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1 Introduction

Consider the common experience of a student who progresses far enough in school math-
ematics to begin to study the calculus. After motivation of the topic of ‘rates of change’,
simple differentiation is learned. More advanced functions are then considered, and even-
tually the student meets the product, quotient and chain rules. The result: with enough
algebraic accuracy and persistence the student can determine derived functions for virtu-
ally any sufficiently well-behaved combination of standard functions. A natural contin-
uation of calculus is the determination of areas under curves and volumes of revolution,
which entails discussion of the fundamental theorem of calculus. This asserts that the
‘area function’ g(x) defined by

g(x) =
∫ x

a
f(t)dt

has derivative f(x). This leads to the problem of finding ‘antiderivatives’ - given a function
f(x), can we determine another function g(x) such that g′(x) = f(x)? Again, some
standard examples are usually considered first, before integration by substitution, parts
and other methods are examined. Indeed, the beginnings of an algorithmic approach are
considered based essentially on Hermite’s result that the integral of a rational function of
one real variable is elementary (see below for definition) since it is a linear combination of
logarithms, inverse tangents and rational functions.

Consider now the student’s plight ! Does he or she not have a right to expect that,
since (i) the link between differentiation and integration has been emphasized throughout
and (ii) he or she can calculate ‘any’ derivative, it should be possible to perform any
integration? Evidence that this is not the case normally involves such functions as e−x2

,
sin x/x, or

√
sin x but the message to the student, once understood, is the same; although

the problem of differentiation is formally solved, finding an antiderivative for a given
function f(x) at best involves locating the correct technique in a somewhat arbitrary
manner, and at worst complete failure. The fact that similar integrands (consider, for
example (1+ x)−2, (1+ x)−1, x(1+ x2)−1, (1+ x2)−2 and (1−x2)−1) give wildly different
answers serves only to add to the confusion.

Bearing this in mind, is there any way of tackling the integration problem, other than
by using a combination of random techniques, experience and luck ? The purpose of this
note is to point out that not only are there better ways of proceeding, (some of which
are of great practical use and are employed in the new generation of symbolic algebra
computation packages) but also that in some senses, the integration problem may be
regarded as completely solved. It is surprising how little known this result seems to be.
Even more surprising is the fact that the theory was initially established by Liouville (who
was probably in turn motivated by some conjectures of Abel) more than 150 years ago,
and, for the most part, does not require a great degree of mathematical sophistication.
It should be stressed that in all of the discussion below, we are concerned only with the
formal problem of finding antiderivatives, rather than foundational notions such as the
Lebesgue integral or measure theory.



2 Some Definitions

We assume throughout that we are interested in the purest form of the integration problem:
given f(x) can we determine an antiderivative g(x) such that g′(x) = f(x) ? As usual,
we do not expect g(x) to be determined uniquely, as an arbitrary constant may always
be added. This additive constant is irrelevant for the purposes of the discussion below,
however, and is taken to be zero throughout.

Of course, we have to decide what we regard as ‘allowable candidates’ for a solution.
In this article, we shall restrict our attention to elementary functions. By elementary
functions, we mean those built up from rational functions of x by successively exponenti-
ating, taking logarithms, and performing algebraic operations (that is, solving polynomial
equations whose coefficients are previously defined functions). We also choose to use not
only real, but complex numbers throughout, since the set of elementary functions then
includes sines, cosines etc. as well as their inverses, by using, for example, Euler’s formula
cos x = (eix + e−ix)/2. For our purposes, this definition of the elementary functions will
prove sufficient, and the reader is encouraged to equate ‘elementary functions’ with ‘func-
tions that may be built up with a scientific calculator using a finite number of operations’.
It is worth making the point however that for total rigour a little more care is required in
defining elementary functions, since technical complications may occur when dealing with
multivalued functions. Full details are given in Ritt (1948).

