# OLASS BOOK OF ASTRONOMY; <br> ACCOMRANIEDEY a CBLESTIAL ATLAS, 

Hy BELJAR HL BURKENT, A . M WITHAN INTRODUCTION,

By THOMAS DICK, HK. D.


# GEOGRAPHY OF THE HEAVENS, 

And

# CLASS BOOK OF ASTRONOMY; 

- AOOOTPANIED Ey
a CELESTIAL ATLAS

BY ELIJAF H BURRITT, A. M.

$\qquad$

# WITH AN INTRODUCTION, 

BY THOMAS DICK, LI $\mathrm{D}_{\text {, }}$
Author of the "Chriatian Philonopher," ete

NEW YORK:<br>PUBLISEEL BY HUNTINGTON AND SAVAGE,<br>216 PEARL STREET.<br>CINCINNATI:-H. W. DERBY \& $\mathbf{C O}$. 1850.

## $K C \| 331$

F. J. Huntineron \& Co. have recently published, in one small volume 16mo., suitable for children just entering upon the study of Astronomy, and introductory to the "Geography of the Heavens." ASTRONOMY FOR BEGINNERS, whth a Map and 27 Engravings. By Francis Fellowes, A. M.
"This is one of the most successful attempts to simplify sublime science to the comprehension of children. The author has employed an arrangement and style entirely new, with a clear and luminous pen and in the happiest manner. I cordially commend to parents, to teactiers, and to children, this result of his laboure."-Mra. Sigourney.


[^0]
## PUBLLSHERS NOTICE

En prementing a new edition of this work to the patinc, it is proper to point out several very important improvements which have been made.

Dr. Dict of Scotland, so well known both in Europe and in thit country, as the author of the Christian Philosopher, and other scientific and popular works, has prepared, expressly for the work, an Entroduction on the Advantages of the Stwdy of Astronamey. So far as anthority and name can oo to give currency to the work, and to establish the confidence of teachers in it as a propar text book, this simple fact, the publisher tatters himself, farnishes every testimonial which can be desired: beside which, the contributions of Professor Olmsted, of Yale College, cannot but be read with extreme interest.

The worl has been thoroughly revised, and the errors of former editions corrected: subsequent to which, it has undergone a thorough examination from one of our most eminent mathematicians and astronomers. It will be obeerved that several new Chapters, on the important subjects of Planetary Motion, The Phow momena of Day and Night, The Seasons, The Tides, The Obliquity of the Eicliptic, The Precession of the Equinaxes, \&re., have been added.

It in only necessary to observe the Atlas, to discover that the Plates have been engraved entirely anew, opon steel, and in a very superior and beautiful style. The figures of the Constelletions are far more natural and spirited than those of the former Atlas. Especially, the characters which represent the stars are distinct, so that the propil can discern, at once, to what class they belong. One new plate has been introduced, illustrating to the eye, dhe Relative Magnitudes, Distances, and Positions of the dif ferent bodies which compose the Solar System. This plate the teacher will find to be of very important service, and to aid him much in his verbal explanations. The arrangement of the Plates in the present Atias, is such, that the teacher and pupil can easily place them, in mind, so as to have a distinct view of the entirn parface of the visible Heavens.

Such are the principal improvements which have been mada In the work. They speak for themselves. The publisher known not whar could express his satisfaction with the past, or his hopen for the furare auccess of the work, better than such improv ments

## PREFACE.

I eave long felt the want of a Class Book, which should be to the starry heavens, what Geography is to the earth; a work that should exhibit, by means of appropriate delineations, the scenery of the heavens : the various constellations arranged in their order, point out and classify the principal stars, according to their magnitudes and places, and be accompanied. at the same time, with such familiar exercises and illustrations, adapted to recitation, as shoukd bring it within the pale of popular instruction, and the scope of juvenile understandings.

Such a work I have attempted to supply. I have endeavored to make the descriptions of the stars so familiar, and the instructions for finding them so plain, that the most inexperienced should not fail to understand them. In accomplishing this, I have relied but little upon globes and maps, or books. I very early discovered that it was an eásy matter to sit down by a celestial globe, and, by means of an approved catalogue, and the help of a little graduated slip of brass, make out, in detail, a minate description of the stars, and discourse quite familiarly of their position, magnitude and arrangement, and that when all this was done, i had indeed given the pupil a few additional facilities for finding those stars apon the arrificial globe, but which left him, atter all, about as ignorant of their apparent situation in the heavens, as before. I came, at length, to the conclusion, that any description of the stars, to be practically usefol, must be made from a careful observation of the stars themselves, and made at the time of observation.

To be convinced of this, let any person sit down to a celestial globe or map, and from this alone, make out a set of instructions in regard to some favorite constellation, and then desire his pupil to trace out in the firmament, by means of it, the various stars which he has thus described. The pupil will find it little better than a fancy sketch. The bearings and distances, and especially, the comparative brightness, and relative positions, will rarely be exhibited with such accuracy that the young observer will be inspired with much confidence in his guide.

1 have demonstrated to myself at least, that the most judicions instructions to put on paper for the guide of the young in this study are those which I have used most successfully, while in a clear evening, without any chart but the firmament above, I have pointed out, with my finger, to a group of listeners, the various stars which compose this and that constellation.

In this way, the teacher will describe the stars as they actually appear to the pupil-taking advantage of those obvious and more striking features that serve to identify and to distinguish them from all others. Now if these verbal instructions be committed to
writing and placed in the hands of any other pupil, they will answer nearly the same end. This is the method which I have parsued in this work. The descriptive part of it, at least, was not composed by the light of the sun, principally, nor of a lamp, but by the light of the stars themselves. Having fixed upon the most conspicuous star, or group of atars, in each constellation, as it passed the meridian, and with a pencil carefully noted all the identifying circumstances of position, bearing, brightness, number and distance-their geometrical allocation, if any, and such other descriptive features as seemed most worthy of notice, I then returned to my room to transcribe and classify these memoranda in their proper order; repeating the same observations at different hours the same evening, and on other evenings at various periods, for a succession of years; always adding such emendations as subsequent obeervations matured. To satisfy myself of the applicability of these descriptions, I have given detached portions of them to different pupils, and sent them out to find the stars; and I have generally had the gratification of hearing them report, that " every thing was just as I bad described it." If a pupil found any difficalty in recognizing a star, I re-examined the description to see if it could be made better, and when I tound it susceptible of improvement, it was made on the spot. It is not pretended, however, that there is not yet much room for improvement; for whoever undertake to delineate or describe every vipible star in the heavens, assames a task, in the accomplishment of which he may well ctaim some indulgence.

The maps which accompany the work, in the outlines and arrangement of the constellations, are essentially the same with those of Dr. Wollaston. They are projected upon the same principles as maps of Geegraphy, exbibiting a faithful portraiture of the heavens for every month, and consequently for every day in the year, and do not require to be rectified, for that parpose, like globes.

They are calculated, in a good measure, to supersede the necessity of celestial globes in schools, inasmuch as they present a more natural view of the heavenly bodies, and as nearly all the problems which are peculiar to the celestial globe, and a great number besides, may be solved upon them in a very simple and satigfactory manner. They may be put into the hands of each individual in a class at the same time, but a globe cannot be. The student may conveniently bold them before his eye to guide his survey of the heavens, but a globe he cannot. There is not a eonspicuous star in the firmament which a child of ten years may not readily find by their aid. Besides, the maps are always right and ready for use, while the globe is to be rectified and turned to a: particular meridian ; and then if it be not held in that position for the time being it is liable to be moved by the merest accident or breath of wind.

There is another consideration which renders an artificial globe of very little avail as an auxiliary for acquiring a knowledge of the stars while at school. It is this;-the pupil spends one, perhaps two weeks, in solving the problems, and admiring the figures on it, in which time it has been turned round and round a
hundred times; it is then returned safely to its case, and some months afterwards, or it may be the next evening, he directs his eye upwards to recognize his acquaintance among the stars. He may find himself able to recollect the names of the principal stars, and the uncouth forms by which the constellations are pictured out ; but which of all the positions he has placed the globe in, is now so present to his mind that he is enabled to identify it with any portion of the visible heavens?

He looks in vain to see

> "Lions and Centaurs, Gorgons, Hydras rise, And gode and heroes blaze along the skies."

He finds, in short, that the bare study of the globe is one thing, and that of the heavens quite another;'and he arrives at the conclusion, that if he would be profited, both must be stadied and compared together. This, since a class is usually furnished with but one globe, is impracticable. In this point of view also, the maps are preferable.

I have endeavored to teach the Geography of the heavens in nearly the same manner as we teach the Geography of the earth. What that does in regard to the history, situation, extent, population and principal cities of the several kingdoms of the earth, I have done in regard to the constellations; and $I$ am persuaded, that a knowledge of the one may be as easily obtained, as of the other. The systems are similar. It is only necessary to change the terms in one, to render them applicable to the other. For this reason, I have yielded to the preference of the publisher in calling this work "Geography of the Heavens," instead of Uranocrapisy, or some other name more etymologically apposite.

That a serious contemplation of those stupendous works of the Most High, which astronomy unfolds, is calculated above all other depariments of human knowledge, to enlarge and invigorate the powers of religious contemplation, and subserve the interests of rational piety, we have the testimony of the most illustrious characters that have adorned our race.

If the work which I now submit, shall have this tendency, I shall not have written in vain. Hitherto, the science of the stars has been but very superficially studied in our schools, for want of proper helps. They have continued to gaze upon the visible heavens without comprehending what they saw. They have cast a vacant eye upon the splendid pages of this vast volume, as children amuse themselves with a book which they are unable to read. They have caught here and there, as it were, a capital letter, or a picture, but they have failed to distinguish those smaller characters on which the sense of the whole depends. Hence, says an English Astronomer, "A comprehensive work on Descriptive Astronomy, detailing, in a popular manner, all the facts which have been ascertained respecting the scenery of the heavens, accompanied with a variety of striking delineations, accommodated to the capacity of youth, is a desideratum." How far this desirable end is accomplished by the following work, I hambly leave to the pablic to decide.

H:crtford, Feb. 1833.

## INDEX.

7AII
Andromeda ..... \%
Aries, the Ram, ..... 4
Aurigh, the Charioteer ..... 63
Argo Navis, the Ship Argo, ............ ..... 74 ..... 74
the Groyhounde,
Aquila et Antinous, the Eagle and An. ..... 9tinous,
Aquarius, the Water-Bearer, ..... 18 ..... 136
Asteroids
Aurora Borealis, the Northern Lights,. ..... 告 ..... 告
Bootes, the Bear-Driver ..... 35
Cassiopeia, ..... 38
Cepheus.11
Cetus, the Whale, ..... 47
Columba the Dove ..... ${ }^{6} 1$
Camelopardalus, the Camelopard, Canis Minor, the Little Dog, ..... ${ }^{6}$
Canis Major, the Great Dog, ..... 7
Coma Berenices, ..... 7
Corvus, the Crow ..... 8
Centaurus, the Centaur ..... 98
Corona Borealis, the Northern Crown,- ..... 108
Cygnus, the swan, ..... 128
Capricornus, the Goat, ..... 131
Constellations-origin of ..... 148
Comets, ..... 2
Draco, the Dragon, ..... 117
Delphinus, the Dolphin ..... 127
Dick's Introduction, ..... viii
Geography, ..... viii
Navigation ..... ix
Agriculture ..... 1
Chronology, ..... xi ..... xii
Propagation of Religion
Propagation of Religion
Dissipates Superstitious Notions, ..... xiii
Days and Nights, different lengths of,.. 978
Eridanus, River Po, ..... 61
Equulus, vel Equi Sectio, the LittleHorse, or the Horse's Head,134
Earth, ..... 198
Equinoxes-Precession of, ..... 9e8
Eeliptic-Obliquity of, ..... 299
Eclipees, Solar and Lunar, ..... 215
Forces, Attractive and Projectile, ..... 250
Gomini, the Twins, ..... ${ }^{68}$
Gravitation, Universal Law of,
Gravitation, Universal Law of, ..... 257
Hydra, the Water Serpent, and the
Hydra, the Water Serpent, and the Cap.88
Hercules, ..... 112
Herschel,
Herschel, ..... 298
Heavenly Bodies-Parallax of, ..... 
Jupiter,
Jupiter, upiter, ..... 80 ..... T
Lynx,
Lynx,
Lepua, the Hare
Lepua, the Hare ..... ${ }^{\bullet}$ ..... ${ }^{\bullet}$
Leo, the Lion, ….......... ..... 89
No Minor, the Litule Lion,
99
Libra the Balance ..... 10
Lyra, the Harp, ..... 191
Monoceros, the Unicorn, ..... 71
Mars ..... an
Mercury, ..... 138
Moon, ..... 908
Moon-Harveat and Horizontal, ..... 84
Meteoric Shbwers, Profeesor Olmated's
Remarke upon, ..... 167
Orion, ..... ${ }^{5}$
Pigces, the Fighes, ..... \%
Perseus et Caput Meduane, Perneus and
Perseus et Caput Meduane, Perneus and Medusa's head ..... 40
Pegasus, the Flying Horse, ..... 18
Piscis Australia, vel Notius, the South-
ern Fish ..... 138
Preliminary Chapter, ..... ${ }^{9}$
Planete, forces by which they are re- tained in their Orbits, ..... 256
Problems and Tables, ..... 296
Refraction ..... 287 ..... 287
Sextans, the Bextant, ..... 82
Serpens, the Berpent ..... 108
corpio, the scorpion, ..... 109
Segittarius, the Archer, ..... 19
serpentarius, vel Ophiuchus, the Ser-
pent-Bearer, ..... 115
starg-variable, ..... 137
Double, ..... 18
Clusters of, ..... 141
Nebule ..... 142
Number, Distance, and Economy of, ..... 159
Falling, pr Bhooting ..... 160
Solar Syatem-General Phenomena of, ..... 169
Bun, ..... 17
Baturn, ..... 238
Beasons, ..... 278
Taurus, the Bull, ..... 52
Tiden, ..... 971
Twilight ..... 287
Ura Major, the Great Bear, ..... 85
Urea Minor, the Little Bear, ..... 108
Virgo, the Virgin, ..... 92
Venus, ..... 144 ..... 188

## INTRODUCTION.

## ADTLNTAGES OF FTHE BTUDY OF ASTRONOII.

BY
THOMAS DICK, TH. D.

Astronomy is a science which has, in all ages, engaged the artention of the poet, the philosopher, and the divine, and been the subject of their study and admiration. Kings have descended from their thrones to render it homage, and have sometimes enriched it with their labors; and humble shepherds, while watching their focks by night, have beheld with rapture the blue vault of heaven, with its thousand shining orbs moving in silent grandeur, till the morning star announced the approach of day. The study of this ecience must have been co-eval with the existence of man. For there is no rational being who, for the first time, has lifted his eyes to the nocturnal sky, and beheld the mon walking in brightness among the planetary orbs and the host of stars, but must have been struck with awe and admiration at the splendid scene, and its sublime movements, and excited to anxious inquiries into the nature, the motions, and the destinations of those far-distant orbs. Compared with the splendor, the amplitude, the august motions, and the ideas of infinity which the celestial vault presents, the most resplendent terrestrial scenes sink into inanity, and appear unworthy of being set in competition with the glories of the sky.

Independently of the sublimity of its objects, and the pleasure arising from their contemplation, Astronomy is a study of vast utility, in consequence of its connection with terrestrial arts and sciences, many of which are indebted to the observations, and the principles of this science, for that degree of perfection to which they have attained.

Astronomy has been of immense utility to the science of

> GEOGRAPHY;
for it is chiefly in consequence of celestial observations that the torue figure of the earth has been demonsirated and its density ascertained. It was from such observations, made on the mountain Echekallien in Scotland, that the attraction of mountains was determined. The observations were made by taking the meridian distances of different fixed stars near the zenith, first on the sonth, and atterwards on the north side of the hill, when the plumb line of the Sector was found, in both cases, to be deflected from the
perpendicular towards the mountain; and, from calculations Pounded on the quantity of this deflection, the mean density of the earth was ascertained. It was likewise by means of celestial observations that the length of a degree of the meridian was measured, and the circumference of the globe, with all its other dimensions, accurately ascertained; for, to ascertain the namber of degrees between any two parallels on the Earth's surface, observations must be taken, with proper instruments, of the sun or of the stars, at different stations; and the accurate measurement of the terrestrial distance between any two stations or parallels, partly depends on astronomical observations combined with the principles and operations of Trigonometry. So that without the aids of this science, the figure and density, the circumference and diameter of our terrestrial habitation, and the relative position of places on its surface, could never have been ascertained.

Astronomy is likewise of great utility to the art of

## NAVIGATION;

without a certain knowledge of which the mariner conld never have traced his course through pathless oceans to remote regions -the globe would never have been circumnavigated, nor an intercourse opened between the inhabitants of distant lands. It is of essential importance to the navigator, not only to know the situation of the port to which he is bound, but also to ascertain with precision, on what particular portion of the terraqueous globe he is at any time placed-what course he is pursuing-how far he has traveled from the port at which he embarked-what dangerous rocks or shoals lie near the line of his course-and in what direction he must steer, in order to arrive, by the speediest and the safest course, to his destined haven. It is only, or chiefly, by astronomical observations that such particulars can be determined. By accurately observing the distance between the moon and certain stars, at a particular time, he can calculate his distance East or West from a given meridian; and, by taking the meridian altitude of the sun or of a star, he can learn his distance from the Equator or from the poles of the world. In such observations, a Enowledge of the constellations, of the pole-star, and of the general positions of all the stars of the first and second magnitude, is of particular importance ; and, therefore, a navigator who is unacquainted with the science of the heavens, ought never to be appointed to conduct a ship through the Indian, the Atlantic, or the Pacific oceans, or through any portions of the sea which are not within sight of land. By the observations founded on astronomical science, which have been made in different regions by mariners and travelers of various descriptions, the latitudes and longitudes of the principal places on the globe, and their various bearings and relations have been determined, so that we can now take a view of the world we inhabit in all its multifarious aspects, and direct our course to any quarter of it, either for business, for pleasure, or for the promotion of philanthropic objects. Thus, Astronomy has likewise become of immense utility to Trade and Commerce, in opening up new emporiums for our manufacture. in
augmenting and multiplying the scurces of wealth, in promoting an intereourse between the most distant nations, and enabling us to procure, for our accommodation or luxury, the productions of every climate. If Science bas now explored almost every region; if Politics and Philosophy have opened a communication between the remotest inhabitants of the globe; if alliances have been formed between the most distant tribes of mankind; if Tratic has explored the multifarious productions of the earth and seas, and transported them from one country to another, and, if heathen lands and barbarous tribes have been "visited with the Day-spring frum on high, and the knowledge of salvation,"-it is owing to. the aids derived from the science of the stars, without which the continents, the islands, aud the different aspects of our globe would never have been explored by those who were separated from them by intervening oceans.

This science has been no less useful to

## AGRICULTURE

and to the cultivators of the earth. The successful cultivation of the soil depends on a knowledge of the course of the sun, the exact length of the seasons, and the periods of the year most proper for the operations of tillage and sowing. The ancients were directed in these operations, in the first instance, by observing the courses of the moon, and that iwelve revolutions of this luminary corresponded nearly with one apparent revolution of the sun. But finding the coincidence not exact, and that the time of the seasons was changing-in order to knuw the precise bounds of the sun's annual course, and the number of days corresponding to his apparent yearly revolution, they were obliged to examine with care what stars were successively obscured in the evening by the sun, or overpowered by the splendor of his light, and what stars were beginving to emerge from his rays, and to re-appear before the dawn of the morning. By certain ingenious methods, and namerous and attentive observations, they traced out the principal stars that lay in the line of the sun's apparent course, gave them certain names by which they might be afterwards distinguished, and then divided the circle of the heavens in which the sun ap. pears to move, first into quadrants, and afterwards into 12 equal parts, now called the signs of the Zodiac, which they distinguished by names corresponding to certain objects and operations connected with the different seasons of the year. Such were the means requisite to be used for ascertaining the length of the year, and the commencement of the different seasons, and for directing the labors of the husbandman; and, were the knowledge of these things to be obliterated by any extensive moral or physical conrulsion, mankind would again be under the necessity of having recourse to astronomical observations for determining the limits of the solar year, and the course of the seasons. Although we find no dificulty, in the present day, and require no anxious observations, in determining the seasons, yet, before astronomical observations were made with some degree of accuracy, the ancjent Greels had to watch the rising of Archurus, the Pleiades and Orion, agricaltural labors. The rising of the star Sirius along with the sun, announced to the Egyptians the period when they might expect the overflowing of the Nile, and, consequently, the time when they were to sow their grain, cut their canals and reservoirs, and prepare the way for their expected harveat.

The science of

## CHRONOLOGY

likewise depends on celestial observations. The fnowledge of an exact measure of time is of considerable importance in arranging and conducting the affairs of life, without which, society in its movements would soen run into confusion. For example, if we could not ascertain, within an hour or two, when an assembly or any concourse of hutman beings was to meet for an important purpose, all such purposes would soon be frustrated, and human improvement prevented. Our ideas of time or succession in duration, are derived from motion; and in order to its being divided into equal parts, the motions on which we fix as standards of time must be constant and waiform, or at least, that any slight deviation from uniformity shall be capable of being ascertained. Bat we have no uniform motion on earth by which the lapse of duration can be accurately measured. Neither the flight of birds, the motion of the cloads, the gentle breeze, the impetaous whirlwind, the smooth-flowing river, the roaring cataract, the falling rain, nor even the flux and reflux of the ocean, regqlar as they generally are, could afford any certain standard for the measure of time. It is, therefore, to the motion of the celestial orbs alone that we can look for a standard of daration that is certain and invariable, and not liable to the changes that take place in all terrestrial movements. Those magnificent globes which roll around $\frac{1}{6}$ in the canopy of the sky-whether their motions be considered as real or only apparent, move with an order and regalarity which is not found in any physical agents connected with our globe; and When from this quarter we have derived any one invariable mezsure of time, we can subdivide it into the minutest portions, to subserve all the purposes of civil life, and the improvements of science. Without the aids of astronomy, therefore, we should have had no accurate ideas of the lapse of time, and should have been obliged, like the rude savage of the desert, to compute our time by the falls of snow, the succession of rainy seasons, the melting of the ice, or the progress and decay of vegetation.

Celestial observations, in consequence of having ascertained a regular measure of time, have enabled as to fix chronological dates, and to determine the principal epochs of History. Many of those epochs were coincident with remarkable eclipees of the sun or moon, which the ancients regarded as prognostics of the lows of battles, the death of monarchs, and the fall of empires; and which are recorded in connection with such events, where no dates are mentioned. The astronomer, therefore, knowing the invariable movements of the heavenly orbs, and calculating backwards through the past periods of time, can ascertain what remarkable eclipses must have been viaible at any particular time and place,
and consequently, can determine the precise date of contemporary events. Calvisius, for example, founds his Chronology on 144 eclipses of the sun, and 127 of the moon, which he had calculated for the purpose of determining epochas and settling dates. The grand conjunction of the planets Jupiter and Saturn, which occurs once in 800 years, in the same point of the zodiac, and which has happened only eight times since the Mosaic Creation, furnishes Chronology with incontestable proots of the date of events, when such phenomena happen to be recorded. On such data, Sir Isaac Newion determined the period when Thales the philosopher flourished, particularly from the famous eclipse which he predicted, and which happened just as the two armies under Alyaltes, king of Lydia, and Cyaxares the Mede were engaged; and which has been calculated to have happened in the 4ith year of the 43d Olympiad, or in the year before Christ 603. On similar grounds $\mathrm{Dr}_{\text {. }}$ Halley, a celebrated astronomer of the last century, determined the very day and hour of the landing of Julius Cesar in Britain, merely from the circumstances stated in the "Commentaries" of that illustrious general.

Astronomy has likewise lent its aid to the

## PROPAGATION OF RELIGION,

and the conversion of the heathen world. For without the light derived from this celestial science, oceans would never have been traversed, por the continents and islands explored where benighted mations reside, and, consequently, no messengers of Peace could have been dispatched to teach them "the knowledge of salvation, and to guide their steps in the way of peace." But, with the direction afforded by the heavenly orbs and the magnetic needle, thousands of Christian missionaries, along with millions of bibles, may now be transported to the most distant continents and islands of the ocean, to establish among them the "Law and Testimony" of the Most High-to illume the darkness and counteract the moral abominations and idolatries of the Pagan world. If the predictions of ancient prophets are to be fulfilled; if the glory of Jehovah is to cover the earth; if "the isles afar off," that have not yet heard of the fame of the Redeemer, nor seen his glory, are to be visited with the "Day-spring from on high," and enrolled among the citizens of Zion; if the world is to be regenerated, and Righteousness and Praise to spring forth before all nations-those grand events will be accomplished partly through the influence and direction of those celestial luminaries which are placed in the firmament to be for sigas, and for seasons, and for days and years. The light reflected from the material heavens will lend its aid in illominating the minds of the benighted tribes of mankind, till they be prepared for being transported into those celestial mansions where knowledge shall be perfected, and sovereign power triumphant. It will be likewise from aid derived from the hearenly orbs that the desolate wastes of the globe in every region will be cultivated and replenished with jnhabitants. For the Almighty "created not the earth in vain, but furmed it to be inhabited;" and his purpose in this respect must ultimately be accomplished; and
the proress of peopling and cultivation is now going forward in New Holland, Van Diemen's Land, Africa, the Weatern States of America, and other regions where sterility and desolation have prevailed since the universal Deluge. But how could colonies of men be transported from civilized nations to those distant regions, unless by the guidance of celestial luminaries, and by the aid of those aris which are founded on the observations of astronoiny 1 So that this science exerts an extensive and beneficial influence over the most important affairs of mankind.

In short, astronomy, by unfolding to us the causes of certain celestial phenomena, has tended to

## DISSIPATE SUPERSTITIOUS NOTIONS

and vain alarms. In former ages the approach of a blazing comet, or a total eclipse of the sun or incon, were regarded with univermal consternation as prognostics of impending calamities, and as harbingers of Divine vengeance. And even in the present day, soch notions prevail among most of those nations and tribes that are unacquainted with astronomical science. During the darknest occasioned by a solar eclipse, the lower orders of Taricey have been seen assembling in clusters in the streets, gazing wildly at the sun, running about in wild distraction, and firing volleys of muskets at the sun to frighten away the monster by which they supposed it was about to be devoured. The Moorish song ad death, or the howl they make for the dead, has been heard, on such occasions, resounding from the mountains and the rales, while the women brought into the streets all the brass pans, and vessels, and iron utensils they could collect, and striking them with all their force, and sttering dreadtul screams, occasioned a horrid noise that was heard for miles around. But astronomy has put to flight such terrific phantoms and groundless alarms, by unfolding to us the true causes of all such phenomena, and showing us that they happen in exact conformity with those invariable laws by which the Almighty eonducts the machine of the universe-that eclipses are merely the effects of the shadow of one opaque globe falling upon another, and that comets are bodies which move in regular, but long elliptical orbits-which appear and disappear in stated periods of time, and are deatined to subserve some grand and beneficent designs in the system to which they belong. So that we may now contemplate all such celestial phenomena, not only with composure and tranquillity, but with exaltation and delight. In short, astronomy has undermined the absurd and lallacious notions by which the professors of Judicial Aslrology have attempted to impose on the credulity of mankind, under pretence of disclosing the designs of Fate, and the events of futurity. It shows us, that the stars are placed at immeasurable distances from our terrestrial sphere-that they can have no infiuence upon the earth, but what arises from the law of universal gravitationthat the great end for which they were created was to diffuse light, and to perform other important services in regions infinitely dislinct from the sphere we occupy-that the planets are bodies of different sizes, and somewhat similar to the globe on which we
live-that all their aspects and conjanctions are the pesult of physical laws which are regular and immutable-and that no data can be ascertained on which it can be prover that they exert a moral influence on the temperaments and destinies of men, except in so far as they tend to raise our affections to their Almighty Author, and excite us to confide in his care, and to contemplate the effects of his wisdom and omnipotence. The heavens are set before us, not as the "Book of Fate," in which we may pry into the secrets of our future destiny, which would only serve to destroy activity, and increase the pressure of our present afflictionsbut as the "Book of God," in which we may read his wondrous works, contemplate the glory of his eternal empire, and be excited to extend our views to those expansive scenes of endless felicity which await the faithful in the realms above.

Independently of the considerations above stated, the study of astronomy is attended with many advantages in a moral, intellectual, and religious point of view.

1. This depariment of science unfolds to us the most striking displays of the perfections of the Deity-particularly the grandeur of his Ommipotence. His Wisdom is conspicuously displayed in the general arrangement of the beavenly orbs, particularly in reference to the globes which compose the solar system-in placing near the center of this system that immense luminary the Sun, from whence light and heat might be distributed, in due proportion, to all the worlds that roll around it-in nicely proportioning the motions and distances of all the planets, primary and second-ary-in uniting them in one harmonious system, by one grand universai law which prevents them from flying off in wild confusion through the infinity of space-in the constancy and regularity of their motions, no one interfering with another, or deviating from the course prescribed-in the exactness with which they run their destined rounds, finishing their circuits with so much accuracy as not to deviate from their periods of revolution the hundredth part of a minute in a thousand years-in the spherical figures given to all those mighty orbs, and the diurnal motions impressed upon them, by which a due proportion of light and heat is diffused over every part of their surface. The Benevelence of the Deity shines no less conspicuous in those upper regions, in ordering all the movements and arrangements of the celestial globes so as to act in subserviency to the comfort and happiness of sentient and intelligent beings. For, the wisdom of God is never employed in devising means without an end; and the grand end of all his arrangements, in so far as our views extend, is the communication of happiness; and it would be inconsistent with the wisdom and other perfections of God not to admit, that the same end is kept in view in every part of his dominions, however far removed from the sphere of our contemplation. The heavens, therefore, must be considered as presenting a boundless scene of Divine benevolence. For they unfold to view a countless number of magnificent globes, calculated to be the habitations of various orders of beings, and which are, doubsless, destined to be the abotes of intellectual life. For the character of the Deity would be impeached, and his wisdom virtually denied, were we to sup-
pose him to arrange and extablish a magnificent veries of means without an end corresponding, in utility and digaity, to the grandeur of the contrivance. When, therefore, we consider the innumerable worlds which must exist throughout the immensity of space, the countless myriads of intelligences that people them, the various ranks and orders of intellect that may exist among them, the innumerable diversified arrangements which are made for promoting their enjoyment, and the peculiar displays of Divine benignity enjoyed in every world-we are presented with a scene of Divine goodness and beneficence which overpowers our conceptions, and throws completely into the shade all that we perceive or enjoy within the confines of this sublunary world. And, although the minute displays of Divine benevolente in distant worlds are not yet particularly unfolded to our view, yet this circumstance does not prove that no such displays exist; -and as we are destined to an immortal life in another region of creation, we shall, doubtless, be favored with a more expansive view of the effects of Divine benignity in that eternal scene which lies before us.

But this science exhibits a more striking display than any other of the Omnipotent energies of the Eternal Mind. It presents before us objects of overpowering magnitade and splendor-planetary globes a thousand times larger than the earth-magnificent rings which would nearly reach from the earth to the moon, and would inclose within their vast circumference 500 worlds as large as ours-suns a million times larger than this earthly ball, diffusing their light over distant worlds-and these suns scattered in every direction through the immensity of space, at immeasurable distances from each other, and in multitudes of groups which no man can number; presenting to the eye and the imagination a perspective of starry systems, boundless as immensity. It presents to our view motions so astonishing as to overpower and almost terrify the imagination-bodies a thousand times larger than the earth flying with a velocity of 29,000 miles an hour, performing circuits more than three thousand millions of miles in circumference, and carrying along with them a retinue of revolving worlds in their swift career; nay, motions, at the rate of 860,000 miles an hour, have been perceived among the celestial orbs, which as far surpass the motions we behold around us in this lower world, as the heavens in height surpass the earth. Such motions are perceived not only in the solar system, bat in the most distant regions of the universe, among double stars-they are regular and uninterrupted-they have been going forward for thousands, perhaps for millions of years-there is perhaps no body in the universe but is running its round with similar velocity; and it is not unlikely that the whole machine of universal natare is in perpetual motion amidst the spaces of immensity, and will continue thus to move throughout all the periods of endless duration. Such objects and such motions evidently display the omnipotence of the Creator beyond every other scene which creation presents; and, when seriously contemplated, cannot but-inspire us with the most lofty and impressive conceptions of the "eternal power" and majesty of Him who sits on the throne of the universe, and by whom
all its mighty movements are conductel. They demonstrate, that his agency is noiversal and uncontrollable-that he is able to accomplish all his designs, however incomprehensible to mortalsthat no created being can frustrate his purposes, and that he is worthy of our highest affection, and our incessant adoration.

2: Astronomy displays before us the extent and grandeur of God's universal empire, The globe we inhabit, with all its appendages, forms a portion of the Divine empire, and. when minutely investigated, 'exhibits a striking display of its Creator's power, benignity, and intelligence. But it forms only one small province of his universal dominions-an almost undistinguishable speck in the great map of the universe : and if we confine our views solely to the limits of this terrestrial ball, and the events which have taken place on its surface, we must form a very mean and circumscribed idea of the extent of the Creator's kingdom and the range of his moral government. But the discoveries of astronpiny have extended our views to other provinces of the empire of Omnipotence, far more spacious and magnificent. They demonstrate, that this earth, with all its vast oceans and mighty continents, and numerous population, ranks among the smaller provinces of this em-pire-that the globes composing the system to which it belongs, (without including the sun,) contain an extent of territory more than two thousand times larger than our world-that the sun himself is more than 500 times larger than the whole, and that, although they were all at this moment buried in oblivion, they would scarcely be missed by an eye that could survey the whole range of creation. They demonstrate, that ten thousands of suns, and ten thousand times ten thousands of revolving worlds, are dispersed throughout every region of boundless space, displaying the creating and supporting energies of Omnipotence; and consequently, are all under the care and superintendence of Him "who doeth according to his will in the armies of heaven, and among the inhabitants of the earth." Such an empire, and such only, appears corresponding to the perfections of Him who has existed from eternity past, whose power is irresistible, whose goodness is unbounded, and whose presence fills the immensity of space; and it leads us to entertain the most exalted sentiments of admiration at the infinite inlelligence implied in the superintendince of such vast dominions, and at the boundless beneficence displayed among the countless myriads of sensitive and intellectual beings which must people his wide domains.
3. The objects which this science discloses, afford subjects of sublime contemplation, and tend to elevate the soul above vicious passions and groveling pursuits. In the hours of retirement and solitude what can be more delightful, than to wing our way in imagination amidst the splendid objects which the firmament displays -to take our flight along with the planets in their wide careerto behold them running their ample rounds with velocities forty times swifter than a cannon ball-to survey the assemblages of their moons, revolving around them in their respectives orders. and carried at the same time, along with their primaries, through the depths of space-to contemplate the magnificent arches which adorn the firmament of Saturn, whirling round that planet at the
rate of a thousand miles in a minute, and displaying their radiance and majestic movements to an admiring population-to add scene to scene, and magnitude to magnitade, till the mind acquire an ample conception of such august ohjecto-to dive into the depths of infinite space till we be surrounded with myriads of suns and systems of worlds, extending beyond the range of mortal comprehension, and all ronning their appointed rounds, and accomplishing the designs of beneficence in obedience to the mgndate of their Almighty Author? Such objects afford matter for rational conversation, and for the most elevated contemplation. In this ample field the most lururiant imagination may range at large, representing scenes and objects in endless variety and extent; and, after its boldest excursions, it can scarcely go beyond the reality of the magnificent objects which exist within the range of creating power and intelligence.

The frequent contemplation of such objects tends to enlarge the capacity of the mind, to ennoble the haman faculties, and raise the soul above groveling affections and vicious pursuits. For the dispositions of mankiad and their active pursuits generally correspond to the train of thought in which they most frequently indulge. If these thougbis ran among puerile and vicious objects, such will be the general character of their affections and conduct. If their train of thinking take a more elevated range, the train of their actions, and the passions they display, will, in some measure, be correspondent.

Can we suppose, that a man whose mind is daily conversant with the noble and expansive objects to which I have adverted, would have his soul aboorbed in the pursuits of ambition, tyranny, oppression. war, and devastation 1

Would he rush like a madman through burning cities, and mangled carcasses of the slain, in order to trample underfoot the rights of mankind, and enjoy a proud pre-eminence over his fel-lows-and find pleasure in such accursed pursuits?

Would he fawn on statesmen and princes, and violate every moral principle, in order to obtain a pension, or a post of opulence or honor 1 Would he drag his fellow-men to the stake, because they worshiped God according to the dictates of their consciences, and behold with pleasure their bodies roasting in the flämes ?

Would he drive men, women, and children from their homes, loaded with chains and fetters, to pine in misery and to perish in a distant land, merely because they asserted the rights to which they were entitled as citizens and as rational beings ?

Or, would he degrade himself below the level of the brutes by a daily indulgence in rioting and drunkenness, till his faculties were benambed, and his body found wallowing in the mire?

It is scarcely possible to suppose that such passions and conduct would be displayed by the man who is habitually engaged in celestial contemplations, and whose mind is familiar with the august objects whioh the firmament displays. "If men were taught to act in view of all the bright worlds which are looking down upon them, they could not be guilty of those abominable cruelties" which some scenes so mournfully display. We should then expect, that the iron rod of oppression would be broken;
pieces-that war would cease its horrors and devastations-that liberty would be proclaimed to the captives-that "righteousness would run down our streets as a river," and a spirit congenial to that of the inhabitants of heaven would be displayed by the rulers of nations, and by all the families of the earth. For all the scenes which the firmament exhibits have a tendency to inspire tran-quullity-to produce a love of harmony and order, to stain the pride of humanograndeur-to display the riches of Divine beneficence-to excite admiration and reverence-and to raise the soul to God as the Supreme Director of universal nature, and the source and center of all true enjoyment;-and such sentiments and affections are directly opposed to the degrading pursuits and passions which have contaminated the society of our world, and entailed misery on our species.

I might have added, on this head, that the study of this subject has a peculiar tendency to sharpen and invigorate the mental faculties. It requires a considerable share of attention and of intellectual acumen to enter into all the particulars connected with the principles and facts of astronomical science. The elliptical form of the planetary orbits, and the anomalies thence arising, the motation of the earth's axis, the causes of the seasons, the difficulty of reconciling the apparent motions of the planets with their real motions in circular or elliptical orbits, the effects produced by centritugal and centripetal torces, the precession of the equinoxes, the aberration of light, the method of determining the distances and magnitudes of the celestial bodies, mean and apparent time, the irregularity of the moon's motion, the difficulty of forming adequate ideas of the immense spaces in which the heavenly bodies move, and their enormous size, and various other particulars, are apt, at first riew, to startle and embarrass the mind, as if they were beyond the reach of its comprehension. But, when this science is imparted to the young under the gaidance of enlightened instructors-when they are shown not merely pietures, globes and orreries, but directed to observe with their own eyes, and with the assistance of telescopes, all the interesting phenomena of the heavens, and the motions which appear, whether real or apparent-when they are shown the spots of the sun. the moons and belts of Jupiter, the phases of Venus, the rings of Saturn, and the mountains and vales which diversify the surface of the moonsuch objects tend to awaken the attention, to expand the faculties, to produce a taste for rational investigation, and to excite them to more eager and diligent inquiries into the subject. The objects appear so grand and novel, and strike the senses with so manch force and pleasure, that the mind is irresistibly led to exert all itu energies in those investigations and observations by which it may be enabled to grasp all the principles and facts of the science. Aud every difficulty which is surmounted adds a new stimulus to the exertions of the intellect, urges it forward with delight in the path of improvement, and thus invigorates the mental powers, and prepares them for engaging with spirit and alacrity in every other investigation.
4. The study of astronomy has a tendency to moderate the pride of man, and to promote humility. Pride is one of the distinguishing
characteristies of prony man, and has been one of the chief causes of all the contentions, wars, devastations, oppressions, systems of slavery, despotisms, and ambitious projects which have desolated and demoralized oar sinful world. Yet there is no disposition more incongruoue to the character and circumatances of man. Perhaps there are no rational beings throughout the universe among whona pride would appear more unseensly or incompatible than in man; considering the abject situation in which he is placed. He is exposed to innumerable degradations and calamities, to the rage of storms and tempeste, the devastations of earthquakes and rulcanoes, the fury of whirl winds, and the tempestuous billows of the ocean, the ravages of the sword, pestilence, famine, and numerous diseases, and, at lemgth, he must sink into the grave, and his body become the companion of worms. The most dignified and baugbty of the soms of men are liable to such degradations, and are frequently dependent on the meaneat fellowcreatures whom they deapise, for the greater part of their accommodations and comforts. Yet, in such circumstances, man, that puny worm of the dust, whose knowledge is so limited, whose follies are so numerous and glaring-has the effrontery to strut in all the haughtineas of pride, and to glory in his shame. When seriptural arguments and motives produce litule effect, I know no considerations which have a more powerful tendency to counteract thie deplorable propensity of humam beings than those which are borrowed trom the objects connected with astronomy. They show us what an insignificant being-what a mere atom, indeed, man appears amidst the immensity of creation. What is the whole of this globe, compared with the solar system, which contains a mass of matter ten hundred thousand times greater 3 What is it in comparison of the huadred millions of suns and worlds which the telescope has descried throughout the starry regions, or of that infinity of worlds which doubtless lie beyond the range of human vision in the unesploned regions of immensity? What, then, is a lingdom, or a province, or a baronial territory, of which we are as proud as if we were the lords of the ubiverse, ond for which we engage in so much devastatipn and carnage? What are they when set in competition with the glories of the sky 7 Could we take-our station on the lofty pinnacles of heaven, and look down on this scareely distinguishable speetr of earth, we should be ready to exclaim with seneca, "Is it to this little spot that the great designs and vast desires of men are confined 1 Is it for this there is so much distarbance of nations, so much carnage, and so many ruinous wars 1 O folly of deceived men, to imagine great kingdoms in the compass of an atom, to raise armies to divide a point of earth with the sword!" It is unworthy of the dignity of an immortal mind to have its affections absorbed in the vanishing oplendors of earthly grandeur, and to feel proud of the paltry posmessions and distinctions of this sublunary scene. To foster a spirit of pride and vain-glory in the presence of Him who "sitteth on the eircle of the heavens," and in the view of the overwhelming grandeur and immensity of his works, is a species of presumption and arrogance of which every rational mind ought to feel ashaed. And, wherefore, we have reason to believe, that those mr
tudes of fools, "dressed in a little brief authority," who walk in all the loftiness of pride, have not yet considered the rank they hold in the acale of universal being; and that a serious contemplation of the immensity of creation would have a tendency to convince as of our ignorance and nothingsess, and to humble us in the dust, in the presence of the Former and Preserver of all worlds. We have reason to believe that the must exalted beings in the universe-those who are furnishei with the most capacions powers, and who have arrived at the greatest perfection in know-ledge-are distinguished by a proportional sbare of humility; for, in proportion as they advance in their surveys of the universal kingdom of Jehovah, the more will they feel their comparative ignorance, and be convinced of their limited faculties, and of the infinity of objects and operations whicb lie beyond their ken. At the same time they will feel, that all the faculties they possess were derived from Him who is the original forntain of eristence, and are continually dependent for their exercise on his sustaining energy. Hence we find, that the angelic tribes are eminently distinguished for the exercise of this heavenly virtme. They "cover their faces with their wings" in the presence of their Sovereigo, and fly, with cheerfulness, at his command, to our degraded world, "to minister to the heirs of salvation." It is only in those worlds where ignorance and depravicy prevail (if there be any such besides our own) that such a principle av pride is known or cherished in the breast of a dependent creature-and therefore every one in whom it predominales, however high his station or worldly accomplishments, or however abject his condition may be, must be considered as either ignorant or depraved, or more properly, as having both those evils existing in his constitution, the one being the natural and necessary result of the other.
5. The studies connected with astronomy tend to prepare the soul for the employments of the future world. In that world, the glory of the Divine perfections, as manifested throughout the illimitable tracts of creation, is one of the objects which unceasingly employ the contemplation of the blessed. For they are represented in their adorations as celebrating the attributes of the Deity displayed in bis operations: "Great and marvelous are thy works, Lord God Almighty! thou art worthy to receive glory and honor and power, for thou hast created all things, and for thy pleasure they are and were created." Before we can enter that world and mingle with its inhabitants, we must acquire a relish for their employments, and some acquaintance with the objects which form the subject of their sublime investigations; otherwise, we could feel no enjoyment in the society of heavenly intelligences, and the exercises in which they engage. The investigatiuns connected with astronomy, and the frequent contemplation of its objects, have a tendency to prepare us for such celestial employments, as they awaken attention to such sabjects, as they invigorate the faculties, and enlarge the capacity of the intellect, as they suggest sublime inquiries, and desires for further information which may afterwards be gratified; as they form the groundworlt of the progress we may afterwards make in that state in our surveys of the Divine operations, and as they habituate the mind to
aike large and conprehensive views of the empire and moral government of the Amighty. Those who have made progrese in such stadies, under the infuence of holy dispositions may be considered as fitted to enter heaven with peculiar advantages, an they will then be introduced to employments and investigations to which they were formerly accustomed, and for which they were prepared-in consequemce of which they may be prepared for filling stations of superior eminence in that world, and for directing the views and Investigations of their brethren who enjoyed few opportunities of instruction and inprovement in the present state. For wre are informed, in the sacred records, that "they who are wise," or as the words should be remdered, "they who excel in wisdom shall shine as the brightness of the firmament, and they that turn many to righteomsnese, as the stars for ever and ever."
6. The researches of astronomy demonstrate, that it is ist the ponoer of the Creator bo open to his intelligent offspring endless somrces of felicity. In looking forward to the scene of eur tuture destinstion, we behold a series of ages rising in succession without any prospeet of a cermination; and, at frst view, it right admit of a doabt, whether the universe presents a scene so diversified and boundless, that intelligent beings, during an endless duration, conld expect that new scezes of glory and felieity might be contiaually opening to their view, or, whether the same series of perceptions and enjoyments night mot be reitarated so as to produce satiety and indifierence. Without attemping positively to decide on the particular acenes or somrees of happinese that may be opened in the eternal world, it may be admitted, that the Deiky has it in his nower to gratify his rational creatures, during every period of duration, with new objects and mew sources of enjoyment; and, that it is the science of astronomy alone which has presented us with a demonatration, and a full illagtration of this important truth. For, it has displayed before us a univeree boundless in ith extent, diversified as to its objects, and infenite as to their number and variety. Even within the limits of human vision the number of worlds which exist capnot be reckoned less than three thousand willioms; and thoee which are nearest to us, and subject to our particular examination, present varieties of different kinds, both as to magaitude, motion, aplendor, color and diversity of a urfaceevidently indicating, that every world has its peculiar scenes of beanty and grandenr. But, as no une will be so presumptrous al to assert, chat the boundaries of the miverse terminate at the limits of human vision, there may be an assemblage of creation beyond all that is visible to us, which as far exceeds the visible system as the vast ocean exceeds in magnitude a single drop of water; and this view in nothing more than compatible with the idea of a Being whose cresting energies are infinite, and whoee presence fills immensity. Here, then, we have presented to our contemplation a boundless acene, corresponding, in variety and extent of space, to the ages of an endless duration; so that we can conceive an immortal mind expatiating amidst objects of benignity, sublimity and grandeur, ever varieh and ever new, throughont an eternal round of existence, without ever arriving at a point, Where it might be said, "Hitherto shals thou come, bnt no far-
ther." And we have reason to conclade that such will be the privilege and enjoyment of all holy beings. For we are informed on the authority of inspiration, that "in God"s presence there is fulwess of joy, and at his right hand are pleasures for evermore.
7. The science of astronomy is a study which will be prosecuted without intermission in the eternal world. This may be inferred from what has been already stated. For it is chiefly among the numerous worlds dispersed throughout the noiverse that God is seen, his perfections manifested, and the plans of his moral guvernment displayed before the eyes of unnumbered intelligences. The heavens constitute by far the grandest and most extensive portion of the empire of Omnipotence; and if it shall be one part of the happiness of immortal spirits to behold and investigate the beauty, grandear and beneficence displayed throughout this empire, we may rest assured, that they will be perpetrally employed in such exercises; since the objects of their investigation are boundless as immensity;-or, in other words, astronomy, among o:her branches of celestial science, will be their unceasing stody and parsuit. As it has for its object, to investigate the motions, relations, phenomena, scenery, and the ultimate destination of the great bodies of the universe, the subject can never be exbausted. Whatever may be said in regard to the absolnte perfection of other sciences, astronomy can never be said, at any future period of duration, to have arrived at perfection, in so far as it is a subject of study to finite minds; and, at this moment, even in the view of the Infinite Mind that created the universe, its objects may not yet be completed. For we have reason to believe that the work of creation is still going forward, and, consequently, chat new worlds and aystems may be continually emerging from nothing under the energies of Creating Power. However capacious, therefore, the intellects of good men, in a future world, may be, they will never be able fully to explore the extent and variety, "-the riches and glory " of Him "who dwells in light unapproachable;"-yea, the most exalted of created intelligences, wherever existing, although their mental powers and activities were incomparably superior to those of man will be inadequate to a full investigation and comprebension of the grandeur and sublimities of that kingdom which extends throughout the regions of immensity. And this circumstance will constitute one ingredient of their bappiness, and a security for its permanency. For, at every period of intinite duration, they will be enabled to look forward to a succession of scenes, objects and enjoyments different from all they had previonsly contemplated or experienced, without any prospect of a termination. We may therefore conclude, that, unless the material nniverse be demolished, and the activities of immortal minds suspended, the objects of astronomy will continue throughont eternity to be the sabject of stody, and of unceasing contemplation.

Such are some of the adrantages attending the stady of the science of astronomy. It lies at the foundation of our geographical knowledge-it serves as a handmaid and director to the traveler and navigator-it is subservient to the purposes of universal commerce-it determines the seasons, and directs the operations of the husbandmen-it sapplies us with an equable standard of
time, and setties the evenfs of history-it lends its aid to the propagation of religion, and undermines the foundation of superstition and astrology. Above all, it illustrates the glory of the perfechons of the Deity-displays the extent and grandeur of his universal empire-affords sabjects of sublime contemplation-enlarges the conceptions, and invigorates the menial powers-counteracts the influence of pride, and promotes the exercise of bumility-prepares the soul for the employments of the future world-and demonstrates, that the Creator has it in his power to open ap endlessly diversified sources of happiness to every order of his intelligent offspring, throughout all the revolutions of eternity. The moral advantages arising from the stady of this science, however, cannot be appreciated or enjoyed, unless such studies and investigations be prosecuted in connection with the facts and principle of Revelation. But, when associated with the study of the Scriptures, and the character of God therein delineated, and the practice of Christian precepts, they are calculated "to make the man of God perfect," to enlarge his conceptions of Divine periection, and to expand his views of "the inheritance of the saints in light."

Such being the advantages to be derived from the study of this science, it ought to form a subjectof attention in every seminary intended for the mental and moral improvement of mankind. In order to the improvement of the young in this science, and that its objects may make a deep impression on their minds, they should be directed to make frequent observations, as opportunity offers, on the movements of the nocturnal heavens, and to ascertain all the facts which are obvious to the eye of an attentive spectator. And, while they mark the different constellations, the apparent diurual motion of the celestial vault, the planets in their several courses, and the moon walking in her brightness among the host of starsthey should be indulged with views of the rings of Saturn, the belt and satellites of Jupiter, the phases of Mercury and Venus, the numerous groups of stars in the Mulky Way, the double and treble stars, the most remarkable Nebula, the mountains and plains, the caverns and circular ridges of hills which diversify the suriace of the moon, as they appear though good achromatic or reflecting telescopes. Without actual observation, and the exbibition of such interesting objects, the science of asironomy makes, comparatively, little impression on the mind. Our school honks on astronomy should be popular in their language and illustrations, bat, at the same time, they should be comprehensive in their details, and every exhibition should be clear and woll defined. They should contain, not merely descriptions of facts, to be received on the anthority of the author or the instructor, but illustrations of the reasons or arguments on which the conclusions of astronomy are founded, and of the modes by which they have been ascertained. And, while planetariums, celestial globes, and planispheres of the heavens are exhibited, care should be taken to direct the observations of the pupils as frequently as possible to the objects themselves, and to guard them against the limited and distorted notions which all kinds of artificial representations have a tendency to convey.

There is still room for improvement in all the initatory books
on this sabject, I have examined; bat such books are now rapidly improving, both as to their general plan, and the interesting nature of their details. I have seen nothing superior in this respect, or better adapted to the purpose of rational instruction, than Mr. Burrit's excellent work entited, "The Geography of the Hearens," second edision, comprising 342 closely printed pages. It contains, in the first place, a full and interesting deacription of all the constellations, and principal stars in the heavens, interspersed with a great variety of mytholugical, historical and philowophical information, calculated to amuse and instruct the general reader, and to arrest the attention of the young. The descriptions of the bodies connected with the solar system are both popular and scientific, containing a lucid exhibition of the facts which have been ascertained respecting them, and a rational explanation of the phenomena connected with their various aspects and motions. The Celestial Allas which accompanies the work is varied, comprehensive, and judiciously constructed, and forms the most complete set of planispberes, lor the purpose of teaching, which has hitherto been published. It consists of four maps about fourteen inches square, delineated on the same principles as geographical projections, exhibiting the stars that pass near the meridian at a certain hour, along with the circumjacent constellations for every month, and for every day of the year. Besides these there are two circumpolar maps of the northern and southern hemispheres of the heavens, and a planisphere on the principle of Mercator's projection, which exhibits at one view the sphere of the heavens, and the relative positions of the different constellations and principal stars. With the assistance of these. maps, which in a great measure supersede the use of a celestial globe, an intelligent leacher may, at certain intervals in the course of a year, render his pupils familiar with must of the visible stars in the heavens: and thoy will make a deeper impression on their minds when taught in this way, than by the use of a globe. This work, on the whole, indicates great industry and research on the part of the author, aud a familiar acquaintance with the various departments of the science of the heavens. He has derived his materials from the most valuable and modern works of science, and has introduced not a few illustrations and calculations of his own, which tend to enhance the general unility of the worls. The moral and religious reffections which the objects of this science naturally suggest, have not been overlooked, and, I trust, will have a tendency to raise the minds of the young to that Almighty Being whose power, wisdom, and superintendiug providence are so strikingly displayed throughout the regions of the firmament.

## PRELIMINARY CHAPTER.

In entering upon this study, the phenomens of the heavens, as tney appear in a clear evening, are the first objects that demand our attention. Our first step is to leann the namen and positions of the heavenly bodies, so that we can identify, and distinguish them from each other.

In this manner, chey were observed and studied ages before books were written, and it was only after many, careful and repeated observations, that systems and theories of Astronomy were formed. To the visible heavens, then, the attention of the pupil should be first directed, for it is only when he shall have become in some measure, familiar with them, that he will be able to locate his Astronomical knowledge, or fully comprehend the terms of the science.

For the sake of convenient reference, the heavens were early divided into constellations, and particular names assugned to the constellations and to the stars which they contain. A constellation may be defined to be a cluster or group of stars embraced in the outline of some figure. These tigures are in many cases, creations of the magination, but in others, the stars are in reality so arranged as to form figures which have some resemblance to the objects whose names have been as signed to them.
These divisions of the celeachal ephere, bear a atriking analogy to the elvil divisions of the globe. The constalations answer to atatea and kiagdonte, the most brilliant clusters to townst and citien, and the number of wars in each, te their reapective population. The pupil can trace the boundaries of any constel. bation, and name all ite ctarn, one by one, at readily as he can trace the brounde. ties of a mate, or name the towns and citien from a mag of New England. In this sense, there may be truly mald to be a Geography of the Heavena.

The stars are considered as forming, with reference to thein magnitudes, six classes; the brightest being called stars of the first magnitude, the next brightest, stars of the second magnitude, and so on to the sixth class, which consists of the smallest stars visible to the naked eye. In order to be able

[^1]to designate, with precision their situations, maginary circles have been considered as drawn in the heavens, most of which correspond to and are in the same plane with similar circles supposed, for similar purposes, to be drawn on the surface of the Earth.

In order to facilitate the study of it, artificial representations of the heavens, simular to those of the surface of the Earth, have been made. Thus, a Celestial Atlas, composed of sereral maps, accompanies this work. Before, however, proteeding to explain its use, it is necessary to make the pupil scquainted with the imaginary circles alluded to above.

Cincles of The Sphere.-The Axis of the Earth is an inaginary line, passing through its centre, north and south, about which its diurnal revolution is performed.

The Poles of the Earth are the extremities of its axis.
The Axis of the Heavens is the axis of the Earth produced both ways to the concave surface of the heavens.

The Poles of the Heavens are the extremities of their axis.
The Equator of the Earth is an imaginarv great circle passing round the Earth, east and west, everywhere equally distant from the poles, and dividing it into northern and southern hemispheres.

The Equator of the Heávens, or Equinoctial, is the great circle formed on the concave surface of the heavens, by producing the plane of the Earth's equator.

A plane is that which has surface but not thickness. The plane of a circla is that inaginary superficies which is bounded by the circle.

The Rational Horizon is an imaginary great circle, whose plane, passing through the centre of the Earth, divides the heavens into two hemispheres, of which the upper one is called the visible hemisphere, and the lower one, the invisible hemisphere. It is the plane of this circle which determines the rising and setting of the heavenly bodies.

The Sensible or Apparent Horizon, is the arcle which terminates our view, where the Earth and sky appear to meet.
To a person standing on a plain, this circle is but a few miles in diameter. It the eye be elevated five feet, the radius of the sensible horizon will be lest than Wwo miles and three quarters; if the eye be elevated six feet, tt will be just three milea. The observer being always in the centre of the sensible horizon, it wid move as he moves, and enlarge or contrach as his station is eletated or depreme ed.

[^2]The Pole of the Forizon are two ponnts, of which the cae is directly over head, and is called the Zerith; the other in directly under foot, and is called the Nadir.

Fertical Circles are circles drawn through the Zenith and Nadir of any place, putting the horizon at right angles.

The Prime Vertical is that which passes through the ean and west points of the horizon.

The Ecliptic is the great circle which the Ban appears to describe annually among the stars. It erosest the Equincetial, a little obliquely, in two opposite points which are called the Equinoxes. The Bun rises in one of these points on the 21st of March ; this point is called the Vernal Equinox. It sets in the opposite point on the $23 d$ of September; this point is called the Autumnal Equinox. One haff of the ecliptic lies on the north side of the Equinoctial, the other half on the south side, making an angle with it of 2312. This angle is called the obliquity of the Ecliptic. The axis of the Ecliptic makes the same angle with the axis of the heavens; so that the poles of each are $23 \frac{1}{2}^{\circ}$ apart.
This angle is perpetually decreasing. At the commencement of the Christim era, it was about $23^{\circ} 45^{\prime}$. At the beglaning of 1838 , 1 was only $23^{\circ} 27^{\prime} 38$ ", sliowing an annual diminution of about half a mecond, or $45^{\prime \prime} .70$ in a hundred yeara. A time will arrive, however, when this angle, having reached it minisuum, will again inerease in the same ratio that it had before dimmianed, and thus if will continue to oscillate at lons periodm, between certain limitis, which are said to be comprised within the space of $20^{\circ} 49^{\circ}$.

The ecliptic, like every other circle, contains $360^{\circ}$, and it is divided into 12 equal arcs of $30^{\circ}$ each, called signs, which the ancients distinguished by particular names. This division commences at the vernal equinox, and is continued eastwardly round to the same point again, in the following order: Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpno, Sagittariue, Capricornus, Aquarius, Pisces. The Sun, commencing at the first degree of Anes, about the 21st of March, passes, at a mean rate, through one sign every month.

The Zodiac is a zone or girdle, about 16 degrees in breadth. extending quite round the heavens, and including all the heavenly bodies within $8^{\circ}$ on each side of the ecliptic. It includes, also, the orbits of all the planets, except some of the asteroids, since thoy are never seen beyond 80 either north or south of the ecliptic.

Parallels of Latitude are small circles imagined to be

[^3]drawn on the Earth's surface, north and south of the equator, and parallel to it.

Parallels of Declination are small circles, imagined to be drawn on the concave surface of the heavens, north and south of the equinoctial, and parallel to it ; or, they may be considered as circles formed by producing the parallels of latitude to the heavens.

The Tropic of Cancer is a small circle, which lies $23 \frac{1}{2}^{\circ}$ north of the equinoctial, and parallel to it. The Tropic of Capricorn is a small circle, which lies $23 \frac{1}{2} \circ$ south of the equinoctial, and parallel to it. On the celestial sphere, these two circles mark the limits of the Sun's farthest declination north and south. On the terrestial sphere, they divide the torrid, from the two temperate zones. That point in the ecliptic which touchus the tropic of Cancer, is called the Summer Solstice; and that point in the ecliptic which touches the tropic of Capricorn, is called the Winter Solstice.

> The distance of these two points from the equinoctial, is always equal to the obliquity of the ecliptic, which, in round numbers, is z3c ; but as wre have seen the obliquity of the ecliptic is continually changing; therefore the position of the tropics must make a correspondent chauge.

The Colures are two great circles which pass through the poles of the heavens, dividing the ecliptic into four equal parts, and mark the seasons of the year. One of them passes through the equinoxes at Aries and Libra, and is thence called the Equinoctial Colure; the other passes through the solstitial points or the points of the Sun's greatest declination north and south, and is thence called the Solstitial Colure.
The Sun is in the equinoctial points the 21st of March and the 23d of Septem ber. He is in the solstitial points the 22 d of June and the 22 d of December.

The Polar Circles are two small circles, each about $664^{\circ}$ from the equator, being always at the same distance from the poles that the tropics are from the equator. The northern is called the Arctic circle, and the southern the Antarctic circle."

Meridians are imaginary great circles drawn through the poles of the world, cutting the equator and the equinoctial at right ungles.
Every place on the Earth and overy corremponding point in the heavens, in mandered as having a meridian passing through it; albough astronomers appis

[^4] each $15^{\circ}$ in witth. These meridians mart the spece wnich the heavenly bodine eppear to describe, every hour, for the 24 hours of the day. They are themee monsectmes demmainated Hour Circler.
In measuring dintancea and determining ponitions on the Farth, the equator, and sonue fixed meridian, as thas of Greenwich contain the primary atartind points ; in the heavens, these points are in the ecliptic, the equinoctial, and that great ineridian which pasmes through the fires print of Arios, called the equinoscial colure.

Latitude on the Earth, is distance nortn or south of the equator, and is measured on a meridian.

Latitude in the Heavens, is distance north or south of the ocliptic, and at right angles with it.

Longitude on the Earth, is distance either east or west from some fixed meridian, measured on the equutor.

Longitude in the Heavens, is distance east from the first point of Aries, measured on the ecliptic.

Dectination is the distance of a heavenly hody either north or south of the equinoctial, measured on a meridian.

Right Ascension is the distance of a heavenly body east from the first point of Aries, measured on the equinoctial.
It is more conventent to deacrite the siruation of the heavenly bodies by theis declination and riglit ascenaion, than by their latituie and longitude, snce the former correspond to terrestrial latitule and longitude.
Latit.de and declination may extend $90^{\circ}$ and no more. Terrestrial longitude may extend $180^{\circ}$ either east or west; but celestial longitude and righ asceneion, being reckoned in only one direction, extend enturely round the circle, on $260^{\circ}$.

In consequence of the Earth's motion eastward in its orbit, the stars seem to have a motion westward, besides their apparent diurnal motion caused by the Earth's revolution on its axis; so that they rise and set sooner every succeeding day by about four minutes, than they did on the preceding. This is called their daily acceleration. It amounts to just two hours a month.
Example- Those atarn and constellations which do not rise until 10 o'clock this eveuing, will, at the saune hour, one month hence, be $30^{\circ}$ above the horizon; ani, for the sane reason, those stars which we see directly over head this evening, will at the sause hour, hree months hence, be seen setting in the west; having in thys time, performed one fourth of their apparent annual revobation.

The following table of sidereal revolutions, shows the difference between molat and sidereal titue. The first column cuntains the numbers of complete revoludons of the stars, or of the Earth's rotation on its axis; the second exhibits the

[^5]＊tonen lan which theme revolutionas are made；and the thind ahows how muct the Btare galn on the Eun every dey－hitt is，how manh mooner they rise mad oeme to the meridian every pucceeding day，thin they wid on the proceding

| Rovolutions | Timen in which Rovolutions are made． |  |  |  | $\begin{aligned} & \text { Dally accelornation of the } \\ & \text { Brank } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ho． <br> 絡 <br> 踻 <br> 8 <br> ม8x <br> $\underset{28}{3}$ <br>  <br>  <br>  <br>  <br> 盟 <br> 81 17 10 <br> 10 |  |  |  |  |  |

On this account，we have not always the same constella tions visible to us throughout the year．While some，that were not visible before，are successively rising to view in the east，and ascending to the meridian，others sink beneath the western horizon，and are seen no more，until，having passed through the lower hemisphere，they again reappear in the east．
It is easy to convert right ascension finto time，or time into right ascenaioa for if a heavenly body fo one hour in passing over $15^{\circ}$ ，it will be one fifeenth of en hour，or 4 minutes，in passing over $1^{\circ}$ ．
If the firat point of Aries be on the meridian at 12 o＇clock，the next hour ling， which is $15^{\circ} \mathrm{G}$ ．of it，will come to the meridian at $10^{\circ} \mathrm{clock}$ ；the second hour Ine at 2 o＇chock；the third at 8 ，\＆c．Or any two bodies whose right ascensional ure given，that one will pass the meridian firat which has the least right ascenaloes

The first map of the atlas represents，upon a large scale －general view of the solar system．
This will be more fully deneribed in the Becond Fart of the work．

[^6]The next six maps represent different sections of the concave surface of the hearens. The first of these exhibits the principal constellations yisible to us in October, November and December ; the second, those visible in January, February and March; the third, those visible in April, May and June; and the fourth, those visible in July, August and September; with the exception, however, of the constellations which lie beyond the 50th degree of north and south declination, of which, indeed, those around the North Pole are almays, and thone around the South Pole, never, visible to us.

These constellations are represented on the sixth and seventh maps, called circumpolar maps, which are an exact continuation of the others, and if joined to them at their corresponding degrees of right ascension and declination, they might be considered as constituting one map. The scale on which all the above-mentioned maps are drawn is that of a 16 inch globe. The lines drawn on the maps have been already defined; and their use, being nearly the same with those in Geography, will be readily understood. Those which are drawn from right to left, on each side of the equinoctial and parallel to it, are called Parallels of Declination. Those which are drawn up and down through the maps, at intervals of $15^{\circ}$, are called Meridians of Right Ascension, or Hour Circles. The scale at the top and bottom of the first four maps, and in the circumference of the circumpolar maps, indicates the daily progress of the stars in right ascension, and shows on what day of the month any star will be on the me ridian at 9 o'clock in the evening.
The constellation called the Great Bear is an oxeeption to thia rula; in thto cnatellation the principal stars are marked in the order of their right escenalon.
Thas point of projection for the mapas which would exbibit each anccessive portion of the heavens directly over head at $9 o^{\prime}$ clock in the evening, was chosen, because in summer at an earlier hour the twilight would bedim our observation of the stark, and at other seations of the year it is easior to look up to atars that wrat an hour of meir meridian altitude than to thate which are directly over head.
It will be readily seen that the ntars are mo repremented on the maps an to show their relative magnitudem. The method invented by Bayer, of denignating them by the letters of the Greet and Roman alphabets, Is adopted. Thus in each contellation the stars are marted alpha, beta, te., and ahould the letters of the Greek alphabet be exhausted, those of the Ruman are employed. Some of the ctara have also proper names.

The first four maps of the heavens are so constructed that the

[^7]pupil in using them must suppose hımself to face the sonth, and "o hold them directly over head in such manner that the top of the map shall be towards the north, and the bottom towards the south; the right hand side of the map will then be west, and the left hand east. In using the circumpolar maps he must suppose himself to face the pole, and to hold them in such a manner that the day of the given month shall be uppermost. The Celestial Planisphere represents the whole heavens lying between 70 degrees of north and south declination, not as the surface of a concave sphere, but of a concave cylinder, and spread out so as to form a plain surface. A great variety of interesting problems, including almost all those that are peculiar to the celestial globe, may be solved upon it with facility and readiness.

We may now imagine the pupil ready to begin the study of the visible Heavens. The first thing of importance is to fix upon the proper starting point. This, on many accounts, would seem to be the North Polar Star. Its position is apparently the same every hour of the night throughout the year, while the other stars are continually moving. Many of the stars also in that region of the skies never set, so that when the sky is clear, they may be seen at any hour of the night. They revolve about the Pole in small circles, and never disappear below the horizon. On this account they are said to be within the circle of perpetual apparition. On the other hand, the identity of the North Polar Star, strange as it may appear, is not so easily determined, by those who are just entering upon this study, as that of some others. For this reason, the point direcily over head, called the zenith, is preferable, since upon this point every one can fix with certainty in whatever latitude he may be. It will be alike to all tae central point of the visible heavens, and to it the pupil will learn imperceptibly to refer the bearing, motion, and dis ances of the heavenly bodies.
That meridional point in each map, whose declination corresponds with
the latitude of the place of observation, represents the zenith of the heavens
at that place; and those constellations of stars which occupy this position
on the maps, will be seen directly over head al 9 o'clock in the evening of the
day through which the meridian passes.-Thus in Georgia, for instance, the
etarting point should be those stars which are situated in this meridian near the
33d degree of north declination, while in New Eagland it should be those whlch
are muated in it near the 42d degree.

[^8]We might, nowever, begin with the stars near ethe ot the meridians represented on the maps, the only rule of selection being to commence at that which approaches nearest to being over head at the time required.

We have chosen for our starting point in this work, that meridian which passes through the vernal equinox at the first point of Aries, not only because it is the meridian from which the distances of all the heavenly bodies are measured; bus especially because the student will thus be enabled to observe and compare the progressive motion of the constellatious according to the order in which they are always arrariged in catalogues, and also to mark the constellations of the Zodiac nassing over head as they rise one after another in their orJer, and to trace among them the orbits of the Earth and of the other planets.

As Greek lettera so frequenty occur tn catalognes and mape of the tari and an the celestial glober, the Grees alphabes is here introduced for the use of shom Fho are unacquainted with it. The capitals are seldom used for dealen ading the ctarn, but are here given for the make of regularity.

THE GREEK ALPHABET.

| A | ${ }^{a}$ | Alpha | a |
| :---: | :---: | :---: | :---: |
| B | $\beta$ | Beta | b |
| $\Gamma$ | $\boldsymbol{\gamma}$ | Gamma | 2 |
| A | $\boldsymbol{d}$ | Delta |  |
| E | - | Epailon | e short |
| Z | $\zeta$ | Zete. | $z$ |
| H | $\stackrel{\square}{*}$ | Eta | e long |
| $\theta$ | - | Theta |  |
| I | - | Iota | $i$ |
| K | * | Kappa | k |
| A | $\lambda$ | Lambda |  |
| M | $F$ | Mu | m |
| N | , | Nu | n |
| \% | 1 | Xi | x |
| 0 | - | Omicron | o short |
| II | T | Pi | P |
| P | P | Rho | ; |
| $\mathbf{L}$ | : | Sigma | 3 |
| T | - | Tam | $t$ |
| $\underline{T}$ |  | Upsilon | n |
| $\Phi$ | 1 | Phi | ph |
| $\mathbf{X}$ | $\boldsymbol{x}$ | Chi | ch |
| $\mathbf{\Psi}$ | $\psi$ | Psi |  |
| $\boldsymbol{\Omega}$ | a | Omega | 0 long |

In 1003, John Bayer, of Anguburg, in Germany, published a complete Atlan of all the constellationg, with the useful invention of denoting the etars ta every

[^9] Greet letter a to the principal star: in azch constellation, $\beta$ to the becond in magnitude, $\gamma$ to the third, and so 0.1 ; and when the Greol alphabet wail oxhausted, the notation was carried on wibl ths Romun levera, $a, b, c$, te. That the memory might not be perplexed with a nultitide of $x$ smes this convetient method of designating the ptari har been adepted by all succeeding antromomety,
 ctars in the conetellations outnumbered both alphabets.

| Lucrease. |  | Incr. |  | lncr. |  | Incr. |  | Iner |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ho Lat mes. | Min. | sec. | Min. | cec. | 98. | cee. | Soe | soc. |
| 109.857 | 1 | 0.164 | 31 | 5.053 | 1 | 0.003 | 31 | 0.085 |
| $2{ }^{2} 19.713$ | 2 | 829 | 32 | 267 | 2 | 006 | 93 | 088 |
| 3 20.569 | 3 | 493 | 38 | 421 | 8 | 008 | 33 | 090 |
| 4 29.428 | 4 | 657 | 34 | 585 | 4 | 011 | 34 | 093 |
| 649.282 | 5 | 821 | 35 | 750 | 5 | 014 | 36 | 096 |
| 6 64.139 | 6 | 986 | 36 | 914 | 6 | 016 | 66 | 099 |
| $7118.90 \%$ | 7 | 1.150 | 37 | 6.078 | 7 | 019 | 37 | 101 |
| 8 - 18.862 | 8 | 314 | 38 | 242 | 8 | 022 | 38 | 10. |
| 9 23.708 | 9 | 479 | 39 | 407 | 9 | 028 | 39 | 107 |
| 10 38.665 | 10 | 643 | 40 | 571 | 10 | 027 | 40 | 110 |
| 11 \$8.421 | 11 | 807 | 41 | 736 | 11 | 000 | 41. | 112 |
| 12 E8.278 | 12 | 971 | 42 | 900 | 12 | 033 | 42 | 115 |
| 13 2 8.134 | 13 | 2.136 | 43 | 7.064 | 13 | 008 | 43 | 118 |
| 14 17.991 | 14 | 300 | 44 | 228 | 14 | 088 | 4 | 121 |
| 15 22.847 | 15 | 464 | 45 | 392 | 15 | 041 | 45 | 123 |
| 16 37.704 | 16 | 68 | 46 | 557 | 16 | 044 | 46 | 125 |
| $17 \quad 47.560$ | 17 | 783 | 47 | 721 | 17 | 047 | 47 | 129 |
| 18 57.417 | 18 | $95 \%$ | 48 | $88 \%$ | 18 | 049 | 48 | 131 |
| $19 \quad 37.273$ | 19 | 3.121 | 49 | 8.050 | 19 | 062 | 49 | 134 |
| $20 \quad 17.130$ | 20 | 286 | 50 | 214 | 20 | 065 | 60 | 137 |
| $21 \quad 26.988$ | 21 | 450 | 51 | 378 | 21 | 058 | 51 | 140 |
| 22 36.842 | 22 | 614 | 52 | 542 | 22 | 060 | 82 | 142 |
| 23 46.699 | 2 | 778 | 58 | 707 | 23 | 063 | 63 | 145 |
| 24 56.565 | 2 | 943 | 54 | 87 | 28 | 006 | 54 | 148 |
|  | 20 | 4.107 | 55 | 9.053 | 25 | 069 | 55 | 151 |
| Daily accelerntion | ${ }^{8}$ | ${ }^{981}$ | 56 | 199 | 28 | 0 OH | 66 | 180 |
| of ater in pataing | 28 | 49\% | 5 | 86 | 27 | 074 | 67 | 186 |
| memerinal | ${ }_{0}$ |  | 88 |  | 28 |  |  | 150 |
|  | 20 | 784 | ${ }_{6}^{69}$ | 0 | 20 | 068 | \% 6 | 星 |

# GEOGRAPHY OF THE HEAVENS. 

## CHAPTERI.

##  TEI MERIDIAK in NOVHIBER.

## ANDROMEDA.

If we look directly over head at 10 o'clock, on the 10 th 0 November, we shall see the constellation celebrated in fable, by the name of Andsomen.. It is represented on the map by the figure of a woman having her arms extended, and chained by her wrists to a rock. It is bounded N. by Cassiopeia, E: by Perseus and the head of Medusa, and S. by the Triangles and the Northern Fish. It is situated between $20^{\circ}$ and 500 of N. declination. Its mean right ascension is nearly $15^{\circ} ;$ or one hour E . of the equinoctial colure.

It cousists of 66 visible stars, of which three are of the $2 d$ magnitude, and two of the 3d; most of the rest are mall.

The stars directly in the zenith, are too small to be seen in the presence of the moon, but the bright star Almaack, of the $2 d$ magnitade, in the left foot may be seen $15^{\circ}$ due E., and Merach, of the same magnitude, in the girdle, $7^{\circ}$. south of the zenith. This star is then nearly on the meridian, and with two others N. W. of it forms the girdle.

The three stars forming the girdle are of the 2d, 3d, and 4 th magnitude, situated in a row, $3^{\circ}$ and $4^{\circ}$ apart, and are called Merach, Mu and Nu.

About 20 from Nu at the northwentern extremity of the girdle, is a remarkable nebula of very minute stars, and the only one of the kind which is ever visible to the naked eye. It resembles two cones of light, joined at their base, about $\frac{90}{3}$ in length, and $4^{\circ}$ in breadth.

[^10]If a straig $t$ line, connecting Almaack with Merach, be produced southwesterly, $8 \circ$ farther, it will reach to Deltu, a star of the 3 d magnitude in the left hreast. This star may be otherwise known by its forming a line, $\mathbf{N}$. and $\mathbf{S}$. with two smalier ones on either side of it; or, by its constituting, with two others, a very small triangle, S. of it.
Nearly in a line with Almaack, Merach and Delta, out curving a litule to the $\mathbf{N} .7^{\circ}$ farther, is a lone star of the 2 d magnitude, in the head, called Alpheratz. This is the N. E. corner of the great "Square of Pegasus," to be hereafter described.
It will be well to have the position of Alpheratr well fixed in the mind beckuen His but one minute west of the great equinoctial colure, or first meridian of the beavens, and forus nearly a right line with Algeatb in the wing of Pegasus $14^{\circ}$ 8. of ih, and wiMI Beta in Cassiopeia, $30^{\circ} \mathrm{N}$. of iL. If a line, connecting these threa sure, Ge produced, it will terminate ln the pole. These chree guides, in connex ton with the North Polar Etar point out to astronomerw the poefiton of that great circle in the heavens from which the right ascenaion of all the heavenly bodiea is neasured.
Histoay - The wtory of Andromeda, from which this conateliation derivea the sane, is as follows: Ehe was daughter of Cepheus, king of 太thiopia, by Casciopers. She was promised in marriage to Phineus, her uncle, when Neptund drowued the kinglom, and sent a mea monster to ravage the country, to appease the resentuent which his favourite Nympha bore sgainat Cassiopeia, becaumo she had boasted lierself fairer than Juno and the Nereides. The oracle of Jtpiter Aumon was consulted, and nothing could pacify the anger of Neptung unleus the beautiful sindromeda should be exposed to the sea monster. She was accordingly chained to a rock for this purpose, near Joppa, (now Jaffa, in Syria,) and af the moment the monster was going to devour her, Perseus, who was then returning through the air from the conquest of the Gorgong, maw her and wia captivaled by her beauty.

> "Chained to a rock she mood; young Perseun, wtay'd His rapid flight, to woo the beauteous masis."

He promised to deliver har and tertroy the monater if Cepheus would give her to him in uarrage. Cepheus cunsented, and Perseus instantly changer the sea monster into a rock, by showing him Meduma's heach, which was still reekint in this hand. The enraged Phineus opponed their nuptials and a violent battik enaued, in which he, also, was turned nino a mone by the petrifying iniluence on che Gorgon's head.

The unorala, uaxime, and hiatorical ovente of the ancienta, were usually come municated in fable or allegory. The fable of Andromeda and the sea menoter, might tuean that ahe was courted by some monster of a sea-captain, who af temped to carry her away, but was provented by another more gallant and auecensful rival.

## PISCES.

The Fisies.-'I nis constellation is now the first in order, of the 18 constellations of the Zodiac, and is usually represented by two fishes tied a considerable distance apart, at the extremities of a long undulating cord, or riband. It occupies

[^11]- large trangular space in the heavens, and its outline at firm is somewhat difficult to be traced.
In conmeqcence of the annual precession of the mart the comerdlation Praces pad now come to occupy the rgm Aries; each conatelletion hatiog edraced sae whole sign in the order of the Zodisc. The emn entern the aftu Piscen while the earih enters that of Virga, about the ish of February, bot he doed not reach the conetellation Piscen beiore the 6 h of March. The flebeen, therefort, um now called the "Lomdern of the Celestial Home".-Sve drien.

That loose assemblage of small stars directly south of Merach, in the constellation of Andromeda, constitutes the Northern Fish, whose mean length is about $16^{\circ}$, and breadth, 70. Its mean right ascension is $15^{\circ}$, and its declination $25^{\circ}$ N. Consequently, it is on the meridiun the 24 th of November; and, from its breadth, is more than a week in passing over it. The Northern Fish and its riband, beginning at Merach, may, by a train of small stars, be traced, in a S.S. easierly direction, for a distance of $33^{\circ}$, until we come to the star EI Rischa, of the 3d magnitude, which is situated in the node, or fiezure of the riband. This is the principal star in the constellation, and is situated $2 \circ \mathrm{~N}$. of the equinoctial, and 53 minutes east of the meridian.

Seven degrees 8. E. of El Rische, peaning by three or four very mmall marr Fe cone to Mira, in the Whale, a star of about the 3d magnitude, and known as the "Wonderfal star of 1596." El Rischa may be otherwiee identified by ineana of a remartable cluster of five stars in the form of a pensagom, aboul $15^{\circ} \mathrm{E}$. of t.-See Cetw.

From El Rischa the riband or cord makes a sudden flexure, doubling back across the ecliptic, where we meet with three stars of the 4th and 5 th magnitude situated in a row $3^{\circ}$ and $4^{\circ}$ apart, marked on the map Zeta, Epsilon, Delta. From Delta the riband runs north and westerly along the Zodiae, and terminates at Beta, a star of the 4th magnitude, $11^{\circ} \mathrm{S}$. of Markab in Pegasus.

This part of the riband including the Western Fish at the eud of it, has a mean declination of $5^{\circ} \mathrm{N}$., and may be seen throughout the month of November, passing the meridian slowly to the $W$., near where the sun passes it on the 1st of April. Twelve degrees W. of this Fish, there are 4 small stars situated in the form of the letter Y. The two Fishes, and the cord between them, make two sides of a large triangle, $30^{\circ}$ and $40^{\circ}$ in length, the open part of which is towards the N. W. When the Northern Fish is on the

[^12]meridian, the Western is nearly 2 hours past it. This co. stellation is bounded N. by Andromeda, W. by Andromen and Pegasus, S. by the Cascade, and E. by the Whale, tiRam and the Triangles.

Whon, to enable the pupil to And any star, Ite direction from another is giver, the latter ia always underatood to be on the meridian.

After a litule expenjence writh the maps, even though unaccompanied $k_{7}$.f rections, the mgenious youth will be able, of himsel; to devise a great many of pedienti and facilitues for tracing the constellations, or eelecting out particult meara.

Herony.-The ancient Greeks, who have some fable to account for the or gin of almost every constellation, say that as Venus and her son Cupid werc on. day on the banks of the Euphrates, thoy were greatly alarmed at the appearanca of a terrible giant, named Typhon. Throwing themaelves into the river, ther were changed into fishes, and by this means eacaped danger. To commemorati shis event, Minerva placed two fishes among the etara.

According to Ovid, Homer, and Virgli, this Typhon was a famous giant. Fe had a hundred heada, like those of a merpent or dragon. Flames of devouring Gre darted from his mouth and eyes. He was no sooner born, than he madi wrar agalnat heaven, and so frightened the gods, that they fed and assumed dif ferent shapea. Jupiter became a ram; Mercury, an ibis ; Apollo, a crow; Juna a cow; Hacchus, goal; Diana, a cat ; Venus, a fish, scc. The father of the cods, at least, put Typhon to fight, and crushed him under Mount distna.

The obvious sentiment implied in the fable of this hideous monster, is evtdently this: that there is in the world a description of wifn, whose wouth is a "full of cursing and bitterneas," derision and violence, that modert virtue ia cometimes forced to diguise itself, or flee from their presence.

In the Hebrew Zodiac, Pisces is allotted to the escutcheon of Simeon.
No aign appears to have been considered of more malignant influence than Pisces. The astrological calendar describes the emblems of this constellation an indicative of violence and death. Both the Syrians and Egyptians abstained from eating fish, out of dread and abhorrence; and when the latter woukd represent any thing as odious, or express hatred by hieroglyphics, they palnted a fieh.

In using a circumpolar map, face the pole, and hold it up in your hands in such a manner that the part which contains the name of the given month shall be uppermont, and you will have a portraiture of the heavens as seen at that time.

The constellations about the Antarctic Pole are not visible in the United states; thome about the Aretic or northern pole, are alwaym visible.

## CASSIOPEIA.

Cassiopena is represented on the celestial map, in regal state seated on a throne or chair, holding in her left hand the branch of a palm tree. Her head and body are seen in the Milky Way. Her foot rests upon the Arctic Circle, upon which her chair is placed. She is surrounded by the chier personages of her royal family. The king, her husband, is on her right hand-Perseus, her son-in-aw, on her left-and Andromeda, her daughter, just above her.

This constellation is situated $26^{\circ} \mathrm{N}$. of Andromeda, and midway between it and the North Polar Star. It may be

[^13]seen, from our latitude, at all hours of the nighl, and may be traced out at almost any season of the year. Its mean declination is $60^{\circ} \mathrm{N}$. and its right ascension $12^{\circ}$. It is on our meridian the 22 d of November, but does not sensibly change its position for several days; for it should be remembered that the apparent motion of the stars becomes slower and slower, as they approximate the poles.

Cassiopeia is a beautiful constellation, containing 55 stars that are visible to the naked eye; of which four are of the 3d magnitude, and so situated as to form, with one or two smaller ones, the figure of an inverted chair.

> Ditqeitwed, nor ahine with matual aid improved; Nor dazale, brilliant with contiguous fane: Their number fifty-fire."

Caph, in the garland of the chair, is almost exactly in the equinoctial colure; $30^{\circ} \mathrm{N}$. of Alpheratz, with which, and the Polar Star, it formg a straight line. [See note to Andromeda.] Caph is therefore on the meridian the 10th of November ${ }_{2}$ and one hour past it on the 24th. It is the westernmost star of the bright cluster. Shedir*, in the breast, is the uppermost star of the five bright ones, and is $5^{\circ} \mathbf{S}$. E. of Caph : the other three bright ones, forming the chair, are easily distinguished, as they meet the eye at the first glance.

There is an importance attached to the position of Caph that concerns the mariner and the surveyor. It is used, in connection with observations on the Polar Star, for determining the latitude of places, and for discovering the magnetic variation of the needle.
It is generally muppoed that the North Polar Star, to called, the the real Immov. able pole of the heavens; but this is a mistaike. It is eo mear the true pole that it has obtained the appellation of the North Polar Star; but it in, in reslity, more than a degree and a half distant from it, and revolves about the true pole every 24 hourg, in a circle whoee radins is $1^{\circ} 3 \boldsymbol{j}^{\circ}$. It will consequently, in 24 hourn, ba twice on the meridian, once above, and once beloro the pole; and twice af its greatest elongation E. and W. [See North Polar Ntar.]

The Polar Star not being exactly in the N. pole of the heavens, but one degree and 35 minutes on that side of it which is towards Caph, the position of the latter becomes important, as it always shows on which side of the true pole the polar otar is.

There is another important fact in relation to the position

[^14]of this star. It is equidistant from the pole, and exactly opposite another remarkable star in the square of the Great Bear, on the other side of the pole. [See Megrez.] It also serves to mark a spot in the starry heavens, rendered memorable as being the place of a lost star. Two hundred and fifty years ago, a bright star shone $5^{\circ} \mathrm{N} . \mathrm{N} . \mathrm{E}$. of Caph. where now is a dark void!

On the 8th of November, 1572, Tycho Brahe and Cornelius Gemma saw a star in the constellation of Cassiopeia, which became, all at once, so brilliant, that it surpassed the splendour of the brightest planets, and might be seen even at noonday! Gradually, this great brilliancy diminished, until the 15th of March, 1573, when, without moving.from its place, it became utterly extinct.

Its colour, during this time, exhibited all the phenomena of a prodigious flame-first it was of a dazzling white, then of a reddish yellow, and lastly of an ashy paleness, in which its light expired. It is impossible, says Mrs. Somerville, to imagine any thing more tremendous than a conflagration that could be visible at such a distance. It was seen for sixteen months.

Some astronomers imagined that it would reappear again after 150 years; but it has never been discovered since. This phenomenon alarmed all the astronomers of the age, who beheld it; and many of them wrote dissertations con cerning it.

Rev. Professor Vince, one of the most learned and pious astronomers of the age, has this remark:-"The disappearance of some stars may be the destruction of that system at the time appointed by the Derry for the probation of its inhabitants; and the appearance of new stars may be the for mation of new systems for new races of beings then called into existence to adore the works of their Creator."

[^15][^16]tre not only perpetally ereating，but also perpetwally ditappearing．It in ar atraorifinary fact，that within the period of the last century，not less than this een stars，in different constellations，meem to have totally perished，and ten new maes to have been created．In many ingtances it is unquestiopable，that the wart themselves，the supposed habitation of other kinds or orders of intelligent be－ ings，torether with the different planets by which it is probable they were sur rounded，have ufterly vanighed，and the gpota which they occupied in t＇$e$ hem－ vens，have become bluaks！What ham befallen other wytema，will asuurediy befall our own．Of the time and the manner we know nothing but the fact in meontrovertible；it la foretold by revelation；it is inscrited in the heavens；if Is felt through the earth．Such is the awful and daily text；what then ought to be the cominent？
The great and good Beza，falling in with the superstition of his ase，attempted to prove that this was a comet，or the mame luminous appearance which conduct－ ed the magi，or wise men of the East，into Palestine，at the birth of our Saviour and that it now appeared to announce his second coming！

About $6^{\circ} \mathrm{N} . \mathrm{W}$ ．of Caph，the telescope reveals to us a grand nebula of small stars，apparently compressed into one mass，or single blaze of light，with a great number of loose stars surrounding it．
Hızто⿱亠䒑－Cassiopeia was wife of Cepheus，Eing of Ethiopia，and mother of An－ ilromeda．She was a queen of inatchless beauty，and seemed to be senaible of it； for she even boasted herself fairer than Juno，the sister of Jupiter，or the Nerel－ des－a namegiven to the sea nymphs．This so provoked the ladies of the mea that they complained to Neptune of the Insult，who sent a frightful monster to ravage her coast，as a punishment for ber intolence．But the anger of Neptune and the jealousy of the nymphs were not thus appeased．They demanded，and it was finally ordained that Cassiopeia should chain her daughter Andromeda，whom she tenderly loved，to a desert rock on the beach，and leave her exposed to the fury of this monster．She was thus left，and the monster approached；but jund as he was going to devour her，Perseus killed him．
＂The saviour youth the royal pair confess
And with heav＇d hande，their daughter＇s bridegroom bless．＂
Einaden＇a Doid．

## CEPHEUS

Cepreves is represented on the map as a king，in his royal robe，with a sceptre in his left hand，and a crown of stars upon his head．He stands in a commanding posture，with his left foot over the pole，and his sceptre extended towards Cassio－ peia，as if for farour and defence of the queen．

> The nelghbourng heavens; "Cepheus illumes faithfol,to his queen, With thitry-five mins luminariea mart'd."

This constellation is about $25^{\circ} \mathrm{N}$ ．W．of Cassıpeia，near the 2 d coil of Draco，and is on the meridian at 8 o＇clock the 3d of November；but it will linger near it for many days． Like Cassiopeia，it may be seen at all hours of the night， when the sky is clear，for to us it never sets．
By reference to the lines on the map，which all meet in the pole，it will be evi－ dent that a star，near the pole，moves over a much lese space in one hour，than

[^17]one at the equinoctial; and generally, the mearer the pole, the morrower the space, and the alower the motion.

The stars that are so near the pole may be better deacribed by their polar diatance, than by their declination. By polar distance, is meant-ithe disiancs frum the pole; and is what the declination wants of $90^{\circ}$.

In this constellation there are 35 stars visible to the naked eye; of these, there glitters on the left shoulder, a star of the 3d magnitude, called Alderamin, which with two others of the same brightness, $8^{\circ}$ and $12^{\circ}$ apart, form a slightly-curved line towards the N.E. The last, whose letter name is Gamma, is in the right knee, 190 N . of Caph, in Cassiopea. The middle one in the line, is Alphirk, in the girdle. This star is one third of the distance from Alderamin to the pole, and nearly in the same right line.
It cannot be too well understood that the bearings, or direction of one star fron another, as given in this treatise, are strictly applicable only when the former one is on, or near the meridian. The bearings given, in many cases, are not the least approximations to what appears to be their relative position; and in some, If relied upon, will lead to errours. For erample :- It is said, in the preceding paragraph, that Gamma, in Cepheus, bears $19^{\circ}$ N. of Caph in Cassiopeia. This is true, when Caph is on the meridian, but at this very moment, while the author 18 writing this line, Gamma appears to be $19^{\circ}$ due west of Caph; and six months hence, will appear to be the sarne distance east of it. The reason is obvious; the circle which Cepheus appears to describe about the pole, is within that of Cassiopeis, and consequently when on the east side of the pole, will be withim, or betucen Cassiopeia and the pole-that is, west of Cassiopeia. And for the same reason, when Cepheus is on the west side of the pole, it is betureen that and Cassiopeia, or east of it.
Let it alao be remembered, that in speaking of the poie, which we shall have frequent occasion to do, in the course of this worik, the North Polar Star, or an inasinary poini very near it, is always meant; and not as some will vaguely apprehend, a point in the horizon, directly N. of us. The true pole of the heavens is always elevated just as many degrees above our horizon, as we are north of the Equator. If we live in $42^{\circ} \mathrm{N}$. latitude, the $\mathbf{N}$. pole will be $42^{\circ}$ above our horizon. (See North Polar Star.)

There are also two smaller stars about $9^{\circ}$ E. of Alderamm and Alphirk, with which they form a square; Alderamin being the upper, and Alphirk the lower one on the W. $8^{\circ}$ apart. In the centre of this square there is a bright dot, or semi-visible star.

The head of Cepheus is m the Milky-Way, and may be known by three stars of the 4th magnitude in the crown which form a small acute triangle, about $9^{\circ}$ to the right of Alderamin. The mean polar distance of the constellation is $25^{\circ}$, while that of Alderamin is $28^{\circ} 10^{\prime}$. The right ascension of the former is $338^{\circ}$; consequently, it is $22^{\circ} \mathrm{E}$. of the equinoctial colure.
The atudent will underatand that rlght asconmon is reckoned on the equinoctial, from the first point of Aries, E., quite round to the game point again, which

[^18]m8990. Now $898^{\circ}$, meantred from the mane patent, will roech tho man polat yain, within $2220^{\circ}$; which is the difierence between $300^{\circ}$ and $893^{\circ}$. This ruk will apply to any other case

Hzinoar.-This constellation immortalizen the name of the king of Brhiopin The name of his queen was Cagaiopeia. They were the parents of Andromede, wha wras betrothed to Perteus. Cepheus was one of the Argonauts who accompanied Jason on his perilous expedition in quest of the golden fleece. Nowton supposeas Shat it was owing to this circumatance that he wan placed to the heavens; and that not oaly this, but all the ancient constellations, relate to the Aronautic ar pedition, or to permons some way connected with it. Thus, he observes that en Muszeus, one of the Argonauta, was the first Greck who made a celential sphere, he would naturally delineate on it those figures which had mome reference to the expedition. Accordingly, we have on our globes to this day, tho Golden Rame the ensign of the ship in which Phryxus fied to Colchig the ncene of the Argo nautic achievementa. We have also the Bull with brizen hoofis, tamed by 25 mon; the Tveine, Castor and Pollur, two sailors, with their mother Leda, th the corm of a Swoan, and Argo, the ship itself; the watchful Dragon Hydre, with the Cup of Medea, and a raven upon fits carcass, an an emblem of denth; also Chirom, the Master of Jason, with his Altar, and Saerifce; Hercules, the Argonaut with his club, his dart, and vuliure, with the dragon, crab and lion which he slew; and Orcheus, one of the company, with his harp. All theae, eays Nowton, refor $t 0$ the Argonauti.

Again; we have Orion, the won of Neptune, or, as some mat, the grandson of Minos, with his doga, and hare, and river, and acorpion. We have the story of Perseos in the constellation of that name, ta well as in Casiopeia, Cepheus Andromeds and Cetus; that of Calisto and her son Arcas, in Uraa Major ; thet of Icareus and his daughter Erigone, tn Bootes and Virgo. Ursa Minor relates to one of the nurses of Jupiter; Auriga, to Erichthoniua; Ophischocs, to Phorbas ; Sagittarius, w Crolus, the son of one of the Muses; Capricorn, to Pan, and Aquarius to Ganymede. We have also Ariadne's crown, Bellerophon's horse, Neptune's dolphim, Ganymede's eagle, Jupiter's goat with her kidf, the assen of Bacchus, the fishes of Venus and Cupid, with their parent, the southern fieh. These, according to Deltoton, comprise the Grecian constellations mentioned by the poet Aratus; and all relate, as Newton cupponen, remotely or immediately, to the Argonauts.

It may be remarked, however, that while none of these figures refor to any transactions of a later date than the Argonautic expedition, yet the great disagreement which appears in the mythological account of them, proves that their invention must have been of greater antiquity than that evenh, and that theme constellations were received for some time among the Greeks, before their poete referred to them in describing the particulars of that memorable exhibition.

## CHAPTERII.

DRERCTIONS FOR TRACDO THE CONSTHLLATIONE WHICH ARE-ON TEE MEHDDAN LT DEORMBER.

ARIES.
Tfe Ram.-Twenty-two centuries ago, as Hipparchus so forms us, this constellation occupied the first sign in the ecliptic, commencing at the vernal equinox. But as the constellations gain about $50 / 1$ on the equinox, at every revolution of the heavens, they have advanced in the ecliptic nearly $31^{\circ}$ beyond it, or more than a whole sign: so that the Fishes now

[^19]occupy the same place in the Zodiac, that Aries did, in the time of Hipparchus; wb e the constellation Aries is now in the sign Taurus, Taurus in Gemini, and Gemini in Cancer, and so on.

Ariss is therefore now the second constellation in the Zodiac. It is situated next east of Pisces, and is midway between the Triangles and the Fly on the N. and the head of Cetus on the $S$. It contains 66 stars, of which, one is of the 2 d , one of the 3 d , and two of the 4th maguitudes.

> "First, from the east, the Ram conducta the year; Whom Ptolemy with twice wine stars adorns, of which two only claim the second rank ; The rest, when Cynthia fills the mign, are lost."

It is readily distinguished by means of two bright stars in the head, about $4^{\circ}$ apart, the brightest being the most northeasterly of the two. The first, which is of the 2d magnitude, situated in the right horn, is called Alpha Arietis, or simply Arietis; the other, which is of the 3d magnitude, lying near the left horn, is called Sheratan, and may be known by another star of the 4th magnitude, in the ear, $1 \frac{1}{2}{ }^{\circ} \mathrm{S}$. of it, called Mesarthim, which is the first star in this constellation.

Arietis and Sheratan, are one instance out of many, where stars of more than ordinary brightness are seen together in pairs, as in the Twins, the Little Dog, \&c., the brightest star being commonly on the east.

The position of Arietis affords important facilities to navtical science. Difficult to comprehend as it may be, to the unlearned, the skilful navigator who should be lost upon an unknown sea, or in the midst of the Pacific ocean, could, by ineasuring the distance between Arietis and the Moon, which often passes near it, determine at once not only the spot he was in, but his true course and distance to any known meridian or harbour on the earth.

Lying along the moon's path, there are nine conspicuous stars that are used by nautical men for determining their lon gitudx at sea, thence called nautical stars.

These stars are Arietis, Aldebaran, Pollux, Regulus, Spica Virginis, Antares, Altair, Fomalhaut, and Markab.
The true places of these stars, for every day in the year, are given in the Nautical Almanac, a valuable work published annually by the English "Board of Adsuralty," to guide mariners in navigating the seas. They are usually publighed two or three years in advance, for the benefit of long voyages.
That a man, says Bir John Herschel, by merely measuring the moon's apparent diatance from a star, with a little portable inatrument held in his hand, and

[^20] poaitively within ive miles, where he the on a boundless ocean, eannot but appenr to persons ignorant of phyideal astronomy, sn approach to the miraculous. And Yet, says he, the alternatives of tife and death, wealth and ruin, are daily and hourty staked, with perfect conidence, na theso marvellown computationg.

Capt. Basil Hall, of the royal navy, relates that he had sailed from flan Blas on the weat coust of Mexico, and after a voyage of 8000 miles oceupying eighty-nine days, arrived of Rio Jeneiro, having in this interval paseed through the Pacife ocean, rounded Cape Forn, and crossed the Routh Anlantic without making any land or meeing a single sail on the voyago. Arrived within a few days' sall of Rio, he took a set of lunar observationa, to ascertain his true position, and the hearing of the harbour, and shaped his course accordingly. "I hove to," "ys he, "at 4 to the morning, till the day should break, and then bore up; for although it was tey, we conid see before ns a couple of miles or mo. About 8 o'elock it became so fogey that 1 didenot like to mtand in farther, and wan ju bringing the ship to the wind again before sending the people to breakfast, when it suddenly cleared off, and I had the satiafaction of meoing the great Sugar-loal rock, which ztands on one aide of the harbour's mouth, wo nearly righi ahead that we had not to alter our courne above a point ta order to thit the entrance of Rio. This was the first land we had seen for three months, after cromeing es unany seas, and being set backwards and forwarde by innumerable currente and soul winds.'

Arietis comes to the meridian about 12 minutes after Sheratan, on the 5th December, near where the sun does in midsummer. Arietis, also is nearly on the same meridian with Almaach, in the foot of Andromeda, $19{ }^{\circ} \mathrm{N}$. of it, and culminates only four minutes after it. The orner stars in this constellation are quite small, constituting that loose cluster which we see between the Fly on the north, and the head of Cetus on the south.

When Arietis is on the meridian, Andromeda and Cassiopeia are a little past the meridian, nearly over head, and Perseus with the head of Medusa, is as far to the east of it. Taurus and Auriga are two or three hours lower down; Orion appears in the S. E.. and the Whale on the meridian, just below Aries, while Pegasus and the Swan are seen half way over in the west.

The manner in which the ancients divided the Zodiac into 12 equal parta, wad both simple and ingenious. Having no instrument that would measure time exactly, "They took a vessel, with a small hole in the bottom, and having filled n with water, suffered the same to distil, drop by drop, into another vessel set beneath to receive it, beginning at the moment when some star rose, and continuing till it rose the next following night, when it would have performed one complete revolution in the heavens. The water falling down into the receiver They divided into 12 equal parts; and having twelve other small vessels in readisess, each of them capable of contalning one part, they again poured all the water into the upper vessel, and observing the rising of some star in the Zodiacy et the same time suffered the watcr to drop into one of the small vessels. And as soon as it was full, they removed it, and set an empty one in its place. Juet as each vessel was full, they took notice what ptar of the Zodiac rose at that tine, sud thus continued the process through the year, until the 12 vessels wera苗行 ${ }^{10}$

Thas the Zodiac was itivided into 12 equal portiong, corresponding to the it

[^21]monthe of the year, coummencing at the vernol equhnz. Fech of these pertmane eerved an the visible representative or sign of the month it appeared in.

All those atare in the Zodiac which were ohserved to rise while the first vessol was filling, were constellated and hucluded in the first sign, and called Arice, an nimal held in great estoem by the shepherds of Chaldea. All thooe starn in the Zodiac which rose while the second veasel was filling, were constellated and included in the mecond aign, which for a mimilar reason, wan denominated Tan rus ; and all those mtars which were observed to rise while the third vesecl was Glling, were constellated in the third sign, and called Gemini, in alluaion to the suin secesen of the fiocke.

Thus each aign of $30^{\circ}$ in the Zodiac,' recelved a diatimetive eppellation, accordIng to the fancy or auperstition of the inventore; which manes have ever since been retained, although the conatellations themolver have since lef their nomInal signs more than $30^{\circ}$ behind. The aign Aries, therefore, imclurled all the starn embraced in the first $30^{\circ}$ of the Zodiac, and no more. The aign Taurua, in lite manner, included all chose stars embraced in the next $30^{\circ}$ of the Zodiae, or thome between $30^{\circ}$ and $60^{\circ}$, and so of the remt. Of those who imagine that the twolve constellations of the Zodiac refer to the twelve tribe of Iarad, mome amaribe Arisit to the tribe of Eimeon, and others, to Gad

Histony.-According to fable, this is the ram which bore the golden feece and carried Phryxun and his sister Melle through the air, when they fied to Colchis from the persecution of their stepmother Ino. The rapid motion of the ram In his aerial fight high above the earth, caused the head of Helle to turn with giddiness, and she fell from his back into that part of the sea which was afterwards called Hellespoxs, in commemoration of the dreadful event. Phryxue arrived safe at Colchis, but was moon murdered by his own father-in-law, Atea, who envied him his golden treasure. This gave rise to the celebrated Argobautic expedition under the command of Jason, for the recovery of the golden fleece.

Nephele, queen of Thebes, having provided her children, Phryxus and Helle with this noble animah opon which they might elude the wicked designs of those who sought their life, was afterwards changed into a cloud, as a reward for her parental solicitude; and the Greeks ever after called the clouds by her name. But the most probable account of the origin of this consteliation is given In a preceding paragraph, where It is referred to the flocks of the Chaldean shepherds.

During the csmpalgns of the French army in Egypt, General Dessaix discor ered among the ruing at Dendera, near the banks of the Nile, the great temple aupposed by mome to have been dedicated to Isis, the fomale deity of the Egyp tians, who believed that the rising of the Nile was occasioned by the tears which she continuslly ahed for the loss of her brother Osiria, who was murdered by Typhon.
Others sunpose this edifice was erected for astronomical purposes, from the circumstance that two Zodiacs were discovered, drawn upon the ceiling, on opposite sides. On both these Zodlacs the equinoctial points are in leo, and not In Aries; from which th has been concluded, by those who pertinaciously endeavour to array the arguments of science against the chronology of the Bible and the validity of the Mosaic account, that these Zodiacs were constructed when the gun entered the aign Leo, which must have been 9720 years ago, or 4000 yeara before the inspired account of the creation. The infidel writers in France and Germany, mafe it 10,000 years before. But we may "set to our seal," that whatever is true in fact and correct in inference on this subject will be found, in the end, not only consistent with the Momaic record, but with the common meaning of the expremaions it uses.
The discovery of Champollion hat put thla question for ever at rest ; and M. Latronne, a mont learned antiquary, has very gatisfactorily demonatrated thet these Efyptian Zodiacs are merely the horoscopes of distinguished personages, or the precise altuation of the heavenly bodies in the Zodiac at their nativity. The idea that guch was their purpose and origin, first suggested itself to thit gentleman on finding in the box of a mummy, a similar Zodiac, with each

[^22]mantpotons and ainurctorn at determined it to be the horoweopo of the decennd mermon.

