The structure of the Hecke algebras of $G L_{2}\left(F_{q}\right)$ relative to the split torus and its normalizer

Yoshiyuki Mori
(Received July 10, 2003)

Abstract

Let A be the subgroup of $G=G L_{2}\left(F_{q}\right)$ consisting of diagonal matrices. We study the structure of the Hecke algebra $\mathscr{H}(G, A)$ of G relative to A. In particular, we determine the multiplication table of $\mathscr{H}(G, A)$ with respect to the standard basis. As an application, we describe the multiplication table of the Hecke algebra $\mathscr{H}(G, H)$ where H is the normalizer of A in G.

1. Introduction

The Hecke algebra $\mathscr{H}(G, A)$ of a finite group G relative to its subgroup A is a generalization of the group algebra $\mathbf{C} G$ of G, whose structure and representations are interesting mathematical objects as well as those of $\mathbf{C G}$.

In particular, the Hecke algebra $\mathscr{H}(G, A)$ plays an important role in the study of vertex-transitive graphs with vertex set G / A. In fact, such a graph is constructed by giving a certain family of double cosets of G relative to A. Moreover the adjacency matrix and its powers of such a graph are described in terms of the elements of $\mathscr{H}(G, A)([3])$. Therefore if one knows the multiplicative structure and irreducible characters of $\mathscr{H}(G, A)$, one can find the spectra of vertex-transitive graphs over G / A.

Let $G=G L_{2}\left(F_{q}\right)$ be the general linear group of 2×2 non-singular matrices over the finite field F_{q}, and let A be the subgroup of diagonal matrices of G (a split torus of G) and H be the normalizer of A in G. In our previous paper ([4]), we have considered the irreducible characters of $\mathscr{H}(G, A)$ and described the character table of it with respect to the standard basis of $\mathscr{H}(G, A)$. In the present article, we study the multiplicative structure of both $\mathscr{H}(G, A)$ and $\mathscr{H}(G, H)$. In particular we determine the multiplication tables of both $\mathscr{H}(G, A)$ and $\mathscr{H}(G, H)$ with respect to their standard basis.

The paper is organized as follows. In $\S 2$ we consider the double coset spaces $A \backslash G / A$ and $H \backslash G / H$. Using Bruhat decomposition of G, we determine a complete set \mathscr{R} of representatives of $A \backslash G / A$ in Theorem 2.1. Moreover decomposing an H double coset into A double cosets, we give a complete set of

[^0]representatives of $H \backslash G / H$ in Theorem 2.2. Let $\operatorname{ind}(A g A)$ (resp. ind $(H g H)$) be the number of left A-cosets (resp. H-cosets) in the double coset $\operatorname{Ag} A$ (resp. $H g H)$. Their actual values are given in Theorem 2.3.

In §3 we introduce the Hecke algebra $\mathscr{H}(G, A)$ (resp. $\mathscr{H}(G, H)$), which is defined by $\mathscr{H}(G, A)=\varepsilon \mathbf{C} G \varepsilon$ (resp. $\left.\varepsilon^{\prime} \mathbf{C} G \varepsilon^{\prime}\right)$ where ε (resp. ε^{\prime}) is the idempotent of $\mathbf{C G}$ given by

$$
\varepsilon=|A|^{-1} \sum_{a \in A} a \quad\left(\text { resp. } \varepsilon^{\prime}=|H|^{-1} \sum_{h \in H} h\right) .
$$

We notice that $\mathscr{H}(G, H)$ is a subalgebra of $\mathscr{H}(G, A)$ since A is a normal subgroup of H. The elements $\varepsilon[g]=\operatorname{ind}(A g A) \varepsilon g \varepsilon(g \in \mathscr{R})$ of $\mathscr{H}(G, A)$ form a linear basis \mathscr{B} of $\mathscr{H}(G, A)$, which we call the standard basis of $\mathscr{H}(G, A)$. Similarly we introduce the standard basis \mathscr{B}^{\prime} of $\mathscr{H}(G, H)$. Each element of \mathscr{B}^{\prime} is expressed as a linear combination of elements of \mathscr{B} in Theorem 3.1.

In $\S 4$ we describe the multiplication table of $\mathscr{H}(G, A)$ with respect to the standard basis \mathscr{B} in Theorem 4.1.

In $\S 5$ we give the multiplication table of $\mathscr{H}(G, H)$ with respect to the standard basis \mathscr{B}^{\prime} of $\mathscr{H}(G, H)$, by applying Theorem 3.1 and Theorem 4.1.

2. The double coset spaces $A \backslash G / A$ and $H \backslash G / H$

Let $F=F_{q}$ be a finite field with q elements where q is a power of an odd prime p. Let $F^{\times}=F-\{0\}$ be the multiplicative group of F. Then F^{\times}is a cyclic group of order $q-1$. Let $G=G L_{2}(F)$ be the general linear group of 2×2 nonsingular matrices over F. The order $|G|$ of G is known to be equal to $q(q+1)(q-1)^{2}$. Let A be the subgroup of G consisting of diagonal matrices, namely

$$
A=\left\{a(x, y)=\left(\begin{array}{cc}
x & 0 \\
0 & y
\end{array}\right) ; x, y \in F^{\times}\right\} .
$$

Note that A is a split torus of G and the order $|A|$ of A is equal to $(q-1)^{2}$. Let $H=N_{G}(A)$ be the normalizer of A in G. Then one can write

$$
\begin{equation*}
H=A \cup w A=A \cup A w \tag{2.1}
\end{equation*}
$$

where w is an element of G given by

$$
w=\left(\begin{array}{cc}
0 & -1 \tag{2.2}\\
1 & 0
\end{array}\right)
$$

Note that $|H|=2(q-1)^{2}$ and

$$
\begin{equation*}
w a(x, y) w^{-1}=a(y, x) \quad \text { for } a(x, y) \in A \tag{2.3}
\end{equation*}
$$

Let $Z(G)$ be the center of G. Then

$$
Z(G)=\left\{a(x, x)=\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right) ; x \in F^{\times}\right\}
$$

so that $Z(G)$ is contained in A and every element $a \in A$ can be written uniquely as

$$
\begin{equation*}
a=a(x, x) a(y, 1) \quad \text { where } x, y \in F^{\times} \tag{2.4}
\end{equation*}
$$

Let U be the subgroup of G, which is defined by

$$
U=\left\{u(x)=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) ; x \in F\right\}
$$

Then one can check

$$
\begin{equation*}
a(x, y) u(z) a\left(x^{-1}, y^{-1}\right)=u\left(x y^{-1} z\right) \quad \text { for } x, y \in F^{\times} \text {and } z \in F \tag{2.5}
\end{equation*}
$$

so that A normalizes U. Let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G \quad \text { where } c \in F^{\times} .
$$

Then one can verify

$$
\begin{equation*}
g=u\left(a c^{-1}\right) w u\left(c d(\operatorname{det} g)^{-1}\right) a\left(c, c^{-1} \operatorname{det} g\right) \tag{2.6}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
G=U A \cup U w U A \quad \text { (Bruhat decomposition of } G) \tag{2.7}
\end{equation*}
$$

