CONJECTURED COMBINATORIAL INTERPRETATION OF IWAHORI-HECKE ALGEBRA CHARACTERS

Brittany Shelton and Mark Skandera

Lehigh University

Outline

- (1) The symmetric group and Iwahori-Hecke algebra
- (2) Representations and characters
- (3) Descending star networks
- (4) Conjectured formulas for evaluating characters

The symmetric group S_n and group algebra $\mathbb{C}[S_n]$

Generators: s_1, \ldots, s_{n-1} . Relations:

$$s_i^2 = e \qquad \text{for } i = 1, \dots, n-1,$$

$$s_i s_j s_i = s_j s_i s_j \qquad \text{for } |i-j| = 1,$$

$$s_i s_j = s_j s_i \qquad \text{for } |i-j| \ge 2.$$

Call $s_{i_1} \cdots s_{i_{\ell}}$ reduced if it is equal to no shorter product; call ℓ the *length* of this element of S_n .

 $\mathbb{C}[S_n] = \mathbb{C}$ -linear combinations of S_n -elements.

Call a homomorphism $\rho : \mathbb{C}[S_n] \to \operatorname{Mat}_{d \times d}(\mathbb{C})$ a (\mathbb{C} -) representation of $\mathbb{C}[S_n]$ (of degree d).

Wiring diagrams, one-line, two-line notation Multiply generators by concatenating graphs

$$s_1 = \frac{\overline{}}{\overline{}}, \quad s_2 = \frac{\overline{}}{\overline{}}, \quad \dots, \quad s_{n-1} = \frac{\overline{}}{\overline{}}.$$

Define one-line and two-line notation by following wires.

Example: The wiring diagram of $s_2s_3s_1s_2s_1$ in S_4 is

Two-line notation is $\binom{1234}{3421}$; one-line notation is 3421.

The Iwahori-Hecke algebra $H_n(q)$

Generators over $\mathbb{C}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$: $T_{s_1}, \ldots, T_{s_{n-1}}$. Relations:

$$T_{s_i}^2 = (q-1)T_{s_i} + qT_e \quad \text{for } i = 1, \dots, n-1,$$

$$T_{s_i}T_{s_j}T_{s_i} = T_{s_j}T_{s_i}T_{s_j} \quad \text{for } |i-j| = 1,$$

$$T_{s_i}T_{s_j} = T_{s_j}T_{s_i} \quad \text{for } |i-j| \ge 2.$$

Natural basis: $\{T_w | w \in S_n\},\$ $T_w = T_{s_{i_1}} \cdots T_{s_{i_\ell}}, \quad (w = s_{i_1} \cdots s_{i_\ell} \text{ reduced}),\$ $T_e =$ multiplicative identity.

Call a homomorphism $\rho_q : H_n(q) \to \operatorname{Mat}_{d \times d}(\mathbb{C}[q^{\frac{1}{2}}, q^{\frac{-1}{2}}])$ a $(\mathbb{C}[q^{\frac{1}{2}}, q^{\frac{-1}{2}}])$ representation of $H_n(q)$ (of degree d).

Partitions and characters

A partition of n is a weakly decreasing nonnegative integer sequence $\lambda = (\lambda_1, \ldots, \lambda_k)$ summing to n. Write $\lambda \vdash n$ for " λ is a partition of n".

Each degree-*d* representation of $\mathbb{C}[S_n]$ or $H_n(q)$ can be described in terms of certain *irreducible representations*

$$\{\rho^{\lambda} \mid \lambda \vdash n\}, \qquad \{\rho_q^{\lambda} \mid \lambda \vdash n\},$$

or corresponding functions called *irreducible characters*

$$\{\chi^{\lambda} \mid \lambda \vdash n\}, \qquad \{\chi^{\lambda}_q \mid \lambda \vdash n\},$$

where

$$\chi^{\lambda} : \mathbb{C}[S_n] \to \mathbb{C} \qquad \qquad \chi^{\lambda}_q : H_n(q) \to \mathbb{C}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}] \\ w \mapsto \operatorname{tr}(\rho^{\lambda}(w)), \qquad \qquad T_w \mapsto \operatorname{tr}(\rho^{\lambda}_q(T_w)).$$

Open problems and a strategy for progress

Problem: State a nice formula for $\chi^{\lambda}(w)$ or $\chi^{\lambda}_{q}(T_{w})$.

Idea: (G-J, G, S-S, H '92-'93) Choose a strategic subset $Q \subseteq S_n$ and state a formula for $\chi^{\lambda}(\sum_{w \in Q} w)$ or $\chi^{\lambda}_q(\sum_{w \in Q} T_w)$.

Strategy: Let Q = Q(F) be the set of permutations covering a *descending star network* F.

Descending star networks

Fact: Q always contains $\begin{pmatrix} 1 \cdots n \\ 1 \cdots n \end{pmatrix}$. Let π_j denote the unique *j*-to-*j* path in *F*.

F-tableaux

Define an *F*-tableau of shape $\lambda \vdash n$ to be an arrangement of π_1, \ldots, π_n into left-justified rows, with λ_i paths in row *i*. Call an *F*-tableau *semistandard* (SS) if

Gasharov's interpretation

If permutations Q cover descending star network F, define

$$\beta(F) = \sum_{w \in Q} w, \qquad \beta_q(F) = \sum_{w \in Q} T_w.$$

Theorem: (G '96) $\chi^{\lambda}(\beta(F)) = \#$ SS *F*-tableaux of shape λ .

Example: For previous network F, we have $\chi^{31}(\beta(F)) = 2, \quad \chi^4(\beta(F)) = 18,$ $\chi^{22}(\beta(F)) = \chi^{211}(\beta(F)) = \chi^{1111}(\beta(F)) = 0.$

Question: What is $\chi_q^{\lambda}(\beta_q(F))$?

Conjectured interpretation of $\chi_q^{\lambda}(\beta_q(F))$

Conjecture: (Shelton '11) We have

$$\chi_q^{\lambda}(\beta_q(F)) = \sum_U q^{\text{INV}(U)},$$
where the sum is over all SS *E* tableaux of share

where the sum is over all SS *F*-tableaux of shape λ .

Example: For previous network *F*, we have $\chi_q^{31}(\beta_q(F)) = q^2 + q^3,$ $\chi_q^4(\beta_q(F)) = 1 + 3q + 5q^2 + 5q^3 + 3q^4 + q^5,$ $\chi_q^{22}(\beta_q(F)) = \chi_q^{211}(\beta_q(F)) = \chi_q^{1111}(\beta_q(F)) = 0.$