Of all the discoveries of tive antiquary among the rolice of ancient Greece, the Faing of Pahnyra, the gigantic pyramide of Egypt, the cemplet of thetr fod, or the mepulchres of their kings, acarcely one mo aroused and rivetod the curionty of the learned, as did the dizwovery of Chanpollion the younger, which deciptere the hieroglyphics of ancient Egypt.

The potency of this invaluable dincovery hae alreedy been sianlhy namifented Ls atting a formidable controveray between the cliampion of fifidelity and thoet who maintain the Bible account of the creation. It hit been abown thet the conntellation Pioces, fince the days of Hpparchus, has come, by reason of the annual preceasion, to occupy the mame apparent place in the hemvent that Aries did twe thousand years ago. The Chriatian astromomer and the hifiel are perfectly agreed as to the fact, and the amount of thim yearly faln in the apparenf motion of the tars. They both believe, and both can demonetrate, tind the Ixed utars have gone forward in the Zodiac, about $50^{\prime}$ of a degree in evary revoIation of the heavens since the creation; so that were the world to litht upon any authentic inserfiption or record of past ages, which should give the true podition or longitude of any particciar star at chat time, it would be easy to fix an unquestionable date to much a record. Accordingly, when the famows "Fayptin Zodiace," which were eculptared on the walls of the temple at Denderm, were brought away en masen and exhibited in the Louvre at Faris, they enfindled a foore exciting intercat in the thousands who aw them, than ever did the entrance of Napoleon. "Educated men of every order, and thoma who had the vanity to think themselves such," azys the commentator of Champollion, "rished to betiold the Zodiacs. These Zodiads were immediately published and commented upon, with more or less good faith and decorum. Bclence mtruck ons

- into syatems very bold; and the spirit of infidelity, sefring upon the diacovery, flatered itself with the hope of drawing from thence new support. It was unjue tifisbly taken for granted, that the ruins of Egypt furnighed satronomy with monumenis, containing obecrvations that exhituted the rate of the hesvena in the most remote periods. Starting with this assumption, s pretence was made of demonarating, by means of calculations received as infalithle, that the celestal eppearances assigned to thege monuments extended bacix from forty-five to six-ty-five centuries; that the Zuxiacal aystem to which they must belong dated back ficeen thousand yearg, and niusi reach far heyomi the limits angigned by Mosen co the existence of the worid." Ainong those who atood forth more of less boid as the acivergaries of revelation, the most prominent was M. Dupuif the fanous author of $L$ ' origime de tous les Cultes.

The infidelity of Dupuie was spread about by means of pamphlets, and the adFocstes of the Momic account were scandalized "until a new Alexander aroee to cut the Gordian Enot, which men had vainly sought to untie. This was Cham. pollion the younger, armed with his discovery," The hieroglyphics now speat e language that ill can understand, and no one gainmay. "The Egyptian Zodiace, then," say Latronne, "relate in no respect to astronomy, but to the Idle phan. tasies of judicial astrology, an connected with the destinies of the emperore who mede or connpleted them."

## CETU̇S.

The Whale.-As the whale is the chief monster of the deep, and the largest of the aquatic race, so is it the largest constellation in the heavens. It occupies a space of $50^{\circ}$ in length, E. and W., with a mean breadth of $20^{\circ}$ from N. to S. It is situated below Aries and the Triangles, with a mean declination of $12^{\circ} \mathrm{S}$. It is represented as mating its way to the E., with its body below, and its head elevated above the equinoctiai: and is six weeks in passing the meridian. Its

[^23]tal comes to the meridian on the 10th of November, and its sead leaves it on the 22d of December.

This constellation contains 97 stars; two of the 2 d magmatude, seven of the 3 d , and thirteen of the 4th. The head of Cetus may be readily distinguished, about $20^{\circ} \mathrm{S}$. E. of Aries, by means of five remarkable stars, $4^{\circ}$ and $5^{\circ}$ apart, and so situated as to form a regular pentagon. The brightest of these is Menkar, of the 2 d magnitude, in the nose of the Whale. It occupies the S. E. angle of the figure. It is $3 \frac{1}{2}{ }^{\circ}$ $\mathbf{N}$. of the equinoctial, and $15^{\circ} \mathrm{E}$. of El Rischa in the bight of the cord between the Two Fishes. It is directly $37{ }^{\circ} \mathbf{S}$. of Algol, and nearly in the same direction from the Fly. It makes an equilateral triangle with Arietis and the Pleiades, being distant from each about $23^{\circ} \mathrm{S}$., and may otherwise be known by a star of the 3 d magnitude in the mouth, $3^{\circ} \mathrm{W}$. of it, called Gamma, placed in the south middle angle of the pentagon.
$N u$ is a star of the 4th megnitude, $4^{\circ} \mathbf{N}$. W. of Gamma, and these two constitute the $\mathrm{S} . \mathrm{W}$. side of the pentagon in the head of the Whale, and the N. E. side of a similar oblonge figure in the neck.

Three degrees S.S. W. of Gamma, is another star of the 3d magnitude in the lower jaw, marked Delta, constituting the E. side of the oblong pentagon; and $6^{\circ} \mathrm{S}$. W. of this, is a noted star in the neck of the Whale, called Miru, or the "wonderful star of 1596 ," which forms the S. E. side. This variable star was first noticed as such by Fabricius, on the 13th of August, 1596. It changes from a star of the 2 d magnitude so as to become invisible once in 234 days, or about 7 times in 6 years. Herschel makes its period 331 days, 10 hours, and 19 minutes; while Hevelius assures us that it once disappeared for 4 years; so that its true period, perhaps, has not been satisfactorily determined.

The whole number of stars ascertained to be variable, amounta to only 15 ; while those which are suspected to be variable, amount to 37 .

Mira is $7^{\circ}$ S. S. E. of El Rischa, in the bend or knot of the riband which connects the Two Fishes. Ten degrees S. of Mira, are 4 small stars, in the breast and paws, about $3^{\circ}$ apart, which form a square, the brightest being on the E. Ten de

[^24]grees S. W. of Mira, is a star of the 3d magaitade in the heart, called Baten Kaitos, which makes a scalene u:angle . with two other stars of the same magnitude $7^{\circ}$ and $10^{\circ} \mathrm{W}$. of it; also, an equilateral triangle with Mira and the easternmost one in the square.

A great number of geomotrical figures may be formed from the tars in thin and in most of the other constellations, merely by reference to the maps; bui I is better that the atudent should exercine hif own ingenaity in this way with reference to the etars themselves, for when once he has constructed a group loto any letter or figure of his own invention, he never will forget it.

The teacher athould therefore require his class to commit to writing the reank of their own observations upon the relative position, magnitude and figures of the principat otars in each constellation. One evoning's exerciae in this wy will disclose to the student a surprising multitude of crosees, equares, briamgies, arca and lettere, by which he will be better able to identify and remember them, tham by any ingtructions that could be given.

For exanule: Mira and Baten in the Whale, about 100 apart, make up the 8. E. or shorter side of an irregular square, with Ell Riacha in the node of the riband, and another etar in the Whale as far to the right of Baten, an El Biecha Le above Mira. Again,

There are three stars of equal magnitude, forming a atraight line W. of Baten; from which, to the middle star is $10^{\circ}$, thence to the $W$. one 12 ; and $8^{\circ}$ or $9^{\circ}$ है of this line, in a trianguiar direction, la a bright etar of the seecond magaitude in the coil of the tail, called Diphde

In a southerly direction, $25^{\circ}$ below Diphda, is Alpha in the head of the Fhenix, and about the same distance S. W. Is Fomalhaut, in the mouth of the Gouthern Fish, forming together a large triangle. with Diphde in the verter or top of it.

That fine cluster of amall stary 8. of the littla square in the Whale, conatitutes a part of a new constellation called the Chymical Furnace. The two etars N. E. and the three to the southward of the Iitule mquare, are in the river Eridanus.

History.-This constellation ts of very early antiquity; though mont writers consider it the famous sea monster sent by Neptiune to devour Andromeda bocause her mother Cassiopeiz had boasted hernelf fairer than Juno or the Bea Nymphs; bul slain by Perseus and placed among the stara in honour of his exaievement.
"The winged hero now descends, now moars, And at hin pleagure the vast monater gorem. Deep in his back, swif atooping from above, His crooked sabre to the hilt he drove."
It ia quite certain, however, that this constellation had a place in the heavena long prior to the time of Perseus. When the equinoctial sun in Arle, which is right over the head of Cetus, opened the year, it was denominated the Preservor er Deliverer, by tie Idolaters of the East. On this account, according to Pause nins, the sun was wrorahipped, at Eleusis, under the name of the Preserver of Estriowr
"With gills pulmonic breathes the enormous whale, And spontif aquatic columns to the gale ; Eports on the shining wave at noontide hours, And shifting rainbows crest the rising showers."-Darwow.

## PERSEUS, ET CAPUT MEDUS $\boldsymbol{E}$.

Perseue is represented with a sword in his right hand, the lead of Meduse in his left, and wings at his feet. It is situ-

[^25]ated directly N . of the Pleiades and the Fly, between Andro. -meda on the $W$. and Auriga on the E. Its mean declination is $49^{\circ} \mathrm{N}$. It is on the meridian the 24 th of December. It contains, including the head of Medusa, 52 stars, two of which are of the 2 d magnitude, and four of the 3 d . According to Eudosia, it contains, including the head of Medusa, 67 stars.
" Perseus next
Brandishes high in heaven his sword of flame,
And holds triumphant the dire Gorgon's head,
Flashing with fiery snakes! the stars he countm
Are sixiy-seven; and two of these he boanth,
Nobly refulgent in the second rank-
Ons in his veat, one in Medusa's head."

Tre Head of Medusa is not a separate constellation, but forms a part of Perseus.

It is represented as the trunkless head of a frightful Gorgon, crowned with coiling snakes, instead of hair, which the victor Perseus holds in his hand.

There are, in all, about a dozen stars in the Head of Me dusa; three of the 4th magnitude, and one, varying alter nately from the 2 d to the 4 th magnitude. This remarkable star is called Algol. It is situated $12^{\circ} \mathrm{E}$. of Almaach, in the foot of Andromeda, and may be known by means of three

- stars of the 4 th magnitude, lying a few degrees $S$. W. of it, - and forming a small triangle.

It is on the meridian the 21st of December; but as it continues above the-horizon 18 hours out of 24 , it may be seen every evening from September to May. It varies from the 2d to the 4th magnitude in about $3 \frac{1}{2}$ hours; and back again in the same time; after which it remains steadily brilliant for 27 days, when the same changes recur.

The periodical variation of Algol was determined in 1783, by John Goodricke of York (Eng.) to be 2 days, 20 hours, 48 minutes, and 56 seconds.

Dr. Herschel attributes the variable appearance of Algol to spots upon its surface, and thinks it has a motion on its axis similar to that of the sun. He also observes, of variable stars generally :-" The rotary motion of stars upon their axes is a capital feature in their resemblance to the sun. It appears to me now, that we cannot refuse to admit such a motion, and that indeed it may be as evidently proved as the diurnal mo-

[^26]unn of the earth. Dark spots, or large portions of the surface. less luminous than the rest, turned alternately in certain di zections either towards, or from us, will account for all the phenomena of periodical changes in the lustre of the stars, so satisfactorily, that we certainly need not look out for any other cause."

It in maid, that the famons estronomer Lalande, who died at Paris in 1807 , wan wont to remain whole nights, in his old ere, upon the Pout Neaf, to exhlbit to the carious the variatione in the brilliancy of the 㫢ar Algol

Nine degrees E. by N. from Algol, is the bright star Algemib, of the 2 d magnitude, in the side of Perseus, which with Almaack, makes a perfect right angle at Algol, with the open part towards Cassiopeia. By means of this strikingly perfect figure, the three stars last mentioned may always be recognised without the possibility of mistaking them. Algenib may otherwise be readily distinguished by its being the brightest and middle one of a number of stars lying four and five degrees apart, in a large semicircular torm, curving to wards Ursa Major.

Algenib comes to the meridian on the 21st December, 15 minutes after Algol, at which time the latter is almost directly over head. When these two stars are on the meridian that beautiful cluster, the Pleiades, is about half an hour E of it ; and in short, the most brilliant portion of the starry aeavens is then visible in the eastern hemisphere. The glories of the scene are unspeakably magnificent; and the student who fixes his eye upon those lofty mansions of being, cannot fail to covet a knowledge of their order and relations, and to "reverence Him who made the Seven Stars and Orion."

The Milky-Way around Perseus is very vivid, being unduubtedly a rich stratum of fixed stars, presenting the most wonderful and sublime phenomenon of the Creator's power and greatness. Kohler, the astronomer, observed a beautiful nebula near the face of Perseus, besides eight other nebulous clusters in different parts of the constellation.

The head and eword of Perseus are exhibited on the circumpolar map. That very bright miar $23^{\circ}$ E. Gf Algol, is Capella in the Charioteer.
Hisroery.-Perseus was the con of Jupiter and Danae. He was no gooner borm then he was cast into the sea with his mother; but being driven on the coasts of one of the islands of the Cyclades, they were rescued by a fisherman, and carried to Polydectes, the king of the place, who treated them with great humanity, and intruated them to the care of the priests of Minerva's Temple. His rising genius and manly courage moon made him a favourite of the goda. At a

[^27]great feast of Polydectes, all the nobles wefe expected to present the king with a superb and beautiful horse ; but Perseus, who owed his benefactor much, not wishing to be thought less munificent than the rest, engaged to bring him the head of Medusa, the only one of the three Gorgons who was subject to mortality. The names of the other two were Stheno and Euryale. They were represented with serpents wreathing round their heads instead of hair, having yellow wings and brazen hands; their bodies which grew. indissolubly together were covered with impenetrable scales, and their very looks had the power of turning into stones all those on whom they fixed their eyes.

To equip Perseus for this perilous enterprise, Pluto, the god of the infernal regions, lent him his hemet, which had the power of rendering the wearer invisible. Minerva the goddess of wisdom, furnished him with her buckler, which was as resplendent as a polished mirror; and he received from Mercury winga for his feet, and a dagger made of diamonds. Thus equipped, he mounted into the air, couducted by Minerva, and came upon the monsters who, with the watchful suazes about their heads, were all asleep. He approached them, and with a courage which amazed and delighted Minerva, cut off with one blow Medusg's head. The noise awoke the two immortal sisters, but Pluto's helmet rendered Perseus invisible, and the vengeful pursuit of the Gorgons proved fruitless.
"In the mirror of his polished shield
Reflected, saw Medusa slumbers take, And not one serpent by good chance awake;
Then backward an unerring blow he sped, And from her body lopped at once her head."
Perteus then made his way through the air, with Medusa's head yet reeking in his hand, and from the blood which dropped from it as he flew, sprang all those innumerable serpents that have ever since infested the sandy deserts of Libya.

> "The victor Perseus, with the Gorgon head, O'er Libyan sands his airy journey sped, The gory drops distilled, us swift he dew, And from esch drop envenomed serpents grew."

The destruction of Medusa rendered the name of Perseus immortal, and he was changed into a constellation at his death, and placed among the stars, with the head of Meduse by his side.

## CHAPTER III.

## directions for tracing the constellations weice are ON THE MERIDIAN IN JANUARY.

The constollations which pass our meridian in the months of Januery, February and March, present to us the most brilliant and interesting portion of the heavens; embracing an annual number of stars of the highest order snd brightness, all so conspicuously situated, that the most inexperienced can easily trace them out

## TAURUS.

The Bull is represented in an attitude of rage, as if about to plunge at Orion, who seems to invite the onset by provoca-. tions of assault and defiance. Only the head and shoulders of the animal are to be seen; but these are so distinctly marked

[^28]that they cannot be mistaken. Tauras in now the second aign and third constellation of the Zodiac ; but anterior to the time of Abraham, or more than 4000 years ago, the vernal equinox took place, and the year opened when the aun was in Taurus; and the Bull, for the space of 2000 years, was the prince and leader of the celential host. The Ram succeeded next, and now the Fishes lead the year. The head of Taurus sets with the sun about the last of May, when the opposite constellation, the Scorpion, js seen to rise in the $\boldsymbol{\Omega}$. E. It is situated between Perseus and Auriga on the north, Gemini on the east, Orion and Eridanus on the south, and Aries on the west, having a mean declination of $16^{\circ} \mathrm{N}$.

It contains 141 visible stars, including two remarkable clusters called the Pleiades and Hyades. The first is now on the shoulder, and the latter in the face of the Bull.

The Pleiades, according to fable, were the seven daughtere of Atlas and the nymph Pleione,* who were turned into stars, with their sisters the Hyades, on account of their amiable virtues and mutual affection.

Thus we every where find that the ancients, with all their bartarism and Idolatry, entertained the belief that unblemished virtue and a meritorious life would meet their reward in the sky. Thus Virgil repreente Mague $\Delta$ pollo as bending from the aky to addreas the youth lulus:-
*Macte nova virtute puer; sic itur ad astra; Dlia genite, et geniture Deos."
"Go on, spotless boy, in the pathe of virtue ; it is the way to the etars ; oftipring of the gods thyself-so shalt thou become the father of goda."

Our dimgust at their superatitions may be in mome meazure mitigated, by seriously reflecting, that had some of these personagea lived in our day, they had been ornaments in the Christian church, and modele of mociai virtue.

The names of the Pleiades are Alcione, Merone, Maia, Electra, Tayeta, Sterope and Celeno. Merope was the only one who married a mortal, and on that account her atar is dim among her sisters.

Although but six of these are visible to the naked eye, yet Dr. Hook informs us that, with a twelve feet telescope, he saw 78 stars; and Rheita affirms that he counted 200 stars in this small cluster.

The most ancient authors, such an Homer, Attalus, and Geminus, counted only ois Pleiades; bat Simonides, Varro, Pliny, Aratus, Hippmrchus, and Ptolemy, reckon them seven in number; and it was asgerted, that the seventh had been meen before the burning of Troy; but this difference might arise from the difference in distinguishing them with the naked eye.

[^29]The Pleiades are so called from the Greek word, siecty, pleein, to sail; because, at this season of the year, they were considered "the star of the ocean" to the benighted mariner.* Alcyone, of the 3d magnitude. being the brightest star in this cluster, is sometimes called the light of the Pleiades. The other five are principally of the 4th and 5 th magnitudes.

The Pleiades, or, as they are more familiarly termed, the seven stars, come to the meridian 10 minutes before 9 o'clock, on the evening of the 1st of January, and may serve, in place of the sun, to indicate the time, and as a-guide to the surrounding stars.

Accordiug to Hesion, who wrofe abott 900 years before the birth of our Sa viour, the beliacal rising of the Pleiades took place on the Ilth of May, about the time of harvest.

> "When, Atlas-born, the Pleiad stars arise Before the sun above the dawning skies
> TTis time to reap ; and when they sink below The morn-illumin'd west, 'tis time to sow."

Thus, in all ages, have the stars been observed by the husbandman, for 'i signe and for seasons."

Pliny says that Thales, the Miletan astronomer, determined the cosmical getting of the Pleiades to be 25 days after the autumnal equinox. This would make a difference between the setting at that time and the present, of 35 days, and as a day answers to about $59^{\prime}$ of the ecliptic, these days will make $34^{\circ} 25^{\prime}$. This divided by the annual precession ( $504 /$ ). will give 2465 years since the time of Thales. Thus does asironomy become the parent of chronology.

If it be borne in mind that the stars uniformly rise, come to the meridian, and get about four minutes earlier every succeeding night, it will be very easy to determine at what time the seven stars pass the meridian on any night subsequent or antecedent to the lst of January. For example : at what time will the

[^30]" Tunc alnos primum fluvii sensere cavatat ;
Navita tum atelifis numemos, et nomina fecit,
Pleiadas, Hyadas, claramque Lycaonis Arcton."

* Then first on seas the thallow alder awam ;
Then suilors quarter'd heaven, and found a name
For every fix'd and every wand'ring star-
The Pleiades, Hyades, and the Northern Car."

The amme poet also describes Palinurus, the renowned pilot of the Trojan fleet, as watching the face of the noctumal heavens.
" Bidera cuncta dolat tacito labentia calo, Arcturum, pluviasque Hyadas, gemingsgua Trionen, Armatumque auro circumapicit Oriona."
" Obwerve the stars, and notes their sliding course, The Pleiades, Hyades, and their wat'ry force; And both the Beara is careful to behold, And bright Orion, arm'd with burnish'd'gold."
Indeed, this agacious pilot was once so intent in gazing upon the stam while at the helm, that he fefl overboard, and wan lont to his companions.

> " Headlong he fell, and atruggling in the main, Cried out for helpiag hands, but cried in vain."

[^31]soven stars culminate on the Dh of January 1 Maltiphy the 5 dage by 4 and take the result from the time they calminate on the lat, and it will give 30 minutem after $80^{\prime}$ clock in the evening.

The Pleiades are also sometimes called Vergilia, or the "Virgins of spring;" because the sun enters this cluster in the "season of blossoms," about the 18th of May. He who made them alludes to this circumstance when he demand of Job: "Canst thou bind the sweet influences of the Ploiades," \&c.-[Job 38 : 31.]

The Syrian name of the Pleiadea in Succoth, or Shucoth-Bonoth, derived from a Chaldaic word, which signifien "to apeculato, to obeorve", and the "Men of Succoth" (2 Kinge 17 : 20) have been theoce coonddared obeerveri of the tars.

The Hyades are situated $11^{\circ} \mathbf{S}$. E. of the Pleiades, in the face of the Bull, and may be readily distinguished by meana of five stars* so placed as to form the letter V. The moat brilliant star is on the left in the top of the letter, and called Aldebaran; from which the moon's distance is computed.
"A atar of the ínt magnitade illumen
tile rediant head ; and of the mocond rank
Another beame not far remote."

Aldebaras is of Arabic origin, and talses its name from two words which signily, "He went before, or led the way "alluding to that period in the history of aetronomy when this star led up the starry host from the vernal equinox. It comes to the meridian at 9 o'clock on the 10 of January, or 48t minutes after Alycone, on the 1st. When Aries is about $27^{\circ}$ high, Aldebaran is just rising to the east. So Manilios:-

> "Thos when the Ram hath doubled ten degrees, And join'd meven more, then rise the Hyader."

A line $151^{\circ}$ E. N. E. of Aldebaran will point out a bright star of the 2d magnitude in the extremity of the northern horn, marked Beta or El Nath; (hisstar is also in the foot of Auriga, and is common to both constellations.) From Beta in the northern horn, to Zeta, in the tip of the southern horn, it is $8^{\circ}$, in a southerly direction. This star forms a right angle with Aldebaran and Beta. Beta and Zeta, then, in the button of the horns, are in a line nearly north and south, $8^{\circ}$ apart, with the brightest on the north. That very bright star $171^{\circ}$ N. of Beta, is Capella, in the constellation Auriga.

[^32]"The Bull's head shines with eeven refulgent flamel, Which, Grecia, Hyades, fiom their showering', names."

[^33]Hxstory.-According to the Grecian mpthology, thia in the animal which bore Europa over the geas to that country which derived from her ite name. She wat the daughter of Agenor, and princess of Phoonicia. She was mo beautiful that Jupiter became enamored of ber; and assuming the shape of a nnow-white bull, he mingled with the herde of Agenor, while Europa, with ber female attendants, were gathering towers in the meadows. Europa caressed the beautiful animal, and at lamt had the courage to sit upon his back. The god now toot advantage of her aituation, and with precipitate steps retired towards the shore, and crosed the sea with Europa upon his beck, and arrived safe in Crete. Some wuppose she lived about 1562 years before the Christian Era. It is probable, however, that this conateliation had a place in the Zpdine before the Greeks began to cultivate a knowledge of the stars; and that it was rather an invention of the Esyptiane or Chsldeans. Both the Egyptians and Persians worshiped a deity uader this figure, by the name of Apis; and Belzoni is asid to have found an embalmed bull in one of the notable sepulchres near Thebea-

In the Elebrew Zodisc, Taurus in ascribed to Joseph.

## ORION.

Whoever looks up to this constellation and learns its name, will never forget it. It is too beautifully splendid to need a description. When it is on the meridian, there is then above the horizon the moat magnificent view of the celeatial bodies that the starry firmament affords; and it is visible to all the habitable world, because the equinoctial pasees through the middle of the constellation. It is represented on celential mape by the figure of a man in the attitude of assaulting the Bull, with a eword in his belt, a huge clab in his right hand. and the skin of a lion in his left, to serve for a shield.

Manilius, a Latin poet who composed five books on astronomy a short time before the birth of our Saviour. thus describes its appearance:-
"First next the Twins, see great Orion rise, His ermas extended stretch o'er hall the akjes ; His stride as large, and with a steady pace He marches on, and measurem a vait space; On each broad shoulder a bright star diaplay'd, And three obliquely grace his hanging blade. In his vat head, immers'd in boundlees apheres, Three start, leas bright, but yet as great, he bearn, But farther of removed, their splendor's lout; Thus graced and arm'd be leade the etarry hoot."
The center of the constellation is midway between the poles of the heavens and directly over the equator. It is also about $8^{\circ} \mathrm{W}$. of the solstitial colure, and comes to the meridian about the 23d of January. The whole number of visible stars in this constellation is 78; of which, two are of the first magnitude, four of the 2d, three of the 3 d , and fifteen of the 4 th.

Those four brilliant stars in the form of a long equare or

[^34]parallelogram, intersected in the middle by the "Three Stars," or "Eil and Yard," about $25^{\circ} \mathbf{S}$. of the Bull'u horne, form the outines of Orion. The two upper stars in the parallelogram are about $15^{\circ} \mathrm{N}$. of the two lower ones; and, being placed on each shoulder, may be called the epaulets of Orion. The brightest of the two lower onea is in the left foot, on the W., and the other, which is the least brilliant of the four, in the right knee. To be more particular; Bellatrix is a star of the 2 d magnitude on the $W$. shoulder; Betelguese is a star of the lst magnitude, $71^{\circ} \mathrm{E}$. of Bellatrix, on the E. shoulder. It is brighter than Bellatrix, and lies a little farther toward the north; and comes to the meridian 30 minutes after it, on the 21st of January. These two form the upper end of the parallelogram.

Rigel is a splendid star of the lst magnitude, in the left frot, on the W. and $15^{\circ} \mathbf{S}$. of Bellatrix. Saiph is a star of the 3 d magnitude, in the right knee, $8 \mathrm{t}^{\circ} \mathrm{E}$. of Rigel. Theme

- two form the lower end of the parallelogram.
> "First in rank
> The martial star upon his shoulder famen; A rival star illuminates his fout; And on his girdie beams a luminary Which, in vicinity of other starn, Might claim the proudest hoans."

There is a little triangle of three small stars in the head of Orion, which forms a larger triangle with the two in his shoulders. In the middle of the parallelogram are three stars of the, 2 d magnitude, in the belt of Orion, that form a straight line about $3^{\circ}$ in length from N. W. to S. E. They are usually distinguished by the name of the Three Stars, because there are no other stars in the heavens that exactly resemble them in pasition and brightness. They are sometimes denominated the Three Kings, because they point out the Hyades and Pleiades on one side, and Sirius, or the Dog-star, on the o.her. In Job they are called the Bands of Orion; while the ancient husbandmen called them Jacob's rod,' and sometimes the Rake. The University of Leipsic, in 1807, gave them the name of Napoleon. But the more common appellation for them, including those in the sword, is the Ell and Yard. They derive the latter name from the circumstance that the line which unites the "three stars" in the belt measures just $3^{\circ}$ in length, and is divided by the central star

[^35]into two equal parts, like a yard-stick; thus eerving as a graduated standard for measuring the distances of stars from each other. When, therefore, any star is described as being so many degrees from another, in order to determine the distance, it ia recommended to apply this rule.

> It is necesary that the scholar should task his ingenuity only a few ovenings in applying such \& standard to the stara, before he will learn to judge of their relative distances with an accuracy that will seldom vary a degree from the truth.

The northernmost star in the belt, called Mintika, is less than $1^{\circ} \mathrm{S}$. of the equinoctial, and when on the meridian, is almost exactly over the equator. It is on the meridian, the 24th of January.*

The "three stars" are situated about $8^{\circ} \mathrm{W}$. of the solstitial colure, and uniformly pass the meridian one hour and fifly minutes after the seven stars.

There is a row of stars of the 4 th and 5 th magnitudes, $S$. of the belt, running down obliquely towards Saiph, which forms the sword. This row is also called the Ell because it is once and a quarter the length of the Yard or belt.

A very little way below Thabit, in the sword, there is a nebulous appearance, the most remarkable one in the heavens. With a good telescope an apparent opening is discovered, through which, as through a window, we seem to get a glimpse of other heavens, and brighter regions beyond.

As the telescope extends our knowledge of the atars and greatly fncresses their visible number, we behold hundreds and thousands, which, but for this almost divine improvement of our vision, had forever remained, unseen by us, in an unfathomable void.

A star in Orion's sword, which appears single to the unassisted vision, is multiplied into six by the teleacope; and another, into twelve. Galileo found 80 in the belt, 21 in a nebulous star In the head, and about 500 in another part of Orion, within the compass of one or two degrees. Dr. Hook saw 78 stars in the Fleiades, and Rheita, with a better telescope, saw about 200 in the same cluster and more than 2000 in Orion.

About $9^{\circ} \mathbf{W}$. of Bellatrix are eight stars, chiefly of the 4 th magnitude, in a curved line running $N$. and $S$. with the concavity toward Orion; these point out the skin of the lion in his left hand. Of Orion, on the whole, we may remark with Eudosia:-

"He who admires not, to the stans is blisd."<br>History.-According to some nuthorities, Orion was the son of Neptune and queen Euryale, a famous Amazonian hutotress, and poesessing the diaposition of

[^36][^37]hia mother, he became the greatest hunter in the world, and even boanted thas there was not an animal on earth which he could not conquer. To puniah thig vanity, it is said that a scorpion sprung up out of the earth and bit his foot, that he died ; and that at the request of Diana he was placed apmong the atars directly орposite to the Scorpion that caused his death. Others eay that Orion had no mother, but was the gir of the goda, Jupiter, Neptune, and Mercury, to a peatant of Beotia, as a reward of piety, and that he was invented with the power of walting over the sea without wetting his feet. In strength and atature be murpesed all other mortals. He was skilled in the working of iron, from which he fabricared a subterranean palace for Vulcan; he aloo walled in the coarts of Sicily againat the inundations of the sea, and buite thereon a temple to ith gods.
Orion was betrothed to the daughter of GEnopion, but he, unwilling to give up his daughier, contrived to intoxicate the illustrious hero and put out his eyes on the seashore where he had lald himself down to sleep. Orion, finding himelf blisd when he awoke, was conducted by the sound to a neighboring forge, whera he placed one of the workmen on his back, and, by his directions, went to a place where the rising sun was seen with the greatest advantage. Here he turned his face toward the luminary, and, as it is reported. immediately recovered his sight, and hastened to punieh the perfillious cruelty of OEnopion.

The daughters of Orion distinguished themselves as much as their father; and, when the oracle had declared that Bceotia should not be delivered from a dreadful peatilence, before two of Jupiter's chiddren were immolated on the altars, they joyfully accepted the offer, and voluntarily sacrificed themselvea for the good of their country. The deities of the infernal regions were struck at the patriotism of the two femakespand immediately two stars were meen to ascend up from the earth, still smoking with their blood, and they were placed in the treavens in the form of m crown. Ovid seys their bodies were burned by the Thebaas, and that two persons arose from their ashes, whom the gode soon after changed into constellations.

As the constellation Orion, which rises at noon about the 9th day of March, and sets at noon about the 21 It of June, is generally supposed to be accompenied, at its rising, with great rains and storms, it became exfremely terrible to mariners, in the early adventures of navigation. Virgil, Ovid, and Horace, with mome of the Greek poets, mate mention of this.

Thus Eueas accounte for the storm which cast him on the African coant on hia way to italy :-

> "To that blest shore we steer'd our destined way, When suddeu, dire Orion rous'd the sea; All clary'd wich tempemts roee the baleful star. And on our navy pour'd nis wat'ry war."

To mduce him to delay his departure, Dido's sister advises her to
*Tell him, that, charg'd with deluges of raln, Orias rages on the wintry main."
The namie of this constellation is mentioned In the books of Job and Amos, and in Homer. The imspired prophet, penetrated like the psalmist of Israel with the omniscience and power displayed in the celestial glories, utters this sublime injunction: "Seek Him that maketh the seven stars and Orion, and turneth the shadow of death into morning." Job also, with profound veneration, adores His awful majesty who "commandeth the sun and sealeth up the stara; who alone gqreadenth out the heavens, and maketh Arcturus, Orion, and Pleiadee, and the chambers of the south:" and in another place, the Almighty demands of him$w$ Knowest thou the ordinances of hesven I Canst thou bind the sweet infuences of the Pleiades, or loose the bands of Orion; canst thou bring forth Mazzaroth in his season, or casst thou guide Arcturus with his bons ""

Calmes supposes that Muzzaroth is here put for the whole order of celestial bodies in the Zodiac, which, by their appointed revolutions, produce the various seasons of the year, and the regular succession of day and night. Arcturus is the mame of the principal star in Bootes, and is here put for the constellation Iteelf. The exprespion, his sous, doubtless refers to Asterion and Chara, the two greyhounds, with which he seems to be pursuing the Great Bear around the North pole.
The following lines are copied from a work entitled "Astronomical Recreations," by J. Green, of Pennsyivania, to whom the author is indebtel for many vainable hints concerning the mythology of the ancient constellations.
" When chilling winter sprearis him asure skies,
Behold Orion'e giant form arise;
His golden givdle glitters on the sight;
And the brood falchion beams in spleador hrighs;
A lion's brindled hide his bosom shiselds,
And his right hand a pasderaus weupom wiekla.
The River's shining atreams beneath him pour.
And angry Trurus rages close before;
Bebind him Procyon barks, and Sirins growle,
While full in front, the monster Cetus howls.
See bright Capella, and Medusa there,
With horrid serpents hissing throngh her hair;
See Cancer ton, and near the Ifydre dire,
With roaring Leo, filled with furious fire.
The timid Hare, the Dove with olive green,
And Aries, fy in terror from the scene;
The warrior Perseue gazes from above,
And the Twin ofsispring of the thunderer Jove.
Lo! in the dintance, Cissiope fair
In state reposes on her golden chair;
Her beawleous daughter, bound. before her stands,
And vainly strives to free her fettered honds;
For aifl she calts on royal Cepheus near,
But shrieks from her reach not her fowker' car.
See last of all, around the glowing pole,
With shining scales, the spiry Dragon roh
A grizzly Bear on either site appears,
Creoping with lazy motion'mid the stars."

These lines are easily committed to themory, and would assist the puph in recalling the names of the constellations in this very intereating portion of the heareng

## LEPUS.

The Hare.-Thus constellation is situated directly south of Orion, and comes to the meridian at the same time; namely, on the 24th of January. It has a mean declination $18^{\circ} \mathbf{S}_{\text {, }}$, and contains 19 small stars, of which, the four principal ones are of the 3d magnitude. It may be readily distinguished by means of four stars of the 3d magnitude, in the form of an irregular square, or trapezium.

Zeta, of the 4th magnitude, is the first star, and is situated in the back, $5^{\circ} \mathbf{S}$. of Saiph, in Orion. About the same distance below Zeta are the four principal stars, in the legs and feet. These form the square. They are marked Alpha, Beta, Gamma, Delta. Alpha, otherwise called Arneb, and Beta form the N. W. end of the trapezium, and are about $3^{\circ}$ apart. Gamma and Delta form the S. E. end, and are about $2 \ell^{\circ}$ apart. The upper right-hand one, which is Arneb, is the brightest of the four, and is near the center of the

[^38]constellation. Four or five degreem S. of Rigel are four very minute stars, in the ears of the Hare.

Hestory.-This commellarion fa situated about 180 wewt of the Great Dos, which, from the motion of the earth, weems to be punning if te the Greyhounds do the Bear, round the circuit of the aries. It was one of thome animale which Orion in eaid to have delighted in hunting, and which, for this reeson, was made into a conatellation and placed near him among the stans.

## COLUMBA.

- Noar's Dove.-This constellation is situated about $16^{\circ}$ S. of the Hare, and is nearly on the same meridian with the "Three Stars," in the belt of Orion. It contains only 10 stars; one of the 2 d , one of the 3 d , and two of the 4th magnitudes; of these, Phaet and Beta are the brightest, and are about $22^{\circ}$ apart. Phaet, the principal star, lies on the right and is the highest of the two; Beta may be known by means of a smaller star just east of it, marked Gamma. A line drawn from the easternmost star in the belt of Orion, $32^{\circ}$ directly south, will point out Phaet ; it is also $111^{\circ} \mathrm{S}$. of the lower lefl-hand star in the square of the Hare, and makes with Sirius and Naos, in the ship, a large equilateral triangle.

$$
\begin{aligned}
& \text { History.-This constellation is so called in commemoration of the dove which } \\
& \text { Noah "gent forth to pee if the watera were abated from off the face of the } \\
& \text { ground," after the art had rested on mount Ararat. "And the dove came in to } \\
& \text { him in the evening, and lo, In her mouth was an olive leaf plucked of } \\
& \text { A dove sent forth once sud agansenger, } \\
& \text { Green tree or ground, whereon his foot mey light: } \\
& \text { The second time returning, in his bil } \\
& \text { An olive leaf he brings, pacific sign "" }
\end{aligned}
$$

## ERIDANUS.

The River Po.-This constellation meanaers over a large and very irregular space in the heavens. It is not easy, nor scarcely desirable, to trace out all its windings among the stars. Its entire length is not less than $130^{\circ}$; which, for the sake of a more easy reference, astronomers divide into two sections, the northern and the southern. That part of it which lies between Orion and the Whale, including the great bend about his paws, is distinguished by the name of the Northern stream; the remainder of it is called the Southern stream.

The Northern stream commences near Rigel, in the foot of

[^39]Orion, and flows out westerly, in a serpentine course nearly $40^{\circ}$, to the Whale, where it auddenly makes a complete circuit and returns back nearly the same distance toward its source, but bending gradually down toward the south, when it again makes a similar circuit to the $\mathbf{S}$. W. and finally diaappears below the horizon.

Weat of Rigel there are five or aly stars of the 3d and 4th magnitudes, arching up in a memicircular form, and marking the first bend of the northern stream. About $8^{\circ}$ below thene, or $19^{\circ} \mathrm{W}$. of Rigel, is a bright star of the 2 d magnitude, in the second bend of the northern atream, marked Gamma. Thia niar culminaten 13 minutem after the Plelades, and one hour and a guarter before Rigel. Passing Gammen, and a amaller star west of it, there are four atars nearly in a row, which bring us to the breast of Cetus. $8^{\circ}$ N. of Gammat, is a smal mar named Kied, which is thought by some to be considerably pearer the earth than Siriug.

Theemim, in the southern stream, is a star of the 3 d magnitude, about $17^{\circ} \mathrm{g}$ W. of the equare in Lepus, and may be known by means of a Emaller star, $1 \circ$ above it Achernar in a brilliant star of the lat magnitude, in the extremity of the southern stream ; but having $58^{\circ}$ of S. declinalion, can never be seen in this latitude.

The whole number of stars in this constellation is 84 ; of which, one is of the 1st magnitude, one of the 2 d , and eleven are of the 3d. Many of these cannot be pointed out by verbal description; they must be traced from the map.

History.-Eridanus is the name of a celebrated river in Cisalpine Gaul, aiso called Padus. It modern name is Po. Virgil calls th the king of rivers. The Iatin poets have rendered it memorable from its connection with the fable of Phaeton, who, being a mon of Phosbus and Clymene, became a favorite of Venus, who intrusted him with the care of one of her temples. This favor of the goddess made him vain, and he sought of his father a public and incontestable sign of his tenderness, that should convince the world of his origin. Pheebus, after bome healtation, made oath that he would grant him whatever he required, and no sooner was the oath uttered, than-
"The youth, transported, anke without delay.
To guide the sun's bright ebariot for a day.
The god repented of the ealh he fook,
For anguish thrice his radiant head bo ghook;-
My mon, siys he, tome other proof require,
Rash was my promise, rash was thy dewire-
Not Jove himpelf, the ruler of the eny,
That huris the three-forked tutunder from above,
Darea try bis strength; jet who as strong an Jove?
Bemides, consider what himpetuous force
Turne stars and planets in a different coursa.
I steer againat their motions; nor am I
Borne back by all the current of the eky:
But how could you reaie the orbe that roll
In adverne whirls, and stem the rapid pole?"

Phobus represented the dangera to which he would be exposed in valn. Fe undertook the aerial journey, and the explicit directions of hilg futher were forgotten. No sooner had Phaton received the reins than be betrayed him ismorance of the manner of guiding the chariot. The fiying coursers became senaible of the confusion of their driver, and immediately departed from the uaus track. Phaeton repented too late of hia rashnean, and already heaven and earth

[^40]were chreatened with a unrversal configration as the cencequence, whea fuyt ier, perceiving the disorder of the horses, struck the driver with a thunderbok, and hurled him headlong from heaven into the river Eridanus. His body, commumed with fire, was found by the nymphs of the place, who honoured nim with a decent burial, and inscribed this epitaph upon his tomb:-

> "Hic situs est Phaeton, currus auriga patermi: Quene si non temuit, magnis tamen escidt axple."

Fis misters mourned his unhappy end, and wors changed by Japtier lase poplarm

> "All the long night their mournful watch they keep, And all the day stand round the tomb and weep." Ovm.

It is said the tears which they shed, turned to amber, with which the Phome. chans and Carthagininns carried on in eecrecy a most hucrative trade. The great heat produced on the oceasion of the sun's departing out of his unual course, in maid to have dried up the blood of the Ethiopians, and turned their mbina black; and to have produced aterility and barrennems over the greater pars of lybian
> "At once from life and from the chariot driven, Th' ambitious boy fell thunderstruck from heaven."
> "The breathless Phaeton, with Ilaming hair, Shot from the charlot like a falling star, That in a summer's evening from the top Of heav'n drops down, or seems at least to drop, Till on the Po his blasted corpse was hurl'd, Far from bis country, in the western world."

The sable of Phaeton evidently alludes to tome extraordinary heate whic! were experienced in a very remote period, and of which ouly thia confueed tra. dition has descended to later times.

## AURIGA.

The Charioteer, called also the Wagoner, is represented on the celestial map by the figure of a man in a declining posture, resting one foot upon the horn of Taurus, with a goat and her kids in his left hand, and a bridle in his right.

It is situated N. of Taurus and Orion, between Perseus on the W. and the Lynax on the E . Its mean dechnation is $45^{\circ}$ N. ; so that when on the meridian, it is almost directly over head in New England. It is on the same meridian with Orion, and culminates at the same hour of the night. Both of these constellations are on the meridian at 9 o'clock on the 24th of January, and 1 hour and 40 minutes east of it on the 1st of January.

The whole number of visible stars in Auriga, is 66, inclading one of the 1st and one of the $2 d$ magnitude, which mark the shoulders. Capella is the principal star in this constellation, and is one of the most brilliant in the heavens. It takes its name from Capella, the goat, which hangs upon the left shoulder. It is situated in the west shoulder of Auriga,

[^41]$24^{\circ} \mathrm{E}$. of Algol, and $28^{\circ} \mathrm{N}$. E. of the Pleiades. It may be known by a little sharp-pointed triangle formed by three stars $3^{\circ}$ or $4^{\circ}$ this side of it, on the left. It is also $18^{\circ} \mathrm{N}$. of E: Nath, which is common to the northern horn of Taurus, ana the right foot of Auriga. Capella comes to the meridian on the 19th of January, just $2 \frac{1}{2}$ minutes before Rigel, in the foot of Orion, which it very much resembles in brightness.

Menkalira, in the east shoulder, is a star of the 2 d magnitude, $71^{\circ} \mathrm{E}$. of Capella. and culminates the next.minute after Betelguese, $377^{\circ}$ s. of it. Theta, in the right arm, is a star of the 4th magnitude, $8^{\circ}$ directly south of Menkalina.
It may be remarted as a curious coincidence, that the two stars in the shoulde 78 of Auriga are of the same magnitude, and just as far apart as those in Orion, and opposite to them. Again, the two stars in the shoulders of Auriga, with the two in the shoulders of Orion, mark the extremities of a long, narrow parallelogram, lying N. and E., and whose length is just five times its breadth. Also, the two stars in Auriga, and the two in Orion, make two slender and similar trianglea, both meeting in a comuon point, half way between them at El Nath, in the northern horn of Taurus.

Delta, a star of the 4th magnitude in the head of Auriga, is about $9^{\circ} \mathrm{N}$. of the two in the shouldere, with which it makes a triangle, about half the height of those just alluded to, with the vertex at Delta. The two stars in the shoulders are therefore the base of two similar triangles, one extending about $9^{\circ} \mathrm{N}$., to the head, the other $18^{\circ} \mathrm{s}$., to the heel, on the iop of the horn: both figures together resembling an elongated diamend.

Delta in the head, Menkalina in the right shoulder, and Thets in the arm of Auriga, make a straight line with Betelguese in Orion, Delta in the square of the Hare, and Beta in Noah's Dove; all being very nearly on the wame meridian, $4^{\circ} \mathrm{W}$. of the solstitial colure.
"See next the Goatherd with his kids; he shines With seventy stars, deducting only four. Of which Capella never sets to us, ${ }^{\text {, }}$ And scarce a star with equal radiance deams Upon the earth: two other stars are seen Due to the aecond order."-Erdasia.
Higrory.-The Greeks give various accounts of this constellation; some sure pose it to be Erichthonius, the fourth king of Athens, and sou of Vulcan and Minerve, who awarded hima place among the constellations on account of his many useful inventions. He wai of a monstrous shape. He is said to have invented chariots, and to have exceiled all others in the management of horses. In allomion to thia, Virgil has the following lines:-
"Primus Erichthonius currus et quatuor ensus Jüngere equos, rapidisque rotis insistere victor."

Georgic. Lb. iii. p. 113
"Bold Erichthonius was the first who join'd
Four horses for the rapid race design'd, And o'er the dusty wheels presiding sate "-Drydem.
Other writers may that Bootes invented the chariot, and that Auriga was the son of Mercury, and charioteer to Chnomaus, king of Fise, and so experienced, hat he rendered his horses the swiftest in all Greece. But as neither of these fables seems to account for the goat and her ktde, it has been rupposed that they refer to Almathase and her eister Melleme, who fed Jupiter, during him infancy,

[^42][^43]whis geat'd milk, and that, as a reward for their kindnoest, they worn pheced in the heavens. But thereds no reason assigned for their being placed in the arind - A Aurise, and the inference is unavoidable, that mythology in in faut on ,hic point.

Jamieson is of opinion that Auriga is a mere type or acientific symbol of the beautiful fable of Phaeton, because he was the attendant of Phosbua at that re mote period when Tauruz opened the year.

## CAMELOPARDALUS.

Tee Camelopard.-This constellation was made by Hevelius out of the unformed stars which lay scattered hetween Perseus, Auriga, the head of Ursa Major, and the Pole Star. It is situated directly $\mathbf{N}$. of Auriga and the head of the Lynx, and occupies nearly all the space between these and the pole. It contains 58 small stars; the five largest of which are only of the 4th magnitude. The principal star lies in the thigh. and is about $20^{\circ}$ from Capella, in a northerly direction. It marks the northern boundary of the temperate zone; being less than one degree $S$. of the Arctic circle. There are two other stars of the 4th magnitude near the right knee, $12^{\circ} \mathrm{N}$. E. of the first mentioned. They may be known by their standing 10 apart and alone.

The other stars in this constellation are too small, and toc much scattered to invite observation.

Hisroxy. -The Camelopard is wo called from an animal of that name, pecultaz to Ethiopia. This nuimal resembles both the camel and the leopert ita body is spotted like that of the leopard. Its neck is about seven feet long, its, fore and hind legs, from the hoof to the second joint, are nearly of the same length; but from the second joint of the legs to the body, the fore legs are solong in coutparison with the hind ones, that no person could sit upon its back, without in tantly sliding off as from a horse that atood up on his hind feet.

## CHAPTER IV.

DREGTIONS FOR TRACING THE CONSTELLATIONS WHICE ARE OF THE MERIDIAN IN FEBRUARY.

## THE LYNX.

The constellation of the Lynx, like that of the Camelopard; exhibits no very interesting features by which it can be disunguished. It contains only a moderate - number of inferior stars, scattered over a large space $\mathbf{N}$. of Gemini, and between Auriga and Ursa Major. The whole number is 44, Including

[^44]only three that are so large as the 3d magnitude. The largest of these, near the mouth, is in the solstitidl colure, $14 \frac{1}{2} \circ \mathrm{~N}$. of Menkalina, in the E. shoulder of Auriga. The other two prin cepal stars are in the brush of the tail, $3 \frac{1}{2}^{\circ} \mathbf{S}$. W. of another star of the same brightness in the mouth of the Lesser Lion, with which it makes a small triangle. Its centre is on the meridian at 9 o'clock on the 23d, or at half past 7 on the 1 st, of February.
History - This constellation takes tis name from a wild beant which ta wid to be of the genus of the wolf.

## GEMINI.

The Twins.-This constellation represents, in a sitting 1 bsture, the twin brothers, Castor and Pollux.
Gemini is the third sign, but fourth constellation in the order of the Zodiac, and is situated south of the Lynx, between Cancer on the east, and Taurus on the west. The orbit of the earth passes through the centre of the constellation. As the earth moves round in her orbit from the first point of Aries to the same point again, the sun, in the meastime, will appear to move through the opposite signs, or those which are situated right over against the earth, on the other side of her orbit.

Accordingly, if we could see the stars as the sun appeared to move by them, we should see it passing over the constellation Gemini between the 21st of June and the 23d of July; but we seldom see more than a small part of any constellation through which the sun is then passing, because the feeble lustre of the stars is obscured by the superior effulgence of the sun.
When the sun is junt entering the outlinea of a constellation owhe east, ita western limit may be seen in the morning twilight, just above the rising sun. So when the sun has arrived at the western limit of a constellation, the eamern part of it may be seen lingering in the evening twilight, just behind the setting sum. Under other circumstancea, when the aun is said to be in, or to enter, a particular consteliation, it is to be understood that that constellation is not then visible, but that those opposite to it, are. For ezample: whatever constellation sets with the sun on any day, it is plain that the one opposite to it must be then rising and continue visible through the night. Also, whatever constellation rises and meta with the sun to-day, will, six months hence, rise at gun-metting, and set at sun-rising. For example : the sun is in the centre of Gemini about the 6th of

[^45]haly, and mast rige ard aet with it on that day; coomequently, adx month thum Ihat time, or about the 4 th of January, it will rise in the east, juts when the san In eetting in the west, and will come to the meridian at midnight; being then ar setly opposite to the ann.

Now as the stars gain upon the sun at the rate of two mura every month, th follown that the ceatre of this constaliation will, on the 17th of February, ocane to the meridian three hours earlier, or at 9 o'clock in the evening.

It would be a pleasant exercise for student to propose questions to each ther, momewhat like the following:-What zodiacal constellation will rise and set with the sun to-day? What one will rise at man-setting 1 What conmellation is three hours high at sun-set, and where will it be at 9 o'clock 1 What conctpllation rises two hours before the sun 1 How many days or months hence, and af what hour of the evening or morning, and in what part of the aiky ahall wo see the constellation whose centre is now where the gun is 1 dec., dec.

In solving these and similar questions, it may be remembered that the sun is in the vernal equinox about the 21 st of March, from whence it advances throagh one sign or constellation every succeeding month thereafter; and that each comstellation is one month in advance of the aign of that name: wherefore, reckon Pisces in March, Aries in April, Taurus in May and Gemini in June, dec.; bosinning with each constellation at the 21 st , or 22 d of the month.

Gemini contains 85 stars, including one of the 1st, one of the 2 d , four of the 3 d , and seven of the 4 th magnitudes. It is readily recognised by means of the two principal stars, Castor and Pollux, of the 1st‘and 2d magnitudes, in the head of the Twins, about $4{ }^{2}{ }^{\circ}$ apart.

There being only 11 minutes' difference in the transit of these two stars over the meridian, they may both be considered as culminating at 9 o'clock about the 24th of February. Castor, in the head of Castor, is a star of the 1st magnitude, $4 \frac{1}{2}^{\circ}$ N. W. of Pollux, and is the northernmost and the brightest of the two. Pollux, is a star of the 2d magnitude, in the head of Pollux, and is $4 \frac{1}{2}^{\circ} \mathrm{S}$. E. of Castor. This is one of the stars from which the moon's distance is calculated in the Nautical Almanac.

> - "Of the farmed Ledean palr, One most illugtrious star adorni their rigm, And of the second order shine twin lighta.

The relative magnitude or brightness of these stars has undergone considerable changes at different periods; whence it has been conjectured by various astronomers that Pollux must vary from the 1st to the 3d magnitude. But Herschel, who observed these stars for a period of 25 years, ascribes the variation to Castor, which he found to consist of two stars, very close together, the less revolving about the larger once in 342 years and two months.
Bradly and Maskelyne found that the line joining the two stare which form Cantor was, at all times of the year, parallel to the line joining Castor and Pollur; and that both of the former noove around a common centre between them, $m$

[^46]: rbute nearly circular, as two balls attached to a rod wrould do, if nuspended by muing affised to the cantre of gravity between them.
"These men," mays Dr. Bowditch, "were endowed with a sharpnems of vision, and a power of penetrating into apace, alnoot unexampled in the history of atronomy."
about $20^{\circ} \mathrm{g} . \mathrm{W}$. of Cator and Pollux, and in a the nearly parallel with thom, Ia a row of miara $3^{\circ}$ or $4^{\circ}$ apart, chielly of the $3 d$ and 4 th magnitudes, which dittnguish the feet of the twina. The brightest of these is Alhena, in Pollux'a upper foot ; the next sunsil star 8. of it is in his other foot: the two upper atars in the Uno next above Gamma, mark Castor's feet.

This row of feet is nearly two thirds of the distance from Pollux to Betelguese tu Orion, and a line connecting them will pass through Alhena, the principal star in the feet. About two thirds of the diatance from the two in the head to thowe In the feet, and nearly parallel with them, there is another row of three atara about $6^{\circ}$ apart, which mark the knees.
There are, in this constellation, two other remarkable parallel rows, lying at right angles with the former; one, leading from the head to the foot of Castor, the brightest star being in the middle, and in the znee; the other, leading from the head to the foot or Pollux, the brightent utar, called Wassat. being in the body; and Zets, next belcw it, in the kneo.

Wasat is in the ecliptic, and very near the centre of the constellation. The two stars, Mu and Tejat in the northern foot, are also very near the ecliptio: Tejat is a small mear of between the 4th and 5 th magnitudes, $2^{\circ} \mathbf{W}$. of Mu, and deserves to be noticed because it marks the spot of the summer eolstice, in the tropic of Cancer, just where the sun is on the longent day of the year, and is moreover, the dividing limit between the torrid and the $\mathbf{N}$. temperate zone.

Propue, also in the ecliptic, $24^{\circ} \mathrm{W}$. of Tejat, is a star of only the 6 th magnt tude, but rendered memorable as being the etar which gerved for many yeara to determine the position of the planet Herschel, after its first discovery.

Thus an we pursue the study of the stars, we shall find continually new end more wonderful developments to engage our feelings and reward our labour. Wa shall have the peculiar satisfaction of reading the same volume that was spread out to che patriarchis and poets of other ages, of admiring what they admired, and of being led as they were led, to look apon these lofty mansions of being as having, above them all, a common Father with ourselves, "who ruleth in the armiea of heaven, and Uringeth forth their hosts by number."

Hxstory.-Castor and Pollux were twin brothers, sons of Jupiter, by Leda, the wife of Tyudarus, king of sparta. The manner of their birth was very singular. They were educated at Pallena, and afterwards embarked with Jason in the celebrated contest for the golden feece, at Colchis; on which occasion they behaved with unparalleled courage and bravery. Pollux distinguished himself by his achievements in arms and personal prowess, and Castor in equestrian exercises and the management of horses. Whence they are represented, in the temples of Greece, on white borses, armed with spears, riding side by side, their heads crowned with a petasus on whose top gittered a stas Among the ancients, and enpecially among the Romans, there prevailed a superstition that Cestor and Pollux often appeared at the head of their armies, and led on their troope to battle and to victory.

> "Castor and Pollux, first in martial force, One bold on foot, and one renown'd for hores.
> Fair Leds'g twins in time to stars decreed, One fought on foot, one curb'd the fiery steed."- Firgit
> "Castor alert to tame the foaming steed,
> And Pollux strong to deal the manly deed"-Martial.

Tys brothers cleared the Hellempont and the neighbouring mean from piratea wier tysir return from Colchis; from which circuunstance they have ever eine been regarded as the friends and protectore of navigation. In the Argonautir expedition, d'uring a violent storm, it is maid two flames of fire were seen to play around their heads, and immediately the tempeat ceased, and the sen was calm.

[^47]From this eirenumbace, the milors fnferred, that whenever both free appeared m the alky, it would be tutr weather: but when only one appeared thero would De storme.
Ry. Paul, after being wrecked on the Linind of Melits, embarked for Rome "to - hhip whose sign was Castor and Pollux;" so formed, no ioubt, in accordance with the popular belief that these divinitien presided over the acience and safotv of mavigation.
They were initiated into the bacred mysterien of Cabiri, and lnto thoes or Cerea and Eleunia. They were invited to a feast at which Lynceus and Idan were golns to celebrate their nuptials with Phosbe and Telaria, the daughter of Leucippus, Drother to Tyudarus. They became enamoured of the daughters, who were ibout to be married, and resolved to supplant their rivals: a battle ensued, tm which Cator killed Lyncous, and was himself killed by Idan. Pollux reveuged the death of his brother by killing Idas; but, being himself immortal, and mont tenderiy attached to his decensed brother, he was unwilling to survire him; he therefore entreated Jupiter to restore him to life, or to be deprived himeelf of munertality; wherefora, Jupiter permitted Castor, who had been alain, to ahare the immortality of Pollux ; end consequently, as long as the one was upon earth to long was the other detained in the infernal regions, and they alternately lived and died every day. Jupiter also further rewarded thoir fraternal atachment by changing them both into a constellation under the neme of Gemini, Thoire, which, it is strangely pretended, never appear together, but when one rises the cther meth, and so on alternately.
"By turns they visit thil ethereal sky, And live alternate, and alternate die."-Homer.
"Pollux, offering his alternate life, Could free his brother, and could daily go
By turns aloft, by tarne descend below. 근 Firgil.
Costor and Pollax wese worshipped both by the Greele and Romana, who eacrificed white lambs upon their altara. In the Hebrew Zodiac, the congtellation of the Twins refers to the tribe of Benjamin.

## CANIS MINOR.

Tae Little Dog.-This small constellation is situated about $5^{\circ} \mathbf{N}$. of the equinoctial, and midway between Canis Major and the Twins. It contains 14 stars, of which two are very brilliant. The brightest star is called Procyon. It is of the 1 st magnitude, and is about $4^{\circ} \mathrm{S}$. E. of the next brightest, marked Gomelza, which is of the 2 d magnitude.
These two stars resemble the two in the head of the Twins. Procyon, in the Little Dog, is $23^{\circ}$ S. of Pollux in Gemini, and Gomelza is about the same distance $\mathbf{S}$. of Castor.
A great number of geometrical figures may be formed of the principal stars in the vicinity of the Little Dog. For example ; Procyon is $23^{\circ} \mathrm{S}$. of Pollux, and $26^{\circ} \mathrm{E}$. of Betelguese, and forms with them a large right angled triangle. Again Procyon is equidistant from Betelguese and Sirius, and forms with them an equilateral triangle whose sides are each abuut $26^{\circ}$. If a straight line, convecting Procyon and Sirius, be produced $23^{\circ}$ farther, it will point out Phaet, in the Dove.

[^48]Procyon is often taken for the name of the Little Dog, or for the whole constellation, as Sirius is for the greater one; hence it is common to refer to either of these constellations by the name of its principal star. Procyon comes to the meridian 53 minutes after Sirius, on the 24th of February; although it rises, in this latitude, about half an hour before it For this reason, it was called Procyon, from two Greek worde which signify (Ante Canis) "before the dog."
> "Canicula, fourteen thy stars; but far Above them all, illustrious through the skies, Beams Procyon; justly by Greece thus called The bright forerunner of the greater Dog."

Antarr.-The Little Dog, according to Greek fable, is one of Orion's houmda Sonne suppose it refers to the Egyptian god Anubis, which was represented wth a dog's head: others to Diana, the goddess of hunting ; and others, that it in the failhful dog Mæra, which belonged to Icarus, and discovered to his danghter Erigone the place of his burial. Others, again, say it is one of Acteon'g hound thai devoured their master, after Diana had transformed him into a stag to pre vent, as she said, his betraying her.
"This said the man began to disappeat
By slow degrees, and ended in a deer.
Transform'd at length, he files away in hante,
And wonders why he flies so fast.
But as by chance within a neighb'ring brook,
He saw his branching horns, and alter'd book,
Wretched Actaon! in a doleful tone
He tried to speak, but only gave a groan;
And as he wept, within the watery glass,
He saw the big round drops, with silent pace,
Run trickling down a savage, hairy face.
What should he do? or seex his old abodes,
Or herd among the deer, and skulk in wooda 1
As he thus ponders, he behind him spies
His opening hounds, and now he hears their cries.
From shouting men, and horns, and doge, he fies.
When now the foctest of the pack that press'd
Close at his heels, and sprung before the rest,
Had fasten'd on hinh, straight another pair
Hung on tils wounded side, and held him there,
Till all the pack came up, and every hound
Tore the sad huntaman grovelling on the ground."-

It Is most probable, however, that the Essptians were the inventors of this com dellation; and as it always rises a littie before the Dog-star, which at a particolar season, they so much dreaded, it is properly represented as a little watchfit creature, giving notice like a faithful sentinel of the other's approach.

[^49][^50]
## MONOCEROS.

The Unicons.-This is a modern constellation, which wea made out of the anformed stars of the ancients that lay scat. tered over a large space of the heavens between the two Dogs. It extends a considerable distance on each side of the equinoctial, and its centre is on the same meridian with Procyon.

It contains 31 small stars, of which the seven principal ones are of only the 4th magnitude. Three of these are situated in the head, $3^{\circ}$ or $4^{\circ}$ apart, forming a straight line N. E. and S. W. about $9^{\circ}$ E. of Betelguese in Orion's shoulder, and about the same distance $S$. of Alhena in the foot of the Twing.

The remaining stars in this constellation are scattered over a large space, and being very small, are unworthy of particular notice.
History. - The Monocmros is a species of the Unicorn or Rhinoceros. It th about the size of a horse, with one white horn growing out of the middle of tit forehead. It is mid to exist in the wilds of Ethiopia, and to be very formideble.
Naturalists maty that, when pursued by the hunters, it precipitates itself from the tops of the highest rocka, and pitches upon tit horm, which eurains the whole force of its fall, so that it receives no damage thereby. Sparmann informs ug that the figure of the unicorn, described by some of the anclente, has been foumd delineated on the surface of the rock in Caffraris ; and thence conjectures that auch an animal, instead of being fabulous, as some suppose, did once actually exist in Africa. Lobo efilime that he has seen it.

The rhinoceros, which is akin to i, is found to Beagal, Blatra, Oochin China, part of China Proper, and the inles of Jave and Fumatro.

## CANIS MAJOR.

The Great Dog.-This interesting constellation is situared southward and eastward of Orion, and is universally cuown by the brilliance of its principal star, Sirius, which is apparently the largest and brightest in the heavens. It glows in the winter hemisphere with a lustre which is unequalled by any other star in the firmament.

Its distance from the earth, though computed at 20 millions of millions of miles, is supposed to be less than that of any other star: a distance, however, so great that a cannon ball, which flies at the rate of 19 miles a minute, would be two millions of years in passing over the mighty interval; while sound, moving at the rate of 13 miles a minute, would reach Sirius in little less than three millions of years.

[^51]Hit may be abown in the mane manner, that a ray of light, Which occupres only $B$ minutes and 13 seconds in coming to us from the sum, which Is at the rate of rearly two hundred thousand miles a mecond, would be 3 yeare and 82 days in passing through the vast space that lien between Birius and the earth. Conseguenty, were it blotted from the heavens, its light would continue visible to wh fur a period of 3 years and 82 days after it had ceased to be.

If the nearcat stars give such astonishing resulte, what shall we may of those which are situated a thousand times as far beyond these, as these are from us?

In the remote ages of the world, when every man was his own astronomer, the rising and setting of Sirius, or the Dogstar, as it is called, was watched with deep and various solicitude. The ancient Thebans, who first cultivated astronomy in Egypt, determined the length of the year by the number of its risings. The Egyptians watched its rising with mingled apprehensions of hope and fear; as it was ominous to them of agricultural prosperity or blighting drought. It foretold to them the rising of the Nile, which they called Siris, and admonished them when to sow. The Romans were accustomed yearly to sacrifice a dog to Sirius to renuer him propitious in has influence upon tneir herds and fields. The eastern nations generally believed the rising of Sinius would be productive of great heat on the earth.

Thua Virgil:-

$$
\begin{aligned}
& \text { Ardebant herbæ, et victun Beges ※gra negabat." }
\end{aligned}
$$

> -_" "Parched was the grass, and blighted was the corn: Nor 'scape the beaste ; for Sirius, trom on high, With pestilential heat infects the sky."

Accordingly, to that season of the year when Sirius rose with the sun and seemed to blend its own influence with the heat of that luminary, the ancients gave the name of Dogdays, (Dies Caniculares). At that remote period the Dogdays commenced on the 4th of August, or four days after the summer solstice, and lasted forty days or until the 14th of September. At present the Dog-days begin on the 3 d of July, and continue to the 11th of August, being one day less than the ancients reckoned.

Hence, it is plain that the Dog-days of the moderns have no reference whatever to the rising of Sirius, or any otner star, because the time of their rising is perpetualiy accelerated by the precession of the equinoxes: they have reference then only to the summer solstice which never changes its position in respect to the seasons.

[^52]The time of Sirius' rising varies with the latitude of the place, and in the mana mutude, ia mensibly changed after a course of yeara, on account of the proces. aion ac the equinozes. This enables us, to determine with approxinale accoracy, the dates of many events of antiquity, which cannot be well determined ly oulier records. We do not know, for instance, in what precise period of the world Hesiod tlourished. Yet he tell's us, in his Opera et Dies, lib. if. v. Is5 the Areturus in his time rose heliacally, 60 days affer the winter molstice, which, th en was in the 9th degree of Aquarius, or $39^{\circ}$ beyond tes present position. Now 39 : $504^{\prime \prime}-2794$ years since the time of Hesiod, which correapond very nearty with history.

When a star rose at sun-setting, or set at sun-rising, it was called the Achroni oal rising or setting. When a planet or star sppeared above the horizon jus before the sum, in the morning, it was called the Heliacal rising of the star; ane when it sank below the horizon mmediately after the sum, in the evening, if wat called the Heliacal setting. According to Ptolemy, stars of the firat inagnituide are seen rising and setting when the sun is $12^{\circ}$ below the horizon; stars of the dd magnitude require the sun's depression to be $13^{\circ}$; stars of the 3 d magnitude, .40 , and so on, allowing one degree for each magnitude. The riaing and setting of the stars described in this way, since this mode of description often occuri in Hesior, Virgil, Columella, Ovid. Pliny, sc. are called poetical rising and set ting. They served to mark the times of religious ceremonies, the seasona allotued to the several departments of husbandry, and the overflowing $c^{\text {s- }}$ - Wilo

The student may be perplexed to understand how th: Dog-star, which he seldom sees till mid-winter, should be associated with the most fervid heat of summer. This is explained by considering that this star, in summer, is over our heads in the daytime, and in the lower hemisphere at night. As "thick the floor of heaven is inlaid with patines of bright gold," by day, as by night; but on account of the superior splendour of the sun, we cannot see theim.

Sirius is situated nearly S. of Alhena, in the feet of the Twins, and about as far S. of the equinoctial as Alhena is $\mathbf{N}$. of it. It is about $10^{\circ} \mathrm{E}$. of the Hare, and $26^{\circ} \mathrm{S}$. of Be telguese in Orion, with which it forms a large equilateral triangle. It also forms a similar triangle with Phaet in the Dove, and Naos in the Ship. These two triangles being joined at their vertex in Sirius, present the figure of an enormous $\mathbf{X}$, called by some, the Egyptian $\dot{\mathbf{X}}$. Sirius is also pointed out by the direction of the Three Stars in the belt of Orion. Its distance from them is about $23^{\circ}$. It comes to the meridian at 9 o'clock on the 11th of February.

Mirzam, in the foot of the Dog, is a star of the 2d magnitude, $5 \frac{1}{2}^{\circ} \mathrm{W}$. of Sirius. A little above, and $4^{\circ}$ or $5^{\circ}$ to the left, there are three stars of the 3 d and 4th magnitudes, forming a triangular figure somewhat resembling a dog's head.

[^53]The brightest of them, on the left, is called Muliphen. It entirely disappeared in 1670, and was not seen again for more than 20 years. Since that time it has maintained a steady luster.

Wesen is a star of between the 2 d and 3d magoitudes, in the back, $11^{\circ}$ S. S. E. of Sirius, with which, and Mirzam in the paw, it makes an elongated triangle. The two hinder feet are marked by Naos and Lambda, stars of the 3d and 4th magnitudes, situated about $3^{\circ}$ apart, and $12^{\circ}$ directly S . of the forefoot. This constellation contains 31 visible stars, including one of the 1st magnitude, four of the 2 d , and two of the 3d; all of which are easily traced out by the aid of the map.
Hretory.-Manillus, a Latin poet who flourished in the Augustan age, wrote an admirable poem, in five bools, upon the fixed stars, in which he thum apeake of this consteltation :-

> "All others he excels; no fairer light Ascends the skies, none seta so clear and bright."

But Eudosia beat deacribes it:-
"Next shines the Dog with sixty-four distinct; Famed for pre-eminence in envied wong, Theme of Aomeric and Virgitian lays: His ferce mouth flames with dreaded Strus; Three of his starn retire with feeble beams."


#### Abstract

According to some mythologists, this constellation represents one of Orion's hounds, which was placed in the aly, near this celebrated huntsman. Others shy it received its name in honor of the dog given by Aurora to Cephalus, which surpassed in apeed all the animals of his specias. Cephalus, it is said, attempted to prove this by running him againat a fox, which, at that time, was thought to be the fieeteut of all animala, After they had run together a long tipe without either of them obtaining the victory, it if said that Jupiter was so much gratified at the fieetnees of the dog, that he assigned him a place in the heavens. But the name and form of this constellation are, no doabt, derived from the Egyptians, who carefully watched its rising, and by it judged of the awelling of the Nile, which they called Siris, and, in their hieroslyphical manner of writing, since it was an it were the mentinel and watch of the year, represented it under the figure of a dog. They observed that when Sirius became visible in the east, jurt before the morning dawn, the overflowing of the Nile immediately followed. Thus it warned them, Ike a filithful dog, to eacape from the region of the tumbdation.


## CHAPTER V.

DIREOTLOES FOR TRACENG THE CONGTELLATIONS WHICE AEA ON THE MERIDIAN IN MARCE.

## ARGO NAVIS.

The ship Argo.-This constellation occupres a large apace in the southern hemisphere, though but a small part

[^54]of it can be seen in the United States. It is situated S. E. of Canis Major, and may be known by the etars in the prow and deck of the ship.

If a straight line joining Betelguese and Sirius, be produced $18^{\circ}$ to the southeast, it will point out Naos, a star of the 2 d magnitude, in the rowlock of the ship. This star is in the $S$. E. corner of the Egyptian $X$, and of the large equilateral triangle made by itself with Sirius and the Dove. When on the meridian, it is seen from this latitude about $8^{\circ}$ above the southern horizon. It comes to the meridian on the 3d of March, about half an hour after Procyon, and continues visible but a few hours.

Gamma, in the middle of the ship, is a star of the 2 d magnitude, about $7^{\circ} \mathrm{S}$. of Naos, and just ekims above the southern horizon for a few minutes, and then sinks beneath it. The principal star in this constellation is called, after one of the pilots, Canopus; it is of the lst magnitude, $36^{\circ}$ nearly S. of Sirius, and comes to the meridian 17 minutes after it; but having about $53^{\circ}$ of $\mathbf{S}$. declination, it cannot be seen in the United States. The same is true of Miaplacidus, a star of the lst magnitude in the oars of the ship, about $25^{\circ} \mathrm{E}$. of Canopus, and $61^{\circ}$ S. of Alphard, in the heart of Hydra.

An observer in the northem hemisphere, can nee the start many degrean moth of the equinoctial in the couthern hemisphere, as his own latitude lacis of $90^{\circ}$, and no more.

Markeb, is a star of the 4th magnitude, in the prow of the ship, atod may be seen from this latitude, $16^{\circ} \mathbf{S}$. E. of Sirius, and about $10^{\circ} \mathrm{E}$. of Wesen, in the back of the Dog. This star may be known by ite forming a small triangle with two others of the same magnitude, situated a litule above it, on the E., $3^{\circ}$ and $4^{\circ}$ apart.

This constellation contains 64 stars, of which two are of the 1st magnitude, four of the 2d, and nine of the 3d. Most of these are too low down to be seen in the United States.

History.-This constellation is intended to perpetuate the memory of the famous ship which carried Jason and his 54 companions to Colchic, when they resolved upon the perilous expedition of recovering the golden fieece. The derivation of the word Argo has been ofien disputed. Some derive it: from Argon, supposing that this was the name of the person who first proposed the expedition, and bailt the ship. Others maintain that it was built at Argos, whence its name. Cicero calls it Argo, because it carried Grecians, commonly called Argives. Diodorus derives the word from dipys, which signifies swift. Ptolemy says, bat not truly, that Hercuies built the ship and called it Aroo. after a gon of Jason Who bore the same name. This ship had fify oars, and being thus propelled must have fallen far short of the bulk of the smallest ship craft used by moderna.

[^55]It is even sald that the crew were able to carry it on their hacks from the Danube tothe Adriatic.

According to many authors, she had a beam on her prow, cut in the forest of Dodona by Minerva, which had the power of giving oracles to the Argonauts. This ship was the finst, it is said. that ever ventured on the sea. After the expedition was finished, and Jason had returned in triumph, he ordered ther to be drawn ashore at the isthmus of Corinth, and consecrated to Neptune, the god of the sea.
Gir haac Newton endeavors to settle the period of this expedition at about 30 cears hefire the destruction of Troy, and 43 years after the death of Solomon. Br. Bryant, however, rejects the history of the Argobautic expedition as a mere fiction oi the Greeks, and supposes that this group of stars, which the poets denominaie Argo Navis. reiers to Noah's ark and the deluge, and that the fable of the Aryonauic expedition is founded on certain Egyptian traditions that related to the preservation of Noah and his family during the flood.

## CANCER

The Crab is now the fifth constellation and fourth sign of the Zodiac. It is situated in the ecliptic, between Leo on the E. and Gernini on the W. It contains 83 stars, of which one is of the 3d, and seven of the 4th magnitude. Some place the first-mentioned star in the same class with the other seven, and consider none larger than the 4 th magnitude.

Beta is a star of the 3d or 4 th magnitude, in the southweatern claw, $10^{\circ} \mathrm{N}$. E. of Procyon, and may be known from the fact that it stands alone, or at least has no star of the same magnitude near it. It is midway between Procyon and Acubens.

Acubens, is a star of similar brightness, in the south-eastern claw, $10^{\circ} \mathrm{N}$. E. of Beta, and nearly in a straight line with it and Procyon. An imaginary line drawn from Capella through Pollux, will point out Acubens, at the distance of $24^{\circ}$ from Pollux. It may be otherwise distinguished by its standing between two very small stars close by it in the same claw.

Tegmine, the last in the back, appears to be a small star, of between the 5th and 6th magnitudes, $81^{\circ}$ in a northerly direction from Beta. It is a treble star, and to be distinctly seen, requires very favorable circumstances. Two of them are so near together that it requires a telescopic power of 300 to separate them.

A bout $7^{\circ}$ north-easterly from Tegmine, is a nebulous cluster of very minute stars, in the crest of Cancer, sufficiently luminous to be seen by the naked eye. It is situated in a triangular position with regard to the head of the Twins and the Litule Dog. It is about $20^{\circ} \mathrm{W}$. of each. It may otherwise be discovered by means of two conspicuous stars of

[^56]the 4th magnitude lying one on either side of it, at the distance of about $2^{\circ}$, called the northern nod southern Aselli. By some of the Orientalists, this cluster was denominated Proesepe, the Manger, a contrivance which their fancy fitted up for the accommodation of the Aselli or Asses; and it is so called by modern astronomers. The appearance of this nebula to the unassisted eye, is not unlike the nucleus of a comet, and it was repeatedly mistaken for the comet of 1832, which, in the month of November, passed in its neighborhood.

The southern Asellus, marked Delta, is situated in the line of the ecliptic, and, in connection with Waeat and Tejat, marks the course of the earth's orbit for a space of $36^{\circ}$ from the solstitial colure.

There are several other double and nebulous stars in this constellation, most of which are too small to be seen; and indeed, the whole constellation is less remarkable for the brilliancy of its stars than any other in the Zodiac.

The sun arrives at the sign Cancer about the 2 1st of June, but does not reach the constellation until the 23d of July.

The mean right ascension of Cancer is $126^{\circ}$. It is consequently on the meridian the 3d of March.

A few degrees S. of Cancer, and about $17^{\circ} \mathrm{E}$. of Procyon, are four atars of the th magnitude, $3^{\circ}$ or $4^{\circ}$ apart, which mark the head of Hydra. This conatellation will be described on Map III.

The beginning of the sign Cancer (not the constellation) is called the Tropia of Cancer, and when the sun arrives at this point, it has reached ite utmost limit of north declination, where it seems to remain stationary a few days before it begins to decline again to the south. This stationary attitude of the sum is called the summer solatice; from two Latin words signifying the sun's standing still. The dietance from the first point of Cancer to the equinoctial, which, at present, is $23^{\circ} 27^{\prime}$, is called the obliquity of the ecliptic. It is a remarkable and well-ascertained fact, that this is continually growing less and less. The tropics are alowly and steadily approaching the equinoctial, at the rate of about half a fecond every year; so that the sun does not now come so far north of the equator in mummer, nor decline so far south in winter, as it must have done at the creation, by nearly a degree.

History.-lin the Zodiacs of Esne and Dendera, and in most of the astrological remains of Egypt, a Scarabmus, or Beetle, is used as the symbol of this sign; but in Sir William Jones' Oriental Zodiac, and in mome others found in India, we meet with the figure of a crab. As the Mindoos, in all probability, derived their knowledge of the stars from the Chaldeans, it is supposed that the figure of the crab, in this place, is more ancient than the Beetie.

In some eastern representations of this sign, two animals, like asses, are found in this division of the Zodiac; and as the Chaldaic name for the ass may be transtated muddiness, it is supposed to allude to the discoloring of the Nile, which river was rising when the sun entered Cancer. The Greeks, in copying thin agn, have placed two asses as the appropriate symbol of it, which still re-

[^57]maln. They erplain their reason, however, for adopting this tgare, by maying that these are the animals that sasisted Jupiter in hie victory over the granta.

Dopais accounts for the origin of the asses in the following words:- Le Can-
 machar que Jacoty assimule at Pane.

Mythologists give different accol nts of the origh of this constellation. The pravailing opinion is, that while Hercules wat engaged in his famous conteat with the dreadful Lernaean monster, Juno, envious of the fame of his achievements, sent a sea-crab to bite and annoy the hero's feet, but the crab being soon despatched, the goddese to reward its services, placed it anong the constellations.

> "The Acorpion's claws here clapp a whde erstent And here the Crab's in lesser claspas are bent."

## CHAPTER VI.

DURECTIONS FOR TRACING THE CONSTELLATIONS WHICE ARB ON THE MERIDLAN IN APRIL.

LFO.
The Lion.-This is one of the most brilliant constullations in the winter hemisphere, and contains an unusual number of very bright stars. It is situated next E. of Cancer, and directly S. of Leo Minor and the Great Bear.

The Hindoo Antronomer, Varaha, says, "Certainly the mouthern aolatice was once in the middle of Aeleha (Leo); the northern in the first degree of Dhaniahta" (Aquarius). Since that time, the oolstitial, as well an the equinoctial points, have gone backwarda on the ecliptic $75^{\circ}$. This divtded by $500^{\prime \prime}$, givea 6373 years; which carry un back to the year of the world 464. Fir W. Jones, cays, that Vraha lived when the solstices were in the finst degrees of Cancer and Capricorn ; or about 400 years before the Christian ern.

Leo is the fifth sign, and the sixth constellation of the Zodiac. The mean right ascension of this extensive group is $150^{\circ}$, or 10 hours. Its centre is therefore on the meridian the 6th of April. Its western outline, however, comes to the meridian on the 18 th of March, while its eastern limit does not reach it before the 3d of May.

This constellation contains 95 visible stars, of which two are of the 1 st magnitude, two of the 2 d , six of the 3 d , and fifteen of the 4 th.
"Two splendid stare of highent dignity, Two of the aecond clase the Lion boasta, And juthy firurea the fierce summer'e rage.'
The principal star in this constellation is of the 1st magnitude, situated in the breast of the animal and named $\boldsymbol{R e}$ gulus, from the illustrious Roman consul of that name.

[^58]It is situatod almost exactly in ,he ecliptic, and mey bo readily distinguished on account of its superior brilliancy: 11 is the largest and lowest of a group of five cr six bright stars which form a figure somewhat resembling a sickle, is the neck and shoulder of the Lion. There is a little star of the 5 th magnitude about $2^{\circ} \mathrm{S}$. of it, and one of the 3 d magnitude $5^{\circ} \mathrm{N}$. of it, which will serve to point it out.

Regulus is the brightest star in the constellation, except Denebola, in the tail, $25^{\circ} \mathrm{E}$. of it. Great use is made of Re gulus by nautical men, for determining their longitude at seen Its latitude, or distance from the ecliptic, is less than $\frac{1}{2}$; bat its declination, or distance from the equinoctial is nearly $13{ }^{\circ} \mathrm{N}$.; so that its meridian altitude will be just equal to that of the sun on the 19th of August. Its right ascension is very nearly $150^{\circ}$. It therefore culminates about 90 c.ock on the 6th of April.
When Regalus te on the meridian, Castor and Pollux ars meen about $40^{\circ} \mathrm{M}$.
W, of it, and the two stary in the Litule Dog, are about the Eame ditance in a 8
W. direction; with which, and the two former, it makes a large toonceles try-
angle whose vertex is af Regulus.

The next considerable star, is $5^{\circ} \mathrm{N}$. of Regulus, marked Eta, situated in the collar; it is of between the 3d and 4th magnitudes, and, with Regulus, constitutes the handle of the sickle. Those three or four stars of the 3d magnitude, $\mathbf{N}$. and W. of Eta, arching round with the neck of the animal, doscribe the blade.

Al Gieba, is a bright star of the 2d magnitude, situated in the shoulder, $4^{\circ}$ in a N. E. direction from Eta, and may be exsily distingashed by its being the brightest and middle one of the three stars lying in a semicircular form, curving cowards the west; and it is the first in the blade of the sickle.

Adhafera, is a star of the 3d magnitude, situated in the meck, $4^{\circ} \mathrm{N}$. of Al Gieba, and may be known by a very minute star just below it. This is the second star in the blade of the sickle.

Ras al Asad, situated before the ear, is a star of the 3d or 4th magnitude, $6^{\circ} \mathrm{W}$. of Adhafera, and is the third in the blade of the sickle. The next star, Epsilon of the same magnitude, situated in the head, is $2 \frac{1}{2}^{\circ} \mathbf{S}$. W. of Ras al Asad, and a little within the curve of the sickle. About miduray

[^59]between these, and a little to the E., is a very small star hardly visible to the naked eye.

Lambda, situated in the mouth, is a star of the 4th magnt tude, $3 \frac{1}{2}^{\circ}$ S. W. of Epsilon, and the ast in the sickle's point. Kuppa, situated in the nose, is another star of the same magnitude, and about as far from Lambda as Epsilon. Epsilna and Kappa are about $5 \frac{1}{2}^{\circ}$ apart, and form the longest side of a triangle, whose vertex is in Kappa.

Zozma, stuated in the back of the Lion, is a star of the $2 d$ magnitude, $18^{\circ} \mathrm{N}$. E. of Regulus, and midway between it and Coma Berenices, a fine cluster of small stars, $18^{\circ} \mathrm{N}$. E. of Zozma.

Theta, situated in the thigh, is another star of the 3d magnitude, $5^{\circ}$ directly S. of Zozma, and so nearly on the same meridian that it culminates but one minute after it. This star makes a right angled triangle with Zozma on the N . and Denebola on the E., the right angle being at Theta,

Nearly in a straight line with Zozma, and Theta, and south of them, are three or four smaller stars, $4^{\circ}$ or $5^{\circ}$ apart, which mark one of the legs.

Denebola, is a bright star of the 1st magnitude, in the brush of the tail, $10^{\circ} \mathrm{S}$. E. of Zozma, and may be distinguished by its great brilliancy. It is $5^{\circ} \mathrm{W}$. of the equinoctial colure, and comes to the meridian 1 hour and 41 minutes after Regulus, on the 3d of May ; when its meridian altitude is the same as the sun's at 12 o'clock the next day.
When Denebola is on the meridian, Regulus is seen $25^{\circ} \mathbf{W}$. of it, and Phad, tn the square of Ursa Major, bears $39^{6} \mathbf{N}$. of it. It forms, with these two, a large right angled triangle ; the right angla being at Denebola. It is so nearly on the mane meridian with Phad that it culminates only four minutes before it.

Denebola is $352^{\circ} \mathrm{W}$. of Arcturus, and about the same distance $N$. W. of Spica Virginis, and forms, with them, a large equilateral triangle on the $S$. E. It also forms with Arcturus and Cor Caroli a similar figure, nearly as Large on the N. E. These two triangles, being joined at their base, constitute a perfect geometrical figure of the forms of a Rhombus: called by some, the Diamond of Virgo.
A line drawn from Denebola through Regulus, and continued $7^{\circ}$ or $8^{\circ}$ further in the same direction, will point out $X i$ and Omicron, of the $3 d$ and 4 th magn. tudea, situated in the fore claws, and about $3^{\circ}$ apart.

[^60]There are a number of other atars of the 3d and 4 th magnitudes in thim conEtellation, which require no demcription, as the wcholar will easily trace them out from the map. The position of Regulus and Denebola are often referred to in the geography of the heavent, as they serve to point out other clueters in the same neightbourhood.
Histony.-According to Greek fable, this Lion represente the formideble and mal which infested the forests of Nemsea. It was alain by Hercules, and placed by Jupiter among the stars in commetnortion of the dreadful confict. Some writers have applied the atory of the twelve labours of Hercules to the progremt of the mun through the twelve signs of the ecliptic; and as the combat of that celebrated hero with the Lion was his first labour, they have placed Leo an the firet sign. The figure of the Lion was however, on the Egyptian charta long before the invention of the fablea of Hercules. It wouk seem, moreover, mecording to the fable itself, that Herculen, who represented the sun, actually wow the Neingean Lion, becatise Leo was already a zodiacal gign.
In hieroglyphical writing, the Lion was an emblem of violence and firy; and the represcutation of this animal in the Zodiac, signified the intense heat ocesshoned by the sun when it entered that part of the ecliptic. The Egyptians were much annoyed by lions during the heat of summer, as they at that season, lea the desert, and hunted the banks of the Nile, which had then reached its greatest elevation. It was there fore natural for their astronomera to place the Liol where we find him in the sodiac.
The figure of Leo, very much as we now have it, is in all the Indian and Eagptian Zoctiacs. The overflowing of the Nile, which wan regularly and anxiously expected every year by the Egyptian, took place when the sun was in this signThey therefore paid more attention to it, it is to be presumed, than to any other. Thid was the principal reason. Mr. Green supposen, why leo atands firt in the wulliacs of Dendera

The circular zodiac, meutioned in our account of Artes, and which adorned the centiug in one of the inner rooms in the famous temple in that city, was brouglit away en masse in 1821, and removed to Paris. On its arrival at the Iouvre, it was purchased by the king for 150,000 franca, and, after being exhibited there for a year. wow nheed in one of the halls of the library, where it is now to bo seen in apparently perfect preservation. This must interesting relic of astrology, after being cut away from the ruins where it was found, is about one foot thick, and eight feet square. The rock of which it is composed, is sandstone. On the face of this stone, appears a large square, enclosing a circle four feet in dianeler, in which are arranged in an irregular spiral line, the zodiacal constellationa, commencing with the sign Leo. On each side of this apiral tine are placed a gress variety of figures. These are supposed to represent other constellations though they bear no analogy, in form, to those which we now have. Many of these figures are accompanied with hieroglyphics, which probably express their names. The commentator of Champollion, from whom we have derived many interesting facts in relation to them, has furnished merely a general history of their origin and purpose, but does not add particulars. Coples of these drawinga and characters, have been exhibited in this country, and the wonderful conclutions that have been drawn from them, have excited much astonishment.

Compared with our preaent planispheren, or with stellar phenomena, it abounds with contradictory and irrelevant matter. So far from proving whal was strenunisly maintained by infidel writers, soon after its discovery, that the Graeks took from it the model of their zodiac, which they have transmitted to us, it seems to demonstrate directly the reverse. The twelve signs, it is true, are there. but they are not in their proper places. Cancer la between Leo and the pole; Virgo bearino proportion to the rest; some of the signs are placed double; they are all out of the ecliptic, and by no means occupy those regular and equal portions of space which Egyptian astronomers are said to have exactly measured by means of their clepaydra.

The figures, without what may be termed the zodiacal circle, could never have Included the same stars in the heavens which are now circumscribed by the flures of the constellations. Professor Green is of opinion, tha the smali apartment in the ruins of Dendera, which was mysteriously ceiled with this zodac, was used for the purposes of judicial astrology, and that the sculptured igures upon it were employed in horoscopical predictions, and in that casting of Eativities for which the Egyptians were so famous.

In the Hebrew Zodiae, Leo is aspigned to Judeh, on whome standard, socerding to an traditions, a Lion is painted. This is clearly intimated in numeroua poma. fee of the Hebrew writinga: Ex.-"Judah is a Lion's wholp; he atoopeth down. ho croucheth as a Lion; and as an old Lion; who shall rouse him up ${ }^{2} \mathrm{Gem}$ Ifix. "The Lion of the tribe of Judah hath prevailed." Bev. v. 5.

## LEO MINOR.

The Littile Lion.-This constellation was formed by Hevelius, ont of the Stelle informes, or unformed stars of the ancients, which lay scattered between the Zodiacal constellation Leo, on the S. and Ursa Major, on the N. Its mean right ascension is the same with that of Regulus, and it comes to the meridian at the same time on the 6th of April.

The modern constellations, or those which have been added to our celestial maps since the adoption of the Greek notation, in 1603 , are referred to by the letters of the English alphabet, instead of the Greek. This to the case in regard to Leo Minor, and all other constellations whose origin is submequent to that period.

Leo Minor contains 53 stars, including only one of the 3d magnitude, and 5 of the 4th. The principal star is situated in the body of the animal, $13^{\circ} \mathrm{N}$. of Gamma Leonis,* in a straight line with Phad, and may be known by a group of smaller stars, a little above it on the N. W.

It forms an equilateral triangle with Gamma and Delta Leonis, the vertex being in Leo Minor. This star is marked with the letter $h$ in modern catalogues, and being the principal representative of the constellation, is itelf sometimes called the Little lion: $8^{\circ}$ E. of this star (the Little Lion) are two stars of the 4 th magnitude, in lise last paw of Ursa Major, and about $10^{\circ} \mathrm{N}$. W. of it are two other stars of the 3d magnitude, in the first hind paw.
"The Smaller Liow now succeeds; a cohort Orfifty starn attend his steps;
And three, to aight unarm'd, invisible."

## SEXTANS.

The Sextant, called also Ubania's Sextant, $t$ is a modern constellation that Hevelius made out of the unformed stars of the ancients, which lay scattered betwepn the Lion, on the $\mathrm{N}_{\text {. }}$ and Hydra, on the S.

It contains 41 very small stars, including only one as large

[^61][^62]as the 4th magnitude. This is situated very near the equinoctial, $13^{\circ}$ S. of Regulus, and comes to the macridian about the same time on the 6th of April. The other stars in thin constellation are too small to engage attention. A few of the largest of them may be traced out from the map.


#### Abstract

Hismons.-A mextant, in mathematics, is the sirth part of a circle, or an arez comprehending 60 degrees. But the term is more partucularty uned to domoct en astronomical instrument well known to mariners. Ite une is the mame as that of the quadrant; namnely, to measure the angular distance, and take the altitudia of the sum, moon, planeth, and fixed meara. If in indispensable to the marinor ba finding the latitude and longitude at sea, and mould be in the hands of every surveyor and practical engineer. It nuay serve the purpose of a theodolite, its maeasuring inaccessible heights and distances. It may gratify the yougs pupil to know, that by means of such an ingtrument, well adjusted, and with a clear eye and a steady hand, he could readily tell, within a lew hundred yards, how irr morth or wouth of the equator he was, and that from any quarter of the world known or unknown. This constellation is so called, on accouns of a mupposed rememblance to this instrument.


## HYDRA AND THE CUP.

Hydra, the Water Serpent, is an extensive constellation, winding from $E$. to $W$. in a serpentine direction, ovel a space of more than 100 degrees in length. It lies south of Cancer, Leo, and Virgo, and reaches almost from Canis Mi nor to Libra. It contains sixty stars, including one of the 2 d magnitude, three of the 3 d , and twelve of the 4th.

Alphard, or Cor Hydra, in the heart, is a lone star of the $2 d$ magnitude, $23^{\circ} \mathrm{S} . \mathrm{S} . \mathrm{W}$. of Regulus, and comes to the meridian at the same tige with Lambda, in the point of the sickle, about 20 minutes before 9 o'clock on the 1st of April. There is no other considerable star near it, for which it can be mistaken. An imaginary line drawn from Gamma Leonis through Regulas, will point out Cor Hydre, at the distance of 23.

The head of Hydra may be distinguished by means of four stars of the 4 th magnitude, $2 \frac{1}{2}^{\circ}$ and $4^{\circ}$ apart, situated $6^{\circ} \mathrm{S}$. of Acubens, and forming a rhomboidal figure. The three upper stars in this cluster, form a small arch, and may be known by two very small stars just below the middle one, making with it a very small triangle. The three western stars in the head, also make a beautiful little triangle. The eastern star in this group, marked Zeta, is about $6^{\circ}$ directly $S$. of Acubens, and culminates at the same time.

When Alphard is on the meridian, Alkes, of the 4th magnizsde, situated in the bottom of the Cup, may be seen $24^{\circ}$

[^63]S. E. of it, and is distinguished by its forming an equilateral triangle with Beta and Gamma, stars of the same magnitude, $6^{\circ} \mathrm{S}$. and E. of it. Alkes is common both to Hydra and the Cup. Beta, on the S.. is in Hydra, and Gamma, on the N. E., is near the middle of the Cup. A line drawn from Zozma, through Theta Leonis, and continued $38 t^{\circ}$ directly S. will reach Beta ; it is therefore on the same meridian, and will culminate at the same time on the 23 d of April.
The Cup itself, called also the Crater, may be easily distinguished hy means of six stars of the 4th magnitude, forming a beautiful crescent, or semicircle, opening to the $W$. The ceater of this group is about $15^{\circ}$ below the equinoctial, and directly S . of the hinder feet of Leo. The crescent form of the stars in the Cup is so striking and well defined, when the moon is absent, that no other description is neceswary to point them out. Its center comes to the meridian about two hours after Alphard; on the same evening; and consequently, it culminates at $9 o^{\prime}$ 'clock, one month after Alphard does. The remainder of the stars in this constellation may be easily traced bv aid of the map.

When the head of Hydra is on the meridian, its other extremity is many degrees below the horizon, so that its whole length cannot be traced out in the heavens until its center, or the Cup, is on the meridian.

> The aparkling Fydra, proudly eminent To drink the Gadaxy's refalgent sea; Nearly a fourth of the encircling curve Which girds the ecliptic, his vast folds involve; Yet ten the number of his stars difused O'er the long track of his enormous spires: Chef beams his heart, sure of the second rank, But emulous to gain the first." Eudosia.

History.-The astrologers of the east, in dividing the celestial hosts into various compartments, asigned a popular and allegorical meaning to each. Thus the sign Leo, which passes the meridian about midnight, when the sun is tn Pisces, was called the House of the Lions. Leo being the domicil of Sol.

The introduction of two serpents fato the constellations of the ancients, had its origin, it is aupposed, in the circumstances that the polar one represented the oblique course of the stars, while the Hydra, or Great Snake, in the sonthern hemisphere, 等 mbolized the moon's course; hence the Nodgs are called the Dragon's head and tail to this day.

The hydra was a terrible monster, which, according to mythologists, infested the neighborhood of the lake Lerna, in the Peloponnesus. It had a hundred heads, according to Diodorus; fifty, according to Simonides; and nine, accorcllage to the more commonly received opinion of Apollodorus, Hyglnus, and others. Ws soon as one of these heads was cut off, two immediately grew up if the wound was not stopped by fire.

[^64]"Art I a a moportion'd to the hydresel langth, Why, ty hie wounds, received augmented alrongth 1 He rased a hundred hissing heads in air, When oce 1 bopp'd, up aprang a dreadiul parr."


#### Abstract

Te destroy this dreadfai monster, was one of the labours of Hercueen, and this the rasily effected with the assistance of lolaus, who applied a burning iron to the wounds as yoon as one head was cut off. While liercules was destroyina the hydra, Juno, jeslous ol Liv glory, seat a cea-crab to bite his foot. Thiv new enetuy was coon despatched; wad Juno was unable to succeed in her atten pto th lessen the fane of Hercules. The conqueror dipped his arrows in the gall of he bydrth whicb ever atter rindered the wounde inficted with them incurable unci mortal. This talle of the many-headed hydra may be understood to mean nothing more han that the marshes of herna wers hieated with a multitode of serpente, which -eemed to multiply at fat as they wers detroyed.


## CHAPTER VII.

DIRECTIONS FOR TBACING THE CONSIELLATIONS WHICE ARE ON the meridian in may.

## URSA MAJOR.

Tae Great Bear.-This great constellation is situated betiveen Ursa Minor on the north, and Leo Minor on the south. It is one of the most noted and conspicuous in the northern hemisphere. It has been an object of universal observation in all ages of the world. The piliests of Belus, and the Magi of Persia; the shepherds of Chaddea, and the Phonician navigators, seem to have been equally struck with its peculiar ouilines. And it is somewhat remarkable that a remote nation of American aborigines, the Iroquois, and the earliest Arabs of Asia, should have given to the very same constellatien the name of "Great Bear," when there had probably never been any communcution between them; and when the name itself is so perfectiy arbitrary, there being no resemblance whatever to a bear, or to any other animal.

It is readily distinguished from all others by means of a remarkable cluster of seven bright stars, forming what is familiarly termed the Dipper, or Ladle. In some parts of England it is called "Charles's Wain," or wagon, from its fancied resemblance to a wagon drawn by three horses in a Inne. Others call it the Plough. The cluster, however, is more frequently put for the whole constellation, and called, simply, the Great Bear. But we see no reason to reject the

[^65]very appropriate appellation of the shepherds, for the resenblance is certainly in favour of the Dipper: the foar stars in the square forming the bowl, and the other three, the handle.

When the Dipper is on the meridian, above the pole, the botom lies towards us, with the handle on the rgas

Benetnasch is a bright star of the 2d magnitude, and is the first in the handle. The second, or middle star in the handle, is Mizar, $7^{\circ}$ distant from Benetnasch. It may be known by means of a very minute star almost touching it, called Alcor. which appears to be double when seen through a telescope, and of a silver white. The third star in the handle is called Alioth, and is about $4 \frac{1}{2} \circ \mathrm{~W}$. of Mizar. Alioth is very nearly opposite Shedir in Cassiopeia, and at an equal distance from the pole. Benetnasch, Mizar, and Alioth, constitute the handle, while the next four in the square form the bowl of the Dipper.

Five and a half degrees $W$. of Alioth is the first star in the top of the Dipper, at the junction of the handle, called Megrez; it is the smallest and middle one of the cluster, and is used in various observations both on sea and land, for important purposes.* At the distance of $4 \frac{1}{2} \circ \mathrm{~S}$. W. of Megrez, is Phad, the first star in that part of the bottom, which is next the nandle.

[^66]At the distance of $8 \circ \mathrm{~W}$. of Phad. is the westernmost star in the bottom of the Dipper, called Merak. The bright star $5^{\circ} \mathrm{N}$. of it, towards the pole, is called Dubhe : but these two, Merak and Dubhe, are, by common consent, called the Pointers, because they always point towards the pole; for, let the line which joins them be continued in the same direction $284^{\circ}$ farther, it will just reach the north pole.

The names, positions, and relative distances of the stars in this cluster, should be well remembered, as they will be fre-

[^67][^68]quently adrerted to. The distance of Dabhe, or the Pointer zearest to the north pole, is $283^{\circ}$. The distance between the two upper stars in the Dipper is $10^{\circ}$; between the two lower ones is $8^{\circ}$ : the distance from the brim to the bottom next the handle, is $4^{\circ}$; between Megrez and Alioth is $5 \frac{1}{2}^{\circ}$; between Alioth and Mizar $4^{\circ}$, and between Mizar and Benetnasch, 70
The reason why it ha fmportant to have these dintances eleardy eettled in the mind in, that these tuarn, being alway in view, and more familiar than any other, the atudent will never fail to have a atandard measure before him, which the efe can easily make use of in determining the diatancen between other mars.

The position of Megrez in Ursa Major, and of Caph in Cassiopeia, is somewhat remarkable. They are both in the equinoctial colure, almost exactly opposite each other, and equally distant from the pole. Caph is in the colure, which passes through the vernal equinox, and Megrez is in that which passes through the autumnal equinox. The latter passes the meridian at 9 o'clock, on the 10th of May, and the former just six months afterwards, at the same hour, on the 10th of November.

Psi, in the left leg of Ursa Major, is a star of the 3d magmitude, in a straight line with Megrez and Phad, distant from the latter $121^{\circ}$. A little out of the same line, $3^{\circ}$ farther, is another star of the 3d magnitude, marked Epsilon, which may be distinguished from Psi, from its forming a straight line with the two Pointers.

The right fore paw, and the two hinder ones, each about $15^{\circ}$ from the other, are several $y$ distinguished by two stars of the 4th magnitude, between $1^{\circ}$ and $2^{\circ}$ apart. These three duplicate stars are nearly in a right line, $20^{\circ} \mathrm{S}$. of, and in a direction nearly parallel with, Phad and Dubhe, and are the only stars in this constellation that ever set in this latitude.

There are few other stars of equal brightness with those just described, but amidst the more splendid and interesting group with which they are clustered, they seldom engage our observation.

The whole number of visible stars in this constellation is 87 ; of which one is of the 1st, three are of the 2 d , seven of the 3d, and about twice as many of the 4th magnitude.

[^69][^70]ling nf arcadia. She was an attendant of Diana, and mother of Ar.eg ly tur nitar, who placed her anong the constellations, after the jealouss of in a shauged her into a bear.
"This said, her hand within ber hair she wound,
Awing her to earth, and drasf'd her on the ground;
The prostrate wretch lifts up her hand in prayer;
Hier arine grow shaggy and deform'd with hair,
Her nails are sharpen'd into pointed clawre,
1 Ier hanls bear half her weight, and tura to paws;
Her lips, that once could tehyt a god, berin
To grow distorted in an ugly grin;
And lest the supplicating brute might reach
The eurs of Jove, she was deprived of speech.
How did she fear to lodge in woods alone,
And haunt the fields and ueadows, once her own!
How often would the deep-mocith'd dogs pussue, Whilst frow her hounds the frighted hunters tlew."-Octd's Mef. Gone suppose that her son Arcas, otherwise called Buotes, was changed into Iras Minor; or the Litule Bear. It is well known, that the ancients represented both these conslellaums under the figure of a wagon drawn by a team of horses; hence the appeltation of Charles's Wain, or wagon. This is alluded to in the Phemonena of Aratus, a Greek poem, from which At. Paui quoters. in hia address to the Athenians:-

> "The une call'd Helix, t soon as day retiren, Observed with ease, Iights up his tadiant fres :

* Dlana was the goddess of huntlig, and the patroness of modenty and chastity :"The buntress Dian, Fair, sllver-shafted queen, for ever chaste, sel at naught
The frivolous bolt of Cupid; gols and men
Fear her stern frown, and she was queen o' th' woods. "一Mftton.
The most fannous of her cemples was that of Ephesus, near Bonyma, in Asia, which was one of the seven wonders of the world. It is related in the Acts of the Apwstiss, that "Demetrius, a silversmith; who male silver shrines for Diana," endeavoured to excite opposition to the Christian rellgion, because "this Paul had persuaded nuch people that they be no gods which are made with hands," and "that the temple of the great goddess blaus should be desplsed, and her mar nificence should be destroyrd, whom all Aspa and the world worshippeth. Aul whea they heard these saylugs they were futi of wrath, and cried out, Baying, Great is Diana of the Epheriams? And thus Chey continued shouting for the gpace of two hours." And aspin, "When the town clerk had appeased the people, he sald, Ye men of Ephesus, what man is there that tunweth not how that the cly of the Epheslans is a poorahipper of the greas goddess Dlana, and of the image which fell down from Jupiter?"
The "Inage which fell down from Jupiter," "dountless alludes to the \&ble that Junn cast her out of heaven, and that Neptune, In plty of her desolate condition, raised the island of Delos, from the Esean sea, for her birth and habitution; for it was in this island that the twins, Apollo and Diana, were borm Disna is therefore sometimes culled Delia, frou the name of the istind that gave her birth. She was representer under the figire of a very leautiful virein, In a hunting dress, a head talter than any of her attendant nymphs, with a bow in her hand, a quiver suspender across her shoulders, and her forehead ormamented with a silver crescent "which Jews might kiss and tifidels adore." The Inhahitants of Taurica sacriffced upon her altars all the strangers that were shipwrecked upon thelr coast. The Lacedemonlans yeaty offer ed her human victims till the age of Lycurgus, who changerl this zrtarous custom of inmolation to faycllation. The athenians generally offered her goats, while ollore aftered white sids and ewes.
"Haste the sacrifice;
Eeven bullocks yet unyoked for Pheebus choome,
And for Dlana, seven unspotted en es."-Virgil.
Who does not bow with grateful veneration at hat Christian intrepidity of Bu. Paul. Who risked his life in exposing the delusion and ldulatry of the worshlppers of tis cuddess Dlanal
It is a remarkable circumstance, that the temple of Dlana was burnt to the gropend the very day on which Alexander the great was born!
- Callato was a native of the city or Helice, in Achala. a district near the bay of Co Anth ; hence the Greater Bear is sometimes called Hellice: -
'Night on the earth pour'd tarkness; on the sea.
The watchful sallor, to Orton's star.
And Helioe, turn'd beeinul."-Apollonime.

