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S1. Inventory-specific relative fire confidence scores 

 
Figure S1. Relative fire confidence score for bottom-up emissions inventories based 
primarily on (a) MODIS MCD64A1 burned area (BA-score; e.g. GFEDv4s) and (b) MODIS 
MxD14A1 active fire pixel area (AFA-score; e.g. FINN). The darkest blue pixels represent grid 
cells with (a) active fire observations but no burned area over 2003-2017 or (b) burned area but 
no active fire observations over this time frame. Thus, these grid cells indicate low confidence 
for (a) burned area inventories or (b) active fire pixel inventories.  
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Figure S2. Adjusted potential FRP enhancement (pFRP), expressed as fractional fire 
energy, for top-down FRP-based emissions inventories. The potential FRP enhancement 
diagnoses additional fire energy, unaccounted for by the MODIS active fires product but 
indicated by large burn scars from the MODIS burned area product or very small fires from the 
375-m VIIRS active fires product. It is the sum of fractional MODIS/Terra + Aqua MxD14A1 
FRP outside MCD64A1 burned area and fractional VIIRS FRP outside the MODIS burn extent, 
then adjusted by the FRP-weighted cloud/haze obscuration fraction. High pFRP is associated 
with lower confidence, as many MODIS active fire observations are not co-located with MODIS 
burned area or VIIRS FRP observations.  
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S2. Global fire emissions inventories: “bottom-up” and “top-down” methods 

S2.1 Bottom-up emissions inventories: GFED and FINN 

 Bottom-up emission inventories (e.g. GFED and FINN) multiply burned area, fuel load, 
combustion completeness, and emissions factors to estimate fire emissions: 

𝐸" = 	𝐵𝐴	𝑥	𝑓)	𝑥	𝛾	𝑥	𝐸𝐹"		(S1) 

where 𝐸" is emissions of species 𝑖, 𝐵𝐴 is burned area, 𝑓) is the fraction of biomass burned or fuel 
load, 𝛾 is combustion completeness, and 𝐸𝐹" is the emissions factor of species 𝑖 (van der Werf et 
al., 2017; Wiedinmyer et al., 2011). GFEDv4s relies on 500-m burned area observations with a 
“small fires boost” (SFB) from active fire geolocations to estimate monthly emissions (van der 
Werf et al., 2017). FINN uses daily 1-km active fire area as “burned area” (Wiedinmyer et al., 
2011). 

GFEDv4s is available at 0.25° x 0.25° spatial resolution and monthly timesteps with daily 
fraction based on active fire counts and burned area (Mu et al., 2011). This inventory uses active 
fire detections from Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner 
(VIRS) and Along Track Scanning Radiometer (ASTR) to estimate monthly emissions for the 
pre-MODIS era (from 1997-2000). GFEDv4s also projects fire emissions (2017-2018) based on 
the observed relationships between historical GFEDv4s emissions and MODIS active fires. For 
the small fires boost, GFEDv4s uses MCD14ML C6 active fire geolocations (Randerson et al., 
2012), but for burned area, the inventory currently relies on MCD64A1 C5.1, rather than C6 
(Giglio et al., 2013). GFED uses the Carnegie Ames Stanford Approach (CASA) biogeochemical 
model to estimate fire carbon and dry matter (DM) emissions using burned area, meteorology, 
net primary production, and land cover as input variables (van der Werf et al., 2010). 

FINNv1.5 is available at the native MODIS 1-km spatial resolution from 2002 and 
available at near real time. FINNv1.5 derives active fire area from MCD14DL C5 (C6 from 
2017-present) active fire geolocations, which is the near-real-time equivalent of MCD14ML. 
FINN assumes an upper-bound estimate of burned area (1 km2) for each fire detection for most 
fires except for grassland or savanna fires, which are assigned a burned area of 0.75 km2 
(Wiedinmyer et al., 2011). FINN assigns fuel loadings by region and land cover, based on 
Hoelzemann et al. (2004). A newer version of this inventory, FINNv1.6 is no longer available as 
of April 2018 due to dataset issues and has been reverted back to FINNv1.5 
(http://bai.acom.ucar.edu/Data/fire/). 

For land cover, GFEDv4s and FINNv1.5 use the 500-m MCD12Q1 C5.1 land cover 
product. Neither GFEDv4s nor FINNv1.5 has updated the respective LULC maps from C5.1 to 
C6. GFEDv4s separately incorporates peat maps (Olson et al., 2001) and emissions factors 
(Christian et al., 2003). FINNv1.5 subdivides the broader savanna, grassland, and shrubland class 
into savanna/grassland and woody savanna/shrubland subclasses and further delineates a 
temperate evergreen forest subclass from the broader temperate forest class.  
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S2.2 Top-down emissions inventories: GFAS, QFED, and FEER 

Top-down emissions inventories (e.g. GFAS, QFED, and FEER) integrate daily FRP to 
fire radiative energy (FRE) and scale this quantity linearly to obtain fire emissions: 

