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ABSTRACT: The internally folded density or reciprocal form factor B(r) of
many-electron systems is tightly estimated from the knowledge of a small discrete set of
values of the Compton profile J(q). In doing so, the minimum cross-entropy technique is
employed. A numerical analysis of the approximations is carried out for the Helium atom.
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Introduction

he Fourier transform
B) = [ expl—ip 5y (p)dp M

of the electron momentum density y(p) is used in
the study and interpretation of fundamental chem-
ical concepts, such as hybridization and bonding.
This relevant function, called reciprocal form factor or
internally folded density, was considered as an appro-
priate bridge between the position and momentum
spaces and, consequently, many properties and the-
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oretical results concerning this quantity have been
investigated [1].

In particular, the connection of B(r) to overlap
integrals and, more generally, to other electron-
density functionals was studied, as well as the
chance of extracting accurate bond lengths from
it [2].

Expansions and sum rules involving B(r) have
been used to check the accuracy of both experimen-
tal and theoretical results on the reliability of Comp-
ton profile fits to several functional forms [3, 4].
More recently, tight model-independent approxi-
mations to B(r) were also obtained in terms of
a few quantities related to the one-particle mo-
mentum density y(p) with no use of any position
quantity. In doing so, two different but comple-
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mentary methods, based on maximum-entropy and
two-point Padé approximants techniques, were em-
ployed [5].

The aim of this work is to obtain simple, tight and
model-independent approximations to the spheri-
cally averaged characteristic function,

1 oo
BO) = 3= [ Bwde=sr [ rpigmdp @

(jo being the spherical Bessel function of the first
kind of order zero) in terms of experimentally ac-
cessible quantities, namely a limited set of values of
the isotropic Compton profile [6],

J(q) =27 / py (p)dp- ®)
q
Differentiation of the previous equation gives
d](q)
——=-2 4
ag 7qy(q), 4)

which may be substituted in Eq. (2) to yield (af-
ter an integration by parts) the well-known fact
that B(r) and J(q) are a pair of Fourier cosine trans-
forms [1]:

B(r) =2 /O cos(qn)](g) dg, 5)

=7 [ cosanBar ©

The obtention of B(r) from the Compton profile
by means of Eq. (5) would demand the complete
knowledge of J(g). However, the experimental ac-
cess to this quantity is usually limited to a finite and
discrete set of values {g;} (i = 1,2, ...,n) of the mo-
mentum transferred, up to a maximum value gmax
which depends on the type of experiment carried
out. Consequently, both interpolation and extrapo-
lation on the experimental data are required before
performing the Fourier transform.

Instead of using such a procedure, let us regard
the values of J(g) in Eq. (6) as generalized moments j;
of the function B(r), namely,

1 [e9]
wi=J(qi) = —/ cos(q;r)B(r) dr, i=0,1,...,n,
T Jo
@)
where qo = 0. Then we face such a moment prob-
lem by using a generalization of the maximum-en-

tropy method, namely the minimum cross-entropy
method [7].

Following the steps given in Ref. [8], let us mini-
mize the cross-entropy functional

S[B,Boy] = / B(r) In & dr, (8)
0 Bo(r)
taking into account the knowledge of the set of val-
ues {J(g:)} (i = 0,...,n), where By(r) is an a priori
reciprocal form factor, which can be regarded as
a first estimation to the exact B(r). The solution B, (r)
to this variational problem is given by

By (r) = Bo(r) exp:—l — % éki cos(qir)}. 9)

The Lagrange multipliers {1;} are determined by im-
posing on B, (r) the given constraints.

Although the existence of such a solution is
not guaranteed, we have always been able to lo-
cate the absolute minimum for any of the a pri-
ori densities and constraints considered in this
work.

In what follows, three different kinds of prob-
lems (each one associated to a different choice of
a priori density and constraints) will be discussed:
maximum-entropy a priori functions, overlap a pri-
ori functions and mixed constraints. All them can be
applied to the study of any many-particle system.
For illustration, the accuracy of the approximations
is analyzed within a Hartree-Fock framework [9]
for the helium atom (N = 2).

Maximum-Entropy (ME)
(a prior) Functions

The starting approximation to the reciprocal form
factor is the maximum-entropy one [5] constrained
by the first moments [1],

00 -1
UOE/é B(r)dr = JT(}; ) = J(0) = pom,

v = / B(r)rdr=(p~?),

0
vy = / B(r)* dr = 27°y(0).
0

It is worth mentioning that the central value
v(0) of the momentum density, which plays a rel-
evant role in the description and interpretation
of different physical phenomena [10], is not usu-
ally accessible with much reliability from a Comp-
ton profile experiment. However, many numeri-
cal calculations and estimations [4, 11] on y(0)
have been carried out. Among them, let us notice
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FIGURE 1. Hartree-Fock reciprocal form factor B(r) and two-constraints approximation with ME a priori density
function Bga (r) for the helium atom. Atomic units (a.u.) are used.

those based on maximum-entropy approximations
on y(p) [5, 12]. Additionally, different lower bounds
to y(0) in terms of radial expectation values are also
known [13, 14].

In this work the a priori ME distributions B (r),
Boo(r), and Bopa(r) are used, the indexes denoting the
moments v; used as constraints.

For the numerical comparison, we will consider
the atomic wavefunctions of Ref. [9] for the helium
atom N = 2. Concerning the constraints, we will
consider equidistant values g; ranging from 0 up to
4a.u.(ie. 0,4/n,8/n,...,4a.u. for the n-constraints
approximation), except for the case n = 2 for which
g=0,1,2au.

