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Abstract

We develop a graphical calculus for the Hecke algebra of type A, when its parameter is nonzero and not a
nontrivial root of unity. Then we proceed to generalize the concepts of symmetrizer and antisymmetrizer to
this algebra. We also explore some of their properties, recursive relations and their interaction with each other.

1 Introduction

The symmetric group Sn is the group of permutations of the set {1, 2, . . . , n}. The study of permutations and
combinatorics dates back to the 6th century B.C. in India, where the first traces of this kind of thinking can
be found. Their importance grew substantially in 1770 when Lagrange published “Réflexions sur la Résolution
Algébrique des Équations”. This paper initiated the study of permutations in connection with the study of the
solution of polynomial equations. It was probably the first clear instance of implicit group-theoretic thinking in
mathematics. It led directly to the works of P. Ruffini, N. Abel and E. Galois during the first third of the 19th
century, and the concept of permutation group and, in particular, the symmetric group. Later in that century
A. Cayley defined the modern concept of a group and proved that every finite group is isomorphic to a subgroup
of the symmetric group, a result known as Cayley’s Theorem.

The finite dimensional irreducible representations of Sn in characteristic zero are very well understood, with
everything from their degrees and character formulae to explicit matrix representation being known for many years.
In contrast, very little detailed information is known about the modular representation theory of the symmetric
groups.

In this work we are concerned with the Hecke algebra (or Iwahori-Hecke algebra) of type A which is a
q-deformation of the group algebra of the symmetric group. Loosely speaking, it is the quantum analogue of
the symmetric group that corresponds to passing from Lie algebras to quantum groups. When q is nonzero and
not a nontrivial root of unity, then its representation theory is very similar to the representation theory of the sym-
metric group. At a nontrivial root of unity, its representation theory is more similar to the modular representation
theory of the symmetric group in characteristic zero.

The study of Hecke algebras was pioneered by R. Dipper and G. James in a series of landmark papers (see
[5] for references and a more detailed overview of the history of this subject). The main motivation for the study
of Hecke algebras is that they provide a bridge between the representation theory of the symmetric and general
linear groups. In addition, Hecke algebras play an important role in the theory of categorification. They also have
applications to many other areas of algebra, combinatorics and geometric representation theory.

In the book [2] we find a graphical calculus using string diagrams for symmetrizers and antisymmetrizers defined
on the symmetric group. The goal of this work is to generalize these notions for the Hecke algebra together with
their graphical description. The graphical calculus is a powerful tool for theoretical and practical purposes. From a
practical point of view, since we are very visual beings, it helps us to visualize relations and properties more easily,
which may not even be noticed without it, giving a hand to intuition. For instance, in the graphical calculus, one of
the defining relations of the Hecke algebra (relation (b) in Definition 1) follows immediately from the fact that we
consider diagrams up to isotopy relative the boundary. Another feature of the graphical calculus is that, since the
group algebra of the symmetric group and the Hecke algebra are quotients of the group algebra of the braid group,
their graphical calculi share deep similarities. From the theoretical point of view there is interest in diagrammatic
categorification in which Hecke algebras play an important role. For instance, the graphical calculus of the Hecke



algebra is of fundamental importance in the categorification of the Heisenberg algebra developed in [4]. In fact, in
the current paper we will provide proofs of some of the statements asserted there without proof.
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2 Graphical Description

In our work we are going to explore properties of the symmetrizer, antisymmetrizer and their relation. All these
entities are defined on the Hecke algebra.

Definition 1 (Hecke algebra.). Let F be a field of characteristic zero and consider q 6= 0 an element of F, which is
not a nontrivial root of unity. For n ≥ 2, the Hecke algebra Hn(q) is the F-algebra generated by t1, . . . , tn−1 with
relations

(a) t2i = q + (q − 1)ti for i = 1, 2, . . . , n− 1,

(b) titj = tjti for i, j = 1, 2, . . . , n− 1 such that |j − i| > 1,

(c) titi+1ti = ti+1titi+1 for i = 1, 2, . . . , n− 2.

By convention, we set H0(q) = H1(q) = F. We let 1 denote the identity element of Hn(q). The algebra Hn has
a basis {tσ}σ∈Sn where for σ ∈ Sn, tσ = ti1 · · · tik , where σ = si1 · · · sik is a reduced expression for σ.

