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We describe a frequency domain technique for the analysis of
intrinsic noise within negatively autoregulated gene circuits. This
approach is based on the transfer function around the feedback
loop (loop transmission) and the equivalent noise bandwidth of
the system. The loop transmission, T, is shown to be a determining
factor of the dynamics and the noise behavior of autoregulated
gene circuits, and this T-based technique provides a simple and
flexible method for the analysis of noise arising from any source
within the gene circuit. We show that negative feedback not only
reduces the variance of the noise in the protein concentration, but
also shifts this noise to higher frequencies where it may have a
negligible effect on the noise behavior of following gene circuits
within a cascade. This predicted effect is demonstrated through the
exact stochastic simulation of a two-gene cascade. The analysis
elucidates important aspects of gene circuit structure that control
functionality, and may provide some insights into selective pres-
sures leading to this structure. The resulting analytical relation-
ships have a simple form, making them especially useful as syn-
thetic gene circuit design equations. With the exception of the
linearization of Hill kinetics, this technique is general and may be
applied to the analysis or design of networks of higher complexity.
This utility is demonstrated through the exact stochastic simulation
of an autoregulated two-gene cascade operating near instability.

There has been considerable interest in the modeling and
simulation of genetic circuits (1–6). This modeling has aided

in the design of synthetic genetic circuits (7–9), which may prove
helpful in understanding natural complexity, or may find appli-
cations in biosensors or other whole cell devices (10). The
stochastic properties of these systems are of particular interest in
modeling (1, 11–14), but also in some experimental studies
(14–17). The molecules of interest, small signaling molecules,
mRNA, and the resulting proteins are often present in low
abundance within individual cells, giving rise to wide spatial and
temporal variations in the concentration of these molecules.

Several strategies for analyzing or simulating the stochastic
properties of genetic circuits have been reported (1, 11–15).
Most often the results are given as signal-to-noise ratio, noise
strength, stability parameters, or a time history of molecular
concentration. Lost or hidden within such results are the fre-
quency domain features of the noise, which are quite important
as noise cascades through subsequent circuits. Maintaining the
frequency domain features is especially important in autoregu-
lated gene circuit analysis because feedback impacts both mag-
nitude and frequency composition of the noise. There are
electronic circuit-processing schemes that optimize performance
by shifting noise into a frequency regime where it has a smaller
impact on total system performance (e.g., sigma-delta analog-
to-digital converters). Similar schemes could be used in engi-
neered genetic circuits and may have evolved within natural
genetic circuits. A complete analysis requires that the frequency
composition of the noise be preserved.

Here, we apply frequency domain techniques by using the loop
transmission concept to elucidate the noise performance of genetic
circuits while maintaining critical frequency information. The as-

sumption of system linearity is the most significant limitation of the
methods presented here. However, linearity in a limited neighbor-
hood around a steady state condition has been assumed in other
analyses, and results that agree well with exact stochastic simula-
tions fully accounting for circuit nonlinearity were obtained for at
least some regions of operation (12, 14). This analysis reveals
important relationships between circuit parameters that have im-
plications for the noise performance of autoregulated circuits. The
resulting equations have simple forms, making them useful as
design equations, and lead to straightforward interpretations and to
possible explanations for the range and ordering of parameter
values found in natural genetic circuits.

Open Loop Gene Circuit
Fig. 1a is a schematic diagram of an unregulated single gene
system. This discrete stochastic system is most accurately rep-
resented by a chemical master equation that defines the time
evolution of the probabilities of finding the system in particular
discrete states (1). However, the Langevin approach, which
models the system with coupled continuous differential equa-
tions with additive noise terms, is often used in the analysis of
these systems (1, 14). Although it is an approximate analysis,
which loses validity when the number of mRNA or protein
molecules is small, this approach is often solved with much
greater analytical ease than other representations.

Noise properties of the systems in Fig. 1 were recently
analyzed and modeled (12), and this was followed by a Langevin
analysis and experimental validation of the model (14). The
Langevin equations for this system are

dr
dt

� ��Rr � kR�t� � �R [1]

dp
dt

� ��Pp � kP r � �P, [2]

where r and p are mRNA and protein concentrations, �R and �P
are mRNA and protein decay rate constants, kR is the transcrip-
tion rate, kP is the translation rate constant, and �R and �p are
white noise sources (14). At steady state, the average mRNA (�r�)
and protein (� p�) populations found from Eqs. 1 and 2 are kR��R
and kRkR��R�P, respectively.

