 $4.53361E+05$ 2.50 0.66667 50.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 150.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	2.00	0.57143	100+0	4.55500E+05
2.00 0.57143 200.0 $4.53361E+05$ 2.50 0.66667 50.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 150.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	2.00	0.57143	150.0	4.54085E+05
2.50 0.66667 50.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 150.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	2.00	0.57143	200.0	4.53361E+05
2.50 0.66667 50.0 $4.66132E+05$ 2.50 0.66667 100.0 $4.62839E+05$ 2.50 0.66667 150.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$				
2.50 0.66667 $100 \cdot 0$ $4.6013121 \cdot 05$ 2.50 0.66667 $100 \cdot 0$ $4.62839E + 05$ 2.50 0.66667 $150 \cdot 0$ $4.61688E + 05$ 2.50 0.66667 $200 \cdot 0$ $4.61102E + 05$ 2.50 0.57143 $50 \cdot 0$ $4.67831E + 05$ 2.50 0.57143 $100 \cdot 0$ $4.63758E + 05$ 2.50 0.57143 $150 \cdot 0$ $4.62317E + 05$ 2.50 0.57143 $200 \cdot 0$ $4.61580E + 05$	0 50	0.66667	50.0	4-661328+05
2,50 0.66667 150.0 $4.61688E+05$ 2.50 0.66667 200.0 $4.61102E+05$ 2.50 0.57143 50.0 $4.67831E+05$ 2.50 0.57143 100.0 $4.63758E+05$ 2.50 0.57143 150.0 $4.62317E+05$ 2.50 0.57143 200.0 $4.61580E+05$	2.50	0.44447	100.0	4. 628 39 F + 05
2.50 0.66667 200.0 4.61102E+05 2.50 0.57143 50.0 4.67831E+05 2.50 0.57143 100.0 4.63758E+05 2.50 0.57143 150.0 4.62317E+05 2.50 0.57143 200.0 4.61580E+05	2,50	0 44447	150.0	4. 61688E+05
2.50 0.58887 200.0 4.611022+03 2.50 0.57143 50.0 4.67831E+05 2.50 0.57143 100.0 4.63758E+05 2.50 0.57143 150.0 4.62317E+05 2.50 0.57143 200.0 4.61580E+05	2.50	0.00007	10000	4.611025+05
2.500.5714350.04.67831E+052.500.57143100.04.63758E+052.500.57143150.04.62317E+052.500.57143200.04.61580E+05	2+50	0.00001	200•0	4.011022+03
2.500.57143100.04.63758E+052.500.57143150.04.62317E+052.500.57143200.04.61580E+05	2.50	0.57143	50•0	4.67831E+05
2.500.57143150.04.62317E+052.500.57143200.04.61580E+05	2.50	0.57143	100•0	4+63758E+05
2.50 0.57143 200.0 4.61580E+05	2.50	0.57143	150.0	4.62317E+05
	2.50	0.57143	200•0	4.61580E+05

	VF =	8.00000E-01	
	E1 =	6.00000E+07	
	RHO1 =	2.42800E-04	
	NH1 =	2.00000E-01	
en 1790 a	NULL ZAULO	E1/62	C
NG IV NOZ.			•
		50.0	
1.50	U+66667	5U+U	4:6/15/E+U5
1.50	0.66667	100.0	4.639242+05
1.50	0•66667	150+0	4.62751E+05
1.50	0.66667	200•0	4.62143E+05
1.50	0-57143	50.0	4.68762E+05
1.50	0.57143	100•0	4.64837E+05
1.50	0.57143	150.0	4.63388E+05
1.50	0.57143	200.0	4.62633E+05
	••••••		
9.00	0.44447	50.0	4.75729F+05
2.00	0.44447	100.0	4.724385+05
2.00	0 44447	150 0	A 710405405
2.00	0.00007	150+0	
2.00	U+ 0000 /	200•0	4. /06242+03
		rn 0	
2.00	0-57143	50.0	4. //3632+05
2.00	0.57143	100.0	4.73367E+U5
2.00	0.57143	150.0	4.71891E+05
2.00	0.57143	200•0	4.71122E+05
, .			
2.50	0.66667	50.0	4-81105E+05
2.50	0.66667	100•0	4.77776E+05
2.50	0.66667	150.0	4.76567E+05
2.50	0.66667	200.0	4.75942E+05
2.50	0,57143	50.0	4.82758E+05
2.50	0.57143	100.0	4.78716E+05
2.50	0.57143	150.0	4.77923F+85
2.50	0.57143	200.0	A. 76-) 468+05
2.50	0+J/14J		
	VE -	5.000005-01	
		3+00000C-01	
- 1			

TIME: 5.59 SECS.

APPENDIX XII

DESCRIPTION AND COMPUTER PROGRAM FOR THE DETERMINATION OF \circ Ω_1 , Ω_2 , AND Ω_3 IN A HEXAGONAL, MULTIFIBER ELEMENT

DESCRIPTION OF THE COMPUTER PROGRAM

The program is written in FORTRAN 63 (CDC version of FORTRAN IV) for the Control Data Computer Mod 3600. The program is a straight forward calculation of the coefficients in the Airy Function, an evaluation of displacements and stresses along the interface and hexagon boundary and then some double integrations to obtain α_1 , α_2 and α_3 .

The program consists of the following main parts.

- A main program, calling the three major subroutines, which are:
- 2. PTMATCH
- 3. CHECK
- 4. OMEGAS

Below is a description of these individual subroutines and their function.

Subroutine PTMATCH

PTMATCH:

Reads the input parameters. Calculates the matrix elements for the 54 equa-

tions with the 27 unknowns.

Forms the normal equations.

Solves the normal equations in double precision.

Back substitutes these solutions into the 54 original equations.

And the man with

PTMATCH uses the following subroutines:

LISTARAY	a subroutine to print and label matrices
SOLVE	a subroutine which solves linear systems
	of equations by iterating on the rasiduals.

Since SOLVE is a useful general purpose subroutine, its usage is described here.

CALL SOLVE (A,B,X,MM,ITER)

where the arguments have the following meaning:

- A: Square matrix which contains in single precision the coefficients.
- B: A vector with the right hand side of the equations.
- X: Contains, after return, the solution in single precision.
- MM: The order of the matrix A.

ITER: Number of iterations.

Presently, SOLVE assumes the matrix A to be of dimension (27,27). It also performs exactly ITER iterations.

SOLVE uses DPMATS for the solution of the linear equations in double precision.

It then calculates the residuals in double precision and solves the system again, using the residuals as right hand sides.

This procedure works in the following way:

Let

n Ea_{ik}x_k-bi=0 i=1...n k=1

be the original system to be solved.

Let \hat{X} be an approximate solution vector, then

n E aik³k - b_i = r_i i = 1...n k=1

m = residual vector

Now, try is improve the vector \vec{x} by a Δx so that

$$\sum_{k=1}^{n} (\hat{x}_{k} + \Delta x_{k}) - bi = 0$$

Perform the following operation

 $\Sigma a_{ik} \tilde{x}_{k} - b_{i} = r_{i}$

 $- \Sigma a_{ik} \hat{x}_{k} + \Sigma a_{ik} \Delta x_{k} = bi$

 $= \sum_{i k} \sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1$

which means that the correction $\Delta x_{\mathbf{k}}$ can be obtained by solving this latter system.

SUBROUTINE CHECK

5

.

This subroutine calculates displacements and stresses along the interface and the hexagon boundary, not only at the points used in PTMATCH, but also at points between. Check used the subroutines DISPL with the entry points UR1, UTH1, UTH2, UR2 and STRESS with the entry points SR2, STH2, TAU2 SR1, STH1 and TAU1. The two routines DISPL and STRESS are also used by the subroutine OMEGAS. A list of the different entry points and their function is given:

DISPL (U,R,THETA)	input:	R,	Theta
	output:	U	
ENTRY POINT	U		
UR 1	u <mark>l</mark>		
UTHI,	ປ <mark>1</mark>		
UTH2	U I I A		
UR 2	u, ^{II}		
URIDR	aU _r ^I /ar		
UTHIOR	aud/ar		

URIDTH	ou¦∕os
UR2DR .	aU <mark>∏1</mark> /ar
UTH2DR	au <mark>ll</mark> /ar
UR20TH	2Ur1/20
UTH2DTH	au ^{II} /ae

STRESS (R, THETA, SIGMA)	input: R, THETA
	output: SIGMA
ENTRY POINT	SIGMA
SR2	11
	°r
STH2	° 0
TAU2	° r 0 I I
SRI	^o r ^I
1472	σe
TAUI	

Subroutine OMEGAS

Calculates Ω_1 , Ω_2 and Ω_3 using equations 81, 82 and 83 as given in the Appendix A. It uses the double integration routine DOUBLE, whose usage is described in the listing of the source program. The external subroutines F1, F2, WIBAR and W2BAR represent the integrands.

e

4. USAGE OF THE PROGRAM

The program requires the following input:

CARD 1 : v_F , a, E^I , E^{II} , v^I , v^{II} , e_z , ρ^I (Format 8E10.5)

where

 $v_F = percentage of fiber (e.g. 0.65)$ a = radius : fiber in inches (e.g. 0.0025) $E^{I} = Young's modulus for fiber in lbs/sq. inch (e.g. 10 CCO 000)$ $E^{II} = Young's modulus for resin in lbs/sq. inch (e.g. 380 000)$ $B^{I} = Pcisson constant fiber (e.g. 0.2)$ $v^{II} = Poisson constant resin (e.g. 0.35)$ $c_Z = strain in z direction (e.g. -1.)$ $p^{I} = density of fiber (slugs/inch³) (e.g. 2,42754 10⁻⁴)$ CARD 2 : p^{II} (Format E10.5) where $p^{II} = density of resin (slugs/inch³) (e.g. 1.15942 10⁻⁴)$

CARD 3 : (Format IlO)

where

•

.