Throughout our work we shall make use of a graphical description of the Hecke algebra formalized below. The
graphical description of the Hecke algebra is the F-module generated by planar diagrams modulo local relations
(Hecke algebra relations). The diagrams are oriented compact 1-manifolds immersed in the strip [0, 1]×R, modulo
rel boundary isotopies. The endpoints of the 1-manifold are located at {0} × {1, 2, . . . , n} and {1} × {1, 2, . . . , n}.
In such a description, the element ti is represent by crossing the ith and (i + 1)th lines. There is also a natural
product defined by gluing diagrams. The local relations are as follows.

(1)
i+ 1

i
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i
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(
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i
)
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j
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=
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i
=

i+ 2

i+ 1

i

Notice that if we set q = 1 in Definition 1, then Hn(1) is the group algebra of the symmetric group Sn.

Definition 2. We define the homomorphism ρ : Hn(q) → Hn(q) by ρ(ti) = tn−i. This homomorphism is in fact
a automorphism called the ‘flipping’ automorphism. Diagrammatically, this automorphism performs a flip in the
horizontal axis. For example, the image of the element t2t4t3t1 under the flipping automorphism is t3t1t2t4.
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3 The Symmetrizer and The Antisymmetrizer

Definition 3. In Hn(q), let m, k be positive integers such that k ≤ k + m − 1 ≤ n. Define the homomorphism
ιmk : Sm → Sn by

(5) ιmk (σ)(t) =

{
(k − 1) + σ(t+ (1− k)), t ∈ {k, k + 1, . . . , k + (m− 1)},
t, t ∈ {1, 2, . . . , k − 1, k +m, . . . , n}.

We define the symmetrizer to be

(6) Sk,k+1,...,k+(m−1) =
1

[m]q!

∑
σ∈Sm

tιmk (σ).

Where [n]q! = [1]q[2]q · · · [n− 1]q[n]q and

(7) [n]q =

n−1∑
i=0

qi.

It is depicted by a white box enveloping the strings from k to k + (m− 1).

n

n− 1

k + (m− 1)

k +m

k − 1

k

2

1

k + (m− 2)

k + 1

When k = 1 and m = n we shall denote the symmetrizer S1,2,...,n by S.

Remark 1. Given k,m, n positive integers such that k + m − 1 ≤ n, there exists a natural embedding of Hm(q)
into Hn(q) with relation to the kth string given by

Ik : Hm(q)→ Hn(q)

ti 7→ tk+i−1.

In view of this the following statements for the symmetrizer S and for the (to be defined) antisymmetrizer A are
also valid for Sk,...,k+m−1 and Ak,...,k+m−1.

m

5

4

3

2

1

Ik7−→

n

n− 1

k + (m− 1)

k +m

k − 1

k

2

1

k + (m− 2)

k + 1
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The next result tells us that crossings may be absorbed by the symmetrizer at the cost of a factor q.

Theorem 1. For all i ∈ {1, 2, . . . , n− 1} we have tiS = qS = Sti.

(8)

n

i+ 1

i

1

= q


n

i+ 1

i

1


=

n

i+ 1

i

1

.

Proof. Let i ∈ {1, 2, . . . , n−1} be a fixed integer. LetA = {σ ∈ Sn; `(siσ) ≥ `(σ)} andB = {σ ∈ Sn; `(siσ) < `(σ)}.
Let f : A → B be the function defined by f(σ) = siσ. We must prove that f is a bijection. In fact, clearly f
is injective, to show that f is onto let τ ∈ B. The permutation siτ is in A since `(si(siτ)) = `(τ) > `(siτ),
furthermore f(siτ) = τ . In view of this we may rewrite the symmetrizer as

(9) S =
1

[n]q!

∑
σ∈A

(tσ + tf(σ)).

On the other hand,

(10) ti(tσ + tf(σ)) = titσ + titf(σ) = tf(σ) + ti
2tσ = tf(σ) + qtσ + (q − 1)titσ = q(tf(σ) + tσ),

where we have used that titσ = tsiσ, since `(siσ) = `(σ) + `(si) for σ ∈ A. Therefore we have

(11) tiS =
1

[n]q!

∑
σ∈A

ti(tσ + tf(σ)) =
1

[n]q!

∑
σ∈A

q(tf(σ) + tσ) = qS.

The other equality follows by symmetry.

Lemma 1. (a) For a given i ∈ {1, 2, . . . , n+ 1}, let S
(i)
n+1 = {τ ∈ Sn+1; τ(n+ 1) = i}. Then

(12)
∑

τ∈S(i)
n+1

q`(τ) = qn+1−i
∑
τ∈Sn

q`(τ).

