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ABSTRACT

Ž .The one-particle density in momentum space g p is studied for diatomic molecules by
using the maximum-entropy technique. The knowledge of one or more momentum

² n: Ž .expectation values p provides approximations on the density g p for any value of
the momentum, which are convergent when increasing the number of known moments.
Other unknown expectation values are estimated in terms of the constructed maximum-
entropy densities. A numerical study of the quality of the approximations is carried out
by means of experimental and theoretical data for the momentum expectation values
involved. Experimental errors are also taken into account to have an idea of the
sensibility of the results to the information from which they are obtained. Q 1997 John
Wiley & Sons, Inc.
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Introduction

he study of atomic and molecular systems inT terms of their electron densities has been a
subject of considerable interest and the focus of
much research because it provides a good descrip-
tion of the electronic structure of such systems.

Ž .The charge density, r r , defined as

Ž . Ž .r r s N C* r, r , . . . , rH 2 N

Ž . Ž .= C r, r , . . . , r dr . . . dr 12 N 2 N

Žwhere C is the wave function of the N-electron
.system and sumation over spins is implicit , is a

quantity which can be indirectly deduced from
elastic X-ray and electron scattering experiments
w x1 and is the basic variable in the study of many
physical properties of atoms and molecules from a

w xdensity functional theory perspective 2 .
Historically, most of quantum chemistry has

been carried out from the position space point of
view, leading to concepts in traditional chemistry
based upon this particular approach: bond lengths
and angles, atomic radii, electronegativity, etc.
Some authors have claimed that although the Ho-
henberg]Kohn theorem establishes that the energy
of a nondegenerate ground state is a functional of
the associated charge density, it does not provide
an explicit functional and therefore the charge den-
sity does not always give us all the information

w xabout the system of interest 3 .
Ž .The complementary quantity to r r in momen-

tum space, i.e., the electron momentum density
Ž .g p , is defined as

Ž . Ž .g p s N f* p, p , . . . , pH 2 N

Ž . Ž .= f p, p , . . . , p dp . . . dp , 22 N 2 N

Ž .where f p, p , . . . , p is the momentum space2 N
wave function obtained by 3 N-dimensional
Fourier]Dirac transform of the position wave
function as

y3 Nr2Ž . Ž . Ž .f p , p , . . . , p s 2p c r , r , . . . , rH1 2 N 1 2 N

N

Ž .= exp i p ? r dr . . . dr . 3Ý j j 1 N½ 5
js1

This momentum density is also directly related to
the Compton profiles which are obtained experi-

w xmentally 4 and is a natural and potential source
of additional information.

However, while the coordinate space density
has been studied extensively, the momentum den-
sity still remains difficult to visualize and interpret

Ž .as compared to its position counterpart r r . On
the other hand, the relationship between both den-
sities in the conjugate spaces is far from direct.

Relevant physical magnitudes are the moments
Ž .of g p ,

² ky2:p 1
ky2 Ž .m s s p g p dpHk 4p 4p

` `1
ky2 kŽ . Ž . Ž .s p I p dp s p g p dp , 4H H4p 0 0

defined in terms of the momentum density, the
Ž .spherically averaged momentum density g p , or

Ž .the radial momentum density I p given by

Ž . 2 Ž . 2 Ž . Ž .I p s 4p p g p s p g p dV . 5H p

² 0:The normalization p s N is used throughout.
There has been considerable interest in recent

years in one-electron momentum distributions of
molecules to implement the information on elec-
tron localization obtained from the charge distri-

w xbutions 5 . A few investigations on the symmetry
w xand extremal properties 6 and studies on the

w xanisotropy 7 of the momentum density in
molecules have also been done.

Relations between magnitudes in position and
momentum space are of great importance because
they allow one to translate information between

w xthe conjugate spaces 8 . Moments of the momen-
tum density have been related to charge density
power integrals and interelectronic repulsion in

w xdiatomic molecules 9 . On the other hand, some
general and rigorous inequalities involving radial
expectation values in coordinate and momentum

w xspaces have been obtained 10 . Koga and Morita
also investigated the origin and nature of inter-
atomic interactions in terms of the momentum

w xdensity 11 and constructed inference momentum
w xdensities from energy constraints 12 .
ŽThe obtention of approximate model-indepen-

.dent momentum densities has also been an im-
portant task owing to the above considerations.
Information theory has revealed as a powerful
approach to obtain unknown probability distribu-
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w xtions when only partial information is given 13 .
Ž .The maximum entropy ME principle states that

when only limited knowledge about a probability
density is available we should choose, among the
densities compatible with the constraints, the one
that has the maximum entropy. This is so because

w xthe entropy concentration theorem 14 shows that
the great majority of the allowed distributions
concentrate around the one of maximum entropy.