The random timing and discrete nature of each biosynthetic and
molecular decay event generate four distinct noise sources associ-
ated with mRNA synthesis, mRNA decay, protein synthesis, and
protein decay. Each of these is analogous to electronic shot noise
arising from discrete charge carriers crossing a semiconductor
junction at random times. Shot noise has been extensively analyzed
and is usually considered in terms of its frequency composition, or
power spectral density (PSD). The single-sided (i.e., positive fre-
quency only) PSD is given by 2qIave (16), where q is the discrete unit
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of the current carrier and Iave is the average current. We infer the
power spectral density (we use the term ‘‘power’’ here in analogy
to electronic noise) for mRNA and protein synthesis and decay
from the shot noise relationship. The average rate of mRNA
synthesis is kR (�Iave) produced in discrete units of one molecule
(�q), giving a single-sided PSD of 2kR�[(molecules)2�(s2�Hz)]. Ide-
ally the shot noise PSD would be constant with frequency (i.e., a
white spectrum), although any real PSD has a limited extent in
frequency. The dead time between mRNA synthesis events [e.g.,
short interval of blockage as an RNA polymerase open complex
clears the promoter region (11)] band-limits this noise. However,
other frequency response-determining processes, such as protein
and mRNA decay, are the more limiting, and a white spectrum can
be assumed with no loss of accuracy.

The average decay and synthesis rates are equivalent at steady
state, giving a PSD for the mRNA decay noise source that is also
2kR. If the population of molecules is large enough, synthesis and
decay processes are essentially uncorrelated, and the combined
single-sided PSD for both mRNA noise sources, SRR, is

SRR � 2kR � 2kR � 4kR. [3]

By using a similar argument,

SPP � 2
kRkP

�R
� 2

kRkP

�R
� 4

kRkP

�R
, [4]

where SPP is the combined single-sided PSD for both protein noise
sources. The factors of four on the right hand side of Eqs. 3 and 4
arise from the selection of a single-sided PSD (a factor of two) and
a second factor of two from the summation of the two uncorrelated
noise terms associated with synthesis and decay. This lack of
correlation between synthesis and decay noise terms requires that
synthesis event timing does not affect decay event timing. At very
low populations, this assumption may not be valid.

The output (i.e., protein concentration) PSD is found by
summation of noise source PSDs as modified by the gene circuit
(see Eq. A-2 in Appendix). The frequency domain transfer
functions (A( f ) in Appendix) for sources located at the point of
protein (AP( f )) and mRNA (AR( f )) productions are found by
Fourier transform and solution of Eqs. 1 and 2 to obtain

AP�ƒ� �
AP�0�

�1 � i
ƒ

ƒprotein
� , AP�0� �

1
�P

[5]

AR�ƒ� �
AR�0�

�1 � i
ƒ

ƒmRNA
��1 � i

ƒ
ƒprotein

� , AR�0� �
kP

�R�P
�

b
�P

[6]

where the critical frequencies associated with mRNA ( fmRNA �
�R�2�) and protein decay ( fprotein � �P�2�) are known as the
poles of the system and define the frequency behavior of the
transfer function. AR( f ) � AR(0) when f is small compared with
either pole frequency. At frequencies above the first pole
(assuming the poles are well spaced), �AR� goes approximately as
1�f and the phase shift asymptotically approaches �90°. After
the second pole, �AR� goes approximately as 1�f 2 and the phase
shift asymptotically approaches �180°. The term b (�kP��R) in
Eq. 6 is the average number of proteins produced from each
mRNA transcript [or ‘‘burst’’ rate (11)]. Because the effect of a
source PSD on the output PSD goes down as 1�f 2 after the first
pole, the second pole is often neglected. Because mRNA
typically decays much faster than the protein (�R �� �P), we
neglect the mRNA pole in this noise analysis. With this simpli-
fication, the noise bandwidth (	fN) for both noise sources can be
approximated as (see Appendix)

	ƒN �
�

2
ƒprotein �

�P

4
, [7]

and the variance of the output (protein population) noise follows
directly (see Eq. A-5 in Appendix) as

�n�out
2 � �SPP�AP�0��2 � SRR�AR�0��2�	ƒN

� �4kRkP

�R�P
2 �

4kRkP
2

�R
2 �P

2 ��P

4
� �kPkR

�P�R
�

kP
2 kR

�P�R
2�

�
kRkP

�R�P
�1 �

kP

�R
� � � p��1 � b�, [8]

where we have used the relationships for � p� and b defined
above.