> The other, manalier, ed with foobler beames In a leus circle drives its laxy teame But more adapted for the sallor's gulde, Whene'er, by night, he tempta the briay tide."

In the Egypian planispheren of remote antiquity, these two conmellathas are ropresented by the figurea bf bears, instead of wagons $;$ and the Grooks, who derived most of their astronomical symbols from the Eyppians, though they usually altered them to eniblems of their own history or cuperstition, have, nevertheleas, retained the original form of the two beara. It it said by Aratus, that the Phenician navigators made use of Ursa Minor in directing their voyages:"Observing this, Phenicians plough the main :"
while the Greeks confined their observationa to Ursa Major.
Some imagine that the ancient Egyptians arranged the atarn near the nortr poly, within the outlines of a bear, because the polar regions ary the hanati of ch'u animal, and also because it makes neither extensive journey nor rapid merthes.

At what period men began to sail by the starn, or who were the firw people that did sa, is not clear; but the honour is unually given to the Pheniciang. That it was practised by the Greeks, as early as the time of the Trojan war, that it, mout 1200 years B. C., we learn from Homer: for he may of Ulywor, when cailing on his rafl, that

> "Placed at the helm he sate, and mart'd the shien, Nor closed in sleep his ever watchful eyes."

If is rational to auppose that the stars were first used an a guide $\boldsymbol{z}$ otravellers by land, for we can acarcely imagine that men would venture themselves upon the mean by night, before they had firat learned mome mafe and sure method of directing their course by land. And we finch, according to Diodorus Bliculus, that travellers in the mandy plaina of Arabia were aceumomed to direct their course by the Bears.
That people travelled in these vast deserts at night by observing the mars, is由irectly proved by thie pamage of the Koran :-"God has given you the atare to be guides in the dari. both by land and by mea."

## COMA BERENICES.

Berenice's Hair.-This is a beautiful cluster of small stars, situated about $5^{\circ} \mathrm{E}$. of the equinoctial colure, and midway between Cor Caroli on the northeast, and Denebola on the southwest. If a straight line be drawn from Benetnasch through Cor Caroli, and produced to Denebola. it will pass through it.
The principal stars are of between the 4th and 5th magm tudes. According to Flamsted, there are thirteen of the 4th magnitade, and according to others there are seven; but the student will find agreeably to his map, that there is apparently but one star in this group, entitled to that rank, and this in situated about $7^{\circ} \mathbf{S}$. E. of the main cluster.
Although it is not fasy to mistake this group for any other is the same region of the skies, yet the stars, which compose it are all so small as to be rarely distinguished in the full presence of the moon. The confused lustre of this assemblage

[^71]of small stars somewhat resembles that of the Milky-Way. It contains besides the stars already alluded to, a number of nebulæ.

The whole number of stars in this constellation is 43; its mean right ascension is $185^{\circ}$. It consequently is on the meridian the 13 th of May.

> The glittering maze of Berewice's Hair Forty the stars; but such as sem to kis The fowoing traeese with a lambent fire: Four to the telescope alone are seen."

Hircory--Berenice was of royal descent, and a bady of great beanty, whe maraied Ptoleny Soter, or Evergeten, one of the kings of Egypt, her own brother, vhom she loved with much tenderness. When he was going on a dangerous expedition against the Agry rians, she vowed to dedicate her hair to the goddesi of beauty, if he returned in safety. Sometime after the victorious return of her husband, Evergetes, the locks which agreeably to her oath, she had deposited in the temple of Vemus disappeared. The king expressed great regret at the loss of what he 80 much prized; whereupon Conou, his astronomer publicly reported that Jupirer had taien away the queen's locka frou the temple, and piaced them among the stars.
"There Berenice's lockst first rose so bright, The heavens bespangling with dishevelled light."
Conon, being ment for by the king, pointed out this constellation, sayiag, "There behold the locks of the queen." This group being among the unformed inhre until rhat tine, and not known as a constellation, the fing was satisfied whth the deciaration of the astronomer, and the queen became reconciled to the partiality of the gods.
Callimachus, an historian and poet. who flourished tong before the Cberistian ora, ham these lines as imuslated by Tytler:-
"Immortal Conon, blest with skill divine, Amid the sarered skies behold me shine; E'en me, the beasteous hair, that lately shed Refulgent beams from Berenice's head; The lock she fondly vowed with lifted arma, Inploring all the powers to save from harno. Her dearer lord, when from his bride he fiew, To wreck atera vengeance vil the Assyrian crow."

## CORVUS.

Tar Crgw.-This small constellation is situated on the eastern part of Hydra, $15^{\circ} \mathrm{E}$. of the Cup, and is on the sante meridian with Coma Berenices, but as far S . of the equinoctial as Coma Berenices is N . of it. It therefore culminates at the same time, on the 12 th of May. It contains nine visible stars, including three of the 3 d magnitude and two of the 4th.

This constellation is readily disting ished by means of three stars of the 3 d magnitude and one o. the 4 th, forming a trapezium or irregular square, the two upper ones being about $3 \frac{1}{2}^{\circ}$ apart, and the two lower ones $6^{\circ}$ apart.

[^72]The brightest of the two uppor stars, on the left, is called Algorab, and is situated in the E. wing of the Crow; it has nearly the same declination S. that the Dog-star has, and is on the meridian about the 13 th of May. It is $21 \frac{2}{2}^{\circ} \mathrm{E}$. of Alkes in the Cup, $14 \frac{1^{\circ}}{}{ }^{\circ}$ S. W. of Spica Virginis, a brilliant star of the 1st magnitude to be described in the next chapter.

Beta, on the back of Hydra and in the foot of the Crow, is a star of the 3 d magnitude, nearly $7^{\circ} \mathrm{S}$. of Algorab. It is the brightest of the two lower stars, and on the left. The righthand lower one is a star of the 4th magnitude, situated in the neck, marked Epsilon, about $6^{\circ}$ W. of Beta, and may be known by a star of the same magnitude situated $2^{\circ}$ below it, in the eye, and called Al Chiba. Epsilon is $21 \frac{1}{2}^{\circ}$ S. of the vernal equinox, and if a meridian should be drawn from the pole through Megrez, and produced to Epsilon Corvi, it would mark the equinoctial colure.

Gamma in the $\mathbf{W}$. wting, is a star of the 3 d magnitude, $3 \frac{1}{}^{\circ}$ W. of Algorab, and is the upper righthand one in the square. It is but $1^{\circ} \mathrm{E}$. of the equinoctial colure.
$10^{\circ} \mathrm{E}$. of Beta is a star of the 3d magnitude, in the tail of Hydra, marked Gamma; these two, with Algorab form nearly a right angled triangle, the right angle being at Beta-
Hurrany. - The Crow, it is suid, was once of the purest white, bot waschmand for tale-bearing to its present colour. A fit punishment for moch s fack !
"The raven once in anowy plumes was dreat,
White as the whitest dove's unsullied breat,
Fair as the guardien of the capitol,
Sof as the 员wan; a large and lovely fowl;
His tongue, his prating tongue, had changed him quite,
To sooty blacknesi from the purest white."

Arcording to Greek fable, the Crow was made a constellation by Apona That god being jealous of Coronis, (whom he tenderly loved, the daughter of Fhitfyas and mother of OEaculapius, sent a crow to watch her behaviour ; the bird perceivexi her criminal partiality for Ischy the Thessalimen, and inmedintely acquainted Apotlo with her conduct, which so fired his indignition that he lodid en arruw in her breant, and killed her instantly

> "The god was wroth ; the colour left his look, The greath his head, the harp his hand forsool; His gilver bow and fenther'd shafie he took, And lodged an arrow in the tender breast, That had so oten to his own been prest."

To reward the crow, he placed her atoong the constellations.
Ohbers say that this constelation takes its name from the daughter of Coronzus, king of Phucis, who was transformed into a crow by Minerve, to rescue the usid from the pursuit of Neptume. The following, from an eminent Latin poet of the Auguntine age, is her own accoant of the thetarnorphosis as transtited into English verge by Mr. Addison:-

- For as my arms I lifted to the skies, 1 aw black feathers from niy fingers rise:

[^73]1 atrote to fing my garment on the ground;
My garment turned to plumes, and girt mo round:
My hands to beat my naked bosom try
Nor naked bosom now nor hands had 1: Lightly 1 tripp'd, nor weary as befors Gunk in the sand, but skimin'd along the shore; Till, riming on my winge, I was preferr'd To be the chaste Minerva's virgin bird."

## VIRGO.

The Virain.-This is the sixth sign, and seventh consterlation in the ecliptic. It is situated next east of Leo, and about midway between Coma Berenices on the N. and Corvus on the S. It occupies a considerable space in the heavens, and contains, according to Flamsted, one hundred and ten stars, including one of the 1 st , sir of the 3 d , and ten of the 4th magnitudes. Its mean declination is $5^{\circ} \mathrm{N}$, and its mean right ascension is $195^{\circ}$. Its centre is therefore on the meridian about the 23d of May.
The sun enters the sign Virgo, on the 23d of Auguat, but does not enter the constellation before the 15th of september. When the sus is in this sign, the oarth in in Pisces; and vice versa.

Spica Virginis, in the ear of corn* which the virgin holds in her left hand, is the most brilliant star in this constellation, and situated nearly $15^{\circ} \mathrm{E} . \mathrm{N}$. E. of Algorab in the Crow, about $35^{\circ}$ S. E. of Denebola, and nearly as far S.S. W. of Arcturus-three very brilliant stars of the 1st magnitude that form a large equilateral triangle, pointing to the S. Are turus and Denebola are also the base of a similar triangle on the north, terminating in Cor Caroli, which, joined to the former, constitutes the Diamond of Virgo. The length of this figure, from Cor Caroli on the north to Spica Virginis on the south, is $50^{\circ}$. Its breadth, or shorter diameter, extending from Arcturus on the east, to Denebola on the west, is $35 \frac{1}{2}^{\circ}$. Spica may otherwise be known by its solitary splendour, there being no visible star near it except one of the 4th magnitude. sitoated abdut $1^{\circ}$ below it, on the left.

The position of this star in the heavens, has been determined with great exactness for the benefit of navigators. It

[^74]is one of the stars from which the moon's distance is taken for determining the longitude at sea. Its situation is highly favourable for this purpose, as it lies within the moon's path, and litfle more than $2^{\circ}$ below the earth's orbit.

Its right ascension being $199^{\circ}$, it will come to our meridiar at 9 o'clock about the 28th of May, in that point of the heavens where the sun is at noon about the 2 mh of October.

Virdemiatris, it a mar of the 3d magnitude, in the rishe arm, or northern wing of Virga, and is situated nearly in a meraight line with, and midway between Cons Berenices, and Apica Virginis. It is $14^{\circ} \mathrm{S}$. W. of Arcturus, and abous the same distance 5. E. of Coms Berenices, and forms with these two a barge tri-E.-:"c, ponnting to the gouth. It bears also $18^{\circ}$ 太. B. E. of Denebola, and comen to the meridian about 23 minutes before Apica Virginis

Zeta, is a star of the 3 d magnitude $111^{\circ} \mathrm{N}$. of 8pica, and very near the equinoctial. Gasama, situated near the left side, is alion a star of the 3 d magnitude, and very dear the equinoctial. It is $13^{\circ}$ due wewt of Zeta, with which and spica Hf forms a handsome triangle. Eta, is a star of the 3 d magnitude, in the southern wing, $5^{\circ} \mathrm{W}$. of Gamma, and but $2 \frac{1}{2}^{\circ} \mathrm{E}$. of the autunnal equinox.

Beta, called also Zavijava, is a star of the 3d angnitude, in the ahoulder of the wing, $77^{\circ}$ W. of Eta, with which and Gamma, it fornis a line near the Earth'a orbit, and paraliel to it. Beta, Eca, Gamma and spica, form the lower and honger Frie of a large spherical triangle whose vertex is in Beth. The other stars in this figure may be easily traced by means of the map. About $13^{\circ} \mathrm{E}$. of Apice, there are two stare of the 4 th magnitude, $3^{\circ}$ apart, which maxk the foot of Virgo. Theas two stars are on bearly the same meridian with Arcturus, and culminate neary at the sane time. The lower one, marked Lambda, is on the south, and but $8^{\circ} \mathrm{W}$. of the principal star in Libra. Several other stars of the 3d magnitude lie seattered about in this constellation, and may be traced out by the map.
" FIer lovely tresses glow with starry light;
Etais ornsment the bracelet on her hand;
Her vest in suphe fold, glitters with otara:
Beneath her snowy feet they shise; her eyen
Lighten, all glorious, with the heaveniy rayg
But firct the star which crownut the golden aheal"

Eismory.-The tamous sodise of Denders, we have already noticed, commences with the sign Leo; but another zodiac, discovered among the ruins at Estne, in Egypt, commences with Virgo; and from thin circumetance, wonne have angued, thet the regular precemsion of the equinoxes eatablished a date to this at least 2000 years older than that at Dendern. The discoveries of Charr pollion, however, render it probable that this ancient relic of autrology at Estac was erected during the reign of the Emperor Claudiua, and consequently did not precede the one at Dendera more than fourteen years.

Of this, however, we may be certain : the autumnal equisor now corresponda with the cirnt degree of Virgo; and, consequeatly, If we find a zodiac in which the summer sotstice whe placed where the autumnal equinox now it that zodiat earries us back $90^{\circ}$ on the ecliptic ; this divided by the annual precestion $50 t^{\prime \prime}$, must fix the date at about 6150 yeare ago. This computation, according to the chromalogy of the Bacred writinge, carries ns back to the earitest ages of the human species on earth, and proves, at leant, that antronomy was among the first stedies of mankind. The most rational way of tcoounting for this vodiac, mays Lamieson, is to agcribe it to the family of Noah; or perhaps to the parriarch himgelf, whe constructed it for the benefit of thome who thould live after the delage, and who preserved it an a mortument to perpetisise the sctual state of the heavens immedietely subsequent to the creation.

Fable represents the ancient Agyptians as believing that the yearly and regufar intmdations of the Nile proceeded from the abundant tears which Isis shed

[^75]for the lowa of Ostris, whom Typhon had basely murderea. By cor fouman the timple allegory of the learned with the niythelogical creed of the vulgar, the hirtorical account furnighed us respecting lsis, becomes perplexed and uniu telligible. Perhape with the following key, we may unlock the mystery:-The mun in Leo, was adorned as the god Oxiris ; in Virgo, it was worohinged as him cister Isis ; at its passage into Bcorpio, the terrible reign of TYphon connmenced. Coluraelis fixes the trameit of the sun into scorpio, on the $13 t h$ of the calends of November; and this period nearly corresponds with that in which Osiris wam feigned to havo been elain by Typhon, and the death of Orion was to bave heca eccasioned by the sting of a Bcorpion. When Bcorpio begins to rise, Orion sets: When 8corpio comes to the meridian, Leo beging to set:-Typhon then reigns Oxiris is glain, and his sister follows him to the tomb weeping. The traditions allo Lhe eign Virgo to Naphtali, whose standard had for its symbol a tree "bsarias guodly branchea."
Thus mythology, in describing the physical state of the world meantec a mybolical language which personified inanimate objects; and the pnesta rertuced the whole of their noblest acience to fables, which the people believed as true histories representing the moral condition of mankind during the firm ares of civil government.

According to the apcient poets, this constellation represents the virgin it treas, the goddess of justice, who lived upon the earth during the golden age; but being offended at the wickedness and impiety of mankind during the brazen and iron ages of the world, she returned to heaven, and was placed among the constellations of the zodiac, wiih a pair of acales (Libra) is one hand and a eword in the other.
Hesiod, who flourished nearly a thousand years before the birth of onr Saviour; and later writers, mention four ages of the world; the golden, the siiver, the brazen, and the iron age. In the beginning of thinga, say they, ail men were happy, and all men were good; the earth brought forth her fruite without the labour of man; and cares, and wants, wars and diseases, were unknown. But this happy state of things did not last long. To the golden age, the vilver age sacceeded; to the silver, the brazen ; snd to the brasen, the iron. Perpetual spring no longer reigned; men continually quarrelled with each wher; rrime succeeded to crime; and blasphemy and murder stained the histary of every day. In the golden age, the gods did not disdain to mix familinery with the sons of men. The innocence, the integrity and brotheriy love which they found among us, were a pleasing spectacle even to snperior natures; but as mankind degenerated, one god after another deserted their late beloved haunis; Astrea lingered the last; hut finding the earth steeped in human gore, she herself fiew away to the celestial regions.

> "Victa jacet pietas ; et virgo cade madentes Utima ccelemtum terras Astrea reliquit.". Met. Lib. i. v. 149.

> " Faith flees, and piety in exile mourns; And justice, here oppress'd, to heaven returna."

Some, however, maintain, that Erigone was changed into the constelkation Virgo. The death of her father Icarius, an Athenian who perished by the hands of some peasanta, whom he har intoxicated with wine, caused a ft of despair, in which Erigone hung herself; and she was afterwaris, as it is wai placed among the signs of the zodic. She was directed by her faithrud a fsen to the place where her father was slain. The first bough on which al hung herself, breaking, she sought a stronger, in order to effeet her parposa.
"Thus once in Marathon's impervious wood, Erigone beside her father stood, When hastening to discharge her plous vows, the loos'd the thot, and cull'd the strongest bough.". Lewna's Statine, B. xi.

## ASTERION ET CHARA; VEL CANES VENATICI.

The Greyhounds.-This modern constellation, embracing two in one, was made by Hevelius ont of the unformed stars
What is the origin of the constellation called the Greyhounds?
of the ancrents which were scattered between Bootes on the east, and Ursa Major on the west, and between the handle of the Dipper on the north, and Coma Berenices on the nouth.

These Hounds are represented on the celestial spnere as being in pursuit of the Great Bear. which Bootes is hunting round the pole of heaven, while he holds in his hand the leash by which they are fastened together. The northern one is called Asterion, and the southern one, Chara.

The stars in this group are considerably scattered, and are principaly of the 5 th and 6th magnitudes; of the twenty-five stars which it contains, there is but one sufficiently large to engage our attention. Cor Caroli, or Charles's Heart, so named by Sir Charles Scarborough, in memory of King Charles the First, is a star of the 3 d magnitude, in the neek of Chara the Southern Hound.

When on the meridian, Cor Caroli in $171^{\circ}$ directly S. of Alloth, the third tar in the handie of the Dipper, and is so nearty on the mame meridian that it culmit mates only one minute and a half after th. This occura on the 50th of May.
$A$ line drawn from Cor Caroli thmough Alioth will sead to the N. polar sar. This star may also be readily distinguighed by ita being in a atraight line with and midway between Benetnasch, the firse atar in the handle of the Dipper, and Coma Berenices: and also by the fact that when Cor Canoli is on the meridion, Denebola bears $28^{\circ}$ B. W., and Areturus $26^{\circ}$ S. E. of it, fortning with these two gtars a very large triangle, phose vertex is at the north; it in also et the northorn eatremity of the large Diamond, already deacribed
The renuining stars in this constellation are too monall, and too mach seattored co excite our interent.

## CHAPTER VIII.

directions for tracing the constillationa which are on the meridian in junc.

## BOOTES.*

The Bear-Driver is represented by the figure of a huntman in a running posture, grasping a club in his right hand, and holding up in his left the leash of his two greyhounds, Asterion and Chara, with which he seems to be pursuing the Great Bear round the pole of the heavens. He is thence called Arctophylax, or the "Bear-Driver."

[^76]This constellation is situated between Corona Borealis, on the east, and Cor Caroli, or the Greyhounds, on the west. It coutains fifty-four stars, including one of the 1st masnitude, styen of the 3d, aad ten of the 4th. Its mean declination is $20^{\circ} \mathrm{N}$., and its mean right ascension is $212^{\circ}$; its centre is therefore on the meridian the 9th of June.

Bootes may be easily distinguished by the position and splendour of its principal star, Arcturus, which shines with a reddish lustre, very much resembling that of the planet Mars.

Arcturus is a star of the 1st magnitude, situated near the left knee, $26^{\circ}$ S. E. of Cor Caroli and Coma Berenices, with which it forms an elongated triangle, whose vertex is at Areturus. It is $351^{\circ} \mathrm{E}$. of Denebola, and nearly as far N. of Spica Virginis, and forms with these two, as has already been observed, a large equilateral triangle. It also makes, with Cor Caroli and Denebola, a large triangle whose vertex is in Cor Caroli.

Agreat variety of geometrical figurea may be formed of the stars in this briglt region of the shieg. For example; Cor Caroli on the N., and Spica Virginis its the f., constitute the extreme points of a very large figure in the shape or a dia mond; while Denebola on the W. and Arcturus an the E., bimit the mean dianeter at the ocher points.

Arcturus is supposed, by some, to be nearer the earth than any other star in the northern hemisphere.

Five or gix degrees B. W. of Arcturus are three stars of the 3d and tht magnitudes, lying in a curved line, about $2^{\circ}$ ayart, and a litte below the lef knee of Bootes; and about $7^{\circ} \mathrm{E}$. of Arcturus are ihree or fur other stars of sumiker magnitude, situated in the other leg, making a larger curve $\mathbf{N}$. and 8.

Mirac, in the girdle, is a star of the 31 magnitude, $10^{\circ} \mathrm{N}$. N. E. of Areturts, and about $11^{\circ} \mathrm{W}$ of Alphaces, a star in the Northern Crown. Seginus, in the west shoulder, is a star of the 3d magaitude, hearly $2 y^{\circ} \mathrm{E}$. of Cor Carolh and about the same distance $\mathbf{N}$. of Arcturus, and forms. with these two, 'a right angled triangle, the right angle being at Eeginas. The same siar forms a right angled triangle with Cor Caroli and Alioth, in Ursa Major, the right angle being at Cor Caroli.

Alkaturopa, situated in the top of the club, is a star of the 4th magnitule, about $101^{\circ}$ in an easterly direction from Seginus, whieh ties in the len shoukier: and gbout $4 \boldsymbol{f}^{\circ} \mathrm{g}$. of Alkaturops is another star of the 4 th magnitude, in the club near the east shoulder, biarked Delta. Delta is about $9^{\circ}$ distant from Mirac, and $71^{\circ}$ from Alphecca, and forms, with these two, a regular triangle.

Nedkar is a star of the 3d magnitude, situatel in the head, and is alnout $6^{\circ} \mathrm{N}$. E. of Seginus, and $5^{\circ}$ W. of Alkaturops; it forms, with Detra and Eegintas, wearly - right angled triangle, the right angle being at Nekkar.

These are the principal stars in this constellation, except the three stars of lie 4th magnitude situated in the right hand. These stars may be known, by two of them being close together, and about $5^{\circ}$ beyond Benetnasch, the firsi star

[^77]in the handle of the Dipper. About 60 F of Benetnach ta another mar of the th magritude, situated in the arm, which forms, with Beentuanch and the three in the hand, an equilateral triangle.
The three stars in the left liand of Bootes, the firt in the handie of the Daph ar Cor Carok, Joma Berenices, and Denebola, are all situated nearly in the fane right line, running from northeast to southwert.
" Bootes follows with redundent light; FYfy-four stars he beacts; one guarde the Bears Thence calld Arcturus, of reqplendent trout, The pride of the first order : eight are voll'd, Invisible to the unaided eye."
Maniluse thas speaks of this constellation:-
"And next Bootes comes, whose order'd beams Present a figure driving of his teams. Below his girdle, near his knees he bears The bright Arcturus, fairest of the stars."
Arcturus is mentioned by name in that beautiful passage in Job, already referred to, where the Almighty answers "out of the whirlwind," and says:-
"Canst thou the sky's benevolence restrain, And cause the Pleiades to shine in vain 3 Or, when Orion sparkles from his sphere, Thaw the cold seasons and anlind the jear? Bid Mazzaroth his station know, And teach the brighy Arcturus where to glow 1"

Young's Paraphrasa.
Histoxy.-The' ancient Greeks called this constellation lyceon-a name dorived from $\lambda$ unos, which signifies a woolf. The Hebrews called it Caleh Anubach, the "Barking Dog;" while the Latins, among other names, called it Canis. If we go back to the time wheu Taurus opened the year, and when Virgo was the fifih of the zodiacal signs, we shall find that brilliant giar Arcturus, so remarkable for its red and fiery appearance, corresponding with a period of the year ae remarkable for its heat. Pythagoras, who introduced the true bystem of the universe into Greece, received it from Oinuphis, a priest of On, in Egyph. And this college of the priesthood was the noblest of the east, in cultivating the sudies of philosophy and antronomy. Among the high honourn which Pharaoh conferred on Joseph, he very wisely gave him in marriage "a daughter of the priest of On." The supposed era of the book of Job, in which Arcturus is repeatedly mentioned, is 1513 B. C.

Bootes is supposed by some to be Icarus, the father of Erigone, who was killed by shepherds for intoxicating them. Others maintain that It is Ericthonius, the finventor of chariota. According to Grecian fable, as well as later authorities, Bootes was the son of Jupiter and Calisto, and named Arcas. Ovid relates, that Jumo, being incensed at Jupiter for his partiality to Calisto, changed her inte a bear, and that her son Arcas, who becaine a famous hunter, one day ronsed a bear in the chase, and not knowing that it was his mother, was about to kill her, when Jupiter smatched them both up to heaven and placed them among the con mellations. Met. b. ii. v. 496-508.
"But now her son had fifteen summers told,
Fierce at the chase, and in the forest bold;
When as he beat the woods in quest of prey
He chanced to rouse his mother where atio lay.
She knew her son, and kept him in her wight,
And foadly gazed: the boy was in a fright,
And aim'd a pointed arrow at her breast;
And would have slain his mother in the beast;
But Jove forbad, and snatch'd them through the air
In whirlwinds up to heaven, and fix'd 'em there;
Deacrbe the three adare tn the left hand of Bootes. What stars in thts nedighbourhoud
 tmival

Whars the new constellations nichity rico, And add a lustre in the porthern klios."

Garth's Tramalation.

- Haneng the his Pharoalia, mays
"That Bratem, on the buey thang intent, To virtuous Cato's humble dwelling went. TWran when the solemn dead of aight enme ons When bright Calisto, woith her shising com, Now half that circle round the pole had run."
Thim conatellation is called Bootes, says Cicero, (Nat. Deo. Lsb. H. 42, froma Greek word mignifying a wagoner, or plonghman ; and momotimes Aretophyian from two Greel wardm signifying bear-keeper or bear-driver.
"Arctophylax, vulgo qui dicitur ense Bootes Quod quafi temone adjunctum pras se quatt Aretum."
The stars in this region of the skies seem to have attracted the admiration of clmost all the eminent wrisers of antiquity. Chaudisn observes, that
"Bootes with his wain the north pnfolds; The southern gate Orion holds."
And Aratus, " who flourighed nearly 800 years before Clandian, sayn,
"Behind, and seeming to urge on the Bear, Arctophylas on earth Bootes named Sheds o'er the Arctuc car his silver light."


## CENTAURUS.

## The Centaur.-This fabulous monster is represented by

[^78]the figure of a man terminating in the body of a horsa, boldung a wolf at arm's length in one hand, while he transfixes its oody with a spear in the otiner.

Although this constellation occupies a large spece in the southern hemisphere, yet it is so low down that the main part of it cannot be seen in our latitude. It is situated sonth of Spica Virginis, with a mean declination of $50^{\circ}$. It ecmtains thirty-five stars, including two of the ist magnitude, one of the 2 d , and six of the 3 d ; the brightest of which are not visible in the United States.
 may be seen from this latitude during the month of Jue, being aboul ${27^{\circ}}_{8}^{8}$ by E. from Spica Xirginis, and $12^{\circ}$ or $13^{\circ}$ above the southera horizon. It is easily recognised, in a clear evening, from the circumatance that there is no other atar of gimilar brightnest, in the same region, for which it can be mistaken. It is so nearly on the same meridian with Arcturus that it culminates but ten minutea before it.
Lota, is a star of between the 4 ch and 5th magnitnde, in the weat ahoulder, 910 W. of Theta. It is about $25^{\circ}$ almose directly wouth of Spice Virginie, and is on the meridian nearly at the same time.

Mix and $N u$, are stara of the 4tn magnitade, in the breant, vary near togethar, and form a regular triangle with the two atari in the ahoulder.

A few degrees north of the two stars in the nhoulders, are four sulll etars in the head. The relative postion of the mtary In the head and uhoulders in very cimilar to that of the atari in the head and shouldern of Orion.

Histogx.-Centaars, in mytholugy, were a kind of fabulous monstera, half men and half horses. This fable is, however, differently interpreted; mome muppone the Centaure to have been a body of ahepherde and herdsmen, rich in cattle, who tnhabited the mountains of Arcadia, and to whom is attributed the invention of pastoral poetry. But Plutarch and Pliny are of ppinion that auch monaters have really existed Others asy, that under the reign of lxion, king of Themaly, a nerd of bulle ran mad, and ravaged the whole country, rendering the mountaind macceasible; and that some young men, who had found the art of tatning and mounting horwes, undertook to expel these noxious animale, which they purmued on horseback, and thence obtained the appelstion of Centaurs.

This auccesp rendering them insolent, they insulted the Lapithas, a people of Theasaly; and because, when attacked, they fled with great rapidity, it was aurpoaed that they were halr hornes and half men; mon on horses being at that poriod a very uncommon inght, and the two appearing, especially at $n$ dimance, to conatitute but one animal. So the opanish cavalry at first aeemed to the as tonished Mexicans, who imagined the horwe and him rider, lize the Centaure of the ancienta, to be mome monitroas animal of a terrible form.

The Centaurs, in realisy, were a tribe of Lapithas, who remided near Mow Pelion, and firm invented the art of breating horseg, as intimated by Virgil.

> "The Lapithes to chariote add the matate Of bltend brtalen; taught the teed to bound; To turn the ring and trace the mary ground; To stop, to fy the rules of war to noow; To obey the rider, end to dare the foe."

## LUPUS.

The Wolp.-This constellation is situated next east of he Centaur, and south of Libra; and is so low down in the

[^79] risible to us.

It contains twenty-four stars, including three of the 3d mag nitude, and as many of the 4th; the brightest of which, when on the meridian, may be seen in a clear evening, just above the southern horizon. Their particular situation, however will be better traced out by reference to the map than by written directions.

The most favourable time for observing this constellation, is towards the latter end of June.

Hismory.-This constellation, according to fable, is Lycaon, Hing of Arcadia, Who lived about 3,600 years ago, and was changed into a wolf by Jupiter, becaues he offered human victims on the altars of the god Pan. Some atribute this metamorphosis to another cause. The sins of mankind, as they relate, had become wo enormous, that Jupiter visited the earth to punish its wickedness and impiety. He came to Arcadia, where he was announced as a god, and the people began to pay proper adoration to his divinity. Lycaon, however, who used to sacrifica aul strangers to his wanton cruelty, laughed at the pious prayers of his subjects and to try the divinity of the god, served up human flesh on his table. This impiety so offended Jupiter, that he immediately destroyed the house - Lyemm, and changed him into a wolf.
"Of these he murders one; he boils the flenk,
And lays the mangled morsels in a digh;
Bome part he rossts ; then serves it up, 60 dress'd,
And bids me welcome to his human feast.
Moved with disdrin, the table I o'erturn' $d$,
And with avenging flames the palace burn'd.
The tyrant in a fright for shelter gains
The neighb'ring fields, and scours along the plans:
Howling he fled, and fain he would have apote,
But buman voice his brutal tongue forsoot.
His mantle, now his hide, with rugged harr,
Cleaves to his back; a famish'd face he bears;
His arms descend, his shoulders sink away
To multiply bls legs for chase of prey ;
He grows a wolf."-Ovid, Mat. B. i.

## LIBRA.

Tbe Balanoe.-This is the seventh sign, and eighth constellation, from the vernal equinox, and is situated in the Zodiac, next east of Virgo.

The sun enters this sign, at the autumnal equinox, on the 23d of September; but does not reach the constellation before the 27th of October.

Virgo was the goddess of justice, and Libra, the scales, which she is usually represented as holding in her left hand, are the appropriate emblem of her office. When the sun enters the sign Libra, the days and nights are equal all over the

[^80]world, and seem to observe a knd of equilibrium, like . balance.
When, however, it is said that the vernal and autumna equinoxes are in Aries, and Libra, and the tropics in Cance and Capricorn, it must be remembered that the signs Artet and Libra, Cancer and Capricorn, and not the constellations of these names are meant; for the equinoxes are now in tho constellations Pisces and Virgo, and the tropics in Geminn and Sagittarius; each constellation having gone forward one sign in the ecliptic.

Ahout 23 centuries ago, the constellation Libra coincided with the sign Libra; but having advanced $30^{\circ}$ or more in the ecliptic, it is now in the sign Scorpio, and the constellation Scorpio is in the sign Sagittarius, and so on.

While Aries is now advanced a whole sign above the equinoctial point into north declination, Libra has descended as far below it into south declination.

Libra contains fifty-one stars, including two of the 2 d mag. nitude, two of the 3 d , and twelve of the 4th. Its mean declination is $8^{\circ}$ south, and its mean right ascension $226^{\circ}$. Its centre is therefore on the meridian about the 22d of June.

It may be known by means of its four principal stars, forming a quadrilateral figure, lying northeast and southwest, and having its upper and lower corners nearly in a line running north and south. The two stars which form the N. E. side of the square, are situated about $7^{\circ}$ apart, and distinguish the Northern Scale. The two stars which form the S. W. side of the square, are situated about $6^{\circ}$ apart, and distinguish the Southern Scale.

Zubeneschamali, in the Southern Acale, about $21^{\circ}$ E. of Ipica, and $8^{\circ}$ E. of Lambda Virginis, is a star of the 2d magnitude, and is situated very near the ecliptic, about $421^{\circ} \mathrm{E}$. of the autumnal equinox. The distance from this star down to Theta Centauri, is about $23^{\circ}$, with which, and Epica Virginis, it forms a targe srangle, on the right.

Zuberelgemabi, the uppermost star in the Northern Scale, is also of the 2 d magnitude, 970 above Zubeneschamali, towards the northeast, and it comes to the meridian about twenty-six minutes after it, on the 23 d of June. Zubenelgemabi is the northernmost of the four bright stars in this figure, and is exacily opposite the lower one, which is $11^{\circ}$ south of it.

Znuberhakrabi, is a slar of the 3d magnitude in the Northern Scale, $7^{\circ}$ S. E. of Zubenelgemabi, and nearly opposite to Zubeneschamati, a: the distance of $11^{\circ}$ an the east. These two make the diagonal of the square eazt and west.

Iota, is a star of the 3 d magnitude, and constitutes the southernmost corner of

[^81]the mquare. It is about $6^{\circ}$ G. E. of Zubeneschamalh, and $11^{\circ}$ \&. os. Zubenelage. mabi, with which it forms the other diagonal north and south.

Zebenelgubi, is a star of the 3d masgnitude, situated below the Southern Pcala at the distance of $6^{\circ}$ from lots, and marks the southern limit of the Zodiac. It is situated in a right line with, and nearly midway between, Bpica Virginis and Beta Scorpionis; and comes to the meridian nearly at the same moment wit' Nekkar, in the head of Booter.

The remaining stars in this constellation are too amall to engage aftention.
The scholar, in tracing out this constellation in the heavens, will perceive tisas Lambda and Mu, which lie in the feet of Virgo on the weat, form, with Zubeneschamali and Zubenelgemabi, almost as handsome and perfect a figure, as tha other two stars in the Balance do on the east.

Hıstony.-The Libra of the Zodiac, says Maurice, in hus Indian Antiquities, is, perpetually geen upon all the hieroglyphics of Egypt; which is at once an argument of the great antiçuity of this asterism, and of the probability of its having been orginally fabricaled by the astronomical sons of Misraim. In some few zodiacs, Astrea, or the virgin who holds the balance in ber hand as an emblem of equal juatice, is not drawn. Such are the zodiacs of Estne and Dendera Humboldt is of opinion, that although the Romans introduced this constellation hito their zodiac in the reign of Julius Cesar, still it might have been used by the Egyptians and other nations of very reunote antiquity

It is generally supposed that the figure of the balance has been used by all nations to denote the equality of the days and nights, at the period of the sum'e arriving at this sign. It has also been observed, that at this season there is a greater uniformity in the temperature of the air all over the earth's surface.
Others affirm, that the beam only of the balance was at firat placed among the stars, and that the Egyptians thus honoured it as their Nilometer, or instrument by which they measured the inundations of the Nile. To this custom of measurlig the waters of the Nile, it is thought the prophet alludes, when ne describea tne Alnighty as mearwing the voaters in the hollow of his hand.-Isa. xl. 12

The ancient husbandmen, according to Virgil, were wont to regard this ajge as indicating the proper time for sowing their winter grain:-
"But when Astraz's balance, hung on high, Betwixt the nights and days divides the sky, Then yoke your oxen, sow your winter grain, Till cold December comes with driving rain."
The Greeks declare that the balance was placed among the stara to perpetuace the memory of Mochus, the inventor of weights and measures.

Those who refer the constellations of the Zodiac to the twelve tribei of Larasi, ascribe the Balance to Asher.

## SERPENS.

The Serpent.-There are no less than four kinds of ser pents placed among the constellations. The first is the Hydra which is sttuated south of the Zodiac, below Cancer, Leo and Virgo; the second is Hydrus, which is situated near the south poie; the third is Draco, which is situated about the north pole; and the fourth is the Serpent callo? '.erpens Ophiuchi, and is situated chiefly between Libra and Corona Borealis. A large part of this constellation, however, is so blended with Ophiuchus, the Serpent-Bearer, who grasps it in both hands, tha the conclading description of it will be deferred until we come to that constellation.

"The Serpens Ophiuchi winds his spire Immense; fewer by ten his figure trace;

[^82]> ' One of the wecond rank; ton shun the ehtiot; And seven, he who bears the monater hides."

Those stars which lie scattered along for about $25^{\circ}$, in a serpentine direction between Libra and the Crown, mark the Sody and head of the Serpent.

About $10^{\circ}$ directly S . of the Crown there are three stars of the 3d magnitude, which, with several smaller ones, distinguish the head.

Unuk, of the 2d magnitude, is the pnncıpal star in this constellation. It is situated in the heart, about $10^{\circ}$ below those in the head, and may be known by its being in a line with, and between, two stars of the 3d magnitude-me lower one, marked Epsilon, being $2 \frac{1}{2}^{\circ}$, and the upper one, marked Delta, about $5 \frac{1}{2} \circ$ from it. The direction of this line is $\mathbf{N}$. N. W. and S. S. E. Unuk may otherwise be known by means of a small star, just above it, marked Lambda.

In that part of the Serpent which lies between Corona Borealis and the Scales, about a dozen stars may be counted, of which five or six are conspicuous.

For the remainder of this constellation, the student is referred to Serpentarius.

> " Vast as the starry Serpent, that on htyb Tracks the clear ether, and divides the sky. Wain, And southward winding from the Northerd Bhoots to remoter apheres ita glittering train."-Statiue.

Hyerony.-The Hivites, of the Old Teatament, were worshippers of the Berpent, and were called Ophites. The idolatry of these Ophitea was extremely anclent, and was connected with Tsabaism, or the worship of the host of heaven. The heresy of the Ophites, mentioned by Mosheim in his Ecclesiastical History, originated, perhape, in the admission into the Christian church of some remnant of the ancient and popular sect of Tsabaiats, who adored the celeatial Serpent.

According to ancient tradition, Ophiuchis is the celebrated physician 2escuGaptus, son of Apollo, who was instructed in the healing art by Chiron the Centaur; and the serpent, which is here placed in his hands, is understood by some to be an emblem of his sagacity and prudence; while others suppose it was designed to denote his skill in healing the bite of this reptile. Biblical critics lmagine that this constellation is alluded to in the following pasmage of the book of Job :-
"By his spirit He hath garnighed the heavens; his hand hath formed the erooked gerpent." Mr. Green supposes, however, that the inepired writer here refers to Draco, because it is a more obvions constellation, bein's nearer the pole Fhere the consteliations were more univeraally noticed; and moreover becanee It is a more anclent constellation than the Berpent, and the hieroglyphic by whleh the Esyptians usually represented the heavena.

## CORONA BOREALIS.

Tere Northern Crown.-This beautiful constellation may be easily known by means of its six principal stars, which are so placed as to form a circular̀ figure, very much resem-

[^83]bling a wreath or crown. It is situated directly north of the Serpent's head, between Bootes on the west and Hercules on the east.
This asterism was known to the Hebrews by the name of Ataroth, and by thie mame the atars in Corona Borealis are called, in the East, to this day.

Alphacca, of the 3d magnitude, is the brightest and middle star in the diadem, and about $11^{\circ} \mathrm{E}$. of Mirac, in Bootes. It is very readily distinguished from the others both on account of its position and superior brilliancy. Alphacca, Arcturus and Seginus, form nearly an isosceles triangle, the vertex of which is at Arcturus.

This constellation contains twenty-one stars, of which only six or eight are conspicuous; and most of these are not larger than the $3 d$ magnitude. Its mean declination is $30^{\circ}$ north, and its mean right ascension $235^{\circ}$; its centre is therefore on the meridian about the last of June, and the first of July.

> "And, near to Helice, effulgent rays Beam, Ariadre, from thy starry crown: Twensy and one her stars ; but eight alone Conspicuous; one doubtful, or to claim The second order, or accept the third."


#### Abstract

Hietory.-This beautiful little cluster of atars is said to be in commemoration of a crown presented by Bacchus to Ariadne, the daughter of Minos, second ling of Crete. Theseus, king of Athens, ( 1235 B. ©.,) was shut up in the celebrated labyrinth of Crete, to be devoured by the ferocious Minotaur which was confined in that place, and which usually fed upon the chosen young men and maidens exacted from the Athenians as a yearly tribute to the tyranny of Minos, but Theseus slew the monster, and being furnished with a clue of thread by Ariadne, who was passionately enamoured of him, he extricated hirnself frofe che difficult windings of his confinement. He afterwards married the beautiful Ariadne, according to promise, and carried her away; but when he arrived at the island of Naxos, he deserted her, notwithstanding he had received from her the most honourable evidence of attachment and endearing tenderness. Ariadne was mo disconsolate upon being abandoned by Theseus, that, as some say, she hanged herself; but Plutarch says that she lived many years after, and was espoused to Bacchus, who loved aer with much tenderness, and gave her a crown of seven stara, which, aftes her death, wes placed among the stars.


> "Resolves, for this the dear engaging dame Should shine forever in the rolls of fame; And bids her crown among the stars be placed And with an eternal constellation grac'd. The golden circlet mounts; and, as it flies, Its diamonds twinkle in the distant skies; There, in their pristine form, the gemmy rays Between Alcides and the Dragon blaze."
> Manifius, In the first book of his Astronomicon, thus speaks of the Crown.
> "Nrar to Bootes the bright crown is view'd An 1 shines with stars of different magnitude:

[^84]
# Or placed in front aoove the reat diaplay A vig rous light, and darts surprising rays. This shonf, gince Theseus first his faith betray'd The mor ment of the forsaken maili." 

## URSA MINOR.

The Little Bear.-This constellation, though not remarkable in its appearance, and containing but few conspleuous stars, 1s, nevertheless, justly distinguisned from ali others for the peculiar advantages which its position in the neavens is well known to afford to nautical astronomy, and especially to navigation and surveying.
The stars in this group being situated near the celestia. pole, appear to revolve about it, very slowly, and in circles so small as never to descend below the horizon.

In all ages of the world, this constellation has been more universally observed, and more carefully noticed than any other, on account of the importance which mankind early attached to the position of its principal star.

This star which is so near the true pole of the heavens, has, from time immemorial, been denominated the North Polar Star. By the Greeks it is called Cynosyre; by the Romans, Cynosura, and by other nations, Alruccabah.

It is of the 3 d magnitude, or between the 2 d and 3 d , and situated a little more than a degree and a half from the true pole of the heavens, on that side of it which is towards Cassiopeia, and opposite to Ursa Major. Its position is pointed out by the direction of the two Pointers, Merak and Dubhe, which lie in the square of Ursa Major. A line joining Beta Cassiopeiz, which lies at the distance of $32^{\circ}$ on one side, and Megrez, which lies at the same distance on the other, will pass through the polar star.

So general is the popular notion, that the North Polar Star is the true pole of the world, that even surveyors and navigators, who have acquired considerable dexterity in the use of the compass and the quadrant, are not aware that it ever had any deviation, and consequently never make allowance for any. All calculations derived from the observed position of this star, which are founded upon the idea that its bearing is always due north of any place, are necessarily erroneous, since it is in this position only twice in twenty-four hours ; once when above, and once when below the pole.

[^85]According to the Nautical Almanac, the mean distance of this star from the true pole of the heavens, for the year 1833 is $1^{\circ} 34^{\prime} 53^{\prime \prime}$, and its mean right ascension is 1 hour and 19 seconds. Consequently, when the right ascension of the meridian of any place is 1 hour and 19 seconds, the star will be exactly on the meridian at that time and place, but $1^{\prime \prime} 34^{\prime}$ $53^{\prime \prime}$ above the true pole. Six hours after, when the tight ascension of the meridian is 7 hours and 19 seconds, the star will be at its greatest elongation, or $1^{\circ} 34^{\prime} 53^{\prime \prime}$ directly west of the true pole, and parallel to it, with respect to the horizon; nad when the right ascension of the meridian is 13 hours and 19 seconds, the star will be again on the meridian, but at the distance of $1^{\circ} 34^{\prime} 53^{\prime \prime}$ directly below the pole.

In like manner, when the right ascension of the meridan is 19 hours and 19 seconds, the star will be at its greatest eastern elongation, or $1^{\circ} 34^{\prime} 53^{\prime \prime}$ east of the true pole; and when it has finished its revolution, and the right ascension of the meridian is 25 hours and 19 seconds, or, what is the same thing, 1 hour and 19 seconds, the star will now be on the meridian again, $1^{\circ} 34^{\prime} 53^{\prime \prime}$ above the pole.
N. B. The right ascension of the meridian or of the mid-heaven, is the dis tance of the first point of Aries from the meridian, at the time and phace of observation. The right ascenslon of the meridian for any time, is foand, by adding to the given time the sun's right ascension at the same time, and deducting 2 . hours, when the sum exceeds 24 hours.

From the foregoing facts we learn, that from the time the star is on the meridian, above the pole, it deviates farther and farther from the true meridian, every hour, as it moves to the west, for the space of six hours, when it arrives at its greatest elongation west, whence it reapproaches the same meridian below the pole, during the next six hours, and is then again on the meridian; being thus alternately half the tume west of the meridian, and half the time east of it.

Hence, it is evident that the surveyor who regulates his compass by the North Polar Star, must take his observation when the star is on the meridian, either above or below the pole, or make allowance for its altered position in every other situation. For the same reason must the navigator, who applies his juadrant to this star for the purpose of determining the latitude he is in, make a similar allowance, according as its altitude is greater or less than the true pole of the hea-

[^86]rens; for we have seen that it is alternately half the time ibuve and half the time below the pole.
I'he method of finding the latitude of a place from the altrrude of the polar star, as it is very simple, is very often resorted to. Indeed, in northern latitudes, the situaticn of this star is more favourable for this purpose than that of any other of the heavenly bodies, because a single observation, taken at any hour of the night, with a good instrument, will give the trie latitude, without any calculation or correction, except that of its polar aberration.
If the polar star always occopied that point in the heavena which in directly opposite the north pole of the earth, it would be ensy to understand how latitude could be determined from it in the northern hemisphere; for in this case, to a person on the equator, the poles of the world would be seen in the horzom. Consequently, the star would appear jusi visible in the northern horizon, with. out any elevation. Should the person now travel one degree towards the north, he would see one degree below the star, and he would think it had risen ond degree.

And since we always see the whole of the npper hemiaphere at one viow, when there is nothing in the horizon to obstruct our vision, it follows that if wo should travel $10^{\circ}$ north of the equator, we should see just $10^{\circ}$ below the pole, which would then appear to have risen $10^{\circ}$; and ahould we stop at the 42d degree of north latitude we should, in like manner, have our horizon just $42^{\circ}$ below the pole, or the pole would appear to have an elevation of $42^{\circ}$. Whence we derive this general truth: The elevation of the pole of the equator, is abvays eqwal to the latitude of the place of observation.
Any instrument, then, which will give us the alttude of the north pole, will sive us also the latitude of the place.
The method of illustrating this phenomenon, as given in most treatisen on the clube, and as adopted by teachers generally, is to tell the acholar that the north pole rises higher and higher, as he travels farther and farther towarde it in other words, whatever number of defrees he adrances towards the north pole, 90 many degrees will it rise above his horizon. This is not only an obvious errour in principle, but it misleads the apprehension of the pupil. It is not that the pols 28 elecated, but that our horizon ws depressed as we advance towards the north. The same objection lies against the artificial globe; for it ought to be so fixed that the horizon might be raised or dopreased, and the pole remain in fits own invariable position.
Ursa Minor contains twenty-four stars, including three of the 3 d magnitude and four of the 4th. The seven principal stars are so situated as to form a figure very much resembling that in the Great Bear, only that the Dipper is reversed, and about one half as large as the one in that constellation.

The first star in the handle, called Cynosura, or Alruccabah, is the polar star, around which the rest constantly revolve. The two last in the bowl of the Dipper, corresponding to the Pointers in the Great Bear, are of the 3d magnitade,

[^87]and situated about $15^{\circ}$ from the pole. The brightest of them is called Kochab, which signifies an axle or hinge, probably in reference to its moving so near the axis of the earth.

Kochab may be easily known by its being the brightest and middle one of three conspicuous stars forming a row, one of which is about $2^{\circ}$, and the other $3^{\circ}$, from Kochab. The two brightest of these are situated in the breast and shoulder of the animal, about $3^{\circ}$ apart, and are called the Guards or Pointers of Ursa Minor. They are on the meridian about the 20th of June, but may be seen at all hours of the night, when the sky is clear.
Of the four stars which form the bowl of the Dipper, one is so small as hardly to be seen. They lie in a direction towards Gamma in Cepheus; but as they are continually changing their position in the heavens, they may be much better traced out from the map, than from description.
Kochab $1 s$ about $25^{\circ}$ distant from Benetnasch, and about $24^{\circ}$ from Dubhe, and hence forms with them a very nearly equilateral triangle.
"The leesser Bear
Leads from the pole the lucid band: the stars
Which form this constellation, faintly shine,
Twice tweive in number; only one beams forth
Conspicuous in high splendour, named by Greece
The Cynosure; by us the Polar Star."

History.-The prevailing opinion is, that Ursa Major and Ursa Minor are the nymph Calisto and her son Arcas, and that they were transformed into bear: Ly the enraged and imperious Juno, and afterwards translated to heaven by the Gvour of Jupiter, lest they might be destroyed by the huntsmen.
The Chinese claim that the emperor Hong-ti, the grandson of Noah, first diacovered the polar star, and applied it to purposes of navigation. It is certain that it was used for this purpose in a very remote period of antiquity. From varioue passages in the ancients, it is manifest that the Phoenicians steered by Cynosura, or the Lesser Bear; whereas the mariners of Greece, and some other nations steered by the Greater Bear, called Helice, or Helix.
Lucan, a Latin poet, who flourished about the time of the birth of our Bavious thus adverts to the practice of steering vessels by Cynosura:-
"Unstable Tyre now knit to firmer ground,

- With Sidon for her purple shella renown'd,

Safe in the Cynosure their glttering guide With well-directed navies stem the tide."

Hows's Translation, B. Hil.
The following extracts from other poets contain allusions to the same fact: -
"Phœenicia, spurning Asia's bounding strand, By the bright Pole star's steardy rathance led, Bade to the winds her daring sails expand, And fearless plough'd old Ocean's stormy bed." Maurics's Elegy on Sir W. Jomee

* Ye radiant signe, who from the etherial plain Sidoniana guide, and Greeks upon the main, Who from your poles all earthly things explore, And never set beneath the western shore."

Ovid's Tristea

[^88]
# - Or all yon muititude of godden stans Which the wide rounding aphere incemsant bears. The cautious mariner relies on none, But keeps him to the constant prole alone." 

LucAN's Pharsalia, B. vili. v. 2:8
Urea Major and Urge Minor, are sometimes called Trionea, and momethonetita Creater and Lesser Wains. In Pennington's Memoirm of the Learmed Mrm ORor, we have the following beautiful lines:-
> "Here, Cassiopeia fills a lucid throne, There, blaze the splendours of the Northerí Crows: While the slow Car, the cold Triomes roll O'er the pale countries of the frozen pole: Whose faithful beams conduct the wand'ring ship Through the wide desert of the pathless deep."

Thales, an eminent geometrician and astronomer, and one of the seven wite men of Greece, who flourished six hundred years before the Chriatian orn, in generally reputed to be the inventor of this constellation, and itc have tangit the nse of it to the Phonician navigators; it is certain that he brought the knowledge of it with him from Phoenice into Greece, with many other discoverien boch la astronomy and mathematics

Until the properties of the magnet veere known and applied to the use of narb gation, and for a long-time after, the north polar star was the only sure guide. At what time the attractive powers of the inagnet were first known, is not cormin ; they were known in Enrope about six hundred years before the Chrietias ara; and by the Chinese records, it is said that its polar attraction wis known if that country af least one thousand yeare earlier.

## CHAPTER IX.

## ming ilions for tracing the constellations which ari om THE MERIDIAN IN JULY.

## SCORPIO.

The Scorpion.-This is the eighth sign, and ninth constellation, in the order of the Zodiac. It presents one of the most interesting groups of stars for the pupil to trace out that is to be found in the southern hemisphere. It is situated southward and eastward of Libra, and is on the meridian the 10th of July.

The sun enters this sign on the 23 d of October, but does not reach the comatellnHom before the Dhil of November. When astronomy was first cultivated in the Rast, the two solstices and the two equinoxes took place when the sun wan be Aquarius and Leo, Taurus and Bcorpio, respectively.

Scorpio contains, according to Flamsted, forty-four stars including on of $/ \mathrm{e}$ 1st magnitude, one of the 2d, and eleven of the 3d. . . eadily distinguished from all others by the peculiar lus*, and the position of its principal stars.

Antares, is the principal star, and is situated in the hemt

[^89]of the Scorpion, about $19{ }^{\circ}$ east of Zuhenelgubi, the southeinmost star in the Balance. Antares is the most brilliant star in that region of the skies, and may be otherwise distinguished by its remarkably red appearance. Its declination is about $26^{\circ} \mathrm{S}$. It comes to the meridian about three hours after Spica Virginis, or fifty minutes after Corona Borealis, on the 10th of July. It is one of the stars from which the moon's distance is reckoned for computing the longitude at sea.

There are four great mara in the heaveng, Fomalhaut, Aldebaran, Reguluc, and Antarie, which formerly answered to the solstitial and equinoctial pointsand which were much noticed by the astronomers of the East.

About $81^{\circ}$ northwest of Antares, is a star of the 2d magnitude, in the head of the Scorpion, called Graffias. It is but one degree north of the earth's orbit. It may be recognised by meaus of a small star, situated about a degree northeast of it, and also by its forming a slight curve with two other stars of the 3 d magnitude, situated below it, each about $3^{\circ}$ apart. The broad part of the constellation near Graffias, is powdered with numerous small stars, converging down to a point at Antares, and resembling in tigure a boy's kite.

As you proceed from Antares, there are ten conspicuous stars, chiefly of the 3d magnitude, which mark the tail of the tite, extending down, first in a south, southeasterly direction about $17^{\circ}$, thence easterly about $8^{\circ}$ further, when they turn. and advance about $8 \circ$ towards the north, forming a curve like a shepherd's crook, or the bottom part of the letter $S$. This crooked line of stars, forming the tail of the Scorpion, is very conspicuous, and may be easily traced.
The first star below Antares, which is the last in the back, is of only the 4tt: magnitude. It is about $\mathcal{Z}^{\circ}$ aoulheast of Antsires, and is denoted by the Greet name of $T$.

Eppilon, of the 3 d magnitude, is the second star from Antares, and the first in the tail. It is situated about $70^{\circ}$ below the star $T$, but incliniug a little to the east
$\mathbf{M u}$, of the 3 d magnitude, is the third star from Antares. It is situated $41^{\circ}$ bolow Epsilon. It may otherwise ve known by means of a small star close by it, on the left.

Zeta, of about the amo magnitude, and situated about as far below Mu , is the fourth star from Anteres. Here the line turns suddenly to the east.

Eta, also of the 3d magnitude. is the fifh star from Antares, and about $3{ }^{\circ}$ east of Zeta.

Theta, of the same magnitude, is the sirth star from Antarea, and about $41^{\circ}$ east of Eta. Here. the line turns again, curving to the north and terminsten fe - couple of stars.

Loto is the seventh etar from Antares, $3 \mathrm{f}^{\circ}$ above Theta, curving a litule to the lef. It is a atar of the 3d magnitude, and nuay be known by means of a snuall car, almost touching it, on the east.

Kappes, a ster of equal brightneag, is less than $2^{\circ}$ above Iota, and a little to the IIgur
How is Antares otherwise distinfuished What is its declination) What is the time of its passing the merldtan 7 What nautical lmportance is attached to its position Describe Graftatif How may it be recognised) What is the appearance of the constelAdnn botween Gramfias and Antares 1 How many conspicuous stars below Antares 1 What are their magnitude and general direction D Describe the Arat otar below Ao wrex. Describs the second zarar below Antares. Describe the third star, asd tell how


Lenuth, of the 3d magnituria, is the brighteat of the two layt in the tail, and tr sifnated about $3^{\circ}$ sbove Kappa, atill further to the right. It may readily in known by monas of a smaller star, clowe by it, on the west

This is a very beautiful group of stars, and easily traced out in the heavens. It furnishes striking evidence of the facility with which most of the constellations may be so accurately delineated, as to preciude every thing like uncertainty in the knowledge of their relative situation.
> "The heart with lustre of amazing force, Refulgent vibrates; faint the other partes, And ill-defined by stars of meaner note."

Histary.-This sign was anciently represented by various aymbols, somethen by a snake, and sometimes by a crocodile; but most commonly by the scorpion This last symbol is found on the Mithraic monumente, which in pretty good ovtdence that these monuments were conetructer when the vernal equinoxaccorded with Taurus.

On both the zodiacs of Dendera, there are rude delineations of this animal; that on the portico differs considerably from that on the other zodiac, now im the Louvre.
scorpio was considered by the ancient astrologers as a sign accursed. The Egyptians fired the entrance of the sun into Scorpio as the commencement of the reign of Typhon, when the Greeks fabled the death of Orion. When the sun was in Scorpia, in the month of Athyr, as Plutarch Informs us, the Egyptians enclosed the body of their god Osiris in an ark, or chest, and during this ceromony a great annual festival was celebrated. Three days after the priest had enclosed Osiris in the ark, they pretended to have found him again. The deach of Osiris, then, was lamented when the sun in Scorpio descended to the bower hemisphere, and when he arose at the vernal equinox, then Osiris was said to be born anew.

The Egyptians or Chaldeans, who first arranged the Zodiae, might have placed Scorpio in shis part of the heavens to delute that when the sun enters this sign, the diseases incident to the fruit season would prevail; since Autumn, which abounded in fruit. often brought with it a great variety of diseasen, and might bo thus fitly represented by that venomous animal, the scorpion, who, as he recedes, wounds with a sting in his tail.

Mars was the tutelary deity of the scorpion, and to this circumatance is owing all that jargon of the astrologers, who say that there is a great analogy between the malign infuence of the plamet Mara, and this aign. To this also is owing the doctrine of the alchymiste, that iron, which metal they call Mars, is under the dominion of Scorpio; so that the transmutation of it into gold can be effected enly when the sun is in this sign.

The constellation of the Scorpion is very ancient. Ovid thus mentions it in his peautiful fable of Phaton:-

> "There is a place above, where Scorpio bent, In tail and arms Eurrounds a vast extent; In a wide circuit of the heavens he sinines, And fills the place of two celestial signs."

According to Ovid, this is the famous acorpion which sprang out of the earth $a$ the command of Juno, and atung Orion; of which wound he died. It was in this way the imperious goddess chose to punish the vanity of the hero and the hunter, for boasting that there was not on earth any animal which he could not semquar.

> "Words that provok'd the gods once from him fell,
> 'No beasts so fierce, maid he, 'but I can quell ;'
> When lo! the earth a baleful scorpion sent,
> To kill Latona was the dire untent ;
> Orion saved her, tho' himself was slain,
> But did for that a spaciousplace obtain
> In heaven: 'to thee my life,' said she, 'was dear
> And for thy merit shine ilustrious there."


#### Abstract

akhongh both Orion and Scorpio were honoured by the celentiles wira e place among the stars, yet their situations were so ordered that when one rowa the other should aet, ind vice versa; an that they never appear in the amme hemisphere at the same time.

In the Hebrew zotisc this eign is allotted to Dan. because it is written, "Dan shail be a werpent by the way, an addor in the path."


## HERCULES.

Hercules is represented on the map invested with the stin of the Nemæan Lion, holding a massy club in his right hand, and the three-headed dog Cerberus in his left.

He occupies a large space in the northern hemsphere with one foot resting on the head of Draco, on the north, and his head nearly touching that of Ophiuchus, on the south. This constellation extends from $12^{\circ}$ to $50^{\circ}$ north declination, and its mean right ascension is $255^{\circ}$; consequently its centre is on the meridian about the 21st of July.

It is bounded by Draco on the north, Lyra on the east, Ophiuchus or the Serpent-Bearer on the south, and the Serpent and the Crown on the west.

It contains one hundred and thirteen stars, including one of the 2 d , or of between the 2 d and 3d magnitudes, nine of the 3d magnitude, and nineteen of the 4th. The principal star is $R$ as Atgethi, is situated in the head, about $25^{\circ}$ suutheass of Corona Borealis. It may be readily known by means ot another bright star of equal magnitude, $5^{\circ}$ east, southeast of it called Ras Alhague. Ras Alhague marks the head of Ophiuchus, and Ras Algethi that of Hercules. These two stars are always seen together, like the bright pairs in Aries, Gemini, the Little Dog, \&c.. They come to our meridian about the 28th of July, near where the sun dres, the last of April, or the middle of August.

Abou milway between Ras Alyethi on the southeast, and Ariadne's Crown on the norl! wesh may be seen Bea and Ganma, two stars of the 3d magnitide, situaved in the west shoulder, about $3^{\circ}$ spart. The northernmost of these two is called Rutilicus.

Thuse fuar stars in the shapa of a diamond. $8^{\circ}$ or 100 sonthwest of the two in the shwulder of Hercules, are ..tuated in the head of the serpent.

Alsout $12^{\circ} \mathrm{E}$. N. E. of Rutilicus, and $10 \xi^{\circ}$ directly north of Ras Algethi, are two stars of the 4th magnitude, in the east shoulter. They biay be known by wo very minute stars a litile above them on the left. The two stars in aach masulder of llercules, with Ras alqethi in the head, form a regular triangle.

The left or esst arin of Hercules, which grasps the triple-headed mantor Verberus, may be traced by means of three or four stars of the 4th magnitude,

[^90]macted in a row $3^{\circ}$ and $4^{\circ}$ apwr, oxfendtag from the shoulder, in a morthenterny direction. 'Titat small cluster, situated in a triangular form, about $14^{\circ}$ tortheap of Ris Agethi, and $13^{\circ}$ eam, wouthemst of the lefi ahoulder, distinguish the beed of Certerus.
Fightesn or $20^{\circ}$ northeant of che 'mwih are four staris of the Sd and atl mas. aitudes, forming an irregular equars, of which the two mouthern ones are abret $4^{\circ}$ apart, and in a line $6^{\circ}$ or $7^{\circ}$ gouth of the two northarn ones, whic, are nearly 70 eppart.
$\boldsymbol{P}_{2}$, in the northeast corner, may be known by means of one or two other small sare, close by it, on the east. Eta, in the northwest corner, may be known by Its being in a now with two smaller starm, extending towards tive northweat, and about $4^{8}$ anart. The atars of the 4th magnitude, juat eouth of the Dragon's head point out the left foot and ankle of Hercides.
Several other atars, of the 3d and 4th magnitudes, may be traced out in thie conatulation, by reterence to the map.
Hagrory.-This constellation is intended to immortalize the name of Herculen, the Theban, so celebrated in untiquity for his heroic valour, and invinclble prowess. According to the ancients, there were many persons of this name. Of all these, the son of Jupiter and Alcisena is the most celebrated, and to him the actions of the others have been generally attributed.
The birth of Hercules was attended with many miraculous eventa. He was brought up ai Tirynthus, or at Thebes, and before he had completed his eighth month, the jealousy of Juno, who was intent upon his destruction sent two maskes to devour him. Not terrified at the sight of the aerpents, he boldiy selzed them, and squeezed them to death, while his brother Iphicles alarmed the houme with his frightful shrieks.
He was early instructed in the liberal arts, and foon became the pupil of the centaur Chiron, under whom he rendered himself the most valiant and accomplished of all the heroes of antiquity. In the 18 th year of his age, he commenced his arduous and glowious pursuits. He subdued a lion that devourea the focks of his mupposed futner, Amphitryon. After he had destroyed the lion, he delivered his country from the annual tribute of a bundred ozen, which $f$ paid to Erginus.
As Herculem, by the will of Jupiter, was subject 3 to the power of Eurystheus, and obliged to obey him in every reapect, Eurystheus, jealous of his rising fande and power, ordered him to appear at Mycenæ, and perform the labours which, by priority of birth, he was empowered to impose upon him. Hercules refused, but afterwards congnited the oracle of Apollo, and was told that be muat be subtervient, for twelve years, to the will of Eurystheus, in compliance with the commsods of Jupiter; and that, after he had achieved the most celehrated tabours, he should be reckoned in the number of the gods. So plain an answer determined him to go to Mycenm, and to bear with iortitude whatever gods or men should impose upon him. Eurystheus, seeing so great a man totally subjected to him, and apprehensive of so powerful an enemy, commanded hitn to schieve a number of enterprises the most difficult and arduous ever known, generally called the Twizve Labours of Harounis. Being furnished with complete armour by the favour of the gods, he boldly encountered the imposed habours.

1. He mabdued the Nemsan Lion in his den, and inverted himself with hif $t$ tin.
2 He deatroyed the Lernazan Hydra, with a hundred hissing heada, and dip ped bin arrows in the gall of the monster to render their wounds incurable.
2. He toot alive the stag with golden horns and brazen feet, so famous for it meredible swiftness, after pursuing it for twelve months, and presented it, unhart, to tury otheus.
3. He took alive the Erimanthian Boar, and killed the Centaurs who opposed him.
4. He cleansed the atables of Augias, in which 3000 cren had been confined for many years.
5. He killed the carniverous birds which ravaged the country of Arcadia, and fnd on human fiem.
6. He took alive, and brought into Peloponneaus, the wild bull of Crete, which mo mortal durst look upon.

[^91]8. Fe obtained for Fury theus the mares of Diomedes, which fed on humen flesn, after having given their owner to be first eaten by them.
9. He obtained the girdle of the queen of the Amazons, a formidable nation of warlike females.

19 He killed the monster Geryon, king of Gades, and brought away his nex merous docks, which fed upon human fiesh.
11. He obtained the golden apples from the garden of the Hexperides, whict were watched by a dragon
12. And finally, he brought up to the earth the three-hended dog Certerus, the guardian of the entrance to the infernal regious.

According to Dupuig, the twelve labours of Hercules are only a figurative representation of the annual course of the sun through the twelve signs of the -0 diac ; Hercules being put for the sun, inasmuch as it is the powerful planet which animates and imparts fecundity to the universe, and whose divinity has been honoured, in every qua:ter, by temples and altars, and consecrated in the rellgious strains of all nations.

Thus Virgih, in the eighth book of his Aneid, records the deeds of Herculeg, and celebrates his praise:-
"The lay records the labours, and the praise, And all the immortal acts of Hercules. Fi' i, how the mighty babe, when swath'd in bands, ] e serpents strangled with his infant hands; Then, as in years and matchless force he grew, The CEchalian walls and Trojan overthrew; Besides a thousand hazards they relate, Procured by Juno's and Euristheus' hate. Thy bands, unconquer'd hero, could subdue The cloud-born Centaurs, and the monster crew; Nor thy resialless arm the bull withstood; Nor he, the roaring terrour of the wood. The triple porter of the Stygian seat With lolling tongue lay fawning at thy feet, And, seized with fear, forgot the mangled meat. The infernal waters trembled at thy sight: Thee, god, no iace of danger could affight; Nor huge Typhwus, nor the unnumber'd snake, Increased wilh hissing heads, in Lerna's lake."
Besides these arduous labours which the jealousy of Eurystheus inuposed upon him, he also achieved others of his own accord, equally celebrated. Before he delivered himself up to the king of Mycene he accompanied the Argonauts to Colchis. He assisted the gods in their wars against the giants. and it was through him alone that Jupiter obtained the victory. He conquered Laomedon, and pillaged Troy.

At three different times he experienced fits of insanity. In the second, he siew the brother of his beloved Iole; in the third he attenupted to carry away the racred tripod from Apollo's temple at Delphi, for which the oracle told him ne must be soid as a slave. He was sold accordingly to Omphale, queen of Lydia, who restored him to liberty, and married him. After this he returned to Peloponnesus, and re-established on the throne of Sparts his friend Tyndarus, who had been expelled by Hippocoon. He became enamoured of Dejanira, whom, after having overcome all his rivals, he married; but was obliged to leave him father-in-law's kingdom, because he hidd inadvertently killed a man with a blow of his fist. He retired to the court of Ceyx, king of Traching, and in his way was stopped by the streams of the Evenus, where he slew the Centaur Nessus, for presuming to offer indignity to his beloved Dejanira. The Centaur, on expiring, Mave to Dejanira the celebrated tunic which afterwards caused the death of Hercules. "This tunic", said the expiring monster, "has the virtue to recall a hus sand from unlawful love " Dejanira, fearing lest Hercules should relapse again into love for the beantifi I Iole, gave him the fatal trinic, which was so infected with the poison of the Lernasan Hydra, that he had no sooner invested himself Fith it, than it began to penetrate his bones, and to toll through all his voing. He attompted to pull it of, but it was too late.

[^92]> The areking nerve, burnt up, ere burk in twain, The larking vonom molte hiv swimulag brain."

As the distemper wie fncurable, he lomplored the protection of Jupiter, are him bow and arrow to inilocteten, and erected a large burning pile on the top of Eount Cute He apread on the pile the akin of the Nemean lion, and laid hmo solf down upon if, as on a bed, leaning his heed upon hin club. Fhilocteten met Gre to the pile, and the hero save himself, on a maddea, marrounded by the mons uppalling flames; yet he did not betray any marks of fear or amonishment. Ju. puer saw him from heaven, and fold the surrounding gode, who would have drenched the pile with tears, while they entreated that he would raise to the ckiea the immortal part of a hero who had cléared the earth from so many mem mers and tyrants; and thats the thunderer spake:-

> "Be all your fears forborne:

Th' Otean fires do thou, great hero, acorn.
Who vanculah'd all thinge shall subduc the fame.
That part alone of gross maternal frame
Fire shall devour; while what from me he drew
Shall live inmortal, and ite force aubdue:
That, when he's dead, I'll raise to realus abova;-
May all the powers the righteous ach approve."
Ovid's Mes. Hb. is
Accordingly, after the mortal part of Hercules was congumed, at the mochet poots asy, he wat carried up to heaven in a chariof drawn by four horsed
"Quem pater omnipotens inter cava nubila raptam,
"Almighty Jove
In his awif car his honour'd offeping drove; High o'er the hollow clouds the courseris in, And lodge the hero in the atarry sky."

Ovid'e Mes. Lit. Ix. v. 971.

## SERPENTARIUS, VEL OPHIUCHUS.

Ter Serpent-Bearer is also called Asculapius, of the god of medicine. He is represented as a man with a venera ble beard, having both hands clenched in the folds of a pro digious serpent, which is writhing in his grasp.

The constellation occupies a considerable space in the midheaven, directly south of Hercules, and west of Taurus Po niatowski. Its centre is very nearly over the equator, opposite to Orion, and comes to the meridian the 26th of July. It contains seventy-four stars, ancluding one of the 2d magni tude, five of the 3 d , and ten of the 4 th .

The principal star in Serpentarius is called Ras Alhague. It is of the 2 d magnitude, and situated in the head, about $5^{\circ}$ E. S. E. of Ras Algethi, in the head of Hercules. Ras Alhague is nearly 130 N . of the equinoctial, while Rho, in the southern foot, is about $25^{\circ}$ south of the equinoctial. These two stars serve to point out the extent of the constellation from north to south. Ras Alhague comes to the meridian on the 28th of July, about 21 minutes after Ras Algethi.

[^93]Abrat $10^{\circ} \mathrm{g}$. W. of Rat Alhague are two gmall mars of the th magnituda ceurcely more than a degree apart. They distinguish the left or west whouider. Fine northern one is marked lota, and the other Kappa.
Eleven or twelve degrees 8. 5. E. of Ras Alhague are two other stars of the 3d mapritude, in the east shoulder, and about $2^{\circ}$ apart. The upper che is called C*eleb, and the lower one Gamma. These stars in the head and b woulders of Serpentariug, form a triengia, with the vertex in Ras Alhague, and pointing towards the northeast.

A bout $4^{\circ} \mathrm{E}$. of Gamma, is a remarkable cluster of four or Give stars, in the form of the letter V, with the open part to the north. It very much resembles the Hyades. This beau tiful littie group marks the face of Taunus Poniatoweri. The solstitial colure passes through the equinoctial about $2^{\circ} \mathrm{E}$. of the lower star in the vertex of the $V$. The letter name of.this star is $k$. There is something remarkable in its central posi tion. It is situated almost exactly in the mid-heavens, bein? nearly equidistant from the poles, and midway between the vernal and autumnal equinoxes.' It is, however, about or and a third degrees nearer the north than the south pole, a about two degrees nearer the autumnal than the vernal ed nox, being about two degrees west of the solstitial colure.
Directly south of the $V$, at the distance of about $12^{\circ}$, aye two very smanl stars, about 20 apart, situnted in the right hand, where it grasps the serpent. Abot. halfway between, and nearly in a line with, the two in the hand and the two in the shoulder, is another star of the 3d magnitude, marked Zeta, situated in the gerpent opposite the right elbow. It may be known by means of a minute staf. just under it.

Marsic, in the left arm, is a star of the 4th magnitude, about $10^{\circ}$ g. W. of Iota and Cappa- About 70 farther in the same direction are two stars of the 3d mas nitude, situated in the hand, and a little more than a degree apart. The upper one of the two, which is about $16^{\circ} \mathrm{N}$. of Graffias in Acorpio, is called Yed; the other la marked Epsilon. These two stars mark the other point in the folds of the monster where it is grasped by serpentarius.

The left arm of Berpentarius may be easily traced by means of the two stars in the shoulder, the one (Marsic) near the elbow, and the two in the hand; all lying nearly in a line N. N. E. and B. S. W. In the same manner may the right trm be traced, by stars very similarly situated; that is to say, first by the two Is the east shoulder, just west of the $V$, thence $8^{\circ}$ in a southerly direction inchning a little to the east, by Zeta, (known by a little star right under it,) and thea ty the two small ones in the right hand, situated about $6^{\circ}$ below Zeta.
About $12^{\circ}$ from Antares, in an easterly direction, are two stars in the right foot, about $2^{\circ}$ apart. The largest and lower of the two, is on the lefthand. If ia of between the 3d and 4th magnituden, and marked Rho. There are several other etars in this constellation of the $3 d$ and $t$ th magnitudes. They may be traced ond from the maps.

> "Thee, Serpentarius, we behold distinct With aeverty-four refulgent stars; ; and one Graces thy helinet, of the second clasa: The Serpent, in thy hand grasp', windie his spire Tmmense; fewer by tew his figure trace;

[^94]> One of the second rank; ten shan the alfilt; And seven, he who beari the monster hides."-Eudosia.

History.-This constellation was known to the anciente twelve hundred year tefore the Christian era. Homer menlions it. It is thus referred to to the Ae conomicon of Manilius:-

> Next, Ophiuchus, trides the mighty snake, Untwits his winding folds, snd simooths his back, Exiends his bulk, and o'er the slippery scale His wide-stretch'd bands on either aide prevail. The nake turns back his head, and eems to rage: That war must last where equal power prevell.

Esculapins was the son of Apollo, by Coronis, and was educated by Chirom the Centaur, in the art of medicine, in which he becanue to milfut, that he was egasidered the inventor and god of needicine. At the birth of Eiculapius, the "pired daughter of Chiron uttered, "in sounding verse," this prorhetic crata"
"Hail, great physician of the world, all hail! Hail, inighty infant, who, in years to come, Shall heal the nations and defraud the tomb! Swift be thy growth! thy triumphs unconfined I Make kingdoms thicker, and increase mankind: • Thy daring art shall animate the dead, And draw the thunder un thy guilty head: Then shalt thou die, but from the dariz abode Rise up victorious, and be twice a god."
He accompanied the Argonaats to Colchis, in the capacty of physiclan. He Ig said to have restored nasny to life, ineomuch thet Pluto complained to Jopter, That his dark tominion was in danger of heing depopulated by his art.
Asculapius was worshipped at Epidaurus, a city of Peloponnesus, and hence e is sfyled by Milton, "the godin Epinialrus." Being sent for to Rome int the we of a plague, he assumed the form of a serpent and accompanied the ambasdors, but tholigh thus changed, he was Exculapius still, in serpente deus, t deity in a serpent, and under that forn he continued to be worshipped at Re ne. The cock and the gerpent were sacred to him, especially the better. Th ancient physicians used them in their prescriptions.

C e of the last acts of Socrates, who is accounted the wiaent and beat man of Pagg antiquity, was to offer a cock to Esicuiapiua. He, and Plato, were both thola rs; they conformed, and advised others to conform, to the religion of their coun ; to gross idolatry and absurd superatition. If the wisest and must lemrned me.so blind, what muat the foolish and ignorant have been 1

## CHAPTERX.

## GTECTIONS FOR TRACLEG TEE CORSTELLATIONE WHICE ARE OE

## THE MERIDIAN IN AUGUET.

## DRACO.

The Dragon.-This constellation, which compasses a large circuit in the polar regions by its ample folds and concortions, contains many stars which may be easily traced.

From the head of the monster, which is under the foot of Hercules, there is a complete coil tending eastwardly, about $17^{\circ} \mathrm{N}$. of Lyra; thence he winds down northerly about $14^{\circ}$

[^95]to the second coil, where he reaches almost to the girdie of Cepheus, then he loops down somewhat in the shape of the letter U , and makes a third coil about $15^{\circ}$ below the first. From the third coil he holds a westerly course for about $13{ }^{\circ}$, then goes directly down, passing between the head of the Lesser and the tail of the Greater Bear.

This constellation contains eighty stars, including four of the 2 d magnitude, seven of the 3d, and twelve of the 4 th.

> "The Dragon next, winds like a mighty atream; Within its ampte folds are eighty stars, Four of the second order. Far he wavee His ample apires, involving either Bear."

The head of the Dragon is readily distinguished by means of four stars, $3^{\circ}, 4^{\circ}$, and $5^{\circ}$ apart, so situated as to form $a_{n}$ irregular square; the two upper ones being the brightest, and both of the $2 d$ magnitude. The righthand upper one, called Etanin, has been rendered very noted in modern astronomy from its connexion with the discovery of a new law in physical science, called the Aberration of Light.

The letter name of this star is Gamma, or Gamma Draco$n i s ;$ and by this appellation it is most frequently called. The other bright star, about $4^{\circ}$ from it on the left, is Rastaben.
nbout $4^{\circ} \mathrm{W}$. of Rastaben, a small star may, with close at tention, be discerned in the nose of the Dragon, which, with the irregular square before mentioned, makes a figure somewhat resembling an Italic $V$, with the point towards the west, and the open part towards the east. The small star in the nose, is called Er Rakis.
The two amall stars $5^{\circ}$ or $6^{\circ} \mathbf{s}$. of Rastaben are in the lof foot of Hercules.

- Rastaben is on the meridjan nearly at the same moment with Ras Alhague. Etanin, $40^{\circ} \mathrm{N}$. of it, is on the meridian about the 4th of August, at the same time with the three western stars in the face of Taurus Poniatowski, or the V. It is situated less than $2^{\circ}$ west of the solstitial colure, and is exactly in the zenith of London. Its favourable position has led English astronomers to watch its appearance, for long periods, with the most exact and unwearied scrutiny.

[^96]Inns of mile to the eastward of the place we are nuw m, be then seen eracth n rith of us atilh, without changing its position so much as the thicknees of a apl der's web.

These obscrvations were subsequently repeater, with but litule intermiselca, fol twenty years, by the uoat acute observers in Europe, and with teletcoped varying from 12 feet to 36 feet in length. In the meantime, Dr. Bradley hed the bonour of announciag to the worid the very nice discovery, tham the motion of Kght, combined with the progressite motion of the earth in ito orbil, causee the heaven'y bodies to be seen in a different porition from what they wowid be, if the sye were at rest. Thus was entabliwhed the principle of the Aberration of Lighl.

This principle, or baw, now that it is ascertained, seema not only very plate but sell-evident. For if light be progressive, the position of the telescope, in order to receive the ray, must be different from what it would have been, if hight had been instantaneous, or if the earth stood still. Hence the place to which the tel escope is directed, will be different from the true place of the object.

The quantity of this aberration is deteruined by a simple propostion. Tha earth describes $59^{\prime} 8^{\prime \prime}$ of her orbit in a day $-3548^{\prime \prime}$, and a ray of light comed from the sun to us in $8^{\circ} 13^{\prime \prime}-493^{\prime \prime}$ : now 24 hours or $86400^{\prime \prime}: 493^{\prime \prime}:$ : $3545^{\prime \prime}$ : $\mathfrak{Z}^{\prime \prime}$; which is the change in the star's place, arising from the cause sbovementioned.

Or the four stars forming tne irregutar square in the head, the lower and righshand one is $51^{\circ}$ N. of Etanin. It is called Grumium, and is of the 8d maguitude. A few degrees E. of the equare, may be seen, with a little care, eight rats of the 5th uagnitude, and one of the 4th, which is warked Omicrom, and lies $8^{\circ} \mathrm{E}$. of Grumium. This group is in the firet coil of the Dragon.

The second coil is about $13^{\circ}$ below the first, and may be rocognsed by meang of four stars of the 3 d and 4th magnitudes, so mituated as to form a amall square, about half the size of that in the head.

The brightest of them is on the lef, and is marked Drita. A line drawn from Eastaben through Grumium, and produced about $14^{\circ}$, will point it out. A line drawn from Lyra through Zi Draconis, and produced $10^{\circ}$ further, will point our Zeta, 8 star of the 3 d magnitude, situated in the third coil. Zete mey otherwige be known, by its being nearly in a line with, and midway between, Etanin and Kochab. From Zeta, the remainink sta.rs in this constellation are oamily traced

Eta, Theta, and Asich, come next; all stars of the 3id magnitude, and at the distance, severally, of 60,40 , and $5^{\circ}$ from Zeta Al Asich, the third atar from Zeta, the tail of the Dragon makes a sudiden crook. Thubam, Kappa, and Giasaar, follow next, and complete the tail.

Thuban, is a bright star of the 2 d magnitude, $11^{\circ}$ from Asich, in a line with, and about midway between, Mizar and the southernmost guard in the Little Bear. By nautical men this star is called the Dragon's Tail, and is considered of much importance at sea. It is otherwise celebrated as being formerly the north polar star." About 2,300 years before the Christian era, Thuban was ten times nearer the true pole of the heavens than Cynosura now is.

Kappa is a star of the 3d magnitude, $10^{\circ}$ from Alpha, between Merrez and the pile. Mizar and Megrez, in the tall of the Great Bear, form, with Thuban and Eappa, in the tail of the Dragon, a large quadrilateral figure, whome longeat side im from Megrez to Kappa.

Giamsar, the last star in the tail, is between the 3d and 4tn magnitudes, and 50 from Kappa. The two pointers wild also point out Giangar, lying at the diatance of little more than $8^{\circ}$ from them, and in the direction of the pole.

[^97]
# ———"Hers the vast Dragon twines <br> Between the Bears, and like a river winds, <br> The Bears, that still with fearful caution keep, Untinged beneath the surface of the deep." <br> Warton's Virgih G. i. 

Hraronr.-Whoever attends to the situation of Draco, surrounding, as is cooed the pole of the Ecliptic, will perceive that its tortuous windings are aymbolica of the oblique course of the stars. Draco also winds round the pole of the wond as if to indicate, in the symbolical language of Egyptian astronomy, the motion of the pole of the Equator around the pole of the Ecliptic, produced by the preceasion of the heavens. The Egyptian hyeroglyphic for the heavens, wis a cerpent, whose ecales denoted the stars. When astronomy first began to be cultivated in Chaldes, Draco was the polar constellation.
Mythologists, however, give various accounts of this constellation; by srme 4 is represented as the watchful dragon which guarded the golden apples in the fimous garden of the Hesperides, near Mount Aclas in Africa; and was slain by Herculea. Juno, who presented these apples to Jupiter on the day of their nuptials, took Draco up to heaven, and made a constellation of him, as a reward for his faithful services. Others maintain, that in the war with the giants, this dragom was brought into combat, and opposed to Minerva, who seized it in her hand, nd hurled it, twisted as it was, into the heavens round the sais of the world, bek re it had time to unwind its contortions, where it sleeps to this day.' Other writirrs of antiquity say, that this is the dragon killed by Cadmus, who was ordered yy sia father to go in quest of his sister Europa, whom Jupiter had carried aw vy and never to return to Phoenicia without her.
"When now Agenor had his daughter lost, He sent his son to search on every coast ; And sternly bade him to his arms restore The darling maid, or see his face no more."
His search, however, proving fruitless, he consuited the oracle of Apollo, and was ordered to build a city where he should see a heifer stop in the grass, and to cail the country Brotia. He saw the heifer according to the oracle, and as he wished to render thanks to the god by a sacrifice, he sent his companions to fetch water from a neighbouring grove. The waters were sacred to Mars, and guarded by a most terrific dragon, who devoured all the mersengers. Cadmus, fired of their veeming delay, went to the place, and saw the monster still feeding on their flesh.
"Deep in the dreary den, conceal'd from day,
Sacred to Mars, a miglity dragon lay,
Bloated with poison to a monstrous size ;
Fire broke in fashes when he glanced his eyes:

[^98]His towering crest was glorious to behold,
His shouldera and his sides were scaled with gold
Three tongues he brandish'd when he filurged his foes.
His teeth stoud jafgy in three Areadful cuws
The Tyrians in the den for waler soupht,
And with their urna explored the hollow vault:
Froun side to side their empy urns rebound,
And ronse the sleeping serpent with their mund.
Etraight he bestirs him, and is seen to rise ;
And now with dreadful hiasings fils the skiem,
Anit dars his forky tongues, and rolls his glaring eyen
The Tyrians drop their vessels in the fright,
All paie and tretnbling at the hideous sight.
Bpire above spire uprear'd in air he stood
Ansl gazing round him, overlook'd the wood:
Then foating on the gromend in circles rolld;
Then leap'd upon them in a mishty fold.
All their endeavours and their hopen are viln;
Souse fie entangled in the winding train;
Some are devour'd, or feel a foathmone death,
Swoll'n up with blast of pestilential breath."
Cailmus, beholding such a scene, boldly resotved to avenge, or to ahara tactr whe. He therefore attacked the monsipr with slings and arrow, and, with che sseistance of Minerva, slew him. He then plucked out his zeeth, and wowed the:n. at the coumand of Pallas, in a plain, when they suddenly tprung up bat urimed men.
"Pallas adest: motæque jubet supponere terra Viperus dentes, populi incrementa futur.
Paret: et, ut presso sulcum patefecit aratro,
Spargit humi jussos, mortalia semina denten. Inde (finde uajus) gleba cæpere moverl: Primaque de sulcis aciea apparuit hastee Trymina mox capitum picto nutantia cono. Existunt : creacitque seges clypeata virorum."

Ovid's Mst. lit. 成 v. 108
"Ife eows the teeth at Pallis's command, And lings the futhre people from his hand. The clouls grow warm, and crunkle where he sown;
And now the pointed spears advance in rows; Now nodding phumes appear, and shining creste,
Now the broal shoulders and the rising bressta; O'er all the fleld the breathing harvest swarias. A growing host! a crop of men and arms!"
Entertaining worse ajprehension from the direful offupring than he had tone trom the dragon himself. he whs about io fy, when they ath fell uton fach other and were all slain in one proniscuous carnage, except five, who assisted Calluis $\omega$ build the city of Beotia.

## LYRA.

The Harp.-This constellation is distingurshed by one of the most brilliant stars in the northern hemisphere. It is situated directly south of the first coil of Draco, between the Swan, on the east, and Hercules, on the west; and when on the meridian, is almost directly over head.

It contains twenty-one stars, including one of the 1st magnitude, two of the 3d, and as many of the 4th.

[^99]> "There Lyra, for the brightness of her stars, More than their number eminent; thrice seven Bhe counts, and one of these illuminates The heavens far around, blazing imperia. In the firm order."

This star, of "the first order, blazing with imperial" lustre, is called Vega, and sometimes Wega; but more frequently It is called $E y r a$, after the name of the constellation.

There is no possibility of mistaking this star for any other. It is situated $14 \frac{2^{\circ}}{}{ }^{\circ} \mathrm{S}$. E. of Etanin, and about $30^{\circ} \mathrm{N}$. N. E. of Ras Alhague and Ras Algethi. It may be certainly known by means of two small, yet conspicuous stars of the 5th magnitude, situated about $2^{\circ}$ apart, on the east of it, and making with it a beautiful little triangle, with the angular point at Lyra.
The northernmost of these two small stars is marked Epsilom, and the southern one, Zeia. Abnut $2^{\circ}$ B. E. of Zeta, and in a line with Lyra, is a star of the (th magnitude, marked Deloa, in the middle of the Harp; and $4^{\circ}$ or $5^{\circ} \mathrm{g}$. of Delta, are two stars of the 3 d magnitude, about $2^{\circ}$ apart, in the garland of the Harp, forming another triangle, whose vertex is in Delta. The star on the east, ts marked Gamma; that on the west, Beta If a line be drawn from etanin through Loy ra, and produced $6^{\circ}$ farther, it will reach Beta.
This is a variable star, changing from the 3 d to nearly the 5th magnitude in the space of a week; it is supposed to have spots on its surface, and to turn on ist axis, like our gun.
Ganma comes to the meridian 21 minutes after Lyra, and precisely at the came moment with Eppilon, in the tail of the Eagle, $171^{\circ}$ S. of it.

The declination of Lyra is about $38 \frac{10}{\circ} \mathrm{~N}$.; consequently when on the meridian, it is but $2^{\circ} \mathrm{S}$. of the zenith of Hartford. It culminates at 9 o'clock, about the 13th of August. It is as favourably situated to an observatory at Washington, as Rastaben is to those in the vicinity of London.

Its surpassing brightness has attracted the admiration of astronomers in all ages. Manilius, who wrote in the age of Augustus, thus alludes to it:-
"Ong placed in front above the rest, display,
Astronomicon, B. 1. p. 15.
Hasronx.-It is generally asserted that this is the celestial Lyre which Apolb or Mercury gave to Orpheus, and upon which he played with such a masterly hand, that even the mont rapid rivers ceased to flow, the wild beasts of the foreed forgot their wildsess, and the mountains came to listen to his song.

Of all the fiymphs who used to listen to his song. Eurydice was the only ong Who made a deep impression on the musician, and their nuptials were selebra. ted. Their happiness, however, was short. Aristæus became enamoured of Eurydice, and as she fled from her pursuer, a serpent, lurking in the grass, bit her foot, and she died of the wound. Orpheus resolved to recover her, or periah In the attempt. With his lyre in his hand, he entered the infernal regions, and gained admission to Pluto. The king of hell was charned with his strains, the

[^100]wheel of Ixion scopped, the mone of Blaphus mood atin, Bumbus forgor hin thirat, and even the faries relented.

Pluto and Proeerpine were moved, and conmented to reatore Mim Furydte, Frovided he forbore looking behind him till he had come to the extrement bow dors of their darly dominions. The condition wat accepted, and Orpheus wat atready in sight of the upper regions of the air, when he forgot, and turned beck to look at his long lost Eurydice. Ife saw her, but ahe instantly vaniahed froma his sight. He attempted again to follow her, but will refteod admitmion.

From this time, Orpheue neparated himseif from tha mociety of mankind, whele oo offended the Thracian women, it is mid, that they tore his body to pieces, and threw his head moto th 9 Hebrua, still articulating the worde Euridice! Eurydice! na it was carried down the stream into the Agean nee. Orpheus was one of the Argonauts, of which celebrated axpedition he wrote a poetical account, which it stil ertant. After his death, he received divine honours, and his lyre became one of the constellations.

This fable, or allegory, desiqned merely to represent the power of muric m the hands of the greas master of the acience, is almilarly deacribed by three of the most renowned Latin poste. Virgil, in the fourth book of hin Georyich, thom cieacribes the effect of the lyre:-

> "E'en to the dark dominioas of the nimh He took his way, through foreste void of light, And dared amid the trembling ghonts to ming, And atood before the inexorable king. The inferual troope like passing shadown glide And listening, crowd the sweet musician's edde; Men, matrona, children, and the unmarried mald, The mighty hero's more majeetic shade, And youth, on funeral piles before their parents lald.
> - E'en from the depths of hell the damn'd advance;
> The infernal mansions, nodding, seem to dance;
> The gaping three-mouth'd dog forgets to mant;
> The furies hearken, and their makes uncuri;
> Idion, seems no more his pain to foel,
> But leans attentive on his standing wheel.
> All dangera past, at length the lonely bride
> In safety goes, with her melodious guide."

Pythagoras and his followers represent Apollo playing upon a harp of sevem strings, by which la meant (as appears from Pliny, b. i. c. 22-Macrobius i. c. 19, and Censorinus c. if.) the sun in conjunction with the seven planets; for they miade him the leader of that meptenary chorns, and the moderator of nature, and thought that by his attractive force he acted upon the planets in the harmonical ratio of their distances.

The doctrine of celeatial harmony, by which was meant the nuxate of the mphore⿻ ${ }^{\text {w }}$ was common to all the nations of the East. To this divine masic Euripides beautifully alludes:-" Thee I invoke, thou gelf-created Being, who gave birth to Nature, and whom light and darkness, and the whole train of globes on circle with eternal music."-So also Shakspeare :-
> ——"Look, how the floor of heaven Is thick inlaid with patines of bright gold ; There's not the emallest orb, which thou boholdics But in his motion like an angel sings, Adil quiring to the young-eyed cherubim : fuch harmony is in imenortal mouls; But, whilet this muddy veature of decas Doth gronaly clone it in, we cannot hear it "

The lyro was a famoun stringed instrument, much used amony the matienim, said to have been invented by Mercury about the year of the world 2000; thougb come sacribe the inven'ion to Jubal. (Genesis iv. 21.) It is universally allowed, that the lyre was the first in-trument of the string kind ever uned in Greece. The different lyres, at various periods of time, had from four to eighteen stringl each. The modern lyre ia the Welsh harp The lyre, among painters, th an ettribute of Apollo and the Muses

All poetry, it has bem conjectured, was in its origin lyric ; that is adapted to fecitation or mong, wh be accompaniment of muade and diatinguiahed by the
 ling the praises of gode and heroes.
frenlow was the principal seat of the Lyrtc Muse; and Terpander, a naive of Ulis islaud, who filouriahed about 650 yeara B. C., is one of the earlieat of the ty rie poets whose name we find on record. Sappho, whose mimfortunes have united with her talents to render her name memorable, was born at Mitylene, the chief city of Lesbos. She was reckoned a tenth muse, and placed without controveray at the head of the female writers in Greece. But Pindar, a native of Theben, who fouriahed about 600 years B. C. Is atyled the prince of lyric pocte. To him his fellow-citizens erected a monument; and when the Lacedeminiana ravaged Boeotia, and burnt the eapital, the following words were writuen npon
 Pridal

## SAGITTARIUS.

Tere Argerr.-This is the 1 noth sign and the tenth constellation of the Zodiac. It is situated next east of Scorpio, with a mean declination of $35^{\circ} \mathrm{S}$. or $12^{\circ}$ below the ecliptic.

The sun enters this sign on the 22d of November, but does not reach the constellation before the 7th of December.

It occupies a considerable space in the southern hemisphere, and contains a number of subordinate, though very conspicu ous stars. The whole number of its visible stars is sixtynine, including five of the 3d magnitude, and ten of the 4 th .

It may be readily distingushed by means of five stars of the 3 d and 4 th magnitudes, forming a figure resembling a little short, straight-handled Dipper, turned nearly bottom upwards, with the handle to the west, familiarly called the Milk-Dipper, because it is partly in the Milky-Way.

This little figure is so conspicuous that it cannot easily be mistaken. It is situated about $33^{\circ} \mathrm{E}$. of Antares, and comes to the meridian a few minutes after Lyra, on the 17 th of August. Of the four stars forming the bowl of the Dipper, the two upper ones are only $3^{\circ}$ apart, and the lower ones $50^{\circ}$.

The two smaller stars forming the handle, and extending westerly about $4{ }^{\circ} \mathrm{O}$, and the easternmost one in the bowl of the Dipper, are all of the 4th nagnituic. The star in the end of the handle, is marised Lambdas, and is placed in the bow of Bagittarius, just within the Milky-Way. Lambda may otherwise te known by its being nearly in a line with two other stars about $48^{\circ}$ apart, extenting towards the 8 . E. It is also equidistant from Phi and Delta, with which it uakes a handwome triangle, with the vertex in Lambda. About $5^{\circ}$ above Lambda, and $T$ little to the west. are two stars close together, in the end of the bow, the brightest of which is of the 4th magnitude, and narked Mu. This star serves to print out the winter solstice being aboul $2^{c} \mathbf{N}$. of the tropic of Capricom, and 1-nes than one degree east of the molstitial colure.
If a line be drawn from Bigma through Phi, and produced about $6^{\circ}$ farther to the west, it will point out Delta, and produced about $3^{\circ}$ from Delta, it will point out Gamma; stars of the 3d magnitude, in the arrow. The latler is in the poind

[^101]of the arrow, and may be known by means of a small tar jut above in, ca the gigic This atar is so nearly on the same meridian with Etanin, in the head of Draco, that it culminates only two minutes after it.

A few other conspicuous sters in this consteliation, forming a variety of acemetrical figurem, may be easily traced from the map.

Histony.-This constellation, it is sald, commemorates the famous Centaur Chiron, son of Philyra and Gaturn, who changed himacir ioto a borme, to elude the jealous inquiries of his wife Rhea

Chiron was famous for his knowledge of must, medicine, and shooting. He taught mankind the use of plantiand medicinal herbs; and inaructed, in all the polite arta, the greatent heroes of his age. He taught Eaculapius phytic; Apollo masic; and Hercules astronomy ; and was tutor to Achillea, Jawn, and Eneas. According to Ovid, he was slain by Herculet, at the river Evenue, for fifering indignity to his newly married bride.

> "Thou monster double shap'd, my right set free-
> Ewit as his word, the fasal arrow fiew:
> The Centaur's back adnits the feather'd wood, And through his breast the bartbed weapon shood; Which, when in anguish, through the tlesh he tore, From both the wounds gush'd forth the spumy gore."

The arrow which Hercules thus sped at the Centaur, having been ofipped in he blood of the Lernæan Hydra, rendered the wound incurable, even by the Gther of medicine himself, and he begyed Jupiter to deprive him of inmoriality If thus he might escape his excruciating pains. Jupiter granted his requent, and tramisted him to a place among the constelations.

> "Midst polden stars he stande refulgent now And thruats the scorpion with his bended bow."

This is the Grecian account of Eugittarius ; but as this constellation appears on the ancient zodiacs of Egyph, Dendera, Esne, and India, it eeema conclusive that the Greekg only borrotoed the figure, while they invented the fable. This is known to be true with respect to very many of the ancient constellations Hence the jargon of the condicting accounts which have deacended to un.

## AQUILA, E'T ANTINOUS.

The Ealle, and Antinods.-This double constellation is sitnated directly south of the Fox and Goose, and between Taurus Poniatowski on the west, and the Dolphin, on the east. It contains seventy-one stars, including one of the 1st magnitude, nine of the 3 d , and seven of the 4 th. It may be readily distinguished by the position and superior brilliancy of its principal star.

Altair, the principal star in the Eagle, is of the 1st, or between the 1st and 2 d magnitudes. It is situated about $14^{\circ} \mathrm{S}$. W of Dolphin. It may be known by its being the largest and middle one of the three bright stars which are arranged in a line bearing $N$. W. and S. E. The stars on each side of Altair, are of the 3d magnitude, and distant from it about 20. This row of stars very much resembles that in the Guards of the Lesser Bear.

[^102]
## Altair is one of the stars from which the moon's distance

 is taken for computing longitude at sea. Its mean declination is nearly $8 \frac{1}{2}^{\circ}$ N., and when on the meridian, it occupie nearly the same place in the heavens that the sun does at noon on the 12th day of April. It culminates about 6 minutes before 9 o'clock, on the last day of August. It rises acronycally about the beginning of June.Ovid alludes to the rising of thin constellation; or, more probably, to that of be priacipal star, Altair:-

> And you'll behold Jove's hook'd-bill bird arise." Massey'e Purti Ore dubious whe "Among thy mplendid group Ons dubious whether of the sECOND RANE, Or to the First entitled; but whose claim Beeme to denerve the Fisst."

## Enudaria.

The northernmost star in the line, next above Altair, is called Tarazed. In the wing of the Eagle, there is another row composed of three stars, situated $4^{\circ}$ or $5^{\circ}$ apart, extending down towards the southwest; the middle one in this line Is the smallest, being only of the 4th magnitude; the next is of the 3 d magnituda, marked Delta, and situated $8^{\circ} \mathrm{G}$. W. of Altair.

As you proceed from Delta, there is another line of three stars of the 3d mag nitude, between $5^{\circ}$ and $6^{\circ}$ apart, ertending southerly, but curving a little to the west, which mark the youth Antinous. The northern wing of the Eagle is not dietinguished by any conspicuous stars.

Zela and Epsilon, of the 3d magnitude, situated in the tail of the Eagle, are about $2^{\circ}$ apart, and $12^{\circ}$ N. W. of Atair. The last one in the tail, marked Epsikn, is on the same meridian, and culminates the same moment with Gamma, in the Harp.

From Epsilon, in the tail of the Eagle, to Theta, in the wrist of Antinous, may be traced a long line of stars, chiefly of the 3d magitude, whose letter namea are Theta, Eta, Mu, Zeta, and Epsilon. The direction of this line lis from B. E. to N W., and its length ls about $25^{\circ}$.

Eta is remarkable for its changeable appearance. Its greatest brightness contuues but 40 hours; it then gradually diminishes for 66 hours when its lustre remains stationary for 30 hours. It then waxes brighter and brighter, until is appears again as a star of the 3d magnitude.
from these phenomens, it is inferred that it not only has spots on its surface, yle our sun, but that it also curns on its axis.
Similar phenomena are observable in Algol, Beta, in the Hare, Delta, in Cesheus, and Omicron, in the Whale, and many others.

> Divides the ether with her ardent wing: Benealh the Swan, nor far from Pegacus, Portic Eagus."

History.-Aquila, or the Eagle, Is a constellation usually joined with Antinoua Aquila, is supposed to have been Merops, a king of the island of Cos, in the Archipelago, and the husband of Clymene, the mother of Phaeton; this monarch having been transformed into an eagle, and placed among the constellations Some have imagined that Aquila was the eagle whose form Jupiter assumed When he carried away Ganymede; others, that it represents the eagle which brought nectar to Jupiter while he lay concealed in the cave at Cretc, to avold

[^103]defory of his fither Satura. Some of the anclent poeta ny, that this the cagle which furnished Jupiter with weapons in his war with the giania:-
"The tow'ring Eagle next doth boldly woar,
As if the thunder in hia claws he bore;
He's worthy Jove, since he, bird, mupllem
The heaven with sacred bolts, and arms the akjes."
Manilina.
The exgle is justly styled the "sovereign of birds," since he ts the larmeec, trongest, and swiftest of all the feathered tribe that tive by prey. Homer eald the eagle, "the etrong sovereign of the plumy race;" Horace myles hiu-
"The noyal bird, to whom the king of heaven
Tie empire of the feather'd race has given:"
And Milton tenominaten the eagle the "Bird of Jove." It aldit tequth enong and pie cing, to a proverb: Jub xxix. \&s, \&c.
" Though strong the hawk, though practis'd well to $\mathrm{LI}_{\mathrm{y}}$,
An eagle drops her in the lower alky;
An eagle when deserting human aight
She seeks the sun in her unwearied dight;
Did thy command her yellow pinion lif So high in air, and set her on the clit Where far above thy world she dwells alone, And proudly makes the streagth of meks her own; Thence wide o'er nature takes her dread murrey, And with a glance predentinates her prey! She feasts her young with blood; and hov'ring o'er Th' unalaughter'd host, enjoys the promia'd gore."

## ANTINOUS

Antir sus is a part of the constollation Aquila, and wat invented by Tyche Erabe. Antinous was a youth of Bithynia, in Asia Minor. So greaty was bia soall vernented by the emperor Adrian, that he erected a temple to his memory *) Duilt in honour of hiun a splendid city, on the banke of the Nile, the rulas of - st are atill visited by travellers with much intereac.

## CHAPTER XI.

HRECTIONS FOR TRACING THE CONSTELLATIONS WHICH ARE OM THE MRHDIAN IN SEPTEMBER.

## DELPHINUS.

The Dolphin.-This beautiful little cluster of atars is situated $13^{\circ}$ or $14^{\circ} \mathrm{N}$. E. of the Eagle. It consists of eighteen stars, including five of the 3 d magnitude, but none larger. It is easily distinguished from all others, by means of the four principal stars in the head, which are so arranged as to form the figure of a diamond, pointing N. E. and S. W. To many, this cluster is known by the name of Job's Coffin; but from whom, or from what fancy, it first obtained this apprellation, is not known.

[^104]There in another star of the 2d magnitude, situated in the body of the Dolphin, about $3 \circ \mathbf{S}$. W. of the Diamond, and marked Epsilon. The other four are marked Alpha, Beta, Gamma, Delta. Between these are several smaller stars, too mall to be seen in presence of the moon.

The mean declination of the Dolphin is about $15^{\circ} \mathrm{N}$. It comes to the meridian the same moment with Deneb Cygni, and about 50 minutes after Altair, on the 16th of September.