𝐹𝑅𝐸 = 	/ 𝐹𝑅𝑃(𝑡)𝑑𝑡
56

57
		(S2) 

𝐸" = 	𝐹𝑅𝐸	𝑥	𝛽	𝑥	𝐸𝐹"		(8) 				OR				 𝐸 = 	𝐹𝑅𝐸	𝑥	𝐶:		(S3) 

where FRE is the integral of FRP from time t1 to t2, 𝛽 is a coefficient converting FRP to dry 
matter, and 𝐶:	is the coefficient of emissions that is equivalent to the product of	𝛽 and 𝐸𝐹" for 
total particulate matter (TPM) in Eq. S2 (Darmenov and da Silva, 2013; Ichoku and Ellison, 
2014; Kaiser et al., 2012). Eq. S2 applies to GFAS and QFED, while Eq. S3 applies to FEER. In 
some inventories, such as GFAS, the coefficient b varies with class of LULC. The FRP-based 
inventories also statistically adjust FRP for spatial and temporal gaps in the observations due to 
cloud cover (Kaiser et al., 2012), but by assuming that fire persists through cloudy days, such 
adjustments may result in unrealistic emissions (Di Giuseppe et al., 2017). GFAS and QFED 
directly use MxD14 FRP, while FEER relies on the GFAS FRP after adjustment for cloud gaps. 

To convert FRP to DM burned, GFASv1.2 uses conversion factors derived from GFEDv3 
DM combustion rates (Kaiser et al., 2012). QFED globally calibrates emissions coefficients with 
GFEDv2 but further boosts the emissions of aerosols (OC, BC, PM2.5). Based on constraints 
from observed smoke AOD, QFED applies global emission strength factors that range from 1.8-
4.5, depending on land cover (Darmenov and da Silva, 2013). Similarly, Kaiser et al. (2012) 
recommended a global scaling factor of 3.4 for GFAS OC and BC emissions to reconcile with 
smoke AOD observations. FEER estimates TPM emissions by directly applying smoke AOD-
derived emissions coefficients to FRP observations by region and land cover, and then converts 
TPM to other species using emissions factors (Ichoku and Ellison, 2014). 

QFEDv2.5r1, GFASv1.2, and FEERv1.0-G1.2 are available on a daily basis at near real 
time and 0.1° x 0.1° spatial resolution. GFASv1.2 switched from using C5 to C6 MxD14 FRP 
after December 2016, but has not retroactively updated emissions from before that; this 
discrepancy may lead to inconsistencies in the timeseries of GFASv1.2 emissions (Giglio et al., 
2016). FEERv1.0-G1.2 relies on GFASv1.2 FRP as input. QFEDv2.5r1 uses the MxD14 C6 
FRP. For land cover, GFASv1.2 currently considers only the LULC with the highest emissions 
in each 0.5° x 0.5° grid cell, which it derives from GFED3. Like GFEDv4s, GFASv1.2 
separately delineates peatland emissions (Heil et al., 2010). FEER uses a dominant fire-prone 
LULC map, derived from MODIS, at 1° x 1° spatial resolution. QFEDv2.5r1 uses the simplest 
LULC classification, without either peatland or agricultural classes; in addition, while QFED 
separates the grassland and savanna classes, they are treated as the same LULC both in terms of 
emissions factors and aerosol emissions enhancements.  



 6 

Table S1. Emissions factors (g species kg-1 dry matter) for CO2, CO, CH4, organic carbon (OC), 
black carbon (BC) and fine particulate matter (PM2.5) used in the global fire emissions 
inventories 

Inventory Species 

Land Use and Land Cover (LULC) 

SAVA 
Savanna, 

Grassland, 
Shrubland 

BORF 
Boreal 
Forest 

TEMF 
Temperate 

Forest 

DEFO 
Tropical 
Forest 

PEAT 
Peatland 

AGRI 
Agricultural 

GFEDv4s 

CO2 

1686 1489 1647 1643 1703 1585 
FINNv1.0 1716/1692a 1514 1630 1643 — 1537 
GFASv1.0 1646 1572b 1626 1703 1308 
QFEDv2.4 1613 1569b 1580 — — 

GFEDv4s 

CO 

63                                 127 88 93 210 102 
FINNv1.0 68/59a 118 102 92 — 111 
GFASv1.0 61 106b 101 210 92 
QFEDv2.4 65 107b 104 — — 

GFEDv4s 

CH4 

1.94           5.96 3.36 5.07 20.8 5.82 
FINNv1.0 2.6/1.5a 6 5 5.1 — 6 
GFASv1.0 2.2 4.8b 6.6 20.8 8.4 
QFEDv2.4 2.3 4.7b 6.8 — — 