(b) For a given positive integer n we have the following identity,

(13) [n]q! =
∑
σ∈Sn

q`(σ).

Proof. (a) In fact, it is easy to see that equation (12) holds for i = n + 1. Since the correspondence φ 7→ ψφ,

where ψ = (i, i+ 1, . . . , n, n+ 1), between S
(n+1)
n+1 and S

(i)
n+1 is a bijection we can write

(14)
∑

τ∈S(i)
n+1

q`(τ) =
∑

φ∈S(n+1)
n+1

q`(ψφ).

We claim that `(ψφ) = `(ψ) + `(φ). Consider the sets Φ of the inversions of the permutation φ and
Ψ = {(j, n+ 1);n+ 1 > φ(j) ≥ i}. These sets are disjoint since φ(n + 1) = n + 1 and it is a straightfor-
ward case-by-case analysis to check that both are subsets of the set of inversions of ψφ, whence we have
that

`(ψφ) ≥ #(Ψ ∪ Φ) = `(ψ) + `(φ).

Since `(ψφ) ≤ `(ψ) + `(φ) we conclude that `(ψφ) = `(ψ) + `(φ). Then equation (14) becomes

(15)
∑

τ∈S(i)
n+1

q`(τ) =
∑

φ∈S(n+1)
n+1

q`(ψ)+`(φ) = q`(ψ)
∑

φ∈S(n+1)
n+1

q`(φ) = qn+1−i
∑
φ∈Sn

q`(φ).
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(b) We shall prove by induction on n. For n = 1 it is trivial. Suppose the equality holds for some positive integer

n and we shall prove it holds for n + 1. Let S
(i)
n+1 = {τ ∈ Sn+1; τ(n + 1) = i}. It is easy to see that these

sets are disjoint and their union is equal to Sn+1. Thus we may write:

(16)
∑

τ∈Sn+1

q`(τ) =
∑

τ∈S(1)
n+1

q`(τ) +
∑

τ∈S(2)
n+1

q`(τ) + · · ·+
∑

τ∈S(n)
n+1

q`(τ) +
∑

τ∈S(n+1)
n+1

q`(τ).

By Lemma 1(a) we have that

(17)
∑

τ∈S(i)
n+1

q`(τ) = qn+1−i
∑
τ∈Sn

q`(τ)

then, using our induction hypothesis that

[n]q! =
∑
τ∈Sn

q`(τ),

we can rewrite equation (16) to obtain

(18)
∑

τ∈Sn+1

q`(τ) = qn[n]q!+q
n−1[n]q!+· · ·+q[n]q!+[n]q! = (qn+qn−1+· · ·+1)[n]q! = [n+1]q[n]q! = [n+1]q!.

The next result tells us that bigger symmetrizers absorb smaller ones.

Theorem 2. If 1 ≤ a < a+ b ≤ n+ 1, then

(19) SSa,...,a+(b−1) = Sk,...,k+(m−1) = Sa,...,a+(b−1)S.

(20)

n

a+ b

a+ (b− 1)

a

a− 1

1

=

n

a+ b

a+ (b− 1)

a

a− 1

1

Proof. By definition of Sa,...,a+(b−1) we have,

(21) Sa,...,a+(b−1)S =

(
1

[b]q!

∑
σ∈Sb

tιba(σ)

)
S =

1

[b]q!

∑
σ∈Sb

(tιba(σ)S).

Now, applying Theorem 1 we obtain,

(22)
1

[b]q!

∑
σ∈Sb

(tιba(σ)S) =
1

[b]q!

∑
σ∈Sb

(q`(σ)S).

Finally, by the distributive law and Lemma 1(b),

(23)
1

[b]q!

∑
σ∈Sb

(q`(σ)S) =

(
1

[b]q!

∑
σ∈Sb

q`(σ)

)
S = S.
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Theorem 3. We have the following recursive relation

(24) S =
1

[n]q
[1 + t1 + t2t1 + t3t2t1 + · · ·+ tn−1tn−2 · · · t1]S2,...,n.

(25)

n

5

4

3

2

1

=
1

[n]q


n

5

4

3

2

1

+

n

5

4

3

2

1

+

n

5

4

3

2

1

+ · · ·+

n

n− 1

3

2

1


n

5

4

3

2

1

Proof. By definition of S2,...,n we have that

(26)
1

[n]q
[1 + t1 + t2t1 + · · ·+ tn−1 · · · t1]S2,...,n =

1

[n]q!
[1 + t1 + t2t1 + · · ·+ tn−1 · · · t1]

∑
σ∈Sn−1

tιn−1
2 (σ).