The noise figures of merit are

�n�out
2

� p�
� 1 � b, [9]

� p�

�n�out
� � � p�

�1 � b�
� � kRb

�P�1 � b�
, [10]

Eq. 9 gives the noise strength and Eq. 10 gives the output
signal-to-noise ratio with results that are in agreement with
previous analysis (12, 14). With these definitions and foundation
in the frequency domain analysis of noise in gene circuits, we now
turn to the case of autoregulated gene circuits.

Autoregulated Gene Circuit
Feedback is applied by allowing the output signal to modulate the
level of the input signal (Fig. 1b). A Hill repression function of the
form kR � kRmax

�[1 
 (p�kd)n] often describes the behavior of
autoregulated gene circuits, where kRmax

is the maximum rate of
transcription, kd is the protein population where kR � kRmax

�2, and
n is known as the Hill coefficient. To allow linear analysis, we do a
Taylor series expansion of the Hill function around � p� to obtain
kR � k0 � � p with � � dkR�dp�p�� p� and k0 � kRmax

�[1 


Fig. 1. Model of single gene expression. (a) mRNA molecules are synthesized
from the template DNA strand at rate kR, and proteins are translated at a rate
of kP off of each mRNA molecule. �R and �P are the decay rates for mRNA and
protein respectively. (b) The same as a except that the protein is negatively
autoregulated such that kR � kRmax�[1 
 (p�kd)n], where kRmax is the maximum
rate of transcription, kd is the concentration of protein where kR � kRmax�2, and
n is the Hill coefficient.
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(� p��kd)n] 
 �� p�. The higher order terms in the Taylor series have
been neglected because we assume only small excursions around
� p�. This linear approximation is most accurate for small variations
around � p� � kd. At low protein population, the continuous
representation and the small excursion around � p� assumptions in
the series expansion are not valid. The Hill expression assumes a
change in p produces an instantaneous change in kR, and this
assumption is usually followed in gene circuit analysis (8, 12, 14).
Whereas the repression dynamics are likely to be much faster than
other processes in the circuit, the frequency response of repression
may play a role in second order effects. Although it will be neglected
in portions of the analysis to follow, in general we will assume that
� has a frequency dependency.

To deal with feedback, we introduce the loop transmission
concept (see Appendix). The loop transmission, T, is the transfer
function around the loop and may be thought of as a measure of
the resistance of the feedback loop to variation. T is calculated
by introducing a perturbation (	) at any point within the circuit
(e.g., a small change in transcription rate) and measuring the
response (�) that returns to the same point (e.g., a reactionary
change in transcription rate). T( f ) is given by �( f )�	( f ), and the
feedback is negative if T(0) is negative (i.e., has a phase of
�180°). T( f ) for the gene circuit of Fig. 1b is

T�ƒ� � AR�ƒ���ƒ�

�
AR�0���0�

�1 � i
ƒ

ƒprotein
��1 � i

ƒ
ƒmRNA

��1 � i
ƒ
ƒ�
�

�
T�0�

�1 � i
2�ƒ
�P

��1 � i
2�ƒ
�R

��1 � i
ƒ
ƒ�
� , [11]

where T(0) is �b�(0)��P, and AR( f ), fprotein, and fmRNA are as
described in the previous section. We assume a single pole ( f�)
to account for repression dynamics. Inspection of the loop
transmission allows interesting observations about this circuit.
Because each pole will add �90° of phase shift when fully in
effect, two poles in T well before fc (see Appendix), will produce
an oscillator or a latch, but not a stable system, because the third
pole will add enough phase shift to create positive feedback. The
typically large difference between mRNA and protein decay
rates allows stable negative feedback systems with a relatively
large �T(0)�. This finding is significant, because most of the
benefits of negative feedback systems are accentuated at larger
magnitudes of T as shown in the analysis to follow.

