
Zellescher Weg 12

Willers-Bau A106

Tel. +49 351 - 463 - 31945

Ulf Markwardt (ulf.markwardt@tu-dresden.de)

Matthias Lieber (matthias.lieber@tu-dresden.de)

Cache Profi ling with Callgrind

Linux/x86 Performance Practical, 17.06.2009

Center for Information Services and High Performance Computing (ZIH)



Cache Profiling with Callgrind 2

Val gr i nd

Suite of simulation-based debugging and profiling tools

Valgrind core simulates a CPU in software

Tools implement various tasks by adding analysis code

Available for Linux on x86 and PowerPC platforms (both 32/64 bit)

Open source

Standard Linux package

Wide acceptance, e.g. Firefox, OpenOffice, KDE use Valgrind

http://www.valgrind.org



Cache Profiling with Callgrind 3

Val gr i nd’ s Tool Sui te

Memcheck
 

= “Valgrind”

– Most prominent, detects memory management bugs

Cachegrind

– Cache profiler, finds source location of cache misses

Callgrind

– Cachegrind
 

+ function call graph information

Massif

– Heap profiler, where / how much memory allocations?

Helgrind

– Thread debugger



Cache Profiling with Callgrind 4

How does Valgrind work?

Dynamic recompilation of program’s binary at runtime

Original code never runs directly on CPU

Large overhead: 10 –
 

100 times slower, depending on tool

Machine Code Byte Code

Instrumented

 Byte Code
Instrumented

 Machine Code

Valgrind Core

Valgrind Core

Valgrind Tool, 
e.g. Callgrind

This code is much 
better suited for 
Analysis Tools



Cache Profiling with Callgrind 5

Cachegr i nd, Cal l gr i nd

Cachegrind
 

collects statistics about cache misses

Simulates L1i, L1d, inclusive L2 cache

Size of the caches can be specified, default is current machine’s cache

Output:

– Total program run hit/miss count and ratio

– Per function hit/miss count

– Per source code line hit/miss count

Callgrind
 

is an extension of Cachegrind

– Additional function call graph information

Very useful for 
performance tuning



Cache Profiling with Callgrind 6

Callgrind Example: Program run under Callgrind



Cache Profiling with Callgrind 7

Cal l gr i nd Exampl e: cal l gr i nd_annot at e



Cache Profiling with Callgrind 8

Cal l gr i nd Exampl e: cal l gr i nd_annot at e wi t h Source



Cache Profiling with Callgrind 9

KCachegrind



Cache Profiling with Callgrind 10

KCachegrind



Cache Profiling with Callgrind 11

Tool Chains

callgrindcachegrind

callgrind_annotatecg_annotate KCachegrind

Text Output Text Output GUI



Cache Profiling with Callgrind 12

Exercises

cd ~/callgrind

make



Cache Profiling with Callgrind 13

Exercise 1 - loops-fast

Fill 2D array

Array size is 1000 x 1000 x 8 Byte = 8MB

Phobos

 

Cache:

– 64kB L1i + 64kB L1d

– 1MB L2

Cache too small for array

Read the array

If L2 cache was large enough (>8MB), 
no L2 miss would happen here!

Because the upper loop loads the 
array into the cache



Cache Profiling with Callgrind 14

Exercise 1 - loops-fast

Run the program with default cache settings:
– valgrind --tool=callgrind --simulate-cache=yes ./loops-fast

– 125.000 L1 and L2 misses in the write loop

– 125.000 L1 and L2 misses in the read loop

Run the program with custom cache settings, e.g. 16MB L2 cache:
– valgrind --tool=callgrind --simulate-cache=yes 

--L2=16777216,2,64 ./loops-fast

– Array fits in the L2 cache

– No L2 misses in the read loop anymore

View results with callgrind_annotate:
– callgrind_annotate --auto=yes ./callgrind.out.XXXX

View the reuslts

 
with KCachegrind:

– module load kcachegrind

– kcachegrind ./callgrind.out.XXXX



Cache Profiling with Callgrind 15

Exercise 2 - loops-slow

Fill 2D array, loop 
has “bad”

 
order

C Storage:

 row-major order
Access here: 

column-major order

Array size is 1000 x 1000 x 8 Byte = 8MB

Phobos

 

Cache:

– 64kB L1i + 64kB L1d

– 1MB L2

Cache too small for array



Cache Profiling with Callgrind 16

Exercise 2 - loops-slow

Fill 2D array, loop 
has “bad”

 
order

Cache misses will occur even if cache was 
large enough

– Because array is not in cache

But how many cache misses will occur?

– Cache line size: 64 Byte = 8 double

– 1.000.000 misses?

– 125.000 misses?

Try small L1 and L2 cache size (32768 Byte 
each) vs. default cache size setup

Then try the example with “good”

 

ordered 
loop with the small cache sizes and 
compare to “bad”

 

ordered loop



Cache Profiling with Callgrind 17

Beyond Cache Misses

Callgrind
 

can also be used to find performance problems which are not 
related to CPU cache

– What code lines eat up most instructions (CPU cycles, time)

– What system/math/library functions are called and what do they 
cost?

Recorded instructions can be a measure of computational costs in
 cache-friendly code

KCachegrind’s
 

cycle estimation allows incorporation of cache misses in 
this measure



Cache Profiling with Callgrind 18

Math function in KCachegrind: cbrt and exp are costly!

Calls to cbrt

 
and exp eat up 

most of the instructions



Cache Profiling with Callgrind 19

Math function in KCachegrind: optimized version – no exp!

Instructions dropped down 
from 11623 to 7199



Cache Profiling with Callgrind 20

Exercise 3 - saturation

Compare the slow and the fast version of the saturation example

– Don’t need to collect cache counters

– valgrind --tool=callgrind ./saturation-fast

– valgrind --tool=callgrind ./saturation-slow

Display in KCachegrind



Cache Profiling with Callgrind 21

Selected Callgrind Command-Line Options

--simulate-cache=[yes|no] –

 
enable cache simulation

--dump-instr=[yes|no] –

 
collect information at per-instruction granularity, 

only useful for assembler view in KCachegrind

--callgrind-out-file=<file> -

 
output file

--I1=<size>,<associativity>,<line size> -

 
specifiy

 
L1 instruction 

cache

--D1=<size>,<associativity>,<line size> -

 
specifiy

 
L1 data cache

--L2=<size>,<associativity>,<line size> -

 
specifiy

 
L2 cache

More features and options:

– User Manual: http://valgrind.org/docs/manual/cg-manual.html

– valgrind --tool=callgrind --help



Cache Profiling with Callgrind 22

Summary

Remember: Valgrind is based on simulation, no measurements!

– Don’t trust the results to be absolutely accurate

– Large Overhead

Whenever using Cachegrind
 

/ Callgrind:

– Reduce problem size, but should still be representative

– Large application: extract computational kernel routines

Easy to use

But not available for IA64 (Altix)

Callgrind_annotate
 

is a good alternative when KCachegrind
 

is not 
available (KCachegrind

 
requires X11 and KDE libs)


	Cache Profiling with Callgrind
	Valgrind
	Valgrind’s Tool Suite
	How does Valgrind work?
	Cachegrind, Callgrind
	Callgrind Example: Program run under Callgrind
	Callgrind Example: callgrind_annotate
	Callgrind Example: callgrind_annotate with Source
	KCachegrind
	KCachegrind
	Tool Chains
	Exercises
	Exercise 1 - loops-fast
	Exercise 1 - loops-fast
	Exercise 2 - loops-slow
	Exercise 2 - loops-slow
	Beyond Cache Misses
	Math function in KCachegrind: cbrt and exp are costly!
	Math function in KCachegrind: optimized version – no exp!
	Exercise 3 - saturation
	Selected Callgrind Command-Line Options
	Summary