In this article, we use this inference principle to
obtain approximate molecular momentum densi-
ties from growing information based on momen-
tum expectation values. Previously, information
theory has been used to construct approximate

Ž .radial momentum densities I p and isotropic
Ž .Compton profiles J q of atoms and molecules,

when only normalization and an additional con-
w xstraint is used 15, 16 . The resultant inferential

analytical densities were qualitatively acceptable.
More sophisticated analyses, including bounds and
ME approximations for atomic systems, have been

w xrecently done 17, 18 .
Our aim was to obtain the necessary conditions

that the moments of the momentum density of
some diatomic molecules must satisfy in order to
have ME momentum density and to obtain and
compare successive approximations to this magni-
tude. To check the goodness of these approxima-
tions, a numerical study with near-Hartree]Fock
Ž . Ž .NHF and configuration interaction CI momen-
tum densities was done. Additionally, the effects
of the experimental errors of the moments on the
results were also considered.

Maximum-Entropy Technique

The ME method, based on information theory,
provides, among all the admissible momentum
densities, the least biased function compatible with
the information that we actually have. Considering
the momentum density as an statistical probability
density, the ME density is calculated by maximiz-
ing the information entropy functional

`
w x Ž . Ž . Ž .S g ' y g p ln g p dp 6H

0

under the constraints given by the knowledge of
Ž .its first few M q 1 moments m k s 0, 1, . . . , Mk

Ž .as defined in Eq. 4 .

w xFunctional variation of S g subject to the mo-
ment constraints leads to the unique ME solution

M
ME n Ž .g s exp y l p , 7Ý12 . . . M n½ 5

ns0

where l is related to the normalization and the0
remaining Lagrange multipliers l , . . . , l must be1 n
numerically calculated from the extremely nonlin-
ear system of equations:

`
n ME Ž . Ž . Ž .p g p dp s m n s 1, . . . , M , 8H 12 . . . M n

0

where the subscript 12 . . . M gives the list of mo-
ments included in the constraints. The information
entropy associated to the solution can be readily
calculated and it represents a measure of the infor-
mation content of the given constraints:

M
ME Ž .S g s m l . 9Ý12 . . . M n n

ns0

Two desirable features of this methodology have
been recently obtained in the case of a semiinfinite
or Stieltjes moment problem: existence of the ME
density given by the M q 1 assigned moments
w x19, 20 and entropy-convergence to the unknown
density as the number of given moments increases
w x21 .

Necessary and sufficient conditions for the exis-
tence of the ME solution, except for the cases
M s 2, 3, are identical to the Stieltjes conditions for
the solution of the reduced moment problem, i.e.,

w xthe positivity of the Hankel determinants 19, 20
Ž .D n s 0, 1, . . . , 2k q 1 , wheren

m m ??? m0 1 n
. . . .. . . .D s ;2 n . . . .

m m ??? mn nq1 2 n
Ž .10

m m ??? m1 2 nq1
. . . .. . . .D s .2 nq1 . . . .

m m ??? mnq1 nq2 2 nq1

Here, one has 2k s M or 2k q 1 s M depending
on the parity of the number M of normalized
moments.

The simplest case, M s 1, can be analytically
solved as

m2 m0 0ME Ž . Ž .g p s exp y p . 111 ½ 5m m1 1
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w xIt provides 11, 12, 15, 16 approximate relations
between moment expectation values and other rel-
evant quantities. It is worthy to note that similar

Ž . Ž .relations can be obtained by using I p or J q as
unknown densities in terms of their respective

Ž .moments, easily related to those of g p .
In a similar way, one obtains the more general

� 4solution subject to the constraints m , m :0 k

1rkkm m0 0ME Ž .g p sk ž /Ž .G 1rk kmk

m0 k Ž . Ž .= exp y p k ) 0 . 12½ 5kmk

The above relations can be expressed in terms of
Ž .the radial expectation values by using Eq. 4 .

Some interesting examples are

² y2 :2 ² y2 :p p
ME Ž . Ž .g p s exp y p 131 y1 y1½ 5² : ² :4p p p

1r23y2 y2² : ² :p p
ME 2Ž . Ž .g p s exp y p . 142 3 ½ 5ž / 2 N8p N

From these two ME solutions, approximations to
the following expectation values are obtained in

² y2 : ² y1:terms of p , p and N:

`
MEk k ME² : Ž .p s p g p dp1 H 1

0

² y1:kq2p
Ž . Ž .s G k q 3 k ) y3kq1y2² :p
`

MEk k ME² : Ž .p s p g p dp2 H 2
0

1r2Ž .kq2Ž . w Ž . x2 N G k q 3 r2
s k r2y2p ² :p

Ž .k ) y3 .