From (2.7), it follows that the coset space G / A is given by

$$
G / A=\{u(x) A ; x \in F\} \cup\{u(y) w u(z) A ; y, z \in F\}
$$

Now we consider the double coset space $A \backslash G / A$.
Theorem 2.1. Let \mathscr{R} be the subset of G defined by

$$
\mathscr{R}=\{e, w, u(1), w u(1), u(1) w u(r)(r \in F)\}
$$

where e is the identity matrix. Then \mathscr{R} is a complete set of representatives of $A \backslash G / A$, that is,

$$
A \backslash G / A=\{A g A ; g \in \mathscr{R}\}
$$

and consequently $|A \backslash G / A|=q+4$.
Proof. Since $A g A(g \in \mathscr{R})$ are all distinct, it is enough to see $A \backslash G / A \subset$ $\{A g A ; g \in \mathscr{R}\}$. Assume $g=u(x) a(s, t) \in U A$. Then $A g A=A u(x) A . \quad$ If $x=0$,
then $\operatorname{Ag} A=A$. While if $x \neq 0$, then by (2.5) we have $u(x)=a(x, 1) u(1)$. $a\left(x^{-1}, 1\right)$ and hence $A g A=A u(1) A$. Assume $g=u(y) w u(z) a(s, t) \in U w U A$. Then $A g A=A u(y) w u(z) A$. If $y=z=0$, then $A g A=A w A$. If $y=0$ and $z \neq 0$, then $\operatorname{Ag} A=A w u(z) A$. Since $u(z)=a(z, 1) u(1) a\left(z^{-1}, 1\right)$, it follows that $\operatorname{Ag} A=\operatorname{Awa}(z, 1) u(1) A$. But by (2.3) we have $w a(z, 1)=a(1, z) w$ and hence $\operatorname{Ag} A=A w u(1) A$. Similarly if $y \neq 0$ and $z=0$, then we have $\operatorname{Ag} A=$ $A u(1) w A$. Finally assume $y \neq 0$ and $z \neq 0$. Since $u(y)=a(y, 1) u(1) a\left(y^{-1}, 1\right)$ and $a\left(y^{-1}, 1\right) w=w a\left(1, y^{-1}\right)$, we have $A u(y) w u(z) A=A u(1) w a\left(1, y^{-1}\right) u(z) A$. Using (2.5), we obtain $a\left(1, y^{-1}\right) u(z)=u(y z) a\left(1, y^{-1}\right)$ and hence

$$
\begin{equation*}
A u(y) w u(z) A=A u(1) w u(y z) A \quad \text { for } y, z \in F^{\times} \tag{2.8}
\end{equation*}
$$

Since $G=U A \cup U w U A$, our assertion is now clear.
Next we consider the double coset space $H \backslash G / H$.
Theorem 2.2. The double coset space $H \backslash G / H$ is given by

$$
\left\{H, H u(1) H, H u(1) w u\left(2^{-1}\right) H, H u(1) w u(r) H=H u(1) w u(1-r) H\left(r \in F^{\prime}\right)\right\}
$$

where we put $F^{\prime}=F-\left\{0,1,2^{-1}\right\}$ and consequently $|H \backslash G / H|=(q+3) / 2$.
Proof. Since A is a subgroup of H, it follows that $H g H=H A g A H$ for $g \in G$. Therefore we conclude from Theorem 2.1 that $H \backslash G / H=\{H g H$; $g \in \mathscr{R}\}$. But by (2.1), we have

$$
\begin{equation*}
H g H=A g A \cup A w g A \cup A g w A \cup A w g w A \quad(g \in \mathscr{R}) \tag{2.9}
\end{equation*}
$$

Assume $g=e$ or w. Since $w^{2}=a(-1,-1) \in Z(G)$, it follows from (2.9) that

$$
\begin{equation*}
H=A \cup A w A=H w H \tag{2.10}
\end{equation*}
$$

Next assume $g=u(1)$. Since $w u(1) w=u(-1) w u(-1)$ by (2.6) and hence $A w u(1) w A=A u(1) w u(1) A$ by (2.8), it follows from (2.9) that

$$
\begin{equation*}
H u(1) H=A u(1) A \cup A w u(1) A \cup A u(1) w A \cup A u(1) w u(1) A . \tag{2.11}
\end{equation*}
$$

Similar argument yields that

$$
\begin{equation*}
H u(1) H=H w u(1) H=H u(1) w H=H u(1) w u(1) H \tag{2.12}
\end{equation*}
$$

Finally assume $g=u(1) w u(r)$ with $r \in F-\{0,1\}$. Then by (2.6), we have $\quad w g=u(-1) w u(r-1), \quad g w=u\left((r-1) r^{-1}\right) w u(-r) a\left(r, r^{-1}\right) \quad$ and $\quad w g w=$ $u\left(-r(r-1)^{-1}\right) w u(1-r) a\left(r-1,(r-1)^{-1}\right)$ and hence by (2.8) AwgA= $A u(1) w u(1-r) A, \quad A g w A=A u(1) w u(1-r) A \quad$ and $\quad A w g w A=A u(1) w u(r) A$. Therefore we have

$$
\begin{equation*}
H u(1) w u(r) H=A u(1) w u(r) A \cup A u(1) w u(1-r) A \quad(r \in F-\{0,1\}), \tag{2.13}
\end{equation*}
$$

from which we can deduce

$$
\begin{equation*}
H u(1) w u(r) H=H u(1) w u(1-r) H \quad \text { for } r \in F-\{0,1\} \tag{2.14}
\end{equation*}
$$

In particular if $r=2^{-1}$, then

$$
\begin{equation*}
H u(1) w u\left(2^{-1}\right) H=A u(1) w u\left(2^{-1}\right) A \tag{2.15}
\end{equation*}
$$

Thus the theorem follows from (2.10), (2.12), (2.14) and (2.15).
We denote by $\operatorname{ind}(A g A)$ (resp. $\operatorname{ind}(H g H)$) the number of left A-cosets (resp. H-cosets) in $A g A$ (resp. $H g H$). Then $\operatorname{ind}(A g A)=|A g A| /|A|=|A| /\left|A_{g}\right|$ where $A_{g}=A \cap g A g^{-1}$ (resp. $\operatorname{ind}(H g H)=|H g H| /|H|=|H| /\left|H_{g}\right|$ where $H_{g}=$ $\left.H \cap g H g^{-1}\right)$.

Theorem 2.3. For the double cosets $\mathrm{Ag} A$ given in Theorem 2.1 and HgH given in Theorem 2.2, we have

$$
\operatorname{ind}(A g A)= \begin{cases}1 & (g=e, w) \\ q-1 & (g \in \mathscr{R}-\{e, w\})\end{cases}
$$

and

$$
\operatorname{ind}(H g H)= \begin{cases}1 & g=e \\ 2(q-1) & g=u(1) \\ (q-1) / 2 & g=u(1) w u\left(2^{-1}\right) \\ q-1 & g=u(1) w u(r) \quad\left(r \in F^{\prime}\right)\end{cases}
$$

Proof. By simple matrix computations, we get

$$
A_{g}=A \quad(g=e, w), \quad A_{g}=Z(G) \quad(g \in \mathscr{R}-\{e, w\})
$$

and

$$
\begin{gathered}
H_{e}=H, \quad H_{u(1)}=Z(G), \\
H_{u(1) w u\left(2^{-1}\right)}=Z(G) \cup a(1,-1) Z(G) \cup w Z(G) \cup w a(1,-1) Z(G), \\
H_{u(1) w u(r)}=Z(G) \cup w a\left((1-r)^{-1}, r^{-1}\right) Z(G) \quad\left(r \in F^{\prime}\right) .
\end{gathered}
$$

This implies the theorem immediately.
3. The Hecke algebras $\mathscr{H}(G, A)$ and $\mathscr{H}(G, H)$

Let $\mathbf{C} G$ be the group algebra of G over \mathbf{C}. Let ε (resp. ε^{\prime}) be the idempotent of $\mathbf{C} G$, which is defined by

$$
\begin{equation*}
\varepsilon=|A|^{-1} \sum_{a \in A} a \quad\left(\text { resp. } \varepsilon^{\prime}=|H|^{-1} \sum_{h \in H} h\right) \tag{3.1}
\end{equation*}
$$