GFEDv4s 

OC 

2.62 9.6 9.6 4.71 6.02 2.3 
FINNv1.0 6.6/2.6a 7.8 9.2 4.7 — 3.3 
GFASv1.0 3.2 9.1b 4.3 6.0 4.2 
QFEDv2.4 3.4 8.6-9.7b 5.2 — — 

GFEDv4s 

BC 

0.37 0.5 0.5 0.52 0.04 0.75 
FINNv1.0 0.5/0.37a 0.2 0.56 0.52 — 0.69 
GFASv1.0 0.46 0.56b 0.57 0.04 0.42 
QFEDv2.4 0.48 0.56b 0.66 — — 

GFEDv4s 

PM2.5 

7.17 15.3 12.9 9.1   9.1       6.26 
FINNv1.0 15.4/8.3a 13 13 9.7 — 5.8 
GFASv1.0 4.9 13.8b 9.1 9.1 8.3 
QFEDv2.4 5.4 13b 9.1 — — 

a Woody savanna/shrubland and savanna/grassland. b Extratropical forest (BORF and TEMF). 
c Peatland and agricultural regions are treated as tropical forest, temperate forest, boreal forest, or 
savanna/grassland if specific emission factor is not indicated.  
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S3. Validation of smoke exposure in Equatorial Asia from Indonesia fires 

S3.1 Singapore 

 
Figure S3. Average CHIRPS rainfall rate (mm day-1) over Sumatra and Kalimantan, from 
2003-2016. The years 2003-2004 and 2010-2016 are colored according to their closest match in 
the average rainfall rate during years with adjoint sensitivities (2005-2009), which are also 
colored but circled with dark gray outlines.  
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Figure S4. Under-detection of 2015 Indonesia fires in burned area relative to the 2003-2016 
period (similar to Figure 9). CHIRPS rainfall rates (mm day-1) are plotted against MODIS (a) 
GFEDv4s burned area and (b) FINNv1.5 active fire area in log-log space. All variables are 
averaged temporally over July-October and spatially over Sumatra and Kalimantan, Indonesia. 
Colors denote different years from 2003-2016, with later years depicted by redder shades; values 
for 2015 are circled. Inset shows the correlation (r, p < 0.01), slope of the linear regression (gray 
dashed line), and slope with 2015 removed (black line) for each pair of observations. Standard 
errors for the slopes are shown in parentheses. There is no statistically significant linear trend in 
any variable. Blue arrows show that observed burned area is lower than expected based on 
prediction from the linear regression of rainfall and fires that excludes 2015 observations. 
Percent underestimate of each fire variable based on these predictions is shown in blue.  

a GFEDv4s    b FINNv1.5      

r = -0.93

slope = -3.42 (0.26)  

slope = -2.66 (0.31)        

r = -0.91

slope = -2.27 (0.23) 

slope = -1.74 (0.23)        -63%

2015

-76%
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Figure S5. Observed (red) and reconstructed (black) smoke PM2. in Singapore for 2003-
2016. Observations are from the Singapore NEA. We reconstruct PM2.5 over 2003 to 2009 by 
building a model based on the observed 2010-2016 PM2.5 record and four meteorological 
variables (visibility, air temperature, wind speed, and rainfall) observed at the Singapore Changi 
Airport. Adjusted r2 for the model versus observations over 2010-2016 is 0.94. A baseline PM2.5 
of 13.77 μg m-3, calculated as the median of PM2.5 during non-fire season months (January to 
June, November to December), is subtracted from observations to obtain smoke PM2.5. 

S3.2 Malaysia and Indonesia 

Malaysia. We use PM10 observations across a network of 59 residential and industrial 
Continuous Air Quality Monitoring (CAQM) stations in Malaysia, maintained by the Malaysian 
Department of Environment since 1996, to further validate our modeled population-weighted 
smoke exposure (Khan et al., 2015; Kuwata et al., 2018; Figure S6). Two stations, CAE 022 and 
CAK 029, do not have observations from 2003-2015, so we exclude these stations in our analysis 
(Table S2). To weight these observations by population, we use the population density estimates 
from the Gridded Population of the World, version 4.1, adjusted to the country totals from the 
United Nations’ World Population Prospects country totals (UN WPP-adjusted GPWv4.1), at 
the native 1 km x 1 km spatial resolution (CIESIN, 2017). We first interpolate the 5-yearly 
population density linearly to annual values and extract the population density in the grid cell co-
located with each station. We subtract the background PM10, here defined as median PM10 during 
non-fire season months, from monthly mean PM10 observations at each station, and then take the 
population-weighted average across all stations, yielding the monthly smoke PM10 for the 2003-
2015 time period. 

Indonesia. Due to the lack of ground observations of PM2.5 and PM10 in Indonesia, we 
use monthly satellite-derived AOD, from MODIS/Terra and Aqua MOD/MYD08_M3, from 
2003-2016, for validation of Indonesia population-weighted exposure. We use the MxD08_M3 
C6 aerosol optical thickness (AOT) at 0.55 μm, available at 1° x 1° spatial resolution and in the 
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GEE data catalog. We subtract monthly AOD, averaged over Indonesia, by mean AOD of non-
fire season months to estimate smoke AOD. 