Ž .Moreover, taking into account Eq. 4 , the informa-
tion entropy of these approximations are

2m0ME Ž .S g s m 1 y ln 151 0 ž /m1

3m 2m0 0ME Ž .S g s 1 y ln . 162 ž /2 pm2

In the case M s 2, besides Hankel positivity, a
supplementary upper bound on m must be satis-2

w xfied in order to have an ME solution 22 . Simi-
w x w xlarly, Kociszewski 23 and Tagliani 19 found

numerically and analytically the supplementary
upper bound on m that allows one to have an ME3
solution for M s 3.

ME approximations for M G 4 always exists
w x19 , provided that the Hankel constraints are ful-

w Ž .xfilled see Eq. 10 . Numerical computations of
this kind of approximations revealed the complex-
ity of the entropy functional. As an illustration,
some approximate densities are calculated in the
next section. We will focus our attention on the

Ž . Ž .hydrogen H and nitrogen N molecules, for2 2

which some calculations in momentum space have
been done during the last years.

Maximum-Entropy Densities

The hydrogen molecule H is an excellent sys-2

tem for this kind of studies since both accurate
theoretical and experimental work is available.
Bench-mark calculations of momentum space
properties of two-electron systems were based on

Ž .multiconfigurational self-consistent-field MCSCF
Ž .and configuration interaction CI wave functions

which can be Fourier]Dirac-transformed without
difficulty for most of the usual choices of underly-

w xing orbital basis set 24 .
w xJeziorski and Szalewicz 25 pointed out that

wave functions built up from correlated Gaussian
geminals can be Fourier]Dirac-transformed in a
closed form. Momentum space properties of
molecular hydrogen calculated from such a wave
function were found to be in close agreement with
those calculated from a large-scale configuration

w xinteraction wave function 26 .
As an example, we reconstructed by ME meth-

ods the H momentum distribution from the mo-2

ments of Jeziorski and Szalewicz as well as from
w xthe experimental moments obtained by Lee 27 .

Theoretical and experimental moments of molecu-
lar hydrogen do not fulfil the Kociszewski condi-

Ž .tions; therefore, g p does not exist. Figure 1123

shows the successive ME approximations using
different moment information, together with the
radial momentum distribution. It is apparent that
the more information that is considered the more
accurate the approximations are. Table I collects
the predictions for the unknown expectation val-
ues of the different approximations.
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[ ] ( )FIGURE 1. NHF 24 radial momentum density I p =
2 Ž . ME( ) ME( )4p p g p and ME approximations I p , I p ,1 2

ME( ) ME ( ) ( ) 2 Ž .I p , and I p , where I p ' 4p p g p , for the H12 1234 2
[ ]molecule. The theoretical moments were taken from 25 .

( )Atomic units au are used.

Figure 2 shows the 4-moment approximation
obtained in terms of the experimental moments
calculated from high-energy electron-impact spec-
troscopy. We have used three moment sequences:
the central sequence and the lower and upper
sequences by using, in a coherent manner, the
error bars in the calculated moments, in order to
have a first estimation of the spread of the aproxi-
mations.

In Figures 1 and 2, it is observed that there
exists a strong agreement between all the approxi-
mations constructed, independently of the source
Ž .theoretical or experimental of the moment se-
quences involved. In this sense, it is worthy to

Ž .observe that the density at the origin g 0 associ-
Ž Ž . . Ž Ž .ated to the lower g 0 s 1.009 , central g 0 s

. Ž Ž . .1.288 , and upper g 0 s 1.524 ME approxima-
tions are, respectively, to be compared with the

TABLE I
Predictions given for the H molecule by the first2
few ME approximations on the values of the

( )momentum density at the origin, g 0 , and some
n² :radial expectation values p , compared with

( )the Hartree]Fock ones; atomic units au are used.

2 3( ) ² : ² : ² :g 0 p p p

g 1.169 1.857 2.351 4.218HF
MEg 1.797 2.494 3.674 6.7651
MEg 1.077 1.565 1.442 1.5052
MEg 1.521 1.781 1.956 2.51412
MEg 1.421 1.857 2.351 4.2401234

[ ]FIGURE 2. NHF 24 radial momentum density
( ) 2 Ž . ME ( )I p = 4p p g p and ME approximation I p '1234

2 (ME)( )4p p g p , calculated for the upper, central, and1234
[ ]lower sequences of moments of 27 for the H molecule2

( ) ( )see text for further details . Atomic units au are used.

corresponding values shown in Table I. It is wor-
thy to remark on the similarity among these values
and those given in Table I.