ITER

ITER Is the number of iterations in the solution of the normal equation (2 or 3 is enough).

```
PROCRAM HEXAGON
THIS PROGRAM COMBINES THE EARLIER PROGRAMS ** PTMATCH **
** PTMATCH2 ** AND ** OMEGAS ** INTO ONE SINGLE PROGRAM
        PTMATCH READS THE PARAMETERS AND THEN FINDS THE COEFFICIENTS OF THE AIRY FUNCTION
        CALL PTMATCH
       CHECK CALCULATES DISPLACEMENTS AND STRESSES ALONG THE INTERFACE AND THE HEXAGON BOUNDARY
        CALL CHECK
       CALL OMEGAS
        CALCULATES THE THREE VALUES OMEGA 1. OMEGA 2. AND OMEGA 3
       STOP
```

c c

ç c

(I

....

```
SUBROUTINE PIMATCH
PROGRAM FINDS AND PUNCHES THE CREFFICIENTS FOR THE PLAIN STRAIN PROBLEM WITH A HEXAGONAL FIRFE ARRANGEMENT.
             IT USES 9 POINTS AT THE INTERFACE AT THE ANGLES OF
                                         THETA = 0
THETA = PI/48
                                         THETA = 2*P1/48
THETA = ....
THETA = P1/6
             AND 9 POINTS AT THE HEXAGON BOUNDARY AT THE SAME ANGLES.
             THE EQUATIONS EXPRESSING DISPLACEMENTS ARE ALL MULTIPLIED (WEIGHTED)
             WITH E1
             DOUBLE PRECISION IS USED TO SOLVE THE NORMAL EQUATIONS
c
c
            COMMON / INP1/ VF+AA+E1+E2+FNU1+FNU2+EZ+BB+P1
COMMON/COEFCT/ AN2(4)+BN2(4)+CN2(4)+DN2(4)+AN1(4)+CN1(4)+
                                            802.002.001
           ٠
             COMMON/RHOS/ RHO1+RHO2
DIMENSION A(54+27)+ATR(27+54)+AMT(27+27)+RHS(27)+B(54)+SCR(27)
C
C ### INPUT DATA
PI = 4.#ATAN(1.)
READ 883.VF.AA.E1.E2.FNU1.FNU2.EZ.RH01.RH02
     883 FORMAT(8E10.5)
             READ 884.ITER
     884 FORMAT(8110)
    BB = AA*SORT(PI*SOPT(3.)/(6.*VF))

PRINT 995*VF*AA*F1*E2*FNU1*FNU2*EZ*RH01*RH02*BB

995 FORMAT (11H INPUT DATA ///

      5
      FORMAT
      (11H
      INPUT
      DA

      1
      7H
      VF
      =
      £15.5 /

      2
      7H
      A
      =
      £15.5 /

      3
      7H
      E1
      =
      £15.5 /

      3
      7H
      E1
      =
      £15.5 /

      4
      7H
      E2
      =
      £15.5 /

      5
      7H
      NU
      1
      =
      £15.5 /

      6
      7H
      RU
      2
      =
      £15.5 /

      7
      7H
      RHO
      1
      ≈
      £15.5 /

      7
      7H
      RHO
      1
      ≈
      £15.5 /

                                                                          .
          8 7H RHO 1= F15.5/
8 7H RHO 2= E15.5/
7 7H B = E15.5
                               = E15+5 /
                                                                                      111)
                                                                                   MM = 27
c
c
      DO 50 J = 1+77
DO 50 I = 1+54
50 A(I+J) = 0+0
DO 55 I = 1+54
       55 B(1) = 0.0
C C C C
                                                                                                        SIGMA R 2 - S'GMA R 1 = 0
    +++ EQUATIONS 1 THRU 9
             R . AA
            DO 200 I = 1.9
            FI = I
THETA = (FI-1.)*P1/48'
```