It is also important to realize that the point at issue here does not concern ‘whether
an answer exists’, but if an answer exists in a certain form. An analogy may be drawn
with the solution of polynomial equations: given say a quadratic equation we could either
determine the roots by using the standard formula, or employ a numerical method such
as Newton-Raphson. In the spirit of the present discussion we are interested only in
the former ‘method of solution’, that is, is there a formula? Of course for the general
polynomial equation it was proved by Galois that a general formula exists only when the
polynomial has degree less than or equal to 4, but what can be said about the integration
problem? Some feel for the sort of results that may be established may be gained from
the result that ∫

xndx =
xn+1

n + 1
for n 6= −1. What can be said in the special case n = −1? It is possible that the answer
could still be a rational function? That this cannot be the case may be easily shown by
contradiction, for if it were true that

∫ 1
x

dx =
P (x)
Q(x)

(1)

where P and Q are coprime (all common factors cancelled) polynomials, then by differen-
tiation

1
x

=
QP ′ − PQ′

Q2
.

This gives
Q2 = x(QP ′ − PQ′)

and thus Q has a zero at x = 0. Assuming that Q = xnR(x) where R(0) 6= 0 and dividing
by xn we have

xnR2 = xRP ′ − nPR − xPR′,



but this implies that the term PR is zero at x = 0, contradicting the assumption that
neither P nor R has a zero at x = 0. Thus the integral of 1/x cannot have the form given
by (1).

3 The Theorem of Liouville

Liouville’s most important theorem on the problem of integration concerns the form that
a primitive must take, if it is to be elementary. Davenport et al. (1988) state the theorem
as follows:

Theorem (Liouville, 1833) Let f be a function from some function field K. If f has
an elementary integral over K, it has an integral of the form

∫
f = v0 +

n∑
i=1

ci log vi,

where v0 belongs to K, the vi belong to K̂, an extension of K by a finite number of
constants algebraic over K, and the ci belong to K̂ and are constant.

There may be terms in this statement with which some readers are unfamiliar, but the
technical details of the theorem are not required for what follows. The theorem essentially
states that if f has an elementary integral, then (by differentiation) it must be of the form

f = v′0 +
n∑

i=1

civ
′
i

vi
.

For the context we have in mind here, the function field K is simply that of the elementary
functions.

This theorem is obviously one of great power, but the proof (see, for example Rosenlicht
(1972)), which is based on induction, is quite short and requires only a minimal amount
of specialist knowledge. We content ourselves here by observing that if, for example, f
is algebraic, (any function constructed in a finite number of steps from the operations
of addition, subtraction, multiplication and division, the extraction of integral roots, and
from the inverses of any functions already constructed) then

∫
f cannot include exponen-

tials since, roughly speaking, exponentials survive differentiation. The same applies to
any logarithmic term involved in

∫
f unless it enters the expression in a linear fashion.

Also the vi may be shown to be algebraic since logarithms of elementary functions, for
example, also ‘partially’ survive.

4 Functions without Elementary Primitives

In what follows, we exploit Liouville’s theorem to obtain a stronger version of the general
result that is applicable to some special cases. Specifically, it is asserted that:-

Theorem (‘Rational Liouville theorem’) Let f and g be algebraic functions of x and
assume that g is not a constant. Then if the integral of feg is elementary, it is given by∫

fegdx = Reg



where R is rational in f , g and x.

For the sake of completeness, we give a proof of this result adapted from Ritt (1948) p.
47. This proof is not difficult, but a knowledge of elementary partial differentiation is
necessary and the reader may wish to omit it at the first reading. The key section of the
proof makes use of the result that in an identity (as opposed to an equality) between two
functions, the independent variable may be replaced by any other variable (including one
that contains a parameter) and the expression may be differentiated and integrated. As
an example of this, consider the well-known trigonometrical identity

sin 2θ = 2 sin θ cos θ.

Suppose that we replace θ by µθ and differentiate the identity with respect to µ. This
yields

2θ cos 2µθ = 2θ cos2 µθ − 2θ sin2 µθ.