 

 
Figure S6. PM10 station network (n = 59) in Malaysia overlaid on population density in 
2010. The different colors of the station sites denote different environments, classified according 
to the locations of the stations (background, industrial, rural, sub-urban, or urban).  
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Table S2. Details on PM10 stations in Malaysia used for validation of modeled population-
weighted exposure. 

Station ID 
Location 

Time Period Pop. Density 
(people/km2) Classification 

Coordinates State 

CAS 001 103.9°E, 1.5°N Johor 2003-2015 1975 Industrial 

CAE 002 103.4°E, 4.3°N Terengganu 2003-2015 334 Industrial 
CAN 003 100.4°E, 5.4°N Pulau Pinang 2003-2015 2447 Industrial 
CAK 004 110.4°E, 1.6°N Sarawak 2003-2015 451 Industrial 
CAC 005 101.7°E, 3.3°N Selangor 2003-2008 2271 Sub-Urban 
CAS 006 102.2°E, 2.3°N Melaka 2003-2015 1161 Industrial 
CAE 007 102.3°E, 4°N Pahang 2003-2015 97 Background 
CAN 008 101.1°E, 4.6°N Perak 2003-2015 906 Industrial 
CAN 009 100.4°E, 5.4°N Pulau Pinang 2003-2015 2437 Sub-Urban 
CAC 010 101.8°E, 2.8°N Negeri Sembilan 2003-2015 466 Industrial 
CAC 011 101.4°E, 3°N Selangor 2003-2015 1451 Urban 
CAC 012 101.7°E, 3.1°N Kuala Lumpur 2003-2004 5334 Urban 

CAN 013* 101.1°E, 4.6°N Perak 1997-1999 906 Sub-Urban 
CAE 014 103.3°E, 3.8°N Pahang 2003-2015 426 Sub-Urban 
CAE 015 103.4°E, 4°N Pahang 2003-2015 203 Industrial 
CAC 016 101.6°E, 3.1°N Selangor 2003-2015 3875 Industrial 
CAN 017 100.5°E, 5.6°N Kedah 2003-2015 2135 Sub-Urban 
CAN 018* 100.4°E, 5.4°N Pulau Pinang 1996-1998 4205 Industrial 
CAS 019 103.7°E, 1.5°N Johor 2003-2015 3502 Industrial 
CAN 020 100.7°E, 4.9°N Perak 2003-2015 1597 Industrial 
CAE 022 102.3°E, 6.2°N Kelantan 2003-2015 1326 Urban 
CAC 023 101.7°E, 3°N Selangor 2003-2010 2726 Sub-Urban 
CAE 024 103.4°E, 4.6°N Terengganu 2003-2015 215 Industrial 
CAC 025 101.6°E, 3.1°N Selangor 2003-2015 3762 Urban 
CAK 026 111.8°E, 2.3°N Sarawak 2003-2015 79 Sub-Urban 
CAK 027 113°E, 3.2°N Sarawak 2003-2015 80 Sub-Urban 
CAK 028 114°E, 4.4°N Sarawak 2003-2015 489 Sub-Urban 
CAK 029 111.5°E, 2.1°N Sarawak 2003-2015 48 Sub-Urban 
CAH 030 116°E, 5.9°N Sabah 2003-2015 1493 Urban 
CAK 031 115°E, 4.8°N Sarawak 2003-2015 51 Sub-Urban 
CAN 032 99.9°E, 6.3°N Kedah 2003-2015 211 Sub-Urban 
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CAN 033 100.2°E, 6.4°N Perlis 2003-2015 740 Sub-Urban 
CAE 034 103.1°E, 5.3°N Terengganu 2003-2015 3068 Urban 
CAK 035 110.5°E, 1.5°N Sarawak 2003-2015 205 Rural 
CAK 036 111.5°E, 1.2°N Sarawak 2003-2015 25 Sub-Urban 
CAN 038 100.3°E, 5.4°N Pulau Pinang 2003-2015 6313 Sub-Urban 
CAH 039 117.9°E, 4.2°N Sabah 2003-2015 67 Urban 
CAN 040 100.3°E, 6.1°N Kedah 2003-2015 2205 Urban 
CAN 041 100.7°E, 4.2°N Perak 2003-2015 257 Sub-Urban 
CAH 042 115.2°E, 5.3°N Labuan 2003-2015 919 Sub-Urban 
CAS 043 102.6°E, 2°N Melaka 2003-2015 2274 Urban 
CAS 044 102.6°E, 2.1°N Johor 2003-2015 2274 Sub-Urban 
CAC 045 101.5°E, 3.7°N Perak 2003-2015 103 Sub-Urban 
CAN 046 101.1°E, 4.6°N Perak 2003-2015 906 Urban 
CAC 047 102°E, 2.7°N Negeri Sembilan 2003-2015 1899 Urban 
CAC 048 101.3°E, 3.3°N Selangor 2003-2015 460 Sub-Urban 
CAH 049 116.2°E, 5.3°N Sabah 2003-2015 48 Sub-Urban 
CAH 050 118.1°E, 5.9°N Sabah 2003-2015 172 Sub-Urban 
CAS 051 103.7°E, 1.5°N Johor 2003-2008 1745 Industrial 
CAK 052 110.3°E, 1.6°N Sarawak 2003-2007 451 Urban 
CAC 053 101.7°E, 2.9°N W. P. Putrajaya 2003-2015 1392 Urban 
CAC 054 101.7°E, 3.1°N Kuala Lumpur 2004-2015 5774 Urban 
CAK 055 112.9°E, 2°N Sarawak 2004-2015 4 Rural 
CAC 056 101.9°E, 2.4°N Negeri Sembilan 2007-2015 162 Urban 
CAS 057 104.2°E, 1.6°N Johor 2008-2015 83 Urban 
CAC 058 101.7°E, 3.2°N Kuala Lumpur 2009-2015 6243 Urban 
CAE 059 102.1°E, 5.8°N Kelantan 2009-2015 393 Industrial 
CAC 060 101.6°E, 2.8°N Selangor 2010-2015 299 Urban 
CAK 061 114°E, 4.5°N Sarawak 2010-2015 489 Industrial 