Because the steady-state value of the synthesis and decay
terms are altered by feedback, Eqs. 3 and 4 must be modified as
follows

SRR�ƒ� � 4�k0 	 ��0�� p�� � 4�k0 	
��0�bk0

�P�1 �
��0�b

�P
�	 � SRR

[12]

SPP�ƒ� �
4bk0

1 �
��0�b

�P

� SPP, [13]

where the autoregulated steady state value of � p� � bk0�{�P[1 

(�(0)b��P)]} was used. Assuming a reasonably large phase
margin, we approximate this gene circuit as a single dominant
pole system (see Appendix) with fprotein as the lowest frequency
pole in T. The variance of the output (protein population) noise
is found by using Eq A-5 in Appendix

�n�out
2 �

��1 � T�0��ƒprotein

2
�Spp�Acl�P�0��2 � SRR�Acl�R�0��2�

�
k0b�b � 1�

�P�1 � �T�0���2 , [14]

where Acl�R and Acl�P are the closed-loop gains for noise sources
located at mRNA and protein synthesis points. The T(0) in Eq.
11 and the forward gain and feedback terms (see Appendix) given
in table 1 were used to calculate Acl�R(0) and Acl�P(0). As
described in Appendix, a noise bandwidth of

	ƒN �
�

2
�1 � �T�0���ƒprotein [15]

was used in Eq. 14. The noise figures of merit for the autoregu-
lated system are

�n�out
2

� p�
�

�b � 1�

�1 � �T�0��� �

��total
2

� p�
�

unregulated

�1 � �T�0��� [16]

� p�

�n�out
� � bk0

�P�1 � b�
. [17]

Discussion
To a large degree, loop transmission determines the noise perfor-
mance of autoregulated systems. Eq. 16 indicates that the noise
strength of the negatively autoregulated system is reduced by a
factor of 1�(1 
 �T(0)�) compared with the unregulated case.
However, autoregulation has an additional but more subtle effect
on noise behavior that is not explicitly shown by other analyses. The
noise bandwidth of the autoregulated circuit is increased by a factor
of 1 
 �T(0)� compared with the unregulated case. Thus, not only
are the variance and standard deviation of the noise reduced by
feedback, the noise that remains is shifted to higher frequencies.

This spectral shift becomes especially important as noise
cascades through complex networks of genes. As an example,
consider an autoregulated protein ( p1) that controls the tran-
scription rate for a second protein ( p2) that is not autoregulated
(Fig. 2a). Depending on the value of �P2, the noise shifted to
higher frequencies through the action of negative feedback in the
first circuit may have a negligible effect on the total noise of p2.
This result leads to up to an additional factor of 1 
 �T(0)�
decrease in the effect of the noise in the p1 concentration on the
noise strength of p2 as is shown graphically in Fig. 2b and
illustrated through simulations in Fig. 3. In this figure, the ratio
of the simulated noise strengths for two cases ( p1 without
feedback�p1 with feedback) of the circuit of Fig. 2a is plotted as
a function of �P2. This noise strength ratio is shown both for total
p2 noise and with the intrinsic p2 noise removed so that only the
effect of the p1 noise is seen. For this case, when �P2 �� �P1, the
p2 noise strength is seen to be reduced by a factor that ap-
proaches (1 
 �T(0)�)2 compared with the unregulated case.
However, for larger values of �P2 the higher frequency noise
content of the p1 circuit with feedback is not filtered from the p2
noise content, and the advantage of feedback reduces to the
factor of 1 
 �T(0)� shown in Eq. 16.

Table 1. Forward gain and feedback terms used to calculate the
closed-loop gains in Eq. 14

Forward gain (A(0)) Feedback (
(0))

mRNA b��P �(0)
Protein 1��P �(0)b
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It is instructive to consider how far the reduction of noise by
feedback may be taken. Within a single gene circuit, it is difficult to
reach large values of T using physiologically relevant biosynthesis
and decay rates. However, applying feedback around cascaded
circuits (Fig. 4a) may provide large �T�, resulting in a large reduction
in PSD and a significant modification of the noise spectrum. The
cost is additional protein poles and reduced phase margin. With low
phase margin approaching instability, there will be considerable
peaking in the closed-loop frequency response near fc (defined in
Appendix). This frequency peaking will increase the variance of the
noise, but this excess noise will be concentrated at higher frequen-
cies as shown in the simulation results of Fig. 4b. This excess noise
will have no impact on the PSD at lower frequencies, and, if filtered
appropriately by downstream gene circuits, total noise can be
significantly reduced through this shifting of noise power into the
frequency peaking regime as demonstrated by the results of Fig. 4.
For this case, the limit of this strategy is set by the stability criteria
that phase margin must be greater than zero for the full range of
parameters.