Now setting µ = 1 yields the other ‘double angle’ formula

cos 2θ = cos2 θ − sin2 θ.

Many readers will no doubt have encountered manipulations similar to this which com-
monly occur in the calculation of the envelopes of families of curves. The only other
result that we ask the reader to assume is that the exponential of a non-constant algebraic
function cannot itself be an algebraic function, and is henceforth referred to as ‘transcen-
dental’.

Proof of Rational Liouville theorem Assume that f and g satisfy the conditions of
the theorem, and that the integral of feg is denoted by u. By Liouville’s theorem, if u is
elementary then it must have the form

u = v0 +
n∑

i=1

ci log vi.

Moreover, denoting eg(x) by θ, this may be written

u = v0(θ, x) +
n∑

i=1

ci log vi(θ, x). (2)

with each of the vi rational in θ, x, f and g. The equation (2) is an identity in the variable
x, but now we regard θ and x as independent variables. Then differentiating with respect
to x and using the chain rule we have

du

dx
= fθ = θg′(x)

∂v0

∂θ
+

∂v0

∂x
+

n∑
i=1

ci

vi
(θg′(x)

∂vi

∂θ
+

∂vi

∂x
). (3)

Our goal is now to derive a partial differential equation for u(θ, x), and the fact that θ is
transcendental guarantees that the identity (3) is an identity in both x and θ, and it is
therefore permissible to replace θ with µθ whilst leaving x unchanged, even though θ is
itself a function of x. (See further remarks below.) An integration with respect to x now
gives

µu = v0(µθ, x) +
n∑

i=1

ci log vi(µθ, x) + C(µ) (4)



where C(µ) is an arbitrary ‘constant’. From (2) we see that

u(µθ, x) = v0(µθ, x) +
n∑

i=1

ci log vi(µθ, x).

and so, comparing this with (4) we find that

µu(θ, x) = u(µθ, x) + C(µ).

Finally, differentiation with respect to µ gives, on setting µ = 1,

θ
∂u(θ, x)

∂θ
= u(θ, x) + D

where D = C ′(1) is a constant. This may be solved in standard fashion to yield

u = −D + A(x)θ

and, setting θ = θ0, we find that A(x) is determined by u(θ0, x) = A(x)θ0 + D Thus

u = θ

(
u(θ0, x) − D

θ0

)
+ D

and is, indeed, of the form stated.

The key step in the proof concerns the operation of replacing θ by µθ whilst leaving x
unchanged. To understand why θ must be transcendental to allow this, consider first the
case where f = g = x. Now (2) becomes u = xθ− θ whilst (3) becomes fθ = θ(x− 1) + θ.
Clearly if θ is now replaced by µθ the identity still holds. Consider, however, what could
happen if θ was not transcendental. Suppose, for example, we tried to repeat the same
argument for the integral of fθ taking f = x and θ = x2. (2) becomes u = x4/4, and
the equivalent of (3) is now fθ = θ + x(2x). A falsehood now results if the variable θ is
replaced by µθ whilst x is left unchanged; essentially this has come about because θ and
x may be expressed in terms of each other in a non trivial way.

The significance of the rational Liouville theorem is that it may be used to show very
quickly why functions such as e−x2

and ex/x do not possess elementary primitives. For
example, if the integral of the function e−x2

was elementary, then by the theorem the
primitive would have to take the form∫

e−x2
dx = R(x)e−x2

. (5)

Suppose that we now set R(x) = P (x)/Q(x) where both P and Q are polynomials (without
loss of generality we may assume that Q 6= 0 and P and Q have been reduced to their
lowest form so that any common factors have been cancelled). Then if (5) is to be true,
differentiation shows that

e−x2
=

QP ′ − PQ′

Q2
e−x2 − 2x

P

Q
e−x2

and thus
Q(Q − P ′ + 2xP ) = −PQ′. (6)