* Stations CAN 013 and CAN 018 do not have any observations during the 2003-2015 study period, and 
so are not included in our analysis.  
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Figure S7. Smoke PM2.5 exposure in Malaysia, from 2003-2015. (a) Observed, population-
weighted observed smoke PM10 from 2003-2015, using 57 stations (Table S2), with the gray 
envelope showing the 5th-95th quantile range. (b) Modeled, population-weighted smoke PM2.5 
calculated by the GEOS-Chem adjoint with different global fire emissions inventories: 
GFEDv4s, FINNv1.5, GFASv1.2, QFEDv2.5r1, and FEERv1.0-G1.2. Correlations between 
observed smoke PM10 and modeled smoke PM2.5 are shown inset for each inventory. All 
correlations are statistically significant (p < 0.01). (c) Jul-Oct mean smoke PM2.5 by inventory. 
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Figure S8. Smoke AOD and PM2.5 exposure in Indonesia, from 2003-2016. (a) Smoke 
aerosol optical depth (AOD) from 2003-2016, derived from the average of MODIS Terra (red 
circles) and Aqua (blue circles) smoke AOD over Indonesia (Sumatra and Kalimantan). (b) 
Modeled, population-weighted smoke PM2.5 calculated by the GEOS-Chem adjoint for this 
region, using different global fire emissions inventories: GFEDv4s, FINNv1.5, GFASv1.2, 
QFEDv2.5r1, and FEERv1.0-G1.2. Correlations between observed smoke AOD and modeled 
smoke PM2.5 are shown inset for each inventory. All correlations are statistically significant (p < 
0.01). (c) Jul-Oct mean smoke PM2.5 by inventory.  
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S4. Ancillary information on burn date uncertainty, fire diurnal cycle, and 
land use/ land cover 

 
Figure S9. Average burn date uncertainty (in days), over 2003-2017, for burned area 
estimates from the MODIS MCD64A1 burned area product. The average burn date 
uncertainty is averaged over each grid cell at monthly timesteps and weighted by monthly burned 
area. 
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Figure S10. Ancillary information on the diurnal cycle in fire energy and entropy of land 
use/land cover classification, mapped at 0.25° x 0.25° spatial resolution. (a) MODIS FRP, 
from 2003-2017, expressed as the normalized difference of Terra and Aqua FRP. Positive values 
(red) indicate fire energy dominated by contribution from Terra (10:30 am overpass, morning), 
while negative values indicate fire energy dominated by contribution from Aqua (1:30 pm 
overpass, early afternoon). (b) Average entropy from MODIS MCD12Q1 Scheme 1 (IGBP) and 
Scheme 2 (UMD) land use/ land cover (LULC), from 2003-2016. We exclude pixels classified as 
water bodies or permanent snow/ice. Higher entropy (brown) indicates more heterogenous 
LULC; conversely, lower entropy (green) indicates more homogenous LULC.  
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S5. Fire Inventories: Regional Evaluation, Comparison, and Metrics 
(FIRECAM) online tool 

We present an online tool called “Fire Inventories: Regional Evaluation, Comparison, 
and Metrics” (FIRECAM; https://globalfires.earthengine.app/view/firecam), hosted on Earth 
Engine Apps, that allows users to compare regional differences in five global fire emissions 
inventories (GFEDv4s, FINNv1.5, GFASv1.2, QFEDv2.5, and FEERv1.0-G1.2) for six species 
(CO2, CO, CH4, OC, BC, PM2.5; Figure S11) and diagnose regional challenges in satellite 
observations of fires by using the five relative fire confidence metrics. We use the 14 “basis” 
regions defined in GFEDv4s as default, but users can also select a country, pixel, or custom 
region (Figure S12; van der Werf et al., 2017). Due to differences in spatial resolution, we 
aggregate all inventories to 0.5° x 0.5°. 