As we have seen in the proof of Lemma 1(a), for i = 0, 1, . . . , n− 2 and σ ∈ Sn−1,

(27) t1+iti · · · t1tιn−1
2 (σ) = ts1+isi···s1ιn−1

2 (σ).

Furthermore, the sets ιn−12 (Sn−1), s1ι
n−1
2 (Sn−1), s2s1ι

n−1
2 (Sn−1), . . . , sn−1sn−2 · · · s1ιn−12 (Sn−1) are pairwise dis-

joint, since they each fix different subsets of {1, 2, . . . , n}, and their union equals Sn since we have n! distinct
elements of Sn.

Then we can write equation (26) as

1

[n]q!
[1 + t1 + t2t1 + · · ·+ tn−1 · · · t1]

∑
σ∈Sn−1

tιn−1
2 (σ)

=
1

[n]q!

 ∑
σ∈ιn−1

2 (Sn−1)

tσ +
∑

σ∈s1ιn−1
2 (Sn−1)

tσ + · · ·+
∑

σ∈sn−1···s1ιn−1
2 (Sn−1)

tσ


=

1

[n]q!

∑
σ∈Sn

tσ

= S.(28)

By (26) and (28) we conclude that

(29) S =
1

[n]q
[1 + t1 + t2t1 + t3t2t1 + · · ·+ tn−1tn−2 · · · t1]S2,...,n.

Corollary 1. We have the following recursive relation

(30) S =
1

[n]q
[1 + tn−1 + tn−2tn−1 + tn−3tn−2tn−1 + · · ·+ t1t2 · · · tn−1]S1,...,n−1.

(31)

n

5

4

3

2

1

=
1

[n]q


n

5

4

3

2

1

+

n

n− 2

n− 3

n− 4

n− 1

1

+

n

n− 2

n− 3

n− 4

n− 1

1

+ · · ·+

n

n− 2

n− 1

1

2


n

n− 2

n− 3

n− 4

n− 1

1

Proof. The image of S under the flipping automorphism ρ is S. Thus applying ρ on both sides of equation (24) of
Theorem 3 we obtain equation (30).

Corollary 2. We have the following relations:
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(i)

(32)

n

5

4

3

2

1

=
1

[n]q

n

5

4

3

2

1

+

n

5

4

3

2

1

(ii)

(33)

n

5

4

3

2

1

=
1

[n]q

n

n− 2

n− 3

n− 4

n− 1

1

+

n

n− 2

n− 3

n− 4

n− 1

1

Proof. (i) Multiply equation (25), on the left, by

n

5

4

3

2

1

and use Theorem 1.

(ii) Multiply equation (31), on the left, by

n

n− 2

n− 3

n− 4

n− 1

1

and use Theorem 1.

Definition 4. Let m, k be positive integers such that k ≤ k +m− 1 ≤ n. We define the antisymmetrizer to be

(34) Ak,k+1,...,k+(m−1) =
1

[m]q−1 !

∑
σ∈Sm

(−q)−`(σ)tιmk (σ).

It is depicted by a black box enveloping the strings from k to k + (m− 1).

n

n− 1

k + (m− 1)

k +m

k − 1

k

2

1

k + (m− 2)

k + 1

When k = 1 and m = n we shall denote the antisymmetrizer A1,2,...,n by A.
As noted in Remark 1 all the statements below about the antisymmetrizer A are also valid for Ak,...,k+m−1.
The next result tells us that crossings may be absorbed by the antisymmetrizer at the cost of a sign.

Theorem 4. For all i ∈ {1, 2, . . . , n− 1} we have tiA = −A = Ati.

(35)

n

i+ 1

i

1

= −


n

i+ 1

i

1


=

n

i+ 1

i

1

.
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Proof. Let i ∈ {1, 2, . . . , n−1} be a fixed integer. Let L = {σ ∈ Sn; `(siσ) ≥ `(σ)} andB = {σ ∈ Sn; `(siσ) < `(σ)}.
Let f : L→ B be the function defined by f(σ) = siσ. As we have seen in the proof of Theorem 1, f is a bijection.
In view of this we may rewrite the antisymmetrizer as

(36) A =
1

[n]q−1 !

∑
σ∈A

((−q)−`(σ)tσ + (−q)−`(f(σ))tf(σ)).