> "Thee I behold, majestic Cygruse, On the sarge dancing of the heavenly sea, Arion's friend; eighteen thy atare appearOne teleacopic."

Firror 7.-The Dolphin, accorring to some mythologisth, was made a conatel intion by Neptune, because one of these beautiful flshes had persuaded the god deag Amphitrite, who had made a vow of perpetual celibacy, to become the wifo of that deity; but others maintain, that it is the dolphin which proserved the fmous lyric poet and mosician Arion, who was a native of Lesbos, an island in the Archipelago.

Be went to lialy with Periander, tyrant of Corinth, where he obtained innmense rtches by his profession. W'shing to revisit his native country, the sailors of the ahip in which he embarked, resolved to marder him, and get poseession of hif wealh. Feeing them immoveable in their resolution, Arion begged permis mon to play a tune upon his lute before he should be put to death. The melody of the instrument attracted a nmmber of dolphins around the ship; he mamedi stely precipitated himself into the sea; when one of them, it is asserter, carried him eafe on his back to Texnarus, a promontory of Laconis, in Peloponnesus, whence he liastened to the court of Periander, who ordered all the wailors to br erucified at thair return.
"But, (past bellef) a dolphin's arched back Preserved Arion from his destined wrack; Secure he aits, and with harmonious atrains Requites his bearer for his friendly paine."
Whon the famous poet Hesiod was murdered in Naupactum, acity of Etolla mareece, and his body thrown into the sea, some dolphins, ft is said, brough bact the tloating corpse to the shore, which wes immediately recognised thy his friends; and the assassing being aftorwards discovered by the dogs of the doparted bard, ware put to death, by immersion in the same sea.

Taras maid by some to have been the founder of Tarentum, now Tarento, in the wouth of Italy, was saved froin shipwreck by a dolphin; and the inhabitanta of thac city preserved the memory of this extraordinary evemt on their coin.

The natural shape of the dolphin, however, is not incurvated, so that one pight ride upon ite back, an the poeta imagined but almost straight. When $t$ in first taken from the water, it exhibite a variety of exquistely beautiful but ovanescent thats of colour, that pass in succession over its body until it dien. They are an extremely swit-mwimming fish, and are capable of tiving a long time out of water ; in fact, they seem to delight to gambol, and leap out of thol. naky element.
"Upoa the swelling waves the dotphins show
Their bending backs; then ewifly darting ga,
And in a thousand wreaths their bodies show."

## CYGNUS.

Tgy Swar.-This remarkable constellation is situated in the Milky-Way, directly E. of Lyra, and nearly on the same

[^105]meridian with the Dolphin. It is represented on outspread wings, flying down the Milky-Wav, towards the southwest.

The principal stars which mark the wings, the hody and the bill of Cygnus, are so arranged, as to form a large and regular Cross ; the upright piese lying along the MilisyWay from N. E. to S. W., while the cross piece, reprosenting the wings, crosses the other at right angles, from S. E. to N. W.

Arided, or Deneb Cygni, in the body of the Swan, is a star of the 1st magnitude, $24^{\circ}$ E. N. E. of Lyra, and $30^{\circ}$ di rectly $\mathbf{N}$. of the Dolphin. It is the most brilliant star in the constellation. It is situated at the upper end of the cross, and comes to the meridian at 9 o'clock, on the 16 th of September.

Sad'r, is a star of the 3d maqnitude, $6^{\circ} \mathrm{A} \mathbf{W}$. of Deneb, situated execty in the cross, or where the upright piece intersects the croan piece, and is about $\mathbf{2 0 0} \mathbf{E}$ of Lyra.

Della, the princyad star in the west wing, or arm of the erome, la situated N. $\mathbf{W}$. of Elad'r, at the distance of little more than $8^{\circ}$, and is of the 3d magnitude. Beyond belta, cownards the extreanity of the whing, are two smaller etars about $5^{\circ}$ apart, and inclinftg a hittle obliquely to the north; the lat of which rearhes mearly to the first coil of Draco. These stars mark the weat wing ; the eakt wing may be traced by means of stars very similariy situated.

Giench, is a star of the 3d magnitude, in the eart wing, juat as far eant of Rodry In the centre of the cross, as delta is west of ik. This now of three equal starm, Delta, flad'r, and Glenah, form the bar of the croses, and are equidietant froma each rther, being about $8^{\circ}$ epart. Beyond Gienah on the east, at the distance of $6^{\circ}$ or $7^{\circ}$ there are two other ctars of the 3d magaitude; the lam of which marks the extremity of the eastern wing.

The stars in the neck are all 100 small to be noticed. There is one, however; in the beat of the Swan, at the foot of the croas, called Allirea. which is of the ad magnitude, and can be seen very plainly. It is about $16^{\circ} \mathrm{G}$. W. of Bad'r, and about the rame distance $\mathbf{B}$. E. of Lyrn, with which it makes nearly a right anple.
"In the amall space between 太ad'r and Albireo," mays Dr. Hersched, "the grare In the Milky-Way seem to be cluatering into two separate divisions; each arob adon containing more than one hundred and cisty-five thoward atare."

Albireo bears northerly from Altair about $20^{\circ}$. Immediately sout', and soathcast of Albireo, may be geen the Fox and Goosn; and about midw ay betweon Albireo and Altair, there may be traced a line of four or five minite itara, called the Arnow ; the head of which is on the B. W., and can be iistluyuialied by means of two stars situated close together.

Aceording to the British catalogue, this conste ${ }^{\text {lation }}$ contains eighty-one stars, including one of the 1st or 2 d magnitude, six of the 3d, and twelve of the 4th. The author of the following beautiful lines, says there are one hundred and seven.

> "Thee, eliver \%wan, who, silent, esin o'erpasas
> A hundred with seven radiant stars compose
> Thy graceful form: anid the ducid stream

[^106]Of the thr Milky-Way distinguisn'd ; one
Adorns the second order, where she culs The waves that follow in her utwost irack; This never hides its fire throughout the night, And of the rest, the apore conspicuous mark Her snowy pinions and refugent neck. "-Ewdonia; b. Iv.
Atronomers have discovered three variable stars in the Swan. Chd, situated In the neck, Fetween Beta and Bad'r, was first obmerved to vary its brightneas G 1638. Its periodical changes of light are now ascertained tc be completed is 405 daye. SadPr is also changenble. fis greateat lustre is somewhat less than thet of a atar of the 3d magnitude, and it gradually diminishes till it reaches that of the fith. It changes are far from being regular, and, from present obsorvations, they do not seem to recur till after a period of ten yearn ar more.

A third variable star was discovered in the head on the 20kh of Jine, 1670 , by Anthelme. It appeared then to be of the 3d magnitude, but was so far diminished in the following October, as to be scarcely visible. In the beginning of April 1671, it was again seen, and was rather brighter than at first. After several ohginges, it disappeared in March, 1672, and has not been ohserved since.

Those remarkable facts seem to indicate, that there is a brilliant planstary ofitem in thi conctellation, which, in come of itg revolutions, becomes visible to 0 .

Histony.-Mythologists give various accounts of the origin of this conetellthon. Bome suppose it is Orpheus, the celebrated musician, who, on being murdered by the cruel priestess of Bacchus, was changed into a Swan, and placed near his Harp in the heavens. Others suppose it is the swan into which Jupiter transformed himself when he deceived Leedia, wife of Tyndarus, king of Eparti. Bome afmrm that it was Cicnus, a son of Neptune, who was so completely invalnerable that neither the javelins nor arrows, nor even the blove of Achilles, $\mathbf{f}$, farious combat, could make any impreasion.
"Headlong he leaps from off his lofty car, And in close fight on foot renews the war;But on his fesh nor wound nor blood is seet, The wword itself is blunted on the ekin."
But when Achilles saw that his darta and blows had no effect on him, he trmediately threw nim on the ground and smothered him. While he was attempe ing to despoil him of his armour, he was suddenly changed into a mwan.
"With eager haste he went to strip the dead;
The vanish'd body from his arms was fled.
His seagod aire, t' immortalize his fane, His turn'd it to a bird that bears his name."
According to Ovid this constellation took its name from Cygnus, relative of Phacton, who deeply lamented the untimely fate of that yourh, and the melarcholy end of his Briters, who, 暗nding around his tomb, wept themselves fate noplarw.
"Cienus beheld the nymphs transform'd, allied
To their dead brother on the mortal aide,
In friendship and affection nearer bound;
He left the cities, and the realms he own'd,
Through pathless fields, and lonely shores to range;
And woods made thicker by the sisters' chang $\theta_{4}$
Whilot here, within the dismal gloom alone,
The melancholy monarch made his moan;
His voice was lessen'd as he tried to speak;
And isened through a long-extended neck:
Fise hair transforms to down, his fingers meet
In akinny films, and shape his oary feet;
From both his sides the wings and featherg break:
And from hia mouth proceeds a blunted beak:
All Clenus now into a mwan was turn'd."Morid's Mret. b. il.

[^107]
# Virgil, also, in the 10h book of his Encid, alluden to the mano file ; <br> " For Cicnus loved unhappy Phaeton, And aung hus loss in poplar groves alone Beneath the sister shades to mooth his rief; Heaven heard his song, and basten'd his relief; and changed to snowy plumes his hoary hair, And wing'd his fight to ting aloft in air." 

Of ath the feathered race, there is no bird, perhaps, which mekes 00 bearmith and majestic an appearance as the awan. Almoat every poet of eminence hat taken notice of it The swan has, probably, in all ages, and in every country where taste and elegance have been cultivated, been considered as the emblem of poetical dignity, purity, and ease. By the ancients it was consecratod to Apolth and the Muses; they also entertained a notion that this bird foretold ite own eady and ang more aweetly at the approach of death.

> Enpiring, dies in melody."-Wechylwe.

Mo on the silver atream, when death is nigh, The mournful ewan einge ite own elegy."-Ovid, Trite

## CAPRICORNUS.

The Goat.-This is the tenth sign, and eleventh constellation, in the order of the Zodiac, and is situated south of the Dolphin, and next east of Sagittarius. Its mean declination is $20^{\circ}$ south, and its mean right ascension, $310^{\circ}$. It is therefore on the meridian about the 18th of September. It is to be observed that the first point of the sign Capricorn, not the constellation, marks the southern tropic, or winter solstice. The sun, therefore, arrives at this point of its orbit the 21st of December, but does not reach the constellation Capricorn until the 16th of January.

The sun, having now attained its utmost declination south; after remaining a few days apparently stationary, begins once more to retrace its progress northwardly, affording to the wintry latitudes of the north, a grateful presage of returning spring.

At the period of the winter solstice, the sun is vertical to the tropic of Capricorn, and the southern hemisphere enjoys the same light and heat which the northern hemisphere enjoys on the 21 st of June, when the sun is vertical to the tropic of Cancer. It is, at this period, mid-day at the south pule, and midnight at the north pole.

The whole number of stars in this constellation is fifty one; none of which are very conspicuous. The three largest are only of the 3 d magnitude. There is an equal number of the 4 th.

[^108]The head of Capricorn may be recognised by means of iwu stars of the 3d magnitude, situated a little mure than $2^{\circ}$ apart, called Gitdi and Dabih. They are $28^{\circ}$ from the Dolphin, in a southerly direction.

Giedi is the most northern star of the two, and is double. If a line be drawn from Lyra through Altair, and produced atout $23^{\circ}$ farther, it will point out the head of Capricorn. These two stars come to the meridian the 9th of September, a few minutes after Sad'r, in Cygni.

A few other stars, of inferior note may be traced out by refereuce to the maps.

The sign of the Goat was called by the ancient oriental ists the "Southern gate of the Sun," as Cancer was denom inated the "Northern gate." The ten stars in the sign Ca pricorn, known to the ancients by the name of the "Towes of Gad," are probably now in the constellation Aquarius.
Hiatory.-Capricornus in said to be Pan, or Bacchus, who, with some other deities were feasting near the banks of the Nile, when suddenly the drealful giant Typhon came upon them, and compelled them all to assume a diffarent mape, in order to escape his fury. Ovid relates,
"How Typhon, from the conquer'd skies, pursued
'Their routed godheats to the seven-wouth'd Hood:
Forced every god, (his fury to escape,)
Some beastly torm to take, or earthly shape.
Jove (sings the bard) was chang'd into a rama,
From whence the horns of Lybian Anmon came.
Bacchus a goal, Appollo was a crow;
Phobe a cat ; the wife of Jove a cow,
Whose hue was whiter than the falling mnow
Mercury to a nasty lbis turned-
While venus from a fish protection craven,
And once more plunges in her native waves."

On this occasion it is further celaied that Bacclus, or Pan, led the way and planged into the Nile, and that the part of his body which was under the water, assumed the form of a fish, and the other part that of a goat; and that to pre eerve the memory of this frolic, Jupiter wade him into a constellation, in his metanorphosed shape.
Gome say that this constellation was the goat Amalthea, who supported the in fant Jupiter with her milk. To rewarl her kindness, the father of the godm placed her among the constellations, and gave one of her horns to the ny uphs who had taken care of him in his infantile years. This gift was ever after called the horn of plenty; as it possessed the virtue of imparting to the holder whabever she desired.
The real sense of this fable, divested of poetical embellishment, appears to be this; that in Crete, some say in Lybia, there was a small territory shaped very much like a bullock's horn, and exceedingly fertite, which the king presented to his daugliter Amalthea, whom the poets feigned to have been Jupiter's nurse
"The bounteous Pan," as he is styled by Milton, was the god of rurad scenery chepherds, and-huntsmen. Virgil thus addresses him :-

[^109][^110]> "And thot, the shepherd's tultolary got Loave, for a while, O Pan ! thy loved atode."

The mane of Pan is derived from a Groek word signifying anamp; and me was often considered as the great principle of vegetable and wo ual life. Fe re vided cluefly in Arcadia, in woods and the most rugsed th ditana. An Fas untally terrified the inhabitantin of the adjacent country, ove. when he wan mowhere to be seen, that kind of fear which often coizes met. and which is oaly ideal or imaginary, has recetred from him the nanse of Pama.

## CHAPTERXII.

## DIRECTIONS FOR TRACING THE CONETELLATIONS WHICH ARE OT THE MERIDIAN IN OCTOBER.

## PEGASUS.

The Flying Horse.-This constellation is represented in an inverted posture, with wings. It occupies a large space in the heavens, between the Swan, the Dolphin and the Eagle, on the west, and the Northern Fish and Andromeda, on the east. Its mean right ascension is $340^{\circ}$, or it is situated $20^{\circ} \mathrm{W}$. of the prime meridian. It extends from the equinoctial $\mathrm{N} .35^{\circ}$. Its mean length E . and W . is about $40^{\circ}$, and it is six weeks in passing our meridian, viz. from the 1st of October to the 10 th of November.

We see but a part of Pegasus, the rest of the animal, being, as the poets imagined, hid in the clouds.

It is readily distinguished from all other constellations by means of four remarkable stars, about $16^{\circ}$ apart, forming the tigure of a square, called the square of Pegasus. The two western stars in this square come to the meridian about the 23d of October, and are $13^{\circ}$ apart. The northern one, which \& the brightest of three triangular stars in the martingale, is of the $2 d$ magnitude, and is called Scheat. Its declination is $263^{\circ} \mathrm{N}$. Markab, also of the 2 d magnitude, situated in the bead of the wing, is $13^{\circ} \mathrm{S}$. of Scheat, and passes the meridian 11 minutes after it.

[^111]The two stars which form the eastern side of the square, come to the meridian about an hour after those in the western. The northern one has already been described as Alpheratz in the head of Andromeda, but it also belongs to this cunstellation, and is $14^{\circ} \mathrm{E}$. of Scheat. $14^{\circ} \mathrm{S}$. of Alpheratz, is Algenib, the last star in the wing, situated $16 \frac{1}{2}^{\circ} \mathrm{E}$. of Ma tab.

Algenib, in Pegasus, Alpheratz, in Andromeda, and Caph in Cassiopera are wituated on the prime meridian, and point vut its direction through the pole. For this reason, they are sometimes called the three guides. They form an are of that great circle in the heavens from which the distances of all the heavenly bodies are measured. It is an are of the equinoctial colure which passes through the vernal equinox, and which the sun crosses about the 21 st of March. It is, in astronomy, what the meridian of Greenwich is in geography. If the sun, or a planet, or a star, be maid to have so many degrees of right ascension, it means that the wun or planet has ascended so many degrees from this prime meridian.

Enif, sometimes called Enir, is a atar of the 3d magnitude in the nose of Pegasus, about $20^{\circ} \mathrm{W}$. S. W. of Markab, and halfway between it and the Dolphin. Abuut $\ddagger$ of the distance from Markab towards Enif, but a little to the $\mathbf{S}$., thers is 4 star of the 3d magnitude situated in the neck, whose letter name is Zeta. The loose cluster dirrculy S. of a line joining Enif and Zeta, forms the head of Pe casus.

In this constellation, there are eighty-nne stars visible to the naked eye, of which three are of the second magnitude and three of the third.

History.-This, according to fable, is the celebrated horse which sprung from the blood of Medusa, after Perseus had cut off her head. He received his name according to Hesiod, from his being born near the sources (arrn, Pege) of the ocean. According to Ovid, he fixed his residence on Mount Helicon, where by strizing the earth with his foot he raised the fabled fountain called Hippocrene. He became the favourite of the Muses; and being tamed by Neptune or Minerva, he was given to Bellerophon, son of Glaucus, king of Ephyre, to aid him in conquering the Chimera, a hideons monster that continually vouited flames. This monster lad three heads, that of a lion, a goat, and a dragon. The fore parts of its body were those of a lion, the midule those of a goat, and the hinder those of the dragon. If lived in Lycia, of which the top, on account of its desoLate wilderness, was the resort of lions, the middle, which was fruitfuh, was covered with goats, and at the bottom, the marshy ground abounded with serpenta Bellerophon was the first who tnade his habitation upon it.

Plutarch thinks the Chimæra was the captain of some pirates who adorned their ship with the images of a lion, a goat, and a dragon.

After the destruction of this monster, Bellerophon attempted to fly up to hesven upon Pegasus ; but Jupiter was so displeased at this presunption, that he sent an insect to sting the horse, which occasioned the melancholy fall of hia rider. Bellerophon fell to the earth, and Pegasus continued his flight up to hasven, and was placed by Jupiter among the constellations.

> "Now heav'n his further wand'ring fight confines, Where, aplendid with his num'rous stars, he ahines."

Ovid's Past

## EQUULUS, VEL EQUI SECTIO.

Tae Little Horst, or the Horse's Hfad.-This Asterism, or small cluster of stars, is situated about $7^{\circ} \mathrm{W}$. of Enif, in the head of Pegasus, and about halfway between it

[^112]and the Dolpain. It is on the meridian at 8 o'clock, on the 11th of October. It contains ten stars, oi which tive four principal are only of the 4th magnitude. These may be readily distinguished by means of the long irregular square which they form. The two in the nose, are much nearer together than the two in the eyes; the former being $1^{\circ}$ apart, and the latter $2 \frac{1}{2}{ }^{\circ}$. Those in the nose are uppermost, being 40 N . of those in the eyes. This figure also is in an inverted position. These four stars are situated $10^{\circ}$ or $12^{\circ} \mathrm{S}$. E. of the diamond in the Dolphin's head. Both of these clusters, are noticeable on account of their figure rather than their brilliancy.


#### Abstract

History.-This consteliation is aupposed to be the brother'of Perasua named Celeria, given by Mercury to Castor, who was so celebrated for his akill in the management of horses; others take him to be the celebrated horse which Neptune struck out of the earth with his trident, when he disputed with Minerva for mperiority. The head only of Celeris in visible, and this, almo, is reprementod in an inverted position.


## AQUARIUS.

The Water-Bearer.-This constellation is represented by the figure of a man, pouring out water from an urn. It is situated in the Zodiac, immediately $\mathbf{S}$. of the equinoctial, and bounded by the Little Horse, Pegasus, and the Western Fish on the N., the Whale on the E., the Southern Fish on the $S$. and the Goat on the $W$. It is now the 12th in order, or last of the Zodiacal constellations; and is the name of the 11th sign in the ecliptic. Its mean declination is $14^{\circ} \mathrm{S}$. and its mean right ascension $335^{\circ}$, or 22 hours, 20 min . ; it being 1 hour and 40 min . W. of the equinoctial colure ; its centre is, therefore, on the meridian the 15th of October.

It contains one hundred and eight stars; of which the :uur largest are all of the 3 d magnitude.

> "His head, his shouldera, and his lucid breaet, Glisten with stars; and where hts urn inclines Rivers of light brighten the wat'ry track."

The northeastern limit of Aquarius may be readily distinguished by means of four stars of the 4th magnitude, in the hand and handle of the urn, so placed as to form the letter Y, very plainly to be seen, $15^{\circ} \mathrm{S} . \mathrm{E}$. of Enif, or $18^{\circ} \mathrm{S}$. S. $\mathbf{W}^{2}$. of Markab, in Pegasus; making with the two latter nearly e right angle.

[^113]About $41^{\circ}$ W. of and figure is El Melif, a star of the 3 d maqnitude in the $E$ whoubder, and the prin ipal one in this constellation. $10^{\circ} \mathrm{B}$. W. of Ed Melik l nnolier star of the sane magnitude, situated in the W. shoulder, called Sad eo sand.

Ancha of the 4 st . maguitude is in the right side, $8^{\circ} \mathrm{B}$. of EI Melik. $\mathbf{9 0}^{\circ} \mathbf{E .}$ of Ancha, is another $3: \cdot$ of the 4 ih magnitude, whose letter name is Lambda.

Scheat, of the 3 d umgnitude, lying below the knee, is situated $84^{\circ} \mathrm{B}$. of Larabdat and $14^{\circ} \mathrm{B}$. of Bcneal, the brilliant star Fomalhaut," of between the lst and 20 masenitudes, termmates the cascade in the mouth of the Bouthern Fish. Thim war is cominon to both these constellations, and is one of those from which the lomar distance is computed for ascertaining the longitude at mea. It culminatom at 9 o'clock on the 22 d of October.

Fourallaul' Deneb Kaitos, and Alpha in the head of the Phemix, make a large trlangle, whose vertex is in Deneb Kaitos. Those two stars of the 4th magnitudo einuaied $4^{\circ}$ o. of Bad es saud, and nearly the same distance from Ancha, are ic the tail of Capricorn. They are about $2^{\circ}$ apart. The western one is called Deneb Alged?.

The resi of the stars in the cascade are quite amall; they may be tracer? from the letter $\mathbf{Y}$, in the urn, in a southeasterly direction towards the tail of Cetus, from which the cascade suddenly bends off near Scheat, in an opposite course, and finally disappears in the mouth of the Eouthern Fish, $30^{\circ} \mathbf{8}$. of $\mathbf{Y}$.

History.-This constellation is the famous Ganymede a beautiful youth of Phrygia, son of Tros, king of Troy, or, according to Luclan, son of Dardanus. He was taken up to heaven by Jupiter as he was tending his father's flocks on Nount Ida and becanne the cuphearer of the gods in place of Hebe. There are varous opinions, however, among the ancients respecting its origin. Some suppose it represents Deucalion, who was placed among the stars after the celebrated deluge of Thessaly, 1500 yeare before the birth of our Aaviour; while othern think it designed to commeinorate Cecrops, who came from Egypt to Greece, founded Athens, established science, and introduced the arts of polished life.
The ancient Egyptians supposed the setting or disappearance of Aquarius caused the Nile to rise, by the sinking of his urn in the water.-In the Zodiac of the Hebrews, Aquarius represents the tribe of Reuben.

## PISCIS AUSTRALIS, VEL NOTIUS.

The Southern Fish.-This constellation is directly S. of Aquarius, and is represented as a fish drinking the water which Aquarius pours from his urn. Its mean declination is $31^{\circ} \mathrm{S}$. and its mean right ascension and time of passing the meridian are the same as those of Aquarius, and it is seen on the meridian at the same time; viz., on the 15 th of October. It contains 24 visible stars, of which one is of the 1 st magmrtude or between the 1st and 2 d , two are of the 3 d , and five of the 4th. The first and most beautiful of all is Fomalhaut, situated in the mouth. This is $14^{\circ}$ directly S. of Scheat in Aquarius, and may be seen passing the meridian low down in the southern hemisphere, on the 22d and 23d of October.

[^114]Ifs position in the heavens has been determined with the greatest possible accuracy, to enable navigators to find therf longitude at sea.

The mode of doing this cannot be explatined here. The problem in one of socec difficulty. It consiain in finding the angular distance between mone mar whone position is well known, and the moon when she is passing near it; also, the alitude of each, at the sanye instant, with good sextanta. These data furnish the elements of a apherical triangle, the molution of which, after various intricate corrections, is made to result in the longitude of the given place.-See wote to Arieties. In 1714, the Britizh Parliament offered a reward of 10,000 pounda sterling, to my man who should discover a method of determintmg the dongitude within $1^{\circ}$, or 60 geographic uiles of the truth; 15,000 pounds to the man who should find it within 40 miles, and 20,000 pounds, if tound within 30 miles. Theme rewarda in part have been since distributed among eminent mathematiciana, is Europe, agreeably to the respeetive merits of their ditcoveries

Histogy. -This constellation is mppoced to have taken tis name from the transformation of Venus into the shape of a fish when she fled, terrified at the horrible advances of the monster Typhon, as we have related in the mythology of the Fishes.-(Ses Pisces.)

## CHAPTER XIII.

VARIABLE AND DOUBLE ETARS-CLJETERG-NEBOLE

1. Variable Stars.-The periodical variations of brilliancy to which some of the fixed $\mathrm{s}^{*}$ ars are subject, may be reckoued among the most remarkable of their phenomena. Several stars, formerly distinguished by their splendour, have entirely disappeared; others are now conspicuous which do not seem to have been visible to the ancient observers; and there are some which alternately appear and disappear, or, at least, of which the light undergoes great periodic changes. Some seem to become gradually more obscure, as Delta in the Great Bear; others, like Beta in the Whale, to be increasing in brilliancy. Some stars have all at once blazed ${ }^{\text {forth }}$ with great splendour, and, after a gradual diminution of their light, again become extinct. The most remarkable instance of this kind is that of the star which appeared in 1572 , in the time of Tycho Brahe. It suddenly shone forth, in the constellation Cassiopeia, with a splendour exceeding that of stars of the first magnitude, even of Jupiter and of Venus, at their least distances from the earth; and could be seen, with the naked eye, on the meridian, in full day! Its brilliancy gradually diminished from the time of its first appearance, and at the end of sixteen months, it entirely disappeared, and ha:

[^115]mever been seen suce. (See a more particular account of this phenomenon, page 40.)

A nother instance of the same kind was observed in 1604, when a star of the first magnitude suddenly appeared in the nght foot of Ophiuchus. It presented, like the former, all the phenomena of a prodigious flame, being, at first, of a dazzling white, then of a reddish yellow, and, lastly, of a leaden pa eness; in which its light expired. These instances prove that the stars are subject to great physical revolutions.-Page 41.

A great number of stars have been observed whose light seems to undergo a regular periodic increase and diminution. They are properly called Variable Stars. One in the Whale has a period of 334 days, and is remarkable for the magnitude of its variations. From being a star of the second mag nitude, it becomes so dim as to be seen with difficulty througle powerful telescopes. Some are remarkable for the shortness of the period of their variation. Algol has a period of between two and three days; Delta Cephei, of $5 \frac{1}{3}$ days; Beta Lyra, of $62-5$ days ; and Mu Antinoi, of 7 days.

The regular succession of these variations precludes the supposition of an actual destruction of the stars; neither can the variations be supposed to arise from a change of distance; for as the stars invariably retain their apparent places, it would be necessary to suppose that they approach to, and recede from the earth in straight lines, which is very improbable. The most probable supposition is, that the stars revolve, cike the sun and planets, about an axis. "Such a motion;" says the elder Herschel; "may be as evidently proved, as the diurnal motion of the earth. Dark spots, or large portions of the surface, less luminous than the rest, turned alternately in certain directions, either towards or from us, will account for all the phenomena of periodical changes in the lustre of the stars, so satisfactorily, that we certainly need not look for any other cause."
2. Double Stars.- On examining the stars with telescopes of considerable power, many of them are found to be composed of two or more stars, placed contiguous to each other, or of which the distance subtends a very minute angle. This appearance is, probably, in many cases, owing solely to the optical effect of their position relative to the spectator; for it if evident that two stars will appear contiguous if they are

[^116]placed nearly in the same line of vision, althouga their real istance may be immeasurably great.

There are, however, many instances in which the angle of position of the two stars varies in such a manner as tc indrcate a revolution about each other and about a common centre. In this case they are said to form a Binary System, performing to each other the office of sun and planet, and are connected together by laws of gravitation like those which prevail in the solar system. The recent observations of Sir John Herschel and Sir James South, have established the truth of this singular fact, beyond a doubt. Motions have been detected, so rapid as to hecome measurable within very short periods of time ; and at certain epochs, the satellite or feebler star has been observed to disappear, either passing behind or before the primary, or approaching so near to it that its light has been absorbed by that of the other.

The most remarkable instance of a regular revolution of this sort, is that of Mizar, in the tail of the Great Bear ; in which the angular motion is 6 degrees and 24 minutes of a great circle, annually; so that the two stars complete a revolution about one another in the space of 584 years. About eleven twelfths of a complete circuit have been already described since its discovery in 1781, the same year in which the planet Herschel was discovered.

A double star in Ophiuchus presents a similar phenomenon, and the satellite has a motion in its orbit still more rapid. Castor, in the Twins,* Gamma Virginis, Zeta in the Crab, Zi Bootis, Delta Serpentis, and that remarkable double star 61 Cygni, together with several others, amounting to 40 in number, $\dagger$ exhibit the same evidence of a revolution about each other and about a common centre. But it is to be remembered that these are not the revolutions of bodies of a planetary nature around a solar centre, but of sun around suneach, perhaps, accompanied by its train of planets, and their satellites, closely shrouded from our view by the splendour of their respective suns, and crowded into a space bearing hardly a greater proportion to the enormous interval which separates them, than the distances of the satellites of our plan-

[^117][^118]ets fron their primaries, bear to their distances from the stritself.

The examination of double stars was first undertaken by the late Sir Willian Herachel, with a view to the question of parallax. His atfention was, however coon arrested by the now and unexpected phenomena which theae bonlies pro cented. Bir Willian observed of them, in iJl, 2400 . Sir James South and Her mehel have given a catalogue of 380 in the Transactions of the Royal Bociety, $\mathbf{f o}$. 1824, and Bouth added 468, in 1836. Sir John Herschel, in aidikiun to the above puthished an account of 1000 , before he left England for the Cape of Good Hope, where he is, at the time we write, pushing his discoveries in the southern hem'sphere wit' great perseverance and success. Professor Struve, with the greaf Dorpat telescope, has given a catalogue of 3,063 of the most remarkable of theme dars.
The object of these catalogues ls not merely to fir the place of the gtar within men limits as will enable as easily to discover it at any future time, but atmo to tecord a description of the appearance, position, and mutual distances, of the individual stars compusing the systern, in order that subsequent observers mas have the means of detecting their connected motions, or any changes which they may exhibit. Professor Struve has also taken notice of 52 triple stars, amons Which No. 11 of the Unicorm Zeta of Cancer, and Zi of the Balance, appear to be ternary systems in motion. Quadruple and quintuple stars have likewive been observed, which also appear to revolve about a common centre of gravity; in short, every region of the heavens furnishes examples of these curious phenomens.

Colour of the Stars.-Many of the double stars exhibit the curious and beautiful phenomenon of contrasted colours; or complimentary tints. In such instances, the larger star is usually of a ruddy or orange hue, while the smaller one appears blue or green, probably in virtue of that general law of optics, which provides, that when the retina is under the influence of excitement by any bright, coloured light, feebler lights, which seen alone would produce no sensation but that of whiteness, shall for the time appear coloured with the tint complimentary to that of the brighter. Thus, a yellow colour predominating in the light of the brighter star, that of the less bright one, in the same field of view, will appear blue; while, of the tint of the brighter star verge to crimson, that of the other will exhibit a tendency to green-or even appear a vivid green. The former contrast is beautifully exhibited by lota, - $n$ Cancer; the latter by Almaach, in Andromeda-both fine double stars. If, however, the coloured star be much the less bright of the two, it will not materially affect the other: Thus, for instance, Eta Cassiopeix exhibits the beautiful combina tion of a large white star, and a small one of a rich ruddy purple.

It is not easy to conceive what variety of illumination tuen runs-a red and a green, or a yellow and a blue one-must afford to a planet revolving about either; and what charming

[^119]contrasts and gratefful viciositudes-a red and a gr een day, for instance, alternating with a white one and with daykness -might arise from the presence or absence of one or the other, or both, above the horizon. Insulated atars of a red colvar, ahmost as deep as that of blood, oceur in many parts of the heavens, but no green or blue star (of any decided hue) has, we believe, ever been noticed, unassociated with a companion brighter than itself.

Closters.-When we cast our eyes over the concave surface of the heavens in a clear night, we do not fail to observe that there are, here and there, groups of stars which seem to be compressed together more densely than those in the neighbouring parts; forming bright patches and clusters.

There is a group called the Pleiades, in which six or seven. stars may be noticed, if the eye be directed full upon it; and many more if the eye be turned carelessly aside, while the attention is kept directed* upon the group. Telescopes show fifty or sixty large stars thus crowded together in a very moderate space, and comparatively insulated from the rest of the heavens. Rheita affirms that he counted 200 stars in this small cluster. The constellation, called Coma Berenices, is nnother group, more diffused, and consisting of much larger stars.

In the constellation Cancer, there is a nebulous cluster of very minute stars, called Prosepe, or the Beehive, which is sufficiently luminous to be seen by the naked eye, in the absence of the moon, and which any ordinary spyglass will resolve into separate stars. In the sword-handle of Perseus, also, is another such spot, crowded with stars. It requires, ho vever, rather a better telescope to resolve it into individual stars.

These are called Clusters of Stars. Whatever be their nature, it is certain that other laws of aggregation subsist in these spots, than those which have determined the scattering of stars over the general surface of the sky. Many of them, undeed, are of an exactly round figure, and convey the idea of a globular space filled full of stars, and constituting, in itself, a family or society apart, and subject only to its own internal laws.
"It would be a vain task," says the younger Herschel, " to

[^120][^121]attempt to count the stars in one of these globvar clusters They are not to be reckoned by hundreds; for it would anpear that many clusters of this description must contain, at least, ten or twenty thousand stars, compacted and wedged together in a round space, not more than a tenth part as large as that which is covered by the moon.
4. Nebula.-The Nebulë, so called from their dim, cloudy appearance, form another class of objects which furnish matter for curious speculation, and conjecture respecting the formation and structure of the sidereal heavens. When examined with a telescope of moderate powers, the greater part of the nebula are distinctly perceived to be composed of little stars, imperceptible to the naked eye, because, on account of their apparent proximity, the rays of light proceeding from each are blended together, in such a manner as to produce only a confused luminous appearance.

In other nebulx, however, no individual stars can be perceived, even through the best telescopes; and the nebula exhibit only the appearance of a self-luminous or phosphorescent patch of gaseous vapour, though it is possible that even in this case, the appearance may be owing to a congeries of stars so minute, or so distant, as not to afford, singly, sufficient light to make an impression on the eye.

In some instances a nebula presents the appearance of a faint luminous atmosphere, of a circular form, and of large extent, surrounding a central star of considerable brilliancy.

One of the most remarkable nebula is in the sword-handle of Orion. It is formed of little flocky masses, like wisps of cloud, which seem to adhere to many small stars at its outskirts. It is not very unlike the mottling of the sun's disk, but of a coarser grain, and with darker intervals. These wisps of light, however, present no appearance of being composed of small stars; but in the intervals between them, we fancy that we see stars, or that, could we strain our sight a little more, we should see them. These intervals may be compared to openings in the firmament, through which, as through a window, we seem to get a glimpse of other heavens, and brighter regions beyond.-Page 58.

Anoth er very remarkable nebula is that in the girdle of And omeda, which, on account of its being visible to the naked ey $\%$, has been known since the earliest ages of astronomy. It is ften mistaken for a comet, by those unacquainted with the

[^122]meavens. Marius, who noticed it in 1612 , describes its $9 p$ pearance as that of a candle shining through horn; and the resemblance is certainly very striking. Its form is a long oval, increasing, by insensible gradations of brightness, from the circumference to a central point, which, though very much brighter than the rest, is not a star, but only a nebula in a high state of condensation. No power of vision hitherto drrected to this nebula has been able to resolve it into the least appearance of staxs. It occupies an area comparatively large -equal to that of the moon in quadrature.-This nebula may be considered as a type, on a large scale, of a very numerous class of nebulæ, of a round or oval figure, increasing more o less in density towards the centre.

Annular nebula also exist, but are among the rarest objects in the heavens. The most conspicuous of this class, is to be found exactly halfway between the stars Beta and Gamma Lyra, and may be seen with a telescope of moderate power. It is small, and particularly well defined; appearing like a flat oral ring. The central opening is not entirely dark, but is filled with a faint, hazy light, uniformly spread over it, like a fine gauze stretched over a hoop.

Planetary nebula are very extraordinary objects. They have, as their name imports, the appearance of planets, with round or slightly oval disks, somewhat mottled, but approaching, in some instances, to the vividness of actual planets. Some of them, upon the supposition that they are equally distant from us with the stars, must be of enormous magnitude. That one, for instance, which is situated in the left hand of Aquarius, must have a volume vast enough, upon the lowest computation, to fill the whole orbit of Herschel!

The nebulæ furnish an inexhaustible field of speculation and conjecture. That by far the larger number of them consists of stars, there can be little doubt; and in the intermingble range of system upon system, and firmament upon firmament, which we thus catch a glimpse of the imagination is bewildered and lost. Sir William Herschel conjectured that the nebulx might form the materials out of which nature elaborated new suns and systems, or replenished the wasted light of older ones. But the little we know of the physical constitution of these sidereal masses, is altngether insufficient to warrant such a conclusion.

[^123]
## CHAPTER XIV.

VIA LACTEA.

"'Throughout the Galary's extended line, Unnumber'd orbs in gay confusion ohine: Where every star that gilds the gloom of night With the faint tremblings of a distant light, Ferhaps illumes sorne system of ite own, With the atrong infuence of adiant sun."-Mrr. Carter
There is a luminous zone or pathway of singular whiteness, varying from $4^{\circ}$ to $20^{\circ}$ in width, which passes quite round the heavens. The Greeks called it Galaxy, on account of its colour and appearance: the Latins, for the same reason, called it Via Lactea, which, in our tongue, is Milky Way.

Of all the constellations which the heavens exhibit to our view, this fills the mind with the most indescribable grandeur and amazement. When we consider what unnumbered millions of mighty suns compose this cluster, whose distance is so vast that the strongest telescope can hardly separate their mingled twilight into distinct specks, and that the most contiguous of any two of them may be as far asunder as our sun is from them, we fall as far short of adequate language to express our ideas of such immensity, as we do of instruments to measure its boundaries.

It is one of the recent achievements of astronomy that has resolved the Milky-Way into an infinite number of small stars, whose confused and feeble lustre occasions that peculiar whiteness which we see in a clear evening, when the moon is absent. It is also a recent and well accredited ductrine of astronomy, that all the stars in the universe are arranged into clusters, or groups, which are called Nebule or Starry Systems, each of which consists of many thousands of stars.

The fixed star which we call our Sun, belongs, it is said, to that extensive nebula, the Milky-Way; and although apparently at such an immeasurable distance from its fellows, is, doubtless, as near to any one of them, as they are to one another.

Of the number and economy of the stars which compose this group, we have very little exact knowledge. Dr. Herschel informs us that, with his best glasses, he saw and

[^124]counted 588 stars in a single spot, without moving his telescope ; and as the gradual motion of the earth carried these out of view and introduced others successively in their places, while he kept his telescope steadily fixed to one point, "there passed over his field of rision, in the space of one quarter of an hour, no less than one hundred and sixteen thowsard atars. and at another time in forty-one minutes, 00 less than tro hundred anil fifty-eight thousand."

In all parts of the Mility-Way he found the stars unequally dispersed, and appearing to arrange themselves into separate clusters. In the small space, for example, between Beta and Sad'r, in Cygni, the stars seem to be clustering in two divisions; each division containing upwards of one hundrei. and sixty-five thousand stars.

At other observations, when examining a section of the Milky-Way, not apparently more than a yard in breadth, anc six in length, be discovered fifty thousand stars; large enougt: to be distinctly counted; and he suspected twice as many more, which, for want of sufficient light in his telescope, he saw only now and then.

It appears from numerous observations, that various changes are taking place among the nebule-that several nebule are formed by the dissolution of larger ones, and that many nebulx of this kind are at present detaching themselves from the Milky-Way. In that part of it which is in the body of Scorpio, there is a large opening, ahout $4^{\circ}$ broad, almost destitute of stars. These changes seem to indicate that mighty movements and vast operations are continually going on in the distant regions of the universe, upon a scale of magnitude and grandeur which baffles the human understanding.

More than two thousand five hundred nebule have already been observed; and, if each of them contains as many stars as the Milky-Way, several hundreds of millions of stars must exist, even within that portion of the heavens which lies open to our observation.

> "O what a confuence of ethereal fires, From urns unnumber'd down the mteep of hemven Btreams to a point, and centres on my eight"

Although the Milky-Way is more or less visible at all sensons of the year, yet it is seen to the best advantage donng the months of July, August, September, and October. When Lyra is on, or near the meridian, it may be seen

[^125]stretching obliquely over the heavens from northeast to souta west, gradually moving over the firmament in common with other constellations.
Its form, breadth and appearance are various, in different perts of its course. In some places it is dense and luminous; in others, it is scattered and faint. Its breadth is often not more than five degrees; though sometimes it is ten or fifteen degrees, and even twenty. In some places it assumes a double path, but for the most part it is single.
If may be traced in the heaveng, beginning near the head of Copbots, about $30^{\circ}$ from the north pole, through the conntellitions Cataiopelis, Perieve, Auriga, and part of Orion and the feet of Gernini, where tt cromes the Zodiac; thence ever the equidoctial into the southern hemiephere, through Monoceros, and the medte of che ship Argo, where It in mone luminous, Charlen'a Ouk, the Croea, the foet of the Contaur, and the Altir. Hers it is divided into two branches, ts it pases over the Zodiac again tnto the northern hemiaphere. One branch runa Mrough the tail of Ecorpla, the bow of Aagittarius, the कhleld of Sobinetc, the feer of Ancinous, Aquite, Delphinus, the Arrow, and the fown. The other branch pacmes through the upper part of the tail of Ecorpio, the side of Berpentarius, Curus Ponintowath, the Goove and the neck of the Swan, where th again unitel Fith the othor branch, and pataes on to the bead or Cepheus, the place of ite be thouing.

There are several other nebulx in the heavens as large as the Milly-Way, but not visible to the naked eye, which may exhibit the phenomenon of a lucid zone to the planetary worlds that may be placed within them.
Alome of the pagan philomophern maintained that the Milky-Way was forroerty the sun's path, and that its present luminous appearance in the track which tif ccattered beams left risibfe in the hearena.
The ancient poets and even philoeophern, apeak of the Galaxy, or Millo Wiys, as the pach which their detioes used in the heavena, and which lof siroxt, oftio throne of Jupter. Than, Oild, in bil Metamorphosea, Book i:-
"A wry there is in heaven's extended platin, Which when the thien are clear is meen bolow, And mortale, by the name of Milky, know; The groundwort is of starn, through which the roed Lins open to the Thunderer $x^{\prime}$ abode."
Mition elindes to this, in the following linen:-
" ${ }^{3}$ droed and ample road, whone duat is gold, And pevement ctars as elars to thee appear, Been in the Gelary, that Milky-Way, Which ntghtly es a circling zone, thou eoent Powndored with etars:"

## CHAPTER XV.

ORION OF THE CONSTELLATIONB.
The science of astronomy was cultivated by me mame diate descendants of Adam. Joseprus informs us that the

[^126]nons of SETH eraployed themselves in the study of astronomy, and that they wrote their observations upon two pillars, one of brick, and the other of stone, ${ }^{*}$ in order to presprve them against the destruction which AdAm had foretold should come upon the earth. He also relates, that Abraham argued the unity and power of God, from the orderly course of things both at sea and land, in their times and seasons, and fiom his observations upon the motions and influences of the sun, moon, and stars; and that he read lectures in astronomy and arithmetic to the Egyptians, of which they understood nothing till Abraham brought thes sciences from Chaldea to Egypt; from whence they par ed to the Greets.

Berosus also observes that Abraham was a great and just man, and famous for his celestial observations; the making of which was thought to be so necessary to the human welfare, that he assigns it as the principal reason of the Almichty's prolonging the life of man. This ancient historian tells us, in his account of the longevity of the antediluvians, that Providence found it necessary to prolong man's days, in order to promote the study and advancement of virtue, and the improvement of geometry and astronomy, which required, at least, six hundred years for making and perfecting observations. $\dagger$

When Alexander toot Babylon, Calisthenes found that the most ancient observations existing on record in that city, were made by the Chaldeans about 1903 years before that period which carries us back to the time of the dispersion of mankind by the confusion of tongues. It was 1500 years after this that the Babylonians sent to Hezekiah, to inquire about the shadow's going back on the dial of Ahaz.

It is therefore very probable that the Chaldeans and Egypbians were the original inventors of astronomy; but at what period of the world they marked out the heavens into constellations, remains in uncertainty. La Place fixes the date thirteen or fourteen hundred years before the Christian era, since it was about this period, that Eudoxus constructed the Girst celestial sphere upon which the constellations were de-

[^127][^128]lineatel.* Sir Isaac Newton was of opinion, that all the old constellations related to the Argonautic expedition, and that they were invented to commemorate the heroes and events of that memorable enterprise. It should be remarked, however, that while none of the ancient constellations refer to transactions of a later date, yet we have various accounts of them, of a much higher antiquity than that exent.

Some of the most leamed antiquarians of Europe have searched every page of heathen mythology, and ransacked all the legends of poetry and fable for the purpose of rescuing this subject from that impermeable mist which rests upon it, and they have only been able to assure us, in general terms, that they are Chaldean or Egyptian hieroglyphics, intended to perpetuate by means of an imperishable record, the memory of the times in which their inventors lived, their religion and manners, their achievements in the, arts, and whatever in their history, was most worthy of being commemorated. There was at least, a moral grandeur in this idea; for an event thus registered, a custom thus canonized, or thus enrolled among the stars, must needs survive all other traditions of men, and stand forth in perpetual characters to the end of time.

In arranging the constellations of the Zodiac, for instance, it would be natural for them, we may imagine, to represent those stars which rose with the sun in the spring of the year, by such animals as the shepherds held in the greatest esteem at that season; accordingly, we find Aries, Taurus, and Gemini, as the symbols of March, April, and May.

[^129][^130]Wnen the sun enters the sign Cancer, at the sumneer soimace, he discontinues his progress towards the north pole, and tregins to return towards the south pole. This retrograde mu tion was fitly represeuted by a Crab, which is said to go backwards. The sun enters this sign about the 22d of June.

The heat which usually follows in the next month, was represented by the Lion; an animal remarkable for its fierceness, and which at this season was frequently impelled bv thirst, to leave the sandy desert, and make its appearance $n$ the banks of the Nile.

The sun entered the sixth sign about the time of harvest, which season was therefore represented by a Virgin, or female reaper, with an ear of corn. in her hand.

At the autumnal equinox, when the sun enters Libra, the days and nights are equal all over the world, and seem to observe an equilibrium or balance. The sign was therefore represented under the symbol of a pair of Scales.

A urumn, which produces fruit in great abundance, brings with it a variety of diseases, and on this account was represented by that venomous animal the Scorpion, which, as he recedes, wounds with a sting in his tail. The fall of the leaf was the season frir hunting, and the stars which mark the sun's path at this time were represented by a huntsman, or archer, with his arrows and weapons of destruction.

The Goat, which delights in climbing and ascending some mountain or precipice, is the emblem of the winter solstice, When the sun begins to ascend from the southern tropic, and gradually to increase in height for the ensuing half year.

Aquarius, or the Water-Bearer, is represented by the figure of a man pouring out water from an urn, an emblem of the dreary and uncomfortable season of winter.

The last of the zodiacal constellations was Pisces, or a souple of fishes, tied lack to back, representing the fishing season. The severity of winter is over; the flocks do not afford sustenance, but the seas and rivers are open and abound with fish.

> "Thus monstrous forma, o'er heaven's nocturnal arch Seen by the sage, in poupp celestial march; Gce Ares there his glittering bow unfold, And raging Taurus toss his horns of gold; With bended bow the sullen Archer lowers, And there Aquarius comes with all his showers ;

[^131]
## Loas and Centeurs, Corgone, Hydras rien, And gods and heroes blaze slong the skien."

Whatever may have led to the adoption of these rude nameas at first, they are now retained to avoid confusion.

The early Greeks, however, displaced many of the Cbaldean constellations, and substituted such images in their placs as had a more special reference to their own history. I'le Romans, also, pursued the same course with regard to their Fistory; and hence the contradictory accounts that have desce ded to later times.

Some, moreover, with a desire to divest the science of the stars of its pagan jargon and profanity, have been induced to alter both the names and figures of the constellations. In doing this, they have committed the opposite fault; that of blending them with things sacred. The "venerable Bede," - for example, instead of the profane names and figures of the twelve constellations of the Zodiac, substituted those of the twelve apostles. Julius Schillerius, following his example, completed the reformation in 1627, by giving Scripture names to all the constellations in the heavens. Weigelius, too, a celebrated professor of mathematics in the university of Jena, made a new order of constellations, by converting the firmament into a coelum aeraldicum, in which he introduced the arms of all the princes of Europe. But astronomers, genefally, never approved of these innovations; and for ourselves, we had as lief the sages and heroes of antiquity should continue to enjoy their fancied honours in the sky, as to see their places supplied by the princes of Europe.

The number of the old constellations, including those of the Zodiac, was only forty-eight. As men advanced in the knowledge of the stars, they discovered many, but chiefly in southern latitudes, which were not embraced in the old constellations, anc sence arose that mixture of ancient and mod ern names which we meet with in modern catalogues.

[^132][^133]Astronomers divide the heavens into three parta, callod the morthern and southern hemispheres, and the Zodiac. In the northern hemisphere, astronomers usually reckon thirty-four constellations; in the Zodiac twelve, and in the southers hemisphere forty-seven; making, in all, ninety-three. Besidea these, there are a fow of inferior note, recently formed, which are not considered stufficiently important to be particularly described.

About the year 1603, John Bayer, a native of Germany, mvented the convenient system of denoting the stars in each constellation by the letters of the Greek alphabet, applying to the largest star the first letter of the alphabet; to the nest largest the second letter, and $s 0$ on to the last. Where there are more stars in the constellation than there are Greek letters, the remainder are denoted by the letters of the Roman alphabet, and sometimes by figures. By this system of notation, it is now as easy to refer to any particular star in the heavens, as to any particular house in a populous city, by ite street and number.

Before this practice was adopted, it was customary to denote the stars by referring them to their respective situations in the figure of the constellation to which they severally belonged, as the head, the arm, the foot, sc.

It is hardly necessary to remark that these figures, which are all very curiously depicted upon artificial globes and maps, are, purely, a fanciful invention-answering many convenient ends, however, for purposes of reference and classification, as they enable us to designate with facility any particular star, or cluster of stars; though these clusters very rarely, if ever, represent the rea! figures of the object whose names they bear. And yet it is comewhat remarkable that the name of "Great Bear," for instance, should have been given to the very same constellation by a nation of American aborigines, (the Iroquois, and by the most ancient Arabs of Asia, when there never had been any communication between them! Among other nations, also, between whom there exists no evidence of any intercourse, we find the Zodiac divided into the same number of constellations, and these distinguished by nearly the same names, representing the twelve months, or seasons of the year.

The history of this whimsical personification of the stars canies us back to the earliest times, and introduces us, as we have seen, to the langrages and customs, the religion and

[^134]puerry the sciences and arts, the tastes, talents, and pecul: genius, of the early nations of the earth. The ancient Atlantides and Ethiopians, the Egyptian priests, the magi of Persia, the shepherds of Chaldea, the Bramins of India, the mandarins of China, the Phœnician navigators, the philosophers of Greece, and the wandering Arabs, have all added more or less to these curious absurdities and ingenious inventions, and have thus registered among the stars, as in a sort of album, some memorial of themselves and of the times in which they lived. The constellations, or the uncouth figures by which they are represented, are a faithful picture of the ruder stages of civilization. They ascend to times of which no other record exists; and are destined to remain when all others shall be lost. Fragments of history, curious dates and documents relating to chronology, geography, and languages, are here preserved in imperishable characters. The adventures of the gods, and the inventions of men, the exploits of beroes, and the fancies of poets, are here spread out in the heavens, and perpetually celebrated before all nations. The Seven stars, and Orion, present themselves to us, as they appeared to Amos and Homer: as they appeared to Job, more than 3000 years ago, when the Almighty demanded of him"Knowest thou the ordinances of heaven? Canst thou bind the sweet influences of the Pleindes, or loose the bands of Orion 7 Canst thou bring forth Mazzaroti in his season, or canst thou guide Arcturds with his sons ?". Here, too, are consecrated the lyre of Orpheus, and the ship of the Argonauts; and, in the same firmament, glitter the mariuer's compass and the telescope of Herschel.

## CHAPTER XIV.

## NUMBER, DIETANCE, AND ECONOMY OF THE ETARS.

Tus first conjecture in relation to the distance of the fired ctars, is, that they are all placed at an equal distance from the observer, upon the visible surface of an immense concave vault, which rests upon the circular boundary of the world, and which we call the Firmament.

We can with the unassisted eye, form no estimate of their respective distances; nor has the telescope yet enabled us to arrive at any exact results on this subject, although it has revealed to us many millions of stars that are as far removed

[^135]beyond those which are barely visible to the naked eye, wh these are from us. Viewed through the telescope, the hetavens become quite another spectacle-not only to the understanding, but to the senses. New worlds burst upon the sight, and old ones expand to a thousand times their former dimensions. Several of those little stars which but feebly twinkle on the unassisted eye, become immense globes, with land and water, mountains and valleys, encompassed by atmospheres, enlightened by moons, and diversified by day and night, summer and winter.

Beyond these are other suns, giving light and life to other systems, not a thousand, or two thousand merely, but multiplied without end, and ranged all around us, at immense distances from each other, attended by ten thousand times ten thousand worlds, all in rapid motion; yet calm, regular and harmonious-all space seems to be illuminated, and every particle of light a world.

It has been computed that one hundred millions of stars which cannot be discerned by the naked eye, are now visitle through the telescope. And yet all this vast assemblage of suns and worlds may bear no greater proportion to what lies heyond the utmost boundaries of human vision, than a drop of water to the ocean ; and, if stricken out of being, would be no more missed, to an eye that could take in the universe, than the fall of a single leaf from the forest.

We should therefore learn, (says an eminent divine of the present century,*) not to look on our earth, as the universe of God, but as a single, insignificant atom of it ; that it is only one of the many mansions which the Supreme Being has created for the accommodation of his worshippers; and that he may now be at work in regions more distant than geometry ever measured, creating worlds more manifold than numbers ever reckoned, displaying his goodness, and spreading over all, the intimate visitations of his care.

The immense distance at which the nearest stars are known. to be placed, proves that they are bodies of a prodigious size, not inferior to our sun, and that they shine, not by reflected rays, but by their own native light. It is therefore concluded, with good reason, that every fixed star is a sum, no less spacious than ours, surrounded by a retinue of planetary worlds, which

[^136][^137]revolve around it as a centre, and derive from it light and heat, and the agreeable ricissitudes of day and night.

These vast globes of light, then, could never have been dosigned merely to diversify the voids of infinite space, nor to abed a few glimmering rays on our far distant world, for the amusement of a few astronomers, who, but for the most powerful telescopes, had never seen the ten thousandth part of them. We may therefore rationally conclude, that wherever the All-wise Creator has exerted his creative power, there also he has placed intelligent beings to adore his goodness.

Fipparchus, the father of atronomy, first made a catalogue of the fixed stars. It contained 1022. The accuracy with which the places of these were recorded, has conferred esaential benefit upon the seience, and hat enabled us so aolve many celestial phenomena and problems of chronology, which other wise had been diffre ult.

During the $18 t h$ century, upwards of 100,000 were catalogued by the rarions antronomers of Europe, anc their position in the heavens determined with an oxactnens that meldom varied a second from the truth; insomuch that it has been jualy remarked, that "there la scarcely a star to be seen in the heavens, whone place and situation is not better known than that of mont citiel and towns upon the earth."

But the margazers of our times are not idle. Profegsor Bemgell of Konigt berg, observed in three years, it is amerted, between 30,000 and 40,000 atars, comprehended within a zone of $15^{\circ}$ on each side of the equator; but even this great number is but a emall portion of the whole number which lie within the limit of the zone which he examined. To procure a more complete gurvey, the acedemy of Berlin proposed that this same zone should be parcelled oat among twenty-four observers, and that each should confine himeelf to an hour of ritht ascention, and examine It in minute detail. This plan was adopted; and the 10 th hour was confided to Professor lnghirami, of Florence, and examined with eo much care, that the positions of 75,000 stara in it, have been determined. Profegsor M. Gtruve, of the Dorpat university, has examined in person, 120,000 etars, of which 800 (double ones) were before unknown to science.

The labours of Sir Wm. Herschel were chiefly devoted to exphoring the ny terme of nebulss and double stars that lie, for the moan part, beyond the reach of ordinary teleacopes. No fewer than theo thousand five hundred nebulse were observed by thi indefatigable astionomer, whose placen have been computed from his observations, reduced to a common epach, and arranged into a cotalogue in order of their right eacensiong by his gister Miss Carolnse Hzracering a lady so justly celebrated in Furope for her antronomical knowledge and discoveries, but whose name strange tal it is, is seldom mentioned in this country. Be it remembered, nevertheless, for her fame, that she discovered two of the escellites of the planer which bears hor brother's name, besides amultitude of compta.

The greatest possible ingenuity and pains have been taken by astronomers to determine, at least, the approximate distance of the nearest fixed stars. If they have hitherto been unsble to arrive at any satisfactory result, they have at least, established a limit beyond which the stars must necesearily be placed. If they have failed to calculate their true distances from the earth, it is because they have not the requisite data. The solution of the problem, if they had the data, would not be mure difficult than to compute the relative dis-

[^138]maces of the planeto-a thing which any sohool-loy can ta In estimatiog so great a distance as the nearest fixed star, it is necessary that we employ the longest measure which antronomy can use. Accordingly, we take the whole diamo:er of the earth's orbit, which, in round numbers, is 190 millions of miles, and endeavour, by a simple process in mathematica to ascertain how many measures of this length are contained m the mighty interval which separates us from the stars.

The method of doing this can be explained to the approhension of the pupil, if he does not shrink from the illustrotion, through an idle fear that it is beyond his capacity.

For example; suppose that, with an instrument constructed for the purpose, we should this night take the precise bearing or angular direction from us of some star in the northern hemisphere, and note it down with the most perfect exactness, and, having waited just six months, when the earth shall have arrived at the opposite point of its orbit, 190 millions of miles east of the place which we now occupy, we should then repeat our observation upon the same star, and see how much it had changed its position by our travelling so great a distance one side of it. Now it is evident, that if it changes its apparent position at all, the quantity of the change will bear some proportion to the distance gone over; that is, the nearer the star, the greater the angle; and the more remote the star, the less the angle. It is to be observed, that the angle thus found, is called the star's Annual Parallax.
But it is found by the most eminent astronomers of the age, and the most perfect instruments ever made, that this parallax does not exceed the four thousandth part of a dogree, or a single second; so that, if the whole great orbit of the earth were lighted up into a globe of fire 600 millions of miles in circumference, it would be seen from the nearest star only as a twintling atom ; and to an observer placed at this distance, our sun, with its whole retinue of planetary worlds, would occupy a space scarcely exceeding the thickness of a noider's web." If the nearest of the fixed stars are placed at

[^139]much inconceivable distances in the regions of space, whith what line shall we measure the distance of those which are a thousand or a million of times as much farther from them, as these are from us.

If the annual parallax of a star were accurately known, it would be easy to compute its distance by the following rule As the sine of the star's parallax: Is to radins, or ninety degrees : : So is the Earth's distance from the sun: To the star's distance from the sun.
If we allow the annual parallax of the nearest star to be 1'1, the calculation will be,

As $0.0000048481368=$ Nat. Sine of $1^{\prime \prime}$.
Is to $1.0000000000000=$ Nat. Sine of $90^{\circ}$.
So is $95,273,868.867748554=$ Earth's distance from the sun.
To $19,651,627,683,449=$ Star's distance from the sun.
In this calculation we have supposed the earth to be placed at the mean dismace of 24,047 of its 0 wn semf-diauneters, or $96,273,86886 \% 748654$ milea from the sun, which makes the star's distance a very lithe lese than twenty billions of miles. Dr. Herschel mays that Sirins cannot be nearer than 100,000 times the dismeter of the earth's orbit, or $19,007,788,800,000$ of miles.

Biot, who either takes the earth's distance grecter than he lays it down in his TYasie' Elementaire d' Astronomie Physique, or has wade an errour in figures makes the distance 20,086,808,036,404. Dr. Brewster makes it $20,158,655,000,006$ miles. A mean of these computations, us 20 bllions ; that is, 20 millions of mill lons of miles, to a parallax or $f^{\prime \prime}$

Astmnomers are generally agreed in the opinior that the annual parallax of the stars is less than $1^{\prime \prime}$, and cunsequently that the nearest of them is placed at a much greater distance from us, than these calculations make it. It was, however, announced durizg the last ycar, that M. D'Aseas, a French astronomer had satisfactorily established the sinnual parallax of Keid, (a small star $8^{\circ}$ N. of Camma Eridani, to be $2^{\prime \prime}$, that of Rigel, in Orion to be $1^{\prime \prime}$. 43 and that of Siriue to be $1^{\prime \prime}$. 24. If these results may be relied on, Keid is but 10 billions, Rigel but 14 billions, and Sirius 16 billions of miles from the earth. This latter distance is, mowever, 00 great that, If Siriug were to fall towards the earth at the rate of $\pi$ million of mifes a day, it would take it forty threc thousand, three hundred years to reach the earth; or, If the Almighty were now to blot it out of the heavens, is: brilliance would continue undiminished in our hemisphere for the space of thmo yearn.

The most brilliant stars, till recently, were supposed to be wituated nearest the earth, but later observations prove that this opinion is not well founded, since some of the smaller etars appear to have, not only a greater annual parallax, but an absolute motion in space, much greater than those of the brightest class.

[^140]It has been computed that the light of Sirius, alshough twenty thousand million times less than that of our Sun, ist nevertheless, three hundred and twenty-four fimes greater than that of a star of the sixth magnitude If we suppose the two stars to be really of the same size, it is easy to show that the star of the sirth magnitude is fifty-seven and one third times farther from us than Sirius is, because light diminishes as the square of the distance of the luminous body increases.

By the same reamoning th may be shown, that If Birfus were placed where the con is, it would appear to na to be four tines as large as the Sum, and give four times as moch light and heat. It in by no means unressonable to suppose, tha many of the fixed stars exceed a milion of miles in diameter.

We may pretty safely affirm, then, that stars of the sixth magnitude, are not less than 900 millions of millions of milen distant from us; or a million of times farther from us than the planet Saturn, whicin is scarcely visible to the naked eye. But the human mind, in its present state, can no more appreciate such distances than it can infinity; for if our earth, which muves at more than the inconceivable velocity of a million and a half of miles a day, were to be hurried from its orbit, and to take the same rapid flight over this immense tract, it would not traverse it in sixteen hundred thousand years; and every ray of light, although it moves at the rate of one hundred and ninety-three thousand miles in a single secoud of time, is more than one bundred and seventy years in coming from the star to us.

But what is even this, compared with that measureless extent which the discoveries of the telescope indicate? According to Dr. Herschel, the light of some of the nebule, just perceptible through his 40 feet telescope, must have been a million of ages in coming to the earth; and should any of them be now destroyed, they would continue to be perceptible for a million of ages to come.

Dr. Herschel informs us, that the glass which he ueed, would meparate atart m 497 times the distance of Sirius.

It is one of the wonders of creation that any phenomena of bodies at such an immense ristance from us should be perceptible by human sight ; but it is a part of the Divine Maker's plan, that although they do not act physically upon us, yet they should so far be objects of our perception, as

[^141]to expand our ideas of the vastness of the universe, and of the stupendous extent and operations of his omnipotence.
"With these facts before us," says an eminent astronomer end divine, "it is most reasonable to conclude, that those expressions in the Mosaic history of Creation, which relates to the creation of the fixed stars, are not to be understood as referring to the time when they were brought into existence, as if they bad been created about the same time with our earth; but as simply declaring the fact, that, at whatever period in duration they were created, they derived their existence from God."
"That the stars here mentioned," (Gen. i. 16.) says a distinguished commentator,* "were the planets of our system, and not the fixed stars, seems a just inference from the fact, that after mentioning them, Moses immediately subjoins, 'And Elohim set them in the firmament of the heaven to give light upon the earth, and to rule over the day and over the night;' evidently alluding to Venus and Jupiter, which are alternately our morning and evening stars, and which 'give light upon the earth,' far surpassing in brilliancy any of the fixed stars."
However vat the univerve now appears; huwever numerous the worlde
which may exiat within tis boundless range, the language of scriptare, and
Bcripture alone, in sufficiently comprehensive and uublime, to express all the
gunotions which naturally arise in the mind when contemptating its structure.
This shows not only the harmony which subsists between the discoverien of
the Revelation and the discoveries of Science, but also forms by itself, a strong
presumptive eridence, that the recorda of the Bible are authentic and divino.

We have hitherto described the stars as being immoveable and at rest ; but from a series of observations on double stars, Dr. Herschel found that a great many of them have changed their situations with regard to each other; that some perform revolutions about otbers, at known and regular periods, and that the motion of some is direct, while that of others is retrograde; and that many of them have dark spots upon their surface, and turn on their axes, like the sun.

A remarkable change appears to be gradually taking place in the relative distances of the stars from each other in the constellation Hercules. The stars in this region appear to be spreading farther and farther apart, while those in the opposite point of the heavens seem to close nearer and nearer together in the same maniner as when walking through a

[^142]Grest, the trees towards which we advance, appear to be cunstantly separating, while the distance between those which we leave behind, is gradually contracting.

From this appearance it is concluded, that the Sun, with all its retinue of planetary worlds, is moving through the regions of the universe, towards some distant centre, or around some wide circumference, at the rate of sixty or seventy thousand miles an hour; and that it is therefore highly prob able, if not absolutely certain, that we shall never occupy that portion of absolute space, through which we are at this moment passing, during all the succeeding ages of eternity.*

The author of the Christian Philosopher endeavours to convey some idea of the boundless extent of the universe, by the iollowing sublime illustration :-
"Suppose that one of the highest order of intelligences is endowed with a power of rapid motion superior to that of light, and with a corresponding degree of intellectual energy ; that he has been flying without intermission, from one province of creation to another, for sir thousand years, and will continue the same rapid course for a thousand millions years to come; it is highly probable, if not absolutely certain, that, at the end of this vast tour, he would have advanced no farther than the 'suburbs of creation,- -and that all the magnifzent systems of material and intellectual beings he had surveyed, during his rapid flight, and for such a length of ages, pear no more proportion to the whole empure of Omnipotence, than the sma*iest grain of sand does to all the particles of unatter contai ed in ten thousand worlds."

Were a se uph, in prosecuting the tour of creation in the manner nor no farther stated, ever to arrive at a limit beyond which plays of the Divinity could be perceived, the conght wo overwhelm his faculties with unutterable emotions; he $n$ uld teel that he had now, in some measure, comprehended all the plans and operations of Omnipotence, and that no farther manifestation of the Divine glory remained to be explored. But we may rest assured that this can mever happen in the case of any created intelligence.
There ia moreover an argument dertvable from the lawe of the phyeleal world that seems to atrengthen, I had ahnowi mald, to confirm, this ides of the bofinaty of the material univerme. It is this-If ihe nimmber of stars be fwite


[^143][^144]> th one cothim, and in time woould xaite in one. But if the number be inforit, and Ary uccupy an infinite oppace, all parts would be nearly in equilibria, and con enguently each fixed star, being equally attractod in every directiom, scould crep is place.

No wonder, then, that the Psalmist was so affected with the idea of the immensity of the universe, that he seems almost afraid lest he should be overlooked amidst the immensity of beings that must needs be under the superintendence of God ; or that any finite mortal should exclaim, when contemplating the heavens-" What is man, that THOU art mindful of him!"

## CHAPTER XVII.

## FALLING, OR sHOUTLNG 8TABS.

The phenomenon of shooting stars, as it is called, is com mon to all parts of the earth ; but is most frequently seen in tropical regions. The unerring aim, the startling velocity, nd vivid brightness with which they seem to dart athwart the sky, and as suddenly expire, excite our admiration; and we often ask, "What can they be?"

But frequent as they are, this interesting phenomenon is not well understood. Some imagine that they are occasioned by electricity, and others, that they are nothing but luminous gas. Others again have supposed, that some of them are luminous bodies which accompany the earth in its revolution around the sun, and that their return to certain places might be calculated with as much certainty and exactness as that of any of the comets.

Dr. Burney, of Gosport, kept a record of all that he observed in the course of several years. The number which be noticed in 1819, was 121, and in 1820, he saw 131. Professor Green is confident that a much larger number are annually seen in the United States.

Signior Baccaria supposed, they were occasioned by electricity, and thinks this opinion is confirmed by the foilowing observations. Ahout an hour after sunset, he and some friends, that were with him, observed a falling star, dırecting its course directly towards them, and apparently growing larger and larger, but just before it reached them it disap-

[^145]peared. On vanishing, their faces, hands, and clothes, with tae earth, and all the neighbouring objects, became suddenly illuminated with a diffiused and lambent light. It was attended with no norse. During their surprise at this appearance: a servant informed them, that he had seen a light shine suddenly in the garden, and especially upon the streams which he was throwing to water it.

The Signior also observed a quantity of electric matter collect about his kite, which had very much the appearance of a falling star. Sometimes he saw a kind of halo accompanying the kite, as it changed its place, leaving some glimmering of light in the place it had quitted.

Shooting stars have been supposed by those meteorologists who refer them to electricity or luminous gas, to prognosticate changes in the weather, such as rain, wind, \&c.; and there is, perhaps, some truth in this opinion. The duration of the brilliant tract which they leave behind them, in their motion through the air, will probably be found to be longer or shorter, according as watery vapour abounds in the atmosphere.

The notion that this phenomenon betokens high winds, is of great antiquity. Virgil, in the first book of his Georgics, expresses the same idea :-
"Eappe eifam stellas vento impendente videbis
Pracipites colo labi; noctisque per umbram
Flanmarum longos a tergo albescere tractun
And oft, before tempestuoum winds arlse,
The seeming stars fall headlong from the skies,
And abooting through the darkness, gild the nfint
With aveeping glories and long trais of light."

The number of shooting stars, observed in a single night, though variable, is commonly very small. There are, however, several instances on record of their falling in "sbowers" -when every star in the firmament seems loosened from its sphere, and moving in lawless flight from one end of the heavens to the other. As early as the year 472, in the month of November, a phenomenon of this kind took place near Jonstantinople. As Theophanes relates, "The sky appeared to be on fire," with the corruscations of the flying meteors.

A ehower of mars, axactly stowilar took place in Canade, between the 3d and th of July, 1814, and another at Montreal, in November, 1819. In all thene caeom a residuum, or black dust, was deposited upon the surface of the waters, and upon the roofin of buildinge and other objects. In the year 1810, "inflamed eubstances," it is said, rell into and around lake Van, in Armenia, which stained the water of a blood colour, and cleft the earth in various places. On the Eth of

[^146]Eeqtamber, 1819, a like phenomenon was seen In Moravia. History furniahea many more instances of meteoric ahowers, depositing a rea dust, in come places mo plentiful as to admit of chymical analysis.

The commissioner, (Mr. Andrew Ellicott,) who was sent out by our government to fix the boundary between the Spanish possessions in North America and the United States, witness ed a very extraordinary flight of shooting stars, which filled the whole atmosphere from Cape Florida to the West India Islands. This grand phenomenon took place the 12th of November, 1799, and is thus described:-"I was called up," says Mr. Ellicott, "about 3 o'clock in the morning, to see the shooting stars, as they are called. The phenomenon was grand and awful. The whole heavens appeared as if illuminated with skyrockets, which disappeared only by the light of the sun, after daybreak. The meteors, which at any one instant of time, appeared as numerous as the stars, flew in all possible directions except from the earth, towards which they all inclined more or less, and some of them descended perpendicularly over the vessel we were in, so that I was in constant expectation of their falling on us."

Mr. Ellicott further states that his thermometer which had been at $80^{\circ}$ Fahr. for the four days preceding, fell to $56^{\circ}$ about 4 o'clock, A. M., and that nearly at the same time, the wind changed from the south to the northwest, from whence it blew with great violence for three days without intermissii ...

These same appearances were observed, the same night, at Santa Fe de Bogota, Cumana, Quitc, and Peru, in Sou:n America; and as far north as Labrador and Greenland, extending to Weimar in Germany, being thus visible over an extent on the globe of $64^{\circ}$ of latitude, and $94^{\circ}$ of longitude.

The calebrated Humbold, accompanied by M. Bounpland, then in S. America, thus speaks of the phenomenon:- Towards the morning of the 13th of NOvember, 1799, we winnessed a most extroordinary scene of shooting meteors. Thovsands of bolides, and failing stars succeeded each other during four hours. Their direction was very regular from north to south. From the beginning of the phenomenon there was not a space in the frmament, equal in extent to three diameters of the moon, which was not filled, every instant, with bolide or falling stars. All the meteors left luminous traces, or phosphorescent band behind them, which lasted seven or eight seconds."

This phenomenon was witnessed by the Capuchin missionarv af Ben Fernando de Affura a village situated in lat. $7^{\circ} 53^{\prime} 12^{\prime} 2^{\prime \prime}$, amidst the savandalis cf the province of Varinas; by the Franciscan monks stationed near the cataracts of the Oronoco, and at Marca, on the banks of the Rio Negro, lat $2^{\circ} 40^{\prime}$ kors. $70^{\circ} 21^{\prime}$, and in the west of Brazih, an far as the equator itseir; and also at ane city of Porto Cabello, lat. $10^{\circ} \mathbf{6}^{\prime \prime} 5 \mathcal{Z}^{\prime}$, in French Guiana, Poprayan, Quitr and Paru. It in eomewhat aurprising that the same sppearances, observed in placed 00 widely separated, anid the vast and lonely denerts of $\operatorname{sc}$. Ah America, should have been seen, the same night, in the United States, in Labrador, in Greenland and at Itterstadt, near Weimar, in Germany !

[^147]We are told that chirty pears before, at the city of Quito,
There was seen in one part of the sly, above the volcano of Cayamburo, so great a number of falling stars, that the mountain was thought to be in farnes. This singular sight lasted more than on hour. The people assembled in the plain of Exida, where magnificent riew presents itself of The hughest summits of the Cordilleras. A procession was already on the point of setting out from the convent of St . Francis, when it was perceived that the blaze on the horizon was caused by fiery meteors, which ran along the sry in all directions, at the altitude of 12 or 13 degrees."

But the most sublime phenomenon of shooting stars, of which the world has furnished any record, was witnessed throughout the United States on the morning of the 13th of November, 1833.

The entire extent of this astonishing exhibition has not been precisely ascertained, but it cover'd no inconsiderable portion of the earth's surface. It has been traced from the longitude of $61^{\circ}$, in the Atlantic ocean, to longitude $100^{\circ}$ in Central Mexico, and from the North American lakes to the West Indies.

It was not sec.n, Mowever, any where in Europe, nor in South America, nc rin eny part of the Paclicic ocean yot heard from.

Every where, within the limits abovementioned, the first appearange was that of fireworks of the most imposing grandeur, covering the entire vault of heaven with myriads of fireballs, resembling skyrockets. Their corruscations were bright, gleaming and incessant, and they fell thick as the flakes in the early snows of December. To the splendoury of this celestial exhibition, the most brilliant skyrockets and fireworks of art, bear less relation than the twinkling of the most tiny star, to the broad glare of the sun. The whole heavens seemed in motion, and suggested to some the awful grandeur of the image employed in the apocalypse, upon the opening of the sixth seal, when "the stars of heaven fell unto the earth, even as a fig-tree casteth her untimely Ggs, when she is shaken of a mighty wind."

One of the most remarkable circumstances attending this display was, that the meteors all seemed to emanate from oue and the same point, a little southeast of the zenith. Following the arch of the slyy, they ran along with immense velocity

[^148]describing in some instances, an arc of $30^{\circ}$ or $40^{\circ}$ in a fev seconds.

On more attentive inspection it was seen; that the meterrs exhibited three distinct varieties; the first, consisting of phosphoric lines, apparently described by a point; the second, of large fireballs, that at intervals darted along the sky, learing luminous trains, which occasionally remained in view for a uumber of minutes, and, in some cases, for half an hour or more ; the third, of undefined luminous bodies, which remained nearly stationary in the heavens for a long time.

Those of the first variety were the most numerous, and resembled a shower of fiery snow driven with inconceivable velocity to the north of west. The second kind appeared more like falling stars-a spectacle which was contemplated by the more unenlightened beholders with great amazement and terrour. The trains which they left, were commonly white, but sometimes were tinged with various prismatie colours, of great beauty.

These fireballs were occasionally of enormous size. Dr. Smith, of North Carolina, describes one which appeared larger than the full moon rising.* "I was," says he, "startled by the splendid light in which the surrounding scene was exhibited, rendering even small objects quite visible." The same ball, or a similar one, seen at New Haven, passed off in a northwest direction, and exploded a little northward of the star Capella, leaving, just behind the place of explosion, a train of peculiar beauty. The line of direction was at first nearly straight; but it soon began to contract in length, to dilate in breadth, and to assume the figure of a serpent scrollung itself up, until it appeared like a luminous cloud of rapour, floating gracefully in the air, where it remained in full view for several minutes.

Of the third variety of meteors, the following are remarkable examples:-At Poland, Ohio, a luminous body was distinctly visible in the northeast for more than an hour. It was very brilliant, in the form of a pruning-hook, and apparently twenty feet long, and eighteen inches broad. It gradually

[^149][^150]settied towaras tne horizon, until it disappeared. At Niagara Falls, a large, luminous body, shaped like a square table, was seen near the zenith, remaining for some time almoet stationary, emitting large streams of light.

The point from which the meteors seemed to emanate, was observed by those who fixed sts position among the stars, to be in the constellation Leo; and, according to their concurrent testimony, this radiant point was atationary among the stars, during the whole period of observation; that is, it did not move along with the earth, in its diurnal revolution eastward, but accompanied the stars in their apparent progrese westward.

A remarkable change of weather from warm to cold, accompanied the meteoric shower, or immediately followed it. In all parts of the United States, this change was remarkable for its suddenness and intensity. In many places, the day preceding had been unusually warm for the season, but, before the next morning, a severe frost ensued, unparalleled, for the time of year.

In attempting to explain these mysterious phenomena, it is argued, m the first place, that the meteors hau their origin beyond the limits of owr afmosphere; that they of course did not belong to this earth, but to the regions of space exterior to it.

The reagon on which this conclusion is founded is this:-All bodien near the earth, including the atmosphere ithelf, have a common motion with the earth mround its ade from wret to eant; but the radiant point, that indicated the oource from which the meteory emanated, followed the course of the suars frevs eat to weat; therefore, it was iadependent of the earih's roctation, and consequently, at a great distance from in and beyond the lifitis of the atmouphere. The height of the meteoric cloud, or radiamt poime, above the earth's corface was, accerding to the mesan average of Profecsor Olmated's observetions, not leas than 228 andea.

That the meteors were constituted of very light combustible materials, seems to be evident, from their exhibiting the actuad phenomena of combustion, they being consumed, or converted into smoke, with intense light; and the extreme tenuity of the substance composing them is inferred from the fact that they were stopped by the resistance of the air. Had their quantity of matter been considerable, with so prodigious a velocity, they would have had sufficient momentum to dash taem upon the earth; where the most disastrous consequences might have followed.

[^151]
#### Abstract

The momentum of even light bodies of much size, and in such numbera, zet eraing the atmosphere with such astonishing velucity, must have produced ex tensive derangements in the atmospheric equilibrium. Cold air from the nppat regonas would be brought down to the earth; the portions of air incumbent ever districts of country remote from each other, being mutially displeed, wridd exchange places, the sir of the warm latituden be transferred to colder, and that of cold latitudon, to warmer regione.


Various hypotheses have been proposed to account for this wonderful phenomena. The agent which most readily suggeste itself in this, and in many other unexplained natural appearances, is electrieity. But no known properties of electricity are adequate to account for the production of the meteors, for the motions, or for the trains which they, in many instances, left behind them. Others, again, have referred their proximate cause to magnetism, and to phosphoretted hydrogex; both of which, however, seem to be utterly insufficient, so far as their properties are known, to account for so unusual a phenomenon.

Professor Olmsted, of Yale College, who has taken much pains to collect facts, and to establish a permanent theory for the perindical recu. ience of such phenomena, came to the conclusion, that-

The meteors of November 13th, 1833, emanated from a nebulous body, which was then pursuing its way along with the earth around the sun; that this body continues to revolve around the sun, in an elliptical orbit-but little inclined to the plane of the ecliptic, and having its aphetion near the orbit of the earth; and finally, that the bordy has a period of nearly six months, and tast its perihelion is a little below the orbit of Mercury:

This theory, at least accommountes itself to the remarkable fact, that almost all the phenomena of this descrip: :n, which are known to have happened; have occurred in the two opposite months of April and November. A similar exhibition of meteors to that of November, 1833, was observed on the same day of the week, April 20th, 1803, at Richmond, in Virginia, Stockbridge, Massachusetts, and at Halifax, in Britisn America. Another was witnessed in the autumn of 1818 , in the North sea, when, in the language of the observers, "all the surrounding atmosphere was enveloped in one expansive sea of fire, exhibiting the appearance of another Moscow un flames."

Exactly one year previous to the great phenomenon of 1833, namely, on the 12th of November, 1832, a similar me-

[^152]ceoric display was seen near Mocha, on the Red sea, by Capt. Hammond and crew, of the ship Restitution.

A gratleman in South Carolima, thus describes the effect of the phenomenom of 18 A, upon hia ignorant blsela:-"I was suddenty ewakened by the mone distressing cries that ever fell on my eara. ©hrieks of borrour, and orten of mercy, I could hear from moat of the nogroes of three plantations, anounting in all to about siz or eight huodred. While earnenty limentis for the calase, I Ieard a faint voice near the door calling my name; I arome, and taking iny sword, stood the door. At this moment (heard the meme volce still beseeching me to rise, and baying : 0 ! my God, the world is on are ${ }^{\prime}$ I then opened the door, and it is diment to nay whirb excited me moat-the awfilmese of the scene, or the distressed erien of the negroes; upwarde of one humired lay prostrate on the ground-come speechlese, and wome with the biaerest criea, but meat with their handa raised, imploring God to mevo \&he wortd end them. The scepe was truly awful; for never did rain fall sach inicker, than the metcors foll towarda the earth; east, wert, north, and mouth, is was the tame ${ }^{\text {P/ }}$

Since the preceding went to priss, the Author has been politely furnished, by Professor Olmsted, with the accompanying communication.
"I am happy to hear that you propose to sterootype your 'Geography of the Heavens.' It has done much, I believe, to diffuse a popular knowledge of astronomy, and I am pleased that your efforts are rewarded by an extended patronage.
"Were f now to express my views on the subject (Meteoric Showers) in as condensed a form as possible, I should state them in some such terms as the following: The meteoric showers which have occurred for several years past on or about the 13th of November, are characterized by four peculiarities, which distinguished them from ordinary shooting stars. First, they are far more numerous than common, and are larger and brighter. Secondly, they are in much greater proportion than usual, accompanied by luminous trains. Thirdly, they mostly appear to radiate from a common centre,-that is, were their paths in the heavens traced backwards, they would meet in the same part of the heavens: this point has for three years past, at least, been situated in the constellation Leo. Fourthly, the greatest display is every where at.nearly the same time of night, namely, from three to four o'clock-a time
about half way from midnight to sanrise. The netewn are inferred to consist of combustible matter, because they are seen to take fire and burn in the atmosphere. They are known to be very light, because, although they fall towards the earth with immense velocity, few, if any, ever reach the earth, but are arrested by the arr, like a wad fired from a piece of artillery. Some of them are inferred to be bodies of comparatively great size, amounting in diameter to several hundred feet, at least, because they are seen under so large an angle, while they are at a great distance from the spectator. Innumerable small bodies thus, consisting of extremely light, thin, combustible matter, existing together in space far beyond the limits of the atmosphere, are believed to compose a body of immense extent, which has been called 'the nebulour body.' Only the shirts or extreme portions of this are brought down to the earth, while the entire extent occupies many thousand, and perhaps several millions of miles. This nebulous body is inferred to have a revolution around the sun, as well as the earth, and to come very near to the latter about tha 13th of November each year. This annual meeting every year, for several years in succession, could net take place unless the periodic time of the nebulous body is either nearly a year, or half a year. Various reasons have induced the belief that half a year is the true period; but this point is considered as somewhat doubtful. The zodiacal light, a faint light that appears at different seasons of the year, either immediately preceding the morning or following the evening twilight, ascending from the sun in a triangular form, is with some degree of probability thought to be the nebulour body itself, although the existence of such a body, revolving in the solar system, was inferred to be the cause of the meteoric showers, before any connexion of it with the zodiacal light was even thought of"

# GENERAL PHENOMENA 

OF THE

## SOLAR SYSTEM.

## , CHAPTER XVIII.

OUR attention has hitherto been directed to those bodies which we see scattered every where throughout the whole eelestial concave. These bodies, as has been shown, twinkle with a reddish and variable light, and appear to have always the same position with regard to each other. We know hat their number is very great, and that their distance from us is immeasurable. We are also acquainted with their comparative brightness and their situation. In a word, we have before us their few visible appearances, to which our knowledge of them is well nigh limited; almost all our reasonings in regard to them being founded un comparatively few and uncertain analogies. Accordingly our chief business, thus far, has been to detail their number, to desuribe their brightness and positions, and to give the names by which they have been designated.

There now remain to be considered certain other celestial bodies, all of which, from their remarkable appearance and changes, and some of them from their intimate connection with the comfort, convenience, and even existence of man, must have always attracted especial ob servation, amd been objects of the most intense contemplation and the deepest interest. Most of these bodies are situated within the limits of the Zodiac. The most important of them are, the Sun, so superior to all the heavenly bodies for its apparent magnitude, for the light and heat which it imparts, for the marked effects of its changes of position with regard to the Earth ; and the Moon, so conspicuous diüum the hanifs which give hght bv night, and from her soft and silvery brightness, so pleassing to beinoid; re-

[^153]markable not on ly for changes of position, but for the varied phases or appearances which she presents, af she waxes from aer crescent form through all her different stages of increase to a full orb, and wanes back again to her former diminished figure.

The partial or total obscuration of these two bodies, which sometimes occurs, darkness taking place even at mid-day, and the face of night, before lighted up by the Moon's beams, being suddealy shaded by their absence, have always been among the most striking astronomical phenomena, and so powerful in their influence upon the beholders, as to fill them with perplexity and fear. If we observe these two bodies, we shall find, that, besides their apparent diurnal motion across the heavens, they exhibit other phenomena, which must be the effect of motion. The Sun during one part of the year, will be seen to rise every day farther and farther towards the north, to continue longer and longer above the horizon, to be more and more elevated at mid-day, until he arrives at a certain limit; and then, during the other part, the order is entively reversed. The Moon sometimes is not seen at all; and then, when she first becomes visible, appears in the west, not far from the setting Sun, with a slender crescent form; every night she appears at a greater distance from the setting Sun, increasing in size, until at length she is found in the east, just as the Sun is sinking below the horizon in the west.

The Sun, if his motions be attentively observed, will be found to have another motion, opposite to his apparent diurnal motion from east to west. This may be perceived distinctly, if we notice, on any clear evening, any bright star, which is first visible after sunset, near the place where he sunk below the horizon. The following evening, the star will not be visible on account of the approach of the Sun, and all the stars on the east of it will be successively eclipsed by his rays, until he shall have made a complete apparent revolution in the heavens. These are the most obvious phenomena exhibited by these two bodies.

There are, also, situated within the limits of the Zodiac, certain other bodies, which, at first view, and on a superficial examination, are scarcely distinguishable from the fixed stars. But observed more attentively, they will be seen to shine with a milder and steadier light, and besides being carried round with the stars, in the apparent revolution of the great celestial concave, they will seem to change their

[^154]pinces in the coneave itself. Sometimes they are stationary; sometimes they appear to be moving from west to east. and sometimes to be going back again from east to weat; being seen at sunset sometimes in the east, and sometimes in the west, and always apparently changing their position with regard to the earth, each other, and the other heavenly bodies. From their wandering as it were, in this manner, thr,ugh the heavens, they were called by the Greeks $\pi \lambda u=n r a i$, planets, which sigaifies wanderers.

There also sometimes appear in the heavens, bodies of a very extraordinary aspect, which continue visible for a considerable period, and then disappear from our view ; and nothing more is seen of them, it may be for years, when they again present themselves, and tate their place among the oodies of the celestial sphere. They are distinguished from the planets ty a dull and cloudy appearance, and by a train of light. As they approach the sun, however, their faint and nebulous light becomes more and more brilliant, and their train increases in length, until they arrive at their nearest point of approximation, when they shine with their greatest brilliancy. As they recede from the Sun, they gradually lose their splendour, resume their faint and nebulous appearance, and their train diminishes, until they entirely disappear. They have no well defiged figure; they seem to move in every possible direction, and are found in every part of the heavens. From their train, they were called by the Greeks rounrer, comets, which signifies having long hair.

The causes of these various pheromena must have early constituted a very natural subject of inquiry. Accordingly, we shall find, if we examine the history of the science, that in very early cimes there were many speculaticns upon this subject, and that different theories were adopted to account for these celestial appearances.
The Egyptians, Chaldeans, Indiang, and Chinese, carly posecsed many antronomical facta, many obervations of lmportant phenomena, and many rulea and methods of antronomical calculation; and it has been Imagined, that they bad the ruins of a great aystem of astrononaical aclence, which, in the earliezt agep of the worid, had been carried to a great degree of perfection, and that while the principles and explanations of the phenomena were lost, the leolated, unconnected facta, rules of calcuiation, and phemomens thenselves, rematned. Thus, the Clinewe, who, it is generally agreed, poseese the oldent authentic observations on record, have recorded in their annals, a conjunction of five planets at the same time, which happened 2461 years before Chrith, or 100 years before the flood. By mathematical calculation, it is ascertained that thit conjunction really occurred at that time. The firnt observation of a solar eclipte of which the world has any knowledge, was made by the Chinese, 2128 years before Christ, or 220 years after the deluge. Il seemes, also, that the Chinese understood the method of caleulating eclipsea; for, is is saic, that the

[^155]empero: was so uritated against the great officers of atats for neglecting to phe. lic: the erlipse, that he caused them to be put to death.* The astronomicel epoch of the Chinese, according to Bailly, cummenced with Feli, their fira enperor, who fourished 2962 years before the Chriatian era, or about 350 yeans before the deluge. If it be asked how the knowledge of this antediavian astronomy was preserved and transmitted, it is said that the columns on which it was registered have survived the deluge, and that those of Egyjt are only copies which have become originals, now that the others have been for gotion. The Indians, also, profess whave many celestial observations of a very early date. The Chaldeans have been justly celebrated it all ages for their astronomical observations. When Alemander took Babyion, his preceptor. Callisthenes, found a seriea of Chaldean observations, made in that city, and extending back with litte interruption, through a period of 1903 years preceding that event. This would carry us back to at least' 2234 y ears before the birth of Christ, or to about the time of the dispersion of mankind by the confusion of tongues. Though it be conceded, that upon this whole period in the history of the science, the obscurity of very remote antiguty must necessarily rest, etill it will remain evident that the phenomena of the heaventy bodien had been observed with great attention, and had been a subject of no ordinary interest.

But however numerous or important were the obscrvations of orientat abtiquity, they were never reduced to the shape and aymmetry of a regular system.
The Greeks, in all probability, derived many notions in regard to this ac: ence, and many facts and obserfations, from Egypt, the greac fountain of ancient learning and wisdom, and many were the speculations and hypoteses of their philosophers. In the fabuious period of Grecian history, Athas. Hercules, Linus, and Orpheus, are mentioned as persons distinguished for their knowledge of astronomy, and for the improvements which they made in the ecience. But in regard to this period, little is known with certainty, and it unst be considered, as it is termed, fabulnus,

The first of the Greek philosophers who taught Astrono my, was Thales, of Miletus. He flourished about 64C years before the Christian era. Then followed Anaximan der, Anaximenes, Anaxagoras, Pythagoras, Plato.-Some of the doct. ines maintained by these philosophers were, that the Earth was round, that it had two motions, a diurnal motion on its axis, and an annual motion around the Sun, that the Sun was a globe of fire, that the Moon received her light from the Sun, that she was habitable, contained mountains seas, \&c.; that her eclipses were caused by the Earth's shadow, that the planets were not designed merely to adorn cur heavens, that they were worlds of themselves, and that rhe fixed stars were centres of distant systems. Some of them, however, maintained, that the Earth was flat, and others, that though round, it was at rest in the centre of the universe.

When that distingurshed school of philosophy was established at Alexandria, in Egypt, by the munificence of the

[^156][^157]movereigns to whom that portion of Alexander's empire had tallen, astronomy received a new impulse. It was now, in the second century after Christ, that the first complete system or treatise of astronomy, of which we have any knowledge, was formed. All before had been unconnected and incomplete. Ptolemy, with the opinions of all antiquity, and of all the philosophers who had preceded bim, spread out before him, composed a work in thirteen books, called the Meradך Luvraks, or Great System. Rejecting the doctrine of Pythagoras, who taught that the Sun was the centre of the universe, and that the Earth had a diurnal motion on its axis and an annual motion around the Sun, as contrary to the evidence of the senses, Ptolemy endeavoured to account for the celestial phenomena, by supposing the Earth to be the centre of the universe, and all the heavenly bodies to revolve around it. He seems to have entertained an idea in regard to the supposition, that the Earth revolved on its axis, similar to one which some entertain even at the present day. "If," says he, "there were any motion of the Earth common to it and all other heavenly bodies, it would certainly precede them all by the excess of its mass being so great; and animals and a certain portion of heavy bodies would be left behind, riding upon the air, and the Earth itself would very soon be completely carried out of the heavens."

In explaining the celestial phenomens, however, upou hia hypothemis, he met with a difficulty in the apparently stationary atitude and retrograde mo tions which he saw the planets sometimes have. To explain this, however, the supposed the planets to revolve in anall circles which he called epicycles, which were, the same time, carried around the Earth in larger circles, which he called deferents, or carrying circles. In following out his tbsory and applying it to the explanation of different phenomena, it became necessary to add new epicycles, and to have recourse to other expedients, untul the system became unwieldy, cumbrous, and complicated. This theory, ahhough astronomical observationa continued to be made, and sonae distinguished astronomers appeared from time to time, wan the prevailing theory until the middie of the 15th century. It was not, however, always received with implicit confidence; nor were its difficultiea abways entirely unapprectathed.

Alphonso X., king of Castile, who flourished in the 13th century, whea contemplating the doctrine of the epicycles, exclalmed, "Were the universe shas constructed, if the deity had called me to his councile at the cromion of the world, I could have given hin good advice:" He did not, however, mean any implety or irreverence, except what was dire ted against the system of Ptolemy.
About the middle of the 15th century, Copernicus, a native of Thorn in Prissia, conceiving a passionate attachment to the study of astronomy, quitted the profession of

[^158]medienne, and devoted himself, with the most intense andoar to the study of this science. "His mind," it is said, "und long been imbued with the idea that sumplicity and harmony should characterize the arrangements of the planetary system. In the complication and disorder which, he saw, reigned in the hypothesis of Ptolemy, he perceived insuperable objections to its being considered as a representation of nature."

In the opinions of the Egyptian sages, in those of Pythagoras, Philolaus, Aristarchus and Nicetas, he recognised his own earliest conviction that the Earth was not the centre of the universe. His attention was much occupied with the speculation of Martinus Capella, who placed the Sun between Mars and the Moon, and made Mercury and Venus revolve around him as a centre, and with the system of Appollonius Pergous, who made all the planets revolve around the Sun, while the Sun and Moon were carried around the Earth in the centre of the universe.:

The examination, however, of these bypotheses, gradually expelled the difficulties with which the subject was beset, and after the labour of more than thisty years, be was permitted to see the true system of the universe. The Sun he considered as immoveable, in the centre of the system, While the earth revolved around him, between the orbits of Venus aud Mars, and produced by its rotation about its axis all the diurnal phenomena of the celestial sphere. The other planets he considered as revolving about the Sun, in orbits exterior to that of the Earth. (See the Relative Position of the Planets' Orbits, Plate I. of the Atlas.)

Thus, the stations and retrogradations of the planets were the necessary consequence of their own motions, combined with that of the Earth about the Sun. He said that " by long observation, he discovered, that if the motions of the planets be compared with that of the Earth, and be estimated according to the times in which they perform their revolutions, not unly their several appearances would follow from this hypothesis, but that it would so connect the order of the planets, their orbits, magnitudes, and distances, and even the apparent motion of the fixed stars, that it would be impossible to remove one of these bodies out of its place without disordering the rest, and even the whole of the universe also."

Sovn after the death of Copernicus, arose Tycho Brahe,

[^159]dorn at Knudstorpy in Norway, in 1546. Such was the dustuction which he had attained as an astronorner, that when dissatisfied with his residence in Denmerk, he had resolved to remove, the king of Denmark, learning his intencions, detained him in the kingdom, by presenting him with the canonry of Rothschild, with un income of 2000 crowna per annum. He added to this sum a pension of 1000 crowns, gave him the island of Huen, and established for him an ob servatory at an expense of about 200,000 crowns. Here Tycho continued, for twenty-one years, to enrich astronomy with his observations. His observations upon the Moon were important, and upon the planets, numerous and precise, and have formed the data of the present generalizations in estronomy. He, however, rejected the system of Copernicus; considering the Earth as immoreable in the centre of the system, while the Sun, with all the planets and.comets revolving around him, performed bis revolution around the earth, and, in the course of twenty-four hours, the stars also revolved about the central body. This theory was not as simple as that of Copernicus, and involved the absurdity of making the Sun, planets, \&c. revolve around a body conparatively insignificant.
Near the clowe of the 15th ceatury, arose two men, who wrought most important changes in the science, Kepler, and Galileo, the former a German, the latter an Italian.
Previous to Kepier, all investigations proceeded upon the supposition that the planets moved in circular orbits, which had been a source of much error. This supposition Kepler showed to be false. He discovered that their orbits were ellipses. The orbits of their secondaries or moons he also found to be the same curve. He next determined the dimensions of the orbits of the planets, and found to what their velocities in their motions through their orbits, and the times of their revolutions, were proportioned; all truths of the greatest importance to the science.

While Kepler was making these discoveries of facts, very essential for the explanation of many phenomena, Galileo was discorering wonders in the heavens never before seen by the eye of man. Having improved the telescope, and applied it to the heavens, he observed mountains and valleys upon the surface of our Moon; satellites or secondaries

[^160]were discovered revolving about Jupiter; and Venus, as U'opernicus had predicted, was seen exhibiting all the different phases of the Moon, waxing and waning as she does, through various forms. Many minute stars, not visible to the naked eye, were descried in the milky-way; and the largest fixed stars, instead of being magnified, appeared to be small brilliant points, an incontrovertible argument in favour of their immense distance from us. All his discoveries served to confirm the Copernican theory, and to show the absurdity of the hypothesis of Ptolemy.

Although the general arrangement and motions of the planetary bodies, together with the figure of their orbits, bad been thus determined, the force or power which carries them around in their orbits, was as yel unknown. The discovery of this was reserved for the illustrious Newton.* By reflecting on the nature of gravity-that power which causes bodies to descend towards the centre of the earth-since it does not sensibly diminish at the greatest discance from the centre of the earth to which we can attain, being as powerful on the loftiest mountains as it is in the deepest caverns, he was led to imagine that it might extend to the Moon, and that it might be the power which kept her in her orbit, and caused her to revolve around the Earth. He was next led to suppose that perhaps the same power carried the primary planets around the Sun. By a series of calculations, he was enabled at length to establish the fact, that the same force which determines the fall of an apple to the Earth, carries the moons in their orbits around the planets, and the planets and comets in their orbits around the Sun.

To recapitulate briefly: the system, (not hypothesis, for much of it has been established by mathematical demonstration,) by which we are now enabled to explain with a beautiful simplicity the different phenomena of the Sun, planets, moons, and comets, is, that the Sun is the central body in the system; that the planets and comets move round him in clliptical orbits, whose planes are more or less inclined to each other, with velocities bearing to each othert a certain ascertained relation, and in times related to their distances; that the moons, or secondaries, revolve in like manner, about their primaries, and at the same time accompany

[^161][^162]them in their motion around the Sun; all meanwhile revolring on axes of their own; and that these revolutions in their oibits, are produced by the mysterious power of attraction. The particular mode in which this system is applied to the explanation of the different phenomena, will be exhibitca as we proceed to consider, one by one, the several bodies above mentioned.

These bodies, thus arranged and thus revolving, consti tute what is termed the solar system. The planets have been divided into two classes, primaries and secoudaries. The latter are also termed moons, and sometimes satellites. The primaries are those which revolve about the Sun, as a centre. The secondaries are those which revolve about the primaries. There have been discovered eleven primaries; namely, Mercury, Vedus, the Earth, Mars, Vesta, Juno, Ceres, Pallas, Jupiter, Saturn, and Herschel ; of which, Mercury is the nearest to the Sun, and the others follow, in the order in which they are named. Vesta, Juno, Ceres, and Pallas, were discovered by means of the telescope, and, because they are very small, compared with the others, are called asteroids. There have been discovered, eighteen gecondaries. Of these, the Earth has one, Jupiter four, Saturn seven, and Herschel six. All these, except our Moon, as well as the asteroids, are invisible to the naked eye.

Plate 1, of the Atlas, "exhibits a plan of the Solar Syatem," comprising the relative magnitudes of the Eun and Planets ; their comparative distances from the dun, and from each other; the position of their orbits, with respect to each other, the Earth and the Sun ; together with many other particulars which are explained on the map. There, the first and most prominent ohject which claims attention, is the representation of the Sun't circumference, with tes deep radiations, bounding the upper margin of the map. It is apparent, howerer, that this segment tion hardly one sixth of the whole circuunference of which it is a part. Were the map sufficiently large to admit the entire orb of the Bon, even upon so diminutive a scale as there represented, we shoud then see the Sun and Planets in their just proportiona-the diameter of the former being 112 times the diameter of the Earth.

It was intended, originally, to represent the Earth upon a scale of one inch fn diameter, and the other bodies in that proportion; but it was found that it would increase the map to 4 times its size; and hence it became necessary to nssame a scale of half an inch for the Earth's diameter, which nakes that of the sun 56 inches, and the other bodies, as represented upon the map.

The relative position of the Planets' Orbita is also represented, on a scale 28 large as the sheet would permit. Their relative distances from the Sun as a sentre, and from esch other, are there shown correctly: But had we wished to enlarge the dimensions of these orbits, so that they would exactly correspond with the scale to which we have drawn the planets, the map must have been nearly 4 miles in length. Hence, says Sir John Herschel, "the idas that

[^163] tion of the question."

To illustrate this. -Let us suppose ourselves standing on an extended plane, or field of ice, and that a globe 4 feet 8 incher in dianeter in placed in the centre of the plane, to represent the Bun. Having cut out of the map, the dart circles representing the planete, we may proceed to arrapge them in their respective orbits, about the Sun, as follows:

First, we should take Mercury, about the size of a mall currant, and place it on the circumference of a circle 194 feet from the Ëun; this circle would represent the orbit of Mercury, in the proper ratio of ite magnitude. Next, we ghould take Venum mbout the aize of rather small cherry, and place is on a circle 362 feet from the Sun, to represent the orbit of Venas: Then woald come the Earth, aboat the size of a cherry, revolving in an orbit 500 feet from the Sua :-After the Earth, we should piteo Mars, about the size of a cranberry, on a circle 762 feet from the Ban:-Neglecting the Aateroids, some of which would not be larger than a pin'a head, we should place Jupiter, hardly equal to a moderate sized melon, on a circle at the distance of half a mile (ziol feet) from the Bun;-Saturn, somewhat less, on a cirle nearly a mile ( 4769 foet) from the Sun; and last of all, we should place Herschel, about the size of a peach, on the circumference of a circle nemrly 2 milen ( $\mathbf{~} 501$ feet) from the Sun.

To imitats the motions of the plasets, in the abovementioned orbite, Mercury must describe its own diamoter in 41 meconds; Venum, in 4 minutes 14 seconds; the Earth, in 7 minutes ; Mars, in 4 minutes 48 seconds; Jupter, In 2 tours 56 minutes ; Etaturn, in 3 hoary 13 minutes; and Herschel, in 2 houri 16 minutef.

Many other interenting subjecta are embraced in Plate 1; but they aro either explained on the map, or in the frlhwing Chapter, to which they reepectively relete.

## CHAPTER XIX.

THE SUN.
The sun is a vast globe, in the centre of the solar system, dispensing light and heat to all the planets, and governing all their motions.

It is the great parent of vegetable life, giving warmth te the seasons, and colour to the landscape. Its rays are the cause of various vicissitudes on the surface of the earth and in the atmosphere. By their agency, all winds are produced, and the waters of the sea are made to circulate in vapour through the air, and irrigate the land, producing springs and rivers.

The Sun is by far the largest of the henvenly bodies whose dimensions have been ascertained. Its diameter is something more than 887 thousand miles. Consequently, it contains a volume of matter equal to fourteen hundred thousand globes of the size of the Earth. Of a body so vast in its dimensions, the human mind, with all its efforts, can

[^164]form no adequate conception. The whole distance between the Earth and the Moon would not suffice to embrace one third of its diameter.

IFere let the atudent refer to Plate I. where the Relaire Magnitudes of the Gun and Planeti are exhibited. Let him compare the segmeat of the Bum'd eircumference, at there represented, with the entire circumference of the Rarth. They are both drawa upon the same acale. The segment of the fun'a circumference, since is is almont a stralght line, must be a very emall part of what the whole circumference would be, wexe it represented entire. Let the mudent understand this diagram, and he will be in some meanure able to cosceive how like a mere poiat the Earth is, compared with the Bun, and to form in his mind mome image of the vast magnitude of the tatter.

Were the Sun a hollow sphere, perforated with a thousand openings to admit the twinkling of the luminous atmosphere around it-and were a globe as large as the Earth placed at its centre, with a satellite as large as our Moon, and at the same distance from it as she is from the earth, there would be present to the eye of a spectator on the interior globe, a universe as splendid as that which now appears to the uninstructed eye-a universe as large and extensive as the whole creation was conceired to be, in the infancy of astronomy.