The approximations built from different values of
the Compton profile and involving By (1) and Bp(r)
as a priori functions have been compared to the
Hartree-Fock (HF) ones, obtained by means of the
analytical wavefunctions of Ref. [9]. Two main com-
ments are in order: first, the improvement in the
accuracy of the estimations when increasing the
number of constraints is clearly observed. Such ac-
curacy can be measured in terms of the relative

entropy S, between the n-constraints approxima-
tion and the a priori density. For the case of the
a priori function By;(r), the values are S, = 0.0257,
S54=10.0297, Sg = 0.0481, and Si¢ = 0.0484, to be
compared to the Hartree-Fock value Syr = 0.0487.

A similar comparison can be done when consid-
ering the a priori function Bg(r). This is carried out
in Figure 1, where only the n = 2-constraints ap-
proximation is compared to the HF and the a priori
ones, because the estimations built from a higher
number of constraints are almost indistinguishable
from the n = 2 one, which is very close to the
Hartee-Fock B(r) within the whole range of r here
considered. Concerning the relative entropies S, be-
tween the different approximations and the a priori
density, the values converge to the Hartree—Fock
one Syr = 0.06361 as S, = 0.02967, Sy = 0.02969,
Ss = 0.05260, and 516 = 0.06017.

Second, it is observed that the approximations
based on Bgy(r) (which depends on the momentum
density at the origin) are more accurate than those
involving By (r) (constructed from the expectation
value (p~2)).

216

VOL. 87, NO. 4



ESTIMATION OF INTERNALLY FOLDED DENSITIES FROM COMPTON PROFILES

Overlap A Priori Functions

It is based on the low-r expansion [1],
2
B(r)=N — %1’2 +O(r*)

in terms of the number of electrons N and the kinetic
energy (which is twice the expectation value (p?)).
The overlap a priori function B, (r) is given by the
parametrization

Bou(1) = (a0 + mir + axr*)e™,

where the involved parameters are determined by
imposing that the low-r expansion of B,y (r) and B(r)
be identical up to order 3. Then, the above parame-
ters are given by

In Figure 2, the n = 2 approximation is com-
pared to the a priori and the Hartree-Fock ones.
As happened with the a priori function Bp(r), two
constraints are quite enough to tightly approximate
the density B(r) for the whole range of r considered.
Nevertheless, and for the sake of completeness, the
aforementioned relative entropies S, converge to
Sur = 0.007400 as S; = 0.003509, S, = 0.003514,
Sg = 0.007217, and S16 = 0.007392.

Mixed Constraints

Consider now the problem of estimating B(r)
from the simultaneous knowledge of the first few
moments v; and some values of the Compton pro-
file (7). In doing so, we employ the maximum-
entropy procedure [15] with two different kinds
of Lagrange multipliers, y; and A, associated to
the aforementioned constraints, respectively. The re-

ay=N, a = (N(p?)'"?,
_w _ m)/
ap = 3 s 5 - ( N .
2.5 T
B(r)
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n=2 -----
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FIGURE 2. Hartree—Fock reciprocal form factor B(r) and two-constraints approximation based on overlap a priori
density function Bgy(r) for the helium atom. Atomic units (a.u.) are used.
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FIGURE 3. Hartree—Fock reciprocal form factor B(r) and approximation involving mixed constraints with m = 2,

n = 2,4,8 for the helium atom. Atomic units (a.u.) are used.

sulting approximation is

Bum(r) =A exp:— Z yiri} exp{ — Z Aj cos(qu)},

i=1 j=1
(10)

where Eq. (6) has been taken into account.

For the numerical study, we will consider in the
present work the case m = 2 for n = 2,4,8.
A comparison between such approximations to
the Hartree-Fock (HF) function is carried out in
Figure 3. The accuracy greatly improves when in-
creasing the number of constraints, making the
n = 8 estimation indistinguishable from the HF
one.

The information entropy of the different densities
involved in the figure, defined as

S[B]l = — /OOOB(r) In B(r) dr (11)

provides a measure of the accuracy of the approx-
imation. For the present case, the entropy S, of
the different estimations Bj,(r) decreases as fol-

lows: S, = -0.103114, S4 = —0.104368, and
Sg = —0.105742, the last one very close to the infor-
mation entropy of the Hartree—Fock reciprocal form
factor, which is Syr = —0.105752.

For the sake of completeness, three differ-
ent approximations corresponding to the above
studied problems are compared to the HF one
in Figure4. The dashed curves correspond to:
maximum-entropy (ME) Bgi2(r) and overlap Boy(r)
a priori functions with four constraints, and mixed-
constraints approximation for the casem = 2,n = 1.
Note their great accuracy, especially relevant when
considering the low-r expansion of B(r) by means of
the overlap a priori function.

Summarizing, the maximum-entropy and min-
imum cross-entropy techniques provide model-
independent tight approximations to the reciprocal
form factor of atomic systems. Due to the universal-
ity of these methods, they can also be employed in
the study of different density functions associated to
any many-particle system in terms of some expecta-
tion values of the involved density.
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FIGURE 4. Hartree-Fock reciprocal form factor B(r) and comparison among the approximation involving mixed
constraints with m = 2 and n = 4 and the estimation based on By12 and overlap a priori density functions with four

constraints for the helium atom. Atomic units (a.u.) are used.
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