

This is a cast of the airways that conduct air to the lungs.

Why is this morphology potentially detrimental to air conductance into and from the lungs?

Note; The respiratory zone has the greatest surface area and a dense capillary network.

Surfactant

A phospholipoprotein molecule, secreted by specialized cells of the lung, that *lines the surface of alveoli and respiratory bronchioles*. Surfactant *lowers the surface tension* of the alveoli membranes, *preventing the collapse* of alveoli during exhalation and *increasing compliance* during inspiration.

Respiration

The process of gas exchange, which for the human body involves oxygen (O_2) and carbon dioxide (CO_2) .

Internal respiration - at the cellular level

External respiration - at the lung

UNM

Ventilation

The movement of air into and from the lung by the process of bulk flow.

Ventilation (V_E) (L/min) = frequency (br/min) x tidal volume (L)

For rest conditions,

 V_E (L/min) = 12 (br/min) x 0.5 (L) = 6 L/min

For exercise at VO₂max,

 V_E (L/min) = 60 (br/min) x 3.0 (L) = 180 L/min

Compliance - the property of being able to increase size or volume with only small changes in pressure.

UNM

Alveolar Ventilation

UNM

The volume of "fresh" air that reaches the respiratory zone of the lung.

Alveolar Ventilation (V_A) (L/min)

 V_A = frequency (br/min) x (tidal volume - 0.15) (L)

For normal breathing conditions,

 $V_A = 12$ (br/min) x (1.0 - 0.15) (L)

= 12 x 0.85 = 10.2 L/min

For rapid shallow breathing conditions,

 $V_A = 60 \text{ (br/min)} x (0.2 - 0.15) (L)$ (8.2b)

 $= 60 \times 0.05 = 3.0 \text{ L/min}$

Measurement	Abbreviation	Description
Can be measured from	spirometry	
Tidal volume	V _T	Volume of air inhaled and exhaled each breath
Inspiratory reserve volume	IRV	Maximum volume of air that can be inhaled after a normal resting end tidal inspiration
Expiratory reserve volume	ERV	Maximum volume of air that can be exhaled after a normal resting end tidal expiration
Inspiratory capacity	IC	Sum of IRV + V⊺
Expiratory capacity	EC	Sum of ERV + V _T
Vital capacity	VC	Maximum volume or air exhaled after reaching IC = IC + ERV
Forced vital capacity	FVC	Same as for VC, but with forced rapid exhalation
Forced expiratory volume in 1 s	FEV1	Maximum volume of air that can be expired in 1 s when starting at IC
Maximal voluntary ventilation	MVV	Maximum rate of ventilation that can be attained with voluntary effort
Cannot be measured fi	rom spirometr	/
Residual volume	RV	Volume of air remaining in the lungs at ERV.
Functional residual capacity	FRC	Sum of RV + ERV
Total lung capacity	TLC	Sum of V _T + IRV + ERV + RV