The momentum distribution of the nitrogen
molecule, N , in its ground electronic state was2

w xalso studied by a variety of experimental 28 and
w xtheoretical 29 methods. In spite of many efforts,

the quality of these calculations are not as accurate
as those of helium or molecular hydrogen.

Some momentum space properties of N were2
computed not only from an NHF wave function

w xbut also from a CI wave function 30 that was
substantially more accurate than those used in
previous calculations of this nature. We recon-
structed the N momentum density from the CI2

w xexpectation values calculated in 30 and from ex-
perimental moments obtained by means of elec-

w xtron-impact experiments 31 .
Concerning the existence conditions, it is re-

Ž .markable that, for the N molecule, i the CI2
moments verify the existence condition of Dowson

w x Ž .and Wragg 22 i.e., g does exist while the NHF12
Ž . Ž .ones do not i.e., g does exist , ii in both cases,123

the values of the moments are very close to the
limit case m m s 2m2, and therefore the above-0 2 1
mentioned approximations g and g are very12 123

Ž .similar to g , and iii the central and lower se-1
quences of experimental data verify the Dowson
and Wragg condition while the upper do not.

Table II shows the predicted values on un-
known quantities given by the different ME
approximations. It is worthy to observe that
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TABLE II
Predictions given for the N molecule by the first2
few ME approximations on the values of the

( )momentum density at the origin, g 0 , and some
n² :radial expectation values p , compared with the

( )CI ones; atomic units au are used.

2 3( ) ² : ² : ² :g 0 p p p

g 1.321 38.294 218.6 2268.2CI
MEg 2.002 27.982 74.51 248.011
MEg 1.127 21.023 37.19 74.4692
MEg 1.526 38.294 218.6 1831.41234

Ž .g 0 s 1.578 is closer to the ‘‘experimental’’ val-1234
Ž w x.ues around 1.6 " 0.2 30 than to the CI one.

Ž .Figure 3 shows the ME approximations to I p
obtained by using the above CI information. Be-

Ž .cause the CI g and also the NHF g is very12 123
similar to g , it is omitted in the figure.1

In Figure 4, the 4-moment ME approximation of
N is plotted for the upper, central, and lower2

w xsequences of experimental values given in 31 .
Similar comments on the agreement of solutions to
those given in the H case can be done for the N2 2
diatomic molecule.

We have also calculated the allowed moment
region for the existence of g ME and g ME approxi-12 123

Ž .mations Fig. 5 . Results for the 35 light diatomic
w xmolecules studied in 9 are quoted in Figure 1.

Regions I and II show, respectively, the allowed
and forbidden Kociszewski regions for the exis-
tence of ME momentum densities, having pre-

[ ] ( )FIGURE 3. CI 30 radial momentum density I p =
2 Ž . ME( ) ME( )4p p g p and ME approximations I p , I p , and1 2

ME ( ) ( ) 2 Ž .I p , where I p ' 4p p g p , for the N molecule.1234 2
[ ]The theoretical moments were taken from 30 . Atomic

( )units au are used.

[ ]FIGURE 4. CI 30 radial momentum density
( ) 2 Ž . ME ( )I p = 4p p g p and ME approximation I p '1234

2 (ME)( )4p p g p , calculated for the upper, central, and1234
[ ]lower sequences of moments of 31 for the N molecule2

( ) ( )see text for further details . Atomic units au are used.

scribed the first three normalized moments. The
figure, plotted in terms of the relative moments

ny1 ndefined as m s m m rm , also shows the al-n 0 n 1
MElowed region for g , which is 1 - m - 2.12 2

Conclusions

The ME technique has been successfully used to
approximate unknown momentum densities of di-
atomic molecules from the knowledge of a very
small set of experimental or theoretical data, i.e.,
the first few radial expectation values of the den-
sity. Those approximations allow one to estimate
the values of other unknown and physically rele-

Žvant properties of the system e.g., moments and
.local values of the density . The obtained results

Ž .are i the least biased ones by the information not
Ž .used, and ii convergent to the exact values of the

approximated quantities.
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FIGURE 5. Existence conditions for ME distributions having prescribed the first three moments in terms of relative
2 2 3moments m s m m rm and m s m m rm . Regions I and II represent the positivity inequalities for these relative2 0 2 1 3 0 3 1

moments. Moreover, region I is allowed and region II is forbidden for the existence of an ME distribution in accordance
[ ] [ ] ( )with the Kociszewski 23 conditions. The moments were taken from 9 . Atomic units au are used.
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