.

```
C
          DO 100 NN = 1+4

FN = 6+NN S N = 6+NN

ICOL = (NN-1)+4

CSN = COS(FN+THETA)

IF (ABS(CSN)+LT+1+E-7) CSN = 0+0
۲
          A(I+ICOL+1) = -FN*(FN-1.)*R**(N-2)*CSN
A(I+ICOL+2) = -FN*(FN+1.)*R**(-N-2)*CSN
A(I+ICOL+3) = -(FN+1.)*(FN-2.)*R**N*CSN
          A(1+1COL+4) = -(FN-1+)+(FN+2+)+R++(-N)+CSN
¢
          ICOL = (NN-1)*2
A(I+ICOL+17)=FN*(FN-1+)*R**(N-2)*CSN
A(I+ICOL+18)=(FN+1+)*(FN-2+)*R**N*CSN
C
   100 CONTINUE
         A(1+25) = R**(-2)
A(1+26) = 2.
          A(1+27) = -2+
   200 CONTINUE
C +++ EQUATIONS 10 THRU 18
                                                                                               UR 2 - UR 1 = 0
          EE1 = (1.+FNU1)/E1 $ EE2 = (1.+FNU2)/E2
c
          DO 400 I = 1.9
         II = I+9
R= AA
7I = I
          THETA = (F1-1.) + P1/48.
C
         00 300 NN = 1+4
          FN = 6*NN
         FN = 0 = NN

N=6 = NN

ICOL = (NN-1) = 4

CSN = COS(FN = THETA)

IF (ABS(CSN) = Co.C

CSN = Co.C
C
         A([]:ICOL+1)=-FN#R##(N-1)#CSN#EE2
A([]:ICOL+2) = FN#R##(-N-1)#CSN#FE2
A([]:ICOL+3) = -(FN-2.+4.#FNU2)#R##(N+1)#CSN#EE2
          A(11+1COL+4)=(FN+2.-4.#FNU2)*R**(-N+1)*CSN #EE2
C
         ICOL = (NN-1)+2
A(II+ICOL+17) = FN+R++(N-1)+EE1+CSN
         A(11+1COL+18)=(FN-2+4++FNU1)+R++(N+1)+C5N+EE1
C
   300 CONTINUE
          A(II+25) = -R**(-1)*EE2
         A(11+26)=2+*(1+-2+*FNU2)*R*EF2
A(11+27)=-2+*(1+-2+*FNU1)*R*FF1
C
         B(11)=-FNU2#R+EZ + FNU1#R+EZ
   400
                  CONTINUE
C
Ċ
cc
         MULTIPLY EQUATIONS 10 THRU 18 BY E1
   DO 425 I = 10.18
DO 420 J = 1.27
420 A{1.J} = A{2.J}=1
```

```
425 B(I) = B(I)+E1
425 B(1) = B(1)+1
C
C
C +++ EQUATIONS 19 THRU 27
C
                                                                                     TAU 2 - TAU 3 = 0
         DO 600 I = 1.9
        II = I + 18
R= AA
FI = I
THETA = (FI-1..)*P1/48.
C
         DO 500 NN = 1+4
FN = 6.*NN S N = 6*NN
ICOL = (NN-1)*4
SSN = S1N(FN*THETA)
         IF (ABS(SSN) +LT+ 1+E-7) - 55N = 0+0
C
         A(11.1COL+1) = FN*(FN-1.)*R**(N-2)*SSN
A(11.1COL+2) = -FN*(FN+1..*R**(-N-2)*SSN
A(11.1COL+3) = FN*(FN+1.)*R**N*SSN
         A(11+1COL+4) = -FN+(FN-1+)+R++(-N)+SSN
C
         ICOL = (NN-1)*2
A(II+ICOL+17) = -FN*(FN-1+)*R**(N-2)*35N
A(II+ICOL+18) = -FN*(FM+1)*R**N*S5N
C
   500 CONTINUE
C
   SON CONTINUE
U THETA 2 - UTHETA 1 = 0
        DO 800 I = 1+9
II = I + 27
R = AA
FI = I
                                                    .
         THETA = (FI-1)+PI/48.
C
        DO 700 NN = 1.4
FN = 6.*NN S H = 6*NN
ICOL =(NN-1)*4
SSN = SIN(FN*THETA)
         11 (ABS(SSN) .LT. 1.E-7) SSN = 0.0
C
         A(11+1COL + 1)=FN+R++(N-1)+55N+EE2
        c
        ICOL = {NN=1}#2
A{[[::[COL+17]==FN#R##(N=1]#$$N#EE]
A{[]::[COL+18]=={FN+4==4=#FNU]}#N##{N+1}#$$N#EE]
C
   700 CONTINUE
c
  800 CONTINUE
с
Ċ
        MULTIPLY EQUATIONS 28 THRU 36 BY E1
```

```
¢
    DO 825 I = 26+36
DO 820 J = 1+27
R20 A(I+J) = A(I+J)+E1
825 B(I) = B(I) + E1
0000000
          EQUATIONS 37 THRU 45 U.N. AT HEXAGON BOUNDARY EQUALS ZERO
          FIRST PART
                                      UR + COS(PI/6-THETA)
           00 1000 1 = 1.9
           FI = I-1
II = I+36
R = BB/COS(PI/6.-FI*PI/48.)
           THETA = FIPPI/46.
C
          CTS = COS(PI/6.-THETA) $ STS=SIN(PI/6.-THETA)
IF (ARS(CTS).LT.1.E-7) CTS = 0.0
IF (ABS(STS).LT.1.E-7) STS = 0.0
c
          DO 900 NN = 1+4

FN = 6*NN S N = 6*NN

ICOL = (NN-1)*4

SSN = SIN (FN*THFTA)

IF (ABS(SSN) \bulletLT \bullet 1 \bulletE-7) SSN = 0\bullet0

CSN = COS(FN*THFTA)

IF (\bulletE(CSN) \bulletE-7) C(h = 2.0)
           IF (ABS(CSN)+LT+1+E-7) CSN = 0.0
С
           A(II+ICOL+1)=-FN+R++(N+1)+EE2+CSN+CTS
          A(II+ICOL+2)=FN#R##(-N-1)#EE2*CSN#CTS
A(II+ICOL+3)=-(FN-2++4+FNU2)#R##(N+1)#EE2*CSN#CTS
A(II+ICOL+4)=(FN+2+-4+FNU2)#R##(-N+1)#EE2*CSN#CTS
C
   900 CONTINUE
c
          A(11+25) = -R++(-1)+EE2+CTS
          A(11+26)=2+*(1+-2+*FNU2)*R*EE2*CTS
C
          B(II) = -FNU2#FZ*R*CTS
C
 1000 CONTINUE
c
Ċ
C
          SECOND PART
                                U THETA + SIN (PI/6 - THETA)
          DO 1200 I = 1+9
          FI = I-1

II = I + 36

R = BB/COS(PI/6.-FI*PI/48.)
          R = HB/COS(P1/6+-F1*P1/4H+)

THETA = F1*P1/4H+

CTS = COS(P1/6+-THETA) 5 STS = SIN (P1/6+ - THETA)

IF (ABS(CTS)+LT+1+E-7) CTS = D+O

IF (ABS(STS)+LT+1+E-7) STS = 0+0
C
          DO 1100 NN = 1+4
          FN = 6*NN $ N = 6*NN
C
          ICOL =(NN-1)*4
SSN = SIN(FN*THETA)
          IF (ABS(SSN) +LT+ 1+E-7)
"SN = COS(FN+THETA)
                                                        SSN = 0.0
```

```
IF (ABS(C5N)+LT+1+2-7) CSN = 0.0
C
         A(II+ICGL+1)=A(II+ICOL+1)+FN+R++(N-1)+EE2+SSN+STS
         A(11+1CCL+2) = A(11+1CCL+2) + FN#R#4(-X-1)#EE2#SSN#STS
A(11+1CCL+3)=A(11+1COL+3)+/FN+A+4+FNU2)#R##(N+1)#EE2#SSN#STS
         A(11+1COL+4)=A(11+1COL+4)+(FN-4+4+FNU2)*R**(-N+1)*EE2*SSN*STS
1100 CONTINUE
1200 CONTINUE
Ċ
         MULTIPLY EQUATIONS 37 THRU 45 BY E1
DO 1225 I = 37+45
DO 1220 J = 1+27
 1220 A(I+J) = A(I+J) * E1
1225 B(I) = B(I) * E1
00000
         EQUATIONS 46 - 54 TAU NT AT MEXAGON BOUNDARY EQUALS ZERO
         FIRST PART -0.5*SIGMAR*SIN(PI/3-2*THETA)
         DO 1400 I = 1+9
FI = I - 1
II = 1+45
         R = BB/COS(PI/6+-FI*PI/48+)
         THETA = F1+P1/48.
STN = -0.5+SINF(P1/3.-2.+THETA)
         IF (ARS(STN)+LT+1+E-7) STN = 0.0
C
         DO 1300 NN = 1+4
FN = 6+*NN $ N = 6*NN
ICOL = (NN-1) #4
SSN = SIN(FN*THETA)
IF (ABS(SSN) +LT+ 1+E-7) SSN =
CSN = COS(FN*THETA)
IF (ABS(CSN)+LT+1+E-7) CSN = 0+0
                                               SSN = 0,0
c
c
         A(II..ICOL+1) =-FN*(FN-1.)*R**(N-2)*CSN*STN
A(II.ICOL+2)*-FN*(FN+1.)*R**(-N-2)*CSN*STN
A(II.ICOL+3)*-(FN+1.)*(FN-2.)*R**N*CSN*STN
         A:11+ICOL+4)=-(FN-1)+(FN+2+:+R++(-N)+CSN+STN
C
1300 CONTINUE
         A(II+25) = R++(-2)+STN
A(II+26) = 2++STN
  1400 CONTINUE
CCCC
         SECOND PART.. SIGMA THETA +0.5 + SIN(PI/3. -2+THETA)
         DO 1600 I = 1+9
         FI = I - 1
II = I + 45
         R = BB/COS(PI/6 - FI + PI/48 +)
         THETA = FIPPI/4B_{\bullet}
STN = 0.5+5IN(PI/3.-2.+THETA)
         IF (ABS(STN)+LT+1+E-7) STN = 0.0
C
         DO 1500 NN = 1+4
```