Then $\mathscr{H}(G, A)=\varepsilon \mathbf{C G \varepsilon}$ (resp. $\left.\mathscr{H}(G, H)=\varepsilon^{\prime} \mathbf{C} G \varepsilon^{\prime}\right)$ is a semisimple subalgebra of $\mathbf{C} G$, which we call the Hecke algebra of G relative to A (resp. H). Clearly $\mathscr{H}(G, A)($ resp. $\mathscr{H}(G, H))$ is spanned by $\varepsilon g \varepsilon\left(\right.$ resp. $\left.\varepsilon^{\prime} g \varepsilon^{\prime}\right)$ for $g \in G$ and $\varepsilon g_{1} \varepsilon=$ $\varepsilon g_{2} \varepsilon$ (resp. $\varepsilon^{\prime} g_{1} \varepsilon^{\prime}=\varepsilon^{\prime} g_{2} \varepsilon^{\prime}$) for $g_{1}, g_{2} \in G$ if and only if $A g_{1} A=A g_{2} A$ (resp. $\left.H g_{1} H=H g_{2} H\right)$. Put

$$
\begin{equation*}
\varepsilon[g]=\operatorname{ind}(A g A) \varepsilon g \varepsilon \quad\left(\text { resp. } \varepsilon^{\prime}[g]=\operatorname{ind}(H g H) \varepsilon^{\prime} g \varepsilon^{\prime}\right) \tag{3.2}
\end{equation*}
$$

for $g \in G$. Then it is not difficult to see ([6]) that

$$
\begin{equation*}
\varepsilon[g]=|A|^{-1} \sum_{k \in A g A} k \quad\left(\text { resp. } \varepsilon^{\prime}[g]=|H|^{-1} \sum_{k \in H g H} k\right) . \tag{3.3}
\end{equation*}
$$

Note that $\varepsilon[e]=\varepsilon\left(\operatorname{resp} \varepsilon^{\prime}[e]=\varepsilon^{\prime}\right)$. Furthermore the set $\mathscr{B}=\{\varepsilon[g] ; g \in \mathscr{R}\}$ is a linear basis of $\mathscr{H}(G, A)$ over \mathbf{C} by Theorem 2.1 and the set

$$
\mathscr{B}^{\prime}=\left\{\varepsilon^{\prime}, \varepsilon^{\prime}[u(1)], \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right], \varepsilon^{\prime}[u(1) w u(r)]=\varepsilon^{\prime}[u(1) w u(1-r)]\left(r \in F^{\prime}\right)\right\}
$$

forms a linear basis of $\mathscr{H}(G, H)$ over \mathbf{C} by Theorem 2.2. We call \mathscr{B} (resp. \mathscr{B}^{\prime}) the standard basis of $\mathscr{H}(G, A)$ (resp. $\mathscr{H}(G, H))$. Note that $\operatorname{dim}_{\mathbf{C}} \mathscr{H}(G, A)=$ $q+4\left(\right.$ resp. $\left.\operatorname{dim}_{\mathbf{C}} \mathscr{H}(G, H)=(q+3) / 2\right)$.

Theorem 3.1. The Hecke algebra $\mathscr{H}(G, H)$ is a commutative subalgebra of the Hecke algebra $\mathscr{H}(G, A)$. Moreover the standard basis elements of $\mathscr{H}(G, H)$ are expressed in terms of the standard basis elements of $\mathscr{H}(G, A)$ as follows.

$$
\begin{gather*}
\varepsilon^{\prime}=2^{-1}(\varepsilon+\varepsilon[w]), \tag{3.4}\\
\varepsilon^{\prime}[u(1)]=2^{-1}(\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)]), \tag{3.5}\\
\varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]=2^{-1} \varepsilon\left[u(1) w u\left(2^{-1}\right)\right], \tag{3.6}\\
\varepsilon^{\prime}[u(1) w u(r)]=\varepsilon^{\prime}[u(1) w u(1-r)]=2^{-1}(\varepsilon[u(1) w u(r)]+\varepsilon[u(1) w u(1-r)]) \tag{3.7}
\end{gather*}
$$

for $r \in F^{\prime}$.
Proof. By the criterion of the commutativity of Hecke algebras ([6]), it is enough to see $H g^{-1} H=H g H$ for $g \in G$. For that purpose, we have only to check it for $g=u(1)$ and $u(1) w u(r)(r \in F-\{0,1\})$. Since $u(1)^{-1}=$ $a(1,-1) u(1) a(1,-1)$ and $(u(1) w u(r))^{-1}=u(-r) w u(-1) a(-1,-1)$, it follows that $H u(1)^{-1} H=H u(1) H \quad$ and $\quad H(u(1) w u(r))^{-1} H=H u(-r) w u(-1) H=$ $H u(1) w u(r) H$. Thus $\mathscr{H}(G, H)$ is commutative. Since A is a normal subgroup of H, it follows that $\varepsilon \varepsilon^{\prime}=\varepsilon^{\prime}=\varepsilon^{\prime} \varepsilon$ and hence $\mathscr{H}(G, H)$ is a subalgebra of $\mathscr{H}(G, A)$. Applying (2.10), (2.11), (2.15) and (2.13) to (3.3), we obtain (3.4), (3.5), (3.6) and (3.7) respectively.
4. The multiplication table of $\mathscr{H}(G, A)$

The multiplication table of $\mathscr{H}(G, A)$, we mean, is the matrix

$$
(\varepsilon[g] \varepsilon[h])_{(g, h) \in \mathscr{R} \times \mathscr{R}}
$$

where $\{\varepsilon[g] ; g \in \mathscr{R}\}$ is the standard basis of $\mathscr{H}(G, A)$.
Theorem 4.1. The Hecke algebra $\mathscr{H}(G, A)$ is not commutative and its multiplication table with respect to the standard basis $\{\varepsilon[g] ; g \in \mathscr{R}\}$ is given as follows. Here we omit the contribution of $\varepsilon=\varepsilon[e]$ because it is the identity element of $\mathscr{H}(G, A)$.

Table I.

	$\varepsilon[w]$	$\varepsilon[u(1)]$
$\varepsilon[w]$	ε	$\varepsilon[w u(1)]$
$\varepsilon[u(1)]$	$\varepsilon[u(1) w]$	$(q-1) \varepsilon+(q-2) \varepsilon[u(1)]$
$\varepsilon[w u(1)]$	$\varepsilon[u(1) w u(1)]$	$(q-1) \varepsilon[w]+(q-2) \varepsilon[w u(1)]$
$\varepsilon[u(1) w]$	$\varepsilon[u(1)]$	$\varepsilon[u(1) w u(1)]+S$
$\varepsilon[u(1) w u(1)]$	$\varepsilon[w u(1)]$	$\varepsilon[u(1) w]+S$
$\varepsilon[u(1) w u(s)] \quad\left(s \in F^{\times}-\{1\}\right)$	$\varepsilon[u(1) w u(1-s)]$	$\varepsilon[u(1) w u(1)]+\varepsilon[u(1) w]+S_{s}$

	$\varepsilon[w u(1)]$	$\varepsilon[u(1) w]$
$\varepsilon[w]$	$\varepsilon[u(1)]$	$\varepsilon[u(1) w u(1)]$
$\varepsilon[u(1)]$	$\varepsilon[u(1) w u(1)]+S$	$(q-1) \varepsilon[w]+(q-2) \varepsilon[u(1) w]$
$\varepsilon[w u(1)]$	$\varepsilon[u(1) w]+S$	$(q-1) \varepsilon+(q-2) \varepsilon[u(1) w u(1)]$
$\varepsilon[u(1) w]$	$(q-1) \varepsilon+(q-2) \varepsilon[u(1)]$	$\varepsilon[w u(1)]+S$
$\varepsilon[u(1) w u(1)]$	$(q-1) \varepsilon[w]+(q-2) \varepsilon[w u(1)]$	$\varepsilon[u(1)]+S$
$\varepsilon[u(1) w u(s)] \quad\left(s \in F^{\times}-\{1\}\right)$	$\varepsilon[u(1) w u(1)]+\varepsilon[u(1) w]+S_{1-s}$	$\varepsilon[u(1)]+\varepsilon[w u(1)]+S_{1-s}$