If P and Q possess zeroes, then they cannot be shared (we have assumed that all common
factors have been cancelled). Further, if Q possesses a (possibly complex) zero of order n
at the point a, so that Q(x) = (x− a)nh(x) for some polynomial h(x) with h(a) 6= 0, then
Q′ possesses a zero of order n − 1. This would mean however that the left hand side of
(6) has a zero of order at least n, whilst the right hand side has a zero of order n − 1, a
contradiction. Q is therefore a polynomial possessing no zeroes and in consequence must
be a constant, Q0 say. Thus (6) yields

P ′ − 2xP = Q0. (7)

The final step in the argument to prove that the integral of e−x2
is not elementary consists

of observing that (7) cannot be satisfied by any polynomial P , for if the highest power
in P is m ≥ 0 say then the highest power in P ′ will be m − 1, whilst the highest power
in 2xP is m + 1. Evidently the difference between two such polynomials can never be a
constant.

Now that the basic method has been established, other results are easy to obtain. For
example, suppose that the integral of ex/x was elementary. Then, proceeding along similar
lines to the above argument it would be true that

∫
ex

x
dx =

P (x)
Q(x)

ex.

Differentiation and rearrangement gives

Q(Q − xP ′ − Px) = −xPQ′

and again it is fruitful to consider the zeroes (if any) of Q(x). First suppose that 0 is not
a zero of Q. Then by the same argument used in the previous case we must have Q = Q0

= constant and we are left to determine a polynomial P satisfying

xP ′ + xP = Q0.

Again, by considering the term containing the highest power in x it may quickly be es-
tablished that this is impossible. The only remaining hope is therefore that 0 is the only
zero of Q(x), in which case it must be that Q(x) = Kxn for some constant K and some
n ≥ 1. Thence

Kxn(Kxn − xP ′ − Px) = −xPnKxn−1

or
(Kxn − xP ′ − Px) = −Pn,

an immediate contradiction since the left hand side is zero at x = 0 but the right hand
side is not. The result that ex/x has no elementary primitive may also be used to obtain
other conclusions. For example, a substitution x = log u shows that the integral of 1/ log u
cannot be elementary. More generally, a substitution x = k log u shows that

∫
uk−1

log u
du

is not elementary for any non-zero k. In the exceptional case where k = 0, there is of
course an elementary primitive, namely log log u. Further, exploiting the fact that we are
working over the field of complex numbers, it is a simple matter to show by an examination



of the function eix/x that the integral of sin x/x is not elementary. (For details, see Mead
(1961)).

As well as providing simple proofs that certain well-known functions have no elemen-
tary primitives, arguments similar to those used above may be employed to investigate
more complicated integrals. As an example of this, we determine under what (if any)
circumstances we may find an elementary expression for

I =
∫

e−x2
(αx3 + βx2 + γx + δ)dx

(x + 1)2

where α, β, γ and δ are constants (not all zero). Arguing in the normal way that the inte-
gral, if elementary, must be of the form P (x)e−x2

/Q(x) where P and Q are polynomials,
we find by differentiation that, if this is so, then

Q[Q(αx3 + βx2 + γx + δ) + 2x(x + 1)2P − (x + 1)2P ′] = −(x + 1)2PQ′. (8)

Assuming as usual that P and Q have no common factors, consideration of the degrees
of the left and right hand sides of the equation at the zeroes of Q shows that either (i)
Q = Q0, a constant, or (ii) Q = A(x + 1)n for some n > 0. We consider case (i) first: if it
is true that

Q0(αx3 + βx2 + γx + δ) + 2x(x + 1)2P − (x + 1)2P ′ = 0,

then evidently unless P has degree zero so that P = P0 there will be uncancelled terms of
degree 4 or greater. Setting P = P0 and collecting terms gives

x3[αQ0 + 2P0] + x2[βQ0 + 4P0] + x[γQ0 + 2P0] + [δQ0] = 0.