The next thing which filla the mind with wonder, is the distance at which so great a body must be placed, to occupy, apparently, so small a space in the firmament. The Sun's mean distance from the Earth, is twelve thousand times the Earth's diameter, or a little more than 95 millions of miles. We may derive some faint conception of such a distance, by considering that the swiftest steamboats, which ply our waters at the rate of 200 miles a day, would not traverse it in thirteen hundred years; and, that a cannon ball, flying night and day, at the rate of 16 miles a minute, would not reach it in eleven years.

The Sun, when viewed through a telescope, presents thy appearance of an enormous glibe of fire, frequently in a state of violent agitation or ebullition ; dark spots of irregrlar form, rarely visible to the naked eye, sometimes pass over his disc, from east to west, in the period of nearly fourteen days.

These spots are usually surrounded by a penumbra, and that, by a margin of light, more brilliant than that of the Sun. A spot when first seen on the eastern edge of the Sun, appears like a line which progressively extends in breadth, till it reaches the middle, when it begins to contract,

[^165]and ultimately disappears, at the western edge. In somw rare instances, the same spots reappear on the east side, and are permanent for two or three revolutions. But, as a general thing, the spots on the Sun are neither permanent nor uniform. Sometimes several small ones unite into a large one; and ${ }_{2}$ again, a large one separates into numer ous small ones. Some continue several days, weeks, and even months, togetiser; while others appear and disappear in the course of a few hours. Those spots that are formed gradually, are, for the most part, as gradually dissolved whilst those that are suddenly formed, generally vanish as quickly.

It is the general opinion, that spots on the Sun were first discovered by Galileo, in the beginning of the year 1611; though Scheiner, Harriot, and Fabricius, observed ihem about the same time. During a period of 18 years from this time, the Sun was never found entirely clear of spots, excepting a few days in December, 1624 ; at other times, there were frequently seen, twenty or thirty at a time, and in 1625, upwards of fifty were seen at once. From 1650 , to 1670 , scarcely any spots were to be seen; and, from 1676, to 1684, the orb of the Sun presented an un spotted disc. Since the beginning of tie eighteenth cen tury, scarcely a year has passed, in which spots have not been visible, and frequently in great numbers. In 1799, Dr. Herschel observed one nearly 30,000 miles in breadth.
A single second of angular measure, on the Sun's disc, as seen from the earth, corresponds to 462 miles ; snd a circle of this diameter (containing there. fore nearly 20,000 square miles) is the least space which can be distinctuy discerned on the Sun as a visible area, even by the most powerful glasses. Spo:s have been observed, bowever, whose linear diameter has been nore than 44,000 miles; and, if some recurds are to be trusted, of even still greater extent.

Dr. Dics, in a lemer to the author, asys, "I have for many years examined the solar spots with considerable minuteness, and have several times seen spots which were not less than the one twenty-fifth part of the Sun's diameter, which would make them about 22,192 miles in diameter, yet they were visible neither to the naked eye, nor through an opera glass, magnifytng about three tirnes. And, therefore, if any apots have been visible to the naked eye-which we must helieve, unless we refuse respectable tertimony-they could not 'rave been much less than 50,000 miles in diameter."

The apparent motion of these spots over the Sun's surface, is continually varying in its direction. Sometimes they seem to move across it in straight lines, at others in curve lines. These phenomena may be familiarly illustrated in the following manner.

[^166]

Lat. ER reprearnt the ecliptic ; $N S$, its north ano month poles, $M$ sbe poix where the eppotenters, and $m$ the point where it leaves ine stan's diac. At the end of November, and the beginning of December, the apot will appear to move downwards, across the Sun's dise, from left to right, describing the asraight hines $M$ m, Fig. 1; mon aftor thia period, these lines begin gradually to be inflected towards the north, till about the end of February, or the begioning of March, when they describe the curve lines repremented in Fig. 2 Aiter the begtaning of March, the curvature decreases, till the latter ond of May, or the beginning of June, when they again describe straight lines tending upwarris, as in Fig. 3. By and by these straight lines begin to be lnflected dows. wards, bill about the beginning of Septernber, when they tate the form of a curve, having ite convex side towards the south pole of the Sun, es in Fig. 4


As thesc phenomena are repeated every year, in the same order, and belong to all the spots that have been perceived upon the Sun's disc, it is concluded, with good reason, that thase spots adhere to the surface of the Sun, and revolve with it, upon an axis, inclined a little to the plane of the ecliptic. The apparent revolution of a spot, from any particular point of the Sun's disc, to the same point again, is accomplished in 27 days, 7 hours, 26 minutes, and 24 soconds; but during that time, the spot has, in fact, gone through one revolution, together with an arc, equal to that described by the Sun, in his orbit, ip the same time, which reduces the time of the Sun's actual rotation on his axis, to 25 days, 9 hours, and 36 minutes.

The part of the sun's dise not occupied by spots, is far from being uniformly bright. Its ground is finely mottled with an appearance of minute, dark dots, or pores, which,

[^167]attentively watched, are found to be in a constant state of change.
What the physical organization of the Sun may be, is a question which astronomy, in its present state, cannot solve it seems, however, to be surrounded by an ocean of inexhaustible flame,-with dark spots of enormous size, now and then floating upon its surface. From these phenomena, Sit W. Herschel supposed the Sun to be a solid, dark body, surrounded by a vast atmosphere, almost a!ways filled with luminous clouds, occasionally opening and disclosing the dark mass within. The speculationg of Laplace were different. He imagined the solar orb to be a mass of fire, and the violent effervescences and explosions seen on its surface, to be occasioned by the eruption of elastic fluids, formed in its interior, and the spots to be enormous caverns, like the craters of our volcanoes. Others bave conjectured that these spots are the tops of solar mountains, which are sometimes left uncovered by the luminous fluid in which they are immersed.
Among all the conflicting theories that have been adranced, respecting the physical constitution of the Sun, there is none entirely free from objection. The prevailing one seems to be, that the lucid matter of the Sun is neither a liquid substance, nor an elastic fluid, but that it consists of luminous clouds, floating in the Sun's atmosphere, which extends to a great distance, and that these dark spots are the opaque body of the Sun, seen through the openings in his atmosphere. Herschel supposes that the density of the luminous clouds need not be greater than that of our Aurora Borealis, to produce the effects with which we are acquainted.
The similarity of the Sun, to the other globes of the system, in its supposed solidity, atmosphere, surface diversified with mountains and vallies, and rotation upon its axis, has led to the conjecture that it is inhabited, like the planets, by beings whose organs are adapted to their peculiar circumstances. Such was the opinion of the late Dr. Herschel, who observed it unremittingly, with the most powerful telescopes, for a period of fifteen years. Such, too, was tha opinion of Dr. Elliott, who attributes to it the most delightful scenery ; and, as the light of the Sun is eternal, so, he

[^168]magıned, were its seasons. Hence he infers tnat this luminary offers one of the most blissful habitations for intelligent beings of which we can conceive.

## MERCURY.

'Mercury is the nearest planet to the Sun'that has yet been discovered; and with the exception of the asteroids, is the smallest. Its diameter is only 2984 miles. Its bult therefore is about $18 \frac{1}{2}$ times less than that of the Earth. It would require more than 20 millions of such globes to compose a body equal to the Sun.
Here the student ehould refer to the diagrama, exhibiting the relative magm tudes and distances of the Bun and planeta, Plate $L$. And whenever thig aubject recurs in the course of this work, the student should recur to the figures of this plate, until he is able to form in his mind distinet conceptions of the relative magnitudes and diatances of all the planets. The Bun and planetil being spheres, or nearly so, their relative hulks aro estimated 'by comparing the cubes of their diameters thus, the diameter of Mercury being 2984 miles, and that of the earth 7924 ; their bulks are as the cube of 2684 , to the cube of 7924 , or as 1 to 18i, nearty.
It revolves on its axis from west to east in 24 hours, 5 minutes, and 28 seconds; which makes its day about 10 minutes longer than ours. It performs its revolution about the Sun in a few minutes less than 88 days, and at a mean distance of nearly 37 millions of miles. The length of Mercury's year, therefore, is equal to about three of our months.

The rotation of a planet on ite axia, constituten ite day; ita revolution abion the Sun constitutes lits year.

Mercury is not only the most dense of all the planets, but receives from the Sun seven times as much light and heat as the Earth. The truth of this estimate, of course, depends upon the supposition that the intensity of solar light apd heat at the planets, varies inversely as the squares of their distances from the Sun.

This law of analogy, did it exist with rigorous identity at all the planets, would be no argument against their being inhabited; because we are bound to presume that the All-

[^169]wnse Creator has attempered every twelling place in the empire to the physical constitation of the beings which be has placed in it.
From a variety of facts which have been observed is relation to the problecthon of calori-. it doete not appear probable, that the degree of heat on the surface of the differ ent phanets depends on their respective distances from the Sun. It is more pruimolo, that it depends chiefly on the distribution of the aubutance of caloric on the surfaces, and thronghout the atmospheres of these bodiea, in different ouqntities, according to the different situations which they sccupy in the eunf nymem; and that these different quantitien of caloric are pat into action dy tite iuftuence of the solar rays, so as to produce that degree of eensible hews requisite to the wrants, and to the greatest benefit of each of the planets. On this hypothesis, which is corroborated by a great varisty of facts and experiments, there may be no more sensible heat experienced on the planet Mercary, than on the aurface of Eerschel, which is fifty timed farther removed from the Sun.

Owing to the dazzling brightness of Mercury, the swiftness of its motion, and its nearness to the Sun, astronomers have made but comparatively few discoveries respecting 1t. When viewed through a telescope of considerable magnifying power, it exhibits at different periods, all the rarious phases of the Moon; except that it never appears quite full, because its enlightened hemisphere is never turned directly towards the Earth, only when it is behind the Sun, or so near to it, as to be hidden by the splendour of its beámst Its enlightened hemisphere being thus always turned towards the Sun, and the opposite one being always dark, prove that it is an opaque body, similar to the Earth, shining only in the light which it receives from the Sun.

The rotation of Mercury on its axis, was determined from - he daily position of its horns, by M. Schroeter, who not only discovered spots upon its surface, but several mountains in its southern hemisphere, one of which was $10 \frac{9}{4}$ miles high :-nearly three times as high as Chimborazo, in South America.
It is worthy of observation, that the highest mountains which have been discovereil in Mercury, Venus, the Moon, and perhape we may add the Earth, are ull stuated in their mouthern hemispheres.

During a few days in March and April. August and September, Mercury may be seen for several nimntes, in the morning or evening twilight, when its greatest elongetions happen in those months; in all other parts of its orbit, it is too near the Sun to be seen by the naked eye. The greatest

[^170]distance that it ever departs from the Sun, on either side. maries from $16^{\circ} 12^{\prime}$, to $28^{\circ} 48^{\prime}$, alternately.
The distance of a planet from the Sun, as meen from the Earth, (messured in degrees,) is called its elongation. The greatest abooluce distance of a planet from the sun is denominated its aphelion, and the least its perihelion on the diagram, exhibiting the Relative Postion of the Planetr' Orbits, [Plate I.] thewe points are repremented by little dota in the orbite at the extrenitios of the righ fines which meet them; the Perihelion points being above the Ecliptic, the Aphelion points below it.

The revolution of Mercury about the Sun, like that of all the planets, is performed from west to east, in an orbit which ta nearly circular. Its apparent motion as seen from, the earth, is, alternately, from west to east, and from east to west, nearly in straight lines; sometimes, directly across the face of the Sun, but at all other times, either a little above, or a little below it.

Being commonly immersed in the Sun's rays in the evening, and thas continuing invisible till it emerges from them in the morning, it appeared to the ancients like two distinct stars. A long series of observations was requisite, before they recognised the identity of the star which was seen to recede from the Sun in the morning with that which approached it in the evening. But as the one was never seen until the other disappeared, both were at last found to be the same planet, which thus oscillated on each side of the Sun.

Mercury's oscillation from west to east, or from east to west, is really accomplished in just half the time of its revoIution, which is about 44 days; but as the Earth, in the meantime, follows the Sun in the same direction, the apparent clongations will be prolonged to between 55 and 65 days.

The passage of Mercury over the Sun's disc, is denominated a Transit. This would happen in every revolution, if the orbit lay in the same plane with the orbit of the Earth. But it does not ; it cuts the Earth's orbit in two opposite points, as the ecliptic does the equator, but at an angle three times less.
Gee diagram, Relative Position of the Planets' Orblts, and their Inclination to the Plane of the Ecliptic. [Plate I.] The dark lines denote sections in the planes of the planets' orbita. The dotted lines continued from the dart linem denote the inclination of the orbits to the plane of the Ecliptic, which inclina. tion is marked in figures on them. Let the student fancy af many circular pieces of paper, intersecting each other at the geveral angles of inclination

[^171]marked on thim diagrang and he will be onabled to maormand more eantry what in meant by the lnclination of the planets' orbiti.

If will be perceived on the diagram, that the inclination of Mercury'a orbin to the piane of the ecliptic is $7^{\circ} 9^{\prime \prime}$.

These points of intersection are called the Nodes of the orbit. Mercury's ascending node is in the 16th degree of Taurus ; its descending node in the 16 th degree of Scorpio. As the Earth passes these nodes in November and May. the transits of Mercury must happen, for many ages to come. in one of these months.
The following is a list of all the Trangits of Mercury from the time the firat was observed by Gassendi, November 6, 1631, to the end of the present cenury.

| 1631 Nov. 6. | 1707 Ma |
| :---: | :---: |
| 1644 Nov. 6. | 1710 Nov. |
| 1651 Nov. 2 | 1723 Nov. |
| 1661 May 3. | 1736 Nov. |
| 1664 Nov. 4. | 1740 Nov. |
| 1671 May 6. | 1743 Nov. |
| 1677 Nov. 7. | 1753 May |
| 1690 Nov. 9. | 1756 Nov. |
| 1897 Nov. 2 | 1769 Nov |


| 1776 Nov. 2 | 1836 Nov. |
| :---: | :---: |
| 1782 Nov. 12 | 1845 May 8 |
| 1786 May 3. | 1848 Nov. 9 |
| 1789 Nov. 6. | 1861 Nov. 11. |
| 1799 May 7. | 1868 Nov. |
| 1802 Nov. 8. | 1878 May |
| 1815 Nov. 11. | 1881 Nut. |
| 1822 Nov. 4. | 1891 May |
| 1832 May 5. | 1894 Nov. |

By comparing the mean motion of any of the planets with the mean motion of the Earth, we may, in like manner, determine the periods in which these bodies will return to the same points of their orbit, and the same positions with rempect to the Bun. The knowiedge of these periods will enable ung to determine the hour when the planets rise, get, and pass the meridian, and in generah, all the phenomena dependent upon the relative position of the Earth, the planet, and the Bun ; for at the end of one of these periods they commence again, and all recur in the same order. We have only to find a number of sidereal years, in which the planet completes exactly, or very nearly, a certain number of revolutions; that is, to find sucb a number of planetary revolations, as, when taken together, shall be exactly equal to one, or any number of revolutions of the Earth. In the case of Mercury, this ratio will be, as 87.969 in to 365.256 . Whence we find, that,
7 periodical revolutions of the Earth, are equal to 20 of Mercury :
13 periodical revolutions of the Earth, are equal to 54 of Mereury :
33 periodical revolutions of the Earth, are equal to 137 of Mercury:
46 periodical revolutions of the Earth, are equal to 191 of Mercury.
Therefore, transtis of Mercury, at the aame node, may happen at intervals of $7,13,33,46$, ac. years. Transits of Venus, as well as eclipses of the fun end Moof, are calculated upon the same principle.
The nidereal revolution of a planet respecta its absolute motion; and is measured by the time the planet taken to revolve from any fixed star to the same atar again.
The symodical revolution of a planet respectits relation motion; and is measured by the time that a planet occuples in coning back to the aame ponition with respect to ue Earth and the Sun.

The sidereal revolution of Mercury, is 87 d . 23 h . 1 km . 44s. Its dynodical revolution is found by dfviding the whole circumference of $360^{\circ}$ by its relative motion in respect to the Earih. Thus, the mean dally motion of Mercury in

[^172]Mrice 565 ; that of the Parth is $3648^{\prime \prime} 318$; and their difference is I118\% . 207 , being Mercury's relative motion, or what it gains on the Eerth overy day. Now by eimple proportion, $11184^{\prime \prime} .237$ ig to 1 day, as $260^{\circ}$ is to 115 d 21h. $8^{\prime}, 25^{\prime \prime}$ the period of a myodical revolution of Mercury.

The absolute motion of Mercury in its orbit, is 109,7ia miles an hour; that of the Earth, is 68,288 mfles: the difference, 41,469 miles, is the mean relative motion of Mercury, with respect to the Earth.

## VENUS.

Thene are but few persons who have not observed a beautiful star in the west, a little after sunset, called the evening star. This star is Venus. It is the second planet from the Sun. It is the brightest star in the firmament, and on this account easily distinguished from the other planets.

If we observe this planet for several days, we shall find that it does not remain constantly at the same distance from the Sun, but that it appears to approach, or recede from him, at the rate of about three fifths of a degree every day; and that it is sometimes on the east side of him, and sometimes on the west, thus continually oscillating backwards and forwards between certain limits.

As Venus never departs quite $48^{\circ}$ from the Nun, it ie never seen at midnight, nor in opposition to that luminary being visible only about three hours after sunset, and as long before sunrise, according as its right ascension is greater or less than that of the Sun. At first, we behold it only a few minutes after sunset; the next evening we hardly discover any sensible change in its position; but after a few days, we perceive that it has fallen considerably behind the Sun, and that it continues to depart farther and farther from him, setting later and later every evening, until the distance between it and the Sun, is equal to a little more than half the space from the horizon to the zenith, or about $46^{\circ}$.

It now begins to return towards the Sun, making the same daily progress that it did in separating from him, and to set earlier and earlier every succeeding evening, until it finally sets with the Sun, and is lost in the splendour of his light.

A few days after the phenomena we have now described,

[^173]we perceive, in the morning, near the eastern hotizun, a bright star which was not visible before. This also is人enus, which is now called the morning star. It departs farther and farther from the Sun, rising a little earlier every day, until it is seen about $46^{\circ}$ west of him, where it appears stationary for a few days; then it resumes its course towards the Sun, appearing later and later every morning, until is nses with the Sun, and we cease to behold it. In a few days, the evening star again appears in the west, very near the setting-sun, and the same phenomena are again exhibited. Such are the visible appearances of Venus.
Venus revolves about the Sun from west to east in $224 \frac{1}{3}$ days, at the distance of abont 68 millions of miles, moving in her orbit at the rate of 80 thousand miles an hour. She turns around on her axis once in 23 hours, 21 minutes, and 7 seconds. Thus her day is about 25 minutes shorter than ours, while her year is equal to $7 t$ of our months, or 32 weeks.
The mean distance of the Earth from the Sun is estimated 2 at 9 millions of miles, and that of Venus being 68 millions, the diameter of the Sun, as seen from Venus, will be to his diameter as seen from the Earth, as 95 to 68, and the surface of bis dise as the square of 95 to the square of 68 , that is, as 9025 to 4626 , or as 2 to 1 nearly. The intensity of light and heat being inversely as the squares of their distances from the Sun, Venus receives twice as much light and heat as the Earth.
Her orbit is within the orbit of the Earth; for if it were not, she would be seen as often in opposition to the Sun, as in conjunction with him; but she was never seen rising in the east while the Sun was setting in the west. Nor was she ever seen in quadrature, or on the meridian, when the Sun was either rising or setting. Mercury being about $23^{\circ}$ from the Sun, and Venus $46^{\circ}$, the orbit of Venus must be outside of the orbit of Mercury.
The true diameter of Venus is 7621 miles; but her apparent diameter and brightness are constantly varying; according to her distance from the Earth. When Venus and the Earth are on the same side of the Sun, her distance

[^174]from the Earth is only 26 millions of miles; when they are on opposite sides of the Sun, her distance is 164 millions of miles. Were the whole of her enlightened hemisphere curned towards us, when she is nrarest, she would exhibit a light and brilhancy twenty-five $t_{2}$ mes greater than she generally does, and appear like a small brilliant moon; but, at that time, her dark hemisphere is turned towards the Earth.

When Venus approaches nearest to the Earth, her apparene, or observe?
 bence when nearest the Earth her apparent diamoter ia of times greaf r than Then most distant, and surface of her diac ( 9$)^{3}$, or nearly 41 timen $z^{-2}$ eater. n this work, the apparent size of the heavenly bodien is entimaled firen the apparent surface of their diacs, which in alwaye proporional to the equares of their appareat diameters.

When Venus' right ascension is less than that of the Sun, she rises before him; when greater, she appears after his setting. She continues alternately morning and evening star, for a period of 292 days, each time.
To those who are but little acquainted with astronomy, it will seem strange, at first, that Venus should apparently continue longer on the east or west side of the Sun, than the whole time of her periodical revolution around him. But it will be easily understood, when it is considered, that while Venus moves around the Sun, at the rate of about $1^{\circ} 36^{\prime}$ of angular motion per day, the Earth follows at the rate of 59'; so that Venus actually gains on the Earth, only 37 in a day.
Now it is evident that both planets will appear to keep on the same side of the Sun, until Venus has gained half her orbit, or $180^{\circ}$ in advance of the Earth; and this, at a mean rate, will require 292 days, since $292 \times 37^{\prime}=108044^{\prime}$, or $180^{\circ}$ nearly.

Mercury and Venus are called Inferior* ${ }^{*}$ planets, because their orbits are within the Earth's orbit, or between it and the Sun. The other planets are denominated Superior, because their orbits are without.or beyond the orbit of the

[^175]Earth. [Plate I.] As the orbits of Mercury and Venus lie within the Earth's orbit, it is plain, that once in every synodical revolution, each of these planets will be in conjunction on the same side of the Sun. In the former case, the planet is said to be in its inferior conjunction, and in the Latter case, in its superior conjunction; as in the following figure.

## CONJUNCTION AND OPPOSITION OF TEE PLANETE.

Fis. 5


The period of Venus' myodical revolution is found in the same manner as that of Mercary; namely, by dividing the whole circumference of her orbit by her mean relative motion in a day. Thus, Venus' abeolute mean daily mocion is $1^{\circ} 30^{\prime \prime} 7^{\prime \prime} .8$, the Earth's is $59 / 88^{\prime \prime} .3$, and their difference $30^{\prime} 59{ }^{\prime \prime} .5$. Divide $300^{\circ}$ by 38 g9f.5, and it given 583.920, or pearly 584 deya, for Venus' myodical revoIation, or the period in which abe in twice in conjunction with the Earth.

Venus passes from her inferior to her superior conjunction in about 292 days. At her inferior conjunction, she is 26 millions of miles from the Earth; at her superior conjunction 164 millions of miles.

[^176]It might be expected that her brilliancy would be propor sonally increased, in the one case, and diminished, in the other ; and so it would be, were it not that her enlightesea hemisphere is turned more and more from us, as she ap proaches the Earth, and comes more and more into view as she recedes from it. It is to this cause alone that we must attribute the uniformity of her splendour as it usually appears to the naked eye.

Mercury and Venus present to us, successively, the various shapes and appearances of the Moon; waxing and waning through different phases, from the beautiful crescent to the full rounded orb. This fact shows, that they revolve around the Sun, and between the Sun and the Earth. Let the pupil endeavour to explain these phases on any other supposition, and he will be convinced that the system ot Ptolemy is erroneous, while that of Copernicus is confirmed.

It should be remarked, hovever, that Venus is never secn when whe is entireIy full excent once or twice in a ccituty, when ghe pagses directly over the Eun's disc. At evory ather conjunction, she is either behind the \&un, or eo near him as to be hidden dy the sjlenduur of lits lisht." The diagram on the next page will better illugirate the various appearance. of vonus, an the motes around the Sun, than any description of them could do.

From her inferior to her superior conjunction, Venus appears on the west side of the Sun, and is then our morning star ; from her superior to her inferior conjunction she appears on the east side of the Sun, and is then our evening star.

[^177]
## APPEARANCES OF VENUS AS SHE MOVES AROUND THE; STIN

Fig. 6.
Superior Conjunction.


Inferior Conjunctioa

Like Mercury, she sometimes seems to be stationary. Het apparent motion, like his, is sometimes rapid; at one time, direct, and at another, retrograde; vibrating alternalely backwards and forwards, from west to east, and from east to west. These vibrations appear to extend from $45^{\circ}$ to $47^{\circ}$, on each side of the Sun.

Consequenty she never appears in the eastern horizon, more than three hours before sunrige, nor confinues longer in the western horizon, after suneel Any star or planet, therefore, however brilliant it mas appear, which ta seen earlier or later than this, cannot be Vencs.

In passing from her western to her eastern elongation, her motion is from west to east, in the order of the signs; it is thence called direct motion. In passing from ber eastern to her western elongation, her'motion with respect to the Earth, is from east to west, contrary to the order of the signs; it is thence denominated retrograde motion. Her motion appears quickest about the time of her conjunctions and she seems stationary, at her elongations. She is bright est about 36 days before and after hep inferior conjunction, when her light is so great as to project a visible shadow in the night, and sometimes she is visible even at noon-day.

In the following figure, the outer circle represents the Earth's orbit, and the inner circle, that of Venus, while she moves around the Elun, in the order of the letters $a, b, c, d, d e$. When Venus is at $a$, she is in ber inferior conjunction botween the Earth and Bun; and is in a situation similar to that of the Moon at her claange, being then invisible, because her darik hemisphere is towarda the Earth. At $c$, she appears half enlightened to the Earth, like the Moon in her first quarter; at $d$, she appears almost full, her enlightened side being then almost directly towards the Earth; at $e$, she is in her superior conjunetion, and would appear quite full, were she not directly behisd the Eun, or so near him as to be hidden by the splendour of his light; at $f$, she appeara to be on the decrease; and at $g$, only half enlightened, like the Moon in her Last quarter: at a, she disappears again between the Earth and the Bun. In noving from $g$ to $c$, she seens to go backwards in the heavens, because she moves contrary to the order of the signs. In turning the arc of the circle from retrograde to direct motion, or from direct to retrograde, she appears nearly stationary for a few days; because, in the former case, she is going alınost directly from the Earth, and in the latter, coming tovards it. As she describes a much larger portion of her orbit in going from $c$ to $g$, than from $g$ to c , she appears much longer direct than retrograde. At a mean rate, her rotrogradations are accomphshed in 42 days.

[^178]
## DIRECT AND RETROGRADE MOTTON.

Fig. 7.


It the orbit of Venus lay exactly in the plane of the Exarih's orbit, she would pass centrally across the Sun's disc, like a dark round spot, at every inferior conjunction; but as one half of her orbit lies about $3 \frac{1}{3}^{\circ}$ above the ecliptic, and the other half as far below it, she will always pass the Sun a very little above or below it, except when her inferior conjunction happens in, or near, one of ber nodes; in which case she will make a transit. [Relative position of the Planet's Orbits, Plate I-Plane of Venus-Inclination $3^{\circ} 23^{\prime}$.]

This phenomenon, therefore, is of very rare occurrence it can happen only twice in a centuryt because it is only twice in that time that any number of complete revolutions of Venus, are just or nearly equal to a certain number of the Earth's revolutions.

The principle which was illustrated in predicting the transits of Mercary applies equally well to those of Venus; that is, we must find such sets o numbers, (representing complete revolutions of the Earth and Venus,) an thall be to each other in the ratio of their periodical times, or as 365.256 is to 224.7. Thus; the motion of Venus, in the Julian years is $2106591^{\prime \prime} 6 R$ that of the Earth for the same period being $129627^{\prime \prime} .45$, the ratio will be

[^179] common divisor, we mus unultiply them by euch nucnbers tes will make one a multiple of the other; accordingly, 13 umea the denoutnator will be nearly equal to 8 times the numerator ; and 475 times the denominator will equal 901 tiaes the nacuerator.

By combining these two periods and their multiples by addition and sabtraction, we shall obtain the period of all the transits that have ever happened Thus ; $291-8 \times 7-235$, another poriod ; and $291-6 \times 8-943$, another perind, and si in . Whence we find that

8 periodical revolutions of the Earth, are equal to 13 of Venum.
235 periodical revolutions of the Earth, are equal to 382 of Venus
243 periodical revoluitions of the Earth, are equal to 396 of Venus.
251 periodical revolutious of the Earth, are equal to 408 of Venus.
21 periodical revolutions of the Earth, are equal to 475 of Venus.
Hence a tranait of Venus may happen at the aame node, after an interval of 8 years; but if it do not happen then, it cannot take place again, at the same node, in less than 235 years. The orbte of Venus crosses the echiptic oear the midrle of Gemini and Sagiturius; and these points mark the position of her nodes. At present, her ascending node is in the 14 th degree of Cemini, and her descending node, in the same degree of Eagittarius.

## The Earth passes ber ascending node in the beginning of

 December, and ber descending node, in the beginning of June. Hence, the transits of $\bar{Y}$ enus, for ages to come, will happen in December and June. The first transit evel snown to have been seen by any human being, took place at the ascending node, December 4th, 1639.* If to this date, we add 235 years, we shall have the time of the next iransit at the same node, which will accordingly happen in i874. There will be another at the same node in 1882,[^180]-shit years afterwards. It is not more certain that this phenomenon will recur, than that the event itself will engross the attention of all the astronomers then living upon the Earth. It will be anticipated, and provided for, and observed, in every inhabited quarter of the globe, with an intensity of solicitude. Which no natural phenomena, since the creation, has ever excited.

The reason why a transit of Venus should excite so great an interest, is, because it may be expected to solve an important problem in astronomy, which has never yet been satisfactorily done:-a problem whose solution will make known to us the magnitudes and masses of all the planets, the true dimensions of their orbits, their rates of motion -around the Sun, and their respective distances from the Sun, and from each other. It may be expected, in short, to furnish a universal standard of astronomical measure. Another consideration will render the observation of this transit peculiarly favourable; and that is, astronomers will be supplied with better instruments, and more accurate means of observation, than on any former occasion.

[^181]The phenomena of the seasons, of each of the planets, like those of the Earth, depend upon the inclination of the axis of the planet, to the plane of its orbit. The inclination of the axis of Venus to the plane of her orbit, though not precisely known, is commonly estimated at $75^{\circ}$; which is more than three times as great as the inclination of the Earth's axis to the plane of the ecliptic. The north pole of Venus' axis inclines towards the 20th degree of Aquarius; the Earth's towards the beginning of Cancer; consequently the northern parts of Venus have summer in the signs where those of the Earth have winter, and vice versa.

The declination of the Sun on each side of her equator: must be equal to the inclination of her axis; and if this ex tends to $75^{\circ}$, her tropics are only $15^{\circ}$ from her poles, and her polar circles $15^{\circ}$ from hel equator. It follows, also, that

[^182]The Bun must change his declination more in one day at Venus, than in five days on the Earth; and consequently, that he never shines vertically on the same places for two days in succession. This may perhaps be providentially ordered, to prevent the too great effect of the Sun's heat, which, on the supposition that it is in inverse proportion to the square of the distance, is twice as great on this planet as it is on the Earth.

At each pole, the Sun continues half a year* without setting in summer, and as long without rising in winter; consequently, the polar inhabitants of Venus, like those of the earth, have only one day and one night in the yegr; with this difference, that the polar dajs and nights of Venus are not quite two thirds as long as ours.

Between her polar circles, which are but $15^{\circ}$ from her equator, there are two winters, two summers, two springs, and two autumns, every year. But because the Sun stays for some time near the tropics, and passes so quickly over the equator, the winters in that zone will be almost twice as long as the summers.

## TELEBCOPIC APPEARANCES OF FENDE

Fig. 8.


When viewed through a good telescope, Venus exhibits not only all the moon- like phases of Mercury, but also a variety of inequalities on her surface; dark spots, and brilliant shades, hills, and valleys, and elevated mountains. But on account of the great density of her atmosphere, these in-

[^183][^184]equalities are perceived with more difficulty than those ap. on the other planets.

The mountains of Venus, like those of Mercury and the Moon, are highest in the southern hemisphere. According to M. Schroeter, a celebrated German astronomer, wbo spent more than ten years in observations upon this planet, some of her mountains rise to the enormous height of from 10 to 22 miles.* The observations of Dr. Herschel do not indicate so great an altitude ; and he thinks, that in general they are considerably overrated. He estimates the diame ter of Venus at 8,649 miles; making her bult more than one sixth larger than that of the Earth. Several eminent nstronomers affirm, that they have repeatedly seen Venus attended by a satellite, and they have given circumstantial details of its size and appearance, its periodical revolution. and its distance from her it is said to resemble our Moon in its phases, its distance, and its magnitude. Other astronomers deny the existence of such a body, because it was not seen with Venus on the Sun's disc, at the transits of 1761, and 1769.

## THE EABTH.

The Earth is the place from which all our observations of the heavenly bodies must aecessarily be made. The ap parent motions of these bodies being very considerably affected by her figure, motions, and dimensions, these hold an important place in astronomical science. It will therefore be proper to consider, first, some of the methods by which they have been determined.
If, standing on the sea-shore, in a clear day, we view a ship leaving the coast, in any direction, the hull or body of the vessel first disappears ; afterwards the rigging, and lastly, the top of the mast vanishes from our sight. Those on board the ship, observe that the coast first sinks below the horizon, then the buildings, and lastly the tallest spires of the city

[^185][^186]Which they are leanng. Now these phenomeus are evidently caused by the convexity of the water which is between the eye and the object; for, were the surface of the sea merely an extended plain, the largest objects would be visible the _ongest, and the smallest disappear first

## CONYEXITY OF THA EARTE

Fige 2


Again : navigators have sailed quite around the Earth, and thus proved its convexity.

Ferdinand Magellan, a Portuguese, was the firat who cartled this onterprito如to execntion. Ie embariked from seville, in Spain, and directed his course towatds the west. After a long voyzge, he descried the continent of America. Not finding an openiag to enabie him to continue his course in a wesierly direction, he sailed along the coast towards the south, till, cooning to its sonthern exiremity, he sailed amound it, and found himself in the great southern Ocean. He then resumed his course towards the west. After some time he arrived at the Molucca Islands, in the Eastern Hemiaphere; and salling coutinually towarde the weat, he made Europe fromi the eatt ; arriving al the piace Grom which he set out."

The next who circumnavigated the Earth, was Eir Francis Drake, who salled from Plymouth, December 13, 1577 , with five small veasels, and arrived ot the game place, Deptember 25,1680 . Since that time, the circumnavigation of the Earth has been performed by Cavendish, Cordes, Noort, Sharten. Heremites, Dampler, Woodes, Rogers, Echovten, Rogyewin, Lord Anson, Byron, Carteret, Wallis, Bougainville, Cook, King, Clerk, Vancouver, and many othern.

These navigators, by sailing in a westerly direction, al10 wance being made for promontories, \&c. arrived at the country they sailed from. Hence, the Earth must be either cy lindrical or globular. It cannot be cylindrical, because, if so, the meridian distances would all be equal to each other, which is contrary to observation. The figure of the Earth is, therefore, spherical.
The convexity of the Earth, north and south, is proved by the altitude of the pole, and of the circumpolar stara,

[^187]which is found uniformly to merease as wo appruach them, while the inclination to the horizon, of the circles described by all the stars, gradually diminishes. While proceeding in a southerly direction, the reverse of this takes place. The altitude of the pole, and of the circumpolar stars, continually decreases; and all the stars describe circles whose inclination to the horizon increases with the distance. Whence we derive this general truth: The altitude of ome pole, and the depression of the other, at any place on the Earth's surface, is equal to the latitude of that place.

Another proof of the convexity of the earth's surface is, that the higher the eye is raised, the farther is the view extended. An observer may, see the setting sun from the top of a house, or any considerable eminence, after he has ceas ed to be visible to those below.
The curvature of the Earuh for one mile is 8 hehes; and this curvarure fncreases with the squere of the distance. From this general law, it will be oasy to calculate the distance at which any object whose height is given, may be toen, or to determine the height of an object when the dintance in known
1st. To find the height of the object then the distance is given.
RoLs. Find the square of the distance in miles, and take two thirds of then wawnber for the height in feet.
Ex. 1.-How high must the eye of an observer be raised, to see the surface of the ocean, at the distance of three miles 3 Arte. The square oi 3 f , in 3 f., and $\frac{1}{2}$ of 9 t. is 6 ft . Ex. 2 Suppose a person can just see the top of a spire over an extended plain of ten milles, how high is the steeple 1 Ane. The equare of 10 is 100 , and $\frac{\text { E }}{}$ of 100 , is 66 , feet.
2 To find the diatance, when the height lo given.
Rutis. Increase the height in feet one half, asd extract the square root, for the distance, in miles.
Ex. 1.-How far can a person see the arface of a plain, whose eye is ele vated six feet above it? Ant. G. increased by its half, is 9 , and the equare root of 9 in 3 ; the distance is then 3 miles. Ex. 2-To what diatance can a permon eee a light-house whose height is 96 feet from the level of the ocean 1 Ans. 96 increased by its half, is 144, and the square root of 144 is 12 ; the dimance in therefore 12 miles
3. To find the curvature of the Farth when it exceeds a mile.

Role. Multiply the square of the distance by .000126.
Although it appears from the preceding facts, that the Earth is spherical, yet it is not a perfect sphere. If it were, the length of the degrees of latitude, from the equator to the poles, would be uniformly the same; but it has been found, by the most careful measurement, that as we go from the equator towards the poles, the length increases with the latitrude.

> Thete measuremens have been made by the most eminent mathematiciana - different countrion, and in various placea, from the equator to the aretia

[^188]rtreis. They bave found that a degree of latitude at the arctic circle was mine sisteenths of a mile longer than a degree at the equator, and that the ratio of increase for the intermediate degrees was nearly as the equares of the sines of the latitude. Thus the theory of Eir Isase Newton whe confir oned, that the body of the Rarth was more rounded and convex thetween the tropice, but cousiderably flattened towards the poles.

| Places of Observation | Latitude. | Lemgth of a degree in Engliak miles. | Obeervera |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Peru } \\ & \text { Penasylvania } \end{aligned}$ | Equator. $39012^{\prime} \mathrm{N}$. | $\begin{aligned} & 68.732 \\ & 68.896 \end{aligned}$ | Bouguer. <br> Mason and Dimon. |
| fraly | 4301 | 68.998 | Boscorlch and Lemaira |
| Prance |  | 69.054 | Delambre and Mechain. |
| England | $51.89^{\prime \prime} 541^{\prime \prime}$ | 69.146 |  |
| Swreden | $66 \quad 20 \quad 10$ | 69.292 | Swamberg. |

These measurements prove toe Earth to be an oblate spheroid, whose longest or equatorial diameter is 7924 miles, and polar diameter, 7898 miles. The mean diameter is, therefore, about 7912, and their difference 26 miles. The French Acadnmy have determined that the mean diameter of the Earth, from the 45 th degree of north latitude, to the opposite degree of south latitude, is accurately 7912 miles

If the Earth were an exact sphere, its diameter might be determined by its curvature, from a-siogle measurement. Thus, in the adjoining figure, we have A $B$ equal to 1 mile, and $B$ equal to 8 inches, to and AE, or B E , which does not senaibly differ from A E, since B D is only 8 inches. Now it is a proposition of Euckid, (B. 3, prop. 36,) that, when from a point without a circle, two lines be drawn, one cutting and the other touching it, the tooching line ( $B$ A) is a mean proportional between the cutting line ( $B \mathrm{E}$ ) and chat part of it (B-D) without the circle.

BD: BA:: BA: BE or A E very nearly.
That is, 1 mile being equal to 63360 inchee,

Fig. 10.


8: $63360:$ : $63360: 50181120$ inches, or 7920 miles.
This is very nearly what the mast elaborate calculation make the Earth's equatorial dinneter.

The Earth, considered as a planet, occupies a favoured rank in the Solar System. It pleased the All-wise Creator to assign its position among the heavenly bodies, where nearly all the sister planets are visible to the naked eye. It is situated next to $\dot{V}$ enus, and is the third planet from the Sun. .

To the scholar who for the first time takes upa book on astronomy, it will mo doubt seem atrange to find the Earth classed with the heavenly bodies.

[^189]> For whal can sppear more unlike, than the Earth, with her vast and soamiagty lmmeasurable extent, and the stars, which appear but as points 7 The Earth m dark and opaque, the celestial bodies are brilliant. We perceive in it nos motion ; while in them we observe a continual change of place, as we view them at different hours of the day or night, or at different seasons of the year

It moves round the Sun, from west to east, in 365 days 5 hours, 48 minutes, and 48 seconds; and turns, the same way, on its axis, in 23 hours, 56 minutes, and 4 seconds The former is called its annual motion, and causes the vicissitudes of the seasons. The latter is called its diurnat motion, and produces the succession of day and night.

The Earth's mean distance from the Sun is about 95 millions of miles. It consequently moves in its orbit at the mean rate of 68 thousand miles an hour. Its equatoral diameter being 7924 miles, it turns on its axis at the rate of 1040 miles an hour.

Thus, the earth on which we stand, and which has served for ages as the unshaken foundation of the firmest structures, is every moment turning swiftly on its centre, and, at the same thme, moving onwards with great rapidity through the empty space.

This compound motion is to be understood of the whole earth, with all that it holds within its substance, or sustains upon its surface-of the solid mass beneath, of the ocean which flows around it, of the air that rests upon it, and of the clouds which float above it in the air.

That the Earth, in common with all the planets, revolves around the Sun as a centre, is a fact which rests upon the clearest demonstrations of philosophy. That it revolves, like them, upon its own axis, is a truth which every rising and setting sun illustrates, and which very many phenomena concur to establish.

Either the Earth moves around its axis every day; or the whole universe moves around it in the same time. There is no third opinio 'bat can be formed on this point. Either the Earth must raolve on its axis every 24 hours, to produce the alternate succession of day and night, or the Sun, Moon, planets, comets, fixed stars, and the whole frame of the universe itself, must move around the Earth, in the same time. To suppose the- latter case to be the fact, would be to cast a reflecrion on the wisdom of the Supreme Architect, whose laws are universal harmony. As well might the beetle, that in a moment turns on its ball, imagine the heav-

[^190]ens and the Earth had made a revolution in the same instant. It is evident, that in proportion to the distance of the ce.estral bodies from the Earth, must, on this supposition, be the rapidity of their movements. The Sun, then, would move at the rate of more than four hundred thousand miles in a minute ; the nearest stars, at the inconceivable velocity ot 1400 millions of miles in a second; and the most distant luminaries, with a degree of swiftness which no numbers could express,-and all this, to save the little globe we tread upon, from turning safely on its axis once in 24 hours.

The idea of the heavens revolving about the Earth, is encumbered with innumerable other difficulties. We will mention only one more. It is estimated on good authority, that there are visible, by means of glasses, no less than one hundred millions of stars, scattered at all possible distances in the heavens above, beneath, and around us. Now. is it in the least degree probable, that the velocities of all these bodies should be so regulated, that, though describing circles so very different in dimensions, they should complete their revolutions in exactly the same time.

In short, there is no more reason to suppose that the heav ens revolve around the Earth, than there is to suppose that they revolve around each of the other planets, separately, and at the same time; since the same apparent revolution is common to them all, for they all appear to revolve upon their axis, in different periods.
The wotation of the Earth determines the length of the day, and may be regarded as one of the most important elements in astronomical science. It serves as a universal measure of time, and forms the standard of comparison for the revolutions of the celestial bodies, for all ages, past and to come. Theory and observation concur in proving, that among the innumerable vicissitudes that prevail throughout creation, the period of the Earth's diurnal rotation is immutable.
The Earth performs one complete revolution on its axis in 23 hours, 56 minutes, and 4.09 seconds, of solar time This is called a sidereal day, because, in that time, the stars appear to complete one revolution around the Earth.
But, as the Earth advances almost a degree eastward in is orbit, in the time that it turns eastward around its axis, it is plain that just one rotation never brings the same meridian around from the Sun to the Sun again; so that the Earth requires as much more than one complete revolution

[^191]on its axis to complete a solar day, as thas gone forward in that time. Hence in every natural or solar day, the Earth performs one complete revolution on its axis, and the 365th part of another revolution. Consequently, in 365 lays, the Earth turns 366 times around its axis. And as every revolution of the Earth on its axis completes a sidereal day, there must be 366 sidereal days in a year. And, generally, since the rotation of any planet about its axis is the length of a sidereal day at that planet, the number of sidereal days will always exceed the number of solar days, by one, let that number be what it may, one revolution being always lost in the course of an annual revolution. This difference between the sidereal and solar days may be ilustrated by referring to a watch or clock. When both nands set out together, at 12 o'clock for instance, the minute hand must travel more than a whole circle before it will overtake the hour hand, that is, before they will come into sonjunction again.

In the same manner, if a man travel around the Eartb eastwardly, no matter in what time, he will reckon one day more, on his arrival at the place whence he set out, than they do who remain at rest; while the man who travels arround the Earth westwardly will have oneday less. From which it is manifest, that, if two persons start from the same place at the same time, but go in contrary directions, the one travelling eastw'qrd and the other westward, and each goes completely aroand the globe, although they should both arrive again at the very same hour at the same place from which they set out, yet they will disagree two whole days in their reckoning. Should the day of their return, to the man who travelled westwardly, be Monday, to the man who travelled eastwardly, it would be Wednesday; while to those who remained at the place itself, it would be Tuesday.

Nor is it necessary, in order to produce the gann or loss of a day, that the journey be performed either on the equator, or on any parallel of latitude; it is sufficient for the purpose, that all the meridians of the Earth be passed through, eastward or westward. The time, also, occupied in the journey, is equally unimportant ; the gain or loss of a day being the same, whether the Earth be travelled around in 24 years, or in as many hours.

[^192]It is also evident, that if the Earth turned around ins axis but once in a year, and if the revolution was performed the same way as its revolution around the Sun, there would be perpetual day on one side of it, and perpetual night on the other.

From these facts the pupil will readily comprehend the principlen involved In a curious problem which appeared a few yeara ago. It was gravely reported by an American ship, that, in sailing over the ocaan, it chanced to find six Surdays in February. The fact was insisted on, and a solution demanded. There is nothing absurd in thig.-The man who travels aronnd the Earth easewardly, will see the Sun go down a litlle earlier every gucceeding day, than H he had remained at reat; or earlier than they do who live at the place from which he set out. The faster he travels towards the rising sun, the sooner will it appear above the horizon in the morning, and so much sooner will it set In the evening. What he thus gains in time, will bear the same proportion to a solar day, as the diatance travelled does to the circumference of the Earth -As the globe in 360 degrees in circumference, the Sun will appear to move ever one twenty-fourth part of its surface, or $14^{\circ}$, every hour, which ia 4 minutes to one degree.-Consequently, the Sun will rise, come to the mendian, and set, 4 minutes sooner, at a place $1^{\circ}$ east of us, than it will with us; at the distance of $2^{\circ}$ the Eun will rise and set 8 minutes sooner; at the dir tacce of $3^{\circ}, 12$ minutes sooner, and so on.

Now the man who travels one degree to the east, the first day, will have the Sun on his meridian 4 minutes sooner than we do who are al rest; and the gecond day, 8 minutes sooner, and on the third day, 12 minutes sooner, and so on; each successive day being completed 4 minutes earlier than the precedIng, until he arrives again at the place from which he ptarted; when this continual gain of 4 minutes a day will have amounted to a whole day in advance of our time; he having seen the Sun rise and set once more than we have. Consaquently, the day on which he arrives at home, whatever day of the week tt may be, is one day in advance of ours, and he must needs live that day over again, by calling the next day by the same name, in order to make the account harmonize.

If this should be the last day of February in a bissextile year, it would also be the same day of the weet that the first was, and be six times repeated and if it should happen on Sunday, he would, ander these circuustances. have six gundays in February.

Again:-Whereas the man who travels at the rate of one degree to the emat will have all bls days 4 minutes shorter than onrs, so, on the contrary, the man who travels at the same rate towards the west, will have all his daya 4 minutes longer than ours. When he has finished the circuif of the Earth and arrived at the place from which he first set out, he will have seen the Sun rise and set once lesa than we have. Consequently, the day he geta hoina will be one day after the time at that place: for which reason, if he arrives at home on Saturday, according to his own account, he will have to call the next day Monday; Sunday having gone by before he reached home. Thus, on Whatever day of the week January should ead, in common years, he would find the same day repeated only three timen in February. If January ended on Sunday, he would, under these circumstances, find only three Sundays in February.

The Earth's motion about its axis being perfectly equaole and uniform in every part of its annual revolution, the sidereal days are always of the same length, but the solar or nataral days vary very considerably at different times of the year. This variation is owing to two distinct causes: the

[^193]unclinatiop of the Rarth's axis to its orbit, and the nequa_ity of its motion around the Sun. From these two causes it is, that the time shown by a well regulated clock and taat of a true sun-dial are scarcely ever the same. The difference between them, which sometimes amounts to $16+$ minutes is called the Equation of Time, or the equation of solar days.
The difforence between mean and apparent dime, or, in other worth, be tween Equinoctial and Ecliylic time, may be further ahown by Figure 11, which represente the circles of the sphere. Let it be first premised, thet equinoctical time in clock time; and that echptic time is solar or apparems thino. It appears, that from Aries to Cancer, the aun in the ecliptic comes mo the meridian before the equinoctial sun; from Cancer to Libra, after it ; from Libra to Capricorn, before it; and from Capricom to Aries, afler it. If we nodee what months the sun in in these several quartera, we shall find, thas from the 264 h or December to the 166 h of Aprih and from the 16 th of June to the 1st of September, the clock is faeter than the sun-dial ; and that, from the loch of Aprit to the lich of June, and from the 1et of September to the 251 of Decesmber, the run-dial is fater than the clock

## EqUATION OF THME.

Fig. 11.


It is a universal fact that, while none of the planets are perfect spheres, none of their orbits are perfect circles. The planets all revolve about the Sun, in ellipses of different degrees of eccentricity; baving the Sun, not in the centre of the ellipse, but in one of its foci.

[^194]
the Bun ; and restest distance from the Sun. F equal to $F$ f, thet is, equal to twice the eccentricity of ite orbit. In every tevolution, a nianet passes through its perihelion and aphelion. The eccentricity of the Earth's orbit fa about one and a half millions of miles; hence she is three millions of milen nearer the Bun in her perihelion, than in her apholion.

Now as the Bun remains fized in the lower focus of the Earth's orbit, it is easy to perceive that a line, passing centrally through the Bun at right anglea with the longer axis of the orbit, will divide if into two unequal megments. Precisely thav it is divided by the equistoctial.

That portion of the Earth's orbit which lies above the Sun, or north of the equinoctial, contains about 184 degrees; while that portion of it which lies below the Sun, or south of the equinoctial, contains only 176 degrees. This fact shows why the Sun continues about 8 days longer on the north side of the equator in summer, than it does on the south side in winter. The exact calculation, for the year 1830, is as follows:


The point of the Ferth's orbit which corrempond to ite greatent and leaat distances from the Sun, are called, the former the Apogee, and the latter the Perigee; two Greek words, the former of which signifies from the Earth, and the latter about the Earth. These point are also degignated by the common name of Apsides. [Ste these points rapresented, Plate 1.]

The Earth being in its perihelion about the the 1st of January, and in its aphelion the 1st of July, we are three mullions of miles nearer the Sun in winter than in midsummer. The reason why we have not, as might be expected, the hottest weather when the Erarth is nearest the Sun, is, because the

[^195]Sun, at that ume, having retreated to the southern tropic, shines so obliquely on the northern hemisphere, that its rays have scarcely half the effect of the summer Sun; and continuing but a short time above the horizon, less heat is accumulated by day than is dissipated by night.

As the Earth performs its annual revolution around the Sun, the position of its axis remains invariably the same; always pointing to the North Pole of the heavens, and always maintaining the same inclination to its orbit. This seems to be providentially ordered for the benefit of mankind. If the axis of the Earth always pointed to the centre of its orbit, all external objects would appear to whirl about our heads in an inexplicable maze. Nothing would appear permanent. The mariner could no longer direct his course by the stars, and every index in nature would mislead us.

## THE MOON.

There is no object within the scope of astronomical observation which affords greater variety of interesting investigation than the various phases and motions of the Moon. From them the astronomer ascertains the form of the Earth, the vicissitudes of the tides, the causes of eclipses and occultations, the distance of the Sun, and, consequently, the magnitude of the solar system. These phenomena, which are perfectly obvious to the unassisted eye, served as a standard of measurement to all nations, until the advancement of science taught them the advantages of solar time. It is to these phenomena that the navigator is indebted for that precision of knowledge which guides him with well grounded ronfidence through the pathless ocean.

The Hebrews, the Greeks, the Romans, and, in general, all the ancients, used to assemble at the time of new or full Moon, to discharge the duties of piety and gratitude for her unwearied attendance on the Earth, and all her manifold uses.

When the Moon, after having been in conjunction with the Sun, emerges from his rays, she first appears in the evening, a little after sun-set, like a fine luminous crescent, with its convex side towards the Sun. If we observe her

[^196]the nent evening, we find her about $13^{\circ}$ farther east of the Sun than on the preceding evening, and her crescent of light sensibly augmented. Repeating these observations, we perceive that she departs farther and farther from the Sun, as her ealightened surface comes more and more into view, until she arrives at her first quarter, and comes to the meridian at sun-set. She has then finished half her course from the new to the full, and half her enlightened hemisphere is turned towards the Earth.

After her first quarter, she appears more and more gibbous, as she recedes farther and farther from the Sun, unti] she has completed just half ber revolution around the Earth, and is seen rising in the east when the Sun is setting in the west. She then presents her enlightened orb full to our view, and is said to be in opposition; because she is then un the opposite side of the Earth with respect to the Sun.

In the first half of ber orbit she appears to pass over our heads through the upper hemisphere; she now descends below the eastern horizon to pass through that part of her orbit which lies in the lower hemisphere.

After her full she wanes through the same changes of appearance as before, but in an inverted order; and we see her in the morning like a fine thread of light, a little west of the rising-sun. For the next two or three days she is lost to our view, rising and setting in conjunction with the Sun; after which, she passes over, by reason of her daily motion, to the east side of the Sun, and we behold her again a new Moon, as before. In changing sides with the Sun, she changes also the direction of her crescent. Before her conjunction, it was turned to the east; it is now turned towards the west. These different appearances of the Moon are called her phases. They prove that she shines not by any light of her own ; if she did, being globular, we should always see her a round full orb like the Sun.

The Moon is a satellite to the Earth, about which she revolves in an elliptical orbit, in 29 days, 12 hours, 44 minutes, and 3 seconds: the time which elapses between one new moon and another. This is called her synodic revolution. Her revolution from any fixed star to the same star again, is called her periodic or siderial revolution. It is accomplished in 27 days, 7 hours, 43 minutes, and $11 \frac{1}{2}$ seconds; but in this time, the Earth has adranced nearly as many degrees in her orbit; consequently the Moon, at the

[^197]end of one complete revolution, must go as many degreee farther, before she will come again into the same position with respect to the Sun and the Earth.

The Moon is the nearest of all the heavenly bodies, being about 30 times the diameter of the Earth, or 240,000 miles, distant from us. Her mean daily motion, in her orbit, is mearly 14 times as great as the Earth's ; since she not only accompanies the Earth around the Sun every year, but, in the meantime, performs nearly 13 revolutions about the Earth.
although the apparent motion of the Moon, in her orbit, is greater than $\therefore$ al of any other heavoniy body, since she passes over, at a mean rate, no less than $13^{\circ} 10^{\prime} 35^{\prime \prime}$ In a day ; yet this is to be anderstood as angular motion -motion in a small orbit, and therefore embracing a great number of degrees, and but comparatively few miles.

As the Moon, while revolving about the Earth, is carried with it at the same time around the Sun, her path is extremely irregular, and very different from what it seems to be. Like a point in the wheel of a carriage, moving over a convex road, the Moon will describe a succession of epicycloidal curves, which are always concave towards the Sun; not very unlike their presentation in the following figure.

## THE MOON's MOTION.



[^198]Let $A a^{\boldsymbol{Z}} \boldsymbol{b}$ B represent a portion of the Earth'm orbit; and abcdathe lunar orblt. When the Earth is at $b$, the new Moon is af $n$; and white the Warth is moving from $b$ to ite ponition mepresented in the figure, the Moon has moved through halr her orbit, from a 10 a, where she is full; $t 0$ white the Earth is moving from its prement position to $d$, the Moon describes the $x$ her half of her orbit from $c$ to $e$; where she is again in conjonction.

The Moon, though apparently as large as the Sun, is the smallest of all the heavenly bodies that are visible to the naked eye. Her diameter is but 2162 miles; consequently her surface is 13 times less than that of the Eartb, and her bulk 49 times less. It would require 70 millions of such bodies to equal the volume of the Sun. The reason why she appears as large as the Sun, when, in truth, she is so much less, is because she is 400 times nearer to us than the Sun.

The Moon revolves once on her axis exactly in the time that she performs her revolution around the Earth. This is evident from her always presenting the same side to the Earth; for if she had no rotation upon an axis, every part of her surface would be presented to a spectator on the Earth, in the course of her synodical revolution. It follows, then, that there is but one day and night in her year, containing, both together, 29 days, 12 hours, 44 minutes, and 3 seconds.

As the Moon turns on her axis only as she moves around the Earth, it is plain that the inhabitants of pne half of the lunar world are totally deprived of the sight of the Earth, unless they travel to the opposite hemisphere. This we may presume they will do, were it only to view so sublime a spectacle; for it is certain that from the Moon the Earth appears ten times larger than any other body in the universe.

As the Moon enlightens the Earth, by reflecting the light of the Sun, so likewise the Earth illuminates the Moon, exhibiting to her the same phases that she does to us, only in a contrary order. And, as the surface of the Earth is 13 times as large as the surface of the Moon, the Earth, when full to the Moon, will appear 13 times as large as the full moon does to us. That side of the Moon, therefore, which is towards the Earth, may be said to have no darkness at all the Earth constantly shining upon it with extraordinary splendour when the Sun is absent ; it therefore enjoys successively two weeks of illumination from the Sun, and two

[^199]Weeks of earth-ight from the Earth. The other side of the Moon has alternately a fortnight's light, and a fortnight's darkness.

As the Earth revolves on its axis, the several continents, seas, and islands, appear to the lunar inhabitants like so many spots, of different forms and brightness, alternately moving over its surface, being more or less brilliant, as they are seen through intervening clouds. By these spots, the lunarians can not only determine the period of the Earth's rotation, just as we do that of the Sun, but they may also find the longitude of their places, as we find the latitude of ours.

As the full Moon always happens when the Moon is directly opposite the Sun, all the full Moons in our winter, must happen when the Moon is on the north side of the equinoctial, because then the Sun 15 on the south side of it ; consequently, at the north pole of the Earth, there will be a fortnight's moon-light and a fortnight's darkness by turns, for a period of six months, and the same will be the fact during the Sun's absence the other six months, at the south pole.

The Moon's axis being inclined only about $1 \frac{1}{2}^{\circ}$ to her orbit, she can have no sensible diversity of seasons; from which we may infer, that her atmosphere is mild and uniform. The quantity of light which we derise from the Moon when full, is at least 300 thousand times less than that of the Sun.*

When viewed through a good telescope, the Moon presents a most wonderful and interesting aspect. Besides the large dark spots, which are visible to the naked eye, we perceive extensive ralleys, shelving rocks, and long ridges of elevated mountains, projecting their shadows on the plains below. Single mountains occasionally rise to a great height, while circular hollows, more than three miles deep, seem excavated in the plains.

Her mountain scenery bears a striking resemblance to the towering sublimity and terrific ruggedness of the Alpine re-

[^200][^201]gooss, or of the Appenines, after which some of her moointans have been named, and of the Cordilleras of our own continent. Huge masses of rock rising precipitously from the plains, lift their peaked summits to an immense height in the air, while shapeless crags hang over their projecting sides, and seera on the eve of being precipitated into the tremendous chasm below.

Around the base of these frightful eminences, are strewed numerous loose and unconnected fragments, which time seems to have detached from their parent mass; and when we examine the rents and ravines which accompany the overhanging cliffs, the beholder expects every moment that they are to be torn from their base, and that the process of destructive separation which he had only contemplated in its effects, is about to be exhibited before him in all its reality.

The range of mountains called the Appenines, which traverses a portion of the Moon's disc from north-east to southwest, and of which some parts are visible to the naked eye rise with a precipitous and craggy front from the level of the Mare Imbrium, or Sea of showers.* In this extensive range are several ridges whose summits have a perpendicular elevation of four miles, and more; and though they often descend to a much lower level, they present an inaccessible barrier on the north-east, while on the south-west they sink in gentle declivity to the plains.

There is one remarkable feature in the Moon's surface which bears no analogy to any thing observable on the Earth. This is the circular cavities which appear in every part of her disc. Some of these immense caverns are nearly four miles deep, and forty miles in diameter. They are most numerous in the south-western part. As they reflect the Sun's rays more copiously, they render this part of her surface more brilliant than any other. They present to us nearly the same appearance as our Earth might be supposed to present to the Moon, if all our great lakes and seas were dried up.

The number of remarkable spots on the Moon, whise latitude and longitude have been accurately determined, exceeds 200. The number of seas and lakes, as they were formerly considered, whose length and breadth are known,

* The name of a lunar npot.

[^202]is between 20 and 30 ; while the number of peaks and mountains, whose perpendicular elevation varies from a fourth of a mile to five miles in height, and whose bases are from one to seventy miles in length, is not less than one hundred and fify.*

Gruphical viewt of thee nataral appearances, accompanied with minute and frmiliar descriptions, consttute what is called Selenography, from two Greek worde, which mean the tame thing in regard to the Moon, as Geography does tin regard to the Earth.
$\Lambda \mathrm{n}$ idea of some of these scenes may be formed by conceiving a plain of about 100 miles in circumference, encircled by a range of mountains, of various forms, three miles in perpendicular height, and having a mountain near the centre, whose top reaches a mile and a half above the level of the plain. From the top of this central mountain, the whole plain, with all its scenery, would be distinctly visible, and the view would be bounded only by a lofty amphitheatre of mountains, rearing their summits to the sly.

The bright spots of the Moon are the mountainous regions; while the dark spots are the plains, or more level parts of her surface. There may be rivers or small lakes on this planet ; but it is generally thought, by astronomers of the present day, that there are no seas or large collection of water, as was formerly supposed. Some of these mu ntains and deep valleys are visible to the naked eye; and $n_{4}$ ny more are visible through a telescope of but moderate pow.rs.

A telescope which magnifies only 100 times, will show a spot on the Moon's surface, whose diameter is 1223 yards ; and one which magnifies a thousand times, will enable us to perceive any enlightened object on her surface whose dimensions are only 122 yards, which does not much exceed the dimensions of some of our public edifices, as for instance, the Capitol at Warhington, or St. Paul's Cathedral. Professor Frauenhofer, of Munich, recently announced that he had discovered a lunar edifice, resembling a fortification, together with several lines of rand. The celebrated astronomer Schroeter, conjectures the existence of a great

[^203]sity on the east side of the Mcon, a little north of her equator, an extensive canal in another place, and fields of regeta. 10 in in another.

## SOLAR AND LUNAR ECLIPSES.

Or all the phenomena of the heavens, there are none which engage the attention of mankind more than eclipses of the Sun and Moon; and to those who are unacquainted with astronomy, nothing appears more wonderful than the accuracy with which they can be predicted. In the early uges of antiquity they were regarded as alarming deviacions from the established laws of nature, presaging great public calamities, and other tokens of the divine displeasure.

In China, the prediction and observance of ectlpaes are made a matter of thate policy, mordar to operate upon the fears of the ignorant, and impose on them a ruperwtitious repperd for the occule wisdom of their rulers. In Kexica, the natives fact and affict themselvea, during eclipson, under an apprehension that the great apirit if in deep suferance. Bome of the morthern tribes of Indiana have limagined that the Moon had been wounded in a quarrel ; and others, that whe wat about to be swallowed by a huge fach.
It was by avaling himaelf of these zupersctious notions, that Columbon, when abipwrecked on the island of Jamaica, ortrleated bimatif and crew from a most embarrasaing condition. Being driven to great distresa for want of provisions, and the natives refusing him any assistance, whon all hope meemed to be cut off, he bethought himself of their taperstition in regard to eclipses. Having acaembled the principal men of the island, he remonstrated againat their inhumanity, as being offensive to the Great Apirth ; and told them that agreat plague was even ready to fall upon them, and as a token of th, they wonld that night see the Moon hide her face in angor, and put on a dremdfully dark and theatening aepeet. This artifice had the desired effect; for the eclipea had no sooner begun, than the frightened berbarians came running with all kindis of provisions, and throwing themselven at the faet of Columbum, implored hie forgivencem, Almagest, \#aL I. . 5 c. v. 2

An eclipse of the Sun takes place, when the dark body, of the Moon, passing directly between the Earth and the Gun, intercepts his light. This can happen only at the ingtant of new Moon, or when the Moon is in conjunction; for it is only then that she passes between us and the Sun.

An eclipse of the Moon takes place when the dark body of the Earth, coming between her and the Sun, intercepts his light, and throws a shadow on the Moon. This can happen only at the time of full Moon, or when the Moon is in opposition; for it is only then that the Earth is between her and the Sun.

As every planet belonging to the solar system, both pri-

[^204]mary and secondary, derives its light from the Sun, it mass cast a shadow towards that part of the heavens which is opposite to the Sun. This shadow is of course nothing but a privation of light in the space hid from the Sun by the opaque body, and will always be proportioned to the ntag nitude of the Sun and planet.

If the Sun and planet were both of the same magnitude, the form of the shadow cast by the planet, would be that of a cylinder, and of the same diameter as the Sun or planet. If the planet were larger than the Sun, the shadow would continually diverge, and grow larger and larger; but as the Sun is much larger than any of the planets, the shadows which they cast must converge to a point in the form of a cone; the length of which will be proportional to the size and distance of the planet from the Sun.
The magnitude of the Sun is much, that the shadow cant by each of the primary planeta always converges to a point before it reaches any other planet; wo that nos one of the primary planets can eclipse another. The bhadow of any planet which is accompanied by satelites, may, on certain occasions, eclipas ita satellites; but it is not long enough to eclipae any ether body. The ahadow of a matellite, or Moon, may aleo, on certain occadons, fall on the primary, and eclipae it.

When the Sun is at his greatest distance from the Earth, and the Moon at her least distance, her shadow is sufficiently long to reach the Earth, and extend 19,000 miles beyond. When the Sun is at his least distance from the Earth, and the Moon at her greatest, her shadow will not reach the Earth's surface by 20,000 miles. So that when the Sun and Moon are at their mean distances, the cone of the Moon's shadow will terminate a little before it reaches the Earth's surface.

In the former case, if a conjunction take place when the centre of the Moon comes in a direct line between the centres of the Sun and Earth, the dark shadow of the Moon will fall centrally upon the Earth, and cover a circular area of 175 miles in diameter. To all places lying within this dark spot, the Sun will be totally eclipsed, as illustrated by Fig. 13.

[^205]
## BCLIPGES OF THE MOR.

Fis. 18.


In consequence of the Farth's motion during the ecilime, thit circular area oecomes a continued belt over the Earth's gurface; being, at the broadest, 175 nilem wide. This belt in, however, rarely $w o$ broad, and often dwindles to a merre nominal line, without total daritneas.

In Manch, this line extende itnelf from \& W. to N. E., and in September, froma N. W. to S E. In June, the central line is a curve, golag firnt to the N. E., and then to the S. E.; in December, on the contrary, firit to the 8. E., and that to the N. E. To all placen within 2000 milen at least of the central line, the cetipse will be vielible; and the nearer the place of obmervation is to the line, the larger will be the eclipme. In winter, if the central trace be buf a little northward of the equator, and in mummer, if it be 25 degreen $N$. hatitude, the eclipne will be viaible all over the northern hemisphere. As a general rule, though lisble to many modiftcations, wie may obeerve, that placed from 20010250 milea from the erntral line, whll be 11 digite eclipeed; from thence to 500 miles, 10 digite; and 00 on , diminishing one digit in about 250 milee.
If, in either of the other cases, a conjunction take place when the Moon's center is directly between the centers of the Sun and Eavth, as before, the Moon will then be too distant to cover the entire face of the Suin, and there will be seen, all wround her dark body, a slender ring of dazzling light.


This may be illustrated by the above figure. Suppome CD to represent a part of the Farth's orbit, and the Moon's shadow to terminate at the vertex $V$; the amall apace between $a f$ will represent the breadth of the luminous ring which will be visible all around the dark body of the Moon.

Such was the eclipee of Pebruary, 12, 1831, which peseed over the mouthers fates, from S. W. to N. E. It was the firnt annular eclipoe ever visible in the United States. Along the path of this eclipee, the luminous ring remained perfect and unbroken for the eppace of iwo minutea. The late annular eclipme vialble to any considerable portion of the United States, took place Sept. ISth, 1898.

[^206]From the mont elaborate calculations, compared with a long series of observa tions, the length of the Moon's shadow in eclipses, and her distance from the Sun at the same time, vary within the limiter of the following table.

| Length of Shadow, Dive. of Moon. | Length of Shadow in Semidiametern. | Leugth in miles. | Distance in Semidiameters. | Distance in milen. |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Least } \\ & \text { Mean } \\ & \text { Greatest } \end{aligned}$ | $67.760 \times 3956=$ <br> $68728 \times 3956=$ <br> $69.730 \times 3956=$ | $\begin{aligned} & 228,499 \\ & 282,328 \\ & 236.292 \end{aligned}$ | $55.90273956=$ $60.38 \times 3956=$ $63.862 \times 3966=$ | $\begin{aligned} & \overline{221.148} \\ & 238,300 \\ & 262.648 \end{aligned}$ |

Thum it appears that the length of the conte of the Moon's shadow, in eclipses, varies from 228,499 to 236,292 miles; being 7,793 miles longer in the one case, than in the other. The inequality of her distances from the Earth is much greater; they vary from 221,148 to 252,638 miles, making a difference of $\mathbf{3 1 , 4 9 0}$ miles.

Although a central eclipse of the Sun can never be total to any spot on the Earth more than 175 miles broad; yet he epace over which the Sun will be more or less partially eclipsed, is nearly 5000 miles broad.
The mection of the Moon's shadow, or her penumbra, at the Earth's surface, in eclipsen, is far from teing always circular. If the conjunction happen when the center of the Moon is a little above or a little below the center of the line joining the centers of the Earth and Sun, as is most frequently the case, the hadow will be projected obliquely over the Earth's surface, and hus cover a nuch larger space.

To produce a partial eclipse, it is not necessary that the shadow should reach the Farth : it is sufficient that the apparent distance between the Sun and Moon be not greater than the sum of their semidiameters.

If the Moon performed her revolution in the same path in which the Sun appears to move; in other words, if her orbit lay exactly in the plane of the Earth's orbit, the Sun would be eclipsed at the time of every new Moon, and the Moon at the ime of every full. But one half of the Moon's orbit lies about $5^{\circ}$ on the north side of the ecliptic, and the other half as far on the south side of it; and. consequently, the Moon's orbit only crosses the Earth's orbit in two opposite points, called the Moon's nodes.

When the Moon is in one of these points, or nearly so, at the time of nevo Moon, the Sun will be eclipsed. When she is in one of them, or nearly so, at the time of full Moon, the Moon will be eclipsed. But at all other new Moons, the Moon either passes above or below the Sun, as seen from the Earth; and, at all other full Moons, she either passea above or below the Earth's shadow; and consequently there can be no eclipse.

[^207]If the Moon be exactly in one of her nodes at the time of her change, the Sun will be centrally eclipsed. If she be $1 t^{\circ}$ from her node at the time of her change, the Sua will appear at the equator to be about 11 digits eclipsed. If she be $3^{\circ}$ from her node at the time of her change, the Sun will be 10 digits eclipsed, and so on; a digit being the twelfth part of the Sun's diameter. But when the Moon is about $18^{\circ}$ from her node, she will just touch the outer edge of the Sun, at the time of her change, without producing any eclipse. These are the ecliptic limits. Between these limita, an eclipse is doubtful, and requires a more exact calculation.

The mean ecliptic limit for the Sun ls $161^{\circ}$ on each side of the node; the mean ecliptic lumit for the moon is $101^{\circ}$ on each side of the node. In the former case, then, there are 33 degrees about each node, making, in all, $66^{\circ}$ out of $360^{\circ}$ in which eclipses of the Sun may happen: in the latter case, there are $21^{\circ}$ about each node, making, in all, $42^{\circ}$ out of $360^{\circ}$ in which eclipses of the Moon usually oceur. The proportion of the solar to the lunar eclipees, therefore, is as 66 to 42 , or as 11 to 7 . Yet there are more visible eclinses of the Monn, at any given place, than of the Sun; because a lunar eclipse is visible to a whole hemisphere, a solar eclipse only to a small portion of it.

The greatest possible duration of the annular appearance of a solar eclipse, is 12 minutes and 24 seconds; and the greatest possible time during which the Sun can be totally eclipsed, to any part of the world, is 7 minutes and 58 seconds. The Moon may continue totally eclipsed for $1+$ hours.

Eclipses of the Sun always begin on his western edge, and end on his eastern; but all eclipses of the Moon commence on her eastern edge, and end on her western.

If the Moon, at the time of her opposition, be exactly in her node, she will pass through the center of the Earth'c shadow, and be totally eclipsed. II, at the time of her oppo sition, she be within $6^{\circ}$ of her node, she will still pass through the Earth's shadow, though not centrally, and be totally eclipsed : but if she be $12^{\circ}$ from her node, she will only just touch the Earth's shadow, and pass it without being eclípsed.

The duration of lunar eclipses, therefore, depends upon the difference between the diameter of the Moon and that section of the Earth's shadow through which she passes. When an eclipse of the Moon is both total and central, fita duration is the longest possible, amounting nearly to 4 hours $;$ but the duration of atl eclipees not central, Faries with her distance from the node.

[^208]
## GOLIPGES OF THE MOON.

Fis. 15.


The diameter of the Earth's shadow, at the distance of the Moon, is nearly three times as large as the diameter of the Moon; and the length of the Earth's shadow is nearly four times as great as the distance of the Moon; exceeding it in the same ratio that the diameter of the Earth does the diameter of the Moon, which is as 3.663 to 1 .


The first column of figures expresses the clameter of the Earth's shadow at the Noon: and as the diameter of the Moon in only 2162 mlles, it is evident that it can always be comprehended by the ahadow, which is more than twice at broad as the disc of the Moon.

The time which elapses between two successive changes of the Moon is called a Lunation, which, at a mean rate, is about 29 days. If 12 lunar months were exactly equal to the 12 solar months, the Moon's nodes would always occupy the same points in the ecliptic, and all eclipses would happen in the same months of the year, as is the case with the transits of Mercury and Venus: but, in 12 lunations, or lunar months, there are only 354 days; and in this time the Moon has passed through both her nodes, but has not quite accomplished her revolution around the Sun: the consequence is, that the Moon's nodes fall back in the ecliptic at the rate of about $19 j^{\circ}$ annually; so that the eclipses happen sooner every year by about 19 days.

[^209]As the Moon passes from one of her nodes to the other in 173 days, there ls just this period between two successive eclipses of the Sun, or of the Moon. In whatever time of the year, then, we have eclipses at either node, we may be sure that in 173 days afterwards, we shall have eclipees at the other node.

As the Moon's nodes fall back, or retrograde in the ecliptic, at the rate of $199^{\circ}$ every year, they will complete a backward revolution entirely around the ecliptic to the same point again, in 18 years, 225 days; in which time there would always be a regular period of eclipmes, if any complete number of lanations were finighed without a remainder. But this never happens; for if both the Sun and Moon should etart from a line of conjunction with cither of the nodes in any point of the ecliptic, the Sun would perform 18 annual revolutiong and $2222^{\circ}$ of another, while the Moon would perform 200 lunationa, and $85^{\circ}$ of another, before the node would come around to the eame point of the ecliptio again; so that the Sun would then be $138^{\circ}$ from the node, and the Moon $85^{\circ}$ from the Sun.

But after 223 lunations, or 18 yearm, 11 daya," 7 hours, 42 minutes, and 31 seconds, the Sun, Moon, and Earth, will return so neariy in the same position with respect to each other, that there will be a regular return of the aame eclip. ees for many ares. This grand period was discovered by the Chaldenns, and by then called Sarcas. If therefore, to the mean time of any eclipse, either of the Sum or Moon, we add the Chaldean period of 18 yeara and 11 days, we shall have the return of the same eclipse. This mode of predicting eclipses will hold good for a thousand years. In this period there are usually. 70 eclipees; 41 of the Sun and 29 of the Moon.

The number of eclipses in any one year, cannot be less than two, nor more than seven. In the former case, they will both be of the Sun; and in the latter, there will be five of the Sun, and two of the Moon-those of the Moon will be total. There are sometimes six; but the usual number is Jour: two of the Sun, and two of the Moon.

[^210][^211]Agan: when the Moon changen ln either of her nodes, the cannot cone whin the lunar ecliptic limit at the next full, (though If the be full in one of her noden, the may como into the solar ecliptic limit at her next chasge, and aix monthe afterwarde, the will change near ibe other node ; thue making only two clipmen.
The following las liat of all the solar eclipses that will be viaible in Europe and America during the remainder of the present century. To thoee which will be visible in New England, the number of digits is annezed.

| Year. | Month | Day and hour. | Digits | Year. | Month. | Day and hour. | Digitam |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1851, | July | $28748 \mathrm{~A} . \mathrm{M}$. | 31 | 1876, | Mar. | $26411 \mathrm{P} . \mathrm{M}$ | 3 |
| 1854, | May | 26496. | 11 | 1878, | July | ${ }^{29} 4856 \mathrm{P} . \mathrm{M}$. | $7{ }^{\text {7 }}$ |
| 1858, | Mar. | 15614 A. M. | 1 | 1879, | July | 1920 A . M. |  |
| 1859, | July | ${ }^{29} 8532 \mathrm{P} . \mathrm{M}$. | 27 | 1880, | Dec. | 317830 A . M. | 51 |
| 1860, | July |  | 6 | 1882, | May |  |  |
| 1861, | Mec. | $\begin{array}{lllll}31 & 7 & 30 & \text { A. } & \text { M. } \\ 17 & 1 & 0 & \mathbf{P} . & M .\end{array}$ | 4. | 1886, | Mar. | $\begin{array}{cccc}16 & 0 & 35 & \text { A. M. } \\ 29 & 6 & 30 & \text { A. M. }\end{array}$ | 6 |
| 1806, | Oct. | 19.910 A. M. | $3{ }^{31}$ | 1887, | Aug. | 1810 O P. M. |  |
| 1866, | Oct. | 81112 A . | 0 | 1890, | June | $17 \begin{array}{llll}17 & 3 & \text { A. M. }\end{array}$ |  |
| 1867, | Mar. | 630 A . M. |  | 1891, | June | 600 Mer. |  |
| 1868, | Feb. | 23100 A . M. |  | 1892, | Oct. | $20.019 \mathrm{P} . \mathrm{M}$ | 88 |
| 1899 1870, | Dug. | $\begin{array}{ccccc}7 & 5 & 21 & \text { A. } & \mathrm{M} \\ 2 & 6 & 0 & \text { A. }\end{array}$ | 104 | 1895, 1896 | Mar. |  |  |
| 1873, | May | $25850 \mathrm{~A} . \mathrm{M}$. |  | 1897, | July | $2988 \mathrm{~A} . \mathrm{M}$. | 41 |
| 1874, | Oct. | 10800 A . M. |  | 1899, | June | 800 Mer . |  |
| 1875, | Sept. | 29566 A. M. | 11) | 1900, | May | 12889 A . M. | 11 |

The eclipses of $1854,1869.1875$, and 1900 , will be very large. In thoee of 1858. $1801,1873,1875$, and 1880, the Sun will rise eclipsed.

Those of 1854 and 1875, will be asnular. The scholar can continue this table, or extend it backwarts, by adding or subtracting the Chaldean period of 18 years, 11 days, 7 hours, 64 minutes, and 31 seconds.

## MARS.

Mars is the first of the exterior planets, its orbit lying immediately without, or beyond, that of the Earth, while those of Mercury and Venus are within.

Mars appears, to the naked eye, of a fine ruddy complexion; resembling, in color, and apparent magnitude, the star Antares, or Aldebaran, near which it frequently passes. It exhibits its greatest brilliancy about the time that it rises when the Sun sets, and sets when the Sun rises; because it is then nearest the Earth. It is least brilliant when it rise and sets with the Sun; for then it is five times farther removed from us than in the former case.

Its distance from the Earth at its nearest approach is about 50 millions of miles. Its greatest distance from us is about 240 millions of miles. In the former case, it appears nearly

[^212]25 times larger than in the latter．When it rises before the Sun，it is our morning star；when it sets after the Sun，it is our evening star．

The distance of all the planeta from the Earth，whether they be interior or exterior planete，varien within the limits of the diameters of their orbita；for when a planet is in that point of ite orbit which in neareat the Earth，it tis ovi－ dently nearer by the whole diameter of ite orbit，than when it in in the oppoeite point，on the other side of ite orbit．The apparend diameter of the planet will also vary for the same reason，and to the same desree．

Mars is sometimes seen in opposition to the Sun，and sometimes in zuperior conjunction with him；sometimes gibbous，but never horned．In conjunction，it is never seen to pass over the Sun＇s disc，like Mercury and Venus．Thi proves not only that its orbit is exterior to the Earth＇s orbit， but that it is an opaque body，shining only by the reflection of the Sun．

The motion of Mars through the constellations of the zodiac is but little more than half as great as that of the Earth；it being generally about 57 days in passing over one sign，which is at the rate of a little more than half a degree each day．Thus，if we know what constellation Mars enters to－day，we may conclude that two months hence it will be in the next constellation；four months hence，in the next；six months，in the next，and so on．

Mars performs his revolution around the Sun in one year and $10 \frac{1}{2}$ months，at the distance of 145 millions of miles； moving in its orbit at the mean rate of 55 thousand miles an hour．Its diurnal rotation on its axis is performed in 24 hours， 39 minutes，and 21i seconds；which makes its day about 44 minutes longer than ours．

Its mean sidereal revolution in performed in 686.9796458 molar day；；or in 668 days， 23 hourn， 30 minutes， 41.4 peconds．Its synadical revolution is performed in 779.936 solar days；or in 779 days， 22 houre， 27 minutes，and 50 seconds．

Its form is that of an oblate spheroid，whose polar diame－ ter is to its equatorial，as 15 is to 16 ，nearly．Its mean diame－ ter is 4222 miles．Its bulk，therefore，is 7 times less than that of the Earth；and being 50 millions of miles farther from the Sun，it receives from him only half as much light and heat．

The inclination of its axis to the plane of its orbit，is about

[^213]283. Consequently, its seasons must be very similar to those of the Earth. Indeed, the analogy between Mars and the Earth is greater than the analogy between the Earth and any other planet of the solar system. Their diurnal motion, and of course the length of their days and nights, are nearly the same; the obliquity of their ecliptics, on which the seasons depend, are not very different; and, of all the superior planets, the distance of Mars from the Sun is by far the nearest to that of the Earth; not is the length of its year greaily different from ours, when compared with the years of Jupiter, Saturn, and Herschel.

To a spectator on this planet, the Earth will appear alternately, as a morning and evening star; and will exbibit all the phases of the Moon, just as Mercury and Venus do to us; and sometimes like them, will appear to pass over the Sun's disc like a dark round spot. Our Moon will never appear more than a quarter of a degree from the Earth, although her distance from it is 240,000 miles. If Mars be attended by a satellite, it is too small to be seen by the most powerful telescopes.

When it is considered that Vesta, the smallest of the asteroids, which is onct and a half times the distance of Mari from us, and only 269 miles in diameter, $\$$ perceivable in the open space, and that without the premence of a more conapi crous body to point it out, we may reasonably conclude that Mars is without a moon.

The progress of Mars in the heavens, and indeed of all the superior planets, will, like Mercury and Venus, sometimes appear direct, sometimes retrograde, and sometimes he will seem gtationsry. When a superior planet first becomed visible in the morning, west of the Sun, a little after ite conjunction, its motion \$s direce, and also most rapid. When it is first eeen eadt of the Sun, in the ovening, soon after its opposition, its motion is retragrade. These retrograde movements and stations, as they appear to a spectator from the Earth, are cammon to all the planets, and demonstrate the truth of the Copernican system.

The telescopic phenomena of Mars afford peculiar intereat to astronomers. They behold its disc diversified with numerous irregular and variable spots, and ornamented with zones and belts of varying brilliancy, that form, and disappear, by turns. Zones of intense brightness are to be seen in its polar regions, subject, however, to gradual changes. That of the southern pole is much the most brilliant. Dr. Herschel supposes that they are produced by the refiection of the Sun's light from the frozen regions, and that the melting of these masses of polar ice is the cause of the variation in their magnitude and appearance.

[^214]Hewas the more confirmed in these opinions by observing, that after the exposure of the luminous zone about the north pole to a summer of eight months, it was considerably decreased, while that on the south pole, which had been in total darkness during eight months, had considerably increased.
He observed, farther, that when this spot was most lumi- . nous, the disc of Mars did not appear exactly round, and that the bright part of its southern limb seemed to be swollen or arched out beyond the proper curve.

TELESCOPIC APPEARANCES OP MARS. Fig. 16.


The extraordinary height and density of the atmosphere of Mars, are supposed to be the cause of the remarkable redness of its light.
It has been found by experiment, that when a beam of white light passes through any colorless transparent medium, its color inclines to red, in proportion to the density of the medium, and the space through which it has raveled. Thus the Sun, Moon, and stars, appear of a reddish color when near the horizon; and every luminous object, seen through a mist, is of a ruddy hue.

This phenomenon may be thus explained:-The momentum of the red, or least refrangible rays, being greater than that of the violet, or most refrangible rays, the former will make their way through the reaisting medium, while the latter are either reflected or absorbed. The color of the beam, therefore, when It reaches the eye, must partake of the color of the least refrangible rays, and this color must increase with the distance. The dim light, therefore, by which Mars is illuminated, having to pass twoice through its atmosphere before it reaches the Garth, must be deprived of a great proportion of its violet rays, and consequently then be red. Dr. Brewster supposes that the difference of color among the other planete, and even the fixed stars, is owing to the different heights and densities of their atmospheres.

[^215]
## THE ASTEROIDS, OR TELESCOPIC PLANETS.

Ascendina higher in the solar system, we find, between the orbits of Mars and Jupiter, a cluster of small planets, which present a variety of anomalies that distinguish them from all the older planets of the system. Their names are Vesta, Juno, Ceres, and Pallas. These have all been discovered during the present century.

[^216]The scientific Bode* entertained the opinion, that the planetary distances, above Mercury, formed a geometrical series, each exterior orbit being double the distance of the next interior one, from the Sun; a fact which obtains with remarkable exactnese between Jupiter, Saturn, and Herschel. But this law seemed to be interrupted between Mars and Jupiter. Hence he inferred, that there was a planet wanting in that interval; which is now happily supplied by the discovery of the four star-form planets, occupying the very space where the unexplained vacancy presented a strong objection to his theory.

These bodies are much smaller in size than the older planets-they all revolve at nearly the same distances from the Sun, and perform their revolutions in nearly the same periods-their orbits are much more eccentric, and have a much greater inclination to the ecliptic-and what is altogether singular, except in the case of comets-all crass each other ; so that there is even a possibility that two of these

[^217][^218]bodies may, some time, in the courne of their revolutiona, come into collision.

The orbit of Vesta is so eccentric, that she is sometimen farther from the Sun than either Ceres, Pallas, or Juno, although her mean distance is many millions of miles lese than theirs. The orbit of Vesta crosses the orbits of all the other three, in two opposite points.

The student should here refer to the Figures, Plate 1 of the Atlas, and verify such of these particulars as are there represented. It would be well for The teacher to require him to obeerve particularly the pasitions of their orbits, and to state their differend degrees of inctimation to the plame of the ecliptic.

From these and other circumstances, many eminent aotronomers are of opinion, that these four planets are the fragments of a large celestial body which once revolved between Mars and Jupiter, and which burst asunder by some tremendous convulsion, or some external violence. The discovery of Ceres by Piazzi, on the first day of the present century, drew the attention of all the astronomers of the age to that region of the sky, and every inch of it was minutely explored. The consequence was, that in the year following, Dr. Olbers, of Bremen, announced to the world the discovery of Pallas, situated not many degrees from Ceres, and very much resembling it in size.

From this discovery, Dr. Olbers first conceived the idea that these bodies might be the fragments of a former world; and if so, that other portions of it might be found either in the ame neighborhood, or else, having diverged from the same point, " they ought to have two common points of reunion, or two nodes in opposite regions of the heavens through which all the planetary fragments must sooner or later pass."

One of these nodes he found to be in the constellation Virgo, and the opposite one, in the Whale; and it is a remarkable coincidence that it was in the neighborhood of the latter constellation that Mr. Harding discovered the planet Juno. In order therefore to detect the remaining fragments, if any existed, Dr. Olbers examined, three times every year, all the small stars in Virgo and the Whale; and it was actually in the constellation Virgo, that he discovered the planet Vesta. Some astronomers think it not unlikely that still additional fragments of a similar description may hereafter be discovered. Dr. Brewster attributea

[^219]
## the fall of meteoric stones to the emaller fragments of theme bodies happening to come within the ophere of the Earth'm attraction.

Meteoric tones, or what are generally termed aerolites, are stoncm which sometime fall from the upper regions of the atmosphere upon the Earth. The sabatance of which they are compoed, is, for the most part, metallic; but the ore of which it conasts is not to be found in the asme conetituent propartions in any known subutance upon the Earth. Their fall in generally preceded by a luminous appearance, a hisaing noine, and a loud explosion; and when found Immediately after their demcent, they are always hot, and maually covered with a black cruct, indicating a sate of exterior fonsion.

Thair dre variee from that of small fragments of inconsiderable weight, to that of the mont ponderovim mames. They have been foumd to weigh from 300 pound to meveral tone; and they have descended to the earth with a force eaticient to bury them many feet under the surface.

Some have eupposed that they are projected from volcanoes in the Moon; others that they proceed from volcanoes on the Earth; while others imagine that they are gencrated in the regions of the atmosphere; but the truth probably is not yet ascertained. In some instances, these stones heve penetrated through the roofs of houses, and proved destructive to the inhabitants.

If we carefully compute the force of gravity in the Moon, we shall find that If a body were projected from her surface with a momentum that would canse is to move at the rate of 8,200 feet in the first second of time, and in the direction of a line joining the centers of the Earth and Moon, it would not fall again to the sarface of the Moon; but would become a satelite to the Earth. Such an impolee might, indeed, cause it, even after many revolutiona, to fall to the Earth. The $\mathbf{t l l}$, therefore, of these stones from the alry may be scecunted for to thim manner.
Mr. Harte calculates, that even a velocity of 6000 foet in a eecond, would be muficient to carry a body projected from the eurface of the Moon beyond the power of her attraction. If mo, a projectile force threo times greeter than that of a cannon, would carry a body from the Moon, beyond the point of equal attraction, and cause it to reach the Earth. A force equal to thin is often ererted by our volcanoed, and by subterranean steam. Hence, thars is no impoesibllity In the supposition of their coming from the Moon; but Jet I think the theory of aartal consolldation the more plausible.

Vesta appears like a star of the 5 th or 6 th magnitude, shining with a pure, steady radiance, and is the only one of the asteroids which can be discerned by the naked eye.

[^220]Juno, the next planet in order after Vesta, revolves around the Sun in 4 years, $4 \frac{1}{2}$ months, at the mean distance of 254 millions of miles, moving in her orbit at the rate of 41 thousand miles an hour. Her diameter is estimated at 1393 miles. This would make her magnitude 183 times less than the Earth's. The light and heat which she receives from the Sun is seven times less than that received by the Earth.

The eccentricity of her orbit is so great, that her greatest distance from the Sun is nearly double her least distance; so that, when she is in her perihelion, she is nearer the Sun by 130 millions of miles, than when she is in her apkelion. This great eccentricity has a corresponding effect upon her rate of motion; for being so much nearer, and therefore so much more powerfully attracted by the Sun at one time than at another, she moves through that half of her orbit which is nearest the Sun, in one half of the time that she occupies in completing the other half.
According to Schroeter, the diameter of Juno is 1425 miles; and she is suriounded by an atmosphere more dense than that of any of the other planets. Schroeter also remarke, that the variation in her brilliancy is chiefly owing to certain changes in the density of her atmosphere; at the came time he thinke it not improbable that theme changes may arise from diurnal revolution on her axis.

Ceres, the planet next in order after Juno, revolves about the Sun in 4 years, $7 \frac{1}{3}$ months, at the mean distance of $263 \frac{1}{2}$ millions of miles, moving in her orbit at the rate of 41 thousand miles an hour. Her diameter is estimated at 1582 miles, which makes her magnitude 125 times less than the Earth's. The intensity of the light and heat which she receives from the Sun, is ahout $7 \frac{1}{2}$ times less than that of those received by the Earth.

Ceres shines with a ruddy colour, and appears to be only about the size of a star of the Sth magnitude. Consequently she is never seen by the naked eye. She is surrounded by a species of cloudy or nebulous light, which gives her

[^221]somewhat the appearance of a comet, forming, according to Schroeter, an atmosphere 675 miles in height.
Cerea, as has been said, was the first discovered of the amteroids. At her discovery, astronomera congratulated themselves upon the harmony of the system being restored. They had long wanted a planet to fill np the great void between Mars and Jupiter, in order to make the system complete in their own eyes; but the successive discoveries of Pallas and Juno again introduced confusion, and presented a difficulty which they were unable to molve, till Dr. Olbers suggested the idea that these small anomalous bodiee were merely the fragments of a larger planet, which had been exploded by some mighty convulsion. Among the most able and decided advocates of this hypothesis, is Dr. Brewster, of Edinburgh.

Pallas, the next planet in order after Ceres, performs her revolution around the Sun in 4 years, $7 \frac{8}{3}$ months, at the mean distance of 264 millions of miles, moving in her orbit at the rate of 41 thousand miles an hour. Her diameter is estimated at 2025 miles, which is but little less than that of our Moon. It is a singular and very remarkable phenomenou in the solar system, that two planets, (Ceres and Pallas, nearly of the same size, should be situated at equa. distances from the Sun, revolve about him in the same period, and in orbits that intersect each other. The difference in the respective distances of Ceres and Pallas is less than a million of miles. The difference in their sidereal revolutions, according to some astronomers, is but a single day!

The calculation of the latitude and longitude of the asteroids, is a labour of extreme difficulty, requiring more than 400 equations to reduce their anomalous perturbations to the true place. This arises from the want of auxiliary tables, and from the fact that the elements of the star-form planety, are very imperfectly determined. Whether any of the asteroids has a Jo mation on ite aris, remains to be ascertained.

## JUPITER.

Jupiter is the largest of all the planets belonging to the solar system. It may be readily distinguished from the fixed stars, by its peculiar splendour and magnitude; ap pearing to the naked eye almost as resplendent as Venus, although it is more than seven times her distance from the Sun.

[^222]When his night ascension is less than that of the Sun, he in our morning star, and appears in the eastern hemisphere before the Sun rises; when greater, he is our evening star, and lingers in the western hemisphere after the Sun sets.

Nothing can be easier than to trace Jupiter among the constellations of the zodiac ; for in whatever constellation he is seen to-day, one year hence he will be seen equally advanced in the next constellation; two years hence, in the next; three years hence, in the next, and so on; being just a year, at a mean rate, in passing over one constellation.

The exset mean motion of Jupiter in its orblt, it about onctwelfh of g degree in a day; which amounts to only $30^{\circ} 20^{\prime} 32^{\prime \prime}$ in a year.

For 12 years to come, he will, at a mean rate, pasa through the constellations of the zodiac, as follows:

| 1834 | Aries. | 1838 | Leo. | 1842 | Sagittarius. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1835 | Taurus. | 1839 | Virgo. | 1843 | Capricornus. |
| 1836 | Gemini. | 1840 | Libra. | 1844 | Aquarius. |
| 1837 | Cancer. | 1841 | Scorpio. | 1845 | Pisces. |

Jupiter is the next planet in the solar system above the asteroids, and performs his annual revolution around the Sun in nearly 12 of our years, at the mean distance of 495 millions of miles; moving in his orbit at the rate of 30,000 miles an hour.
The exact period of Jupiter's sidereal revolution la 11 years 10 monthe, 17 days, 14 hours, 21 minutes, $25 i$ meconds. His exact mean distance from the Bun is $490,533,837$ miles; consequently, the oxact rate of his motion in his orbit, is 29,943 miles per hour.

He revolves on an axis, which is perpendicular to the plane of his orbit, in 9 hours, 55 minutes, and 50 secouds; so that his year contains 10,471 days and nights; each about 5 hours long.

His form st that of an oblate spheroid, whose polar diame ter is to its equatorial, as 13 to 14 . He is therefore considerably more flattened at the poles, than any of the other plarrets, except Saturn. This is caused by his rapid rotation on his axis; for it is a universal law that the equatorial parts of every body, revolving on an axis, will be swollen

[^223]was, in proportion to the density of the body, and the rapidtty of its motion.
The difference between the polar and equatorial diameters of Jopher, arceede 6000 miles. The difference between the polar and equatoriat diemeters of the Earth, it only 25 miles. Jupiter, even on the mona carelesa Fiew throigh a good teleacope, appears to be oval; the longer diametir being parallel to the direction of his belte, which are almo parallel to the ecliptic

By this rapid whirl on his axis, his equatorial inhabitants are carried around at the rate of 26,554 miles an hour; which is 1600 miles farther than the equatorial unhabitants of the Earth are carried, by its diurnal motion, in twentyfour hours.

The true meas diameter of Jupiter is 86,255 miles ; which is nearly 11 times greater than the Earth's. His volume is therefore about thirteen hundred miles larger than that of the Earth. (Compare his magnitude with that of the Earth. Plate 1.) On account of his great distance from the Sun, the degree of light and heat which he receives from it, is 27 times less than that received by the Earsh.

When Juplter is in conjunction, he rises, sets, and comed to the meridian with the Sun; but in never observed to make a transit, or pase over the Bun's diac; when in opposition, be rises when the Sun meth, weta when the Fon rives, and comes to the merldian at midnight, which never happens fo the case of an inferior planet. This proves that jupiter rovolvea in in orbit which is esterior to that of the Earth.

As the variety in the seasons of a planet, and in the length of its days and nights, depends upon the inclination of its axis to the plane of its orbit, and as the axis of Jupiter has no unclination, there can be no difference in his seasons, on the same parallels of latitude, nor any variation in the length of his days and nights. It is not to be understood, however, that one uniform season prevails from his equator to his poles; but that the same parallels of latitude on each side of his equator, uniformly enjoy the same season, whatever season it may be.

About his equatorial regions there is perpetual summer; and at his poles everlasting winter; but yet equal day and equal night at each. This arrangement seems to have been kindly ordered by the beneficent Creator; for had his axis been inclined to his orbit, like that of the Earth, his poldr winters would have been alternately a dreadful night of nix years darkness.

[^224]
## THIEDOJPIC APPRARANOES OF JUPITITE.

Fig. 17.


Jupiter when viewed through a telescope, appears to te zurrounded by a number of luminous zones, usually termed belts, that frequently extend quite around him. These belts are parallel not only to each other, but, in general, to his equator, which is also nearly parallel to the ecliptic. They are subject, however, to considerable variation, both in breadth and number. Sometimes eight have been seen at once; sometimes only one, but more usually three. Dr. Herschel once perceived his whole disc covered with small belts.

Sometimes these belts continue for months at a time with little or no variation, and sometimes a new belt has been seen to form in a few hours. Sometimes they are interrupted in their length; and at other times, they appear to spread in width, and run into each other, until their breadth exceeds 5,000 miles.

Bright and dark spots are also frequently to be seen in the belts, which usually disappear with the belts themselves, though not always, for Cassini observed that one occupied the same position more than 40 years. Of the calcse of these variable appearances, but little is known. They are generally supposed to be nothing roore than atmospherical phenomena, resulting from, or combined with, the rapid motion of the planet upon its axis.
Different opinions have been entertained by aatronomers respecting the cause of these belts and spots. By mome they have been regarded as clouds, or as openings in the atmosphere of the planet, while others imagine that they are of a more permanent nature, and are the inarks of great phypical revolutions, which are perpetually agitating and changing the surface of the planet. The first of these opinions auminiently explains the varistiona In the form and magnitude of the apote, and the paralletiam of the belta The apot first observed by Cassini, in 166 f, which has both disappeared and re-appeared in the same form and position for the apace of 43 years, could not possibly be occasioned by any admosyherical variations, but seeme evidently to be connected with the anrface of the planet. The form of the

[^225]bell, sccording to mome astronomers, may be accounted for by muppoify that the atmosphere retiectes more light than the body of the planet, and that the clonde which foat in it, being thrown into parallel atrata by the rapidity of ite diurnal motion, form regular intersticen, through which are meen ite opaque body, or any of the permanant spots which may come withla the range of the opening.

Jupiter is also attendes by four satellites or moons, some of which are visible to him every hour of the night; exhibiting, on a small scale and in short periods, most of the phenomena of the solar system. When viewed through a telescope, these satellites present a most interesting and beantiful appearance. The first satellite, or that nearest the planet, is 259,000 miles distant from its centre, and revolves around it in 42 hours; and appears, at the surface of Jup:ter, four times larger than our Moon does to us. His second satellite, being both smaller and fartber distant, appears about the size of ours; the third, somewhat less; and the fourth, which is more than a million of miles from him, and takes 164 days to revolve around him, appears only about one third the diameter of our Moon.

These satellites suffer frequent eclipses from passing through Jupiter's shadow, in the same manner as our Moon is eclipsed in passing through the Earth's shadow. The three nearest satellites fall into his shadow, and are eclipsed, in every revolution; but the orbit of the fourth is so much inclined, that it passes by its opposition to him, twc years in six, without falling into his shadow. By means of these eclipses, astronomers have not only discovered that light is 8 roinutes and 13 seconds in coming to us from the Sun, but are also enabled to determine the longitude of places on the Earth with greatel facility and exactness than by any other methods yet known.

It was long since found, by the most careful observations, that when this Earth is in that part of her orbit which is nearest to Jupiter, the eclipses appear to happen $8^{\prime} 13^{\prime \prime}$ aooner than the tables predict; and when in that part of her orbit which is fartheat froun him, $8^{\prime} 13^{\prime \prime}$ later than the tables predict; making a total difference in time, of $16^{\prime} \mathbf{2 0}^{\prime \prime}$. From the mean of 6000 eclipses observed by Delambre, this disagreement between observation and calculation, was satisfactorily settled at $8^{\prime} 13^{\prime \prime}$, while both were considered equaliy correct. Now when the eclipses happen sooner than the tables, Jupiter is at his nearest approach to the Farth-when later, at his greatest distance; so that the difference in his distances from the Earth, in the two cases, is the whole diameter of the Earth's orbit, or abous 190 millions of miles. Hence, it is concluded that light ie not instantane-

[^226] th coming from the sun to the Earth; being nearly 12 millinns of miles a tinuse.
'The revolutions of the satellites about Jupiter are precisely similar to the revolutions of the planets about the Sun. In this respect they are an epitome of the solar system, exhibiting, on a smaller scale, the various changes that take place among the planetary worlds.

Jupiter, when seen from his nearest satellite, appears a thousand times larger than our Moon does to us, exhibiting on a scale of inconceivable magnificence, the varying forms of a crescent, a half moon, a gibbous phase, and a full moon, every 42 hours.

The apparent dianeters of Jupiter's matellites, their mean distancen from thim, and their periodical rowolutiona, are exhibited in the following table.


## SATURN.

Saturn is situated between the orbits of Jupiter and Herschel, and is the most remote planet from the Earth of any that are visible to the naked eye. It may be easily distinguished from the fixed stars by its pale, feeble, and steady light. It resembles the star Fomalhaut, both in colour and size, differing from it only in the steadiness and uniformity of its light.

From the slowness of its motion in its orbit, the pupil, throughout the period of his whole life, may trace its apparent course andong the stars, without any danger of mistake. Having once found when it enters a particular constellation, he may easily remember where he is to look for it in nny subsequent year; because, at a mean rate, it is just $2 \frac{1}{2}$ years in passing over a single sign or constellation.

Saturn's mean daily motion among the stars is only about $z^{\prime}$, the thirtieth part of a degree.
Gaturn entered the conatellation Virgo about the beginning of 1833 and continued in it until the middle of the year 1835, whon he pasued lato It

[^227]ora. Fo will continme th thill sonetellation until 1835; and so on; ocer pying about $2 /$ years in each constellation, or nearly 30 years in one reve lation.

The mean distance of Saturn from the Sun is nearly double that of Jupiter, being about 909 millions of miles. His diameter is about 2,000 miles ; his volume therefore is eleven hundred times greater than the Earth's. Moving in his orbit at the rate of 22,000 miles an hour, be requires $29 \frac{1}{2}$ years to complete his circuit around the Sun: but his diurnal rotation on his axis is accomplished in $10^{\frac{1}{2}}$ hours. His year, therefore, is nearly thirty times as long as ours, while his day is shorter by more than one half. His yeai contains about 25,150 of its own days, which are equal to 10,759 of our days.

The surface of Saturn, like that of Jupiter, is diversified with belts and dark spots. Dr. Herschel sometimes perceived five belts on his surface; three of which were dark, and two bright. The dark belts have a yellowish tinge, and generally cover a broader zone of the planet than those of Jupiter.

To the inhabitants of Saturn, the Sun appears 90 times less than he appears to the Earth; and they receive from him only one ninetieth part as much light and heat. But it is computed that even the ninetieth part of the Sun's light exceeds the illuminating power of 3,000 full moons, which would be abundantly sufficient for all the purposes of life.

## Fig. 18.



The telescopic appearance of Saturn is unparalleled. It is even more interesting than Jupiter, with all his moons and belts. That which eminently distinguishes this planet from every orher in the system, is a magnificent zone or ring, encircling it with perpetual light.

The light of the ring is more brilliant than the pla-

[^228]eet itself. It turns around its centre of motion in the same cine tast Saturn turns on its axis. When viewed with a goodtelescope, it is found to consist of two concentric rings, duvided by a dark band.

