How far can we push the AdS/Ricci-flat correspondence?

Marco Caldarelli

Mathematical Sciences and STAG research centre University of Southampton

work in progress with Kostas Skenderis

Gauge/Gravity Duality 2015 ~ GGI, 17 April 2015

MARIE CURIE ACTIONS

- Gravity is believed to be holographic: it should be described by a non-gravitational theory in one dimension less 't Hooft '93, Susskind '94
- This is well understood for asymptotically anti-de Sitter spacetimes: AdS/CFT correspondence Maldacena '97, Gubser Klebanov Polyakov '98, Witten '98, ...
- Original arguments for holography are insensitive to asymptotics
- Decoupling argument extends to nonconformal Kanitscheider et al '08
 branes (non-trivial dilaton & non-AdS asymptotics)
 Kanitscheider et al '08
 Wiseman & Withers '08
 - obtained from AdS via a generalized dimensional reduction
 - Holographic dictionary *inherited* from AdS Kanitscheider & Skenderis '09

I will discuss a generalized dimensional reduction linking Ricci-flat and AdS solutions, aiming at formulating holography for AF spacetimes.

AdS/Ricci-flat correspondence

 \sim a map linking AdS gravity and vacuum Einstein gravity \sim

A map relating AdS and Ricci-flat solutions

MC, Camps, Goutéraux & Skenderis '12

I. Solutions to AdS gravity in d+I dimensions of the form:

2. Extract (p+2)-dim metric $\hat{g}(x)$ and the scalar $\phi(x)$

3. Substitute $d \to -n$ in $\hat{g}(x)$ and $\phi(x)$ 4. Insert back in $ds_0^2 = e^{\frac{2\phi(x)}{n+p+1}} \left(d\hat{s}_{p+2}^2(x) + \ell^2 d\Omega_{n+1}^2 \right)$

Then, the metric ds_0^2 is **Ricci-flat** $\tilde{R}_{\mu\nu} = 0$ It solves **vacuum Einstein** equations in (n+p+3) dimensions

Trading curvatures: from AdS to Ricci-flat

Trading curvatures: from AdS to Ricci-flat

Trading curvatures: from AdS to Ricci-flat

Dimension d (and n) enters analytically as a parameter in the equations of motion

Some remarks

- I. Requires knowing the solution for any d (or n): we are mapping families of AdS solutions to families of Ricci-flat solutions
- 2. Analytical continuation $d \rightarrow -n$ on the lower dimensional theory: d and n should not be thought of as spacetime dimensions
- 3. This is an example of Generalized Dimensional Reduction Kanitscheider & Skenderis '09 - Goutéraux, Smolic, Smolic, Skenderis & Taylor '11 - Goutéraux & Kiritsis '11
- 4. We are trading the curvature of AdS with the curvature of the sphere $(-2\Lambda \leftrightarrow \mathcal{R}_{S^{\tilde{n}+1}})$
- 5. Extensions with other compactifications/cosmological constants e.g. AdS/dS correspondence Di Dato & Fröb '14

The resulting Ricci-flat class of solutions has an underlying holographic structure and hidden conformal symmetry inherited from the locally asymptotically AdS class of solutions.

Some simple examples

 \sim what happens to simple known solutions under this map? \sim

First example: AdS_{d+1} on a Torus

I. AdS spacetime in d+I dimensions: \mathcal{T}^{d-p-1}

$$\mathrm{d}s_{\Lambda}^{2} = \frac{\ell^{2}}{r^{2}} \left(\mathrm{d}r^{2} + \eta_{ab} \mathrm{d}x^{a} \mathrm{d}x^{b} + \mathrm{d}\vec{y}^{2} \right)$$

2. Extract the metric and scalar:

$$ds_{\Lambda}^{2} = d\hat{s}_{p+2}^{2} + e^{\frac{2\phi}{d-p-1}} d\vec{y}_{d-p-1}^{2} \Rightarrow \begin{cases} d\hat{s}_{p+2}^{2} = \frac{\ell^{2}}{r^{2}} \left(dr^{2} + \eta_{ab} \, dx^{a} dx^{b} \right) \\ \phi(x) = -(d-p-1) \ln \frac{r}{\ell} \end{cases}$$

B. Substitute $d \to -n \Rightarrow \begin{cases} d\hat{s}_{p+2}^{2} = \frac{\ell^{2}}{r^{2}} \left(dr^{2} + \eta_{ab} \, dx^{a} dx^{b} \right) \\ \phi(x) = (n+p+1) \ln \frac{r}{\ell} \end{cases}$

4. Lift to n+p+3 dimensions: $ds_0^2 = e^{\frac{2\phi}{n+p+1}} \left(d\hat{s}_{n+2}^2 + \ell^2 d\Omega_{n+1}^2 \right)$

00

$$\Rightarrow \quad ds_0^2 = \underbrace{\eta_{ab} \mathrm{d} x^a \mathrm{d} x^b}_{\mathbb{R}^{1,p}} + \underbrace{\mathrm{d} r^2 + r^2 \mathrm{d} \Omega_{n+1}^2}_{\mathbb{R}^{n+2}}$$

Minkowski in *n*+*p*+3 dim.