Fig. 4b further illustrates that the analytical methods presented
here are easily extended to gene circuits of greater complexity such
as the gene circuit cascade in Fig. 4a. Whereas the dominant single
pole simplification cannot be used for such low phase margin
systems, Eqs. A-1 and A-2 in Appendix can be applied to the analysis
even as instability is approached. The PSDs calculated by using Eqs.
A-1 and A-2 are shown in Fig. 4b and found to compare quite well
with the PSDs derived from stochastic simulations for both open-
and closed-loop cases.

As the analysis and simulations described above demonstrate,
gene circuit structure heavily influences functionality. It is not just
the magnitude and dynamics of feedback, but also the order of poles
that has implications for the noise characteristics of autoregulated
gene circuits. As described in Appendix, poles in the portion of the
system in the feedback path from the output back to the noise
source (the 
 term in Appendix) become zeros in the closed-loop
system. In contrast to poles, for zeros, the magnitude of the
closed-loop gain increases with f, and the phase asymptotically
approaches 
90°. If the protein concentration is considered the
output, the zeros are at fmRNA and f�, and having the dominant pole
in the system provided by protein decay minimizes this noise. The
mRNA noise source has a zero at f�, indicating that this noise source
is minimized if f� is the highest frequency pole in the system. Thus,
to minimize protein noise, the sequence of poles would be protein
decay, followed by mRNA decay, followed by f�. For mRNA as an
output signal, these closed-loop zeros would be in different loca-
tions, and a different ordering of poles would be needed to
minimize mRNA noise. However, the regulatory elements are
usually proteins, and perhaps it is not just coincidence that auto-
regulated gene circuit parameters usually follow a sequence that
minimizes protein, not mRNA, noise. This pole sequence relation-
ship is an important consideration for synthetic gene circuit design
where the protein decay rate constant may be reduced (pole
frequency raised) through genetic manipulations to provide proper
circuit function (8).

In previous experimental studies, reporter gene activity from a
series of individual cells was measured by using techniques such as

Fig. 2. Cascaded gene circuits. (a) Schematic representation of a two-gene
cascade where the expression of the second gene is positively regulated by the
concentration of the first protein such that kR2 � kRmax2�[1 
 (kd2�p1)n]. The
first gene circuit is negatively autoregulated as described in Fig. 1b. (b)
Graphical representation of the change in the p1 noise PSD caused by feedback
in the p1 circuit. If properly filtered by the second gene circuit in the cascade,
the noise between the unregulated and regulated noise bandwidths may be
rejected.

Fig. 3. Calculated and simulated ratio of p2 noise strengths (p1 circuit: without
feedback (i.e., kR1 � constant)�with feedback) of the gene cascade in Fig. 2a. This
ratio isplottedbothfor totalp2 noiseandwiththep2 intrinsicnoise removed,and
showsthatfeedbackmaydecreasetheeffectofp1 noisebyasmuchas (1
 �T(0)�)2.
The calculations were performed by using Eq. 16 for the regulated p1 noise
strength and Eq. 9 for the intrinsic p2 and unregulated p1 noise strengths. The
total p2 noise strength was found by adding the intrinsic p2 noise strength to the
p1 noise strength multiplied by the noise power gain, (dp2�dp1)2�p1 � �p1�, and
modifying the noise bandwidth to reflect the additional p2 pole. The parameters
for this circuit are as follows: b1 � 8, b2 � 4, �p1 � 0.0001925�s, �R1 � 0.00289�s,
�R2 �0.00578�s,kd1 �800,kd2 �600,krmax1 �0.0231�s,krmax2 �0.05�s,n1 �n2 �7.
For the no feedback case, kR1 was set to a constant value of 0.0167�s, giving the
same value of �p1�, 700, for both feedback and no feedback cases. �p2� varied with
the value of �p2, but was the same for feedback and no feedback cases. The
intrinsic noise of p2 was determined in simulation by setting kR2 � 0.0367�s
whereas all other parameters remained unchanged. The simulation method is
described in Appendix.