	$\varepsilon[u(1) w u(1)]$	$\varepsilon[u(1) w u(t)]\left(t \in F^{\times}-\{1\}\right)$
$\varepsilon[w]$	$\varepsilon[u(1) w]$	$\varepsilon[u(1) w u(1-t)]$
$\varepsilon[u(1)]$	$\varepsilon[w u(1)]+S$	$\varepsilon[w u(1)]+\varepsilon[u(1) w u(1)]+S_{t}$
$\varepsilon[w u(1)]$	$\varepsilon[u(1)]+S$	$\varepsilon[u(1)]+\varepsilon[u(1) w]+S_{1-t}$
$\varepsilon[u(1) w]$	$(q-1) \varepsilon[w]+(q-2) \varepsilon[u(1) w]$	$\varepsilon[w u(1)]+\varepsilon[u(1) w u(1)]+S_{1-t}$
$\varepsilon[u(1) w u(1)]$	$(q-1) \varepsilon+(q-2) \varepsilon[u(1) w u(1)]$	$\varepsilon[u(1)]+\varepsilon[u(1) w]+S_{t}$
$\varepsilon[u(1) w u(s)]\left(s \in F^{\times}-\{1\}\right)$	$\varepsilon[u(1)]+\varepsilon[w u(1)]+S_{s}$	$E(s, t)$

where we put
(4.1) $S=\sum_{x \in F-\{0,1\}} \varepsilon[u(1) w u(x)] \quad$ and $\quad S_{r}=\sum_{x \in F-\{0,1, r\}} \varepsilon[u(1) w u(x)]$
for $r \in F-\{0,1\}$.

Moreover for $s, t \in F-\{0,1\}$ the product $E(s, t)=\varepsilon[u(1) w u(s)] \varepsilon[u(1) w u(t)]$ is given by

$$
E(s, t)= \begin{cases}(q-1) \varepsilon+(q-1) \varepsilon[w]+S\left(2^{-1}, 2^{-1}\right) & \left(t=s=2^{-1}\right) \\ (q-1) \varepsilon+\varepsilon[w u(1)]+\varepsilon[u(1) w]+S(s, s) & \left(t=s \neq 2^{-1}\right) \\ (q-1) \varepsilon[w]+\varepsilon[u(1)]+\varepsilon[u(1) w u(1)]+S(s, 1-s) & \left(t=1-s \neq 2^{-1}\right) \\ \varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)]+S(s, t) & (t \neq s, t \neq 1-s)\end{cases}
$$

Here we set

$$
\begin{equation*}
S(s, t)=\sum_{x \in F-J_{s, t}} \varepsilon\left[u(1) w u\left(\psi_{s, t}(x)\right)\right] \tag{4.2}
\end{equation*}
$$

where $J_{s, t}=\left\{0,1, s, s(1-t)^{-1},(s-t)(1-t)^{-1}\right\}$ and

$$
\begin{equation*}
\psi_{s, t}(x)=(x-1)((t-1) x+s)(x-s)^{-1} \quad \text { for } x \in F-\{s\} \tag{4.3}
\end{equation*}
$$

Before proving Theorem 4.1, we need the following lemma.
Lemma 4.2. In $\mathscr{H}(G, A)$, the following identities hold.

$$
\begin{gather*}
\varepsilon a(x, y)=\varepsilon=a(x, y) \varepsilon \quad \text { for } x, y \in F^{\times} . \tag{4.4}\\
\varepsilon u(x) \varepsilon=\varepsilon u(1) \varepsilon, \quad \varepsilon w u(x) \varepsilon=\varepsilon w u(1) \varepsilon, \tag{4.5}\\
\varepsilon u(x) w \varepsilon=\varepsilon u(1) w \varepsilon \quad \text { for } x \in F^{\times} . \\
\varepsilon u(y) w u(z) \varepsilon=\varepsilon u(1) w u(y z) \varepsilon \quad \text { for } y, z \in F^{\times} . \tag{4.6}\\
\varepsilon[g] \varepsilon[h]=\operatorname{ind}(A g A) \operatorname{ind}(A h A)(q-1)^{-1} \sum_{y \in F^{\times}} \varepsilon g a(y, 1) h \varepsilon \quad \text { for } g, h \in G . \tag{4.7}
\end{gather*}
$$

Proof. (4.4) is clear from the definition of ε. (4.5) and (4.6) are also obvious from the proof of Theorem 2.1. Since $\varepsilon^{2}=\varepsilon$,

$$
\varepsilon[g] \varepsilon[h]=\operatorname{ind}(A g A) \operatorname{ind}(A h A) \varepsilon g \varepsilon h \varepsilon
$$

By (2.4) and (3.1), we can write

$$
\varepsilon=(q-1)^{-2} \sum_{x, y \in F^{\times}} a(x, x) a(y, 1)
$$

so that

$$
\varepsilon g \varepsilon h \varepsilon=(q-1)^{-2} \sum_{x, y \in F^{\star}} \varepsilon g a(x, x) a(y, 1) h \varepsilon .
$$

Since $a(x, x) \in Z(G)$, it follows that

$$
\varepsilon g \varepsilon h \varepsilon=(q-1)^{-1} \sum_{y \in F^{\star}} \varepsilon g a(y, 1) h \varepsilon .
$$

Thus we obtain (4.7).
Proof of Theorem 4.1. Here we will verify the last column in Table I. The products in the other part are caluculated in a similar and simpler way. Applying $h=u(1) w u(t) \quad(t \in F-\{0,1\})$ to (4.7) and using $\operatorname{ind}(A u(1) w u(t) A)=$ $q-1$, we have

$$
\varepsilon[g] \varepsilon[u(1) w u(t)]=\operatorname{ind}(A g A) \sum_{y \in F^{\times}} \varepsilon g a(y, 1) u(1) w u(t) \varepsilon \quad \text { for } g \in \mathscr{R} .
$$

Since $a(y, 1) u(1) w u(t)=u(y) w u\left(t y^{-1}\right) a(1, y)$, it follows that

$$
\begin{equation*}
\varepsilon[g] \varepsilon[u(1) w u(t)]=\operatorname{ind}(A g A) \sum_{y \in F^{\times}} \varepsilon g u(y) w u\left(t y^{-1}\right) \varepsilon . \tag{4.8}
\end{equation*}
$$

Case 1. $g=w$. Since $\quad \operatorname{ind}(A w A)=1 \quad$ and $\quad w u(y) w u\left(t y^{-1}\right)=u\left(-y^{-1}\right)$. $w u(y(t-1)) a(y, y)$, it follows from (4.8) that

$$
\varepsilon[w] \varepsilon[u(1) w u(t)]=\sum_{y \in F^{\times}} \varepsilon u\left(-y^{-1}\right) w u(y(t-1)) \varepsilon .
$$

Using (4.6), we get

$$
\varepsilon[w] \varepsilon[u(1) w u(t)]=\sum_{y \in F^{\times}} \varepsilon u(1) w u(1-t) \varepsilon=(q-1) \varepsilon u(1) w u(1-t) \varepsilon .
$$

Since $\operatorname{ind}(A u(1) w u(1-t) A)=q-1$, we have

$$
\varepsilon[w] \varepsilon[u(1) w u(t)]=\varepsilon[u(1) w u(1-t)] .
$$

Case 2. $\quad g=u(1)$. Since $\quad \operatorname{ind}(A u(1) A)=q-1 \quad$ and $\quad u(1) u(y) w u\left(t y^{-1}\right)=$ $u(1+y) w u\left(t y^{-1}\right)$, it follows from (4.8) that

$$
\varepsilon[u(1)] \varepsilon[u(1) w u(t)]=(q-1) \sum_{y \in F^{\times}} \varepsilon u(1+y) w u\left(t y^{-1}\right) \varepsilon .
$$

Replacing $1+y$ by x, we get

$$
\varepsilon[u(1)] \varepsilon[u(1) w u(t)]=(q-1) \varepsilon w u(-t) \varepsilon+(q-1) \sum_{x \in F^{\times}-\{1\}} \varepsilon u(x) w u\left(t(x-1)^{-1}\right) \varepsilon .
$$

Using (4.5) and (4.6), we have

$$
\varepsilon[u(1)] \varepsilon[u(1) w u(t)]=(q-1) \varepsilon w u(1) \varepsilon+(q-1) \sum_{x \in F^{\times}-\{1\}} \varepsilon u(1) w u\left(t x(x-1)^{-1}\right) \varepsilon .
$$