First example: AdS_{d+1} on a Torus

Second example: Excitations on top of AdS

1. Fefferman-Graham coordinates for Einstein-AdS solutions: ($\rho = r^2$)

$$ds_{\Lambda}^{2} = \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho} \left(\eta_{\mu\nu} + \rho^{d/2} g_{(d)\mu\nu} + \cdots \right) dz^{\mu} dz^{\nu}$$
flat boundary metric normalizable perturbation $T_{\mu\nu} \propto g_{(d)\mu\nu}$

2. Reduced theory: non conformal branes with dual stress tensor \hat{T}_{ab} $\partial^a \hat{T}_{ab} = 0$, $\hat{T}_a{}^a = (d - p - 1)\hat{\mathcal{O}}_{\phi}$ Kanitscheider & Skenderis '09

the expectation value of the scalar operator breaks conformal invariance

3. & 4. Analytical continuation and uplift to n + p + 3 dimensions:

$$\mathrm{d}s_0^2 = (\eta_{AB} + h_{AB} + \dots)\,\mathrm{d}x^A\mathrm{d}x^B$$

$$\tilde{T}_{ab} = -\frac{\hat{G}_N}{\tilde{G}_N}\Omega_{n+1}\hat{T}_{ab}\delta^{n+2}(r)$$
 (stress tensor of a p -brane located at $r=0$)

 $\Box \bar{h}_{AB} = -16\pi \tilde{G}_N \tilde{T}_{AB}$ $\bar{h}_{AB} = h_{AB} - \frac{h}{2}\eta_{AB}$

The holographic stress tensor sources the faraway gravitational field

Second example: Excitations on top of AdS

[NB: A similar picture arises in the AdS/dS correspondence Di Dato & Fröb '14]

Second example: **Correlation functions**

- On AdS, we find regular linear transverse traceless fluctuation satisfying Dirichlet boundary conditions
- This translates on the Ricci-flat side into a choice of a metric at the location of a p-brane
- At linear order, the holographic stress energy tensor becomes the stress energy tensor due to this p-brane, that sources the linearized gravitational field
- The regularity in the bulk of AdS becomes the requirement that the Ricci-flat perturbation preserves asymptotic flatness

A coherent picture is emerging, hinting at holography for asymptotically flat spacetimes

Third example: black branes

* AdS/RF maps planar AdS black holes to Schwarzschild black branes

* It also maps AdS fluid/gravity metric to blackfolds

AdS/RF summary

* AdS/Ricci-flat correspondence maps asymptotically locally AdS solutions on a torus to Ricci-flat spacetimes

These Ricci-flat spaces inherit the holographic properties of AdS

* Holography for asymptotically flat spacetimes?

- The map captures all the dynamics in the extended directions along the brane (correlation functions, hydro mode, transport coeffs)
- The transverse sphere is **frozen**! These are critical modes to understand asymptotically flat holography: we are killing all the dynamics of the Schwarzschild black hole
- However non extremal BHs near horizon geometry is Rindler, that we can link to AdS₂; hints to an effective chiral CFT

* Extensions of the AdS/RF map

Di Dato, Gath & Vigand Pedersen '15

- Auxiliary reduction: extension with gauge fields (EMD) but the sphere remains frozen, so it does not help us

How far can we push the AdS/RF correspondence?

~ Unfreezing the torus & the sphere ~

Beyond AdS/RF: perturbations

- General linearized perturbation of AdS and Minkowski
- ♦ Full Kaluza-Klein reduction down to p+2 dimensions
- Compare the resulting modes

♦ ???

Linearized perturbations of Minkowski

$$ds_{n+p+3}^{2} = \underbrace{\eta_{\mu\nu} \, dx^{\mu} dx^{\nu} + dr^{2}}_{p+2} + r^{2} \underbrace{\sigma_{ij} \, d\theta^{i} d\theta^{j}}_{\mathcal{S}^{n+1}} + \underbrace{h_{AB} \, dX^{A} dX^{B}}_{\text{perturbation}}$$

Field expansion in SO(n+2) representations:

$$\begin{split} h_{ab} &= h_{ab}^{I_{s}}(x,r) \mathbb{S}^{I_{s}}(\theta), \\ h_{ai} &= B_{(\mathsf{v})a}^{I_{\mathsf{v}}}(x,r) \mathbb{V}_{i}^{I_{\mathsf{v}}}(\theta) + B_{(\mathsf{s})a}^{I_{s}}(x,r) \mathcal{D}_{i} \mathbb{S}^{I_{s}}(\theta), \\ h_{(ij)} &= \hat{\phi}_{\mathsf{t}}^{I_{\mathsf{t}}}(x,r) \mathbb{T}_{(ij)}^{I_{\mathsf{t}}}(\theta) + \phi_{\mathsf{v}}^{I_{\mathsf{v}}}(x,r) \mathcal{D}_{(i} \mathbb{V}_{j)}^{I_{\mathsf{v}}}(\theta) + \phi_{\mathsf{s}}^{I_{s}}(x,r) \mathcal{D}_{(i} \mathcal{D}_{j)} \mathbb{S}^{I_{s}}(\theta), \\ h_{i}^{i} &\equiv \sigma^{ij} h_{ij} = \pi^{I_{s}}(x,r) \mathbb{S}^{I_{s}}(\theta) \end{split}$$

FieldsSpherical harmonicsScalars $h_{ab}^{I_s}$, $B_{(s)a}^{I_s}$, $\phi_s^{I_s}$, π^{I_s} $\mathbb{S}^{I_s}(\theta)$ Λ^{I_s} Vectors $B_{(v)a}^{I_v}$, $\phi_v^{I_v}$ $\mathbb{V}_i^{I_v}(\theta)$ Λ^{I_v} Tensor $\hat{\phi}_t^{I_t}$ $\mathbb{T}_{(ij)}^{I_t}(\theta)$ Λ^{I_t}

Gauge invariant variables

Skenderis & Taylor '05

Some modes are diffeomorphic to each other, or to the background solution. Consider $X^{A'} = X^A - \xi^A$ with

$$\xi_a = \xi_a^{I_{\mathsf{s}}}(x,r) \,\mathbb{S}^{I_{\mathsf{s}}}, \qquad \xi_i = \xi_{\mathsf{v}}^{I_{\mathsf{v}}}(x,r) \,\mathbb{V}_i^{I_{\mathsf{v}}} + \xi_{\mathsf{s}}^{I_{\mathsf{s}}}(x,r) \,\mathcal{D}_i \mathbb{S}^{I_{\mathsf{s}}}$$

Define

$$\hat{B}_{(\mathbf{s})a}^{I_{\mathbf{s}}} = B_{(\mathbf{s})a}^{I_{\mathbf{s}}} - \frac{1}{2}\partial_a\phi_{\mathbf{s}}^{I_{\mathbf{s}}} + \frac{1}{r}\delta^r{}_a\phi_{\mathbf{s}}^{I_{\mathbf{s}}},$$

$$\delta\phi_{\mathsf{s}}^{I_{\mathsf{s}}} = 2r^2\xi_{\mathsf{s}}^{I_{\mathsf{s}}}, \qquad \delta\phi_{\mathsf{v}}^{I_{\mathsf{v}}} = 2r^2\xi_{\mathsf{v}}^{I_{\mathsf{v}}}, \qquad \delta\hat{B}_{(\mathsf{s})a}^{I_{\mathsf{s}}} = \xi_a^{I_{\mathsf{s}}}$$

pure gauge!