If Q0 = 0 then P0 = 0 and the problem is the trivial one, so it must be that δ = 0, in
which case α = γ and β = 2γ and the integral is given by

I =
P0

Q0
e−x2

=
−γ

2
e−x2

.

Case (ii) provides some less obvious results, for after setting Q = A(x + 1)n in (8) and
cancelling common factors, we find that

A(x + 1)n−1(αx3 + βx2 + γx + δ) + 2x(x + 1)P − (x + 1)P ′ + Pn = 0.

Now n is an integer greater than zero, but if n ≥ 2 then setting x = −1 in the above
expression implies that P has a zero at x = −1, an impossibility since P and Q share no
factors. Thus n = 1 and P is linear, say of the form P0+P1x. Finally, equating coefficients
of x gives the equations

Aα + 2P1 = 0
Aβ + 2P0 + 2P1 = 0

Aγ + 2P0 = 0
Aδ − P1 + P0 = 0

which may easily be solved to yield further conditions under which I is elementary, namely
that β = α + γ and 2δ = γ − α. If these pertain, then the integral is given by

I =
−αx − γ

2(x + 1)
e−x2

,

so completing the task of specifying precisely the conditions under which I is elementary.



5 Extensions to Liouville’s Theorem and Implications for

Computer Algebra

Having seen how Liouville’s theorem allows many of the more familiar results concerning
closed-form integration to be proved, the question naturally arises as to whether the
theorem may be extended. In particular, it would be attractive to augment the set of
‘elementary’ functions by adding some of the more useful special functions such as the
error function, Bessel functions and so on. In general, it turns out that this is not possible
(the details are somewhat involved, but this area is one of constant evolution and the
interested reader is referred to the interesting discussion in Davenport et al. (1988)) and
we have to be content with the class of elementary functions defined above. It is interesting
to observe in passing however that another consequence of the theorems given above is
that ‘special’ functions such as erf(x) defined by

erf(x) =
2√
π

∫ x

0
e−t2dt

really are ‘new’ functions - however hard we try it is not possible to express them as
elementary functions.

Another obvious possible generalization of Liouville’s theorem concerns functions that
are not themselves elementary, but satisfy equations composed only of elementary func-
tions. For example, the function w(x) defined by the equation

ew − w = x

belongs to this class of what are usually termed ‘implicitly elementary’ functions. In this
case, substantial generalizations are possible, though the mathematics involved becomes
significantly more complicated. The interested reader is referred, for example, to Risch
(1976), who proves a 53 year old conjecture of Ritt to the effect that if the integral of an
elementary function is implicitly elementary, then it is elementary. Other generalizations
of this sort are also possible.

Finally, it is interesting to conjecture why, after a gap of 130 years following Liouville’s
work during which, apart from the work of Ritt and Ostrowski (1946), hardly any literature
appeared concerning the problem, (Hardy (1905) commented that ‘[Liouville’s memoirs]
seem to have fallen into an oblivion which they certainly do not deserve’) there was a
sudden re-awakening of interest in the 1960’s and 1970’s. It is no coincidence that during
the last 20 years the exponential rise in computing power has made it possible to construct
increasingly accomplished symbolic manipulation (computer algebra) packages that can
exploit the classical theorems to perform indefinite integration. An algorithmic approach
to the problem of determining whether an elementary function has an elementary integral
was discussed by Risch (1969). In principle, this provides a complete solution ot the
problem. However, the sophistication of the algorithm, combined with the fact that many
of the integrals that computer algebra packages are commonly required to perform are of
a fairly simple nature, render the full implementation of the Risch algorithm somewhat
unwieldy and in practice the algorithm is usually ‘chopped’ and combined with some sort
of pattern search. The results of such packages are impressive. To give a random example,
the computer algebra package MAPLE took less than 1 second CPU time to determine
that ∫ √

tan xdx =
1√
2

(
arctan

(√
2 tan x

1 − tan x

)
− log

(
1 + tan x +

√
2 tan x√

1 + tan2 x

))
.
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