CONJECTURED COMBINATORIAL INTERPRETATION OF IWAHORI-HECKE ALGEBRA CHARACTERS

Brittany Shelton and Mark Skandera
Lehigh University

Outline
(1) The symmetric group and Iwahori-Hecke algebra
(2) Representations and characters
(3) Descending star networks
(4) Conjectured formulas for evaluating characters

The symmetric group S_{n} and group algebra $\mathbb{C}\left[S_{n}\right]$

Generators: s_{1}, \ldots, s_{n-1}.
Relations:

$$
\begin{aligned}
s_{i}^{2} & =e & & \text { for } i=1, \ldots, n-1, \\
s_{i} s_{j} s_{i} & =s_{j} s_{i} s_{j} & & \text { for }|i-j|=1 \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { for }|i-j| \geq 2
\end{aligned}
$$

Call $s_{i_{1}} \cdots s_{i_{\ell}}$ reduced if it is equal to no shorter product; call ℓ the length of this element of S_{n}.
$\mathbb{C}\left[S_{n}\right]=\mathbb{C}$-linear combinations of S_{n}-elements.
Call a homomorphism $\rho: \mathbb{C}\left[S_{n}\right] \rightarrow \operatorname{Mat}_{d \times d}(\mathbb{C})$
a (\mathbb{C}-) representation of $\mathbb{C}\left[S_{n}\right]$ (of degree d).

Wiring diagrams, one-line, two-line notation

Multiply generators by concatenating graphs

Define one-line and two-line notation by following wires.
Example: The wiring diagram of $s_{2} s_{3} s_{1} s_{2} s_{1}$ in S_{4} is

Two-line notation is $\binom{1234}{3421}$; one-line notation is 3421 .

The Iwahori-Hecke algebra $H_{n}(q)$

Generators over $\mathbb{C}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]: T_{s_{1}}, \ldots, T_{s_{n-1}}$.
Relations:

$$
\begin{aligned}
T_{s_{i}}^{2} & =(q-1) T_{s_{i}}+q T_{e} & & \text { for } i=1, \ldots, n-1, \\
T_{s_{i}} T_{s_{j}} T_{s_{i}} & =T_{s_{j}} T_{s_{i}} T_{s_{j}} & & \text { for }|i-j|=1, \\
T_{s_{i}} T_{s_{j}} & =T_{s_{j}} T_{s_{i}} & & \text { for }|i-j| \geq 2 .
\end{aligned}
$$

Natural basis: $\left\{T_{w} \mid w \in S_{n}\right\}$,

$$
\begin{aligned}
T_{w} & =T_{s_{i_{1}}} \cdots T_{s_{i}}, \quad\left(w=s_{i_{1}} \cdots s_{i_{\ell}} \text { reduced }\right) \\
T_{e} & =\text { multiplicative identity. }
\end{aligned}
$$

Call a homomorphism $\rho_{q}: H_{n}(q) \rightarrow \operatorname{Mat}_{d \times d}\left(\mathbb{C}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]\right)$
a $\left(\mathbb{C}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]\right.$-) representation of $H_{n}(q)$ (of degree $\left.d\right)$.

Partitions and characters

A partition of n is a weakly decreasing nonnegative integer sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ summing to n. Write $\lambda \vdash n$ for " λ is a partition of n ".

Each degree- d representation of $\mathbb{C}\left[S_{n}\right]$ or $H_{n}(q)$ can be described in terms of certain irreducible representations

$$
\left\{\rho^{\lambda} \mid \lambda \vdash n\right\}, \quad\left\{\rho_{q}^{\lambda} \mid \lambda \vdash n\right\}
$$

or corresponding functions called irreducible characters

$$
\left\{\chi^{\lambda} \mid \lambda \vdash n\right\}, \quad\left\{\chi_{q}^{\lambda} \mid \lambda \vdash n\right\}
$$

where

$$
\begin{aligned}
\chi^{\lambda}: \mathbb{C}\left[S_{n}\right] & \rightarrow \mathbb{C} & \chi_{q}^{\lambda}: H_{n}(q) & \rightarrow \mathbb{C}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right] \\
w & \mapsto \operatorname{tr}\left(\rho^{\lambda}(w)\right), & T_{w} & \mapsto \operatorname{tr}\left(\rho_{q}^{\lambda}\left(T_{w}\right)\right)
\end{aligned}
$$

Open problems and a strategy for progress

Problem: State a nice formula for $\chi^{\lambda}(w)$ or $\chi_{q}^{\lambda}\left(T_{w}\right)$.
Idea: (G-J, G, S-S, H '92-'93) Choose a strategic subset $Q \subseteq S_{n}$ and state a formula for $\chi^{\lambda}\left(\sum_{w \in Q} w\right)$ or $\chi_{q}^{\lambda}\left(\sum_{w \in Q} T_{w}\right)$.