On the other hand,

ti((−q)−`(σ)tσ + (−q)−`(f(σ))tf(σ)) = (−q)−`(σ)titσ + (−q)−`(f(σ))titf(σ)
=(−q)−`(σ)tf(σ) + (−q)−`(f(σ))ti2tσ
=− q(−q)−`(f(σ))tf(σ) + (−q)−`(f(σ))(qtσ + (q − 1)titσ)

=− q(−q)−`(f(σ))tf(σ) − (−q)−`(σ)tσ − (−q)−`(f(σ))(1− q)titσ)

=− (tf(σ) + tσ),(37)

where we have used that titσ = tsiσ, since `(siσ) = `(σ) + `(si) for σ ∈ A. Therefore we have

(38) tiA =
1

[n]q−1 !

∑
σ∈A

ti((−q)−`(σ)tσ + (−q)−`(f(σ))tf(σ))

=
1

[n]q−1 !

∑
σ∈A
−((−q)−`(σ)tσ + (−q)−`(f(σ))tf(σ)) = −A.

The other equality follows by symmetry.

The next result tells us that bigger antisymmetrizers absorb smaller ones.

Theorem 5. If 1 ≤ a < b+ a ≤ n+ 1, then

(39) AAa,...,a+(b−1) = A = Aa,...,a+(b−1)A.

(40)

n

a+ b

a+ (b− 1)

a

a− 1

1

=

n

a+ b

a+ (b− 1)

a

a− 1

1

.

Proof. By definition of Aa,...,a+(b−1) we have,

(41) Aa,...,a+(b−1)A =

(
1

[b]q−1 !

∑
σ∈Sb

(−q)−`(σ)tιba(σ)

)
A =

1

[b]q−1 !

∑
σ∈Sb

((−q)−`(σ)tιba(σ)A).

Now, applying Theorem 4 we obtain,

(42)
1

[b]q−1 !

∑
σ∈Sb

((−q)−`(σ)tιba(σ)A) =
1

[b]q−1 !

∑
σ∈Sb

((−q)−`(σ)(−1)`(σ)A) =
1

[b]q−1 !

∑
σ∈Sb

(q−`(σ)A).

Finally, by the distributive law, together with the fact that

(43) [b]q−1 ! =
∑
σ∈Sb

q−`(σ),

which is Lemma 1(b) after replacing q by q−1, we have

(44)
1

[b]q−1 !

∑
σ∈Sb

(q−`(σ)A) =

(
1

[b]q−1 !

∑
σ∈Sb

q−`(σ)

)
A = A.
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Theorem 6. We have the following recursive relation

(45) A =
1

[n]q−1

[1− q−1t1 + q−2t2t1 − q−3t3t2t1 + · · ·+ (−q)1−ntn−1tn−2 · · · t1]A2,...,n.

(46)

n

5

4

3

2

1

=
1

[n]q−1


n

5

4

3

2

1

− 1

q
n

5

4

3

2

1

+
1

q2

n

5

4

3

2

1

+ · · ·+ (−1)n−1

qn−1

n

n− 1

3

2

1


n

5

4

3

2

1

Proof. By definition of A2,...,n we have that

(47)
1

[n]q−1

[1 + (−q)−1t1 + (−q)−2t2t1 + · · ·+ (−q)1−ntn−1 · · · t1]A2,...,n =

1

[n]q−1 !
[1 + (−q)−1t1 + (−q)−2t2t1 + · · ·+ (−q)1−ntn−1 · · · t1]

∑
σ∈Sn−1

(−q)−`(σ)tιn−1
2 (σ).

As we have seen in the proof of Lemma 1(a), for i = 0, 1, . . . , n− 2 and σ ∈ Sn−1,

(48) t1+iti · · · t1tιn−1
2 (σ) = ts1+isi···s1ιn−1

2 (σ).

Furthermore, the sets ιn−12 (Sn−1), s1ι
n−1
2 (Sn−1), s2s1ι

n−1
2 (Sn−1), . . . , sn−1sn−2 · · · s1ιn−12 (Sn−1) are pairwise dis-

joint, since they each fix different subsets of {1, 2, . . . , n}, and their union equals Sn since we have n! distinct
elements of Sn.

Then we can write equation (47) as

1

[n]q−1 !
[1 + (−q)−1t1 + (−q)−2t2t1 + · · ·+ (−q)1−ntn−1 · · · t1]

∑
σ∈Sn−1

(−q)−`(σ)tιn−1
2 (σ)

=
1

[n]q−1 !