Putting $z=t x(x-1)^{-1}$, we can deduce

$$
\varepsilon[u(1)] \varepsilon[u(1) w u(t)]=(q-1) \varepsilon w u(1) \varepsilon+(q-1) \sum_{z \in F^{\times}-\{t\}} \varepsilon u(1) w u(z) \varepsilon .
$$

Since $\operatorname{ind}(A w u(1) A)=\operatorname{ind}(A u(1) w u(z) A)=q-1$, we get

$$
\varepsilon[u(1)] \varepsilon[u(1) w u(t)]=\varepsilon[w u(1)]+\sum_{z \in F^{\times}-\{t\}} \varepsilon[u(1) w u(z)]
$$

which is equal to

$$
\varepsilon[u(1)] \varepsilon[u(1) w u(t)]=\varepsilon[w u(1)]+\varepsilon[u(1) w u(1)]+S_{t} .
$$

Case 3. $g=w u(1)$. Since $\operatorname{ind}(A w u(1) A)=q-1$ and $w u(1) u(y) w u\left(t y^{-1}\right)=$ $w u(1+y) w u\left(t y^{-1}\right)$, we have, by putting $x=1+y$,

$$
\varepsilon[w u(1)] \varepsilon[u(1) w u(t)]=(q-1) \varepsilon u(-t) \varepsilon+(q-1) \sum_{x \in F^{\times}-\{1\}} \varepsilon w u(x) w u\left(t(x-1)^{-1}\right) \varepsilon .
$$

Using (4.5), $w u(x) w u\left(t(x-1)^{-1}\right)=u\left(-x^{-1}\right) w u\left(x\left(t x(x-1)^{-1}-1\right)\right) a\left(x, x^{-1}\right)$ and (4.6), we have

$$
\varepsilon[w u(1)] \varepsilon[u(1) w u(t)]=(q-1) \varepsilon u(1) \varepsilon+(q-1) \sum_{x \in F^{\times}-\{1\}} \varepsilon u(1) w u\left(1-t x(x-1)^{-1}\right) \varepsilon .
$$

Putting $z=1-t x(x-1)^{-1}$, we can deduce

$$
\varepsilon[w u(1)] \varepsilon[u(1) w u(t)]=(q-1) \varepsilon u(1) \varepsilon+(q-1) \sum_{z \in F-\{1,1-t\}} \varepsilon u(1) w u(z) \varepsilon .
$$

Since $\operatorname{ind}(A u(1) A)=\operatorname{ind}(A u(1) w u(z) A)=q-1$, we obtain

$$
\varepsilon[w u(1)] \varepsilon[u(1) w u(t)]=\varepsilon[u(1)]+\varepsilon[u(1) w]+\sum_{z \in F-\{0,1,1-t\}} \varepsilon[u(1) w u(z)] .
$$

Case 4. $g=u(1) w$. Since $\operatorname{ind}(A u(1) w A)=q-1$ and $u(1) w u(y) w u\left(t y^{-1}\right)=$ $u\left((y-1) y^{-1}\right) w u(y(t-1)) a\left(y, y^{-1}\right)$, it follows from (4.8) that

$$
\begin{aligned}
\varepsilon[u(1) w] \varepsilon[u(1) w u(t)]= & (q-1) \varepsilon w u(t-1) \varepsilon \\
& +(q-1) \sum_{y \in F^{\times}-\{1\}} \varepsilon u\left((y-1) y^{-1}\right) w u(y(t-1)) \varepsilon .
\end{aligned}
$$

By (4.5) and (4.6), we obtain
$\varepsilon[u(1) w] \varepsilon[u(1) w u(t)]=(q-1) \varepsilon w u(1) \varepsilon+(q-1) \sum_{y \in F^{\times}-\{1\}} \varepsilon u(1) w u((y-1)(t-1)) \varepsilon$.
Putting $\quad z=(y-1)(t-1)$ and using $\quad \operatorname{ind}(A w u(1) A)=\operatorname{ind}(A u(1) w u(z) A)=$ $q-1$, we get

$$
\varepsilon[u(1) w] \varepsilon[u(1) w u(t)]=\varepsilon[w u(1)]+\sum_{z \in F^{\times}-\{1-t\}} \varepsilon[u(1) w u(z)]
$$

which yields

$$
\varepsilon[u(1) w] \varepsilon[u(1) w u(t)]=\varepsilon[w u(1)]+\varepsilon[u(1) w u(1)]+S_{1-t} .
$$

Case 5. $\quad g=u(1) w u(1)$. Since $u(1) w u(1) u(y) w u\left(t y^{-1}\right)=u(1) w u(1+y) w u\left(t y^{-1}\right)$ and $\operatorname{ind}(A u(1) w u(1) A)=q-1$, it follows from (4.8) that

$$
\varepsilon[u(1) w u(1)] \varepsilon[u(1) w u(t)]=(q-1) \sum_{y \in F^{\times}} \varepsilon u(1) w u(1+y) w u\left(t y^{-1}\right) \varepsilon .
$$

Putting $x=1+y$, we have

$$
\begin{aligned}
& \varepsilon[u(1) w u(1)] \varepsilon[u(1) w u(t)] \\
& \quad=(q-1) \varepsilon u(-t) \varepsilon+(q-1) \sum_{x \in F^{\times}-\{1\}} \varepsilon u(1) w u(x) w u\left(t(x-1)^{-1}\right) \varepsilon .
\end{aligned}
$$

By (4.5), $u(1) w u(x) w u\left(t(x-1)^{-1}\right)=u\left((x-1) x^{-1}\right) w u\left(x\left(t x(x-1)^{-1}-1\right)\right) a\left(x, x^{-1}\right)$ and (4.6), we can deduce
$\varepsilon[u(1) w u(1)] \varepsilon[u(1) w u(t)]=(q-1) \varepsilon u(1) \varepsilon+(q-1) \sum_{x \in F^{\times}-\{1\}} \varepsilon u(1) w u((t-1) x+1) \varepsilon$.
Putting $z=(t-1) x+1$ and using $\operatorname{ind}(A u(1) A)=\operatorname{ind}(A u(1) w u(z) A)=q-1$, we obtain

$$
\varepsilon[u(1) w u(1)] \varepsilon[u(1) w u(t)]=\varepsilon[u(1)]+\varepsilon[u(1) w]+\sum_{z \in F^{\times}-\{1, t\}} \varepsilon[u(1) w u(z)]
$$

which yields

$$
\varepsilon[u(1) w u(1)] \varepsilon[u(1) w u(t)]=\varepsilon[u(1)]+\varepsilon[u(1) w]+S_{t} .
$$

Case 6. $\quad g=u(1) w u(s)(s \in F-\{0,1\})$. Set $E(s, t)=\varepsilon[u(1) w u(s)] \varepsilon[u(1) w u(t)]$. Since $\operatorname{ind}(A u(1) w u(s) A)=q-1$, it follows from (4.8) that

$$
E(s, t)=(q-1) \sum_{y \in F^{\times}} \varepsilon u(1) w u(s+y) w u\left(t y^{-1}\right) \varepsilon .
$$

Putting $x=s+y$, we have

$$
E(s, t)=(q-1) \sum_{x \in F-\{s\}} \varepsilon u(1) w u(x) w u\left(t(x-s)^{-1}\right) \varepsilon,
$$

which equals

$$
E(s, t)=(q-1) \varepsilon u\left((s-t) s^{-1}\right) \varepsilon+(q-1) \sum_{x \in F^{\times}-\{s\}} \varepsilon u(1) w u(x) w u\left(t(x-s)^{-1}\right) \varepsilon .
$$