.

```
FN = 6*NN S N = 6*NN
ICOL = (NN-1)*4
SSN = SIN(7N*THETA)
            IF (ABS(SSN) .LT. 1.E-7)
CSN = COS(FN#THETA)
        ٠
                                                               55N = 0.0
             IF (ABS(CSN)+LT+1+F+7) CSN = 0.0
¢
             A(II+ICOL+1) = A(II+ICOL+1)+FN*(FN-1+)*R**(N-2)*CSN*STN
             \begin{array}{l} A(11 \circ ICOL + 2) = A(11 \circ ICOL + 2) + FN \circ (FN + 1 \circ) + R \circ (-N - 2) + CSN \circ STN \\ A(11 \circ ICOL + 3) = A(11 \circ ICOL + 3) + (FN + 1 \circ) + (FN + 2 \circ) + R \circ + N \circ CSN \circ STN \\ A(11 \circ ICOL + 4) = A(11 \circ ICOL + 4) + (FN - 1 \circ) + (FN - 2 \circ) + R \circ (-N) + CSN \circ STN \\ \end{array} 
C
  1500 CONTINUE
C
            A(11+25) = A(11+25) - R^{++}(-2)
A(11+26) = A(11+26) + 2^{+}STN
                                                                                  * STN
C
  1600 CONTINUE
C C C
            THIRD PART TAU & THETA *COS(PI/3 -2*THETA)
C
            DO 1800 I # 1.9
            II = I+45
FI = I-1
R = BB/COS(PI/6°-FI*PI/48•)
            THETA = FI*PI/48.
CTN = COS(PI/3.-2.*THETA)
IF (ABS(CTN).LT. 1.E-7) CTN = 0.0
C
           DO 170C NN = 1.4
FN = 6*NN $ N = 6*NN
ICOL = (NN-1) *4
SSN = SIN(FN*THETA)
            IF (ABS (SSN).LT.1.E-7) SS = 0.0

CSN = COS(FN*THETA)

IF (ABS(CSN).LT.1.E-7) CSN = 0.0
C
            A(II.+ICOL+1)=A(II.+ICOL+1)+FN*(FN-1)*R**(N-2)*SSN*CTN
A(II.+ICOL+2)=A(II.+ICOL+2)-FN*(FN+1.+)*R**(-N-2)*SSN*CTN
A(II.+ICOL+3)=A(II.+ICOL+3)+FN*(FN+1)*R**N*SSN*CTN
            A(11+1COL+4)=A(11+1COL+4)-FN=(FN-1+)=R++(-N)=SSN=CTN
C
  1700 CONTINUE
C
  1800 CONTINUE
C
c
c
c
c
           FORM A TRANSPOSE
           DO 2000 1 = 1+27
            DO 2000 J = 1+54
  2000 ATR(1+J) = A(J+1)
C
C
C
C
            FORM NORMAL EQUATIONS BY PREMULTIPLYING WITH A TRANSPOSE
            DO 2120 I = 1+27
DO 2120 J = 1+27
DO 2120 J = 1+27
DO 2120 K=1+54
C
  2120 AMT(I+J) = AMT(I+J)+ATR(I+K)+A(K+J)
D0 2130 I = 1+27
```

```
DO 2130 K = 1+54
2130 RHS(I) = RHS(I) (ATR(I+K)+B(K)
C
C PRINT MATPIN
               PRINT MATRIX
CALL LISTARAY(A+54+54+27+1)
 c
c
               PRINT MATRIX OF NORMAL EQUATIONS
CALL LISTARAY (AMT+27+27+27+1)
CALL LISTARAY(RH5+27+27+1+1)
 00000
               SOLVE NORMAL EQUATIONS USING DOUBLE PRECISION AND ITERATING ON THE
               RESIDUALS
  C

CALL SOLVE (AMT+RHS+SCR+MM+ITER)

D0 3335 I = 1+MM

3335 RHS(I) = SCR(I)

D0 2450 N = 1+4

NN = (N-1)*4 S NNN = (N-1)*2

AN2(N) = RHS(1+NN)

RN2(N) = RHS(2+NN)

CN2(N) = RHS(2+NN)

CN2(N) = RHS(3+NN)

DN2(N) = RHS(3+NN)

DN2(N) = RHS(17+NNN)

CN1(N) = RHS(18+NNN)

2450 CONTINUE

B02=RHS(25)
               802=RHS(25)
               CO2 = RHS(26)
CO1 = RHS(27)
     992 FORMAT(110+F20.6)
C
               PRINT 999
      999 FORMAT(1H1)
  999 FORMAT(1H1)

PRINT 997

997 FORMAT(+ BACK SUBSTITUTION INTO 54 ORIGINAL EQUATIONS+/

#9X,*1+.10X+*RHS+.16X,*BACK*//)

DO 2300 K = 1+54

BACK = 0+0

DO 2225 J = 1+27

2225 BACK = BACK + RHS(J)*A(K+J)

PRINT 994+ K+ B(K)+ BACK

994 FORMAT(110+2220+4)

2300 CONTINUE
   2300 CONTINUE
RETURN
               END
```

```
SUBROUTINE CHECK
     CCCC
             THIS PROGRAM CHECKS THE BOUNDARY CONDITIONS IN THE POINT MATCHING PROBLEM
             COMMON / INPT/ VF+AA+E1+E2+FNU1+FNU2+E2+BB+P1
COMMON/COEFCT/ AN2(4)+BN2(4)+CN2(4)+DN2(4)+AN1(4)+CN1(4)+
                                   802.02.01
             EQUIVALENCE (A+AA)+(8+88)
     C C C C
                                                               - -
             CHECK THE DISPLACEMENTS
             PRINT 995
       995 FORMAT(1H1)
     くてき
       *** TEST AT INTERFACE
              DELTA = PI/96.
             R = A
PRINT 992
        992 FORMAT(+ TEST DISPLACEMENTS AT INTERFACE+//
*7x+*THETA*+8x+*UR 1++12X+*UR 2++6X+*U THETA 1++5X+*U THETA 2*///)
             DO 100 I = 1+17
             FI = I-1
THETA = FI *DELTA
              CALL UR1(U1+R+THETA)
             CALL UR2(U2+R+THETA)
CALL UTH1(U3+R+THETA)
             CALL UTH2 (U4+R+THETA)
       PRINT 991. THETA. U1. U2. U3. U4
991 FORMAT (5815.4)
       100 CONTINUE
C CHECK AT HEXAGON BOUNDARY
     C
       PRINT 995

PRINT 996

996 FORMAT(+ TEST DISPLACEMENTS AT HEXAGON BOUNDARY+//

#7X+THETA++10X+FR++13X++UR 2++10X++U TAITA 2++6X++U NORMAL 2++//)

20:200 / = 1-17
             DO 200 I = 1.17
FI = I-1
THFTA = FI = DFLTA
R = B/COS(PI/6.-THETA)
CALL UR2(U2.R.THETA)
             CALL UTH24144R+THETA)
UN = U2*CO5(P1/6+THETA) + U4*SIN(P1/6+THETA)
             PRINT 991+THETA+R+U2+U4+UN
       200 CONTINUE
     C C C C
              CHECK THE STRESSES
         * TEST AT INTERFACE
     c
c
             PRINT 995
       PRINT 890
890 FORMAT(+ TEST STRESSES AT INTERFACE+//)
             R = A
             DO 300 I = 1+17
FI = I = 1
THETA = FI = DELTA
```

```
CALL SR1:R.THETA. S1)

CALL STH:(R.THETA.S1)

CALL STH:(R.THETA.S2)

CALL TAU:(R.THETA.S3)

CALL STAP:(R.THETA.S4)

CALL STAP:(R.THETA.S5)

CALL TAU2(R.THETA.S5)

CALL TAU2(R.THETA.S5)

CALL TAU2(R.THETA.S5)

P$7 FORMAT(' THETA-'*E15.4.3X.'S R 1 ='*E15.4.3X.'S THETA 1 ='*E15.4.

*3X.'TAU 1 ='*E15.4.7.

*3X.'TAU 2 ='*E15.4.7.

C

TEST AT HEXAGON BOUNDARY

C

PRINT 995

PRINT 995

PRINT 995

PRINT 995

PRINT 995

PRINT 995

PRINT 891

B91 FORMAT(' TEST STRESSES AT HEXAGON BOUNDARY'//)

D0 400 I = 1.17

F1 = I-1

THETA = F1 = DELTA

R = B/COS(P1/4. - THETA)

CALL STM2(R.THETA.S1)

CALL STM2(R.
```

.

•

.

```
SUBROUTINE OMEGAS
0
           CALCULATES OMEGA 1 OMEGA 2 AND OMEGA 3 BY DOUBLE INTEGRATION USING EQUATIONS 81. 82. AND 83.
cc
           FXTFRNAL F1.FP
External W1BAR.W2BAR
C
           EQUIVALENCE (R+3B)
EQUIVALENCE (A+AA)
COMMON / INPT/ VF+AA+E1+E2+FNU1+FNU2+E2+BB+PI
           COMMON/RHOS/ RHO1.RHO2
c
C
          CALL DOURLE (0...PI/6..0..A.1.E-6.20.RES1.INTX1.R1.F1)

PART1 = PES1+RH01

CALL DOUBLE (0.0.PI/6..A.B/COS(PI/12.).1.E-6.20.RES2.INYX2.R2.F2)
   PART2 = RIS248402
PRINT 995
995 FORMAT(1+1)
   995 FORMAT(1H1)

OM1 = PART1 + PART2

OM1 = OM1 + 12.

PRINT 991.001

991 FORMAT(///.9H OMEGA1= E20.5)

OMEGA2 = RH01#A##2#PI/24. + RH02#(B##2/SQRT(3.)~A##2#PI/6.) /4.

OMEGA2 = OMEGA2 + 12.

PDINT 000 OMEGA2 + 12.
           PRINT 994.0MEGA2
   994 FCRMAT (///+8+ OMFGA2= F20+5)
C
C
C
          CALCULATE OMEGAS
          TEIL1 = F1+A++2+P1/24.
TEIL2=E2/4++1R++2/SGRT(3+) -A++2+P1/6+)
CALL DCUBLE(0++P1/6++0+A+1+E-4+20+RES3+INTX3+R3+W1BAR)
CALL DCUBLE(0++P1/6++A+B/COS(P1/12+)+1+E-4+20+RES4+INTX4+R4+W2BAR)
           CMFGA7#TFIL1+TFIL2+RF53+RES4
          OMEGAN = OMEGAN # 12.
PRINT 998.045643
   998 FORMAT (///8H OMEGA3=+ F20.5)
           RETURN
```

