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Abstract

Ž .Tight approximations to the electron-pair density h u of atomic systems are obtained in terms of a very limited set of
Ž .values of the total scattering intensity K k , by means of the minimum-cross-entropy technique. The accuracy of the

approximations is analyzed for two- and four-electron systems. q 1999 Published by Elsevier Science B.V. All rights
reserved.

PACS: 31.10.qz
Keywords: Electron-pair density; Scattering intensities; Minimum-cross-entropy

Ž .The intracule or electron-pair density h u in
many-electron systems is the probability density as-
sociated to the interelectronic vector u'r yr , i.e.1 2
Ž .h u du gives the probability of finding a pair of

electrons with r yr between u and uqdu. Such a1 2

density is a basic quantity in the eyyey correlation
w xproblem 1 , as well as in the description of different

energy functionals in a density-functional-theory
w xframework 2 . The obtention of experimental data
Ž .concerning h u is based on the determination of

w x w xX-ray 3 and high energy electron 4 scattering
cross-sections.
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For most purposes, it is sufficient to deal with the
spherically averaged electron-pair density

1
H u ' h u dV 1Ž . Ž . Ž .H u4p

The major problem in the study of physical and
Žchemical properties of many-electron systems e.g.,

.atoms, molecules in terms of the electron-pair den-
Ž .sity is that not many rigorous properties of h u are

known, even for very simple systems such as two-
electron ions. Moreover, numerical treatments based
on realistic models are very scarce and difficult,
especially when going beyond two-electron systems,
for which it is usually necessary to work at a
Hartree–Fock level.

Ž .Among the known rigorous properties of h u , it
w xis worthy to remark the so-called cusp condition 5 ,
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XŽ . Ž .i.e. h 0 sh 0 . Numerical studies concerning the
Ž .relation between h u and its first derivative for

arbitrary interelectronic distance u have also been
carried out for two-electron ions, giving rise to the

w x XŽ . Ž .extended cusp condition 6 , h u Fh u . Additional
w xstructural aspects are unimodality 6 and bounds to

Ž . w xlocal values of h u 7 .
Other relevant physical and chemical properties of

atomic and molecular systems are described in terms
Ž .of the moments m of h u , proportional to then

² ny2:radial expectation values u as

`
ny2 n² :u s4pm s4p u h u du 2Ž . Ž .Hn

0

² y1:It is worthy to mention that u is the electron–
electron repulsion energy, for which additional prop-

w xerties have been also reported 8 . The normalization
² 0: Ž .to the number of pairs u sN Ny1 r2 will be

considered throughout.
The obtention of accurate experimental data on

Ž .the total scattering intensity I , related to h u bytot

the Fourier transform

`
2K k s4p u h u j ku du 3Ž . Ž . Ž . Ž .H 0

0

Ž Ž . Ž . Ž .with K k s I yN r2 and j x being thetot 0
.spherical Bessel function of order zero has induced
Ž .quantum-mechanical calculations of K k of similar

w xaccuracy 9,10 . However, the determination of the
Ž .electron-pair density h u from the inverse relation

`1
h u s ku sin ku K k dk 4Ž . Ž . Ž . Ž .H3 22p u 0

involves difficult interpolation and extrapolation
techniques. For instance, an accurate determination

Ž .of h u around the origin requires the knowledge of
Ž .K k very accurately for high values of the momen-

tum transferred k which are not easily accessible
from scattering experiments. On the other hand, the

Ž .behavior of K k for low k is related to the radial
² n: Ž . w xexpectation values u of h u as 11

N Ny1Ž .
K k sŽ .

2

` 2 n² :un 2 nq y1 k k™0 5Ž . Ž . Ž .Ý
2nq1 !Ž .ns1

All of these properties involving quantities of the
position and momentum spaces have been used to

w xobtain sum rules for total scattering intensities 11
as well as accurate approximations to those intensi-
ties in terms of global andror local properties of
Ž . w xh u 12 .