Since $\quad u(1) w u(x) w u\left(t(x-s)^{-1}\right)=u\left((x-1) x^{-1}\right) w u\left(x\left(t x(x-s)^{-1}-1\right)\right) a\left(x, x^{-1}\right)$, it follows from (4.6) that

$$
\begin{aligned}
E(s, t)= & (q-1) \varepsilon u\left((s-t) s^{-1}\right) \varepsilon+(q-1) \varepsilon w u\left((s+t-1)(1-s)^{-1}\right) \varepsilon \\
& +(q-1) \sum_{x \in F^{\times}-\{1, s\}} \varepsilon u(1) w u\left((x-1)\left(t x(x-s)^{-1}-1\right)\right) \varepsilon
\end{aligned}
$$

Since $(x-1)\left(\operatorname{tx}(x-s)^{-1}-1\right)=\psi_{s, t}(x)$, we have

$$
\begin{align*}
E(s, t)= & (q-1) \varepsilon u\left((s-t) s^{-1}\right) \varepsilon+(q-1) \varepsilon w u\left((s+t-1)(1-s)^{-1}\right) \varepsilon \tag{4.9}\\
& +(q-1) \sum_{x \in F^{\times}-\{1, s\}} \varepsilon u(1) w u\left(\psi_{s, t}(x)\right) \varepsilon .
\end{align*}
$$

If $t=s=2^{-1}$, then (4.9) becomes

$$
E\left(2^{-1}, 2^{-1}\right)=(q-1) \varepsilon+(q-1) \varepsilon[w]+\sum_{x \in F^{\times}-\left\{1,2^{-1}\right\}} \varepsilon\left[u(1) w u\left(\psi_{2^{-1}, 2^{-1}}(x)\right)\right] .
$$

Since $J_{2^{-1}, 2^{-1}}=\left\{0,1,2^{-1}\right\}$, it follows that

$$
E\left(2^{-1}, 2^{-1}\right)=(q-1) \varepsilon+(q-1) \varepsilon[w]+S\left(2^{-1}, 2^{-1}\right)
$$

If $t=s \neq 2^{-1}$, then (4.9) becomes

$$
E(s, s)=(q-1) \varepsilon+\varepsilon[w u(1)]+\sum_{x \in F^{\times}-\{1, s\}} \varepsilon\left[u(1) w u\left(\psi_{s, s}(x)\right)\right] .
$$

Since $\psi_{s, s}^{-1}(0)=\left\{s(1-s)^{-1}\right\}$ and $\psi_{s, s}^{-1}(1)$ is empty, it follows that

$$
E(s, s)=(q-1) \varepsilon+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\sum_{x \in F^{\times}-\left\{1, s, s(1-s)^{-1}\right\}} \varepsilon\left[u(1) w u\left(\psi_{s, s}(x)\right)\right],
$$

which implies

$$
E(s, s)=(q-1) \varepsilon+\varepsilon[w u(1)]+\varepsilon[u(1) w]+S(s, s) .
$$

If $t=1-s \neq 2^{-1}$, then (4.9) becomes

$$
E(s, 1-s)=\varepsilon[u(1)]+(q-1) \varepsilon[w]+\sum_{x \in F^{\times}-\{1, s\}} \varepsilon\left[u(1) w u\left(\psi_{s, 1-s}(x)\right)\right] .
$$

Since $\psi_{s, 1-s}^{-1}(0)$ is empty and $\psi_{s, 1-s}^{-1}(1)=\left\{(2 s-1) s^{-1}\right\}$, it follows that

$$
\begin{aligned}
E(s, 1-s)= & (q-1) \varepsilon[w]+\varepsilon[u(1)]+\varepsilon[u(1) w u(1)] \\
& +\sum_{x \in F^{\times}-\left\{1, s,(2 s-1) s^{-1}\right\}} \varepsilon\left[u(1) w u\left(\psi_{s, 1-s}(x)\right)\right],
\end{aligned}
$$

which yields

$$
E(s, 1-s)=(q-1) \varepsilon[w]+\varepsilon[u(1)]+\varepsilon[u(1) w u(1)]+S(s, 1-s) .
$$

If $t \neq s$ and $t \neq 1-s$, then (4.9) becomes

$$
E(s, t)=\varepsilon[u(1)]+\varepsilon[w u(1)]+\sum_{x \in F^{\times}-\{1, s\}} \varepsilon\left[u(1) w u\left(\psi_{s, t}(x)\right)\right] .
$$

Since $\psi_{s, t}^{-1}(0)=\left\{s(1-t)^{-1}\right\}$ and $\psi_{s, t}^{-1}(1)=\left\{(s-t)(1-t)^{-1}\right\}$, it follows that $E(s, t)=\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)]+\sum_{x \in F-J_{s, t}} \varepsilon\left[u(1) w u\left(\psi_{s, t}(x)\right)\right]$, which implies

$$
E(s, t)=\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)]+S(s, t) .
$$

5. The multiplication table of $\mathscr{H}(G, H)$

Using the multiplication table of $\mathscr{H}(G, A)$ given in $\S 4$, we describe the multiplication table of $\mathscr{H}(G, H)$ with respect to the basis

$$
\mathscr{B}^{\prime}=\left\{\varepsilon^{\prime}, \varepsilon^{\prime}[u(1)], \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right], \varepsilon^{\prime}[u(1) w u(r)]=\varepsilon^{\prime}[u(1) w u(1-r)]\left(r \in F^{\prime}\right)\right\} .
$$

To start with, we need some properties of the map $\psi_{s, t}: F-\{s\} \rightarrow F$ in (4.3) and the sum $S(s, t)$ in (4.2) where $s, t \in F-\{0,1\}$.

Lemma 5.1. Let $s, t \in F-\{0,1\}$. Let $\psi_{s, t}: F-\{s\} \rightarrow F$ be the map defined by

$$
\psi_{s, t}(x)=(x-1)((t-1) x+s)(x-s)^{-1}
$$

and let $S(s, t)$ be the sum

$$
S(s, t)=\sum_{x \in F-J_{s, t}} \varepsilon\left[u(1) w u\left(\psi_{s, t}(x)\right)\right]
$$

where $J_{s, t}=\left\{0,1, s, s(1-t)^{-1},(s-t)(1-t)^{-1}\right\}$. Then we have

$$
\begin{gather*}
\psi_{1-s, 1-t}(x)=\psi_{s, t}\left((t x+s-t)(1-t)^{-1}\right) \quad \text { for } x \in F-\{1-s\} \tag{5.1}\\
\psi_{1-s, t}(x)=1-\psi_{s, t}(1-x) \quad \text { for } x \in F-\{1-s\} \tag{5.2}\\
S(1-s, 1-t)=S(s, t) \tag{5.3}\\
S(s, 1-t)=S(1-s, t)=\sum_{x \in F^{\times}-J_{s, t}} \varepsilon\left[u(1) w u\left(1-\psi_{s, t}(x)\right)\right] \tag{5.4}
\end{gather*}
$$

Proof. (5.1) and (5.2) are proved by direct computations. Put $f(x)=$ $(t x+s-t)(1-t)^{-1}$ for $x \in F$. Then by (5.1)

$$
S(1-s, 1-t)=\sum_{x \in F-J_{1-s, 1-t}} \varepsilon\left[u(1) w u\left(\psi_{s, t}(f(x))\right)\right]
$$

Since the map f transforms $F-J_{1-s, 1-t}$ bijectively onto $F-J_{s, t}$, it follows that

$$
S(1-s, 1-t)=\sum_{y \in F-J_{s, t}} \varepsilon\left[u(1) w u\left(\psi_{s, t}(y)\right)\right]
$$

which equals $S(s, t)$. By (5.3), we have $S(s, 1-t)=S(1-s, t)$. Using (5.2), we can write

$$
S(1-s, t)=\sum_{x \in F-J_{1-s, t}} \varepsilon\left[u(1) w u\left(1-\psi_{s, t}(1-x)\right)\right] .
$$

Since the map $g(x)=1-x$ transforms $F-J_{1-s, t}$ bijectively onto $F-J_{s, t}$, it follows that

$$
S(1-s, t)=\sum_{y \in F-J_{s, t}} \varepsilon\left[u(1) w u\left(1-\psi_{s, t}(y)\right)\right]
$$

