DEMOSTRACIÓN DE UN RESULTADO DEL TEMA 3

Proposición. Todo subconjunto infinito de \mathbb{N} es equipotente a \mathbb{N} . De hecho, si $A \subset \mathbb{N}$ es infinito, existe $f: \mathbb{N} \longrightarrow A$ biyectiva tal que

$$n, m \in \mathbb{N}, n < m \Rightarrow f(n) < f(m).$$

Demostraci'on. Definiremos f por recurrencia. Para ello usaremos que todo subconjunto no vacío de $\mathbb N$ tiene mínimo. Como A es infinito, es no vacío. Por ser $A \subset \mathbb N$ definimos $f(1) = \min A$. Supuesto definido f(n) para un natural n, por ser A infinito, entonces $A \nsubseteq \{m \in \mathbb N : m \le f(n)\}$. Definimos entonces

$$f(n+1) = \min \{ a \in A : a > f(n) \}.$$

Por definición de f se tiene que $f(\mathbb{N}) \subset A$ y además f(n+1) > f(n) para cada natural n. Es inmediato probar por inducción que se verifica entonces

$$n, m \in \mathbb{N}, n < m \implies f(n) < f(m). \tag{1}$$

Para demostrar lo anterior, basta probar que para cada natural n, el conjunto $\{m \in \mathbb{N} : f(n) < f(n+m)\}$ es inductivo.

La condición 1 implica que f es inyectiva. Probaremos que f es también sobreyectiva usando reducción al absurdo.

Sabemos que $f(\mathbb{N}) \subset A$. Si f no fuese sobreyectiva, tendríamos que $A \setminus f(\mathbb{N}) \neq \emptyset$. Podemos definir entonces $m = \min \{ a \in A : a \notin f(\mathbb{N}) \}$ (el conjunto anterior es no vacío y está contenido en \mathbb{N} , luego tiene mínimo). Como $m \notin f(\mathbb{N})$, entonces $m \neq \min A$. Por tanto, $m > \min A$.

El conjunto $\{a \in A : a < m\}$ es un subconjunto no vacío de naturales y mayorado, luego es finito. Entonces tiene máximo. Llamamos $M = \text{Max } \{a \in A : a < m\}$. Es claro que $M \in A$ y M < m. Por definición de m, ha de verificarse que $M \in f(\mathbb{N})$. Supongamos que k es un natural que verifica f(k) = M. Sea ahora $b \in A$ un elemento con b > f(k) = M. Por definición de M ha de verificarse que $b \notin \{a \in A : a < m\}$. Luego $b \geq m$. Sabemos además que f(k) = M < m.

Hemos probado que $m = \min \{a \in A : a > f(k)\} = f(k+1)$. Pero esto contradice el hecho de que $m \notin f(\mathbb{N})$. Por tanto, f ha de ser sobreyectiva. Hemos probado que f es una biyección de \mathbb{N} en A que conserva el orden.

Corolario. Todo conjunto infinito numerable es equipotente a $\mathbb N$

Demostración. Sea A un conjunto infinito numerable. Por ser A numerable existe una aplicación $f:A\longrightarrow \mathbb{N}$ inyectiva. Por ser f inyectiva se tiene que $A\sim f(A)$. Como A es infinito, f(A) también lo es. Por el resultado anterior, al ser f(A) un subconjunto infinito de \mathbb{N} , ha de verificarse que $f(A)\sim \mathbb{N}$. Como ser equipotente es una relación de equivalencia deducimos que $A\sim \mathbb{N}$, como queríamos demostrar.