 $\Rightarrow \text{Use } \hat{B}_{(\mathsf{s})a}^{I_\mathsf{s}}, \ \phi_\mathsf{s}^{I_\mathsf{s}}, \ \phi_\mathsf{v}^{I_\mathsf{v}} \text{ to compensate the variations} \\ \text{generated by the gauge parameters } \xi_a^{I_\mathsf{s}}, \ \xi_\mathsf{v}^{I_\mathsf{v}}, \ \xi_\mathsf{s}^{I_\mathsf{s}} \end{cases}$

$$\begin{split} \delta h_{ab}^{I_{s}} &= \partial_{a} \xi_{b}^{I_{s}} + \partial_{b} \xi_{a}^{I_{s}} \\ \delta B_{(\mathbf{v})a}^{I_{v}} &= r^{2} \partial_{a} \xi_{\mathbf{v}}^{I_{v}} \\ \delta \pi^{I_{s}} &= 2r^{2} \Lambda^{I_{s}} \xi_{\mathbf{s}}^{I_{s}} + 2(n+1)r \xi_{r}^{I_{s}} \\ \delta \hat{\phi}_{\mathbf{t}}^{I_{t}} &= 0 \end{split}$$

Gauge invariant variables

Skenderis & Taylor '05

Some modes are diffeomorphic to each other, or to the background solution. Consider $X^{A'} = X^A - \xi^A$ with

$$\xi_a = \xi_a^{I_{\mathsf{s}}}(x,r) \,\mathbb{S}^{I_{\mathsf{s}}}, \qquad \xi_i = \xi_{\mathsf{v}}^{I_{\mathsf{v}}}(x,r) \,\mathbb{V}_i^{I_{\mathsf{v}}} + \xi_{\mathsf{s}}^{I_{\mathsf{s}}}(x,r) \,\mathcal{D}_i \mathbb{S}^{I_{\mathsf{s}}}$$

 $\begin{array}{ll} \text{Define} & \hat{B}_{(\mathsf{s})a}^{I_\mathsf{s}} = B_{(\mathsf{s})a}^{I_\mathsf{s}} - \frac{1}{2}\partial_a\phi_\mathsf{s}^{I_\mathsf{s}} + \frac{1}{r}\delta^r{}_a\phi_\mathsf{s}^{I_\mathsf{s}}, \\ \\ \delta\phi_\mathsf{s}^{I_\mathsf{s}} = 2r^2\xi_\mathsf{s}^{I_\mathsf{s}}, & \delta\phi_\mathsf{v}^{I_\mathsf{v}} = 2r^2\xi_\mathsf{v}^{I_\mathsf{v}}, & \delta\hat{B}_{(\mathsf{s})a}^{I_\mathsf{s}} = \xi_a^{I_\mathsf{s}} \end{array}$

Define the hatted, gauge-invariant fields

$$\begin{split} \hat{h}_{ab}^{I_{s}} &= h_{ab}^{I_{s}} - \partial_{a}\hat{B}_{(s)b}^{I_{s}} - \partial_{b}\hat{B}_{(s)a}^{I_{s}} \\ \hat{B}_{(v)a}^{I_{v}} &= B_{(v)a}^{I_{v}} - \frac{1}{2}\partial_{a}\phi_{v}^{I_{v}} + \frac{1}{r}\delta^{r}{}_{a}\phi_{v}^{I_{v}} \\ \hat{\pi}^{I_{s}} &= \pi^{I_{s}} - \Lambda^{I_{s}}\phi_{s}^{I_{s}} - 2(n+1)r\hat{B}_{(s)r}^{I_{s}} \end{split}$$

$$\begin{split} \delta \hat{h}_{ab}^{I_{s}} &= 0\\ \delta \hat{B}_{(v)a}^{I_{v}} &= 0\\ \delta \hat{\pi}^{I_{s}} &= 0\\ \delta \hat{\phi}_{t}^{I_{t}} &= 0 \end{split}$$

gauge-invariant fields

 $E_{CD}^{(0)} \equiv \bar{g}^{AB} (h_{BC|DA} - h_{AB|CD} + h_{BD|CA} - h_{CD|BA}) = 0$

Decompose & project onto harmonics:

$$\begin{split} E_{ab}^{(0)} \Big|_{\mathbb{S}^{I_{s}}} &= 0 \\ E_{ai}^{(0)} \Big|_{\mathbb{V}_{i}^{I_{v}}} &= 0 \quad E_{ai}^{(0)} \Big|_{\mathcal{D}_{i} \mathbb{S}^{I_{s}}} = 0 \\ E_{ij}^{(0)} \Big|_{\mathbb{T}_{ij}^{I_{t}}} &= 0 \quad E_{ij}^{(0)} \Big|_{\mathcal{D}_{(i} \mathbb{V}_{j)}^{I_{v}}} = 0 \quad E_{ij}^{(0)} \Big|_{\mathcal{D}_{(i} \mathcal{D}_{j)} \mathbb{S}^{I_{s}}} = 0 \quad E_{ij}^{(0)} \Big|_{\sigma_{ij} \mathbb{S}^{I_{s}}} = 0 \end{split}$$