END

```
201
```
```
SUBROUTINE DISPL(U.R.THETA)
         COMMON / INPT/ VF:AA:E1:E2:FNU1:FNU2:E2:BB:P1
COMMON/COEFCT/ AN2(4):BN2(4):CN2(4):DN2(4):AN1(4::CN1(4):
        ٠
                                B02+C02+C01
         ENTRY UR1
         U = 0.0
DO 100 NN = 1.4
         N = 6+NN
         EN = N
         U=U-(AN1(NN; *FN*R**(N-1) + CN1(NN)*(FN-2.+4.*FNU1)*R**(N+1))
                              + COS(FN+THETA)
        1
   100 CONTINUE
         U = U + C01*2.*(1.-2.*FNU1)*R
U = U*(1.+FNU1)/E1
         U = U + FNU1 + EZ + R
         RETURN
c
c
         ENTRY UTH1
         U = 0.0
         DO 200 NN = 1+4
         N = 6^{*}NN
FN = N
T1 = FN*AN1(NN)*R**(N-1)
T2 = (FN + 4_{0} - 4_{0}*FNU1)*CN1(NN)*R**(N+1)
         U = U +(T1+T2)*SIN(FN*THETA)
   200 CONTINUE
         U = U+(1.+FNU1) / E1
         RETURN
c
c
         ENTRY UTH2
         U = 0.0
         DO 300 NN = 1+4
N = 6*NN
         FN = N
         FN = N

T1 = FN*AN2(NN)*R**(N-1)

T2 = FN*BN2(NN)*R**(-N-1)

T3 = (FN+4.-4.*FNU2)*CN2(NN)*R**(N+1)

T4 = (FN-4.*4.*FNU2)*DN2(NN)*R**(-N+1)

U = U+(T1+T2+T3+T4)*SIN(FN*THETA)
   300 CONTINUE
         U = U+11.+FNU21/F2
         RETURN
c
c
         ENTRY UR2
         U = 0.0
         DO 400 NN = 1.4
         N = 6<sup>4</sup>NN

FN = N

T1 = FN*AN2(NN)*R**(N-1)

T2 = -FN*BN2(NN)*R**(-N-1)

T3 = (FN-2.+4.*FNU2)*CN2(NN)*R**(N+1)
         U = U - (T1+T2+T3+T4) COS(FN+THETA)
   400 CONTINUE
         U = U + 2 * (1 - 2 * FNU2) * C02 * R

U = U - B02 * R * (-1)
         U = U+(1++FNU2)/E2
         1) = U + FNU2*EZ*R
         RETURN
```

•

```
ENTRY URIDR
        U=0.0
        DO 500 NN=1.4
        N=64NN $ FN=N
T1=FN+(FN=1,)+AN1(NN)+R++(N=2)
T2=(FN=2,+4,+FNU1)+(FN+1,)+CN1(NN)+R++N
     .
        U=U=(T1+T2)+COS(FN+THFTA)
   SOD CONTINUE
        U=U+2.*(1.-2.*FNU1)*C01
U=U*(1.*FNU1)/E1
U=U+FNU1*E3
        RETURN
c
c
        ENTRY UTHIDR
        U=0.0
        DO 600 NN=1+4
        N=6*NN $ FN=N
T1=FN+(FN-1.)*AN1(NN)*R##(N-2)
T2=(FN+4.-4.*FNU1)*(FN+1.)*CN11NN)*R##N
        U=U+(T1+T2)+SIN(FN+THETA)
   600 CONTINUE
        U=U+11.+FNU11/E1
        RETURN
c
c
        ENTRY URIDTH
        U=0+0
DO 700 NN=1+4
N=6+NN $ FK=N
        T1=FN=AN1 (NN)=R+=(N-1)
        T2=(FN-2.+4.*FNU1)*CN1(NN)*R**(N+1)
U=U+(T1+T2)*FN*SIN(FN*THETA)
   700 CONTINUE
        U=U+(1++FNU1)/E1
        RETURN
c
c
        ENTRY UTHIDTH
        U=0.0
        DO 800 NN=1.4
        N=6+NN S FN=N
        T1=FN+AN1(NN)+R++(N-1)
        T2=(FN+4--4+*FNU1)*CN1(NN)*R**(N+1)
        U=U+(T1+T2)*FN#COS(FN*THETA)
  BOD CONTINUE
        U=U=(1.+FNU1)/E1
RETURN
c
c
        ENTRY UR2DR
        U=0.0
        DO 900 NN=1+4
        N=6+NN & FN=N
T1=FN+(FN-1+)+AN2(NN)+R++(N-2)
T2=-FN+(-FN-1+)+BN2(NN)+R++(-N-2)
T3=(FN-2++++FNU2)+(FN+1+)+CN2(NN)+R++N
        14=-!FN+2.-4.*FNU2)*(-FN+1.)*DN2(NN)*R**(-N)
        U=U-(*1+T2+T3+T4)*COS(FN*THETA)
   900 CONTINUE
        U=U+R02*R**(-2)+C02*2**(1-2*FNU2)
U=U*(1*FNU2)/E2 + FNU2*E2
```

```
RETURN
c
c
           ENTRY UTH2DR
           U=0.0
           DO 1000 NN=1+4
N=6+NN $ EN=N
           T1=FN#(FN-1.)#AN2(NN)#R##(N-7)
           T2=FN+(-FN-1.)*BN2(NN)*R++(-N-2)
T3=(FN+4.-4.*FNU2)*(FN+1.)*CN2(NN)*R+*N
T4=(FN-4.+4.*FNU2)*(-FN+1.)*DN2(NN)*R+*(-N)
           U=U+(11+T2+T3+T4)*SIN(FN*THETA)
  1000 CONTINUE
           U=U#(1.+FNU2)/E2
           RETURN
c
c
           ENTRY UR2DTH .

U=0.0

DO 1100 NN=1.4

N=6*NN 5 FN=N

T1=FN*AN2(NN)*R**(N-1)

T2=-FN*BN2(NN)*R**(-N-1)
           T3=(FN-2.+4.*FNU2)*CN2(NN)*R**(N+1)
           T4=-(FN+?.-4.*FNU2)*DN2(NN)*R**(-N+1)
U=U+(T1+T2+T3+T4)*FN*SIN(FN*THETA)
  1100 CONTINUE
           U=U+(1++FNU2)/E2
           RETURN
c
c
           ENTRY UTH2DTH
                                                                 .
           U=n.n
           DO 1200 NN=1+4
           DD 1200 NN=1+4
N=6+NN $ FN=N
T1=FN+AN2(NN)*R**(N-1)
.2=FN+AN2(NN)*R**(-N-1)
13=(FN+4.-4.*FNU2)*CN2(NN)*R*+(N+1)
T6=(FN-4.+4.*FNU2)*DN2(NN)*R*+(-N+1)
U=11+(T1+T2+T3+T4)*FN*COS(FN*THFTA)
  1200
           CONTINUE
           U=U+(1++F?:U2)/E2
           RETURN
```

,

```
SURROUTINE STRESS (R.THETA.SIGMA)
C
         COMMON / INPT/ VF+AA+E1+E2+FNU1+FNU2+E2+BB+P1
CCMMON/COEFCT/ AN2(4)+BN2(4)+CN2(4)+DN2(4)+AN1(4)+CN1(4)+
        .
                              802.002.001
¢
         ENTRY SR2
SIGMA = 0.0
         DO 100 NN = 1+4
         N = 64NN
         N = 0-----

FN = N

T1 = FN*(FN-1..)*AN2(NN)*R**(N-2)

T2 = FN*(FN+1..)*BN2(NN)*R**(-N-2)

T3 = (FN+1..)*(FN-2..)*CN2(NN)*R**(-N-2)

T3 = (FN+1..)*(FN-2..)*CN2(NN)*R**(-N-2)
         T4=(FN-1.)*(FN+2.)*DN2(NN)*R**(-N)
         SIGMA = SIGMA-(TI+T2+T3+T4) +COS(FN+THETA)
   100 CONTINUE
SIGMA = SIGMA +B02*R**(-2) + C02*2.
         RETURN
c
c
         ENTRY STH2
SIGMA = 0.0
         DO 200 NN = 1+4
         T2=FN*(FN+1.)*BN2(NN)*R**(-N-2)
T3 = (FN+1.)*(FN+2.)*CN2(NN)*R**N
         T4=(FN-1.)*(FN-2.)*DN2(N*:)*R**(-N)
   SIGMA + SIGMA+(T1+T2+T3+T4)*COS(FN+THETA)
200 CONTINUE
         SIGMA = SIGMA-B02#R##(-2)+2.*C02
         RETURN
c
c
         ENTR: TAU2
SIGMA = 0.0
D0 300 NN = 1.4
         N = 6^{0}N

FN = N

T1 = FN*(FN-1.)*AN2(NN)*R**(N-2)
         T2=-FN*(F4+1+)*8N2(MN)*R**(-N-2)
         T3 = FN+(FN+1+)+CN2(NN)+R++N

T4 = -FN+(FN-1+)+DN2(NN)+R++(-N)

SIGMA = SIGMA + (T1+T2+T3+T4)+SIN(FN+THETA)
   300 CONTINUE
         RETURN
        ENTRY SR1
SIGMA = 1.0
         DO 400 NN = 1+4
         N = 6^{0}N

FN = N

T1 = FN*(FN-1.)0AN1(NN)0R00(N-2)
         T2 = (FN+1+)+(FN-2+)+CN1(NN)+R++(N)
         SIGMA = SIGMA - (TI+T2)*COS(FN*THETA)
   400 CONTINUE
SIGMA = SIGMA + 2.*COI
         RETURN
c
c
        ENTRY STH1
```

