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I really really really ought to polish this up for FAQ inclusion. I am combining two
old articles of mine, the first giving and sketching the general Liouville theory, the second
applying this theory to xx:

We give a fairly complete sketch of the proof that certain functions, including the asked
for one, are not integrable in elementary terms. The central theorem is due to Liouville in
1835. His proof was analytic. The sketch below is mostly algebraic and is due to Maxwell
Rosenlicht. See his papers in the Pacific Journal of Mathematics, 54, (1968) 153-161
and 65, (1976), 485-492.

WARNING: Prerequisites for understanding the proof is a first year graduate course
in algebra, and a little complex analysis. No deep results are used, but I cannot take the
time to explain standard notions or all the deductions.

Notation: C is the complex numbers, for fields F, F[x] is the ring of polynomials in x
OR an algebraic extension of F, F(x) is the field of rational functions in a transcendental
x, M is the field of meromorphic functions in one variable. If f is a complex function, J(f )
will denote an antiderivative of f .

A differential field is a field F of characteristic 0 with a derivation. Thus, in addition to
the field operations + and •, there is a derivative mapping ' : F — > F such that (a + b)' =
a' + b' and (ab)' = a'b + ab'. Two standard examples are C(z) and M with the usual
derivative map. Notice a basic identity (logarithmic differentiation) holds:

a,

The usual rules like the quotient rule also hold. If a in F satisfies a' = 0, we call a a
constant of F. The set of constants of F is called Con(F), and forms a subfield of F.

The basic idea in showing something has no elementary integral is to reduce the problem
to a sequence of differential fields F0, FI , etc., where F0 = C(z), and Fi+1 is obtained from



Ft by adjoining one new element t. t is obtained either algebraically, because t satisfies
some polynomial equation p(t) = 0, or exponentially, because t'/t = s' for some s in Ft, or
logarithmically, because t' = s'/s is in Ft. Notice that we don't actually take exponentials
or logarithms, but only attach abstract elements that have the appropriate derivatives.
Thus a function f is integrable in elementary terms iff such a sequence exists starting with
C(z).

Just so there is no confusion, there is no notion of "composition" involved here. If you
want to take logs, you adjoin a transcendental t with the relation t' = s'/s. There is
no log function running around, for example, except as motivation, until we reach actual
examples.

We need some easy lemmas. Throughout the lemmas F is a differential field, and t is
transcendental over F.
Lemma 1: If K. is an algebraic extension field of F, then there exists a unique way to
extend the derivation map from F to K so as to make K. into a differential field.
Lemma 2: If K = F(t) is a differential field with derivation extending F's, and t' is in
F, then for any polynomial f (t) in F[t], f (t)' is a polynomial in F[t] of the same degree (if
the leading coefficient is not in Con(F)) or of degree one less (if the leading coefficient is
in Con(F)).
Lemma 3: If K = F(t) is a differential field with derivation extending F's, and t'/t is
in F, then for any a in F, n a positive integer, there exists h in F such that (a - t n ) ' = h-tn.
More generally, if f ( t ) is any polynomial in F[t], then f ( t ) ' is of the same degree as f ( t ) ,
and is a multiple of f (t) iff f (t) is a monomial.

These are all fairly elementary. For example, (a • tn)' — (a' + at'/t) • tn in lemma 3.
The final 'iff' in lemma 3 is where transcendence of t comes in. Lemma 1 in the usual case
of subfields of M can be proven analytically using the implicit function theorem.

MAIN THEOREM. Let F,G be differential fields, let a be in F, let y be in G, and
suppose y' — a and G is an elementary differential extension field of F, and Con(F) =
Con(G). Then there exist Ci , . . . , c n € Con(F), u,, . . . .u^.v e F such that

In other words, the only functions that have elementary anti-derivatives are the ones that
have this very specific form.



This is a very useful theorem for proving non-integrability. In the usual case, F,G are
subfields of M, so Con(F) = Con(G) = C always holds.
Proof: By assumption there exists a finite chain of fields connecting F to G such that
the extension from one field to the next is given by performing an algebraic, logarithmic,
or exponential extension. We show that if the form (*) can be satisfied with values in ¥2,
and ¥2 is one of the three kinds of allowable extensions of FI , then the form (*) can be
satisfied in FT . The form (*) is obviously satisfied in G: let all the c's be 0, the u's be 1 ,
and let v be the original y for which tj ' = a. Thus, if the form (*) can be pulled down one
field, we will be able to pull it down to F, and the theorem holds.

So we may assume without loss of generality that G = F(t).
Case 1: t is algebraic over F. Say t is of degree k. Then there are polynomials Ut and

V such that LU(t) = u^ and V(t) = v. So we have

Now, by the uniqueness of extensions of derivatives in the algebraic case, we may replace
t by any of its conjugates ti , . . . , tk, and the same equation holds. In other words, because
a is in F, it is fixed under the Galois automorphisms. Summing up over the conjugates,
and converting the U'/ll terms into products using logarithmic differentiation, we have

But the expressions in [...] are symmetric polynomials in tt, and as they are polynomials
with coefficients in F, the resulting expressions are in F. So dividing by k gives us (*)
holding in F.

Case 2: t is logarithmic over F. Because of logarithmic differentiation we may assume
that the u's are monic and irreducible in t and distinct. Furthermore, we may assume v
has been decomposed into partial fractions. The fractions can only be of the form f/g j ,
where deg(f) < deg(g) and g is monic irreducible. The fact that no terms outside of F
appear on the left hand side of (*), namely just a appears, means a lot of cancellation
must be occuring.