4554 � www.pnas.org�cgi�doi�10.1073�pnas.0736140100 Simpson et al.



flow cytometry (14) or fluorescence microscopy (15). It is assumed
that this phenotypic noise has a statistical equivalence to that
obtained from a time sequence of reporter gene activity measured
in an individual cell. However, the PSD is the Fourier transform of
the autocorrelation function and can be found only by using time
sequence data from an individual cell. Because very low frequency
(less than mHz) measurements are needed to obtain a complete
picture of the PSD, observations of several hours (or longer) and
long cell cycle times may be required. However, some important
frequency domain features (e.g., frequency peaking) could be seen
with shorter observation times.

Limitations of the analysis technique presented here should be
noted. As described earlier, at low molecular populations the
Langevin representation, the shot noise analysis, and the Taylor
series expansion of the Hill functions are not valid. Also, noise
swings that create large excursions from �p� lead to inaccuracies
in the analysis due to nonlinearity and saturation of the Hill
function. Additionally, cell division and the random partitioning
of molecules between daughter cells are not included here.
Furthermore, the biochemical models used here are constructed
as birth and death processes with first order rates. Higher order
interactions between biochemical species will introduce more
complex frequency dependencies, which may invalidate some

assumptions (e.g., single dominant pole). However, as long as the
system can be linearized within a limited neighborhood of
operation, the equations in Appendix can be used to determine
the frequency domain behavior of the noise even as the circuit
approaches instability. Whereas all of these issues affect the
quantitative accuracy of the analysis for some circuits in some
operational regions, the qualitative (i.e., circuit architecture)
observations described above still have some validity.

Perhaps analysis tools like those presented here are best used to
examine gene circuit structure–function relationships. These rela-
tionships may elucidate the selective pressures that influenced
natural genetic circuit topology, or in synthetic biology applications,
provide guidance in the selection of operational regimes to explore
either through simulation or experiment. The frequency domain
approach demonstrates the central role of loop transmission in
noise behavior, the shifting of noise to higher frequency regimes
through autoregulation, the tradeoff between noise reduction
through negative autoregulation and excessive high frequency noise
as phase margin is diminished, and the noise optimizing ordering of
parameters that control dynamics. This understanding of simpler
components allows an examination of the structure–function rela-
tionship at higher levels of gene circuit ordering. It has been
suggested that there is an element of convergent evolution between
complex engineered devices and biological systems (18), and a rich
history of electronic system design may provide clues for under-
standing gene network topology. Autoregulated gene circuits al-
most certainly play an important role in gene networks (19), and the
history of the development of feedback configurations for elec-
tronic systems may be a resource for developing an understanding
of gene circuits and the selective pressure that drove their evolution.
The extent to which this analogy is useful can be determined only
by a great deal more analysis, modeling, and experimentation.
Conversely, it is possible that new strategies for engineered system
design may emerge from this examination. Certainly Black’s de-
velopment of electronic feedback amplifiers in the 1920s (20) may
have benefited from an understanding of autoregulated gene
function, and it is possible that presently unidentified gene network
topologies may impact future system design strategies.

Appendix
Loop Transmission Analysis. Loop transmission analysis is used
extensively to determine stability, closed-loop response, transient
response, and noise behavior of linear systems. This analysis starts
by casting the circuit into the form shown in Fig. 5. A( f) (the
forward gain) is the frequency-dependent transfer function from
the excitation source (ei) under consideration to the defined output
of the circuit [i.e., �Output��ei( f)], whereas 
( f) is the frequency-
dependent transfer function from this output back to the excitation
source. The loop transmission, T( f), is the transfer function around

Fig. 4. Global feedback in a gene cascade. (a) Schematic representation of a
two-gene cascade with both single-gene circuits within the feedback path such
thatkR1 �kRmax1�[1
 (p2�kd1)n]andkR2 �kRmax2�[1
 (kd2�p1)n]. (b)Thecalculated
and simulated noise PSD for the circuit in a both with and without (i.e., kR1 �
constant) feedback. The calculations were performed by using Eq. A-1 and A-2
from Appendix. The parameters for this circuit are as follows: krmax1 � krmax2 �
0.0231�s, b1 � b2 � 13, �p1 � �p2 � 0.0001925�s, �R1 � �R2 � 0.00578�s, kd1 � kd2

� 350, n1 � n2 � 7. For the no feedback case, kR1 was set to a constant value of
0.00449�s, giving the same value of �p2�, 490, for both feedback and no feedback
cases,allowingdirectcomparisonofthePSDs.Thesimulationmethodisdescribed
in Appendix.