 $E_{CD}^{(0)} \equiv \bar{g}^{AB} (h_{BC|DA} - h_{AB|CD} + h_{BD|CA} - h_{CD|BA}) = 0$

Decompose & project onto harmonics:

$$\begin{split} E_{ab}^{(0)}\Big|_{\mathbb{S}^{I_{s}}} &= 0 \\ \hline E_{ai}^{(0)}\Big|_{\mathbb{V}_{i}^{I_{v}}} &= 0 \\ E_{ij}^{(0)}\Big|_{\mathbb{T}_{ij}^{I_{t}}} &= 0 \\ \hline E_{ij}^{(0)}\Big|_{\mathbb{T}_{ij}^{I_{t}}} &= 0 \\ \hline E_{ij}^{(0)}\Big|_{\mathcal{D}_{(i}\mathbb{V}_{j)}^{I_{v}}} &= 0 \\ \hline E_{ij}^{(0)}\Big|_{\mathcal{D}_{(i}\mathbb{V}_{j)}^{I_{v}}} &= 0 \\ \hline E_{ij}^{(0)}\Big|_{\mathcal{D}_{(i}\mathbb{V}_{j)}^{I_{v}}} &= 0 \\ \hline E_{ij}^{(0)}\Big|_{\mathcal{D}_{(i}\mathbb{V}_{j)}^{I_{s}}} &= 0 \\ \hline E_{ij}^{(0)}\Big|_{\sigma_{ij}\mathbb{S}^{I_{s}}} &= 0 \\ \hline E_{ij}^{(0)}\Big|_{\sigma_{ij}\mathbb{S}^{I_{s}}} &= 0 \\ \hline E_{ij}^{I_{v}}\Big|_{\sigma_{ij}\mathbb{S}^{I_{s}}} &= 0 \\ \hline E_{ij}^{I_{v}}\Big|_{\sigma_{$$

 $E_{CD}^{(0)} \equiv \bar{g}^{AB} (h_{BC|DA} - h_{AB|CD} + h_{BD|CA} - h_{CD|BA}) = 0$ ► Coupled equations for $\hat{h}_{ab}^{I_{s}}$ and $\hat{\pi}^{I_{s}}$ ◄ $E_{ab}^{(0)}\Big|_{\mathbb{S}^{I_{\mathsf{S}}}} = 0$ $E_{ai}^{(0)}\Big|_{\mathbb{V}_{i}^{I_{v}}} = 0 \quad E_{ai}^{(0)}\Big|_{\mathcal{D}_{i}\mathbb{S}^{I_{s}}} = 0$ $\left| \begin{array}{c} E_{ij}^{(0)} \\ E_{ij}^{(0)} \\ \\ \mathbb{T}_{ij}^{I_{t}} \end{array} = 0 \end{array} \right| \left| \begin{array}{c} E_{ij}^{(0)} \\ \\ \mathcal{D}_{(i} \mathbb{V}_{i)}^{I_{v}} \end{array} = 0 \end{array} \right| \left| \begin{array}{c} E_{ij}^{(0)} \\ \\ \\ \mathcal{D}_{(i} \mathcal{D}_{j)} \end{array} \right|_{\mathcal{D}_{(i} \mathcal{D}_{j)} } \mathbb{S}^{I_{s}} \end{array} = 0 \quad \left| \begin{array}{c} E_{ij}^{(0)} \\ \\ \\ \end{array} \right|_{\sigma_{ij} \mathbb{S}^{I_{s}}} = 0 \end{array} \right|$ \smile Decoupled equations for $B_{(\mathbf{v})a}^{I_{\mathbf{v}}}$ and $\hat{\phi}_{\mathbf{t}}^{I_{\mathbf{t}}}$ $\begin{cases} \Box \hat{B}_{(\mathsf{v})a}^{I_{\mathsf{v}}} + \frac{n-1}{r} \partial_r \hat{B}_{(\mathsf{v})a}^{I_{\mathsf{v}}} - \frac{2}{r} \partial_a \hat{B}_{(\mathsf{v})r}^{I_{\mathsf{v}}} - \frac{n-3}{r^2} \delta_a{}^r \hat{B}_{(\mathsf{v})r}^{I_{\mathsf{v}}} + \frac{\Lambda^{I_{\mathsf{v}}} - n}{r^2} \hat{B}_{(\mathsf{v})a}^{I_{\mathsf{v}}} = 0 \\ \Box \hat{\phi}_{\mathsf{t}}^{I_{\mathsf{t}}} + \frac{n-3}{r} \partial_r \hat{\phi}_{\mathsf{t}}^{I_{\mathsf{t}}} + \frac{1}{r^2} \left(\Lambda^{I_{\mathsf{t}}} - 2n + 2 \right) \hat{\phi}_{\mathsf{t}}^{I_{\mathsf{t}}} = 0 \end{cases}$