 
Figure S11. Screenshot of the Fire Inventories: Regional Evaluation, Comparison, and Metrics 
(FIRECAM) online tool (https://globalfires.earthengine.app/view/firecam). 
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Figure S12. The 14 basis regions defined in GFEDv4s (van der Werf et al., 2017).  
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S6. Relative fire confidence metrics: consistency with other regional studies 
The relative fire confidence metrics can be used to probe causes of region-specific 

uncertainties in satellite-observed fire activity. For example, how comparable are the challenges 
in estimating burned area in the agricultural region of eastern China compared to that in northern 
India? Given that eastern China has rougher terrain (metric 4) and much higher FRP-weighted 
cloud/haze fraction (metric 2) than India, we hypothesize that agricultural fire emissions in 
eastern China are more poorly constrained than those in India. We can further probe within-
region differences in fire emissions estimates using the relative fire confidence metrics, as 
discussed below for wildland fires in the United States and for agricultural fires in India. 

United States. Koplitz et al. (2018) compared wildland burned area and fire emissions 
from GFEDv4s, FINNv1.5, and the National Emission Inventory (NEI) from the U.S. 
Environmental Protection Agency (EPA). The NEI integrates satellite sources and on-the-ground 
reports and is considered most accurate of these inventories. These authors found that using 
FINNv1.5 and GFEDv4s in a regional model led to severe underestimates of 0.52-0.73 μg m-3 in 
the annual average PM2.5 enhancement due to wildland fires over 2002-2014, relative to the NEI. 
However, compared to GFEDv4s, FINNv1.5 better captured the variability in burned area and 
pollutant concentrations in the U.S. Southeast. This last result is consistent with the high AFA-
scores and low BA-scores over the U.S. Southeast, where small, fragmented fires dominate, as 
shown by metrics 1, 3, and 5 (McCarty et al., 2008). Given the moderate cloud/haze burden in 
this region (metric 2), top-down inventories that account for cloud gaps in the FRP record may 
be better suited for this region than bottom-up inventories. 

India. During the post-monsoon season (Oct-Nov), smoke from agricultural fires in the 
northwestern states of Punjab and Haryana travels southeast across northern India, with severe 
consequences for air quality downwind. Small, fragmented fires dominate northwestern India 
(metrics 1, 3, and 5), leading to low BA-scores and high AFA-scores over the region; the flat 
topography (metric 4) and low cloud/haze fraction (metric 2) indicate that these two factors are 
not as important for evaluating satellite-derived fire activity in this region. High pFRP suggests 
that emissions from top-down inventories are uncertain, as many small fires may be missed. 
Using four different fire inventories (GFEDv4s, FINNv1.5, GFASv1.2, and QFEDv2.4), 
Cusworth et al. (2018) modeled smoke enhancement over Delhi during the 2012-2016 burning 
seasons. GFAS and GFEDv4s both strongly underestimated the smoke enhancement, compared 
to surface observations, while FINNv1.5 best captured this enhancement. Aside from the 
inherent difficulty of quantifying emissions from small agricultural fires, the strong afternoon 
peak in fire activity in northwestern India may also partially explain the GFEDv4s 
underestimate. This is because the small fires boost in GFED4s is derived from an average of 
Terra (morning) and Aqua (afternoon) estimates of active fires (Figure S10a; van der Werf et al., 
2017). QFED leads to inconsistent smoke PM2.5 enhancement over the 5 years, most notably 
yielding low enhancements in 2014 and 2016, when the influence of smoke on Delhi air quality 
appears to be greater. Both GFAS and QFED derive the conversion factor b of FRP to DM 
emissions based on earlier versions of GFED that do not apply a small fires boost, and this may 
explain the relatively low smoke PM2.5 enhancement, at least for GFAS. QFED enhances aerosol 
emissions by a factor of 1.8 for savannas and grasslands, thus adjusting OC and BC emissions 
that might otherwise be too low.  
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S7. Trends in global fire emissions 
The importance of inventory choice can further be seen in the estimated linear trends in 

global fire emissions. Trends in GFEDv4s and GFASv1.2 emissions, from 2003-2016, are 
statistically insignificant for most species while those in the other three inventories show 
statistically significant decreases (Table S3). While global burned area has declined over the past 
two decades (Andela et al., 2017), the trend in global fire emissions is not as clear due to the 
disproportionate contribution in emissions over burned area from some regions, such as 
Indonesia (van der Werf et al., 2017). The strong link between the El Niño Southern Oscillation 
and pan-tropical fires – Indonesian peat fires in particular – is responsible for emissions spikes in 
strong El Niño years, such as 2006 and 2015 (Chen et al., 2017; van der Werf et al., 2017). Peat 
delineation may be one factor that explain differences in trends using GFEDv4s and GFASv1.2 
versus the three other inventories. However, further analysis is needed to determine the reasons 
for the presence or lack of statistically significant decreases in global fire emissions. 