Thus (5.4) holds.
Lemma 5.2. Let $s, t \in F-\{0,1\}$ and put $K_{s, t}=\left\{x \in F-\{s\} ; \psi_{s, t}(x)=2^{-1}\right\}$.
Then

$$
\left|K_{s, t}\right|= \begin{cases}2 & \left(D_{s, t} \in F_{0}^{\times}\right) \tag{5.5}\\ 1 & \left(D_{s, t}=0\right) \\ 0 & \left(D_{s, t} \in F_{1}^{\times}\right)\end{cases}
$$

where F_{0}^{\times}(resp. F_{1}^{\times}) is the set of squares (resp. non-squares) in F^{\times}and

$$
D_{s, t}=\left(s-2^{-1}\right)^{2}+\left(t-2^{-1}\right)^{2}-2^{-2} .
$$

In particular

$$
\left|K_{2^{-1}, 2^{-1}}\right|= \begin{cases}2 & (q \equiv 1(\bmod 4)) \tag{5.6}\\ 0 & (q \equiv 3(\bmod 4))\end{cases}
$$

Proof. It is clear that $\psi_{s, t}(x)=2^{-1}$ if and only if

$$
(t-1) x^{2}+\left(s-t+2^{-1}\right) x-2^{-1} s=0 .
$$

Since $t \neq 1$, this gives a quadratic equation, whose discriminant is $D_{s, t}$. Hence (5.5) is valid. If $s=t=2^{-1}$, then $D_{2^{-1}, 2^{-1}}=-2^{-2}$. Since $-1 \in F_{0}^{\times}$(resp. $\left.-1 \in F_{1}^{\times}\right)$if and only if $q \equiv 1 \bmod 4($ resp. $q \equiv 3 \bmod 4)$, (5.6) follows immediately.

Lemma 5.3. Let $F^{\prime}=F-\left\{0,1,2^{-1}\right\}$. Define the sums $S^{\prime}, S_{s}^{\prime}\left(s \in F^{\prime}\right)$ and $S^{\prime}(s, t)(s, t \in F-\{0,1\}) b y$

$$
\begin{equation*}
S^{\prime}=\sum_{x \in F^{\prime}} \varepsilon^{\prime}[u(1) w u(x)], \quad S_{s}^{\prime}=\sum_{x \in F^{\prime}-\{s\}} \varepsilon^{\prime}[u(1) w u(x)] \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
S^{\prime}(s, t)=\sum_{x \in F-J_{s, t} \cup K_{s, t}} \varepsilon^{\prime}\left[u(1) w u\left(\psi_{s, t}(x)\right)\right] . \tag{5.8}
\end{equation*}
$$

Then the sums $S, S_{s}(s \in F-\{0,1\})$ in (4.1) and $S(s, t)(s, t \in F-\{0,1\})$ in (4.2) are related to the sums $S^{\prime}, S_{s}^{\prime}$ and $S^{\prime}(s, t)$ as follows.

$$
\begin{gather*}
S_{2^{-1}}=S^{\prime} \quad \text { and hence } \quad S=2 \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+S^{\prime} \tag{5.9}\\
S_{s}+S_{1-s}=4 \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+2 S_{s}^{\prime} \quad \text { for } s \in F^{\prime} \tag{5.10}\\
S(s, t)+S(1-s, t)=4\left|K_{s, t}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+2 S^{\prime}(s, t) \tag{5.11}\\
\text { for } s, t \in F-\{0,1\} .
\end{gather*}
$$

Proof. Since $S_{2^{-1}}=\sum_{x \in F^{\prime}} \varepsilon[u(1) w u(x)]=\sum_{x \in F^{\prime}} \varepsilon[u(1) w u(1-x)]$, it follows that

$$
S_{2^{-1}}=\frac{1}{2}\left(\sum_{x \in F^{\prime}} \varepsilon[u(1) w u(x)]+\sum_{x \in F^{\prime}} \varepsilon[u(1) w u(1-x)]\right) .
$$

Using (3.7), we have $S_{2^{-1}}=S^{\prime}$. Since $S=\varepsilon\left[u(1) w u\left(2^{-1}\right)\right]+S_{2^{-1}}, \quad S=$ $2 \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+S^{\prime}$ is obvious. Let $s \in F^{\prime}$. Then we can write

$$
S_{s}=\varepsilon\left[u(1) w u\left(2^{-1}\right)\right]+\sum_{x \in F^{\prime}-\{s\}} \varepsilon[u(1) w u(x)]
$$

and

$$
S_{1-s}=\varepsilon\left[u(1) w u\left(2^{-1}\right)\right]+\sum_{x \in F^{\prime}-\{1-s\}} \varepsilon[u(1) w u(x)] .
$$

Replacing x by $1-x$, we obtain

$$
S_{1-s}=\varepsilon\left[u(1) w u\left(2^{-1}\right)\right]+\sum_{x \in F^{\prime}-\{s\}} \varepsilon[u(1) w u(1-x)] .
$$

Therefore we have

$$
S_{s}+S_{1-s}=2 \varepsilon\left[u(1) w u\left(2^{-1}\right)\right]+\sum_{x \in F^{\prime}-\{s\}}(\varepsilon[u(1) w u(x)]+\varepsilon[u(1) w u(1-x)])
$$

By (3.6) and (3.7), we conclude that

$$
S_{s}+S_{1-s}=4 \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+2 S_{s}^{\prime} .
$$

It follows from (5.4) that

$$
S(s, t)+S(1-s, t)=\sum_{x \in F-J_{s, t}}\left(\varepsilon\left[u(1) w u\left(\psi_{s, t}(x)\right)\right]+\varepsilon\left[u(1) w u\left(1-\psi_{s, t}(x)\right)\right]\right)
$$

which is transformed into

$$
\begin{aligned}
S(s, t)+S(1-s, t)= & 2\left|K_{s, t}\right| \varepsilon\left[u(1) w u\left(2^{-1}\right)\right]+\sum_{x \in F-J_{s, t} \cup K_{s, t}}\left(\varepsilon\left[u(1) w u\left(\psi_{s, t}(x)\right)\right]\right. \\
& \left.+\varepsilon\left[u(1) w u\left(1-\psi_{s, t}(x)\right)\right]\right) .
\end{aligned}
$$

By (3.6) and (3.7), we get

$$
S(s, t)+S(1-s, t)=4\left|K_{s, t}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+2 S^{\prime}(s, t)
$$

Now we are ready to describe the multiplication table of $\mathscr{H}(G, H)$. In the table below, we omit the contribution of ε^{\prime} because it is the identity element of $\mathscr{H}(G, H)$ and we also omit the upper half part because $\mathscr{H}(G, H)$ is commutative.

TheOrem 5.4. The multiplication table of $\mathscr{H}(G, H)$ with respect to the standard basis is given as follows.

Table II

	$\varepsilon^{\prime}[u(1)]$	$\varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]$	$\varepsilon^{\prime}[u(1) w u(t)]\left(t \in F^{\prime}\right)$
$\varepsilon^{\prime}[u(1)]$	$2(q-1) \varepsilon^{\prime}+2 S^{\prime}$		
	$+(q-1) \varepsilon^{\prime}[u(1)]$		
$\varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]$	$+4 \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]$		
$\varepsilon^{\prime}[u(1) w u(s)]\left(s \in F^{\prime}\right)$	$\varepsilon^{\prime}[u(1)]+S^{\prime}$	$\varepsilon^{\prime}\left(2^{-1}, 2^{-1}\right)$	
	$+4(1)]+4 \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]$	$E^{\prime}\left(s, 2^{-1}\right)$	$E^{\prime}(s, t)$

where $F^{\prime}=F-\left\{0,1,2^{-1}\right\}$ and

$$
S^{\prime}=\sum_{x \in F^{\prime}} \varepsilon^{\prime}[u(1) w u(x)], \quad S_{s}^{\prime}=\sum_{x \in F^{\prime}-\{s\}} \varepsilon^{\prime}[u(1) w u(x)] \quad \text { for } s \in F^{\prime}
$$