Let t' = s'/s, for some s in F. If f ( t ) is monic in F[t], then f ( t ) ' is also in F[t], of
one less degree. Thus f( t) does not divide f( t) ' . In particular, all the u'/u terms are in
lowest terms already. In the f/g' terms in v, we have a g'+1 denominator contribution
in v' of the form — jfg'/g'+1. But g doesn't divide fg ' , so no cancellation occurs. But



no u'/u term can cancel, as the u's are irreducible, and no (xx)/g'+1 term appears in a,
because a is a member of F. Thus no f/g j term occurs at all in v. But then none of the
u's can be outside of F, since nothing can cancel them. (Remember the u's are distinct,
monic, and irreducible.) Thus each of the u's is in F already, and v is a polynomial. But
v' = a — expression in u's, so v' is in F also. Thus v = bt + c for some b e Con(F), c e F,
by lemma 2. Then

it,' < s'
a = d — + • • • + cn^i + b- + c'

U] Un S

is the desired form. So case 2 holds.
Case 3: t is exponential over F. So let t'/t = s' for some s e F. As in case 2 above, we

may assume all the u's are monic, irreducible, and distinct and put v in partial fraction
decomposition form. Indeed the argument is identical as in case 2 until we try to conclude
what form v is. Here lemma 3 tells us that v is a finite sum of terms b • t' where each
coefficient is in F. Each of the u's is also in F, with the possible exception that one of
them may be t. Thus every u'/u term is in F, so again we conclude v' is in F. By lemma
3, v is in F. So if every u is in F, a is in the desired form. Otherwise, one of the u's, say
Un, is actually t, then

a = c1-
L + ---- h ( c n s + v )

Ui
is the desired form. So case 3 holds.

This proof, by the way, is a LOT easier than it looks. Just work out some examples,
and you'll see what's going on. (If this were a real expository paper, such examples would
be provided. Maybe it's better this way. Indeed, if anybody out there takes the time to
work some out and post them, I would be much obliged.)

So how to you actually go about using this theorem? Suppose you want to integrate f e9

for f,g in C(z), g non zero. [This isn't yet the asked for problem.] Let t = e9, so t'/t = g'.
Let F = C(z)(t) , G =any differential extension field containing an antiderivative of f • t.
[Note that t is in fact transcendental over C(z): g is rational and non-zero, so it has a
pole (possibly at infinity) and so t has an essential singularity and can't be algebraic over
C(z).] Is G an elementary extension? If so, then

where the Ct, ui, and v are in F. Now the left hand side can be viewed as a polynomial in
C(z)[t] with exactly one term. We must identify the coefficient of t in the right hand side



and get an equation for f. But the first n terms can be factored until the u^'s are linear
(using the logarithmic differentiation identity to preserve the abstract from). As for the v'
term, long divide and use partial fractions to conclude v is a sum of monomials: if v had a
linear denominator other than t, raised to some power in its partial fraction decomposition,
its derivative would be one higher power, and so cannot be cancelled with anything from
the Ui terms. (As in the proof.) If w is the coefficient of t in v, we have f = w' +wg' with
w in C(z). Solving this first order ODE, we find that w = e~9 J(fe9) . In other words, if
an elementary antiderivative can be found for fe9 , where f,g are rational functions, then
it is of the form we9 for some rational function w. [Notice that the conclusion would fail
for g equal to 0!]

For example, consider f = 1 and g = — z2. Now ez J e~z has no poles (except perhaps
at infinity), so if it is a rational function, it must be a polynomial. So let (p(z)e~z2)' = e~z2 .
One quickly verifies that p' — 2zp = 1. But the only solution to that ODE is the error
function J e~z2 itself (within an additive constant somewhere)! And the error function is
NOT a polynomial! (Proof? OK, for one thing, its Taylor series obtained by termwise
integration is infinite. For another, its derivative is an exponential.)

As an exercise, prove that J(ez/z) is not elementary. Conclude that neither is J e£Z and

For a slightly harder exercise, prove that J(sin(z)/z) is not elementary. Conclude that
neither is J(sinez).

Finally, we consider the case J(zz).
So this time, let F = C(z, l)(t), the field of rational functions in z,l,t, where I = logz

and t = ezl = zz. Note that z,l,t are algebraically independent. (Choose some appropriate
domain of definition.) Then t' = (1 + l)t, so for a = t in the above situation, the partial
fraction analysis (of the sort done in the previous posts) shows that the only possibility is
for v = wt + • • • to be the source of the t term on the left, with w in C(z, I).

So this means, equating t coefficients, 1 = w' + (I + 1 )w. This is a first order ODE,
whose solution is w = J(zz)/zz. So we must prove that no such w exists in C(z, I). So
suppose (as in one of Ray Steiner's posts) w = P/Q, with P,Q in C[z, I] and having no
common factors. Then

zz = (zz • P/Q)' = zz • [(} + l)PQ + P'Q - PQ']/Q2

or Q2 = (1 +l)PQ + P'Q-PQ'. So Q|Q', meaning Q is a constant, which we may assume
to be one. So we have it down to P' + P + IP = 1 .

Let P = 2Z™=0 Pil1, with Pi 6 C[z]. But then in our equation, there's a dangling Pnl
n+1

term, a contradiction.