The aim of this work is the opposite to that of
w xRef. 12 , i.e. the model-independent estimation of

Ž .the pair density h u from a limited set of values
� Ž 4K k , js0, 1, . . . , m of the scattering functionj
Ž . ŽK k where the normalization constraint is included

.by choosing k s0 and, optionally, from the first0
Ž . Ž .few moments m js0, 1, . . . , n of h u . In doingj

Ž . Žso, we first consider an a priori density h u which0

takes into account known properties of the electron-
.pair density and, then, we observe that the quantities

Ž .K k can be seen as generalized moments of thej
Ž .electron-pair density h u , namely

N Ny1Ž .
0² :n 'K 0 s u sŽ .0 2

`
2n 'K k s4p u h u j k u duŽ .Ž . Ž .Hj j 0 j

0

= js1, 2, . . . , m 6Ž . Ž .
ŽThe above problem provides for a finite number of

.constraints many different solutions. Now, in order
to choose one of them we use the minimum-cross-

w xentropy 13–15 technique involving the constraints
given by the above equation. Following the steps

w xgiven in Ref. 12 , let us first calculate the radial pair
Ž . 2 Ž .density H u '4p u h u , constrained by them m

Ž .above mq1 values of K k , which minimizes the
cross-entropy functional

` H uŽ .
w xS H , H ' H u ln du 7Ž . Ž .H0 H uŽ .0 0

Ž . 2 Ž .where H u '4p u h u is an a priori radial pair0 0

density, also normalized to the number of pairs
Ž .N Ny1 r2, and which denotes the previous degree

of knowledge on the function we are trying to esti-
w xmate. The null variation of S H, H constrained by0

Ž .Eq. 6 provides the minimum-cross-entropy solution
m

h u sh u exp y1y l j k u 8Ž . Ž . Ž .Ž .Ým 0 j 0 j½ 5
js0

where l , . . . , l are Lagrange multipliers to be0 m

determined from the given constraints. The necessary
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and sufficient conditions on the existence of such a
solution are not known. However, the numerical
results provided in this work suggest that the mini-
mum is always reached, independently of the in-
volved a priori density and constraints.

In the present work, we will consider three differ-
ent kinds of problems, associated to different choices
of a priori densities and constraints: maximum-ent-
ropy a priori functions, overlap a priori functions and
mixed constraints.

( )A Maximum-entropy a priori functions. Here we
employ the maximum-entropy approximations con-

² y2 : ² y1: w xstrained by u andror u given in Ref. 16 .
More precisely, let us consider the approximations

1r23y2² :u
h u sŽ .02 3ž /4N Ny1 pŽ .

=
² y2 :u

2exp y u 9Ž .½ 5N Ny1Ž .
and

� 2 4h u sA exp yauybu 10Ž . Ž .012

where the parameters A, a and b are numerically
Ž ² y2 :determined from the set of constraints N, u ,

² y1:.u . The involved expectation values can be

estimated from the sum rules concerning the scatter-
w xing intensity I 11 astot

` `2
y2 y1² : ² :u s kK k dk , u s K k dkŽ . Ž .H H

p0 0

11Ž .

In order to have an idea of the accuracy of the
Ž .approximations on the electron-pair density h u

Ž .given by Eq. 8 , let us consider two different sys-
Ž . Ž .tems, namely He Ns2 and Be Ns4 atoms. For

the first one, the Hylleraas-type atomic wavefunc-
w xtions of Ref. 17 have been used to calculate the

involved quantities, while those corresponding to Be
w xare given at a Hartree–Fock level 18 .

Fig. 1 corresponds to He, for which we take the a
Ž . Ž .priori density h u of Eq. 10 . The accuracy of012

the approximations obtained by considering different
Ž .numbers of constraints i.e., ms2, 5, 10 is observed

All of them are well-behaved close to the origin, and
a significant improvement is observed for large inter-
electronic distance u when increasing the number of
constraints. The level of accuracy can be measured

w xby comparing the cross-entropy S 'S H , H be-m m 0
Ž .tween the approximation H u and the a priorim

Ž . 2 Ž .radial pair density H u s4p u h u to the0 012
Ž . Ž .Hylleraas pair density H u and H u . For increas-0