Furthermore

$$
\begin{gathered}
E^{\prime}\left(2^{-1}, 2^{-1}\right)=2^{-1}(q-1) \varepsilon^{\prime}[e]+2^{-1}\left|K_{2^{-1}, 2^{-1}}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+4^{-1} S^{\prime}\left(2^{-1}, 2^{-1}\right), \\
E^{\prime}\left(s, 2^{-1}\right)=\varepsilon^{\prime}[u(1)]+\left|K_{s, 2^{-1}}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+2^{-1} S^{\prime}\left(s, 2^{-1}\right), \\
E^{\prime}(s, t)=\left\{\begin{array}{cc}
(q-1) \varepsilon^{\prime}+\varepsilon^{\prime}[u(1)] \\
+2\left|K_{s, s}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+S^{\prime}(s, s) & \text { for } t=s, \text { or } 1-s, \\
2 \varepsilon^{\prime}[u(1)]+2\left|K_{s, t}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+S^{\prime}(s, t) & \text { for } t \neq s, 1-s .
\end{array}\right.
\end{gathered}
$$

where

$$
S^{\prime}(s, t)=\sum_{x \in F-J_{s, t} \cup K_{s, t}} \varepsilon^{\prime}\left[u(1) w u\left(\psi_{s, t}(x)\right)\right] .
$$

Proof. By (3.5), we have

$$
\varepsilon^{\prime}[u(1)]^{2}=4^{-1}(\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)])^{2} .
$$

We can derive from Table I that the right-side is given by
$(q-1)(\varepsilon+\varepsilon[w])+2^{-1}(q-1)(\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)])+2 S$,
which can be written, by (3.4), (3.5) and (5.9), as

$$
2(q-1) \varepsilon^{\prime}+(q-1) \varepsilon^{\prime}[u(1)]+4 \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+2 S^{\prime}
$$

By (3.5) and (3.6), we have

$$
\begin{aligned}
\varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right] \varepsilon^{\prime}[u(1)]= & 4^{-1} \varepsilon\left[u(1) w u\left(2^{-1}\right)\right] \times(\varepsilon[u(1)]+\varepsilon[w u(1)] \\
& +\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)])
\end{aligned}
$$

It follows from Table I that the right-side is equal to

$$
2^{-1}(\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)])+S_{2^{-1}},
$$

which can be written, by (3.5) and (5.9), as $\varepsilon^{\prime}[u(1)]+S^{\prime} . \quad$ By (3.5) and (3.7), we have for $s \in F^{\prime}$

$$
\begin{aligned}
\varepsilon^{\prime}[u(1) w u(s)] \varepsilon^{\prime}[u(1)]= & 4^{-1}(\varepsilon[u(1) w u(s)]+\varepsilon[u(1) w u(1-s)]) \\
& \times(\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)]) .
\end{aligned}
$$

We can derive from Table I that the right-side is equal to

$$
\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)]+S_{s}+S_{1-s}
$$

which can be written, by (3.5) and (5.10), as

$$
2 \varepsilon^{\prime}[u(1)]+4 \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+2 S_{s}^{\prime} .
$$

By (3.6) and Table I, we obtain

$$
E^{\prime}\left(2^{-1}, 2^{-1}\right)=\varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]^{2}=4^{-1}\left\{(q-1)(\varepsilon+\varepsilon[w])+S\left(2^{-1}, 2^{-1}\right)\right\}
$$

which can be written, by (3.4) and (5.11), as

$$
2^{-1}(q-1) \varepsilon^{\prime}+2^{-1}\left|K_{2^{-1}, 2^{-1}}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+4^{-1} S^{\prime}\left(2^{-1}, 2^{-1}\right)
$$

By (3.6) and (3.7), we have

$$
\begin{aligned}
E^{\prime}\left(s, 2^{-1}\right) & =\varepsilon^{\prime}[u(1) w u(s)] \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right] \\
& =4^{-1}(\varepsilon[u(1) w u(s)]+\varepsilon[u(1) w u(1-s)]) \varepsilon\left[u(1) w u\left(2^{-1}\right)\right]
\end{aligned}
$$

It follows from Table I that the right-side is given by
$2^{-1}(\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)])+4^{-1}\left(S\left(s, 2^{-1}\right)+S\left(1-s, 2^{-1}\right)\right)$,
which can be written, by (3.5) and (5.11), as

$$
\varepsilon^{\prime}[u(1)]+\left|K_{s, 2^{-1}}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+2^{-1} S^{\prime}\left(s, 2^{-1}\right)
$$

Finally we consider the product $E^{\prime}(s, t)=\varepsilon^{\prime}[u(1) w u(s)] \varepsilon^{\prime}[u(1) w u(t)]$ for $s, t \in F^{\prime}$. By (3.7) and the definition of $E(s, t)$, we have

$$
E^{\prime}(s, t)=4^{-1}(E(s, t)+E(s, 1-t)+E(1-s, t)+E(1-s, 1-t))
$$

This implies $E^{\prime}(s, s)=E^{\prime}(s, 1-s)$. We can deduce from Table I

$$
\begin{aligned}
E^{\prime}(s, s)= & 2^{-1}(q-1)(\varepsilon+\varepsilon[w])+2^{-1}(\varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)]) \\
& +4^{-1}(S(s, s)+S(s, 1-s)+S(1-s, s)+S(1-s, 1-s))
\end{aligned}
$$

By (3.4), (3.5), (5.3) and (5.4), we obtain

$$
E^{\prime}(s, s)=(q-1) \varepsilon^{\prime}+\varepsilon^{\prime}[u(1)]+2^{-1}(S(s, s)+S(1-s, s)) .
$$

Applying (5.11), we get

$$
E^{\prime}(s, s)=(q-1) \varepsilon^{\prime}+\varepsilon^{\prime}[u(1)]+2\left|K_{s, s}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+S^{\prime}(s, s)
$$

For $s, t \in F^{\prime}$ and $t \neq s, 1-s$, we can derive from Table I that

$$
\begin{aligned}
E^{\prime}(s, t)= & \varepsilon[u(1)]+\varepsilon[w u(1)]+\varepsilon[u(1) w]+\varepsilon[u(1) w u(1)] \\
& +4^{-1}(S(s, t)+S(1-s, t)+S(s, 1-t)+S(1-s, 1-t)) .
\end{aligned}
$$

By (3.5), (5.3) and (5.4), we have

$$
E^{\prime}(s, t)=2 \varepsilon^{\prime}[u(1)]+2^{-1}(S(s, t)+S(1-s, t))
$$

Using (5.11), we get

$$
E^{\prime}(s, t)=2 \varepsilon^{\prime}[u(1)]+2\left|K_{s, t}\right| \varepsilon^{\prime}\left[u(1) w u\left(2^{-1}\right)\right]+S^{\prime}(s, t) .
$$

References

[1] C. W. Curtis and T. V. Fossum, On Centralizer Rings and Characters of Representations of Finite Groups, Math. Zeitschr. 107 (1968), 402-406.
[2] W. Fulton and J. Harris, Representation Theory: A First Course, Springer-Verlag, N.Y., 1991.
[3] M. Hashizume and Y. Mori, Spectra of Vertex-Transitive Graphs and Hecke Algebras of Finite Groups, The Bulletin of Okayama Univ. Sci., 31 (1996), 7-15.
[4] M. Hashizume and Y. Mori, The Character Table of the Hecke Algebra $\mathscr{H}\left(G L_{2}\left(F_{q}\right), A\right)$, Preprint.
[5] N. Iwahori, On the structure of Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo, Sect. I, 10 (1964), 215-236.
[6] A. Krieg, Hecke Algebras, Mem. Amer. Math. Soc., 87 (1990) (\#435).
Yoshiyuki Mori
Department of Applied Mathmatics Okayama University of Science
1-1 Ridai-cho, Okayama, 700-0005, Japan
e-mail: mori@xmath.ous.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 20C08.
 Key words and phrases. Hecke Algebra; double coset space; multiplication table.