Action for fluctuations on Minkowski

$$\begin{split} S_{0} &= \int d^{p+2}x \, r^{n+1} \left\{ \frac{1}{2} \partial_{c} \hat{h}_{ab}^{I_{s}} \partial^{a} \hat{h}^{I_{s}bc} - \frac{1}{4} \partial_{a} \hat{h}_{bc}^{I_{s}} \partial^{a} \hat{h}^{I_{s}bc} + \frac{\Lambda^{I_{s}}}{4r^{2}} \hat{h}_{ab}^{I_{s}} \hat{h}^{I_{s}ab} + \frac{1}{4} \partial^{a} \hat{H}^{I_{s}} \partial_{a} \hat{H}^{I_{s}} \\ &- \frac{\Lambda^{I_{s}}}{4r^{2}} \hat{H}^{I_{s}} \hat{H}^{I_{s}} - \frac{1}{2} \partial^{a} \hat{H}^{I_{s}} \partial^{b} \hat{h}_{ab}^{I_{s}} - \frac{n+1}{2r} \hat{h}_{ra}^{I_{s}} \partial^{a} \hat{H}^{I_{s}} + \frac{1}{4r^{4}} \frac{n}{n+1} \partial_{a} \hat{\pi}^{I_{s}} \partial^{a} \hat{\pi}^{I_{s}} \\ &- \frac{1}{4r^{6}} \left(\frac{n(n-1)}{(n+1)^{2}} \Lambda^{I_{s}} - \frac{4}{n+1} \right) \hat{\pi}^{I_{s}} \hat{\pi}^{I_{s}} - \frac{1}{2r^{2}} \partial^{a} \hat{\pi}^{I_{s}} \partial^{b} \hat{h}_{ab}^{I_{s}} - \frac{n-1}{2r^{3}} \hat{h}_{ar}^{I_{s}} \partial^{a} \hat{\pi}^{I_{s}} + \frac{1}{r^{3}} \hat{\pi}^{I_{s}} \partial^{a} \hat{h}_{ar}^{I_{s}} \\ &+ \frac{n-1}{r^{4}} \hat{\pi}^{I_{s}} \hat{h}_{rr}^{I_{s}} + \frac{1}{2r^{2}} \partial_{a} \hat{H}^{I_{s}} \partial^{a} \hat{\pi}^{I_{s}} - \frac{1}{2r^{3}} \hat{\pi}^{I_{s}} \partial_{r} \hat{H}^{I_{s}} - \frac{\Lambda^{I_{s}}}{2r^{4}} \frac{n}{n+1} \hat{H}^{I_{s}} \hat{\pi}^{I_{s}} - \frac{1}{2r^{5}} \hat{\pi}^{I_{s}} \partial_{r} \hat{\pi}^{I_{s}} \\ &+ \int d^{p+2}x \, r^{n-1} \left\{ -\frac{1}{4} \hat{G}_{(v)ab}^{I_{v}} \hat{G}_{(v)}^{I_{v}ab} + \frac{\Lambda^{I_{v}} - n}{2r^{2}} \hat{B}_{(v)a}^{I_{v}} \hat{B}_{(v)}^{I_{v}} - \frac{2}{r} \hat{B}_{(v)}^{I_{v}} \partial_{a} \hat{B}_{(v)r}^{I_{v}} + \frac{2}{r^{2}} \hat{B}_{(v)r}^{I_{v}} \hat{B}_{(v)r}^{I_{v}} \right\} V_{s}^{I_{v}} \\ &+ \int d^{p+2}x \, r^{n-3} \left\{ -\frac{1}{4} \partial_{a} \hat{\phi}_{t}^{I_{t}} \partial^{a} \hat{\phi}_{t}^{I_{t}} + \frac{\Lambda^{I_{t}} - 2n+2}{4r^{2}} \hat{\phi}_{t}^{I_{t}} \hat{\phi}_{t}^{I_{t}} \right\} T_{s}^{I_{t}} \end{split}$$

Variations:

 $\hat{h}_{ab}^{I_{s}} \quad \hat{\pi}^{I_{s}} \quad \hat{B}_{(v)a}^{I_{v}} \quad \hat{\phi}_{t}^{I_{t}} \Rightarrow \text{ independent field equations}$ $B_{(s)a}^{I_{s}} \quad \phi_{s}^{I_{s}} \quad \phi_{v}^{I_{v}} \Rightarrow \text{ linear comb. of the field eqns & } \nabla \\ \mathbf{Field equations for } \hat{\phi}_{t}^{I_{t}} \text{ and } \hat{B}_{(v)a}^{I_{v}} \text{ are decoupled}$

Linearized perturbations of AdS

$$ds_{d+1}^2 = \frac{\ell^2}{r^2} \left(\underbrace{\eta_{\mu\nu} \, dx^\mu dx^\nu + dr^2}_{p+2} + \underbrace{\delta_{ij} \, d\chi^i d\chi^j}_{\mathcal{T}^{d-p-1}} \right) + \underbrace{h_{AB} \, dX^A dX^B}_{\text{perturbation}}$$

Field expansion in Fourier modes on the torus:

$$\begin{split} h_{ab} &= h_{ab}^{\mathbf{m}_{s}}(y) \mathbb{S}^{\mathbf{m}_{s}} \\ h_{ai} &= C_{(\mathbf{v})a}^{(k,\mathbf{m}_{v})}(y) \mathbb{V}_{i}^{(k,\mathbf{m}_{v})} + C_{(s)a}^{\mathbf{m}_{s}}(y) \partial_{i} \mathbb{S}^{\mathbf{m}_{s}} \\ h_{(ij)} &= \hat{\psi}_{t}^{(k,l,\mathbf{m}_{t})}(y) \mathbb{T}_{(ij)}^{(k,l,\mathbf{m}_{t})} + \psi_{v}^{(k,\mathbf{m}_{v})}(y) \partial_{(i} \mathbb{V}_{j)}^{(k,\mathbf{m}_{v})} + \psi_{s}^{\mathbf{m}_{s}}(y) \partial_{(i} \partial_{j)} \mathbb{S}^{\mathbf{m}_{s}} \\ h_{i}^{i} &\equiv \delta^{ij} h_{ij} = \varpi^{\mathbf{m}_{s}}(y) \mathbb{S}^{\mathbf{m}_{s}} \end{split}$$

Gauge invariant variables (AdS)

Again, some modes are diffeomorphic to each other, or to the background solution. Consider $X^{A'} = X^A - \xi^A$ with

 $\xi_a = \xi_a^{\mathbf{m}_{\mathsf{s}}}(y) \, \mathbb{S}^{\mathbf{m}_{\mathsf{s}}}(\chi), \qquad \xi_i = \xi_{\mathsf{v}}^{\mathbf{m}_{\mathsf{v}}}(y) \, \mathbb{V}_i^{\mathbf{m}_{\mathsf{v}}}(\chi) + \xi_{\mathsf{s}}^{\mathbf{m}_{\mathsf{s}}}(y) \, \partial_i \mathbb{S}^{\mathbf{m}_{\mathsf{s}}}(\chi)$