Strategy: Let $Q=Q(F)$ be the set of permutations covering a descending star network F.

Descending star networks

$$
\begin{aligned}
& Q=\left\{\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}><\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array},\right. \\
& \begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}><{ }_{1}^{4} \begin{array}{l}
3 \\
2 \\
2
\end{array}, \\
& \begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array} \\
& =\left\{\binom{1234}{1234}, \quad\binom{1234}{2134},\right. \\
& \left.\binom{1234}{3421}, \ldots\right\} \text {. }
\end{aligned}
$$

Fact: Q always contains $\binom{1 \cdots n}{1 \cdots n}$.
Let π_{j} denote the unique j-to- j path in F.

Example:

π_{3}

π_{4}

F-tableaux

Define an F-tableau of shape $\lambda \vdash n$ to be an arrangement of π_{1}, \ldots, π_{n} into left-justified rows, with λ_{i} paths in row i.
Call an F-tableau semistandard (SS) if

$$
\left.\frac{\pi_{j}}{\pi_{i}} \Rightarrow \Rightarrow \begin{gathered}
\pi_{i} \text { lies entirely } \\
\text { below } \pi_{j},
\end{gathered} \pi_{i} \right\rvert\, \pi_{j} \Rightarrow \begin{gathered}
\pi_{i} \text { intersects or } \\
\text { lies entirely below } \pi_{j} .
\end{gathered}
$$

Example: Semistandard F-tableaux for $F={ }_{3}^{4}$
(shape 31)

π_{4}						
π_{1}	π_{2}	π_{3}	,\quad	π_{4}		
:---	:---	:---				
π_{1}	π_{3}	π_{2}				

(shape 4)

> | π_{1} | π_{2} | π_{3} | π_{4} |
| :--- | :--- | :--- | :--- |

$$
\begin{array}{l|l|l|}
\pi_{2} & \pi_{1} & \pi_{3} \\
\pi_{4}
\end{array},
$$

π_{3}	π_{4}	π_{2}	π_{1}
,\ldots			

Gasharov's interpretation

If permutations Q cover descending star network F, define

$$
\beta(F)=\sum_{w \in Q} w, \quad \beta_{q}(F)=\sum_{w \in Q} T_{w}
$$

Theorem: (G'96) $\chi^{\lambda}(\beta(F))=\#$ SS F-tableaux of shape λ.

Example: For previous network F, we have

$$
\begin{gathered}
\chi^{31}(\beta(F))=2, \quad \chi^{4}(\beta(F))=18 \\
\chi^{22}(\beta(F))=\chi^{211}(\beta(F))=\chi^{1111}(\beta(F))=0
\end{gathered}
$$

Question: What is $\chi_{q}^{\lambda}\left(\beta_{q}(F)\right)$?

Inversions in F-tableaux

Call intersecting paths $\left(\pi_{j}, \pi_{i}\right)$ an inversion in an F-tableau if $j>i$ and π_{j} appears in an earlier column than π_{i}.
Define $\operatorname{INv}(U)=\#$ inversions in U.

Example: For $\left.F=\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right)<\underbrace{4}_{1} \begin{aligned} & 3 \\ & 2 \\ & 1\end{aligned}$, we have

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{INV}\left(\begin{array}{llll}
\left.\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)=2, \\
\operatorname{INV}\left(\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{3} & \pi_{2}
\end{array}\right)=3,
\end{array},\right.
\end{array} \\
& \operatorname{INV}\left(\begin{array}{ll|l|l}
\boldsymbol{\pi}_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=0, \\
& \operatorname{INV}\left(\begin{array}{ll|l|l}
\pi_{2} & \pi_{1} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=1, \\
& \operatorname{INV}\left(\begin{array}{l|l|l|l}
\hline \pi_{3} & \pi_{4} & \pi_{2} & \pi_{1} \\
\hline
\end{array}\right)=4, \ldots
\end{aligned}
$$

Inversions in F-tableaux

Call intersecting paths $\left(\pi_{j}, \pi_{i}\right)$ an inversion in an F-tableau if $j>i$ and π_{j} appears in an earlier column than π_{i}.
Define $\operatorname{INv}(U)=\#$ inversions in U.