SIGMA = 5.0DO 500 NN = 1+4N = 6*NNFN = NT3 = FN*(FN-1)*AN1(NN)*R**(N-2)T2*(FN+1.)*(FN*2.)*CN3(NN)*R**NSIGMA = SIGMA +11+T2)*COS(FN*THETA)500 CONTINUESIGMA = SIGMA +2.*C01RETURNCCENTPY TAU1SIGMA = G.0DO 600 NN = 1+4N = 6*NNFN = NT1 = FN*(FN-1.)*AN1(NN)*R**(N-2)T2 = FN*(FN+1.)*CN1(NN)*R**NSIGMA = SIGMA + (T1+T2)*SIN(FN*THETA)600 CONTINUFRETURNEND

12

:

ATTRACT IN THE

i

```
FUNCTION WAAR(THFTA.R)

ENTRY WIBAR

IF (R.FQ. G.G.) GO TO 10

CALL SR1(R.THFTA.S1)

CALL STH1(R.THFTA.S2)

CALL TAU1(R.THFTA.S3)

CALL UT1(U1.R.THFTA)

CALL UT1(U1.R.THFTA)

CALL UT1(U1.R.THFTA)

CALL UT1DTH(DU2.R.THETA)

CALL UT1DTH(DU2.R.THETA)

CALL UT1DTH(DU3.R.THETA)

CALL UT1DTH(DU3.R.THETA)

CALL UT1DTH(DU4.R.THETA)

T1 = S1+DU1

T2 = S2+(U1/R+DU2/R)

T3 = S3+(DU3-U2/R+DU4/R)

WHAR=0.5*R*(T1+T2+T3)

RETURN

10 WBAR * 0.

RETURN

ENTRY W2BAR

CALL SR2(R.THETA.S1)

CALL SR2(R.THETA.S3)

CALL SR2(R.THETA.S3)

CALL SR2(R.THETA.S3)

CALL SR2(R.THETA.S3)

CALL UT2(U1.R.THETA.S3)

CALL UT3(U1.R.THETA.S3)

CALL U
```

-

時の

```
SUBROUTINE SOLVE (A+B+X+MM+ITER)
............
        THIS SUBROUTINE SOLVES THE LINEAR EQUATIONS A* X =
                                                                           8
        IT IMPROVES THE SOLUTION BY ITERATING ON THE RESIDUALS
                                    ORIGINAL COEFFICIENT MATRIX (SINGLE PREC.)
RIGHT HAND SIDE VECTOR (SINGLE PRECISION)
ORDER OF MATRIX
           INPUT
                        ٨
                        A.
                        мм
                        ITER
                                    MAXIMUM NUMBER OF ITERATIONS
                                    SOLUTION VECTOR (SINGLE PRECISION)
           OUTPUT
                        X
       DIMENSION ADP(27+27)+ADPS(27+27)+BDP(27)+BACKDP(27)+BDPS(27)+
       1 XDP(27) + ERRDP(27)
DIMENSION X(1)
DIMENSION A(27+27)+B(27)
      1
¢
       TYPE DOUBLE DETDP+ADP+ADPS+BDP+BACKDP+BDPS+XDP+ERRDP
C
C
C
       SAVE MATRICES AS DOUBLE PRECISION MATRICES
       DO 20 I = 1.MM
   DO 10 J = 1.MM
10 ADPS[[.J] = A([.J])
       BDP5(1) = B(1)
    20 BDP(I) = B(I)
   DO 30 I = 1+MM
30 XDP(I) = 0+0
c
c
       PERFORM THE ITERATIONS
ċ
       DO 9999 ICOUNT = 1.ITER
C
       DO 50 I = 1+MM
   DO 40 J = 1.MM
40 ADP(I.J) = ADP5(I.J)
50 BACKDP(I) = 0.0
C
        SOLVE THE EQUATIONS WITH DOUBLE PRECISION ROUTINE
č
       CALL DPMATS(ADP+MM+BDP+1+DETDP)
c
c
       ADD THE CORRECTIONS TO THE SOLUTIONS
C
   DO 55 I = 1+MM
55 XDP(I) = XDP(I) + BDP(I)
c
c
       BACKSUBSTITUTE AND CALCULATE THE RESIDUALS
C
   DO 70 I = 1.4MM
DO 60 J = 1.4MM
60 BACKDP(I) = BACKDP(I) + XDP(J)#ADPS(I.4J)
   TO ERROP(1) = BOPS(1) - BACKOP(1)
C
Ċ
       PRINT THE RESULTS OF THIS ITERATION
C
       PRINT 999+ ICOUNT
  999 FORMATIIHI. 11H ITERATION
                                             • 14• /// )
  PRINT 992
992 FORMAT(82.+11+102.+12 NEW++172.+1RHS++162.+15ACK++132.+
      +CORRECTION:+14X+ERROR:+///)
PRINT 991+(I+XDP(I)+BDPS(I)+BACKDP(I)+BDP(I)+ERROP(I)+I=1+MM)
  991 FORMATII10.5E20.8)
```

<u>_</u>

C DO 75 I = 1.4MM 75 BDP(I) = ERRDP(I) C END OF LOOP FOR ITERATION C 9999 CONTINUE C DO 80 I = 1.4MM 80 X(I) = XDP(I) C RETURN END .

*

SUBROUTINE OPMATS(A+N+B+M+DETFRM) DPHTS 1 c FI UCSD DPMATS63 Double precision matrix inversion with ACCG PANYING SOLUTION OF LINEAR EQUATIONS C CDIMENSIONS FOR MATINV ARE IPIVOT(N) .A(N.N) .B(N.1) .INDEX(N.2) .PIVOT(N). C N IS THE MAXIMUM VALUE FOR N DEGRE. TYPE DOUBLE A.B.DETERN, AMAX.T.SWAP.PIVOT.DA55 DIMENSION IPIVOT(27).A(27.27).B(27.1).INDEX(27.2).PIVOT(27) EQUIVALENCE (IROW.JROW). (ICOLUM.JCOLUM). (AMAX. T. SWAP) OPMTS 2 DPMTS 4 c c INITIALIZATION Č DPV75 10 DETERM#1.0 DPMTS 15 DO 20 J=1.N 20 IPIVOT(J)=0 é DANTS 7 30 DO 550 I=1+N DPMTS 2 C Ĉ SEARCH FOR PIVOT ELEMENT C DPMTS C DPMTS 10 40 AMAX=0.0 45 DO 105 J=1+N 50 IF (IPIVOT(J)-1) 6G+ 105+ 60 60 DO 100 K=1+N 70 IF (IPIVOT(K)-1) 80+ 100+ 740 80 IF(DARS(AMAX)+LT+DABS(A(J+K)))85+100 DPMTS 11 DPMTS 12 DAALS 15 DPMTS 14 DPHTS 85 TROW=J 15 DAALE 90 ICOLUM=K 16 DANTS 17 95 AMAX=A(J+K) 100 CONTINUE DPHTS 18 105 CONTINUE DPMTS 19 DPMTS 20 110 IPIVOTIICOLU /=IPIVOTIICOLUM)+1 C INTERCHANGE HOWS TO PUT PIVOT ELEMENT ON DIAGONAL C C DPMTS 21 DPMTS 21 DPMTS 2 DPMTS 2 DPMTS 3 130 IF (IROW-ICOLUM) 140. 260. 140 140 DETERMA-DETERM 150 DO 200 L=1+N 160 SWAP=A(IROW+L) DANTS 25 170 A(IROW+L)=A(ICOLUM+L) 170 A(IROW+L)=SWAP 260 A(ICOLUM+L)=SWAP 205 IF(M) 260+ 260+ 210 210 D0 250 L=1+ M 220 SWAP=B(IROW+L)=B(ICOLUM+L) 230 B(IROW+L)=B(ICOLUM+L) D2115 21 DANTS 30 DPMTS 31 250 BIICOLUM+LI=SWAP DPMTS 31 DPMTS 31 260 INDEX(I+1)=IROW 270 INDEX(I+2)=ICOLUM 310 PIVOT(I)=A(ICOLUM+ICOLUM) DPMTS 34 C C C 320 DETERM+DETERM+PIVOT(1) C Ċ C DIVIDE PIVOT ROW BY PIVOT ELEMENT C DPMTS BE 330 ALICOLUM. ICOLUM) =1.0 DPMTS 37 DPMTS 32 340 DO 350 L=1+N 350 A(ICOLUM+L)=A(ICOLUM+L)/PIVOT(I) OPMTS 35 355 IF(M) 380+ 380+ 360 360 DO 370 L=1+M DPMTS 4 370 B(ICOLUM+L)=B(ICOLUM+L)/PIVOT(I) DPMTS 41

