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ABSTRACT: The internally folded density or reciprocal form factor B(r) of
many-electron systems is tightly estimated from the knowledge of a small discrete set of
values of the Compton profile J(q). In doing so, the minimum cross-entropy technique is
employed. A numerical analysis of the approximations is carried out for the Helium atom.
© 2002 Wiley Periodicals, Inc. Int J Quantum Chem 87: 214–219, 2002
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Introduction

T he Fourier transform

B(r) =
∫

exp{−ip · r}γ (p) dp (1)

of the electron momentum density γ (p) is used in
the study and interpretation of fundamental chem-
ical concepts, such as hybridization and bonding.
This relevant function, called reciprocal form factor or
internally folded density, was considered as an appro-
priate bridge between the position and momentum
spaces and, consequently, many properties and the-
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oretical results concerning this quantity have been
investigated [1].

In particular, the connection of B(r) to overlap
integrals and, more generally, to other electron-
density functionals was studied, as well as the
chance of extracting accurate bond lengths from
it [2].

Expansions and sum rules involving B(r) have
been used to check the accuracy of both experimen-
tal and theoretical results on the reliability of Comp-
ton profile fits to several functional forms [3, 4].
More recently, tight model-independent approxi-
mations to B(r) were also obtained in terms of
a few quantities related to the one-particle mo-
mentum density γ (p) with no use of any position
quantity. In doing so, two different but comple-
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mentary methods, based on maximum-entropy and
two-point Padé approximants techniques, were em-
ployed [5].

The aim of this work is to obtain simple, tight and
model-independent approximations to the spheri-
cally averaged characteristic function,

B(r) = 1
4π

∫
B(r) d� = 4π

∫ ∞

0
p2γ (p)j0(pr) dp (2)

( j0 being the spherical Bessel function of the first
kind of order zero) in terms of experimentally ac-
cessible quantities, namely a limited set of values of
the isotropic Compton profile [6],

J(q) = 2π

∫ ∞

q
pγ (p) dp. (3)

Differentiation of the previous equation gives

dJ(q)
dq

= −2πqγ (q), (4)

which may be substituted in Eq. (2) to yield (af-
ter an integration by parts) the well-known fact
that B(r) and J(q) are a pair of Fourier cosine trans-
forms [1]:

B(r) = 2
∫ ∞

0
cos(qr)J(q) dq, (5)

J(q) = 1
π

∫ ∞

0
cos(qr)B(r) dr. (6)

The obtention of B(r) from the Compton profile
by means of Eq. (5) would demand the complete
knowledge of J(q). However, the experimental ac-
cess to this quantity is usually limited to a finite and
discrete set of values {qi} (i = 1, 2, . . . , n) of the mo-
mentum transferred, up to a maximum value qmax

which depends on the type of experiment carried
out. Consequently, both interpolation and extrapo-
lation on the experimental data are required before
performing the Fourier transform.

Instead of using such a procedure, let us regard
the values of J(q) in Eq. (6) as generalized moments µi

of the function B(r), namely,

µi = J(qi) = 1
π

∫ ∞

0
cos(qir)B(r) dr, i = 0, 1, . . . , n,

(7)

where q0 ≡ 0. Then we face such a moment prob-
lem by using a generalization of the maximum-en-
tropy method, namely the minimum cross-entropy
method [7].

Following the steps given in Ref. [8], let us mini-
mize the cross-entropy functional

S[B, B0] ≡
∫ ∞

0
B(r) ln

B(r)
B0(r)

dr, (8)

taking into account the knowledge of the set of val-
ues {J(qi)} (i = 0, . . . , n), where B0(r) is an a priori
reciprocal form factor, which can be regarded as
a first estimation to the exact B(r). The solution Bn(r)
to this variational problem is given by

Bn(r) = B0(r) exp

{
−1 − 1

π

n∑
i = 0

λi cos(qir)

}
. (9)

The Lagrange multipliers {λi} are determined by im-
posing on Bn(r) the given constraints.

Although the existence of such a solution is
not guaranteed, we have always been able to lo-
cate the absolute minimum for any of the a pri-
ori densities and constraints considered in this
work.

In what follows, three different kinds of prob-
lems (each one associated to a different choice of
a priori density and constraints) will be discussed:
maximum-entropy a priori functions, overlap a pri-
ori functions and mixed constraints. All them can be
applied to the study of any many-particle system.
For illustration, the accuracy of the approximations
is analyzed within a Hartree–Fock framework [9]
for the helium atom (N = 2).

Maximum-Entropy (ME)
(a prior) Functions

The starting approximation to the reciprocal form
factor is the maximum-entropy one [5] constrained
by the first moments [1],

ν0 ≡
∫ ∞

0
B(r) dr = π〈p−1〉

2
= πJ(0) = µ0π ,

ν1 ≡
∫ ∞

0
B(r)r dr = 〈

p−2〉,
ν2 ≡

∫ ∞

0
B(r)r2 dr = 2π2γ (0).

It is worth mentioning that the central value
γ (0) of the momentum density, which plays a rel-
evant role in the description and interpretation
of different physical phenomena [10], is not usu-
ally accessible with much reliability from a Comp-
ton profile experiment. However, many numeri-
cal calculations and estimations [4, 11] on γ (0)
have been carried out. Among them, let us notice
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FIGURE 1. Hartree–Fock reciprocal form factor B(r) and two-constraints approximation with ME a priori density
function B02(r) for the helium atom. Atomic units (a.u.) are used.

those based on maximum-entropy approximations
on γ (p) [5, 12]. Additionally, different lower bounds
to γ (0) in terms of radial expectation values are also
known [13, 14].

In this work the a priori ME distributions B01(r),
B02(r), and B012(r) are used, the indexes denoting the
moments νi used as constraints.