Example: For $\left.F=\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right)<{ }_{2}^{4} \begin{aligned} & 3 \\ & 2 \\ & 1\end{aligned}$, we have

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{INV}\left(\begin{array}{llll}
\left.\begin{array}{lll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)=2, \\
\operatorname{INV}\left(\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{3} & \pi_{2}
\end{array}\right)=3,
\end{array},\right.
\end{array} \\
& \operatorname{INV}\left(\begin{array}{ll|l|l}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=0, \\
& \operatorname{INV}\left(\begin{array}{ll|l|l}
\pi_{2} & \pi_{1} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=1, \\
& \operatorname{INV}\left(\begin{array}{l|l|l|l}
\hline \pi_{3} & \pi_{4} & \pi_{2} & \pi_{1} \\
\hline
\end{array}\right)=4, \ldots
\end{aligned}
$$

Inversions in F-tableaux

Call intersecting paths $\left(\pi_{j}, \pi_{i}\right)$ an inversion in an F-tableau if $j>i$ and π_{j} appears in an earlier column than π_{i}.
Define $\operatorname{INv}(U)=\#$ inversions in U.

Example: For $\left.F=\begin{array}{c}4 \\ 3 \\ 2 \\ 1\end{array}\right)<{ }_{4}^{4} \begin{aligned} & 3 \\ & 2 \\ & 1\end{aligned}$, we have

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{INV}\left(\begin{array}{llll}
\left.\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)=2, \\
\operatorname{INV}\left(\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{3} & \pi_{2}
\end{array}\right)=3,
\end{array},\right.
\end{array} \\
& \operatorname{INV}\left(\begin{array}{lll|l|l}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=0, \\
& \operatorname{INV}\left(\begin{array}{ll|l|l}
\pi_{2} & \pi_{1} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=1, \\
& \operatorname{INV}\left(\begin{array}{l|l|l|l}
\pi_{3} & \pi_{4} & \pi_{2} & \pi_{1} \\
\hline
\end{array}\right)=4, \ldots
\end{aligned}
$$

Inversions in F-tableaux

Call intersecting paths $\left(\pi_{j}, \pi_{i}\right)$ an inversion in an F-tableau if $j>i$ and π_{j} appears in an earlier column than π_{i}.
Define $\operatorname{INv}(U)=\#$ inversions in U.

Example: For $\left.F=\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right)<{ }_{4}^{4} \begin{aligned} & 3 \\ & 2 \\ & 1\end{aligned}$, we have

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{INV}\left(\begin{array}{llll}
\left.\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)=2, \\
\operatorname{INV}\left(\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{3} & \pi_{2}
\end{array}\right)=3,
\end{array},\right.
\end{array} \\
& \operatorname{INV}\left(\begin{array}{lll|l|l}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=0, \\
& \operatorname{INV}\left(\begin{array}{ll|l|l}
\pi_{2} & \pi_{1} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=1, \\
& \operatorname{INV}\left(\begin{array}{l|l|l|l}
\hline \pi_{3} & \pi_{4} & \pi_{2} & \pi_{1} \\
\hline
\end{array}\right)=4, \ldots
\end{aligned}
$$

Inversions in F-tableaux

Call intersecting paths $\left(\pi_{j}, \pi_{i}\right)$ an inversion in an F-tableau if $j>i$ and π_{j} appears in an earlier column than π_{i}.
Define $\operatorname{INv}(U)=\#$ inversions in U.

Inversions in F-tableaux

Call intersecting paths $\left(\pi_{j}, \pi_{i}\right)$ an inversion in an F-tableau if $j>i$ and π_{j} appears in an earlier column than π_{i}.
Define $\operatorname{INv}(U)=\#$ inversions in U.