Ž . Ž . Ž .Fig. 1. Hylleraas-type electron-pair density h u and approximations h u ms2, 5, 10 with maximum-entropy a priori density functionm
Ž . Ž .h u for the helium atom. Atomic units a.u. are used.012
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Ž . Ž . Ž .Fig. 2. Hartree-Fock electron-pair density h u and approximations h u ms2, 10, 15 with maximum-entropy a priori density functionm
Ž . Ž .h u for the beryllium atom. Atomic units a.u. are used.02

ing number of constraints m, the cross-entropy Sm
w xconverges to S H, H s0.0229 as S s0.0164, S0 2 5

s0.0185 and S s0.0224.10

A similar comparison is carried out in Fig. 2 for
Ž .the Be atom, taking as a priori density h u as02

Ž .given by Eq. 9 , using a set of ms2, 5, 10, 15
constraints, respectively. The more significant im-
provement again occurs for large values of the inter-
electronic distance u. Moreover, the corresponding
cross-entropies for the different approximations are
S s14.09, S s14.24, S s18.70 and S s22.34,2 5 10 15

w x Ž .to be compared to S H, H s22.38, H u being the0

Hartree–Fock radial pair density of Be.
( )B OÕerlap a priori functions. The knowledge of

² 2: Ž .u allows to obtain an approximation to K k by
imposing that the expansion of the parametrization

w xgiven in Ref. 19

K k s a qa kqa k 2 eyj k 12Ž . Ž .Ž .ov 0 1 2

Ž .be the same as the one given by Eq. 5 up to order
k 3. Then, the above parameters are expressed in

² 2:terms of u as follows:
1r2

N Ny1 N Ny1Ž . Ž .
2² :a s , a s u ,0 12 2

1r22 2² : ² :u 2 u
a s ,js 13Ž .2 3 N Ny1Ž .

² 2:Estimations on u can be obtained from values of
Ž .the scattering function K k for low k by means of

Ž .the expansion 5 . Then, the inverse Fourier trans-
form

`1
2h u s k j ku K k dk 14Ž . Ž . Ž . Ž .Hov 0 ov22p 0

provides the a priori electron-pair density involved in
Ž .the cross-entropy functional, i.e. H u s0

2 Ž .4p u h u .ov

Let us consider again the Be atom. A similar
comparison to the one carried out in Fig. 2 for the

Ž .case of maximum-entropy a priori density h u is02
Ž .given in Fig. 3, now in terms of h u . It isov

apparent that increasing the number of constraints
from 5 to 10 provides a much more accurate approx-
imation.

( ) Ž .C Mixed constraints. An approximation to h u
involving simultaneously the first few radial expecta-

² iy2: Ž .tion values u and some values of K k can be
also obtained. In doing so, two different kinds of
Lagrange multipliers g and l are used, correspond-i j

² iy2: Ž .ing to the constraints u and K k respec-j

tively, giving rise to the solutions
n m

ih u sA exp y g u exp y l j k uŽ . Ž .Ý Ýn ,m i j 0 j½ 5 ½ 5
is1 js1

15Ž .
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Ž . Ž .Fig. 3. Hartree–Fock electron-pair density h u and approximations based on overlap a priori density function h u with m constraintsov
Ž . Ž .ms5, 10 for the beryllium atom. Atomic units a.u. are used.

For a fixed number of ms5 constraints in the He
atom, we compare in Fig. 4 the accuracy of the
different approximations obtained by using the three
methods considered in this work of constructing an a
priori density, i.e. maximum-entropy, overlap and

mixed-constraints. More precisely, the densities
Ž . Ž . Ž . Ž . Ž .h u , h u and h u given by Eqs. 10 , 14012 ov 5,5
Ž .and 15 , respectively, are considered. It is observed

that the three methods provide very accurate approx-
imations, except for very small u, where the use of

Ž .Fig. 4. Hylleraas-type electron-pair density h u and comparison among the approximations based on maximum-entropy, overlap and
Ž .mixed-constraints a priori density functions for the helium atom. Atomic units a.u. are used.
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mixed constraints gives a pair density much closer to
the exact one than the other two.

The technique employed here, being model-inde-
pendent and completely general, can also be applied
to estimate different density functions, physically
relevant for atomic systems, in terms of a discrete set

Žof values of their Fourier transform e.g., the charac-
Ž . w xteristic function B r 20 in terms of the momentum

Ž ..density g p , as well as to the study of different
many-particle systems, not only atoms but also
molecules, nuclei, etc.
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