By the lawe of mochanich, is in Imposithle that the body of tue rump chuuld retain its position by the adheaion of the particlea alone; it mack necessarily revolve with a velmcity that will generate ceatrifugal fores aum. cient to balanee the attraction of Alaturn. Obwervation confirmat the truth of thame principles, mhowing that the sigg rotate about the planer in 10y bours, which is considerably less than the time a satellite would take to rowolve about is at the asme distance. Their plane in inclined to the ecliptic in an angle of $31^{\circ}$. In consequence of the obliquity of position, they at waye appear elliptical to an, but with an eccentricity so varinble as to appear, occasionally, like a meraight line drawn acrom the planet; in which case they are viaible only by the aid of superior inatruments. Buch was their position in April, 1833 ; for the Sun was then pating from their mouth to thatr narth aide. The rings intersect the ecliptic in two opponite poinith

## SATURN's RLNGA.


$T$

60


은


8

$n$


II

$m$


[^229]Whieh many be callet their nodes. Thesp puints are in longitude $170^{\circ}$, and 850 degreen. When, therefore, Baturn is in either of these points, his ringi will be invisible to us. On the contrary, when his longitude is $80^{\circ}$, or ${ }^{5} 00^{\circ}$, the rings nay be seen to the greasest alvantage. As the edges of the ringa will present themselves to the Sun twice in each revolution of the planet, it is obvious that the disappearance of them will occur once in about 15 years; enbject, however, to the variadion dependent on the position of the Earth at that time.

The preceding diagrams are a very good representation of the form and poeition of the rings as they appear to a ajwctator during one complete revoltrfon of Saturn through the signs of the ecliptic.

By reference to the figure, it will be seen, that when Saturn is in either of the first six signa, the Sun shines on the souta side of the rings; and that while he is in either of the lagt six signz, upon their north side.

The following are the clates during the $\varepsilon$ nsuing revolutions of the planet, When ita mean heliocentric longitude in such that the riugs will (if the Earth be favourably aituated) either be invisible, or seen to the greateat advantage.

| 1833 Aprli. | 200 of Virgo. |
| :--- | :--- |
| 1838 July. | 200 of Acorpio. |
| 1847 Dec. | $20^{\circ}$ of Aquarius. |
| 1869 April. | $29^{\circ}$ of Gemini. |
| 1868 Nov. | $20^{\circ}$ of Virgo. |

Invisible.
North side illuminated.
Invisible.
Bouth side illuminated.
Invisible.

The distance between Saturn and his inner ring, is only 21,000 miles; being less than a tenth part of the distance of our Moon frow the Earth. The breadth of the dark band, or the interval between the rings, is hardly 3,000 miles.The breadth of the inner ring is 20,000 miles. Being only about the same distance from Saturn, it will present to his inhabitants a luminous zone, arching the whole concave vault from one bemisphere to the other with a broad girdle of light.

The most obvious use of this double ring is, to reflect light upon the planet in the absence of the Sun; what other purposes it may be intended to subserve, is to us unknown. The sun, as has been shown, illuminates one side of it during 15 years, or one half of the period of the planet's revolution; and, during the next 15 years, the other side is enlightened in its turn.

Twice in the course of 30 years, there is a short interval of time when neither side is enlightened, and when, of course it ceases to be visible;-namely, at the time when the Sun ceases to shine on one side, and is about to shine on the

[^230]other.* It revolves around its axis, and conseguently, around Saturn, in $101^{\circ}$ hours, which is at the rate of a thousand miles in a minute, or 58 times swifter than the revolotion of the Earth's equator.

When viewed from the middle zone of the planet, in the absence of the Sun, the rings will appear like vast luminous arches, extending along the canopy of heaven, from the eastern to the western horizon, exceeding in breadth a hundred times the apparent diameter of our Moon.

Besides the rings, Saturn is attended by seven satellites, which revolve about him at different periods and distances, and reciprocally reflect the Sun's rays on each other and on the planet. The rings and moons illuminate the nighta of Saturn ; the moons and Saturn enlighten the rings, and the planet and rings reflect the Sun's beams on the satellites.
The fourth of these satellites (in the order of their distance) was frof discovered by Huygens, on the 25ch of March 1655, and, in honour of the discoverer, was called the Huigenian Satellite. This sacellito, being the largest of all, is seen without much difficulty. Cassini discovered the 1ra, 2d, 34 , and bth matellites, between October, 1671, and March, 1684 . Dr. Herachiol discovered the 6 ch and 7 th in 1789 . Thene are nearer to Saturn that eny of the rean, though, to aroid confusion, they are named in the order of their discovery.

The sirth and seventh are the smallest of the whole; the first and second are the next smallest; the third is greater than the first and second; the fourth is thedargest of them all; and the fifth surpasses the rest in brightness.

Their respective distances from their primary, vary from half the distance of our Moon, to two millions of miles. Their periodic revolutions vary from 1 day to 79 days. The orbits of the six inner satellites, that is, the $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}$ 4 th, 6th, and 7th, all lie in the plane of Saturn's rings, and revolve around their outer edge; while the 5 th satellite deviates so far from the plane of the rings, as sometimes to be seen through the opening between them and the planet.
Laplace imagines that the accumulation of matter at Saturn's equator rotuins the orbtes of the first six satellites to the plane of the equator, in the same manner as it retains the rings in that plane. It has been satiefactorily ascertained, that Elaturn has a greater accumulation of matter about hit

[^231][^232]equator, and consequenthy that ho fr more satwened at the polen than 3upter, though che velocity of the equatorial parts of the former if unuch loen than that of the beter. This ts euficienty sceounted for by the fact, thot the rings of 变atarn lio to the plane of his equator, and act more powerfully upon thoae parts of his surface than upon any other; and thus, while thoy ald in dimintshing the gravity of theae parta, aleo ald the centrifqual force in fattening the poles of the planet. Indeed, had Natum never revolved upom him aria, the action of the rings would, of itmelf, have been eaficient to give him the form of an oblate spheroid.

The theory of the satellites of Saturn is less perfect than that of the satellites of Jupiter. The difficulty of observing their eclipses, and of measuring their elongations from their primary, have prevented astronomers from determining, with their usual precision, their mean distances and revolutions.

We may remart, with the Christian Philosopher, that there is no planet in the solar system, whose furmament presents such a variety of splendid and magnificent objects as that of Saturn.

The rarious aspects of the seven moons, one rising above the horizon, while another is setting, and a third approach ug to the meridian; one entering into an eclipse, and an oher emerging from one; one appearing as a crescent, and another with a gibbous phase; and sometimes the whole of them shining in the same hemisphere, in one bright assemblage! The majestic motion of the rings, -at one time illuminating the sky with their splendour, and eclipsing the stars; at another, casting a deep shade over certain regions of the planet, and unveiling to view the wonders of the starry firmament, are scenes worthy of the majesty of the Divine Being to unfold, and of rational creatures to con template.

Such displays of Wisdom and Omnipotence, lead us to conclude that the numerous splendid objects connected with this planet, were not created merely to shed their lustre on naked rocks and barren sands; but that an immense population of intelligent beings is placed in those regions, to enjoy the bounty, and adore the goodness, of their great Creator.

[^233][^234]| sucel Hten | Periodio revolution. |  |  | Distance in diameters. | Distance in millen |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0. | 2 zh . | 28m. | 1.540 | 129,900 |
| 8 | 1 | 8 | 3 | 1.976 | 158,000 |
| 3 | 1 | 21 | 18. | 2447 | 195,720 |
| 4 | 2 | 17 | 45 | 3.134 | 250,720 |
| 8 | 4 | 12 | 25 | 4.377 | 350,360 |
| 6 | 15 | 22 | 41 | 10.143 | 811,400 |
| 7 | 79 | 7 | 85 | 29.677 | 2356,160 |

## HERSCHEL.

Herschel is the most distant planet from the Sun that hat vet been discovered, To the naked eye, it appears like a star of only the 6th or 7th magnitude, and of a pale, bluish white; but it can seldom be seen, except in a very fine, clear night, and in the absence of the Moon.

As it moves over but one degree of its orbit in 85 days, it will be seven years in passing over one sign or constellation. At present,* its mean right ascension is $332 \frac{1}{2}^{\circ}$, and its declination $151^{\circ} \mathrm{S}$. It is therefore in the tail of Capricorn, making a small triangle with Deneb and Delta Algedi.

When first seen by Dr. Herschel, in 1781, it was in the foot of Gemini; so that it has not yet completed two thirds of a revolution since it wasfirst discovered to be a planet.

It is remarksble that this body was observed as far back as 1690 . It was teen three times by Flamstead, once by Bradley, once by Mayer, and eleven times by Lemonnier, who registered it among the ntars; but not one of them muspected it to bea planet.

The inequalities in the motions of Jupiter and Saturn, which could not be accounted for from the mutual attractions of these planets, led astronomers to suppose that there existed another planet beyond the orbit of Saturn, by whose action these irregularities were produced. This conjecture was confirmed March 13th, 1781; when Dr. Herschel discovered the motione of this body, and thus proved it to be a planet.

Herschel is attended by six moons or satellites, which revolve about him in different periods, and at various dis-

[^235][^236]tances. Four of them were discovered by Dr. Herschel, and $t w a$ by his sister, Miss Caroline Herschel. It is possible that others remain yet to be discovered.

Herschel's mean distance from the Sun is 1828 millions of mules ; more than twice the mean distance of Saturn. His sidereal revolution is performed in 84 years and 1 uionth, and his motion in his orbit is 15,600 miles an hour. He is supposed to have a rotation on his axis, in common with the other planets; but astronomers have not yet been aole to obtain any occular proof of such a motion.

His diameter is estimated at 34,000 miles ; which would make his volume more than 80 times larger than the Earth's. Tohis inhabitants, the Sun appears only the $\frac{1}{3} \frac{1}{8}$ part as large as he does to us; and of course they receive from him only that small proportion of light and heat. It may be shown, however, that the sts part of the Sun's light exceeds the illuminating power of 800 full Moons. This added to the light they must receive from their six satellites, will render their days and nights far from cheerless.

Such was the ielestial system with which our Earth was associated at its creation, distinct from the rest of the starry hosts. Whatever may be the comparative antiquity of our globe, and the myriads of radiant bodies which nightly gem the immense vauliabove us, it is most reasonable to conclude, that the Sun, Earth, and planets, differ little in the date of their origin.

This fact, at least, seems to be philosophically certain, that all the bodies which compose our solar system must luave been placed at one and the same time in that arrangement, and in those positions in which we now behold them; because all maintain their present stations, and motions, and distances, by their mutual action on each other. Neither could be where it is, nor move as it does, nor appear as we see it, unless they were all coexistent. The presence of each is essential to the system-the Sun to them, they to the Sun, and all to each other. This fact is a strong indication that their formation was simultaneous.

[^237]
## COMETS

Comets, whether viewed as ephemeral meteors, or an Aubstantial bodies, forming a part of the Solar system, are objects of no ordinary interest.

When, with uninstructed gaze, we look upwards, to the clear sky of evening, and behold, among the multitudes of hearenly bodies, one, blazing with its long train of light, and rushing onward towards the centre of our system, we insensibly shrink back as if in the presence of a supernatural being.

But when, with the eye of astronomy, we follow it through its perihelion, and trace it far off, beyond the utmost verge of the solar system, till it is lost in the infinity of space, not to return for centuries, we are deeply impressed with a sence of that power which could create and set in motion such bodies.

Comets are distinguished from the other heavenly bodies, by their appearance and motion. The appearance of the planets is globular, and their motion around the Sun is nearly in the same plane, and from west to east; but the comets have a variety of forms, and their orbits are not confined to any particular part of the heavens ; nor do they observe any one general direction.

The orbits of the planets approach nearly to circles, while those of the comets are very elongated cllipses. A wire hoop, for example, will represent the orbit of a planet. If two opposite sides of the same hoop, be extended, so that -s shall be long and narrow, it will then represent the orbit of a comet. The Sun is always in one of the foci of the comet's orbit.

There is, however, a practical difficulty of a peculiar nature which om barrasses the solution of the question an to the form of the cometary orbit: It so happens that the only part of the coarse of a comet which can ovet be risible, is a portion throughout which the ellipse, the perabola, and hyrerbola, to clonely resemble each other, that no observations can be obtalnod with sufficient accuracy to enable ine to diatinguish them. In fact, the observed path of may comet, while viaibie, may belong either to an ellipse, parebola, or hyperbole.

That part which is usually brighter, or more opaque, than the other portions of the comet, is called the nucleus. This is sarrounded by an envelope, which bas a cloudy, or hairy appearance. These two parts cunstitute the body, and, in many instances, the whole of the comet.

[^238]Must of them, however, are attended by a long srain, called the tail; though some are without this appendage, and as seen by the naked eye, are not easily distinguished from the planets. Others, again, have no apparent nucleus, and seem to be only globular masse's of vapour.
Nothing is known with certainty of the composition of these bodies. The envelope appears to be nothing more than vapour, becoming more luminous and transparent when approaching the Sun. As the comets pass between us and the fixed stars, their envelopes and tails are so thin, that stars of very small magnitudes may be seen through them. Some comets, having no nucleus, are transparent throughout their whole extent.
The nucleus of a comet sometimes appears opaque, and it then resembles a planet. Astronomers, however, are not agreed upon this point. Some affirm that the nucleus is always transparent, and that comets are in fact nothing but a mass of vapour, or less condensed at the centre. By others it is mantained that the nucleus is sometimes solid and opaque. It seems probable, however, that there are three classes of comets; viz.: 1st. Those which have no nucleus, being transparent throughout their whole extent ; 2d. Those whicn nave a transparent nucleus; and, 3d. Those having a nucleus which is solid and opaque.
A comet, when at a distance from the Sun, viewed through a good telescope, has the appearance of a dense rapour surrounding tie nucleus, and sometimes flowing far into the regions of space. As it approaches the Sun, its light becomes more onnizant, till if reaches its perihelion, when its light is more dazzling than that of any other celestial body, the Sun excepted. In this part of its orbit are seen to the best advantage the phenomena of this wonderful body, which has, from remote antiquity, been the spectre of alarm and terrour.
The luminous train of a comet usually follows it, as it approaches the Sun, and goes before $i t$, when the comet recedes from the Sun; sometimes the tail is considerably curved towards the region to which the comet is tending, and in some instances, it has been observed to form a right angle with a line drawn from the Sun through the centre of the comet. The tail of the comet of 1744, formed nearly a quarter of a circle; that of 1689 was curved like a

[^239]Turkish sabre. . Sometimes the same comet has several tails. That of 1744 had, at one time, no less than six, which appeared and disappeared in a few days. The comet of 1823 had, for several days, two tails; one ex. tending towards the Sun, and the other in the opposite direction.

Comets, in passing among and near the planets, are materially drawn aside from their courses, and in some cases have their orbits entirely changed. This is remarkably true in regard to Jupiter, which seems by some strange fatality to be constantly in their way, and to serve as a perpetual stumbling block to them.
"The remarkable comet of 1770 , which was found by Lezell to revolve in a tuoderate ellipse, in a period of about five yearg, actually got entangled among the satelitele of Jupiter, and thrown out of its orbit by the atiractions of that planet," and bas not been heard of since.-Herschel, p. 310. By this extraordinary rencontre, the motions of Jupiter's satellites auffered not the least perceptible derangement;-a suficient proof of the eeriform nature of the comet's masa.
It is clear from observation that comets contain very little natter. For they produce little or no effect on the motion of the planets when passing near those bodies ; it is said that a comet, in 1454, eclipsed the moon ; so that it must bave been very near the Earth; yet no sensible effect was observed to be produced by this cause, upon the motion of the Earth or the Moon.

The observations of philosophers upon comets, have as yet detected nothing of their nature. Tycho Brahe and Appian supposed their tails to be produced by the rays of the Sun, transmitted through the nucleus, which they supposed to be transparent, and to operate as a lens. Kepler thought they were occasioned by the atmosphere of the comet, driven off by the impulse of the Sun's rays. This opinion, with some modification, was also maintained by Euler. Sir Isaac Newton conjectured, that they were a thin vapour, rising from the heated nucleus, as smoke ascends from the Earth; while Dr. Hamilton supposed them to be streams of electricity.

[^240][^241]the portion of the tall where ti comes up to, and murrounde the heard, in jer reparated from it by an interval less luminous; as we ffen see one hayer of elouds laid over another with $\mathbf{z}$ considerable clear space between thean." And again-" It foltowe that these can only be regurded as great masses of thin vapour, susceptible of being penetrated throagh their whole substances by the sunbeams.!

Comets have always been considered by the ignorant and superstitious, as the harbingers of war, pestilence, and famine. Nor has this opinion been, even to this day, confined to the unlearned. It was once universal. And when we examine the dimensions and appearances of some of these oodies, we cesse to wonder that they produced universal alarm.

According to the testimony of the early writers, a comet which could be seen in day light with the naked eye, made its appearance 43 years before the birth of our Saviour. This date was just after the death of Cæsar, and by the Romans, the comet was believed to be his metamorphosed soul, armed with fire and vengeance. This comet is again mentioned as appearing in 1106, and then resembling the Sun in brightness, being of a great size, and having an immense tail.

In the ytar 1402, a comet was seen, so Prilliant as to bs discerned at noon-day.

In 1456 a large comet made its appearance. It spread 2 wider terrour than was ever known before. The belief was very general, among all classes, that the comet would destroy the Earth, and that the Day of Judgment was at hand!
This comet appeared again in the years 1531, 1607, 1682, 1758, and is now approaching the Sun with accelerated velocity. It will pass its perihelion in November, 1835, and every 751 years thereafter. We now [October, 1835,] see this self same comet, so often expelled the Church of Rome, returning to reassert his claim to a fellowship with the solar family.

At the time of the appearance of this comet, the Turks extended their victorious arms across the Hellespont, and seemed destined to overrun all Europe. This added not a little to the general gloom. Under all these impressiong, the people seemed totally regardless of the present, and anxious only for the future. The Romish Church held at this time unbounded sway over the lives, and fortunes, and consciences of men. To prepare the world for its expected doom, Pope Calixtus III. ordered the Ave Maria to be repeated three times a day, instead of two. He ordered the church bells to be rung at noon, which was the origin of

[^242]that practice, so universal in Cbristian churches. To the Ave Maria, the prayer was added-"Lord, save us from the Devil, the Turk, and the Comet:" and once, each day, these three obnoxious personages suffered a regular excommunication.

The pope and clergy, exhibiting such fear, it is not a matter of wonder that it became the ruling passion of the mulitude. The churches and convents were crowded for confession of sins; and treasures uncounted were poured into the Apostolic chamber.

The comet, after suffering some months of daily cursing and excommunication, began to show signs of retreat, and soon disappeared from those.eyes in which it found no favour. Joy and tranquillity soon returned to the faithful subjects of the pope, but not so their money and lands. The people, however, became satisfied that their lives, and the safety of the world, had been cheaply purchased. The pope, who had achieved so signal a victory oven the monster of the sky, had checked the progress of the Turk, and Kept, for the present, his Satanic majesty at a safe distance ; while the Church of Rnme, retaining her unbounded wealth, was enabled to continue that influence over her followers. which she retains, in part, to this day.

The comet of 1680 would have been still more alarming than that of 1456, had not science robbed it of its terrours, and history pointed to the signal failure of its predecessor. This comet was of the largest size, and had a tail whose enormous length was more than ninety-six miLlions of miles.

At its greatest distance, it is 13,000 millions of miles from the Sun; and at its nearest approach, only 574,000 miles from his centre ; * or about 130,000 miles from his surface. In that part of its orbit which is nearest the Sun, it flies

[^243]with the amasing swifiness of $1,0 \mathrm{~b}, 0,00 \mathrm{mules}$ in an hour, and the Sun, as seen from it, appears 27,000 times larger than it appears to us; consequently, it is then exposed to a heat 87,000 times greater than the solar heat at the Earth. This intensity of heat exceeds, several thousand times, that of red-hot iron, and indeed all the degrees of heat that we are able to produce. A simple mass of vapour, exposed to a thousandth part of such a heat, would be at once dissipated in space-a pretty strong indication that, however volatile are the elements of which comets are composed, they are, nevertheless, capable of enduring an inconceivable intensity of both heat and cold.

This is the comet which, according to the reveries of Dr. Whiston and others, deluged the world in the time of Noah. Whiston was the friend and successor of Newton : but, anxious to know more than is revealed, he passed the buunds of sober philosophy, and presumed not only to fix the residence of the damned, but also the nature of their punishment. According to his theory, a comet was the awful prison-house in which, as it wheeled from the remotest regions of darkness and cold into the very vicinity of the Sun, hurrying its wretched tenants to the extremes of perishing cold and devouring fire, the Almighty was to dispense the severities of his justice.

Such theories may be ingenious, but they have no basis of facts to rest upon. They more properly belong to the chimeras of Astrology, than to the science of Astronomy.

When we are told by philosophers of great caution and high reputation, that the fiery train of the comet, just alluded to, extended from the horizon to the zenith; and that that of 1744 had, at one time, six tails, each $6,000,000$ of miles long, and that another, which appeared soon after, had one $40,000,000$ of miles long, and when we consider also the inconceivable velocity with which they speed their flight through the solar system, we may cease to wonder if, in the darker ages, they have been regarded as evil omens

But these idle phantasies are not peculiar to any age or country. Even in our own times, the beautiful comet of 1811, the most splendid one of modern times, was generally considered among the superstitious, as the dread harbinger

[^244]of the war which was declared in the following apring. It is well known that an indefinite apprehension of a mon dreadful catastrophe lately pervaded both continents, in anticipation of Biela's comet of 1832.

The nucleus of the comet of 1811 , according to observations made near Boston, was 2,617 miles in diameter, curresponding nearly to the size of the Moon. The brilliancy with which it shone, was equal to one tenth of that of the Moon. The envelope, or aeriform covering, surrounding the nucleus, was 24,000 miles thick, about five hundred times as thick as the atmosphere which encircles the Earth; making the diameter of the comet, including its envelope, 50,617 miles. It had a very luminous tail, whose greates length was one hundred million of miles.
This comet inoved, in its perihelion, with an almost Inconceivable velocityIfteen hundred timee greater than that of a ball bursting from the mouth of a cannon. According to Regiomontenus, the comet of 1472 moved over an at ; of $120^{\circ}$ in one day. Brydone observed a comet at Palermo in 1770 , which passed through $50^{\circ}$ of a great circle in the heavens in 24 hours. Another comet, which appeared in 1759 , passed over $41^{\circ}$ in the same time. The conjecture of Dr. Halley therefore seems highly probable, that if a body of such a siza having any considerable density, and muving with auch a volocity, were to strike our Earth, it would instantly reduce it to chson, mingling its elements in ruin.

The transient effect of a somet passing vear the Earth, could searcely manount to any great convilaten, Eays Dr. Brewster: but if the Eath were metually to receive a shock from one of these bodies, the conmequences would be awful. $A$ new direction would be given to ite rotary motion, and It would revolve around a new axis. The seag, forsaking their benis, would be hurried, by their centrifugal force, to the new equatorial regiona: islande and continents, the abodes of men and animals, would be covered by the universal rush of the waters to the new equator, and every veatige of human induatry and genius would be at once dentroyed.

The chances against such an event, however, are so very numerous, that there is no reason to dread its occurrence. The French government, not long since, called the attention of some of her ablest mathematicians and astronomers to the solution of this problem; that is, to determine, upos mathematical principles, how many chances of collision the Earth was exposed to. After a mature examination, they re-ported,-" We have found that, of $281,000,000$ of chances, there is only one unfavourable,-there exists but one which can produce a collision between the two bodies."
"Admitting, then," say they, "for a moment, that the comets which naxy Erike the Earth with their nucleuses, would annihilate the whole human race; the danger of death to each individual, resulting from the ap-

[^245]pearnace of an watmoven comet, would be exnetly enoal to the risk he wriud run, if in an urn there was only ome single whime ball among a total nuarber of $\mathbf{2 3 1 , 0 0 0 , 0 0 0}$ balls, and that his coodemnation to death would be the tnevituble consequence of the white ball being profluced at the first drawing."

We have before stated that comets, unlike the planets, observe no one direction in their orbits, but approacn to, and recede from their great centre of attraction, in every possible direction. Nothing can be more sublime, or better calculated to fill the mind with profound astonishment, than to contemplate the revolution of comets, while in that part of their orbits which comes within the sphere of the telescope. Some seem to come up from the immeasurable depths below the ecliptic, and, haring doubled the heavens' mighty cape, again plunge downward with their fiery trains,

> "On the long travel of a thousand yeara."

Others appear to come down from the zenith of the uni verse to double their peribelion about the Sun, and then reascend far above all human vision.

Others are dashing through the solar system in all posssble directions, and apparently without any undisturbed or undisturbing path prescribed by him who guides and sustains them all.

Until within a few years, it was universally believed that the periods of their revolutions must necessarily be of prodigious length; but within a few years, two comets have been discovered, whose revolutions are performed, comparatively, within our own neighbourhood. To distinguish them from the more remote, they are denominated the comets of a short period. The first was discovered in the constellation Aquarius, by two French astronomers, in the year 1786. The same comet was again observed by Miss Caroline Herschel, in the constellation Cygnus, in 1795, and again in 1805. In 1818, Professor Encke determined the dimensions of its orbit, and the period of its sidereal revolution; for which reason it has been called "Encke's Comet."

This cumet performs its revolution around the Sun in about $\mathbf{3}$ years and 4 months,* in an elliptical orbit which lies wholly within the orbit of Jupiter. Its mean distance from the Sun is 212 millions of miles; the eccentricity of its orbit is $\mathbf{1 7 9}$

[^246]mullions of miles; consequently it is 358 millions of miles nearer the Sun in its perihelion, than it is in its aphelion. It was visible throughout the United States in 1825, when it presented a fine appearance. It was also observed at its next return in 1828; but its last return to its perihelion, on the 6th of May, 1832, was invisible in the United States, on account of its great southern declination.

The second "Comet of a short period," was observed in 1772; and was seen again in 1805. It was not until its re-appearance in 1826, that astronomers were able to determine the elements of its orbit, and the exact period of its revolution. This was successfully accomplished by M. Biela of Josephstadt ; hence it is called Biela's Comet. According to observations made upon it in 1805, by the celebrated Dr. Olbers, its diameter, including its envelope, is 42,280 miles. It is a curious fact, that the path of Biela's comet passes very near to that of the Earth; so near, that at the moment the centre of the comet is at the point nearest to the Earth's path, the matter of the comet extends beyond that path, and includes a portion within it. Thus, if the Earth were at that point of its orbit which is nearest to the path of the comet, at the same moment that the comet should be at that point of its orbit which is nearest to the path of the Earth, the Earth would be enveloped in the nebulous atmosphere of the comet.

With respect to the effect which might be produced upon our atmosphere by such a circumstance, it is impossible to offer any thing but the most vague conjecture. Sir John Herschel was able to distunguish stars as minute as the 16th or 17th magnitude through the body of the comet ! Hence it seems reasonable to infer, that the nebulous matter of which it is composed, must be infinitely more attenuated than our atmosphere; so that for every particle of cometary matter which we should inbale, we should inspire millions of particles of atmospheric air.

This is the comet which was to come into collision with the Earth, and to blot it out from the Solar System. In returning to its perihelion, November 26th, 1832, it was computed that it would cross the Earth's orbit at a distance of

[^247]only 18,500 miles. It is evident that if the Earth had been in that part of her orbit at the same time with the comet, vur atmosphere would have mingled with the atmosphere of the comet, and the two bodies, perhaps, have come in contact. But the comet passed the Earth's orbit on the 29th of Ocsober, in the 8th degree of Sagittarius, and the Earth did not arrive at that point until the 30th of November, which was 32 days afterwards.
If we multiply the number of hours in 32 days, by 68,000 (the velocity of the Earth per hour,) we shall find that the Earth was more than $52,000,000$ miles behind the comet when it crossed her orbit. Its nearest approach to the Earth, at any time, was about 51 millions of miles ; its nearest approach to the Sun, was about 83 millions of miles. Its mean distance from the Sun, or half the longest axis of its orbit, is 337 millions of miles. Its eccentricity is 253 millions of miles; consequently, it is 507 millions of miles nearer the Sun in its perihelion than it is in its aphelion. The period of its sidereal revolution is 2,460 days, or abous 67 years.

Athough the cometa of Encke and Biela are objects of very great intereat, yet their short periods, the limited space within which their motion is efrcumacribed, and consequently the very slight disturbance which they sustain from the attraction of the planets, render them of lese interest to physical astronomy than those of longer periods.

They do not, like them, rush from the invisible and inacceassible depthe of apace, and, after sweeptng our syatem, depart to distances with the coneeption of which the imagination itself is confounded. They possess none of that grandeur which is connected with whatever appears to break through the fixed order of the universe. It is reserved for the comet of Halley alone to afford the proudest trinmph to those powers of calculation by which we are enabled to follow it in the depths of space, two thousand millions of miles beyond the extreme verge of the solar system; and, notwithstanding disturbances which render each succeeding period of ite return different from the last, to foretel that return with precision.

The following representation of the entire orbit of Biela's comet, was cbtained from the Astronomer Royal of the Greenwich Observatory. It shows not only the space and position it occupies in the solar system, but the points where its orbit intersects all the planetary orbits through which it passes. By this, it is seen that its peribelion lies between the orbits of the Earth and Venus, while its aphelion extends a little beyond that of Jupiter.

[^248]
## COMETM.

Fig. 20.


This diagram not only exhibits the course of the comet at its last return, but also denotes its future positions on the first day of every year during its next revolution. It is also apparent that it will return to its perihelion again in the autumn of 1839, but not so immediately in our vicinity as to be the proper cause of alarm. To be able to predict the very day and circumstances of the return of such a bodiless and eccentric wanderer, after the lapse of so many years, evinces a perfection of the astronomical calculus that may justly challenge our admiration.
"The re-appearance of this comet," says Herschel, " whose return in 1832 was made the subject of elaborate calculations by mathematicians of the first eminence, did not disappoint the expectation of astronomers. It is hardly possible to imagine any thing more striking than the appearance, after the lapse of nearly seven years, of such an all but imperceptible cloud or wisp of vapour, true, however to its predicted time and place, and obeying laws like those which regulate the planets."

Hersehel, whote Observatory is at Slough, England, observed the daily progreas of this comet from the 2th of september, until its disappearance, compared its actisal position from day to day with its calculated position, and found them to agree within four or five minutes of time in right ascension, and within a few secande of declination. Its position, then, as represented on a planisphere which the author prepared for his pupils, and aflerwards pablished, was true to within a less spece than one third of its projected dianctor. Like some otherg that have, been oliservech, this comet has no luminuus train by which it can be easily recognized by the naked eye, except when it is very near the Sun. This is the reason why it was not more generally observed at its late return.

Ahhough this comet Is usually denominated "Biela's comer," yet it seems that M. Gambart, director of the Observatory at Marseilics is equally en titled to the honour of Hentifying it with the comet of 1772 , and of 1816 He discovered it only 10 days after Biela, and tmmediately set abont calcuhating its elements from his own observations, which are thought to equal, if they do not surpans, in point of accuracy, thome of every other. astronomer.

Up to the beginning of the 17th century, no correct no tions had been entertained in respect to the paths of comets. Kepler's first conjecture was that they moved in straight lines; but as that did not agree with observation, he nexi concluded that they were parabolic curves, having the Sun near the verter, and running indefinitely into the regions of space at both extremities. There was nothing in the observations of the earlier astronomers to fix their identity, or to lead him to suspect that any one of them bad ever been seen before; much less that they formed a part of the solar

[^249]system, revolving about tne Sun in elliptical orbits that retarned into themselves.

This grand discovery was reserved for one of the most industrious and sagacious astronomers that ever lived-this was Dr. Halley, the contemporary and friend of Newton. When the comet of 1682 made its appearance, he set himself about observing it with great care, and found there was a wonderful resemblance between it and three other comets that be found recorded, the comets of 1456 , of 1531 , and 1607. The times of their appearance had been nearly at equal and regular intervals; their perihelion distances were nearly the same; and he finally proved them to be one and the same comet, performing its circuit around the Sun in a period varying a little from 76 years. This is therefore called Halley's comet. It is the very same comet that filled the eastern world with so much consternation in 1456 , and became an object of such abhorrence to the church of Rome.

Of all the comets which have been observed since the Christian era, only three have had their elements so well determined that astronomers are able to fix the period of their revolution, and to predict the time and circumstances of their appearance. These three are, Encke's, whose last revolution about the Sun was performed in 1212 days; Biela's, whose period was 2461 days; and Halley's, which is now accomplishing its broad circuit in about 28,000 days. Encke's and Halley's will return to their peribelion the present year (1835), and Biela's in 1839.

Halley's comet, true to its predicted time and place, Is now (Oct. 1885) Fistble in the evening sky. But we behold mone of those phenomena which threw our ancestors of the middle ages into agonies of superstitious terrour. We sce not the cometa horrendo magnitudinis, as it appeared in 1306, nor that tail of enormous length which, in 1456, exteaded over two thirda of the interval between the borizon and the zenith, nor even a atar an briliant as was the same comet in 1662 , with ite tail of $30^{\circ}$.

Its mean distance from the sun is $1,713,700,000$ miles; the eccentricity of Its orbit is $1,6 E 8,000,000$ miles ; consequently it is $3,316,000,000$ milen farther from the Sun in its aphelion than it is in its perihelion. In the latter ease, its distance from him ls only $55,700,000$ miles ; but in the former, it is 8,371,700:000 miles Therefore, though its aphelion distance be great, to mean distance is lesa than that of Herschel; and great as is the aphelion distance, it is but a very small fraction less than one five-thmuandih part of that distance from the Sun, beyond which the very nearest of the fired etars must be aituat od ; and, as the determination of beir distance is nege-

[^250]uve and mor ponitive, the nearcet of them may be at twice or tem thmen then distance.

The number of comete which have been obeorved anace the Chumina cra, amounts to 700 Ecarcely a year hat passed withont the observation ol one or two. And stace multitudes of them mast esciape observation, by reanon of their traveraing that part of the heavens which la above the horizon in the duy time, their whole number is probably many thousends. Cometa mo circumstanced, can only become visible by the rare coincidence of a total eclipae of the Sun-a coincidence which happened, af related by Reneca, 60 years befors Chrint, when a large comet was actually observed very near the Btan.
But M. Arago reasons in the following comaner, whit respeet to the number of conels:-The number of ascertained connets, which, at their laan dietances, peas within the orbit of Mercury, is thirty. Assuming that the conuets are uniformly distributed throughout the solar aystem, there win be 117,649 duses tan many comets included within the orbit of Herachel, at thern are within the orbit of Mercury. But as there are 30 within the orbif of Mercury, there muat be $3,629,470$ within the orbit of Herschel!

Of 97 comete whone elements have been calculated by antronomers, 28 paswed between the Bun and the orbit of Mercury; 33 between th orbits of Mercury and Venus; 21 between the orbits of Venus and the Earth; is betwreen the orbite of Ceret and Juptrer. Forty-nine of these cotmete move from east to west, and 48 ta the opposite direction.

The total number of dietinct conieta, whose paths during the viable part of their course had been ascertained, up to the year 1832, was one hundred and thirty-teven.
What regions these bodies visit, when they pass beyond the limits of our view; upon what errands they come, when they again revisit the central parts of our system; what is the difference between their physical constitution and that of the Sun and planets; and what important ends they are destined to accomplish, in the economy of the universe, are inquiries which naturally arise in the mind, but which surpass the limited powers of the human understanding at present to determine.

## CHAPTERXX.

## OF THE FORCES BY WHICH THE' PLANETS ABIE RETAINED IN THEIR ORBITS.

Having described the real and apparent motions of the bodies which compose the solar system, it may be interesting next to show, that these motions, however varied or complex they may seem, all result from one simple principle, or law, uamely, the

[^251]
## LAW OF UNIVERSAL GILATITATIOS.

It is said, that Sir Isaac Newton, when he was diawing to a close the demonstration of the great cruth, that gravity is the cause which keeps the heavenly bodies in their orbits, was so much agitated with the magnitude and importance of the discovery be was about to make, that he was unable to proceed, and desired a friend to finish what the intensity of his feelings did not allow bim to do. By gravitation is meant that universal law of attraction, by which every particle of matter in the system has a tendency to every other particle.

This attraction, or tendency of bodies towards each other, is in proportion to the quantity of matter they contain. The Earth, being immensely large in comparison with all other substances in its vicinity, destroys the effect of this attraction between smaller bodies, by bringing them all to itself.

The attraction of gravitation is reciprocal. All bodies not only attract other bodies, but are themselves attracted, and both according to their respective quantities of matter The Sun, the largest body in our system, attracts the Earth and all the other planets, while they in turn attract the Sun. The Earth, also, attracts the Moon, and she in turn attracts the Earth. A ball, thrown upwards from the Earth, is brought again to its surface; the Earth's attractior not only counterbalancing that of the ball, but also producing a motion of the ball towards itself.

This disposition, or tendency towards the Earth, is manifested in whatever falls, whether it be a pebble from the hand, an apple from a tree, or an avalanche from a mountain. All terrestrial bodies, not excepting the waters of the ocean, gravitate towards the centre of the Earth, and it is by the same power that animals on all parts of the globe stand with their feet pointing to its centre.

The power of terrestrial gravitation is greatest at the earth's surface, whence it decreases both upwards and downwards; but not both ways in the same proportion. It decreases upwards as the square of the distance from the Earth's centre ncreases; so that at a distance from the centre equal to twice the semi-diameter of the Earth, the gravitating force would be only one fourth of what it is at the surface. But below the surface, it decreases in the direct ratio of the dis

[^252]tance from the centre; so that at a distance of half a semi diameter from the centre, the gravitating force is but half what it is at the surface.

Weight and Gravity, in this case, are synonymous terms. We say a piece of lead weighs a pound, or 16 ounces; but il' by any means it could be raised 4000 miles above the surface of the Earth, which is about the distance of the surface from the centre, and consequently equal to two semi-diameters of the Earth above its centre, it would weigh only one fourth of a pound, or four ounces; and if the same weight could be raised to an elevation of 12.000 miles above the surface, or four semi-diameters above the centre of the Earth, it would there weigh only one sixteenth of a pound, or one ounce.

The same body, at the centre of the Earth, being equally attracted in every direction, would be without weight; at 1000 miles from the centre it would weigh one fourth of a pound; at 2000 miles, one half of a pound ; at 3000 miles, three fourths of a pound; and at 4000 miles, or at the sarface, one pound.
It is a universal law of attraction, that its power decreases as the square of the distance increases. The converse of this is also true, viz. The posoer increaser, as the equare of the distance decreases. Giving to this law the forts of a practical rule, it will stand thus:

The gravity of bodies above the surface of the Darth deereases in a dupli cate ratio (or as the squares of their distances) in semi-dianneters of the earth, from the earth's centre. That is, when the gravity is increasing, multiply the weight by the square of the distance; but when the gravity is decreasing, divide the weight by the square of the distance.
Auppose a body weigh 40 pounde at 2000 iniles above the Earth's sanrface, what would it weigh at the surface, estimating the Earth's semi-diameter at 4000 miles 3 From the centre to the given height, is $1 \frac{1}{4}$ semi-diannetera: the square of th, or 1.5 is 2.25 , which, mulliplied into the weight ( 40 , gives 90 pounds the answer.
Suppose a body which weighs 256 pounds upon the surface of the Earth, be raised to the distance of the Moon, ( 240,000 miles,) what would be ite weight. Thus, 4000 ) 240,000600 semi diameters, the square of which is 3000 . As the gravity, in this csse, is decreasing, dicide the weight by the square of the diatance, and it will give 3600 )266( $1-16 \mathrm{~h}$ of a pound, or 1 ounce.
2 To find to what height a given waight must be raised to lose a certain portion of its weight.
Rols.-Divide the woight at the surface, by the reqwired woight, and extratt the square root of the quotient. Ex. A boy weighs 100 pounds, how high must he be carried to weigh but 4 pounds? Thus, 100 divided by 4 , givem 9, the square root of which is 5 semi-diameters, or 20,000 miles above the centre.

Bodies of equal magnitude do not always contain equal

[^253]yuantities of matter; a ball of cork, of equal bulk with one of lead, contains less matter, because it is more porous. The Sun, though fourteen hundred thousand times larger than the Earth, being much less dense, contains a quantity of matter only 355,000 times as great, and hence attracts the Earth with a force only 355,000 times greater than that with which the Earth attracts the Sun.

The quantity of matter in the Sun is 780 times greater than that of all the planets and satellites belonging to the Solar System; consequently their whole united force of attraction is 780 times less upon the Sun, than that of the Sun upan them.

The Centre of Gravity of a body, is that point in which uts whole weight is concentrated, and upon which it would rest, if freely suspended. If two weights, one of ten pounds, the other of one pound, be connected together by a rod eleven feet long, nicely poised on a centre, and then be thrown into a free rotary motion, the heaviest will move in a circle with a radius of one foot, and the lightest will describe a circle with a radius of ten feet: the centre around which they move is their common centre of gravity. See the Figure.

Thus the Sun and planets move around an imaginary point as a centre, always preserving an equilibrium.

## CENTRE OF GRAVITY.

Fig. 21.


If there were but one hody in the universe, provided it were of uniform density, the centre of it would be the centre of gravity towards which all the surrounding portions would uniformly tend, and they would thereby balance each other. Thus the centre of gravity, and the body itself, would forever remain at rest. It would neither move up nor down; there being no other body to draw it in any direction. In this case, the terms up and down would have no meaning,

[^254]axcept en applied to the body itself, to express the direction of the surface from the centre.

Were the Earth the only body revolving aboat the Sun, as the San's quantity of matter is 355,000 times as great as that of the Earth, the Sun would revolve in a circle equal only to the three hundred and fifty-five thousandth part of the Earth's distance from it : but as the planets in their several orbits vary their positions, the centre of gravity is not always at the same distance from the Sun.

The quantity of matter in the Sun so far exceeds that of all the planets together, that were they all on one side of him he would never be more than his own diameter fom the common centre of gravity ; the Sun is therefore justly con aidered as the centre of the system.

The quantity of matter in the Earth being about 80 times as great as that of the Moon, their common centre of gravity is 80 times nearer the former than the latter, which is abouz 3000 miley from the Earth's centre.

The secondary planets are governed by the same laws m their primaries, and both together move around a common centre oi gravity.
Every system in the universe is supposed to revolve. in like manner, around one common centre.

## attractive and projectal forchs.

All simple motion is naturally rectilinear ; that $1 s$, a bodies put in motion would continue to go for ward in straighs lines, as long as they met with no resistance or diverting force.

On the other hand, the Sun, from his immense size, would by the power of attraction, draw all the planets to him, if his attractive force were not counterbalanced by the primi tive impulse of the planetary bodies to move in straight lines.

The attractive power of a body drawing another body towards the centre, is denominated Centripetal force; and the tendency of a revolving body to fly from the centre in a tangent line, is called the Projectile or Centrifugal force. The joint action of these two central forces gives the planets

[^255]R circular motion, and retains them in their orbits as ther revolve, the primaries about the Sun, and the secondaries about their primaries.

The degree of the Sun's attractive power at each particuSar planet, whatever be its distance, is uniformly equal to che centrifugal force of the planet. The nearer any planet is to the Sun, the more strongly is it attracted by him ; the farther any planet is from the Sun, the less is it attracted by him ; therefore, those planets which are the nearer to the Sun must move the faster in their orbits, in order thereby to acquire centrifugal forces equal to the power of the Sun's allfaction; and those which are the farther from the Sun must move the slower, in order that they may no ${ }^{\circ}$ have too great a degree of centrifugal force, for the weaket attraction of the Sun at those distances.

The discovery of these great truths, by Kepler and Newton, established the universal law of flanetary motion; which may be stated as follows :

1. Every planet moves in its orbit with a velocity varying every instant, in consequence of two forces; one tending to the centre of the Sun, and the other in the direction of a tangent to its orbit, arising from the primitive impulse given at the time it was launched into space. The former is called its Centripelal, the latter, its Centrifuga' force. Should the centrifugal force cease, the planet would fall to the Sun by its gravity; were the Sun not to attract it, it would fly off from its orbit in a straight line.
2. By the time a planet has reached its aphelion, or that point of its orbit which is farthest from the Sun, his attraction has overcome its velocity, and draws it towards him with such an accelerated motion, that it at last overcomes the Sun's attraction, and shoots past him; then gradually decreasing in velocity, it arrives at the perihelion, when the Sun's attraction again prevails.
3. However ponderous or light, large or small, near or remote, the planets may be, their motion is always such that imaginary lines joining their centres to the Sun, pass over equal areas in equal times: and this is true not only with respect to the areas described every bour by the same planet, but the agreement holds, with rigid exactness, between the areas deacribed in the same time, by all the planets and comets belonging to the Solar System.

From the foregoing princlples, it follows, that the force of gravthy, and the centrifugal furce, are mutual opposing powers-each continually acting

[^256]colinat the other. Thue the waight of bodies on the Earth's equator is diminThed by the centrifugal force of her diurnal rotation, in the proportion of one pound for every 200 prouds: that in, harf the Earth mo mouion on her axis, all bodies on the equator would weigh one 239 th part more than they now do.
On the contrary, if her diumal motion were accelerated, the centrifugal force would be proportionally increazed, and the weight of bodies at the equator would be, in the same ratio, duminished. Should the Earth revolve upon ite axis with a velucity which would make the day but 84 minutes loug. instead of mhourg the centrffugel force would counterbalance that of gravity, aud all bodief at the equator would then be absolutely destitute of weight; andif the centrifugal force were farther augneuted (the Earth revolving in less than 84 minutes), graviration would be completely overpowered, and all nuids and losee subenaces near the equator would Hy off from the surfice.
The weight of borlies, either upon the Earth, or on any other planet having a motion around its axis, depends jointly on the mass of the planet, and ite diarnal velocity. A body weighing one pound on the equatur of the Earth, would
 the Moon, 1 -6th of a lb. ; of Mare, f lb ; of Jupiter, 2.716ibs ; of Saturn, 1.011be.

## CHAPTER XXI.

## PRECESSION OF THE EQUINOXES-OBLIQUITY OF THE ECLIPTIC.

Of all the motions which are going forward in the Solar System, there is none, which it is important to notice, more difficult to comprehend, or to explain, than what is called the precession of the equinoxes.

The equinoxes, as we have learned, are the two opposite points in the Earth's orbit, where it crosses the equator. The first is in Aries; the other, in Libra. By the precession of the equinoxes is meant, that the intersection of the equator with the ecliptic is not always in the same point:in other words, that the Sun, in its apparent annual course, does not cross the equinoctial, spring and autumn, exactly in the same points, but every year a little behind those of the preceding year.

This annual falling back of the equinoctial points, is called by astronomers, with reference to the motion of the heavens, the Precession of the Equinoxes; but it would better accord with fact as well as the apprehension of the learner, to call it, as it is, the Recession of the Equinoxes: for the equinoctial points do actually recede upon the ecliptic, at the rate of about $50 \xi^{\prime \prime}$ of a degree every year. It is the name only, and not the position, of the equinoxes which remains permanent. Wherever the Sun crosses the equinoctial in the spring, there is the vernal equinox; and wherecer he crosees it in the autumn, there is the autumnal equinox, and theme points are constantly moving to the west.

[^257]To render this subject far miliar, we will suppoee two earriage roads, extendiag quite around the Earth : one, representing the equator, runaing due east and weat; and the other reprementing the ocliptic, running nearly In the rime direction as the former, yet so an to crom it with a small angle (Eay of 28103 , both st the point Where we now mitand, for inmance, and in the nadir, exoedy oppoite ; let there also be another road, to repremont the prime meridian, runing north and wouth, and croening the firet at right angles, in the common point of intersection, of in the anmersed figure.

Lat a carriage now gtart from this point of intersecthon, not in the road leading
 directly east, but along that of the ecliptic, Which leaven the formar a littio so the north, and let a person be placed to watch when the carriage comes around again, after having made the circuit of the Earth, and aee whether the carriage will crose the equinoctial road again precisely in the same trach as when it leit the goal. Though the person stood exactly in the former tracik, he noed not fear being run over, for the carriage will crose the road 100 rods weat of him, that is, 100 roda weat of the meridian on which he ntood. It is to be obearved, that 100 rods un the equator is equal to 50$\}$ reconds of a deqree.

If the carriage mtill continue to go around the Earth, it will, on completing ita second circuit, cross the equinocitial path 200 rods west of the moridisi whence it first set uut; on the thind circuit, 300 rods weat; on the fourth circuit, 400 rode, and mo on, continually. After 7la circuits, the point of intersection would be one degree west of its place at the commencement of the route. At this rate it would be easy to determine how many complete circuits the carriage mux perform before this continual falling back of the intersecting point would have retreated over every degree of the orbit, until it reached again the point from whence it firs departed. The application of this illustration will be manifox, when we consider, further, that

The Sun revolves from one equtnox to the same equinox again, in $365 \mathrm{~d} .5 \mathrm{~h} .48^{\prime} 47^{\prime \prime} .81$. This constitutes the natural, or tropical year, because, in this period, one revolution of the seneons is exactly completed. But it is, meanwhile, to be borne in mind, that the equinox itself, during this period, has not kept its position among the stars, but has dewerted ite place, and fallen back a little way to meet the Sun; whereby the Sun has arrived at the equinox before he has arrived at the same position among the stars from which he departed the year before; and consequently, must perform as much more than barely a tropical revolution, to reach that point again.

[^258]To pay over this interval, which completes the Sun's sidereal revolution, takes ( $20^{\prime} 22^{\prime \prime} .94$ ) about 22 minutes and 23 seconds longer. By adding 22 minutes and 23 seconds to the time of a tropical revolution, we obtain $365 \mathrm{~d} .6 \mathrm{~h} .9 \mathrm{~m} .10 \ddagger \mathrm{~s}$, for the length of a sidereal revolution; or the time in which the Sun revolves from one fixed star to the same star again.

As the Sun describes the whole ecliptic, or $360^{\circ}$, in a tropical year, he moves over $59^{\prime} 8 \mathrm{i}^{\prime \prime}$ of a degree every day, at a mean rate, which is equal to $503^{\prime \prime}$ of a degree in 20 minutes and 23 seconds of time; consequently he will arrive at the eame equinox or solstice when be is $50 t^{\prime \prime}$ of a degree short of the same star or fixed poiut in the heavens, from which he set out the year before. So that, with respect to the fixed stars, the Sun and equinoctial points fall back, as it were, $1^{\circ}$ in 71 years. This will make the stars appear to have gone forward $1^{\circ}$, with respect to the signs in the ecliptic, in that time: for it must be observed, that the same signs always keep in the same points of the ecliptic, without rogard to the place of the constellations. Hence it becomes necessary to have new plates engraved for celestial globes and maps, at least once in 50 years, in order to exhibit truly the altered position of the stars. At the present rate of motion, the recession of the equinoxes, as it should be called, or the precession of the stare, amounts to $30^{\circ}$, or one whole cign, in 2140 years.

## MOTION OF TEE STARS.



To explain thim by a figure: Suppose the Sun to have been in conjunction With a fixed star at S , In the first degree of Taurus, (the second sign of the ecliptle, 340 yearn before the birth of our Ssviour, or about the 17 th year of Alexander the Great; then having made 2140 revolutions through the ecliptic, he would be found again at the end of so many sidereal years at $S$; but at the
 many tropical yeara, which would bring it down to the beginning of the procont century, be would be found at $T$. In the first degree of Aries, which hat seeeded from $S$ to $T$ in that time by the precession of the equinoctial poines Arles end Libres. The are 8 T would be equal to the amount of the precemion
(for precesaion we must etill call it) of the equinox in 2140 years, at the rate of 501.23572 of a degree, or 20 minutes and 23 seconds of time annually, as above stated.

From the constant retrogradation of the equinoctial points, and with them of all the signs of the ecliptic, it follows that the longitude of the stars must continually increasc. The same cause affects also their right ascension and declination. Hence, those stars which, in the infancy of astronomy were in the sign Aries, we now find in Taurus; and those which were in Taurus, we now find in Gemini, and so on. Hence likewise it is, that the star which rose or set at any particular time of the year, in the time of Hesiod, Eudoxus, Virgil, Pliny, and others, by no means answers at this time to their descriptions.

Hesiod, in his Opera et Dies, lib. ii. verve 185, says: When from the solatice sixty wintry days Their turns have finished, mark, with glitt'ring raye, From Ocean's sacred flood, Arcturus rise, Then first to gild the dusky evening skies.
But Arcturus now rises acronycally in latitude $37^{\circ} 45^{\prime} \mathrm{N}$. the latitude of Hesod, and nearly that of Richmond. in Virginia, about 100 days after the winter solstice. Supposing Hesiod to be correct, there is a difference of 40 days arising from the precession of the equinoxes since the days of Hesiod. Now as there is no record extant of the exact period of the world when this poet flourished, let us see to what result astronomy will lead us.

As the Sun moves through about $39^{\circ}$ of the ecliptic in 40 days, the winter solatice, in the time of Hesiod, was in the 9 th degree of Aquarius. Now eatimating the precession of the equinoxes at $50 \xi^{\prime \prime}$ in a year, we shall have $50 \mathbf{4}^{\prime \prime}: 1$ year: : $39^{\circ}$ : 2794 years since the time of Hesiod: if we substract from this our present era, 1836, it will give 958 ycars before Christ. Lempriere, in his Classical Dictionary, says Hesiod liverd 907 years before Christ. See a aimilar ealculation for the time of Thalea, page 54.

The retrograde movement of the equinoxes, and the annual extent of it, were determined by comparing the longitude of the same stars, at different intervals of time. The most careful and unwearied attention was requisite in order to determine the cause and extent of this motion; a motion so very slow as scarcely to be perceived in an age, and occupying not less than 25,000 years in a single revolution. It has not yet completed one quarter of its first circuit in the heavens since the creation.

Thus observation has not only determined the absolute

[^259]motion of the equinoctial points, but measured its limit; it has also shown that this motion, like the causes which produce it, is not uniform in ilself: but that it is constantly accelerated by a slow arithmetical increase of $1^{\prime \prime}$ of a degree in 4.100 years. A quantity which, though totally inappreciable for short periods of time, becomes sensible after a lapse of agea. For example: The retrogradation of the equinoctial points is now greater by nearly ${ }^{\prime \prime}$ than it was in the time of Hipparchus, the first who observed this motion; consequently, the mean tropical year is shorter now by about 12 seconds than it was then. For, since the retrogradation of the equinoxes is now every year greater than it was then, the Sun has, each year, a space of nearly i' $^{\prime \prime}$ less to pass through in the ecliptic, in order to reach the plane of the equator. Now the Sun is 12 seconds of time in passing over $\mathbf{z}^{\prime \prime}$ of space.

At present, the equinoctial points move backwards, or from east to west along the path of the ecliptic at the rate of $1^{\circ}$ in $71 \ddagger$ years, or one whole sign, in 2140 years. Continuing at this rate, they will fall back through the whole of the 12 signs of the ecliptic in 25,680 years, and thus return to the same position among the stars, as in the beginning.

But in determining the period of a complete revolution of the equinoctial pointe, it must be borne in mind that the motion itself is continually increasing ; so that the last quarter of the revolution is accomplished eeveral hundred years sooner than the first quarter. Making due allowance for this accelerated progress, the revolution of the equinoxes is completed in 25,000 years ; or, more exactly, in 24,992 years.

Were the motion of the equinoctial points uniform; that is, did they pass through equal portions of the ecliptic in equal times, they would accomplish their first quarter, or pase through the first three signs of the ecliptic, in 6,250 years. But they are 6,575 years in passing through the first quarter; about 218 years less in passing through the second quarter; 218 less in passing through the third, and so on.

The immediate consequence of the precession of the equinoxes, as we have already observed, is a continually progressive increase of longitude in all the heavenly bodies For the vernal equinox being the initial point of longitude,

[^260]as well as of right ascension, a retreat of this point on the ecliptic, tells upon the longitudes of all alike, whether at rest or in motion, and produces, so far as its amount extends, the appearance of a motion in longitude common to them all, as if the whole heavens had a slow rotation around the poles of the ecliptic in the long period above mentioned, simifar to what they have in every twenty-four hours around the poles of the equinoctial. As the Sun loses one day in the year on the stars, by his direct motion in longitude; so the equinox gains one day on them, in 25,000 years, by its retrograde motion.

The cause of this motion was unknown, until Newton proved that it was a necessary consequence of the rotation of the Earth, combined with its elliptical figure, and the unequal attraction of the Sun and Moon on its polar and equatorial regions. There being more matter about the Earth's equator than at the poles, the former is more strongly attracted than the latter, which causes a slight gyratory or wabbling' motion of the poles of the Earth around those of the ecliptic, like the pin of a top about its center of motion, when it spins a little obliquely to the base.

The precession of the equinoxes, thus explained, consists in a real motion of the pole of the heavens among the stars, in a small circle around the pole of the ecliptic as a center, keeping constantly at its present distance of nearly $23 \mathbf{1}^{\circ}$ from it, in a direction from east to west, and with a progress no very slow, as to require 25,000 years to complete the circle. During this revolution, it is evident that the pole will point successively to every part of the small circle in the heavens which it thus describes. Now this can not happen without producing corresponding changes in the apparent diurnal motion of the sphere, and in the aspect which the heavens must present at remote periods of time.

The effect of such a motion on the aspect of the heavens, is seen in the apparent approach of some stars and constellations to the celestial pole, and the recession of others.

- The bright star of the Lesser Bear, which we call the pole star, has not always been, nor will always continue to be, our polar star. At the time of the construction of the earliest catalogues, this star was $12^{\circ}$ from the pole; it is now only $1^{\circ} 34$ from it, and it will approach to within half a degree of it; after which it will again recede, and slowly give place to others, which will succeed it in its proximity to the pole.

[^261]The pale, se above comidered, in to be understood, merely, at the wavashinap point of the Earth's axis; or that point in the concave sphere which is alnogys epposite the terrestrial pole, and which consequently must move as that moves.

The precession of the stars in respect to the equinoxes, is less apparent the greater their distance from the ecliptic; for whereas a star in the zodiac will appear to sweep the whole circumference of the heavens in an equinoctial year, a star situated within the polar circle will describe only a very small circle in that period, and by so much the less, as it approaches the pole. The north pole of the earth being elevated $23^{\circ} 271^{\prime}$ towards the tropic of Cancer, the circumpolar stars will be successively at the least distance from it, when their longitude is 3 signs, or $90^{\circ}$ The position of the north polar star in 1836, was in the $17^{\circ}$ of Taurus; when it arrives at the first degree of Cancer, which it will do in about 250 years, it will be-at its nearest possible approach to the pole-namely, $29^{\prime} 55^{\prime \prime}$. About 2900 years before the commencement of the Christian era, Alpha Draconis, the third star in the Dragon's tail, was in the first degree of Cancer, and only $10^{\prime}$ from the pole; consequently it was then the pole star. After the lapse of 11,600 years, the star Lyra, the brightest in the northern hemisphere, will accupy the position of a pole star, being then about 5 degrees from the pole; whereas now its north polar distance is upwards of $51^{\circ}$.

The mean average precession from the creation ( 4004 B. C.) to the year 1800, In 49". 51455 ; consequently the equinoctial points have receded since the creation, $2 \mathrm{a} 14^{\circ} 8^{\prime} 2^{\prime \prime \prime}$. The longitude of the star Beta Arietis, was, in $1820,31^{\circ} 27^{\prime} 28^{\prime \prime}$ : Meton, a famous mathematician of Athens, who flourished 430 years before Christ, says, this star, in his tinie, was in the vernal equinoz. If be is rorrect, then $81^{\circ} z^{\prime} 28^{\prime \prime}$, divided by 2250 yearm, the elapsed time, will give $50 j^{\prime \prime}$ for the precession. Something, however, muat be allowed for the imperfection of the instruments used at that day, and even until the sixteenth century.

Since all the stars complete half a revolution about the axis of the ecliptic in about 12,500 years, if the North Star be at its nearest approach to the pole 250 years hence, it will, 12,500 years alterwards, be at its greatest possible distance from it, or about $47^{\circ}$ above it:-That is, the star itself will remain immovable in its present position, but the pole of the Earth will then point as much below the pole of the ecliptic, as now it points above. This will have the effect,

[^262]cepparently, of elevating the present polar star to twice ite present altitude, or $47^{\circ}$. Wherefore, at the expiration of half the equinoctial year, that point of the heavens which is now $1^{\circ} 18^{\prime}$ north of the zenith of Hartford, will be the place of the north pole, and all those places which are situated $1^{\circ}$ $18^{\prime}$ north of Hartford, will then have the present pole of the heaveme in their zenith.

## OBLIQUITX OF THE ECLIPTIC.

The distance between the equinoctial and either tropic, measured on the meridian, is called the Obliquity of the Ecliptic: or, this obliquity may be defined as the angle formed by the intersection of the celestial equator with the ecliptic. Hitherto, we have considered these great primary circles in the heavens, as never varying their position in space, nor with respect to each other. But it is a remarkable and well-ascertained fact, that both are in a state of constant change. We have seen that the plare of the Earth's equator is constantly drawn out of place by the unequal attraction of the Sun and Moon acting in different directions upon the unequal masses of matter at the equator and the poles; whereby the intersection of the equator with the ecliptic is constantly retrograding-thus producing the precession of the equinoxes.

The displacement of the ecliptic, on the contrary, is produced chiefly by the action of the planets, particularly of Jupiter and Venus, on the Earth; by virtue of which the plane of the Earth's orbit is drawn nearer to those of these two planets, and consequently, nearer to the plane of the equinoctial. The tendency of this attraction of the planets, therefore, is to diminish the angle which the plane of the equator makes with that of the ecliptic, bringing the two planes nearer together; and if the Earth had no motion of rotation, it would, in time, cause the two planes to coincide. But in consequence of the rotary motion of the Earth, the inclination of these planes to each other remains very nearly the same; its annual diminution being scarcely more than three fourths of one second of a degree in a year.

The obliquity of the ecliptic, at the commencement of the proment century, was, aceording to Baily, $25^{\circ} 27^{\prime \prime} 66 y^{\prime \prime}$, gubject to a yearly diminution of $0^{\prime \prime} .475^{\prime \prime}$. Acconding to Bessel, it was $23^{\circ} 27^{\prime \prime} 5^{\prime \prime \prime} .32$, with an annual diminution of $0^{\prime \prime} .46$.

[^263]Thim diminution, however, la subject to a sifght memi-asaual varintoon, them the mane eanes which produce the displacement of the plane of the ecliptic, in procemion.

The attraction of the Sun and Moon, also, unites with that of the planets, at certain seasons, to augment the diminution of the obliquity, and at other times, to lessen it. On this account the obliquity itself is subject to a periodical variation; for the attractive power of the Moon, which tends to produce a change in the obliquity of the ecliptic, is variable, while the diurnal motion of the Earth, which tends to prevent the change from taking place, is constant. Hence the Earth, which is so nicely poised on her center, boos a little to the influence of the Moon, and rises again, alternately, like the gentle oscillations of a balance. This curious phenomenon, is called Nutation.

In consequence of the yearly diminution of the obliquity of the ecliptic, the tropics are slowly and steadily approaching the equinoctial, at the rate of little more than three fourths of a second every year; so that the Sun does not now come so far north of the equator in summer, nor decline so far south in winter, by nearly a degree, as it must have done at the creation.

The most obvious effect of this diminution of the obliquity of the ecliptic, is to equalize the length of our days and nights; but it has an effect also to change the position of the stars near the tropics. Those which were formerly situated north of the ecliptic, near the summer solstice, are now found to be still farther north, and farther from the plane of the ecliptic. On the contrary, those which, according to the testimony of the ancient astronomers, were situated south of the ecliptic, near the summer solstice, have approached this plane, insomuch that some are now either situated within it, or just on the north side of it Similar changes have taken place with respect to those stars situated near the winter solstice. All the stars, indeed, participate more or less in this motion, but less, in proportion to their proximity to the equinoctial.

It is important, however, to observe, that this diminution will not always continue. A time will arrive when this motion, growing less and less, will at length entirely cease, and the obliquity will, apparently, remain constant for a time; after which it will gradually increase again, and con-

[^264]tinue to diverge by the came yearly increment an it before had diminished. This alternate decrease and increase will constitute an endless oscillation, comprehended between certain fixed limits. Theory has not yet enabled us to determine precisely what these limits are, but it may be demonstrated from the constitution of our globe, that such limita exist, and that they are very restrieted, probably not exceeding $2^{\circ} 42^{\prime}$. If we consider the effect of this ever-varying attribute in the system of the universe, it may be affirmed that the plane of the ectiptic never has coincided with the plane of the equator, and never will coincide with it. Such a coincidence, could it happen, would produce upon the Earth perpetual apring.

The method used by astronomers to determine the obliquity of the ecliptic is, to take half the difference of the greatest and least meridian altitudes of the Sun.

The following table exhibits the mean obliquity of the ecliptic for every ten years during the present century.

| 1800 | $23^{\circ}$ | $27^{\prime}$ | $54^{\prime \prime}$ | .78 | 1860 | $23^{\circ}$ | $27^{\prime}$ | $27^{\prime \prime}$ | .36 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1810 | 23 | 27 | 50 | .21 | 1870 | 23 | 27 | 22 | .79 |
| 1820 | 23 | 27 | 45 | .64 | 1880 | 23 | 27 | 18 | .22 |
| 1830 | 23 | 27 | 41 | .07 | 1890 | 23 | 27 | 13 | .65 |
| 1840 | 23 | 27 | 36 | .50 | 1900 | 23 | 27 | 09 | .08 |
| 1850 | 23 | 27 | 31 | .93 | 1910 | 23 | 27 | 04 | .52 |

## CHAPTER XXII.

## THE TIDES.

Tre oceans, and all the seas, are observed to be incessantly agitated for certain periods of time, first from the east towards the west, and then again from the west towards the east. In this motion, which lasts about six hours, the sea gradually swells; so that entering the mouth of rivers, it drives back the waters towards their source. After a continual flow of six hours, the seas seem to rest for about a quarter of an hour; they then begin to ebb, or retire back again from west to east for six hours more; and the rivers again resume their natural courses. Then after a seeming pause of a quarter of an hour, the seas again begin to flow, as before, and thus alternately. This regular alternate mo-

[^265]
## tion of the sea constitutes the tides, of which there are two in

 something lese than twenty-five hours.The anciente comesidered the ebbing and flowing of the tindee am one of the greaien myeteries in nature, and were atterly at a lows to account for them. Galileo and Deacartes, and particularly Kepler, made some sacceasful arfvances towarcte accertainins the cause; buf Sir Isaac Newton was the Inst who clearly showed what were the chief agents in producing these motiong.

The cause of the tides, is the attraction of the Son and Moon, but chiefly of the Moon, upon the waters of the ocean. In virtue of gravitation, the. Moon, by her attraetion, draws, or raises the water towards her ; but because the power of attraction diminishes as the squares of the distance increase, the waters on the opposite side of the Earth are not so much attracted as they are on the side nearest the Moon.
That the Moon, maye Sir John Eersehel, should, by her attraction, heap up the waters of the ocenn under ber, seems to most persons very natural ; but that the same canse, should, at the same time, heap them up on the opposite cide, ecemes to mpany, palpably abaurd. Fet nothing is more true, nor initeed more evident, when we consider that it is not by ber sokole altraction, but by the differences of her attractions at the opposite surfaces and at the center, that the waters are raleed.

That the tidea are dependent opon some known and determinate laws, is evident from the exact time of high water being previously given in every ephemeris, and in many of the cominon almanacs.

The moon cames every day hater to the meridan than on the cay preceding, and her exact time is known by calcuiation; and the tides in any and every place, will be found to follow the same rule ; happening exactly so much later overy day as the Moon comes later to the meridian. From this exact conformity to the motions of the Moon, we are induced to look to her as the cause; and to tafer that theme phenomena are occasioned principally by the Moon's attraction.

CAUSE OF THE TIDES.


If the Earth were at rest, and there were no attractive influeace from either the Sun or Moon, it is obvious from the principles of gravitation, that the waters in the ocean would be truly spherical, as represented at A ; but daily observation provea that they are in a state of continual agitation.

[^266]If the Earth and Moon were without motion, and the Earth covered all over with water, the attraction of the Moon would raise it up in a heap, in that part of the ocean under the Moon, as represented at B, and there it would. probably, always continue; but by the rotation of the Earth upon its axis, each part of its surface to which the Moon is vertical is presented to the action of the Moon; wherelore, as the quantity of water on the whole Earth remains the same, when the waters are elevated on the side of the Earth under the Moon, and on the opposite side also, it is evident they must recede from the intermediate points, and thus the attraction of the Moon produce high woter at two opposite places, and low water at two opposite places, on the Earth, at the same tinue.

This is evident from the following figure. The waters cannot rise In ons place without falling in another ; and thenefons they muat futl an low in the horfron, at $C$ and $D$, as they rise in the senith and nadir, at $\mathbf{A}$ and $\mathbf{B}$.


It has already been shown, under the article gravitation that the Earth and Moon would fall towards each other, by the power of their mutual attraction, if there were no centrifugal force to prevent them; and that the Moon would fall as much faster towards the Earth than the Earth would fall towards the Moon, as the quantity of matter in the Earth is greater than the quantity of matter in the Moon. The same law determines also the size of their respective orbits around their common center of gravity.

[^267][^268]whleh is 80 thases nearer the Fanch than tho Moon, and consequently is gitusted about 8000 miles from the Earth'E center. It has also been whown, that all bodica moving ia circlea acquire a centrifugal force proportioned to their roepecilve masses and velocity. From these facts, some philosophers account for high water on the side of the Earth oppogite to the Moon, in the following manaer:-
Aa the Earth and Moon move around their common center of gravity, that part of the Earth which in at any time twrned from the Moon, being about 7000 niles farther from the center of gravity, than the side nent the Moon, would have a greaver centrifugol force than the side next her. At the Garth's cemece, the centrifugal force will belance the attractive force; therefore as much whiter is lkrown of by the centrifugal force on the side which is turned from the Moon, as is raised on the side next her by her attraction.

From the universal law, that the force of gravity diminishes as the square of the distance inoreases, it results, that the attractive power of the Moon decreases in intensity at every step of the descent from the zenith to the nadir; and consequently that the waters on the zenith, being more attracted by the Moon than the Earth is at its center, move faster towards the Moon than the Earth's center does: and as the center of the Earth moves faster towards the Moon than the waters about the nadir do, the waters will be, as it were, left behind, and thus, with respect to the center, they will be raised.

The reason why the Earth and waters of our globe do not meem to be affected egually by the Moon's attraction, is, that the earthy mubstance of the globe, being firmaly united, doen not yield to any diffareace of the Mow's attractive force; insomuch that ita upper and lower surface must move equally fast towards the Moon; whereas the waters, cohering together but very lightly, yield to the differant degreen of the Moon'a aturactive force, at different dietances from her.

The length of a lunar day, that is, of the interval from one meridian passage of the Moon to another, being, at a mean rate, 24 bours, 48 minutes and 44 seconds, the interval between the flux and the reflux of the sea is not, at a mean rate, precisely six hours, but twelve minutes and eleven seconds more, so that the time of high water does not happen at the same hour, but is about 49 minutes later every day.

The Earth revolves on its axis in about twenty-four hours; if the Moon, therefore, were stationary, the same part of our globe would return beneath it, and there would be two tides every twenty-four hours; but while the Earth is turning once upon its axis, the Moon has gone forward $13^{\circ}$ in her orbitwhich takes forty-nine minutes more before the same meridian is brought again directly under the Moon. And hence every succeeding day the time of high water will be fortynine minutes later than the preceding.
For example:-Suppoee at any place it be high water at 8 oclock to the af ternoon, upon the diny of new Mtoin, the following day it will be high water about 49 minutes after 3 ; the day after, about 38 minutes after 4 ; and so on th

[^269]the next new Moon. The emact daily mean retardation of the tides is thus determined:-
The mean motion of the Moon, in a solar day, th 130.17639639
The mean motion of the Sun, in a molar day, is 0.98664722
Now, as $15^{\circ}$ is to 60 minutes, so is $12^{\circ} .19074917$ to $48^{\prime} 44^{\prime \prime}$.
It is obvious that the attraction of the' Sun must produce upon the waterg, of the ocean a like effect to that of the Moon, though in a less degree; for the great mass of the Sun is more than compensated by its immense distance. Nevertheless, its effect is considerable, and it can be shown, that the height of the solar tide is to the height of the lunar tide as 2 to 5 . Hence the tides, though constant, are not equal. They are greateat when the Moon is in conjunction with, or in opposition to, the Sun, and least when in quadrature. For in the former case, the Sun and Moon aet together, and the tide will equal the sum of the solar and lunar tides, and in the latter they act against each other, and the tide will be the difference.

The former are called Spring Tides; the latter, Neap Tides.


The apring tiden are highest, when the Son and Moon are near the equator, and the Moon at her least distance from the Earth. The neap tides are lowest, when the Moon in her first and second quarters is at her greatest distance from the Earth. The general theory of the tides is this; When the Moon is nearest the Earth, her attraction is strongest, and the tides are the highest ; when she is farthest from the Earth, her attraction is least, and the tides are the lowest

From the above theory, it might be supposed that the tides would be the highest when the Moon was on the meridian. But it is found that in open seas, where the water flows freely, the Moon has generally passed the north or south meridian aborst three hours, when it is high water. This is called the

## LAGGINC OF TEE TIDES IN LONGITUBE



This lagging of the tide behind the Moon is illnatrated ty the above cut, in which the Moon is seen on the meridian, and the vertex of the tide-wave $A$, about three hours, or $221^{\circ}$ east of that meridian. The opposite wave is also in its corresponding position, as shown at $\mathbf{B}$.

The reason of this delay of the tide is, that the force by which the Moon raises the tide continues to act, and consequently the waters continue to rise, after she has passed the meridian.
For the same reason, the highest tides, which are produced by the conjunction and opposition of the Sun and Moon, do not happen on the days of the full and change; neither do the lowest tides happen on the days of their quadratures. But the greatest spring tides commonly happen 1t days after the new and full Moons; and the least neap tides $1 \frac{1}{1}$ days after the first and third quarters.

[^270]The Slan and Moon, by reason of the ellipicical form of thoir ortita are alternately nearer to and farther from the Earth, than their mean distances. In consequence of this, the efficacy of the Sun will nuctuate between the extremes 19 and 21, taking 20 for its mean ralue, and between 43 and 59 for that of the Moon. Taking inte account this canse of difference, the higheat spring tide will be to the lowest neap as $59+21$ is to $43-19$, or as 80 to 24 , or 10 to 3 . The relative mean infuence in as 51 to 2 , or as 5 to 2, wearly.-Herschel's Astr. p. 339.

Though the tides, in open aeas, are at the highest about three hours after the Moon has passed the meridian, yet the waters in their passage through shoals and channels, and by striking against capes and headlands, are so retarded that, to different places, the tides happen at all distances of the Moon from the meridian ; consequently at all hours of the lunar day.

In small collections of water, the Moon acts at the same time on every part, diminishing the gravity of the whole mass. On this account there are no sensible tides in lakes, they being generally so smal! that when the Moon is vertical, it attracts every part alike; and by rendering all the waters equally light, no part of them can be raised higher than another. The Mediterranean and Baltic seas have very small elevations, partly for this reason, and partly because the inlets by which they communicate with the ocean are so narrow, that they cannot, in so short a time. either receive or discharge enough, sensibly to raise or sink their surfaces.

Of all the causes of difference in the height of tides at different places, by far the greatest is local situation. In wide-mouthed rivers, opening in the direction of the stream of the tides, and whose channels are growing gradually narrower, the water is accumulated by the contracting banks, until in some instances it rises to the height of 20,30 , and even 50 feet.

Air being lighter than water and the surface of the atmosphere being nearer to the Moon than the surface of the sea, it cannot be doubted but that the Moon raises much higher tides in the atmosphere than'in the sea. According to Sir John Herschel these tides are, by very delicate observations, rendered not only sensible, but measurable.


#### Abstract

Upon the supposition that there is water on the surface of the Moon, of the mane specific gravity as our own, we might easily determine the height to which the Earth would ralse a lunar tide, by the known principle, that the attraction of one of theme loose borlies on the other'm surface is directly as its quantity of matter, and inversely aa its diameter. By making the calculation, we shall find the attractive power of the Earth upon the Mcon to be 21.777 times greater than that of the Moon upon the Earth.


[^271]
## CHAPTER XXIII.

THI GEABONG-DIFFERENT LENGTHS OF TEE DAYS AND NIGHTE.
Tar vicissitudes of the seasons and the unequal lengthe of the days and nighta, are occasioned by the annual revoIution of the Rarth around the Sun, with its axis inclined to the plane of its orbit.

The temperature of any part of the Earth's surface depends mainly, if not entirely, upon its exposure to the Sun's rays. Whenever the Sun is above the horizon of any place, that place is receiving heat; when the Sun is below the horizon it is parting with it, by a process which is called radiation. The quantities of heat thus received and imparted in the course of the year, must balance each other at every place, or the equilibrium of temperature would not be supported.

Whenever, then, the Sun remains more than twelve hours above the horizon of any place, and leas beneath, the general temperature of that place will be above the mean state; when the reverse takes place, the temperature, for the same reason, will be below the mean state. Now the continuance of the Sun above the horizon of any place, depends entirely upon his declination, or altitude at noon. About the 20th of March, when the Son is in the vernal equinox, and consequently has no declination, he rises at six in the morning and sets at six in the evening; the day and night are then equal, and as the Sun continues as long above our horizon as below it, his influence must be nearly the same at the same latitudes, in both hemispheres.

From the 20th of March to the 2lat of June, the days grow longer, and the nights shorter, in the northern hemisphere the temperature increases, and we pass from spring to mid-summer; while the reverse of this takes place in the southern hemisphere. From the 21st of June to the 23d of September, the days and nights again approach to equality, and the excess of temperature in the northern hemisphere above the mean state, grows less, as also its defect in the southern; so that, when the Sun arrives at the autumnal

[^272]equinox, the mean temperature is again restored. From the 23d of September until the 21st of December, our nights grow longer and the days shorter, and the cold increases as before it diminished, while we pass from autumn to midwinter, in the northern hemisphere, and the inhabitants of the southern hemisphere from spring to mid-summer. From the 21st of December to the 20th of March, the cold relaxes as the days grow longer, and we pass from the dreariness of winter to the mildness of spring, when the seasons are completed, and the mean temperature is again restored. The same vicissitudes transpire, at the same time, in the mouthern hemisphere, but in a contrary order. Thus are produced the four seasons of the year.

But I have stated not the only, nor, perhaps, the moart efficient cause in producing the heat of summer and the cold of winter. If, to the inhabitants of the equator, the Sun were to remain 16 hours below their horizon, and only 8 hours above it, for every day of the year, it is certain they would never experience the rigors of our winter; since it can be demonstrated, that as much heat falls upon the same area from a vertical Sun in 8 hours, as would fall from him, at an angle of $60^{\circ}$, in 16 hours.

Now as the Sun's rays fall most obliquely when the days are shortest, and most directly when the days are longest, these two causea, namely, the duration and intensity of the solar heat, together, produce the temperature of the different seasong. The reason why we have not the hottest temperature when the days are longest, and the coldent temperature when the days are shortest, but in each case about a month afterwards, appears to be, that a body once heated, does not grow cold instantaneously, but gradually, and so of the contrary. Hence, as long as more heat comes from the Sun by day than is loat by night, the heat will increase, and vice versa.

BEGINNING AND LESTGTE OF THE SEABONA.

| Sun enters V9 (Winter begins) |  | 1849, Dec. 21, | T.Wach |
| :---: | :---: | :---: | :---: |
| " " | o (Spring " | 1850, March 20,8 5638 | " ${ }^{\prime \prime}$ |
| " " | cosummer " | " June 21st, 639 | " |
| " " | $\bumpeq$ (Autumn " | " Sept. 22d, 195821 | " " |
| " " | V9(Winter ." | " Dec. 21, 132157 | " ${ }^{\prime}$ |

[^273]| Stun in the Whater 8igan . . . . 9818082 |  |
| :---: | :---: |
| $4{ }^{4}$ " Spring | 921631 |
| $\omega{ }^{4}$ Summer | 931355 |
| $4{ }^{4}$ A Autumi | 8017289 |
| ${ }^{4}$ north of Equator (SPpring end Summer) | 18611158 |
| 4 mouth $\omega$ (Winter and Autum | 178185418 |
| Longeat north of the Equator, | 716735 |
| Length of the tropical year, beginning it ) 716 , |  |
| the winter molatice 1850, |  |
| Meath or average length of the tropical year, | 36564848 |

The north pole of the Earth is denominated the elevated pole, because it in always about $23 \xi^{\circ}$ above a perpendicular to the plane of the equator, and the south pole is denominated the depressed pole, because it is about the same distance below such perpendicular.

As the Sun cannot shine on more than one half the Earth'a marface at a time, it is plain, that when the Earth is moving through that portion of its orbit which lies above the Sun, the elevated pole is in the dark. This requires six months, that is, until the Earth arrives at the equinox, when the elevated pole emerges into the light, and the depressed pole is turned away from the Sun for the same period. Consequently, there are six months day and six months night, alternately, at the poles.

When the Sun appears to us to be in one part of the ecliptic, the Earth, as seen from the Sun, appears in the point diametrically opposite. Thus, when the Sun appears in the vernal equinox at the first point of Aries, the Earth is actually in the opposite equinox at Libra. The days and nights are then equal all over the world.

As the Sun appears to move up from the vernal equinox to the summer solstice, the Earth actually moves from the autumnal equinox down to the winter solstice. The daya now lengthen in the northern hemisphere, apd shorten in the southern. The Sun is now over the north pole, where it is mid-day, and opposite the south pole, where it is midnight.

As the Sun descends from the summer solstice towards the autumnal equinox, the Earth ascends from the winter solstice towards the vernal equinox. The summer days in the northern hemisphere having waxed shorter and shorter, now become again of equal length in both hemispheres.

While the Sun appears to move from the autumnal equinox down to the winter solstice, the Earth passes up from

[^274]the vernal equinox to the summer solstice; the south pole. comes into the light, the winter days continually shorten in the northern hemisphere, and the summer days as regularly increase in length in the southern hemisphere.

While the Sun appeara again to ascend from its winter solstice to the vernal equinox, the Earth descends from the summer solstice to the autumnal equinox. The summer days now shorten in the sombern hemisphere, and the winter daye lengthen in the northern hemisphere.

When the Sun passes the vernal equinox, it rises to the arctic or elevated pole, and sets to the antarctic pole. When the Sun arrives at the summer solatice, it is noon at the north pole, and midnight at the south pole. When the Sun passes the autumnal equinox, it sets to the north pole, and rises to the south pole. When the Sun arrives at the winter solstice, it is midnight at the north pole and noon at the south pole; and when the Sun comes again to the vernal equinox, it closes the day at the south pole, and lights up the morning at the north pole.

There would, therefore, be 1864 days during which the Sun would not set at the north pole, and an equal time during which he would not rise at the south pole; and 178 days in which he would not set at the south pole, nor rise at the north pole.
At the arctic circle, $23^{\circ} 271^{\prime}$ from the pole, the longest day is 24 hours, and goes on increasing as you approach the pole. In latitude $67^{\circ} 18^{\prime}$ it is 30 days ; in lat. $69^{\circ} 30^{\prime}$ it is 60 days, \&c. "The same takes place between the antarctic circle and the south pole, with the exception, that the day in the same latitude south is a little shorter, since the Sun is not so long south of the equator, as at the north of it. In this estimate no account is taken of the refraction of the atmosphere. which, as we shall sce hereafter, increases the length of the day, by making the Sun appear more elevated above the horizon than it really is.

[^275]

The above cut reprements the Inclination of the earth's axis to its orbit in every one of the twelve signs of the ecliptic, and consequently for each month in the year. It is auch a view at a beholder would have, situated in the north pole of the ecliptic, at some distance from it, and consequently, is a perpendicular view, the north pole of the Earth being towards un. The Sun enters the sjgn Aries, or the vernal equinox, on the ZOTh of March, when the Earth's axis inolimes neither towards the Sun, nor from it, but stands exactly sideways to it; to that the Sun then shine equally upon the Earth from pole to pole, and the days and nights are every where equal. This is the beginning of the astronomlcal year ; it in also the beginning of day at the north pole, which is just coming into light, and the end of day at the wouth pole, which fa juat golns into darkness

By the Earth's orbitual progreas, the Sun appears to enter the second eign, T'curus, on the 20th of April, when the north pole has sensibly advanced into the light, while the south pole has been declining from it; whereby the days become longer than the nighte in the northern hemiephere, and shorter in the mouthern.

On the 2lat of May, the Sun appears to enter the nign Gemini, when the north pole has advanced considerably further into the itght, while the south pole has proportionally declined from it ; the summer daym are now wating longer in the zorthern hemisphere, and the uights shorter.
The 2 Lst of June, when the Sun enters the sign Cancer, is the first day of summer in the astronomical year, and the longeat day in the northern hemiaphere. The north poie now has its greateal inclination to the Sun, the lighs of which, as is shown by the boundary of light and dartness, in the figure, extends to the utmost verge of the Arctic Circle: the whole of which is included in the enlightenert hemisphere of the Earth, end enjoys, at this eeseon, constant day during the complete revolution of the Earth on its axia. The whole of the Northern Friyid Zone is now in the circle of perpetual illumination.
On the 20d of July, the Sun enters the aign Leo, and wis the line of the

Rarth's axis always continued paraliel to itself, the boundary of light and dartmess begins to approach nearer to the polet, and the length of the day in the northern hemisphere, which had arrived at its maximum, begins gradually to decresse. On the 23d of August, the Sun enters the sign Virgo, increasing the appearance mentioned in Leo.
On the 23d of September, the Sun enters Libra, the fint of the autumal signs, when the Earth's axis having the same inclination as it had in the opposite sign, Aries, is turned neither from the Sun, nor towards it, but obliquely to it, so that the Sun again now shinea equally upon the whole of the Rarth's surface from pole to pole. The days and nights are once more of equal length, throughout the wrorld.

On the 23 d of October, the Sun enters the sign $\mathbb{A}$ corpio; the days visibly deciease in length in the northern hemisphere, and increase in the southern.

Ont the 22 d of November, the Sun enters the sign Sagittarius, the last of the autumnal signs, at which time the boundary of light and darknese is at a considerable distance from the north pole, while the soath pole has proportionally advanced into the light; the length of the day continues to increace in the southern hemisphere, and to decremse in the northern.

On the 21 st of December, which is the period of the winter solstice, the Sun enters the sign Capricorn. At this time, the north pole of the Earth's axis is turned from the Sun, into perpetual dartnese; while the south pole, in its turn, is brought into the light of the Sun, whereby the whole Antarciic region comes Into the circle of perpetual illnmination. It ts now that the southern hemiaphere enjoys all those edvantages with which the northern hemisphere was favored on the 21 of of June; while the northern hemisphere, in its turn, undergoes the dreariness oi winter, with short days and long nights. By carefully obeerving the figure, it will be seen that the orbit of the Earth is al!ghtly ellip tical, that the Sta is to the right of the center, and that consequently, the Earih is nearer the Sun on the 2list of December, than on the opposite side of the ecliptic, on the 2lst of June. This may seem strange to the learuer, that we should have our winter when neareat the Sun, and our summer when most distant; but it must be remembered, that the temperature of any particular part of the Earth is not mo much affected by the distance of the Sun, as by the directness or obliquity of his rays. Hence, though we are farther from the Sun on the 2lat of June than on the 2lat of December, yet, as the north pole oi the Earth is turned more directly into the light, at that time, so that the sun's rays atrike her surface lees obliquely than in December, wo have a higher tempera. ture at that period, though af a greater distance from the Sun.

The difference, however, between the aphelion and perihelion diatances of the Earth, is so slight in comparison with the whole diatance, in scarcely to canse a percepfible difference in the amount of light received at her respective positions. The eccentricity of the Earth's orbit, or the distance of the Sun from its center, is only about $1,618,000$ miles, 80 that the variation is only $3,236,000$ miles, or about one-thirtieth of the mean distance. In the preceding cut the eccentricity is exaggerated to one-eighth the mean distance, making the difference between the Earth's perihelion and aphelion distance to amount to one quarter, or $23,777,777$ miles. This in more than seven times its real amonnt, and yet the ellipticity ia acarcely perceptible. The true orbit of the Earth could not be discinguished from a circle.

The only effect of the eccentricity of the earth's orbit upon her temperature is, that she has probably a greater degree of heat, during summer in the southern hemisphere, when the Earth is at her peribelion, than we ever have at the north in the same latitude. But this difference must be very slight, if indeed it is at all perceptible.

## CHAPTER XXIV.

## HARVEGT MOON-HORIZONTAL MOON.

The daily progress of the Moon in her orbit, from west to east, causes her to rise, at a mean rate, 48 minutes and 44 seconds later every day than on the preceding. But in places of considerable latitude, a remarkable deviation from this rule takes place, especially about the time of harvest, when the full Moon rises to us for several nights together, only from 18 to 25 minutes later in one day, than on that immediately preceding. From the benefit which her light affords, in lengthening out the day, when the husbandmen are gathering in the fruits of the Earth, the full moon, under these circumstances, has acquired the name of Harvest Moon.

It is believed that this fact wan observed by permons engaged in agriculture, at a much earlier period than that in which it was noticed by astronomert. The former ancribed it to the goorness of the Deity; not doubting but that he had wo ordered it for their advantage.

About the equator, the Moon rises throughout the year with nearly the equal intervals of $48!$ minutes; and there the harvest Moon is unknown.

At the polar circles, the autumnal full Moon, from her first to her third quarter, rises as the Sun sets; and at the poles, where the Sun is absent during one half of the year, the winter full Moons, from the first to the third quarter, shine constantly without setting.
By this, it in not meant that the Monn continues full from her first to her third quarter; but that she mever sets to the North Polar regions, when, at thif meason of the year, she is within $90^{\circ}$ of that point in her orbit where she is at her full. In other words: as the Sun illumines the south pole during one hatr of its yearly revolution, so the Mnon, being opposite to the Sun at her full, must illumine the opposite pole, during half of her revolution abour the Earth The phenomeron of the harvest Moon may be thus exemplified by means of the globe :
Rectify the globe to the latitude of the place, put a patch or piece of wafer in the ecliptic, on the point Aries, and mark every 12 preceding and following that point, to the number of ten or twelve marks on each side of it ; bring the equinocwal point marked by the wafer to the eastern edge of the horizon, and set the index to 12 ; turn the globe westward till the other marks auccessively come to the horizon, and observe the hours passed over by the index; the intervala of time between the marks coming to the horizon, will ehow the diurnal difference of time between the Moon's rising. If these marks be brought to the western edge of the horizon in the same manner, it will show the diurnal difference between the Mon's selting.
From this problem it will also appear, that, when there ts the least difference between the times of the Moon's rising, there will be the greatest difference between the times of her setting, and the contrary.

[^276]The reason thy you mark every $12^{\circ}$ is, that the Moon gains $12^{\circ} 11^{\prime}$ on tho epparent course of the Bun every day, and these marta merve to denote the place of the Moon from day to day. It in true, this procems supponea that the Moon rovolves in the plane of the ecliptic, which la not tine case ; yet her orbit wo nearly coincidef with the ecliptic, (differing only $5^{\circ} 9^{\prime}$ from $\mathrm{in}^{\circ}$ ) that they may, for the convenience of illumiation, be conddered as coinciding; that th, we may take the ecliptic for the representative of the Moon's orbit.

The different lengths of the lunar night, at difierent lati-. tudes, is owing to the different angles made by the horizon and different parts of the Moon's orbit ; or in other words, by the Moon's orbit lying sometimes more oblique to the horizon that at others. In the latitude of London, for example, as much of the ecliptic rises about Pisces and Aries in two hours as the Moon goes through in eix days; therefore while the Moon is in these signs, she differs but two hours in rising for six days together; that is, one day with another, she rises about 20 minutes later every day than on the preceding.

The parts or signs of the ecliptic which rise with the smallest angles, set with the greatest; and those which rise with the greatest, set with the least. And whenever this angle is least, a greater portion of the ecliptic rises in equal times than when the angle is larger. Therefore, when the Moon is in those signs which rise or set with the smallest angles, she rises or sets with the least difference of time; but when sho is in those signs which rise or set with the greatest angles, she riges or sets with the greatest difference of time.

Let the globe, for example, be rectified to the letitude of New York, $40^{\circ} 48^{\prime}$ $40^{\prime \prime}$, with Cancer on the meridian, and Libra rising in the east. In the poaition, the ecliptic has a high elevation, making an angle with the horizon of $72 \mathbf{1}^{\circ}$.

But let the globe be turned half round on its axis, till Capricorn comento the meridtan, and Aries rises in the east, then the ecliptic will have a low elevation above the horizon, making an angle with it of only $2 \mathbf{2 0}^{\circ}$. This angle is $47^{\circ}$ lese than the former angle, and is equal to the distance between the tropics.

In northern latitudes, the smallest angle made by the ecliptic and horizon is when Aries rises; at which time Libra sets; the greatest is, when Libra rises and Aries sets. The ecliptic rises fastest about Aries, and slowest about Libra. Though Pisces and Aries make an angle of only $254^{\circ}$ with the horizon when they rise, to those who live in the latitude of New York, yet the same signs, when they set, make an angle of $72 \frac{1}{2}^{\circ}$. The daily difference of the Moon's rising, when in these signs, is, in New England; about ' 22

[^277]minutes; but when she is in the opposite signs, Virgo and Libra, the daily difference of her rising is almost four times as great, being about one hour and a quarter.

As the Moon can never be full but when she is opposite to the Sun, and the Sun is never in Virgo or Libra except in our autumnal months, September and October, it is evident that the Moon is never full in the opposite signs, Pisces and Aries, except in those two months. We can therefore have only two full Moons in a year, which rise, for a week together, very near the time of Sun-set-The former of these is called the Harvest Moon, and the latter, the Hunter's Moon.

Although there can be but two full Moons in the year that rise with so little variation of time, yet the phenomenon of the Moon's rising for a week together so nearly at the same time, occurs every month, in some part of her course or the other.
In Winter, the aigns Fiscem and Aries rise about noon; hence the rising of the Moon is not then regarded nor perceived.
In Spring. these signs rise with the Sum, because ho in then in them; and as the Monn changes wfile passing through the same eign with the Sun, it must then be the change, and hence invisible.

In Summer, they rise about midaight, when the Moon is in her third quar ter. On account of her rising so late, and giving but little light, her rising passes unobserved.

To the inhabitants at the equator, the north and south poles appear in the horizon; and therefore the ecliptic makes the same angle southward with the horizon when Aries rises, as it does northward when Libra rises; consequently the Moon rises and sets not only with angles nearly equal, but at equal intervals of time, all the year round; hence, there is no harvest Moon at the equator. The farther any place is from the equator, if it be not beyond the polar circles, the angle which the ecliptic makes with the horizon gradually diminishes when Pisces and Aries rise.

Although in northern latitudes, the autumnal full Moons are in Pisces and Aries; yet in southern latitudes it is just the reverse, because the seasons are so:-for Virgo and Libra rise at as small angles with the horizon in southern latitudes, as Pisces and Aries do in the northern; and therefore the harvest Moons are just as regular on one side of the equator as on the other.

At the polar circles, the full Moon neither rises in summer, nor sets in winter. For the winter full Moon being as high in the ecliptic as the summer Sun, she must continue, while

[^278]passing through the northern signs, above the horizon; and the summer full Moon being as low in the ecliptic as the winter Sun, can no more rise, when passing through the southern signs, than he does.

THE HORIZONTAL MOON.
The great apparent magnitude of the Moon, and indeed of the Sun, at rising and setting, is a phenomenon which has greatly embarrassed almost all who have endeavored to account for it. According to the ordinary laws of vision, they should appear to be least when nearest the horizon, being then farthest from the eye; and yet the reverse of this in found to be true. The apparent diameter of the Moon, when viewed in the horizon by the naked eye, is two or three times larger than when at the altitude of thirty or forty degrees; and yet when measured by an instrument her diameter is not increased at all.

Both the Sut and the Moon subtend a greater angle when on the meridian than they do in the horizon, because they are then actaally nearer the place of the spectator, by the whole semi-diameter of the Earth.

This apparent increase of magnitude in the horizontal Moon, is chiefly an optical illusion, produced by the concavity of the heavens appearing to the eye to be a less portion of a spherical surface than a hemisphere. The eye is accustomed to estimate the distance between any two objects in the heavens by the quantity of sky that appears to lie between them; as upon the Earth we estimate it by the quantity of ground that lies between them. Now when the Sun or Moon is just emerging above the eastern horizon, or sinking beneath the western, the distance of the intervening landscape over which they are seen, contributes, together with the refraction of the atmosphere to exaggerate our estimate of their real magnitudes.

## CHAPTER XXV.

## REFRACTION-TWILIGH7'.

Tes rays of light in passing out of one medium into another of a greater density, deviate from a straight course, and are bent towards a perpendicular to that course; and

[^279]if the density of the latter medium continually increase, the rays of light in passing through it, will deviate more and more from a right line as they pass downwards, or towards the eye of the observer. From this cause all the heavealy bodies, except when in the zenith, appear higher than they really are. This bending of the rays of light, giving to the heavenly bodies an apparent elevation above their true places, is called Refraction.
It is in consequence of the refracting power of the atmophere that all heavenly bodies are seen for a ohort time before they rise in the horizon, and also after they have sumk below it. At some periods of the Jear the Sun appears 5 minutes longer, morning and evening, and about 34 minutea longer every day, at a mean rate, than he would do were there no refraction. The myerage amount of refraction for an object half way between the horison and the zenith, or at an apparent altitude of $45^{\circ}$, ia but one sistieth of a degrae, a quantity hard. ly mentible to the naked eye; but at the viaible horizon it amounts to $33^{\prime}$ of a degree, which is rather more than the greatest apparent dimmeter of either the \$un or the Moon.
The following general notions of its amount and law of variations ahould be borne ia mind:

1. In the zenith there is no refraction; a celestial object, situated directly over head, is seen in its true position, as if there were no atmosphere.
2. In depcending from the senith, to the horizon, the refraction continuslly facreases; objects near the horizon appearing more elevated by it than those of a higher altitude.
3. The rate of its increase is nearly in proportion to the epparent angular distance of the object from the zenith. But this rule, which is not far from the trath, at moderate zenith distances, ceases to give correct results in the vicinity of the horizon, where the law becomes much more complicated in its expression.
The effects of refraction must be familiar to every person who has seen a walking stick partially plunged into a river, or other collection of water. While the stick is held upright, it appears straight, because there is no refraction in this position; but if it be ever so hitle inclined, the refraction takes flace, and the stick appears bent; if the inclination be increased, the refraction if also increased.
Another easy and familiar illustration of the effect of refraction may be thus obcained :-Put any small object, as a piece of money, into an empty basin, as near the center as possible, and retire to such a distance as just to lowe sight of the objoct. Let an assistant then pour water in the basin, and the object will soom appear. Retire again till it is no longer seen; let more water be added, and it चill again sppear. The experiment may he repeated till the basin is full. The edge of the basin may be supposed to represent the horizon; the water, the atmosphere; and the piece of money, the Sun, or other object which is thus made to appear by the power of refraction, when otherwise it would be invisible.

One obvious effect of refraction must be to shorten the duration of night and darkness, by prolonging the apparent stay of the Sun and Moon above the horizon. Even after they appear to have set, the influence of the atmosphere sends us a portion of their-light; not by direct transmission, but by reflection:-for as long as the Sun continues to illuminate

[^280]any portion of the atmosphere which is above the horizon the light from this portion is reflected to the Earth, and it is this that causes twilight.

In the morning, when the Sun arrives at $18^{\circ}$ below the horizon, his rays pass over our heads'into the higher region of the atmosphere, and are thence reflected, or as it were, bent down to the Earth. The day is then said to dawn, and the light gradually increases until the Sun appears above the horizon : this is called Morning. Twilight, or Aurora, which the beathens personified as a goddess. They assigned co her the office of opening the Gates of the East, to introduce the chariot of Apollo or Phoebus.

In the evening, after sunset, the rays of the Sun continue to illuminate the atmosphere, till he sinks $18^{\circ}$ below the horizon, and a similar effect, called the Evening Twilight, is produced, only in an inverse progression, for the twilight now gradually becomes fainter till it is lost in dark night.

The quantity of reflection and the duration of twilight are much influenced by the changes which are perpetually taking place with respect to the heat and cold, the dryness or moisture, \&c. of the atmosphere. The height of the atmosphere, also, has an influence in determining the duration of twilight: Thus in winter, when the air is condensed with cold, and the atmosphere upon that account lower, the twilight will be shorter'; and in summer, when the limits of the atinosphere are extended by the rarefaction and dilation of the air of which it consists, the duration of the twilight will be longer. And for the same reason, the morning twilight, (the air heing at that time condensed and contracted by the cold of the preceding night.) will be shorter than the evening twilight, when the air is more dilated and expanded.

It is entirely owing to the reflecting power of the atmosphere that the heavens appear bright in the day time. For without such a power, only that part of the heavens would be luminous in which the Sun is placed; and, if we should turn our backs to the Sun, the whole hearens would appear as dark as in the night, and the stars, even at noon day, would be seen as clear as in the nocturnal sky.

In regions of the Earth situated cowards the poles, the Sun, during theis summer months, is never more than $18^{\circ}$ below the horizon; consequently their twilight continnes

[^281]raring the whole night. The same cause has a tendency to diminish the gloom of the long polar nights; for as far sorth as in lat. $84^{\circ} 321^{\prime}$ the Sun even when at the winter solstice approaches to within $18^{\circ}$ of the horizon, and affords a short twilight once in 24 hours, and the pole itself is lett in total darkness not more than 80 days.

There is still another cause which has a tendency to diminish the length of the polar nights, the extraordinary refraction occasioned by the extreme density of the air in those regions. This is so great, as to bring the Sun above the horizon some days before it should appear, according to calculation.


#### Abstract

A remarkable phenomenon of thls kind was observed by the Dutch navigators who wintered in Nova Zembla, in the year 1696. After endaring a continual night of thres monshe, they were afreeably surprised to find that the Sun began to rise seventeen days sooner than according to computation! The observed alttude of the pole, at the place, (says Dr. Snith,) being only $76^{\circ}$ it it imponeible to account for the phenomenon, otherwise, than by supponling an extraordinary refraction of the Sun's rays. Kepler computes that the Bun was almont $5^{\circ}$ below the horizon when he frat appeared; and conmequently, that the refrection of his rays was about 10 timen greater then rith us.


## CHAPTER XXVI.

## AURORA BOREALIS.

The sublime and beautiful phenomena presented by the Aurora Borealis, or Northern Lights, as tiney are called, have been in all ages a source of admiration and wonder alike to the peasant and the philosopher. In the regions of the north, they are regarded by the ignorant with superstitious dread, as harbingers of evil; while all agree in placing them among the unexplained wonders of nature.

These lights, or meteoric coruscations, are more brilliant in the arctic regions, appearing mostly in the winter season and in frosty weather. They commonly appear at twilight near the horizon, and sometimes continue in that state for several hours without any sensible motion; after which they send forth streams of stronger light, shooting with great velocity up to the zenith, emulating, not uffrequently the lightning in vividness, and the rainbow in colouring ; and again, silently rising in a compact majestic arch of steady

[^282]Whte light, apparently durable and immoveable, and yet so evanescent, that while the beholder logks upon it, it is gone
At other times, they cover the whole hemisphere with their flickering and fantastic coruscations. On these occasions their motions are amazingly quick, and they astonsh the spectator with rapid changes of form. They break out in places where none were seen before, skimming briskly along the heavens; then they are suddenly extinguished, leaving behind a uniform dusky track, which, again, is brilliantly illuminated in the same manner, and as suddenly left a dull blank. Some nights they assume the appearance of vast columns; exhibiting on one side tints of the deepest yellow, and on the other, melting away till they become undistinguishable from the surrounding sky. They have generally a strong tremulous motion from end to end, which continues till the whole vanishes.

Maupertuis relates, that in Lapland, "the sky was sometimes tinged with so deep a red that the constellation Orion looked as though it were dipped in blood, and that the people fancied they saw armies engaged, fiery chariots, and a thousand prodigies." Gmelin relates, that, "in Siberia, on the confines of the icy sea, the spectral forms appear like rushing armies; and that the hissing crackling noises of those aerial fire-works so terrify the dogs and the hunters, that they fall prostrate on the ground, and will not move while the raging host is passing."
Kerguelen describes "the night, between Iceland and the Ferro Islands, as brilliant as the day,"-the heavens being on fire with flames of red and white light, changing to columns and arches, and at length confounded in a brilliant chaos of cones, pyramids, radii, sheaves, arrows, and globes of fire.
But the evidence of Capt. Parry is of more value than that of the earlier travellers, as he examined the phenomena under the most favourable circumstances, during a period of twenty-seven consecutive months, and because his observations are uninfluenced by imagination. He speaks of the shifting figures, the spires and pyramids, the majestic arches, and the sparkling bands and stars which appeared within the arctic circle, as surpassing his powers of description. They are indeed sufficient to enlist the superstitious feelings of any people not fortified byreligion and philosophy.

[^283]The colourn of the polar lights, are of vanous tints. The raye or beams are steel gray, yellowish gray, pea green, celandine green, gold yellow, violet blue, purple, sometimes rose red, crimson red, blood red, greenish red, orange red, and late red. The arches are sometimes nearly black, pass ing into violet biue, gray, gold yellow, or white bounded by an edge of yellow. The lustre of these lights varies in kiod as well as intensity. Sometimes it is pearly, sometimes imperfectly vitreous, sometimes metallic. Its degree of intensity varies from a very faint radiance to a light nearly equalling that of the Moon.
Many theories bave been proposed to account for thas wonderful phenomenon, but there seems to be none which is entirely satisfactory. One of the first conjectures on record attributes it to inflammable vapours ascending from the Earth into the polar atmosphere, and there sgaited by electricity. Dr. Halley objects to this hypothesis, that the cause was inadequate to produce the effect. He was of opinion that the poles of the Earth were in some way connected with the aurora; that the Earth was hollow, having within it a magnetic sphere, and that the magnetic eflluvia, in passing from the north to the south, might become visible in the northern hemisphere.

That the aurora borealis is, to some extent, a magnetical phenomenon, is thought, even by others, to be pretty clearly established by the following considerations.

1. It has been observed, that when the aurora appears near the northern horizon in the form of an arch, the middle of it is not in the direction of the true north, but in that of the magnetic needle at the place of observation; and that when the arch rises towards the zenith, it constantly crosses the heavens at right angles, not to the true magnetic meridian.
2. When the beams of the aurora shoot up so as to pass the zenith, which is sometimes the case, the point of their convergence is in the direction of the prolongation of the dipping needle at the place of observation.
3. It has also been observed, that during the appearance of an active and brilliant aurora, the magnetic needle often becomes restless, varies sometimes several degrees and does not resume its former position until after sereral hours.
From these facts, it has been generally inferred that the

[^284]auroin is in some way connected with the maguetism of the Earth; and that the simultaneous appearance of tae meteor, and the disturbance of the needle, are either related as cause and effect, or as the common result of some more general and anknown cause. Dr. Young, in his leciures, is very certain that the phenomenon in question is intimately connected with elèctro-magnetism, and ascribes the light of the aurora to the illuminated agency of electririty upon the magnetical substance.