8 71

```
        C
        REDUCT: NON-PIVOT ROWS
        DPMTS 42

        390 10 550 L1=1+N
        DPMTS 43

        390 10 F(L1=COLUM) 400+ $50+ 400
        DPMTS 43

        400 T=A(L1+ICOLUM)
        DPMTS 45

        420 A(L1+ICOLUM)
        DPMTS 45

        430 D0 450 L=1+N
        DPMTS 45

        430 A(L1+ICOLUM)-A(ICOLUM+L)+T
        DPMTS 46

        450 A(L1+L)-A(ICOLUM+L)+T
        DPMTS 46

        450 A(L1+L)-B(L1+L)-A(ICOLUM+L)+T
        DPMTS 47

        500 B(L1+L)-B(ICOLUM+L)+T
        DPMTS 46

        500 B(L1+L)-B(ICOLUM+L)+T
        DPMTS 57

        500 CONTINUE
        DPMTS 57

        600 D0 710 I=1+N
        DPMTS 45

        610 L=N+1-1
        DPMTS 51

        620 IF (INDFX(L+1)-INDEX(L+2)) 630+ 719+ 630
        DPMTS 55

        620 IF (INDFX(L+1)-INDEX(L+2)) 630+ 719+ 630
        DPMTS 55

        640 JCOLUM=INDFX(L+2)
        DPMTS 55

        650 DO 705 K=1+N
        DPMTS 56

        640 SWAP=A(K+JROW)
        DPMTS 58

        640 SWAP=A(K+JROW)
        DPMTS 58

        640 SWAP=A(K+JROW)
        DPMTS 56

        640 JCOLUM=INDFX(L+2)
        DPMTS 56

        640 SWAP=A(K+JROW)
        DPMTS 56

        700 A(K+JCOLUM)=SWAP
        D
```

.

-

· a commence

Contraction of the local division of the loc

とれることでないないであるとうとう

State of the second second

SUBROUTINE DOUBLE(X0+X1+Y0+Y1+TEST+LIM+VOLUME+INTX+R +F) C ARGUMENTS ... LOWFR LIMIT OF OUTER INTEGRAL (INPUT) UPPER LIMIT OF OUTER INTEGRAL (. 201) LOWER LIMIT OF INNER INTEGRAL (INPUT) UPPER LIMIT OF INNER INTEGRAL (INPUT) MAXIMUM TOLERABLE RELATIVE ERROR FOR OUTER INTEGRAL (INPUT) MAXIMUM NUMBER OF SUBDIVISIONS FOR BOTH INTEGRALS (INPUT) xo X1 YO Y1 TEST LIM VOLUME VALUE OF THE DOUBLE INTEGRAL (OUTPUL) INTX (2*FINTX) = NUMBER OF SUBDIVISIONS FOR OUTER INTEGRAL (OUTPUT) R RELATIVE ERROR FOR THE OUVER INTEGRAL (OUTPUT) F NAME OF FUNCTION TO BE INTEGRATED (INPUT) THE RELATIVE ERROR OF THE INNER INTEGRAL IS TEN TIMES SMALLER VUNNT FOR THE OUVER INTEGRAL IS TEN TIMES SMALLER THE RELATIVE ERROR OF THE INNER INTEGRAL IS TEN THAN THAT FOR THE OUTER INTEGRAL NOIX=KOUNT= 0 ODD = FVEN = VOLUMI = 0.0 INTX = V = 1.0 R1 = 10.0 TES = 3FST / 10. CALL INNER(X0.YUeY1.TES.LIM.FACED.NUMBR.ARE .F CALL INNER(X1.YU.Y1.TES.LIM.FACED.NUMBR.ARE .F CALL INNER(X1.YU.Y1.TES.LIM.FACED.NUMBR.ARE .F DOUBLE DOUBLE DOUGLE DOUBLE 5 ٠Ē DOUBLE 1 INNER IS SIMCONS MODIFIED TO REFER TO A FUNCTION F(X+Y). ¢ FACES = FACE0 + FACE1 FACES = FACEO + FACE1 DFLTX = (X1 - X0)/V GDD = FVFN + OOD X = X0 + DFLTX/2. EVEN = 0.0 DO 3 I = 1. INTX CALL INNER(X.YU.YU.TES.LIM.SECTN.NUMBR.ARE .F FVFN = FVFN + SECT: 2 DOUBLE DOUSI F) DOUGLE EVEN = EVEN + SECTA X= X + DELTX CONTINUE 4 VOLUME=\FACES+4.0#EVEN+2.0#ODD)#DELTX/6. NOTX = NOTX + 1. R= ABSF(1. - (VOLUM1/VOLUME)) DOURLE DOUBLE IF(R.GE.R.) 5.31) IF(NOIX .GE. IF(R.LF.TFST) 3 DOUGLE 31 LIM 35. 32 35+33 32 VGLUM1 = VOLUME INTX = INTX+ 2 $V = V^{+}2_{+}$ GO TO 2 RETURN 15 RETURN IFIKOUNT.GE.3) 55.51 KOUNT = KOUNT + 1 R1 = R GO TO 2 PRINT 56. VOLUME. R. NOIX FORMAT(30H OUTER INTEGRAL NOT CONVERGING + 2F15.6.16 OFFICE 5) Doviet F 55 1 DOUALE 56 DOUSLE RETION END DOUBLE

۰.

FUNCTION F (THETAGR) ENTRY F1 CALL UR1(U1+R+THETA) CALL UTH11U2+R+THETA) F =(11+P+2 +U2+P+2)+R RETURN .

•

4

cc

ş

ł

¢

ENTRY F2 CALL UR2(UI:R+THFTA) CALL UTH2(U2:R+THFTA) F =(1)1++2+12++2)+R RETURN FND

	SUBRUUTINE INNERTABSC. (ITAENDETESTEIMTAREATRUITREFT		
C	DI UCSD SIMCON, REVISED MARCH 1967 TO REFER TO 2"ARGUMENT	FUNCETON	5
C	AND TEST THEIR CONVERGENCE.		
	NOI = KOUNT = 0		
	R1 = 10.0		
	000=0.0		
	1NT=1		
	V=1.0		
	EVEN=0.0		
	ARFAIROAD		
10	ENDS= F(ABSCIS+X1) + F(ABSCIS+XEND)		
2	He(XFND-X1)/V		INNER
-	ODD=EVEN+ODD		
	X=X1+H/2.		
	EVENa010		
	DO 3 LE1.INT		
21	EVEN-EVEN+ FLABSCIS+X)		
	YeYeH		
3	CONTINUE		
31	AREA=(ENDS +4.0+EVEN+2.0+000)++H/6.0		
	NOI=NOI+1		
34	ReARSE ((AREA1-AREA) / AREA)		INNER
	IF(R.GF.R1) 50. 3405		
3405	RisR		
	1F(NOI-LIM) 341+60+60		INNER
341	IF(R-TEST) 35+35+4		INNER
35	RETURN		•
4	ARFAISARFA		
46	INT=2+INT		
	V=2.0+V		
	60 TO 2		
50	1F(KOUNT+GF+3) 55+51		
51	KOUNT = KOUNT + 1		
	RisP		
	60 TO 2		
55	PRINT 56. AREA. R. NOT. ABSCIS		1.1.7.2
56	FORMATI 30H INNER INTEGRAL NOT CONVERGING . 2F15.6.16.F15.	ó)	INNER
	RETURN		
60	PRINT 61		INSER
61	FORMAT 142H USED UP SPLITTINGS. RETURNING TO DOUBLE.)	188.25
	RETURN		INNER
	END		

Ŧ

•	SUBROUTINE LISTAR	AY (A. NMAX. M. N. ISTART)		
C I	DIMENSION ALNMAX.	1)		
	DIMENSION ICTION	[PORT(10)	1484	
	DATA C IFORM B	84(11)	LART	
	•	EH(/+5H6RO+		7
	•	an .	LATY	
	•	BHH COL+I+	LART	'
	•	8H4 • 2X } • 5H •	LARY	
	•	BH ROW) 9	LARY	9
	•	RH([4.1X	LAPY	- 10
	•	8H •	LAPY	11
	•	2HIS) •	LAPY	12
	•	8H(1H5))	LAPY	13
C				
	2 1F094(3) =	8HW -10(5	LARY	- 14
	IFORM(A) +	8H10E11+9+	LARY	- 15
	IPAGE . JPAGE . 1		LANY	115
	TELM ALC. 251 JPA	GF = 2	LAPY	215
	00 10 1815049T. N	. 10	LADY	14
	191 - 1-1 6	100 x 1+0 6 1(AST x 10	LAPY	17
	15/100 -CT. H. A.	7 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	LARY	1.8
		1 - N-15749741 5 LAST = J-(10+(J/10))	LARY	19
	ENCODE/8, 900, 15		LAPY	20
	ENCODE (8. 00). 15	ONVIALL AST	I LOY	
004		10/61 LADI	1 124	
0.01	5 500 44 7 113 4053 1		1 APV	23
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79/ 1 ACT	LAGY	24
	1 101 H 1(101) = 14	LADI - 100007	LADY	25
	5 ((1)(0)(0)) = 1 = 1		LAOV	26
	PRINT PROVIDINIP	ዋናር የድረ ነት - በዚህ - ት ለድምስ	LADV	27
	PRINT IFORMUZIS (101016 J#101A011	ADV	2 /
	PRINT PORTIZIO	9 INT 111911819 18916 J9 J81981	1.207	20
	PRINT FORMEZIA (LADY	20
10	CONTINUE		LART	,,,
	PRINT IFORM(10)			
	RETURN S	END	LAWY	2