For the numerical comparison, we will consider
the atomic wavefunctions of Ref. [9] for the helium
atom N = 2. Concerning the constraints, we will
consider equidistant values qi ranging from 0 up to
4 a.u. (i.e., 0, 4/n, 8/n, . . . , 4 a.u. for the n-constraints
approximation), except for the case n = 2 for which
q = 0, 1, 2 a.u.

The approximations built from different values of
the Compton profile and involving B01(r) and B02(r)
as a priori functions have been compared to the
Hartree–Fock (HF) ones, obtained by means of the
analytical wavefunctions of Ref. [9]. Two main com-
ments are in order: first, the improvement in the
accuracy of the estimations when increasing the
number of constraints is clearly observed. Such ac-
curacy can be measured in terms of the relative

entropy Sn between the n-constraints approxima-
tion and the a priori density. For the case of the
a priori function B01(r), the values are S2 = 0.0257,
S4 = 0.0297, S8 = 0.0481, and S16 = 0.0484, to be
compared to the Hartree–Fock value SHF = 0.0487.

A similar comparison can be done when consid-
ering the a priori function B02(r). This is carried out
in Figure 1, where only the n = 2-constraints ap-
proximation is compared to the HF and the a priori
ones, because the estimations built from a higher
number of constraints are almost indistinguishable
from the n = 2 one, which is very close to the
Hartee–Fock B(r) within the whole range of r here
considered. Concerning the relative entropies Sn be-
tween the different approximations and the a priori
density, the values converge to the Hartree–Fock
one SHF = 0.06361 as S2 = 0.02967, S4 = 0.02969,
S8 = 0.05260, and S16 = 0.06017.

Second, it is observed that the approximations
based on B02(r) (which depends on the momentum
density at the origin) are more accurate than those
involving B01(r) (constructed from the expectation
value 〈p−2〉).
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Overlap A Priori Functions

It is based on the low-r expansion [1],

B(r) = N − 〈p2〉
6

r2 + O
(
r4)

in terms of the number of electrons N and the kinetic
energy (which is twice the expectation value 〈p2〉).
The overlap a priori function Bov(r) is given by the
parametrization

Bov(r) = (
a0 + a1r + a2r2)e−ξr,

where the involved parameters are determined by
imposing that the low-r expansion of Bov(r) and B(r)
be identical up to order r3. Then, the above parame-
ters are given by

a0 = N, a1 = (
N

〈
p2

〉)1/2,

a2 = 〈p2〉
3

, ξ =
( 〈p2〉

N

)1/2

.

In Figure 2, the n = 2 approximation is com-
pared to the a priori and the Hartree–Fock ones.
As happened with the a priori function B02(r), two
constraints are quite enough to tightly approximate
the density B(r) for the whole range of r considered.
Nevertheless, and for the sake of completeness, the
aforementioned relative entropies Sn converge to
SHF = 0.007400 as S2 = 0.003509, S4 = 0.003514,
S8 = 0.007217, and S16 = 0.007392.

Mixed Constraints

Consider now the problem of estimating B(r)
from the simultaneous knowledge of the first few
moments νi and some values of the Compton pro-
file J(q). In doing so, we employ the maximum-
entropy procedure [15] with two different kinds
of Lagrange multipliers, γi and λ, associated to
the aforementioned constraints, respectively. The re-

FIGURE 2. Hartree–Fock reciprocal form factor B(r) and two-constraints approximation based on overlap a priori
density function Bov(r) for the helium atom. Atomic units (a.u.) are used.

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 217



ANTOLÍN, CUCHÍ, AND ANGULO

FIGURE 3. Hartree–Fock reciprocal form factor B(r) and approximation involving mixed constraints with m = 2,
n = 2, 4, 8 for the helium atom. Atomic units (a.u.) are used.

sulting approximation is

Bn,m(r) = A exp

{
−

m∑
i = 1

γiri

}
exp

{
−

n∑
j = 1

λj cos(qjr)

}
,

(10)

where Eq. (6) has been taken into account.
For the numerical study, we will consider in the

present work the case m = 2 for n = 2, 4, 8.
A comparison between such approximations to
the Hartree–Fock (HF) function is carried out in
Figure 3. The accuracy greatly improves when in-
creasing the number of constraints, making the
n = 8 estimation indistinguishable from the HF
one.

The information entropy of the different densities
involved in the figure, defined as

S[B] ≡ −
∫ ∞

0
B(r) ln B(r) dr (11)

provides a measure of the accuracy of the approx-
imation. For the present case, the entropy Sn of
the different estimations B2,n(r) decreases as fol-

lows: S2 = −0.103114, S4 = −0.104368, and
S8 = −0.105742, the last one very close to the infor-
mation entropy of the Hartree–Fock reciprocal form
factor, which is SHF = −0.105752.

For the sake of completeness, three differ-
ent approximations corresponding to the above
studied problems are compared to the HF one
in Figure 4. The dashed curves correspond to:
maximum-entropy (ME) B012(r) and overlap Bov(r)
a priori functions with four constraints, and mixed-
constraints approximation for the case m = 2, n = 1.
Note their great accuracy, especially relevant when
considering the low-r expansion of B(r) by means of
the overlap a priori function.

Summarizing, the maximum-entropy and min-
imum cross-entropy techniques provide model-
independent tight approximations to the reciprocal
form factor of atomic systems. Due to the universal-
ity of these methods, they can also be employed in
the study of different density functions associated to
any many-particle system in terms of some expecta-
tion values of the involved density.
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FIGURE 4. Hartree–Fock reciprocal form factor B(r) and comparison among the approximation involving mixed
constraints with m = 2 and n = 4 and the estimation based on B012 and overlap a priori density functions with four
constraints for the helium atom. Atomic units (a.u.) are used.
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