It may be remarked, in suppori of the electro-magnetic theory, that in magnetiom, the agency of electricity to now clearly established; and it can hardly be doubted chat the phenomena both of electricity and magnetism are produced by one and the came cause; inasmuch as magnetism may be induced ly electricity, and the electric spark has been drawn from the magnet.

Sir John Herschel also attributes the appearance of the aurora to the agency of electricity. This wonderful agent, says he, which we see in intense activity in lightning, and in a feebler and more difused form traversing the upper regions of the atmosphere in the northern lights, is present. probably, in immense abundance in every form of mattei which surroun'** us, but becomes sensible, only when dis tarbed by exci. . ents of peculiar kinds.

## CHAPTER XXVII.

## PARALLAX OF THE BEAVENLY BODIES.

Parallax is the difference between the altitude of any celestial object, seen from the Earth's surface, and the altitude of the same object, seen at the same time from the Earth's centre; or, it is the angle under which the semidiameter of the Earth would appear, as seen from the object.

The true place of a celestial body, is that point of the heavens in which it would be seen by an eye placed at the centre of the Earth. The apparent place is that point of the heavens where the body is seen from the surface of the Earth. The parallax of a heavenly body is greatest, when in the horizon; and is called the horizontal pa/allux. Parallax decreases, as the body ascends toward the zenith. at which place it is nothing.

The nearer a heavenly body is to the Earth, the greata

[^285]uf its parallax; hence the Moon has the greatest parallax of all the heavenly bodies, while the fixed stars, from their immense distance, have no parallax;* the semi-diameter of the Earth, at sucl a distance, being no more than a point.
As the effect of parallax on a beavenly body, is to depress it below its true place, it must necessarily affect its right ascenṣion and declination, its latitude and longitude. On this account, the parallax of the Sun and Moon must be added to their apparent altitude, in order to obtain their true altitude.
Thetrue alditude of the Sun and Moon, except when in the senith, it at
wrys aftected, more or legs both by parallax and refraction, but alwaya
In a contrary manner. Hence the mariner, in finding the latitude at sea,
elways adde the parallax, and eubstracta the refraction, to and from the
gun't observed altitude, in order to oblain the true alutude, and thence tho
latitinde.

The principles of parallax are of great importance to astronomy, as they enable us to determine the distances of the heavenly bodies from the Earth, the magnitudes of the planets, and the dimessions of their orbits.

The Sun's horizontal parallax being accurately known, the Earth's distance from the Sun becomes known; and the Earth's distance from the Sun being known, that of all the planets may be known also, because we fnow the exact periods of their sidereal revolutions, and according to the third law of Kepler, the squares of the times of their revolutions are proportional to the cubes of their mean distances. Hence, the first great desideratum in astronony, where measure and magnitude are concerned, is the determination of the true parallax.

At the late council of astronomers, assembled in London, from the most learned nations in Europe, the Sun's mean horizontal parallax was settled, as the result of their unted observations, at $0^{\circ} 0^{\prime} 8^{\prime \prime} .5776$.-Now the value of radius, expressed likewise in seconds, is 206264".8; and this divided by $8^{\prime \prime} .5776$, gives 24047 for the distance of the Sun from the Earth, in semidiameters of the latter. If we take the equatorial semidiameter of the Earth as sanctioned by the same tribunal, at ( $7924+2=$ ) 3962 miles, we shall have $24047 \times 3962=95,273,869$ miles for the Sun's true distance.

[^286]How daet the perallas of a body vary, with ite atritude 1 How in ik apected He dis ance? Give an extmple. What, then, ans the necomary difecte of parillat on that perance of a bewvenly bodyl How then, can we obtain the true altitude of tho Dina of
 Why we the principlee of purgllax of great importance to astroporny? If the Surt perat-
 nuy Le darivod fom thus in regand to the imuorimece of peraliex

Both the priverple and the calculation of this element may be illustrated by a reference to the diagram on Plate $I$, of :he Atlas: Thus-the parallactic angle AES $=8^{\prime \prime} .5776$ : is to the Earth's semidiameter as $=3962$ miles : : as radius $=206264 . " 8$ : is to the distance $E S=95,273,869$ miles, at before.

Again: The mean horizontal parallax of the Moon is $9^{\circ} 57^{\prime} 11^{\prime \prime}$, or $3431^{\prime \prime}$. In this problem, the parallactic angle AMS is $0^{\circ} 57^{\prime} 11^{\prime \prime}=3431^{\prime \prime}$; and $3431^{\prime \prime}$ : is to 3962 miles:: es 206264".8: is 238,161 miles, for the Moon's mean disLance from the Earth MS.-See Chapter on the Number and Distance of the Stars.


Role 1.-Divide the degrees by 15, for hours; and multiply the remainder, if any, by 4 , for minutes.
2. Divide the odd minutes and seconds in the same manaer by 15 for minutes, seconds, \&c. and multiply each remainder by 4 , for the next lower denomination.

Example 1.-Convert $32^{\circ} 344^{\prime} 45^{\prime \prime}$ into time.
Thus,

$$
\begin{array}{ll}
\text { Thus, } & \begin{array}{ll}
32^{\circ}+15 & =2 \mathrm{~h} .8 \prime \\
& 34+15 \\
& 45+15 \\
45 & 26^{\prime \prime} \\
\text { Ans. } & \\
\hline 32^{\circ} 34^{\prime} 45^{\prime \prime} & =2 \mathrm{~h} \cdot 10^{\prime} \quad 19^{\prime \prime}
\end{array} \\
\text { the time. }
\end{array}
$$

Example 2.-If it is 12 o'clock at this place, what is the time $20^{\circ}$ east of us?
Thus, fifteen in $20^{\circ}$, once, and five over; the once is 1 hour, and the 5 multiplied by 4 , gives 20 minutes: the time is then 1 hour and 20 minutes past 12 .

Example 3.-The longitude of Hartford is $72^{\circ} 50^{\prime}$ west of Greenwich ; what time is it at Greenwich when it is 12 o'clock at Hartford ?
Ans. 4 h. 51 min. 20 sec.
Example 4.-When it is 12 o'clock at Greenwich, what is the time at Hartford? Ans. 7h. $8 \mathrm{~m} .40 \mathrm{sec} . \mathrm{A} . \mathrm{M}$.

Nern-Table VuI. is dengned to facilitate calculations of this kind. The cogreen being placed in ofe column, and the corresponding tume in another


FROBLEM II.
to convert time into degaees, \&e.
Rele.-Multiply the hours by 15 , and to the product add - one fourth of the minutes, secoads, \&ce, observing that eveis minute of time makes $4^{\circ}$, and every second of time, $\}^{\prime}$.

Exauple 1.-In 2 hours, 10 minutes, and 19 secords, how many degrees?

Thus:
2 h .10 m .19 m
$30^{\circ}$
Add 10 quarters, or $t$ of the min. 2 30
Add 10 quarters, or + of the sec.

> Ans.
$38^{\circ}$ 341 $45^{\prime \prime}$
This problem in readily colved by means of Thable IX. withont the baboure of celculadion:


Ex. 2.-When it is 12 o'clock at Hartford, it is 4 hours 51 minutes, and 20 seconds past noon at Greenwich; how many degrees is Hartford west of Greenwich?

Thus: 15 times 4 is 60 -added to 4 of 51 , is $72^{\circ} 45^{\prime \prime}$ and this increased by $\ddagger$ of 20 , is $72^{\circ} 50 .^{\prime}$ Ans.

Ex. 3.-A Liverpool packet, after sailing several daya from New York, finds the time by the Sun 2 hours and 4 minutes later than by the ship's chronometer: how far has the ship progressed on her way?

Fx. 4.-A vessel leaves Boston, and having been tossed about in foul weather for some days, finds, that when it is 12 o'clock by the Sun, it is only 11 o'clock and 50 minutes by the watch; is the vessel east or west of Boston; and dow many degrees?

Ex 5.-The moment of greatest dartnfss during the ad
malar eclipse of 1831, took place at New Haven, 16 minuten after 1 o'clock. A gentleman reports that it happened precisely at 1 , where he-observed it; and another, that it was 5 minutes after 1 where he saw it: Quere. How far east or west were these gentlemen from each other, and how many degrees from New Haven?

## PRORLEM IIL

to find what stars are on the meridian at nine o'cloce in the efening of any given day.

Rule.-Look for the given day of the month, at the bottom of the maps, and all the stars having the same degree of right ascension will be on the meridian at that time.

Example 1.-What stars will be on the meridian at $9^{\circ}$ o'clock, the 19th of January?

Solution.-On Plate III. I find that the principal stars standing over against the 19th of January, are Rigel and Capella.

Ex. 2.-What stars are on the meridian the 20th of December? Ans. Menkar and Algol.

## PROBLEM IV.

ANY ETAR BEING GIVEN, TO FIND WEEN IT CUTMIATMEA.
Rule.-Find the star's right ascension in the table, or by the map, (on the equinoctial, ) and the day of the month at the top or bottom of the map will be the day on which it culminates at $90^{\prime}$ clock.

Example 1.-At what time is the bright star Sirius on the meridian?

Solution.-I find by the table, and by the map, that the right ascension of Sirius is 6 hours and about 38 minutes; and the time corresponding to this, at the bottom of the map, is the 11th of February.

Ex. 2.-At what time is Alpheratz, in the head of Andromeda, on the meridian? Ans. The 9th of November.

## PROBLEM V.

 GK2N, TO FLKD ITR PLACE ON TEE MAP.

Ruls.-Find the right ascension and declination of the planet on the map, and that will be its place for the given day.

Examplim 1.-Venue's right ascension on the 1st of Jabuary, 1833, was 21 hours, 30 minutes, and her declination $167^{\circ}$ south; required her situation on the map?

Solution.-On the right hand of the Plate II. I count cif $164^{\circ}$ from the equinoctial, on the marginal scale south, and from that point, 30 minutes to the left, or just half the discance between the XXI. and XXII. meridian of right ascension, and find that Venus, that day, is within two degrees of Delta Capricorni, near the constellation Aquarius, in the zodiac.

Ners.-It ta to be remembered, that the planete will aiways be found Within the limits of the zodiac, an represented in the maps. By meace of Table VIL the pupil can find at any time the situations of all the visibic pianets on the maps; and this will enable him to determine their position bis the hearens, without a chance of nistake. By this means, too, he can draw for himself the path of the planets from month to month, and trace

- their course among the stans. This is a pleazant and useful axercisa, and In practised extenaively in mome acariemiea. The pupil draws the map in the first place, or auch a portinn of it as to include the zodiacal constellationt ; thon, hariag dotted the poeltion of the planets from day to day, as indicated in Thble Vil., their path is easily traced with a pen or pencil.

Ex. 2.-Mars' right ascension on the 13th of March, 1833. is 5 hours, 1 minute, and his declination $243^{\circ}{ }^{\circ}$ north; required bis situation on the map?

Solution.- I find the fifth hour line or meridian of right ascension on Plate III. and counting upwards from the equinoctial $243^{\circ}$, I find that Mars is between the horns of Taurus, and about $5^{\circ} \mathbf{~ S . ~ W . ~ o f ~ B e t a ~ A u r i g u . ~}$

Ex. 3.-Required the position of Jupiter and Saturn on the 13th of February and the 25th of May?

When the right accension and declination of the planete are not given, they are to be wought in Table VIL.

## PROBLEM VL.

TO FIND AT WGAT MOMENT ANY ETAR WILL PABS TEN MERIDAM ON A GIVEN DAY.
Rous.-Substract the right ascension of the Sun from the star's right ascension, found in the tables; observing to add 24 hours to the star's right ascension, if less than the Sun's, and the difference will show how may hours the star culminates after the Sun.

Example 1.-At what time will Procyon pass the merid an the 24th of February?

Solution-R. A. of Procyon 7h. $30 \mathrm{ma} .33 \mathrm{~m}+24 \mathrm{~h}$.
-R. A. of Sun, 24th of Feb.

| 31 | 30 | $33^{\prime \prime}$ |
| :---: | :---: | :---: |
| 22 | 29 | 1 |
| 9 | 1 | 32 |

That is, 1m. 32s. past $\mathbf{9}{ }_{0}^{\text {Ans. }}$ olock in the evening.

Ex. R-At what time will Denebola pase the meridian on -the first of April?

Nolution-R. A. of Denebola is 11h. $40^{\circ} 38^{\prime \prime}$
R. A. of Sun, April 1,

Ans.

| 0 | 41 | 25 |
| :---: | :---: | :---: |
| 10 | 59 | 7 |

That is, at 59 minutes, 7 seconds, past 10 in the evening.
Fx. 3.-At what time on the first day of each month, from January to July, will Alcyone, or the Pleiades, pass the moridian?
Ex. 4.-At what time will the Dog Star, or Sirius, culminate on the first day of January, February, and March?

Ex. 5.-How much earlier will Spica Virginis pass the meridian on the 4th of July, than on the 15th of May ?Ans. 3 hours, 25 minutes.

## Problem VII.

TO FND WEAT gTARS WILL BE ON OR NEAREST TEE MERIDIAN at any given time.
Role.-Add the given hour to the Sun's right ascension. found in Table III., and the sum will be the right ascension of the meridian, or mid-heaven; and then find in Table II. *hat star's right ascension corresponds with, or comes nearest to it , and that will be the star required.
Exampla 1.-What star will be nearest the meridian at $9 o^{\prime}$ 'clock in the evening of the 1st of September?

Solution.-Sun's right ascension 1st. September,

| 10 h | $40^{\circ}$ | $30^{\prime \prime}$ <br> 9 |
| :---: | :---: | :---: |
| 19 | 0 |  |
| 19 h | $40^{\prime}$ | $30^{\prime \prime}$ |

Now all the stars in the heavens which have this right atcension, will be on the meridian at that time: On looking into Table II. the right ascension of Altair, in the Eagle, will be found to be 19 h .40 m . ; consequently Altair is on the meridian at the time proposed; and Delta, in the Swan. is less than two minutes past the meridian.

Ex. 2.-Walking out in a bright evening on the 4th of Sep rember, I saw a very brilliant star almost directly over hend ; I looked on $n y$ watch, and it wanted 20 minutes of 8 ; required the namd of the star 7

Solution.-Sun's declination 4th of September, 10h 51'
Add the time from noon
Gives R. A. of Lyra, nearly
$7 \quad 40$ $\begin{array}{lll}16 & 31 & 20\end{array}$

Ex. 3.-About $8 \frac{1}{2}$ minutes after 8 in the evening of the 11th of February, I observed a bright star on the meridian; a little north of the equinoctial, and 1 minute before 9 a still Prighter one, further south; required the named of the stars?

PROBLEM VIII.
to find what gtars will colminate at 9 o'cloci in tua EVANING OF ANY DAY IN THE YEAR.
Rule-Against the day of the month in Table IV., find the right ascension of the mid-heaven, and all those stars in Table II. which have the same, or nearly the same right assension, will culminate at $9 P$. M. of the given day.

Example 1.-What star will culminate at 9 in the evening of the 26th of March?

Solution.-I find the right ascension of the meridian, at 9 $0^{\prime}$ 'clock in the evening of the 26th of March, is $9 \mathrm{~h} 19^{\prime} 37^{\prime \prime}$; and on looking into Table II., I find the right ascension of Alphard, in the heart of Hydra, is $9 \mathrm{~h} 19^{\prime} 23^{\prime \prime}$. The star is Alphard,

Ex. 2.-What star will culminate at 9 in the evenigg of the 28th of June? Ans. Aphacca.

## PROMLEM IX.

ma mid tee gun's longitude or flace in the ecliptic, on any given day.

Rule.-On the lower scale, at the bottom of the Plantsphere, (Plate VIII.) look for the given day of the month. then the sign and degree corresponding to it on the scale immediately above it, will show the Sun's place in the ecliptic.

Example 1.-Required the Sun's longitude, or place in the ecliptic, the 16th of September.

Solution.-Over the given day of the month, September 16th, stands 5 signs and 23 degrees, nearly, which is the Sun's place in the ecliptic at noon on that day; that is, the Sun is about 23 degrees in the sign $V$.rgo.
N. B. If the 5 aigna be inultiplied by 30 and the 8 degreen ba aided to $i_{4}$
i will give the longitude in degrise, 173 .

Ex. 2.-Required the Sun's place in the ecliptic at noon. on the 10th of March.

## PROBLEM X.

'oifen the sun's longitude, or place in tee eci iptir, to Find his bight ascengion and declination.
Role.-Find the Sun's place in the ecliptic, (the curved line which runs through the body of the planisphere,) and with a pair of compasses take the nearest distance between it and the nearest meridian, or hour circle, which being ap piied to the $\boldsymbol{a}^{\text {racuuated }}$ scales at the top or bottom of the planispher , (measuring from the same hour circle,) will show t'se Sun's right ascension. Then take the shortest distance between the Sun's place in the ecliptic and the nearest part of the equinoctial, and apply it to either the east or west marginal scales, and it will give the Sun's declination.

Example 1.-The Sun's longitude, September 16th, 1833, is 5 signs, 23 degrees, nearly; required his right ascension, and declination.

Solution.-The distance between the Sun's place in the ecliptic and the nearest hour circle being taken in the compasses, and applied to either the top or bottom graduated scales, shows the right ascension to be about 11 hours 35 oainutes; and the distance between the Sun's place in the ecliptic, and the nearest part of the equinoctial, being applied to either the east or west marginal scales, shows the declioation to be about $2^{\circ} 45^{\prime}$, which is to be called north, because the Sun is to the northward of the equinoctial : hence the Sun's right ascension, on the given day, at noon, is about 11 hours 35 minutes, and his declination $2^{\circ} 45^{\prime} \mathrm{N}$.

Ex. 2.-The Sun's longitude March 10th, 1833, is 11 signs, 19 degrees, nearly ; required his right ascension and declination?

Ans. R. A. 23 h. 21 min . Decl. $4^{\circ} 11^{\prime}$ nearly.

## Problem XI

## to find the bioht ascengion of the meridian at any GIVEN TIME.

Ruls.-Find the Sun's place in the ecliptic by Problem IX. and his right ascension by Problem $X$., to the eastward of which, count off the given time from noon, and it will show the right ascension of the meridian, or mid-heaven.

Exampla 1.-Required the right ascension of the meridi. an 9 hours 25 minutes past noon, September 16th, 1533.

Solution-By Problems IX. and X , the Sun's right ascen-
sion at noon of the given day, is 11 hours 35 minntes; te the eastward of which, 9 hours and 25 minutes <the givem time) being counted off, shows the right ascension of the meridian to be about 21 hours.
Ex. 2.-Required the right ascension of the meridian at 6 hours past noon, March 10th, 1833 ?

Solution.-By Problems IX, and X. the Sun's right ascension at noon of the given day, is 23 hours and 21 minutes; to the eastward of which, the given time, 6 hours being counted off, shows the right ascension of the meridian to be about 5 hours 21 minutes.


#### Abstract

Naname In this example, it may be necessary to observe, that whert the eastera, pr left hand extremity of the planiaphere leaver off the neaterm, or risht hand extremity, begins; therefore, in counting off the give time on the top or bottom graduated scales, the reckoning in to be trame ferred from the left, and completed on the right, as If the two outside edsea of the phantsphere were joined together.


## PROBLEM XIL.

20 FLAD WEAT ETAR W WLL BS ON OR NEAR TER MERIDMAT AT ANY GIVEN TME.

Rous.-Find the right ascension of the meridian by Problem XI. over which lay a ruler, and draw a pencil line along its edge from the top to the bottom of the planisphere, and it will show all the stars that are on or near the meridian.
Example 1.-Required what stars will be on or near the meridian at 9 hours 25 minutes past noon, Sept. 16th, 1833 ?
Solution.-The right ascension of the meridian by Problem XI. is 21 hours : this hour circle, or the line which passes up and down through the planisphere, shows that no star will be directly on the meridian at the given time; but that Alderamin will be a little to the east, and Deneb Cygni, a little to the west of it; also Zeta Cygni, and Gamma and Alpha in the Litlle Horse, very near it on the east.

## PROBLEM XIII.

to find tee babte's mean distance from the sun.
Role.-As the Sun's horizontal parallax is to radius, mo is the semi-diameter of the Earth to its distance from the Sun.
By Logarithme.-As tangent of the Sun's horizontal parallax is to radius, so is the Earth's semi-diameter to hem mean distance from the Sun.

[^287]By Logerithasa.
As magent of Bun's horizontal parallax, $80.5776=5.618940 \%$ In to radius, or $90^{\circ}$, 10.10000000 So in the Earth's semi-dianaeter, To the Earth's distance,
$3962-3.6979145$
$95,273,869-2789730$

PROBLEM XIV.

## TU FIND THE DIETANCE OF ANY PLANET FROM THE \&UN, TBAT OF THE EARTH BEING ENOWN.

Rule.-Divide the square of the planet's sidereal revolution round the Sun, by the square of the Earth's sidereal revolution, and multiply the cube root of the quotient by the Earth's mean distance from the Sun.

By Logarithms.-From twice the logarithm of the planet's sidereal revolution, substract twice the logarithm of the Earth's sidereal revolution, and to one third of the remainder, add the logarithm of the Earth's mean distance from the Sun.
Examphe.-Reguired Mercury's mean distance'From the Sum that of the Earth being $96,273,809$ miles.

Mercury's sidereal revolulion is 87.969258 days, or 7600643".8912 : The Earth's sidereal revolution is 355.256374417 daya or

| $31568151 " \%$ | 7600643.9 |
| :--- | :--- |
| $31558151^{\prime \prime} .5$ | 7600643.9 |

995916969096952.25 by which divide 57768267575898 and the quotient will be 0.052005106713292 , the cube mot of which in 0.3870977 , and this multiplied by $94,881,891$, gives $30,72,607$ miles, for Mercury'a distance from the Bun. This problem may be performed by logarithma is as many minutes as the former method requires hours.
Mercury's sid. Rev. $7604543^{\prime \prime} .9 \mathrm{log} .=6.8908447 \times 2 \quad 13.7616894$
Earth's sid. Rev. 31568151". log. $=7.4991302 \times 2$
14.9982004

1) -2.7634200
$1.567 \mathrm{Nag7}$
Add. log. of the Farth's mean distance,
7.9789738

Mercury's distance, 36,880422
Ang.
7.5667885

If the pupll have not already learned the use of logarithmet, this problem Till socinfy fin of their unspeatable advantago over all other modes of computation. By reviewing the above calculation, be will perceive that instead of multiplyting 31558151' . 5 by iteelf, he need only multiply tid logarithms by twol and, instead of extracting the cube root of 0.068005106713292 , he need oalr divide its logarithm by three / and instead of maluiplying 0.3870977 , by 95,273 , C08, he need only add their logarithms together. He need not think bimself a didu echolar, if by tie former method he come to the true result in five


FPOBLEM XV.

## TO FIND THE HOURLY MOTION OF A PLANET LI ITS ORERT.

Role.-Multiply the planet's mean distance from the Sun by 6,2831853 , and divide the product by the time or the planet's sidereal revolution, expressed in hours, and the ecimals of an hour.

By Logarithms.-Add 0,7981799 to the logarithm of the planet's mean distance from the Sun, and from the sum substract the logarithm of the planet's revolution expressed in hours.

> Exampas.-Required the Earth's hourty motion in tite orbte.
> Los of Earth's dimance $-7.9789738+0.7981700-\quad 8.7771677$
> Gubstract log. of Earth'e revolution 2.9429390
> Givea Garth's horary motion, 68,288 milles, - 4898347

## PROBLEM XVL

TO FND TEE HOURLY MOTION OF A PLANET ON ite AXig-
Rule.-Multiply the diameter of the given planet by 3.14159, and divide the product by the period of its diurnal rotation.

By Logarithms.-Add 4.0534524 to the logarithm of the planet's diameter, and from the sum substract the logarithm of its diurnal rotation, expressed in seconds.

| Earth's diameter, 799 loty Add log. of $3000^{\prime \prime}$ + log. of $3.14159=$ | $\begin{aligned} & 8.898045 \\ & 4.053452 \end{aligned}$ |
| :---: | :---: |
|  | 7.9523969 4.9363203 |
| Ans, 1040.09 milem - | 2.0170706 |

## PROBLEX XVIL.

TO FIND TEE RELATIVE MAGNITUDE OF THE PLANETE.
Rule.-Divide the cube of the diameter of the larger planet, by the cube of the diameter of the less.

By Logarithms.-From three times the logarithm of the larger, substract three times the logarithm of the less.

Exarpine-How much, does the size of the Earth exceed that of the Movn 1

Earth's dameter, 7912 log. $3.898963 \times 3$ - 11.094889
Moon's diameter, $2160 \log .3 .3343376 \times 3$ 10.0030128

The Farth exceeds the Mioon, 48.1865 times. Ane.
1.691841

In this exampie, 7912 milen is assumed as the meas betwoen the Farth's equatorial and polar dimmeter: the former boing 7924, and the hatier 7808 milee

## PROBLEM XVIL.

TO FINE THE PROPORTION OF bOLAR LIGET AED HEAT AT RACM of the planete.
Rols.-Divide the square of the planet's greater distance from the Sun, by the square of the less.-Or, substract twice the logarithm of the greater distance, from twice the logarithm of the 'esg.

Example-How much greater is the Sun's lignt and eat at Mercury, than at the Earth?

Log. of Earth's dietance

- of Mercury's

Ans 6.6736 timen wreater -
$7.9780738 \times 2=-5.9699476$
$7.5667959 \times 2=16.1335918$
0.844658

## P権OBLEM XIX

TO FIND THE CLRCUMFERENCE OF TEN PLANETE
Rele.-Multiply the diameter of the planet by 3.14159 $r_{\text {, }}$, add the logarithm of the planet's diameter to 0.4971 L's

## PROBLEA XX.

to find the circumference of the planetary orbits
Rous.-Multiply the planet's mean distance from the Sun, by 6.2831853: or, to the logarithm of the planet'm mean distance, add 0.7981799 , and the sum will be the logarithm of the answer.

## PROBLEM XXI.

TO FIND IN WHAT TMME ANY OF THE PLANETE WODLD FALL TK TES EUM IF LEFT TO TEE FORCE OF GRAVETATION ALONE.
Role.-Multipiy the time of the planet's sidereal revola. tion, by 0.176776 ; the result will be the answer.

By Logarithms.-From the logarithm of the planet's s1. dereal revolution, substract 0.7525750 , and the remainder will be the logarithm of the answer, in the same denomina. tion as the sidereal revolution.
Required the timea, respectively, in which the meveral planete would fil to the Bun by the force of gravity.

| Planets would fall to the Bum. | Daym. H M. A. |  |  | Logarithme. |
| :---: | :---: | :---: | :---: | :---: |
| Mercury, |  | 1313 | 16 | 6.1282686 |
| Venus, | 391 | $17 \quad 19$ | 22 | 6.5365494 |
| $\mathrm{Farth}_{4}$ | 64 | 1338 | ${ }_{3}$ | 6.7466357 |
| Mar, | 121 | 10 | $\stackrel{3}{35}$ | 7.0208817 |
| Bapura, | 1901 | 238 | 4 | 8219718 |
| Herseliol, | $5424$ | $\begin{aligned} & 16 \\ & 169 \\ & 19 \\ & \hline \end{aligned}$ | $\frac{1}{57}$ | $\begin{aligned} & 8.0708897 \\ & \hline 6.0460 \end{aligned}$ |

## Tabular Elements of the Solar System.

| Names of the Planets. | Sidereal Revolutions in Mean Solar Days. | - Logarithms. | True mean distances from the sun in miles. |  | Logarittrms of Planets' distances. | re tisuanues. | Logarithms. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mercury, | 879692580 | 1.944330,930 | $294-36,880,4$ | . 34907587 | 7.566795,885867 | 70990313231 | 587822,083445 |
| Venus, | 224.7007869 | 92.351604 .4794 | 472 68,914,6 | 4.84245489 | $7.838311,5553190$. | 333321755631 | 1.859337,782897 |
| Earth, | 365.2563744 | 4 2.562597,8051 | 126 95,273 86 | 88.86774855 | $7.978973,8024221.0$ | 000000000000 0 | .090000,000000 |
| Mars, | 686.9796458 | 8 2.836943,8675 | 587 145,168,09 | 4.89281471 | $8.161871,1773961.5$ | 23692662196 | 0.182897,374974 |
| Vesta, | 1325.7431000 | 0 8.122459,4082 | 208 225,016,76 | 22.14714600 | 8.352214,871143 2.3 | 361788860064 | .373241,068721 |
| Juno, | 1592.6608000 | 0 3.202123,3452 | 262 254,287,00 | 2.55155636 | 8.405324,162513 2.6 | 6690109845810 | 0.426350,360091 |
| Ceres, | 1681.3931000 | 0 3 225669,2676 | 668 263,646.15 | 6.30912176 | 7.421021,444117 2.7 | 672451999940 | .442047,641698 |
| Pallas, | 1686.5388000 | 3.2269963425 | 519 264.183,78 | 6.59075400 | 8.421906,160684 2.7 | 72888198314 | 0.442932,358262 |
| Jupiter, | 4332.5848212 | $23.636747,0740$ | $052495.533,83$ | 36.87042950 | 8.695073,315039 5.2 | 211516143870 | 0.716099,512617 |
| Saturn, | 10759.2198174 | $4.4031780,7796$ | 676 908,717,97 | 5.06526816 | $8.958429,1187559$ | 537956061453\|0 | $0.979455,316333$ |
| Herschel, | 130686.8208296 | 614.486951,895 | 1.182\%,580, | 25499525 | 9.261876,529379\|19 | 23905124691 | 1.282902,726957 |
| Namee of | Planeta, \&e. | Diameters at the Earth's M. Dist. | Relative Diameters. | True Diame. ters in miles. | ComparativeVolumes. | Hourly Motion, in miles. | Comparative Light and Heat. |
|  | - - - | 3́2 1́.8000 | 112.02434 | 887,681 | 1405844.16195 |  |  |
| Mercury, | - . - | 6.4600 | . 37656 | 2,984 | 1405844.16193 | 109,757 | 6.67363 |
| Venus, | - . | 16.5000 | . 96181 | 7,621 | . 88974 | 80,293 | 1.91128 |
| Earth, | - - | 17.1552 | 1.00000 | 7,924 | 1.00000 | 68,288 | 1.00000 |
| Mars, | - - | 8.1400 | . 53278 | 4,222 | . 15123 | 55,322 | -2.32164 |
| Vesta, | - - | . 5824 | . 03395 | ,269 | 00004 | 44,435 | $-5.57805$ |
| Juno, | - - | 1.0158 | . 17580 | 1,393 | . 00543 | 41,799 | $-7.12362$ |
| Ceres, |  | 3.4250 | . 19664 | 1,588 | . 00796 | 41,051 | -7.65764 |
| Pallas, |  | 4.8740 | . 25429 | 2,025 | . 01669 | 41,009 | $-7.86800$ |
| Jupiter, | - - | 3 l 6.7400 | 10.88530 | 86.255 | 1289.81000 | 29,943 | -27.05197 |
| Saturn, | - . - | 957.4400 | 10.34320 | 81,954 | 1160.54000 | 22,111 | $-90.97260$ |
| Herschel, | - - . | 114.4000 | 4.33688 | 34,363 | 81.57020 | 15,592 | -367.97400 |

table L .
Constining the annes of the Constellations, the number and magnitude of tae Stars in each, and the days on which they come to the meridian at 9 o'clock in the even ing.


TABLE I.-Continued.


Exhibiting the Right Ascension and Declination of the principa. Fixed Stars, and the time of their coming to the Meridian.
Thome to which fir aunexed are in South declination ; the otbaill are in North declination.


TABLE IL-Continued.


TABLE II.-Continued.


TABLE II.-Continued


TABLE II.-Continued.

| 品 | Names of the Stars. | $\frac{\dot{8}}{\circ}$ | RightAscension. |  |  |  | echia | tion. | On the Merid. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 |  |  |  | ${ }_{17}$ | $\begin{gathered} 5 \\ \mathbf{5} \end{gathered}$ | 2 | 46 | $57$ | Aug. |  |
| 161 | $\dot{0}$ Vulpe |  | 19 | 21 | 20 | 24 | 20 |  |  |  |
|  | f Cygni, Albireo, |  | 192 | 24 | 17 | 27 | 36 | 51 |  | 28 |
| 163 | 2 Aquilm, Tarazed, |  | 19 | 38 | 19 | 10 | 12 | 48 |  | 31 |
| 164 | Cygai, |  | 19 | 40 | 0 | 44 | 43 | 25 | Sept. |  |
| 165 | a Aquilæ, Altair |  | 19 | 42 | 38 | 8 | 26 | 2 |  |  |
|  | B Aquilæ, Alshain |  | 19 | 47 | 7 | 5 | 59 | 47 |  |  |
|  | 0 Aquilx, |  | 20 | 2 | 38 | 1 | 18 | 398. |  |  |
|  | a 1 Capri., Dshabeh, |  | 20 | 8 | 23 | 13 |  | 595. |  |  |
|  | \& 2 Capricorni, |  | 20 | 8 | 47 | 13 |  | 168. |  |  |
|  | - Capricorni, Dabih, |  | 20 | 11 | 48 | 15 | 18 | 158. |  | 0 |
|  | \& Pavonis, |  | 20 | 11 | 23 | 57 | 15 | 42S. |  | 10 |
|  | \% Cygni, Sa |  | 20 | 16 | 11 | 39 | 43 | 38 |  | 1 |
|  | - Delphini, |  | 20 | 25 | 32 | 10 | 44 | 29 |  | 1 |
|  | \% Delphini, Rotanen, |  | 20 | 29 | 29 | 13 | 59 | 53 |  | 15 |
| 175 | \& Delphini, Scalovin, |  | 20 | 31 | 53 | 15 | 59 | 32 |  | 15 |
| 176 | \% Delphini, |  | 20 | 35 | 29 | 14 | 28 | 53 |  | 6 |
|  | * Cygni, Deneb, | 1.2 | 20 | 35 | 45 | 44 | 41 | 15 |  | 16 |
|  | 2 Delphini, |  | 20 | 38 | 29 | 15 | 31 | 47 |  | 7 |
|  | ${ }^{\text {a }}$ Cggni, Gi |  | 20 | 39 | 16 | 33 | 20 | 16 |  | 17 |
|  | $\zeta$ Cygni, |  | 21 |  | 22 | 29 | 32 | 45 |  | 25 |
|  | * Cephei, Alderamin, |  | 21 | 14 | 35 | 61 | 52 | 45 |  | 27 |
|  | $\beta$ Aquarii, |  | 21 | 22 | 46 | 6 | 18 | 9S. |  | 29 |
|  | $\beta$ Cephei, Alph |  | 21 | 26 | 28 | 69 | 49 |  | Oc |  |
|  | 2 Capricorn |  | 21 | 30 | 45 | 17 | 24 | 48S. |  |  |
|  | - Pegasi, Enif, | 2.3 | 21 | 35 | 32 | 9 | 6 | 47 |  |  |
|  | $\int$ Capricorni, |  | 21 | 37 | 49 | 16 | 52 | 33S. |  |  |
| 187 | a Aquarii, |  | 215 | 57 | 12 | 1 | 7 | 33S. |  |  |
| 188 | Gruis |  | 21 | 57 | 40 | 47 | 45 | ${ }^{389}$ S. |  | 1 |
|  | Ceph |  | 22 | 5 | 5 | 57 | 13 | 40 |  |  |
|  | Aquar |  | 22 | 12 | 38 | 2 | 13 | 40S. |  |  |
| 192 | - Piscis Au |  | 22 | 21 | 40 | 37 | 11 | 48 S . |  | 18 |
| 193 | Pegasi |  | 22 | 33 | 36 | 9 | 57 | 49 |  | 22 |
| 194 | Aquarii, Scheat, |  | 22 | 45 | 43 | 26 | 42 | 31S. |  | 23 |
| 195 | a Pisc. Aust. Fomalh. |  | 22 | 48 | 24 | 30 | 30 | 18S. |  | 24 |
| 196 | \% Pegasi, 8cheat, |  | 28 | 55 | 32 | 27 | 10 | 27 |  | 25 |
|  | basi, Markab, |  | 28 | 56 |  | 14 | 18 | 37 |  |  |

TABLE IL-Continued.


## TABLE III.

Extubiting the Sum's Right Ascension, in Time, for every day un the year.

| 宝 | January. | February. | March. | April. | May. | June. | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 1 |
| 3 | 185511 | 21650 | 225519 | 04842 | 24014 | 44325 | 3 |
| 4 | 185935 | 211053 | 2259 | 052 | 244 | 44731 | 4 |
| 5 | 19359 | 211454 | $23 \quad 246$ | 05559 | 24755 | 45138 | 5 |
| 6 | $19 \quad 822$ | 211855 | 23628 | 05957 | 25146 | 45545 | 6 |
| 7 | 191245 | 212255 | 231010 | 13 | $2 \begin{array}{llll}25 & 37\end{array}$ | 45952 | 7 |
| 8 | 1917 | 212654 | 231352 | 16 | 25930 | $\begin{array}{llll}5 & 3 & 59 \\ 5 & 8 & 7\end{array}$ | 8 |
| 9 | 192129 | 213053 | 231733 | 11035 | $\begin{array}{llll}3 & 3 & 22\end{array}$ | 7 | 9 |
| 10 | 192550 | 213460 | 232114 | 11415 | $\begin{array}{lll} 3 & 7 & 16 \\ 3 & 11 & 10 \end{array}$ | $\begin{array}{ll} 5 & 1215 \\ 5 & 16 \\ \hline \end{array}$ | 11 |
| 12 | 193011 | 213847 | 232454 | $\begin{array}{llll}1 & 17 & 55 \\ 1 & 91 & 35\end{array}$ | $\begin{array}{lll} 3 & 11 & 10 \\ 3 & 15 & 4 \end{array}$ | $\begin{array}{lll} 5 & 16 & 24 \\ 5 & 20 & 32 \end{array}$ | 11 |
| 12 | 193431 | 214243 | ${ }^{23} 9835$ | $\left.\begin{array}{lll} 1 & 21 & 35 \\ 1 & 25 & 15 \end{array} \right\rvert\,$ | $\begin{array}{ll} 3 & 15 \\ 3 & 19 \\ \hline \end{array}$ | $\begin{array}{lll} 5 & 20 & 32 \\ 5 & 24 & 41 \end{array}$ | 12 |
| 13 | 193850 | 214638 | 233214 | $\begin{array}{llll}1 & 25 & 15 \\ 1 & 28 & 56\end{array}$ | $\begin{array}{ccc}3 & 19 & 0 \\ 3 & 28 & 55\end{array}$ | $\begin{array}{lll} 5 & 24 & 41 \\ 5 & 28 & 50 \end{array}$ | 13 |
| 15 | 194727 | $2154{ }^{2}$ | 233934 | 13238 | 32652 | 53239 | 15 |
| 16 | 195145 | 215820 | 234313 | 13619 | 33049 | 5379 | 16 |
| 17 | 195612 | 22.12 | 234652 | 1401 | 33446 | 54118 | 7 |
| 18 | 1900018 | 22.64 | 235031 | 14344 | 33844 | 54528 | 18 |
| 19 | $\begin{array}{llll}20 & 4 & 33\end{array}$ | 22.955 | 2354 | 14726 | 34243 | 54937 | 19 |
| 2 | 20848 | 221345 | 235748 | 15110 | 34642 | 55347 | 20 |
| 21 | 2013 | 221735 | 0126 | 15453 | 35042 | $\begin{array}{llll}5 & 57 & 57\end{array}$ |  |
| 22 | ${ }_{20}^{20} 171715$ | 22.21 | $\begin{array}{llll}0 & 5 & 4 \\ 0 & 8 & 43\end{array}$ | 1 1 2 28 2 | $\begin{aligned} & 355 \\ & 3 \end{aligned}$ | 6 |  |
| 83 | 202127 | 229513 | $\begin{array}{llll} 0 & 8 & 43 \\ 0 & 12 & 91 \end{array}$ |  |  |  | 24 |
| $24$ | $\left\lvert\, \begin{array}{ccc}20 & 25 & 39 \\ 20 & 29 & 50\end{array}\right.$ | $\begin{array}{llll}22 & 39 & 1 \\ 22 & 32 \\ 48\end{array}$ | $\begin{array}{lll} 0 & 12 & 91 \\ 0 & 15 & 59 \end{array}$ | $\begin{array}{lll} 2 & 6 & 7 \\ 2 & 9 & 53 \end{array}$ | $\begin{array}{ccc} 4 & 2 & 45 \\ 4 & 6 & 47 \end{array}$ | 6 <br> 6 <br> 14 <br> 10 | 24 |
| 26 | 2034 | 22 3635 | 01937 | $2 \begin{aligned} & 23 \\ & 29\end{aligned}$ | 41049 | 61844 | 26 |
| 27 | 2038 | 224021 | 02315 | 21725 | 41452 | 62254 | 77 |
| 28 | 204218 | 2344 | 02653 | 22112 | 41856 | $\begin{array}{llll}6 & 27 & 3\end{array}$ | 88 |
| 29 | 204625 |  | 03031 | 22459 | 483 | 63111 | 29 |
| 30 | 205032 |  | 0349 | 28847 | 427 | 63590 | 30 |
|  | 1205438 |  | 037 |  | 431 |  | 31 |

TABLE III-Continued.

| 3 | Juby. | Ausat. | Sept | Oct. | Nor. | Dec. | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 1 | 63928 | 8442 | 104030 | 12835 | 142445 | 162829 |  |
| 8 | 64336 | 84815 | 1044 | 123212 | 142841 | 163248 |  |
| 3 | 64744 | 858 | 104745 | 1235501 | 143237 | 16378 | 3 |
|  | 65152 | 855159 | 105122 | 1239281 | 143634 | 164199 |  |
| $6$ | 65559 | 85950 | 105459 | 12436 | 144032 | 164550 | 5 |
|  | 7.06 | 9340 | 105836 | 124645 | 144430 | 165018 | 6 |
| 8 | 7818 | 91119 | 11 | 1254 | 145380 | 158 | 8 |
| 9 | 7129 | 9158 | 119 | 125744 | 145631 | 17 | 9 |
| 1 | 71630 | 1856 | 1113 | 13124 | 15 | 7 | 10 |
| 11 | 72035 | 92244 | 111636 | 13 | $\begin{array}{lll} 15 & 4 & 37 \end{array}$ | 1718 | 11 |
| 12 | 72439 | 92631 | 112012 | $\left\|\begin{array}{lll} 13 & 8 & 47 \end{array}\right\|$ | 15841 | 171633 | 18 |
| 13 | 72843 | 93018 | 112348 | 131229 | 151245 | 172058 | 13 |
| 14 | 73247 | 9344 | 112723 | 131612 | 151651 | 172544 | 4 |
| 15 | 73650 | 93749 | 113059 | 131955 | 152057 | 7 | 15 |
| 16 | 74053 | 4134 | 113434 | 132338 | 1525 | 173415 | 6 |
| 18 | 74455 | 4519 | $1138 \cdot 10$ | 132783 | $\left\|\begin{array}{lll} 15 & 29 & 13 \end{array}\right\|$ | $173841$ | 7 |
| 18 | 74857 | 9493 | 114145 | 133188 | $\begin{array}{lll} 15 & 33 & 22 \end{array}$ | $17438$ | 18 |
| 19 | 75858 | 95246 | 114521 | 133453 | $153732$ | 174734 | 19 |
| 20 | 75659 | 95629 | 114856 | 133839 | $154142$ |  | 20 |
| 21 | $\begin{array}{lllll}8 & 0 & 59 \\ 8 & 4 & 89\end{array}$ | 10 | 1115232 | $\begin{array}{llll}13 & 42 & 26 \\ 13 & 46 & 13\end{array}$ | 154554 |  | 1 |
| 33 | 88 | 10 3 54 <br> 10 7 35 | 11 56 <br> 11 59 <br> 8  |  | 15 50 <br> 15 64 | $\left[\begin{array}{lll} 18 & 0 & 54 \\ 18 & 5 & 21 \end{array}\right]$ | 8 |
| 94 | 81256 | 101116 | 12319 | 135350 | 156833 | 18 9 47 | 4 |
| 25 | 81654 | 101457 | 12.655 | $13 \quad 5739$ | $16 \quad 247$ | 181414 | 86 |
|  | 82052 | 101837 | 121031 | $14 \quad 129$ | 1672 | 1818 | 26 |
| 87 | 82448 | 102217 | 1214 | $14 \begin{array}{lll}14 & 5 & 20\end{array}$ | $1611-18$ | 18837 | 1 |
| 88 | 82844 | 102556 | 121744 | 14.912 | 161535 | 188733 | 98 |
| 9 | 83239 | 10 \% 35 | 122121 | 1413 | 161962 | 1831.69 |  |
| 30 | 83634 | 103314 | 122457 | 141657 | 16 \$10 | 183694 | 30 |
| 31 | 84088 | 102650 |  | 148081 |  | 1840 | 81 |

TABLE IV.
Showing the Right Ascension of the Mid-Heaven at $90^{\circ}$ clock in the evening, for every day in the year.

| ¢ | Jenuary. | Februars. | March. | April. | May. | June. | 気 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~g} . \\ 3 & 46 \\ 21 \end{array}$ | $\begin{gathered} \mathrm{h} . \mathrm{m} \\ 5 \\ 58 \\ 43 \end{gathered}$ | $\begin{array}{rl} n_{7} \\ 7 & 47 \\ 50 \end{array}$ |  |  | $\begin{array}{\|ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 13 & 35 & 14 \\ \hline \end{array}$ |  |
|  | 35046 | 6247 | 75135 | 9453 | 113625 | $\begin{array}{llll}13 & 39 & 19\end{array}$ | 2 |
| 3 | 35511 | 6650 | 75519 | 948 | 114014 | 134325 | 3 |
|  | 35935 | 61053 | 759 | 95220 | 1144 |  | 4 |
| 5 | 4359 | 61454 | 8246 | 95559 | 114755 | 135138 |  |
| 6 | 4822 | 61855 | 8628 | 959.57 | 115146 | 135545 | 6 |
| 7 | 41245 | 62255 | 1010 | 10316 | 1115537 | 135952 | 7 |
| 8 | 4177 | 62654 | 81352 | 10656 | 1159 | 5 | 8 |
| 9 | 42129 | 63053 | 81733 | 101035 |  |  | 0 |
| 10 | 42550 | 63450 | $\left.\begin{array}{ll} 8 & 21 \\ 8 & 14 \\ 8 & 14 \end{array}\right]$ | 101415 | $\begin{array}{llll}12 & 7 & 16 \\ 12\end{array}$ | 14 141215 | 11 |
| 11 | $\begin{array}{llll}4 & 30 & 11 \\ 4 & 34 & 31\end{array}$ | $63847$ | $\begin{array}{ll} 8 & 24 \\ 8 & 54 \\ 8 & 35 \end{array}$ | $\begin{array}{llll}10 & 17 & 55 \\ 10 & 21 & 35\end{array}$ | $\begin{array}{llll}12 & 11 & 10 \\ 12 & 15\end{array}$ | 141624 | 11 |
| 12 | $\begin{array}{llll}4 & 34 & 31 \\ 4 & 38 & 50\end{array}$ | 64243 646 6 | 8 8 8 828 8 | $\begin{array}{llll}10 & 21 & 35 \\ 10 & 25 & 15\end{array}$ | 1215 | $\left\|\begin{array}{lll} 14 & 20 & 32 \\ 14 & 24 & 41 \end{array}\right\|$ | 12 |
| 13 | 43850 <br> 443 <br> 4 | 64638 6 6 | 83214 | 10 25 15 <br> 10 28  <br> 10   | $\begin{array}{rrrr}12 & 19 & 0 \\ 12 & 55\end{array}$ | $\left\|\begin{array}{ll} 14 & 24 \\ 14 & 28 \\ 14 \\ 50 \end{array}\right\|$ | 1 |
| 15 | 4 <br> 4 <br> 4 <br> 47 | 6 <br> 64 <br> 54 <br> 1 | $\begin{array}{llll}8 & 39 & 34\end{array}$ | 103238 | 122652 | 143259 | 15 |
| 16 | 45145 | 65820 | 84313 | 103619 | 123049 | 143719 | 16 |
| 17 | 4561 | 7212 | 84652 | 10.40 | 123446 | 144118 | 7 |
| 18 | 50018 | 764 | 85031 | 1043 | 123844 |  | 18 |
| 19 | $\begin{array}{llll}5 & 4 & 33 \\ 5 & 8 & 48\end{array}$ |  | $\begin{aligned} & 854 \\ & 857 \end{aligned}$ |  | 124642 | $14 \begin{array}{lll}149 & 49 \\ 14\end{array}$ | 20 |
| 20 | $\begin{array}{cccc}5 & 8 & 48 \\ 5 & 13 & 2\end{array}$ | 71345 71735 |  | 105453 | 125042 | 14.5757 | 21 |
| 22 | 51715 | 72124 | 54 | 105837 | 125442 | 15 20.7 | 2 |
| 23 | 52127 | 72513 | 843 | 1122 | 1258 |  | 3 |
| 24 | 52539 | 7291 | $\begin{array}{llll}9 & 12 & 21 \\ 9 & 15 & 59\end{array}$ |  |  |  | 4 |
| 25 | 52950 | $\begin{aligned} & 73248 \\ & 7 \end{aligned}$ | $\begin{array}{lll} 9 & 15 & 59 \\ 9 & 19 & 37 \end{array}$ |  |  |  | 25 |
| 86 | 5 34 <br> 5 38 | $\begin{array}{lll} 7 & 36 & 35 \\ 7 & 40 & 21 \end{array}$ | $\left.\begin{array}{lll} 9 & 19 & 37 \\ 9 & 23 & 15 \end{array}\right]$ | $\left.\begin{array}{lll} 11 & 13 & 39 \\ 11 & 17 & 25 \end{array} \right\rvert\,$ | 13131049 | $\left\|\begin{array}{lll} 15 & 18 & 44 \\ 15 & 22 & 54 \end{array}\right\|$ | 26 |
| 87 | $\begin{array}{llll}5 & 38 \\ 5 & 9\end{array}$ | 74021 | ${ }_{9}^{9} 2315$ |  | 131452 |  | 28 |
| 28 | 54818 | 7446 | 9 9 9 2053 |  |  |  | 9 |
| 2 | 54625 |  | 9 9031 |  |  | 15 | 30 |
| 30 | $\begin{array}{llll} 5 & 50 & 38 \\ 5 & 54 & 38 \end{array}$ |  |  | 11284 |  | 153520 | 31 |

TABLE IV.-Cortinued.


## TABLE 7 .

Exmbiting the "Aow's Declination for every day in the year.


TABLE F.-Centinued

| 8 | dely. acruex. | Beph | Oct | 1600. Dea. | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | -1110 11 | - 111 | 0111 | 1110111 |  |
|  | 23 2856518640 | 82333 | $3 \quad 522$ | 142219214734 | 1 |
| 8 | 23.449175130 | 8144 | 38840 | 144130215646 | 2 |
| 3 | $23{ }^{23}$ | 73948 | 35156 | $\begin{array}{llllllll}15 & 0 & 97 & 28 & 5 & 34 \\ 15 & 19 & 9 & 28 & 13 & 51\end{array}$ | 3 |
| 4 |  | 71744 | 4159 | 151979221355 |  |
| 5 | $22806617 c 16$ | 65532 | 43820 | 153737232151 | 5 |
| 6 | $224434: 164758$ | 63314 | ${ }_{5}^{5} 1227$ | 155549222981 | 6 |
| 7 | 27381816163123 | 61949 | 59430 | 161345223625 | ? |
| 8 | 22 $31 \begin{array}{llllll}22 & 49 & 16 & 14 & 32 \\ 22 & 24 & 56 & 15 & 57 & 28\end{array}$ | 5 4818 | 54730 61025 |  | 8 |
| 10 | (1) $\begin{array}{lllllll}22 & 24 & 56 & 15 & 57 & 26 \\ 22 & 17 & 40 & 15 & 40 & 4\end{array}$ | $\begin{array}{\|ccc\|}5 & 25 & 41 \\ 3 & 2 & 69\end{array}$ | 61025 | 16 48 48 22 49 12 <br> 17 5 55 22 54 55 | ${ }^{9}$ |
| 11 |  | 44011 | 656 | 17224323011 | 11 |
| 12 | $22 \begin{array}{llllllll}22 & 1 & 59 & 15 & 4 & 35\end{array}$ | 41718 | 71840 | 17391483 | 18 |
| 13 | ${ }^{21} 5334144690$ | 35420 | 74114 | 17552723 | 13 |
| 14 | 21444614288 | 33119 | 8341 | 181121.231314 | 14 |
| 15 | $21353714 \begin{array}{llll}14 & 93\end{array}$ | 3813 | $826{ }^{2}$ | $182655 ' 231640$ | 15 |
| 16 | $2126 \quad 5135045$ | 245 | 84816 | 184810231938 | 16 |
| 17 | 211611133143 | 22151 | 91022 | 5752328 | 17 |
| 18 | 2151555131298 | 15836 | 93221 | 1911402324 | 18 |
| 19 |  | 13518 | 95411 | 19 \% 5423 25 | 19 |
| 20 | 204420123322 | 11158 | 101552 | 193947232647 | 20 |
| 21 |  | 04836 | 103724 | 195319232724 | 21 |
| 22 | 202120,115327 | 02513 | 105847 | 20.688232732 | 29 |
| 23 | 20 92920113313 | N. 149 | 111959 | 29191515232713 | ${ }^{23}$ |
| 24 | 195659,111248 | S. 2136 | 1141 | 203140232684 | 24 |
| 25 |  | 0451 | $12153$ | $20434293 \% 8$ | 25 |
| 86 | 193118103128 | 1887 | 122233 | $2055212323 \times 3$ | 26 |
| 87 | 191759101031 | 13152 | $1243.29$ | 21.636232110 | 77 |
| 88 | 119 4 20 9 49 25 <br> 18 50 2 9   | $\begin{array}{llll}1 & 55 & 16\end{array}$ | $\begin{array}{llll}13 & 3 & 19\end{array}$ | 211727231829 | 28 |
| 29 | 18.502808810 | 21840 | 132323 | 212754231500 | 29 |
| 80 | $\begin{array}{lllllll}18 & 36 & 6 & 9 & 6 & 46\end{array}$ | 2428 | 134315 | 219756231143 | 30 |
| 91 |  |  | 14284 |  |  |

## TABLE VL.

Exhibiting the Sun's mean place in the Ecliptic, or its Longitude, togelyer with the Right Ascension, for every day in the year.

| $\dot{8}$ | January. |  | February. |  | March. |  | April. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Long. | R. 1. | Long. | R. A. | Long. | R. A. | Long. |  | 1 |
|  | 01 | - 1 |  | - I | 01 | - I | 01 | - | 1 |
| 1) | 28039 | 28135 | 31213 | 31441 | 34027 | 34158 | 1116 |  | 21 |
| 2 | 28141 | 28241 | 31314 | 31542 | 34128 | 34254 | 1215 |  | 16 |
| 3 | 28242 | 28348 | 31414 | 31642 | 34228 | 34350 | 1314 |  | 10 |
|  | 28343 | 28454 | 31515 | 31743 | 34328 | 34446 | 1413 | 3 | 5 |
|  | 28444 | 2860 | 31616 | 31843 | 344 28 | 34541 | $15 \quad 12$ | 4 | 0 |
|  | 28545 | 2875 | 31717 | 31944 | 34528 | 34637 | 1611 | 4 | 54 |
|  | 28646 | 28811 | 31817 | 32046 | 34628 | 34732 | 1710 |  | 49 |
|  | 28748 | 28917 | 31918 | 32144 | 34728 | 34928 | 18 | 6 | 44 |
| 9 | 28849 | 29022 | 32019 | 32243 | 34827 | 34923 | 19 |  | 39 |
| 10 | 28950 | 29128 | 32119 | 32343 | 34927 | 35018 | 0 |  | 34 |
| 11 | 29051 | 29233 | 32220 | 32441 | 35027 | 35113 | 1 | 9 | 29 |
| 12 | 29152 | 29338 | 32321 | 32540 | 35127 | 352 | 22 | 20 | 24 |
| 13 | 29253 | 29443 | 32421 | 32640 | 35227 | 353 | 23 | 1 | 19 |
| 14 | 29354 | 29547 | 32522 | 32738 | 35326 | 35359 | 24 | 22 | 14 |
| 15 | 29455 | 29652 | 32622 | 32837 | 35426 | 35453 | 2500 | 23 | 9 |
| 16 | 29557 | 29756 | 32723 | 32935 | 35526 | 35548 | 2559 | 24 | 5 |
| 17 | 29658 | 2990 | 32823 | 33033 | 35625 | 35643 | 2657 | 25 | 0 |
| 18 | 39759 | 3004 | 32924 | 33131 | 35725 | 35738 | 2756 | 25 | 56 |
| 19 | 299 | 3018 | 33024 | 33229 | 35824 | 35832 | 2854 | 26 | 51 |
| 80 | 3001 | 30212 | 33125 | 33327 | 35924 | 35927 | 2953 | 27 | 47 |
| 21 | 3012 | 30315 | 33225 | 33424 | 00024 | 022 | 3051 | 88 | 43 |
| 22 | 3023 | 30419 | 33326 | 3351 | 123 | 116 | 3150 | 29 | 39 |
| 23 | 3034 | 30522 | 33426 | 33618 | 222 | 210 | 3248 | 30 | 35 |
| 24 | 3045 | 30625 | 33526 | 33715 | 322 | 35 | 3347 | 31 | 32 |
| 25 | 3056 | 30727 | 33627 | $\begin{array}{lll}338 & 12\end{array}$ | 421 | 40 | 3445 | 32 | 28 |
| 26 | 3067 | 30830 | 33727 | 339 | 521 | 454 | 3543 | 33 | 25 |
| 27 | 3078 | 30932 | 33327 | 3405 | 620 | 549 | 3642 | 34 | 21 |
| 28 | 3089 | 31034 | 33927 | 3412 | 719 | 642 | 3740 | 35 | 18 |
| 29 | 30910 | 31136 |  |  | 818 | 738 | 3838 | 36 | 15 |
| 30 | 31011 | 31238 |  |  | 918 | 832 | 3930 | 37 | 12 |
|  | 31112 | 31339 |  |  | 1017 | 927 |  |  |  |

TABLE VI-Centroved


TABLE VL-Continued.


## TABLE VIL

Ertibiting the Right Accension and Declination of the Planots, and the time of their pecaing the Meridian, for 1833 .


TABLE VIL. for 1833-Continuen.


TABLE VIL for 1836


TABLE VII, for 1836-Continued.

| 漛 |  |  | VENOS. |  |  | Mnes |  |  | Juprich |  |  | gaterum. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | sion. |  | Pass |  | lina- |  |  |  | Pass Mer | $\begin{gathered} \text { R.as- } \\ \text { cen- } \\ \text { sion. } \end{gathered}$ | lina- <br> tion. | $\begin{aligned} & \text { Pasg } \\ & \text { Mer } \end{aligned}$ |
| $\frac{5}{5}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 15 |  |  | 18 |  |  | 21 |  |  |  |  |
|  |  | 5 | 852 | 15 |  |  |  |  |  |  |  | 50 |  |  |
|  |  | 0 | 848 | 14 | 34 |  | 20 | $2{ }^{2} 48$ |  | 21 |  | 0 | O |  |
|  |  | 5 | 840 | 142 |  | 4 | 214 | 20 |  | 21 |  | $50$ | $01$ |  |
|  |  | 25 | 88 |  | 030 | 4 | 2141 |  | 7 | 21 |  | 1351 | $11$ |  |
|  |  | 25 | 817 | 13 |  | 4 | 2213 |  |  | 20 |  |  | 8 |  |
| $\overline{4}$ |  | 1.7 |  |  |  |  |  |  |  | 20 |  |  |  |  |
|  |  | 5 | 7 | 3 | 224 | 519 | 23 |  | 81 | 20 |  |  |  |  |
|  |  | 0 | 744 | 35 | 223 |  | - |  |  |  |  |  |  |  |
|  |  | 5 | 741 | 1 | 222 | 5 | 2 | 3011 | 8 | 19 |  |  |  |  |
|  |  | 0 | 7431 | 1438 | 2241 |  | 2340 | 2 | 8 | 19 | 22 | 1357 |  |  |
|  | 25 | 25 | 748 | 1458 | 21 | 616 | 23 | 19 | 831 | 19 | 22 | 1358 | 938 |  |
| $\underset{\sim}{\mathscr{O}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 810 | 151712 | 2110 |  | 2331 |  |  |  |  | 14 |  |  |
|  | 10 | 0 | 8 | $1511:$ | $2{ }^{1}$ | 6 | 319 | 1940 |  |  |  |  | 1010 |  |
|  | 15 | 5 | 839 | 1451 | 21 | 71 |  | 1933 |  |  |  |  | 21. |  |
|  | 20 |  | 8 5x] | 1426 | 2057 | 7 | 2246 |  |  |  | 20 | 4 |  |  |
|  | 25 | 5 | 13 |  |  | 737 |  | 19 IS | 86 | 17 |  |  | 044 |  |
| $\begin{aligned} & \overline{\mathrm{J}} \\ & 0 . \\ & 0.0 \\ & 0 \end{aligned}$ |  |  |  |  |  |  |  |  | 90 |  |  |  |  |  |
|  |  | 5 | 9521 | 1149 | 2 |  | 213 |  |  |  |  |  |  |  |
|  |  |  | 10121 | 1033 | ${ }^{2}$ |  |  |  |  |  | 19 | 14 | 19 |  |
|  | 15 |  | 1032 | 96 | 21 |  | d 36 |  |  | 17 | 19 | $1413{ }^{1}$ | 111 31 |  |
|  | 21 |  | 1052 | 730 | 2057 | 830 |  | 1837 | 911 | 16 |  | 1421 | 1143 |  |
|  | 25 |  | 1113 | 546 | 205 | 845 | 1935 | 1828 | 9 | 16 |  | 1423 | 1150 |  |
| $\begin{aligned} & \text { d } \\ & \text { 㔛 } \\ & 0 \\ & \text { B } \end{aligned}$ |  |  |  | 37 |  |  |  |  |  |  |  | 1426 |  |  |
|  | 5 |  |  | 1312 | 21 |  | 1826 | 185 | 9 | 6 |  | 1428 |  |  |
|  | 10 |  | 221 | 0332 | 21 | 915 | 1786 | 1754 |  | 1612 |  | 1430 |  |  |
|  |  |  | 243 | 2402 | 21 | 923 |  |  |  |  |  | 1433 |  |  |
|  | 21 |  | 3 | 4482 | 21 | 31 |  | 1731 | 92 | 168 | 1721 | 1435 | 1256 | 2238 |
|  | 25 |  | 327 | 6 67 | 2110 | 937 | 1637 | 1718 | 923 |  |  | 1437 |  | 2216 |
|  |  |  | 549 | 282 | 2113 | 945 |  |  |  |  |  |  |  |  |
|  |  |  | 41311 | 1172 | 2116 | 949 |  | 1550 | 923 |  | 63 |  |  |  |
|  |  |  | $43 i 13$ | $13{ }^{\prime}$ | $212)$ | 964 | 1547 | 1535 | 923 | 16 | 16 | 1444 | 13 | 4 |
|  |  | 15 | 50 | 14572 | 2124 | 957 | 1539 | 1618 | 922 | 1612 | 5 | 1446 | , |  |
|  |  | 5 | 52416 | 6412 | 21 |  | 1538 | 161 | 922 | 1617 | 15 | 14 |  |  |
|  |  |  | 18 | 1813.2 | 2 |  |  |  |  |  |  |  | 35 |  |

## TABLE VIII.

Tin change degrees, minutes, and right ascension, into hours, minutes, and seconds, of sidereal time.

|  | $\frac{4 .}{8 .}$ | Def. isec | $\left\lvert\, \begin{gathered} \mathrm{H} . \mathrm{M} \\ \mathrm{~m} . \mathrm{B} . \\ \mathrm{s} . \mathrm{Th} \end{gathered}\right.$ | $\stackrel{\square}{\square}$ |  | 言 |  |  | $\begin{aligned} & \text { D. M. } \\ & \text { M. } \end{aligned}$ | $\begin{aligned} & \text { Min. } \\ & \hline \text { sec. } \\ & \text { Se. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 31 | 2 |  |  | 1 | 15 |  |  |  |  |
| 2 |  | 32 | - | 80 | 5 | 2 | 30 |  | 30 | 32 |  |
| 3 | 012 | 33 | $2 \quad 12$ | 90 |  | 03 | 45 | 3 | 045 | 33 | 15 |
| 4 | 016 | 34 | 216 | 100 |  | 0 | 60 |  |  | 34 | 30 |
| 5 | 020 | 35 | $2 \quad 20$ | 11 |  | - | 75 | 5 | 115 | 35 | 45 |
| 6 | 0 |  | 22 |  |  | 06 | 90 |  |  |  |  |
| 7 | 0 | 3 | 23 | 130 | (1) | (1) | 105 |  | 145 | 37 |  |
| 8 | 0 | 38 | 3. | 140 |  | , | 120 |  | 20 | 38 | 30 |
| 9 | 0 | 39 | 23 i | 150 |  | 09 | 135 |  | 215 | 39 | 45 |
| 10 | 040 | 40 | 240 | 16 | 1040 | 10 | 150 | 10 | 230 | 40 |  |
| 1 |  |  | 24 |  |  | 1 |  |  |  |  |  |
| 12 | 0 | 4 | 24 |  |  | 12 | 180 | 12 | 3 | 42 |  |
| 13 | 052 | 43 | 52 | 190 | 1240 | 013 | 195 | 13 | 315 | 43 |  |
| 14 | 056 | 4. | 250 | 2 m | 1320 | O 14 | 210 | 14 | 330 | 44 |  |
| 15 |  | 45 | 30 | 210 |  | 015 | 225 | 15 | 345 | 45 | 11 |
|  |  |  | 3 |  |  |  |  |  |  |  |  |
| 17 |  | 47 | 38 | 23 |  | 2) 17 | 255 | 17 | 415 | 星 |  |
| 18 | 112 | 48 | 12 | 240 | 16 | 018 | 270 | 18 | 430 | 48 |  |
| 19 | 116 | 4 | 16 | 250 | 1640 | 0119 | 285 | 19 | 445 | 49 |  |
| 20 | 120 | 50 | 20 | 260 | 1720 | 02 | 300 | 20 |  | 50 |  |
|  |  |  | 324 |  |  |  |  |  |  |  |  |
| 22 | 128 | 52 | 2 N | 28 | 1840 | 0.22 | 330 | 2 | 530 | 52 |  |
| 23 | 132 | 53 | 32 | 290 | 1920 | 023 | 345 | 23 | 545 | 53 | 1315 |
| 24 | 136 | 54 | 36 | 300 | 20 | $0 \cdot 4$ | 360 | 2 | 60 | 5 | 1330 |
| 25 | 140 | 55 | 40 | 310 | 2040 | 40,25 | 375 | 25 | 615 | 55 |  |
|  |  | 56 | 344 |  | 2120 | 0,26 | , |  |  |  |  |
|  | 146 | 57 | 4 |  | 220 | 0,27 | 405 | 27 | 645 | 57 | 1415 |
| 28 | 152 | 58 | 52 | 24 | 2240 | 40, 28 | 420 | 28 | 70 | 58 | 1430 |
| 29 | 156 | 59 | 56 | 61350 | 2320 | 20,29 | 435 | 29 | 715 | 59 | 1445 |
| ar | $\bigcirc$ | 60 | 40 |  | 24 | 03 | 45 | 30 | 730 |  | 15 |

TABLE X.
Showing how many miles make a degree of longitude, in every degres of latitude.

| Deg. <br> Lat. | Miles. |
| :---: | :---: |
| 1 | 5993 |
| 2 | 5.1 .90 |
| 3 | 59.92 |
| 4 | 09.45 |
| 4 | 59.77 |
| 6 | 69.67 |
| 7 | 59.50 |
| 8 | 59.42 |
| 9 | 59.4i |
| 10 | 59.69 |
| 11 | 53.89 |
| 12 | 53.69 |
| 13 | [8.46 |
| 14 | 58.22 |
| 15 | 67.95 |
| 16 | 67.167 |
| 17 | 57.38 |
| 18 | 57.06 |
| 19 | 56.73 |
| 20 | 56.38 |
| 21 | 5 E .01 |
| 23 | 55.43 |
| 23 | 55.35 |
| 24 | 51.81 |
| 25 | 54.37 |
| 26 | 53.93 |
| 27 | $\underline{3} .46$ |
| 27 | 52.37 |
| 29 | 52.43 |
| P | 51.96 |


| E11 |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
| 68. |  |
|  |  |
| 6 |  |
|  |  |
|  |  |
| 68. |  |
|  |  |
|  |  |
|  |  |
| 67.7 |  |
|  |  |
|  |  |
|  |  |
| 67. |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| 0. |  |
|  |  |
|  |  |
| [3 |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  | [Dent

## TABLE XI.

Of the Cilmates iotween the Equator and the Polar Lircles.


## TABLE XII.

Of the Climates between the Polar Circles and the Poles.

| $\begin{gathered} \text { Clh } \\ \text { nates. } \end{gathered}$ | Ends in Lat. | Where the hangest day is. | Breadths of the Clmates. | Cli- | $\left\|\begin{array}{c} \text { Enis in } \\ \text { Lat } \end{array}\right\|$ | Where the longest day $1 s$. | Brealths of the Climates. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | ${ }_{67} \mathrm{~m}$ m | ${ }_{30}{ }^{\text {d. }}$ or $\mathrm{m}_{\text {. }}$. | c. ${ }^{\text {c. }}$ | 28 | d. 77 | d. m. | d. ${ }_{\text {c }} 8$ |
| 28 | 6930 | 602 | 215 | 29 | 8260 | 150 5 | 510 |
| 87 | 735 | 903. | 382 | 30 | 9000 | 1806 | 7 |

## TABLE XIIL.

Showing the Latitude and Longitude of some of the principal piaces is the Lintud States, \&c, with thear Dutance from the city of Waghmgton.

The Longituder are reckoned from Greenwith.
The Capilale (ecate of Gonernmenf) of the States and Territorias are designated by llalic lellera.

|  | Latiturde | Iongit ind in degreca | e. West, in time. | Dist from Washia |
| :---: | :---: | :---: | :---: | :---: |
|  | - " $"$ | 0 , " | h.m. | mile |
| Albany (Capltol) | N. Y. 42393 | 734449 | 450459.3 | 376 |
| Alexaminat - | 1. C. 3949 | 774 | $\begin{array}{llll}5 & 8 & 16\end{array}$ | ${ }^{6}$ |
| Anturolia, | Md. 390 | 7643 | 5652 | 37 |
| Anbura, | N.Y.4265 | 7628 | 5 5 5 52 | 839 |
| Augista, | Ga. 3323 | 8154 | 52736 | 560 |
|  | Me. $\quad 441843$ | 6950 | ${ }_{5}^{4} 3920$ | 685 |
| Batmipre (lantie Monument) | Md. 331713 | 763760 | ${ }_{5}^{5} 6631.3$ | 38 |
| Banmor (Cour llounch, | Ne. $14 \pm 4750$ | 6847 | 4358 | 661 |
| Barnstabie (Old Court Hounex, | Nlass. 41429 | 7016 | 4414 | 466 |
| Mathvia, - , - | N. Y. 4299 | 7813 | $\begin{array}{llll}5 & 1252 \\ 5 & 2\end{array}$ | 370 609 |
|  | E. C. 3225 | 8041 |  | 699 437 |
| Buston (Sate Ilouse) |  | 71 7 7 | $\left(\begin{array}{llll}4 & 44 & 16.6 \\ 4 & 45 & 36\end{array}\right.$ | 432 |
| Brintol (Ilorm), |  | $\begin{array}{llllll}71 & 19 \\ 73 & 59\end{array}$ | (1) 4 | 409 207 |
| Br'mswick (College), | Ne. 43530 | 69551 | 43940.1 | 568 |
| fuffiols. | N. Y. 4253 | 7855 | 51540 | 378 |
| Canturilge (larvard Mall), | Mass. 422215 | 7172 | 44429.7 | 431 |
| Cumber, - . | E. C. 3417 | 80 | $1 \begin{array}{llll}5 & 22 & 12 \\ 5 & 9 & 8\end{array}$ | 467 |
|  | N Y. 42 dit | 7717 | $\begin{array}{llll}5 & 9 & 8 \\ 4 & 40 & 16\end{array}$ | 336 |
| Cajw Cind (Light-Morise) | Mass. 42216 | 704 | 44016 | 507 |
| Chiajentoricolleget | E. C. 32470 | $80 \quad 052$ | $\begin{array}{lllll}5 & 20 & 3.5\end{array}$ | 544 |
| Chatlestown (Navy Yard), | Mass. 422 | 71333 | 144.14 .2 | 433 |
| Ciminasi, . - | Ohio. 396 | 8122 | 1537188 | 497 |
| Culumbia, | S. C. 3357 | 817 | 152488 | 500 |
| Columbius, | Ohio. 3947 | 833 | 53212 | 396 |
| Conourd (Brate IIouse), | N. II. 4312 l 29 | 7129 | 445 价 | 474 |
| De: ihaur (Court Ilouse) | Mass. 4216 | 7111 | 44444 | 422 |
| Ditroit, | Mich. 4224 | 8258 | $5 \begin{array}{llll}5 & 31 & 52 \\ 6\end{array}$ | 5 |
| Dimaldsonville, ${ }^{\text {d }}$, | 1n. 303 | 912 | 6 4 | 1278 |
| Direliester (Ast. Obeervatoryh | Mass 4219 <br> 15 | 71415 | 44417 | 432 |
| Durer, - | Del. 3910 | 7530 | 5120 | 114 |
| Dover, © | N. II. 4313 | 7954 | 44336 | 490 |
| Eision (Court Mouse) | MU. 334610 | 768 | 4432 | 80 |
| Eaximoth | Me. 4454 | 6656 | 4284 | 78 |
| Ederitor, | N. C. 360 | 77 | 52828 | 284 |
| Exeter, | N. II. 4258 | 7055 | 4 4 5 3840 | 474 |
| Frankfort, | Ky. 3814 | 8440 | 53840 | 651 |
| Fredericksburg | Va 3334 | 7738 | 51032 | $\underline{6}$ |
| Fredericktom, | N 8.45 | 6645 | 420 |  |
| Frederickstowh, | Md. 3924 | 7718 | $\begin{array}{llll}5 & 9 & 12 \\ 5 & 17 & 8\end{array}$ | 43 |
| Georgetows - | 8. C. 3321 | 7917 | 5178 | 482 |
| Gloucenter, | Masa. 4236 | 7040 | 44240 | 462 |
| Greenfield, | Mrss. 4237 | 7236 | 45024 | 296 |
| !lagersw wh | Md. 3937 | 7735 63 | [1020 | 68 |

## TABLE XIIL-Continued.

|  | $\left\|\begin{array}{c} \text { Latitude } \\ \text { North } \end{array}\right\|$ | Longitud in degrees. | , West, in time. | In屏, mona Wanin |
| :---: | :---: | :---: | :---: | :---: |
|  | - ' $\quad$ | - ${ }^{\prime \prime}$ | h. | es. |
| Halloweil, | 4417 | 6950 | 43930 | 593 |
| Harrishurgh | 4016 | 7650 | 5720 | 210 |
| Hartford, . . . . | Connt 4146 | 7250 | 45120 | 335 |
| Uuilson . . . . | N. Y. 4214 | 7346 | 4554 | 345 |
| Huntsville, . . . . A | Ala 3436 | 8657 | 54748 | 728 |
| Indianapolie, . . . | Ind 3955 | 865 | 64420 | 673 |
| Juckaom - . . . . | M'pl. 3243 | 908 | 6032 | 1035 |
| Jeffersom, . . . | M'ri. 3836 | 928 | $\begin{array}{llll}6 & 8 & 32 \\ 4 & 48\end{array}$ | 980 |
| Kennebunt, . . . . | Me. 4325 | 7032 | 4828 | 518 |
| Kingston, . . . . U | U. C. 448 | 7640 | $\begin{array}{llll}6 & 6 & 40 \\ 5 & 35\end{array}$ | 6 |
| Knoxvilto, . . . . T | Tenn 3559 | 8354 | ${ }_{5}^{5} 3536$ | 109 |
| Lancaster, - . . $\mathbf{P}$ |  | 762033 | $\begin{array}{llll}5 & 5 & 22.2 \\ 5 & 37 & 12\end{array}$ | $109$ |
| Lexingtum, | Ky. 38 6 <br> Ark. $\mathbf{3 1}$ 40 | 8418 <br> 92 <br> 8 | $\begin{array}{ccc}5 & 37 & 12 \\ 6 & 8 & 48\end{array}$ | $1088$ |
| Lockiort, . . . . . ${ }^{\text {a }}$ | N. $\mathbf{A}$. | 7848 | $\begin{array}{llll}5 & 15 & 4\end{array}$ | 408 |
| Louisville, ${ }^{\text {a }}$, K | Ky. 383 | 8530 | 5420 | 650 |
| Lowell (SL. Ann's Charch) - M | Mass. 423845 | 711845 | 44515 | 43 |
| lynchlurgh, . . . V | - 3736 | 7928 | $\begin{array}{llll}5 & 17 & 28 \\ 4 & 43 & 48\end{array}$ | 198 |
| Jyun ${ }^{\text {b }}$ - • - | Mass. 4288 | 7057 | 4 <br> 4 <br> 4 <br> 43 <br> 43 <br> 188 | 44 |
| Marblehead, * - ${ }_{\text {Miductown }}$ | Mass. 4230 | 7062 7239 | 4 <br> 4 <br> 4 <br> 4 <br> 0 | ${ }_{885}$ |
| Milledgeville, " . . . G |  | 8320 |  | 642 |
| Mobile, - - . A | Ala 3040 | 8811 | 55624 | 1033 |
| Montpelier ${ }^{\text {a }}$, . V | Vt. 4417 | 7236 | 45024 | 524 |
| Monomoy Point Light . . N | Mass. 413258 | 70131 | 4406.1 | 600 |
| Monreal, | L. C. 4531 | 7335 | 45420 | 601 |
| Nantucket (Town Hall ${ }_{\text {d }}$ - - M | Mass. 411632 | 70742 | 440308 | 500 |
| Nashville ${ }^{\text {a }}$, - ${ }^{\text {a }}$ | Tenn. 36930 | ${ }^{86} 498$ | $\left\|\begin{array}{ccc} 5 & 47 & 16.2 \\ 6 & 5 & 38.8 \end{array}\right\|$ | 714 1146 |
|  | $\begin{aligned} & \text { M'pi. } \\ & \text { N. J. } \\ & 40 \end{aligned}$ |  | $\begin{array}{lllll}6 & 5 & 38.8 \\ 4 & 56 & 40\end{array}$ | 1215 |
| New Bedford (Marineres Ch) | Mass. 41387 | 7050 | 44344 | 429 |
| Newbern, | N. C. 3520 | 775 | 5820 | 87 |
| Newburgh, - ${ }^{\text {N }}$ | N. Y. 4131 | 741 | 4564 | 480 |
| Newburyport (2d Pran. Ch) | Mass. 424829 | 7052 | 44328 | 466 |
| - Newcastle, , ${ }^{\text {a }}$, D | Del. 3940 | ${ }^{75} 38$ |  | 103 |
| New Haven (College), . . C | Conn. 411768 | $\begin{array}{cc}72 & 5746 \\ 72 & \end{array}$ | $\left\lvert\, \begin{array}{lll}4 & 51 & 61.1 \\ 4 & 48 \\ 6\end{array}\right.$ | 301 |
| New London, (City) . . |  | $\begin{array}{lll}72 & 9 & \\ 90 & 6 & 49\end{array}$ | (1) $\begin{aligned} & 4 \\ & 4 \\ & 6\end{aligned}$ | 1283 |
| Nereport, | 4129 | 712114 | 44544.3 | 403 |
| ew York (City Thali) | N. X. 404240 | 7418 | 4866 | 228 |
| Norfolk (Farmer's Bank) | Va. 365050 | 7618 <br> 17 | ${ }_{5}^{5}$ | 217 |
| Northampton (Mansion Ilonee), | Masm. 421855 | 7240 | 45040 | 376 |
| Norwich, | Conn. 4183 | 727 | 44828 | ${ }^{362}$ |
| Pensacols, | $\mathrm{Fa} \quad 3028$ | 8712 | 5 4848 | 1060 |
| etersburgh, ${ }^{\text {a }}$ | Va 1371354 | 7720 | 5020 | 144 |
| Philadelighia (Independence II. $\lambda_{1}$ | Pa 396659 | 751059 | 5 0 43.9 <br> 5   | \% |
| Pittsburgh ${ }^{\text {Pitufield, }}$ (1st Cong. Charch) ${ }^{\text {a }}$ | Pa 4032 | 3081730 |  | 223 |
|  | N. Y. 4442 | 7326 | 45344 | 639 |
| Plymouth (Court Iloume), | Mama 416712 | 704280 | 44250 | 69 |
| Poriand (Town House), | He. 433926 | 702020 | 4412 | 549 |
| Portsmouth (Cogut Eifoum | N. M .43 S | 7045 | 430 | 491 |
| Poughkeepalo, | N. Y. 4141 | 7385 | 4 45880 | \%18 |

## - IABLE XIII. - Ccntmuer



# - VALUABLE SCHOOL BOOKS PUBLISHED BY HUNTINGTON AND SAVAGE, 

216 PEARL STREET, NEW YORK.

The National Geography: A comprehensive Geograply for Schools, with thirty-three Maps and two hundred and twenty Engravings, accompanied by a Globe Map, on a new plan: by S,G. Goodrich, authou of Parley's Tales, icc., 1 vol.
Peter Parley's New Geography for Beginners, illustrated with eighteen Maps and one hundred and fifty Eugravings.
Peter Part.ey's History of the Woltid; 75 engravings.
Kames' Elements of Criticism, with analyses, and translations of ancient and foreign illustrations, by Abraham Mills, A. M., 1 vol. 8 vo. This edition is stereotyped with the greatest earie and aecuracy, from a copy of an edition published in Edinburgh before the author's death, and which received his lost rovision. It is the only edition, not mutilated, now in print.
Scribner's Engineers' and MeCHANICS' Companion, comprising United States' W eights and Measures, Mensuration of Superficies and Solids, Tables of Squares and Cnbes, Square and Cube Roots, Circumference and Areas of Circles, the Mechanical Powers, Steam and the Steam Engine, dee; second edition, revised. By J. M. Scribner, A. M.
The Geography of the Heavens, attl Class Boris of Astronomy, 1 vol. 18 mo., accompanied by a Ce. lestial Athas, imperial 4to., neatly colored: by E. H. Burritt, A. M., with an introdnction by Thomas Dick, LL.D., author of the Christian Philosopher. 4th edition.
Familiar Lectures on Botany Practionl, Alementary, and Physiological ; with an Appendix, containing descriptions of the Plants of the United States, exotics, and symbolical language of flowers: for the use of Schools and private students. By Mrs. A. H Lincoln,

Iate Vice Principal of the Troy Flemale Seminary. I vol. imp. 12 mo.
Iamiliar Lectures on Natutal Phifosophy: for the use of Schools, Academies, and private students, illustrated with numerous Engravings from original designs. By Mrs. A. H. Lincoln Phelps, I vol. 12 mo .
Tamifiar Lectures on Chbims. TRY, same size.
Botany for Beginners: An lntroduction to, Mrs. Lincoln's Lectures on Botany, for the use of Common Schools and the younger Pupils of Higher Schools and Academies. By Mrs, A. H. L. Phelps (formerly Mrs. Linculu). I' vol, 18 mo ., pp. 156.
Chemistry for Beginners: de. signed for Common Schools and the Higher Schools and Acudemies, by the same author.
Naturas Peilosophxifor BeginNERS. 1 vol, 18 mo .
4 Dictionary of the Engrish Linguage, abridged fiom, the American Dictionary of Dr. Web. ster. University Edition, in 1 vol. royal duodecimo.
W ebster's Dietionary for Schogls and Counting-Honses, square 19 mo. Do. 16 mo . School editives Do. Pocket edition, 32 mo , various styles of binding,
The Ecclyslastical Class Book, or History of the Church from he birth of Christ to the present titst adapted to the use of Acadenies and Schools, with engravings, By Charles A. Goodrich.
The Child's Picture, Defintig, and Reading Book, by the Rev. Thomas H. Gallaudet.
Complete Guide to the Art of Wretive SHotr HaNs. By
Ahnmas Towndimew Thomas Towndrow.

For sule, also, as above, a very complete assortment of Books and Stationery generally, suiteble to mercibants, soliools, and tivesaries.


[^0]:    Burtenen,
    scoording w Act of Congress, in tine year 1882, bs F. J. HUNTINGTON, in the Clerk' Ofice of the Distript Court of Connecticat

[^1]:    Why, in entering apon the etady of Astronomy, should the attention of the pupil be Arat directeal to th valthe heavens? Why were the heayens oarly dykded into constollations, and nat, es assigned to the constellations and the stars, What is a con-
     The satd to be a Gengrapty of the Heavons? How many clasees wre the staris consldered manging with reference to their magnitude.

[^2]:    What expedient han been devised for designating, with precision, the situadions of the hoavenly bodien) What is the axis of the Earth] What are the poles of the Barth Whas is the axis of the heavens? What are the poles of the hervens 7 What is the *quator of the Earth What is the equator of the heavens or the equifoctial) What is
     censible or apparent horizon What is the diameter of thlt ctrale $t 0$ a person ztani.
     vited elx fest? On what does the place of lis centre wid tit ctresmitarence depend's

[^3]:    What are the polen of the borizon1 What are vertical cincles) What is the prime vertical? What is the ecliptici What are the equinoxes $]$ The vernal equinox, The cutumanal equinos; How is the ecliptic situated with respect to the equirnoctial) What \&s the colliquity of the ecliptic) Describe the mawner in which this angle parier. Doacribe the division of the ocliptic into signs. How much, at a mean rate, does the eur atrance in the ecliptic every month) what ts the zodiac) What are parailell of mitude!

[^4]:    What are pacalfels of decinnation 7 What is the tropic of cancer; What is the trople of capricorn? What is the summer solstica? What is the winter solstice) What is their distance from the equator, compared voth the obligutiy of the eclipetc? Is thia diatance altoays che same eq What are the colures? What fs the equinoctial colure) What is the solstitial colure? On what days of the year is the eun In the equinoctal points? On what dass, is he In the solstifal points? What are the polar circles 1 By what names, are they distinguisheds What are merddans? Bowo many me-lditona wre there 1 How many, do autronomers apply to the hewess?

[^5]:    Into hoio manty seetions, do these meridians divide the concave surface of the heavenst Of rohat width are these sections? Why are thesemeridians sometimes called hour cir det? In measurting distances on the Earth, what circles contain the primary otarting points? Where are these points in measurting distances in the heanens? What is la titude on the Earth 7 What is latitude in the heavens? What is longitude on the Earthy What is longitude in the heavens? What is declination? What ts right ascension Why fo it more conventent to describe the situation of the heaventy bodies by thetr dt wisation and righ ascension, than by their latitude and longifude? Hovo many deGrew may batitude and declenation exiend? How many terrestriarlongitude? Hot -riny celenctal lomgitude? What is meant by the dally acceleration of the stars? To
    

[^6]:    Do wo always see the samp constellations 1 Explatin the mamerer of cevewtenf rish ncombions trito ztme，and twice invo rifits ancenvitom．

[^7]:    Tor what months doos the first map represent the heavens ? For what months does We mecond map represent the heavens) 'The thind? The fourth? What constellations we represented on the sixth and seventh maps I In what manner must these six mapa be sranged ti form one complete map of the heavens 1 On what gcale are these maps irawny What ts the use of the scale at the top and bottom of the first four mape, and in the clrcumference of the ctrcumpolar maps i Why was that potht of projection fot the mapy, tohleh qoould represent each successive portion of the heavene difecily over hend at 9 o'elock in the eventng, chasen? What is the method oy rohteh the otere are
     beseme himself to stand and to hold it?

[^8]:    Fiow, In using the cimumpolar maps 1 Describe the construction and use of the Co bettal ilanisphere. When the pupil is ready to begin the study of the visible heav ans, what is the first atep to Ue taken? What advantages has the North Polar Star, as e proper starting point1 What disadvantages ? What point is preferable to the Polar gtar 1 Why is it preferable 1 How may the potnt correrponding ic this be faumd uppos the maps? At what time th the eventeng, totll the wtars which are maar this potnt on the mape, be ceen directly over head? Is it Indispensably necessary to berin with the stirs near this central meridiant

[^9]:    What is the only rule of selection 1 What ia the starting point chooen for this wurk What mivantages has this merl dan an a starting point)

[^10]:    ITVe look directly over head at 10 o'clock on the 1uth of Rovember, what constells
     stent accension and decination! How many viefice rews has k) Deacribe the gimite
     eorthweiland extremy.

[^11]:    Describe the magnitude and position of Delta. How may thte sear he otherwige mown ${ }^{1}$ rescribe the position ayil magnitule of Alpheratz.' What position does thit E'r occm, ' In the great gquare of Pegasus? Why if at importart so twee the postition - Whar well fixed in the mind? What is the present onder of the Fishes amons
     $\leq$ 解

[^12]:    What are the size and position of the Northern Fish? When, and how iong is it on the merditan) How may $t$ toe traced? What is the princlpal star in this constellation, and where is is situateil) How tax, and in what direction from Alpha, Is Mire, in the Whale By what pecullar appeltation is chis star known? What is the direction of the riband nom Alphay What stars do we meet with, where the riband doubles back across the ecilipHet Whas is the uirection of this part of the riband from Deita, amd where does if corminate 3 What are its mean decilnution, and the time of iss passing the neridian What
     may be concelvell wi be formed by the two Fishes and the cord between them, Whare is the Western Finh when the Northern is on the metidian'

[^13]:    What as she boundan of of thin constellation How is the constellation Cansiopsta
     Eroveda and the poles stiar)

[^14]:    * Shedir, from El Beder, the Beder tree; a name given to this conateliation by Dlugh Beigh.

    When may it be seen from this latitude? When in it on our meridian? How is the motion of the shars affected as they approach the polea? How many principal atare this constellation, and whtt is their appearance? Describe the situation of Caph. When ia Caph on' the meridian? What is the relative position of Shedir! Why is the poaition of Caph important '

[^15]:    Thus, we may conceive the Deity to have been employed from all eternity, and thus he may continue to be employed for endless ages; forming new syssems of beings in adore him; and transplanting beinge already formed into happier regions, who will continue to rise higher and higher in their enjoyments, and go on to contemplate systean after system through the bonndless universe.
    La Place eays:-"As to those stars which suddenly shine forth with a very vivid light, and then immediately disappear, it is extremely probable that great condagrations, produced by extraordinary causes, take place on their surfare. This conjecture, continues he, is confirmed by their change of colour, which is analogous to that presented to us on the earth lyy those bodies which are set on are and then gradually extinguished."

    The late euninent Dr. Good also ubserves that- Worlds and systems of workts

[^16]:    What memorable spot does Caph serve to mark out 7 Describe the phenomenon of the lost star. What does Mrs. Eomerville gay of it? How long was it seen? Has any thing been discovered of It since? How dill this phenomenon affeet the astrononicta of the ape What does Vince say of the disappearance of some stars, pud the nen op prarance of others 7 Repeat the obvervations of Dr. Good upon the subiect of wero ations

[^17]:    There is a remarkable nebula in this constellation；describe Its＂tustion and ap pearance．How is Cepheus represented？What is his postures What of twis wa tellation struated）

[^18]:    How many, and what are the princlpal stars in it 7 Describe the last star in the erre. Describe the middie one. What four stars form a square in this constellation 9 Where is the head of Cepheus, and how may te be knowns. What ts the mean pmlar figtance of this constallation? How far, and which way is it from the equlnocta colure?

[^19]:    What was the position of Arles in the eellptic. 92 centuries apol

[^20]:    What is its present position $\%$ How is it now situated with respect to the surroundIng constellations? What are the number and magnitude of its stars? How is this consteliation readily distinguished? Describe the two bright stars in the head. Fot What purpozes is the position of some of the stars in Arietis importanti How many stars are used for determining longitude at sea, and where are they situated! By whit feomral name are thoy ealledif Enumerate them

[^21]:    When does Arietis pass the moridfon? What other brilliant star is on tha moridian Egarly at the bame times When Axies is on the merldian what other constellations Ere immedtately in viewt Describa the manner its wohleh the melento divided the Eodiac At tohat goint of the Zodiac did this deototon commence 7

[^22]:    What did exch of these portions of the Zodlac serve? What efars wore placed in ins
     placed th the zecond stign? What towe the accond constellation called? What stare noers faced in the thirdi dign, and wohat wap it called? Are the sando neemes still retained? What doer thit precturlon, or toing if reamerd of the weare amownt to in \& yoar?

[^23]:    That is the comparative size of the Whale? What if ite extent Whone is fitite aned 1 How long is the Whale in perstig the meridian?

[^24]:    When does it approach, and when foes it leave the meridlan? What is the whole number of stars in Cetus? What is the magnitude of the principal ones? How may the head of Cetus be distinguished? What are the name and position of the brightest? How far is it from the equinoctial, and the principal star in the Pishos) What is its direction from Algol and the Fiy) With what stars does it form an egus lateral triangle? How may it otherwise be known 7 Describe the position of ©a. Describe the situation of Delta and Mira. When and by whom was this star uiscovered to be variable? What are the extent and period of this variation? How long doea Hersciel make it? What does Hevelius say or it Has the true peno of Mirn beea satisfactorily determined? How far, and which way is Mira from Alpha, in the knot of the riband? What four small stars do vou observe $10^{\circ} \mathrm{g}$. of Mira?

[^25]:    How is Baten Kaitos situated? What is safd of the various fgurea that differens eonetellations exhibit? Give an example. Of tohat constellation does that fine clutter of stars of the little square in the Whate, constitute a part? How is the censtellation -ameun reoresented)

[^26]:    Where is it eituated; What is its deciration, and when is it on the meridian 1 Whast is the whole number of its atars) What is the magnitude of its princtpal onesi on what constollation does Caput Meduns form a par') How is it represented, What Is the whole number of its stari! what is the marnitude of the princtpal ones 7 What are the name and position of the variable atar in this constellation? When is it on the merrdtan, and how long may it be seen? In what time does it vary from the $2 d$ to the th maxnitude, and back again? How long is it steadily brillant) When and by whan Whs tes periodical variation determined ? What is ite eract period7 To what does Dr Eierachel attribute its varlable appearanco?

[^27]:    How may Algenib be distinguished? When is it on the meridian? How long after Agois When these two stars are on the meridian, what beeutiful cluater is half an noureest of it What is the general appearance of the eustern bemisphere at that time 1 What te the appearance of the Milky Fay around Perseur? What netrole have beon siserved in this constellatiun)

[^28]:    What is ine comparative orithancy of the constellations which pars the mertdian ts January, February and March? How is Taurus represented 7 What perts of the animal are to be seen?

[^29]:    * Dr. Hutton is of opinion that Atlas being the first antronomer who discovered theme stans, callod them by the names of the daughtern of hin wife Pleione.

    What is the numerical order of Tauras among the sifns and constelletions of the Zodiac 1 What was ita position in the Zodiac before the thme of Abraham ) How loog did it continue to lead the celestial hoat ? What constellation succeeded next 7 Where is Thurus dow situated 7 How many atars doen it contuin $\}$ What remarkable cluatens aro in this conntellation 3 Whers are these placed 3 Mention the names of the Pleisden. Which of these meven atart is not megn, and why A Are these six all that can be seen chrough the telescope )

[^30]:    * Virgil, who flourished 1200 yeara before the invention of the magnetic needle, ways that the stars were relied upon, in the first ages of oautical enterprise, to guide the rude bark over the seas.

[^31]:    From what circumartance do the Pleiades derive their name, What is the brightest of the Pleiades called. What is the size of the rest? When are the Pleiades on the meridian? How much edritier do the stars, tha, como to the mertitian, and set, every succeedting night?

[^32]:    - The ancient Greets counted teven in thit cluster:-

[^33]:    At what time will the woven otars culminate on the 6th January' By what othor namea are they mometimes called, and whyl What allusion is made to this cluater in the ancient scriptures? Describe the aituation and appearance of the Hyades. What in the brighteat of thom called? What in the origin of the word Aldebaran, and to What does it alluile? When does Aldebaran culminata? Deacribe the position of Bete. What are the name and direction of the star in the southern hom? What is the rels-
    

[^34]:    What in the Feneral appearance of the constellation Orion? When this conntallation is on the meridian, what in the appearance of the starry firmament? To whom in it visible, and why 7 How in Orion represented on celestial mapa $]$ Describe its position. Fow is it situafed with reapect to the solstitial colure, and when is it on the meridian What remartabio thare form the outines of the constallation?

[^35]:    Describe the two upper ones in the group. Describe the two lower ones. Give a more particular description of the stars in the shoulder. How do you dintinguinh Berelguese from Bellatrix 3 When doee Betelguese come to the meridian 3 Describe the atare which form the lower end of the perallelogram. What atara do you observe in the head of Orion 1 Demeribe the situation and appearance of the " 1 hree Start." Why are they culbd the three stars? What else are they denomnuted, and why? What mamen were given to them by the ascients) What by the Univervity of Leiprio, What is the more tumiliar term for them, and whence is it dorived:

[^36]:    *Though the position of thin sfar, with reapect to the equator, in the seme at als timea whether it be pn the meridian or in the borizun ; yet it appeare to occupy this position, only, when it is on the meridian.

[^37]:    How may the dintances of the atare from ench other be meanured by reference to the Yard 3 How are the three stars nitunted with renpect to the solstitial colure, and how with rempect to the eeven etarl D Describe the stars which form the aword of Orion What else in this row called3 Deacribe the vebulous appearabce which ia vinible in thie cluster. What oether detreogerion hat the tweocope made in this conatollacion? What utara abour 90 W. of Bollatrix ?

[^38]:    Where is the constellation of the Here situated 3 When does it come to the meridian? What is the whole number of ita stara 1 What is the magnitude of its principal onea? How may it be distinguished? In what part of the animal are these stars placed 1 Dascribe the principalstar in Lepur. What are the distance and direction of the square from Zeta? Describe the atars at each end of ehis square. Which is the brightest of the four?

[^39]:    Are these all the atars that are visible in this constellation? Deacribe the wituation of Noah's Dove. How many mtart does it contain, and what are the principal which of these are the brightest, and how situated? How may Bota be known? What is the position of Phat with reysud to Orion? Describe the general form of the constellation Eridanus. What is its entire length, end how is it dwided? By what names aro thene sectione distinguished? What are the course and ditance of the Northurn cream?

[^40]:    Describe ita firt bead. Dencribe the position of Gamma, and tell when it comen to the meridian. What acave ars betwoen Gawmy and the Whale) What stmall otar aboust of above fromema, and what it its dicetance from the earrth comporeded with that of Sirive? Deacribe the dituation of Theoming. Demcribe the pooition and mag nitude of Achernar 3 What is the whole number of atars in this constollation) What in the magnitude of the principal oneal

[^41]:    Etow is the constellation Auriga represented? Where is it situated1 What is its meen Gecituation, and what its position on the meridian How is it situated in respect to Onion? When are thase constellations on the merdilan? What is the whole number of Fiatble atars in Auriga? How many of the 1st and ad magnitude? What in the natian a the petpolpal atar, and whence derived? Where is this Bituated?

[^42]:    * In the latitude of London; but In the latitude of New England, Capella disappeari below the horizon, in the N. N. W., for a few hours, and then rexppeare in the IN. I. $\mathrm{B}_{\text {. }}$

[^43]:    How may It be known 7 What are Its distance and direction from El Nath, in the horn of Taurus 7 When does Capella come to the merdian 1 Describe the star the the eust shouliter of Aurlga Describe Theta. What curtous cotncidence exinte bemocent the atars in the shouldera of Auriga and those in the whowlders of Orions Dascribe the cifuation of Deita. The thoo stars in the thoulders of Auriga form the base of thoo trib anglen; pledse deveribe them. What stars in Auriga, Orion, the Harc, and tha Dowe
    

[^44]:    Of what was the Camelopard made? Where is it situated? What Is the whole num ber of etarst What is the magnitude of the largest? What are the name and position of the principal one7 Whers are the other principal stars situated? How may thoy te known? Whence does it deriee its name? What is the situation of the tapay What are the number and magnitude of ita stars?

[^45]:    Describe the position of the largest. Describe the position of the other two principa. atary. What are their distance and direction from the one in the head? When is its cantre on the meridian) Describe the position and appearance of the Twina. What is the relative position of Gemini among the signs and constellations of the Zodtac: How is the orbit of the earth situated, with respect to these constellations) How da The sun and earth appear to muve through these signs? When does the sun appear to pass through the constellation Gemini? Do we usually soe the constellations while the aun is passing through them 9 Under what circumstances cath wos ses some part of them? When the sun if in or enterting any constellation, are the opporite contiolla thons udeble or not 7 if a congellasion rise with the sun 80 dey, how will it ries eid miosthe harice? Give an axcmple

[^46]:    If a constellation come to the meridtan at midndght to-day, Mone lonf befors it with opuce to the weridian at 9 o'dlock in the svoning 7 if the conretellation Gemind cams an gee meridiass at midnifht, on the 4 ih ar Jatuatry, when woll it cubninate at 9 o'clocto 7 What ${ }^{1}$ s the number of stars in Geminit By what means is it readily recogntsedf When do theme stars culminate 7 Describe Castor. Describe Pollux. For what mat cone as it obgerved at seai Is the brightness of these two stars always the mame 7 , -ratien this variableness to Castor, and for what reason!

[^47]:    Deseribe the etars which mark the feer of the Twotns. Spectfy the atare in euch. Fono to this rap dituated wotes reopect to Orion? Denct tbe the accond row of atarr in ithte eonstellatith Are there yet other rove it this constellation? Describe them Whats is the poottion of Wavat? Two other stars are very near the ecoljatic; mention dimp. Dnecribe the powition of Tafar. Gize a descrippion of the atar Propue:

[^48]:    Describe the situation of Canis Minor. What is its whole number of stars? What tis the magnitule of its principal ones? What is the trightest one called, and how if It simutel? What other stars ilo Procyon and Gomelza resemble? What are the distance end directicn of Procyon from Pollux 7 Of Gornelza from Castor What are theirdistance and direction from Cistor ind Pollux) What klmd of fgures may be forred of the Etars in the neig likuthood of the Little Dog? Give some cxamples.

[^49]:    * It is not dimcult to deduce the moral of this fabie. The selinshness and captice of human friendshig furnish daily illustrations of it. While the good man, the philantiroplat, or the public benefactor, is in aftuent circumstances, and, with a heart to devige, has the power to minister blessings to his numerous beneficianes, bis virtue are the general theme; but when adverse storms have changed the ability, though they could not shake the will of their benefactor, be is stralghtway pursued, ilze Actoon, by his own hounds ; and, llke Actason, he is "tom to the ground" by tha fang thit ted upon bls bounty.--L. Q. C. I.

[^50]:    What nome is usurlly given to the Little Dog 1 When does Procyon rise and catminate, with respect to the Dog.gtar? What name, for thin reason, was miven to thil constelintion 2

[^51]:    What stars compose the constollation Monoceroal How is this constellation rith eted, and when is it on the meridian) What is the whole number of its stars 1 What is the magnitude of its principal ones 7 Describe those in the hend. Describe the po sition and appearance of Canis Major. What is itt appearance in the wintery wrea is ite distance froin the earth computed to be, and how is it compared with taat of ine uther stars 7 How long would it thike a cannon-ball to paes over this dietance in whet dme would sound reach Birius from the earth)

[^52]:    Hovo long islighe in conning from Sirius to the earth 7 Suppose thin star qoere now to be blotted from the heavens, hoto long before tts tyoinkling voould expire? How was the rising of Birlus reqanted in the remote ares of the world). What use was made of if by the ancient Thebans 3 How did the Egyptians regard it, and for what reason? What did it foretel to them? What did the Romans offor in sacriftce to sirius annualiy? Why $\boldsymbol{H}$ How was it reganded by the eastern nations generally 7 What season of the year dif the anclents call Dog-days? When did these begin, and how long did they bast ${ }^{\text {Al present, when do they begin and end: Have our Dog-days any reference th }}$ the Doer star 1

[^53]:    What is meant by the Achronical rising and setting of the stars? What, by thert Brehacal risting and settiret 7 By whom voere the terms thus applied, and what were these rigtnge and rettings called? What did they rerve 7 Explain how it is, that the Dogstar, which fs seldom seen till mid-winter, should be associatod whith the most ferid heat of summer. Are there as many stars over our head in the daytime as in the night? Describe the situstion of Strius. What is Its position with repard to Be. telguese and Procyon, and in connexion with them What figure dses it form! With what other stars does it form a slmilar triangle? What is the appearance of these two erlangles taken together? How else is Sirius pointed out? Describe the position and Hariltude of Mircom. What atars mark the head of the Dogy

[^54]:    Which in the brighteat of these, and what remarkable circumstance in ita history How han it appeared aince its return) Deacribe the situation and marnitude of Wosen 1 What grars mart the hinder feet) What is the number of visible atars in thin conrtalntioa/ Doporlbe the conontellation Arso Navis;

[^55]:    Where is it situated ? Point out the situation of Naos, in the shipy When may it be seen in this latitude? When is it on the meridians Demeribe the position and magnitude of Gamma. What are the situation and name of the principal stirt in this constalataion? Why can it not bo seen in the United Staten! Is any other considerable atar in the hi, similarly situated? Describe Murkeb. How may this star be known? What in the number of visible stam on this constelation 9 What is the magnitude of ite principal one ${ }^{\text {B }}$ ?

[^56]:    What is the relative rosition of Cancer among the signs and constellations of the Zodiac How in it situated! What are the number and masnitude of its stars ? Where is Beta situsted, and how muy it be krown? which way from Procyon and Acubens? Describe Acubens. What are is lis ance and di ection from Pollux? How may it be otherwige known; Describe Tegmone. 'I here is a iemarkable cluster in this coastallation-dageribe ita ponition. How may it othorwise be dincovered)

[^57]:    What is the name of this cluster? What is its appearance to the raked eye, and foe what has it been mistaken? How is the mtar called the couthern Arellus situated, with reapect to the ecliptic? What other stars in this conste'lation? At what time does the mun enter the sign Cancer? At what time the constellation? Where ts the gropte of Cancer situated' When the sun reaches this paint, sohat is said af its daclimation 1 What is this stationary attitude of the wton orlled? What is the obligitily of the eeliptic) What remaricable fact in respeet to this distancs? Does this affect ith otability of the tropics?

[^58]:    What is the Eeneral sppearance of the constellation Leot Where Is it situated: Fhat Is the reladive order among the algns and consteliations of the Zodige 1 What is the right ascenston of Leo, and when lt its centre on the maridian? When do the outilnes of the figure come to the merkitan? What number or visibie stars does it con tain, and how large are the principal ones; What ts the name of the first mear in the conitellation, and whence is it derived!