 ∑
σ∈ιn−1

2 (Sn−1)

(−q)−`(σ)tσ +
∑

σ∈s1ιn−1
2 (Sn−1)

(−q)−`(σ)tσ + · · ·+
∑

σ∈sn−1···s1ιn−1
2 (Sn−1)

(−q)−`(σ)tσ


=

1

[n]q−1 !

∑
σ∈Sn

(−q)−`(σ)tσ

= A.(49)

By (47) and (49) we conclude that

(50) A =
1

[n]q−1

[1− q−1t1 + q−2t2t1 − q−3t3t2t1 + · · ·+ (−q)1−ntn−1tn−2 · · · t1]A2,...,n.

Corollary 3. We have the following recursive relation

(51) A =
1

[n]q−1

[1− q−1tn−1 + q−2tn−2tn−1 − q−3tn−3tn−2tn−1 + · · ·+ (−q)1−nt1t2 · · · tn−1]A1,...,n−1.

(52)

n

5

4

3

2

1

=
1

[n]q−1


n

5

4

3

2

1

− 1

q
n

n− 2

n− 3

n− 4

n− 1

1

+
1

q2

n

n− 2

n− 3

n− 4

n− 1

1

+ · · ·+ (−1)n−1

qn−1

n

n− 2

n− 1

1

2


n

n− 2

n− 3

n− 4

n− 1

1

Proof. It is easy to check that the image of A under the flipping automorphism ρ is A. Thus applying ρ on both
sides of equation (45) of Theorem 6 we obtain equation (51).

Corollary 4. We have the following relations:
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(i)

(53)

n

5

4

3

2

1

=
1

[n]q−1

n

5

4

3

2

1

+
1− [n]q−1

[n]q−1

n

5

4

3

2

1

(ii)

(54)

n

5

4

3

2

1

=
1

[n]q−1

n

n− 2

n− 3

n− 4

n− 1

1

+
1− [n]q−1

[n]q−1

n

n− 2

n− 3

n− 4

n− 1

1

Proof. (i) Multiply equation (46), on the left, by

n

5

4

3

2

1

and use Theorem 4.

(ii) Multiply equation (52), on the left, by

n

n− 2

n− 3

n− 4

n− 1

1

and use Theorem 4.

Proposition 1. For i ∈ 1, 2, . . . , n− 1 we have that Ai,i+1Si,i+1 = 0 = Si,i+1Ai,i+1.

(55)

n

i+ 2

i+ 1

i

i− 1

1

= 0 =

n

i+ 2

i+ 1

i

i− 1

1

Proof.

n

i+ 2

i+ 1

i

i− 1

1

=

(
1

[2]q!

1

[2]q−1 !

)


n

n− 1

i+ 2

i+ 1

i

i− 1

2

1

+

n

n− 1

i+ 2

i+ 1

i

i− 1

2

1



n

n− 1

i+ 2

i+ 1

i

i− 1

2

1

− q−1

n

n− 1

i+ 2

i+ 1

i

i− 1

2

1


=

(
1

[2]q!

1

[2]q−1 !

)


n

n− 1

i+ 2

i+ 1

i

i− 1

2

1

+ (1− q−1)

n

n− 1

i+ 2

i+ 1

i

i− 1

2

1

− q−1

n

n− 1

i+ 2

i+ 1

i

i− 1

2

1


= 0.

The last equality holds because, by item (a) of Definition 1, we have that

q−1

n

n− 1

i+ 2

i+ 1

i

i− 1

2

1

=

n

n− 1

i+ 2

i+ 1

i

i− 1

2

1

+ (1− q−1)

n

n− 1

i+ 2

i+ 1

i

i− 1

2

1

.
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Corollary 5. If a symmetrizer and an antisymmetrizer have at least two strings in common, then their product is
zero.

Proof. Suppose that the common strings to the symmetrizer Sk,...,m and to the antisymmetrizer Aa,...,b are j and
j + 1. Then,

(56) Sk,...,mAa,...,b = (Sk,...,mSj,j+1)(Aj,j+1Aa,...,b) = Sk,...,m(Sj,j+1Aj,j+1)Aa,...,b = Sk,...,m(0)Aa,...,b = 0.

In [2], the author develops a graphical calculus corresponding to the contraction of indices of tensors. It is
possible to extend this concept to the Hecke algebra case, but doing so requires a more detailed knowledge of the
representation theory of the Hecke algebra. We hope to pursue this idea in a future paper.
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