Fig. 5. Partitioning of a circuit to allow analysis by using the feedback
formalism presented here. For a noise source at any location within the circuit,
the transfer functions A( f ) and 
( f ) are defined. A( f ) is the transfer function
from the noise source location to the output (i.e., location where noise
behavior is to be calculated) and 
( f ) is the transfer function from this output
back to the noise source location.
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the loop and is equal to A( f)
( f). Excitation sources may be located
anywhere within the circuit (e.g., different noise sources) leading to
different partitioning of circuit components into either A( f) or

( f). Whereas location affects the closed-loop gain of a given
excitation source, it does not change the loop transmission. Stability
of the feedback circuit can be determined by inspection of the
phase, �( fc), of T( fc), where the crossover frequency, fc, is defined
by the relationship �T( fc)� � 1. If �( fc) � �180°, then the system will
reach a stable steady state. Otherwise, the output will oscillate or
latch (i.e., reach a fixed state that does not respond to changes in
the excitation signal). The phase margin of the system, �PM, is �( fc)

 180°, with larger phase margin leading to more stable system
response.

The closed-loop gain, Acl, is given by

Acl�ƒ� �
1


�ƒ�
� �T�ƒ�

1 	 T�ƒ�
�, [A-1]

and the poles of 
( f ) become zeros in the closed-loop response.
For open-loop circuits (
( f ) � 0) Eq. A-1 reduces to A( f ). For
multiple noise sources at m different locations within the circuit,
the PSD of the output noise, Snn�o, is

Snn�o � 

j�1

m

Acl� j�ƒ�A*cl� j�ƒ�Snn� j, [A-2]

where Acl� j and Snn� j are the closed-loop gain and PSD of the
noise source at location j.

If the second pole in the system is approximately a factor of
2 or more greater than fc (�PM � 60°) and 
( f ) does not contain
the first pole in the system, Eq. A-1 can be approximated as a
single dominant pole system given by

Acl�ƒ� �
1


�0�
� �T�0�

1 	 T�0�
� 1

�1 � i
ƒ

�1 � �T�0���ƒp1
� , [A-3]

where fp1 is the first (i.e., dominant) pole in T. Eq. A-3 demon-
strates that an important effect of negative feedback is an
increase in system bandwidth. The noise bandwidth of the system
is given by

	ƒN �

0

�A*cl�ƒ�Acl�ƒ�dƒ
�Acl�0��2 . [A-4]

For a single pole system 	fN � (��2)fp, where fp is the pole
frequency. For this single dominant pole system, the noise

variance at the output due to white noise sources within the
system is given by

�out
2 �

��1 � T�0��ƒp1

2 

j�1

m

Snn� j�Acl� j�0��2. [A-5]

Simulations. Stochastic simulations shown in Figs. 3 and 4 were
conducted by using Gillespie’s algorithm (21) for two-gene
circuits in which the second gene was under positive regulation
of the first. The system was assumed to be at quasi steady-state
for t � 50�kmin where kmin is the smallest rate constant in the
simulation. The means and variances of gene product popula-
tions were calculated by sampling the quasi steady-state time
series at a period of 10 s until the change in mean was less than
5 � 10�4 over a time span of 400,000 s. PSDs of the time series
were calculated via fast Fourier transformation of 32,000 auto-
correlation values with a sampling time of 10 s.

Parameter Selection for Example Gene Circuits. The parameters for
the example gene circuits were chosen both to demonstrate key
points of the analysis and to fit within a physiologically relevant
range. The burst rates used in the examples (b � 4 to 13) were
near that for lacA (b � 5) and well below the b � 40 of lacZ (22).
The mRNA and protein decay rates where selected to yield
half-lives of 2–4 min and 1 h, respectively (23). The wide
variation in Hill kinetic parameters krmax

, n, and kd observed in
natural systems reflects the stoichiometric and kinetic structure
of repression and induction mechanisms. The parameters chosen
here were selected from ranges used in other analyses of this type
(12, 14) and to produce suitably large �T(0)� that clearly dem-
onstrate the effects of loop transmission on noise behavior. For
the nonfeedback cases, values of kR were selected to approximate
the mean populations of p1 for the corresponding feedback cases.
The transcription rate used to calculate the intrinsic noise in the
second gene in Fig. 3 was calculated assuming Hill kinetics and
the mean population of p1.
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