Example: For $\left.F=\begin{array}{c}4 \\ 3 \\ 2 \\ 1\end{array}\right)<\underbrace{4}_{1} \begin{aligned} & 3 \\ & 2 \\ & 1\end{aligned}$, we have

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{INV}\left(\begin{array}{llll}
\left.\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)=2, \\
\operatorname{INV}\left(\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{3} & \pi_{2}
\end{array}\right)=3,
\end{array},\right.
\end{array} \\
& \operatorname{INV}\left(\begin{array}{lll|l|l}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=0, \\
& \operatorname{INV}\left(\begin{array}{ll|l|l}
\pi_{2} & \pi_{1} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=1, \\
& \operatorname{INV}\left(\begin{array}{l|l|l|l}
\hline \pi_{3} & \pi_{4} & \pi_{2} & \pi_{1} \\
\hline
\end{array}\right)=4, \ldots
\end{aligned}
$$

Inversions in F-tableaux

Call intersecting paths $\left(\pi_{j}, \pi_{i}\right)$ an inversion in an F-tableau if $j>i$ and π_{j} appears in an earlier column than π_{i}.
Define $\operatorname{INv}(U)=\#$ inversions in U.

$$
\begin{aligned}
& \operatorname{INV}\left(\begin{array}{lll}
\left.\begin{array}{|lll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)=2, \\
\operatorname{INV}\left(\begin{array}{|lll}
\hline \pi_{4} & & \\
\hline \pi_{1} & \pi_{3} & \pi_{2}
\end{array}\right)=3,
\end{array},=3,\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{INV}\left(\begin{array}{l|l|l|l}
\hline \pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\\
\operatorname{INV}\left(\begin{array}{ll|l|l|l|}
\hline \pi_{2} & \pi_{1} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=1,
\end{array},=0,\right.
\end{aligned}
$$

$$
\operatorname{INV}(\underbrace{}_{\left.\begin{array}{ll|l|l}
\pi_{3} & \pi_{4} & \pi_{2} & \pi_{1} \\
\underbrace{} & &
\end{array}\right)=4, \ldots}
$$

No inversion

Inversions in F-tableaux

Call intersecting paths $\left(\pi_{j}, \pi_{i}\right)$ an inversion in an F-tableau if $j>i$ and π_{j} appears in an earlier column than π_{i}.
Define $\operatorname{INv}(U)=\#$ inversions in U.

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{INV}\left(\begin{array}{llll}
\left.\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)=2, \\
\operatorname{INV}\left(\begin{array}{llll}
\pi_{4} & & \\
\hline \pi_{1} & \pi_{3} & \pi_{2}
\end{array}\right)=3,
\end{array},\right.
\end{array} \\
& \operatorname{INV}\left(\begin{array}{lll|l|l}
\pi_{1} & \pi_{2} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=0, \\
& \operatorname{INV}\left(\begin{array}{ll|l|l}
\pi_{2} & \pi_{1} & \pi_{3} & \pi_{4} \\
\hline
\end{array}\right)=1, \\
& \operatorname{INV}\left(\begin{array}{l|l|l|l}
\hline \pi_{3} & \pi_{4} & \pi_{2} & \pi_{1} \\
\hline
\end{array}\right)=4, \ldots
\end{aligned}
$$

Conjectured interpretation of $\chi_{q}^{\lambda}\left(\beta_{q}(F)\right)$

Conjecture: (Shelton '11) We have

$$
\chi_{q}^{\lambda}\left(\beta_{q}(F)\right)=\sum_{U} q^{\operatorname{INv}(U)}
$$

where the sum is over all SS F-tableaux of shape λ.

Example: For previous network F, we have

$$
\begin{gathered}
\chi_{q}^{31}\left(\beta_{q}(F)\right)=q^{2}+q^{3} \\
\chi_{q}^{4}\left(\beta_{q}(F)\right)=1+3 q+5 q^{2}+5 q^{3}+3 q^{4}+q^{5} \\
\chi_{q}^{22}\left(\beta_{q}(F)\right)=\chi_{q}^{211}\left(\beta_{q}(F)\right)=\chi_{q}^{1111}\left(\beta_{q}(F)\right)=0 .
\end{gathered}
$$