[^59]:    Describe the eturation of Regulins. What other atars merve to potnt it out $\mathbf{W}$ sat is fte comparative brightness? फhat use is made of it in nautical astronomy; What are its latitude and decimation; On what day will Regulus culminate at o o'clock in the
     and in iohas direction are they from it? What are the name and posittor of the noxi considerable star in its vicinley What stars form the blade of the sickie? Where is Ai Gleba situated, and how may it be distinguished? What is the position of Adbafers and how may it be Enown? Describe the situation of this al Asmd.

[^60]:    What star 15 next? Describe the position of Lambday What are the situation and magnitude of Kappa! What ts the distance between Epsilon and Kappa + Describe the porition of Zozmat What are the magnifude and position of Theta; What geometrical thurs may be formed with this star, Zozma and Denebola, What stars in this neighbourhood mark one of the legs of Leo7 Describe Denebolay How far is it from tie equinoctlal colure, and when does it come to the meridian? When Dereboia is on the merddian, what geometrical figure does it form, in connewton with Resuius and Phad 7 With what other atar is it nearly on the same meridian? What is the position of Denebola in regand to Arcturus and Splra Virginis, and what figure does tt foma With them 3 With what other stars does Dencbola form a similar figure? What large Foometrica' figure is formed hy thase two plangles? What atara poont ouf those kn the कre clates?

[^61]:    * Leonty is the genitive, or pomsessive case of Yoo, and Ganmea ficonfa means the Glamma of Leo. Thus also the principal star in Aries is marked Alpha Aristfa, menn fig the Alpha of Aries, sc.
    f Uranta was one of the muses, and daughter of Jupiter and Mnemosyne She pretided over astronomy. Ehe was represented as a young virgin, drassed in an azure coloured robe, crowned with stars, holding a robe in her hands, and having many mathematical intruments about her.

[^62]:    What is the origin of Leo Minor, and how is it sltuated! What is its mean right ascension 1 When is it on the meridian? What ane the mumber and magniturie of fis etars ${ }^{3}$ What is the position of the principal star In this constellation, and how may if be known ? What hgure does it form toith come other stars 7 What letter reprreserth this star, and tohat else is it called? What nebwle do wo fird to this consreplation 7 What are the origin and position of the Sextant How many stars does it contafy ${ }^{3}$

[^63]:    What is the position of the largest one? Describe the situation and extent of the constellation Hydra. What are the number and magnitude of its stars D Describe the position and magnitude of Alphand. What are the distance and directlon of Cor EH 5 Ine from Gamma Leonis? How may the head of Hydra he distingulsherl Gow myy the three upper stars in this cluster be known? Whtch stars form a beautinul uctis triangle) fow is Altes situated, and when may it be seen !

[^64]:    If Alkes be aituated in the Cup, why is it aleo included in Hydra, How are the other two stars that make a triangle with Alkea situated. How is Beta situated with respeet to Zozma and Theta Leoner When is Beta on the meridian? How may the Cup be dintinguished? How is the center of this group sirusted with respect to Leo and the Whuinoctial 1 What single circumstance is sufficier, to designate the stara in the Cup? cher extromity of the ronatellation 7 the head of Yydra in on the meridian where in the

[^65]:    How is Ursa Major situatedy How has it always been reganiedi What pengile seem to have been peculiarly sirnick with its gplendour? what monarkible elpcumistance respecting its natme? Is there any resemblance het wean the outlines. of thla constellathom anit the figure of a bear $\quad$ By what is this coustelhation reidity dis tingulshed from all others? By what other manes is the Dipuer calleild Whatif this clugter more frequentiy culled

[^66]:    The starn in this cluster are so well known, and may be so easily deacribed without reference to their relative bearings, that they would rather confuse thas assist the student, wore they given with ever so much accuracy. The several Eearings for this clutter were taken when Megrez was on the meridian, and will aot apply at any other time, though their respective distances will remain the same..

[^67]:    * When Megrez and Caph have the eame altitude, and are seen in the same hort contal ine east and weat, the polar star is then at its greatest elongation from the truta pole of the heavens; and this is the proper time far an observer to take its angle of dievation, in order to determine the latitude, and its azimuth or angle of decination, in order to determine the magnetic variation.

[^68]:    What, on the whole, is an appropriate appetlation for it, and why? Deacribe the poaition of the Dipper when on the meridian. Describe the $\mu$ oaltion of Benetnasch. What is the next star in the Dipper, and how may it be known) What is the next, or thinil atar in the Dipper ? What stars form the bowl and handle of the Dipper? Describe the position and use of Megrez. What atar is situated next to Megrez i Describe the porition of Marak and Dubhe. What are these atarn callod, ind why?

[^69]:    Enfory.-Dasa Manem in mald to be Calinta, or Holice, daughter of Lycaom,

[^70]:    What is the distance of Dubhe from the north pole 2 montion the relative atstances Detwrean the other utars in this gmup. Why is it tmportant to have the relative dio
     che ta the posit cof Megrez, and Caph in Casilopein) When do they paes the mo-
     Atrtinguished? H. ${ }^{*}$ are the paws of the Bear diecingulshed! What is the situation of these stars with r , spect to Phad and Dubbe ? What are the only stars in this constellation that ever se in this latitude? What is the whole number of risible mtars in thls constellation, am iw many of ench magultudo?

[^71]:    Dewerlioe the appearance and situation of Coma Berenices. What are the magnitule of the princtpal stars in this clustort What are they, soconding to Mansted and
     eny to mistatse thile group, and is it Fitible in promence of the moon 2

[^72]:    What does its iustre resemble 1 What is the number of stars in this constellation and when is it on the meridian? Where is the Crow gituated. When Is tt on tlee ?ne Fidun? What are the number and magnitivie of its stars I IIow is it readily distin duished?

[^73]:    Deacribe the position of Algorab. How does its declination comprare with that of drips 9 What are its dietance and direction from Aikes sund Eplca Virginis 1 Ds Crthe the situation of Bota. Descrithe the situation of the righthand lower star. Whis S the diatance of Epsilon from the vernal equinox apd how mat the eotimotily
    

[^74]:    *In the Efyptlan Zodiac, Istr, whose place was supplied by Virgo, was represented With three oars of com in hor hand. According to the Egyptian mythology, isis was sald to haye dropped a sheaf of corn, as she fled rrom Typhon, who, as be condmed co pursue her, scattered it over the heaven. The Chinese call the zodige the yellow road, as rosembling a path over which the ripened ears of com are acattered.

    What is the relative poattion of Virgo among the slgne and constellations of the eeltptic; How is ft situated? How many stats does it contain, and how lurge aro the principal ones 1 What are Its mean decinnatlon and right ascension) When fobe pontre of the oonateliation on the meridian 7 Describe the principals star in Firgo fint Ewe distance and direction of Virgo from Aigorab, Denebola and Arcturus 9 What Ho the magnicude and appoafance of these three stars, and what igure do they formo Fiow mat spica be otherwlse dintinguished? Why bas its position been datarmiad whth grat exmotanent

[^75]:    Why ts fs situation favourable for taking the moon's distance) When does it pass
     borme toith orther stars in the same netghbourhood. What are tis distance and beartyo From Denebola? Describe Zeta Describe Gamma. Descrthe tha pootion of Eta DV eribe the zowition of Beta. What geonnets loal figure myy beformed of the stars in the texghbruirinoci?

[^76]:    * Pronounced Mo-0'-tes.

    How are the Greybuunds represented? By what names are they distinguished, What are the magnitudes of the stars which compose thls group, and how are they sitwated with respect to each othert Describe the principal mar. then as the moridian
    
    
     constellation Rootes reyresented? Why is Bootes called the Boar-Driver?

[^77]:    How is this constellation sltuatedi How many stars does it contain 1 How hurge ars the principal ones 3 What is its mean right ascension? What is Its mean dcclimation 7 When is its centre on the merilian ? How is it edsily distingulshed from the sur rounding constoliations, Descrite Arcturas, What is tis siturtion with respect is Detcebola and Eplca Virginis) Ilow Is it situated with respect to Cor Caroll and Deno bola) What romarkuble configurcution in this part of the sky? What is the ilistance of Arcturua from the earth, compared wlth that of the other stars in the northera hemp Isphore7, What starafive or sux degrees southooest of Arcturus? What stars in the ofter leg? Descrise the ntar Mirac. Describe Seginus. With what other atars doe, Bgrinutionn a right angled iriangle ? Describe the position of Allewter ope. Describe
    Che posidon of Delfs Dencribe Netkw.

[^78]:    * This is the poet whom Bt. Paul refers to when he tells the Athenians, Acts xviL ©, that " some of their own poets have sald," "Tou yap zats pros so $\mu$ 隹; For we art also his offspring." These wonds are the beginning of the 5th line of the "Phenomena," of Aratus ; a celebrated Greek poem written in the reign of Ptolemy Phlladelphus, two thousand one hundred years ajo, and afterwards translated into Latin verse by Cicero. Aratus was a poat of 8 L Paul's own country. The apostle borrows again from the same poet, both In his Epistle to the Galatians, and to Titus. The subject of the poem was grand and interesting : hence we ind it referred to in the writinge of Bt. Clement, St. Jerome, Bt. Chrysostom, Bcumenius, and otherm. As this poem deacribes the mature and motions of the stars, und the origtn of the constellations, and is, monsover, ons of the oidest compositions extant, upon this interesting eubject, the author has taken some pains to procure a Polyglot copy from Germany, together with the Aetronomicon of Mantlius, and some other works of slmilar antiquity, that nothing should be wanting on his part which could impart an interest to the atudy of the constellatjons, or illustrate the requent allusions to them which we meet with in the Ecriptures.
    Dr. Doddridge says of the shove quotation, that "these words are well known to be tonud in Aratas, a poat of Paul's own country, who ilved almost 800 years betore the apostle's time ; and that the game wonla, with the alteration of only one letter, are to be found in the Hymn of Cleanthes, to Juplter, the Erspreme God; which is beyond comparison, the purest and finest plece of natural religion, of Its length, which I know In the whole wortd of Pagan antiquity; and which, so far as I can recollect, containa mothing unworthy of a Christian, or, I had almost sald, of an inspired pen. The apostio might perhaps refer to Cleanthes, as well as to his countryman Aratus."

    Many of the elements and fables of heathen mythology are so blended with the insplred writings, that they mast needs be studied, more or less, In orier to have a more proper understanding of numerous passages both in the Old and New Testament.

    The great apostle of the Contiles, in uttering his inspired sentments, and in penaing his eplsties, often refers to, and sometmes quotes vertatim from the distingulahed Writore who proceded tifn.
     wareas.' Be not decelved ; evil communications corrupt good manners ;" which is a Literal cuotation by the apostle from the Thass of Menander, an inventor of Greols comedy, and a celebrated Athenjan poet, who flourished nearly 400 years before the tpostle wrote his epistle to the Corinthians. Thus Paul adopts the sentiment of the comedian, and it becomes ballowed by "the divinity that stirred within him" Tertrillian remarics, that "In caooting this, the apostle hath sanctified the poet's sentiment"

[^79]:    What is the atituation of this constellation? What are the number and magnitude of Ite etary 1 Deacribe the sifuation of Theta, How to it eastly recornised in a clear opent: Sns? What te tet diferance from the meridian of Areaurus? Describe the efar in the tobes ehomider. Describe the atcres in the breatic. Where is the Wotf sitrated)

[^80]:    How many stary does it contain? Under what circumstances may the brightest of them be seent How may the stars in this group be most conveniently traced out 7 When Is the most favorrabie time for observing this constellation How is Litra sit uated among the constellations of the Zodiacs At what season of the year does the gun enter Elorat Who was Virgo, and what was the omblem of ber ofice) What is

[^81]:    Whon it is seld that the vernal and autumnal equinoxes are in Aries and Libri, and the tropics in Cancer and Capricorn, what is meant In what constellations, then, aro che equinoxes and the troplcs situated? When did the constellation of Libra colncide Fith the stg't of that name 1 . In what gign is the constellation Libra now situated; What are the number and magnitude of the stars In Libta; What are its right ascension and decllnation 7 When is fts centre on the meridian How may this constella don be known) What figure do the three upper stars in this figure form? What stars Ifstingulth the Northern Scale, What the Southern! Describe Zubemevchamuli, With wont other stare does it form a Large trianglel Describa the principal atar th the Wrortherts Ecalle. Describe the postion of Zubenhaicrabi. Deacribi the ipotiton ff Jots.

[^82]:    Whas atar th this corntellation marios the southern itmuts of the Eodiac 7 How Minm tirde of serpents liave been placed among the constellationst Mention them and thed
    

[^83]:    Fhat stars marl the head and body of the Berpent? Desoribe the principel star in ches contellation. How may if be known? What stars distinguish the head 3 How miny atare may be counted In that part of the constellation which lies between Corona Eozealls and the Ecales) How may Corona Borealif be earily knownt

[^84]:    Where is if altuated? Describe the principal star in the group. What geometricat Ggure is formed by the stars in this nelghboirhood) What ire the number and mane nitude of the stars in thla constellation? What are its mean decilnation and right eit. caniony When is it un cur merialiani

[^85]:    What renders Ursa Minor an Important constellation? What is its situation with respect to the North Pule, and how do Its stars appear to revolve uround this poles Why has this coustellation becn more universally ohserved, In all ages of the worid than any other 7 What is this star clenominateds What are its mapnitude and post tion How is its position pointed out 1 How is it situated wich respect to Megrea end Beta Cassiopeis? is it generally consitiered to be the north pole of the besveng 7 dre calatations founded upon this notion correct;

[^86]:    What is the present distance of this star from the true pole of the heavens? What in its mean right ascension 1 When is it on the meridian, and what thon is its hearing from the pole. What is its situation six hours afterwards? What is its situation six hours after that What is its situation when in its third quadrant 7 What do yoes qeisceratand by the righi ascension of the meridian, or of the mid-heaven? Hoto 10 son find the right ascention of the mid-heaven? In what manner does the north star doFiate from the meridian during one revolution! How do these facts concern the surrevor ${ }^{1}$

[^87]:    Why is the method of finding the latitude by the polar star, oten resoried tof Why W the position of this star ctavourable to this purposel If the north star perfeedy oomelded with the forth pole of the heavens, where would it be seen from the equator 2 Suenta a peraon travel one degree north of the equator, where would the star eppear Show 2 Suppone he should tritiel 10 degrees north of the equator? Buppose he woere to wop at ithe $42 d$ defree of north latitude? What genonal truth results from theve facto? What, ther, is all eoe wombl. to And the latirude af any piace? Of what advantage to a septifiser, to an instrument which woll gtoc the alititude of the pols 7 What are the tannber and magnitude of the stars, contained in Ursa Minor? What flgure do the eoven princtpal stars form 7 Describe the first in the handle of the Litle Dipper. De ereits the two last in the bow of the Dipper

[^88]:    How nay Kochab be easily known? What are the position and name of the tyre mizhecst of these; When are iney on the merldian i How in Kochat situated with sespect to Benetnusch and Dubher

[^89]:    What is the position of Scorplo, among the signs and constollations of the Zoultef Fow is It situated with respect to Libra, and when is it on our meridian? What ats the number and magntude of Ife atars? How is it rasily distinguished trom an
    

[^90]:    How is the constellation Hercules representel! What space does it necupy, and What is its situation in the heavens? What me its declination and right ascensions When is its centre on the meridian? How is if bounded? What are the ntamber and m; wnitude of its stars) Describe the principal star. What do Ras Algethi anil Ras Alhuyue serve to mark? When are they on nur meridian? Desoribe the ftumtion of Bsta and Gamma. What is the norther nmost of these two called? What fous sars are situased 8 or $10^{\circ} \mathrm{S}$. W. \&f the two in the shorulder? Describe the stars ith ith asvt whoulder. Hoto may these be known? What remueirical firure do the stare in the had and shoulders of Hercules form How naty the left arm of Iuerculdes os tra-

[^91]:    How to the head of Cerherus distingutshed? Thete ate four stars in th. "owe form tyregular gquare, in the body of Herculeo describe them nescribe the ritur it of
    

[^92]:    "As the red iron hisses in the flood, So bolls the venom in his curdling blood. Now with the greedy flame his entrails glow, And livid aweate down ail his body flow;

[^93]:    How is the constoliation Berpentarius repreaonted ? What is its extent, and whene E It situated? When ts its centre on the meridiant. What ars the number and Fang. Gitude of tin stars? Whas aro the name and gosition of tis princtpel star? What twe etary mark the ertromes of the constellation, north and acuth 1 When in Ras Abluage en the meridiant

[^94]:    Deecribe the sters th the woest shoulder of Serpentarius. What stars diettinguish the amp shoulder? Hoot are these two stars denominated? What is the reladtve poation of the stars in the head and shouldersy What remsikable cluster of stars in this orlghbourhood, To what constellation does this group belong? How is this cluaced situated with respoct to the solstitual colure? What is remarkable in the central pogit tion of Kaypa) Deseribe the stars th the right hased of Serpentartus. Deseribe thy Newation of Zeta. Describe Marstc, and the troo atare in the left havid. Which of tho Heo is called Yed, and hove is is stituated Hono may the left arm of Serpentariae by Graced 7 How may the right arm on traced Describe the atare in the right foed derpentarisus. What owher atare may be zraced nut in this constellation?

[^95]:    What is the situation of the constallation Dracol Describe. If you: Eloase. the varn ariseolts of the Dragon.

[^96]:    In the year 1725, Mr. Molyneux and Dr. Bradley ftted up a very accurate and cootly instrument, in order to discover whether the fixed stars had any sensible parallax, while the earth moved from one extremitv of ite orbit to the other; or Which is the same, to determine whether the nearest fixed stars are situated of tuch an immense distance from the earth, that any star which is seen thig nighs directly north of us, will, six monthe hence, when we shall have gone 190 mill

    What is the course of the monster from the thind coll? What are the number and magnitude of the stars : nntained in this constellition? How is the head of the Dragon istinguished ? Which star is called Etanis, and ror what is it noted 7 By what of ier mpellation is it generally known? What stars in the head of Drteo form the letter F, thd how is it gituated? When is Rastaben on the reridian \% When is Etantn on that merlulan, and what stars in this region culminate at he same time? How is Rastoitore slanated with raspect to the molstitial colure, and the senith of Ioridon.

[^97]:    Describe the stars in the Arit cotl of Draca. Describe the atare in the aocond col What io the brightert of inte group called, and hove may it bo pointed out? What it the principal utar of the chird coll, and hov may, it be Jotend? How else may Zeta we lewown What atars come nears to Zeta, in this conetellation? What aters follow chees 7 Describe Thuban. By what other name is this star known, and for what is is gelebrated) When was Thuban withil ton minutes of the pole? Describe Kappe Whas fiesre do Mtacar and Megrex, th the tall of the Grawe Bear, form vodeh Thwowe
     tat grotsted out

[^98]:    * Those who attempt to explain the mythology of the anciente, ohserve that the Heeporldes were certain persons who had an lmmense number of flocks; and that the mbiguous Greek word $\mu$ mior, melon, wbich sometimes signifies un apple and some Hoen a sheep, gave rise to the fable of the golden apple of these gardens.
    The "Hesperian pardens famedi of old," as Milton observes, were so called tmma Foppervs Vesper, because placed In the west, under the evening star. Bome suppose Qiom to have been situated near Mount athas, in Affica; others maintain that they Fere the isles about Cape Verd, whose most westeriy point is still called Hesperitwi Cormu, the Horn of the Hesperides; while others contend, that they were the Camary melands.
    Attas, sald to have been contemporary with Moses, was king of Maurtanta, In the umth part of Africa, and owner of a thousand flocks of every kind. For refising hospicality to Porseus, he was changed into the mountain that still bears his name; and Which is so high, that the anciente imagtned that the heavens rested upoy its summit and consequently, that Atlas supported the world on his shoulders. FIrgil has the clec. Where ho speaks of "Atlas, whose brawny back supports the skies ;" and Ho Edod, verse 786, aivances the same notion :-

    > "Atlas, so hand necessity ondalns, Erect, the ponderous vault of stars gustains. Not frar trom tesperdee he stands. Nor from the load retracts his head or hands."

    From this very ancient and whimsical notion, Atlas fo represented by artstes, and yorts of mythilogy, as an old man hearing the world on his shoulders. Honce if in
    

[^99]:    Ey what is the constellation of the Harp diatinguished? Where is It altuatedi? What are the number and magraitule of its tart?

[^100]:    What is the name of the princlpal stary Describe its position. By what means may M be certainly known? What are the nomes of the two small stars forming the basel the triansle? Deacribe the star in the middle of the Harp, and those rotth rontch
     wapp? How else may Beta be potnted out? Whar Lo there remarkable in the oppran ties of his etar? When is Gamma on the mertdian? What is the dealioution of Lyra? When doen it culminate? What anclent poet mentions it?

[^101]:    What is the onder In the Zodiac, of Sagittarius 7 How is it sltuated 7 When doed tus stun appear to enter this constellationi What are its extent and appearance 1 What cre the number and magnitude of its stars? How may it be readily diatingulshed: What is this figure callod, and why 9 Where is this fgure to be found, and when is it in the merldant How far apart are the two upper stars in the bowl of the Dlppert How far ngart are the two lower ones i Describe the atars in the handle. Dasertbe th; pootion of Lambda Howo may Lambda bs otheroiset nowon? With what other start
    

[^102]:     Engie mituated) What are the number and magnitude of ite stara, How in it clistio Ghed) Describe lis principal star. How ingy it be known 3 What is the magnituig of the gtari on each side of Altair? How far distant from it ars they' What row rf Fnes doent this row rememble)

[^103]:    Of what impurtance is thls star at sea? What is its declination? What place does It occupy in the heavens when on the meritian, and when does it culminates When Anes it ins acronycally, Describe the position of Tarazed. Describe the rovo of wions
     What stecrs wis ths norihern eoingl Deacribe Zeta and Epatlon. When ts Epellon an ith mertidan 7 Whar long athe of stare terminaten as Epwilon 3 What arce the direc(thon and ertent of this lne? Deacribe the remarkable appearance of Efa. Whas.

[^104]:    Where is the constellation Delphinus situated 1 What are the nrumber and magas-
     gatar mund in somethmes diven to this clugier, and whence was it derived?

[^105]:    Mention gome other gtars in the Dolphin, What is the mean declination of the Bot phta, and when is it on the meridian' In what part of the heariens is the congrolinds

[^106]:    How is it represented) What remartable flogure is formed by itu principel stars: Bencribe the poation and apuearance of Arided, or Deneb Cygn. When doen it culminate at 9 oclock 1 Descrite the poeltion of Ead'r. Describe Dedta. What stary boyond Delta 7 What grare tin the asot zoting? What stars form the bar of the croast Fhat atare beyond Giemat on the east? Describe the stars in the nock and bill of tha
     conecors wouth end coutheant of Albireo? What are the number and mingntuxds of the ctats in twonan I

[^107]:    What worable atary have astronomers dsccoersed in this aonstollation? Whieh of
     chantee of light complesed? Detcribe the appearance of Eud'r. Demoribe the avil whe cevered in 1070. What do these tomaricuble facte indicure?

[^108]:    Where is Capricornus situated? What are its mean right ascension and decifnationg When is the main hody of the constellation on the meridian? When does the sun enter the rign, and when the comstellation Capricorn? Does the sun ever extend beriond this polnt lnto the southern hemisphere? What is the position of the sun with rogpect to the tropic of Capricorn, at the winter solstice, and what are the seasons in dise two hemispheres? What are the number and magnitude of the stars in this constallation?

[^109]:    * On this account the Latn term Corrucopia, denotes plenty, or abundance of gonit sings. The word Amalthes, when used figurattively, has also the game meaning.

[^110]:    How may it be recognised? How are Giedi and Dahih sitanted with respect to the Dolphin? How are these two stars distinguished from each other, and what is thetr yosition in respect to the Eagle? When are they on our merhlian? What wert tha signs Capricorn and Cancer orighnally called? Where are the ten stars, known to the aicfenta by the name of the "Tower of Gell," now to be found "

[^111]:    * Pales, the famais delty corresponding to Pan, was the goddems of aheepfolda and © pastures among the Romans. Thus Virgil :-
    "Now, sacred Palen, in a iofty strain, I sing the rural honours of try rolgn."
    The whepheris offered to this poddess milk and honey, in gain her protection ovel their flocks. Bhe is represented an an old woman, and wais worship od with srom nolemnity at Rome. Her fentivals which were called Paidic, were celebrated on bly ech of April, tre day on which Romalua laid the foumituions of the city.
    Etow is Pegasus reprofentedy What space and pratition does it occupy in the hearene 3 What are the distance and direction of ite ventre from the prime meritian: Ftat are its man length and breath How img is it in pasing our meridian Whan does it pass the meridian? How is this rorstellation distinguished from ak
    

[^112]:    Describe the two on the east side. What is the name of the star in the N. E. corren © the aquare 1 In the E. D. corner 1 In the A . W. corner? In the N. W. corner) Ito geribe the porition and magrifudis of Emif. What is the whole number of stars in Pegasus \% What ts the magnitude of the princlyal oned percribe the situat n of whe HaLlal Hort

[^113]:    When is it on the meridian) What is the whole number of its atars? What in the magnitude of the principal ones? How may the principal stars be distinguished! How are the two in the nose distinguished from the two in the eyes? What are theif diatance and direction from the Dolyhin) On what account are these clusters noticesble? How is Aquarius represented, Where is it situated) What is its presert order omong the constellations of the Zndlac 7 What are its right ascenston and declinations What is the whole number of its starrs What is the magnitude of the princtpal oneal How niny the N. F. limit of Aquartus be readily distingulshed? What are the diatunce and diretion of this letter Y, from Markab and Enif, in Pegarus?

[^114]:    - Pronounced Poma-lo.

    What is the name of the principal star in this conateliation whar if its pootion? What star in the W. shoulder? Describe the aftuation of Anoha. What to the paot Hon of Seheat and Fomalhatu? To whas constellations is Fomaliagus common 1 of conat nawical importance is it? When does it cumbincts? With what other stare dose is form a large triangis? Hono may you trace the stars in the cascade fi, Describe the situation and appearance of the Boutherm Fish. What are it mean right ascension and declination? When is it on the meridian! What le the whole number of tis gtarit What le the magnitude of its principal ones? What are the name and position of the wot bitilant star in the constallation) When and where does it pass the mardilan'

[^115]:    Por what purpose has its position been very accurately determinedy Describe the pe riolical variations of brlliancy to which some of the fixed stars are subject 7 Mention some of the most remarkable fastanced of such variations, and deseribe "than particie harly.

[^116]:    What are such stars denominated; Describe the variations of one in tho Whals What stars are remarksble for the shortness of the perlod of their variationg? What may we not sippose that the stars whlch disappear ars actualiy deatroyed; Why mat not the variations arise from a change of distances What is the most probable suppe dition in regand to their causeq How does Dr. Herschel explain these phenomenat On exramining the stars with a telescope of considerable power, what other pecullarity do we fin in to what is this appearance, to many cases, owing?

[^117]:    *Fags 7.
    

[^118]:    Ase thers, however, any Instances where one star revolves with arother around sommon centre? When two start are thus situated, what system are they sabut to Gomis Why is it thus denominated What modern astronomers of great celebritsHeve eatahlished the truth of this thenry 7 What rates of motion did they detect in
     gition, dad they discover? What is the most remarkable instance of this fart 7 Mertion some other instances. Are these revolving stars of a planetary naturc ! of what sature ant thes:

[^119]:    What beautiful and curlous phenomenon has been observed, as it regards the coloat of donble s'srs) Explain how these colours are usually contrasted. Mention an exemple of this phenomenon. How, if the coloured star be much the less hright of the two, will the other be affected, Give an instance. What may be the effect of guch a mriety of colkre is solar likht)

[^120]:    " "it is a very remarkable fact," says Bir John Herschel, "that the centre of the risual organ is by far less gensthle to feeble impremsions of Light, than the exterior portions of the retina."-Als. p. 808.

[^121]:    Are individual stars of a deep colour ever found separate from others 1 What are phaters of stars 7 Mention some instance. Describe th Mention some other instance Descrithe the position and appearance of Prasepa. Describe any other cluster which fac may recollect. What are the constitution and figure of such groaps? Wrat did the younger Herschel atay of the aumber of stars which compose thase cluatemi)

[^122]:    Why are the nebulce so called' Describe the usual appearances of newulx, as seeo enrougl $n$ tetescope. What other appearance du nebulem sometines exhbit 1 Mention come li, thances of the must remarkable nebulm. Describe the one in the awad bandie a Orlon Describe the one which is in the cirdie of Aninumeda.

[^123]:    Of what class of nebule may this be considered as a type? What other species of nebula exist in the hearens) Describe the most conmplcuous of this class. Whai ("her specles of nebulm ans more rarely found) Describe the appearance of planetury nebula. What do wo know in regard to their magutiele How inrke must wie one 1 which is sticuated in the lef hand of Aquarlus) What diu Sir Whition Hes chel crp (ecture as to the use of the nobulsi Have wo facti sufficient to whirn g.ck acol cetures

[^124]:    What do ycu understand by the Milky-Way? By what diferent names is it called Why does the contemplation of this constellation fill the mind with hieas of grandeu;
     the stits in the universe arranged? To what nebula does the sun belong, and what is probithly tis ilstance from its fellows? What knowledge have we of the number ar'y scumany of the atars in this group?

[^125]:    How many did Dr. Forechel count in a single spot durtag the spars of 15 minutew How dil he fod the stars dirpersed, throughout the Milky. Way 7 Give an aximpis Give another instance. What changes are taliug place in the Milky Way and oftit, nebuls? What do these changes indicate? How many nelnule have been discoveredy If each of these iefbulz concuins as many tows as the Milky-Way, how many staty part exist even in that portion of the heavens which lies open to cur observathen : here and af what period may the Milky-Way ke secn to the yest mivintage?

[^126]:    
    
    

[^127]:    - Joneptas amirny, that "he sav himself that of stone to remaln in Efita in Mo - wrin dima."
    - Vince'i Complete Ryrstem of Atronomy, Vol. ii ph 94.

[^128]:    Whats does Josephus relate concerning Abraban's knowledge of astronomist Who, tope Dey, Arat histroduted this science Into Beypt1 What other historian of reunote sintiquity speaks of Abraham's atiention w thls sclence? What reason does Berome -allo for the longevity of the antechluvians $\%$ When Alexander took Babylon, whet Prefant ofservations did he frid in that city 1 To what period of the world do thete cbecrvitions carry us back? How long after this was it that the Babylonians sent to Fersetsha, to inguire about the shadow's going back on the dial of A haz $t$ Who, pien, cony we conclude, were the original Inventors of astroniony, and at what perfud did Prey armpge the fred atary into constellationg? Wlen does La Place ix the datel

[^129]:    *The usual size of artiflicial globes, designed to represent the celestial gphere, is from 9 to is inches in diameter. Globes have been recently constructed in Germany, which are gaid to be more splendid and complete than any in the world. The largete ever made are that of Gottorp, two ta the library of the late king of France, and ons in Pembroke college, Cambridge.
    The glohe of Gottorp, now In the Academy of Sciences at Petersburg, is a large bollow sphere, eleven and a half feet in diameter, contalning a table and seats foc twolve persons. The inside represents the vialble surface of the heavens, bespangled With gijited stars, ranged In their proper orter and magnitude, and by means of a car rious jhece of mechanism by which it is put in motion, exhibits the true position of the stars, at any time, together with thelr rising and setting. The convex surface, of outside of this globe, represents the terrestrial sphere.
    In 1704, two 티앙 by Cornelli, a Venitlan, and depnsited in the king's library at Paris. These, however; are far tnferior in size to one of similar construction, erected at Pembroke college, in the University of Cumbridge, by the Iate Dr. Long, presldent of that institution. This ts a hollow sphere, sufficiently capacious to admit thirty persons to sit within it, where they san observe the artificial world of stars and planets, revolving over thete heals, in the same onder as they are seen in the heavens. Thls sphers is elghteen feet in diameter.

[^130]:    What opinion has Sir Isaac Newton advanced upon thit subject Have we bowever thy accounts of the constellations, of a higher antiquity than that event Do any of the anclent constellations refer to transonftons of a later date? What have the mont carned antiquarizns of Europe done upon this subject, and of what do they assure us 4'w long would the memory of rn action, or event, thus registr red, be likely in whare? Il arrmging the constellations of the Zoditic, how was if natural to represent

[^131]:    What aign was represented under the figure of a Crah, and why 1 When does tiss onn enter this sign 7 What anlmal represented the heat of sumner, and why? Whed does the sun enter the sixth sign, and how Is this geason represen' $\theta$. Why was dic gifn which the gun enters at the autumnal equinox represented uncior the symbol of a Balance? Why were the autumnal sigzs, Scorpio and Bagltarius, representad they mre? What does the Goat reprosent What is stgnitled by the Vist euri What do the Fishes represent?

[^132]:    - The onder of the algns is thus deecribed by Dr. Watts:The Ram, the Bull, the heavenly Twotne And next the Crab, the Lions shines, The Firgtor, and the Scales; The Scorplon, Archer, and Sea-Geas The Jan that holds the Waier-Fot, And Fifh, with glittering calle.
    Etmilar to this are the Latin verses:-
    Aunt, ariex, taurus, gamini, cancer, lco, virgo, Librigua, scorptut, arcitenenn, caper, amphorw, plooen.

[^133]:    Why have attempts beon made to change the names and tigures of the ancient copstellations 1 What fault has been committed in doing this 7 What did the veneribit Dede substitute for the profane names and figures of the twrelve constellations of ind Zodtac; Who followed his exampie, and to what extent? What uther change weat attempted, and by whom Have astronomers eenerally approved of those Innovit. thonsi What was the number of the old constellations? Whence is the muture of anclant and modern namer Fhich wo meet with in modern cataloguen?

[^134]:    How do atronomer unually divida tha beavens, and what it the mumber of oomMellations La each division: whas convenignt syifim of notation has boen invented for donoting the gtars in each constallation 1 Who invented this symem 1 Defore the nethod was introduced, what wal the practice?

[^135]:    What is the frut conjecture which we form in relation to the distances of the fixd stars) What means have we for ascerialning their number and distance?

[^136]:    * Chalmors.

[^137]:    How do the heavens appear through the telescope? What are beyont those litue Whas Which are scarcely visible to the naked eye? How many stars are vinibio through the telescope? What proportion may thls vast astemblage of wuns and workds Fant to what lien beyond the utmost boundaries of human visina How shouth we jearn from this to regani our own earth) What does the immerve distance of the stari srove to regand to thetr magnltude and llésty

[^138]:    What oonchuifon may be drawn from thin thet an to thetr great denigns What patas have antrocpmers tiken to Ind the dithtice of the staris, and what result have they
    

[^139]:    - A just idea of the import of this terme will tmpart a sorce and auditaty to an erif preaslon of SL Jamen, which po power of words could fmprove. It in gaid, Chapter it perse 17., of EIm from whom cometh down every good and perfect gift that there 4
     chess nor shadou of chenge:" As if the apoptis had gald-Persiventure, that in tre velling mailions and millions of miles through the regiont of immentity there may bo a mensible parallax to somo of the Axed stars; yet, as to the Father of Lights, Flow him from whatever point of his Emplre we may, he it without parallact or ahmilow of hanarg!
    What moagure is cmployed in estimating the distances of the sxed stari 9 Fiow
     - annual parnllos?

[^140]:    What conclusion may be drawn from this fact in regard to the distances of the ificed stanal If the annual parallax of a star were known, by what simple rule could Tvi compute tis distance? If we allow the annual parailax of the nearest siar to be 1", what will its distance be? What is a mean of the calculations of diferent astronomerr, for as garallax of 1 "? What reoent observatsons indicate a greater parallicy
     Hovo dont would it repuire, passing throughtisis distance, as the rate of a mintion ef whe a dar, ro reach he earh, and hovo long would tavis light continue, undiminishes (9) me, sosre to to be bloteced from che hearene? What hat been supposed to be the rela ilve distance of the mosi brifliant stare from the earth ; What do later obetervations

[^141]:    Euppose the light of Sirfus to be twenty thousand million times leas than that of sur fun, bow would it compare with that of a star of the sixti. magnitude? If we guppose the two stars to be of the same size, how much farther of ti the star of the meth magnitude, than Sitius is? Suppose Sirius to be placed where our Sun ha, hot could tse apparent magnitude, and tis tight and heat compare with those of the mun? What may we generally affim of the distance of stars if the sixih maynifude 1 can the human mind apprechate such distances? What illustratlons can you give to sbow their imnensity) What ts thls distance compared with that of the telescoptc stars and the notule; Why ar we ahle to see bolies at so ereat a distance i

[^142]:    * D. Turner, F. B. A. R. A. 8. L., 1839

    With these facts before us, what may we reasnnably conclude with regard to the expreasions in the Mosale history which relate to the creation of the fixed mitirs What isn the opinion of Mr. Turner in regand to the stars here mentioned] To whe Is the expression, "To rute over the day and over the night," supposed to alludet Glve some account of the real motions of the fxed stars. What remartratio changen

[^143]:    - Protessor Bensel does not fall in wish this pevviling opinion.

[^144]:    What conclusion is drawn trom this appearasese Shall we then prubably ever occupy thas portion of space through which we are now passing, againt What illue fradion doas the author of the Chrigtian Pbllosophor give in ondel to conver gomp \&iga of the boundless extent of the universe 1 Wers a seraph ever to arrive at a limh beyond which no thrither displays of the diving glory could be percelved, how would the wea affect him? Is it probable that such a place exinte in the ur jverse, or with'e the sceps of any created intalligence?

[^145]:    Whare does the phenomenon of falling, or shooting stars occury What in there to excle our aumiration in this phenomenon? Is this interesting phenomenon well un derstsod) What are the dinerent opinions in regard to themit How many shonting Etare did Dr. Burney observe in the years 1818 arit 18207 Is it probable that 9 muca Frger number is seen every year In the United Rtates? What did Baccaria suproso they were occasioned by, and what observations did he naka to strengthen hile cplaion?

[^146]:    What west the appearsnee upon strwams of watery What did he nhacrve at thit time about his kite? What connexion are they suppoaed to have with moteorology? What elrcumstance may we prokably find to contrm this dea, Is this notion of royy priciont, or of modern date? What in, weually, the number of shooting stars observed In osingle night? Then, and where, occurred the first inatance, on record, of thofir talling in great numbers? Mention some other lastances. What ramericuble weitige mars laft by theat metcoric chowera?

[^147]:    Becite instances of a stmilar kind, in which a red duat has beas deporited. Describe the phenomenon of shoutlng stars described by Mr. Filicott, In lig9. Describe tina same phenomenon as seen, in South America, by Humboldt and others. In whas ophar warts of the carts was it witnesied, and by whom)

[^148]:    Deagritio aurother phonomenon of a mitmilar kind, seen in Bouth Amertca about itirty years before. Whan accurred the mout nublime phenomenion of shooting stars of Which the world has any recond How extensively was it witnemped? What waf the inrst appearince of the phenomenon? What scene to the apoculy post to mome? From what point did the moteors appear to emanate? Deacribe their 3oxton.

[^149]:    "If this body were at the distance of 114 milles, from the observer, it must have hat
     tr nilly ove mile off, it must have been 48 feet in diameter. These consideratiosa jeave no doubt, that many of the meteors ware bodies of large size.

[^150]:    What other appearances were observed upon more attentive inspection? Give a mone particular account of the tirst variety. Of the second. What do we know in regand to the size of these fireballs) How does Dr. Bmith describe one soen hy hlm in North Camilinat What was the appearanco of the same or a elmilar ball, as zeen at Now Haven? What was there pecular in the course, and final disappearance of ith Quppone this peereor woes 110 mules distans from the place of oheervation, onct mind Hentiat meme exmmples of the thind varlety of meteons what, of onky one aililit Hisutiat meme examples of the thind varlety of meteors

[^151]:    In what constellation was the polnt from which the meteors meemed tu rallate What changes weze oossryed in the weather during or soon after thls phenomenons In attempting to account for thete phenomens, what hypothesif lum been advanced In regarl to the place where the metsors had their origint Wher fo the reateondite by which inis hypoiheris is austatned? How high woas the meteoric cloud supposed to bs whove the earth ? What do we know in regand to the substance of which the meteors were composed 1 What might have been the consequencet. If their quintity of matter and bern connlit rablet

[^152]:    What effect mewt the momentem of even Mght bodies of such size, moviry wolth anal velocity, have had upon the atmasphere? Mention some hypothcses which have beep propased to account for these meteors. To what concilision did Pmifessor Olmistad, Prer a long investigation, come, in regard to them? To what remarkable facts is Elmillar phenomena, is this theory rdapted? At what other corresponding perious bavien

[^153]:    To what particulars in pur knowledge of the Atred stars, thowe heavenly bodien which we have heretofore been conailering, well nigh confined 1 Where are the bodian whot mow remain to be cocoidored, tituased! Whinh of them are the mont importanty

[^154]:     chenocnena of ith platete

[^155]:     4rived 1 What ertimetul nations earty pooseaped many importans estroncmioal fuete
    

[^156]:    * It is well known that the Chinese have, from time imeaemorial, considered Bolay Eclipean and Conjunctions of the planets, as prognostica of importance to the Empire, and that they have been predicted an a watter of State po'icy.

[^157]:    Give some instances. Were these facta, however, reduced to a stence? Whence to to probable, thas the Greeks derived thetr first notions of afcronomy? What is the name of the first of the Greek philosophens who taught astronomy 7 At what time did he flourish? What Greak philosophers after him taught upcn the sitme surbject 7 M tion soure of the doctrines which they maintsined.

[^158]:    When was tho first complete nystem of Astronomy written, and by whom In how many books was it comprised, and what was the wort called 7 What was the gytiem of Ptolemy 1 How did Plolemy arplain she atations and retragradusiona of the planets? How long was the system of Plolemy the prevailing sjefam ? IT F eleones recesped with implicis constidence? Who entablinhed a new Syitem at Actmonomy about the middle of the 15th centurv?

[^159]:    What led bigy to doubt the nyotem of Plolemy 1 How loap weo he explayed in tix at
    
    
    

[^160]:     long did the continue to make obmervatione in bin obeernatare in the idened of Huen? Huw woe the boevenly bodies arranged, in his rystem ) What abmuntity did is involve 1 What
     of Tycho Brabe? What weep the dicoorecies of Kepher? What were the discoverien of Catron

[^161]:    *The discovery of Newton was in mome measure anticipated by Coperniout, Eepiat and Hooke.

    - The orbith or pathe of the planeta were diecovened by tracing the course of the planet
    

[^162]:    What wad the discovery of Newton? How wan he led to make it? Recapitulatir mefly the syintem by which we are enabled to explain the differgent celeminal phenopoas.

[^163]:    What is meant by the Solar System? Into what two classes have the planeta been di Fded? Define a primary planet. Define a seoondsery planet. How many primary plan ets have been discovered? What are thoir namea, and what the onder of their diatance from the gun? Which of them were diacovered by meana of the telescope? Why are theae termed asteroids? How many secondaries have been discovered ? How are thay ditainuted among the primeries 1 Which of the primarios and secondaries are invisibite to the naked ere?

[^164]:    Mention come of the effecte produced by the Sun. What in its magritado cocmpred whith that of the other heavenly bodien whose dimentans hare been actimated! Wht tin diameter I How much larger is the 8um than the Earth?

[^165]:    What in the whole dimance botweon the Parth and tha Moca, oungared whth the it -mefer of the Sun 7 Give mome illutration to onable ut to eonoeive of the mannitude of 4qu Sum. What in the distance of tho Eun from the Eath $\}$ Give gome ilhatration to ee. able the to conceive of the distance. What is the appearaace of che frua rifen vipird
    
    

[^166]:    Do the same apots ever re-appear on the eent side? Are the spots senerally permaneme und unifirm 1 Describo thair irmpularitien Who, is it generally suppoed firat diseoverad apusin on the Kun 3 Who elie otmerved them alrout the same time? What was the treadth of the one seen by Dr. Henchel in 1789) In what divection do the apots on the - an apperar to movel

[^167]:    Itharrats there phemomend by diaframs. What concluaions have been dram from theme phenomend What in the apparent time occupied by a apot in revolving frum any particular point of the Bun'g disc to the mance point geain? What is the sctual time of empind by the revolution of the opot, and of course by the Aun on its axio?

[^168]:    Have we been able to determine phat the phyyical organization of the Pun in 7 What
     What in the preveiling theory? What circumatanoet bave led to the coqieoture that the
     - dherved it unremitungly, and with the mott powerfill talesoopely What wiat the
    

[^169]:    What is the dintance of Mercury from the Sun 7 What is its magnitude compared with that of the other planets 1 What is its diameter 7 How many euch bodies would it requine to compase a body equal to the Sun? Fow are cha relative beathe of the planete es. thmated In what directuon does it revolve on its axin, and what time does it occupy in the nevolation? In how loag time does it perform its revolution about the sm? What its mandistince from the Sun? What, then, is the length of ite year, compmred with ours Einat measures a planer's day 2 . What mearesres its yoar? What is the density of Meneuty, ecmpaned with that of the other planote? How murch light and heat doea it ne eqivo, compared with the Earth 3 On what eupposition does the truth of this eatimate clepepd? If thin were really the fact in refand to tho plavote, would it be any arrumers empinat their being inhabitod $?$

[^170]:    On what does the derres of hest at the different planefy probably depend? Wh: have antronomers been able to make but comparatively few dicovarien reapecting Mercory 3 What in itt appearance when viewed throuth a telewcope of conniderable mationifying power 1 What circumatances prove that it is an opaque body, shining only with the Fith of the sun? How was the motation of Mercury on it aris determined, and by whom 1 What did he dincover on ite surface ? What was the altitude of the highear mountait which he taw? In tontch hamitphers are the highest mourvatno tonich hove beert liec:vered in Mercury, Vewtes, wind ihe Moon, sltuated 7 Does the wane fact exiet in rewnrd 60 the Earth D Duning what months nay Mercury be eep for a few dayn, ard © what parts of the day 7 Why in it vieible at these timen. and nor at ochers:

[^171]:    What are the ereatoat dutanoen which it departs from the Sun, on either nide 7 What ti the Elongarion of a planes? Whas it tes Aphellon? What if ite Perthedion? In what direction does Mercury revolve about the 8 un 7 What is the figure of ite orbit? Do scribe its apparent motion, as seen from the Earth. How did it appear to the encientel What was the cause of this appearance? How were these apparently two distinct etars at last found to be but one 1 What is the actual period of each elongation of Mercury What the apparent period! What is the cause of this difference]. What does the exprowalon, tranait of Mercury, signify? Why docs it not make a trancit at every revolution?

[^172]:    What are the pelate where the orbita of the planets internect the orbit of the Earth call ed) Where in Mercury's ascending node? Where in its dencending node? In what monthe must the tranait of Mercury occur for many agea to come) Why muat thay oocur in these month? Horo can we determine the periods in which the plancta will Tatwry co the savie pointe of thole orbite, and the same posisions in respect to the Sun? Why is is ueefut to konow theos periode? Stats the method of maxtisg the computation. What will the ratio the th the case of Mercury? Stase the ratic between the periodit
     Mercury at the sams node happen 7 Upon what princtple ars tranatts of Vemut end echlipess of the Suss and hoon, calcwated? Whas is the sidereal revolution of 1 platiot 7 What it the aynodical revolution 7 What is the time of the ridereal reveLution of Hercury 7 Elate the meathod of computing the ctine of the symodical rewe natios. Compute the aynodical reoolwtion of hercury.

[^173]:    What is the rate per hour of the absolute motion of Mercury in its orbit 1 Of the Earth; What in the mean relative motion of Mercury with reapect to the Earth a What beautifial thar monetimes appears in the wemt a litule after sunset 1 What is tho comparative dis cance of Venus from the $\operatorname{Bun}$ ? What is its comparative brightnosa In what direction in is apparent motion? Why is it never neen at midnight, nor in opponition to the Sun ) As What times is it visible? Huw long after aunget in it when wo firf behold it to the wout Deserites ite chankes of position

[^174]:    In what dinection, and in what time, does Venue revolve about the gum \% What in hot distance from the suan What in the rate per hour of ber motion in her orbit ? In what time doas she revolve on her axis ? How are the king tha of ber day and year, compared with thowe of the Earth How rouch larper doen the Sun appear at Yenug than he doen at the Earth; How much more light and heat does she receive from him, than the gerth; How much farther in Venus from the Sun than Merciry 3 On which side of the orbit of Mercury muat her obtit be? What is her true diameter? In what proportict on bur upparent diameter and brightness constantly vary) What is her distance from the Ewnth Whev they are both on the wame ande of the Fuw?

[^175]:    * In almont all worke on Astronomy, Mersury and Venan are denominated thfertor planets, and the other,, superior. But as theme toram are employed, not to erproset the celative aizs of the planets, but to indicate thelr edtuation with reapeot to the Earth, it would be better to aulopt the terms interior and extertor.

    What in it when they ane on opponite siden of the Ean) Whoh homimphere is turned
     towards un at that time, how would ber fitht and brilliancy be compared with that whici the genertily exhibits, and what woad be her appearance) What to the lowith of her
     Fimots ? Hone to the apparent site of a heavenly body entwated th thit voork 7 . In Fhat cincurntances doen Venurs rise before, and in what zet after, the zun 1 How lons does she continue, each time, alternately moming and evening etar 7 Why does she appear longer on the east or went side of the Bun than the whole time of her periodical revtgrtion around him? Why are Mercury and Venus called Inferior planetal Why are the ther planote termod Eupecior plenete i

[^176]:    How often, in overy ryodical revolntion, will aech of theas planete be in conjppetion on the same side of the Sun that the Earth is? How oflen on the opposito Eide? Explain this. What names distinguish these two apeaien of conjunction 7 How fo the ynodical revolution of Vernes found? Malcs the calewlation. How long in she in parsing from her inferior to her auperior conjunction? How far ie she from the Narth at hor inferior compunction ? How far et her muparior?

[^177]:    * The eminont antronomer, Thomas Dick, LL. D., well tnown in thia country mat the author of the Chrintian Philomopher, Philosophy of a Futury Stato, we., in a reviev oftr remart, observen-"This outht not to lo lad down as a genern! truth. About the year 1813, I made a proat variety of obacrvations on Venus in the day tima, by an equatorial mastrument, and found, that she ouuld be soen when only $1^{\circ} 87$ fiom the Bum's margia, and consequently may be meen at the moment of her auporior conjunetion, when har foocentric latitule, at that time, oquals or exceede $1 \circ 48^{\prime}$. I heve mome faint expectations of being able to see Vonus, in the courte of two or three daya, al ber euperior oogjunction, if the weather be favorralle."-March 3, 1834.

    Why is not her brilliancy proportionably increased in the former rase, and dimininhed in the hatter 1 . What appesrances do Mercury and Venus proment to us at diforent times 1 What suppomition is negevery for the axplanation of thewa phaces I What sytem da they tesnd to retute? What aymem do they confirm ] How afters io Vervis seon whew che is cniftely full Why is ahe not seen at the full afoner? In what part of hor or
     in fhe, alterately, moming and evenins etart

[^178]:    Describe hor apperent motion. How far on each side of the Sun do the vibrations ir Fenue extend) What then is the longess time before suntiss that she appeary in tha eastern hortzon? What the longest time after sunsel that she appears to the westarn 3 What is the direction of her motion while she passea from her wertern to her earsgro elongation! Why is it called direct motion? What in its direction an ahe pasped trom her eastern to her westem elongation 1 Why is it called retrograde? When is hee appareat notion quickeat? When does whe appear atationary 1 When in mhe brichtem ! How arent is her light at this times

[^179]:    Why doen not Venva paed centrally acrome the Sun's disc at every inferior confunction a what circumstancee will she make a transic acoos the sun? How often can this phe nomenon hapgen 7 Why ean it not heppen oftener? Stute the nofthod of predicting tio

[^180]:    *This phenomenon was fint witneazed hy Horrox, a younf sentleman abont g1 yeart Qage, Living in an obecure village 15 nilen north of Liverpool. The tables of Kepler, enr otructed upun the observations of Tycho Brabe, indicated a transit of Venua in 1631, hut pone was obsetved. Horrox, without much ansistanse from booke and inatrumenta, wot Mmeolf to inquire into the error of the tablee, and found that such a phenomenon might ze expected to happen in 1639. He renested his calculations during thin intervel, with ill the carefulneespand onthueiasm of a scholar embitious of being the firs to predict and abserve a celestiul plemomenon, which, from the crgation of the world, had never beels witnesued. Confident of the result, he communicated his expected triumph to a eunf. dential friend residing in Manchester, and denired him to watch for the event, and to take obeervations. Su anxious was thorrox not to fail of witnesaing it hinself, that he commenced his observations the day before it was expected, and remumed them at the riniur of the Ban on the morrow: But the very h/ur when his calrulations led him to expect the visible appearance of Venus upon the Sun's wiwe. wote alon the appoonted hour for the publictuorship of Goo on the Saloath. The delay of a few ainute might deprive im forever of an opportunity of observing the transil. If to vory commencement were cot noticed, clouds might intervene, and conceal it untul the Suan ahould ret ; and nathy a encury and a half would elapne before anoliser opportunity would occur. Hu had beel gaition for the event with the mont ardent anticipation for elight years, end the renult promisod much benefit to the wience Notwithstanding all this, forrox twoice ruapended hia obecrvations, and tiolce repaired to the House of God, the Great Author of the bright worlat he defighted to oontemplate. When his duty wait thas perfurmed, and ho had returnod io his chamber the recond time, hin love of science whe gratified with full nuccest ; and nc saw what no mortal eye had nherved beforg 1

    - If any thing can add intersat to this ircident, it is the modesty with which the pouns entronomer apologizes to the work, for surpending his observationa at all.
    "I obeerved u." nays he, "from sunrias till nine o'clock, again a litlie before ten, and lasely at noon, and from one to two oclock; the rest of the day being devoted to idghor dutien, which maht not be neglertad for these pastimen."
    Aher how long an in'erval may a tranetit of Venus happen again as the some node? Uf do not happen then, howo long a period muse elappe befors it will occur ajait the same node? Where does the orbit of Venue crose the ecliptic, and where ard Mor nodes? In what months, for anes to come, will the tranatio of Veaun happen, and Why 1 At which node, and when did the first trensit of Vinaes ever koown to tave beed werved, take pladel' When will Uke nerst two transits ocour?

[^181]:    So important, gays Sir John Ferschel, have these observations appeared to astronomers, that at the last transit of Venus, in 1769, expeditions were fitted out, on the most efficient scale, by the British, French, Rusaian, and other governments, to the vemotest corners of the globe, for the express purpose of mating them The celebrated expedition of Captain Cool to Otaheite, was one of them. The general result of all the observations made on thia most memorable occusion, given $8^{\prime \prime} .5776$ for the Sun's horizontal parallar.

[^182]:    Why will the next tramit excite a very great and universal interect 1 Upon what do the phenomens of the seamons of each of the planets depend 7 What is the estimated inclinaton of the axis of Venue to the plane of her orfit? How does this inclination compate with that of the Earth's axin to the plane of the ecliptic? What seasong have the north en parts of Yenue, wheo thoge of the Earth have winter, How do wr know this) To What muat the declination of the Sun on each aile of her equator be equel' 1 How far are mart trupice from her ynlos, and her dolar circlas from har squator ]

[^183]:    - That in, half of Venur' your, or 16 woeks.

[^184]:    How much more muat the Sun change hin doclination in one day at Venue than on the Erch1 Why, perhape, is this mordered 7 How many dayw and vighte bave her poly Embitants dunng the year? How long are these days and niehte, compared with ther
     circles 3 What is the length of the wimten in this zone, compered with that of the wres mer!? What appearances, beaidea har moon-lite phasen, doen Venus exhibit when men therorgh a auod telescop:

[^185]:    

[^186]:    Why in it more difficult to perceive the inequalitien on her surfices than thone on the wher planeti 3 In which hemisphere are her mountains higheas 3 What doae M. Schwoe cor runte the altitude of some of the highest In this entimate confirmed by the otberve tiona of Dr. Hemehel) How long is the diameter of Venus aceordine to Hernetefis ge cimate 7 How much larger, then, must abe be than the Earth 3 Some astrococewt that thoy have neen Varus attended by a eatelfite, why do otheny deny the eq ? guch a body? Why is it imporennt, in an astronomical riew, to be acauniptect yot Gure, dimonsions, and motions of the Earth Mention some of the prook of the conwadter of its surfice:

[^187]:     ry, accompanied by four other vemels. In Aprif, 152l, ise was tilled in a alirpish with The nativen, at tho island of Sebu, or Zebu, sometimes called Matan, one of chay Phifp-
    

    Frot aulled arousd the Eartht Describe briefly hts voyage. Who next citr: cumanavigated the Rarth 7 Descr tbe he voyage Mention the names of wome of thowd who hate siace accompltahed this enterprise What may we infer from these facts in mard w the figure of the Earth 1 How in the eoovexity of bes eurfase proved?

[^188]:    To what to the converity proportional 3 Etate the rule, dedrucod from chis flech for finding the height of an object, when twe distance from wo it gtoen. Air the Tule for finding the disiance tohen the neight is gtves. State the rule for 2he curparture of the Earth when the distance exceede a mille is the firure of stie inch an axact ephere? Were the Earth a perfect aphere, how would the leagth of the deveuen of latituda be, compared with each othier ? Howere ther, in fict?

[^189]:    What is tine levgth of a degree as the Aretic circle, compared with a degres at the equator, a found by the monsurements of different mathornaticians? What hate they found to be the ratio of incroase for the intermedtate degrees? What thoort wo theye facts confirm? What is the length of the Earth's equatorial diameter, an fouma by theme measurementa? What, her polar diameter ? What is the difference between the tivo? What ia her mean diametcr? What have the French academy determined to be the eract mean diameter from the 45th derree of north latitude to the opposite degree of wouth letitude? Mhustrate the msthod of Anding the diameter of the Earth from her 3rmatere, on the supposition that her fgwre ts ane exact ophere. What to the lengith If her diameter as thuta found? How is inte, compared wo ith the equatorial diameter, of freind by the woet ciabonate calleukstione? What in the position of the Earth in the golar Byicem 1

[^190]:    What revolutions doen it perform, and in what direction? What is the time oceupied hat tach of these revolutions? By what terms are these revolutiona distinguished, end what mportant effects do they prouluce? What is the Earth's mean distance from the Sun What is the mean rate of its motion in its ortit per hour \% What is the rute of its revols
    

[^191]:     chatid duy? Wheat is a molar diay 1

[^192]:    What part of a mecond revolution does the Earth complete in every solar day? How many timea, then, does it tum on its axis in 365 days ) How many niderealdans are thew in a years. On any planet, what is the number of the sidereal days comuard with it a number of the nolar) jllustrate the diffremencer hit wer'n dhe siklurctil and solar days by fu
    

[^193]:    If the Earth revolved on itn aris but once a year, and in the same direction as it revolven eround the Bun, what would be the consequence at it reparde day and nught? It tente gruody reported come yeurs ago by an American ship, that in sailtng over the oceanh i found six sundays in February; please explain this. Why are the sidereal day afreyn of the ame leagth ) What are the caused of the difference in the length of if molar days?

[^194]:    What in meant by the expreation, equation of time? Illuatrate the diforonce hatwent
     danets 1 in what point of the urtits is the sun situnted?

[^195]:     How, and how many in tie perithalion, in every revolution 7 Ifow much Jrithor
     Darth's orbit is the Stest Flow doar the equinoctial divide the Barth': mbitt Why does the Bun remain lonser on the aorth fide of the equator in summer, than it dow on the south side in winter ? What are the Rarth's A pagee and Perigee 7 Dy what common name sre theas too potnts deefemated 1 When in the Gerth in it Peringlion When in ita Aphelion) Are we nearer the Sun in aummer than in vineer? How mueh mearer are we in winter than in cumapery Why do we not have the hotten wrathe whon we are nearest the Ban

[^196]:    As the Earth revolves about the Bun, what is the position of its axin $\%$ Sthould ity aria olwayk point to the centre of ite orsit, how would external objecte appear to ual what important purposes does the Moon perve to the astronomer ? of what mporiance are bee phenomena to the navigator What nations usted to uspemble at the time of the naw eft
    

[^197]:    How is it known that the Meon does not shine by ber own light 3 . About what does the Moon revolve, and what is the firure of her ortit? What in the time of ber revolutum from one new Moon to another) What is this revolution derominated) What in har pe miodic or nidereal revolution ] In what time is this accomplished)

[^198]:    To what in the diffirence of time in theme two gevolutions owing F Fow yetat in at crance of the Moon from the Earth, compared with that of the obser heavenk bodiet What is her diatapes from us 1 What in her motion in her ortit, compared with in Jarth's 7 How many thoned does ehe revolve around the garth, every reari The appe.
     fe to to be whiderstood thas the purses through a correspondent spade? Deteribe it Mon'm patl

[^199]:    What is hermagnitude, eompared with that of the other hearenly bodiea 1 What is her diameter? How great are her gurface and her bult, compared with those of the Diarth? How many ruch bodien would it require to equal the volume of the Bun? Why docs eht appear as large as the sun, whon in reality nhe is 80 much lenal What is the time of ber nevolution on her axis, compared with that of her revolution around the Earth 7 How is this proved? How many days and nighta then bas she in the course of ber eynodical rovolution? What is the length of both united 1 seacribe the phenomena of the Ferth at cent by the inhabitante of the Moon

[^200]:    *This is Mons Bouquer's inference, from his experimenta, as atated by La Place, in Le work, p. 42 The remult of Dr. Wollantpa's computationa wat difierept Profersoor Lentie makes the light of the Moon 150,000 timen lene than that of the Suan : it was formery reckoned 100,000 timeer lens.

[^201]:    As the Earth revolvem on its axis, how do its continents, meas, and islande, appear to the lunar inhabitantul For what purpowen may these apota merve to the lunarians? What ere the periods of the Moon'e prewerice and absence to the polar inhabitanta ? Explain thin. Why cannot the Moon hawe any mennible divessity of ceasonal. What then may we infer to be the character of ber atmosphere) What is the ouantity of lirbt which the afforids when full, compared with that of the Sun 3 Describe the mppearatice of the Moon when meen throunh a eood telencope. What mountaina of the Eerth does her montain aconery rewambie?

[^202]:    Demeribe the appearance of her mountains. On what part of her dise is that ranye of mountains called the Appenines, aituated ? Dencribe it What remarkable feature in the Koon's surface bears no analogy to any thing obnervable on the Earth's aufaca 1 Deweribp \#heir appearance. What is the numler of remarkalle spots in the Moon's surface, whoeg titude and longitude have been accuratoly determined What is the number of mode and nheel, sa they were former'y considered, vhome dimensiona are known?

[^203]:    - Brewster's Beleparraphy. The beal maps of the Moon hithorto published, are thowe by Schroeter ; but the moit curious and complete representation of the telescopic and netural appearancen sf the Moon, in to bs aoen on Rusel's Lanar Globe Bee aloo Sclemosraphia, by C. Blunt.

    What is the number of peaks and mountaina whoee perpendicular elevation varien frome a fourth of a mile to five milea, and whose beses are from one to seventy miles in lendit What io Selenosraphy 7 Give an illustration to enable us to form some idea of mone of tese menes. Which apots are the mountainoun resiona, and which the plains 1 Do artonompers now puppoua, at they did formery, that there are large collections of water on How Moon' nurface i Are any of her mountaina and valleys vinible to the nakgad eye) How mall a upot on the Moon's surface can be seen by a telescope which magrifies 1 to Thes 1 How emall an entightened object calr he geen by one which magnifies 1000 timen montion tow puiblic edifioes which are of nearly the same dimench mation

[^204]:    How wero eolipan retarded in the early sgee of antiquity? To what purpoos do she
     nuttvee of Marico demean thampelves during an oclipuo? Why do they do phis? What notione haves some of the northern sribos of Endians entertained quith repard so ectipres of the Mfoon 7 Relote the anecdote of Cohmbure estricatinf hid acalf and whe ereno from distress, by avriting himeself of the ouperatitious motions, 'the no dipee of Jamaica in regard to echigues. What causen ectipeen of the siun) Wi i canser eclifeen of the Movi)

[^205]:    In what direction doem every planet of the colar aystem cast a shadow? That in thie ehadow, and to what is it propertional? If the Sun and planet were both of the eame magniude, what would be the form of the sbadow, and ita diameter? if the planet were faryer than the Sun, what would be the form of the shadow? But as the gun is much lareer than any of the planets, what must be the form of their shadow, and to what are they proportional? Why can no one of the primary planets eclippe another? Exs plain hoos, on certain occationa, they may echipue theit casclitter, and ow othere bu eifipsed by them. When the gun is at hingreatest diatance from the Enth, and the Hoon at her least distance, how far will her shadow exteod; When the Sun is at hie zeast dintance, and the Moon at her grewrem? When the Eun and Moon aro bothat thet meacm distances? In the fint cave, in yohat ctreumatances will the Moon's shadow fill ventrally on tha Earth, and what will be its dgure and diamoter? How will the Sun ap par to all placee lying with in this dark apos? Describe zhe efrat of the dirth's motions. durting the cellpes, wpon thie circular arsak

[^206]:    In either of the other cases, the wame circumatances oscuring as before, what wi: be the appearance of the Sun? Why does not the Moon, In this came, eause a total eclipne? When tidd the frat ecilpwe of this kind, ever viedibis in the United Etates, hapgen? How long did the huminous ring, along tot path, remain uniroteon? When
     nerpme?

[^207]:    Whaf are the limile between which the Moon'a shadowo varien in ectipwes? What so she difference betwoen these two limits 7 What are the limits of her distances from the Earth) What is , he difference between them, What is the greatest breadich of any poot on the Earth's surface, to which a central eclipae of the sua can be total? What in the breadth of the areateat space over which the Sun can be more or lesa partiallf eclipsed ${ }^{3}$ Is the penumbra of the Moon at the Earth's surface tn ectippes altocrys ir culat? In zohas circumotances will the shadow be projected abllywely over the Eerith's surface? Must the shadoto reach the Earth, ot produce a partial ectipen? What is the cratiest apparent dirtance between the Sun and Hoon, within qohich suck ar rerult voill cake place? Why in not the sun eclipsed at the time of every now Moon, and the Moon at every full I In what circumstancer will an eclipse of the Sun, and in what an eclipes
    of the Aocon, happen?

[^208]:    In what circumstances is the Sun centrally eclipeed 1 . What in the ratio betwaen the Moon's distance from her node, and the number of diwits that the gun in eclipped ) What are these limita called J Will there alwisn be eclipmes when the Moon in within these limits? What in the ecliptic limitfor the Sum? What ts fifor the Moon 1 What rember of diegrees, ihen, are there about each node, and horo many out of $350^{\circ}$, th wohich tolar ecliperes can happen? Horo many in which lunar eclipses urually haypen 7 What then to the proportion of the colar to the lunar ectipses Why then are there more eclipses of the Moon visible at any given place than of the Sunt What is the croateat poamible duration of the annular appearance of a molar ectipee, What is the creatent posible duration of total solar eclipeo to any part of the world 1 What is the Ereatent daration of a total lunar eclipes 1 On wich side of the Sun do solar eclipsea dwaye begin, and on which do they end) On which side of the Moon do lunar eclipes alway begin, and on which do they end? In what circumstances is the Moon totally eclipaed? Beyond what distance from her node, if she be, will she only touch the Rarth's shadow, and nos be eclipsed 3 On wohat then does the duration of lunar ectiters depend? In what eitcumstances is the duration of the lunar eclippe the iongest possilies What ts the length gf the greateat duration of a tunar ecitpoce 1 With witat does the derrution of ecidper, thot central, vary?

[^209]:    What in the diameter of the Earth'n ahndow at the distance of the Moons What in the length of the Earth's ahadow? What is their ratio to each other) Betresen aphas
     Troon, wary? What it the breadik of the Earth' othe foon? What is a lunation 7 How many days does a lunation embrece? Why do年 all eclipeas happon in the same months of the yeart How fir do the Moou's nodes till back in the ecliptic anoualiy, and how mach sooner do the eclipeen happen every

[^210]:    The cause of thim variety is thum accounted for. Although the Sun usually pasmes by both nodes only once in a year, he may pass the mame node again a little before the end of the year. In consequence of the retrograde motion of the Moon's nodes, he will come to either of them 173 daye aner passing the other. He may, therefore, return to the mame node in about 346 daya, having thus passed one node trice and the other once, making each time at each, na eclipee of both the Sun and the Moon, or, sis in all. And since 12 lunatione, or 854 days from the first eclipee, in the beginning of the year, leave room for another new Moon before the close of the year, and since this new Moon may fall within the ecliptic limit, it is postible for the Bun to be eclipsed again. Thua there may be seven eclipeet in the same year.

    * If there are fowr loap yeara in thin interval, add 11 dayn ; but if there are five, add only ten day.

[^211]:    In what time does the Moon pease from one of her nodes to the other? What in the length of the time which elapsen between two successive echipere of the Sun or the Moon? After there have boen eclipses at one node, in what time may we be aure that there will be eclipses at the other? In what time do the Moon's nodes complete a backoard revolusion arotund the ecliptic) Why is there not alvays a regular pertod of eclipues in this timel if the Bun and Moon should both atart from a lime of conjunction woith either node, horo many resolutions would the Sun perform, and how many lunations the Mcon, befors the node would come around to the same poins agatn 3 Sther hoto many lunations tolll the Sun, Moon, and Earth, return no nearly to the same position woith respect to each other, that there voll be a regular return of the same eclipnes for many ages) What nalion diacovered thia grand period. and what did they call 4 ? What is the mode of predicting eclipeses, with wohich this fact furnishes us? How many eclipses are there usually in thes periodi. What is the feast, and what the greateat number of eclipwes, in any one year? In the former cate, what eclipses will they be? What, in the katter) What is the usual number of ectipnes in the rear, and what eclipwen are they? Pleare esplats the cause of this varisty.

[^212]:    What is the position of Mars in the solar nystem 1 Describe its appearance to the maked eys. When does it exhibit its greatcst brilliancy? Why is it most brilliant at this time? What are ita least and ereatest diatances frutn in 1 How mual barpor doed it enopenr in the former case than in the latter?

[^213]:    Within what lintis docs she diatance of all the planeta from the Barth exary 2 With ephat does the appationt diometer of a planet vary？What moon－Hire phaves has Mars ？What does the fact，that it never anaumes the crascent form at its conjunction， prove，in regard to its aituation？How do we know it to be opaque？．What in the rate of jtg motion through the constellations of the zodiac，compared with that of the Sarth？How long is it in pansing over one sign？At what rate per day is this？ How，then，if we know in what constellation it is at any one time，may we determine in what conatellation it will be at any aubsequent time In what time does it per－ form its revolution around the Sun？What is its distance from the gun？What is the mean rate of its motion in ite orbit per hour）In what time does it perform it revolution on its axis？What，then．is the length of jts day，compared with that of the barth？In vohat time does it perform ite mean oddereal revolutions In what tima， ser aynodical rovolution；What we its firm and dimentional

[^214]:    What, then, is its bulk, compared with the Earth'a, and how much less light and heat does it receive from the Sun 7 What is the inchination of ita axis to the plane of its orbit 7 How are its geasons, compared with those of the Earth? In what particulars is thers agreater analogy between Mars and the Earth, than between the Earth and any other planet in the colar mystem? What muat be the appearance of the Farth to a apectator ot Mars? What in the greatent distance from the Earth at which our Moon will appear to him to be? Why may we reasonably conclude that Mars has no actuelitit? bescrithe the progrest of Mars ihrough the heavens. What ayetem do these retrogradte movements and stations, common to all the planets as seen from the Barth, aros $\omega$ enfablish? What are the telescopic phonomena of Mari?

[^215]:    How does Dr. Herschel account for themg How mav the zemartable rednent of the Hight of Mar be acteranted fort

[^216]:    The datea of their discovery, and the names of their discoverers, are as follown:

    > Ceres, Jan. 1, 1801, by M. Piazsi, of Palermo. Pallas, March 28,180 , by M, OLbers, of Bremen. Juo, September 1, 1804 , by. M. Harding, of Bremen Vesta, March 29,1807 , by M. Olbers, of Bremen.

[^217]:    * Accurding to him, the dirtances of the planeta may be expreseed nearis as follow: the Earth's distance from the Sun being 10 .

    | Mercury | 4 | - |  | Asteroids | $4+3 \times{ }^{23}$ | m | 28 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Venus | $4+3 \times 1$ | - | 1 | Jupler | $4+3 \times 24$ | $\cdots$ | 52 |
    | The Earth | $4+3{ }^{2}$ | $=$ | 10 | Satura | $4+3 \times 2$ | - | 100 |
    | Mars | $4+3 \times 2$ | - | 16 | Herschel | $4+3 \times{ }^{5}$ |  | 196 |

    Comparing these valuen with the actual mean distances of the planeta froro the Sua, we cannot but remark the near agreement, and asn besreely hesilate to pronounce that the respective distancen of the planets firom the Sun, were assigned accordiog to a law, although we are entirely ignorant of the exact law, and of the rearon for that lew.-ETrincley's Elementn, p. 8 .

[^218]:    What new planets have been dierovered within the present contury? Where are thay dituated What are the dates of thetr discovery, and the names of inetr diceoverars) Why did Bode infor that there was a plenet wanturg between Mara end Jupitar.

[^219]:    In what particulary do these new planets differ from the older planetel How in it poasible that two of them ahould ever come into collinion 7 . How in it that veata in sometimes farthoi from the Sun than either Ceres, Pallas, or Juno, when her mean di. tance is many millionn of miles leas than theira 1 What is the position of her orbit with regard to their orbitin What theory in regard tw the oricin of these planete have woode etronomere derived from theme and some other circumatances) Who fint conceived chis ideal. How came he to have this idea? Where did he imagine other frate. menta might be found 7 in what constellations did he find thase nodes to be? Where were the planotis Juno and Yeata actually found 1 How did Dr. Olben dicover Veate)

[^220]:    To what does Dr. Brevastor attribute the fall of meteoric atones? What is meanat by the esprawion mastorte atones 3 af tohat substance are they composed ? In ohat tozpect do they diter from any metallie rubstances icnoton on the Barth? What findtiontome generally precede thetr fally In tohat state are they fourd to ba after thebr dogoms Whas to thedr magnituris? What theorios have bees adopted to accoumt for thelr origin? Explain how it is not tinposetble that they may come from the Moom. Describe the appapance of Vesta.

[^221]:    What is the planet next in order after Vesta? In what time does she complete her revolution around the Sun? What is her mean distance from him? What the rate of her motion per hour?. What is the length of her diameter \% How much less, then, is her magnitude; than that of the Earth? How much light and heat does she receive from the Sun, compared with those received by the Earth? How much greatef is her greatest distance from the Sun, than her least distance? How much less time does she occupy in moving through that half of her orbit which is nearest to the Sun, than she does in moving through that half which is farthest from him? What is her diameter according to Schroeter? According to the same astronamer, what is the density of her atmosphere, compared with that of the other planets? To what does he attribute the variation in her brilliancy? What is the next planet in order after Juno ? In what time does she complete her revolution about ihe Sun ? What is her mean distance from him? What is the rate of her motion per hour? What is her diameter? How great is her magritude, compared with that of the Earth? What is the intensity of the light and heat which she receives from the sun, compared with that of those received by the Ear:h ' Dtseribe her ajpearance.

[^222]:    How high, according to Schroeter, is the atmosphere formed by this nebulous light Why did astronomers congratulate themselves at the discovery of this planet? What again introduced confusion and difficulty into their system? How were they at length enabled to solve the difficulty? What planet is the next in order after Ceres? In what time does she complete her revolution around the Sun? What is her mean distance from him? What is the rate of her motion in her orbit per hour? What is her diameter? How great is it compared with the diameter of the Moon? What is the difference between the respective distances of Ceres and Pallas from the Sun? What is the difference between the times of their sidereal revolutions? Why is the calcutation of the latitude and longitude of the asteroids a labour of extreme difficulty? Have any of the asteroids rotations on their axes? Which is the largest planet of the solar systern? How may Jupiter be readily distinguished from the fixed stars? How much farther is he from the Sun than Venus?

[^223]:    In what case in he our morning ntar, and in what our evening? How may he be traced anons the constellations of the Zudiac? In what constelation will ho be, each year, fir twelve yearn to come 9 What is his pusition in the solar syatem 7 . What is his mean diatance from the Sun) What is the rate per hour of his molion in his orbit ? What to the asact pertod of his efder cal revolution? What is his exacs mean distance from the Swn ? What the exact rate per hour of his motion in his orbit? What in the position of his uxis with nespect to the plane of hie ortit? How many days and nithtr doee his year contain? How long are they, each? What in his form? What is the ratio botween his uolar and rquatorial diametert? What is che cauce of his being more fattenod th the poles than ang of the other plapets?

[^224]:    What ia the dfference detrocen his polar and aquarorial dianctery? Whes ion Mt form appear to be, through a good telescope? What to the direedion of ab longer diameter 7 At what rate per hour are hif equatorial inhabitarte carried by moeion on hif axie? How much farther is thia than the equatorial inhabitants of the
     Froater is it than the Earth's 7 What in him volume, compared with the Farth'e 1 What Ethe degree of lizht and heat which ha receives from the sum, compared with that re ceived by the Earth Fino do eoc kenoto that 5 tupltarts orbit is extertor to that of the Farth 7 What in the criangement of Jupiter's masona, and of hin day and nishtist
     Fis polar nights inve been?

[^225]:    Dencribe Jupiter's appearance, an esfu throanh a telescape. What in supposed to be
     eatronomers on thes oubject.

[^226]:    How many satelliten has Jupiter; How often aro they visible to him? What is that distance from him of his firnt or neareat atellite? What is the time of its revolution! What in its apparent magnitude at the aurface of Jupiter, compared with the magnituda of tae Moon, as aeen oy us 7 What are the apparent magnitudes of his other antellitet, as seen at his gurface, compared with that of the Momn as seen at the Earth? What in the distanoe of his fourth matellite from him? What is the time of ite revolution) How offen are hia three nearest satellitep eclipeec' 1 How often his fourth 1 Why is it not eclipsed an often as the others? What imporint purpones have these eclipwed werved to stronomers s State the method by tohich the progrennive motion of lith, and ith stme so lich is necupten in coming to ut frotn the Pun, vears diecouaris

[^227]:    In what respect are Jupiter's matelliten an opitome of the rolar syatem? What is Jupf tor't appearance, as zeen from his neareat matelitel What are the diamezera, mean dit tances, and timas of the revolution of his sazellites? Where, in the solar ayntem, in Baturn situated? How may it be distinguished from the Gixed start ? what star doen it rememble? In what reepeete it it tike it, and in what is it different from it ? How may hia plece among the start bo roedily fuund 7 What in about the rete of hin meen daily moEon among the itara) Whan did Baturn enser the constellation Virgo, and hovolont ded he conimue in in 7 what constallation ded he onfer mesk, and hoso long wedl ha consinue in \& ${ }^{2}$ ?

[^228]:    Hono long time does he ocewpy in pasaing through each constellation, and what te ene length of hts year? What in his distance from the Sun? How much greater in this than Jupiter's ditance? What is his diameter? How much greater is his volume then that of the Earth 3 What is the rate per hour of his motion in his orbit? In what time is hie diumal motion on his axis performed. How many of his own days does hia year cont tain, and how many of ours? What in the appearance of hin surface to us? How many belts did Dr. Herschel peroeive on his surface? Describe them. How much leas does the Eun appear to the inhabitants of Baturn than to us ? What degree of lighe and heat done he ,eveive from the sun, compared with that received by the Earth? To the lightof how many full mooos in thin doaree of light equali Describe the telescooic appoerance (fentama)

[^229]:    Why theald we judre, previous to aborvation, that aboes ringe muet revolvi Wrownd him 7 Does obecrvation contirm thid optriom? In eohas time do ine rity
    
    
     mons of ins rimge with regurd to ath ocitwiel

[^230]:    What is the longifude of these noder 7 In vonat portion of Karave, shew, will she rivge bs inviaible to ens, and trs tohat porition will they be seen to the deas adeantage 5
     toill tha pland be zohen the Sun shitet on the sowth side of the rings, and in what on tha \#orth side? What is the dirtance between Satum and his inner ring? How ereat in yhit, compared with the distapce of our Moon from the Earth? What is the dintance be trieen the two ringat What is the breaith of the inner cing? What muat be its appear coce at Jatum ? What is the most obvious une of this doukio ring? How long a tima
     eos, in neither side entightened, and the ring, of curucte, invinible?

[^231]:    *This happeng, as we have already shown, when Baturn in either in the 20th degree of Pisces, or the 2ath degres of Virgo. When be is between these points, or in the wth de free either of Gomini or of Aagitariua, his ring appears most open to un, and more in the form of an ovel, whose longest diameter is to the ahortest en to 4.

[^232]:    In what time does the riog complete ita rovolution on ita axin, and of course, around the planet 7 What is the rate per minute of itirmotion? How rapid if this, compared with the motion of the Earth's equator 1 What would be the appearance of the rings, is riewed from the middle zone of the planet, in the ahwence of the Sun 1 How many moon has Batum) How are Baturn, his rings and aatelites, eeveraily, enlightened 3 What are the dates of thetr discovery, and the nopice of thoir discoverores ? What are the empparative magnitudes, distances, and times of revolution? What in the potition of - cir orbits with respect to the rings of Paturn? What doct Laplace tmatrine rataine
    

[^233]:    The following table exhibite the apparent and mean distances of the satellited from their primary, and the times of their periodical revolution. Their distances in sulies were computed from their observed micrometer dietances; the drameter of Eaturn'a equater being considered equal to 8,000 milen.

[^234]:    Why are mitronoment lons mequafated with the mean dixtenoen ard repolntion of Dow
    

[^235]:    - Elequarine of the gear seen.

[^236]:    What in the relative dimance of the planet Hersobel firon tho Stual What is its appere ance to the naked eyel th what circuunatancen can it be seon? What in the rita of moction in ith ortit? What in its present position? What wan its position when firs dis covered to be a planet 1 How much, then, of ith mpolution has been completed, efncel wan first ditcovored ? it hovo early a date was this body observed in the heavene
     ween by them, respectively? What did they conrider it ta be 7 What led astronoment to suppose that there existed another planet beyond Baturn? Whon and by whom wha dinuechal dincoversed to be a planet) How many moong has it 7

[^237]:    By whom were Herachel's satellitas discovered? What in the distance of Herschelm otbit from the Sun? How much greater is this diatance than that of Satum) In what ame in his sidereal revolution perfoniped? What is the rate per bour of his motion in hat orbit ? Has lue a rutation on his axis? What is his diameter entimated to be ? How much larger would this make his volume than the Earth 1 How much leas doen the Sug ampear to be to the inhabitants of Henchel, than he dous to un 7 What degree of light and Teet do they receive from him, compared with that neceived by the Earth 3 To the ligit of bow many full monn is this dearee of lisht equal , What reewon have wo to suppon

[^238]:    What feelinat doen the cootemplation of cornets maturally excite? How are coment di-linguinbed trom the ocher heavenly bodies 1 Deacribe their appearance and motion.
     enverally.

[^239]:    Have all comets thene three partal What apparent differencen may be perceived in The componjion of different cometh 1 Into what claseses, with reference to their oopmpon: Gon, may comets be divided; Describe the different apperances of cocoeta at difisrent diatances from the sun. In what part of tocir orbit are their phenomepa meen to the bed dvantuge What in uasully the direction of the lumimour train?
    Whon of the tail of the comet of 17447 of thet of lesy?

[^240]:    "That the luminous part of a comet," says Bir John Hersehel, "is some thing in the nature of a smoke, fog, or cloud, suspended in a transpareut atmosphere, is evident from a fact which has been cfen noticed, viz that

[^241]:    How many tails had the comet of 1744 at one time, and how long did they continue to appear? How many had that of 1823, and what wan their direction) When cometa pu reer planeta, how does the attraction of the planete affect them I In resard to what pla: net is this remarkably true? Mention an example of comets being so affected. What fact connected with this case proves the aeriform nature of the comet's mass? How im it elear from observation that comets contain very little matter? What weve the opi nions of Tycho Brahe, Apmian, Kepler, Euler, Sir Isaac Newton, and Dr. Hamilton, in regard to the taile of comets? What was the opinion of Sir John Herschel, and m shat founded?

[^242]:    How have comets been reparded by ths ignorant and supentitions, Mention some of the mont remartable comett whioh have appeared. Degcribe them severally, and roiate enmet? masear they were eveverally ryparded; Whas is the periodic time of athit

[^243]:    - In Brewater' edition of Ferguson, this distance is etated a only 49,000 miles. Thin - evidently a mistake; for if the comet approached the Bun's centere within 49,0 willes, \& would penetrate 30,000 milen below the surface! Taking Ferguson's own elements por computing the perimelion distance, the recult will be 494,460 milen. The miatake may be acoounter for by cupposing that the cipher bad been onpitted in the copy, and the period pointed off one figure farther to the left. Yet, with this alteration, it would still be incorpect; because the Earth'a mean diatance from the Sun, which is the integer of this calcuLition, is astamed at $82,000,000$ of milet. The ratio of the comet's peribelion distanot from tha Bun, to the Darth's mean distance, as given by M. Piogre, is at 0,00603 to I. Thit multiplied into $55,273,800$, givea 574,500 miles for the comet's perihelion distance from tho Sun's centre; from which, if sre subatract his peni-diameter, 443,940 miles, we shall have 180,680 milen, the diatance of the comet from the nurface of the Sun.
    Again, if we divicke the Earth'm mean distance from the Gun, by the comet'm periheling dimance, we shall find that the latter ia only the 1-166th part of the Earth'a diatance. Now the square of 166 is 27 sio6; and thin expresees the number of times that the Sun sursant derger to the comet, in the above situation, than it doet to the Earth. gerizr makes is 8 , 996 times larger.
    According to Newton, the velocity in 880,000 milen per hour. More reoent discoverian mincete a velocity of $1,240,108$ miles per bous.

[^244]:    What in the degree of heat to which the comet of 1090 in expowed, when in ite perihelion, ocompared to that experienced at the Earth 7 . What in the intensity of wwoh a degree of beat, compared with that of red-hot iron, or with any degres of beat which we are able to produce? What inference may be derived from this fact in regard to the compoition of Eombeta) What were the reverice of Dr. Whiston and others in regard to this compet 1 What facte ought to make us eease to wonder that cometa were in darker ages consider ed an barbingers of evil? Have these phantagies, however, been confined to the darkef traty f

[^245]:    Deacribe thin comet. Give some acamples of the velocity of comets. What wownd probably be the effect upons the Earth, shousld a comet strike tif? What doas Dr. Brewo wer way wouth be the affect of a comet pasithy near the Earth? But if the Rarlh were arcialty to recelve a shock from a comet, what does he say would be the results? How did the French mathematicians and antronomers find the chancea of a colliaion be tween the Earth and compts to stand? What, then, on the suppposition that a atroke of Gcomet would annihilate the qohole human race, is the danger of death to euch thctoidecel, resubting from the appearasce of an unimiovon comet?

[^246]:    * Owing to the disturting infuences of the surrounding planets, the periodic retwn of bie comet, Hike that of all othera, is liable to be hastened or retarded peveral dagh It seriod varies from about 1\$03 to 1212 days.
    What in the direction of comets in their orbitg ? What has been, until within a few Years, the universal opinion in regard to the length of the times of their revolution why does not the same opigion prevail now, What aro these two comets denominated ? Relate the history of the discovery of the first. Why is it called Encke's comet 7 What is the time of the revolution of Encke's comet? What is the form ef its ortit and what it praition with regard to the orbit of Jupiter? What is this comets mean distance frum the sun) What in the ece entricity of ite oftit?

[^247]:    Finw much nearer the Bon, then, it the comet, when in itm perinalion than when in ith aphelion 7 In what yearm lan thig comet been mean in the United Btated $]$ why whe it not visible in the United Staten at the time of it return in 18599 Relate the history of the fiscovery of the recond comot of a $\quad$ hort period? Why it it elled Biela's comet 1 What sccording to the observations of Dr. Olbers in 1805 , was the diameter of Bielate gomet, inpluding the cnvelope? How near does the path of Biela'z compt lie to that of the Bartht Wisat would wa the effect upon our atmosphere should the nebulous atmosphere of tha momet envelupe it? What reason have we to suppose that it is ruore attenuated than w tinasilume? It wat predicted that this comet would come into collipion with tris. Earth: What wers tue groands of probability that auch on event w Id tato place, and rlay did it not 7

[^248]:    What wan ite nearest approach to the Earth at any time? What ite nearent appronet to the Sun 7 What its mean digtance from the Sun 7 What its eccentricity 7 What then, in the differance between its perihelion and aphefion distances? What is the period ©ita nidereal revolution) Why are the comete af Encke and Bitela objecte of lesie tnea reaf to physical astronomy than those of longer periode? What in the nitsation of the mbitt of Biela's comat in the nolar syatem ?

[^249]:    When will this eomet retun again 1 How moch did its actual poeltion from day to day, as observed by Herachel, differ from tis culculated positton 7 Why was it 10 s
     Hed it eoth the comet of 1 Tr2 and 18051 . What were the opinions of astmonumert in receand to the rath of cometa, up to the beginning of the tith exantury? Whativere Kerimet's

[^250]:    Who finat discovered the identity of comets) Relate the manner by which he came to this diseovery. How many of all the comets obeerved since the Christian era, have had their elements so well determined, that astronomers are able to fix the period of their revotat ons, and to predict the time and circumstance of their appeannoce? What comets are trewa 7 In what time do they accomplish their revolutions 3 When will they, severally, retum to their perihelion 9 Whas comet is note (Oet. 1835, visible? What are
     What patt of the digtance beyond which the nearest of the flxed stars must il pla eed, in lis aphoiton dintance?

[^251]:    What ta the number of comets which have boen observed atnce the Christion ens? Why must onme of thom eecapd obecroation 3 How great is prodably thetr actwal number 7 In what case alone can comets which travaras the hortzon th the dex atone bacome vistble? Ifention an thatance of a comet thue becomtny pietble? What io the reanoxing of I. Arago in regard to the number of ommetr 7 Describa the track among the orbite of the planefs, of the of cometo whore elements hape beew comeutated by aftronomere. In cohat dircction do they move? Whas, up to the yeaw isela was che whole nuinber af dittinct comets, whose path. during the otrible pati
    

[^252]:    Who discovered thim great truth, and how was he affacted in vew of ks What in meant by gruvitation? To what is it proportioned? (live torse example. How is in tnown that the ateraction of grevitation is reciprocal? Give some examplen to ifluatraly chin principle. Where is the power of terrestrial gravitation the sreatentl From thit point, does the power decrease equally, both upwarda and downwarda 1 What is thy luw of decrease upioarde? Give an eximple. What is the law of derrean downuoarde? Cive an example.

[^253]:    What in the relation between weight and estavity? Mistrate it by some examplen What, then, if the goneral tase in regard to the increase and decrease of attraction 7 How may this law be expressed, in the form of a pructical rule? Suppite, for esample, he aamb-diameter of the Earth be estimated, in round nusinbert, at 4000 milles, and in at a body, clevated 9000 milles abvos its rurface, ahondd weigh 40 poundt, what wowld the same body toeigh, of brought to the Earth's aurface? Suppose \& body which wetghs 255 pounds upon the surfacs of the Earth, be ratoed to the diftastee of the Noon, what would be tis woight as atich an elevation 7 [The pupil should be wguired to give the calculation, as well as the answer. 1 By what rute can wee determitac me heligh to vohich a body must be raised, in order to tus lostng a certain porrion of ttr voeisht give an example. Do boikes of the same magnitude always contain econal quantitite of matter!

[^254]:    What are the comparative bulks and densities of the Sun and the Darth F Fow areat in the quantity of matter in the Bun, compared with that of all the planeta bolonging to the colar syatern) What is the centre of gravity of a body 1 Give on example. How doet this ilfustration appy to planetary motion I If there were but one eingle body in the uni verse where would twe cuntre of gravity bel What motion would the body have 3 Wat would the "ermer up and drwn, io such case, mean ?

[^255]:    If the Earth were the only body revolving abonat the Sun, what would be theif releativ diftances from their common centre of mravity) If, instend of the Earth alone, Uno Earth Fith ali tha p,anets and ratelliten of the aystem were on one sido, and the Suin slone co the other, al what diatence from their common centre of gavity pout the Bun be to bat ance chem all? Where is the centre of gravisy bel ween the Earth and Mooa? how do
     of the univere? What in meamt by all simple motion being reotilinear? why dhen m the Sun, by it, grat attraction hring all bodies to ith surficet Explain what ionement
    

[^256]:    To what in the Sum's attractive power at each particular planet equaly Explein thie more fully. By whom wat the universa sw of planelary motion entablished? Ropent solaw.

[^257]:    Howo ts the wetsht of bodter on the Earth'orequator affected by ite dizurnal rotation? What toould be the effect if the diut nal motion of the Earth toere accelerated? What oonsld be the convequence if che Earth revolved about its axtis in os minuter, or lem, What are the equinoxes? What is meant by the preceselon of the equinoxes? Why
    

[^258]:    Give at length a familiar illuntration by tohtch this subjech may be undertiood. Sugpowe the carriage continues its circult ayound the Earth, wohere would it crose the ownd poctial the $9 d, 3 d$, and $4 t h$ times, $q-$. 5 Afier how many circuits would this falling back of the equitioctial polnoi amount to one degree on the ectipete? In what thene does the Sun revolve from one equinox to the aume equinox agaial What in this pariod galled I Why is it mo callod? Does the equinax remain atetionary during thia peried, What reaulta from this?

[^259]:    How long does it take the Sun to pans over the interval of space through which the equinox bas thus retreated! What is the length of a sidereal revolution, and how is it determined? What portion of the ecliptic does the Sun describe, at a mean rate, every day What portion does it describe in 20 minutes and 23 seconds? If the Sun and equinoctial points fall back in the ecliptic $501-4^{\prime \prime}$ of a degree every year, how many years before this regression will amount to a degree? How will this affiect the appearance of the stars? What practical inconvenience results from this fact? In what period of time does the precession of the stars amount to $30^{\circ}$, or one whole sign? Explain this by a diagram. How does the retrogradation of the equinoctial pointa affect the longitude of the stars? Does the game cause extend to the right ascension and declination also? How is this rendered auparent? Mention an example. Hisiory does not enable us to fix the precise age of the eoorld in wohich Hesiod jourished; tohat light does astronomy shed upon this question? By what means was the retrogradation of the equinoxes determined ? Why was it difficult to determine the cause und extent of this motion? Not to specify particular cases, what has observation at length determined, with respect to the limit and 2 aniformity of this backward movement of the equinoctial points?

[^260]:    Give an externple. Why should the tropical year, on this account. be ahorter now than it was then? What is the present rate of motion of the equinoctial points In what time, continuing at the same rate, will they fall back through the twelve aigna of the ecliptic ? In determining the exact period of a complete revolution of the equinoctial poryta, what important circumatance mast be borne in mind? Making due allowance for their accelerated prorreas, in what time is a revolution of the equinorea oompleted 7 Is this motion as quins in the first quarter of their revolution as in the lamt? What ia the time and difference of describing each quarter). What is the immodiato consequence of the precestion of the equinoxas upon the position of the hes venly bodias! Explain how this takes place. How does this resemble the annual low of a midereal day by the Eun ? What is the cave of thin motion?

[^261]:    Admitting this explanation, in what does the preceasion of the equinoxes really conaist ? To what point in the henvens will the pole of the Earth be directed, during the revolution? How must this nffect the diurnal motion and aspect of the heavens, in remote ages? Whertin will the effecta of such a motion be particulariy visible? Give an instanoe.

[^262]:    Whan you epeak of the POLE as in motion, what is to be wniterstood by that terme Is the preceasion of the stars, with reapect to the equinoxes, equally apparent in every part of the heavens? At what longitude do the circumpolar stars approach nearest uho pole? What it the position, at present, of the north polar gtur, and when will it make jes nesrest poseible approsch to the true pole or the heavena? At what period has ang other atar been the polar atar? When will the star Lyra, which is more than 50 from it. be the norih polar atar 7 What toas the medn annual procesoion from the creations to the yoar 1800, and hovo much did it amount to in tha! period? When saar Beta Ariettry int equinog, and whal is ita langitude noto? When will our present north star be at ita least, and when at its greatest distance from the poleg In this case, in it meant that he atar itself will move, or the pole] In what manner? What, then, mual be the
    apparegt offect?

[^263]:    Insutraze these phenomang by a diagrum. What is the obliquity of the ecliptic? In what lizht have we hitherto considered the rreat circlea of the heavens? But what in the 组et By what cause is the displacement of the equinoctial, or the plane of the Farth'sequstor, effected? How is the displacement of the plane of the ectiptic effected 7 If the planetary attraction tends constantly to draw the planea of the equinoctial and ecliptic nearer torether, what is to prevent them from coinciding in one and the mame plane? How much is the distance or angle between them diminished every yeur) What was the obitquity of the ecltptic, or the quantity of thie angle, af the commence: men! of the pr coent century ) in the anmual divaidnution of the obldquty cublect 20 any veriachon!

[^264]:    From rohat cause, What effect has the attraction of the Sun and Moon on this obliquity) What results from this alternate and opposite influence? By what token doen Whe Earth nhow respect to this influence of the Moont? What if this phenomenon called What is the consequence of the yearly diminution of the obliquity of the eetiptic in reapect to the position of the tropics, and the declination of the Sun? What other citri oun effocts result from this diminution 3 How does it afrect the deelination of tho stan near the solstices Do aly the stara partake, more or lose, in this motion? Will thia
    dinoinution of the oblisuity alwas continue

[^265]:    What are the bentite of ita alternate variation? What would be the consequence, in respect to the seavons, should the pinne of the ecliptic ever coincide with the plane of the equator? What is the method used by astronomers for determining the obliquity of the ecliptici What regular motion is observed in the great body of watere upon the slobe? In what period of time is this alternate ebbing and fiowing ecomplighod)

[^266]:    What is it called? Hono wore these phenomena regarded by the ancients? Whe merrationd their true caume? What is the cause of the tides? How doed the atiraction Whe Sun and Moon produce tides upon both sides of the Earth at the same time? What to Str John Herechel's Temark upon this theory? Howo ir it henoton that the Itder are governed by any apcertained lano 7 Whal coinclaence is observed beticcens lhe shaFridian pasagage of the Moon, and the rime of high water 3 What concturitow maxy woe do riteo from thit cotneldence? If the Farth wore at reat, and under no inf wones from the aftruction of the Bun or Moon, what mhape would the waten nernume?

[^267]:    It follow: then, an we have seen, that the Moon doea not revolve, witrictly mpesting, around the Earth as a centor, but around a point between then,

[^268]:     the farth nor Moon to have any motion. what would be the resulk? How would thia condition of thinga be affected by the Barth's rotation? If the Earth and Moon matually aftract each other with mo much force, what prevente their comine togather? But centrifugal foree results only from circular motion, does the Earth then cireulate amound she Moom to acequire the sentrifugal force by which it in kept from falling upon the Mown) [Ans. The Farth does not circulate arourd the Moon, but aroubd the common center of gravicy between it and the Moon.] Where in this center situnted, and in what time does the Earth revolve about it? (Ans. The center of gravity, betweep the Earth and the Moon, is about soco miles from the Earth's center. around which it pevolvea every Iunar month or as often as the Moon revolves around the Parth. 1 Prom
     count for Aigh goncer on she ofle of the Exrth. olypomite to the waps? How in this phenomenoo otherwise explained, by the laws of aravity, merely? Are the Enrth and patero of the glwe affected equally, by the M(on's atiraction) Why mot

[^269]:    What is the average interval hetween the flux and reflux of the gea; What in tho lensth of a lunar day and of the interval of the flux and reflux of the ceans How in this daily retardation of the tides aocounted for ) Gips an axanple.

[^270]:    What is the general theory apon this mubject? Does it neceasarily rosult frum thia Cheory, that the fide is highost when the Noon is on the moridian? What peoon ia arsigned for thie? What implar fict is accounted for upoo the alme principiet

[^271]:    What is the comparative force of the solar and Iumar attractions upon the Earth1 To what in owing the difference in the time of high water at places lying under the ama meridian? Why are there mo tides upon lakes, and small collections of watery To what ceuse more than all others, is the different height of tides owing? Explain this. Is it probable that the Moon exerts any influence of attraction on the atmou phere? Why is it prubable? Are the atmospheric tiden sufficienly genaible to be ap preciated ?

[^272]:    Hoto much greater in the attractive ponoer of the Earth upon the Moon, than that of the Moon upon the Earth] What occanions the vicissitudes of tive seasona, and the unequal length of the days and nighta) Upon what does the temperature at difieroilt phaces depend, Under what circumntances do the ame places change their tomperaturo) Are the quantitien of hoes received and imparted, every year always equal at the same places! Why in it so) When is the temperature of a phace above, and when is it belone ite mean state ) Opon what doen the continuance of the Sun above the horizou of any place, depend? When in the Sun at long above our horizon as below it? During What seacon of the year in the temperature increusing? What, at the mame time, trite place in regard to the remperature, in the wouthern hemiephere 1 During what pot tion of the yoar is the tempernture, decreaning?

[^273]:    For what reason? During what portion of the year is the cold increaning \% Why is it mot What change of measons, then, takes place, in the northern and southern hemispheres? What other changes complete the neasons of the year) Whence is it evident that the umequal lengths of the days and nights are not the only, nor perhaps the moat efficient cause of the hent of nummer, and the cold of winter I What two causes produce the [reateat vicisitudea of heat and cold ) Why, then, do we mot have the hottest weather whan the days are longets, and the contrary?

[^274]:    Why in the north pale denominated the elevated pole? Wby is the south pole demominatad the depreaced pole? Why are there six months day and six months nisht, alternately at the poles ? What is always the relative position of the Sun and-Earth in the ecliptic; Give an example. When do the days lengthen in the northem nemiaphere, and shorten in the nouthern) When is it mid-day at the north pole, and midmorter and mhortur); When do the summer dayn in the northern hemiaphore grow

[^275]:    When do they become of equal longth in both hemispheres? When do the winter days chorten in the northern hemisphere, and the summer days lengthen in the sonthem 1 When do the summer daya shorten in the southern heminphere, and the winter days bouthen in the northern? When does the Sun rise to the north pole, and aet to the couth) When is it noon at the north pole, and midaight at the south pole? When does the Bun met to the north pole, and rise to the south? When is it midnight at the north pole, and noon at the south? What it the loneth of the day at the north pole? What at the couth pole? At the arotic circle? Between the antarctic circle and the pole 1

    - See Table XIL

[^276]:    What is the mean difference of time in the daily rising of the Moon? Under what circumntancem is there anaterial deviation from this rule? Whence the name of Harreas Moon 7 By iohom was this phenomenon first observed, and to tohat did they attributs is 7 Why is the harvest Moon unknown at the equator). How is it at the polar circleas and the poles? What ts meant by the full Moons shining from the first to the thira fuarter How may the phenomenon be exomplifiad by means of the artificial globs? Why to you thacric evory $12^{\circ}$ of the eclipnic in this prodiens?

[^277]:    What dose this procews of ulumeration suppoon, which ta not irue, and why to th acopted? To what in the different lengths of the lunar night, in different latituden, owing 1 Give an example. How do thowe parts of the ecliptic est, which ries with the maniloet angles, and the contrary?
    What resulte from thin in reyand to the Moon 1 Hoto may thes be illustratod on the globs) In noithern latitudes, whet signe riae and ret with the leagt angles? What with the groateat? Which parts it the echiptic rise tantent, and which slowent? Give an exemple. What is the daily difference of the Aloon's riving and tettiow, in thane aigna, in the latitude of New Yort?

[^278]:    How many full Moons in a gear, which rise with go little difference of time? Why
     DIsplain why thers is no Harvest Moon at the equator. Tha fartharany place is froct the equator, how is the angle between the ecliptic and the horizoo, when Pisces and Cries rise ? Do the Harvest Moons happen as regularly, and in the game months, on the south side of the equstor, as on the north? Why does not the full Moon $\overline{\text { mine }}$ in esmmer, or met in winter, to the inhabilants of the polar circlen?

[^279]:    According to the ordinary kws of vision, how ought the magnitudes of the Sun atd Moon to appenr when they are nearest the hotizon?. What is the fact 7 How muct. Larger docs the Moon appear to the naked eye, when in the horizon, than when at the ultitude of thirty or forty degrees! Where, in realdty, do the Sun and Moon subtend ths largesf angle 7 Why is it sof How is the apparent increase of magnitude in the horizontal Moan accounted (or)

[^280]:    How are the raye of light affected in passing out of one medium into another, of a different density 3 How, if the donsity of the latter mediure continualiy increane ? What atronomical phenomenon results from this cause; What is this bendins of the rays of light out of their couree called; What effect does refruction have upon the apparent rising and netting of the heavenly bodies? How much longer do we see the Sun morning and evening than we should, if there were no refraction? What is the average amount of refriction for an object half way between the horizon and the zenith? What is in the horizon? What is the firgt general law of atmonpheric refrection? What is the esecond, What is the third! Mention a famitiar tnetancs of refraction of ten seen in voater. Mention mome familiar exper tment, to 121 ustrats refraction, and thoto its applicution to astronomy) How does this principle affect the duration of nocturual darkneas ! By what principle is it that the atmonphere setide pa a portion of tha solar lighz, for a conniderable time before the Bun rimen, and aftar it hat wet ?

[^281]:    What is Trotilshe 3 How in foccasioned) How is the Evening Twilieht nominoedt By what ere the cuantity of reflection, and the duration of twilight, consicderably infle eyced? Why in twilight shorter in winter? Why longer in mummery why is the mort Fof (wilight atior:er than the evening twilighty To what is it ontirely ofiot, that de
     fir thit power' What ere tho duration and advartacee of twilight ith hiah latitudey.

[^282]:    Eck te a rwharicable phenownewon of this kind How are the phenompent of the As
     ore thome appetrinoes mont fircuent sad triltinnt i Doscribe the times and an -

[^283]:    Deacribe thoor appearince in Lapland as related by Manpertula, and tas efieet eppon tha latrabitanta. Descibe ife appearance between leeland and the Ferto islande, as reiated by Kirgielen. Whose teatimony on this subject is of anore value than that of former travef hara) Why 1 How does be describo the scenet ne witressed during the polar mikht,

[^284]:    Beecrite the colowrs of the Aurors Hight. What is one of the earlient theoina Alcoel to explain this phenomenon 1 How did Dr. Halley proporse to aocount for it , hat ob
    

[^285]:    What it the opinion of Dr. Young in regard to their caume What eonrtderretion nnay Wadduced in farther support of the electro-magnetic theonst Tn whi: jures
     is parallaxs What is the true place of a celestial body? What is the apparent plice? Whare is the parallax of a heavenly botr the greatent What is thie narallax called)

[^286]:    - Eleo Chapter XIV., on tha number and dintance of tha Btern.

[^287]:    