Evaluation of linear trends is an important application of global fire emissions 
inventories. As an example, Worden et al. (2017) pointed to linear trends in GFEDv4s emissions 
of CH4 and to CO/CH4 observations as evidence for the hypothesis that a decline in biomass 
burning over 2007-2014 can help explain isotopic changes in atmospheric methane after 2007. In 
fact, methane emissions from fires have not appreciably decreased according to GFEDv4s when 
this time period is extended to 2016. In any event, it is clear that inventory bias is an important 
factor to consider when drawing conclusions. 

Table S3. Linear trends in global fire emissions, from 2003-2016, by inventory and species 

 CO2 CO CH4 OC BC PM2.5 

GFEDv4s -68 (36) -2.1 (2.6) -0.03 (0.2) -0.09 (0.12) -0.02 (0.01) -0.27 (0.21) 

FINNv1.5 -180 (48) -9.3 (2.6) -0.43 (0.13) -0.57 (0.16) -0.05 (0.01) -1.0 (0.28) 

GFASv1.2 -71 (36) -3 (2.8) -0.12 (0.24) -0.15 (0.14) -0.03 (0.01) -0.32 (0.21) 

QFEDv2.5r1 -113 (32) -5.5 (1.4) -0.26 (0.06) -0.74 (0.24) -0.08 (0.02) -1.17 (0.36) 

FEERv1.0-G1.2 -169 (53) -8.3 (2.6) -0.43 (0.14) -0.4 (0.14) -0.05 (0.02) -0.69 (0.23) 

Statistically significant trends (p < 0.05) are bolded. Standard error is in parentheses.  
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S8. Implementation of global fire emissions inventories in GEOS-Chem 
As an example of how the emissions implemented into chemical transport models 

(CTMs) may be outdated, we examine the implementation of GFED, FINN, and QFED into 
GEOS-Chem. The GEOS-Chem CTM (geos-chem.org) is paired with the Harvard-NASA 
Emissions Component (HEMCO; Keller et al., 2014), an interface for emissions inventories. The 
default global fire emissions inventory in GEOS-Chem CTM is GFED, with an option to use 
QFED or FINN. The current versions of GFED, FINN, and QFED available in HEMCO are 
GFEDv4s, FINNv1.5, and QFEDv2.5. 

First, as new versions of emissions inventories become available, such updates may lag 
months to years before full incorporation into GEOS-Chem. For example, GFEDv4s updated 
emissions factors in 2017 (van der Werf et al., 2017), but this change was made available only in 
March 2018 and fully implemented in GEOS-Chem v12 in August 2018. Using updated 
emissions factors decreases average annual global emissions, from 2003-2016, of CH4, OC, and 
BC by 8.6-13%, and the other emissions by lesser amounts (Table S4). In particular, the BC 
emissions factor for peatlands decreased by 93% from 0.566 to 0.04 g BC/kg DM with updated 
emissions factors (van der Werf et al., 2017; Table S5). This is more consistent with 
measurements that suggest the peat BC emissions factor is almost negligible due to the lack of 
flaming fires in peatlands (Stockwell et al., 2016). Further, QFED was updated to v2.5r1 in 
HEMCO in July 2018 with no intermediate versions (e.g., v2.4r8) superseding v2.4r6 since 
September 2014. QFEDv2.5r1, which reflects the update in MODIS active fires from C5 to C6, 
has been available from the NASA Center for Climate Simulation (NCCS) data portal 
(https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/v2.5r1/) since December 
2016, and QFEDv2.4r8 since April 2015. 

Second, we find inconsistencies between emissions from the “out-of-box” FINNv1.5, 
downloaded from http://bai.acom.ucar.edu/Data/fire/, and FINNv1.5 in HEMCO. FINNv1.5 in 
HEMCO is gridded to 0.25° x 0.25° for CO2 only. Scaling factors are then used to convert CO2 
to other species. This approach, which is also used with GFED dry matter (DM) emissions, 
conserves storage and limits computational cost. We separately calculate the average yearly 
emissions from 2003-2016 for CO2, CO, CH4, OC, and BC for “out-of-box” and HEMCO 
versions. While CO2, CO, CH4 emissions differ by < 1%, OC emissions are 14% lower in 
HEMCO than in FINNv1.5, and BC emissions 36% higher (Table S6). Discrepancies are present 
for all scaling factors, but appreciable differences in CO2/OC and CO2/BC for class 2, or woody 
savanna, are primarily responsible for the large relative error in OC and BC emissions (Table 
S7). Additionally, FINNv1.5 in HEMCO is missing class 6, or temperate evergreen forest. For 
classes 3-5, we find two unique scaling factors each for “out-of-box” FINNv1.5. These 
discrepancies imply that FINNv1.5 must be implemented with all species independently 
calculated, similar to QFED in HEMCO, or that FINNv1.5 LULC should be further subdivided 
to account for the unique scaling factors. 