BIBLIOGRAPHY

- Ahmed, N., "Axisymmetric Plane Strain Vibrations of a Thick-Layered Orthotropic Cylindrical Shell," <u>Journal of the Acoustical Society</u> of <u>America</u>, <u>40</u>(6), 1509-1515 (December 1966)
- Armenàkas, A. E., "Propagation of Harmonic Waves in Composite Circular Cylindrical Shells," I. Theoretical Investigation, <u>AIAA Journal</u>, <u>5</u>(4), 740-744 (April 1967)
- 3. Cagniard, L., E. A. Flinn, and C. H. Dix, <u>Reflection and Refraction of</u> <u>Progressive Seismic Waves</u>, McGraw-Hill, New York, 1962
- 4. Carslaw, H. S., and J. C. Jaeger, <u>Conduction of Heat in Solids</u>, second edition, Oxford-at-the-Clarendon Press, 1959
- 5. Carslaw, H. S., and J. C. Jaeger, <u>Operational Methods in Applied</u> <u>Mathematics</u>, Oxford University Press, 1941
- Churchill, R. V., <u>Operational Mathematics</u>, second edition, McGraw-Hill, New York, 1958
- 7. Davies, R. M., "A Critical Study of the Hopkinson Fressure Bar," <u>Transactions of the Royal Society of London</u>, volume 240, January 1948
- 8. Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall, New Jersey, 1965; pages 31-57 and 176-232
- 9. Gazis, D. C., "Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders," I. Analytical Foundations, and II. Numerical Results, Journal of the Acoustical Society of America, 31(5), 568-578 (May 1959)
- 10. Goldsmith, W., Impact, Edward Arnold Ltd., London, 1960; pages 30-36
- 11. Herman, G., and I. Mirsky, "Three-Dimensional and Shell-Theory Analysis of Axially Symmetric Motions of Cylinders," <u>Journal of Applied</u> <u>Mechanics</u>, 563-568 (December 1956)
- 12. Jeffreys, H., and B. S. Jeffreys, <u>Methods of Mathematical Physics</u>, second edition, Cambridge University Press, England, 1950
- 13. Jolley, L. B., Summation of Series, Dover Publications, 1961
- 14. Kolsky, H., <u>Stress Waves in Solids</u>, Dover Publications, New York, 1963; pages 4-86
- 15. Love, A. E. H., <u>A Treatise on the Mathematical Theory of Elasticity</u>, fourth edition, Dover Publications, 1944; pages 278-309
- 16. Mindlin, R. D., and G. Herrman, "A One-Dimensional Theory of Compression Waves in an Elastic Rod," <u>Proceedings of the First US National</u> Congress of Applied Mechanics, 187-191 (June 1961)

- 17. Skalak, R., "Longitudinal Impact of a Semi-Infinite Gircular Rlastic Bar," <u>Journal of Applied Mechanics</u>, volume 24, No. 1, (March 1957) pages 59-64
- Sneddon, I. N., <u>Elements of Partial Differential Equations</u>, McGraw-Kill, New York, 1957
- 19. Sneddon, I. N., Fourier Transforms, McGraw-Hill, 1951; pages 71-79
- 20. Sokolnikoff, I. S., <u>Mathematical Theory of Elasticity</u>, second edition, McGraw-Hill, New York, 1956; pages 80-89 and 367-376
- 21. Sternberg, E., "On the Integration of the Equations of Motion in the Classical Theory of Elasticity," <u>Archives of Rational Mechanics and</u> <u>Analysis</u>, <u>6</u>, 34-50 (1960)
- 22. Sternberg, E., and R. A. Eubanks, "On Stress Junctions for Elastokinetics and the Integration of the Repeated Wave Equation," <u>Quarterly of</u> <u>Applied Mathematics</u>, <u>15</u>(2), 149-153 (1957)
- 23. Thomson, W. T., Laplace Transformation, Prentice-Hall, New Jersey, 1950
- 24. Tittle, C. W., "Boundary Value Problems in Composite Media: Quasi-Orthagonal Functions," <u>Journal of Applied Physics</u>, <u>36</u>(4), J/86-1488 (April 1965)
- 25. Tong, K. N., <u>Theory of Mechanical Vibration</u>, John Wiley & Sons, New York, 1959; pages 236-311
- 26. Young, D., "Continuous System," <u>Handbook of Engineering Mechanics</u>, W. Flügge, editor, McGraw-Hill, New York, 1962; chapter 61, pages 61-1 to 61-34
- 27. Yu, Y. Y., "Free Vibrations of Thin Cylindrical Shells Having Finite Lengths with Freely Supported and Clamped Edges," <u>Journal of</u> Applied Mechanics (December 1955)
- 28. Zajac, E. E., "Propagation of Elastic Waves," <u>Handbook of Engineering</u> <u>Mechanics</u>, W. Flügge, editor, McGraw-Hill, New York, 1962; chapter 64, pages 64-1 to 64-20

Unclassified					
DOCUMENT CONT	SOL DATA - R	L D			
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)					
1 ORIGINATING ACTIVITY (Cerperate author)		20. REPORT SE	CURITY CLASSIFICATION		
Whittaker Corporation		Un	classified		
Narmco Research & Development Division	2	26 GROUP			
San Diego, California					
3 REPORT TITLE					
MICRODYNAMICS OF WAVE PROPAGATION					
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)					
Annual Summary Report (June 1967 throu	igh June 1968	3)			
Alberto Puppo					
Ming-yuan Feng					
Juan Haener					
6 REPORT DATE	78. TOTAL NO OF	FPAGES	75. NO OF REES		
October 1968	217				
B. CONTRACT OR GRANT NO	98. ORIGINATOR'S	REPORT NUM	BER(\$)		
Contract F33615-67-C-1894	Narmco MJO 322 Annual Summary				
с.	96. OTHER PEPORT NOISI (Any other numbers that may be assigned this month)				
d.	AFML-TR-68 -311				
10 DISTRIBUTION STATEMENT					
This document has been approved for its distribution is unlimited.	or public rel	lease and	sale;		
11 SUPPLEMENTARY NOTES	12 SPONSORING N	LITARY ACTI	V1TV		
This report is not part of the scientific	Air Force	Materials	Laboratory		
literature and must not be cited, abstract-	Nonmetalli	c Materia	ls Division		
ed, reprinted, or given further distribution.	WPAFB, Ohi	.0			
Part I of this report covers the problem of free and forced vibration of a uni- directional, multifiber reinforced composite. A theoretical investigation is con- ducted through the use of the linear theory of elasticity. For this case, the geometrical array of the fiber representative element consists of a circular, inner solid fiber cylinder bounded by and bonded to a incular outer matrix shell. Com- posites of infinite, finite, and semi-infinite lengths are treated. It is assumed that the deformation is axisymmetrical and that the vibration is longitudinal. Characteristic equations are established which relate circular frequencies to axial wave numbers for three cases of composite length. Solutions are obtained for stresses and displacements of composites, of finite or semi-infinite length, subjected to axial, piecewise-constant, or sinusoidal loading at one end ard different geometrical bound- ary conditions at the other. Part II presents an approximate differential equation based on the Bernoulli h_{y-c} thesis of deformation. The solution of this equation is established for steady and transient states of vibration in composites of both finite and infinite length. Computation of the coefficients in the differential equation is performed by assuming symmetry of revolution for the basic element and also by using a hexagonal fiber arrangement. Part III lists numerical results based on the equa- tions developed in Parts I and II. The appendixes to this report give the computer programs used to perform the computations.					

DD FORM 1473

۔ م ، م

	LIN	K A	LIN	к в	LINK C	
KEY WORDS	ROLE	W T	ROLE	WT	ROLE	-
Microdynamics						
Wave propagation						
wave propagation						
Fiber Reinforced Composites		,				
dexagonal Fiber Array						
Stress Waves						
Longitudinal Vibration						
				:		