Define
$$\hat{C}_{(s)a}^{\mathbf{m}_{s}} = C_{(s)a}^{\mathbf{m}_{s}} - \frac{1}{2}\partial_{a}\psi_{s}^{\mathbf{m}_{s}} - \frac{1}{r}\delta^{r}{}_{a}\psi_{s}^{\mathbf{m}_{s}},$$

$$\delta\psi_{\mathsf{s}}^{\mathbf{m}_{\mathsf{s}}} = 2\xi_{\mathsf{s}}^{\mathbf{m}_{\mathsf{s}}}, \qquad \delta\psi_{\mathsf{v}}^{\mathbf{m}_{\mathsf{v}}} = 2\xi_{\mathsf{v}}^{\mathbf{m}_{\mathsf{v}}}, \qquad \delta\hat{C}_{(\mathsf{s})a}^{\mathbf{m}_{\mathsf{s}}} = \xi_{a}^{\mathbf{m}_{\mathsf{s}}}$$

Define the hatted, gauge-invariant fields

$$\begin{split} \hat{h}_{ab}^{\mathbf{m}_{s}} &= h_{ab}^{\mathbf{m}_{s}} - \partial_{a}\hat{C}_{(s)b}^{\mathbf{m}_{s}} - \partial_{b}\hat{C}_{(s)a}^{\mathbf{m}_{s}} + \frac{2}{r}\left(\eta_{ab}\hat{C}_{(s)r}^{\mathbf{m}_{s}} - \delta_{a}{}^{r}\hat{C}_{(s)b}^{\mathbf{m}_{s}} - \delta_{b}{}^{r}\hat{C}_{(s)a}^{\mathbf{m}_{s}}\right)\\ \hat{C}_{(\mathbf{v})a}^{\mathbf{m}_{\mathbf{v}}} &= C_{(\mathbf{v})a}^{\mathbf{m}_{\mathbf{v}}} - \frac{1}{2}\partial_{a}\psi_{\mathbf{v}}^{\mathbf{m}_{\mathbf{v}}} - \frac{1}{r}\delta^{r}{}_{a}\psi_{\mathbf{v}}^{\mathbf{m}_{\mathbf{v}}}\\ \hat{\varpi}^{\mathbf{m}_{s}} &= \varpi^{\mathbf{m}_{s}} + \mathbf{m}_{s}^{2}\psi_{s}^{\mathbf{m}_{s}} + \frac{2}{r}(d-p-1)\hat{C}_{(s)r}^{\mathbf{m}_{s}} \end{split}$$

$$\begin{split} \delta \hat{h}^{\mathbf{m}_{s}}_{ab} &= 0\\ \delta \hat{\varpi}^{\mathbf{m}_{s}} &= 0\\ \delta \hat{C}^{\mathbf{m}_{v}}_{(\mathbf{v})a} &= 0\\ \delta \hat{\psi}^{\mathbf{m}_{t}}_{\mathsf{t}} &= 0 \end{split}$$

gauge-invariant fields

Linearized field equations with Λ

$$E_{MN}^{(\Lambda)} \equiv \delta R_{MN} + \frac{d}{\ell^2} h_{MN} = 0$$

Decompose & expand in Fourier modes:

$$\begin{split} E_{ab}^{(\Lambda)}\Big|_{\mathbb{S}^{\mathbf{m}_{s}}} &= 0\\ \hline E_{ai}^{(\Lambda)}\Big|_{\mathbb{V}_{i}^{\mathbf{m}_{v}}} &= 0\\ E_{ij}^{(\Lambda)}\Big|_{\mathbb{T}_{(ij)}^{\mathbf{m}_{t}}} &= 0\\ \hline E_{ij}^{(\Lambda)}\Big|_{\mathbb{T}_{(ij)}^{\mathbf{m}_{t}}} &= 0\\ \hline Decoupled \text{ equations for } C_{(v)a}^{\mathbf{m}_{v}} &= 0 \quad E_{ij}^{(\Lambda)}\Big|_{\partial_{(i}\partial_{j})\mathbb{S}^{\mathbf{m}_{s}}} &= 0 \quad E_{ij}^{(\Lambda)}\Big|_{\delta_{ij}\mathbb{S}^{\mathbf{m}_{s}}} &= 0\\ \hline Decoupled \text{ equations for } C_{(v)a}^{\mathbf{m}_{v}} \text{ and } \hat{\psi}_{t}^{\mathbf{m}_{t}}\\ \begin{bmatrix} \Box \hat{C}_{(v)a}^{\mathbf{m}_{v}} - \frac{d-5}{r} \partial_{r} \hat{C}_{(v)a}^{\mathbf{m}_{v}} + \frac{d-1}{r^{2}} \delta_{a}^{r} \hat{C}_{(v)r}^{\mathbf{m}_{v}} - \left(\mathbf{m}_{v}^{2} + \frac{2(d-2)}{r^{2}}\right) \hat{C}_{(v)a}^{\mathbf{m}_{v}} &= 0\\ \Box \hat{\psi}_{t}^{\mathbf{m}_{t}} - \mathbf{m}_{t}^{2} \hat{\psi}_{t}^{\mathbf{m}_{t}} - \frac{d-5}{r} \partial_{r} \hat{\psi}_{t}^{\mathbf{m}_{t}} - \frac{2(d-2)}{r^{2}} \hat{\psi}_{t}^{\mathbf{m}_{t}} &= 0 \end{split}$$