In summary, emissions inventories may lag in version as implemented in CTMs, as in the 
case of QFED in GEOS-Chem. Our results imply non-negligible impacts on the emissions 
budget from (1) outdated emissions factors for GFEDv4s and (2) errors in the implementation of 
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FINNv1.5 in GEOS-Chem, with implications for studies that used these inventories in GEOS-
Chem. 

Table S4. Differences in mean annual global GFEDv4s CO2, CO, CH4, OC, and BC emissions 
(Tg yr-1, ±1σ) using the original and updated emissions factors. 

 CO2 CO CH4 OC BC 

Old EFs, 
pre-GCv12 (Tg) 6825 (584) 331 (40) 17 (3) 17 (2) 2.1 (0.2) 

New EFs, 
GCv12 (Tg) 6986 (595) 336 (39) 15 (3) 16 (2) 1.8 (0.2) 

Relative Diff. (%) 2.4 1.5 -13 -8.6 -13 
 

Table S5. Differences in original and updated emissions factors (EFs; g species kg-1 dry matter) 
for GFEDv4s. The original EFs were available with the July 2015 release of GFEDv4s and 
updated in June 2017 in van der Werf et al. (2017). 

  CO2 CO CH4 OC BC 

Class 1: SAVA 
Savannas, grasslands, 
shrublands 

Original EFs 1650 62.3 2.2 3.21 0.46 

Updated EFs 1686 63 1.94 2.62 0.37 

Class 2: BORF 
Boreal forests 

Original EFs 1570 106 4.81 9.15 0.562 

Updated EFs 1489 127 5.96 9.6 0.5 

Class 3: TEMF 
Temperate forests 

Original EFs 1570 106 4.81 9.15 0.562 

Updated EFs 1647 88 3.36 9.6 0.5 

Class 4: DEFO 
Tropical forests and 
deforestation 

Original EFs 1630 101 6.59 4.3 0.566 

Updated EFs 1643 93 5.07 2.71 0.52 

Class 5: PEAT 
Peatlands 

Original EFs 1710 210 20.8 4.3 0.566 

Updated EFs 1703 210 20.8 6.02 0.04 

Class 6: AGRI 
Agricultural 

Original EFs 1310 92.1 8.79 4.14 0.42 

Updated EFs 1585 102 8.4 2.3 0.75 
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Table S6. Differences in mean annual global CO2, CO, CH4, OC, and BC emissions (Tg yr-1, 
±1σ) between “out-of-box” and HEMCO FINNv1.5 

 CO2 CO CH4 OC BC 

Out-of-box (Tg) 6292 (1137) 330 (60) 16 (3) 20 (4) 1.9 (0.3) 

HEMCO (Tg) 6309 (1019) 330 (53) 16 (3) 17 (3) 2.6 (0.4) 

Relative Error (%) 0.3 -0.2 0.3 -14 36 
 

Table S7. Differences in scaling factors from CO2 to CO, CH4, OC, and BC emissions between 
“out-of-box” and HEMCO FINNv1.5 

  CO2/CO 
(mole/mole) 

CO2/CH4 

(mole/mole) 
CO2/OC 
(mole/g) 

CO2/BC 
(mole/g) 

Class 1 
Savanna, grasslands 

Out-of-box 18.3 411.1 14.8 103.9 

HEMCO 17 316.7 14.7 103.5 

Class 2 
Woody savanna 

Out-of-box 16.1 240.5 5.9 78 

HEMCO 15.3 226.5 10.5 29.8 

Class 3 
Tropical forest 

Out-of-box 7.9, 11.4 98.1, 117.4 4.5, 7.9 61.3, 71.8 

HEMCO 11.2 118.1 7.9 71.8 

Class 4 
Temperate forest 

Out-of-box 7.5, 7.9 90.4, 98.1 4.3, 4.5 61.3, 169.2 

HEMCO 10.3 127.7 4 65.1 

Class 5 
Boreal forest 

Out-of-box 7.5, 7.9 90.4, 98.1 4.3, 4.5 61.3, 169.2 

HEMCO 7.5 91.1 4.3 169.2 

Class 6 
Temperate evergreen forest 

Out-of-box 11.9 178.7 4.9 66.8 

HEMCO x x x x 

Class 9 
Agricultural 

Out-of-box 8.8 93.4 10.6 50.6 

HEMCO 9.9 99.3 15.7 48 
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