Linearized field equations with
$$\Lambda$$

$$E_{MN}^{(\Lambda)} \equiv \delta R_{MN} + \frac{d}{\ell^2} h_{MN} = 0$$
Coupled equations for $\hat{h}_{ab}^{\mathbf{m}_s}$ and $\hat{\varpi}^{\mathbf{m}_s}$
Follow from other equations
(gauge freedom to choose $C_{(s)a}^{\mathbf{m}_s}$, $\psi_s^{\mathbf{m}_s}$, $\psi_v^{\mathbf{m}_v}$)
$$E_{ai}^{(\Lambda)}|_{\mathbf{w}_{i}^{\mathbf{m}_v}} = 0$$

$$E_{ij}^{(\Lambda)}|_{\mathbf{w}_{ij}^{\mathbf{m}_v}} = 0$$

$$E_{ij}^{(\Lambda)}|_{\partial_{(i}\mathbb{V}_{jj}^{\mathbf{m}_v)}} = 0$$

$$E_{ij}^{(\Lambda)}|_{\partial_{(i}\partial_{j)}\mathbb{S}^{\mathbf{m}_s}} = 0$$

Action for fluctuations on AdS

$$\begin{split} S_{\Lambda} &= \int d^{p+2}x \frac{\ell^{d-5}}{r^{d-5}} \left\{ \left[-\frac{1}{4} \partial_{a} \hat{\psi}_{t}^{\mathbf{m}_{t}} \partial^{a} \hat{\psi}_{t}^{\mathbf{m}_{t}} - \frac{1}{4} \left(\mathbf{m}_{t}^{2} + \frac{2(d-2)}{r^{2}} \right) (\hat{\psi}_{t}^{\mathbf{m}_{t}})^{2} \right] T_{t}^{\mathbf{m}_{t}} \\ &+ \left[-\frac{1}{4} \hat{F}_{(\mathsf{v})ab}^{\mathbf{m}_{v}} \hat{F}_{(\mathsf{v})a}^{\mathbf{m}_{v}} + \frac{2}{r} \hat{C}_{(\mathsf{v})a}^{\mathbf{m}_{v}} \partial^{a} \hat{C}_{(\mathsf{v})r}^{\mathbf{m}_{v}} - \frac{1}{2} \left(\mathbf{m}_{\mathsf{v}}^{2} + \frac{2(d-2)}{r^{2}} \right) \hat{C}_{(\mathsf{v})}^{\mathbf{m}_{v}a} \hat{C}_{(\mathsf{v})a}^{\mathbf{m}_{v}} + \frac{2}{r^{2}} \hat{C}_{(\mathsf{v})r}^{\mathbf{m}_{v}} \hat{C}_{(\mathsf{v})r}^{\mathbf{m}_{v}} \right] V_{t}^{\mathbf{m}_{v}} \\ &+ \left[\frac{1}{2} \partial_{a} \hat{h}_{bc}^{\mathbf{m}_{s}} \partial^{b} \hat{h}^{\mathbf{m}_{s}ac} - \frac{1}{4} \partial_{a} \hat{h}_{bc}^{\mathbf{m}_{s}bc} + \frac{2}{r} \hat{h}^{\mathbf{m}_{s}ab} \partial_{a} \hat{h}_{br}^{\mathbf{m}_{s}} - \frac{1}{4} \left(\mathbf{m}_{s}^{2} + \frac{2(d-2)}{r^{2}} \right) \hat{h}_{ab}^{\mathbf{m}_{s}} \hat{h}^{\mathbf{m}_{s}ab} \\ &+ \frac{2}{r^{2}} \hat{h}^{\mathbf{m}_{s}a}_{r} \hat{h}_{ar}^{\mathbf{m}_{s}} - \frac{1}{2} \partial^{b} \hat{h}_{ab}^{\mathbf{m}_{s}bc} + \frac{2}{r} \hat{h}^{\mathbf{m}_{s}ab} \partial_{a} \hat{h}_{br}^{\mathbf{m}_{s}} - \frac{1}{4} \left(\mathbf{m}_{s}^{2} + \frac{2(d-2)}{r^{2}} \right) \hat{h}_{ab}^{\mathbf{m}_{s}} \hat{h}^{\mathbf{m}_{s}ab} \\ &+ \frac{2}{r^{2}} \hat{h}^{\mathbf{m}_{s}a}_{r} \hat{h}_{ar}^{\mathbf{m}_{s}} - \frac{1}{2} \partial^{b} \hat{h}_{ab}^{\mathbf{m}_{s}b} \partial^{a} \left(\hat{H}^{\mathbf{m}_{s}} + \hat{\varpi}^{\mathbf{m}_{s}} \right) \\ &+ \frac{d-3}{r^{2}} \hat{h}_{rr}^{\mathbf{m}_{s}} \left(\hat{H}^{\mathbf{m}_{s}} + \hat{\varpi}^{\mathbf{m}_{s}} \right) + \frac{1}{4} \frac{d-p-2}{d-p-1} \partial_{a} \hat{\varpi}^{\mathbf{m}_{s}} \partial^{a} \hat{\varpi}^{\mathbf{m}_{s}} + \frac{1}{2r} \hat{\varpi}^{\mathbf{m}_{s}} \partial_{r} \hat{\varpi}^{\mathbf{m}_{s}} + \frac{1}{4} \left(\mathbf{m}_{s}^{2} + \frac{d}{r^{2}} \right) \hat{H}^{\mathbf{m}_{s}} \hat{H}^{\mathbf{m}_{s}} \\ &+ \frac{1}{4} \partial_{a} \hat{H}^{\mathbf{m}_{s}} \partial^{a} \hat{H}^{\mathbf{m}_{s}} + \frac{1}{2r} \hat{H}^{\mathbf{m}_{s}} \partial_{r} \hat{H}^{\mathbf{m}_{s}} + \frac{1}{4} \left(\frac{(d-p-2)(d-p-3)}{(d-p-1)^{2}} \mathbf{m}_{s}^{2} - \frac{1}{r^{2}} \left(\frac{2(d-2)}{d-p-1} - d \right) \right) \hat{\varpi}^{\mathbf{m}_{s}} \hat{\varpi}^{\mathbf{m}_{s}} \\ &+ \frac{1}{2} \partial^{a} \hat{H}^{\mathbf{m}_{s}} \partial_{a} \hat{\varpi}^{\mathbf{m}_{s}} + \frac{1}{2} \left(\frac{d-p-2}{d-p-1} \mathbf{m}_{s}^{2} + \frac{d}{r^{2}} \right) \hat{H}^{\mathbf{m}_{s}} \hat{\varpi}^{\mathbf{m}_{s}} \\ &+ \frac{1}{2} \partial^{a} \hat{H}^{\mathbf{m}_{s}} \partial_{a} \hat{\varpi}^{\mathbf{m}_{s}} + \frac{1}{2} \left(\frac{d-p-2}{d-p-1} \mathbf{m}_{s}^{2} + \frac{d}{r^{2}} \right) \hat{H}^{\mathbf{m}_{s}} \hat{\varpi}^{\mathbf{m}_{s}} \\ &+ \frac{1}{2} \partial^{a} \hat{H}^{\mathbf{m}_{s}} \partial_{a} \hat{\varpi}^{\mathbf{m}_{s}} + \frac{1}{2} \left(\frac{d-$$

Variations:

 $\begin{array}{lll} \hat{h}_{ab}^{\mathbf{m}_{s}} & \hat{\varpi}^{\mathbf{m}_{s}} & \hat{C}_{(\mathrm{v})a}^{\mathbf{m}_{v}} & \hat{\psi}_{t}^{\mathbf{m}_{t}} & \Rightarrow & \text{independent field equations} \\ C_{(s)a}^{\mathbf{m}_{s}} & \psi_{s}^{\mathbf{m}_{s}} & \psi_{v}^{\mathbf{m}_{v}} & \Rightarrow & \text{linear comb. of the field eqns \& } \nabla \\ \end{array}$ Field equations for $\hat{\psi}_{t}^{\mathbf{m}_{t}}$ and $\hat{C}_{(v)a}^{\mathbf{m}_{v}}$ are decoupled

Comparing AdS and Minkowski modes

 \star The zero-modes h^0_{ab} , $\pi(x;n)$ and h^Λ_{ab} , $\varpi(x;n)$ are mapped into each other.

$$h_{(ab)}^{0}(x;n) = \frac{r^{2}}{\ell^{2}}h_{(ab)}^{\Lambda}(x;-n) \qquad \pi(x;n) = \frac{r^{4}}{\ell^{2}}\frac{n+1}{n+p+1}\varpi(x;-n)$$
$$H^{0}(x;n) = \frac{r^{2}}{\ell^{2}}\left[H^{\Lambda}(x;-n) + \frac{p+2}{n+p+1}\varpi(x;-n)\right]$$

* Naive map of all modes (scalar sector, up to total derivatives),

$$\ell^{d-1}\tilde{S}_{0} - S_{AdS} = \int d^{p+2}x \left(\frac{\ell}{r}\right)^{d-5} \left\{ \frac{1}{4} \left(\mathbf{m}^{2} + \frac{\Lambda}{r^{2}}\right) \left(\hat{h}_{ab}\hat{h}^{ab} - \hat{H}^{2}\right) - \frac{1}{4}\frac{d-p-2}{d-p-1} \left(\frac{d-p-3}{d-p-1}\mathbf{m}^{2} + \frac{\Lambda}{r^{2}}\right)\hat{\omega}^{2} - \frac{1}{2} \left(\frac{d-p-2}{d-p-1}\mathbf{m}^{2} + \frac{\Lambda}{r^{2}}\right)\hat{H}\hat{\omega} \right\}$$

- match for $\Lambda^{I_{\mathsf{s}}}=0$ and $\mathbf{m}_{\mathsf{s}}^2=0$
- the two actions are very similar
- however, qualitatively different behaviour for non-zero modes
- vector and tensor modes follow the same pattern

Comparing AdS and Minkowski modes

* Solve explicitely for all AdS perturbation modes, in terms of Bessel functions,

$$r^{\frac{d}{2}-2}J_{\nu}(k_{r}r)e^{i\mathbf{k}\cdot\mathbf{x}} \qquad r^{\frac{d}{2}-2}Y_{\nu}(k_{r}r)e^{i\mathbf{k}\cdot\mathbf{x}} \qquad \text{with } \nu = \frac{d}{2}, \quad \frac{d}{2}-1, \quad \frac{d}{2}+2$$
$$k^{a}k_{a} = k_{r}^{2} + \mathbf{k}^{2} = -\mathbf{m}_{s}^{2} \qquad (\text{resp.} -\mathbf{m}_{v}^{2} / -\mathbf{m}_{t}^{2} \text{ for vector and tensor pert.})$$

* Minkowski perturbation modes also in terms of Bessel functions (+part. sol), $r^q J_{l+\frac{n}{2}}(k_r r)e^{i\mathbf{k}\cdot\mathbf{x}}$ $r^q Y_{l+\frac{n}{2}}(k_r r)e^{i\mathbf{k}\cdot\mathbf{x}}$ with $q = -\frac{n}{2}$, $1 - \frac{n}{2}$, $2 - \frac{n}{2}$ $k^a k_a = k_r^2 + \mathbf{k}^2 = 0$

- * A rescaling by a factor r^l together with a mode-dependent analytical continuation of the dimensions can tackle the radial part, but the wavevector is **timelike** for AdS and **null** for Minkowski
- * There are however similarities and structures appearing, it remains to understand how to exploit them at best to extract information on asymptotically flat holography.

Conclusions

~ How far can we push the AdS/RF correspondence? ~

* AdS/Ricci-flat correspondence maps asymptotically locally AdS solutions on a torus to Ricci-flat spacetimes

These Ricci-flat spaces inherit the holographic properties of AdS

* Unfreezing the sphere and torus is not straightforward

- The modes on the sphere and the torus are not mapped into each other, at least naively
- There are many similarities though, and maybe it will be possible to exploit them to learn more about AF holography

* An alternative path:

- Keep all KK modes from the sphere reduction of Minkowski
- Uplift them to AdS, and combine them into extra matter fields living in AdS
- Holographically renormalize and translate to the original AF fields

~ Thank you! ~